xref: /linux/arch/x86/kvm/x86.c (revision 172cdcaefea5c297fdb3d20b7d5aff60ae4fbce6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 
62 #include <trace/events/kvm.h>
63 
64 #include <asm/debugreg.h>
65 #include <asm/msr.h>
66 #include <asm/desc.h>
67 #include <asm/mce.h>
68 #include <linux/kernel_stat.h>
69 #include <asm/fpu/internal.h> /* Ugh! */
70 #include <asm/pvclock.h>
71 #include <asm/div64.h>
72 #include <asm/irq_remapping.h>
73 #include <asm/mshyperv.h>
74 #include <asm/hypervisor.h>
75 #include <asm/tlbflush.h>
76 #include <asm/intel_pt.h>
77 #include <asm/emulate_prefix.h>
78 #include <asm/sgx.h>
79 #include <clocksource/hyperv_timer.h>
80 
81 #define CREATE_TRACE_POINTS
82 #include "trace.h"
83 
84 #define MAX_IO_MSRS 256
85 #define KVM_MAX_MCE_BANKS 32
86 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
87 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
88 
89 #define emul_to_vcpu(ctxt) \
90 	((struct kvm_vcpu *)(ctxt)->vcpu)
91 
92 /* EFER defaults:
93  * - enable syscall per default because its emulated by KVM
94  * - enable LME and LMA per default on 64 bit KVM
95  */
96 #ifdef CONFIG_X86_64
97 static
98 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
99 #else
100 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
101 #endif
102 
103 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
104 
105 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
106                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
107 
108 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
109 static void process_nmi(struct kvm_vcpu *vcpu);
110 static void process_smi(struct kvm_vcpu *vcpu);
111 static void enter_smm(struct kvm_vcpu *vcpu);
112 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
113 static void store_regs(struct kvm_vcpu *vcpu);
114 static int sync_regs(struct kvm_vcpu *vcpu);
115 
116 struct kvm_x86_ops kvm_x86_ops __read_mostly;
117 EXPORT_SYMBOL_GPL(kvm_x86_ops);
118 
119 #define KVM_X86_OP(func)					     \
120 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
121 				*(((struct kvm_x86_ops *)0)->func));
122 #define KVM_X86_OP_NULL KVM_X86_OP
123 #include <asm/kvm-x86-ops.h>
124 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
125 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
126 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
127 
128 static bool __read_mostly ignore_msrs = 0;
129 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
130 
131 bool __read_mostly report_ignored_msrs = true;
132 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
133 EXPORT_SYMBOL_GPL(report_ignored_msrs);
134 
135 unsigned int min_timer_period_us = 200;
136 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
137 
138 static bool __read_mostly kvmclock_periodic_sync = true;
139 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
140 
141 bool __read_mostly kvm_has_tsc_control;
142 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
143 u32  __read_mostly kvm_max_guest_tsc_khz;
144 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
145 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
146 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
147 u64  __read_mostly kvm_max_tsc_scaling_ratio;
148 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
149 u64 __read_mostly kvm_default_tsc_scaling_ratio;
150 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
151 bool __read_mostly kvm_has_bus_lock_exit;
152 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
153 
154 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
155 static u32 __read_mostly tsc_tolerance_ppm = 250;
156 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
157 
158 /*
159  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
160  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
161  * advancement entirely.  Any other value is used as-is and disables adaptive
162  * tuning, i.e. allows privileged userspace to set an exact advancement time.
163  */
164 static int __read_mostly lapic_timer_advance_ns = -1;
165 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
166 
167 static bool __read_mostly vector_hashing = true;
168 module_param(vector_hashing, bool, S_IRUGO);
169 
170 bool __read_mostly enable_vmware_backdoor = false;
171 module_param(enable_vmware_backdoor, bool, S_IRUGO);
172 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
173 
174 static bool __read_mostly force_emulation_prefix = false;
175 module_param(force_emulation_prefix, bool, S_IRUGO);
176 
177 int __read_mostly pi_inject_timer = -1;
178 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
179 
180 /*
181  * Restoring the host value for MSRs that are only consumed when running in
182  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
183  * returns to userspace, i.e. the kernel can run with the guest's value.
184  */
185 #define KVM_MAX_NR_USER_RETURN_MSRS 16
186 
187 struct kvm_user_return_msrs_global {
188 	int nr;
189 	u32 msrs[KVM_MAX_NR_USER_RETURN_MSRS];
190 };
191 
192 struct kvm_user_return_msrs {
193 	struct user_return_notifier urn;
194 	bool registered;
195 	struct kvm_user_return_msr_values {
196 		u64 host;
197 		u64 curr;
198 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
199 };
200 
201 static struct kvm_user_return_msrs_global __read_mostly user_return_msrs_global;
202 static struct kvm_user_return_msrs __percpu *user_return_msrs;
203 
204 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
205 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
206 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
207 				| XFEATURE_MASK_PKRU)
208 
209 u64 __read_mostly host_efer;
210 EXPORT_SYMBOL_GPL(host_efer);
211 
212 bool __read_mostly allow_smaller_maxphyaddr = 0;
213 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
214 
215 u64 __read_mostly host_xss;
216 EXPORT_SYMBOL_GPL(host_xss);
217 u64 __read_mostly supported_xss;
218 EXPORT_SYMBOL_GPL(supported_xss);
219 
220 struct kvm_stats_debugfs_item debugfs_entries[] = {
221 	VCPU_STAT("pf_fixed", pf_fixed),
222 	VCPU_STAT("pf_guest", pf_guest),
223 	VCPU_STAT("tlb_flush", tlb_flush),
224 	VCPU_STAT("invlpg", invlpg),
225 	VCPU_STAT("exits", exits),
226 	VCPU_STAT("io_exits", io_exits),
227 	VCPU_STAT("mmio_exits", mmio_exits),
228 	VCPU_STAT("signal_exits", signal_exits),
229 	VCPU_STAT("irq_window", irq_window_exits),
230 	VCPU_STAT("nmi_window", nmi_window_exits),
231 	VCPU_STAT("halt_exits", halt_exits),
232 	VCPU_STAT("halt_successful_poll", halt_successful_poll),
233 	VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
234 	VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
235 	VCPU_STAT("halt_wakeup", halt_wakeup),
236 	VCPU_STAT("hypercalls", hypercalls),
237 	VCPU_STAT("request_irq", request_irq_exits),
238 	VCPU_STAT("irq_exits", irq_exits),
239 	VCPU_STAT("host_state_reload", host_state_reload),
240 	VCPU_STAT("fpu_reload", fpu_reload),
241 	VCPU_STAT("insn_emulation", insn_emulation),
242 	VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
243 	VCPU_STAT("irq_injections", irq_injections),
244 	VCPU_STAT("nmi_injections", nmi_injections),
245 	VCPU_STAT("req_event", req_event),
246 	VCPU_STAT("l1d_flush", l1d_flush),
247 	VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
248 	VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
249 	VCPU_STAT("nested_run", nested_run),
250 	VCPU_STAT("directed_yield_attempted", directed_yield_attempted),
251 	VCPU_STAT("directed_yield_successful", directed_yield_successful),
252 	VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
253 	VM_STAT("mmu_pte_write", mmu_pte_write),
254 	VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
255 	VM_STAT("mmu_flooded", mmu_flooded),
256 	VM_STAT("mmu_recycled", mmu_recycled),
257 	VM_STAT("mmu_cache_miss", mmu_cache_miss),
258 	VM_STAT("mmu_unsync", mmu_unsync),
259 	VM_STAT("remote_tlb_flush", remote_tlb_flush),
260 	VM_STAT("largepages", lpages, .mode = 0444),
261 	VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
262 	VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
263 	{ NULL }
264 };
265 
266 u64 __read_mostly host_xcr0;
267 u64 __read_mostly supported_xcr0;
268 EXPORT_SYMBOL_GPL(supported_xcr0);
269 
270 static struct kmem_cache *x86_fpu_cache;
271 
272 static struct kmem_cache *x86_emulator_cache;
273 
274 /*
275  * When called, it means the previous get/set msr reached an invalid msr.
276  * Return true if we want to ignore/silent this failed msr access.
277  */
278 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
279 {
280 	const char *op = write ? "wrmsr" : "rdmsr";
281 
282 	if (ignore_msrs) {
283 		if (report_ignored_msrs)
284 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
285 				      op, msr, data);
286 		/* Mask the error */
287 		return true;
288 	} else {
289 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
290 				      op, msr, data);
291 		return false;
292 	}
293 }
294 
295 static struct kmem_cache *kvm_alloc_emulator_cache(void)
296 {
297 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
298 	unsigned int size = sizeof(struct x86_emulate_ctxt);
299 
300 	return kmem_cache_create_usercopy("x86_emulator", size,
301 					  __alignof__(struct x86_emulate_ctxt),
302 					  SLAB_ACCOUNT, useroffset,
303 					  size - useroffset, NULL);
304 }
305 
306 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
307 
308 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
309 {
310 	int i;
311 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
312 		vcpu->arch.apf.gfns[i] = ~0;
313 }
314 
315 static void kvm_on_user_return(struct user_return_notifier *urn)
316 {
317 	unsigned slot;
318 	struct kvm_user_return_msrs *msrs
319 		= container_of(urn, struct kvm_user_return_msrs, urn);
320 	struct kvm_user_return_msr_values *values;
321 	unsigned long flags;
322 
323 	/*
324 	 * Disabling irqs at this point since the following code could be
325 	 * interrupted and executed through kvm_arch_hardware_disable()
326 	 */
327 	local_irq_save(flags);
328 	if (msrs->registered) {
329 		msrs->registered = false;
330 		user_return_notifier_unregister(urn);
331 	}
332 	local_irq_restore(flags);
333 	for (slot = 0; slot < user_return_msrs_global.nr; ++slot) {
334 		values = &msrs->values[slot];
335 		if (values->host != values->curr) {
336 			wrmsrl(user_return_msrs_global.msrs[slot], values->host);
337 			values->curr = values->host;
338 		}
339 	}
340 }
341 
342 void kvm_define_user_return_msr(unsigned slot, u32 msr)
343 {
344 	BUG_ON(slot >= KVM_MAX_NR_USER_RETURN_MSRS);
345 	user_return_msrs_global.msrs[slot] = msr;
346 	if (slot >= user_return_msrs_global.nr)
347 		user_return_msrs_global.nr = slot + 1;
348 }
349 EXPORT_SYMBOL_GPL(kvm_define_user_return_msr);
350 
351 static void kvm_user_return_msr_cpu_online(void)
352 {
353 	unsigned int cpu = smp_processor_id();
354 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
355 	u64 value;
356 	int i;
357 
358 	for (i = 0; i < user_return_msrs_global.nr; ++i) {
359 		rdmsrl_safe(user_return_msrs_global.msrs[i], &value);
360 		msrs->values[i].host = value;
361 		msrs->values[i].curr = value;
362 	}
363 }
364 
365 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
366 {
367 	unsigned int cpu = smp_processor_id();
368 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
369 	int err;
370 
371 	value = (value & mask) | (msrs->values[slot].host & ~mask);
372 	if (value == msrs->values[slot].curr)
373 		return 0;
374 	err = wrmsrl_safe(user_return_msrs_global.msrs[slot], value);
375 	if (err)
376 		return 1;
377 
378 	msrs->values[slot].curr = value;
379 	if (!msrs->registered) {
380 		msrs->urn.on_user_return = kvm_on_user_return;
381 		user_return_notifier_register(&msrs->urn);
382 		msrs->registered = true;
383 	}
384 	return 0;
385 }
386 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
387 
388 static void drop_user_return_notifiers(void)
389 {
390 	unsigned int cpu = smp_processor_id();
391 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
392 
393 	if (msrs->registered)
394 		kvm_on_user_return(&msrs->urn);
395 }
396 
397 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
398 {
399 	return vcpu->arch.apic_base;
400 }
401 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
402 
403 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
404 {
405 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
406 }
407 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
408 
409 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
410 {
411 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
412 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
413 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
414 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
415 
416 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
417 		return 1;
418 	if (!msr_info->host_initiated) {
419 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
420 			return 1;
421 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
422 			return 1;
423 	}
424 
425 	kvm_lapic_set_base(vcpu, msr_info->data);
426 	kvm_recalculate_apic_map(vcpu->kvm);
427 	return 0;
428 }
429 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
430 
431 asmlinkage __visible noinstr void kvm_spurious_fault(void)
432 {
433 	/* Fault while not rebooting.  We want the trace. */
434 	BUG_ON(!kvm_rebooting);
435 }
436 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
437 
438 #define EXCPT_BENIGN		0
439 #define EXCPT_CONTRIBUTORY	1
440 #define EXCPT_PF		2
441 
442 static int exception_class(int vector)
443 {
444 	switch (vector) {
445 	case PF_VECTOR:
446 		return EXCPT_PF;
447 	case DE_VECTOR:
448 	case TS_VECTOR:
449 	case NP_VECTOR:
450 	case SS_VECTOR:
451 	case GP_VECTOR:
452 		return EXCPT_CONTRIBUTORY;
453 	default:
454 		break;
455 	}
456 	return EXCPT_BENIGN;
457 }
458 
459 #define EXCPT_FAULT		0
460 #define EXCPT_TRAP		1
461 #define EXCPT_ABORT		2
462 #define EXCPT_INTERRUPT		3
463 
464 static int exception_type(int vector)
465 {
466 	unsigned int mask;
467 
468 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
469 		return EXCPT_INTERRUPT;
470 
471 	mask = 1 << vector;
472 
473 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
474 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
475 		return EXCPT_TRAP;
476 
477 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
478 		return EXCPT_ABORT;
479 
480 	/* Reserved exceptions will result in fault */
481 	return EXCPT_FAULT;
482 }
483 
484 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
485 {
486 	unsigned nr = vcpu->arch.exception.nr;
487 	bool has_payload = vcpu->arch.exception.has_payload;
488 	unsigned long payload = vcpu->arch.exception.payload;
489 
490 	if (!has_payload)
491 		return;
492 
493 	switch (nr) {
494 	case DB_VECTOR:
495 		/*
496 		 * "Certain debug exceptions may clear bit 0-3.  The
497 		 * remaining contents of the DR6 register are never
498 		 * cleared by the processor".
499 		 */
500 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
501 		/*
502 		 * In order to reflect the #DB exception payload in guest
503 		 * dr6, three components need to be considered: active low
504 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
505 		 * DR6_BS and DR6_BT)
506 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
507 		 * In the target guest dr6:
508 		 * FIXED_1 bits should always be set.
509 		 * Active low bits should be cleared if 1-setting in payload.
510 		 * Active high bits should be set if 1-setting in payload.
511 		 *
512 		 * Note, the payload is compatible with the pending debug
513 		 * exceptions/exit qualification under VMX, that active_low bits
514 		 * are active high in payload.
515 		 * So they need to be flipped for DR6.
516 		 */
517 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
518 		vcpu->arch.dr6 |= payload;
519 		vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
520 
521 		/*
522 		 * The #DB payload is defined as compatible with the 'pending
523 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
524 		 * defined in the 'pending debug exceptions' field (enabled
525 		 * breakpoint), it is reserved and must be zero in DR6.
526 		 */
527 		vcpu->arch.dr6 &= ~BIT(12);
528 		break;
529 	case PF_VECTOR:
530 		vcpu->arch.cr2 = payload;
531 		break;
532 	}
533 
534 	vcpu->arch.exception.has_payload = false;
535 	vcpu->arch.exception.payload = 0;
536 }
537 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
538 
539 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
540 		unsigned nr, bool has_error, u32 error_code,
541 	        bool has_payload, unsigned long payload, bool reinject)
542 {
543 	u32 prev_nr;
544 	int class1, class2;
545 
546 	kvm_make_request(KVM_REQ_EVENT, vcpu);
547 
548 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
549 	queue:
550 		if (reinject) {
551 			/*
552 			 * On vmentry, vcpu->arch.exception.pending is only
553 			 * true if an event injection was blocked by
554 			 * nested_run_pending.  In that case, however,
555 			 * vcpu_enter_guest requests an immediate exit,
556 			 * and the guest shouldn't proceed far enough to
557 			 * need reinjection.
558 			 */
559 			WARN_ON_ONCE(vcpu->arch.exception.pending);
560 			vcpu->arch.exception.injected = true;
561 			if (WARN_ON_ONCE(has_payload)) {
562 				/*
563 				 * A reinjected event has already
564 				 * delivered its payload.
565 				 */
566 				has_payload = false;
567 				payload = 0;
568 			}
569 		} else {
570 			vcpu->arch.exception.pending = true;
571 			vcpu->arch.exception.injected = false;
572 		}
573 		vcpu->arch.exception.has_error_code = has_error;
574 		vcpu->arch.exception.nr = nr;
575 		vcpu->arch.exception.error_code = error_code;
576 		vcpu->arch.exception.has_payload = has_payload;
577 		vcpu->arch.exception.payload = payload;
578 		if (!is_guest_mode(vcpu))
579 			kvm_deliver_exception_payload(vcpu);
580 		return;
581 	}
582 
583 	/* to check exception */
584 	prev_nr = vcpu->arch.exception.nr;
585 	if (prev_nr == DF_VECTOR) {
586 		/* triple fault -> shutdown */
587 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
588 		return;
589 	}
590 	class1 = exception_class(prev_nr);
591 	class2 = exception_class(nr);
592 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
593 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
594 		/*
595 		 * Generate double fault per SDM Table 5-5.  Set
596 		 * exception.pending = true so that the double fault
597 		 * can trigger a nested vmexit.
598 		 */
599 		vcpu->arch.exception.pending = true;
600 		vcpu->arch.exception.injected = false;
601 		vcpu->arch.exception.has_error_code = true;
602 		vcpu->arch.exception.nr = DF_VECTOR;
603 		vcpu->arch.exception.error_code = 0;
604 		vcpu->arch.exception.has_payload = false;
605 		vcpu->arch.exception.payload = 0;
606 	} else
607 		/* replace previous exception with a new one in a hope
608 		   that instruction re-execution will regenerate lost
609 		   exception */
610 		goto queue;
611 }
612 
613 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
614 {
615 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
616 }
617 EXPORT_SYMBOL_GPL(kvm_queue_exception);
618 
619 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
620 {
621 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
622 }
623 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
624 
625 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
626 			   unsigned long payload)
627 {
628 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
629 }
630 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
631 
632 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
633 				    u32 error_code, unsigned long payload)
634 {
635 	kvm_multiple_exception(vcpu, nr, true, error_code,
636 			       true, payload, false);
637 }
638 
639 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
640 {
641 	if (err)
642 		kvm_inject_gp(vcpu, 0);
643 	else
644 		return kvm_skip_emulated_instruction(vcpu);
645 
646 	return 1;
647 }
648 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
649 
650 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
651 {
652 	++vcpu->stat.pf_guest;
653 	vcpu->arch.exception.nested_apf =
654 		is_guest_mode(vcpu) && fault->async_page_fault;
655 	if (vcpu->arch.exception.nested_apf) {
656 		vcpu->arch.apf.nested_apf_token = fault->address;
657 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
658 	} else {
659 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
660 					fault->address);
661 	}
662 }
663 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
664 
665 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
666 				    struct x86_exception *fault)
667 {
668 	struct kvm_mmu *fault_mmu;
669 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
670 
671 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
672 					       vcpu->arch.walk_mmu;
673 
674 	/*
675 	 * Invalidate the TLB entry for the faulting address, if it exists,
676 	 * else the access will fault indefinitely (and to emulate hardware).
677 	 */
678 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
679 	    !(fault->error_code & PFERR_RSVD_MASK))
680 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
681 				       fault_mmu->root_hpa);
682 
683 	fault_mmu->inject_page_fault(vcpu, fault);
684 	return fault->nested_page_fault;
685 }
686 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
687 
688 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
689 {
690 	atomic_inc(&vcpu->arch.nmi_queued);
691 	kvm_make_request(KVM_REQ_NMI, vcpu);
692 }
693 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
694 
695 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
696 {
697 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
698 }
699 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
700 
701 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
702 {
703 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
704 }
705 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
706 
707 /*
708  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
709  * a #GP and return false.
710  */
711 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
712 {
713 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
714 		return true;
715 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
716 	return false;
717 }
718 EXPORT_SYMBOL_GPL(kvm_require_cpl);
719 
720 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
721 {
722 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
723 		return true;
724 
725 	kvm_queue_exception(vcpu, UD_VECTOR);
726 	return false;
727 }
728 EXPORT_SYMBOL_GPL(kvm_require_dr);
729 
730 /*
731  * This function will be used to read from the physical memory of the currently
732  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
733  * can read from guest physical or from the guest's guest physical memory.
734  */
735 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
736 			    gfn_t ngfn, void *data, int offset, int len,
737 			    u32 access)
738 {
739 	struct x86_exception exception;
740 	gfn_t real_gfn;
741 	gpa_t ngpa;
742 
743 	ngpa     = gfn_to_gpa(ngfn);
744 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
745 	if (real_gfn == UNMAPPED_GVA)
746 		return -EFAULT;
747 
748 	real_gfn = gpa_to_gfn(real_gfn);
749 
750 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
751 }
752 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
753 
754 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
755 			       void *data, int offset, int len, u32 access)
756 {
757 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
758 				       data, offset, len, access);
759 }
760 
761 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
762 {
763 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
764 }
765 
766 /*
767  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
768  */
769 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
770 {
771 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
772 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
773 	int i;
774 	int ret;
775 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
776 
777 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
778 				      offset * sizeof(u64), sizeof(pdpte),
779 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
780 	if (ret < 0) {
781 		ret = 0;
782 		goto out;
783 	}
784 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
785 		if ((pdpte[i] & PT_PRESENT_MASK) &&
786 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
787 			ret = 0;
788 			goto out;
789 		}
790 	}
791 	ret = 1;
792 
793 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
794 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
795 
796 out:
797 
798 	return ret;
799 }
800 EXPORT_SYMBOL_GPL(load_pdptrs);
801 
802 bool pdptrs_changed(struct kvm_vcpu *vcpu)
803 {
804 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
805 	int offset;
806 	gfn_t gfn;
807 	int r;
808 
809 	if (!is_pae_paging(vcpu))
810 		return false;
811 
812 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
813 		return true;
814 
815 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
816 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
817 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
818 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
819 	if (r < 0)
820 		return true;
821 
822 	return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
823 }
824 EXPORT_SYMBOL_GPL(pdptrs_changed);
825 
826 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
827 {
828 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
829 
830 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
831 		kvm_clear_async_pf_completion_queue(vcpu);
832 		kvm_async_pf_hash_reset(vcpu);
833 	}
834 
835 	if ((cr0 ^ old_cr0) & update_bits)
836 		kvm_mmu_reset_context(vcpu);
837 
838 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
839 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
840 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
841 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
842 }
843 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
844 
845 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
846 {
847 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
848 	unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
849 
850 	cr0 |= X86_CR0_ET;
851 
852 #ifdef CONFIG_X86_64
853 	if (cr0 & 0xffffffff00000000UL)
854 		return 1;
855 #endif
856 
857 	cr0 &= ~CR0_RESERVED_BITS;
858 
859 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
860 		return 1;
861 
862 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
863 		return 1;
864 
865 #ifdef CONFIG_X86_64
866 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
867 	    (cr0 & X86_CR0_PG)) {
868 		int cs_db, cs_l;
869 
870 		if (!is_pae(vcpu))
871 			return 1;
872 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
873 		if (cs_l)
874 			return 1;
875 	}
876 #endif
877 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
878 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
879 	    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
880 		return 1;
881 
882 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
883 		return 1;
884 
885 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
886 
887 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
888 
889 	return 0;
890 }
891 EXPORT_SYMBOL_GPL(kvm_set_cr0);
892 
893 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
894 {
895 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
896 }
897 EXPORT_SYMBOL_GPL(kvm_lmsw);
898 
899 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
900 {
901 	if (vcpu->arch.guest_state_protected)
902 		return;
903 
904 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
905 
906 		if (vcpu->arch.xcr0 != host_xcr0)
907 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
908 
909 		if (vcpu->arch.xsaves_enabled &&
910 		    vcpu->arch.ia32_xss != host_xss)
911 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
912 	}
913 
914 	if (static_cpu_has(X86_FEATURE_PKU) &&
915 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
916 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
917 	    vcpu->arch.pkru != vcpu->arch.host_pkru)
918 		__write_pkru(vcpu->arch.pkru);
919 }
920 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
921 
922 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
923 {
924 	if (vcpu->arch.guest_state_protected)
925 		return;
926 
927 	if (static_cpu_has(X86_FEATURE_PKU) &&
928 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
929 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
930 		vcpu->arch.pkru = rdpkru();
931 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
932 			__write_pkru(vcpu->arch.host_pkru);
933 	}
934 
935 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
936 
937 		if (vcpu->arch.xcr0 != host_xcr0)
938 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
939 
940 		if (vcpu->arch.xsaves_enabled &&
941 		    vcpu->arch.ia32_xss != host_xss)
942 			wrmsrl(MSR_IA32_XSS, host_xss);
943 	}
944 
945 }
946 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
947 
948 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
949 {
950 	u64 xcr0 = xcr;
951 	u64 old_xcr0 = vcpu->arch.xcr0;
952 	u64 valid_bits;
953 
954 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
955 	if (index != XCR_XFEATURE_ENABLED_MASK)
956 		return 1;
957 	if (!(xcr0 & XFEATURE_MASK_FP))
958 		return 1;
959 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
960 		return 1;
961 
962 	/*
963 	 * Do not allow the guest to set bits that we do not support
964 	 * saving.  However, xcr0 bit 0 is always set, even if the
965 	 * emulated CPU does not support XSAVE (see fx_init).
966 	 */
967 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
968 	if (xcr0 & ~valid_bits)
969 		return 1;
970 
971 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
972 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
973 		return 1;
974 
975 	if (xcr0 & XFEATURE_MASK_AVX512) {
976 		if (!(xcr0 & XFEATURE_MASK_YMM))
977 			return 1;
978 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
979 			return 1;
980 	}
981 	vcpu->arch.xcr0 = xcr0;
982 
983 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
984 		kvm_update_cpuid_runtime(vcpu);
985 	return 0;
986 }
987 
988 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
989 {
990 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
991 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
992 		kvm_inject_gp(vcpu, 0);
993 		return 1;
994 	}
995 
996 	return kvm_skip_emulated_instruction(vcpu);
997 }
998 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
999 
1000 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1001 {
1002 	if (cr4 & cr4_reserved_bits)
1003 		return false;
1004 
1005 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1006 		return false;
1007 
1008 	return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1009 }
1010 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1011 
1012 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1013 {
1014 	unsigned long mmu_role_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1015 				      X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
1016 
1017 	if (((cr4 ^ old_cr4) & mmu_role_bits) ||
1018 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1019 		kvm_mmu_reset_context(vcpu);
1020 }
1021 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1022 
1023 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1024 {
1025 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1026 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1027 				   X86_CR4_SMEP;
1028 
1029 	if (!kvm_is_valid_cr4(vcpu, cr4))
1030 		return 1;
1031 
1032 	if (is_long_mode(vcpu)) {
1033 		if (!(cr4 & X86_CR4_PAE))
1034 			return 1;
1035 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1036 			return 1;
1037 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1038 		   && ((cr4 ^ old_cr4) & pdptr_bits)
1039 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1040 				   kvm_read_cr3(vcpu)))
1041 		return 1;
1042 
1043 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1044 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1045 			return 1;
1046 
1047 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1048 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1049 			return 1;
1050 	}
1051 
1052 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1053 
1054 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1055 
1056 	return 0;
1057 }
1058 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1059 
1060 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1061 {
1062 	bool skip_tlb_flush = false;
1063 #ifdef CONFIG_X86_64
1064 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1065 
1066 	if (pcid_enabled) {
1067 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1068 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1069 	}
1070 #endif
1071 
1072 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1073 		if (!skip_tlb_flush) {
1074 			kvm_mmu_sync_roots(vcpu);
1075 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1076 		}
1077 		return 0;
1078 	}
1079 
1080 	/*
1081 	 * Do not condition the GPA check on long mode, this helper is used to
1082 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1083 	 * the current vCPU mode is accurate.
1084 	 */
1085 	if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1086 		return 1;
1087 
1088 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1089 		return 1;
1090 
1091 	kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1092 	vcpu->arch.cr3 = cr3;
1093 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1094 
1095 	return 0;
1096 }
1097 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1098 
1099 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1100 {
1101 	if (cr8 & CR8_RESERVED_BITS)
1102 		return 1;
1103 	if (lapic_in_kernel(vcpu))
1104 		kvm_lapic_set_tpr(vcpu, cr8);
1105 	else
1106 		vcpu->arch.cr8 = cr8;
1107 	return 0;
1108 }
1109 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1110 
1111 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1112 {
1113 	if (lapic_in_kernel(vcpu))
1114 		return kvm_lapic_get_cr8(vcpu);
1115 	else
1116 		return vcpu->arch.cr8;
1117 }
1118 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1119 
1120 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1121 {
1122 	int i;
1123 
1124 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1125 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1126 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1127 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1128 	}
1129 }
1130 
1131 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1132 {
1133 	unsigned long dr7;
1134 
1135 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1136 		dr7 = vcpu->arch.guest_debug_dr7;
1137 	else
1138 		dr7 = vcpu->arch.dr7;
1139 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1140 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1141 	if (dr7 & DR7_BP_EN_MASK)
1142 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1143 }
1144 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1145 
1146 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1147 {
1148 	u64 fixed = DR6_FIXED_1;
1149 
1150 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1151 		fixed |= DR6_RTM;
1152 	return fixed;
1153 }
1154 
1155 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1156 {
1157 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1158 
1159 	switch (dr) {
1160 	case 0 ... 3:
1161 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1162 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1163 			vcpu->arch.eff_db[dr] = val;
1164 		break;
1165 	case 4:
1166 	case 6:
1167 		if (!kvm_dr6_valid(val))
1168 			return 1; /* #GP */
1169 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1170 		break;
1171 	case 5:
1172 	default: /* 7 */
1173 		if (!kvm_dr7_valid(val))
1174 			return 1; /* #GP */
1175 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1176 		kvm_update_dr7(vcpu);
1177 		break;
1178 	}
1179 
1180 	return 0;
1181 }
1182 EXPORT_SYMBOL_GPL(kvm_set_dr);
1183 
1184 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1185 {
1186 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1187 
1188 	switch (dr) {
1189 	case 0 ... 3:
1190 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1191 		break;
1192 	case 4:
1193 	case 6:
1194 		*val = vcpu->arch.dr6;
1195 		break;
1196 	case 5:
1197 	default: /* 7 */
1198 		*val = vcpu->arch.dr7;
1199 		break;
1200 	}
1201 }
1202 EXPORT_SYMBOL_GPL(kvm_get_dr);
1203 
1204 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1205 {
1206 	u32 ecx = kvm_rcx_read(vcpu);
1207 	u64 data;
1208 
1209 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1210 		kvm_inject_gp(vcpu, 0);
1211 		return 1;
1212 	}
1213 
1214 	kvm_rax_write(vcpu, (u32)data);
1215 	kvm_rdx_write(vcpu, data >> 32);
1216 	return kvm_skip_emulated_instruction(vcpu);
1217 }
1218 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1219 
1220 /*
1221  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1222  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1223  *
1224  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1225  * extract the supported MSRs from the related const lists.
1226  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1227  * capabilities of the host cpu. This capabilities test skips MSRs that are
1228  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1229  * may depend on host virtualization features rather than host cpu features.
1230  */
1231 
1232 static const u32 msrs_to_save_all[] = {
1233 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1234 	MSR_STAR,
1235 #ifdef CONFIG_X86_64
1236 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1237 #endif
1238 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1239 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1240 	MSR_IA32_SPEC_CTRL,
1241 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1242 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1243 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1244 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1245 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1246 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1247 	MSR_IA32_UMWAIT_CONTROL,
1248 
1249 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1250 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1251 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1252 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1253 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1254 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1255 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1256 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1257 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1258 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1259 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1260 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1261 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1262 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1263 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1264 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1265 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1266 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1267 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1268 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1269 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1270 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1271 };
1272 
1273 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1274 static unsigned num_msrs_to_save;
1275 
1276 static const u32 emulated_msrs_all[] = {
1277 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1278 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1279 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1280 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1281 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1282 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1283 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1284 	HV_X64_MSR_RESET,
1285 	HV_X64_MSR_VP_INDEX,
1286 	HV_X64_MSR_VP_RUNTIME,
1287 	HV_X64_MSR_SCONTROL,
1288 	HV_X64_MSR_STIMER0_CONFIG,
1289 	HV_X64_MSR_VP_ASSIST_PAGE,
1290 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1291 	HV_X64_MSR_TSC_EMULATION_STATUS,
1292 	HV_X64_MSR_SYNDBG_OPTIONS,
1293 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1294 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1295 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1296 
1297 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1298 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1299 
1300 	MSR_IA32_TSC_ADJUST,
1301 	MSR_IA32_TSC_DEADLINE,
1302 	MSR_IA32_ARCH_CAPABILITIES,
1303 	MSR_IA32_PERF_CAPABILITIES,
1304 	MSR_IA32_MISC_ENABLE,
1305 	MSR_IA32_MCG_STATUS,
1306 	MSR_IA32_MCG_CTL,
1307 	MSR_IA32_MCG_EXT_CTL,
1308 	MSR_IA32_SMBASE,
1309 	MSR_SMI_COUNT,
1310 	MSR_PLATFORM_INFO,
1311 	MSR_MISC_FEATURES_ENABLES,
1312 	MSR_AMD64_VIRT_SPEC_CTRL,
1313 	MSR_IA32_POWER_CTL,
1314 	MSR_IA32_UCODE_REV,
1315 
1316 	/*
1317 	 * The following list leaves out MSRs whose values are determined
1318 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1319 	 * We always support the "true" VMX control MSRs, even if the host
1320 	 * processor does not, so I am putting these registers here rather
1321 	 * than in msrs_to_save_all.
1322 	 */
1323 	MSR_IA32_VMX_BASIC,
1324 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1325 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1326 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1327 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1328 	MSR_IA32_VMX_MISC,
1329 	MSR_IA32_VMX_CR0_FIXED0,
1330 	MSR_IA32_VMX_CR4_FIXED0,
1331 	MSR_IA32_VMX_VMCS_ENUM,
1332 	MSR_IA32_VMX_PROCBASED_CTLS2,
1333 	MSR_IA32_VMX_EPT_VPID_CAP,
1334 	MSR_IA32_VMX_VMFUNC,
1335 
1336 	MSR_K7_HWCR,
1337 	MSR_KVM_POLL_CONTROL,
1338 };
1339 
1340 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1341 static unsigned num_emulated_msrs;
1342 
1343 /*
1344  * List of msr numbers which are used to expose MSR-based features that
1345  * can be used by a hypervisor to validate requested CPU features.
1346  */
1347 static const u32 msr_based_features_all[] = {
1348 	MSR_IA32_VMX_BASIC,
1349 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1350 	MSR_IA32_VMX_PINBASED_CTLS,
1351 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1352 	MSR_IA32_VMX_PROCBASED_CTLS,
1353 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1354 	MSR_IA32_VMX_EXIT_CTLS,
1355 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1356 	MSR_IA32_VMX_ENTRY_CTLS,
1357 	MSR_IA32_VMX_MISC,
1358 	MSR_IA32_VMX_CR0_FIXED0,
1359 	MSR_IA32_VMX_CR0_FIXED1,
1360 	MSR_IA32_VMX_CR4_FIXED0,
1361 	MSR_IA32_VMX_CR4_FIXED1,
1362 	MSR_IA32_VMX_VMCS_ENUM,
1363 	MSR_IA32_VMX_PROCBASED_CTLS2,
1364 	MSR_IA32_VMX_EPT_VPID_CAP,
1365 	MSR_IA32_VMX_VMFUNC,
1366 
1367 	MSR_F10H_DECFG,
1368 	MSR_IA32_UCODE_REV,
1369 	MSR_IA32_ARCH_CAPABILITIES,
1370 	MSR_IA32_PERF_CAPABILITIES,
1371 };
1372 
1373 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1374 static unsigned int num_msr_based_features;
1375 
1376 static u64 kvm_get_arch_capabilities(void)
1377 {
1378 	u64 data = 0;
1379 
1380 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1381 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1382 
1383 	/*
1384 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1385 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1386 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1387 	 * L1 guests, so it need not worry about its own (L2) guests.
1388 	 */
1389 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1390 
1391 	/*
1392 	 * If we're doing cache flushes (either "always" or "cond")
1393 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1394 	 * If an outer hypervisor is doing the cache flush for us
1395 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1396 	 * capability to the guest too, and if EPT is disabled we're not
1397 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1398 	 * require a nested hypervisor to do a flush of its own.
1399 	 */
1400 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1401 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1402 
1403 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1404 		data |= ARCH_CAP_RDCL_NO;
1405 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1406 		data |= ARCH_CAP_SSB_NO;
1407 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1408 		data |= ARCH_CAP_MDS_NO;
1409 
1410 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1411 		/*
1412 		 * If RTM=0 because the kernel has disabled TSX, the host might
1413 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1414 		 * and therefore knows that there cannot be TAA) but keep
1415 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1416 		 * and we want to allow migrating those guests to tsx=off hosts.
1417 		 */
1418 		data &= ~ARCH_CAP_TAA_NO;
1419 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1420 		data |= ARCH_CAP_TAA_NO;
1421 	} else {
1422 		/*
1423 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1424 		 * host so the guest can choose between disabling TSX or
1425 		 * using VERW to clear CPU buffers.
1426 		 */
1427 	}
1428 
1429 	return data;
1430 }
1431 
1432 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1433 {
1434 	switch (msr->index) {
1435 	case MSR_IA32_ARCH_CAPABILITIES:
1436 		msr->data = kvm_get_arch_capabilities();
1437 		break;
1438 	case MSR_IA32_UCODE_REV:
1439 		rdmsrl_safe(msr->index, &msr->data);
1440 		break;
1441 	default:
1442 		return static_call(kvm_x86_get_msr_feature)(msr);
1443 	}
1444 	return 0;
1445 }
1446 
1447 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1448 {
1449 	struct kvm_msr_entry msr;
1450 	int r;
1451 
1452 	msr.index = index;
1453 	r = kvm_get_msr_feature(&msr);
1454 
1455 	if (r == KVM_MSR_RET_INVALID) {
1456 		/* Unconditionally clear the output for simplicity */
1457 		*data = 0;
1458 		if (kvm_msr_ignored_check(index, 0, false))
1459 			r = 0;
1460 	}
1461 
1462 	if (r)
1463 		return r;
1464 
1465 	*data = msr.data;
1466 
1467 	return 0;
1468 }
1469 
1470 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1471 {
1472 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1473 		return false;
1474 
1475 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1476 		return false;
1477 
1478 	if (efer & (EFER_LME | EFER_LMA) &&
1479 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1480 		return false;
1481 
1482 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1483 		return false;
1484 
1485 	return true;
1486 
1487 }
1488 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1489 {
1490 	if (efer & efer_reserved_bits)
1491 		return false;
1492 
1493 	return __kvm_valid_efer(vcpu, efer);
1494 }
1495 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1496 
1497 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1498 {
1499 	u64 old_efer = vcpu->arch.efer;
1500 	u64 efer = msr_info->data;
1501 	int r;
1502 
1503 	if (efer & efer_reserved_bits)
1504 		return 1;
1505 
1506 	if (!msr_info->host_initiated) {
1507 		if (!__kvm_valid_efer(vcpu, efer))
1508 			return 1;
1509 
1510 		if (is_paging(vcpu) &&
1511 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1512 			return 1;
1513 	}
1514 
1515 	efer &= ~EFER_LMA;
1516 	efer |= vcpu->arch.efer & EFER_LMA;
1517 
1518 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1519 	if (r) {
1520 		WARN_ON(r > 0);
1521 		return r;
1522 	}
1523 
1524 	/* Update reserved bits */
1525 	if ((efer ^ old_efer) & EFER_NX)
1526 		kvm_mmu_reset_context(vcpu);
1527 
1528 	return 0;
1529 }
1530 
1531 void kvm_enable_efer_bits(u64 mask)
1532 {
1533        efer_reserved_bits &= ~mask;
1534 }
1535 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1536 
1537 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1538 {
1539 	struct kvm_x86_msr_filter *msr_filter;
1540 	struct msr_bitmap_range *ranges;
1541 	struct kvm *kvm = vcpu->kvm;
1542 	bool allowed;
1543 	int idx;
1544 	u32 i;
1545 
1546 	/* x2APIC MSRs do not support filtering. */
1547 	if (index >= 0x800 && index <= 0x8ff)
1548 		return true;
1549 
1550 	idx = srcu_read_lock(&kvm->srcu);
1551 
1552 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1553 	if (!msr_filter) {
1554 		allowed = true;
1555 		goto out;
1556 	}
1557 
1558 	allowed = msr_filter->default_allow;
1559 	ranges = msr_filter->ranges;
1560 
1561 	for (i = 0; i < msr_filter->count; i++) {
1562 		u32 start = ranges[i].base;
1563 		u32 end = start + ranges[i].nmsrs;
1564 		u32 flags = ranges[i].flags;
1565 		unsigned long *bitmap = ranges[i].bitmap;
1566 
1567 		if ((index >= start) && (index < end) && (flags & type)) {
1568 			allowed = !!test_bit(index - start, bitmap);
1569 			break;
1570 		}
1571 	}
1572 
1573 out:
1574 	srcu_read_unlock(&kvm->srcu, idx);
1575 
1576 	return allowed;
1577 }
1578 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1579 
1580 /*
1581  * Write @data into the MSR specified by @index.  Select MSR specific fault
1582  * checks are bypassed if @host_initiated is %true.
1583  * Returns 0 on success, non-0 otherwise.
1584  * Assumes vcpu_load() was already called.
1585  */
1586 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1587 			 bool host_initiated)
1588 {
1589 	struct msr_data msr;
1590 
1591 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1592 		return KVM_MSR_RET_FILTERED;
1593 
1594 	switch (index) {
1595 	case MSR_FS_BASE:
1596 	case MSR_GS_BASE:
1597 	case MSR_KERNEL_GS_BASE:
1598 	case MSR_CSTAR:
1599 	case MSR_LSTAR:
1600 		if (is_noncanonical_address(data, vcpu))
1601 			return 1;
1602 		break;
1603 	case MSR_IA32_SYSENTER_EIP:
1604 	case MSR_IA32_SYSENTER_ESP:
1605 		/*
1606 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1607 		 * non-canonical address is written on Intel but not on
1608 		 * AMD (which ignores the top 32-bits, because it does
1609 		 * not implement 64-bit SYSENTER).
