1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * derived from drivers/kvm/kvm_main.c 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2008 Qumranet, Inc. 8 * Copyright IBM Corporation, 2008 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 * Amit Shah <amit.shah@qumranet.com> 15 * Ben-Ami Yassour <benami@il.ibm.com> 16 * 17 * This work is licensed under the terms of the GNU GPL, version 2. See 18 * the COPYING file in the top-level directory. 19 * 20 */ 21 22 #include <linux/kvm_host.h> 23 #include "irq.h" 24 #include "mmu.h" 25 #include "i8254.h" 26 #include "tss.h" 27 #include "kvm_cache_regs.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 31 #include <linux/clocksource.h> 32 #include <linux/interrupt.h> 33 #include <linux/kvm.h> 34 #include <linux/fs.h> 35 #include <linux/vmalloc.h> 36 #include <linux/module.h> 37 #include <linux/mman.h> 38 #include <linux/highmem.h> 39 #include <linux/iommu.h> 40 #include <linux/intel-iommu.h> 41 #include <linux/cpufreq.h> 42 #include <linux/user-return-notifier.h> 43 #include <linux/srcu.h> 44 #include <linux/slab.h> 45 #include <linux/perf_event.h> 46 #include <linux/uaccess.h> 47 #include <linux/hash.h> 48 #include <linux/pci.h> 49 #include <linux/timekeeper_internal.h> 50 #include <linux/pvclock_gtod.h> 51 #include <trace/events/kvm.h> 52 53 #define CREATE_TRACE_POINTS 54 #include "trace.h" 55 56 #include <asm/debugreg.h> 57 #include <asm/msr.h> 58 #include <asm/desc.h> 59 #include <asm/mtrr.h> 60 #include <asm/mce.h> 61 #include <asm/i387.h> 62 #include <asm/fpu-internal.h> /* Ugh! */ 63 #include <asm/xcr.h> 64 #include <asm/pvclock.h> 65 #include <asm/div64.h> 66 67 #define MAX_IO_MSRS 256 68 #define KVM_MAX_MCE_BANKS 32 69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P) 70 71 #define emul_to_vcpu(ctxt) \ 72 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) 73 74 /* EFER defaults: 75 * - enable syscall per default because its emulated by KVM 76 * - enable LME and LMA per default on 64 bit KVM 77 */ 78 #ifdef CONFIG_X86_64 79 static 80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 81 #else 82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 83 #endif 84 85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM 86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU 87 88 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 89 static void process_nmi(struct kvm_vcpu *vcpu); 90 91 struct kvm_x86_ops *kvm_x86_ops; 92 EXPORT_SYMBOL_GPL(kvm_x86_ops); 93 94 static bool ignore_msrs = 0; 95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 96 97 unsigned int min_timer_period_us = 500; 98 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 99 100 bool kvm_has_tsc_control; 101 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 102 u32 kvm_max_guest_tsc_khz; 103 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 104 105 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 106 static u32 tsc_tolerance_ppm = 250; 107 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 108 109 #define KVM_NR_SHARED_MSRS 16 110 111 struct kvm_shared_msrs_global { 112 int nr; 113 u32 msrs[KVM_NR_SHARED_MSRS]; 114 }; 115 116 struct kvm_shared_msrs { 117 struct user_return_notifier urn; 118 bool registered; 119 struct kvm_shared_msr_values { 120 u64 host; 121 u64 curr; 122 } values[KVM_NR_SHARED_MSRS]; 123 }; 124 125 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; 126 static struct kvm_shared_msrs __percpu *shared_msrs; 127 128 struct kvm_stats_debugfs_item debugfs_entries[] = { 129 { "pf_fixed", VCPU_STAT(pf_fixed) }, 130 { "pf_guest", VCPU_STAT(pf_guest) }, 131 { "tlb_flush", VCPU_STAT(tlb_flush) }, 132 { "invlpg", VCPU_STAT(invlpg) }, 133 { "exits", VCPU_STAT(exits) }, 134 { "io_exits", VCPU_STAT(io_exits) }, 135 { "mmio_exits", VCPU_STAT(mmio_exits) }, 136 { "signal_exits", VCPU_STAT(signal_exits) }, 137 { "irq_window", VCPU_STAT(irq_window_exits) }, 138 { "nmi_window", VCPU_STAT(nmi_window_exits) }, 139 { "halt_exits", VCPU_STAT(halt_exits) }, 140 { "halt_wakeup", VCPU_STAT(halt_wakeup) }, 141 { "hypercalls", VCPU_STAT(hypercalls) }, 142 { "request_irq", VCPU_STAT(request_irq_exits) }, 143 { "irq_exits", VCPU_STAT(irq_exits) }, 144 { "host_state_reload", VCPU_STAT(host_state_reload) }, 145 { "efer_reload", VCPU_STAT(efer_reload) }, 146 { "fpu_reload", VCPU_STAT(fpu_reload) }, 147 { "insn_emulation", VCPU_STAT(insn_emulation) }, 148 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, 149 { "irq_injections", VCPU_STAT(irq_injections) }, 150 { "nmi_injections", VCPU_STAT(nmi_injections) }, 151 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, 152 { "mmu_pte_write", VM_STAT(mmu_pte_write) }, 153 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, 154 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, 155 { "mmu_flooded", VM_STAT(mmu_flooded) }, 156 { "mmu_recycled", VM_STAT(mmu_recycled) }, 157 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, 158 { "mmu_unsync", VM_STAT(mmu_unsync) }, 159 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, 160 { "largepages", VM_STAT(lpages) }, 161 { NULL } 162 }; 163 164 u64 __read_mostly host_xcr0; 165 166 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 167 168 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 169 { 170 int i; 171 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) 172 vcpu->arch.apf.gfns[i] = ~0; 173 } 174 175 static void kvm_on_user_return(struct user_return_notifier *urn) 176 { 177 unsigned slot; 178 struct kvm_shared_msrs *locals 179 = container_of(urn, struct kvm_shared_msrs, urn); 180 struct kvm_shared_msr_values *values; 181 182 for (slot = 0; slot < shared_msrs_global.nr; ++slot) { 183 values = &locals->values[slot]; 184 if (values->host != values->curr) { 185 wrmsrl(shared_msrs_global.msrs[slot], values->host); 186 values->curr = values->host; 187 } 188 } 189 locals->registered = false; 190 user_return_notifier_unregister(urn); 191 } 192 193 static void shared_msr_update(unsigned slot, u32 msr) 194 { 195 u64 value; 196 unsigned int cpu = smp_processor_id(); 197 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 198 199 /* only read, and nobody should modify it at this time, 200 * so don't need lock */ 201 if (slot >= shared_msrs_global.nr) { 202 printk(KERN_ERR "kvm: invalid MSR slot!"); 203 return; 204 } 205 rdmsrl_safe(msr, &value); 206 smsr->values[slot].host = value; 207 smsr->values[slot].curr = value; 208 } 209 210 void kvm_define_shared_msr(unsigned slot, u32 msr) 211 { 212 if (slot >= shared_msrs_global.nr) 213 shared_msrs_global.nr = slot + 1; 214 shared_msrs_global.msrs[slot] = msr; 215 /* we need ensured the shared_msr_global have been updated */ 216 smp_wmb(); 217 } 218 EXPORT_SYMBOL_GPL(kvm_define_shared_msr); 219 220 static void kvm_shared_msr_cpu_online(void) 221 { 222 unsigned i; 223 224 for (i = 0; i < shared_msrs_global.nr; ++i) 225 shared_msr_update(i, shared_msrs_global.msrs[i]); 226 } 227 228 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) 229 { 230 unsigned int cpu = smp_processor_id(); 231 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 232 233 if (((value ^ smsr->values[slot].curr) & mask) == 0) 234 return; 235 smsr->values[slot].curr = value; 236 wrmsrl(shared_msrs_global.msrs[slot], value); 237 if (!smsr->registered) { 238 smsr->urn.on_user_return = kvm_on_user_return; 239 user_return_notifier_register(&smsr->urn); 240 smsr->registered = true; 241 } 242 } 243 EXPORT_SYMBOL_GPL(kvm_set_shared_msr); 244 245 static void drop_user_return_notifiers(void *ignore) 246 { 247 unsigned int cpu = smp_processor_id(); 248 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 249 250 if (smsr->registered) 251 kvm_on_user_return(&smsr->urn); 252 } 253 254 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 255 { 256 return vcpu->arch.apic_base; 257 } 258 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 259 260 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 261 { 262 u64 old_state = vcpu->arch.apic_base & 263 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE); 264 u64 new_state = msr_info->data & 265 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE); 266 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 267 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE); 268 269 if (!msr_info->host_initiated && 270 ((msr_info->data & reserved_bits) != 0 || 271 new_state == X2APIC_ENABLE || 272 (new_state == MSR_IA32_APICBASE_ENABLE && 273 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) || 274 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) && 275 old_state == 0))) 276 return 1; 277 278 kvm_lapic_set_base(vcpu, msr_info->data); 279 return 0; 280 } 281 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 282 283 asmlinkage __visible void kvm_spurious_fault(void) 284 { 285 /* Fault while not rebooting. We want the trace. */ 286 BUG(); 287 } 288 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 289 290 #define EXCPT_BENIGN 0 291 #define EXCPT_CONTRIBUTORY 1 292 #define EXCPT_PF 2 293 294 static int exception_class(int vector) 295 { 296 switch (vector) { 297 case PF_VECTOR: 298 return EXCPT_PF; 299 case DE_VECTOR: 300 case TS_VECTOR: 301 case NP_VECTOR: 302 case SS_VECTOR: 303 case GP_VECTOR: 304 return EXCPT_CONTRIBUTORY; 305 default: 306 break; 307 } 308 return EXCPT_BENIGN; 309 } 310 311 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 312 unsigned nr, bool has_error, u32 error_code, 313 bool reinject) 314 { 315 u32 prev_nr; 316 int class1, class2; 317 318 kvm_make_request(KVM_REQ_EVENT, vcpu); 319 320 if (!vcpu->arch.exception.pending) { 321 queue: 322 vcpu->arch.exception.pending = true; 323 vcpu->arch.exception.has_error_code = has_error; 324 vcpu->arch.exception.nr = nr; 325 vcpu->arch.exception.error_code = error_code; 326 vcpu->arch.exception.reinject = reinject; 327 return; 328 } 329 330 /* to check exception */ 331 prev_nr = vcpu->arch.exception.nr; 332 if (prev_nr == DF_VECTOR) { 333 /* triple fault -> shutdown */ 334 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 335 return; 336 } 337 class1 = exception_class(prev_nr); 338 class2 = exception_class(nr); 339 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 340 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 341 /* generate double fault per SDM Table 5-5 */ 342 vcpu->arch.exception.pending = true; 343 vcpu->arch.exception.has_error_code = true; 344 vcpu->arch.exception.nr = DF_VECTOR; 345 vcpu->arch.exception.error_code = 0; 346 } else 347 /* replace previous exception with a new one in a hope 348 that instruction re-execution will regenerate lost 349 exception */ 350 goto queue; 351 } 352 353 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 354 { 355 kvm_multiple_exception(vcpu, nr, false, 0, false); 356 } 357 EXPORT_SYMBOL_GPL(kvm_queue_exception); 358 359 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 360 { 361 kvm_multiple_exception(vcpu, nr, false, 0, true); 362 } 363 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 364 365 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 366 { 367 if (err) 368 kvm_inject_gp(vcpu, 0); 369 else 370 kvm_x86_ops->skip_emulated_instruction(vcpu); 371 } 372 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 373 374 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 375 { 376 ++vcpu->stat.pf_guest; 377 vcpu->arch.cr2 = fault->address; 378 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 379 } 380 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 381 382 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 383 { 384 if (mmu_is_nested(vcpu) && !fault->nested_page_fault) 385 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); 386 else 387 vcpu->arch.mmu.inject_page_fault(vcpu, fault); 388 } 389 390 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 391 { 392 atomic_inc(&vcpu->arch.nmi_queued); 393 kvm_make_request(KVM_REQ_NMI, vcpu); 394 } 395 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 396 397 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 398 { 399 kvm_multiple_exception(vcpu, nr, true, error_code, false); 400 } 401 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 402 403 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 404 { 405 kvm_multiple_exception(vcpu, nr, true, error_code, true); 406 } 407 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 408 409 /* 410 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 411 * a #GP and return false. 412 */ 413 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 414 { 415 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) 416 return true; 417 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 418 return false; 419 } 420 EXPORT_SYMBOL_GPL(kvm_require_cpl); 421 422 /* 423 * This function will be used to read from the physical memory of the currently 424 * running guest. The difference to kvm_read_guest_page is that this function 425 * can read from guest physical or from the guest's guest physical memory. 426 */ 427 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 428 gfn_t ngfn, void *data, int offset, int len, 429 u32 access) 430 { 431 gfn_t real_gfn; 432 gpa_t ngpa; 433 434 ngpa = gfn_to_gpa(ngfn); 435 real_gfn = mmu->translate_gpa(vcpu, ngpa, access); 436 if (real_gfn == UNMAPPED_GVA) 437 return -EFAULT; 438 439 real_gfn = gpa_to_gfn(real_gfn); 440 441 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len); 442 } 443 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 444 445 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 446 void *data, int offset, int len, u32 access) 447 { 448 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 449 data, offset, len, access); 450 } 451 452 /* 453 * Load the pae pdptrs. Return true is they are all valid. 454 */ 455 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 456 { 457 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 458 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 459 int i; 460 int ret; 461 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 462 463 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 464 offset * sizeof(u64), sizeof(pdpte), 465 PFERR_USER_MASK|PFERR_WRITE_MASK); 466 if (ret < 0) { 467 ret = 0; 468 goto out; 469 } 470 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 471 if (is_present_gpte(pdpte[i]) && 472 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) { 473 ret = 0; 474 goto out; 475 } 476 } 477 ret = 1; 478 479 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 480 __set_bit(VCPU_EXREG_PDPTR, 481 (unsigned long *)&vcpu->arch.regs_avail); 482 __set_bit(VCPU_EXREG_PDPTR, 483 (unsigned long *)&vcpu->arch.regs_dirty); 484 out: 485 486 return ret; 487 } 488 EXPORT_SYMBOL_GPL(load_pdptrs); 489 490 static bool pdptrs_changed(struct kvm_vcpu *vcpu) 491 { 492 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 493 bool changed = true; 494 int offset; 495 gfn_t gfn; 496 int r; 497 498 if (is_long_mode(vcpu) || !is_pae(vcpu)) 499 return false; 500 501 if (!test_bit(VCPU_EXREG_PDPTR, 502 (unsigned long *)&vcpu->arch.regs_avail)) 503 return true; 504 505 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT; 506 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1); 507 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 508 PFERR_USER_MASK | PFERR_WRITE_MASK); 509 if (r < 0) 510 goto out; 511 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 512 out: 513 514 return changed; 515 } 516 517 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 518 { 519 unsigned long old_cr0 = kvm_read_cr0(vcpu); 520 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP | 521 X86_CR0_CD | X86_CR0_NW; 522 523 cr0 |= X86_CR0_ET; 524 525 #ifdef CONFIG_X86_64 526 if (cr0 & 0xffffffff00000000UL) 527 return 1; 528 #endif 529 530 cr0 &= ~CR0_RESERVED_BITS; 531 532 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 533 return 1; 534 535 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 536 return 1; 537 538 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 539 #ifdef CONFIG_X86_64 540 if ((vcpu->arch.efer & EFER_LME)) { 541 int cs_db, cs_l; 542 543 if (!is_pae(vcpu)) 544 return 1; 545 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 546 if (cs_l) 547 return 1; 548 } else 549 #endif 550 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 551 kvm_read_cr3(vcpu))) 552 return 1; 553 } 554 555 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 556 return 1; 557 558 kvm_x86_ops->set_cr0(vcpu, cr0); 559 560 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 561 kvm_clear_async_pf_completion_queue(vcpu); 562 kvm_async_pf_hash_reset(vcpu); 563 } 564 565 if ((cr0 ^ old_cr0) & update_bits) 566 kvm_mmu_reset_context(vcpu); 567 return 0; 568 } 569 EXPORT_SYMBOL_GPL(kvm_set_cr0); 570 571 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 572 { 573 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 574 } 575 EXPORT_SYMBOL_GPL(kvm_lmsw); 576 577 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) 578 { 579 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && 580 !vcpu->guest_xcr0_loaded) { 581 /* kvm_set_xcr() also depends on this */ 582 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 583 vcpu->guest_xcr0_loaded = 1; 584 } 585 } 586 587 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) 588 { 589 if (vcpu->guest_xcr0_loaded) { 590 if (vcpu->arch.xcr0 != host_xcr0) 591 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 592 vcpu->guest_xcr0_loaded = 0; 593 } 594 } 595 596 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 597 { 598 u64 xcr0 = xcr; 599 u64 old_xcr0 = vcpu->arch.xcr0; 600 u64 valid_bits; 601 602 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 603 if (index != XCR_XFEATURE_ENABLED_MASK) 604 return 1; 605 if (!(xcr0 & XSTATE_FP)) 606 return 1; 607 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE)) 608 return 1; 609 610 /* 611 * Do not allow the guest to set bits that we do not support 612 * saving. However, xcr0 bit 0 is always set, even if the 613 * emulated CPU does not support XSAVE (see fx_init). 614 */ 615 valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP; 616 if (xcr0 & ~valid_bits) 617 return 1; 618 619 if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR))) 620 return 1; 621 622 kvm_put_guest_xcr0(vcpu); 623 vcpu->arch.xcr0 = xcr0; 624 625 if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK) 626 kvm_update_cpuid(vcpu); 627 return 0; 628 } 629 630 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 631 { 632 if (kvm_x86_ops->get_cpl(vcpu) != 0 || 633 __kvm_set_xcr(vcpu, index, xcr)) { 634 kvm_inject_gp(vcpu, 0); 635 return 1; 636 } 637 return 0; 638 } 639 EXPORT_SYMBOL_GPL(kvm_set_xcr); 640 641 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 642 { 643 unsigned long old_cr4 = kvm_read_cr4(vcpu); 644 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | 645 X86_CR4_PAE | X86_CR4_SMEP; 646 if (cr4 & CR4_RESERVED_BITS) 647 return 1; 648 649 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE)) 650 return 1; 651 652 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP)) 653 return 1; 654 655 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP)) 656 return 1; 657 658 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE)) 659 return 1; 660 661 if (is_long_mode(vcpu)) { 662 if (!(cr4 & X86_CR4_PAE)) 663 return 1; 664 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 665 && ((cr4 ^ old_cr4) & pdptr_bits) 666 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 667 kvm_read_cr3(vcpu))) 668 return 1; 669 670 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 671 if (!guest_cpuid_has_pcid(vcpu)) 672 return 1; 673 674 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 675 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 676 return 1; 677 } 678 679 if (kvm_x86_ops->set_cr4(vcpu, cr4)) 680 return 1; 681 682 if (((cr4 ^ old_cr4) & pdptr_bits) || 683 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 684 kvm_mmu_reset_context(vcpu); 685 686 if ((cr4 ^ old_cr4) & X86_CR4_SMAP) 687 update_permission_bitmask(vcpu, vcpu->arch.walk_mmu, false); 688 689 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE) 690 kvm_update_cpuid(vcpu); 691 692 return 0; 693 } 694 EXPORT_SYMBOL_GPL(kvm_set_cr4); 695 696 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 697 { 698 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 699 kvm_mmu_sync_roots(vcpu); 700 kvm_mmu_flush_tlb(vcpu); 701 return 0; 702 } 703 704 if (is_long_mode(vcpu)) { 705 if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) { 706 if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS) 707 return 1; 708 } else 709 if (cr3 & CR3_L_MODE_RESERVED_BITS) 710 return 1; 711 } else { 712 if (is_pae(vcpu)) { 713 if (cr3 & CR3_PAE_RESERVED_BITS) 714 return 1; 715 if (is_paging(vcpu) && 716 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 717 return 1; 718 } 719 /* 720 * We don't check reserved bits in nonpae mode, because 721 * this isn't enforced, and VMware depends on this. 722 */ 723 } 724 725 vcpu->arch.cr3 = cr3; 726 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 727 kvm_mmu_new_cr3(vcpu); 728 return 0; 729 } 730 EXPORT_SYMBOL_GPL(kvm_set_cr3); 731 732 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 733 { 734 if (cr8 & CR8_RESERVED_BITS) 735 return 1; 736 if (irqchip_in_kernel(vcpu->kvm)) 737 kvm_lapic_set_tpr(vcpu, cr8); 738 else 739 vcpu->arch.cr8 = cr8; 740 return 0; 741 } 742 EXPORT_SYMBOL_GPL(kvm_set_cr8); 743 744 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 745 { 746 if (irqchip_in_kernel(vcpu->kvm)) 747 return kvm_lapic_get_cr8(vcpu); 748 else 749 return vcpu->arch.cr8; 750 } 751 EXPORT_SYMBOL_GPL(kvm_get_cr8); 752 753 static void kvm_update_dr6(struct kvm_vcpu *vcpu) 754 { 755 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 756 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6); 757 } 758 759 static void kvm_update_dr7(struct kvm_vcpu *vcpu) 760 { 761 unsigned long dr7; 762 763 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 764 dr7 = vcpu->arch.guest_debug_dr7; 765 else 766 dr7 = vcpu->arch.dr7; 767 kvm_x86_ops->set_dr7(vcpu, dr7); 768 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 769 if (dr7 & DR7_BP_EN_MASK) 770 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 771 } 772 773 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 774 { 775 switch (dr) { 776 case 0 ... 3: 777 vcpu->arch.db[dr] = val; 778 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 779 vcpu->arch.eff_db[dr] = val; 780 break; 781 case 4: 782 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 783 return 1; /* #UD */ 784 /* fall through */ 785 case 6: 786 if (val & 0xffffffff00000000ULL) 787 return -1; /* #GP */ 788 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1; 789 kvm_update_dr6(vcpu); 790 break; 791 case 5: 792 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 793 return 1; /* #UD */ 794 /* fall through */ 795 default: /* 7 */ 796 if (val & 0xffffffff00000000ULL) 797 return -1; /* #GP */ 798 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 799 kvm_update_dr7(vcpu); 800 break; 801 } 802 803 return 0; 804 } 805 806 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 807 { 808 int res; 809 810 res = __kvm_set_dr(vcpu, dr, val); 811 if (res > 0) 812 kvm_queue_exception(vcpu, UD_VECTOR); 813 else if (res < 0) 814 kvm_inject_gp(vcpu, 0); 815 816 return res; 817 } 818 EXPORT_SYMBOL_GPL(kvm_set_dr); 819 820 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 821 { 822 switch (dr) { 823 case 0 ... 3: 824 *val = vcpu->arch.db[dr]; 825 break; 826 case 4: 827 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 828 return 1; 829 /* fall through */ 830 case 6: 831 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 832 *val = vcpu->arch.dr6; 833 else 834 *val = kvm_x86_ops->get_dr6(vcpu); 835 break; 836 case 5: 837 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 838 return 1; 839 /* fall through */ 840 default: /* 7 */ 841 *val = vcpu->arch.dr7; 842 break; 843 } 844 845 return 0; 846 } 847 848 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 849 { 850 if (_kvm_get_dr(vcpu, dr, val)) { 851 kvm_queue_exception(vcpu, UD_VECTOR); 852 return 1; 853 } 854 return 0; 855 } 856 EXPORT_SYMBOL_GPL(kvm_get_dr); 857 858 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 859 { 860 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); 861 u64 data; 862 int err; 863 864 err = kvm_pmu_read_pmc(vcpu, ecx, &data); 865 if (err) 866 return err; 867 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data); 868 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32); 869 return err; 870 } 871 EXPORT_SYMBOL_GPL(kvm_rdpmc); 872 873 /* 874 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 875 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 876 * 877 * This list is modified at module load time to reflect the 878 * capabilities of the host cpu. This capabilities test skips MSRs that are 879 * kvm-specific. Those are put in the beginning of the list. 880 */ 881 882 #define KVM_SAVE_MSRS_BEGIN 12 883 static u32 msrs_to_save[] = { 884 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 885 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 886 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 887 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 888 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 889 MSR_KVM_PV_EOI_EN, 890 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 891 MSR_STAR, 892 #ifdef CONFIG_X86_64 893 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 894 #endif 895 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 896 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS 897 }; 898 899 static unsigned num_msrs_to_save; 900 901 static const u32 emulated_msrs[] = { 902 MSR_IA32_TSC_ADJUST, 903 MSR_IA32_TSCDEADLINE, 904 MSR_IA32_MISC_ENABLE, 905 MSR_IA32_MCG_STATUS, 906 MSR_IA32_MCG_CTL, 907 }; 908 909 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 910 { 911 if (efer & efer_reserved_bits) 912 return false; 913 914 if (efer & EFER_FFXSR) { 915 struct kvm_cpuid_entry2 *feat; 916 917 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 918 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) 919 return false; 920 } 921 922 if (efer & EFER_SVME) { 923 struct kvm_cpuid_entry2 *feat; 924 925 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 926 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) 927 return false; 928 } 929 930 return true; 931 } 932 EXPORT_SYMBOL_GPL(kvm_valid_efer); 933 934 static int set_efer(struct kvm_vcpu *vcpu, u64 efer) 935 { 936 u64 old_efer = vcpu->arch.efer; 937 938 if (!kvm_valid_efer(vcpu, efer)) 939 return 1; 940 941 if (is_paging(vcpu) 942 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 943 return 1; 944 945 efer &= ~EFER_LMA; 946 efer |= vcpu->arch.efer & EFER_LMA; 947 948 kvm_x86_ops->set_efer(vcpu, efer); 949 950 /* Update reserved bits */ 951 if ((efer ^ old_efer) & EFER_NX) 952 kvm_mmu_reset_context(vcpu); 953 954 return 0; 955 } 956 957 void kvm_enable_efer_bits(u64 mask) 958 { 959 efer_reserved_bits &= ~mask; 960 } 961 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 962 963 964 /* 965 * Writes msr value into into the appropriate "register". 966 * Returns 0 on success, non-0 otherwise. 967 * Assumes vcpu_load() was already called. 