1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * derived from drivers/kvm/kvm_main.c 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2008 Qumranet, Inc. 8 * Copyright IBM Corporation, 2008 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 * Amit Shah <amit.shah@qumranet.com> 15 * Ben-Ami Yassour <benami@il.ibm.com> 16 * 17 * This work is licensed under the terms of the GNU GPL, version 2. See 18 * the COPYING file in the top-level directory. 19 * 20 */ 21 22 #include <linux/kvm_host.h> 23 #include "irq.h" 24 #include "mmu.h" 25 #include "i8254.h" 26 #include "tss.h" 27 #include "kvm_cache_regs.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 31 #include <linux/clocksource.h> 32 #include <linux/interrupt.h> 33 #include <linux/kvm.h> 34 #include <linux/fs.h> 35 #include <linux/vmalloc.h> 36 #include <linux/module.h> 37 #include <linux/mman.h> 38 #include <linux/highmem.h> 39 #include <linux/iommu.h> 40 #include <linux/intel-iommu.h> 41 #include <linux/cpufreq.h> 42 #include <linux/user-return-notifier.h> 43 #include <linux/srcu.h> 44 #include <linux/slab.h> 45 #include <linux/perf_event.h> 46 #include <linux/uaccess.h> 47 #include <linux/hash.h> 48 #include <linux/pci.h> 49 #include <linux/timekeeper_internal.h> 50 #include <linux/pvclock_gtod.h> 51 #include <trace/events/kvm.h> 52 53 #define CREATE_TRACE_POINTS 54 #include "trace.h" 55 56 #include <asm/debugreg.h> 57 #include <asm/msr.h> 58 #include <asm/desc.h> 59 #include <asm/mtrr.h> 60 #include <asm/mce.h> 61 #include <asm/i387.h> 62 #include <asm/fpu-internal.h> /* Ugh! */ 63 #include <asm/xcr.h> 64 #include <asm/pvclock.h> 65 #include <asm/div64.h> 66 67 #define MAX_IO_MSRS 256 68 #define KVM_MAX_MCE_BANKS 32 69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P) 70 71 #define emul_to_vcpu(ctxt) \ 72 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) 73 74 /* EFER defaults: 75 * - enable syscall per default because its emulated by KVM 76 * - enable LME and LMA per default on 64 bit KVM 77 */ 78 #ifdef CONFIG_X86_64 79 static 80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 81 #else 82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 83 #endif 84 85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM 86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU 87 88 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 89 static void process_nmi(struct kvm_vcpu *vcpu); 90 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 91 92 struct kvm_x86_ops *kvm_x86_ops; 93 EXPORT_SYMBOL_GPL(kvm_x86_ops); 94 95 static bool ignore_msrs = 0; 96 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 97 98 unsigned int min_timer_period_us = 500; 99 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 100 101 bool kvm_has_tsc_control; 102 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 103 u32 kvm_max_guest_tsc_khz; 104 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 105 106 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 107 static u32 tsc_tolerance_ppm = 250; 108 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 109 110 static bool backwards_tsc_observed = false; 111 112 #define KVM_NR_SHARED_MSRS 16 113 114 struct kvm_shared_msrs_global { 115 int nr; 116 u32 msrs[KVM_NR_SHARED_MSRS]; 117 }; 118 119 struct kvm_shared_msrs { 120 struct user_return_notifier urn; 121 bool registered; 122 struct kvm_shared_msr_values { 123 u64 host; 124 u64 curr; 125 } values[KVM_NR_SHARED_MSRS]; 126 }; 127 128 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; 129 static struct kvm_shared_msrs __percpu *shared_msrs; 130 131 struct kvm_stats_debugfs_item debugfs_entries[] = { 132 { "pf_fixed", VCPU_STAT(pf_fixed) }, 133 { "pf_guest", VCPU_STAT(pf_guest) }, 134 { "tlb_flush", VCPU_STAT(tlb_flush) }, 135 { "invlpg", VCPU_STAT(invlpg) }, 136 { "exits", VCPU_STAT(exits) }, 137 { "io_exits", VCPU_STAT(io_exits) }, 138 { "mmio_exits", VCPU_STAT(mmio_exits) }, 139 { "signal_exits", VCPU_STAT(signal_exits) }, 140 { "irq_window", VCPU_STAT(irq_window_exits) }, 141 { "nmi_window", VCPU_STAT(nmi_window_exits) }, 142 { "halt_exits", VCPU_STAT(halt_exits) }, 143 { "halt_wakeup", VCPU_STAT(halt_wakeup) }, 144 { "hypercalls", VCPU_STAT(hypercalls) }, 145 { "request_irq", VCPU_STAT(request_irq_exits) }, 146 { "irq_exits", VCPU_STAT(irq_exits) }, 147 { "host_state_reload", VCPU_STAT(host_state_reload) }, 148 { "efer_reload", VCPU_STAT(efer_reload) }, 149 { "fpu_reload", VCPU_STAT(fpu_reload) }, 150 { "insn_emulation", VCPU_STAT(insn_emulation) }, 151 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, 152 { "irq_injections", VCPU_STAT(irq_injections) }, 153 { "nmi_injections", VCPU_STAT(nmi_injections) }, 154 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, 155 { "mmu_pte_write", VM_STAT(mmu_pte_write) }, 156 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, 157 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, 158 { "mmu_flooded", VM_STAT(mmu_flooded) }, 159 { "mmu_recycled", VM_STAT(mmu_recycled) }, 160 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, 161 { "mmu_unsync", VM_STAT(mmu_unsync) }, 162 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, 163 { "largepages", VM_STAT(lpages) }, 164 { NULL } 165 }; 166 167 u64 __read_mostly host_xcr0; 168 169 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 170 171 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 172 { 173 int i; 174 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) 175 vcpu->arch.apf.gfns[i] = ~0; 176 } 177 178 static void kvm_on_user_return(struct user_return_notifier *urn) 179 { 180 unsigned slot; 181 struct kvm_shared_msrs *locals 182 = container_of(urn, struct kvm_shared_msrs, urn); 183 struct kvm_shared_msr_values *values; 184 185 for (slot = 0; slot < shared_msrs_global.nr; ++slot) { 186 values = &locals->values[slot]; 187 if (values->host != values->curr) { 188 wrmsrl(shared_msrs_global.msrs[slot], values->host); 189 values->curr = values->host; 190 } 191 } 192 locals->registered = false; 193 user_return_notifier_unregister(urn); 194 } 195 196 static void shared_msr_update(unsigned slot, u32 msr) 197 { 198 u64 value; 199 unsigned int cpu = smp_processor_id(); 200 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 201 202 /* only read, and nobody should modify it at this time, 203 * so don't need lock */ 204 if (slot >= shared_msrs_global.nr) { 205 printk(KERN_ERR "kvm: invalid MSR slot!"); 206 return; 207 } 208 rdmsrl_safe(msr, &value); 209 smsr->values[slot].host = value; 210 smsr->values[slot].curr = value; 211 } 212 213 void kvm_define_shared_msr(unsigned slot, u32 msr) 214 { 215 BUG_ON(slot >= KVM_NR_SHARED_MSRS); 216 if (slot >= shared_msrs_global.nr) 217 shared_msrs_global.nr = slot + 1; 218 shared_msrs_global.msrs[slot] = msr; 219 /* we need ensured the shared_msr_global have been updated */ 220 smp_wmb(); 221 } 222 EXPORT_SYMBOL_GPL(kvm_define_shared_msr); 223 224 static void kvm_shared_msr_cpu_online(void) 225 { 226 unsigned i; 227 228 for (i = 0; i < shared_msrs_global.nr; ++i) 229 shared_msr_update(i, shared_msrs_global.msrs[i]); 230 } 231 232 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) 233 { 234 unsigned int cpu = smp_processor_id(); 235 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 236 237 if (((value ^ smsr->values[slot].curr) & mask) == 0) 238 return; 239 smsr->values[slot].curr = value; 240 wrmsrl(shared_msrs_global.msrs[slot], value); 241 if (!smsr->registered) { 242 smsr->urn.on_user_return = kvm_on_user_return; 243 user_return_notifier_register(&smsr->urn); 244 smsr->registered = true; 245 } 246 } 247 EXPORT_SYMBOL_GPL(kvm_set_shared_msr); 248 249 static void drop_user_return_notifiers(void) 250 { 251 unsigned int cpu = smp_processor_id(); 252 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 253 254 if (smsr->registered) 255 kvm_on_user_return(&smsr->urn); 256 } 257 258 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 259 { 260 return vcpu->arch.apic_base; 261 } 262 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 263 264 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 265 { 266 u64 old_state = vcpu->arch.apic_base & 267 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE); 268 u64 new_state = msr_info->data & 269 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE); 270 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 271 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE); 272 273 if (!msr_info->host_initiated && 274 ((msr_info->data & reserved_bits) != 0 || 275 new_state == X2APIC_ENABLE || 276 (new_state == MSR_IA32_APICBASE_ENABLE && 277 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) || 278 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) && 279 old_state == 0))) 280 return 1; 281 282 kvm_lapic_set_base(vcpu, msr_info->data); 283 return 0; 284 } 285 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 286 287 asmlinkage __visible void kvm_spurious_fault(void) 288 { 289 /* Fault while not rebooting. We want the trace. */ 290 BUG(); 291 } 292 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 293 294 #define EXCPT_BENIGN 0 295 #define EXCPT_CONTRIBUTORY 1 296 #define EXCPT_PF 2 297 298 static int exception_class(int vector) 299 { 300 switch (vector) { 301 case PF_VECTOR: 302 return EXCPT_PF; 303 case DE_VECTOR: 304 case TS_VECTOR: 305 case NP_VECTOR: 306 case SS_VECTOR: 307 case GP_VECTOR: 308 return EXCPT_CONTRIBUTORY; 309 default: 310 break; 311 } 312 return EXCPT_BENIGN; 313 } 314 315 #define EXCPT_FAULT 0 316 #define EXCPT_TRAP 1 317 #define EXCPT_ABORT 2 318 #define EXCPT_INTERRUPT 3 319 320 static int exception_type(int vector) 321 { 322 unsigned int mask; 323 324 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 325 return EXCPT_INTERRUPT; 326 327 mask = 1 << vector; 328 329 /* #DB is trap, as instruction watchpoints are handled elsewhere */ 330 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) 331 return EXCPT_TRAP; 332 333 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 334 return EXCPT_ABORT; 335 336 /* Reserved exceptions will result in fault */ 337 return EXCPT_FAULT; 338 } 339 340 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 341 unsigned nr, bool has_error, u32 error_code, 342 bool reinject) 343 { 344 u32 prev_nr; 345 int class1, class2; 346 347 kvm_make_request(KVM_REQ_EVENT, vcpu); 348 349 if (!vcpu->arch.exception.pending) { 350 queue: 351 vcpu->arch.exception.pending = true; 352 vcpu->arch.exception.has_error_code = has_error; 353 vcpu->arch.exception.nr = nr; 354 vcpu->arch.exception.error_code = error_code; 355 vcpu->arch.exception.reinject = reinject; 356 return; 357 } 358 359 /* to check exception */ 360 prev_nr = vcpu->arch.exception.nr; 361 if (prev_nr == DF_VECTOR) { 362 /* triple fault -> shutdown */ 363 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 364 return; 365 } 366 class1 = exception_class(prev_nr); 367 class2 = exception_class(nr); 368 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 369 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 370 /* generate double fault per SDM Table 5-5 */ 371 vcpu->arch.exception.pending = true; 372 vcpu->arch.exception.has_error_code = true; 373 vcpu->arch.exception.nr = DF_VECTOR; 374 vcpu->arch.exception.error_code = 0; 375 } else 376 /* replace previous exception with a new one in a hope 377 that instruction re-execution will regenerate lost 378 exception */ 379 goto queue; 380 } 381 382 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 383 { 384 kvm_multiple_exception(vcpu, nr, false, 0, false); 385 } 386 EXPORT_SYMBOL_GPL(kvm_queue_exception); 387 388 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 389 { 390 kvm_multiple_exception(vcpu, nr, false, 0, true); 391 } 392 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 393 394 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 395 { 396 if (err) 397 kvm_inject_gp(vcpu, 0); 398 else 399 kvm_x86_ops->skip_emulated_instruction(vcpu); 400 } 401 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 402 403 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 404 { 405 ++vcpu->stat.pf_guest; 406 vcpu->arch.cr2 = fault->address; 407 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 408 } 409 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 410 411 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 412 { 413 if (mmu_is_nested(vcpu) && !fault->nested_page_fault) 414 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); 415 else 416 vcpu->arch.mmu.inject_page_fault(vcpu, fault); 417 418 return fault->nested_page_fault; 419 } 420 421 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 422 { 423 atomic_inc(&vcpu->arch.nmi_queued); 424 kvm_make_request(KVM_REQ_NMI, vcpu); 425 } 426 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 427 428 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 429 { 430 kvm_multiple_exception(vcpu, nr, true, error_code, false); 431 } 432 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 433 434 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 435 { 436 kvm_multiple_exception(vcpu, nr, true, error_code, true); 437 } 438 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 439 440 /* 441 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 442 * a #GP and return false. 443 */ 444 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 445 { 446 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) 447 return true; 448 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 449 return false; 450 } 451 EXPORT_SYMBOL_GPL(kvm_require_cpl); 452 453 /* 454 * This function will be used to read from the physical memory of the currently 455 * running guest. The difference to kvm_read_guest_page is that this function 456 * can read from guest physical or from the guest's guest physical memory. 457 */ 458 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 459 gfn_t ngfn, void *data, int offset, int len, 460 u32 access) 461 { 462 struct x86_exception exception; 463 gfn_t real_gfn; 464 gpa_t ngpa; 465 466 ngpa = gfn_to_gpa(ngfn); 467 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception); 468 if (real_gfn == UNMAPPED_GVA) 469 return -EFAULT; 470 471 real_gfn = gpa_to_gfn(real_gfn); 472 473 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len); 474 } 475 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 476 477 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 478 void *data, int offset, int len, u32 access) 479 { 480 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 481 data, offset, len, access); 482 } 483 484 /* 485 * Load the pae pdptrs. Return true is they are all valid. 486 */ 487 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 488 { 489 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 490 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 491 int i; 492 int ret; 493 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 494 495 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 496 offset * sizeof(u64), sizeof(pdpte), 497 PFERR_USER_MASK|PFERR_WRITE_MASK); 498 if (ret < 0) { 499 ret = 0; 500 goto out; 501 } 502 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 503 if (is_present_gpte(pdpte[i]) && 504 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) { 505 ret = 0; 506 goto out; 507 } 508 } 509 ret = 1; 510 511 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 512 __set_bit(VCPU_EXREG_PDPTR, 513 (unsigned long *)&vcpu->arch.regs_avail); 514 __set_bit(VCPU_EXREG_PDPTR, 515 (unsigned long *)&vcpu->arch.regs_dirty); 516 out: 517 518 return ret; 519 } 520 EXPORT_SYMBOL_GPL(load_pdptrs); 521 522 static bool pdptrs_changed(struct kvm_vcpu *vcpu) 523 { 524 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 525 bool changed = true; 526 int offset; 527 gfn_t gfn; 528 int r; 529 530 if (is_long_mode(vcpu) || !is_pae(vcpu)) 531 return false; 532 533 if (!test_bit(VCPU_EXREG_PDPTR, 534 (unsigned long *)&vcpu->arch.regs_avail)) 535 return true; 536 537 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT; 538 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1); 539 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 540 PFERR_USER_MASK | PFERR_WRITE_MASK); 541 if (r < 0) 542 goto out; 543 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 544 out: 545 546 return changed; 547 } 548 549 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 550 { 551 unsigned long old_cr0 = kvm_read_cr0(vcpu); 552 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP | 553 X86_CR0_CD | X86_CR0_NW; 554 555 cr0 |= X86_CR0_ET; 556 557 #ifdef CONFIG_X86_64 558 if (cr0 & 0xffffffff00000000UL) 559 return 1; 560 #endif 561 562 cr0 &= ~CR0_RESERVED_BITS; 563 564 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 565 return 1; 566 567 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 568 return 1; 569 570 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 571 #ifdef CONFIG_X86_64 572 if ((vcpu->arch.efer & EFER_LME)) { 573 int cs_db, cs_l; 574 575 if (!is_pae(vcpu)) 576 return 1; 577 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 578 if (cs_l) 579 return 1; 580 } else 581 #endif 582 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 583 kvm_read_cr3(vcpu))) 584 return 1; 585 } 586 587 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 588 return 1; 589 590 kvm_x86_ops->set_cr0(vcpu, cr0); 591 592 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 593 kvm_clear_async_pf_completion_queue(vcpu); 594 kvm_async_pf_hash_reset(vcpu); 595 } 596 597 if ((cr0 ^ old_cr0) & update_bits) 598 kvm_mmu_reset_context(vcpu); 599 return 0; 600 } 601 EXPORT_SYMBOL_GPL(kvm_set_cr0); 602 603 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 604 { 605 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 606 } 607 EXPORT_SYMBOL_GPL(kvm_lmsw); 608 609 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) 610 { 611 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && 612 !vcpu->guest_xcr0_loaded) { 613 /* kvm_set_xcr() also depends on this */ 614 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 615 vcpu->guest_xcr0_loaded = 1; 616 } 617 } 618 619 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) 620 { 621 if (vcpu->guest_xcr0_loaded) { 622 if (vcpu->arch.xcr0 != host_xcr0) 623 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 624 vcpu->guest_xcr0_loaded = 0; 625 } 626 } 627 628 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 629 { 630 u64 xcr0 = xcr; 631 u64 old_xcr0 = vcpu->arch.xcr0; 632 u64 valid_bits; 633 634 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 635 if (index != XCR_XFEATURE_ENABLED_MASK) 636 return 1; 637 if (!(xcr0 & XSTATE_FP)) 638 return 1; 639 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE)) 640 return 1; 641 642 /* 643 * Do not allow the guest to set bits that we do not support 644 * saving. However, xcr0 bit 0 is always set, even if the 645 * emulated CPU does not support XSAVE (see fx_init). 646 */ 647 valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP; 648 if (xcr0 & ~valid_bits) 649 return 1; 650 651 if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR))) 652 return 1; 653 654 kvm_put_guest_xcr0(vcpu); 655 vcpu->arch.xcr0 = xcr0; 656 657 if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK) 658 kvm_update_cpuid(vcpu); 659 return 0; 660 } 661 662 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 663 { 664 if (kvm_x86_ops->get_cpl(vcpu) != 0 || 665 __kvm_set_xcr(vcpu, index, xcr)) { 666 kvm_inject_gp(vcpu, 0); 667 return 1; 668 } 669 return 0; 670 } 671 EXPORT_SYMBOL_GPL(kvm_set_xcr); 672 673 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 674 { 675 unsigned long old_cr4 = kvm_read_cr4(vcpu); 676 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | 677 X86_CR4_PAE | X86_CR4_SMEP; 678 if (cr4 & CR4_RESERVED_BITS) 679 return 1; 680 681 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE)) 682 return 1; 683 684 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP)) 685 return 1; 686 687 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP)) 688 return 1; 689 690 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE)) 691 return 1; 692 693 if (is_long_mode(vcpu)) { 694 if (!(cr4 & X86_CR4_PAE)) 695 return 1; 696 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 697 && ((cr4 ^ old_cr4) & pdptr_bits) 698 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 699 kvm_read_cr3(vcpu))) 700 return 1; 701 702 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 703 if (!guest_cpuid_has_pcid(vcpu)) 704 return 1; 705 706 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 707 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 708 return 1; 709 } 710 711 if (kvm_x86_ops->set_cr4(vcpu, cr4)) 712 return 1; 713 714 if (((cr4 ^ old_cr4) & pdptr_bits) || 715 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 716 kvm_mmu_reset_context(vcpu); 717 718 if ((cr4 ^ old_cr4) & X86_CR4_SMAP) 719 update_permission_bitmask(vcpu, vcpu->arch.walk_mmu, false); 720 721 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE) 722 kvm_update_cpuid(vcpu); 723 724 return 0; 725 } 726 EXPORT_SYMBOL_GPL(kvm_set_cr4); 727 728 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 729 { 730 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 731 kvm_mmu_sync_roots(vcpu); 732 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 733 return 0; 734 } 735 736 if (is_long_mode(vcpu)) { 737 if (cr3 & CR3_L_MODE_RESERVED_BITS) 738 return 1; 739 } else if (is_pae(vcpu) && is_paging(vcpu) && 740 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 741 return 1; 742 743 vcpu->arch.cr3 = cr3; 744 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 745 kvm_mmu_new_cr3(vcpu); 746 return 0; 747 } 748 EXPORT_SYMBOL_GPL(kvm_set_cr3); 749 750 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 751 { 752 if (cr8 & CR8_RESERVED_BITS) 753 return 1; 754 if (irqchip_in_kernel(vcpu->kvm)) 755 kvm_lapic_set_tpr(vcpu, cr8); 756 else 757 vcpu->arch.cr8 = cr8; 758 return 0; 759 } 760 EXPORT_SYMBOL_GPL(kvm_set_cr8); 761 762 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 763 { 764 if (irqchip_in_kernel(vcpu->kvm)) 765 return kvm_lapic_get_cr8(vcpu); 766 else 767 return vcpu->arch.cr8; 768 } 769 EXPORT_SYMBOL_GPL(kvm_get_cr8); 770 771 static void kvm_update_dr6(struct kvm_vcpu *vcpu) 772 { 773 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 774 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6); 775 } 776 777 static void kvm_update_dr7(struct kvm_vcpu *vcpu) 778 { 779 unsigned long dr7; 780 781 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 782 dr7 = vcpu->arch.guest_debug_dr7; 783 else 784 dr7 = vcpu->arch.dr7; 785 kvm_x86_ops->set_dr7(vcpu, dr7); 786 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 787 if (dr7 & DR7_BP_EN_MASK) 788 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 789 } 790 791 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 792 { 793 u64 fixed = DR6_FIXED_1; 794 795 if (!guest_cpuid_has_rtm(vcpu)) 796 fixed |= DR6_RTM; 797 return fixed; 798 } 799 800 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 801 { 802 switch (dr) { 803 case 0 ... 3: 804 vcpu->arch.db[dr] = val; 805 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 806 vcpu->arch.eff_db[dr] = val; 807 break; 808 case 4: 809 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 810 return 1; /* #UD */ 811 /* fall through */ 812 case 6: 813 if (val & 0xffffffff00000000ULL) 814 return -1; /* #GP */ 815 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 816 kvm_update_dr6(vcpu); 817 break; 818 case 5: 819 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 820 return 1; /* #UD */ 821 /* fall through */ 822 default: /* 7 */ 823 if (val & 0xffffffff00000000ULL) 824 return -1; /* #GP */ 825 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 826 kvm_update_dr7(vcpu); 827 break; 828 } 829 830 return 0; 831 } 832 833 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 834 { 835 int res; 836 837 res = __kvm_set_dr(vcpu, dr, val); 838 if (res > 0) 839 kvm_queue_exception(vcpu, UD_VECTOR); 840 else if (res < 0) 841 kvm_inject_gp(vcpu, 0); 842 843 return res; 844 } 845 EXPORT_SYMBOL_GPL(kvm_set_dr); 846 847 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 848 { 849 switch (dr) { 850 case 0 ... 3: 851 *val = vcpu->arch.db[dr]; 852 break; 853 case 4: 854 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 855 return 1; 856 /* fall through */ 857 case 6: 858 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 859 *val = vcpu->arch.dr6; 860 else 861 *val = kvm_x86_ops->get_dr6(vcpu); 862 break; 863 case 5: 864 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 865 return 1; 866 /* fall through */ 867 default: /* 7 */ 868 *val = vcpu->arch.dr7; 869 break; 870 } 871 872 return 0; 873 } 874 875 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 876 { 877 if (_kvm_get_dr(vcpu, dr, val)) { 878 kvm_queue_exception(vcpu, UD_VECTOR); 879 return 1; 880 } 881 return 0; 882 } 883 EXPORT_SYMBOL_GPL(kvm_get_dr); 884 885 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 886 { 887 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); 888 u64 data; 889 int err; 890 891 err = kvm_pmu_read_pmc(vcpu, ecx, &data); 892 if (err) 893 return err; 894 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data); 895 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32); 896 return err; 897 } 898 EXPORT_SYMBOL_GPL(kvm_rdpmc); 899 900 /* 901 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 902 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 903 * 904 * This list is modified at module load time to reflect the 905 * capabilities of the host cpu. This capabilities test skips MSRs that are 906 * kvm-specific. Those are put in the beginning of the list. 907 */ 908 909 #define KVM_SAVE_MSRS_BEGIN 12 910 static u32 msrs_to_save[] = { 911 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 912 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 913 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 914 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 915 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 916 MSR_KVM_PV_EOI_EN, 917 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 918 MSR_STAR, 919 #ifdef CONFIG_X86_64 920 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 921 #endif 922 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 923 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS 924 }; 925 926 static unsigned num_msrs_to_save; 927 928 static const u32 emulated_msrs[] = { 929 MSR_IA32_TSC_ADJUST, 930 MSR_IA32_TSCDEADLINE, 931 MSR_IA32_MISC_ENABLE, 932 MSR_IA32_MCG_STATUS, 933 MSR_IA32_MCG_CTL, 934 }; 935 936 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 937 { 938 if (efer & efer_reserved_bits) 939 return false; 940 941 if (efer & EFER_FFXSR) { 942 struct kvm_cpuid_entry2 *feat; 943 944 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 945 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) 946 return false; 947 } 948 949 if (efer & EFER_SVME) { 950 struct kvm_cpuid_entry2 *feat; 951 952 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 953 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) 954 return false; 955 } 956 957 return true; 958 } 959 EXPORT_SYMBOL_GPL(kvm_valid_efer); 960 961 static int set_efer(struct kvm_vcpu *vcpu, u64 efer) 962 { 963 u64 old_efer = vcpu->arch.efer; 964 965 if (!kvm_valid_efer(vcpu, efer)) 966 return 1; 967 968 if (is_paging(vcpu) 969 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 970 return 1; 971 972 efer &= ~EFER_LMA; 973 efer |= vcpu->arch.efer & EFER_LMA; 974 975 kvm_x86_ops->set_efer(vcpu, efer); 976 977 /* Update reserved bits */ 978 if ((efer ^ old_efer) & EFER_NX) 979 kvm_mmu_reset_context(vcpu); 980 981 return 0; 982 } 983 984 void kvm_enable_efer_bits(u64 mask) 985 { 986 efer_reserved_bits &= ~mask; 987 } 988 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 989 990 991 /* 992 * Writes msr value into into the appropriate "register". 