xref: /linux/arch/x86/kvm/x86.c (revision 0ad53fe3ae82443c74ff8cfd7bd13377cc1134a3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62 
63 #include <trace/events/kvm.h>
64 
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/internal.h> /* Ugh! */
72 #include <asm/pvclock.h>
73 #include <asm/div64.h>
74 #include <asm/irq_remapping.h>
75 #include <asm/mshyperv.h>
76 #include <asm/hypervisor.h>
77 #include <asm/tlbflush.h>
78 #include <asm/intel_pt.h>
79 #include <asm/emulate_prefix.h>
80 #include <asm/sgx.h>
81 #include <clocksource/hyperv_timer.h>
82 
83 #define CREATE_TRACE_POINTS
84 #include "trace.h"
85 
86 #define MAX_IO_MSRS 256
87 #define KVM_MAX_MCE_BANKS 32
88 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
89 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
90 
91 #define emul_to_vcpu(ctxt) \
92 	((struct kvm_vcpu *)(ctxt)->vcpu)
93 
94 /* EFER defaults:
95  * - enable syscall per default because its emulated by KVM
96  * - enable LME and LMA per default on 64 bit KVM
97  */
98 #ifdef CONFIG_X86_64
99 static
100 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
101 #else
102 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
103 #endif
104 
105 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
106 
107 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
108 
109 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
110                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
111 
112 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
113 static void process_nmi(struct kvm_vcpu *vcpu);
114 static void process_smi(struct kvm_vcpu *vcpu);
115 static void enter_smm(struct kvm_vcpu *vcpu);
116 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
117 static void store_regs(struct kvm_vcpu *vcpu);
118 static int sync_regs(struct kvm_vcpu *vcpu);
119 
120 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
121 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
122 
123 struct kvm_x86_ops kvm_x86_ops __read_mostly;
124 EXPORT_SYMBOL_GPL(kvm_x86_ops);
125 
126 #define KVM_X86_OP(func)					     \
127 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
128 				*(((struct kvm_x86_ops *)0)->func));
129 #define KVM_X86_OP_NULL KVM_X86_OP
130 #include <asm/kvm-x86-ops.h>
131 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
132 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
133 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
134 
135 static bool __read_mostly ignore_msrs = 0;
136 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
137 
138 bool __read_mostly report_ignored_msrs = true;
139 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
140 EXPORT_SYMBOL_GPL(report_ignored_msrs);
141 
142 unsigned int min_timer_period_us = 200;
143 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
144 
145 static bool __read_mostly kvmclock_periodic_sync = true;
146 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
147 
148 bool __read_mostly kvm_has_tsc_control;
149 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
150 u32  __read_mostly kvm_max_guest_tsc_khz;
151 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
152 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
153 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
154 u64  __read_mostly kvm_max_tsc_scaling_ratio;
155 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
156 u64 __read_mostly kvm_default_tsc_scaling_ratio;
157 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
158 bool __read_mostly kvm_has_bus_lock_exit;
159 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
160 
161 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
162 static u32 __read_mostly tsc_tolerance_ppm = 250;
163 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
164 
165 /*
166  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
167  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
168  * advancement entirely.  Any other value is used as-is and disables adaptive
169  * tuning, i.e. allows privileged userspace to set an exact advancement time.
170  */
171 static int __read_mostly lapic_timer_advance_ns = -1;
172 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
173 
174 static bool __read_mostly vector_hashing = true;
175 module_param(vector_hashing, bool, S_IRUGO);
176 
177 bool __read_mostly enable_vmware_backdoor = false;
178 module_param(enable_vmware_backdoor, bool, S_IRUGO);
179 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
180 
181 static bool __read_mostly force_emulation_prefix = false;
182 module_param(force_emulation_prefix, bool, S_IRUGO);
183 
184 int __read_mostly pi_inject_timer = -1;
185 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
186 
187 /*
188  * Restoring the host value for MSRs that are only consumed when running in
189  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
190  * returns to userspace, i.e. the kernel can run with the guest's value.
191  */
192 #define KVM_MAX_NR_USER_RETURN_MSRS 16
193 
194 struct kvm_user_return_msrs {
195 	struct user_return_notifier urn;
196 	bool registered;
197 	struct kvm_user_return_msr_values {
198 		u64 host;
199 		u64 curr;
200 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
201 };
202 
203 u32 __read_mostly kvm_nr_uret_msrs;
204 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
205 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
206 static struct kvm_user_return_msrs __percpu *user_return_msrs;
207 
208 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
209 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
210 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
211 				| XFEATURE_MASK_PKRU)
212 
213 u64 __read_mostly host_efer;
214 EXPORT_SYMBOL_GPL(host_efer);
215 
216 bool __read_mostly allow_smaller_maxphyaddr = 0;
217 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
218 
219 bool __read_mostly enable_apicv = true;
220 EXPORT_SYMBOL_GPL(enable_apicv);
221 
222 u64 __read_mostly host_xss;
223 EXPORT_SYMBOL_GPL(host_xss);
224 u64 __read_mostly supported_xss;
225 EXPORT_SYMBOL_GPL(supported_xss);
226 
227 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
228 	KVM_GENERIC_VM_STATS(),
229 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
230 	STATS_DESC_COUNTER(VM, mmu_pte_write),
231 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
232 	STATS_DESC_COUNTER(VM, mmu_flooded),
233 	STATS_DESC_COUNTER(VM, mmu_recycled),
234 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
235 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
236 	STATS_DESC_ICOUNTER(VM, pages_4k),
237 	STATS_DESC_ICOUNTER(VM, pages_2m),
238 	STATS_DESC_ICOUNTER(VM, pages_1g),
239 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
240 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
241 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
242 };
243 
244 const struct kvm_stats_header kvm_vm_stats_header = {
245 	.name_size = KVM_STATS_NAME_SIZE,
246 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
247 	.id_offset = sizeof(struct kvm_stats_header),
248 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
249 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
250 		       sizeof(kvm_vm_stats_desc),
251 };
252 
253 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
254 	KVM_GENERIC_VCPU_STATS(),
255 	STATS_DESC_COUNTER(VCPU, pf_fixed),
256 	STATS_DESC_COUNTER(VCPU, pf_guest),
257 	STATS_DESC_COUNTER(VCPU, tlb_flush),
258 	STATS_DESC_COUNTER(VCPU, invlpg),
259 	STATS_DESC_COUNTER(VCPU, exits),
260 	STATS_DESC_COUNTER(VCPU, io_exits),
261 	STATS_DESC_COUNTER(VCPU, mmio_exits),
262 	STATS_DESC_COUNTER(VCPU, signal_exits),
263 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
264 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
265 	STATS_DESC_COUNTER(VCPU, l1d_flush),
266 	STATS_DESC_COUNTER(VCPU, halt_exits),
267 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
268 	STATS_DESC_COUNTER(VCPU, irq_exits),
269 	STATS_DESC_COUNTER(VCPU, host_state_reload),
270 	STATS_DESC_COUNTER(VCPU, fpu_reload),
271 	STATS_DESC_COUNTER(VCPU, insn_emulation),
272 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
273 	STATS_DESC_COUNTER(VCPU, hypercalls),
274 	STATS_DESC_COUNTER(VCPU, irq_injections),
275 	STATS_DESC_COUNTER(VCPU, nmi_injections),
276 	STATS_DESC_COUNTER(VCPU, req_event),
277 	STATS_DESC_COUNTER(VCPU, nested_run),
278 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
279 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
280 	STATS_DESC_ICOUNTER(VCPU, guest_mode)
281 };
282 
283 const struct kvm_stats_header kvm_vcpu_stats_header = {
284 	.name_size = KVM_STATS_NAME_SIZE,
285 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
286 	.id_offset = sizeof(struct kvm_stats_header),
287 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
288 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
289 		       sizeof(kvm_vcpu_stats_desc),
290 };
291 
292 u64 __read_mostly host_xcr0;
293 u64 __read_mostly supported_xcr0;
294 EXPORT_SYMBOL_GPL(supported_xcr0);
295 
296 static struct kmem_cache *x86_fpu_cache;
297 
298 static struct kmem_cache *x86_emulator_cache;
299 
300 /*
301  * When called, it means the previous get/set msr reached an invalid msr.
302  * Return true if we want to ignore/silent this failed msr access.
303  */
304 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
305 {
306 	const char *op = write ? "wrmsr" : "rdmsr";
307 
308 	if (ignore_msrs) {
309 		if (report_ignored_msrs)
310 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
311 				      op, msr, data);
312 		/* Mask the error */
313 		return true;
314 	} else {
315 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
316 				      op, msr, data);
317 		return false;
318 	}
319 }
320 
321 static struct kmem_cache *kvm_alloc_emulator_cache(void)
322 {
323 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
324 	unsigned int size = sizeof(struct x86_emulate_ctxt);
325 
326 	return kmem_cache_create_usercopy("x86_emulator", size,
327 					  __alignof__(struct x86_emulate_ctxt),
328 					  SLAB_ACCOUNT, useroffset,
329 					  size - useroffset, NULL);
330 }
331 
332 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
333 
334 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
335 {
336 	int i;
337 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
338 		vcpu->arch.apf.gfns[i] = ~0;
339 }
340 
341 static void kvm_on_user_return(struct user_return_notifier *urn)
342 {
343 	unsigned slot;
344 	struct kvm_user_return_msrs *msrs
345 		= container_of(urn, struct kvm_user_return_msrs, urn);
346 	struct kvm_user_return_msr_values *values;
347 	unsigned long flags;
348 
349 	/*
350 	 * Disabling irqs at this point since the following code could be
351 	 * interrupted and executed through kvm_arch_hardware_disable()
352 	 */
353 	local_irq_save(flags);
354 	if (msrs->registered) {
355 		msrs->registered = false;
356 		user_return_notifier_unregister(urn);
357 	}
358 	local_irq_restore(flags);
359 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
360 		values = &msrs->values[slot];
361 		if (values->host != values->curr) {
362 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
363 			values->curr = values->host;
364 		}
365 	}
366 }
367 
368 static int kvm_probe_user_return_msr(u32 msr)
369 {
370 	u64 val;
371 	int ret;
372 
373 	preempt_disable();
374 	ret = rdmsrl_safe(msr, &val);
375 	if (ret)
376 		goto out;
377 	ret = wrmsrl_safe(msr, val);
378 out:
379 	preempt_enable();
380 	return ret;
381 }
382 
383 int kvm_add_user_return_msr(u32 msr)
384 {
385 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
386 
387 	if (kvm_probe_user_return_msr(msr))
388 		return -1;
389 
390 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
391 	return kvm_nr_uret_msrs++;
392 }
393 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
394 
395 int kvm_find_user_return_msr(u32 msr)
396 {
397 	int i;
398 
399 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
400 		if (kvm_uret_msrs_list[i] == msr)
401 			return i;
402 	}
403 	return -1;
404 }
405 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
406 
407 static void kvm_user_return_msr_cpu_online(void)
408 {
409 	unsigned int cpu = smp_processor_id();
410 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
411 	u64 value;
412 	int i;
413 
414 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
415 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
416 		msrs->values[i].host = value;
417 		msrs->values[i].curr = value;
418 	}
419 }
420 
421 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
422 {
423 	unsigned int cpu = smp_processor_id();
424 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
425 	int err;
426 
427 	value = (value & mask) | (msrs->values[slot].host & ~mask);
428 	if (value == msrs->values[slot].curr)
429 		return 0;
430 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
431 	if (err)
432 		return 1;
433 
434 	msrs->values[slot].curr = value;
435 	if (!msrs->registered) {
436 		msrs->urn.on_user_return = kvm_on_user_return;
437 		user_return_notifier_register(&msrs->urn);
438 		msrs->registered = true;
439 	}
440 	return 0;
441 }
442 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
443 
444 static void drop_user_return_notifiers(void)
445 {
446 	unsigned int cpu = smp_processor_id();
447 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
448 
449 	if (msrs->registered)
450 		kvm_on_user_return(&msrs->urn);
451 }
452 
453 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
454 {
455 	return vcpu->arch.apic_base;
456 }
457 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
458 
459 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
460 {
461 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
462 }
463 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
464 
465 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
466 {
467 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
468 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
469 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
470 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
471 
472 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
473 		return 1;
474 	if (!msr_info->host_initiated) {
475 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
476 			return 1;
477 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
478 			return 1;
479 	}
480 
481 	kvm_lapic_set_base(vcpu, msr_info->data);
482 	kvm_recalculate_apic_map(vcpu->kvm);
483 	return 0;
484 }
485 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
486 
487 /*
488  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
489  *
490  * Hardware virtualization extension instructions may fault if a reboot turns
491  * off virtualization while processes are running.  Usually after catching the
492  * fault we just panic; during reboot instead the instruction is ignored.
493  */
494 noinstr void kvm_spurious_fault(void)
495 {
496 	/* Fault while not rebooting.  We want the trace. */
497 	BUG_ON(!kvm_rebooting);
498 }
499 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
500 
501 #define EXCPT_BENIGN		0
502 #define EXCPT_CONTRIBUTORY	1
503 #define EXCPT_PF		2
504 
505 static int exception_class(int vector)
506 {
507 	switch (vector) {
508 	case PF_VECTOR:
509 		return EXCPT_PF;
510 	case DE_VECTOR:
511 	case TS_VECTOR:
512 	case NP_VECTOR:
513 	case SS_VECTOR:
514 	case GP_VECTOR:
515 		return EXCPT_CONTRIBUTORY;
516 	default:
517 		break;
518 	}
519 	return EXCPT_BENIGN;
520 }
521 
522 #define EXCPT_FAULT		0
523 #define EXCPT_TRAP		1
524 #define EXCPT_ABORT		2
525 #define EXCPT_INTERRUPT		3
526 
527 static int exception_type(int vector)
528 {
529 	unsigned int mask;
530 
531 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
532 		return EXCPT_INTERRUPT;
533 
534 	mask = 1 << vector;
535 
536 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
537 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
538 		return EXCPT_TRAP;
539 
540 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
541 		return EXCPT_ABORT;
542 
543 	/* Reserved exceptions will result in fault */
544 	return EXCPT_FAULT;
545 }
546 
547 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
548 {
549 	unsigned nr = vcpu->arch.exception.nr;
550 	bool has_payload = vcpu->arch.exception.has_payload;
551 	unsigned long payload = vcpu->arch.exception.payload;
552 
553 	if (!has_payload)
554 		return;
555 
556 	switch (nr) {
557 	case DB_VECTOR:
558 		/*
559 		 * "Certain debug exceptions may clear bit 0-3.  The
560 		 * remaining contents of the DR6 register are never
561 		 * cleared by the processor".
562 		 */
563 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
564 		/*
565 		 * In order to reflect the #DB exception payload in guest
566 		 * dr6, three components need to be considered: active low
567 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
568 		 * DR6_BS and DR6_BT)
569 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
570 		 * In the target guest dr6:
571 		 * FIXED_1 bits should always be set.
572 		 * Active low bits should be cleared if 1-setting in payload.
573 		 * Active high bits should be set if 1-setting in payload.
574 		 *
575 		 * Note, the payload is compatible with the pending debug
576 		 * exceptions/exit qualification under VMX, that active_low bits
577 		 * are active high in payload.
578 		 * So they need to be flipped for DR6.
579 		 */
580 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
581 		vcpu->arch.dr6 |= payload;
582 		vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
583 
584 		/*
585 		 * The #DB payload is defined as compatible with the 'pending
586 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
587 		 * defined in the 'pending debug exceptions' field (enabled
588 		 * breakpoint), it is reserved and must be zero in DR6.
589 		 */
590 		vcpu->arch.dr6 &= ~BIT(12);
591 		break;
592 	case PF_VECTOR:
593 		vcpu->arch.cr2 = payload;
594 		break;
595 	}
596 
597 	vcpu->arch.exception.has_payload = false;
598 	vcpu->arch.exception.payload = 0;
599 }
600 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
601 
602 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
603 		unsigned nr, bool has_error, u32 error_code,
604 	        bool has_payload, unsigned long payload, bool reinject)
605 {
606 	u32 prev_nr;
607 	int class1, class2;
608 
609 	kvm_make_request(KVM_REQ_EVENT, vcpu);
610 
611 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
612 	queue:
613 		if (reinject) {
614 			/*
615 			 * On vmentry, vcpu->arch.exception.pending is only
616 			 * true if an event injection was blocked by
617 			 * nested_run_pending.  In that case, however,
618 			 * vcpu_enter_guest requests an immediate exit,
619 			 * and the guest shouldn't proceed far enough to
620 			 * need reinjection.
621 			 */
622 			WARN_ON_ONCE(vcpu->arch.exception.pending);
623 			vcpu->arch.exception.injected = true;
624 			if (WARN_ON_ONCE(has_payload)) {
625 				/*
626 				 * A reinjected event has already
627 				 * delivered its payload.
628 				 */
629 				has_payload = false;
630 				payload = 0;
631 			}
632 		} else {
633 			vcpu->arch.exception.pending = true;
634 			vcpu->arch.exception.injected = false;
635 		}
636 		vcpu->arch.exception.has_error_code = has_error;
637 		vcpu->arch.exception.nr = nr;
638 		vcpu->arch.exception.error_code = error_code;
639 		vcpu->arch.exception.has_payload = has_payload;
640 		vcpu->arch.exception.payload = payload;
641 		if (!is_guest_mode(vcpu))
642 			kvm_deliver_exception_payload(vcpu);
643 		return;
644 	}
645 
646 	/* to check exception */
647 	prev_nr = vcpu->arch.exception.nr;
648 	if (prev_nr == DF_VECTOR) {
649 		/* triple fault -> shutdown */
650 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
651 		return;
652 	}
653 	class1 = exception_class(prev_nr);
654 	class2 = exception_class(nr);
655 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
656 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
657 		/*
658 		 * Generate double fault per SDM Table 5-5.  Set
659 		 * exception.pending = true so that the double fault
660 		 * can trigger a nested vmexit.
661 		 */
662 		vcpu->arch.exception.pending = true;
663 		vcpu->arch.exception.injected = false;
664 		vcpu->arch.exception.has_error_code = true;
665 		vcpu->arch.exception.nr = DF_VECTOR;
666 		vcpu->arch.exception.error_code = 0;
667 		vcpu->arch.exception.has_payload = false;
668 		vcpu->arch.exception.payload = 0;
669 	} else
670 		/* replace previous exception with a new one in a hope
671 		   that instruction re-execution will regenerate lost
672 		   exception */
673 		goto queue;
674 }
675 
676 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
677 {
678 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
679 }
680 EXPORT_SYMBOL_GPL(kvm_queue_exception);
681 
682 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
683 {
684 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
685 }
686 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
687 
688 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
689 			   unsigned long payload)
690 {
691 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
692 }
693 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
694 
695 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
696 				    u32 error_code, unsigned long payload)
697 {
698 	kvm_multiple_exception(vcpu, nr, true, error_code,
699 			       true, payload, false);
700 }
701 
702 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
703 {
704 	if (err)
705 		kvm_inject_gp(vcpu, 0);
706 	else
707 		return kvm_skip_emulated_instruction(vcpu);
708 
709 	return 1;
710 }
711 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
712 
713 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
714 {
715 	++vcpu->stat.pf_guest;
716 	vcpu->arch.exception.nested_apf =
717 		is_guest_mode(vcpu) && fault->async_page_fault;
718 	if (vcpu->arch.exception.nested_apf) {
719 		vcpu->arch.apf.nested_apf_token = fault->address;
720 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
721 	} else {
722 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
723 					fault->address);
724 	}
725 }
726 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
727 
728 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
729 				    struct x86_exception *fault)
730 {
731 	struct kvm_mmu *fault_mmu;
732 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
733 
734 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
735 					       vcpu->arch.walk_mmu;
736 
737 	/*
738 	 * Invalidate the TLB entry for the faulting address, if it exists,
739 	 * else the access will fault indefinitely (and to emulate hardware).
740 	 */
741 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
742 	    !(fault->error_code & PFERR_RSVD_MASK))
743 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
744 				       fault_mmu->root_hpa);
745 
746 	fault_mmu->inject_page_fault(vcpu, fault);
747 	return fault->nested_page_fault;
748 }
749 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
750 
751 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
752 {
753 	atomic_inc(&vcpu->arch.nmi_queued);
754 	kvm_make_request(KVM_REQ_NMI, vcpu);
755 }
756 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
757 
758 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
759 {
760 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
761 }
762 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
763 
764 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
765 {
766 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
767 }
768 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
769 
770 /*
771  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
772  * a #GP and return false.
773  */
774 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
775 {
776 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
777 		return true;
778 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
779 	return false;
780 }
781 EXPORT_SYMBOL_GPL(kvm_require_cpl);
782 
783 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
784 {
785 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
786 		return true;
787 
788 	kvm_queue_exception(vcpu, UD_VECTOR);
789 	return false;
790 }
791 EXPORT_SYMBOL_GPL(kvm_require_dr);
792 
793 /*
794  * This function will be used to read from the physical memory of the currently
795  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
796  * can read from guest physical or from the guest's guest physical memory.
797  */
798 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
799 			    gfn_t ngfn, void *data, int offset, int len,
800 			    u32 access)
801 {
802 	struct x86_exception exception;
803 	gfn_t real_gfn;
804 	gpa_t ngpa;
805 
806 	ngpa     = gfn_to_gpa(ngfn);
807 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
808 	if (real_gfn == UNMAPPED_GVA)
809 		return -EFAULT;
810 
811 	real_gfn = gpa_to_gfn(real_gfn);
812 
813 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
814 }
815 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
816 
817 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
818 {
819 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
820 }
821 
822 /*
823  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
824  */
825 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
826 {
827 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
828 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
829 	int i;
830 	int ret;
831 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
832 
833 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
834 				      offset * sizeof(u64), sizeof(pdpte),
835 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
836 	if (ret < 0) {
837 		ret = 0;
838 		goto out;
839 	}
840 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
841 		if ((pdpte[i] & PT_PRESENT_MASK) &&
842 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
843 			ret = 0;
844 			goto out;
845 		}
846 	}
847 	ret = 1;
848 
849 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
850 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
851 	vcpu->arch.pdptrs_from_userspace = false;
852 
853 out:
854 
855 	return ret;
856 }
857 EXPORT_SYMBOL_GPL(load_pdptrs);
858 
859 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
860 {
861 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
862 		kvm_clear_async_pf_completion_queue(vcpu);
863 		kvm_async_pf_hash_reset(vcpu);
864 	}
865 
866 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
867 		kvm_mmu_reset_context(vcpu);
868 
869 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
870 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
871 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
872 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
873 }
874 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
875 
876 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
877 {
878 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
879 	unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
880 
881 	cr0 |= X86_CR0_ET;
882 
883 #ifdef CONFIG_X86_64
884 	if (cr0 & 0xffffffff00000000UL)
885 		return 1;
886 #endif
887 
888 	cr0 &= ~CR0_RESERVED_BITS;
889 
890 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
891 		return 1;
892 
893 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
894 		return 1;
895 
896 #ifdef CONFIG_X86_64
897 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
898 	    (cr0 & X86_CR0_PG)) {
899 		int cs_db, cs_l;
900 
901 		if (!is_pae(vcpu))
902 			return 1;
903 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
904 		if (cs_l)
905 			return 1;
906 	}
907 #endif
908 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
909 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
910 	    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
911 		return 1;
912 
913 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
914 		return 1;
915 
916 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
917 
918 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
919 
920 	return 0;
921 }
922 EXPORT_SYMBOL_GPL(kvm_set_cr0);
923 
924 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
925 {
926 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
927 }
928 EXPORT_SYMBOL_GPL(kvm_lmsw);
929 
930 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
931 {
932 	if (vcpu->arch.guest_state_protected)
933 		return;
934 
935 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
936 
937 		if (vcpu->arch.xcr0 != host_xcr0)
938 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
939 
940 		if (vcpu->arch.xsaves_enabled &&
941 		    vcpu->arch.ia32_xss != host_xss)
942 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
943 	}
944 
945 	if (static_cpu_has(X86_FEATURE_PKU) &&
946 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
947 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
948 	    vcpu->arch.pkru != vcpu->arch.host_pkru)
949 		write_pkru(vcpu->arch.pkru);
950 }
951 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
952 
953 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
954 {
955 	if (vcpu->arch.guest_state_protected)
956 		return;
957 
958 	if (static_cpu_has(X86_FEATURE_PKU) &&
959 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
960 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
961 		vcpu->arch.pkru = rdpkru();
962 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
963 			write_pkru(vcpu->arch.host_pkru);
964 	}
965 
966 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
967 
968 		if (vcpu->arch.xcr0 != host_xcr0)
969 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
970 
971 		if (vcpu->arch.xsaves_enabled &&
972 		    vcpu->arch.ia32_xss != host_xss)
973 			wrmsrl(MSR_IA32_XSS, host_xss);
974 	}
975 
976 }
977 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
978 
979 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
980 {
981 	u64 xcr0 = xcr;
982 	u64 old_xcr0 = vcpu->arch.xcr0;
983 	u64 valid_bits;
984 
985 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
986 	if (index != XCR_XFEATURE_ENABLED_MASK)
987 		return 1;
988 	if (!(xcr0 & XFEATURE_MASK_FP))
989 		return 1;
990 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
991 		return 1;
992 
993 	/*
994 	 * Do not allow the guest to set bits that we do not support
995 	 * saving.  However, xcr0 bit 0 is always set, even if the
996 	 * emulated CPU does not support XSAVE (see fx_init).
997 	 */
998 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
999 	if (xcr0 & ~valid_bits)
1000 		return 1;
1001 
1002 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1003 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1004 		return 1;
1005 
1006 	if (xcr0 & XFEATURE_MASK_AVX512) {
1007 		if (!(xcr0 & XFEATURE_MASK_YMM))
1008 			return 1;
1009 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1010 			return 1;
1011 	}
1012 	vcpu->arch.xcr0 = xcr0;
1013 
1014 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1015 		kvm_update_cpuid_runtime(vcpu);
1016 	return 0;
1017 }
1018 
1019 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1020 {
1021 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1022 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1023 		kvm_inject_gp(vcpu, 0);
1024 		return 1;
1025 	}
1026 
1027 	return kvm_skip_emulated_instruction(vcpu);
1028 }
1029 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1030 
1031 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1032 {
1033 	if (cr4 & cr4_reserved_bits)
1034 		return false;
1035 
1036 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1037 		return false;
1038 
1039 	return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1040 }
1041 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1042 
1043 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1044 {
1045 	if (((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) ||
1046 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1047 		kvm_mmu_reset_context(vcpu);
1048 }
1049 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1050 
1051 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1052 {
1053 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1054 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1055 				   X86_CR4_SMEP;
1056 
1057 	if (!kvm_is_valid_cr4(vcpu, cr4))
1058 		return 1;
1059 
1060 	if (is_long_mode(vcpu)) {
1061 		if (!(cr4 & X86_CR4_PAE))
1062 			return 1;
1063 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1064 			return 1;
1065 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1066 		   && ((cr4 ^ old_cr4) & pdptr_bits)
1067 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1068 				   kvm_read_cr3(vcpu)))
1069 		return 1;
1070 
1071 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1072 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1073 			return 1;
1074 
1075 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1076 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1077 			return 1;
1078 	}
1079 
1080 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1081 
1082 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1083 
1084 	return 0;
1085 }
1086 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1087 
1088 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1089 {
1090 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1091 	unsigned long roots_to_free = 0;
1092 	int i;
1093 
1094 	/*
1095 	 * If neither the current CR3 nor any of the prev_roots use the given
1096 	 * PCID, then nothing needs to be done here because a resync will
1097 	 * happen anyway before switching to any other CR3.
1098 	 */
1099 	if (kvm_get_active_pcid(vcpu) == pcid) {
1100 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1101 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1102 	}
1103 
1104 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1105 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1106 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1107 
1108 	kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
1109 }
1110 
1111 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1112 {
1113 	bool skip_tlb_flush = false;
1114 	unsigned long pcid = 0;
1115 #ifdef CONFIG_X86_64
1116 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1117 
1118 	if (pcid_enabled) {
1119 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1120 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1121 		pcid = cr3 & X86_CR3_PCID_MASK;
1122 	}
1123 #endif
1124 
1125 	/* PDPTRs are always reloaded for PAE paging. */
1126 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1127 		goto handle_tlb_flush;
1128 
1129 	/*
1130 	 * Do not condition the GPA check on long mode, this helper is used to
1131 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1132 	 * the current vCPU mode is accurate.
1133 	 */
1134 	if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1135 		return 1;
1136 
1137 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1138 		return 1;
1139 
1140 	if (cr3 != kvm_read_cr3(vcpu))
1141 		kvm_mmu_new_pgd(vcpu, cr3);
1142 
1143 	vcpu->arch.cr3 = cr3;
1144 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1145 
1146 handle_tlb_flush:
1147 	/*
1148 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1149 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1150 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1151 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1152 	 * i.e. only PCID=0 can be relevant.
1153 	 */
1154 	if (!skip_tlb_flush)
1155 		kvm_invalidate_pcid(vcpu, pcid);
1156 
1157 	return 0;
1158 }
1159 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1160 
1161 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1162 {
1163 	if (cr8 & CR8_RESERVED_BITS)
1164 		return 1;
1165 	if (lapic_in_kernel(vcpu))
1166 		kvm_lapic_set_tpr(vcpu, cr8);
1167 	else
1168 		vcpu->arch.cr8 = cr8;
1169 	return 0;
1170 }
1171 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1172 
1173 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1174 {
1175 	if (lapic_in_kernel(vcpu))
1176 		return kvm_lapic_get_cr8(vcpu);
1177 	else
1178 		return vcpu->arch.cr8;
1179 }
1180 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1181 
1182 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1183 {
1184 	int i;
1185 
1186 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1187 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1188 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1189 	}
1190 }
1191 
1192 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1193 {
1194 	unsigned long dr7;
1195 
1196 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1197 		dr7 = vcpu->arch.guest_debug_dr7;
1198 	else
1199 		dr7 = vcpu->arch.dr7;
1200 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1201 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1202 	if (dr7 & DR7_BP_EN_MASK)
1203 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1204 }
1205 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1206 
1207 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1208 {
1209 	u64 fixed = DR6_FIXED_1;
1210 
1211 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1212 		fixed |= DR6_RTM;
1213 
1214 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1215 		fixed |= DR6_BUS_LOCK;
1216 	return fixed;
1217 }
1218 
1219 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1220 {
1221 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1222 
1223 	switch (dr) {
1224 	case 0 ... 3:
1225 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1226 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1227 			vcpu->arch.eff_db[dr] = val;
1228 		break;
1229 	case 4:
1230 	case 6:
1231 		if (!kvm_dr6_valid(val))
1232 			return 1; /* #GP */
1233 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1234 		break;
1235 	case 5:
1236 	default: /* 7 */
1237 		if (!kvm_dr7_valid(val))
1238 			return 1; /* #GP */
1239 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1240 		kvm_update_dr7(vcpu);
1241 		break;
1242 	}
1243 
1244 	return 0;
1245 }
1246 EXPORT_SYMBOL_GPL(kvm_set_dr);
1247 
1248 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1249 {
1250 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1251 
1252 	switch (dr) {
1253 	case 0 ... 3:
1254 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1255 		break;
1256 	case 4:
1257 	case 6:
1258 		*val = vcpu->arch.dr6;
1259 		break;
1260 	case 5:
1261 	default: /* 7 */
1262 		*val = vcpu->arch.dr7;
1263 		break;
1264 	}
1265 }
1266 EXPORT_SYMBOL_GPL(kvm_get_dr);
1267 
1268 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1269 {
1270 	u32 ecx = kvm_rcx_read(vcpu);
1271 	u64 data;
1272 
1273 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1274 		kvm_inject_gp(vcpu, 0);
1275 		return 1;
1276 	}
1277 
1278 	kvm_rax_write(vcpu, (u32)data);
1279 	kvm_rdx_write(vcpu, data >> 32);
1280 	return kvm_skip_emulated_instruction(vcpu);
1281 }
1282 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1283 
1284 /*
1285  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1286  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1287  *
1288  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1289  * extract the supported MSRs from the related const lists.
1290  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1291  * capabilities of the host cpu. This capabilities test skips MSRs that are
1292  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1293  * may depend on host virtualization features rather than host cpu features.
1294  */
1295 
1296 static const u32 msrs_to_save_all[] = {
1297 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1298 	MSR_STAR,
1299 #ifdef CONFIG_X86_64
1300 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1301 #endif
1302 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1303 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1304 	MSR_IA32_SPEC_CTRL,
1305 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1306 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1307 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1308 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1309 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1310 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1311 	MSR_IA32_UMWAIT_CONTROL,
1312 
1313 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1314 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1315 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1316 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1317 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1318 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1319 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1320 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1321 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1322 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1323 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1324 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1325 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1326 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1327 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1328 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1329 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1330 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1331 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1332 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1333 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1334 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1335 };
1336 
1337 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1338 static unsigned num_msrs_to_save;
1339 
1340 static const u32 emulated_msrs_all[] = {
1341 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1342 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1343 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1344 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1345 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1346 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1347 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1348 	HV_X64_MSR_RESET,
1349 	HV_X64_MSR_VP_INDEX,
1350 	HV_X64_MSR_VP_RUNTIME,
1351 	HV_X64_MSR_SCONTROL,
1352 	HV_X64_MSR_STIMER0_CONFIG,
1353 	HV_X64_MSR_VP_ASSIST_PAGE,
1354 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1355 	HV_X64_MSR_TSC_EMULATION_STATUS,
1356 	HV_X64_MSR_SYNDBG_OPTIONS,
1357 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1358 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1359 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1360 
1361 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1362 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1363 
1364 	MSR_IA32_TSC_ADJUST,
1365 	MSR_IA32_TSC_DEADLINE,
1366 	MSR_IA32_ARCH_CAPABILITIES,
1367 	MSR_IA32_PERF_CAPABILITIES,
1368 	MSR_IA32_MISC_ENABLE,
1369 	MSR_IA32_MCG_STATUS,
1370 	MSR_IA32_MCG_CTL,
1371 	MSR_IA32_MCG_EXT_CTL,
1372 	MSR_IA32_SMBASE,
1373 	MSR_SMI_COUNT,
1374 	MSR_PLATFORM_INFO,
1375 	MSR_MISC_FEATURES_ENABLES,
1376 	MSR_AMD64_VIRT_SPEC_CTRL,
1377 	MSR_IA32_POWER_CTL,
1378 	MSR_IA32_UCODE_REV,
1379 
1380 	/*
1381 	 * The following list leaves out MSRs whose values are determined
1382 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1383 	 * We always support the "true" VMX control MSRs, even if the host
1384 	 * processor does not, so I am putting these registers here rather
1385 	 * than in msrs_to_save_all.
1386 	 */
1387 	MSR_IA32_VMX_BASIC,
1388 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1389 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1390 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1391 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1392 	MSR_IA32_VMX_MISC,
1393 	MSR_IA32_VMX_CR0_FIXED0,
1394 	MSR_IA32_VMX_CR4_FIXED0,
1395 	MSR_IA32_VMX_VMCS_ENUM,
1396 	MSR_IA32_VMX_PROCBASED_CTLS2,
1397 	MSR_IA32_VMX_EPT_VPID_CAP,
1398 	MSR_IA32_VMX_VMFUNC,
1399 
1400 	MSR_K7_HWCR,
1401 	MSR_KVM_POLL_CONTROL,
1402 };
1403 
1404 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1405 static unsigned num_emulated_msrs;
1406 
1407 /*
1408  * List of msr numbers which are used to expose MSR-based features that
1409  * can be used by a hypervisor to validate requested CPU features.
1410  */
1411 static const u32 msr_based_features_all[] = {
1412 	MSR_IA32_VMX_BASIC,
1413 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1414 	MSR_IA32_VMX_PINBASED_CTLS,
1415 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1416 	MSR_IA32_VMX_PROCBASED_CTLS,
1417 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1418 	MSR_IA32_VMX_EXIT_CTLS,
1419 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1420 	MSR_IA32_VMX_ENTRY_CTLS,
1421 	MSR_IA32_VMX_MISC,
1422 	MSR_IA32_VMX_CR0_FIXED0,
1423 	MSR_IA32_VMX_CR0_FIXED1,
1424 	MSR_IA32_VMX_CR4_FIXED0,
1425 	MSR_IA32_VMX_CR4_FIXED1,
1426 	MSR_IA32_VMX_VMCS_ENUM,
1427 	MSR_IA32_VMX_PROCBASED_CTLS2,
1428 	MSR_IA32_VMX_EPT_VPID_CAP,
1429 	MSR_IA32_VMX_VMFUNC,
1430 
1431 	MSR_F10H_DECFG,
1432 	MSR_IA32_UCODE_REV,
1433 	MSR_IA32_ARCH_CAPABILITIES,
1434 	MSR_IA32_PERF_CAPABILITIES,
1435 };
1436 
1437 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1438 static unsigned int num_msr_based_features;
1439 
1440 static u64 kvm_get_arch_capabilities(void)
1441 {
1442 	u64 data = 0;
1443 
1444 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1445 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1446 
1447 	/*
1448 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1449 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1450 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1451 	 * L1 guests, so it need not worry about its own (L2) guests.
1452 	 */
1453 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1454 
1455 	/*
1456 	 * If we're doing cache flushes (either "always" or "cond")
1457 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1458 	 * If an outer hypervisor is doing the cache flush for us
1459 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1460 	 * capability to the guest too, and if EPT is disabled we're not
1461 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1462 	 * require a nested hypervisor to do a flush of its own.
1463 	 */
1464 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1465 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1466 
1467 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1468 		data |= ARCH_CAP_RDCL_NO;
1469 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1470 		data |= ARCH_CAP_SSB_NO;
1471 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1472 		data |= ARCH_CAP_MDS_NO;
1473 
1474 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1475 		/*
1476 		 * If RTM=0 because the kernel has disabled TSX, the host might
1477 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1478 		 * and therefore knows that there cannot be TAA) but keep
1479 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1480 		 * and we want to allow migrating those guests to tsx=off hosts.
1481 		 */
1482 		data &= ~ARCH_CAP_TAA_NO;
1483 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1484 		data |= ARCH_CAP_TAA_NO;
1485 	} else {
1486 		/*
1487 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1488 		 * host so the guest can choose between disabling TSX or
1489 		 * using VERW to clear CPU buffers.
1490 		 */
1491 	}
1492 
1493 	return data;
1494 }
1495 
1496 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1497 {
1498 	switch (msr->index) {
1499 	case MSR_IA32_ARCH_CAPABILITIES:
1500 		msr->data = kvm_get_arch_capabilities();
1501 		break;
1502 	case MSR_IA32_UCODE_REV:
1503 		rdmsrl_safe(msr->index, &msr->data);
1504 		break;
1505 	default:
1506 		return static_call(kvm_x86_get_msr_feature)(msr);
1507 	}
1508 	return 0;
1509 }
1510 
1511 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1512 {
1513 	struct kvm_msr_entry msr;
1514 	int r;
1515 
1516 	msr.index = index;
1517 	r = kvm_get_msr_feature(&msr);
1518 
1519 	if (r == KVM_MSR_RET_INVALID) {
1520 		/* Unconditionally clear the output for simplicity */
1521 		*data = 0;
1522 		if (kvm_msr_ignored_check(index, 0, false))
1523 			r = 0;
1524 	}
1525 
1526 	if (r)
1527 		return r;
1528 
1529 	*data = msr.data;
1530 
1531 	return 0;
1532 }
1533 
1534 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1535 {
1536 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1537 		return false;
1538 
1539 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1540 		return false;
1541 
1542 	if (efer & (EFER_LME | EFER_LMA) &&
1543 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1544 		return false;
1545 
1546 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1547 		return false;
1548 
1549 	return true;
1550 
1551 }
1552 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1553 {
1554 	if (efer & efer_reserved_bits)
1555 		return false;
1556 
1557 	return __kvm_valid_efer(vcpu, efer);
1558 }
1559 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1560 
1561 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1562 {
1563 	u64 old_efer = vcpu->arch.efer;
1564 	u64 efer = msr_info->data;
1565 	int r;
1566 
1567 	if (efer & efer_reserved_bits)
1568 		return 1;
1569 
1570 	if (!msr_info->host_initiated) {
1571 		if (!__kvm_valid_efer(vcpu, efer))
1572 			return 1;
1573 
1574 		if (is_paging(vcpu) &&
1575 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1576 			return 1;
1577 	}
1578 
1579 	efer &= ~EFER_LMA;
1580 	efer |= vcpu->arch.efer & EFER_LMA;
1581 
1582 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1583 	if (r) {
1584 		WARN_ON(r > 0);
1585 		return r;
1586 	}
1587 
1588 	/* Update reserved bits */
1589 	if ((efer ^ old_efer) & EFER_NX)
1590 		kvm_mmu_reset_context(vcpu);
1591 
1592 	return 0;
1593 }
1594 
1595 void kvm_enable_efer_bits(u64 mask)
1596 {
1597        efer_reserved_bits &= ~mask;
1598 }
1599 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1600 
1601 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1602 {
1603 	struct kvm_x86_msr_filter *msr_filter;
1604 	struct msr_bitmap_range *ranges;
1605 	struct kvm *kvm = vcpu->kvm;
1606 	bool allowed;
1607 	int idx;
1608 	u32 i;
1609 
1610 	/* x2APIC MSRs do not support filtering. */
1611 	if (index >= 0x800 && index <= 0x8ff)
1612 		return true;
1613 
1614 	idx = srcu_read_lock(&kvm->srcu);
1615 
1616 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1617 	if (!msr_filter) {
1618 		allowed = true;
1619 		goto out;
1620 	}
1621 
1622 	allowed = msr_filter->default_allow;
1623 	ranges = msr_filter->ranges;
1624 
1625 	for (i = 0; i < msr_filter->count; i++) {
1626 		u32 start = ranges[i].base;
1627 		u32 end = start + ranges[i].nmsrs;
1628 		u32 flags = ranges[i].flags;
1629 		unsigned long *bitmap = ranges[i].bitmap;
1630 
1631 		if ((index >= start) && (index < end) && (flags & type)) {
1632 			allowed = !!test_bit(index - start, bitmap);
1633 			break;
1634 		}
1635 	}
1636 
1637 out:
1638 	srcu_read_unlock(&kvm->srcu, idx);
1639 
1640 	return allowed;
1641 }
1642 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1643 
1644 /*
1645  * Write @data into the MSR specified by @index.  Select MSR specific fault
1646  * checks are bypassed if @host_initiated is %true.
1647  * Returns 0 on success, non-0 otherwise.
1648  * Assumes vcpu_load() was already called.
1649  */
1650 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1651 			 bool host_initiated)
1652 {
1653 	struct msr_data msr;
1654 
1655 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1656 		return KVM_MSR_RET_FILTERED;
1657 
1658 	switch (index) {
1659 	case MSR_FS_BASE:
1660 	case MSR_GS_BASE:
1661 	case MSR_KERNEL_GS_BASE:
1662 	case MSR_CSTAR:
1663 	case MSR_LSTAR:
1664 		if (is_noncanonical_address(data, vcpu))
1665 			return 1;
1666 		break;
1667 	case MSR_IA32_SYSENTER_EIP:
1668 	case MSR_IA32_SYSENTER_ESP:
1669 		/*
1670 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1671 		 * non-canonical address is written on Intel but not on
1672 		 * AMD (which ignores the top 32-bits, because it does
1673 		 * not implement 64-bit SYSENTER).
1674 		 *
1675 		 * 64-bit code should hence be able to write a non-canonical
1676 		 * value on AMD.  Making the address canonical ensures that
1677 		 * vmentry does not fail on Intel after writing a non-canonical
1678 		 * value, and that something deterministic happens if the guest
1679 		 * invokes 64-bit SYSENTER.
1680 		 */
1681 		data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1682 		break;
1683 	case MSR_TSC_AUX:
1684 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1685 			return 1;
1686 
1687 		if (!host_initiated &&
1688 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1689 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1690 			return 1;
1691 
1692 		/*
1693 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1694 		 * incomplete and conflicting architectural behavior.  Current
1695 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1696 		 * reserved and always read as zeros.  Enforce Intel's reserved
1697 		 * bits check if and only if the guest CPU is Intel, and clear
1698 		 * the bits in all other cases.  This ensures cross-vendor
1699 		 * migration will provide consistent behavior for the guest.
