xref: /linux/arch/x86/kvm/x86.c (revision 00a6d7b6762c27d441e9ac8faff36384bc0fc180)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
52 
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55 
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66 
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70 
71 #define emul_to_vcpu(ctxt) \
72 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73 
74 /* EFER defaults:
75  * - enable syscall per default because its emulated by KVM
76  * - enable LME and LMA per default on 64 bit KVM
77  */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84 
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87 
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90 
91 struct kvm_x86_ops *kvm_x86_ops;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops);
93 
94 static bool ignore_msrs = 0;
95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
96 
97 unsigned int min_timer_period_us = 500;
98 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
99 
100 bool kvm_has_tsc_control;
101 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
102 u32  kvm_max_guest_tsc_khz;
103 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
104 
105 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
106 static u32 tsc_tolerance_ppm = 250;
107 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
108 
109 #define KVM_NR_SHARED_MSRS 16
110 
111 struct kvm_shared_msrs_global {
112 	int nr;
113 	u32 msrs[KVM_NR_SHARED_MSRS];
114 };
115 
116 struct kvm_shared_msrs {
117 	struct user_return_notifier urn;
118 	bool registered;
119 	struct kvm_shared_msr_values {
120 		u64 host;
121 		u64 curr;
122 	} values[KVM_NR_SHARED_MSRS];
123 };
124 
125 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
126 static struct kvm_shared_msrs __percpu *shared_msrs;
127 
128 struct kvm_stats_debugfs_item debugfs_entries[] = {
129 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
130 	{ "pf_guest", VCPU_STAT(pf_guest) },
131 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
132 	{ "invlpg", VCPU_STAT(invlpg) },
133 	{ "exits", VCPU_STAT(exits) },
134 	{ "io_exits", VCPU_STAT(io_exits) },
135 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
136 	{ "signal_exits", VCPU_STAT(signal_exits) },
137 	{ "irq_window", VCPU_STAT(irq_window_exits) },
138 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
139 	{ "halt_exits", VCPU_STAT(halt_exits) },
140 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
141 	{ "hypercalls", VCPU_STAT(hypercalls) },
142 	{ "request_irq", VCPU_STAT(request_irq_exits) },
143 	{ "irq_exits", VCPU_STAT(irq_exits) },
144 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
145 	{ "efer_reload", VCPU_STAT(efer_reload) },
146 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
147 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
148 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
149 	{ "irq_injections", VCPU_STAT(irq_injections) },
150 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
151 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
152 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
153 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
154 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
155 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
156 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
157 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
158 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
159 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
160 	{ "largepages", VM_STAT(lpages) },
161 	{ NULL }
162 };
163 
164 u64 __read_mostly host_xcr0;
165 
166 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
167 
168 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
169 {
170 	int i;
171 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
172 		vcpu->arch.apf.gfns[i] = ~0;
173 }
174 
175 static void kvm_on_user_return(struct user_return_notifier *urn)
176 {
177 	unsigned slot;
178 	struct kvm_shared_msrs *locals
179 		= container_of(urn, struct kvm_shared_msrs, urn);
180 	struct kvm_shared_msr_values *values;
181 
182 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
183 		values = &locals->values[slot];
184 		if (values->host != values->curr) {
185 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
186 			values->curr = values->host;
187 		}
188 	}
189 	locals->registered = false;
190 	user_return_notifier_unregister(urn);
191 }
192 
193 static void shared_msr_update(unsigned slot, u32 msr)
194 {
195 	u64 value;
196 	unsigned int cpu = smp_processor_id();
197 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
198 
199 	/* only read, and nobody should modify it at this time,
200 	 * so don't need lock */
201 	if (slot >= shared_msrs_global.nr) {
202 		printk(KERN_ERR "kvm: invalid MSR slot!");
203 		return;
204 	}
205 	rdmsrl_safe(msr, &value);
206 	smsr->values[slot].host = value;
207 	smsr->values[slot].curr = value;
208 }
209 
210 void kvm_define_shared_msr(unsigned slot, u32 msr)
211 {
212 	if (slot >= shared_msrs_global.nr)
213 		shared_msrs_global.nr = slot + 1;
214 	shared_msrs_global.msrs[slot] = msr;
215 	/* we need ensured the shared_msr_global have been updated */
216 	smp_wmb();
217 }
218 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
219 
220 static void kvm_shared_msr_cpu_online(void)
221 {
222 	unsigned i;
223 
224 	for (i = 0; i < shared_msrs_global.nr; ++i)
225 		shared_msr_update(i, shared_msrs_global.msrs[i]);
226 }
227 
228 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
229 {
230 	unsigned int cpu = smp_processor_id();
231 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
232 
233 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
234 		return;
235 	smsr->values[slot].curr = value;
236 	wrmsrl(shared_msrs_global.msrs[slot], value);
237 	if (!smsr->registered) {
238 		smsr->urn.on_user_return = kvm_on_user_return;
239 		user_return_notifier_register(&smsr->urn);
240 		smsr->registered = true;
241 	}
242 }
243 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
244 
245 static void drop_user_return_notifiers(void *ignore)
246 {
247 	unsigned int cpu = smp_processor_id();
248 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
249 
250 	if (smsr->registered)
251 		kvm_on_user_return(&smsr->urn);
252 }
253 
254 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
255 {
256 	return vcpu->arch.apic_base;
257 }
258 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
259 
260 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
261 {
262 	u64 old_state = vcpu->arch.apic_base &
263 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
264 	u64 new_state = msr_info->data &
265 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
266 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
267 		0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
268 
269 	if (!msr_info->host_initiated &&
270 	    ((msr_info->data & reserved_bits) != 0 ||
271 	     new_state == X2APIC_ENABLE ||
272 	     (new_state == MSR_IA32_APICBASE_ENABLE &&
273 	      old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
274 	     (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
275 	      old_state == 0)))
276 		return 1;
277 
278 	kvm_lapic_set_base(vcpu, msr_info->data);
279 	return 0;
280 }
281 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
282 
283 asmlinkage __visible void kvm_spurious_fault(void)
284 {
285 	/* Fault while not rebooting.  We want the trace. */
286 	BUG();
287 }
288 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
289 
290 #define EXCPT_BENIGN		0
291 #define EXCPT_CONTRIBUTORY	1
292 #define EXCPT_PF		2
293 
294 static int exception_class(int vector)
295 {
296 	switch (vector) {
297 	case PF_VECTOR:
298 		return EXCPT_PF;
299 	case DE_VECTOR:
300 	case TS_VECTOR:
301 	case NP_VECTOR:
302 	case SS_VECTOR:
303 	case GP_VECTOR:
304 		return EXCPT_CONTRIBUTORY;
305 	default:
306 		break;
307 	}
308 	return EXCPT_BENIGN;
309 }
310 
311 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
312 		unsigned nr, bool has_error, u32 error_code,
313 		bool reinject)
314 {
315 	u32 prev_nr;
316 	int class1, class2;
317 
318 	kvm_make_request(KVM_REQ_EVENT, vcpu);
319 
320 	if (!vcpu->arch.exception.pending) {
321 	queue:
322 		vcpu->arch.exception.pending = true;
323 		vcpu->arch.exception.has_error_code = has_error;
324 		vcpu->arch.exception.nr = nr;
325 		vcpu->arch.exception.error_code = error_code;
326 		vcpu->arch.exception.reinject = reinject;
327 		return;
328 	}
329 
330 	/* to check exception */
331 	prev_nr = vcpu->arch.exception.nr;
332 	if (prev_nr == DF_VECTOR) {
333 		/* triple fault -> shutdown */
334 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
335 		return;
336 	}
337 	class1 = exception_class(prev_nr);
338 	class2 = exception_class(nr);
339 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
340 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
341 		/* generate double fault per SDM Table 5-5 */
342 		vcpu->arch.exception.pending = true;
343 		vcpu->arch.exception.has_error_code = true;
344 		vcpu->arch.exception.nr = DF_VECTOR;
345 		vcpu->arch.exception.error_code = 0;
346 	} else
347 		/* replace previous exception with a new one in a hope
348 		   that instruction re-execution will regenerate lost
349 		   exception */
350 		goto queue;
351 }
352 
353 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
354 {
355 	kvm_multiple_exception(vcpu, nr, false, 0, false);
356 }
357 EXPORT_SYMBOL_GPL(kvm_queue_exception);
358 
359 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
360 {
361 	kvm_multiple_exception(vcpu, nr, false, 0, true);
362 }
363 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
364 
365 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
366 {
367 	if (err)
368 		kvm_inject_gp(vcpu, 0);
369 	else
370 		kvm_x86_ops->skip_emulated_instruction(vcpu);
371 }
372 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
373 
374 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
375 {
376 	++vcpu->stat.pf_guest;
377 	vcpu->arch.cr2 = fault->address;
378 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
379 }
380 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
381 
382 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
383 {
384 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
385 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
386 	else
387 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
388 }
389 
390 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
391 {
392 	atomic_inc(&vcpu->arch.nmi_queued);
393 	kvm_make_request(KVM_REQ_NMI, vcpu);
394 }
395 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
396 
397 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
398 {
399 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
400 }
401 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
402 
403 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
404 {
405 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
406 }
407 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
408 
409 /*
410  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
411  * a #GP and return false.
412  */
413 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
414 {
415 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
416 		return true;
417 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
418 	return false;
419 }
420 EXPORT_SYMBOL_GPL(kvm_require_cpl);
421 
422 /*
423  * This function will be used to read from the physical memory of the currently
424  * running guest. The difference to kvm_read_guest_page is that this function
425  * can read from guest physical or from the guest's guest physical memory.
426  */
427 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
428 			    gfn_t ngfn, void *data, int offset, int len,
429 			    u32 access)
430 {
431 	gfn_t real_gfn;
432 	gpa_t ngpa;
433 
434 	ngpa     = gfn_to_gpa(ngfn);
435 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
436 	if (real_gfn == UNMAPPED_GVA)
437 		return -EFAULT;
438 
439 	real_gfn = gpa_to_gfn(real_gfn);
440 
441 	return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
442 }
443 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
444 
445 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
446 			       void *data, int offset, int len, u32 access)
447 {
448 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
449 				       data, offset, len, access);
450 }
451 
452 /*
453  * Load the pae pdptrs.  Return true is they are all valid.
454  */
455 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
456 {
457 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
458 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
459 	int i;
460 	int ret;
461 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
462 
463 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
464 				      offset * sizeof(u64), sizeof(pdpte),
465 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
466 	if (ret < 0) {
467 		ret = 0;
468 		goto out;
469 	}
470 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
471 		if (is_present_gpte(pdpte[i]) &&
472 		    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
473 			ret = 0;
474 			goto out;
475 		}
476 	}
477 	ret = 1;
478 
479 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
480 	__set_bit(VCPU_EXREG_PDPTR,
481 		  (unsigned long *)&vcpu->arch.regs_avail);
482 	__set_bit(VCPU_EXREG_PDPTR,
483 		  (unsigned long *)&vcpu->arch.regs_dirty);
484 out:
485 
486 	return ret;
487 }
488 EXPORT_SYMBOL_GPL(load_pdptrs);
489 
490 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
491 {
492 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
493 	bool changed = true;
494 	int offset;
495 	gfn_t gfn;
496 	int r;
497 
498 	if (is_long_mode(vcpu) || !is_pae(vcpu))
499 		return false;
500 
501 	if (!test_bit(VCPU_EXREG_PDPTR,
502 		      (unsigned long *)&vcpu->arch.regs_avail))
503 		return true;
504 
505 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
506 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
507 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
508 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
509 	if (r < 0)
510 		goto out;
511 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
512 out:
513 
514 	return changed;
515 }
516 
517 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
518 {
519 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
520 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
521 				    X86_CR0_CD | X86_CR0_NW;
522 
523 	cr0 |= X86_CR0_ET;
524 
525 #ifdef CONFIG_X86_64
526 	if (cr0 & 0xffffffff00000000UL)
527 		return 1;
528 #endif
529 
530 	cr0 &= ~CR0_RESERVED_BITS;
531 
532 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
533 		return 1;
534 
535 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
536 		return 1;
537 
538 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
539 #ifdef CONFIG_X86_64
540 		if ((vcpu->arch.efer & EFER_LME)) {
541 			int cs_db, cs_l;
542 
543 			if (!is_pae(vcpu))
544 				return 1;
545 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
546 			if (cs_l)
547 				return 1;
548 		} else
549 #endif
550 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
551 						 kvm_read_cr3(vcpu)))
552 			return 1;
553 	}
554 
555 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
556 		return 1;
557 
558 	kvm_x86_ops->set_cr0(vcpu, cr0);
559 
560 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
561 		kvm_clear_async_pf_completion_queue(vcpu);
562 		kvm_async_pf_hash_reset(vcpu);
563 	}
564 
565 	if ((cr0 ^ old_cr0) & update_bits)
566 		kvm_mmu_reset_context(vcpu);
567 	return 0;
568 }
569 EXPORT_SYMBOL_GPL(kvm_set_cr0);
570 
571 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
572 {
573 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
574 }
575 EXPORT_SYMBOL_GPL(kvm_lmsw);
576 
577 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
578 {
579 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
580 			!vcpu->guest_xcr0_loaded) {
581 		/* kvm_set_xcr() also depends on this */
582 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
583 		vcpu->guest_xcr0_loaded = 1;
584 	}
585 }
586 
587 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
588 {
589 	if (vcpu->guest_xcr0_loaded) {
590 		if (vcpu->arch.xcr0 != host_xcr0)
591 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
592 		vcpu->guest_xcr0_loaded = 0;
593 	}
594 }
595 
596 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
597 {
598 	u64 xcr0 = xcr;
599 	u64 old_xcr0 = vcpu->arch.xcr0;
600 	u64 valid_bits;
601 
602 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
603 	if (index != XCR_XFEATURE_ENABLED_MASK)
604 		return 1;
605 	if (!(xcr0 & XSTATE_FP))
606 		return 1;
607 	if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
608 		return 1;
609 
610 	/*
611 	 * Do not allow the guest to set bits that we do not support
612 	 * saving.  However, xcr0 bit 0 is always set, even if the
613 	 * emulated CPU does not support XSAVE (see fx_init).
614 	 */
615 	valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
616 	if (xcr0 & ~valid_bits)
617 		return 1;
618 
619 	if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
620 		return 1;
621 
622 	kvm_put_guest_xcr0(vcpu);
623 	vcpu->arch.xcr0 = xcr0;
624 
625 	if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
626 		kvm_update_cpuid(vcpu);
627 	return 0;
628 }
629 
630 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
631 {
632 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
633 	    __kvm_set_xcr(vcpu, index, xcr)) {
634 		kvm_inject_gp(vcpu, 0);
635 		return 1;
636 	}
637 	return 0;
638 }
639 EXPORT_SYMBOL_GPL(kvm_set_xcr);
640 
641 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
642 {
643 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
644 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
645 				   X86_CR4_PAE | X86_CR4_SMEP;
646 	if (cr4 & CR4_RESERVED_BITS)
647 		return 1;
648 
649 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
650 		return 1;
651 
652 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
653 		return 1;
654 
655 	if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
656 		return 1;
657 
658 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
659 		return 1;
660 
661 	if (is_long_mode(vcpu)) {
662 		if (!(cr4 & X86_CR4_PAE))
663 			return 1;
664 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
665 		   && ((cr4 ^ old_cr4) & pdptr_bits)
666 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
667 				   kvm_read_cr3(vcpu)))
668 		return 1;
669 
670 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
671 		if (!guest_cpuid_has_pcid(vcpu))
672 			return 1;
673 
674 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
675 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
676 			return 1;
677 	}
678 
679 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
680 		return 1;
681 
682 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
683 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
684 		kvm_mmu_reset_context(vcpu);
685 
686 	if ((cr4 ^ old_cr4) & X86_CR4_SMAP)
687 		update_permission_bitmask(vcpu, vcpu->arch.walk_mmu, false);
688 
689 	if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
690 		kvm_update_cpuid(vcpu);
691 
692 	return 0;
693 }
694 EXPORT_SYMBOL_GPL(kvm_set_cr4);
695 
696 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
697 {
698 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
699 		kvm_mmu_sync_roots(vcpu);
700 		kvm_mmu_flush_tlb(vcpu);
701 		return 0;
702 	}
703 
704 	if (is_long_mode(vcpu)) {
705 		if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
706 			if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
707 				return 1;
708 		} else
709 			if (cr3 & CR3_L_MODE_RESERVED_BITS)
710 				return 1;
711 	} else {
712 		if (is_pae(vcpu)) {
713 			if (cr3 & CR3_PAE_RESERVED_BITS)
714 				return 1;
715 			if (is_paging(vcpu) &&
716 			    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
717 				return 1;
718 		}
719 		/*
720 		 * We don't check reserved bits in nonpae mode, because
721 		 * this isn't enforced, and VMware depends on this.
722 		 */
723 	}
724 
725 	vcpu->arch.cr3 = cr3;
726 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
727 	kvm_mmu_new_cr3(vcpu);
728 	return 0;
729 }
730 EXPORT_SYMBOL_GPL(kvm_set_cr3);
731 
732 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
733 {
734 	if (cr8 & CR8_RESERVED_BITS)
735 		return 1;
736 	if (irqchip_in_kernel(vcpu->kvm))
737 		kvm_lapic_set_tpr(vcpu, cr8);
738 	else
739 		vcpu->arch.cr8 = cr8;
740 	return 0;
741 }
742 EXPORT_SYMBOL_GPL(kvm_set_cr8);
743 
744 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
745 {
746 	if (irqchip_in_kernel(vcpu->kvm))
747 		return kvm_lapic_get_cr8(vcpu);
748 	else
749 		return vcpu->arch.cr8;
750 }
751 EXPORT_SYMBOL_GPL(kvm_get_cr8);
752 
753 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
754 {
755 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
756 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
757 }
758 
759 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
760 {
761 	unsigned long dr7;
762 
763 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
764 		dr7 = vcpu->arch.guest_debug_dr7;
765 	else
766 		dr7 = vcpu->arch.dr7;
767 	kvm_x86_ops->set_dr7(vcpu, dr7);
768 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
769 	if (dr7 & DR7_BP_EN_MASK)
770 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
771 }
772 
773 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
774 {
775 	switch (dr) {
776 	case 0 ... 3:
777 		vcpu->arch.db[dr] = val;
778 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
779 			vcpu->arch.eff_db[dr] = val;
780 		break;
781 	case 4:
782 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
783 			return 1; /* #UD */
784 		/* fall through */
785 	case 6:
786 		if (val & 0xffffffff00000000ULL)
787 			return -1; /* #GP */
788 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
789 		kvm_update_dr6(vcpu);
790 		break;
791 	case 5:
792 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
793 			return 1; /* #UD */
794 		/* fall through */
795 	default: /* 7 */
796 		if (val & 0xffffffff00000000ULL)
797 			return -1; /* #GP */
798 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
799 		kvm_update_dr7(vcpu);
800 		break;
801 	}
802 
803 	return 0;
804 }
805 
806 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
807 {
808 	int res;
809 
810 	res = __kvm_set_dr(vcpu, dr, val);
811 	if (res > 0)
812 		kvm_queue_exception(vcpu, UD_VECTOR);
813 	else if (res < 0)
814 		kvm_inject_gp(vcpu, 0);
815 
816 	return res;
817 }
818 EXPORT_SYMBOL_GPL(kvm_set_dr);
819 
820 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
821 {
822 	switch (dr) {
823 	case 0 ... 3:
824 		*val = vcpu->arch.db[dr];
825 		break;
826 	case 4:
827 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
828 			return 1;
829 		/* fall through */
830 	case 6:
831 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
832 			*val = vcpu->arch.dr6;
833 		else
834 			*val = kvm_x86_ops->get_dr6(vcpu);
835 		break;
836 	case 5:
837 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
838 			return 1;
839 		/* fall through */
840 	default: /* 7 */
841 		*val = vcpu->arch.dr7;
842 		break;
843 	}
844 
845 	return 0;
846 }
847 
848 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
849 {
850 	if (_kvm_get_dr(vcpu, dr, val)) {
851 		kvm_queue_exception(vcpu, UD_VECTOR);
852 		return 1;
853 	}
854 	return 0;
855 }
856 EXPORT_SYMBOL_GPL(kvm_get_dr);
857 
858 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
859 {
860 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
861 	u64 data;
862 	int err;
863 
864 	err = kvm_pmu_read_pmc(vcpu, ecx, &data);
865 	if (err)
866 		return err;
867 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
868 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
869 	return err;
870 }
871 EXPORT_SYMBOL_GPL(kvm_rdpmc);
872 
873 /*
874  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
875  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
876  *
877  * This list is modified at module load time to reflect the
878  * capabilities of the host cpu. This capabilities test skips MSRs that are
879  * kvm-specific. Those are put in the beginning of the list.
880  */
881 
882 #define KVM_SAVE_MSRS_BEGIN	12
883 static u32 msrs_to_save[] = {
884 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
885 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
886 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
887 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
888 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
889 	MSR_KVM_PV_EOI_EN,
890 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
891 	MSR_STAR,
892 #ifdef CONFIG_X86_64
893 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
894 #endif
895 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
896 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
897 };
898 
899 static unsigned num_msrs_to_save;
900 
901 static const u32 emulated_msrs[] = {
902 	MSR_IA32_TSC_ADJUST,
903 	MSR_IA32_TSCDEADLINE,
904 	MSR_IA32_MISC_ENABLE,
905 	MSR_IA32_MCG_STATUS,
906 	MSR_IA32_MCG_CTL,
907 };
908 
909 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
910 {
911 	if (efer & efer_reserved_bits)
912 		return false;
913 
914 	if (efer & EFER_FFXSR) {
915 		struct kvm_cpuid_entry2 *feat;
916 
917 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
918 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
919 			return false;
920 	}
921 
922 	if (efer & EFER_SVME) {
923 		struct kvm_cpuid_entry2 *feat;
924 
925 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
926 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
927 			return false;
928 	}
929 
930 	return true;
931 }
932 EXPORT_SYMBOL_GPL(kvm_valid_efer);
933 
934 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
935 {
936 	u64 old_efer = vcpu->arch.efer;
937 
938 	if (!kvm_valid_efer(vcpu, efer))
939 		return 1;
940 
941 	if (is_paging(vcpu)
942 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
943 		return 1;
944 
945 	efer &= ~EFER_LMA;
946 	efer |= vcpu->arch.efer & EFER_LMA;
947 
948 	kvm_x86_ops->set_efer(vcpu, efer);
949 
950 	/* Update reserved bits */
951 	if ((efer ^ old_efer) & EFER_NX)
952 		kvm_mmu_reset_context(vcpu);
953 
954 	return 0;
955 }
956 
957 void kvm_enable_efer_bits(u64 mask)
958 {
959        efer_reserved_bits &= ~mask;
960 }
961 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
962 
963 
964 /*
965  * Writes msr value into into the appropriate "register".
966  * Returns 0 on success, non-0 otherwise.
967  * Assumes vcpu_load() was already called.
968  */
969 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
970 {
971 	return kvm_x86_ops->set_msr(vcpu, msr);
972 }
973 
974 /*
975  * Adapt set_msr() to msr_io()'s calling convention
976  */
977 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
978 {
979 	struct msr_data msr;
980 
981 	msr.data = *data;
982 	msr.index = index;
983 	msr.host_initiated = true;
984 	return kvm_set_msr(vcpu, &msr);
985 }
986 
987 #ifdef CONFIG_X86_64
988 struct pvclock_gtod_data {
989 	seqcount_t	seq;
990 
991 	struct { /* extract of a clocksource struct */
992 		int vclock_mode;
993 		cycle_t	cycle_last;
994 		cycle_t	mask;
995 		u32	mult;
996 		u32	shift;
997 	} clock;
998 
999 	/* open coded 'struct timespec' */
1000 	u64		monotonic_time_snsec;
1001 	time_t		monotonic_time_sec;
1002 };
1003 
1004 static struct pvclock_gtod_data pvclock_gtod_data;
1005 
1006 static void update_pvclock_gtod(struct timekeeper *tk)
1007 {
1008 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1009 
1010 	write_seqcount_begin(&vdata->seq);
1011 
1012 	/* copy pvclock gtod data */
1013 	vdata->clock.vclock_mode	= tk->clock->archdata.vclock_mode;
1014 	vdata->clock.cycle_last		= tk->clock->cycle_last;
1015 	vdata->clock.mask		= tk->clock->mask;
1016 	vdata->clock.mult		= tk->mult;
1017 	vdata->clock.shift		= tk->shift;
1018 
1019 	vdata->monotonic_time_sec	= tk->xtime_sec
1020 					+ tk->wall_to_monotonic.tv_sec;
1021 	vdata->monotonic_time_snsec	= tk->xtime_nsec
1022 					+ (tk->wall_to_monotonic.tv_nsec
1023 						<< tk->shift);
1024 	while (vdata->monotonic_time_snsec >=
1025 					(((u64)NSEC_PER_SEC) << tk->shift)) {
1026 		vdata->monotonic_time_snsec -=
1027 					((u64)NSEC_PER_SEC) << tk->shift;
1028 		vdata->monotonic_time_sec++;
1029 	}
1030 
1031 	write_seqcount_end(&vdata->seq);
1032 }
1033 #endif
1034 
1035 
1036 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1037 {
1038 	int version;
1039 	int r;
1040 	struct pvclock_wall_clock wc;
1041 	struct timespec boot;
1042 
1043 	if (!wall_clock)
1044 		return;
1045 
1046 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1047 	if (r)
1048 		return;
1049 
1050 	if (version & 1)
1051 		++version;  /* first time write, random junk */
1052 
1053 	++version;
1054 
1055 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1056 
1057 	/*
1058 	 * The guest calculates current wall clock time by adding
1059 	 * system time (updated by kvm_guest_time_update below) to the
1060 	 * wall clock specified here.  guest system time equals host
1061 	 * system time for us, thus we must fill in host boot time here.