968 */ 969 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 970 { 971 return kvm_x86_ops->set_msr(vcpu, msr); 972 } 973 974 /* 975 * Adapt set_msr() to msr_io()'s calling convention 976 */ 977 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 978 { 979 struct msr_data msr; 980 981 msr.data = *data; 982 msr.index = index; 983 msr.host_initiated = true; 984 return kvm_set_msr(vcpu, &msr); 985 } 986 987 #ifdef CONFIG_X86_64 988 struct pvclock_gtod_data { 989 seqcount_t seq; 990 991 struct { /* extract of a clocksource struct */ 992 int vclock_mode; 993 cycle_t cycle_last; 994 cycle_t mask; 995 u32 mult; 996 u32 shift; 997 } clock; 998 999 /* open coded 'struct timespec' */ 1000 u64 monotonic_time_snsec; 1001 time_t monotonic_time_sec; 1002 }; 1003 1004 static struct pvclock_gtod_data pvclock_gtod_data; 1005 1006 static void update_pvclock_gtod(struct timekeeper *tk) 1007 { 1008 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 1009 1010 write_seqcount_begin(&vdata->seq); 1011 1012 /* copy pvclock gtod data */ 1013 vdata->clock.vclock_mode = tk->clock->archdata.vclock_mode; 1014 vdata->clock.cycle_last = tk->clock->cycle_last; 1015 vdata->clock.mask = tk->clock->mask; 1016 vdata->clock.mult = tk->mult; 1017 vdata->clock.shift = tk->shift; 1018 1019 vdata->monotonic_time_sec = tk->xtime_sec 1020 + tk->wall_to_monotonic.tv_sec; 1021 vdata->monotonic_time_snsec = tk->xtime_nsec 1022 + (tk->wall_to_monotonic.tv_nsec 1023 << tk->shift); 1024 while (vdata->monotonic_time_snsec >= 1025 (((u64)NSEC_PER_SEC) << tk->shift)) { 1026 vdata->monotonic_time_snsec -= 1027 ((u64)NSEC_PER_SEC) << tk->shift; 1028 vdata->monotonic_time_sec++; 1029 } 1030 1031 write_seqcount_end(&vdata->seq); 1032 } 1033 #endif 1034 1035 1036 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 1037 { 1038 int version; 1039 int r; 1040 struct pvclock_wall_clock wc; 1041 struct timespec boot; 1042 1043 if (!wall_clock) 1044 return; 1045 1046 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 1047 if (r) 1048 return; 1049 1050 if (version & 1) 1051 ++version; /* first time write, random junk */ 1052 1053 ++version; 1054 1055 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1056 1057 /* 1058 * The guest calculates current wall clock time by adding 1059 * system time (updated by kvm_guest_time_update below) to the 1060 * wall clock specified here. guest system time equals host 1061 * system time for us, thus we must fill in host boot time here. 1062 */ 1063 getboottime(&boot); 1064 1065 if (kvm->arch.kvmclock_offset) { 1066 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset); 1067 boot = timespec_sub(boot, ts); 1068 } 1069 wc.sec = boot.tv_sec; 1070 wc.nsec = boot.tv_nsec; 1071 wc.version = version; 1072 1073 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 1074 1075 version++; 1076 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1077 } 1078 1079 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 1080 { 1081 uint32_t quotient, remainder; 1082 1083 /* Don't try to replace with do_div(), this one calculates 1084 * "(dividend << 32) / divisor" */ 1085 __asm__ ( "divl %4" 1086 : "=a" (quotient), "=d" (remainder) 1087 : "0" (0), "1" (dividend), "r" (divisor) ); 1088 return quotient; 1089 } 1090 1091 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz, 1092 s8 *pshift, u32 *pmultiplier) 1093 { 1094 uint64_t scaled64; 1095 int32_t shift = 0; 1096 uint64_t tps64; 1097 uint32_t tps32; 1098 1099 tps64 = base_khz * 1000LL; 1100 scaled64 = scaled_khz * 1000LL; 1101 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 1102 tps64 >>= 1; 1103 shift--; 1104 } 1105 1106 tps32 = (uint32_t)tps64; 1107 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 1108 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 1109 scaled64 >>= 1; 1110 else 1111 tps32 <<= 1; 1112 shift++; 1113 } 1114 1115 *pshift = shift; 1116 *pmultiplier = div_frac(scaled64, tps32); 1117 1118 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n", 1119 __func__, base_khz, scaled_khz, shift, *pmultiplier); 1120 } 1121 1122 static inline u64 get_kernel_ns(void) 1123 { 1124 struct timespec ts; 1125 1126 ktime_get_ts(&ts); 1127 monotonic_to_bootbased(&ts); 1128 return timespec_to_ns(&ts); 1129 } 1130 1131 #ifdef CONFIG_X86_64 1132 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 1133 #endif 1134 1135 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 1136 unsigned long max_tsc_khz; 1137 1138 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec) 1139 { 1140 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult, 1141 vcpu->arch.virtual_tsc_shift); 1142 } 1143 1144 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 1145 { 1146 u64 v = (u64)khz * (1000000 + ppm); 1147 do_div(v, 1000000); 1148 return v; 1149 } 1150 1151 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz) 1152 { 1153 u32 thresh_lo, thresh_hi; 1154 int use_scaling = 0; 1155 1156 /* tsc_khz can be zero if TSC calibration fails */ 1157 if (this_tsc_khz == 0) 1158 return; 1159 1160 /* Compute a scale to convert nanoseconds in TSC cycles */ 1161 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000, 1162 &vcpu->arch.virtual_tsc_shift, 1163 &vcpu->arch.virtual_tsc_mult); 1164 vcpu->arch.virtual_tsc_khz = this_tsc_khz; 1165 1166 /* 1167 * Compute the variation in TSC rate which is acceptable 1168 * within the range of tolerance and decide if the 1169 * rate being applied is within that bounds of the hardware 1170 * rate. If so, no scaling or compensation need be done. 1171 */ 1172 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 1173 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 1174 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) { 1175 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi); 1176 use_scaling = 1; 1177 } 1178 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling); 1179 } 1180 1181 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 1182 { 1183 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 1184 vcpu->arch.virtual_tsc_mult, 1185 vcpu->arch.virtual_tsc_shift); 1186 tsc += vcpu->arch.this_tsc_write; 1187 return tsc; 1188 } 1189 1190 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 1191 { 1192 #ifdef CONFIG_X86_64 1193 bool vcpus_matched; 1194 bool do_request = false; 1195 struct kvm_arch *ka = &vcpu->kvm->arch; 1196 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1197 1198 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1199 atomic_read(&vcpu->kvm->online_vcpus)); 1200 1201 if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC) 1202 if (!ka->use_master_clock) 1203 do_request = 1; 1204 1205 if (!vcpus_matched && ka->use_master_clock) 1206 do_request = 1; 1207 1208 if (do_request) 1209 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 1210 1211 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 1212 atomic_read(&vcpu->kvm->online_vcpus), 1213 ka->use_master_clock, gtod->clock.vclock_mode); 1214 #endif 1215 } 1216 1217 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) 1218 { 1219 u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu); 1220 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; 1221 } 1222 1223 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) 1224 { 1225 struct kvm *kvm = vcpu->kvm; 1226 u64 offset, ns, elapsed; 1227 unsigned long flags; 1228 s64 usdiff; 1229 bool matched; 1230 u64 data = msr->data; 1231 1232 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 1233 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); 1234 ns = get_kernel_ns(); 1235 elapsed = ns - kvm->arch.last_tsc_nsec; 1236 1237 if (vcpu->arch.virtual_tsc_khz) { 1238 int faulted = 0; 1239 1240 /* n.b - signed multiplication and division required */ 1241 usdiff = data - kvm->arch.last_tsc_write; 1242 #ifdef CONFIG_X86_64 1243 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz; 1244 #else 1245 /* do_div() only does unsigned */ 1246 asm("1: idivl %[divisor]\n" 1247 "2: xor %%edx, %%edx\n" 1248 " movl $0, %[faulted]\n" 1249 "3:\n" 1250 ".section .fixup,\"ax\"\n" 1251 "4: movl $1, %[faulted]\n" 1252 " jmp 3b\n" 1253 ".previous\n" 1254 1255 _ASM_EXTABLE(1b, 4b) 1256 1257 : "=A"(usdiff), [faulted] "=r" (faulted) 1258 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz)); 1259 1260 #endif 1261 do_div(elapsed, 1000); 1262 usdiff -= elapsed; 1263 if (usdiff < 0) 1264 usdiff = -usdiff; 1265 1266 /* idivl overflow => difference is larger than USEC_PER_SEC */ 1267 if (faulted) 1268 usdiff = USEC_PER_SEC; 1269 } else 1270 usdiff = USEC_PER_SEC; /* disable TSC match window below */ 1271 1272 /* 1273 * Special case: TSC write with a small delta (1 second) of virtual 1274 * cycle time against real time is interpreted as an attempt to 1275 * synchronize the CPU. 1276 * 1277 * For a reliable TSC, we can match TSC offsets, and for an unstable 1278 * TSC, we add elapsed time in this computation. We could let the 1279 * compensation code attempt to catch up if we fall behind, but 1280 * it's better to try to match offsets from the beginning. 1281 */ 1282 if (usdiff < USEC_PER_SEC && 1283 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 1284 if (!check_tsc_unstable()) { 1285 offset = kvm->arch.cur_tsc_offset; 1286 pr_debug("kvm: matched tsc offset for %llu\n", data); 1287 } else { 1288 u64 delta = nsec_to_cycles(vcpu, elapsed); 1289 data += delta; 1290 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); 1291 pr_debug("kvm: adjusted tsc offset by %llu\n", delta); 1292 } 1293 matched = true; 1294 } else { 1295 /* 1296 * We split periods of matched TSC writes into generations. 1297 * For each generation, we track the original measured 1298 * nanosecond time, offset, and write, so if TSCs are in 1299 * sync, we can match exact offset, and if not, we can match 1300 * exact software computation in compute_guest_tsc() 1301 * 1302 * These values are tracked in kvm->arch.cur_xxx variables. 1303 */ 1304 kvm->arch.cur_tsc_generation++; 1305 kvm->arch.cur_tsc_nsec = ns; 1306 kvm->arch.cur_tsc_write = data; 1307 kvm->arch.cur_tsc_offset = offset; 1308 matched = false; 1309 pr_debug("kvm: new tsc generation %u, clock %llu\n", 1310 kvm->arch.cur_tsc_generation, data); 1311 } 1312 1313 /* 1314 * We also track th most recent recorded KHZ, write and time to 1315 * allow the matching interval to be extended at each write. 1316 */ 1317 kvm->arch.last_tsc_nsec = ns; 1318 kvm->arch.last_tsc_write = data; 1319 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 1320 1321 vcpu->arch.last_guest_tsc = data; 1322 1323 /* Keep track of which generation this VCPU has synchronized to */ 1324 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 1325 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 1326 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 1327 1328 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated) 1329 update_ia32_tsc_adjust_msr(vcpu, offset); 1330 kvm_x86_ops->write_tsc_offset(vcpu, offset); 1331 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 1332 1333 spin_lock(&kvm->arch.pvclock_gtod_sync_lock); 1334 if (matched) 1335 kvm->arch.nr_vcpus_matched_tsc++; 1336 else 1337 kvm->arch.nr_vcpus_matched_tsc = 0; 1338 1339 kvm_track_tsc_matching(vcpu); 1340 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); 1341 } 1342 1343 EXPORT_SYMBOL_GPL(kvm_write_tsc); 1344 1345 #ifdef CONFIG_X86_64 1346 1347 static cycle_t read_tsc(void) 1348 { 1349 cycle_t ret; 1350 u64 last; 1351 1352 /* 1353 * Empirically, a fence (of type that depends on the CPU) 1354 * before rdtsc is enough to ensure that rdtsc is ordered 1355 * with respect to loads. The various CPU manuals are unclear 1356 * as to whether rdtsc can be reordered with later loads, 1357 * but no one has ever seen it happen. 1358 */ 1359 rdtsc_barrier(); 1360 ret = (cycle_t)vget_cycles(); 1361 1362 last = pvclock_gtod_data.clock.cycle_last; 1363 1364 if (likely(ret >= last)) 1365 return ret; 1366 1367 /* 1368 * GCC likes to generate cmov here, but this branch is extremely 1369 * predictable (it's just a funciton of time and the likely is 1370 * very likely) and there's a data dependence, so force GCC 1371 * to generate a branch instead. I don't barrier() because 1372 * we don't actually need a barrier, and if this function 1373 * ever gets inlined it will generate worse code. 1374 */ 1375 asm volatile (""); 1376 return last; 1377 } 1378 1379 static inline u64 vgettsc(cycle_t *cycle_now) 1380 { 1381 long v; 1382 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1383 1384 *cycle_now = read_tsc(); 1385 1386 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask; 1387 return v * gtod->clock.mult; 1388 } 1389 1390 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now) 1391 { 1392 unsigned long seq; 1393 u64 ns; 1394 int mode; 1395 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1396 1397 ts->tv_nsec = 0; 1398 do { 1399 seq = read_seqcount_begin(>od->seq); 1400 mode = gtod->clock.vclock_mode; 1401 ts->tv_sec = gtod->monotonic_time_sec; 1402 ns = gtod->monotonic_time_snsec; 1403 ns += vgettsc(cycle_now); 1404 ns >>= gtod->clock.shift; 1405 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 1406 timespec_add_ns(ts, ns); 1407 1408 return mode; 1409 } 1410 1411 /* returns true if host is using tsc clocksource */ 1412 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now) 1413 { 1414 struct timespec ts; 1415 1416 /* checked again under seqlock below */ 1417 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC) 1418 return false; 1419 1420 if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC) 1421 return false; 1422 1423 monotonic_to_bootbased(&ts); 1424 *kernel_ns = timespec_to_ns(&ts); 1425 1426 return true; 1427 } 1428 #endif 1429 1430 /* 1431 * 1432 * Assuming a stable TSC across physical CPUS, and a stable TSC 1433 * across virtual CPUs, the following condition is possible. 1434 * Each numbered line represents an event visible to both 1435 * CPUs at the next numbered event. 1436 * 1437 * "timespecX" represents host monotonic time. "tscX" represents 1438 * RDTSC value. 1439 * 1440 * VCPU0 on CPU0 | VCPU1 on CPU1 1441 * 1442 * 1. read timespec0,tsc0 1443 * 2. | timespec1 = timespec0 + N 1444 * | tsc1 = tsc0 + M 1445 * 3. transition to guest | transition to guest 1446 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 1447 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 1448 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 1449 * 1450 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 1451 * 1452 * - ret0 < ret1 1453 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 1454 * ... 1455 * - 0 < N - M => M < N 1456 * 1457 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 1458 * always the case (the difference between two distinct xtime instances 1459 * might be smaller then the difference between corresponding TSC reads, 1460 * when updating guest vcpus pvclock areas). 1461 * 1462 * To avoid that problem, do not allow visibility of distinct 1463 * system_timestamp/tsc_timestamp values simultaneously: use a master 1464 * copy of host monotonic time values. Update that master copy 1465 * in lockstep. 1466 * 1467 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 1468 * 1469 */ 1470 1471 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 1472 { 1473 #ifdef CONFIG_X86_64 1474 struct kvm_arch *ka = &kvm->arch; 1475 int vclock_mode; 1476 bool host_tsc_clocksource, vcpus_matched; 1477 1478 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1479 atomic_read(&kvm->online_vcpus)); 1480 1481 /* 1482 * If the host uses TSC clock, then passthrough TSC as stable 1483 * to the guest. 1484 */ 1485 host_tsc_clocksource = kvm_get_time_and_clockread( 1486 &ka->master_kernel_ns, 1487 &ka->master_cycle_now); 1488 1489 ka->use_master_clock = host_tsc_clocksource & vcpus_matched; 1490 1491 if (ka->use_master_clock) 1492 atomic_set(&kvm_guest_has_master_clock, 1); 1493 1494 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 1495 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 1496 vcpus_matched); 1497 #endif 1498 } 1499 1500 static void kvm_gen_update_masterclock(struct kvm *kvm) 1501 { 1502 #ifdef CONFIG_X86_64 1503 int i; 1504 struct kvm_vcpu *vcpu; 1505 struct kvm_arch *ka = &kvm->arch; 1506 1507 spin_lock(&ka->pvclock_gtod_sync_lock); 1508 kvm_make_mclock_inprogress_request(kvm); 1509 /* no guest entries from this point */ 1510 pvclock_update_vm_gtod_copy(kvm); 1511 1512 kvm_for_each_vcpu(i, vcpu, kvm) 1513 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 1514 1515 /* guest entries allowed */ 1516 kvm_for_each_vcpu(i, vcpu, kvm) 1517 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests); 1518 1519 spin_unlock(&ka->pvclock_gtod_sync_lock); 1520 #endif 1521 } 1522 1523 static int kvm_guest_time_update(struct kvm_vcpu *v) 1524 { 1525 unsigned long flags, this_tsc_khz; 1526 struct kvm_vcpu_arch *vcpu = &v->arch; 1527 struct kvm_arch *ka = &v->kvm->arch; 1528 s64 kernel_ns; 1529 u64 tsc_timestamp, host_tsc; 1530 struct pvclock_vcpu_time_info guest_hv_clock; 1531 u8 pvclock_flags; 1532 bool use_master_clock; 1533 1534 kernel_ns = 0; 1535 host_tsc = 0; 1536 1537 /* 1538 * If the host uses TSC clock, then passthrough TSC as stable 1539 * to the guest. 1540 */ 1541 spin_lock(&ka->pvclock_gtod_sync_lock); 1542 use_master_clock = ka->use_master_clock; 1543 if (use_master_clock) { 1544 host_tsc = ka->master_cycle_now; 1545 kernel_ns = ka->master_kernel_ns; 1546 } 1547 spin_unlock(&ka->pvclock_gtod_sync_lock); 1548 1549 /* Keep irq disabled to prevent changes to the clock */ 1550 local_irq_save(flags); 1551 this_tsc_khz = __get_cpu_var(cpu_tsc_khz); 1552 if (unlikely(this_tsc_khz == 0)) { 1553 local_irq_restore(flags); 1554 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 1555 return 1; 1556 } 1557 if (!use_master_clock) { 1558 host_tsc = native_read_tsc(); 1559 kernel_ns = get_kernel_ns(); 1560 } 1561 1562 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc); 1563 1564 /* 1565 * We may have to catch up the TSC to match elapsed wall clock 1566 * time for two reasons, even if kvmclock is used. 1567 * 1) CPU could have been running below the maximum TSC rate 1568 * 2) Broken TSC compensation resets the base at each VCPU 1569 * entry to avoid unknown leaps of TSC even when running 1570 * again on the same CPU. This may cause apparent elapsed 1571 * time to disappear, and the guest to stand still or run 1572 * very slowly. 1573 */ 1574 if (vcpu->tsc_catchup) { 1575 u64 tsc = compute_guest_tsc(v, kernel_ns); 1576 if (tsc > tsc_timestamp) { 1577 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 1578 tsc_timestamp = tsc; 1579 } 1580 } 1581 1582 local_irq_restore(flags); 1583 1584 if (!vcpu->pv_time_enabled) 1585 return 0; 1586 1587 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) { 1588 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz, 1589 &vcpu->hv_clock.tsc_shift, 1590 &vcpu->hv_clock.tsc_to_system_mul); 1591 vcpu->hw_tsc_khz = this_tsc_khz; 1592 } 1593 1594 /* With all the info we got, fill in the values */ 1595 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 1596 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 1597 vcpu->last_guest_tsc = tsc_timestamp; 1598 1599 /* 1600 * The interface expects us to write an even number signaling that the 1601 * update is finished. Since the guest won't see the intermediate 1602 * state, we just increase by 2 at the end. 1603 */ 1604 vcpu->hv_clock.version += 2; 1605 1606 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, 1607 &guest_hv_clock, sizeof(guest_hv_clock)))) 1608 return 0; 1609 1610 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 1611 pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); 1612 1613 if (vcpu->pvclock_set_guest_stopped_request) { 1614 pvclock_flags |= PVCLOCK_GUEST_STOPPED; 1615 vcpu->pvclock_set_guest_stopped_request = false; 1616 } 1617 1618 /* If the host uses TSC clocksource, then it is stable */ 1619 if (use_master_clock) 1620 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 1621 1622 vcpu->hv_clock.flags = pvclock_flags; 1623 1624 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 1625 &vcpu->hv_clock, 1626 sizeof(vcpu->hv_clock)); 1627 return 0; 1628 } 1629 1630 /* 1631 * kvmclock updates which are isolated to a given vcpu, such as 1632 * vcpu->cpu migration, should not allow system_timestamp from 1633 * the rest of the vcpus to remain static. Otherwise ntp frequency 1634 * correction applies to one vcpu's system_timestamp but not 1635 * the others. 1636 * 1637 * So in those cases, request a kvmclock update for all vcpus. 1638 * We need to rate-limit these requests though, as they can 1639 * considerably slow guests that have a large number of vcpus. 1640 * The time for a remote vcpu to update its kvmclock is bound 1641 * by the delay we use to rate-limit the updates. 1642 */ 1643 1644 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 1645 1646 static void kvmclock_update_fn(struct work_struct *work) 1647 { 1648 int i; 1649 struct delayed_work *dwork = to_delayed_work(work); 1650 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 1651 kvmclock_update_work); 1652 struct kvm *kvm = container_of(ka, struct kvm, arch); 1653 struct kvm_vcpu *vcpu; 1654 1655 kvm_for_each_vcpu(i, vcpu, kvm) { 1656 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 1657 kvm_vcpu_kick(vcpu); 1658 } 1659 } 1660 1661 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 1662 { 1663 struct kvm *kvm = v->kvm; 1664 1665 set_bit(KVM_REQ_CLOCK_UPDATE, &v->requests); 1666 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 1667 KVMCLOCK_UPDATE_DELAY); 1668 } 1669 1670 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 1671 1672 static void kvmclock_sync_fn(struct work_struct *work) 1673 { 1674 struct delayed_work *dwork = to_delayed_work(work); 1675 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 1676 kvmclock_sync_work); 1677 struct kvm *kvm = container_of(ka, struct kvm, arch); 1678 1679 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 1680 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 1681 KVMCLOCK_SYNC_PERIOD); 1682 } 1683 1684 static bool msr_mtrr_valid(unsigned msr) 1685 { 1686 switch (msr) { 1687 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1: 1688 case MSR_MTRRfix64K_00000: 1689 case MSR_MTRRfix16K_80000: 1690 case MSR_MTRRfix16K_A0000: 1691 case MSR_MTRRfix4K_C0000: 1692 case MSR_MTRRfix4K_C8000: 1693 case MSR_MTRRfix4K_D0000: 1694 case MSR_MTRRfix4K_D8000: 1695 case MSR_MTRRfix4K_E0000: 1696 case MSR_MTRRfix4K_E8000: 1697 case MSR_MTRRfix4K_F0000: 1698 case MSR_MTRRfix4K_F8000: 1699 case MSR_MTRRdefType: 1700 case MSR_IA32_CR_PAT: 1701 return true; 1702 case 0x2f8: 1703 return true; 1704 } 1705 return false; 1706 } 1707 1708 static bool valid_pat_type(unsigned t) 1709 { 1710 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */ 1711 } 1712 1713 static bool valid_mtrr_type(unsigned t) 1714 { 1715 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */ 1716 } 1717 1718 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1719 { 1720 int i; 1721 1722 if (!msr_mtrr_valid(msr)) 1723 return false; 1724 1725 if (msr == MSR_IA32_CR_PAT) { 1726 for (i = 0; i < 8; i++) 1727 if (!valid_pat_type((data >> (i * 8)) & 0xff)) 1728 return false; 1729 return true; 1730 } else if (msr == MSR_MTRRdefType) { 1731 if (data & ~0xcff) 1732 return false; 1733 return valid_mtrr_type(data & 0xff); 1734 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) { 1735 for (i = 0; i < 8 ; i++) 1736 if (!valid_mtrr_type((data >> (i * 8)) & 0xff)) 1737 return false; 1738 return true; 1739 } 1740 1741 /* variable MTRRs */ 1742 return valid_mtrr_type(data & 0xff); 1743 } 1744 1745 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1746 { 1747 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; 1748 1749 if (!mtrr_valid(vcpu, msr, data)) 1750 return 1; 1751 1752 if (msr == MSR_MTRRdefType) { 1753 vcpu->arch.mtrr_state.def_type = data; 1754 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10; 1755 } else if (msr == MSR_MTRRfix64K_00000) 1756 p[0] = data; 1757 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) 1758 p[1 + msr - MSR_MTRRfix16K_80000] = data; 1759 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) 1760 p[3 + msr - MSR_MTRRfix4K_C0000] = data; 1761 else if (msr == MSR_IA32_CR_PAT) 1762 vcpu->arch.pat = data; 1763 else { /* Variable MTRRs */ 1764 int idx, is_mtrr_mask; 1765 u64 *pt; 1766 1767 idx = (msr - 0x200) / 2; 1768 is_mtrr_mask = msr - 0x200 - 2 * idx; 1769 if (!is_mtrr_mask) 1770 pt = 1771 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; 1772 else 1773 pt = 1774 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; 1775 *pt = data; 1776 } 1777 1778 kvm_mmu_reset_context(vcpu); 1779 return 0; 1780 } 1781 1782 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1783 { 1784 u64 mcg_cap = vcpu->arch.mcg_cap; 1785 unsigned bank_num = mcg_cap & 0xff; 1786 1787 switch (msr) { 1788 case MSR_IA32_MCG_STATUS: 1789 vcpu->arch.mcg_status = data; 1790 break; 1791 case MSR_IA32_MCG_CTL: 1792 if (!