1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include "irq.h" 22 #include "ioapic.h" 23 #include "mmu.h" 24 #include "i8254.h" 25 #include "tss.h" 26 #include "kvm_cache_regs.h" 27 #include "kvm_emulate.h" 28 #include "mmu/page_track.h" 29 #include "x86.h" 30 #include "cpuid.h" 31 #include "pmu.h" 32 #include "hyperv.h" 33 #include "lapic.h" 34 #include "xen.h" 35 #include "smm.h" 36 37 #include <linux/clocksource.h> 38 #include <linux/interrupt.h> 39 #include <linux/kvm.h> 40 #include <linux/fs.h> 41 #include <linux/vmalloc.h> 42 #include <linux/export.h> 43 #include <linux/moduleparam.h> 44 #include <linux/mman.h> 45 #include <linux/highmem.h> 46 #include <linux/iommu.h> 47 #include <linux/cpufreq.h> 48 #include <linux/user-return-notifier.h> 49 #include <linux/srcu.h> 50 #include <linux/slab.h> 51 #include <linux/perf_event.h> 52 #include <linux/uaccess.h> 53 #include <linux/hash.h> 54 #include <linux/pci.h> 55 #include <linux/timekeeper_internal.h> 56 #include <linux/pvclock_gtod.h> 57 #include <linux/kvm_irqfd.h> 58 #include <linux/irqbypass.h> 59 #include <linux/sched/stat.h> 60 #include <linux/sched/isolation.h> 61 #include <linux/mem_encrypt.h> 62 #include <linux/entry-kvm.h> 63 #include <linux/suspend.h> 64 #include <linux/smp.h> 65 66 #include <trace/events/ipi.h> 67 #include <trace/events/kvm.h> 68 69 #include <asm/debugreg.h> 70 #include <asm/msr.h> 71 #include <asm/desc.h> 72 #include <asm/mce.h> 73 #include <asm/pkru.h> 74 #include <linux/kernel_stat.h> 75 #include <asm/fpu/api.h> 76 #include <asm/fpu/xcr.h> 77 #include <asm/fpu/xstate.h> 78 #include <asm/pvclock.h> 79 #include <asm/div64.h> 80 #include <asm/irq_remapping.h> 81 #include <asm/mshyperv.h> 82 #include <asm/hypervisor.h> 83 #include <asm/tlbflush.h> 84 #include <asm/intel_pt.h> 85 #include <asm/emulate_prefix.h> 86 #include <asm/sgx.h> 87 #include <clocksource/hyperv_timer.h> 88 89 #define CREATE_TRACE_POINTS 90 #include "trace.h" 91 92 #define MAX_IO_MSRS 256 93 94 /* 95 * Note, kvm_caps fields should *never* have default values, all fields must be 96 * recomputed from scratch during vendor module load, e.g. to account for a 97 * vendor module being reloaded with different module parameters. 98 */ 99 struct kvm_caps kvm_caps __read_mostly; 100 EXPORT_SYMBOL_GPL(kvm_caps); 101 102 struct kvm_host_values kvm_host __read_mostly; 103 EXPORT_SYMBOL_GPL(kvm_host); 104 105 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 106 107 #define emul_to_vcpu(ctxt) \ 108 ((struct kvm_vcpu *)(ctxt)->vcpu) 109 110 /* EFER defaults: 111 * - enable syscall per default because its emulated by KVM 112 * - enable LME and LMA per default on 64 bit KVM 113 */ 114 #ifdef CONFIG_X86_64 115 static 116 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 117 #else 118 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 119 #endif 120 121 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 122 123 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 124 125 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 126 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 127 128 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 129 static void process_nmi(struct kvm_vcpu *vcpu); 130 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 131 static void store_regs(struct kvm_vcpu *vcpu); 132 static int sync_regs(struct kvm_vcpu *vcpu); 133 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 134 135 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 136 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 137 138 static DEFINE_MUTEX(vendor_module_lock); 139 struct kvm_x86_ops kvm_x86_ops __read_mostly; 140 141 #define KVM_X86_OP(func) \ 142 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 143 *(((struct kvm_x86_ops *)0)->func)); 144 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 145 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 146 #include <asm/kvm-x86-ops.h> 147 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 148 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 149 150 static bool __read_mostly ignore_msrs = 0; 151 module_param(ignore_msrs, bool, 0644); 152 153 bool __read_mostly report_ignored_msrs = true; 154 module_param(report_ignored_msrs, bool, 0644); 155 EXPORT_SYMBOL_GPL(report_ignored_msrs); 156 157 unsigned int min_timer_period_us = 200; 158 module_param(min_timer_period_us, uint, 0644); 159 160 static bool __read_mostly kvmclock_periodic_sync = true; 161 module_param(kvmclock_periodic_sync, bool, 0444); 162 163 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 164 static u32 __read_mostly tsc_tolerance_ppm = 250; 165 module_param(tsc_tolerance_ppm, uint, 0644); 166 167 static bool __read_mostly vector_hashing = true; 168 module_param(vector_hashing, bool, 0444); 169 170 bool __read_mostly enable_vmware_backdoor = false; 171 module_param(enable_vmware_backdoor, bool, 0444); 172 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 173 174 /* 175 * Flags to manipulate forced emulation behavior (any non-zero value will 176 * enable forced emulation). 177 */ 178 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 179 static int __read_mostly force_emulation_prefix; 180 module_param(force_emulation_prefix, int, 0644); 181 182 int __read_mostly pi_inject_timer = -1; 183 module_param(pi_inject_timer, bint, 0644); 184 185 /* Enable/disable PMU virtualization */ 186 bool __read_mostly enable_pmu = true; 187 EXPORT_SYMBOL_GPL(enable_pmu); 188 module_param(enable_pmu, bool, 0444); 189 190 bool __read_mostly eager_page_split = true; 191 module_param(eager_page_split, bool, 0644); 192 193 /* Enable/disable SMT_RSB bug mitigation */ 194 static bool __read_mostly mitigate_smt_rsb; 195 module_param(mitigate_smt_rsb, bool, 0444); 196 197 /* 198 * Restoring the host value for MSRs that are only consumed when running in 199 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 200 * returns to userspace, i.e. the kernel can run with the guest's value. 201 */ 202 #define KVM_MAX_NR_USER_RETURN_MSRS 16 203 204 struct kvm_user_return_msrs { 205 struct user_return_notifier urn; 206 bool registered; 207 struct kvm_user_return_msr_values { 208 u64 host; 209 u64 curr; 210 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 211 }; 212 213 u32 __read_mostly kvm_nr_uret_msrs; 214 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 215 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 216 static struct kvm_user_return_msrs __percpu *user_return_msrs; 217 218 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 219 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 220 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 221 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 222 223 bool __read_mostly allow_smaller_maxphyaddr = 0; 224 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 225 226 bool __read_mostly enable_apicv = true; 227 EXPORT_SYMBOL_GPL(enable_apicv); 228 229 bool __read_mostly enable_ipiv = true; 230 EXPORT_SYMBOL_GPL(enable_ipiv); 231 232 bool __read_mostly enable_device_posted_irqs = true; 233 EXPORT_SYMBOL_GPL(enable_device_posted_irqs); 234 235 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 236 KVM_GENERIC_VM_STATS(), 237 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 238 STATS_DESC_COUNTER(VM, mmu_pte_write), 239 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 240 STATS_DESC_COUNTER(VM, mmu_flooded), 241 STATS_DESC_COUNTER(VM, mmu_recycled), 242 STATS_DESC_COUNTER(VM, mmu_cache_miss), 243 STATS_DESC_ICOUNTER(VM, mmu_unsync), 244 STATS_DESC_ICOUNTER(VM, pages_4k), 245 STATS_DESC_ICOUNTER(VM, pages_2m), 246 STATS_DESC_ICOUNTER(VM, pages_1g), 247 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 248 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 249 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 250 }; 251 252 const struct kvm_stats_header kvm_vm_stats_header = { 253 .name_size = KVM_STATS_NAME_SIZE, 254 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 255 .id_offset = sizeof(struct kvm_stats_header), 256 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 257 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 258 sizeof(kvm_vm_stats_desc), 259 }; 260 261 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 262 KVM_GENERIC_VCPU_STATS(), 263 STATS_DESC_COUNTER(VCPU, pf_taken), 264 STATS_DESC_COUNTER(VCPU, pf_fixed), 265 STATS_DESC_COUNTER(VCPU, pf_emulate), 266 STATS_DESC_COUNTER(VCPU, pf_spurious), 267 STATS_DESC_COUNTER(VCPU, pf_fast), 268 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 269 STATS_DESC_COUNTER(VCPU, pf_guest), 270 STATS_DESC_COUNTER(VCPU, tlb_flush), 271 STATS_DESC_COUNTER(VCPU, invlpg), 272 STATS_DESC_COUNTER(VCPU, exits), 273 STATS_DESC_COUNTER(VCPU, io_exits), 274 STATS_DESC_COUNTER(VCPU, mmio_exits), 275 STATS_DESC_COUNTER(VCPU, signal_exits), 276 STATS_DESC_COUNTER(VCPU, irq_window_exits), 277 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 278 STATS_DESC_COUNTER(VCPU, l1d_flush), 279 STATS_DESC_COUNTER(VCPU, halt_exits), 280 STATS_DESC_COUNTER(VCPU, request_irq_exits), 281 STATS_DESC_COUNTER(VCPU, irq_exits), 282 STATS_DESC_COUNTER(VCPU, host_state_reload), 283 STATS_DESC_COUNTER(VCPU, fpu_reload), 284 STATS_DESC_COUNTER(VCPU, insn_emulation), 285 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 286 STATS_DESC_COUNTER(VCPU, hypercalls), 287 STATS_DESC_COUNTER(VCPU, irq_injections), 288 STATS_DESC_COUNTER(VCPU, nmi_injections), 289 STATS_DESC_COUNTER(VCPU, req_event), 290 STATS_DESC_COUNTER(VCPU, nested_run), 291 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 292 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 293 STATS_DESC_COUNTER(VCPU, preemption_reported), 294 STATS_DESC_COUNTER(VCPU, preemption_other), 295 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 296 STATS_DESC_COUNTER(VCPU, notify_window_exits), 297 }; 298 299 const struct kvm_stats_header kvm_vcpu_stats_header = { 300 .name_size = KVM_STATS_NAME_SIZE, 301 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 302 .id_offset = sizeof(struct kvm_stats_header), 303 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 304 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 305 sizeof(kvm_vcpu_stats_desc), 306 }; 307 308 static struct kmem_cache *x86_emulator_cache; 309 310 /* 311 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track 312 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS, 313 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that 314 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds 315 * MSRs that KVM emulates without strictly requiring host support. 316 * msr_based_features holds MSRs that enumerate features, i.e. are effectively 317 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with 318 * msrs_to_save and emulated_msrs. 319 */ 320 321 static const u32 msrs_to_save_base[] = { 322 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 323 MSR_STAR, 324 #ifdef CONFIG_X86_64 325 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 326 #endif 327 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 328 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 329 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL, 330 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 331 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 332 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 333 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 334 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 335 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 336 MSR_IA32_UMWAIT_CONTROL, 337 338 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 339 }; 340 341 static const u32 msrs_to_save_pmu[] = { 342 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 343 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 344 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 345 MSR_CORE_PERF_GLOBAL_CTRL, 346 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 347 348 /* This part of MSRs should match KVM_MAX_NR_INTEL_GP_COUNTERS. */ 349 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 350 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 351 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 352 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 353 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 354 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 355 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 356 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 357 358 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 359 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 360 361 /* This part of MSRs should match KVM_MAX_NR_AMD_GP_COUNTERS. */ 362 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 363 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 364 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 365 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 366 367 MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 368 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, 369 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, 370 }; 371 372 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) + 373 ARRAY_SIZE(msrs_to_save_pmu)]; 374 static unsigned num_msrs_to_save; 375 376 static const u32 emulated_msrs_all[] = { 377 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 378 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 379 380 #ifdef CONFIG_KVM_HYPERV 381 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 382 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 383 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 384 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 385 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 386 HV_X64_MSR_RESET, 387 HV_X64_MSR_VP_INDEX, 388 HV_X64_MSR_VP_RUNTIME, 389 HV_X64_MSR_SCONTROL, 390 HV_X64_MSR_STIMER0_CONFIG, 391 HV_X64_MSR_VP_ASSIST_PAGE, 392 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 393 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, 394 HV_X64_MSR_SYNDBG_OPTIONS, 395 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 396 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 397 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 398 #endif 399 400 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 401 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 402 403 MSR_IA32_TSC_ADJUST, 404 MSR_IA32_TSC_DEADLINE, 405 MSR_IA32_ARCH_CAPABILITIES, 406 MSR_IA32_PERF_CAPABILITIES, 407 MSR_IA32_MISC_ENABLE, 408 MSR_IA32_MCG_STATUS, 409 MSR_IA32_MCG_CTL, 410 MSR_IA32_MCG_EXT_CTL, 411 MSR_IA32_SMBASE, 412 MSR_SMI_COUNT, 413 MSR_PLATFORM_INFO, 414 MSR_MISC_FEATURES_ENABLES, 415 MSR_AMD64_VIRT_SPEC_CTRL, 416 MSR_AMD64_TSC_RATIO, 417 MSR_IA32_POWER_CTL, 418 MSR_IA32_UCODE_REV, 419 420 /* 421 * KVM always supports the "true" VMX control MSRs, even if the host 422 * does not. The VMX MSRs as a whole are considered "emulated" as KVM 423 * doesn't strictly require them to exist in the host (ignoring that 424 * KVM would refuse to load in the first place if the core set of MSRs 425 * aren't supported). 426 */ 427 MSR_IA32_VMX_BASIC, 428 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 429 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 430 MSR_IA32_VMX_TRUE_EXIT_CTLS, 431 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 432 MSR_IA32_VMX_MISC, 433 MSR_IA32_VMX_CR0_FIXED0, 434 MSR_IA32_VMX_CR4_FIXED0, 435 MSR_IA32_VMX_VMCS_ENUM, 436 MSR_IA32_VMX_PROCBASED_CTLS2, 437 MSR_IA32_VMX_EPT_VPID_CAP, 438 MSR_IA32_VMX_VMFUNC, 439 440 MSR_K7_HWCR, 441 MSR_KVM_POLL_CONTROL, 442 }; 443 444 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 445 static unsigned num_emulated_msrs; 446 447 /* 448 * List of MSRs that control the existence of MSR-based features, i.e. MSRs 449 * that are effectively CPUID leafs. VMX MSRs are also included in the set of 450 * feature MSRs, but are handled separately to allow expedited lookups. 451 */ 452 static const u32 msr_based_features_all_except_vmx[] = { 453 MSR_AMD64_DE_CFG, 454 MSR_IA32_UCODE_REV, 455 MSR_IA32_ARCH_CAPABILITIES, 456 MSR_IA32_PERF_CAPABILITIES, 457 MSR_PLATFORM_INFO, 458 }; 459 460 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) + 461 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)]; 462 static unsigned int num_msr_based_features; 463 464 /* 465 * All feature MSRs except uCode revID, which tracks the currently loaded uCode 466 * patch, are immutable once the vCPU model is defined. 467 */ 468 static bool kvm_is_immutable_feature_msr(u32 msr) 469 { 470 int i; 471 472 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR) 473 return true; 474 475 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) { 476 if (msr == msr_based_features_all_except_vmx[i]) 477 return msr != MSR_IA32_UCODE_REV; 478 } 479 480 return false; 481 } 482 483 static bool kvm_is_advertised_msr(u32 msr_index) 484 { 485 unsigned int i; 486 487 for (i = 0; i < num_msrs_to_save; i++) { 488 if (msrs_to_save[i] == msr_index) 489 return true; 490 } 491 492 for (i = 0; i < num_emulated_msrs; i++) { 493 if (emulated_msrs[i] == msr_index) 494 return true; 495 } 496 497 return false; 498 } 499 500 typedef int (*msr_access_t)(struct kvm_vcpu *vcpu, u32 index, u64 *data, 501 bool host_initiated); 502 503 static __always_inline int kvm_do_msr_access(struct kvm_vcpu *vcpu, u32 msr, 504 u64 *data, bool host_initiated, 505 enum kvm_msr_access rw, 506 msr_access_t msr_access_fn) 507 { 508 const char *op = rw == MSR_TYPE_W ? "wrmsr" : "rdmsr"; 509 int ret; 510 511 BUILD_BUG_ON(rw != MSR_TYPE_R && rw != MSR_TYPE_W); 512 513 /* 514 * Zero the data on read failures to avoid leaking stack data to the 515 * guest and/or userspace, e.g. if the failure is ignored below. 516 */ 517 ret = msr_access_fn(vcpu, msr, data, host_initiated); 518 if (ret && rw == MSR_TYPE_R) 519 *data = 0; 520 521 if (ret != KVM_MSR_RET_UNSUPPORTED) 522 return ret; 523 524 /* 525 * Userspace is allowed to read MSRs, and write '0' to MSRs, that KVM 526 * advertises to userspace, even if an MSR isn't fully supported. 527 * Simply check that @data is '0', which covers both the write '0' case 528 * and all reads (in which case @data is zeroed on failure; see above). 529 */ 530 if (host_initiated && !*data && kvm_is_advertised_msr(msr)) 531 return 0; 532 533 if (!ignore_msrs) { 534 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 535 op, msr, *data); 536 return ret; 537 } 538 539 if (report_ignored_msrs) 540 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", op, msr, *data); 541 542 return 0; 543 } 544 545 static struct kmem_cache *kvm_alloc_emulator_cache(void) 546 { 547 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 548 unsigned int size = sizeof(struct x86_emulate_ctxt); 549 550 return kmem_cache_create_usercopy("x86_emulator", size, 551 __alignof__(struct x86_emulate_ctxt), 552 SLAB_ACCOUNT, useroffset, 553 size - useroffset, NULL); 554 } 555 556 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 557 558 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 559 { 560 int i; 561 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 562 vcpu->arch.apf.gfns[i] = ~0; 563 } 564 565 static void kvm_on_user_return(struct user_return_notifier *urn) 566 { 567 unsigned slot; 568 struct kvm_user_return_msrs *msrs 569 = container_of(urn, struct kvm_user_return_msrs, urn); 570 struct kvm_user_return_msr_values *values; 571 unsigned long flags; 572 573 /* 574 * Disabling irqs at this point since the following code could be 575 * interrupted and executed through kvm_arch_disable_virtualization_cpu() 576 */ 577 local_irq_save(flags); 578 if (msrs->registered) { 579 msrs->registered = false; 580 user_return_notifier_unregister(urn); 581 } 582 local_irq_restore(flags); 583 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 584 values = &msrs->values[slot]; 585 if (values->host != values->curr) { 586 wrmsrq(kvm_uret_msrs_list[slot], values->host); 587 values->curr = values->host; 588 } 589 } 590 } 591 592 static int kvm_probe_user_return_msr(u32 msr) 593 { 594 u64 val; 595 int ret; 596 597 preempt_disable(); 598 ret = rdmsrq_safe(msr, &val); 599 if (ret) 600 goto out; 601 ret = wrmsrq_safe(msr, val); 602 out: 603 preempt_enable(); 604 return ret; 605 } 606 607 int kvm_add_user_return_msr(u32 msr) 608 { 609 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 610 611 if (kvm_probe_user_return_msr(msr)) 612 return -1; 613 614 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 615 return kvm_nr_uret_msrs++; 616 } 617 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 618 619 int kvm_find_user_return_msr(u32 msr) 620 { 621 int i; 622 623 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 624 if (kvm_uret_msrs_list[i] == msr) 625 return i; 626 } 627 return -1; 628 } 629 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 630 631 static void kvm_user_return_msr_cpu_online(void) 632 { 633 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs); 634 u64 value; 635 int i; 636 637 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 638 rdmsrq_safe(kvm_uret_msrs_list[i], &value); 639 msrs->values[i].host = value; 640 msrs->values[i].curr = value; 641 } 642 } 643 644 static void kvm_user_return_register_notifier(struct kvm_user_return_msrs *msrs) 645 { 646 if (!msrs->registered) { 647 msrs->urn.on_user_return = kvm_on_user_return; 648 user_return_notifier_register(&msrs->urn); 649 msrs->registered = true; 650 } 651 } 652 653 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 654 { 655 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs); 656 int err; 657 658 value = (value & mask) | (msrs->values[slot].host & ~mask); 659 if (value == msrs->values[slot].curr) 660 return 0; 661 err = wrmsrq_safe(kvm_uret_msrs_list[slot], value); 662 if (err) 663 return 1; 664 665 msrs->values[slot].curr = value; 666 kvm_user_return_register_notifier(msrs); 667 return 0; 668 } 669 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 670 671 void kvm_user_return_msr_update_cache(unsigned int slot, u64 value) 672 { 673 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs); 674 675 msrs->values[slot].curr = value; 676 kvm_user_return_register_notifier(msrs); 677 } 678 EXPORT_SYMBOL_GPL(kvm_user_return_msr_update_cache); 679 680 static void drop_user_return_notifiers(void) 681 { 682 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs); 683 684 if (msrs->registered) 685 kvm_on_user_return(&msrs->urn); 686 } 687 688 /* 689 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 690 * 691 * Hardware virtualization extension instructions may fault if a reboot turns 692 * off virtualization while processes are running. Usually after catching the 693 * fault we just panic; during reboot instead the instruction is ignored. 694 */ 695 noinstr void kvm_spurious_fault(void) 696 { 697 /* Fault while not rebooting. We want the trace. */ 698 BUG_ON(!kvm_rebooting); 699 } 700 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 701 702 #define EXCPT_BENIGN 0 703 #define EXCPT_CONTRIBUTORY 1 704 #define EXCPT_PF 2 705 706 static int exception_class(int vector) 707 { 708 switch (vector) { 709 case PF_VECTOR: 710 return EXCPT_PF; 711 case DE_VECTOR: 712 case TS_VECTOR: 713 case NP_VECTOR: 714 case SS_VECTOR: 715 case GP_VECTOR: 716 return EXCPT_CONTRIBUTORY; 717 default: 718 break; 719 } 720 return EXCPT_BENIGN; 721 } 722 723 #define EXCPT_FAULT 0 724 #define EXCPT_TRAP 1 725 #define EXCPT_ABORT 2 726 #define EXCPT_INTERRUPT 3 727 #define EXCPT_DB 4 728 729 static int exception_type(int vector) 730 { 731 unsigned int mask; 732 733 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 734 return EXCPT_INTERRUPT; 735 736 mask = 1 << vector; 737 738 /* 739 * #DBs can be trap-like or fault-like, the caller must check other CPU 740 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 741 */ 742 if (mask & (1 << DB_VECTOR)) 743 return EXCPT_DB; 744 745 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 746 return EXCPT_TRAP; 747 748 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 749 return EXCPT_ABORT; 750 751 /* Reserved exceptions will result in fault */ 752 return EXCPT_FAULT; 753 } 754 755 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 756 struct kvm_queued_exception *ex) 757 { 758 if (!ex->has_payload) 759 return; 760 761 switch (ex->vector) { 762 case DB_VECTOR: 763 /* 764 * "Certain debug exceptions may clear bit 0-3. The 765 * remaining contents of the DR6 register are never 766 * cleared by the processor". 767 */ 768 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 769 /* 770 * In order to reflect the #DB exception payload in guest 771 * dr6, three components need to be considered: active low 772 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 773 * DR6_BS and DR6_BT) 774 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 775 * In the target guest dr6: 776 * FIXED_1 bits should always be set. 777 * Active low bits should be cleared if 1-setting in payload. 778 * Active high bits should be set if 1-setting in payload. 779 * 780 * Note, the payload is compatible with the pending debug 781 * exceptions/exit qualification under VMX, that active_low bits 782 * are active high in payload. 783 * So they need to be flipped for DR6. 784 */ 785 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 786 vcpu->arch.dr6 |= ex->payload; 787 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 788 789 /* 790 * The #DB payload is defined as compatible with the 'pending 791 * debug exceptions' field under VMX, not DR6. While bit 12 is 792 * defined in the 'pending debug exceptions' field (enabled 793 * breakpoint), it is reserved and must be zero in DR6. 794 */ 795 vcpu->arch.dr6 &= ~BIT(12); 796 break; 797 case PF_VECTOR: 798 vcpu->arch.cr2 = ex->payload; 799 break; 800 } 801 802 ex->has_payload = false; 803 ex->payload = 0; 804 } 805 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 806 807 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 808 bool has_error_code, u32 error_code, 809 bool has_payload, unsigned long payload) 810 { 811 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 812 813 ex->vector = vector; 814 ex->injected = false; 815 ex->pending = true; 816 ex->has_error_code = has_error_code; 817 ex->error_code = error_code; 818 ex->has_payload = has_payload; 819 ex->payload = payload; 820 } 821 822 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, unsigned int nr, 823 bool has_error, u32 error_code, 824 bool has_payload, unsigned long payload) 825 { 826 u32 prev_nr; 827 int class1, class2; 828 829 kvm_make_request(KVM_REQ_EVENT, vcpu); 830 831 /* 832 * If the exception is destined for L2, morph it to a VM-Exit if L1 833 * wants to intercept the exception. 834 */ 835 if (is_guest_mode(vcpu) && 836 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 837 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 838 has_payload, payload); 839 return; 840 } 841 842 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 843 queue: 844 vcpu->arch.exception.pending = true; 845 vcpu->arch.exception.injected = false; 846 847 vcpu->arch.exception.has_error_code = has_error; 848 vcpu->arch.exception.vector = nr; 849 vcpu->arch.exception.error_code = error_code; 850 vcpu->arch.exception.has_payload = has_payload; 851 vcpu->arch.exception.payload = payload; 852 if (!is_guest_mode(vcpu)) 853 kvm_deliver_exception_payload(vcpu, 854 &vcpu->arch.exception); 855 return; 856 } 857 858 /* to check exception */ 859 prev_nr = vcpu->arch.exception.vector; 860 if (prev_nr == DF_VECTOR) { 861 /* triple fault -> shutdown */ 862 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 863 return; 864 } 865 class1 = exception_class(prev_nr); 866 class2 = exception_class(nr); 867 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 868 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 869 /* 870 * Synthesize #DF. Clear the previously injected or pending 871 * exception so as not to incorrectly trigger shutdown. 872 */ 873 vcpu->arch.exception.injected = false; 874 vcpu->arch.exception.pending = false; 875 876 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 877 } else { 878 /* replace previous exception with a new one in a hope 879 that instruction re-execution will regenerate lost 880 exception */ 881 goto queue; 882 } 883 } 884 885 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 886 { 887 kvm_multiple_exception(vcpu, nr, false, 0, false, 0); 888 } 889 EXPORT_SYMBOL_GPL(kvm_queue_exception); 890 891 892 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 893 unsigned long payload) 894 { 895 kvm_multiple_exception(vcpu, nr, false, 0, true, payload); 896 } 897 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 898 899 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 900 u32 error_code, unsigned long payload) 901 { 902 kvm_multiple_exception(vcpu, nr, true, error_code, true, payload); 903 } 904 905 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr, 906 bool has_error_code, u32 error_code) 907 { 908 909 /* 910 * On VM-Entry, an exception can be pending if and only if event 911 * injection was blocked by nested_run_pending. In that case, however, 912 * vcpu_enter_guest() requests an immediate exit, and the guest 913 * shouldn't proceed far enough to need reinjection. 914 */ 915 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 916 917 /* 918 * Do not check for interception when injecting an event for L2, as the 919 * exception was checked for intercept when it was original queued, and 920 * re-checking is incorrect if _L1_ injected the exception, in which 921 * case it's exempt from interception. 922 */ 923 kvm_make_request(KVM_REQ_EVENT, vcpu); 924 925 vcpu->arch.exception.injected = true; 926 vcpu->arch.exception.has_error_code = has_error_code; 927 vcpu->arch.exception.vector = nr; 928 vcpu->arch.exception.error_code = error_code; 929 vcpu->arch.exception.has_payload = false; 930 vcpu->arch.exception.payload = 0; 931 } 932 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 933 934 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 935 { 936 if (err) 937 kvm_inject_gp(vcpu, 0); 938 else 939 return kvm_skip_emulated_instruction(vcpu); 940 941 return 1; 942 } 943 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 944 945 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 946 { 947 if (err) { 948 kvm_inject_gp(vcpu, 0); 949 return 1; 950 } 951 952 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 953 EMULTYPE_COMPLETE_USER_EXIT); 954 } 955 956 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 957 { 958 ++vcpu->stat.pf_guest; 959 960 /* 961 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 962 * whether or not L1 wants to intercept "regular" #PF. 963 */ 964 if (is_guest_mode(vcpu) && fault->async_page_fault) 965 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 966 true, fault->error_code, 967 true, fault->address); 968 else 969 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 970 fault->address); 971 } 972 973 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 974 struct x86_exception *fault) 975 { 976 struct kvm_mmu *fault_mmu; 977 WARN_ON_ONCE(fault->vector != PF_VECTOR); 978 979 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 980 vcpu->arch.walk_mmu; 981 982 /* 983 * Invalidate the TLB entry for the faulting address, if it exists, 984 * else the access will fault indefinitely (and to emulate hardware). 985 */ 986 if ((fault->error_code & PFERR_PRESENT_MASK) && 987 !(fault->error_code & PFERR_RSVD_MASK)) 988 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address, 989 KVM_MMU_ROOT_CURRENT); 990 991 fault_mmu->inject_page_fault(vcpu, fault); 992 } 993 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 994 995 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 996 { 997 atomic_inc(&vcpu->arch.nmi_queued); 998 kvm_make_request(KVM_REQ_NMI, vcpu); 999 } 1000 1001 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 1002 { 1003 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0); 1004 } 1005 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 1006 1007 /* 1008 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 1009 * a #GP and return false. 1010 */ 1011 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 1012 { 1013 if (kvm_x86_call(get_cpl)(vcpu) <= required_cpl) 1014 return true; 1015 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 1016 return false; 1017 } 1018 1019 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 1020 { 1021 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE)) 1022 return true; 1023 1024 kvm_queue_exception(vcpu, UD_VECTOR); 1025 return false; 1026 } 1027 EXPORT_SYMBOL_GPL(kvm_require_dr); 1028 1029 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 1030 { 1031 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 1032 } 1033 1034 /* 1035 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 1036 */ 1037 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 1038 { 1039 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 1040 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 1041 gpa_t real_gpa; 1042 int i; 1043 int ret; 1044 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 1045 1046 /* 1047 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 1048 * to an L1 GPA. 1049 */ 1050 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 1051 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 1052 if (real_gpa == INVALID_GPA) 1053 return 0; 1054 1055 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 1056 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 1057 cr3 & GENMASK(11, 5), sizeof(pdpte)); 1058 if (ret < 0) 1059 return 0; 1060 1061 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 1062 if ((pdpte[i] & PT_PRESENT_MASK) && 1063 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 1064 return 0; 1065 } 1066 } 1067 1068 /* 1069 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 1070 * Shadow page roots need to be reconstructed instead. 1071 */ 1072 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 1073 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 1074 1075 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 1076 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 1077 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 1078 vcpu->arch.pdptrs_from_userspace = false; 1079 1080 return 1; 1081 } 1082 EXPORT_SYMBOL_GPL(load_pdptrs); 1083 1084 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1085 { 1086 #ifdef CONFIG_X86_64 1087 if (cr0 & 0xffffffff00000000UL) 1088 return false; 1089 #endif 1090 1091 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 1092 return false; 1093 1094 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 1095 return false; 1096 1097 return kvm_x86_call(is_valid_cr0)(vcpu, cr0); 1098 } 1099 1100 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 1101 { 1102 /* 1103 * CR0.WP is incorporated into the MMU role, but only for non-nested, 1104 * indirect shadow MMUs. If paging is disabled, no updates are needed 1105 * as there are no permission bits to emulate. If TDP is enabled, the 1106 * MMU's metadata needs to be updated, e.g. so that emulating guest 1107 * translations does the right thing, but there's no need to unload the 1108 * root as CR0.WP doesn't affect SPTEs. 1109 */ 1110 if ((cr0 ^ old_cr0) == X86_CR0_WP) { 1111 if (!(cr0 & X86_CR0_PG)) 1112 return; 1113 1114 if (tdp_enabled) { 1115 kvm_init_mmu(vcpu); 1116 return; 1117 } 1118 } 1119 1120 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 1121 kvm_clear_async_pf_completion_queue(vcpu); 1122 kvm_async_pf_hash_reset(vcpu); 1123 1124 /* 1125 * Clearing CR0.PG is defined to flush the TLB from the guest's 1126 * perspective. 1127 */ 1128 if (!(cr0 & X86_CR0_PG)) 1129 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1130 } 1131 1132 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 1133 kvm_mmu_reset_context(vcpu); 1134 } 1135 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 1136 1137 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1138 { 1139 unsigned long old_cr0 = kvm_read_cr0(vcpu); 1140 1141 if (!kvm_is_valid_cr0(vcpu, cr0)) 1142 return 1; 1143 1144 cr0 |= X86_CR0_ET; 1145 1146 /* Write to CR0 reserved bits are ignored, even on Intel. */ 1147 cr0 &= ~CR0_RESERVED_BITS; 1148 1149 #ifdef CONFIG_X86_64 1150 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 1151 (cr0 & X86_CR0_PG)) { 1152 int cs_db, cs_l; 1153 1154 if (!is_pae(vcpu)) 1155 return 1; 1156 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 1157 if (cs_l) 1158 return 1; 1159 } 1160 #endif 1161 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 1162 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 1163 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1164 return 1; 1165 1166 if (!(cr0 & X86_CR0_PG) && 1167 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))) 1168 return 1; 1169 1170 kvm_x86_call(set_cr0)(vcpu, cr0); 1171 1172 kvm_post_set_cr0(vcpu, old_cr0, cr0); 1173 1174 return 0; 1175 } 1176 EXPORT_SYMBOL_GPL(kvm_set_cr0); 1177 1178 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 1179 { 1180 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 1181 } 1182 EXPORT_SYMBOL_GPL(kvm_lmsw); 1183 1184 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 1185 { 1186 if (vcpu->arch.guest_state_protected) 1187 return; 1188 1189 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1190 1191 if (vcpu->arch.xcr0 != kvm_host.xcr0) 1192 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 1193 1194 if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) && 1195 vcpu->arch.ia32_xss != kvm_host.xss) 1196 wrmsrq(MSR_IA32_XSS, vcpu->arch.ia32_xss); 1197 } 1198 1199 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1200 vcpu->arch.pkru != vcpu->arch.host_pkru && 1201 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1202 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) 1203 wrpkru(vcpu->arch.pkru); 1204 } 1205 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1206 1207 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1208 { 1209 if (vcpu->arch.guest_state_protected) 1210 return; 1211 1212 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1213 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1214 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) { 1215 vcpu->arch.pkru = rdpkru(); 1216 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1217 wrpkru(vcpu->arch.host_pkru); 1218 } 1219 1220 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1221 1222 if (vcpu->arch.xcr0 != kvm_host.xcr0) 1223 xsetbv(XCR_XFEATURE_ENABLED_MASK, kvm_host.xcr0); 1224 1225 if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) && 1226 vcpu->arch.ia32_xss != kvm_host.xss) 1227 wrmsrq(MSR_IA32_XSS, kvm_host.xss); 1228 } 1229 1230 } 1231 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1232 1233 #ifdef CONFIG_X86_64 1234 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1235 { 1236 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1237 } 1238 #endif 1239 1240 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1241 { 1242 u64 xcr0 = xcr; 1243 u64 old_xcr0 = vcpu->arch.xcr0; 1244 u64 valid_bits; 1245 1246 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1247 if (index != XCR_XFEATURE_ENABLED_MASK) 1248 return 1; 1249 if (!(xcr0 & XFEATURE_MASK_FP)) 1250 return 1; 1251 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1252 return 1; 1253 1254 /* 1255 * Do not allow the guest to set bits that we do not support 1256 * saving. However, xcr0 bit 0 is always set, even if the 1257 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1258 */ 1259 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1260 if (xcr0 & ~valid_bits) 1261 return 1; 1262 1263 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1264 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1265 return 1; 1266 1267 if (xcr0 & XFEATURE_MASK_AVX512) { 1268 if (!(xcr0 & XFEATURE_MASK_YMM)) 1269 return 1; 1270 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1271 return 1; 1272 } 1273 1274 if ((xcr0 & XFEATURE_MASK_XTILE) && 1275 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1276 return 1; 1277 1278 vcpu->arch.xcr0 = xcr0; 1279 1280 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1281 vcpu->arch.cpuid_dynamic_bits_dirty = true; 1282 return 0; 1283 } 1284 1285 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1286 { 1287 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1288 if (kvm_x86_call(get_cpl)(vcpu) != 0 || 1289 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1290 kvm_inject_gp(vcpu, 0); 1291 return 1; 1292 } 1293 1294 return kvm_skip_emulated_instruction(vcpu); 1295 } 1296 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1297 1298 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1299 { 1300 return __kvm_is_valid_cr4(vcpu, cr4) && 1301 kvm_x86_call(is_valid_cr4)(vcpu, cr4); 1302 } 1303 1304 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1305 { 1306 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1307 kvm_mmu_reset_context(vcpu); 1308 1309 /* 1310 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1311 * according to the SDM; however, stale prev_roots could be reused 1312 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1313 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1314 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1315 * so fall through. 1316 */ 1317 if (!tdp_enabled && 1318 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1319 kvm_mmu_unload(vcpu); 1320 1321 /* 1322 * The TLB has to be flushed for all PCIDs if any of the following 1323 * (architecturally required) changes happen: 1324 * - CR4.PCIDE is changed from 1 to 0 1325 * - CR4.PGE is toggled 1326 * 1327 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1328 */ 1329 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1330 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1331 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1332 1333 /* 1334 * The TLB has to be flushed for the current PCID if any of the 1335 * following (architecturally required) changes happen: 1336 * - CR4.SMEP is changed from 0 to 1 1337 * - CR4.PAE is toggled 1338 */ 1339 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1340 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1341 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1342 1343 } 1344 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1345 1346 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1347 { 1348 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1349 1350 if (!kvm_is_valid_cr4(vcpu, cr4)) 1351 return 1; 1352 1353 if (is_long_mode(vcpu)) { 1354 if (!(cr4 & X86_CR4_PAE)) 1355 return 1; 1356 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1357 return 1; 1358 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1359 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1360 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1361 return 1; 1362 1363 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1364 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1365 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1366 return 1; 1367 } 1368 1369 kvm_x86_call(set_cr4)(vcpu, cr4); 1370 1371 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1372 1373 return 0; 1374 } 1375 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1376 1377 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1378 { 1379 struct kvm_mmu *mmu = vcpu->arch.mmu; 1380 unsigned long roots_to_free = 0; 1381 int i; 1382 1383 /* 1384 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1385 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1386 * also via the emulator. KVM's TDP page tables are not in the scope of 1387 * the invalidation, but the guest's TLB entries need to be flushed as 1388 * the CPU may have cached entries in its TLB for the target PCID. 1389 */ 1390 if (unlikely(tdp_enabled)) { 1391 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1392 return; 1393 } 1394 1395 /* 1396 * If neither the current CR3 nor any of the prev_roots use the given 1397 * PCID, then nothing needs to be done here because a resync will 1398 * happen anyway before switching to any other CR3. 1399 */ 1400 if (kvm_get_active_pcid(vcpu) == pcid) { 1401 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1402 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1403 } 1404 1405 /* 1406 * If PCID is disabled, there is no need to free prev_roots even if the 1407 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1408 * with PCIDE=0. 1409 */ 1410 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) 1411 return; 1412 1413 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1414 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1415 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1416 1417 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1418 } 1419 1420 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1421 { 1422 bool skip_tlb_flush = false; 1423 unsigned long pcid = 0; 1424 #ifdef CONFIG_X86_64 1425 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) { 1426 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1427 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1428 pcid = cr3 & X86_CR3_PCID_MASK; 1429 } 1430 #endif 1431 1432 /* PDPTRs are always reloaded for PAE paging. */ 1433 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1434 goto handle_tlb_flush; 1435 1436 /* 1437 * Do not condition the GPA check on long mode, this helper is used to 1438 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1439 * the current vCPU mode is accurate. 1440 */ 1441 if (!kvm_vcpu_is_legal_cr3(vcpu, cr3)) 1442 return 1; 1443 1444 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1445 return 1; 1446 1447 if (cr3 != kvm_read_cr3(vcpu)) 1448 kvm_mmu_new_pgd(vcpu, cr3); 1449 1450 vcpu->arch.cr3 = cr3; 1451 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1452 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1453 1454 handle_tlb_flush: 1455 /* 1456 * A load of CR3 that flushes the TLB flushes only the current PCID, 1457 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1458 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1459 * and it's impossible to use a non-zero PCID when PCID is disabled, 1460 * i.e. only PCID=0 can be relevant. 1461 */ 1462 if (!skip_tlb_flush) 1463 kvm_invalidate_pcid(vcpu, pcid); 1464 1465 return 0; 1466 } 1467 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1468 1469 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1470 { 1471 if (cr8 & CR8_RESERVED_BITS) 1472 return 1; 1473 if (lapic_in_kernel(vcpu)) 1474 kvm_lapic_set_tpr(vcpu, cr8); 1475 else 1476 vcpu->arch.cr8 = cr8; 1477 return 0; 1478 } 1479 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1480 1481 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1482 { 1483 if (lapic_in_kernel(vcpu)) 1484 return kvm_lapic_get_cr8(vcpu); 1485 else 1486 return vcpu->arch.cr8; 1487 } 1488 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1489 1490 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1491 { 1492 int i; 1493 1494 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1495 for (i = 0; i < KVM_NR_DB_REGS; i++) 1496 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1497 } 1498 } 1499 1500 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1501 { 1502 unsigned long dr7; 1503 1504 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1505 dr7 = vcpu->arch.guest_debug_dr7; 1506 else 1507 dr7 = vcpu->arch.dr7; 1508 kvm_x86_call(set_dr7)(vcpu, dr7); 1509 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1510 if (dr7 & DR7_BP_EN_MASK) 1511 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1512 } 1513 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1514 1515 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1516 { 1517 u64 fixed = DR6_FIXED_1; 1518 1519 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_RTM)) 1520 fixed |= DR6_RTM; 1521 1522 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1523 fixed |= DR6_BUS_LOCK; 1524 return fixed; 1525 } 1526 1527 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1528 { 1529 size_t size = ARRAY_SIZE(vcpu->arch.db); 1530 1531 switch (dr) { 1532 case 0 ... 3: 1533 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1534 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1535 vcpu->arch.eff_db[dr] = val; 1536 break; 1537 case 4: 1538 case 6: 1539 if (!kvm_dr6_valid(val)) 1540 return 1; /* #GP */ 1541 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1542 break; 1543 case 5: 1544 default: /* 7 */ 1545 if (!kvm_dr7_valid(val)) 1546 return 1; /* #GP */ 1547 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1548 kvm_update_dr7(vcpu); 1549 break; 1550 } 1551 1552 return 0; 1553 } 1554 EXPORT_SYMBOL_GPL(kvm_set_dr); 1555 1556 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr) 1557 { 1558 size_t size = ARRAY_SIZE(vcpu->arch.db); 1559 1560 switch (dr) { 1561 case 0 ... 3: 1562 return vcpu->arch.db[array_index_nospec(dr, size)]; 1563 case 4: 1564 case 6: 1565 return vcpu->arch.dr6; 1566 case 5: 1567 default: /* 7 */ 1568 return vcpu->arch.dr7; 1569 } 1570 } 1571 EXPORT_SYMBOL_GPL(kvm_get_dr); 1572 1573 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1574 { 1575 u32 ecx = kvm_rcx_read(vcpu); 1576 u64 data; 1577 1578 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1579 kvm_inject_gp(vcpu, 0); 1580 return 1; 1581 } 1582 1583 kvm_rax_write(vcpu, (u32)data); 1584 kvm_rdx_write(vcpu, data >> 32); 1585 return kvm_skip_emulated_instruction(vcpu); 1586 } 1587 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1588 1589 /* 1590 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1591 * does not yet virtualize. These include: 1592 * 10 - MISC_PACKAGE_CTRLS 1593 * 11 - ENERGY_FILTERING_CTL 1594 * 12 - DOITM 1595 * 18 - FB_CLEAR_CTRL 1596 * 21 - XAPIC_DISABLE_STATUS 1597 * 23 - OVERCLOCKING_STATUS 1598 */ 1599 1600 #define KVM_SUPPORTED_ARCH_CAP \ 1601 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1602 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1603 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1604 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1605 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \ 1606 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO | ARCH_CAP_ITS_NO) 1607 1608 static u64 kvm_get_arch_capabilities(void) 1609 { 1610 u64 data = kvm_host.arch_capabilities & KVM_SUPPORTED_ARCH_CAP; 1611 1612 /* 1613 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1614 * the nested hypervisor runs with NX huge pages. If it is not, 1615 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1616 * L1 guests, so it need not worry about its own (L2) guests. 1617 */ 1618 data |= ARCH_CAP_PSCHANGE_MC_NO; 1619 1620 /* 1621 * If we're doing cache flushes (either "always" or "cond") 1622 * we will do one whenever the guest does a vmlaunch/vmresume. 1623 * If an outer hypervisor is doing the cache flush for us 1624 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that 1625 * capability to the guest too, and if EPT is disabled we're not 1626 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1627 * require a nested hypervisor to do a flush of its own. 1628 */ 1629 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1630 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1631 1632 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1633 data |= ARCH_CAP_RDCL_NO; 1634 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1635 data |= ARCH_CAP_SSB_NO; 1636 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1637 data |= ARCH_CAP_MDS_NO; 1638 if (!boot_cpu_has_bug(X86_BUG_RFDS)) 1639 data |= ARCH_CAP_RFDS_NO; 1640 if (!boot_cpu_has_bug(X86_BUG_ITS)) 1641 data |= ARCH_CAP_ITS_NO; 1642 1643 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1644 /* 1645 * If RTM=0 because the kernel has disabled TSX, the host might 1646 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1647 * and therefore knows that there cannot be TAA) but keep 1648 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1649 * and we want to allow migrating those guests to tsx=off hosts. 1650 */ 1651 data &= ~ARCH_CAP_TAA_NO; 1652 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1653 data |= ARCH_CAP_TAA_NO; 1654 } else { 1655 /* 1656 * Nothing to do here; we emulate TSX_CTRL if present on the 1657 * host so the guest can choose between disabling TSX or 1658 * using VERW to clear CPU buffers. 