993 * Returns 0 on success, non-0 otherwise. 994 * Assumes vcpu_load() was already called. 995 */ 996 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 997 { 998 return kvm_x86_ops->set_msr(vcpu, msr); 999 } 1000 1001 /* 1002 * Adapt set_msr() to msr_io()'s calling convention 1003 */ 1004 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1005 { 1006 struct msr_data msr; 1007 1008 msr.data = *data; 1009 msr.index = index; 1010 msr.host_initiated = true; 1011 return kvm_set_msr(vcpu, &msr); 1012 } 1013 1014 #ifdef CONFIG_X86_64 1015 struct pvclock_gtod_data { 1016 seqcount_t seq; 1017 1018 struct { /* extract of a clocksource struct */ 1019 int vclock_mode; 1020 cycle_t cycle_last; 1021 cycle_t mask; 1022 u32 mult; 1023 u32 shift; 1024 } clock; 1025 1026 u64 boot_ns; 1027 u64 nsec_base; 1028 }; 1029 1030 static struct pvclock_gtod_data pvclock_gtod_data; 1031 1032 static void update_pvclock_gtod(struct timekeeper *tk) 1033 { 1034 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 1035 u64 boot_ns; 1036 1037 boot_ns = ktime_to_ns(ktime_add(tk->tkr.base_mono, tk->offs_boot)); 1038 1039 write_seqcount_begin(&vdata->seq); 1040 1041 /* copy pvclock gtod data */ 1042 vdata->clock.vclock_mode = tk->tkr.clock->archdata.vclock_mode; 1043 vdata->clock.cycle_last = tk->tkr.cycle_last; 1044 vdata->clock.mask = tk->tkr.mask; 1045 vdata->clock.mult = tk->tkr.mult; 1046 vdata->clock.shift = tk->tkr.shift; 1047 1048 vdata->boot_ns = boot_ns; 1049 vdata->nsec_base = tk->tkr.xtime_nsec; 1050 1051 write_seqcount_end(&vdata->seq); 1052 } 1053 #endif 1054 1055 1056 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 1057 { 1058 int version; 1059 int r; 1060 struct pvclock_wall_clock wc; 1061 struct timespec boot; 1062 1063 if (!wall_clock) 1064 return; 1065 1066 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 1067 if (r) 1068 return; 1069 1070 if (version & 1) 1071 ++version; /* first time write, random junk */ 1072 1073 ++version; 1074 1075 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1076 1077 /* 1078 * The guest calculates current wall clock time by adding 1079 * system time (updated by kvm_guest_time_update below) to the 1080 * wall clock specified here. guest system time equals host 1081 * system time for us, thus we must fill in host boot time here. 1082 */ 1083 getboottime(&boot); 1084 1085 if (kvm->arch.kvmclock_offset) { 1086 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset); 1087 boot = timespec_sub(boot, ts); 1088 } 1089 wc.sec = boot.tv_sec; 1090 wc.nsec = boot.tv_nsec; 1091 wc.version = version; 1092 1093 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 1094 1095 version++; 1096 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1097 } 1098 1099 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 1100 { 1101 uint32_t quotient, remainder; 1102 1103 /* Don't try to replace with do_div(), this one calculates 1104 * "(dividend << 32) / divisor" */ 1105 __asm__ ( "divl %4" 1106 : "=a" (quotient), "=d" (remainder) 1107 : "0" (0), "1" (dividend), "r" (divisor) ); 1108 return quotient; 1109 } 1110 1111 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz, 1112 s8 *pshift, u32 *pmultiplier) 1113 { 1114 uint64_t scaled64; 1115 int32_t shift = 0; 1116 uint64_t tps64; 1117 uint32_t tps32; 1118 1119 tps64 = base_khz * 1000LL; 1120 scaled64 = scaled_khz * 1000LL; 1121 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 1122 tps64 >>= 1; 1123 shift--; 1124 } 1125 1126 tps32 = (uint32_t)tps64; 1127 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 1128 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 1129 scaled64 >>= 1; 1130 else 1131 tps32 <<= 1; 1132 shift++; 1133 } 1134 1135 *pshift = shift; 1136 *pmultiplier = div_frac(scaled64, tps32); 1137 1138 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n", 1139 __func__, base_khz, scaled_khz, shift, *pmultiplier); 1140 } 1141 1142 static inline u64 get_kernel_ns(void) 1143 { 1144 return ktime_get_boot_ns(); 1145 } 1146 1147 #ifdef CONFIG_X86_64 1148 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 1149 #endif 1150 1151 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 1152 unsigned long max_tsc_khz; 1153 1154 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec) 1155 { 1156 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult, 1157 vcpu->arch.virtual_tsc_shift); 1158 } 1159 1160 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 1161 { 1162 u64 v = (u64)khz * (1000000 + ppm); 1163 do_div(v, 1000000); 1164 return v; 1165 } 1166 1167 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz) 1168 { 1169 u32 thresh_lo, thresh_hi; 1170 int use_scaling = 0; 1171 1172 /* tsc_khz can be zero if TSC calibration fails */ 1173 if (this_tsc_khz == 0) 1174 return; 1175 1176 /* Compute a scale to convert nanoseconds in TSC cycles */ 1177 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000, 1178 &vcpu->arch.virtual_tsc_shift, 1179 &vcpu->arch.virtual_tsc_mult); 1180 vcpu->arch.virtual_tsc_khz = this_tsc_khz; 1181 1182 /* 1183 * Compute the variation in TSC rate which is acceptable 1184 * within the range of tolerance and decide if the 1185 * rate being applied is within that bounds of the hardware 1186 * rate. If so, no scaling or compensation need be done. 1187 */ 1188 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 1189 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 1190 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) { 1191 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi); 1192 use_scaling = 1; 1193 } 1194 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling); 1195 } 1196 1197 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 1198 { 1199 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 1200 vcpu->arch.virtual_tsc_mult, 1201 vcpu->arch.virtual_tsc_shift); 1202 tsc += vcpu->arch.this_tsc_write; 1203 return tsc; 1204 } 1205 1206 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 1207 { 1208 #ifdef CONFIG_X86_64 1209 bool vcpus_matched; 1210 bool do_request = false; 1211 struct kvm_arch *ka = &vcpu->kvm->arch; 1212 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1213 1214 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1215 atomic_read(&vcpu->kvm->online_vcpus)); 1216 1217 if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC) 1218 if (!ka->use_master_clock) 1219 do_request = 1; 1220 1221 if (!vcpus_matched && ka->use_master_clock) 1222 do_request = 1; 1223 1224 if (do_request) 1225 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 1226 1227 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 1228 atomic_read(&vcpu->kvm->online_vcpus), 1229 ka->use_master_clock, gtod->clock.vclock_mode); 1230 #endif 1231 } 1232 1233 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) 1234 { 1235 u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu); 1236 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; 1237 } 1238 1239 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) 1240 { 1241 struct kvm *kvm = vcpu->kvm; 1242 u64 offset, ns, elapsed; 1243 unsigned long flags; 1244 s64 usdiff; 1245 bool matched; 1246 bool already_matched; 1247 u64 data = msr->data; 1248 1249 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 1250 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); 1251 ns = get_kernel_ns(); 1252 elapsed = ns - kvm->arch.last_tsc_nsec; 1253 1254 if (vcpu->arch.virtual_tsc_khz) { 1255 int faulted = 0; 1256 1257 /* n.b - signed multiplication and division required */ 1258 usdiff = data - kvm->arch.last_tsc_write; 1259 #ifdef CONFIG_X86_64 1260 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz; 1261 #else 1262 /* do_div() only does unsigned */ 1263 asm("1: idivl %[divisor]\n" 1264 "2: xor %%edx, %%edx\n" 1265 " movl $0, %[faulted]\n" 1266 "3:\n" 1267 ".section .fixup,\"ax\"\n" 1268 "4: movl $1, %[faulted]\n" 1269 " jmp 3b\n" 1270 ".previous\n" 1271 1272 _ASM_EXTABLE(1b, 4b) 1273 1274 : "=A"(usdiff), [faulted] "=r" (faulted) 1275 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz)); 1276 1277 #endif 1278 do_div(elapsed, 1000); 1279 usdiff -= elapsed; 1280 if (usdiff < 0) 1281 usdiff = -usdiff; 1282 1283 /* idivl overflow => difference is larger than USEC_PER_SEC */ 1284 if (faulted) 1285 usdiff = USEC_PER_SEC; 1286 } else 1287 usdiff = USEC_PER_SEC; /* disable TSC match window below */ 1288 1289 /* 1290 * Special case: TSC write with a small delta (1 second) of virtual 1291 * cycle time against real time is interpreted as an attempt to 1292 * synchronize the CPU. 1293 * 1294 * For a reliable TSC, we can match TSC offsets, and for an unstable 1295 * TSC, we add elapsed time in this computation. We could let the 1296 * compensation code attempt to catch up if we fall behind, but 1297 * it's better to try to match offsets from the beginning. 1298 */ 1299 if (usdiff < USEC_PER_SEC && 1300 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 1301 if (!check_tsc_unstable()) { 1302 offset = kvm->arch.cur_tsc_offset; 1303 pr_debug("kvm: matched tsc offset for %llu\n", data); 1304 } else { 1305 u64 delta = nsec_to_cycles(vcpu, elapsed); 1306 data += delta; 1307 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); 1308 pr_debug("kvm: adjusted tsc offset by %llu\n", delta); 1309 } 1310 matched = true; 1311 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation); 1312 } else { 1313 /* 1314 * We split periods of matched TSC writes into generations. 1315 * For each generation, we track the original measured 1316 * nanosecond time, offset, and write, so if TSCs are in 1317 * sync, we can match exact offset, and if not, we can match 1318 * exact software computation in compute_guest_tsc() 1319 * 1320 * These values are tracked in kvm->arch.cur_xxx variables. 1321 */ 1322 kvm->arch.cur_tsc_generation++; 1323 kvm->arch.cur_tsc_nsec = ns; 1324 kvm->arch.cur_tsc_write = data; 1325 kvm->arch.cur_tsc_offset = offset; 1326 matched = false; 1327 pr_debug("kvm: new tsc generation %llu, clock %llu\n", 1328 kvm->arch.cur_tsc_generation, data); 1329 } 1330 1331 /* 1332 * We also track th most recent recorded KHZ, write and time to 1333 * allow the matching interval to be extended at each write. 1334 */ 1335 kvm->arch.last_tsc_nsec = ns; 1336 kvm->arch.last_tsc_write = data; 1337 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 1338 1339 vcpu->arch.last_guest_tsc = data; 1340 1341 /* Keep track of which generation this VCPU has synchronized to */ 1342 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 1343 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 1344 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 1345 1346 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated) 1347 update_ia32_tsc_adjust_msr(vcpu, offset); 1348 kvm_x86_ops->write_tsc_offset(vcpu, offset); 1349 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 1350 1351 spin_lock(&kvm->arch.pvclock_gtod_sync_lock); 1352 if (!matched) { 1353 kvm->arch.nr_vcpus_matched_tsc = 0; 1354 } else if (!already_matched) { 1355 kvm->arch.nr_vcpus_matched_tsc++; 1356 } 1357 1358 kvm_track_tsc_matching(vcpu); 1359 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); 1360 } 1361 1362 EXPORT_SYMBOL_GPL(kvm_write_tsc); 1363 1364 #ifdef CONFIG_X86_64 1365 1366 static cycle_t read_tsc(void) 1367 { 1368 cycle_t ret; 1369 u64 last; 1370 1371 /* 1372 * Empirically, a fence (of type that depends on the CPU) 1373 * before rdtsc is enough to ensure that rdtsc is ordered 1374 * with respect to loads. The various CPU manuals are unclear 1375 * as to whether rdtsc can be reordered with later loads, 1376 * but no one has ever seen it happen. 1377 */ 1378 rdtsc_barrier(); 1379 ret = (cycle_t)vget_cycles(); 1380 1381 last = pvclock_gtod_data.clock.cycle_last; 1382 1383 if (likely(ret >= last)) 1384 return ret; 1385 1386 /* 1387 * GCC likes to generate cmov here, but this branch is extremely 1388 * predictable (it's just a funciton of time and the likely is 1389 * very likely) and there's a data dependence, so force GCC 1390 * to generate a branch instead. I don't barrier() because 1391 * we don't actually need a barrier, and if this function 1392 * ever gets inlined it will generate worse code. 1393 */ 1394 asm volatile (""); 1395 return last; 1396 } 1397 1398 static inline u64 vgettsc(cycle_t *cycle_now) 1399 { 1400 long v; 1401 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1402 1403 *cycle_now = read_tsc(); 1404 1405 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask; 1406 return v * gtod->clock.mult; 1407 } 1408 1409 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now) 1410 { 1411 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1412 unsigned long seq; 1413 int mode; 1414 u64 ns; 1415 1416 do { 1417 seq = read_seqcount_begin(>od->seq); 1418 mode = gtod->clock.vclock_mode; 1419 ns = gtod->nsec_base; 1420 ns += vgettsc(cycle_now); 1421 ns >>= gtod->clock.shift; 1422 ns += gtod->boot_ns; 1423 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 1424 *t = ns; 1425 1426 return mode; 1427 } 1428 1429 /* returns true if host is using tsc clocksource */ 1430 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now) 1431 { 1432 /* checked again under seqlock below */ 1433 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC) 1434 return false; 1435 1436 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC; 1437 } 1438 #endif 1439 1440 /* 1441 * 1442 * Assuming a stable TSC across physical CPUS, and a stable TSC 1443 * across virtual CPUs, the following condition is possible. 1444 * Each numbered line represents an event visible to both 1445 * CPUs at the next numbered event. 1446 * 1447 * "timespecX" represents host monotonic time. "tscX" represents 1448 * RDTSC value. 1449 * 1450 * VCPU0 on CPU0 | VCPU1 on CPU1 1451 * 1452 * 1. read timespec0,tsc0 1453 * 2. | timespec1 = timespec0 + N 1454 * | tsc1 = tsc0 + M 1455 * 3. transition to guest | transition to guest 1456 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 1457 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 1458 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 1459 * 1460 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 1461 * 1462 * - ret0 < ret1 1463 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 1464 * ... 1465 * - 0 < N - M => M < N 1466 * 1467 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 1468 * always the case (the difference between two distinct xtime instances 1469 * might be smaller then the difference between corresponding TSC reads, 1470 * when updating guest vcpus pvclock areas). 1471 * 1472 * To avoid that problem, do not allow visibility of distinct 1473 * system_timestamp/tsc_timestamp values simultaneously: use a master 1474 * copy of host monotonic time values. Update that master copy 1475 * in lockstep. 1476 * 1477 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 1478 * 1479 */ 1480 1481 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 1482 { 1483 #ifdef CONFIG_X86_64 1484 struct kvm_arch *ka = &kvm->arch; 1485 int vclock_mode; 1486 bool host_tsc_clocksource, vcpus_matched; 1487 1488 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1489 atomic_read(&kvm->online_vcpus)); 1490 1491 /* 1492 * If the host uses TSC clock, then passthrough TSC as stable 1493 * to the guest. 1494 */ 1495 host_tsc_clocksource = kvm_get_time_and_clockread( 1496 &ka->master_kernel_ns, 1497 &ka->master_cycle_now); 1498 1499 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 1500 && !backwards_tsc_observed; 1501 1502 if (ka->use_master_clock) 1503 atomic_set(&kvm_guest_has_master_clock, 1); 1504 1505 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 1506 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 1507 vcpus_matched); 1508 #endif 1509 } 1510 1511 static void kvm_gen_update_masterclock(struct kvm *kvm) 1512 { 1513 #ifdef CONFIG_X86_64 1514 int i; 1515 struct kvm_vcpu *vcpu; 1516 struct kvm_arch *ka = &kvm->arch; 1517 1518 spin_lock(&ka->pvclock_gtod_sync_lock); 1519 kvm_make_mclock_inprogress_request(kvm); 1520 /* no guest entries from this point */ 1521 pvclock_update_vm_gtod_copy(kvm); 1522 1523 kvm_for_each_vcpu(i, vcpu, kvm) 1524 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 1525 1526 /* guest entries allowed */ 1527 kvm_for_each_vcpu(i, vcpu, kvm) 1528 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests); 1529 1530 spin_unlock(&ka->pvclock_gtod_sync_lock); 1531 #endif 1532 } 1533 1534 static int kvm_guest_time_update(struct kvm_vcpu *v) 1535 { 1536 unsigned long flags, this_tsc_khz; 1537 struct kvm_vcpu_arch *vcpu = &v->arch; 1538 struct kvm_arch *ka = &v->kvm->arch; 1539 s64 kernel_ns; 1540 u64 tsc_timestamp, host_tsc; 1541 struct pvclock_vcpu_time_info guest_hv_clock; 1542 u8 pvclock_flags; 1543 bool use_master_clock; 1544 1545 kernel_ns = 0; 1546 host_tsc = 0; 1547 1548 /* 1549 * If the host uses TSC clock, then passthrough TSC as stable 1550 * to the guest. 1551 */ 1552 spin_lock(&ka->pvclock_gtod_sync_lock); 1553 use_master_clock = ka->use_master_clock; 1554 if (use_master_clock) { 1555 host_tsc = ka->master_cycle_now; 1556 kernel_ns = ka->master_kernel_ns; 1557 } 1558 spin_unlock(&ka->pvclock_gtod_sync_lock); 1559 1560 /* Keep irq disabled to prevent changes to the clock */ 1561 local_irq_save(flags); 1562 this_tsc_khz = __this_cpu_read(cpu_tsc_khz); 1563 if (unlikely(this_tsc_khz == 0)) { 1564 local_irq_restore(flags); 1565 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 1566 return 1; 1567 } 1568 if (!use_master_clock) { 1569 host_tsc = native_read_tsc(); 1570 kernel_ns = get_kernel_ns(); 1571 } 1572 1573 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc); 1574 1575 /* 1576 * We may have to catch up the TSC to match elapsed wall clock 1577 * time for two reasons, even if kvmclock is used. 1578 * 1) CPU could have been running below the maximum TSC rate 1579 * 2) Broken TSC compensation resets the base at each VCPU 1580 * entry to avoid unknown leaps of TSC even when running 1581 * again on the same CPU. This may cause apparent elapsed 1582 * time to disappear, and the guest to stand still or run 1583 * very slowly. 1584 */ 1585 if (vcpu->tsc_catchup) { 1586 u64 tsc = compute_guest_tsc(v, kernel_ns); 1587 if (tsc > tsc_timestamp) { 1588 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 1589 tsc_timestamp = tsc; 1590 } 1591 } 1592 1593 local_irq_restore(flags); 1594 1595 if (!vcpu->pv_time_enabled) 1596 return 0; 1597 1598 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) { 1599 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz, 1600 &vcpu->hv_clock.tsc_shift, 1601 &vcpu->hv_clock.tsc_to_system_mul); 1602 vcpu->hw_tsc_khz = this_tsc_khz; 1603 } 1604 1605 /* With all the info we got, fill in the values */ 1606 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 1607 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 1608 vcpu->last_guest_tsc = tsc_timestamp; 1609 1610 /* 1611 * The interface expects us to write an even number signaling that the 1612 * update is finished. Since the guest won't see the intermediate 1613 * state, we just increase by 2 at the end. 1614 */ 1615 vcpu->hv_clock.version += 2; 1616 1617 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, 1618 &guest_hv_clock, sizeof(guest_hv_clock)))) 1619 return 0; 1620 1621 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 1622 pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); 1623 1624 if (vcpu->pvclock_set_guest_stopped_request) { 1625 pvclock_flags |= PVCLOCK_GUEST_STOPPED; 1626 vcpu->pvclock_set_guest_stopped_request = false; 1627 } 1628 1629 /* If the host uses TSC clocksource, then it is stable */ 1630 if (use_master_clock) 1631 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 1632 1633 vcpu->hv_clock.flags = pvclock_flags; 1634 1635 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 1636 &vcpu->hv_clock, 1637 sizeof(vcpu->hv_clock)); 1638 return 0; 1639 } 1640 1641 /* 1642 * kvmclock updates which are isolated to a given vcpu, such as 1643 * vcpu->cpu migration, should not allow system_timestamp from 1644 * the rest of the vcpus to remain static. Otherwise ntp frequency 1645 * correction applies to one vcpu's system_timestamp but not 1646 * the others. 1647 * 1648 * So in those cases, request a kvmclock update for all vcpus. 1649 * We need to rate-limit these requests though, as they can 1650 * considerably slow guests that have a large number of vcpus. 1651 * The time for a remote vcpu to update its kvmclock is bound 1652 * by the delay we use to rate-limit the updates. 1653 */ 1654 1655 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 1656 1657 static void kvmclock_update_fn(struct work_struct *work) 1658 { 1659 int i; 1660 struct delayed_work *dwork = to_delayed_work(work); 1661 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 1662 kvmclock_update_work); 1663 struct kvm *kvm = container_of(ka, struct kvm, arch); 1664 struct kvm_vcpu *vcpu; 1665 1666 kvm_for_each_vcpu(i, vcpu, kvm) { 1667 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 1668 kvm_vcpu_kick(vcpu); 1669 } 1670 } 1671 1672 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 1673 { 1674 struct kvm *kvm = v->kvm; 1675 1676 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 1677 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 1678 KVMCLOCK_UPDATE_DELAY); 1679 } 1680 1681 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 1682 1683 static void kvmclock_sync_fn(struct work_struct *work) 1684 { 1685 struct delayed_work *dwork = to_delayed_work(work); 1686 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 1687 kvmclock_sync_work); 1688 struct kvm *kvm = container_of(ka, struct kvm, arch); 1689 1690 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 1691 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 1692 KVMCLOCK_SYNC_PERIOD); 1693 } 1694 1695 static bool msr_mtrr_valid(unsigned msr) 1696 { 1697 switch (msr) { 1698 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1: 1699 case MSR_MTRRfix64K_00000: 1700 case MSR_MTRRfix16K_80000: 1701 case MSR_MTRRfix16K_A0000: 1702 case MSR_MTRRfix4K_C0000: 1703 case MSR_MTRRfix4K_C8000: 1704 case MSR_MTRRfix4K_D0000: 1705 case MSR_MTRRfix4K_D8000: 1706 case MSR_MTRRfix4K_E0000: 1707 case MSR_MTRRfix4K_E8000: 1708 case MSR_MTRRfix4K_F0000: 1709 case MSR_MTRRfix4K_F8000: 1710 case MSR_MTRRdefType: 1711 case MSR_IA32_CR_PAT: 1712 return true; 1713 case 0x2f8: 1714 return true; 1715 } 1716 return false; 1717 } 1718 1719 static bool valid_pat_type(unsigned t) 1720 { 1721 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */ 1722 } 1723 1724 static bool valid_mtrr_type(unsigned t) 1725 { 1726 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */ 1727 } 1728 1729 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1730 { 1731 int i; 1732 u64 mask; 1733 1734 if (!msr_mtrr_valid(msr)) 1735 return false; 1736 1737 if (msr == MSR_IA32_CR_PAT) { 1738 for (i = 0; i < 8; i++) 1739 if (!valid_pat_type((data >> (i * 8)) & 0xff)) 1740 return false; 1741 return true; 1742 } else if (msr == MSR_MTRRdefType) { 1743 if (data & ~0xcff) 1744 return false; 1745 return valid_mtrr_type(data & 0xff); 1746 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) { 1747 for (i = 0; i < 8 ; i++) 1748 if (!valid_mtrr_type((data >> (i * 8)) & 0xff)) 1749 return false; 1750 return true; 1751 } 1752 1753 /* variable MTRRs */ 1754 WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR)); 1755 1756 mask = (~0ULL) << cpuid_maxphyaddr(vcpu); 1757 if ((msr & 1) == 0) { 1758 /* MTRR base */ 1759 if (!valid_mtrr_type(data & 0xff)) 1760 return false; 1761 mask |= 0xf00; 1762 } else 1763 /* MTRR mask */ 1764 mask |= 0x7ff; 1765 if (data & mask) { 1766 kvm_inject_gp(vcpu, 0); 1767 return false; 1768 } 1769 1770 return true; 1771 } 1772 EXPORT_SYMBOL_GPL(kvm_mtrr_valid); 1773 1774 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1775 { 1776 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; 1777 1778 if (!kvm_mtrr_valid(vcpu, msr, data)) 1779 return 1; 1780 1781 if (msr == MSR_MTRRdefType) { 1782 vcpu->arch.mtrr_state.def_type = data; 1783 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10; 1784 } else if (msr == MSR_MTRRfix64K_00000) 1785 p[0] = data; 1786 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) 1787 p[1 + msr - MSR_MTRRfix16K_80000] = data; 1788 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) 1789 p[3 + msr - MSR_MTRRfix4K_C0000] = data; 1790 else if (msr == MSR_IA32_CR_PAT) 1791 vcpu->arch.pat = data; 1792 else { /* Variable MTRRs */ 1793 int idx, is_mtrr_mask; 1794 u64 *pt; 1795 1796 idx = (msr - 0x200) / 2; 1797 is_mtrr_mask = msr - 0x200 - 2 * idx; 1798 if (!is_mtrr_mask) 1799 pt = 1800 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; 1801 else 1802 pt = 1803 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; 1804 *pt = data; 1805 } 1806 1807 kvm_mmu_reset_context(vcpu); 1808 return 0; 1809 } 1810 1811 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1812 { 1813 u64 mcg_cap = vcpu->arch.mcg_cap; 1814 unsigned bank_num = mcg_cap & 0xff; 1815 1816 switch (msr) { 1817 case MSR_IA32_MCG_STATUS: 1818 vcpu->arch.mcg_status = data; 1819 break; 1820 case MSR_IA32_MCG_CTL: 1821 if (!(mcg_cap & MCG_CTL_P)) 1822 return 1; 1823 if (data != 0 && data != ~(u64)0) 1824 return -1; 1825 vcpu->arch.mcg_ctl = data; 1826 break; 1827 default: 1828 if (msr >= MSR_IA32_MC0_CTL && 1829 msr < MSR_IA32_MCx_CTL(bank_num)) { 1830 u32 offset = msr - MSR_IA32_MC0_CTL; 1831 /* only 0 or all 1s can be written to IA32_MCi_CTL 1832 * some Linux kernels though clear bit 10 in bank 4 to 1833 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 1834 * this to avoid an uncatched #GP in the guest 1835 */ 1836 if ((offset & 0x3) == 0 && 1837 data != 0 && (data | (1 << 10)) != ~(u64)0) 1838 return -1; 1839 vcpu->arch.mce_banks[offset] = data; 1840 break; 1841 } 1842 return 1; 1843 } 1844 return 0; 1845 } 1846 1847 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 1848 { 1849 struct kvm *kvm = vcpu->kvm; 1850 int lm = is_long_mode(vcpu); 1851 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 1852 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 1853 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 1854 : kvm->arch.xen_hvm_config.blob_size_32; 1855 u32 page_num = data & ~PAGE_MASK; 1856 u64 page_addr = data & PAGE_MASK; 1857 u8 *page; 1858 int r; 1859 1860 r = -E2BIG; 1861 if (page_num >= blob_size) 1862 goto out; 1863 r = -ENOMEM; 1864 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 1865 if (IS_ERR(page)) { 1866 r = PTR_ERR(page); 1867 goto out; 1868 } 1869 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE)) 1870 goto out_free; 1871 r = 0; 1872 out_free: 1873 kfree(page); 1874 out: 1875 return r; 1876 } 1877 1878 static bool kvm_hv_hypercall_enabled(struct kvm *kvm) 1879 { 1880 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE; 1881 } 1882 1883 static bool kvm_hv_msr_partition_wide(u32 msr) 1884 { 1885 bool r = false; 1886 switch (msr) { 1887 case HV_X64_MSR_GUEST_OS_ID: 1888 case HV_X64_MSR_HYPERCALL: 1889 case HV_X64_MSR_REFERENCE_TSC: 1890 case HV_X64_MSR_TIME_REF_COUNT: 1891 r = true; 1892 break; 1893 } 1894 1895 return r; 1896 } 1897 1898 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1899 { 1900 struct kvm *kvm = vcpu->kvm; 1901 1902 switch (msr) { 1903 case HV_X64_MSR_GUEST_OS_ID: 1904 kvm->arch.hv_guest_os_id = data; 1905 /* setting guest os id to zero disables hypercall page */ 1906 if (!kvm->arch.hv_guest_os_id) 1907 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE; 1908 break; 1909 case HV_X64_MSR_HYPERCALL: { 1910 u64 gfn; 1911 unsigned long addr; 1912 u8 instructions[4]; 1913 1914 /* if guest os id is not set hypercall should remain disabled */ 1915 if (!kvm->arch.hv_guest_os_id) 1916 break; 1917 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) { 1918 kvm->arch.hv_hypercall = data; 1919 break; 1920 } 1921 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT; 1922 addr = gfn_to_hva(kvm, gfn); 1923 if (kvm_is_error_hva(addr)) 1924 return 1; 1925 kvm_x86_ops->patch_hypercall(vcpu, instructions); 1926 ((unsigned char *)instructions)[3] = 0xc3; /* ret */ 1927 if (__copy_to_user((void __user *)addr, instructions, 4)) 1928 return 1; 1929 kvm->arch.hv_hypercall = data; 1930 mark_page_dirty(kvm, gfn); 1931 break; 1932 } 1933 case HV_X64_MSR_REFERENCE_TSC: { 1934 u64 gfn; 1935 HV_REFERENCE_TSC_PAGE tsc_ref; 1936 memset(&tsc_ref, 0, sizeof(tsc_ref)); 1937 kvm->arch.hv_tsc_page = data; 1938 if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE)) 1939 break; 1940 gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT; 1941 if (kvm_write_guest(kvm, gfn << HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT, 1942 &tsc_ref, sizeof(tsc_ref))) 1943 return 1; 1944 mark_page_dirty(kvm, gfn); 1945 break; 1946 } 1947 default: 1948 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " 1949 "data 0x%llx\n", msr, data); 1950 return 1; 1951 } 1952 return 0; 1953 } 1954 1955 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1956 { 1957 switch (msr) { 1958 case HV_X64_MSR_APIC_ASSIST_PAGE: { 1959 u64 gfn; 1960 unsigned long addr; 1961 1962 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) { 1963 vcpu->arch.hv_vapic = data; 1964 if (kvm_lapic_enable_pv_eoi(vcpu, 0)) 1965 return 1; 1966 break; 1967 } 1968 gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT; 1969 addr = gfn_to_hva(vcpu->kvm, gfn); 1970 if (kvm_is_error_hva(addr)) 1971 return 1; 1972 if (__clear_user((void __user *)addr, PAGE_SIZE)) 1973 return 1; 1974 vcpu->arch.hv_vapic = data; 1975 mark_page_dirty(vcpu->kvm, gfn); 1976 if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED)) 1977 return 1; 1978 break; 1979 } 1980 case HV_X64_MSR_EOI: 1981 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data); 1982 case HV_X64_MSR_ICR: 1983 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data); 1984 case HV_X64_MSR_TPR: 1985 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data); 1986 default: 1987 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " 1988 "data 0x%llx\n", msr, data); 1989 return 1; 1990 } 1991 1992 return 0; 1993 } 1994 1995 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 1996 { 1997 gpa_t gpa = data & ~0x3f; 1998 1999 /* Bits 2:5 are reserved, Should be zero */ 2000 if (data & 0x3c) 2001 return 1; 2002 2003 vcpu->arch.apf.msr_val = data; 2004 2005 if (!