(mcg_cap & MCG_CTL_P)) 1793 return 1; 1794 if (data != 0 && data != ~(u64)0) 1795 return -1; 1796 vcpu->arch.mcg_ctl = data; 1797 break; 1798 default: 1799 if (msr >= MSR_IA32_MC0_CTL && 1800 msr < MSR_IA32_MC0_CTL + 4 * bank_num) { 1801 u32 offset = msr - MSR_IA32_MC0_CTL; 1802 /* only 0 or all 1s can be written to IA32_MCi_CTL 1803 * some Linux kernels though clear bit 10 in bank 4 to 1804 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 1805 * this to avoid an uncatched #GP in the guest 1806 */ 1807 if ((offset & 0x3) == 0 && 1808 data != 0 && (data | (1 << 10)) != ~(u64)0) 1809 return -1; 1810 vcpu->arch.mce_banks[offset] = data; 1811 break; 1812 } 1813 return 1; 1814 } 1815 return 0; 1816 } 1817 1818 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 1819 { 1820 struct kvm *kvm = vcpu->kvm; 1821 int lm = is_long_mode(vcpu); 1822 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 1823 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 1824 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 1825 : kvm->arch.xen_hvm_config.blob_size_32; 1826 u32 page_num = data & ~PAGE_MASK; 1827 u64 page_addr = data & PAGE_MASK; 1828 u8 *page; 1829 int r; 1830 1831 r = -E2BIG; 1832 if (page_num >= blob_size) 1833 goto out; 1834 r = -ENOMEM; 1835 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 1836 if (IS_ERR(page)) { 1837 r = PTR_ERR(page); 1838 goto out; 1839 } 1840 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE)) 1841 goto out_free; 1842 r = 0; 1843 out_free: 1844 kfree(page); 1845 out: 1846 return r; 1847 } 1848 1849 static bool kvm_hv_hypercall_enabled(struct kvm *kvm) 1850 { 1851 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE; 1852 } 1853 1854 static bool kvm_hv_msr_partition_wide(u32 msr) 1855 { 1856 bool r = false; 1857 switch (msr) { 1858 case HV_X64_MSR_GUEST_OS_ID: 1859 case HV_X64_MSR_HYPERCALL: 1860 case HV_X64_MSR_REFERENCE_TSC: 1861 case HV_X64_MSR_TIME_REF_COUNT: 1862 r = true; 1863 break; 1864 } 1865 1866 return r; 1867 } 1868 1869 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1870 { 1871 struct kvm *kvm = vcpu->kvm; 1872 1873 switch (msr) { 1874 case HV_X64_MSR_GUEST_OS_ID: 1875 kvm->arch.hv_guest_os_id = data; 1876 /* setting guest os id to zero disables hypercall page */ 1877 if (!kvm->arch.hv_guest_os_id) 1878 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE; 1879 break; 1880 case HV_X64_MSR_HYPERCALL: { 1881 u64 gfn; 1882 unsigned long addr; 1883 u8 instructions[4]; 1884 1885 /* if guest os id is not set hypercall should remain disabled */ 1886 if (!kvm->arch.hv_guest_os_id) 1887 break; 1888 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) { 1889 kvm->arch.hv_hypercall = data; 1890 break; 1891 } 1892 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT; 1893 addr = gfn_to_hva(kvm, gfn); 1894 if (kvm_is_error_hva(addr)) 1895 return 1; 1896 kvm_x86_ops->patch_hypercall(vcpu, instructions); 1897 ((unsigned char *)instructions)[3] = 0xc3; /* ret */ 1898 if (__copy_to_user((void __user *)addr, instructions, 4)) 1899 return 1; 1900 kvm->arch.hv_hypercall = data; 1901 mark_page_dirty(kvm, gfn); 1902 break; 1903 } 1904 case HV_X64_MSR_REFERENCE_TSC: { 1905 u64 gfn; 1906 HV_REFERENCE_TSC_PAGE tsc_ref; 1907 memset(&tsc_ref, 0, sizeof(tsc_ref)); 1908 kvm->arch.hv_tsc_page = data; 1909 if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE)) 1910 break; 1911 gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT; 1912 if (kvm_write_guest(kvm, data, 1913 &tsc_ref, sizeof(tsc_ref))) 1914 return 1; 1915 mark_page_dirty(kvm, gfn); 1916 break; 1917 } 1918 default: 1919 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " 1920 "data 0x%llx\n", msr, data); 1921 return 1; 1922 } 1923 return 0; 1924 } 1925 1926 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1927 { 1928 switch (msr) { 1929 case HV_X64_MSR_APIC_ASSIST_PAGE: { 1930 u64 gfn; 1931 unsigned long addr; 1932 1933 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) { 1934 vcpu->arch.hv_vapic = data; 1935 break; 1936 } 1937 gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT; 1938 addr = gfn_to_hva(vcpu->kvm, gfn); 1939 if (kvm_is_error_hva(addr)) 1940 return 1; 1941 if (__clear_user((void __user *)addr, PAGE_SIZE)) 1942 return 1; 1943 vcpu->arch.hv_vapic = data; 1944 mark_page_dirty(vcpu->kvm, gfn); 1945 break; 1946 } 1947 case HV_X64_MSR_EOI: 1948 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data); 1949 case HV_X64_MSR_ICR: 1950 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data); 1951 case HV_X64_MSR_TPR: 1952 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data); 1953 default: 1954 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " 1955 "data 0x%llx\n", msr, data); 1956 return 1; 1957 } 1958 1959 return 0; 1960 } 1961 1962 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 1963 { 1964 gpa_t gpa = data & ~0x3f; 1965 1966 /* Bits 2:5 are reserved, Should be zero */ 1967 if (data & 0x3c) 1968 return 1; 1969 1970 vcpu->arch.apf.msr_val = data; 1971 1972 if (!(data & KVM_ASYNC_PF_ENABLED)) { 1973 kvm_clear_async_pf_completion_queue(vcpu); 1974 kvm_async_pf_hash_reset(vcpu); 1975 return 0; 1976 } 1977 1978 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 1979 sizeof(u32))) 1980 return 1; 1981 1982 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 1983 kvm_async_pf_wakeup_all(vcpu); 1984 return 0; 1985 } 1986 1987 static void kvmclock_reset(struct kvm_vcpu *vcpu) 1988 { 1989 vcpu->arch.pv_time_enabled = false; 1990 } 1991 1992 static void accumulate_steal_time(struct kvm_vcpu *vcpu) 1993 { 1994 u64 delta; 1995 1996 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 1997 return; 1998 1999 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal; 2000 vcpu->arch.st.last_steal = current->sched_info.run_delay; 2001 vcpu->arch.st.accum_steal = delta; 2002 } 2003 2004 static void record_steal_time(struct kvm_vcpu *vcpu) 2005 { 2006 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 2007 return; 2008 2009 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2010 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) 2011 return; 2012 2013 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal; 2014 vcpu->arch.st.steal.version += 2; 2015 vcpu->arch.st.accum_steal = 0; 2016 2017 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2018 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 2019 } 2020 2021 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2022 { 2023 bool pr = false; 2024 u32 msr = msr_info->index; 2025 u64 data = msr_info->data; 2026 2027 switch (msr) { 2028 case MSR_AMD64_NB_CFG: 2029 case MSR_IA32_UCODE_REV: 2030 case MSR_IA32_UCODE_WRITE: 2031 case MSR_VM_HSAVE_PA: 2032 case MSR_AMD64_PATCH_LOADER: 2033 case MSR_AMD64_BU_CFG2: 2034 break; 2035 2036 case MSR_EFER: 2037 return set_efer(vcpu, data); 2038 case MSR_K7_HWCR: 2039 data &= ~(u64)0x40; /* ignore flush filter disable */ 2040 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 2041 data &= ~(u64)0x8; /* ignore TLB cache disable */ 2042 if (data != 0) { 2043 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 2044 data); 2045 return 1; 2046 } 2047 break; 2048 case MSR_FAM10H_MMIO_CONF_BASE: 2049 if (data != 0) { 2050 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 2051 "0x%llx\n", data); 2052 return 1; 2053 } 2054 break; 2055 case MSR_IA32_DEBUGCTLMSR: 2056 if (!data) { 2057 /* We support the non-activated case already */ 2058 break; 2059 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 2060 /* Values other than LBR and BTF are vendor-specific, 2061 thus reserved and should throw a #GP */ 2062 return 1; 2063 } 2064 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 2065 __func__, data); 2066 break; 2067 case 0x200 ... 0x2ff: 2068 return set_msr_mtrr(vcpu, msr, data); 2069 case MSR_IA32_APICBASE: 2070 return kvm_set_apic_base(vcpu, msr_info); 2071 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2072 return kvm_x2apic_msr_write(vcpu, msr, data); 2073 case MSR_IA32_TSCDEADLINE: 2074 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2075 break; 2076 case MSR_IA32_TSC_ADJUST: 2077 if (guest_cpuid_has_tsc_adjust(vcpu)) { 2078 if (!msr_info->host_initiated) { 2079 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 2080 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true); 2081 } 2082 vcpu->arch.ia32_tsc_adjust_msr = data; 2083 } 2084 break; 2085 case MSR_IA32_MISC_ENABLE: 2086 vcpu->arch.ia32_misc_enable_msr = data; 2087 break; 2088 case MSR_KVM_WALL_CLOCK_NEW: 2089 case MSR_KVM_WALL_CLOCK: 2090 vcpu->kvm->arch.wall_clock = data; 2091 kvm_write_wall_clock(vcpu->kvm, data); 2092 break; 2093 case MSR_KVM_SYSTEM_TIME_NEW: 2094 case MSR_KVM_SYSTEM_TIME: { 2095 u64 gpa_offset; 2096 kvmclock_reset(vcpu); 2097 2098 vcpu->arch.time = data; 2099 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2100 2101 /* we verify if the enable bit is set... */ 2102 if (!(data & 1)) 2103 break; 2104 2105 gpa_offset = data & ~(PAGE_MASK | 1); 2106 2107 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 2108 &vcpu->arch.pv_time, data & ~1ULL, 2109 sizeof(struct pvclock_vcpu_time_info))) 2110 vcpu->arch.pv_time_enabled = false; 2111 else 2112 vcpu->arch.pv_time_enabled = true; 2113 2114 break; 2115 } 2116 case MSR_KVM_ASYNC_PF_EN: 2117 if (kvm_pv_enable_async_pf(vcpu, data)) 2118 return 1; 2119 break; 2120 case MSR_KVM_STEAL_TIME: 2121 2122 if (unlikely(!sched_info_on())) 2123 return 1; 2124 2125 if (data & KVM_STEAL_RESERVED_MASK) 2126 return 1; 2127 2128 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, 2129 data & KVM_STEAL_VALID_BITS, 2130 sizeof(struct kvm_steal_time))) 2131 return 1; 2132 2133 vcpu->arch.st.msr_val = data; 2134 2135 if (!(data & KVM_MSR_ENABLED)) 2136 break; 2137 2138 vcpu->arch.st.last_steal = current->sched_info.run_delay; 2139 2140 preempt_disable(); 2141 accumulate_steal_time(vcpu); 2142 preempt_enable(); 2143 2144 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2145 2146 break; 2147 case MSR_KVM_PV_EOI_EN: 2148 if (kvm_lapic_enable_pv_eoi(vcpu, data)) 2149 return 1; 2150 break; 2151 2152 case MSR_IA32_MCG_CTL: 2153 case MSR_IA32_MCG_STATUS: 2154 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: 2155 return set_msr_mce(vcpu, msr, data); 2156 2157 /* Performance counters are not protected by a CPUID bit, 2158 * so we should check all of them in the generic path for the sake of 2159 * cross vendor migration. 2160 * Writing a zero into the event select MSRs disables them, 2161 * which we perfectly emulate ;-). Any other value should be at least 2162 * reported, some guests depend on them. 2163 */ 2164 case MSR_K7_EVNTSEL0: 2165 case MSR_K7_EVNTSEL1: 2166 case MSR_K7_EVNTSEL2: 2167 case MSR_K7_EVNTSEL3: 2168 if (data != 0) 2169 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " 2170 "0x%x data 0x%llx\n", msr, data); 2171 break; 2172 /* at least RHEL 4 unconditionally writes to the perfctr registers, 2173 * so we ignore writes to make it happy. 2174 */ 2175 case MSR_K7_PERFCTR0: 2176 case MSR_K7_PERFCTR1: 2177 case MSR_K7_PERFCTR2: 2178 case MSR_K7_PERFCTR3: 2179 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " 2180 "0x%x data 0x%llx\n", msr, data); 2181 break; 2182 case MSR_P6_PERFCTR0: 2183 case MSR_P6_PERFCTR1: 2184 pr = true; 2185 case MSR_P6_EVNTSEL0: 2186 case MSR_P6_EVNTSEL1: 2187 if (kvm_pmu_msr(vcpu, msr)) 2188 return kvm_pmu_set_msr(vcpu, msr_info); 2189 2190 if (pr || data != 0) 2191 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 2192 "0x%x data 0x%llx\n", msr, data); 2193 break; 2194 case MSR_K7_CLK_CTL: 2195 /* 2196 * Ignore all writes to this no longer documented MSR. 2197 * Writes are only relevant for old K7 processors, 2198 * all pre-dating SVM, but a recommended workaround from 2199 * AMD for these chips. It is possible to specify the 2200 * affected processor models on the command line, hence 2201 * the need to ignore the workaround. 2202 */ 2203 break; 2204 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2205 if (kvm_hv_msr_partition_wide(msr)) { 2206 int r; 2207 mutex_lock(&vcpu->kvm->lock); 2208 r = set_msr_hyperv_pw(vcpu, msr, data); 2209 mutex_unlock(&vcpu->kvm->lock); 2210 return r; 2211 } else 2212 return set_msr_hyperv(vcpu, msr, data); 2213 break; 2214 case MSR_IA32_BBL_CR_CTL3: 2215 /* Drop writes to this legacy MSR -- see rdmsr 2216 * counterpart for further detail. 2217 */ 2218 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data); 2219 break; 2220 case MSR_AMD64_OSVW_ID_LENGTH: 2221 if (!guest_cpuid_has_osvw(vcpu)) 2222 return 1; 2223 vcpu->arch.osvw.length = data; 2224 break; 2225 case MSR_AMD64_OSVW_STATUS: 2226 if (!guest_cpuid_has_osvw(vcpu)) 2227 return 1; 2228 vcpu->arch.osvw.status = data; 2229 break; 2230 default: 2231 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 2232 return xen_hvm_config(vcpu, data); 2233 if (kvm_pmu_msr(vcpu, msr)) 2234 return kvm_pmu_set_msr(vcpu, msr_info); 2235 if (!ignore_msrs) { 2236 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", 2237 msr, data); 2238 return 1; 2239 } else { 2240 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", 2241 msr, data); 2242 break; 2243 } 2244 } 2245 return 0; 2246 } 2247 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 2248 2249 2250 /* 2251 * Reads an msr value (of 'msr_index') into 'pdata'. 2252 * Returns 0 on success, non-0 otherwise. 2253 * Assumes vcpu_load() was already called. 2254 */ 2255 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) 2256 { 2257 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata); 2258 } 2259 2260 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2261 { 2262 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; 2263 2264 if (!msr_mtrr_valid(msr)) 2265 return 1; 2266 2267 if (msr == MSR_MTRRdefType) 2268 *pdata = vcpu->arch.mtrr_state.def_type + 2269 (vcpu->arch.mtrr_state.enabled << 10); 2270 else if (msr == MSR_MTRRfix64K_00000) 2271 *pdata = p[0]; 2272 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) 2273 *pdata = p[1 + msr - MSR_MTRRfix16K_80000]; 2274 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) 2275 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000]; 2276 else if (msr == MSR_IA32_CR_PAT) 2277 *pdata = vcpu->arch.pat; 2278 else { /* Variable MTRRs */ 2279 int idx, is_mtrr_mask; 2280 u64 *pt; 2281 2282 idx = (msr - 0x200) / 2; 2283 is_mtrr_mask = msr - 0x200 - 2 * idx; 2284 if (!is_mtrr_mask) 2285 pt = 2286 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; 2287 else 2288 pt = 2289 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; 2290 *pdata = *pt; 2291 } 2292 2293 return 0; 2294 } 2295 2296 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2297 { 2298 u64 data; 2299 u64 mcg_cap = vcpu->arch.mcg_cap; 2300 unsigned bank_num = mcg_cap & 0xff; 2301 2302 switch (msr) { 2303 case MSR_IA32_P5_MC_ADDR: 2304 case MSR_IA32_P5_MC_TYPE: 2305 data = 0; 2306 break; 2307 case MSR_IA32_MCG_CAP: 2308 data = vcpu->arch.mcg_cap; 2309 break; 2310 case MSR_IA32_MCG_CTL: 2311 if (!(mcg_cap & MCG_CTL_P)) 2312 return 1; 2313 data = vcpu->arch.mcg_ctl; 2314 break; 2315 case MSR_IA32_MCG_STATUS: 2316 data = vcpu->arch.mcg_status; 2317 break; 2318 default: 2319 if (msr >= MSR_IA32_MC0_CTL && 2320 msr < MSR_IA32_MC0_CTL + 4 * bank_num) { 2321 u32 offset = msr - MSR_IA32_MC0_CTL; 2322 data = vcpu->arch.mce_banks[offset]; 2323 break; 2324 } 2325 return 1; 2326 } 2327 *pdata = data; 2328 return 0; 2329 } 2330 2331 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2332 { 2333 u64 data = 0; 2334 struct kvm *kvm = vcpu->kvm; 2335 2336 switch (msr) { 2337 case HV_X64_MSR_GUEST_OS_ID: 2338 data = kvm->arch.hv_guest_os_id; 2339 break; 2340 case HV_X64_MSR_HYPERCALL: 2341 data = kvm->arch.hv_hypercall; 2342 break; 2343 case HV_X64_MSR_TIME_REF_COUNT: { 2344 data = 2345 div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100); 2346 break; 2347 } 2348 case HV_X64_MSR_REFERENCE_TSC: 2349 data = kvm->arch.hv_tsc_page; 2350 break; 2351 default: 2352 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 2353 return 1; 2354 } 2355 2356 *pdata = data; 2357 return 0; 2358 } 2359 2360 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2361 { 2362 u64 data = 0; 2363 2364 switch (msr) { 2365 case HV_X64_MSR_VP_INDEX: { 2366 int r; 2367 struct kvm_vcpu *v; 2368 kvm_for_each_vcpu(r, v, vcpu->kvm) { 2369 if (v == vcpu) { 2370 data = r; 2371 break; 2372 } 2373 } 2374 break; 2375 } 2376 case HV_X64_MSR_EOI: 2377 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata); 2378 case HV_X64_MSR_ICR: 2379 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata); 2380 case HV_X64_MSR_TPR: 2381 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata); 2382 case HV_X64_MSR_APIC_ASSIST_PAGE: 2383 data = vcpu->arch.hv_vapic; 2384 break; 2385 default: 2386 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 2387 return 1; 2388 } 2389 *pdata = data; 2390 return 0; 2391 } 2392 2393 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2394 { 2395 u64 data; 2396 2397 switch (msr) { 2398 case MSR_IA32_PLATFORM_ID: 2399 case MSR_IA32_EBL_CR_POWERON: 2400 case MSR_IA32_DEBUGCTLMSR: 2401 case MSR_IA32_LASTBRANCHFROMIP: 2402 case MSR_IA32_LASTBRANCHTOIP: 2403 case MSR_IA32_LASTINTFROMIP: 2404 case MSR_IA32_LASTINTTOIP: 2405 case MSR_K8_SYSCFG: 2406 case MSR_K7_HWCR: 2407 case MSR_VM_HSAVE_PA: 2408 case MSR_K7_EVNTSEL0: 2409 case MSR_K7_PERFCTR0: 2410 case MSR_K8_INT_PENDING_MSG: 2411 case MSR_AMD64_NB_CFG: 2412 case MSR_FAM10H_MMIO_CONF_BASE: 2413 case MSR_AMD64_BU_CFG2: 2414 data = 0; 2415 break; 2416 case MSR_P6_PERFCTR0: 2417 case MSR_P6_PERFCTR1: 2418 case MSR_P6_EVNTSEL0: 2419 case MSR_P6_EVNTSEL1: 2420 if (kvm_pmu_msr(vcpu, msr)) 2421 return kvm_pmu_get_msr(vcpu, msr, pdata); 2422 data = 0; 2423 break; 2424 case MSR_IA32_UCODE_REV: 2425 data = 0x100000000ULL; 2426 break; 2427 case MSR_MTRRcap: 2428 data = 0x500 | KVM_NR_VAR_MTRR; 2429 break; 2430 case 0x200 ... 0x2ff: 2431 return get_msr_mtrr(vcpu, msr, pdata); 2432 case 0xcd: /* fsb frequency */ 2433 data = 3; 2434 break; 2435 /* 2436 * MSR_EBC_FREQUENCY_ID 2437 * Conservative value valid for even the basic CPU models. 2438 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 2439 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 2440 * and 266MHz for model 3, or 4. Set Core Clock 2441 * Frequency to System Bus Frequency Ratio to 1 (bits 2442 * 31:24) even though these are only valid for CPU 2443 * models > 2, however guests may end up dividing or 2444 * multiplying by zero otherwise. 2445 */ 2446 case MSR_EBC_FREQUENCY_ID: 2447 data = 1 << 24; 2448 break; 2449 case MSR_IA32_APICBASE: 2450 data = kvm_get_apic_base(vcpu); 2451 break; 2452 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2453 return kvm_x2apic_msr_read(vcpu, msr, pdata); 2454 break; 2455 case MSR_IA32_TSCDEADLINE: 2456 data = kvm_get_lapic_tscdeadline_msr(vcpu); 2457 break; 2458 case MSR_IA32_TSC_ADJUST: 2459 data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 2460 break; 2461 case MSR_IA32_MISC_ENABLE: 2462 data = vcpu->arch.ia32_misc_enable_msr; 2463 break; 2464 case MSR_IA32_PERF_STATUS: 2465 /* TSC increment by tick */ 2466 data = 1000ULL; 2467 /* CPU multiplier */ 2468 data |= (((uint64_t)4ULL) << 40); 2469 break; 2470 case MSR_EFER: 2471 data = vcpu->arch.efer; 2472 break; 2473 case MSR_KVM_WALL_CLOCK: 2474 case MSR_KVM_WALL_CLOCK_NEW: 2475 data = vcpu->kvm->arch.wall_clock; 2476 break; 2477 case MSR_KVM_SYSTEM_TIME: 2478 case MSR_KVM_SYSTEM_TIME_NEW: 2479 data = vcpu->arch.time; 2480 break; 2481 case MSR_KVM_ASYNC_PF_EN: 2482 data = vcpu->arch.apf.msr_val; 2483 break; 2484 case MSR_KVM_STEAL_TIME: 2485 data = vcpu->arch.st.msr_val; 2486 break; 2487 case MSR_KVM_PV_EOI_EN: 2488 data = vcpu->arch.pv_eoi.msr_val; 2489 break; 2490 case MSR_IA32_P5_MC_ADDR: 2491 case MSR_IA32_P5_MC_TYPE: 2492 case MSR_IA32_MCG_CAP: 2493 case MSR_IA32_MCG_CTL: 2494 case MSR_IA32_MCG_STATUS: 2495 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: 2496 return get_msr_mce(vcpu, msr, pdata); 2497 case MSR_K7_CLK_CTL: 2498 /* 2499 * Provide expected ramp-up count for K7. All other 2500 * are set to zero, indicating minimum divisors for 2501 * every field. 2502 * 2503 * This prevents guest kernels on AMD host with CPU 2504 * type 6, model 8 and higher from exploding due to 2505 * the rdmsr failing. 2506 */ 2507 data = 0x20000000; 2508 break; 2509 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2510 if (kvm_hv_msr_partition_wide(msr)) { 2511 int r; 2512 mutex_lock(&vcpu->kvm->lock); 2513 r = get_msr_hyperv_pw(vcpu, msr, pdata); 2514 mutex_unlock(&vcpu->kvm->lock); 2515 return r; 2516 } else 2517 return get_msr_hyperv(vcpu, msr, pdata); 2518 break; 2519 case MSR_IA32_BBL_CR_CTL3: 2520 /* This legacy MSR exists but isn't fully documented in current 2521 * silicon. It is however accessed by winxp in very narrow 2522 * scenarios where it sets bit #19, itself documented as 2523 * a "reserved" bit. Best effort attempt to source coherent 2524 * read data here should the balance of the register be 2525 * interpreted by the guest: 2526 * 2527 * L2 cache control register 3: 64GB range, 256KB size, 2528 * enabled, latency 0x1, configured 2529 */ 2530 data = 0xbe702111; 2531 break; 2532 case MSR_AMD64_OSVW_ID_LENGTH: 2533 if (!guest_cpuid_has_osvw(vcpu)) 2534 return 1; 2535 data = vcpu->arch.osvw.length; 2536 break; 2537 case MSR_AMD64_OSVW_STATUS: 2538 if (!guest_cpuid_has_osvw(vcpu)) 2539 return 1; 2540 data = vcpu->arch.osvw.status; 2541 break; 2542 default: 2543 if (kvm_pmu_msr(vcpu, msr)) 2544 return kvm_pmu_get_msr(vcpu, msr, pdata); 2545 if (!ignore_msrs) { 2546 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr); 2547 return 1; 2548 } else { 2549 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr); 2550 data = 0; 2551 } 2552 break; 2553 } 2554 *pdata = data; 2555 return 0; 2556 } 2557 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 2558 2559 /* 2560 * Read or write a bunch of msrs. All parameters are kernel addresses. 2561 * 2562 * @return number of msrs set successfully. 2563 */ 2564 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 2565 struct kvm_msr_entry *entries, 2566 int (*do_msr)(struct kvm_vcpu *vcpu, 2567 unsigned index, u64 *data)) 2568 { 2569 int i, idx; 2570 2571 idx = srcu_read_lock(&vcpu->kvm->srcu); 2572 for (i = 0; i < msrs->nmsrs; ++i) 2573 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 2574 break; 2575 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2576 2577 return i; 2578 } 2579 2580 /* 2581 * Read or write a bunch of msrs. Parameters are user addresses. 2582 * 2583 * @return number of msrs set successfully. 2584 */ 2585 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 2586 int (*do_msr)(struct kvm_vcpu *vcpu, 2587 unsigned index, u64 *data), 2588 int writeback) 2589 { 2590 struct kvm_msrs msrs; 2591 struct kvm_msr_entry *entries; 2592 int r, n; 2593 unsigned size; 2594 2595 r = -EFAULT; 2596 if (copy_from_user(&msrs, user_msrs, sizeof msrs)) 2597 goto out; 2598 2599 r = -E2BIG; 2600 if (msrs.nmsrs >= MAX_IO_MSRS) 2601 goto out; 2602 2603 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 2604 entries = memdup_user(user_msrs->entries, size); 2605 if (IS_ERR(entries)) { 2606 r = PTR_ERR(entries); 2607 goto out; 2608 } 2609 2610 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 2611 if (r < 0) 2612 goto out_free; 2613 2614 r = -EFAULT; 2615 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 2616 goto out_free; 2617 2618 r = n; 2619 2620 out_free: 2621 kfree(entries); 2622 out: 2623 return r; 2624 } 2625 2626 int kvm_dev_ioctl_check_extension(long ext) 2627 { 2628 int r; 2629 2630 switch (ext) { 2631 case KVM_CAP_IRQCHIP: 2632 case KVM_CAP_HLT: 2633 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 2634 case KVM_CAP_SET_TSS_ADDR: 2635 case KVM_CAP_EXT_CPUID: 2636 case KVM_CAP_EXT_EMUL_CPUID: 2637 case KVM_CAP_CLOCKSOURCE: 2638 case KVM_CAP_PIT: 2639 case KVM_CAP_NOP_IO_DELAY: 2640 case KVM_CAP_MP_STATE: 2641 case KVM_CAP_SYNC_MMU: 2642 case KVM_CAP_USER_NMI: 2643 case KVM_CAP_REINJECT_CONTROL: 2644 case KVM_CAP_IRQ_INJECT_STATUS: 2645 case KVM_CAP_IRQFD: 2646 case KVM_CAP_IOEVENTFD: 2647 case KVM_CAP_PIT2: 2648 case KVM_CAP_PIT_STATE2: 2649 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 2650 case KVM_CAP_XEN_HVM: 2651 case KVM_CAP_ADJUST_CLOCK: 2652 case KVM_CAP_VCPU_EVENTS: 2653 case KVM_CAP_HYPERV: 2654 case KVM_CAP_HYPERV_VAPIC: 2655 case KVM_CAP_HYPERV_SPIN: 2656 case KVM_CAP_PCI_SEGMENT: 2657 case KVM_CAP_DEBUGREGS: 2658 case KVM_CAP_X86_ROBUST_SINGLESTEP: 2659 case KVM_CAP_XSAVE: 2660 case KVM_CAP_ASYNC_PF: 2661 case KVM_CAP_GET_TSC_KHZ: 2662 case KVM_CAP_KVMCLOCK_CTRL: 2663 case KVM_CAP_READONLY_MEM: 2664 case KVM_CAP_HYPERV_TIME: 2665 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 2666 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT 2667 case KVM_CAP_ASSIGN_DEV_IRQ: 2668 case KVM_CAP_PCI_2_3: 2669 #endif 2670 r = 1; 2671 break; 2672 case KVM_CAP_COALESCED_MMIO: 2673 r = KVM_COALESCED_MMIO_PAGE_OFFSET; 2674 break; 2675 case KVM_CAP_VAPIC: 2676 r = !kvm_x86_ops->cpu_has_accelerated_tpr(); 2677 break; 2678 case KVM_CAP_NR_VCPUS: 2679 r = KVM_SOFT_MAX_VCPUS; 2680 break; 2681 case KVM_CAP_MAX_VCPUS: 2682 r = KVM_MAX_VCPUS; 2683 break; 2684 case KVM_CAP_NR_MEMSLOTS: 2685 r = KVM_USER_MEM_SLOTS; 2686 break; 2687 case KVM_CAP_PV_MMU: /* obsolete */ 2688 r = 0; 2689 break; 2690 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT 2691 case KVM_CAP_IOMMU: 2692 r = iommu_present(&pci_bus_type); 2693 break; 2694 #endif 2695 case KVM_CAP_MCE: 2696 r = KVM_MAX_MCE_BANKS; 2697 break; 2698 case KVM_CAP_XCRS: 2699 r = cpu_has_xsave; 2700 break; 2701 case KVM_CAP_TSC_CONTROL: 2702 r = kvm_has_tsc_control; 2703 break; 2704 case KVM_CAP_TSC_DEADLINE_TIMER: 2705 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER); 2706 break; 2707 default: 2708 r = 0; 2709 break; 2710 } 2711 return r; 2712 2713 } 2714 2715 long kvm_arch_dev_ioctl(struct file *filp, 2716 unsigned int ioctl, unsigned long arg) 2717 { 2718 void __user *argp = (void __user *)arg; 2719 long r; 2720 2721 switch (ioctl) { 2722 case KVM_GET_MSR_INDEX_LIST: { 2723 struct kvm_msr_list __user *user_msr_list = argp; 2724 struct kvm_msr_list msr_list; 2725 unsigned n; 2726 2727 r = -EFAULT; 2728 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) 2729 goto out; 2730 n = msr_list.nmsrs; 2731 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs); 2732 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) 2733 goto out; 2734 r = -E2BIG; 2735 if (n < msr_list.nmsrs) 2736 goto out; 2737 r = -EFAULT; 2738 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 2739 num_msrs_to_save * sizeof(u32))) 2740 goto out; 2741 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 2742 &emulated_msrs, 2743 ARRAY_SIZE(emulated_msrs) * sizeof(u32))) 2744 goto out; 2745 r = 0; 2746 break; 2747 } 2748 case KVM_GET_SUPPORTED_CPUID: 2749 case KVM_GET_EMULATED_CPUID: { 2750 struct kvm_cpuid2 __user *cpuid_arg = argp; 2751 struct kvm_cpuid2 cpuid; 2752 2753 r = -EFAULT; 2754 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2755 goto out; 2756 2757 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 2758 ioctl); 2759 if (r) 2760 goto out; 2761 2762 r = -EFAULT; 2763 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 2764 goto out; 2765 r = 0; 2766 break; 2767 } 2768 case KVM_X86_GET_MCE_CAP_SUPPORTED: { 2769 u64 mce_cap; 2770 2771 mce_cap = KVM_MCE_CAP_SUPPORTED; 2772 r = -EFAULT; 2773 if (copy_to_user(argp, &mce_cap, sizeof mce_cap)) 2774 goto out; 2775 r = 0; 2776 break; 2777 } 2778 default: 2779 r = -EINVAL; 2780 } 2781 out: 2782 return r; 2783 } 2784 2785 static void wbinvd_ipi(void *garbage) 2786 { 2787 wbinvd(); 2788 } 2789 2790 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 2791 { 2792 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 2793 } 2794 2795 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 2796 { 2797 /* Address WBINVD may be executed by guest */ 2798 if (need_emulate_wbinvd(vcpu)) { 2799 if (kvm_x86_ops->has_wbinvd_exit()) 2800 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 2801 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 2802 smp_call_function_single(vcpu->cpu, 2803 wbinvd_ipi, NULL, 1); 2804 } 2805 2806 kvm_x86_ops->vcpu_load(vcpu, cpu); 2807 2808 /* Apply any externally detected TSC adjustments (due to suspend) */ 2809 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 2810 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 2811 vcpu->arch.tsc_offset_adjustment = 0; 2812 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 2813 } 2814 2815 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) { 2816 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 2817 native_read_tsc() - vcpu->arch.last_host_tsc; 2818 if (tsc_delta < 0) 2819 mark_tsc_unstable("KVM discovered backwards TSC"); 2820 if (check_tsc_unstable()) { 2821 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu, 2822 vcpu->arch.last_guest_tsc); 2823 kvm_x86_ops->write_tsc_offset(vcpu, offset); 2824 vcpu->arch.tsc_catchup = 1; 2825 } 2826 /* 2827 * On a host with synchronized TSC, there is no need to update 2828 * kvmclock on vcpu->cpu migration 2829 */ 2830 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 2831 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2832 if (vcpu->cpu != cpu) 2833 kvm_migrate_timers(vcpu); 2834 vcpu->cpu = cpu; 2835 } 2836 2837 accumulate_steal_time(vcpu); 2838 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2839 } 2840 2841 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 2842 { 2843 kvm_x86_ops->vcpu_put(vcpu); 2844 kvm_put_guest_fpu(vcpu); 2845 vcpu->arch.last_host_tsc = native_read_tsc(); 2846 } 2847 2848 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 2849 struct kvm_lapic_state *s) 2850 { 2851 kvm_x86_ops->sync_pir_to_irr(vcpu); 2852 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s); 2853 2854 return 0; 2855 } 2856 2857 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 2858 struct kvm_lapic_state *s) 2859 { 2860 kvm_apic_post_state_restore(vcpu, s); 2861 update_cr8_intercept(vcpu); 2862 2863 return 0; 2864 } 2865 2866 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 2867 struct kvm_interrupt *irq) 2868 { 2869 if (irq->irq >= KVM_NR_INTERRUPTS) 2870 return -EINVAL; 2871 if (irqchip_in_kernel(vcpu->kvm)) 2872 return -ENXIO; 2873 2874 kvm_queue_interrupt(vcpu, irq->irq, false); 2875 kvm_make_request(KVM_REQ_EVENT, vcpu); 2876 2877 return 0; 2878 } 2879 2880 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 2881 { 2882 kvm_inject_nmi(vcpu); 2883 2884 return 0; 2885 } 2886 2887 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 2888 struct kvm_tpr_access_ctl *tac) 2889 { 2890 if (tac->flags) 2891 return -EINVAL; 2892 vcpu->arch.tpr_access_reporting = !!tac->enabled; 2893 return 0; 2894 } 2895 2896 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 2897 u64 mcg_cap) 2898 { 2899 int r; 2900 unsigned bank_num = mcg_cap & 0xff, bank; 2901 2902 r = -EINVAL; 2903 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) 2904 goto out; 2905 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000)) 2906 goto out; 2907 r = 0; 2908 vcpu->arch.mcg_cap = mcg_cap; 2909 /* Init IA32_MCG_CTL to all 1s */ 2910 if (mcg_cap & MCG_CTL_P) 2911 vcpu->arch.mcg_ctl = ~(u64)0; 2912 /* Init IA32_MCi_CTL to all 1s */ 2913 for (bank = 0; bank < bank_num; bank++) 2914 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 2915 out: 2916 return r; 2917 } 2918 2919 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 2920 struct kvm_x86_mce *mce) 2921 { 2922 u64 mcg_cap = vcpu->arch.mcg_cap; 2923 unsigned bank_num = mcg_cap & 0xff; 2924 u64 *banks = vcpu->arch.mce_banks; 2925 2926 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 2927 return -EINVAL; 2928 /* 2929 * if IA32_MCG_CTL is not all 1s, the uncorrected error 2930 * reporting is disabled 2931 */ 2932 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 2933 vcpu->arch.mcg_ctl != ~(u64)0) 2934 return 0; 2935 banks += 4 * mce->bank; 2936 /* 2937 * if IA32_MCi_CTL is not all 1s, the uncorrected error 2938 * reporting is disabled for the bank 2939 */ 2940 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 2941 return 0; 2942 if (mce->status & MCI_STATUS_UC) { 2943 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 2944 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 2945 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2946 return 0; 2947 } 2948 if (banks[1] & MCI_STATUS_VAL) 2949 mce->status |= MCI_STATUS_OVER; 2950 banks[2] = mce->addr; 2951 banks[3] = mce->misc; 2952 vcpu->arch.mcg_status = mce->mcg_status; 2953 banks[1] = mce->status; 2954 kvm_queue_exception(vcpu, MC_VECTOR); 2955 } else if (!