1659 */ 1660 } 1661 1662 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated()) 1663 data |= ARCH_CAP_GDS_NO; 1664 1665 return data; 1666 } 1667 1668 static int kvm_get_feature_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1669 bool host_initiated) 1670 { 1671 WARN_ON_ONCE(!host_initiated); 1672 1673 switch (index) { 1674 case MSR_IA32_ARCH_CAPABILITIES: 1675 *data = kvm_get_arch_capabilities(); 1676 break; 1677 case MSR_IA32_PERF_CAPABILITIES: 1678 *data = kvm_caps.supported_perf_cap; 1679 break; 1680 case MSR_PLATFORM_INFO: 1681 *data = MSR_PLATFORM_INFO_CPUID_FAULT; 1682 break; 1683 case MSR_IA32_UCODE_REV: 1684 rdmsrq_safe(index, data); 1685 break; 1686 default: 1687 return kvm_x86_call(get_feature_msr)(index, data); 1688 } 1689 return 0; 1690 } 1691 1692 static int do_get_feature_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1693 { 1694 return kvm_do_msr_access(vcpu, index, data, true, MSR_TYPE_R, 1695 kvm_get_feature_msr); 1696 } 1697 1698 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1699 { 1700 if (efer & EFER_AUTOIBRS && !guest_cpu_cap_has(vcpu, X86_FEATURE_AUTOIBRS)) 1701 return false; 1702 1703 if (efer & EFER_FFXSR && !guest_cpu_cap_has(vcpu, X86_FEATURE_FXSR_OPT)) 1704 return false; 1705 1706 if (efer & EFER_SVME && !guest_cpu_cap_has(vcpu, X86_FEATURE_SVM)) 1707 return false; 1708 1709 if (efer & (EFER_LME | EFER_LMA) && 1710 !guest_cpu_cap_has(vcpu, X86_FEATURE_LM)) 1711 return false; 1712 1713 if (efer & EFER_NX && !guest_cpu_cap_has(vcpu, X86_FEATURE_NX)) 1714 return false; 1715 1716 return true; 1717 1718 } 1719 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1720 { 1721 if (efer & efer_reserved_bits) 1722 return false; 1723 1724 return __kvm_valid_efer(vcpu, efer); 1725 } 1726 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1727 1728 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1729 { 1730 u64 old_efer = vcpu->arch.efer; 1731 u64 efer = msr_info->data; 1732 int r; 1733 1734 if (efer & efer_reserved_bits) 1735 return 1; 1736 1737 if (!msr_info->host_initiated) { 1738 if (!__kvm_valid_efer(vcpu, efer)) 1739 return 1; 1740 1741 if (is_paging(vcpu) && 1742 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1743 return 1; 1744 } 1745 1746 efer &= ~EFER_LMA; 1747 efer |= vcpu->arch.efer & EFER_LMA; 1748 1749 r = kvm_x86_call(set_efer)(vcpu, efer); 1750 if (r) { 1751 WARN_ON(r > 0); 1752 return r; 1753 } 1754 1755 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1756 kvm_mmu_reset_context(vcpu); 1757 1758 if (!static_cpu_has(X86_FEATURE_XSAVES) && 1759 (efer & EFER_SVME)) 1760 kvm_hv_xsaves_xsavec_maybe_warn(vcpu); 1761 1762 return 0; 1763 } 1764 1765 void kvm_enable_efer_bits(u64 mask) 1766 { 1767 efer_reserved_bits &= ~mask; 1768 } 1769 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1770 1771 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1772 { 1773 struct kvm_x86_msr_filter *msr_filter; 1774 struct msr_bitmap_range *ranges; 1775 struct kvm *kvm = vcpu->kvm; 1776 bool allowed; 1777 int idx; 1778 u32 i; 1779 1780 /* x2APIC MSRs do not support filtering. */ 1781 if (index >= 0x800 && index <= 0x8ff) 1782 return true; 1783 1784 idx = srcu_read_lock(&kvm->srcu); 1785 1786 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1787 if (!msr_filter) { 1788 allowed = true; 1789 goto out; 1790 } 1791 1792 allowed = msr_filter->default_allow; 1793 ranges = msr_filter->ranges; 1794 1795 for (i = 0; i < msr_filter->count; i++) { 1796 u32 start = ranges[i].base; 1797 u32 end = start + ranges[i].nmsrs; 1798 u32 flags = ranges[i].flags; 1799 unsigned long *bitmap = ranges[i].bitmap; 1800 1801 if ((index >= start) && (index < end) && (flags & type)) { 1802 allowed = test_bit(index - start, bitmap); 1803 break; 1804 } 1805 } 1806 1807 out: 1808 srcu_read_unlock(&kvm->srcu, idx); 1809 1810 return allowed; 1811 } 1812 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1813 1814 /* 1815 * Write @data into the MSR specified by @index. Select MSR specific fault 1816 * checks are bypassed if @host_initiated is %true. 1817 * Returns 0 on success, non-0 otherwise. 1818 * Assumes vcpu_load() was already called. 1819 */ 1820 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1821 bool host_initiated) 1822 { 1823 struct msr_data msr; 1824 1825 switch (index) { 1826 case MSR_FS_BASE: 1827 case MSR_GS_BASE: 1828 case MSR_KERNEL_GS_BASE: 1829 case MSR_CSTAR: 1830 case MSR_LSTAR: 1831 if (is_noncanonical_msr_address(data, vcpu)) 1832 return 1; 1833 break; 1834 case MSR_IA32_SYSENTER_EIP: 1835 case MSR_IA32_SYSENTER_ESP: 1836 /* 1837 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1838 * non-canonical address is written on Intel but not on 1839 * AMD (which ignores the top 32-bits, because it does 1840 * not implement 64-bit SYSENTER). 1841 * 1842 * 64-bit code should hence be able to write a non-canonical 1843 * value on AMD. Making the address canonical ensures that 1844 * vmentry does not fail on Intel after writing a non-canonical 1845 * value, and that something deterministic happens if the guest 1846 * invokes 64-bit SYSENTER. 1847 */ 1848 data = __canonical_address(data, max_host_virt_addr_bits()); 1849 break; 1850 case MSR_TSC_AUX: 1851 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1852 return 1; 1853 1854 if (!host_initiated && 1855 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) && 1856 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID)) 1857 return 1; 1858 1859 /* 1860 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1861 * incomplete and conflicting architectural behavior. Current 1862 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1863 * reserved and always read as zeros. Enforce Intel's reserved 1864 * bits check if the guest CPU is Intel compatible, otherwise 1865 * clear the bits. This ensures cross-vendor migration will 1866 * provide consistent behavior for the guest. 1867 */ 1868 if (guest_cpuid_is_intel_compatible(vcpu) && (data >> 32) != 0) 1869 return 1; 1870 1871 data = (u32)data; 1872 break; 1873 } 1874 1875 msr.data = data; 1876 msr.index = index; 1877 msr.host_initiated = host_initiated; 1878 1879 return kvm_x86_call(set_msr)(vcpu, &msr); 1880 } 1881 1882 static int _kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1883 bool host_initiated) 1884 { 1885 return __kvm_set_msr(vcpu, index, *data, host_initiated); 1886 } 1887 1888 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1889 u32 index, u64 data, bool host_initiated) 1890 { 1891 return kvm_do_msr_access(vcpu, index, &data, host_initiated, MSR_TYPE_W, 1892 _kvm_set_msr); 1893 } 1894 1895 /* 1896 * Read the MSR specified by @index into @data. Select MSR specific fault 1897 * checks are bypassed if @host_initiated is %true. 1898 * Returns 0 on success, non-0 otherwise. 1899 * Assumes vcpu_load() was already called. 1900 */ 1901 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1902 bool host_initiated) 1903 { 1904 struct msr_data msr; 1905 int ret; 1906 1907 switch (index) { 1908 case MSR_TSC_AUX: 1909 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1910 return 1; 1911 1912 if (!host_initiated && 1913 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) && 1914 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID)) 1915 return 1; 1916 break; 1917 } 1918 1919 msr.index = index; 1920 msr.host_initiated = host_initiated; 1921 1922 ret = kvm_x86_call(get_msr)(vcpu, &msr); 1923 if (!ret) 1924 *data = msr.data; 1925 return ret; 1926 } 1927 1928 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1929 u32 index, u64 *data, bool host_initiated) 1930 { 1931 return kvm_do_msr_access(vcpu, index, data, host_initiated, MSR_TYPE_R, 1932 __kvm_get_msr); 1933 } 1934 1935 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1936 { 1937 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1938 return KVM_MSR_RET_FILTERED; 1939 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1940 } 1941 EXPORT_SYMBOL_GPL(kvm_get_msr_with_filter); 1942 1943 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1944 { 1945 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1946 return KVM_MSR_RET_FILTERED; 1947 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1948 } 1949 EXPORT_SYMBOL_GPL(kvm_set_msr_with_filter); 1950 1951 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1952 { 1953 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1954 } 1955 EXPORT_SYMBOL_GPL(kvm_get_msr); 1956 1957 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1958 { 1959 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1960 } 1961 EXPORT_SYMBOL_GPL(kvm_set_msr); 1962 1963 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1964 { 1965 if (!vcpu->run->msr.error) { 1966 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1967 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1968 } 1969 } 1970 1971 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1972 { 1973 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 1974 } 1975 1976 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1977 { 1978 complete_userspace_rdmsr(vcpu); 1979 return complete_emulated_msr_access(vcpu); 1980 } 1981 1982 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 1983 { 1984 return kvm_x86_call(complete_emulated_msr)(vcpu, vcpu->run->msr.error); 1985 } 1986 1987 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 1988 { 1989 complete_userspace_rdmsr(vcpu); 1990 return complete_fast_msr_access(vcpu); 1991 } 1992 1993 static u64 kvm_msr_reason(int r) 1994 { 1995 switch (r) { 1996 case KVM_MSR_RET_UNSUPPORTED: 1997 return KVM_MSR_EXIT_REASON_UNKNOWN; 1998 case KVM_MSR_RET_FILTERED: 1999 return KVM_MSR_EXIT_REASON_FILTER; 2000 default: 2001 return KVM_MSR_EXIT_REASON_INVAL; 2002 } 2003 } 2004 2005 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 2006 u32 exit_reason, u64 data, 2007 int (*completion)(struct kvm_vcpu *vcpu), 2008 int r) 2009 { 2010 u64 msr_reason = kvm_msr_reason(r); 2011 2012 /* Check if the user wanted to know about this MSR fault */ 2013 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2014 return 0; 2015 2016 vcpu->run->exit_reason = exit_reason; 2017 vcpu->run->msr.error = 0; 2018 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2019 vcpu->run->msr.reason = msr_reason; 2020 vcpu->run->msr.index = index; 2021 vcpu->run->msr.data = data; 2022 vcpu->arch.complete_userspace_io = completion; 2023 2024 return 1; 2025 } 2026 2027 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2028 { 2029 u32 ecx = kvm_rcx_read(vcpu); 2030 u64 data; 2031 int r; 2032 2033 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2034 2035 if (!r) { 2036 trace_kvm_msr_read(ecx, data); 2037 2038 kvm_rax_write(vcpu, data & -1u); 2039 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2040 } else { 2041 /* MSR read failed? See if we should ask user space */ 2042 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2043 complete_fast_rdmsr, r)) 2044 return 0; 2045 trace_kvm_msr_read_ex(ecx); 2046 } 2047 2048 return kvm_x86_call(complete_emulated_msr)(vcpu, r); 2049 } 2050 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2051 2052 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2053 { 2054 u32 ecx = kvm_rcx_read(vcpu); 2055 u64 data = kvm_read_edx_eax(vcpu); 2056 int r; 2057 2058 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2059 2060 if (!r) { 2061 trace_kvm_msr_write(ecx, data); 2062 } else { 2063 /* MSR write failed? See if we should ask user space */ 2064 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2065 complete_fast_msr_access, r)) 2066 return 0; 2067 /* Signal all other negative errors to userspace */ 2068 if (r < 0) 2069 return r; 2070 trace_kvm_msr_write_ex(ecx, data); 2071 } 2072 2073 return kvm_x86_call(complete_emulated_msr)(vcpu, r); 2074 } 2075 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2076 2077 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2078 { 2079 return kvm_skip_emulated_instruction(vcpu); 2080 } 2081 2082 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2083 { 2084 /* Treat an INVD instruction as a NOP and just skip it. */ 2085 return kvm_emulate_as_nop(vcpu); 2086 } 2087 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2088 2089 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2090 { 2091 kvm_queue_exception(vcpu, UD_VECTOR); 2092 return 1; 2093 } 2094 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2095 2096 2097 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2098 { 2099 bool enabled; 2100 2101 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS)) 2102 goto emulate_as_nop; 2103 2104 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) 2105 enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_MWAIT); 2106 else 2107 enabled = vcpu->arch.ia32_misc_enable_msr & MSR_IA32_MISC_ENABLE_MWAIT; 2108 2109 if (!enabled) 2110 return kvm_handle_invalid_op(vcpu); 2111 2112 emulate_as_nop: 2113 pr_warn_once("%s instruction emulated as NOP!\n", insn); 2114 return kvm_emulate_as_nop(vcpu); 2115 } 2116 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2117 { 2118 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2119 } 2120 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2121 2122 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2123 { 2124 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2125 } 2126 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2127 2128 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2129 { 2130 xfer_to_guest_mode_prepare(); 2131 2132 return READ_ONCE(vcpu->mode) == EXITING_GUEST_MODE || 2133 kvm_request_pending(vcpu) || xfer_to_guest_mode_work_pending(); 2134 } 2135 2136 /* 2137 * The fast path for frequent and performance sensitive wrmsr emulation, 2138 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2139 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2140 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2141 * other cases which must be called after interrupts are enabled on the host. 2142 */ 2143 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2144 { 2145 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2146 return 1; 2147 2148 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2149 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2150 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2151 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2152 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2153 2154 return 1; 2155 } 2156 2157 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2158 { 2159 if (!kvm_can_use_hv_timer(vcpu)) 2160 return 1; 2161 2162 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2163 return 0; 2164 } 2165 2166 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2167 { 2168 u32 msr = kvm_rcx_read(vcpu); 2169 u64 data; 2170 fastpath_t ret; 2171 bool handled; 2172 2173 kvm_vcpu_srcu_read_lock(vcpu); 2174 2175 switch (msr) { 2176 case APIC_BASE_MSR + (APIC_ICR >> 4): 2177 data = kvm_read_edx_eax(vcpu); 2178 handled = !handle_fastpath_set_x2apic_icr_irqoff(vcpu, data); 2179 break; 2180 case MSR_IA32_TSC_DEADLINE: 2181 data = kvm_read_edx_eax(vcpu); 2182 handled = !handle_fastpath_set_tscdeadline(vcpu, data); 2183 break; 2184 default: 2185 handled = false; 2186 break; 2187 } 2188 2189 if (handled) { 2190 if (!kvm_skip_emulated_instruction(vcpu)) 2191 ret = EXIT_FASTPATH_EXIT_USERSPACE; 2192 else 2193 ret = EXIT_FASTPATH_REENTER_GUEST; 2194 trace_kvm_msr_write(msr, data); 2195 } else { 2196 ret = EXIT_FASTPATH_NONE; 2197 } 2198 2199 kvm_vcpu_srcu_read_unlock(vcpu); 2200 2201 return ret; 2202 } 2203 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2204 2205 /* 2206 * Adapt set_msr() to msr_io()'s calling convention 2207 */ 2208 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2209 { 2210 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2211 } 2212 2213 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2214 { 2215 u64 val; 2216 2217 /* 2218 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does 2219 * not support modifying the guest vCPU model on the fly, e.g. changing 2220 * the nVMX capabilities while L2 is running is nonsensical. Allow 2221 * writes of the same value, e.g. to allow userspace to blindly stuff 2222 * all MSRs when emulating RESET. 2223 */ 2224 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index) && 2225 (do_get_msr(vcpu, index, &val) || *data != val)) 2226 return -EINVAL; 2227 2228 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2229 } 2230 2231 #ifdef CONFIG_X86_64 2232 struct pvclock_clock { 2233 int vclock_mode; 2234 u64 cycle_last; 2235 u64 mask; 2236 u32 mult; 2237 u32 shift; 2238 u64 base_cycles; 2239 u64 offset; 2240 }; 2241 2242 struct pvclock_gtod_data { 2243 seqcount_t seq; 2244 2245 struct pvclock_clock clock; /* extract of a clocksource struct */ 2246 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2247 2248 ktime_t offs_boot; 2249 u64 wall_time_sec; 2250 }; 2251 2252 static struct pvclock_gtod_data pvclock_gtod_data; 2253 2254 static void update_pvclock_gtod(struct timekeeper *tk) 2255 { 2256 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2257 2258 write_seqcount_begin(&vdata->seq); 2259 2260 /* copy pvclock gtod data */ 2261 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2262 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2263 vdata->clock.mask = tk->tkr_mono.mask; 2264 vdata->clock.mult = tk->tkr_mono.mult; 2265 vdata->clock.shift = tk->tkr_mono.shift; 2266 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2267 vdata->clock.offset = tk->tkr_mono.base; 2268 2269 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2270 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2271 vdata->raw_clock.mask = tk->tkr_raw.mask; 2272 vdata->raw_clock.mult = tk->tkr_raw.mult; 2273 vdata->raw_clock.shift = tk->tkr_raw.shift; 2274 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2275 vdata->raw_clock.offset = tk->tkr_raw.base; 2276 2277 vdata->wall_time_sec = tk->xtime_sec; 2278 2279 vdata->offs_boot = tk->offs_boot; 2280 2281 write_seqcount_end(&vdata->seq); 2282 } 2283 2284 static s64 get_kvmclock_base_ns(void) 2285 { 2286 /* Count up from boot time, but with the frequency of the raw clock. */ 2287 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2288 } 2289 #else 2290 static s64 get_kvmclock_base_ns(void) 2291 { 2292 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2293 return ktime_get_boottime_ns(); 2294 } 2295 #endif 2296 2297 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2298 { 2299 int version; 2300 int r; 2301 struct pvclock_wall_clock wc; 2302 u32 wc_sec_hi; 2303 u64 wall_nsec; 2304 2305 if (!wall_clock) 2306 return; 2307 2308 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2309 if (r) 2310 return; 2311 2312 if (version & 1) 2313 ++version; /* first time write, random junk */ 2314 2315 ++version; 2316 2317 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2318 return; 2319 2320 wall_nsec = kvm_get_wall_clock_epoch(kvm); 2321 2322 wc.nsec = do_div(wall_nsec, NSEC_PER_SEC); 2323 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2324 wc.version = version; 2325 2326 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2327 2328 if (sec_hi_ofs) { 2329 wc_sec_hi = wall_nsec >> 32; 2330 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2331 &wc_sec_hi, sizeof(wc_sec_hi)); 2332 } 2333 2334 version++; 2335 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2336 } 2337 2338 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2339 bool old_msr, bool host_initiated) 2340 { 2341 struct kvm_arch *ka = &vcpu->kvm->arch; 2342 2343 if (vcpu->vcpu_id == 0 && !host_initiated) { 2344 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2345 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2346 2347 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2348 } 2349 2350 vcpu->arch.time = system_time; 2351 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2352 2353 /* we verify if the enable bit is set... */ 2354 if (system_time & 1) 2355 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2356 sizeof(struct pvclock_vcpu_time_info)); 2357 else 2358 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2359 2360 return; 2361 } 2362 2363 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2364 { 2365 do_shl32_div32(dividend, divisor); 2366 return dividend; 2367 } 2368 2369 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2370 s8 *pshift, u32 *pmultiplier) 2371 { 2372 uint64_t scaled64; 2373 int32_t shift = 0; 2374 uint64_t tps64; 2375 uint32_t tps32; 2376 2377 tps64 = base_hz; 2378 scaled64 = scaled_hz; 2379 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2380 tps64 >>= 1; 2381 shift--; 2382 } 2383 2384 tps32 = (uint32_t)tps64; 2385 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2386 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2387 scaled64 >>= 1; 2388 else 2389 tps32 <<= 1; 2390 shift++; 2391 } 2392 2393 *pshift = shift; 2394 *pmultiplier = div_frac(scaled64, tps32); 2395 } 2396 2397 #ifdef CONFIG_X86_64 2398 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2399 #endif 2400 2401 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2402 static unsigned long max_tsc_khz; 2403 2404 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2405 { 2406 u64 v = (u64)khz * (1000000 + ppm); 2407 do_div(v, 1000000); 2408 return v; 2409 } 2410 2411 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2412 2413 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2414 { 2415 u64 ratio; 2416 2417 /* Guest TSC same frequency as host TSC? */ 2418 if (!scale) { 2419 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2420 return 0; 2421 } 2422 2423 /* TSC scaling supported? */ 2424 if (!kvm_caps.has_tsc_control) { 2425 if (user_tsc_khz > tsc_khz) { 2426 vcpu->arch.tsc_catchup = 1; 2427 vcpu->arch.tsc_always_catchup = 1; 2428 return 0; 2429 } else { 2430 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2431 return -1; 2432 } 2433 } 2434 2435 /* TSC scaling required - calculate ratio */ 2436 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2437 user_tsc_khz, tsc_khz); 2438 2439 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2440 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2441 user_tsc_khz); 2442 return -1; 2443 } 2444 2445 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2446 return 0; 2447 } 2448 2449 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2450 { 2451 u32 thresh_lo, thresh_hi; 2452 int use_scaling = 0; 2453 2454 /* tsc_khz can be zero if TSC calibration fails */ 2455 if (user_tsc_khz == 0) { 2456 /* set tsc_scaling_ratio to a safe value */ 2457 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2458 return -1; 2459 } 2460 2461 /* Compute a scale to convert nanoseconds in TSC cycles */ 2462 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2463 &vcpu->arch.virtual_tsc_shift, 2464 &vcpu->arch.virtual_tsc_mult); 2465 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2466 2467 /* 2468 * Compute the variation in TSC rate which is acceptable 2469 * within the range of tolerance and decide if the 2470 * rate being applied is within that bounds of the hardware 2471 * rate. If so, no scaling or compensation need be done. 2472 */ 2473 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2474 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2475 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2476 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n", 2477 user_tsc_khz, thresh_lo, thresh_hi); 2478 use_scaling = 1; 2479 } 2480 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2481 } 2482 2483 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2484 { 2485 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2486 vcpu->arch.virtual_tsc_mult, 2487 vcpu->arch.virtual_tsc_shift); 2488 tsc += vcpu->arch.this_tsc_write; 2489 return tsc; 2490 } 2491 2492 #ifdef CONFIG_X86_64 2493 static inline bool gtod_is_based_on_tsc(int mode) 2494 { 2495 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2496 } 2497 #endif 2498 2499 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation) 2500 { 2501 #ifdef CONFIG_X86_64 2502 struct kvm_arch *ka = &vcpu->kvm->arch; 2503 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2504 2505 /* 2506 * To use the masterclock, the host clocksource must be based on TSC 2507 * and all vCPUs must have matching TSCs. Note, the count for matching 2508 * vCPUs doesn't include the reference vCPU, hence "+1". 2509 */ 2510 bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 == 2511 atomic_read(&vcpu->kvm->online_vcpus)) && 2512 gtod_is_based_on_tsc(gtod->clock.vclock_mode); 2513 2514 /* 2515 * Request a masterclock update if the masterclock needs to be toggled 2516 * on/off, or when starting a new generation and the masterclock is 2517 * enabled (compute_guest_tsc() requires the masterclock snapshot to be 2518 * taken _after_ the new generation is created). 2519 */ 2520 if ((ka->use_master_clock && new_generation) || 2521 (ka->use_master_clock != use_master_clock)) 2522 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2523 2524 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2525 atomic_read(&vcpu->kvm->online_vcpus), 2526 ka->use_master_clock, gtod->clock.vclock_mode); 2527 #endif 2528 } 2529 2530 /* 2531 * Multiply tsc by a fixed point number represented by ratio. 2532 * 2533 * The most significant 64-N bits (mult) of ratio represent the 2534 * integral part of the fixed point number; the remaining N bits 2535 * (frac) represent the fractional part, ie. ratio represents a fixed 2536 * point number (mult + frac * 2^(-N)). 2537 * 2538 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2539 */ 2540 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2541 { 2542 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2543 } 2544 2545 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2546 { 2547 u64 _tsc = tsc; 2548 2549 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2550 _tsc = __scale_tsc(ratio, tsc); 2551 2552 return _tsc; 2553 } 2554 2555 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2556 { 2557 u64 tsc; 2558 2559 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2560 2561 return target_tsc - tsc; 2562 } 2563 2564 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2565 { 2566 return vcpu->arch.l1_tsc_offset + 2567 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2568 } 2569 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2570 2571 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2572 { 2573 u64 nested_offset; 2574 2575 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2576 nested_offset = l1_offset; 2577 else 2578 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2579 kvm_caps.tsc_scaling_ratio_frac_bits); 2580 2581 nested_offset += l2_offset; 2582 return nested_offset; 2583 } 2584 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2585 2586 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2587 { 2588 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2589 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2590 kvm_caps.tsc_scaling_ratio_frac_bits); 2591 2592 return l1_multiplier; 2593 } 2594 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2595 2596 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2597 { 2598 if (vcpu->arch.guest_tsc_protected) 2599 return; 2600 2601 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2602 vcpu->arch.l1_tsc_offset, 2603 l1_offset); 2604 2605 vcpu->arch.l1_tsc_offset = l1_offset; 2606 2607 /* 2608 * If we are here because L1 chose not to trap WRMSR to TSC then 2609 * according to the spec this should set L1's TSC (as opposed to 2610 * setting L1's offset for L2). 2611 */ 2612 if (is_guest_mode(vcpu)) 2613 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2614 l1_offset, 2615 kvm_x86_call(get_l2_tsc_offset)(vcpu), 2616 kvm_x86_call(get_l2_tsc_multiplier)(vcpu)); 2617 else 2618 vcpu->arch.tsc_offset = l1_offset; 2619 2620 kvm_x86_call(write_tsc_offset)(vcpu); 2621 } 2622 2623 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2624 { 2625 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2626 2627 /* Userspace is changing the multiplier while L2 is active */ 2628 if (is_guest_mode(vcpu)) 2629 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2630 l1_multiplier, 2631 kvm_x86_call(get_l2_tsc_multiplier)(vcpu)); 2632 else 2633 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2634 2635 if (kvm_caps.has_tsc_control) 2636 kvm_x86_call(write_tsc_multiplier)(vcpu); 2637 } 2638 2639 static inline bool kvm_check_tsc_unstable(void) 2640 { 2641 #ifdef CONFIG_X86_64 2642 /* 2643 * TSC is marked unstable when we're running on Hyper-V, 2644 * 'TSC page' clocksource is good. 2645 */ 2646 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2647 return false; 2648 #endif 2649 return check_tsc_unstable(); 2650 } 2651 2652 /* 2653 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2654 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2655 * participates in. 2656 */ 2657 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2658 u64 ns, bool matched, bool user_set_tsc) 2659 { 2660 struct kvm *kvm = vcpu->kvm; 2661 2662 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2663 2664 if (vcpu->arch.guest_tsc_protected) 2665 return; 2666 2667 if (user_set_tsc) 2668 vcpu->kvm->arch.user_set_tsc = true; 2669 2670 /* 2671 * We also track th most recent recorded KHZ, write and time to 2672 * allow the matching interval to be extended at each write. 2673 */ 2674 kvm->arch.last_tsc_nsec = ns; 2675 kvm->arch.last_tsc_write = tsc; 2676 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2677 kvm->arch.last_tsc_offset = offset; 2678 2679 vcpu->arch.last_guest_tsc = tsc; 2680 2681 kvm_vcpu_write_tsc_offset(vcpu, offset); 2682 2683 if (!matched) { 2684 /* 2685 * We split periods of matched TSC writes into generations. 2686 * For each generation, we track the original measured 2687 * nanosecond time, offset, and write, so if TSCs are in 2688 * sync, we can match exact offset, and if not, we can match 2689 * exact software computation in compute_guest_tsc() 2690 * 2691 * These values are tracked in kvm->arch.cur_xxx variables. 2692 */ 2693 kvm->arch.cur_tsc_generation++; 2694 kvm->arch.cur_tsc_nsec = ns; 2695 kvm->arch.cur_tsc_write = tsc; 2696 kvm->arch.cur_tsc_offset = offset; 2697 kvm->arch.nr_vcpus_matched_tsc = 0; 2698 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2699 kvm->arch.nr_vcpus_matched_tsc++; 2700 } 2701 2702 /* Keep track of which generation this VCPU has synchronized to */ 2703 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2704 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2705 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2706 2707 kvm_track_tsc_matching(vcpu, !matched); 2708 } 2709 2710 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value) 2711 { 2712 u64 data = user_value ? *user_value : 0; 2713 struct kvm *kvm = vcpu->kvm; 2714 u64 offset, ns, elapsed; 2715 unsigned long flags; 2716 bool matched = false; 2717 bool synchronizing = false; 2718 2719 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2720 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2721 ns = get_kvmclock_base_ns(); 2722 elapsed = ns - kvm->arch.last_tsc_nsec; 2723 2724 if (vcpu->arch.virtual_tsc_khz) { 2725 if (data == 0) { 2726 /* 2727 * Force synchronization when creating a vCPU, or when 2728 * userspace explicitly writes a zero value. 2729 */ 2730 synchronizing = true; 2731 } else if (kvm->arch.user_set_tsc) { 2732 u64 tsc_exp = kvm->arch.last_tsc_write + 2733 nsec_to_cycles(vcpu, elapsed); 2734 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2735 /* 2736 * Here lies UAPI baggage: when a user-initiated TSC write has 2737 * a small delta (1 second) of virtual cycle time against the 2738 * previously set vCPU, we assume that they were intended to be 2739 * in sync and the delta was only due to the racy nature of the 2740 * legacy API. 2741 * 2742 * This trick falls down when restoring a guest which genuinely 2743 * has been running for less time than the 1 second of imprecision 2744 * which we allow for in the legacy API. In this case, the first 2745 * value written by userspace (on any vCPU) should not be subject 2746 * to this 'correction' to make it sync up with values that only 2747 * come from the kernel's default vCPU creation. Make the 1-second 2748 * slop hack only trigger if the user_set_tsc flag is already set. 2749 */ 2750 synchronizing = data < tsc_exp + tsc_hz && 2751 data + tsc_hz > tsc_exp; 2752 } 2753 } 2754 2755 2756 /* 2757 * For a reliable TSC, we can match TSC offsets, and for an unstable 2758 * TSC, we add elapsed time in this computation. We could let the 2759 * compensation code attempt to catch up if we fall behind, but 2760 * it's better to try to match offsets from the beginning. 2761 */ 2762 if (synchronizing && 2763 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2764 if (!kvm_check_tsc_unstable()) { 2765 offset = kvm->arch.cur_tsc_offset; 2766 } else { 2767 u64 delta = nsec_to_cycles(vcpu, elapsed); 2768 data += delta; 2769 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2770 } 2771 matched = true; 2772 } 2773 2774 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched, !!user_value); 2775 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2776 } 2777 2778 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2779 s64 adjustment) 2780 { 2781 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2782 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2783 } 2784 2785 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2786 { 2787 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2788 WARN_ON(adjustment < 0); 2789 adjustment = kvm_scale_tsc((u64) adjustment, 2790 vcpu->arch.l1_tsc_scaling_ratio); 2791 adjust_tsc_offset_guest(vcpu, adjustment); 2792 } 2793 2794 #ifdef CONFIG_X86_64 2795 2796 static u64 read_tsc(void) 2797 { 2798 u64 ret = (u64)rdtsc_ordered(); 2799 u64 last = pvclock_gtod_data.clock.cycle_last; 2800 2801 if (likely(ret >= last)) 2802 return ret; 2803 2804 /* 2805 * GCC likes to generate cmov here, but this branch is extremely 2806 * predictable (it's just a function of time and the likely is 2807 * very likely) and there's a data dependence, so force GCC 2808 * to generate a branch instead. I don't barrier() because 2809 * we don't actually need a barrier, and if this function 2810 * ever gets inlined it will generate worse code. 2811 */ 2812 asm volatile (""); 2813 return last; 2814 } 2815 2816 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2817 int *mode) 2818 { 2819 u64 tsc_pg_val; 2820 long v; 2821 2822 switch (clock->vclock_mode) { 2823 case VDSO_CLOCKMODE_HVCLOCK: 2824 if (hv_read_tsc_page_tsc(hv_get_tsc_page(), 2825 tsc_timestamp, &tsc_pg_val)) { 2826 /* TSC page valid */ 2827 *mode = VDSO_CLOCKMODE_HVCLOCK; 2828 v = (tsc_pg_val - clock->cycle_last) & 2829 clock->mask; 2830 } else { 2831 /* TSC page invalid */ 2832 *mode = VDSO_CLOCKMODE_NONE; 2833 } 2834 break; 2835 case VDSO_CLOCKMODE_TSC: 2836 *mode = VDSO_CLOCKMODE_TSC; 2837 *tsc_timestamp = read_tsc(); 2838 v = (*tsc_timestamp - clock->cycle_last) & 2839 clock->mask; 2840 break; 2841 default: 2842 *mode = VDSO_CLOCKMODE_NONE; 2843 } 2844 2845 if (*mode == VDSO_CLOCKMODE_NONE) 2846 *tsc_timestamp = v = 0; 2847 2848 return v * clock->mult; 2849 } 2850 2851 /* 2852 * As with get_kvmclock_base_ns(), this counts from boot time, at the 2853 * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot). 2854 */ 2855 static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp) 2856 { 2857 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2858 unsigned long seq; 2859 int mode; 2860 u64 ns; 2861 2862 do { 2863 seq = read_seqcount_begin(>od->seq); 2864 ns = gtod->raw_clock.base_cycles; 2865 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2866 ns >>= gtod->raw_clock.shift; 2867 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2868 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2869 *t = ns; 2870 2871 return mode; 2872 } 2873 2874 /* 2875 * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with 2876 * no boot time offset. 2877 */ 2878 static int do_monotonic(s64 *t, u64 *tsc_timestamp) 2879 { 2880 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2881 unsigned long seq; 2882 int mode; 2883 u64 ns; 2884 2885 do { 2886 seq = read_seqcount_begin(>od->seq); 2887 ns = gtod->clock.base_cycles; 2888 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2889 ns >>= gtod->clock.shift; 2890 ns += ktime_to_ns(gtod->clock.offset); 2891 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2892 *t = ns; 2893 2894 return mode; 2895 } 2896 2897 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2898 { 2899 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2900 unsigned long seq; 2901 int mode; 2902 u64 ns; 2903 2904 do { 2905 seq = read_seqcount_begin(>od->seq); 2906 ts->tv_sec = gtod->wall_time_sec; 2907 ns = gtod->clock.base_cycles; 2908 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2909 ns >>= gtod->clock.shift; 2910 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2911 2912 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2913 ts->tv_nsec = ns; 2914 2915 return mode; 2916 } 2917 2918 /* 2919 * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and 2920 * reports the TSC value from which it do so. Returns true if host is 2921 * using TSC based clocksource. 2922 */ 2923 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2924 { 2925 /* checked again under seqlock below */ 2926 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2927 return false; 2928 2929 return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns, 2930 tsc_timestamp)); 2931 } 2932 2933 /* 2934 * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did 2935 * so. Returns true if host is using TSC based clocksource. 2936 */ 2937 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2938 { 2939 /* checked again under seqlock below */ 2940 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2941 return false; 2942 2943 return gtod_is_based_on_tsc(do_monotonic(kernel_ns, 2944 tsc_timestamp)); 2945 } 2946 2947 /* 2948 * Calculates CLOCK_REALTIME and reports the TSC value from which it did 2949 * so. Returns true if host is using TSC based clocksource. 2950 * 2951 * DO NOT USE this for anything related to migration. You want CLOCK_TAI 2952 * for that. 2953 */ 2954 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2955 u64 *tsc_timestamp) 2956 { 2957 /* checked again under seqlock below */ 2958 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2959 return false; 2960 2961 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2962 } 2963 #endif 2964 2965 /* 2966 * 2967 * Assuming a stable TSC across physical CPUS, and a stable TSC 2968 * across virtual CPUs, the following condition is possible. 2969 * Each numbered line represents an event visible to both 2970 * CPUs at the next numbered event. 2971 * 2972 * "timespecX" represents host monotonic time. "tscX" represents 2973 * RDTSC value. 2974 * 2975 * VCPU0 on CPU0 | VCPU1 on CPU1 2976 * 2977 * 1. read timespec0,tsc0 2978 * 2. | timespec1 = timespec0 + N 2979 * | tsc1 = tsc0 + M 2980 * 3. transition to guest | transition to guest 2981 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2982 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2983 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2984 * 2985 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2986 * 2987 * - ret0 < ret1 2988 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2989 * ... 2990 * - 0 < N - M => M < N 2991 * 2992 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2993 * always the case (the difference between two distinct xtime instances 2994 * might be smaller then the difference between corresponding TSC reads, 2995 * when updating guest vcpus pvclock areas). 2996 * 2997 * To avoid that problem, do not allow visibility of distinct 2998 * system_timestamp/tsc_timestamp values simultaneously: use a master 2999 * copy of host monotonic time values. Update that master copy 3000 * in lockstep. 3001 * 3002 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 3003 * 3004 */ 3005 3006 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 3007 { 3008 #ifdef CONFIG_X86_64 3009 struct kvm_arch *ka = &kvm->arch; 3010 int vclock_mode; 3011 bool host_tsc_clocksource, vcpus_matched; 3012 3013 lockdep_assert_held(&kvm->arch.tsc_write_lock); 3014 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 3015 atomic_read(&kvm->online_vcpus)); 3016 3017 /* 3018 * If the host uses TSC clock, then passthrough TSC as stable 3019 * to the guest. 3020 */ 3021 host_tsc_clocksource = kvm_get_time_and_clockread( 3022 &ka->master_kernel_ns, 3023 &ka->master_cycle_now); 3024 3025 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 3026 && !ka->backwards_tsc_observed 3027 && !ka->boot_vcpu_runs_old_kvmclock; 3028 3029 if (ka->use_master_clock) 3030 atomic_set(&kvm_guest_has_master_clock, 1); 3031 3032 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 3033 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 3034 vcpus_matched); 3035 #endif 3036 } 3037 3038 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 3039 { 3040 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 3041 } 3042 3043 static void __kvm_start_pvclock_update(struct kvm *kvm) 3044 { 3045 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 3046 write_seqcount_begin(&kvm->arch.pvclock_sc); 3047 } 3048 3049 static void kvm_start_pvclock_update(struct kvm *kvm) 3050 { 3051 kvm_make_mclock_inprogress_request(kvm); 3052 3053 /* no guest entries from this point */ 3054 __kvm_start_pvclock_update(kvm); 3055 } 3056 3057 static void kvm_end_pvclock_update(struct kvm *kvm) 3058 { 3059 struct kvm_arch *ka = &kvm->arch; 3060 struct kvm_vcpu *vcpu; 3061 unsigned long i; 3062 3063 write_seqcount_end(&ka->pvclock_sc); 3064 raw_spin_unlock_irq(&ka->tsc_write_lock); 3065 kvm_for_each_vcpu(i, vcpu, kvm) 3066 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3067 3068 /* guest entries allowed */ 3069 kvm_for_each_vcpu(i, vcpu, kvm) 3070 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 3071 } 3072 3073 static void kvm_update_masterclock(struct kvm *kvm) 3074 { 3075 kvm_hv_request_tsc_page_update(kvm); 3076 kvm_start_pvclock_update(kvm); 3077 pvclock_update_vm_gtod_copy(kvm); 3078 kvm_end_pvclock_update(kvm); 3079 } 3080 3081 /* 3082 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 3083 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 3084 * can change during boot even if the TSC is constant, as it's possible for KVM 3085 * to be loaded before TSC calibration completes. Ideally, KVM would get a 3086 * notification when calibration completes, but practically speaking calibration 3087 * will complete before userspace is alive enough to create VMs. 3088 */ 3089 static unsigned long get_cpu_tsc_khz(void) 3090 { 3091 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 3092 return tsc_khz; 3093 else 3094 return __this_cpu_read(cpu_tsc_khz); 3095 } 3096 3097 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 3098 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3099 { 3100 struct kvm_arch *ka = &kvm->arch; 3101 struct pvclock_vcpu_time_info hv_clock; 3102 3103 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 3104 get_cpu(); 3105 3106 data->flags = 0; 3107 if (ka->use_master_clock && 3108 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 3109 #ifdef CONFIG_X86_64 3110 struct timespec64 ts; 3111 3112 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3113 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3114 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3115 } else 3116 #endif 3117 data->host_tsc = rdtsc(); 3118 3119 data->flags |= KVM_CLOCK_TSC_STABLE; 3120 hv_clock.tsc_timestamp = ka->master_cycle_now; 3121 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3122 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3123 &hv_clock.tsc_shift, 3124 &hv_clock.tsc_to_system_mul); 3125 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3126 } else { 3127 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3128 } 3129 3130 put_cpu(); 3131 } 3132 3133 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3134 { 3135 struct kvm_arch *ka = &kvm->arch; 3136 unsigned seq; 3137 3138 do { 3139 seq = read_seqcount_begin(&ka->pvclock_sc); 3140 __get_kvmclock(kvm, data); 3141 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3142 } 3143 3144 u64 get_kvmclock_ns(struct kvm *kvm) 3145 { 3146 struct kvm_clock_data data; 3147 3148 get_kvmclock(kvm, &data); 3149 return data.clock; 3150 } 3151 3152 static void kvm_setup_guest_pvclock(struct pvclock_vcpu_time_info *ref_hv_clock, 3153 struct kvm_vcpu *vcpu, 3154 struct gfn_to_pfn_cache *gpc, 3155 unsigned int offset) 3156 { 3157 struct pvclock_vcpu_time_info *guest_hv_clock; 3158 struct pvclock_vcpu_time_info hv_clock; 3159 unsigned long flags; 3160 3161 memcpy(&hv_clock, ref_hv_clock, sizeof(hv_clock)); 3162 3163 read_lock_irqsave(&gpc->lock, flags); 3164 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3165 read_unlock_irqrestore(&gpc->lock, flags); 3166 3167 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3168 return; 3169 3170 read_lock_irqsave(&gpc->lock, flags); 3171 } 3172 3173 guest_hv_clock = (void *)(gpc->khva + offset); 3174 3175 /* 3176 * This VCPU is paused, but it's legal for a guest to read another 3177 * VCPU's kvmclock, so we really have to follow the specification where 3178 * it says that version is odd if data is being modified, and even after 3179 * it is consistent. 3180 */ 3181 3182 guest_hv_clock->version = hv_clock.version = (guest_hv_clock->version + 1) | 1; 3183 smp_wmb(); 3184 3185 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3186 hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3187 3188 memcpy(guest_hv_clock, &hv_clock, sizeof(*guest_hv_clock)); 3189 3190 smp_wmb(); 3191 3192 guest_hv_clock->version = ++hv_clock.version; 3193 3194 kvm_gpc_mark_dirty_in_slot(gpc); 3195 read_unlock_irqrestore(&gpc->lock, flags); 3196 3197 trace_kvm_pvclock_update(vcpu->vcpu_id, &hv_clock); 3198 } 3199 3200 int kvm_guest_time_update(struct kvm_vcpu *v) 3201 { 3202 struct pvclock_vcpu_time_info hv_clock = {}; 3203 unsigned long flags, tgt_tsc_khz; 3204 unsigned seq; 3205 struct kvm_vcpu_arch *vcpu = &v->arch; 3206 struct kvm_arch *ka = &v->kvm->arch; 3207 s64 kernel_ns; 3208 u64 tsc_timestamp, host_tsc; 3209 bool use_master_clock; 3210 3211 kernel_ns = 0; 3212 host_tsc = 0; 3213 3214 /* 3215 * If the host uses TSC clock, then passthrough TSC as stable 3216 * to the guest. 3217 */ 3218 do { 3219 seq = read_seqcount_begin(&ka->pvclock_sc); 3220 use_master_clock = ka->use_master_clock; 3221 if (use_master_clock) { 3222 host_tsc = ka->master_cycle_now; 3223 kernel_ns = ka->master_kernel_ns; 3224 } 3225 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3226 3227 /* Keep irq disabled to prevent changes to the clock */ 3228 local_irq_save(flags); 3229 tgt_tsc_khz = get_cpu_tsc_khz(); 3230 if (unlikely(tgt_tsc_khz == 0)) { 3231 local_irq_restore(flags); 3232 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3233 return 1; 3234 } 3235 if (!use_master_clock) { 3236 host_tsc = rdtsc(); 3237 kernel_ns = get_kvmclock_base_ns(); 3238 } 3239 3240 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3241 3242 /* 3243 * We may have to catch up the TSC to match elapsed wall clock 3244 * time for two reasons, even if kvmclock is used. 3245 * 1) CPU could have been running below the maximum TSC rate 3246 * 2) Broken TSC compensation resets the base at each VCPU 3247 * entry to avoid unknown leaps of TSC even when running 3248 * again on the same CPU. This may cause apparent elapsed 3249 * time to disappear, and the guest to stand still or run 3250 * very slowly. 3251 */ 3252 if (vcpu->tsc_catchup) { 3253 u64 tsc = compute_guest_tsc(v, kernel_ns); 3254 if (tsc > tsc_timestamp) { 3255 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3256 tsc_timestamp = tsc; 3257 } 3258 } 3259 3260 local_irq_restore(flags); 3261 3262 /* With all the info we got, fill in the values */ 3263 3264 if (kvm_caps.has_tsc_control) { 3265 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3266 v->arch.l1_tsc_scaling_ratio); 3267 tgt_tsc_khz = tgt_tsc_khz ? : 1; 3268 } 3269 3270 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3271 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3272 &vcpu->pvclock_tsc_shift, 3273 &vcpu->pvclock_tsc_mul); 3274 vcpu->hw_tsc_khz = tgt_tsc_khz; 3275 } 3276 3277 hv_clock.tsc_shift = vcpu->pvclock_tsc_shift; 3278 hv_clock.tsc_to_system_mul = vcpu->pvclock_tsc_mul; 3279 hv_clock.tsc_timestamp = tsc_timestamp; 3280 hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3281 vcpu->last_guest_tsc = tsc_timestamp; 3282 3283 /* If the host uses TSC clocksource, then it is stable */ 3284 hv_clock.flags = 0; 3285 if (use_master_clock) 3286 hv_clock.flags |= PVCLOCK_TSC_STABLE_BIT; 3287 3288 if (vcpu->pv_time.active) { 3289 /* 3290 * GUEST_STOPPED is only supported by kvmclock, and KVM's 3291 * historic behavior is to only process the request if kvmclock 3292 * is active/enabled. 3293 */ 3294 if (vcpu->pvclock_set_guest_stopped_request) { 3295 hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3296 vcpu->pvclock_set_guest_stopped_request = false; 3297 } 3298 kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->pv_time, 0); 3299 3300 hv_clock.flags &= ~PVCLOCK_GUEST_STOPPED; 3301 } 3302 3303 kvm_hv_setup_tsc_page(v->kvm, &hv_clock); 3304 3305 #ifdef CONFIG_KVM_XEN 3306 /* 3307 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless 3308 * explicitly told to use TSC as its clocksource Xen will not set this bit. 3309 * This default behaviour led to bugs in some guest kernels which cause 3310 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags. 3311 * 3312 * Note! Clear TSC_STABLE only for Xen clocks, i.e. the order matters! 3313 */ 3314 if (ka->xen.hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE) 3315 hv_clock.flags &= ~PVCLOCK_TSC_STABLE_BIT; 3316 3317 if (vcpu->xen.vcpu_info_cache.active) 3318 kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->xen.vcpu_info_cache, 3319 offsetof(struct compat_vcpu_info, time)); 3320 if (vcpu->xen.vcpu_time_info_cache.active) 3321 kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->xen.vcpu_time_info_cache, 0); 3322 #endif 3323 return 0; 3324 } 3325 3326 /* 3327 * The pvclock_wall_clock ABI tells the guest the wall clock time at 3328 * which it started (i.e. its epoch, when its kvmclock was zero). 3329 * 3330 * In fact those clocks are subtly different; wall clock frequency is 3331 * adjusted by NTP and has leap seconds, while the kvmclock is a 3332 * simple function of the TSC without any such adjustment. 3333 * 3334 * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between 3335 * that and kvmclock, but even that would be subject to change over 3336 * time. 3337 * 3338 * Attempt to calculate the epoch at a given moment using the *same* 3339 * TSC reading via kvm_get_walltime_and_clockread() to obtain both 3340 * wallclock and kvmclock times, and subtracting one from the other. 3341 * 3342 * Fall back to using their values at slightly different moments by 3343 * calling ktime_get_real_ns() and get_kvmclock_ns() separately. 3344 */ 3345 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm) 3346 { 3347 #ifdef CONFIG_X86_64 3348 struct pvclock_vcpu_time_info hv_clock; 3349 struct kvm_arch *ka = &kvm->arch; 3350 unsigned long seq, local_tsc_khz; 3351 struct timespec64 ts; 3352 uint64_t host_tsc; 3353 3354 do { 3355 seq = read_seqcount_begin(&ka->pvclock_sc); 3356 3357 local_tsc_khz = 0; 3358 if (!ka->use_master_clock) 3359 break; 3360 3361 /* 3362 * The TSC read and the call to get_cpu_tsc_khz() must happen 3363 * on the same CPU. 3364 */ 3365 get_cpu(); 3366 3367 local_tsc_khz = get_cpu_tsc_khz(); 3368 3369 if (local_tsc_khz && 3370 !kvm_get_walltime_and_clockread(&ts, &host_tsc)) 3371 local_tsc_khz = 0; /* Fall back to old method */ 3372 3373 put_cpu(); 3374 3375 /* 3376 * These values must be snapshotted within the seqcount loop. 3377 * After that, it's just mathematics which can happen on any 3378 * CPU at any time. 3379 */ 3380 hv_clock.tsc_timestamp = ka->master_cycle_now; 3381 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3382 3383 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3384 3385 /* 3386 * If the conditions were right, and obtaining the wallclock+TSC was 3387 * successful, calculate the KVM clock at the corresponding time and 3388 * subtract one from the other to get the guest's epoch in nanoseconds 3389 * since 1970-01-01. 3390 */ 3391 if (local_tsc_khz) { 3392 kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC, 3393 &hv_clock.tsc_shift, 3394 &hv_clock.tsc_to_system_mul); 3395 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec - 3396 __pvclock_read_cycles(&hv_clock, host_tsc); 3397 } 3398 #endif 3399 return ktime_get_real_ns() - get_kvmclock_ns(kvm); 3400 } 3401 3402 /* 3403 * kvmclock updates which are isolated to a given vcpu, such as 3404 * vcpu->cpu migration, should not allow system_timestamp from 3405 * the rest of the vcpus to remain static. Otherwise ntp frequency 3406 * correction applies to one vcpu's system_timestamp but not 3407 * the others. 3408 * 3409 * So in those cases, request a kvmclock update for all vcpus. 3410 * We need to rate-limit these requests though, as they can 3411 * considerably slow guests that have a large number of vcpus. 3412 * The time for a remote vcpu to update its kvmclock is bound 3413 * by the delay we use to rate-limit the updates. 