(data & KVM_ASYNC_PF_ENABLED)) { 2006 kvm_clear_async_pf_completion_queue(vcpu); 2007 kvm_async_pf_hash_reset(vcpu); 2008 return 0; 2009 } 2010 2011 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 2012 sizeof(u32))) 2013 return 1; 2014 2015 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 2016 kvm_async_pf_wakeup_all(vcpu); 2017 return 0; 2018 } 2019 2020 static void kvmclock_reset(struct kvm_vcpu *vcpu) 2021 { 2022 vcpu->arch.pv_time_enabled = false; 2023 } 2024 2025 static void accumulate_steal_time(struct kvm_vcpu *vcpu) 2026 { 2027 u64 delta; 2028 2029 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 2030 return; 2031 2032 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal; 2033 vcpu->arch.st.last_steal = current->sched_info.run_delay; 2034 vcpu->arch.st.accum_steal = delta; 2035 } 2036 2037 static void record_steal_time(struct kvm_vcpu *vcpu) 2038 { 2039 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 2040 return; 2041 2042 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2043 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) 2044 return; 2045 2046 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal; 2047 vcpu->arch.st.steal.version += 2; 2048 vcpu->arch.st.accum_steal = 0; 2049 2050 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2051 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 2052 } 2053 2054 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2055 { 2056 bool pr = false; 2057 u32 msr = msr_info->index; 2058 u64 data = msr_info->data; 2059 2060 switch (msr) { 2061 case MSR_AMD64_NB_CFG: 2062 case MSR_IA32_UCODE_REV: 2063 case MSR_IA32_UCODE_WRITE: 2064 case MSR_VM_HSAVE_PA: 2065 case MSR_AMD64_PATCH_LOADER: 2066 case MSR_AMD64_BU_CFG2: 2067 break; 2068 2069 case MSR_EFER: 2070 return set_efer(vcpu, data); 2071 case MSR_K7_HWCR: 2072 data &= ~(u64)0x40; /* ignore flush filter disable */ 2073 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 2074 data &= ~(u64)0x8; /* ignore TLB cache disable */ 2075 data &= ~(u64)0x40000; /* ignore Mc status write enable */ 2076 if (data != 0) { 2077 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 2078 data); 2079 return 1; 2080 } 2081 break; 2082 case MSR_FAM10H_MMIO_CONF_BASE: 2083 if (data != 0) { 2084 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 2085 "0x%llx\n", data); 2086 return 1; 2087 } 2088 break; 2089 case MSR_IA32_DEBUGCTLMSR: 2090 if (!data) { 2091 /* We support the non-activated case already */ 2092 break; 2093 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 2094 /* Values other than LBR and BTF are vendor-specific, 2095 thus reserved and should throw a #GP */ 2096 return 1; 2097 } 2098 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 2099 __func__, data); 2100 break; 2101 case 0x200 ... 0x2ff: 2102 return set_msr_mtrr(vcpu, msr, data); 2103 case MSR_IA32_APICBASE: 2104 return kvm_set_apic_base(vcpu, msr_info); 2105 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2106 return kvm_x2apic_msr_write(vcpu, msr, data); 2107 case MSR_IA32_TSCDEADLINE: 2108 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2109 break; 2110 case MSR_IA32_TSC_ADJUST: 2111 if (guest_cpuid_has_tsc_adjust(vcpu)) { 2112 if (!msr_info->host_initiated) { 2113 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 2114 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true); 2115 } 2116 vcpu->arch.ia32_tsc_adjust_msr = data; 2117 } 2118 break; 2119 case MSR_IA32_MISC_ENABLE: 2120 vcpu->arch.ia32_misc_enable_msr = data; 2121 break; 2122 case MSR_KVM_WALL_CLOCK_NEW: 2123 case MSR_KVM_WALL_CLOCK: 2124 vcpu->kvm->arch.wall_clock = data; 2125 kvm_write_wall_clock(vcpu->kvm, data); 2126 break; 2127 case MSR_KVM_SYSTEM_TIME_NEW: 2128 case MSR_KVM_SYSTEM_TIME: { 2129 u64 gpa_offset; 2130 kvmclock_reset(vcpu); 2131 2132 vcpu->arch.time = data; 2133 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2134 2135 /* we verify if the enable bit is set... */ 2136 if (!(data & 1)) 2137 break; 2138 2139 gpa_offset = data & ~(PAGE_MASK | 1); 2140 2141 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 2142 &vcpu->arch.pv_time, data & ~1ULL, 2143 sizeof(struct pvclock_vcpu_time_info))) 2144 vcpu->arch.pv_time_enabled = false; 2145 else 2146 vcpu->arch.pv_time_enabled = true; 2147 2148 break; 2149 } 2150 case MSR_KVM_ASYNC_PF_EN: 2151 if (kvm_pv_enable_async_pf(vcpu, data)) 2152 return 1; 2153 break; 2154 case MSR_KVM_STEAL_TIME: 2155 2156 if (unlikely(!sched_info_on())) 2157 return 1; 2158 2159 if (data & KVM_STEAL_RESERVED_MASK) 2160 return 1; 2161 2162 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, 2163 data & KVM_STEAL_VALID_BITS, 2164 sizeof(struct kvm_steal_time))) 2165 return 1; 2166 2167 vcpu->arch.st.msr_val = data; 2168 2169 if (!(data & KVM_MSR_ENABLED)) 2170 break; 2171 2172 vcpu->arch.st.last_steal = current->sched_info.run_delay; 2173 2174 preempt_disable(); 2175 accumulate_steal_time(vcpu); 2176 preempt_enable(); 2177 2178 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2179 2180 break; 2181 case MSR_KVM_PV_EOI_EN: 2182 if (kvm_lapic_enable_pv_eoi(vcpu, data)) 2183 return 1; 2184 break; 2185 2186 case MSR_IA32_MCG_CTL: 2187 case MSR_IA32_MCG_STATUS: 2188 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 2189 return set_msr_mce(vcpu, msr, data); 2190 2191 /* Performance counters are not protected by a CPUID bit, 2192 * so we should check all of them in the generic path for the sake of 2193 * cross vendor migration. 2194 * Writing a zero into the event select MSRs disables them, 2195 * which we perfectly emulate ;-). Any other value should be at least 2196 * reported, some guests depend on them. 2197 */ 2198 case MSR_K7_EVNTSEL0: 2199 case MSR_K7_EVNTSEL1: 2200 case MSR_K7_EVNTSEL2: 2201 case MSR_K7_EVNTSEL3: 2202 if (data != 0) 2203 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " 2204 "0x%x data 0x%llx\n", msr, data); 2205 break; 2206 /* at least RHEL 4 unconditionally writes to the perfctr registers, 2207 * so we ignore writes to make it happy. 2208 */ 2209 case MSR_K7_PERFCTR0: 2210 case MSR_K7_PERFCTR1: 2211 case MSR_K7_PERFCTR2: 2212 case MSR_K7_PERFCTR3: 2213 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " 2214 "0x%x data 0x%llx\n", msr, data); 2215 break; 2216 case MSR_P6_PERFCTR0: 2217 case MSR_P6_PERFCTR1: 2218 pr = true; 2219 case MSR_P6_EVNTSEL0: 2220 case MSR_P6_EVNTSEL1: 2221 if (kvm_pmu_msr(vcpu, msr)) 2222 return kvm_pmu_set_msr(vcpu, msr_info); 2223 2224 if (pr || data != 0) 2225 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 2226 "0x%x data 0x%llx\n", msr, data); 2227 break; 2228 case MSR_K7_CLK_CTL: 2229 /* 2230 * Ignore all writes to this no longer documented MSR. 2231 * Writes are only relevant for old K7 processors, 2232 * all pre-dating SVM, but a recommended workaround from 2233 * AMD for these chips. It is possible to specify the 2234 * affected processor models on the command line, hence 2235 * the need to ignore the workaround. 2236 */ 2237 break; 2238 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2239 if (kvm_hv_msr_partition_wide(msr)) { 2240 int r; 2241 mutex_lock(&vcpu->kvm->lock); 2242 r = set_msr_hyperv_pw(vcpu, msr, data); 2243 mutex_unlock(&vcpu->kvm->lock); 2244 return r; 2245 } else 2246 return set_msr_hyperv(vcpu, msr, data); 2247 break; 2248 case MSR_IA32_BBL_CR_CTL3: 2249 /* Drop writes to this legacy MSR -- see rdmsr 2250 * counterpart for further detail. 2251 */ 2252 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data); 2253 break; 2254 case MSR_AMD64_OSVW_ID_LENGTH: 2255 if (!guest_cpuid_has_osvw(vcpu)) 2256 return 1; 2257 vcpu->arch.osvw.length = data; 2258 break; 2259 case MSR_AMD64_OSVW_STATUS: 2260 if (!guest_cpuid_has_osvw(vcpu)) 2261 return 1; 2262 vcpu->arch.osvw.status = data; 2263 break; 2264 default: 2265 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 2266 return xen_hvm_config(vcpu, data); 2267 if (kvm_pmu_msr(vcpu, msr)) 2268 return kvm_pmu_set_msr(vcpu, msr_info); 2269 if (!ignore_msrs) { 2270 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", 2271 msr, data); 2272 return 1; 2273 } else { 2274 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", 2275 msr, data); 2276 break; 2277 } 2278 } 2279 return 0; 2280 } 2281 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 2282 2283 2284 /* 2285 * Reads an msr value (of 'msr_index') into 'pdata'. 2286 * Returns 0 on success, non-0 otherwise. 2287 * Assumes vcpu_load() was already called. 2288 */ 2289 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) 2290 { 2291 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata); 2292 } 2293 2294 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2295 { 2296 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; 2297 2298 if (!msr_mtrr_valid(msr)) 2299 return 1; 2300 2301 if (msr == MSR_MTRRdefType) 2302 *pdata = vcpu->arch.mtrr_state.def_type + 2303 (vcpu->arch.mtrr_state.enabled << 10); 2304 else if (msr == MSR_MTRRfix64K_00000) 2305 *pdata = p[0]; 2306 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) 2307 *pdata = p[1 + msr - MSR_MTRRfix16K_80000]; 2308 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) 2309 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000]; 2310 else if (msr == MSR_IA32_CR_PAT) 2311 *pdata = vcpu->arch.pat; 2312 else { /* Variable MTRRs */ 2313 int idx, is_mtrr_mask; 2314 u64 *pt; 2315 2316 idx = (msr - 0x200) / 2; 2317 is_mtrr_mask = msr - 0x200 - 2 * idx; 2318 if (!is_mtrr_mask) 2319 pt = 2320 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; 2321 else 2322 pt = 2323 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; 2324 *pdata = *pt; 2325 } 2326 2327 return 0; 2328 } 2329 2330 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2331 { 2332 u64 data; 2333 u64 mcg_cap = vcpu->arch.mcg_cap; 2334 unsigned bank_num = mcg_cap & 0xff; 2335 2336 switch (msr) { 2337 case MSR_IA32_P5_MC_ADDR: 2338 case MSR_IA32_P5_MC_TYPE: 2339 data = 0; 2340 break; 2341 case MSR_IA32_MCG_CAP: 2342 data = vcpu->arch.mcg_cap; 2343 break; 2344 case MSR_IA32_MCG_CTL: 2345 if (!(mcg_cap & MCG_CTL_P)) 2346 return 1; 2347 data = vcpu->arch.mcg_ctl; 2348 break; 2349 case MSR_IA32_MCG_STATUS: 2350 data = vcpu->arch.mcg_status; 2351 break; 2352 default: 2353 if (msr >= MSR_IA32_MC0_CTL && 2354 msr < MSR_IA32_MCx_CTL(bank_num)) { 2355 u32 offset = msr - MSR_IA32_MC0_CTL; 2356 data = vcpu->arch.mce_banks[offset]; 2357 break; 2358 } 2359 return 1; 2360 } 2361 *pdata = data; 2362 return 0; 2363 } 2364 2365 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2366 { 2367 u64 data = 0; 2368 struct kvm *kvm = vcpu->kvm; 2369 2370 switch (msr) { 2371 case HV_X64_MSR_GUEST_OS_ID: 2372 data = kvm->arch.hv_guest_os_id; 2373 break; 2374 case HV_X64_MSR_HYPERCALL: 2375 data = kvm->arch.hv_hypercall; 2376 break; 2377 case HV_X64_MSR_TIME_REF_COUNT: { 2378 data = 2379 div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100); 2380 break; 2381 } 2382 case HV_X64_MSR_REFERENCE_TSC: 2383 data = kvm->arch.hv_tsc_page; 2384 break; 2385 default: 2386 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 2387 return 1; 2388 } 2389 2390 *pdata = data; 2391 return 0; 2392 } 2393 2394 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2395 { 2396 u64 data = 0; 2397 2398 switch (msr) { 2399 case HV_X64_MSR_VP_INDEX: { 2400 int r; 2401 struct kvm_vcpu *v; 2402 kvm_for_each_vcpu(r, v, vcpu->kvm) { 2403 if (v == vcpu) { 2404 data = r; 2405 break; 2406 } 2407 } 2408 break; 2409 } 2410 case HV_X64_MSR_EOI: 2411 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata); 2412 case HV_X64_MSR_ICR: 2413 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata); 2414 case HV_X64_MSR_TPR: 2415 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata); 2416 case HV_X64_MSR_APIC_ASSIST_PAGE: 2417 data = vcpu->arch.hv_vapic; 2418 break; 2419 default: 2420 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 2421 return 1; 2422 } 2423 *pdata = data; 2424 return 0; 2425 } 2426 2427 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2428 { 2429 u64 data; 2430 2431 switch (msr) { 2432 case MSR_IA32_PLATFORM_ID: 2433 case MSR_IA32_EBL_CR_POWERON: 2434 case MSR_IA32_DEBUGCTLMSR: 2435 case MSR_IA32_LASTBRANCHFROMIP: 2436 case MSR_IA32_LASTBRANCHTOIP: 2437 case MSR_IA32_LASTINTFROMIP: 2438 case MSR_IA32_LASTINTTOIP: 2439 case MSR_K8_SYSCFG: 2440 case MSR_K7_HWCR: 2441 case MSR_VM_HSAVE_PA: 2442 case MSR_K7_EVNTSEL0: 2443 case MSR_K7_EVNTSEL1: 2444 case MSR_K7_EVNTSEL2: 2445 case MSR_K7_EVNTSEL3: 2446 case MSR_K7_PERFCTR0: 2447 case MSR_K7_PERFCTR1: 2448 case MSR_K7_PERFCTR2: 2449 case MSR_K7_PERFCTR3: 2450 case MSR_K8_INT_PENDING_MSG: 2451 case MSR_AMD64_NB_CFG: 2452 case MSR_FAM10H_MMIO_CONF_BASE: 2453 case MSR_AMD64_BU_CFG2: 2454 data = 0; 2455 break; 2456 case MSR_P6_PERFCTR0: 2457 case MSR_P6_PERFCTR1: 2458 case MSR_P6_EVNTSEL0: 2459 case MSR_P6_EVNTSEL1: 2460 if (kvm_pmu_msr(vcpu, msr)) 2461 return kvm_pmu_get_msr(vcpu, msr, pdata); 2462 data = 0; 2463 break; 2464 case MSR_IA32_UCODE_REV: 2465 data = 0x100000000ULL; 2466 break; 2467 case MSR_MTRRcap: 2468 data = 0x500 | KVM_NR_VAR_MTRR; 2469 break; 2470 case 0x200 ... 0x2ff: 2471 return get_msr_mtrr(vcpu, msr, pdata); 2472 case 0xcd: /* fsb frequency */ 2473 data = 3; 2474 break; 2475 /* 2476 * MSR_EBC_FREQUENCY_ID 2477 * Conservative value valid for even the basic CPU models. 2478 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 2479 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 2480 * and 266MHz for model 3, or 4. Set Core Clock 2481 * Frequency to System Bus Frequency Ratio to 1 (bits 2482 * 31:24) even though these are only valid for CPU 2483 * models > 2, however guests may end up dividing or 2484 * multiplying by zero otherwise. 2485 */ 2486 case MSR_EBC_FREQUENCY_ID: 2487 data = 1 << 24; 2488 break; 2489 case MSR_IA32_APICBASE: 2490 data = kvm_get_apic_base(vcpu); 2491 break; 2492 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2493 return kvm_x2apic_msr_read(vcpu, msr, pdata); 2494 break; 2495 case MSR_IA32_TSCDEADLINE: 2496 data = kvm_get_lapic_tscdeadline_msr(vcpu); 2497 break; 2498 case MSR_IA32_TSC_ADJUST: 2499 data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 2500 break; 2501 case MSR_IA32_MISC_ENABLE: 2502 data = vcpu->arch.ia32_misc_enable_msr; 2503 break; 2504 case MSR_IA32_PERF_STATUS: 2505 /* TSC increment by tick */ 2506 data = 1000ULL; 2507 /* CPU multiplier */ 2508 data |= (((uint64_t)4ULL) << 40); 2509 break; 2510 case MSR_EFER: 2511 data = vcpu->arch.efer; 2512 break; 2513 case MSR_KVM_WALL_CLOCK: 2514 case MSR_KVM_WALL_CLOCK_NEW: 2515 data = vcpu->kvm->arch.wall_clock; 2516 break; 2517 case MSR_KVM_SYSTEM_TIME: 2518 case MSR_KVM_SYSTEM_TIME_NEW: 2519 data = vcpu->arch.time; 2520 break; 2521 case MSR_KVM_ASYNC_PF_EN: 2522 data = vcpu->arch.apf.msr_val; 2523 break; 2524 case MSR_KVM_STEAL_TIME: 2525 data = vcpu->arch.st.msr_val; 2526 break; 2527 case MSR_KVM_PV_EOI_EN: 2528 data = vcpu->arch.pv_eoi.msr_val; 2529 break; 2530 case MSR_IA32_P5_MC_ADDR: 2531 case MSR_IA32_P5_MC_TYPE: 2532 case MSR_IA32_MCG_CAP: 2533 case MSR_IA32_MCG_CTL: 2534 case MSR_IA32_MCG_STATUS: 2535 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 2536 return get_msr_mce(vcpu, msr, pdata); 2537 case MSR_K7_CLK_CTL: 2538 /* 2539 * Provide expected ramp-up count for K7. All other 2540 * are set to zero, indicating minimum divisors for 2541 * every field. 2542 * 2543 * This prevents guest kernels on AMD host with CPU 2544 * type 6, model 8 and higher from exploding due to 2545 * the rdmsr failing. 2546 */ 2547 data = 0x20000000; 2548 break; 2549 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2550 if (kvm_hv_msr_partition_wide(msr)) { 2551 int r; 2552 mutex_lock(&vcpu->kvm->lock); 2553 r = get_msr_hyperv_pw(vcpu, msr, pdata); 2554 mutex_unlock(&vcpu->kvm->lock); 2555 return r; 2556 } else 2557 return get_msr_hyperv(vcpu, msr, pdata); 2558 break; 2559 case MSR_IA32_BBL_CR_CTL3: 2560 /* This legacy MSR exists but isn't fully documented in current 2561 * silicon. It is however accessed by winxp in very narrow 2562 * scenarios where it sets bit #19, itself documented as 2563 * a "reserved" bit. Best effort attempt to source coherent 2564 * read data here should the balance of the register be 2565 * interpreted by the guest: 2566 * 2567 * L2 cache control register 3: 64GB range, 256KB size, 2568 * enabled, latency 0x1, configured 2569 */ 2570 data = 0xbe702111; 2571 break; 2572 case MSR_AMD64_OSVW_ID_LENGTH: 2573 if (!guest_cpuid_has_osvw(vcpu)) 2574 return 1; 2575 data = vcpu->arch.osvw.length; 2576 break; 2577 case MSR_AMD64_OSVW_STATUS: 2578 if (!guest_cpuid_has_osvw(vcpu)) 2579 return 1; 2580 data = vcpu->arch.osvw.status; 2581 break; 2582 default: 2583 if (kvm_pmu_msr(vcpu, msr)) 2584 return kvm_pmu_get_msr(vcpu, msr, pdata); 2585 if (!ignore_msrs) { 2586 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr); 2587 return 1; 2588 } else { 2589 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr); 2590 data = 0; 2591 } 2592 break; 2593 } 2594 *pdata = data; 2595 return 0; 2596 } 2597 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 2598 2599 /* 2600 * Read or write a bunch of msrs. All parameters are kernel addresses. 2601 * 2602 * @return number of msrs set successfully. 2603 */ 2604 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 2605 struct kvm_msr_entry *entries, 2606 int (*do_msr)(struct kvm_vcpu *vcpu, 2607 unsigned index, u64 *data)) 2608 { 2609 int i, idx; 2610 2611 idx = srcu_read_lock(&vcpu->kvm->srcu); 2612 for (i = 0; i < msrs->nmsrs; ++i) 2613 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 2614 break; 2615 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2616 2617 return i; 2618 } 2619 2620 /* 2621 * Read or write a bunch of msrs. Parameters are user addresses. 2622 * 2623 * @return number of msrs set successfully. 2624 */ 2625 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 2626 int (*do_msr)(struct kvm_vcpu *vcpu, 2627 unsigned index, u64 *data), 2628 int writeback) 2629 { 2630 struct kvm_msrs msrs; 2631 struct kvm_msr_entry *entries; 2632 int r, n; 2633 unsigned size; 2634 2635 r = -EFAULT; 2636 if (copy_from_user(&msrs, user_msrs, sizeof msrs)) 2637 goto out; 2638 2639 r = -E2BIG; 2640 if (msrs.nmsrs >= MAX_IO_MSRS) 2641 goto out; 2642 2643 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 2644 entries = memdup_user(user_msrs->entries, size); 2645 if (IS_ERR(entries)) { 2646 r = PTR_ERR(entries); 2647 goto out; 2648 } 2649 2650 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 2651 if (r < 0) 2652 goto out_free; 2653 2654 r = -EFAULT; 2655 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 2656 goto out_free; 2657 2658 r = n; 2659 2660 out_free: 2661 kfree(entries); 2662 out: 2663 return r; 2664 } 2665 2666 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 2667 { 2668 int r; 2669 2670 switch (ext) { 2671 case KVM_CAP_IRQCHIP: 2672 case KVM_CAP_HLT: 2673 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 2674 case KVM_CAP_SET_TSS_ADDR: 2675 case KVM_CAP_EXT_CPUID: 2676 case KVM_CAP_EXT_EMUL_CPUID: 2677 case KVM_CAP_CLOCKSOURCE: 2678 case KVM_CAP_PIT: 2679 case KVM_CAP_NOP_IO_DELAY: 2680 case KVM_CAP_MP_STATE: 2681 case KVM_CAP_SYNC_MMU: 2682 case KVM_CAP_USER_NMI: 2683 case KVM_CAP_REINJECT_CONTROL: 2684 case KVM_CAP_IRQ_INJECT_STATUS: 2685 case KVM_CAP_IRQFD: 2686 case KVM_CAP_IOEVENTFD: 2687 case KVM_CAP_IOEVENTFD_NO_LENGTH: 2688 case KVM_CAP_PIT2: 2689 case KVM_CAP_PIT_STATE2: 2690 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 2691 case KVM_CAP_XEN_HVM: 2692 case KVM_CAP_ADJUST_CLOCK: 2693 case KVM_CAP_VCPU_EVENTS: 2694 case KVM_CAP_HYPERV: 2695 case KVM_CAP_HYPERV_VAPIC: 2696 case KVM_CAP_HYPERV_SPIN: 2697 case KVM_CAP_PCI_SEGMENT: 2698 case KVM_CAP_DEBUGREGS: 2699 case KVM_CAP_X86_ROBUST_SINGLESTEP: 2700 case KVM_CAP_XSAVE: 2701 case KVM_CAP_ASYNC_PF: 2702 case KVM_CAP_GET_TSC_KHZ: 2703 case KVM_CAP_KVMCLOCK_CTRL: 2704 case KVM_CAP_READONLY_MEM: 2705 case KVM_CAP_HYPERV_TIME: 2706 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 2707 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT 2708 case KVM_CAP_ASSIGN_DEV_IRQ: 2709 case KVM_CAP_PCI_2_3: 2710 #endif 2711 r = 1; 2712 break; 2713 case KVM_CAP_COALESCED_MMIO: 2714 r = KVM_COALESCED_MMIO_PAGE_OFFSET; 2715 break; 2716 case KVM_CAP_VAPIC: 2717 r = !kvm_x86_ops->cpu_has_accelerated_tpr(); 2718 break; 2719 case KVM_CAP_NR_VCPUS: 2720 r = KVM_SOFT_MAX_VCPUS; 2721 break; 2722 case KVM_CAP_MAX_VCPUS: 2723 r = KVM_MAX_VCPUS; 2724 break; 2725 case KVM_CAP_NR_MEMSLOTS: 2726 r = KVM_USER_MEM_SLOTS; 2727 break; 2728 case KVM_CAP_PV_MMU: /* obsolete */ 2729 r = 0; 2730 break; 2731 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT 2732 case KVM_CAP_IOMMU: 2733 r = iommu_present(&pci_bus_type); 2734 break; 2735 #endif 2736 case KVM_CAP_MCE: 2737 r = KVM_MAX_MCE_BANKS; 2738 break; 2739 case KVM_CAP_XCRS: 2740 r = cpu_has_xsave; 2741 break; 2742 case KVM_CAP_TSC_CONTROL: 2743 r = kvm_has_tsc_control; 2744 break; 2745 case KVM_CAP_TSC_DEADLINE_TIMER: 2746 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER); 2747 break; 2748 default: 2749 r = 0; 2750 break; 2751 } 2752 return r; 2753 2754 } 2755 2756 long kvm_arch_dev_ioctl(struct file *filp, 2757 unsigned int ioctl, unsigned long arg) 2758 { 2759 void __user *argp = (void __user *)arg; 2760 long r; 2761 2762 switch (ioctl) { 2763 case KVM_GET_MSR_INDEX_LIST: { 2764 struct kvm_msr_list __user *user_msr_list = argp; 2765 struct kvm_msr_list msr_list; 2766 unsigned n; 2767 2768 r = -EFAULT; 2769 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) 2770 goto out; 2771 n = msr_list.nmsrs; 2772 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs); 2773 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) 2774 goto out; 2775 r = -E2BIG; 2776 if (n < msr_list.nmsrs) 2777 goto out; 2778 r = -EFAULT; 2779 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 2780 num_msrs_to_save * sizeof(u32))) 2781 goto out; 2782 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 2783 &emulated_msrs, 2784 ARRAY_SIZE(emulated_msrs) * sizeof(u32))) 2785 goto out; 2786 r = 0; 2787 break; 2788 } 2789 case KVM_GET_SUPPORTED_CPUID: 2790 case KVM_GET_EMULATED_CPUID: { 2791 struct kvm_cpuid2 __user *cpuid_arg = argp; 2792 struct kvm_cpuid2 cpuid; 2793 2794 r = -EFAULT; 2795 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2796 goto out; 2797 2798 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 2799 ioctl); 2800 if (r) 2801 goto out; 2802 2803 r = -EFAULT; 2804 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 2805 goto out; 2806 r = 0; 2807 break; 2808 } 2809 case KVM_X86_GET_MCE_CAP_SUPPORTED: { 2810 u64 mce_cap; 2811 2812 mce_cap = KVM_MCE_CAP_SUPPORTED; 2813 r = -EFAULT; 2814 if (copy_to_user(argp, &mce_cap, sizeof mce_cap)) 2815 goto out; 2816 r = 0; 2817 break; 2818 } 2819 default: 2820 r = -EINVAL; 2821 } 2822 out: 2823 return r; 2824 } 2825 2826 static void wbinvd_ipi(void *garbage) 2827 { 2828 wbinvd(); 2829 } 2830 2831 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 2832 { 2833 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 2834 } 2835 2836 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 2837 { 2838 /* Address WBINVD may be executed by guest */ 2839 if (need_emulate_wbinvd(vcpu)) { 2840 if (kvm_x86_ops->has_wbinvd_exit()) 2841 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 2842 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 2843 smp_call_function_single(vcpu->cpu, 2844 wbinvd_ipi, NULL, 1); 2845 } 2846 2847 kvm_x86_ops->vcpu_load(vcpu, cpu); 2848 2849 /* Apply any externally detected TSC adjustments (due to suspend) */ 2850 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 2851 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 2852 vcpu->arch.tsc_offset_adjustment = 0; 2853 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2854 } 2855 2856 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) { 2857 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 2858 native_read_tsc() - vcpu->arch.last_host_tsc; 2859 if (tsc_delta < 0) 2860 mark_tsc_unstable("KVM discovered backwards TSC"); 2861 if (check_tsc_unstable()) { 2862 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu, 2863 vcpu->arch.last_guest_tsc); 2864 kvm_x86_ops->write_tsc_offset(vcpu, offset); 2865 vcpu->arch.tsc_catchup = 1; 2866 } 2867 /* 2868 * On a host with synchronized TSC, there is no need to update 2869 * kvmclock on vcpu->cpu migration 2870 */ 2871 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 2872 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2873 if (vcpu->cpu != cpu) 2874 kvm_migrate_timers(vcpu); 2875 vcpu->cpu = cpu; 2876 } 2877 2878 accumulate_steal_time(vcpu); 2879 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2880 } 2881 2882 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 2883 { 2884 kvm_x86_ops->vcpu_put(vcpu); 2885 kvm_put_guest_fpu(vcpu); 2886 vcpu->arch.last_host_tsc = native_read_tsc(); 2887 } 2888 2889 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 2890 struct kvm_lapic_state *s) 2891 { 2892 kvm_x86_ops->sync_pir_to_irr(vcpu); 2893 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s); 2894 2895 return 0; 2896 } 2897 2898 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 2899 struct kvm_lapic_state *s) 2900 { 2901 kvm_apic_post_state_restore(vcpu, s); 2902 update_cr8_intercept(vcpu); 2903 2904 return 0; 2905 } 2906 2907 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 2908 struct kvm_interrupt *irq) 2909 { 2910 if (irq->irq >= KVM_NR_INTERRUPTS) 2911 return -EINVAL; 2912 if (irqchip_in_kernel(vcpu->kvm)) 2913 return -ENXIO; 2914 2915 kvm_queue_interrupt(vcpu, irq->irq, false); 2916 kvm_make_request(KVM_REQ_EVENT, vcpu); 2917 2918 return 0; 2919 } 2920 2921 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 2922 { 2923 kvm_inject_nmi(vcpu); 2924 2925 return 0; 2926 } 2927 2928 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 2929 struct kvm_tpr_access_ctl *tac) 2930 { 2931 if (tac->flags) 2932 return -EINVAL; 2933 vcpu->arch.tpr_access_reporting = !!tac->enabled; 2934 return 0; 2935 } 2936 2937 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 2938 u64 mcg_cap) 2939 { 2940 int r; 2941 unsigned bank_num = mcg_cap & 0xff, bank; 2942 2943 r = -EINVAL; 2944 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) 2945 goto out; 2946 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000)) 2947 goto out; 2948 r = 0; 2949 vcpu->arch.mcg_cap = mcg_cap; 2950 /* Init IA32_MCG_CTL to all 1s */ 2951 if (mcg_cap & MCG_CTL_P) 2952 vcpu->arch.mcg_ctl = ~(u64)0; 2953 /* Init IA32_MCi_CTL to all 1s */ 2954 for (bank = 0; bank < bank_num; bank++) 2955 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 2956 out: 2957 return r; 2958 } 2959 2960 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 2961 struct kvm_x86_mce *mce) 2962 { 2963 u64 mcg_cap = vcpu->arch.mcg_cap; 2964 unsigned bank_num = mcg_cap & 0xff; 2965 u64 *banks = vcpu->arch.mce_banks; 2966 2967 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 2968 return -EINVAL; 2969 /* 2970 * if IA32_MCG_CTL is not all 1s, the uncorrected error 2971 * reporting is disabled 2972 */ 2973 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 2974 vcpu->arch.mcg_ctl != ~(u64)0) 2975 return 0; 2976 banks += 4 * mce->bank; 2977 /* 2978 * if IA32_MCi_CTL is not all 1s, the uncorrected error 2979 * reporting is disabled for the bank 2980 */ 2981 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 2982 return 0; 2983 if (mce->status & MCI_STATUS_UC) { 2984 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 2985 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 2986 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2987 return 0; 2988 } 2989 if (banks[1] & MCI_STATUS_VAL) 2990 mce->status |= MCI_STATUS_OVER; 2991 banks[2] = mce->addr; 2992 banks[3] = mce->misc; 2993 vcpu->arch.mcg_status = mce->mcg_status; 2994 banks[1] = mce->status; 2995 kvm_queue_exception(vcpu, MC_VECTOR); 2996 } else if (!