(banks[1] & MCI_STATUS_VAL) 2956 || !(banks[1] & MCI_STATUS_UC)) { 2957 if (banks[1] & MCI_STATUS_VAL) 2958 mce->status |= MCI_STATUS_OVER; 2959 banks[2] = mce->addr; 2960 banks[3] = mce->misc; 2961 banks[1] = mce->status; 2962 } else 2963 banks[1] |= MCI_STATUS_OVER; 2964 return 0; 2965 } 2966 2967 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 2968 struct kvm_vcpu_events *events) 2969 { 2970 process_nmi(vcpu); 2971 events->exception.injected = 2972 vcpu->arch.exception.pending && 2973 !kvm_exception_is_soft(vcpu->arch.exception.nr); 2974 events->exception.nr = vcpu->arch.exception.nr; 2975 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 2976 events->exception.pad = 0; 2977 events->exception.error_code = vcpu->arch.exception.error_code; 2978 2979 events->interrupt.injected = 2980 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft; 2981 events->interrupt.nr = vcpu->arch.interrupt.nr; 2982 events->interrupt.soft = 0; 2983 events->interrupt.shadow = 2984 kvm_x86_ops->get_interrupt_shadow(vcpu, 2985 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI); 2986 2987 events->nmi.injected = vcpu->arch.nmi_injected; 2988 events->nmi.pending = vcpu->arch.nmi_pending != 0; 2989 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); 2990 events->nmi.pad = 0; 2991 2992 events->sipi_vector = 0; /* never valid when reporting to user space */ 2993 2994 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 2995 | KVM_VCPUEVENT_VALID_SHADOW); 2996 memset(&events->reserved, 0, sizeof(events->reserved)); 2997 } 2998 2999 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 3000 struct kvm_vcpu_events *events) 3001 { 3002 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 3003 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 3004 | KVM_VCPUEVENT_VALID_SHADOW)) 3005 return -EINVAL; 3006 3007 process_nmi(vcpu); 3008 vcpu->arch.exception.pending = events->exception.injected; 3009 vcpu->arch.exception.nr = events->exception.nr; 3010 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 3011 vcpu->arch.exception.error_code = events->exception.error_code; 3012 3013 vcpu->arch.interrupt.pending = events->interrupt.injected; 3014 vcpu->arch.interrupt.nr = events->interrupt.nr; 3015 vcpu->arch.interrupt.soft = events->interrupt.soft; 3016 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 3017 kvm_x86_ops->set_interrupt_shadow(vcpu, 3018 events->interrupt.shadow); 3019 3020 vcpu->arch.nmi_injected = events->nmi.injected; 3021 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 3022 vcpu->arch.nmi_pending = events->nmi.pending; 3023 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); 3024 3025 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 3026 kvm_vcpu_has_lapic(vcpu)) 3027 vcpu->arch.apic->sipi_vector = events->sipi_vector; 3028 3029 kvm_make_request(KVM_REQ_EVENT, vcpu); 3030 3031 return 0; 3032 } 3033 3034 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 3035 struct kvm_debugregs *dbgregs) 3036 { 3037 unsigned long val; 3038 3039 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 3040 _kvm_get_dr(vcpu, 6, &val); 3041 dbgregs->dr6 = val; 3042 dbgregs->dr7 = vcpu->arch.dr7; 3043 dbgregs->flags = 0; 3044 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 3045 } 3046 3047 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 3048 struct kvm_debugregs *dbgregs) 3049 { 3050 if (dbgregs->flags) 3051 return -EINVAL; 3052 3053 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 3054 vcpu->arch.dr6 = dbgregs->dr6; 3055 kvm_update_dr6(vcpu); 3056 vcpu->arch.dr7 = dbgregs->dr7; 3057 kvm_update_dr7(vcpu); 3058 3059 return 0; 3060 } 3061 3062 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 3063 struct kvm_xsave *guest_xsave) 3064 { 3065 if (cpu_has_xsave) { 3066 memcpy(guest_xsave->region, 3067 &vcpu->arch.guest_fpu.state->xsave, 3068 vcpu->arch.guest_xstate_size); 3069 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] &= 3070 vcpu->arch.guest_supported_xcr0 | XSTATE_FPSSE; 3071 } else { 3072 memcpy(guest_xsave->region, 3073 &vcpu->arch.guest_fpu.state->fxsave, 3074 sizeof(struct i387_fxsave_struct)); 3075 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 3076 XSTATE_FPSSE; 3077 } 3078 } 3079 3080 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 3081 struct kvm_xsave *guest_xsave) 3082 { 3083 u64 xstate_bv = 3084 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 3085 3086 if (cpu_has_xsave) { 3087 /* 3088 * Here we allow setting states that are not present in 3089 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility 3090 * with old userspace. 3091 */ 3092 if (xstate_bv & ~kvm_supported_xcr0()) 3093 return -EINVAL; 3094 memcpy(&vcpu->arch.guest_fpu.state->xsave, 3095 guest_xsave->region, vcpu->arch.guest_xstate_size); 3096 } else { 3097 if (xstate_bv & ~XSTATE_FPSSE) 3098 return -EINVAL; 3099 memcpy(&vcpu->arch.guest_fpu.state->fxsave, 3100 guest_xsave->region, sizeof(struct i387_fxsave_struct)); 3101 } 3102 return 0; 3103 } 3104 3105 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 3106 struct kvm_xcrs *guest_xcrs) 3107 { 3108 if (!cpu_has_xsave) { 3109 guest_xcrs->nr_xcrs = 0; 3110 return; 3111 } 3112 3113 guest_xcrs->nr_xcrs = 1; 3114 guest_xcrs->flags = 0; 3115 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 3116 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 3117 } 3118 3119 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 3120 struct kvm_xcrs *guest_xcrs) 3121 { 3122 int i, r = 0; 3123 3124 if (!cpu_has_xsave) 3125 return -EINVAL; 3126 3127 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 3128 return -EINVAL; 3129 3130 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 3131 /* Only support XCR0 currently */ 3132 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 3133 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 3134 guest_xcrs->xcrs[i].value); 3135 break; 3136 } 3137 if (r) 3138 r = -EINVAL; 3139 return r; 3140 } 3141 3142 /* 3143 * kvm_set_guest_paused() indicates to the guest kernel that it has been 3144 * stopped by the hypervisor. This function will be called from the host only. 3145 * EINVAL is returned when the host attempts to set the flag for a guest that 3146 * does not support pv clocks. 3147 */ 3148 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 3149 { 3150 if (!vcpu->arch.pv_time_enabled) 3151 return -EINVAL; 3152 vcpu->arch.pvclock_set_guest_stopped_request = true; 3153 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3154 return 0; 3155 } 3156 3157 long kvm_arch_vcpu_ioctl(struct file *filp, 3158 unsigned int ioctl, unsigned long arg) 3159 { 3160 struct kvm_vcpu *vcpu = filp->private_data; 3161 void __user *argp = (void __user *)arg; 3162 int r; 3163 union { 3164 struct kvm_lapic_state *lapic; 3165 struct kvm_xsave *xsave; 3166 struct kvm_xcrs *xcrs; 3167 void *buffer; 3168 } u; 3169 3170 u.buffer = NULL; 3171 switch (ioctl) { 3172 case KVM_GET_LAPIC: { 3173 r = -EINVAL; 3174 if (!vcpu->arch.apic) 3175 goto out; 3176 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); 3177 3178 r = -ENOMEM; 3179 if (!u.lapic) 3180 goto out; 3181 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 3182 if (r) 3183 goto out; 3184 r = -EFAULT; 3185 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 3186 goto out; 3187 r = 0; 3188 break; 3189 } 3190 case KVM_SET_LAPIC: { 3191 r = -EINVAL; 3192 if (!vcpu->arch.apic) 3193 goto out; 3194 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 3195 if (IS_ERR(u.lapic)) 3196 return PTR_ERR(u.lapic); 3197 3198 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 3199 break; 3200 } 3201 case KVM_INTERRUPT: { 3202 struct kvm_interrupt irq; 3203 3204 r = -EFAULT; 3205 if (copy_from_user(&irq, argp, sizeof irq)) 3206 goto out; 3207 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 3208 break; 3209 } 3210 case KVM_NMI: { 3211 r = kvm_vcpu_ioctl_nmi(vcpu); 3212 break; 3213 } 3214 case KVM_SET_CPUID: { 3215 struct kvm_cpuid __user *cpuid_arg = argp; 3216 struct kvm_cpuid cpuid; 3217 3218 r = -EFAULT; 3219 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3220 goto out; 3221 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 3222 break; 3223 } 3224 case KVM_SET_CPUID2: { 3225 struct kvm_cpuid2 __user *cpuid_arg = argp; 3226 struct kvm_cpuid2 cpuid; 3227 3228 r = -EFAULT; 3229 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3230 goto out; 3231 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 3232 cpuid_arg->entries); 3233 break; 3234 } 3235 case KVM_GET_CPUID2: { 3236 struct kvm_cpuid2 __user *cpuid_arg = argp; 3237 struct kvm_cpuid2 cpuid; 3238 3239 r = -EFAULT; 3240 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3241 goto out; 3242 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 3243 cpuid_arg->entries); 3244 if (r) 3245 goto out; 3246 r = -EFAULT; 3247 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 3248 goto out; 3249 r = 0; 3250 break; 3251 } 3252 case KVM_GET_MSRS: 3253 r = msr_io(vcpu, argp, kvm_get_msr, 1); 3254 break; 3255 case KVM_SET_MSRS: 3256 r = msr_io(vcpu, argp, do_set_msr, 0); 3257 break; 3258 case KVM_TPR_ACCESS_REPORTING: { 3259 struct kvm_tpr_access_ctl tac; 3260 3261 r = -EFAULT; 3262 if (copy_from_user(&tac, argp, sizeof tac)) 3263 goto out; 3264 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 3265 if (r) 3266 goto out; 3267 r = -EFAULT; 3268 if (copy_to_user(argp, &tac, sizeof tac)) 3269 goto out; 3270 r = 0; 3271 break; 3272 }; 3273 case KVM_SET_VAPIC_ADDR: { 3274 struct kvm_vapic_addr va; 3275 3276 r = -EINVAL; 3277 if (!irqchip_in_kernel(vcpu->kvm)) 3278 goto out; 3279 r = -EFAULT; 3280 if (copy_from_user(&va, argp, sizeof va)) 3281 goto out; 3282 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 3283 break; 3284 } 3285 case KVM_X86_SETUP_MCE: { 3286 u64 mcg_cap; 3287 3288 r = -EFAULT; 3289 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) 3290 goto out; 3291 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 3292 break; 3293 } 3294 case KVM_X86_SET_MCE: { 3295 struct kvm_x86_mce mce; 3296 3297 r = -EFAULT; 3298 if (copy_from_user(&mce, argp, sizeof mce)) 3299 goto out; 3300 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 3301 break; 3302 } 3303 case KVM_GET_VCPU_EVENTS: { 3304 struct kvm_vcpu_events events; 3305 3306 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 3307 3308 r = -EFAULT; 3309 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 3310 break; 3311 r = 0; 3312 break; 3313 } 3314 case KVM_SET_VCPU_EVENTS: { 3315 struct kvm_vcpu_events events; 3316 3317 r = -EFAULT; 3318 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 3319 break; 3320 3321 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 3322 break; 3323 } 3324 case KVM_GET_DEBUGREGS: { 3325 struct kvm_debugregs dbgregs; 3326 3327 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 3328 3329 r = -EFAULT; 3330 if (copy_to_user(argp, &dbgregs, 3331 sizeof(struct kvm_debugregs))) 3332 break; 3333 r = 0; 3334 break; 3335 } 3336 case KVM_SET_DEBUGREGS: { 3337 struct kvm_debugregs dbgregs; 3338 3339 r = -EFAULT; 3340 if (copy_from_user(&dbgregs, argp, 3341 sizeof(struct kvm_debugregs))) 3342 break; 3343 3344 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 3345 break; 3346 } 3347 case KVM_GET_XSAVE: { 3348 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); 3349 r = -ENOMEM; 3350 if (!u.xsave) 3351 break; 3352 3353 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 3354 3355 r = -EFAULT; 3356 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 3357 break; 3358 r = 0; 3359 break; 3360 } 3361 case KVM_SET_XSAVE: { 3362 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 3363 if (IS_ERR(u.xsave)) 3364 return PTR_ERR(u.xsave); 3365 3366 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 3367 break; 3368 } 3369 case KVM_GET_XCRS: { 3370 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); 3371 r = -ENOMEM; 3372 if (!u.xcrs) 3373 break; 3374 3375 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 3376 3377 r = -EFAULT; 3378 if (copy_to_user(argp, u.xcrs, 3379 sizeof(struct kvm_xcrs))) 3380 break; 3381 r = 0; 3382 break; 3383 } 3384 case KVM_SET_XCRS: { 3385 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 3386 if (IS_ERR(u.xcrs)) 3387 return PTR_ERR(u.xcrs); 3388 3389 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 3390 break; 3391 } 3392 case KVM_SET_TSC_KHZ: { 3393 u32 user_tsc_khz; 3394 3395 r = -EINVAL; 3396 user_tsc_khz = (u32)arg; 3397 3398 if (user_tsc_khz >= kvm_max_guest_tsc_khz) 3399 goto out; 3400 3401 if (user_tsc_khz == 0) 3402 user_tsc_khz = tsc_khz; 3403 3404 kvm_set_tsc_khz(vcpu, user_tsc_khz); 3405 3406 r = 0; 3407 goto out; 3408 } 3409 case KVM_GET_TSC_KHZ: { 3410 r = vcpu->arch.virtual_tsc_khz; 3411 goto out; 3412 } 3413 case KVM_KVMCLOCK_CTRL: { 3414 r = kvm_set_guest_paused(vcpu); 3415 goto out; 3416 } 3417 default: 3418 r = -EINVAL; 3419 } 3420 out: 3421 kfree(u.buffer); 3422 return r; 3423 } 3424 3425 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 3426 { 3427 return VM_FAULT_SIGBUS; 3428 } 3429 3430 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 3431 { 3432 int ret; 3433 3434 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 3435 return -EINVAL; 3436 ret = kvm_x86_ops->set_tss_addr(kvm, addr); 3437 return ret; 3438 } 3439 3440 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 3441 u64 ident_addr) 3442 { 3443 kvm->arch.ept_identity_map_addr = ident_addr; 3444 return 0; 3445 } 3446 3447 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 3448 u32 kvm_nr_mmu_pages) 3449 { 3450 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 3451 return -EINVAL; 3452 3453 mutex_lock(&kvm->slots_lock); 3454 3455 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 3456 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 3457 3458 mutex_unlock(&kvm->slots_lock); 3459 return 0; 3460 } 3461 3462 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 3463 { 3464 return kvm->arch.n_max_mmu_pages; 3465 } 3466 3467 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 3468 { 3469 int r; 3470 3471 r = 0; 3472 switch (chip->chip_id) { 3473 case KVM_IRQCHIP_PIC_MASTER: 3474 memcpy(&chip->chip.pic, 3475 &pic_irqchip(kvm)->pics[0], 3476 sizeof(struct kvm_pic_state)); 3477 break; 3478 case KVM_IRQCHIP_PIC_SLAVE: 3479 memcpy(&chip->chip.pic, 3480 &pic_irqchip(kvm)->pics[1], 3481 sizeof(struct kvm_pic_state)); 3482 break; 3483 case KVM_IRQCHIP_IOAPIC: 3484 r = kvm_get_ioapic(kvm, &chip->chip.ioapic); 3485 break; 3486 default: 3487 r = -EINVAL; 3488 break; 3489 } 3490 return r; 3491 } 3492 3493 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 3494 { 3495 int r; 3496 3497 r = 0; 3498 switch (chip->chip_id) { 3499 case KVM_IRQCHIP_PIC_MASTER: 3500 spin_lock(&pic_irqchip(kvm)->lock); 3501 memcpy(&pic_irqchip(kvm)->pics[0], 3502 &chip->chip.pic, 3503 sizeof(struct kvm_pic_state)); 3504 spin_unlock(&pic_irqchip(kvm)->lock); 3505 break; 3506 case KVM_IRQCHIP_PIC_SLAVE: 3507 spin_lock(&pic_irqchip(kvm)->lock); 3508 memcpy(&pic_irqchip(kvm)->pics[1], 3509 &chip->chip.pic, 3510 sizeof(struct kvm_pic_state)); 3511 spin_unlock(&pic_irqchip(kvm)->lock); 3512 break; 3513 case KVM_IRQCHIP_IOAPIC: 3514 r = kvm_set_ioapic(kvm, &chip->chip.ioapic); 3515 break; 3516 default: 3517 r = -EINVAL; 3518 break; 3519 } 3520 kvm_pic_update_irq(pic_irqchip(kvm)); 3521 return r; 3522 } 3523 3524 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3525 { 3526 int r = 0; 3527 3528 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3529 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state)); 3530 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3531 return r; 3532 } 3533 3534 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3535 { 3536 int r = 0; 3537 3538 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3539 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state)); 3540 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0); 3541 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3542 return r; 3543 } 3544 3545 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3546 { 3547 int r = 0; 3548 3549 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3550 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 3551 sizeof(ps->channels)); 3552 ps->flags = kvm->arch.vpit->pit_state.flags; 3553 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3554 memset(&ps->reserved, 0, sizeof(ps->reserved)); 3555 return r; 3556 } 3557 3558 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3559 { 3560 int r = 0, start = 0; 3561 u32 prev_legacy, cur_legacy; 3562 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3563 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 3564 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 3565 if (!prev_legacy && cur_legacy) 3566 start = 1; 3567 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels, 3568 sizeof(kvm->arch.vpit->pit_state.channels)); 3569 kvm->arch.vpit->pit_state.flags = ps->flags; 3570 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start); 3571 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3572 return r; 3573 } 3574 3575 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 3576 struct kvm_reinject_control *control) 3577 { 3578 if (!kvm->arch.vpit) 3579 return -ENXIO; 3580 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3581 kvm->arch.vpit->pit_state.reinject = control->pit_reinject; 3582 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3583 return 0; 3584 } 3585 3586 /** 3587 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 3588 * @kvm: kvm instance 3589 * @log: slot id and address to which we copy the log 3590 * 3591 * We need to keep it in mind that VCPU threads can write to the bitmap 3592 * concurrently. So, to avoid losing data, we keep the following order for 3593 * each bit: 3594 * 3595 * 1. Take a snapshot of the bit and clear it if needed. 3596 * 2. Write protect the corresponding page. 3597 * 3. Flush TLB's if needed. 3598 * 4. Copy the snapshot to the userspace. 3599 * 3600 * Between 2 and 3, the guest may write to the page using the remaining TLB 3601 * entry. This is not a problem because the page will be reported dirty at 3602 * step 4 using the snapshot taken before and step 3 ensures that successive 3603 * writes will be logged for the next call. 3604 */ 3605 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) 3606 { 3607 int r; 3608 struct kvm_memory_slot *memslot; 3609 unsigned long n, i; 3610 unsigned long *dirty_bitmap; 3611 unsigned long *dirty_bitmap_buffer; 3612 bool is_dirty = false; 3613 3614 mutex_lock(&kvm->slots_lock); 3615 3616 r = -EINVAL; 3617 if (log->slot >= KVM_USER_MEM_SLOTS) 3618 goto out; 3619 3620 memslot = id_to_memslot(kvm->memslots, log->slot); 3621 3622 dirty_bitmap = memslot->dirty_bitmap; 3623 r = -ENOENT; 3624 if (!dirty_bitmap) 3625 goto out; 3626 3627 n = kvm_dirty_bitmap_bytes(memslot); 3628 3629 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); 3630 memset(dirty_bitmap_buffer, 0, n); 3631 3632 spin_lock(&kvm->mmu_lock); 3633 3634 for (i = 0; i < n / sizeof(long); i++) { 3635 unsigned long mask; 3636 gfn_t offset; 3637 3638 if (!dirty_bitmap[i]) 3639 continue; 3640 3641 is_dirty = true; 3642 3643 mask = xchg(&dirty_bitmap[i], 0); 3644 dirty_bitmap_buffer[i] = mask; 3645 3646 offset = i * BITS_PER_LONG; 3647 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask); 3648 } 3649 if (is_dirty) 3650 kvm_flush_remote_tlbs(kvm); 3651 3652 spin_unlock(&kvm->mmu_lock); 3653 3654 r = -EFAULT; 3655 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 3656 goto out; 3657 3658 r = 0; 3659 out: 3660 mutex_unlock(&kvm->slots_lock); 3661 return r; 3662 } 3663 3664 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 3665 bool line_status) 3666 { 3667 if (!irqchip_in_kernel(kvm)) 3668 return -ENXIO; 3669 3670 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 3671 irq_event->irq, irq_event->level, 3672 line_status); 3673 return 0; 3674 } 3675 3676 long kvm_arch_vm_ioctl(struct file *filp, 3677 unsigned int ioctl, unsigned long arg) 3678 { 3679 struct kvm *kvm = filp->private_data; 3680 void __user *argp = (void __user *)arg; 3681 int r = -ENOTTY; 3682 /* 3683 * This union makes it completely explicit to gcc-3.x 3684 * that these two variables' stack usage should be 3685 * combined, not added together. 3686 */ 3687 union { 3688 struct kvm_pit_state ps; 3689 struct kvm_pit_state2 ps2; 3690 struct kvm_pit_config pit_config; 3691 } u; 3692 3693 switch (ioctl) { 3694 case KVM_SET_TSS_ADDR: 3695 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 3696 break; 3697 case KVM_SET_IDENTITY_MAP_ADDR: { 3698 u64 ident_addr; 3699 3700 r = -EFAULT; 3701 if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) 3702 goto out; 3703 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 3704 break; 3705 } 3706 case KVM_SET_NR_MMU_PAGES: 3707 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 3708 break; 3709 case KVM_GET_NR_MMU_PAGES: 3710 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 3711 break; 3712 case KVM_CREATE_IRQCHIP: { 3713 struct kvm_pic *vpic; 3714 3715 mutex_lock(&kvm->lock); 3716 r = -EEXIST; 3717 if (kvm->arch.vpic) 3718 goto create_irqchip_unlock; 3719 r = -EINVAL; 3720 if (atomic_read(&kvm->online_vcpus)) 3721 goto create_irqchip_unlock; 3722 r = -ENOMEM; 3723 vpic = kvm_create_pic(kvm); 3724 if (vpic) { 3725 r = kvm_ioapic_init(kvm); 3726 if (r) { 3727 mutex_lock(&kvm->slots_lock); 3728 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3729 &vpic->dev_master); 3730 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3731 &vpic->dev_slave); 3732 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3733 &vpic->dev_eclr); 3734 mutex_unlock(&kvm->slots_lock); 3735 kfree(vpic); 3736 goto create_irqchip_unlock; 3737 } 3738 } else 3739 goto create_irqchip_unlock; 3740 smp_wmb(); 3741 kvm->arch.vpic = vpic; 3742 smp_wmb(); 3743 r = kvm_setup_default_irq_routing(kvm); 3744 if (r) { 3745 mutex_lock(&kvm->slots_lock); 3746 mutex_lock(&kvm->irq_lock); 3747 kvm_ioapic_destroy(kvm); 3748 kvm_destroy_pic(kvm); 3749 mutex_unlock(&kvm->irq_lock); 3750 mutex_unlock(&kvm->slots_lock); 3751 } 3752 create_irqchip_unlock: 3753 mutex_unlock(&kvm->lock); 3754 break; 3755 } 3756 case KVM_CREATE_PIT: 3757 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 3758 goto create_pit; 3759 case KVM_CREATE_PIT2: 3760 r = -EFAULT; 3761 if (copy_from_user(&u.pit_config, argp, 3762 sizeof(struct kvm_pit_config))) 3763 goto out; 3764 create_pit: 3765 mutex_lock(&kvm->slots_lock); 3766 r = -EEXIST; 3767 if (kvm->arch.vpit) 3768 goto create_pit_unlock; 3769 r = -ENOMEM; 3770 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 3771 if (kvm->arch.vpit) 3772 r = 0; 3773 create_pit_unlock: 3774 mutex_unlock(&kvm->slots_lock); 3775 break; 3776 case KVM_GET_IRQCHIP: { 3777 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 3778 struct kvm_irqchip *chip; 3779 3780 chip = memdup_user(argp, sizeof(*chip)); 3781 if (IS_ERR(chip)) { 3782 r = PTR_ERR(chip); 3783 goto out; 3784 } 3785 3786 r = -ENXIO; 3787 if (!irqchip_in_kernel(kvm)) 3788 goto get_irqchip_out; 3789 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 3790 if (r) 3791 goto get_irqchip_out; 3792 r = -EFAULT; 3793 if (copy_to_user(argp, chip, sizeof *chip)) 3794 goto get_irqchip_out; 3795 r = 0; 3796 get_irqchip_out: 3797 kfree(chip); 3798 break; 3799 } 3800 case KVM_SET_IRQCHIP: { 3801 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 3802 struct kvm_irqchip *chip; 3803 3804 chip = memdup_user(argp, sizeof(*chip)); 3805 if (IS_ERR(chip)) { 3806 r = PTR_ERR(chip); 3807 goto out; 3808 } 3809 3810 r = -ENXIO; 3811 if (!irqchip_in_kernel(kvm)) 3812 goto set_irqchip_out; 3813 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 3814 if (r) 3815 goto set_irqchip_out; 3816 r = 0; 3817 set_irqchip_out: 3818 kfree(chip); 3819 break; 3820 } 3821 case KVM_GET_PIT: { 3822 r = -EFAULT; 3823 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 3824 goto out; 3825 r = -ENXIO; 3826 if (!kvm->arch.vpit) 3827 goto out; 3828 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 3829 if (r) 3830 goto out; 3831 r = -EFAULT; 3832 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 3833 goto out; 3834 r = 0; 3835 break; 3836 } 3837 case KVM_SET_PIT: { 3838 r = -EFAULT; 3839 if (copy_from_user(&u.ps, argp, sizeof u.ps)) 3840 goto out; 3841 r = -ENXIO; 3842 if (!kvm->arch.vpit) 3843 goto out; 3844 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 3845 break; 3846 } 3847 case KVM_GET_PIT2: { 3848 r = -ENXIO; 3849 if (!kvm->arch.vpit) 3850 goto out; 3851 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 3852 if (r) 3853 goto out; 3854 r = -EFAULT; 3855 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 3856 goto out; 3857 r = 0; 3858 break; 3859 } 3860 case KVM_SET_PIT2: { 3861 r = -EFAULT; 3862 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 3863 goto out; 3864 r = -ENXIO; 3865 if (!kvm->arch.vpit) 3866 goto out; 3867 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 3868 break; 3869 } 3870 case KVM_REINJECT_CONTROL: { 3871 struct kvm_reinject_control control; 3872 r = -EFAULT; 3873 if (copy_from_user(&control, argp, sizeof(control))) 3874 goto out; 3875 r = kvm_vm_ioctl_reinject(kvm, &control); 3876 break; 3877 } 3878 case KVM_XEN_HVM_CONFIG: { 3879 r = -EFAULT; 3880 if (copy_from_user(&kvm->arch.xen_hvm_config, argp, 3881 sizeof(struct kvm_xen_hvm_config))) 3882 goto out; 3883 r = -EINVAL; 3884 if (kvm->arch.xen_hvm_config.flags) 3885 goto out; 3886 r = 0; 3887 break; 3888 } 3889 case KVM_SET_CLOCK: { 3890 struct kvm_clock_data user_ns; 3891 u64 now_ns; 3892 s64 delta; 3893 3894 r = -EFAULT; 3895 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 3896 goto out; 3897 3898 r = -EINVAL; 3899 if (user_ns.flags) 3900 goto out; 3901 3902 r = 0; 3903 local_irq_disable(); 3904 now_ns = get_kernel_ns(); 3905 delta = user_ns.clock - now_ns; 3906 local_irq_enable(); 3907 kvm->arch.kvmclock_offset = delta; 3908 kvm_gen_update_masterclock(kvm); 3909 break; 3910 } 3911 case KVM_GET_CLOCK: { 3912 struct kvm_clock_data user_ns; 3913 u64 now_ns; 3914 3915 local_irq_disable(); 3916 now_ns = get_kernel_ns(); 3917 user_ns.clock = kvm->arch.kvmclock_offset + now_ns; 3918 local_irq_enable(); 3919 user_ns.flags = 0; 3920 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 3921 3922 r = -EFAULT; 3923 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 3924 goto out; 3925 r = 0; 3926 break; 3927 } 3928 3929 default: 3930 ; 3931 } 3932 out: 3933 return r; 3934 } 3935 3936 static void kvm_init_msr_list(void) 3937 { 3938 u32 dummy[2]; 3939 unsigned i, j; 3940 3941 /* skip the first msrs in the list. KVM-specific */ 3942 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) { 3943 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) 3944 continue; 3945 3946 /* 3947 * Even MSRs that are valid in the host may not be exposed 3948 * to the guests in some cases. We could work around this 3949 * in VMX with the generic MSR save/load machinery, but it 3950 * is not really worthwhile since it will really only 3951 * happen with nested virtualization. 