1062 	 */
1063 	getboottime(&boot);
1064 
1065 	if (kvm->arch.kvmclock_offset) {
1066 		struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1067 		boot = timespec_sub(boot, ts);
1068 	}
1069 	wc.sec = boot.tv_sec;
1070 	wc.nsec = boot.tv_nsec;
1071 	wc.version = version;
1072 
1073 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1074 
1075 	version++;
1076 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1077 }
1078 
1079 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1080 {
1081 	uint32_t quotient, remainder;
1082 
1083 	/* Don't try to replace with do_div(), this one calculates
1084 	 * "(dividend << 32) / divisor" */
1085 	__asm__ ( "divl %4"
1086 		  : "=a" (quotient), "=d" (remainder)
1087 		  : "0" (0), "1" (dividend), "r" (divisor) );
1088 	return quotient;
1089 }
1090 
1091 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1092 			       s8 *pshift, u32 *pmultiplier)
1093 {
1094 	uint64_t scaled64;
1095 	int32_t  shift = 0;
1096 	uint64_t tps64;
1097 	uint32_t tps32;
1098 
1099 	tps64 = base_khz * 1000LL;
1100 	scaled64 = scaled_khz * 1000LL;
1101 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1102 		tps64 >>= 1;
1103 		shift--;
1104 	}
1105 
1106 	tps32 = (uint32_t)tps64;
1107 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1108 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1109 			scaled64 >>= 1;
1110 		else
1111 			tps32 <<= 1;
1112 		shift++;
1113 	}
1114 
1115 	*pshift = shift;
1116 	*pmultiplier = div_frac(scaled64, tps32);
1117 
1118 	pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1119 		 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1120 }
1121 
1122 static inline u64 get_kernel_ns(void)
1123 {
1124 	struct timespec ts;
1125 
1126 	ktime_get_ts(&ts);
1127 	monotonic_to_bootbased(&ts);
1128 	return timespec_to_ns(&ts);
1129 }
1130 
1131 #ifdef CONFIG_X86_64
1132 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1133 #endif
1134 
1135 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1136 unsigned long max_tsc_khz;
1137 
1138 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1139 {
1140 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1141 				   vcpu->arch.virtual_tsc_shift);
1142 }
1143 
1144 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1145 {
1146 	u64 v = (u64)khz * (1000000 + ppm);
1147 	do_div(v, 1000000);
1148 	return v;
1149 }
1150 
1151 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1152 {
1153 	u32 thresh_lo, thresh_hi;
1154 	int use_scaling = 0;
1155 
1156 	/* tsc_khz can be zero if TSC calibration fails */
1157 	if (this_tsc_khz == 0)
1158 		return;
1159 
1160 	/* Compute a scale to convert nanoseconds in TSC cycles */
1161 	kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1162 			   &vcpu->arch.virtual_tsc_shift,
1163 			   &vcpu->arch.virtual_tsc_mult);
1164 	vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1165 
1166 	/*
1167 	 * Compute the variation in TSC rate which is acceptable
1168 	 * within the range of tolerance and decide if the
1169 	 * rate being applied is within that bounds of the hardware
1170 	 * rate.  If so, no scaling or compensation need be done.
1171 	 */
1172 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1173 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1174 	if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1175 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1176 		use_scaling = 1;
1177 	}
1178 	kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1179 }
1180 
1181 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1182 {
1183 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1184 				      vcpu->arch.virtual_tsc_mult,
1185 				      vcpu->arch.virtual_tsc_shift);
1186 	tsc += vcpu->arch.this_tsc_write;
1187 	return tsc;
1188 }
1189 
1190 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1191 {
1192 #ifdef CONFIG_X86_64
1193 	bool vcpus_matched;
1194 	bool do_request = false;
1195 	struct kvm_arch *ka = &vcpu->kvm->arch;
1196 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1197 
1198 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1199 			 atomic_read(&vcpu->kvm->online_vcpus));
1200 
1201 	if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1202 		if (!ka->use_master_clock)
1203 			do_request = 1;
1204 
1205 	if (!vcpus_matched && ka->use_master_clock)
1206 			do_request = 1;
1207 
1208 	if (do_request)
1209 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1210 
1211 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1212 			    atomic_read(&vcpu->kvm->online_vcpus),
1213 		            ka->use_master_clock, gtod->clock.vclock_mode);
1214 #endif
1215 }
1216 
1217 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1218 {
1219 	u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1220 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1221 }
1222 
1223 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1224 {
1225 	struct kvm *kvm = vcpu->kvm;
1226 	u64 offset, ns, elapsed;
1227 	unsigned long flags;
1228 	s64 usdiff;
1229 	bool matched;
1230 	u64 data = msr->data;
1231 
1232 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1233 	offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1234 	ns = get_kernel_ns();
1235 	elapsed = ns - kvm->arch.last_tsc_nsec;
1236 
1237 	if (vcpu->arch.virtual_tsc_khz) {
1238 		int faulted = 0;
1239 
1240 		/* n.b - signed multiplication and division required */
1241 		usdiff = data - kvm->arch.last_tsc_write;
1242 #ifdef CONFIG_X86_64
1243 		usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1244 #else
1245 		/* do_div() only does unsigned */
1246 		asm("1: idivl %[divisor]\n"
1247 		    "2: xor %%edx, %%edx\n"
1248 		    "   movl $0, %[faulted]\n"
1249 		    "3:\n"
1250 		    ".section .fixup,\"ax\"\n"
1251 		    "4: movl $1, %[faulted]\n"
1252 		    "   jmp  3b\n"
1253 		    ".previous\n"
1254 
1255 		_ASM_EXTABLE(1b, 4b)
1256 
1257 		: "=A"(usdiff), [faulted] "=r" (faulted)
1258 		: "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1259 
1260 #endif
1261 		do_div(elapsed, 1000);
1262 		usdiff -= elapsed;
1263 		if (usdiff < 0)
1264 			usdiff = -usdiff;
1265 
1266 		/* idivl overflow => difference is larger than USEC_PER_SEC */
1267 		if (faulted)
1268 			usdiff = USEC_PER_SEC;
1269 	} else
1270 		usdiff = USEC_PER_SEC; /* disable TSC match window below */
1271 
1272 	/*
1273 	 * Special case: TSC write with a small delta (1 second) of virtual
1274 	 * cycle time against real time is interpreted as an attempt to
1275 	 * synchronize the CPU.
1276          *
1277 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1278 	 * TSC, we add elapsed time in this computation.  We could let the
1279 	 * compensation code attempt to catch up if we fall behind, but
1280 	 * it's better to try to match offsets from the beginning.
1281          */
1282 	if (usdiff < USEC_PER_SEC &&
1283 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1284 		if (!check_tsc_unstable()) {
1285 			offset = kvm->arch.cur_tsc_offset;
1286 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1287 		} else {
1288 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1289 			data += delta;
1290 			offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1291 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1292 		}
1293 		matched = true;
1294 	} else {
1295 		/*
1296 		 * We split periods of matched TSC writes into generations.
1297 		 * For each generation, we track the original measured
1298 		 * nanosecond time, offset, and write, so if TSCs are in
1299 		 * sync, we can match exact offset, and if not, we can match
1300 		 * exact software computation in compute_guest_tsc()
1301 		 *
1302 		 * These values are tracked in kvm->arch.cur_xxx variables.
1303 		 */
1304 		kvm->arch.cur_tsc_generation++;
1305 		kvm->arch.cur_tsc_nsec = ns;
1306 		kvm->arch.cur_tsc_write = data;
1307 		kvm->arch.cur_tsc_offset = offset;
1308 		matched = false;
1309 		pr_debug("kvm: new tsc generation %u, clock %llu\n",
1310 			 kvm->arch.cur_tsc_generation, data);
1311 	}
1312 
1313 	/*
1314 	 * We also track th most recent recorded KHZ, write and time to
1315 	 * allow the matching interval to be extended at each write.
1316 	 */
1317 	kvm->arch.last_tsc_nsec = ns;
1318 	kvm->arch.last_tsc_write = data;
1319 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1320 
1321 	vcpu->arch.last_guest_tsc = data;
1322 
1323 	/* Keep track of which generation this VCPU has synchronized to */
1324 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1325 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1326 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1327 
1328 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1329 		update_ia32_tsc_adjust_msr(vcpu, offset);
1330 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1331 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1332 
1333 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1334 	if (matched)
1335 		kvm->arch.nr_vcpus_matched_tsc++;
1336 	else
1337 		kvm->arch.nr_vcpus_matched_tsc = 0;
1338 
1339 	kvm_track_tsc_matching(vcpu);
1340 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1341 }
1342 
1343 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1344 
1345 #ifdef CONFIG_X86_64
1346 
1347 static cycle_t read_tsc(void)
1348 {
1349 	cycle_t ret;
1350 	u64 last;
1351 
1352 	/*
1353 	 * Empirically, a fence (of type that depends on the CPU)
1354 	 * before rdtsc is enough to ensure that rdtsc is ordered
1355 	 * with respect to loads.  The various CPU manuals are unclear
1356 	 * as to whether rdtsc can be reordered with later loads,
1357 	 * but no one has ever seen it happen.
1358 	 */
1359 	rdtsc_barrier();
1360 	ret = (cycle_t)vget_cycles();
1361 
1362 	last = pvclock_gtod_data.clock.cycle_last;
1363 
1364 	if (likely(ret >= last))
1365 		return ret;
1366 
1367 	/*
1368 	 * GCC likes to generate cmov here, but this branch is extremely
1369 	 * predictable (it's just a funciton of time and the likely is
1370 	 * very likely) and there's a data dependence, so force GCC
1371 	 * to generate a branch instead.  I don't barrier() because
1372 	 * we don't actually need a barrier, and if this function
1373 	 * ever gets inlined it will generate worse code.
1374 	 */
1375 	asm volatile ("");
1376 	return last;
1377 }
1378 
1379 static inline u64 vgettsc(cycle_t *cycle_now)
1380 {
1381 	long v;
1382 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1383 
1384 	*cycle_now = read_tsc();
1385 
1386 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1387 	return v * gtod->clock.mult;
1388 }
1389 
1390 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1391 {
1392 	unsigned long seq;
1393 	u64 ns;
1394 	int mode;
1395 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1396 
1397 	ts->tv_nsec = 0;
1398 	do {
1399 		seq = read_seqcount_begin(&gtod->seq);
1400 		mode = gtod->clock.vclock_mode;
1401 		ts->tv_sec = gtod->monotonic_time_sec;
1402 		ns = gtod->monotonic_time_snsec;
1403 		ns += vgettsc(cycle_now);
1404 		ns >>= gtod->clock.shift;
1405 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1406 	timespec_add_ns(ts, ns);
1407 
1408 	return mode;
1409 }
1410 
1411 /* returns true if host is using tsc clocksource */
1412 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1413 {
1414 	struct timespec ts;
1415 
1416 	/* checked again under seqlock below */
1417 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1418 		return false;
1419 
1420 	if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1421 		return false;
1422 
1423 	monotonic_to_bootbased(&ts);
1424 	*kernel_ns = timespec_to_ns(&ts);
1425 
1426 	return true;
1427 }
1428 #endif
1429 
1430 /*
1431  *
1432  * Assuming a stable TSC across physical CPUS, and a stable TSC
1433  * across virtual CPUs, the following condition is possible.
1434  * Each numbered line represents an event visible to both
1435  * CPUs at the next numbered event.
1436  *
1437  * "timespecX" represents host monotonic time. "tscX" represents
1438  * RDTSC value.
1439  *
1440  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1441  *
1442  * 1.  read timespec0,tsc0
1443  * 2.					| timespec1 = timespec0 + N
1444  * 					| tsc1 = tsc0 + M
1445  * 3. transition to guest		| transition to guest
1446  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1447  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1448  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1449  *
1450  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1451  *
1452  * 	- ret0 < ret1
1453  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1454  *		...
1455  *	- 0 < N - M => M < N
1456  *
1457  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1458  * always the case (the difference between two distinct xtime instances
1459  * might be smaller then the difference between corresponding TSC reads,
1460  * when updating guest vcpus pvclock areas).
1461  *
1462  * To avoid that problem, do not allow visibility of distinct
1463  * system_timestamp/tsc_timestamp values simultaneously: use a master
1464  * copy of host monotonic time values. Update that master copy
1465  * in lockstep.
1466  *
1467  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1468  *
1469  */
1470 
1471 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1472 {
1473 #ifdef CONFIG_X86_64
1474 	struct kvm_arch *ka = &kvm->arch;
1475 	int vclock_mode;
1476 	bool host_tsc_clocksource, vcpus_matched;
1477 
1478 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1479 			atomic_read(&kvm->online_vcpus));
1480 
1481 	/*
1482 	 * If the host uses TSC clock, then passthrough TSC as stable
1483 	 * to the guest.
1484 	 */
1485 	host_tsc_clocksource = kvm_get_time_and_clockread(
1486 					&ka->master_kernel_ns,
1487 					&ka->master_cycle_now);
1488 
1489 	ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
1490 
1491 	if (ka->use_master_clock)
1492 		atomic_set(&kvm_guest_has_master_clock, 1);
1493 
1494 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1495 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1496 					vcpus_matched);
1497 #endif
1498 }
1499 
1500 static void kvm_gen_update_masterclock(struct kvm *kvm)
1501 {
1502 #ifdef CONFIG_X86_64
1503 	int i;
1504 	struct kvm_vcpu *vcpu;
1505 	struct kvm_arch *ka = &kvm->arch;
1506 
1507 	spin_lock(&ka->pvclock_gtod_sync_lock);
1508 	kvm_make_mclock_inprogress_request(kvm);
1509 	/* no guest entries from this point */
1510 	pvclock_update_vm_gtod_copy(kvm);
1511 
1512 	kvm_for_each_vcpu(i, vcpu, kvm)
1513 		set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1514 
1515 	/* guest entries allowed */
1516 	kvm_for_each_vcpu(i, vcpu, kvm)
1517 		clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1518 
1519 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1520 #endif
1521 }
1522 
1523 static int kvm_guest_time_update(struct kvm_vcpu *v)
1524 {
1525 	unsigned long flags, this_tsc_khz;
1526 	struct kvm_vcpu_arch *vcpu = &v->arch;
1527 	struct kvm_arch *ka = &v->kvm->arch;
1528 	s64 kernel_ns;
1529 	u64 tsc_timestamp, host_tsc;
1530 	struct pvclock_vcpu_time_info guest_hv_clock;
1531 	u8 pvclock_flags;
1532 	bool use_master_clock;
1533 
1534 	kernel_ns = 0;
1535 	host_tsc = 0;
1536 
1537 	/*
1538 	 * If the host uses TSC clock, then passthrough TSC as stable
1539 	 * to the guest.
1540 	 */
1541 	spin_lock(&ka->pvclock_gtod_sync_lock);
1542 	use_master_clock = ka->use_master_clock;
1543 	if (use_master_clock) {
1544 		host_tsc = ka->master_cycle_now;
1545 		kernel_ns = ka->master_kernel_ns;
1546 	}
1547 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1548 
1549 	/* Keep irq disabled to prevent changes to the clock */
1550 	local_irq_save(flags);
1551 	this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1552 	if (unlikely(this_tsc_khz == 0)) {
1553 		local_irq_restore(flags);
1554 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1555 		return 1;
1556 	}
1557 	if (!use_master_clock) {
1558 		host_tsc = native_read_tsc();
1559 		kernel_ns = get_kernel_ns();
1560 	}
1561 
1562 	tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1563 
1564 	/*
1565 	 * We may have to catch up the TSC to match elapsed wall clock
1566 	 * time for two reasons, even if kvmclock is used.
1567 	 *   1) CPU could have been running below the maximum TSC rate
1568 	 *   2) Broken TSC compensation resets the base at each VCPU
1569 	 *      entry to avoid unknown leaps of TSC even when running
1570 	 *      again on the same CPU.  This may cause apparent elapsed
1571 	 *      time to disappear, and the guest to stand still or run
1572 	 *	very slowly.
1573 	 */
1574 	if (vcpu->tsc_catchup) {
1575 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1576 		if (tsc > tsc_timestamp) {
1577 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1578 			tsc_timestamp = tsc;
1579 		}
1580 	}
1581 
1582 	local_irq_restore(flags);
1583 
1584 	if (!vcpu->pv_time_enabled)
1585 		return 0;
1586 
1587 	if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1588 		kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1589 				   &vcpu->hv_clock.tsc_shift,
1590 				   &vcpu->hv_clock.tsc_to_system_mul);
1591 		vcpu->hw_tsc_khz = this_tsc_khz;
1592 	}
1593 
1594 	/* With all the info we got, fill in the values */
1595 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1596 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1597 	vcpu->last_guest_tsc = tsc_timestamp;
1598 
1599 	/*
1600 	 * The interface expects us to write an even number signaling that the
1601 	 * update is finished. Since the guest won't see the intermediate
1602 	 * state, we just increase by 2 at the end.
1603 	 */
1604 	vcpu->hv_clock.version += 2;
1605 
1606 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1607 		&guest_hv_clock, sizeof(guest_hv_clock))))
1608 		return 0;
1609 
1610 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1611 	pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1612 
1613 	if (vcpu->pvclock_set_guest_stopped_request) {
1614 		pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1615 		vcpu->pvclock_set_guest_stopped_request = false;
1616 	}
1617 
1618 	/* If the host uses TSC clocksource, then it is stable */
1619 	if (use_master_clock)
1620 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1621 
1622 	vcpu->hv_clock.flags = pvclock_flags;
1623 
1624 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1625 				&vcpu->hv_clock,
1626 				sizeof(vcpu->hv_clock));
1627 	return 0;
1628 }
1629 
1630 /*
1631  * kvmclock updates which are isolated to a given vcpu, such as
1632  * vcpu->cpu migration, should not allow system_timestamp from
1633  * the rest of the vcpus to remain static. Otherwise ntp frequency
1634  * correction applies to one vcpu's system_timestamp but not
1635  * the others.
1636  *
1637  * So in those cases, request a kvmclock update for all vcpus.
1638  * We need to rate-limit these requests though, as they can
1639  * considerably slow guests that have a large number of vcpus.
1640  * The time for a remote vcpu to update its kvmclock is bound
1641  * by the delay we use to rate-limit the updates.