(banks[1] & MCI_STATUS_VAL) 2997 || !(banks[1] & MCI_STATUS_UC)) { 2998 if (banks[1] & MCI_STATUS_VAL) 2999 mce->status |= MCI_STATUS_OVER; 3000 banks[2] = mce->addr; 3001 banks[3] = mce->misc; 3002 banks[1] = mce->status; 3003 } else 3004 banks[1] |= MCI_STATUS_OVER; 3005 return 0; 3006 } 3007 3008 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 3009 struct kvm_vcpu_events *events) 3010 { 3011 process_nmi(vcpu); 3012 events->exception.injected = 3013 vcpu->arch.exception.pending && 3014 !kvm_exception_is_soft(vcpu->arch.exception.nr); 3015 events->exception.nr = vcpu->arch.exception.nr; 3016 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 3017 events->exception.pad = 0; 3018 events->exception.error_code = vcpu->arch.exception.error_code; 3019 3020 events->interrupt.injected = 3021 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft; 3022 events->interrupt.nr = vcpu->arch.interrupt.nr; 3023 events->interrupt.soft = 0; 3024 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); 3025 3026 events->nmi.injected = vcpu->arch.nmi_injected; 3027 events->nmi.pending = vcpu->arch.nmi_pending != 0; 3028 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); 3029 events->nmi.pad = 0; 3030 3031 events->sipi_vector = 0; /* never valid when reporting to user space */ 3032 3033 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 3034 | KVM_VCPUEVENT_VALID_SHADOW); 3035 memset(&events->reserved, 0, sizeof(events->reserved)); 3036 } 3037 3038 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 3039 struct kvm_vcpu_events *events) 3040 { 3041 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 3042 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 3043 | KVM_VCPUEVENT_VALID_SHADOW)) 3044 return -EINVAL; 3045 3046 process_nmi(vcpu); 3047 vcpu->arch.exception.pending = events->exception.injected; 3048 vcpu->arch.exception.nr = events->exception.nr; 3049 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 3050 vcpu->arch.exception.error_code = events->exception.error_code; 3051 3052 vcpu->arch.interrupt.pending = events->interrupt.injected; 3053 vcpu->arch.interrupt.nr = events->interrupt.nr; 3054 vcpu->arch.interrupt.soft = events->interrupt.soft; 3055 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 3056 kvm_x86_ops->set_interrupt_shadow(vcpu, 3057 events->interrupt.shadow); 3058 3059 vcpu->arch.nmi_injected = events->nmi.injected; 3060 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 3061 vcpu->arch.nmi_pending = events->nmi.pending; 3062 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); 3063 3064 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 3065 kvm_vcpu_has_lapic(vcpu)) 3066 vcpu->arch.apic->sipi_vector = events->sipi_vector; 3067 3068 kvm_make_request(KVM_REQ_EVENT, vcpu); 3069 3070 return 0; 3071 } 3072 3073 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 3074 struct kvm_debugregs *dbgregs) 3075 { 3076 unsigned long val; 3077 3078 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 3079 _kvm_get_dr(vcpu, 6, &val); 3080 dbgregs->dr6 = val; 3081 dbgregs->dr7 = vcpu->arch.dr7; 3082 dbgregs->flags = 0; 3083 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 3084 } 3085 3086 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 3087 struct kvm_debugregs *dbgregs) 3088 { 3089 if (dbgregs->flags) 3090 return -EINVAL; 3091 3092 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 3093 vcpu->arch.dr6 = dbgregs->dr6; 3094 kvm_update_dr6(vcpu); 3095 vcpu->arch.dr7 = dbgregs->dr7; 3096 kvm_update_dr7(vcpu); 3097 3098 return 0; 3099 } 3100 3101 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 3102 struct kvm_xsave *guest_xsave) 3103 { 3104 if (cpu_has_xsave) { 3105 memcpy(guest_xsave->region, 3106 &vcpu->arch.guest_fpu.state->xsave, 3107 vcpu->arch.guest_xstate_size); 3108 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] &= 3109 vcpu->arch.guest_supported_xcr0 | XSTATE_FPSSE; 3110 } else { 3111 memcpy(guest_xsave->region, 3112 &vcpu->arch.guest_fpu.state->fxsave, 3113 sizeof(struct i387_fxsave_struct)); 3114 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 3115 XSTATE_FPSSE; 3116 } 3117 } 3118 3119 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 3120 struct kvm_xsave *guest_xsave) 3121 { 3122 u64 xstate_bv = 3123 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 3124 3125 if (cpu_has_xsave) { 3126 /* 3127 * Here we allow setting states that are not present in 3128 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility 3129 * with old userspace. 3130 */ 3131 if (xstate_bv & ~kvm_supported_xcr0()) 3132 return -EINVAL; 3133 memcpy(&vcpu->arch.guest_fpu.state->xsave, 3134 guest_xsave->region, vcpu->arch.guest_xstate_size); 3135 } else { 3136 if (xstate_bv & ~XSTATE_FPSSE) 3137 return -EINVAL; 3138 memcpy(&vcpu->arch.guest_fpu.state->fxsave, 3139 guest_xsave->region, sizeof(struct i387_fxsave_struct)); 3140 } 3141 return 0; 3142 } 3143 3144 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 3145 struct kvm_xcrs *guest_xcrs) 3146 { 3147 if (!cpu_has_xsave) { 3148 guest_xcrs->nr_xcrs = 0; 3149 return; 3150 } 3151 3152 guest_xcrs->nr_xcrs = 1; 3153 guest_xcrs->flags = 0; 3154 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 3155 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 3156 } 3157 3158 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 3159 struct kvm_xcrs *guest_xcrs) 3160 { 3161 int i, r = 0; 3162 3163 if (!cpu_has_xsave) 3164 return -EINVAL; 3165 3166 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 3167 return -EINVAL; 3168 3169 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 3170 /* Only support XCR0 currently */ 3171 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 3172 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 3173 guest_xcrs->xcrs[i].value); 3174 break; 3175 } 3176 if (r) 3177 r = -EINVAL; 3178 return r; 3179 } 3180 3181 /* 3182 * kvm_set_guest_paused() indicates to the guest kernel that it has been 3183 * stopped by the hypervisor. This function will be called from the host only. 3184 * EINVAL is returned when the host attempts to set the flag for a guest that 3185 * does not support pv clocks. 3186 */ 3187 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 3188 { 3189 if (!vcpu->arch.pv_time_enabled) 3190 return -EINVAL; 3191 vcpu->arch.pvclock_set_guest_stopped_request = true; 3192 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3193 return 0; 3194 } 3195 3196 long kvm_arch_vcpu_ioctl(struct file *filp, 3197 unsigned int ioctl, unsigned long arg) 3198 { 3199 struct kvm_vcpu *vcpu = filp->private_data; 3200 void __user *argp = (void __user *)arg; 3201 int r; 3202 union { 3203 struct kvm_lapic_state *lapic; 3204 struct kvm_xsave *xsave; 3205 struct kvm_xcrs *xcrs; 3206 void *buffer; 3207 } u; 3208 3209 u.buffer = NULL; 3210 switch (ioctl) { 3211 case KVM_GET_LAPIC: { 3212 r = -EINVAL; 3213 if (!vcpu->arch.apic) 3214 goto out; 3215 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); 3216 3217 r = -ENOMEM; 3218 if (!u.lapic) 3219 goto out; 3220 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 3221 if (r) 3222 goto out; 3223 r = -EFAULT; 3224 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 3225 goto out; 3226 r = 0; 3227 break; 3228 } 3229 case KVM_SET_LAPIC: { 3230 r = -EINVAL; 3231 if (!vcpu->arch.apic) 3232 goto out; 3233 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 3234 if (IS_ERR(u.lapic)) 3235 return PTR_ERR(u.lapic); 3236 3237 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 3238 break; 3239 } 3240 case KVM_INTERRUPT: { 3241 struct kvm_interrupt irq; 3242 3243 r = -EFAULT; 3244 if (copy_from_user(&irq, argp, sizeof irq)) 3245 goto out; 3246 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 3247 break; 3248 } 3249 case KVM_NMI: { 3250 r = kvm_vcpu_ioctl_nmi(vcpu); 3251 break; 3252 } 3253 case KVM_SET_CPUID: { 3254 struct kvm_cpuid __user *cpuid_arg = argp; 3255 struct kvm_cpuid cpuid; 3256 3257 r = -EFAULT; 3258 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3259 goto out; 3260 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 3261 break; 3262 } 3263 case KVM_SET_CPUID2: { 3264 struct kvm_cpuid2 __user *cpuid_arg = argp; 3265 struct kvm_cpuid2 cpuid; 3266 3267 r = -EFAULT; 3268 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3269 goto out; 3270 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 3271 cpuid_arg->entries); 3272 break; 3273 } 3274 case KVM_GET_CPUID2: { 3275 struct kvm_cpuid2 __user *cpuid_arg = argp; 3276 struct kvm_cpuid2 cpuid; 3277 3278 r = -EFAULT; 3279 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3280 goto out; 3281 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 3282 cpuid_arg->entries); 3283 if (r) 3284 goto out; 3285 r = -EFAULT; 3286 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 3287 goto out; 3288 r = 0; 3289 break; 3290 } 3291 case KVM_GET_MSRS: 3292 r = msr_io(vcpu, argp, kvm_get_msr, 1); 3293 break; 3294 case KVM_SET_MSRS: 3295 r = msr_io(vcpu, argp, do_set_msr, 0); 3296 break; 3297 case KVM_TPR_ACCESS_REPORTING: { 3298 struct kvm_tpr_access_ctl tac; 3299 3300 r = -EFAULT; 3301 if (copy_from_user(&tac, argp, sizeof tac)) 3302 goto out; 3303 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 3304 if (r) 3305 goto out; 3306 r = -EFAULT; 3307 if (copy_to_user(argp, &tac, sizeof tac)) 3308 goto out; 3309 r = 0; 3310 break; 3311 }; 3312 case KVM_SET_VAPIC_ADDR: { 3313 struct kvm_vapic_addr va; 3314 3315 r = -EINVAL; 3316 if (!irqchip_in_kernel(vcpu->kvm)) 3317 goto out; 3318 r = -EFAULT; 3319 if (copy_from_user(&va, argp, sizeof va)) 3320 goto out; 3321 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 3322 break; 3323 } 3324 case KVM_X86_SETUP_MCE: { 3325 u64 mcg_cap; 3326 3327 r = -EFAULT; 3328 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) 3329 goto out; 3330 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 3331 break; 3332 } 3333 case KVM_X86_SET_MCE: { 3334 struct kvm_x86_mce mce; 3335 3336 r = -EFAULT; 3337 if (copy_from_user(&mce, argp, sizeof mce)) 3338 goto out; 3339 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 3340 break; 3341 } 3342 case KVM_GET_VCPU_EVENTS: { 3343 struct kvm_vcpu_events events; 3344 3345 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 3346 3347 r = -EFAULT; 3348 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 3349 break; 3350 r = 0; 3351 break; 3352 } 3353 case KVM_SET_VCPU_EVENTS: { 3354 struct kvm_vcpu_events events; 3355 3356 r = -EFAULT; 3357 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 3358 break; 3359 3360 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 3361 break; 3362 } 3363 case KVM_GET_DEBUGREGS: { 3364 struct kvm_debugregs dbgregs; 3365 3366 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 3367 3368 r = -EFAULT; 3369 if (copy_to_user(argp, &dbgregs, 3370 sizeof(struct kvm_debugregs))) 3371 break; 3372 r = 0; 3373 break; 3374 } 3375 case KVM_SET_DEBUGREGS: { 3376 struct kvm_debugregs dbgregs; 3377 3378 r = -EFAULT; 3379 if (copy_from_user(&dbgregs, argp, 3380 sizeof(struct kvm_debugregs))) 3381 break; 3382 3383 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 3384 break; 3385 } 3386 case KVM_GET_XSAVE: { 3387 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); 3388 r = -ENOMEM; 3389 if (!u.xsave) 3390 break; 3391 3392 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 3393 3394 r = -EFAULT; 3395 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 3396 break; 3397 r = 0; 3398 break; 3399 } 3400 case KVM_SET_XSAVE: { 3401 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 3402 if (IS_ERR(u.xsave)) 3403 return PTR_ERR(u.xsave); 3404 3405 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 3406 break; 3407 } 3408 case KVM_GET_XCRS: { 3409 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); 3410 r = -ENOMEM; 3411 if (!u.xcrs) 3412 break; 3413 3414 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 3415 3416 r = -EFAULT; 3417 if (copy_to_user(argp, u.xcrs, 3418 sizeof(struct kvm_xcrs))) 3419 break; 3420 r = 0; 3421 break; 3422 } 3423 case KVM_SET_XCRS: { 3424 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 3425 if (IS_ERR(u.xcrs)) 3426 return PTR_ERR(u.xcrs); 3427 3428 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 3429 break; 3430 } 3431 case KVM_SET_TSC_KHZ: { 3432 u32 user_tsc_khz; 3433 3434 r = -EINVAL; 3435 user_tsc_khz = (u32)arg; 3436 3437 if (user_tsc_khz >= kvm_max_guest_tsc_khz) 3438 goto out; 3439 3440 if (user_tsc_khz == 0) 3441 user_tsc_khz = tsc_khz; 3442 3443 kvm_set_tsc_khz(vcpu, user_tsc_khz); 3444 3445 r = 0; 3446 goto out; 3447 } 3448 case KVM_GET_TSC_KHZ: { 3449 r = vcpu->arch.virtual_tsc_khz; 3450 goto out; 3451 } 3452 case KVM_KVMCLOCK_CTRL: { 3453 r = kvm_set_guest_paused(vcpu); 3454 goto out; 3455 } 3456 default: 3457 r = -EINVAL; 3458 } 3459 out: 3460 kfree(u.buffer); 3461 return r; 3462 } 3463 3464 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 3465 { 3466 return VM_FAULT_SIGBUS; 3467 } 3468 3469 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 3470 { 3471 int ret; 3472 3473 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 3474 return -EINVAL; 3475 ret = kvm_x86_ops->set_tss_addr(kvm, addr); 3476 return ret; 3477 } 3478 3479 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 3480 u64 ident_addr) 3481 { 3482 kvm->arch.ept_identity_map_addr = ident_addr; 3483 return 0; 3484 } 3485 3486 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 3487 u32 kvm_nr_mmu_pages) 3488 { 3489 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 3490 return -EINVAL; 3491 3492 mutex_lock(&kvm->slots_lock); 3493 3494 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 3495 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 3496 3497 mutex_unlock(&kvm->slots_lock); 3498 return 0; 3499 } 3500 3501 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 3502 { 3503 return kvm->arch.n_max_mmu_pages; 3504 } 3505 3506 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 3507 { 3508 int r; 3509 3510 r = 0; 3511 switch (chip->chip_id) { 3512 case KVM_IRQCHIP_PIC_MASTER: 3513 memcpy(&chip->chip.pic, 3514 &pic_irqchip(kvm)->pics[0], 3515 sizeof(struct kvm_pic_state)); 3516 break; 3517 case KVM_IRQCHIP_PIC_SLAVE: 3518 memcpy(&chip->chip.pic, 3519 &pic_irqchip(kvm)->pics[1], 3520 sizeof(struct kvm_pic_state)); 3521 break; 3522 case KVM_IRQCHIP_IOAPIC: 3523 r = kvm_get_ioapic(kvm, &chip->chip.ioapic); 3524 break; 3525 default: 3526 r = -EINVAL; 3527 break; 3528 } 3529 return r; 3530 } 3531 3532 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 3533 { 3534 int r; 3535 3536 r = 0; 3537 switch (chip->chip_id) { 3538 case KVM_IRQCHIP_PIC_MASTER: 3539 spin_lock(&pic_irqchip(kvm)->lock); 3540 memcpy(&pic_irqchip(kvm)->pics[0], 3541 &chip->chip.pic, 3542 sizeof(struct kvm_pic_state)); 3543 spin_unlock(&pic_irqchip(kvm)->lock); 3544 break; 3545 case KVM_IRQCHIP_PIC_SLAVE: 3546 spin_lock(&pic_irqchip(kvm)->lock); 3547 memcpy(&pic_irqchip(kvm)->pics[1], 3548 &chip->chip.pic, 3549 sizeof(struct kvm_pic_state)); 3550 spin_unlock(&pic_irqchip(kvm)->lock); 3551 break; 3552 case KVM_IRQCHIP_IOAPIC: 3553 r = kvm_set_ioapic(kvm, &chip->chip.ioapic); 3554 break; 3555 default: 3556 r = -EINVAL; 3557 break; 3558 } 3559 kvm_pic_update_irq(pic_irqchip(kvm)); 3560 return r; 3561 } 3562 3563 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3564 { 3565 int r = 0; 3566 3567 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3568 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state)); 3569 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3570 return r; 3571 } 3572 3573 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3574 { 3575 int r = 0; 3576 3577 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3578 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state)); 3579 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0); 3580 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3581 return r; 3582 } 3583 3584 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3585 { 3586 int r = 0; 3587 3588 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3589 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 3590 sizeof(ps->channels)); 3591 ps->flags = kvm->arch.vpit->pit_state.flags; 3592 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3593 memset(&ps->reserved, 0, sizeof(ps->reserved)); 3594 return r; 3595 } 3596 3597 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3598 { 3599 int r = 0, start = 0; 3600 u32 prev_legacy, cur_legacy; 3601 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3602 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 3603 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 3604 if (!prev_legacy && cur_legacy) 3605 start = 1; 3606 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels, 3607 sizeof(kvm->arch.vpit->pit_state.channels)); 3608 kvm->arch.vpit->pit_state.flags = ps->flags; 3609 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start); 3610 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3611 return r; 3612 } 3613 3614 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 3615 struct kvm_reinject_control *control) 3616 { 3617 if (!kvm->arch.vpit) 3618 return -ENXIO; 3619 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3620 kvm->arch.vpit->pit_state.reinject = control->pit_reinject; 3621 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3622 return 0; 3623 } 3624 3625 /** 3626 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 3627 * @kvm: kvm instance 3628 * @log: slot id and address to which we copy the log 3629 * 3630 * We need to keep it in mind that VCPU threads can write to the bitmap 3631 * concurrently. So, to avoid losing data, we keep the following order for 3632 * each bit: 3633 * 3634 * 1. Take a snapshot of the bit and clear it if needed. 3635 * 2. Write protect the corresponding page. 3636 * 3. Flush TLB's if needed. 3637 * 4. Copy the snapshot to the userspace. 3638 * 3639 * Between 2 and 3, the guest may write to the page using the remaining TLB 3640 * entry. This is not a problem because the page will be reported dirty at 3641 * step 4 using the snapshot taken before and step 3 ensures that successive 3642 * writes will be logged for the next call. 3643 */ 3644 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) 3645 { 3646 int r; 3647 struct kvm_memory_slot *memslot; 3648 unsigned long n, i; 3649 unsigned long *dirty_bitmap; 3650 unsigned long *dirty_bitmap_buffer; 3651 bool is_dirty = false; 3652 3653 mutex_lock(&kvm->slots_lock); 3654 3655 r = -EINVAL; 3656 if (log->slot >= KVM_USER_MEM_SLOTS) 3657 goto out; 3658 3659 memslot = id_to_memslot(kvm->memslots, log->slot); 3660 3661 dirty_bitmap = memslot->dirty_bitmap; 3662 r = -ENOENT; 3663 if (!dirty_bitmap) 3664 goto out; 3665 3666 n = kvm_dirty_bitmap_bytes(memslot); 3667 3668 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); 3669 memset(dirty_bitmap_buffer, 0, n); 3670 3671 spin_lock(&kvm->mmu_lock); 3672 3673 for (i = 0; i < n / sizeof(long); i++) { 3674 unsigned long mask; 3675 gfn_t offset; 3676 3677 if (!dirty_bitmap[i]) 3678 continue; 3679 3680 is_dirty = true; 3681 3682 mask = xchg(&dirty_bitmap[i], 0); 3683 dirty_bitmap_buffer[i] = mask; 3684 3685 offset = i * BITS_PER_LONG; 3686 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask); 3687 } 3688 3689 spin_unlock(&kvm->mmu_lock); 3690 3691 /* See the comments in kvm_mmu_slot_remove_write_access(). */ 3692 lockdep_assert_held(&kvm->slots_lock); 3693 3694 /* 3695 * All the TLBs can be flushed out of mmu lock, see the comments in 3696 * kvm_mmu_slot_remove_write_access(). 3697 */ 3698 if (is_dirty) 3699 kvm_flush_remote_tlbs(kvm); 3700 3701 r = -EFAULT; 3702 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 3703 goto out; 3704 3705 r = 0; 3706 out: 3707 mutex_unlock(&kvm->slots_lock); 3708 return r; 3709 } 3710 3711 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 3712 bool line_status) 3713 { 3714 if (!irqchip_in_kernel(kvm)) 3715 return -ENXIO; 3716 3717 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 3718 irq_event->irq, irq_event->level, 3719 line_status); 3720 return 0; 3721 } 3722 3723 long kvm_arch_vm_ioctl(struct file *filp, 3724 unsigned int ioctl, unsigned long arg) 3725 { 3726 struct kvm *kvm = filp->private_data; 3727 void __user *argp = (void __user *)arg; 3728 int r = -ENOTTY; 3729 /* 3730 * This union makes it completely explicit to gcc-3.x 3731 * that these two variables' stack usage should be 3732 * combined, not added together. 3733 */ 3734 union { 3735 struct kvm_pit_state ps; 3736 struct kvm_pit_state2 ps2; 3737 struct kvm_pit_config pit_config; 3738 } u; 3739 3740 switch (ioctl) { 3741 case KVM_SET_TSS_ADDR: 3742 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 3743 break; 3744 case KVM_SET_IDENTITY_MAP_ADDR: { 3745 u64 ident_addr; 3746 3747 r = -EFAULT; 3748 if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) 3749 goto out; 3750 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 3751 break; 3752 } 3753 case KVM_SET_NR_MMU_PAGES: 3754 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 3755 break; 3756 case KVM_GET_NR_MMU_PAGES: 3757 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 3758 break; 3759 case KVM_CREATE_IRQCHIP: { 3760 struct kvm_pic *vpic; 3761 3762 mutex_lock(&kvm->lock); 3763 r = -EEXIST; 3764 if (kvm->arch.vpic) 3765 goto create_irqchip_unlock; 3766 r = -EINVAL; 3767 if (atomic_read(&kvm->online_vcpus)) 3768 goto create_irqchip_unlock; 3769 r = -ENOMEM; 3770 vpic = kvm_create_pic(kvm); 3771 if (vpic) { 3772 r = kvm_ioapic_init(kvm); 3773 if (r) { 3774 mutex_lock(&kvm->slots_lock); 3775 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3776 &vpic->dev_master); 3777 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3778 &vpic->dev_slave); 3779 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3780 &vpic->dev_eclr); 3781 mutex_unlock(&kvm->slots_lock); 3782 kfree(vpic); 3783 goto create_irqchip_unlock; 3784 } 3785 } else 3786 goto create_irqchip_unlock; 3787 smp_wmb(); 3788 kvm->arch.vpic = vpic; 3789 smp_wmb(); 3790 r = kvm_setup_default_irq_routing(kvm); 3791 if (r) { 3792 mutex_lock(&kvm->slots_lock); 3793 mutex_lock(&kvm->irq_lock); 3794 kvm_ioapic_destroy(kvm); 3795 kvm_destroy_pic(kvm); 3796 mutex_unlock(&kvm->irq_lock); 3797 mutex_unlock(&kvm->slots_lock); 3798 } 3799 create_irqchip_unlock: 3800 mutex_unlock(&kvm->lock); 3801 break; 3802 } 3803 case KVM_CREATE_PIT: 3804 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 3805 goto create_pit; 3806 case KVM_CREATE_PIT2: 3807 r = -EFAULT; 3808 if (copy_from_user(&u.pit_config, argp, 3809 sizeof(struct kvm_pit_config))) 3810 goto out; 3811 create_pit: 3812 mutex_lock(&kvm->slots_lock); 3813 r = -EEXIST; 3814 if (kvm->arch.vpit) 3815 goto create_pit_unlock; 3816 r = -ENOMEM; 3817 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 3818 if (kvm->arch.vpit) 3819 r = 0; 3820 create_pit_unlock: 3821 mutex_unlock(&kvm->slots_lock); 3822 break; 3823 case KVM_GET_IRQCHIP: { 3824 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 3825 struct kvm_irqchip *chip; 3826 3827 chip = memdup_user(argp, sizeof(*chip)); 3828 if (IS_ERR(chip)) { 3829 r = PTR_ERR(chip); 3830 goto out; 3831 } 3832 3833 r = -ENXIO; 3834 if (!irqchip_in_kernel(kvm)) 3835 goto get_irqchip_out; 3836 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 3837 if (r) 3838 goto get_irqchip_out; 3839 r = -EFAULT; 3840 if (copy_to_user(argp, chip, sizeof *chip)) 3841 goto get_irqchip_out; 3842 r = 0; 3843 get_irqchip_out: 3844 kfree(chip); 3845 break; 3846 } 3847 case KVM_SET_IRQCHIP: { 3848 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 3849 struct kvm_irqchip *chip; 3850 3851 chip = memdup_user(argp, sizeof(*chip)); 3852 if (IS_ERR(chip)) { 3853 r = PTR_ERR(chip); 3854 goto out; 3855 } 3856 3857 r = -ENXIO; 3858 if (!irqchip_in_kernel(kvm)) 3859 goto set_irqchip_out; 3860 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 3861 if (r) 3862 goto set_irqchip_out; 3863 r = 0; 3864 set_irqchip_out: 3865 kfree(chip); 3866 break; 3867 } 3868 case KVM_GET_PIT: { 3869 r = -EFAULT; 3870 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 3871 goto out; 3872 r = -ENXIO; 3873 if (!kvm->arch.vpit) 3874 goto out; 3875 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 3876 if (r) 3877 goto out; 3878 r = -EFAULT; 3879 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 3880 goto out; 3881 r = 0; 3882 break; 3883 } 3884 case KVM_SET_PIT: { 3885 r = -EFAULT; 3886 if (copy_from_user(&u.ps, argp, sizeof u.ps)) 3887 goto out; 3888 r = -ENXIO; 3889 if (!kvm->arch.vpit) 3890 goto out; 3891 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 3892 break; 3893 } 3894 case KVM_GET_PIT2: { 3895 r = -ENXIO; 3896 if (!kvm->arch.vpit) 3897 goto out; 3898 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 3899 if (r) 3900 goto out; 3901 r = -EFAULT; 3902 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 3903 goto out; 3904 r = 0; 3905 break; 3906 } 3907 case KVM_SET_PIT2: { 3908 r = -EFAULT; 3909 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 3910 goto out; 3911 r = -ENXIO; 3912 if (!kvm->arch.vpit) 3913 goto out; 3914 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 3915 break; 3916 } 3917 case KVM_REINJECT_CONTROL: { 3918 struct kvm_reinject_control control; 3919 r = -EFAULT; 3920 if (copy_from_user(&control, argp, sizeof(control))) 3921 goto out; 3922 r = kvm_vm_ioctl_reinject(kvm, &control); 3923 break; 3924 } 3925 case KVM_XEN_HVM_CONFIG: { 3926 r = -EFAULT; 3927 if (copy_from_user(&kvm->arch.xen_hvm_config, argp, 3928 sizeof(struct kvm_xen_hvm_config))) 3929 goto out; 3930 r = -EINVAL; 3931 if (kvm->arch.xen_hvm_config.flags) 3932 goto out; 3933 r = 0; 3934 break; 3935 } 3936 case KVM_SET_CLOCK: { 3937 struct kvm_clock_data user_ns; 3938 u64 now_ns; 3939 s64 delta; 3940 3941 r = -EFAULT; 3942 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 3943 goto out; 3944 3945 r = -EINVAL; 3946 if (user_ns.flags) 3947 goto out; 3948 3949 r = 0; 3950 local_irq_disable(); 3951 now_ns = get_kernel_ns(); 3952 delta = user_ns.clock - now_ns; 3953 local_irq_enable(); 3954 kvm->arch.kvmclock_offset = delta; 3955 kvm_gen_update_masterclock(kvm); 3956 break; 3957 } 3958 case KVM_GET_CLOCK: { 3959 struct kvm_clock_data user_ns; 3960 u64 now_ns; 3961 3962 local_irq_disable(); 3963 now_ns = get_kernel_ns(); 3964 user_ns.clock = kvm->arch.kvmclock_offset + now_ns; 3965 local_irq_enable(); 3966 user_ns.flags = 0; 3967 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 3968 3969 r = -EFAULT; 3970 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 3971 goto out; 3972 r = 0; 3973 break; 3974 } 3975 3976 default: 3977 ; 3978 } 3979 out: 3980 return r; 3981 } 3982 3983 static void kvm_init_msr_list(void) 3984 { 3985 u32 dummy[2]; 3986 unsigned i, j; 3987 3988 /* skip the first msrs in the list. KVM-specific */ 3989 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) { 3990 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) 3991 continue; 3992 3993 /* 3994 * Even MSRs that are valid in the host may not be exposed 3995 * to the guests in some cases. We could work around this 3996 * in VMX with the generic MSR save/load machinery, but it 3997 * is not really worthwhile since it will really only 3998 * happen with nested virtualization. 