3952 */ 3953 switch (msrs_to_save[i]) { 3954 case MSR_IA32_BNDCFGS: 3955 if (!kvm_x86_ops->mpx_supported()) 3956 continue; 3957 break; 3958 default: 3959 break; 3960 } 3961 3962 if (j < i) 3963 msrs_to_save[j] = msrs_to_save[i]; 3964 j++; 3965 } 3966 num_msrs_to_save = j; 3967 } 3968 3969 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 3970 const void *v) 3971 { 3972 int handled = 0; 3973 int n; 3974 3975 do { 3976 n = min(len, 8); 3977 if (!(vcpu->arch.apic && 3978 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v)) 3979 && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) 3980 break; 3981 handled += n; 3982 addr += n; 3983 len -= n; 3984 v += n; 3985 } while (len); 3986 3987 return handled; 3988 } 3989 3990 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 3991 { 3992 int handled = 0; 3993 int n; 3994 3995 do { 3996 n = min(len, 8); 3997 if (!(vcpu->arch.apic && 3998 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v)) 3999 && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) 4000 break; 4001 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v); 4002 handled += n; 4003 addr += n; 4004 len -= n; 4005 v += n; 4006 } while (len); 4007 4008 return handled; 4009 } 4010 4011 static void kvm_set_segment(struct kvm_vcpu *vcpu, 4012 struct kvm_segment *var, int seg) 4013 { 4014 kvm_x86_ops->set_segment(vcpu, var, seg); 4015 } 4016 4017 void kvm_get_segment(struct kvm_vcpu *vcpu, 4018 struct kvm_segment *var, int seg) 4019 { 4020 kvm_x86_ops->get_segment(vcpu, var, seg); 4021 } 4022 4023 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access) 4024 { 4025 gpa_t t_gpa; 4026 struct x86_exception exception; 4027 4028 BUG_ON(!mmu_is_nested(vcpu)); 4029 4030 /* NPT walks are always user-walks */ 4031 access |= PFERR_USER_MASK; 4032 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception); 4033 4034 return t_gpa; 4035 } 4036 4037 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 4038 struct x86_exception *exception) 4039 { 4040 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4041 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4042 } 4043 4044 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 4045 struct x86_exception *exception) 4046 { 4047 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4048 access |= PFERR_FETCH_MASK; 4049 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4050 } 4051 4052 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 4053 struct x86_exception *exception) 4054 { 4055 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4056 access |= PFERR_WRITE_MASK; 4057 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4058 } 4059 4060 /* uses this to access any guest's mapped memory without checking CPL */ 4061 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 4062 struct x86_exception *exception) 4063 { 4064 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 4065 } 4066 4067 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 4068 struct kvm_vcpu *vcpu, u32 access, 4069 struct x86_exception *exception) 4070 { 4071 void *data = val; 4072 int r = X86EMUL_CONTINUE; 4073 4074 while (bytes) { 4075 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 4076 exception); 4077 unsigned offset = addr & (PAGE_SIZE-1); 4078 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 4079 int ret; 4080 4081 if (gpa == UNMAPPED_GVA) 4082 return X86EMUL_PROPAGATE_FAULT; 4083 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread); 4084 if (ret < 0) { 4085 r = X86EMUL_IO_NEEDED; 4086 goto out; 4087 } 4088 4089 bytes -= toread; 4090 data += toread; 4091 addr += toread; 4092 } 4093 out: 4094 return r; 4095 } 4096 4097 /* used for instruction fetching */ 4098 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 4099 gva_t addr, void *val, unsigned int bytes, 4100 struct x86_exception *exception) 4101 { 4102 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4103 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4104 4105 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 4106 access | PFERR_FETCH_MASK, 4107 exception); 4108 } 4109 4110 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt, 4111 gva_t addr, void *val, unsigned int bytes, 4112 struct x86_exception *exception) 4113 { 4114 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4115 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4116 4117 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 4118 exception); 4119 } 4120 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 4121 4122 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt, 4123 gva_t addr, void *val, unsigned int bytes, 4124 struct x86_exception *exception) 4125 { 4126 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4127 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception); 4128 } 4129 4130 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt, 4131 gva_t addr, void *val, 4132 unsigned int bytes, 4133 struct x86_exception *exception) 4134 { 4135 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4136 void *data = val; 4137 int r = X86EMUL_CONTINUE; 4138 4139 while (bytes) { 4140 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 4141 PFERR_WRITE_MASK, 4142 exception); 4143 unsigned offset = addr & (PAGE_SIZE-1); 4144 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 4145 int ret; 4146 4147 if (gpa == UNMAPPED_GVA) 4148 return X86EMUL_PROPAGATE_FAULT; 4149 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite); 4150 if (ret < 0) { 4151 r = X86EMUL_IO_NEEDED; 4152 goto out; 4153 } 4154 4155 bytes -= towrite; 4156 data += towrite; 4157 addr += towrite; 4158 } 4159 out: 4160 return r; 4161 } 4162 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 4163 4164 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 4165 gpa_t *gpa, struct x86_exception *exception, 4166 bool write) 4167 { 4168 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) 4169 | (write ? PFERR_WRITE_MASK : 0); 4170 4171 if (vcpu_match_mmio_gva(vcpu, gva) 4172 && !permission_fault(vcpu, vcpu->arch.walk_mmu, 4173 vcpu->arch.access, access)) { 4174 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 4175 (gva & (PAGE_SIZE - 1)); 4176 trace_vcpu_match_mmio(gva, *gpa, write, false); 4177 return 1; 4178 } 4179 4180 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4181 4182 if (*gpa == UNMAPPED_GVA) 4183 return -1; 4184 4185 /* For APIC access vmexit */ 4186 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 4187 return 1; 4188 4189 if (vcpu_match_mmio_gpa(vcpu, *gpa)) { 4190 trace_vcpu_match_mmio(gva, *gpa, write, true); 4191 return 1; 4192 } 4193 4194 return 0; 4195 } 4196 4197 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 4198 const void *val, int bytes) 4199 { 4200 int ret; 4201 4202 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes); 4203 if (ret < 0) 4204 return 0; 4205 kvm_mmu_pte_write(vcpu, gpa, val, bytes); 4206 return 1; 4207 } 4208 4209 struct read_write_emulator_ops { 4210 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 4211 int bytes); 4212 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 4213 void *val, int bytes); 4214 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 4215 int bytes, void *val); 4216 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 4217 void *val, int bytes); 4218 bool write; 4219 }; 4220 4221 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 4222 { 4223 if (vcpu->mmio_read_completed) { 4224 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 4225 vcpu->mmio_fragments[0].gpa, *(u64 *)val); 4226 vcpu->mmio_read_completed = 0; 4227 return 1; 4228 } 4229 4230 return 0; 4231 } 4232 4233 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 4234 void *val, int bytes) 4235 { 4236 return !kvm_read_guest(vcpu->kvm, gpa, val, bytes); 4237 } 4238 4239 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 4240 void *val, int bytes) 4241 { 4242 return emulator_write_phys(vcpu, gpa, val, bytes); 4243 } 4244 4245 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 4246 { 4247 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val); 4248 return vcpu_mmio_write(vcpu, gpa, bytes, val); 4249 } 4250 4251 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 4252 void *val, int bytes) 4253 { 4254 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0); 4255 return X86EMUL_IO_NEEDED; 4256 } 4257 4258 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 4259 void *val, int bytes) 4260 { 4261 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 4262 4263 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 4264 return X86EMUL_CONTINUE; 4265 } 4266 4267 static const struct read_write_emulator_ops read_emultor = { 4268 .read_write_prepare = read_prepare, 4269 .read_write_emulate = read_emulate, 4270 .read_write_mmio = vcpu_mmio_read, 4271 .read_write_exit_mmio = read_exit_mmio, 4272 }; 4273 4274 static const struct read_write_emulator_ops write_emultor = { 4275 .read_write_emulate = write_emulate, 4276 .read_write_mmio = write_mmio, 4277 .read_write_exit_mmio = write_exit_mmio, 4278 .write = true, 4279 }; 4280 4281 static int emulator_read_write_onepage(unsigned long addr, void *val, 4282 unsigned int bytes, 4283 struct x86_exception *exception, 4284 struct kvm_vcpu *vcpu, 4285 const struct read_write_emulator_ops *ops) 4286 { 4287 gpa_t gpa; 4288 int handled, ret; 4289 bool write = ops->write; 4290 struct kvm_mmio_fragment *frag; 4291 4292 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 4293 4294 if (ret < 0) 4295 return X86EMUL_PROPAGATE_FAULT; 4296 4297 /* For APIC access vmexit */ 4298 if (ret) 4299 goto mmio; 4300 4301 if (ops->read_write_emulate(vcpu, gpa, val, bytes)) 4302 return X86EMUL_CONTINUE; 4303 4304 mmio: 4305 /* 4306 * Is this MMIO handled locally? 4307 */ 4308 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 4309 if (handled == bytes) 4310 return X86EMUL_CONTINUE; 4311 4312 gpa += handled; 4313 bytes -= handled; 4314 val += handled; 4315 4316 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 4317 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 4318 frag->gpa = gpa; 4319 frag->data = val; 4320 frag->len = bytes; 4321 return X86EMUL_CONTINUE; 4322 } 4323 4324 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr, 4325 void *val, unsigned int bytes, 4326 struct x86_exception *exception, 4327 const struct read_write_emulator_ops *ops) 4328 { 4329 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4330 gpa_t gpa; 4331 int rc; 4332 4333 if (ops->read_write_prepare && 4334 ops->read_write_prepare(vcpu, val, bytes)) 4335 return X86EMUL_CONTINUE; 4336 4337 vcpu->mmio_nr_fragments = 0; 4338 4339 /* Crossing a page boundary? */ 4340 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 4341 int now; 4342 4343 now = -addr & ~PAGE_MASK; 4344 rc = emulator_read_write_onepage(addr, val, now, exception, 4345 vcpu, ops); 4346 4347 if (rc != X86EMUL_CONTINUE) 4348 return rc; 4349 addr += now; 4350 val += now; 4351 bytes -= now; 4352 } 4353 4354 rc = emulator_read_write_onepage(addr, val, bytes, exception, 4355 vcpu, ops); 4356 if (rc != X86EMUL_CONTINUE) 4357 return rc; 4358 4359 if (!vcpu->mmio_nr_fragments) 4360 return rc; 4361 4362 gpa = vcpu->mmio_fragments[0].gpa; 4363 4364 vcpu->mmio_needed = 1; 4365 vcpu->mmio_cur_fragment = 0; 4366 4367 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 4368 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 4369 vcpu->run->exit_reason = KVM_EXIT_MMIO; 4370 vcpu->run->mmio.phys_addr = gpa; 4371 4372 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 4373 } 4374 4375 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 4376 unsigned long addr, 4377 void *val, 4378 unsigned int bytes, 4379 struct x86_exception *exception) 4380 { 4381 return emulator_read_write(ctxt, addr, val, bytes, 4382 exception, &read_emultor); 4383 } 4384 4385 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 4386 unsigned long addr, 4387 const void *val, 4388 unsigned int bytes, 4389 struct x86_exception *exception) 4390 { 4391 return emulator_read_write(ctxt, addr, (void *)val, bytes, 4392 exception, &write_emultor); 4393 } 4394 4395 #define CMPXCHG_TYPE(t, ptr, old, new) \ 4396 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 4397 4398 #ifdef CONFIG_X86_64 4399 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 4400 #else 4401 # define CMPXCHG64(ptr, old, new) \ 4402 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 4403 #endif 4404 4405 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 4406 unsigned long addr, 4407 const void *old, 4408 const void *new, 4409 unsigned int bytes, 4410 struct x86_exception *exception) 4411 { 4412 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4413 gpa_t gpa; 4414 struct page *page; 4415 char *kaddr; 4416 bool exchanged; 4417 4418 /* guests cmpxchg8b have to be emulated atomically */ 4419 if (bytes > 8 || (bytes & (bytes - 1))) 4420 goto emul_write; 4421 4422 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 4423 4424 if (gpa == UNMAPPED_GVA || 4425 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 4426 goto emul_write; 4427 4428 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) 4429 goto emul_write; 4430 4431 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT); 4432 if (is_error_page(page)) 4433 goto emul_write; 4434 4435 kaddr = kmap_atomic(page); 4436 kaddr += offset_in_page(gpa); 4437 switch (bytes) { 4438 case 1: 4439 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 4440 break; 4441 case 2: 4442 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 4443 break; 4444 case 4: 4445 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 4446 break; 4447 case 8: 4448 exchanged = CMPXCHG64(kaddr, old, new); 4449 break; 4450 default: 4451 BUG(); 4452 } 4453 kunmap_atomic(kaddr); 4454 kvm_release_page_dirty(page); 4455 4456 if (!exchanged) 4457 return X86EMUL_CMPXCHG_FAILED; 4458 4459 mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT); 4460 kvm_mmu_pte_write(vcpu, gpa, new, bytes); 4461 4462 return X86EMUL_CONTINUE; 4463 4464 emul_write: 4465 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 4466 4467 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 4468 } 4469 4470 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 4471 { 4472 /* TODO: String I/O for in kernel device */ 4473 int r; 4474 4475 if (vcpu->arch.pio.in) 4476 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port, 4477 vcpu->arch.pio.size, pd); 4478 else 4479 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS, 4480 vcpu->arch.pio.port, vcpu->arch.pio.size, 4481 pd); 4482 return r; 4483 } 4484 4485 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 4486 unsigned short port, void *val, 4487 unsigned int count, bool in) 4488 { 4489 trace_kvm_pio(!in, port, size, count); 4490 4491 vcpu->arch.pio.port = port; 4492 vcpu->arch.pio.in = in; 4493 vcpu->arch.pio.count = count; 4494 vcpu->arch.pio.size = size; 4495 4496 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 4497 vcpu->arch.pio.count = 0; 4498 return 1; 4499 } 4500 4501 vcpu->run->exit_reason = KVM_EXIT_IO; 4502 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 4503 vcpu->run->io.size = size; 4504 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 4505 vcpu->run->io.count = count; 4506 vcpu->run->io.port = port; 4507 4508 return 0; 4509 } 4510 4511 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 4512 int size, unsigned short port, void *val, 4513 unsigned int count) 4514 { 4515 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4516 int ret; 4517 4518 if (vcpu->arch.pio.count) 4519 goto data_avail; 4520 4521 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 4522 if (ret) { 4523 data_avail: 4524 memcpy(val, vcpu->arch.pio_data, size * count); 4525 vcpu->arch.pio.count = 0; 4526 return 1; 4527 } 4528 4529 return 0; 4530 } 4531 4532 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 4533 int size, unsigned short port, 4534 const void *val, unsigned int count) 4535 { 4536 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4537 4538 memcpy(vcpu->arch.pio_data, val, size * count); 4539 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 4540 } 4541 4542 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 4543 { 4544 return kvm_x86_ops->get_segment_base(vcpu, seg); 4545 } 4546 4547 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 4548 { 4549 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 4550 } 4551 4552 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 4553 { 4554 if (!need_emulate_wbinvd(vcpu)) 4555 return X86EMUL_CONTINUE; 4556 4557 if (kvm_x86_ops->has_wbinvd_exit()) { 4558 int cpu = get_cpu(); 4559 4560 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4561 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 4562 wbinvd_ipi, NULL, 1); 4563 put_cpu(); 4564 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 4565 } else 4566 wbinvd(); 4567 return X86EMUL_CONTINUE; 4568 } 4569 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 4570 4571 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 4572 { 4573 kvm_emulate_wbinvd(emul_to_vcpu(ctxt)); 4574 } 4575 4576 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest) 4577 { 4578 return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 4579 } 4580 4581 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value) 4582 { 4583 4584 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 4585 } 4586 4587 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 4588 { 4589 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 4590 } 4591 4592 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 4593 { 4594 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4595 unsigned long value; 4596 4597 switch (cr) { 4598 case 0: 4599 value = kvm_read_cr0(vcpu); 4600 break; 4601 case 2: 4602 value = vcpu->arch.cr2; 4603 break; 4604 case 3: 4605 value = kvm_read_cr3(vcpu); 4606 break; 4607 case 4: 4608 value = kvm_read_cr4(vcpu); 4609 break; 4610 case 8: 4611 value = kvm_get_cr8(vcpu); 4612 break; 4613 default: 4614 kvm_err("%s: unexpected cr %u\n", __func__, cr); 4615 return 0; 4616 } 4617 4618 return value; 4619 } 4620 4621 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 4622 { 4623 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4624 int res = 0; 4625 4626 switch (cr) { 4627 case 0: 4628 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 4629 break; 4630 case 2: 4631 vcpu->arch.cr2 = val; 4632 break; 4633 case 3: 4634 res = kvm_set_cr3(vcpu, val); 4635 break; 4636 case 4: 4637 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 4638 break; 4639 case 8: 4640 res = kvm_set_cr8(vcpu, val); 4641 break; 4642 default: 4643 kvm_err("%s: unexpected cr %u\n", __func__, cr); 4644 res = -1; 4645 } 4646 4647 return res; 4648 } 4649 4650 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val) 4651 { 4652 kvm_set_rflags(emul_to_vcpu(ctxt), val); 4653 } 4654 4655 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 4656 { 4657 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); 4658 } 4659 4660 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4661 { 4662 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); 4663 } 4664 4665 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4666 { 4667 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); 4668 } 4669 4670 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4671 { 4672 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); 4673 } 4674 4675 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4676 { 4677 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); 4678 } 4679 4680 static unsigned long emulator_get_cached_segment_base( 4681 struct x86_emulate_ctxt *ctxt, int seg) 4682 { 4683 return get_segment_base(emul_to_vcpu(ctxt), seg); 4684 } 4685 4686 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 4687 struct desc_struct *desc, u32 *base3, 4688 int seg) 4689 { 4690 struct kvm_segment var; 4691 4692 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 4693 *selector = var.selector; 4694 4695 if (var.unusable) { 4696 memset(desc, 0, sizeof(*desc)); 4697 return false; 4698 } 4699 4700 if (var.g) 4701 var.limit >>= 12; 4702 set_desc_limit(desc, var.limit); 4703 set_desc_base(desc, (unsigned long)var.base); 4704 #ifdef CONFIG_X86_64 4705 if (base3) 4706 *base3 = var.base >> 32; 4707 #endif 4708 desc->type = var.type; 4709 desc->s = var.s; 4710 desc->dpl = var.dpl; 4711 desc->p = var.present; 4712 desc->avl = var.avl; 4713 desc->l = var.l; 4714 desc->d = var.db; 4715 desc->g = var.g; 4716 4717 return true; 4718 } 4719 4720 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 4721 struct desc_struct *desc, u32 base3, 4722 int seg) 4723 { 4724 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4725 struct kvm_segment var; 4726 4727 var.selector = selector; 4728 var.base = get_desc_base(desc); 4729 #ifdef CONFIG_X86_64 4730 var.base |= ((u64)base3) << 32; 4731 #endif 4732 var.limit = get_desc_limit(desc); 4733 if (desc->g) 4734 var.limit = (var.limit << 12) | 0xfff; 4735 var.type = desc->type; 4736 var.present = desc->p; 4737 var.dpl = desc->dpl; 4738 var.db = desc->d; 4739 var.s = desc->s; 4740 var.l = desc->l; 4741 var.g = desc->g; 4742 var.avl = desc->avl; 4743 var.present = desc->p; 4744 var.unusable = !var.present; 4745 var.padding = 0; 4746 4747 kvm_set_segment(vcpu, &var, seg); 4748 return; 4749 } 4750 4751 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 4752 u32 msr_index, u64 *pdata) 4753 { 4754 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 4755 } 4756 4757 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 4758 u32 msr_index, u64 data) 4759 { 4760 struct msr_data msr; 4761 4762 msr.data = data; 4763 msr.index = msr_index; 4764 msr.host_initiated = false; 4765 return kvm_set_msr(emul_to_vcpu(ctxt), &msr); 4766 } 4767 4768 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 4769 u32 pmc, u64 *pdata) 4770 { 4771 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata); 4772 } 4773 4774 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 4775 { 4776 emul_to_vcpu(ctxt)->arch.halt_request = 1; 4777 } 4778 4779 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt) 4780 { 4781 preempt_disable(); 4782 kvm_load_guest_fpu(emul_to_vcpu(ctxt)); 4783 /* 4784 * CR0.TS may reference the host fpu state, not the guest fpu state, 4785 * so it may be clear at this point. 4786 */ 4787 clts(); 4788 } 4789 4790 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt) 4791 { 4792 preempt_enable(); 4793 } 4794 4795 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 4796 struct x86_instruction_info *info, 4797 enum x86_intercept_stage stage) 4798 { 4799 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); 4800 } 4801 4802 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 4803 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx) 4804 { 4805 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx); 4806 } 4807 4808 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 4809 { 4810 return kvm_register_read(emul_to_vcpu(ctxt), reg); 4811 } 4812 4813 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 4814 { 4815 kvm_register_write(emul_to_vcpu(ctxt), reg, val); 4816 } 4817 4818 static const struct x86_emulate_ops emulate_ops = { 4819 .read_gpr = emulator_read_gpr, 4820 .write_gpr = emulator_write_gpr, 4821 .read_std = kvm_read_guest_virt_system, 4822 .write_std = kvm_write_guest_virt_system, 4823 .fetch = kvm_fetch_guest_virt, 4824 .read_emulated = emulator_read_emulated, 4825 .write_emulated = emulator_write_emulated, 4826 .cmpxchg_emulated = emulator_cmpxchg_emulated, 4827 .invlpg = emulator_invlpg, 4828 .pio_in_emulated = emulator_pio_in_emulated, 4829 .pio_out_emulated = emulator_pio_out_emulated, 4830 .get_segment = emulator_get_segment, 4831 .set_segment = emulator_set_segment, 4832 .get_cached_segment_base = emulator_get_cached_segment_base, 4833 .get_gdt = emulator_get_gdt, 4834 .get_idt = emulator_get_idt, 4835 .set_gdt = emulator_set_gdt, 4836 .set_idt = emulator_set_idt, 4837 .get_cr = emulator_get_cr, 4838 .set_cr = emulator_set_cr, 4839 .set_rflags = emulator_set_rflags, 4840 .cpl = emulator_get_cpl, 4841 .get_dr = emulator_get_dr, 4842 .set_dr = emulator_set_dr, 4843 .set_msr = emulator_set_msr, 4844 .get_msr = emulator_get_msr, 4845 .read_pmc = emulator_read_pmc, 4846 .halt = emulator_halt, 4847 .wbinvd = emulator_wbinvd, 4848 .fix_hypercall = emulator_fix_hypercall, 4849 .get_fpu = emulator_get_fpu, 4850 .put_fpu = emulator_put_fpu, 4851 .intercept = emulator_intercept, 4852 .get_cpuid = emulator_get_cpuid, 4853 }; 4854 4855 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 4856 { 4857 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask); 4858 /* 4859 * an sti; sti; sequence only disable interrupts for the first 4860 * instruction. So, if the last instruction, be it emulated or 4861 * not, left the system with the INT_STI flag enabled, it 4862 * means that the last instruction is an sti. We should not 4863 * leave the flag on in this case. The same goes for mov ss 4864 */ 4865 if (!