1700 		 */
1701 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1702 			return 1;
1703 
1704 		data = (u32)data;
1705 		break;
1706 	}
1707 
1708 	msr.data = data;
1709 	msr.index = index;
1710 	msr.host_initiated = host_initiated;
1711 
1712 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1713 }
1714 
1715 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1716 				     u32 index, u64 data, bool host_initiated)
1717 {
1718 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1719 
1720 	if (ret == KVM_MSR_RET_INVALID)
1721 		if (kvm_msr_ignored_check(index, data, true))
1722 			ret = 0;
1723 
1724 	return ret;
1725 }
1726 
1727 /*
1728  * Read the MSR specified by @index into @data.  Select MSR specific fault
1729  * checks are bypassed if @host_initiated is %true.
1730  * Returns 0 on success, non-0 otherwise.
1731  * Assumes vcpu_load() was already called.
1732  */
1733 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1734 		  bool host_initiated)
1735 {
1736 	struct msr_data msr;
1737 	int ret;
1738 
1739 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1740 		return KVM_MSR_RET_FILTERED;
1741 
1742 	switch (index) {
1743 	case MSR_TSC_AUX:
1744 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1745 			return 1;
1746 
1747 		if (!host_initiated &&
1748 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1749 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1750 			return 1;
1751 		break;
1752 	}
1753 
1754 	msr.index = index;
1755 	msr.host_initiated = host_initiated;
1756 
1757 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1758 	if (!ret)
1759 		*data = msr.data;
1760 	return ret;
1761 }
1762 
1763 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1764 				     u32 index, u64 *data, bool host_initiated)
1765 {
1766 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1767 
1768 	if (ret == KVM_MSR_RET_INVALID) {
1769 		/* Unconditionally clear *data for simplicity */
1770 		*data = 0;
1771 		if (kvm_msr_ignored_check(index, 0, false))
1772 			ret = 0;
1773 	}
1774 
1775 	return ret;
1776 }
1777 
1778 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1779 {
1780 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1781 }
1782 EXPORT_SYMBOL_GPL(kvm_get_msr);
1783 
1784 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1785 {
1786 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1787 }
1788 EXPORT_SYMBOL_GPL(kvm_set_msr);
1789 
1790 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1791 {
1792 	int err = vcpu->run->msr.error;
1793 	if (!err) {
1794 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1795 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1796 	}
1797 
1798 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, err);
1799 }
1800 
1801 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1802 {
1803 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1804 }
1805 
1806 static u64 kvm_msr_reason(int r)
1807 {
1808 	switch (r) {
1809 	case KVM_MSR_RET_INVALID:
1810 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1811 	case KVM_MSR_RET_FILTERED:
1812 		return KVM_MSR_EXIT_REASON_FILTER;
1813 	default:
1814 		return KVM_MSR_EXIT_REASON_INVAL;
1815 	}
1816 }
1817 
1818 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1819 			      u32 exit_reason, u64 data,
1820 			      int (*completion)(struct kvm_vcpu *vcpu),
1821 			      int r)
1822 {
1823 	u64 msr_reason = kvm_msr_reason(r);
1824 
1825 	/* Check if the user wanted to know about this MSR fault */
1826 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1827 		return 0;
1828 
1829 	vcpu->run->exit_reason = exit_reason;
1830 	vcpu->run->msr.error = 0;
1831 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1832 	vcpu->run->msr.reason = msr_reason;
1833 	vcpu->run->msr.index = index;
1834 	vcpu->run->msr.data = data;
1835 	vcpu->arch.complete_userspace_io = completion;
1836 
1837 	return 1;
1838 }
1839 
1840 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1841 {
1842 	return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1843 				   complete_emulated_rdmsr, r);
1844 }
1845 
1846 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1847 {
1848 	return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1849 				   complete_emulated_wrmsr, r);
1850 }
1851 
1852 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1853 {
1854 	u32 ecx = kvm_rcx_read(vcpu);
1855 	u64 data;
1856 	int r;
1857 
1858 	r = kvm_get_msr(vcpu, ecx, &data);
1859 
1860 	/* MSR read failed? See if we should ask user space */
1861 	if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1862 		/* Bounce to user space */
1863 		return 0;
1864 	}
1865 
1866 	if (!r) {
1867 		trace_kvm_msr_read(ecx, data);
1868 
1869 		kvm_rax_write(vcpu, data & -1u);
1870 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
1871 	} else {
1872 		trace_kvm_msr_read_ex(ecx);
1873 	}
1874 
1875 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1876 }
1877 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1878 
1879 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1880 {
1881 	u32 ecx = kvm_rcx_read(vcpu);
1882 	u64 data = kvm_read_edx_eax(vcpu);
1883 	int r;
1884 
1885 	r = kvm_set_msr(vcpu, ecx, data);
1886 
1887 	/* MSR write failed? See if we should ask user space */
1888 	if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1889 		/* Bounce to user space */
1890 		return 0;
1891 
1892 	/* Signal all other negative errors to userspace */
1893 	if (r < 0)
1894 		return r;
1895 
1896 	if (!r)
1897 		trace_kvm_msr_write(ecx, data);
1898 	else
1899 		trace_kvm_msr_write_ex(ecx, data);
1900 
1901 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1902 }
1903 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1904 
1905 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
1906 {
1907 	return kvm_skip_emulated_instruction(vcpu);
1908 }
1909 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
1910 
1911 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
1912 {
1913 	/* Treat an INVD instruction as a NOP and just skip it. */
1914 	return kvm_emulate_as_nop(vcpu);
1915 }
1916 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
1917 
1918 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
1919 {
1920 	pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
1921 	return kvm_emulate_as_nop(vcpu);
1922 }
1923 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
1924 
1925 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
1926 {
1927 	kvm_queue_exception(vcpu, UD_VECTOR);
1928 	return 1;
1929 }
1930 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
1931 
1932 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
1933 {
1934 	pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
1935 	return kvm_emulate_as_nop(vcpu);
1936 }
1937 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
1938 
1939 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1940 {
1941 	xfer_to_guest_mode_prepare();
1942 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1943 		xfer_to_guest_mode_work_pending();
1944 }
1945 
1946 /*
1947  * The fast path for frequent and performance sensitive wrmsr emulation,
1948  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1949  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1950  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1951  * other cases which must be called after interrupts are enabled on the host.
1952  */
1953 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1954 {
1955 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1956 		return 1;
1957 
1958 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1959 		((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1960 		((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1961 		((u32)(data >> 32) != X2APIC_BROADCAST)) {
1962 
1963 		data &= ~(1 << 12);
1964 		kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1965 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1966 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1967 		trace_kvm_apic_write(APIC_ICR, (u32)data);
1968 		return 0;
1969 	}
1970 
1971 	return 1;
1972 }
1973 
1974 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1975 {
1976 	if (!kvm_can_use_hv_timer(vcpu))
1977 		return 1;
1978 
1979 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
1980 	return 0;
1981 }
1982 
1983 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1984 {
1985 	u32 msr = kvm_rcx_read(vcpu);
1986 	u64 data;
1987 	fastpath_t ret = EXIT_FASTPATH_NONE;
1988 
1989 	switch (msr) {
1990 	case APIC_BASE_MSR + (APIC_ICR >> 4):
1991 		data = kvm_read_edx_eax(vcpu);
1992 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1993 			kvm_skip_emulated_instruction(vcpu);
1994 			ret = EXIT_FASTPATH_EXIT_HANDLED;
1995 		}
1996 		break;
1997 	case MSR_IA32_TSC_DEADLINE:
1998 		data = kvm_read_edx_eax(vcpu);
1999 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2000 			kvm_skip_emulated_instruction(vcpu);
2001 			ret = EXIT_FASTPATH_REENTER_GUEST;
2002 		}
2003 		break;
2004 	default:
2005 		break;
2006 	}
2007 
2008 	if (ret != EXIT_FASTPATH_NONE)
2009 		trace_kvm_msr_write(msr, data);
2010 
2011 	return ret;
2012 }
2013 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2014 
2015 /*
2016  * Adapt set_msr() to msr_io()'s calling convention
2017  */
2018 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2019 {
2020 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2021 }
2022 
2023 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2024 {
2025 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2026 }
2027 
2028 #ifdef CONFIG_X86_64
2029 struct pvclock_clock {
2030 	int vclock_mode;
2031 	u64 cycle_last;
2032 	u64 mask;
2033 	u32 mult;
2034 	u32 shift;
2035 	u64 base_cycles;
2036 	u64 offset;
2037 };
2038 
2039 struct pvclock_gtod_data {
2040 	seqcount_t	seq;
2041 
2042 	struct pvclock_clock clock; /* extract of a clocksource struct */
2043 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2044 
2045 	ktime_t		offs_boot;
2046 	u64		wall_time_sec;
2047 };
2048 
2049 static struct pvclock_gtod_data pvclock_gtod_data;
2050 
2051 static void update_pvclock_gtod(struct timekeeper *tk)
2052 {
2053 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2054 
2055 	write_seqcount_begin(&vdata->seq);
2056 
2057 	/* copy pvclock gtod data */
2058 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2059 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2060 	vdata->clock.mask		= tk->tkr_mono.mask;
2061 	vdata->clock.mult		= tk->tkr_mono.mult;
2062 	vdata->clock.shift		= tk->tkr_mono.shift;
2063 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2064 	vdata->clock.offset		= tk->tkr_mono.base;
2065 
2066 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2067 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2068 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2069 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2070 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2071 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2072 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2073 
2074 	vdata->wall_time_sec            = tk->xtime_sec;
2075 
2076 	vdata->offs_boot		= tk->offs_boot;
2077 
2078 	write_seqcount_end(&vdata->seq);
2079 }
2080 
2081 static s64 get_kvmclock_base_ns(void)
2082 {
2083 	/* Count up from boot time, but with the frequency of the raw clock.  */
2084 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2085 }
2086 #else
2087 static s64 get_kvmclock_base_ns(void)
2088 {
2089 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2090 	return ktime_get_boottime_ns();
2091 }
2092 #endif
2093 
2094 void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2095 {
2096 	int version;
2097 	int r;
2098 	struct pvclock_wall_clock wc;
2099 	u32 wc_sec_hi;
2100 	u64 wall_nsec;
2101 
2102 	if (!wall_clock)
2103 		return;
2104 
2105 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2106 	if (r)
2107 		return;
2108 
2109 	if (version & 1)
2110 		++version;  /* first time write, random junk */
2111 
2112 	++version;
2113 
2114 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2115 		return;
2116 
2117 	/*
2118 	 * The guest calculates current wall clock time by adding
2119 	 * system time (updated by kvm_guest_time_update below) to the
2120 	 * wall clock specified here.  We do the reverse here.
2121 	 */
2122 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2123 
2124 	wc.nsec = do_div(wall_nsec, 1000000000);
2125 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2126 	wc.version = version;
2127 
2128 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2129 
2130 	if (sec_hi_ofs) {
2131 		wc_sec_hi = wall_nsec >> 32;
2132 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2133 				&wc_sec_hi, sizeof(wc_sec_hi));
2134 	}
2135 
2136 	version++;
2137 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2138 }
2139 
2140 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2141 				  bool old_msr, bool host_initiated)
2142 {
2143 	struct kvm_arch *ka = &vcpu->kvm->arch;
2144 
2145 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2146 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2147 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2148 
2149 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2150 	}
2151 
2152 	vcpu->arch.time = system_time;
2153 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2154 
2155 	/* we verify if the enable bit is set... */
2156 	vcpu->arch.pv_time_enabled = false;
2157 	if (!(system_time & 1))
2158 		return;
2159 
2160 	if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2161 				       &vcpu->arch.pv_time, system_time & ~1ULL,
2162 				       sizeof(struct pvclock_vcpu_time_info)))
2163 		vcpu->arch.pv_time_enabled = true;
2164 
2165 	return;
2166 }
2167 
2168 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2169 {
2170 	do_shl32_div32(dividend, divisor);
2171 	return dividend;
2172 }
2173 
2174 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2175 			       s8 *pshift, u32 *pmultiplier)
2176 {
2177 	uint64_t scaled64;
2178 	int32_t  shift = 0;
2179 	uint64_t tps64;
2180 	uint32_t tps32;
2181 
2182 	tps64 = base_hz;
2183 	scaled64 = scaled_hz;
2184 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2185 		tps64 >>= 1;
2186 		shift--;
2187 	}
2188 
2189 	tps32 = (uint32_t)tps64;
2190 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2191 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2192 			scaled64 >>= 1;
2193 		else
2194 			tps32 <<= 1;
2195 		shift++;
2196 	}
2197 
2198 	*pshift = shift;
2199 	*pmultiplier = div_frac(scaled64, tps32);
2200 }
2201 
2202 #ifdef CONFIG_X86_64
2203 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2204 #endif
2205 
2206 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2207 static unsigned long max_tsc_khz;
2208 
2209 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2210 {
2211 	u64 v = (u64)khz * (1000000 + ppm);
2212 	do_div(v, 1000000);
2213 	return v;
2214 }
2215 
2216 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2217 
2218 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2219 {
2220 	u64 ratio;
2221 
2222 	/* Guest TSC same frequency as host TSC? */
2223 	if (!scale) {
2224 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2225 		return 0;
2226 	}
2227 
2228 	/* TSC scaling supported? */
2229 	if (!kvm_has_tsc_control) {
2230 		if (user_tsc_khz > tsc_khz) {
2231 			vcpu->arch.tsc_catchup = 1;
2232 			vcpu->arch.tsc_always_catchup = 1;
2233 			return 0;
2234 		} else {
2235 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2236 			return -1;
2237 		}
2238 	}
2239 
2240 	/* TSC scaling required  - calculate ratio */
2241 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2242 				user_tsc_khz, tsc_khz);
2243 
2244 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2245 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2246 			            user_tsc_khz);
2247 		return -1;
2248 	}
2249 
2250 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2251 	return 0;
2252 }
2253 
2254 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2255 {
2256 	u32 thresh_lo, thresh_hi;
2257 	int use_scaling = 0;
2258 
2259 	/* tsc_khz can be zero if TSC calibration fails */
2260 	if (user_tsc_khz == 0) {
2261 		/* set tsc_scaling_ratio to a safe value */
2262 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2263 		return -1;
2264 	}
2265 
2266 	/* Compute a scale to convert nanoseconds in TSC cycles */
2267 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2268 			   &vcpu->arch.virtual_tsc_shift,
2269 			   &vcpu->arch.virtual_tsc_mult);
2270 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2271 
2272 	/*
2273 	 * Compute the variation in TSC rate which is acceptable
2274 	 * within the range of tolerance and decide if the
2275 	 * rate being applied is within that bounds of the hardware
2276 	 * rate.  If so, no scaling or compensation need be done.
2277 	 */
2278 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2279 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2280 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2281 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2282 		use_scaling = 1;
2283 	}
2284 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2285 }
2286 
2287 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2288 {
2289 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2290 				      vcpu->arch.virtual_tsc_mult,
2291 				      vcpu->arch.virtual_tsc_shift);
2292 	tsc += vcpu->arch.this_tsc_write;
2293 	return tsc;
2294 }
2295 
2296 static inline int gtod_is_based_on_tsc(int mode)
2297 {
2298 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2299 }
2300 
2301 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2302 {
2303 #ifdef CONFIG_X86_64
2304 	bool vcpus_matched;
2305 	struct kvm_arch *ka = &vcpu->kvm->arch;
2306 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2307 
2308 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2309 			 atomic_read(&vcpu->kvm->online_vcpus));
2310 
2311 	/*
2312 	 * Once the masterclock is enabled, always perform request in
2313 	 * order to update it.
2314 	 *
2315 	 * In order to enable masterclock, the host clocksource must be TSC
2316 	 * and the vcpus need to have matched TSCs.  When that happens,
2317 	 * perform request to enable masterclock.
2318 	 */
2319 	if (ka->use_master_clock ||
2320 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2321 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2322 
2323 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2324 			    atomic_read(&vcpu->kvm->online_vcpus),
2325 		            ka->use_master_clock, gtod->clock.vclock_mode);
2326 #endif
2327 }
2328 
2329 /*
2330  * Multiply tsc by a fixed point number represented by ratio.
2331  *
2332  * The most significant 64-N bits (mult) of ratio represent the
2333  * integral part of the fixed point number; the remaining N bits
2334  * (frac) represent the fractional part, ie. ratio represents a fixed
2335  * point number (mult + frac * 2^(-N)).
2336  *
2337  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2338  */
2339 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2340 {
2341 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2342 }
2343 
2344 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio)
2345 {
2346 	u64 _tsc = tsc;
2347 
2348 	if (ratio != kvm_default_tsc_scaling_ratio)
2349 		_tsc = __scale_tsc(ratio, tsc);
2350 
2351 	return _tsc;
2352 }
2353 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2354 
2355 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2356 {
2357 	u64 tsc;
2358 
2359 	tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2360 
2361 	return target_tsc - tsc;
2362 }
2363 
2364 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2365 {
2366 	return vcpu->arch.l1_tsc_offset +
2367 		kvm_scale_tsc(vcpu, host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2368 }
2369 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2370 
2371 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2372 {
2373 	u64 nested_offset;
2374 
2375 	if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2376 		nested_offset = l1_offset;
2377 	else
2378 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2379 						kvm_tsc_scaling_ratio_frac_bits);
2380 
2381 	nested_offset += l2_offset;
2382 	return nested_offset;
2383 }
2384 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2385 
2386 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2387 {
2388 	if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2389 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2390 				       kvm_tsc_scaling_ratio_frac_bits);
2391 
2392 	return l1_multiplier;
2393 }
2394 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2395 
2396 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2397 {
2398 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2399 				   vcpu->arch.l1_tsc_offset,
2400 				   l1_offset);
2401 
2402 	vcpu->arch.l1_tsc_offset = l1_offset;
2403 
2404 	/*
2405 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2406 	 * according to the spec this should set L1's TSC (as opposed to
2407 	 * setting L1's offset for L2).
2408 	 */
2409 	if (is_guest_mode(vcpu))
2410 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2411 			l1_offset,
2412 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2413 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2414 	else
2415 		vcpu->arch.tsc_offset = l1_offset;
2416 
2417 	static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2418 }
2419 
2420 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2421 {
2422 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2423 
2424 	/* Userspace is changing the multiplier while L2 is active */
2425 	if (is_guest_mode(vcpu))
2426 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2427 			l1_multiplier,
2428 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2429 	else
2430 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2431 
2432 	if (kvm_has_tsc_control)
2433 		static_call(kvm_x86_write_tsc_multiplier)(
2434 			vcpu, vcpu->arch.tsc_scaling_ratio);
2435 }
2436 
2437 static inline bool kvm_check_tsc_unstable(void)
2438 {
2439 #ifdef CONFIG_X86_64
2440 	/*
2441 	 * TSC is marked unstable when we're running on Hyper-V,
2442 	 * 'TSC page' clocksource is good.
2443 	 */
2444 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2445 		return false;
2446 #endif
2447 	return check_tsc_unstable();
2448 }
2449 
2450 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2451 {
2452 	struct kvm *kvm = vcpu->kvm;
2453 	u64 offset, ns, elapsed;
2454 	unsigned long flags;
2455 	bool matched;
2456 	bool already_matched;
2457 	bool synchronizing = false;
2458 
2459 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2460 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2461 	ns = get_kvmclock_base_ns();
2462 	elapsed = ns - kvm->arch.last_tsc_nsec;
2463 
2464 	if (vcpu->arch.virtual_tsc_khz) {
2465 		if (data == 0) {
2466 			/*
2467 			 * detection of vcpu initialization -- need to sync
2468 			 * with other vCPUs. This particularly helps to keep
2469 			 * kvm_clock stable after CPU hotplug
2470 			 */
2471 			synchronizing = true;
2472 		} else {
2473 			u64 tsc_exp = kvm->arch.last_tsc_write +
2474 						nsec_to_cycles(vcpu, elapsed);
2475 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2476 			/*
2477 			 * Special case: TSC write with a small delta (1 second)
2478 			 * of virtual cycle time against real time is
2479 			 * interpreted as an attempt to synchronize the CPU.
2480 			 */
2481 			synchronizing = data < tsc_exp + tsc_hz &&
2482 					data + tsc_hz > tsc_exp;
2483 		}
2484 	}
2485 
2486 	/*
2487 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2488 	 * TSC, we add elapsed time in this computation.  We could let the
2489 	 * compensation code attempt to catch up if we fall behind, but
2490 	 * it's better to try to match offsets from the beginning.
2491          */
2492 	if (synchronizing &&
2493 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2494 		if (!kvm_check_tsc_unstable()) {
2495 			offset = kvm->arch.cur_tsc_offset;
2496 		} else {
2497 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2498 			data += delta;
2499 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2500 		}
2501 		matched = true;
2502 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2503 	} else {
2504 		/*
2505 		 * We split periods of matched TSC writes into generations.
2506 		 * For each generation, we track the original measured
2507 		 * nanosecond time, offset, and write, so if TSCs are in
2508 		 * sync, we can match exact offset, and if not, we can match
2509 		 * exact software computation in compute_guest_tsc()
2510 		 *
2511 		 * These values are tracked in kvm->arch.cur_xxx variables.
2512 		 */
2513 		kvm->arch.cur_tsc_generation++;
2514 		kvm->arch.cur_tsc_nsec = ns;
2515 		kvm->arch.cur_tsc_write = data;
2516 		kvm->arch.cur_tsc_offset = offset;
2517 		matched = false;
2518 	}
2519 
2520 	/*
2521 	 * We also track th most recent recorded KHZ, write and time to
2522 	 * allow the matching interval to be extended at each write.
2523 	 */
2524 	kvm->arch.last_tsc_nsec = ns;
2525 	kvm->arch.last_tsc_write = data;
2526 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2527 
2528 	vcpu->arch.last_guest_tsc = data;
2529 
2530 	/* Keep track of which generation this VCPU has synchronized to */
2531 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2532 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2533 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2534 
2535 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2536 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2537 
2538 	spin_lock_irqsave(&kvm->arch.pvclock_gtod_sync_lock, flags);
2539 	if (!matched) {
2540 		kvm->arch.nr_vcpus_matched_tsc = 0;
2541 	} else if (!already_matched) {
2542 		kvm->arch.nr_vcpus_matched_tsc++;
2543 	}
2544 
2545 	kvm_track_tsc_matching(vcpu);
2546 	spin_unlock_irqrestore(&kvm->arch.pvclock_gtod_sync_lock, flags);
2547 }
2548 
2549 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2550 					   s64 adjustment)
2551 {
2552 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2553 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2554 }
2555 
2556 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2557 {
2558 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2559 		WARN_ON(adjustment < 0);
2560 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment,
2561 				   vcpu->arch.l1_tsc_scaling_ratio);
2562 	adjust_tsc_offset_guest(vcpu, adjustment);
2563 }
2564 
2565 #ifdef CONFIG_X86_64
2566 
2567 static u64 read_tsc(void)
2568 {
2569 	u64 ret = (u64)rdtsc_ordered();
2570 	u64 last = pvclock_gtod_data.clock.cycle_last;
2571 
2572 	if (likely(ret >= last))
2573 		return ret;
2574 
2575 	/*
2576 	 * GCC likes to generate cmov here, but this branch is extremely
2577 	 * predictable (it's just a function of time and the likely is
2578 	 * very likely) and there's a data dependence, so force GCC
2579 	 * to generate a branch instead.  I don't barrier() because
2580 	 * we don't actually need a barrier, and if this function
2581 	 * ever gets inlined it will generate worse code.
2582 	 */
2583 	asm volatile ("");
2584 	return last;
2585 }
2586 
2587 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2588 			  int *mode)
2589 {
2590 	long v;
2591 	u64 tsc_pg_val;
2592 
2593 	switch (clock->vclock_mode) {
2594 	case VDSO_CLOCKMODE_HVCLOCK:
2595 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2596 						  tsc_timestamp);
2597 		if (tsc_pg_val != U64_MAX) {
2598 			/* TSC page valid */
2599 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2600 			v = (tsc_pg_val - clock->cycle_last) &
2601 				clock->mask;
2602 		} else {
2603 			/* TSC page invalid */
2604 			*mode = VDSO_CLOCKMODE_NONE;
2605 		}
2606 		break;
2607 	case VDSO_CLOCKMODE_TSC:
2608 		*mode = VDSO_CLOCKMODE_TSC;
2609 		*tsc_timestamp = read_tsc();
2610 		v = (*tsc_timestamp - clock->cycle_last) &
2611 			clock->mask;
2612 		break;
2613 	default:
2614 		*mode = VDSO_CLOCKMODE_NONE;
2615 	}
2616 
2617 	if (*mode == VDSO_CLOCKMODE_NONE)
2618 		*tsc_timestamp = v = 0;
2619 
2620 	return v * clock->mult;
2621 }
2622 
2623 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2624 {
2625 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2626 	unsigned long seq;
2627 	int mode;
2628 	u64 ns;
2629 
2630 	do {
2631 		seq = read_seqcount_begin(&gtod->seq);
2632 		ns = gtod->raw_clock.base_cycles;
2633 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2634 		ns >>= gtod->raw_clock.shift;
2635 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2636 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2637 	*t = ns;
2638 
2639 	return mode;
2640 }
2641 
2642 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2643 {
2644 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2645 	unsigned long seq;
2646 	int mode;
2647 	u64 ns;
2648 
2649 	do {
2650 		seq = read_seqcount_begin(&gtod->seq);
2651 		ts->tv_sec = gtod->wall_time_sec;
2652 		ns = gtod->clock.base_cycles;
2653 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2654 		ns >>= gtod->clock.shift;
2655 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2656 
2657 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2658 	ts->tv_nsec = ns;
2659 
2660 	return mode;
2661 }
2662 
2663 /* returns true if host is using TSC based clocksource */
2664 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2665 {
2666 	/* checked again under seqlock below */
2667 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2668 		return false;
2669 
2670 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2671 						      tsc_timestamp));
2672 }
2673 
2674 /* returns true if host is using TSC based clocksource */
2675 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2676 					   u64 *tsc_timestamp)
2677 {
2678 	/* checked again under seqlock below */
2679 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2680 		return false;
2681 
2682 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2683 }
2684 #endif
2685 
2686 /*
2687  *
2688  * Assuming a stable TSC across physical CPUS, and a stable TSC
2689  * across virtual CPUs, the following condition is possible.
2690  * Each numbered line represents an event visible to both
2691  * CPUs at the next numbered event.
2692  *
2693  * "timespecX" represents host monotonic time. "tscX" represents
2694  * RDTSC value.
2695  *
2696  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2697  *
2698  * 1.  read timespec0,tsc0
2699  * 2.					| timespec1 = timespec0 + N
2700  * 					| tsc1 = tsc0 + M
2701  * 3. transition to guest		| transition to guest
2702  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2703  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2704  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2705  *
2706  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2707  *
2708  * 	- ret0 < ret1
2709  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2710  *		...
2711  *	- 0 < N - M => M < N
2712  *
2713  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2714  * always the case (the difference between two distinct xtime instances
2715  * might be smaller then the difference between corresponding TSC reads,
2716  * when updating guest vcpus pvclock areas).
2717  *
2718  * To avoid that problem, do not allow visibility of distinct
2719  * system_timestamp/tsc_timestamp values simultaneously: use a master
2720  * copy of host monotonic time values. Update that master copy
2721  * in lockstep.
2722  *
2723  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2724  *
2725  */
2726 
2727 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2728 {
2729 #ifdef CONFIG_X86_64
2730 	struct kvm_arch *ka = &kvm->arch;
2731 	int vclock_mode;
2732 	bool host_tsc_clocksource, vcpus_matched;
2733 
2734 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2735 			atomic_read(&kvm->online_vcpus));
2736 
2737 	/*
2738 	 * If the host uses TSC clock, then passthrough TSC as stable
2739 	 * to the guest.
2740 	 */
2741 	host_tsc_clocksource = kvm_get_time_and_clockread(
2742 					&ka->master_kernel_ns,
2743 					&ka->master_cycle_now);
2744 
2745 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2746 				&& !ka->backwards_tsc_observed
2747 				&& !ka->boot_vcpu_runs_old_kvmclock;
2748 
2749 	if (ka->use_master_clock)
2750 		atomic_set(&kvm_guest_has_master_clock, 1);
2751 
2752 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2753 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2754 					vcpus_matched);
2755 #endif
2756 }
2757 
2758 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2759 {
2760 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2761 }
2762 
2763 static void kvm_gen_update_masterclock(struct kvm *kvm)
2764 {
2765 #ifdef CONFIG_X86_64
2766 	int i;
2767 	struct kvm_vcpu *vcpu;
2768 	struct kvm_arch *ka = &kvm->arch;
2769 	unsigned long flags;
2770 
2771 	kvm_hv_invalidate_tsc_page(kvm);
2772 
2773 	kvm_make_mclock_inprogress_request(kvm);
2774 
2775 	/* no guest entries from this point */
2776 	spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2777 	pvclock_update_vm_gtod_copy(kvm);
2778 	spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2779 
2780 	kvm_for_each_vcpu(i, vcpu, kvm)
2781 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2782 
2783 	/* guest entries allowed */
2784 	kvm_for_each_vcpu(i, vcpu, kvm)
2785 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2786 #endif
2787 }
2788 
2789 u64 get_kvmclock_ns(struct kvm *kvm)
2790 {
2791 	struct kvm_arch *ka = &kvm->arch;
2792 	struct pvclock_vcpu_time_info hv_clock;
2793 	unsigned long flags;
2794 	u64 ret;
2795 
2796 	spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2797 	if (!ka->use_master_clock) {
2798 		spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2799 		return get_kvmclock_base_ns() + ka->kvmclock_offset;
2800 	}
2801 
2802 	hv_clock.tsc_timestamp = ka->master_cycle_now;
2803 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2804 	spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2805 
2806 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2807 	get_cpu();
2808 
2809 	if (__this_cpu_read(cpu_tsc_khz)) {
2810 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2811 				   &hv_clock.tsc_shift,
2812 				   &hv_clock.tsc_to_system_mul);
2813 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2814 	} else
2815 		ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2816 
2817 	put_cpu();
2818 
2819 	return ret;
2820 }
2821 
2822 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2823 				   struct gfn_to_hva_cache *cache,
2824 				   unsigned int offset)
2825 {
2826 	struct kvm_vcpu_arch *vcpu = &v->arch;
2827 	struct pvclock_vcpu_time_info guest_hv_clock;
2828 
2829 	if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2830 		&guest_hv_clock, offset, sizeof(guest_hv_clock))))
2831 		return;
2832 
2833 	/* This VCPU is paused, but it's legal for a guest to read another
2834 	 * VCPU's kvmclock, so we really have to follow the specification where
2835 	 * it says that version is odd if data is being modified, and even after
2836 	 * it is consistent.
2837 	 *
2838 	 * Version field updates must be kept separate.  This is because
2839 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2840 	 * writes within a string instruction are weakly ordered.  So there
2841 	 * are three writes overall.
2842 	 *
2843 	 * As a small optimization, only write the version field in the first
2844 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2845 	 * version field is the first in the struct.
2846 	 */
2847 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2848 
2849 	if (guest_hv_clock.version & 1)
2850 		++guest_hv_clock.version;  /* first time write, random junk */
2851 
2852 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2853 	kvm_write_guest_offset_cached(v->kvm, cache,
2854 				      &vcpu->hv_clock, offset,
2855 				      sizeof(vcpu->hv_clock.version));
2856 
2857 	smp_wmb();
2858 
2859 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2860 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2861 
2862 	if (vcpu->pvclock_set_guest_stopped_request) {
2863 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2864 		vcpu->pvclock_set_guest_stopped_request = false;
2865 	}
2866 
2867 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2868 
2869 	kvm_write_guest_offset_cached(v->kvm, cache,
2870 				      &vcpu->hv_clock, offset,
2871 				      sizeof(vcpu->hv_clock));
2872 
2873 	smp_wmb();
2874 
2875 	vcpu->hv_clock.version++;
2876 	kvm_write_guest_offset_cached(v->kvm, cache,
2877 				     &vcpu->hv_clock, offset,
2878 				     sizeof(vcpu->hv_clock.version));
2879 }
2880 
2881 static int kvm_guest_time_update(struct kvm_vcpu *v)
2882 {
2883 	unsigned long flags, tgt_tsc_khz;
2884 	struct kvm_vcpu_arch *vcpu = &v->arch;
2885 	struct kvm_arch *ka = &v->kvm->arch;
2886 	s64 kernel_ns;
2887 	u64 tsc_timestamp, host_tsc;
2888 	u8 pvclock_flags;
2889 	bool use_master_clock;
2890 
2891 	kernel_ns = 0;
2892 	host_tsc = 0;
2893 
2894 	/*
2895 	 * If the host uses TSC clock, then passthrough TSC as stable
2896 	 * to the guest.
2897 	 */
2898 	spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2899 	use_master_clock = ka->use_master_clock;
2900 	if (use_master_clock) {
2901 		host_tsc = ka->master_cycle_now;
2902 		kernel_ns = ka->master_kernel_ns;
2903 	}
2904 	spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2905 
2906 	/* Keep irq disabled to prevent changes to the clock */
2907 	local_irq_save(flags);
2908 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2909 	if (unlikely(tgt_tsc_khz == 0)) {
2910 		local_irq_restore(flags);
2911 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2912 		return 1;
2913 	}
2914 	if (!use_master_clock) {
2915 		host_tsc = rdtsc();
2916 		kernel_ns = get_kvmclock_base_ns();
2917 	}
2918 
2919 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2920 
2921 	/*
2922 	 * We may have to catch up the TSC to match elapsed wall clock
2923 	 * time for two reasons, even if kvmclock is used.
2924 	 *   1) CPU could have been running below the maximum TSC rate
2925 	 *   2) Broken TSC compensation resets the base at each VCPU
2926 	 *      entry to avoid unknown leaps of TSC even when running
2927 	 *      again on the same CPU.  This may cause apparent elapsed
2928 	 *      time to disappear, and the guest to stand still or run
2929 	 *	very slowly.
2930 	 */
2931 	if (vcpu->tsc_catchup) {
2932 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2933 		if (tsc > tsc_timestamp) {
2934 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2935 			tsc_timestamp = tsc;
2936 		}
2937 	}
2938 
2939 	local_irq_restore(flags);
2940 
2941 	/* With all the info we got, fill in the values */
2942 
2943 	if (kvm_has_tsc_control)
2944 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz,
2945 					    v->arch.l1_tsc_scaling_ratio);
2946 
2947 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2948 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2949 				   &vcpu->hv_clock.tsc_shift,
2950 				   &vcpu->hv_clock.tsc_to_system_mul);
2951 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2952 	}
2953 
2954 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2955 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2956 	vcpu->last_guest_tsc = tsc_timestamp;
2957 
2958 	/* If the host uses TSC clocksource, then it is stable */
2959 	pvclock_flags = 0;
2960 	if (use_master_clock)
2961 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2962 
2963 	vcpu->hv_clock.flags = pvclock_flags;
2964 
2965 	if (vcpu->pv_time_enabled)
2966 		kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
2967 	if (vcpu->xen.vcpu_info_set)
2968 		kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
2969 				       offsetof(struct compat_vcpu_info, time));
2970 	if (vcpu->xen.vcpu_time_info_set)
2971 		kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
2972 	if (v == kvm_get_vcpu(v->kvm, 0))
2973 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2974 	return 0;
2975 }
2976 
2977 /*
2978  * kvmclock updates which are isolated to a given vcpu, such as
2979  * vcpu->cpu migration, should not allow system_timestamp from
2980  * the rest of the vcpus to remain static. Otherwise ntp frequency
2981  * correction applies to one vcpu's system_timestamp but not
2982  * the others.
2983  *
2984  * So in those cases, request a kvmclock update for all vcpus.
2985  * We need to rate-limit these requests though, as they can
2986  * considerably slow guests that have a large number of vcpus.
2987  * The time for a remote vcpu to update its kvmclock is bound
2988  * by the delay we use to rate-limit the updates.
2989  */
2990 
2991 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2992 
2993 static void kvmclock_update_fn(struct work_struct *work)
2994 {
2995 	int i;
2996 	struct delayed_work *dwork = to_delayed_work(work);
2997 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2998 					   kvmclock_update_work);
2999 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3000 	struct kvm_vcpu *vcpu;
3001 
3002 	kvm_for_each_vcpu(i, vcpu, kvm) {
3003 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3004 		kvm_vcpu_kick(vcpu);
3005 	}
3006 }
3007 
3008 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3009 {
3010 	struct kvm *kvm = v->kvm;
3011 
3012 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3013 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3014 					KVMCLOCK_UPDATE_DELAY);
3015 }
3016 
3017 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3018 
3019 static void kvmclock_sync_fn(struct work_struct *work)
3020 {
3021 	struct delayed_work *dwork = to_delayed_work(work);
3022 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3023 					   kvmclock_sync_work);
3024 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3025 
3026 	if (!kvmclock_periodic_sync)
3027 		return;
3028 
3029 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3030 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3031 					KVMCLOCK_SYNC_PERIOD);
3032 }
3033 
3034 /*
3035  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3036  */
3037 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3038 {
3039 	/* McStatusWrEn enabled? */
3040 	if (guest_cpuid_is_amd_or_hygon(vcpu))
3041 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3042 
3043 	return false;
3044 }
3045 
3046 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3047 {
3048 	u64 mcg_cap = vcpu->arch.mcg_cap;
3049 	unsigned bank_num = mcg_cap & 0xff;
3050 	u32 msr = msr_info->index;
3051 	u64 data = msr_info->data;
3052 
3053 	switch (msr) {
3054 	case MSR_IA32_MCG_STATUS:
3055 		vcpu->arch.mcg_status = data;
3056 		break;
3057 	case MSR_IA32_MCG_CTL:
3058 		if (!(mcg_cap & MCG_CTL_P) &&
3059 		    (data || !msr_info->host_initiated))
3060 			return 1;
3061 		if (data != 0 && data != ~(u64)0)
3062 			return 1;
3063 		vcpu->arch.mcg_ctl = data;
3064 		break;
3065 	default:
3066 		if (msr >= MSR_IA32_MC0_CTL &&
3067 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3068 			u32 offset = array_index_nospec(
3069 				msr - MSR_IA32_MC0_CTL,
3070 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3071 
3072 			/* only 0 or all 1s can be written to IA32_MCi_CTL
3073 			 * some Linux kernels though clear bit 10 in bank 4 to
3074 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3075 			 * this to avoid an uncatched #GP in the guest
3076 			 */
3077 			if ((offset & 0x3) == 0 &&
3078 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
3079 				return -1;
3080 
3081 			/* MCi_STATUS */
3082 			if (!msr_info->host_initiated &&
3083 			    (offset & 0x3) == 1 && data != 0) {
3084 				if (!can_set_mci_status(vcpu))
3085 					return -1;
3086 			}
3087 
3088 			vcpu->arch.mce_banks[offset] = data;
3089 			break;
3090 		}
3091 		return 1;
3092 	}
3093 	return 0;
3094 }
3095 
3096 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3097 {
3098 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3099 
3100 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3101 }
3102 
3103 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3104 {
3105 	gpa_t gpa = data & ~0x3f;
3106 
3107 	/* Bits 4:5 are reserved, Should be zero */
3108 	if (data & 0x30)
3109 		return 1;
3110 
3111 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3112 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3113 		return 1;
3114 
3115 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3116 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3117 		return 1;
3118 
3119 	if (!lapic_in_kernel(vcpu))
3120 		return data ? 1 : 0;
3121 
3122 	vcpu->arch.apf.msr_en_val = data;
3123 
3124 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3125 		kvm_clear_async_pf_completion_queue(vcpu);
3126 		kvm_async_pf_hash_reset(vcpu);
3127 		return 0;
3128 	}
3129 
3130 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3131 					sizeof(u64)))
3132 		return 1;
3133 
3134 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3135 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3136 
3137 	kvm_async_pf_wakeup_all(vcpu);
3138 
3139 	return 0;
3140 }
3141 
3142 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3143 {
3144 	/* Bits 8-63 are reserved */
3145 	if (data >> 8)
3146 		return 1;
3147 
3148 	if (!lapic_in_kernel(vcpu))
3149 		return 1;
3150 
3151 	vcpu->arch.apf.msr_int_val = data;
3152 
3153 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3154 
3155 	return 0;
3156 }
3157 
3158 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3159 {
3160 	vcpu->arch.pv_time_enabled = false;
3161 	vcpu->arch.time = 0;
3162 }
3163 
3164 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3165 {
3166 	++vcpu->stat.tlb_flush;
3167 	static_call(kvm_x86_tlb_flush_all)(vcpu);
3168 }
3169 
3170 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3171 {
3172 	++vcpu->stat.tlb_flush;
3173 
3174 	if (!tdp_enabled) {
3175                /*
3176 		 * A TLB flush on behalf of the guest is equivalent to
3177 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3178 		 * a forced sync of the shadow page tables.  Unload the
3179 		 * entire MMU here and the subsequent load will sync the
3180 		 * shadow page tables, and also flush the TLB.
3181 		 */
3182 		kvm_mmu_unload(vcpu);
3183 		return;
3184 	}
3185 
3186 	static_call(kvm_x86_tlb_flush_guest)(vcpu);
3187 }
3188 
3189 static void record_steal_time(struct kvm_vcpu *vcpu)
3190 {
3191 	struct kvm_host_map map;
3192 	struct kvm_steal_time *st;
3193 
3194 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3195 		kvm_xen_runstate_set_running(vcpu);
3196 		return;
3197 	}
3198 
3199 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3200 		return;
3201 
3202 	/* -EAGAIN is returned in atomic context so we can just return. */
3203 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
3204 			&map, &vcpu->arch.st.cache, false))
3205 		return;
3206 
3207 	st = map.hva +
3208 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3209 
3210 	/*
3211 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3212 	 * expensive IPIs.
3213 	 */
3214 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3215 		u8 st_preempted = xchg(&st->preempted, 0);
3216 
3217 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3218 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3219 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3220 			kvm_vcpu_flush_tlb_guest(vcpu);
3221 	} else {
3222 		st->preempted = 0;
3223 	}
3224 
3225 	vcpu->arch.st.preempted = 0;
3226 
3227 	if (st->version & 1)
3228 		st->version += 1;  /* first time write, random junk */
3229 
3230 	st->version += 1;
3231 
3232 	smp_wmb();
3233 
3234 	st->steal += current->sched_info.run_delay -
3235 		vcpu->arch.st.last_steal;
3236 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3237 
3238 	smp_wmb();
3239 
3240 	st->version += 1;
3241 
3242 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
3243 }
3244 
3245 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3246 {
3247 	bool pr = false;
3248 	u32 msr = msr_info->index;
3249 	u64 data = msr_info->data;
3250 
3251 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3252 		return kvm_xen_write_hypercall_page(vcpu, data);
3253 
3254 	switch (msr) {
3255 	case MSR_AMD64_NB_CFG:
3256 	case MSR_IA32_UCODE_WRITE:
3257 	case MSR_VM_HSAVE_PA:
3258 	case MSR_AMD64_PATCH_LOADER:
3259 	case MSR_AMD64_BU_CFG2:
3260 	case MSR_AMD64_DC_CFG:
3261 	case MSR_F15H_EX_CFG:
3262 		break;
3263 
3264 	case MSR_IA32_UCODE_REV:
3265 		if (msr_info->host_initiated)
3266 			vcpu->arch.microcode_version = data;
3267 		break;
3268 	case MSR_IA32_ARCH_CAPABILITIES:
3269 		if (!msr_info->host_initiated)
3270 			return 1;
3271 		vcpu->arch.arch_capabilities = data;
3272 		break;
3273 	case MSR_IA32_PERF_CAPABILITIES: {
3274 		struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3275 
3276 		if (!msr_info->host_initiated)
3277 			return 1;
3278 		if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3279 			return 1;
3280 		if (data & ~msr_ent.data)
3281 			return 1;
3282 
3283 		vcpu->arch.perf_capabilities = data;
3284 
3285 		return 0;
3286 		}
3287 	case MSR_EFER:
3288 		return set_efer(vcpu, msr_info);
3289 	case MSR_K7_HWCR:
3290 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3291 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3292 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3293 
3294 		/* Handle McStatusWrEn */
3295 		if (data == BIT_ULL(18)) {
3296 			vcpu->arch.msr_hwcr = data;
3297 		} else if (data != 0) {
3298 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3299 				    data);
3300 			return 1;
3301 		}
3302 		break;
3303 	case MSR_FAM10H_MMIO_CONF_BASE:
3304 		if (data != 0) {
3305 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3306 				    "0x%llx\n", data);
3307 			return 1;
3308 		}
3309 		break;
3310 	case 0x200 ... 0x2ff:
3311 		return kvm_mtrr_set_msr(vcpu, msr, data);
3312 	case MSR_IA32_APICBASE:
3313 		return kvm_set_apic_base(vcpu, msr_info);
3314 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3315 		return kvm_x2apic_msr_write(vcpu, msr, data);
3316 	case MSR_IA32_TSC_DEADLINE:
3317 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3318 		break;
3319 	case MSR_IA32_TSC_ADJUST:
3320 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3321 			if (!msr_info->host_initiated) {
3322 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3323 				adjust_tsc_offset_guest(vcpu, adj);
3324 				/* Before back to guest, tsc_timestamp must be adjusted
3325 				 * as well, otherwise guest's percpu pvclock time could jump.