1610 		 *
1611 		 * 64-bit code should hence be able to write a non-canonical
1612 		 * value on AMD.  Making the address canonical ensures that
1613 		 * vmentry does not fail on Intel after writing a non-canonical
1614 		 * value, and that something deterministic happens if the guest
1615 		 * invokes 64-bit SYSENTER.
1616 		 */
1617 		data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1618 	}
1619 
1620 	msr.data = data;
1621 	msr.index = index;
1622 	msr.host_initiated = host_initiated;
1623 
1624 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1625 }
1626 
1627 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1628 				     u32 index, u64 data, bool host_initiated)
1629 {
1630 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1631 
1632 	if (ret == KVM_MSR_RET_INVALID)
1633 		if (kvm_msr_ignored_check(index, data, true))
1634 			ret = 0;
1635 
1636 	return ret;
1637 }
1638 
1639 /*
1640  * Read the MSR specified by @index into @data.  Select MSR specific fault
1641  * checks are bypassed if @host_initiated is %true.
1642  * Returns 0 on success, non-0 otherwise.
1643  * Assumes vcpu_load() was already called.
1644  */
1645 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1646 		  bool host_initiated)
1647 {
1648 	struct msr_data msr;
1649 	int ret;
1650 
1651 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1652 		return KVM_MSR_RET_FILTERED;
1653 
1654 	msr.index = index;
1655 	msr.host_initiated = host_initiated;
1656 
1657 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1658 	if (!ret)
1659 		*data = msr.data;
1660 	return ret;
1661 }
1662 
1663 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1664 				     u32 index, u64 *data, bool host_initiated)
1665 {
1666 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1667 
1668 	if (ret == KVM_MSR_RET_INVALID) {
1669 		/* Unconditionally clear *data for simplicity */
1670 		*data = 0;
1671 		if (kvm_msr_ignored_check(index, 0, false))
1672 			ret = 0;
1673 	}
1674 
1675 	return ret;
1676 }
1677 
1678 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1679 {
1680 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1681 }
1682 EXPORT_SYMBOL_GPL(kvm_get_msr);
1683 
1684 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1685 {
1686 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1687 }
1688 EXPORT_SYMBOL_GPL(kvm_set_msr);
1689 
1690 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1691 {
1692 	int err = vcpu->run->msr.error;
1693 	if (!err) {
1694 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1695 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1696 	}
1697 
1698 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, err);
1699 }
1700 
1701 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1702 {
1703 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1704 }
1705 
1706 static u64 kvm_msr_reason(int r)
1707 {
1708 	switch (r) {
1709 	case KVM_MSR_RET_INVALID:
1710 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1711 	case KVM_MSR_RET_FILTERED:
1712 		return KVM_MSR_EXIT_REASON_FILTER;
1713 	default:
1714 		return KVM_MSR_EXIT_REASON_INVAL;
1715 	}
1716 }
1717 
1718 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1719 			      u32 exit_reason, u64 data,
1720 			      int (*completion)(struct kvm_vcpu *vcpu),
1721 			      int r)
1722 {
1723 	u64 msr_reason = kvm_msr_reason(r);
1724 
1725 	/* Check if the user wanted to know about this MSR fault */
1726 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1727 		return 0;
1728 
1729 	vcpu->run->exit_reason = exit_reason;
1730 	vcpu->run->msr.error = 0;
1731 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1732 	vcpu->run->msr.reason = msr_reason;
1733 	vcpu->run->msr.index = index;
1734 	vcpu->run->msr.data = data;
1735 	vcpu->arch.complete_userspace_io = completion;
1736 
1737 	return 1;
1738 }
1739 
1740 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1741 {
1742 	return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1743 				   complete_emulated_rdmsr, r);
1744 }
1745 
1746 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1747 {
1748 	return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1749 				   complete_emulated_wrmsr, r);
1750 }
1751 
1752 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1753 {
1754 	u32 ecx = kvm_rcx_read(vcpu);
1755 	u64 data;
1756 	int r;
1757 
1758 	r = kvm_get_msr(vcpu, ecx, &data);
1759 
1760 	/* MSR read failed? See if we should ask user space */
1761 	if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1762 		/* Bounce to user space */
1763 		return 0;
1764 	}
1765 
1766 	if (!r) {
1767 		trace_kvm_msr_read(ecx, data);
1768 
1769 		kvm_rax_write(vcpu, data & -1u);
1770 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
1771 	} else {
1772 		trace_kvm_msr_read_ex(ecx);
1773 	}
1774 
1775 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1776 }
1777 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1778 
1779 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1780 {
1781 	u32 ecx = kvm_rcx_read(vcpu);
1782 	u64 data = kvm_read_edx_eax(vcpu);
1783 	int r;
1784 
1785 	r = kvm_set_msr(vcpu, ecx, data);
1786 
1787 	/* MSR write failed? See if we should ask user space */
1788 	if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1789 		/* Bounce to user space */
1790 		return 0;
1791 
1792 	/* Signal all other negative errors to userspace */
1793 	if (r < 0)
1794 		return r;
1795 
1796 	if (!r)
1797 		trace_kvm_msr_write(ecx, data);
1798 	else
1799 		trace_kvm_msr_write_ex(ecx, data);
1800 
1801 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1802 }
1803 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1804 
1805 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
1806 {
1807 	return kvm_skip_emulated_instruction(vcpu);
1808 }
1809 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
1810 
1811 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
1812 {
1813 	/* Treat an INVD instruction as a NOP and just skip it. */
1814 	return kvm_emulate_as_nop(vcpu);
1815 }
1816 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
1817 
1818 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
1819 {
1820 	pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
1821 	return kvm_emulate_as_nop(vcpu);
1822 }
1823 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
1824 
1825 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
1826 {
1827 	kvm_queue_exception(vcpu, UD_VECTOR);
1828 	return 1;
1829 }
1830 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
1831 
1832 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
1833 {
1834 	pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
1835 	return kvm_emulate_as_nop(vcpu);
1836 }
1837 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
1838 
1839 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1840 {
1841 	xfer_to_guest_mode_prepare();
1842 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1843 		xfer_to_guest_mode_work_pending();
1844 }
1845 
1846 /*
1847  * The fast path for frequent and performance sensitive wrmsr emulation,
1848  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1849  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1850  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1851  * other cases which must be called after interrupts are enabled on the host.
1852  */
1853 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1854 {
1855 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1856 		return 1;
1857 
1858 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1859 		((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1860 		((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1861 		((u32)(data >> 32) != X2APIC_BROADCAST)) {
1862 
1863 		data &= ~(1 << 12);
1864 		kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1865 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1866 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1867 		trace_kvm_apic_write(APIC_ICR, (u32)data);
1868 		return 0;
1869 	}
1870 
1871 	return 1;
1872 }
1873 
1874 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1875 {
1876 	if (!kvm_can_use_hv_timer(vcpu))
1877 		return 1;
1878 
1879 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
1880 	return 0;
1881 }
1882 
1883 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1884 {
1885 	u32 msr = kvm_rcx_read(vcpu);
1886 	u64 data;
1887 	fastpath_t ret = EXIT_FASTPATH_NONE;
1888 
1889 	switch (msr) {
1890 	case APIC_BASE_MSR + (APIC_ICR >> 4):
1891 		data = kvm_read_edx_eax(vcpu);
1892 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1893 			kvm_skip_emulated_instruction(vcpu);
1894 			ret = EXIT_FASTPATH_EXIT_HANDLED;
1895 		}
1896 		break;
1897 	case MSR_IA32_TSC_DEADLINE:
1898 		data = kvm_read_edx_eax(vcpu);
1899 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1900 			kvm_skip_emulated_instruction(vcpu);
1901 			ret = EXIT_FASTPATH_REENTER_GUEST;
1902 		}
1903 		break;
1904 	default:
1905 		break;
1906 	}
1907 
1908 	if (ret != EXIT_FASTPATH_NONE)
1909 		trace_kvm_msr_write(msr, data);
1910 
1911 	return ret;
1912 }
1913 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1914 
1915 /*
1916  * Adapt set_msr() to msr_io()'s calling convention
1917  */
1918 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1919 {
1920 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
1921 }
1922 
1923 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1924 {
1925 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
1926 }
1927 
1928 #ifdef CONFIG_X86_64
1929 struct pvclock_clock {
1930 	int vclock_mode;
1931 	u64 cycle_last;
1932 	u64 mask;
1933 	u32 mult;
1934 	u32 shift;
1935 	u64 base_cycles;
1936 	u64 offset;
1937 };
1938 
1939 struct pvclock_gtod_data {
1940 	seqcount_t	seq;
1941 
1942 	struct pvclock_clock clock; /* extract of a clocksource struct */
1943 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1944 
1945 	ktime_t		offs_boot;
1946 	u64		wall_time_sec;
1947 };
1948 
1949 static struct pvclock_gtod_data pvclock_gtod_data;
1950 
1951 static void update_pvclock_gtod(struct timekeeper *tk)
1952 {
1953 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1954 
1955 	write_seqcount_begin(&vdata->seq);
1956 
1957 	/* copy pvclock gtod data */
1958 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
1959 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1960 	vdata->clock.mask		= tk->tkr_mono.mask;
1961 	vdata->clock.mult		= tk->tkr_mono.mult;
1962 	vdata->clock.shift		= tk->tkr_mono.shift;
1963 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
1964 	vdata->clock.offset		= tk->tkr_mono.base;
1965 
1966 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
1967 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
1968 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
1969 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
1970 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
1971 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
1972 	vdata->raw_clock.offset		= tk->tkr_raw.base;
1973 
1974 	vdata->wall_time_sec            = tk->xtime_sec;
1975 
1976 	vdata->offs_boot		= tk->offs_boot;
1977 
1978 	write_seqcount_end(&vdata->seq);
1979 }
1980 
1981 static s64 get_kvmclock_base_ns(void)
1982 {
1983 	/* Count up from boot time, but with the frequency of the raw clock.  */
1984 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1985 }
1986 #else
1987 static s64 get_kvmclock_base_ns(void)
1988 {
1989 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
1990 	return ktime_get_boottime_ns();
1991 }
1992 #endif
1993 
1994 void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
1995 {
1996 	int version;
1997 	int r;
1998 	struct pvclock_wall_clock wc;
1999 	u32 wc_sec_hi;
2000 	u64 wall_nsec;
2001 
2002 	if (!wall_clock)
2003 		return;
2004 
2005 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2006 	if (r)
2007 		return;
2008 
2009 	if (version & 1)
2010 		++version;  /* first time write, random junk */
2011 
2012 	++version;
2013 
2014 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2015 		return;
2016 
2017 	/*
2018 	 * The guest calculates current wall clock time by adding
2019 	 * system time (updated by kvm_guest_time_update below) to the
2020 	 * wall clock specified here.  We do the reverse here.
2021 	 */
2022 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2023 
2024 	wc.nsec = do_div(wall_nsec, 1000000000);
2025 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2026 	wc.version = version;
2027 
2028 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2029 
2030 	if (sec_hi_ofs) {
2031 		wc_sec_hi = wall_nsec >> 32;
2032 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2033 				&wc_sec_hi, sizeof(wc_sec_hi));
2034 	}
2035 
2036 	version++;
2037 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2038 }
2039 
2040 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2041 				  bool old_msr, bool host_initiated)
2042 {
2043 	struct kvm_arch *ka = &vcpu->kvm->arch;
2044 
2045 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2046 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2047 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2048 
2049 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2050 	}
2051 
2052 	vcpu->arch.time = system_time;
2053 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2054 
2055 	/* we verify if the enable bit is set... */
2056 	vcpu->arch.pv_time_enabled = false;
2057 	if (!(system_time & 1))
2058 		return;
2059 
2060 	if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2061 				       &vcpu->arch.pv_time, system_time & ~1ULL,
2062 				       sizeof(struct pvclock_vcpu_time_info)))
2063 		vcpu->arch.pv_time_enabled = true;
2064 
2065 	return;
2066 }
2067 
2068 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2069 {
2070 	do_shl32_div32(dividend, divisor);
2071 	return dividend;
2072 }
2073 
2074 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2075 			       s8 *pshift, u32 *pmultiplier)
2076 {
2077 	uint64_t scaled64;
2078 	int32_t  shift = 0;
2079 	uint64_t tps64;
2080 	uint32_t tps32;
2081 
2082 	tps64 = base_hz;
2083 	scaled64 = scaled_hz;
2084 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2085 		tps64 >>= 1;
2086 		shift--;
2087 	}
2088 
2089 	tps32 = (uint32_t)tps64;
2090 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2091 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2092 			scaled64 >>= 1;
2093 		else
2094 			tps32 <<= 1;
2095 		shift++;
2096 	}
2097 
2098 	*pshift = shift;
2099 	*pmultiplier = div_frac(scaled64, tps32);
2100 }
2101 
2102 #ifdef CONFIG_X86_64
2103 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2104 #endif
2105 
2106 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2107 static unsigned long max_tsc_khz;
2108 
2109 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2110 {
2111 	u64 v = (u64)khz * (1000000 + ppm);
2112 	do_div(v, 1000000);
2113 	return v;
2114 }
2115 
2116 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2117 {
2118 	u64 ratio;
2119 
2120 	/* Guest TSC same frequency as host TSC? */
2121 	if (!scale) {
2122 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2123 		return 0;
2124 	}
2125 
2126 	/* TSC scaling supported? */
2127 	if (!kvm_has_tsc_control) {
2128 		if (user_tsc_khz > tsc_khz) {
2129 			vcpu->arch.tsc_catchup = 1;
2130 			vcpu->arch.tsc_always_catchup = 1;
2131 			return 0;
2132 		} else {
2133 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2134 			return -1;
2135 		}
2136 	}
2137 
2138 	/* TSC scaling required  - calculate ratio */
2139 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2140 				user_tsc_khz, tsc_khz);
2141 
2142 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2143 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2144 			            user_tsc_khz);
2145 		return -1;
2146 	}
2147 
2148 	vcpu->arch.tsc_scaling_ratio = ratio;
2149 	return 0;
2150 }
2151 
2152 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2153 {
2154 	u32 thresh_lo, thresh_hi;
2155 	int use_scaling = 0;
2156 
2157 	/* tsc_khz can be zero if TSC calibration fails */
2158 	if (user_tsc_khz == 0) {
2159 		/* set tsc_scaling_ratio to a safe value */
2160 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2161 		return -1;
2162 	}
2163 
2164 	/* Compute a scale to convert nanoseconds in TSC cycles */
2165 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2166 			   &vcpu->arch.virtual_tsc_shift,
2167 			   &vcpu->arch.virtual_tsc_mult);
2168 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2169 
2170 	/*
2171 	 * Compute the variation in TSC rate which is acceptable
2172 	 * within the range of tolerance and decide if the
2173 	 * rate being applied is within that bounds of the hardware
2174 	 * rate.  If so, no scaling or compensation need be done.
2175 	 */
2176 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2177 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2178 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2179 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2180 		use_scaling = 1;
2181 	}
2182 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2183 }
2184 
2185 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2186 {
2187 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2188 				      vcpu->arch.virtual_tsc_mult,
2189 				      vcpu->arch.virtual_tsc_shift);
2190 	tsc += vcpu->arch.this_tsc_write;
2191 	return tsc;
2192 }
2193 
2194 static inline int gtod_is_based_on_tsc(int mode)
2195 {
2196 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2197 }
2198 
2199 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2200 {
2201 #ifdef CONFIG_X86_64
2202 	bool vcpus_matched;
2203 	struct kvm_arch *ka = &vcpu->kvm->arch;
2204 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2205 
2206 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2207 			 atomic_read(&vcpu->kvm->online_vcpus));
2208 
2209 	/*
2210 	 * Once the masterclock is enabled, always perform request in
2211 	 * order to update it.
2212 	 *
2213 	 * In order to enable masterclock, the host clocksource must be TSC
2214 	 * and the vcpus need to have matched TSCs.  When that happens,
2215 	 * perform request to enable masterclock.
2216 	 */
2217 	if (ka->use_master_clock ||
2218 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2219 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2220 
2221 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2222 			    atomic_read(&vcpu->kvm->online_vcpus),
2223 		            ka->use_master_clock, gtod->clock.vclock_mode);
2224 #endif
2225 }
2226 
2227 /*
2228  * Multiply tsc by a fixed point number represented by ratio.
2229  *
2230  * The most significant 64-N bits (mult) of ratio represent the
2231  * integral part of the fixed point number; the remaining N bits
2232  * (frac) represent the fractional part, ie. ratio represents a fixed
2233  * point number (mult + frac * 2^(-N)).
2234  *
2235  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2236  */
2237 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2238 {
2239 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2240 }
2241 
2242 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
2243 {
2244 	u64 _tsc = tsc;
2245 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
2246 
2247 	if (ratio != kvm_default_tsc_scaling_ratio)
2248 		_tsc = __scale_tsc(ratio, tsc);
2249 
2250 	return _tsc;
2251 }
2252 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2253 
2254 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2255 {
2256 	u64 tsc;
2257 
2258 	tsc = kvm_scale_tsc(vcpu, rdtsc());
2259 
2260 	return target_tsc - tsc;
2261 }
2262 
2263 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2264 {
2265 	return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
2266 }
2267 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2268 
2269 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2270 {
2271 	vcpu->arch.l1_tsc_offset = offset;
2272 	vcpu->arch.tsc_offset = static_call(kvm_x86_write_l1_tsc_offset)(vcpu, offset);
2273 }
2274 
2275 static inline bool kvm_check_tsc_unstable(void)
2276 {
2277 #ifdef CONFIG_X86_64
2278 	/*
2279 	 * TSC is marked unstable when we're running on Hyper-V,
2280 	 * 'TSC page' clocksource is good.
2281 	 */
2282 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2283 		return false;
2284 #endif
2285 	return check_tsc_unstable();
2286 }
2287 
2288 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2289 {
2290 	struct kvm *kvm = vcpu->kvm;
2291 	u64 offset, ns, elapsed;
2292 	unsigned long flags;
2293 	bool matched;
2294 	bool already_matched;
2295 	bool synchronizing = false;
2296 
2297 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2298 	offset = kvm_compute_tsc_offset(vcpu, data);
2299 	ns = get_kvmclock_base_ns();
2300 	elapsed = ns - kvm->arch.last_tsc_nsec;
2301 
2302 	if (vcpu->arch.virtual_tsc_khz) {
2303 		if (data == 0) {
2304 			/*
2305 			 * detection of vcpu initialization -- need to sync
2306 			 * with other vCPUs. This particularly helps to keep
2307 			 * kvm_clock stable after CPU hotplug
2308 			 */
2309 			synchronizing = true;
2310 		} else {
2311 			u64 tsc_exp = kvm->arch.last_tsc_write +
2312 						nsec_to_cycles(vcpu, elapsed);
2313 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2314 			/*
2315 			 * Special case: TSC write with a small delta (1 second)
2316 			 * of virtual cycle time against real time is
2317 			 * interpreted as an attempt to synchronize the CPU.
2318 			 */
2319 			synchronizing = data < tsc_exp + tsc_hz &&
2320 					data + tsc_hz > tsc_exp;
2321 		}
2322 	}
2323 
2324 	/*
2325 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2326 	 * TSC, we add elapsed time in this computation.  We could let the
2327 	 * compensation code attempt to catch up if we fall behind, but
2328 	 * it's better to try to match offsets from the beginning.
2329          */
2330 	if (synchronizing &&
2331 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2332 		if (!kvm_check_tsc_unstable()) {
2333 			offset = kvm->arch.cur_tsc_offset;
2334 		} else {
2335 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2336 			data += delta;
2337 			offset = kvm_compute_tsc_offset(vcpu, data);
2338 		}
2339 		matched = true;
2340 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2341 	} else {
2342 		/*
2343 		 * We split periods of matched TSC writes into generations.
2344 		 * For each generation, we track the original measured
2345 		 * nanosecond time, offset, and write, so if TSCs are in
2346 		 * sync, we can match exact offset, and if not, we can match
2347 		 * exact software computation in compute_guest_tsc()
2348 		 *
2349 		 * These values are tracked in kvm->arch.cur_xxx variables.
2350 		 */
2351 		kvm->arch.cur_tsc_generation++;
2352 		kvm->arch.cur_tsc_nsec = ns;
2353 		kvm->arch.cur_tsc_write = data;
2354 		kvm->arch.cur_tsc_offset = offset;
2355 		matched = false;
2356 	}
2357 
2358 	/*
2359 	 * We also track th most recent recorded KHZ, write and time to
2360 	 * allow the matching interval to be extended at each write.
2361 	 */
2362 	kvm->arch.last_tsc_nsec = ns;
2363 	kvm->arch.last_tsc_write = data;
2364 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2365 
2366 	vcpu->arch.last_guest_tsc = data;
2367 
2368 	/* Keep track of which generation this VCPU has synchronized to */
2369 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2370 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2371 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2372 
2373 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2374 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2375 
2376 	spin_lock_irqsave(&kvm->arch.pvclock_gtod_sync_lock, flags);
2377 	if (!matched) {
2378 		kvm->arch.nr_vcpus_matched_tsc = 0;
2379 	} else if (!already_matched) {
2380 		kvm->arch.nr_vcpus_matched_tsc++;
2381 	}
2382 
2383 	kvm_track_tsc_matching(vcpu);
2384 	spin_unlock_irqrestore(&kvm->arch.pvclock_gtod_sync_lock, flags);
2385 }
2386 
2387 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2388 					   s64 adjustment)
2389 {
2390 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2391 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2392 }
2393 
2394 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2395 {
2396 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2397 		WARN_ON(adjustment < 0);
2398 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2399 	adjust_tsc_offset_guest(vcpu, adjustment);
2400 }
2401 
2402 #ifdef CONFIG_X86_64
2403 
2404 static u64 read_tsc(void)
2405 {
2406 	u64 ret = (u64)rdtsc_ordered();
2407 	u64 last = pvclock_gtod_data.clock.cycle_last;
2408 
2409 	if (likely(ret >= last))
2410 		return ret;
2411 
2412 	/*
2413 	 * GCC likes to generate cmov here, but this branch is extremely
2414 	 * predictable (it's just a function of time and the likely is
2415 	 * very likely) and there's a data dependence, so force GCC
2416 	 * to generate a branch instead.  I don't barrier() because
2417 	 * we don't actually need a barrier, and if this function
2418 	 * ever gets inlined it will generate worse code.
2419 	 */
2420 	asm volatile ("");
2421 	return last;
2422 }
2423 
2424 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2425 			  int *mode)
2426 {
2427 	long v;
2428 	u64 tsc_pg_val;
2429 
2430 	switch (clock->vclock_mode) {
2431 	case VDSO_CLOCKMODE_HVCLOCK:
2432 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2433 						  tsc_timestamp);
2434 		if (tsc_pg_val != U64_MAX) {
2435 			/* TSC page valid */
2436 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2437 			v = (tsc_pg_val - clock->cycle_last) &
2438 				clock->mask;
2439 		} else {
2440 			/* TSC page invalid */
2441 			*mode = VDSO_CLOCKMODE_NONE;
2442 		}
2443 		break;
2444 	case VDSO_CLOCKMODE_TSC:
2445 		*mode = VDSO_CLOCKMODE_TSC;
2446 		*tsc_timestamp = read_tsc();
2447 		v = (*tsc_timestamp - clock->cycle_last) &
2448 			clock->mask;
2449 		break;
2450 	default:
2451 		*mode = VDSO_CLOCKMODE_NONE;
2452 	}
2453 
2454 	if (*mode == VDSO_CLOCKMODE_NONE)
2455 		*tsc_timestamp = v = 0;
2456 
2457 	return v * clock->mult;
2458 }
2459 
2460 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2461 {
2462 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2463 	unsigned long seq;
2464 	int mode;
2465 	u64 ns;
2466 
2467 	do {
2468 		seq = read_seqcount_begin(&gtod->seq);
2469 		ns = gtod->raw_clock.base_cycles;
2470 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2471 		ns >>= gtod->raw_clock.shift;
2472 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2473 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2474 	*t = ns;
2475 
2476 	return mode;
2477 }
2478 
2479 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2480 {
2481 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2482 	unsigned long seq;
2483 	int mode;
2484 	u64 ns;
2485 
2486 	do {
2487 		seq = read_seqcount_begin(&gtod->seq);
2488 		ts->tv_sec = gtod->wall_time_sec;
2489 		ns = gtod->clock.base_cycles;
2490 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2491 		ns >>= gtod->clock.shift;
2492 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2493 
2494 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2495 	ts->tv_nsec = ns;
2496 
2497 	return mode;
2498 }
2499 
2500 /* returns true if host is using TSC based clocksource */
2501 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2502 {
2503 	/* checked again under seqlock below */
2504 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2505 		return false;
2506 
2507 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2508 						      tsc_timestamp));
2509 }
2510 
2511 /* returns true if host is using TSC based clocksource */
2512 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2513 					   u64 *tsc_timestamp)
2514 {
2515 	/* checked again under seqlock below */
2516 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2517 		return false;
2518 
2519 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2520 }
2521 #endif
2522 
2523 /*
2524  *
2525  * Assuming a stable TSC across physical CPUS, and a stable TSC
2526  * across virtual CPUs, the following condition is possible.
2527  * Each numbered line represents an event visible to both
2528  * CPUs at the next numbered event.
2529  *
2530  * "timespecX" represents host monotonic time. "tscX" represents
2531  * RDTSC value.
2532  *
2533  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2534  *
2535  * 1.  read timespec0,tsc0
2536  * 2.					| timespec1 = timespec0 + N
2537  * 					| tsc1 = tsc0 + M
2538  * 3. transition to guest		| transition to guest
2539  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2540  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2541  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2542  *
2543  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2544  *
2545  * 	- ret0 < ret1
2546  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2547  *		...
2548  *	- 0 < N - M => M < N
2549  *
2550  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2551  * always the case (the difference between two distinct xtime instances
2552  * might be smaller then the difference between corresponding TSC reads,
2553  * when updating guest vcpus pvclock areas).
2554  *
2555  * To avoid that problem, do not allow visibility of distinct
2556  * system_timestamp/tsc_timestamp values simultaneously: use a master
2557  * copy of host monotonic time values. Update that master copy
2558  * in lockstep.
2559  *
2560  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2561  *
2562  */
2563 
2564 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2565 {
2566 #ifdef CONFIG_X86_64
2567 	struct kvm_arch *ka = &kvm->arch;
2568 	int vclock_mode;
2569 	bool host_tsc_clocksource, vcpus_matched;
2570 
2571 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2572 			atomic_read(&kvm->online_vcpus));
2573 
2574 	/*
2575 	 * If the host uses TSC clock, then passthrough TSC as stable
2576 	 * to the guest.
2577 	 */
2578 	host_tsc_clocksource = kvm_get_time_and_clockread(
2579 					&ka->master_kernel_ns,
2580 					&ka->master_cycle_now);
2581 
2582 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2583 				&& !ka->backwards_tsc_observed
2584 				&& !ka->boot_vcpu_runs_old_kvmclock;
2585 
2586 	if (ka->use_master_clock)
2587 		atomic_set(&kvm_guest_has_master_clock, 1);
2588 
2589 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2590 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2591 					vcpus_matched);
2592 #endif
2593 }
2594 
2595 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2596 {
2597 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2598 }
2599 
2600 static void kvm_gen_update_masterclock(struct kvm *kvm)
2601 {
2602 #ifdef CONFIG_X86_64
2603 	int i;
2604 	struct kvm_vcpu *vcpu;
2605 	struct kvm_arch *ka = &kvm->arch;
2606 	unsigned long flags;
2607 
2608 	kvm_hv_invalidate_tsc_page(kvm);
2609 
2610 	kvm_make_mclock_inprogress_request(kvm);
2611 
2612 	/* no guest entries from this point */
2613 	spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2614 	pvclock_update_vm_gtod_copy(kvm);
2615 	spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2616 
2617 	kvm_for_each_vcpu(i, vcpu, kvm)
2618 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2619 
2620 	/* guest entries allowed */
2621 	kvm_for_each_vcpu(i, vcpu, kvm)
2622 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2623 #endif
2624 }
2625 
2626 u64 get_kvmclock_ns(struct kvm *kvm)
2627 {
2628 	struct kvm_arch *ka = &kvm->arch;
2629 	struct pvclock_vcpu_time_info hv_clock;
2630 	unsigned long flags;
2631 	u64 ret;
2632 
2633 	spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2634 	if (!ka->use_master_clock) {
2635 		spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2636 		return get_kvmclock_base_ns() + ka->kvmclock_offset;
2637 	}
2638 
2639 	hv_clock.tsc_timestamp = ka->master_cycle_now;
2640 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2641 	spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2642 
2643 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2644 	get_cpu();
2645 
2646 	if (__this_cpu_read(cpu_tsc_khz)) {
2647 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2648 				   &hv_clock.tsc_shift,
2649 				   &hv_clock.tsc_to_system_mul);
2650 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2651 	} else
2652 		ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2653 
2654 	put_cpu();
2655 
2656 	return ret;
2657 }
2658 
2659 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2660 				   struct gfn_to_hva_cache *cache,
2661 				   unsigned int offset)
2662 {
2663 	struct kvm_vcpu_arch *vcpu = &v->arch;
2664 	struct pvclock_vcpu_time_info guest_hv_clock;
2665 
2666 	if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2667 		&guest_hv_clock, offset, sizeof(guest_hv_clock))))
2668 		return;
2669 
2670 	/* This VCPU is paused, but it's legal for a guest to read another
2671 	 * VCPU's kvmclock, so we really have to follow the specification where
2672 	 * it says that version is odd if data is being modified, and even after
2673 	 * it is consistent.
2674 	 *
2675 	 * Version field updates must be kept separate.  This is because
2676 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2677 	 * writes within a string instruction are weakly ordered.  So there
2678 	 * are three writes overall.
2679 	 *
2680 	 * As a small optimization, only write the version field in the first
2681 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2682 	 * version field is the first in the struct.
2683 	 */
2684 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2685 
2686 	if (guest_hv_clock.version & 1)
2687 		++guest_hv_clock.version;  /* first time write, random junk */
2688 
2689 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2690 	kvm_write_guest_offset_cached(v->kvm, cache,
2691 				      &vcpu->hv_clock, offset,
2692 				      sizeof(vcpu->hv_clock.version));
2693 
2694 	smp_wmb();
2695 
2696 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2697 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2698 
2699 	if (vcpu->pvclock_set_guest_stopped_request) {
2700 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2701 		vcpu->pvclock_set_guest_stopped_request = false;
2702 	}
2703 
2704 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2705 
2706 	kvm_write_guest_offset_cached(v->kvm, cache,
2707 				      &vcpu->hv_clock, offset,
2708 				      sizeof(vcpu->hv_clock));
2709 
2710 	smp_wmb();
2711 
2712 	vcpu->hv_clock.version++;
2713 	kvm_write_guest_offset_cached(v->kvm, cache,
2714 				     &vcpu->hv_clock, offset,
2715 				     sizeof(vcpu->hv_clock.version));
2716 }
2717 
2718 static int kvm_guest_time_update(struct kvm_vcpu *v)
2719 {
2720 	unsigned long flags, tgt_tsc_khz;
2721 	struct kvm_vcpu_arch *vcpu = &v->arch;
2722 	struct kvm_arch *ka = &v->kvm->arch;
2723 	s64 kernel_ns;
2724 	u64 tsc_timestamp, host_tsc;
2725 	u8 pvclock_flags;
2726 	bool use_master_clock;
2727 
2728 	kernel_ns = 0;
2729 	host_tsc = 0;
2730 
2731 	/*
2732 	 * If the host uses TSC clock, then passthrough TSC as stable
2733 	 * to the guest.
2734 	 */
2735 	spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2736 	use_master_clock = ka->use_master_clock;
2737 	if (use_master_clock) {
2738 		host_tsc = ka->master_cycle_now;
2739 		kernel_ns = ka->master_kernel_ns;
2740 	}
2741 	spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2742 
2743 	/* Keep irq disabled to prevent changes to the clock */
2744 	local_irq_save(flags);
2745 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2746 	if (unlikely(tgt_tsc_khz == 0)) {
2747 		local_irq_restore(flags);
2748 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2749 		return 1;
2750 	}
2751 	if (!use_master_clock) {
2752 		host_tsc = rdtsc();
2753 		kernel_ns = get_kvmclock_base_ns();
2754 	}
2755 
2756 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2757 
2758 	/*
2759 	 * We may have to catch up the TSC to match elapsed wall clock
2760 	 * time for two reasons, even if kvmclock is used.
2761 	 *   1) CPU could have been running below the maximum TSC rate
2762 	 *   2) Broken TSC compensation resets the base at each VCPU
2763 	 *      entry to avoid unknown leaps of TSC even when running
2764 	 *      again on the same CPU.  This may cause apparent elapsed
2765 	 *      time to disappear, and the guest to stand still or run
2766 	 *	very slowly.
2767 	 */
2768 	if (vcpu->tsc_catchup) {
2769 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2770 		if (tsc > tsc_timestamp) {
2771 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2772 			tsc_timestamp = tsc;
2773 		}
2774 	}
2775 
2776 	local_irq_restore(flags);
2777 
2778 	/* With all the info we got, fill in the values */
2779 
2780 	if (kvm_has_tsc_control)
2781 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2782 
2783 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2784 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2785 				   &vcpu->hv_clock.tsc_shift,
2786 				   &vcpu->hv_clock.tsc_to_system_mul);
2787 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2788 	}
2789 
2790 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2791 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2792 	vcpu->last_guest_tsc = tsc_timestamp;
2793 
2794 	/* If the host uses TSC clocksource, then it is stable */
2795 	pvclock_flags = 0;
2796 	if (use_master_clock)
2797 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2798 
2799 	vcpu->hv_clock.flags = pvclock_flags;
2800 
2801 	if (vcpu->pv_time_enabled)
2802 		kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
2803 	if (vcpu->xen.vcpu_info_set)
2804 		kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
2805 				       offsetof(struct compat_vcpu_info, time));
2806 	if (vcpu->xen.vcpu_time_info_set)
2807 		kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
2808 	if (v == kvm_get_vcpu(v->kvm, 0))
2809 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2810 	return 0;
2811 }
2812 
2813 /*
2814  * kvmclock updates which are isolated to a given vcpu, such as
2815  * vcpu->cpu migration, should not allow system_timestamp from
2816  * the rest of the vcpus to remain static. Otherwise ntp frequency
2817  * correction applies to one vcpu's system_timestamp but not
2818  * the others.
2819  *
2820  * So in those cases, request a kvmclock update for all vcpus.
2821  * We need to rate-limit these requests though, as they can
2822  * considerably slow guests that have a large number of vcpus.
2823  * The time for a remote vcpu to update its kvmclock is bound
2824  * by the delay we use to rate-limit the updates.
2825  */
2826 
2827 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2828 
2829 static void kvmclock_update_fn(struct work_struct *work)
2830 {
2831 	int i;
2832 	struct delayed_work *dwork = to_delayed_work(work);
2833 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2834 					   kvmclock_update_work);
2835 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2836 	struct kvm_vcpu *vcpu;
2837 
2838 	kvm_for_each_vcpu(i, vcpu, kvm) {
2839 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2840 		kvm_vcpu_kick(vcpu);
2841 	}
2842 }
2843 
2844 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2845 {
2846 	struct kvm *kvm = v->kvm;
2847 
2848 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2849 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2850 					KVMCLOCK_UPDATE_DELAY);
2851 }
2852 
2853 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2854 
2855 static void kvmclock_sync_fn(struct work_struct *work)
2856 {
2857 	struct delayed_work *dwork = to_delayed_work(work);
2858 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2859 					   kvmclock_sync_work);
2860 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2861 
2862 	if (!kvmclock_periodic_sync)
2863 		return;
2864 
2865 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2866 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2867 					KVMCLOCK_SYNC_PERIOD);
2868 }
2869 
2870 /*
2871  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2872  */
2873 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2874 {
2875 	/* McStatusWrEn enabled? */
2876 	if (guest_cpuid_is_amd_or_hygon(vcpu))
2877 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2878 
2879 	return false;
2880 }
2881 
2882 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2883 {
2884 	u64 mcg_cap = vcpu->arch.mcg_cap;
2885 	unsigned bank_num = mcg_cap & 0xff;
2886 	u32 msr = msr_info->index;
2887 	u64 data = msr_info->data;
2888 
2889 	switch (msr) {
2890 	case MSR_IA32_MCG_STATUS:
2891 		vcpu->arch.mcg_status = data;
2892 		break;
2893 	case MSR_IA32_MCG_CTL:
2894 		if (!(mcg_cap & MCG_CTL_P) &&
2895 		    (data || !msr_info->host_initiated))
2896 			return 1;
2897 		if (data != 0 && data != ~(u64)0)
2898 			return 1;
2899 		vcpu->arch.mcg_ctl = data;
2900 		break;
2901 	default:
2902 		if (msr >= MSR_IA32_MC0_CTL &&
2903 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2904 			u32 offset = array_index_nospec(
2905 				msr - MSR_IA32_MC0_CTL,
2906 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2907 
2908 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2909 			 * some Linux kernels though clear bit 10 in bank 4 to
2910 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2911 			 * this to avoid an uncatched #GP in the guest
2912 			 */
2913 			if ((offset & 0x3) == 0 &&
2914 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2915 				return -1;
2916 
2917 			/* MCi_STATUS */
2918 			if (!msr_info->host_initiated &&
2919 			    (offset & 0x3) == 1 && data != 0) {
2920 				if (!can_set_mci_status(vcpu))
2921 					return -1;
2922 			}
2923 
2924 			vcpu->arch.mce_banks[offset] = data;
2925 			break;
2926 		}
2927 		return 1;
2928 	}
2929 	return 0;
2930 }
2931 
2932 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
2933 {
2934 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
2935 
2936 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
2937 }
2938 
2939 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2940 {
2941 	gpa_t gpa = data & ~0x3f;
2942 
2943 	/* Bits 4:5 are reserved, Should be zero */
2944 	if (data & 0x30)
2945 		return 1;
2946 
2947 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
2948 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
2949 		return 1;
2950 
2951 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
2952 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
2953 		return 1;
2954 
2955 	if (!lapic_in_kernel(vcpu))
2956 		return data ? 1 : 0;
2957 
2958 	vcpu->arch.apf.msr_en_val = data;
2959 
2960 	if (!kvm_pv_async_pf_enabled(vcpu)) {
2961 		kvm_clear_async_pf_completion_queue(vcpu);
2962 		kvm_async_pf_hash_reset(vcpu);
2963 		return 0;
2964 	}
2965 
2966 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2967 					sizeof(u64)))
2968 		return 1;
2969 
2970 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2971 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2972 
2973 	kvm_async_pf_wakeup_all(vcpu);
2974 
2975 	return 0;
2976 }
2977 
2978 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
2979 {
2980 	/* Bits 8-63 are reserved */
2981 	if (data >> 8)
2982 		return 1;
2983 
2984 	if (!lapic_in_kernel(vcpu))
2985 		return 1;
2986 
2987 	vcpu->arch.apf.msr_int_val = data;
2988 
2989 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
2990 
2991 	return 0;
2992 }
2993 
2994 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2995 {
2996 	vcpu->arch.pv_time_enabled = false;
2997 	vcpu->arch.time = 0;
2998 }
2999 
3000 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3001 {
3002 	++vcpu->stat.tlb_flush;
3003 	static_call(kvm_x86_tlb_flush_all)(vcpu);
3004 }
3005 
3006 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3007 {
3008 	++vcpu->stat.tlb_flush;
3009 	static_call(kvm_x86_tlb_flush_guest)(vcpu);
3010 }
3011 
3012 static void record_steal_time(struct kvm_vcpu *vcpu)
3013 {
3014 	struct kvm_host_map map;
3015 	struct kvm_steal_time *st;
3016 
3017 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3018 		kvm_xen_runstate_set_running(vcpu);
3019 		return;
3020 	}
3021 
3022 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3023 		return;
3024 
3025 	/* -EAGAIN is returned in atomic context so we can just return. */
3026 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
3027 			&map, &vcpu->arch.st.cache, false))
3028 		return;
3029 
3030 	st = map.hva +
3031 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3032 
3033 	/*
3034 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3035 	 * expensive IPIs.