(int_shadow & mask)) 4866 kvm_x86_ops->set_interrupt_shadow(vcpu, mask); 4867 } 4868 4869 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 4870 { 4871 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4872 if (ctxt->exception.vector == PF_VECTOR) 4873 kvm_propagate_fault(vcpu, &ctxt->exception); 4874 else if (ctxt->exception.error_code_valid) 4875 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 4876 ctxt->exception.error_code); 4877 else 4878 kvm_queue_exception(vcpu, ctxt->exception.vector); 4879 } 4880 4881 static void init_decode_cache(struct x86_emulate_ctxt *ctxt) 4882 { 4883 memset(&ctxt->opcode_len, 0, 4884 (void *)&ctxt->_regs - (void *)&ctxt->opcode_len); 4885 4886 ctxt->fetch.start = 0; 4887 ctxt->fetch.end = 0; 4888 ctxt->io_read.pos = 0; 4889 ctxt->io_read.end = 0; 4890 ctxt->mem_read.pos = 0; 4891 ctxt->mem_read.end = 0; 4892 } 4893 4894 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 4895 { 4896 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4897 int cs_db, cs_l; 4898 4899 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 4900 4901 ctxt->eflags = kvm_get_rflags(vcpu); 4902 ctxt->eip = kvm_rip_read(vcpu); 4903 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 4904 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 4905 cs_l ? X86EMUL_MODE_PROT64 : 4906 cs_db ? X86EMUL_MODE_PROT32 : 4907 X86EMUL_MODE_PROT16; 4908 ctxt->guest_mode = is_guest_mode(vcpu); 4909 4910 init_decode_cache(ctxt); 4911 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 4912 } 4913 4914 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 4915 { 4916 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4917 int ret; 4918 4919 init_emulate_ctxt(vcpu); 4920 4921 ctxt->op_bytes = 2; 4922 ctxt->ad_bytes = 2; 4923 ctxt->_eip = ctxt->eip + inc_eip; 4924 ret = emulate_int_real(ctxt, irq); 4925 4926 if (ret != X86EMUL_CONTINUE) 4927 return EMULATE_FAIL; 4928 4929 ctxt->eip = ctxt->_eip; 4930 kvm_rip_write(vcpu, ctxt->eip); 4931 kvm_set_rflags(vcpu, ctxt->eflags); 4932 4933 if (irq == NMI_VECTOR) 4934 vcpu->arch.nmi_pending = 0; 4935 else 4936 vcpu->arch.interrupt.pending = false; 4937 4938 return EMULATE_DONE; 4939 } 4940 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 4941 4942 static int handle_emulation_failure(struct kvm_vcpu *vcpu) 4943 { 4944 int r = EMULATE_DONE; 4945 4946 ++vcpu->stat.insn_emulation_fail; 4947 trace_kvm_emulate_insn_failed(vcpu); 4948 if (!is_guest_mode(vcpu)) { 4949 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4950 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 4951 vcpu->run->internal.ndata = 0; 4952 r = EMULATE_FAIL; 4953 } 4954 kvm_queue_exception(vcpu, UD_VECTOR); 4955 4956 return r; 4957 } 4958 4959 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2, 4960 bool write_fault_to_shadow_pgtable, 4961 int emulation_type) 4962 { 4963 gpa_t gpa = cr2; 4964 pfn_t pfn; 4965 4966 if (emulation_type & EMULTYPE_NO_REEXECUTE) 4967 return false; 4968 4969 if (!vcpu->arch.mmu.direct_map) { 4970 /* 4971 * Write permission should be allowed since only 4972 * write access need to be emulated. 4973 */ 4974 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 4975 4976 /* 4977 * If the mapping is invalid in guest, let cpu retry 4978 * it to generate fault. 4979 */ 4980 if (gpa == UNMAPPED_GVA) 4981 return true; 4982 } 4983 4984 /* 4985 * Do not retry the unhandleable instruction if it faults on the 4986 * readonly host memory, otherwise it will goto a infinite loop: 4987 * retry instruction -> write #PF -> emulation fail -> retry 4988 * instruction -> ... 4989 */ 4990 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 4991 4992 /* 4993 * If the instruction failed on the error pfn, it can not be fixed, 4994 * report the error to userspace. 4995 */ 4996 if (is_error_noslot_pfn(pfn)) 4997 return false; 4998 4999 kvm_release_pfn_clean(pfn); 5000 5001 /* The instructions are well-emulated on direct mmu. */ 5002 if (vcpu->arch.mmu.direct_map) { 5003 unsigned int indirect_shadow_pages; 5004 5005 spin_lock(&vcpu->kvm->mmu_lock); 5006 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 5007 spin_unlock(&vcpu->kvm->mmu_lock); 5008 5009 if (indirect_shadow_pages) 5010 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5011 5012 return true; 5013 } 5014 5015 /* 5016 * if emulation was due to access to shadowed page table 5017 * and it failed try to unshadow page and re-enter the 5018 * guest to let CPU execute the instruction. 5019 */ 5020 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5021 5022 /* 5023 * If the access faults on its page table, it can not 5024 * be fixed by unprotecting shadow page and it should 5025 * be reported to userspace. 5026 */ 5027 return !write_fault_to_shadow_pgtable; 5028 } 5029 5030 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 5031 unsigned long cr2, int emulation_type) 5032 { 5033 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5034 unsigned long last_retry_eip, last_retry_addr, gpa = cr2; 5035 5036 last_retry_eip = vcpu->arch.last_retry_eip; 5037 last_retry_addr = vcpu->arch.last_retry_addr; 5038 5039 /* 5040 * If the emulation is caused by #PF and it is non-page_table 5041 * writing instruction, it means the VM-EXIT is caused by shadow 5042 * page protected, we can zap the shadow page and retry this 5043 * instruction directly. 5044 * 5045 * Note: if the guest uses a non-page-table modifying instruction 5046 * on the PDE that points to the instruction, then we will unmap 5047 * the instruction and go to an infinite loop. So, we cache the 5048 * last retried eip and the last fault address, if we meet the eip 5049 * and the address again, we can break out of the potential infinite 5050 * loop. 5051 */ 5052 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 5053 5054 if (!(emulation_type & EMULTYPE_RETRY)) 5055 return false; 5056 5057 if (x86_page_table_writing_insn(ctxt)) 5058 return false; 5059 5060 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) 5061 return false; 5062 5063 vcpu->arch.last_retry_eip = ctxt->eip; 5064 vcpu->arch.last_retry_addr = cr2; 5065 5066 if (!vcpu->arch.mmu.direct_map) 5067 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 5068 5069 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5070 5071 return true; 5072 } 5073 5074 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 5075 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 5076 5077 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 5078 unsigned long *db) 5079 { 5080 u32 dr6 = 0; 5081 int i; 5082 u32 enable, rwlen; 5083 5084 enable = dr7; 5085 rwlen = dr7 >> 16; 5086 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 5087 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 5088 dr6 |= (1 << i); 5089 return dr6; 5090 } 5091 5092 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, int *r) 5093 { 5094 struct kvm_run *kvm_run = vcpu->run; 5095 5096 /* 5097 * Use the "raw" value to see if TF was passed to the processor. 5098 * Note that the new value of the flags has not been saved yet. 5099 * 5100 * This is correct even for TF set by the guest, because "the 5101 * processor will not generate this exception after the instruction 5102 * that sets the TF flag". 5103 */ 5104 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); 5105 5106 if (unlikely(rflags & X86_EFLAGS_TF)) { 5107 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 5108 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1; 5109 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip; 5110 kvm_run->debug.arch.exception = DB_VECTOR; 5111 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5112 *r = EMULATE_USER_EXIT; 5113 } else { 5114 vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF; 5115 /* 5116 * "Certain debug exceptions may clear bit 0-3. The 5117 * remaining contents of the DR6 register are never 5118 * cleared by the processor". 5119 */ 5120 vcpu->arch.dr6 &= ~15; 5121 vcpu->arch.dr6 |= DR6_BS; 5122 kvm_queue_exception(vcpu, DB_VECTOR); 5123 } 5124 } 5125 } 5126 5127 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) 5128 { 5129 struct kvm_run *kvm_run = vcpu->run; 5130 unsigned long eip = vcpu->arch.emulate_ctxt.eip; 5131 u32 dr6 = 0; 5132 5133 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 5134 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 5135 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 5136 vcpu->arch.guest_debug_dr7, 5137 vcpu->arch.eff_db); 5138 5139 if (dr6 != 0) { 5140 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1; 5141 kvm_run->debug.arch.pc = kvm_rip_read(vcpu) + 5142 get_segment_base(vcpu, VCPU_SREG_CS); 5143 5144 kvm_run->debug.arch.exception = DB_VECTOR; 5145 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5146 *r = EMULATE_USER_EXIT; 5147 return true; 5148 } 5149 } 5150 5151 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK)) { 5152 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 5153 vcpu->arch.dr7, 5154 vcpu->arch.db); 5155 5156 if (dr6 != 0) { 5157 vcpu->arch.dr6 &= ~15; 5158 vcpu->arch.dr6 |= dr6; 5159 kvm_queue_exception(vcpu, DB_VECTOR); 5160 *r = EMULATE_DONE; 5161 return true; 5162 } 5163 } 5164 5165 return false; 5166 } 5167 5168 int x86_emulate_instruction(struct kvm_vcpu *vcpu, 5169 unsigned long cr2, 5170 int emulation_type, 5171 void *insn, 5172 int insn_len) 5173 { 5174 int r; 5175 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5176 bool writeback = true; 5177 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 5178 5179 /* 5180 * Clear write_fault_to_shadow_pgtable here to ensure it is 5181 * never reused. 5182 */ 5183 vcpu->arch.write_fault_to_shadow_pgtable = false; 5184 kvm_clear_exception_queue(vcpu); 5185 5186 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 5187 init_emulate_ctxt(vcpu); 5188 5189 /* 5190 * We will reenter on the same instruction since 5191 * we do not set complete_userspace_io. This does not 5192 * handle watchpoints yet, those would be handled in 5193 * the emulate_ops. 5194 */ 5195 if (kvm_vcpu_check_breakpoint(vcpu, &r)) 5196 return r; 5197 5198 ctxt->interruptibility = 0; 5199 ctxt->have_exception = false; 5200 ctxt->perm_ok = false; 5201 5202 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD; 5203 5204 r = x86_decode_insn(ctxt, insn, insn_len); 5205 5206 trace_kvm_emulate_insn_start(vcpu); 5207 ++vcpu->stat.insn_emulation; 5208 if (r != EMULATION_OK) { 5209 if (emulation_type & EMULTYPE_TRAP_UD) 5210 return EMULATE_FAIL; 5211 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 5212 emulation_type)) 5213 return EMULATE_DONE; 5214 if (emulation_type & EMULTYPE_SKIP) 5215 return EMULATE_FAIL; 5216 return handle_emulation_failure(vcpu); 5217 } 5218 } 5219 5220 if (emulation_type & EMULTYPE_SKIP) { 5221 kvm_rip_write(vcpu, ctxt->_eip); 5222 return EMULATE_DONE; 5223 } 5224 5225 if (retry_instruction(ctxt, cr2, emulation_type)) 5226 return EMULATE_DONE; 5227 5228 /* this is needed for vmware backdoor interface to work since it 5229 changes registers values during IO operation */ 5230 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 5231 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 5232 emulator_invalidate_register_cache(ctxt); 5233 } 5234 5235 restart: 5236 r = x86_emulate_insn(ctxt); 5237 5238 if (r == EMULATION_INTERCEPTED) 5239 return EMULATE_DONE; 5240 5241 if (r == EMULATION_FAILED) { 5242 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 5243 emulation_type)) 5244 return EMULATE_DONE; 5245 5246 return handle_emulation_failure(vcpu); 5247 } 5248 5249 if (ctxt->have_exception) { 5250 inject_emulated_exception(vcpu); 5251 r = EMULATE_DONE; 5252 } else if (vcpu->arch.pio.count) { 5253 if (!vcpu->arch.pio.in) { 5254 /* FIXME: return into emulator if single-stepping. */ 5255 vcpu->arch.pio.count = 0; 5256 } else { 5257 writeback = false; 5258 vcpu->arch.complete_userspace_io = complete_emulated_pio; 5259 } 5260 r = EMULATE_USER_EXIT; 5261 } else if (vcpu->mmio_needed) { 5262 if (!vcpu->mmio_is_write) 5263 writeback = false; 5264 r = EMULATE_USER_EXIT; 5265 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 5266 } else if (r == EMULATION_RESTART) 5267 goto restart; 5268 else 5269 r = EMULATE_DONE; 5270 5271 if (writeback) { 5272 toggle_interruptibility(vcpu, ctxt->interruptibility); 5273 kvm_make_request(KVM_REQ_EVENT, vcpu); 5274 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 5275 kvm_rip_write(vcpu, ctxt->eip); 5276 if (r == EMULATE_DONE) 5277 kvm_vcpu_check_singlestep(vcpu, &r); 5278 kvm_set_rflags(vcpu, ctxt->eflags); 5279 } else 5280 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 5281 5282 return r; 5283 } 5284 EXPORT_SYMBOL_GPL(x86_emulate_instruction); 5285 5286 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) 5287 { 5288 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); 5289 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, 5290 size, port, &val, 1); 5291 /* do not return to emulator after return from userspace */ 5292 vcpu->arch.pio.count = 0; 5293 return ret; 5294 } 5295 EXPORT_SYMBOL_GPL(kvm_fast_pio_out); 5296 5297 static void tsc_bad(void *info) 5298 { 5299 __this_cpu_write(cpu_tsc_khz, 0); 5300 } 5301 5302 static void tsc_khz_changed(void *data) 5303 { 5304 struct cpufreq_freqs *freq = data; 5305 unsigned long khz = 0; 5306 5307 if (data) 5308 khz = freq->new; 5309 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 5310 khz = cpufreq_quick_get(raw_smp_processor_id()); 5311 if (!khz) 5312 khz = tsc_khz; 5313 __this_cpu_write(cpu_tsc_khz, khz); 5314 } 5315 5316 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 5317 void *data) 5318 { 5319 struct cpufreq_freqs *freq = data; 5320 struct kvm *kvm; 5321 struct kvm_vcpu *vcpu; 5322 int i, send_ipi = 0; 5323 5324 /* 5325 * We allow guests to temporarily run on slowing clocks, 5326 * provided we notify them after, or to run on accelerating 5327 * clocks, provided we notify them before. Thus time never 5328 * goes backwards. 5329 * 5330 * However, we have a problem. We can't atomically update 5331 * the frequency of a given CPU from this function; it is 5332 * merely a notifier, which can be called from any CPU. 5333 * Changing the TSC frequency at arbitrary points in time 5334 * requires a recomputation of local variables related to 5335 * the TSC for each VCPU. We must flag these local variables 5336 * to be updated and be sure the update takes place with the 5337 * new frequency before any guests proceed. 5338 * 5339 * Unfortunately, the combination of hotplug CPU and frequency 5340 * change creates an intractable locking scenario; the order 5341 * of when these callouts happen is undefined with respect to 5342 * CPU hotplug, and they can race with each other. As such, 5343 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 5344 * undefined; you can actually have a CPU frequency change take 5345 * place in between the computation of X and the setting of the 5346 * variable. To protect against this problem, all updates of 5347 * the per_cpu tsc_khz variable are done in an interrupt 5348 * protected IPI, and all callers wishing to update the value 5349 * must wait for a synchronous IPI to complete (which is trivial 5350 * if the caller is on the CPU already). This establishes the 5351 * necessary total order on variable updates. 5352 * 5353 * Note that because a guest time update may take place 5354 * anytime after the setting of the VCPU's request bit, the 5355 * correct TSC value must be set before the request. However, 5356 * to ensure the update actually makes it to any guest which 5357 * starts running in hardware virtualization between the set 5358 * and the acquisition of the spinlock, we must also ping the 5359 * CPU after setting the request bit. 5360 * 5361 */ 5362 5363 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 5364 return 0; 5365 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 5366 return 0; 5367 5368 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 5369 5370 spin_lock(&kvm_lock); 5371 list_for_each_entry(kvm, &vm_list, vm_list) { 5372 kvm_for_each_vcpu(i, vcpu, kvm) { 5373 if (vcpu->cpu != freq->cpu) 5374 continue; 5375 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5376 if (vcpu->cpu != smp_processor_id()) 5377 send_ipi = 1; 5378 } 5379 } 5380 spin_unlock(&kvm_lock); 5381 5382 if (freq->old < freq->new && send_ipi) { 5383 /* 5384 * We upscale the frequency. Must make the guest 5385 * doesn't see old kvmclock values while running with 5386 * the new frequency, otherwise we risk the guest sees 5387 * time go backwards. 5388 * 5389 * In case we update the frequency for another cpu 5390 * (which might be in guest context) send an interrupt 5391 * to kick the cpu out of guest context. Next time 5392 * guest context is entered kvmclock will be updated, 5393 * so the guest will not see stale values. 5394 */ 5395 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 5396 } 5397 return 0; 5398 } 5399 5400 static struct notifier_block kvmclock_cpufreq_notifier_block = { 5401 .notifier_call = kvmclock_cpufreq_notifier 5402 }; 5403 5404 static int kvmclock_cpu_notifier(struct notifier_block *nfb, 5405 unsigned long action, void *hcpu) 5406 { 5407 unsigned int cpu = (unsigned long)hcpu; 5408 5409 switch (action) { 5410 case CPU_ONLINE: 5411 case CPU_DOWN_FAILED: 5412 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); 5413 break; 5414 case CPU_DOWN_PREPARE: 5415 smp_call_function_single(cpu, tsc_bad, NULL, 1); 5416 break; 5417 } 5418 return NOTIFY_OK; 5419 } 5420 5421 static struct notifier_block kvmclock_cpu_notifier_block = { 5422 .notifier_call = kvmclock_cpu_notifier, 5423 .priority = -INT_MAX 5424 }; 5425 5426 static void kvm_timer_init(void) 5427 { 5428 int cpu; 5429 5430 max_tsc_khz = tsc_khz; 5431 5432 cpu_notifier_register_begin(); 5433 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 5434 #ifdef CONFIG_CPU_FREQ 5435 struct cpufreq_policy policy; 5436 memset(&policy, 0, sizeof(policy)); 5437 cpu = get_cpu(); 5438 cpufreq_get_policy(&policy, cpu); 5439 if (policy.cpuinfo.max_freq) 5440 max_tsc_khz = policy.cpuinfo.max_freq; 5441 put_cpu(); 5442 #endif 5443 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 5444 CPUFREQ_TRANSITION_NOTIFIER); 5445 } 5446 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); 5447 for_each_online_cpu(cpu) 5448 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); 5449 5450 __register_hotcpu_notifier(&kvmclock_cpu_notifier_block); 5451 cpu_notifier_register_done(); 5452 5453 } 5454 5455 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 5456 5457 int kvm_is_in_guest(void) 5458 { 5459 return __this_cpu_read(current_vcpu) != NULL; 5460 } 5461 5462 static int kvm_is_user_mode(void) 5463 { 5464 int user_mode = 3; 5465 5466 if (__this_cpu_read(current_vcpu)) 5467 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); 5468 5469 return user_mode != 0; 5470 } 5471 5472 static unsigned long kvm_get_guest_ip(void) 5473 { 5474 unsigned long ip = 0; 5475 5476 if (__this_cpu_read(current_vcpu)) 5477 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 5478 5479 return ip; 5480 } 5481 5482 static struct perf_guest_info_callbacks kvm_guest_cbs = { 5483 .is_in_guest = kvm_is_in_guest, 5484 .is_user_mode = kvm_is_user_mode, 5485 .get_guest_ip = kvm_get_guest_ip, 5486 }; 5487 5488 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu) 5489 { 5490 __this_cpu_write(current_vcpu, vcpu); 5491 } 5492 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi); 5493 5494 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu) 5495 { 5496 __this_cpu_write(current_vcpu, NULL); 5497 } 5498 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi); 5499 5500 static void kvm_set_mmio_spte_mask(void) 5501 { 5502 u64 mask; 5503 int maxphyaddr = boot_cpu_data.x86_phys_bits; 5504 5505 /* 5506 * Set the reserved bits and the present bit of an paging-structure 5507 * entry to generate page fault with PFER.RSV = 1. 5508 */ 5509 /* Mask the reserved physical address bits. */ 5510 mask = ((1ull << (51 - maxphyaddr + 1)) - 1) << maxphyaddr; 5511 5512 /* Bit 62 is always reserved for 32bit host. */ 5513 mask |= 0x3ull << 62; 5514 5515 /* Set the present bit. */ 5516 mask |= 1ull; 5517 5518 #ifdef CONFIG_X86_64 5519 /* 5520 * If reserved bit is not supported, clear the present bit to disable 5521 * mmio page fault. 5522 */ 5523 if (maxphyaddr == 52) 5524 mask &= ~1ull; 5525 #endif 5526 5527 kvm_mmu_set_mmio_spte_mask(mask); 5528 } 5529 5530 #ifdef CONFIG_X86_64 5531 static void pvclock_gtod_update_fn(struct work_struct *work) 5532 { 5533 struct kvm *kvm; 5534 5535 struct kvm_vcpu *vcpu; 5536 int i; 5537 5538 spin_lock(&kvm_lock); 5539 list_for_each_entry(kvm, &vm_list, vm_list) 5540 kvm_for_each_vcpu(i, vcpu, kvm) 5541 set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests); 5542 atomic_set(&kvm_guest_has_master_clock, 0); 5543 spin_unlock(&kvm_lock); 5544 } 5545 5546 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 5547 5548 /* 5549 * Notification about pvclock gtod data update. 5550 */ 5551 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 5552 void *priv) 5553 { 5554 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 5555 struct timekeeper *tk = priv; 5556 5557 update_pvclock_gtod(tk); 5558 5559 /* disable master clock if host does not trust, or does not 5560 * use, TSC clocksource 5561 */ 5562 if (gtod->clock.vclock_mode != VCLOCK_TSC && 5563 atomic_read(&kvm_guest_has_master_clock) != 0) 5564 queue_work(system_long_wq, &pvclock_gtod_work); 5565 5566 return 0; 5567 } 5568 5569 static struct notifier_block pvclock_gtod_notifier = { 5570 .notifier_call = pvclock_gtod_notify, 5571 }; 5572 #endif 5573 5574 int kvm_arch_init(void *opaque) 5575 { 5576 int r; 5577 struct kvm_x86_ops *ops = opaque; 5578 5579 if (kvm_x86_ops) { 5580 printk(KERN_ERR "kvm: already loaded the other module\n"); 5581 r = -EEXIST; 5582 goto out; 5583 } 5584 5585 if (!ops->cpu_has_kvm_support()) { 5586 printk(KERN_ERR "kvm: no hardware support\n"); 5587 r = -EOPNOTSUPP; 5588 goto out; 5589 } 5590 if (ops->disabled_by_bios()) { 5591 printk(KERN_ERR "kvm: disabled by bios\n"); 5592 r = -EOPNOTSUPP; 5593 goto out; 5594 } 5595 5596 r = -ENOMEM; 5597 shared_msrs = alloc_percpu(struct kvm_shared_msrs); 5598 if (!shared_msrs) { 5599 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n"); 5600 goto out; 5601 } 5602 5603 r = kvm_mmu_module_init(); 5604 if (r) 5605 goto out_free_percpu; 5606 5607 kvm_set_mmio_spte_mask(); 5608 5609 kvm_x86_ops = ops; 5610 kvm_init_msr_list(); 5611 5612 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 5613 PT_DIRTY_MASK, PT64_NX_MASK, 0); 5614 5615 kvm_timer_init(); 5616 5617 perf_register_guest_info_callbacks(&kvm_guest_cbs); 5618 5619 if (cpu_has_xsave) 5620 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 5621 5622 kvm_lapic_init(); 5623 #ifdef CONFIG_X86_64 5624 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 5625 #endif 5626 5627 return 0; 5628 5629 out_free_percpu: 5630 free_percpu(shared_msrs); 5631 out: 5632 return r; 5633 } 5634 5635 void kvm_arch_exit(void) 5636 { 5637 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 5638 5639 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 5640 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 5641 CPUFREQ_TRANSITION_NOTIFIER); 5642 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block); 5643 #ifdef CONFIG_X86_64 5644 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 5645 #endif 5646 kvm_x86_ops = NULL; 5647 kvm_mmu_module_exit(); 5648 free_percpu(shared_msrs); 5649 } 5650 5651 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 5652 { 5653 ++vcpu->stat.halt_exits; 5654 if (irqchip_in_kernel(vcpu->kvm)) { 5655 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 5656 return 1; 5657 } else { 5658 vcpu->run->exit_reason = KVM_EXIT_HLT; 5659 return 0; 5660 } 5661 } 5662 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 5663 5664 int kvm_hv_hypercall(struct kvm_vcpu *vcpu) 5665 { 5666 u64 param, ingpa, outgpa, ret; 5667 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0; 5668 bool fast, longmode; 5669 int cs_db, cs_l; 5670 5671 /* 5672 * hypercall generates UD from non zero cpl and real mode 5673 * per HYPER-V spec 5674 */ 5675 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) { 5676 kvm_queue_exception(vcpu, UD_VECTOR); 5677 return 0; 5678 } 5679 5680 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 5681 longmode = is_long_mode(vcpu) && cs_l == 1; 5682 5683 if (!longmode) { 5684 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) | 5685 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff); 5686 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) | 5687 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff); 5688 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) | 5689 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff); 5690 } 5691 #ifdef CONFIG_X86_64 5692 else { 5693 param = kvm_register_read(vcpu, VCPU_REGS_RCX); 5694 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX); 5695 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8); 5696 } 5697 #endif 5698 5699 code = param & 0xffff; 5700 fast = (param >> 16) & 0x1; 5701 rep_cnt = (param >> 32) & 0xfff; 5702 rep_idx = (param >> 48) & 0xfff; 5703 5704 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa); 5705 5706 switch (code) { 5707 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT: 5708 kvm_vcpu_on_spin(vcpu); 5709 break; 5710 default: 5711 res = HV_STATUS_INVALID_HYPERCALL_CODE; 5712 break; 5713 } 5714 5715 ret = res | (((u64)rep_done & 0xfff) << 32); 5716 if (longmode) { 5717 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 5718 } else { 5719 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32); 5720 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff); 5721 } 5722 5723 return 1; 5724 } 5725 5726 /* 5727 * kvm_pv_kick_cpu_op: Kick a vcpu. 5728 * 5729 * @apicid - apicid of vcpu to be kicked. 