3326 				 */
3327 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3328 			}
3329 			vcpu->arch.ia32_tsc_adjust_msr = data;
3330 		}
3331 		break;
3332 	case MSR_IA32_MISC_ENABLE:
3333 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3334 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3335 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3336 				return 1;
3337 			vcpu->arch.ia32_misc_enable_msr = data;
3338 			kvm_update_cpuid_runtime(vcpu);
3339 		} else {
3340 			vcpu->arch.ia32_misc_enable_msr = data;
3341 		}
3342 		break;
3343 	case MSR_IA32_SMBASE:
3344 		if (!msr_info->host_initiated)
3345 			return 1;
3346 		vcpu->arch.smbase = data;
3347 		break;
3348 	case MSR_IA32_POWER_CTL:
3349 		vcpu->arch.msr_ia32_power_ctl = data;
3350 		break;
3351 	case MSR_IA32_TSC:
3352 		if (msr_info->host_initiated) {
3353 			kvm_synchronize_tsc(vcpu, data);
3354 		} else {
3355 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3356 			adjust_tsc_offset_guest(vcpu, adj);
3357 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3358 		}
3359 		break;
3360 	case MSR_IA32_XSS:
3361 		if (!msr_info->host_initiated &&
3362 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3363 			return 1;
3364 		/*
3365 		 * KVM supports exposing PT to the guest, but does not support
3366 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3367 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3368 		 */
3369 		if (data & ~supported_xss)
3370 			return 1;
3371 		vcpu->arch.ia32_xss = data;
3372 		break;
3373 	case MSR_SMI_COUNT:
3374 		if (!msr_info->host_initiated)
3375 			return 1;
3376 		vcpu->arch.smi_count = data;
3377 		break;
3378 	case MSR_KVM_WALL_CLOCK_NEW:
3379 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3380 			return 1;
3381 
3382 		vcpu->kvm->arch.wall_clock = data;
3383 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3384 		break;
3385 	case MSR_KVM_WALL_CLOCK:
3386 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3387 			return 1;
3388 
3389 		vcpu->kvm->arch.wall_clock = data;
3390 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3391 		break;
3392 	case MSR_KVM_SYSTEM_TIME_NEW:
3393 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3394 			return 1;
3395 
3396 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3397 		break;
3398 	case MSR_KVM_SYSTEM_TIME:
3399 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3400 			return 1;
3401 
3402 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3403 		break;
3404 	case MSR_KVM_ASYNC_PF_EN:
3405 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3406 			return 1;
3407 
3408 		if (kvm_pv_enable_async_pf(vcpu, data))
3409 			return 1;
3410 		break;
3411 	case MSR_KVM_ASYNC_PF_INT:
3412 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3413 			return 1;
3414 
3415 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3416 			return 1;
3417 		break;
3418 	case MSR_KVM_ASYNC_PF_ACK:
3419 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3420 			return 1;
3421 		if (data & 0x1) {
3422 			vcpu->arch.apf.pageready_pending = false;
3423 			kvm_check_async_pf_completion(vcpu);
3424 		}
3425 		break;
3426 	case MSR_KVM_STEAL_TIME:
3427 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3428 			return 1;
3429 
3430 		if (unlikely(!sched_info_on()))
3431 			return 1;
3432 
3433 		if (data & KVM_STEAL_RESERVED_MASK)
3434 			return 1;
3435 
3436 		vcpu->arch.st.msr_val = data;
3437 
3438 		if (!(data & KVM_MSR_ENABLED))
3439 			break;
3440 
3441 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3442 
3443 		break;
3444 	case MSR_KVM_PV_EOI_EN:
3445 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3446 			return 1;
3447 
3448 		if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3449 			return 1;
3450 		break;
3451 
3452 	case MSR_KVM_POLL_CONTROL:
3453 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3454 			return 1;
3455 
3456 		/* only enable bit supported */
3457 		if (data & (-1ULL << 1))
3458 			return 1;
3459 
3460 		vcpu->arch.msr_kvm_poll_control = data;
3461 		break;
3462 
3463 	case MSR_IA32_MCG_CTL:
3464 	case MSR_IA32_MCG_STATUS:
3465 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3466 		return set_msr_mce(vcpu, msr_info);
3467 
3468 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3469 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3470 		pr = true;
3471 		fallthrough;
3472 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3473 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3474 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3475 			return kvm_pmu_set_msr(vcpu, msr_info);
3476 
3477 		if (pr || data != 0)
3478 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3479 				    "0x%x data 0x%llx\n", msr, data);
3480 		break;
3481 	case MSR_K7_CLK_CTL:
3482 		/*
3483 		 * Ignore all writes to this no longer documented MSR.
3484 		 * Writes are only relevant for old K7 processors,
3485 		 * all pre-dating SVM, but a recommended workaround from
3486 		 * AMD for these chips. It is possible to specify the
3487 		 * affected processor models on the command line, hence
3488 		 * the need to ignore the workaround.
3489 		 */
3490 		break;
3491 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3492 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3493 	case HV_X64_MSR_SYNDBG_OPTIONS:
3494 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3495 	case HV_X64_MSR_CRASH_CTL:
3496 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3497 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3498 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3499 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3500 		return kvm_hv_set_msr_common(vcpu, msr, data,
3501 					     msr_info->host_initiated);
3502 	case MSR_IA32_BBL_CR_CTL3:
3503 		/* Drop writes to this legacy MSR -- see rdmsr
3504 		 * counterpart for further detail.
3505 		 */
3506 		if (report_ignored_msrs)
3507 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3508 				msr, data);
3509 		break;
3510 	case MSR_AMD64_OSVW_ID_LENGTH:
3511 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3512 			return 1;
3513 		vcpu->arch.osvw.length = data;
3514 		break;
3515 	case MSR_AMD64_OSVW_STATUS:
3516 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3517 			return 1;
3518 		vcpu->arch.osvw.status = data;
3519 		break;
3520 	case MSR_PLATFORM_INFO:
3521 		if (!msr_info->host_initiated ||
3522 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3523 		     cpuid_fault_enabled(vcpu)))
3524 			return 1;
3525 		vcpu->arch.msr_platform_info = data;
3526 		break;
3527 	case MSR_MISC_FEATURES_ENABLES:
3528 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3529 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3530 		     !supports_cpuid_fault(vcpu)))
3531 			return 1;
3532 		vcpu->arch.msr_misc_features_enables = data;
3533 		break;
3534 	default:
3535 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3536 			return kvm_pmu_set_msr(vcpu, msr_info);
3537 		return KVM_MSR_RET_INVALID;
3538 	}
3539 	return 0;
3540 }
3541 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3542 
3543 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3544 {
3545 	u64 data;
3546 	u64 mcg_cap = vcpu->arch.mcg_cap;
3547 	unsigned bank_num = mcg_cap & 0xff;
3548 
3549 	switch (msr) {
3550 	case MSR_IA32_P5_MC_ADDR:
3551 	case MSR_IA32_P5_MC_TYPE:
3552 		data = 0;
3553 		break;
3554 	case MSR_IA32_MCG_CAP:
3555 		data = vcpu->arch.mcg_cap;
3556 		break;
3557 	case MSR_IA32_MCG_CTL:
3558 		if (!(mcg_cap & MCG_CTL_P) && !host)
3559 			return 1;
3560 		data = vcpu->arch.mcg_ctl;
3561 		break;
3562 	case MSR_IA32_MCG_STATUS:
3563 		data = vcpu->arch.mcg_status;
3564 		break;
3565 	default:
3566 		if (msr >= MSR_IA32_MC0_CTL &&
3567 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3568 			u32 offset = array_index_nospec(
3569 				msr - MSR_IA32_MC0_CTL,
3570 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3571 
3572 			data = vcpu->arch.mce_banks[offset];
3573 			break;
3574 		}
3575 		return 1;
3576 	}
3577 	*pdata = data;
3578 	return 0;
3579 }
3580 
3581 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3582 {
3583 	switch (msr_info->index) {
3584 	case MSR_IA32_PLATFORM_ID:
3585 	case MSR_IA32_EBL_CR_POWERON:
3586 	case MSR_IA32_LASTBRANCHFROMIP:
3587 	case MSR_IA32_LASTBRANCHTOIP:
3588 	case MSR_IA32_LASTINTFROMIP:
3589 	case MSR_IA32_LASTINTTOIP:
3590 	case MSR_AMD64_SYSCFG:
3591 	case MSR_K8_TSEG_ADDR:
3592 	case MSR_K8_TSEG_MASK:
3593 	case MSR_VM_HSAVE_PA:
3594 	case MSR_K8_INT_PENDING_MSG:
3595 	case MSR_AMD64_NB_CFG:
3596 	case MSR_FAM10H_MMIO_CONF_BASE:
3597 	case MSR_AMD64_BU_CFG2:
3598 	case MSR_IA32_PERF_CTL:
3599 	case MSR_AMD64_DC_CFG:
3600 	case MSR_F15H_EX_CFG:
3601 	/*
3602 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3603 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3604 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3605 	 * so for existing CPU-specific MSRs.
3606 	 */
3607 	case MSR_RAPL_POWER_UNIT:
3608 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3609 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3610 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3611 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3612 		msr_info->data = 0;
3613 		break;
3614 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3615 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3616 			return kvm_pmu_get_msr(vcpu, msr_info);
3617 		if (!msr_info->host_initiated)
3618 			return 1;
3619 		msr_info->data = 0;
3620 		break;
3621 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3622 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3623 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3624 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3625 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3626 			return kvm_pmu_get_msr(vcpu, msr_info);
3627 		msr_info->data = 0;
3628 		break;
3629 	case MSR_IA32_UCODE_REV:
3630 		msr_info->data = vcpu->arch.microcode_version;
3631 		break;
3632 	case MSR_IA32_ARCH_CAPABILITIES:
3633 		if (!msr_info->host_initiated &&
3634 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3635 			return 1;
3636 		msr_info->data = vcpu->arch.arch_capabilities;
3637 		break;
3638 	case MSR_IA32_PERF_CAPABILITIES:
3639 		if (!msr_info->host_initiated &&
3640 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3641 			return 1;
3642 		msr_info->data = vcpu->arch.perf_capabilities;
3643 		break;
3644 	case MSR_IA32_POWER_CTL:
3645 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3646 		break;
3647 	case MSR_IA32_TSC: {
3648 		/*
3649 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3650 		 * even when not intercepted. AMD manual doesn't explicitly
3651 		 * state this but appears to behave the same.
3652 		 *
3653 		 * On userspace reads and writes, however, we unconditionally
3654 		 * return L1's TSC value to ensure backwards-compatible
3655 		 * behavior for migration.
3656 		 */
3657 		u64 offset, ratio;
3658 
3659 		if (msr_info->host_initiated) {
3660 			offset = vcpu->arch.l1_tsc_offset;
3661 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
3662 		} else {
3663 			offset = vcpu->arch.tsc_offset;
3664 			ratio = vcpu->arch.tsc_scaling_ratio;
3665 		}
3666 
3667 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc(), ratio) + offset;
3668 		break;
3669 	}
3670 	case MSR_MTRRcap:
3671 	case 0x200 ... 0x2ff:
3672 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3673 	case 0xcd: /* fsb frequency */
3674 		msr_info->data = 3;
3675 		break;
3676 		/*
3677 		 * MSR_EBC_FREQUENCY_ID
3678 		 * Conservative value valid for even the basic CPU models.
3679 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3680 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3681 		 * and 266MHz for model 3, or 4. Set Core Clock
3682 		 * Frequency to System Bus Frequency Ratio to 1 (bits
3683 		 * 31:24) even though these are only valid for CPU
3684 		 * models > 2, however guests may end up dividing or
3685 		 * multiplying by zero otherwise.
3686 		 */
3687 	case MSR_EBC_FREQUENCY_ID:
3688 		msr_info->data = 1 << 24;
3689 		break;
3690 	case MSR_IA32_APICBASE:
3691 		msr_info->data = kvm_get_apic_base(vcpu);
3692 		break;
3693 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3694 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3695 	case MSR_IA32_TSC_DEADLINE:
3696 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3697 		break;
3698 	case MSR_IA32_TSC_ADJUST:
3699 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3700 		break;
3701 	case MSR_IA32_MISC_ENABLE:
3702 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3703 		break;
3704 	case MSR_IA32_SMBASE:
3705 		if (!msr_info->host_initiated)
3706 			return 1;
3707 		msr_info->data = vcpu->arch.smbase;
3708 		break;
3709 	case MSR_SMI_COUNT:
3710 		msr_info->data = vcpu->arch.smi_count;
3711 		break;
3712 	case MSR_IA32_PERF_STATUS:
3713 		/* TSC increment by tick */
3714 		msr_info->data = 1000ULL;
3715 		/* CPU multiplier */
3716 		msr_info->data |= (((uint64_t)4ULL) << 40);
3717 		break;
3718 	case MSR_EFER:
3719 		msr_info->data = vcpu->arch.efer;
3720 		break;
3721 	case MSR_KVM_WALL_CLOCK:
3722 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3723 			return 1;
3724 
3725 		msr_info->data = vcpu->kvm->arch.wall_clock;
3726 		break;
3727 	case MSR_KVM_WALL_CLOCK_NEW:
3728 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3729 			return 1;
3730 
3731 		msr_info->data = vcpu->kvm->arch.wall_clock;
3732 		break;
3733 	case MSR_KVM_SYSTEM_TIME:
3734 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3735 			return 1;
3736 
3737 		msr_info->data = vcpu->arch.time;
3738 		break;
3739 	case MSR_KVM_SYSTEM_TIME_NEW:
3740 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3741 			return 1;
3742 
3743 		msr_info->data = vcpu->arch.time;
3744 		break;
3745 	case MSR_KVM_ASYNC_PF_EN:
3746 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3747 			return 1;
3748 
3749 		msr_info->data = vcpu->arch.apf.msr_en_val;
3750 		break;
3751 	case MSR_KVM_ASYNC_PF_INT:
3752 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3753 			return 1;
3754 
3755 		msr_info->data = vcpu->arch.apf.msr_int_val;
3756 		break;
3757 	case MSR_KVM_ASYNC_PF_ACK:
3758 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3759 			return 1;
3760 
3761 		msr_info->data = 0;
3762 		break;
3763 	case MSR_KVM_STEAL_TIME:
3764 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3765 			return 1;
3766 
3767 		msr_info->data = vcpu->arch.st.msr_val;
3768 		break;
3769 	case MSR_KVM_PV_EOI_EN:
3770 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3771 			return 1;
3772 
3773 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
3774 		break;
3775 	case MSR_KVM_POLL_CONTROL:
3776 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3777 			return 1;
3778 
3779 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
3780 		break;
3781 	case MSR_IA32_P5_MC_ADDR:
3782 	case MSR_IA32_P5_MC_TYPE:
3783 	case MSR_IA32_MCG_CAP:
3784 	case MSR_IA32_MCG_CTL:
3785 	case MSR_IA32_MCG_STATUS:
3786 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3787 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3788 				   msr_info->host_initiated);
3789 	case MSR_IA32_XSS:
3790 		if (!msr_info->host_initiated &&
3791 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3792 			return 1;
3793 		msr_info->data = vcpu->arch.ia32_xss;
3794 		break;
3795 	case MSR_K7_CLK_CTL:
3796 		/*
3797 		 * Provide expected ramp-up count for K7. All other
3798 		 * are set to zero, indicating minimum divisors for
3799 		 * every field.
3800 		 *
3801 		 * This prevents guest kernels on AMD host with CPU
3802 		 * type 6, model 8 and higher from exploding due to
3803 		 * the rdmsr failing.
3804 		 */
3805 		msr_info->data = 0x20000000;
3806 		break;
3807 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3808 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3809 	case HV_X64_MSR_SYNDBG_OPTIONS:
3810 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3811 	case HV_X64_MSR_CRASH_CTL:
3812 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3813 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3814 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3815 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3816 		return kvm_hv_get_msr_common(vcpu,
3817 					     msr_info->index, &msr_info->data,
3818 					     msr_info->host_initiated);
3819 	case MSR_IA32_BBL_CR_CTL3:
3820 		/* This legacy MSR exists but isn't fully documented in current
3821 		 * silicon.  It is however accessed by winxp in very narrow
3822 		 * scenarios where it sets bit #19, itself documented as
3823 		 * a "reserved" bit.  Best effort attempt to source coherent
3824 		 * read data here should the balance of the register be
3825 		 * interpreted by the guest:
3826 		 *
3827 		 * L2 cache control register 3: 64GB range, 256KB size,
3828 		 * enabled, latency 0x1, configured
3829 		 */
3830 		msr_info->data = 0xbe702111;
3831 		break;
3832 	case MSR_AMD64_OSVW_ID_LENGTH:
3833 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3834 			return 1;
3835 		msr_info->data = vcpu->arch.osvw.length;
3836 		break;
3837 	case MSR_AMD64_OSVW_STATUS:
3838 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3839 			return 1;
3840 		msr_info->data = vcpu->arch.osvw.status;
3841 		break;
3842 	case MSR_PLATFORM_INFO:
3843 		if (!msr_info->host_initiated &&
3844 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3845 			return 1;
3846 		msr_info->data = vcpu->arch.msr_platform_info;
3847 		break;
3848 	case MSR_MISC_FEATURES_ENABLES:
3849 		msr_info->data = vcpu->arch.msr_misc_features_enables;
3850 		break;
3851 	case MSR_K7_HWCR:
3852 		msr_info->data = vcpu->arch.msr_hwcr;
3853 		break;
3854 	default:
3855 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3856 			return kvm_pmu_get_msr(vcpu, msr_info);
3857 		return KVM_MSR_RET_INVALID;
3858 	}
3859 	return 0;
3860 }
3861 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3862 
3863 /*
3864  * Read or write a bunch of msrs. All parameters are kernel addresses.
3865  *
3866  * @return number of msrs set successfully.
3867  */
3868 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3869 		    struct kvm_msr_entry *entries,
3870 		    int (*do_msr)(struct kvm_vcpu *vcpu,
3871 				  unsigned index, u64 *data))
3872 {
3873 	int i;
3874 
3875 	for (i = 0; i < msrs->nmsrs; ++i)
3876 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
3877 			break;
3878 
3879 	return i;
3880 }
3881 
3882 /*
3883  * Read or write a bunch of msrs. Parameters are user addresses.
3884  *
3885  * @return number of msrs set successfully.
3886  */
3887 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3888 		  int (*do_msr)(struct kvm_vcpu *vcpu,
3889 				unsigned index, u64 *data),
3890 		  int writeback)
3891 {
3892 	struct kvm_msrs msrs;
3893 	struct kvm_msr_entry *entries;
3894 	int r, n;
3895 	unsigned size;
3896 
3897 	r = -EFAULT;
3898 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3899 		goto out;
3900 
3901 	r = -E2BIG;
3902 	if (msrs.nmsrs >= MAX_IO_MSRS)
3903 		goto out;
3904 
3905 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3906 	entries = memdup_user(user_msrs->entries, size);
3907 	if (IS_ERR(entries)) {
3908 		r = PTR_ERR(entries);
3909 		goto out;
3910 	}
3911 
3912 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3913 	if (r < 0)
3914 		goto out_free;
3915 
3916 	r = -EFAULT;
3917 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
3918 		goto out_free;
3919 
3920 	r = n;
3921 
3922 out_free:
3923 	kfree(entries);
3924 out:
3925 	return r;
3926 }
3927 
3928 static inline bool kvm_can_mwait_in_guest(void)
3929 {
3930 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
3931 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
3932 		boot_cpu_has(X86_FEATURE_ARAT);
3933 }
3934 
3935 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
3936 					    struct kvm_cpuid2 __user *cpuid_arg)
3937 {
3938 	struct kvm_cpuid2 cpuid;
3939 	int r;
3940 
3941 	r = -EFAULT;
3942 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3943 		return r;
3944 
3945 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3946 	if (r)
3947 		return r;
3948 
3949 	r = -EFAULT;
3950 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3951 		return r;
3952 
3953 	return 0;
3954 }
3955 
3956 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3957 {
3958 	int r = 0;
3959 
3960 	switch (ext) {
3961 	case KVM_CAP_IRQCHIP:
3962 	case KVM_CAP_HLT:
3963 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3964 	case KVM_CAP_SET_TSS_ADDR:
3965 	case KVM_CAP_EXT_CPUID:
3966 	case KVM_CAP_EXT_EMUL_CPUID:
3967 	case KVM_CAP_CLOCKSOURCE:
3968 	case KVM_CAP_PIT:
3969 	case KVM_CAP_NOP_IO_DELAY:
3970 	case KVM_CAP_MP_STATE:
3971 	case KVM_CAP_SYNC_MMU:
3972 	case KVM_CAP_USER_NMI:
3973 	case KVM_CAP_REINJECT_CONTROL:
3974 	case KVM_CAP_IRQ_INJECT_STATUS:
3975 	case KVM_CAP_IOEVENTFD:
3976 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
3977 	case KVM_CAP_PIT2:
3978 	case KVM_CAP_PIT_STATE2:
3979 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3980 	case KVM_CAP_VCPU_EVENTS:
3981 	case KVM_CAP_HYPERV:
3982 	case KVM_CAP_HYPERV_VAPIC:
3983 	case KVM_CAP_HYPERV_SPIN:
3984 	case KVM_CAP_HYPERV_SYNIC:
3985 	case KVM_CAP_HYPERV_SYNIC2:
3986 	case KVM_CAP_HYPERV_VP_INDEX:
3987 	case KVM_CAP_HYPERV_EVENTFD:
3988 	case KVM_CAP_HYPERV_TLBFLUSH:
3989 	case KVM_CAP_HYPERV_SEND_IPI:
3990 	case KVM_CAP_HYPERV_CPUID:
3991 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
3992 	case KVM_CAP_SYS_HYPERV_CPUID:
3993 	case KVM_CAP_PCI_SEGMENT:
3994 	case KVM_CAP_DEBUGREGS:
3995 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
3996 	case KVM_CAP_XSAVE:
3997 	case KVM_CAP_ASYNC_PF:
3998 	case KVM_CAP_ASYNC_PF_INT:
3999 	case KVM_CAP_GET_TSC_KHZ:
4000 	case KVM_CAP_KVMCLOCK_CTRL:
4001 	case KVM_CAP_READONLY_MEM:
4002 	case KVM_CAP_HYPERV_TIME:
4003 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4004 	case KVM_CAP_TSC_DEADLINE_TIMER:
4005 	case KVM_CAP_DISABLE_QUIRKS:
4006 	case KVM_CAP_SET_BOOT_CPU_ID:
4007  	case KVM_CAP_SPLIT_IRQCHIP:
4008 	case KVM_CAP_IMMEDIATE_EXIT:
4009 	case KVM_CAP_PMU_EVENT_FILTER:
4010 	case KVM_CAP_GET_MSR_FEATURES:
4011 	case KVM_CAP_MSR_PLATFORM_INFO:
4012 	case KVM_CAP_EXCEPTION_PAYLOAD:
4013 	case KVM_CAP_SET_GUEST_DEBUG:
4014 	case KVM_CAP_LAST_CPU:
4015 	case KVM_CAP_X86_USER_SPACE_MSR:
4016 	case KVM_CAP_X86_MSR_FILTER:
4017 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4018 #ifdef CONFIG_X86_SGX_KVM
4019 	case KVM_CAP_SGX_ATTRIBUTE:
4020 #endif
4021 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4022 	case KVM_CAP_SREGS2:
4023 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4024 		r = 1;
4025 		break;
4026 	case KVM_CAP_EXIT_HYPERCALL:
4027 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4028 		break;
4029 	case KVM_CAP_SET_GUEST_DEBUG2:
4030 		return KVM_GUESTDBG_VALID_MASK;
4031 #ifdef CONFIG_KVM_XEN
4032 	case KVM_CAP_XEN_HVM:
4033 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4034 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4035 		    KVM_XEN_HVM_CONFIG_SHARED_INFO;
4036 		if (sched_info_on())
4037 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4038 		break;
4039 #endif
4040 	case KVM_CAP_SYNC_REGS:
4041 		r = KVM_SYNC_X86_VALID_FIELDS;
4042 		break;
4043 	case KVM_CAP_ADJUST_CLOCK:
4044 		r = KVM_CLOCK_TSC_STABLE;
4045 		break;
4046 	case KVM_CAP_X86_DISABLE_EXITS:
4047 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4048 		      KVM_X86_DISABLE_EXITS_CSTATE;
4049 		if(kvm_can_mwait_in_guest())
4050 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
4051 		break;
4052 	case KVM_CAP_X86_SMM:
4053 		/* SMBASE is usually relocated above 1M on modern chipsets,
4054 		 * and SMM handlers might indeed rely on 4G segment limits,
4055 		 * so do not report SMM to be available if real mode is
4056 		 * emulated via vm86 mode.  Still, do not go to great lengths
4057 		 * to avoid userspace's usage of the feature, because it is a
4058 		 * fringe case that is not enabled except via specific settings
4059 		 * of the module parameters.
4060 		 */
4061 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4062 		break;
4063 	case KVM_CAP_VAPIC:
4064 		r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
4065 		break;
4066 	case KVM_CAP_NR_VCPUS:
4067 		r = KVM_SOFT_MAX_VCPUS;
4068 		break;
4069 	case KVM_CAP_MAX_VCPUS:
4070 		r = KVM_MAX_VCPUS;
4071 		break;
4072 	case KVM_CAP_MAX_VCPU_ID:
4073 		r = KVM_MAX_VCPU_ID;
4074 		break;
4075 	case KVM_CAP_PV_MMU:	/* obsolete */
4076 		r = 0;
4077 		break;
4078 	case KVM_CAP_MCE:
4079 		r = KVM_MAX_MCE_BANKS;
4080 		break;
4081 	case KVM_CAP_XCRS:
4082 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4083 		break;
4084 	case KVM_CAP_TSC_CONTROL:
4085 		r = kvm_has_tsc_control;
4086 		break;
4087 	case KVM_CAP_X2APIC_API:
4088 		r = KVM_X2APIC_API_VALID_FLAGS;
4089 		break;
4090 	case KVM_CAP_NESTED_STATE:
4091 		r = kvm_x86_ops.nested_ops->get_state ?
4092 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4093 		break;
4094 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4095 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4096 		break;
4097 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4098 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4099 		break;
4100 	case KVM_CAP_SMALLER_MAXPHYADDR:
4101 		r = (int) allow_smaller_maxphyaddr;
4102 		break;
4103 	case KVM_CAP_STEAL_TIME:
4104 		r = sched_info_on();
4105 		break;
4106 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4107 		if (kvm_has_bus_lock_exit)
4108 			r = KVM_BUS_LOCK_DETECTION_OFF |
4109 			    KVM_BUS_LOCK_DETECTION_EXIT;
4110 		else
4111 			r = 0;
4112 		break;
4113 	default:
4114 		break;
4115 	}
4116 	return r;
4117 
4118 }
4119 
4120 long kvm_arch_dev_ioctl(struct file *filp,
4121 			unsigned int ioctl, unsigned long arg)
4122 {
4123 	void __user *argp = (void __user *)arg;
4124 	long r;
4125 
4126 	switch (ioctl) {
4127 	case KVM_GET_MSR_INDEX_LIST: {
4128 		struct kvm_msr_list __user *user_msr_list = argp;
4129 		struct kvm_msr_list msr_list;
4130 		unsigned n;
4131 
4132 		r = -EFAULT;
4133 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4134 			goto out;
4135 		n = msr_list.nmsrs;
4136 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4137 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4138 			goto out;
4139 		r = -E2BIG;
4140 		if (n < msr_list.nmsrs)
4141 			goto out;
4142 		r = -EFAULT;
4143 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4144 				 num_msrs_to_save * sizeof(u32)))
4145 			goto out;
4146 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4147 				 &emulated_msrs,
4148 				 num_emulated_msrs * sizeof(u32)))
4149 			goto out;
4150 		r = 0;
4151 		break;
4152 	}
4153 	case KVM_GET_SUPPORTED_CPUID:
4154 	case KVM_GET_EMULATED_CPUID: {
4155 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4156 		struct kvm_cpuid2 cpuid;
4157 
4158 		r = -EFAULT;
4159 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4160 			goto out;
4161 
4162 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4163 					    ioctl);
4164 		if (r)
4165 			goto out;
4166 
4167 		r = -EFAULT;
4168 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4169 			goto out;
4170 		r = 0;
4171 		break;
4172 	}
4173 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4174 		r = -EFAULT;
4175 		if (copy_to_user(argp, &kvm_mce_cap_supported,
4176 				 sizeof(kvm_mce_cap_supported)))
4177 			goto out;
4178 		r = 0;
4179 		break;
4180 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4181 		struct kvm_msr_list __user *user_msr_list = argp;
4182 		struct kvm_msr_list msr_list;
4183 		unsigned int n;
4184 
4185 		r = -EFAULT;
4186 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4187 			goto out;
4188 		n = msr_list.nmsrs;
4189 		msr_list.nmsrs = num_msr_based_features;
4190 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4191 			goto out;
4192 		r = -E2BIG;
4193 		if (n < msr_list.nmsrs)
4194 			goto out;
4195 		r = -EFAULT;
4196 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4197 				 num_msr_based_features * sizeof(u32)))
4198 			goto out;
4199 		r = 0;
4200 		break;
4201 	}
4202 	case KVM_GET_MSRS:
4203 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4204 		break;
4205 	case KVM_GET_SUPPORTED_HV_CPUID:
4206 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4207 		break;
4208 	default:
4209 		r = -EINVAL;
4210 		break;
4211 	}
4212 out:
4213 	return r;
4214 }
4215 
4216 static void wbinvd_ipi(void *garbage)
4217 {
4218 	wbinvd();
4219 }
4220 
4221 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4222 {
4223 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4224 }
4225 
4226 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4227 {
4228 	/* Address WBINVD may be executed by guest */
4229 	if (need_emulate_wbinvd(vcpu)) {
4230 		if (static_call(kvm_x86_has_wbinvd_exit)())
4231 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4232 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4233 			smp_call_function_single(vcpu->cpu,
4234 					wbinvd_ipi, NULL, 1);
4235 	}
4236 
4237 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4238 
4239 	/* Save host pkru register if supported */
4240 	vcpu->arch.host_pkru = read_pkru();
4241 
4242 	/* Apply any externally detected TSC adjustments (due to suspend) */
4243 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4244 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4245 		vcpu->arch.tsc_offset_adjustment = 0;
4246 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4247 	}
4248 
4249 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4250 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4251 				rdtsc() - vcpu->arch.last_host_tsc;
4252 		if (tsc_delta < 0)
4253 			mark_tsc_unstable("KVM discovered backwards TSC");
4254 
4255 		if (kvm_check_tsc_unstable()) {
4256 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4257 						vcpu->arch.last_guest_tsc);
4258 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4259 			vcpu->arch.tsc_catchup = 1;
4260 		}
4261 
4262 		if (kvm_lapic_hv_timer_in_use(vcpu))
4263 			kvm_lapic_restart_hv_timer(vcpu);
4264 
4265 		/*
4266 		 * On a host with synchronized TSC, there is no need to update
4267 		 * kvmclock on vcpu->cpu migration
4268 		 */
4269 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4270 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4271 		if (vcpu->cpu != cpu)
4272 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4273 		vcpu->cpu = cpu;
4274 	}
4275 
4276 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4277 }
4278 
4279 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4280 {
4281 	struct kvm_host_map map;
4282 	struct kvm_steal_time *st;
4283 
4284 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4285 		return;
4286 
4287 	if (vcpu->arch.st.preempted)
4288 		return;
4289 
4290 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
4291 			&vcpu->arch.st.cache, true))
4292 		return;
4293 
4294 	st = map.hva +
4295 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
4296 
4297 	st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4298 
4299 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
4300 }
4301 
4302 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4303 {
4304 	int idx;
4305 
4306 	if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4307 		vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4308 
4309 	/*
4310 	 * Take the srcu lock as memslots will be accessed to check the gfn
4311 	 * cache generation against the memslots generation.
4312 	 */
4313 	idx = srcu_read_lock(&vcpu->kvm->srcu);
4314 	if (kvm_xen_msr_enabled(vcpu->kvm))
4315 		kvm_xen_runstate_set_preempted(vcpu);
4316 	else
4317 		kvm_steal_time_set_preempted(vcpu);
4318 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
4319 
4320 	static_call(kvm_x86_vcpu_put)(vcpu);
4321 	vcpu->arch.last_host_tsc = rdtsc();
4322 }
4323 
4324 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4325 				    struct kvm_lapic_state *s)
4326 {
4327 	if (vcpu->arch.apicv_active)
4328 		static_call(kvm_x86_sync_pir_to_irr)(vcpu);
4329 
4330 	return kvm_apic_get_state(vcpu, s);
4331 }
4332 
4333 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4334 				    struct kvm_lapic_state *s)
4335 {
4336 	int r;
4337 
4338 	r = kvm_apic_set_state(vcpu, s);
4339 	if (r)
4340 		return r;
4341 	update_cr8_intercept(vcpu);
4342 
4343 	return 0;
4344 }
4345 
4346 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4347 {
4348 	/*
4349 	 * We can accept userspace's request for interrupt injection
4350 	 * as long as we have a place to store the interrupt number.
4351 	 * The actual injection will happen when the CPU is able to
4352 	 * deliver the interrupt.
4353 	 */
4354 	if (kvm_cpu_has_extint(vcpu))
4355 		return false;
4356 
4357 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4358 	return (!lapic_in_kernel(vcpu) ||
4359 		kvm_apic_accept_pic_intr(vcpu));
4360 }
4361 
4362 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4363 {
4364 	/*
4365 	 * Do not cause an interrupt window exit if an exception
4366 	 * is pending or an event needs reinjection; userspace
4367 	 * might want to inject the interrupt manually using KVM_SET_REGS
4368 	 * or KVM_SET_SREGS.  For that to work, we must be at an
4369 	 * instruction boundary and with no events half-injected.
4370 	 */
4371 	return (kvm_arch_interrupt_allowed(vcpu) &&
4372 		kvm_cpu_accept_dm_intr(vcpu) &&
4373 		!kvm_event_needs_reinjection(vcpu) &&
4374 		!vcpu->arch.exception.pending);
4375 }
4376 
4377 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4378 				    struct kvm_interrupt *irq)
4379 {
4380 	if (irq->irq >= KVM_NR_INTERRUPTS)
4381 		return -EINVAL;
4382 
4383 	if (!irqchip_in_kernel(vcpu->kvm)) {
4384 		kvm_queue_interrupt(vcpu, irq->irq, false);
4385 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4386 		return 0;
4387 	}
4388 
4389 	/*
4390 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4391 	 * fail for in-kernel 8259.
4392 	 */
4393 	if (pic_in_kernel(vcpu->kvm))
4394 		return -ENXIO;
4395 
4396 	if (vcpu->arch.pending_external_vector != -1)
4397 		return -EEXIST;
4398 
4399 	vcpu->arch.pending_external_vector = irq->irq;
4400 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4401 	return 0;
4402 }
4403 
4404 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4405 {
4406 	kvm_inject_nmi(vcpu);
4407 
4408 	return 0;
4409 }
4410 
4411 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4412 {
4413 	kvm_make_request(KVM_REQ_SMI, vcpu);
4414 
4415 	return 0;
4416 }
4417 
4418 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4419 					   struct kvm_tpr_access_ctl *tac)
4420 {
4421 	if (tac->flags)
4422 		return -EINVAL;
4423 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4424 	return 0;
4425 }
4426 
4427 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4428 					u64 mcg_cap)
4429 {
4430 	int r;
4431 	unsigned bank_num = mcg_cap & 0xff, bank;
4432 
4433 	r = -EINVAL;
4434 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4435 		goto out;
4436 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4437 		goto out;
4438 	r = 0;
4439 	vcpu->arch.mcg_cap = mcg_cap;
4440 	/* Init IA32_MCG_CTL to all 1s */
4441 	if (mcg_cap & MCG_CTL_P)
4442 		vcpu->arch.mcg_ctl = ~(u64)0;
4443 	/* Init IA32_MCi_CTL to all 1s */
4444 	for (bank = 0; bank < bank_num; bank++)
4445 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4446 
4447 	static_call(kvm_x86_setup_mce)(vcpu);
4448 out:
4449 	return r;
4450 }
4451 
4452 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4453 				      struct kvm_x86_mce *mce)
4454 {
4455 	u64 mcg_cap = vcpu->arch.mcg_cap;
4456 	unsigned bank_num = mcg_cap & 0xff;
4457 	u64 *banks = vcpu->arch.mce_banks;
4458 
4459 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4460 		return -EINVAL;
4461 	/*
4462 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4463 	 * reporting is disabled
4464 	 */
4465 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4466 	    vcpu->arch.mcg_ctl != ~(u64)0)
4467 		return 0;
4468 	banks += 4 * mce->bank;
4469 	/*
4470 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4471 	 * reporting is disabled for the bank
4472 	 */
4473 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4474 		return 0;
4475 	if (mce->status & MCI_STATUS_UC) {
4476 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4477 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4478 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4479 			return 0;
4480 		}
4481 		if (banks[1] & MCI_STATUS_VAL)
4482 			mce->status |= MCI_STATUS_OVER;
4483 		banks[2] = mce->addr;
4484 		banks[3] = mce->misc;
4485 		vcpu->arch.mcg_status = mce->mcg_status;
4486 		banks[1] = mce->status;
4487 		kvm_queue_exception(vcpu, MC_VECTOR);
4488 	} else if (!(banks[1] & MCI_STATUS_VAL)
4489 		   || !(banks[1] & MCI_STATUS_UC)) {
4490 		if (banks[1] & MCI_STATUS_VAL)
4491 			mce->status |= MCI_STATUS_OVER;
4492 		banks[2] = mce->addr;
4493 		banks[3] = mce->misc;
4494 		banks[1] = mce->status;
4495 	} else
4496 		banks[1] |= MCI_STATUS_OVER;
4497 	return 0;
4498 }
4499 
4500 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4501 					       struct kvm_vcpu_events *events)
4502 {
4503 	process_nmi(vcpu);
4504 
4505 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
4506 		process_smi(vcpu);
4507 
4508 	/*
4509 	 * In guest mode, payload delivery should be deferred,
4510 	 * so that the L1 hypervisor can intercept #PF before
4511 	 * CR2 is modified (or intercept #DB before DR6 is
4512 	 * modified under nVMX). Unless the per-VM capability,
4513 	 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4514 	 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4515 	 * opportunistically defer the exception payload, deliver it if the
4516 	 * capability hasn't been requested before processing a
4517 	 * KVM_GET_VCPU_EVENTS.
4518 	 */
4519 	if (!vcpu->kvm->arch.exception_payload_enabled &&
4520 	    vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4521 		kvm_deliver_exception_payload(vcpu);
4522 
4523 	/*
4524 	 * The API doesn't provide the instruction length for software
4525 	 * exceptions, so don't report them. As long as the guest RIP
4526 	 * isn't advanced, we should expect to encounter the exception
4527 	 * again.
4528 	 */
4529 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4530 		events->exception.injected = 0;
4531 		events->exception.pending = 0;
4532 	} else {
4533 		events->exception.injected = vcpu->arch.exception.injected;
4534 		events->exception.pending = vcpu->arch.exception.pending;
4535 		/*
4536 		 * For ABI compatibility, deliberately conflate
4537 		 * pending and injected exceptions when
4538 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4539 		 */
4540 		if (!vcpu->kvm->arch.exception_payload_enabled)
4541 			events->exception.injected |=
4542 				vcpu->arch.exception.pending;
4543 	}
4544 	events->exception.nr = vcpu->arch.exception.nr;
4545 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4546 	events->exception.error_code = vcpu->arch.exception.error_code;
4547 	events->exception_has_payload = vcpu->arch.exception.has_payload;
4548 	events->exception_payload = vcpu->arch.exception.payload;
4549 
4550 	events->interrupt.injected =
4551 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4552 	events->interrupt.nr = vcpu->arch.interrupt.nr;
4553 	events->interrupt.soft = 0;
4554 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4555 
4556 	events->nmi.injected = vcpu->arch.nmi_injected;
4557 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
4558 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4559 	events->nmi.pad = 0;
4560 
4561 	events->sipi_vector = 0; /* never valid when reporting to user space */
4562 
4563 	events->smi.smm = is_smm(vcpu);
4564 	events->smi.pending = vcpu->arch.smi_pending;
4565 	events->smi.smm_inside_nmi =
4566 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4567 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4568 
4569 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4570 			 | KVM_VCPUEVENT_VALID_SHADOW
4571 			 | KVM_VCPUEVENT_VALID_SMM);
4572 	if (vcpu->kvm->arch.exception_payload_enabled)
4573 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4574 
4575 	memset(&events->reserved, 0, sizeof(events->reserved));
4576 }
4577 
4578 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4579 
4580 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4581 					      struct kvm_vcpu_events *events)
4582 {
4583 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4584 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4585 			      | KVM_VCPUEVENT_VALID_SHADOW
4586 			      | KVM_VCPUEVENT_VALID_SMM
4587 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
4588 		return -EINVAL;
4589 
4590 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4591 		if (!vcpu->kvm->arch.exception_payload_enabled)
4592 			return -EINVAL;
4593 		if (events->exception.pending)
4594 			events->exception.injected = 0;
4595 		else
4596 			events->exception_has_payload = 0;
4597 	} else {
4598 		events->exception.pending = 0;
4599 		events->exception_has_payload = 0;
4600 	}
4601 
4602 	if ((events->exception.injected || events->exception.pending) &&
4603 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4604 		return -EINVAL;
4605 
4606 	/* INITs are latched while in SMM */
4607 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4608 	    (events->smi.smm || events->smi.pending) &&
4609 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4610 		return -EINVAL;
4611 
4612 	process_nmi(vcpu);
4613 	vcpu->arch.exception.injected = events->exception.injected;
4614 	vcpu->arch.exception.pending = events->exception.pending;
4615 	vcpu->arch.exception.nr = events->exception.nr;
4616 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4617 	vcpu->arch.exception.error_code = events->exception.error_code;
4618 	vcpu->arch.exception.has_payload = events->exception_has_payload;
4619 	vcpu->arch.exception.payload = events->exception_payload;
4620 
4621 	vcpu->arch.interrupt.injected = events->interrupt.injected;
4622 	vcpu->arch.interrupt.nr = events->interrupt.nr;
4623 	vcpu->arch.interrupt.soft = events->interrupt.soft;
4624 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4625 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4626 						events->interrupt.shadow);
4627 
4628 	vcpu->arch.nmi_injected = events->nmi.injected;
4629 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4630 		vcpu->arch.nmi_pending = events->nmi.pending;
4631 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4632 
4633 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4634 	    lapic_in_kernel(vcpu))
4635 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
4636 
4637 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4638 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm)
4639 			kvm_smm_changed(vcpu, events->smi.smm);
4640 
4641 		vcpu->arch.smi_pending = events->smi.pending;
4642 
4643 		if (events->smi.smm) {
4644 			if (events->smi.smm_inside_nmi)
4645 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4646 			else
4647 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4648 		}
4649 
4650 		if (lapic_in_kernel(vcpu)) {
4651 			if (events->smi.latched_init)
4652 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4653 			else
4654 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4655 		}
4656 	}
4657 
4658 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4659 
4660 	return 0;
4661 }
4662 
4663 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4664 					     struct kvm_debugregs *dbgregs)
4665 {
4666 	unsigned long val;
4667 
4668 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4669 	kvm_get_dr(vcpu, 6, &val);
4670 	dbgregs->dr6 = val;
4671 	dbgregs->dr7 = vcpu->arch.dr7;
4672 	dbgregs->flags = 0;
4673 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4674 }
4675 
4676 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4677 					    struct kvm_debugregs *dbgregs)
4678 {
4679 	if (dbgregs->flags)
4680 		return -EINVAL;
4681 
4682 	if (!kvm_dr6_valid(dbgregs->dr6))
4683 		return -EINVAL;
4684 	if (!kvm_dr7_valid(dbgregs->dr7))
4685 		return -EINVAL;
4686 
4687 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4688 	kvm_update_dr0123(vcpu);
4689 	vcpu->arch.dr6 = dbgregs->dr6;
4690 	vcpu->arch.dr7 = dbgregs->dr7;
4691 	kvm_update_dr7(vcpu);
4692 
4693 	return 0;
4694 }
4695 
4696 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4697 
4698 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4699 {
4700 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4701 	u64 xstate_bv = xsave->header.xfeatures;
4702 	u64 valid;
4703 
4704 	/*
4705 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4706 	 * leaves 0 and 1 in the loop below.