3999 */ 4000 switch (msrs_to_save[i]) { 4001 case MSR_IA32_BNDCFGS: 4002 if (!kvm_x86_ops->mpx_supported()) 4003 continue; 4004 break; 4005 default: 4006 break; 4007 } 4008 4009 if (j < i) 4010 msrs_to_save[j] = msrs_to_save[i]; 4011 j++; 4012 } 4013 num_msrs_to_save = j; 4014 } 4015 4016 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 4017 const void *v) 4018 { 4019 int handled = 0; 4020 int n; 4021 4022 do { 4023 n = min(len, 8); 4024 if (!(vcpu->arch.apic && 4025 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v)) 4026 && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) 4027 break; 4028 handled += n; 4029 addr += n; 4030 len -= n; 4031 v += n; 4032 } while (len); 4033 4034 return handled; 4035 } 4036 4037 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 4038 { 4039 int handled = 0; 4040 int n; 4041 4042 do { 4043 n = min(len, 8); 4044 if (!(vcpu->arch.apic && 4045 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v)) 4046 && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) 4047 break; 4048 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v); 4049 handled += n; 4050 addr += n; 4051 len -= n; 4052 v += n; 4053 } while (len); 4054 4055 return handled; 4056 } 4057 4058 static void kvm_set_segment(struct kvm_vcpu *vcpu, 4059 struct kvm_segment *var, int seg) 4060 { 4061 kvm_x86_ops->set_segment(vcpu, var, seg); 4062 } 4063 4064 void kvm_get_segment(struct kvm_vcpu *vcpu, 4065 struct kvm_segment *var, int seg) 4066 { 4067 kvm_x86_ops->get_segment(vcpu, var, seg); 4068 } 4069 4070 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 4071 struct x86_exception *exception) 4072 { 4073 gpa_t t_gpa; 4074 4075 BUG_ON(!mmu_is_nested(vcpu)); 4076 4077 /* NPT walks are always user-walks */ 4078 access |= PFERR_USER_MASK; 4079 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception); 4080 4081 return t_gpa; 4082 } 4083 4084 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 4085 struct x86_exception *exception) 4086 { 4087 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4088 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4089 } 4090 4091 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 4092 struct x86_exception *exception) 4093 { 4094 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4095 access |= PFERR_FETCH_MASK; 4096 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4097 } 4098 4099 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 4100 struct x86_exception *exception) 4101 { 4102 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4103 access |= PFERR_WRITE_MASK; 4104 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4105 } 4106 4107 /* uses this to access any guest's mapped memory without checking CPL */ 4108 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 4109 struct x86_exception *exception) 4110 { 4111 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 4112 } 4113 4114 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 4115 struct kvm_vcpu *vcpu, u32 access, 4116 struct x86_exception *exception) 4117 { 4118 void *data = val; 4119 int r = X86EMUL_CONTINUE; 4120 4121 while (bytes) { 4122 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 4123 exception); 4124 unsigned offset = addr & (PAGE_SIZE-1); 4125 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 4126 int ret; 4127 4128 if (gpa == UNMAPPED_GVA) 4129 return X86EMUL_PROPAGATE_FAULT; 4130 ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, data, 4131 offset, toread); 4132 if (ret < 0) { 4133 r = X86EMUL_IO_NEEDED; 4134 goto out; 4135 } 4136 4137 bytes -= toread; 4138 data += toread; 4139 addr += toread; 4140 } 4141 out: 4142 return r; 4143 } 4144 4145 /* used for instruction fetching */ 4146 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 4147 gva_t addr, void *val, unsigned int bytes, 4148 struct x86_exception *exception) 4149 { 4150 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4151 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4152 unsigned offset; 4153 int ret; 4154 4155 /* Inline kvm_read_guest_virt_helper for speed. */ 4156 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK, 4157 exception); 4158 if (unlikely(gpa == UNMAPPED_GVA)) 4159 return X86EMUL_PROPAGATE_FAULT; 4160 4161 offset = addr & (PAGE_SIZE-1); 4162 if (WARN_ON(offset + bytes > PAGE_SIZE)) 4163 bytes = (unsigned)PAGE_SIZE - offset; 4164 ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, val, 4165 offset, bytes); 4166 if (unlikely(ret < 0)) 4167 return X86EMUL_IO_NEEDED; 4168 4169 return X86EMUL_CONTINUE; 4170 } 4171 4172 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt, 4173 gva_t addr, void *val, unsigned int bytes, 4174 struct x86_exception *exception) 4175 { 4176 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4177 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4178 4179 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 4180 exception); 4181 } 4182 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 4183 4184 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt, 4185 gva_t addr, void *val, unsigned int bytes, 4186 struct x86_exception *exception) 4187 { 4188 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4189 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception); 4190 } 4191 4192 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt, 4193 gva_t addr, void *val, 4194 unsigned int bytes, 4195 struct x86_exception *exception) 4196 { 4197 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4198 void *data = val; 4199 int r = X86EMUL_CONTINUE; 4200 4201 while (bytes) { 4202 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 4203 PFERR_WRITE_MASK, 4204 exception); 4205 unsigned offset = addr & (PAGE_SIZE-1); 4206 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 4207 int ret; 4208 4209 if (gpa == UNMAPPED_GVA) 4210 return X86EMUL_PROPAGATE_FAULT; 4211 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite); 4212 if (ret < 0) { 4213 r = X86EMUL_IO_NEEDED; 4214 goto out; 4215 } 4216 4217 bytes -= towrite; 4218 data += towrite; 4219 addr += towrite; 4220 } 4221 out: 4222 return r; 4223 } 4224 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 4225 4226 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 4227 gpa_t *gpa, struct x86_exception *exception, 4228 bool write) 4229 { 4230 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) 4231 | (write ? PFERR_WRITE_MASK : 0); 4232 4233 if (vcpu_match_mmio_gva(vcpu, gva) 4234 && !permission_fault(vcpu, vcpu->arch.walk_mmu, 4235 vcpu->arch.access, access)) { 4236 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 4237 (gva & (PAGE_SIZE - 1)); 4238 trace_vcpu_match_mmio(gva, *gpa, write, false); 4239 return 1; 4240 } 4241 4242 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4243 4244 if (*gpa == UNMAPPED_GVA) 4245 return -1; 4246 4247 /* For APIC access vmexit */ 4248 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 4249 return 1; 4250 4251 if (vcpu_match_mmio_gpa(vcpu, *gpa)) { 4252 trace_vcpu_match_mmio(gva, *gpa, write, true); 4253 return 1; 4254 } 4255 4256 return 0; 4257 } 4258 4259 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 4260 const void *val, int bytes) 4261 { 4262 int ret; 4263 4264 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes); 4265 if (ret < 0) 4266 return 0; 4267 kvm_mmu_pte_write(vcpu, gpa, val, bytes); 4268 return 1; 4269 } 4270 4271 struct read_write_emulator_ops { 4272 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 4273 int bytes); 4274 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 4275 void *val, int bytes); 4276 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 4277 int bytes, void *val); 4278 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 4279 void *val, int bytes); 4280 bool write; 4281 }; 4282 4283 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 4284 { 4285 if (vcpu->mmio_read_completed) { 4286 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 4287 vcpu->mmio_fragments[0].gpa, *(u64 *)val); 4288 vcpu->mmio_read_completed = 0; 4289 return 1; 4290 } 4291 4292 return 0; 4293 } 4294 4295 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 4296 void *val, int bytes) 4297 { 4298 return !kvm_read_guest(vcpu->kvm, gpa, val, bytes); 4299 } 4300 4301 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 4302 void *val, int bytes) 4303 { 4304 return emulator_write_phys(vcpu, gpa, val, bytes); 4305 } 4306 4307 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 4308 { 4309 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val); 4310 return vcpu_mmio_write(vcpu, gpa, bytes, val); 4311 } 4312 4313 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 4314 void *val, int bytes) 4315 { 4316 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0); 4317 return X86EMUL_IO_NEEDED; 4318 } 4319 4320 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 4321 void *val, int bytes) 4322 { 4323 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 4324 4325 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 4326 return X86EMUL_CONTINUE; 4327 } 4328 4329 static const struct read_write_emulator_ops read_emultor = { 4330 .read_write_prepare = read_prepare, 4331 .read_write_emulate = read_emulate, 4332 .read_write_mmio = vcpu_mmio_read, 4333 .read_write_exit_mmio = read_exit_mmio, 4334 }; 4335 4336 static const struct read_write_emulator_ops write_emultor = { 4337 .read_write_emulate = write_emulate, 4338 .read_write_mmio = write_mmio, 4339 .read_write_exit_mmio = write_exit_mmio, 4340 .write = true, 4341 }; 4342 4343 static int emulator_read_write_onepage(unsigned long addr, void *val, 4344 unsigned int bytes, 4345 struct x86_exception *exception, 4346 struct kvm_vcpu *vcpu, 4347 const struct read_write_emulator_ops *ops) 4348 { 4349 gpa_t gpa; 4350 int handled, ret; 4351 bool write = ops->write; 4352 struct kvm_mmio_fragment *frag; 4353 4354 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 4355 4356 if (ret < 0) 4357 return X86EMUL_PROPAGATE_FAULT; 4358 4359 /* For APIC access vmexit */ 4360 if (ret) 4361 goto mmio; 4362 4363 if (ops->read_write_emulate(vcpu, gpa, val, bytes)) 4364 return X86EMUL_CONTINUE; 4365 4366 mmio: 4367 /* 4368 * Is this MMIO handled locally? 4369 */ 4370 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 4371 if (handled == bytes) 4372 return X86EMUL_CONTINUE; 4373 4374 gpa += handled; 4375 bytes -= handled; 4376 val += handled; 4377 4378 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 4379 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 4380 frag->gpa = gpa; 4381 frag->data = val; 4382 frag->len = bytes; 4383 return X86EMUL_CONTINUE; 4384 } 4385 4386 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr, 4387 void *val, unsigned int bytes, 4388 struct x86_exception *exception, 4389 const struct read_write_emulator_ops *ops) 4390 { 4391 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4392 gpa_t gpa; 4393 int rc; 4394 4395 if (ops->read_write_prepare && 4396 ops->read_write_prepare(vcpu, val, bytes)) 4397 return X86EMUL_CONTINUE; 4398 4399 vcpu->mmio_nr_fragments = 0; 4400 4401 /* Crossing a page boundary? */ 4402 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 4403 int now; 4404 4405 now = -addr & ~PAGE_MASK; 4406 rc = emulator_read_write_onepage(addr, val, now, exception, 4407 vcpu, ops); 4408 4409 if (rc != X86EMUL_CONTINUE) 4410 return rc; 4411 addr += now; 4412 val += now; 4413 bytes -= now; 4414 } 4415 4416 rc = emulator_read_write_onepage(addr, val, bytes, exception, 4417 vcpu, ops); 4418 if (rc != X86EMUL_CONTINUE) 4419 return rc; 4420 4421 if (!vcpu->mmio_nr_fragments) 4422 return rc; 4423 4424 gpa = vcpu->mmio_fragments[0].gpa; 4425 4426 vcpu->mmio_needed = 1; 4427 vcpu->mmio_cur_fragment = 0; 4428 4429 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 4430 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 4431 vcpu->run->exit_reason = KVM_EXIT_MMIO; 4432 vcpu->run->mmio.phys_addr = gpa; 4433 4434 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 4435 } 4436 4437 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 4438 unsigned long addr, 4439 void *val, 4440 unsigned int bytes, 4441 struct x86_exception *exception) 4442 { 4443 return emulator_read_write(ctxt, addr, val, bytes, 4444 exception, &read_emultor); 4445 } 4446 4447 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 4448 unsigned long addr, 4449 const void *val, 4450 unsigned int bytes, 4451 struct x86_exception *exception) 4452 { 4453 return emulator_read_write(ctxt, addr, (void *)val, bytes, 4454 exception, &write_emultor); 4455 } 4456 4457 #define CMPXCHG_TYPE(t, ptr, old, new) \ 4458 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 4459 4460 #ifdef CONFIG_X86_64 4461 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 4462 #else 4463 # define CMPXCHG64(ptr, old, new) \ 4464 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 4465 #endif 4466 4467 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 4468 unsigned long addr, 4469 const void *old, 4470 const void *new, 4471 unsigned int bytes, 4472 struct x86_exception *exception) 4473 { 4474 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4475 gpa_t gpa; 4476 struct page *page; 4477 char *kaddr; 4478 bool exchanged; 4479 4480 /* guests cmpxchg8b have to be emulated atomically */ 4481 if (bytes > 8 || (bytes & (bytes - 1))) 4482 goto emul_write; 4483 4484 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 4485 4486 if (gpa == UNMAPPED_GVA || 4487 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 4488 goto emul_write; 4489 4490 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) 4491 goto emul_write; 4492 4493 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT); 4494 if (is_error_page(page)) 4495 goto emul_write; 4496 4497 kaddr = kmap_atomic(page); 4498 kaddr += offset_in_page(gpa); 4499 switch (bytes) { 4500 case 1: 4501 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 4502 break; 4503 case 2: 4504 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 4505 break; 4506 case 4: 4507 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 4508 break; 4509 case 8: 4510 exchanged = CMPXCHG64(kaddr, old, new); 4511 break; 4512 default: 4513 BUG(); 4514 } 4515 kunmap_atomic(kaddr); 4516 kvm_release_page_dirty(page); 4517 4518 if (!exchanged) 4519 return X86EMUL_CMPXCHG_FAILED; 4520 4521 mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT); 4522 kvm_mmu_pte_write(vcpu, gpa, new, bytes); 4523 4524 return X86EMUL_CONTINUE; 4525 4526 emul_write: 4527 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 4528 4529 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 4530 } 4531 4532 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 4533 { 4534 /* TODO: String I/O for in kernel device */ 4535 int r; 4536 4537 if (vcpu->arch.pio.in) 4538 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port, 4539 vcpu->arch.pio.size, pd); 4540 else 4541 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS, 4542 vcpu->arch.pio.port, vcpu->arch.pio.size, 4543 pd); 4544 return r; 4545 } 4546 4547 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 4548 unsigned short port, void *val, 4549 unsigned int count, bool in) 4550 { 4551 vcpu->arch.pio.port = port; 4552 vcpu->arch.pio.in = in; 4553 vcpu->arch.pio.count = count; 4554 vcpu->arch.pio.size = size; 4555 4556 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 4557 vcpu->arch.pio.count = 0; 4558 return 1; 4559 } 4560 4561 vcpu->run->exit_reason = KVM_EXIT_IO; 4562 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 4563 vcpu->run->io.size = size; 4564 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 4565 vcpu->run->io.count = count; 4566 vcpu->run->io.port = port; 4567 4568 return 0; 4569 } 4570 4571 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 4572 int size, unsigned short port, void *val, 4573 unsigned int count) 4574 { 4575 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4576 int ret; 4577 4578 if (vcpu->arch.pio.count) 4579 goto data_avail; 4580 4581 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 4582 if (ret) { 4583 data_avail: 4584 memcpy(val, vcpu->arch.pio_data, size * count); 4585 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data); 4586 vcpu->arch.pio.count = 0; 4587 return 1; 4588 } 4589 4590 return 0; 4591 } 4592 4593 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 4594 int size, unsigned short port, 4595 const void *val, unsigned int count) 4596 { 4597 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4598 4599 memcpy(vcpu->arch.pio_data, val, size * count); 4600 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); 4601 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 4602 } 4603 4604 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 4605 { 4606 return kvm_x86_ops->get_segment_base(vcpu, seg); 4607 } 4608 4609 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 4610 { 4611 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 4612 } 4613 4614 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 4615 { 4616 if (!need_emulate_wbinvd(vcpu)) 4617 return X86EMUL_CONTINUE; 4618 4619 if (kvm_x86_ops->has_wbinvd_exit()) { 4620 int cpu = get_cpu(); 4621 4622 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4623 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 4624 wbinvd_ipi, NULL, 1); 4625 put_cpu(); 4626 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 4627 } else 4628 wbinvd(); 4629 return X86EMUL_CONTINUE; 4630 } 4631 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 4632 4633 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 4634 { 4635 kvm_emulate_wbinvd(emul_to_vcpu(ctxt)); 4636 } 4637 4638 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest) 4639 { 4640 return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 4641 } 4642 4643 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value) 4644 { 4645 4646 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 4647 } 4648 4649 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 4650 { 4651 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 4652 } 4653 4654 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 4655 { 4656 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4657 unsigned long value; 4658 4659 switch (cr) { 4660 case 0: 4661 value = kvm_read_cr0(vcpu); 4662 break; 4663 case 2: 4664 value = vcpu->arch.cr2; 4665 break; 4666 case 3: 4667 value = kvm_read_cr3(vcpu); 4668 break; 4669 case 4: 4670 value = kvm_read_cr4(vcpu); 4671 break; 4672 case 8: 4673 value = kvm_get_cr8(vcpu); 4674 break; 4675 default: 4676 kvm_err("%s: unexpected cr %u\n", __func__, cr); 4677 return 0; 4678 } 4679 4680 return value; 4681 } 4682 4683 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 4684 { 4685 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4686 int res = 0; 4687 4688 switch (cr) { 4689 case 0: 4690 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 4691 break; 4692 case 2: 4693 vcpu->arch.cr2 = val; 4694 break; 4695 case 3: 4696 res = kvm_set_cr3(vcpu, val); 4697 break; 4698 case 4: 4699 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 4700 break; 4701 case 8: 4702 res = kvm_set_cr8(vcpu, val); 4703 break; 4704 default: 4705 kvm_err("%s: unexpected cr %u\n", __func__, cr); 4706 res = -1; 4707 } 4708 4709 return res; 4710 } 4711 4712 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 4713 { 4714 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); 4715 } 4716 4717 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4718 { 4719 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); 4720 } 4721 4722 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4723 { 4724 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); 4725 } 4726 4727 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4728 { 4729 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); 4730 } 4731 4732 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4733 { 4734 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); 4735 } 4736 4737 static unsigned long emulator_get_cached_segment_base( 4738 struct x86_emulate_ctxt *ctxt, int seg) 4739 { 4740 return get_segment_base(emul_to_vcpu(ctxt), seg); 4741 } 4742 4743 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 4744 struct desc_struct *desc, u32 *base3, 4745 int seg) 4746 { 4747 struct kvm_segment var; 4748 4749 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 4750 *selector = var.selector; 4751 4752 if (var.unusable) { 4753 memset(desc, 0, sizeof(*desc)); 4754 return false; 4755 } 4756 4757 if (var.g) 4758 var.limit >>= 12; 4759 set_desc_limit(desc, var.limit); 4760 set_desc_base(desc, (unsigned long)var.base); 4761 #ifdef CONFIG_X86_64 4762 if (base3) 4763 *base3 = var.base >> 32; 4764 #endif 4765 desc->type = var.type; 4766 desc->s = var.s; 4767 desc->dpl = var.dpl; 4768 desc->p = var.present; 4769 desc->avl = var.avl; 4770 desc->l = var.l; 4771 desc->d = var.db; 4772 desc->g = var.g; 4773 4774 return true; 4775 } 4776 4777 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 4778 struct desc_struct *desc, u32 base3, 4779 int seg) 4780 { 4781 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4782 struct kvm_segment var; 4783 4784 var.selector = selector; 4785 var.base = get_desc_base(desc); 4786 #ifdef CONFIG_X86_64 4787 var.base |= ((u64)base3) << 32; 4788 #endif 4789 var.limit = get_desc_limit(desc); 4790 if (desc->g) 4791 var.limit = (var.limit << 12) | 0xfff; 4792 var.type = desc->type; 4793 var.dpl = desc->dpl; 4794 var.db = desc->d; 4795 var.s = desc->s; 4796 var.l = desc->l; 4797 var.g = desc->g; 4798 var.avl = desc->avl; 4799 var.present = desc->p; 4800 var.unusable = !var.present; 4801 var.padding = 0; 4802 4803 kvm_set_segment(vcpu, &var, seg); 4804 return; 4805 } 4806 4807 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 4808 u32 msr_index, u64 *pdata) 4809 { 4810 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 4811 } 4812 4813 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 4814 u32 msr_index, u64 data) 4815 { 4816 struct msr_data msr; 4817 4818 msr.data = data; 4819 msr.index = msr_index; 4820 msr.host_initiated = false; 4821 return kvm_set_msr(emul_to_vcpu(ctxt), &msr); 4822 } 4823 4824 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 4825 u32 pmc) 4826 { 4827 return kvm_pmu_check_pmc(emul_to_vcpu(ctxt), pmc); 4828 } 4829 4830 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 4831 u32 pmc, u64 *pdata) 4832 { 4833 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata); 4834 } 4835 4836 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 4837 { 4838 emul_to_vcpu(ctxt)->arch.halt_request = 1; 4839 } 4840 4841 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt) 4842 { 4843 preempt_disable(); 4844 kvm_load_guest_fpu(emul_to_vcpu(ctxt)); 4845 /* 4846 * CR0.TS may reference the host fpu state, not the guest fpu state, 4847 * so it may be clear at this point. 4848 */ 4849 clts(); 4850 } 4851 4852 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt) 4853 { 4854 preempt_enable(); 4855 } 4856 4857 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 4858 struct x86_instruction_info *info, 4859 enum x86_intercept_stage stage) 4860 { 4861 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); 4862 } 4863 4864 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 4865 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx) 4866 { 4867 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx); 4868 } 4869 4870 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 4871 { 4872 return kvm_register_read(emul_to_vcpu(ctxt), reg); 4873 } 4874 4875 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 4876 { 4877 kvm_register_write(emul_to_vcpu(ctxt), reg, val); 4878 } 4879 4880 static const struct x86_emulate_ops emulate_ops = { 4881 .read_gpr = emulator_read_gpr, 4882 .write_gpr = emulator_write_gpr, 4883 .read_std = kvm_read_guest_virt_system, 4884 .write_std = kvm_write_guest_virt_system, 4885 .fetch = kvm_fetch_guest_virt, 4886 .read_emulated = emulator_read_emulated, 4887 .write_emulated = emulator_write_emulated, 4888 .cmpxchg_emulated = emulator_cmpxchg_emulated, 4889 .invlpg = emulator_invlpg, 4890 .pio_in_emulated = emulator_pio_in_emulated, 4891 .pio_out_emulated = emulator_pio_out_emulated, 4892 .get_segment = emulator_get_segment, 4893 .set_segment = emulator_set_segment, 4894 .get_cached_segment_base = emulator_get_cached_segment_base, 4895 .get_gdt = emulator_get_gdt, 4896 .get_idt = emulator_get_idt, 4897 .set_gdt = emulator_set_gdt, 4898 .set_idt = emulator_set_idt, 4899 .get_cr = emulator_get_cr, 4900 .set_cr = emulator_set_cr, 4901 .cpl = emulator_get_cpl, 4902 .get_dr = emulator_get_dr, 4903 .set_dr = emulator_set_dr, 4904 .set_msr = emulator_set_msr, 4905 .get_msr = emulator_get_msr, 4906 .check_pmc = emulator_check_pmc, 4907 .read_pmc = emulator_read_pmc, 4908 .halt = emulator_halt, 4909 .wbinvd = emulator_wbinvd, 4910 .fix_hypercall = emulator_fix_hypercall, 4911 .get_fpu = emulator_get_fpu, 4912 .put_fpu = emulator_put_fpu, 4913 .intercept = emulator_intercept, 4914 .get_cpuid = emulator_get_cpuid, 4915 }; 4916 4917 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 4918 { 4919 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); 4920 /* 4921 * an sti; sti; sequence only disable interrupts for the first 4922 * instruction. So, if the last instruction, be it emulated or 4923 * not, left the system with the INT_STI flag enabled, it 4924 * means that the last instruction is an sti. We should not 4925 * leave the flag on in this case. The same goes for mov ss 4926 */ 4927 if (int_shadow & mask) 4928 mask = 0; 4929 if (unlikely(int_shadow || mask)) { 4930 kvm_x86_ops->set_interrupt_shadow(vcpu, mask); 4931 if (!mask) 4932 kvm_make_request(KVM_REQ_EVENT, vcpu); 4933 } 4934 } 4935 4936 static bool inject_emulated_exception(struct kvm_vcpu *vcpu) 4937 { 4938 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4939 if (ctxt->exception.vector == PF_VECTOR) 4940 return kvm_propagate_fault(vcpu, &ctxt->exception); 4941 4942 if (ctxt->exception.error_code_valid) 4943 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 4944 ctxt->exception.error_code); 4945 else 4946 kvm_queue_exception(vcpu, ctxt->exception.vector); 4947 return false; 4948 } 4949 4950 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 4951 { 4952 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4953 int cs_db, cs_l; 4954 4955 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 4956 4957 ctxt->eflags = kvm_get_rflags(vcpu); 4958 ctxt->eip = kvm_rip_read(vcpu); 4959 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 4960 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 4961 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 4962 cs_db ? X86EMUL_MODE_PROT32 : 4963 X86EMUL_MODE_PROT16; 4964 ctxt->guest_mode = is_guest_mode(vcpu); 4965 4966 init_decode_cache(ctxt); 4967 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 4968 } 4969 4970 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 4971 { 4972 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4973 int ret; 4974 4975 init_emulate_ctxt(vcpu); 4976 4977 ctxt->op_bytes = 2; 4978 ctxt->ad_bytes = 2; 4979 ctxt->_eip = ctxt->eip + inc_eip; 4980 ret = emulate_int_real(ctxt, irq); 4981 4982 if (ret != X86EMUL_CONTINUE) 4983 return EMULATE_FAIL; 4984 4985 ctxt->eip = ctxt->_eip; 4986 kvm_rip_write(vcpu, ctxt->eip); 4987 kvm_set_rflags(vcpu, ctxt->eflags); 4988 4989 if (irq == NMI_VECTOR) 4990 vcpu->arch.nmi_pending = 0; 4991 else 4992 vcpu->arch.interrupt.pending = false; 4993 4994 return EMULATE_DONE; 4995 } 4996 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 4997 4998 static int handle_emulation_failure(struct kvm_vcpu *vcpu) 4999 { 5000 int r = EMULATE_DONE; 5001 5002 ++vcpu->stat.insn_emulation_fail; 5003 trace_kvm_emulate_insn_failed(vcpu); 5004 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) { 5005 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5006 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 5007 vcpu->run->internal.ndata = 0; 5008 r = EMULATE_FAIL; 5009 } 5010 kvm_queue_exception(vcpu, UD_VECTOR); 5011 5012 return r; 5013 } 5014 5015 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2, 5016 bool write_fault_to_shadow_pgtable, 5017 int emulation_type) 5018 { 5019 gpa_t gpa = cr2; 5020 pfn_t pfn; 5021 5022 if (emulation_type & EMULTYPE_NO_REEXECUTE) 5023 return false; 5024 5025 if (!vcpu->arch.mmu.direct_map) { 5026 /* 5027 * Write permission should be allowed since only 5028 * write access need to be emulated. 