1642  */
1643 
1644 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1645 
1646 static void kvmclock_update_fn(struct work_struct *work)
1647 {
1648 	int i;
1649 	struct delayed_work *dwork = to_delayed_work(work);
1650 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1651 					   kvmclock_update_work);
1652 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1653 	struct kvm_vcpu *vcpu;
1654 
1655 	kvm_for_each_vcpu(i, vcpu, kvm) {
1656 		set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1657 		kvm_vcpu_kick(vcpu);
1658 	}
1659 }
1660 
1661 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1662 {
1663 	struct kvm *kvm = v->kvm;
1664 
1665 	set_bit(KVM_REQ_CLOCK_UPDATE, &v->requests);
1666 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1667 					KVMCLOCK_UPDATE_DELAY);
1668 }
1669 
1670 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1671 
1672 static void kvmclock_sync_fn(struct work_struct *work)
1673 {
1674 	struct delayed_work *dwork = to_delayed_work(work);
1675 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1676 					   kvmclock_sync_work);
1677 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1678 
1679 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1680 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1681 					KVMCLOCK_SYNC_PERIOD);
1682 }
1683 
1684 static bool msr_mtrr_valid(unsigned msr)
1685 {
1686 	switch (msr) {
1687 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1688 	case MSR_MTRRfix64K_00000:
1689 	case MSR_MTRRfix16K_80000:
1690 	case MSR_MTRRfix16K_A0000:
1691 	case MSR_MTRRfix4K_C0000:
1692 	case MSR_MTRRfix4K_C8000:
1693 	case MSR_MTRRfix4K_D0000:
1694 	case MSR_MTRRfix4K_D8000:
1695 	case MSR_MTRRfix4K_E0000:
1696 	case MSR_MTRRfix4K_E8000:
1697 	case MSR_MTRRfix4K_F0000:
1698 	case MSR_MTRRfix4K_F8000:
1699 	case MSR_MTRRdefType:
1700 	case MSR_IA32_CR_PAT:
1701 		return true;
1702 	case 0x2f8:
1703 		return true;
1704 	}
1705 	return false;
1706 }
1707 
1708 static bool valid_pat_type(unsigned t)
1709 {
1710 	return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1711 }
1712 
1713 static bool valid_mtrr_type(unsigned t)
1714 {
1715 	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1716 }
1717 
1718 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1719 {
1720 	int i;
1721 
1722 	if (!msr_mtrr_valid(msr))
1723 		return false;
1724 
1725 	if (msr == MSR_IA32_CR_PAT) {
1726 		for (i = 0; i < 8; i++)
1727 			if (!valid_pat_type((data >> (i * 8)) & 0xff))
1728 				return false;
1729 		return true;
1730 	} else if (msr == MSR_MTRRdefType) {
1731 		if (data & ~0xcff)
1732 			return false;
1733 		return valid_mtrr_type(data & 0xff);
1734 	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1735 		for (i = 0; i < 8 ; i++)
1736 			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1737 				return false;
1738 		return true;
1739 	}
1740 
1741 	/* variable MTRRs */
1742 	return valid_mtrr_type(data & 0xff);
1743 }
1744 
1745 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1746 {
1747 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1748 
1749 	if (!mtrr_valid(vcpu, msr, data))
1750 		return 1;
1751 
1752 	if (msr == MSR_MTRRdefType) {
1753 		vcpu->arch.mtrr_state.def_type = data;
1754 		vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1755 	} else if (msr == MSR_MTRRfix64K_00000)
1756 		p[0] = data;
1757 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1758 		p[1 + msr - MSR_MTRRfix16K_80000] = data;
1759 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1760 		p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1761 	else if (msr == MSR_IA32_CR_PAT)
1762 		vcpu->arch.pat = data;
1763 	else {	/* Variable MTRRs */
1764 		int idx, is_mtrr_mask;
1765 		u64 *pt;
1766 
1767 		idx = (msr - 0x200) / 2;
1768 		is_mtrr_mask = msr - 0x200 - 2 * idx;
1769 		if (!is_mtrr_mask)
1770 			pt =
1771 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1772 		else
1773 			pt =
1774 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1775 		*pt = data;
1776 	}
1777 
1778 	kvm_mmu_reset_context(vcpu);
1779 	return 0;
1780 }
1781 
1782 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1783 {
1784 	u64 mcg_cap = vcpu->arch.mcg_cap;
1785 	unsigned bank_num = mcg_cap & 0xff;
1786 
1787 	switch (msr) {
1788 	case MSR_IA32_MCG_STATUS:
1789 		vcpu->arch.mcg_status = data;
1790 		break;
1791 	case MSR_IA32_MCG_CTL:
1792 		if (!(mcg_cap & MCG_CTL_P))
1793 			return 1;
1794 		if (data != 0 && data != ~(u64)0)
1795 			return -1;
1796 		vcpu->arch.mcg_ctl = data;
1797 		break;
1798 	default:
1799 		if (msr >= MSR_IA32_MC0_CTL &&
1800 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1801 			u32 offset = msr - MSR_IA32_MC0_CTL;
1802 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1803 			 * some Linux kernels though clear bit 10 in bank 4 to
1804 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1805 			 * this to avoid an uncatched #GP in the guest
1806 			 */
1807 			if ((offset & 0x3) == 0 &&
1808 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1809 				return -1;
1810 			vcpu->arch.mce_banks[offset] = data;
1811 			break;
1812 		}
1813 		return 1;
1814 	}
1815 	return 0;
1816 }
1817 
1818 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1819 {
1820 	struct kvm *kvm = vcpu->kvm;
1821 	int lm = is_long_mode(vcpu);
1822 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1823 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1824 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1825 		: kvm->arch.xen_hvm_config.blob_size_32;
1826 	u32 page_num = data & ~PAGE_MASK;
1827 	u64 page_addr = data & PAGE_MASK;
1828 	u8 *page;
1829 	int r;
1830 
1831 	r = -E2BIG;
1832 	if (page_num >= blob_size)
1833 		goto out;
1834 	r = -ENOMEM;
1835 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1836 	if (IS_ERR(page)) {
1837 		r = PTR_ERR(page);
1838 		goto out;
1839 	}
1840 	if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1841 		goto out_free;
1842 	r = 0;
1843 out_free:
1844 	kfree(page);
1845 out:
1846 	return r;
1847 }
1848 
1849 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1850 {
1851 	return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1852 }
1853 
1854 static bool kvm_hv_msr_partition_wide(u32 msr)
1855 {
1856 	bool r = false;
1857 	switch (msr) {
1858 	case HV_X64_MSR_GUEST_OS_ID:
1859 	case HV_X64_MSR_HYPERCALL:
1860 	case HV_X64_MSR_REFERENCE_TSC:
1861 	case HV_X64_MSR_TIME_REF_COUNT:
1862 		r = true;
1863 		break;
1864 	}
1865 
1866 	return r;
1867 }
1868 
1869 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1870 {
1871 	struct kvm *kvm = vcpu->kvm;
1872 
1873 	switch (msr) {
1874 	case HV_X64_MSR_GUEST_OS_ID:
1875 		kvm->arch.hv_guest_os_id = data;
1876 		/* setting guest os id to zero disables hypercall page */
1877 		if (!kvm->arch.hv_guest_os_id)
1878 			kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1879 		break;
1880 	case HV_X64_MSR_HYPERCALL: {
1881 		u64 gfn;
1882 		unsigned long addr;
1883 		u8 instructions[4];
1884 
1885 		/* if guest os id is not set hypercall should remain disabled */
1886 		if (!kvm->arch.hv_guest_os_id)
1887 			break;
1888 		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1889 			kvm->arch.hv_hypercall = data;
1890 			break;
1891 		}
1892 		gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1893 		addr = gfn_to_hva(kvm, gfn);
1894 		if (kvm_is_error_hva(addr))
1895 			return 1;
1896 		kvm_x86_ops->patch_hypercall(vcpu, instructions);
1897 		((unsigned char *)instructions)[3] = 0xc3; /* ret */
1898 		if (__copy_to_user((void __user *)addr, instructions, 4))
1899 			return 1;
1900 		kvm->arch.hv_hypercall = data;
1901 		mark_page_dirty(kvm, gfn);
1902 		break;
1903 	}
1904 	case HV_X64_MSR_REFERENCE_TSC: {
1905 		u64 gfn;
1906 		HV_REFERENCE_TSC_PAGE tsc_ref;
1907 		memset(&tsc_ref, 0, sizeof(tsc_ref));
1908 		kvm->arch.hv_tsc_page = data;
1909 		if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1910 			break;
1911 		gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1912 		if (kvm_write_guest(kvm, data,
1913 			&tsc_ref, sizeof(tsc_ref)))
1914 			return 1;
1915 		mark_page_dirty(kvm, gfn);
1916 		break;
1917 	}
1918 	default:
1919 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1920 			    "data 0x%llx\n", msr, data);
1921 		return 1;
1922 	}
1923 	return 0;
1924 }
1925 
1926 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1927 {
1928 	switch (msr) {
1929 	case HV_X64_MSR_APIC_ASSIST_PAGE: {
1930 		u64 gfn;
1931 		unsigned long addr;
1932 
1933 		if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1934 			vcpu->arch.hv_vapic = data;
1935 			break;
1936 		}
1937 		gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
1938 		addr = gfn_to_hva(vcpu->kvm, gfn);
1939 		if (kvm_is_error_hva(addr))
1940 			return 1;
1941 		if (__clear_user((void __user *)addr, PAGE_SIZE))
1942 			return 1;
1943 		vcpu->arch.hv_vapic = data;
1944 		mark_page_dirty(vcpu->kvm, gfn);
1945 		break;
1946 	}
1947 	case HV_X64_MSR_EOI:
1948 		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1949 	case HV_X64_MSR_ICR:
1950 		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1951 	case HV_X64_MSR_TPR:
1952 		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1953 	default:
1954 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1955 			    "data 0x%llx\n", msr, data);
1956 		return 1;
1957 	}
1958 
1959 	return 0;
1960 }
1961 
1962 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1963 {
1964 	gpa_t gpa = data & ~0x3f;
1965 
1966 	/* Bits 2:5 are reserved, Should be zero */
1967 	if (data & 0x3c)
1968 		return 1;
1969 
1970 	vcpu->arch.apf.msr_val = data;
1971 
1972 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
1973 		kvm_clear_async_pf_completion_queue(vcpu);
1974 		kvm_async_pf_hash_reset(vcpu);
1975 		return 0;
1976 	}
1977 
1978 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1979 					sizeof(u32)))
1980 		return 1;
1981 
1982 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1983 	kvm_async_pf_wakeup_all(vcpu);
1984 	return 0;
1985 }
1986 
1987 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1988 {
1989 	vcpu->arch.pv_time_enabled = false;
1990 }
1991 
1992 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1993 {
1994 	u64 delta;
1995 
1996 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1997 		return;
1998 
1999 	delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2000 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2001 	vcpu->arch.st.accum_steal = delta;
2002 }
2003 
2004 static void record_steal_time(struct kvm_vcpu *vcpu)
2005 {
2006 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2007 		return;
2008 
2009 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2010 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2011 		return;
2012 
2013 	vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2014 	vcpu->arch.st.steal.version += 2;
2015 	vcpu->arch.st.accum_steal = 0;
2016 
2017 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2018 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2019 }
2020 
2021 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2022 {
2023 	bool pr = false;
2024 	u32 msr = msr_info->index;
2025 	u64 data = msr_info->data;
2026 
2027 	switch (msr) {
2028 	case MSR_AMD64_NB_CFG:
2029 	case MSR_IA32_UCODE_REV:
2030 	case MSR_IA32_UCODE_WRITE:
2031 	case MSR_VM_HSAVE_PA:
2032 	case MSR_AMD64_PATCH_LOADER:
2033 	case MSR_AMD64_BU_CFG2:
2034 		break;
2035 
2036 	case MSR_EFER:
2037 		return set_efer(vcpu, data);
2038 	case MSR_K7_HWCR:
2039 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2040 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2041 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2042 		if (data != 0) {
2043 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2044 				    data);
2045 			return 1;
2046 		}
2047 		break;
2048 	case MSR_FAM10H_MMIO_CONF_BASE:
2049 		if (data != 0) {
2050 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2051 				    "0x%llx\n", data);
2052 			return 1;
2053 		}
2054 		break;
2055 	case MSR_IA32_DEBUGCTLMSR:
2056 		if (!data) {
2057 			/* We support the non-activated case already */
2058 			break;
2059 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2060 			/* Values other than LBR and BTF are vendor-specific,
2061 			   thus reserved and should throw a #GP */
2062 			return 1;
2063 		}
2064 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2065 			    __func__, data);
2066 		break;
2067 	case 0x200 ... 0x2ff:
2068 		return set_msr_mtrr(vcpu, msr, data);
2069 	case MSR_IA32_APICBASE:
2070 		return kvm_set_apic_base(vcpu, msr_info);
2071 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2072 		return kvm_x2apic_msr_write(vcpu, msr, data);
2073 	case MSR_IA32_TSCDEADLINE:
2074 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2075 		break;
2076 	case MSR_IA32_TSC_ADJUST:
2077 		if (guest_cpuid_has_tsc_adjust(vcpu)) {
2078 			if (!msr_info->host_initiated) {
2079 				u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2080 				kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2081 			}
2082 			vcpu->arch.ia32_tsc_adjust_msr = data;
2083 		}
2084 		break;
2085 	case MSR_IA32_MISC_ENABLE:
2086 		vcpu->arch.ia32_misc_enable_msr = data;
2087 		break;
2088 	case MSR_KVM_WALL_CLOCK_NEW:
2089 	case MSR_KVM_WALL_CLOCK:
2090 		vcpu->kvm->arch.wall_clock = data;
2091 		kvm_write_wall_clock(vcpu->kvm, data);
2092 		break;
2093 	case MSR_KVM_SYSTEM_TIME_NEW:
2094 	case MSR_KVM_SYSTEM_TIME: {
2095 		u64 gpa_offset;
2096 		kvmclock_reset(vcpu);
2097 
2098 		vcpu->arch.time = data;
2099 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2100 
2101 		/* we verify if the enable bit is set... */
2102 		if (!(data & 1))
2103 			break;
2104 
2105 		gpa_offset = data & ~(PAGE_MASK | 1);
2106 
2107 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2108 		     &vcpu->arch.pv_time, data & ~1ULL,
2109 		     sizeof(struct pvclock_vcpu_time_info)))
2110 			vcpu->arch.pv_time_enabled = false;
2111 		else
2112 			vcpu->arch.pv_time_enabled = true;
2113 
2114 		break;
2115 	}
2116 	case MSR_KVM_ASYNC_PF_EN:
2117 		if (kvm_pv_enable_async_pf(vcpu, data))
2118 			return 1;
2119 		break;
2120 	case MSR_KVM_STEAL_TIME:
2121 
2122 		if (unlikely(!sched_info_on()))
2123 			return 1;
2124 
2125 		if (data & KVM_STEAL_RESERVED_MASK)
2126 			return 1;
2127 
2128 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2129 						data & KVM_STEAL_VALID_BITS,
2130 						sizeof(struct kvm_steal_time)))
2131 			return 1;
2132 
2133 		vcpu->arch.st.msr_val = data;
2134 
2135 		if (!(data & KVM_MSR_ENABLED))
2136 			break;
2137 
2138 		vcpu->arch.st.last_steal = current->sched_info.run_delay;
2139 
2140 		preempt_disable();
2141 		accumulate_steal_time(vcpu);
2142 		preempt_enable();
2143 
2144 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2145 
2146 		break;
2147 	case MSR_KVM_PV_EOI_EN:
2148 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2149 			return 1;
2150 		break;
2151 
2152 	case MSR_IA32_MCG_CTL:
2153 	case MSR_IA32_MCG_STATUS:
2154 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2155 		return set_msr_mce(vcpu, msr, data);
2156 
2157 	/* Performance counters are not protected by a CPUID bit,
2158 	 * so we should check all of them in the generic path for the sake of
2159 	 * cross vendor migration.
2160 	 * Writing a zero into the event select MSRs disables them,
2161 	 * which we perfectly emulate ;-). Any other value should be at least
2162 	 * reported, some guests depend on them.
2163 	 */
2164 	case MSR_K7_EVNTSEL0:
2165 	case MSR_K7_EVNTSEL1:
2166 	case MSR_K7_EVNTSEL2:
2167 	case MSR_K7_EVNTSEL3:
2168 		if (data != 0)
2169 			vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2170 				    "0x%x data 0x%llx\n", msr, data);
2171 		break;
2172 	/* at least RHEL 4 unconditionally writes to the perfctr registers,
2173 	 * so we ignore writes to make it happy.
2174 	 */
2175 	case MSR_K7_PERFCTR0:
2176 	case MSR_K7_PERFCTR1:
2177 	case MSR_K7_PERFCTR2:
2178 	case MSR_K7_PERFCTR3:
2179 		vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2180 			    "0x%x data 0x%llx\n", msr, data);
2181 		break;
2182 	case MSR_P6_PERFCTR0:
2183 	case MSR_P6_PERFCTR1:
2184 		pr = true;
2185 	case MSR_P6_EVNTSEL0:
2186 	case MSR_P6_EVNTSEL1:
2187 		if (kvm_pmu_msr(vcpu, msr))
2188 			return kvm_pmu_set_msr(vcpu, msr_info);
2189 
2190 		if (pr || data != 0)
2191 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2192 				    "0x%x data 0x%llx\n", msr, data);
2193 		break;
2194 	case MSR_K7_CLK_CTL:
2195 		/*
2196 		 * Ignore all writes to this no longer documented MSR.
2197 		 * Writes are only relevant for old K7 processors,
2198 		 * all pre-dating SVM, but a recommended workaround from
2199 		 * AMD for these chips. It is possible to specify the
2200 		 * affected processor models on the command line, hence
2201 		 * the need to ignore the workaround.
2202 		 */
2203 		break;
2204 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2205 		if (kvm_hv_msr_partition_wide(msr)) {
2206 			int r;
2207 			mutex_lock(&vcpu->kvm->lock);
2208 			r = set_msr_hyperv_pw(vcpu, msr, data);
2209 			mutex_unlock(&vcpu->kvm->lock);
2210 			return r;
2211 		} else
2212 			return set_msr_hyperv(vcpu, msr, data);
2213 		break;
2214 	case MSR_IA32_BBL_CR_CTL3:
2215 		/* Drop writes to this legacy MSR -- see rdmsr
2216 		 * counterpart for further detail.
2217 		 */
2218 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2219 		break;
2220 	case MSR_AMD64_OSVW_ID_LENGTH:
2221 		if (!guest_cpuid_has_osvw(vcpu))
2222 			return 1;
2223 		vcpu->arch.osvw.length = data;
2224 		break;
2225 	case MSR_AMD64_OSVW_STATUS:
2226 		if (!guest_cpuid_has_osvw(vcpu))
2227 			return 1;
2228 		vcpu->arch.osvw.status = data;
2229 		break;
2230 	default:
2231 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2232 			return xen_hvm_config(vcpu, data);
2233 		if (kvm_pmu_msr(vcpu, msr))
2234 			return kvm_pmu_set_msr(vcpu, msr_info);
2235 		if (!ignore_msrs) {
2236 			vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2237 				    msr, data);
2238 			return 1;
2239 		} else {
2240 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2241 				    msr, data);
2242 			break;
2243 		}
2244 	}
2245 	return 0;
2246 }
2247 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2248 
2249 
2250 /*
2251  * Reads an msr value (of 'msr_index') into 'pdata'.
2252  * Returns 0 on success, non-0 otherwise.
2253  * Assumes vcpu_load() was already called.
2254  */
2255 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2256 {
2257 	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2258 }
2259 
2260 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2261 {
2262 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2263 
2264 	if (!msr_mtrr_valid(msr))
2265 		return 1;
2266 
2267 	if (msr == MSR_MTRRdefType)
2268 		*pdata = vcpu->arch.mtrr_state.def_type +
2269 			 (vcpu->arch.mtrr_state.enabled << 10);
2270 	else if (msr == MSR_MTRRfix64K_00000)
2271 		*pdata = p[0];
2272 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2273 		*pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2274 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2275 		*pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2276 	else if (msr == MSR_IA32_CR_PAT)
2277 		*pdata = vcpu->arch.pat;
2278 	else {	/* Variable MTRRs */
2279 		int idx, is_mtrr_mask;
2280 		u64 *pt;
2281 
2282 		idx = (msr - 0x200) / 2;
2283 		is_mtrr_mask = msr - 0x200 - 2 * idx;
2284 		if (!is_mtrr_mask)
2285 			pt =
2286 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2287 		else
2288 			pt =
2289 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2290 		*pdata = *pt;
2291 	}
2292 
2293 	return 0;
2294 }
2295 
2296 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2297 {
2298 	u64 data;
2299 	u64 mcg_cap = vcpu->arch.mcg_cap;
2300 	unsigned bank_num = mcg_cap & 0xff;
2301 
2302 	switch (msr) {
2303 	case MSR_IA32_P5_MC_ADDR:
2304 	case MSR_IA32_P5_MC_TYPE:
2305 		data = 0;
2306 		break;
2307 	case MSR_IA32_MCG_CAP:
2308 		data = vcpu->arch.mcg_cap;
2309 		break;
2310 	case MSR_IA32_MCG_CTL:
2311 		if (!(mcg_cap & MCG_CTL_P))
2312 			return 1;
2313 		data = vcpu->arch.mcg_ctl;
2314 		break;
2315 	case MSR_IA32_MCG_STATUS:
2316 		data = vcpu->arch.mcg_status;
2317 		break;
2318 	default:
2319 		if (msr >= MSR_IA32_MC0_CTL &&
2320 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2321 			u32 offset = msr - MSR_IA32_MC0_CTL;
2322 			data = vcpu->arch.mce_banks[offset];
2323 			break;
2324 		}
2325 		return 1;
2326 	}
2327 	*pdata = data;
2328 	return 0;
2329 }
2330 
2331 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2332 {
2333 	u64 data = 0;
2334 	struct kvm *kvm = vcpu->kvm;
2335 
2336 	switch (msr) {
2337 	case HV_X64_MSR_GUEST_OS_ID:
2338 		data = kvm->arch.hv_guest_os_id;
2339 		break;
2340 	case HV_X64_MSR_HYPERCALL:
2341 		data = kvm->arch.hv_hypercall;
2342 		break;
2343 	case HV_X64_MSR_TIME_REF_COUNT: {
2344 		data =
2345 		     div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2346 		break;
2347 	}
2348 	case HV_X64_MSR_REFERENCE_TSC:
2349 		data = kvm->arch.hv_tsc_page;
2350 		break;
2351 	default:
2352 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2353 		return 1;
2354 	}
2355 
2356 	*pdata = data;
2357 	return 0;
2358 }
2359 
2360 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2361 {
2362 	u64 data = 0;
2363 
2364 	switch (msr) {
2365 	case HV_X64_MSR_VP_INDEX: {
2366 		int r;
2367 		struct kvm_vcpu *v;
2368 		kvm_for_each_vcpu(r, v, vcpu->kvm) {
2369 			if (v == vcpu) {
2370 				data = r;
2371 				break;
2372 			}
2373 		}
2374 		break;
2375 	}
2376 	case HV_X64_MSR_EOI:
2377 		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2378 	case HV_X64_MSR_ICR:
2379 		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2380 	case HV_X64_MSR_TPR:
2381 		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2382 	case HV_X64_MSR_APIC_ASSIST_PAGE:
2383 		data = vcpu->arch.hv_vapic;
2384 		break;
2385 	default:
2386 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2387 		return 1;
2388 	}
2389 	*pdata = data;
2390 	return 0;
2391 }
2392 
2393 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2394 {
2395 	u64 data;
2396 
2397 	switch (msr) {
2398 	case MSR_IA32_PLATFORM_ID:
2399 	case MSR_IA32_EBL_CR_POWERON:
2400 	case MSR_IA32_DEBUGCTLMSR:
2401 	case MSR_IA32_LASTBRANCHFROMIP:
2402 	case MSR_IA32_LASTBRANCHTOIP:
2403 	case MSR_IA32_LASTINTFROMIP:
2404 	case MSR_IA32_LASTINTTOIP:
2405 	case MSR_K8_SYSCFG:
2406 	case MSR_K7_HWCR:
2407 	case MSR_VM_HSAVE_PA:
2408 	case MSR_K7_EVNTSEL0:
2409 	case MSR_K7_PERFCTR0:
2410 	case MSR_K8_INT_PENDING_MSG:
2411 	case MSR_AMD64_NB_CFG:
2412 	case MSR_FAM10H_MMIO_CONF_BASE:
2413 	case MSR_AMD64_BU_CFG2:
2414 		data = 0;
2415 		break;
2416 	case MSR_P6_PERFCTR0:
2417 	case MSR_P6_PERFCTR1:
2418 	case MSR_P6_EVNTSEL0:
2419 	case MSR_P6_EVNTSEL1:
2420 		if (kvm_pmu_msr(vcpu, msr))
2421 			return kvm_pmu_get_msr(vcpu, msr, pdata);
2422 		data = 0;
2423 		break;
2424 	case MSR_IA32_UCODE_REV:
2425 		data = 0x100000000ULL;
2426 		break;
2427 	case MSR_MTRRcap:
2428 		data = 0x500 | KVM_NR_VAR_MTRR;
2429 		break;
2430 	case 0x200 ... 0x2ff:
2431 		return get_msr_mtrr(vcpu, msr, pdata);
2432 	case 0xcd: /* fsb frequency */
2433 		data = 3;
2434 		break;
2435 		/*
2436 		 * MSR_EBC_FREQUENCY_ID
2437 		 * Conservative value valid for even the basic CPU models.
2438 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2439 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2440 		 * and 266MHz for model 3, or 4. Set Core Clock
2441 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2442 		 * 31:24) even though these are only valid for CPU
2443 		 * models > 2, however guests may end up dividing or
2444 		 * multiplying by zero otherwise.
2445 		 */
2446 	case MSR_EBC_FREQUENCY_ID:
2447 		data = 1 << 24;
2448 		break;
2449 	case MSR_IA32_APICBASE:
2450 		data = kvm_get_apic_base(vcpu);
2451 		break;
2452 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2453 		return kvm_x2apic_msr_read(vcpu, msr, pdata);
2454 		break;
2455 	case MSR_IA32_TSCDEADLINE:
2456 		data = kvm_get_lapic_tscdeadline_msr(vcpu);
2457 		break;
2458 	case MSR_IA32_TSC_ADJUST:
2459 		data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2460 		break;
2461 	case MSR_IA32_MISC_ENABLE:
2462 		data = vcpu->arch.ia32_misc_enable_msr;
2463 		break;
2464 	case MSR_IA32_PERF_STATUS:
2465 		/* TSC increment by tick */
2466 		data = 1000ULL;
2467 		/* CPU multiplier */
2468 		data |= (((uint64_t)4ULL) << 40);
2469 		break;
2470 	case MSR_EFER:
2471 		data = vcpu->arch.efer;
2472 		break;
2473 	case MSR_KVM_WALL_CLOCK:
2474 	case MSR_KVM_WALL_CLOCK_NEW:
2475 		data = vcpu->kvm->arch.wall_clock;
2476 		break;
2477 	case MSR_KVM_SYSTEM_TIME:
2478 	case MSR_KVM_SYSTEM_TIME_NEW:
2479 		data = vcpu->arch.time;
2480 		break;
2481 	case MSR_KVM_ASYNC_PF_EN:
2482 		data = vcpu->arch.apf.msr_val;
2483 		break;
2484 	case MSR_KVM_STEAL_TIME:
2485 		data = vcpu->arch.st.msr_val;
2486 		break;
2487 	case MSR_KVM_PV_EOI_EN:
2488 		data = vcpu->arch.pv_eoi.msr_val;
2489 		break;
2490 	case MSR_IA32_P5_MC_ADDR:
2491 	case MSR_IA32_P5_MC_TYPE:
2492 	case MSR_IA32_MCG_CAP:
2493 	case MSR_IA32_MCG_CTL:
2494 	case MSR_IA32_MCG_STATUS:
2495 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2496 		return get_msr_mce(vcpu, msr, pdata);
2497 	case MSR_K7_CLK_CTL:
2498 		/*
2499 		 * Provide expected ramp-up count for K7. All other
2500 		 * are set to zero, indicating minimum divisors for
2501 		 * every field.
2502 		 *
2503 		 * This prevents guest kernels on AMD host with CPU
2504 		 * type 6, model 8 and higher from exploding due to
2505 		 * the rdmsr failing.
2506 		 */
2507 		data = 0x20000000;
2508 		break;
2509 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2510 		if (kvm_hv_msr_partition_wide(msr)) {
2511 			int r;
2512 			mutex_lock(&vcpu->kvm->lock);
2513 			r = get_msr_hyperv_pw(vcpu, msr, pdata);
2514 			mutex_unlock(&vcpu->kvm->lock);
2515 			return r;
2516 		} else
2517 			return get_msr_hyperv(vcpu, msr, pdata);
2518 		break;
2519 	case MSR_IA32_BBL_CR_CTL3:
2520 		/* This legacy MSR exists but isn't fully documented in current
2521 		 * silicon.  It is however accessed by winxp in very narrow
2522 		 * scenarios where it sets bit #19, itself documented as
2523 		 * a "reserved" bit.  Best effort attempt to source coherent
2524 		 * read data here should the balance of the register be
2525 		 * interpreted by the guest:
2526 		 *
2527 		 * L2 cache control register 3: 64GB range, 256KB size,
2528 		 * enabled, latency 0x1, configured
2529 		 */
2530 		data = 0xbe702111;
2531 		break;
2532 	case MSR_AMD64_OSVW_ID_LENGTH:
2533 		if (!guest_cpuid_has_osvw(vcpu))
2534 			return 1;
2535 		data = vcpu->arch.osvw.length;
2536 		break;
2537 	case MSR_AMD64_OSVW_STATUS:
2538 		if (!guest_cpuid_has_osvw(vcpu))
2539 			return 1;
2540 		data = vcpu->arch.osvw.status;
2541 		break;
2542 	default:
2543 		if (kvm_pmu_msr(vcpu, msr))
2544 			return kvm_pmu_get_msr(vcpu, msr, pdata);
2545 		if (!ignore_msrs) {
2546 			vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2547 			return 1;
2548 		} else {
2549 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2550 			data = 0;
2551 		}
2552 		break;
2553 	}
2554 	*pdata = data;
2555 	return 0;
2556 }
2557 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2558 
2559 /*
2560  * Read or write a bunch of msrs. All parameters are kernel addresses.