3036 	 */
3037 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3038 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3039 				       st->preempted & KVM_VCPU_FLUSH_TLB);
3040 		if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
3041 			kvm_vcpu_flush_tlb_guest(vcpu);
3042 	}
3043 
3044 	vcpu->arch.st.preempted = 0;
3045 
3046 	if (st->version & 1)
3047 		st->version += 1;  /* first time write, random junk */
3048 
3049 	st->version += 1;
3050 
3051 	smp_wmb();
3052 
3053 	st->steal += current->sched_info.run_delay -
3054 		vcpu->arch.st.last_steal;
3055 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3056 
3057 	smp_wmb();
3058 
3059 	st->version += 1;
3060 
3061 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
3062 }
3063 
3064 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3065 {
3066 	bool pr = false;
3067 	u32 msr = msr_info->index;
3068 	u64 data = msr_info->data;
3069 
3070 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3071 		return kvm_xen_write_hypercall_page(vcpu, data);
3072 
3073 	switch (msr) {
3074 	case MSR_AMD64_NB_CFG:
3075 	case MSR_IA32_UCODE_WRITE:
3076 	case MSR_VM_HSAVE_PA:
3077 	case MSR_AMD64_PATCH_LOADER:
3078 	case MSR_AMD64_BU_CFG2:
3079 	case MSR_AMD64_DC_CFG:
3080 	case MSR_F15H_EX_CFG:
3081 		break;
3082 
3083 	case MSR_IA32_UCODE_REV:
3084 		if (msr_info->host_initiated)
3085 			vcpu->arch.microcode_version = data;
3086 		break;
3087 	case MSR_IA32_ARCH_CAPABILITIES:
3088 		if (!msr_info->host_initiated)
3089 			return 1;
3090 		vcpu->arch.arch_capabilities = data;
3091 		break;
3092 	case MSR_IA32_PERF_CAPABILITIES: {
3093 		struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3094 
3095 		if (!msr_info->host_initiated)
3096 			return 1;
3097 		if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3098 			return 1;
3099 		if (data & ~msr_ent.data)
3100 			return 1;
3101 
3102 		vcpu->arch.perf_capabilities = data;
3103 
3104 		return 0;
3105 		}
3106 	case MSR_EFER:
3107 		return set_efer(vcpu, msr_info);
3108 	case MSR_K7_HWCR:
3109 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3110 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3111 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3112 
3113 		/* Handle McStatusWrEn */
3114 		if (data == BIT_ULL(18)) {
3115 			vcpu->arch.msr_hwcr = data;
3116 		} else if (data != 0) {
3117 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3118 				    data);
3119 			return 1;
3120 		}
3121 		break;
3122 	case MSR_FAM10H_MMIO_CONF_BASE:
3123 		if (data != 0) {
3124 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3125 				    "0x%llx\n", data);
3126 			return 1;
3127 		}
3128 		break;
3129 	case 0x200 ... 0x2ff:
3130 		return kvm_mtrr_set_msr(vcpu, msr, data);
3131 	case MSR_IA32_APICBASE:
3132 		return kvm_set_apic_base(vcpu, msr_info);
3133 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3134 		return kvm_x2apic_msr_write(vcpu, msr, data);
3135 	case MSR_IA32_TSC_DEADLINE:
3136 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3137 		break;
3138 	case MSR_IA32_TSC_ADJUST:
3139 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3140 			if (!msr_info->host_initiated) {
3141 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3142 				adjust_tsc_offset_guest(vcpu, adj);
3143 			}
3144 			vcpu->arch.ia32_tsc_adjust_msr = data;
3145 		}
3146 		break;
3147 	case MSR_IA32_MISC_ENABLE:
3148 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3149 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3150 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3151 				return 1;
3152 			vcpu->arch.ia32_misc_enable_msr = data;
3153 			kvm_update_cpuid_runtime(vcpu);
3154 		} else {
3155 			vcpu->arch.ia32_misc_enable_msr = data;
3156 		}
3157 		break;
3158 	case MSR_IA32_SMBASE:
3159 		if (!msr_info->host_initiated)
3160 			return 1;
3161 		vcpu->arch.smbase = data;
3162 		break;
3163 	case MSR_IA32_POWER_CTL:
3164 		vcpu->arch.msr_ia32_power_ctl = data;
3165 		break;
3166 	case MSR_IA32_TSC:
3167 		if (msr_info->host_initiated) {
3168 			kvm_synchronize_tsc(vcpu, data);
3169 		} else {
3170 			u64 adj = kvm_compute_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3171 			adjust_tsc_offset_guest(vcpu, adj);
3172 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3173 		}
3174 		break;
3175 	case MSR_IA32_XSS:
3176 		if (!msr_info->host_initiated &&
3177 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3178 			return 1;
3179 		/*
3180 		 * KVM supports exposing PT to the guest, but does not support
3181 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3182 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3183 		 */
3184 		if (data & ~supported_xss)
3185 			return 1;
3186 		vcpu->arch.ia32_xss = data;
3187 		break;
3188 	case MSR_SMI_COUNT:
3189 		if (!msr_info->host_initiated)
3190 			return 1;
3191 		vcpu->arch.smi_count = data;
3192 		break;
3193 	case MSR_KVM_WALL_CLOCK_NEW:
3194 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3195 			return 1;
3196 
3197 		vcpu->kvm->arch.wall_clock = data;
3198 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3199 		break;
3200 	case MSR_KVM_WALL_CLOCK:
3201 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3202 			return 1;
3203 
3204 		vcpu->kvm->arch.wall_clock = data;
3205 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3206 		break;
3207 	case MSR_KVM_SYSTEM_TIME_NEW:
3208 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3209 			return 1;
3210 
3211 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3212 		break;
3213 	case MSR_KVM_SYSTEM_TIME:
3214 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3215 			return 1;
3216 
3217 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3218 		break;
3219 	case MSR_KVM_ASYNC_PF_EN:
3220 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3221 			return 1;
3222 
3223 		if (kvm_pv_enable_async_pf(vcpu, data))
3224 			return 1;
3225 		break;
3226 	case MSR_KVM_ASYNC_PF_INT:
3227 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3228 			return 1;
3229 
3230 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3231 			return 1;
3232 		break;
3233 	case MSR_KVM_ASYNC_PF_ACK:
3234 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3235 			return 1;
3236 		if (data & 0x1) {
3237 			vcpu->arch.apf.pageready_pending = false;
3238 			kvm_check_async_pf_completion(vcpu);
3239 		}
3240 		break;
3241 	case MSR_KVM_STEAL_TIME:
3242 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3243 			return 1;
3244 
3245 		if (unlikely(!sched_info_on()))
3246 			return 1;
3247 
3248 		if (data & KVM_STEAL_RESERVED_MASK)
3249 			return 1;
3250 
3251 		vcpu->arch.st.msr_val = data;
3252 
3253 		if (!(data & KVM_MSR_ENABLED))
3254 			break;
3255 
3256 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3257 
3258 		break;
3259 	case MSR_KVM_PV_EOI_EN:
3260 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3261 			return 1;
3262 
3263 		if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3264 			return 1;
3265 		break;
3266 
3267 	case MSR_KVM_POLL_CONTROL:
3268 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3269 			return 1;
3270 
3271 		/* only enable bit supported */
3272 		if (data & (-1ULL << 1))
3273 			return 1;
3274 
3275 		vcpu->arch.msr_kvm_poll_control = data;
3276 		break;
3277 
3278 	case MSR_IA32_MCG_CTL:
3279 	case MSR_IA32_MCG_STATUS:
3280 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3281 		return set_msr_mce(vcpu, msr_info);
3282 
3283 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3284 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3285 		pr = true;
3286 		fallthrough;
3287 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3288 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3289 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3290 			return kvm_pmu_set_msr(vcpu, msr_info);
3291 
3292 		if (pr || data != 0)
3293 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3294 				    "0x%x data 0x%llx\n", msr, data);
3295 		break;
3296 	case MSR_K7_CLK_CTL:
3297 		/*
3298 		 * Ignore all writes to this no longer documented MSR.
3299 		 * Writes are only relevant for old K7 processors,
3300 		 * all pre-dating SVM, but a recommended workaround from
3301 		 * AMD for these chips. It is possible to specify the
3302 		 * affected processor models on the command line, hence
3303 		 * the need to ignore the workaround.
3304 		 */
3305 		break;
3306 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3307 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3308 	case HV_X64_MSR_SYNDBG_OPTIONS:
3309 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3310 	case HV_X64_MSR_CRASH_CTL:
3311 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3312 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3313 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3314 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3315 		return kvm_hv_set_msr_common(vcpu, msr, data,
3316 					     msr_info->host_initiated);
3317 	case MSR_IA32_BBL_CR_CTL3:
3318 		/* Drop writes to this legacy MSR -- see rdmsr
3319 		 * counterpart for further detail.
3320 		 */
3321 		if (report_ignored_msrs)
3322 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3323 				msr, data);
3324 		break;
3325 	case MSR_AMD64_OSVW_ID_LENGTH:
3326 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3327 			return 1;
3328 		vcpu->arch.osvw.length = data;
3329 		break;
3330 	case MSR_AMD64_OSVW_STATUS:
3331 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3332 			return 1;
3333 		vcpu->arch.osvw.status = data;
3334 		break;
3335 	case MSR_PLATFORM_INFO:
3336 		if (!msr_info->host_initiated ||
3337 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3338 		     cpuid_fault_enabled(vcpu)))
3339 			return 1;
3340 		vcpu->arch.msr_platform_info = data;
3341 		break;
3342 	case MSR_MISC_FEATURES_ENABLES:
3343 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3344 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3345 		     !supports_cpuid_fault(vcpu)))
3346 			return 1;
3347 		vcpu->arch.msr_misc_features_enables = data;
3348 		break;
3349 	default:
3350 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3351 			return kvm_pmu_set_msr(vcpu, msr_info);
3352 		return KVM_MSR_RET_INVALID;
3353 	}
3354 	return 0;
3355 }
3356 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3357 
3358 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3359 {
3360 	u64 data;
3361 	u64 mcg_cap = vcpu->arch.mcg_cap;
3362 	unsigned bank_num = mcg_cap & 0xff;
3363 
3364 	switch (msr) {
3365 	case MSR_IA32_P5_MC_ADDR:
3366 	case MSR_IA32_P5_MC_TYPE:
3367 		data = 0;
3368 		break;
3369 	case MSR_IA32_MCG_CAP:
3370 		data = vcpu->arch.mcg_cap;
3371 		break;
3372 	case MSR_IA32_MCG_CTL:
3373 		if (!(mcg_cap & MCG_CTL_P) && !host)
3374 			return 1;
3375 		data = vcpu->arch.mcg_ctl;
3376 		break;
3377 	case MSR_IA32_MCG_STATUS:
3378 		data = vcpu->arch.mcg_status;
3379 		break;
3380 	default:
3381 		if (msr >= MSR_IA32_MC0_CTL &&
3382 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3383 			u32 offset = array_index_nospec(
3384 				msr - MSR_IA32_MC0_CTL,
3385 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3386 
3387 			data = vcpu->arch.mce_banks[offset];
3388 			break;
3389 		}
3390 		return 1;
3391 	}
3392 	*pdata = data;
3393 	return 0;
3394 }
3395 
3396 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3397 {
3398 	switch (msr_info->index) {
3399 	case MSR_IA32_PLATFORM_ID:
3400 	case MSR_IA32_EBL_CR_POWERON:
3401 	case MSR_IA32_LASTBRANCHFROMIP:
3402 	case MSR_IA32_LASTBRANCHTOIP:
3403 	case MSR_IA32_LASTINTFROMIP:
3404 	case MSR_IA32_LASTINTTOIP:
3405 	case MSR_K8_SYSCFG:
3406 	case MSR_K8_TSEG_ADDR:
3407 	case MSR_K8_TSEG_MASK:
3408 	case MSR_VM_HSAVE_PA:
3409 	case MSR_K8_INT_PENDING_MSG:
3410 	case MSR_AMD64_NB_CFG:
3411 	case MSR_FAM10H_MMIO_CONF_BASE:
3412 	case MSR_AMD64_BU_CFG2:
3413 	case MSR_IA32_PERF_CTL:
3414 	case MSR_AMD64_DC_CFG:
3415 	case MSR_F15H_EX_CFG:
3416 	/*
3417 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3418 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3419 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3420 	 * so for existing CPU-specific MSRs.
3421 	 */
3422 	case MSR_RAPL_POWER_UNIT:
3423 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3424 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3425 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3426 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3427 		msr_info->data = 0;
3428 		break;
3429 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3430 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3431 			return kvm_pmu_get_msr(vcpu, msr_info);
3432 		if (!msr_info->host_initiated)
3433 			return 1;
3434 		msr_info->data = 0;
3435 		break;
3436 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3437 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3438 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3439 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3440 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3441 			return kvm_pmu_get_msr(vcpu, msr_info);
3442 		msr_info->data = 0;
3443 		break;
3444 	case MSR_IA32_UCODE_REV:
3445 		msr_info->data = vcpu->arch.microcode_version;
3446 		break;
3447 	case MSR_IA32_ARCH_CAPABILITIES:
3448 		if (!msr_info->host_initiated &&
3449 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3450 			return 1;
3451 		msr_info->data = vcpu->arch.arch_capabilities;
3452 		break;
3453 	case MSR_IA32_PERF_CAPABILITIES:
3454 		if (!msr_info->host_initiated &&
3455 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3456 			return 1;
3457 		msr_info->data = vcpu->arch.perf_capabilities;
3458 		break;
3459 	case MSR_IA32_POWER_CTL:
3460 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3461 		break;
3462 	case MSR_IA32_TSC: {
3463 		/*
3464 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3465 		 * even when not intercepted. AMD manual doesn't explicitly
3466 		 * state this but appears to behave the same.
3467 		 *
3468 		 * On userspace reads and writes, however, we unconditionally
3469 		 * return L1's TSC value to ensure backwards-compatible
3470 		 * behavior for migration.
3471 		 */
3472 		u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset :
3473 							    vcpu->arch.tsc_offset;
3474 
3475 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset;
3476 		break;
3477 	}
3478 	case MSR_MTRRcap:
3479 	case 0x200 ... 0x2ff:
3480 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3481 	case 0xcd: /* fsb frequency */
3482 		msr_info->data = 3;
3483 		break;
3484 		/*
3485 		 * MSR_EBC_FREQUENCY_ID
3486 		 * Conservative value valid for even the basic CPU models.
3487 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3488 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3489 		 * and 266MHz for model 3, or 4. Set Core Clock
3490 		 * Frequency to System Bus Frequency Ratio to 1 (bits
3491 		 * 31:24) even though these are only valid for CPU
3492 		 * models > 2, however guests may end up dividing or
3493 		 * multiplying by zero otherwise.
3494 		 */
3495 	case MSR_EBC_FREQUENCY_ID:
3496 		msr_info->data = 1 << 24;
3497 		break;
3498 	case MSR_IA32_APICBASE:
3499 		msr_info->data = kvm_get_apic_base(vcpu);
3500 		break;
3501 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3502 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3503 	case MSR_IA32_TSC_DEADLINE:
3504 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3505 		break;
3506 	case MSR_IA32_TSC_ADJUST:
3507 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3508 		break;
3509 	case MSR_IA32_MISC_ENABLE:
3510 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3511 		break;
3512 	case MSR_IA32_SMBASE:
3513 		if (!msr_info->host_initiated)
3514 			return 1;
3515 		msr_info->data = vcpu->arch.smbase;
3516 		break;
3517 	case MSR_SMI_COUNT:
3518 		msr_info->data = vcpu->arch.smi_count;
3519 		break;
3520 	case MSR_IA32_PERF_STATUS:
3521 		/* TSC increment by tick */
3522 		msr_info->data = 1000ULL;
3523 		/* CPU multiplier */
3524 		msr_info->data |= (((uint64_t)4ULL) << 40);
3525 		break;
3526 	case MSR_EFER:
3527 		msr_info->data = vcpu->arch.efer;
3528 		break;
3529 	case MSR_KVM_WALL_CLOCK:
3530 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3531 			return 1;
3532 
3533 		msr_info->data = vcpu->kvm->arch.wall_clock;
3534 		break;
3535 	case MSR_KVM_WALL_CLOCK_NEW:
3536 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3537 			return 1;
3538 
3539 		msr_info->data = vcpu->kvm->arch.wall_clock;
3540 		break;
3541 	case MSR_KVM_SYSTEM_TIME:
3542 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3543 			return 1;
3544 
3545 		msr_info->data = vcpu->arch.time;
3546 		break;
3547 	case MSR_KVM_SYSTEM_TIME_NEW:
3548 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3549 			return 1;
3550 
3551 		msr_info->data = vcpu->arch.time;
3552 		break;
3553 	case MSR_KVM_ASYNC_PF_EN:
3554 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3555 			return 1;
3556 
3557 		msr_info->data = vcpu->arch.apf.msr_en_val;
3558 		break;
3559 	case MSR_KVM_ASYNC_PF_INT:
3560 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3561 			return 1;
3562 
3563 		msr_info->data = vcpu->arch.apf.msr_int_val;
3564 		break;
3565 	case MSR_KVM_ASYNC_PF_ACK:
3566 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3567 			return 1;
3568 
3569 		msr_info->data = 0;
3570 		break;
3571 	case MSR_KVM_STEAL_TIME:
3572 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3573 			return 1;
3574 
3575 		msr_info->data = vcpu->arch.st.msr_val;
3576 		break;
3577 	case MSR_KVM_PV_EOI_EN:
3578 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3579 			return 1;
3580 
3581 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
3582 		break;
3583 	case MSR_KVM_POLL_CONTROL:
3584 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3585 			return 1;
3586 
3587 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
3588 		break;
3589 	case MSR_IA32_P5_MC_ADDR:
3590 	case MSR_IA32_P5_MC_TYPE:
3591 	case MSR_IA32_MCG_CAP:
3592 	case MSR_IA32_MCG_CTL:
3593 	case MSR_IA32_MCG_STATUS:
3594 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3595 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3596 				   msr_info->host_initiated);
3597 	case MSR_IA32_XSS:
3598 		if (!msr_info->host_initiated &&
3599 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3600 			return 1;
3601 		msr_info->data = vcpu->arch.ia32_xss;
3602 		break;
3603 	case MSR_K7_CLK_CTL:
3604 		/*
3605 		 * Provide expected ramp-up count for K7. All other
3606 		 * are set to zero, indicating minimum divisors for
3607 		 * every field.
3608 		 *
3609 		 * This prevents guest kernels on AMD host with CPU
3610 		 * type 6, model 8 and higher from exploding due to
3611 		 * the rdmsr failing.
3612 		 */
3613 		msr_info->data = 0x20000000;
3614 		break;
3615 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3616 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3617 	case HV_X64_MSR_SYNDBG_OPTIONS:
3618 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3619 	case HV_X64_MSR_CRASH_CTL:
3620 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3621 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3622 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3623 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3624 		return kvm_hv_get_msr_common(vcpu,
3625 					     msr_info->index, &msr_info->data,
3626 					     msr_info->host_initiated);
3627 	case MSR_IA32_BBL_CR_CTL3:
3628 		/* This legacy MSR exists but isn't fully documented in current
3629 		 * silicon.  It is however accessed by winxp in very narrow
3630 		 * scenarios where it sets bit #19, itself documented as
3631 		 * a "reserved" bit.  Best effort attempt to source coherent
3632 		 * read data here should the balance of the register be
3633 		 * interpreted by the guest:
3634 		 *
3635 		 * L2 cache control register 3: 64GB range, 256KB size,
3636 		 * enabled, latency 0x1, configured
3637 		 */
3638 		msr_info->data = 0xbe702111;
3639 		break;
3640 	case MSR_AMD64_OSVW_ID_LENGTH:
3641 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3642 			return 1;
3643 		msr_info->data = vcpu->arch.osvw.length;
3644 		break;
3645 	case MSR_AMD64_OSVW_STATUS:
3646 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3647 			return 1;
3648 		msr_info->data = vcpu->arch.osvw.status;
3649 		break;
3650 	case MSR_PLATFORM_INFO:
3651 		if (!msr_info->host_initiated &&
3652 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3653 			return 1;
3654 		msr_info->data = vcpu->arch.msr_platform_info;
3655 		break;
3656 	case MSR_MISC_FEATURES_ENABLES:
3657 		msr_info->data = vcpu->arch.msr_misc_features_enables;
3658 		break;
3659 	case MSR_K7_HWCR:
3660 		msr_info->data = vcpu->arch.msr_hwcr;
3661 		break;
3662 	default:
3663 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3664 			return kvm_pmu_get_msr(vcpu, msr_info);
3665 		return KVM_MSR_RET_INVALID;
3666 	}
3667 	return 0;
3668 }
3669 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3670 
3671 /*
3672  * Read or write a bunch of msrs. All parameters are kernel addresses.
3673  *
3674  * @return number of msrs set successfully.
3675  */
3676 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3677 		    struct kvm_msr_entry *entries,
3678 		    int (*do_msr)(struct kvm_vcpu *vcpu,
3679 				  unsigned index, u64 *data))
3680 {
3681 	int i;
3682 
3683 	for (i = 0; i < msrs->nmsrs; ++i)
3684 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
3685 			break;
3686 
3687 	return i;
3688 }
3689 
3690 /*
3691  * Read or write a bunch of msrs. Parameters are user addresses.
3692  *
3693  * @return number of msrs set successfully.
3694  */
3695 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3696 		  int (*do_msr)(struct kvm_vcpu *vcpu,
3697 				unsigned index, u64 *data),
3698 		  int writeback)
3699 {
3700 	struct kvm_msrs msrs;
3701 	struct kvm_msr_entry *entries;
3702 	int r, n;
3703 	unsigned size;
3704 
3705 	r = -EFAULT;
3706 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3707 		goto out;
3708 
3709 	r = -E2BIG;
3710 	if (msrs.nmsrs >= MAX_IO_MSRS)
3711 		goto out;
3712 
3713 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3714 	entries = memdup_user(user_msrs->entries, size);
3715 	if (IS_ERR(entries)) {
3716 		r = PTR_ERR(entries);
3717 		goto out;
3718 	}
3719 
3720 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3721 	if (r < 0)
3722 		goto out_free;
3723 
3724 	r = -EFAULT;
3725 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
3726 		goto out_free;
3727 
3728 	r = n;
3729 
3730 out_free:
3731 	kfree(entries);
3732 out:
3733 	return r;
3734 }
3735 
3736 static inline bool kvm_can_mwait_in_guest(void)
3737 {
3738 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
3739 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
3740 		boot_cpu_has(X86_FEATURE_ARAT);
3741 }
3742 
3743 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
3744 					    struct kvm_cpuid2 __user *cpuid_arg)
3745 {
3746 	struct kvm_cpuid2 cpuid;
3747 	int r;
3748 
3749 	r = -EFAULT;
3750 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3751 		return r;
3752 
3753 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3754 	if (r)
3755 		return r;
3756 
3757 	r = -EFAULT;
3758 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3759 		return r;
3760 
3761 	return 0;
3762 }
3763 
3764 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3765 {
3766 	int r = 0;
3767 
3768 	switch (ext) {
3769 	case KVM_CAP_IRQCHIP:
3770 	case KVM_CAP_HLT:
3771 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3772 	case KVM_CAP_SET_TSS_ADDR:
3773 	case KVM_CAP_EXT_CPUID:
3774 	case KVM_CAP_EXT_EMUL_CPUID:
3775 	case KVM_CAP_CLOCKSOURCE:
3776 	case KVM_CAP_PIT:
3777 	case KVM_CAP_NOP_IO_DELAY:
3778 	case KVM_CAP_MP_STATE:
3779 	case KVM_CAP_SYNC_MMU:
3780 	case KVM_CAP_USER_NMI:
3781 	case KVM_CAP_REINJECT_CONTROL:
3782 	case KVM_CAP_IRQ_INJECT_STATUS:
3783 	case KVM_CAP_IOEVENTFD:
3784 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
3785 	case KVM_CAP_PIT2:
3786 	case KVM_CAP_PIT_STATE2:
3787 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3788 	case KVM_CAP_VCPU_EVENTS:
3789 	case KVM_CAP_HYPERV:
3790 	case KVM_CAP_HYPERV_VAPIC:
3791 	case KVM_CAP_HYPERV_SPIN:
3792 	case KVM_CAP_HYPERV_SYNIC:
3793 	case KVM_CAP_HYPERV_SYNIC2:
3794 	case KVM_CAP_HYPERV_VP_INDEX:
3795 	case KVM_CAP_HYPERV_EVENTFD:
3796 	case KVM_CAP_HYPERV_TLBFLUSH:
3797 	case KVM_CAP_HYPERV_SEND_IPI:
3798 	case KVM_CAP_HYPERV_CPUID:
3799 	case KVM_CAP_SYS_HYPERV_CPUID:
3800 	case KVM_CAP_PCI_SEGMENT:
3801 	case KVM_CAP_DEBUGREGS:
3802 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
3803 	case KVM_CAP_XSAVE:
3804 	case KVM_CAP_ASYNC_PF:
3805 	case KVM_CAP_ASYNC_PF_INT:
3806 	case KVM_CAP_GET_TSC_KHZ:
3807 	case KVM_CAP_KVMCLOCK_CTRL:
3808 	case KVM_CAP_READONLY_MEM:
3809 	case KVM_CAP_HYPERV_TIME:
3810 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3811 	case KVM_CAP_TSC_DEADLINE_TIMER:
3812 	case KVM_CAP_DISABLE_QUIRKS:
3813 	case KVM_CAP_SET_BOOT_CPU_ID:
3814  	case KVM_CAP_SPLIT_IRQCHIP:
3815 	case KVM_CAP_IMMEDIATE_EXIT:
3816 	case KVM_CAP_PMU_EVENT_FILTER:
3817 	case KVM_CAP_GET_MSR_FEATURES:
3818 	case KVM_CAP_MSR_PLATFORM_INFO:
3819 	case KVM_CAP_EXCEPTION_PAYLOAD:
3820 	case KVM_CAP_SET_GUEST_DEBUG:
3821 	case KVM_CAP_LAST_CPU:
3822 	case KVM_CAP_X86_USER_SPACE_MSR:
3823 	case KVM_CAP_X86_MSR_FILTER:
3824 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
3825 #ifdef CONFIG_X86_SGX_KVM
3826 	case KVM_CAP_SGX_ATTRIBUTE:
3827 #endif
3828 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
3829 		r = 1;
3830 		break;
3831 	case KVM_CAP_SET_GUEST_DEBUG2:
3832 		return KVM_GUESTDBG_VALID_MASK;
3833 #ifdef CONFIG_KVM_XEN
3834 	case KVM_CAP_XEN_HVM:
3835 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
3836 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
3837 		    KVM_XEN_HVM_CONFIG_SHARED_INFO;
3838 		if (sched_info_on())
3839 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
3840 		break;
3841 #endif
3842 	case KVM_CAP_SYNC_REGS:
3843 		r = KVM_SYNC_X86_VALID_FIELDS;
3844 		break;
3845 	case KVM_CAP_ADJUST_CLOCK:
3846 		r = KVM_CLOCK_TSC_STABLE;
3847 		break;
3848 	case KVM_CAP_X86_DISABLE_EXITS:
3849 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3850 		      KVM_X86_DISABLE_EXITS_CSTATE;
3851 		if(kvm_can_mwait_in_guest())
3852 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
3853 		break;
3854 	case KVM_CAP_X86_SMM:
3855 		/* SMBASE is usually relocated above 1M on modern chipsets,
3856 		 * and SMM handlers might indeed rely on 4G segment limits,
3857 		 * so do not report SMM to be available if real mode is
3858 		 * emulated via vm86 mode.  Still, do not go to great lengths
3859 		 * to avoid userspace's usage of the feature, because it is a
3860 		 * fringe case that is not enabled except via specific settings
3861 		 * of the module parameters.
3862 		 */
3863 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
3864 		break;
3865 	case KVM_CAP_VAPIC:
3866 		r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
3867 		break;
3868 	case KVM_CAP_NR_VCPUS:
3869 		r = KVM_SOFT_MAX_VCPUS;
3870 		break;
3871 	case KVM_CAP_MAX_VCPUS:
3872 		r = KVM_MAX_VCPUS;
3873 		break;
3874 	case KVM_CAP_MAX_VCPU_ID:
3875 		r = KVM_MAX_VCPU_ID;
3876 		break;
3877 	case KVM_CAP_PV_MMU:	/* obsolete */
3878 		r = 0;
3879 		break;
3880 	case KVM_CAP_MCE:
3881 		r = KVM_MAX_MCE_BANKS;
3882 		break;
3883 	case KVM_CAP_XCRS:
3884 		r = boot_cpu_has(X86_FEATURE_XSAVE);
3885 		break;
3886 	case KVM_CAP_TSC_CONTROL:
3887 		r = kvm_has_tsc_control;
3888 		break;
3889 	case KVM_CAP_X2APIC_API:
3890 		r = KVM_X2APIC_API_VALID_FLAGS;
3891 		break;
3892 	case KVM_CAP_NESTED_STATE:
3893 		r = kvm_x86_ops.nested_ops->get_state ?
3894 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
3895 		break;
3896 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3897 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3898 		break;
3899 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3900 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
3901 		break;
3902 	case KVM_CAP_SMALLER_MAXPHYADDR:
3903 		r = (int) allow_smaller_maxphyaddr;
3904 		break;
3905 	case KVM_CAP_STEAL_TIME:
3906 		r = sched_info_on();
3907 		break;
3908 	case KVM_CAP_X86_BUS_LOCK_EXIT:
3909 		if (kvm_has_bus_lock_exit)
3910 			r = KVM_BUS_LOCK_DETECTION_OFF |
3911 			    KVM_BUS_LOCK_DETECTION_EXIT;
3912 		else
3913 			r = 0;
3914 		break;
3915 	default:
3916 		break;
3917 	}
3918 	return r;
3919 
3920 }
3921 
3922 long kvm_arch_dev_ioctl(struct file *filp,
3923 			unsigned int ioctl, unsigned long arg)
3924 {
3925 	void __user *argp = (void __user *)arg;
3926 	long r;
3927 
3928 	switch (ioctl) {
3929 	case KVM_GET_MSR_INDEX_LIST: {
3930 		struct kvm_msr_list __user *user_msr_list = argp;
3931 		struct kvm_msr_list msr_list;
3932 		unsigned n;
3933 
3934 		r = -EFAULT;
3935 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3936 			goto out;
3937 		n = msr_list.nmsrs;
3938 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3939 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3940 			goto out;
3941 		r = -E2BIG;
3942 		if (n < msr_list.nmsrs)
3943 			goto out;
3944 		r = -EFAULT;
3945 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3946 				 num_msrs_to_save * sizeof(u32)))
3947 			goto out;
3948 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3949 				 &emulated_msrs,
3950 				 num_emulated_msrs * sizeof(u32)))
3951 			goto out;
3952 		r = 0;
3953 		break;
3954 	}
3955 	case KVM_GET_SUPPORTED_CPUID:
3956 	case KVM_GET_EMULATED_CPUID: {
3957 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3958 		struct kvm_cpuid2 cpuid;
3959 
3960 		r = -EFAULT;
3961 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3962 			goto out;
3963 
3964 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3965 					    ioctl);
3966 		if (r)
3967 			goto out;
3968 
3969 		r = -EFAULT;
3970 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3971 			goto out;
3972 		r = 0;
3973 		break;
3974 	}
3975 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
3976 		r = -EFAULT;
3977 		if (copy_to_user(argp, &kvm_mce_cap_supported,
3978 				 sizeof(kvm_mce_cap_supported)))
3979 			goto out;
3980 		r = 0;
3981 		break;
3982 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3983 		struct kvm_msr_list __user *user_msr_list = argp;
3984 		struct kvm_msr_list msr_list;
3985 		unsigned int n;
3986 
3987 		r = -EFAULT;
3988 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3989 			goto out;
3990 		n = msr_list.nmsrs;
3991 		msr_list.nmsrs = num_msr_based_features;
3992 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3993 			goto out;
3994 		r = -E2BIG;
3995 		if (n < msr_list.nmsrs)
3996 			goto out;
3997 		r = -EFAULT;
3998 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
3999 				 num_msr_based_features * sizeof(u32)))
4000 			goto out;
4001 		r = 0;
4002 		break;
4003 	}
4004 	case KVM_GET_MSRS:
4005 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4006 		break;
4007 	case KVM_GET_SUPPORTED_HV_CPUID:
4008 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4009 		break;
4010 	default:
4011 		r = -EINVAL;
4012 		break;
4013 	}
4014 out:
4015 	return r;
4016 }
4017 
4018 static void wbinvd_ipi(void *garbage)
4019 {
4020 	wbinvd();
4021 }
4022 
4023 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4024 {
4025 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4026 }
4027 
4028 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4029 {
4030 	/* Address WBINVD may be executed by guest */
4031 	if (need_emulate_wbinvd(vcpu)) {
4032 		if (static_call(kvm_x86_has_wbinvd_exit)())
4033 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4034 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4035 			smp_call_function_single(vcpu->cpu,
4036 					wbinvd_ipi, NULL, 1);
4037 	}
4038 
4039 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4040 
4041 	/* Save host pkru register if supported */
4042 	vcpu->arch.host_pkru = read_pkru();
4043 
4044 	/* Apply any externally detected TSC adjustments (due to suspend) */
4045 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4046 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4047 		vcpu->arch.tsc_offset_adjustment = 0;
4048 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4049 	}
4050 
4051 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4052 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4053 				rdtsc() - vcpu->arch.last_host_tsc;
4054 		if (tsc_delta < 0)
4055 			mark_tsc_unstable("KVM discovered backwards TSC");
4056 
4057 		if (kvm_check_tsc_unstable()) {
4058 			u64 offset = kvm_compute_tsc_offset(vcpu,
4059 						vcpu->arch.last_guest_tsc);
4060 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4061 			vcpu->arch.tsc_catchup = 1;
4062 		}
4063 
4064 		if (kvm_lapic_hv_timer_in_use(vcpu))
4065 			kvm_lapic_restart_hv_timer(vcpu);
4066 
4067 		/*
4068 		 * On a host with synchronized TSC, there is no need to update
4069 		 * kvmclock on vcpu->cpu migration
4070 		 */
4071 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4072 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4073 		if (vcpu->cpu != cpu)
4074 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4075 		vcpu->cpu = cpu;
4076 	}
4077 
4078 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4079 }
4080 
4081 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4082 {
4083 	struct kvm_host_map map;
4084 	struct kvm_steal_time *st;
4085 
4086 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4087 		return;
4088 
4089 	if (vcpu->arch.st.preempted)
4090 		return;
4091 
4092 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
4093 			&vcpu->arch.st.cache, true))
4094 		return;
4095 
4096 	st = map.hva +
4097 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
4098 
4099 	st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4100 
4101 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
4102 }
4103 
4104 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4105 {
4106 	int idx;
4107 
4108 	if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4109 		vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4110 
4111 	/*
4112 	 * Take the srcu lock as memslots will be accessed to check the gfn
4113 	 * cache generation against the memslots generation.
4114 	 */
4115 	idx = srcu_read_lock(&vcpu->kvm->srcu);
4116 	if (kvm_xen_msr_enabled(vcpu->kvm))
4117 		kvm_xen_runstate_set_preempted(vcpu);
4118 	else
4119 		kvm_steal_time_set_preempted(vcpu);
4120 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
4121 
4122 	static_call(kvm_x86_vcpu_put)(vcpu);
4123 	vcpu->arch.last_host_tsc = rdtsc();
4124 	/*
4125 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
4126 	 * on every vmexit, but if not, we might have a stale dr6 from the
4127 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
4128 	 */
4129 	set_debugreg(0, 6);
4130 }
4131 
4132 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4133 				    struct kvm_lapic_state *s)
4134 {
4135 	if (vcpu->arch.apicv_active)
4136 		static_call(kvm_x86_sync_pir_to_irr)(vcpu);
4137 
4138 	return kvm_apic_get_state(vcpu, s);
4139 }
4140 
4141 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4142 				    struct kvm_lapic_state *s)
4143 {
4144 	int r;
4145 
4146 	r = kvm_apic_set_state(vcpu, s);
4147 	if (r)
4148 		return r;
4149 	update_cr8_intercept(vcpu);
4150 
4151 	return 0;
4152 }
4153 
4154 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4155 {
4156 	/*
4157 	 * We can accept userspace's request for interrupt injection
4158 	 * as long as we have a place to store the interrupt number.
4159 	 * The actual injection will happen when the CPU is able to
4160 	 * deliver the interrupt.
4161 	 */
4162 	if (kvm_cpu_has_extint(vcpu))
4163 		return false;
4164 
4165 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4166 	return (!lapic_in_kernel(vcpu) ||
4167 		kvm_apic_accept_pic_intr(vcpu));
4168 }
4169 
4170 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4171 {
4172 	return kvm_arch_interrupt_allowed(vcpu) &&
4173 		kvm_cpu_accept_dm_intr(vcpu);
4174 }
4175 
4176 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4177 				    struct kvm_interrupt *irq)
4178 {
4179 	if (irq->irq >= KVM_NR_INTERRUPTS)
4180 		return -EINVAL;
4181 
4182 	if (!irqchip_in_kernel(vcpu->kvm)) {
4183 		kvm_queue_interrupt(vcpu, irq->irq, false);
4184 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4185 		return 0;
4186 	}
4187 
4188 	/*
4189 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4190 	 * fail for in-kernel 8259.
4191 	 */
4192 	if (pic_in_kernel(vcpu->kvm))
4193 		return -ENXIO;
4194 
4195 	if (vcpu->arch.pending_external_vector != -1)
4196 		return -EEXIST;
4197 
4198 	vcpu->arch.pending_external_vector = irq->irq;
4199 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4200 	return 0;
4201 }
4202 
4203 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4204 {
4205 	kvm_inject_nmi(vcpu);
4206 
4207 	return 0;
4208 }
4209 
4210 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4211 {
4212 	kvm_make_request(KVM_REQ_SMI, vcpu);
4213 
4214 	return 0;
4215 }
4216 
4217 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4218 					   struct kvm_tpr_access_ctl *tac)
4219 {
4220 	if (tac->flags)
4221 		return -EINVAL;
4222 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4223 	return 0;
4224 }
4225 
4226 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4227 					u64 mcg_cap)
4228 {
4229 	int r;
4230 	unsigned bank_num = mcg_cap & 0xff, bank;
4231 
4232 	r = -EINVAL;
4233 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4234 		goto out;
4235 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4236 		goto out;
4237 	r = 0;
4238 	vcpu->arch.mcg_cap = mcg_cap;
4239 	/* Init IA32_MCG_CTL to all 1s */
4240 	if (mcg_cap & MCG_CTL_P)
4241 		vcpu->arch.mcg_ctl = ~(u64)0;
4242 	/* Init IA32_MCi_CTL to all 1s */
4243 	for (bank = 0; bank < bank_num; bank++)
4244 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4245 
4246 	static_call(kvm_x86_setup_mce)(vcpu);
4247 out:
4248 	return r;
4249 }
4250 
4251 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4252 				      struct kvm_x86_mce *mce)
4253 {
4254 	u64 mcg_cap = vcpu->arch.mcg_cap;
4255 	unsigned bank_num = mcg_cap & 0xff;
4256 	u64 *banks = vcpu->arch.mce_banks;
4257 
4258 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4259 		return -EINVAL;
4260 	/*
4261 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4262 	 * reporting is disabled
4263 	 */
4264 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4265 	    vcpu->arch.mcg_ctl != ~(u64)0)
4266 		return 0;
4267 	banks += 4 * mce->bank;
4268 	/*
4269 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4270 	 * reporting is disabled for the bank
4271 	 */
4272 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4273 		return 0;
4274 	if (mce->status & MCI_STATUS_UC) {
4275 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4276 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4277 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4278 			return 0;
4279 		}
4280 		if (banks[1] & MCI_STATUS_VAL)
4281 			mce->status |= MCI_STATUS_OVER;
4282 		banks[2] = mce->addr;
4283 		banks[3] = mce->misc;
4284 		vcpu->arch.mcg_status = mce->mcg_status;
4285 		banks[1] = mce->status;
4286 		kvm_queue_exception(vcpu, MC_VECTOR);
4287 	} else if (!(banks[1] & MCI_STATUS_VAL)
4288 		   || !(banks[1] & MCI_STATUS_UC)) {
4289 		if (banks[1] & MCI_STATUS_VAL)
4290 			mce->status |= MCI_STATUS_OVER;
4291 		banks[2] = mce->addr;
4292 		banks[3] = mce->misc;
4293 		banks[1] = mce->status;
4294 	} else
4295 		banks[1] |= MCI_STATUS_OVER;
4296 	return 0;
4297 }
4298 
4299 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4300 					       struct kvm_vcpu_events *events)
4301 {
4302 	process_nmi(vcpu);
4303 
4304 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
4305 		process_smi(vcpu);
4306 
4307 	/*
4308 	 * In guest mode, payload delivery should be deferred,
4309 	 * so that the L1 hypervisor can intercept #PF before
4310 	 * CR2 is modified (or intercept #DB before DR6 is
4311 	 * modified under nVMX). Unless the per-VM capability,
4312 	 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4313 	 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4314 	 * opportunistically defer the exception payload, deliver it if the
4315 	 * capability hasn't been requested before processing a
4316 	 * KVM_GET_VCPU_EVENTS.
4317 	 */
4318 	if (!vcpu->kvm->arch.exception_payload_enabled &&
4319 	    vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4320 		kvm_deliver_exception_payload(vcpu);
4321 
4322 	/*
4323 	 * The API doesn't provide the instruction length for software
4324 	 * exceptions, so don't report them. As long as the guest RIP
4325 	 * isn't advanced, we should expect to encounter the exception
4326 	 * again.
4327 	 */
4328 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4329 		events->exception.injected = 0;
4330 		events->exception.pending = 0;
4331 	} else {
4332 		events->exception.injected = vcpu->arch.exception.injected;
4333 		events->exception.pending = vcpu->arch.exception.pending;
4334 		/*
4335 		 * For ABI compatibility, deliberately conflate
4336 		 * pending and injected exceptions when
4337 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4338 		 */
4339 		if (!vcpu->kvm->arch.exception_payload_enabled)
4340 			events->exception.injected |=
4341 				vcpu->arch.exception.pending;
4342 	}
4343 	events->exception.nr = vcpu->arch.exception.nr;
4344 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4345 	events->exception.error_code = vcpu->arch.exception.error_code;
4346 	events->exception_has_payload = vcpu->arch.exception.has_payload;
4347 	events->exception_payload = vcpu->arch.exception.payload;
4348 
4349 	events->interrupt.injected =
4350 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4351 	events->interrupt.nr = vcpu->arch.interrupt.nr;
4352 	events->interrupt.soft = 0;
4353 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4354 
4355 	events->nmi.injected = vcpu->arch.nmi_injected;
4356 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
4357 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4358 	events->nmi.pad = 0;
4359 
4360 	events->sipi_vector = 0; /* never valid when reporting to user space */
4361 
4362 	events->smi.smm = is_smm(vcpu);
4363 	events->smi.pending = vcpu->arch.smi_pending;
4364 	events->smi.smm_inside_nmi =
4365 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4366 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4367 
4368 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4369 			 | KVM_VCPUEVENT_VALID_SHADOW
4370 			 | KVM_VCPUEVENT_VALID_SMM);
4371 	if (vcpu->kvm->arch.exception_payload_enabled)
4372 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4373 
4374 	memset(&events->reserved, 0, sizeof(events->reserved));
4375 }
4376 
4377 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
4378 
4379 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4380 					      struct kvm_vcpu_events *events)
4381 {
4382 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4383 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4384 			      | KVM_VCPUEVENT_VALID_SHADOW
4385 			      | KVM_VCPUEVENT_VALID_SMM
4386 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
4387 		return -EINVAL;
4388 
4389 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4390 		if (!vcpu->kvm->arch.exception_payload_enabled)
4391 			return -EINVAL;
4392 		if (events->exception.pending)
4393 			events->exception.injected = 0;
4394 		else
4395 			events->exception_has_payload = 0;
4396 	} else {
4397 		events->exception.pending = 0;
4398 		events->exception_has_payload = 0;
4399 	}
4400 
4401 	if ((events->exception.injected || events->exception.pending) &&
4402 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4403 		return -EINVAL;
4404 
4405 	/* INITs are latched while in SMM */
4406 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4407 	    (events->smi.smm || events->smi.pending) &&
4408 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4409 		return -EINVAL;
4410 
4411 	process_nmi(vcpu);
4412 	vcpu->arch.exception.injected = events->exception.injected;
4413 	vcpu->arch.exception.pending = events->exception.pending;
4414 	vcpu->arch.exception.nr = events->exception.nr;
4415 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4416 	vcpu->arch.exception.error_code = events->exception.error_code;
4417 	vcpu->arch.exception.has_payload = events->exception_has_payload;
4418 	vcpu->arch.exception.payload = events->exception_payload;
4419 
4420 	vcpu->arch.interrupt.injected = events->interrupt.injected;
4421 	vcpu->arch.interrupt.nr = events->interrupt.nr;
4422 	vcpu->arch.interrupt.soft = events->interrupt.soft;
4423 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4424 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4425 						events->interrupt.shadow);
4426 
4427 	vcpu->arch.nmi_injected = events->nmi.injected;
4428 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4429 		vcpu->arch.nmi_pending = events->nmi.pending;
4430 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4431 
4432 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4433 	    lapic_in_kernel(vcpu))
4434 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
4435 
4436 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4437 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4438 			if (events->smi.smm)
4439 				vcpu->arch.hflags |= HF_SMM_MASK;
4440 			else
4441 				vcpu->arch.hflags &= ~HF_SMM_MASK;
4442 			kvm_smm_changed(vcpu);
4443 		}
4444 
4445 		vcpu->arch.smi_pending = events->smi.pending;
4446 
4447 		if (events->smi.smm) {
4448 			if (events->smi.smm_inside_nmi)
4449 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4450 			else
4451 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4452 		}
4453 
4454 		if (lapic_in_kernel(vcpu)) {
4455 			if (events->smi.latched_init)
4456 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4457 			else
4458 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4459 		}
4460 	}
4461 
4462 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4463 
4464 	return 0;
4465 }
4466 
4467 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4468 					     struct kvm_debugregs *dbgregs)
4469 {
4470 	unsigned long val;
4471 
4472 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4473 	kvm_get_dr(vcpu, 6, &val);
4474 	dbgregs->dr6 = val;
4475 	dbgregs->dr7 = vcpu->arch.dr7;
4476 	dbgregs->flags = 0;
4477 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4478 }
4479 
4480 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4481 					    struct kvm_debugregs *dbgregs)
4482 {
4483 	if (dbgregs->flags)
4484 		return -EINVAL;
4485 
4486 	if (!kvm_dr6_valid(dbgregs->dr6))
4487 		return -EINVAL;
4488 	if (!kvm_dr7_valid(dbgregs->dr7))
4489 		return -EINVAL;
4490 
4491 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4492 	kvm_update_dr0123(vcpu);
4493 	vcpu->arch.dr6 = dbgregs->dr6;
4494 	vcpu->arch.dr7 = dbgregs->dr7;
4495 	kvm_update_dr7(vcpu);
4496 
4497 	return 0;
4498 }
4499 
4500 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4501 
4502 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4503 {
4504 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4505 	u64 xstate_bv = xsave->header.xfeatures;
4506 	u64 valid;
4507 
4508 	/*
4509 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4510 	 * leaves 0 and 1 in the loop below.