5029 */ 5030 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 5031 5032 /* 5033 * If the mapping is invalid in guest, let cpu retry 5034 * it to generate fault. 5035 */ 5036 if (gpa == UNMAPPED_GVA) 5037 return true; 5038 } 5039 5040 /* 5041 * Do not retry the unhandleable instruction if it faults on the 5042 * readonly host memory, otherwise it will goto a infinite loop: 5043 * retry instruction -> write #PF -> emulation fail -> retry 5044 * instruction -> ... 5045 */ 5046 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 5047 5048 /* 5049 * If the instruction failed on the error pfn, it can not be fixed, 5050 * report the error to userspace. 5051 */ 5052 if (is_error_noslot_pfn(pfn)) 5053 return false; 5054 5055 kvm_release_pfn_clean(pfn); 5056 5057 /* The instructions are well-emulated on direct mmu. */ 5058 if (vcpu->arch.mmu.direct_map) { 5059 unsigned int indirect_shadow_pages; 5060 5061 spin_lock(&vcpu->kvm->mmu_lock); 5062 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 5063 spin_unlock(&vcpu->kvm->mmu_lock); 5064 5065 if (indirect_shadow_pages) 5066 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5067 5068 return true; 5069 } 5070 5071 /* 5072 * if emulation was due to access to shadowed page table 5073 * and it failed try to unshadow page and re-enter the 5074 * guest to let CPU execute the instruction. 5075 */ 5076 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5077 5078 /* 5079 * If the access faults on its page table, it can not 5080 * be fixed by unprotecting shadow page and it should 5081 * be reported to userspace. 5082 */ 5083 return !write_fault_to_shadow_pgtable; 5084 } 5085 5086 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 5087 unsigned long cr2, int emulation_type) 5088 { 5089 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5090 unsigned long last_retry_eip, last_retry_addr, gpa = cr2; 5091 5092 last_retry_eip = vcpu->arch.last_retry_eip; 5093 last_retry_addr = vcpu->arch.last_retry_addr; 5094 5095 /* 5096 * If the emulation is caused by #PF and it is non-page_table 5097 * writing instruction, it means the VM-EXIT is caused by shadow 5098 * page protected, we can zap the shadow page and retry this 5099 * instruction directly. 5100 * 5101 * Note: if the guest uses a non-page-table modifying instruction 5102 * on the PDE that points to the instruction, then we will unmap 5103 * the instruction and go to an infinite loop. So, we cache the 5104 * last retried eip and the last fault address, if we meet the eip 5105 * and the address again, we can break out of the potential infinite 5106 * loop. 5107 */ 5108 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 5109 5110 if (!(emulation_type & EMULTYPE_RETRY)) 5111 return false; 5112 5113 if (x86_page_table_writing_insn(ctxt)) 5114 return false; 5115 5116 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) 5117 return false; 5118 5119 vcpu->arch.last_retry_eip = ctxt->eip; 5120 vcpu->arch.last_retry_addr = cr2; 5121 5122 if (!vcpu->arch.mmu.direct_map) 5123 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 5124 5125 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5126 5127 return true; 5128 } 5129 5130 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 5131 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 5132 5133 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 5134 unsigned long *db) 5135 { 5136 u32 dr6 = 0; 5137 int i; 5138 u32 enable, rwlen; 5139 5140 enable = dr7; 5141 rwlen = dr7 >> 16; 5142 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 5143 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 5144 dr6 |= (1 << i); 5145 return dr6; 5146 } 5147 5148 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r) 5149 { 5150 struct kvm_run *kvm_run = vcpu->run; 5151 5152 /* 5153 * rflags is the old, "raw" value of the flags. The new value has 5154 * not been saved yet. 5155 * 5156 * This is correct even for TF set by the guest, because "the 5157 * processor will not generate this exception after the instruction 5158 * that sets the TF flag". 5159 */ 5160 if (unlikely(rflags & X86_EFLAGS_TF)) { 5161 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 5162 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | 5163 DR6_RTM; 5164 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip; 5165 kvm_run->debug.arch.exception = DB_VECTOR; 5166 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5167 *r = EMULATE_USER_EXIT; 5168 } else { 5169 vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF; 5170 /* 5171 * "Certain debug exceptions may clear bit 0-3. The 5172 * remaining contents of the DR6 register are never 5173 * cleared by the processor". 5174 */ 5175 vcpu->arch.dr6 &= ~15; 5176 vcpu->arch.dr6 |= DR6_BS | DR6_RTM; 5177 kvm_queue_exception(vcpu, DB_VECTOR); 5178 } 5179 } 5180 } 5181 5182 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) 5183 { 5184 struct kvm_run *kvm_run = vcpu->run; 5185 unsigned long eip = vcpu->arch.emulate_ctxt.eip; 5186 u32 dr6 = 0; 5187 5188 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 5189 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 5190 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 5191 vcpu->arch.guest_debug_dr7, 5192 vcpu->arch.eff_db); 5193 5194 if (dr6 != 0) { 5195 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM; 5196 kvm_run->debug.arch.pc = kvm_rip_read(vcpu) + 5197 get_segment_base(vcpu, VCPU_SREG_CS); 5198 5199 kvm_run->debug.arch.exception = DB_VECTOR; 5200 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5201 *r = EMULATE_USER_EXIT; 5202 return true; 5203 } 5204 } 5205 5206 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 5207 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { 5208 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 5209 vcpu->arch.dr7, 5210 vcpu->arch.db); 5211 5212 if (dr6 != 0) { 5213 vcpu->arch.dr6 &= ~15; 5214 vcpu->arch.dr6 |= dr6 | DR6_RTM; 5215 kvm_queue_exception(vcpu, DB_VECTOR); 5216 *r = EMULATE_DONE; 5217 return true; 5218 } 5219 } 5220 5221 return false; 5222 } 5223 5224 int x86_emulate_instruction(struct kvm_vcpu *vcpu, 5225 unsigned long cr2, 5226 int emulation_type, 5227 void *insn, 5228 int insn_len) 5229 { 5230 int r; 5231 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5232 bool writeback = true; 5233 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 5234 5235 /* 5236 * Clear write_fault_to_shadow_pgtable here to ensure it is 5237 * never reused. 5238 */ 5239 vcpu->arch.write_fault_to_shadow_pgtable = false; 5240 kvm_clear_exception_queue(vcpu); 5241 5242 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 5243 init_emulate_ctxt(vcpu); 5244 5245 /* 5246 * We will reenter on the same instruction since 5247 * we do not set complete_userspace_io. This does not 5248 * handle watchpoints yet, those would be handled in 5249 * the emulate_ops. 5250 */ 5251 if (kvm_vcpu_check_breakpoint(vcpu, &r)) 5252 return r; 5253 5254 ctxt->interruptibility = 0; 5255 ctxt->have_exception = false; 5256 ctxt->exception.vector = -1; 5257 ctxt->perm_ok = false; 5258 5259 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD; 5260 5261 r = x86_decode_insn(ctxt, insn, insn_len); 5262 5263 trace_kvm_emulate_insn_start(vcpu); 5264 ++vcpu->stat.insn_emulation; 5265 if (r != EMULATION_OK) { 5266 if (emulation_type & EMULTYPE_TRAP_UD) 5267 return EMULATE_FAIL; 5268 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 5269 emulation_type)) 5270 return EMULATE_DONE; 5271 if (emulation_type & EMULTYPE_SKIP) 5272 return EMULATE_FAIL; 5273 return handle_emulation_failure(vcpu); 5274 } 5275 } 5276 5277 if (emulation_type & EMULTYPE_SKIP) { 5278 kvm_rip_write(vcpu, ctxt->_eip); 5279 if (ctxt->eflags & X86_EFLAGS_RF) 5280 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 5281 return EMULATE_DONE; 5282 } 5283 5284 if (retry_instruction(ctxt, cr2, emulation_type)) 5285 return EMULATE_DONE; 5286 5287 /* this is needed for vmware backdoor interface to work since it 5288 changes registers values during IO operation */ 5289 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 5290 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 5291 emulator_invalidate_register_cache(ctxt); 5292 } 5293 5294 restart: 5295 r = x86_emulate_insn(ctxt); 5296 5297 if (r == EMULATION_INTERCEPTED) 5298 return EMULATE_DONE; 5299 5300 if (r == EMULATION_FAILED) { 5301 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 5302 emulation_type)) 5303 return EMULATE_DONE; 5304 5305 return handle_emulation_failure(vcpu); 5306 } 5307 5308 if (ctxt->have_exception) { 5309 r = EMULATE_DONE; 5310 if (inject_emulated_exception(vcpu)) 5311 return r; 5312 } else if (vcpu->arch.pio.count) { 5313 if (!vcpu->arch.pio.in) { 5314 /* FIXME: return into emulator if single-stepping. */ 5315 vcpu->arch.pio.count = 0; 5316 } else { 5317 writeback = false; 5318 vcpu->arch.complete_userspace_io = complete_emulated_pio; 5319 } 5320 r = EMULATE_USER_EXIT; 5321 } else if (vcpu->mmio_needed) { 5322 if (!vcpu->mmio_is_write) 5323 writeback = false; 5324 r = EMULATE_USER_EXIT; 5325 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 5326 } else if (r == EMULATION_RESTART) 5327 goto restart; 5328 else 5329 r = EMULATE_DONE; 5330 5331 if (writeback) { 5332 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); 5333 toggle_interruptibility(vcpu, ctxt->interruptibility); 5334 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 5335 kvm_rip_write(vcpu, ctxt->eip); 5336 if (r == EMULATE_DONE) 5337 kvm_vcpu_check_singlestep(vcpu, rflags, &r); 5338 __kvm_set_rflags(vcpu, ctxt->eflags); 5339 5340 /* 5341 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 5342 * do nothing, and it will be requested again as soon as 5343 * the shadow expires. But we still need to check here, 5344 * because POPF has no interrupt shadow. 5345 */ 5346 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 5347 kvm_make_request(KVM_REQ_EVENT, vcpu); 5348 } else 5349 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 5350 5351 return r; 5352 } 5353 EXPORT_SYMBOL_GPL(x86_emulate_instruction); 5354 5355 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) 5356 { 5357 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); 5358 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, 5359 size, port, &val, 1); 5360 /* do not return to emulator after return from userspace */ 5361 vcpu->arch.pio.count = 0; 5362 return ret; 5363 } 5364 EXPORT_SYMBOL_GPL(kvm_fast_pio_out); 5365 5366 static void tsc_bad(void *info) 5367 { 5368 __this_cpu_write(cpu_tsc_khz, 0); 5369 } 5370 5371 static void tsc_khz_changed(void *data) 5372 { 5373 struct cpufreq_freqs *freq = data; 5374 unsigned long khz = 0; 5375 5376 if (data) 5377 khz = freq->new; 5378 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 5379 khz = cpufreq_quick_get(raw_smp_processor_id()); 5380 if (!khz) 5381 khz = tsc_khz; 5382 __this_cpu_write(cpu_tsc_khz, khz); 5383 } 5384 5385 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 5386 void *data) 5387 { 5388 struct cpufreq_freqs *freq = data; 5389 struct kvm *kvm; 5390 struct kvm_vcpu *vcpu; 5391 int i, send_ipi = 0; 5392 5393 /* 5394 * We allow guests to temporarily run on slowing clocks, 5395 * provided we notify them after, or to run on accelerating 5396 * clocks, provided we notify them before. Thus time never 5397 * goes backwards. 5398 * 5399 * However, we have a problem. We can't atomically update 5400 * the frequency of a given CPU from this function; it is 5401 * merely a notifier, which can be called from any CPU. 5402 * Changing the TSC frequency at arbitrary points in time 5403 * requires a recomputation of local variables related to 5404 * the TSC for each VCPU. We must flag these local variables 5405 * to be updated and be sure the update takes place with the 5406 * new frequency before any guests proceed. 5407 * 5408 * Unfortunately, the combination of hotplug CPU and frequency 5409 * change creates an intractable locking scenario; the order 5410 * of when these callouts happen is undefined with respect to 5411 * CPU hotplug, and they can race with each other. As such, 5412 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 5413 * undefined; you can actually have a CPU frequency change take 5414 * place in between the computation of X and the setting of the 5415 * variable. To protect against this problem, all updates of 5416 * the per_cpu tsc_khz variable are done in an interrupt 5417 * protected IPI, and all callers wishing to update the value 5418 * must wait for a synchronous IPI to complete (which is trivial 5419 * if the caller is on the CPU already). This establishes the 5420 * necessary total order on variable updates. 5421 * 5422 * Note that because a guest time update may take place 5423 * anytime after the setting of the VCPU's request bit, the 5424 * correct TSC value must be set before the request. However, 5425 * to ensure the update actually makes it to any guest which 5426 * starts running in hardware virtualization between the set 5427 * and the acquisition of the spinlock, we must also ping the 5428 * CPU after setting the request bit. 5429 * 5430 */ 5431 5432 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 5433 return 0; 5434 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 5435 return 0; 5436 5437 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 5438 5439 spin_lock(&kvm_lock); 5440 list_for_each_entry(kvm, &vm_list, vm_list) { 5441 kvm_for_each_vcpu(i, vcpu, kvm) { 5442 if (vcpu->cpu != freq->cpu) 5443 continue; 5444 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5445 if (vcpu->cpu != smp_processor_id()) 5446 send_ipi = 1; 5447 } 5448 } 5449 spin_unlock(&kvm_lock); 5450 5451 if (freq->old < freq->new && send_ipi) { 5452 /* 5453 * We upscale the frequency. Must make the guest 5454 * doesn't see old kvmclock values while running with 5455 * the new frequency, otherwise we risk the guest sees 5456 * time go backwards. 5457 * 5458 * In case we update the frequency for another cpu 5459 * (which might be in guest context) send an interrupt 5460 * to kick the cpu out of guest context. Next time 5461 * guest context is entered kvmclock will be updated, 5462 * so the guest will not see stale values. 5463 */ 5464 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 5465 } 5466 return 0; 5467 } 5468 5469 static struct notifier_block kvmclock_cpufreq_notifier_block = { 5470 .notifier_call = kvmclock_cpufreq_notifier 5471 }; 5472 5473 static int kvmclock_cpu_notifier(struct notifier_block *nfb, 5474 unsigned long action, void *hcpu) 5475 { 5476 unsigned int cpu = (unsigned long)hcpu; 5477 5478 switch (action) { 5479 case CPU_ONLINE: 5480 case CPU_DOWN_FAILED: 5481 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); 5482 break; 5483 case CPU_DOWN_PREPARE: 5484 smp_call_function_single(cpu, tsc_bad, NULL, 1); 5485 break; 5486 } 5487 return NOTIFY_OK; 5488 } 5489 5490 static struct notifier_block kvmclock_cpu_notifier_block = { 5491 .notifier_call = kvmclock_cpu_notifier, 5492 .priority = -INT_MAX 5493 }; 5494 5495 static void kvm_timer_init(void) 5496 { 5497 int cpu; 5498 5499 max_tsc_khz = tsc_khz; 5500 5501 cpu_notifier_register_begin(); 5502 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 5503 #ifdef CONFIG_CPU_FREQ 5504 struct cpufreq_policy policy; 5505 memset(&policy, 0, sizeof(policy)); 5506 cpu = get_cpu(); 5507 cpufreq_get_policy(&policy, cpu); 5508 if (policy.cpuinfo.max_freq) 5509 max_tsc_khz = policy.cpuinfo.max_freq; 5510 put_cpu(); 5511 #endif 5512 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 5513 CPUFREQ_TRANSITION_NOTIFIER); 5514 } 5515 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); 5516 for_each_online_cpu(cpu) 5517 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); 5518 5519 __register_hotcpu_notifier(&kvmclock_cpu_notifier_block); 5520 cpu_notifier_register_done(); 5521 5522 } 5523 5524 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 5525 5526 int kvm_is_in_guest(void) 5527 { 5528 return __this_cpu_read(current_vcpu) != NULL; 5529 } 5530 5531 static int kvm_is_user_mode(void) 5532 { 5533 int user_mode = 3; 5534 5535 if (__this_cpu_read(current_vcpu)) 5536 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); 5537 5538 return user_mode != 0; 5539 } 5540 5541 static unsigned long kvm_get_guest_ip(void) 5542 { 5543 unsigned long ip = 0; 5544 5545 if (__this_cpu_read(current_vcpu)) 5546 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 5547 5548 return ip; 5549 } 5550 5551 static struct perf_guest_info_callbacks kvm_guest_cbs = { 5552 .is_in_guest = kvm_is_in_guest, 5553 .is_user_mode = kvm_is_user_mode, 5554 .get_guest_ip = kvm_get_guest_ip, 5555 }; 5556 5557 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu) 5558 { 5559 __this_cpu_write(current_vcpu, vcpu); 5560 } 5561 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi); 5562 5563 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu) 5564 { 5565 __this_cpu_write(current_vcpu, NULL); 5566 } 5567 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi); 5568 5569 static void kvm_set_mmio_spte_mask(void) 5570 { 5571 u64 mask; 5572 int maxphyaddr = boot_cpu_data.x86_phys_bits; 5573 5574 /* 5575 * Set the reserved bits and the present bit of an paging-structure 5576 * entry to generate page fault with PFER.RSV = 1. 5577 */ 5578 /* Mask the reserved physical address bits. */ 5579 mask = rsvd_bits(maxphyaddr, 51); 5580 5581 /* Bit 62 is always reserved for 32bit host. */ 5582 mask |= 0x3ull << 62; 5583 5584 /* Set the present bit. */ 5585 mask |= 1ull; 5586 5587 #ifdef CONFIG_X86_64 5588 /* 5589 * If reserved bit is not supported, clear the present bit to disable 5590 * mmio page fault. 5591 */ 5592 if (maxphyaddr == 52) 5593 mask &= ~1ull; 5594 #endif 5595 5596 kvm_mmu_set_mmio_spte_mask(mask); 5597 } 5598 5599 #ifdef CONFIG_X86_64 5600 static void pvclock_gtod_update_fn(struct work_struct *work) 5601 { 5602 struct kvm *kvm; 5603 5604 struct kvm_vcpu *vcpu; 5605 int i; 5606 5607 spin_lock(&kvm_lock); 5608 list_for_each_entry(kvm, &vm_list, vm_list) 5609 kvm_for_each_vcpu(i, vcpu, kvm) 5610 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 5611 atomic_set(&kvm_guest_has_master_clock, 0); 5612 spin_unlock(&kvm_lock); 5613 } 5614 5615 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 5616 5617 /* 5618 * Notification about pvclock gtod data update. 5619 */ 5620 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 5621 void *priv) 5622 { 5623 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 5624 struct timekeeper *tk = priv; 5625 5626 update_pvclock_gtod(tk); 5627 5628 /* disable master clock if host does not trust, or does not 5629 * use, TSC clocksource 5630 */ 5631 if (gtod->clock.vclock_mode != VCLOCK_TSC && 5632 atomic_read(&kvm_guest_has_master_clock) != 0) 5633 queue_work(system_long_wq, &pvclock_gtod_work); 5634 5635 return 0; 5636 } 5637 5638 static struct notifier_block pvclock_gtod_notifier = { 5639 .notifier_call = pvclock_gtod_notify, 5640 }; 5641 #endif 5642 5643 int kvm_arch_init(void *opaque) 5644 { 5645 int r; 5646 struct kvm_x86_ops *ops = opaque; 5647 5648 if (kvm_x86_ops) { 5649 printk(KERN_ERR "kvm: already loaded the other module\n"); 5650 r = -EEXIST; 5651 goto out; 5652 } 5653 5654 if (!ops->cpu_has_kvm_support()) { 5655 printk(KERN_ERR "kvm: no hardware support\n"); 5656 r = -EOPNOTSUPP; 5657 goto out; 5658 } 5659 if (ops->disabled_by_bios()) { 5660 printk(KERN_ERR "kvm: disabled by bios\n"); 5661 r = -EOPNOTSUPP; 5662 goto out; 5663 } 5664 5665 r = -ENOMEM; 5666 shared_msrs = alloc_percpu(struct kvm_shared_msrs); 5667 if (!shared_msrs) { 5668 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n"); 5669 goto out; 5670 } 5671 5672 r = kvm_mmu_module_init(); 5673 if (r) 5674 goto out_free_percpu; 5675 5676 kvm_set_mmio_spte_mask(); 5677 5678 kvm_x86_ops = ops; 5679 kvm_init_msr_list(); 5680 5681 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 5682 PT_DIRTY_MASK, PT64_NX_MASK, 0); 5683 5684 kvm_timer_init(); 5685 5686 perf_register_guest_info_callbacks(&kvm_guest_cbs); 5687 5688 if (cpu_has_xsave) 5689 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 5690 5691 kvm_lapic_init(); 5692 #ifdef CONFIG_X86_64 5693 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 5694 #endif 5695 5696 return 0; 5697 5698 out_free_percpu: 5699 free_percpu(shared_msrs); 5700 out: 5701 return r; 5702 } 5703 5704 void kvm_arch_exit(void) 5705 { 5706 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 5707 5708 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 5709 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 5710 CPUFREQ_TRANSITION_NOTIFIER); 5711 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block); 5712 #ifdef CONFIG_X86_64 5713 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 5714 #endif 5715 kvm_x86_ops = NULL; 5716 kvm_mmu_module_exit(); 5717 free_percpu(shared_msrs); 5718 } 5719 5720 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 5721 { 5722 ++vcpu->stat.halt_exits; 5723 if (irqchip_in_kernel(vcpu->kvm)) { 5724 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 5725 return 1; 5726 } else { 5727 vcpu->run->exit_reason = KVM_EXIT_HLT; 5728 return 0; 5729 } 5730 } 5731 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 5732 5733 int kvm_hv_hypercall(struct kvm_vcpu *vcpu) 5734 { 5735 u64 param, ingpa, outgpa, ret; 5736 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0; 5737 bool fast, longmode; 5738 5739 /* 5740 * hypercall generates UD from non zero cpl and real mode 5741 * per HYPER-V spec 5742 */ 5743 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) { 5744 kvm_queue_exception(vcpu, UD_VECTOR); 5745 return 0; 5746 } 5747 5748 longmode = is_64_bit_mode(vcpu); 5749 5750 if (!longmode) { 5751 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) | 5752 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff); 5753 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) | 5754 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff); 5755 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) | 5756 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff); 5757 } 5758 #ifdef CONFIG_X86_64 5759 else { 5760 param = kvm_register_read(vcpu, VCPU_REGS_RCX); 5761 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX); 5762 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8); 5763 } 5764 #endif 5765 5766 code = param & 0xffff; 5767 fast = (param >> 16) & 0x1; 5768 rep_cnt = (param >> 32) & 0xfff; 5769 rep_idx = (param >> 48) & 0xfff; 5770 5771 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa); 5772 5773 switch (code) { 5774 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT: 5775 kvm_vcpu_on_spin(vcpu); 5776 break; 5777 default: 5778 res = HV_STATUS_INVALID_HYPERCALL_CODE; 5779 break; 5780 } 5781 5782 ret = res | (((u64)rep_done & 0xfff) << 32); 5783 if (longmode) { 5784 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 5785 } else { 5786 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32); 5787 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff); 5788 } 5789 5790 return 1; 5791 } 5792 5793 /* 5794 * kvm_pv_kick_cpu_op: Kick a vcpu. 5795 * 5796 * @apicid - apicid of vcpu to be kicked. 5797 */ 5798 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) 5799 { 5800 struct kvm_lapic_irq lapic_irq; 5801 5802 lapic_irq.shorthand = 0; 5803 lapic_irq.dest_mode = 0; 5804 lapic_irq.dest_id = apicid; 5805 5806 lapic_irq.delivery_mode = APIC_DM_REMRD; 5807 kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL); 5808 } 5809 5810 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 5811 { 5812 unsigned long nr, a0, a1, a2, a3, ret; 5813 int op_64_bit, r = 1; 5814 5815 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 5816 return kvm_hv_hypercall(vcpu); 5817 5818 nr = kvm_register_read(vcpu, VCPU_REGS_RAX); 5819 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); 5820 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); 5821 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); 5822 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); 5823 5824 trace_kvm_hypercall(nr, a0, a1, a2, a3); 5825 5826 op_64_bit = is_64_bit_mode(vcpu); 5827 if (!op_64_bit) { 5828 nr &= 0xFFFFFFFF; 5829 a0 &= 0xFFFFFFFF; 5830 a1 &= 0xFFFFFFFF; 5831 a2 &= 0xFFFFFFFF; 5832 a3 &= 0xFFFFFFFF; 5833 } 5834 5835 if (kvm_x86_ops->get_cpl(vcpu) != 0) { 5836 ret = -KVM_EPERM; 5837 goto out; 5838 } 5839 5840 switch (nr) { 5841 case KVM_HC_VAPIC_POLL_IRQ: 5842 ret = 0; 5843 break; 5844 case KVM_HC_KICK_CPU: 5845 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); 5846 ret = 0; 5847 break; 5848 default: 5849 ret = -KVM_ENOSYS; 5850 break; 5851 } 5852 out: 5853 if (!op_64_bit) 5854 ret = (u32)ret; 5855 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 5856 ++vcpu->stat.hypercalls; 5857 return r; 5858 } 5859 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 5860 5861 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 5862 { 5863 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5864 char instruction[3]; 5865 unsigned long rip = kvm_rip_read(vcpu); 5866 5867 kvm_x86_ops->patch_hypercall(vcpu, instruction); 5868 5869 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL); 5870 } 5871 5872 /* 5873 * Check if userspace requested an interrupt window, and that the 5874 * interrupt window is open. 5875 * 5876 * No need to exit to userspace if we already have an interrupt queued. 