4707 	 */
4708 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4709 
4710 	/* Set XSTATE_BV */
4711 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4712 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4713 
4714 	/*
4715 	 * Copy each region from the possibly compacted offset to the
4716 	 * non-compacted offset.
4717 	 */
4718 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4719 	while (valid) {
4720 		u32 size, offset, ecx, edx;
4721 		u64 xfeature_mask = valid & -valid;
4722 		int xfeature_nr = fls64(xfeature_mask) - 1;
4723 		void *src;
4724 
4725 		cpuid_count(XSTATE_CPUID, xfeature_nr,
4726 			    &size, &offset, &ecx, &edx);
4727 
4728 		if (xfeature_nr == XFEATURE_PKRU) {
4729 			memcpy(dest + offset, &vcpu->arch.pkru,
4730 			       sizeof(vcpu->arch.pkru));
4731 		} else {
4732 			src = get_xsave_addr(xsave, xfeature_nr);
4733 			if (src)
4734 				memcpy(dest + offset, src, size);
4735 		}
4736 
4737 		valid -= xfeature_mask;
4738 	}
4739 }
4740 
4741 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4742 {
4743 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4744 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4745 	u64 valid;
4746 
4747 	/*
4748 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4749 	 * leaves 0 and 1 in the loop below.
4750 	 */
4751 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
4752 
4753 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
4754 	xsave->header.xfeatures = xstate_bv;
4755 	if (boot_cpu_has(X86_FEATURE_XSAVES))
4756 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4757 
4758 	/*
4759 	 * Copy each region from the non-compacted offset to the
4760 	 * possibly compacted offset.
4761 	 */
4762 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4763 	while (valid) {
4764 		u32 size, offset, ecx, edx;
4765 		u64 xfeature_mask = valid & -valid;
4766 		int xfeature_nr = fls64(xfeature_mask) - 1;
4767 
4768 		cpuid_count(XSTATE_CPUID, xfeature_nr,
4769 			    &size, &offset, &ecx, &edx);
4770 
4771 		if (xfeature_nr == XFEATURE_PKRU) {
4772 			memcpy(&vcpu->arch.pkru, src + offset,
4773 			       sizeof(vcpu->arch.pkru));
4774 		} else {
4775 			void *dest = get_xsave_addr(xsave, xfeature_nr);
4776 
4777 			if (dest)
4778 				memcpy(dest, src + offset, size);
4779 		}
4780 
4781 		valid -= xfeature_mask;
4782 	}
4783 }
4784 
4785 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4786 					 struct kvm_xsave *guest_xsave)
4787 {
4788 	if (!vcpu->arch.guest_fpu)
4789 		return;
4790 
4791 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4792 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4793 		fill_xsave((u8 *) guest_xsave->region, vcpu);
4794 	} else {
4795 		memcpy(guest_xsave->region,
4796 			&vcpu->arch.guest_fpu->state.fxsave,
4797 			sizeof(struct fxregs_state));
4798 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4799 			XFEATURE_MASK_FPSSE;
4800 	}
4801 }
4802 
4803 #define XSAVE_MXCSR_OFFSET 24
4804 
4805 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4806 					struct kvm_xsave *guest_xsave)
4807 {
4808 	u64 xstate_bv;
4809 	u32 mxcsr;
4810 
4811 	if (!vcpu->arch.guest_fpu)
4812 		return 0;
4813 
4814 	xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4815 	mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4816 
4817 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4818 		/*
4819 		 * Here we allow setting states that are not present in
4820 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4821 		 * with old userspace.
4822 		 */
4823 		if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4824 			return -EINVAL;
4825 		load_xsave(vcpu, (u8 *)guest_xsave->region);
4826 	} else {
4827 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4828 			mxcsr & ~mxcsr_feature_mask)
4829 			return -EINVAL;
4830 		memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4831 			guest_xsave->region, sizeof(struct fxregs_state));
4832 	}
4833 	return 0;
4834 }
4835 
4836 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4837 					struct kvm_xcrs *guest_xcrs)
4838 {
4839 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4840 		guest_xcrs->nr_xcrs = 0;
4841 		return;
4842 	}
4843 
4844 	guest_xcrs->nr_xcrs = 1;
4845 	guest_xcrs->flags = 0;
4846 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4847 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4848 }
4849 
4850 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4851 				       struct kvm_xcrs *guest_xcrs)
4852 {
4853 	int i, r = 0;
4854 
4855 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
4856 		return -EINVAL;
4857 
4858 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4859 		return -EINVAL;
4860 
4861 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4862 		/* Only support XCR0 currently */
4863 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4864 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4865 				guest_xcrs->xcrs[i].value);
4866 			break;
4867 		}
4868 	if (r)
4869 		r = -EINVAL;
4870 	return r;
4871 }
4872 
4873 /*
4874  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4875  * stopped by the hypervisor.  This function will be called from the host only.
4876  * EINVAL is returned when the host attempts to set the flag for a guest that
4877  * does not support pv clocks.
4878  */
4879 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4880 {
4881 	if (!vcpu->arch.pv_time_enabled)
4882 		return -EINVAL;
4883 	vcpu->arch.pvclock_set_guest_stopped_request = true;
4884 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4885 	return 0;
4886 }
4887 
4888 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4889 				     struct kvm_enable_cap *cap)
4890 {
4891 	int r;
4892 	uint16_t vmcs_version;
4893 	void __user *user_ptr;
4894 
4895 	if (cap->flags)
4896 		return -EINVAL;
4897 
4898 	switch (cap->cap) {
4899 	case KVM_CAP_HYPERV_SYNIC2:
4900 		if (cap->args[0])
4901 			return -EINVAL;
4902 		fallthrough;
4903 
4904 	case KVM_CAP_HYPERV_SYNIC:
4905 		if (!irqchip_in_kernel(vcpu->kvm))
4906 			return -EINVAL;
4907 		return kvm_hv_activate_synic(vcpu, cap->cap ==
4908 					     KVM_CAP_HYPERV_SYNIC2);
4909 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4910 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
4911 			return -ENOTTY;
4912 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4913 		if (!r) {
4914 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
4915 			if (copy_to_user(user_ptr, &vmcs_version,
4916 					 sizeof(vmcs_version)))
4917 				r = -EFAULT;
4918 		}
4919 		return r;
4920 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4921 		if (!kvm_x86_ops.enable_direct_tlbflush)
4922 			return -ENOTTY;
4923 
4924 		return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
4925 
4926 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4927 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
4928 
4929 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4930 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
4931 		if (vcpu->arch.pv_cpuid.enforce)
4932 			kvm_update_pv_runtime(vcpu);
4933 
4934 		return 0;
4935 	default:
4936 		return -EINVAL;
4937 	}
4938 }
4939 
4940 long kvm_arch_vcpu_ioctl(struct file *filp,
4941 			 unsigned int ioctl, unsigned long arg)
4942 {
4943 	struct kvm_vcpu *vcpu = filp->private_data;
4944 	void __user *argp = (void __user *)arg;
4945 	int r;
4946 	union {
4947 		struct kvm_sregs2 *sregs2;
4948 		struct kvm_lapic_state *lapic;
4949 		struct kvm_xsave *xsave;
4950 		struct kvm_xcrs *xcrs;
4951 		void *buffer;
4952 	} u;
4953 
4954 	vcpu_load(vcpu);
4955 
4956 	u.buffer = NULL;
4957 	switch (ioctl) {
4958 	case KVM_GET_LAPIC: {
4959 		r = -EINVAL;
4960 		if (!lapic_in_kernel(vcpu))
4961 			goto out;
4962 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4963 				GFP_KERNEL_ACCOUNT);
4964 
4965 		r = -ENOMEM;
4966 		if (!u.lapic)
4967 			goto out;
4968 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4969 		if (r)
4970 			goto out;
4971 		r = -EFAULT;
4972 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4973 			goto out;
4974 		r = 0;
4975 		break;
4976 	}
4977 	case KVM_SET_LAPIC: {
4978 		r = -EINVAL;
4979 		if (!lapic_in_kernel(vcpu))
4980 			goto out;
4981 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
4982 		if (IS_ERR(u.lapic)) {
4983 			r = PTR_ERR(u.lapic);
4984 			goto out_nofree;
4985 		}
4986 
4987 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4988 		break;
4989 	}
4990 	case KVM_INTERRUPT: {
4991 		struct kvm_interrupt irq;
4992 
4993 		r = -EFAULT;
4994 		if (copy_from_user(&irq, argp, sizeof(irq)))
4995 			goto out;
4996 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4997 		break;
4998 	}
4999 	case KVM_NMI: {
5000 		r = kvm_vcpu_ioctl_nmi(vcpu);
5001 		break;
5002 	}
5003 	case KVM_SMI: {
5004 		r = kvm_vcpu_ioctl_smi(vcpu);
5005 		break;
5006 	}
5007 	case KVM_SET_CPUID: {
5008 		struct kvm_cpuid __user *cpuid_arg = argp;
5009 		struct kvm_cpuid cpuid;
5010 
5011 		r = -EFAULT;
5012 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5013 			goto out;
5014 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5015 		break;
5016 	}
5017 	case KVM_SET_CPUID2: {
5018 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5019 		struct kvm_cpuid2 cpuid;
5020 
5021 		r = -EFAULT;
5022 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5023 			goto out;
5024 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5025 					      cpuid_arg->entries);
5026 		break;
5027 	}
5028 	case KVM_GET_CPUID2: {
5029 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5030 		struct kvm_cpuid2 cpuid;
5031 
5032 		r = -EFAULT;
5033 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5034 			goto out;
5035 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5036 					      cpuid_arg->entries);
5037 		if (r)
5038 			goto out;
5039 		r = -EFAULT;
5040 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5041 			goto out;
5042 		r = 0;
5043 		break;
5044 	}
5045 	case KVM_GET_MSRS: {
5046 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5047 		r = msr_io(vcpu, argp, do_get_msr, 1);
5048 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5049 		break;
5050 	}
5051 	case KVM_SET_MSRS: {
5052 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5053 		r = msr_io(vcpu, argp, do_set_msr, 0);
5054 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5055 		break;
5056 	}
5057 	case KVM_TPR_ACCESS_REPORTING: {
5058 		struct kvm_tpr_access_ctl tac;
5059 
5060 		r = -EFAULT;
5061 		if (copy_from_user(&tac, argp, sizeof(tac)))
5062 			goto out;
5063 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5064 		if (r)
5065 			goto out;
5066 		r = -EFAULT;
5067 		if (copy_to_user(argp, &tac, sizeof(tac)))
5068 			goto out;
5069 		r = 0;
5070 		break;
5071 	};
5072 	case KVM_SET_VAPIC_ADDR: {
5073 		struct kvm_vapic_addr va;
5074 		int idx;
5075 
5076 		r = -EINVAL;
5077 		if (!lapic_in_kernel(vcpu))
5078 			goto out;
5079 		r = -EFAULT;
5080 		if (copy_from_user(&va, argp, sizeof(va)))
5081 			goto out;
5082 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5083 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5084 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5085 		break;
5086 	}
5087 	case KVM_X86_SETUP_MCE: {
5088 		u64 mcg_cap;
5089 
5090 		r = -EFAULT;
5091 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5092 			goto out;
5093 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5094 		break;
5095 	}
5096 	case KVM_X86_SET_MCE: {
5097 		struct kvm_x86_mce mce;
5098 
5099 		r = -EFAULT;
5100 		if (copy_from_user(&mce, argp, sizeof(mce)))
5101 			goto out;
5102 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5103 		break;
5104 	}
5105 	case KVM_GET_VCPU_EVENTS: {
5106 		struct kvm_vcpu_events events;
5107 
5108 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5109 
5110 		r = -EFAULT;
5111 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5112 			break;
5113 		r = 0;
5114 		break;
5115 	}
5116 	case KVM_SET_VCPU_EVENTS: {
5117 		struct kvm_vcpu_events events;
5118 
5119 		r = -EFAULT;
5120 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5121 			break;
5122 
5123 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5124 		break;
5125 	}
5126 	case KVM_GET_DEBUGREGS: {
5127 		struct kvm_debugregs dbgregs;
5128 
5129 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5130 
5131 		r = -EFAULT;
5132 		if (copy_to_user(argp, &dbgregs,
5133 				 sizeof(struct kvm_debugregs)))
5134 			break;
5135 		r = 0;
5136 		break;
5137 	}
5138 	case KVM_SET_DEBUGREGS: {
5139 		struct kvm_debugregs dbgregs;
5140 
5141 		r = -EFAULT;
5142 		if (copy_from_user(&dbgregs, argp,
5143 				   sizeof(struct kvm_debugregs)))
5144 			break;
5145 
5146 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5147 		break;
5148 	}
5149 	case KVM_GET_XSAVE: {
5150 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5151 		r = -ENOMEM;
5152 		if (!u.xsave)
5153 			break;
5154 
5155 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5156 
5157 		r = -EFAULT;
5158 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5159 			break;
5160 		r = 0;
5161 		break;
5162 	}
5163 	case KVM_SET_XSAVE: {
5164 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
5165 		if (IS_ERR(u.xsave)) {
5166 			r = PTR_ERR(u.xsave);
5167 			goto out_nofree;
5168 		}
5169 
5170 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5171 		break;
5172 	}
5173 	case KVM_GET_XCRS: {
5174 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5175 		r = -ENOMEM;
5176 		if (!u.xcrs)
5177 			break;
5178 
5179 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5180 
5181 		r = -EFAULT;
5182 		if (copy_to_user(argp, u.xcrs,
5183 				 sizeof(struct kvm_xcrs)))
5184 			break;
5185 		r = 0;
5186 		break;
5187 	}
5188 	case KVM_SET_XCRS: {
5189 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5190 		if (IS_ERR(u.xcrs)) {
5191 			r = PTR_ERR(u.xcrs);
5192 			goto out_nofree;
5193 		}
5194 
5195 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5196 		break;
5197 	}
5198 	case KVM_SET_TSC_KHZ: {
5199 		u32 user_tsc_khz;
5200 
5201 		r = -EINVAL;
5202 		user_tsc_khz = (u32)arg;
5203 
5204 		if (kvm_has_tsc_control &&
5205 		    user_tsc_khz >= kvm_max_guest_tsc_khz)
5206 			goto out;
5207 
5208 		if (user_tsc_khz == 0)
5209 			user_tsc_khz = tsc_khz;
5210 
5211 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5212 			r = 0;
5213 
5214 		goto out;
5215 	}
5216 	case KVM_GET_TSC_KHZ: {
5217 		r = vcpu->arch.virtual_tsc_khz;
5218 		goto out;
5219 	}
5220 	case KVM_KVMCLOCK_CTRL: {
5221 		r = kvm_set_guest_paused(vcpu);
5222 		goto out;
5223 	}
5224 	case KVM_ENABLE_CAP: {
5225 		struct kvm_enable_cap cap;
5226 
5227 		r = -EFAULT;
5228 		if (copy_from_user(&cap, argp, sizeof(cap)))
5229 			goto out;
5230 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5231 		break;
5232 	}
5233 	case KVM_GET_NESTED_STATE: {
5234 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5235 		u32 user_data_size;
5236 
5237 		r = -EINVAL;
5238 		if (!kvm_x86_ops.nested_ops->get_state)
5239 			break;
5240 
5241 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5242 		r = -EFAULT;
5243 		if (get_user(user_data_size, &user_kvm_nested_state->size))
5244 			break;
5245 
5246 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5247 						     user_data_size);
5248 		if (r < 0)
5249 			break;
5250 
5251 		if (r > user_data_size) {
5252 			if (put_user(r, &user_kvm_nested_state->size))
5253 				r = -EFAULT;
5254 			else
5255 				r = -E2BIG;
5256 			break;
5257 		}
5258 
5259 		r = 0;
5260 		break;
5261 	}
5262 	case KVM_SET_NESTED_STATE: {
5263 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5264 		struct kvm_nested_state kvm_state;
5265 		int idx;
5266 
5267 		r = -EINVAL;
5268 		if (!kvm_x86_ops.nested_ops->set_state)
5269 			break;
5270 
5271 		r = -EFAULT;
5272 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5273 			break;
5274 
5275 		r = -EINVAL;
5276 		if (kvm_state.size < sizeof(kvm_state))
5277 			break;
5278 
5279 		if (kvm_state.flags &
5280 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5281 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5282 		      | KVM_STATE_NESTED_GIF_SET))
5283 			break;
5284 
5285 		/* nested_run_pending implies guest_mode.  */
5286 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5287 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5288 			break;
5289 
5290 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5291 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5292 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5293 		break;
5294 	}
5295 	case KVM_GET_SUPPORTED_HV_CPUID:
5296 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5297 		break;
5298 #ifdef CONFIG_KVM_XEN
5299 	case KVM_XEN_VCPU_GET_ATTR: {
5300 		struct kvm_xen_vcpu_attr xva;
5301 
5302 		r = -EFAULT;
5303 		if (copy_from_user(&xva, argp, sizeof(xva)))
5304 			goto out;
5305 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5306 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5307 			r = -EFAULT;
5308 		break;
5309 	}
5310 	case KVM_XEN_VCPU_SET_ATTR: {
5311 		struct kvm_xen_vcpu_attr xva;
5312 
5313 		r = -EFAULT;
5314 		if (copy_from_user(&xva, argp, sizeof(xva)))
5315 			goto out;
5316 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5317 		break;
5318 	}
5319 #endif
5320 	case KVM_GET_SREGS2: {
5321 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5322 		r = -ENOMEM;
5323 		if (!u.sregs2)
5324 			goto out;
5325 		__get_sregs2(vcpu, u.sregs2);
5326 		r = -EFAULT;
5327 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5328 			goto out;
5329 		r = 0;
5330 		break;
5331 	}
5332 	case KVM_SET_SREGS2: {
5333 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5334 		if (IS_ERR(u.sregs2)) {
5335 			r = PTR_ERR(u.sregs2);
5336 			u.sregs2 = NULL;
5337 			goto out;
5338 		}
5339 		r = __set_sregs2(vcpu, u.sregs2);
5340 		break;
5341 	}
5342 	default:
5343 		r = -EINVAL;
5344 	}
5345 out:
5346 	kfree(u.buffer);
5347 out_nofree:
5348 	vcpu_put(vcpu);
5349 	return r;
5350 }
5351 
5352 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5353 {
5354 	return VM_FAULT_SIGBUS;
5355 }
5356 
5357 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5358 {
5359 	int ret;
5360 
5361 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
5362 		return -EINVAL;
5363 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5364 	return ret;
5365 }
5366 
5367 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5368 					      u64 ident_addr)
5369 {
5370 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5371 }
5372 
5373 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5374 					 unsigned long kvm_nr_mmu_pages)
5375 {
5376 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5377 		return -EINVAL;
5378 
5379 	mutex_lock(&kvm->slots_lock);
5380 
5381 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5382 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5383 
5384 	mutex_unlock(&kvm->slots_lock);
5385 	return 0;
5386 }
5387 
5388 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5389 {
5390 	return kvm->arch.n_max_mmu_pages;
5391 }
5392 
5393 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5394 {
5395 	struct kvm_pic *pic = kvm->arch.vpic;
5396 	int r;
5397 
5398 	r = 0;
5399 	switch (chip->chip_id) {
5400 	case KVM_IRQCHIP_PIC_MASTER:
5401 		memcpy(&chip->chip.pic, &pic->pics[0],
5402 			sizeof(struct kvm_pic_state));
5403 		break;
5404 	case KVM_IRQCHIP_PIC_SLAVE:
5405 		memcpy(&chip->chip.pic, &pic->pics[1],
5406 			sizeof(struct kvm_pic_state));
5407 		break;
5408 	case KVM_IRQCHIP_IOAPIC:
5409 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
5410 		break;
5411 	default:
5412 		r = -EINVAL;
5413 		break;
5414 	}
5415 	return r;
5416 }
5417 
5418 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5419 {
5420 	struct kvm_pic *pic = kvm->arch.vpic;
5421 	int r;
5422 
5423 	r = 0;
5424 	switch (chip->chip_id) {
5425 	case KVM_IRQCHIP_PIC_MASTER:
5426 		spin_lock(&pic->lock);
5427 		memcpy(&pic->pics[0], &chip->chip.pic,
5428 			sizeof(struct kvm_pic_state));
5429 		spin_unlock(&pic->lock);
5430 		break;
5431 	case KVM_IRQCHIP_PIC_SLAVE:
5432 		spin_lock(&pic->lock);
5433 		memcpy(&pic->pics[1], &chip->chip.pic,
5434 			sizeof(struct kvm_pic_state));
5435 		spin_unlock(&pic->lock);
5436 		break;
5437 	case KVM_IRQCHIP_IOAPIC:
5438 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
5439 		break;
5440 	default:
5441 		r = -EINVAL;
5442 		break;
5443 	}
5444 	kvm_pic_update_irq(pic);
5445 	return r;
5446 }
5447 
5448 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5449 {
5450 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5451 
5452 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5453 
5454 	mutex_lock(&kps->lock);
5455 	memcpy(ps, &kps->channels, sizeof(*ps));
5456 	mutex_unlock(&kps->lock);
5457 	return 0;
5458 }
5459 
5460 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5461 {
5462 	int i;
5463 	struct kvm_pit *pit = kvm->arch.vpit;
5464 
5465 	mutex_lock(&pit->pit_state.lock);
5466 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5467 	for (i = 0; i < 3; i++)
5468 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5469 	mutex_unlock(&pit->pit_state.lock);
5470 	return 0;
5471 }
5472 
5473 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5474 {
5475 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
5476 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5477 		sizeof(ps->channels));
5478 	ps->flags = kvm->arch.vpit->pit_state.flags;
5479 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5480 	memset(&ps->reserved, 0, sizeof(ps->reserved));
5481 	return 0;
5482 }
5483 
5484 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5485 {
5486 	int start = 0;
5487 	int i;
5488 	u32 prev_legacy, cur_legacy;
5489 	struct kvm_pit *pit = kvm->arch.vpit;
5490 
5491 	mutex_lock(&pit->pit_state.lock);
5492 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5493 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5494 	if (!prev_legacy && cur_legacy)
5495 		start = 1;
5496 	memcpy(&pit->pit_state.channels, &ps->channels,
5497 	       sizeof(pit->pit_state.channels));
5498 	pit->pit_state.flags = ps->flags;
5499 	for (i = 0; i < 3; i++)
5500 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5501 				   start && i == 0);
5502 	mutex_unlock(&pit->pit_state.lock);
5503 	return 0;
5504 }
5505 
5506 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5507 				 struct kvm_reinject_control *control)
5508 {
5509 	struct kvm_pit *pit = kvm->arch.vpit;
5510 
5511 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
5512 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5513 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5514 	 */
5515 	mutex_lock(&pit->pit_state.lock);
5516 	kvm_pit_set_reinject(pit, control->pit_reinject);
5517 	mutex_unlock(&pit->pit_state.lock);
5518 
5519 	return 0;
5520 }
5521 
5522 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5523 {
5524 
5525 	/*
5526 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
5527 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
5528 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
5529 	 * VM-Exit.
5530 	 */
5531 	struct kvm_vcpu *vcpu;
5532 	int i;
5533 
5534 	kvm_for_each_vcpu(i, vcpu, kvm)
5535 		kvm_vcpu_kick(vcpu);
5536 }
5537 
5538 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5539 			bool line_status)
5540 {
5541 	if (!irqchip_in_kernel(kvm))
5542 		return -ENXIO;
5543 
5544 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5545 					irq_event->irq, irq_event->level,
5546 					line_status);
5547 	return 0;
5548 }
5549 
5550 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5551 			    struct kvm_enable_cap *cap)
5552 {
5553 	int r;
5554 
5555 	if (cap->flags)
5556 		return -EINVAL;
5557 
5558 	switch (cap->cap) {
5559 	case KVM_CAP_DISABLE_QUIRKS:
5560 		kvm->arch.disabled_quirks = cap->args[0];
5561 		r = 0;
5562 		break;
5563 	case KVM_CAP_SPLIT_IRQCHIP: {
5564 		mutex_lock(&kvm->lock);
5565 		r = -EINVAL;
5566 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5567 			goto split_irqchip_unlock;
5568 		r = -EEXIST;
5569 		if (irqchip_in_kernel(kvm))
5570 			goto split_irqchip_unlock;
5571 		if (kvm->created_vcpus)
5572 			goto split_irqchip_unlock;
5573 		r = kvm_setup_empty_irq_routing(kvm);
5574 		if (r)
5575 			goto split_irqchip_unlock;
5576 		/* Pairs with irqchip_in_kernel. */
5577 		smp_wmb();
5578 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5579 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5580 		r = 0;
5581 split_irqchip_unlock:
5582 		mutex_unlock(&kvm->lock);
5583 		break;
5584 	}
5585 	case KVM_CAP_X2APIC_API:
5586 		r = -EINVAL;
5587 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5588 			break;
5589 
5590 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5591 			kvm->arch.x2apic_format = true;
5592 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5593 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
5594 
5595 		r = 0;
5596 		break;
5597 	case KVM_CAP_X86_DISABLE_EXITS:
5598 		r = -EINVAL;
5599 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5600 			break;
5601 
5602 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5603 			kvm_can_mwait_in_guest())
5604 			kvm->arch.mwait_in_guest = true;
5605 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5606 			kvm->arch.hlt_in_guest = true;
5607 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5608 			kvm->arch.pause_in_guest = true;
5609 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5610 			kvm->arch.cstate_in_guest = true;
5611 		r = 0;
5612 		break;
5613 	case KVM_CAP_MSR_PLATFORM_INFO:
5614 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5615 		r = 0;
5616 		break;
5617 	case KVM_CAP_EXCEPTION_PAYLOAD:
5618 		kvm->arch.exception_payload_enabled = cap->args[0];
5619 		r = 0;
5620 		break;
5621 	case KVM_CAP_X86_USER_SPACE_MSR:
5622 		kvm->arch.user_space_msr_mask = cap->args[0];
5623 		r = 0;
5624 		break;
5625 	case KVM_CAP_X86_BUS_LOCK_EXIT:
5626 		r = -EINVAL;
5627 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5628 			break;
5629 
5630 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5631 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5632 			break;
5633 
5634 		if (kvm_has_bus_lock_exit &&
5635 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5636 			kvm->arch.bus_lock_detection_enabled = true;
5637 		r = 0;
5638 		break;
5639 #ifdef CONFIG_X86_SGX_KVM
5640 	case KVM_CAP_SGX_ATTRIBUTE: {
5641 		unsigned long allowed_attributes = 0;
5642 
5643 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
5644 		if (r)
5645 			break;
5646 
5647 		/* KVM only supports the PROVISIONKEY privileged attribute. */
5648 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
5649 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
5650 			kvm->arch.sgx_provisioning_allowed = true;
5651 		else
5652 			r = -EINVAL;
5653 		break;
5654 	}
5655 #endif
5656 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
5657 		r = -EINVAL;
5658 		if (kvm_x86_ops.vm_copy_enc_context_from)
5659 			r = kvm_x86_ops.vm_copy_enc_context_from(kvm, cap->args[0]);
5660 		return r;
5661 	case KVM_CAP_EXIT_HYPERCALL:
5662 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
5663 			r = -EINVAL;
5664 			break;
5665 		}
5666 		kvm->arch.hypercall_exit_enabled = cap->args[0];
5667 		r = 0;
5668 		break;
5669 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
5670 		r = -EINVAL;
5671 		if (cap->args[0] & ~1)
5672 			break;
5673 		kvm->arch.exit_on_emulation_error = cap->args[0];
5674 		r = 0;
5675 		break;
5676 	default:
5677 		r = -EINVAL;
5678 		break;
5679 	}
5680 	return r;
5681 }
5682 
5683 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5684 {
5685 	struct kvm_x86_msr_filter *msr_filter;
5686 
5687 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5688 	if (!msr_filter)
5689 		return NULL;
5690 
5691 	msr_filter->default_allow = default_allow;
5692 	return msr_filter;
5693 }
5694 
5695 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5696 {
5697 	u32 i;
5698 
5699 	if (!msr_filter)
5700 		return;
5701 
5702 	for (i = 0; i < msr_filter->count; i++)
5703 		kfree(msr_filter->ranges[i].bitmap);
5704 
5705 	kfree(msr_filter);
5706 }
5707 
5708 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5709 			      struct kvm_msr_filter_range *user_range)
5710 {
5711 	unsigned long *bitmap = NULL;
5712 	size_t bitmap_size;
5713 
5714 	if (!user_range->nmsrs)
5715 		return 0;
5716 
5717 	if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
5718 		return -EINVAL;
5719 
5720 	if (!user_range->flags)
5721 		return -EINVAL;
5722 
5723 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5724 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5725 		return -EINVAL;
5726 
5727 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5728 	if (IS_ERR(bitmap))
5729 		return PTR_ERR(bitmap);
5730 
5731 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
5732 		.flags = user_range->flags,
5733 		.base = user_range->base,
5734 		.nmsrs = user_range->nmsrs,
5735 		.bitmap = bitmap,
5736 	};
5737 
5738 	msr_filter->count++;
5739 	return 0;
5740 }
5741 
5742 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5743 {
5744 	struct kvm_msr_filter __user *user_msr_filter = argp;
5745 	struct kvm_x86_msr_filter *new_filter, *old_filter;
5746 	struct kvm_msr_filter filter;
5747 	bool default_allow;
5748 	bool empty = true;
5749 	int r = 0;
5750 	u32 i;
5751 
5752 	if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5753 		return -EFAULT;
5754 
5755 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5756 		empty &= !filter.ranges[i].nmsrs;
5757 
5758 	default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5759 	if (empty && !default_allow)
5760 		return -EINVAL;
5761 
5762 	new_filter = kvm_alloc_msr_filter(default_allow);
5763 	if (!new_filter)
5764 		return -ENOMEM;
5765 
5766 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5767 		r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
5768 		if (r) {
5769 			kvm_free_msr_filter(new_filter);
5770 			return r;
5771 		}
5772 	}
5773 
5774 	mutex_lock(&kvm->lock);
5775 
5776 	/* The per-VM filter is protected by kvm->lock... */
5777 	old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
5778 
5779 	rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
5780 	synchronize_srcu(&kvm->srcu);
5781 
5782 	kvm_free_msr_filter(old_filter);
5783 
5784 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5785 	mutex_unlock(&kvm->lock);
5786 
5787 	return 0;
5788 }
5789 
5790 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
5791 static int kvm_arch_suspend_notifier(struct kvm *kvm)
5792 {
5793 	struct kvm_vcpu *vcpu;
5794 	int i, ret = 0;
5795 
5796 	mutex_lock(&kvm->lock);
5797 	kvm_for_each_vcpu(i, vcpu, kvm) {
5798 		if (!vcpu->arch.pv_time_enabled)
5799 			continue;
5800 
5801 		ret = kvm_set_guest_paused(vcpu);
5802 		if (ret) {
5803 			kvm_err("Failed to pause guest VCPU%d: %d\n",
5804 				vcpu->vcpu_id, ret);
5805 			break;
5806 		}
5807 	}
5808 	mutex_unlock(&kvm->lock);
5809 
5810 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
5811 }
5812 
5813 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
5814 {
5815 	switch (state) {
5816 	case PM_HIBERNATION_PREPARE:
5817 	case PM_SUSPEND_PREPARE:
5818 		return kvm_arch_suspend_notifier(kvm);
5819 	}
5820 
5821 	return NOTIFY_DONE;
5822 }
5823 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
5824 
5825 long kvm_arch_vm_ioctl(struct file *filp,
5826 		       unsigned int ioctl, unsigned long arg)
5827 {
5828 	struct kvm *kvm = filp->private_data;
5829 	void __user *argp = (void __user *)arg;
5830 	int r = -ENOTTY;
5831 	/*
5832 	 * This union makes it completely explicit to gcc-3.x
5833 	 * that these two variables' stack usage should be
5834 	 * combined, not added together.
5835 	 */
5836 	union {
5837 		struct kvm_pit_state ps;
5838 		struct kvm_pit_state2 ps2;
5839 		struct kvm_pit_config pit_config;
5840 	} u;
5841 
5842 	switch (ioctl) {
5843 	case KVM_SET_TSS_ADDR:
5844 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5845 		break;
5846 	case KVM_SET_IDENTITY_MAP_ADDR: {
5847 		u64 ident_addr;
5848 
5849 		mutex_lock(&kvm->lock);
5850 		r = -EINVAL;
5851 		if (kvm->created_vcpus)
5852 			goto set_identity_unlock;
5853 		r = -EFAULT;
5854 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5855 			goto set_identity_unlock;
5856 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5857 set_identity_unlock:
5858 		mutex_unlock(&kvm->lock);
5859 		break;
5860 	}
5861 	case KVM_SET_NR_MMU_PAGES:
5862 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5863 		break;
5864 	case KVM_GET_NR_MMU_PAGES:
5865 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5866 		break;
5867 	case KVM_CREATE_IRQCHIP: {
5868 		mutex_lock(&kvm->lock);
5869 
5870 		r = -EEXIST;
5871 		if (irqchip_in_kernel(kvm))
5872 			goto create_irqchip_unlock;
5873 
5874 		r = -EINVAL;
5875 		if (kvm->created_vcpus)
5876 			goto create_irqchip_unlock;
5877 
5878 		r = kvm_pic_init(kvm);
5879 		if (r)
5880 			goto create_irqchip_unlock;
5881 
5882 		r = kvm_ioapic_init(kvm);
5883 		if (r) {
5884 			kvm_pic_destroy(kvm);
5885 			goto create_irqchip_unlock;
5886 		}
5887 
5888 		r = kvm_setup_default_irq_routing(kvm);
5889 		if (r) {
5890 			kvm_ioapic_destroy(kvm);
5891 			kvm_pic_destroy(kvm);
5892 			goto create_irqchip_unlock;
5893 		}
5894 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5895 		smp_wmb();
5896 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5897 	create_irqchip_unlock:
5898 		mutex_unlock(&kvm->lock);
5899 		break;
5900 	}
5901 	case KVM_CREATE_PIT:
5902 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5903 		goto create_pit;
5904 	case KVM_CREATE_PIT2:
5905 		r = -EFAULT;
5906 		if (copy_from_user(&u.pit_config, argp,
5907 				   sizeof(struct kvm_pit_config)))
5908 			goto out;
5909 	create_pit:
5910 		mutex_lock(&kvm->lock);
5911 		r = -EEXIST;
5912 		if (kvm->arch.vpit)
5913 			goto create_pit_unlock;
5914 		r = -ENOMEM;
5915 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5916 		if (kvm->arch.vpit)
5917 			r = 0;
5918 	create_pit_unlock:
5919 		mutex_unlock(&kvm->lock);
5920 		break;
5921 	case KVM_GET_IRQCHIP: {
5922 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5923 		struct kvm_irqchip *chip;
5924 
5925 		chip = memdup_user(argp, sizeof(*chip));
5926 		if (IS_ERR(chip)) {
5927 			r = PTR_ERR(chip);
5928 			goto out;
5929 		}
5930 
5931 		r = -ENXIO;
5932 		if (!irqchip_kernel(kvm))
5933 			goto get_irqchip_out;
5934 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5935 		if (r)
5936 			goto get_irqchip_out;
5937 		r = -EFAULT;
5938 		if (copy_to_user(argp, chip, sizeof(*chip)))
5939 			goto get_irqchip_out;
5940 		r = 0;
5941 	get_irqchip_out:
5942 		kfree(chip);
5943 		break;
5944 	}
5945 	case KVM_SET_IRQCHIP: {
5946 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5947 		struct kvm_irqchip *chip;
5948 
5949 		chip = memdup_user(argp, sizeof(*chip));
5950 		if (IS_ERR(chip)) {
5951 			r = PTR_ERR(chip);
5952 			goto out;
5953 		}
5954 
5955 		r = -ENXIO;
5956 		if (!irqchip_kernel(kvm))
5957 			goto set_irqchip_out;
5958 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5959 	set_irqchip_out:
5960 		kfree(chip);
5961 		break;
5962 	}
5963 	case KVM_GET_PIT: {
5964 		r = -EFAULT;
5965 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5966 			goto out;
5967 		r = -ENXIO;
5968 		if (!kvm->arch.vpit)
5969 			goto out;
5970 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5971 		if (r)
5972 			goto out;
5973 		r = -EFAULT;
5974 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5975 			goto out;
5976 		r = 0;
5977 		break;
5978 	}
5979 	case KVM_SET_PIT: {
5980 		r = -EFAULT;
5981 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5982 			goto out;
5983 		mutex_lock(&kvm->lock);
5984 		r = -ENXIO;
5985 		if (!kvm->arch.vpit)
5986 			goto set_pit_out;
5987 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5988 set_pit_out:
5989 		mutex_unlock(&kvm->lock);
5990 		break;
5991 	}
5992 	case KVM_GET_PIT2: {
5993 		r = -ENXIO;
5994 		if (!kvm->arch.vpit)
5995 			goto out;
5996 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5997 		if (r)
5998 			goto out;
5999 		r = -EFAULT;
6000 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6001 			goto out;
6002 		r = 0;
6003 		break;
6004 	}
6005 	case KVM_SET_PIT2: {
6006 		r = -EFAULT;
6007 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6008 			goto out;
6009 		mutex_lock(&kvm->lock);
6010 		r = -ENXIO;
6011 		if (!kvm->arch.vpit)
6012 			goto set_pit2_out;
6013 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6014 set_pit2_out:
6015 		mutex_unlock(&kvm->lock);
6016 		break;
6017 	}
6018 	case KVM_REINJECT_CONTROL: {
6019 		struct kvm_reinject_control control;
6020 		r =  -EFAULT;
6021 		if (copy_from_user(&control, argp, sizeof(control)))
6022 			goto out;
6023 		r = -ENXIO;
6024 		if (!kvm->arch.vpit)
6025 			goto out;
6026 		r = kvm_vm_ioctl_reinject(kvm, &control);
6027 		break;
6028 	}
6029 	case KVM_SET_BOOT_CPU_ID:
6030 		r = 0;
6031 		mutex_lock(&kvm->lock);
6032 		if (kvm->created_vcpus)
6033 			r = -EBUSY;
6034 		else
6035 			kvm->arch.bsp_vcpu_id = arg;
6036 		mutex_unlock(&kvm->lock);
6037 		break;
6038 #ifdef CONFIG_KVM_XEN
6039 	case KVM_XEN_HVM_CONFIG: {
6040 		struct kvm_xen_hvm_config xhc;
6041 		r = -EFAULT;
6042 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
6043 			goto out;
6044 		r = kvm_xen_hvm_config(kvm, &xhc);
6045 		break;
6046 	}
6047 	case KVM_XEN_HVM_GET_ATTR: {
6048 		struct kvm_xen_hvm_attr xha;
6049 
6050 		r = -EFAULT;
6051 		if (copy_from_user(&xha, argp, sizeof(xha)))
6052 			goto out;
6053 		r = kvm_xen_hvm_get_attr(kvm, &xha);
6054 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6055 			r = -EFAULT;
6056 		break;
6057 	}
6058 	case KVM_XEN_HVM_SET_ATTR: {
6059 		struct kvm_xen_hvm_attr xha;
6060 
6061 		r = -EFAULT;
6062 		if (copy_from_user(&xha, argp, sizeof(xha)))
6063 			goto out;
6064 		r = kvm_xen_hvm_set_attr(kvm, &xha);
6065 		break;
6066 	}
6067 #endif
6068 	case KVM_SET_CLOCK: {
6069 		struct kvm_arch *ka = &kvm->arch;
6070 		struct kvm_clock_data user_ns;
6071 		u64 now_ns;
6072 
6073 		r = -EFAULT;
6074 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
6075 			goto out;
6076 
6077 		r = -EINVAL;
6078 		if (user_ns.flags)
6079 			goto out;
6080 
6081 		r = 0;
6082 		/*
6083 		 * TODO: userspace has to take care of races with VCPU_RUN, so
6084 		 * kvm_gen_update_masterclock() can be cut down to locked
6085 		 * pvclock_update_vm_gtod_copy().
6086 		 */
6087 		kvm_gen_update_masterclock(kvm);
6088 
6089 		/*
6090 		 * This pairs with kvm_guest_time_update(): when masterclock is
6091 		 * in use, we use master_kernel_ns + kvmclock_offset to set
6092 		 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6093 		 * is slightly ahead) here we risk going negative on unsigned
6094 		 * 'system_time' when 'user_ns.clock' is very small.
6095 		 */
6096 		spin_lock_irq(&ka->pvclock_gtod_sync_lock);
6097 		if (kvm->arch.use_master_clock)
6098 			now_ns = ka->master_kernel_ns;
6099 		else
6100 			now_ns = get_kvmclock_base_ns();
6101 		ka->kvmclock_offset = user_ns.clock - now_ns;
6102 		spin_unlock_irq(&ka->pvclock_gtod_sync_lock);
6103 
6104 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
6105 		break;
6106 	}
6107 	case KVM_GET_CLOCK: {
6108 		struct kvm_clock_data user_ns;
6109 		u64 now_ns;
6110 
6111 		now_ns = get_kvmclock_ns(kvm);
6112 		user_ns.clock = now_ns;
6113 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
6114 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
6115 
6116 		r = -EFAULT;
6117 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
6118 			goto out;
6119 		r = 0;
6120 		break;
6121 	}
6122 	case KVM_MEMORY_ENCRYPT_OP: {
6123 		r = -ENOTTY;
6124 		if (kvm_x86_ops.mem_enc_op)
6125 			r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
6126 		break;
6127 	}
6128 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
6129 		struct kvm_enc_region region;
6130 
6131 		r = -EFAULT;
6132 		if (copy_from_user(&region, argp, sizeof(region)))
6133 			goto out;
6134 
6135 		r = -ENOTTY;
6136 		if (kvm_x86_ops.mem_enc_reg_region)
6137 			r = static_call(kvm_x86_mem_enc_reg_region)(kvm, &region);
6138 		break;
6139 	}
6140 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6141 		struct kvm_enc_region region;
6142 
6143 		r = -EFAULT;
6144 		if (copy_from_user(&region, argp, sizeof(region)))
6145 			goto out;
6146 
6147 		r = -ENOTTY;
6148 		if (kvm_x86_ops.mem_enc_unreg_region)
6149 			r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, &region);
6150 		break;
6151 	}
6152 	case KVM_HYPERV_EVENTFD: {
6153 		struct kvm_hyperv_eventfd hvevfd;
6154 
6155 		r = -EFAULT;
6156 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6157 			goto out;
6158 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6159 		break;
6160 	}
6161 	case KVM_SET_PMU_EVENT_FILTER:
6162 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6163 		break;
6164 	case KVM_X86_SET_MSR_FILTER:
6165 		r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6166 		break;
6167 	default:
6168 		r = -ENOTTY;
6169 	}
6170 out:
6171 	return r;
6172 }
6173 
6174 static void kvm_init_msr_list(void)
6175 {
6176 	struct x86_pmu_capability x86_pmu;
6177 	u32 dummy[2];
6178 	unsigned i;
6179 
6180 	BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
6181 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
6182 
6183 	perf_get_x86_pmu_capability(&x86_pmu);
6184 
6185 	num_msrs_to_save = 0;
6186 	num_emulated_msrs = 0;
6187 	num_msr_based_features = 0;
6188 
6189 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6190 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6191 			continue;
6192 
6193 		/*
6194 		 * Even MSRs that are valid in the host may not be exposed
6195 		 * to the guests in some cases.