4511 	 */
4512 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4513 
4514 	/* Set XSTATE_BV */
4515 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4516 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4517 
4518 	/*
4519 	 * Copy each region from the possibly compacted offset to the
4520 	 * non-compacted offset.
4521 	 */
4522 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4523 	while (valid) {
4524 		u64 xfeature_mask = valid & -valid;
4525 		int xfeature_nr = fls64(xfeature_mask) - 1;
4526 		void *src = get_xsave_addr(xsave, xfeature_nr);
4527 
4528 		if (src) {
4529 			u32 size, offset, ecx, edx;
4530 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4531 				    &size, &offset, &ecx, &edx);
4532 			if (xfeature_nr == XFEATURE_PKRU)
4533 				memcpy(dest + offset, &vcpu->arch.pkru,
4534 				       sizeof(vcpu->arch.pkru));
4535 			else
4536 				memcpy(dest + offset, src, size);
4537 
4538 		}
4539 
4540 		valid -= xfeature_mask;
4541 	}
4542 }
4543 
4544 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4545 {
4546 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4547 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4548 	u64 valid;
4549 
4550 	/*
4551 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4552 	 * leaves 0 and 1 in the loop below.
4553 	 */
4554 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
4555 
4556 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
4557 	xsave->header.xfeatures = xstate_bv;
4558 	if (boot_cpu_has(X86_FEATURE_XSAVES))
4559 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4560 
4561 	/*
4562 	 * Copy each region from the non-compacted offset to the
4563 	 * possibly compacted offset.
4564 	 */
4565 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4566 	while (valid) {
4567 		u64 xfeature_mask = valid & -valid;
4568 		int xfeature_nr = fls64(xfeature_mask) - 1;
4569 		void *dest = get_xsave_addr(xsave, xfeature_nr);
4570 
4571 		if (dest) {
4572 			u32 size, offset, ecx, edx;
4573 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4574 				    &size, &offset, &ecx, &edx);
4575 			if (xfeature_nr == XFEATURE_PKRU)
4576 				memcpy(&vcpu->arch.pkru, src + offset,
4577 				       sizeof(vcpu->arch.pkru));
4578 			else
4579 				memcpy(dest, src + offset, size);
4580 		}
4581 
4582 		valid -= xfeature_mask;
4583 	}
4584 }
4585 
4586 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4587 					 struct kvm_xsave *guest_xsave)
4588 {
4589 	if (!vcpu->arch.guest_fpu)
4590 		return;
4591 
4592 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4593 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4594 		fill_xsave((u8 *) guest_xsave->region, vcpu);
4595 	} else {
4596 		memcpy(guest_xsave->region,
4597 			&vcpu->arch.guest_fpu->state.fxsave,
4598 			sizeof(struct fxregs_state));
4599 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4600 			XFEATURE_MASK_FPSSE;
4601 	}
4602 }
4603 
4604 #define XSAVE_MXCSR_OFFSET 24
4605 
4606 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4607 					struct kvm_xsave *guest_xsave)
4608 {
4609 	u64 xstate_bv;
4610 	u32 mxcsr;
4611 
4612 	if (!vcpu->arch.guest_fpu)
4613 		return 0;
4614 
4615 	xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4616 	mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4617 
4618 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4619 		/*
4620 		 * Here we allow setting states that are not present in
4621 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4622 		 * with old userspace.
4623 		 */
4624 		if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4625 			return -EINVAL;
4626 		load_xsave(vcpu, (u8 *)guest_xsave->region);
4627 	} else {
4628 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4629 			mxcsr & ~mxcsr_feature_mask)
4630 			return -EINVAL;
4631 		memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4632 			guest_xsave->region, sizeof(struct fxregs_state));
4633 	}
4634 	return 0;
4635 }
4636 
4637 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4638 					struct kvm_xcrs *guest_xcrs)
4639 {
4640 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4641 		guest_xcrs->nr_xcrs = 0;
4642 		return;
4643 	}
4644 
4645 	guest_xcrs->nr_xcrs = 1;
4646 	guest_xcrs->flags = 0;
4647 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4648 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4649 }
4650 
4651 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4652 				       struct kvm_xcrs *guest_xcrs)
4653 {
4654 	int i, r = 0;
4655 
4656 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
4657 		return -EINVAL;
4658 
4659 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4660 		return -EINVAL;
4661 
4662 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4663 		/* Only support XCR0 currently */
4664 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4665 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4666 				guest_xcrs->xcrs[i].value);
4667 			break;
4668 		}
4669 	if (r)
4670 		r = -EINVAL;
4671 	return r;
4672 }
4673 
4674 /*
4675  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4676  * stopped by the hypervisor.  This function will be called from the host only.
4677  * EINVAL is returned when the host attempts to set the flag for a guest that
4678  * does not support pv clocks.
4679  */
4680 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4681 {
4682 	if (!vcpu->arch.pv_time_enabled)
4683 		return -EINVAL;
4684 	vcpu->arch.pvclock_set_guest_stopped_request = true;
4685 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4686 	return 0;
4687 }
4688 
4689 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4690 				     struct kvm_enable_cap *cap)
4691 {
4692 	int r;
4693 	uint16_t vmcs_version;
4694 	void __user *user_ptr;
4695 
4696 	if (cap->flags)
4697 		return -EINVAL;
4698 
4699 	switch (cap->cap) {
4700 	case KVM_CAP_HYPERV_SYNIC2:
4701 		if (cap->args[0])
4702 			return -EINVAL;
4703 		fallthrough;
4704 
4705 	case KVM_CAP_HYPERV_SYNIC:
4706 		if (!irqchip_in_kernel(vcpu->kvm))
4707 			return -EINVAL;
4708 		return kvm_hv_activate_synic(vcpu, cap->cap ==
4709 					     KVM_CAP_HYPERV_SYNIC2);
4710 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4711 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
4712 			return -ENOTTY;
4713 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4714 		if (!r) {
4715 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
4716 			if (copy_to_user(user_ptr, &vmcs_version,
4717 					 sizeof(vmcs_version)))
4718 				r = -EFAULT;
4719 		}
4720 		return r;
4721 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4722 		if (!kvm_x86_ops.enable_direct_tlbflush)
4723 			return -ENOTTY;
4724 
4725 		return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
4726 
4727 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4728 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
4729 		if (vcpu->arch.pv_cpuid.enforce)
4730 			kvm_update_pv_runtime(vcpu);
4731 
4732 		return 0;
4733 	default:
4734 		return -EINVAL;
4735 	}
4736 }
4737 
4738 long kvm_arch_vcpu_ioctl(struct file *filp,
4739 			 unsigned int ioctl, unsigned long arg)
4740 {
4741 	struct kvm_vcpu *vcpu = filp->private_data;
4742 	void __user *argp = (void __user *)arg;
4743 	int r;
4744 	union {
4745 		struct kvm_lapic_state *lapic;
4746 		struct kvm_xsave *xsave;
4747 		struct kvm_xcrs *xcrs;
4748 		void *buffer;
4749 	} u;
4750 
4751 	vcpu_load(vcpu);
4752 
4753 	u.buffer = NULL;
4754 	switch (ioctl) {
4755 	case KVM_GET_LAPIC: {
4756 		r = -EINVAL;
4757 		if (!lapic_in_kernel(vcpu))
4758 			goto out;
4759 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4760 				GFP_KERNEL_ACCOUNT);
4761 
4762 		r = -ENOMEM;
4763 		if (!u.lapic)
4764 			goto out;
4765 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4766 		if (r)
4767 			goto out;
4768 		r = -EFAULT;
4769 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4770 			goto out;
4771 		r = 0;
4772 		break;
4773 	}
4774 	case KVM_SET_LAPIC: {
4775 		r = -EINVAL;
4776 		if (!lapic_in_kernel(vcpu))
4777 			goto out;
4778 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
4779 		if (IS_ERR(u.lapic)) {
4780 			r = PTR_ERR(u.lapic);
4781 			goto out_nofree;
4782 		}
4783 
4784 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4785 		break;
4786 	}
4787 	case KVM_INTERRUPT: {
4788 		struct kvm_interrupt irq;
4789 
4790 		r = -EFAULT;
4791 		if (copy_from_user(&irq, argp, sizeof(irq)))
4792 			goto out;
4793 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4794 		break;
4795 	}
4796 	case KVM_NMI: {
4797 		r = kvm_vcpu_ioctl_nmi(vcpu);
4798 		break;
4799 	}
4800 	case KVM_SMI: {
4801 		r = kvm_vcpu_ioctl_smi(vcpu);
4802 		break;
4803 	}
4804 	case KVM_SET_CPUID: {
4805 		struct kvm_cpuid __user *cpuid_arg = argp;
4806 		struct kvm_cpuid cpuid;
4807 
4808 		r = -EFAULT;
4809 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4810 			goto out;
4811 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4812 		break;
4813 	}
4814 	case KVM_SET_CPUID2: {
4815 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4816 		struct kvm_cpuid2 cpuid;
4817 
4818 		r = -EFAULT;
4819 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4820 			goto out;
4821 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4822 					      cpuid_arg->entries);
4823 		break;
4824 	}
4825 	case KVM_GET_CPUID2: {
4826 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4827 		struct kvm_cpuid2 cpuid;
4828 
4829 		r = -EFAULT;
4830 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4831 			goto out;
4832 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4833 					      cpuid_arg->entries);
4834 		if (r)
4835 			goto out;
4836 		r = -EFAULT;
4837 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4838 			goto out;
4839 		r = 0;
4840 		break;
4841 	}
4842 	case KVM_GET_MSRS: {
4843 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4844 		r = msr_io(vcpu, argp, do_get_msr, 1);
4845 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4846 		break;
4847 	}
4848 	case KVM_SET_MSRS: {
4849 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4850 		r = msr_io(vcpu, argp, do_set_msr, 0);
4851 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4852 		break;
4853 	}
4854 	case KVM_TPR_ACCESS_REPORTING: {
4855 		struct kvm_tpr_access_ctl tac;
4856 
4857 		r = -EFAULT;
4858 		if (copy_from_user(&tac, argp, sizeof(tac)))
4859 			goto out;
4860 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4861 		if (r)
4862 			goto out;
4863 		r = -EFAULT;
4864 		if (copy_to_user(argp, &tac, sizeof(tac)))
4865 			goto out;
4866 		r = 0;
4867 		break;
4868 	};
4869 	case KVM_SET_VAPIC_ADDR: {
4870 		struct kvm_vapic_addr va;
4871 		int idx;
4872 
4873 		r = -EINVAL;
4874 		if (!lapic_in_kernel(vcpu))
4875 			goto out;
4876 		r = -EFAULT;
4877 		if (copy_from_user(&va, argp, sizeof(va)))
4878 			goto out;
4879 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4880 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4881 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4882 		break;
4883 	}
4884 	case KVM_X86_SETUP_MCE: {
4885 		u64 mcg_cap;
4886 
4887 		r = -EFAULT;
4888 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4889 			goto out;
4890 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4891 		break;
4892 	}
4893 	case KVM_X86_SET_MCE: {
4894 		struct kvm_x86_mce mce;
4895 
4896 		r = -EFAULT;
4897 		if (copy_from_user(&mce, argp, sizeof(mce)))
4898 			goto out;
4899 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4900 		break;
4901 	}
4902 	case KVM_GET_VCPU_EVENTS: {
4903 		struct kvm_vcpu_events events;
4904 
4905 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4906 
4907 		r = -EFAULT;
4908 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4909 			break;
4910 		r = 0;
4911 		break;
4912 	}
4913 	case KVM_SET_VCPU_EVENTS: {
4914 		struct kvm_vcpu_events events;
4915 
4916 		r = -EFAULT;
4917 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4918 			break;
4919 
4920 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4921 		break;
4922 	}
4923 	case KVM_GET_DEBUGREGS: {
4924 		struct kvm_debugregs dbgregs;
4925 
4926 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4927 
4928 		r = -EFAULT;
4929 		if (copy_to_user(argp, &dbgregs,
4930 				 sizeof(struct kvm_debugregs)))
4931 			break;
4932 		r = 0;
4933 		break;
4934 	}
4935 	case KVM_SET_DEBUGREGS: {
4936 		struct kvm_debugregs dbgregs;
4937 
4938 		r = -EFAULT;
4939 		if (copy_from_user(&dbgregs, argp,
4940 				   sizeof(struct kvm_debugregs)))
4941 			break;
4942 
4943 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4944 		break;
4945 	}
4946 	case KVM_GET_XSAVE: {
4947 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4948 		r = -ENOMEM;
4949 		if (!u.xsave)
4950 			break;
4951 
4952 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4953 
4954 		r = -EFAULT;
4955 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4956 			break;
4957 		r = 0;
4958 		break;
4959 	}
4960 	case KVM_SET_XSAVE: {
4961 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
4962 		if (IS_ERR(u.xsave)) {
4963 			r = PTR_ERR(u.xsave);
4964 			goto out_nofree;
4965 		}
4966 
4967 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4968 		break;
4969 	}
4970 	case KVM_GET_XCRS: {
4971 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4972 		r = -ENOMEM;
4973 		if (!u.xcrs)
4974 			break;
4975 
4976 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4977 
4978 		r = -EFAULT;
4979 		if (copy_to_user(argp, u.xcrs,
4980 				 sizeof(struct kvm_xcrs)))
4981 			break;
4982 		r = 0;
4983 		break;
4984 	}
4985 	case KVM_SET_XCRS: {
4986 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4987 		if (IS_ERR(u.xcrs)) {
4988 			r = PTR_ERR(u.xcrs);
4989 			goto out_nofree;
4990 		}
4991 
4992 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4993 		break;
4994 	}
4995 	case KVM_SET_TSC_KHZ: {
4996 		u32 user_tsc_khz;
4997 
4998 		r = -EINVAL;
4999 		user_tsc_khz = (u32)arg;
5000 
5001 		if (kvm_has_tsc_control &&
5002 		    user_tsc_khz >= kvm_max_guest_tsc_khz)
5003 			goto out;
5004 
5005 		if (user_tsc_khz == 0)
5006 			user_tsc_khz = tsc_khz;
5007 
5008 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5009 			r = 0;
5010 
5011 		goto out;
5012 	}
5013 	case KVM_GET_TSC_KHZ: {
5014 		r = vcpu->arch.virtual_tsc_khz;
5015 		goto out;
5016 	}
5017 	case KVM_KVMCLOCK_CTRL: {
5018 		r = kvm_set_guest_paused(vcpu);
5019 		goto out;
5020 	}
5021 	case KVM_ENABLE_CAP: {
5022 		struct kvm_enable_cap cap;
5023 
5024 		r = -EFAULT;
5025 		if (copy_from_user(&cap, argp, sizeof(cap)))
5026 			goto out;
5027 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5028 		break;
5029 	}
5030 	case KVM_GET_NESTED_STATE: {
5031 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5032 		u32 user_data_size;
5033 
5034 		r = -EINVAL;
5035 		if (!kvm_x86_ops.nested_ops->get_state)
5036 			break;
5037 
5038 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5039 		r = -EFAULT;
5040 		if (get_user(user_data_size, &user_kvm_nested_state->size))
5041 			break;
5042 
5043 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5044 						     user_data_size);
5045 		if (r < 0)
5046 			break;
5047 
5048 		if (r > user_data_size) {
5049 			if (put_user(r, &user_kvm_nested_state->size))
5050 				r = -EFAULT;
5051 			else
5052 				r = -E2BIG;
5053 			break;
5054 		}
5055 
5056 		r = 0;
5057 		break;
5058 	}
5059 	case KVM_SET_NESTED_STATE: {
5060 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5061 		struct kvm_nested_state kvm_state;
5062 		int idx;
5063 
5064 		r = -EINVAL;
5065 		if (!kvm_x86_ops.nested_ops->set_state)
5066 			break;
5067 
5068 		r = -EFAULT;
5069 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5070 			break;
5071 
5072 		r = -EINVAL;
5073 		if (kvm_state.size < sizeof(kvm_state))
5074 			break;
5075 
5076 		if (kvm_state.flags &
5077 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5078 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5079 		      | KVM_STATE_NESTED_GIF_SET))
5080 			break;
5081 
5082 		/* nested_run_pending implies guest_mode.  */
5083 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5084 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5085 			break;
5086 
5087 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5088 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5089 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5090 		break;
5091 	}
5092 	case KVM_GET_SUPPORTED_HV_CPUID:
5093 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5094 		break;
5095 #ifdef CONFIG_KVM_XEN
5096 	case KVM_XEN_VCPU_GET_ATTR: {
5097 		struct kvm_xen_vcpu_attr xva;
5098 
5099 		r = -EFAULT;
5100 		if (copy_from_user(&xva, argp, sizeof(xva)))
5101 			goto out;
5102 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5103 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5104 			r = -EFAULT;
5105 		break;
5106 	}
5107 	case KVM_XEN_VCPU_SET_ATTR: {
5108 		struct kvm_xen_vcpu_attr xva;
5109 
5110 		r = -EFAULT;
5111 		if (copy_from_user(&xva, argp, sizeof(xva)))
5112 			goto out;
5113 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5114 		break;
5115 	}
5116 #endif
5117 	default:
5118 		r = -EINVAL;
5119 	}
5120 out:
5121 	kfree(u.buffer);
5122 out_nofree:
5123 	vcpu_put(vcpu);
5124 	return r;
5125 }
5126 
5127 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5128 {
5129 	return VM_FAULT_SIGBUS;
5130 }
5131 
5132 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5133 {
5134 	int ret;
5135 
5136 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
5137 		return -EINVAL;
5138 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5139 	return ret;
5140 }
5141 
5142 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5143 					      u64 ident_addr)
5144 {
5145 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5146 }
5147 
5148 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5149 					 unsigned long kvm_nr_mmu_pages)
5150 {
5151 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5152 		return -EINVAL;
5153 
5154 	mutex_lock(&kvm->slots_lock);
5155 
5156 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5157 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5158 
5159 	mutex_unlock(&kvm->slots_lock);
5160 	return 0;
5161 }
5162 
5163 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5164 {
5165 	return kvm->arch.n_max_mmu_pages;
5166 }
5167 
5168 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5169 {
5170 	struct kvm_pic *pic = kvm->arch.vpic;
5171 	int r;
5172 
5173 	r = 0;
5174 	switch (chip->chip_id) {
5175 	case KVM_IRQCHIP_PIC_MASTER:
5176 		memcpy(&chip->chip.pic, &pic->pics[0],
5177 			sizeof(struct kvm_pic_state));
5178 		break;
5179 	case KVM_IRQCHIP_PIC_SLAVE:
5180 		memcpy(&chip->chip.pic, &pic->pics[1],
5181 			sizeof(struct kvm_pic_state));
5182 		break;
5183 	case KVM_IRQCHIP_IOAPIC:
5184 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
5185 		break;
5186 	default:
5187 		r = -EINVAL;
5188 		break;
5189 	}
5190 	return r;
5191 }
5192 
5193 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5194 {
5195 	struct kvm_pic *pic = kvm->arch.vpic;
5196 	int r;
5197 
5198 	r = 0;
5199 	switch (chip->chip_id) {
5200 	case KVM_IRQCHIP_PIC_MASTER:
5201 		spin_lock(&pic->lock);
5202 		memcpy(&pic->pics[0], &chip->chip.pic,
5203 			sizeof(struct kvm_pic_state));
5204 		spin_unlock(&pic->lock);
5205 		break;
5206 	case KVM_IRQCHIP_PIC_SLAVE:
5207 		spin_lock(&pic->lock);
5208 		memcpy(&pic->pics[1], &chip->chip.pic,
5209 			sizeof(struct kvm_pic_state));
5210 		spin_unlock(&pic->lock);
5211 		break;
5212 	case KVM_IRQCHIP_IOAPIC:
5213 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
5214 		break;
5215 	default:
5216 		r = -EINVAL;
5217 		break;
5218 	}
5219 	kvm_pic_update_irq(pic);
5220 	return r;
5221 }
5222 
5223 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5224 {
5225 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5226 
5227 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5228 
5229 	mutex_lock(&kps->lock);
5230 	memcpy(ps, &kps->channels, sizeof(*ps));
5231 	mutex_unlock(&kps->lock);
5232 	return 0;
5233 }
5234 
5235 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5236 {
5237 	int i;
5238 	struct kvm_pit *pit = kvm->arch.vpit;
5239 
5240 	mutex_lock(&pit->pit_state.lock);
5241 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5242 	for (i = 0; i < 3; i++)
5243 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5244 	mutex_unlock(&pit->pit_state.lock);
5245 	return 0;
5246 }
5247 
5248 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5249 {
5250 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
5251 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5252 		sizeof(ps->channels));
5253 	ps->flags = kvm->arch.vpit->pit_state.flags;
5254 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5255 	memset(&ps->reserved, 0, sizeof(ps->reserved));
5256 	return 0;
5257 }
5258 
5259 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5260 {
5261 	int start = 0;
5262 	int i;
5263 	u32 prev_legacy, cur_legacy;
5264 	struct kvm_pit *pit = kvm->arch.vpit;
5265 
5266 	mutex_lock(&pit->pit_state.lock);
5267 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5268 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5269 	if (!prev_legacy && cur_legacy)
5270 		start = 1;
5271 	memcpy(&pit->pit_state.channels, &ps->channels,
5272 	       sizeof(pit->pit_state.channels));
5273 	pit->pit_state.flags = ps->flags;
5274 	for (i = 0; i < 3; i++)
5275 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5276 				   start && i == 0);
5277 	mutex_unlock(&pit->pit_state.lock);
5278 	return 0;
5279 }
5280 
5281 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5282 				 struct kvm_reinject_control *control)
5283 {
5284 	struct kvm_pit *pit = kvm->arch.vpit;
5285 
5286 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
5287 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5288 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5289 	 */
5290 	mutex_lock(&pit->pit_state.lock);
5291 	kvm_pit_set_reinject(pit, control->pit_reinject);
5292 	mutex_unlock(&pit->pit_state.lock);
5293 
5294 	return 0;
5295 }
5296 
5297 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5298 {
5299 
5300 	/*
5301 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
5302 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
5303 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
5304 	 * VM-Exit.
5305 	 */
5306 	struct kvm_vcpu *vcpu;
5307 	int i;
5308 
5309 	kvm_for_each_vcpu(i, vcpu, kvm)
5310 		kvm_vcpu_kick(vcpu);
5311 }
5312 
5313 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5314 			bool line_status)
5315 {
5316 	if (!irqchip_in_kernel(kvm))
5317 		return -ENXIO;
5318 
5319 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5320 					irq_event->irq, irq_event->level,
5321 					line_status);
5322 	return 0;
5323 }
5324 
5325 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5326 			    struct kvm_enable_cap *cap)
5327 {
5328 	int r;
5329 
5330 	if (cap->flags)
5331 		return -EINVAL;
5332 
5333 	switch (cap->cap) {
5334 	case KVM_CAP_DISABLE_QUIRKS:
5335 		kvm->arch.disabled_quirks = cap->args[0];
5336 		r = 0;
5337 		break;
5338 	case KVM_CAP_SPLIT_IRQCHIP: {
5339 		mutex_lock(&kvm->lock);
5340 		r = -EINVAL;
5341 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5342 			goto split_irqchip_unlock;
5343 		r = -EEXIST;
5344 		if (irqchip_in_kernel(kvm))
5345 			goto split_irqchip_unlock;
5346 		if (kvm->created_vcpus)
5347 			goto split_irqchip_unlock;
5348 		r = kvm_setup_empty_irq_routing(kvm);
5349 		if (r)
5350 			goto split_irqchip_unlock;
5351 		/* Pairs with irqchip_in_kernel. */
5352 		smp_wmb();
5353 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5354 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5355 		r = 0;
5356 split_irqchip_unlock:
5357 		mutex_unlock(&kvm->lock);
5358 		break;
5359 	}
5360 	case KVM_CAP_X2APIC_API:
5361 		r = -EINVAL;
5362 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5363 			break;
5364 
5365 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5366 			kvm->arch.x2apic_format = true;
5367 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5368 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
5369 
5370 		r = 0;
5371 		break;
5372 	case KVM_CAP_X86_DISABLE_EXITS:
5373 		r = -EINVAL;
5374 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5375 			break;
5376 
5377 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5378 			kvm_can_mwait_in_guest())
5379 			kvm->arch.mwait_in_guest = true;
5380 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5381 			kvm->arch.hlt_in_guest = true;
5382 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5383 			kvm->arch.pause_in_guest = true;
5384 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5385 			kvm->arch.cstate_in_guest = true;
5386 		r = 0;
5387 		break;
5388 	case KVM_CAP_MSR_PLATFORM_INFO:
5389 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5390 		r = 0;
5391 		break;
5392 	case KVM_CAP_EXCEPTION_PAYLOAD:
5393 		kvm->arch.exception_payload_enabled = cap->args[0];
5394 		r = 0;
5395 		break;
5396 	case KVM_CAP_X86_USER_SPACE_MSR:
5397 		kvm->arch.user_space_msr_mask = cap->args[0];
5398 		r = 0;
5399 		break;
5400 	case KVM_CAP_X86_BUS_LOCK_EXIT:
5401 		r = -EINVAL;
5402 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5403 			break;
5404 
5405 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5406 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5407 			break;
5408 
5409 		if (kvm_has_bus_lock_exit &&
5410 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5411 			kvm->arch.bus_lock_detection_enabled = true;
5412 		r = 0;
5413 		break;
5414 #ifdef CONFIG_X86_SGX_KVM
5415 	case KVM_CAP_SGX_ATTRIBUTE: {
5416 		unsigned long allowed_attributes = 0;
5417 
5418 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
5419 		if (r)
5420 			break;
5421 
5422 		/* KVM only supports the PROVISIONKEY privileged attribute. */
5423 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
5424 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
5425 			kvm->arch.sgx_provisioning_allowed = true;
5426 		else
5427 			r = -EINVAL;
5428 		break;
5429 	}
5430 #endif
5431 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
5432 		r = -EINVAL;
5433 		if (kvm_x86_ops.vm_copy_enc_context_from)
5434 			r = kvm_x86_ops.vm_copy_enc_context_from(kvm, cap->args[0]);
5435 		return r;
5436 	default:
5437 		r = -EINVAL;
5438 		break;
5439 	}
5440 	return r;
5441 }
5442 
5443 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5444 {
5445 	struct kvm_x86_msr_filter *msr_filter;
5446 
5447 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5448 	if (!msr_filter)
5449 		return NULL;
5450 
5451 	msr_filter->default_allow = default_allow;
5452 	return msr_filter;
5453 }
5454 
5455 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5456 {
5457 	u32 i;
5458 
5459 	if (!msr_filter)
5460 		return;
5461 
5462 	for (i = 0; i < msr_filter->count; i++)
5463 		kfree(msr_filter->ranges[i].bitmap);
5464 
5465 	kfree(msr_filter);
5466 }
5467 
5468 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5469 			      struct kvm_msr_filter_range *user_range)
5470 {
5471 	struct msr_bitmap_range range;
5472 	unsigned long *bitmap = NULL;
5473 	size_t bitmap_size;
5474 	int r;
5475 
5476 	if (!user_range->nmsrs)
5477 		return 0;
5478 
5479 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5480 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5481 		return -EINVAL;
5482 
5483 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5484 	if (IS_ERR(bitmap))
5485 		return PTR_ERR(bitmap);
5486 
5487 	range = (struct msr_bitmap_range) {
5488 		.flags = user_range->flags,
5489 		.base = user_range->base,
5490 		.nmsrs = user_range->nmsrs,
5491 		.bitmap = bitmap,
5492 	};
5493 
5494 	if (range.flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) {
5495 		r = -EINVAL;
5496 		goto err;
5497 	}
5498 
5499 	if (!range.flags) {
5500 		r = -EINVAL;
5501 		goto err;
5502 	}
5503 
5504 	/* Everything ok, add this range identifier. */
5505 	msr_filter->ranges[msr_filter->count] = range;
5506 	msr_filter->count++;
5507 
5508 	return 0;
5509 err:
5510 	kfree(bitmap);
5511 	return r;
5512 }
5513 
5514 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5515 {
5516 	struct kvm_msr_filter __user *user_msr_filter = argp;
5517 	struct kvm_x86_msr_filter *new_filter, *old_filter;
5518 	struct kvm_msr_filter filter;
5519 	bool default_allow;
5520 	bool empty = true;
5521 	int r = 0;
5522 	u32 i;
5523 
5524 	if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5525 		return -EFAULT;
5526 
5527 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5528 		empty &= !filter.ranges[i].nmsrs;
5529 
5530 	default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5531 	if (empty && !default_allow)
5532 		return -EINVAL;
5533 
5534 	new_filter = kvm_alloc_msr_filter(default_allow);
5535 	if (!new_filter)
5536 		return -ENOMEM;
5537 
5538 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5539 		r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
5540 		if (r) {
5541 			kvm_free_msr_filter(new_filter);
5542 			return r;
5543 		}
5544 	}
5545 
5546 	mutex_lock(&kvm->lock);
5547 
5548 	/* The per-VM filter is protected by kvm->lock... */
5549 	old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
5550 
5551 	rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
5552 	synchronize_srcu(&kvm->srcu);
5553 
5554 	kvm_free_msr_filter(old_filter);
5555 
5556 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5557 	mutex_unlock(&kvm->lock);
5558 
5559 	return 0;
5560 }
5561 
5562 long kvm_arch_vm_ioctl(struct file *filp,
5563 		       unsigned int ioctl, unsigned long arg)
5564 {
5565 	struct kvm *kvm = filp->private_data;
5566 	void __user *argp = (void __user *)arg;
5567 	int r = -ENOTTY;
5568 	/*
5569 	 * This union makes it completely explicit to gcc-3.x
5570 	 * that these two variables' stack usage should be
5571 	 * combined, not added together.
5572 	 */
5573 	union {
5574 		struct kvm_pit_state ps;
5575 		struct kvm_pit_state2 ps2;
5576 		struct kvm_pit_config pit_config;
5577 	} u;
5578 
5579 	switch (ioctl) {
5580 	case KVM_SET_TSS_ADDR:
5581 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5582 		break;
5583 	case KVM_SET_IDENTITY_MAP_ADDR: {
5584 		u64 ident_addr;
5585 
5586 		mutex_lock(&kvm->lock);
5587 		r = -EINVAL;
5588 		if (kvm->created_vcpus)
5589 			goto set_identity_unlock;
5590 		r = -EFAULT;
5591 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5592 			goto set_identity_unlock;
5593 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5594 set_identity_unlock:
5595 		mutex_unlock(&kvm->lock);
5596 		break;
5597 	}
5598 	case KVM_SET_NR_MMU_PAGES:
5599 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5600 		break;
5601 	case KVM_GET_NR_MMU_PAGES:
5602 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5603 		break;
5604 	case KVM_CREATE_IRQCHIP: {
5605 		mutex_lock(&kvm->lock);
5606 
5607 		r = -EEXIST;
5608 		if (irqchip_in_kernel(kvm))
5609 			goto create_irqchip_unlock;
5610 
5611 		r = -EINVAL;
5612 		if (kvm->created_vcpus)
5613 			goto create_irqchip_unlock;
5614 
5615 		r = kvm_pic_init(kvm);
5616 		if (r)
5617 			goto create_irqchip_unlock;
5618 
5619 		r = kvm_ioapic_init(kvm);
5620 		if (r) {
5621 			kvm_pic_destroy(kvm);
5622 			goto create_irqchip_unlock;
5623 		}
5624 
5625 		r = kvm_setup_default_irq_routing(kvm);
5626 		if (r) {
5627 			kvm_ioapic_destroy(kvm);
5628 			kvm_pic_destroy(kvm);
5629 			goto create_irqchip_unlock;
5630 		}
5631 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5632 		smp_wmb();
5633 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5634 	create_irqchip_unlock:
5635 		mutex_unlock(&kvm->lock);
5636 		break;
5637 	}
5638 	case KVM_CREATE_PIT:
5639 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5640 		goto create_pit;
5641 	case KVM_CREATE_PIT2:
5642 		r = -EFAULT;
5643 		if (copy_from_user(&u.pit_config, argp,
5644 				   sizeof(struct kvm_pit_config)))
5645 			goto out;
5646 	create_pit:
5647 		mutex_lock(&kvm->lock);
5648 		r = -EEXIST;
5649 		if (kvm->arch.vpit)
5650 			goto create_pit_unlock;
5651 		r = -ENOMEM;
5652 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5653 		if (kvm->arch.vpit)
5654 			r = 0;
5655 	create_pit_unlock:
5656 		mutex_unlock(&kvm->lock);
5657 		break;
5658 	case KVM_GET_IRQCHIP: {
5659 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5660 		struct kvm_irqchip *chip;
5661 
5662 		chip = memdup_user(argp, sizeof(*chip));
5663 		if (IS_ERR(chip)) {
5664 			r = PTR_ERR(chip);
5665 			goto out;
5666 		}
5667 
5668 		r = -ENXIO;
5669 		if (!irqchip_kernel(kvm))
5670 			goto get_irqchip_out;
5671 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5672 		if (r)
5673 			goto get_irqchip_out;
5674 		r = -EFAULT;
5675 		if (copy_to_user(argp, chip, sizeof(*chip)))
5676 			goto get_irqchip_out;
5677 		r = 0;
5678 	get_irqchip_out:
5679 		kfree(chip);
5680 		break;
5681 	}
5682 	case KVM_SET_IRQCHIP: {
5683 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5684 		struct kvm_irqchip *chip;
5685 
5686 		chip = memdup_user(argp, sizeof(*chip));
5687 		if (IS_ERR(chip)) {
5688 			r = PTR_ERR(chip);
5689 			goto out;
5690 		}
5691 
5692 		r = -ENXIO;
5693 		if (!irqchip_kernel(kvm))
5694 			goto set_irqchip_out;
5695 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5696 	set_irqchip_out:
5697 		kfree(chip);
5698 		break;
5699 	}
5700 	case KVM_GET_PIT: {
5701 		r = -EFAULT;
5702 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5703 			goto out;
5704 		r = -ENXIO;
5705 		if (!kvm->arch.vpit)
5706 			goto out;
5707 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5708 		if (r)
5709 			goto out;
5710 		r = -EFAULT;
5711 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5712 			goto out;
5713 		r = 0;
5714 		break;
5715 	}
5716 	case KVM_SET_PIT: {
5717 		r = -EFAULT;
5718 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5719 			goto out;
5720 		mutex_lock(&kvm->lock);
5721 		r = -ENXIO;
5722 		if (!kvm->arch.vpit)
5723 			goto set_pit_out;
5724 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5725 set_pit_out:
5726 		mutex_unlock(&kvm->lock);
5727 		break;
5728 	}
5729 	case KVM_GET_PIT2: {
5730 		r = -ENXIO;
5731 		if (!kvm->arch.vpit)
5732 			goto out;
5733 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5734 		if (r)
5735 			goto out;
5736 		r = -EFAULT;
5737 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5738 			goto out;
5739 		r = 0;
5740 		break;
5741 	}
5742 	case KVM_SET_PIT2: {
5743 		r = -EFAULT;
5744 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5745 			goto out;
5746 		mutex_lock(&kvm->lock);
5747 		r = -ENXIO;
5748 		if (!kvm->arch.vpit)
5749 			goto set_pit2_out;
5750 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5751 set_pit2_out:
5752 		mutex_unlock(&kvm->lock);
5753 		break;
5754 	}
5755 	case KVM_REINJECT_CONTROL: {
5756 		struct kvm_reinject_control control;
5757 		r =  -EFAULT;
5758 		if (copy_from_user(&control, argp, sizeof(control)))
5759 			goto out;
5760 		r = -ENXIO;
5761 		if (!kvm->arch.vpit)
5762 			goto out;
5763 		r = kvm_vm_ioctl_reinject(kvm, &control);
5764 		break;
5765 	}
5766 	case KVM_SET_BOOT_CPU_ID:
5767 		r = 0;
5768 		mutex_lock(&kvm->lock);
5769 		if (kvm->created_vcpus)
5770 			r = -EBUSY;
5771 		else
5772 			kvm->arch.bsp_vcpu_id = arg;
5773 		mutex_unlock(&kvm->lock);
5774 		break;
5775 #ifdef CONFIG_KVM_XEN
5776 	case KVM_XEN_HVM_CONFIG: {
5777 		struct kvm_xen_hvm_config xhc;
5778 		r = -EFAULT;
5779 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
5780 			goto out;
5781 		r = kvm_xen_hvm_config(kvm, &xhc);
5782 		break;
5783 	}
5784 	case KVM_XEN_HVM_GET_ATTR: {
5785 		struct kvm_xen_hvm_attr xha;
5786 
5787 		r = -EFAULT;
5788 		if (copy_from_user(&xha, argp, sizeof(xha)))
5789 			goto out;
5790 		r = kvm_xen_hvm_get_attr(kvm, &xha);
5791 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
5792 			r = -EFAULT;
5793 		break;
5794 	}
5795 	case KVM_XEN_HVM_SET_ATTR: {
5796 		struct kvm_xen_hvm_attr xha;
5797 
5798 		r = -EFAULT;
5799 		if (copy_from_user(&xha, argp, sizeof(xha)))
5800 			goto out;
5801 		r = kvm_xen_hvm_set_attr(kvm, &xha);
5802 		break;
5803 	}
5804 #endif
5805 	case KVM_SET_CLOCK: {
5806 		struct kvm_arch *ka = &kvm->arch;
5807 		struct kvm_clock_data user_ns;
5808 		u64 now_ns;
5809 
5810 		r = -EFAULT;
5811 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5812 			goto out;
5813 
5814 		r = -EINVAL;
5815 		if (user_ns.flags)
5816 			goto out;
5817 
5818 		r = 0;
5819 		/*
5820 		 * TODO: userspace has to take care of races with VCPU_RUN, so
5821 		 * kvm_gen_update_masterclock() can be cut down to locked
5822 		 * pvclock_update_vm_gtod_copy().
5823 		 */
5824 		kvm_gen_update_masterclock(kvm);
5825 
5826 		/*
5827 		 * This pairs with kvm_guest_time_update(): when masterclock is
5828 		 * in use, we use master_kernel_ns + kvmclock_offset to set
5829 		 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
5830 		 * is slightly ahead) here we risk going negative on unsigned
5831 		 * 'system_time' when 'user_ns.clock' is very small.
5832 		 */
5833 		spin_lock_irq(&ka->pvclock_gtod_sync_lock);
5834 		if (kvm->arch.use_master_clock)
5835 			now_ns = ka->master_kernel_ns;
5836 		else
5837 			now_ns = get_kvmclock_base_ns();
5838 		ka->kvmclock_offset = user_ns.clock - now_ns;
5839 		spin_unlock_irq(&ka->pvclock_gtod_sync_lock);
5840 
5841 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5842 		break;
5843 	}
5844 	case KVM_GET_CLOCK: {
5845 		struct kvm_clock_data user_ns;
5846 		u64 now_ns;
5847 
5848 		now_ns = get_kvmclock_ns(kvm);
5849 		user_ns.clock = now_ns;
5850 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5851 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5852 
5853 		r = -EFAULT;
5854 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5855 			goto out;
5856 		r = 0;
5857 		break;
5858 	}
5859 	case KVM_MEMORY_ENCRYPT_OP: {
5860 		r = -ENOTTY;
5861 		if (kvm_x86_ops.mem_enc_op)
5862 			r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
5863 		break;
5864 	}
5865 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
5866 		struct kvm_enc_region region;
5867 
5868 		r = -EFAULT;
5869 		if (copy_from_user(&region, argp, sizeof(region)))
5870 			goto out;
5871 
5872 		r = -ENOTTY;
5873 		if (kvm_x86_ops.mem_enc_reg_region)
5874 			r = static_call(kvm_x86_mem_enc_reg_region)(kvm, &region);
5875 		break;
5876 	}
5877 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5878 		struct kvm_enc_region region;
5879 
5880 		r = -EFAULT;
5881 		if (copy_from_user(&region, argp, sizeof(region)))
5882 			goto out;
5883 
5884 		r = -ENOTTY;
5885 		if (kvm_x86_ops.mem_enc_unreg_region)
5886 			r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, &region);
5887 		break;
5888 	}
5889 	case KVM_HYPERV_EVENTFD: {
5890 		struct kvm_hyperv_eventfd hvevfd;
5891 
5892 		r = -EFAULT;
5893 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5894 			goto out;
5895 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5896 		break;
5897 	}
5898 	case KVM_SET_PMU_EVENT_FILTER:
5899 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5900 		break;
5901 	case KVM_X86_SET_MSR_FILTER:
5902 		r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
5903 		break;
5904 	default:
5905 		r = -ENOTTY;
5906 	}
5907 out:
5908 	return r;
5909 }
5910 
5911 static void kvm_init_msr_list(void)
5912 {
5913 	struct x86_pmu_capability x86_pmu;
5914 	u32 dummy[2];
5915 	unsigned i;
5916 
5917 	BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5918 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
5919 
5920 	perf_get_x86_pmu_capability(&x86_pmu);
5921 
5922 	num_msrs_to_save = 0;
5923 	num_emulated_msrs = 0;
5924 	num_msr_based_features = 0;
5925 
5926 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5927 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5928 			continue;
5929 
5930 		/*
5931 		 * Even MSRs that are valid in the host may not be exposed
5932 		 * to the guests in some cases.