5730 */ 5731 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) 5732 { 5733 struct kvm_lapic_irq lapic_irq; 5734 5735 lapic_irq.shorthand = 0; 5736 lapic_irq.dest_mode = 0; 5737 lapic_irq.dest_id = apicid; 5738 5739 lapic_irq.delivery_mode = APIC_DM_REMRD; 5740 kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL); 5741 } 5742 5743 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 5744 { 5745 unsigned long nr, a0, a1, a2, a3, ret; 5746 int r = 1; 5747 5748 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 5749 return kvm_hv_hypercall(vcpu); 5750 5751 nr = kvm_register_read(vcpu, VCPU_REGS_RAX); 5752 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); 5753 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); 5754 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); 5755 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); 5756 5757 trace_kvm_hypercall(nr, a0, a1, a2, a3); 5758 5759 if (!is_long_mode(vcpu)) { 5760 nr &= 0xFFFFFFFF; 5761 a0 &= 0xFFFFFFFF; 5762 a1 &= 0xFFFFFFFF; 5763 a2 &= 0xFFFFFFFF; 5764 a3 &= 0xFFFFFFFF; 5765 } 5766 5767 if (kvm_x86_ops->get_cpl(vcpu) != 0) { 5768 ret = -KVM_EPERM; 5769 goto out; 5770 } 5771 5772 switch (nr) { 5773 case KVM_HC_VAPIC_POLL_IRQ: 5774 ret = 0; 5775 break; 5776 case KVM_HC_KICK_CPU: 5777 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); 5778 ret = 0; 5779 break; 5780 default: 5781 ret = -KVM_ENOSYS; 5782 break; 5783 } 5784 out: 5785 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 5786 ++vcpu->stat.hypercalls; 5787 return r; 5788 } 5789 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 5790 5791 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 5792 { 5793 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5794 char instruction[3]; 5795 unsigned long rip = kvm_rip_read(vcpu); 5796 5797 kvm_x86_ops->patch_hypercall(vcpu, instruction); 5798 5799 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL); 5800 } 5801 5802 /* 5803 * Check if userspace requested an interrupt window, and that the 5804 * interrupt window is open. 5805 * 5806 * No need to exit to userspace if we already have an interrupt queued. 5807 */ 5808 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 5809 { 5810 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) && 5811 vcpu->run->request_interrupt_window && 5812 kvm_arch_interrupt_allowed(vcpu)); 5813 } 5814 5815 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 5816 { 5817 struct kvm_run *kvm_run = vcpu->run; 5818 5819 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 5820 kvm_run->cr8 = kvm_get_cr8(vcpu); 5821 kvm_run->apic_base = kvm_get_apic_base(vcpu); 5822 if (irqchip_in_kernel(vcpu->kvm)) 5823 kvm_run->ready_for_interrupt_injection = 1; 5824 else 5825 kvm_run->ready_for_interrupt_injection = 5826 kvm_arch_interrupt_allowed(vcpu) && 5827 !kvm_cpu_has_interrupt(vcpu) && 5828 !kvm_event_needs_reinjection(vcpu); 5829 } 5830 5831 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 5832 { 5833 int max_irr, tpr; 5834 5835 if (!kvm_x86_ops->update_cr8_intercept) 5836 return; 5837 5838 if (!vcpu->arch.apic) 5839 return; 5840 5841 if (!vcpu->arch.apic->vapic_addr) 5842 max_irr = kvm_lapic_find_highest_irr(vcpu); 5843 else 5844 max_irr = -1; 5845 5846 if (max_irr != -1) 5847 max_irr >>= 4; 5848 5849 tpr = kvm_lapic_get_cr8(vcpu); 5850 5851 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); 5852 } 5853 5854 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win) 5855 { 5856 int r; 5857 5858 /* try to reinject previous events if any */ 5859 if (vcpu->arch.exception.pending) { 5860 trace_kvm_inj_exception(vcpu->arch.exception.nr, 5861 vcpu->arch.exception.has_error_code, 5862 vcpu->arch.exception.error_code); 5863 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr, 5864 vcpu->arch.exception.has_error_code, 5865 vcpu->arch.exception.error_code, 5866 vcpu->arch.exception.reinject); 5867 return 0; 5868 } 5869 5870 if (vcpu->arch.nmi_injected) { 5871 kvm_x86_ops->set_nmi(vcpu); 5872 return 0; 5873 } 5874 5875 if (vcpu->arch.interrupt.pending) { 5876 kvm_x86_ops->set_irq(vcpu); 5877 return 0; 5878 } 5879 5880 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { 5881 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); 5882 if (r != 0) 5883 return r; 5884 } 5885 5886 /* try to inject new event if pending */ 5887 if (vcpu->arch.nmi_pending) { 5888 if (kvm_x86_ops->nmi_allowed(vcpu)) { 5889 --vcpu->arch.nmi_pending; 5890 vcpu->arch.nmi_injected = true; 5891 kvm_x86_ops->set_nmi(vcpu); 5892 } 5893 } else if (kvm_cpu_has_injectable_intr(vcpu)) { 5894 if (kvm_x86_ops->interrupt_allowed(vcpu)) { 5895 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), 5896 false); 5897 kvm_x86_ops->set_irq(vcpu); 5898 } 5899 } 5900 return 0; 5901 } 5902 5903 static void process_nmi(struct kvm_vcpu *vcpu) 5904 { 5905 unsigned limit = 2; 5906 5907 /* 5908 * x86 is limited to one NMI running, and one NMI pending after it. 5909 * If an NMI is already in progress, limit further NMIs to just one. 5910 * Otherwise, allow two (and we'll inject the first one immediately). 5911 */ 5912 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 5913 limit = 1; 5914 5915 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 5916 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 5917 kvm_make_request(KVM_REQ_EVENT, vcpu); 5918 } 5919 5920 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 5921 { 5922 u64 eoi_exit_bitmap[4]; 5923 u32 tmr[8]; 5924 5925 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 5926 return; 5927 5928 memset(eoi_exit_bitmap, 0, 32); 5929 memset(tmr, 0, 32); 5930 5931 kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr); 5932 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap); 5933 kvm_apic_update_tmr(vcpu, tmr); 5934 } 5935 5936 /* 5937 * Returns 1 to let __vcpu_run() continue the guest execution loop without 5938 * exiting to the userspace. Otherwise, the value will be returned to the 5939 * userspace. 5940 */ 5941 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 5942 { 5943 int r; 5944 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) && 5945 vcpu->run->request_interrupt_window; 5946 bool req_immediate_exit = false; 5947 5948 if (vcpu->requests) { 5949 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 5950 kvm_mmu_unload(vcpu); 5951 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 5952 __kvm_migrate_timers(vcpu); 5953 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 5954 kvm_gen_update_masterclock(vcpu->kvm); 5955 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 5956 kvm_gen_kvmclock_update(vcpu); 5957 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 5958 r = kvm_guest_time_update(vcpu); 5959 if (unlikely(r)) 5960 goto out; 5961 } 5962 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 5963 kvm_mmu_sync_roots(vcpu); 5964 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 5965 kvm_x86_ops->tlb_flush(vcpu); 5966 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 5967 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 5968 r = 0; 5969 goto out; 5970 } 5971 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 5972 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 5973 r = 0; 5974 goto out; 5975 } 5976 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) { 5977 vcpu->fpu_active = 0; 5978 kvm_x86_ops->fpu_deactivate(vcpu); 5979 } 5980 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 5981 /* Page is swapped out. Do synthetic halt */ 5982 vcpu->arch.apf.halted = true; 5983 r = 1; 5984 goto out; 5985 } 5986 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 5987 record_steal_time(vcpu); 5988 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 5989 process_nmi(vcpu); 5990 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 5991 kvm_handle_pmu_event(vcpu); 5992 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 5993 kvm_deliver_pmi(vcpu); 5994 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 5995 vcpu_scan_ioapic(vcpu); 5996 } 5997 5998 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 5999 kvm_apic_accept_events(vcpu); 6000 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 6001 r = 1; 6002 goto out; 6003 } 6004 6005 if (inject_pending_event(vcpu, req_int_win) != 0) 6006 req_immediate_exit = true; 6007 /* enable NMI/IRQ window open exits if needed */ 6008 else if (vcpu->arch.nmi_pending) 6009 kvm_x86_ops->enable_nmi_window(vcpu); 6010 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win) 6011 kvm_x86_ops->enable_irq_window(vcpu); 6012 6013 if (kvm_lapic_enabled(vcpu)) { 6014 /* 6015 * Update architecture specific hints for APIC 6016 * virtual interrupt delivery. 6017 */ 6018 if (kvm_x86_ops->hwapic_irr_update) 6019 kvm_x86_ops->hwapic_irr_update(vcpu, 6020 kvm_lapic_find_highest_irr(vcpu)); 6021 update_cr8_intercept(vcpu); 6022 kvm_lapic_sync_to_vapic(vcpu); 6023 } 6024 } 6025 6026 r = kvm_mmu_reload(vcpu); 6027 if (unlikely(r)) { 6028 goto cancel_injection; 6029 } 6030 6031 preempt_disable(); 6032 6033 kvm_x86_ops->prepare_guest_switch(vcpu); 6034 if (vcpu->fpu_active) 6035 kvm_load_guest_fpu(vcpu); 6036 kvm_load_guest_xcr0(vcpu); 6037 6038 vcpu->mode = IN_GUEST_MODE; 6039 6040 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 6041 6042 /* We should set ->mode before check ->requests, 6043 * see the comment in make_all_cpus_request. 6044 */ 6045 smp_mb__after_srcu_read_unlock(); 6046 6047 local_irq_disable(); 6048 6049 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests 6050 || need_resched() || signal_pending(current)) { 6051 vcpu->mode = OUTSIDE_GUEST_MODE; 6052 smp_wmb(); 6053 local_irq_enable(); 6054 preempt_enable(); 6055 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 6056 r = 1; 6057 goto cancel_injection; 6058 } 6059 6060 if (req_immediate_exit) 6061 smp_send_reschedule(vcpu->cpu); 6062 6063 kvm_guest_enter(); 6064 6065 if (unlikely(vcpu->arch.switch_db_regs)) { 6066 set_debugreg(0, 7); 6067 set_debugreg(vcpu->arch.eff_db[0], 0); 6068 set_debugreg(vcpu->arch.eff_db[1], 1); 6069 set_debugreg(vcpu->arch.eff_db[2], 2); 6070 set_debugreg(vcpu->arch.eff_db[3], 3); 6071 set_debugreg(vcpu->arch.dr6, 6); 6072 } 6073 6074 trace_kvm_entry(vcpu->vcpu_id); 6075 kvm_x86_ops->run(vcpu); 6076 6077 /* 6078 * Do this here before restoring debug registers on the host. And 6079 * since we do this before handling the vmexit, a DR access vmexit 6080 * can (a) read the correct value of the debug registers, (b) set 6081 * KVM_DEBUGREG_WONT_EXIT again. 6082 */ 6083 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 6084 int i; 6085 6086 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 6087 kvm_x86_ops->sync_dirty_debug_regs(vcpu); 6088 for (i = 0; i < KVM_NR_DB_REGS; i++) 6089 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 6090 } 6091 6092 /* 6093 * If the guest has used debug registers, at least dr7 6094 * will be disabled while returning to the host. 6095 * If we don't have active breakpoints in the host, we don't 6096 * care about the messed up debug address registers. But if 6097 * we have some of them active, restore the old state. 6098 */ 6099 if (hw_breakpoint_active()) 6100 hw_breakpoint_restore(); 6101 6102 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu, 6103 native_read_tsc()); 6104 6105 vcpu->mode = OUTSIDE_GUEST_MODE; 6106 smp_wmb(); 6107 6108 /* Interrupt is enabled by handle_external_intr() */ 6109 kvm_x86_ops->handle_external_intr(vcpu); 6110 6111 ++vcpu->stat.exits; 6112 6113 /* 6114 * We must have an instruction between local_irq_enable() and 6115 * kvm_guest_exit(), so the timer interrupt isn't delayed by 6116 * the interrupt shadow. The stat.exits increment will do nicely. 6117 * But we need to prevent reordering, hence this barrier(): 6118 */ 6119 barrier(); 6120 6121 kvm_guest_exit(); 6122 6123 preempt_enable(); 6124 6125 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 6126 6127 /* 6128 * Profile KVM exit RIPs: 6129 */ 6130 if (unlikely(prof_on == KVM_PROFILING)) { 6131 unsigned long rip = kvm_rip_read(vcpu); 6132 profile_hit(KVM_PROFILING, (void *)rip); 6133 } 6134 6135 if (unlikely(vcpu->arch.tsc_always_catchup)) 6136 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 6137 6138 if (vcpu->arch.apic_attention) 6139 kvm_lapic_sync_from_vapic(vcpu); 6140 6141 r = kvm_x86_ops->handle_exit(vcpu); 6142 return r; 6143 6144 cancel_injection: 6145 kvm_x86_ops->cancel_injection(vcpu); 6146 if (unlikely(vcpu->arch.apic_attention)) 6147 kvm_lapic_sync_from_vapic(vcpu); 6148 out: 6149 return r; 6150 } 6151 6152 6153 static int __vcpu_run(struct kvm_vcpu *vcpu) 6154 { 6155 int r; 6156 struct kvm *kvm = vcpu->kvm; 6157 6158 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 6159 6160 r = 1; 6161 while (r > 0) { 6162 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 6163 !vcpu->arch.apf.halted) 6164 r = vcpu_enter_guest(vcpu); 6165 else { 6166 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 6167 kvm_vcpu_block(vcpu); 6168 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 6169 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) { 6170 kvm_apic_accept_events(vcpu); 6171 switch(vcpu->arch.mp_state) { 6172 case KVM_MP_STATE_HALTED: 6173 vcpu->arch.pv.pv_unhalted = false; 6174 vcpu->arch.mp_state = 6175 KVM_MP_STATE_RUNNABLE; 6176 case KVM_MP_STATE_RUNNABLE: 6177 vcpu->arch.apf.halted = false; 6178 break; 6179 case KVM_MP_STATE_INIT_RECEIVED: 6180 break; 6181 default: 6182 r = -EINTR; 6183 break; 6184 } 6185 } 6186 } 6187 6188 if (r <= 0) 6189 break; 6190 6191 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests); 6192 if (kvm_cpu_has_pending_timer(vcpu)) 6193 kvm_inject_pending_timer_irqs(vcpu); 6194 6195 if (dm_request_for_irq_injection(vcpu)) { 6196 r = -EINTR; 6197 vcpu->run->exit_reason = KVM_EXIT_INTR; 6198 ++vcpu->stat.request_irq_exits; 6199 } 6200 6201 kvm_check_async_pf_completion(vcpu); 6202 6203 if (signal_pending(current)) { 6204 r = -EINTR; 6205 vcpu->run->exit_reason = KVM_EXIT_INTR; 6206 ++vcpu->stat.signal_exits; 6207 } 6208 if (need_resched()) { 6209 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 6210 cond_resched(); 6211 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 6212 } 6213 } 6214 6215 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 6216 6217 return r; 6218 } 6219 6220 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 6221 { 6222 int r; 6223 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 6224 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 6225 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 6226 if (r != EMULATE_DONE) 6227 return 0; 6228 return 1; 6229 } 6230 6231 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 6232 { 6233 BUG_ON(!vcpu->arch.pio.count); 6234 6235 return complete_emulated_io(vcpu); 6236 } 6237 6238 /* 6239 * Implements the following, as a state machine: 6240 * 6241 * read: 6242 * for each fragment 6243 * for each mmio piece in the fragment 6244 * write gpa, len 6245 * exit 6246 * copy data 6247 * execute insn 6248 * 6249 * write: 6250 * for each fragment 6251 * for each mmio piece in the fragment 6252 * write gpa, len 6253 * copy data 6254 * exit 6255 */ 6256 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 6257 { 6258 struct kvm_run *run = vcpu->run; 6259 struct kvm_mmio_fragment *frag; 6260 unsigned len; 6261 6262 BUG_ON(!vcpu->mmio_needed); 6263 6264 /* Complete previous fragment */ 6265 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 6266 len = min(8u, frag->len); 6267 if (!vcpu->mmio_is_write) 6268 memcpy(frag->data, run->mmio.data, len); 6269 6270 if (frag->len <= 8) { 6271 /* Switch to the next fragment. */ 6272 frag++; 6273 vcpu->mmio_cur_fragment++; 6274 } else { 6275 /* Go forward to the next mmio piece. */ 6276 frag->data += len; 6277 frag->gpa += len; 6278 frag->len -= len; 6279 } 6280 6281 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 6282 vcpu->mmio_needed = 0; 6283 6284 /* FIXME: return into emulator if single-stepping. */ 6285 if (vcpu->mmio_is_write) 6286 return 1; 6287 vcpu->mmio_read_completed = 1; 6288 return complete_emulated_io(vcpu); 6289 } 6290 6291 run->exit_reason = KVM_EXIT_MMIO; 6292 run->mmio.phys_addr = frag->gpa; 6293 if (vcpu->mmio_is_write) 6294 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 6295 run->mmio.len = min(8u, frag->len); 6296 run->mmio.is_write = vcpu->mmio_is_write; 6297 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 6298 return 0; 6299 } 6300 6301 6302 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 6303 { 6304 int r; 6305 sigset_t sigsaved; 6306 6307 if (!tsk_used_math(current) && init_fpu(current)) 6308 return -ENOMEM; 6309 6310 if (vcpu->sigset_active) 6311 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); 6312 6313 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 6314 kvm_vcpu_block(vcpu); 6315 kvm_apic_accept_events(vcpu); 6316 clear_bit(KVM_REQ_UNHALT, &vcpu->requests); 6317 r = -EAGAIN; 6318 goto out; 6319 } 6320 6321 /* re-sync apic's tpr */ 6322 if (!irqchip_in_kernel(vcpu->kvm)) { 6323 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 6324 r = -EINVAL; 6325 goto out; 6326 } 6327 } 6328 6329 if (unlikely(vcpu->arch.complete_userspace_io)) { 6330 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 6331 vcpu->arch.complete_userspace_io = NULL; 6332 r = cui(vcpu); 6333 if (r <= 0) 6334 goto out; 6335 } else 6336 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 6337 6338 r = __vcpu_run(vcpu); 6339 6340 out: 6341 post_kvm_run_save(vcpu); 6342 if (vcpu->sigset_active) 6343 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 6344 6345 return r; 6346 } 6347 6348 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 6349 { 6350 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 6351 /* 6352 * We are here if userspace calls get_regs() in the middle of 6353 * instruction emulation. Registers state needs to be copied 6354 * back from emulation context to vcpu. Userspace shouldn't do 6355 * that usually, but some bad designed PV devices (vmware 6356 * backdoor interface) need this to work 6357 */ 6358 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt); 6359 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 6360 } 6361 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); 6362 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); 6363 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); 6364 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); 6365 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); 6366 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); 6367 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); 6368 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); 6369 #ifdef CONFIG_X86_64 6370 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); 6371 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); 6372 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); 6373 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); 6374 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); 6375 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); 6376 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); 6377 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); 6378 #endif 6379 6380 regs->rip = kvm_rip_read(vcpu); 6381 regs->rflags = kvm_get_rflags(vcpu); 6382 6383 return 0; 6384 } 6385 6386 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 6387 { 6388 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 6389 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 6390 6391 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); 6392 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); 6393 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); 6394 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); 6395 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); 6396 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); 6397 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); 6398 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); 6399 #ifdef CONFIG_X86_64 6400 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); 6401 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); 6402 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); 6403 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); 6404 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); 6405 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); 6406 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); 6407 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); 6408 #endif 6409 6410 kvm_rip_write(vcpu, regs->rip); 6411 kvm_set_rflags(vcpu, regs->rflags); 6412 6413 vcpu->arch.exception.pending = false; 6414 6415 kvm_make_request(KVM_REQ_EVENT, vcpu); 6416 6417 return 0; 6418 } 6419 6420 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 6421 { 6422 struct kvm_segment cs; 6423 6424 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 6425 *db = cs.db; 6426 *l = cs.l; 6427 } 6428 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 6429 6430 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 6431 struct kvm_sregs *sregs) 6432 { 6433 struct desc_ptr dt; 6434 6435 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 6436 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 6437 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 6438 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 6439 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 6440 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 6441 6442 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 6443 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 6444 6445 kvm_x86_ops->get_idt(vcpu, &dt); 6446 sregs->idt.limit = dt.size; 6447 sregs->idt.base = dt.address; 6448 kvm_x86_ops->get_gdt(vcpu, &dt); 6449 sregs->gdt.limit = dt.size; 6450 sregs->gdt.base = dt.address; 6451 6452 sregs->cr0 = kvm_read_cr0(vcpu); 6453 sregs->cr2 = vcpu->arch.cr2; 6454 sregs->cr3 = kvm_read_cr3(vcpu); 6455 sregs->cr4 = kvm_read_cr4(vcpu); 6456 sregs->cr8 = kvm_get_cr8(vcpu); 6457 sregs->efer = vcpu->arch.efer; 6458 sregs->apic_base = kvm_get_apic_base(vcpu); 6459 6460 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); 6461 6462 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft) 6463 set_bit(vcpu->arch.interrupt.nr, 6464 (unsigned long *)sregs->interrupt_bitmap); 6465 6466 return 0; 6467 } 6468 6469 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 6470 struct kvm_mp_state *mp_state) 6471 { 6472 kvm_apic_accept_events(vcpu); 6473 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED && 6474 vcpu->arch.pv.pv_unhalted) 6475 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 6476 else 6477 mp_state->mp_state = vcpu->arch.mp_state; 6478 6479 return 0; 6480 } 6481 6482 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 6483 struct kvm_mp_state *mp_state) 6484 { 6485 if (!kvm_vcpu_has_lapic(vcpu) && 6486 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 6487 return -EINVAL; 6488 6489 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 6490 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 6491 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 6492 } else 6493 vcpu->arch.mp_state = mp_state->mp_state; 6494 kvm_make_request(KVM_REQ_EVENT, vcpu); 6495 return 0; 6496 } 6497 6498 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 6499 int reason, bool has_error_code, u32 error_code) 6500 { 6501 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 6502 int ret; 6503 6504 init_emulate_ctxt(vcpu); 6505 6506 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 6507 has_error_code, error_code); 6508 6509 if (ret) 6510 return EMULATE_FAIL; 6511 6512 kvm_rip_write(vcpu, ctxt->eip); 6513 kvm_set_rflags(vcpu, ctxt->eflags); 6514 kvm_make_request(KVM_REQ_EVENT, vcpu); 6515 return EMULATE_DONE; 6516 } 6517 EXPORT_SYMBOL_GPL(kvm_task_switch); 6518 6519 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 6520 struct kvm_sregs *sregs) 6521 { 6522 struct msr_data apic_base_msr; 6523 int mmu_reset_needed = 0; 6524 int pending_vec, max_bits, idx; 6525 struct desc_ptr dt; 6526 6527 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE)) 6528 return -EINVAL; 6529 6530 dt.size = sregs->idt.limit; 6531 dt.address = sregs->idt.base; 6532 kvm_x86_ops->set_idt(vcpu, &dt); 6533 dt.size = sregs->gdt.limit; 6534 dt.address = sregs->gdt.base; 6535 kvm_x86_ops->set_gdt(vcpu, &dt); 6536 6537 vcpu->arch.cr2 = sregs->cr2; 6538 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 6539 vcpu->arch.cr3 = sregs->cr3; 6540 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 6541 6542 kvm_set_cr8(vcpu, sregs->cr8); 6543 6544 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 6545 kvm_x86_ops->set_efer(vcpu, sregs->efer); 6546 apic_base_msr.data = sregs->apic_base; 6547 apic_base_msr.host_initiated = true; 6548 kvm_set_apic_base(vcpu, &apic_base_msr); 6549 6550 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 6551 kvm_x86_ops->set_cr0(vcpu, sregs->cr0); 6552 vcpu->arch.cr0 = sregs->cr0; 6553 6554 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 6555 kvm_x86_ops->set_cr4(vcpu, sregs->cr4); 6556 if (sregs->cr4 & X86_CR4_OSXSAVE) 6557 kvm_update_cpuid(vcpu); 6558 6559 idx = srcu_read_lock(&vcpu->kvm->srcu); 6560 if (!is_long_mode(vcpu) && is_pae(vcpu)) { 6561 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 6562 mmu_reset_needed = 1; 6563 } 6564 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6565 6566 if (mmu_reset_needed) 6567 kvm_mmu_reset_context(vcpu); 6568 6569 max_bits = KVM_NR_INTERRUPTS; 6570 pending_vec = find_first_bit( 6571 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 6572 if (pending_vec < max_bits) { 6573 kvm_queue_interrupt(vcpu, pending_vec, false); 6574 pr_debug("Set back pending irq %d\n", pending_vec); 6575 } 6576 6577 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 6578 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 6579 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 6580 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 6581 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 6582 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 6583 6584 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 6585 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 6586 6587 update_cr8_intercept(vcpu); 6588 6589 /* Older userspace won't unhalt the vcpu on reset. */ 6590 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 6591 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 6592 !is_protmode(vcpu)) 6593 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 6594 6595 kvm_make_request(KVM_REQ_EVENT, vcpu); 6596 6597 return 0; 6598 } 6599 6600 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 6601 struct kvm_guest_debug *dbg) 6602 { 6603 unsigned long rflags; 6604 int i, r; 6605 6606 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 6607 r = -EBUSY; 6608 if (vcpu->arch.exception.pending) 6609 goto out; 6610 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 6611 kvm_queue_exception(vcpu, DB_VECTOR); 6612 else 6613 kvm_queue_exception(vcpu, BP_VECTOR); 6614 } 6615 6616 /* 6617 * Read rflags as long as potentially injected trace flags are still 6618 * filtered out. 6619 */ 6620 rflags = kvm_get_rflags(vcpu); 6621 6622 vcpu->guest_debug = dbg->control; 6623 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 6624 vcpu->guest_debug = 0; 6625 6626 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 6627 for (i = 0; i < KVM_NR_DB_REGS; ++i) 6628 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 6629 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 6630 } else { 6631 for (i = 0; i < KVM_NR_DB_REGS; i++) 6632 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 6633 } 6634 kvm_update_dr7(vcpu); 6635 6636 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 6637 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 6638 get_segment_base(vcpu, VCPU_SREG_CS); 6639 6640 /* 6641 * Trigger an rflags update that will inject or remove the trace 6642 * flags. 6643 */ 6644 kvm_set_rflags(vcpu, rflags); 6645 6646 kvm_x86_ops->update_db_bp_intercept(vcpu); 6647 6648 r = 0; 6649 6650 out: 6651 6652 return r; 6653 } 6654 6655 /* 6656 * Translate a guest virtual address to a guest physical address. 