3414 */ 3415 3416 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3417 3418 static void kvmclock_update_fn(struct work_struct *work) 3419 { 3420 unsigned long i; 3421 struct delayed_work *dwork = to_delayed_work(work); 3422 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3423 kvmclock_update_work); 3424 struct kvm *kvm = container_of(ka, struct kvm, arch); 3425 struct kvm_vcpu *vcpu; 3426 3427 kvm_for_each_vcpu(i, vcpu, kvm) { 3428 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3429 kvm_vcpu_kick(vcpu); 3430 } 3431 } 3432 3433 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3434 { 3435 struct kvm *kvm = v->kvm; 3436 3437 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3438 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3439 KVMCLOCK_UPDATE_DELAY); 3440 } 3441 3442 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3443 3444 static void kvmclock_sync_fn(struct work_struct *work) 3445 { 3446 struct delayed_work *dwork = to_delayed_work(work); 3447 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3448 kvmclock_sync_work); 3449 struct kvm *kvm = container_of(ka, struct kvm, arch); 3450 3451 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3452 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3453 KVMCLOCK_SYNC_PERIOD); 3454 } 3455 3456 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3457 static bool is_mci_control_msr(u32 msr) 3458 { 3459 return (msr & 3) == 0; 3460 } 3461 static bool is_mci_status_msr(u32 msr) 3462 { 3463 return (msr & 3) == 1; 3464 } 3465 3466 /* 3467 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3468 */ 3469 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3470 { 3471 /* McStatusWrEn enabled? */ 3472 if (guest_cpuid_is_amd_compatible(vcpu)) 3473 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3474 3475 return false; 3476 } 3477 3478 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3479 { 3480 u64 mcg_cap = vcpu->arch.mcg_cap; 3481 unsigned bank_num = mcg_cap & 0xff; 3482 u32 msr = msr_info->index; 3483 u64 data = msr_info->data; 3484 u32 offset, last_msr; 3485 3486 switch (msr) { 3487 case MSR_IA32_MCG_STATUS: 3488 vcpu->arch.mcg_status = data; 3489 break; 3490 case MSR_IA32_MCG_CTL: 3491 if (!(mcg_cap & MCG_CTL_P) && 3492 (data || !msr_info->host_initiated)) 3493 return 1; 3494 if (data != 0 && data != ~(u64)0) 3495 return 1; 3496 vcpu->arch.mcg_ctl = data; 3497 break; 3498 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3499 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3500 if (msr > last_msr) 3501 return 1; 3502 3503 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3504 return 1; 3505 /* An attempt to write a 1 to a reserved bit raises #GP */ 3506 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3507 return 1; 3508 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3509 last_msr + 1 - MSR_IA32_MC0_CTL2); 3510 vcpu->arch.mci_ctl2_banks[offset] = data; 3511 break; 3512 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3513 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3514 if (msr > last_msr) 3515 return 1; 3516 3517 /* 3518 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3519 * values are architecturally undefined. But, some Linux 3520 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3521 * issue on AMD K8s, allow bit 10 to be clear when setting all 3522 * other bits in order to avoid an uncaught #GP in the guest. 3523 * 3524 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3525 * single-bit ECC data errors. 3526 */ 3527 if (is_mci_control_msr(msr) && 3528 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3529 return 1; 3530 3531 /* 3532 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3533 * AMD-based CPUs allow non-zero values, but if and only if 3534 * HWCR[McStatusWrEn] is set. 3535 */ 3536 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3537 data != 0 && !can_set_mci_status(vcpu)) 3538 return 1; 3539 3540 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3541 last_msr + 1 - MSR_IA32_MC0_CTL); 3542 vcpu->arch.mce_banks[offset] = data; 3543 break; 3544 default: 3545 return 1; 3546 } 3547 return 0; 3548 } 3549 3550 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3551 { 3552 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3553 3554 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3555 } 3556 3557 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3558 { 3559 gpa_t gpa = data & ~0x3f; 3560 3561 /* Bits 4:5 are reserved, Should be zero */ 3562 if (data & 0x30) 3563 return 1; 3564 3565 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3566 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3567 return 1; 3568 3569 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3570 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3571 return 1; 3572 3573 if (!lapic_in_kernel(vcpu)) 3574 return data ? 1 : 0; 3575 3576 vcpu->arch.apf.msr_en_val = data; 3577 3578 if (!kvm_pv_async_pf_enabled(vcpu)) { 3579 kvm_clear_async_pf_completion_queue(vcpu); 3580 kvm_async_pf_hash_reset(vcpu); 3581 return 0; 3582 } 3583 3584 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3585 sizeof(u64))) 3586 return 1; 3587 3588 vcpu->arch.apf.send_always = (data & KVM_ASYNC_PF_SEND_ALWAYS); 3589 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3590 3591 kvm_async_pf_wakeup_all(vcpu); 3592 3593 return 0; 3594 } 3595 3596 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3597 { 3598 /* Bits 8-63 are reserved */ 3599 if (data >> 8) 3600 return 1; 3601 3602 if (!lapic_in_kernel(vcpu)) 3603 return 1; 3604 3605 vcpu->arch.apf.msr_int_val = data; 3606 3607 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3608 3609 return 0; 3610 } 3611 3612 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3613 { 3614 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3615 vcpu->arch.time = 0; 3616 } 3617 3618 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3619 { 3620 ++vcpu->stat.tlb_flush; 3621 kvm_x86_call(flush_tlb_all)(vcpu); 3622 3623 /* Flushing all ASIDs flushes the current ASID... */ 3624 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3625 } 3626 3627 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3628 { 3629 ++vcpu->stat.tlb_flush; 3630 3631 if (!tdp_enabled) { 3632 /* 3633 * A TLB flush on behalf of the guest is equivalent to 3634 * INVPCID(all), toggling CR4.PGE, etc., which requires 3635 * a forced sync of the shadow page tables. Ensure all the 3636 * roots are synced and the guest TLB in hardware is clean. 3637 */ 3638 kvm_mmu_sync_roots(vcpu); 3639 kvm_mmu_sync_prev_roots(vcpu); 3640 } 3641 3642 kvm_x86_call(flush_tlb_guest)(vcpu); 3643 3644 /* 3645 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3646 * grained flushing. 3647 */ 3648 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3649 } 3650 3651 3652 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3653 { 3654 ++vcpu->stat.tlb_flush; 3655 kvm_x86_call(flush_tlb_current)(vcpu); 3656 } 3657 3658 /* 3659 * Service "local" TLB flush requests, which are specific to the current MMU 3660 * context. In addition to the generic event handling in vcpu_enter_guest(), 3661 * TLB flushes that are targeted at an MMU context also need to be serviced 3662 * prior before nested VM-Enter/VM-Exit. 3663 */ 3664 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3665 { 3666 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3667 kvm_vcpu_flush_tlb_current(vcpu); 3668 3669 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3670 kvm_vcpu_flush_tlb_guest(vcpu); 3671 } 3672 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3673 3674 static void record_steal_time(struct kvm_vcpu *vcpu) 3675 { 3676 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3677 struct kvm_steal_time __user *st; 3678 struct kvm_memslots *slots; 3679 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3680 u64 steal; 3681 u32 version; 3682 3683 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3684 kvm_xen_runstate_set_running(vcpu); 3685 return; 3686 } 3687 3688 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3689 return; 3690 3691 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3692 return; 3693 3694 slots = kvm_memslots(vcpu->kvm); 3695 3696 if (unlikely(slots->generation != ghc->generation || 3697 gpa != ghc->gpa || 3698 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3699 /* We rely on the fact that it fits in a single page. */ 3700 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3701 3702 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3703 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3704 return; 3705 } 3706 3707 st = (struct kvm_steal_time __user *)ghc->hva; 3708 /* 3709 * Doing a TLB flush here, on the guest's behalf, can avoid 3710 * expensive IPIs. 3711 */ 3712 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3713 u8 st_preempted = 0; 3714 int err = -EFAULT; 3715 3716 if (!user_access_begin(st, sizeof(*st))) 3717 return; 3718 3719 asm volatile("1: xchgb %0, %2\n" 3720 "xor %1, %1\n" 3721 "2:\n" 3722 _ASM_EXTABLE_UA(1b, 2b) 3723 : "+q" (st_preempted), 3724 "+&r" (err), 3725 "+m" (st->preempted)); 3726 if (err) 3727 goto out; 3728 3729 user_access_end(); 3730 3731 vcpu->arch.st.preempted = 0; 3732 3733 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3734 st_preempted & KVM_VCPU_FLUSH_TLB); 3735 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3736 kvm_vcpu_flush_tlb_guest(vcpu); 3737 3738 if (!user_access_begin(st, sizeof(*st))) 3739 goto dirty; 3740 } else { 3741 if (!user_access_begin(st, sizeof(*st))) 3742 return; 3743 3744 unsafe_put_user(0, &st->preempted, out); 3745 vcpu->arch.st.preempted = 0; 3746 } 3747 3748 unsafe_get_user(version, &st->version, out); 3749 if (version & 1) 3750 version += 1; /* first time write, random junk */ 3751 3752 version += 1; 3753 unsafe_put_user(version, &st->version, out); 3754 3755 smp_wmb(); 3756 3757 unsafe_get_user(steal, &st->steal, out); 3758 steal += current->sched_info.run_delay - 3759 vcpu->arch.st.last_steal; 3760 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3761 unsafe_put_user(steal, &st->steal, out); 3762 3763 version += 1; 3764 unsafe_put_user(version, &st->version, out); 3765 3766 out: 3767 user_access_end(); 3768 dirty: 3769 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3770 } 3771 3772 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3773 { 3774 u32 msr = msr_info->index; 3775 u64 data = msr_info->data; 3776 3777 /* 3778 * Do not allow host-initiated writes to trigger the Xen hypercall 3779 * page setup; it could incur locking paths which are not expected 3780 * if userspace sets the MSR in an unusual location. 3781 */ 3782 if (kvm_xen_is_hypercall_page_msr(vcpu->kvm, msr) && 3783 !msr_info->host_initiated) 3784 return kvm_xen_write_hypercall_page(vcpu, data); 3785 3786 switch (msr) { 3787 case MSR_AMD64_NB_CFG: 3788 case MSR_IA32_UCODE_WRITE: 3789 case MSR_VM_HSAVE_PA: 3790 case MSR_AMD64_PATCH_LOADER: 3791 case MSR_AMD64_BU_CFG2: 3792 case MSR_AMD64_DC_CFG: 3793 case MSR_AMD64_TW_CFG: 3794 case MSR_F15H_EX_CFG: 3795 break; 3796 3797 case MSR_IA32_UCODE_REV: 3798 if (msr_info->host_initiated) 3799 vcpu->arch.microcode_version = data; 3800 break; 3801 case MSR_IA32_ARCH_CAPABILITIES: 3802 if (!msr_info->host_initiated || 3803 !guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 3804 return KVM_MSR_RET_UNSUPPORTED; 3805 vcpu->arch.arch_capabilities = data; 3806 break; 3807 case MSR_IA32_PERF_CAPABILITIES: 3808 if (!msr_info->host_initiated || 3809 !guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM)) 3810 return KVM_MSR_RET_UNSUPPORTED; 3811 3812 if (data & ~kvm_caps.supported_perf_cap) 3813 return 1; 3814 3815 /* 3816 * Note, this is not just a performance optimization! KVM 3817 * disallows changing feature MSRs after the vCPU has run; PMU 3818 * refresh will bug the VM if called after the vCPU has run. 3819 */ 3820 if (vcpu->arch.perf_capabilities == data) 3821 break; 3822 3823 vcpu->arch.perf_capabilities = data; 3824 kvm_pmu_refresh(vcpu); 3825 break; 3826 case MSR_IA32_PRED_CMD: { 3827 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB); 3828 3829 if (!msr_info->host_initiated) { 3830 if ((!guest_has_pred_cmd_msr(vcpu))) 3831 return 1; 3832 3833 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SPEC_CTRL) && 3834 !guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_IBPB)) 3835 reserved_bits |= PRED_CMD_IBPB; 3836 3837 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SBPB)) 3838 reserved_bits |= PRED_CMD_SBPB; 3839 } 3840 3841 if (!boot_cpu_has(X86_FEATURE_IBPB)) 3842 reserved_bits |= PRED_CMD_IBPB; 3843 3844 if (!boot_cpu_has(X86_FEATURE_SBPB)) 3845 reserved_bits |= PRED_CMD_SBPB; 3846 3847 if (data & reserved_bits) 3848 return 1; 3849 3850 if (!data) 3851 break; 3852 3853 wrmsrq(MSR_IA32_PRED_CMD, data); 3854 break; 3855 } 3856 case MSR_IA32_FLUSH_CMD: 3857 if (!msr_info->host_initiated && 3858 !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D)) 3859 return 1; 3860 3861 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH)) 3862 return 1; 3863 if (!data) 3864 break; 3865 3866 wrmsrq(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 3867 break; 3868 case MSR_EFER: 3869 return set_efer(vcpu, msr_info); 3870 case MSR_K7_HWCR: 3871 data &= ~(u64)0x40; /* ignore flush filter disable */ 3872 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3873 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3874 3875 /* 3876 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2 3877 * through at least v6.6 whine if TscFreqSel is clear, 3878 * depending on F/M/S. 3879 */ 3880 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) { 3881 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3882 return 1; 3883 } 3884 vcpu->arch.msr_hwcr = data; 3885 break; 3886 case MSR_FAM10H_MMIO_CONF_BASE: 3887 if (data != 0) { 3888 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3889 return 1; 3890 } 3891 break; 3892 case MSR_IA32_CR_PAT: 3893 if (!kvm_pat_valid(data)) 3894 return 1; 3895 3896 vcpu->arch.pat = data; 3897 break; 3898 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 3899 case MSR_MTRRdefType: 3900 return kvm_mtrr_set_msr(vcpu, msr, data); 3901 case MSR_IA32_APICBASE: 3902 return kvm_apic_set_base(vcpu, data, msr_info->host_initiated); 3903 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3904 return kvm_x2apic_msr_write(vcpu, msr, data); 3905 case MSR_IA32_TSC_DEADLINE: 3906 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3907 break; 3908 case MSR_IA32_TSC_ADJUST: 3909 if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3910 if (!msr_info->host_initiated) { 3911 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3912 adjust_tsc_offset_guest(vcpu, adj); 3913 /* Before back to guest, tsc_timestamp must be adjusted 3914 * as well, otherwise guest's percpu pvclock time could jump. 3915 */ 3916 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3917 } 3918 vcpu->arch.ia32_tsc_adjust_msr = data; 3919 } 3920 break; 3921 case MSR_IA32_MISC_ENABLE: { 3922 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3923 3924 if (!msr_info->host_initiated) { 3925 /* RO bits */ 3926 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3927 return 1; 3928 3929 /* R bits, i.e. writes are ignored, but don't fault. */ 3930 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3931 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3932 } 3933 3934 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3935 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3936 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_XMM3)) 3937 return 1; 3938 vcpu->arch.ia32_misc_enable_msr = data; 3939 vcpu->arch.cpuid_dynamic_bits_dirty = true; 3940 } else { 3941 vcpu->arch.ia32_misc_enable_msr = data; 3942 } 3943 break; 3944 } 3945 case MSR_IA32_SMBASE: 3946 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 3947 return 1; 3948 vcpu->arch.smbase = data; 3949 break; 3950 case MSR_IA32_POWER_CTL: 3951 vcpu->arch.msr_ia32_power_ctl = data; 3952 break; 3953 case MSR_IA32_TSC: 3954 if (msr_info->host_initiated) { 3955 kvm_synchronize_tsc(vcpu, &data); 3956 } else if (!vcpu->arch.guest_tsc_protected) { 3957 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3958 adjust_tsc_offset_guest(vcpu, adj); 3959 vcpu->arch.ia32_tsc_adjust_msr += adj; 3960 } 3961 break; 3962 case MSR_IA32_XSS: 3963 if (!msr_info->host_initiated && 3964 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3965 return 1; 3966 /* 3967 * KVM supports exposing PT to the guest, but does not support 3968 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3969 * XSAVES/XRSTORS to save/restore PT MSRs. 3970 */ 3971 if (data & ~kvm_caps.supported_xss) 3972 return 1; 3973 vcpu->arch.ia32_xss = data; 3974 vcpu->arch.cpuid_dynamic_bits_dirty = true; 3975 break; 3976 case MSR_SMI_COUNT: 3977 if (!msr_info->host_initiated) 3978 return 1; 3979 vcpu->arch.smi_count = data; 3980 break; 3981 case MSR_KVM_WALL_CLOCK_NEW: 3982 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3983 return 1; 3984 3985 vcpu->kvm->arch.wall_clock = data; 3986 kvm_write_wall_clock(vcpu->kvm, data, 0); 3987 break; 3988 case MSR_KVM_WALL_CLOCK: 3989 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3990 return 1; 3991 3992 vcpu->kvm->arch.wall_clock = data; 3993 kvm_write_wall_clock(vcpu->kvm, data, 0); 3994 break; 3995 case MSR_KVM_SYSTEM_TIME_NEW: 3996 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3997 return 1; 3998 3999 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 4000 break; 4001 case MSR_KVM_SYSTEM_TIME: 4002 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4003 return 1; 4004 4005 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 4006 break; 4007 case MSR_KVM_ASYNC_PF_EN: 4008 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4009 return 1; 4010 4011 if (kvm_pv_enable_async_pf(vcpu, data)) 4012 return 1; 4013 break; 4014 case MSR_KVM_ASYNC_PF_INT: 4015 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4016 return 1; 4017 4018 if (kvm_pv_enable_async_pf_int(vcpu, data)) 4019 return 1; 4020 break; 4021 case MSR_KVM_ASYNC_PF_ACK: 4022 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4023 return 1; 4024 if (data & 0x1) { 4025 vcpu->arch.apf.pageready_pending = false; 4026 kvm_check_async_pf_completion(vcpu); 4027 } 4028 break; 4029 case MSR_KVM_STEAL_TIME: 4030 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4031 return 1; 4032 4033 if (unlikely(!sched_info_on())) 4034 return 1; 4035 4036 if (data & KVM_STEAL_RESERVED_MASK) 4037 return 1; 4038 4039 vcpu->arch.st.msr_val = data; 4040 4041 if (!(data & KVM_MSR_ENABLED)) 4042 break; 4043 4044 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4045 4046 break; 4047 case MSR_KVM_PV_EOI_EN: 4048 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4049 return 1; 4050 4051 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 4052 return 1; 4053 break; 4054 4055 case MSR_KVM_POLL_CONTROL: 4056 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4057 return 1; 4058 4059 /* only enable bit supported */ 4060 if (data & (-1ULL << 1)) 4061 return 1; 4062 4063 vcpu->arch.msr_kvm_poll_control = data; 4064 break; 4065 4066 case MSR_IA32_MCG_CTL: 4067 case MSR_IA32_MCG_STATUS: 4068 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4069 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4070 return set_msr_mce(vcpu, msr_info); 4071 4072 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4073 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4074 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4075 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4076 if (kvm_pmu_is_valid_msr(vcpu, msr)) 4077 return kvm_pmu_set_msr(vcpu, msr_info); 4078 4079 if (data) 4080 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 4081 break; 4082 case MSR_K7_CLK_CTL: 4083 /* 4084 * Ignore all writes to this no longer documented MSR. 4085 * Writes are only relevant for old K7 processors, 4086 * all pre-dating SVM, but a recommended workaround from 4087 * AMD for these chips. It is possible to specify the 4088 * affected processor models on the command line, hence 4089 * the need to ignore the workaround. 4090 */ 4091 break; 4092 #ifdef CONFIG_KVM_HYPERV 4093 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4094 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4095 case HV_X64_MSR_SYNDBG_OPTIONS: 4096 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4097 case HV_X64_MSR_CRASH_CTL: 4098 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4099 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4100 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4101 case HV_X64_MSR_TSC_EMULATION_STATUS: 4102 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4103 return kvm_hv_set_msr_common(vcpu, msr, data, 4104 msr_info->host_initiated); 4105 #endif 4106 case MSR_IA32_BBL_CR_CTL3: 4107 /* Drop writes to this legacy MSR -- see rdmsr 4108 * counterpart for further detail. 4109 */ 4110 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 4111 break; 4112 case MSR_AMD64_OSVW_ID_LENGTH: 4113 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW)) 4114 return 1; 4115 vcpu->arch.osvw.length = data; 4116 break; 4117 case MSR_AMD64_OSVW_STATUS: 4118 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW)) 4119 return 1; 4120 vcpu->arch.osvw.status = data; 4121 break; 4122 case MSR_PLATFORM_INFO: 4123 if (!msr_info->host_initiated) 4124 return 1; 4125 vcpu->arch.msr_platform_info = data; 4126 break; 4127 case MSR_MISC_FEATURES_ENABLES: 4128 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 4129 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 4130 !supports_cpuid_fault(vcpu))) 4131 return 1; 4132 vcpu->arch.msr_misc_features_enables = data; 4133 break; 4134 #ifdef CONFIG_X86_64 4135 case MSR_IA32_XFD: 4136 if (!msr_info->host_initiated && 4137 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD)) 4138 return 1; 4139 4140 if (data & ~kvm_guest_supported_xfd(vcpu)) 4141 return 1; 4142 4143 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 4144 break; 4145 case MSR_IA32_XFD_ERR: 4146 if (!msr_info->host_initiated && 4147 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD)) 4148 return 1; 4149 4150 if (data & ~kvm_guest_supported_xfd(vcpu)) 4151 return 1; 4152 4153 vcpu->arch.guest_fpu.xfd_err = data; 4154 break; 4155 #endif 4156 default: 4157 if (kvm_pmu_is_valid_msr(vcpu, msr)) 4158 return kvm_pmu_set_msr(vcpu, msr_info); 4159 4160 return KVM_MSR_RET_UNSUPPORTED; 4161 } 4162 return 0; 4163 } 4164 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 4165 4166 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 4167 { 4168 u64 data; 4169 u64 mcg_cap = vcpu->arch.mcg_cap; 4170 unsigned bank_num = mcg_cap & 0xff; 4171 u32 offset, last_msr; 4172 4173 switch (msr) { 4174 case MSR_IA32_P5_MC_ADDR: 4175 case MSR_IA32_P5_MC_TYPE: 4176 data = 0; 4177 break; 4178 case MSR_IA32_MCG_CAP: 4179 data = vcpu->arch.mcg_cap; 4180 break; 4181 case MSR_IA32_MCG_CTL: 4182 if (!(mcg_cap & MCG_CTL_P) && !host) 4183 return 1; 4184 data = vcpu->arch.mcg_ctl; 4185 break; 4186 case MSR_IA32_MCG_STATUS: 4187 data = vcpu->arch.mcg_status; 4188 break; 4189 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4190 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 4191 if (msr > last_msr) 4192 return 1; 4193 4194 if (!(mcg_cap & MCG_CMCI_P) && !host) 4195 return 1; 4196 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 4197 last_msr + 1 - MSR_IA32_MC0_CTL2); 4198 data = vcpu->arch.mci_ctl2_banks[offset]; 4199 break; 4200 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4201 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 4202 if (msr > last_msr) 4203 return 1; 4204 4205 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 4206 last_msr + 1 - MSR_IA32_MC0_CTL); 4207 data = vcpu->arch.mce_banks[offset]; 4208 break; 4209 default: 4210 return 1; 4211 } 4212 *pdata = data; 4213 return 0; 4214 } 4215 4216 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 4217 { 4218 switch (msr_info->index) { 4219 case MSR_IA32_PLATFORM_ID: 4220 case MSR_IA32_EBL_CR_POWERON: 4221 case MSR_IA32_LASTBRANCHFROMIP: 4222 case MSR_IA32_LASTBRANCHTOIP: 4223 case MSR_IA32_LASTINTFROMIP: 4224 case MSR_IA32_LASTINTTOIP: 4225 case MSR_AMD64_SYSCFG: 4226 case MSR_K8_TSEG_ADDR: 4227 case MSR_K8_TSEG_MASK: 4228 case MSR_VM_HSAVE_PA: 4229 case MSR_K8_INT_PENDING_MSG: 4230 case MSR_AMD64_NB_CFG: 4231 case MSR_FAM10H_MMIO_CONF_BASE: 4232 case MSR_AMD64_BU_CFG2: 4233 case MSR_IA32_PERF_CTL: 4234 case MSR_AMD64_DC_CFG: 4235 case MSR_AMD64_TW_CFG: 4236 case MSR_F15H_EX_CFG: 4237 /* 4238 * Intel Sandy Bridge CPUs must support the RAPL (running average power 4239 * limit) MSRs. Just return 0, as we do not want to expose the host 4240 * data here. Do not conditionalize this on CPUID, as KVM does not do 4241 * so for existing CPU-specific MSRs. 4242 */ 4243 case MSR_RAPL_POWER_UNIT: 4244 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 4245 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 4246 case MSR_PKG_ENERGY_STATUS: /* Total package */ 4247 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 4248 msr_info->data = 0; 4249 break; 4250 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4251 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4252 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4253 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4254 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4255 return kvm_pmu_get_msr(vcpu, msr_info); 4256 msr_info->data = 0; 4257 break; 4258 case MSR_IA32_UCODE_REV: 4259 msr_info->data = vcpu->arch.microcode_version; 4260 break; 4261 case MSR_IA32_ARCH_CAPABILITIES: 4262 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4263 return KVM_MSR_RET_UNSUPPORTED; 4264 msr_info->data = vcpu->arch.arch_capabilities; 4265 break; 4266 case MSR_IA32_PERF_CAPABILITIES: 4267 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM)) 4268 return KVM_MSR_RET_UNSUPPORTED; 4269 msr_info->data = vcpu->arch.perf_capabilities; 4270 break; 4271 case MSR_IA32_POWER_CTL: 4272 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4273 break; 4274 case MSR_IA32_TSC: { 4275 /* 4276 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4277 * even when not intercepted. AMD manual doesn't explicitly 4278 * state this but appears to behave the same. 4279 * 4280 * On userspace reads and writes, however, we unconditionally 4281 * return L1's TSC value to ensure backwards-compatible 4282 * behavior for migration. 4283 */ 4284 u64 offset, ratio; 4285 4286 if (msr_info->host_initiated) { 4287 offset = vcpu->arch.l1_tsc_offset; 4288 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4289 } else { 4290 offset = vcpu->arch.tsc_offset; 4291 ratio = vcpu->arch.tsc_scaling_ratio; 4292 } 4293 4294 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4295 break; 4296 } 4297 case MSR_IA32_CR_PAT: 4298 msr_info->data = vcpu->arch.pat; 4299 break; 4300 case MSR_MTRRcap: 4301 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 4302 case MSR_MTRRdefType: 4303 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4304 case 0xcd: /* fsb frequency */ 4305 msr_info->data = 3; 4306 break; 4307 /* 4308 * MSR_EBC_FREQUENCY_ID 4309 * Conservative value valid for even the basic CPU models. 4310 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4311 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4312 * and 266MHz for model 3, or 4. Set Core Clock 4313 * Frequency to System Bus Frequency Ratio to 1 (bits 4314 * 31:24) even though these are only valid for CPU 4315 * models > 2, however guests may end up dividing or 4316 * multiplying by zero otherwise. 4317 */ 4318 case MSR_EBC_FREQUENCY_ID: 4319 msr_info->data = 1 << 24; 4320 break; 4321 case MSR_IA32_APICBASE: 4322 msr_info->data = vcpu->arch.apic_base; 4323 break; 4324 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4325 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4326 case MSR_IA32_TSC_DEADLINE: 4327 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4328 break; 4329 case MSR_IA32_TSC_ADJUST: 4330 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4331 break; 4332 case MSR_IA32_MISC_ENABLE: 4333 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4334 break; 4335 case MSR_IA32_SMBASE: 4336 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4337 return 1; 4338 msr_info->data = vcpu->arch.smbase; 4339 break; 4340 case MSR_SMI_COUNT: 4341 msr_info->data = vcpu->arch.smi_count; 4342 break; 4343 case MSR_IA32_PERF_STATUS: 4344 /* TSC increment by tick */ 4345 msr_info->data = 1000ULL; 4346 /* CPU multiplier */ 4347 msr_info->data |= (((uint64_t)4ULL) << 40); 4348 break; 4349 case MSR_EFER: 4350 msr_info->data = vcpu->arch.efer; 4351 break; 4352 case MSR_KVM_WALL_CLOCK: 4353 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4354 return 1; 4355 4356 msr_info->data = vcpu->kvm->arch.wall_clock; 4357 break; 4358 case MSR_KVM_WALL_CLOCK_NEW: 4359 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4360 return 1; 4361 4362 msr_info->data = vcpu->kvm->arch.wall_clock; 4363 break; 4364 case MSR_KVM_SYSTEM_TIME: 4365 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4366 return 1; 4367 4368 msr_info->data = vcpu->arch.time; 4369 break; 4370 case MSR_KVM_SYSTEM_TIME_NEW: 4371 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4372 return 1; 4373 4374 msr_info->data = vcpu->arch.time; 4375 break; 4376 case MSR_KVM_ASYNC_PF_EN: 4377 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4378 return 1; 4379 4380 msr_info->data = vcpu->arch.apf.msr_en_val; 4381 break; 4382 case MSR_KVM_ASYNC_PF_INT: 4383 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4384 return 1; 4385 4386 msr_info->data = vcpu->arch.apf.msr_int_val; 4387 break; 4388 case MSR_KVM_ASYNC_PF_ACK: 4389 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4390 return 1; 4391 4392 msr_info->data = 0; 4393 break; 4394 case MSR_KVM_STEAL_TIME: 4395 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4396 return 1; 4397 4398 msr_info->data = vcpu->arch.st.msr_val; 4399 break; 4400 case MSR_KVM_PV_EOI_EN: 4401 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4402 return 1; 4403 4404 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4405 break; 4406 case MSR_KVM_POLL_CONTROL: 4407 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4408 return 1; 4409 4410 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4411 break; 4412 case MSR_IA32_P5_MC_ADDR: 4413 case MSR_IA32_P5_MC_TYPE: 4414 case MSR_IA32_MCG_CAP: 4415 case MSR_IA32_MCG_CTL: 4416 case MSR_IA32_MCG_STATUS: 4417 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4418 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4419 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4420 msr_info->host_initiated); 4421 case MSR_IA32_XSS: 4422 if (!msr_info->host_initiated && 4423 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4424 return 1; 4425 msr_info->data = vcpu->arch.ia32_xss; 4426 break; 4427 case MSR_K7_CLK_CTL: 4428 /* 4429 * Provide expected ramp-up count for K7. All other 4430 * are set to zero, indicating minimum divisors for 4431 * every field. 4432 * 4433 * This prevents guest kernels on AMD host with CPU 4434 * type 6, model 8 and higher from exploding due to 4435 * the rdmsr failing. 4436 */ 4437 msr_info->data = 0x20000000; 4438 break; 4439 #ifdef CONFIG_KVM_HYPERV 4440 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4441 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4442 case HV_X64_MSR_SYNDBG_OPTIONS: 4443 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4444 case HV_X64_MSR_CRASH_CTL: 4445 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4446 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4447 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4448 case HV_X64_MSR_TSC_EMULATION_STATUS: 4449 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4450 return kvm_hv_get_msr_common(vcpu, 4451 msr_info->index, &msr_info->data, 4452 msr_info->host_initiated); 4453 #endif 4454 case MSR_IA32_BBL_CR_CTL3: 4455 /* This legacy MSR exists but isn't fully documented in current 4456 * silicon. It is however accessed by winxp in very narrow 4457 * scenarios where it sets bit #19, itself documented as 4458 * a "reserved" bit. Best effort attempt to source coherent 4459 * read data here should the balance of the register be 4460 * interpreted by the guest: 4461 * 4462 * L2 cache control register 3: 64GB range, 256KB size, 4463 * enabled, latency 0x1, configured 4464 */ 4465 msr_info->data = 0xbe702111; 4466 break; 4467 case MSR_AMD64_OSVW_ID_LENGTH: 4468 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW)) 4469 return 1; 4470 msr_info->data = vcpu->arch.osvw.length; 4471 break; 4472 case MSR_AMD64_OSVW_STATUS: 4473 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW)) 4474 return 1; 4475 msr_info->data = vcpu->arch.osvw.status; 4476 break; 4477 case MSR_PLATFORM_INFO: 4478 if (!msr_info->host_initiated && 4479 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4480 return 1; 4481 msr_info->data = vcpu->arch.msr_platform_info; 4482 break; 4483 case MSR_MISC_FEATURES_ENABLES: 4484 msr_info->data = vcpu->arch.msr_misc_features_enables; 4485 break; 4486 case MSR_K7_HWCR: 4487 msr_info->data = vcpu->arch.msr_hwcr; 4488 break; 4489 #ifdef CONFIG_X86_64 4490 case MSR_IA32_XFD: 4491 if (!msr_info->host_initiated && 4492 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD)) 4493 return 1; 4494 4495 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4496 break; 4497 case MSR_IA32_XFD_ERR: 4498 if (!msr_info->host_initiated && 4499 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD)) 4500 return 1; 4501 4502 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4503 break; 4504 #endif 4505 default: 4506 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4507 return kvm_pmu_get_msr(vcpu, msr_info); 4508 4509 return KVM_MSR_RET_UNSUPPORTED; 4510 } 4511 return 0; 4512 } 4513 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4514 4515 /* 4516 * Read or write a bunch of msrs. All parameters are kernel addresses. 4517 * 4518 * @return number of msrs set successfully. 4519 */ 4520 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4521 struct kvm_msr_entry *entries, 4522 int (*do_msr)(struct kvm_vcpu *vcpu, 4523 unsigned index, u64 *data)) 4524 { 4525 int i; 4526 4527 for (i = 0; i < msrs->nmsrs; ++i) 4528 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4529 break; 4530 4531 return i; 4532 } 4533 4534 /* 4535 * Read or write a bunch of msrs. Parameters are user addresses. 4536 * 4537 * @return number of msrs set successfully. 4538 */ 4539 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4540 int (*do_msr)(struct kvm_vcpu *vcpu, 4541 unsigned index, u64 *data), 4542 int writeback) 4543 { 4544 struct kvm_msrs msrs; 4545 struct kvm_msr_entry *entries; 4546 unsigned size; 4547 int r; 4548 4549 r = -EFAULT; 4550 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4551 goto out; 4552 4553 r = -E2BIG; 4554 if (msrs.nmsrs >= MAX_IO_MSRS) 4555 goto out; 4556 4557 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4558 entries = memdup_user(user_msrs->entries, size); 4559 if (IS_ERR(entries)) { 4560 r = PTR_ERR(entries); 4561 goto out; 4562 } 4563 4564 r = __msr_io(vcpu, &msrs, entries, do_msr); 4565 4566 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4567 r = -EFAULT; 4568 4569 kfree(entries); 4570 out: 4571 return r; 4572 } 4573 4574 static inline bool kvm_can_mwait_in_guest(void) 4575 { 4576 return boot_cpu_has(X86_FEATURE_MWAIT) && 4577 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4578 boot_cpu_has(X86_FEATURE_ARAT); 4579 } 4580 4581 static u64 kvm_get_allowed_disable_exits(void) 4582 { 4583 u64 r = KVM_X86_DISABLE_EXITS_PAUSE; 4584 4585 if (boot_cpu_has(X86_FEATURE_APERFMPERF)) 4586 r |= KVM_X86_DISABLE_EXITS_APERFMPERF; 4587 4588 if (!mitigate_smt_rsb) { 4589 r |= KVM_X86_DISABLE_EXITS_HLT | 4590 KVM_X86_DISABLE_EXITS_CSTATE; 4591 4592 if (kvm_can_mwait_in_guest()) 4593 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4594 } 4595 return r; 4596 } 4597 4598 #ifdef CONFIG_KVM_HYPERV 4599 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4600 struct kvm_cpuid2 __user *cpuid_arg) 4601 { 4602 struct kvm_cpuid2 cpuid; 4603 int r; 4604 4605 r = -EFAULT; 4606 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4607 return r; 4608 4609 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4610 if (r) 4611 return r; 4612 4613 r = -EFAULT; 4614 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4615 return r; 4616 4617 return 0; 4618 } 4619 #endif 4620 4621 static bool kvm_is_vm_type_supported(unsigned long type) 4622 { 4623 return type < 32 && (kvm_caps.supported_vm_types & BIT(type)); 4624 } 4625 4626 static inline u64 kvm_sync_valid_fields(struct kvm *kvm) 4627 { 4628 return kvm && kvm->arch.has_protected_state ? 0 : KVM_SYNC_X86_VALID_FIELDS; 4629 } 4630 4631 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4632 { 4633 int r = 0; 4634 4635 switch (ext) { 4636 case KVM_CAP_IRQCHIP: 4637 case KVM_CAP_HLT: 4638 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4639 case KVM_CAP_SET_TSS_ADDR: 4640 case KVM_CAP_EXT_CPUID: 4641 case KVM_CAP_EXT_EMUL_CPUID: 4642 case KVM_CAP_CLOCKSOURCE: 4643 #ifdef CONFIG_KVM_IOAPIC 4644 case KVM_CAP_PIT: 4645 case KVM_CAP_PIT2: 4646 case KVM_CAP_PIT_STATE2: 4647 case KVM_CAP_REINJECT_CONTROL: 4648 #endif 4649 case KVM_CAP_NOP_IO_DELAY: 4650 case KVM_CAP_MP_STATE: 4651 case KVM_CAP_SYNC_MMU: 4652 case KVM_CAP_USER_NMI: 4653 case KVM_CAP_IRQ_INJECT_STATUS: 4654 case KVM_CAP_IOEVENTFD: 4655 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4656 4657 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4658 case KVM_CAP_VCPU_EVENTS: 4659 #ifdef CONFIG_KVM_HYPERV 4660 case KVM_CAP_HYPERV: 4661 case KVM_CAP_HYPERV_VAPIC: 4662 case KVM_CAP_HYPERV_SPIN: 4663 case KVM_CAP_HYPERV_TIME: 4664 case KVM_CAP_HYPERV_SYNIC: 4665 case KVM_CAP_HYPERV_SYNIC2: 4666 case KVM_CAP_HYPERV_VP_INDEX: 4667 case KVM_CAP_HYPERV_EVENTFD: 4668 case KVM_CAP_HYPERV_TLBFLUSH: 4669 case KVM_CAP_HYPERV_SEND_IPI: 4670 case KVM_CAP_HYPERV_CPUID: 4671 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4672 case KVM_CAP_SYS_HYPERV_CPUID: 4673 #endif 4674 case KVM_CAP_PCI_SEGMENT: 4675 case KVM_CAP_DEBUGREGS: 4676 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4677 case KVM_CAP_XSAVE: 4678 case KVM_CAP_ASYNC_PF: 4679 case KVM_CAP_ASYNC_PF_INT: 4680 case KVM_CAP_GET_TSC_KHZ: 4681 case KVM_CAP_KVMCLOCK_CTRL: 4682 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4683 case KVM_CAP_TSC_DEADLINE_TIMER: 4684 case KVM_CAP_DISABLE_QUIRKS: 4685 case KVM_CAP_SET_BOOT_CPU_ID: 4686 case KVM_CAP_SPLIT_IRQCHIP: 4687 case KVM_CAP_IMMEDIATE_EXIT: 4688 case KVM_CAP_PMU_EVENT_FILTER: 4689 case KVM_CAP_PMU_EVENT_MASKED_EVENTS: 4690 case KVM_CAP_GET_MSR_FEATURES: 4691 case KVM_CAP_MSR_PLATFORM_INFO: 4692 case KVM_CAP_EXCEPTION_PAYLOAD: 4693 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4694 case KVM_CAP_SET_GUEST_DEBUG: 4695 case KVM_CAP_LAST_CPU: 4696 case KVM_CAP_X86_USER_SPACE_MSR: 4697 case KVM_CAP_X86_MSR_FILTER: 4698 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4699 #ifdef CONFIG_X86_SGX_KVM 4700 case KVM_CAP_SGX_ATTRIBUTE: 4701 #endif 4702 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4703 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4704 case KVM_CAP_SREGS2: 4705 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4706 case KVM_CAP_VCPU_ATTRIBUTES: 4707 case KVM_CAP_SYS_ATTRIBUTES: 4708 case KVM_CAP_VAPIC: 4709 case KVM_CAP_ENABLE_CAP: 4710 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4711 case KVM_CAP_IRQFD_RESAMPLE: 4712 case KVM_CAP_MEMORY_FAULT_INFO: 4713 case KVM_CAP_X86_GUEST_MODE: 4714 r = 1; 4715 break; 4716 case KVM_CAP_PRE_FAULT_MEMORY: 4717 r = tdp_enabled; 4718 break; 4719 case KVM_CAP_X86_APIC_BUS_CYCLES_NS: 4720 r = APIC_BUS_CYCLE_NS_DEFAULT; 4721 break; 4722 case KVM_CAP_EXIT_HYPERCALL: 4723 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4724 break; 4725 case KVM_CAP_SET_GUEST_DEBUG2: 4726 return KVM_GUESTDBG_VALID_MASK; 4727 #ifdef CONFIG_KVM_XEN 4728 case KVM_CAP_XEN_HVM: 4729 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4730 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4731 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4732 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4733 KVM_XEN_HVM_CONFIG_EVTCHN_SEND | 4734 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE | 4735 KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA; 4736 if (sched_info_on()) 4737 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4738 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4739 break; 4740 #endif 4741 case KVM_CAP_SYNC_REGS: 4742 r = kvm_sync_valid_fields(kvm); 4743 break; 4744 case KVM_CAP_ADJUST_CLOCK: 4745 r = KVM_CLOCK_VALID_FLAGS; 4746 break; 4747 case KVM_CAP_X86_DISABLE_EXITS: 4748 r = kvm_get_allowed_disable_exits(); 4749 break; 4750 case KVM_CAP_X86_SMM: 4751 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4752 break; 4753 4754 /* SMBASE is usually relocated above 1M on modern chipsets, 4755 * and SMM handlers might indeed rely on 4G segment limits, 4756 * so do not report SMM to be available if real mode is 4757 * emulated via vm86 mode. Still, do not go to great lengths 4758 * to avoid userspace's usage of the feature, because it is a 4759 * fringe case that is not enabled except via specific settings 4760 * of the module parameters. 4761 */ 4762 r = kvm_x86_call(has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4763 break; 4764 case KVM_CAP_NR_VCPUS: 4765 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4766 break; 4767 case KVM_CAP_MAX_VCPUS: 4768 r = KVM_MAX_VCPUS; 4769 if (kvm) 4770 r = kvm->max_vcpus; 4771 break; 4772 case KVM_CAP_MAX_VCPU_ID: 4773 r = KVM_MAX_VCPU_IDS; 4774 break; 4775 case KVM_CAP_PV_MMU: /* obsolete */ 4776 r = 0; 4777 break; 4778 case KVM_CAP_MCE: 4779 r = KVM_MAX_MCE_BANKS; 4780 break; 4781 case KVM_CAP_XCRS: 4782 r = boot_cpu_has(X86_FEATURE_XSAVE); 4783 break; 4784 case KVM_CAP_TSC_CONTROL: 4785 case KVM_CAP_VM_TSC_CONTROL: 4786 r = kvm_caps.has_tsc_control; 4787 break; 4788 case KVM_CAP_X2APIC_API: 4789 r = KVM_X2APIC_API_VALID_FLAGS; 4790 break; 4791 case KVM_CAP_NESTED_STATE: 4792 r = kvm_x86_ops.nested_ops->get_state ? 4793 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4794 break; 4795 #ifdef CONFIG_KVM_HYPERV 4796 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4797 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4798 break; 4799 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4800 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4801 break; 4802 #endif 4803 case KVM_CAP_SMALLER_MAXPHYADDR: 4804 r = (int) allow_smaller_maxphyaddr; 4805 break; 4806 case KVM_CAP_STEAL_TIME: 4807 r = sched_info_on(); 4808 break; 4809 case KVM_CAP_X86_BUS_LOCK_EXIT: 4810 if (kvm_caps.has_bus_lock_exit) 4811 r = KVM_BUS_LOCK_DETECTION_OFF | 4812 KVM_BUS_LOCK_DETECTION_EXIT; 4813 else 4814 r = 0; 4815 break; 4816 case KVM_CAP_XSAVE2: { 4817 r = xstate_required_size(kvm_get_filtered_xcr0(), false); 4818 if (r < sizeof(struct kvm_xsave)) 4819 r = sizeof(struct kvm_xsave); 4820 break; 4821 } 4822 case KVM_CAP_PMU_CAPABILITY: 4823 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4824 break; 4825 case KVM_CAP_DISABLE_QUIRKS2: 4826 r = kvm_caps.supported_quirks; 4827 break; 4828 case KVM_CAP_X86_NOTIFY_VMEXIT: 4829 r = kvm_caps.has_notify_vmexit; 4830 break; 4831 case KVM_CAP_VM_TYPES: 4832 r = kvm_caps.supported_vm_types; 4833 break; 4834 case KVM_CAP_READONLY_MEM: 4835 r = kvm ? kvm_arch_has_readonly_mem(kvm) : 1; 4836 break; 4837 default: 4838 break; 4839 } 4840 return r; 4841 } 4842 4843 static int __kvm_x86_dev_get_attr(struct kvm_device_attr *attr, u64 *val) 4844 { 4845 if (attr->group) { 4846 if (kvm_x86_ops.dev_get_attr) 4847 return kvm_x86_call(dev_get_attr)(attr->group, attr->attr, val); 4848 return -ENXIO; 4849 } 4850 4851 switch (attr->attr) { 4852 case KVM_X86_XCOMP_GUEST_SUPP: 4853 *val = kvm_caps.supported_xcr0; 4854 return 0; 4855 default: 4856 return -ENXIO; 4857 } 4858 } 4859 4860 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4861 { 4862 u64 __user *uaddr = u64_to_user_ptr(attr->addr); 4863 int r; 4864 u64 val; 4865 4866 r = __kvm_x86_dev_get_attr(attr, &val); 4867 if (r < 0) 4868 return r; 4869 4870 if (put_user(val, uaddr)) 4871 return -EFAULT; 4872 4873 return 0; 4874 } 4875 4876 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4877 { 4878 u64 val; 4879 4880 return __kvm_x86_dev_get_attr(attr, &val); 4881 } 4882 4883 long kvm_arch_dev_ioctl(struct file *filp, 4884 unsigned int ioctl, unsigned long arg) 4885 { 4886 void __user *argp = (void __user *)arg; 4887 long r; 4888 4889 switch (ioctl) { 4890 case KVM_GET_MSR_INDEX_LIST: { 4891 struct kvm_msr_list __user *user_msr_list = argp; 4892 struct kvm_msr_list msr_list; 4893 unsigned n; 4894 4895 r = -EFAULT; 4896 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4897 goto out; 4898 n = msr_list.nmsrs; 4899 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4900 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4901 goto out; 4902 r = -E2BIG; 4903 if (n < msr_list.nmsrs) 4904 goto out; 4905 r = -EFAULT; 4906 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4907 num_msrs_to_save * sizeof(u32))) 4908 goto out; 4909 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4910 &emulated_msrs, 4911 num_emulated_msrs * sizeof(u32))) 4912 goto out; 4913 r = 0; 4914 break; 4915 } 4916 case KVM_GET_SUPPORTED_CPUID: 4917 case KVM_GET_EMULATED_CPUID: { 4918 struct kvm_cpuid2 __user *cpuid_arg = argp; 4919 struct kvm_cpuid2 cpuid; 4920 4921 r = -EFAULT; 4922 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4923 goto out; 4924 4925 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4926 ioctl); 4927 if (r) 4928 goto out; 4929 4930 r = -EFAULT; 4931 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4932 goto out; 4933 r = 0; 4934 break; 4935 } 4936 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4937 r = -EFAULT; 4938 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4939 sizeof(kvm_caps.supported_mce_cap))) 4940 goto out; 4941 r = 0; 4942 break; 4943 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4944 struct kvm_msr_list __user *user_msr_list = argp; 4945 struct kvm_msr_list msr_list; 4946 unsigned int n; 4947 4948 r = -EFAULT; 4949 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4950 goto out; 4951 n = msr_list.nmsrs; 4952 msr_list.nmsrs = num_msr_based_features; 4953 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4954 goto out; 4955 r = -E2BIG; 4956 if (n < msr_list.nmsrs) 4957 goto out; 4958 r = -EFAULT; 4959 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4960 num_msr_based_features * sizeof(u32))) 4961 goto out; 4962 r = 0; 4963 break; 4964 } 4965 case KVM_GET_MSRS: 4966 r = msr_io(NULL, argp, do_get_feature_msr, 1); 4967 break; 4968 #ifdef CONFIG_KVM_HYPERV 4969 case KVM_GET_SUPPORTED_HV_CPUID: 4970 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4971 break; 4972 #endif 4973 case KVM_GET_DEVICE_ATTR: { 4974 struct kvm_device_attr attr; 4975 r = -EFAULT; 4976 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4977 break; 4978 r = kvm_x86_dev_get_attr(&attr); 4979 break; 4980 } 4981 case KVM_HAS_DEVICE_ATTR: { 4982 struct kvm_device_attr attr; 4983 r = -EFAULT; 4984 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4985 break; 4986 r = kvm_x86_dev_has_attr(&attr); 4987 break; 4988 } 4989 default: 4990 r = -EINVAL; 4991 break; 4992 } 4993 out: 4994 return r; 4995 } 4996 4997 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4998 { 4999 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 5000 } 5001 5002 static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu); 5003 5004 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 5005 { 5006 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 5007 5008 vcpu->arch.l1tf_flush_l1d = true; 5009 5010 if (vcpu->scheduled_out && pmu->version && pmu->event_count) { 5011 pmu->need_cleanup = true; 5012 kvm_make_request(KVM_REQ_PMU, vcpu); 5013 } 5014 5015 /* Address WBINVD may be executed by guest */ 5016 if (need_emulate_wbinvd(vcpu)) { 5017 if (kvm_x86_call(has_wbinvd_exit)()) 5018 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 5019 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 5020 wbinvd_on_cpu(vcpu->cpu); 5021 } 5022 5023 kvm_x86_call(vcpu_load)(vcpu, cpu); 5024 5025 if (vcpu != per_cpu(last_vcpu, cpu)) { 5026 /* 5027 * Flush the branch predictor when switching vCPUs on the same 5028 * physical CPU, as each vCPU needs its own branch prediction 5029 * domain. No IBPB is needed when switching between L1 and L2 5030 * on the same vCPU unless IBRS is advertised to the vCPU; that 5031 * is handled on the nested VM-Exit path. 5032 */ 5033 if (static_branch_likely(&switch_vcpu_ibpb)) 5034 indirect_branch_prediction_barrier(); 5035 per_cpu(last_vcpu, cpu) = vcpu; 5036 } 5037 5038 /* Save host pkru register if supported */ 5039 vcpu->arch.host_pkru = read_pkru(); 5040 5041 /* Apply any externally detected TSC adjustments (due to suspend) */ 5042 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 5043 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 5044 vcpu->arch.tsc_offset_adjustment = 0; 5045 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5046 } 5047 5048 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 5049 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 5050 rdtsc() - vcpu->arch.last_host_tsc; 5051 if (tsc_delta < 0) 5052 mark_tsc_unstable("KVM discovered backwards TSC"); 5053 5054 if (kvm_check_tsc_unstable()) { 5055 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 5056 vcpu->arch.last_guest_tsc); 5057 kvm_vcpu_write_tsc_offset(vcpu, offset); 5058 if (!vcpu->arch.guest_tsc_protected) 5059 vcpu->arch.tsc_catchup = 1; 5060 } 5061 5062 if (kvm_lapic_hv_timer_in_use(vcpu)) 5063 kvm_lapic_restart_hv_timer(vcpu); 5064 5065 /* 5066 * On a host with synchronized TSC, there is no need to update 5067 * kvmclock on vcpu->cpu migration 5068 */ 5069 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 5070 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 5071 if (vcpu->cpu != cpu) 5072 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 5073 vcpu->cpu = cpu; 5074 } 5075 5076 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 5077 } 5078 5079 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 5080 { 5081 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 5082 struct kvm_steal_time __user *st; 5083 struct kvm_memslots *slots; 5084 static const u8 preempted = KVM_VCPU_PREEMPTED; 5085 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 5086 5087 /* 5088 * The vCPU can be marked preempted if and only if the VM-Exit was on 5089 * an instruction boundary and will not trigger guest emulation of any 5090 * kind (see vcpu_run). Vendor specific code controls (conservatively) 5091 * when this is true, for example allowing the vCPU to be marked 5092 * preempted if and only if the VM-Exit was due to a host interrupt. 5093 */ 5094 if (!vcpu->arch.at_instruction_boundary) { 5095 vcpu->stat.preemption_other++; 5096 return; 5097 } 5098 5099 vcpu->stat.preemption_reported++; 5100 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 5101 return; 5102 5103 if (vcpu->arch.st.preempted) 5104 return; 5105 5106 /* This happens on process exit */ 5107 if (unlikely(current->mm != vcpu->kvm->mm)) 5108 return; 5109 5110 slots = kvm_memslots(vcpu->kvm); 5111 5112 if (unlikely(slots->generation != ghc->generation || 5113 gpa != ghc->gpa || 5114 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 5115 return; 5116 5117 st = (struct kvm_steal_time __user *)ghc->hva; 5118 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 5119 5120 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 5121 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 5122 5123 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 5124 } 5125 5126 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 5127 { 5128 int idx; 5129 5130 if (vcpu->preempted) { 5131 /* 5132 * Assume protected guests are in-kernel. Inefficient yielding 5133 * due to false positives is preferable to never yielding due 5134 * to false negatives. 5135 */ 5136 vcpu->arch.preempted_in_kernel = vcpu->arch.guest_state_protected || 5137 !kvm_x86_call(get_cpl_no_cache)(vcpu); 5138 5139 /* 5140 * Take the srcu lock as memslots will be accessed to check the gfn 5141 * cache generation against the memslots generation. 5142 */ 5143 idx = srcu_read_lock(&vcpu->kvm->srcu); 5144 if (kvm_xen_msr_enabled(vcpu->kvm)) 5145 kvm_xen_runstate_set_preempted(vcpu); 5146 else 5147 kvm_steal_time_set_preempted(vcpu); 5148 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5149 } 5150 5151 kvm_x86_call(vcpu_put)(vcpu); 5152 vcpu->arch.last_host_tsc = rdtsc(); 5153 } 5154 5155 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 5156 struct kvm_lapic_state *s) 5157 { 5158 if (vcpu->arch.apic->guest_apic_protected) 5159 return -EINVAL; 5160 5161 kvm_x86_call(sync_pir_to_irr)(vcpu); 5162 5163 return kvm_apic_get_state(vcpu, s); 5164 } 5165 5166 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 5167 struct kvm_lapic_state *s) 5168 { 5169 int r; 5170 5171 if (vcpu->arch.apic->guest_apic_protected) 5172 return -EINVAL; 5173 5174 r = kvm_apic_set_state(vcpu, s); 5175 if (r) 5176 return r; 5177 update_cr8_intercept(vcpu); 5178 5179 return 0; 5180 } 5181 5182 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 5183 { 5184 /* 5185 * We can accept userspace's request for interrupt injection 5186 * as long as we have a place to store the interrupt number. 5187 * The actual injection will happen when the CPU is able to 5188 * deliver the interrupt. 