5933 		 */
5934 		switch (msrs_to_save_all[i]) {
5935 		case MSR_IA32_BNDCFGS:
5936 			if (!kvm_mpx_supported())
5937 				continue;
5938 			break;
5939 		case MSR_TSC_AUX:
5940 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5941 				continue;
5942 			break;
5943 		case MSR_IA32_UMWAIT_CONTROL:
5944 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
5945 				continue;
5946 			break;
5947 		case MSR_IA32_RTIT_CTL:
5948 		case MSR_IA32_RTIT_STATUS:
5949 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5950 				continue;
5951 			break;
5952 		case MSR_IA32_RTIT_CR3_MATCH:
5953 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5954 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5955 				continue;
5956 			break;
5957 		case MSR_IA32_RTIT_OUTPUT_BASE:
5958 		case MSR_IA32_RTIT_OUTPUT_MASK:
5959 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5960 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5961 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5962 				continue;
5963 			break;
5964 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
5965 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5966 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5967 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5968 				continue;
5969 			break;
5970 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5971 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5972 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5973 				continue;
5974 			break;
5975 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5976 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5977 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5978 				continue;
5979 			break;
5980 		default:
5981 			break;
5982 		}
5983 
5984 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5985 	}
5986 
5987 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5988 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
5989 			continue;
5990 
5991 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5992 	}
5993 
5994 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5995 		struct kvm_msr_entry msr;
5996 
5997 		msr.index = msr_based_features_all[i];
5998 		if (kvm_get_msr_feature(&msr))
5999 			continue;
6000 
6001 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6002 	}
6003 }
6004 
6005 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6006 			   const void *v)
6007 {
6008 	int handled = 0;
6009 	int n;
6010 
6011 	do {
6012 		n = min(len, 8);
6013 		if (!(lapic_in_kernel(vcpu) &&
6014 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6015 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6016 			break;
6017 		handled += n;
6018 		addr += n;
6019 		len -= n;
6020 		v += n;
6021 	} while (len);
6022 
6023 	return handled;
6024 }
6025 
6026 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6027 {
6028 	int handled = 0;
6029 	int n;
6030 
6031 	do {
6032 		n = min(len, 8);
6033 		if (!(lapic_in_kernel(vcpu) &&
6034 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6035 					 addr, n, v))
6036 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6037 			break;
6038 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6039 		handled += n;
6040 		addr += n;
6041 		len -= n;
6042 		v += n;
6043 	} while (len);
6044 
6045 	return handled;
6046 }
6047 
6048 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6049 			struct kvm_segment *var, int seg)
6050 {
6051 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
6052 }
6053 
6054 void kvm_get_segment(struct kvm_vcpu *vcpu,
6055 		     struct kvm_segment *var, int seg)
6056 {
6057 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
6058 }
6059 
6060 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6061 			   struct x86_exception *exception)
6062 {
6063 	gpa_t t_gpa;
6064 
6065 	BUG_ON(!mmu_is_nested(vcpu));
6066 
6067 	/* NPT walks are always user-walks */
6068 	access |= PFERR_USER_MASK;
6069 	t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
6070 
6071 	return t_gpa;
6072 }
6073 
6074 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6075 			      struct x86_exception *exception)
6076 {
6077 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6078 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6079 }
6080 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6081 
6082  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6083 				struct x86_exception *exception)
6084 {
6085 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6086 	access |= PFERR_FETCH_MASK;
6087 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6088 }
6089 
6090 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6091 			       struct x86_exception *exception)
6092 {
6093 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6094 	access |= PFERR_WRITE_MASK;
6095 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6096 }
6097 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6098 
6099 /* uses this to access any guest's mapped memory without checking CPL */
6100 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6101 				struct x86_exception *exception)
6102 {
6103 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
6104 }
6105 
6106 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6107 				      struct kvm_vcpu *vcpu, u32 access,
6108 				      struct x86_exception *exception)
6109 {
6110 	void *data = val;
6111 	int r = X86EMUL_CONTINUE;
6112 
6113 	while (bytes) {
6114 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
6115 							    exception);
6116 		unsigned offset = addr & (PAGE_SIZE-1);
6117 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6118 		int ret;
6119 
6120 		if (gpa == UNMAPPED_GVA)
6121 			return X86EMUL_PROPAGATE_FAULT;
6122 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6123 					       offset, toread);
6124 		if (ret < 0) {
6125 			r = X86EMUL_IO_NEEDED;
6126 			goto out;
6127 		}
6128 
6129 		bytes -= toread;
6130 		data += toread;
6131 		addr += toread;
6132 	}
6133 out:
6134 	return r;
6135 }
6136 
6137 /* used for instruction fetching */
6138 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6139 				gva_t addr, void *val, unsigned int bytes,
6140 				struct x86_exception *exception)
6141 {
6142 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6143 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6144 	unsigned offset;
6145 	int ret;
6146 
6147 	/* Inline kvm_read_guest_virt_helper for speed.  */
6148 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6149 						    exception);
6150 	if (unlikely(gpa == UNMAPPED_GVA))
6151 		return X86EMUL_PROPAGATE_FAULT;
6152 
6153 	offset = addr & (PAGE_SIZE-1);
6154 	if (WARN_ON(offset + bytes > PAGE_SIZE))
6155 		bytes = (unsigned)PAGE_SIZE - offset;
6156 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6157 				       offset, bytes);
6158 	if (unlikely(ret < 0))
6159 		return X86EMUL_IO_NEEDED;
6160 
6161 	return X86EMUL_CONTINUE;
6162 }
6163 
6164 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6165 			       gva_t addr, void *val, unsigned int bytes,
6166 			       struct x86_exception *exception)
6167 {
6168 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6169 
6170 	/*
6171 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6172 	 * is returned, but our callers are not ready for that and they blindly
6173 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
6174 	 * uninitialized kernel stack memory into cr2 and error code.
6175 	 */
6176 	memset(exception, 0, sizeof(*exception));
6177 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6178 					  exception);
6179 }
6180 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6181 
6182 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6183 			     gva_t addr, void *val, unsigned int bytes,
6184 			     struct x86_exception *exception, bool system)
6185 {
6186 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6187 	u32 access = 0;
6188 
6189 	if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6190 		access |= PFERR_USER_MASK;
6191 
6192 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6193 }
6194 
6195 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6196 		unsigned long addr, void *val, unsigned int bytes)
6197 {
6198 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6199 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6200 
6201 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6202 }
6203 
6204 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6205 				      struct kvm_vcpu *vcpu, u32 access,
6206 				      struct x86_exception *exception)
6207 {
6208 	void *data = val;
6209 	int r = X86EMUL_CONTINUE;
6210 
6211 	while (bytes) {
6212 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6213 							     access,
6214 							     exception);
6215 		unsigned offset = addr & (PAGE_SIZE-1);
6216 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6217 		int ret;
6218 
6219 		if (gpa == UNMAPPED_GVA)
6220 			return X86EMUL_PROPAGATE_FAULT;
6221 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6222 		if (ret < 0) {
6223 			r = X86EMUL_IO_NEEDED;
6224 			goto out;
6225 		}
6226 
6227 		bytes -= towrite;
6228 		data += towrite;
6229 		addr += towrite;
6230 	}
6231 out:
6232 	return r;
6233 }
6234 
6235 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6236 			      unsigned int bytes, struct x86_exception *exception,
6237 			      bool system)
6238 {
6239 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6240 	u32 access = PFERR_WRITE_MASK;
6241 
6242 	if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6243 		access |= PFERR_USER_MASK;
6244 
6245 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6246 					   access, exception);
6247 }
6248 
6249 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6250 				unsigned int bytes, struct x86_exception *exception)
6251 {
6252 	/* kvm_write_guest_virt_system can pull in tons of pages. */
6253 	vcpu->arch.l1tf_flush_l1d = true;
6254 
6255 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6256 					   PFERR_WRITE_MASK, exception);
6257 }
6258 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6259 
6260 int handle_ud(struct kvm_vcpu *vcpu)
6261 {
6262 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6263 	int emul_type = EMULTYPE_TRAP_UD;
6264 	char sig[5]; /* ud2; .ascii "kvm" */
6265 	struct x86_exception e;
6266 
6267 	if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0)))
6268 		return 1;
6269 
6270 	if (force_emulation_prefix &&
6271 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6272 				sig, sizeof(sig), &e) == 0 &&
6273 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6274 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6275 		emul_type = EMULTYPE_TRAP_UD_FORCED;
6276 	}
6277 
6278 	return kvm_emulate_instruction(vcpu, emul_type);
6279 }
6280 EXPORT_SYMBOL_GPL(handle_ud);
6281 
6282 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6283 			    gpa_t gpa, bool write)
6284 {
6285 	/* For APIC access vmexit */
6286 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6287 		return 1;
6288 
6289 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6290 		trace_vcpu_match_mmio(gva, gpa, write, true);
6291 		return 1;
6292 	}
6293 
6294 	return 0;
6295 }
6296 
6297 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6298 				gpa_t *gpa, struct x86_exception *exception,
6299 				bool write)
6300 {
6301 	u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6302 		| (write ? PFERR_WRITE_MASK : 0);
6303 
6304 	/*
6305 	 * currently PKRU is only applied to ept enabled guest so
6306 	 * there is no pkey in EPT page table for L1 guest or EPT
6307 	 * shadow page table for L2 guest.
6308 	 */
6309 	if (vcpu_match_mmio_gva(vcpu, gva)
6310 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
6311 				 vcpu->arch.mmio_access, 0, access)) {
6312 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6313 					(gva & (PAGE_SIZE - 1));
6314 		trace_vcpu_match_mmio(gva, *gpa, write, false);
6315 		return 1;
6316 	}
6317 
6318 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6319 
6320 	if (*gpa == UNMAPPED_GVA)
6321 		return -1;
6322 
6323 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6324 }
6325 
6326 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6327 			const void *val, int bytes)
6328 {
6329 	int ret;
6330 
6331 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6332 	if (ret < 0)
6333 		return 0;
6334 	kvm_page_track_write(vcpu, gpa, val, bytes);
6335 	return 1;
6336 }
6337 
6338 struct read_write_emulator_ops {
6339 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6340 				  int bytes);
6341 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6342 				  void *val, int bytes);
6343 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6344 			       int bytes, void *val);
6345 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6346 				    void *val, int bytes);
6347 	bool write;
6348 };
6349 
6350 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6351 {
6352 	if (vcpu->mmio_read_completed) {
6353 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6354 			       vcpu->mmio_fragments[0].gpa, val);
6355 		vcpu->mmio_read_completed = 0;
6356 		return 1;
6357 	}
6358 
6359 	return 0;
6360 }
6361 
6362 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6363 			void *val, int bytes)
6364 {
6365 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6366 }
6367 
6368 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6369 			 void *val, int bytes)
6370 {
6371 	return emulator_write_phys(vcpu, gpa, val, bytes);
6372 }
6373 
6374 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6375 {
6376 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6377 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
6378 }
6379 
6380 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6381 			  void *val, int bytes)
6382 {
6383 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6384 	return X86EMUL_IO_NEEDED;
6385 }
6386 
6387 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6388 			   void *val, int bytes)
6389 {
6390 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6391 
6392 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6393 	return X86EMUL_CONTINUE;
6394 }
6395 
6396 static const struct read_write_emulator_ops read_emultor = {
6397 	.read_write_prepare = read_prepare,
6398 	.read_write_emulate = read_emulate,
6399 	.read_write_mmio = vcpu_mmio_read,
6400 	.read_write_exit_mmio = read_exit_mmio,
6401 };
6402 
6403 static const struct read_write_emulator_ops write_emultor = {
6404 	.read_write_emulate = write_emulate,
6405 	.read_write_mmio = write_mmio,
6406 	.read_write_exit_mmio = write_exit_mmio,
6407 	.write = true,
6408 };
6409 
6410 static int emulator_read_write_onepage(unsigned long addr, void *val,
6411 				       unsigned int bytes,
6412 				       struct x86_exception *exception,
6413 				       struct kvm_vcpu *vcpu,
6414 				       const struct read_write_emulator_ops *ops)
6415 {
6416 	gpa_t gpa;
6417 	int handled, ret;
6418 	bool write = ops->write;
6419 	struct kvm_mmio_fragment *frag;
6420 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6421 
6422 	/*
6423 	 * If the exit was due to a NPF we may already have a GPA.
6424 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6425 	 * Note, this cannot be used on string operations since string
6426 	 * operation using rep will only have the initial GPA from the NPF
6427 	 * occurred.
6428 	 */
6429 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6430 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6431 		gpa = ctxt->gpa_val;
6432 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6433 	} else {
6434 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6435 		if (ret < 0)
6436 			return X86EMUL_PROPAGATE_FAULT;
6437 	}
6438 
6439 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6440 		return X86EMUL_CONTINUE;
6441 
6442 	/*
6443 	 * Is this MMIO handled locally?
6444 	 */
6445 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6446 	if (handled == bytes)
6447 		return X86EMUL_CONTINUE;
6448 
6449 	gpa += handled;
6450 	bytes -= handled;
6451 	val += handled;
6452 
6453 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6454 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6455 	frag->gpa = gpa;
6456 	frag->data = val;
6457 	frag->len = bytes;
6458 	return X86EMUL_CONTINUE;
6459 }
6460 
6461 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6462 			unsigned long addr,
6463 			void *val, unsigned int bytes,
6464 			struct x86_exception *exception,
6465 			const struct read_write_emulator_ops *ops)
6466 {
6467 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6468 	gpa_t gpa;
6469 	int rc;
6470 
6471 	if (ops->read_write_prepare &&
6472 		  ops->read_write_prepare(vcpu, val, bytes))
6473 		return X86EMUL_CONTINUE;
6474 
6475 	vcpu->mmio_nr_fragments = 0;
6476 
6477 	/* Crossing a page boundary? */
6478 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6479 		int now;
6480 
6481 		now = -addr & ~PAGE_MASK;
6482 		rc = emulator_read_write_onepage(addr, val, now, exception,
6483 						 vcpu, ops);
6484 
6485 		if (rc != X86EMUL_CONTINUE)
6486 			return rc;
6487 		addr += now;
6488 		if (ctxt->mode != X86EMUL_MODE_PROT64)
6489 			addr = (u32)addr;
6490 		val += now;
6491 		bytes -= now;
6492 	}
6493 
6494 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
6495 					 vcpu, ops);
6496 	if (rc != X86EMUL_CONTINUE)
6497 		return rc;
6498 
6499 	if (!vcpu->mmio_nr_fragments)
6500 		return rc;
6501 
6502 	gpa = vcpu->mmio_fragments[0].gpa;
6503 
6504 	vcpu->mmio_needed = 1;
6505 	vcpu->mmio_cur_fragment = 0;
6506 
6507 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6508 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6509 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
6510 	vcpu->run->mmio.phys_addr = gpa;
6511 
6512 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6513 }
6514 
6515 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6516 				  unsigned long addr,
6517 				  void *val,
6518 				  unsigned int bytes,
6519 				  struct x86_exception *exception)
6520 {
6521 	return emulator_read_write(ctxt, addr, val, bytes,
6522 				   exception, &read_emultor);
6523 }
6524 
6525 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6526 			    unsigned long addr,
6527 			    const void *val,
6528 			    unsigned int bytes,
6529 			    struct x86_exception *exception)
6530 {
6531 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
6532 				   exception, &write_emultor);
6533 }
6534 
6535 #define CMPXCHG_TYPE(t, ptr, old, new) \
6536 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6537 
6538 #ifdef CONFIG_X86_64
6539 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6540 #else
6541 #  define CMPXCHG64(ptr, old, new) \
6542 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6543 #endif
6544 
6545 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6546 				     unsigned long addr,
6547 				     const void *old,
6548 				     const void *new,
6549 				     unsigned int bytes,
6550 				     struct x86_exception *exception)
6551 {
6552 	struct kvm_host_map map;
6553 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6554 	u64 page_line_mask;
6555 	gpa_t gpa;
6556 	char *kaddr;
6557 	bool exchanged;
6558 
6559 	/* guests cmpxchg8b have to be emulated atomically */
6560 	if (bytes > 8 || (bytes & (bytes - 1)))
6561 		goto emul_write;
6562 
6563 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6564 
6565 	if (gpa == UNMAPPED_GVA ||
6566 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6567 		goto emul_write;
6568 
6569 	/*
6570 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
6571 	 * enabled in the host and the access splits a cache line.
6572 	 */
6573 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6574 		page_line_mask = ~(cache_line_size() - 1);
6575 	else
6576 		page_line_mask = PAGE_MASK;
6577 
6578 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6579 		goto emul_write;
6580 
6581 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6582 		goto emul_write;
6583 
6584 	kaddr = map.hva + offset_in_page(gpa);
6585 
6586 	switch (bytes) {
6587 	case 1:
6588 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6589 		break;
6590 	case 2:
6591 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6592 		break;
6593 	case 4:
6594 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6595 		break;
6596 	case 8:
6597 		exchanged = CMPXCHG64(kaddr, old, new);
6598 		break;
6599 	default:
6600 		BUG();
6601 	}
6602 
6603 	kvm_vcpu_unmap(vcpu, &map, true);
6604 
6605 	if (!exchanged)
6606 		return X86EMUL_CMPXCHG_FAILED;
6607 
6608 	kvm_page_track_write(vcpu, gpa, new, bytes);
6609 
6610 	return X86EMUL_CONTINUE;
6611 
6612 emul_write:
6613 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6614 
6615 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6616 }
6617 
6618 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6619 {
6620 	int r = 0, i;
6621 
6622 	for (i = 0; i < vcpu->arch.pio.count; i++) {
6623 		if (vcpu->arch.pio.in)
6624 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6625 					    vcpu->arch.pio.size, pd);
6626 		else
6627 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6628 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
6629 					     pd);
6630 		if (r)
6631 			break;
6632 		pd += vcpu->arch.pio.size;
6633 	}
6634 	return r;
6635 }
6636 
6637 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6638 			       unsigned short port, void *val,
6639 			       unsigned int count, bool in)
6640 {
6641 	vcpu->arch.pio.port = port;
6642 	vcpu->arch.pio.in = in;
6643 	vcpu->arch.pio.count  = count;
6644 	vcpu->arch.pio.size = size;
6645 
6646 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6647 		vcpu->arch.pio.count = 0;
6648 		return 1;
6649 	}
6650 
6651 	vcpu->run->exit_reason = KVM_EXIT_IO;
6652 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6653 	vcpu->run->io.size = size;
6654 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6655 	vcpu->run->io.count = count;
6656 	vcpu->run->io.port = port;
6657 
6658 	return 0;
6659 }
6660 
6661 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6662 			   unsigned short port, void *val, unsigned int count)
6663 {
6664 	int ret;
6665 
6666 	if (vcpu->arch.pio.count)
6667 		goto data_avail;
6668 
6669 	memset(vcpu->arch.pio_data, 0, size * count);
6670 
6671 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6672 	if (ret) {
6673 data_avail:
6674 		memcpy(val, vcpu->arch.pio_data, size * count);
6675 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6676 		vcpu->arch.pio.count = 0;
6677 		return 1;
6678 	}
6679 
6680 	return 0;
6681 }
6682 
6683 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6684 				    int size, unsigned short port, void *val,
6685 				    unsigned int count)
6686 {
6687 	return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6688 
6689 }
6690 
6691 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6692 			    unsigned short port, const void *val,
6693 			    unsigned int count)
6694 {
6695 	memcpy(vcpu->arch.pio_data, val, size * count);
6696 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6697 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6698 }
6699 
6700 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6701 				     int size, unsigned short port,
6702 				     const void *val, unsigned int count)
6703 {
6704 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6705 }
6706 
6707 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6708 {
6709 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
6710 }
6711 
6712 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6713 {
6714 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6715 }
6716 
6717 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6718 {
6719 	if (!need_emulate_wbinvd(vcpu))
6720 		return X86EMUL_CONTINUE;
6721 
6722 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
6723 		int cpu = get_cpu();
6724 
6725 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6726 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
6727 				wbinvd_ipi, NULL, 1);
6728 		put_cpu();
6729 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6730 	} else
6731 		wbinvd();
6732 	return X86EMUL_CONTINUE;
6733 }
6734 
6735 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6736 {
6737 	kvm_emulate_wbinvd_noskip(vcpu);
6738 	return kvm_skip_emulated_instruction(vcpu);
6739 }
6740 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6741 
6742 
6743 
6744 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6745 {
6746 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6747 }
6748 
6749 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6750 			    unsigned long *dest)
6751 {
6752 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6753 }
6754 
6755 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6756 			   unsigned long value)
6757 {
6758 
6759 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6760 }
6761 
6762 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6763 {
6764 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6765 }
6766 
6767 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6768 {
6769 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6770 	unsigned long value;
6771 
6772 	switch (cr) {
6773 	case 0:
6774 		value = kvm_read_cr0(vcpu);
6775 		break;
6776 	case 2:
6777 		value = vcpu->arch.cr2;
6778 		break;
6779 	case 3:
6780 		value = kvm_read_cr3(vcpu);
6781 		break;
6782 	case 4:
6783 		value = kvm_read_cr4(vcpu);
6784 		break;
6785 	case 8:
6786 		value = kvm_get_cr8(vcpu);
6787 		break;
6788 	default:
6789 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6790 		return 0;
6791 	}
6792 
6793 	return value;
6794 }
6795 
6796 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6797 {
6798 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6799 	int res = 0;
6800 
6801 	switch (cr) {
6802 	case 0:
6803 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6804 		break;
6805 	case 2:
6806 		vcpu->arch.cr2 = val;
6807 		break;
6808 	case 3:
6809 		res = kvm_set_cr3(vcpu, val);
6810 		break;
6811 	case 4:
6812 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6813 		break;
6814 	case 8:
6815 		res = kvm_set_cr8(vcpu, val);
6816 		break;
6817 	default:
6818 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6819 		res = -1;
6820 	}
6821 
6822 	return res;
6823 }
6824 
6825 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6826 {
6827 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
6828 }
6829 
6830 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6831 {
6832 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
6833 }
6834 
6835 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6836 {
6837 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
6838 }
6839 
6840 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6841 {
6842 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
6843 }
6844 
6845 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6846 {
6847 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
6848 }
6849 
6850 static unsigned long emulator_get_cached_segment_base(
6851 	struct x86_emulate_ctxt *ctxt, int seg)
6852 {
6853 	return get_segment_base(emul_to_vcpu(ctxt), seg);
6854 }
6855 
6856 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6857 				 struct desc_struct *desc, u32 *base3,
6858 				 int seg)
6859 {
6860 	struct kvm_segment var;
6861 
6862 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6863 	*selector = var.selector;
6864 
6865 	if (var.unusable) {
6866 		memset(desc, 0, sizeof(*desc));
6867 		if (base3)
6868 			*base3 = 0;
6869 		return false;
6870 	}
6871 
6872 	if (var.g)
6873 		var.limit >>= 12;
6874 	set_desc_limit(desc, var.limit);
6875 	set_desc_base(desc, (unsigned long)var.base);
6876 #ifdef CONFIG_X86_64
6877 	if (base3)
6878 		*base3 = var.base >> 32;
6879 #endif
6880 	desc->type = var.type;
6881 	desc->s = var.s;
6882 	desc->dpl = var.dpl;
6883 	desc->p = var.present;
6884 	desc->avl = var.avl;
6885 	desc->l = var.l;
6886 	desc->d = var.db;
6887 	desc->g = var.g;
6888 
6889 	return true;
6890 }
6891 
6892 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6893 				 struct desc_struct *desc, u32 base3,
6894 				 int seg)
6895 {
6896 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6897 	struct kvm_segment var;
6898 
6899 	var.selector = selector;
6900 	var.base = get_desc_base(desc);
6901 #ifdef CONFIG_X86_64
6902 	var.base |= ((u64)base3) << 32;
6903 #endif
6904 	var.limit = get_desc_limit(desc);
6905 	if (desc->g)
6906 		var.limit = (var.limit << 12) | 0xfff;
6907 	var.type = desc->type;
6908 	var.dpl = desc->dpl;
6909 	var.db = desc->d;
6910 	var.s = desc->s;
6911 	var.l = desc->l;
6912 	var.g = desc->g;
6913 	var.avl = desc->avl;
6914 	var.present = desc->p;
6915 	var.unusable = !var.present;
6916 	var.padding = 0;
6917 
6918 	kvm_set_segment(vcpu, &var, seg);
6919 	return;
6920 }
6921 
6922 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6923 			    u32 msr_index, u64 *pdata)
6924 {
6925 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6926 	int r;
6927 
6928 	r = kvm_get_msr(vcpu, msr_index, pdata);
6929 
6930 	if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
6931 		/* Bounce to user space */
6932 		return X86EMUL_IO_NEEDED;
6933 	}
6934 
6935 	return r;
6936 }
6937 
6938 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6939 			    u32 msr_index, u64 data)
6940 {
6941 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6942 	int r;
6943 
6944 	r = kvm_set_msr(vcpu, msr_index, data);
6945 
6946 	if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
6947 		/* Bounce to user space */
6948 		return X86EMUL_IO_NEEDED;
6949 	}
6950 
6951 	return r;
6952 }
6953 
6954 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6955 {
6956 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6957 
6958 	return vcpu->arch.smbase;
6959 }
6960 
6961 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6962 {
6963 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6964 
6965 	vcpu->arch.smbase = smbase;
6966 }
6967 
6968 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6969 			      u32 pmc)
6970 {
6971 	return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6972 }
6973 
6974 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6975 			     u32 pmc, u64 *pdata)
6976 {
6977 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6978 }
6979 
6980 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6981 {
6982 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
6983 }
6984 
6985 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6986 			      struct x86_instruction_info *info,
6987 			      enum x86_intercept_stage stage)
6988 {
6989 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
6990 					    &ctxt->exception);
6991 }
6992 
6993 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6994 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6995 			      bool exact_only)
6996 {
6997 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
6998 }
6999 
7000 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7001 {
7002 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7003 }
7004 
7005 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7006 {
7007 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7008 }
7009 
7010 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7011 {
7012 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7013 }
7014 
7015 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7016 {
7017 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7018 }
7019 
7020 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7021 {
7022 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7023 }
7024 
7025 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7026 {
7027 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7028 }
7029 
7030 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7031 {
7032 	return emul_to_vcpu(ctxt)->arch.hflags;
7033 }
7034 
7035 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
7036 {
7037 	emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
7038 }
7039 
7040 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
7041 				  const char *smstate)
7042 {
7043 	return static_call(kvm_x86_pre_leave_smm)(emul_to_vcpu(ctxt), smstate);
7044 }
7045 
7046 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
7047 {
7048 	kvm_smm_changed(emul_to_vcpu(ctxt));
7049 }
7050 
7051 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7052 {
7053 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7054 }
7055 
7056 static const struct x86_emulate_ops emulate_ops = {
7057 	.read_gpr            = emulator_read_gpr,
7058 	.write_gpr           = emulator_write_gpr,
7059 	.read_std            = emulator_read_std,
7060 	.write_std           = emulator_write_std,
7061 	.read_phys           = kvm_read_guest_phys_system,
7062 	.fetch               = kvm_fetch_guest_virt,
7063 	.read_emulated       = emulator_read_emulated,
7064 	.write_emulated      = emulator_write_emulated,
7065 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
7066 	.invlpg              = emulator_invlpg,
7067 	.pio_in_emulated     = emulator_pio_in_emulated,
7068 	.pio_out_emulated    = emulator_pio_out_emulated,
7069 	.get_segment         = emulator_get_segment,
7070 	.set_segment         = emulator_set_segment,
7071 	.get_cached_segment_base = emulator_get_cached_segment_base,
7072 	.get_gdt             = emulator_get_gdt,
7073 	.get_idt	     = emulator_get_idt,
7074 	.set_gdt             = emulator_set_gdt,
7075 	.set_idt	     = emulator_set_idt,
7076 	.get_cr              = emulator_get_cr,
7077 	.set_cr              = emulator_set_cr,
7078 	.cpl                 = emulator_get_cpl,
7079 	.get_dr              = emulator_get_dr,
7080 	.set_dr              = emulator_set_dr,
7081 	.get_smbase          = emulator_get_smbase,
7082 	.set_smbase          = emulator_set_smbase,
7083 	.set_msr             = emulator_set_msr,
7084 	.get_msr             = emulator_get_msr,
7085 	.check_pmc	     = emulator_check_pmc,
7086 	.read_pmc            = emulator_read_pmc,
7087 	.halt                = emulator_halt,
7088 	.wbinvd              = emulator_wbinvd,
7089 	.fix_hypercall       = emulator_fix_hypercall,
7090 	.intercept           = emulator_intercept,
7091 	.get_cpuid           = emulator_get_cpuid,
7092 	.guest_has_long_mode = emulator_guest_has_long_mode,
7093 	.guest_has_movbe     = emulator_guest_has_movbe,
7094 	.guest_has_fxsr      = emulator_guest_has_fxsr,
7095 	.set_nmi_mask        = emulator_set_nmi_mask,
7096 	.get_hflags          = emulator_get_hflags,
7097 	.set_hflags          = emulator_set_hflags,
7098 	.pre_leave_smm       = emulator_pre_leave_smm,
7099 	.post_leave_smm      = emulator_post_leave_smm,
7100 	.set_xcr             = emulator_set_xcr,
7101 };
7102 
7103 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7104 {
7105 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7106 	/*
7107 	 * an sti; sti; sequence only disable interrupts for the first
7108 	 * instruction. So, if the last instruction, be it emulated or
7109 	 * not, left the system with the INT_STI flag enabled, it
7110 	 * means that the last instruction is an sti. We should not
7111 	 * leave the flag on in this case. The same goes for mov ss
7112 	 */
7113 	if (int_shadow & mask)
7114 		mask = 0;
7115 	if (unlikely(int_shadow || mask)) {
7116 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7117 		if (!mask)
7118 			kvm_make_request(KVM_REQ_EVENT, vcpu);
7119 	}
7120 }
7121 
7122 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7123 {
7124 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7125 	if (ctxt->exception.vector == PF_VECTOR)
7126 		return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7127 
7128 	if (ctxt->exception.error_code_valid)
7129 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7130 				      ctxt->exception.error_code);
7131 	else
7132 		kvm_queue_exception(vcpu, ctxt->exception.vector);
7133 	return false;
7134 }
7135 
7136 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7137 {
7138 	struct x86_emulate_ctxt *ctxt;
7139 
7140 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7141 	if (!ctxt) {
7142 		pr_err("kvm: failed to allocate vcpu's emulator\n");
7143 		return NULL;
7144 	}
7145 
7146 	ctxt->vcpu = vcpu;
7147 	ctxt->ops = &emulate_ops;
7148 	vcpu->arch.emulate_ctxt = ctxt;
7149 
7150 	return ctxt;
7151 }
7152 
7153 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7154 {
7155 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7156 	int cs_db, cs_l;
7157 
7158 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7159 
7160 	ctxt->gpa_available = false;
7161 	ctxt->eflags = kvm_get_rflags(vcpu);
7162 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7163 
7164 	ctxt->eip = kvm_rip_read(vcpu);
7165 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
7166 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
7167 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
7168 		     cs_db				? X86EMUL_MODE_PROT32 :
7169 							  X86EMUL_MODE_PROT16;
7170 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7171 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7172 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7173 
7174 	init_decode_cache(ctxt);
7175 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7176 }
7177 
7178 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7179 {
7180 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7181 	int ret;
7182 
7183 	init_emulate_ctxt(vcpu);
7184 
7185 	ctxt->op_bytes = 2;
7186 	ctxt->ad_bytes = 2;
7187 	ctxt->_eip = ctxt->eip + inc_eip;
7188 	ret = emulate_int_real(ctxt, irq);
7189 
7190 	if (ret != X86EMUL_CONTINUE) {
7191 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7192 	} else {
7193 		ctxt->eip = ctxt->_eip;
7194 		kvm_rip_write(vcpu, ctxt->eip);
7195 		kvm_set_rflags(vcpu, ctxt->eflags);
7196 	}
7197 }
7198 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7199 
7200 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7201 {
7202 	++vcpu->stat.insn_emulation_fail;
7203 	trace_kvm_emulate_insn_failed(vcpu);
7204 
7205 	if (emulation_type & EMULTYPE_VMWARE_GP) {
7206 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7207 		return 1;
7208 	}
7209 
7210 	if (emulation_type & EMULTYPE_SKIP) {
7211 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7212 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7213 		vcpu->run->internal.ndata = 0;
7214 		return 0;
7215 	}
7216 
7217 	kvm_queue_exception(vcpu, UD_VECTOR);
7218 
7219 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7220 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7221 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7222 		vcpu->run->internal.ndata = 0;
7223 		return 0;
7224 	}
7225 
7226 	return 1;
7227 }
7228 
7229 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7230 				  bool write_fault_to_shadow_pgtable,
7231 				  int emulation_type)
7232 {
7233 	gpa_t gpa = cr2_or_gpa;
7234 	kvm_pfn_t pfn;
7235 
7236 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7237 		return false;
7238 
7239 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7240 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7241 		return false;
7242 
7243 	if (!vcpu->arch.mmu->direct_map) {
7244 		/*
7245 		 * Write permission should be allowed since only
7246 		 * write access need to be emulated.
7247 		 */
7248 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7249 
7250 		/*
7251 		 * If the mapping is invalid in guest, let cpu retry
7252 		 * it to generate fault.
7253 		 */
7254 		if (gpa == UNMAPPED_GVA)
7255 			return true;
7256 	}
7257 
7258 	/*
7259 	 * Do not retry the unhandleable instruction if it faults on the
7260 	 * readonly host memory, otherwise it will goto a infinite loop:
7261 	 * retry instruction -> write #PF -> emulation fail -> retry
7262 	 * instruction -> ...
7263 	 */
7264 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7265 
7266 	/*
7267 	 * If the instruction failed on the error pfn, it can not be fixed,
7268 	 * report the error to userspace.
7269 	 */
7270 	if (is_error_noslot_pfn(pfn))
7271 		return false;
7272 
7273 	kvm_release_pfn_clean(pfn);
7274 
7275 	/* The instructions are well-emulated on direct mmu. */
7276 	if (vcpu->arch.mmu->direct_map) {
7277 		unsigned int indirect_shadow_pages;
7278 
7279 		write_lock(&vcpu->kvm->mmu_lock);
7280 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7281 		write_unlock(&vcpu->kvm->mmu_lock);
7282 
7283 		if (indirect_shadow_pages)
7284 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7285 
7286 		return true;
7287 	}
7288 
7289 	/*
7290 	 * if emulation was due to access to shadowed page table
7291 	 * and it failed try to unshadow page and re-enter the
7292 	 * guest to let CPU execute the instruction.
7293 	 */
7294 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7295 
7296 	/*
7297 	 * If the access faults on its page table, it can not
7298 	 * be fixed by unprotecting shadow page and it should
7299 	 * be reported to userspace.
7300 	 */
7301 	return !write_fault_to_shadow_pgtable;
7302 }
7303 
7304 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7305 			      gpa_t cr2_or_gpa,  int emulation_type)
7306 {
7307 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7308 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7309 
7310 	last_retry_eip = vcpu->arch.last_retry_eip;
7311 	last_retry_addr = vcpu->arch.last_retry_addr;
7312 
7313 	/*
7314 	 * If the emulation is caused by #PF and it is non-page_table
7315 	 * writing instruction, it means the VM-EXIT is caused by shadow
7316 	 * page protected, we can zap the shadow page and retry this
7317 	 * instruction directly.
7318 	 *
7319 	 * Note: if the guest uses a non-page-table modifying instruction
7320 	 * on the PDE that points to the instruction, then we will unmap
7321 	 * the instruction and go to an infinite loop. So, we cache the
7322 	 * last retried eip and the last fault address, if we meet the eip
7323 	 * and the address again, we can break out of the potential infinite
7324 	 * loop.
7325 	 */
7326 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7327 
7328 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7329 		return false;
7330 
7331 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7332 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7333 		return false;
7334 
7335 	if (x86_page_table_writing_insn(ctxt))
7336 		return false;
7337 
7338 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7339 		return false;
7340 
7341 	vcpu->arch.last_retry_eip = ctxt->eip;
7342 	vcpu->arch.last_retry_addr = cr2_or_gpa;
7343 
7344 	if (!vcpu->arch.mmu->direct_map)
7345 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7346 
7347 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7348 
7349 	return true;
7350 }
7351 
7352 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7353 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7354 
7355 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
7356 {
7357 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
7358 		/* This is a good place to trace that we are exiting SMM.  */
7359 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
7360 
7361 		/* Process a latched INIT or SMI, if any.  */
7362 		kvm_make_request(KVM_REQ_EVENT, vcpu);
7363 	}
7364 
7365 	kvm_mmu_reset_context(vcpu);
7366 }
7367 
7368 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7369 				unsigned long *db)
7370 {
7371 	u32 dr6 = 0;
7372 	int i;
7373 	u32 enable, rwlen;
7374 
7375 	enable = dr7;
7376 	rwlen = dr7 >> 16;
7377 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7378 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7379 			dr6 |= (1 << i);
7380 	return dr6;
7381 }
7382 
7383 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7384 {
7385 	struct kvm_run *kvm_run = vcpu->run;
7386 
7387 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7388 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
7389 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7390 		kvm_run->debug.arch.exception = DB_VECTOR;
7391 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
7392 		return 0;
7393 	}
7394 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7395 	return 1;
7396 }
7397 
7398 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7399 {
7400 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7401 	int r;
7402 
7403 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
7404 	if (unlikely(!r))
7405 		return 0;
7406 
7407 	/*
7408 	 * rflags is the old, "raw" value of the flags.  The new value has
7409 	 * not been saved yet.
7410 	 *
7411 	 * This is correct even for TF set by the guest, because "the
7412 	 * processor will not generate this exception after the instruction
7413 	 * that sets the TF flag".
7414 	 */
7415 	if (unlikely(rflags & X86_EFLAGS_TF))
7416 		r = kvm_vcpu_do_singlestep(vcpu);
7417 	return r;
7418 }
7419 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7420 
7421 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7422 {
7423 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7424 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7425 		struct kvm_run *kvm_run = vcpu->run;
7426 		unsigned long eip = kvm_get_linear_rip(vcpu);
7427 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7428 					   vcpu->arch.guest_debug_dr7,
7429 					   vcpu->arch.eff_db);
7430 
7431 		if (dr6 != 0) {
7432 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
7433 			kvm_run->debug.arch.pc = eip;
7434 			kvm_run->debug.arch.exception = DB_VECTOR;
7435 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
7436 			*r = 0;
7437 			return true;
7438 		}
7439 	}
7440 
7441 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7442 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7443 		unsigned long eip = kvm_get_linear_rip(vcpu);
7444 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7445 					   vcpu->arch.dr7,
7446 					   vcpu->arch.db);
7447 
7448 		if (dr6 != 0) {
7449 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7450 			*r = 1;
7451 			return true;
7452 		}
7453 	}
7454 
7455 	return false;
7456 }
7457 
7458 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7459 {
7460 	switch (ctxt->opcode_len) {
7461 	case 1:
7462 		switch (ctxt->b) {
7463 		case 0xe4:	/* IN */
7464 		case 0xe5:
7465 		case 0xec:
7466 		case 0xed:
7467 		case 0xe6:	/* OUT */
7468 		case 0xe7:
7469 		case 0xee:
7470 		case 0xef:
7471 		case 0x6c:	/* INS */
7472 		case 0x6d:
7473 		case 0x6e:	/* OUTS */
7474 		case 0x6f:
7475 			return true;
7476 		}
7477 		break;
7478 	case 2:
7479 		switch (ctxt->b) {
7480 		case 0x33:	/* RDPMC */
7481 			return true;
7482 		}
7483 		break;
7484 	}
7485 
7486 	return false;
7487 }
7488 
7489 /*
7490  * Decode to be emulated instruction. Return EMULATION_OK if success.
7491  */
7492 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
7493 				    void *insn, int insn_len)
7494 {
7495 	int r = EMULATION_OK;
7496 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7497 
7498 	init_emulate_ctxt(vcpu);
7499 
7500 	/*
7501 	 * We will reenter on the same instruction since we do not set
7502 	 * complete_userspace_io. This does not handle watchpoints yet,
7503 	 * those would be handled in the emulate_ops.
7504 	 */
7505 	if (!(emulation_type & EMULTYPE_SKIP) &&
7506 	    kvm_vcpu_check_breakpoint(vcpu, &r))
7507 		return r;
7508 
7509 	ctxt->interruptibility = 0;
7510 	ctxt->have_exception = false;
7511 	ctxt->exception.vector = -1;
7512 	ctxt->perm_ok = false;
7513 
7514 	ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
7515 
7516 	r = x86_decode_insn(ctxt, insn, insn_len);
7517 
7518 	trace_kvm_emulate_insn_start(vcpu);
7519 	++vcpu->stat.insn_emulation;
7520 
7521 	return r;
7522 }
7523 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
7524 
7525 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7526 			    int emulation_type, void *insn, int insn_len)
7527 {
7528 	int r;
7529 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7530 	bool writeback = true;
7531 	bool write_fault_to_spt;
7532 
7533 	if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len)))
7534 		return 1;
7535 
7536 	vcpu->arch.l1tf_flush_l1d = true;
7537 
7538 	/*
7539 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
7540 	 * never reused.
7541 	 */
7542 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7543 	vcpu->arch.write_fault_to_shadow_pgtable = false;
7544 
7545 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7546 		kvm_clear_exception_queue(vcpu);
7547 
7548 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
7549 						    insn, insn_len);
7550 		if (r != EMULATION_OK)  {
7551 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
7552 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7553 				kvm_queue_exception(vcpu, UD_VECTOR);
7554 				return 1;
7555 			}
7556 			if (reexecute_instruction(vcpu, cr2_or_gpa,
7557 						  write_fault_to_spt,
7558 						  emulation_type))
7559 				return 1;
7560 			if (ctxt->have_exception) {
7561 				/*
7562 				 * #UD should result in just EMULATION_FAILED, and trap-like
7563 				 * exception should not be encountered during decode.