6657 */ 6658 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 6659 struct kvm_translation *tr) 6660 { 6661 unsigned long vaddr = tr->linear_address; 6662 gpa_t gpa; 6663 int idx; 6664 6665 idx = srcu_read_lock(&vcpu->kvm->srcu); 6666 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 6667 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6668 tr->physical_address = gpa; 6669 tr->valid = gpa != UNMAPPED_GVA; 6670 tr->writeable = 1; 6671 tr->usermode = 0; 6672 6673 return 0; 6674 } 6675 6676 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 6677 { 6678 struct i387_fxsave_struct *fxsave = 6679 &vcpu->arch.guest_fpu.state->fxsave; 6680 6681 memcpy(fpu->fpr, fxsave->st_space, 128); 6682 fpu->fcw = fxsave->cwd; 6683 fpu->fsw = fxsave->swd; 6684 fpu->ftwx = fxsave->twd; 6685 fpu->last_opcode = fxsave->fop; 6686 fpu->last_ip = fxsave->rip; 6687 fpu->last_dp = fxsave->rdp; 6688 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); 6689 6690 return 0; 6691 } 6692 6693 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 6694 { 6695 struct i387_fxsave_struct *fxsave = 6696 &vcpu->arch.guest_fpu.state->fxsave; 6697 6698 memcpy(fxsave->st_space, fpu->fpr, 128); 6699 fxsave->cwd = fpu->fcw; 6700 fxsave->swd = fpu->fsw; 6701 fxsave->twd = fpu->ftwx; 6702 fxsave->fop = fpu->last_opcode; 6703 fxsave->rip = fpu->last_ip; 6704 fxsave->rdp = fpu->last_dp; 6705 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); 6706 6707 return 0; 6708 } 6709 6710 int fx_init(struct kvm_vcpu *vcpu) 6711 { 6712 int err; 6713 6714 err = fpu_alloc(&vcpu->arch.guest_fpu); 6715 if (err) 6716 return err; 6717 6718 fpu_finit(&vcpu->arch.guest_fpu); 6719 6720 /* 6721 * Ensure guest xcr0 is valid for loading 6722 */ 6723 vcpu->arch.xcr0 = XSTATE_FP; 6724 6725 vcpu->arch.cr0 |= X86_CR0_ET; 6726 6727 return 0; 6728 } 6729 EXPORT_SYMBOL_GPL(fx_init); 6730 6731 static void fx_free(struct kvm_vcpu *vcpu) 6732 { 6733 fpu_free(&vcpu->arch.guest_fpu); 6734 } 6735 6736 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 6737 { 6738 if (vcpu->guest_fpu_loaded) 6739 return; 6740 6741 /* 6742 * Restore all possible states in the guest, 6743 * and assume host would use all available bits. 6744 * Guest xcr0 would be loaded later. 6745 */ 6746 kvm_put_guest_xcr0(vcpu); 6747 vcpu->guest_fpu_loaded = 1; 6748 __kernel_fpu_begin(); 6749 fpu_restore_checking(&vcpu->arch.guest_fpu); 6750 trace_kvm_fpu(1); 6751 } 6752 6753 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 6754 { 6755 kvm_put_guest_xcr0(vcpu); 6756 6757 if (!vcpu->guest_fpu_loaded) 6758 return; 6759 6760 vcpu->guest_fpu_loaded = 0; 6761 fpu_save_init(&vcpu->arch.guest_fpu); 6762 __kernel_fpu_end(); 6763 ++vcpu->stat.fpu_reload; 6764 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu); 6765 trace_kvm_fpu(0); 6766 } 6767 6768 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 6769 { 6770 kvmclock_reset(vcpu); 6771 6772 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 6773 fx_free(vcpu); 6774 kvm_x86_ops->vcpu_free(vcpu); 6775 } 6776 6777 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, 6778 unsigned int id) 6779 { 6780 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 6781 printk_once(KERN_WARNING 6782 "kvm: SMP vm created on host with unstable TSC; " 6783 "guest TSC will not be reliable\n"); 6784 return kvm_x86_ops->vcpu_create(kvm, id); 6785 } 6786 6787 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) 6788 { 6789 int r; 6790 6791 vcpu->arch.mtrr_state.have_fixed = 1; 6792 r = vcpu_load(vcpu); 6793 if (r) 6794 return r; 6795 kvm_vcpu_reset(vcpu); 6796 kvm_mmu_setup(vcpu); 6797 vcpu_put(vcpu); 6798 6799 return r; 6800 } 6801 6802 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 6803 { 6804 int r; 6805 struct msr_data msr; 6806 struct kvm *kvm = vcpu->kvm; 6807 6808 r = vcpu_load(vcpu); 6809 if (r) 6810 return r; 6811 msr.data = 0x0; 6812 msr.index = MSR_IA32_TSC; 6813 msr.host_initiated = true; 6814 kvm_write_tsc(vcpu, &msr); 6815 vcpu_put(vcpu); 6816 6817 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 6818 KVMCLOCK_SYNC_PERIOD); 6819 6820 return r; 6821 } 6822 6823 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 6824 { 6825 int r; 6826 vcpu->arch.apf.msr_val = 0; 6827 6828 r = vcpu_load(vcpu); 6829 BUG_ON(r); 6830 kvm_mmu_unload(vcpu); 6831 vcpu_put(vcpu); 6832 6833 fx_free(vcpu); 6834 kvm_x86_ops->vcpu_free(vcpu); 6835 } 6836 6837 void kvm_vcpu_reset(struct kvm_vcpu *vcpu) 6838 { 6839 atomic_set(&vcpu->arch.nmi_queued, 0); 6840 vcpu->arch.nmi_pending = 0; 6841 vcpu->arch.nmi_injected = false; 6842 6843 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 6844 vcpu->arch.dr6 = DR6_FIXED_1; 6845 kvm_update_dr6(vcpu); 6846 vcpu->arch.dr7 = DR7_FIXED_1; 6847 kvm_update_dr7(vcpu); 6848 6849 kvm_make_request(KVM_REQ_EVENT, vcpu); 6850 vcpu->arch.apf.msr_val = 0; 6851 vcpu->arch.st.msr_val = 0; 6852 6853 kvmclock_reset(vcpu); 6854 6855 kvm_clear_async_pf_completion_queue(vcpu); 6856 kvm_async_pf_hash_reset(vcpu); 6857 vcpu->arch.apf.halted = false; 6858 6859 kvm_pmu_reset(vcpu); 6860 6861 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 6862 vcpu->arch.regs_avail = ~0; 6863 vcpu->arch.regs_dirty = ~0; 6864 6865 kvm_x86_ops->vcpu_reset(vcpu); 6866 } 6867 6868 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector) 6869 { 6870 struct kvm_segment cs; 6871 6872 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 6873 cs.selector = vector << 8; 6874 cs.base = vector << 12; 6875 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 6876 kvm_rip_write(vcpu, 0); 6877 } 6878 6879 int kvm_arch_hardware_enable(void *garbage) 6880 { 6881 struct kvm *kvm; 6882 struct kvm_vcpu *vcpu; 6883 int i; 6884 int ret; 6885 u64 local_tsc; 6886 u64 max_tsc = 0; 6887 bool stable, backwards_tsc = false; 6888 6889 kvm_shared_msr_cpu_online(); 6890 ret = kvm_x86_ops->hardware_enable(garbage); 6891 if (ret != 0) 6892 return ret; 6893 6894 local_tsc = native_read_tsc(); 6895 stable = !check_tsc_unstable(); 6896 list_for_each_entry(kvm, &vm_list, vm_list) { 6897 kvm_for_each_vcpu(i, vcpu, kvm) { 6898 if (!stable && vcpu->cpu == smp_processor_id()) 6899 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 6900 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 6901 backwards_tsc = true; 6902 if (vcpu->arch.last_host_tsc > max_tsc) 6903 max_tsc = vcpu->arch.last_host_tsc; 6904 } 6905 } 6906 } 6907 6908 /* 6909 * Sometimes, even reliable TSCs go backwards. This happens on 6910 * platforms that reset TSC during suspend or hibernate actions, but 6911 * maintain synchronization. We must compensate. Fortunately, we can 6912 * detect that condition here, which happens early in CPU bringup, 6913 * before any KVM threads can be running. Unfortunately, we can't 6914 * bring the TSCs fully up to date with real time, as we aren't yet far 6915 * enough into CPU bringup that we know how much real time has actually 6916 * elapsed; our helper function, get_kernel_ns() will be using boot 6917 * variables that haven't been updated yet. 6918 * 6919 * So we simply find the maximum observed TSC above, then record the 6920 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 6921 * the adjustment will be applied. Note that we accumulate 6922 * adjustments, in case multiple suspend cycles happen before some VCPU 6923 * gets a chance to run again. In the event that no KVM threads get a 6924 * chance to run, we will miss the entire elapsed period, as we'll have 6925 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 6926 * loose cycle time. This isn't too big a deal, since the loss will be 6927 * uniform across all VCPUs (not to mention the scenario is extremely 6928 * unlikely). It is possible that a second hibernate recovery happens 6929 * much faster than a first, causing the observed TSC here to be 6930 * smaller; this would require additional padding adjustment, which is 6931 * why we set last_host_tsc to the local tsc observed here. 6932 * 6933 * N.B. - this code below runs only on platforms with reliable TSC, 6934 * as that is the only way backwards_tsc is set above. Also note 6935 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 6936 * have the same delta_cyc adjustment applied if backwards_tsc 6937 * is detected. Note further, this adjustment is only done once, 6938 * as we reset last_host_tsc on all VCPUs to stop this from being 6939 * called multiple times (one for each physical CPU bringup). 6940 * 6941 * Platforms with unreliable TSCs don't have to deal with this, they 6942 * will be compensated by the logic in vcpu_load, which sets the TSC to 6943 * catchup mode. This will catchup all VCPUs to real time, but cannot 6944 * guarantee that they stay in perfect synchronization. 6945 */ 6946 if (backwards_tsc) { 6947 u64 delta_cyc = max_tsc - local_tsc; 6948 list_for_each_entry(kvm, &vm_list, vm_list) { 6949 kvm_for_each_vcpu(i, vcpu, kvm) { 6950 vcpu->arch.tsc_offset_adjustment += delta_cyc; 6951 vcpu->arch.last_host_tsc = local_tsc; 6952 set_bit(KVM_REQ_MASTERCLOCK_UPDATE, 6953 &vcpu->requests); 6954 } 6955 6956 /* 6957 * We have to disable TSC offset matching.. if you were 6958 * booting a VM while issuing an S4 host suspend.... 6959 * you may have some problem. Solving this issue is 6960 * left as an exercise to the reader. 6961 */ 6962 kvm->arch.last_tsc_nsec = 0; 6963 kvm->arch.last_tsc_write = 0; 6964 } 6965 6966 } 6967 return 0; 6968 } 6969 6970 void kvm_arch_hardware_disable(void *garbage) 6971 { 6972 kvm_x86_ops->hardware_disable(garbage); 6973 drop_user_return_notifiers(garbage); 6974 } 6975 6976 int kvm_arch_hardware_setup(void) 6977 { 6978 return kvm_x86_ops->hardware_setup(); 6979 } 6980 6981 void kvm_arch_hardware_unsetup(void) 6982 { 6983 kvm_x86_ops->hardware_unsetup(); 6984 } 6985 6986 void kvm_arch_check_processor_compat(void *rtn) 6987 { 6988 kvm_x86_ops->check_processor_compatibility(rtn); 6989 } 6990 6991 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu) 6992 { 6993 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL); 6994 } 6995 6996 struct static_key kvm_no_apic_vcpu __read_mostly; 6997 6998 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 6999 { 7000 struct page *page; 7001 struct kvm *kvm; 7002 int r; 7003 7004 BUG_ON(vcpu->kvm == NULL); 7005 kvm = vcpu->kvm; 7006 7007 vcpu->arch.pv.pv_unhalted = false; 7008 vcpu->arch.emulate_ctxt.ops = &emulate_ops; 7009 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu)) 7010 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 7011 else 7012 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 7013 7014 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 7015 if (!page) { 7016 r = -ENOMEM; 7017 goto fail; 7018 } 7019 vcpu->arch.pio_data = page_address(page); 7020 7021 kvm_set_tsc_khz(vcpu, max_tsc_khz); 7022 7023 r = kvm_mmu_create(vcpu); 7024 if (r < 0) 7025 goto fail_free_pio_data; 7026 7027 if (irqchip_in_kernel(kvm)) { 7028 r = kvm_create_lapic(vcpu); 7029 if (r < 0) 7030 goto fail_mmu_destroy; 7031 } else 7032 static_key_slow_inc(&kvm_no_apic_vcpu); 7033 7034 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 7035 GFP_KERNEL); 7036 if (!vcpu->arch.mce_banks) { 7037 r = -ENOMEM; 7038 goto fail_free_lapic; 7039 } 7040 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 7041 7042 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) { 7043 r = -ENOMEM; 7044 goto fail_free_mce_banks; 7045 } 7046 7047 r = fx_init(vcpu); 7048 if (r) 7049 goto fail_free_wbinvd_dirty_mask; 7050 7051 vcpu->arch.ia32_tsc_adjust_msr = 0x0; 7052 vcpu->arch.pv_time_enabled = false; 7053 7054 vcpu->arch.guest_supported_xcr0 = 0; 7055 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; 7056 7057 kvm_async_pf_hash_reset(vcpu); 7058 kvm_pmu_init(vcpu); 7059 7060 return 0; 7061 fail_free_wbinvd_dirty_mask: 7062 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 7063 fail_free_mce_banks: 7064 kfree(vcpu->arch.mce_banks); 7065 fail_free_lapic: 7066 kvm_free_lapic(vcpu); 7067 fail_mmu_destroy: 7068 kvm_mmu_destroy(vcpu); 7069 fail_free_pio_data: 7070 free_page((unsigned long)vcpu->arch.pio_data); 7071 fail: 7072 return r; 7073 } 7074 7075 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 7076 { 7077 int idx; 7078 7079 kvm_pmu_destroy(vcpu); 7080 kfree(vcpu->arch.mce_banks); 7081 kvm_free_lapic(vcpu); 7082 idx = srcu_read_lock(&vcpu->kvm->srcu); 7083 kvm_mmu_destroy(vcpu); 7084 srcu_read_unlock(&vcpu->kvm->srcu, idx); 7085 free_page((unsigned long)vcpu->arch.pio_data); 7086 if (!irqchip_in_kernel(vcpu->kvm)) 7087 static_key_slow_dec(&kvm_no_apic_vcpu); 7088 } 7089 7090 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 7091 { 7092 if (type) 7093 return -EINVAL; 7094 7095 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 7096 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 7097 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 7098 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 7099 7100 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 7101 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 7102 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 7103 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 7104 &kvm->arch.irq_sources_bitmap); 7105 7106 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 7107 mutex_init(&kvm->arch.apic_map_lock); 7108 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); 7109 7110 pvclock_update_vm_gtod_copy(kvm); 7111 7112 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 7113 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 7114 7115 return 0; 7116 } 7117 7118 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 7119 { 7120 int r; 7121 r = vcpu_load(vcpu); 7122 BUG_ON(r); 7123 kvm_mmu_unload(vcpu); 7124 vcpu_put(vcpu); 7125 } 7126 7127 static void kvm_free_vcpus(struct kvm *kvm) 7128 { 7129 unsigned int i; 7130 struct kvm_vcpu *vcpu; 7131 7132 /* 7133 * Unpin any mmu pages first. 7134 */ 7135 kvm_for_each_vcpu(i, vcpu, kvm) { 7136 kvm_clear_async_pf_completion_queue(vcpu); 7137 kvm_unload_vcpu_mmu(vcpu); 7138 } 7139 kvm_for_each_vcpu(i, vcpu, kvm) 7140 kvm_arch_vcpu_free(vcpu); 7141 7142 mutex_lock(&kvm->lock); 7143 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 7144 kvm->vcpus[i] = NULL; 7145 7146 atomic_set(&kvm->online_vcpus, 0); 7147 mutex_unlock(&kvm->lock); 7148 } 7149 7150 void kvm_arch_sync_events(struct kvm *kvm) 7151 { 7152 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 7153 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 7154 kvm_free_all_assigned_devices(kvm); 7155 kvm_free_pit(kvm); 7156 } 7157 7158 void kvm_arch_destroy_vm(struct kvm *kvm) 7159 { 7160 if (current->mm == kvm->mm) { 7161 /* 7162 * Free memory regions allocated on behalf of userspace, 7163 * unless the the memory map has changed due to process exit 7164 * or fd copying. 7165 */ 7166 struct kvm_userspace_memory_region mem; 7167 memset(&mem, 0, sizeof(mem)); 7168 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT; 7169 kvm_set_memory_region(kvm, &mem); 7170 7171 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT; 7172 kvm_set_memory_region(kvm, &mem); 7173 7174 mem.slot = TSS_PRIVATE_MEMSLOT; 7175 kvm_set_memory_region(kvm, &mem); 7176 } 7177 kvm_iommu_unmap_guest(kvm); 7178 kfree(kvm->arch.vpic); 7179 kfree(kvm->arch.vioapic); 7180 kvm_free_vcpus(kvm); 7181 if (kvm->arch.apic_access_page) 7182 put_page(kvm->arch.apic_access_page); 7183 if (kvm->arch.ept_identity_pagetable) 7184 put_page(kvm->arch.ept_identity_pagetable); 7185 kfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 7186 } 7187 7188 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 7189 struct kvm_memory_slot *dont) 7190 { 7191 int i; 7192 7193 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 7194 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) { 7195 kvm_kvfree(free->arch.rmap[i]); 7196 free->arch.rmap[i] = NULL; 7197 } 7198 if (i == 0) 7199 continue; 7200 7201 if (!dont || free->arch.lpage_info[i - 1] != 7202 dont->arch.lpage_info[i - 1]) { 7203 kvm_kvfree(free->arch.lpage_info[i - 1]); 7204 free->arch.lpage_info[i - 1] = NULL; 7205 } 7206 } 7207 } 7208 7209 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 7210 unsigned long npages) 7211 { 7212 int i; 7213 7214 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 7215 unsigned long ugfn; 7216 int lpages; 7217 int level = i + 1; 7218 7219 lpages = gfn_to_index(slot->base_gfn + npages - 1, 7220 slot->base_gfn, level) + 1; 7221 7222 slot->arch.rmap[i] = 7223 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i])); 7224 if (!slot->arch.rmap[i]) 7225 goto out_free; 7226 if (i == 0) 7227 continue; 7228 7229 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages * 7230 sizeof(*slot->arch.lpage_info[i - 1])); 7231 if (!slot->arch.lpage_info[i - 1]) 7232 goto out_free; 7233 7234 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 7235 slot->arch.lpage_info[i - 1][0].write_count = 1; 7236 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 7237 slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1; 7238 ugfn = slot->userspace_addr >> PAGE_SHIFT; 7239 /* 7240 * If the gfn and userspace address are not aligned wrt each 7241 * other, or if explicitly asked to, disable large page 7242 * support for this slot 7243 */ 7244 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || 7245 !kvm_largepages_enabled()) { 7246 unsigned long j; 7247 7248 for (j = 0; j < lpages; ++j) 7249 slot->arch.lpage_info[i - 1][j].write_count = 1; 7250 } 7251 } 7252 7253 return 0; 7254 7255 out_free: 7256 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 7257 kvm_kvfree(slot->arch.rmap[i]); 7258 slot->arch.rmap[i] = NULL; 7259 if (i == 0) 7260 continue; 7261 7262 kvm_kvfree(slot->arch.lpage_info[i - 1]); 7263 slot->arch.lpage_info[i - 1] = NULL; 7264 } 7265 return -ENOMEM; 7266 } 7267 7268 void kvm_arch_memslots_updated(struct kvm *kvm) 7269 { 7270 /* 7271 * memslots->generation has been incremented. 7272 * mmio generation may have reached its maximum value. 7273 */ 7274 kvm_mmu_invalidate_mmio_sptes(kvm); 7275 } 7276 7277 int kvm_arch_prepare_memory_region(struct kvm *kvm, 7278 struct kvm_memory_slot *memslot, 7279 struct kvm_userspace_memory_region *mem, 7280 enum kvm_mr_change change) 7281 { 7282 /* 7283 * Only private memory slots need to be mapped here since 7284 * KVM_SET_MEMORY_REGION ioctl is no longer supported. 7285 */ 7286 if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) { 7287 unsigned long userspace_addr; 7288 7289 /* 7290 * MAP_SHARED to prevent internal slot pages from being moved 7291 * by fork()/COW. 7292 */ 7293 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE, 7294 PROT_READ | PROT_WRITE, 7295 MAP_SHARED | MAP_ANONYMOUS, 0); 7296 7297 if (IS_ERR((void *)userspace_addr)) 7298 return PTR_ERR((void *)userspace_addr); 7299 7300 memslot->userspace_addr = userspace_addr; 7301 } 7302 7303 return 0; 7304 } 7305 7306 void kvm_arch_commit_memory_region(struct kvm *kvm, 7307 struct kvm_userspace_memory_region *mem, 7308 const struct kvm_memory_slot *old, 7309 enum kvm_mr_change change) 7310 { 7311 7312 int nr_mmu_pages = 0; 7313 7314 if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) { 7315 int ret; 7316 7317 ret = vm_munmap(old->userspace_addr, 7318 old->npages * PAGE_SIZE); 7319 if (ret < 0) 7320 printk(KERN_WARNING 7321 "kvm_vm_ioctl_set_memory_region: " 7322 "failed to munmap memory\n"); 7323 } 7324 7325 if (!kvm->arch.n_requested_mmu_pages) 7326 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); 7327 7328 if (nr_mmu_pages) 7329 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 7330 /* 7331 * Write protect all pages for dirty logging. 7332 * Existing largepage mappings are destroyed here and new ones will 7333 * not be created until the end of the logging. 7334 */ 7335 if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES)) 7336 kvm_mmu_slot_remove_write_access(kvm, mem->slot); 7337 } 7338 7339 void kvm_arch_flush_shadow_all(struct kvm *kvm) 7340 { 7341 kvm_mmu_invalidate_zap_all_pages(kvm); 7342 } 7343 7344 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 7345 struct kvm_memory_slot *slot) 7346 { 7347 kvm_mmu_invalidate_zap_all_pages(kvm); 7348 } 7349 7350 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 7351 { 7352 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) 7353 kvm_x86_ops->check_nested_events(vcpu, false); 7354 7355 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 7356 !vcpu->arch.apf.halted) 7357 || !list_empty_careful(&vcpu->async_pf.done) 7358 || kvm_apic_has_events(vcpu) 7359 || vcpu->arch.pv.pv_unhalted 7360 || atomic_read(&vcpu->arch.nmi_queued) || 7361 (kvm_arch_interrupt_allowed(vcpu) && 7362 kvm_cpu_has_interrupt(vcpu)); 7363 } 7364 7365 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 7366 { 7367 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 7368 } 7369 7370 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 7371 { 7372 return kvm_x86_ops->interrupt_allowed(vcpu); 7373 } 7374 7375 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 7376 { 7377 unsigned long current_rip = kvm_rip_read(vcpu) + 7378 get_segment_base(vcpu, VCPU_SREG_CS); 7379 7380 return current_rip == linear_rip; 7381 } 7382 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 7383 7384 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 7385 { 7386 unsigned long rflags; 7387 7388 rflags = kvm_x86_ops->get_rflags(vcpu); 7389 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 7390 rflags &= ~X86_EFLAGS_TF; 7391 return rflags; 7392 } 7393 EXPORT_SYMBOL_GPL(kvm_get_rflags); 7394 7395 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 7396 { 7397 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 7398 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 7399 rflags |= X86_EFLAGS_TF; 7400 kvm_x86_ops->set_rflags(vcpu, rflags); 7401 kvm_make_request(KVM_REQ_EVENT, vcpu); 7402 } 7403 EXPORT_SYMBOL_GPL(kvm_set_rflags); 7404 7405 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 7406 { 7407 int r; 7408 7409 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) || 7410 work->wakeup_all) 7411 return; 7412 7413 r = kvm_mmu_reload(vcpu); 7414 if (unlikely(r)) 7415 return; 7416 7417 if (!vcpu->arch.mmu.direct_map && 7418 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu)) 7419 return; 7420 7421 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true); 7422 } 7423 7424 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 7425 { 7426 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 7427 } 7428 7429 static inline u32 kvm_async_pf_next_probe(u32 key) 7430 { 7431 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); 7432 } 7433 7434 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 7435 { 7436 u32 key = kvm_async_pf_hash_fn(gfn); 7437 7438 while (vcpu->arch.apf.gfns[key] != ~0) 7439 key = kvm_async_pf_next_probe(key); 7440 7441 vcpu->arch.apf.gfns[key] = gfn; 7442 } 7443 7444 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 7445 { 7446 int i; 7447 u32 key = kvm_async_pf_hash_fn(gfn); 7448 7449 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && 7450 (vcpu->arch.apf.gfns[key] != gfn && 7451 vcpu->arch.apf.gfns[key] != ~0); i++) 7452 key = kvm_async_pf_next_probe(key); 7453 7454 return key; 7455 } 7456 7457 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 7458 { 7459 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 7460 } 7461 7462 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 7463 { 7464 u32 i, j, k; 7465 7466 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 7467 while (true) { 7468 vcpu->arch.apf.gfns[i] = ~0; 7469 do { 7470 j = kvm_async_pf_next_probe(j); 7471 if (vcpu->arch.apf.gfns[j] == ~0) 7472 return; 7473 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 7474 /* 7475 * k lies cyclically in ]i,j] 7476 * | i.k.j | 7477 * |....j i.k.| or |.k..j i...| 7478 */ 7479 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 7480 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 7481 i = j; 7482 } 7483 } 7484 7485 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) 7486 { 7487 7488 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, 7489 sizeof(val)); 7490 } 7491 7492 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 7493 struct kvm_async_pf *work) 7494 { 7495 struct x86_exception fault; 7496 7497 trace_kvm_async_pf_not_present(work->arch.token, work->gva); 7498 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 7499 7500 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || 7501 (vcpu->arch.apf.send_user_only && 7502 kvm_x86_ops->get_cpl(vcpu) == 0)) 7503 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 7504 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { 7505 fault.vector = PF_VECTOR; 7506 fault.error_code_valid = true; 7507 fault.error_code = 0; 7508 fault.nested_page_fault = false; 7509 fault.address = work->arch.token; 7510 kvm_inject_page_fault(vcpu, &fault); 7511 } 7512 } 7513 7514 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 7515 struct kvm_async_pf *work) 7516 { 7517 struct x86_exception fault; 7518 7519 trace_kvm_async_pf_ready(work->arch.token, work->gva); 7520 if (work->wakeup_all) 7521 work->arch.token = ~0; /* broadcast wakeup */ 7522 else 7523 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 7524 7525 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) && 7526 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { 7527 fault.vector = PF_VECTOR; 7528 fault.error_code_valid = true; 7529 fault.error_code = 0; 7530 fault.nested_page_fault = false; 7531 fault.address = work->arch.token; 7532 kvm_inject_page_fault(vcpu, &fault); 7533 } 7534 vcpu->arch.apf.halted = false; 7535 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 7536 } 7537 7538 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) 7539 { 7540 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) 7541 return true; 7542 else 7543 return !kvm_event_needs_reinjection(vcpu) && 7544 kvm_x86_ops->interrupt_allowed(vcpu); 7545 } 7546 7547 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 7548 { 7549 atomic_inc(&kvm->arch.noncoherent_dma_count); 7550 } 7551 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 7552 7553 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 7554 { 7555 atomic_dec(&kvm->arch.noncoherent_dma_count); 7556 } 7557 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 7558 7559 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 7560 { 7561 return atomic_read(&kvm->arch.noncoherent_dma_count); 7562 } 7563 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 7564 7565 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 7566 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 7567 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 7568 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 7569 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 7570 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 7571 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 7572 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 7573 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 7574 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 7575 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 7576 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 7577 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 7578