2561  *
2562  * @return number of msrs set successfully.
2563  */
2564 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2565 		    struct kvm_msr_entry *entries,
2566 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2567 				  unsigned index, u64 *data))
2568 {
2569 	int i, idx;
2570 
2571 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2572 	for (i = 0; i < msrs->nmsrs; ++i)
2573 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2574 			break;
2575 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2576 
2577 	return i;
2578 }
2579 
2580 /*
2581  * Read or write a bunch of msrs. Parameters are user addresses.
2582  *
2583  * @return number of msrs set successfully.
2584  */
2585 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2586 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2587 				unsigned index, u64 *data),
2588 		  int writeback)
2589 {
2590 	struct kvm_msrs msrs;
2591 	struct kvm_msr_entry *entries;
2592 	int r, n;
2593 	unsigned size;
2594 
2595 	r = -EFAULT;
2596 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2597 		goto out;
2598 
2599 	r = -E2BIG;
2600 	if (msrs.nmsrs >= MAX_IO_MSRS)
2601 		goto out;
2602 
2603 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2604 	entries = memdup_user(user_msrs->entries, size);
2605 	if (IS_ERR(entries)) {
2606 		r = PTR_ERR(entries);
2607 		goto out;
2608 	}
2609 
2610 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2611 	if (r < 0)
2612 		goto out_free;
2613 
2614 	r = -EFAULT;
2615 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2616 		goto out_free;
2617 
2618 	r = n;
2619 
2620 out_free:
2621 	kfree(entries);
2622 out:
2623 	return r;
2624 }
2625 
2626 int kvm_dev_ioctl_check_extension(long ext)
2627 {
2628 	int r;
2629 
2630 	switch (ext) {
2631 	case KVM_CAP_IRQCHIP:
2632 	case KVM_CAP_HLT:
2633 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2634 	case KVM_CAP_SET_TSS_ADDR:
2635 	case KVM_CAP_EXT_CPUID:
2636 	case KVM_CAP_EXT_EMUL_CPUID:
2637 	case KVM_CAP_CLOCKSOURCE:
2638 	case KVM_CAP_PIT:
2639 	case KVM_CAP_NOP_IO_DELAY:
2640 	case KVM_CAP_MP_STATE:
2641 	case KVM_CAP_SYNC_MMU:
2642 	case KVM_CAP_USER_NMI:
2643 	case KVM_CAP_REINJECT_CONTROL:
2644 	case KVM_CAP_IRQ_INJECT_STATUS:
2645 	case KVM_CAP_IRQFD:
2646 	case KVM_CAP_IOEVENTFD:
2647 	case KVM_CAP_PIT2:
2648 	case KVM_CAP_PIT_STATE2:
2649 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2650 	case KVM_CAP_XEN_HVM:
2651 	case KVM_CAP_ADJUST_CLOCK:
2652 	case KVM_CAP_VCPU_EVENTS:
2653 	case KVM_CAP_HYPERV:
2654 	case KVM_CAP_HYPERV_VAPIC:
2655 	case KVM_CAP_HYPERV_SPIN:
2656 	case KVM_CAP_PCI_SEGMENT:
2657 	case KVM_CAP_DEBUGREGS:
2658 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2659 	case KVM_CAP_XSAVE:
2660 	case KVM_CAP_ASYNC_PF:
2661 	case KVM_CAP_GET_TSC_KHZ:
2662 	case KVM_CAP_KVMCLOCK_CTRL:
2663 	case KVM_CAP_READONLY_MEM:
2664 	case KVM_CAP_HYPERV_TIME:
2665 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2666 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2667 	case KVM_CAP_ASSIGN_DEV_IRQ:
2668 	case KVM_CAP_PCI_2_3:
2669 #endif
2670 		r = 1;
2671 		break;
2672 	case KVM_CAP_COALESCED_MMIO:
2673 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2674 		break;
2675 	case KVM_CAP_VAPIC:
2676 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2677 		break;
2678 	case KVM_CAP_NR_VCPUS:
2679 		r = KVM_SOFT_MAX_VCPUS;
2680 		break;
2681 	case KVM_CAP_MAX_VCPUS:
2682 		r = KVM_MAX_VCPUS;
2683 		break;
2684 	case KVM_CAP_NR_MEMSLOTS:
2685 		r = KVM_USER_MEM_SLOTS;
2686 		break;
2687 	case KVM_CAP_PV_MMU:	/* obsolete */
2688 		r = 0;
2689 		break;
2690 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2691 	case KVM_CAP_IOMMU:
2692 		r = iommu_present(&pci_bus_type);
2693 		break;
2694 #endif
2695 	case KVM_CAP_MCE:
2696 		r = KVM_MAX_MCE_BANKS;
2697 		break;
2698 	case KVM_CAP_XCRS:
2699 		r = cpu_has_xsave;
2700 		break;
2701 	case KVM_CAP_TSC_CONTROL:
2702 		r = kvm_has_tsc_control;
2703 		break;
2704 	case KVM_CAP_TSC_DEADLINE_TIMER:
2705 		r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2706 		break;
2707 	default:
2708 		r = 0;
2709 		break;
2710 	}
2711 	return r;
2712 
2713 }
2714 
2715 long kvm_arch_dev_ioctl(struct file *filp,
2716 			unsigned int ioctl, unsigned long arg)
2717 {
2718 	void __user *argp = (void __user *)arg;
2719 	long r;
2720 
2721 	switch (ioctl) {
2722 	case KVM_GET_MSR_INDEX_LIST: {
2723 		struct kvm_msr_list __user *user_msr_list = argp;
2724 		struct kvm_msr_list msr_list;
2725 		unsigned n;
2726 
2727 		r = -EFAULT;
2728 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2729 			goto out;
2730 		n = msr_list.nmsrs;
2731 		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2732 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2733 			goto out;
2734 		r = -E2BIG;
2735 		if (n < msr_list.nmsrs)
2736 			goto out;
2737 		r = -EFAULT;
2738 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2739 				 num_msrs_to_save * sizeof(u32)))
2740 			goto out;
2741 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2742 				 &emulated_msrs,
2743 				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2744 			goto out;
2745 		r = 0;
2746 		break;
2747 	}
2748 	case KVM_GET_SUPPORTED_CPUID:
2749 	case KVM_GET_EMULATED_CPUID: {
2750 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2751 		struct kvm_cpuid2 cpuid;
2752 
2753 		r = -EFAULT;
2754 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2755 			goto out;
2756 
2757 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2758 					    ioctl);
2759 		if (r)
2760 			goto out;
2761 
2762 		r = -EFAULT;
2763 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2764 			goto out;
2765 		r = 0;
2766 		break;
2767 	}
2768 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2769 		u64 mce_cap;
2770 
2771 		mce_cap = KVM_MCE_CAP_SUPPORTED;
2772 		r = -EFAULT;
2773 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2774 			goto out;
2775 		r = 0;
2776 		break;
2777 	}
2778 	default:
2779 		r = -EINVAL;
2780 	}
2781 out:
2782 	return r;
2783 }
2784 
2785 static void wbinvd_ipi(void *garbage)
2786 {
2787 	wbinvd();
2788 }
2789 
2790 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2791 {
2792 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2793 }
2794 
2795 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2796 {
2797 	/* Address WBINVD may be executed by guest */
2798 	if (need_emulate_wbinvd(vcpu)) {
2799 		if (kvm_x86_ops->has_wbinvd_exit())
2800 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2801 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2802 			smp_call_function_single(vcpu->cpu,
2803 					wbinvd_ipi, NULL, 1);
2804 	}
2805 
2806 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2807 
2808 	/* Apply any externally detected TSC adjustments (due to suspend) */
2809 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2810 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2811 		vcpu->arch.tsc_offset_adjustment = 0;
2812 		set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2813 	}
2814 
2815 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2816 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2817 				native_read_tsc() - vcpu->arch.last_host_tsc;
2818 		if (tsc_delta < 0)
2819 			mark_tsc_unstable("KVM discovered backwards TSC");
2820 		if (check_tsc_unstable()) {
2821 			u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2822 						vcpu->arch.last_guest_tsc);
2823 			kvm_x86_ops->write_tsc_offset(vcpu, offset);
2824 			vcpu->arch.tsc_catchup = 1;
2825 		}
2826 		/*
2827 		 * On a host with synchronized TSC, there is no need to update
2828 		 * kvmclock on vcpu->cpu migration
2829 		 */
2830 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2831 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2832 		if (vcpu->cpu != cpu)
2833 			kvm_migrate_timers(vcpu);
2834 		vcpu->cpu = cpu;
2835 	}
2836 
2837 	accumulate_steal_time(vcpu);
2838 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2839 }
2840 
2841 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2842 {
2843 	kvm_x86_ops->vcpu_put(vcpu);
2844 	kvm_put_guest_fpu(vcpu);
2845 	vcpu->arch.last_host_tsc = native_read_tsc();
2846 }
2847 
2848 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2849 				    struct kvm_lapic_state *s)
2850 {
2851 	kvm_x86_ops->sync_pir_to_irr(vcpu);
2852 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2853 
2854 	return 0;
2855 }
2856 
2857 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2858 				    struct kvm_lapic_state *s)
2859 {
2860 	kvm_apic_post_state_restore(vcpu, s);
2861 	update_cr8_intercept(vcpu);
2862 
2863 	return 0;
2864 }
2865 
2866 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2867 				    struct kvm_interrupt *irq)
2868 {
2869 	if (irq->irq >= KVM_NR_INTERRUPTS)
2870 		return -EINVAL;
2871 	if (irqchip_in_kernel(vcpu->kvm))
2872 		return -ENXIO;
2873 
2874 	kvm_queue_interrupt(vcpu, irq->irq, false);
2875 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2876 
2877 	return 0;
2878 }
2879 
2880 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2881 {
2882 	kvm_inject_nmi(vcpu);
2883 
2884 	return 0;
2885 }
2886 
2887 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2888 					   struct kvm_tpr_access_ctl *tac)
2889 {
2890 	if (tac->flags)
2891 		return -EINVAL;
2892 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2893 	return 0;
2894 }
2895 
2896 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2897 					u64 mcg_cap)
2898 {
2899 	int r;
2900 	unsigned bank_num = mcg_cap & 0xff, bank;
2901 
2902 	r = -EINVAL;
2903 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2904 		goto out;
2905 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2906 		goto out;
2907 	r = 0;
2908 	vcpu->arch.mcg_cap = mcg_cap;
2909 	/* Init IA32_MCG_CTL to all 1s */
2910 	if (mcg_cap & MCG_CTL_P)
2911 		vcpu->arch.mcg_ctl = ~(u64)0;
2912 	/* Init IA32_MCi_CTL to all 1s */
2913 	for (bank = 0; bank < bank_num; bank++)
2914 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2915 out:
2916 	return r;
2917 }
2918 
2919 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2920 				      struct kvm_x86_mce *mce)
2921 {
2922 	u64 mcg_cap = vcpu->arch.mcg_cap;
2923 	unsigned bank_num = mcg_cap & 0xff;
2924 	u64 *banks = vcpu->arch.mce_banks;
2925 
2926 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2927 		return -EINVAL;
2928 	/*
2929 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2930 	 * reporting is disabled
2931 	 */
2932 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2933 	    vcpu->arch.mcg_ctl != ~(u64)0)
2934 		return 0;
2935 	banks += 4 * mce->bank;
2936 	/*
2937 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2938 	 * reporting is disabled for the bank
2939 	 */
2940 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2941 		return 0;
2942 	if (mce->status & MCI_STATUS_UC) {
2943 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2944 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2945 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2946 			return 0;
2947 		}
2948 		if (banks[1] & MCI_STATUS_VAL)
2949 			mce->status |= MCI_STATUS_OVER;
2950 		banks[2] = mce->addr;
2951 		banks[3] = mce->misc;
2952 		vcpu->arch.mcg_status = mce->mcg_status;
2953 		banks[1] = mce->status;
2954 		kvm_queue_exception(vcpu, MC_VECTOR);
2955 	} else if (!(banks[1] & MCI_STATUS_VAL)
2956 		   || !(banks[1] & MCI_STATUS_UC)) {
2957 		if (banks[1] & MCI_STATUS_VAL)
2958 			mce->status |= MCI_STATUS_OVER;
2959 		banks[2] = mce->addr;
2960 		banks[3] = mce->misc;
2961 		banks[1] = mce->status;
2962 	} else
2963 		banks[1] |= MCI_STATUS_OVER;
2964 	return 0;
2965 }
2966 
2967 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2968 					       struct kvm_vcpu_events *events)
2969 {
2970 	process_nmi(vcpu);
2971 	events->exception.injected =
2972 		vcpu->arch.exception.pending &&
2973 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
2974 	events->exception.nr = vcpu->arch.exception.nr;
2975 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2976 	events->exception.pad = 0;
2977 	events->exception.error_code = vcpu->arch.exception.error_code;
2978 
2979 	events->interrupt.injected =
2980 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2981 	events->interrupt.nr = vcpu->arch.interrupt.nr;
2982 	events->interrupt.soft = 0;
2983 	events->interrupt.shadow =
2984 		kvm_x86_ops->get_interrupt_shadow(vcpu,
2985 			KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2986 
2987 	events->nmi.injected = vcpu->arch.nmi_injected;
2988 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
2989 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2990 	events->nmi.pad = 0;
2991 
2992 	events->sipi_vector = 0; /* never valid when reporting to user space */
2993 
2994 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2995 			 | KVM_VCPUEVENT_VALID_SHADOW);
2996 	memset(&events->reserved, 0, sizeof(events->reserved));
2997 }
2998 
2999 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3000 					      struct kvm_vcpu_events *events)
3001 {
3002 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3003 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3004 			      | KVM_VCPUEVENT_VALID_SHADOW))
3005 		return -EINVAL;
3006 
3007 	process_nmi(vcpu);
3008 	vcpu->arch.exception.pending = events->exception.injected;
3009 	vcpu->arch.exception.nr = events->exception.nr;
3010 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3011 	vcpu->arch.exception.error_code = events->exception.error_code;
3012 
3013 	vcpu->arch.interrupt.pending = events->interrupt.injected;
3014 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3015 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3016 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3017 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3018 						  events->interrupt.shadow);
3019 
3020 	vcpu->arch.nmi_injected = events->nmi.injected;
3021 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3022 		vcpu->arch.nmi_pending = events->nmi.pending;
3023 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3024 
3025 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3026 	    kvm_vcpu_has_lapic(vcpu))
3027 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3028 
3029 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3030 
3031 	return 0;
3032 }
3033 
3034 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3035 					     struct kvm_debugregs *dbgregs)
3036 {
3037 	unsigned long val;
3038 
3039 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3040 	_kvm_get_dr(vcpu, 6, &val);
3041 	dbgregs->dr6 = val;
3042 	dbgregs->dr7 = vcpu->arch.dr7;
3043 	dbgregs->flags = 0;
3044 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3045 }
3046 
3047 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3048 					    struct kvm_debugregs *dbgregs)
3049 {
3050 	if (dbgregs->flags)
3051 		return -EINVAL;
3052 
3053 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3054 	vcpu->arch.dr6 = dbgregs->dr6;
3055 	kvm_update_dr6(vcpu);
3056 	vcpu->arch.dr7 = dbgregs->dr7;
3057 	kvm_update_dr7(vcpu);
3058 
3059 	return 0;
3060 }
3061 
3062 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3063 					 struct kvm_xsave *guest_xsave)
3064 {
3065 	if (cpu_has_xsave) {
3066 		memcpy(guest_xsave->region,
3067 			&vcpu->arch.guest_fpu.state->xsave,
3068 			vcpu->arch.guest_xstate_size);
3069 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] &=
3070 			vcpu->arch.guest_supported_xcr0 | XSTATE_FPSSE;
3071 	} else {
3072 		memcpy(guest_xsave->region,
3073 			&vcpu->arch.guest_fpu.state->fxsave,
3074 			sizeof(struct i387_fxsave_struct));
3075 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3076 			XSTATE_FPSSE;
3077 	}
3078 }
3079 
3080 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3081 					struct kvm_xsave *guest_xsave)
3082 {
3083 	u64 xstate_bv =
3084 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3085 
3086 	if (cpu_has_xsave) {
3087 		/*
3088 		 * Here we allow setting states that are not present in
3089 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3090 		 * with old userspace.
3091 		 */
3092 		if (xstate_bv & ~kvm_supported_xcr0())
3093 			return -EINVAL;
3094 		memcpy(&vcpu->arch.guest_fpu.state->xsave,
3095 			guest_xsave->region, vcpu->arch.guest_xstate_size);
3096 	} else {
3097 		if (xstate_bv & ~XSTATE_FPSSE)
3098 			return -EINVAL;
3099 		memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3100 			guest_xsave->region, sizeof(struct i387_fxsave_struct));
3101 	}
3102 	return 0;
3103 }
3104 
3105 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3106 					struct kvm_xcrs *guest_xcrs)
3107 {
3108 	if (!cpu_has_xsave) {
3109 		guest_xcrs->nr_xcrs = 0;
3110 		return;
3111 	}
3112 
3113 	guest_xcrs->nr_xcrs = 1;
3114 	guest_xcrs->flags = 0;
3115 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3116 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3117 }
3118 
3119 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3120 				       struct kvm_xcrs *guest_xcrs)
3121 {
3122 	int i, r = 0;
3123 
3124 	if (!cpu_has_xsave)
3125 		return -EINVAL;
3126 
3127 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3128 		return -EINVAL;
3129 
3130 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3131 		/* Only support XCR0 currently */
3132 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3133 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3134 				guest_xcrs->xcrs[i].value);
3135 			break;
3136 		}
3137 	if (r)
3138 		r = -EINVAL;
3139 	return r;
3140 }
3141 
3142 /*
3143  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3144  * stopped by the hypervisor.  This function will be called from the host only.
3145  * EINVAL is returned when the host attempts to set the flag for a guest that
3146  * does not support pv clocks.
3147  */
3148 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3149 {
3150 	if (!vcpu->arch.pv_time_enabled)
3151 		return -EINVAL;
3152 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3153 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3154 	return 0;
3155 }
3156 
3157 long kvm_arch_vcpu_ioctl(struct file *filp,
3158 			 unsigned int ioctl, unsigned long arg)
3159 {
3160 	struct kvm_vcpu *vcpu = filp->private_data;
3161 	void __user *argp = (void __user *)arg;
3162 	int r;
3163 	union {
3164 		struct kvm_lapic_state *lapic;
3165 		struct kvm_xsave *xsave;
3166 		struct kvm_xcrs *xcrs;
3167 		void *buffer;
3168 	} u;
3169 
3170 	u.buffer = NULL;
3171 	switch (ioctl) {
3172 	case KVM_GET_LAPIC: {
3173 		r = -EINVAL;
3174 		if (!vcpu->arch.apic)
3175 			goto out;
3176 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3177 
3178 		r = -ENOMEM;
3179 		if (!u.lapic)
3180 			goto out;
3181 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3182 		if (r)
3183 			goto out;
3184 		r = -EFAULT;
3185 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3186 			goto out;
3187 		r = 0;
3188 		break;
3189 	}
3190 	case KVM_SET_LAPIC: {
3191 		r = -EINVAL;
3192 		if (!vcpu->arch.apic)
3193 			goto out;
3194 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3195 		if (IS_ERR(u.lapic))
3196 			return PTR_ERR(u.lapic);
3197 
3198 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3199 		break;
3200 	}
3201 	case KVM_INTERRUPT: {
3202 		struct kvm_interrupt irq;
3203 
3204 		r = -EFAULT;
3205 		if (copy_from_user(&irq, argp, sizeof irq))
3206 			goto out;
3207 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3208 		break;
3209 	}
3210 	case KVM_NMI: {
3211 		r = kvm_vcpu_ioctl_nmi(vcpu);
3212 		break;
3213 	}
3214 	case KVM_SET_CPUID: {
3215 		struct kvm_cpuid __user *cpuid_arg = argp;
3216 		struct kvm_cpuid cpuid;
3217 
3218 		r = -EFAULT;
3219 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3220 			goto out;
3221 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3222 		break;
3223 	}
3224 	case KVM_SET_CPUID2: {
3225 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3226 		struct kvm_cpuid2 cpuid;
3227 
3228 		r = -EFAULT;
3229 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3230 			goto out;
3231 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3232 					      cpuid_arg->entries);
3233 		break;
3234 	}
3235 	case KVM_GET_CPUID2: {
3236 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3237 		struct kvm_cpuid2 cpuid;
3238 
3239 		r = -EFAULT;
3240 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3241 			goto out;
3242 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3243 					      cpuid_arg->entries);
3244 		if (r)
3245 			goto out;
3246 		r = -EFAULT;
3247 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3248 			goto out;
3249 		r = 0;
3250 		break;
3251 	}
3252 	case KVM_GET_MSRS:
3253 		r = msr_io(vcpu, argp, kvm_get_msr, 1);
3254 		break;
3255 	case KVM_SET_MSRS:
3256 		r = msr_io(vcpu, argp, do_set_msr, 0);
3257 		break;
3258 	case KVM_TPR_ACCESS_REPORTING: {
3259 		struct kvm_tpr_access_ctl tac;
3260 
3261 		r = -EFAULT;
3262 		if (copy_from_user(&tac, argp, sizeof tac))
3263 			goto out;
3264 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3265 		if (r)
3266 			goto out;
3267 		r = -EFAULT;
3268 		if (copy_to_user(argp, &tac, sizeof tac))
3269 			goto out;
3270 		r = 0;
3271 		break;
3272 	};
3273 	case KVM_SET_VAPIC_ADDR: {
3274 		struct kvm_vapic_addr va;
3275 
3276 		r = -EINVAL;
3277 		if (!irqchip_in_kernel(vcpu->kvm))
3278 			goto out;
3279 		r = -EFAULT;
3280 		if (copy_from_user(&va, argp, sizeof va))
3281 			goto out;
3282 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3283 		break;
3284 	}
3285 	case KVM_X86_SETUP_MCE: {
3286 		u64 mcg_cap;
3287 
3288 		r = -EFAULT;
3289 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3290 			goto out;
3291 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3292 		break;
3293 	}
3294 	case KVM_X86_SET_MCE: {
3295 		struct kvm_x86_mce mce;
3296 
3297 		r = -EFAULT;
3298 		if (copy_from_user(&mce, argp, sizeof mce))
3299 			goto out;
3300 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3301 		break;
3302 	}
3303 	case KVM_GET_VCPU_EVENTS: {
3304 		struct kvm_vcpu_events events;
3305 
3306 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3307 
3308 		r = -EFAULT;
3309 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3310 			break;
3311 		r = 0;
3312 		break;
3313 	}
3314 	case KVM_SET_VCPU_EVENTS: {
3315 		struct kvm_vcpu_events events;
3316 
3317 		r = -EFAULT;
3318 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3319 			break;
3320 
3321 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3322 		break;
3323 	}
3324 	case KVM_GET_DEBUGREGS: {
3325 		struct kvm_debugregs dbgregs;
3326 
3327 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3328 
3329 		r = -EFAULT;
3330 		if (copy_to_user(argp, &dbgregs,
3331 				 sizeof(struct kvm_debugregs)))
3332 			break;
3333 		r = 0;
3334 		break;
3335 	}
3336 	case KVM_SET_DEBUGREGS: {
3337 		struct kvm_debugregs dbgregs;
3338 
3339 		r = -EFAULT;
3340 		if (copy_from_user(&dbgregs, argp,
3341 				   sizeof(struct kvm_debugregs)))
3342 			break;
3343 
3344 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3345 		break;
3346 	}
3347 	case KVM_GET_XSAVE: {
3348 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3349 		r = -ENOMEM;
3350 		if (!u.xsave)
3351 			break;
3352 
3353 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3354 
3355 		r = -EFAULT;
3356 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3357 			break;
3358 		r = 0;
3359 		break;
3360 	}
3361 	case KVM_SET_XSAVE: {
3362 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3363 		if (IS_ERR(u.xsave))
3364 			return PTR_ERR(u.xsave);
3365 
3366 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3367 		break;
3368 	}
3369 	case KVM_GET_XCRS: {
3370 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3371 		r = -ENOMEM;
3372 		if (!u.xcrs)
3373 			break;
3374 
3375 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3376 
3377 		r = -EFAULT;
3378 		if (copy_to_user(argp, u.xcrs,
3379 				 sizeof(struct kvm_xcrs)))
3380 			break;
3381 		r = 0;
3382 		break;
3383 	}
3384 	case KVM_SET_XCRS: {
3385 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3386 		if (IS_ERR(u.xcrs))
3387 			return PTR_ERR(u.xcrs);
3388 
3389 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3390 		break;
3391 	}
3392 	case KVM_SET_TSC_KHZ: {
3393 		u32 user_tsc_khz;
3394 
3395 		r = -EINVAL;
3396 		user_tsc_khz = (u32)arg;
3397 
3398 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3399 			goto out;
3400 
3401 		if (user_tsc_khz == 0)
3402 			user_tsc_khz = tsc_khz;
3403 
3404 		kvm_set_tsc_khz(vcpu, user_tsc_khz);
3405 
3406 		r = 0;
3407 		goto out;
3408 	}
3409 	case KVM_GET_TSC_KHZ: {
3410 		r = vcpu->arch.virtual_tsc_khz;
3411 		goto out;
3412 	}
3413 	case KVM_KVMCLOCK_CTRL: {
3414 		r = kvm_set_guest_paused(vcpu);
3415 		goto out;
3416 	}
3417 	default:
3418 		r = -EINVAL;
3419 	}
3420 out:
3421 	kfree(u.buffer);
3422 	return r;
3423 }
3424 
3425 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3426 {
3427 	return VM_FAULT_SIGBUS;
3428 }
3429 
3430 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3431 {
3432 	int ret;
3433 
3434 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3435 		return -EINVAL;
3436 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3437 	return ret;
3438 }
3439 
3440 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3441 					      u64 ident_addr)
3442 {
3443 	kvm->arch.ept_identity_map_addr = ident_addr;
3444 	return 0;
3445 }
3446 
3447 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3448 					  u32 kvm_nr_mmu_pages)
3449 {
3450 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3451 		return -EINVAL;
3452 
3453 	mutex_lock(&kvm->slots_lock);
3454 
3455 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3456 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3457 
3458 	mutex_unlock(&kvm->slots_lock);
3459 	return 0;
3460 }
3461 
3462 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3463 {
3464 	return kvm->arch.n_max_mmu_pages;
3465 }
3466 
3467 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3468 {
3469 	int r;
3470 
3471 	r = 0;
3472 	switch (chip->chip_id) {
3473 	case KVM_IRQCHIP_PIC_MASTER:
3474 		memcpy(&chip->chip.pic,
3475 			&pic_irqchip(kvm)->pics[0],
3476 			sizeof(struct kvm_pic_state));
3477 		break;
3478 	case KVM_IRQCHIP_PIC_SLAVE:
3479 		memcpy(&chip->chip.pic,
3480 			&pic_irqchip(kvm)->pics[1],
3481 			sizeof(struct kvm_pic_state));
3482 		break;
3483 	case KVM_IRQCHIP_IOAPIC:
3484 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3485 		break;
3486 	default:
3487 		r = -EINVAL;
3488 		break;
3489 	}
3490 	return r;
3491 }
3492 
3493 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3494 {
3495 	int r;
3496 
3497 	r = 0;
3498 	switch (chip->chip_id) {
3499 	case KVM_IRQCHIP_PIC_MASTER:
3500 		spin_lock(&pic_irqchip(kvm)->lock);
3501 		memcpy(&pic_irqchip(kvm)->pics[0],
3502 			&chip->chip.pic,
3503 			sizeof(struct kvm_pic_state));
3504 		spin_unlock(&pic_irqchip(kvm)->lock);
3505 		break;
3506 	case KVM_IRQCHIP_PIC_SLAVE:
3507 		spin_lock(&pic_irqchip(kvm)->lock);
3508 		memcpy(&pic_irqchip(kvm)->pics[1],
3509 			&chip->chip.pic,
3510 			sizeof(struct kvm_pic_state));
3511 		spin_unlock(&pic_irqchip(kvm)->lock);
3512 		break;
3513 	case KVM_IRQCHIP_IOAPIC:
3514 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3515 		break;
3516 	default:
3517 		r = -EINVAL;
3518 		break;
3519 	}
3520 	kvm_pic_update_irq(pic_irqchip(kvm));
3521 	return r;
3522 }
3523 
3524 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3525 {
3526 	int r = 0;
3527 
3528 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3529 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3530 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3531 	return r;
3532 }
3533 
3534 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3535 {
3536 	int r = 0;
3537 
3538 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3539 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3540 	kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3541 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3542 	return r;
3543 }
3544 
3545 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3546 {
3547 	int r = 0;
3548 
3549 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3550 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3551 		sizeof(ps->channels));
3552 	ps->flags = kvm->arch.vpit->pit_state.flags;
3553 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3554 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3555 	return r;
3556 }
3557 
3558 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3559 {
3560 	int r = 0, start = 0;
3561 	u32 prev_legacy, cur_legacy;
3562 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3563 	prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3564 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3565 	if (!prev_legacy && cur_legacy)
3566 		start = 1;
3567 	memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3568 	       sizeof(kvm->arch.vpit->pit_state.channels));
3569 	kvm->arch.vpit->pit_state.flags = ps->flags;
3570 	kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3571 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3572 	return r;
3573 }
3574 
3575 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3576 				 struct kvm_reinject_control *control)
3577 {
3578 	if (!kvm->arch.vpit)
3579 		return -ENXIO;
3580 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3581 	kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3582 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3583 	return 0;
3584 }
3585 
3586 /**
3587  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3588  * @kvm: kvm instance
3589  * @log: slot id and address to which we copy the log
3590  *
3591  * We need to keep it in mind that VCPU threads can write to the bitmap
3592  * concurrently.  So, to avoid losing data, we keep the following order for
3593  * each bit:
3594  *
3595  *   1. Take a snapshot of the bit and clear it if needed.