7564 				 */
7565 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7566 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7567 				inject_emulated_exception(vcpu);
7568 				return 1;
7569 			}
7570 			return handle_emulation_failure(vcpu, emulation_type);
7571 		}
7572 	}
7573 
7574 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7575 	    !is_vmware_backdoor_opcode(ctxt)) {
7576 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7577 		return 1;
7578 	}
7579 
7580 	/*
7581 	 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7582 	 * for kvm_skip_emulated_instruction().  The caller is responsible for
7583 	 * updating interruptibility state and injecting single-step #DBs.
7584 	 */
7585 	if (emulation_type & EMULTYPE_SKIP) {
7586 		kvm_rip_write(vcpu, ctxt->_eip);
7587 		if (ctxt->eflags & X86_EFLAGS_RF)
7588 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7589 		return 1;
7590 	}
7591 
7592 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7593 		return 1;
7594 
7595 	/* this is needed for vmware backdoor interface to work since it
7596 	   changes registers values  during IO operation */
7597 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7598 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7599 		emulator_invalidate_register_cache(ctxt);
7600 	}
7601 
7602 restart:
7603 	if (emulation_type & EMULTYPE_PF) {
7604 		/* Save the faulting GPA (cr2) in the address field */
7605 		ctxt->exception.address = cr2_or_gpa;
7606 
7607 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
7608 		if (vcpu->arch.mmu->direct_map) {
7609 			ctxt->gpa_available = true;
7610 			ctxt->gpa_val = cr2_or_gpa;
7611 		}
7612 	} else {
7613 		/* Sanitize the address out of an abundance of paranoia. */
7614 		ctxt->exception.address = 0;
7615 	}
7616 
7617 	r = x86_emulate_insn(ctxt);
7618 
7619 	if (r == EMULATION_INTERCEPTED)
7620 		return 1;
7621 
7622 	if (r == EMULATION_FAILED) {
7623 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7624 					emulation_type))
7625 			return 1;
7626 
7627 		return handle_emulation_failure(vcpu, emulation_type);
7628 	}
7629 
7630 	if (ctxt->have_exception) {
7631 		r = 1;
7632 		if (inject_emulated_exception(vcpu))
7633 			return r;
7634 	} else if (vcpu->arch.pio.count) {
7635 		if (!vcpu->arch.pio.in) {
7636 			/* FIXME: return into emulator if single-stepping.  */
7637 			vcpu->arch.pio.count = 0;
7638 		} else {
7639 			writeback = false;
7640 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
7641 		}
7642 		r = 0;
7643 	} else if (vcpu->mmio_needed) {
7644 		++vcpu->stat.mmio_exits;
7645 
7646 		if (!vcpu->mmio_is_write)
7647 			writeback = false;
7648 		r = 0;
7649 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7650 	} else if (r == EMULATION_RESTART)
7651 		goto restart;
7652 	else
7653 		r = 1;
7654 
7655 	if (writeback) {
7656 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7657 		toggle_interruptibility(vcpu, ctxt->interruptibility);
7658 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7659 		if (!ctxt->have_exception ||
7660 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7661 			kvm_rip_write(vcpu, ctxt->eip);
7662 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7663 				r = kvm_vcpu_do_singlestep(vcpu);
7664 			if (kvm_x86_ops.update_emulated_instruction)
7665 				static_call(kvm_x86_update_emulated_instruction)(vcpu);
7666 			__kvm_set_rflags(vcpu, ctxt->eflags);
7667 		}
7668 
7669 		/*
7670 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7671 		 * do nothing, and it will be requested again as soon as
7672 		 * the shadow expires.  But we still need to check here,
7673 		 * because POPF has no interrupt shadow.
7674 		 */
7675 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7676 			kvm_make_request(KVM_REQ_EVENT, vcpu);
7677 	} else
7678 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7679 
7680 	return r;
7681 }
7682 
7683 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7684 {
7685 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7686 }
7687 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7688 
7689 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7690 					void *insn, int insn_len)
7691 {
7692 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7693 }
7694 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7695 
7696 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7697 {
7698 	vcpu->arch.pio.count = 0;
7699 	return 1;
7700 }
7701 
7702 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7703 {
7704 	vcpu->arch.pio.count = 0;
7705 
7706 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7707 		return 1;
7708 
7709 	return kvm_skip_emulated_instruction(vcpu);
7710 }
7711 
7712 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7713 			    unsigned short port)
7714 {
7715 	unsigned long val = kvm_rax_read(vcpu);
7716 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7717 
7718 	if (ret)
7719 		return ret;
7720 
7721 	/*
7722 	 * Workaround userspace that relies on old KVM behavior of %rip being
7723 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
7724 	 */
7725 	if (port == 0x7e &&
7726 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7727 		vcpu->arch.complete_userspace_io =
7728 			complete_fast_pio_out_port_0x7e;
7729 		kvm_skip_emulated_instruction(vcpu);
7730 	} else {
7731 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7732 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7733 	}
7734 	return 0;
7735 }
7736 
7737 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7738 {
7739 	unsigned long val;
7740 
7741 	/* We should only ever be called with arch.pio.count equal to 1 */
7742 	BUG_ON(vcpu->arch.pio.count != 1);
7743 
7744 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7745 		vcpu->arch.pio.count = 0;
7746 		return 1;
7747 	}
7748 
7749 	/* For size less than 4 we merge, else we zero extend */
7750 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7751 
7752 	/*
7753 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7754 	 * the copy and tracing
7755 	 */
7756 	emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7757 	kvm_rax_write(vcpu, val);
7758 
7759 	return kvm_skip_emulated_instruction(vcpu);
7760 }
7761 
7762 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7763 			   unsigned short port)
7764 {
7765 	unsigned long val;
7766 	int ret;
7767 
7768 	/* For size less than 4 we merge, else we zero extend */
7769 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7770 
7771 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
7772 	if (ret) {
7773 		kvm_rax_write(vcpu, val);
7774 		return ret;
7775 	}
7776 
7777 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7778 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7779 
7780 	return 0;
7781 }
7782 
7783 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7784 {
7785 	int ret;
7786 
7787 	if (in)
7788 		ret = kvm_fast_pio_in(vcpu, size, port);
7789 	else
7790 		ret = kvm_fast_pio_out(vcpu, size, port);
7791 	return ret && kvm_skip_emulated_instruction(vcpu);
7792 }
7793 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7794 
7795 static int kvmclock_cpu_down_prep(unsigned int cpu)
7796 {
7797 	__this_cpu_write(cpu_tsc_khz, 0);
7798 	return 0;
7799 }
7800 
7801 static void tsc_khz_changed(void *data)
7802 {
7803 	struct cpufreq_freqs *freq = data;
7804 	unsigned long khz = 0;
7805 
7806 	if (data)
7807 		khz = freq->new;
7808 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7809 		khz = cpufreq_quick_get(raw_smp_processor_id());
7810 	if (!khz)
7811 		khz = tsc_khz;
7812 	__this_cpu_write(cpu_tsc_khz, khz);
7813 }
7814 
7815 #ifdef CONFIG_X86_64
7816 static void kvm_hyperv_tsc_notifier(void)
7817 {
7818 	struct kvm *kvm;
7819 	struct kvm_vcpu *vcpu;
7820 	int cpu;
7821 	unsigned long flags;
7822 
7823 	mutex_lock(&kvm_lock);
7824 	list_for_each_entry(kvm, &vm_list, vm_list)
7825 		kvm_make_mclock_inprogress_request(kvm);
7826 
7827 	hyperv_stop_tsc_emulation();
7828 
7829 	/* TSC frequency always matches when on Hyper-V */
7830 	for_each_present_cpu(cpu)
7831 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7832 	kvm_max_guest_tsc_khz = tsc_khz;
7833 
7834 	list_for_each_entry(kvm, &vm_list, vm_list) {
7835 		struct kvm_arch *ka = &kvm->arch;
7836 
7837 		spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
7838 		pvclock_update_vm_gtod_copy(kvm);
7839 		spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
7840 
7841 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7842 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7843 
7844 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7845 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7846 	}
7847 	mutex_unlock(&kvm_lock);
7848 }
7849 #endif
7850 
7851 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7852 {
7853 	struct kvm *kvm;
7854 	struct kvm_vcpu *vcpu;
7855 	int i, send_ipi = 0;
7856 
7857 	/*
7858 	 * We allow guests to temporarily run on slowing clocks,
7859 	 * provided we notify them after, or to run on accelerating
7860 	 * clocks, provided we notify them before.  Thus time never
7861 	 * goes backwards.
7862 	 *
7863 	 * However, we have a problem.  We can't atomically update
7864 	 * the frequency of a given CPU from this function; it is
7865 	 * merely a notifier, which can be called from any CPU.
7866 	 * Changing the TSC frequency at arbitrary points in time
7867 	 * requires a recomputation of local variables related to
7868 	 * the TSC for each VCPU.  We must flag these local variables
7869 	 * to be updated and be sure the update takes place with the
7870 	 * new frequency before any guests proceed.
7871 	 *
7872 	 * Unfortunately, the combination of hotplug CPU and frequency
7873 	 * change creates an intractable locking scenario; the order
7874 	 * of when these callouts happen is undefined with respect to
7875 	 * CPU hotplug, and they can race with each other.  As such,
7876 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7877 	 * undefined; you can actually have a CPU frequency change take
7878 	 * place in between the computation of X and the setting of the
7879 	 * variable.  To protect against this problem, all updates of
7880 	 * the per_cpu tsc_khz variable are done in an interrupt
7881 	 * protected IPI, and all callers wishing to update the value
7882 	 * must wait for a synchronous IPI to complete (which is trivial
7883 	 * if the caller is on the CPU already).  This establishes the
7884 	 * necessary total order on variable updates.
7885 	 *
7886 	 * Note that because a guest time update may take place
7887 	 * anytime after the setting of the VCPU's request bit, the
7888 	 * correct TSC value must be set before the request.  However,
7889 	 * to ensure the update actually makes it to any guest which
7890 	 * starts running in hardware virtualization between the set
7891 	 * and the acquisition of the spinlock, we must also ping the
7892 	 * CPU after setting the request bit.
7893 	 *
7894 	 */
7895 
7896 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7897 
7898 	mutex_lock(&kvm_lock);
7899 	list_for_each_entry(kvm, &vm_list, vm_list) {
7900 		kvm_for_each_vcpu(i, vcpu, kvm) {
7901 			if (vcpu->cpu != cpu)
7902 				continue;
7903 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7904 			if (vcpu->cpu != raw_smp_processor_id())
7905 				send_ipi = 1;
7906 		}
7907 	}
7908 	mutex_unlock(&kvm_lock);
7909 
7910 	if (freq->old < freq->new && send_ipi) {
7911 		/*
7912 		 * We upscale the frequency.  Must make the guest
7913 		 * doesn't see old kvmclock values while running with
7914 		 * the new frequency, otherwise we risk the guest sees
7915 		 * time go backwards.
7916 		 *
7917 		 * In case we update the frequency for another cpu
7918 		 * (which might be in guest context) send an interrupt
7919 		 * to kick the cpu out of guest context.  Next time
7920 		 * guest context is entered kvmclock will be updated,
7921 		 * so the guest will not see stale values.
7922 		 */
7923 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7924 	}
7925 }
7926 
7927 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7928 				     void *data)
7929 {
7930 	struct cpufreq_freqs *freq = data;
7931 	int cpu;
7932 
7933 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7934 		return 0;
7935 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7936 		return 0;
7937 
7938 	for_each_cpu(cpu, freq->policy->cpus)
7939 		__kvmclock_cpufreq_notifier(freq, cpu);
7940 
7941 	return 0;
7942 }
7943 
7944 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7945 	.notifier_call  = kvmclock_cpufreq_notifier
7946 };
7947 
7948 static int kvmclock_cpu_online(unsigned int cpu)
7949 {
7950 	tsc_khz_changed(NULL);
7951 	return 0;
7952 }
7953 
7954 static void kvm_timer_init(void)
7955 {
7956 	max_tsc_khz = tsc_khz;
7957 
7958 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7959 #ifdef CONFIG_CPU_FREQ
7960 		struct cpufreq_policy *policy;
7961 		int cpu;
7962 
7963 		cpu = get_cpu();
7964 		policy = cpufreq_cpu_get(cpu);
7965 		if (policy) {
7966 			if (policy->cpuinfo.max_freq)
7967 				max_tsc_khz = policy->cpuinfo.max_freq;
7968 			cpufreq_cpu_put(policy);
7969 		}
7970 		put_cpu();
7971 #endif
7972 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7973 					  CPUFREQ_TRANSITION_NOTIFIER);
7974 	}
7975 
7976 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7977 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
7978 }
7979 
7980 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7981 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7982 
7983 int kvm_is_in_guest(void)
7984 {
7985 	return __this_cpu_read(current_vcpu) != NULL;
7986 }
7987 
7988 static int kvm_is_user_mode(void)
7989 {
7990 	int user_mode = 3;
7991 
7992 	if (__this_cpu_read(current_vcpu))
7993 		user_mode = static_call(kvm_x86_get_cpl)(__this_cpu_read(current_vcpu));
7994 
7995 	return user_mode != 0;
7996 }
7997 
7998 static unsigned long kvm_get_guest_ip(void)
7999 {
8000 	unsigned long ip = 0;
8001 
8002 	if (__this_cpu_read(current_vcpu))
8003 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
8004 
8005 	return ip;
8006 }
8007 
8008 static void kvm_handle_intel_pt_intr(void)
8009 {
8010 	struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
8011 
8012 	kvm_make_request(KVM_REQ_PMI, vcpu);
8013 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8014 			(unsigned long *)&vcpu->arch.pmu.global_status);
8015 }
8016 
8017 static struct perf_guest_info_callbacks kvm_guest_cbs = {
8018 	.is_in_guest		= kvm_is_in_guest,
8019 	.is_user_mode		= kvm_is_user_mode,
8020 	.get_guest_ip		= kvm_get_guest_ip,
8021 	.handle_intel_pt_intr	= kvm_handle_intel_pt_intr,
8022 };
8023 
8024 #ifdef CONFIG_X86_64
8025 static void pvclock_gtod_update_fn(struct work_struct *work)
8026 {
8027 	struct kvm *kvm;
8028 
8029 	struct kvm_vcpu *vcpu;
8030 	int i;
8031 
8032 	mutex_lock(&kvm_lock);
8033 	list_for_each_entry(kvm, &vm_list, vm_list)
8034 		kvm_for_each_vcpu(i, vcpu, kvm)
8035 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8036 	atomic_set(&kvm_guest_has_master_clock, 0);
8037 	mutex_unlock(&kvm_lock);
8038 }
8039 
8040 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8041 
8042 /*
8043  * Notification about pvclock gtod data update.
8044  */
8045 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8046 			       void *priv)
8047 {
8048 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8049 	struct timekeeper *tk = priv;
8050 
8051 	update_pvclock_gtod(tk);
8052 
8053 	/* disable master clock if host does not trust, or does not
8054 	 * use, TSC based clocksource.
8055 	 */
8056 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8057 	    atomic_read(&kvm_guest_has_master_clock) != 0)
8058 		queue_work(system_long_wq, &pvclock_gtod_work);
8059 
8060 	return 0;
8061 }
8062 
8063 static struct notifier_block pvclock_gtod_notifier = {
8064 	.notifier_call = pvclock_gtod_notify,
8065 };
8066 #endif
8067 
8068 int kvm_arch_init(void *opaque)
8069 {
8070 	struct kvm_x86_init_ops *ops = opaque;
8071 	int r;
8072 
8073 	if (kvm_x86_ops.hardware_enable) {
8074 		printk(KERN_ERR "kvm: already loaded the other module\n");
8075 		r = -EEXIST;
8076 		goto out;
8077 	}
8078 
8079 	if (!ops->cpu_has_kvm_support()) {
8080 		pr_err_ratelimited("kvm: no hardware support\n");
8081 		r = -EOPNOTSUPP;
8082 		goto out;
8083 	}
8084 	if (ops->disabled_by_bios()) {
8085 		pr_err_ratelimited("kvm: disabled by bios\n");
8086 		r = -EOPNOTSUPP;
8087 		goto out;
8088 	}
8089 
8090 	/*
8091 	 * KVM explicitly assumes that the guest has an FPU and
8092 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8093 	 * vCPU's FPU state as a fxregs_state struct.
8094 	 */
8095 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8096 		printk(KERN_ERR "kvm: inadequate fpu\n");
8097 		r = -EOPNOTSUPP;
8098 		goto out;
8099 	}
8100 
8101 	r = -ENOMEM;
8102 	x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
8103 					  __alignof__(struct fpu), SLAB_ACCOUNT,
8104 					  NULL);
8105 	if (!x86_fpu_cache) {
8106 		printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
8107 		goto out;
8108 	}
8109 
8110 	x86_emulator_cache = kvm_alloc_emulator_cache();
8111 	if (!x86_emulator_cache) {
8112 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
8113 		goto out_free_x86_fpu_cache;
8114 	}
8115 
8116 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8117 	if (!user_return_msrs) {
8118 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8119 		goto out_free_x86_emulator_cache;
8120 	}
8121 
8122 	r = kvm_mmu_module_init();
8123 	if (r)
8124 		goto out_free_percpu;
8125 
8126 	kvm_timer_init();
8127 
8128 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
8129 
8130 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8131 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8132 		supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8133 	}
8134 
8135 	if (pi_inject_timer == -1)
8136 		pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8137 #ifdef CONFIG_X86_64
8138 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8139 
8140 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8141 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8142 #endif
8143 
8144 	return 0;
8145 
8146 out_free_percpu:
8147 	free_percpu(user_return_msrs);
8148 out_free_x86_emulator_cache:
8149 	kmem_cache_destroy(x86_emulator_cache);
8150 out_free_x86_fpu_cache:
8151 	kmem_cache_destroy(x86_fpu_cache);
8152 out:
8153 	return r;
8154 }
8155 
8156 void kvm_arch_exit(void)
8157 {
8158 #ifdef CONFIG_X86_64
8159 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8160 		clear_hv_tscchange_cb();
8161 #endif
8162 	kvm_lapic_exit();
8163 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
8164 
8165 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8166 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8167 					    CPUFREQ_TRANSITION_NOTIFIER);
8168 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8169 #ifdef CONFIG_X86_64
8170 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8171 #endif
8172 	kvm_x86_ops.hardware_enable = NULL;
8173 	kvm_mmu_module_exit();
8174 	free_percpu(user_return_msrs);
8175 	kmem_cache_destroy(x86_fpu_cache);
8176 #ifdef CONFIG_KVM_XEN
8177 	static_key_deferred_flush(&kvm_xen_enabled);
8178 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8179 #endif
8180 }
8181 
8182 static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason)
8183 {
8184 	++vcpu->stat.halt_exits;
8185 	if (lapic_in_kernel(vcpu)) {
8186 		vcpu->arch.mp_state = state;
8187 		return 1;
8188 	} else {
8189 		vcpu->run->exit_reason = reason;
8190 		return 0;
8191 	}
8192 }
8193 
8194 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8195 {
8196 	return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8197 }
8198 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8199 
8200 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8201 {
8202 	int ret = kvm_skip_emulated_instruction(vcpu);
8203 	/*
8204 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8205 	 * KVM_EXIT_DEBUG here.
8206 	 */
8207 	return kvm_vcpu_halt(vcpu) && ret;
8208 }
8209 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8210 
8211 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8212 {
8213 	int ret = kvm_skip_emulated_instruction(vcpu);
8214 
8215 	return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret;
8216 }
8217 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8218 
8219 #ifdef CONFIG_X86_64
8220 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8221 			        unsigned long clock_type)
8222 {
8223 	struct kvm_clock_pairing clock_pairing;
8224 	struct timespec64 ts;
8225 	u64 cycle;
8226 	int ret;
8227 
8228 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8229 		return -KVM_EOPNOTSUPP;
8230 
8231 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8232 		return -KVM_EOPNOTSUPP;
8233 
8234 	clock_pairing.sec = ts.tv_sec;
8235 	clock_pairing.nsec = ts.tv_nsec;
8236 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8237 	clock_pairing.flags = 0;
8238 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8239 
8240 	ret = 0;
8241 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8242 			    sizeof(struct kvm_clock_pairing)))
8243 		ret = -KVM_EFAULT;
8244 
8245 	return ret;
8246 }
8247 #endif
8248 
8249 /*
8250  * kvm_pv_kick_cpu_op:  Kick a vcpu.
8251  *
8252  * @apicid - apicid of vcpu to be kicked.
8253  */
8254 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8255 {
8256 	struct kvm_lapic_irq lapic_irq;
8257 
8258 	lapic_irq.shorthand = APIC_DEST_NOSHORT;
8259 	lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8260 	lapic_irq.level = 0;
8261 	lapic_irq.dest_id = apicid;
8262 	lapic_irq.msi_redir_hint = false;
8263 
8264 	lapic_irq.delivery_mode = APIC_DM_REMRD;
8265 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8266 }
8267 
8268 bool kvm_apicv_activated(struct kvm *kvm)
8269 {
8270 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8271 }
8272 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8273 
8274 void kvm_apicv_init(struct kvm *kvm, bool enable)
8275 {
8276 	if (enable)
8277 		clear_bit(APICV_INHIBIT_REASON_DISABLE,
8278 			  &kvm->arch.apicv_inhibit_reasons);
8279 	else
8280 		set_bit(APICV_INHIBIT_REASON_DISABLE,
8281 			&kvm->arch.apicv_inhibit_reasons);
8282 }
8283 EXPORT_SYMBOL_GPL(kvm_apicv_init);
8284 
8285 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
8286 {
8287 	struct kvm_vcpu *target = NULL;
8288 	struct kvm_apic_map *map;
8289 
8290 	vcpu->stat.directed_yield_attempted++;
8291 
8292 	rcu_read_lock();
8293 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
8294 
8295 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8296 		target = map->phys_map[dest_id]->vcpu;
8297 
8298 	rcu_read_unlock();
8299 
8300 	if (!target || !READ_ONCE(target->ready))
8301 		goto no_yield;
8302 
8303 	/* Ignore requests to yield to self */
8304 	if (vcpu == target)
8305 		goto no_yield;
8306 
8307 	if (kvm_vcpu_yield_to(target) <= 0)
8308 		goto no_yield;
8309 
8310 	vcpu->stat.directed_yield_successful++;
8311 
8312 no_yield:
8313 	return;
8314 }
8315 
8316 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8317 {
8318 	unsigned long nr, a0, a1, a2, a3, ret;
8319 	int op_64_bit;
8320 
8321 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
8322 		return kvm_xen_hypercall(vcpu);
8323 
8324 	if (kvm_hv_hypercall_enabled(vcpu))
8325 		return kvm_hv_hypercall(vcpu);
8326 
8327 	nr = kvm_rax_read(vcpu);
8328 	a0 = kvm_rbx_read(vcpu);
8329 	a1 = kvm_rcx_read(vcpu);
8330 	a2 = kvm_rdx_read(vcpu);
8331 	a3 = kvm_rsi_read(vcpu);
8332 
8333 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
8334 
8335 	op_64_bit = is_64_bit_mode(vcpu);
8336 	if (!op_64_bit) {
8337 		nr &= 0xFFFFFFFF;
8338 		a0 &= 0xFFFFFFFF;
8339 		a1 &= 0xFFFFFFFF;
8340 		a2 &= 0xFFFFFFFF;
8341 		a3 &= 0xFFFFFFFF;
8342 	}
8343 
8344 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
8345 		ret = -KVM_EPERM;
8346 		goto out;
8347 	}
8348 
8349 	ret = -KVM_ENOSYS;
8350 
8351 	switch (nr) {
8352 	case KVM_HC_VAPIC_POLL_IRQ:
8353 		ret = 0;
8354 		break;
8355 	case KVM_HC_KICK_CPU:
8356 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8357 			break;
8358 
8359 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8360 		kvm_sched_yield(vcpu, a1);
8361 		ret = 0;
8362 		break;
8363 #ifdef CONFIG_X86_64
8364 	case KVM_HC_CLOCK_PAIRING:
8365 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8366 		break;
8367 #endif
8368 	case KVM_HC_SEND_IPI:
8369 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8370 			break;
8371 
8372 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8373 		break;
8374 	case KVM_HC_SCHED_YIELD:
8375 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8376 			break;
8377 
8378 		kvm_sched_yield(vcpu, a0);
8379 		ret = 0;
8380 		break;
8381 	default:
8382 		ret = -KVM_ENOSYS;
8383 		break;
8384 	}
8385 out:
8386 	if (!op_64_bit)
8387 		ret = (u32)ret;
8388 	kvm_rax_write(vcpu, ret);
8389 
8390 	++vcpu->stat.hypercalls;
8391 	return kvm_skip_emulated_instruction(vcpu);
8392 }
8393 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8394 
8395 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8396 {
8397 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8398 	char instruction[3];
8399 	unsigned long rip = kvm_rip_read(vcpu);
8400 
8401 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
8402 
8403 	return emulator_write_emulated(ctxt, rip, instruction, 3,
8404 		&ctxt->exception);
8405 }
8406 
8407 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8408 {
8409 	return vcpu->run->request_interrupt_window &&
8410 		likely(!pic_in_kernel(vcpu->kvm));
8411 }
8412 
8413 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8414 {
8415 	struct kvm_run *kvm_run = vcpu->run;
8416 
8417 	/*
8418 	 * if_flag is obsolete and useless, so do not bother
8419 	 * setting it for SEV-ES guests.  Userspace can just
8420 	 * use kvm_run->ready_for_interrupt_injection.
8421 	 */
8422 	kvm_run->if_flag = !vcpu->arch.guest_state_protected
8423 		&& (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8424 
8425 	kvm_run->cr8 = kvm_get_cr8(vcpu);
8426 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
8427 	kvm_run->ready_for_interrupt_injection =
8428 		pic_in_kernel(vcpu->kvm) ||
8429 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
8430 
8431 	if (is_smm(vcpu))
8432 		kvm_run->flags |= KVM_RUN_X86_SMM;
8433 }
8434 
8435 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8436 {
8437 	int max_irr, tpr;
8438 
8439 	if (!kvm_x86_ops.update_cr8_intercept)
8440 		return;
8441 
8442 	if (!lapic_in_kernel(vcpu))
8443 		return;
8444 
8445 	if (vcpu->arch.apicv_active)
8446 		return;
8447 
8448 	if (!vcpu->arch.apic->vapic_addr)
8449 		max_irr = kvm_lapic_find_highest_irr(vcpu);
8450 	else
8451 		max_irr = -1;
8452 
8453 	if (max_irr != -1)
8454 		max_irr >>= 4;
8455 
8456 	tpr = kvm_lapic_get_cr8(vcpu);
8457 
8458 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
8459 }
8460 
8461 
8462 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
8463 {
8464 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
8465 		return -EIO;
8466 
8467 	if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8468 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
8469 		return 1;
8470 	}
8471 
8472 	return kvm_x86_ops.nested_ops->check_events(vcpu);
8473 }
8474 
8475 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
8476 {
8477 	if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
8478 		vcpu->arch.exception.error_code = false;
8479 	static_call(kvm_x86_queue_exception)(vcpu);
8480 }
8481 
8482 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8483 {
8484 	int r;
8485 	bool can_inject = true;
8486 
8487 	/* try to reinject previous events if any */
8488 
8489 	if (vcpu->arch.exception.injected) {
8490 		kvm_inject_exception(vcpu);
8491 		can_inject = false;
8492 	}
8493 	/*
8494 	 * Do not inject an NMI or interrupt if there is a pending
8495 	 * exception.  Exceptions and interrupts are recognized at
8496 	 * instruction boundaries, i.e. the start of an instruction.
8497 	 * Trap-like exceptions, e.g. #DB, have higher priority than
8498 	 * NMIs and interrupts, i.e. traps are recognized before an
8499 	 * NMI/interrupt that's pending on the same instruction.
8500 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8501 	 * priority, but are only generated (pended) during instruction
8502 	 * execution, i.e. a pending fault-like exception means the
8503 	 * fault occurred on the *previous* instruction and must be
8504 	 * serviced prior to recognizing any new events in order to
8505 	 * fully complete the previous instruction.
8506 	 */
8507 	else if (!vcpu->arch.exception.pending) {
8508 		if (vcpu->arch.nmi_injected) {
8509 			static_call(kvm_x86_set_nmi)(vcpu);
8510 			can_inject = false;
8511 		} else if (vcpu->arch.interrupt.injected) {
8512 			static_call(kvm_x86_set_irq)(vcpu);
8513 			can_inject = false;
8514 		}
8515 	}
8516 
8517 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
8518 		     vcpu->arch.exception.pending);
8519 
8520 	/*
8521 	 * Call check_nested_events() even if we reinjected a previous event
8522 	 * in order for caller to determine if it should require immediate-exit
8523 	 * from L2 to L1 due to pending L1 events which require exit
8524 	 * from L2 to L1.
8525 	 */
8526 	if (is_guest_mode(vcpu)) {
8527 		r = kvm_check_nested_events(vcpu);
8528 		if (r < 0)
8529 			goto busy;
8530 	}
8531 
8532 	/* try to inject new event if pending */
8533 	if (vcpu->arch.exception.pending) {
8534 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
8535 					vcpu->arch.exception.has_error_code,
8536 					vcpu->arch.exception.error_code);
8537 
8538 		vcpu->arch.exception.pending = false;
8539 		vcpu->arch.exception.injected = true;
8540 
8541 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8542 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8543 					     X86_EFLAGS_RF);
8544 
8545 		if (vcpu->arch.exception.nr == DB_VECTOR) {
8546 			kvm_deliver_exception_payload(vcpu);
8547 			if (vcpu->arch.dr7 & DR7_GD) {
8548 				vcpu->arch.dr7 &= ~DR7_GD;
8549 				kvm_update_dr7(vcpu);
8550 			}
8551 		}
8552 
8553 		kvm_inject_exception(vcpu);
8554 		can_inject = false;
8555 	}
8556 
8557 	/*
8558 	 * Finally, inject interrupt events.  If an event cannot be injected
8559 	 * due to architectural conditions (e.g. IF=0) a window-open exit
8560 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
8561 	 * and can architecturally be injected, but we cannot do it right now:
8562 	 * an interrupt could have arrived just now and we have to inject it
8563 	 * as a vmexit, or there could already an event in the queue, which is
8564 	 * indicated by can_inject.  In that case we request an immediate exit
8565 	 * in order to make progress and get back here for another iteration.
8566 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8567 	 */
8568 	if (vcpu->arch.smi_pending) {
8569 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
8570 		if (r < 0)
8571 			goto busy;
8572 		if (r) {
8573 			vcpu->arch.smi_pending = false;
8574 			++vcpu->arch.smi_count;
8575 			enter_smm(vcpu);
8576 			can_inject = false;
8577 		} else
8578 			static_call(kvm_x86_enable_smi_window)(vcpu);
8579 	}
8580 
8581 	if (vcpu->arch.nmi_pending) {
8582 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
8583 		if (r < 0)
8584 			goto busy;
8585 		if (r) {
8586 			--vcpu->arch.nmi_pending;
8587 			vcpu->arch.nmi_injected = true;
8588 			static_call(kvm_x86_set_nmi)(vcpu);
8589 			can_inject = false;
8590 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
8591 		}
8592 		if (vcpu->arch.nmi_pending)
8593 			static_call(kvm_x86_enable_nmi_window)(vcpu);
8594 	}
8595 
8596 	if (kvm_cpu_has_injectable_intr(vcpu)) {
8597 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
8598 		if (r < 0)
8599 			goto busy;
8600 		if (r) {
8601 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8602 			static_call(kvm_x86_set_irq)(vcpu);
8603 			WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
8604 		}
8605 		if (kvm_cpu_has_injectable_intr(vcpu))
8606 			static_call(kvm_x86_enable_irq_window)(vcpu);
8607 	}
8608 
8609 	if (is_guest_mode(vcpu) &&
8610 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
8611 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8612 		*req_immediate_exit = true;
8613 
8614 	WARN_ON(vcpu->arch.exception.pending);
8615 	return;
8616 
8617 busy:
8618 	*req_immediate_exit = true;
8619 	return;
8620 }
8621 
8622 static void process_nmi(struct kvm_vcpu *vcpu)
8623 {
8624 	unsigned limit = 2;
8625 
8626 	/*
8627 	 * x86 is limited to one NMI running, and one NMI pending after it.
8628 	 * If an NMI is already in progress, limit further NMIs to just one.
8629 	 * Otherwise, allow two (and we'll inject the first one immediately).
8630 	 */
8631 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
8632 		limit = 1;
8633 
8634 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
8635 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
8636 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8637 }
8638 
8639 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
8640 {
8641 	u32 flags = 0;
8642 	flags |= seg->g       << 23;
8643 	flags |= seg->db      << 22;
8644 	flags |= seg->l       << 21;
8645 	flags |= seg->avl     << 20;
8646 	flags |= seg->present << 15;
8647 	flags |= seg->dpl     << 13;
8648 	flags |= seg->s       << 12;
8649 	flags |= seg->type    << 8;
8650 	return flags;
8651 }
8652 
8653 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
8654 {
8655 	struct kvm_segment seg;
8656 	int offset;
8657 
8658 	kvm_get_segment(vcpu, &seg, n);
8659 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
8660 
8661 	if (n < 3)
8662 		offset = 0x7f84 + n * 12;
8663 	else
8664 		offset = 0x7f2c + (n - 3) * 12;
8665 
8666 	put_smstate(u32, buf, offset + 8, seg.base);
8667 	put_smstate(u32, buf, offset + 4, seg.limit);
8668 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
8669 }
8670 
8671 #ifdef CONFIG_X86_64
8672 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
8673 {
8674 	struct kvm_segment seg;
8675 	int offset;
8676 	u16 flags;
8677 
8678 	kvm_get_segment(vcpu, &seg, n);
8679 	offset = 0x7e00 + n * 16;
8680 
8681 	flags = enter_smm_get_segment_flags(&seg) >> 8;
8682 	put_smstate(u16, buf, offset, seg.selector);
8683 	put_smstate(u16, buf, offset + 2, flags);
8684 	put_smstate(u32, buf, offset + 4, seg.limit);
8685 	put_smstate(u64, buf, offset + 8, seg.base);
8686 }
8687 #endif
8688 
8689 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
8690 {
8691 	struct desc_ptr dt;
8692 	struct kvm_segment seg;
8693 	unsigned long val;
8694 	int i;
8695 
8696 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
8697 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
8698 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
8699 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
8700 
8701 	for (i = 0; i < 8; i++)
8702 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
8703 
8704 	kvm_get_dr(vcpu, 6, &val);
8705 	put_smstate(u32, buf, 0x7fcc, (u32)val);
8706 	kvm_get_dr(vcpu, 7, &val);
8707 	put_smstate(u32, buf, 0x7fc8, (u32)val);
8708 
8709 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8710 	put_smstate(u32, buf, 0x7fc4, seg.selector);
8711 	put_smstate(u32, buf, 0x7f64, seg.base);
8712 	put_smstate(u32, buf, 0x7f60, seg.limit);
8713 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
8714 
8715 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8716 	put_smstate(u32, buf, 0x7fc0, seg.selector);
8717 	put_smstate(u32, buf, 0x7f80, seg.base);
8718 	put_smstate(u32, buf, 0x7f7c, seg.limit);
8719 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8720 
8721 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
8722 	put_smstate(u32, buf, 0x7f74, dt.address);
8723 	put_smstate(u32, buf, 0x7f70, dt.size);
8724 
8725 	static_call(kvm_x86_get_idt)(vcpu, &dt);
8726 	put_smstate(u32, buf, 0x7f58, dt.address);
8727 	put_smstate(u32, buf, 0x7f54, dt.size);
8728 
8729 	for (i = 0; i < 6; i++)
8730 		enter_smm_save_seg_32(vcpu, buf, i);
8731 
8732 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8733 
8734 	/* revision id */
8735 	put_smstate(u32, buf, 0x7efc, 0x00020000);
8736 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8737 }
8738 
8739 #ifdef CONFIG_X86_64
8740 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8741 {
8742 	struct desc_ptr dt;
8743 	struct kvm_segment seg;
8744 	unsigned long val;
8745 	int i;
8746 
8747 	for (i = 0; i < 16; i++)
8748 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
8749 
8750 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8751 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8752 
8753 	kvm_get_dr(vcpu, 6, &val);
8754 	put_smstate(u64, buf, 0x7f68, val);
8755 	kvm_get_dr(vcpu, 7, &val);
8756 	put_smstate(u64, buf, 0x7f60, val);
8757 
8758 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8759 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8760 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8761 
8762 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8763 
8764 	/* revision id */
8765 	put_smstate(u32, buf, 0x7efc, 0x00020064);
8766 
8767 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8768 
8769 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8770 	put_smstate(u16, buf, 0x7e90, seg.selector);
8771 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8772 	put_smstate(u32, buf, 0x7e94, seg.limit);
8773 	put_smstate(u64, buf, 0x7e98, seg.base);
8774 
8775 	static_call(kvm_x86_get_idt)(vcpu, &dt);
8776 	put_smstate(u32, buf, 0x7e84, dt.size);
8777 	put_smstate(u64, buf, 0x7e88, dt.address);
8778 
8779 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8780 	put_smstate(u16, buf, 0x7e70, seg.selector);
8781 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8782 	put_smstate(u32, buf, 0x7e74, seg.limit);
8783 	put_smstate(u64, buf, 0x7e78, seg.base);
8784 
8785 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
8786 	put_smstate(u32, buf, 0x7e64, dt.size);
8787 	put_smstate(u64, buf, 0x7e68, dt.address);
8788 
8789 	for (i = 0; i < 6; i++)
8790 		enter_smm_save_seg_64(vcpu, buf, i);
8791 }
8792 #endif
8793 
8794 static void enter_smm(struct kvm_vcpu *vcpu)
8795 {
8796 	struct kvm_segment cs, ds;
8797 	struct desc_ptr dt;
8798 	char buf[512];
8799 	u32 cr0;
8800 
8801 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
8802 	memset(buf, 0, 512);
8803 #ifdef CONFIG_X86_64
8804 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8805 		enter_smm_save_state_64(vcpu, buf);
8806 	else
8807 #endif
8808 		enter_smm_save_state_32(vcpu, buf);
8809 
8810 	/*
8811 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
8812 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
8813 	 * the SMM state-save area.
8814 	 */
8815 	static_call(kvm_x86_pre_enter_smm)(vcpu, buf);
8816 
8817 	vcpu->arch.hflags |= HF_SMM_MASK;
8818 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
8819 
8820 	if (static_call(kvm_x86_get_nmi_mask)(vcpu))
8821 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
8822 	else
8823 		static_call(kvm_x86_set_nmi_mask)(vcpu, true);
8824 
8825 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
8826 	kvm_rip_write(vcpu, 0x8000);
8827 
8828 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
8829 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
8830 	vcpu->arch.cr0 = cr0;
8831 
8832 	static_call(kvm_x86_set_cr4)(vcpu, 0);
8833 
8834 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
8835 	dt.address = dt.size = 0;
8836 	static_call(kvm_x86_set_idt)(vcpu, &dt);
8837 
8838 	kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8839 
8840 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8841 	cs.base = vcpu->arch.smbase;
8842 
8843 	ds.selector = 0;
8844 	ds.base = 0;
8845 
8846 	cs.limit    = ds.limit = 0xffffffff;
8847 	cs.type     = ds.type = 0x3;
8848 	cs.dpl      = ds.dpl = 0;
8849 	cs.db       = ds.db = 0;
8850 	cs.s        = ds.s = 1;
8851 	cs.l        = ds.l = 0;
8852 	cs.g        = ds.g = 1;
8853 	cs.avl      = ds.avl = 0;
8854 	cs.present  = ds.present = 1;
8855 	cs.unusable = ds.unusable = 0;
8856 	cs.padding  = ds.padding = 0;
8857 
8858 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8859 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8860 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8861 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8862 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8863 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8864 
8865 #ifdef CONFIG_X86_64
8866 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8867 		static_call(kvm_x86_set_efer)(vcpu, 0);
8868 #endif
8869 
8870 	kvm_update_cpuid_runtime(vcpu);
8871 	kvm_mmu_reset_context(vcpu);
8872 }
8873 
8874 static void process_smi(struct kvm_vcpu *vcpu)
8875 {
8876 	vcpu->arch.smi_pending = true;
8877 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8878 }
8879 
8880 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8881 				       unsigned long *vcpu_bitmap)
8882 {
8883 	cpumask_var_t cpus;
8884 
8885 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8886 
8887 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8888 				    NULL, vcpu_bitmap, cpus);
8889 
8890 	free_cpumask_var(cpus);
8891 }
8892 
8893 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8894 {
8895 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8896 }
8897 
8898 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8899 {
8900 	if (!lapic_in_kernel(vcpu))
8901 		return;
8902 
8903 	vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8904 	kvm_apic_update_apicv(vcpu);
8905 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
8906 }
8907 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8908 
8909 /*
8910  * NOTE: Do not hold any lock prior to calling this.
8911  *
8912  * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8913  * locked, because it calls __x86_set_memory_region() which does
8914  * synchronize_srcu(&kvm->srcu).
8915  */
8916 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8917 {
8918 	struct kvm_vcpu *except;
8919 	unsigned long old, new, expected;
8920 
8921 	if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8922 	    !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
8923 		return;
8924 
8925 	old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8926 	do {
8927 		expected = new = old;
8928 		if (activate)
8929 			__clear_bit(bit, &new);
8930 		else
8931 			__set_bit(bit, &new);
8932 		if (new == old)
8933 			break;
8934 		old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8935 	} while (old != expected);
8936 
8937 	if (!!old == !!new)
8938 		return;
8939 
8940 	trace_kvm_apicv_update_request(activate, bit);
8941 	if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8942 		static_call(kvm_x86_pre_update_apicv_exec_ctrl)(kvm, activate);
8943 
8944 	/*
8945 	 * Sending request to update APICV for all other vcpus,
8946 	 * while update the calling vcpu immediately instead of
8947 	 * waiting for another #VMEXIT to handle the request.
8948 	 */
8949 	except = kvm_get_running_vcpu();
8950 	kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
8951 					 except);
8952 	if (except)
8953 		kvm_vcpu_update_apicv(except);
8954 }
8955 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8956 
8957 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8958 {
8959 	if (!kvm_apic_present(vcpu))
8960 		return;
8961 
8962 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8963 
8964 	if (irqchip_split(vcpu->kvm))
8965 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8966 	else {
8967 		if (vcpu->arch.apicv_active)
8968 			static_call(kvm_x86_sync_pir_to_irr)(vcpu);
8969 		if (ioapic_in_kernel(vcpu->kvm))
8970 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8971 	}
8972 
8973 	if (is_guest_mode(vcpu))
8974 		vcpu->arch.load_eoi_exitmap_pending = true;
8975 	else
8976 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8977 }
8978 
8979 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8980 {
8981 	u64 eoi_exit_bitmap[4];
8982 
8983 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8984 		return;
8985 
8986 	if (to_hv_vcpu(vcpu))
8987 		bitmap_or((ulong *)eoi_exit_bitmap,
8988 			  vcpu->arch.ioapic_handled_vectors,
8989 			  to_hv_synic(vcpu)->vec_bitmap, 256);
8990 
8991 	static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
8992 }
8993 
8994 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8995 					    unsigned long start, unsigned long end)
8996 {
8997 	unsigned long apic_address;
8998 
8999 	/*
9000 	 * The physical address of apic access page is stored in the VMCS.