6196 		 */
6197 		switch (msrs_to_save_all[i]) {
6198 		case MSR_IA32_BNDCFGS:
6199 			if (!kvm_mpx_supported())
6200 				continue;
6201 			break;
6202 		case MSR_TSC_AUX:
6203 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6204 			    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6205 				continue;
6206 			break;
6207 		case MSR_IA32_UMWAIT_CONTROL:
6208 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6209 				continue;
6210 			break;
6211 		case MSR_IA32_RTIT_CTL:
6212 		case MSR_IA32_RTIT_STATUS:
6213 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6214 				continue;
6215 			break;
6216 		case MSR_IA32_RTIT_CR3_MATCH:
6217 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6218 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6219 				continue;
6220 			break;
6221 		case MSR_IA32_RTIT_OUTPUT_BASE:
6222 		case MSR_IA32_RTIT_OUTPUT_MASK:
6223 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6224 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6225 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6226 				continue;
6227 			break;
6228 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6229 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6230 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6231 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6232 				continue;
6233 			break;
6234 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6235 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6236 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6237 				continue;
6238 			break;
6239 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6240 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6241 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6242 				continue;
6243 			break;
6244 		default:
6245 			break;
6246 		}
6247 
6248 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6249 	}
6250 
6251 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6252 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6253 			continue;
6254 
6255 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6256 	}
6257 
6258 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6259 		struct kvm_msr_entry msr;
6260 
6261 		msr.index = msr_based_features_all[i];
6262 		if (kvm_get_msr_feature(&msr))
6263 			continue;
6264 
6265 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6266 	}
6267 }
6268 
6269 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6270 			   const void *v)
6271 {
6272 	int handled = 0;
6273 	int n;
6274 
6275 	do {
6276 		n = min(len, 8);
6277 		if (!(lapic_in_kernel(vcpu) &&
6278 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6279 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6280 			break;
6281 		handled += n;
6282 		addr += n;
6283 		len -= n;
6284 		v += n;
6285 	} while (len);
6286 
6287 	return handled;
6288 }
6289 
6290 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6291 {
6292 	int handled = 0;
6293 	int n;
6294 
6295 	do {
6296 		n = min(len, 8);
6297 		if (!(lapic_in_kernel(vcpu) &&
6298 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6299 					 addr, n, v))
6300 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6301 			break;
6302 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6303 		handled += n;
6304 		addr += n;
6305 		len -= n;
6306 		v += n;
6307 	} while (len);
6308 
6309 	return handled;
6310 }
6311 
6312 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6313 			struct kvm_segment *var, int seg)
6314 {
6315 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
6316 }
6317 
6318 void kvm_get_segment(struct kvm_vcpu *vcpu,
6319 		     struct kvm_segment *var, int seg)
6320 {
6321 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
6322 }
6323 
6324 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6325 			   struct x86_exception *exception)
6326 {
6327 	gpa_t t_gpa;
6328 
6329 	BUG_ON(!mmu_is_nested(vcpu));
6330 
6331 	/* NPT walks are always user-walks */
6332 	access |= PFERR_USER_MASK;
6333 	t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
6334 
6335 	return t_gpa;
6336 }
6337 
6338 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6339 			      struct x86_exception *exception)
6340 {
6341 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6342 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6343 }
6344 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6345 
6346  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6347 				struct x86_exception *exception)
6348 {
6349 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6350 	access |= PFERR_FETCH_MASK;
6351 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6352 }
6353 
6354 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6355 			       struct x86_exception *exception)
6356 {
6357 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6358 	access |= PFERR_WRITE_MASK;
6359 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6360 }
6361 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6362 
6363 /* uses this to access any guest's mapped memory without checking CPL */
6364 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6365 				struct x86_exception *exception)
6366 {
6367 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
6368 }
6369 
6370 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6371 				      struct kvm_vcpu *vcpu, u32 access,
6372 				      struct x86_exception *exception)
6373 {
6374 	void *data = val;
6375 	int r = X86EMUL_CONTINUE;
6376 
6377 	while (bytes) {
6378 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
6379 							    exception);
6380 		unsigned offset = addr & (PAGE_SIZE-1);
6381 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6382 		int ret;
6383 
6384 		if (gpa == UNMAPPED_GVA)
6385 			return X86EMUL_PROPAGATE_FAULT;
6386 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6387 					       offset, toread);
6388 		if (ret < 0) {
6389 			r = X86EMUL_IO_NEEDED;
6390 			goto out;
6391 		}
6392 
6393 		bytes -= toread;
6394 		data += toread;
6395 		addr += toread;
6396 	}
6397 out:
6398 	return r;
6399 }
6400 
6401 /* used for instruction fetching */
6402 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6403 				gva_t addr, void *val, unsigned int bytes,
6404 				struct x86_exception *exception)
6405 {
6406 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6407 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6408 	unsigned offset;
6409 	int ret;
6410 
6411 	/* Inline kvm_read_guest_virt_helper for speed.  */
6412 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6413 						    exception);
6414 	if (unlikely(gpa == UNMAPPED_GVA))
6415 		return X86EMUL_PROPAGATE_FAULT;
6416 
6417 	offset = addr & (PAGE_SIZE-1);
6418 	if (WARN_ON(offset + bytes > PAGE_SIZE))
6419 		bytes = (unsigned)PAGE_SIZE - offset;
6420 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6421 				       offset, bytes);
6422 	if (unlikely(ret < 0))
6423 		return X86EMUL_IO_NEEDED;
6424 
6425 	return X86EMUL_CONTINUE;
6426 }
6427 
6428 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6429 			       gva_t addr, void *val, unsigned int bytes,
6430 			       struct x86_exception *exception)
6431 {
6432 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6433 
6434 	/*
6435 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6436 	 * is returned, but our callers are not ready for that and they blindly
6437 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
6438 	 * uninitialized kernel stack memory into cr2 and error code.
6439 	 */
6440 	memset(exception, 0, sizeof(*exception));
6441 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6442 					  exception);
6443 }
6444 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6445 
6446 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6447 			     gva_t addr, void *val, unsigned int bytes,
6448 			     struct x86_exception *exception, bool system)
6449 {
6450 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6451 	u32 access = 0;
6452 
6453 	if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6454 		access |= PFERR_USER_MASK;
6455 
6456 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6457 }
6458 
6459 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6460 		unsigned long addr, void *val, unsigned int bytes)
6461 {
6462 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6463 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6464 
6465 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6466 }
6467 
6468 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6469 				      struct kvm_vcpu *vcpu, u32 access,
6470 				      struct x86_exception *exception)
6471 {
6472 	void *data = val;
6473 	int r = X86EMUL_CONTINUE;
6474 
6475 	while (bytes) {
6476 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6477 							     access,
6478 							     exception);
6479 		unsigned offset = addr & (PAGE_SIZE-1);
6480 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6481 		int ret;
6482 
6483 		if (gpa == UNMAPPED_GVA)
6484 			return X86EMUL_PROPAGATE_FAULT;
6485 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6486 		if (ret < 0) {
6487 			r = X86EMUL_IO_NEEDED;
6488 			goto out;
6489 		}
6490 
6491 		bytes -= towrite;
6492 		data += towrite;
6493 		addr += towrite;
6494 	}
6495 out:
6496 	return r;
6497 }
6498 
6499 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6500 			      unsigned int bytes, struct x86_exception *exception,
6501 			      bool system)
6502 {
6503 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6504 	u32 access = PFERR_WRITE_MASK;
6505 
6506 	if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6507 		access |= PFERR_USER_MASK;
6508 
6509 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6510 					   access, exception);
6511 }
6512 
6513 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6514 				unsigned int bytes, struct x86_exception *exception)
6515 {
6516 	/* kvm_write_guest_virt_system can pull in tons of pages. */
6517 	vcpu->arch.l1tf_flush_l1d = true;
6518 
6519 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6520 					   PFERR_WRITE_MASK, exception);
6521 }
6522 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6523 
6524 int handle_ud(struct kvm_vcpu *vcpu)
6525 {
6526 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6527 	int emul_type = EMULTYPE_TRAP_UD;
6528 	char sig[5]; /* ud2; .ascii "kvm" */
6529 	struct x86_exception e;
6530 
6531 	if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0)))
6532 		return 1;
6533 
6534 	if (force_emulation_prefix &&
6535 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6536 				sig, sizeof(sig), &e) == 0 &&
6537 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6538 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6539 		emul_type = EMULTYPE_TRAP_UD_FORCED;
6540 	}
6541 
6542 	return kvm_emulate_instruction(vcpu, emul_type);
6543 }
6544 EXPORT_SYMBOL_GPL(handle_ud);
6545 
6546 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6547 			    gpa_t gpa, bool write)
6548 {
6549 	/* For APIC access vmexit */
6550 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6551 		return 1;
6552 
6553 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6554 		trace_vcpu_match_mmio(gva, gpa, write, true);
6555 		return 1;
6556 	}
6557 
6558 	return 0;
6559 }
6560 
6561 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6562 				gpa_t *gpa, struct x86_exception *exception,
6563 				bool write)
6564 {
6565 	u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6566 		| (write ? PFERR_WRITE_MASK : 0);
6567 
6568 	/*
6569 	 * currently PKRU is only applied to ept enabled guest so
6570 	 * there is no pkey in EPT page table for L1 guest or EPT
6571 	 * shadow page table for L2 guest.
6572 	 */
6573 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
6574 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
6575 			      vcpu->arch.mmio_access, 0, access))) {
6576 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6577 					(gva & (PAGE_SIZE - 1));
6578 		trace_vcpu_match_mmio(gva, *gpa, write, false);
6579 		return 1;
6580 	}
6581 
6582 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6583 
6584 	if (*gpa == UNMAPPED_GVA)
6585 		return -1;
6586 
6587 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6588 }
6589 
6590 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6591 			const void *val, int bytes)
6592 {
6593 	int ret;
6594 
6595 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6596 	if (ret < 0)
6597 		return 0;
6598 	kvm_page_track_write(vcpu, gpa, val, bytes);
6599 	return 1;
6600 }
6601 
6602 struct read_write_emulator_ops {
6603 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6604 				  int bytes);
6605 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6606 				  void *val, int bytes);
6607 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6608 			       int bytes, void *val);
6609 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6610 				    void *val, int bytes);
6611 	bool write;
6612 };
6613 
6614 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6615 {
6616 	if (vcpu->mmio_read_completed) {
6617 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6618 			       vcpu->mmio_fragments[0].gpa, val);
6619 		vcpu->mmio_read_completed = 0;
6620 		return 1;
6621 	}
6622 
6623 	return 0;
6624 }
6625 
6626 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6627 			void *val, int bytes)
6628 {
6629 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6630 }
6631 
6632 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6633 			 void *val, int bytes)
6634 {
6635 	return emulator_write_phys(vcpu, gpa, val, bytes);
6636 }
6637 
6638 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6639 {
6640 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6641 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
6642 }
6643 
6644 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6645 			  void *val, int bytes)
6646 {
6647 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6648 	return X86EMUL_IO_NEEDED;
6649 }
6650 
6651 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6652 			   void *val, int bytes)
6653 {
6654 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6655 
6656 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6657 	return X86EMUL_CONTINUE;
6658 }
6659 
6660 static const struct read_write_emulator_ops read_emultor = {
6661 	.read_write_prepare = read_prepare,
6662 	.read_write_emulate = read_emulate,
6663 	.read_write_mmio = vcpu_mmio_read,
6664 	.read_write_exit_mmio = read_exit_mmio,
6665 };
6666 
6667 static const struct read_write_emulator_ops write_emultor = {
6668 	.read_write_emulate = write_emulate,
6669 	.read_write_mmio = write_mmio,
6670 	.read_write_exit_mmio = write_exit_mmio,
6671 	.write = true,
6672 };
6673 
6674 static int emulator_read_write_onepage(unsigned long addr, void *val,
6675 				       unsigned int bytes,
6676 				       struct x86_exception *exception,
6677 				       struct kvm_vcpu *vcpu,
6678 				       const struct read_write_emulator_ops *ops)
6679 {
6680 	gpa_t gpa;
6681 	int handled, ret;
6682 	bool write = ops->write;
6683 	struct kvm_mmio_fragment *frag;
6684 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6685 
6686 	/*
6687 	 * If the exit was due to a NPF we may already have a GPA.
6688 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6689 	 * Note, this cannot be used on string operations since string
6690 	 * operation using rep will only have the initial GPA from the NPF
6691 	 * occurred.
6692 	 */
6693 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6694 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6695 		gpa = ctxt->gpa_val;
6696 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6697 	} else {
6698 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6699 		if (ret < 0)
6700 			return X86EMUL_PROPAGATE_FAULT;
6701 	}
6702 
6703 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6704 		return X86EMUL_CONTINUE;
6705 
6706 	/*
6707 	 * Is this MMIO handled locally?
6708 	 */
6709 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6710 	if (handled == bytes)
6711 		return X86EMUL_CONTINUE;
6712 
6713 	gpa += handled;
6714 	bytes -= handled;
6715 	val += handled;
6716 
6717 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6718 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6719 	frag->gpa = gpa;
6720 	frag->data = val;
6721 	frag->len = bytes;
6722 	return X86EMUL_CONTINUE;
6723 }
6724 
6725 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6726 			unsigned long addr,
6727 			void *val, unsigned int bytes,
6728 			struct x86_exception *exception,
6729 			const struct read_write_emulator_ops *ops)
6730 {
6731 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6732 	gpa_t gpa;
6733 	int rc;
6734 
6735 	if (ops->read_write_prepare &&
6736 		  ops->read_write_prepare(vcpu, val, bytes))
6737 		return X86EMUL_CONTINUE;
6738 
6739 	vcpu->mmio_nr_fragments = 0;
6740 
6741 	/* Crossing a page boundary? */
6742 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6743 		int now;
6744 
6745 		now = -addr & ~PAGE_MASK;
6746 		rc = emulator_read_write_onepage(addr, val, now, exception,
6747 						 vcpu, ops);
6748 
6749 		if (rc != X86EMUL_CONTINUE)
6750 			return rc;
6751 		addr += now;
6752 		if (ctxt->mode != X86EMUL_MODE_PROT64)
6753 			addr = (u32)addr;
6754 		val += now;
6755 		bytes -= now;
6756 	}
6757 
6758 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
6759 					 vcpu, ops);
6760 	if (rc != X86EMUL_CONTINUE)
6761 		return rc;
6762 
6763 	if (!vcpu->mmio_nr_fragments)
6764 		return rc;
6765 
6766 	gpa = vcpu->mmio_fragments[0].gpa;
6767 
6768 	vcpu->mmio_needed = 1;
6769 	vcpu->mmio_cur_fragment = 0;
6770 
6771 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6772 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6773 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
6774 	vcpu->run->mmio.phys_addr = gpa;
6775 
6776 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6777 }
6778 
6779 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6780 				  unsigned long addr,
6781 				  void *val,
6782 				  unsigned int bytes,
6783 				  struct x86_exception *exception)
6784 {
6785 	return emulator_read_write(ctxt, addr, val, bytes,
6786 				   exception, &read_emultor);
6787 }
6788 
6789 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6790 			    unsigned long addr,
6791 			    const void *val,
6792 			    unsigned int bytes,
6793 			    struct x86_exception *exception)
6794 {
6795 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
6796 				   exception, &write_emultor);
6797 }
6798 
6799 #define CMPXCHG_TYPE(t, ptr, old, new) \
6800 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6801 
6802 #ifdef CONFIG_X86_64
6803 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6804 #else
6805 #  define CMPXCHG64(ptr, old, new) \
6806 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6807 #endif
6808 
6809 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6810 				     unsigned long addr,
6811 				     const void *old,
6812 				     const void *new,
6813 				     unsigned int bytes,
6814 				     struct x86_exception *exception)
6815 {
6816 	struct kvm_host_map map;
6817 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6818 	u64 page_line_mask;
6819 	gpa_t gpa;
6820 	char *kaddr;
6821 	bool exchanged;
6822 
6823 	/* guests cmpxchg8b have to be emulated atomically */
6824 	if (bytes > 8 || (bytes & (bytes - 1)))
6825 		goto emul_write;
6826 
6827 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6828 
6829 	if (gpa == UNMAPPED_GVA ||
6830 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6831 		goto emul_write;
6832 
6833 	/*
6834 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
6835 	 * enabled in the host and the access splits a cache line.
6836 	 */
6837 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6838 		page_line_mask = ~(cache_line_size() - 1);
6839 	else
6840 		page_line_mask = PAGE_MASK;
6841 
6842 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6843 		goto emul_write;
6844 
6845 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6846 		goto emul_write;
6847 
6848 	kaddr = map.hva + offset_in_page(gpa);
6849 
6850 	switch (bytes) {
6851 	case 1:
6852 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6853 		break;
6854 	case 2:
6855 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6856 		break;
6857 	case 4:
6858 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6859 		break;
6860 	case 8:
6861 		exchanged = CMPXCHG64(kaddr, old, new);
6862 		break;
6863 	default:
6864 		BUG();
6865 	}
6866 
6867 	kvm_vcpu_unmap(vcpu, &map, true);
6868 
6869 	if (!exchanged)
6870 		return X86EMUL_CMPXCHG_FAILED;
6871 
6872 	kvm_page_track_write(vcpu, gpa, new, bytes);
6873 
6874 	return X86EMUL_CONTINUE;
6875 
6876 emul_write:
6877 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6878 
6879 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6880 }
6881 
6882 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6883 {
6884 	int r = 0, i;
6885 
6886 	for (i = 0; i < vcpu->arch.pio.count; i++) {
6887 		if (vcpu->arch.pio.in)
6888 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6889 					    vcpu->arch.pio.size, pd);
6890 		else
6891 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6892 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
6893 					     pd);
6894 		if (r)
6895 			break;
6896 		pd += vcpu->arch.pio.size;
6897 	}
6898 	return r;
6899 }
6900 
6901 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6902 			       unsigned short port, void *val,
6903 			       unsigned int count, bool in)
6904 {
6905 	vcpu->arch.pio.port = port;
6906 	vcpu->arch.pio.in = in;
6907 	vcpu->arch.pio.count  = count;
6908 	vcpu->arch.pio.size = size;
6909 
6910 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6911 		vcpu->arch.pio.count = 0;
6912 		return 1;
6913 	}
6914 
6915 	vcpu->run->exit_reason = KVM_EXIT_IO;
6916 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6917 	vcpu->run->io.size = size;
6918 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6919 	vcpu->run->io.count = count;
6920 	vcpu->run->io.port = port;
6921 
6922 	return 0;
6923 }
6924 
6925 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6926 			   unsigned short port, void *val, unsigned int count)
6927 {
6928 	int ret;
6929 
6930 	if (vcpu->arch.pio.count)
6931 		goto data_avail;
6932 
6933 	memset(vcpu->arch.pio_data, 0, size * count);
6934 
6935 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6936 	if (ret) {
6937 data_avail:
6938 		memcpy(val, vcpu->arch.pio_data, size * count);
6939 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6940 		vcpu->arch.pio.count = 0;
6941 		return 1;
6942 	}
6943 
6944 	return 0;
6945 }
6946 
6947 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6948 				    int size, unsigned short port, void *val,
6949 				    unsigned int count)
6950 {
6951 	return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6952 
6953 }
6954 
6955 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6956 			    unsigned short port, const void *val,
6957 			    unsigned int count)
6958 {
6959 	memcpy(vcpu->arch.pio_data, val, size * count);
6960 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6961 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6962 }
6963 
6964 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6965 				     int size, unsigned short port,
6966 				     const void *val, unsigned int count)
6967 {
6968 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6969 }
6970 
6971 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6972 {
6973 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
6974 }
6975 
6976 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6977 {
6978 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6979 }
6980 
6981 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6982 {
6983 	if (!need_emulate_wbinvd(vcpu))
6984 		return X86EMUL_CONTINUE;
6985 
6986 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
6987 		int cpu = get_cpu();
6988 
6989 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6990 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
6991 				wbinvd_ipi, NULL, 1);
6992 		put_cpu();
6993 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6994 	} else
6995 		wbinvd();
6996 	return X86EMUL_CONTINUE;
6997 }
6998 
6999 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7000 {
7001 	kvm_emulate_wbinvd_noskip(vcpu);
7002 	return kvm_skip_emulated_instruction(vcpu);
7003 }
7004 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7005 
7006 
7007 
7008 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7009 {
7010 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7011 }
7012 
7013 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7014 			    unsigned long *dest)
7015 {
7016 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7017 }
7018 
7019 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7020 			   unsigned long value)
7021 {
7022 
7023 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7024 }
7025 
7026 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7027 {
7028 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7029 }
7030 
7031 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7032 {
7033 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7034 	unsigned long value;
7035 
7036 	switch (cr) {
7037 	case 0:
7038 		value = kvm_read_cr0(vcpu);
7039 		break;
7040 	case 2:
7041 		value = vcpu->arch.cr2;
7042 		break;
7043 	case 3:
7044 		value = kvm_read_cr3(vcpu);
7045 		break;
7046 	case 4:
7047 		value = kvm_read_cr4(vcpu);
7048 		break;
7049 	case 8:
7050 		value = kvm_get_cr8(vcpu);
7051 		break;
7052 	default:
7053 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7054 		return 0;
7055 	}
7056 
7057 	return value;
7058 }
7059 
7060 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7061 {
7062 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7063 	int res = 0;
7064 
7065 	switch (cr) {
7066 	case 0:
7067 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7068 		break;
7069 	case 2:
7070 		vcpu->arch.cr2 = val;
7071 		break;
7072 	case 3:
7073 		res = kvm_set_cr3(vcpu, val);
7074 		break;
7075 	case 4:
7076 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7077 		break;
7078 	case 8:
7079 		res = kvm_set_cr8(vcpu, val);
7080 		break;
7081 	default:
7082 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7083 		res = -1;
7084 	}
7085 
7086 	return res;
7087 }
7088 
7089 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7090 {
7091 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7092 }
7093 
7094 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7095 {
7096 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7097 }
7098 
7099 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7100 {
7101 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7102 }
7103 
7104 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7105 {
7106 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7107 }
7108 
7109 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7110 {
7111 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7112 }
7113 
7114 static unsigned long emulator_get_cached_segment_base(
7115 	struct x86_emulate_ctxt *ctxt, int seg)
7116 {
7117 	return get_segment_base(emul_to_vcpu(ctxt), seg);
7118 }
7119 
7120 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7121 				 struct desc_struct *desc, u32 *base3,
7122 				 int seg)
7123 {
7124 	struct kvm_segment var;
7125 
7126 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7127 	*selector = var.selector;
7128 
7129 	if (var.unusable) {
7130 		memset(desc, 0, sizeof(*desc));
7131 		if (base3)
7132 			*base3 = 0;
7133 		return false;
7134 	}
7135 
7136 	if (var.g)
7137 		var.limit >>= 12;
7138 	set_desc_limit(desc, var.limit);
7139 	set_desc_base(desc, (unsigned long)var.base);
7140 #ifdef CONFIG_X86_64
7141 	if (base3)
7142 		*base3 = var.base >> 32;
7143 #endif
7144 	desc->type = var.type;
7145 	desc->s = var.s;
7146 	desc->dpl = var.dpl;
7147 	desc->p = var.present;
7148 	desc->avl = var.avl;
7149 	desc->l = var.l;
7150 	desc->d = var.db;
7151 	desc->g = var.g;
7152 
7153 	return true;
7154 }
7155 
7156 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7157 				 struct desc_struct *desc, u32 base3,
7158 				 int seg)
7159 {
7160 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7161 	struct kvm_segment var;
7162 
7163 	var.selector = selector;
7164 	var.base = get_desc_base(desc);
7165 #ifdef CONFIG_X86_64
7166 	var.base |= ((u64)base3) << 32;
7167 #endif
7168 	var.limit = get_desc_limit(desc);
7169 	if (desc->g)
7170 		var.limit = (var.limit << 12) | 0xfff;
7171 	var.type = desc->type;
7172 	var.dpl = desc->dpl;
7173 	var.db = desc->d;
7174 	var.s = desc->s;
7175 	var.l = desc->l;
7176 	var.g = desc->g;
7177 	var.avl = desc->avl;
7178 	var.present = desc->p;
7179 	var.unusable = !var.present;
7180 	var.padding = 0;
7181 
7182 	kvm_set_segment(vcpu, &var, seg);
7183 	return;
7184 }
7185 
7186 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7187 			    u32 msr_index, u64 *pdata)
7188 {
7189 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7190 	int r;
7191 
7192 	r = kvm_get_msr(vcpu, msr_index, pdata);
7193 
7194 	if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
7195 		/* Bounce to user space */
7196 		return X86EMUL_IO_NEEDED;
7197 	}
7198 
7199 	return r;
7200 }
7201 
7202 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7203 			    u32 msr_index, u64 data)
7204 {
7205 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7206 	int r;
7207 
7208 	r = kvm_set_msr(vcpu, msr_index, data);
7209 
7210 	if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
7211 		/* Bounce to user space */
7212 		return X86EMUL_IO_NEEDED;
7213 	}
7214 
7215 	return r;
7216 }
7217 
7218 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7219 {
7220 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7221 
7222 	return vcpu->arch.smbase;
7223 }
7224 
7225 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7226 {
7227 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7228 
7229 	vcpu->arch.smbase = smbase;
7230 }
7231 
7232 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7233 			      u32 pmc)
7234 {
7235 	return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
7236 }
7237 
7238 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7239 			     u32 pmc, u64 *pdata)
7240 {
7241 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7242 }
7243 
7244 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7245 {
7246 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
7247 }
7248 
7249 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7250 			      struct x86_instruction_info *info,
7251 			      enum x86_intercept_stage stage)
7252 {
7253 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7254 					    &ctxt->exception);
7255 }
7256 
7257 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7258 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7259 			      bool exact_only)
7260 {
7261 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7262 }
7263 
7264 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7265 {
7266 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7267 }
7268 
7269 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7270 {
7271 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7272 }
7273 
7274 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7275 {
7276 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7277 }
7278 
7279 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7280 {
7281 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7282 }
7283 
7284 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7285 {
7286 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7287 }
7288 
7289 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7290 {
7291 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7292 }
7293 
7294 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7295 {
7296 	return emul_to_vcpu(ctxt)->arch.hflags;
7297 }
7298 
7299 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7300 {
7301 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7302 
7303 	kvm_smm_changed(vcpu, false);
7304 }
7305 
7306 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7307 				  const char *smstate)
7308 {
7309 	return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7310 }
7311 
7312 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7313 {
7314 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7315 }
7316 
7317 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7318 {
7319 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7320 }
7321 
7322 static const struct x86_emulate_ops emulate_ops = {
7323 	.read_gpr            = emulator_read_gpr,
7324 	.write_gpr           = emulator_write_gpr,
7325 	.read_std            = emulator_read_std,
7326 	.write_std           = emulator_write_std,
7327 	.read_phys           = kvm_read_guest_phys_system,
7328 	.fetch               = kvm_fetch_guest_virt,
7329 	.read_emulated       = emulator_read_emulated,
7330 	.write_emulated      = emulator_write_emulated,
7331 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
7332 	.invlpg              = emulator_invlpg,
7333 	.pio_in_emulated     = emulator_pio_in_emulated,
7334 	.pio_out_emulated    = emulator_pio_out_emulated,
7335 	.get_segment         = emulator_get_segment,
7336 	.set_segment         = emulator_set_segment,
7337 	.get_cached_segment_base = emulator_get_cached_segment_base,
7338 	.get_gdt             = emulator_get_gdt,
7339 	.get_idt	     = emulator_get_idt,
7340 	.set_gdt             = emulator_set_gdt,
7341 	.set_idt	     = emulator_set_idt,
7342 	.get_cr              = emulator_get_cr,
7343 	.set_cr              = emulator_set_cr,
7344 	.cpl                 = emulator_get_cpl,
7345 	.get_dr              = emulator_get_dr,
7346 	.set_dr              = emulator_set_dr,
7347 	.get_smbase          = emulator_get_smbase,
7348 	.set_smbase          = emulator_set_smbase,
7349 	.set_msr             = emulator_set_msr,
7350 	.get_msr             = emulator_get_msr,
7351 	.check_pmc	     = emulator_check_pmc,
7352 	.read_pmc            = emulator_read_pmc,
7353 	.halt                = emulator_halt,
7354 	.wbinvd              = emulator_wbinvd,
7355 	.fix_hypercall       = emulator_fix_hypercall,
7356 	.intercept           = emulator_intercept,
7357 	.get_cpuid           = emulator_get_cpuid,
7358 	.guest_has_long_mode = emulator_guest_has_long_mode,
7359 	.guest_has_movbe     = emulator_guest_has_movbe,
7360 	.guest_has_fxsr      = emulator_guest_has_fxsr,
7361 	.set_nmi_mask        = emulator_set_nmi_mask,
7362 	.get_hflags          = emulator_get_hflags,
7363 	.exiting_smm         = emulator_exiting_smm,
7364 	.leave_smm           = emulator_leave_smm,
7365 	.triple_fault        = emulator_triple_fault,
7366 	.set_xcr             = emulator_set_xcr,
7367 };
7368 
7369 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7370 {
7371 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7372 	/*
7373 	 * an sti; sti; sequence only disable interrupts for the first
7374 	 * instruction. So, if the last instruction, be it emulated or
7375 	 * not, left the system with the INT_STI flag enabled, it
7376 	 * means that the last instruction is an sti. We should not
7377 	 * leave the flag on in this case. The same goes for mov ss
7378 	 */
7379 	if (int_shadow & mask)
7380 		mask = 0;
7381 	if (unlikely(int_shadow || mask)) {
7382 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7383 		if (!mask)
7384 			kvm_make_request(KVM_REQ_EVENT, vcpu);
7385 	}
7386 }
7387 
7388 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7389 {
7390 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7391 	if (ctxt->exception.vector == PF_VECTOR)
7392 		return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7393 
7394 	if (ctxt->exception.error_code_valid)
7395 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7396 				      ctxt->exception.error_code);
7397 	else
7398 		kvm_queue_exception(vcpu, ctxt->exception.vector);
7399 	return false;
7400 }
7401 
7402 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7403 {
7404 	struct x86_emulate_ctxt *ctxt;
7405 
7406 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7407 	if (!ctxt) {
7408 		pr_err("kvm: failed to allocate vcpu's emulator\n");
7409 		return NULL;
7410 	}
7411 
7412 	ctxt->vcpu = vcpu;
7413 	ctxt->ops = &emulate_ops;
7414 	vcpu->arch.emulate_ctxt = ctxt;
7415 
7416 	return ctxt;
7417 }
7418 
7419 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7420 {
7421 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7422 	int cs_db, cs_l;
7423 
7424 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7425 
7426 	ctxt->gpa_available = false;
7427 	ctxt->eflags = kvm_get_rflags(vcpu);
7428 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7429 
7430 	ctxt->eip = kvm_rip_read(vcpu);
7431 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
7432 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
7433 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
7434 		     cs_db				? X86EMUL_MODE_PROT32 :
7435 							  X86EMUL_MODE_PROT16;
7436 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7437 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7438 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7439 
7440 	ctxt->interruptibility = 0;
7441 	ctxt->have_exception = false;
7442 	ctxt->exception.vector = -1;
7443 	ctxt->perm_ok = false;
7444 
7445 	init_decode_cache(ctxt);
7446 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7447 }
7448 
7449 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7450 {
7451 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7452 	int ret;
7453 
7454 	init_emulate_ctxt(vcpu);
7455 
7456 	ctxt->op_bytes = 2;
7457 	ctxt->ad_bytes = 2;
7458 	ctxt->_eip = ctxt->eip + inc_eip;
7459 	ret = emulate_int_real(ctxt, irq);
7460 
7461 	if (ret != X86EMUL_CONTINUE) {
7462 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7463 	} else {
7464 		ctxt->eip = ctxt->_eip;
7465 		kvm_rip_write(vcpu, ctxt->eip);
7466 		kvm_set_rflags(vcpu, ctxt->eflags);
7467 	}
7468 }
7469 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7470 
7471 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
7472 {
7473 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7474 	u32 insn_size = ctxt->fetch.end - ctxt->fetch.data;
7475 	struct kvm_run *run = vcpu->run;
7476 
7477 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7478 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
7479 	run->emulation_failure.ndata = 0;
7480 	run->emulation_failure.flags = 0;
7481 
7482 	if (insn_size) {
7483 		run->emulation_failure.ndata = 3;
7484 		run->emulation_failure.flags |=
7485 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
7486 		run->emulation_failure.insn_size = insn_size;
7487 		memset(run->emulation_failure.insn_bytes, 0x90,
7488 		       sizeof(run->emulation_failure.insn_bytes));
7489 		memcpy(run->emulation_failure.insn_bytes,
7490 		       ctxt->fetch.data, insn_size);
7491 	}
7492 }
7493 
7494 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7495 {
7496 	struct kvm *kvm = vcpu->kvm;
7497 
7498 	++vcpu->stat.insn_emulation_fail;
7499 	trace_kvm_emulate_insn_failed(vcpu);
7500 
7501 	if (emulation_type & EMULTYPE_VMWARE_GP) {
7502 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7503 		return 1;
7504 	}
7505 
7506 	if (kvm->arch.exit_on_emulation_error ||
7507 	    (emulation_type & EMULTYPE_SKIP)) {
7508 		prepare_emulation_failure_exit(vcpu);
7509 		return 0;
7510 	}
7511 
7512 	kvm_queue_exception(vcpu, UD_VECTOR);
7513 
7514 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7515 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7516 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7517 		vcpu->run->internal.ndata = 0;
7518 		return 0;
7519 	}
7520 
7521 	return 1;
7522 }
7523 
7524 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7525 				  bool write_fault_to_shadow_pgtable,
7526 				  int emulation_type)
7527 {
7528 	gpa_t gpa = cr2_or_gpa;
7529 	kvm_pfn_t pfn;
7530 
7531 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7532 		return false;
7533 
7534 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7535 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7536 		return false;
7537 
7538 	if (!vcpu->arch.mmu->direct_map) {
7539 		/*
7540 		 * Write permission should be allowed since only
7541 		 * write access need to be emulated.
7542 		 */
7543 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7544 
7545 		/*
7546 		 * If the mapping is invalid in guest, let cpu retry
7547 		 * it to generate fault.
7548 		 */
7549 		if (gpa == UNMAPPED_GVA)
7550 			return true;
7551 	}
7552 
7553 	/*
7554 	 * Do not retry the unhandleable instruction if it faults on the
7555 	 * readonly host memory, otherwise it will goto a infinite loop:
7556 	 * retry instruction -> write #PF -> emulation fail -> retry
7557 	 * instruction -> ...
7558 	 */
7559 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7560 
7561 	/*
7562 	 * If the instruction failed on the error pfn, it can not be fixed,
7563 	 * report the error to userspace.
7564 	 */
7565 	if (is_error_noslot_pfn(pfn))
7566 		return false;
7567 
7568 	kvm_release_pfn_clean(pfn);
7569 
7570 	/* The instructions are well-emulated on direct mmu. */
7571 	if (vcpu->arch.mmu->direct_map) {
7572 		unsigned int indirect_shadow_pages;
7573 
7574 		write_lock(&vcpu->kvm->mmu_lock);
7575 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7576 		write_unlock(&vcpu->kvm->mmu_lock);
7577 
7578 		if (indirect_shadow_pages)
7579 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7580 
7581 		return true;
7582 	}
7583 
7584 	/*
7585 	 * if emulation was due to access to shadowed page table
7586 	 * and it failed try to unshadow page and re-enter the
7587 	 * guest to let CPU execute the instruction.
7588 	 */
7589 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7590 
7591 	/*
7592 	 * If the access faults on its page table, it can not
7593 	 * be fixed by unprotecting shadow page and it should
7594 	 * be reported to userspace.
7595 	 */
7596 	return !write_fault_to_shadow_pgtable;
7597 }
7598 
7599 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7600 			      gpa_t cr2_or_gpa,  int emulation_type)
7601 {
7602 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7603 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7604 
7605 	last_retry_eip = vcpu->arch.last_retry_eip;
7606 	last_retry_addr = vcpu->arch.last_retry_addr;
7607 
7608 	/*
7609 	 * If the emulation is caused by #PF and it is non-page_table
7610 	 * writing instruction, it means the VM-EXIT is caused by shadow
7611 	 * page protected, we can zap the shadow page and retry this
7612 	 * instruction directly.
7613 	 *
7614 	 * Note: if the guest uses a non-page-table modifying instruction
7615 	 * on the PDE that points to the instruction, then we will unmap
7616 	 * the instruction and go to an infinite loop. So, we cache the
7617 	 * last retried eip and the last fault address, if we meet the eip
7618 	 * and the address again, we can break out of the potential infinite
7619 	 * loop.
7620 	 */
7621 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7622 
7623 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7624 		return false;
7625 
7626 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7627 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7628 		return false;
7629 
7630 	if (x86_page_table_writing_insn(ctxt))
7631 		return false;
7632 
7633 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7634 		return false;
7635 
7636 	vcpu->arch.last_retry_eip = ctxt->eip;
7637 	vcpu->arch.last_retry_addr = cr2_or_gpa;
7638 
7639 	if (!vcpu->arch.mmu->direct_map)
7640 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7641 
7642 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7643 
7644 	return true;
7645 }
7646 
7647 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7648 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7649 
7650 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
7651 {
7652 	trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
7653 
7654 	if (entering_smm) {
7655 		vcpu->arch.hflags |= HF_SMM_MASK;
7656 	} else {
7657 		vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
7658 
7659 		/* Process a latched INIT or SMI, if any.  */
7660 		kvm_make_request(KVM_REQ_EVENT, vcpu);
7661 	}
7662 
7663 	kvm_mmu_reset_context(vcpu);
7664 }
7665 
7666 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7667 				unsigned long *db)
7668 {
7669 	u32 dr6 = 0;
7670 	int i;
7671 	u32 enable, rwlen;
7672 
7673 	enable = dr7;
7674 	rwlen = dr7 >> 16;
7675 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7676 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7677 			dr6 |= (1 << i);
7678 	return dr6;
7679 }
7680 
7681 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7682 {
7683 	struct kvm_run *kvm_run = vcpu->run;
7684 
7685 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7686 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
7687 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7688 		kvm_run->debug.arch.exception = DB_VECTOR;
7689 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
7690 		return 0;
7691 	}
7692 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7693 	return 1;
7694 }
7695 
7696 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7697 {
7698 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7699 	int r;
7700 
7701 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
7702 	if (unlikely(!r))
7703 		return 0;
7704 
7705 	/*
7706 	 * rflags is the old, "raw" value of the flags.  The new value has
7707 	 * not been saved yet.
7708 	 *
7709 	 * This is correct even for TF set by the guest, because "the
7710 	 * processor will not generate this exception after the instruction
7711 	 * that sets the TF flag".
7712 	 */
7713 	if (unlikely(rflags & X86_EFLAGS_TF))
7714 		r = kvm_vcpu_do_singlestep(vcpu);
7715 	return r;
7716 }
7717 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7718 
7719 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7720 {
7721 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7722 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7723 		struct kvm_run *kvm_run = vcpu->run;
7724 		unsigned long eip = kvm_get_linear_rip(vcpu);
7725 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7726 					   vcpu->arch.guest_debug_dr7,
7727 					   vcpu->arch.eff_db);
7728 
7729 		if (dr6 != 0) {
7730 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
7731 			kvm_run->debug.arch.pc = eip;
7732 			kvm_run->debug.arch.exception = DB_VECTOR;
7733 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
7734 			*r = 0;
7735 			return true;
7736 		}
7737 	}
7738 
7739 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7740 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7741 		unsigned long eip = kvm_get_linear_rip(vcpu);
7742 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7743 					   vcpu->arch.dr7,
7744 					   vcpu->arch.db);
7745 
7746 		if (dr6 != 0) {
7747 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7748 			*r = 1;
7749 			return true;
7750 		}
7751 	}
7752 
7753 	return false;
7754 }
7755 
7756 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7757 {
7758 	switch (ctxt->opcode_len) {
7759 	case 1:
7760 		switch (ctxt->b) {
7761 		case 0xe4:	/* IN */
7762 		case 0xe5:
7763 		case 0xec:
7764 		case 0xed:
7765 		case 0xe6:	/* OUT */
7766 		case 0xe7:
7767 		case 0xee:
7768 		case 0xef:
7769 		case 0x6c:	/* INS */
7770 		case 0x6d:
7771 		case 0x6e:	/* OUTS */
7772 		case 0x6f:
7773 			return true;
7774 		}
7775 		break;
7776 	case 2:
7777 		switch (ctxt->b) {
7778 		case 0x33:	/* RDPMC */
7779 			return true;
7780 		}
7781 		break;
7782 	}
7783 
7784 	return false;
7785 }
7786 
7787 /*
7788  * Decode to be emulated instruction. Return EMULATION_OK if success.
7789  */
7790 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
7791 				    void *insn, int insn_len)
7792 {
7793 	int r = EMULATION_OK;
7794 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7795 
7796 	init_emulate_ctxt(vcpu);
7797 
7798 	/*
7799 	 * We will reenter on the same instruction since we do not set
7800 	 * complete_userspace_io. This does not handle watchpoints yet,
7801 	 * those would be handled in the emulate_ops.
7802 	 */
7803 	if (!(emulation_type & EMULTYPE_SKIP) &&
7804 	    kvm_vcpu_check_breakpoint(vcpu, &r))
7805 		return r;
7806 
7807 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
7808 
7809 	trace_kvm_emulate_insn_start(vcpu);
7810 	++vcpu->stat.insn_emulation;
7811 
7812 	return r;
7813 }
7814 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
7815 
7816 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7817 			    int emulation_type, void *insn, int insn_len)
7818 {
7819 	int r;
7820 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7821 	bool writeback = true;
7822 	bool write_fault_to_spt;
7823 
7824 	if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len)))
7825 		return 1;
7826 
7827 	vcpu->arch.l1tf_flush_l1d = true;
7828 
7829 	/*
7830 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
7831 	 * never reused.
7832 	 */
7833 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7834 	vcpu->arch.write_fault_to_shadow_pgtable = false;
7835 
7836 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7837 		kvm_clear_exception_queue(vcpu);
7838 
7839 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
7840 						    insn, insn_len);
7841 		if (r != EMULATION_OK)  {
7842 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
7843 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7844 				kvm_queue_exception(vcpu, UD_VECTOR);
7845 				return 1;
7846 			}
7847 			if (reexecute_instruction(vcpu, cr2_or_gpa,
7848 						  write_fault_to_spt,
7849 						  emulation_type))
7850 				return 1;
7851 			if (ctxt->have_exception) {
7852 				/*
7853 				 * #UD should result in just EMULATION_FAILED, and trap-like
7854 				 * exception should not be encountered during decode.
7855 				 */
7856 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7857 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7858 				inject_emulated_exception(vcpu);
7859 				return 1;
7860 			}
7861 			return handle_emulation_failure(vcpu, emulation_type);
7862 		}
7863 	}
7864 
7865 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7866 	    !is_vmware_backdoor_opcode(ctxt)) {
7867 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7868 		return 1;
7869 	}
7870 
7871 	/*
7872 	 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7873 	 * for kvm_skip_emulated_instruction().  The caller is responsible for
7874 	 * updating interruptibility state and injecting single-step #DBs.
7875 	 */
7876 	if (emulation_type & EMULTYPE_SKIP) {
7877 		kvm_rip_write(vcpu, ctxt->_eip);
7878 		if (ctxt->eflags & X86_EFLAGS_RF)
7879 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7880 		return 1;
7881 	}
7882 
7883 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7884 		return 1;
7885 
7886 	/* this is needed for vmware backdoor interface to work since it
7887 	   changes registers values  during IO operation */
7888 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7889 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7890 		emulator_invalidate_register_cache(ctxt);
7891 	}
7892 
7893 restart:
7894 	if (emulation_type & EMULTYPE_PF) {
7895 		/* Save the faulting GPA (cr2) in the address field */
7896 		ctxt->exception.address = cr2_or_gpa;
7897 
7898 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
7899 		if (vcpu->arch.mmu->direct_map) {
7900 			ctxt->gpa_available = true;
7901 			ctxt->gpa_val = cr2_or_gpa;
7902 		}
7903 	} else {
7904 		/* Sanitize the address out of an abundance of paranoia. */
7905 		ctxt->exception.address = 0;
7906 	}
7907 
7908 	r = x86_emulate_insn(ctxt);
7909 
7910 	if (r == EMULATION_INTERCEPTED)
7911 		return 1;
7912 
7913 	if (r == EMULATION_FAILED) {
7914 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7915 					emulation_type))
7916 			return 1;
7917 
7918 		return handle_emulation_failure(vcpu, emulation_type);
7919 	}
7920 
7921 	if (ctxt->have_exception) {
7922 		r = 1;
7923 		if (inject_emulated_exception(vcpu))
7924 			return r;
7925 	} else if (vcpu->arch.pio.count) {
7926 		if (!vcpu->arch.pio.in) {
7927 			/* FIXME: return into emulator if single-stepping.  */
7928 			vcpu->arch.pio.count = 0;
7929 		} else {
7930 			writeback = false;
7931 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
7932 		}
7933 		r = 0;
7934 	} else if (vcpu->mmio_needed) {
7935 		++vcpu->stat.mmio_exits;
7936 
7937 		if (!vcpu->mmio_is_write)
7938 			writeback = false;
7939 		r = 0;
7940 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7941 	} else if (r == EMULATION_RESTART)
7942 		goto restart;
7943 	else
7944 		r = 1;
7945 
7946 	if (writeback) {
7947 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7948 		toggle_interruptibility(vcpu, ctxt->interruptibility);
7949 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7950 		if (!ctxt->have_exception ||
7951 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7952 			kvm_rip_write(vcpu, ctxt->eip);
7953 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7954 				r = kvm_vcpu_do_singlestep(vcpu);
7955 			if (kvm_x86_ops.update_emulated_instruction)
7956 				static_call(kvm_x86_update_emulated_instruction)(vcpu);
7957 			__kvm_set_rflags(vcpu, ctxt->eflags);
7958 		}
7959 
7960 		/*
7961 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7962 		 * do nothing, and it will be requested again as soon as
7963 		 * the shadow expires.  But we still need to check here,
7964 		 * because POPF has no interrupt shadow.