3596  *   2. Write protect the corresponding page.
3597  *   3. Flush TLB's if needed.
3598  *   4. Copy the snapshot to the userspace.
3599  *
3600  * Between 2 and 3, the guest may write to the page using the remaining TLB
3601  * entry.  This is not a problem because the page will be reported dirty at
3602  * step 4 using the snapshot taken before and step 3 ensures that successive
3603  * writes will be logged for the next call.
3604  */
3605 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3606 {
3607 	int r;
3608 	struct kvm_memory_slot *memslot;
3609 	unsigned long n, i;
3610 	unsigned long *dirty_bitmap;
3611 	unsigned long *dirty_bitmap_buffer;
3612 	bool is_dirty = false;
3613 
3614 	mutex_lock(&kvm->slots_lock);
3615 
3616 	r = -EINVAL;
3617 	if (log->slot >= KVM_USER_MEM_SLOTS)
3618 		goto out;
3619 
3620 	memslot = id_to_memslot(kvm->memslots, log->slot);
3621 
3622 	dirty_bitmap = memslot->dirty_bitmap;
3623 	r = -ENOENT;
3624 	if (!dirty_bitmap)
3625 		goto out;
3626 
3627 	n = kvm_dirty_bitmap_bytes(memslot);
3628 
3629 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3630 	memset(dirty_bitmap_buffer, 0, n);
3631 
3632 	spin_lock(&kvm->mmu_lock);
3633 
3634 	for (i = 0; i < n / sizeof(long); i++) {
3635 		unsigned long mask;
3636 		gfn_t offset;
3637 
3638 		if (!dirty_bitmap[i])
3639 			continue;
3640 
3641 		is_dirty = true;
3642 
3643 		mask = xchg(&dirty_bitmap[i], 0);
3644 		dirty_bitmap_buffer[i] = mask;
3645 
3646 		offset = i * BITS_PER_LONG;
3647 		kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3648 	}
3649 	if (is_dirty)
3650 		kvm_flush_remote_tlbs(kvm);
3651 
3652 	spin_unlock(&kvm->mmu_lock);
3653 
3654 	r = -EFAULT;
3655 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3656 		goto out;
3657 
3658 	r = 0;
3659 out:
3660 	mutex_unlock(&kvm->slots_lock);
3661 	return r;
3662 }
3663 
3664 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3665 			bool line_status)
3666 {
3667 	if (!irqchip_in_kernel(kvm))
3668 		return -ENXIO;
3669 
3670 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3671 					irq_event->irq, irq_event->level,
3672 					line_status);
3673 	return 0;
3674 }
3675 
3676 long kvm_arch_vm_ioctl(struct file *filp,
3677 		       unsigned int ioctl, unsigned long arg)
3678 {
3679 	struct kvm *kvm = filp->private_data;
3680 	void __user *argp = (void __user *)arg;
3681 	int r = -ENOTTY;
3682 	/*
3683 	 * This union makes it completely explicit to gcc-3.x
3684 	 * that these two variables' stack usage should be
3685 	 * combined, not added together.
3686 	 */
3687 	union {
3688 		struct kvm_pit_state ps;
3689 		struct kvm_pit_state2 ps2;
3690 		struct kvm_pit_config pit_config;
3691 	} u;
3692 
3693 	switch (ioctl) {
3694 	case KVM_SET_TSS_ADDR:
3695 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3696 		break;
3697 	case KVM_SET_IDENTITY_MAP_ADDR: {
3698 		u64 ident_addr;
3699 
3700 		r = -EFAULT;
3701 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3702 			goto out;
3703 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3704 		break;
3705 	}
3706 	case KVM_SET_NR_MMU_PAGES:
3707 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3708 		break;
3709 	case KVM_GET_NR_MMU_PAGES:
3710 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3711 		break;
3712 	case KVM_CREATE_IRQCHIP: {
3713 		struct kvm_pic *vpic;
3714 
3715 		mutex_lock(&kvm->lock);
3716 		r = -EEXIST;
3717 		if (kvm->arch.vpic)
3718 			goto create_irqchip_unlock;
3719 		r = -EINVAL;
3720 		if (atomic_read(&kvm->online_vcpus))
3721 			goto create_irqchip_unlock;
3722 		r = -ENOMEM;
3723 		vpic = kvm_create_pic(kvm);
3724 		if (vpic) {
3725 			r = kvm_ioapic_init(kvm);
3726 			if (r) {
3727 				mutex_lock(&kvm->slots_lock);
3728 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3729 							  &vpic->dev_master);
3730 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3731 							  &vpic->dev_slave);
3732 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3733 							  &vpic->dev_eclr);
3734 				mutex_unlock(&kvm->slots_lock);
3735 				kfree(vpic);
3736 				goto create_irqchip_unlock;
3737 			}
3738 		} else
3739 			goto create_irqchip_unlock;
3740 		smp_wmb();
3741 		kvm->arch.vpic = vpic;
3742 		smp_wmb();
3743 		r = kvm_setup_default_irq_routing(kvm);
3744 		if (r) {
3745 			mutex_lock(&kvm->slots_lock);
3746 			mutex_lock(&kvm->irq_lock);
3747 			kvm_ioapic_destroy(kvm);
3748 			kvm_destroy_pic(kvm);
3749 			mutex_unlock(&kvm->irq_lock);
3750 			mutex_unlock(&kvm->slots_lock);
3751 		}
3752 	create_irqchip_unlock:
3753 		mutex_unlock(&kvm->lock);
3754 		break;
3755 	}
3756 	case KVM_CREATE_PIT:
3757 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3758 		goto create_pit;
3759 	case KVM_CREATE_PIT2:
3760 		r = -EFAULT;
3761 		if (copy_from_user(&u.pit_config, argp,
3762 				   sizeof(struct kvm_pit_config)))
3763 			goto out;
3764 	create_pit:
3765 		mutex_lock(&kvm->slots_lock);
3766 		r = -EEXIST;
3767 		if (kvm->arch.vpit)
3768 			goto create_pit_unlock;
3769 		r = -ENOMEM;
3770 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3771 		if (kvm->arch.vpit)
3772 			r = 0;
3773 	create_pit_unlock:
3774 		mutex_unlock(&kvm->slots_lock);
3775 		break;
3776 	case KVM_GET_IRQCHIP: {
3777 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3778 		struct kvm_irqchip *chip;
3779 
3780 		chip = memdup_user(argp, sizeof(*chip));
3781 		if (IS_ERR(chip)) {
3782 			r = PTR_ERR(chip);
3783 			goto out;
3784 		}
3785 
3786 		r = -ENXIO;
3787 		if (!irqchip_in_kernel(kvm))
3788 			goto get_irqchip_out;
3789 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3790 		if (r)
3791 			goto get_irqchip_out;
3792 		r = -EFAULT;
3793 		if (copy_to_user(argp, chip, sizeof *chip))
3794 			goto get_irqchip_out;
3795 		r = 0;
3796 	get_irqchip_out:
3797 		kfree(chip);
3798 		break;
3799 	}
3800 	case KVM_SET_IRQCHIP: {
3801 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3802 		struct kvm_irqchip *chip;
3803 
3804 		chip = memdup_user(argp, sizeof(*chip));
3805 		if (IS_ERR(chip)) {
3806 			r = PTR_ERR(chip);
3807 			goto out;
3808 		}
3809 
3810 		r = -ENXIO;
3811 		if (!irqchip_in_kernel(kvm))
3812 			goto set_irqchip_out;
3813 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3814 		if (r)
3815 			goto set_irqchip_out;
3816 		r = 0;
3817 	set_irqchip_out:
3818 		kfree(chip);
3819 		break;
3820 	}
3821 	case KVM_GET_PIT: {
3822 		r = -EFAULT;
3823 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3824 			goto out;
3825 		r = -ENXIO;
3826 		if (!kvm->arch.vpit)
3827 			goto out;
3828 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3829 		if (r)
3830 			goto out;
3831 		r = -EFAULT;
3832 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3833 			goto out;
3834 		r = 0;
3835 		break;
3836 	}
3837 	case KVM_SET_PIT: {
3838 		r = -EFAULT;
3839 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
3840 			goto out;
3841 		r = -ENXIO;
3842 		if (!kvm->arch.vpit)
3843 			goto out;
3844 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3845 		break;
3846 	}
3847 	case KVM_GET_PIT2: {
3848 		r = -ENXIO;
3849 		if (!kvm->arch.vpit)
3850 			goto out;
3851 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3852 		if (r)
3853 			goto out;
3854 		r = -EFAULT;
3855 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3856 			goto out;
3857 		r = 0;
3858 		break;
3859 	}
3860 	case KVM_SET_PIT2: {
3861 		r = -EFAULT;
3862 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3863 			goto out;
3864 		r = -ENXIO;
3865 		if (!kvm->arch.vpit)
3866 			goto out;
3867 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3868 		break;
3869 	}
3870 	case KVM_REINJECT_CONTROL: {
3871 		struct kvm_reinject_control control;
3872 		r =  -EFAULT;
3873 		if (copy_from_user(&control, argp, sizeof(control)))
3874 			goto out;
3875 		r = kvm_vm_ioctl_reinject(kvm, &control);
3876 		break;
3877 	}
3878 	case KVM_XEN_HVM_CONFIG: {
3879 		r = -EFAULT;
3880 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3881 				   sizeof(struct kvm_xen_hvm_config)))
3882 			goto out;
3883 		r = -EINVAL;
3884 		if (kvm->arch.xen_hvm_config.flags)
3885 			goto out;
3886 		r = 0;
3887 		break;
3888 	}
3889 	case KVM_SET_CLOCK: {
3890 		struct kvm_clock_data user_ns;
3891 		u64 now_ns;
3892 		s64 delta;
3893 
3894 		r = -EFAULT;
3895 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3896 			goto out;
3897 
3898 		r = -EINVAL;
3899 		if (user_ns.flags)
3900 			goto out;
3901 
3902 		r = 0;
3903 		local_irq_disable();
3904 		now_ns = get_kernel_ns();
3905 		delta = user_ns.clock - now_ns;
3906 		local_irq_enable();
3907 		kvm->arch.kvmclock_offset = delta;
3908 		kvm_gen_update_masterclock(kvm);
3909 		break;
3910 	}
3911 	case KVM_GET_CLOCK: {
3912 		struct kvm_clock_data user_ns;
3913 		u64 now_ns;
3914 
3915 		local_irq_disable();
3916 		now_ns = get_kernel_ns();
3917 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3918 		local_irq_enable();
3919 		user_ns.flags = 0;
3920 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3921 
3922 		r = -EFAULT;
3923 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3924 			goto out;
3925 		r = 0;
3926 		break;
3927 	}
3928 
3929 	default:
3930 		;
3931 	}
3932 out:
3933 	return r;
3934 }
3935 
3936 static void kvm_init_msr_list(void)
3937 {
3938 	u32 dummy[2];
3939 	unsigned i, j;
3940 
3941 	/* skip the first msrs in the list. KVM-specific */
3942 	for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3943 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3944 			continue;
3945 
3946 		/*
3947 		 * Even MSRs that are valid in the host may not be exposed
3948 		 * to the guests in some cases.  We could work around this
3949 		 * in VMX with the generic MSR save/load machinery, but it
3950 		 * is not really worthwhile since it will really only
3951 		 * happen with nested virtualization.
3952 		 */
3953 		switch (msrs_to_save[i]) {
3954 		case MSR_IA32_BNDCFGS:
3955 			if (!kvm_x86_ops->mpx_supported())
3956 				continue;
3957 			break;
3958 		default:
3959 			break;
3960 		}
3961 
3962 		if (j < i)
3963 			msrs_to_save[j] = msrs_to_save[i];
3964 		j++;
3965 	}
3966 	num_msrs_to_save = j;
3967 }
3968 
3969 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3970 			   const void *v)
3971 {
3972 	int handled = 0;
3973 	int n;
3974 
3975 	do {
3976 		n = min(len, 8);
3977 		if (!(vcpu->arch.apic &&
3978 		      !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3979 		    && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3980 			break;
3981 		handled += n;
3982 		addr += n;
3983 		len -= n;
3984 		v += n;
3985 	} while (len);
3986 
3987 	return handled;
3988 }
3989 
3990 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3991 {
3992 	int handled = 0;
3993 	int n;
3994 
3995 	do {
3996 		n = min(len, 8);
3997 		if (!(vcpu->arch.apic &&
3998 		      !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3999 		    && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
4000 			break;
4001 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4002 		handled += n;
4003 		addr += n;
4004 		len -= n;
4005 		v += n;
4006 	} while (len);
4007 
4008 	return handled;
4009 }
4010 
4011 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4012 			struct kvm_segment *var, int seg)
4013 {
4014 	kvm_x86_ops->set_segment(vcpu, var, seg);
4015 }
4016 
4017 void kvm_get_segment(struct kvm_vcpu *vcpu,
4018 		     struct kvm_segment *var, int seg)
4019 {
4020 	kvm_x86_ops->get_segment(vcpu, var, seg);
4021 }
4022 
4023 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
4024 {
4025 	gpa_t t_gpa;
4026 	struct x86_exception exception;
4027 
4028 	BUG_ON(!mmu_is_nested(vcpu));
4029 
4030 	/* NPT walks are always user-walks */
4031 	access |= PFERR_USER_MASK;
4032 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
4033 
4034 	return t_gpa;
4035 }
4036 
4037 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4038 			      struct x86_exception *exception)
4039 {
4040 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4041 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4042 }
4043 
4044  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4045 				struct x86_exception *exception)
4046 {
4047 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4048 	access |= PFERR_FETCH_MASK;
4049 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4050 }
4051 
4052 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4053 			       struct x86_exception *exception)
4054 {
4055 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4056 	access |= PFERR_WRITE_MASK;
4057 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4058 }
4059 
4060 /* uses this to access any guest's mapped memory without checking CPL */
4061 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4062 				struct x86_exception *exception)
4063 {
4064 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4065 }
4066 
4067 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4068 				      struct kvm_vcpu *vcpu, u32 access,
4069 				      struct x86_exception *exception)
4070 {
4071 	void *data = val;
4072 	int r = X86EMUL_CONTINUE;
4073 
4074 	while (bytes) {
4075 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4076 							    exception);
4077 		unsigned offset = addr & (PAGE_SIZE-1);
4078 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4079 		int ret;
4080 
4081 		if (gpa == UNMAPPED_GVA)
4082 			return X86EMUL_PROPAGATE_FAULT;
4083 		ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
4084 		if (ret < 0) {
4085 			r = X86EMUL_IO_NEEDED;
4086 			goto out;
4087 		}
4088 
4089 		bytes -= toread;
4090 		data += toread;
4091 		addr += toread;
4092 	}
4093 out:
4094 	return r;
4095 }
4096 
4097 /* used for instruction fetching */
4098 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4099 				gva_t addr, void *val, unsigned int bytes,
4100 				struct x86_exception *exception)
4101 {
4102 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4103 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4104 
4105 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
4106 					  access | PFERR_FETCH_MASK,
4107 					  exception);
4108 }
4109 
4110 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4111 			       gva_t addr, void *val, unsigned int bytes,
4112 			       struct x86_exception *exception)
4113 {
4114 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4115 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4116 
4117 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4118 					  exception);
4119 }
4120 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4121 
4122 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4123 				      gva_t addr, void *val, unsigned int bytes,
4124 				      struct x86_exception *exception)
4125 {
4126 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4127 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4128 }
4129 
4130 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4131 				       gva_t addr, void *val,
4132 				       unsigned int bytes,
4133 				       struct x86_exception *exception)
4134 {
4135 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4136 	void *data = val;
4137 	int r = X86EMUL_CONTINUE;
4138 
4139 	while (bytes) {
4140 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4141 							     PFERR_WRITE_MASK,
4142 							     exception);
4143 		unsigned offset = addr & (PAGE_SIZE-1);
4144 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4145 		int ret;
4146 
4147 		if (gpa == UNMAPPED_GVA)
4148 			return X86EMUL_PROPAGATE_FAULT;
4149 		ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4150 		if (ret < 0) {
4151 			r = X86EMUL_IO_NEEDED;
4152 			goto out;
4153 		}
4154 
4155 		bytes -= towrite;
4156 		data += towrite;
4157 		addr += towrite;
4158 	}
4159 out:
4160 	return r;
4161 }
4162 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4163 
4164 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4165 				gpa_t *gpa, struct x86_exception *exception,
4166 				bool write)
4167 {
4168 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4169 		| (write ? PFERR_WRITE_MASK : 0);
4170 
4171 	if (vcpu_match_mmio_gva(vcpu, gva)
4172 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4173 				 vcpu->arch.access, access)) {
4174 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4175 					(gva & (PAGE_SIZE - 1));
4176 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4177 		return 1;
4178 	}
4179 
4180 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4181 
4182 	if (*gpa == UNMAPPED_GVA)
4183 		return -1;
4184 
4185 	/* For APIC access vmexit */
4186 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4187 		return 1;
4188 
4189 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4190 		trace_vcpu_match_mmio(gva, *gpa, write, true);
4191 		return 1;
4192 	}
4193 
4194 	return 0;
4195 }
4196 
4197 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4198 			const void *val, int bytes)
4199 {
4200 	int ret;
4201 
4202 	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4203 	if (ret < 0)
4204 		return 0;
4205 	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4206 	return 1;
4207 }
4208 
4209 struct read_write_emulator_ops {
4210 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4211 				  int bytes);
4212 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4213 				  void *val, int bytes);
4214 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4215 			       int bytes, void *val);
4216 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4217 				    void *val, int bytes);
4218 	bool write;
4219 };
4220 
4221 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4222 {
4223 	if (vcpu->mmio_read_completed) {
4224 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4225 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4226 		vcpu->mmio_read_completed = 0;
4227 		return 1;
4228 	}
4229 
4230 	return 0;
4231 }
4232 
4233 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4234 			void *val, int bytes)
4235 {
4236 	return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4237 }
4238 
4239 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4240 			 void *val, int bytes)
4241 {
4242 	return emulator_write_phys(vcpu, gpa, val, bytes);
4243 }
4244 
4245 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4246 {
4247 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4248 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4249 }
4250 
4251 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4252 			  void *val, int bytes)
4253 {
4254 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4255 	return X86EMUL_IO_NEEDED;
4256 }
4257 
4258 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4259 			   void *val, int bytes)
4260 {
4261 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4262 
4263 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4264 	return X86EMUL_CONTINUE;
4265 }
4266 
4267 static const struct read_write_emulator_ops read_emultor = {
4268 	.read_write_prepare = read_prepare,
4269 	.read_write_emulate = read_emulate,
4270 	.read_write_mmio = vcpu_mmio_read,
4271 	.read_write_exit_mmio = read_exit_mmio,
4272 };
4273 
4274 static const struct read_write_emulator_ops write_emultor = {
4275 	.read_write_emulate = write_emulate,
4276 	.read_write_mmio = write_mmio,
4277 	.read_write_exit_mmio = write_exit_mmio,
4278 	.write = true,
4279 };
4280 
4281 static int emulator_read_write_onepage(unsigned long addr, void *val,
4282 				       unsigned int bytes,
4283 				       struct x86_exception *exception,
4284 				       struct kvm_vcpu *vcpu,
4285 				       const struct read_write_emulator_ops *ops)
4286 {
4287 	gpa_t gpa;
4288 	int handled, ret;
4289 	bool write = ops->write;
4290 	struct kvm_mmio_fragment *frag;
4291 
4292 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4293 
4294 	if (ret < 0)
4295 		return X86EMUL_PROPAGATE_FAULT;
4296 
4297 	/* For APIC access vmexit */
4298 	if (ret)
4299 		goto mmio;
4300 
4301 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4302 		return X86EMUL_CONTINUE;
4303 
4304 mmio:
4305 	/*
4306 	 * Is this MMIO handled locally?