5877 */ 5878 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 5879 { 5880 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) && 5881 vcpu->run->request_interrupt_window && 5882 kvm_arch_interrupt_allowed(vcpu)); 5883 } 5884 5885 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 5886 { 5887 struct kvm_run *kvm_run = vcpu->run; 5888 5889 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 5890 kvm_run->cr8 = kvm_get_cr8(vcpu); 5891 kvm_run->apic_base = kvm_get_apic_base(vcpu); 5892 if (irqchip_in_kernel(vcpu->kvm)) 5893 kvm_run->ready_for_interrupt_injection = 1; 5894 else 5895 kvm_run->ready_for_interrupt_injection = 5896 kvm_arch_interrupt_allowed(vcpu) && 5897 !kvm_cpu_has_interrupt(vcpu) && 5898 !kvm_event_needs_reinjection(vcpu); 5899 } 5900 5901 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 5902 { 5903 int max_irr, tpr; 5904 5905 if (!kvm_x86_ops->update_cr8_intercept) 5906 return; 5907 5908 if (!vcpu->arch.apic) 5909 return; 5910 5911 if (!vcpu->arch.apic->vapic_addr) 5912 max_irr = kvm_lapic_find_highest_irr(vcpu); 5913 else 5914 max_irr = -1; 5915 5916 if (max_irr != -1) 5917 max_irr >>= 4; 5918 5919 tpr = kvm_lapic_get_cr8(vcpu); 5920 5921 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); 5922 } 5923 5924 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win) 5925 { 5926 int r; 5927 5928 /* try to reinject previous events if any */ 5929 if (vcpu->arch.exception.pending) { 5930 trace_kvm_inj_exception(vcpu->arch.exception.nr, 5931 vcpu->arch.exception.has_error_code, 5932 vcpu->arch.exception.error_code); 5933 5934 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) 5935 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 5936 X86_EFLAGS_RF); 5937 5938 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr, 5939 vcpu->arch.exception.has_error_code, 5940 vcpu->arch.exception.error_code, 5941 vcpu->arch.exception.reinject); 5942 return 0; 5943 } 5944 5945 if (vcpu->arch.nmi_injected) { 5946 kvm_x86_ops->set_nmi(vcpu); 5947 return 0; 5948 } 5949 5950 if (vcpu->arch.interrupt.pending) { 5951 kvm_x86_ops->set_irq(vcpu); 5952 return 0; 5953 } 5954 5955 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { 5956 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); 5957 if (r != 0) 5958 return r; 5959 } 5960 5961 /* try to inject new event if pending */ 5962 if (vcpu->arch.nmi_pending) { 5963 if (kvm_x86_ops->nmi_allowed(vcpu)) { 5964 --vcpu->arch.nmi_pending; 5965 vcpu->arch.nmi_injected = true; 5966 kvm_x86_ops->set_nmi(vcpu); 5967 } 5968 } else if (kvm_cpu_has_injectable_intr(vcpu)) { 5969 /* 5970 * Because interrupts can be injected asynchronously, we are 5971 * calling check_nested_events again here to avoid a race condition. 5972 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this 5973 * proposal and current concerns. Perhaps we should be setting 5974 * KVM_REQ_EVENT only on certain events and not unconditionally? 5975 */ 5976 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { 5977 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); 5978 if (r != 0) 5979 return r; 5980 } 5981 if (kvm_x86_ops->interrupt_allowed(vcpu)) { 5982 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), 5983 false); 5984 kvm_x86_ops->set_irq(vcpu); 5985 } 5986 } 5987 return 0; 5988 } 5989 5990 static void process_nmi(struct kvm_vcpu *vcpu) 5991 { 5992 unsigned limit = 2; 5993 5994 /* 5995 * x86 is limited to one NMI running, and one NMI pending after it. 5996 * If an NMI is already in progress, limit further NMIs to just one. 5997 * Otherwise, allow two (and we'll inject the first one immediately). 5998 */ 5999 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 6000 limit = 1; 6001 6002 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 6003 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 6004 kvm_make_request(KVM_REQ_EVENT, vcpu); 6005 } 6006 6007 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 6008 { 6009 u64 eoi_exit_bitmap[4]; 6010 u32 tmr[8]; 6011 6012 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 6013 return; 6014 6015 memset(eoi_exit_bitmap, 0, 32); 6016 memset(tmr, 0, 32); 6017 6018 kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr); 6019 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap); 6020 kvm_apic_update_tmr(vcpu, tmr); 6021 } 6022 6023 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu) 6024 { 6025 ++vcpu->stat.tlb_flush; 6026 kvm_x86_ops->tlb_flush(vcpu); 6027 } 6028 6029 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 6030 { 6031 struct page *page = NULL; 6032 6033 if (!irqchip_in_kernel(vcpu->kvm)) 6034 return; 6035 6036 if (!kvm_x86_ops->set_apic_access_page_addr) 6037 return; 6038 6039 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 6040 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page)); 6041 6042 /* 6043 * Do not pin apic access page in memory, the MMU notifier 6044 * will call us again if it is migrated or swapped out. 6045 */ 6046 put_page(page); 6047 } 6048 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page); 6049 6050 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm, 6051 unsigned long address) 6052 { 6053 /* 6054 * The physical address of apic access page is stored in the VMCS. 6055 * Update it when it becomes invalid. 6056 */ 6057 if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT)) 6058 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 6059 } 6060 6061 /* 6062 * Returns 1 to let __vcpu_run() continue the guest execution loop without 6063 * exiting to the userspace. Otherwise, the value will be returned to the 6064 * userspace. 6065 */ 6066 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 6067 { 6068 int r; 6069 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) && 6070 vcpu->run->request_interrupt_window; 6071 bool req_immediate_exit = false; 6072 6073 if (vcpu->requests) { 6074 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 6075 kvm_mmu_unload(vcpu); 6076 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 6077 __kvm_migrate_timers(vcpu); 6078 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 6079 kvm_gen_update_masterclock(vcpu->kvm); 6080 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 6081 kvm_gen_kvmclock_update(vcpu); 6082 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 6083 r = kvm_guest_time_update(vcpu); 6084 if (unlikely(r)) 6085 goto out; 6086 } 6087 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 6088 kvm_mmu_sync_roots(vcpu); 6089 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 6090 kvm_vcpu_flush_tlb(vcpu); 6091 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 6092 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 6093 r = 0; 6094 goto out; 6095 } 6096 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 6097 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 6098 r = 0; 6099 goto out; 6100 } 6101 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) { 6102 vcpu->fpu_active = 0; 6103 kvm_x86_ops->fpu_deactivate(vcpu); 6104 } 6105 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 6106 /* Page is swapped out. Do synthetic halt */ 6107 vcpu->arch.apf.halted = true; 6108 r = 1; 6109 goto out; 6110 } 6111 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 6112 record_steal_time(vcpu); 6113 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 6114 process_nmi(vcpu); 6115 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 6116 kvm_handle_pmu_event(vcpu); 6117 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 6118 kvm_deliver_pmi(vcpu); 6119 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 6120 vcpu_scan_ioapic(vcpu); 6121 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 6122 kvm_vcpu_reload_apic_access_page(vcpu); 6123 } 6124 6125 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 6126 kvm_apic_accept_events(vcpu); 6127 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 6128 r = 1; 6129 goto out; 6130 } 6131 6132 if (inject_pending_event(vcpu, req_int_win) != 0) 6133 req_immediate_exit = true; 6134 /* enable NMI/IRQ window open exits if needed */ 6135 else if (vcpu->arch.nmi_pending) 6136 kvm_x86_ops->enable_nmi_window(vcpu); 6137 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win) 6138 kvm_x86_ops->enable_irq_window(vcpu); 6139 6140 if (kvm_lapic_enabled(vcpu)) { 6141 /* 6142 * Update architecture specific hints for APIC 6143 * virtual interrupt delivery. 6144 */ 6145 if (kvm_x86_ops->hwapic_irr_update) 6146 kvm_x86_ops->hwapic_irr_update(vcpu, 6147 kvm_lapic_find_highest_irr(vcpu)); 6148 update_cr8_intercept(vcpu); 6149 kvm_lapic_sync_to_vapic(vcpu); 6150 } 6151 } 6152 6153 r = kvm_mmu_reload(vcpu); 6154 if (unlikely(r)) { 6155 goto cancel_injection; 6156 } 6157 6158 preempt_disable(); 6159 6160 kvm_x86_ops->prepare_guest_switch(vcpu); 6161 if (vcpu->fpu_active) 6162 kvm_load_guest_fpu(vcpu); 6163 kvm_load_guest_xcr0(vcpu); 6164 6165 vcpu->mode = IN_GUEST_MODE; 6166 6167 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 6168 6169 /* We should set ->mode before check ->requests, 6170 * see the comment in make_all_cpus_request. 6171 */ 6172 smp_mb__after_srcu_read_unlock(); 6173 6174 local_irq_disable(); 6175 6176 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests 6177 || need_resched() || signal_pending(current)) { 6178 vcpu->mode = OUTSIDE_GUEST_MODE; 6179 smp_wmb(); 6180 local_irq_enable(); 6181 preempt_enable(); 6182 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 6183 r = 1; 6184 goto cancel_injection; 6185 } 6186 6187 if (req_immediate_exit) 6188 smp_send_reschedule(vcpu->cpu); 6189 6190 kvm_guest_enter(); 6191 6192 if (unlikely(vcpu->arch.switch_db_regs)) { 6193 set_debugreg(0, 7); 6194 set_debugreg(vcpu->arch.eff_db[0], 0); 6195 set_debugreg(vcpu->arch.eff_db[1], 1); 6196 set_debugreg(vcpu->arch.eff_db[2], 2); 6197 set_debugreg(vcpu->arch.eff_db[3], 3); 6198 set_debugreg(vcpu->arch.dr6, 6); 6199 } 6200 6201 trace_kvm_entry(vcpu->vcpu_id); 6202 kvm_x86_ops->run(vcpu); 6203 6204 /* 6205 * Do this here before restoring debug registers on the host. And 6206 * since we do this before handling the vmexit, a DR access vmexit 6207 * can (a) read the correct value of the debug registers, (b) set 6208 * KVM_DEBUGREG_WONT_EXIT again. 6209 */ 6210 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 6211 int i; 6212 6213 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 6214 kvm_x86_ops->sync_dirty_debug_regs(vcpu); 6215 for (i = 0; i < KVM_NR_DB_REGS; i++) 6216 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 6217 } 6218 6219 /* 6220 * If the guest has used debug registers, at least dr7 6221 * will be disabled while returning to the host. 6222 * If we don't have active breakpoints in the host, we don't 6223 * care about the messed up debug address registers. But if 6224 * we have some of them active, restore the old state. 6225 */ 6226 if (hw_breakpoint_active()) 6227 hw_breakpoint_restore(); 6228 6229 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu, 6230 native_read_tsc()); 6231 6232 vcpu->mode = OUTSIDE_GUEST_MODE; 6233 smp_wmb(); 6234 6235 /* Interrupt is enabled by handle_external_intr() */ 6236 kvm_x86_ops->handle_external_intr(vcpu); 6237 6238 ++vcpu->stat.exits; 6239 6240 /* 6241 * We must have an instruction between local_irq_enable() and 6242 * kvm_guest_exit(), so the timer interrupt isn't delayed by 6243 * the interrupt shadow. The stat.exits increment will do nicely. 6244 * But we need to prevent reordering, hence this barrier(): 6245 */ 6246 barrier(); 6247 6248 kvm_guest_exit(); 6249 6250 preempt_enable(); 6251 6252 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 6253 6254 /* 6255 * Profile KVM exit RIPs: 6256 */ 6257 if (unlikely(prof_on == KVM_PROFILING)) { 6258 unsigned long rip = kvm_rip_read(vcpu); 6259 profile_hit(KVM_PROFILING, (void *)rip); 6260 } 6261 6262 if (unlikely(vcpu->arch.tsc_always_catchup)) 6263 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 6264 6265 if (vcpu->arch.apic_attention) 6266 kvm_lapic_sync_from_vapic(vcpu); 6267 6268 r = kvm_x86_ops->handle_exit(vcpu); 6269 return r; 6270 6271 cancel_injection: 6272 kvm_x86_ops->cancel_injection(vcpu); 6273 if (unlikely(vcpu->arch.apic_attention)) 6274 kvm_lapic_sync_from_vapic(vcpu); 6275 out: 6276 return r; 6277 } 6278 6279 6280 static int __vcpu_run(struct kvm_vcpu *vcpu) 6281 { 6282 int r; 6283 struct kvm *kvm = vcpu->kvm; 6284 6285 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 6286 6287 r = 1; 6288 while (r > 0) { 6289 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 6290 !vcpu->arch.apf.halted) 6291 r = vcpu_enter_guest(vcpu); 6292 else { 6293 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 6294 kvm_vcpu_block(vcpu); 6295 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 6296 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) { 6297 kvm_apic_accept_events(vcpu); 6298 switch(vcpu->arch.mp_state) { 6299 case KVM_MP_STATE_HALTED: 6300 vcpu->arch.pv.pv_unhalted = false; 6301 vcpu->arch.mp_state = 6302 KVM_MP_STATE_RUNNABLE; 6303 case KVM_MP_STATE_RUNNABLE: 6304 vcpu->arch.apf.halted = false; 6305 break; 6306 case KVM_MP_STATE_INIT_RECEIVED: 6307 break; 6308 default: 6309 r = -EINTR; 6310 break; 6311 } 6312 } 6313 } 6314 6315 if (r <= 0) 6316 break; 6317 6318 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests); 6319 if (kvm_cpu_has_pending_timer(vcpu)) 6320 kvm_inject_pending_timer_irqs(vcpu); 6321 6322 if (dm_request_for_irq_injection(vcpu)) { 6323 r = -EINTR; 6324 vcpu->run->exit_reason = KVM_EXIT_INTR; 6325 ++vcpu->stat.request_irq_exits; 6326 } 6327 6328 kvm_check_async_pf_completion(vcpu); 6329 6330 if (signal_pending(current)) { 6331 r = -EINTR; 6332 vcpu->run->exit_reason = KVM_EXIT_INTR; 6333 ++vcpu->stat.signal_exits; 6334 } 6335 if (need_resched()) { 6336 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 6337 cond_resched(); 6338 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 6339 } 6340 } 6341 6342 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 6343 6344 return r; 6345 } 6346 6347 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 6348 { 6349 int r; 6350 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 6351 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 6352 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 6353 if (r != EMULATE_DONE) 6354 return 0; 6355 return 1; 6356 } 6357 6358 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 6359 { 6360 BUG_ON(!vcpu->arch.pio.count); 6361 6362 return complete_emulated_io(vcpu); 6363 } 6364 6365 /* 6366 * Implements the following, as a state machine: 6367 * 6368 * read: 6369 * for each fragment 6370 * for each mmio piece in the fragment 6371 * write gpa, len 6372 * exit 6373 * copy data 6374 * execute insn 6375 * 6376 * write: 6377 * for each fragment 6378 * for each mmio piece in the fragment 6379 * write gpa, len 6380 * copy data 6381 * exit 6382 */ 6383 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 6384 { 6385 struct kvm_run *run = vcpu->run; 6386 struct kvm_mmio_fragment *frag; 6387 unsigned len; 6388 6389 BUG_ON(!vcpu->mmio_needed); 6390 6391 /* Complete previous fragment */ 6392 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 6393 len = min(8u, frag->len); 6394 if (!vcpu->mmio_is_write) 6395 memcpy(frag->data, run->mmio.data, len); 6396 6397 if (frag->len <= 8) { 6398 /* Switch to the next fragment. */ 6399 frag++; 6400 vcpu->mmio_cur_fragment++; 6401 } else { 6402 /* Go forward to the next mmio piece. */ 6403 frag->data += len; 6404 frag->gpa += len; 6405 frag->len -= len; 6406 } 6407 6408 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 6409 vcpu->mmio_needed = 0; 6410 6411 /* FIXME: return into emulator if single-stepping. */ 6412 if (vcpu->mmio_is_write) 6413 return 1; 6414 vcpu->mmio_read_completed = 1; 6415 return complete_emulated_io(vcpu); 6416 } 6417 6418 run->exit_reason = KVM_EXIT_MMIO; 6419 run->mmio.phys_addr = frag->gpa; 6420 if (vcpu->mmio_is_write) 6421 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 6422 run->mmio.len = min(8u, frag->len); 6423 run->mmio.is_write = vcpu->mmio_is_write; 6424 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 6425 return 0; 6426 } 6427 6428 6429 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 6430 { 6431 int r; 6432 sigset_t sigsaved; 6433 6434 if (!tsk_used_math(current) && init_fpu(current)) 6435 return -ENOMEM; 6436 6437 if (vcpu->sigset_active) 6438 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); 6439 6440 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 6441 kvm_vcpu_block(vcpu); 6442 kvm_apic_accept_events(vcpu); 6443 clear_bit(KVM_REQ_UNHALT, &vcpu->requests); 6444 r = -EAGAIN; 6445 goto out; 6446 } 6447 6448 /* re-sync apic's tpr */ 6449 if (!irqchip_in_kernel(vcpu->kvm)) { 6450 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 6451 r = -EINVAL; 6452 goto out; 6453 } 6454 } 6455 6456 if (unlikely(vcpu->arch.complete_userspace_io)) { 6457 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 6458 vcpu->arch.complete_userspace_io = NULL; 6459 r = cui(vcpu); 6460 if (r <= 0) 6461 goto out; 6462 } else 6463 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 6464 6465 r = __vcpu_run(vcpu); 6466 6467 out: 6468 post_kvm_run_save(vcpu); 6469 if (vcpu->sigset_active) 6470 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 6471 6472 return r; 6473 } 6474 6475 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 6476 { 6477 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 6478 /* 6479 * We are here if userspace calls get_regs() in the middle of 6480 * instruction emulation. Registers state needs to be copied 6481 * back from emulation context to vcpu. Userspace shouldn't do 6482 * that usually, but some bad designed PV devices (vmware 6483 * backdoor interface) need this to work 6484 */ 6485 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt); 6486 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 6487 } 6488 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); 6489 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); 6490 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); 6491 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); 6492 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); 6493 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); 6494 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); 6495 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); 6496 #ifdef CONFIG_X86_64 6497 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); 6498 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); 6499 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); 6500 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); 6501 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); 6502 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); 6503 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); 6504 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); 6505 #endif 6506 6507 regs->rip = kvm_rip_read(vcpu); 6508 regs->rflags = kvm_get_rflags(vcpu); 6509 6510 return 0; 6511 } 6512 6513 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 6514 { 6515 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 6516 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 6517 6518 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); 6519 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); 6520 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); 6521 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); 6522 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); 6523 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); 6524 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); 6525 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); 6526 #ifdef CONFIG_X86_64 6527 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); 6528 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); 6529 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); 6530 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); 6531 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); 6532 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); 6533 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); 6534 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); 6535 #endif 6536 6537 kvm_rip_write(vcpu, regs->rip); 6538 kvm_set_rflags(vcpu, regs->rflags); 6539 6540 vcpu->arch.exception.pending = false; 6541 6542 kvm_make_request(KVM_REQ_EVENT, vcpu); 6543 6544 return 0; 6545 } 6546 6547 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 6548 { 6549 struct kvm_segment cs; 6550 6551 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 6552 *db = cs.db; 6553 *l = cs.l; 6554 } 6555 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 6556 6557 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 6558 struct kvm_sregs *sregs) 6559 { 6560 struct desc_ptr dt; 6561 6562 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 6563 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 6564 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 6565 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 6566 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 6567 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 6568 6569 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 6570 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 6571 6572 kvm_x86_ops->get_idt(vcpu, &dt); 6573 sregs->idt.limit = dt.size; 6574 sregs->idt.base = dt.address; 6575 kvm_x86_ops->get_gdt(vcpu, &dt); 6576 sregs->gdt.limit = dt.size; 6577 sregs->gdt.base = dt.address; 6578 6579 sregs->cr0 = kvm_read_cr0(vcpu); 6580 sregs->cr2 = vcpu->arch.cr2; 6581 sregs->cr3 = kvm_read_cr3(vcpu); 6582 sregs->cr4 = kvm_read_cr4(vcpu); 6583 sregs->cr8 = kvm_get_cr8(vcpu); 6584 sregs->efer = vcpu->arch.efer; 6585 sregs->apic_base = kvm_get_apic_base(vcpu); 6586 6587 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); 6588 6589 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft) 6590 set_bit(vcpu->arch.interrupt.nr, 6591 (unsigned long *)sregs->interrupt_bitmap); 6592 6593 return 0; 6594 } 6595 6596 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 6597 struct kvm_mp_state *mp_state) 6598 { 6599 kvm_apic_accept_events(vcpu); 6600 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED && 6601 vcpu->arch.pv.pv_unhalted) 6602 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 6603 else 6604 mp_state->mp_state = vcpu->arch.mp_state; 6605 6606 return 0; 6607 } 6608 6609 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 6610 struct kvm_mp_state *mp_state) 6611 { 6612 if (!kvm_vcpu_has_lapic(vcpu) && 6613 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 6614 return -EINVAL; 6615 6616 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 6617 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 6618 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 6619 } else 6620 vcpu->arch.mp_state = mp_state->mp_state; 6621 kvm_make_request(KVM_REQ_EVENT, vcpu); 6622 return 0; 6623 } 6624 6625 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 6626 int reason, bool has_error_code, u32 error_code) 6627 { 6628 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 6629 int ret; 6630 6631 init_emulate_ctxt(vcpu); 6632 6633 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 6634 has_error_code, error_code); 6635 6636 if (ret) 6637 return EMULATE_FAIL; 6638 6639 kvm_rip_write(vcpu, ctxt->eip); 6640 kvm_set_rflags(vcpu, ctxt->eflags); 6641 kvm_make_request(KVM_REQ_EVENT, vcpu); 6642 return EMULATE_DONE; 6643 } 6644 EXPORT_SYMBOL_GPL(kvm_task_switch); 6645 6646 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 6647 struct kvm_sregs *sregs) 6648 { 6649 struct msr_data apic_base_msr; 6650 int mmu_reset_needed = 0; 6651 int pending_vec, max_bits, idx; 6652 struct desc_ptr dt; 6653 6654 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE)) 6655 return -EINVAL; 6656 6657 dt.size = sregs->idt.limit; 6658 dt.address = sregs->idt.base; 6659 kvm_x86_ops->set_idt(vcpu, &dt); 6660 dt.size = sregs->gdt.limit; 6661 dt.address = sregs->gdt.base; 6662 kvm_x86_ops->set_gdt(vcpu, &dt); 6663 6664 vcpu->arch.cr2 = sregs->cr2; 6665 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 6666 vcpu->arch.cr3 = sregs->cr3; 6667 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 6668 6669 kvm_set_cr8(vcpu, sregs->cr8); 6670 6671 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 6672 kvm_x86_ops->set_efer(vcpu, sregs->efer); 6673 apic_base_msr.data = sregs->apic_base; 6674 apic_base_msr.host_initiated = true; 6675 kvm_set_apic_base(vcpu, &apic_base_msr); 6676 6677 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 6678 kvm_x86_ops->set_cr0(vcpu, sregs->cr0); 6679 vcpu->arch.cr0 = sregs->cr0; 6680 6681 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 6682 kvm_x86_ops->set_cr4(vcpu, sregs->cr4); 6683 if (sregs->cr4 & X86_CR4_OSXSAVE) 6684 kvm_update_cpuid(vcpu); 6685 6686 idx = srcu_read_lock(&vcpu->kvm->srcu); 6687 if (!is_long_mode(vcpu) && is_pae(vcpu)) { 6688 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 6689 mmu_reset_needed = 1; 6690 } 6691 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6692 6693 if (mmu_reset_needed) 6694 kvm_mmu_reset_context(vcpu); 6695 6696 max_bits = KVM_NR_INTERRUPTS; 6697 pending_vec = find_first_bit( 6698 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 6699 if (pending_vec < max_bits) { 6700 kvm_queue_interrupt(vcpu, pending_vec, false); 6701 pr_debug("Set back pending irq %d\n", pending_vec); 6702 } 6703 6704 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 6705 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 6706 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 6707 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 6708 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 6709 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 6710 6711 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 6712 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 6713 6714 update_cr8_intercept(vcpu); 6715 6716 /* Older userspace won't unhalt the vcpu on reset. */ 6717 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 6718 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 6719 !is_protmode(vcpu)) 6720 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 6721 6722 kvm_make_request(KVM_REQ_EVENT, vcpu); 6723 6724 return 0; 6725 } 6726 6727 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 6728 struct kvm_guest_debug *dbg) 6729 { 6730 unsigned long rflags; 6731 int i, r; 6732 6733 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 6734 r = -EBUSY; 6735 if (vcpu->arch.exception.pending) 6736 goto out; 6737 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 6738 kvm_queue_exception(vcpu, DB_VECTOR); 6739 else 6740 kvm_queue_exception(vcpu, BP_VECTOR); 6741 } 6742 6743 /* 6744 * Read rflags as long as potentially injected trace flags are still 6745 * filtered out. 6746 */ 6747 rflags = kvm_get_rflags(vcpu); 6748 6749 vcpu->guest_debug = dbg->control; 6750 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 6751 vcpu->guest_debug = 0; 6752 6753 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 6754 for (i = 0; i < KVM_NR_DB_REGS; ++i) 6755 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 6756 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 6757 } else { 6758 for (i = 0; i < KVM_NR_DB_REGS; i++) 6759 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 6760 } 6761 kvm_update_dr7(vcpu); 6762 6763 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 6764 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 6765 get_segment_base(vcpu, VCPU_SREG_CS); 6766 6767 /* 6768 * Trigger an rflags update that will inject or remove the trace 6769 * flags. 