5189 */ 5190 if (kvm_cpu_has_extint(vcpu)) 5191 return false; 5192 5193 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 5194 return (!lapic_in_kernel(vcpu) || 5195 kvm_apic_accept_pic_intr(vcpu)); 5196 } 5197 5198 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 5199 { 5200 /* 5201 * Do not cause an interrupt window exit if an exception 5202 * is pending or an event needs reinjection; userspace 5203 * might want to inject the interrupt manually using KVM_SET_REGS 5204 * or KVM_SET_SREGS. For that to work, we must be at an 5205 * instruction boundary and with no events half-injected. 5206 */ 5207 return (kvm_arch_interrupt_allowed(vcpu) && 5208 kvm_cpu_accept_dm_intr(vcpu) && 5209 !kvm_event_needs_reinjection(vcpu) && 5210 !kvm_is_exception_pending(vcpu)); 5211 } 5212 5213 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 5214 struct kvm_interrupt *irq) 5215 { 5216 if (irq->irq >= KVM_NR_INTERRUPTS) 5217 return -EINVAL; 5218 5219 if (!irqchip_in_kernel(vcpu->kvm)) { 5220 kvm_queue_interrupt(vcpu, irq->irq, false); 5221 kvm_make_request(KVM_REQ_EVENT, vcpu); 5222 return 0; 5223 } 5224 5225 /* 5226 * With in-kernel LAPIC, we only use this to inject EXTINT, so 5227 * fail for in-kernel 8259. 5228 */ 5229 if (pic_in_kernel(vcpu->kvm)) 5230 return -ENXIO; 5231 5232 if (vcpu->arch.pending_external_vector != -1) 5233 return -EEXIST; 5234 5235 vcpu->arch.pending_external_vector = irq->irq; 5236 kvm_make_request(KVM_REQ_EVENT, vcpu); 5237 return 0; 5238 } 5239 5240 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 5241 { 5242 kvm_inject_nmi(vcpu); 5243 5244 return 0; 5245 } 5246 5247 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 5248 struct kvm_tpr_access_ctl *tac) 5249 { 5250 if (tac->flags) 5251 return -EINVAL; 5252 vcpu->arch.tpr_access_reporting = !!tac->enabled; 5253 return 0; 5254 } 5255 5256 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 5257 u64 mcg_cap) 5258 { 5259 int r; 5260 unsigned bank_num = mcg_cap & 0xff, bank; 5261 5262 r = -EINVAL; 5263 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 5264 goto out; 5265 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 5266 goto out; 5267 r = 0; 5268 vcpu->arch.mcg_cap = mcg_cap; 5269 /* Init IA32_MCG_CTL to all 1s */ 5270 if (mcg_cap & MCG_CTL_P) 5271 vcpu->arch.mcg_ctl = ~(u64)0; 5272 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 5273 for (bank = 0; bank < bank_num; bank++) { 5274 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 5275 if (mcg_cap & MCG_CMCI_P) 5276 vcpu->arch.mci_ctl2_banks[bank] = 0; 5277 } 5278 5279 kvm_apic_after_set_mcg_cap(vcpu); 5280 5281 kvm_x86_call(setup_mce)(vcpu); 5282 out: 5283 return r; 5284 } 5285 5286 /* 5287 * Validate this is an UCNA (uncorrectable no action) error by checking the 5288 * MCG_STATUS and MCi_STATUS registers: 5289 * - none of the bits for Machine Check Exceptions are set 5290 * - both the VAL (valid) and UC (uncorrectable) bits are set 5291 * MCI_STATUS_PCC - Processor Context Corrupted 5292 * MCI_STATUS_S - Signaled as a Machine Check Exception 5293 * MCI_STATUS_AR - Software recoverable Action Required 5294 */ 5295 static bool is_ucna(struct kvm_x86_mce *mce) 5296 { 5297 return !mce->mcg_status && 5298 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 5299 (mce->status & MCI_STATUS_VAL) && 5300 (mce->status & MCI_STATUS_UC); 5301 } 5302 5303 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 5304 { 5305 u64 mcg_cap = vcpu->arch.mcg_cap; 5306 5307 banks[1] = mce->status; 5308 banks[2] = mce->addr; 5309 banks[3] = mce->misc; 5310 vcpu->arch.mcg_status = mce->mcg_status; 5311 5312 if (!(mcg_cap & MCG_CMCI_P) || 5313 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 5314 return 0; 5315 5316 if (lapic_in_kernel(vcpu)) 5317 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 5318 5319 return 0; 5320 } 5321 5322 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 5323 struct kvm_x86_mce *mce) 5324 { 5325 u64 mcg_cap = vcpu->arch.mcg_cap; 5326 unsigned bank_num = mcg_cap & 0xff; 5327 u64 *banks = vcpu->arch.mce_banks; 5328 5329 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 5330 return -EINVAL; 5331 5332 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5333 5334 if (is_ucna(mce)) 5335 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5336 5337 /* 5338 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5339 * reporting is disabled 5340 */ 5341 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5342 vcpu->arch.mcg_ctl != ~(u64)0) 5343 return 0; 5344 /* 5345 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5346 * reporting is disabled for the bank 5347 */ 5348 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5349 return 0; 5350 if (mce->status & MCI_STATUS_UC) { 5351 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5352 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) { 5353 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5354 return 0; 5355 } 5356 if (banks[1] & MCI_STATUS_VAL) 5357 mce->status |= MCI_STATUS_OVER; 5358 banks[2] = mce->addr; 5359 banks[3] = mce->misc; 5360 vcpu->arch.mcg_status = mce->mcg_status; 5361 banks[1] = mce->status; 5362 kvm_queue_exception(vcpu, MC_VECTOR); 5363 } else if (!(banks[1] & MCI_STATUS_VAL) 5364 || !(banks[1] & MCI_STATUS_UC)) { 5365 if (banks[1] & MCI_STATUS_VAL) 5366 mce->status |= MCI_STATUS_OVER; 5367 banks[2] = mce->addr; 5368 banks[3] = mce->misc; 5369 banks[1] = mce->status; 5370 } else 5371 banks[1] |= MCI_STATUS_OVER; 5372 return 0; 5373 } 5374 5375 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5376 struct kvm_vcpu_events *events) 5377 { 5378 struct kvm_queued_exception *ex; 5379 5380 process_nmi(vcpu); 5381 5382 #ifdef CONFIG_KVM_SMM 5383 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5384 process_smi(vcpu); 5385 #endif 5386 5387 /* 5388 * KVM's ABI only allows for one exception to be migrated. Luckily, 5389 * the only time there can be two queued exceptions is if there's a 5390 * non-exiting _injected_ exception, and a pending exiting exception. 5391 * In that case, ignore the VM-Exiting exception as it's an extension 5392 * of the injected exception. 5393 */ 5394 if (vcpu->arch.exception_vmexit.pending && 5395 !vcpu->arch.exception.pending && 5396 !vcpu->arch.exception.injected) 5397 ex = &vcpu->arch.exception_vmexit; 5398 else 5399 ex = &vcpu->arch.exception; 5400 5401 /* 5402 * In guest mode, payload delivery should be deferred if the exception 5403 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5404 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5405 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5406 * propagate the payload and so it cannot be safely deferred. Deliver 5407 * the payload if the capability hasn't been requested. 5408 */ 5409 if (!vcpu->kvm->arch.exception_payload_enabled && 5410 ex->pending && ex->has_payload) 5411 kvm_deliver_exception_payload(vcpu, ex); 5412 5413 memset(events, 0, sizeof(*events)); 5414 5415 /* 5416 * The API doesn't provide the instruction length for software 5417 * exceptions, so don't report them. As long as the guest RIP 5418 * isn't advanced, we should expect to encounter the exception 5419 * again. 5420 */ 5421 if (!kvm_exception_is_soft(ex->vector)) { 5422 events->exception.injected = ex->injected; 5423 events->exception.pending = ex->pending; 5424 /* 5425 * For ABI compatibility, deliberately conflate 5426 * pending and injected exceptions when 5427 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5428 */ 5429 if (!vcpu->kvm->arch.exception_payload_enabled) 5430 events->exception.injected |= ex->pending; 5431 } 5432 events->exception.nr = ex->vector; 5433 events->exception.has_error_code = ex->has_error_code; 5434 events->exception.error_code = ex->error_code; 5435 events->exception_has_payload = ex->has_payload; 5436 events->exception_payload = ex->payload; 5437 5438 events->interrupt.injected = 5439 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5440 events->interrupt.nr = vcpu->arch.interrupt.nr; 5441 events->interrupt.shadow = kvm_x86_call(get_interrupt_shadow)(vcpu); 5442 5443 events->nmi.injected = vcpu->arch.nmi_injected; 5444 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu); 5445 events->nmi.masked = kvm_x86_call(get_nmi_mask)(vcpu); 5446 5447 /* events->sipi_vector is never valid when reporting to user space */ 5448 5449 #ifdef CONFIG_KVM_SMM 5450 events->smi.smm = is_smm(vcpu); 5451 events->smi.pending = vcpu->arch.smi_pending; 5452 events->smi.smm_inside_nmi = 5453 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5454 #endif 5455 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5456 5457 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5458 | KVM_VCPUEVENT_VALID_SHADOW 5459 | KVM_VCPUEVENT_VALID_SMM); 5460 if (vcpu->kvm->arch.exception_payload_enabled) 5461 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5462 if (vcpu->kvm->arch.triple_fault_event) { 5463 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5464 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5465 } 5466 } 5467 5468 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5469 struct kvm_vcpu_events *events) 5470 { 5471 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5472 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5473 | KVM_VCPUEVENT_VALID_SHADOW 5474 | KVM_VCPUEVENT_VALID_SMM 5475 | KVM_VCPUEVENT_VALID_PAYLOAD 5476 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5477 return -EINVAL; 5478 5479 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5480 if (!vcpu->kvm->arch.exception_payload_enabled) 5481 return -EINVAL; 5482 if (events->exception.pending) 5483 events->exception.injected = 0; 5484 else 5485 events->exception_has_payload = 0; 5486 } else { 5487 events->exception.pending = 0; 5488 events->exception_has_payload = 0; 5489 } 5490 5491 if ((events->exception.injected || events->exception.pending) && 5492 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5493 return -EINVAL; 5494 5495 process_nmi(vcpu); 5496 5497 /* 5498 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5499 * morph the exception to a VM-Exit if appropriate. Do this only for 5500 * pending exceptions, already-injected exceptions are not subject to 5501 * intercpetion. Note, userspace that conflates pending and injected 5502 * is hosed, and will incorrectly convert an injected exception into a 5503 * pending exception, which in turn may cause a spurious VM-Exit. 5504 */ 5505 vcpu->arch.exception_from_userspace = events->exception.pending; 5506 5507 vcpu->arch.exception_vmexit.pending = false; 5508 5509 vcpu->arch.exception.injected = events->exception.injected; 5510 vcpu->arch.exception.pending = events->exception.pending; 5511 vcpu->arch.exception.vector = events->exception.nr; 5512 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5513 vcpu->arch.exception.error_code = events->exception.error_code; 5514 vcpu->arch.exception.has_payload = events->exception_has_payload; 5515 vcpu->arch.exception.payload = events->exception_payload; 5516 5517 vcpu->arch.interrupt.injected = events->interrupt.injected; 5518 vcpu->arch.interrupt.nr = events->interrupt.nr; 5519 vcpu->arch.interrupt.soft = events->interrupt.soft; 5520 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5521 kvm_x86_call(set_interrupt_shadow)(vcpu, 5522 events->interrupt.shadow); 5523 5524 vcpu->arch.nmi_injected = events->nmi.injected; 5525 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) { 5526 vcpu->arch.nmi_pending = 0; 5527 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending); 5528 if (events->nmi.pending) 5529 kvm_make_request(KVM_REQ_NMI, vcpu); 5530 } 5531 kvm_x86_call(set_nmi_mask)(vcpu, events->nmi.masked); 5532 5533 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5534 lapic_in_kernel(vcpu)) 5535 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5536 5537 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5538 #ifdef CONFIG_KVM_SMM 5539 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5540 kvm_leave_nested(vcpu); 5541 kvm_smm_changed(vcpu, events->smi.smm); 5542 } 5543 5544 vcpu->arch.smi_pending = events->smi.pending; 5545 5546 if (events->smi.smm) { 5547 if (events->smi.smm_inside_nmi) 5548 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5549 else 5550 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5551 } 5552 5553 #else 5554 if (events->smi.smm || events->smi.pending || 5555 events->smi.smm_inside_nmi) 5556 return -EINVAL; 5557 #endif 5558 5559 if (lapic_in_kernel(vcpu)) { 5560 if (events->smi.latched_init) 5561 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5562 else 5563 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5564 } 5565 } 5566 5567 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5568 if (!vcpu->kvm->arch.triple_fault_event) 5569 return -EINVAL; 5570 if (events->triple_fault.pending) 5571 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5572 else 5573 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5574 } 5575 5576 kvm_make_request(KVM_REQ_EVENT, vcpu); 5577 5578 return 0; 5579 } 5580 5581 static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5582 struct kvm_debugregs *dbgregs) 5583 { 5584 unsigned int i; 5585 5586 if (vcpu->kvm->arch.has_protected_state && 5587 vcpu->arch.guest_state_protected) 5588 return -EINVAL; 5589 5590 memset(dbgregs, 0, sizeof(*dbgregs)); 5591 5592 BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db)); 5593 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++) 5594 dbgregs->db[i] = vcpu->arch.db[i]; 5595 5596 dbgregs->dr6 = vcpu->arch.dr6; 5597 dbgregs->dr7 = vcpu->arch.dr7; 5598 return 0; 5599 } 5600 5601 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5602 struct kvm_debugregs *dbgregs) 5603 { 5604 unsigned int i; 5605 5606 if (vcpu->kvm->arch.has_protected_state && 5607 vcpu->arch.guest_state_protected) 5608 return -EINVAL; 5609 5610 if (dbgregs->flags) 5611 return -EINVAL; 5612 5613 if (!kvm_dr6_valid(dbgregs->dr6)) 5614 return -EINVAL; 5615 if (!kvm_dr7_valid(dbgregs->dr7)) 5616 return -EINVAL; 5617 5618 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++) 5619 vcpu->arch.db[i] = dbgregs->db[i]; 5620 5621 kvm_update_dr0123(vcpu); 5622 vcpu->arch.dr6 = dbgregs->dr6; 5623 vcpu->arch.dr7 = dbgregs->dr7; 5624 kvm_update_dr7(vcpu); 5625 5626 return 0; 5627 } 5628 5629 5630 static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5631 u8 *state, unsigned int size) 5632 { 5633 /* 5634 * Only copy state for features that are enabled for the guest. The 5635 * state itself isn't problematic, but setting bits in the header for 5636 * features that are supported in *this* host but not exposed to the 5637 * guest can result in KVM_SET_XSAVE failing when live migrating to a 5638 * compatible host without the features that are NOT exposed to the 5639 * guest. 5640 * 5641 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if 5642 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't 5643 * supported by the host. 5644 */ 5645 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 | 5646 XFEATURE_MASK_FPSSE; 5647 5648 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5649 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 5650 5651 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size, 5652 supported_xcr0, vcpu->arch.pkru); 5653 return 0; 5654 } 5655 5656 static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5657 struct kvm_xsave *guest_xsave) 5658 { 5659 return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region, 5660 sizeof(guest_xsave->region)); 5661 } 5662 5663 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5664 struct kvm_xsave *guest_xsave) 5665 { 5666 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5667 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 5668 5669 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5670 guest_xsave->region, 5671 kvm_caps.supported_xcr0, 5672 &vcpu->arch.pkru); 5673 } 5674 5675 static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5676 struct kvm_xcrs *guest_xcrs) 5677 { 5678 if (vcpu->kvm->arch.has_protected_state && 5679 vcpu->arch.guest_state_protected) 5680 return -EINVAL; 5681 5682 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5683 guest_xcrs->nr_xcrs = 0; 5684 return 0; 5685 } 5686 5687 guest_xcrs->nr_xcrs = 1; 5688 guest_xcrs->flags = 0; 5689 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5690 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5691 return 0; 5692 } 5693 5694 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5695 struct kvm_xcrs *guest_xcrs) 5696 { 5697 int i, r = 0; 5698 5699 if (vcpu->kvm->arch.has_protected_state && 5700 vcpu->arch.guest_state_protected) 5701 return -EINVAL; 5702 5703 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5704 return -EINVAL; 5705 5706 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5707 return -EINVAL; 5708 5709 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5710 /* Only support XCR0 currently */ 5711 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5712 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5713 guest_xcrs->xcrs[i].value); 5714 break; 5715 } 5716 if (r) 5717 r = -EINVAL; 5718 return r; 5719 } 5720 5721 /* 5722 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5723 * stopped by the hypervisor. This function will be called from the host only. 5724 * EINVAL is returned when the host attempts to set the flag for a guest that 5725 * does not support pv clocks. 5726 */ 5727 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5728 { 5729 if (!vcpu->arch.pv_time.active) 5730 return -EINVAL; 5731 vcpu->arch.pvclock_set_guest_stopped_request = true; 5732 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5733 return 0; 5734 } 5735 5736 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5737 struct kvm_device_attr *attr) 5738 { 5739 int r; 5740 5741 switch (attr->attr) { 5742 case KVM_VCPU_TSC_OFFSET: 5743 r = 0; 5744 break; 5745 default: 5746 r = -ENXIO; 5747 } 5748 5749 return r; 5750 } 5751 5752 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5753 struct kvm_device_attr *attr) 5754 { 5755 u64 __user *uaddr = u64_to_user_ptr(attr->addr); 5756 int r; 5757 5758 switch (attr->attr) { 5759 case KVM_VCPU_TSC_OFFSET: 5760 r = -EFAULT; 5761 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5762 break; 5763 r = 0; 5764 break; 5765 default: 5766 r = -ENXIO; 5767 } 5768 5769 return r; 5770 } 5771 5772 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5773 struct kvm_device_attr *attr) 5774 { 5775 u64 __user *uaddr = u64_to_user_ptr(attr->addr); 5776 struct kvm *kvm = vcpu->kvm; 5777 int r; 5778 5779 switch (attr->attr) { 5780 case KVM_VCPU_TSC_OFFSET: { 5781 u64 offset, tsc, ns; 5782 unsigned long flags; 5783 bool matched; 5784 5785 r = -EFAULT; 5786 if (get_user(offset, uaddr)) 5787 break; 5788 5789 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5790 5791 matched = (vcpu->arch.virtual_tsc_khz && 5792 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5793 kvm->arch.last_tsc_offset == offset); 5794 5795 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5796 ns = get_kvmclock_base_ns(); 5797 5798 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched, true); 5799 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5800 5801 r = 0; 5802 break; 5803 } 5804 default: 5805 r = -ENXIO; 5806 } 5807 5808 return r; 5809 } 5810 5811 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5812 unsigned int ioctl, 5813 void __user *argp) 5814 { 5815 struct kvm_device_attr attr; 5816 int r; 5817 5818 if (copy_from_user(&attr, argp, sizeof(attr))) 5819 return -EFAULT; 5820 5821 if (attr.group != KVM_VCPU_TSC_CTRL) 5822 return -ENXIO; 5823 5824 switch (ioctl) { 5825 case KVM_HAS_DEVICE_ATTR: 5826 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5827 break; 5828 case KVM_GET_DEVICE_ATTR: 5829 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5830 break; 5831 case KVM_SET_DEVICE_ATTR: 5832 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5833 break; 5834 } 5835 5836 return r; 5837 } 5838 5839 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5840 struct kvm_enable_cap *cap) 5841 { 5842 if (cap->flags) 5843 return -EINVAL; 5844 5845 switch (cap->cap) { 5846 #ifdef CONFIG_KVM_HYPERV 5847 case KVM_CAP_HYPERV_SYNIC2: 5848 if (cap->args[0]) 5849 return -EINVAL; 5850 fallthrough; 5851 5852 case KVM_CAP_HYPERV_SYNIC: 5853 if (!irqchip_in_kernel(vcpu->kvm)) 5854 return -EINVAL; 5855 return kvm_hv_activate_synic(vcpu, cap->cap == 5856 KVM_CAP_HYPERV_SYNIC2); 5857 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5858 { 5859 int r; 5860 uint16_t vmcs_version; 5861 void __user *user_ptr; 5862 5863 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5864 return -ENOTTY; 5865 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5866 if (!r) { 5867 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5868 if (copy_to_user(user_ptr, &vmcs_version, 5869 sizeof(vmcs_version))) 5870 r = -EFAULT; 5871 } 5872 return r; 5873 } 5874 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5875 if (!kvm_x86_ops.enable_l2_tlb_flush) 5876 return -ENOTTY; 5877 5878 return kvm_x86_call(enable_l2_tlb_flush)(vcpu); 5879 5880 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5881 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5882 #endif 5883 5884 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5885 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5886 return 0; 5887 default: 5888 return -EINVAL; 5889 } 5890 } 5891 5892 long kvm_arch_vcpu_ioctl(struct file *filp, 5893 unsigned int ioctl, unsigned long arg) 5894 { 5895 struct kvm_vcpu *vcpu = filp->private_data; 5896 void __user *argp = (void __user *)arg; 5897 int r; 5898 union { 5899 struct kvm_sregs2 *sregs2; 5900 struct kvm_lapic_state *lapic; 5901 struct kvm_xsave *xsave; 5902 struct kvm_xcrs *xcrs; 5903 void *buffer; 5904 } u; 5905 5906 vcpu_load(vcpu); 5907 5908 u.buffer = NULL; 5909 switch (ioctl) { 5910 case KVM_GET_LAPIC: { 5911 r = -EINVAL; 5912 if (!lapic_in_kernel(vcpu)) 5913 goto out; 5914 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); 5915 5916 r = -ENOMEM; 5917 if (!u.lapic) 5918 goto out; 5919 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5920 if (r) 5921 goto out; 5922 r = -EFAULT; 5923 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5924 goto out; 5925 r = 0; 5926 break; 5927 } 5928 case KVM_SET_LAPIC: { 5929 r = -EINVAL; 5930 if (!lapic_in_kernel(vcpu)) 5931 goto out; 5932 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5933 if (IS_ERR(u.lapic)) { 5934 r = PTR_ERR(u.lapic); 5935 goto out_nofree; 5936 } 5937 5938 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5939 break; 5940 } 5941 case KVM_INTERRUPT: { 5942 struct kvm_interrupt irq; 5943 5944 r = -EFAULT; 5945 if (copy_from_user(&irq, argp, sizeof(irq))) 5946 goto out; 5947 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5948 break; 5949 } 5950 case KVM_NMI: { 5951 r = kvm_vcpu_ioctl_nmi(vcpu); 5952 break; 5953 } 5954 case KVM_SMI: { 5955 r = kvm_inject_smi(vcpu); 5956 break; 5957 } 5958 case KVM_SET_CPUID: { 5959 struct kvm_cpuid __user *cpuid_arg = argp; 5960 struct kvm_cpuid cpuid; 5961 5962 r = -EFAULT; 5963 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5964 goto out; 5965 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5966 break; 5967 } 5968 case KVM_SET_CPUID2: { 5969 struct kvm_cpuid2 __user *cpuid_arg = argp; 5970 struct kvm_cpuid2 cpuid; 5971 5972 r = -EFAULT; 5973 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5974 goto out; 5975 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5976 cpuid_arg->entries); 5977 break; 5978 } 5979 case KVM_GET_CPUID2: { 5980 struct kvm_cpuid2 __user *cpuid_arg = argp; 5981 struct kvm_cpuid2 cpuid; 5982 5983 r = -EFAULT; 5984 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5985 goto out; 5986 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5987 cpuid_arg->entries); 5988 if (r) 5989 goto out; 5990 r = -EFAULT; 5991 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5992 goto out; 5993 r = 0; 5994 break; 5995 } 5996 case KVM_GET_MSRS: { 5997 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5998 r = msr_io(vcpu, argp, do_get_msr, 1); 5999 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6000 break; 6001 } 6002 case KVM_SET_MSRS: { 6003 int idx = srcu_read_lock(&vcpu->kvm->srcu); 6004 r = msr_io(vcpu, argp, do_set_msr, 0); 6005 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6006 break; 6007 } 6008 case KVM_TPR_ACCESS_REPORTING: { 6009 struct kvm_tpr_access_ctl tac; 6010 6011 r = -EFAULT; 6012 if (copy_from_user(&tac, argp, sizeof(tac))) 6013 goto out; 6014 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 6015 if (r) 6016 goto out; 6017 r = -EFAULT; 6018 if (copy_to_user(argp, &tac, sizeof(tac))) 6019 goto out; 6020 r = 0; 6021 break; 6022 }; 6023 case KVM_SET_VAPIC_ADDR: { 6024 struct kvm_vapic_addr va; 6025 int idx; 6026 6027 r = -EINVAL; 6028 if (!lapic_in_kernel(vcpu)) 6029 goto out; 6030 r = -EFAULT; 6031 if (copy_from_user(&va, argp, sizeof(va))) 6032 goto out; 6033 idx = srcu_read_lock(&vcpu->kvm->srcu); 6034 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 6035 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6036 break; 6037 } 6038 case KVM_X86_SETUP_MCE: { 6039 u64 mcg_cap; 6040 6041 r = -EFAULT; 6042 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 6043 goto out; 6044 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 6045 break; 6046 } 6047 case KVM_X86_SET_MCE: { 6048 struct kvm_x86_mce mce; 6049 6050 r = -EFAULT; 6051 if (copy_from_user(&mce, argp, sizeof(mce))) 6052 goto out; 6053 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 6054 break; 6055 } 6056 case KVM_GET_VCPU_EVENTS: { 6057 struct kvm_vcpu_events events; 6058 6059 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 6060 6061 r = -EFAULT; 6062 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 6063 break; 6064 r = 0; 6065 break; 6066 } 6067 case KVM_SET_VCPU_EVENTS: { 6068 struct kvm_vcpu_events events; 6069 6070 r = -EFAULT; 6071 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 6072 break; 6073 6074 kvm_vcpu_srcu_read_lock(vcpu); 6075 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 6076 kvm_vcpu_srcu_read_unlock(vcpu); 6077 break; 6078 } 6079 case KVM_GET_DEBUGREGS: { 6080 struct kvm_debugregs dbgregs; 6081 6082 r = kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 6083 if (r < 0) 6084 break; 6085 6086 r = -EFAULT; 6087 if (copy_to_user(argp, &dbgregs, 6088 sizeof(struct kvm_debugregs))) 6089 break; 6090 r = 0; 6091 break; 6092 } 6093 case KVM_SET_DEBUGREGS: { 6094 struct kvm_debugregs dbgregs; 6095 6096 r = -EFAULT; 6097 if (copy_from_user(&dbgregs, argp, 6098 sizeof(struct kvm_debugregs))) 6099 break; 6100 6101 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 6102 break; 6103 } 6104 case KVM_GET_XSAVE: { 6105 r = -EINVAL; 6106 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 6107 break; 6108 6109 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); 6110 r = -ENOMEM; 6111 if (!u.xsave) 6112 break; 6113 6114 r = kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 6115 if (r < 0) 6116 break; 6117 6118 r = -EFAULT; 6119 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 6120 break; 6121 r = 0; 6122 break; 6123 } 6124 case KVM_SET_XSAVE: { 6125 int size = vcpu->arch.guest_fpu.uabi_size; 6126 6127 u.xsave = memdup_user(argp, size); 6128 if (IS_ERR(u.xsave)) { 6129 r = PTR_ERR(u.xsave); 6130 goto out_nofree; 6131 } 6132 6133 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 6134 break; 6135 } 6136 6137 case KVM_GET_XSAVE2: { 6138 int size = vcpu->arch.guest_fpu.uabi_size; 6139 6140 u.xsave = kzalloc(size, GFP_KERNEL); 6141 r = -ENOMEM; 6142 if (!u.xsave) 6143 break; 6144 6145 r = kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 6146 if (r < 0) 6147 break; 6148 6149 r = -EFAULT; 6150 if (copy_to_user(argp, u.xsave, size)) 6151 break; 6152 6153 r = 0; 6154 break; 6155 } 6156 6157 case KVM_GET_XCRS: { 6158 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); 6159 r = -ENOMEM; 6160 if (!u.xcrs) 6161 break; 6162 6163 r = kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 6164 if (r < 0) 6165 break; 6166 6167 r = -EFAULT; 6168 if (copy_to_user(argp, u.xcrs, 6169 sizeof(struct kvm_xcrs))) 6170 break; 6171 r = 0; 6172 break; 6173 } 6174 case KVM_SET_XCRS: { 6175 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 6176 if (IS_ERR(u.xcrs)) { 6177 r = PTR_ERR(u.xcrs); 6178 goto out_nofree; 6179 } 6180 6181 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 6182 break; 6183 } 6184 case KVM_SET_TSC_KHZ: { 6185 u32 user_tsc_khz; 6186 6187 r = -EINVAL; 6188 6189 if (vcpu->arch.guest_tsc_protected) 6190 goto out; 6191 6192 user_tsc_khz = (u32)arg; 6193 6194 if (kvm_caps.has_tsc_control && 6195 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 6196 goto out; 6197 6198 if (user_tsc_khz == 0) 6199 user_tsc_khz = tsc_khz; 6200 6201 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 6202 r = 0; 6203 6204 goto out; 6205 } 6206 case KVM_GET_TSC_KHZ: { 6207 r = vcpu->arch.virtual_tsc_khz; 6208 goto out; 6209 } 6210 case KVM_KVMCLOCK_CTRL: { 6211 r = kvm_set_guest_paused(vcpu); 6212 goto out; 6213 } 6214 case KVM_ENABLE_CAP: { 6215 struct kvm_enable_cap cap; 6216 6217 r = -EFAULT; 6218 if (copy_from_user(&cap, argp, sizeof(cap))) 6219 goto out; 6220 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 6221 break; 6222 } 6223 case KVM_GET_NESTED_STATE: { 6224 struct kvm_nested_state __user *user_kvm_nested_state = argp; 6225 u32 user_data_size; 6226 6227 r = -EINVAL; 6228 if (!kvm_x86_ops.nested_ops->get_state) 6229 break; 6230 6231 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 6232 r = -EFAULT; 6233 if (get_user(user_data_size, &user_kvm_nested_state->size)) 6234 break; 6235 6236 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 6237 user_data_size); 6238 if (r < 0) 6239 break; 6240 6241 if (r > user_data_size) { 6242 if (put_user(r, &user_kvm_nested_state->size)) 6243 r = -EFAULT; 6244 else 6245 r = -E2BIG; 6246 break; 6247 } 6248 6249 r = 0; 6250 break; 6251 } 6252 case KVM_SET_NESTED_STATE: { 6253 struct kvm_nested_state __user *user_kvm_nested_state = argp; 6254 struct kvm_nested_state kvm_state; 6255 int idx; 6256 6257 r = -EINVAL; 6258 if (!kvm_x86_ops.nested_ops->set_state) 6259 break; 6260 6261 r = -EFAULT; 6262 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 6263 break; 6264 6265 r = -EINVAL; 6266 if (kvm_state.size < sizeof(kvm_state)) 6267 break; 6268 6269 if (kvm_state.flags & 6270 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 6271 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 6272 | KVM_STATE_NESTED_GIF_SET)) 6273 break; 6274 6275 /* nested_run_pending implies guest_mode. */ 6276 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 6277 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 6278 break; 6279 6280 idx = srcu_read_lock(&vcpu->kvm->srcu); 6281 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 6282 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6283 break; 6284 } 6285 #ifdef CONFIG_KVM_HYPERV 6286 case KVM_GET_SUPPORTED_HV_CPUID: 6287 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 6288 break; 6289 #endif 6290 #ifdef CONFIG_KVM_XEN 6291 case KVM_XEN_VCPU_GET_ATTR: { 6292 struct kvm_xen_vcpu_attr xva; 6293 6294 r = -EFAULT; 6295 if (copy_from_user(&xva, argp, sizeof(xva))) 6296 goto out; 6297 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 6298 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 6299 r = -EFAULT; 6300 break; 6301 } 6302 case KVM_XEN_VCPU_SET_ATTR: { 6303 struct kvm_xen_vcpu_attr xva; 6304 6305 r = -EFAULT; 6306 if (copy_from_user(&xva, argp, sizeof(xva))) 6307 goto out; 6308 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 6309 break; 6310 } 6311 #endif 6312 case KVM_GET_SREGS2: { 6313 r = -EINVAL; 6314 if (vcpu->kvm->arch.has_protected_state && 6315 vcpu->arch.guest_state_protected) 6316 goto out; 6317 6318 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 6319 r = -ENOMEM; 6320 if (!u.sregs2) 6321 goto out; 6322 __get_sregs2(vcpu, u.sregs2); 6323 r = -EFAULT; 6324 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 6325 goto out; 6326 r = 0; 6327 break; 6328 } 6329 case KVM_SET_SREGS2: { 6330 r = -EINVAL; 6331 if (vcpu->kvm->arch.has_protected_state && 6332 vcpu->arch.guest_state_protected) 6333 goto out; 6334 6335 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 6336 if (IS_ERR(u.sregs2)) { 6337 r = PTR_ERR(u.sregs2); 6338 u.sregs2 = NULL; 6339 goto out; 6340 } 6341 r = __set_sregs2(vcpu, u.sregs2); 6342 break; 6343 } 6344 case KVM_HAS_DEVICE_ATTR: 6345 case KVM_GET_DEVICE_ATTR: 6346 case KVM_SET_DEVICE_ATTR: 6347 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 6348 break; 6349 case KVM_MEMORY_ENCRYPT_OP: 6350 r = -ENOTTY; 6351 if (!kvm_x86_ops.vcpu_mem_enc_ioctl) 6352 goto out; 6353 r = kvm_x86_ops.vcpu_mem_enc_ioctl(vcpu, argp); 6354 break; 6355 default: 6356 r = -EINVAL; 6357 } 6358 out: 6359 kfree(u.buffer); 6360 out_nofree: 6361 vcpu_put(vcpu); 6362 return r; 6363 } 6364 6365 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 6366 { 6367 return VM_FAULT_SIGBUS; 6368 } 6369 6370 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 6371 { 6372 int ret; 6373 6374 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 6375 return -EINVAL; 6376 ret = kvm_x86_call(set_tss_addr)(kvm, addr); 6377 return ret; 6378 } 6379 6380 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 6381 u64 ident_addr) 6382 { 6383 return kvm_x86_call(set_identity_map_addr)(kvm, ident_addr); 6384 } 6385 6386 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 6387 unsigned long kvm_nr_mmu_pages) 6388 { 6389 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 6390 return -EINVAL; 6391 6392 mutex_lock(&kvm->slots_lock); 6393 6394 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6395 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6396 6397 mutex_unlock(&kvm->slots_lock); 6398 return 0; 6399 } 6400 6401 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6402 { 6403 6404 /* 6405 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6406 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6407 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6408 * VM-Exit. 6409 */ 6410 struct kvm_vcpu *vcpu; 6411 unsigned long i; 6412 6413 if (!kvm->arch.cpu_dirty_log_size) 6414 return; 6415 6416 kvm_for_each_vcpu(i, vcpu, kvm) 6417 kvm_vcpu_kick(vcpu); 6418 } 6419 6420 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6421 struct kvm_enable_cap *cap) 6422 { 6423 int r; 6424 6425 if (cap->flags) 6426 return -EINVAL; 6427 6428 switch (cap->cap) { 6429 case KVM_CAP_DISABLE_QUIRKS2: 6430 r = -EINVAL; 6431 if (cap->args[0] & ~kvm_caps.supported_quirks) 6432 break; 6433 fallthrough; 6434 case KVM_CAP_DISABLE_QUIRKS: 6435 kvm->arch.disabled_quirks |= cap->args[0] & kvm_caps.supported_quirks; 6436 r = 0; 6437 break; 6438 case KVM_CAP_SPLIT_IRQCHIP: { 6439 mutex_lock(&kvm->lock); 6440 r = -EINVAL; 6441 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6442 goto split_irqchip_unlock; 6443 r = -EEXIST; 6444 if (irqchip_in_kernel(kvm)) 6445 goto split_irqchip_unlock; 6446 if (kvm->created_vcpus) 6447 goto split_irqchip_unlock; 6448 /* Pairs with irqchip_in_kernel. */ 6449 smp_wmb(); 6450 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6451 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6452 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6453 r = 0; 6454 split_irqchip_unlock: 6455 mutex_unlock(&kvm->lock); 6456 break; 6457 } 6458 case KVM_CAP_X2APIC_API: 6459 r = -EINVAL; 6460 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6461 break; 6462 6463 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6464 kvm->arch.x2apic_format = true; 6465 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6466 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6467 6468 r = 0; 6469 break; 6470 case KVM_CAP_X86_DISABLE_EXITS: 6471 r = -EINVAL; 6472 if (cap->args[0] & ~kvm_get_allowed_disable_exits()) 6473 break; 6474 6475 mutex_lock(&kvm->lock); 6476 if (kvm->created_vcpus) 6477 goto disable_exits_unlock; 6478 6479 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \ 6480 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests." 6481 6482 if (!mitigate_smt_rsb && boot_cpu_has_bug(X86_BUG_SMT_RSB) && 6483 cpu_smt_possible() && 6484 (cap->args[0] & ~(KVM_X86_DISABLE_EXITS_PAUSE | 6485 KVM_X86_DISABLE_EXITS_APERFMPERF))) 6486 pr_warn_once(SMT_RSB_MSG); 6487 6488 kvm_disable_exits(kvm, cap->args[0]); 6489 r = 0; 6490 disable_exits_unlock: 6491 mutex_unlock(&kvm->lock); 6492 break; 6493 case KVM_CAP_MSR_PLATFORM_INFO: 6494 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6495 r = 0; 6496 break; 6497 case KVM_CAP_EXCEPTION_PAYLOAD: 6498 kvm->arch.exception_payload_enabled = cap->args[0]; 6499 r = 0; 6500 break; 6501 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6502 kvm->arch.triple_fault_event = cap->args[0]; 6503 r = 0; 6504 break; 6505 case KVM_CAP_X86_USER_SPACE_MSR: 6506 r = -EINVAL; 6507 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6508 break; 6509 kvm->arch.user_space_msr_mask = cap->args[0]; 6510 r = 0; 6511 break; 6512 case KVM_CAP_X86_BUS_LOCK_EXIT: 6513 r = -EINVAL; 6514 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6515 break; 6516 6517 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6518 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6519 break; 6520 6521 if (kvm_caps.has_bus_lock_exit && 6522 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6523 kvm->arch.bus_lock_detection_enabled = true; 6524 r = 0; 6525 break; 6526 #ifdef CONFIG_X86_SGX_KVM 6527 case KVM_CAP_SGX_ATTRIBUTE: { 6528 unsigned long allowed_attributes = 0; 6529 6530 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6531 if (r) 6532 break; 6533 6534 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6535 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6536 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6537 kvm->arch.sgx_provisioning_allowed = true; 6538 else 6539 r = -EINVAL; 6540 break; 6541 } 6542 #endif 6543 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6544 r = -EINVAL; 6545 if (!kvm_x86_ops.vm_copy_enc_context_from) 6546 break; 6547 6548 r = kvm_x86_call(vm_copy_enc_context_from)(kvm, cap->args[0]); 6549 break; 6550 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6551 r = -EINVAL; 6552 if (!kvm_x86_ops.vm_move_enc_context_from) 6553 break; 6554 6555 r = kvm_x86_call(vm_move_enc_context_from)(kvm, cap->args[0]); 6556 break; 6557 case KVM_CAP_EXIT_HYPERCALL: 6558 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6559 r = -EINVAL; 6560 break; 6561 } 6562 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6563 r = 0; 6564 break; 6565 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6566 r = -EINVAL; 6567 if (cap->args[0] & ~1) 6568 break; 6569 kvm->arch.exit_on_emulation_error = cap->args[0]; 6570 r = 0; 6571 break; 6572 case KVM_CAP_PMU_CAPABILITY: 6573 r = -EINVAL; 6574 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6575 break; 6576 6577 mutex_lock(&kvm->lock); 6578 if (!kvm->created_vcpus) { 6579 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6580 r = 0; 6581 } 6582 mutex_unlock(&kvm->lock); 6583 break; 6584 case KVM_CAP_MAX_VCPU_ID: 6585 r = -EINVAL; 6586 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6587 break; 6588 6589 mutex_lock(&kvm->lock); 6590 if (kvm->arch.bsp_vcpu_id > cap->args[0]) { 6591 ; 6592 } else if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6593 r = 0; 6594 } else if (!kvm->arch.max_vcpu_ids) { 6595 kvm->arch.max_vcpu_ids = cap->args[0]; 6596 r = 0; 6597 } 6598 mutex_unlock(&kvm->lock); 6599 break; 6600 case KVM_CAP_X86_NOTIFY_VMEXIT: 6601 r = -EINVAL; 6602 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6603 break; 6604 if (!kvm_caps.has_notify_vmexit) 6605 break; 6606 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6607 break; 6608 mutex_lock(&kvm->lock); 6609 if (!kvm->created_vcpus) { 6610 kvm->arch.notify_window = cap->args[0] >> 32; 6611 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6612 r = 0; 6613 } 6614 mutex_unlock(&kvm->lock); 6615 break; 6616 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6617 r = -EINVAL; 6618 6619 /* 6620 * Since the risk of disabling NX hugepages is a guest crashing 6621 * the system, ensure the userspace process has permission to 6622 * reboot the system. 6623 * 6624 * Note that unlike the reboot() syscall, the process must have 6625 * this capability in the root namespace because exposing 6626 * /dev/kvm into a container does not limit the scope of the 6627 * iTLB multihit bug to that container. In other words, 6628 * this must use capable(), not ns_capable(). 6629 */ 6630 if (!capable(CAP_SYS_BOOT)) { 6631 r = -EPERM; 6632 break; 6633 } 6634 6635 if (cap->args[0]) 6636 break; 6637 6638 mutex_lock(&kvm->lock); 6639 if (!kvm->created_vcpus) { 6640 kvm->arch.disable_nx_huge_pages = true; 6641 r = 0; 6642 } 6643 mutex_unlock(&kvm->lock); 6644 break; 6645 case KVM_CAP_X86_APIC_BUS_CYCLES_NS: { 6646 u64 bus_cycle_ns = cap->args[0]; 6647 u64 unused; 6648 6649 /* 6650 * Guard against overflow in tmict_to_ns(). 128 is the highest 6651 * divide value that can be programmed in APIC_TDCR. 6652 */ 6653 r = -EINVAL; 6654 if (!bus_cycle_ns || 6655 check_mul_overflow((u64)U32_MAX * 128, bus_cycle_ns, &unused)) 6656 break; 6657 6658 r = 0; 6659 mutex_lock(&kvm->lock); 6660 if (!irqchip_in_kernel(kvm)) 6661 r = -ENXIO; 6662 else if (kvm->created_vcpus) 6663 r = -EINVAL; 6664 else 6665 kvm->arch.apic_bus_cycle_ns = bus_cycle_ns; 6666 mutex_unlock(&kvm->lock); 6667 break; 6668 } 6669 default: 6670 r = -EINVAL; 6671 break; 6672 } 6673 return r; 6674 } 6675 6676 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6677 { 6678 struct kvm_x86_msr_filter *msr_filter; 6679 6680 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6681 if (!msr_filter) 6682 return NULL; 6683 6684 msr_filter->default_allow = default_allow; 6685 return msr_filter; 6686 } 6687 6688 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6689 { 6690 u32 i; 6691 6692 if (!msr_filter) 6693 return; 6694 6695 for (i = 0; i < msr_filter->count; i++) 6696 kfree(msr_filter->ranges[i].bitmap); 6697 6698 kfree(msr_filter); 6699 } 6700 6701 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6702 struct kvm_msr_filter_range *user_range) 6703 { 6704 unsigned long *bitmap; 6705 size_t bitmap_size; 6706 6707 if (!user_range->nmsrs) 6708 return 0; 6709 6710 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 6711 return -EINVAL; 6712 6713 if (!user_range->flags) 6714 return -EINVAL; 6715 6716 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6717 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6718 return -EINVAL; 6719 6720 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6721 if (IS_ERR(bitmap)) 6722 return PTR_ERR(bitmap); 6723 6724 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6725 .flags = user_range->flags, 6726 .base = user_range->base, 6727 .nmsrs = user_range->nmsrs, 6728 .bitmap = bitmap, 6729 }; 6730 6731 msr_filter->count++; 6732 return 0; 6733 } 6734 6735 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6736 struct kvm_msr_filter *filter) 6737 { 6738 struct kvm_x86_msr_filter *new_filter, *old_filter; 6739 bool default_allow; 6740 bool empty = true; 6741 int r; 6742 u32 i; 6743 6744 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 6745 return -EINVAL; 6746 6747 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6748 empty &= !filter->ranges[i].nmsrs; 6749 6750 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6751 if (empty && !default_allow) 6752 return -EINVAL; 6753 6754 new_filter = kvm_alloc_msr_filter(default_allow); 6755 if (!new_filter) 6756 return -ENOMEM; 6757 6758 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6759 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6760 if (r) { 6761 kvm_free_msr_filter(new_filter); 6762 return r; 6763 } 6764 } 6765 6766 mutex_lock(&kvm->lock); 6767 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter, 6768 mutex_is_locked(&kvm->lock)); 6769 mutex_unlock(&kvm->lock); 6770 synchronize_srcu(&kvm->srcu); 6771 6772 kvm_free_msr_filter(old_filter); 6773 6774 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6775 6776 return 0; 6777 } 6778 6779 #ifdef CONFIG_KVM_COMPAT 6780 /* for KVM_X86_SET_MSR_FILTER */ 6781 struct kvm_msr_filter_range_compat { 6782 __u32 flags; 6783 __u32 nmsrs; 6784 __u32 base; 6785 __u32 bitmap; 6786 }; 6787 6788 struct kvm_msr_filter_compat { 6789 __u32 flags; 6790 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6791 }; 6792 6793 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6794 6795 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6796 unsigned long arg) 6797 { 6798 void __user *argp = (void __user *)arg; 6799 struct kvm *kvm = filp->private_data; 6800 long r = -ENOTTY; 6801 6802 switch (ioctl) { 6803 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6804 struct kvm_msr_filter __user *user_msr_filter = argp; 6805 struct kvm_msr_filter_compat filter_compat; 6806 struct kvm_msr_filter filter; 6807 int i; 6808 6809 if (copy_from_user(&filter_compat, user_msr_filter, 6810 sizeof(filter_compat))) 6811 return -EFAULT; 6812 6813 filter.flags = filter_compat.flags; 6814 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6815 struct kvm_msr_filter_range_compat *cr; 6816 6817 cr = &filter_compat.ranges[i]; 6818 filter.ranges[i] = (struct kvm_msr_filter_range) { 6819 .flags = cr->flags, 6820 .nmsrs = cr->nmsrs, 6821 .base = cr->base, 6822 .bitmap = (__u8 *)(ulong)cr->bitmap, 6823 }; 6824 } 6825 6826 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6827 break; 6828 } 6829 } 6830 6831 return r; 6832 } 6833 #endif 6834 6835 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6836 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6837 { 6838 struct kvm_vcpu *vcpu; 6839 unsigned long i; 6840 6841 /* 6842 * Ignore the return, marking the guest paused only "fails" if the vCPU 6843 * isn't using kvmclock; continuing on is correct and desirable. 6844 */ 6845 kvm_for_each_vcpu(i, vcpu, kvm) 6846 (void)kvm_set_guest_paused(vcpu); 6847 6848 return NOTIFY_DONE; 6849 } 6850 6851 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6852 { 6853 switch (state) { 6854 case PM_HIBERNATION_PREPARE: 6855 case PM_SUSPEND_PREPARE: 6856 return kvm_arch_suspend_notifier(kvm); 6857 } 6858 6859 return NOTIFY_DONE; 6860 } 6861 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6862 6863 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6864 { 6865 struct kvm_clock_data data = { 0 }; 6866 6867 get_kvmclock(kvm, &data); 6868 if (copy_to_user(argp, &data, sizeof(data))) 6869 return -EFAULT; 6870 6871 return 0; 6872 } 6873 6874 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6875 { 6876 struct kvm_arch *ka = &kvm->arch; 6877 struct kvm_clock_data data; 6878 u64 now_raw_ns; 6879 6880 if (copy_from_user(&data, argp, sizeof(data))) 6881 return -EFAULT; 6882 6883 /* 6884 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6885 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6886 */ 6887 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6888 return -EINVAL; 6889 6890 kvm_hv_request_tsc_page_update(kvm); 6891 kvm_start_pvclock_update(kvm); 6892 pvclock_update_vm_gtod_copy(kvm); 6893 6894 /* 6895 * This pairs with kvm_guest_time_update(): when masterclock is 6896 * in use, we use master_kernel_ns + kvmclock_offset to set 6897 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6898 * is slightly ahead) here we risk going negative on unsigned 6899 * 'system_time' when 'data.clock' is very small. 6900 */ 6901 if (data.flags & KVM_CLOCK_REALTIME) { 6902 u64 now_real_ns = ktime_get_real_ns(); 6903 6904 /* 6905 * Avoid stepping the kvmclock backwards. 6906 */ 6907 if (now_real_ns > data.realtime) 6908 data.clock += now_real_ns - data.realtime; 6909 } 6910 6911 if (ka->use_master_clock) 6912 now_raw_ns = ka->master_kernel_ns; 6913 else 6914 now_raw_ns = get_kvmclock_base_ns(); 6915 ka->kvmclock_offset = data.clock - now_raw_ns; 6916 kvm_end_pvclock_update(kvm); 6917 return 0; 6918 } 6919 6920 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 6921 { 6922 struct kvm *kvm = filp->private_data; 6923 void __user *argp = (void __user *)arg; 6924 int r = -ENOTTY; 6925 6926 #ifdef CONFIG_KVM_IOAPIC 6927 /* 6928 * This union makes it completely explicit to gcc-3.x 6929 * that these three variables' stack usage should be 6930 * combined, not added together. 6931 */ 6932 union { 6933 struct kvm_pit_state ps; 6934 struct kvm_pit_state2 ps2; 6935 struct kvm_pit_config pit_config; 6936 } u; 6937 #endif 6938 6939 switch (ioctl) { 6940 case KVM_SET_TSS_ADDR: 6941 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6942 break; 6943 case KVM_SET_IDENTITY_MAP_ADDR: { 6944 u64 ident_addr; 6945 6946 mutex_lock(&kvm->lock); 6947 r = -EINVAL; 6948 if (kvm->created_vcpus) 6949 goto set_identity_unlock; 6950 r = -EFAULT; 6951 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6952 goto set_identity_unlock; 6953 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6954 set_identity_unlock: 6955 mutex_unlock(&kvm->lock); 6956 break; 6957 } 6958 case KVM_SET_NR_MMU_PAGES: 6959 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6960 break; 6961 #ifdef CONFIG_KVM_IOAPIC 6962 case KVM_CREATE_IRQCHIP: { 6963 mutex_lock(&kvm->lock); 6964 6965 r = -EEXIST; 6966 if (irqchip_in_kernel(kvm)) 6967 goto create_irqchip_unlock; 6968 6969 r = -EINVAL; 6970 if (kvm->created_vcpus) 6971 goto create_irqchip_unlock; 6972 6973 r = kvm_pic_init(kvm); 6974 if (r) 6975 goto create_irqchip_unlock; 6976 6977 r = kvm_ioapic_init(kvm); 6978 if (r) { 6979 kvm_pic_destroy(kvm); 6980 goto create_irqchip_unlock; 6981 } 6982 6983 r = kvm_setup_default_ioapic_and_pic_routing(kvm); 6984 if (r) { 6985 kvm_ioapic_destroy(kvm); 6986 kvm_pic_destroy(kvm); 6987 goto create_irqchip_unlock; 6988 } 6989 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6990 smp_wmb(); 6991 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 6992 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6993 create_irqchip_unlock: 6994 mutex_unlock(&kvm->lock); 6995 break; 6996 } 6997 case KVM_CREATE_PIT: 6998 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 6999 goto create_pit; 7000 case KVM_CREATE_PIT2: 7001 r = -EFAULT; 7002 if (copy_from_user(&u.pit_config, argp, 7003 sizeof(struct kvm_pit_config))) 7004 goto out; 7005 create_pit: 7006 mutex_lock(&kvm->lock); 7007 r = -EEXIST; 7008 if (kvm->arch.vpit) 7009 goto create_pit_unlock; 7010 r = -ENOENT; 7011 if (!pic_in_kernel(kvm)) 7012 goto create_pit_unlock; 7013 r = -ENOMEM; 7014 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 7015 if (kvm->arch.vpit) 7016 r = 0; 7017 create_pit_unlock: 7018 mutex_unlock(&kvm->lock); 7019 break; 7020 case KVM_GET_IRQCHIP: { 7021 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 7022 struct kvm_irqchip *chip; 7023 7024 chip = memdup_user(argp, sizeof(*chip)); 7025 if (IS_ERR(chip)) { 7026 r = PTR_ERR(chip); 7027 goto out; 7028 } 7029 7030 r = -ENXIO; 7031 if (!irqchip_full(kvm)) 7032 goto get_irqchip_out; 7033 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 7034 if (r) 7035 goto get_irqchip_out; 7036 r = -EFAULT; 7037 if (copy_to_user(argp, chip, sizeof(*chip))) 7038 goto get_irqchip_out; 7039 r = 0; 7040 get_irqchip_out: 7041 kfree(chip); 7042 break; 7043 } 7044 case KVM_SET_IRQCHIP: { 7045 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 7046 struct kvm_irqchip *chip; 7047 7048 chip = memdup_user(argp, sizeof(*chip)); 7049 if (IS_ERR(chip)) { 7050 r = PTR_ERR(chip); 7051 goto out; 7052 } 7053 7054 r = -ENXIO; 7055 if (!irqchip_full(kvm)) 7056 goto set_irqchip_out; 7057 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 7058 set_irqchip_out: 7059 kfree(chip); 7060 break; 7061 } 7062 case KVM_GET_PIT: { 7063 r = -EFAULT; 7064 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 7065 goto out; 7066 r = -ENXIO; 7067 if (!kvm->arch.vpit) 7068 goto out; 7069 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 7070 if (r) 7071 goto out; 7072 r = -EFAULT; 7073 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 7074 goto out; 7075 r = 0; 7076 break; 7077 } 7078 case KVM_SET_PIT: { 7079 r = -EFAULT; 7080 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 7081 goto out; 7082 mutex_lock(&kvm->lock); 7083 r = -ENXIO; 7084 if (!kvm->arch.vpit) 7085 goto set_pit_out; 7086 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 7087 set_pit_out: 7088 mutex_unlock(&kvm->lock); 7089 break; 7090 } 7091 case KVM_GET_PIT2: { 7092 r = -ENXIO; 7093 if (!kvm->arch.vpit) 7094 goto out; 7095 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 7096 if (r) 7097 goto out; 7098 r = -EFAULT; 7099 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 7100 goto out; 7101 r = 0; 7102 break; 7103 } 7104 case KVM_SET_PIT2: { 7105 r = -EFAULT; 7106 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 7107 goto out; 7108 mutex_lock(&kvm->lock); 7109 r = -ENXIO; 7110 if (!kvm->arch.vpit) 7111 goto set_pit2_out; 7112 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 7113 set_pit2_out: 7114 mutex_unlock(&kvm->lock); 7115 break; 7116 } 7117 case KVM_REINJECT_CONTROL: { 7118 struct kvm_reinject_control control; 7119 r = -EFAULT; 7120 if (copy_from_user(&control, argp, sizeof(control))) 7121 goto out; 7122 r = -ENXIO; 7123 if (!kvm->arch.vpit) 7124 goto out; 7125 r = kvm_vm_ioctl_reinject(kvm, &control); 7126 break; 7127 } 7128 #endif 7129 case KVM_SET_BOOT_CPU_ID: 7130 r = 0; 7131 mutex_lock(&kvm->lock); 7132 if (kvm->created_vcpus) 7133 r = -EBUSY; 7134 else if (arg > KVM_MAX_VCPU_IDS || 7135 (kvm->arch.max_vcpu_ids && arg > kvm->arch.max_vcpu_ids)) 7136 r = -EINVAL; 7137 else 7138 kvm->arch.bsp_vcpu_id = arg; 7139 mutex_unlock(&kvm->lock); 7140 break; 7141 #ifdef CONFIG_KVM_XEN 7142 case KVM_XEN_HVM_CONFIG: { 7143 struct kvm_xen_hvm_config xhc; 7144 r = -EFAULT; 7145 if (copy_from_user(&xhc, argp, sizeof(xhc))) 7146 goto out; 7147 r = kvm_xen_hvm_config(kvm, &xhc); 7148 break; 7149 } 7150 case KVM_XEN_HVM_GET_ATTR: { 7151 struct kvm_xen_hvm_attr xha; 7152 7153 r = -EFAULT; 7154 if (copy_from_user(&xha, argp, sizeof(xha))) 7155 goto out; 7156 r = kvm_xen_hvm_get_attr(kvm, &xha); 7157 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 7158 r = -EFAULT; 7159 break; 7160 } 7161 case KVM_XEN_HVM_SET_ATTR: { 7162 struct kvm_xen_hvm_attr xha; 7163 7164 r = -EFAULT; 7165 if (copy_from_user(&xha, argp, sizeof(xha))) 7166 goto out; 7167 r = kvm_xen_hvm_set_attr(kvm, &xha); 7168 break; 7169 } 7170 case KVM_XEN_HVM_EVTCHN_SEND: { 7171 struct kvm_irq_routing_xen_evtchn uxe; 7172 7173 r = -EFAULT; 7174 if (copy_from_user(&uxe, argp, sizeof(uxe))) 7175 goto out; 7176 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 7177 break; 7178 } 7179 #endif 7180 case KVM_SET_CLOCK: 7181 r = kvm_vm_ioctl_set_clock(kvm, argp); 7182 break; 7183 case KVM_GET_CLOCK: 7184 r = kvm_vm_ioctl_get_clock(kvm, argp); 7185 break; 7186 case KVM_SET_TSC_KHZ: { 7187 u32 user_tsc_khz; 7188 7189 r = -EINVAL; 7190 user_tsc_khz = (u32)arg; 7191 7192 if (kvm_caps.has_tsc_control && 7193 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 7194 goto out; 7195 7196 if (user_tsc_khz == 0) 7197 user_tsc_khz = tsc_khz; 7198 7199 mutex_lock(&kvm->lock); 7200 if (!kvm->created_vcpus) { 7201 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 7202 r = 0; 7203 } 7204 mutex_unlock(&kvm->lock); 7205 goto out; 7206 } 7207 case KVM_GET_TSC_KHZ: { 7208 r = READ_ONCE(kvm->arch.default_tsc_khz); 7209 goto out; 7210 } 7211 case KVM_MEMORY_ENCRYPT_OP: 7212 r = -ENOTTY; 7213 if (!kvm_x86_ops.mem_enc_ioctl) 7214 goto out; 7215 7216 r = kvm_x86_call(mem_enc_ioctl)(kvm, argp); 7217 break; 7218 case KVM_MEMORY_ENCRYPT_REG_REGION: { 7219 struct kvm_enc_region region; 7220 7221 r = -EFAULT; 7222 if (copy_from_user(®ion, argp, sizeof(region))) 7223 goto out; 7224 7225 r = -ENOTTY; 7226 if (!kvm_x86_ops.mem_enc_register_region) 7227 goto out; 7228 7229 r = kvm_x86_call(mem_enc_register_region)(kvm, ®ion); 7230 break; 7231 } 7232 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 7233 struct kvm_enc_region region; 7234 7235 r = -EFAULT; 7236 if (copy_from_user(®ion, argp, sizeof(region))) 7237 goto out; 7238 7239 r = -ENOTTY; 7240 if (!kvm_x86_ops.mem_enc_unregister_region) 7241 goto out; 7242 7243 r = kvm_x86_call(mem_enc_unregister_region)(kvm, ®ion); 7244 break; 7245 } 7246 #ifdef CONFIG_KVM_HYPERV 7247 case KVM_HYPERV_EVENTFD: { 7248 struct kvm_hyperv_eventfd hvevfd; 7249 7250 r = -EFAULT; 7251 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 7252 goto out; 7253 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 7254 break; 7255 } 7256 #endif 7257 case KVM_SET_PMU_EVENT_FILTER: 7258 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 7259 break; 7260 case KVM_X86_SET_MSR_FILTER: { 7261 struct kvm_msr_filter __user *user_msr_filter = argp; 7262 struct kvm_msr_filter filter; 7263 7264 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 7265 return -EFAULT; 7266 7267 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 7268 break; 7269 } 7270 default: 7271 r = -ENOTTY; 7272 } 7273 out: 7274 return r; 7275 } 7276 7277 static void kvm_probe_feature_msr(u32 msr_index) 7278 { 7279 u64 data; 7280 7281 if (kvm_get_feature_msr(NULL, msr_index, &data, true)) 7282 return; 7283 7284 msr_based_features[num_msr_based_features++] = msr_index; 7285 } 7286 7287 static void kvm_probe_msr_to_save(u32 msr_index) 7288 { 7289 u32 dummy[2]; 7290 7291 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1])) 7292 return; 7293 7294 /* 7295 * Even MSRs that are valid in the host may not be exposed to guests in 7296 * some cases. 