4307 	 */
4308 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4309 	if (handled == bytes)
4310 		return X86EMUL_CONTINUE;
4311 
4312 	gpa += handled;
4313 	bytes -= handled;
4314 	val += handled;
4315 
4316 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4317 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4318 	frag->gpa = gpa;
4319 	frag->data = val;
4320 	frag->len = bytes;
4321 	return X86EMUL_CONTINUE;
4322 }
4323 
4324 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4325 			void *val, unsigned int bytes,
4326 			struct x86_exception *exception,
4327 			const struct read_write_emulator_ops *ops)
4328 {
4329 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4330 	gpa_t gpa;
4331 	int rc;
4332 
4333 	if (ops->read_write_prepare &&
4334 		  ops->read_write_prepare(vcpu, val, bytes))
4335 		return X86EMUL_CONTINUE;
4336 
4337 	vcpu->mmio_nr_fragments = 0;
4338 
4339 	/* Crossing a page boundary? */
4340 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4341 		int now;
4342 
4343 		now = -addr & ~PAGE_MASK;
4344 		rc = emulator_read_write_onepage(addr, val, now, exception,
4345 						 vcpu, ops);
4346 
4347 		if (rc != X86EMUL_CONTINUE)
4348 			return rc;
4349 		addr += now;
4350 		val += now;
4351 		bytes -= now;
4352 	}
4353 
4354 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4355 					 vcpu, ops);
4356 	if (rc != X86EMUL_CONTINUE)
4357 		return rc;
4358 
4359 	if (!vcpu->mmio_nr_fragments)
4360 		return rc;
4361 
4362 	gpa = vcpu->mmio_fragments[0].gpa;
4363 
4364 	vcpu->mmio_needed = 1;
4365 	vcpu->mmio_cur_fragment = 0;
4366 
4367 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4368 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4369 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4370 	vcpu->run->mmio.phys_addr = gpa;
4371 
4372 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4373 }
4374 
4375 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4376 				  unsigned long addr,
4377 				  void *val,
4378 				  unsigned int bytes,
4379 				  struct x86_exception *exception)
4380 {
4381 	return emulator_read_write(ctxt, addr, val, bytes,
4382 				   exception, &read_emultor);
4383 }
4384 
4385 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4386 			    unsigned long addr,
4387 			    const void *val,
4388 			    unsigned int bytes,
4389 			    struct x86_exception *exception)
4390 {
4391 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4392 				   exception, &write_emultor);
4393 }
4394 
4395 #define CMPXCHG_TYPE(t, ptr, old, new) \
4396 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4397 
4398 #ifdef CONFIG_X86_64
4399 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4400 #else
4401 #  define CMPXCHG64(ptr, old, new) \
4402 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4403 #endif
4404 
4405 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4406 				     unsigned long addr,
4407 				     const void *old,
4408 				     const void *new,
4409 				     unsigned int bytes,
4410 				     struct x86_exception *exception)
4411 {
4412 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4413 	gpa_t gpa;
4414 	struct page *page;
4415 	char *kaddr;
4416 	bool exchanged;
4417 
4418 	/* guests cmpxchg8b have to be emulated atomically */
4419 	if (bytes > 8 || (bytes & (bytes - 1)))
4420 		goto emul_write;
4421 
4422 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4423 
4424 	if (gpa == UNMAPPED_GVA ||
4425 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4426 		goto emul_write;
4427 
4428 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4429 		goto emul_write;
4430 
4431 	page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4432 	if (is_error_page(page))
4433 		goto emul_write;
4434 
4435 	kaddr = kmap_atomic(page);
4436 	kaddr += offset_in_page(gpa);
4437 	switch (bytes) {
4438 	case 1:
4439 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4440 		break;
4441 	case 2:
4442 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4443 		break;
4444 	case 4:
4445 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4446 		break;
4447 	case 8:
4448 		exchanged = CMPXCHG64(kaddr, old, new);
4449 		break;
4450 	default:
4451 		BUG();
4452 	}
4453 	kunmap_atomic(kaddr);
4454 	kvm_release_page_dirty(page);
4455 
4456 	if (!exchanged)
4457 		return X86EMUL_CMPXCHG_FAILED;
4458 
4459 	mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
4460 	kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4461 
4462 	return X86EMUL_CONTINUE;
4463 
4464 emul_write:
4465 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4466 
4467 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4468 }
4469 
4470 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4471 {
4472 	/* TODO: String I/O for in kernel device */
4473 	int r;
4474 
4475 	if (vcpu->arch.pio.in)
4476 		r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4477 				    vcpu->arch.pio.size, pd);
4478 	else
4479 		r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4480 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
4481 				     pd);
4482 	return r;
4483 }
4484 
4485 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4486 			       unsigned short port, void *val,
4487 			       unsigned int count, bool in)
4488 {
4489 	trace_kvm_pio(!in, port, size, count);
4490 
4491 	vcpu->arch.pio.port = port;
4492 	vcpu->arch.pio.in = in;
4493 	vcpu->arch.pio.count  = count;
4494 	vcpu->arch.pio.size = size;
4495 
4496 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4497 		vcpu->arch.pio.count = 0;
4498 		return 1;
4499 	}
4500 
4501 	vcpu->run->exit_reason = KVM_EXIT_IO;
4502 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4503 	vcpu->run->io.size = size;
4504 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4505 	vcpu->run->io.count = count;
4506 	vcpu->run->io.port = port;
4507 
4508 	return 0;
4509 }
4510 
4511 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4512 				    int size, unsigned short port, void *val,
4513 				    unsigned int count)
4514 {
4515 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4516 	int ret;
4517 
4518 	if (vcpu->arch.pio.count)
4519 		goto data_avail;
4520 
4521 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4522 	if (ret) {
4523 data_avail:
4524 		memcpy(val, vcpu->arch.pio_data, size * count);
4525 		vcpu->arch.pio.count = 0;
4526 		return 1;
4527 	}
4528 
4529 	return 0;
4530 }
4531 
4532 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4533 				     int size, unsigned short port,
4534 				     const void *val, unsigned int count)
4535 {
4536 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4537 
4538 	memcpy(vcpu->arch.pio_data, val, size * count);
4539 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4540 }
4541 
4542 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4543 {
4544 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4545 }
4546 
4547 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4548 {
4549 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4550 }
4551 
4552 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4553 {
4554 	if (!need_emulate_wbinvd(vcpu))
4555 		return X86EMUL_CONTINUE;
4556 
4557 	if (kvm_x86_ops->has_wbinvd_exit()) {
4558 		int cpu = get_cpu();
4559 
4560 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4561 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4562 				wbinvd_ipi, NULL, 1);
4563 		put_cpu();
4564 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4565 	} else
4566 		wbinvd();
4567 	return X86EMUL_CONTINUE;
4568 }
4569 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4570 
4571 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4572 {
4573 	kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4574 }
4575 
4576 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4577 {
4578 	return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4579 }
4580 
4581 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4582 {
4583 
4584 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4585 }
4586 
4587 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4588 {
4589 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4590 }
4591 
4592 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4593 {
4594 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4595 	unsigned long value;
4596 
4597 	switch (cr) {
4598 	case 0:
4599 		value = kvm_read_cr0(vcpu);
4600 		break;
4601 	case 2:
4602 		value = vcpu->arch.cr2;
4603 		break;
4604 	case 3:
4605 		value = kvm_read_cr3(vcpu);
4606 		break;
4607 	case 4:
4608 		value = kvm_read_cr4(vcpu);
4609 		break;
4610 	case 8:
4611 		value = kvm_get_cr8(vcpu);
4612 		break;
4613 	default:
4614 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4615 		return 0;
4616 	}
4617 
4618 	return value;
4619 }
4620 
4621 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4622 {
4623 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4624 	int res = 0;
4625 
4626 	switch (cr) {
4627 	case 0:
4628 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4629 		break;
4630 	case 2:
4631 		vcpu->arch.cr2 = val;
4632 		break;
4633 	case 3:
4634 		res = kvm_set_cr3(vcpu, val);
4635 		break;
4636 	case 4:
4637 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4638 		break;
4639 	case 8:
4640 		res = kvm_set_cr8(vcpu, val);
4641 		break;
4642 	default:
4643 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4644 		res = -1;
4645 	}
4646 
4647 	return res;
4648 }
4649 
4650 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4651 {
4652 	kvm_set_rflags(emul_to_vcpu(ctxt), val);
4653 }
4654 
4655 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4656 {
4657 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4658 }
4659 
4660 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4661 {
4662 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4663 }
4664 
4665 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4666 {
4667 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4668 }
4669 
4670 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4671 {
4672 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4673 }
4674 
4675 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4676 {
4677 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4678 }
4679 
4680 static unsigned long emulator_get_cached_segment_base(
4681 	struct x86_emulate_ctxt *ctxt, int seg)
4682 {
4683 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4684 }
4685 
4686 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4687 				 struct desc_struct *desc, u32 *base3,
4688 				 int seg)
4689 {
4690 	struct kvm_segment var;
4691 
4692 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4693 	*selector = var.selector;
4694 
4695 	if (var.unusable) {
4696 		memset(desc, 0, sizeof(*desc));
4697 		return false;
4698 	}
4699 
4700 	if (var.g)
4701 		var.limit >>= 12;
4702 	set_desc_limit(desc, var.limit);
4703 	set_desc_base(desc, (unsigned long)var.base);
4704 #ifdef CONFIG_X86_64
4705 	if (base3)
4706 		*base3 = var.base >> 32;
4707 #endif
4708 	desc->type = var.type;
4709 	desc->s = var.s;
4710 	desc->dpl = var.dpl;
4711 	desc->p = var.present;
4712 	desc->avl = var.avl;
4713 	desc->l = var.l;
4714 	desc->d = var.db;
4715 	desc->g = var.g;
4716 
4717 	return true;
4718 }
4719 
4720 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4721 				 struct desc_struct *desc, u32 base3,
4722 				 int seg)
4723 {
4724 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4725 	struct kvm_segment var;
4726 
4727 	var.selector = selector;
4728 	var.base = get_desc_base(desc);
4729 #ifdef CONFIG_X86_64
4730 	var.base |= ((u64)base3) << 32;
4731 #endif
4732 	var.limit = get_desc_limit(desc);
4733 	if (desc->g)
4734 		var.limit = (var.limit << 12) | 0xfff;
4735 	var.type = desc->type;
4736 	var.present = desc->p;
4737 	var.dpl = desc->dpl;
4738 	var.db = desc->d;
4739 	var.s = desc->s;
4740 	var.l = desc->l;
4741 	var.g = desc->g;
4742 	var.avl = desc->avl;
4743 	var.present = desc->p;
4744 	var.unusable = !var.present;
4745 	var.padding = 0;
4746 
4747 	kvm_set_segment(vcpu, &var, seg);
4748 	return;
4749 }
4750 
4751 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4752 			    u32 msr_index, u64 *pdata)
4753 {
4754 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4755 }
4756 
4757 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4758 			    u32 msr_index, u64 data)
4759 {
4760 	struct msr_data msr;
4761 
4762 	msr.data = data;
4763 	msr.index = msr_index;
4764 	msr.host_initiated = false;
4765 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4766 }
4767 
4768 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4769 			     u32 pmc, u64 *pdata)
4770 {
4771 	return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4772 }
4773 
4774 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4775 {
4776 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
4777 }
4778 
4779 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4780 {
4781 	preempt_disable();
4782 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4783 	/*
4784 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
4785 	 * so it may be clear at this point.
4786 	 */
4787 	clts();
4788 }
4789 
4790 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4791 {
4792 	preempt_enable();
4793 }
4794 
4795 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4796 			      struct x86_instruction_info *info,
4797 			      enum x86_intercept_stage stage)
4798 {
4799 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4800 }
4801 
4802 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4803 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4804 {
4805 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4806 }
4807 
4808 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4809 {
4810 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
4811 }
4812 
4813 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4814 {
4815 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4816 }
4817 
4818 static const struct x86_emulate_ops emulate_ops = {
4819 	.read_gpr            = emulator_read_gpr,
4820 	.write_gpr           = emulator_write_gpr,
4821 	.read_std            = kvm_read_guest_virt_system,
4822 	.write_std           = kvm_write_guest_virt_system,
4823 	.fetch               = kvm_fetch_guest_virt,
4824 	.read_emulated       = emulator_read_emulated,
4825 	.write_emulated      = emulator_write_emulated,
4826 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
4827 	.invlpg              = emulator_invlpg,
4828 	.pio_in_emulated     = emulator_pio_in_emulated,
4829 	.pio_out_emulated    = emulator_pio_out_emulated,
4830 	.get_segment         = emulator_get_segment,
4831 	.set_segment         = emulator_set_segment,
4832 	.get_cached_segment_base = emulator_get_cached_segment_base,
4833 	.get_gdt             = emulator_get_gdt,
4834 	.get_idt	     = emulator_get_idt,
4835 	.set_gdt             = emulator_set_gdt,
4836 	.set_idt	     = emulator_set_idt,
4837 	.get_cr              = emulator_get_cr,
4838 	.set_cr              = emulator_set_cr,
4839 	.set_rflags          = emulator_set_rflags,
4840 	.cpl                 = emulator_get_cpl,
4841 	.get_dr              = emulator_get_dr,
4842 	.set_dr              = emulator_set_dr,
4843 	.set_msr             = emulator_set_msr,
4844 	.get_msr             = emulator_get_msr,
4845 	.read_pmc            = emulator_read_pmc,
4846 	.halt                = emulator_halt,
4847 	.wbinvd              = emulator_wbinvd,
4848 	.fix_hypercall       = emulator_fix_hypercall,
4849 	.get_fpu             = emulator_get_fpu,
4850 	.put_fpu             = emulator_put_fpu,
4851 	.intercept           = emulator_intercept,
4852 	.get_cpuid           = emulator_get_cpuid,
4853 };
4854 
4855 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4856 {
4857 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4858 	/*
4859 	 * an sti; sti; sequence only disable interrupts for the first
4860 	 * instruction. So, if the last instruction, be it emulated or
4861 	 * not, left the system with the INT_STI flag enabled, it
4862 	 * means that the last instruction is an sti. We should not
4863 	 * leave the flag on in this case. The same goes for mov ss
4864 	 */
4865 	if (!(int_shadow & mask))
4866 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4867 }
4868 
4869 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4870 {
4871 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4872 	if (ctxt->exception.vector == PF_VECTOR)
4873 		kvm_propagate_fault(vcpu, &ctxt->exception);
4874 	else if (ctxt->exception.error_code_valid)
4875 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4876 				      ctxt->exception.error_code);
4877 	else
4878 		kvm_queue_exception(vcpu, ctxt->exception.vector);
4879 }
4880 
4881 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4882 {
4883 	memset(&ctxt->opcode_len, 0,
4884 	       (void *)&ctxt->_regs - (void *)&ctxt->opcode_len);
4885 
4886 	ctxt->fetch.start = 0;
4887 	ctxt->fetch.end = 0;
4888 	ctxt->io_read.pos = 0;
4889 	ctxt->io_read.end = 0;
4890 	ctxt->mem_read.pos = 0;
4891 	ctxt->mem_read.end = 0;
4892 }
4893 
4894 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4895 {
4896 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4897 	int cs_db, cs_l;
4898 
4899 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4900 
4901 	ctxt->eflags = kvm_get_rflags(vcpu);
4902 	ctxt->eip = kvm_rip_read(vcpu);
4903 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
4904 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
4905 		     cs_l				? X86EMUL_MODE_PROT64 :
4906 		     cs_db				? X86EMUL_MODE_PROT32 :
4907 							  X86EMUL_MODE_PROT16;
4908 	ctxt->guest_mode = is_guest_mode(vcpu);
4909 
4910 	init_decode_cache(ctxt);
4911 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4912 }
4913 
4914 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4915 {
4916 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4917 	int ret;
4918 
4919 	init_emulate_ctxt(vcpu);
4920 
4921 	ctxt->op_bytes = 2;
4922 	ctxt->ad_bytes = 2;
4923 	ctxt->_eip = ctxt->eip + inc_eip;
4924 	ret = emulate_int_real(ctxt, irq);
4925 
4926 	if (ret != X86EMUL_CONTINUE)
4927 		return EMULATE_FAIL;
4928 
4929 	ctxt->eip = ctxt->_eip;
4930 	kvm_rip_write(vcpu, ctxt->eip);
4931 	kvm_set_rflags(vcpu, ctxt->eflags);
4932 
4933 	if (irq == NMI_VECTOR)
4934 		vcpu->arch.nmi_pending = 0;
4935 	else
4936 		vcpu->arch.interrupt.pending = false;
4937 
4938 	return EMULATE_DONE;
4939 }
4940 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4941 
4942 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4943 {
4944 	int r = EMULATE_DONE;
4945 
4946 	++vcpu->stat.insn_emulation_fail;
4947 	trace_kvm_emulate_insn_failed(vcpu);
4948 	if (!is_guest_mode(vcpu)) {
4949 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4950 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4951 		vcpu->run->internal.ndata = 0;
4952 		r = EMULATE_FAIL;
4953 	}
4954 	kvm_queue_exception(vcpu, UD_VECTOR);
4955 
4956 	return r;
4957 }
4958 
4959 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4960 				  bool write_fault_to_shadow_pgtable,
4961 				  int emulation_type)
4962 {
4963 	gpa_t gpa = cr2;
4964 	pfn_t pfn;
4965 
4966 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
4967 		return false;
4968 
4969 	if (!vcpu->arch.mmu.direct_map) {
4970 		/*
4971 		 * Write permission should be allowed since only
4972 		 * write access need to be emulated.
4973 		 */
4974 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4975 
4976 		/*
4977 		 * If the mapping is invalid in guest, let cpu retry
4978 		 * it to generate fault.
4979 		 */
4980 		if (gpa == UNMAPPED_GVA)
4981 			return true;
4982 	}
4983 
4984 	/*
4985 	 * Do not retry the unhandleable instruction if it faults on the
4986 	 * readonly host memory, otherwise it will goto a infinite loop:
4987 	 * retry instruction -> write #PF -> emulation fail -> retry
4988 	 * instruction -> ...
4989 	 */
4990 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4991 
4992 	/*
4993 	 * If the instruction failed on the error pfn, it can not be fixed,
4994 	 * report the error to userspace.
4995 	 */
4996 	if (is_error_noslot_pfn(pfn))
4997 		return false;
4998 
4999 	kvm_release_pfn_clean(pfn);
5000 
5001 	/* The instructions are well-emulated on direct mmu. */
5002 	if (vcpu->arch.mmu.direct_map) {
5003 		unsigned int indirect_shadow_pages;
5004 
5005 		spin_lock(&vcpu->kvm->mmu_lock);
5006 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5007 		spin_unlock(&vcpu->kvm->mmu_lock);
5008 
5009 		if (indirect_shadow_pages)
5010 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5011 
5012 		return true;
5013 	}
5014 
5015 	/*
5016 	 * if emulation was due to access to shadowed page table
5017 	 * and it failed try to unshadow page and re-enter the
5018 	 * guest to let CPU execute the instruction.
5019 	 */
5020 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5021 
5022 	/*
5023 	 * If the access faults on its page table, it can not
5024 	 * be fixed by unprotecting shadow page and it should
5025 	 * be reported to userspace.
5026 	 */
5027 	return !write_fault_to_shadow_pgtable;
5028 }
5029 
5030 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5031 			      unsigned long cr2,  int emulation_type)
5032 {
5033 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5034 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5035 
5036 	last_retry_eip = vcpu->arch.last_retry_eip;
5037 	last_retry_addr = vcpu->arch.last_retry_addr;
5038 
5039 	/*
5040 	 * If the emulation is caused by #PF and it is non-page_table
5041 	 * writing instruction, it means the VM-EXIT is caused by shadow
5042 	 * page protected, we can zap the shadow page and retry this
5043 	 * instruction directly.
5044 	 *
5045 	 * Note: if the guest uses a non-page-table modifying instruction
5046 	 * on the PDE that points to the instruction, then we will unmap
5047 	 * the instruction and go to an infinite loop. So, we cache the
5048 	 * last retried eip and the last fault address, if we meet the eip
5049 	 * and the address again, we can break out of the potential infinite
5050 	 * loop.
5051 	 */
5052 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5053 
5054 	if (!(emulation_type & EMULTYPE_RETRY))
5055 		return false;
5056 
5057 	if (x86_page_table_writing_insn(ctxt))
5058 		return false;
5059 
5060 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5061 		return false;
5062 
5063 	vcpu->arch.last_retry_eip = ctxt->eip;
5064 	vcpu->arch.last_retry_addr = cr2;
5065 
5066 	if (!vcpu->arch.mmu.direct_map)
5067 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5068 
5069 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5070 
5071 	return true;
5072 }
5073 
5074 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5075 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5076 
5077 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5078 				unsigned long *db)
5079 {
5080 	u32 dr6 = 0;
5081 	int i;
5082 	u32 enable, rwlen;
5083 
5084 	enable = dr7;
5085 	rwlen = dr7 >> 16;
5086 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5087 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5088 			dr6 |= (1 << i);
5089 	return dr6;
5090 }
5091 
5092 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, int *r)
5093 {
5094 	struct kvm_run *kvm_run = vcpu->run;
5095 
5096 	/*
5097 	 * Use the "raw" value to see if TF was passed to the processor.
5098 	 * Note that the new value of the flags has not been saved yet.
5099 	 *
5100 	 * This is correct even for TF set by the guest, because "the
5101 	 * processor will not generate this exception after the instruction
5102 	 * that sets the TF flag".
5103 	 */
5104 	unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5105 
5106 	if (unlikely(rflags & X86_EFLAGS_TF)) {
5107 		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5108 			kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1;
5109 			kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5110 			kvm_run->debug.arch.exception = DB_VECTOR;
5111 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5112 			*r = EMULATE_USER_EXIT;
5113 		} else {
5114 			vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5115 			/*
5116 			 * "Certain debug exceptions may clear bit 0-3.  The
5117 			 * remaining contents of the DR6 register are never
5118 			 * cleared by the processor".
5119 			 */
5120 			vcpu->arch.dr6 &= ~15;
5121 			vcpu->arch.dr6 |= DR6_BS;
5122 			kvm_queue_exception(vcpu, DB_VECTOR);
5123 		}
5124 	}
5125 }
5126 
5127 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5128 {
5129 	struct kvm_run *kvm_run = vcpu->run;
5130 	unsigned long eip = vcpu->arch.emulate_ctxt.eip;
5131 	u32 dr6 = 0;
5132 
5133 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5134 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5135 		dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5136 					   vcpu->arch.guest_debug_dr7,
5137 					   vcpu->arch.eff_db);
5138 
5139 		if (dr6 != 0) {
5140 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5141 			kvm_run->debug.arch.pc = kvm_rip_read(vcpu) +
5142 				get_segment_base(vcpu, VCPU_SREG_CS);
5143 
5144 			kvm_run->debug.arch.exception = DB_VECTOR;
5145 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5146 			*r = EMULATE_USER_EXIT;
5147 			return true;
5148 		}
5149 	}
5150 
5151 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK)) {
5152 		dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5153 					   vcpu->arch.dr7,
5154 					   vcpu->arch.db);
5155 
5156 		if (dr6 != 0) {
5157 			vcpu->arch.dr6 &= ~15;
5158 			vcpu->arch.dr6 |= dr6;
5159 			kvm_queue_exception(vcpu, DB_VECTOR);
5160 			*r = EMULATE_DONE;
5161 			return true;
5162 		}
5163 	}
5164 
5165 	return false;
5166 }
5167 
5168 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5169 			    unsigned long cr2,
5170 			    int emulation_type,
5171 			    void *insn,
5172 			    int insn_len)
5173 {
5174 	int r;
5175 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5176 	bool writeback = true;
5177 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5178 
5179 	/*
5180 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
5181 	 * never reused.