7965 		 */
7966 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7967 			kvm_make_request(KVM_REQ_EVENT, vcpu);
7968 	} else
7969 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7970 
7971 	return r;
7972 }
7973 
7974 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7975 {
7976 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7977 }
7978 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7979 
7980 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7981 					void *insn, int insn_len)
7982 {
7983 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7984 }
7985 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7986 
7987 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7988 {
7989 	vcpu->arch.pio.count = 0;
7990 	return 1;
7991 }
7992 
7993 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7994 {
7995 	vcpu->arch.pio.count = 0;
7996 
7997 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7998 		return 1;
7999 
8000 	return kvm_skip_emulated_instruction(vcpu);
8001 }
8002 
8003 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8004 			    unsigned short port)
8005 {
8006 	unsigned long val = kvm_rax_read(vcpu);
8007 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8008 
8009 	if (ret)
8010 		return ret;
8011 
8012 	/*
8013 	 * Workaround userspace that relies on old KVM behavior of %rip being
8014 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8015 	 */
8016 	if (port == 0x7e &&
8017 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8018 		vcpu->arch.complete_userspace_io =
8019 			complete_fast_pio_out_port_0x7e;
8020 		kvm_skip_emulated_instruction(vcpu);
8021 	} else {
8022 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8023 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8024 	}
8025 	return 0;
8026 }
8027 
8028 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8029 {
8030 	unsigned long val;
8031 
8032 	/* We should only ever be called with arch.pio.count equal to 1 */
8033 	BUG_ON(vcpu->arch.pio.count != 1);
8034 
8035 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8036 		vcpu->arch.pio.count = 0;
8037 		return 1;
8038 	}
8039 
8040 	/* For size less than 4 we merge, else we zero extend */
8041 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8042 
8043 	/*
8044 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8045 	 * the copy and tracing
8046 	 */
8047 	emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8048 	kvm_rax_write(vcpu, val);
8049 
8050 	return kvm_skip_emulated_instruction(vcpu);
8051 }
8052 
8053 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8054 			   unsigned short port)
8055 {
8056 	unsigned long val;
8057 	int ret;
8058 
8059 	/* For size less than 4 we merge, else we zero extend */
8060 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8061 
8062 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
8063 	if (ret) {
8064 		kvm_rax_write(vcpu, val);
8065 		return ret;
8066 	}
8067 
8068 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8069 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8070 
8071 	return 0;
8072 }
8073 
8074 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8075 {
8076 	int ret;
8077 
8078 	if (in)
8079 		ret = kvm_fast_pio_in(vcpu, size, port);
8080 	else
8081 		ret = kvm_fast_pio_out(vcpu, size, port);
8082 	return ret && kvm_skip_emulated_instruction(vcpu);
8083 }
8084 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8085 
8086 static int kvmclock_cpu_down_prep(unsigned int cpu)
8087 {
8088 	__this_cpu_write(cpu_tsc_khz, 0);
8089 	return 0;
8090 }
8091 
8092 static void tsc_khz_changed(void *data)
8093 {
8094 	struct cpufreq_freqs *freq = data;
8095 	unsigned long khz = 0;
8096 
8097 	if (data)
8098 		khz = freq->new;
8099 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8100 		khz = cpufreq_quick_get(raw_smp_processor_id());
8101 	if (!khz)
8102 		khz = tsc_khz;
8103 	__this_cpu_write(cpu_tsc_khz, khz);
8104 }
8105 
8106 #ifdef CONFIG_X86_64
8107 static void kvm_hyperv_tsc_notifier(void)
8108 {
8109 	struct kvm *kvm;
8110 	struct kvm_vcpu *vcpu;
8111 	int cpu;
8112 	unsigned long flags;
8113 
8114 	mutex_lock(&kvm_lock);
8115 	list_for_each_entry(kvm, &vm_list, vm_list)
8116 		kvm_make_mclock_inprogress_request(kvm);
8117 
8118 	hyperv_stop_tsc_emulation();
8119 
8120 	/* TSC frequency always matches when on Hyper-V */
8121 	for_each_present_cpu(cpu)
8122 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8123 	kvm_max_guest_tsc_khz = tsc_khz;
8124 
8125 	list_for_each_entry(kvm, &vm_list, vm_list) {
8126 		struct kvm_arch *ka = &kvm->arch;
8127 
8128 		spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
8129 		pvclock_update_vm_gtod_copy(kvm);
8130 		spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
8131 
8132 		kvm_for_each_vcpu(cpu, vcpu, kvm)
8133 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8134 
8135 		kvm_for_each_vcpu(cpu, vcpu, kvm)
8136 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
8137 	}
8138 	mutex_unlock(&kvm_lock);
8139 }
8140 #endif
8141 
8142 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8143 {
8144 	struct kvm *kvm;
8145 	struct kvm_vcpu *vcpu;
8146 	int i, send_ipi = 0;
8147 
8148 	/*
8149 	 * We allow guests to temporarily run on slowing clocks,
8150 	 * provided we notify them after, or to run on accelerating
8151 	 * clocks, provided we notify them before.  Thus time never
8152 	 * goes backwards.
8153 	 *
8154 	 * However, we have a problem.  We can't atomically update
8155 	 * the frequency of a given CPU from this function; it is
8156 	 * merely a notifier, which can be called from any CPU.
8157 	 * Changing the TSC frequency at arbitrary points in time
8158 	 * requires a recomputation of local variables related to
8159 	 * the TSC for each VCPU.  We must flag these local variables
8160 	 * to be updated and be sure the update takes place with the
8161 	 * new frequency before any guests proceed.
8162 	 *
8163 	 * Unfortunately, the combination of hotplug CPU and frequency
8164 	 * change creates an intractable locking scenario; the order
8165 	 * of when these callouts happen is undefined with respect to
8166 	 * CPU hotplug, and they can race with each other.  As such,
8167 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8168 	 * undefined; you can actually have a CPU frequency change take
8169 	 * place in between the computation of X and the setting of the
8170 	 * variable.  To protect against this problem, all updates of
8171 	 * the per_cpu tsc_khz variable are done in an interrupt
8172 	 * protected IPI, and all callers wishing to update the value
8173 	 * must wait for a synchronous IPI to complete (which is trivial
8174 	 * if the caller is on the CPU already).  This establishes the
8175 	 * necessary total order on variable updates.
8176 	 *
8177 	 * Note that because a guest time update may take place
8178 	 * anytime after the setting of the VCPU's request bit, the
8179 	 * correct TSC value must be set before the request.  However,
8180 	 * to ensure the update actually makes it to any guest which
8181 	 * starts running in hardware virtualization between the set
8182 	 * and the acquisition of the spinlock, we must also ping the
8183 	 * CPU after setting the request bit.
8184 	 *
8185 	 */
8186 
8187 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8188 
8189 	mutex_lock(&kvm_lock);
8190 	list_for_each_entry(kvm, &vm_list, vm_list) {
8191 		kvm_for_each_vcpu(i, vcpu, kvm) {
8192 			if (vcpu->cpu != cpu)
8193 				continue;
8194 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8195 			if (vcpu->cpu != raw_smp_processor_id())
8196 				send_ipi = 1;
8197 		}
8198 	}
8199 	mutex_unlock(&kvm_lock);
8200 
8201 	if (freq->old < freq->new && send_ipi) {
8202 		/*
8203 		 * We upscale the frequency.  Must make the guest
8204 		 * doesn't see old kvmclock values while running with
8205 		 * the new frequency, otherwise we risk the guest sees
8206 		 * time go backwards.
8207 		 *
8208 		 * In case we update the frequency for another cpu
8209 		 * (which might be in guest context) send an interrupt
8210 		 * to kick the cpu out of guest context.  Next time
8211 		 * guest context is entered kvmclock will be updated,
8212 		 * so the guest will not see stale values.
8213 		 */
8214 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8215 	}
8216 }
8217 
8218 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8219 				     void *data)
8220 {
8221 	struct cpufreq_freqs *freq = data;
8222 	int cpu;
8223 
8224 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8225 		return 0;
8226 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8227 		return 0;
8228 
8229 	for_each_cpu(cpu, freq->policy->cpus)
8230 		__kvmclock_cpufreq_notifier(freq, cpu);
8231 
8232 	return 0;
8233 }
8234 
8235 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8236 	.notifier_call  = kvmclock_cpufreq_notifier
8237 };
8238 
8239 static int kvmclock_cpu_online(unsigned int cpu)
8240 {
8241 	tsc_khz_changed(NULL);
8242 	return 0;
8243 }
8244 
8245 static void kvm_timer_init(void)
8246 {
8247 	max_tsc_khz = tsc_khz;
8248 
8249 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8250 #ifdef CONFIG_CPU_FREQ
8251 		struct cpufreq_policy *policy;
8252 		int cpu;
8253 
8254 		cpu = get_cpu();
8255 		policy = cpufreq_cpu_get(cpu);
8256 		if (policy) {
8257 			if (policy->cpuinfo.max_freq)
8258 				max_tsc_khz = policy->cpuinfo.max_freq;
8259 			cpufreq_cpu_put(policy);
8260 		}
8261 		put_cpu();
8262 #endif
8263 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8264 					  CPUFREQ_TRANSITION_NOTIFIER);
8265 	}
8266 
8267 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8268 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
8269 }
8270 
8271 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
8272 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
8273 
8274 int kvm_is_in_guest(void)
8275 {
8276 	return __this_cpu_read(current_vcpu) != NULL;
8277 }
8278 
8279 static int kvm_is_user_mode(void)
8280 {
8281 	int user_mode = 3;
8282 
8283 	if (__this_cpu_read(current_vcpu))
8284 		user_mode = static_call(kvm_x86_get_cpl)(__this_cpu_read(current_vcpu));
8285 
8286 	return user_mode != 0;
8287 }
8288 
8289 static unsigned long kvm_get_guest_ip(void)
8290 {
8291 	unsigned long ip = 0;
8292 
8293 	if (__this_cpu_read(current_vcpu))
8294 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
8295 
8296 	return ip;
8297 }
8298 
8299 static void kvm_handle_intel_pt_intr(void)
8300 {
8301 	struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
8302 
8303 	kvm_make_request(KVM_REQ_PMI, vcpu);
8304 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8305 			(unsigned long *)&vcpu->arch.pmu.global_status);
8306 }
8307 
8308 static struct perf_guest_info_callbacks kvm_guest_cbs = {
8309 	.is_in_guest		= kvm_is_in_guest,
8310 	.is_user_mode		= kvm_is_user_mode,
8311 	.get_guest_ip		= kvm_get_guest_ip,
8312 	.handle_intel_pt_intr	= kvm_handle_intel_pt_intr,
8313 };
8314 
8315 #ifdef CONFIG_X86_64
8316 static void pvclock_gtod_update_fn(struct work_struct *work)
8317 {
8318 	struct kvm *kvm;
8319 
8320 	struct kvm_vcpu *vcpu;
8321 	int i;
8322 
8323 	mutex_lock(&kvm_lock);
8324 	list_for_each_entry(kvm, &vm_list, vm_list)
8325 		kvm_for_each_vcpu(i, vcpu, kvm)
8326 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8327 	atomic_set(&kvm_guest_has_master_clock, 0);
8328 	mutex_unlock(&kvm_lock);
8329 }
8330 
8331 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8332 
8333 /*
8334  * Indirection to move queue_work() out of the tk_core.seq write held
8335  * region to prevent possible deadlocks against time accessors which
8336  * are invoked with work related locks held.
8337  */
8338 static void pvclock_irq_work_fn(struct irq_work *w)
8339 {
8340 	queue_work(system_long_wq, &pvclock_gtod_work);
8341 }
8342 
8343 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8344 
8345 /*
8346  * Notification about pvclock gtod data update.
8347  */
8348 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8349 			       void *priv)
8350 {
8351 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8352 	struct timekeeper *tk = priv;
8353 
8354 	update_pvclock_gtod(tk);
8355 
8356 	/*
8357 	 * Disable master clock if host does not trust, or does not use,
8358 	 * TSC based clocksource. Delegate queue_work() to irq_work as
8359 	 * this is invoked with tk_core.seq write held.
8360 	 */
8361 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8362 	    atomic_read(&kvm_guest_has_master_clock) != 0)
8363 		irq_work_queue(&pvclock_irq_work);
8364 	return 0;
8365 }
8366 
8367 static struct notifier_block pvclock_gtod_notifier = {
8368 	.notifier_call = pvclock_gtod_notify,
8369 };
8370 #endif
8371 
8372 int kvm_arch_init(void *opaque)
8373 {
8374 	struct kvm_x86_init_ops *ops = opaque;
8375 	int r;
8376 
8377 	if (kvm_x86_ops.hardware_enable) {
8378 		printk(KERN_ERR "kvm: already loaded the other module\n");
8379 		r = -EEXIST;
8380 		goto out;
8381 	}
8382 
8383 	if (!ops->cpu_has_kvm_support()) {
8384 		pr_err_ratelimited("kvm: no hardware support\n");
8385 		r = -EOPNOTSUPP;
8386 		goto out;
8387 	}
8388 	if (ops->disabled_by_bios()) {
8389 		pr_err_ratelimited("kvm: disabled by bios\n");
8390 		r = -EOPNOTSUPP;
8391 		goto out;
8392 	}
8393 
8394 	/*
8395 	 * KVM explicitly assumes that the guest has an FPU and
8396 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8397 	 * vCPU's FPU state as a fxregs_state struct.
8398 	 */
8399 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8400 		printk(KERN_ERR "kvm: inadequate fpu\n");
8401 		r = -EOPNOTSUPP;
8402 		goto out;
8403 	}
8404 
8405 	r = -ENOMEM;
8406 	x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
8407 					  __alignof__(struct fpu), SLAB_ACCOUNT,
8408 					  NULL);
8409 	if (!x86_fpu_cache) {
8410 		printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
8411 		goto out;
8412 	}
8413 
8414 	x86_emulator_cache = kvm_alloc_emulator_cache();
8415 	if (!x86_emulator_cache) {
8416 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
8417 		goto out_free_x86_fpu_cache;
8418 	}
8419 
8420 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8421 	if (!user_return_msrs) {
8422 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8423 		goto out_free_x86_emulator_cache;
8424 	}
8425 	kvm_nr_uret_msrs = 0;
8426 
8427 	r = kvm_mmu_module_init();
8428 	if (r)
8429 		goto out_free_percpu;
8430 
8431 	kvm_timer_init();
8432 
8433 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
8434 
8435 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8436 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8437 		supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8438 	}
8439 
8440 	if (pi_inject_timer == -1)
8441 		pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8442 #ifdef CONFIG_X86_64
8443 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8444 
8445 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8446 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8447 #endif
8448 
8449 	return 0;
8450 
8451 out_free_percpu:
8452 	free_percpu(user_return_msrs);
8453 out_free_x86_emulator_cache:
8454 	kmem_cache_destroy(x86_emulator_cache);
8455 out_free_x86_fpu_cache:
8456 	kmem_cache_destroy(x86_fpu_cache);
8457 out:
8458 	return r;
8459 }
8460 
8461 void kvm_arch_exit(void)
8462 {
8463 #ifdef CONFIG_X86_64
8464 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8465 		clear_hv_tscchange_cb();
8466 #endif
8467 	kvm_lapic_exit();
8468 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
8469 
8470 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8471 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8472 					    CPUFREQ_TRANSITION_NOTIFIER);
8473 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8474 #ifdef CONFIG_X86_64
8475 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8476 	irq_work_sync(&pvclock_irq_work);
8477 	cancel_work_sync(&pvclock_gtod_work);
8478 #endif
8479 	kvm_x86_ops.hardware_enable = NULL;
8480 	kvm_mmu_module_exit();
8481 	free_percpu(user_return_msrs);
8482 	kmem_cache_destroy(x86_emulator_cache);
8483 	kmem_cache_destroy(x86_fpu_cache);
8484 #ifdef CONFIG_KVM_XEN
8485 	static_key_deferred_flush(&kvm_xen_enabled);
8486 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8487 #endif
8488 }
8489 
8490 static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason)
8491 {
8492 	++vcpu->stat.halt_exits;
8493 	if (lapic_in_kernel(vcpu)) {
8494 		vcpu->arch.mp_state = state;
8495 		return 1;
8496 	} else {
8497 		vcpu->run->exit_reason = reason;
8498 		return 0;
8499 	}
8500 }
8501 
8502 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8503 {
8504 	return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8505 }
8506 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8507 
8508 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8509 {
8510 	int ret = kvm_skip_emulated_instruction(vcpu);
8511 	/*
8512 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8513 	 * KVM_EXIT_DEBUG here.
8514 	 */
8515 	return kvm_vcpu_halt(vcpu) && ret;
8516 }
8517 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8518 
8519 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8520 {
8521 	int ret = kvm_skip_emulated_instruction(vcpu);
8522 
8523 	return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret;
8524 }
8525 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8526 
8527 #ifdef CONFIG_X86_64
8528 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8529 			        unsigned long clock_type)
8530 {
8531 	struct kvm_clock_pairing clock_pairing;
8532 	struct timespec64 ts;
8533 	u64 cycle;
8534 	int ret;
8535 
8536 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8537 		return -KVM_EOPNOTSUPP;
8538 
8539 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8540 		return -KVM_EOPNOTSUPP;
8541 
8542 	clock_pairing.sec = ts.tv_sec;
8543 	clock_pairing.nsec = ts.tv_nsec;
8544 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8545 	clock_pairing.flags = 0;
8546 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8547 
8548 	ret = 0;
8549 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8550 			    sizeof(struct kvm_clock_pairing)))
8551 		ret = -KVM_EFAULT;
8552 
8553 	return ret;
8554 }
8555 #endif
8556 
8557 /*
8558  * kvm_pv_kick_cpu_op:  Kick a vcpu.
8559  *
8560  * @apicid - apicid of vcpu to be kicked.
8561  */
8562 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8563 {
8564 	struct kvm_lapic_irq lapic_irq;
8565 
8566 	lapic_irq.shorthand = APIC_DEST_NOSHORT;
8567 	lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8568 	lapic_irq.level = 0;
8569 	lapic_irq.dest_id = apicid;
8570 	lapic_irq.msi_redir_hint = false;
8571 
8572 	lapic_irq.delivery_mode = APIC_DM_REMRD;
8573 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8574 }
8575 
8576 bool kvm_apicv_activated(struct kvm *kvm)
8577 {
8578 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8579 }
8580 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8581 
8582 static void kvm_apicv_init(struct kvm *kvm)
8583 {
8584 	mutex_init(&kvm->arch.apicv_update_lock);
8585 
8586 	if (enable_apicv)
8587 		clear_bit(APICV_INHIBIT_REASON_DISABLE,
8588 			  &kvm->arch.apicv_inhibit_reasons);
8589 	else
8590 		set_bit(APICV_INHIBIT_REASON_DISABLE,
8591 			&kvm->arch.apicv_inhibit_reasons);
8592 }
8593 
8594 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
8595 {
8596 	struct kvm_vcpu *target = NULL;
8597 	struct kvm_apic_map *map;
8598 
8599 	vcpu->stat.directed_yield_attempted++;
8600 
8601 	if (single_task_running())
8602 		goto no_yield;
8603 
8604 	rcu_read_lock();
8605 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
8606 
8607 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8608 		target = map->phys_map[dest_id]->vcpu;
8609 
8610 	rcu_read_unlock();
8611 
8612 	if (!target || !READ_ONCE(target->ready))
8613 		goto no_yield;
8614 
8615 	/* Ignore requests to yield to self */
8616 	if (vcpu == target)
8617 		goto no_yield;
8618 
8619 	if (kvm_vcpu_yield_to(target) <= 0)
8620 		goto no_yield;
8621 
8622 	vcpu->stat.directed_yield_successful++;
8623 
8624 no_yield:
8625 	return;
8626 }
8627 
8628 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
8629 {
8630 	u64 ret = vcpu->run->hypercall.ret;
8631 
8632 	if (!is_64_bit_mode(vcpu))
8633 		ret = (u32)ret;
8634 	kvm_rax_write(vcpu, ret);
8635 	++vcpu->stat.hypercalls;
8636 	return kvm_skip_emulated_instruction(vcpu);
8637 }
8638 
8639 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8640 {
8641 	unsigned long nr, a0, a1, a2, a3, ret;
8642 	int op_64_bit;
8643 
8644 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
8645 		return kvm_xen_hypercall(vcpu);
8646 
8647 	if (kvm_hv_hypercall_enabled(vcpu))
8648 		return kvm_hv_hypercall(vcpu);
8649 
8650 	nr = kvm_rax_read(vcpu);
8651 	a0 = kvm_rbx_read(vcpu);
8652 	a1 = kvm_rcx_read(vcpu);
8653 	a2 = kvm_rdx_read(vcpu);
8654 	a3 = kvm_rsi_read(vcpu);
8655 
8656 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
8657 
8658 	op_64_bit = is_64_bit_mode(vcpu);
8659 	if (!op_64_bit) {
8660 		nr &= 0xFFFFFFFF;
8661 		a0 &= 0xFFFFFFFF;
8662 		a1 &= 0xFFFFFFFF;
8663 		a2 &= 0xFFFFFFFF;
8664 		a3 &= 0xFFFFFFFF;
8665 	}
8666 
8667 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
8668 		ret = -KVM_EPERM;
8669 		goto out;
8670 	}
8671 
8672 	ret = -KVM_ENOSYS;
8673 
8674 	switch (nr) {
8675 	case KVM_HC_VAPIC_POLL_IRQ:
8676 		ret = 0;
8677 		break;
8678 	case KVM_HC_KICK_CPU:
8679 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8680 			break;
8681 
8682 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8683 		kvm_sched_yield(vcpu, a1);
8684 		ret = 0;
8685 		break;
8686 #ifdef CONFIG_X86_64
8687 	case KVM_HC_CLOCK_PAIRING:
8688 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8689 		break;
8690 #endif
8691 	case KVM_HC_SEND_IPI:
8692 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8693 			break;
8694 
8695 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8696 		break;
8697 	case KVM_HC_SCHED_YIELD:
8698 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8699 			break;
8700 
8701 		kvm_sched_yield(vcpu, a0);
8702 		ret = 0;
8703 		break;
8704 	case KVM_HC_MAP_GPA_RANGE: {
8705 		u64 gpa = a0, npages = a1, attrs = a2;
8706 
8707 		ret = -KVM_ENOSYS;
8708 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
8709 			break;
8710 
8711 		if (!PAGE_ALIGNED(gpa) || !npages ||
8712 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
8713 			ret = -KVM_EINVAL;
8714 			break;
8715 		}
8716 
8717 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
8718 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
8719 		vcpu->run->hypercall.args[0]  = gpa;
8720 		vcpu->run->hypercall.args[1]  = npages;
8721 		vcpu->run->hypercall.args[2]  = attrs;
8722 		vcpu->run->hypercall.longmode = op_64_bit;
8723 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
8724 		return 0;
8725 	}
8726 	default:
8727 		ret = -KVM_ENOSYS;
8728 		break;
8729 	}
8730 out:
8731 	if (!op_64_bit)
8732 		ret = (u32)ret;
8733 	kvm_rax_write(vcpu, ret);
8734 
8735 	++vcpu->stat.hypercalls;
8736 	return kvm_skip_emulated_instruction(vcpu);
8737 }
8738 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8739 
8740 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8741 {
8742 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8743 	char instruction[3];
8744 	unsigned long rip = kvm_rip_read(vcpu);
8745 
8746 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
8747 
8748 	return emulator_write_emulated(ctxt, rip, instruction, 3,
8749 		&ctxt->exception);
8750 }
8751 
8752 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8753 {
8754 	return vcpu->run->request_interrupt_window &&
8755 		likely(!pic_in_kernel(vcpu->kvm));
8756 }
8757 
8758 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8759 {
8760 	struct kvm_run *kvm_run = vcpu->run;
8761 
8762 	/*
8763 	 * if_flag is obsolete and useless, so do not bother
8764 	 * setting it for SEV-ES guests.  Userspace can just
8765 	 * use kvm_run->ready_for_interrupt_injection.
8766 	 */
8767 	kvm_run->if_flag = !vcpu->arch.guest_state_protected
8768 		&& (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8769 
8770 	kvm_run->cr8 = kvm_get_cr8(vcpu);
8771 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
8772 	kvm_run->ready_for_interrupt_injection =
8773 		pic_in_kernel(vcpu->kvm) ||
8774 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
8775 
8776 	if (is_smm(vcpu))
8777 		kvm_run->flags |= KVM_RUN_X86_SMM;
8778 }
8779 
8780 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8781 {
8782 	int max_irr, tpr;
8783 
8784 	if (!kvm_x86_ops.update_cr8_intercept)
8785 		return;
8786 
8787 	if (!lapic_in_kernel(vcpu))
8788 		return;
8789 
8790 	if (vcpu->arch.apicv_active)
8791 		return;
8792 
8793 	if (!vcpu->arch.apic->vapic_addr)
8794 		max_irr = kvm_lapic_find_highest_irr(vcpu);
8795 	else
8796 		max_irr = -1;
8797 
8798 	if (max_irr != -1)
8799 		max_irr >>= 4;
8800 
8801 	tpr = kvm_lapic_get_cr8(vcpu);
8802 
8803 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
8804 }
8805 
8806 
8807 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
8808 {
8809 	if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8810 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
8811 		return 1;
8812 	}
8813 
8814 	return kvm_x86_ops.nested_ops->check_events(vcpu);
8815 }
8816 
8817 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
8818 {
8819 	if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
8820 		vcpu->arch.exception.error_code = false;
8821 	static_call(kvm_x86_queue_exception)(vcpu);
8822 }
8823 
8824 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8825 {
8826 	int r;
8827 	bool can_inject = true;
8828 
8829 	/* try to reinject previous events if any */
8830 
8831 	if (vcpu->arch.exception.injected) {
8832 		kvm_inject_exception(vcpu);
8833 		can_inject = false;
8834 	}
8835 	/*
8836 	 * Do not inject an NMI or interrupt if there is a pending
8837 	 * exception.  Exceptions and interrupts are recognized at
8838 	 * instruction boundaries, i.e. the start of an instruction.
8839 	 * Trap-like exceptions, e.g. #DB, have higher priority than
8840 	 * NMIs and interrupts, i.e. traps are recognized before an
8841 	 * NMI/interrupt that's pending on the same instruction.
8842 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8843 	 * priority, but are only generated (pended) during instruction
8844 	 * execution, i.e. a pending fault-like exception means the
8845 	 * fault occurred on the *previous* instruction and must be
8846 	 * serviced prior to recognizing any new events in order to
8847 	 * fully complete the previous instruction.
8848 	 */
8849 	else if (!vcpu->arch.exception.pending) {
8850 		if (vcpu->arch.nmi_injected) {
8851 			static_call(kvm_x86_set_nmi)(vcpu);
8852 			can_inject = false;
8853 		} else if (vcpu->arch.interrupt.injected) {
8854 			static_call(kvm_x86_set_irq)(vcpu);
8855 			can_inject = false;
8856 		}
8857 	}
8858 
8859 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
8860 		     vcpu->arch.exception.pending);
8861 
8862 	/*
8863 	 * Call check_nested_events() even if we reinjected a previous event
8864 	 * in order for caller to determine if it should require immediate-exit
8865 	 * from L2 to L1 due to pending L1 events which require exit
8866 	 * from L2 to L1.
8867 	 */
8868 	if (is_guest_mode(vcpu)) {
8869 		r = kvm_check_nested_events(vcpu);
8870 		if (r < 0)
8871 			goto out;
8872 	}
8873 
8874 	/* try to inject new event if pending */
8875 	if (vcpu->arch.exception.pending) {
8876 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
8877 					vcpu->arch.exception.has_error_code,
8878 					vcpu->arch.exception.error_code);
8879 
8880 		vcpu->arch.exception.pending = false;
8881 		vcpu->arch.exception.injected = true;
8882 
8883 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8884 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8885 					     X86_EFLAGS_RF);
8886 
8887 		if (vcpu->arch.exception.nr == DB_VECTOR) {
8888 			kvm_deliver_exception_payload(vcpu);
8889 			if (vcpu->arch.dr7 & DR7_GD) {
8890 				vcpu->arch.dr7 &= ~DR7_GD;
8891 				kvm_update_dr7(vcpu);
8892 			}
8893 		}
8894 
8895 		kvm_inject_exception(vcpu);
8896 		can_inject = false;
8897 	}
8898 
8899 	/* Don't inject interrupts if the user asked to avoid doing so */
8900 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
8901 		return 0;
8902 
8903 	/*
8904 	 * Finally, inject interrupt events.  If an event cannot be injected
8905 	 * due to architectural conditions (e.g. IF=0) a window-open exit
8906 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
8907 	 * and can architecturally be injected, but we cannot do it right now:
8908 	 * an interrupt could have arrived just now and we have to inject it
8909 	 * as a vmexit, or there could already an event in the queue, which is
8910 	 * indicated by can_inject.  In that case we request an immediate exit
8911 	 * in order to make progress and get back here for another iteration.
8912 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8913 	 */
8914 	if (vcpu->arch.smi_pending) {
8915 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
8916 		if (r < 0)
8917 			goto out;
8918 		if (r) {
8919 			vcpu->arch.smi_pending = false;
8920 			++vcpu->arch.smi_count;
8921 			enter_smm(vcpu);
8922 			can_inject = false;
8923 		} else
8924 			static_call(kvm_x86_enable_smi_window)(vcpu);
8925 	}
8926 
8927 	if (vcpu->arch.nmi_pending) {
8928 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
8929 		if (r < 0)
8930 			goto out;
8931 		if (r) {
8932 			--vcpu->arch.nmi_pending;
8933 			vcpu->arch.nmi_injected = true;
8934 			static_call(kvm_x86_set_nmi)(vcpu);
8935 			can_inject = false;
8936 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
8937 		}
8938 		if (vcpu->arch.nmi_pending)
8939 			static_call(kvm_x86_enable_nmi_window)(vcpu);
8940 	}
8941 
8942 	if (kvm_cpu_has_injectable_intr(vcpu)) {
8943 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
8944 		if (r < 0)
8945 			goto out;
8946 		if (r) {
8947 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8948 			static_call(kvm_x86_set_irq)(vcpu);
8949 			WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
8950 		}
8951 		if (kvm_cpu_has_injectable_intr(vcpu))
8952 			static_call(kvm_x86_enable_irq_window)(vcpu);
8953 	}
8954 
8955 	if (is_guest_mode(vcpu) &&
8956 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
8957 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8958 		*req_immediate_exit = true;
8959 
8960 	WARN_ON(vcpu->arch.exception.pending);
8961 	return 0;
8962 
8963 out:
8964 	if (r == -EBUSY) {
8965 		*req_immediate_exit = true;
8966 		r = 0;
8967 	}
8968 	return r;
8969 }
8970 
8971 static void process_nmi(struct kvm_vcpu *vcpu)
8972 {
8973 	unsigned limit = 2;
8974 
8975 	/*
8976 	 * x86 is limited to one NMI running, and one NMI pending after it.
8977 	 * If an NMI is already in progress, limit further NMIs to just one.
8978 	 * Otherwise, allow two (and we'll inject the first one immediately).
8979 	 */
8980 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
8981 		limit = 1;
8982 
8983 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
8984 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
8985 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8986 }
8987 
8988 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
8989 {
8990 	u32 flags = 0;
8991 	flags |= seg->g       << 23;
8992 	flags |= seg->db      << 22;
8993 	flags |= seg->l       << 21;
8994 	flags |= seg->avl     << 20;
8995 	flags |= seg->present << 15;
8996 	flags |= seg->dpl     << 13;
8997 	flags |= seg->s       << 12;
8998 	flags |= seg->type    << 8;
8999 	return flags;
9000 }
9001 
9002 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9003 {
9004 	struct kvm_segment seg;
9005 	int offset;
9006 
9007 	kvm_get_segment(vcpu, &seg, n);
9008 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9009 
9010 	if (n < 3)
9011 		offset = 0x7f84 + n * 12;
9012 	else
9013 		offset = 0x7f2c + (n - 3) * 12;
9014 
9015 	put_smstate(u32, buf, offset + 8, seg.base);
9016 	put_smstate(u32, buf, offset + 4, seg.limit);
9017 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9018 }
9019 
9020 #ifdef CONFIG_X86_64
9021 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9022 {
9023 	struct kvm_segment seg;
9024 	int offset;
9025 	u16 flags;
9026 
9027 	kvm_get_segment(vcpu, &seg, n);
9028 	offset = 0x7e00 + n * 16;
9029 
9030 	flags = enter_smm_get_segment_flags(&seg) >> 8;
9031 	put_smstate(u16, buf, offset, seg.selector);
9032 	put_smstate(u16, buf, offset + 2, flags);
9033 	put_smstate(u32, buf, offset + 4, seg.limit);
9034 	put_smstate(u64, buf, offset + 8, seg.base);
9035 }
9036 #endif
9037 
9038 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9039 {
9040 	struct desc_ptr dt;
9041 	struct kvm_segment seg;
9042 	unsigned long val;
9043 	int i;
9044 
9045 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9046 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9047 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9048 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9049 
9050 	for (i = 0; i < 8; i++)
9051 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9052 
9053 	kvm_get_dr(vcpu, 6, &val);
9054 	put_smstate(u32, buf, 0x7fcc, (u32)val);
9055 	kvm_get_dr(vcpu, 7, &val);
9056 	put_smstate(u32, buf, 0x7fc8, (u32)val);
9057 
9058 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9059 	put_smstate(u32, buf, 0x7fc4, seg.selector);
9060 	put_smstate(u32, buf, 0x7f64, seg.base);
9061 	put_smstate(u32, buf, 0x7f60, seg.limit);
9062 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9063 
9064 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9065 	put_smstate(u32, buf, 0x7fc0, seg.selector);
9066 	put_smstate(u32, buf, 0x7f80, seg.base);
9067 	put_smstate(u32, buf, 0x7f7c, seg.limit);
9068 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9069 
9070 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
9071 	put_smstate(u32, buf, 0x7f74, dt.address);
9072 	put_smstate(u32, buf, 0x7f70, dt.size);
9073 
9074 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9075 	put_smstate(u32, buf, 0x7f58, dt.address);
9076 	put_smstate(u32, buf, 0x7f54, dt.size);
9077 
9078 	for (i = 0; i < 6; i++)
9079 		enter_smm_save_seg_32(vcpu, buf, i);
9080 
9081 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9082 
9083 	/* revision id */
9084 	put_smstate(u32, buf, 0x7efc, 0x00020000);
9085 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9086 }
9087 
9088 #ifdef CONFIG_X86_64
9089 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9090 {
9091 	struct desc_ptr dt;
9092 	struct kvm_segment seg;
9093 	unsigned long val;
9094 	int i;
9095 
9096 	for (i = 0; i < 16; i++)
9097 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9098 
9099 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9100 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9101 
9102 	kvm_get_dr(vcpu, 6, &val);
9103 	put_smstate(u64, buf, 0x7f68, val);
9104 	kvm_get_dr(vcpu, 7, &val);
9105 	put_smstate(u64, buf, 0x7f60, val);
9106 
9107 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9108 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9109 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9110 
9111 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9112 
9113 	/* revision id */
9114 	put_smstate(u32, buf, 0x7efc, 0x00020064);
9115 
9116 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9117 
9118 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9119 	put_smstate(u16, buf, 0x7e90, seg.selector);
9120 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9121 	put_smstate(u32, buf, 0x7e94, seg.limit);
9122 	put_smstate(u64, buf, 0x7e98, seg.base);
9123 
9124 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9125 	put_smstate(u32, buf, 0x7e84, dt.size);
9126 	put_smstate(u64, buf, 0x7e88, dt.address);
9127 
9128 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9129 	put_smstate(u16, buf, 0x7e70, seg.selector);
9130 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9131 	put_smstate(u32, buf, 0x7e74, seg.limit);
9132 	put_smstate(u64, buf, 0x7e78, seg.base);
9133 
9134 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
9135 	put_smstate(u32, buf, 0x7e64, dt.size);
9136 	put_smstate(u64, buf, 0x7e68, dt.address);
9137 
9138 	for (i = 0; i < 6; i++)
9139 		enter_smm_save_seg_64(vcpu, buf, i);
9140 }
9141 #endif
9142 
9143 static void enter_smm(struct kvm_vcpu *vcpu)
9144 {
9145 	struct kvm_segment cs, ds;
9146 	struct desc_ptr dt;
9147 	unsigned long cr0;
9148 	char buf[512];
9149 
9150 	memset(buf, 0, 512);
9151 #ifdef CONFIG_X86_64
9152 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9153 		enter_smm_save_state_64(vcpu, buf);
9154 	else
9155 #endif
9156 		enter_smm_save_state_32(vcpu, buf);
9157 
9158 	/*
9159 	 * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9160 	 * state (e.g. leave guest mode) after we've saved the state into the
9161 	 * SMM state-save area.
9162 	 */
9163 	static_call(kvm_x86_enter_smm)(vcpu, buf);
9164 
9165 	kvm_smm_changed(vcpu, true);
9166 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9167 
9168 	if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9169 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9170 	else
9171 		static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9172 
9173 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9174 	kvm_rip_write(vcpu, 0x8000);
9175 
9176 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9177 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
9178 	vcpu->arch.cr0 = cr0;
9179 
9180 	static_call(kvm_x86_set_cr4)(vcpu, 0);
9181 
9182 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
9183 	dt.address = dt.size = 0;
9184 	static_call(kvm_x86_set_idt)(vcpu, &dt);
9185 
9186 	kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9187 
9188 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9189 	cs.base = vcpu->arch.smbase;
9190 
9191 	ds.selector = 0;
9192 	ds.base = 0;
9193 
9194 	cs.limit    = ds.limit = 0xffffffff;
9195 	cs.type     = ds.type = 0x3;
9196 	cs.dpl      = ds.dpl = 0;
9197 	cs.db       = ds.db = 0;
9198 	cs.s        = ds.s = 1;
9199 	cs.l        = ds.l = 0;
9200 	cs.g        = ds.g = 1;
9201 	cs.avl      = ds.avl = 0;
9202 	cs.present  = ds.present = 1;
9203 	cs.unusable = ds.unusable = 0;
9204 	cs.padding  = ds.padding = 0;
9205 
9206 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9207 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9208 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9209 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9210 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9211 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9212 
9213 #ifdef CONFIG_X86_64
9214 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9215 		static_call(kvm_x86_set_efer)(vcpu, 0);
9216 #endif
9217 
9218 	kvm_update_cpuid_runtime(vcpu);
9219 	kvm_mmu_reset_context(vcpu);
9220 }
9221 
9222 static void process_smi(struct kvm_vcpu *vcpu)
9223 {
9224 	vcpu->arch.smi_pending = true;
9225 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9226 }
9227 
9228 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9229 				       unsigned long *vcpu_bitmap)
9230 {
9231 	cpumask_var_t cpus;
9232 
9233 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
9234 
9235 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
9236 				    NULL, vcpu_bitmap, cpus);
9237 
9238 	free_cpumask_var(cpus);
9239 }
9240 
9241 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9242 {
9243 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9244 }
9245 
9246 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9247 {
9248 	bool activate;
9249 
9250 	if (!lapic_in_kernel(vcpu))
9251 		return;
9252 
9253 	mutex_lock(&vcpu->kvm->arch.apicv_update_lock);
9254 
9255 	activate = kvm_apicv_activated(vcpu->kvm);
9256 	if (vcpu->arch.apicv_active == activate)
9257 		goto out;
9258 
9259 	vcpu->arch.apicv_active = activate;
9260 	kvm_apic_update_apicv(vcpu);
9261 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9262 
9263 	/*
9264 	 * When APICv gets disabled, we may still have injected interrupts
9265 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9266 	 * still active when the interrupt got accepted. Make sure
9267 	 * inject_pending_event() is called to check for that.
9268 	 */
9269 	if (!vcpu->arch.apicv_active)
9270 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9271 
9272 out:
9273 	mutex_unlock(&vcpu->kvm->arch.apicv_update_lock);
9274 }
9275 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9276 
9277 void __kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9278 {
9279 	unsigned long old, new;
9280 
9281 	if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
9282 	    !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
9283 		return;
9284 
9285 	old = new = kvm->arch.apicv_inhibit_reasons;
9286 
9287 	if (activate)
9288 		__clear_bit(bit, &new);
9289 	else
9290 		__set_bit(bit, &new);
9291 
9292 	if (!!old != !!new) {
9293 		trace_kvm_apicv_update_request(activate, bit);
9294 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9295 		kvm->arch.apicv_inhibit_reasons = new;
9296 		if (new) {
9297 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9298 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
9299 		}
9300 	} else
9301 		kvm->arch.apicv_inhibit_reasons = new;
9302 }
9303 EXPORT_SYMBOL_GPL(__kvm_request_apicv_update);
9304 
9305 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9306 {
9307 	mutex_lock(&kvm->arch.apicv_update_lock);
9308 	__kvm_request_apicv_update(kvm, activate, bit);
9309 	mutex_unlock(&kvm->arch.apicv_update_lock);
9310 }
9311 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
9312 
9313 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9314 {
9315 	if (!kvm_apic_present(vcpu))
9316 		return;
9317 
9318 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9319 
9320 	if (irqchip_split(vcpu->kvm))
9321 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9322 	else {
9323 		if (vcpu->arch.apicv_active)
9324 			static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9325 		if (ioapic_in_kernel(vcpu->kvm))
9326 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9327 	}
9328 
9329 	if (is_guest_mode(vcpu))
9330 		vcpu->arch.load_eoi_exitmap_pending = true;
9331 	else
9332 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9333 }
9334 
9335 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9336 {
9337 	u64 eoi_exit_bitmap[4];
9338 
9339 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9340 		return;
9341 
9342 	if (to_hv_vcpu(vcpu))
9343 		bitmap_or((ulong *)eoi_exit_bitmap,
9344 			  vcpu->arch.ioapic_handled_vectors,
9345 			  to_hv_synic(vcpu)->vec_bitmap, 256);
9346 
9347 	static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9348 }
9349 
9350 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9351 					    unsigned long start, unsigned long end)
9352 {
9353 	unsigned long apic_address;
9354 
9355 	/*
9356 	 * The physical address of apic access page is stored in the VMCS.
9357 	 * Update it when it becomes invalid.
9358 	 */
9359 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9360 	if (start <= apic_address && apic_address < end)
9361 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9362 }
9363 
9364 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9365 {
9366 	if (!lapic_in_kernel(vcpu))
9367 		return;
9368 
9369 	if (!kvm_x86_ops.set_apic_access_page_addr)
9370 		return;
9371 
9372 	static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
9373 }
9374 
9375 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9376 {
9377 	smp_send_reschedule(vcpu->cpu);
9378 }
9379 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9380 
9381 /*
9382  * Returns 1 to let vcpu_run() continue the guest execution loop without
9383  * exiting to the userspace.  Otherwise, the value will be returned to the
9384  * userspace.