7297 */ 7298 switch (msr_index) { 7299 case MSR_IA32_BNDCFGS: 7300 if (!kvm_mpx_supported()) 7301 return; 7302 break; 7303 case MSR_TSC_AUX: 7304 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7305 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7306 return; 7307 break; 7308 case MSR_IA32_UMWAIT_CONTROL: 7309 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7310 return; 7311 break; 7312 case MSR_IA32_RTIT_CTL: 7313 case MSR_IA32_RTIT_STATUS: 7314 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7315 return; 7316 break; 7317 case MSR_IA32_RTIT_CR3_MATCH: 7318 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7319 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7320 return; 7321 break; 7322 case MSR_IA32_RTIT_OUTPUT_BASE: 7323 case MSR_IA32_RTIT_OUTPUT_MASK: 7324 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7325 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7326 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7327 return; 7328 break; 7329 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7330 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7331 (msr_index - MSR_IA32_RTIT_ADDR0_A >= 7332 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)) 7333 return; 7334 break; 7335 case MSR_ARCH_PERFMON_PERFCTR0 ... 7336 MSR_ARCH_PERFMON_PERFCTR0 + KVM_MAX_NR_GP_COUNTERS - 1: 7337 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >= 7338 kvm_pmu_cap.num_counters_gp) 7339 return; 7340 break; 7341 case MSR_ARCH_PERFMON_EVENTSEL0 ... 7342 MSR_ARCH_PERFMON_EVENTSEL0 + KVM_MAX_NR_GP_COUNTERS - 1: 7343 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >= 7344 kvm_pmu_cap.num_counters_gp) 7345 return; 7346 break; 7347 case MSR_ARCH_PERFMON_FIXED_CTR0 ... 7348 MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_MAX_NR_FIXED_COUNTERS - 1: 7349 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >= 7350 kvm_pmu_cap.num_counters_fixed) 7351 return; 7352 break; 7353 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL: 7354 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS: 7355 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR: 7356 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) 7357 return; 7358 break; 7359 case MSR_IA32_XFD: 7360 case MSR_IA32_XFD_ERR: 7361 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7362 return; 7363 break; 7364 case MSR_IA32_TSX_CTRL: 7365 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR)) 7366 return; 7367 break; 7368 default: 7369 break; 7370 } 7371 7372 msrs_to_save[num_msrs_to_save++] = msr_index; 7373 } 7374 7375 static void kvm_init_msr_lists(void) 7376 { 7377 unsigned i; 7378 7379 BUILD_BUG_ON_MSG(KVM_MAX_NR_FIXED_COUNTERS != 3, 7380 "Please update the fixed PMCs in msrs_to_save_pmu[]"); 7381 7382 num_msrs_to_save = 0; 7383 num_emulated_msrs = 0; 7384 num_msr_based_features = 0; 7385 7386 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++) 7387 kvm_probe_msr_to_save(msrs_to_save_base[i]); 7388 7389 if (enable_pmu) { 7390 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++) 7391 kvm_probe_msr_to_save(msrs_to_save_pmu[i]); 7392 } 7393 7394 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7395 if (!kvm_x86_call(has_emulated_msr)(NULL, 7396 emulated_msrs_all[i])) 7397 continue; 7398 7399 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7400 } 7401 7402 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++) 7403 kvm_probe_feature_msr(i); 7404 7405 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) 7406 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]); 7407 } 7408 7409 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7410 const void *v) 7411 { 7412 int handled = 0; 7413 int n; 7414 7415 do { 7416 n = min(len, 8); 7417 if (!(lapic_in_kernel(vcpu) && 7418 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7419 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7420 break; 7421 handled += n; 7422 addr += n; 7423 len -= n; 7424 v += n; 7425 } while (len); 7426 7427 return handled; 7428 } 7429 7430 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7431 { 7432 int handled = 0; 7433 int n; 7434 7435 do { 7436 n = min(len, 8); 7437 if (!(lapic_in_kernel(vcpu) && 7438 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7439 addr, n, v)) 7440 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7441 break; 7442 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7443 handled += n; 7444 addr += n; 7445 len -= n; 7446 v += n; 7447 } while (len); 7448 7449 return handled; 7450 } 7451 7452 void kvm_set_segment(struct kvm_vcpu *vcpu, 7453 struct kvm_segment *var, int seg) 7454 { 7455 kvm_x86_call(set_segment)(vcpu, var, seg); 7456 } 7457 7458 void kvm_get_segment(struct kvm_vcpu *vcpu, 7459 struct kvm_segment *var, int seg) 7460 { 7461 kvm_x86_call(get_segment)(vcpu, var, seg); 7462 } 7463 7464 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7465 struct x86_exception *exception) 7466 { 7467 struct kvm_mmu *mmu = vcpu->arch.mmu; 7468 gpa_t t_gpa; 7469 7470 BUG_ON(!mmu_is_nested(vcpu)); 7471 7472 /* NPT walks are always user-walks */ 7473 access |= PFERR_USER_MASK; 7474 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7475 7476 return t_gpa; 7477 } 7478 7479 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7480 struct x86_exception *exception) 7481 { 7482 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7483 7484 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7485 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7486 } 7487 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7488 7489 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7490 struct x86_exception *exception) 7491 { 7492 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7493 7494 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7495 access |= PFERR_WRITE_MASK; 7496 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7497 } 7498 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7499 7500 /* uses this to access any guest's mapped memory without checking CPL */ 7501 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7502 struct x86_exception *exception) 7503 { 7504 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7505 7506 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7507 } 7508 7509 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7510 struct kvm_vcpu *vcpu, u64 access, 7511 struct x86_exception *exception) 7512 { 7513 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7514 void *data = val; 7515 int r = X86EMUL_CONTINUE; 7516 7517 while (bytes) { 7518 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7519 unsigned offset = addr & (PAGE_SIZE-1); 7520 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7521 int ret; 7522 7523 if (gpa == INVALID_GPA) 7524 return X86EMUL_PROPAGATE_FAULT; 7525 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7526 offset, toread); 7527 if (ret < 0) { 7528 r = X86EMUL_IO_NEEDED; 7529 goto out; 7530 } 7531 7532 bytes -= toread; 7533 data += toread; 7534 addr += toread; 7535 } 7536 out: 7537 return r; 7538 } 7539 7540 /* used for instruction fetching */ 7541 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7542 gva_t addr, void *val, unsigned int bytes, 7543 struct x86_exception *exception) 7544 { 7545 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7546 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7547 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7548 unsigned offset; 7549 int ret; 7550 7551 /* Inline kvm_read_guest_virt_helper for speed. */ 7552 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7553 exception); 7554 if (unlikely(gpa == INVALID_GPA)) 7555 return X86EMUL_PROPAGATE_FAULT; 7556 7557 offset = addr & (PAGE_SIZE-1); 7558 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7559 bytes = (unsigned)PAGE_SIZE - offset; 7560 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7561 offset, bytes); 7562 if (unlikely(ret < 0)) 7563 return X86EMUL_IO_NEEDED; 7564 7565 return X86EMUL_CONTINUE; 7566 } 7567 7568 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7569 gva_t addr, void *val, unsigned int bytes, 7570 struct x86_exception *exception) 7571 { 7572 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7573 7574 /* 7575 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7576 * is returned, but our callers are not ready for that and they blindly 7577 * call kvm_inject_page_fault. Ensure that they at least do not leak 7578 * uninitialized kernel stack memory into cr2 and error code. 7579 */ 7580 memset(exception, 0, sizeof(*exception)); 7581 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7582 exception); 7583 } 7584 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7585 7586 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7587 gva_t addr, void *val, unsigned int bytes, 7588 struct x86_exception *exception, bool system) 7589 { 7590 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7591 u64 access = 0; 7592 7593 if (system) 7594 access |= PFERR_IMPLICIT_ACCESS; 7595 else if (kvm_x86_call(get_cpl)(vcpu) == 3) 7596 access |= PFERR_USER_MASK; 7597 7598 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7599 } 7600 7601 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7602 struct kvm_vcpu *vcpu, u64 access, 7603 struct x86_exception *exception) 7604 { 7605 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7606 void *data = val; 7607 int r = X86EMUL_CONTINUE; 7608 7609 while (bytes) { 7610 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7611 unsigned offset = addr & (PAGE_SIZE-1); 7612 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7613 int ret; 7614 7615 if (gpa == INVALID_GPA) 7616 return X86EMUL_PROPAGATE_FAULT; 7617 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7618 if (ret < 0) { 7619 r = X86EMUL_IO_NEEDED; 7620 goto out; 7621 } 7622 7623 bytes -= towrite; 7624 data += towrite; 7625 addr += towrite; 7626 } 7627 out: 7628 return r; 7629 } 7630 7631 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7632 unsigned int bytes, struct x86_exception *exception, 7633 bool system) 7634 { 7635 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7636 u64 access = PFERR_WRITE_MASK; 7637 7638 if (system) 7639 access |= PFERR_IMPLICIT_ACCESS; 7640 else if (kvm_x86_call(get_cpl)(vcpu) == 3) 7641 access |= PFERR_USER_MASK; 7642 7643 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7644 access, exception); 7645 } 7646 7647 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7648 unsigned int bytes, struct x86_exception *exception) 7649 { 7650 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7651 vcpu->arch.l1tf_flush_l1d = true; 7652 7653 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7654 PFERR_WRITE_MASK, exception); 7655 } 7656 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7657 7658 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7659 void *insn, int insn_len) 7660 { 7661 return kvm_x86_call(check_emulate_instruction)(vcpu, emul_type, 7662 insn, insn_len); 7663 } 7664 7665 int handle_ud(struct kvm_vcpu *vcpu) 7666 { 7667 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7668 int fep_flags = READ_ONCE(force_emulation_prefix); 7669 int emul_type = EMULTYPE_TRAP_UD; 7670 char sig[5]; /* ud2; .ascii "kvm" */ 7671 struct x86_exception e; 7672 int r; 7673 7674 r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0); 7675 if (r != X86EMUL_CONTINUE) 7676 return 1; 7677 7678 if (fep_flags && 7679 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7680 sig, sizeof(sig), &e) == 0 && 7681 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7682 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7683 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7684 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7685 emul_type = EMULTYPE_TRAP_UD_FORCED; 7686 } 7687 7688 return kvm_emulate_instruction(vcpu, emul_type); 7689 } 7690 EXPORT_SYMBOL_GPL(handle_ud); 7691 7692 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7693 gpa_t gpa, bool write) 7694 { 7695 /* For APIC access vmexit */ 7696 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7697 return 1; 7698 7699 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7700 trace_vcpu_match_mmio(gva, gpa, write, true); 7701 return 1; 7702 } 7703 7704 return 0; 7705 } 7706 7707 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7708 gpa_t *gpa, struct x86_exception *exception, 7709 bool write) 7710 { 7711 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7712 u64 access = ((kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7713 | (write ? PFERR_WRITE_MASK : 0); 7714 7715 /* 7716 * currently PKRU is only applied to ept enabled guest so 7717 * there is no pkey in EPT page table for L1 guest or EPT 7718 * shadow page table for L2 guest. 7719 */ 7720 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7721 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7722 vcpu->arch.mmio_access, 0, access))) { 7723 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7724 (gva & (PAGE_SIZE - 1)); 7725 trace_vcpu_match_mmio(gva, *gpa, write, false); 7726 return 1; 7727 } 7728 7729 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7730 7731 if (*gpa == INVALID_GPA) 7732 return -1; 7733 7734 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7735 } 7736 7737 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7738 const void *val, int bytes) 7739 { 7740 int ret; 7741 7742 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7743 if (ret < 0) 7744 return 0; 7745 kvm_page_track_write(vcpu, gpa, val, bytes); 7746 return 1; 7747 } 7748 7749 struct read_write_emulator_ops { 7750 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7751 int bytes); 7752 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7753 void *val, int bytes); 7754 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7755 int bytes, void *val); 7756 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7757 void *val, int bytes); 7758 bool write; 7759 }; 7760 7761 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7762 { 7763 if (vcpu->mmio_read_completed) { 7764 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7765 vcpu->mmio_fragments[0].gpa, val); 7766 vcpu->mmio_read_completed = 0; 7767 return 1; 7768 } 7769 7770 return 0; 7771 } 7772 7773 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7774 void *val, int bytes) 7775 { 7776 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7777 } 7778 7779 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7780 void *val, int bytes) 7781 { 7782 return emulator_write_phys(vcpu, gpa, val, bytes); 7783 } 7784 7785 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7786 { 7787 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7788 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7789 } 7790 7791 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7792 void *val, int bytes) 7793 { 7794 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7795 return X86EMUL_IO_NEEDED; 7796 } 7797 7798 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7799 void *val, int bytes) 7800 { 7801 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7802 7803 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7804 return X86EMUL_CONTINUE; 7805 } 7806 7807 static const struct read_write_emulator_ops read_emultor = { 7808 .read_write_prepare = read_prepare, 7809 .read_write_emulate = read_emulate, 7810 .read_write_mmio = vcpu_mmio_read, 7811 .read_write_exit_mmio = read_exit_mmio, 7812 }; 7813 7814 static const struct read_write_emulator_ops write_emultor = { 7815 .read_write_emulate = write_emulate, 7816 .read_write_mmio = write_mmio, 7817 .read_write_exit_mmio = write_exit_mmio, 7818 .write = true, 7819 }; 7820 7821 static int emulator_read_write_onepage(unsigned long addr, void *val, 7822 unsigned int bytes, 7823 struct x86_exception *exception, 7824 struct kvm_vcpu *vcpu, 7825 const struct read_write_emulator_ops *ops) 7826 { 7827 gpa_t gpa; 7828 int handled, ret; 7829 bool write = ops->write; 7830 struct kvm_mmio_fragment *frag; 7831 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7832 7833 /* 7834 * If the exit was due to a NPF we may already have a GPA. 7835 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7836 * Note, this cannot be used on string operations since string 7837 * operation using rep will only have the initial GPA from the NPF 7838 * occurred. 7839 */ 7840 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7841 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7842 gpa = ctxt->gpa_val; 7843 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7844 } else { 7845 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7846 if (ret < 0) 7847 return X86EMUL_PROPAGATE_FAULT; 7848 } 7849 7850 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7851 return X86EMUL_CONTINUE; 7852 7853 /* 7854 * Is this MMIO handled locally? 7855 */ 7856 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7857 if (handled == bytes) 7858 return X86EMUL_CONTINUE; 7859 7860 gpa += handled; 7861 bytes -= handled; 7862 val += handled; 7863 7864 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7865 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7866 frag->gpa = gpa; 7867 frag->data = val; 7868 frag->len = bytes; 7869 return X86EMUL_CONTINUE; 7870 } 7871 7872 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7873 unsigned long addr, 7874 void *val, unsigned int bytes, 7875 struct x86_exception *exception, 7876 const struct read_write_emulator_ops *ops) 7877 { 7878 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7879 gpa_t gpa; 7880 int rc; 7881 7882 if (ops->read_write_prepare && 7883 ops->read_write_prepare(vcpu, val, bytes)) 7884 return X86EMUL_CONTINUE; 7885 7886 vcpu->mmio_nr_fragments = 0; 7887 7888 /* Crossing a page boundary? */ 7889 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7890 int now; 7891 7892 now = -addr & ~PAGE_MASK; 7893 rc = emulator_read_write_onepage(addr, val, now, exception, 7894 vcpu, ops); 7895 7896 if (rc != X86EMUL_CONTINUE) 7897 return rc; 7898 addr += now; 7899 if (ctxt->mode != X86EMUL_MODE_PROT64) 7900 addr = (u32)addr; 7901 val += now; 7902 bytes -= now; 7903 } 7904 7905 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7906 vcpu, ops); 7907 if (rc != X86EMUL_CONTINUE) 7908 return rc; 7909 7910 if (!vcpu->mmio_nr_fragments) 7911 return X86EMUL_CONTINUE; 7912 7913 gpa = vcpu->mmio_fragments[0].gpa; 7914 7915 vcpu->mmio_needed = 1; 7916 vcpu->mmio_cur_fragment = 0; 7917 7918 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7919 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7920 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7921 vcpu->run->mmio.phys_addr = gpa; 7922 7923 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7924 } 7925 7926 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7927 unsigned long addr, 7928 void *val, 7929 unsigned int bytes, 7930 struct x86_exception *exception) 7931 { 7932 return emulator_read_write(ctxt, addr, val, bytes, 7933 exception, &read_emultor); 7934 } 7935 7936 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7937 unsigned long addr, 7938 const void *val, 7939 unsigned int bytes, 7940 struct x86_exception *exception) 7941 { 7942 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7943 exception, &write_emultor); 7944 } 7945 7946 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 7947 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 7948 7949 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7950 unsigned long addr, 7951 const void *old, 7952 const void *new, 7953 unsigned int bytes, 7954 struct x86_exception *exception) 7955 { 7956 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7957 u64 page_line_mask; 7958 unsigned long hva; 7959 gpa_t gpa; 7960 int r; 7961 7962 /* guests cmpxchg8b have to be emulated atomically */ 7963 if (bytes > 8 || (bytes & (bytes - 1))) 7964 goto emul_write; 7965 7966 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7967 7968 if (gpa == INVALID_GPA || 7969 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7970 goto emul_write; 7971 7972 /* 7973 * Emulate the atomic as a straight write to avoid #AC if SLD is 7974 * enabled in the host and the access splits a cache line. 7975 */ 7976 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7977 page_line_mask = ~(cache_line_size() - 1); 7978 else 7979 page_line_mask = PAGE_MASK; 7980 7981 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7982 goto emul_write; 7983 7984 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 7985 if (kvm_is_error_hva(hva)) 7986 goto emul_write; 7987 7988 hva += offset_in_page(gpa); 7989 7990 switch (bytes) { 7991 case 1: 7992 r = emulator_try_cmpxchg_user(u8, hva, old, new); 7993 break; 7994 case 2: 7995 r = emulator_try_cmpxchg_user(u16, hva, old, new); 7996 break; 7997 case 4: 7998 r = emulator_try_cmpxchg_user(u32, hva, old, new); 7999 break; 8000 case 8: 8001 r = emulator_try_cmpxchg_user(u64, hva, old, new); 8002 break; 8003 default: 8004 BUG(); 8005 } 8006 8007 if (r < 0) 8008 return X86EMUL_UNHANDLEABLE; 8009 8010 /* 8011 * Mark the page dirty _before_ checking whether or not the CMPXCHG was 8012 * successful, as the old value is written back on failure. Note, for 8013 * live migration, this is unnecessarily conservative as CMPXCHG writes 8014 * back the original value and the access is atomic, but KVM's ABI is 8015 * that all writes are dirty logged, regardless of the value written. 8016 */ 8017 kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa)); 8018 8019 if (r) 8020 return X86EMUL_CMPXCHG_FAILED; 8021 8022 kvm_page_track_write(vcpu, gpa, new, bytes); 8023 8024 return X86EMUL_CONTINUE; 8025 8026 emul_write: 8027 pr_warn_once("emulating exchange as write\n"); 8028 8029 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 8030 } 8031 8032 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 8033 unsigned short port, void *data, 8034 unsigned int count, bool in) 8035 { 8036 unsigned i; 8037 int r; 8038 8039 WARN_ON_ONCE(vcpu->arch.pio.count); 8040 for (i = 0; i < count; i++) { 8041 if (in) 8042 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 8043 else 8044 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 8045 8046 if (r) { 8047 if (i == 0) 8048 goto userspace_io; 8049 8050 /* 8051 * Userspace must have unregistered the device while PIO 8052 * was running. Drop writes / read as 0. 8053 */ 8054 if (in) 8055 memset(data, 0, size * (count - i)); 8056 break; 8057 } 8058 8059 data += size; 8060 } 8061 return 1; 8062 8063 userspace_io: 8064 vcpu->arch.pio.port = port; 8065 vcpu->arch.pio.in = in; 8066 vcpu->arch.pio.count = count; 8067 vcpu->arch.pio.size = size; 8068 8069 if (in) 8070 memset(vcpu->arch.pio_data, 0, size * count); 8071 else 8072 memcpy(vcpu->arch.pio_data, data, size * count); 8073 8074 vcpu->run->exit_reason = KVM_EXIT_IO; 8075 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 8076 vcpu->run->io.size = size; 8077 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 8078 vcpu->run->io.count = count; 8079 vcpu->run->io.port = port; 8080 return 0; 8081 } 8082 8083 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 8084 unsigned short port, void *val, unsigned int count) 8085 { 8086 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 8087 if (r) 8088 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 8089 8090 return r; 8091 } 8092 8093 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 8094 { 8095 int size = vcpu->arch.pio.size; 8096 unsigned int count = vcpu->arch.pio.count; 8097 memcpy(val, vcpu->arch.pio_data, size * count); 8098 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 8099 vcpu->arch.pio.count = 0; 8100 } 8101 8102 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 8103 int size, unsigned short port, void *val, 8104 unsigned int count) 8105 { 8106 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8107 if (vcpu->arch.pio.count) { 8108 /* 8109 * Complete a previous iteration that required userspace I/O. 8110 * Note, @count isn't guaranteed to match pio.count as userspace 8111 * can modify ECX before rerunning the vCPU. Ignore any such 8112 * shenanigans as KVM doesn't support modifying the rep count, 8113 * and the emulator ensures @count doesn't overflow the buffer. 8114 */ 8115 complete_emulator_pio_in(vcpu, val); 8116 return 1; 8117 } 8118 8119 return emulator_pio_in(vcpu, size, port, val, count); 8120 } 8121 8122 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 8123 unsigned short port, const void *val, 8124 unsigned int count) 8125 { 8126 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 8127 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 8128 } 8129 8130 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 8131 int size, unsigned short port, 8132 const void *val, unsigned int count) 8133 { 8134 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 8135 } 8136 8137 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 8138 { 8139 return kvm_x86_call(get_segment_base)(vcpu, seg); 8140 } 8141 8142 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 8143 { 8144 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 8145 } 8146 8147 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 8148 { 8149 if (!need_emulate_wbinvd(vcpu)) 8150 return X86EMUL_CONTINUE; 8151 8152 if (kvm_x86_call(has_wbinvd_exit)()) { 8153 int cpu = get_cpu(); 8154 8155 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 8156 wbinvd_on_cpus_mask(vcpu->arch.wbinvd_dirty_mask); 8157 put_cpu(); 8158 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 8159 } else 8160 wbinvd(); 8161 return X86EMUL_CONTINUE; 8162 } 8163 8164 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 8165 { 8166 kvm_emulate_wbinvd_noskip(vcpu); 8167 return kvm_skip_emulated_instruction(vcpu); 8168 } 8169 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 8170 8171 8172 8173 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 8174 { 8175 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 8176 } 8177 8178 static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr) 8179 { 8180 return kvm_get_dr(emul_to_vcpu(ctxt), dr); 8181 } 8182 8183 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 8184 unsigned long value) 8185 { 8186 8187 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 8188 } 8189 8190 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 8191 { 8192 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 8193 } 8194 8195 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 8196 { 8197 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8198 unsigned long value; 8199 8200 switch (cr) { 8201 case 0: 8202 value = kvm_read_cr0(vcpu); 8203 break; 8204 case 2: 8205 value = vcpu->arch.cr2; 8206 break; 8207 case 3: 8208 value = kvm_read_cr3(vcpu); 8209 break; 8210 case 4: 8211 value = kvm_read_cr4(vcpu); 8212 break; 8213 case 8: 8214 value = kvm_get_cr8(vcpu); 8215 break; 8216 default: 8217 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8218 return 0; 8219 } 8220 8221 return value; 8222 } 8223 8224 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 8225 { 8226 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8227 int res = 0; 8228 8229 switch (cr) { 8230 case 0: 8231 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 8232 break; 8233 case 2: 8234 vcpu->arch.cr2 = val; 8235 break; 8236 case 3: 8237 res = kvm_set_cr3(vcpu, val); 8238 break; 8239 case 4: 8240 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 8241 break; 8242 case 8: 8243 res = kvm_set_cr8(vcpu, val); 8244 break; 8245 default: 8246 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8247 res = -1; 8248 } 8249 8250 return res; 8251 } 8252 8253 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 8254 { 8255 return kvm_x86_call(get_cpl)(emul_to_vcpu(ctxt)); 8256 } 8257 8258 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8259 { 8260 kvm_x86_call(get_gdt)(emul_to_vcpu(ctxt), dt); 8261 } 8262 8263 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8264 { 8265 kvm_x86_call(get_idt)(emul_to_vcpu(ctxt), dt); 8266 } 8267 8268 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8269 { 8270 kvm_x86_call(set_gdt)(emul_to_vcpu(ctxt), dt); 8271 } 8272 8273 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8274 { 8275 kvm_x86_call(set_idt)(emul_to_vcpu(ctxt), dt); 8276 } 8277 8278 static unsigned long emulator_get_cached_segment_base( 8279 struct x86_emulate_ctxt *ctxt, int seg) 8280 { 8281 return get_segment_base(emul_to_vcpu(ctxt), seg); 8282 } 8283 8284 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 8285 struct desc_struct *desc, u32 *base3, 8286 int seg) 8287 { 8288 struct kvm_segment var; 8289 8290 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 8291 *selector = var.selector; 8292 8293 if (var.unusable) { 8294 memset(desc, 0, sizeof(*desc)); 8295 if (base3) 8296 *base3 = 0; 8297 return false; 8298 } 8299 8300 if (var.g) 8301 var.limit >>= 12; 8302 set_desc_limit(desc, var.limit); 8303 set_desc_base(desc, (unsigned long)var.base); 8304 #ifdef CONFIG_X86_64 8305 if (base3) 8306 *base3 = var.base >> 32; 8307 #endif 8308 desc->type = var.type; 8309 desc->s = var.s; 8310 desc->dpl = var.dpl; 8311 desc->p = var.present; 8312 desc->avl = var.avl; 8313 desc->l = var.l; 8314 desc->d = var.db; 8315 desc->g = var.g; 8316 8317 return true; 8318 } 8319 8320 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8321 struct desc_struct *desc, u32 base3, 8322 int seg) 8323 { 8324 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8325 struct kvm_segment var; 8326 8327 var.selector = selector; 8328 var.base = get_desc_base(desc); 8329 #ifdef CONFIG_X86_64 8330 var.base |= ((u64)base3) << 32; 8331 #endif 8332 var.limit = get_desc_limit(desc); 8333 if (desc->g) 8334 var.limit = (var.limit << 12) | 0xfff; 8335 var.type = desc->type; 8336 var.dpl = desc->dpl; 8337 var.db = desc->d; 8338 var.s = desc->s; 8339 var.l = desc->l; 8340 var.g = desc->g; 8341 var.avl = desc->avl; 8342 var.present = desc->p; 8343 var.unusable = !var.present; 8344 var.padding = 0; 8345 8346 kvm_set_segment(vcpu, &var, seg); 8347 return; 8348 } 8349 8350 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8351 u32 msr_index, u64 *pdata) 8352 { 8353 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8354 int r; 8355 8356 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8357 if (r < 0) 8358 return X86EMUL_UNHANDLEABLE; 8359 8360 if (r) { 8361 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8362 complete_emulated_rdmsr, r)) 8363 return X86EMUL_IO_NEEDED; 8364 8365 trace_kvm_msr_read_ex(msr_index); 8366 return X86EMUL_PROPAGATE_FAULT; 8367 } 8368 8369 trace_kvm_msr_read(msr_index, *pdata); 8370 return X86EMUL_CONTINUE; 8371 } 8372 8373 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8374 u32 msr_index, u64 data) 8375 { 8376 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8377 int r; 8378 8379 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8380 if (r < 0) 8381 return X86EMUL_UNHANDLEABLE; 8382 8383 if (r) { 8384 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8385 complete_emulated_msr_access, r)) 8386 return X86EMUL_IO_NEEDED; 8387 8388 trace_kvm_msr_write_ex(msr_index, data); 8389 return X86EMUL_PROPAGATE_FAULT; 8390 } 8391 8392 trace_kvm_msr_write(msr_index, data); 8393 return X86EMUL_CONTINUE; 8394 } 8395 8396 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8397 u32 msr_index, u64 *pdata) 8398 { 8399 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8400 } 8401 8402 static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc) 8403 { 8404 return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc); 8405 } 8406 8407 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8408 u32 pmc, u64 *pdata) 8409 { 8410 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8411 } 8412 8413 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8414 { 8415 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8416 } 8417 8418 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8419 struct x86_instruction_info *info, 8420 enum x86_intercept_stage stage) 8421 { 8422 return kvm_x86_call(check_intercept)(emul_to_vcpu(ctxt), info, stage, 8423 &ctxt->exception); 8424 } 8425 8426 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8427 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8428 bool exact_only) 8429 { 8430 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8431 } 8432 8433 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8434 { 8435 return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8436 } 8437 8438 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8439 { 8440 return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8441 } 8442 8443 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8444 { 8445 return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8446 } 8447 8448 static bool emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt *ctxt) 8449 { 8450 return guest_cpuid_is_intel_compatible(emul_to_vcpu(ctxt)); 8451 } 8452 8453 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8454 { 8455 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8456 } 8457 8458 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8459 { 8460 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8461 } 8462 8463 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8464 { 8465 kvm_x86_call(set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8466 } 8467 8468 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt) 8469 { 8470 return is_smm(emul_to_vcpu(ctxt)); 8471 } 8472 8473 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt) 8474 { 8475 return is_guest_mode(emul_to_vcpu(ctxt)); 8476 } 8477 8478 #ifndef CONFIG_KVM_SMM 8479 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8480 { 8481 WARN_ON_ONCE(1); 8482 return X86EMUL_UNHANDLEABLE; 8483 } 8484 #endif 8485 8486 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8487 { 8488 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8489 } 8490 8491 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8492 { 8493 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8494 } 8495 8496 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8497 { 8498 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8499 8500 if (!kvm->vm_bugged) 8501 kvm_vm_bugged(kvm); 8502 } 8503 8504 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt, 8505 gva_t addr, unsigned int flags) 8506 { 8507 if (!kvm_x86_ops.get_untagged_addr) 8508 return addr; 8509 8510 return kvm_x86_call(get_untagged_addr)(emul_to_vcpu(ctxt), 8511 addr, flags); 8512 } 8513 8514 static bool emulator_is_canonical_addr(struct x86_emulate_ctxt *ctxt, 8515 gva_t addr, unsigned int flags) 8516 { 8517 return !is_noncanonical_address(addr, emul_to_vcpu(ctxt), flags); 8518 } 8519 8520 static const struct x86_emulate_ops emulate_ops = { 8521 .vm_bugged = emulator_vm_bugged, 8522 .read_gpr = emulator_read_gpr, 8523 .write_gpr = emulator_write_gpr, 8524 .read_std = emulator_read_std, 8525 .write_std = emulator_write_std, 8526 .fetch = kvm_fetch_guest_virt, 8527 .read_emulated = emulator_read_emulated, 8528 .write_emulated = emulator_write_emulated, 8529 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8530 .invlpg = emulator_invlpg, 8531 .pio_in_emulated = emulator_pio_in_emulated, 8532 .pio_out_emulated = emulator_pio_out_emulated, 8533 .get_segment = emulator_get_segment, 8534 .set_segment = emulator_set_segment, 8535 .get_cached_segment_base = emulator_get_cached_segment_base, 8536 .get_gdt = emulator_get_gdt, 8537 .get_idt = emulator_get_idt, 8538 .set_gdt = emulator_set_gdt, 8539 .set_idt = emulator_set_idt, 8540 .get_cr = emulator_get_cr, 8541 .set_cr = emulator_set_cr, 8542 .cpl = emulator_get_cpl, 8543 .get_dr = emulator_get_dr, 8544 .set_dr = emulator_set_dr, 8545 .set_msr_with_filter = emulator_set_msr_with_filter, 8546 .get_msr_with_filter = emulator_get_msr_with_filter, 8547 .get_msr = emulator_get_msr, 8548 .check_rdpmc_early = emulator_check_rdpmc_early, 8549 .read_pmc = emulator_read_pmc, 8550 .halt = emulator_halt, 8551 .wbinvd = emulator_wbinvd, 8552 .fix_hypercall = emulator_fix_hypercall, 8553 .intercept = emulator_intercept, 8554 .get_cpuid = emulator_get_cpuid, 8555 .guest_has_movbe = emulator_guest_has_movbe, 8556 .guest_has_fxsr = emulator_guest_has_fxsr, 8557 .guest_has_rdpid = emulator_guest_has_rdpid, 8558 .guest_cpuid_is_intel_compatible = emulator_guest_cpuid_is_intel_compatible, 8559 .set_nmi_mask = emulator_set_nmi_mask, 8560 .is_smm = emulator_is_smm, 8561 .is_guest_mode = emulator_is_guest_mode, 8562 .leave_smm = emulator_leave_smm, 8563 .triple_fault = emulator_triple_fault, 8564 .set_xcr = emulator_set_xcr, 8565 .get_untagged_addr = emulator_get_untagged_addr, 8566 .is_canonical_addr = emulator_is_canonical_addr, 8567 }; 8568 8569 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8570 { 8571 u32 int_shadow = kvm_x86_call(get_interrupt_shadow)(vcpu); 8572 /* 8573 * an sti; sti; sequence only disable interrupts for the first 8574 * instruction. So, if the last instruction, be it emulated or 8575 * not, left the system with the INT_STI flag enabled, it 8576 * means that the last instruction is an sti. We should not 8577 * leave the flag on in this case. The same goes for mov ss 8578 */ 8579 if (int_shadow & mask) 8580 mask = 0; 8581 if (unlikely(int_shadow || mask)) { 8582 kvm_x86_call(set_interrupt_shadow)(vcpu, mask); 8583 if (!mask) 8584 kvm_make_request(KVM_REQ_EVENT, vcpu); 8585 } 8586 } 8587 8588 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8589 { 8590 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8591 8592 if (ctxt->exception.vector == PF_VECTOR) 8593 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8594 else if (ctxt->exception.error_code_valid) 8595 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8596 ctxt->exception.error_code); 8597 else 8598 kvm_queue_exception(vcpu, ctxt->exception.vector); 8599 } 8600 8601 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8602 { 8603 struct x86_emulate_ctxt *ctxt; 8604 8605 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8606 if (!ctxt) { 8607 pr_err("failed to allocate vcpu's emulator\n"); 8608 return NULL; 8609 } 8610 8611 ctxt->vcpu = vcpu; 8612 ctxt->ops = &emulate_ops; 8613 vcpu->arch.emulate_ctxt = ctxt; 8614 8615 return ctxt; 8616 } 8617 8618 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8619 { 8620 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8621 int cs_db, cs_l; 8622 8623 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8624 8625 ctxt->gpa_available = false; 8626 ctxt->eflags = kvm_get_rflags(vcpu); 8627 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8628 8629 ctxt->eip = kvm_rip_read(vcpu); 8630 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8631 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8632 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8633 cs_db ? X86EMUL_MODE_PROT32 : 8634 X86EMUL_MODE_PROT16; 8635 ctxt->interruptibility = 0; 8636 ctxt->have_exception = false; 8637 ctxt->exception.vector = -1; 8638 ctxt->perm_ok = false; 8639 8640 init_decode_cache(ctxt); 8641 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8642 } 8643 8644 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8645 { 8646 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8647 int ret; 8648 8649 init_emulate_ctxt(vcpu); 8650 8651 ctxt->op_bytes = 2; 8652 ctxt->ad_bytes = 2; 8653 ctxt->_eip = ctxt->eip + inc_eip; 8654 ret = emulate_int_real(ctxt, irq); 8655 8656 if (ret != X86EMUL_CONTINUE) { 8657 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8658 } else { 8659 ctxt->eip = ctxt->_eip; 8660 kvm_rip_write(vcpu, ctxt->eip); 8661 kvm_set_rflags(vcpu, ctxt->eflags); 8662 } 8663 } 8664 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8665 8666 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8667 u8 ndata, u8 *insn_bytes, u8 insn_size) 8668 { 8669 struct kvm_run *run = vcpu->run; 8670 u64 info[5]; 8671 u8 info_start; 8672 8673 /* 8674 * Zero the whole array used to retrieve the exit info, as casting to 8675 * u32 for select entries will leave some chunks uninitialized. 8676 */ 8677 memset(&info, 0, sizeof(info)); 8678 8679 kvm_x86_call(get_exit_info)(vcpu, (u32 *)&info[0], &info[1], &info[2], 8680 (u32 *)&info[3], (u32 *)&info[4]); 8681 8682 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8683 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8684 8685 /* 8686 * There's currently space for 13 entries, but 5 are used for the exit 8687 * reason and info. Restrict to 4 to reduce the maintenance burden 8688 * when expanding kvm_run.emulation_failure in the future. 8689 */ 8690 if (WARN_ON_ONCE(ndata > 4)) 8691 ndata = 4; 8692 8693 /* Always include the flags as a 'data' entry. */ 8694 info_start = 1; 8695 run->emulation_failure.flags = 0; 8696 8697 if (insn_size) { 8698 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8699 sizeof(run->emulation_failure.insn_bytes) != 16)); 8700 info_start += 2; 8701 run->emulation_failure.flags |= 8702 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8703 run->emulation_failure.insn_size = insn_size; 8704 memset(run->emulation_failure.insn_bytes, 0x90, 8705 sizeof(run->emulation_failure.insn_bytes)); 8706 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8707 } 8708 8709 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8710 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8711 ndata * sizeof(data[0])); 8712 8713 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8714 } 8715 8716 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8717 { 8718 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8719 8720 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8721 ctxt->fetch.end - ctxt->fetch.data); 8722 } 8723 8724 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8725 u8 ndata) 8726 { 8727 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8728 } 8729 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8730 8731 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8732 { 8733 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8734 } 8735 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8736 8737 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa) 8738 { 8739 u32 reason, intr_info, error_code; 8740 struct kvm_run *run = vcpu->run; 8741 u64 info1, info2; 8742 int ndata = 0; 8743 8744 kvm_x86_call(get_exit_info)(vcpu, &reason, &info1, &info2, 8745 &intr_info, &error_code); 8746 8747 run->internal.data[ndata++] = info2; 8748 run->internal.data[ndata++] = reason; 8749 run->internal.data[ndata++] = info1; 8750 run->internal.data[ndata++] = gpa; 8751 run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu; 8752 8753 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8754 run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; 8755 run->internal.ndata = ndata; 8756 } 8757 EXPORT_SYMBOL_GPL(kvm_prepare_event_vectoring_exit); 8758 8759 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8760 { 8761 struct kvm *kvm = vcpu->kvm; 8762 8763 ++vcpu->stat.insn_emulation_fail; 8764 trace_kvm_emulate_insn_failed(vcpu); 8765 8766 if (emulation_type & EMULTYPE_VMWARE_GP) { 8767 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8768 return 1; 8769 } 8770 8771 if (kvm->arch.exit_on_emulation_error || 8772 (emulation_type & EMULTYPE_SKIP)) { 8773 prepare_emulation_ctxt_failure_exit(vcpu); 8774 return 0; 8775 } 8776 8777 kvm_queue_exception(vcpu, UD_VECTOR); 8778 8779 if (!is_guest_mode(vcpu) && kvm_x86_call(get_cpl)(vcpu) == 0) { 8780 prepare_emulation_ctxt_failure_exit(vcpu); 8781 return 0; 8782 } 8783 8784 return 1; 8785 } 8786 8787 static bool kvm_unprotect_and_retry_on_failure(struct kvm_vcpu *vcpu, 8788 gpa_t cr2_or_gpa, 8789 int emulation_type) 8790 { 8791 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8792 return false; 8793 8794 /* 8795 * If the failed instruction faulted on an access to page tables that 8796 * are used to translate any part of the instruction, KVM can't resolve 8797 * the issue by unprotecting the gfn, as zapping the shadow page will 8798 * result in the instruction taking a !PRESENT page fault and thus put 8799 * the vCPU into an infinite loop of page faults. E.g. KVM will create 8800 * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and 8801 * then zap the SPTE to unprotect the gfn, and then do it all over 8802 * again. Report the error to userspace. 8803 */ 8804 if (emulation_type & EMULTYPE_WRITE_PF_TO_SP) 8805 return false; 8806 8807 /* 8808 * If emulation may have been triggered by a write to a shadowed page 8809 * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the 8810 * guest to let the CPU re-execute the instruction in the hope that the 8811 * CPU can cleanly execute the instruction that KVM failed to emulate. 8812 */ 8813 __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, true); 8814 8815 /* 8816 * Retry even if _this_ vCPU didn't unprotect the gfn, as it's possible 8817 * all SPTEs were already zapped by a different task. The alternative 8818 * is to report the error to userspace and likely terminate the guest, 8819 * and the last_retry_{eip,addr} checks will prevent retrying the page 8820 * fault indefinitely, i.e. there's nothing to lose by retrying. 8821 */ 8822 return true; 8823 } 8824 8825 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8826 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8827 8828 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8829 unsigned long *db) 8830 { 8831 u32 dr6 = 0; 8832 int i; 8833 u32 enable, rwlen; 8834 8835 enable = dr7; 8836 rwlen = dr7 >> 16; 8837 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8838 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8839 dr6 |= (1 << i); 8840 return dr6; 8841 } 8842 8843 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8844 { 8845 struct kvm_run *kvm_run = vcpu->run; 8846 8847 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8848 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8849 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8850 kvm_run->debug.arch.exception = DB_VECTOR; 8851 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8852 return 0; 8853 } 8854 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8855 return 1; 8856 } 8857 8858 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8859 { 8860 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu); 8861 int r; 8862 8863 r = kvm_x86_call(skip_emulated_instruction)(vcpu); 8864 if (unlikely(!r)) 8865 return 0; 8866 8867 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED); 8868 8869 /* 8870 * rflags is the old, "raw" value of the flags. The new value has 8871 * not been saved yet. 8872 * 8873 * This is correct even for TF set by the guest, because "the 8874 * processor will not generate this exception after the instruction 8875 * that sets the TF flag". 8876 */ 8877 if (unlikely(rflags & X86_EFLAGS_TF)) 8878 r = kvm_vcpu_do_singlestep(vcpu); 8879 return r; 8880 } 8881 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8882 8883 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 8884 { 8885 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 8886 return true; 8887 8888 /* 8889 * Intel compatible CPUs inhibit code #DBs when MOV/POP SS blocking is 8890 * active, but AMD compatible CPUs do not. 8891 */ 8892 if (!guest_cpuid_is_intel_compatible(vcpu)) 8893 return false; 8894 8895 return kvm_x86_call(get_interrupt_shadow)(vcpu) & KVM_X86_SHADOW_INT_MOV_SS; 8896 } 8897 8898 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 8899 int emulation_type, int *r) 8900 { 8901 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 8902 8903 /* 8904 * Do not check for code breakpoints if hardware has already done the 8905 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 8906 * the instruction has passed all exception checks, and all intercepted 8907 * exceptions that trigger emulation have lower priority than code 8908 * breakpoints, i.e. the fact that the intercepted exception occurred 8909 * means any code breakpoints have already been serviced. 8910 * 8911 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 8912 * hardware has checked the RIP of the magic prefix, but not the RIP of 8913 * the instruction being emulated. The intent of forced emulation is 8914 * to behave as if KVM intercepted the instruction without an exception 8915 * and without a prefix. 