5182 	 */
5183 	vcpu->arch.write_fault_to_shadow_pgtable = false;
5184 	kvm_clear_exception_queue(vcpu);
5185 
5186 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5187 		init_emulate_ctxt(vcpu);
5188 
5189 		/*
5190 		 * We will reenter on the same instruction since
5191 		 * we do not set complete_userspace_io.  This does not
5192 		 * handle watchpoints yet, those would be handled in
5193 		 * the emulate_ops.
5194 		 */
5195 		if (kvm_vcpu_check_breakpoint(vcpu, &r))
5196 			return r;
5197 
5198 		ctxt->interruptibility = 0;
5199 		ctxt->have_exception = false;
5200 		ctxt->perm_ok = false;
5201 
5202 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5203 
5204 		r = x86_decode_insn(ctxt, insn, insn_len);
5205 
5206 		trace_kvm_emulate_insn_start(vcpu);
5207 		++vcpu->stat.insn_emulation;
5208 		if (r != EMULATION_OK)  {
5209 			if (emulation_type & EMULTYPE_TRAP_UD)
5210 				return EMULATE_FAIL;
5211 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5212 						emulation_type))
5213 				return EMULATE_DONE;
5214 			if (emulation_type & EMULTYPE_SKIP)
5215 				return EMULATE_FAIL;
5216 			return handle_emulation_failure(vcpu);
5217 		}
5218 	}
5219 
5220 	if (emulation_type & EMULTYPE_SKIP) {
5221 		kvm_rip_write(vcpu, ctxt->_eip);
5222 		return EMULATE_DONE;
5223 	}
5224 
5225 	if (retry_instruction(ctxt, cr2, emulation_type))
5226 		return EMULATE_DONE;
5227 
5228 	/* this is needed for vmware backdoor interface to work since it
5229 	   changes registers values  during IO operation */
5230 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5231 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5232 		emulator_invalidate_register_cache(ctxt);
5233 	}
5234 
5235 restart:
5236 	r = x86_emulate_insn(ctxt);
5237 
5238 	if (r == EMULATION_INTERCEPTED)
5239 		return EMULATE_DONE;
5240 
5241 	if (r == EMULATION_FAILED) {
5242 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5243 					emulation_type))
5244 			return EMULATE_DONE;
5245 
5246 		return handle_emulation_failure(vcpu);
5247 	}
5248 
5249 	if (ctxt->have_exception) {
5250 		inject_emulated_exception(vcpu);
5251 		r = EMULATE_DONE;
5252 	} else if (vcpu->arch.pio.count) {
5253 		if (!vcpu->arch.pio.in) {
5254 			/* FIXME: return into emulator if single-stepping.  */
5255 			vcpu->arch.pio.count = 0;
5256 		} else {
5257 			writeback = false;
5258 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
5259 		}
5260 		r = EMULATE_USER_EXIT;
5261 	} else if (vcpu->mmio_needed) {
5262 		if (!vcpu->mmio_is_write)
5263 			writeback = false;
5264 		r = EMULATE_USER_EXIT;
5265 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5266 	} else if (r == EMULATION_RESTART)
5267 		goto restart;
5268 	else
5269 		r = EMULATE_DONE;
5270 
5271 	if (writeback) {
5272 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5273 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5274 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5275 		kvm_rip_write(vcpu, ctxt->eip);
5276 		if (r == EMULATE_DONE)
5277 			kvm_vcpu_check_singlestep(vcpu, &r);
5278 		kvm_set_rflags(vcpu, ctxt->eflags);
5279 	} else
5280 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5281 
5282 	return r;
5283 }
5284 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5285 
5286 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5287 {
5288 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5289 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5290 					    size, port, &val, 1);
5291 	/* do not return to emulator after return from userspace */
5292 	vcpu->arch.pio.count = 0;
5293 	return ret;
5294 }
5295 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5296 
5297 static void tsc_bad(void *info)
5298 {
5299 	__this_cpu_write(cpu_tsc_khz, 0);
5300 }
5301 
5302 static void tsc_khz_changed(void *data)
5303 {
5304 	struct cpufreq_freqs *freq = data;
5305 	unsigned long khz = 0;
5306 
5307 	if (data)
5308 		khz = freq->new;
5309 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5310 		khz = cpufreq_quick_get(raw_smp_processor_id());
5311 	if (!khz)
5312 		khz = tsc_khz;
5313 	__this_cpu_write(cpu_tsc_khz, khz);
5314 }
5315 
5316 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5317 				     void *data)
5318 {
5319 	struct cpufreq_freqs *freq = data;
5320 	struct kvm *kvm;
5321 	struct kvm_vcpu *vcpu;
5322 	int i, send_ipi = 0;
5323 
5324 	/*
5325 	 * We allow guests to temporarily run on slowing clocks,
5326 	 * provided we notify them after, or to run on accelerating
5327 	 * clocks, provided we notify them before.  Thus time never
5328 	 * goes backwards.
5329 	 *
5330 	 * However, we have a problem.  We can't atomically update
5331 	 * the frequency of a given CPU from this function; it is
5332 	 * merely a notifier, which can be called from any CPU.
5333 	 * Changing the TSC frequency at arbitrary points in time
5334 	 * requires a recomputation of local variables related to
5335 	 * the TSC for each VCPU.  We must flag these local variables
5336 	 * to be updated and be sure the update takes place with the
5337 	 * new frequency before any guests proceed.
5338 	 *
5339 	 * Unfortunately, the combination of hotplug CPU and frequency
5340 	 * change creates an intractable locking scenario; the order
5341 	 * of when these callouts happen is undefined with respect to
5342 	 * CPU hotplug, and they can race with each other.  As such,
5343 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5344 	 * undefined; you can actually have a CPU frequency change take
5345 	 * place in between the computation of X and the setting of the
5346 	 * variable.  To protect against this problem, all updates of
5347 	 * the per_cpu tsc_khz variable are done in an interrupt
5348 	 * protected IPI, and all callers wishing to update the value
5349 	 * must wait for a synchronous IPI to complete (which is trivial
5350 	 * if the caller is on the CPU already).  This establishes the
5351 	 * necessary total order on variable updates.
5352 	 *
5353 	 * Note that because a guest time update may take place
5354 	 * anytime after the setting of the VCPU's request bit, the
5355 	 * correct TSC value must be set before the request.  However,
5356 	 * to ensure the update actually makes it to any guest which
5357 	 * starts running in hardware virtualization between the set
5358 	 * and the acquisition of the spinlock, we must also ping the
5359 	 * CPU after setting the request bit.
5360 	 *
5361 	 */
5362 
5363 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5364 		return 0;
5365 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5366 		return 0;
5367 
5368 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5369 
5370 	spin_lock(&kvm_lock);
5371 	list_for_each_entry(kvm, &vm_list, vm_list) {
5372 		kvm_for_each_vcpu(i, vcpu, kvm) {
5373 			if (vcpu->cpu != freq->cpu)
5374 				continue;
5375 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5376 			if (vcpu->cpu != smp_processor_id())
5377 				send_ipi = 1;
5378 		}
5379 	}
5380 	spin_unlock(&kvm_lock);
5381 
5382 	if (freq->old < freq->new && send_ipi) {
5383 		/*
5384 		 * We upscale the frequency.  Must make the guest
5385 		 * doesn't see old kvmclock values while running with
5386 		 * the new frequency, otherwise we risk the guest sees
5387 		 * time go backwards.
5388 		 *
5389 		 * In case we update the frequency for another cpu
5390 		 * (which might be in guest context) send an interrupt
5391 		 * to kick the cpu out of guest context.  Next time
5392 		 * guest context is entered kvmclock will be updated,
5393 		 * so the guest will not see stale values.
5394 		 */
5395 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5396 	}
5397 	return 0;
5398 }
5399 
5400 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5401 	.notifier_call  = kvmclock_cpufreq_notifier
5402 };
5403 
5404 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5405 					unsigned long action, void *hcpu)
5406 {
5407 	unsigned int cpu = (unsigned long)hcpu;
5408 
5409 	switch (action) {
5410 		case CPU_ONLINE:
5411 		case CPU_DOWN_FAILED:
5412 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5413 			break;
5414 		case CPU_DOWN_PREPARE:
5415 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
5416 			break;
5417 	}
5418 	return NOTIFY_OK;
5419 }
5420 
5421 static struct notifier_block kvmclock_cpu_notifier_block = {
5422 	.notifier_call  = kvmclock_cpu_notifier,
5423 	.priority = -INT_MAX
5424 };
5425 
5426 static void kvm_timer_init(void)
5427 {
5428 	int cpu;
5429 
5430 	max_tsc_khz = tsc_khz;
5431 
5432 	cpu_notifier_register_begin();
5433 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5434 #ifdef CONFIG_CPU_FREQ
5435 		struct cpufreq_policy policy;
5436 		memset(&policy, 0, sizeof(policy));
5437 		cpu = get_cpu();
5438 		cpufreq_get_policy(&policy, cpu);
5439 		if (policy.cpuinfo.max_freq)
5440 			max_tsc_khz = policy.cpuinfo.max_freq;
5441 		put_cpu();
5442 #endif
5443 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5444 					  CPUFREQ_TRANSITION_NOTIFIER);
5445 	}
5446 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5447 	for_each_online_cpu(cpu)
5448 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5449 
5450 	__register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5451 	cpu_notifier_register_done();
5452 
5453 }
5454 
5455 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5456 
5457 int kvm_is_in_guest(void)
5458 {
5459 	return __this_cpu_read(current_vcpu) != NULL;
5460 }
5461 
5462 static int kvm_is_user_mode(void)
5463 {
5464 	int user_mode = 3;
5465 
5466 	if (__this_cpu_read(current_vcpu))
5467 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5468 
5469 	return user_mode != 0;
5470 }
5471 
5472 static unsigned long kvm_get_guest_ip(void)
5473 {
5474 	unsigned long ip = 0;
5475 
5476 	if (__this_cpu_read(current_vcpu))
5477 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5478 
5479 	return ip;
5480 }
5481 
5482 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5483 	.is_in_guest		= kvm_is_in_guest,
5484 	.is_user_mode		= kvm_is_user_mode,
5485 	.get_guest_ip		= kvm_get_guest_ip,
5486 };
5487 
5488 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5489 {
5490 	__this_cpu_write(current_vcpu, vcpu);
5491 }
5492 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5493 
5494 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5495 {
5496 	__this_cpu_write(current_vcpu, NULL);
5497 }
5498 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5499 
5500 static void kvm_set_mmio_spte_mask(void)
5501 {
5502 	u64 mask;
5503 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
5504 
5505 	/*
5506 	 * Set the reserved bits and the present bit of an paging-structure
5507 	 * entry to generate page fault with PFER.RSV = 1.
5508 	 */
5509 	 /* Mask the reserved physical address bits. */
5510 	mask = ((1ull << (51 - maxphyaddr + 1)) - 1) << maxphyaddr;
5511 
5512 	/* Bit 62 is always reserved for 32bit host. */
5513 	mask |= 0x3ull << 62;
5514 
5515 	/* Set the present bit. */
5516 	mask |= 1ull;
5517 
5518 #ifdef CONFIG_X86_64
5519 	/*
5520 	 * If reserved bit is not supported, clear the present bit to disable
5521 	 * mmio page fault.
5522 	 */
5523 	if (maxphyaddr == 52)
5524 		mask &= ~1ull;
5525 #endif
5526 
5527 	kvm_mmu_set_mmio_spte_mask(mask);
5528 }
5529 
5530 #ifdef CONFIG_X86_64
5531 static void pvclock_gtod_update_fn(struct work_struct *work)
5532 {
5533 	struct kvm *kvm;
5534 
5535 	struct kvm_vcpu *vcpu;
5536 	int i;
5537 
5538 	spin_lock(&kvm_lock);
5539 	list_for_each_entry(kvm, &vm_list, vm_list)
5540 		kvm_for_each_vcpu(i, vcpu, kvm)
5541 			set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5542 	atomic_set(&kvm_guest_has_master_clock, 0);
5543 	spin_unlock(&kvm_lock);
5544 }
5545 
5546 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5547 
5548 /*
5549  * Notification about pvclock gtod data update.
5550  */
5551 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5552 			       void *priv)
5553 {
5554 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5555 	struct timekeeper *tk = priv;
5556 
5557 	update_pvclock_gtod(tk);
5558 
5559 	/* disable master clock if host does not trust, or does not
5560 	 * use, TSC clocksource
5561 	 */
5562 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5563 	    atomic_read(&kvm_guest_has_master_clock) != 0)
5564 		queue_work(system_long_wq, &pvclock_gtod_work);
5565 
5566 	return 0;
5567 }
5568 
5569 static struct notifier_block pvclock_gtod_notifier = {
5570 	.notifier_call = pvclock_gtod_notify,
5571 };
5572 #endif
5573 
5574 int kvm_arch_init(void *opaque)
5575 {
5576 	int r;
5577 	struct kvm_x86_ops *ops = opaque;
5578 
5579 	if (kvm_x86_ops) {
5580 		printk(KERN_ERR "kvm: already loaded the other module\n");
5581 		r = -EEXIST;
5582 		goto out;
5583 	}
5584 
5585 	if (!ops->cpu_has_kvm_support()) {
5586 		printk(KERN_ERR "kvm: no hardware support\n");
5587 		r = -EOPNOTSUPP;
5588 		goto out;
5589 	}
5590 	if (ops->disabled_by_bios()) {
5591 		printk(KERN_ERR "kvm: disabled by bios\n");
5592 		r = -EOPNOTSUPP;
5593 		goto out;
5594 	}
5595 
5596 	r = -ENOMEM;
5597 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5598 	if (!shared_msrs) {
5599 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5600 		goto out;
5601 	}
5602 
5603 	r = kvm_mmu_module_init();
5604 	if (r)
5605 		goto out_free_percpu;
5606 
5607 	kvm_set_mmio_spte_mask();
5608 
5609 	kvm_x86_ops = ops;
5610 	kvm_init_msr_list();
5611 
5612 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5613 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
5614 
5615 	kvm_timer_init();
5616 
5617 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5618 
5619 	if (cpu_has_xsave)
5620 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5621 
5622 	kvm_lapic_init();
5623 #ifdef CONFIG_X86_64
5624 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5625 #endif
5626 
5627 	return 0;
5628 
5629 out_free_percpu:
5630 	free_percpu(shared_msrs);
5631 out:
5632 	return r;
5633 }
5634 
5635 void kvm_arch_exit(void)
5636 {
5637 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5638 
5639 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5640 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5641 					    CPUFREQ_TRANSITION_NOTIFIER);
5642 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5643 #ifdef CONFIG_X86_64
5644 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5645 #endif
5646 	kvm_x86_ops = NULL;
5647 	kvm_mmu_module_exit();
5648 	free_percpu(shared_msrs);
5649 }
5650 
5651 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5652 {
5653 	++vcpu->stat.halt_exits;
5654 	if (irqchip_in_kernel(vcpu->kvm)) {
5655 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5656 		return 1;
5657 	} else {
5658 		vcpu->run->exit_reason = KVM_EXIT_HLT;
5659 		return 0;
5660 	}
5661 }
5662 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5663 
5664 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5665 {
5666 	u64 param, ingpa, outgpa, ret;
5667 	uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5668 	bool fast, longmode;
5669 	int cs_db, cs_l;
5670 
5671 	/*
5672 	 * hypercall generates UD from non zero cpl and real mode
5673 	 * per HYPER-V spec
5674 	 */
5675 	if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5676 		kvm_queue_exception(vcpu, UD_VECTOR);
5677 		return 0;
5678 	}
5679 
5680 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5681 	longmode = is_long_mode(vcpu) && cs_l == 1;
5682 
5683 	if (!longmode) {
5684 		param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5685 			(kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5686 		ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5687 			(kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5688 		outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5689 			(kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5690 	}
5691 #ifdef CONFIG_X86_64
5692 	else {
5693 		param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5694 		ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5695 		outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5696 	}
5697 #endif
5698 
5699 	code = param & 0xffff;
5700 	fast = (param >> 16) & 0x1;
5701 	rep_cnt = (param >> 32) & 0xfff;
5702 	rep_idx = (param >> 48) & 0xfff;
5703 
5704 	trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5705 
5706 	switch (code) {
5707 	case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5708 		kvm_vcpu_on_spin(vcpu);
5709 		break;
5710 	default:
5711 		res = HV_STATUS_INVALID_HYPERCALL_CODE;
5712 		break;
5713 	}
5714 
5715 	ret = res | (((u64)rep_done & 0xfff) << 32);
5716 	if (longmode) {
5717 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5718 	} else {
5719 		kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5720 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5721 	}
5722 
5723 	return 1;
5724 }
5725 
5726 /*
5727  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5728  *
5729  * @apicid - apicid of vcpu to be kicked.
5730  */
5731 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5732 {
5733 	struct kvm_lapic_irq lapic_irq;
5734 
5735 	lapic_irq.shorthand = 0;
5736 	lapic_irq.dest_mode = 0;
5737 	lapic_irq.dest_id = apicid;
5738 
5739 	lapic_irq.delivery_mode = APIC_DM_REMRD;
5740 	kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL);
5741 }
5742 
5743 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5744 {
5745 	unsigned long nr, a0, a1, a2, a3, ret;
5746 	int r = 1;
5747 
5748 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
5749 		return kvm_hv_hypercall(vcpu);
5750 
5751 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5752 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5753 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5754 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5755 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5756 
5757 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
5758 
5759 	if (!is_long_mode(vcpu)) {
5760 		nr &= 0xFFFFFFFF;
5761 		a0 &= 0xFFFFFFFF;
5762 		a1 &= 0xFFFFFFFF;
5763 		a2 &= 0xFFFFFFFF;
5764 		a3 &= 0xFFFFFFFF;
5765 	}
5766 
5767 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5768 		ret = -KVM_EPERM;
5769 		goto out;
5770 	}
5771 
5772 	switch (nr) {
5773 	case KVM_HC_VAPIC_POLL_IRQ:
5774 		ret = 0;
5775 		break;
5776 	case KVM_HC_KICK_CPU:
5777 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5778 		ret = 0;
5779 		break;
5780 	default:
5781 		ret = -KVM_ENOSYS;
5782 		break;
5783 	}
5784 out:
5785 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5786 	++vcpu->stat.hypercalls;
5787 	return r;
5788 }
5789 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5790 
5791 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5792 {
5793 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5794 	char instruction[3];
5795 	unsigned long rip = kvm_rip_read(vcpu);
5796 
5797 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
5798 
5799 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5800 }
5801 
5802 /*
5803  * Check if userspace requested an interrupt window, and that the
5804  * interrupt window is open.
5805  *
5806  * No need to exit to userspace if we already have an interrupt queued.
5807  */
5808 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5809 {
5810 	return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5811 		vcpu->run->request_interrupt_window &&
5812 		kvm_arch_interrupt_allowed(vcpu));
5813 }
5814 
5815 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5816 {
5817 	struct kvm_run *kvm_run = vcpu->run;
5818 
5819 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5820 	kvm_run->cr8 = kvm_get_cr8(vcpu);
5821 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
5822 	if (irqchip_in_kernel(vcpu->kvm))
5823 		kvm_run->ready_for_interrupt_injection = 1;
5824 	else
5825 		kvm_run->ready_for_interrupt_injection =
5826 			kvm_arch_interrupt_allowed(vcpu) &&
5827 			!kvm_cpu_has_interrupt(vcpu) &&
5828 			!kvm_event_needs_reinjection(vcpu);
5829 }
5830 
5831 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5832 {
5833 	int max_irr, tpr;
5834 
5835 	if (!kvm_x86_ops->update_cr8_intercept)
5836 		return;
5837 
5838 	if (!vcpu->arch.apic)
5839 		return;
5840 
5841 	if (!vcpu->arch.apic->vapic_addr)
5842 		max_irr = kvm_lapic_find_highest_irr(vcpu);
5843 	else
5844 		max_irr = -1;
5845 
5846 	if (max_irr != -1)
5847 		max_irr >>= 4;
5848 
5849 	tpr = kvm_lapic_get_cr8(vcpu);
5850 
5851 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5852 }
5853 
5854 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
5855 {
5856 	int r;
5857 
5858 	/* try to reinject previous events if any */
5859 	if (vcpu->arch.exception.pending) {
5860 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
5861 					vcpu->arch.exception.has_error_code,
5862 					vcpu->arch.exception.error_code);
5863 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5864 					  vcpu->arch.exception.has_error_code,
5865 					  vcpu->arch.exception.error_code,
5866 					  vcpu->arch.exception.reinject);
5867 		return 0;
5868 	}
5869 
5870 	if (vcpu->arch.nmi_injected) {
5871 		kvm_x86_ops->set_nmi(vcpu);
5872 		return 0;
5873 	}
5874 
5875 	if (vcpu->arch.interrupt.pending) {
5876 		kvm_x86_ops->set_irq(vcpu);
5877 		return 0;
5878 	}
5879 
5880 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
5881 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
5882 		if (r != 0)
5883 			return r;
5884 	}
5885 
5886 	/* try to inject new event if pending */
5887 	if (vcpu->arch.nmi_pending) {
5888 		if (kvm_x86_ops->nmi_allowed(vcpu)) {
5889 			--vcpu->arch.nmi_pending;
5890 			vcpu->arch.nmi_injected = true;
5891 			kvm_x86_ops->set_nmi(vcpu);
5892 		}
5893 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
5894 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5895 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5896 					    false);
5897 			kvm_x86_ops->set_irq(vcpu);
5898 		}
5899 	}
5900 	return 0;
5901 }
5902 
5903 static void process_nmi(struct kvm_vcpu *vcpu)
5904 {
5905 	unsigned limit = 2;
5906 
5907 	/*
5908 	 * x86 is limited to one NMI running, and one NMI pending after it.
5909 	 * If an NMI is already in progress, limit further NMIs to just one.
5910 	 * Otherwise, allow two (and we'll inject the first one immediately).
5911 	 */
5912 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5913 		limit = 1;
5914 
5915 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5916 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5917 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5918 }
5919 
5920 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
5921 {
5922 	u64 eoi_exit_bitmap[4];
5923 	u32 tmr[8];
5924 
5925 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
5926 		return;
5927 
5928 	memset(eoi_exit_bitmap, 0, 32);
5929 	memset(tmr, 0, 32);
5930 
5931 	kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
5932 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
5933 	kvm_apic_update_tmr(vcpu, tmr);
5934 }
5935 
5936 /*
5937  * Returns 1 to let __vcpu_run() continue the guest execution loop without
5938  * exiting to the userspace.  Otherwise, the value will be returned to the
5939  * userspace.
5940  */
5941 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5942 {
5943 	int r;
5944 	bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5945 		vcpu->run->request_interrupt_window;
5946 	bool req_immediate_exit = false;
5947 
5948 	if (vcpu->requests) {
5949 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5950 			kvm_mmu_unload(vcpu);
5951 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5952 			__kvm_migrate_timers(vcpu);
5953 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5954 			kvm_gen_update_masterclock(vcpu->kvm);
5955 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
5956 			kvm_gen_kvmclock_update(vcpu);
5957 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5958 			r = kvm_guest_time_update(vcpu);
5959 			if (unlikely(r))
5960 				goto out;
5961 		}
5962 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5963 			kvm_mmu_sync_roots(vcpu);
5964 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5965 			kvm_x86_ops->tlb_flush(vcpu);
5966 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5967 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5968 			r = 0;
5969 			goto out;
5970 		}
5971 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5972 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5973 			r = 0;
5974 			goto out;
5975 		}
5976 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5977 			vcpu->fpu_active = 0;
5978 			kvm_x86_ops->fpu_deactivate(vcpu);
5979 		}
5980 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5981 			/* Page is swapped out. Do synthetic halt */
5982 			vcpu->arch.apf.halted = true;
5983 			r = 1;
5984 			goto out;
5985 		}
5986 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5987 			record_steal_time(vcpu);
5988 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
5989 			process_nmi(vcpu);
5990 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
5991 			kvm_handle_pmu_event(vcpu);
5992 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
5993 			kvm_deliver_pmi(vcpu);
5994 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
5995 			vcpu_scan_ioapic(vcpu);
5996 	}
5997 
5998 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5999 		kvm_apic_accept_events(vcpu);
6000 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6001 			r = 1;
6002 			goto out;
6003 		}
6004 
6005 		if (inject_pending_event(vcpu, req_int_win) != 0)
6006 			req_immediate_exit = true;
6007 		/* enable NMI/IRQ window open exits if needed */
6008 		else if (vcpu->arch.nmi_pending)
6009 			kvm_x86_ops->enable_nmi_window(vcpu);
6010 		else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6011 			kvm_x86_ops->enable_irq_window(vcpu);
6012 
6013 		if (kvm_lapic_enabled(vcpu)) {
6014 			/*
6015 			 * Update architecture specific hints for APIC
6016 			 * virtual interrupt delivery.