9385  */
9386 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9387 {
9388 	int r;
9389 	bool req_int_win =
9390 		dm_request_for_irq_injection(vcpu) &&
9391 		kvm_cpu_accept_dm_intr(vcpu);
9392 	fastpath_t exit_fastpath;
9393 
9394 	bool req_immediate_exit = false;
9395 
9396 	/* Forbid vmenter if vcpu dirty ring is soft-full */
9397 	if (unlikely(vcpu->kvm->dirty_ring_size &&
9398 		     kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9399 		vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9400 		trace_kvm_dirty_ring_exit(vcpu);
9401 		r = 0;
9402 		goto out;
9403 	}
9404 
9405 	if (kvm_request_pending(vcpu)) {
9406 		if (kvm_check_request(KVM_REQ_VM_BUGGED, vcpu)) {
9407 			r = -EIO;
9408 			goto out;
9409 		}
9410 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9411 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9412 				r = 0;
9413 				goto out;
9414 			}
9415 		}
9416 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9417 			kvm_mmu_unload(vcpu);
9418 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9419 			__kvm_migrate_timers(vcpu);
9420 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9421 			kvm_gen_update_masterclock(vcpu->kvm);
9422 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9423 			kvm_gen_kvmclock_update(vcpu);
9424 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9425 			r = kvm_guest_time_update(vcpu);
9426 			if (unlikely(r))
9427 				goto out;
9428 		}
9429 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9430 			kvm_mmu_sync_roots(vcpu);
9431 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9432 			kvm_mmu_load_pgd(vcpu);
9433 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9434 			kvm_vcpu_flush_tlb_all(vcpu);
9435 
9436 			/* Flushing all ASIDs flushes the current ASID... */
9437 			kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9438 		}
9439 		if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
9440 			kvm_vcpu_flush_tlb_current(vcpu);
9441 		if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
9442 			kvm_vcpu_flush_tlb_guest(vcpu);
9443 
9444 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9445 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9446 			r = 0;
9447 			goto out;
9448 		}
9449 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9450 			if (is_guest_mode(vcpu)) {
9451 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
9452 			} else {
9453 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9454 				vcpu->mmio_needed = 0;
9455 				r = 0;
9456 				goto out;
9457 			}
9458 		}
9459 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9460 			/* Page is swapped out. Do synthetic halt */
9461 			vcpu->arch.apf.halted = true;
9462 			r = 1;
9463 			goto out;
9464 		}
9465 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9466 			record_steal_time(vcpu);
9467 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
9468 			process_smi(vcpu);
9469 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
9470 			process_nmi(vcpu);
9471 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
9472 			kvm_pmu_handle_event(vcpu);
9473 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
9474 			kvm_pmu_deliver_pmi(vcpu);
9475 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9476 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9477 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
9478 				     vcpu->arch.ioapic_handled_vectors)) {
9479 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9480 				vcpu->run->eoi.vector =
9481 						vcpu->arch.pending_ioapic_eoi;
9482 				r = 0;
9483 				goto out;
9484 			}
9485 		}
9486 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9487 			vcpu_scan_ioapic(vcpu);
9488 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9489 			vcpu_load_eoi_exitmap(vcpu);
9490 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9491 			kvm_vcpu_reload_apic_access_page(vcpu);
9492 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9493 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9494 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9495 			r = 0;
9496 			goto out;
9497 		}
9498 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9499 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9500 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9501 			r = 0;
9502 			goto out;
9503 		}
9504 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9505 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9506 
9507 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9508 			vcpu->run->hyperv = hv_vcpu->exit;
9509 			r = 0;
9510 			goto out;
9511 		}
9512 
9513 		/*
9514 		 * KVM_REQ_HV_STIMER has to be processed after
9515 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9516 		 * depend on the guest clock being up-to-date
9517 		 */
9518 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9519 			kvm_hv_process_stimers(vcpu);
9520 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9521 			kvm_vcpu_update_apicv(vcpu);
9522 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9523 			kvm_check_async_pf_completion(vcpu);
9524 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9525 			static_call(kvm_x86_msr_filter_changed)(vcpu);
9526 
9527 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9528 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9529 	}
9530 
9531 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9532 	    kvm_xen_has_interrupt(vcpu)) {
9533 		++vcpu->stat.req_event;
9534 		r = kvm_apic_accept_events(vcpu);
9535 		if (r < 0) {
9536 			r = 0;
9537 			goto out;
9538 		}
9539 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9540 			r = 1;
9541 			goto out;
9542 		}
9543 
9544 		r = inject_pending_event(vcpu, &req_immediate_exit);
9545 		if (r < 0) {
9546 			r = 0;
9547 			goto out;
9548 		}
9549 		if (req_int_win)
9550 			static_call(kvm_x86_enable_irq_window)(vcpu);
9551 
9552 		if (kvm_lapic_enabled(vcpu)) {
9553 			update_cr8_intercept(vcpu);
9554 			kvm_lapic_sync_to_vapic(vcpu);
9555 		}
9556 	}
9557 
9558 	r = kvm_mmu_reload(vcpu);
9559 	if (unlikely(r)) {
9560 		goto cancel_injection;
9561 	}
9562 
9563 	preempt_disable();
9564 
9565 	static_call(kvm_x86_prepare_guest_switch)(vcpu);
9566 
9567 	/*
9568 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
9569 	 * IPI are then delayed after guest entry, which ensures that they
9570 	 * result in virtual interrupt delivery.
9571 	 */
9572 	local_irq_disable();
9573 	vcpu->mode = IN_GUEST_MODE;
9574 
9575 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9576 
9577 	/*
9578 	 * 1) We should set ->mode before checking ->requests.  Please see
9579 	 * the comment in kvm_vcpu_exiting_guest_mode().
9580 	 *
9581 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
9582 	 * pairs with the memory barrier implicit in pi_test_and_set_on
9583 	 * (see vmx_deliver_posted_interrupt).
9584 	 *
9585 	 * 3) This also orders the write to mode from any reads to the page
9586 	 * tables done while the VCPU is running.  Please see the comment
9587 	 * in kvm_flush_remote_tlbs.
9588 	 */
9589 	smp_mb__after_srcu_read_unlock();
9590 
9591 	/*
9592 	 * This handles the case where a posted interrupt was
9593 	 * notified with kvm_vcpu_kick.
9594 	 */
9595 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
9596 		static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9597 
9598 	if (kvm_vcpu_exit_request(vcpu)) {
9599 		vcpu->mode = OUTSIDE_GUEST_MODE;
9600 		smp_wmb();
9601 		local_irq_enable();
9602 		preempt_enable();
9603 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9604 		r = 1;
9605 		goto cancel_injection;
9606 	}
9607 
9608 	if (req_immediate_exit) {
9609 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9610 		static_call(kvm_x86_request_immediate_exit)(vcpu);
9611 	}
9612 
9613 	fpregs_assert_state_consistent();
9614 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
9615 		switch_fpu_return();
9616 
9617 	if (unlikely(vcpu->arch.switch_db_regs)) {
9618 		set_debugreg(0, 7);
9619 		set_debugreg(vcpu->arch.eff_db[0], 0);
9620 		set_debugreg(vcpu->arch.eff_db[1], 1);
9621 		set_debugreg(vcpu->arch.eff_db[2], 2);
9622 		set_debugreg(vcpu->arch.eff_db[3], 3);
9623 	} else if (unlikely(hw_breakpoint_active())) {
9624 		set_debugreg(0, 7);
9625 	}
9626 
9627 	for (;;) {
9628 		exit_fastpath = static_call(kvm_x86_run)(vcpu);
9629 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
9630 			break;
9631 
9632                 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
9633 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
9634 			break;
9635 		}
9636 
9637 		if (vcpu->arch.apicv_active)
9638 			static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9639         }
9640 
9641 	/*
9642 	 * Do this here before restoring debug registers on the host.  And
9643 	 * since we do this before handling the vmexit, a DR access vmexit
9644 	 * can (a) read the correct value of the debug registers, (b) set
9645 	 * KVM_DEBUGREG_WONT_EXIT again.
9646 	 */
9647 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9648 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9649 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
9650 		kvm_update_dr0123(vcpu);
9651 		kvm_update_dr7(vcpu);
9652 	}
9653 
9654 	/*
9655 	 * If the guest has used debug registers, at least dr7
9656 	 * will be disabled while returning to the host.
9657 	 * If we don't have active breakpoints in the host, we don't
9658 	 * care about the messed up debug address registers. But if
9659 	 * we have some of them active, restore the old state.
9660 	 */
9661 	if (hw_breakpoint_active())
9662 		hw_breakpoint_restore();
9663 
9664 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9665 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9666 
9667 	vcpu->mode = OUTSIDE_GUEST_MODE;
9668 	smp_wmb();
9669 
9670 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
9671 
9672 	/*
9673 	 * Consume any pending interrupts, including the possible source of
9674 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9675 	 * An instruction is required after local_irq_enable() to fully unblock
9676 	 * interrupts on processors that implement an interrupt shadow, the
9677 	 * stat.exits increment will do nicely.
9678 	 */
9679 	kvm_before_interrupt(vcpu);
9680 	local_irq_enable();
9681 	++vcpu->stat.exits;
9682 	local_irq_disable();
9683 	kvm_after_interrupt(vcpu);
9684 
9685 	/*
9686 	 * Wait until after servicing IRQs to account guest time so that any
9687 	 * ticks that occurred while running the guest are properly accounted
9688 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
9689 	 * of accounting via context tracking, but the loss of accuracy is
9690 	 * acceptable for all known use cases.
9691 	 */
9692 	vtime_account_guest_exit();
9693 
9694 	if (lapic_in_kernel(vcpu)) {
9695 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9696 		if (delta != S64_MIN) {
9697 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9698 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9699 		}
9700 	}
9701 
9702 	local_irq_enable();
9703 	preempt_enable();
9704 
9705 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9706 
9707 	/*
9708 	 * Profile KVM exit RIPs:
9709 	 */
9710 	if (unlikely(prof_on == KVM_PROFILING)) {
9711 		unsigned long rip = kvm_rip_read(vcpu);
9712 		profile_hit(KVM_PROFILING, (void *)rip);
9713 	}
9714 
9715 	if (unlikely(vcpu->arch.tsc_always_catchup))
9716 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9717 
9718 	if (vcpu->arch.apic_attention)
9719 		kvm_lapic_sync_from_vapic(vcpu);
9720 
9721 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
9722 	return r;
9723 
9724 cancel_injection:
9725 	if (req_immediate_exit)
9726 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9727 	static_call(kvm_x86_cancel_injection)(vcpu);
9728 	if (unlikely(vcpu->arch.apic_attention))
9729 		kvm_lapic_sync_from_vapic(vcpu);
9730 out:
9731 	return r;
9732 }
9733 
9734 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9735 {
9736 	if (!kvm_arch_vcpu_runnable(vcpu) &&
9737 	    (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) {
9738 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9739 		kvm_vcpu_block(vcpu);
9740 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9741 
9742 		if (kvm_x86_ops.post_block)
9743 			static_call(kvm_x86_post_block)(vcpu);
9744 
9745 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9746 			return 1;
9747 	}
9748 
9749 	if (kvm_apic_accept_events(vcpu) < 0)
9750 		return 0;
9751 	switch(vcpu->arch.mp_state) {
9752 	case KVM_MP_STATE_HALTED:
9753 	case KVM_MP_STATE_AP_RESET_HOLD:
9754 		vcpu->arch.pv.pv_unhalted = false;
9755 		vcpu->arch.mp_state =
9756 			KVM_MP_STATE_RUNNABLE;
9757 		fallthrough;
9758 	case KVM_MP_STATE_RUNNABLE:
9759 		vcpu->arch.apf.halted = false;
9760 		break;
9761 	case KVM_MP_STATE_INIT_RECEIVED:
9762 		break;
9763 	default:
9764 		return -EINTR;
9765 	}
9766 	return 1;
9767 }
9768 
9769 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9770 {
9771 	if (is_guest_mode(vcpu))
9772 		kvm_check_nested_events(vcpu);
9773 
9774 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9775 		!vcpu->arch.apf.halted);
9776 }
9777 
9778 static int vcpu_run(struct kvm_vcpu *vcpu)
9779 {
9780 	int r;
9781 	struct kvm *kvm = vcpu->kvm;
9782 
9783 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9784 	vcpu->arch.l1tf_flush_l1d = true;
9785 
9786 	for (;;) {
9787 		if (kvm_vcpu_running(vcpu)) {
9788 			r = vcpu_enter_guest(vcpu);
9789 		} else {
9790 			r = vcpu_block(kvm, vcpu);
9791 		}
9792 
9793 		if (r <= 0)
9794 			break;
9795 
9796 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
9797 		if (kvm_cpu_has_pending_timer(vcpu))
9798 			kvm_inject_pending_timer_irqs(vcpu);
9799 
9800 		if (dm_request_for_irq_injection(vcpu) &&
9801 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9802 			r = 0;
9803 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9804 			++vcpu->stat.request_irq_exits;
9805 			break;
9806 		}
9807 
9808 		if (__xfer_to_guest_mode_work_pending()) {
9809 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9810 			r = xfer_to_guest_mode_handle_work(vcpu);
9811 			if (r)
9812 				return r;
9813 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9814 		}
9815 	}
9816 
9817 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9818 
9819 	return r;
9820 }
9821 
9822 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9823 {
9824 	int r;
9825 
9826 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9827 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9828 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9829 	return r;
9830 }
9831 
9832 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9833 {
9834 	BUG_ON(!vcpu->arch.pio.count);
9835 
9836 	return complete_emulated_io(vcpu);
9837 }
9838 
9839 /*
9840  * Implements the following, as a state machine:
9841  *
9842  * read:
9843  *   for each fragment
9844  *     for each mmio piece in the fragment
9845  *       write gpa, len
9846  *       exit
9847  *       copy data
9848  *   execute insn
9849  *
9850  * write:
9851  *   for each fragment
9852  *     for each mmio piece in the fragment
9853  *       write gpa, len
9854  *       copy data
9855  *       exit
9856  */
9857 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9858 {
9859 	struct kvm_run *run = vcpu->run;
9860 	struct kvm_mmio_fragment *frag;
9861 	unsigned len;
9862 
9863 	BUG_ON(!vcpu->mmio_needed);
9864 
9865 	/* Complete previous fragment */
9866 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9867 	len = min(8u, frag->len);
9868 	if (!vcpu->mmio_is_write)
9869 		memcpy(frag->data, run->mmio.data, len);
9870 
9871 	if (frag->len <= 8) {
9872 		/* Switch to the next fragment. */
9873 		frag++;
9874 		vcpu->mmio_cur_fragment++;
9875 	} else {
9876 		/* Go forward to the next mmio piece. */
9877 		frag->data += len;
9878 		frag->gpa += len;
9879 		frag->len -= len;
9880 	}
9881 
9882 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9883 		vcpu->mmio_needed = 0;
9884 
9885 		/* FIXME: return into emulator if single-stepping.  */
9886 		if (vcpu->mmio_is_write)
9887 			return 1;
9888 		vcpu->mmio_read_completed = 1;
9889 		return complete_emulated_io(vcpu);
9890 	}
9891 
9892 	run->exit_reason = KVM_EXIT_MMIO;
9893 	run->mmio.phys_addr = frag->gpa;
9894 	if (vcpu->mmio_is_write)
9895 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9896 	run->mmio.len = min(8u, frag->len);
9897 	run->mmio.is_write = vcpu->mmio_is_write;
9898 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9899 	return 0;
9900 }
9901 
9902 static void kvm_save_current_fpu(struct fpu *fpu)
9903 {
9904 	/*
9905 	 * If the target FPU state is not resident in the CPU registers, just
9906 	 * memcpy() from current, else save CPU state directly to the target.
9907 	 */
9908 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
9909 		memcpy(&fpu->state, &current->thread.fpu.state,
9910 		       fpu_kernel_xstate_size);
9911 	else
9912 		save_fpregs_to_fpstate(fpu);
9913 }
9914 
9915 /* Swap (qemu) user FPU context for the guest FPU context. */
9916 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9917 {
9918 	fpregs_lock();
9919 
9920 	kvm_save_current_fpu(vcpu->arch.user_fpu);
9921 
9922 	/*
9923 	 * Guests with protected state can't have it set by the hypervisor,
9924 	 * so skip trying to set it.
9925 	 */
9926 	if (vcpu->arch.guest_fpu)
9927 		/* PKRU is separately restored in kvm_x86_ops.run. */
9928 		__restore_fpregs_from_fpstate(&vcpu->arch.guest_fpu->state,
9929 					~XFEATURE_MASK_PKRU);
9930 
9931 	fpregs_mark_activate();
9932 	fpregs_unlock();
9933 
9934 	trace_kvm_fpu(1);
9935 }
9936 
9937 /* When vcpu_run ends, restore user space FPU context. */
9938 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9939 {
9940 	fpregs_lock();
9941 
9942 	/*
9943 	 * Guests with protected state can't have it read by the hypervisor,
9944 	 * so skip trying to save it.
9945 	 */
9946 	if (vcpu->arch.guest_fpu)
9947 		kvm_save_current_fpu(vcpu->arch.guest_fpu);
9948 
9949 	restore_fpregs_from_fpstate(&vcpu->arch.user_fpu->state);
9950 
9951 	fpregs_mark_activate();
9952 	fpregs_unlock();
9953 
9954 	++vcpu->stat.fpu_reload;
9955 	trace_kvm_fpu(0);
9956 }
9957 
9958 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9959 {
9960 	struct kvm_run *kvm_run = vcpu->run;
9961 	int r;
9962 
9963 	vcpu_load(vcpu);
9964 	kvm_sigset_activate(vcpu);
9965 	kvm_run->flags = 0;
9966 	kvm_load_guest_fpu(vcpu);
9967 
9968 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9969 		if (kvm_run->immediate_exit) {
9970 			r = -EINTR;
9971 			goto out;
9972 		}
9973 		kvm_vcpu_block(vcpu);
9974 		if (kvm_apic_accept_events(vcpu) < 0) {
9975 			r = 0;
9976 			goto out;
9977 		}
9978 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9979 		r = -EAGAIN;
9980 		if (signal_pending(current)) {
9981 			r = -EINTR;
9982 			kvm_run->exit_reason = KVM_EXIT_INTR;
9983 			++vcpu->stat.signal_exits;
9984 		}
9985 		goto out;
9986 	}
9987 
9988 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
9989 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
9990 		r = -EINVAL;
9991 		goto out;
9992 	}
9993 
9994 	if (kvm_run->kvm_dirty_regs) {
9995 		r = sync_regs(vcpu);
9996 		if (r != 0)
9997 			goto out;
9998 	}
9999 
10000 	/* re-sync apic's tpr */
10001 	if (!lapic_in_kernel(vcpu)) {
10002 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10003 			r = -EINVAL;
10004 			goto out;
10005 		}
10006 	}
10007 
10008 	if (unlikely(vcpu->arch.complete_userspace_io)) {
10009 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10010 		vcpu->arch.complete_userspace_io = NULL;
10011 		r = cui(vcpu);
10012 		if (r <= 0)
10013 			goto out;
10014 	} else
10015 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10016 
10017 	if (kvm_run->immediate_exit)
10018 		r = -EINTR;
10019 	else
10020 		r = vcpu_run(vcpu);
10021 
10022 out:
10023 	kvm_put_guest_fpu(vcpu);
10024 	if (kvm_run->kvm_valid_regs)
10025 		store_regs(vcpu);
10026 	post_kvm_run_save(vcpu);
10027 	kvm_sigset_deactivate(vcpu);
10028 
10029 	vcpu_put(vcpu);
10030 	return r;
10031 }
10032 
10033 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10034 {
10035 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10036 		/*
10037 		 * We are here if userspace calls get_regs() in the middle of
10038 		 * instruction emulation. Registers state needs to be copied
10039 		 * back from emulation context to vcpu. Userspace shouldn't do
10040 		 * that usually, but some bad designed PV devices (vmware
10041 		 * backdoor interface) need this to work
10042 		 */
10043 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10044 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10045 	}
10046 	regs->rax = kvm_rax_read(vcpu);
10047 	regs->rbx = kvm_rbx_read(vcpu);
10048 	regs->rcx = kvm_rcx_read(vcpu);
10049 	regs->rdx = kvm_rdx_read(vcpu);
10050 	regs->rsi = kvm_rsi_read(vcpu);
10051 	regs->rdi = kvm_rdi_read(vcpu);
10052 	regs->rsp = kvm_rsp_read(vcpu);
10053 	regs->rbp = kvm_rbp_read(vcpu);
10054 #ifdef CONFIG_X86_64
10055 	regs->r8 = kvm_r8_read(vcpu);
10056 	regs->r9 = kvm_r9_read(vcpu);
10057 	regs->r10 = kvm_r10_read(vcpu);
10058 	regs->r11 = kvm_r11_read(vcpu);
10059 	regs->r12 = kvm_r12_read(vcpu);
10060 	regs->r13 = kvm_r13_read(vcpu);
10061 	regs->r14 = kvm_r14_read(vcpu);
10062 	regs->r15 = kvm_r15_read(vcpu);
10063 #endif
10064 
10065 	regs->rip = kvm_rip_read(vcpu);
10066 	regs->rflags = kvm_get_rflags(vcpu);
10067 }
10068 
10069 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10070 {
10071 	vcpu_load(vcpu);
10072 	__get_regs(vcpu, regs);
10073 	vcpu_put(vcpu);
10074 	return 0;
10075 }
10076 
10077 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10078 {
10079 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10080 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10081 
10082 	kvm_rax_write(vcpu, regs->rax);
10083 	kvm_rbx_write(vcpu, regs->rbx);
10084 	kvm_rcx_write(vcpu, regs->rcx);
10085 	kvm_rdx_write(vcpu, regs->rdx);
10086 	kvm_rsi_write(vcpu, regs->rsi);
10087 	kvm_rdi_write(vcpu, regs->rdi);
10088 	kvm_rsp_write(vcpu, regs->rsp);
10089 	kvm_rbp_write(vcpu, regs->rbp);
10090 #ifdef CONFIG_X86_64
10091 	kvm_r8_write(vcpu, regs->r8);
10092 	kvm_r9_write(vcpu, regs->r9);
10093 	kvm_r10_write(vcpu, regs->r10);
10094 	kvm_r11_write(vcpu, regs->r11);
10095 	kvm_r12_write(vcpu, regs->r12);
10096 	kvm_r13_write(vcpu, regs->r13);
10097 	kvm_r14_write(vcpu, regs->r14);
10098 	kvm_r15_write(vcpu, regs->r15);
10099 #endif
10100 
10101 	kvm_rip_write(vcpu, regs->rip);
10102 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10103 
10104 	vcpu->arch.exception.pending = false;
10105 
10106 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10107 }
10108 
10109 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10110 {
10111 	vcpu_load(vcpu);
10112 	__set_regs(vcpu, regs);
10113 	vcpu_put(vcpu);
10114 	return 0;
10115 }
10116 
10117 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
10118 {
10119 	struct kvm_segment cs;
10120 
10121 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10122 	*db = cs.db;
10123 	*l = cs.l;
10124 }
10125 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
10126 
10127 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10128 {
10129 	struct desc_ptr dt;
10130 
10131 	if (vcpu->arch.guest_state_protected)
10132 		goto skip_protected_regs;
10133 
10134 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10135 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10136 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10137 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10138 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10139 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10140 
10141 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10142 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10143 
10144 	static_call(kvm_x86_get_idt)(vcpu, &dt);
10145 	sregs->idt.limit = dt.size;
10146 	sregs->idt.base = dt.address;
10147 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
10148 	sregs->gdt.limit = dt.size;
10149 	sregs->gdt.base = dt.address;
10150 
10151 	sregs->cr2 = vcpu->arch.cr2;
10152 	sregs->cr3 = kvm_read_cr3(vcpu);
10153 
10154 skip_protected_regs:
10155 	sregs->cr0 = kvm_read_cr0(vcpu);
10156 	sregs->cr4 = kvm_read_cr4(vcpu);
10157 	sregs->cr8 = kvm_get_cr8(vcpu);
10158 	sregs->efer = vcpu->arch.efer;
10159 	sregs->apic_base = kvm_get_apic_base(vcpu);
10160 }
10161 
10162 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10163 {
10164 	__get_sregs_common(vcpu, sregs);
10165 
10166 	if (vcpu->arch.guest_state_protected)
10167 		return;
10168 
10169 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10170 		set_bit(vcpu->arch.interrupt.nr,
10171 			(unsigned long *)sregs->interrupt_bitmap);
10172 }
10173 
10174 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10175 {
10176 	int i;
10177 
10178 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10179 
10180 	if (vcpu->arch.guest_state_protected)
10181 		return;
10182 
10183 	if (is_pae_paging(vcpu)) {
10184 		for (i = 0 ; i < 4 ; i++)
10185 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10186 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10187 	}
10188 }
10189 
10190 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10191 				  struct kvm_sregs *sregs)
10192 {
10193 	vcpu_load(vcpu);
10194 	__get_sregs(vcpu, sregs);
10195 	vcpu_put(vcpu);
10196 	return 0;
10197 }
10198 
10199 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10200 				    struct kvm_mp_state *mp_state)
10201 {
10202 	int r;
10203 
10204 	vcpu_load(vcpu);
10205 	if (kvm_mpx_supported())
10206 		kvm_load_guest_fpu(vcpu);
10207 
10208 	r = kvm_apic_accept_events(vcpu);
10209 	if (r < 0)
10210 		goto out;
10211 	r = 0;
10212 
10213 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10214 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10215 	    vcpu->arch.pv.pv_unhalted)
10216 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10217 	else
10218 		mp_state->mp_state = vcpu->arch.mp_state;
10219 
10220 out:
10221 	if (kvm_mpx_supported())
10222 		kvm_put_guest_fpu(vcpu);
10223 	vcpu_put(vcpu);
10224 	return r;
10225 }
10226 
10227 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10228 				    struct kvm_mp_state *mp_state)
10229 {
10230 	int ret = -EINVAL;
10231 
10232 	vcpu_load(vcpu);
10233 
10234 	if (!lapic_in_kernel(vcpu) &&
10235 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10236 		goto out;
10237 
10238 	/*
10239 	 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10240 	 * INIT state; latched init should be reported using
10241 	 * KVM_SET_VCPU_EVENTS, so reject it here.
10242 	 */
10243 	if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10244 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10245 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10246 		goto out;
10247 
10248 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10249 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10250 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10251 	} else
10252 		vcpu->arch.mp_state = mp_state->mp_state;
10253 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10254 
10255 	ret = 0;
10256 out:
10257 	vcpu_put(vcpu);
10258 	return ret;
10259 }
10260 
10261 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10262 		    int reason, bool has_error_code, u32 error_code)
10263 {
10264 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10265 	int ret;
10266 
10267 	init_emulate_ctxt(vcpu);
10268 
10269 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10270 				   has_error_code, error_code);
10271 	if (ret) {
10272 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10273 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10274 		vcpu->run->internal.ndata = 0;
10275 		return 0;
10276 	}
10277 
10278 	kvm_rip_write(vcpu, ctxt->eip);
10279 	kvm_set_rflags(vcpu, ctxt->eflags);
10280 	return 1;
10281 }
10282 EXPORT_SYMBOL_GPL(kvm_task_switch);
10283 
10284 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10285 {
10286 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10287 		/*
10288 		 * When EFER.LME and CR0.PG are set, the processor is in
10289 		 * 64-bit mode (though maybe in a 32-bit code segment).
10290 		 * CR4.PAE and EFER.LMA must be set.
10291 		 */
10292 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10293 			return false;
10294 		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10295 			return false;
10296 	} else {
10297 		/*
10298 		 * Not in 64-bit mode: EFER.LMA is clear and the code
10299 		 * segment cannot be 64-bit.
10300 		 */
10301 		if (sregs->efer & EFER_LMA || sregs->cs.l)
10302 			return false;
10303 	}
10304 
10305 	return kvm_is_valid_cr4(vcpu, sregs->cr4);
10306 }
10307 
10308 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10309 		int *mmu_reset_needed, bool update_pdptrs)
10310 {
10311 	struct msr_data apic_base_msr;
10312 	int idx;
10313 	struct desc_ptr dt;
10314 
10315 	if (!kvm_is_valid_sregs(vcpu, sregs))
10316 		return -EINVAL;
10317 
10318 	apic_base_msr.data = sregs->apic_base;
10319 	apic_base_msr.host_initiated = true;
10320 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
10321 		return -EINVAL;
10322 
10323 	if (vcpu->arch.guest_state_protected)
10324 		return 0;
10325 
10326 	dt.size = sregs->idt.limit;
10327 	dt.address = sregs->idt.base;
10328 	static_call(kvm_x86_set_idt)(vcpu, &dt);
10329 	dt.size = sregs->gdt.limit;
10330 	dt.address = sregs->gdt.base;
10331 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
10332 
10333 	vcpu->arch.cr2 = sregs->cr2;
10334 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10335 	vcpu->arch.cr3 = sregs->cr3;
10336 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
10337 
10338 	kvm_set_cr8(vcpu, sregs->cr8);
10339 
10340 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10341 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10342 
10343 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10344 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10345 	vcpu->arch.cr0 = sregs->cr0;
10346 
10347 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10348 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10349 
10350 	if (update_pdptrs) {
10351 		idx = srcu_read_lock(&vcpu->kvm->srcu);
10352 		if (is_pae_paging(vcpu)) {
10353 			load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
10354 			*mmu_reset_needed = 1;
10355 		}
10356 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
10357 	}
10358 
10359 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10360 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10361 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10362 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10363 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10364 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10365 
10366 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10367 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10368 
10369 	update_cr8_intercept(vcpu);
10370 
10371 	/* Older userspace won't unhalt the vcpu on reset. */
10372 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10373 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10374 	    !is_protmode(vcpu))
10375 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10376 
10377 	return 0;
10378 }
10379 
10380 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10381 {
10382 	int pending_vec, max_bits;
10383 	int mmu_reset_needed = 0;
10384 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
10385 
10386 	if (ret)
10387 		return ret;
10388 
10389 	if (mmu_reset_needed)
10390 		kvm_mmu_reset_context(vcpu);
10391 
10392 	max_bits = KVM_NR_INTERRUPTS;
10393 	pending_vec = find_first_bit(
10394 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
10395 
10396 	if (pending_vec < max_bits) {
10397 		kvm_queue_interrupt(vcpu, pending_vec, false);
10398 		pr_debug("Set back pending irq %d\n", pending_vec);
10399 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10400 	}
10401 	return 0;
10402 }
10403 
10404 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10405 {
10406 	int mmu_reset_needed = 0;
10407 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
10408 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
10409 		!(sregs2->efer & EFER_LMA);
10410 	int i, ret;
10411 
10412 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
10413 		return -EINVAL;
10414 
10415 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
10416 		return -EINVAL;
10417 
10418 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
10419 				 &mmu_reset_needed, !valid_pdptrs);
10420 	if (ret)
10421 		return ret;
10422 
10423 	if (valid_pdptrs) {
10424 		for (i = 0; i < 4 ; i++)
10425 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
10426 
10427 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
10428 		mmu_reset_needed = 1;
10429 		vcpu->arch.pdptrs_from_userspace = true;
10430 	}
10431 	if (mmu_reset_needed)
10432 		kvm_mmu_reset_context(vcpu);
10433 	return 0;
10434 }
10435 
10436 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10437 				  struct kvm_sregs *sregs)
10438 {
10439 	int ret;
10440 
10441 	vcpu_load(vcpu);
10442 	ret = __set_sregs(vcpu, sregs);
10443 	vcpu_put(vcpu);
10444 	return ret;
10445 }
10446 
10447 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10448 					struct kvm_guest_debug *dbg)
10449 {
10450 	unsigned long rflags;
10451 	int i, r;
10452 
10453 	if (vcpu->arch.guest_state_protected)
10454 		return -EINVAL;
10455 
10456 	vcpu_load(vcpu);
10457 
10458 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10459 		r = -EBUSY;
10460 		if (vcpu->arch.exception.pending)
10461 			goto out;
10462 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10463 			kvm_queue_exception(vcpu, DB_VECTOR);
10464 		else
10465 			kvm_queue_exception(vcpu, BP_VECTOR);
10466 	}
10467 
10468 	/*
10469 	 * Read rflags as long as potentially injected trace flags are still
10470 	 * filtered out.
10471 	 */
10472 	rflags = kvm_get_rflags(vcpu);
10473 
10474 	vcpu->guest_debug = dbg->control;
10475 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10476 		vcpu->guest_debug = 0;
10477 
10478 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10479 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
10480 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10481 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10482 	} else {
10483 		for (i = 0; i < KVM_NR_DB_REGS; i++)
10484 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10485 	}
10486 	kvm_update_dr7(vcpu);
10487 
10488 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10489 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
10490 
10491 	/*
10492 	 * Trigger an rflags update that will inject or remove the trace
10493 	 * flags.
10494 	 */
10495 	kvm_set_rflags(vcpu, rflags);
10496 
10497 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
10498 
10499 	r = 0;
10500 
10501 out:
10502 	vcpu_put(vcpu);
10503 	return r;
10504 }
10505 
10506 /*
10507  * Translate a guest virtual address to a guest physical address.
10508  */
10509 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10510 				    struct kvm_translation *tr)
10511 {
10512 	unsigned long vaddr = tr->linear_address;
10513 	gpa_t gpa;
10514 	int idx;
10515 
10516 	vcpu_load(vcpu);
10517 
10518 	idx = srcu_read_lock(&vcpu->kvm->srcu);
10519 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10520 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
10521 	tr->physical_address = gpa;
10522 	tr->valid = gpa != UNMAPPED_GVA;
10523 	tr->writeable = 1;
10524 	tr->usermode = 0;
10525 
10526 	vcpu_put(vcpu);
10527 	return 0;
10528 }
10529 
10530 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10531 {
10532 	struct fxregs_state *fxsave;
10533 
10534 	if (!vcpu->arch.guest_fpu)
10535 		return 0;
10536 
10537 	vcpu_load(vcpu);
10538 
10539 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10540 	memcpy(fpu->fpr, fxsave->st_space, 128);
10541 	fpu->fcw = fxsave->cwd;
10542 	fpu->fsw = fxsave->swd;
10543 	fpu->ftwx = fxsave->twd;
10544 	fpu->last_opcode = fxsave->fop;
10545 	fpu->last_ip = fxsave->rip;
10546 	fpu->last_dp = fxsave->rdp;
10547 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
10548 
10549 	vcpu_put(vcpu);
10550 	return 0;
10551 }
10552 
10553 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10554 {
10555 	struct fxregs_state *fxsave;
10556 
10557 	if (!vcpu->arch.guest_fpu)
10558 		return 0;
10559 
10560 	vcpu_load(vcpu);
10561 
10562 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10563 
10564 	memcpy(fxsave->st_space, fpu->fpr, 128);
10565 	fxsave->cwd = fpu->fcw;
10566 	fxsave->swd = fpu->fsw;
10567 	fxsave->twd = fpu->ftwx;
10568 	fxsave->fop = fpu->last_opcode;
10569 	fxsave->rip = fpu->last_ip;
10570 	fxsave->rdp = fpu->last_dp;
10571 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
10572 
10573 	vcpu_put(vcpu);
10574 	return 0;
10575 }
10576 
10577 static void store_regs(struct kvm_vcpu *vcpu)
10578 {
10579 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10580 
10581 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10582 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
10583 
10584 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10585 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10586 
10587 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10588 		kvm_vcpu_ioctl_x86_get_vcpu_events(
10589 				vcpu, &vcpu->run->s.regs.events);
10590 }
10591 
10592 static int sync_regs(struct kvm_vcpu *vcpu)
10593 {
10594 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10595 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
10596 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10597 	}
10598 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10599 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10600 			return -EINVAL;
10601 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10602 	}
10603 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10604 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10605 				vcpu, &vcpu->run->s.regs.events))
10606 			return -EINVAL;
10607 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10608 	}
10609 
10610 	return 0;
10611 }
10612 
10613 static void fx_init(struct kvm_vcpu *vcpu)
10614 {
10615 	if (!vcpu->arch.guest_fpu)
10616 		return;
10617 
10618 	fpstate_init(&vcpu->arch.guest_fpu->state);
10619 	if (boot_cpu_has(X86_FEATURE_XSAVES))
10620 		vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
10621 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
10622 
10623 	/*
10624 	 * Ensure guest xcr0 is valid for loading
10625 	 */
10626 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10627 
10628 	vcpu->arch.cr0 |= X86_CR0_ET;
10629 }
10630 
10631 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu)
10632 {
10633 	if (vcpu->arch.guest_fpu) {
10634 		kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10635 		vcpu->arch.guest_fpu = NULL;
10636 	}
10637 }
10638 EXPORT_SYMBOL_GPL(kvm_free_guest_fpu);
10639 
10640 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10641 {
10642 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10643 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10644 			     "guest TSC will not be reliable\n");
10645 
10646 	return 0;
10647 }
10648 
10649 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10650 {
10651 	struct page *page;
10652 	int r;
10653 
10654 	vcpu->arch.last_vmentry_cpu = -1;
10655 
10656 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10657 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10658 	else
10659 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10660 
10661 	r = kvm_mmu_create(vcpu);
10662 	if (r < 0)
10663 		return r;
10664 
10665 	if (irqchip_in_kernel(vcpu->kvm)) {
10666 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10667 		if (r < 0)
10668 			goto fail_mmu_destroy;
10669 		if (kvm_apicv_activated(vcpu->kvm))
10670 			vcpu->arch.apicv_active = true;
10671 	} else
10672 		static_branch_inc(&kvm_has_noapic_vcpu);
10673 
10674 	r = -ENOMEM;
10675 
10676 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
10677 	if (!page)
10678 		goto fail_free_lapic;
10679 	vcpu->arch.pio_data = page_address(page);
10680 
10681 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10682 				       GFP_KERNEL_ACCOUNT);
10683 	if (!vcpu->arch.mce_banks)
10684 		goto fail_free_pio_data;
10685 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10686 
10687 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10688 				GFP_KERNEL_ACCOUNT))
10689 		goto fail_free_mce_banks;
10690 
10691 	if (!alloc_emulate_ctxt(vcpu))
10692 		goto free_wbinvd_dirty_mask;
10693 
10694 	vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
10695 						GFP_KERNEL_ACCOUNT);
10696 	if (!vcpu->arch.user_fpu) {
10697 		pr_err("kvm: failed to allocate userspace's fpu\n");
10698 		goto free_emulate_ctxt;
10699 	}
10700 
10701 	vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
10702 						 GFP_KERNEL_ACCOUNT);
10703 	if (!vcpu->arch.guest_fpu) {
10704 		pr_err("kvm: failed to allocate vcpu's fpu\n");
10705 		goto free_user_fpu;
10706 	}
10707 	fx_init(vcpu);
10708 
10709 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10710 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
10711 
10712 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10713 
10714 	kvm_async_pf_hash_reset(vcpu);
10715 	kvm_pmu_init(vcpu);
10716 
10717 	vcpu->arch.pending_external_vector = -1;
10718 	vcpu->arch.preempted_in_kernel = false;
10719 
10720 #if IS_ENABLED(CONFIG_HYPERV)
10721 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
10722 #endif
10723 
10724 	r = static_call(kvm_x86_vcpu_create)(vcpu);
10725 	if (r)
10726 		goto free_guest_fpu;
10727 
10728 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10729 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10730 	kvm_vcpu_mtrr_init(vcpu);
10731 	vcpu_load(vcpu);
10732 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
10733 	kvm_vcpu_reset(vcpu, false);
10734 	kvm_init_mmu(vcpu);
10735 	vcpu_put(vcpu);
10736 	return 0;
10737 
10738 free_guest_fpu:
10739 	kvm_free_guest_fpu(vcpu);
10740 free_user_fpu:
10741 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10742 free_emulate_ctxt:
10743 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10744 free_wbinvd_dirty_mask:
10745 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10746 fail_free_mce_banks:
10747 	kfree(vcpu->arch.mce_banks);
10748 fail_free_pio_data:
10749 	free_page((unsigned long)vcpu->arch.pio_data);
10750 fail_free_lapic:
10751 	kvm_free_lapic(vcpu);
10752 fail_mmu_destroy:
10753 	kvm_mmu_destroy(vcpu);
10754 	return r;
10755 }
10756 
10757 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10758 {
10759 	struct kvm *kvm = vcpu->kvm;
10760 
10761 	if (mutex_lock_killable(&vcpu->mutex))
10762 		return;
10763 	vcpu_load(vcpu);
10764 	kvm_synchronize_tsc(vcpu, 0);
10765 	vcpu_put(vcpu);
10766 
10767 	/* poll control enabled by default */
10768 	vcpu->arch.msr_kvm_poll_control = 1;
10769 
10770 	mutex_unlock(&vcpu->mutex);
10771 
10772 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10773 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10774 						KVMCLOCK_SYNC_PERIOD);
10775 }
10776 
10777 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10778 {
10779 	struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
10780 	int idx;
10781 
10782 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
10783 
10784 	kvmclock_reset(vcpu);
10785 
10786 	static_call(kvm_x86_vcpu_free)(vcpu);
10787 
10788 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10789 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10790 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10791 	kvm_free_guest_fpu(vcpu);
10792 
10793 	kvm_hv_vcpu_uninit(vcpu);
10794 	kvm_pmu_destroy(vcpu);
10795 	kfree(vcpu->arch.mce_banks);
10796 	kvm_free_lapic(vcpu);
10797 	idx = srcu_read_lock(&vcpu->kvm->srcu);
10798 	kvm_mmu_destroy(vcpu);
10799 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
10800 	free_page((unsigned long)vcpu->arch.pio_data);
10801 	kvfree(vcpu->arch.cpuid_entries);
10802 	if (!lapic_in_kernel(vcpu))
10803 		static_branch_dec(&kvm_has_noapic_vcpu);
10804 }
10805 
10806 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10807 {
10808 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
10809 	unsigned long new_cr0;
10810 	u32 eax, dummy;
10811 
10812 	kvm_lapic_reset(vcpu, init_event);
10813 
10814 	vcpu->arch.hflags = 0;
10815 
10816 	vcpu->arch.smi_pending = 0;
10817 	vcpu->arch.smi_count = 0;
10818 	atomic_set(&vcpu->arch.nmi_queued, 0);
10819 	vcpu->arch.nmi_pending = 0;
10820 	vcpu->arch.nmi_injected = false;
10821 	kvm_clear_interrupt_queue(vcpu);
10822 	kvm_clear_exception_queue(vcpu);
10823 
10824 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10825 	kvm_update_dr0123(vcpu);
10826 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
10827 	vcpu->arch.dr7 = DR7_FIXED_1;
10828 	kvm_update_dr7(vcpu);
10829 
10830 	vcpu->arch.cr2 = 0;
10831 
10832 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10833 	vcpu->arch.apf.msr_en_val = 0;
10834 	vcpu->arch.apf.msr_int_val = 0;
10835 	vcpu->arch.st.msr_val = 0;
10836 
10837 	kvmclock_reset(vcpu);
10838 
10839 	kvm_clear_async_pf_completion_queue(vcpu);
10840 	kvm_async_pf_hash_reset(vcpu);
10841 	vcpu->arch.apf.halted = false;
10842 
10843 	if (vcpu->arch.guest_fpu && kvm_mpx_supported()) {
10844 		void *mpx_state_buffer;
10845 
10846 		/*
10847 		 * To avoid have the INIT path from kvm_apic_has_events() that be
10848 		 * called with loaded FPU and does not let userspace fix the state.
10849 		 */
10850 		if (init_event)
10851 			kvm_put_guest_fpu(vcpu);
10852 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10853 					XFEATURE_BNDREGS);
10854 		if (mpx_state_buffer)
10855 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10856 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10857 					XFEATURE_BNDCSR);
10858 		if (mpx_state_buffer)
10859 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10860 		if (init_event)
10861 			kvm_load_guest_fpu(vcpu);
10862 	}
10863 
10864 	if (!init_event) {
10865 		kvm_pmu_reset(vcpu);
10866 		vcpu->arch.smbase = 0x30000;
10867 
10868 		vcpu->arch.msr_misc_features_enables = 0;
10869 
10870 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10871 	}
10872 
10873 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10874 	vcpu->arch.regs_avail = ~0;
10875 	vcpu->arch.regs_dirty = ~0;
10876 
10877 	/*
10878 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
10879 	 * if no CPUID match is found.  Note, it's impossible to get a match at
10880 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
10881 	 * i.e. it'simpossible for kvm_cpuid() to find a valid entry on RESET.
10882 	 * But, go through the motions in case that's ever remedied.