8916 */ 8917 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 8918 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 8919 return false; 8920 8921 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8922 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8923 struct kvm_run *kvm_run = vcpu->run; 8924 unsigned long eip = kvm_get_linear_rip(vcpu); 8925 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8926 vcpu->arch.guest_debug_dr7, 8927 vcpu->arch.eff_db); 8928 8929 if (dr6 != 0) { 8930 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8931 kvm_run->debug.arch.pc = eip; 8932 kvm_run->debug.arch.exception = DB_VECTOR; 8933 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8934 *r = 0; 8935 return true; 8936 } 8937 } 8938 8939 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8940 !kvm_is_code_breakpoint_inhibited(vcpu)) { 8941 unsigned long eip = kvm_get_linear_rip(vcpu); 8942 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8943 vcpu->arch.dr7, 8944 vcpu->arch.db); 8945 8946 if (dr6 != 0) { 8947 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8948 *r = 1; 8949 return true; 8950 } 8951 } 8952 8953 return false; 8954 } 8955 8956 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 8957 { 8958 switch (ctxt->opcode_len) { 8959 case 1: 8960 switch (ctxt->b) { 8961 case 0xe4: /* IN */ 8962 case 0xe5: 8963 case 0xec: 8964 case 0xed: 8965 case 0xe6: /* OUT */ 8966 case 0xe7: 8967 case 0xee: 8968 case 0xef: 8969 case 0x6c: /* INS */ 8970 case 0x6d: 8971 case 0x6e: /* OUTS */ 8972 case 0x6f: 8973 return true; 8974 } 8975 break; 8976 case 2: 8977 switch (ctxt->b) { 8978 case 0x33: /* RDPMC */ 8979 return true; 8980 } 8981 break; 8982 } 8983 8984 return false; 8985 } 8986 8987 /* 8988 * Decode an instruction for emulation. The caller is responsible for handling 8989 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 8990 * (and wrong) when emulating on an intercepted fault-like exception[*], as 8991 * code breakpoints have higher priority and thus have already been done by 8992 * hardware. 8993 * 8994 * [*] Except #MC, which is higher priority, but KVM should never emulate in 8995 * response to a machine check. 8996 */ 8997 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 8998 void *insn, int insn_len) 8999 { 9000 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9001 int r; 9002 9003 init_emulate_ctxt(vcpu); 9004 9005 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 9006 9007 trace_kvm_emulate_insn_start(vcpu); 9008 ++vcpu->stat.insn_emulation; 9009 9010 return r; 9011 } 9012 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 9013 9014 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 9015 int emulation_type, void *insn, int insn_len) 9016 { 9017 int r; 9018 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9019 bool writeback = true; 9020 9021 if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) && 9022 (WARN_ON_ONCE(is_guest_mode(vcpu)) || 9023 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))) 9024 emulation_type &= ~EMULTYPE_ALLOW_RETRY_PF; 9025 9026 r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len); 9027 if (r != X86EMUL_CONTINUE) { 9028 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT) 9029 return 1; 9030 9031 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa, 9032 emulation_type)) 9033 return 1; 9034 9035 if (r == X86EMUL_UNHANDLEABLE_VECTORING) { 9036 kvm_prepare_event_vectoring_exit(vcpu, cr2_or_gpa); 9037 return 0; 9038 } 9039 9040 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE); 9041 return handle_emulation_failure(vcpu, emulation_type); 9042 } 9043 9044 vcpu->arch.l1tf_flush_l1d = true; 9045 9046 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 9047 kvm_clear_exception_queue(vcpu); 9048 9049 /* 9050 * Return immediately if RIP hits a code breakpoint, such #DBs 9051 * are fault-like and are higher priority than any faults on 9052 * the code fetch itself. 9053 */ 9054 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 9055 return r; 9056 9057 r = x86_decode_emulated_instruction(vcpu, emulation_type, 9058 insn, insn_len); 9059 if (r != EMULATION_OK) { 9060 if ((emulation_type & EMULTYPE_TRAP_UD) || 9061 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 9062 kvm_queue_exception(vcpu, UD_VECTOR); 9063 return 1; 9064 } 9065 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa, 9066 emulation_type)) 9067 return 1; 9068 9069 if (ctxt->have_exception && 9070 !(emulation_type & EMULTYPE_SKIP)) { 9071 /* 9072 * #UD should result in just EMULATION_FAILED, and trap-like 9073 * exception should not be encountered during decode. 9074 */ 9075 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 9076 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 9077 inject_emulated_exception(vcpu); 9078 return 1; 9079 } 9080 return handle_emulation_failure(vcpu, emulation_type); 9081 } 9082 } 9083 9084 if ((emulation_type & EMULTYPE_VMWARE_GP) && 9085 !is_vmware_backdoor_opcode(ctxt)) { 9086 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 9087 return 1; 9088 } 9089 9090 /* 9091 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 9092 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 9093 * The caller is responsible for updating interruptibility state and 9094 * injecting single-step #DBs. 9095 */ 9096 if (emulation_type & EMULTYPE_SKIP) { 9097 if (ctxt->mode != X86EMUL_MODE_PROT64) 9098 ctxt->eip = (u32)ctxt->_eip; 9099 else 9100 ctxt->eip = ctxt->_eip; 9101 9102 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 9103 r = 1; 9104 goto writeback; 9105 } 9106 9107 kvm_rip_write(vcpu, ctxt->eip); 9108 if (ctxt->eflags & X86_EFLAGS_RF) 9109 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 9110 return 1; 9111 } 9112 9113 /* 9114 * If emulation was caused by a write-protection #PF on a non-page_table 9115 * writing instruction, try to unprotect the gfn, i.e. zap shadow pages, 9116 * and retry the instruction, as the vCPU is likely no longer using the 9117 * gfn as a page table. 9118 */ 9119 if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) && 9120 !x86_page_table_writing_insn(ctxt) && 9121 kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa)) 9122 return 1; 9123 9124 /* this is needed for vmware backdoor interface to work since it 9125 changes registers values during IO operation */ 9126 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 9127 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 9128 emulator_invalidate_register_cache(ctxt); 9129 } 9130 9131 restart: 9132 if (emulation_type & EMULTYPE_PF) { 9133 /* Save the faulting GPA (cr2) in the address field */ 9134 ctxt->exception.address = cr2_or_gpa; 9135 9136 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 9137 if (vcpu->arch.mmu->root_role.direct) { 9138 ctxt->gpa_available = true; 9139 ctxt->gpa_val = cr2_or_gpa; 9140 } 9141 } else { 9142 /* Sanitize the address out of an abundance of paranoia. */ 9143 ctxt->exception.address = 0; 9144 } 9145 9146 r = x86_emulate_insn(ctxt); 9147 9148 if (r == EMULATION_INTERCEPTED) 9149 return 1; 9150 9151 if (r == EMULATION_FAILED) { 9152 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa, 9153 emulation_type)) 9154 return 1; 9155 9156 return handle_emulation_failure(vcpu, emulation_type); 9157 } 9158 9159 if (ctxt->have_exception) { 9160 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write); 9161 vcpu->mmio_needed = false; 9162 r = 1; 9163 inject_emulated_exception(vcpu); 9164 } else if (vcpu->arch.pio.count) { 9165 if (!vcpu->arch.pio.in) { 9166 /* FIXME: return into emulator if single-stepping. */ 9167 vcpu->arch.pio.count = 0; 9168 } else { 9169 writeback = false; 9170 vcpu->arch.complete_userspace_io = complete_emulated_pio; 9171 } 9172 r = 0; 9173 } else if (vcpu->mmio_needed) { 9174 ++vcpu->stat.mmio_exits; 9175 9176 if (!vcpu->mmio_is_write) 9177 writeback = false; 9178 r = 0; 9179 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 9180 } else if (vcpu->arch.complete_userspace_io) { 9181 writeback = false; 9182 r = 0; 9183 } else if (r == EMULATION_RESTART) 9184 goto restart; 9185 else 9186 r = 1; 9187 9188 writeback: 9189 if (writeback) { 9190 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu); 9191 toggle_interruptibility(vcpu, ctxt->interruptibility); 9192 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 9193 9194 /* 9195 * Note, EXCPT_DB is assumed to be fault-like as the emulator 9196 * only supports code breakpoints and general detect #DB, both 9197 * of which are fault-like. 9198 */ 9199 if (!ctxt->have_exception || 9200 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 9201 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED); 9202 if (ctxt->is_branch) 9203 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED); 9204 kvm_rip_write(vcpu, ctxt->eip); 9205 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 9206 r = kvm_vcpu_do_singlestep(vcpu); 9207 kvm_x86_call(update_emulated_instruction)(vcpu); 9208 __kvm_set_rflags(vcpu, ctxt->eflags); 9209 } 9210 9211 /* 9212 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 9213 * do nothing, and it will be requested again as soon as 9214 * the shadow expires. But we still need to check here, 9215 * because POPF has no interrupt shadow. 9216 */ 9217 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 9218 kvm_make_request(KVM_REQ_EVENT, vcpu); 9219 } else 9220 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 9221 9222 return r; 9223 } 9224 9225 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 9226 { 9227 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 9228 } 9229 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 9230 9231 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 9232 void *insn, int insn_len) 9233 { 9234 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 9235 } 9236 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 9237 9238 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 9239 { 9240 vcpu->arch.pio.count = 0; 9241 return 1; 9242 } 9243 9244 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 9245 { 9246 vcpu->arch.pio.count = 0; 9247 9248 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip))) 9249 return 1; 9250 9251 return kvm_skip_emulated_instruction(vcpu); 9252 } 9253 9254 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 9255 unsigned short port) 9256 { 9257 unsigned long val = kvm_rax_read(vcpu); 9258 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 9259 9260 if (ret) 9261 return ret; 9262 9263 /* 9264 * Workaround userspace that relies on old KVM behavior of %rip being 9265 * incremented prior to exiting to userspace to handle "OUT 0x7e". 9266 */ 9267 if (port == 0x7e && 9268 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 9269 vcpu->arch.complete_userspace_io = 9270 complete_fast_pio_out_port_0x7e; 9271 kvm_skip_emulated_instruction(vcpu); 9272 } else { 9273 vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu); 9274 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 9275 } 9276 return 0; 9277 } 9278 9279 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 9280 { 9281 unsigned long val; 9282 9283 /* We should only ever be called with arch.pio.count equal to 1 */ 9284 BUG_ON(vcpu->arch.pio.count != 1); 9285 9286 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip))) { 9287 vcpu->arch.pio.count = 0; 9288 return 1; 9289 } 9290 9291 /* For size less than 4 we merge, else we zero extend */ 9292 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 9293 9294 complete_emulator_pio_in(vcpu, &val); 9295 kvm_rax_write(vcpu, val); 9296 9297 return kvm_skip_emulated_instruction(vcpu); 9298 } 9299 9300 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9301 unsigned short port) 9302 { 9303 unsigned long val; 9304 int ret; 9305 9306 /* For size less than 4 we merge, else we zero extend */ 9307 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9308 9309 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9310 if (ret) { 9311 kvm_rax_write(vcpu, val); 9312 return ret; 9313 } 9314 9315 vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu); 9316 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9317 9318 return 0; 9319 } 9320 9321 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9322 { 9323 int ret; 9324 9325 if (in) 9326 ret = kvm_fast_pio_in(vcpu, size, port); 9327 else 9328 ret = kvm_fast_pio_out(vcpu, size, port); 9329 return ret && kvm_skip_emulated_instruction(vcpu); 9330 } 9331 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9332 9333 static int kvmclock_cpu_down_prep(unsigned int cpu) 9334 { 9335 __this_cpu_write(cpu_tsc_khz, 0); 9336 return 0; 9337 } 9338 9339 static void tsc_khz_changed(void *data) 9340 { 9341 struct cpufreq_freqs *freq = data; 9342 unsigned long khz; 9343 9344 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9345 9346 if (data) 9347 khz = freq->new; 9348 else 9349 khz = cpufreq_quick_get(raw_smp_processor_id()); 9350 if (!khz) 9351 khz = tsc_khz; 9352 __this_cpu_write(cpu_tsc_khz, khz); 9353 } 9354 9355 #ifdef CONFIG_X86_64 9356 static void kvm_hyperv_tsc_notifier(void) 9357 { 9358 struct kvm *kvm; 9359 int cpu; 9360 9361 mutex_lock(&kvm_lock); 9362 list_for_each_entry(kvm, &vm_list, vm_list) 9363 kvm_make_mclock_inprogress_request(kvm); 9364 9365 /* no guest entries from this point */ 9366 hyperv_stop_tsc_emulation(); 9367 9368 /* TSC frequency always matches when on Hyper-V */ 9369 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9370 for_each_present_cpu(cpu) 9371 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9372 } 9373 kvm_caps.max_guest_tsc_khz = tsc_khz; 9374 9375 list_for_each_entry(kvm, &vm_list, vm_list) { 9376 __kvm_start_pvclock_update(kvm); 9377 pvclock_update_vm_gtod_copy(kvm); 9378 kvm_end_pvclock_update(kvm); 9379 } 9380 9381 mutex_unlock(&kvm_lock); 9382 } 9383 #endif 9384 9385 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9386 { 9387 struct kvm *kvm; 9388 struct kvm_vcpu *vcpu; 9389 int send_ipi = 0; 9390 unsigned long i; 9391 9392 /* 9393 * We allow guests to temporarily run on slowing clocks, 9394 * provided we notify them after, or to run on accelerating 9395 * clocks, provided we notify them before. Thus time never 9396 * goes backwards. 9397 * 9398 * However, we have a problem. We can't atomically update 9399 * the frequency of a given CPU from this function; it is 9400 * merely a notifier, which can be called from any CPU. 9401 * Changing the TSC frequency at arbitrary points in time 9402 * requires a recomputation of local variables related to 9403 * the TSC for each VCPU. We must flag these local variables 9404 * to be updated and be sure the update takes place with the 9405 * new frequency before any guests proceed. 9406 * 9407 * Unfortunately, the combination of hotplug CPU and frequency 9408 * change creates an intractable locking scenario; the order 9409 * of when these callouts happen is undefined with respect to 9410 * CPU hotplug, and they can race with each other. As such, 9411 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9412 * undefined; you can actually have a CPU frequency change take 9413 * place in between the computation of X and the setting of the 9414 * variable. To protect against this problem, all updates of 9415 * the per_cpu tsc_khz variable are done in an interrupt 9416 * protected IPI, and all callers wishing to update the value 9417 * must wait for a synchronous IPI to complete (which is trivial 9418 * if the caller is on the CPU already). This establishes the 9419 * necessary total order on variable updates. 9420 * 9421 * Note that because a guest time update may take place 9422 * anytime after the setting of the VCPU's request bit, the 9423 * correct TSC value must be set before the request. However, 9424 * to ensure the update actually makes it to any guest which 9425 * starts running in hardware virtualization between the set 9426 * and the acquisition of the spinlock, we must also ping the 9427 * CPU after setting the request bit. 9428 * 9429 */ 9430 9431 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9432 9433 mutex_lock(&kvm_lock); 9434 list_for_each_entry(kvm, &vm_list, vm_list) { 9435 kvm_for_each_vcpu(i, vcpu, kvm) { 9436 if (vcpu->cpu != cpu) 9437 continue; 9438 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9439 if (vcpu->cpu != raw_smp_processor_id()) 9440 send_ipi = 1; 9441 } 9442 } 9443 mutex_unlock(&kvm_lock); 9444 9445 if (freq->old < freq->new && send_ipi) { 9446 /* 9447 * We upscale the frequency. Must make the guest 9448 * doesn't see old kvmclock values while running with 9449 * the new frequency, otherwise we risk the guest sees 9450 * time go backwards. 9451 * 9452 * In case we update the frequency for another cpu 9453 * (which might be in guest context) send an interrupt 9454 * to kick the cpu out of guest context. Next time 9455 * guest context is entered kvmclock will be updated, 9456 * so the guest will not see stale values. 9457 */ 9458 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9459 } 9460 } 9461 9462 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9463 void *data) 9464 { 9465 struct cpufreq_freqs *freq = data; 9466 int cpu; 9467 9468 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9469 return 0; 9470 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9471 return 0; 9472 9473 for_each_cpu(cpu, freq->policy->cpus) 9474 __kvmclock_cpufreq_notifier(freq, cpu); 9475 9476 return 0; 9477 } 9478 9479 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9480 .notifier_call = kvmclock_cpufreq_notifier 9481 }; 9482 9483 static int kvmclock_cpu_online(unsigned int cpu) 9484 { 9485 tsc_khz_changed(NULL); 9486 return 0; 9487 } 9488 9489 static void kvm_timer_init(void) 9490 { 9491 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9492 max_tsc_khz = tsc_khz; 9493 9494 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9495 struct cpufreq_policy *policy; 9496 int cpu; 9497 9498 cpu = get_cpu(); 9499 policy = cpufreq_cpu_get(cpu); 9500 if (policy) { 9501 if (policy->cpuinfo.max_freq) 9502 max_tsc_khz = policy->cpuinfo.max_freq; 9503 cpufreq_cpu_put(policy); 9504 } 9505 put_cpu(); 9506 } 9507 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9508 CPUFREQ_TRANSITION_NOTIFIER); 9509 9510 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9511 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9512 } 9513 } 9514 9515 #ifdef CONFIG_X86_64 9516 static void pvclock_gtod_update_fn(struct work_struct *work) 9517 { 9518 struct kvm *kvm; 9519 struct kvm_vcpu *vcpu; 9520 unsigned long i; 9521 9522 mutex_lock(&kvm_lock); 9523 list_for_each_entry(kvm, &vm_list, vm_list) 9524 kvm_for_each_vcpu(i, vcpu, kvm) 9525 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9526 atomic_set(&kvm_guest_has_master_clock, 0); 9527 mutex_unlock(&kvm_lock); 9528 } 9529 9530 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9531 9532 /* 9533 * Indirection to move queue_work() out of the tk_core.seq write held 9534 * region to prevent possible deadlocks against time accessors which 9535 * are invoked with work related locks held. 9536 */ 9537 static void pvclock_irq_work_fn(struct irq_work *w) 9538 { 9539 queue_work(system_long_wq, &pvclock_gtod_work); 9540 } 9541 9542 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9543 9544 /* 9545 * Notification about pvclock gtod data update. 9546 */ 9547 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9548 void *priv) 9549 { 9550 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9551 struct timekeeper *tk = priv; 9552 9553 update_pvclock_gtod(tk); 9554 9555 /* 9556 * Disable master clock if host does not trust, or does not use, 9557 * TSC based clocksource. Delegate queue_work() to irq_work as 9558 * this is invoked with tk_core.seq write held. 9559 */ 9560 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9561 atomic_read(&kvm_guest_has_master_clock) != 0) 9562 irq_work_queue(&pvclock_irq_work); 9563 return 0; 9564 } 9565 9566 static struct notifier_block pvclock_gtod_notifier = { 9567 .notifier_call = pvclock_gtod_notify, 9568 }; 9569 #endif 9570 9571 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 9572 { 9573 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9574 9575 #define __KVM_X86_OP(func) \ 9576 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 9577 #define KVM_X86_OP(func) \ 9578 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 9579 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 9580 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 9581 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 9582 (void *)__static_call_return0); 9583 #include <asm/kvm-x86-ops.h> 9584 #undef __KVM_X86_OP 9585 9586 kvm_pmu_ops_update(ops->pmu_ops); 9587 } 9588 9589 static int kvm_x86_check_processor_compatibility(void) 9590 { 9591 int cpu = smp_processor_id(); 9592 struct cpuinfo_x86 *c = &cpu_data(cpu); 9593 9594 /* 9595 * Compatibility checks are done when loading KVM and when enabling 9596 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are 9597 * compatible, i.e. KVM should never perform a compatibility check on 9598 * an offline CPU. 9599 */ 9600 WARN_ON(!cpu_online(cpu)); 9601 9602 if (__cr4_reserved_bits(cpu_has, c) != 9603 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 9604 return -EIO; 9605 9606 return kvm_x86_call(check_processor_compatibility)(); 9607 } 9608 9609 static void kvm_x86_check_cpu_compat(void *ret) 9610 { 9611 *(int *)ret = kvm_x86_check_processor_compatibility(); 9612 } 9613 9614 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9615 { 9616 u64 host_pat; 9617 int r, cpu; 9618 9619 guard(mutex)(&vendor_module_lock); 9620 9621 if (kvm_x86_ops.enable_virtualization_cpu) { 9622 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name); 9623 return -EEXIST; 9624 } 9625 9626 /* 9627 * KVM explicitly assumes that the guest has an FPU and 9628 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9629 * vCPU's FPU state as a fxregs_state struct. 9630 */ 9631 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9632 pr_err("inadequate fpu\n"); 9633 return -EOPNOTSUPP; 9634 } 9635 9636 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9637 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9638 return -EOPNOTSUPP; 9639 } 9640 9641 /* 9642 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9643 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9644 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9645 * with an exception. PAT[0] is set to WB on RESET and also by the 9646 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9647 */ 9648 if (rdmsrq_safe(MSR_IA32_CR_PAT, &host_pat) || 9649 (host_pat & GENMASK(2, 0)) != 6) { 9650 pr_err("host PAT[0] is not WB\n"); 9651 return -EIO; 9652 } 9653 9654 memset(&kvm_caps, 0, sizeof(kvm_caps)); 9655 9656 x86_emulator_cache = kvm_alloc_emulator_cache(); 9657 if (!x86_emulator_cache) { 9658 pr_err("failed to allocate cache for x86 emulator\n"); 9659 return -ENOMEM; 9660 } 9661 9662 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9663 if (!user_return_msrs) { 9664 pr_err("failed to allocate percpu kvm_user_return_msrs\n"); 9665 r = -ENOMEM; 9666 goto out_free_x86_emulator_cache; 9667 } 9668 kvm_nr_uret_msrs = 0; 9669 9670 r = kvm_mmu_vendor_module_init(); 9671 if (r) 9672 goto out_free_percpu; 9673 9674 kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM); 9675 kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P; 9676 9677 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9678 kvm_host.xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9679 kvm_caps.supported_xcr0 = kvm_host.xcr0 & KVM_SUPPORTED_XCR0; 9680 } 9681 kvm_caps.supported_quirks = KVM_X86_VALID_QUIRKS; 9682 kvm_caps.inapplicable_quirks = KVM_X86_CONDITIONAL_QUIRKS; 9683 9684 rdmsrq_safe(MSR_EFER, &kvm_host.efer); 9685 9686 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9687 rdmsrq(MSR_IA32_XSS, kvm_host.xss); 9688 9689 kvm_init_pmu_capability(ops->pmu_ops); 9690 9691 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 9692 rdmsrq(MSR_IA32_ARCH_CAPABILITIES, kvm_host.arch_capabilities); 9693 9694 r = ops->hardware_setup(); 9695 if (r != 0) 9696 goto out_mmu_exit; 9697 9698 enable_device_posted_irqs &= enable_apicv && 9699 irq_remapping_cap(IRQ_POSTING_CAP); 9700 9701 kvm_ops_update(ops); 9702 9703 for_each_online_cpu(cpu) { 9704 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1); 9705 if (r < 0) 9706 goto out_unwind_ops; 9707 } 9708 9709 /* 9710 * Point of no return! DO NOT add error paths below this point unless 9711 * absolutely necessary, as most operations from this point forward 9712 * require unwinding. 9713 */ 9714 kvm_timer_init(); 9715 9716 if (pi_inject_timer == -1) 9717 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9718 #ifdef CONFIG_X86_64 9719 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9720 9721 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9722 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9723 #endif 9724 9725 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 9726 9727 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled) 9728 kvm_caps.supported_vm_types |= BIT(KVM_X86_SW_PROTECTED_VM); 9729 9730 /* KVM always ignores guest PAT for shadow paging. */ 9731 if (!tdp_enabled) 9732 kvm_caps.supported_quirks &= ~KVM_X86_QUIRK_IGNORE_GUEST_PAT; 9733 9734 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9735 kvm_caps.supported_xss = 0; 9736 9737 if (kvm_caps.has_tsc_control) { 9738 /* 9739 * Make sure the user can only configure tsc_khz values that 9740 * fit into a signed integer. 9741 * A min value is not calculated because it will always 9742 * be 1 on all machines. 9743 */ 9744 u64 max = min(0x7fffffffULL, 9745 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 9746 kvm_caps.max_guest_tsc_khz = max; 9747 } 9748 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 9749 kvm_init_msr_lists(); 9750 return 0; 9751 9752 out_unwind_ops: 9753 kvm_x86_ops.enable_virtualization_cpu = NULL; 9754 kvm_x86_call(hardware_unsetup)(); 9755 out_mmu_exit: 9756 kvm_mmu_vendor_module_exit(); 9757 out_free_percpu: 9758 free_percpu(user_return_msrs); 9759 out_free_x86_emulator_cache: 9760 kmem_cache_destroy(x86_emulator_cache); 9761 return r; 9762 } 9763 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init); 9764 9765 void kvm_x86_vendor_exit(void) 9766 { 9767 kvm_unregister_perf_callbacks(); 9768 9769 #ifdef CONFIG_X86_64 9770 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9771 clear_hv_tscchange_cb(); 9772 #endif 9773 kvm_lapic_exit(); 9774 9775 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9776 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9777 CPUFREQ_TRANSITION_NOTIFIER); 9778 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9779 } 9780 #ifdef CONFIG_X86_64 9781 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9782 irq_work_sync(&pvclock_irq_work); 9783 cancel_work_sync(&pvclock_gtod_work); 9784 #endif 9785 kvm_x86_call(hardware_unsetup)(); 9786 kvm_mmu_vendor_module_exit(); 9787 free_percpu(user_return_msrs); 9788 kmem_cache_destroy(x86_emulator_cache); 9789 #ifdef CONFIG_KVM_XEN 9790 static_key_deferred_flush(&kvm_xen_enabled); 9791 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9792 #endif 9793 mutex_lock(&vendor_module_lock); 9794 kvm_x86_ops.enable_virtualization_cpu = NULL; 9795 mutex_unlock(&vendor_module_lock); 9796 } 9797 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit); 9798 9799 #ifdef CONFIG_X86_64 9800 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9801 unsigned long clock_type) 9802 { 9803 struct kvm_clock_pairing clock_pairing; 9804 struct timespec64 ts; 9805 u64 cycle; 9806 int ret; 9807 9808 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9809 return -KVM_EOPNOTSUPP; 9810 9811 /* 9812 * When tsc is in permanent catchup mode guests won't be able to use 9813 * pvclock_read_retry loop to get consistent view of pvclock 9814 */ 9815 if (vcpu->arch.tsc_always_catchup) 9816 return -KVM_EOPNOTSUPP; 9817 9818 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9819 return -KVM_EOPNOTSUPP; 9820 9821 clock_pairing.sec = ts.tv_sec; 9822 clock_pairing.nsec = ts.tv_nsec; 9823 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9824 clock_pairing.flags = 0; 9825 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9826 9827 ret = 0; 9828 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9829 sizeof(struct kvm_clock_pairing))) 9830 ret = -KVM_EFAULT; 9831 9832 return ret; 9833 } 9834 #endif 9835 9836 /* 9837 * kvm_pv_kick_cpu_op: Kick a vcpu. 9838 * 9839 * @apicid - apicid of vcpu to be kicked. 9840 */ 9841 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9842 { 9843 /* 9844 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9845 * common code, e.g. for tracing. Defer initialization to the compiler. 9846 */ 9847 struct kvm_lapic_irq lapic_irq = { 9848 .delivery_mode = APIC_DM_REMRD, 9849 .dest_mode = APIC_DEST_PHYSICAL, 9850 .shorthand = APIC_DEST_NOSHORT, 9851 .dest_id = apicid, 9852 }; 9853 9854 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9855 } 9856 9857 bool kvm_apicv_activated(struct kvm *kvm) 9858 { 9859 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9860 } 9861 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9862 9863 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9864 { 9865 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9866 ulong vcpu_reasons = 9867 kvm_x86_call(vcpu_get_apicv_inhibit_reasons)(vcpu); 9868 9869 return (vm_reasons | vcpu_reasons) == 0; 9870 } 9871 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9872 9873 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9874 enum kvm_apicv_inhibit reason, bool set) 9875 { 9876 const struct trace_print_flags apicv_inhibits[] = { APICV_INHIBIT_REASONS }; 9877 9878 BUILD_BUG_ON(ARRAY_SIZE(apicv_inhibits) != NR_APICV_INHIBIT_REASONS); 9879 9880 if (set) 9881 __set_bit(reason, inhibits); 9882 else 9883 __clear_bit(reason, inhibits); 9884 9885 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9886 } 9887 9888 static void kvm_apicv_init(struct kvm *kvm) 9889 { 9890 enum kvm_apicv_inhibit reason = enable_apicv ? APICV_INHIBIT_REASON_ABSENT : 9891 APICV_INHIBIT_REASON_DISABLED; 9892 9893 set_or_clear_apicv_inhibit(&kvm->arch.apicv_inhibit_reasons, reason, true); 9894 9895 init_rwsem(&kvm->arch.apicv_update_lock); 9896 } 9897 9898 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9899 { 9900 struct kvm_vcpu *target = NULL; 9901 struct kvm_apic_map *map; 9902 9903 vcpu->stat.directed_yield_attempted++; 9904 9905 if (single_task_running()) 9906 goto no_yield; 9907 9908 rcu_read_lock(); 9909 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9910 9911 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9912 target = map->phys_map[dest_id]->vcpu; 9913 9914 rcu_read_unlock(); 9915 9916 if (!target || !READ_ONCE(target->ready)) 9917 goto no_yield; 9918 9919 /* Ignore requests to yield to self */ 9920 if (vcpu == target) 9921 goto no_yield; 9922 9923 if (kvm_vcpu_yield_to(target) <= 0) 9924 goto no_yield; 9925 9926 vcpu->stat.directed_yield_successful++; 9927 9928 no_yield: 9929 return; 9930 } 9931 9932 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9933 { 9934 u64 ret = vcpu->run->hypercall.ret; 9935 9936 if (!is_64_bit_hypercall(vcpu)) 9937 ret = (u32)ret; 9938 kvm_rax_write(vcpu, ret); 9939 return kvm_skip_emulated_instruction(vcpu); 9940 } 9941 9942 int ____kvm_emulate_hypercall(struct kvm_vcpu *vcpu, int cpl, 9943 int (*complete_hypercall)(struct kvm_vcpu *)) 9944 { 9945 unsigned long ret; 9946 unsigned long nr = kvm_rax_read(vcpu); 9947 unsigned long a0 = kvm_rbx_read(vcpu); 9948 unsigned long a1 = kvm_rcx_read(vcpu); 9949 unsigned long a2 = kvm_rdx_read(vcpu); 9950 unsigned long a3 = kvm_rsi_read(vcpu); 9951 int op_64_bit = is_64_bit_hypercall(vcpu); 9952 9953 ++vcpu->stat.hypercalls; 9954 9955 trace_kvm_hypercall(nr, a0, a1, a2, a3); 9956 9957 if (!op_64_bit) { 9958 nr &= 0xFFFFFFFF; 9959 a0 &= 0xFFFFFFFF; 9960 a1 &= 0xFFFFFFFF; 9961 a2 &= 0xFFFFFFFF; 9962 a3 &= 0xFFFFFFFF; 9963 } 9964 9965 if (cpl) { 9966 ret = -KVM_EPERM; 9967 goto out; 9968 } 9969 9970 ret = -KVM_ENOSYS; 9971 9972 switch (nr) { 9973 case KVM_HC_VAPIC_POLL_IRQ: 9974 ret = 0; 9975 break; 9976 case KVM_HC_KICK_CPU: 9977 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 9978 break; 9979 9980 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 9981 kvm_sched_yield(vcpu, a1); 9982 ret = 0; 9983 break; 9984 #ifdef CONFIG_X86_64 9985 case KVM_HC_CLOCK_PAIRING: 9986 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 9987 break; 9988 #endif 9989 case KVM_HC_SEND_IPI: 9990 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 9991 break; 9992 9993 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 9994 break; 9995 case KVM_HC_SCHED_YIELD: 9996 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 9997 break; 9998 9999 kvm_sched_yield(vcpu, a0); 10000 ret = 0; 10001 break; 10002 case KVM_HC_MAP_GPA_RANGE: { 10003 u64 gpa = a0, npages = a1, attrs = a2; 10004 10005 ret = -KVM_ENOSYS; 10006 if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) 10007 break; 10008 10009 if (!PAGE_ALIGNED(gpa) || !npages || 10010 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 10011 ret = -KVM_EINVAL; 10012 break; 10013 } 10014 10015 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 10016 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 10017 /* 10018 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2) 10019 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that 10020 * it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting 10021 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU. 10022 */ 10023 vcpu->run->hypercall.ret = 0; 10024 vcpu->run->hypercall.args[0] = gpa; 10025 vcpu->run->hypercall.args[1] = npages; 10026 vcpu->run->hypercall.args[2] = attrs; 10027 vcpu->run->hypercall.flags = 0; 10028 if (op_64_bit) 10029 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE; 10030 10031 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ); 10032 vcpu->arch.complete_userspace_io = complete_hypercall; 10033 return 0; 10034 } 10035 default: 10036 ret = -KVM_ENOSYS; 10037 break; 10038 } 10039 10040 out: 10041 vcpu->run->hypercall.ret = ret; 10042 return 1; 10043 } 10044 EXPORT_SYMBOL_GPL(____kvm_emulate_hypercall); 10045 10046 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 10047 { 10048 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 10049 return kvm_xen_hypercall(vcpu); 10050 10051 if (kvm_hv_hypercall_enabled(vcpu)) 10052 return kvm_hv_hypercall(vcpu); 10053 10054 return __kvm_emulate_hypercall(vcpu, kvm_x86_call(get_cpl)(vcpu), 10055 complete_hypercall_exit); 10056 } 10057 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 10058 10059 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 10060 { 10061 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 10062 char instruction[3]; 10063 unsigned long rip = kvm_rip_read(vcpu); 10064 10065 /* 10066 * If the quirk is disabled, synthesize a #UD and let the guest pick up 10067 * the pieces. 10068 */ 10069 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 10070 ctxt->exception.error_code_valid = false; 10071 ctxt->exception.vector = UD_VECTOR; 10072 ctxt->have_exception = true; 10073 return X86EMUL_PROPAGATE_FAULT; 10074 } 10075 10076 kvm_x86_call(patch_hypercall)(vcpu, instruction); 10077 10078 return emulator_write_emulated(ctxt, rip, instruction, 3, 10079 &ctxt->exception); 10080 } 10081 10082 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 10083 { 10084 return vcpu->run->request_interrupt_window && 10085 likely(!pic_in_kernel(vcpu->kvm)); 10086 } 10087 10088 /* Called within kvm->srcu read side. */ 10089 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 10090 { 10091 struct kvm_run *kvm_run = vcpu->run; 10092 10093 kvm_run->if_flag = kvm_x86_call(get_if_flag)(vcpu); 10094 kvm_run->cr8 = kvm_get_cr8(vcpu); 10095 kvm_run->apic_base = vcpu->arch.apic_base; 10096 10097 kvm_run->ready_for_interrupt_injection = 10098 pic_in_kernel(vcpu->kvm) || 10099 kvm_vcpu_ready_for_interrupt_injection(vcpu); 10100 10101 if (is_smm(vcpu)) 10102 kvm_run->flags |= KVM_RUN_X86_SMM; 10103 if (is_guest_mode(vcpu)) 10104 kvm_run->flags |= KVM_RUN_X86_GUEST_MODE; 10105 } 10106 10107 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 10108 { 10109 int max_irr, tpr; 10110 10111 if (!kvm_x86_ops.update_cr8_intercept) 10112 return; 10113 10114 if (!lapic_in_kernel(vcpu)) 10115 return; 10116 10117 if (vcpu->arch.apic->apicv_active) 10118 return; 10119 10120 if (!vcpu->arch.apic->vapic_addr) 10121 max_irr = kvm_lapic_find_highest_irr(vcpu); 10122 else 10123 max_irr = -1; 10124 10125 if (max_irr != -1) 10126 max_irr >>= 4; 10127 10128 tpr = kvm_lapic_get_cr8(vcpu); 10129 10130 kvm_x86_call(update_cr8_intercept)(vcpu, tpr, max_irr); 10131 } 10132 10133 10134 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 10135 { 10136 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10137 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10138 return 1; 10139 } 10140 10141 return kvm_x86_ops.nested_ops->check_events(vcpu); 10142 } 10143 10144 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 10145 { 10146 /* 10147 * Suppress the error code if the vCPU is in Real Mode, as Real Mode 10148 * exceptions don't report error codes. The presence of an error code 10149 * is carried with the exception and only stripped when the exception 10150 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do 10151 * report an error code despite the CPU being in Real Mode. 10152 */ 10153 vcpu->arch.exception.has_error_code &= is_protmode(vcpu); 10154 10155 trace_kvm_inj_exception(vcpu->arch.exception.vector, 10156 vcpu->arch.exception.has_error_code, 10157 vcpu->arch.exception.error_code, 10158 vcpu->arch.exception.injected); 10159 10160 kvm_x86_call(inject_exception)(vcpu); 10161 } 10162 10163 /* 10164 * Check for any event (interrupt or exception) that is ready to be injected, 10165 * and if there is at least one event, inject the event with the highest 10166 * priority. This handles both "pending" events, i.e. events that have never 10167 * been injected into the guest, and "injected" events, i.e. events that were 10168 * injected as part of a previous VM-Enter, but weren't successfully delivered 10169 * and need to be re-injected. 10170 * 10171 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 10172 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 10173 * be able to inject exceptions in the "middle" of an instruction, and so must 10174 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 10175 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 10176 * boundaries is necessary and correct. 10177 * 10178 * For simplicity, KVM uses a single path to inject all events (except events 10179 * that are injected directly from L1 to L2) and doesn't explicitly track 10180 * instruction boundaries for asynchronous events. However, because VM-Exits 10181 * that can occur during instruction execution typically result in KVM skipping 10182 * the instruction or injecting an exception, e.g. instruction and exception 10183 * intercepts, and because pending exceptions have higher priority than pending 10184 * interrupts, KVM still honors instruction boundaries in most scenarios. 10185 * 10186 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 10187 * the instruction or inject an exception, then KVM can incorrecty inject a new 10188 * asynchronous event if the event became pending after the CPU fetched the 10189 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 10190 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 10191 * injected on the restarted instruction instead of being deferred until the 10192 * instruction completes. 10193 * 10194 * In practice, this virtualization hole is unlikely to be observed by the 10195 * guest, and even less likely to cause functional problems. To detect the 10196 * hole, the guest would have to trigger an event on a side effect of an early 10197 * phase of instruction execution, e.g. on the instruction fetch from memory. 10198 * And for it to be a functional problem, the guest would need to depend on the 10199 * ordering between that side effect, the instruction completing, _and_ the 10200 * delivery of the asynchronous event. 10201 */ 10202 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 10203 bool *req_immediate_exit) 10204 { 10205 bool can_inject; 10206 int r; 10207 10208 /* 10209 * Process nested events first, as nested VM-Exit supersedes event 10210 * re-injection. If there's an event queued for re-injection, it will 10211 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 10212 */ 10213 if (is_guest_mode(vcpu)) 10214 r = kvm_check_nested_events(vcpu); 10215 else 10216 r = 0; 10217 10218 /* 10219 * Re-inject exceptions and events *especially* if immediate entry+exit 10220 * to/from L2 is needed, as any event that has already been injected 10221 * into L2 needs to complete its lifecycle before injecting a new event. 10222 * 10223 * Don't re-inject an NMI or interrupt if there is a pending exception. 10224 * This collision arises if an exception occurred while vectoring the 10225 * injected event, KVM intercepted said exception, and KVM ultimately 10226 * determined the fault belongs to the guest and queues the exception 10227 * for injection back into the guest. 10228 * 10229 * "Injected" interrupts can also collide with pending exceptions if 10230 * userspace ignores the "ready for injection" flag and blindly queues 10231 * an interrupt. In that case, prioritizing the exception is correct, 10232 * as the exception "occurred" before the exit to userspace. Trap-like 10233 * exceptions, e.g. most #DBs, have higher priority than interrupts. 10234 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 10235 * priority, they're only generated (pended) during instruction 10236 * execution, and interrupts are recognized at instruction boundaries. 10237 * Thus a pending fault-like exception means the fault occurred on the 10238 * *previous* instruction and must be serviced prior to recognizing any 10239 * new events in order to fully complete the previous instruction. 10240 */ 10241 if (vcpu->arch.exception.injected) 10242 kvm_inject_exception(vcpu); 10243 else if (kvm_is_exception_pending(vcpu)) 10244 ; /* see above */ 10245 else if (vcpu->arch.nmi_injected) 10246 kvm_x86_call(inject_nmi)(vcpu); 10247 else if (vcpu->arch.interrupt.injected) 10248 kvm_x86_call(inject_irq)(vcpu, true); 10249 10250 /* 10251 * Exceptions that morph to VM-Exits are handled above, and pending 10252 * exceptions on top of injected exceptions that do not VM-Exit should 10253 * either morph to #DF or, sadly, override the injected exception. 10254 */ 10255 WARN_ON_ONCE(vcpu->arch.exception.injected && 10256 vcpu->arch.exception.pending); 10257 10258 /* 10259 * Bail if immediate entry+exit to/from the guest is needed to complete 10260 * nested VM-Enter or event re-injection so that a different pending 10261 * event can be serviced (or if KVM needs to exit to userspace). 10262 * 10263 * Otherwise, continue processing events even if VM-Exit occurred. The 10264 * VM-Exit will have cleared exceptions that were meant for L2, but 10265 * there may now be events that can be injected into L1. 10266 */ 10267 if (r < 0) 10268 goto out; 10269 10270 /* 10271 * A pending exception VM-Exit should either result in nested VM-Exit 10272 * or force an immediate re-entry and exit to/from L2, and exception 10273 * VM-Exits cannot be injected (flag should _never_ be set). 10274 */ 10275 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 10276 vcpu->arch.exception_vmexit.pending); 10277 10278 /* 10279 * New events, other than exceptions, cannot be injected if KVM needs 10280 * to re-inject a previous event. See above comments on re-injecting 10281 * for why pending exceptions get priority. 10282 */ 10283 can_inject = !kvm_event_needs_reinjection(vcpu); 10284 10285 if (vcpu->arch.exception.pending) { 10286 /* 10287 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 10288 * value pushed on the stack. Trap-like exception and all #DBs 10289 * leave RF as-is (KVM follows Intel's behavior in this regard; 10290 * AMD states that code breakpoint #DBs excplitly clear RF=0). 10291 * 10292 * Note, most versions of Intel's SDM and AMD's APM incorrectly 10293 * describe the behavior of General Detect #DBs, which are 10294 * fault-like. They do _not_ set RF, a la code breakpoints. 10295 */ 10296 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 10297 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 10298 X86_EFLAGS_RF); 10299 10300 if (vcpu->arch.exception.vector == DB_VECTOR) { 10301 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 10302 if (vcpu->arch.dr7 & DR7_GD) { 10303 vcpu->arch.dr7 &= ~DR7_GD; 10304 kvm_update_dr7(vcpu); 10305 } 10306 } 10307 10308 kvm_inject_exception(vcpu); 10309 10310 vcpu->arch.exception.pending = false; 10311 vcpu->arch.exception.injected = true; 10312 10313 can_inject = false; 10314 } 10315 10316 /* Don't inject interrupts if the user asked to avoid doing so */ 10317 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 10318 return 0; 10319 10320 /* 10321 * Finally, inject interrupt events. If an event cannot be injected 10322 * due to architectural conditions (e.g. IF=0) a window-open exit 10323 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 10324 * and can architecturally be injected, but we cannot do it right now: 10325 * an interrupt could have arrived just now and we have to inject it 10326 * as a vmexit, or there could already an event in the queue, which is 10327 * indicated by can_inject. In that case we request an immediate exit 10328 * in order to make progress and get back here for another iteration. 10329 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 10330 */ 10331 #ifdef CONFIG_KVM_SMM 10332 if (vcpu->arch.smi_pending) { 10333 r = can_inject ? kvm_x86_call(smi_allowed)(vcpu, true) : 10334 -EBUSY; 10335 if (r < 0) 10336 goto out; 10337 if (r) { 10338 vcpu->arch.smi_pending = false; 10339 ++vcpu->arch.smi_count; 10340 enter_smm(vcpu); 10341 can_inject = false; 10342 } else 10343 kvm_x86_call(enable_smi_window)(vcpu); 10344 } 10345 #endif 10346 10347 if (vcpu->arch.nmi_pending) { 10348 r = can_inject ? kvm_x86_call(nmi_allowed)(vcpu, true) : 10349 -EBUSY; 10350 if (r < 0) 10351 goto out; 10352 if (r) { 10353 --vcpu->arch.nmi_pending; 10354 vcpu->arch.nmi_injected = true; 10355 kvm_x86_call(inject_nmi)(vcpu); 10356 can_inject = false; 10357 WARN_ON(kvm_x86_call(nmi_allowed)(vcpu, true) < 0); 10358 } 10359 if (vcpu->arch.nmi_pending) 10360 kvm_x86_call(enable_nmi_window)(vcpu); 10361 } 10362 10363 if (kvm_cpu_has_injectable_intr(vcpu)) { 10364 r = can_inject ? kvm_x86_call(interrupt_allowed)(vcpu, true) : 10365 -EBUSY; 10366 if (r < 0) 10367 goto out; 10368 if (r) { 10369 int irq = kvm_cpu_get_interrupt(vcpu); 10370 10371 if (!WARN_ON_ONCE(irq == -1)) { 10372 kvm_queue_interrupt(vcpu, irq, false); 10373 kvm_x86_call(inject_irq)(vcpu, false); 10374 WARN_ON(kvm_x86_call(interrupt_allowed)(vcpu, true) < 0); 10375 } 10376 } 10377 if (kvm_cpu_has_injectable_intr(vcpu)) 10378 kvm_x86_call(enable_irq_window)(vcpu); 10379 } 10380 10381 if (is_guest_mode(vcpu) && 10382 kvm_x86_ops.nested_ops->has_events && 10383 kvm_x86_ops.nested_ops->has_events(vcpu, true)) 10384 *req_immediate_exit = true; 10385 10386 /* 10387 * KVM must never queue a new exception while injecting an event; KVM 10388 * is done emulating and should only propagate the to-be-injected event 10389 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10390 * infinite loop as KVM will bail from VM-Enter to inject the pending 10391 * exception and start the cycle all over. 10392 * 10393 * Exempt triple faults as they have special handling and won't put the 10394 * vCPU into an infinite loop. Triple fault can be queued when running 10395 * VMX without unrestricted guest, as that requires KVM to emulate Real 10396 * Mode events (see kvm_inject_realmode_interrupt()). 10397 */ 10398 WARN_ON_ONCE(vcpu->arch.exception.pending || 10399 vcpu->arch.exception_vmexit.pending); 10400 return 0; 10401 10402 out: 10403 if (r == -EBUSY) { 10404 *req_immediate_exit = true; 10405 r = 0; 10406 } 10407 return r; 10408 } 10409 10410 static void process_nmi(struct kvm_vcpu *vcpu) 10411 { 10412 unsigned int limit; 10413 10414 /* 10415 * x86 is limited to one NMI pending, but because KVM can't react to 10416 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is 10417 * scheduled out, KVM needs to play nice with two queued NMIs showing 10418 * up at the same time. To handle this scenario, allow two NMIs to be 10419 * (temporarily) pending so long as NMIs are not blocked and KVM is not 10420 * waiting for a previous NMI injection to complete (which effectively 10421 * blocks NMIs). KVM will immediately inject one of the two NMIs, and 10422 * will request an NMI window to handle the second NMI. 10423 */ 10424 if (kvm_x86_call(get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10425 limit = 1; 10426 else 10427 limit = 2; 10428 10429 /* 10430 * Adjust the limit to account for pending virtual NMIs, which aren't 10431 * tracked in vcpu->arch.nmi_pending. 10432 */ 10433 if (kvm_x86_call(is_vnmi_pending)(vcpu)) 10434 limit--; 10435 10436 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10437 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10438 10439 if (vcpu->arch.nmi_pending && 10440 (kvm_x86_call(set_vnmi_pending)(vcpu))) 10441 vcpu->arch.nmi_pending--; 10442 10443 if (vcpu->arch.nmi_pending) 10444 kvm_make_request(KVM_REQ_EVENT, vcpu); 10445 } 10446 10447 /* Return total number of NMIs pending injection to the VM */ 10448 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu) 10449 { 10450 return vcpu->arch.nmi_pending + 10451 kvm_x86_call(is_vnmi_pending)(vcpu); 10452 } 10453 10454 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10455 unsigned long *vcpu_bitmap) 10456 { 10457 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10458 } 10459 10460 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10461 { 10462 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10463 } 10464 10465 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10466 { 10467 struct kvm_lapic *apic = vcpu->arch.apic; 10468 bool activate; 10469 10470 if (!lapic_in_kernel(vcpu)) 10471 return; 10472 10473 down_read(&vcpu->kvm->arch.apicv_update_lock); 10474 preempt_disable(); 10475 10476 /* Do not activate APICV when APIC is disabled */ 10477 activate = kvm_vcpu_apicv_activated(vcpu) && 10478 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10479 10480 if (apic->apicv_active == activate) 10481 goto out; 10482 10483 apic->apicv_active = activate; 10484 kvm_apic_update_apicv(vcpu); 10485 kvm_x86_call(refresh_apicv_exec_ctrl)(vcpu); 10486 10487 /* 10488 * When APICv gets disabled, we may still have injected interrupts 10489 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10490 * still active when the interrupt got accepted. Make sure 10491 * kvm_check_and_inject_events() is called to check for that. 10492 */ 10493 if (!apic->apicv_active) 10494 kvm_make_request(KVM_REQ_EVENT, vcpu); 10495 10496 out: 10497 preempt_enable(); 10498 up_read(&vcpu->kvm->arch.apicv_update_lock); 10499 } 10500 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv); 10501 10502 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10503 { 10504 if (!lapic_in_kernel(vcpu)) 10505 return; 10506 10507 /* 10508 * Due to sharing page tables across vCPUs, the xAPIC memslot must be 10509 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but 10510 * and hardware doesn't support x2APIC virtualization. E.g. some AMD 10511 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in 10512 * this case so that KVM can use the AVIC doorbell to inject interrupts 10513 * to running vCPUs, but KVM must not create SPTEs for the APIC base as 10514 * the vCPU would incorrectly be able to access the vAPIC page via MMIO 10515 * despite being in x2APIC mode. For simplicity, inhibiting the APIC 10516 * access page is sticky. 10517 */ 10518 if (apic_x2apic_mode(vcpu->arch.apic) && 10519 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) 10520 kvm_inhibit_apic_access_page(vcpu); 10521 10522 __kvm_vcpu_update_apicv(vcpu); 10523 } 10524 10525 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10526 enum kvm_apicv_inhibit reason, bool set) 10527 { 10528 unsigned long old, new; 10529 10530 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10531 10532 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) 10533 return; 10534 10535 old = new = kvm->arch.apicv_inhibit_reasons; 10536 10537 set_or_clear_apicv_inhibit(&new, reason, set); 10538 10539 if (!!old != !!new) { 10540 /* 10541 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10542 * false positives in the sanity check WARN in vcpu_enter_guest(). 10543 * This task will wait for all vCPUs to ack the kick IRQ before 10544 * updating apicv_inhibit_reasons, and all other vCPUs will 10545 * block on acquiring apicv_update_lock so that vCPUs can't 10546 * redo vcpu_enter_guest() without seeing the new inhibit state. 10547 * 10548 * Note, holding apicv_update_lock and taking it in the read 10549 * side (handling the request) also prevents other vCPUs from 10550 * servicing the request with a stale apicv_inhibit_reasons. 