6770 */ 6771 kvm_set_rflags(vcpu, rflags); 6772 6773 kvm_x86_ops->update_db_bp_intercept(vcpu); 6774 6775 r = 0; 6776 6777 out: 6778 6779 return r; 6780 } 6781 6782 /* 6783 * Translate a guest virtual address to a guest physical address. 6784 */ 6785 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 6786 struct kvm_translation *tr) 6787 { 6788 unsigned long vaddr = tr->linear_address; 6789 gpa_t gpa; 6790 int idx; 6791 6792 idx = srcu_read_lock(&vcpu->kvm->srcu); 6793 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 6794 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6795 tr->physical_address = gpa; 6796 tr->valid = gpa != UNMAPPED_GVA; 6797 tr->writeable = 1; 6798 tr->usermode = 0; 6799 6800 return 0; 6801 } 6802 6803 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 6804 { 6805 struct i387_fxsave_struct *fxsave = 6806 &vcpu->arch.guest_fpu.state->fxsave; 6807 6808 memcpy(fpu->fpr, fxsave->st_space, 128); 6809 fpu->fcw = fxsave->cwd; 6810 fpu->fsw = fxsave->swd; 6811 fpu->ftwx = fxsave->twd; 6812 fpu->last_opcode = fxsave->fop; 6813 fpu->last_ip = fxsave->rip; 6814 fpu->last_dp = fxsave->rdp; 6815 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); 6816 6817 return 0; 6818 } 6819 6820 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 6821 { 6822 struct i387_fxsave_struct *fxsave = 6823 &vcpu->arch.guest_fpu.state->fxsave; 6824 6825 memcpy(fxsave->st_space, fpu->fpr, 128); 6826 fxsave->cwd = fpu->fcw; 6827 fxsave->swd = fpu->fsw; 6828 fxsave->twd = fpu->ftwx; 6829 fxsave->fop = fpu->last_opcode; 6830 fxsave->rip = fpu->last_ip; 6831 fxsave->rdp = fpu->last_dp; 6832 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); 6833 6834 return 0; 6835 } 6836 6837 int fx_init(struct kvm_vcpu *vcpu) 6838 { 6839 int err; 6840 6841 err = fpu_alloc(&vcpu->arch.guest_fpu); 6842 if (err) 6843 return err; 6844 6845 fpu_finit(&vcpu->arch.guest_fpu); 6846 6847 /* 6848 * Ensure guest xcr0 is valid for loading 6849 */ 6850 vcpu->arch.xcr0 = XSTATE_FP; 6851 6852 vcpu->arch.cr0 |= X86_CR0_ET; 6853 6854 return 0; 6855 } 6856 EXPORT_SYMBOL_GPL(fx_init); 6857 6858 static void fx_free(struct kvm_vcpu *vcpu) 6859 { 6860 fpu_free(&vcpu->arch.guest_fpu); 6861 } 6862 6863 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 6864 { 6865 if (vcpu->guest_fpu_loaded) 6866 return; 6867 6868 /* 6869 * Restore all possible states in the guest, 6870 * and assume host would use all available bits. 6871 * Guest xcr0 would be loaded later. 6872 */ 6873 kvm_put_guest_xcr0(vcpu); 6874 vcpu->guest_fpu_loaded = 1; 6875 __kernel_fpu_begin(); 6876 fpu_restore_checking(&vcpu->arch.guest_fpu); 6877 trace_kvm_fpu(1); 6878 } 6879 6880 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 6881 { 6882 kvm_put_guest_xcr0(vcpu); 6883 6884 if (!vcpu->guest_fpu_loaded) 6885 return; 6886 6887 vcpu->guest_fpu_loaded = 0; 6888 fpu_save_init(&vcpu->arch.guest_fpu); 6889 __kernel_fpu_end(); 6890 ++vcpu->stat.fpu_reload; 6891 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu); 6892 trace_kvm_fpu(0); 6893 } 6894 6895 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 6896 { 6897 kvmclock_reset(vcpu); 6898 6899 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 6900 fx_free(vcpu); 6901 kvm_x86_ops->vcpu_free(vcpu); 6902 } 6903 6904 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, 6905 unsigned int id) 6906 { 6907 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 6908 printk_once(KERN_WARNING 6909 "kvm: SMP vm created on host with unstable TSC; " 6910 "guest TSC will not be reliable\n"); 6911 return kvm_x86_ops->vcpu_create(kvm, id); 6912 } 6913 6914 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) 6915 { 6916 int r; 6917 6918 vcpu->arch.mtrr_state.have_fixed = 1; 6919 r = vcpu_load(vcpu); 6920 if (r) 6921 return r; 6922 kvm_vcpu_reset(vcpu); 6923 kvm_mmu_setup(vcpu); 6924 vcpu_put(vcpu); 6925 6926 return r; 6927 } 6928 6929 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 6930 { 6931 int r; 6932 struct msr_data msr; 6933 struct kvm *kvm = vcpu->kvm; 6934 6935 r = vcpu_load(vcpu); 6936 if (r) 6937 return r; 6938 msr.data = 0x0; 6939 msr.index = MSR_IA32_TSC; 6940 msr.host_initiated = true; 6941 kvm_write_tsc(vcpu, &msr); 6942 vcpu_put(vcpu); 6943 6944 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 6945 KVMCLOCK_SYNC_PERIOD); 6946 6947 return r; 6948 } 6949 6950 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 6951 { 6952 int r; 6953 vcpu->arch.apf.msr_val = 0; 6954 6955 r = vcpu_load(vcpu); 6956 BUG_ON(r); 6957 kvm_mmu_unload(vcpu); 6958 vcpu_put(vcpu); 6959 6960 fx_free(vcpu); 6961 kvm_x86_ops->vcpu_free(vcpu); 6962 } 6963 6964 void kvm_vcpu_reset(struct kvm_vcpu *vcpu) 6965 { 6966 atomic_set(&vcpu->arch.nmi_queued, 0); 6967 vcpu->arch.nmi_pending = 0; 6968 vcpu->arch.nmi_injected = false; 6969 kvm_clear_interrupt_queue(vcpu); 6970 kvm_clear_exception_queue(vcpu); 6971 6972 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 6973 vcpu->arch.dr6 = DR6_INIT; 6974 kvm_update_dr6(vcpu); 6975 vcpu->arch.dr7 = DR7_FIXED_1; 6976 kvm_update_dr7(vcpu); 6977 6978 kvm_make_request(KVM_REQ_EVENT, vcpu); 6979 vcpu->arch.apf.msr_val = 0; 6980 vcpu->arch.st.msr_val = 0; 6981 6982 kvmclock_reset(vcpu); 6983 6984 kvm_clear_async_pf_completion_queue(vcpu); 6985 kvm_async_pf_hash_reset(vcpu); 6986 vcpu->arch.apf.halted = false; 6987 6988 kvm_pmu_reset(vcpu); 6989 6990 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 6991 vcpu->arch.regs_avail = ~0; 6992 vcpu->arch.regs_dirty = ~0; 6993 6994 kvm_x86_ops->vcpu_reset(vcpu); 6995 } 6996 6997 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector) 6998 { 6999 struct kvm_segment cs; 7000 7001 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 7002 cs.selector = vector << 8; 7003 cs.base = vector << 12; 7004 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 7005 kvm_rip_write(vcpu, 0); 7006 } 7007 7008 int kvm_arch_hardware_enable(void) 7009 { 7010 struct kvm *kvm; 7011 struct kvm_vcpu *vcpu; 7012 int i; 7013 int ret; 7014 u64 local_tsc; 7015 u64 max_tsc = 0; 7016 bool stable, backwards_tsc = false; 7017 7018 kvm_shared_msr_cpu_online(); 7019 ret = kvm_x86_ops->hardware_enable(); 7020 if (ret != 0) 7021 return ret; 7022 7023 local_tsc = native_read_tsc(); 7024 stable = !check_tsc_unstable(); 7025 list_for_each_entry(kvm, &vm_list, vm_list) { 7026 kvm_for_each_vcpu(i, vcpu, kvm) { 7027 if (!stable && vcpu->cpu == smp_processor_id()) 7028 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 7029 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 7030 backwards_tsc = true; 7031 if (vcpu->arch.last_host_tsc > max_tsc) 7032 max_tsc = vcpu->arch.last_host_tsc; 7033 } 7034 } 7035 } 7036 7037 /* 7038 * Sometimes, even reliable TSCs go backwards. This happens on 7039 * platforms that reset TSC during suspend or hibernate actions, but 7040 * maintain synchronization. We must compensate. Fortunately, we can 7041 * detect that condition here, which happens early in CPU bringup, 7042 * before any KVM threads can be running. Unfortunately, we can't 7043 * bring the TSCs fully up to date with real time, as we aren't yet far 7044 * enough into CPU bringup that we know how much real time has actually 7045 * elapsed; our helper function, get_kernel_ns() will be using boot 7046 * variables that haven't been updated yet. 7047 * 7048 * So we simply find the maximum observed TSC above, then record the 7049 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 7050 * the adjustment will be applied. Note that we accumulate 7051 * adjustments, in case multiple suspend cycles happen before some VCPU 7052 * gets a chance to run again. In the event that no KVM threads get a 7053 * chance to run, we will miss the entire elapsed period, as we'll have 7054 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 7055 * loose cycle time. This isn't too big a deal, since the loss will be 7056 * uniform across all VCPUs (not to mention the scenario is extremely 7057 * unlikely). It is possible that a second hibernate recovery happens 7058 * much faster than a first, causing the observed TSC here to be 7059 * smaller; this would require additional padding adjustment, which is 7060 * why we set last_host_tsc to the local tsc observed here. 7061 * 7062 * N.B. - this code below runs only on platforms with reliable TSC, 7063 * as that is the only way backwards_tsc is set above. Also note 7064 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 7065 * have the same delta_cyc adjustment applied if backwards_tsc 7066 * is detected. Note further, this adjustment is only done once, 7067 * as we reset last_host_tsc on all VCPUs to stop this from being 7068 * called multiple times (one for each physical CPU bringup). 7069 * 7070 * Platforms with unreliable TSCs don't have to deal with this, they 7071 * will be compensated by the logic in vcpu_load, which sets the TSC to 7072 * catchup mode. This will catchup all VCPUs to real time, but cannot 7073 * guarantee that they stay in perfect synchronization. 7074 */ 7075 if (backwards_tsc) { 7076 u64 delta_cyc = max_tsc - local_tsc; 7077 backwards_tsc_observed = true; 7078 list_for_each_entry(kvm, &vm_list, vm_list) { 7079 kvm_for_each_vcpu(i, vcpu, kvm) { 7080 vcpu->arch.tsc_offset_adjustment += delta_cyc; 7081 vcpu->arch.last_host_tsc = local_tsc; 7082 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 7083 } 7084 7085 /* 7086 * We have to disable TSC offset matching.. if you were 7087 * booting a VM while issuing an S4 host suspend.... 7088 * you may have some problem. Solving this issue is 7089 * left as an exercise to the reader. 7090 */ 7091 kvm->arch.last_tsc_nsec = 0; 7092 kvm->arch.last_tsc_write = 0; 7093 } 7094 7095 } 7096 return 0; 7097 } 7098 7099 void kvm_arch_hardware_disable(void) 7100 { 7101 kvm_x86_ops->hardware_disable(); 7102 drop_user_return_notifiers(); 7103 } 7104 7105 int kvm_arch_hardware_setup(void) 7106 { 7107 return kvm_x86_ops->hardware_setup(); 7108 } 7109 7110 void kvm_arch_hardware_unsetup(void) 7111 { 7112 kvm_x86_ops->hardware_unsetup(); 7113 } 7114 7115 void kvm_arch_check_processor_compat(void *rtn) 7116 { 7117 kvm_x86_ops->check_processor_compatibility(rtn); 7118 } 7119 7120 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu) 7121 { 7122 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL); 7123 } 7124 7125 struct static_key kvm_no_apic_vcpu __read_mostly; 7126 7127 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 7128 { 7129 struct page *page; 7130 struct kvm *kvm; 7131 int r; 7132 7133 BUG_ON(vcpu->kvm == NULL); 7134 kvm = vcpu->kvm; 7135 7136 vcpu->arch.pv.pv_unhalted = false; 7137 vcpu->arch.emulate_ctxt.ops = &emulate_ops; 7138 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu)) 7139 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 7140 else 7141 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 7142 7143 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 7144 if (!page) { 7145 r = -ENOMEM; 7146 goto fail; 7147 } 7148 vcpu->arch.pio_data = page_address(page); 7149 7150 kvm_set_tsc_khz(vcpu, max_tsc_khz); 7151 7152 r = kvm_mmu_create(vcpu); 7153 if (r < 0) 7154 goto fail_free_pio_data; 7155 7156 if (irqchip_in_kernel(kvm)) { 7157 r = kvm_create_lapic(vcpu); 7158 if (r < 0) 7159 goto fail_mmu_destroy; 7160 } else 7161 static_key_slow_inc(&kvm_no_apic_vcpu); 7162 7163 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 7164 GFP_KERNEL); 7165 if (!vcpu->arch.mce_banks) { 7166 r = -ENOMEM; 7167 goto fail_free_lapic; 7168 } 7169 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 7170 7171 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) { 7172 r = -ENOMEM; 7173 goto fail_free_mce_banks; 7174 } 7175 7176 r = fx_init(vcpu); 7177 if (r) 7178 goto fail_free_wbinvd_dirty_mask; 7179 7180 vcpu->arch.ia32_tsc_adjust_msr = 0x0; 7181 vcpu->arch.pv_time_enabled = false; 7182 7183 vcpu->arch.guest_supported_xcr0 = 0; 7184 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; 7185 7186 kvm_async_pf_hash_reset(vcpu); 7187 kvm_pmu_init(vcpu); 7188 7189 return 0; 7190 fail_free_wbinvd_dirty_mask: 7191 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 7192 fail_free_mce_banks: 7193 kfree(vcpu->arch.mce_banks); 7194 fail_free_lapic: 7195 kvm_free_lapic(vcpu); 7196 fail_mmu_destroy: 7197 kvm_mmu_destroy(vcpu); 7198 fail_free_pio_data: 7199 free_page((unsigned long)vcpu->arch.pio_data); 7200 fail: 7201 return r; 7202 } 7203 7204 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 7205 { 7206 int idx; 7207 7208 kvm_pmu_destroy(vcpu); 7209 kfree(vcpu->arch.mce_banks); 7210 kvm_free_lapic(vcpu); 7211 idx = srcu_read_lock(&vcpu->kvm->srcu); 7212 kvm_mmu_destroy(vcpu); 7213 srcu_read_unlock(&vcpu->kvm->srcu, idx); 7214 free_page((unsigned long)vcpu->arch.pio_data); 7215 if (!irqchip_in_kernel(vcpu->kvm)) 7216 static_key_slow_dec(&kvm_no_apic_vcpu); 7217 } 7218 7219 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 7220 { 7221 kvm_x86_ops->sched_in(vcpu, cpu); 7222 } 7223 7224 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 7225 { 7226 if (type) 7227 return -EINVAL; 7228 7229 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 7230 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 7231 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 7232 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 7233 7234 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 7235 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 7236 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 7237 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 7238 &kvm->arch.irq_sources_bitmap); 7239 7240 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 7241 mutex_init(&kvm->arch.apic_map_lock); 7242 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); 7243 7244 pvclock_update_vm_gtod_copy(kvm); 7245 7246 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 7247 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 7248 7249 return 0; 7250 } 7251 7252 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 7253 { 7254 int r; 7255 r = vcpu_load(vcpu); 7256 BUG_ON(r); 7257 kvm_mmu_unload(vcpu); 7258 vcpu_put(vcpu); 7259 } 7260 7261 static void kvm_free_vcpus(struct kvm *kvm) 7262 { 7263 unsigned int i; 7264 struct kvm_vcpu *vcpu; 7265 7266 /* 7267 * Unpin any mmu pages first. 7268 */ 7269 kvm_for_each_vcpu(i, vcpu, kvm) { 7270 kvm_clear_async_pf_completion_queue(vcpu); 7271 kvm_unload_vcpu_mmu(vcpu); 7272 } 7273 kvm_for_each_vcpu(i, vcpu, kvm) 7274 kvm_arch_vcpu_free(vcpu); 7275 7276 mutex_lock(&kvm->lock); 7277 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 7278 kvm->vcpus[i] = NULL; 7279 7280 atomic_set(&kvm->online_vcpus, 0); 7281 mutex_unlock(&kvm->lock); 7282 } 7283 7284 void kvm_arch_sync_events(struct kvm *kvm) 7285 { 7286 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 7287 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 7288 kvm_free_all_assigned_devices(kvm); 7289 kvm_free_pit(kvm); 7290 } 7291 7292 void kvm_arch_destroy_vm(struct kvm *kvm) 7293 { 7294 if (current->mm == kvm->mm) { 7295 /* 7296 * Free memory regions allocated on behalf of userspace, 7297 * unless the the memory map has changed due to process exit 7298 * or fd copying. 7299 */ 7300 struct kvm_userspace_memory_region mem; 7301 memset(&mem, 0, sizeof(mem)); 7302 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT; 7303 kvm_set_memory_region(kvm, &mem); 7304 7305 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT; 7306 kvm_set_memory_region(kvm, &mem); 7307 7308 mem.slot = TSS_PRIVATE_MEMSLOT; 7309 kvm_set_memory_region(kvm, &mem); 7310 } 7311 kvm_iommu_unmap_guest(kvm); 7312 kfree(kvm->arch.vpic); 7313 kfree(kvm->arch.vioapic); 7314 kvm_free_vcpus(kvm); 7315 kfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 7316 } 7317 7318 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 7319 struct kvm_memory_slot *dont) 7320 { 7321 int i; 7322 7323 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 7324 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) { 7325 kvm_kvfree(free->arch.rmap[i]); 7326 free->arch.rmap[i] = NULL; 7327 } 7328 if (i == 0) 7329 continue; 7330 7331 if (!dont || free->arch.lpage_info[i - 1] != 7332 dont->arch.lpage_info[i - 1]) { 7333 kvm_kvfree(free->arch.lpage_info[i - 1]); 7334 free->arch.lpage_info[i - 1] = NULL; 7335 } 7336 } 7337 } 7338 7339 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 7340 unsigned long npages) 7341 { 7342 int i; 7343 7344 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 7345 unsigned long ugfn; 7346 int lpages; 7347 int level = i + 1; 7348 7349 lpages = gfn_to_index(slot->base_gfn + npages - 1, 7350 slot->base_gfn, level) + 1; 7351 7352 slot->arch.rmap[i] = 7353 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i])); 7354 if (!slot->arch.rmap[i]) 7355 goto out_free; 7356 if (i == 0) 7357 continue; 7358 7359 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages * 7360 sizeof(*slot->arch.lpage_info[i - 1])); 7361 if (!slot->arch.lpage_info[i - 1]) 7362 goto out_free; 7363 7364 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 7365 slot->arch.lpage_info[i - 1][0].write_count = 1; 7366 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 7367 slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1; 7368 ugfn = slot->userspace_addr >> PAGE_SHIFT; 7369 /* 7370 * If the gfn and userspace address are not aligned wrt each 7371 * other, or if explicitly asked to, disable large page 7372 * support for this slot 7373 */ 7374 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || 7375 !kvm_largepages_enabled()) { 7376 unsigned long j; 7377 7378 for (j = 0; j < lpages; ++j) 7379 slot->arch.lpage_info[i - 1][j].write_count = 1; 7380 } 7381 } 7382 7383 return 0; 7384 7385 out_free: 7386 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 7387 kvm_kvfree(slot->arch.rmap[i]); 7388 slot->arch.rmap[i] = NULL; 7389 if (i == 0) 7390 continue; 7391 7392 kvm_kvfree(slot->arch.lpage_info[i - 1]); 7393 slot->arch.lpage_info[i - 1] = NULL; 7394 } 7395 return -ENOMEM; 7396 } 7397 7398 void kvm_arch_memslots_updated(struct kvm *kvm) 7399 { 7400 /* 7401 * memslots->generation has been incremented. 7402 * mmio generation may have reached its maximum value. 7403 */ 7404 kvm_mmu_invalidate_mmio_sptes(kvm); 7405 } 7406 7407 int kvm_arch_prepare_memory_region(struct kvm *kvm, 7408 struct kvm_memory_slot *memslot, 7409 struct kvm_userspace_memory_region *mem, 7410 enum kvm_mr_change change) 7411 { 7412 /* 7413 * Only private memory slots need to be mapped here since 7414 * KVM_SET_MEMORY_REGION ioctl is no longer supported. 7415 */ 7416 if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) { 7417 unsigned long userspace_addr; 7418 7419 /* 7420 * MAP_SHARED to prevent internal slot pages from being moved 7421 * by fork()/COW. 7422 */ 7423 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE, 7424 PROT_READ | PROT_WRITE, 7425 MAP_SHARED | MAP_ANONYMOUS, 0); 7426 7427 if (IS_ERR((void *)userspace_addr)) 7428 return PTR_ERR((void *)userspace_addr); 7429 7430 memslot->userspace_addr = userspace_addr; 7431 } 7432 7433 return 0; 7434 } 7435 7436 void kvm_arch_commit_memory_region(struct kvm *kvm, 7437 struct kvm_userspace_memory_region *mem, 7438 const struct kvm_memory_slot *old, 7439 enum kvm_mr_change change) 7440 { 7441 7442 int nr_mmu_pages = 0; 7443 7444 if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) { 7445 int ret; 7446 7447 ret = vm_munmap(old->userspace_addr, 7448 old->npages * PAGE_SIZE); 7449 if (ret < 0) 7450 printk(KERN_WARNING 7451 "kvm_vm_ioctl_set_memory_region: " 7452 "failed to munmap memory\n"); 7453 } 7454 7455 if (!kvm->arch.n_requested_mmu_pages) 7456 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); 7457 7458 if (nr_mmu_pages) 7459 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 7460 /* 7461 * Write protect all pages for dirty logging. 7462 * 7463 * All the sptes including the large sptes which point to this 7464 * slot are set to readonly. We can not create any new large 7465 * spte on this slot until the end of the logging. 7466 * 7467 * See the comments in fast_page_fault(). 7468 */ 7469 if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES)) 7470 kvm_mmu_slot_remove_write_access(kvm, mem->slot); 7471 } 7472 7473 void kvm_arch_flush_shadow_all(struct kvm *kvm) 7474 { 7475 kvm_mmu_invalidate_zap_all_pages(kvm); 7476 } 7477 7478 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 7479 struct kvm_memory_slot *slot) 7480 { 7481 kvm_mmu_invalidate_zap_all_pages(kvm); 7482 } 7483 7484 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 7485 { 7486 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) 7487 kvm_x86_ops->check_nested_events(vcpu, false); 7488 7489 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 7490 !vcpu->arch.apf.halted) 7491 || !list_empty_careful(&vcpu->async_pf.done) 7492 || kvm_apic_has_events(vcpu) 7493 || vcpu->arch.pv.pv_unhalted 7494 || atomic_read(&vcpu->arch.nmi_queued) || 7495 (kvm_arch_interrupt_allowed(vcpu) && 7496 kvm_cpu_has_interrupt(vcpu)); 7497 } 7498 7499 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 7500 { 7501 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 7502 } 7503 7504 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 7505 { 7506 return kvm_x86_ops->interrupt_allowed(vcpu); 7507 } 7508 7509 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 7510 { 7511 unsigned long current_rip = kvm_rip_read(vcpu) + 7512 get_segment_base(vcpu, VCPU_SREG_CS); 7513 7514 return current_rip == linear_rip; 7515 } 7516 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 7517 7518 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 7519 { 7520 unsigned long rflags; 7521 7522 rflags = kvm_x86_ops->get_rflags(vcpu); 7523 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 7524 rflags &= ~X86_EFLAGS_TF; 7525 return rflags; 7526 } 7527 EXPORT_SYMBOL_GPL(kvm_get_rflags); 7528 7529 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 7530 { 7531 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 7532 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 7533 rflags |= X86_EFLAGS_TF; 7534 kvm_x86_ops->set_rflags(vcpu, rflags); 7535 } 7536 7537 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 7538 { 7539 __kvm_set_rflags(vcpu, rflags); 7540 kvm_make_request(KVM_REQ_EVENT, vcpu); 7541 } 7542 EXPORT_SYMBOL_GPL(kvm_set_rflags); 7543 7544 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 7545 { 7546 int r; 7547 7548 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) || 7549 work->wakeup_all) 7550 return; 7551 7552 r = kvm_mmu_reload(vcpu); 7553 if (unlikely(r)) 7554 return; 7555 7556 if (!vcpu->arch.mmu.direct_map && 7557 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu)) 7558 return; 7559 7560 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true); 7561 } 7562 7563 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 7564 { 7565 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 7566 } 7567 7568 static inline u32 kvm_async_pf_next_probe(u32 key) 7569 { 7570 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); 7571 } 7572 7573 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 7574 { 7575 u32 key = kvm_async_pf_hash_fn(gfn); 7576 7577 while (vcpu->arch.apf.gfns[key] != ~0) 7578 key = kvm_async_pf_next_probe(key); 7579 7580 vcpu->arch.apf.gfns[key] = gfn; 7581 } 7582 7583 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 7584 { 7585 int i; 7586 u32 key = kvm_async_pf_hash_fn(gfn); 7587 7588 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && 7589 (vcpu->arch.apf.gfns[key] != gfn && 7590 vcpu->arch.apf.gfns[key] != ~0); i++) 7591 key = kvm_async_pf_next_probe(key); 7592 7593 return key; 7594 } 7595 7596 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 7597 { 7598 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 7599 } 7600 7601 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 7602 { 7603 u32 i, j, k; 7604 7605 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 7606 while (true) { 7607 vcpu->arch.apf.gfns[i] = ~0; 7608 do { 7609 j = kvm_async_pf_next_probe(j); 7610 if (vcpu->arch.apf.gfns[j] == ~0) 7611 return; 7612 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 7613 /* 7614 * k lies cyclically in ]i,j] 7615 * | i.k.j | 7616 * |....j i.k.| or |.k..j i...| 7617 */ 7618 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 7619 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 7620 i = j; 7621 } 7622 } 7623 7624 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) 7625 { 7626 7627 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, 7628 sizeof(val)); 7629 } 7630 7631 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 7632 struct kvm_async_pf *work) 7633 { 7634 struct x86_exception fault; 7635 7636 trace_kvm_async_pf_not_present(work->arch.token, work->gva); 7637 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 7638 7639 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || 7640 (vcpu->arch.apf.send_user_only && 7641 kvm_x86_ops->get_cpl(vcpu) == 0)) 7642 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 7643 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { 7644 fault.vector = PF_VECTOR; 7645 fault.error_code_valid = true; 7646 fault.error_code = 0; 7647 fault.nested_page_fault = false; 7648 fault.address = work->arch.token; 7649 kvm_inject_page_fault(vcpu, &fault); 7650 } 7651 } 7652 7653 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 7654 struct kvm_async_pf *work) 7655 { 7656 struct x86_exception fault; 7657 7658 trace_kvm_async_pf_ready(work->arch.token, work->gva); 7659 if (work->wakeup_all) 7660 work->arch.token = ~0; /* broadcast wakeup */ 7661 else 7662 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 7663 7664 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) && 7665 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { 7666 fault.vector = PF_VECTOR; 7667 fault.error_code_valid = true; 7668 fault.error_code = 0; 7669 fault.nested_page_fault = false; 7670 fault.address = work->arch.token; 7671 kvm_inject_page_fault(vcpu, &fault); 7672 } 7673 vcpu->arch.apf.halted = false; 7674 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 7675 } 7676 7677 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) 7678 { 7679 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) 7680 return true; 7681 else 7682 return !kvm_event_needs_reinjection(vcpu) && 7683 kvm_x86_ops->interrupt_allowed(vcpu); 7684 } 7685 7686 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 7687 { 7688 atomic_inc(&kvm->arch.noncoherent_dma_count); 7689 } 7690 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 7691 7692 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 7693 { 7694 atomic_dec(&kvm->arch.noncoherent_dma_count); 7695 } 7696 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 7697 7698 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 7699 { 7700 return atomic_read(&kvm->arch.noncoherent_dma_count); 7701 } 7702 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 7703 7704 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 7705 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 7706 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 7707 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 7708 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 7709 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 7710 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 7711 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 7712 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 7713 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 7714 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 7715 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 7716 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 7717 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window); 7718