9001 	 * Update it when it becomes invalid.
9002 	 */
9003 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9004 	if (start <= apic_address && apic_address < end)
9005 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9006 }
9007 
9008 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9009 {
9010 	if (!lapic_in_kernel(vcpu))
9011 		return;
9012 
9013 	if (!kvm_x86_ops.set_apic_access_page_addr)
9014 		return;
9015 
9016 	static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
9017 }
9018 
9019 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9020 {
9021 	smp_send_reschedule(vcpu->cpu);
9022 }
9023 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9024 
9025 /*
9026  * Returns 1 to let vcpu_run() continue the guest execution loop without
9027  * exiting to the userspace.  Otherwise, the value will be returned to the
9028  * userspace.
9029  */
9030 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9031 {
9032 	int r;
9033 	bool req_int_win =
9034 		dm_request_for_irq_injection(vcpu) &&
9035 		kvm_cpu_accept_dm_intr(vcpu);
9036 	fastpath_t exit_fastpath;
9037 
9038 	bool req_immediate_exit = false;
9039 
9040 	/* Forbid vmenter if vcpu dirty ring is soft-full */
9041 	if (unlikely(vcpu->kvm->dirty_ring_size &&
9042 		     kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9043 		vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9044 		trace_kvm_dirty_ring_exit(vcpu);
9045 		r = 0;
9046 		goto out;
9047 	}
9048 
9049 	if (kvm_request_pending(vcpu)) {
9050 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9051 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9052 				r = 0;
9053 				goto out;
9054 			}
9055 		}
9056 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9057 			kvm_mmu_unload(vcpu);
9058 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9059 			__kvm_migrate_timers(vcpu);
9060 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9061 			kvm_gen_update_masterclock(vcpu->kvm);
9062 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9063 			kvm_gen_kvmclock_update(vcpu);
9064 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9065 			r = kvm_guest_time_update(vcpu);
9066 			if (unlikely(r))
9067 				goto out;
9068 		}
9069 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9070 			kvm_mmu_sync_roots(vcpu);
9071 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9072 			kvm_mmu_load_pgd(vcpu);
9073 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9074 			kvm_vcpu_flush_tlb_all(vcpu);
9075 
9076 			/* Flushing all ASIDs flushes the current ASID... */
9077 			kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9078 		}
9079 		if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
9080 			kvm_vcpu_flush_tlb_current(vcpu);
9081 		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu))
9082 			kvm_vcpu_flush_tlb_guest(vcpu);
9083 
9084 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9085 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9086 			r = 0;
9087 			goto out;
9088 		}
9089 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9090 			if (is_guest_mode(vcpu)) {
9091 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
9092 			} else {
9093 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9094 				vcpu->mmio_needed = 0;
9095 				r = 0;
9096 				goto out;
9097 			}
9098 		}
9099 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9100 			/* Page is swapped out. Do synthetic halt */
9101 			vcpu->arch.apf.halted = true;
9102 			r = 1;
9103 			goto out;
9104 		}
9105 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9106 			record_steal_time(vcpu);
9107 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
9108 			process_smi(vcpu);
9109 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
9110 			process_nmi(vcpu);
9111 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
9112 			kvm_pmu_handle_event(vcpu);
9113 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
9114 			kvm_pmu_deliver_pmi(vcpu);
9115 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9116 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9117 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
9118 				     vcpu->arch.ioapic_handled_vectors)) {
9119 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9120 				vcpu->run->eoi.vector =
9121 						vcpu->arch.pending_ioapic_eoi;
9122 				r = 0;
9123 				goto out;
9124 			}
9125 		}
9126 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9127 			vcpu_scan_ioapic(vcpu);
9128 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9129 			vcpu_load_eoi_exitmap(vcpu);
9130 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9131 			kvm_vcpu_reload_apic_access_page(vcpu);
9132 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9133 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9134 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9135 			r = 0;
9136 			goto out;
9137 		}
9138 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9139 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9140 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9141 			r = 0;
9142 			goto out;
9143 		}
9144 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9145 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9146 
9147 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9148 			vcpu->run->hyperv = hv_vcpu->exit;
9149 			r = 0;
9150 			goto out;
9151 		}
9152 
9153 		/*
9154 		 * KVM_REQ_HV_STIMER has to be processed after
9155 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9156 		 * depend on the guest clock being up-to-date
9157 		 */
9158 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9159 			kvm_hv_process_stimers(vcpu);
9160 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9161 			kvm_vcpu_update_apicv(vcpu);
9162 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9163 			kvm_check_async_pf_completion(vcpu);
9164 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9165 			static_call(kvm_x86_msr_filter_changed)(vcpu);
9166 
9167 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9168 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9169 	}
9170 
9171 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9172 	    kvm_xen_has_interrupt(vcpu)) {
9173 		++vcpu->stat.req_event;
9174 		kvm_apic_accept_events(vcpu);
9175 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9176 			r = 1;
9177 			goto out;
9178 		}
9179 
9180 		inject_pending_event(vcpu, &req_immediate_exit);
9181 		if (req_int_win)
9182 			static_call(kvm_x86_enable_irq_window)(vcpu);
9183 
9184 		if (kvm_lapic_enabled(vcpu)) {
9185 			update_cr8_intercept(vcpu);
9186 			kvm_lapic_sync_to_vapic(vcpu);
9187 		}
9188 	}
9189 
9190 	r = kvm_mmu_reload(vcpu);
9191 	if (unlikely(r)) {
9192 		goto cancel_injection;
9193 	}
9194 
9195 	preempt_disable();
9196 
9197 	static_call(kvm_x86_prepare_guest_switch)(vcpu);
9198 
9199 	/*
9200 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
9201 	 * IPI are then delayed after guest entry, which ensures that they
9202 	 * result in virtual interrupt delivery.
9203 	 */
9204 	local_irq_disable();
9205 	vcpu->mode = IN_GUEST_MODE;
9206 
9207 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9208 
9209 	/*
9210 	 * 1) We should set ->mode before checking ->requests.  Please see
9211 	 * the comment in kvm_vcpu_exiting_guest_mode().
9212 	 *
9213 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
9214 	 * pairs with the memory barrier implicit in pi_test_and_set_on
9215 	 * (see vmx_deliver_posted_interrupt).
9216 	 *
9217 	 * 3) This also orders the write to mode from any reads to the page
9218 	 * tables done while the VCPU is running.  Please see the comment
9219 	 * in kvm_flush_remote_tlbs.
9220 	 */
9221 	smp_mb__after_srcu_read_unlock();
9222 
9223 	/*
9224 	 * This handles the case where a posted interrupt was
9225 	 * notified with kvm_vcpu_kick.
9226 	 */
9227 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
9228 		static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9229 
9230 	if (kvm_vcpu_exit_request(vcpu)) {
9231 		vcpu->mode = OUTSIDE_GUEST_MODE;
9232 		smp_wmb();
9233 		local_irq_enable();
9234 		preempt_enable();
9235 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9236 		r = 1;
9237 		goto cancel_injection;
9238 	}
9239 
9240 	if (req_immediate_exit) {
9241 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9242 		static_call(kvm_x86_request_immediate_exit)(vcpu);
9243 	}
9244 
9245 	fpregs_assert_state_consistent();
9246 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
9247 		switch_fpu_return();
9248 
9249 	if (unlikely(vcpu->arch.switch_db_regs)) {
9250 		set_debugreg(0, 7);
9251 		set_debugreg(vcpu->arch.eff_db[0], 0);
9252 		set_debugreg(vcpu->arch.eff_db[1], 1);
9253 		set_debugreg(vcpu->arch.eff_db[2], 2);
9254 		set_debugreg(vcpu->arch.eff_db[3], 3);
9255 		set_debugreg(vcpu->arch.dr6, 6);
9256 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9257 	}
9258 
9259 	for (;;) {
9260 		exit_fastpath = static_call(kvm_x86_run)(vcpu);
9261 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
9262 			break;
9263 
9264                 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
9265 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
9266 			break;
9267 		}
9268 
9269 		if (vcpu->arch.apicv_active)
9270 			static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9271         }
9272 
9273 	/*
9274 	 * Do this here before restoring debug registers on the host.  And
9275 	 * since we do this before handling the vmexit, a DR access vmexit
9276 	 * can (a) read the correct value of the debug registers, (b) set
9277 	 * KVM_DEBUGREG_WONT_EXIT again.
9278 	 */
9279 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9280 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9281 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
9282 		kvm_update_dr0123(vcpu);
9283 		kvm_update_dr7(vcpu);
9284 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9285 	}
9286 
9287 	/*
9288 	 * If the guest has used debug registers, at least dr7
9289 	 * will be disabled while returning to the host.
9290 	 * If we don't have active breakpoints in the host, we don't
9291 	 * care about the messed up debug address registers. But if
9292 	 * we have some of them active, restore the old state.
9293 	 */
9294 	if (hw_breakpoint_active())
9295 		hw_breakpoint_restore();
9296 
9297 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9298 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9299 
9300 	vcpu->mode = OUTSIDE_GUEST_MODE;
9301 	smp_wmb();
9302 
9303 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
9304 
9305 	/*
9306 	 * Consume any pending interrupts, including the possible source of
9307 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9308 	 * An instruction is required after local_irq_enable() to fully unblock
9309 	 * interrupts on processors that implement an interrupt shadow, the
9310 	 * stat.exits increment will do nicely.
9311 	 */
9312 	kvm_before_interrupt(vcpu);
9313 	local_irq_enable();
9314 	++vcpu->stat.exits;
9315 	local_irq_disable();
9316 	kvm_after_interrupt(vcpu);
9317 
9318 	/*
9319 	 * Wait until after servicing IRQs to account guest time so that any
9320 	 * ticks that occurred while running the guest are properly accounted
9321 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
9322 	 * of accounting via context tracking, but the loss of accuracy is
9323 	 * acceptable for all known use cases.
9324 	 */
9325 	vtime_account_guest_exit();
9326 
9327 	if (lapic_in_kernel(vcpu)) {
9328 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9329 		if (delta != S64_MIN) {
9330 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9331 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9332 		}
9333 	}
9334 
9335 	local_irq_enable();
9336 	preempt_enable();
9337 
9338 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9339 
9340 	/*
9341 	 * Profile KVM exit RIPs:
9342 	 */
9343 	if (unlikely(prof_on == KVM_PROFILING)) {
9344 		unsigned long rip = kvm_rip_read(vcpu);
9345 		profile_hit(KVM_PROFILING, (void *)rip);
9346 	}
9347 
9348 	if (unlikely(vcpu->arch.tsc_always_catchup))
9349 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9350 
9351 	if (vcpu->arch.apic_attention)
9352 		kvm_lapic_sync_from_vapic(vcpu);
9353 
9354 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
9355 	return r;
9356 
9357 cancel_injection:
9358 	if (req_immediate_exit)
9359 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9360 	static_call(kvm_x86_cancel_injection)(vcpu);
9361 	if (unlikely(vcpu->arch.apic_attention))
9362 		kvm_lapic_sync_from_vapic(vcpu);
9363 out:
9364 	return r;
9365 }
9366 
9367 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9368 {
9369 	if (!kvm_arch_vcpu_runnable(vcpu) &&
9370 	    (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) {
9371 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9372 		kvm_vcpu_block(vcpu);
9373 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9374 
9375 		if (kvm_x86_ops.post_block)
9376 			static_call(kvm_x86_post_block)(vcpu);
9377 
9378 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9379 			return 1;
9380 	}
9381 
9382 	kvm_apic_accept_events(vcpu);
9383 	switch(vcpu->arch.mp_state) {
9384 	case KVM_MP_STATE_HALTED:
9385 	case KVM_MP_STATE_AP_RESET_HOLD:
9386 		vcpu->arch.pv.pv_unhalted = false;
9387 		vcpu->arch.mp_state =
9388 			KVM_MP_STATE_RUNNABLE;
9389 		fallthrough;
9390 	case KVM_MP_STATE_RUNNABLE:
9391 		vcpu->arch.apf.halted = false;
9392 		break;
9393 	case KVM_MP_STATE_INIT_RECEIVED:
9394 		break;
9395 	default:
9396 		return -EINTR;
9397 	}
9398 	return 1;
9399 }
9400 
9401 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9402 {
9403 	if (is_guest_mode(vcpu))
9404 		kvm_check_nested_events(vcpu);
9405 
9406 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9407 		!vcpu->arch.apf.halted);
9408 }
9409 
9410 static int vcpu_run(struct kvm_vcpu *vcpu)
9411 {
9412 	int r;
9413 	struct kvm *kvm = vcpu->kvm;
9414 
9415 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9416 	vcpu->arch.l1tf_flush_l1d = true;
9417 
9418 	for (;;) {
9419 		if (kvm_vcpu_running(vcpu)) {
9420 			r = vcpu_enter_guest(vcpu);
9421 		} else {
9422 			r = vcpu_block(kvm, vcpu);
9423 		}
9424 
9425 		if (r <= 0)
9426 			break;
9427 
9428 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
9429 		if (kvm_cpu_has_pending_timer(vcpu))
9430 			kvm_inject_pending_timer_irqs(vcpu);
9431 
9432 		if (dm_request_for_irq_injection(vcpu) &&
9433 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9434 			r = 0;
9435 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9436 			++vcpu->stat.request_irq_exits;
9437 			break;
9438 		}
9439 
9440 		if (__xfer_to_guest_mode_work_pending()) {
9441 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9442 			r = xfer_to_guest_mode_handle_work(vcpu);
9443 			if (r)
9444 				return r;
9445 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9446 		}
9447 	}
9448 
9449 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9450 
9451 	return r;
9452 }
9453 
9454 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9455 {
9456 	int r;
9457 
9458 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9459 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9460 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9461 	return r;
9462 }
9463 
9464 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9465 {
9466 	BUG_ON(!vcpu->arch.pio.count);
9467 
9468 	return complete_emulated_io(vcpu);
9469 }
9470 
9471 /*
9472  * Implements the following, as a state machine:
9473  *
9474  * read:
9475  *   for each fragment
9476  *     for each mmio piece in the fragment
9477  *       write gpa, len
9478  *       exit
9479  *       copy data
9480  *   execute insn
9481  *
9482  * write:
9483  *   for each fragment
9484  *     for each mmio piece in the fragment
9485  *       write gpa, len
9486  *       copy data
9487  *       exit
9488  */
9489 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9490 {
9491 	struct kvm_run *run = vcpu->run;
9492 	struct kvm_mmio_fragment *frag;
9493 	unsigned len;
9494 
9495 	BUG_ON(!vcpu->mmio_needed);
9496 
9497 	/* Complete previous fragment */
9498 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9499 	len = min(8u, frag->len);
9500 	if (!vcpu->mmio_is_write)
9501 		memcpy(frag->data, run->mmio.data, len);
9502 
9503 	if (frag->len <= 8) {
9504 		/* Switch to the next fragment. */
9505 		frag++;
9506 		vcpu->mmio_cur_fragment++;
9507 	} else {
9508 		/* Go forward to the next mmio piece. */
9509 		frag->data += len;
9510 		frag->gpa += len;
9511 		frag->len -= len;
9512 	}
9513 
9514 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9515 		vcpu->mmio_needed = 0;
9516 
9517 		/* FIXME: return into emulator if single-stepping.  */
9518 		if (vcpu->mmio_is_write)
9519 			return 1;
9520 		vcpu->mmio_read_completed = 1;
9521 		return complete_emulated_io(vcpu);
9522 	}
9523 
9524 	run->exit_reason = KVM_EXIT_MMIO;
9525 	run->mmio.phys_addr = frag->gpa;
9526 	if (vcpu->mmio_is_write)
9527 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9528 	run->mmio.len = min(8u, frag->len);
9529 	run->mmio.is_write = vcpu->mmio_is_write;
9530 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9531 	return 0;
9532 }
9533 
9534 static void kvm_save_current_fpu(struct fpu *fpu)
9535 {
9536 	/*
9537 	 * If the target FPU state is not resident in the CPU registers, just
9538 	 * memcpy() from current, else save CPU state directly to the target.
9539 	 */
9540 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
9541 		memcpy(&fpu->state, &current->thread.fpu.state,
9542 		       fpu_kernel_xstate_size);
9543 	else
9544 		copy_fpregs_to_fpstate(fpu);
9545 }
9546 
9547 /* Swap (qemu) user FPU context for the guest FPU context. */
9548 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9549 {
9550 	fpregs_lock();
9551 
9552 	kvm_save_current_fpu(vcpu->arch.user_fpu);
9553 
9554 	/*
9555 	 * Guests with protected state can't have it set by the hypervisor,
9556 	 * so skip trying to set it.
9557 	 */
9558 	if (vcpu->arch.guest_fpu)
9559 		/* PKRU is separately restored in kvm_x86_ops.run. */
9560 		__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
9561 					~XFEATURE_MASK_PKRU);
9562 
9563 	fpregs_mark_activate();
9564 	fpregs_unlock();
9565 
9566 	trace_kvm_fpu(1);
9567 }
9568 
9569 /* When vcpu_run ends, restore user space FPU context. */
9570 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9571 {
9572 	fpregs_lock();
9573 
9574 	/*
9575 	 * Guests with protected state can't have it read by the hypervisor,
9576 	 * so skip trying to save it.
9577 	 */
9578 	if (vcpu->arch.guest_fpu)
9579 		kvm_save_current_fpu(vcpu->arch.guest_fpu);
9580 
9581 	copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
9582 
9583 	fpregs_mark_activate();
9584 	fpregs_unlock();
9585 
9586 	++vcpu->stat.fpu_reload;
9587 	trace_kvm_fpu(0);
9588 }
9589 
9590 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9591 {
9592 	struct kvm_run *kvm_run = vcpu->run;
9593 	int r;
9594 
9595 	vcpu_load(vcpu);
9596 	kvm_sigset_activate(vcpu);
9597 	kvm_run->flags = 0;
9598 	kvm_load_guest_fpu(vcpu);
9599 
9600 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9601 		if (kvm_run->immediate_exit) {
9602 			r = -EINTR;
9603 			goto out;
9604 		}
9605 		kvm_vcpu_block(vcpu);
9606 		kvm_apic_accept_events(vcpu);
9607 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9608 		r = -EAGAIN;
9609 		if (signal_pending(current)) {
9610 			r = -EINTR;
9611 			kvm_run->exit_reason = KVM_EXIT_INTR;
9612 			++vcpu->stat.signal_exits;
9613 		}
9614 		goto out;
9615 	}
9616 
9617 	if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
9618 		r = -EINVAL;
9619 		goto out;
9620 	}
9621 
9622 	if (kvm_run->kvm_dirty_regs) {
9623 		r = sync_regs(vcpu);
9624 		if (r != 0)
9625 			goto out;
9626 	}
9627 
9628 	/* re-sync apic's tpr */
9629 	if (!lapic_in_kernel(vcpu)) {
9630 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
9631 			r = -EINVAL;
9632 			goto out;
9633 		}
9634 	}
9635 
9636 	if (unlikely(vcpu->arch.complete_userspace_io)) {
9637 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
9638 		vcpu->arch.complete_userspace_io = NULL;
9639 		r = cui(vcpu);
9640 		if (r <= 0)
9641 			goto out;
9642 	} else
9643 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
9644 
9645 	if (kvm_run->immediate_exit)
9646 		r = -EINTR;
9647 	else
9648 		r = vcpu_run(vcpu);
9649 
9650 out:
9651 	kvm_put_guest_fpu(vcpu);
9652 	if (kvm_run->kvm_valid_regs)
9653 		store_regs(vcpu);
9654 	post_kvm_run_save(vcpu);
9655 	kvm_sigset_deactivate(vcpu);
9656 
9657 	vcpu_put(vcpu);
9658 	return r;
9659 }
9660 
9661 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9662 {
9663 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
9664 		/*
9665 		 * We are here if userspace calls get_regs() in the middle of
9666 		 * instruction emulation. Registers state needs to be copied
9667 		 * back from emulation context to vcpu. Userspace shouldn't do
9668 		 * that usually, but some bad designed PV devices (vmware
9669 		 * backdoor interface) need this to work
9670 		 */
9671 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
9672 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9673 	}
9674 	regs->rax = kvm_rax_read(vcpu);
9675 	regs->rbx = kvm_rbx_read(vcpu);
9676 	regs->rcx = kvm_rcx_read(vcpu);
9677 	regs->rdx = kvm_rdx_read(vcpu);
9678 	regs->rsi = kvm_rsi_read(vcpu);
9679 	regs->rdi = kvm_rdi_read(vcpu);
9680 	regs->rsp = kvm_rsp_read(vcpu);
9681 	regs->rbp = kvm_rbp_read(vcpu);
9682 #ifdef CONFIG_X86_64
9683 	regs->r8 = kvm_r8_read(vcpu);
9684 	regs->r9 = kvm_r9_read(vcpu);
9685 	regs->r10 = kvm_r10_read(vcpu);
9686 	regs->r11 = kvm_r11_read(vcpu);
9687 	regs->r12 = kvm_r12_read(vcpu);
9688 	regs->r13 = kvm_r13_read(vcpu);
9689 	regs->r14 = kvm_r14_read(vcpu);
9690 	regs->r15 = kvm_r15_read(vcpu);
9691 #endif
9692 
9693 	regs->rip = kvm_rip_read(vcpu);
9694 	regs->rflags = kvm_get_rflags(vcpu);
9695 }
9696 
9697 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9698 {
9699 	vcpu_load(vcpu);
9700 	__get_regs(vcpu, regs);
9701 	vcpu_put(vcpu);
9702 	return 0;
9703 }
9704 
9705 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9706 {
9707 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
9708 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9709 
9710 	kvm_rax_write(vcpu, regs->rax);
9711 	kvm_rbx_write(vcpu, regs->rbx);
9712 	kvm_rcx_write(vcpu, regs->rcx);
9713 	kvm_rdx_write(vcpu, regs->rdx);
9714 	kvm_rsi_write(vcpu, regs->rsi);
9715 	kvm_rdi_write(vcpu, regs->rdi);
9716 	kvm_rsp_write(vcpu, regs->rsp);
9717 	kvm_rbp_write(vcpu, regs->rbp);
9718 #ifdef CONFIG_X86_64
9719 	kvm_r8_write(vcpu, regs->r8);
9720 	kvm_r9_write(vcpu, regs->r9);
9721 	kvm_r10_write(vcpu, regs->r10);
9722 	kvm_r11_write(vcpu, regs->r11);
9723 	kvm_r12_write(vcpu, regs->r12);
9724 	kvm_r13_write(vcpu, regs->r13);
9725 	kvm_r14_write(vcpu, regs->r14);
9726 	kvm_r15_write(vcpu, regs->r15);
9727 #endif
9728 
9729 	kvm_rip_write(vcpu, regs->rip);
9730 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
9731 
9732 	vcpu->arch.exception.pending = false;
9733 
9734 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9735 }
9736 
9737 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9738 {
9739 	vcpu_load(vcpu);
9740 	__set_regs(vcpu, regs);
9741 	vcpu_put(vcpu);
9742 	return 0;
9743 }
9744 
9745 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
9746 {
9747 	struct kvm_segment cs;
9748 
9749 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9750 	*db = cs.db;
9751 	*l = cs.l;
9752 }
9753 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
9754 
9755 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9756 {
9757 	struct desc_ptr dt;
9758 
9759 	if (vcpu->arch.guest_state_protected)
9760 		goto skip_protected_regs;
9761 
9762 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9763 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9764 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9765 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9766 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9767 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9768 
9769 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9770 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9771 
9772 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9773 	sregs->idt.limit = dt.size;
9774 	sregs->idt.base = dt.address;
9775 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
9776 	sregs->gdt.limit = dt.size;
9777 	sregs->gdt.base = dt.address;
9778 
9779 	sregs->cr2 = vcpu->arch.cr2;
9780 	sregs->cr3 = kvm_read_cr3(vcpu);
9781 
9782 skip_protected_regs:
9783 	sregs->cr0 = kvm_read_cr0(vcpu);
9784 	sregs->cr4 = kvm_read_cr4(vcpu);
9785 	sregs->cr8 = kvm_get_cr8(vcpu);
9786 	sregs->efer = vcpu->arch.efer;
9787 	sregs->apic_base = kvm_get_apic_base(vcpu);
9788 
9789 	memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
9790 
9791 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
9792 		set_bit(vcpu->arch.interrupt.nr,
9793 			(unsigned long *)sregs->interrupt_bitmap);
9794 }
9795 
9796 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
9797 				  struct kvm_sregs *sregs)
9798 {
9799 	vcpu_load(vcpu);
9800 	__get_sregs(vcpu, sregs);
9801 	vcpu_put(vcpu);
9802 	return 0;
9803 }
9804 
9805 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
9806 				    struct kvm_mp_state *mp_state)
9807 {
9808 	vcpu_load(vcpu);
9809 	if (kvm_mpx_supported())
9810 		kvm_load_guest_fpu(vcpu);
9811 
9812 	kvm_apic_accept_events(vcpu);
9813 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
9814 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
9815 	    vcpu->arch.pv.pv_unhalted)
9816 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
9817 	else
9818 		mp_state->mp_state = vcpu->arch.mp_state;
9819 
9820 	if (kvm_mpx_supported())
9821 		kvm_put_guest_fpu(vcpu);
9822 	vcpu_put(vcpu);
9823 	return 0;
9824 }
9825 
9826 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
9827 				    struct kvm_mp_state *mp_state)
9828 {
9829 	int ret = -EINVAL;
9830 
9831 	vcpu_load(vcpu);
9832 
9833 	if (!lapic_in_kernel(vcpu) &&
9834 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
9835 		goto out;
9836 
9837 	/*
9838 	 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
9839 	 * INIT state; latched init should be reported using
9840 	 * KVM_SET_VCPU_EVENTS, so reject it here.
9841 	 */
9842 	if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
9843 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
9844 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
9845 		goto out;
9846 
9847 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
9848 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
9849 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
9850 	} else
9851 		vcpu->arch.mp_state = mp_state->mp_state;
9852 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9853 
9854 	ret = 0;
9855 out:
9856 	vcpu_put(vcpu);
9857 	return ret;
9858 }
9859 
9860 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
9861 		    int reason, bool has_error_code, u32 error_code)
9862 {
9863 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9864 	int ret;
9865 
9866 	init_emulate_ctxt(vcpu);
9867 
9868 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9869 				   has_error_code, error_code);
9870 	if (ret) {
9871 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9872 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9873 		vcpu->run->internal.ndata = 0;
9874 		return 0;
9875 	}
9876 
9877 	kvm_rip_write(vcpu, ctxt->eip);
9878 	kvm_set_rflags(vcpu, ctxt->eflags);
9879 	return 1;
9880 }
9881 EXPORT_SYMBOL_GPL(kvm_task_switch);
9882 
9883 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9884 {
9885 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9886 		/*
9887 		 * When EFER.LME and CR0.PG are set, the processor is in
9888 		 * 64-bit mode (though maybe in a 32-bit code segment).
9889 		 * CR4.PAE and EFER.LMA must be set.
9890 		 */
9891 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
9892 			return false;
9893 		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
9894 			return false;
9895 	} else {
9896 		/*
9897 		 * Not in 64-bit mode: EFER.LMA is clear and the code
9898 		 * segment cannot be 64-bit.
9899 		 */
9900 		if (sregs->efer & EFER_LMA || sregs->cs.l)
9901 			return false;
9902 	}
9903 
9904 	return kvm_is_valid_cr4(vcpu, sregs->cr4);
9905 }
9906 
9907 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9908 {
9909 	struct msr_data apic_base_msr;
9910 	int mmu_reset_needed = 0;
9911 	int pending_vec, max_bits, idx;
9912 	struct desc_ptr dt;
9913 	int ret = -EINVAL;
9914 
9915 	if (!kvm_is_valid_sregs(vcpu, sregs))
9916 		goto out;
9917 
9918 	apic_base_msr.data = sregs->apic_base;
9919 	apic_base_msr.host_initiated = true;
9920 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
9921 		goto out;
9922 
9923 	if (vcpu->arch.guest_state_protected)
9924 		goto skip_protected_regs;
9925 
9926 	dt.size = sregs->idt.limit;
9927 	dt.address = sregs->idt.base;
9928 	static_call(kvm_x86_set_idt)(vcpu, &dt);
9929 	dt.size = sregs->gdt.limit;
9930 	dt.address = sregs->gdt.base;
9931 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
9932 
9933 	vcpu->arch.cr2 = sregs->cr2;
9934 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9935 	vcpu->arch.cr3 = sregs->cr3;
9936 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9937 
9938 	kvm_set_cr8(vcpu, sregs->cr8);
9939 
9940 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9941 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
9942 
9943 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9944 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
9945 	vcpu->arch.cr0 = sregs->cr0;
9946 
9947 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9948 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
9949 
9950 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9951 	if (is_pae_paging(vcpu)) {
9952 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9953 		mmu_reset_needed = 1;
9954 	}
9955 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9956 
9957 	if (mmu_reset_needed)
9958 		kvm_mmu_reset_context(vcpu);
9959 
9960 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9961 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9962 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9963 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9964 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9965 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9966 
9967 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9968 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9969 
9970 	update_cr8_intercept(vcpu);
9971 
9972 	/* Older userspace won't unhalt the vcpu on reset. */
9973 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9974 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9975 	    !is_protmode(vcpu))
9976 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9977 
9978 skip_protected_regs:
9979 	max_bits = KVM_NR_INTERRUPTS;
9980 	pending_vec = find_first_bit(
9981 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
9982 	if (pending_vec < max_bits) {
9983 		kvm_queue_interrupt(vcpu, pending_vec, false);
9984 		pr_debug("Set back pending irq %d\n", pending_vec);
9985 	}
9986 
9987 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9988 
9989 	ret = 0;
9990 out:
9991 	return ret;
9992 }
9993 
9994 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9995 				  struct kvm_sregs *sregs)
9996 {
9997 	int ret;
9998 
9999 	vcpu_load(vcpu);
10000 	ret = __set_sregs(vcpu, sregs);
10001 	vcpu_put(vcpu);
10002 	return ret;
10003 }
10004 
10005 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10006 					struct kvm_guest_debug *dbg)
10007 {
10008 	unsigned long rflags;
10009 	int i, r;
10010 
10011 	if (vcpu->arch.guest_state_protected)
10012 		return -EINVAL;
10013 
10014 	vcpu_load(vcpu);
10015 
10016 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10017 		r = -EBUSY;
10018 		if (vcpu->arch.exception.pending)
10019 			goto out;
10020 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10021 			kvm_queue_exception(vcpu, DB_VECTOR);
10022 		else
10023 			kvm_queue_exception(vcpu, BP_VECTOR);
10024 	}
10025 
10026 	/*
10027 	 * Read rflags as long as potentially injected trace flags are still
10028 	 * filtered out.
10029 	 */
10030 	rflags = kvm_get_rflags(vcpu);
10031 
10032 	vcpu->guest_debug = dbg->control;
10033 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10034 		vcpu->guest_debug = 0;
10035 
10036 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10037 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
10038 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10039 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10040 	} else {
10041 		for (i = 0; i < KVM_NR_DB_REGS; i++)
10042 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10043 	}
10044 	kvm_update_dr7(vcpu);
10045 
10046 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10047 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
10048 			get_segment_base(vcpu, VCPU_SREG_CS);
10049 
10050 	/*
10051 	 * Trigger an rflags update that will inject or remove the trace
10052 	 * flags.
10053 	 */
10054 	kvm_set_rflags(vcpu, rflags);
10055 
10056 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
10057 
10058 	r = 0;
10059 
10060 out:
10061 	vcpu_put(vcpu);
10062 	return r;
10063 }
10064 
10065 /*
10066  * Translate a guest virtual address to a guest physical address.
10067  */
10068 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10069 				    struct kvm_translation *tr)
10070 {
10071 	unsigned long vaddr = tr->linear_address;
10072 	gpa_t gpa;
10073 	int idx;
10074 
10075 	vcpu_load(vcpu);
10076 
10077 	idx = srcu_read_lock(&vcpu->kvm->srcu);
10078 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10079 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
10080 	tr->physical_address = gpa;
10081 	tr->valid = gpa != UNMAPPED_GVA;
10082 	tr->writeable = 1;
10083 	tr->usermode = 0;
10084 
10085 	vcpu_put(vcpu);
10086 	return 0;
10087 }
10088 
10089 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10090 {
10091 	struct fxregs_state *fxsave;
10092 
10093 	if (!vcpu->arch.guest_fpu)
10094 		return 0;
10095 
10096 	vcpu_load(vcpu);
10097 
10098 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10099 	memcpy(fpu->fpr, fxsave->st_space, 128);
10100 	fpu->fcw = fxsave->cwd;
10101 	fpu->fsw = fxsave->swd;
10102 	fpu->ftwx = fxsave->twd;
10103 	fpu->last_opcode = fxsave->fop;
10104 	fpu->last_ip = fxsave->rip;
10105 	fpu->last_dp = fxsave->rdp;
10106 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
10107 
10108 	vcpu_put(vcpu);
10109 	return 0;
10110 }
10111 
10112 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10113 {
10114 	struct fxregs_state *fxsave;
10115 
10116 	if (!vcpu->arch.guest_fpu)
10117 		return 0;
10118 
10119 	vcpu_load(vcpu);
10120 
10121 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10122 
10123 	memcpy(fxsave->st_space, fpu->fpr, 128);
10124 	fxsave->cwd = fpu->fcw;
10125 	fxsave->swd = fpu->fsw;
10126 	fxsave->twd = fpu->ftwx;
10127 	fxsave->fop = fpu->last_opcode;
10128 	fxsave->rip = fpu->last_ip;
10129 	fxsave->rdp = fpu->last_dp;
10130 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
10131 
10132 	vcpu_put(vcpu);
10133 	return 0;
10134 }
10135 
10136 static void store_regs(struct kvm_vcpu *vcpu)
10137 {
10138 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10139 
10140 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10141 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
10142 
10143 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10144 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10145 
10146 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10147 		kvm_vcpu_ioctl_x86_get_vcpu_events(
10148 				vcpu, &vcpu->run->s.regs.events);
10149 }
10150 
10151 static int sync_regs(struct kvm_vcpu *vcpu)
10152 {
10153 	if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
10154 		return -EINVAL;
10155 
10156 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10157 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
10158 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10159 	}
10160 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10161 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10162 			return -EINVAL;
10163 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10164 	}
10165 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10166 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10167 				vcpu, &vcpu->run->s.regs.events))
10168 			return -EINVAL;
10169 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10170 	}
10171 
10172 	return 0;
10173 }
10174 
10175 static void fx_init(struct kvm_vcpu *vcpu)
10176 {
10177 	if (!vcpu->arch.guest_fpu)
10178 		return;
10179 
10180 	fpstate_init(&vcpu->arch.guest_fpu->state);
10181 	if (boot_cpu_has(X86_FEATURE_XSAVES))
10182 		vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
10183 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
10184 
10185 	/*
10186 	 * Ensure guest xcr0 is valid for loading
10187 	 */
10188 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10189 
10190 	vcpu->arch.cr0 |= X86_CR0_ET;
10191 }
10192 
10193 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu)
10194 {
10195 	if (vcpu->arch.guest_fpu) {
10196 		kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10197 		vcpu->arch.guest_fpu = NULL;
10198 	}
10199 }
10200 EXPORT_SYMBOL_GPL(kvm_free_guest_fpu);
10201 
10202 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10203 {
10204 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10205 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10206 			     "guest TSC will not be reliable\n");
10207 
10208 	return 0;
10209 }
10210 
10211 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10212 {
10213 	struct page *page;
10214 	int r;
10215 
10216 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10217 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10218 	else
10219 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10220 
10221 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
10222 
10223 	r = kvm_mmu_create(vcpu);
10224 	if (r < 0)
10225 		return r;
10226 
10227 	if (irqchip_in_kernel(vcpu->kvm)) {
10228 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10229 		if (r < 0)
10230 			goto fail_mmu_destroy;
10231 		if (kvm_apicv_activated(vcpu->kvm))
10232 			vcpu->arch.apicv_active = true;
10233 	} else
10234 		static_branch_inc(&kvm_has_noapic_vcpu);
10235 
10236 	r = -ENOMEM;
10237 
10238 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
10239 	if (!page)
10240 		goto fail_free_lapic;
10241 	vcpu->arch.pio_data = page_address(page);
10242 
10243 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10244 				       GFP_KERNEL_ACCOUNT);
10245 	if (!vcpu->arch.mce_banks)
10246 		goto fail_free_pio_data;
10247 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10248 
10249 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10250 				GFP_KERNEL_ACCOUNT))
10251 		goto fail_free_mce_banks;
10252 
10253 	if (!alloc_emulate_ctxt(vcpu))
10254 		goto free_wbinvd_dirty_mask;
10255 
10256 	vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
10257 						GFP_KERNEL_ACCOUNT);
10258 	if (!vcpu->arch.user_fpu) {
10259 		pr_err("kvm: failed to allocate userspace's fpu\n");
10260 		goto free_emulate_ctxt;
10261 	}
10262 
10263 	vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
10264 						 GFP_KERNEL_ACCOUNT);
10265 	if (!vcpu->arch.guest_fpu) {
10266 		pr_err("kvm: failed to allocate vcpu's fpu\n");
10267 		goto free_user_fpu;
10268 	}
10269 	fx_init(vcpu);
10270 
10271 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10272 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
10273 
10274 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10275 
10276 	kvm_async_pf_hash_reset(vcpu);
10277 	kvm_pmu_init(vcpu);
10278 
10279 	vcpu->arch.pending_external_vector = -1;
10280 	vcpu->arch.preempted_in_kernel = false;
10281 
10282 	r = static_call(kvm_x86_vcpu_create)(vcpu);
10283 	if (r)
10284 		goto free_guest_fpu;
10285 
10286 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10287 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10288 	kvm_vcpu_mtrr_init(vcpu);
10289 	vcpu_load(vcpu);
10290 	kvm_vcpu_reset(vcpu, false);
10291 	kvm_init_mmu(vcpu, false);
10292 	vcpu_put(vcpu);
10293 	return 0;
10294 
10295 free_guest_fpu:
10296 	kvm_free_guest_fpu(vcpu);
10297 free_user_fpu:
10298 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10299 free_emulate_ctxt:
10300 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10301 free_wbinvd_dirty_mask:
10302 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10303 fail_free_mce_banks:
10304 	kfree(vcpu->arch.mce_banks);
10305 fail_free_pio_data:
10306 	free_page((unsigned long)vcpu->arch.pio_data);
10307 fail_free_lapic:
10308 	kvm_free_lapic(vcpu);
10309 fail_mmu_destroy:
10310 	kvm_mmu_destroy(vcpu);
10311 	return r;
10312 }
10313 
10314 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10315 {
10316 	struct kvm *kvm = vcpu->kvm;
10317 
10318 	if (mutex_lock_killable(&vcpu->mutex))
10319 		return;
10320 	vcpu_load(vcpu);
10321 	kvm_synchronize_tsc(vcpu, 0);
10322 	vcpu_put(vcpu);
10323 
10324 	/* poll control enabled by default */
10325 	vcpu->arch.msr_kvm_poll_control = 1;
10326 
10327 	mutex_unlock(&vcpu->mutex);
10328 
10329 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10330 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10331 						KVMCLOCK_SYNC_PERIOD);
10332 }
10333 
10334 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10335 {
10336 	struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
10337 	int idx;
10338 
10339 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
10340 
10341 	kvmclock_reset(vcpu);
10342 
10343 	static_call(kvm_x86_vcpu_free)(vcpu);
10344 
10345 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10346 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10347 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10348 	kvm_free_guest_fpu(vcpu);
10349 
10350 	kvm_hv_vcpu_uninit(vcpu);
10351 	kvm_pmu_destroy(vcpu);
10352 	kfree(vcpu->arch.mce_banks);
10353 	kvm_free_lapic(vcpu);
10354 	idx = srcu_read_lock(&vcpu->kvm->srcu);
10355 	kvm_mmu_destroy(vcpu);
10356 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
10357 	free_page((unsigned long)vcpu->arch.pio_data);
10358 	kvfree(vcpu->arch.cpuid_entries);
10359 	if (!lapic_in_kernel(vcpu))
10360 		static_branch_dec(&kvm_has_noapic_vcpu);
10361 }
10362 
10363 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10364 {
10365 	kvm_lapic_reset(vcpu, init_event);
10366 
10367 	vcpu->arch.hflags = 0;
10368 
10369 	vcpu->arch.smi_pending = 0;
10370 	vcpu->arch.smi_count = 0;
10371 	atomic_set(&vcpu->arch.nmi_queued, 0);
10372 	vcpu->arch.nmi_pending = 0;
10373 	vcpu->arch.nmi_injected = false;
10374 	kvm_clear_interrupt_queue(vcpu);
10375 	kvm_clear_exception_queue(vcpu);
10376 
10377 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10378 	kvm_update_dr0123(vcpu);
10379 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
10380 	vcpu->arch.dr7 = DR7_FIXED_1;
10381 	kvm_update_dr7(vcpu);
10382 
10383 	vcpu->arch.cr2 = 0;
10384 
10385 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10386 	vcpu->arch.apf.msr_en_val = 0;
10387 	vcpu->arch.apf.msr_int_val = 0;
10388 	vcpu->arch.st.msr_val = 0;
10389 
10390 	kvmclock_reset(vcpu);
10391 
10392 	kvm_clear_async_pf_completion_queue(vcpu);
10393 	kvm_async_pf_hash_reset(vcpu);
10394 	vcpu->arch.apf.halted = false;
10395 
10396 	if (vcpu->arch.guest_fpu && kvm_mpx_supported()) {
10397 		void *mpx_state_buffer;
10398 
10399 		/*
10400 		 * To avoid have the INIT path from kvm_apic_has_events() that be
10401 		 * called with loaded FPU and does not let userspace fix the state.