10551 */ 10552 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10553 kvm->arch.apicv_inhibit_reasons = new; 10554 if (new) { 10555 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10556 int idx = srcu_read_lock(&kvm->srcu); 10557 10558 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10559 srcu_read_unlock(&kvm->srcu, idx); 10560 } 10561 } else { 10562 kvm->arch.apicv_inhibit_reasons = new; 10563 } 10564 } 10565 10566 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10567 enum kvm_apicv_inhibit reason, bool set) 10568 { 10569 if (!enable_apicv) 10570 return; 10571 10572 down_write(&kvm->arch.apicv_update_lock); 10573 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10574 up_write(&kvm->arch.apicv_update_lock); 10575 } 10576 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10577 10578 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10579 { 10580 if (!kvm_apic_present(vcpu)) 10581 return; 10582 10583 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10584 vcpu->arch.highest_stale_pending_ioapic_eoi = -1; 10585 10586 kvm_x86_call(sync_pir_to_irr)(vcpu); 10587 10588 if (irqchip_split(vcpu->kvm)) 10589 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10590 #ifdef CONFIG_KVM_IOAPIC 10591 else if (ioapic_in_kernel(vcpu->kvm)) 10592 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10593 #endif 10594 10595 if (is_guest_mode(vcpu)) 10596 vcpu->arch.load_eoi_exitmap_pending = true; 10597 else 10598 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10599 } 10600 10601 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10602 { 10603 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10604 return; 10605 10606 #ifdef CONFIG_KVM_HYPERV 10607 if (to_hv_vcpu(vcpu)) { 10608 u64 eoi_exit_bitmap[4]; 10609 10610 bitmap_or((ulong *)eoi_exit_bitmap, 10611 vcpu->arch.ioapic_handled_vectors, 10612 to_hv_synic(vcpu)->vec_bitmap, 256); 10613 kvm_x86_call(load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10614 return; 10615 } 10616 #endif 10617 kvm_x86_call(load_eoi_exitmap)( 10618 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10619 } 10620 10621 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10622 { 10623 kvm_x86_call(guest_memory_reclaimed)(kvm); 10624 } 10625 10626 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10627 { 10628 if (!lapic_in_kernel(vcpu)) 10629 return; 10630 10631 kvm_x86_call(set_apic_access_page_addr)(vcpu); 10632 } 10633 10634 /* 10635 * Called within kvm->srcu read side. 10636 * Returns 1 to let vcpu_run() continue the guest execution loop without 10637 * exiting to the userspace. Otherwise, the value will be returned to the 10638 * userspace. 10639 */ 10640 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10641 { 10642 int r; 10643 bool req_int_win = 10644 dm_request_for_irq_injection(vcpu) && 10645 kvm_cpu_accept_dm_intr(vcpu); 10646 fastpath_t exit_fastpath; 10647 u64 run_flags, debug_ctl; 10648 10649 bool req_immediate_exit = false; 10650 10651 if (kvm_request_pending(vcpu)) { 10652 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10653 r = -EIO; 10654 goto out; 10655 } 10656 10657 if (kvm_dirty_ring_check_request(vcpu)) { 10658 r = 0; 10659 goto out; 10660 } 10661 10662 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10663 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10664 r = 0; 10665 goto out; 10666 } 10667 } 10668 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10669 kvm_mmu_free_obsolete_roots(vcpu); 10670 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10671 __kvm_migrate_timers(vcpu); 10672 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10673 kvm_update_masterclock(vcpu->kvm); 10674 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10675 kvm_gen_kvmclock_update(vcpu); 10676 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10677 r = kvm_guest_time_update(vcpu); 10678 if (unlikely(r)) 10679 goto out; 10680 } 10681 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10682 kvm_mmu_sync_roots(vcpu); 10683 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10684 kvm_mmu_load_pgd(vcpu); 10685 10686 /* 10687 * Note, the order matters here, as flushing "all" TLB entries 10688 * also flushes the "current" TLB entries, i.e. servicing the 10689 * flush "all" will clear any request to flush "current". 10690 */ 10691 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 10692 kvm_vcpu_flush_tlb_all(vcpu); 10693 10694 kvm_service_local_tlb_flush_requests(vcpu); 10695 10696 /* 10697 * Fall back to a "full" guest flush if Hyper-V's precise 10698 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 10699 * the flushes are considered "remote" and not "local" because 10700 * the requests can be initiated from other vCPUs. 10701 */ 10702 #ifdef CONFIG_KVM_HYPERV 10703 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 10704 kvm_hv_vcpu_flush_tlb(vcpu)) 10705 kvm_vcpu_flush_tlb_guest(vcpu); 10706 #endif 10707 10708 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10709 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10710 r = 0; 10711 goto out; 10712 } 10713 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10714 if (is_guest_mode(vcpu)) 10715 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10716 10717 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10718 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10719 vcpu->mmio_needed = 0; 10720 r = 0; 10721 goto out; 10722 } 10723 } 10724 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10725 /* Page is swapped out. Do synthetic halt */ 10726 vcpu->arch.apf.halted = true; 10727 r = 1; 10728 goto out; 10729 } 10730 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10731 record_steal_time(vcpu); 10732 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10733 kvm_pmu_handle_event(vcpu); 10734 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10735 kvm_pmu_deliver_pmi(vcpu); 10736 #ifdef CONFIG_KVM_SMM 10737 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10738 process_smi(vcpu); 10739 #endif 10740 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10741 process_nmi(vcpu); 10742 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10743 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10744 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10745 vcpu->arch.ioapic_handled_vectors)) { 10746 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10747 vcpu->run->eoi.vector = 10748 vcpu->arch.pending_ioapic_eoi; 10749 r = 0; 10750 goto out; 10751 } 10752 } 10753 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10754 vcpu_scan_ioapic(vcpu); 10755 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10756 vcpu_load_eoi_exitmap(vcpu); 10757 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10758 kvm_vcpu_reload_apic_access_page(vcpu); 10759 #ifdef CONFIG_KVM_HYPERV 10760 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10761 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10762 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10763 vcpu->run->system_event.ndata = 0; 10764 r = 0; 10765 goto out; 10766 } 10767 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10768 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10769 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10770 vcpu->run->system_event.ndata = 0; 10771 r = 0; 10772 goto out; 10773 } 10774 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10775 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10776 10777 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10778 vcpu->run->hyperv = hv_vcpu->exit; 10779 r = 0; 10780 goto out; 10781 } 10782 10783 /* 10784 * KVM_REQ_HV_STIMER has to be processed after 10785 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10786 * depend on the guest clock being up-to-date 10787 */ 10788 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10789 kvm_hv_process_stimers(vcpu); 10790 #endif 10791 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10792 kvm_vcpu_update_apicv(vcpu); 10793 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10794 kvm_check_async_pf_completion(vcpu); 10795 10796 /* 10797 * Recalc MSR intercepts as userspace may want to intercept 10798 * accesses to MSRs that KVM would otherwise pass through to 10799 * the guest. 10800 */ 10801 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10802 kvm_x86_call(recalc_msr_intercepts)(vcpu); 10803 10804 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10805 kvm_x86_call(update_cpu_dirty_logging)(vcpu); 10806 10807 if (kvm_check_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) { 10808 kvm_vcpu_reset(vcpu, true); 10809 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE) { 10810 r = 1; 10811 goto out; 10812 } 10813 } 10814 } 10815 10816 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10817 kvm_xen_has_interrupt(vcpu)) { 10818 ++vcpu->stat.req_event; 10819 r = kvm_apic_accept_events(vcpu); 10820 if (r < 0) { 10821 r = 0; 10822 goto out; 10823 } 10824 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10825 r = 1; 10826 goto out; 10827 } 10828 10829 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10830 if (r < 0) { 10831 r = 0; 10832 goto out; 10833 } 10834 if (req_int_win) 10835 kvm_x86_call(enable_irq_window)(vcpu); 10836 10837 if (kvm_lapic_enabled(vcpu)) { 10838 update_cr8_intercept(vcpu); 10839 kvm_lapic_sync_to_vapic(vcpu); 10840 } 10841 } 10842 10843 r = kvm_mmu_reload(vcpu); 10844 if (unlikely(r)) { 10845 goto cancel_injection; 10846 } 10847 10848 preempt_disable(); 10849 10850 kvm_x86_call(prepare_switch_to_guest)(vcpu); 10851 10852 /* 10853 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10854 * IPI are then delayed after guest entry, which ensures that they 10855 * result in virtual interrupt delivery. 10856 */ 10857 local_irq_disable(); 10858 10859 /* Store vcpu->apicv_active before vcpu->mode. */ 10860 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10861 10862 kvm_vcpu_srcu_read_unlock(vcpu); 10863 10864 /* 10865 * 1) We should set ->mode before checking ->requests. Please see 10866 * the comment in kvm_vcpu_exiting_guest_mode(). 10867 * 10868 * 2) For APICv, we should set ->mode before checking PID.ON. This 10869 * pairs with the memory barrier implicit in pi_test_and_set_on 10870 * (see vmx_deliver_posted_interrupt). 10871 * 10872 * 3) This also orders the write to mode from any reads to the page 10873 * tables done while the VCPU is running. Please see the comment 10874 * in kvm_flush_remote_tlbs. 10875 */ 10876 smp_mb__after_srcu_read_unlock(); 10877 10878 /* 10879 * Process pending posted interrupts to handle the case where the 10880 * notification IRQ arrived in the host, or was never sent (because the 10881 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10882 * status, KVM doesn't update assigned devices when APICv is inhibited, 10883 * i.e. they can post interrupts even if APICv is temporarily disabled. 10884 */ 10885 if (kvm_lapic_enabled(vcpu)) 10886 kvm_x86_call(sync_pir_to_irr)(vcpu); 10887 10888 if (kvm_vcpu_exit_request(vcpu)) { 10889 vcpu->mode = OUTSIDE_GUEST_MODE; 10890 smp_wmb(); 10891 local_irq_enable(); 10892 preempt_enable(); 10893 kvm_vcpu_srcu_read_lock(vcpu); 10894 r = 1; 10895 goto cancel_injection; 10896 } 10897 10898 run_flags = 0; 10899 if (req_immediate_exit) { 10900 run_flags |= KVM_RUN_FORCE_IMMEDIATE_EXIT; 10901 kvm_make_request(KVM_REQ_EVENT, vcpu); 10902 } 10903 10904 fpregs_assert_state_consistent(); 10905 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10906 switch_fpu_return(); 10907 10908 if (vcpu->arch.guest_fpu.xfd_err) 10909 wrmsrq(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10910 10911 if (unlikely(vcpu->arch.switch_db_regs && 10912 !(vcpu->arch.switch_db_regs & KVM_DEBUGREG_AUTO_SWITCH))) { 10913 set_debugreg(DR7_FIXED_1, 7); 10914 set_debugreg(vcpu->arch.eff_db[0], 0); 10915 set_debugreg(vcpu->arch.eff_db[1], 1); 10916 set_debugreg(vcpu->arch.eff_db[2], 2); 10917 set_debugreg(vcpu->arch.eff_db[3], 3); 10918 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */ 10919 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 10920 run_flags |= KVM_RUN_LOAD_GUEST_DR6; 10921 } else if (unlikely(hw_breakpoint_active())) { 10922 set_debugreg(DR7_FIXED_1, 7); 10923 } 10924 10925 /* 10926 * Refresh the host DEBUGCTL snapshot after disabling IRQs, as DEBUGCTL 10927 * can be modified in IRQ context, e.g. via SMP function calls. Inform 10928 * vendor code if any host-owned bits were changed, e.g. so that the 10929 * value loaded into hardware while running the guest can be updated. 10930 */ 10931 debug_ctl = get_debugctlmsr(); 10932 if ((debug_ctl ^ vcpu->arch.host_debugctl) & kvm_x86_ops.HOST_OWNED_DEBUGCTL && 10933 !vcpu->arch.guest_state_protected) 10934 run_flags |= KVM_RUN_LOAD_DEBUGCTL; 10935 vcpu->arch.host_debugctl = debug_ctl; 10936 10937 guest_timing_enter_irqoff(); 10938 10939 for (;;) { 10940 /* 10941 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10942 * update must kick and wait for all vCPUs before toggling the 10943 * per-VM state, and responding vCPUs must wait for the update 10944 * to complete before servicing KVM_REQ_APICV_UPDATE. 10945 */ 10946 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 10947 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 10948 10949 exit_fastpath = kvm_x86_call(vcpu_run)(vcpu, run_flags); 10950 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10951 break; 10952 10953 if (kvm_lapic_enabled(vcpu)) 10954 kvm_x86_call(sync_pir_to_irr)(vcpu); 10955 10956 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10957 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10958 break; 10959 } 10960 10961 run_flags = 0; 10962 10963 /* Note, VM-Exits that go down the "slow" path are accounted below. */ 10964 ++vcpu->stat.exits; 10965 } 10966 10967 /* 10968 * Do this here before restoring debug registers on the host. And 10969 * since we do this before handling the vmexit, a DR access vmexit 10970 * can (a) read the correct value of the debug registers, (b) set 10971 * KVM_DEBUGREG_WONT_EXIT again. 10972 */ 10973 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10974 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10975 WARN_ON(vcpu->arch.switch_db_regs & KVM_DEBUGREG_AUTO_SWITCH); 10976 kvm_x86_call(sync_dirty_debug_regs)(vcpu); 10977 kvm_update_dr0123(vcpu); 10978 kvm_update_dr7(vcpu); 10979 } 10980 10981 /* 10982 * If the guest has used debug registers, at least dr7 10983 * will be disabled while returning to the host. 10984 * If we don't have active breakpoints in the host, we don't 10985 * care about the messed up debug address registers. But if 10986 * we have some of them active, restore the old state. 10987 */ 10988 if (hw_breakpoint_active()) 10989 hw_breakpoint_restore(); 10990 10991 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 10992 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 10993 10994 vcpu->mode = OUTSIDE_GUEST_MODE; 10995 smp_wmb(); 10996 10997 /* 10998 * Sync xfd before calling handle_exit_irqoff() which may 10999 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 11000 * in #NM irqoff handler). 11001 */ 11002 if (vcpu->arch.xfd_no_write_intercept) 11003 fpu_sync_guest_vmexit_xfd_state(); 11004 11005 kvm_x86_call(handle_exit_irqoff)(vcpu); 11006 11007 if (vcpu->arch.guest_fpu.xfd_err) 11008 wrmsrq(MSR_IA32_XFD_ERR, 0); 11009 11010 /* 11011 * Consume any pending interrupts, including the possible source of 11012 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 11013 * An instruction is required after local_irq_enable() to fully unblock 11014 * interrupts on processors that implement an interrupt shadow, the 11015 * stat.exits increment will do nicely. 11016 */ 11017 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 11018 local_irq_enable(); 11019 ++vcpu->stat.exits; 11020 local_irq_disable(); 11021 kvm_after_interrupt(vcpu); 11022 11023 /* 11024 * Wait until after servicing IRQs to account guest time so that any 11025 * ticks that occurred while running the guest are properly accounted 11026 * to the guest. Waiting until IRQs are enabled degrades the accuracy 11027 * of accounting via context tracking, but the loss of accuracy is 11028 * acceptable for all known use cases. 11029 */ 11030 guest_timing_exit_irqoff(); 11031 11032 local_irq_enable(); 11033 preempt_enable(); 11034 11035 kvm_vcpu_srcu_read_lock(vcpu); 11036 11037 /* 11038 * Call this to ensure WC buffers in guest are evicted after each VM 11039 * Exit, so that the evicted WC writes can be snooped across all cpus 11040 */ 11041 smp_mb__after_srcu_read_lock(); 11042 11043 /* 11044 * Profile KVM exit RIPs: 11045 */ 11046 if (unlikely(prof_on == KVM_PROFILING && 11047 !vcpu->arch.guest_state_protected)) { 11048 unsigned long rip = kvm_rip_read(vcpu); 11049 profile_hit(KVM_PROFILING, (void *)rip); 11050 } 11051 11052 if (unlikely(vcpu->arch.tsc_always_catchup)) 11053 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 11054 11055 if (vcpu->arch.apic_attention) 11056 kvm_lapic_sync_from_vapic(vcpu); 11057 11058 if (unlikely(exit_fastpath == EXIT_FASTPATH_EXIT_USERSPACE)) 11059 return 0; 11060 11061 r = kvm_x86_call(handle_exit)(vcpu, exit_fastpath); 11062 return r; 11063 11064 cancel_injection: 11065 if (req_immediate_exit) 11066 kvm_make_request(KVM_REQ_EVENT, vcpu); 11067 kvm_x86_call(cancel_injection)(vcpu); 11068 if (unlikely(vcpu->arch.apic_attention)) 11069 kvm_lapic_sync_from_vapic(vcpu); 11070 out: 11071 return r; 11072 } 11073 11074 static bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 11075 { 11076 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 11077 !vcpu->arch.apf.halted); 11078 } 11079 11080 bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 11081 { 11082 if (!list_empty_careful(&vcpu->async_pf.done)) 11083 return true; 11084 11085 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 11086 kvm_apic_init_sipi_allowed(vcpu)) 11087 return true; 11088 11089 if (kvm_is_exception_pending(vcpu)) 11090 return true; 11091 11092 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 11093 (vcpu->arch.nmi_pending && 11094 kvm_x86_call(nmi_allowed)(vcpu, false))) 11095 return true; 11096 11097 #ifdef CONFIG_KVM_SMM 11098 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 11099 (vcpu->arch.smi_pending && 11100 kvm_x86_call(smi_allowed)(vcpu, false))) 11101 return true; 11102 #endif 11103 11104 if (kvm_test_request(KVM_REQ_PMI, vcpu)) 11105 return true; 11106 11107 if (kvm_test_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) 11108 return true; 11109 11110 if (kvm_arch_interrupt_allowed(vcpu) && kvm_cpu_has_interrupt(vcpu)) 11111 return true; 11112 11113 if (kvm_hv_has_stimer_pending(vcpu)) 11114 return true; 11115 11116 if (is_guest_mode(vcpu) && 11117 kvm_x86_ops.nested_ops->has_events && 11118 kvm_x86_ops.nested_ops->has_events(vcpu, false)) 11119 return true; 11120 11121 if (kvm_xen_has_pending_events(vcpu)) 11122 return true; 11123 11124 return false; 11125 } 11126 EXPORT_SYMBOL_GPL(kvm_vcpu_has_events); 11127 11128 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 11129 { 11130 return kvm_vcpu_running(vcpu) || vcpu->arch.pv.pv_unhalted || 11131 kvm_vcpu_has_events(vcpu); 11132 } 11133 11134 /* Called within kvm->srcu read side. */ 11135 static inline int vcpu_block(struct kvm_vcpu *vcpu) 11136 { 11137 bool hv_timer; 11138 11139 if (!kvm_arch_vcpu_runnable(vcpu)) { 11140 /* 11141 * Switch to the software timer before halt-polling/blocking as 11142 * the guest's timer may be a break event for the vCPU, and the 11143 * hypervisor timer runs only when the CPU is in guest mode. 11144 * Switch before halt-polling so that KVM recognizes an expired 11145 * timer before blocking. 11146 */ 11147 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 11148 if (hv_timer) 11149 kvm_lapic_switch_to_sw_timer(vcpu); 11150 11151 kvm_vcpu_srcu_read_unlock(vcpu); 11152 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 11153 kvm_vcpu_halt(vcpu); 11154 else 11155 kvm_vcpu_block(vcpu); 11156 kvm_vcpu_srcu_read_lock(vcpu); 11157 11158 if (hv_timer) 11159 kvm_lapic_switch_to_hv_timer(vcpu); 11160 11161 /* 11162 * If the vCPU is not runnable, a signal or another host event 11163 * of some kind is pending; service it without changing the 11164 * vCPU's activity state. 11165 */ 11166 if (!kvm_arch_vcpu_runnable(vcpu)) 11167 return 1; 11168 } 11169 11170 /* 11171 * Evaluate nested events before exiting the halted state. This allows 11172 * the halt state to be recorded properly in the VMCS12's activity 11173 * state field (AMD does not have a similar field and a VM-Exit always 11174 * causes a spurious wakeup from HLT). 11175 */ 11176 if (is_guest_mode(vcpu)) { 11177 int r = kvm_check_nested_events(vcpu); 11178 11179 WARN_ON_ONCE(r == -EBUSY); 11180 if (r < 0) 11181 return 0; 11182 } 11183 11184 if (kvm_apic_accept_events(vcpu) < 0) 11185 return 0; 11186 switch(vcpu->arch.mp_state) { 11187 case KVM_MP_STATE_HALTED: 11188 case KVM_MP_STATE_AP_RESET_HOLD: 11189 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 11190 fallthrough; 11191 case KVM_MP_STATE_RUNNABLE: 11192 vcpu->arch.apf.halted = false; 11193 break; 11194 case KVM_MP_STATE_INIT_RECEIVED: 11195 break; 11196 default: 11197 WARN_ON_ONCE(1); 11198 break; 11199 } 11200 return 1; 11201 } 11202 11203 /* Called within kvm->srcu read side. */ 11204 static int vcpu_run(struct kvm_vcpu *vcpu) 11205 { 11206 int r; 11207 11208 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN; 11209 11210 for (;;) { 11211 /* 11212 * If another guest vCPU requests a PV TLB flush in the middle 11213 * of instruction emulation, the rest of the emulation could 11214 * use a stale page translation. Assume that any code after 11215 * this point can start executing an instruction. 11216 */ 11217 vcpu->arch.at_instruction_boundary = false; 11218 if (kvm_vcpu_running(vcpu)) { 11219 r = vcpu_enter_guest(vcpu); 11220 } else { 11221 r = vcpu_block(vcpu); 11222 } 11223 11224 if (r <= 0) 11225 break; 11226 11227 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 11228 if (kvm_xen_has_pending_events(vcpu)) 11229 kvm_xen_inject_pending_events(vcpu); 11230 11231 if (kvm_cpu_has_pending_timer(vcpu)) 11232 kvm_inject_pending_timer_irqs(vcpu); 11233 11234 if (dm_request_for_irq_injection(vcpu) && 11235 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 11236 r = 0; 11237 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 11238 ++vcpu->stat.request_irq_exits; 11239 break; 11240 } 11241 11242 if (__xfer_to_guest_mode_work_pending()) { 11243 kvm_vcpu_srcu_read_unlock(vcpu); 11244 r = xfer_to_guest_mode_handle_work(vcpu); 11245 kvm_vcpu_srcu_read_lock(vcpu); 11246 if (r) 11247 return r; 11248 } 11249 } 11250 11251 return r; 11252 } 11253 11254 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 11255 { 11256 /* 11257 * The vCPU has halted, e.g. executed HLT. Update the run state if the 11258 * local APIC is in-kernel, the run loop will detect the non-runnable 11259 * state and halt the vCPU. Exit to userspace if the local APIC is 11260 * managed by userspace, in which case userspace is responsible for 11261 * handling wake events. 11262 */ 11263 ++vcpu->stat.halt_exits; 11264 if (lapic_in_kernel(vcpu)) { 11265 if (kvm_vcpu_has_events(vcpu) || vcpu->arch.pv.pv_unhalted) 11266 state = KVM_MP_STATE_RUNNABLE; 11267 kvm_set_mp_state(vcpu, state); 11268 return 1; 11269 } else { 11270 vcpu->run->exit_reason = reason; 11271 return 0; 11272 } 11273 } 11274 11275 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 11276 { 11277 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 11278 } 11279 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 11280 11281 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 11282 { 11283 int ret = kvm_skip_emulated_instruction(vcpu); 11284 /* 11285 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 11286 * KVM_EXIT_DEBUG here. 11287 */ 11288 return kvm_emulate_halt_noskip(vcpu) && ret; 11289 } 11290 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 11291 11292 fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu) 11293 { 11294 int ret; 11295 11296 kvm_vcpu_srcu_read_lock(vcpu); 11297 ret = kvm_emulate_halt(vcpu); 11298 kvm_vcpu_srcu_read_unlock(vcpu); 11299 11300 if (!ret) 11301 return EXIT_FASTPATH_EXIT_USERSPACE; 11302 11303 if (kvm_vcpu_running(vcpu)) 11304 return EXIT_FASTPATH_REENTER_GUEST; 11305 11306 return EXIT_FASTPATH_EXIT_HANDLED; 11307 } 11308 EXPORT_SYMBOL_GPL(handle_fastpath_hlt); 11309 11310 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 11311 { 11312 int ret = kvm_skip_emulated_instruction(vcpu); 11313 11314 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 11315 KVM_EXIT_AP_RESET_HOLD) && ret; 11316 } 11317 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 11318 11319 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 11320 { 11321 return kvm_vcpu_apicv_active(vcpu) && 11322 kvm_x86_call(dy_apicv_has_pending_interrupt)(vcpu); 11323 } 11324 11325 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu) 11326 { 11327 return vcpu->arch.preempted_in_kernel; 11328 } 11329 11330 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 11331 { 11332 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 11333 return true; 11334 11335 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 11336 #ifdef CONFIG_KVM_SMM 11337 kvm_test_request(KVM_REQ_SMI, vcpu) || 11338 #endif 11339 kvm_test_request(KVM_REQ_EVENT, vcpu)) 11340 return true; 11341 11342 return kvm_arch_dy_has_pending_interrupt(vcpu); 11343 } 11344 11345 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 11346 { 11347 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 11348 } 11349 11350 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 11351 { 11352 BUG_ON(!vcpu->arch.pio.count); 11353 11354 return complete_emulated_io(vcpu); 11355 } 11356 11357 /* 11358 * Implements the following, as a state machine: 11359 * 11360 * read: 11361 * for each fragment 11362 * for each mmio piece in the fragment 11363 * write gpa, len 11364 * exit 11365 * copy data 11366 * execute insn 11367 * 11368 * write: 11369 * for each fragment 11370 * for each mmio piece in the fragment 11371 * write gpa, len 11372 * copy data 11373 * exit 11374 */ 11375 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 11376 { 11377 struct kvm_run *run = vcpu->run; 11378 struct kvm_mmio_fragment *frag; 11379 unsigned len; 11380 11381 BUG_ON(!vcpu->mmio_needed); 11382 11383 /* Complete previous fragment */ 11384 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 11385 len = min(8u, frag->len); 11386 if (!vcpu->mmio_is_write) 11387 memcpy(frag->data, run->mmio.data, len); 11388 11389 if (frag->len <= 8) { 11390 /* Switch to the next fragment. */ 11391 frag++; 11392 vcpu->mmio_cur_fragment++; 11393 } else { 11394 /* Go forward to the next mmio piece. */ 11395 frag->data += len; 11396 frag->gpa += len; 11397 frag->len -= len; 11398 } 11399 11400 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 11401 vcpu->mmio_needed = 0; 11402 11403 /* FIXME: return into emulator if single-stepping. */ 11404 if (vcpu->mmio_is_write) 11405 return 1; 11406 vcpu->mmio_read_completed = 1; 11407 return complete_emulated_io(vcpu); 11408 } 11409 11410 run->exit_reason = KVM_EXIT_MMIO; 11411 run->mmio.phys_addr = frag->gpa; 11412 if (vcpu->mmio_is_write) 11413 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 11414 run->mmio.len = min(8u, frag->len); 11415 run->mmio.is_write = vcpu->mmio_is_write; 11416 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 11417 return 0; 11418 } 11419 11420 /* Swap (qemu) user FPU context for the guest FPU context. */ 11421 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 11422 { 11423 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 11424 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 11425 trace_kvm_fpu(1); 11426 } 11427 11428 /* When vcpu_run ends, restore user space FPU context. */ 11429 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 11430 { 11431 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 11432 ++vcpu->stat.fpu_reload; 11433 trace_kvm_fpu(0); 11434 } 11435 11436 static int kvm_x86_vcpu_pre_run(struct kvm_vcpu *vcpu) 11437 { 11438 /* 11439 * SIPI_RECEIVED is obsolete; KVM leaves the vCPU in Wait-For-SIPI and 11440 * tracks the pending SIPI separately. SIPI_RECEIVED is still accepted 11441 * by KVM_SET_VCPU_EVENTS for backwards compatibility, but should be 11442 * converted to INIT_RECEIVED. 11443 */ 11444 if (WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) 11445 return -EINVAL; 11446 11447 /* 11448 * Disallow running the vCPU if userspace forced it into an impossible 11449 * MP_STATE, e.g. if the vCPU is in WFS but SIPI is blocked. 11450 */ 11451 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED && 11452 !kvm_apic_init_sipi_allowed(vcpu)) 11453 return -EINVAL; 11454 11455 return kvm_x86_call(vcpu_pre_run)(vcpu); 11456 } 11457 11458 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 11459 { 11460 struct kvm_queued_exception *ex = &vcpu->arch.exception; 11461 struct kvm_run *kvm_run = vcpu->run; 11462 u64 sync_valid_fields; 11463 int r; 11464 11465 r = kvm_mmu_post_init_vm(vcpu->kvm); 11466 if (r) 11467 return r; 11468 11469 vcpu_load(vcpu); 11470 kvm_sigset_activate(vcpu); 11471 kvm_run->flags = 0; 11472 kvm_load_guest_fpu(vcpu); 11473 11474 kvm_vcpu_srcu_read_lock(vcpu); 11475 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 11476 if (!vcpu->wants_to_run) { 11477 r = -EINTR; 11478 goto out; 11479 } 11480 11481 /* 11482 * Don't bother switching APIC timer emulation from the 11483 * hypervisor timer to the software timer, the only way for the 11484 * APIC timer to be active is if userspace stuffed vCPU state, 11485 * i.e. put the vCPU into a nonsensical state. Only an INIT 11486 * will transition the vCPU out of UNINITIALIZED (without more 11487 * state stuffing from userspace), which will reset the local 11488 * APIC and thus cancel the timer or drop the IRQ (if the timer 11489 * already expired). 11490 */ 11491 kvm_vcpu_srcu_read_unlock(vcpu); 11492 kvm_vcpu_block(vcpu); 11493 kvm_vcpu_srcu_read_lock(vcpu); 11494 11495 if (kvm_apic_accept_events(vcpu) < 0) { 11496 r = 0; 11497 goto out; 11498 } 11499 r = -EAGAIN; 11500 if (signal_pending(current)) { 11501 r = -EINTR; 11502 kvm_run->exit_reason = KVM_EXIT_INTR; 11503 ++vcpu->stat.signal_exits; 11504 } 11505 goto out; 11506 } 11507 11508 sync_valid_fields = kvm_sync_valid_fields(vcpu->kvm); 11509 if ((kvm_run->kvm_valid_regs & ~sync_valid_fields) || 11510 (kvm_run->kvm_dirty_regs & ~sync_valid_fields)) { 11511 r = -EINVAL; 11512 goto out; 11513 } 11514 11515 if (kvm_run->kvm_dirty_regs) { 11516 r = sync_regs(vcpu); 11517 if (r != 0) 11518 goto out; 11519 } 11520 11521 /* re-sync apic's tpr */ 11522 if (!lapic_in_kernel(vcpu)) { 11523 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 11524 r = -EINVAL; 11525 goto out; 11526 } 11527 } 11528 11529 /* 11530 * If userspace set a pending exception and L2 is active, convert it to 11531 * a pending VM-Exit if L1 wants to intercept the exception. 11532 */ 11533 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 11534 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 11535 ex->error_code)) { 11536 kvm_queue_exception_vmexit(vcpu, ex->vector, 11537 ex->has_error_code, ex->error_code, 11538 ex->has_payload, ex->payload); 11539 ex->injected = false; 11540 ex->pending = false; 11541 } 11542 vcpu->arch.exception_from_userspace = false; 11543 11544 if (unlikely(vcpu->arch.complete_userspace_io)) { 11545 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 11546 vcpu->arch.complete_userspace_io = NULL; 11547 r = cui(vcpu); 11548 if (r <= 0) 11549 goto out; 11550 } else { 11551 WARN_ON_ONCE(vcpu->arch.pio.count); 11552 WARN_ON_ONCE(vcpu->mmio_needed); 11553 } 11554 11555 if (!vcpu->wants_to_run) { 11556 r = -EINTR; 11557 goto out; 11558 } 11559 11560 r = kvm_x86_vcpu_pre_run(vcpu); 11561 if (r <= 0) 11562 goto out; 11563 11564 r = vcpu_run(vcpu); 11565 11566 out: 11567 kvm_put_guest_fpu(vcpu); 11568 if (kvm_run->kvm_valid_regs && likely(!vcpu->arch.guest_state_protected)) 11569 store_regs(vcpu); 11570 post_kvm_run_save(vcpu); 11571 kvm_vcpu_srcu_read_unlock(vcpu); 11572 11573 kvm_sigset_deactivate(vcpu); 11574 vcpu_put(vcpu); 11575 return r; 11576 } 11577 11578 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11579 { 11580 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 11581 /* 11582 * We are here if userspace calls get_regs() in the middle of 11583 * instruction emulation. Registers state needs to be copied 11584 * back from emulation context to vcpu. Userspace shouldn't do 11585 * that usually, but some bad designed PV devices (vmware 11586 * backdoor interface) need this to work 11587 */ 11588 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 11589 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11590 } 11591 regs->rax = kvm_rax_read(vcpu); 11592 regs->rbx = kvm_rbx_read(vcpu); 11593 regs->rcx = kvm_rcx_read(vcpu); 11594 regs->rdx = kvm_rdx_read(vcpu); 11595 regs->rsi = kvm_rsi_read(vcpu); 11596 regs->rdi = kvm_rdi_read(vcpu); 11597 regs->rsp = kvm_rsp_read(vcpu); 11598 regs->rbp = kvm_rbp_read(vcpu); 11599 #ifdef CONFIG_X86_64 11600 regs->r8 = kvm_r8_read(vcpu); 11601 regs->r9 = kvm_r9_read(vcpu); 11602 regs->r10 = kvm_r10_read(vcpu); 11603 regs->r11 = kvm_r11_read(vcpu); 11604 regs->r12 = kvm_r12_read(vcpu); 11605 regs->r13 = kvm_r13_read(vcpu); 11606 regs->r14 = kvm_r14_read(vcpu); 11607 regs->r15 = kvm_r15_read(vcpu); 11608 #endif 11609 11610 regs->rip = kvm_rip_read(vcpu); 11611 regs->rflags = kvm_get_rflags(vcpu); 11612 } 11613 11614 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11615 { 11616 if (vcpu->kvm->arch.has_protected_state && 11617 vcpu->arch.guest_state_protected) 11618 return -EINVAL; 11619 11620 vcpu_load(vcpu); 11621 __get_regs(vcpu, regs); 11622 vcpu_put(vcpu); 11623 return 0; 11624 } 11625 11626 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11627 { 11628 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 11629 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11630 11631 kvm_rax_write(vcpu, regs->rax); 11632 kvm_rbx_write(vcpu, regs->rbx); 11633 kvm_rcx_write(vcpu, regs->rcx); 11634 kvm_rdx_write(vcpu, regs->rdx); 11635 kvm_rsi_write(vcpu, regs->rsi); 11636 kvm_rdi_write(vcpu, regs->rdi); 11637 kvm_rsp_write(vcpu, regs->rsp); 11638 kvm_rbp_write(vcpu, regs->rbp); 11639 #ifdef CONFIG_X86_64 11640 kvm_r8_write(vcpu, regs->r8); 11641 kvm_r9_write(vcpu, regs->r9); 11642 kvm_r10_write(vcpu, regs->r10); 11643 kvm_r11_write(vcpu, regs->r11); 11644 kvm_r12_write(vcpu, regs->r12); 11645 kvm_r13_write(vcpu, regs->r13); 11646 kvm_r14_write(vcpu, regs->r14); 11647 kvm_r15_write(vcpu, regs->r15); 11648 #endif 11649 11650 kvm_rip_write(vcpu, regs->rip); 11651 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11652 11653 vcpu->arch.exception.pending = false; 11654 vcpu->arch.exception_vmexit.pending = false; 11655 11656 kvm_make_request(KVM_REQ_EVENT, vcpu); 11657 } 11658 11659 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11660 { 11661 if (vcpu->kvm->arch.has_protected_state && 11662 vcpu->arch.guest_state_protected) 11663 return -EINVAL; 11664 11665 vcpu_load(vcpu); 11666 __set_regs(vcpu, regs); 11667 vcpu_put(vcpu); 11668 return 0; 11669 } 11670 11671 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11672 { 11673 struct desc_ptr dt; 11674 11675 if (vcpu->arch.guest_state_protected) 11676 goto skip_protected_regs; 11677 11678 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11679 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11680 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11681 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11682 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11683 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11684 11685 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11686 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11687 11688 kvm_x86_call(get_idt)(vcpu, &dt); 11689 sregs->idt.limit = dt.size; 11690 sregs->idt.base = dt.address; 11691 kvm_x86_call(get_gdt)(vcpu, &dt); 11692 sregs->gdt.limit = dt.size; 11693 sregs->gdt.base = dt.address; 11694 11695 sregs->cr2 = vcpu->arch.cr2; 11696 sregs->cr3 = kvm_read_cr3(vcpu); 11697 11698 skip_protected_regs: 11699 sregs->cr0 = kvm_read_cr0(vcpu); 11700 sregs->cr4 = kvm_read_cr4(vcpu); 11701 sregs->cr8 = kvm_get_cr8(vcpu); 11702 sregs->efer = vcpu->arch.efer; 11703 sregs->apic_base = vcpu->arch.apic_base; 11704 } 11705 11706 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11707 { 11708 __get_sregs_common(vcpu, sregs); 11709 11710 if (vcpu->arch.guest_state_protected) 11711 return; 11712 11713 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11714 set_bit(vcpu->arch.interrupt.nr, 11715 (unsigned long *)sregs->interrupt_bitmap); 11716 } 11717 11718 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11719 { 11720 int i; 11721 11722 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11723 11724 if (vcpu->arch.guest_state_protected) 11725 return; 11726 11727 if (is_pae_paging(vcpu)) { 11728 for (i = 0 ; i < 4 ; i++) 11729 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11730 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11731 } 11732 } 11733 11734 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11735 struct kvm_sregs *sregs) 11736 { 11737 if (vcpu->kvm->arch.has_protected_state && 11738 vcpu->arch.guest_state_protected) 11739 return -EINVAL; 11740 11741 vcpu_load(vcpu); 11742 __get_sregs(vcpu, sregs); 11743 vcpu_put(vcpu); 11744 return 0; 11745 } 11746 11747 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11748 struct kvm_mp_state *mp_state) 11749 { 11750 int r; 11751 11752 vcpu_load(vcpu); 11753 if (kvm_mpx_supported()) 11754 kvm_load_guest_fpu(vcpu); 11755 11756 kvm_vcpu_srcu_read_lock(vcpu); 11757 11758 r = kvm_apic_accept_events(vcpu); 11759 if (r < 0) 11760 goto out; 11761 r = 0; 11762 11763 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11764 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11765 vcpu->arch.pv.pv_unhalted) 11766 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11767 else 11768 mp_state->mp_state = vcpu->arch.mp_state; 11769 11770 out: 11771 kvm_vcpu_srcu_read_unlock(vcpu); 11772 11773 if (kvm_mpx_supported()) 11774 kvm_put_guest_fpu(vcpu); 11775 vcpu_put(vcpu); 11776 return r; 11777 } 11778 11779 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11780 struct kvm_mp_state *mp_state) 11781 { 11782 int ret = -EINVAL; 11783 11784 vcpu_load(vcpu); 11785 11786 switch (mp_state->mp_state) { 11787 case KVM_MP_STATE_UNINITIALIZED: 11788 case KVM_MP_STATE_HALTED: 11789 case KVM_MP_STATE_AP_RESET_HOLD: 11790 case KVM_MP_STATE_INIT_RECEIVED: 11791 case KVM_MP_STATE_SIPI_RECEIVED: 11792 if (!lapic_in_kernel(vcpu)) 11793 goto out; 11794 break; 11795 11796 case KVM_MP_STATE_RUNNABLE: 11797 break; 11798 11799 default: 11800 goto out; 11801 } 11802 11803 /* 11804 * SIPI_RECEIVED is obsolete and no longer used internally; KVM instead 11805 * leaves the vCPU in INIT_RECIEVED (Wait-For-SIPI) and pends the SIPI. 11806 * Translate SIPI_RECEIVED as appropriate for backwards compatibility. 11807 */ 11808 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11809 mp_state->mp_state = KVM_MP_STATE_INIT_RECEIVED; 11810 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11811 } 11812 11813 kvm_set_mp_state(vcpu, mp_state->mp_state); 11814 kvm_make_request(KVM_REQ_EVENT, vcpu); 11815 11816 ret = 0; 11817 out: 11818 vcpu_put(vcpu); 11819 return ret; 11820 } 11821 11822 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11823 int reason, bool has_error_code, u32 error_code) 11824 { 11825 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11826 int ret; 11827 11828 init_emulate_ctxt(vcpu); 11829 11830 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11831 has_error_code, error_code); 11832 11833 /* 11834 * Report an error userspace if MMIO is needed, as KVM doesn't support 11835 * MMIO during a task switch (or any other complex operation). 11836 */ 11837 if (ret || vcpu->mmio_needed) { 11838 vcpu->mmio_needed = false; 11839 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11840 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11841 vcpu->run->internal.ndata = 0; 11842 return 0; 11843 } 11844 11845 kvm_rip_write(vcpu, ctxt->eip); 11846 kvm_set_rflags(vcpu, ctxt->eflags); 11847 return 1; 11848 } 11849 EXPORT_SYMBOL_GPL(kvm_task_switch); 11850 11851 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11852 { 11853 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11854 /* 11855 * When EFER.LME and CR0.PG are set, the processor is in 11856 * 64-bit mode (though maybe in a 32-bit code segment). 11857 * CR4.PAE and EFER.LMA must be set. 11858 */ 11859 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11860 return false; 11861 if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3)) 11862 return false; 11863 } else { 11864 /* 11865 * Not in 64-bit mode: EFER.LMA is clear and the code 11866 * segment cannot be 64-bit. 11867 */ 11868 if (sregs->efer & EFER_LMA || sregs->cs.l) 11869 return false; 11870 } 11871 11872 return kvm_is_valid_cr4(vcpu, sregs->cr4) && 11873 kvm_is_valid_cr0(vcpu, sregs->cr0); 11874 } 11875 11876 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11877 int *mmu_reset_needed, bool update_pdptrs) 11878 { 11879 int idx; 11880 struct desc_ptr dt; 11881 11882 if (!kvm_is_valid_sregs(vcpu, sregs)) 11883 return -EINVAL; 11884 11885 if (kvm_apic_set_base(vcpu, sregs->apic_base, true)) 11886 return -EINVAL; 11887 11888 if (vcpu->arch.guest_state_protected) 11889 return 0; 11890 11891 dt.size = sregs->idt.limit; 11892 dt.address = sregs->idt.base; 11893 kvm_x86_call(set_idt)(vcpu, &dt); 11894 dt.size = sregs->gdt.limit; 11895 dt.address = sregs->gdt.base; 11896 kvm_x86_call(set_gdt)(vcpu, &dt); 11897 11898 vcpu->arch.cr2 = sregs->cr2; 11899 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11900 vcpu->arch.cr3 = sregs->cr3; 11901 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11902 kvm_x86_call(post_set_cr3)(vcpu, sregs->cr3); 11903 11904 kvm_set_cr8(vcpu, sregs->cr8); 11905 11906 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11907 kvm_x86_call(set_efer)(vcpu, sregs->efer); 11908 11909 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11910 kvm_x86_call(set_cr0)(vcpu, sregs->cr0); 11911 11912 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11913 kvm_x86_call(set_cr4)(vcpu, sregs->cr4); 11914 11915 if (update_pdptrs) { 11916 idx = srcu_read_lock(&vcpu->kvm->srcu); 11917 if (is_pae_paging(vcpu)) { 11918 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11919 *mmu_reset_needed = 1; 11920 } 11921 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11922 } 11923 11924 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11925 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11926 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11927 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11928 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11929 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11930 11931 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11932 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11933 11934 update_cr8_intercept(vcpu); 11935 11936 /* Older userspace won't unhalt the vcpu on reset. */ 11937 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11938 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11939 !is_protmode(vcpu)) 11940 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 11941 11942 return 0; 11943 } 11944 11945 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11946 { 11947 int pending_vec, max_bits; 11948 int mmu_reset_needed = 0; 11949 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11950 11951 if (ret) 11952 return ret; 11953 11954 if (mmu_reset_needed) { 11955 kvm_mmu_reset_context(vcpu); 11956 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11957 } 11958 11959 max_bits = KVM_NR_INTERRUPTS; 11960 pending_vec = find_first_bit( 11961 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11962 11963 if (pending_vec < max_bits) { 11964 kvm_queue_interrupt(vcpu, pending_vec, false); 11965 pr_debug("Set back pending irq %d\n", pending_vec); 11966 kvm_make_request(KVM_REQ_EVENT, vcpu); 11967 } 11968 return 0; 11969 } 11970 11971 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11972 { 11973 int mmu_reset_needed = 0; 11974 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11975 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11976 !(sregs2->efer & EFER_LMA); 11977 int i, ret; 11978 11979 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11980 return -EINVAL; 11981 11982 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11983 return -EINVAL; 11984 11985 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11986 &mmu_reset_needed, !valid_pdptrs); 11987 if (ret) 11988 return ret; 11989 11990 if (valid_pdptrs) { 11991 for (i = 0; i < 4 ; i++) 11992 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11993 11994 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11995 mmu_reset_needed = 1; 11996 vcpu->arch.pdptrs_from_userspace = true; 11997 } 11998 if (mmu_reset_needed) { 11999 kvm_mmu_reset_context(vcpu); 12000 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12001 } 12002 return 0; 12003 } 12004 12005 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 12006 struct kvm_sregs *sregs) 12007 { 12008 int ret; 12009 12010 if (vcpu->kvm->arch.has_protected_state && 12011 vcpu->arch.guest_state_protected) 12012 return -EINVAL; 12013 12014 vcpu_load(vcpu); 12015 ret = __set_sregs(vcpu, sregs); 12016 vcpu_put(vcpu); 12017 return ret; 12018 } 12019 12020 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 12021 { 12022 bool set = false; 12023 struct kvm_vcpu *vcpu; 12024 unsigned long i; 12025 12026 if (!enable_apicv) 12027 return; 12028 12029 down_write(&kvm->arch.apicv_update_lock); 12030 12031 kvm_for_each_vcpu(i, vcpu, kvm) { 12032 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 12033 set = true; 12034 break; 12035 } 12036 } 12037 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 12038 up_write(&kvm->arch.apicv_update_lock); 12039 } 12040 12041 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 12042 struct kvm_guest_debug *dbg) 12043 { 12044 unsigned long rflags; 12045 int i, r; 12046 12047 if (vcpu->arch.guest_state_protected) 12048 return -EINVAL; 12049 12050 vcpu_load(vcpu); 12051 12052 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 12053 r = -EBUSY; 12054 if (kvm_is_exception_pending(vcpu)) 12055 goto out; 12056 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 12057 kvm_queue_exception(vcpu, DB_VECTOR); 12058 else 12059 kvm_queue_exception(vcpu, BP_VECTOR); 12060 } 12061 12062 /* 12063 * Read rflags as long as potentially injected trace flags are still 12064 * filtered out. 12065 */ 12066 rflags = kvm_get_rflags(vcpu); 12067 12068 vcpu->guest_debug = dbg->control; 12069 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 12070 vcpu->guest_debug = 0; 12071 12072 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 12073 for (i = 0; i < KVM_NR_DB_REGS; ++i) 12074 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 12075 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 12076 } else { 12077 for (i = 0; i < KVM_NR_DB_REGS; i++) 12078 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 12079 } 12080 kvm_update_dr7(vcpu); 12081 12082 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12083 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 12084 12085 /* 12086 * Trigger an rflags update that will inject or remove the trace 12087 * flags. 12088 */ 12089 kvm_set_rflags(vcpu, rflags); 12090 12091 kvm_x86_call(update_exception_bitmap)(vcpu); 12092 12093 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 12094 12095 r = 0; 12096 12097 out: 12098 vcpu_put(vcpu); 12099 return r; 12100 } 12101 12102 /* 12103 * Translate a guest virtual address to a guest physical address. 12104 */ 12105 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 12106 struct kvm_translation *tr) 12107 { 12108 unsigned long vaddr = tr->linear_address; 12109 gpa_t gpa; 12110 int idx; 12111 12112 vcpu_load(vcpu); 12113 12114 idx = srcu_read_lock(&vcpu->kvm->srcu); 12115 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 12116 srcu_read_unlock(&vcpu->kvm->srcu, idx); 12117 tr->physical_address = gpa; 12118 tr->valid = gpa != INVALID_GPA; 12119 tr->writeable = 1; 12120 tr->usermode = 0; 12121 12122 vcpu_put(vcpu); 12123 return 0; 12124 } 12125 12126 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 12127 { 12128 struct fxregs_state *fxsave; 12129 12130 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 12131 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 12132 12133 vcpu_load(vcpu); 12134 12135 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 12136 memcpy(fpu->fpr, fxsave->st_space, 128); 12137 fpu->fcw = fxsave->cwd; 12138 fpu->fsw = fxsave->swd; 12139 fpu->ftwx = fxsave->twd; 12140 fpu->last_opcode = fxsave->fop; 12141 fpu->last_ip = fxsave->rip; 12142 fpu->last_dp = fxsave->rdp; 12143 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 12144 12145 vcpu_put(vcpu); 12146 return 0; 12147 } 12148 12149 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 12150 { 12151 struct fxregs_state *fxsave; 12152 12153 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 12154 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 12155 12156 vcpu_load(vcpu); 12157 12158 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 12159 12160 memcpy(fxsave->st_space, fpu->fpr, 128); 12161 fxsave->cwd = fpu->fcw; 12162 fxsave->swd = fpu->fsw; 12163 fxsave->twd = fpu->ftwx; 12164 fxsave->fop = fpu->last_opcode; 12165 fxsave->rip = fpu->last_ip; 12166 fxsave->rdp = fpu->last_dp; 12167 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 12168 12169 vcpu_put(vcpu); 12170 return 0; 12171 } 12172 12173 static void store_regs(struct kvm_vcpu *vcpu) 12174 { 12175 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 12176 12177 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 12178 __get_regs(vcpu, &vcpu->run->s.regs.regs); 12179 12180 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 12181 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 12182 12183 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 12184 kvm_vcpu_ioctl_x86_get_vcpu_events( 12185 vcpu, &vcpu->run->s.regs.events); 12186 } 12187 12188 static int sync_regs(struct kvm_vcpu *vcpu) 12189 { 12190 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 12191 __set_regs(vcpu, &vcpu->run->s.regs.regs); 12192 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 12193 } 12194 12195 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 12196 struct kvm_sregs sregs = vcpu->run->s.regs.sregs; 12197 12198 if (__set_sregs(vcpu, &sregs)) 12199 return -EINVAL; 12200 12201 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 12202 } 12203 12204 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 12205 struct kvm_vcpu_events events = vcpu->run->s.regs.events; 12206 12207 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events)) 12208 return -EINVAL; 12209 12210 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 12211 } 12212 12213 return 0; 12214 } 12215 12216 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 12217 { 12218 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 12219 pr_warn_once("SMP vm created on host with unstable TSC; " 12220 "guest TSC will not be reliable\n"); 12221 12222 if (!kvm->arch.max_vcpu_ids) 12223 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 12224 12225 if (id >= kvm->arch.max_vcpu_ids) 12226 return -EINVAL; 12227 12228 return kvm_x86_call(vcpu_precreate)(kvm); 12229 } 12230 12231 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 12232 { 12233 struct page *page; 12234 int r; 12235 12236 vcpu->arch.last_vmentry_cpu = -1; 12237 vcpu->arch.regs_avail = ~0; 12238 vcpu->arch.regs_dirty = ~0; 12239 12240 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm); 12241 12242 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 12243 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 12244 else 12245 kvm_set_mp_state(vcpu, KVM_MP_STATE_UNINITIALIZED); 12246 12247 r = kvm_mmu_create(vcpu); 12248 if (r < 0) 12249 return r; 12250 12251 r = kvm_create_lapic(vcpu); 12252 if (r < 0) 12253 goto fail_mmu_destroy; 12254 12255 r = -ENOMEM; 12256 12257 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 12258 if (!page) 12259 goto fail_free_lapic; 12260 vcpu->arch.pio_data = page_address(page); 12261 12262 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 12263 GFP_KERNEL_ACCOUNT); 12264 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 12265 GFP_KERNEL_ACCOUNT); 12266 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 12267 goto fail_free_mce_banks; 12268 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 12269 12270 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 12271 GFP_KERNEL_ACCOUNT)) 12272 goto fail_free_mce_banks; 12273 12274 if (!alloc_emulate_ctxt(vcpu)) 12275 goto free_wbinvd_dirty_mask; 12276 12277 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 12278 pr_err("failed to allocate vcpu's fpu\n"); 12279 goto free_emulate_ctxt; 12280 } 12281 12282 kvm_async_pf_hash_reset(vcpu); 12283 12284 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) { 12285 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 12286 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 12287 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 12288 } 12289 kvm_pmu_init(vcpu); 12290 12291 vcpu->arch.pending_external_vector = -1; 12292 vcpu->arch.preempted_in_kernel = false; 12293 12294 #if IS_ENABLED(CONFIG_HYPERV) 12295 vcpu->arch.hv_root_tdp = INVALID_PAGE; 12296 #endif 12297 12298 r = kvm_x86_call(vcpu_create)(vcpu); 12299 if (r) 12300 goto free_guest_fpu; 12301 12302 kvm_xen_init_vcpu(vcpu); 12303 vcpu_load(vcpu); 12304 kvm_vcpu_after_set_cpuid(vcpu); 12305 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 12306 kvm_vcpu_reset(vcpu, false); 12307 kvm_init_mmu(vcpu); 12308 vcpu_put(vcpu); 12309 return 0; 12310 12311 free_guest_fpu: 12312 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 12313 free_emulate_ctxt: 12314 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 12315 free_wbinvd_dirty_mask: 12316 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 12317 fail_free_mce_banks: 12318 kfree(vcpu->arch.mce_banks); 12319 kfree(vcpu->arch.mci_ctl2_banks); 12320 free_page((unsigned long)vcpu->arch.pio_data); 12321 fail_free_lapic: 12322 kvm_free_lapic(vcpu); 12323 fail_mmu_destroy: 12324 kvm_mmu_destroy(vcpu); 12325 return r; 12326 } 12327 12328 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 12329 { 12330 struct kvm *kvm = vcpu->kvm; 12331 12332 if (mutex_lock_killable(&vcpu->mutex)) 12333 return; 12334 vcpu_load(vcpu); 12335 kvm_synchronize_tsc(vcpu, NULL); 12336 vcpu_put(vcpu); 12337 12338 /* poll control enabled by default */ 12339 vcpu->arch.msr_kvm_poll_control = 1; 12340 12341 mutex_unlock(&vcpu->mutex); 12342 12343 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 12344 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 12345 KVMCLOCK_SYNC_PERIOD); 12346 } 12347 12348 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 12349 { 12350 int idx, cpu; 12351 12352 kvm_clear_async_pf_completion_queue(vcpu); 12353 kvm_mmu_unload(vcpu); 12354 12355 kvmclock_reset(vcpu); 12356 12357 for_each_possible_cpu(cpu) 12358 cmpxchg(per_cpu_ptr(&last_vcpu, cpu), vcpu, NULL); 12359 12360 kvm_x86_call(vcpu_free)(vcpu); 12361 12362 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 12363 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 12364 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 12365 12366 kvm_xen_destroy_vcpu(vcpu); 12367 kvm_hv_vcpu_uninit(vcpu); 12368 kvm_pmu_destroy(vcpu); 12369 kfree(vcpu->arch.mce_banks); 12370 kfree(vcpu->arch.mci_ctl2_banks); 12371 kvm_free_lapic(vcpu); 12372 idx = srcu_read_lock(&vcpu->kvm->srcu); 12373 kvm_mmu_destroy(vcpu); 12374 srcu_read_unlock(&vcpu->kvm->srcu, idx); 12375 free_page((unsigned long)vcpu->arch.pio_data); 12376 kvfree(vcpu->arch.cpuid_entries); 12377 } 12378 12379 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 12380 { 12381 struct kvm_cpuid_entry2 *cpuid_0x1; 12382 unsigned long old_cr0 = kvm_read_cr0(vcpu); 12383 unsigned long new_cr0; 12384 12385 /* 12386 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 12387 * to handle side effects. RESET emulation hits those flows and relies 12388 * on emulated/virtualized registers, including those that are loaded 12389 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 12390 * to detect improper or missing initialization. 