10883 	 */
10884 	eax = 1;
10885 	if (!kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true))
10886 		eax = 0x600;
10887 	kvm_rdx_write(vcpu, eax);
10888 
10889 	vcpu->arch.ia32_xss = 0;
10890 
10891 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
10892 
10893 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
10894 	kvm_rip_write(vcpu, 0xfff0);
10895 
10896 	/*
10897 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
10898 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
10899 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
10900 	 */
10901 	new_cr0 = X86_CR0_ET;
10902 	if (init_event)
10903 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
10904 	else
10905 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
10906 
10907 	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
10908 	static_call(kvm_x86_set_cr4)(vcpu, 0);
10909 	static_call(kvm_x86_set_efer)(vcpu, 0);
10910 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
10911 
10912 	/*
10913 	 * Reset the MMU context if paging was enabled prior to INIT (which is
10914 	 * implied if CR0.PG=1 as CR0 will be '0' prior to RESET).  Unlike the
10915 	 * standard CR0/CR4/EFER modification paths, only CR0.PG needs to be
10916 	 * checked because it is unconditionally cleared on INIT and all other
10917 	 * paging related bits are ignored if paging is disabled, i.e. CR0.WP,
10918 	 * CR4, and EFER changes are all irrelevant if CR0.PG was '0'.
10919 	 */
10920 	if (old_cr0 & X86_CR0_PG)
10921 		kvm_mmu_reset_context(vcpu);
10922 
10923 	/*
10924 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
10925 	 * APM states the TLBs are untouched by INIT, but it also states that
10926 	 * the TLBs are flushed on "External initialization of the processor."
10927 	 * Flush the guest TLB regardless of vendor, there is no meaningful
10928 	 * benefit in relying on the guest to flush the TLB immediately after
10929 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
10930 	 * performance perspective.
10931 	 */
10932 	if (init_event)
10933 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
10934 }
10935 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
10936 
10937 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10938 {
10939 	struct kvm_segment cs;
10940 
10941 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10942 	cs.selector = vector << 8;
10943 	cs.base = vector << 12;
10944 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10945 	kvm_rip_write(vcpu, 0);
10946 }
10947 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
10948 
10949 int kvm_arch_hardware_enable(void)
10950 {
10951 	struct kvm *kvm;
10952 	struct kvm_vcpu *vcpu;
10953 	int i;
10954 	int ret;
10955 	u64 local_tsc;
10956 	u64 max_tsc = 0;
10957 	bool stable, backwards_tsc = false;
10958 
10959 	kvm_user_return_msr_cpu_online();
10960 	ret = static_call(kvm_x86_hardware_enable)();
10961 	if (ret != 0)
10962 		return ret;
10963 
10964 	local_tsc = rdtsc();
10965 	stable = !kvm_check_tsc_unstable();
10966 	list_for_each_entry(kvm, &vm_list, vm_list) {
10967 		kvm_for_each_vcpu(i, vcpu, kvm) {
10968 			if (!stable && vcpu->cpu == smp_processor_id())
10969 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10970 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10971 				backwards_tsc = true;
10972 				if (vcpu->arch.last_host_tsc > max_tsc)
10973 					max_tsc = vcpu->arch.last_host_tsc;
10974 			}
10975 		}
10976 	}
10977 
10978 	/*
10979 	 * Sometimes, even reliable TSCs go backwards.  This happens on
10980 	 * platforms that reset TSC during suspend or hibernate actions, but
10981 	 * maintain synchronization.  We must compensate.  Fortunately, we can
10982 	 * detect that condition here, which happens early in CPU bringup,
10983 	 * before any KVM threads can be running.  Unfortunately, we can't
10984 	 * bring the TSCs fully up to date with real time, as we aren't yet far
10985 	 * enough into CPU bringup that we know how much real time has actually
10986 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10987 	 * variables that haven't been updated yet.
10988 	 *
10989 	 * So we simply find the maximum observed TSC above, then record the
10990 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
10991 	 * the adjustment will be applied.  Note that we accumulate
10992 	 * adjustments, in case multiple suspend cycles happen before some VCPU
10993 	 * gets a chance to run again.  In the event that no KVM threads get a
10994 	 * chance to run, we will miss the entire elapsed period, as we'll have
10995 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10996 	 * loose cycle time.  This isn't too big a deal, since the loss will be
10997 	 * uniform across all VCPUs (not to mention the scenario is extremely
10998 	 * unlikely). It is possible that a second hibernate recovery happens
10999 	 * much faster than a first, causing the observed TSC here to be
11000 	 * smaller; this would require additional padding adjustment, which is
11001 	 * why we set last_host_tsc to the local tsc observed here.
11002 	 *
11003 	 * N.B. - this code below runs only on platforms with reliable TSC,
11004 	 * as that is the only way backwards_tsc is set above.  Also note
11005 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11006 	 * have the same delta_cyc adjustment applied if backwards_tsc
11007 	 * is detected.  Note further, this adjustment is only done once,
11008 	 * as we reset last_host_tsc on all VCPUs to stop this from being
11009 	 * called multiple times (one for each physical CPU bringup).
11010 	 *
11011 	 * Platforms with unreliable TSCs don't have to deal with this, they
11012 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
11013 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
11014 	 * guarantee that they stay in perfect synchronization.
11015 	 */
11016 	if (backwards_tsc) {
11017 		u64 delta_cyc = max_tsc - local_tsc;
11018 		list_for_each_entry(kvm, &vm_list, vm_list) {
11019 			kvm->arch.backwards_tsc_observed = true;
11020 			kvm_for_each_vcpu(i, vcpu, kvm) {
11021 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
11022 				vcpu->arch.last_host_tsc = local_tsc;
11023 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11024 			}
11025 
11026 			/*
11027 			 * We have to disable TSC offset matching.. if you were
11028 			 * booting a VM while issuing an S4 host suspend....
11029 			 * you may have some problem.  Solving this issue is
11030 			 * left as an exercise to the reader.
11031 			 */
11032 			kvm->arch.last_tsc_nsec = 0;
11033 			kvm->arch.last_tsc_write = 0;
11034 		}
11035 
11036 	}
11037 	return 0;
11038 }
11039 
11040 void kvm_arch_hardware_disable(void)
11041 {
11042 	static_call(kvm_x86_hardware_disable)();
11043 	drop_user_return_notifiers();
11044 }
11045 
11046 int kvm_arch_hardware_setup(void *opaque)
11047 {
11048 	struct kvm_x86_init_ops *ops = opaque;
11049 	int r;
11050 
11051 	rdmsrl_safe(MSR_EFER, &host_efer);
11052 
11053 	if (boot_cpu_has(X86_FEATURE_XSAVES))
11054 		rdmsrl(MSR_IA32_XSS, host_xss);
11055 
11056 	r = ops->hardware_setup();
11057 	if (r != 0)
11058 		return r;
11059 
11060 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11061 	kvm_ops_static_call_update();
11062 
11063 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11064 		supported_xss = 0;
11065 
11066 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11067 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11068 #undef __kvm_cpu_cap_has
11069 
11070 	if (kvm_has_tsc_control) {
11071 		/*
11072 		 * Make sure the user can only configure tsc_khz values that
11073 		 * fit into a signed integer.
11074 		 * A min value is not calculated because it will always
11075 		 * be 1 on all machines.
11076 		 */
11077 		u64 max = min(0x7fffffffULL,
11078 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11079 		kvm_max_guest_tsc_khz = max;
11080 
11081 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11082 	}
11083 
11084 	kvm_init_msr_list();
11085 	return 0;
11086 }
11087 
11088 void kvm_arch_hardware_unsetup(void)
11089 {
11090 	static_call(kvm_x86_hardware_unsetup)();
11091 }
11092 
11093 int kvm_arch_check_processor_compat(void *opaque)
11094 {
11095 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11096 	struct kvm_x86_init_ops *ops = opaque;
11097 
11098 	WARN_ON(!irqs_disabled());
11099 
11100 	if (__cr4_reserved_bits(cpu_has, c) !=
11101 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11102 		return -EIO;
11103 
11104 	return ops->check_processor_compatibility();
11105 }
11106 
11107 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11108 {
11109 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11110 }
11111 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11112 
11113 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11114 {
11115 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11116 }
11117 
11118 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11119 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11120 
11121 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11122 {
11123 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11124 
11125 	vcpu->arch.l1tf_flush_l1d = true;
11126 	if (pmu->version && unlikely(pmu->event_count)) {
11127 		pmu->need_cleanup = true;
11128 		kvm_make_request(KVM_REQ_PMU, vcpu);
11129 	}
11130 	static_call(kvm_x86_sched_in)(vcpu, cpu);
11131 }
11132 
11133 void kvm_arch_free_vm(struct kvm *kvm)
11134 {
11135 	kfree(to_kvm_hv(kvm)->hv_pa_pg);
11136 	vfree(kvm);
11137 }
11138 
11139 
11140 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11141 {
11142 	if (type)
11143 		return -EINVAL;
11144 
11145 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11146 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
11147 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
11148 	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
11149 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11150 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11151 
11152 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11153 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11154 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11155 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11156 		&kvm->arch.irq_sources_bitmap);
11157 
11158 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11159 	mutex_init(&kvm->arch.apic_map_lock);
11160 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
11161 
11162 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11163 	pvclock_update_vm_gtod_copy(kvm);
11164 
11165 	kvm->arch.guest_can_read_msr_platform_info = true;
11166 
11167 #if IS_ENABLED(CONFIG_HYPERV)
11168 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11169 	kvm->arch.hv_root_tdp = INVALID_PAGE;
11170 #endif
11171 
11172 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11173 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11174 
11175 	kvm_apicv_init(kvm);
11176 	kvm_hv_init_vm(kvm);
11177 	kvm_page_track_init(kvm);
11178 	kvm_mmu_init_vm(kvm);
11179 	kvm_xen_init_vm(kvm);
11180 
11181 	return static_call(kvm_x86_vm_init)(kvm);
11182 }
11183 
11184 int kvm_arch_post_init_vm(struct kvm *kvm)
11185 {
11186 	return kvm_mmu_post_init_vm(kvm);
11187 }
11188 
11189 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11190 {
11191 	vcpu_load(vcpu);
11192 	kvm_mmu_unload(vcpu);
11193 	vcpu_put(vcpu);
11194 }
11195 
11196 static void kvm_free_vcpus(struct kvm *kvm)
11197 {
11198 	unsigned int i;
11199 	struct kvm_vcpu *vcpu;
11200 
11201 	/*
11202 	 * Unpin any mmu pages first.
11203 	 */
11204 	kvm_for_each_vcpu(i, vcpu, kvm) {
11205 		kvm_clear_async_pf_completion_queue(vcpu);
11206 		kvm_unload_vcpu_mmu(vcpu);
11207 	}
11208 	kvm_for_each_vcpu(i, vcpu, kvm)
11209 		kvm_vcpu_destroy(vcpu);
11210 
11211 	mutex_lock(&kvm->lock);
11212 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
11213 		kvm->vcpus[i] = NULL;
11214 
11215 	atomic_set(&kvm->online_vcpus, 0);
11216 	mutex_unlock(&kvm->lock);
11217 }
11218 
11219 void kvm_arch_sync_events(struct kvm *kvm)
11220 {
11221 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11222 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11223 	kvm_free_pit(kvm);
11224 }
11225 
11226 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
11227 
11228 /**
11229  * __x86_set_memory_region: Setup KVM internal memory slot
11230  *
11231  * @kvm: the kvm pointer to the VM.
11232  * @id: the slot ID to setup.
11233  * @gpa: the GPA to install the slot (unused when @size == 0).
11234  * @size: the size of the slot. Set to zero to uninstall a slot.
11235  *
11236  * This function helps to setup a KVM internal memory slot.  Specify
11237  * @size > 0 to install a new slot, while @size == 0 to uninstall a
11238  * slot.  The return code can be one of the following:
11239  *
11240  *   HVA:           on success (uninstall will return a bogus HVA)
11241  *   -errno:        on error
11242  *
11243  * The caller should always use IS_ERR() to check the return value
11244  * before use.  Note, the KVM internal memory slots are guaranteed to
11245  * remain valid and unchanged until the VM is destroyed, i.e., the
11246  * GPA->HVA translation will not change.  However, the HVA is a user
11247  * address, i.e. its accessibility is not guaranteed, and must be
11248  * accessed via __copy_{to,from}_user().
11249  */
11250 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11251 				      u32 size)
11252 {
11253 	int i, r;
11254 	unsigned long hva, old_npages;
11255 	struct kvm_memslots *slots = kvm_memslots(kvm);
11256 	struct kvm_memory_slot *slot;
11257 
11258 	/* Called with kvm->slots_lock held.  */
11259 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11260 		return ERR_PTR_USR(-EINVAL);
11261 
11262 	slot = id_to_memslot(slots, id);
11263 	if (size) {
11264 		if (slot && slot->npages)
11265 			return ERR_PTR_USR(-EEXIST);
11266 
11267 		/*
11268 		 * MAP_SHARED to prevent internal slot pages from being moved
11269 		 * by fork()/COW.
11270 		 */
11271 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11272 			      MAP_SHARED | MAP_ANONYMOUS, 0);
11273 		if (IS_ERR((void *)hva))
11274 			return (void __user *)hva;
11275 	} else {
11276 		if (!slot || !slot->npages)
11277 			return NULL;
11278 
11279 		old_npages = slot->npages;
11280 		hva = slot->userspace_addr;
11281 	}
11282 
11283 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11284 		struct kvm_userspace_memory_region m;
11285 
11286 		m.slot = id | (i << 16);
11287 		m.flags = 0;
11288 		m.guest_phys_addr = gpa;
11289 		m.userspace_addr = hva;
11290 		m.memory_size = size;
11291 		r = __kvm_set_memory_region(kvm, &m);
11292 		if (r < 0)
11293 			return ERR_PTR_USR(r);
11294 	}
11295 
11296 	if (!size)
11297 		vm_munmap(hva, old_npages * PAGE_SIZE);
11298 
11299 	return (void __user *)hva;
11300 }
11301 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11302 
11303 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11304 {
11305 	kvm_mmu_pre_destroy_vm(kvm);
11306 }
11307 
11308 void kvm_arch_destroy_vm(struct kvm *kvm)
11309 {
11310 	if (current->mm == kvm->mm) {
11311 		/*
11312 		 * Free memory regions allocated on behalf of userspace,
11313 		 * unless the the memory map has changed due to process exit
11314 		 * or fd copying.
11315 		 */
11316 		mutex_lock(&kvm->slots_lock);
11317 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11318 					0, 0);
11319 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11320 					0, 0);
11321 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11322 		mutex_unlock(&kvm->slots_lock);
11323 	}
11324 	static_call_cond(kvm_x86_vm_destroy)(kvm);
11325 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11326 	kvm_pic_destroy(kvm);
11327 	kvm_ioapic_destroy(kvm);
11328 	kvm_free_vcpus(kvm);
11329 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11330 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11331 	kvm_mmu_uninit_vm(kvm);
11332 	kvm_page_track_cleanup(kvm);
11333 	kvm_xen_destroy_vm(kvm);
11334 	kvm_hv_destroy_vm(kvm);
11335 }
11336 
11337 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11338 {
11339 	int i;
11340 
11341 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11342 		kvfree(slot->arch.rmap[i]);
11343 		slot->arch.rmap[i] = NULL;
11344 	}
11345 }
11346 
11347 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11348 {
11349 	int i;
11350 
11351 	memslot_rmap_free(slot);
11352 
11353 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11354 		kvfree(slot->arch.lpage_info[i - 1]);
11355 		slot->arch.lpage_info[i - 1] = NULL;
11356 	}
11357 
11358 	kvm_page_track_free_memslot(slot);
11359 }
11360 
11361 static int memslot_rmap_alloc(struct kvm_memory_slot *slot,
11362 			      unsigned long npages)
11363 {
11364 	const int sz = sizeof(*slot->arch.rmap[0]);
11365 	int i;
11366 
11367 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11368 		int level = i + 1;
11369 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11370 
11371 		WARN_ON(slot->arch.rmap[i]);
11372 
11373 		slot->arch.rmap[i] = kvcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
11374 		if (!slot->arch.rmap[i]) {
11375 			memslot_rmap_free(slot);
11376 			return -ENOMEM;
11377 		}
11378 	}
11379 
11380 	return 0;
11381 }
11382 
11383 int alloc_all_memslots_rmaps(struct kvm *kvm)
11384 {
11385 	struct kvm_memslots *slots;
11386 	struct kvm_memory_slot *slot;
11387 	int r, i;
11388 
11389 	/*
11390 	 * Check if memslots alreday have rmaps early before acquiring
11391 	 * the slots_arch_lock below.
11392 	 */
11393 	if (kvm_memslots_have_rmaps(kvm))
11394 		return 0;
11395 
11396 	mutex_lock(&kvm->slots_arch_lock);
11397 
11398 	/*
11399 	 * Read memslots_have_rmaps again, under the slots arch lock,
11400 	 * before allocating the rmaps
11401 	 */
11402 	if (kvm_memslots_have_rmaps(kvm)) {
11403 		mutex_unlock(&kvm->slots_arch_lock);
11404 		return 0;
11405 	}
11406 
11407 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11408 		slots = __kvm_memslots(kvm, i);
11409 		kvm_for_each_memslot(slot, slots) {
11410 			r = memslot_rmap_alloc(slot, slot->npages);
11411 			if (r) {
11412 				mutex_unlock(&kvm->slots_arch_lock);
11413 				return r;
11414 			}
11415 		}
11416 	}
11417 
11418 	/*
11419 	 * Ensure that memslots_have_rmaps becomes true strictly after
11420 	 * all the rmap pointers are set.
11421 	 */
11422 	smp_store_release(&kvm->arch.memslots_have_rmaps, true);
11423 	mutex_unlock(&kvm->slots_arch_lock);
11424 	return 0;
11425 }
11426 
11427 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
11428 				      struct kvm_memory_slot *slot,
11429 				      unsigned long npages)
11430 {
11431 	int i, r;
11432 
11433 	/*
11434 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
11435 	 * old arrays will be freed by __kvm_set_memory_region() if installing
11436 	 * the new memslot is successful.
11437 	 */
11438 	memset(&slot->arch, 0, sizeof(slot->arch));
11439 
11440 	if (kvm_memslots_have_rmaps(kvm)) {
11441 		r = memslot_rmap_alloc(slot, npages);
11442 		if (r)
11443 			return r;
11444 	}
11445 
11446 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11447 		struct kvm_lpage_info *linfo;
11448 		unsigned long ugfn;
11449 		int lpages;
11450 		int level = i + 1;
11451 
11452 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11453 
11454 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
11455 		if (!linfo)
11456 			goto out_free;
11457 
11458 		slot->arch.lpage_info[i - 1] = linfo;
11459 
11460 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
11461 			linfo[0].disallow_lpage = 1;
11462 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
11463 			linfo[lpages - 1].disallow_lpage = 1;
11464 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
11465 		/*
11466 		 * If the gfn and userspace address are not aligned wrt each
11467 		 * other, disable large page support for this slot.
11468 		 */
11469 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
11470 			unsigned long j;
11471 
11472 			for (j = 0; j < lpages; ++j)
11473 				linfo[j].disallow_lpage = 1;
11474 		}
11475 	}
11476 
11477 	if (kvm_page_track_create_memslot(slot, npages))
11478 		goto out_free;
11479 
11480 	return 0;
11481 
11482 out_free:
11483 	memslot_rmap_free(slot);
11484 
11485 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11486 		kvfree(slot->arch.lpage_info[i - 1]);
11487 		slot->arch.lpage_info[i - 1] = NULL;
11488 	}
11489 	return -ENOMEM;
11490 }
11491 
11492 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11493 {
11494 	struct kvm_vcpu *vcpu;
11495 	int i;
11496 
11497 	/*
11498 	 * memslots->generation has been incremented.
11499 	 * mmio generation may have reached its maximum value.
11500 	 */
11501 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
11502 
11503 	/* Force re-initialization of steal_time cache */
11504 	kvm_for_each_vcpu(i, vcpu, kvm)
11505 		kvm_vcpu_kick(vcpu);
11506 }
11507 
11508 int kvm_arch_prepare_memory_region(struct kvm *kvm,
11509 				struct kvm_memory_slot *memslot,
11510 				const struct kvm_userspace_memory_region *mem,
11511 				enum kvm_mr_change change)
11512 {
11513 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
11514 		return kvm_alloc_memslot_metadata(kvm, memslot,
11515 						  mem->memory_size >> PAGE_SHIFT);
11516 	return 0;
11517 }
11518 
11519 
11520 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
11521 {
11522 	struct kvm_arch *ka = &kvm->arch;
11523 
11524 	if (!kvm_x86_ops.cpu_dirty_log_size)
11525 		return;
11526 
11527 	if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
11528 	    (!enable && --ka->cpu_dirty_logging_count == 0))
11529 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
11530 
11531 	WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
11532 }
11533 
11534 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
11535 				     struct kvm_memory_slot *old,
11536 				     const struct kvm_memory_slot *new,
11537 				     enum kvm_mr_change change)
11538 {
11539 	bool log_dirty_pages = new->flags & KVM_MEM_LOG_DIRTY_PAGES;
11540 
11541 	/*
11542 	 * Update CPU dirty logging if dirty logging is being toggled.  This
11543 	 * applies to all operations.
11544 	 */
11545 	if ((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)
11546 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
11547 
11548 	/*
11549 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
11550 	 * made writable) or CREATE/MOVE/DELETE of a slot.
11551 	 *
11552 	 * For a memslot with dirty logging disabled:
11553 	 * CREATE:      No dirty mappings will already exist.
11554 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
11555 	 *		kvm_arch_flush_shadow_memslot()
11556 	 *
11557 	 * For a memslot with dirty logging enabled:
11558 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
11559 	 *		and no dirty bits to clear.
11560 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
11561 	 *		kvm_arch_flush_shadow_memslot().
11562 	 */
11563 	if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
11564 		return;
11565 
11566 	/*
11567 	 * READONLY and non-flags changes were filtered out above, and the only
11568 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
11569 	 * logging isn't being toggled on or off.
11570 	 */
11571 	if (WARN_ON_ONCE(!((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)))
11572 		return;
11573 
11574 	if (!log_dirty_pages) {
11575 		/*
11576 		 * Dirty logging tracks sptes in 4k granularity, meaning that
11577 		 * large sptes have to be split.  If live migration succeeds,
11578 		 * the guest in the source machine will be destroyed and large
11579 		 * sptes will be created in the destination.  However, if the
11580 		 * guest continues to run in the source machine (for example if
11581 		 * live migration fails), small sptes will remain around and
11582 		 * cause bad performance.
11583 		 *
11584 		 * Scan sptes if dirty logging has been stopped, dropping those
11585 		 * which can be collapsed into a single large-page spte.  Later
11586 		 * page faults will create the large-page sptes.
11587 		 */
11588 		kvm_mmu_zap_collapsible_sptes(kvm, new);
11589 	} else {
11590 		/*
11591 		 * Initially-all-set does not require write protecting any page,
11592 		 * because they're all assumed to be dirty.
11593 		 */
11594 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
11595 			return;
11596 
11597 		if (kvm_x86_ops.cpu_dirty_log_size) {
11598 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
11599 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
11600 		} else {
11601 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
11602 		}
11603 	}
11604 }
11605 
11606 void kvm_arch_commit_memory_region(struct kvm *kvm,
11607 				const struct kvm_userspace_memory_region *mem,
11608 				struct kvm_memory_slot *old,
11609 				const struct kvm_memory_slot *new,
11610 				enum kvm_mr_change change)
11611 {
11612 	if (!kvm->arch.n_requested_mmu_pages)
11613 		kvm_mmu_change_mmu_pages(kvm,
11614 				kvm_mmu_calculate_default_mmu_pages(kvm));
11615 
11616 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
11617 
11618 	/* Free the arrays associated with the old memslot. */
11619 	if (change == KVM_MR_MOVE)
11620 		kvm_arch_free_memslot(kvm, old);
11621 }
11622 
11623 void kvm_arch_flush_shadow_all(struct kvm *kvm)
11624 {
11625 	kvm_mmu_zap_all(kvm);
11626 }
11627 
11628 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
11629 				   struct kvm_memory_slot *slot)
11630 {
11631 	kvm_page_track_flush_slot(kvm, slot);
11632 }
11633 
11634 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
11635 {
11636 	return (is_guest_mode(vcpu) &&
11637 			kvm_x86_ops.guest_apic_has_interrupt &&
11638 			static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
11639 }
11640 
11641 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11642 {
11643 	if (!list_empty_careful(&vcpu->async_pf.done))
11644 		return true;
11645 
11646 	if (kvm_apic_has_events(vcpu))
11647 		return true;
11648 
11649 	if (vcpu->arch.pv.pv_unhalted)
11650 		return true;
11651 
11652 	if (vcpu->arch.exception.pending)
11653 		return true;
11654 
11655 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11656 	    (vcpu->arch.nmi_pending &&
11657 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
11658 		return true;
11659 
11660 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11661 	    (vcpu->arch.smi_pending &&
11662 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
11663 		return true;
11664 
11665 	if (kvm_arch_interrupt_allowed(vcpu) &&
11666 	    (kvm_cpu_has_interrupt(vcpu) ||
11667 	    kvm_guest_apic_has_interrupt(vcpu)))
11668 		return true;
11669 
11670 	if (kvm_hv_has_stimer_pending(vcpu))
11671 		return true;
11672 
11673 	if (is_guest_mode(vcpu) &&
11674 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
11675 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
11676 		return true;
11677 
11678 	return false;
11679 }
11680 
11681 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11682 {
11683 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11684 }
11685 
11686 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11687 {
11688 	if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
11689 		return true;
11690 
11691 	return false;
11692 }
11693 
11694 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11695 {
11696 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11697 		return true;
11698 
11699 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11700 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
11701 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
11702 		return true;
11703 
11704 	return kvm_arch_dy_has_pending_interrupt(vcpu);
11705 }
11706 
11707 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
11708 {
11709 	if (vcpu->arch.guest_state_protected)
11710 		return true;
11711 
11712 	return vcpu->arch.preempted_in_kernel;
11713 }
11714 
11715 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
11716 {
11717 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
11718 }
11719 
11720 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
11721 {
11722 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
11723 }
11724 
11725 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
11726 {
11727 	/* Can't read the RIP when guest state is protected, just return 0 */
11728 	if (vcpu->arch.guest_state_protected)
11729 		return 0;
11730 
11731 	if (is_64_bit_mode(vcpu))
11732 		return kvm_rip_read(vcpu);
11733 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
11734 		     kvm_rip_read(vcpu));
11735 }
11736 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
11737 
11738 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
11739 {
11740 	return kvm_get_linear_rip(vcpu) == linear_rip;
11741 }
11742 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
11743 
11744 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
11745 {
11746 	unsigned long rflags;
11747 
11748 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
11749 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11750 		rflags &= ~X86_EFLAGS_TF;
11751 	return rflags;
11752 }
11753 EXPORT_SYMBOL_GPL(kvm_get_rflags);
11754 
11755 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11756 {
11757 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
11758 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
11759 		rflags |= X86_EFLAGS_TF;
11760 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
11761 }
11762 
11763 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11764 {
11765 	__kvm_set_rflags(vcpu, rflags);
11766 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11767 }
11768 EXPORT_SYMBOL_GPL(kvm_set_rflags);
11769 
11770 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
11771 {
11772 	int r;
11773 
11774 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
11775 	      work->wakeup_all)
11776 		return;
11777 
11778 	r = kvm_mmu_reload(vcpu);
11779 	if (unlikely(r))
11780 		return;
11781 
11782 	if (!vcpu->arch.mmu->direct_map &&
11783 	      work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
11784 		return;
11785 
11786 	kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
11787 }
11788 
11789 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
11790 {
11791 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
11792 
11793 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
11794 }
11795 
11796 static inline u32 kvm_async_pf_next_probe(u32 key)
11797 {
11798 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
11799 }
11800 
11801 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11802 {
11803 	u32 key = kvm_async_pf_hash_fn(gfn);
11804 
11805 	while (vcpu->arch.apf.gfns[key] != ~0)
11806 		key = kvm_async_pf_next_probe(key);
11807 
11808 	vcpu->arch.apf.gfns[key] = gfn;
11809 }
11810 
11811 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
11812 {
11813 	int i;
11814 	u32 key = kvm_async_pf_hash_fn(gfn);
11815 
11816 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
11817 		     (vcpu->arch.apf.gfns[key] != gfn &&
11818 		      vcpu->arch.apf.gfns[key] != ~0); i++)
11819 		key = kvm_async_pf_next_probe(key);
11820 
11821 	return key;
11822 }
11823 
11824 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11825 {
11826 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
11827 }
11828 
11829 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11830 {
11831 	u32 i, j, k;
11832 
11833 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
11834 
11835 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
11836 		return;
11837 
11838 	while (true) {
11839 		vcpu->arch.apf.gfns[i] = ~0;
11840 		do {
11841 			j = kvm_async_pf_next_probe(j);
11842 			if (vcpu->arch.apf.gfns[j] == ~0)
11843 				return;
11844 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
11845 			/*
11846 			 * k lies cyclically in ]i,j]
11847 			 * |    i.k.j |
11848 			 * |....j i.k.| or  |.k..j i...|
11849 			 */
11850 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
11851 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
11852 		i = j;
11853 	}
11854 }
11855 
11856 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11857 {
11858 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11859 
11860 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11861 				      sizeof(reason));
11862 }
11863 
11864 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
11865 {
11866 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11867 
11868 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11869 					     &token, offset, sizeof(token));
11870 }
11871 
11872 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
11873 {
11874 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11875 	u32 val;
11876 
11877 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11878 					 &val, offset, sizeof(val)))
11879 		return false;
11880 
11881 	return !val;
11882 }
11883 
11884 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
11885 {
11886 	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
11887 		return false;
11888 
11889 	if (!kvm_pv_async_pf_enabled(vcpu) ||
11890 	    (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
11891 		return false;
11892 
11893 	return true;
11894 }
11895 
11896 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
11897 {
11898 	if (unlikely(!lapic_in_kernel(vcpu) ||
11899 		     kvm_event_needs_reinjection(vcpu) ||
11900 		     vcpu->arch.exception.pending))
11901 		return false;
11902 
11903 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
11904 		return false;
11905 
11906 	/*
11907 	 * If interrupts are off we cannot even use an artificial
11908 	 * halt state.
11909 	 */
11910 	return kvm_arch_interrupt_allowed(vcpu);
11911 }
11912 
11913 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
11914 				     struct kvm_async_pf *work)
11915 {
11916 	struct x86_exception fault;
11917 
11918 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
11919 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
11920 
11921 	if (kvm_can_deliver_async_pf(vcpu) &&
11922 	    !apf_put_user_notpresent(vcpu)) {
11923 		fault.vector = PF_VECTOR;
11924 		fault.error_code_valid = true;
11925 		fault.error_code = 0;
11926 		fault.nested_page_fault = false;
11927 		fault.address = work->arch.token;
11928 		fault.async_page_fault = true;
11929 		kvm_inject_page_fault(vcpu, &fault);
11930 		return true;
11931 	} else {
11932 		/*
11933 		 * It is not possible to deliver a paravirtualized asynchronous
11934 		 * page fault, but putting the guest in an artificial halt state
11935 		 * can be beneficial nevertheless: if an interrupt arrives, we
11936 		 * can deliver it timely and perhaps the guest will schedule
11937 		 * another process.  When the instruction that triggered a page
11938 		 * fault is retried, hopefully the page will be ready in the host.
11939 		 */
11940 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
11941 		return false;
11942 	}
11943 }
11944 
11945 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
11946 				 struct kvm_async_pf *work)
11947 {
11948 	struct kvm_lapic_irq irq = {
11949 		.delivery_mode = APIC_DM_FIXED,
11950 		.vector = vcpu->arch.apf.vec
11951 	};
11952 
11953 	if (work->wakeup_all)
11954 		work->arch.token = ~0; /* broadcast wakeup */
11955 	else
11956 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
11957 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
11958 
11959 	if ((work->wakeup_all || work->notpresent_injected) &&
11960 	    kvm_pv_async_pf_enabled(vcpu) &&
11961 	    !apf_put_user_ready(vcpu, work->arch.token)) {
11962 		vcpu->arch.apf.pageready_pending = true;
11963 		kvm_apic_set_irq(vcpu, &irq, NULL);
11964 	}
11965 
11966 	vcpu->arch.apf.halted = false;
11967 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11968 }
11969 
11970 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
11971 {
11972 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
11973 	if (!vcpu->arch.apf.pageready_pending)
11974 		kvm_vcpu_kick(vcpu);
11975 }
11976 
11977 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
11978 {
11979 	if (!kvm_pv_async_pf_enabled(vcpu))
11980 		return true;
11981 	else
11982 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
11983 }
11984 
11985 void kvm_arch_start_assignment(struct kvm *kvm)
11986 {
11987 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
11988 		static_call_cond(kvm_x86_start_assignment)(kvm);
11989 }
11990 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11991 
11992 void kvm_arch_end_assignment(struct kvm *kvm)
11993 {
11994 	atomic_dec(&kvm->arch.assigned_device_count);
11995 }
11996 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11997 
11998 bool kvm_arch_has_assigned_device(struct kvm *kvm)
11999 {
12000 	return atomic_read(&kvm->arch.assigned_device_count);
12001 }
12002 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12003 
12004 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12005 {
12006 	atomic_inc(&kvm->arch.noncoherent_dma_count);
12007 }
12008 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12009 
12010 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12011 {
12012 	atomic_dec(&kvm->arch.noncoherent_dma_count);
12013 }
12014 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12015 
12016 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12017 {
12018 	return atomic_read(&kvm->arch.noncoherent_dma_count);
12019 }
12020 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12021 
12022 bool kvm_arch_has_irq_bypass(void)
12023 {
12024 	return true;
12025 }
12026 
12027 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12028 				      struct irq_bypass_producer *prod)
12029 {
12030 	struct kvm_kernel_irqfd *irqfd =
12031 		container_of(cons, struct kvm_kernel_irqfd, consumer);
12032 	int ret;
12033 
12034 	irqfd->producer = prod;
12035 	kvm_arch_start_assignment(irqfd->kvm);
12036 	ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
12037 					 prod->irq, irqfd->gsi, 1);
12038 
12039 	if (ret)
12040 		kvm_arch_end_assignment(irqfd->kvm);
12041 
12042 	return ret;
12043 }
12044 
12045 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12046 				      struct irq_bypass_producer *prod)
12047 {
12048 	int ret;
12049 	struct kvm_kernel_irqfd *irqfd =
12050 		container_of(cons, struct kvm_kernel_irqfd, consumer);
12051 
12052 	WARN_ON(irqfd->producer != prod);
12053 	irqfd->producer = NULL;
12054 
12055 	/*
12056 	 * When producer of consumer is unregistered, we change back to
12057 	 * remapped mode, so we can re-use the current implementation
12058 	 * when the irq is masked/disabled or the consumer side (KVM
12059 	 * int this case doesn't want to receive the interrupts.
12060 	*/
12061 	ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12062 	if (ret)
12063 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12064 		       " fails: %d\n", irqfd->consumer.token, ret);
12065 
12066 	kvm_arch_end_assignment(irqfd->kvm);
12067 }
12068 
12069 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12070 				   uint32_t guest_irq, bool set)
12071 {
12072 	return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
12073 }
12074 
12075 bool kvm_vector_hashing_enabled(void)
12076 {
12077 	return vector_hashing;
12078 }
12079 
12080 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12081 {
12082 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12083 }
12084 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12085 
12086 
12087 int kvm_spec_ctrl_test_value(u64 value)
12088 {
12089 	/*
12090 	 * test that setting IA32_SPEC_CTRL to given value
12091 	 * is allowed by the host processor
12092 	 */
12093 
12094 	u64 saved_value;
12095 	unsigned long flags;
12096 	int ret = 0;
12097 
12098 	local_irq_save(flags);
12099 
12100 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12101 		ret = 1;
12102 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12103 		ret = 1;
12104 	else
12105 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12106 
12107 	local_irq_restore(flags);
12108 
12109 	return ret;
12110 }
12111 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12112 
12113 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12114 {
12115 	struct x86_exception fault;
12116 	u32 access = error_code &
12117 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12118 
12119 	if (!(error_code & PFERR_PRESENT_MASK) ||
12120 	    vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
12121 		/*
12122 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12123 		 * tables probably do not match the TLB.  Just proceed
12124 		 * with the error code that the processor gave.
12125 		 */
12126 		fault.vector = PF_VECTOR;
12127 		fault.error_code_valid = true;
12128 		fault.error_code = error_code;
12129 		fault.nested_page_fault = false;
12130 		fault.address = gva;
12131 	}
12132 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12133 }
12134 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12135 
12136 /*
12137  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12138  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12139  * indicates whether exit to userspace is needed.
12140  */
12141 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12142 			      struct x86_exception *e)
12143 {
12144 	if (r == X86EMUL_PROPAGATE_FAULT) {
12145 		kvm_inject_emulated_page_fault(vcpu, e);
12146 		return 1;
12147 	}
12148 
12149 	/*
12150 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12151 	 * while handling a VMX instruction KVM could've handled the request
12152 	 * correctly by exiting to userspace and performing I/O but there
12153 	 * doesn't seem to be a real use-case behind such requests, just return
12154 	 * KVM_EXIT_INTERNAL_ERROR for now.
12155 	 */
12156 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
12157 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
12158 	vcpu->run->internal.ndata = 0;
12159 
12160 	return 0;
12161 }
12162 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12163 
12164 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12165 {
12166 	bool pcid_enabled;
12167 	struct x86_exception e;
12168 	struct {
12169 		u64 pcid;
12170 		u64 gla;
12171 	} operand;
12172 	int r;
12173 
12174 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12175 	if (r != X86EMUL_CONTINUE)
12176 		return kvm_handle_memory_failure(vcpu, r, &e);
12177 
12178 	if (operand.pcid >> 12 != 0) {
12179 		kvm_inject_gp(vcpu, 0);
12180 		return 1;
12181 	}
12182 
12183 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12184 
12185 	switch (type) {
12186 	case INVPCID_TYPE_INDIV_ADDR:
12187 		if ((!pcid_enabled && (operand.pcid != 0)) ||
12188 		    is_noncanonical_address(operand.gla, vcpu)) {
12189 			kvm_inject_gp(vcpu, 0);
12190 			return 1;
12191 		}
12192 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12193 		return kvm_skip_emulated_instruction(vcpu);
12194 
12195 	case INVPCID_TYPE_SINGLE_CTXT:
12196 		if (!pcid_enabled && (operand.pcid != 0)) {
12197 			kvm_inject_gp(vcpu, 0);
12198 			return 1;
12199 		}
12200 
12201 		kvm_invalidate_pcid(vcpu, operand.pcid);
12202 		return kvm_skip_emulated_instruction(vcpu);
12203 
12204 	case INVPCID_TYPE_ALL_NON_GLOBAL:
12205 		/*
12206 		 * Currently, KVM doesn't mark global entries in the shadow
12207 		 * page tables, so a non-global flush just degenerates to a
12208 		 * global flush. If needed, we could optimize this later by
12209 		 * keeping track of global entries in shadow page tables.
12210 		 */
12211 
12212 		fallthrough;
12213 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
12214 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12215 		return kvm_skip_emulated_instruction(vcpu);
12216 
12217 	default:
12218 		BUG(); /* We have already checked above that type <= 3 */
12219 	}
12220 }
12221 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12222 
12223 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12224 {
12225 	struct kvm_run *run = vcpu->run;
12226 	struct kvm_mmio_fragment *frag;
12227 	unsigned int len;
12228 
12229 	BUG_ON(!vcpu->mmio_needed);
12230 
12231 	/* Complete previous fragment */
12232 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12233 	len = min(8u, frag->len);
12234 	if (!vcpu->mmio_is_write)
12235 		memcpy(frag->data, run->mmio.data, len);
12236 
12237 	if (frag->len <= 8) {
12238 		/* Switch to the next fragment. */
12239 		frag++;
12240 		vcpu->mmio_cur_fragment++;
12241 	} else {
12242 		/* Go forward to the next mmio piece. */
12243 		frag->data += len;
12244 		frag->gpa += len;
12245 		frag->len -= len;
12246 	}
12247 
12248 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12249 		vcpu->mmio_needed = 0;
12250 
12251 		// VMG change, at this point, we're always done
12252 		// RIP has already been advanced
12253 		return 1;
12254 	}
12255 
12256 	// More MMIO is needed
12257 	run->mmio.phys_addr = frag->gpa;
12258 	run->mmio.len = min(8u, frag->len);
12259 	run->mmio.is_write = vcpu->mmio_is_write;
12260 	if (run->mmio.is_write)
12261 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12262 	run->exit_reason = KVM_EXIT_MMIO;
12263 
12264 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12265 
12266 	return 0;
12267 }
12268 
12269 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12270 			  void *data)
12271 {
12272 	int handled;
12273 	struct kvm_mmio_fragment *frag;
12274 
12275 	if (!data)
12276 		return -EINVAL;
12277 
12278 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12279 	if (handled == bytes)
12280 		return 1;
12281 
12282 	bytes -= handled;
12283 	gpa += handled;
12284 	data += handled;
12285 
12286 	/*TODO: Check if need to increment number of frags */
12287 	frag = vcpu->mmio_fragments;
12288 	vcpu->mmio_nr_fragments = 1;
12289 	frag->len = bytes;
12290 	frag->gpa = gpa;
12291 	frag->data = data;
12292 
12293 	vcpu->mmio_needed = 1;
12294 	vcpu->mmio_cur_fragment = 0;
12295 
12296 	vcpu->run->mmio.phys_addr = gpa;
12297 	vcpu->run->mmio.len = min(8u, frag->len);
12298 	vcpu->run->mmio.is_write = 1;
12299 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12300 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
12301 
12302 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12303 
12304 	return 0;
12305 }
12306 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12307 
12308 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12309 			 void *data)
12310 {
12311 	int handled;
12312 	struct kvm_mmio_fragment *frag;
12313 
12314 	if (!data)
12315 		return -EINVAL;
12316 
12317 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12318 	if (handled == bytes)
12319 		return 1;
12320 
12321 	bytes -= handled;
12322 	gpa += handled;
12323 	data += handled;
12324 
12325 	/*TODO: Check if need to increment number of frags */
12326 	frag = vcpu->mmio_fragments;
12327 	vcpu->mmio_nr_fragments = 1;
12328 	frag->len = bytes;
12329 	frag->gpa = gpa;
12330 	frag->data = data;
12331 
12332 	vcpu->mmio_needed = 1;
12333 	vcpu->mmio_cur_fragment = 0;
12334 
12335 	vcpu->run->mmio.phys_addr = gpa;
12336 	vcpu->run->mmio.len = min(8u, frag->len);
12337 	vcpu->run->mmio.is_write = 0;
12338 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
12339 
12340 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12341 
12342 	return 0;
12343 }
12344 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12345 
12346 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12347 {
12348 	memcpy(vcpu->arch.guest_ins_data, vcpu->arch.pio_data,
12349 	       vcpu->arch.pio.count * vcpu->arch.pio.size);
12350 	vcpu->arch.pio.count = 0;
12351 
12352 	return 1;
12353 }
12354 
12355 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12356 			   unsigned int port, void *data,  unsigned int count)
12357 {
12358 	int ret;
12359 
12360 	ret = emulator_pio_out_emulated(vcpu->arch.emulate_ctxt, size, port,
12361 					data, count);
12362 	if (ret)
12363 		return ret;
12364 
12365 	vcpu->arch.pio.count = 0;
12366 
12367 	return 0;
12368 }
12369 
12370 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12371 			  unsigned int port, void *data, unsigned int count)
12372 {
12373 	int ret;
12374 
12375 	ret = emulator_pio_in_emulated(vcpu->arch.emulate_ctxt, size, port,
12376 				       data, count);
12377 	if (ret) {
12378 		vcpu->arch.pio.count = 0;
12379 	} else {
12380 		vcpu->arch.guest_ins_data = data;
12381 		vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
12382 	}
12383 
12384 	return 0;
12385 }
12386 
12387 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
12388 			 unsigned int port, void *data,  unsigned int count,
12389 			 int in)
12390 {
12391 	return in ? kvm_sev_es_ins(vcpu, size, port, data, count)
12392 		  : kvm_sev_es_outs(vcpu, size, port, data, count);
12393 }
12394 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
12395 
12396 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
12397 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
12398 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
12399 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
12400 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
12401 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
12402 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
12403 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
12404 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
12405 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
12406 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
12407 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
12408 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
12409 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
12410 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
12411 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
12412 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
12413 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
12414 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
12415 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
12416 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
12417 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
12418 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
12419 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
12420 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
12421 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
12422 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
12423