10402 		 */
10403 		if (init_event)
10404 			kvm_put_guest_fpu(vcpu);
10405 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10406 					XFEATURE_BNDREGS);
10407 		if (mpx_state_buffer)
10408 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10409 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10410 					XFEATURE_BNDCSR);
10411 		if (mpx_state_buffer)
10412 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10413 		if (init_event)
10414 			kvm_load_guest_fpu(vcpu);
10415 	}
10416 
10417 	if (!init_event) {
10418 		kvm_pmu_reset(vcpu);
10419 		vcpu->arch.smbase = 0x30000;
10420 
10421 		vcpu->arch.msr_misc_features_enables = 0;
10422 
10423 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10424 	}
10425 
10426 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10427 	vcpu->arch.regs_avail = ~0;
10428 	vcpu->arch.regs_dirty = ~0;
10429 
10430 	vcpu->arch.ia32_xss = 0;
10431 
10432 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
10433 }
10434 
10435 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10436 {
10437 	struct kvm_segment cs;
10438 
10439 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10440 	cs.selector = vector << 8;
10441 	cs.base = vector << 12;
10442 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10443 	kvm_rip_write(vcpu, 0);
10444 }
10445 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
10446 
10447 int kvm_arch_hardware_enable(void)
10448 {
10449 	struct kvm *kvm;
10450 	struct kvm_vcpu *vcpu;
10451 	int i;
10452 	int ret;
10453 	u64 local_tsc;
10454 	u64 max_tsc = 0;
10455 	bool stable, backwards_tsc = false;
10456 
10457 	kvm_user_return_msr_cpu_online();
10458 	ret = static_call(kvm_x86_hardware_enable)();
10459 	if (ret != 0)
10460 		return ret;
10461 
10462 	local_tsc = rdtsc();
10463 	stable = !kvm_check_tsc_unstable();
10464 	list_for_each_entry(kvm, &vm_list, vm_list) {
10465 		kvm_for_each_vcpu(i, vcpu, kvm) {
10466 			if (!stable && vcpu->cpu == smp_processor_id())
10467 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10468 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10469 				backwards_tsc = true;
10470 				if (vcpu->arch.last_host_tsc > max_tsc)
10471 					max_tsc = vcpu->arch.last_host_tsc;
10472 			}
10473 		}
10474 	}
10475 
10476 	/*
10477 	 * Sometimes, even reliable TSCs go backwards.  This happens on
10478 	 * platforms that reset TSC during suspend or hibernate actions, but
10479 	 * maintain synchronization.  We must compensate.  Fortunately, we can
10480 	 * detect that condition here, which happens early in CPU bringup,
10481 	 * before any KVM threads can be running.  Unfortunately, we can't
10482 	 * bring the TSCs fully up to date with real time, as we aren't yet far
10483 	 * enough into CPU bringup that we know how much real time has actually
10484 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10485 	 * variables that haven't been updated yet.
10486 	 *
10487 	 * So we simply find the maximum observed TSC above, then record the
10488 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
10489 	 * the adjustment will be applied.  Note that we accumulate
10490 	 * adjustments, in case multiple suspend cycles happen before some VCPU
10491 	 * gets a chance to run again.  In the event that no KVM threads get a
10492 	 * chance to run, we will miss the entire elapsed period, as we'll have
10493 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10494 	 * loose cycle time.  This isn't too big a deal, since the loss will be
10495 	 * uniform across all VCPUs (not to mention the scenario is extremely
10496 	 * unlikely). It is possible that a second hibernate recovery happens
10497 	 * much faster than a first, causing the observed TSC here to be
10498 	 * smaller; this would require additional padding adjustment, which is
10499 	 * why we set last_host_tsc to the local tsc observed here.
10500 	 *
10501 	 * N.B. - this code below runs only on platforms with reliable TSC,
10502 	 * as that is the only way backwards_tsc is set above.  Also note
10503 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
10504 	 * have the same delta_cyc adjustment applied if backwards_tsc
10505 	 * is detected.  Note further, this adjustment is only done once,
10506 	 * as we reset last_host_tsc on all VCPUs to stop this from being
10507 	 * called multiple times (one for each physical CPU bringup).
10508 	 *
10509 	 * Platforms with unreliable TSCs don't have to deal with this, they
10510 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
10511 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
10512 	 * guarantee that they stay in perfect synchronization.
10513 	 */
10514 	if (backwards_tsc) {
10515 		u64 delta_cyc = max_tsc - local_tsc;
10516 		list_for_each_entry(kvm, &vm_list, vm_list) {
10517 			kvm->arch.backwards_tsc_observed = true;
10518 			kvm_for_each_vcpu(i, vcpu, kvm) {
10519 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
10520 				vcpu->arch.last_host_tsc = local_tsc;
10521 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
10522 			}
10523 
10524 			/*
10525 			 * We have to disable TSC offset matching.. if you were
10526 			 * booting a VM while issuing an S4 host suspend....
10527 			 * you may have some problem.  Solving this issue is
10528 			 * left as an exercise to the reader.
10529 			 */
10530 			kvm->arch.last_tsc_nsec = 0;
10531 			kvm->arch.last_tsc_write = 0;
10532 		}
10533 
10534 	}
10535 	return 0;
10536 }
10537 
10538 void kvm_arch_hardware_disable(void)
10539 {
10540 	static_call(kvm_x86_hardware_disable)();
10541 	drop_user_return_notifiers();
10542 }
10543 
10544 int kvm_arch_hardware_setup(void *opaque)
10545 {
10546 	struct kvm_x86_init_ops *ops = opaque;
10547 	int r;
10548 
10549 	rdmsrl_safe(MSR_EFER, &host_efer);
10550 
10551 	if (boot_cpu_has(X86_FEATURE_XSAVES))
10552 		rdmsrl(MSR_IA32_XSS, host_xss);
10553 
10554 	r = ops->hardware_setup();
10555 	if (r != 0)
10556 		return r;
10557 
10558 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
10559 	kvm_ops_static_call_update();
10560 
10561 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
10562 		supported_xss = 0;
10563 
10564 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
10565 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
10566 #undef __kvm_cpu_cap_has
10567 
10568 	if (kvm_has_tsc_control) {
10569 		/*
10570 		 * Make sure the user can only configure tsc_khz values that
10571 		 * fit into a signed integer.
10572 		 * A min value is not calculated because it will always
10573 		 * be 1 on all machines.
10574 		 */
10575 		u64 max = min(0x7fffffffULL,
10576 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
10577 		kvm_max_guest_tsc_khz = max;
10578 
10579 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
10580 	}
10581 
10582 	kvm_init_msr_list();
10583 	return 0;
10584 }
10585 
10586 void kvm_arch_hardware_unsetup(void)
10587 {
10588 	static_call(kvm_x86_hardware_unsetup)();
10589 }
10590 
10591 int kvm_arch_check_processor_compat(void *opaque)
10592 {
10593 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
10594 	struct kvm_x86_init_ops *ops = opaque;
10595 
10596 	WARN_ON(!irqs_disabled());
10597 
10598 	if (__cr4_reserved_bits(cpu_has, c) !=
10599 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
10600 		return -EIO;
10601 
10602 	return ops->check_processor_compatibility();
10603 }
10604 
10605 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
10606 {
10607 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
10608 }
10609 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
10610 
10611 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
10612 {
10613 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
10614 }
10615 
10616 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
10617 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
10618 
10619 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
10620 {
10621 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
10622 
10623 	vcpu->arch.l1tf_flush_l1d = true;
10624 	if (pmu->version && unlikely(pmu->event_count)) {
10625 		pmu->need_cleanup = true;
10626 		kvm_make_request(KVM_REQ_PMU, vcpu);
10627 	}
10628 	static_call(kvm_x86_sched_in)(vcpu, cpu);
10629 }
10630 
10631 void kvm_arch_free_vm(struct kvm *kvm)
10632 {
10633 	kfree(to_kvm_hv(kvm)->hv_pa_pg);
10634 	vfree(kvm);
10635 }
10636 
10637 
10638 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
10639 {
10640 	if (type)
10641 		return -EINVAL;
10642 
10643 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
10644 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
10645 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
10646 	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
10647 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
10648 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
10649 
10650 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
10651 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
10652 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
10653 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
10654 		&kvm->arch.irq_sources_bitmap);
10655 
10656 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
10657 	mutex_init(&kvm->arch.apic_map_lock);
10658 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
10659 
10660 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
10661 	pvclock_update_vm_gtod_copy(kvm);
10662 
10663 	kvm->arch.guest_can_read_msr_platform_info = true;
10664 
10665 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
10666 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
10667 
10668 	kvm_hv_init_vm(kvm);
10669 	kvm_page_track_init(kvm);
10670 	kvm_mmu_init_vm(kvm);
10671 
10672 	return static_call(kvm_x86_vm_init)(kvm);
10673 }
10674 
10675 int kvm_arch_post_init_vm(struct kvm *kvm)
10676 {
10677 	return kvm_mmu_post_init_vm(kvm);
10678 }
10679 
10680 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
10681 {
10682 	vcpu_load(vcpu);
10683 	kvm_mmu_unload(vcpu);
10684 	vcpu_put(vcpu);
10685 }
10686 
10687 static void kvm_free_vcpus(struct kvm *kvm)
10688 {
10689 	unsigned int i;
10690 	struct kvm_vcpu *vcpu;
10691 
10692 	/*
10693 	 * Unpin any mmu pages first.
10694 	 */
10695 	kvm_for_each_vcpu(i, vcpu, kvm) {
10696 		kvm_clear_async_pf_completion_queue(vcpu);
10697 		kvm_unload_vcpu_mmu(vcpu);
10698 	}
10699 	kvm_for_each_vcpu(i, vcpu, kvm)
10700 		kvm_vcpu_destroy(vcpu);
10701 
10702 	mutex_lock(&kvm->lock);
10703 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
10704 		kvm->vcpus[i] = NULL;
10705 
10706 	atomic_set(&kvm->online_vcpus, 0);
10707 	mutex_unlock(&kvm->lock);
10708 }
10709 
10710 void kvm_arch_sync_events(struct kvm *kvm)
10711 {
10712 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
10713 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
10714 	kvm_free_pit(kvm);
10715 }
10716 
10717 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
10718 
10719 /**
10720  * __x86_set_memory_region: Setup KVM internal memory slot
10721  *
10722  * @kvm: the kvm pointer to the VM.
10723  * @id: the slot ID to setup.
10724  * @gpa: the GPA to install the slot (unused when @size == 0).
10725  * @size: the size of the slot. Set to zero to uninstall a slot.
10726  *
10727  * This function helps to setup a KVM internal memory slot.  Specify
10728  * @size > 0 to install a new slot, while @size == 0 to uninstall a
10729  * slot.  The return code can be one of the following:
10730  *
10731  *   HVA:           on success (uninstall will return a bogus HVA)
10732  *   -errno:        on error
10733  *
10734  * The caller should always use IS_ERR() to check the return value
10735  * before use.  Note, the KVM internal memory slots are guaranteed to
10736  * remain valid and unchanged until the VM is destroyed, i.e., the
10737  * GPA->HVA translation will not change.  However, the HVA is a user
10738  * address, i.e. its accessibility is not guaranteed, and must be
10739  * accessed via __copy_{to,from}_user().
10740  */
10741 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
10742 				      u32 size)
10743 {
10744 	int i, r;
10745 	unsigned long hva, old_npages;
10746 	struct kvm_memslots *slots = kvm_memslots(kvm);
10747 	struct kvm_memory_slot *slot;
10748 
10749 	/* Called with kvm->slots_lock held.  */
10750 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
10751 		return ERR_PTR_USR(-EINVAL);
10752 
10753 	slot = id_to_memslot(slots, id);
10754 	if (size) {
10755 		if (slot && slot->npages)
10756 			return ERR_PTR_USR(-EEXIST);
10757 
10758 		/*
10759 		 * MAP_SHARED to prevent internal slot pages from being moved
10760 		 * by fork()/COW.
10761 		 */
10762 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
10763 			      MAP_SHARED | MAP_ANONYMOUS, 0);
10764 		if (IS_ERR((void *)hva))
10765 			return (void __user *)hva;
10766 	} else {
10767 		if (!slot || !slot->npages)
10768 			return NULL;
10769 
10770 		old_npages = slot->npages;
10771 		hva = slot->userspace_addr;
10772 	}
10773 
10774 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
10775 		struct kvm_userspace_memory_region m;
10776 
10777 		m.slot = id | (i << 16);
10778 		m.flags = 0;
10779 		m.guest_phys_addr = gpa;
10780 		m.userspace_addr = hva;
10781 		m.memory_size = size;
10782 		r = __kvm_set_memory_region(kvm, &m);
10783 		if (r < 0)
10784 			return ERR_PTR_USR(r);
10785 	}
10786 
10787 	if (!size)
10788 		vm_munmap(hva, old_npages * PAGE_SIZE);
10789 
10790 	return (void __user *)hva;
10791 }
10792 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
10793 
10794 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
10795 {
10796 	kvm_mmu_pre_destroy_vm(kvm);
10797 }
10798 
10799 void kvm_arch_destroy_vm(struct kvm *kvm)
10800 {
10801 	if (current->mm == kvm->mm) {
10802 		/*
10803 		 * Free memory regions allocated on behalf of userspace,
10804 		 * unless the the memory map has changed due to process exit
10805 		 * or fd copying.
10806 		 */
10807 		mutex_lock(&kvm->slots_lock);
10808 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
10809 					0, 0);
10810 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
10811 					0, 0);
10812 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
10813 		mutex_unlock(&kvm->slots_lock);
10814 	}
10815 	static_call_cond(kvm_x86_vm_destroy)(kvm);
10816 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
10817 	kvm_pic_destroy(kvm);
10818 	kvm_ioapic_destroy(kvm);
10819 	kvm_free_vcpus(kvm);
10820 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
10821 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
10822 	kvm_mmu_uninit_vm(kvm);
10823 	kvm_page_track_cleanup(kvm);
10824 	kvm_xen_destroy_vm(kvm);
10825 	kvm_hv_destroy_vm(kvm);
10826 }
10827 
10828 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
10829 {
10830 	int i;
10831 
10832 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10833 		kvfree(slot->arch.rmap[i]);
10834 		slot->arch.rmap[i] = NULL;
10835 
10836 		if (i == 0)
10837 			continue;
10838 
10839 		kvfree(slot->arch.lpage_info[i - 1]);
10840 		slot->arch.lpage_info[i - 1] = NULL;
10841 	}
10842 
10843 	kvm_page_track_free_memslot(slot);
10844 }
10845 
10846 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
10847 				      unsigned long npages)
10848 {
10849 	int i;
10850 
10851 	/*
10852 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
10853 	 * old arrays will be freed by __kvm_set_memory_region() if installing
10854 	 * the new memslot is successful.
10855 	 */
10856 	memset(&slot->arch, 0, sizeof(slot->arch));
10857 
10858 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10859 		struct kvm_lpage_info *linfo;
10860 		unsigned long ugfn;
10861 		int lpages;
10862 		int level = i + 1;
10863 
10864 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
10865 				      slot->base_gfn, level) + 1;
10866 
10867 		slot->arch.rmap[i] =
10868 			kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
10869 				 GFP_KERNEL_ACCOUNT);
10870 		if (!slot->arch.rmap[i])
10871 			goto out_free;
10872 		if (i == 0)
10873 			continue;
10874 
10875 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
10876 		if (!linfo)
10877 			goto out_free;
10878 
10879 		slot->arch.lpage_info[i - 1] = linfo;
10880 
10881 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
10882 			linfo[0].disallow_lpage = 1;
10883 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
10884 			linfo[lpages - 1].disallow_lpage = 1;
10885 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
10886 		/*
10887 		 * If the gfn and userspace address are not aligned wrt each
10888 		 * other, disable large page support for this slot.
10889 		 */
10890 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
10891 			unsigned long j;
10892 
10893 			for (j = 0; j < lpages; ++j)
10894 				linfo[j].disallow_lpage = 1;
10895 		}
10896 	}
10897 
10898 	if (kvm_page_track_create_memslot(slot, npages))
10899 		goto out_free;
10900 
10901 	return 0;
10902 
10903 out_free:
10904 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10905 		kvfree(slot->arch.rmap[i]);
10906 		slot->arch.rmap[i] = NULL;
10907 		if (i == 0)
10908 			continue;
10909 
10910 		kvfree(slot->arch.lpage_info[i - 1]);
10911 		slot->arch.lpage_info[i - 1] = NULL;
10912 	}
10913 	return -ENOMEM;
10914 }
10915 
10916 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
10917 {
10918 	struct kvm_vcpu *vcpu;
10919 	int i;
10920 
10921 	/*
10922 	 * memslots->generation has been incremented.
10923 	 * mmio generation may have reached its maximum value.
10924 	 */
10925 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10926 
10927 	/* Force re-initialization of steal_time cache */
10928 	kvm_for_each_vcpu(i, vcpu, kvm)
10929 		kvm_vcpu_kick(vcpu);
10930 }
10931 
10932 int kvm_arch_prepare_memory_region(struct kvm *kvm,
10933 				struct kvm_memory_slot *memslot,
10934 				const struct kvm_userspace_memory_region *mem,
10935 				enum kvm_mr_change change)
10936 {
10937 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10938 		return kvm_alloc_memslot_metadata(memslot,
10939 						  mem->memory_size >> PAGE_SHIFT);
10940 	return 0;
10941 }
10942 
10943 
10944 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
10945 {
10946 	struct kvm_arch *ka = &kvm->arch;
10947 
10948 	if (!kvm_x86_ops.cpu_dirty_log_size)
10949 		return;
10950 
10951 	if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
10952 	    (!enable && --ka->cpu_dirty_logging_count == 0))
10953 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
10954 
10955 	WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
10956 }
10957 
10958 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10959 				     struct kvm_memory_slot *old,
10960 				     struct kvm_memory_slot *new,
10961 				     enum kvm_mr_change change)
10962 {
10963 	bool log_dirty_pages = new->flags & KVM_MEM_LOG_DIRTY_PAGES;
10964 
10965 	/*
10966 	 * Update CPU dirty logging if dirty logging is being toggled.  This
10967 	 * applies to all operations.
10968 	 */
10969 	if ((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)
10970 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
10971 
10972 	/*
10973 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
10974 	 * made writable) or CREATE/MOVE/DELETE of a slot.
10975 	 *
10976 	 * For a memslot with dirty logging disabled:
10977 	 * CREATE:      No dirty mappings will already exist.
10978 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
10979 	 *		kvm_arch_flush_shadow_memslot()
10980 	 *
10981 	 * For a memslot with dirty logging enabled:
10982 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
10983 	 *		and no dirty bits to clear.
10984 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
10985 	 *		kvm_arch_flush_shadow_memslot().
10986 	 */
10987 	if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
10988 		return;
10989 
10990 	/*
10991 	 * READONLY and non-flags changes were filtered out above, and the only
10992 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
10993 	 * logging isn't being toggled on or off.
10994 	 */
10995 	if (WARN_ON_ONCE(!((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)))
10996 		return;
10997 
10998 	if (!log_dirty_pages) {
10999 		/*
11000 		 * Dirty logging tracks sptes in 4k granularity, meaning that
11001 		 * large sptes have to be split.  If live migration succeeds,
11002 		 * the guest in the source machine will be destroyed and large
11003 		 * sptes will be created in the destination.  However, if the
11004 		 * guest continues to run in the source machine (for example if
11005 		 * live migration fails), small sptes will remain around and
11006 		 * cause bad performance.
11007 		 *
11008 		 * Scan sptes if dirty logging has been stopped, dropping those
11009 		 * which can be collapsed into a single large-page spte.  Later
11010 		 * page faults will create the large-page sptes.
11011 		 */
11012 		kvm_mmu_zap_collapsible_sptes(kvm, new);
11013 	} else {
11014 		/* By default, write-protect everything to log writes. */
11015 		int level = PG_LEVEL_4K;
11016 
11017 		if (kvm_x86_ops.cpu_dirty_log_size) {
11018 			/*
11019 			 * Clear all dirty bits, unless pages are treated as
11020 			 * dirty from the get-go.
11021 			 */
11022 			if (!kvm_dirty_log_manual_protect_and_init_set(kvm))
11023 				kvm_mmu_slot_leaf_clear_dirty(kvm, new);
11024 
11025 			/*
11026 			 * Write-protect large pages on write so that dirty
11027 			 * logging happens at 4k granularity.  No need to
11028 			 * write-protect small SPTEs since write accesses are
11029 			 * logged by the CPU via dirty bits.
11030 			 */
11031 			level = PG_LEVEL_2M;
11032 		} else if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
11033 			/*
11034 			 * If we're with initial-all-set, we don't need
11035 			 * to write protect any small page because
11036 			 * they're reported as dirty already.  However
11037 			 * we still need to write-protect huge pages
11038 			 * so that the page split can happen lazily on
11039 			 * the first write to the huge page.
11040 			 */
11041 			level = PG_LEVEL_2M;
11042 		}
11043 		kvm_mmu_slot_remove_write_access(kvm, new, level);
11044 	}
11045 }
11046 
11047 void kvm_arch_commit_memory_region(struct kvm *kvm,
11048 				const struct kvm_userspace_memory_region *mem,
11049 				struct kvm_memory_slot *old,
11050 				const struct kvm_memory_slot *new,
11051 				enum kvm_mr_change change)
11052 {
11053 	if (!kvm->arch.n_requested_mmu_pages)
11054 		kvm_mmu_change_mmu_pages(kvm,
11055 				kvm_mmu_calculate_default_mmu_pages(kvm));
11056 
11057 	/*
11058 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
11059 	 */
11060 	kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
11061 
11062 	/* Free the arrays associated with the old memslot. */
11063 	if (change == KVM_MR_MOVE)
11064 		kvm_arch_free_memslot(kvm, old);
11065 }
11066 
11067 void kvm_arch_flush_shadow_all(struct kvm *kvm)
11068 {
11069 	kvm_mmu_zap_all(kvm);
11070 }
11071 
11072 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
11073 				   struct kvm_memory_slot *slot)
11074 {
11075 	kvm_page_track_flush_slot(kvm, slot);
11076 }
11077 
11078 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
11079 {
11080 	return (is_guest_mode(vcpu) &&
11081 			kvm_x86_ops.guest_apic_has_interrupt &&
11082 			static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
11083 }
11084 
11085 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11086 {
11087 	if (!list_empty_careful(&vcpu->async_pf.done))
11088 		return true;
11089 
11090 	if (kvm_apic_has_events(vcpu))
11091 		return true;
11092 
11093 	if (vcpu->arch.pv.pv_unhalted)
11094 		return true;
11095 
11096 	if (vcpu->arch.exception.pending)
11097 		return true;
11098 
11099 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11100 	    (vcpu->arch.nmi_pending &&
11101 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
11102 		return true;
11103 
11104 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11105 	    (vcpu->arch.smi_pending &&
11106 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
11107 		return true;
11108 
11109 	if (kvm_arch_interrupt_allowed(vcpu) &&
11110 	    (kvm_cpu_has_interrupt(vcpu) ||
11111 	    kvm_guest_apic_has_interrupt(vcpu)))
11112 		return true;
11113 
11114 	if (kvm_hv_has_stimer_pending(vcpu))
11115 		return true;
11116 
11117 	if (is_guest_mode(vcpu) &&
11118 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
11119 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
11120 		return true;
11121 
11122 	return false;
11123 }
11124 
11125 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11126 {
11127 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11128 }
11129 
11130 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11131 {
11132 	if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
11133 		return true;
11134 
11135 	return false;
11136 }
11137 
11138 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11139 {
11140 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11141 		return true;
11142 
11143 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11144 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
11145 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
11146 		return true;
11147 
11148 	return kvm_arch_dy_has_pending_interrupt(vcpu);
11149 }
11150 
11151 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
11152 {
11153 	if (vcpu->arch.guest_state_protected)
11154 		return true;
11155 
11156 	return vcpu->arch.preempted_in_kernel;
11157 }
11158 
11159 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
11160 {
11161 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
11162 }
11163 
11164 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
11165 {
11166 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
11167 }
11168 
11169 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
11170 {
11171 	/* Can't read the RIP when guest state is protected, just return 0 */
11172 	if (vcpu->arch.guest_state_protected)
11173 		return 0;
11174 
11175 	if (is_64_bit_mode(vcpu))
11176 		return kvm_rip_read(vcpu);
11177 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
11178 		     kvm_rip_read(vcpu));
11179 }
11180 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
11181 
11182 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
11183 {
11184 	return kvm_get_linear_rip(vcpu) == linear_rip;
11185 }
11186 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
11187 
11188 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
11189 {
11190 	unsigned long rflags;
11191 
11192 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
11193 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11194 		rflags &= ~X86_EFLAGS_TF;
11195 	return rflags;
11196 }
11197 EXPORT_SYMBOL_GPL(kvm_get_rflags);
11198 
11199 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11200 {
11201 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
11202 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
11203 		rflags |= X86_EFLAGS_TF;
11204 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
11205 }
11206 
11207 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11208 {
11209 	__kvm_set_rflags(vcpu, rflags);
11210 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11211 }
11212 EXPORT_SYMBOL_GPL(kvm_set_rflags);
11213 
11214 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
11215 {
11216 	int r;
11217 
11218 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
11219 	      work->wakeup_all)
11220 		return;
11221 
11222 	r = kvm_mmu_reload(vcpu);
11223 	if (unlikely(r))
11224 		return;
11225 
11226 	if (!vcpu->arch.mmu->direct_map &&
11227 	      work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
11228 		return;
11229 
11230 	kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
11231 }
11232 
11233 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
11234 {
11235 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
11236 
11237 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
11238 }
11239 
11240 static inline u32 kvm_async_pf_next_probe(u32 key)
11241 {
11242 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
11243 }
11244 
11245 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11246 {
11247 	u32 key = kvm_async_pf_hash_fn(gfn);
11248 
11249 	while (vcpu->arch.apf.gfns[key] != ~0)
11250 		key = kvm_async_pf_next_probe(key);
11251 
11252 	vcpu->arch.apf.gfns[key] = gfn;
11253 }
11254 
11255 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
11256 {
11257 	int i;
11258 	u32 key = kvm_async_pf_hash_fn(gfn);
11259 
11260 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
11261 		     (vcpu->arch.apf.gfns[key] != gfn &&
11262 		      vcpu->arch.apf.gfns[key] != ~0); i++)
11263 		key = kvm_async_pf_next_probe(key);
11264 
11265 	return key;
11266 }
11267 
11268 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11269 {
11270 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
11271 }
11272 
11273 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11274 {
11275 	u32 i, j, k;
11276 
11277 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
11278 
11279 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
11280 		return;
11281 
11282 	while (true) {
11283 		vcpu->arch.apf.gfns[i] = ~0;
11284 		do {
11285 			j = kvm_async_pf_next_probe(j);
11286 			if (vcpu->arch.apf.gfns[j] == ~0)
11287 				return;
11288 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
11289 			/*
11290 			 * k lies cyclically in ]i,j]
11291 			 * |    i.k.j |
11292 			 * |....j i.k.| or  |.k..j i...|
11293 			 */
11294 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
11295 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
11296 		i = j;
11297 	}
11298 }
11299 
11300 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11301 {
11302 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11303 
11304 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11305 				      sizeof(reason));
11306 }
11307 
11308 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
11309 {
11310 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11311 
11312 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11313 					     &token, offset, sizeof(token));
11314 }
11315 
11316 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
11317 {
11318 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11319 	u32 val;
11320 
11321 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11322 					 &val, offset, sizeof(val)))
11323 		return false;
11324 
11325 	return !val;
11326 }
11327 
11328 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
11329 {
11330 	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
11331 		return false;
11332 
11333 	if (!kvm_pv_async_pf_enabled(vcpu) ||
11334 	    (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
11335 		return false;
11336 
11337 	return true;
11338 }
11339 
11340 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
11341 {
11342 	if (unlikely(!lapic_in_kernel(vcpu) ||
11343 		     kvm_event_needs_reinjection(vcpu) ||
11344 		     vcpu->arch.exception.pending))
11345 		return false;
11346 
11347 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
11348 		return false;
11349 
11350 	/*
11351 	 * If interrupts are off we cannot even use an artificial
11352 	 * halt state.
11353 	 */
11354 	return kvm_arch_interrupt_allowed(vcpu);
11355 }
11356 
11357 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
11358 				     struct kvm_async_pf *work)
11359 {
11360 	struct x86_exception fault;
11361 
11362 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
11363 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
11364 
11365 	if (kvm_can_deliver_async_pf(vcpu) &&
11366 	    !apf_put_user_notpresent(vcpu)) {
11367 		fault.vector = PF_VECTOR;
11368 		fault.error_code_valid = true;
11369 		fault.error_code = 0;
11370 		fault.nested_page_fault = false;
11371 		fault.address = work->arch.token;
11372 		fault.async_page_fault = true;
11373 		kvm_inject_page_fault(vcpu, &fault);
11374 		return true;
11375 	} else {
11376 		/*
11377 		 * It is not possible to deliver a paravirtualized asynchronous
11378 		 * page fault, but putting the guest in an artificial halt state
11379 		 * can be beneficial nevertheless: if an interrupt arrives, we
11380 		 * can deliver it timely and perhaps the guest will schedule
11381 		 * another process.  When the instruction that triggered a page
11382 		 * fault is retried, hopefully the page will be ready in the host.
11383 		 */
11384 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
11385 		return false;
11386 	}
11387 }
11388 
11389 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
11390 				 struct kvm_async_pf *work)
11391 {
11392 	struct kvm_lapic_irq irq = {
11393 		.delivery_mode = APIC_DM_FIXED,
11394 		.vector = vcpu->arch.apf.vec
11395 	};
11396 
11397 	if (work->wakeup_all)
11398 		work->arch.token = ~0; /* broadcast wakeup */
11399 	else
11400 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
11401 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
11402 
11403 	if ((work->wakeup_all || work->notpresent_injected) &&
11404 	    kvm_pv_async_pf_enabled(vcpu) &&
11405 	    !apf_put_user_ready(vcpu, work->arch.token)) {
11406 		vcpu->arch.apf.pageready_pending = true;
11407 		kvm_apic_set_irq(vcpu, &irq, NULL);
11408 	}
11409 
11410 	vcpu->arch.apf.halted = false;
11411 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11412 }
11413 
11414 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
11415 {
11416 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
11417 	if (!vcpu->arch.apf.pageready_pending)
11418 		kvm_vcpu_kick(vcpu);
11419 }
11420 
11421 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
11422 {
11423 	if (!kvm_pv_async_pf_enabled(vcpu))
11424 		return true;
11425 	else
11426 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
11427 }
11428 
11429 void kvm_arch_start_assignment(struct kvm *kvm)
11430 {
11431 	atomic_inc(&kvm->arch.assigned_device_count);
11432 }
11433 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11434 
11435 void kvm_arch_end_assignment(struct kvm *kvm)
11436 {
11437 	atomic_dec(&kvm->arch.assigned_device_count);
11438 }
11439 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11440 
11441 bool kvm_arch_has_assigned_device(struct kvm *kvm)
11442 {
11443 	return atomic_read(&kvm->arch.assigned_device_count);
11444 }
11445 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
11446 
11447 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
11448 {
11449 	atomic_inc(&kvm->arch.noncoherent_dma_count);
11450 }
11451 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
11452 
11453 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
11454 {
11455 	atomic_dec(&kvm->arch.noncoherent_dma_count);
11456 }
11457 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
11458 
11459 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
11460 {
11461 	return atomic_read(&kvm->arch.noncoherent_dma_count);
11462 }
11463 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
11464 
11465 bool kvm_arch_has_irq_bypass(void)
11466 {
11467 	return true;
11468 }
11469 
11470 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
11471 				      struct irq_bypass_producer *prod)
11472 {
11473 	struct kvm_kernel_irqfd *irqfd =
11474 		container_of(cons, struct kvm_kernel_irqfd, consumer);
11475 	int ret;
11476 
11477 	irqfd->producer = prod;
11478 	kvm_arch_start_assignment(irqfd->kvm);
11479 	ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
11480 					 prod->irq, irqfd->gsi, 1);
11481 
11482 	if (ret)
11483 		kvm_arch_end_assignment(irqfd->kvm);
11484 
11485 	return ret;
11486 }
11487 
11488 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
11489 				      struct irq_bypass_producer *prod)
11490 {
11491 	int ret;
11492 	struct kvm_kernel_irqfd *irqfd =
11493 		container_of(cons, struct kvm_kernel_irqfd, consumer);
11494 
11495 	WARN_ON(irqfd->producer != prod);
11496 	irqfd->producer = NULL;
11497 
11498 	/*
11499 	 * When producer of consumer is unregistered, we change back to
11500 	 * remapped mode, so we can re-use the current implementation
11501 	 * when the irq is masked/disabled or the consumer side (KVM
11502 	 * int this case doesn't want to receive the interrupts.
11503 	*/
11504 	ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
11505 	if (ret)
11506 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
11507 		       " fails: %d\n", irqfd->consumer.token, ret);
11508 
11509 	kvm_arch_end_assignment(irqfd->kvm);
11510 }
11511 
11512 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
11513 				   uint32_t guest_irq, bool set)
11514 {
11515 	return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
11516 }
11517 
11518 bool kvm_vector_hashing_enabled(void)
11519 {
11520 	return vector_hashing;
11521 }
11522 
11523 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
11524 {
11525 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
11526 }
11527 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
11528 
11529 
11530 int kvm_spec_ctrl_test_value(u64 value)
11531 {
11532 	/*
11533 	 * test that setting IA32_SPEC_CTRL to given value
11534 	 * is allowed by the host processor
11535 	 */
11536 
11537 	u64 saved_value;
11538 	unsigned long flags;
11539 	int ret = 0;
11540 
11541 	local_irq_save(flags);
11542 
11543 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
11544 		ret = 1;
11545 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
11546 		ret = 1;
11547 	else
11548 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
11549 
11550 	local_irq_restore(flags);
11551 
11552 	return ret;
11553 }
11554 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
11555 
11556 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
11557 {
11558 	struct x86_exception fault;
11559 	u32 access = error_code &
11560 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
11561 
11562 	if (!(error_code & PFERR_PRESENT_MASK) ||
11563 	    vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
11564 		/*
11565 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
11566 		 * tables probably do not match the TLB.  Just proceed
11567 		 * with the error code that the processor gave.
11568 		 */
11569 		fault.vector = PF_VECTOR;
11570 		fault.error_code_valid = true;
11571 		fault.error_code = error_code;
11572 		fault.nested_page_fault = false;
11573 		fault.address = gva;
11574 	}
11575 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
11576 }
11577 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
11578 
11579 /*
11580  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
11581  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
11582  * indicates whether exit to userspace is needed.
11583  */
11584 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
11585 			      struct x86_exception *e)
11586 {
11587 	if (r == X86EMUL_PROPAGATE_FAULT) {
11588 		kvm_inject_emulated_page_fault(vcpu, e);
11589 		return 1;
11590 	}
11591 
11592 	/*
11593 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
11594 	 * while handling a VMX instruction KVM could've handled the request
11595 	 * correctly by exiting to userspace and performing I/O but there
11596 	 * doesn't seem to be a real use-case behind such requests, just return
11597 	 * KVM_EXIT_INTERNAL_ERROR for now.
11598 	 */
11599 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11600 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11601 	vcpu->run->internal.ndata = 0;
11602 
11603 	return 0;
11604 }
11605 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
11606 
11607 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
11608 {
11609 	bool pcid_enabled;
11610 	struct x86_exception e;
11611 	unsigned i;
11612 	unsigned long roots_to_free = 0;
11613 	struct {
11614 		u64 pcid;
11615 		u64 gla;
11616 	} operand;
11617 	int r;
11618 
11619 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
11620 	if (r != X86EMUL_CONTINUE)
11621 		return kvm_handle_memory_failure(vcpu, r, &e);
11622 
11623 	if (operand.pcid >> 12 != 0) {
11624 		kvm_inject_gp(vcpu, 0);
11625 		return 1;
11626 	}
11627 
11628 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
11629 
11630 	switch (type) {
11631 	case INVPCID_TYPE_INDIV_ADDR:
11632 		if ((!pcid_enabled && (operand.pcid != 0)) ||
11633 		    is_noncanonical_address(operand.gla, vcpu)) {
11634 			kvm_inject_gp(vcpu, 0);
11635 			return 1;
11636 		}
11637 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
11638 		return kvm_skip_emulated_instruction(vcpu);
11639 
11640 	case INVPCID_TYPE_SINGLE_CTXT:
11641 		if (!pcid_enabled && (operand.pcid != 0)) {
11642 			kvm_inject_gp(vcpu, 0);
11643 			return 1;
11644 		}
11645 
11646 		if (kvm_get_active_pcid(vcpu) == operand.pcid) {
11647 			kvm_mmu_sync_roots(vcpu);
11648 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
11649 		}
11650 
11651 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
11652 			if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
11653 			    == operand.pcid)
11654 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
11655 
11656 		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
11657 		/*
11658 		 * If neither the current cr3 nor any of the prev_roots use the
11659 		 * given PCID, then nothing needs to be done here because a
11660 		 * resync will happen anyway before switching to any other CR3.
11661 		 */
11662 
11663 		return kvm_skip_emulated_instruction(vcpu);
11664 
11665 	case INVPCID_TYPE_ALL_NON_GLOBAL:
11666 		/*
11667 		 * Currently, KVM doesn't mark global entries in the shadow
11668 		 * page tables, so a non-global flush just degenerates to a
11669 		 * global flush. If needed, we could optimize this later by
11670 		 * keeping track of global entries in shadow page tables.
11671 		 */
11672 
11673 		fallthrough;
11674 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
11675 		kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
11676 		return kvm_skip_emulated_instruction(vcpu);
11677 
11678 	default:
11679 		BUG(); /* We have already checked above that type <= 3 */
11680 	}
11681 }
11682 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
11683 
11684 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
11685 {
11686 	struct kvm_run *run = vcpu->run;
11687 	struct kvm_mmio_fragment *frag;
11688 	unsigned int len;
11689 
11690 	BUG_ON(!vcpu->mmio_needed);
11691 
11692 	/* Complete previous fragment */
11693 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11694 	len = min(8u, frag->len);
11695 	if (!vcpu->mmio_is_write)
11696 		memcpy(frag->data, run->mmio.data, len);
11697 
11698 	if (frag->len <= 8) {
11699 		/* Switch to the next fragment. */
11700 		frag++;
11701 		vcpu->mmio_cur_fragment++;
11702 	} else {
11703 		/* Go forward to the next mmio piece. */
11704 		frag->data += len;
11705 		frag->gpa += len;
11706 		frag->len -= len;
11707 	}
11708 
11709 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11710 		vcpu->mmio_needed = 0;
11711 
11712 		// VMG change, at this point, we're always done
11713 		// RIP has already been advanced
11714 		return 1;
11715 	}
11716 
11717 	// More MMIO is needed
11718 	run->mmio.phys_addr = frag->gpa;
11719 	run->mmio.len = min(8u, frag->len);
11720 	run->mmio.is_write = vcpu->mmio_is_write;
11721 	if (run->mmio.is_write)
11722 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11723 	run->exit_reason = KVM_EXIT_MMIO;
11724 
11725 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11726 
11727 	return 0;
11728 }
11729 
11730 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
11731 			  void *data)
11732 {
11733 	int handled;
11734 	struct kvm_mmio_fragment *frag;
11735 
11736 	if (!data)
11737 		return -EINVAL;
11738 
11739 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
11740 	if (handled == bytes)
11741 		return 1;
11742 
11743 	bytes -= handled;
11744 	gpa += handled;
11745 	data += handled;
11746 
11747 	/*TODO: Check if need to increment number of frags */
11748 	frag = vcpu->mmio_fragments;
11749 	vcpu->mmio_nr_fragments = 1;
11750 	frag->len = bytes;
11751 	frag->gpa = gpa;
11752 	frag->data = data;
11753 
11754 	vcpu->mmio_needed = 1;
11755 	vcpu->mmio_cur_fragment = 0;
11756 
11757 	vcpu->run->mmio.phys_addr = gpa;
11758 	vcpu->run->mmio.len = min(8u, frag->len);
11759 	vcpu->run->mmio.is_write = 1;
11760 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
11761 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
11762 
11763 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11764 
11765 	return 0;
11766 }
11767 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
11768 
11769 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
11770 			 void *data)
11771 {
11772 	int handled;
11773 	struct kvm_mmio_fragment *frag;
11774 
11775 	if (!data)
11776 		return -EINVAL;
11777 
11778 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
11779 	if (handled == bytes)
11780 		return 1;
11781 
11782 	bytes -= handled;
11783 	gpa += handled;
11784 	data += handled;
11785 
11786 	/*TODO: Check if need to increment number of frags */
11787 	frag = vcpu->mmio_fragments;
11788 	vcpu->mmio_nr_fragments = 1;
11789 	frag->len = bytes;
11790 	frag->gpa = gpa;
11791 	frag->data = data;
11792 
11793 	vcpu->mmio_needed = 1;
11794 	vcpu->mmio_cur_fragment = 0;
11795 
11796 	vcpu->run->mmio.phys_addr = gpa;
11797 	vcpu->run->mmio.len = min(8u, frag->len);
11798 	vcpu->run->mmio.is_write = 0;
11799 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
11800 
11801 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11802 
11803 	return 0;
11804 }
11805 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
11806 
11807 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
11808 {
11809 	memcpy(vcpu->arch.guest_ins_data, vcpu->arch.pio_data,
11810 	       vcpu->arch.pio.count * vcpu->arch.pio.size);
11811 	vcpu->arch.pio.count = 0;
11812 
11813 	return 1;
11814 }
11815 
11816 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
11817 			   unsigned int port, void *data,  unsigned int count)
11818 {
11819 	int ret;
11820 
11821 	ret = emulator_pio_out_emulated(vcpu->arch.emulate_ctxt, size, port,
11822 					data, count);
11823 	if (ret)
11824 		return ret;
11825 
11826 	vcpu->arch.pio.count = 0;
11827 
11828 	return 0;
11829 }
11830 
11831 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
11832 			  unsigned int port, void *data, unsigned int count)
11833 {
11834 	int ret;
11835 
11836 	ret = emulator_pio_in_emulated(vcpu->arch.emulate_ctxt, size, port,
11837 				       data, count);
11838 	if (ret) {
11839 		vcpu->arch.pio.count = 0;
11840 	} else {
11841 		vcpu->arch.guest_ins_data = data;
11842 		vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
11843 	}
11844 
11845 	return 0;
11846 }
11847 
11848 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
11849 			 unsigned int port, void *data,  unsigned int count,
11850 			 int in)
11851 {
11852 	return in ? kvm_sev_es_ins(vcpu, size, port, data, count)
11853 		  : kvm_sev_es_outs(vcpu, size, port, data, count);
11854 }
11855 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
11856 
11857 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
11858 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
11859 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
11860 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
11861 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
11862 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
11863 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
11864 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
11865 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
11866 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
11867 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
11868 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
11869 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
11870 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
11871 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
11872 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
11873 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
11874 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
11875 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
11876 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
11877 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
11878 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
11879 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
11880 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
11881 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
11882 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
11883 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
11884