12391 */ 12392 WARN_ON_ONCE(!init_event && 12393 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 12394 12395 /* 12396 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 12397 * possible to INIT the vCPU while L2 is active. Force the vCPU back 12398 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 12399 * bits), i.e. virtualization is disabled. 12400 */ 12401 if (is_guest_mode(vcpu)) 12402 kvm_leave_nested(vcpu); 12403 12404 kvm_lapic_reset(vcpu, init_event); 12405 12406 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 12407 vcpu->arch.hflags = 0; 12408 12409 vcpu->arch.smi_pending = 0; 12410 vcpu->arch.smi_count = 0; 12411 atomic_set(&vcpu->arch.nmi_queued, 0); 12412 vcpu->arch.nmi_pending = 0; 12413 vcpu->arch.nmi_injected = false; 12414 kvm_clear_interrupt_queue(vcpu); 12415 kvm_clear_exception_queue(vcpu); 12416 12417 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 12418 kvm_update_dr0123(vcpu); 12419 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 12420 vcpu->arch.dr7 = DR7_FIXED_1; 12421 kvm_update_dr7(vcpu); 12422 12423 vcpu->arch.cr2 = 0; 12424 12425 kvm_make_request(KVM_REQ_EVENT, vcpu); 12426 vcpu->arch.apf.msr_en_val = 0; 12427 vcpu->arch.apf.msr_int_val = 0; 12428 vcpu->arch.st.msr_val = 0; 12429 12430 kvmclock_reset(vcpu); 12431 12432 kvm_clear_async_pf_completion_queue(vcpu); 12433 kvm_async_pf_hash_reset(vcpu); 12434 vcpu->arch.apf.halted = false; 12435 12436 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 12437 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 12438 12439 /* 12440 * All paths that lead to INIT are required to load the guest's 12441 * FPU state (because most paths are buried in KVM_RUN). 12442 */ 12443 if (init_event) 12444 kvm_put_guest_fpu(vcpu); 12445 12446 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 12447 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 12448 12449 if (init_event) 12450 kvm_load_guest_fpu(vcpu); 12451 } 12452 12453 if (!init_event) { 12454 vcpu->arch.smbase = 0x30000; 12455 12456 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 12457 12458 vcpu->arch.msr_misc_features_enables = 0; 12459 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 12460 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 12461 12462 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 12463 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 12464 } 12465 12466 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 12467 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 12468 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 12469 12470 /* 12471 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 12472 * if no CPUID match is found. Note, it's impossible to get a match at 12473 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 12474 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 12475 * on RESET. But, go through the motions in case that's ever remedied. 12476 */ 12477 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 12478 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 12479 12480 kvm_x86_call(vcpu_reset)(vcpu, init_event); 12481 12482 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 12483 kvm_rip_write(vcpu, 0xfff0); 12484 12485 vcpu->arch.cr3 = 0; 12486 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 12487 12488 /* 12489 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 12490 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 12491 * (or qualify) that with a footnote stating that CD/NW are preserved. 12492 */ 12493 new_cr0 = X86_CR0_ET; 12494 if (init_event) 12495 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 12496 else 12497 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 12498 12499 kvm_x86_call(set_cr0)(vcpu, new_cr0); 12500 kvm_x86_call(set_cr4)(vcpu, 0); 12501 kvm_x86_call(set_efer)(vcpu, 0); 12502 kvm_x86_call(update_exception_bitmap)(vcpu); 12503 12504 /* 12505 * On the standard CR0/CR4/EFER modification paths, there are several 12506 * complex conditions determining whether the MMU has to be reset and/or 12507 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 12508 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 12509 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 12510 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 12511 */ 12512 if (old_cr0 & X86_CR0_PG) { 12513 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12514 kvm_mmu_reset_context(vcpu); 12515 } 12516 12517 /* 12518 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 12519 * APM states the TLBs are untouched by INIT, but it also states that 12520 * the TLBs are flushed on "External initialization of the processor." 12521 * Flush the guest TLB regardless of vendor, there is no meaningful 12522 * benefit in relying on the guest to flush the TLB immediately after 12523 * INIT. A spurious TLB flush is benign and likely negligible from a 12524 * performance perspective. 12525 */ 12526 if (init_event) 12527 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12528 } 12529 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 12530 12531 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 12532 { 12533 struct kvm_segment cs; 12534 12535 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 12536 cs.selector = vector << 8; 12537 cs.base = vector << 12; 12538 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 12539 kvm_rip_write(vcpu, 0); 12540 } 12541 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 12542 12543 void kvm_arch_enable_virtualization(void) 12544 { 12545 cpu_emergency_register_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu); 12546 } 12547 12548 void kvm_arch_disable_virtualization(void) 12549 { 12550 cpu_emergency_unregister_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu); 12551 } 12552 12553 int kvm_arch_enable_virtualization_cpu(void) 12554 { 12555 struct kvm *kvm; 12556 struct kvm_vcpu *vcpu; 12557 unsigned long i; 12558 int ret; 12559 u64 local_tsc; 12560 u64 max_tsc = 0; 12561 bool stable, backwards_tsc = false; 12562 12563 kvm_user_return_msr_cpu_online(); 12564 12565 ret = kvm_x86_check_processor_compatibility(); 12566 if (ret) 12567 return ret; 12568 12569 ret = kvm_x86_call(enable_virtualization_cpu)(); 12570 if (ret != 0) 12571 return ret; 12572 12573 local_tsc = rdtsc(); 12574 stable = !kvm_check_tsc_unstable(); 12575 list_for_each_entry(kvm, &vm_list, vm_list) { 12576 kvm_for_each_vcpu(i, vcpu, kvm) { 12577 if (!stable && vcpu->cpu == smp_processor_id()) 12578 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 12579 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 12580 backwards_tsc = true; 12581 if (vcpu->arch.last_host_tsc > max_tsc) 12582 max_tsc = vcpu->arch.last_host_tsc; 12583 } 12584 } 12585 } 12586 12587 /* 12588 * Sometimes, even reliable TSCs go backwards. This happens on 12589 * platforms that reset TSC during suspend or hibernate actions, but 12590 * maintain synchronization. We must compensate. Fortunately, we can 12591 * detect that condition here, which happens early in CPU bringup, 12592 * before any KVM threads can be running. Unfortunately, we can't 12593 * bring the TSCs fully up to date with real time, as we aren't yet far 12594 * enough into CPU bringup that we know how much real time has actually 12595 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 12596 * variables that haven't been updated yet. 12597 * 12598 * So we simply find the maximum observed TSC above, then record the 12599 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 12600 * the adjustment will be applied. Note that we accumulate 12601 * adjustments, in case multiple suspend cycles happen before some VCPU 12602 * gets a chance to run again. In the event that no KVM threads get a 12603 * chance to run, we will miss the entire elapsed period, as we'll have 12604 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 12605 * loose cycle time. This isn't too big a deal, since the loss will be 12606 * uniform across all VCPUs (not to mention the scenario is extremely 12607 * unlikely). It is possible that a second hibernate recovery happens 12608 * much faster than a first, causing the observed TSC here to be 12609 * smaller; this would require additional padding adjustment, which is 12610 * why we set last_host_tsc to the local tsc observed here. 12611 * 12612 * N.B. - this code below runs only on platforms with reliable TSC, 12613 * as that is the only way backwards_tsc is set above. Also note 12614 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 12615 * have the same delta_cyc adjustment applied if backwards_tsc 12616 * is detected. Note further, this adjustment is only done once, 12617 * as we reset last_host_tsc on all VCPUs to stop this from being 12618 * called multiple times (one for each physical CPU bringup). 12619 * 12620 * Platforms with unreliable TSCs don't have to deal with this, they 12621 * will be compensated by the logic in vcpu_load, which sets the TSC to 12622 * catchup mode. This will catchup all VCPUs to real time, but cannot 12623 * guarantee that they stay in perfect synchronization. 12624 */ 12625 if (backwards_tsc) { 12626 u64 delta_cyc = max_tsc - local_tsc; 12627 list_for_each_entry(kvm, &vm_list, vm_list) { 12628 kvm->arch.backwards_tsc_observed = true; 12629 kvm_for_each_vcpu(i, vcpu, kvm) { 12630 vcpu->arch.tsc_offset_adjustment += delta_cyc; 12631 vcpu->arch.last_host_tsc = local_tsc; 12632 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 12633 } 12634 12635 /* 12636 * We have to disable TSC offset matching.. if you were 12637 * booting a VM while issuing an S4 host suspend.... 12638 * you may have some problem. Solving this issue is 12639 * left as an exercise to the reader. 12640 */ 12641 kvm->arch.last_tsc_nsec = 0; 12642 kvm->arch.last_tsc_write = 0; 12643 } 12644 12645 } 12646 return 0; 12647 } 12648 12649 void kvm_arch_disable_virtualization_cpu(void) 12650 { 12651 kvm_x86_call(disable_virtualization_cpu)(); 12652 drop_user_return_notifiers(); 12653 } 12654 12655 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12656 { 12657 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12658 } 12659 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); 12660 12661 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12662 { 12663 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12664 } 12665 12666 void kvm_arch_free_vm(struct kvm *kvm) 12667 { 12668 #if IS_ENABLED(CONFIG_HYPERV) 12669 kfree(kvm->arch.hv_pa_pg); 12670 #endif 12671 __kvm_arch_free_vm(kvm); 12672 } 12673 12674 12675 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12676 { 12677 int ret; 12678 unsigned long flags; 12679 12680 if (!kvm_is_vm_type_supported(type)) 12681 return -EINVAL; 12682 12683 kvm->arch.vm_type = type; 12684 kvm->arch.has_private_mem = 12685 (type == KVM_X86_SW_PROTECTED_VM); 12686 /* Decided by the vendor code for other VM types. */ 12687 kvm->arch.pre_fault_allowed = 12688 type == KVM_X86_DEFAULT_VM || type == KVM_X86_SW_PROTECTED_VM; 12689 kvm->arch.disabled_quirks = kvm_caps.inapplicable_quirks & kvm_caps.supported_quirks; 12690 12691 ret = kvm_page_track_init(kvm); 12692 if (ret) 12693 goto out; 12694 12695 ret = kvm_mmu_init_vm(kvm); 12696 if (ret) 12697 goto out_cleanup_page_track; 12698 12699 ret = kvm_x86_call(vm_init)(kvm); 12700 if (ret) 12701 goto out_uninit_mmu; 12702 12703 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12704 12705 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12706 mutex_init(&kvm->arch.apic_map_lock); 12707 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12708 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12709 12710 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12711 pvclock_update_vm_gtod_copy(kvm); 12712 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12713 12714 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12715 kvm->arch.apic_bus_cycle_ns = APIC_BUS_CYCLE_NS_DEFAULT; 12716 kvm->arch.guest_can_read_msr_platform_info = true; 12717 kvm->arch.enable_pmu = enable_pmu; 12718 12719 #if IS_ENABLED(CONFIG_HYPERV) 12720 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12721 kvm->arch.hv_root_tdp = INVALID_PAGE; 12722 #endif 12723 12724 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12725 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12726 12727 kvm_apicv_init(kvm); 12728 kvm_hv_init_vm(kvm); 12729 kvm_xen_init_vm(kvm); 12730 12731 if (ignore_msrs && !report_ignored_msrs) { 12732 pr_warn_once("Running KVM with ignore_msrs=1 and report_ignored_msrs=0 is not a\n" 12733 "a supported configuration. Lying to the guest about the existence of MSRs\n" 12734 "may cause the guest operating system to hang or produce errors. If a guest\n" 12735 "does not run without ignore_msrs=1, please report it to kvm@vger.kernel.org.\n"); 12736 } 12737 12738 once_init(&kvm->arch.nx_once); 12739 return 0; 12740 12741 out_uninit_mmu: 12742 kvm_mmu_uninit_vm(kvm); 12743 out_cleanup_page_track: 12744 kvm_page_track_cleanup(kvm); 12745 out: 12746 return ret; 12747 } 12748 12749 /** 12750 * __x86_set_memory_region: Setup KVM internal memory slot 12751 * 12752 * @kvm: the kvm pointer to the VM. 12753 * @id: the slot ID to setup. 12754 * @gpa: the GPA to install the slot (unused when @size == 0). 12755 * @size: the size of the slot. Set to zero to uninstall a slot. 12756 * 12757 * This function helps to setup a KVM internal memory slot. Specify 12758 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12759 * slot. The return code can be one of the following: 12760 * 12761 * HVA: on success (uninstall will return a bogus HVA) 12762 * -errno: on error 12763 * 12764 * The caller should always use IS_ERR() to check the return value 12765 * before use. Note, the KVM internal memory slots are guaranteed to 12766 * remain valid and unchanged until the VM is destroyed, i.e., the 12767 * GPA->HVA translation will not change. However, the HVA is a user 12768 * address, i.e. its accessibility is not guaranteed, and must be 12769 * accessed via __copy_{to,from}_user(). 12770 */ 12771 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12772 u32 size) 12773 { 12774 int i, r; 12775 unsigned long hva, old_npages; 12776 struct kvm_memslots *slots = kvm_memslots(kvm); 12777 struct kvm_memory_slot *slot; 12778 12779 lockdep_assert_held(&kvm->slots_lock); 12780 12781 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12782 return ERR_PTR_USR(-EINVAL); 12783 12784 slot = id_to_memslot(slots, id); 12785 if (size) { 12786 if (slot && slot->npages) 12787 return ERR_PTR_USR(-EEXIST); 12788 12789 /* 12790 * MAP_SHARED to prevent internal slot pages from being moved 12791 * by fork()/COW. 12792 */ 12793 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12794 MAP_SHARED | MAP_ANONYMOUS, 0); 12795 if (IS_ERR_VALUE(hva)) 12796 return (void __user *)hva; 12797 } else { 12798 if (!slot || !slot->npages) 12799 return NULL; 12800 12801 old_npages = slot->npages; 12802 hva = slot->userspace_addr; 12803 } 12804 12805 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 12806 struct kvm_userspace_memory_region2 m; 12807 12808 m.slot = id | (i << 16); 12809 m.flags = 0; 12810 m.guest_phys_addr = gpa; 12811 m.userspace_addr = hva; 12812 m.memory_size = size; 12813 r = kvm_set_internal_memslot(kvm, &m); 12814 if (r < 0) 12815 return ERR_PTR_USR(r); 12816 } 12817 12818 if (!size) 12819 vm_munmap(hva, old_npages * PAGE_SIZE); 12820 12821 return (void __user *)hva; 12822 } 12823 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12824 12825 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12826 { 12827 /* 12828 * Stop all background workers and kthreads before destroying vCPUs, as 12829 * iterating over vCPUs in a different task while vCPUs are being freed 12830 * is unsafe, i.e. will lead to use-after-free. The PIT also needs to 12831 * be stopped before IRQ routing is freed. 12832 */ 12833 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12834 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12835 12836 #ifdef CONFIG_KVM_IOAPIC 12837 kvm_free_pit(kvm); 12838 #endif 12839 12840 kvm_mmu_pre_destroy_vm(kvm); 12841 static_call_cond(kvm_x86_vm_pre_destroy)(kvm); 12842 } 12843 12844 void kvm_arch_destroy_vm(struct kvm *kvm) 12845 { 12846 if (current->mm == kvm->mm) { 12847 /* 12848 * Free memory regions allocated on behalf of userspace, 12849 * unless the memory map has changed due to process exit 12850 * or fd copying. 12851 */ 12852 mutex_lock(&kvm->slots_lock); 12853 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12854 0, 0); 12855 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12856 0, 0); 12857 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12858 mutex_unlock(&kvm->slots_lock); 12859 } 12860 kvm_destroy_vcpus(kvm); 12861 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12862 #ifdef CONFIG_KVM_IOAPIC 12863 kvm_pic_destroy(kvm); 12864 kvm_ioapic_destroy(kvm); 12865 #endif 12866 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12867 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12868 kvm_mmu_uninit_vm(kvm); 12869 kvm_page_track_cleanup(kvm); 12870 kvm_xen_destroy_vm(kvm); 12871 kvm_hv_destroy_vm(kvm); 12872 kvm_x86_call(vm_destroy)(kvm); 12873 } 12874 12875 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12876 { 12877 int i; 12878 12879 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12880 vfree(slot->arch.rmap[i]); 12881 slot->arch.rmap[i] = NULL; 12882 } 12883 } 12884 12885 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12886 { 12887 int i; 12888 12889 memslot_rmap_free(slot); 12890 12891 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12892 vfree(slot->arch.lpage_info[i - 1]); 12893 slot->arch.lpage_info[i - 1] = NULL; 12894 } 12895 12896 kvm_page_track_free_memslot(slot); 12897 } 12898 12899 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12900 { 12901 const int sz = sizeof(*slot->arch.rmap[0]); 12902 int i; 12903 12904 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12905 int level = i + 1; 12906 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12907 12908 if (slot->arch.rmap[i]) 12909 continue; 12910 12911 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12912 if (!slot->arch.rmap[i]) { 12913 memslot_rmap_free(slot); 12914 return -ENOMEM; 12915 } 12916 } 12917 12918 return 0; 12919 } 12920 12921 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12922 struct kvm_memory_slot *slot) 12923 { 12924 unsigned long npages = slot->npages; 12925 int i, r; 12926 12927 /* 12928 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12929 * old arrays will be freed by kvm_set_memory_region() if installing 12930 * the new memslot is successful. 12931 */ 12932 memset(&slot->arch, 0, sizeof(slot->arch)); 12933 12934 if (kvm_memslots_have_rmaps(kvm)) { 12935 r = memslot_rmap_alloc(slot, npages); 12936 if (r) 12937 return r; 12938 } 12939 12940 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12941 struct kvm_lpage_info *linfo; 12942 unsigned long ugfn; 12943 int lpages; 12944 int level = i + 1; 12945 12946 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12947 12948 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12949 if (!linfo) 12950 goto out_free; 12951 12952 slot->arch.lpage_info[i - 1] = linfo; 12953 12954 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12955 linfo[0].disallow_lpage = 1; 12956 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12957 linfo[lpages - 1].disallow_lpage = 1; 12958 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12959 /* 12960 * If the gfn and userspace address are not aligned wrt each 12961 * other, disable large page support for this slot. 12962 */ 12963 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12964 unsigned long j; 12965 12966 for (j = 0; j < lpages; ++j) 12967 linfo[j].disallow_lpage = 1; 12968 } 12969 } 12970 12971 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 12972 kvm_mmu_init_memslot_memory_attributes(kvm, slot); 12973 #endif 12974 12975 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12976 goto out_free; 12977 12978 return 0; 12979 12980 out_free: 12981 memslot_rmap_free(slot); 12982 12983 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12984 vfree(slot->arch.lpage_info[i - 1]); 12985 slot->arch.lpage_info[i - 1] = NULL; 12986 } 12987 return -ENOMEM; 12988 } 12989 12990 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12991 { 12992 struct kvm_vcpu *vcpu; 12993 unsigned long i; 12994 12995 /* 12996 * memslots->generation has been incremented. 12997 * mmio generation may have reached its maximum value. 12998 */ 12999 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 13000 13001 /* Force re-initialization of steal_time cache */ 13002 kvm_for_each_vcpu(i, vcpu, kvm) 13003 kvm_vcpu_kick(vcpu); 13004 } 13005 13006 int kvm_arch_prepare_memory_region(struct kvm *kvm, 13007 const struct kvm_memory_slot *old, 13008 struct kvm_memory_slot *new, 13009 enum kvm_mr_change change) 13010 { 13011 /* 13012 * KVM doesn't support moving memslots when there are external page 13013 * trackers attached to the VM, i.e. if KVMGT is in use. 13014 */ 13015 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm)) 13016 return -EINVAL; 13017 13018 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 13019 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 13020 return -EINVAL; 13021 13022 if (kvm_is_gfn_alias(kvm, new->base_gfn + new->npages - 1)) 13023 return -EINVAL; 13024 13025 return kvm_alloc_memslot_metadata(kvm, new); 13026 } 13027 13028 if (change == KVM_MR_FLAGS_ONLY) 13029 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 13030 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 13031 return -EIO; 13032 13033 return 0; 13034 } 13035 13036 13037 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 13038 { 13039 int nr_slots; 13040 13041 if (!kvm->arch.cpu_dirty_log_size) 13042 return; 13043 13044 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging); 13045 if ((enable && nr_slots == 1) || !nr_slots) 13046 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 13047 } 13048 13049 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 13050 struct kvm_memory_slot *old, 13051 const struct kvm_memory_slot *new, 13052 enum kvm_mr_change change) 13053 { 13054 u32 old_flags = old ? old->flags : 0; 13055 u32 new_flags = new ? new->flags : 0; 13056 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 13057 13058 /* 13059 * Update CPU dirty logging if dirty logging is being toggled. This 13060 * applies to all operations. 13061 */ 13062 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 13063 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 13064 13065 /* 13066 * Nothing more to do for RO slots (which can't be dirtied and can't be 13067 * made writable) or CREATE/MOVE/DELETE of a slot. 13068 * 13069 * For a memslot with dirty logging disabled: 13070 * CREATE: No dirty mappings will already exist. 13071 * MOVE/DELETE: The old mappings will already have been cleaned up by 13072 * kvm_arch_flush_shadow_memslot() 13073 * 13074 * For a memslot with dirty logging enabled: 13075 * CREATE: No shadow pages exist, thus nothing to write-protect 13076 * and no dirty bits to clear. 13077 * MOVE/DELETE: The old mappings will already have been cleaned up by 13078 * kvm_arch_flush_shadow_memslot(). 13079 */ 13080 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 13081 return; 13082 13083 /* 13084 * READONLY and non-flags changes were filtered out above, and the only 13085 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 13086 * logging isn't being toggled on or off. 13087 */ 13088 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 13089 return; 13090 13091 if (!log_dirty_pages) { 13092 /* 13093 * Recover huge page mappings in the slot now that dirty logging 13094 * is disabled, i.e. now that KVM does not have to track guest 13095 * writes at 4KiB granularity. 13096 * 13097 * Dirty logging might be disabled by userspace if an ongoing VM 13098 * live migration is cancelled and the VM must continue running 13099 * on the source. 13100 */ 13101 kvm_mmu_recover_huge_pages(kvm, new); 13102 } else { 13103 /* 13104 * Initially-all-set does not require write protecting any page, 13105 * because they're all assumed to be dirty. 13106 */ 13107 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 13108 return; 13109 13110 if (READ_ONCE(eager_page_split)) 13111 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 13112 13113 if (kvm->arch.cpu_dirty_log_size) { 13114 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 13115 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 13116 } else { 13117 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 13118 } 13119 13120 /* 13121 * Unconditionally flush the TLBs after enabling dirty logging. 13122 * A flush is almost always going to be necessary (see below), 13123 * and unconditionally flushing allows the helpers to omit 13124 * the subtly complex checks when removing write access. 13125 * 13126 * Do the flush outside of mmu_lock to reduce the amount of 13127 * time mmu_lock is held. Flushing after dropping mmu_lock is 13128 * safe as KVM only needs to guarantee the slot is fully 13129 * write-protected before returning to userspace, i.e. before 13130 * userspace can consume the dirty status. 13131 * 13132 * Flushing outside of mmu_lock requires KVM to be careful when 13133 * making decisions based on writable status of an SPTE, e.g. a 13134 * !writable SPTE doesn't guarantee a CPU can't perform writes. 13135 * 13136 * Specifically, KVM also write-protects guest page tables to 13137 * monitor changes when using shadow paging, and must guarantee 13138 * no CPUs can write to those page before mmu_lock is dropped. 13139 * Because CPUs may have stale TLB entries at this point, a 13140 * !writable SPTE doesn't guarantee CPUs can't perform writes. 13141 * 13142 * KVM also allows making SPTES writable outside of mmu_lock, 13143 * e.g. to allow dirty logging without taking mmu_lock. 13144 * 13145 * To handle these scenarios, KVM uses a separate software-only 13146 * bit (MMU-writable) to track if a SPTE is !writable due to 13147 * a guest page table being write-protected (KVM clears the 13148 * MMU-writable flag when write-protecting for shadow paging). 13149 * 13150 * The use of MMU-writable is also the primary motivation for 13151 * the unconditional flush. Because KVM must guarantee that a 13152 * CPU doesn't contain stale, writable TLB entries for a 13153 * !MMU-writable SPTE, KVM must flush if it encounters any 13154 * MMU-writable SPTE regardless of whether the actual hardware 13155 * writable bit was set. I.e. KVM is almost guaranteed to need 13156 * to flush, while unconditionally flushing allows the "remove 13157 * write access" helpers to ignore MMU-writable entirely. 13158 * 13159 * See is_writable_pte() for more details (the case involving 13160 * access-tracked SPTEs is particularly relevant). 13161 */ 13162 kvm_flush_remote_tlbs_memslot(kvm, new); 13163 } 13164 } 13165 13166 void kvm_arch_commit_memory_region(struct kvm *kvm, 13167 struct kvm_memory_slot *old, 13168 const struct kvm_memory_slot *new, 13169 enum kvm_mr_change change) 13170 { 13171 if (change == KVM_MR_DELETE) 13172 kvm_page_track_delete_slot(kvm, old); 13173 13174 if (!kvm->arch.n_requested_mmu_pages && 13175 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 13176 unsigned long nr_mmu_pages; 13177 13178 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 13179 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 13180 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 13181 } 13182 13183 kvm_mmu_slot_apply_flags(kvm, old, new, change); 13184 13185 /* Free the arrays associated with the old memslot. */ 13186 if (change == KVM_MR_MOVE) 13187 kvm_arch_free_memslot(kvm, old); 13188 } 13189 13190 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 13191 { 13192 WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)); 13193 13194 if (vcpu->arch.guest_state_protected) 13195 return true; 13196 13197 return kvm_x86_call(get_cpl)(vcpu) == 0; 13198 } 13199 13200 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 13201 { 13202 WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)); 13203 13204 if (vcpu->arch.guest_state_protected) 13205 return 0; 13206 13207 return kvm_rip_read(vcpu); 13208 } 13209 13210 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 13211 { 13212 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 13213 } 13214 13215 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 13216 { 13217 return kvm_x86_call(interrupt_allowed)(vcpu, false); 13218 } 13219 13220 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 13221 { 13222 /* Can't read the RIP when guest state is protected, just return 0 */ 13223 if (vcpu->arch.guest_state_protected) 13224 return 0; 13225 13226 if (is_64_bit_mode(vcpu)) 13227 return kvm_rip_read(vcpu); 13228 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 13229 kvm_rip_read(vcpu)); 13230 } 13231 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 13232 13233 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 13234 { 13235 return kvm_get_linear_rip(vcpu) == linear_rip; 13236 } 13237 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 13238 13239 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 13240 { 13241 unsigned long rflags; 13242 13243 rflags = kvm_x86_call(get_rflags)(vcpu); 13244 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 13245 rflags &= ~X86_EFLAGS_TF; 13246 return rflags; 13247 } 13248 EXPORT_SYMBOL_GPL(kvm_get_rflags); 13249 13250 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13251 { 13252 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 13253 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 13254 rflags |= X86_EFLAGS_TF; 13255 kvm_x86_call(set_rflags)(vcpu, rflags); 13256 } 13257 13258 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13259 { 13260 __kvm_set_rflags(vcpu, rflags); 13261 kvm_make_request(KVM_REQ_EVENT, vcpu); 13262 } 13263 EXPORT_SYMBOL_GPL(kvm_set_rflags); 13264 13265 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 13266 { 13267 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 13268 13269 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 13270 } 13271 13272 static inline u32 kvm_async_pf_next_probe(u32 key) 13273 { 13274 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 13275 } 13276 13277 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13278 { 13279 u32 key = kvm_async_pf_hash_fn(gfn); 13280 13281 while (vcpu->arch.apf.gfns[key] != ~0) 13282 key = kvm_async_pf_next_probe(key); 13283 13284 vcpu->arch.apf.gfns[key] = gfn; 13285 } 13286 13287 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 13288 { 13289 int i; 13290 u32 key = kvm_async_pf_hash_fn(gfn); 13291 13292 for (i = 0; i < ASYNC_PF_PER_VCPU && 13293 (vcpu->arch.apf.gfns[key] != gfn && 13294 vcpu->arch.apf.gfns[key] != ~0); i++) 13295 key = kvm_async_pf_next_probe(key); 13296 13297 return key; 13298 } 13299 13300 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13301 { 13302 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 13303 } 13304 13305 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13306 { 13307 u32 i, j, k; 13308 13309 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 13310 13311 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 13312 return; 13313 13314 while (true) { 13315 vcpu->arch.apf.gfns[i] = ~0; 13316 do { 13317 j = kvm_async_pf_next_probe(j); 13318 if (vcpu->arch.apf.gfns[j] == ~0) 13319 return; 13320 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 13321 /* 13322 * k lies cyclically in ]i,j] 13323 * | i.k.j | 13324 * |....j i.k.| or |.k..j i...| 13325 */ 13326 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 13327 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 13328 i = j; 13329 } 13330 } 13331 13332 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 13333 { 13334 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 13335 13336 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 13337 sizeof(reason)); 13338 } 13339 13340 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 13341 { 13342 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13343 13344 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13345 &token, offset, sizeof(token)); 13346 } 13347 13348 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 13349 { 13350 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13351 u32 val; 13352 13353 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13354 &val, offset, sizeof(val))) 13355 return false; 13356 13357 return !val; 13358 } 13359 13360 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 13361 { 13362 13363 if (!kvm_pv_async_pf_enabled(vcpu)) 13364 return false; 13365 13366 if (!vcpu->arch.apf.send_always && 13367 (vcpu->arch.guest_state_protected || !kvm_x86_call(get_cpl)(vcpu))) 13368 return false; 13369 13370 if (is_guest_mode(vcpu)) { 13371 /* 13372 * L1 needs to opt into the special #PF vmexits that are 13373 * used to deliver async page faults. 13374 */ 13375 return vcpu->arch.apf.delivery_as_pf_vmexit; 13376 } else { 13377 /* 13378 * Play it safe in case the guest temporarily disables paging. 13379 * The real mode IDT in particular is unlikely to have a #PF 13380 * exception setup. 13381 */ 13382 return is_paging(vcpu); 13383 } 13384 } 13385 13386 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 13387 { 13388 if (unlikely(!lapic_in_kernel(vcpu) || 13389 kvm_event_needs_reinjection(vcpu) || 13390 kvm_is_exception_pending(vcpu))) 13391 return false; 13392 13393 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 13394 return false; 13395 13396 /* 13397 * If interrupts are off we cannot even use an artificial 13398 * halt state. 13399 */ 13400 return kvm_arch_interrupt_allowed(vcpu); 13401 } 13402 13403 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 13404 struct kvm_async_pf *work) 13405 { 13406 struct x86_exception fault; 13407 13408 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 13409 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 13410 13411 if (kvm_can_deliver_async_pf(vcpu) && 13412 !apf_put_user_notpresent(vcpu)) { 13413 fault.vector = PF_VECTOR; 13414 fault.error_code_valid = true; 13415 fault.error_code = 0; 13416 fault.nested_page_fault = false; 13417 fault.address = work->arch.token; 13418 fault.async_page_fault = true; 13419 kvm_inject_page_fault(vcpu, &fault); 13420 return true; 13421 } else { 13422 /* 13423 * It is not possible to deliver a paravirtualized asynchronous 13424 * page fault, but putting the guest in an artificial halt state 13425 * can be beneficial nevertheless: if an interrupt arrives, we 13426 * can deliver it timely and perhaps the guest will schedule 13427 * another process. When the instruction that triggered a page 13428 * fault is retried, hopefully the page will be ready in the host. 13429 */ 13430 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 13431 return false; 13432 } 13433 } 13434 13435 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 13436 struct kvm_async_pf *work) 13437 { 13438 struct kvm_lapic_irq irq = { 13439 .delivery_mode = APIC_DM_FIXED, 13440 .vector = vcpu->arch.apf.vec 13441 }; 13442 13443 if (work->wakeup_all) 13444 work->arch.token = ~0; /* broadcast wakeup */ 13445 else 13446 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 13447 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 13448 13449 if ((work->wakeup_all || work->notpresent_injected) && 13450 kvm_pv_async_pf_enabled(vcpu) && 13451 !apf_put_user_ready(vcpu, work->arch.token)) { 13452 vcpu->arch.apf.pageready_pending = true; 13453 kvm_apic_set_irq(vcpu, &irq, NULL); 13454 } 13455 13456 vcpu->arch.apf.halted = false; 13457 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 13458 } 13459 13460 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 13461 { 13462 kvm_make_request(KVM_REQ_APF_READY, vcpu); 13463 if (!vcpu->arch.apf.pageready_pending) 13464 kvm_vcpu_kick(vcpu); 13465 } 13466 13467 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 13468 { 13469 if (!kvm_pv_async_pf_enabled(vcpu)) 13470 return true; 13471 else 13472 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 13473 } 13474 13475 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm) 13476 { 13477 /* 13478 * Non-coherent DMA assignment and de-assignment may affect whether or 13479 * not KVM honors guest PAT, and thus may cause changes in EPT SPTEs 13480 * due to toggling the "ignore PAT" bit. Zap all SPTEs when the first 13481 * (or last) non-coherent device is (un)registered to so that new SPTEs 13482 * with the correct "ignore guest PAT" setting are created. 13483 * 13484 * If KVM always honors guest PAT, however, there is nothing to do. 13485 */ 13486 if (kvm_check_has_quirk(kvm, KVM_X86_QUIRK_IGNORE_GUEST_PAT)) 13487 kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL)); 13488 } 13489 13490 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13491 { 13492 if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1) 13493 kvm_noncoherent_dma_assignment_start_or_stop(kvm); 13494 } 13495 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13496 13497 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13498 { 13499 if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count)) 13500 kvm_noncoherent_dma_assignment_start_or_stop(kvm); 13501 } 13502 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13503 13504 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13505 { 13506 return atomic_read(&kvm->arch.noncoherent_dma_count); 13507 } 13508 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13509 13510 bool kvm_vector_hashing_enabled(void) 13511 { 13512 return vector_hashing; 13513 } 13514 13515 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13516 { 13517 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13518 } 13519 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13520 13521 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE 13522 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order) 13523 { 13524 return kvm_x86_call(gmem_prepare)(kvm, pfn, gfn, max_order); 13525 } 13526 #endif 13527 13528 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE 13529 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end) 13530 { 13531 kvm_x86_call(gmem_invalidate)(start, end); 13532 } 13533 #endif 13534 13535 int kvm_spec_ctrl_test_value(u64 value) 13536 { 13537 /* 13538 * test that setting IA32_SPEC_CTRL to given value 13539 * is allowed by the host processor 13540 */ 13541 13542 u64 saved_value; 13543 unsigned long flags; 13544 int ret = 0; 13545 13546 local_irq_save(flags); 13547 13548 if (rdmsrq_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13549 ret = 1; 13550 else if (wrmsrq_safe(MSR_IA32_SPEC_CTRL, value)) 13551 ret = 1; 13552 else 13553 wrmsrq(MSR_IA32_SPEC_CTRL, saved_value); 13554 13555 local_irq_restore(flags); 13556 13557 return ret; 13558 } 13559 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13560 13561 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13562 { 13563 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13564 struct x86_exception fault; 13565 u64 access = error_code & 13566 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13567 13568 if (!(error_code & PFERR_PRESENT_MASK) || 13569 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13570 /* 13571 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13572 * tables probably do not match the TLB. Just proceed 13573 * with the error code that the processor gave. 13574 */ 13575 fault.vector = PF_VECTOR; 13576 fault.error_code_valid = true; 13577 fault.error_code = error_code; 13578 fault.nested_page_fault = false; 13579 fault.address = gva; 13580 fault.async_page_fault = false; 13581 } 13582 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13583 } 13584 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13585 13586 /* 13587 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13588 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13589 * indicates whether exit to userspace is needed. 13590 */ 13591 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13592 struct x86_exception *e) 13593 { 13594 if (r == X86EMUL_PROPAGATE_FAULT) { 13595 if (KVM_BUG_ON(!e, vcpu->kvm)) 13596 return -EIO; 13597 13598 kvm_inject_emulated_page_fault(vcpu, e); 13599 return 1; 13600 } 13601 13602 /* 13603 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13604 * while handling a VMX instruction KVM could've handled the request 13605 * correctly by exiting to userspace and performing I/O but there 13606 * doesn't seem to be a real use-case behind such requests, just return 13607 * KVM_EXIT_INTERNAL_ERROR for now. 13608 */ 13609 kvm_prepare_emulation_failure_exit(vcpu); 13610 13611 return 0; 13612 } 13613 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13614 13615 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13616 { 13617 bool pcid_enabled; 13618 struct x86_exception e; 13619 struct { 13620 u64 pcid; 13621 u64 gla; 13622 } operand; 13623 int r; 13624 13625 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13626 if (r != X86EMUL_CONTINUE) 13627 return kvm_handle_memory_failure(vcpu, r, &e); 13628 13629 if (operand.pcid >> 12 != 0) { 13630 kvm_inject_gp(vcpu, 0); 13631 return 1; 13632 } 13633 13634 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE); 13635 13636 switch (type) { 13637 case INVPCID_TYPE_INDIV_ADDR: 13638 /* 13639 * LAM doesn't apply to addresses that are inputs to TLB 13640 * invalidation. 13641 */ 13642 if ((!pcid_enabled && (operand.pcid != 0)) || 13643 is_noncanonical_invlpg_address(operand.gla, vcpu)) { 13644 kvm_inject_gp(vcpu, 0); 13645 return 1; 13646 } 13647 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13648 return kvm_skip_emulated_instruction(vcpu); 13649 13650 case INVPCID_TYPE_SINGLE_CTXT: 13651 if (!pcid_enabled && (operand.pcid != 0)) { 13652 kvm_inject_gp(vcpu, 0); 13653 return 1; 13654 } 13655 13656 kvm_invalidate_pcid(vcpu, operand.pcid); 13657 return kvm_skip_emulated_instruction(vcpu); 13658 13659 case INVPCID_TYPE_ALL_NON_GLOBAL: 13660 /* 13661 * Currently, KVM doesn't mark global entries in the shadow 13662 * page tables, so a non-global flush just degenerates to a 13663 * global flush. If needed, we could optimize this later by 13664 * keeping track of global entries in shadow page tables. 13665 */ 13666 13667 fallthrough; 13668 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13669 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13670 return kvm_skip_emulated_instruction(vcpu); 13671 13672 default: 13673 kvm_inject_gp(vcpu, 0); 13674 return 1; 13675 } 13676 } 13677 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13678 13679 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13680 { 13681 struct kvm_run *run = vcpu->run; 13682 struct kvm_mmio_fragment *frag; 13683 unsigned int len; 13684 13685 BUG_ON(!vcpu->mmio_needed); 13686 13687 /* Complete previous fragment */ 13688 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13689 len = min(8u, frag->len); 13690 if (!vcpu->mmio_is_write) 13691 memcpy(frag->data, run->mmio.data, len); 13692 13693 if (frag->len <= 8) { 13694 /* Switch to the next fragment. */ 13695 frag++; 13696 vcpu->mmio_cur_fragment++; 13697 } else { 13698 /* Go forward to the next mmio piece. */ 13699 frag->data += len; 13700 frag->gpa += len; 13701 frag->len -= len; 13702 } 13703 13704 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13705 vcpu->mmio_needed = 0; 13706 13707 // VMG change, at this point, we're always done 13708 // RIP has already been advanced 13709 return 1; 13710 } 13711 13712 // More MMIO is needed 13713 run->mmio.phys_addr = frag->gpa; 13714 run->mmio.len = min(8u, frag->len); 13715 run->mmio.is_write = vcpu->mmio_is_write; 13716 if (run->mmio.is_write) 13717 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13718 run->exit_reason = KVM_EXIT_MMIO; 13719 13720 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13721 13722 return 0; 13723 } 13724 13725 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13726 void *data) 13727 { 13728 int handled; 13729 struct kvm_mmio_fragment *frag; 13730 13731 if (!data) 13732 return -EINVAL; 13733 13734 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13735 if (handled == bytes) 13736 return 1; 13737 13738 bytes -= handled; 13739 gpa += handled; 13740 data += handled; 13741 13742 /*TODO: Check if need to increment number of frags */ 13743 frag = vcpu->mmio_fragments; 13744 vcpu->mmio_nr_fragments = 1; 13745 frag->len = bytes; 13746 frag->gpa = gpa; 13747 frag->data = data; 13748 13749 vcpu->mmio_needed = 1; 13750 vcpu->mmio_cur_fragment = 0; 13751 13752 vcpu->run->mmio.phys_addr = gpa; 13753 vcpu->run->mmio.len = min(8u, frag->len); 13754 vcpu->run->mmio.is_write = 1; 13755 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13756 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13757 13758 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13759 13760 return 0; 13761 } 13762 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13763 13764 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13765 void *data) 13766 { 13767 int handled; 13768 struct kvm_mmio_fragment *frag; 13769 13770 if (!data) 13771 return -EINVAL; 13772 13773 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13774 if (handled == bytes) 13775 return 1; 13776 13777 bytes -= handled; 13778 gpa += handled; 13779 data += handled; 13780 13781 /*TODO: Check if need to increment number of frags */ 13782 frag = vcpu->mmio_fragments; 13783 vcpu->mmio_nr_fragments = 1; 13784 frag->len = bytes; 13785 frag->gpa = gpa; 13786 frag->data = data; 13787 13788 vcpu->mmio_needed = 1; 13789 vcpu->mmio_cur_fragment = 0; 13790 13791 vcpu->run->mmio.phys_addr = gpa; 13792 vcpu->run->mmio.len = min(8u, frag->len); 13793 vcpu->run->mmio.is_write = 0; 13794 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13795 13796 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13797 13798 return 0; 13799 } 13800 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13801 13802 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13803 { 13804 vcpu->arch.sev_pio_count -= count; 13805 vcpu->arch.sev_pio_data += count * size; 13806 } 13807 13808 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13809 unsigned int port); 13810 13811 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13812 { 13813 int size = vcpu->arch.pio.size; 13814 int port = vcpu->arch.pio.port; 13815 13816 vcpu->arch.pio.count = 0; 13817 if (vcpu->arch.sev_pio_count) 13818 return kvm_sev_es_outs(vcpu, size, port); 13819 return 1; 13820 } 13821 13822 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13823 unsigned int port) 13824 { 13825 for (;;) { 13826 unsigned int count = 13827 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13828 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13829 13830 /* memcpy done already by emulator_pio_out. */ 13831 advance_sev_es_emulated_pio(vcpu, count, size); 13832 if (!ret) 13833 break; 13834 13835 /* Emulation done by the kernel. */ 13836 if (!vcpu->arch.sev_pio_count) 13837 return 1; 13838 } 13839 13840 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13841 return 0; 13842 } 13843 13844 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13845 unsigned int port); 13846 13847 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13848 { 13849 unsigned count = vcpu->arch.pio.count; 13850 int size = vcpu->arch.pio.size; 13851 int port = vcpu->arch.pio.port; 13852 13853 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13854 advance_sev_es_emulated_pio(vcpu, count, size); 13855 if (vcpu->arch.sev_pio_count) 13856 return kvm_sev_es_ins(vcpu, size, port); 13857 return 1; 13858 } 13859 13860 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13861 unsigned int port) 13862 { 13863 for (;;) { 13864 unsigned int count = 13865 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13866 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13867 break; 13868 13869 /* Emulation done by the kernel. */ 13870 advance_sev_es_emulated_pio(vcpu, count, size); 13871 if (!vcpu->arch.sev_pio_count) 13872 return 1; 13873 } 13874 13875 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13876 return 0; 13877 } 13878 13879 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13880 unsigned int port, void *data, unsigned int count, 13881 int in) 13882 { 13883 vcpu->arch.sev_pio_data = data; 13884 vcpu->arch.sev_pio_count = count; 13885 return in ? kvm_sev_es_ins(vcpu, size, port) 13886 : kvm_sev_es_outs(vcpu, size, port); 13887 } 13888 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13889 13890 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13891 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13892 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_mmio); 13893 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13894 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13895 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13896 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13897 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13898 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 13899 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13900 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13901 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13902 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13903 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13904 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13905 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13906 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13907 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13908 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13909 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13910 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13911 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13912 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13913 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 13914 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13915 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13916 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13917 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13918 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13919 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_rmp_fault); 13920 13921 static int __init kvm_x86_init(void) 13922 { 13923 kvm_init_xstate_sizes(); 13924 13925 kvm_mmu_x86_module_init(); 13926 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible(); 13927 return 0; 13928 } 13929 module_init(kvm_x86_init); 13930 13931 static void __exit kvm_x86_exit(void) 13932 { 13933 WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu)); 13934 } 13935 module_exit(kvm_x86_exit); 13936