6017 			 */
6018 			if (kvm_x86_ops->hwapic_irr_update)
6019 				kvm_x86_ops->hwapic_irr_update(vcpu,
6020 					kvm_lapic_find_highest_irr(vcpu));
6021 			update_cr8_intercept(vcpu);
6022 			kvm_lapic_sync_to_vapic(vcpu);
6023 		}
6024 	}
6025 
6026 	r = kvm_mmu_reload(vcpu);
6027 	if (unlikely(r)) {
6028 		goto cancel_injection;
6029 	}
6030 
6031 	preempt_disable();
6032 
6033 	kvm_x86_ops->prepare_guest_switch(vcpu);
6034 	if (vcpu->fpu_active)
6035 		kvm_load_guest_fpu(vcpu);
6036 	kvm_load_guest_xcr0(vcpu);
6037 
6038 	vcpu->mode = IN_GUEST_MODE;
6039 
6040 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6041 
6042 	/* We should set ->mode before check ->requests,
6043 	 * see the comment in make_all_cpus_request.
6044 	 */
6045 	smp_mb__after_srcu_read_unlock();
6046 
6047 	local_irq_disable();
6048 
6049 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6050 	    || need_resched() || signal_pending(current)) {
6051 		vcpu->mode = OUTSIDE_GUEST_MODE;
6052 		smp_wmb();
6053 		local_irq_enable();
6054 		preempt_enable();
6055 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6056 		r = 1;
6057 		goto cancel_injection;
6058 	}
6059 
6060 	if (req_immediate_exit)
6061 		smp_send_reschedule(vcpu->cpu);
6062 
6063 	kvm_guest_enter();
6064 
6065 	if (unlikely(vcpu->arch.switch_db_regs)) {
6066 		set_debugreg(0, 7);
6067 		set_debugreg(vcpu->arch.eff_db[0], 0);
6068 		set_debugreg(vcpu->arch.eff_db[1], 1);
6069 		set_debugreg(vcpu->arch.eff_db[2], 2);
6070 		set_debugreg(vcpu->arch.eff_db[3], 3);
6071 		set_debugreg(vcpu->arch.dr6, 6);
6072 	}
6073 
6074 	trace_kvm_entry(vcpu->vcpu_id);
6075 	kvm_x86_ops->run(vcpu);
6076 
6077 	/*
6078 	 * Do this here before restoring debug registers on the host.  And
6079 	 * since we do this before handling the vmexit, a DR access vmexit
6080 	 * can (a) read the correct value of the debug registers, (b) set
6081 	 * KVM_DEBUGREG_WONT_EXIT again.
6082 	 */
6083 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6084 		int i;
6085 
6086 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6087 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6088 		for (i = 0; i < KVM_NR_DB_REGS; i++)
6089 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6090 	}
6091 
6092 	/*
6093 	 * If the guest has used debug registers, at least dr7
6094 	 * will be disabled while returning to the host.
6095 	 * If we don't have active breakpoints in the host, we don't
6096 	 * care about the messed up debug address registers. But if
6097 	 * we have some of them active, restore the old state.
6098 	 */
6099 	if (hw_breakpoint_active())
6100 		hw_breakpoint_restore();
6101 
6102 	vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6103 							   native_read_tsc());
6104 
6105 	vcpu->mode = OUTSIDE_GUEST_MODE;
6106 	smp_wmb();
6107 
6108 	/* Interrupt is enabled by handle_external_intr() */
6109 	kvm_x86_ops->handle_external_intr(vcpu);
6110 
6111 	++vcpu->stat.exits;
6112 
6113 	/*
6114 	 * We must have an instruction between local_irq_enable() and
6115 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6116 	 * the interrupt shadow.  The stat.exits increment will do nicely.
6117 	 * But we need to prevent reordering, hence this barrier():
6118 	 */
6119 	barrier();
6120 
6121 	kvm_guest_exit();
6122 
6123 	preempt_enable();
6124 
6125 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6126 
6127 	/*
6128 	 * Profile KVM exit RIPs:
6129 	 */
6130 	if (unlikely(prof_on == KVM_PROFILING)) {
6131 		unsigned long rip = kvm_rip_read(vcpu);
6132 		profile_hit(KVM_PROFILING, (void *)rip);
6133 	}
6134 
6135 	if (unlikely(vcpu->arch.tsc_always_catchup))
6136 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6137 
6138 	if (vcpu->arch.apic_attention)
6139 		kvm_lapic_sync_from_vapic(vcpu);
6140 
6141 	r = kvm_x86_ops->handle_exit(vcpu);
6142 	return r;
6143 
6144 cancel_injection:
6145 	kvm_x86_ops->cancel_injection(vcpu);
6146 	if (unlikely(vcpu->arch.apic_attention))
6147 		kvm_lapic_sync_from_vapic(vcpu);
6148 out:
6149 	return r;
6150 }
6151 
6152 
6153 static int __vcpu_run(struct kvm_vcpu *vcpu)
6154 {
6155 	int r;
6156 	struct kvm *kvm = vcpu->kvm;
6157 
6158 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6159 
6160 	r = 1;
6161 	while (r > 0) {
6162 		if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6163 		    !vcpu->arch.apf.halted)
6164 			r = vcpu_enter_guest(vcpu);
6165 		else {
6166 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6167 			kvm_vcpu_block(vcpu);
6168 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6169 			if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
6170 				kvm_apic_accept_events(vcpu);
6171 				switch(vcpu->arch.mp_state) {
6172 				case KVM_MP_STATE_HALTED:
6173 					vcpu->arch.pv.pv_unhalted = false;
6174 					vcpu->arch.mp_state =
6175 						KVM_MP_STATE_RUNNABLE;
6176 				case KVM_MP_STATE_RUNNABLE:
6177 					vcpu->arch.apf.halted = false;
6178 					break;
6179 				case KVM_MP_STATE_INIT_RECEIVED:
6180 					break;
6181 				default:
6182 					r = -EINTR;
6183 					break;
6184 				}
6185 			}
6186 		}
6187 
6188 		if (r <= 0)
6189 			break;
6190 
6191 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6192 		if (kvm_cpu_has_pending_timer(vcpu))
6193 			kvm_inject_pending_timer_irqs(vcpu);
6194 
6195 		if (dm_request_for_irq_injection(vcpu)) {
6196 			r = -EINTR;
6197 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6198 			++vcpu->stat.request_irq_exits;
6199 		}
6200 
6201 		kvm_check_async_pf_completion(vcpu);
6202 
6203 		if (signal_pending(current)) {
6204 			r = -EINTR;
6205 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6206 			++vcpu->stat.signal_exits;
6207 		}
6208 		if (need_resched()) {
6209 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6210 			cond_resched();
6211 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6212 		}
6213 	}
6214 
6215 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6216 
6217 	return r;
6218 }
6219 
6220 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6221 {
6222 	int r;
6223 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6224 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6225 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6226 	if (r != EMULATE_DONE)
6227 		return 0;
6228 	return 1;
6229 }
6230 
6231 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6232 {
6233 	BUG_ON(!vcpu->arch.pio.count);
6234 
6235 	return complete_emulated_io(vcpu);
6236 }
6237 
6238 /*
6239  * Implements the following, as a state machine:
6240  *
6241  * read:
6242  *   for each fragment
6243  *     for each mmio piece in the fragment
6244  *       write gpa, len
6245  *       exit
6246  *       copy data
6247  *   execute insn
6248  *
6249  * write:
6250  *   for each fragment
6251  *     for each mmio piece in the fragment
6252  *       write gpa, len
6253  *       copy data
6254  *       exit
6255  */
6256 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6257 {
6258 	struct kvm_run *run = vcpu->run;
6259 	struct kvm_mmio_fragment *frag;
6260 	unsigned len;
6261 
6262 	BUG_ON(!vcpu->mmio_needed);
6263 
6264 	/* Complete previous fragment */
6265 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6266 	len = min(8u, frag->len);
6267 	if (!vcpu->mmio_is_write)
6268 		memcpy(frag->data, run->mmio.data, len);
6269 
6270 	if (frag->len <= 8) {
6271 		/* Switch to the next fragment. */
6272 		frag++;
6273 		vcpu->mmio_cur_fragment++;
6274 	} else {
6275 		/* Go forward to the next mmio piece. */
6276 		frag->data += len;
6277 		frag->gpa += len;
6278 		frag->len -= len;
6279 	}
6280 
6281 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6282 		vcpu->mmio_needed = 0;
6283 
6284 		/* FIXME: return into emulator if single-stepping.  */
6285 		if (vcpu->mmio_is_write)
6286 			return 1;
6287 		vcpu->mmio_read_completed = 1;
6288 		return complete_emulated_io(vcpu);
6289 	}
6290 
6291 	run->exit_reason = KVM_EXIT_MMIO;
6292 	run->mmio.phys_addr = frag->gpa;
6293 	if (vcpu->mmio_is_write)
6294 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6295 	run->mmio.len = min(8u, frag->len);
6296 	run->mmio.is_write = vcpu->mmio_is_write;
6297 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6298 	return 0;
6299 }
6300 
6301 
6302 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6303 {
6304 	int r;
6305 	sigset_t sigsaved;
6306 
6307 	if (!tsk_used_math(current) && init_fpu(current))
6308 		return -ENOMEM;
6309 
6310 	if (vcpu->sigset_active)
6311 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6312 
6313 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6314 		kvm_vcpu_block(vcpu);
6315 		kvm_apic_accept_events(vcpu);
6316 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6317 		r = -EAGAIN;
6318 		goto out;
6319 	}
6320 
6321 	/* re-sync apic's tpr */
6322 	if (!irqchip_in_kernel(vcpu->kvm)) {
6323 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6324 			r = -EINVAL;
6325 			goto out;
6326 		}
6327 	}
6328 
6329 	if (unlikely(vcpu->arch.complete_userspace_io)) {
6330 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6331 		vcpu->arch.complete_userspace_io = NULL;
6332 		r = cui(vcpu);
6333 		if (r <= 0)
6334 			goto out;
6335 	} else
6336 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6337 
6338 	r = __vcpu_run(vcpu);
6339 
6340 out:
6341 	post_kvm_run_save(vcpu);
6342 	if (vcpu->sigset_active)
6343 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6344 
6345 	return r;
6346 }
6347 
6348 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6349 {
6350 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6351 		/*
6352 		 * We are here if userspace calls get_regs() in the middle of
6353 		 * instruction emulation. Registers state needs to be copied
6354 		 * back from emulation context to vcpu. Userspace shouldn't do
6355 		 * that usually, but some bad designed PV devices (vmware
6356 		 * backdoor interface) need this to work
6357 		 */
6358 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6359 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6360 	}
6361 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6362 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6363 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6364 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6365 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6366 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6367 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6368 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6369 #ifdef CONFIG_X86_64
6370 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6371 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6372 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6373 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6374 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6375 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6376 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6377 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6378 #endif
6379 
6380 	regs->rip = kvm_rip_read(vcpu);
6381 	regs->rflags = kvm_get_rflags(vcpu);
6382 
6383 	return 0;
6384 }
6385 
6386 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6387 {
6388 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6389 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6390 
6391 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6392 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6393 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6394 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6395 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6396 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6397 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6398 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6399 #ifdef CONFIG_X86_64
6400 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6401 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6402 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6403 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6404 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6405 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6406 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6407 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6408 #endif
6409 
6410 	kvm_rip_write(vcpu, regs->rip);
6411 	kvm_set_rflags(vcpu, regs->rflags);
6412 
6413 	vcpu->arch.exception.pending = false;
6414 
6415 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6416 
6417 	return 0;
6418 }
6419 
6420 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6421 {
6422 	struct kvm_segment cs;
6423 
6424 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6425 	*db = cs.db;
6426 	*l = cs.l;
6427 }
6428 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6429 
6430 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6431 				  struct kvm_sregs *sregs)
6432 {
6433 	struct desc_ptr dt;
6434 
6435 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6436 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6437 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6438 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6439 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6440 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6441 
6442 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6443 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6444 
6445 	kvm_x86_ops->get_idt(vcpu, &dt);
6446 	sregs->idt.limit = dt.size;
6447 	sregs->idt.base = dt.address;
6448 	kvm_x86_ops->get_gdt(vcpu, &dt);
6449 	sregs->gdt.limit = dt.size;
6450 	sregs->gdt.base = dt.address;
6451 
6452 	sregs->cr0 = kvm_read_cr0(vcpu);
6453 	sregs->cr2 = vcpu->arch.cr2;
6454 	sregs->cr3 = kvm_read_cr3(vcpu);
6455 	sregs->cr4 = kvm_read_cr4(vcpu);
6456 	sregs->cr8 = kvm_get_cr8(vcpu);
6457 	sregs->efer = vcpu->arch.efer;
6458 	sregs->apic_base = kvm_get_apic_base(vcpu);
6459 
6460 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6461 
6462 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6463 		set_bit(vcpu->arch.interrupt.nr,
6464 			(unsigned long *)sregs->interrupt_bitmap);
6465 
6466 	return 0;
6467 }
6468 
6469 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6470 				    struct kvm_mp_state *mp_state)
6471 {
6472 	kvm_apic_accept_events(vcpu);
6473 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6474 					vcpu->arch.pv.pv_unhalted)
6475 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6476 	else
6477 		mp_state->mp_state = vcpu->arch.mp_state;
6478 
6479 	return 0;
6480 }
6481 
6482 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6483 				    struct kvm_mp_state *mp_state)
6484 {
6485 	if (!kvm_vcpu_has_lapic(vcpu) &&
6486 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6487 		return -EINVAL;
6488 
6489 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6490 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6491 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6492 	} else
6493 		vcpu->arch.mp_state = mp_state->mp_state;
6494 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6495 	return 0;
6496 }
6497 
6498 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6499 		    int reason, bool has_error_code, u32 error_code)
6500 {
6501 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6502 	int ret;
6503 
6504 	init_emulate_ctxt(vcpu);
6505 
6506 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6507 				   has_error_code, error_code);
6508 
6509 	if (ret)
6510 		return EMULATE_FAIL;
6511 
6512 	kvm_rip_write(vcpu, ctxt->eip);
6513 	kvm_set_rflags(vcpu, ctxt->eflags);
6514 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6515 	return EMULATE_DONE;
6516 }
6517 EXPORT_SYMBOL_GPL(kvm_task_switch);
6518 
6519 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6520 				  struct kvm_sregs *sregs)
6521 {
6522 	struct msr_data apic_base_msr;
6523 	int mmu_reset_needed = 0;
6524 	int pending_vec, max_bits, idx;
6525 	struct desc_ptr dt;
6526 
6527 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6528 		return -EINVAL;
6529 
6530 	dt.size = sregs->idt.limit;
6531 	dt.address = sregs->idt.base;
6532 	kvm_x86_ops->set_idt(vcpu, &dt);
6533 	dt.size = sregs->gdt.limit;
6534 	dt.address = sregs->gdt.base;
6535 	kvm_x86_ops->set_gdt(vcpu, &dt);
6536 
6537 	vcpu->arch.cr2 = sregs->cr2;
6538 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6539 	vcpu->arch.cr3 = sregs->cr3;
6540 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6541 
6542 	kvm_set_cr8(vcpu, sregs->cr8);
6543 
6544 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6545 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
6546 	apic_base_msr.data = sregs->apic_base;
6547 	apic_base_msr.host_initiated = true;
6548 	kvm_set_apic_base(vcpu, &apic_base_msr);
6549 
6550 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6551 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6552 	vcpu->arch.cr0 = sregs->cr0;
6553 
6554 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6555 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6556 	if (sregs->cr4 & X86_CR4_OSXSAVE)
6557 		kvm_update_cpuid(vcpu);
6558 
6559 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6560 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6561 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6562 		mmu_reset_needed = 1;
6563 	}
6564 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6565 
6566 	if (mmu_reset_needed)
6567 		kvm_mmu_reset_context(vcpu);
6568 
6569 	max_bits = KVM_NR_INTERRUPTS;
6570 	pending_vec = find_first_bit(
6571 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
6572 	if (pending_vec < max_bits) {
6573 		kvm_queue_interrupt(vcpu, pending_vec, false);
6574 		pr_debug("Set back pending irq %d\n", pending_vec);
6575 	}
6576 
6577 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6578 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6579 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6580 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6581 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6582 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6583 
6584 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6585 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6586 
6587 	update_cr8_intercept(vcpu);
6588 
6589 	/* Older userspace won't unhalt the vcpu on reset. */
6590 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6591 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6592 	    !is_protmode(vcpu))
6593 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6594 
6595 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6596 
6597 	return 0;
6598 }
6599 
6600 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6601 					struct kvm_guest_debug *dbg)
6602 {
6603 	unsigned long rflags;
6604 	int i, r;
6605 
6606 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6607 		r = -EBUSY;
6608 		if (vcpu->arch.exception.pending)
6609 			goto out;
6610 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6611 			kvm_queue_exception(vcpu, DB_VECTOR);
6612 		else
6613 			kvm_queue_exception(vcpu, BP_VECTOR);
6614 	}
6615 
6616 	/*
6617 	 * Read rflags as long as potentially injected trace flags are still
6618 	 * filtered out.
6619 	 */
6620 	rflags = kvm_get_rflags(vcpu);
6621 
6622 	vcpu->guest_debug = dbg->control;
6623 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6624 		vcpu->guest_debug = 0;
6625 
6626 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6627 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
6628 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6629 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6630 	} else {
6631 		for (i = 0; i < KVM_NR_DB_REGS; i++)
6632 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6633 	}
6634 	kvm_update_dr7(vcpu);
6635 
6636 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6637 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6638 			get_segment_base(vcpu, VCPU_SREG_CS);
6639 
6640 	/*
6641 	 * Trigger an rflags update that will inject or remove the trace
6642 	 * flags.
6643 	 */
6644 	kvm_set_rflags(vcpu, rflags);
6645 
6646 	kvm_x86_ops->update_db_bp_intercept(vcpu);
6647 
6648 	r = 0;
6649 
6650 out:
6651 
6652 	return r;
6653 }
6654 
6655 /*
6656  * Translate a guest virtual address to a guest physical address.
6657  */
6658 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6659 				    struct kvm_translation *tr)
6660 {
6661 	unsigned long vaddr = tr->linear_address;
6662 	gpa_t gpa;
6663 	int idx;
6664 
6665 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6666 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6667 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6668 	tr->physical_address = gpa;
6669 	tr->valid = gpa != UNMAPPED_GVA;
6670 	tr->writeable = 1;
6671 	tr->usermode = 0;
6672 
6673 	return 0;
6674 }
6675 
6676 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6677 {
6678 	struct i387_fxsave_struct *fxsave =
6679 			&vcpu->arch.guest_fpu.state->fxsave;
6680 
6681 	memcpy(fpu->fpr, fxsave->st_space, 128);
6682 	fpu->fcw = fxsave->cwd;
6683 	fpu->fsw = fxsave->swd;
6684 	fpu->ftwx = fxsave->twd;
6685 	fpu->last_opcode = fxsave->fop;
6686 	fpu->last_ip = fxsave->rip;
6687 	fpu->last_dp = fxsave->rdp;
6688 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6689 
6690 	return 0;
6691 }
6692 
6693 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6694 {
6695 	struct i387_fxsave_struct *fxsave =
6696 			&vcpu->arch.guest_fpu.state->fxsave;
6697 
6698 	memcpy(fxsave->st_space, fpu->fpr, 128);
6699 	fxsave->cwd = fpu->fcw;
6700 	fxsave->swd = fpu->fsw;
6701 	fxsave->twd = fpu->ftwx;
6702 	fxsave->fop = fpu->last_opcode;
6703 	fxsave->rip = fpu->last_ip;
6704 	fxsave->rdp = fpu->last_dp;
6705 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6706 
6707 	return 0;
6708 }
6709 
6710 int fx_init(struct kvm_vcpu *vcpu)
6711 {
6712 	int err;
6713 
6714 	err = fpu_alloc(&vcpu->arch.guest_fpu);
6715 	if (err)
6716 		return err;
6717 
6718 	fpu_finit(&vcpu->arch.guest_fpu);
6719 
6720 	/*
6721 	 * Ensure guest xcr0 is valid for loading
6722 	 */
6723 	vcpu->arch.xcr0 = XSTATE_FP;
6724 
6725 	vcpu->arch.cr0 |= X86_CR0_ET;
6726 
6727 	return 0;
6728 }
6729 EXPORT_SYMBOL_GPL(fx_init);
6730 
6731 static void fx_free(struct kvm_vcpu *vcpu)
6732 {
6733 	fpu_free(&vcpu->arch.guest_fpu);
6734 }
6735 
6736 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6737 {
6738 	if (vcpu->guest_fpu_loaded)
6739 		return;
6740 
6741 	/*
6742 	 * Restore all possible states in the guest,
6743 	 * and assume host would use all available bits.
6744 	 * Guest xcr0 would be loaded later.
6745 	 */
6746 	kvm_put_guest_xcr0(vcpu);
6747 	vcpu->guest_fpu_loaded = 1;
6748 	__kernel_fpu_begin();
6749 	fpu_restore_checking(&vcpu->arch.guest_fpu);
6750 	trace_kvm_fpu(1);
6751 }
6752 
6753 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6754 {
6755 	kvm_put_guest_xcr0(vcpu);
6756 
6757 	if (!vcpu->guest_fpu_loaded)
6758 		return;
6759 
6760 	vcpu->guest_fpu_loaded = 0;
6761 	fpu_save_init(&vcpu->arch.guest_fpu);
6762 	__kernel_fpu_end();
6763 	++vcpu->stat.fpu_reload;
6764 	kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6765 	trace_kvm_fpu(0);
6766 }
6767 
6768 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6769 {
6770 	kvmclock_reset(vcpu);
6771 
6772 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6773 	fx_free(vcpu);
6774 	kvm_x86_ops->vcpu_free(vcpu);
6775 }
6776 
6777 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6778 						unsigned int id)
6779 {
6780 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6781 		printk_once(KERN_WARNING
6782 		"kvm: SMP vm created on host with unstable TSC; "
6783 		"guest TSC will not be reliable\n");
6784 	return kvm_x86_ops->vcpu_create(kvm, id);
6785 }
6786 
6787 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6788 {
6789 	int r;
6790 
6791 	vcpu->arch.mtrr_state.have_fixed = 1;
6792 	r = vcpu_load(vcpu);
6793 	if (r)
6794 		return r;
6795 	kvm_vcpu_reset(vcpu);
6796 	kvm_mmu_setup(vcpu);
6797 	vcpu_put(vcpu);
6798 
6799 	return r;
6800 }
6801 
6802 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6803 {
6804 	int r;
6805 	struct msr_data msr;
6806 	struct kvm *kvm = vcpu->kvm;
6807 
6808 	r = vcpu_load(vcpu);
6809 	if (r)
6810 		return r;
6811 	msr.data = 0x0;
6812 	msr.index = MSR_IA32_TSC;
6813 	msr.host_initiated = true;
6814 	kvm_write_tsc(vcpu, &msr);
6815 	vcpu_put(vcpu);
6816 
6817 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
6818 					KVMCLOCK_SYNC_PERIOD);
6819 
6820 	return r;
6821 }
6822 
6823 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6824 {
6825 	int r;
6826 	vcpu->arch.apf.msr_val = 0;
6827 
6828 	r = vcpu_load(vcpu);
6829 	BUG_ON(r);
6830 	kvm_mmu_unload(vcpu);
6831 	vcpu_put(vcpu);
6832 
6833 	fx_free(vcpu);
6834 	kvm_x86_ops->vcpu_free(vcpu);
6835 }
6836 
6837 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6838 {
6839 	atomic_set(&vcpu->arch.nmi_queued, 0);
6840 	vcpu->arch.nmi_pending = 0;
6841 	vcpu->arch.nmi_injected = false;
6842 
6843 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6844 	vcpu->arch.dr6 = DR6_FIXED_1;
6845 	kvm_update_dr6(vcpu);
6846 	vcpu->arch.dr7 = DR7_FIXED_1;
6847 	kvm_update_dr7(vcpu);
6848 
6849 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6850 	vcpu->arch.apf.msr_val = 0;
6851 	vcpu->arch.st.msr_val = 0;
6852 
6853 	kvmclock_reset(vcpu);
6854 
6855 	kvm_clear_async_pf_completion_queue(vcpu);
6856 	kvm_async_pf_hash_reset(vcpu);
6857 	vcpu->arch.apf.halted = false;
6858 
6859 	kvm_pmu_reset(vcpu);
6860 
6861 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6862 	vcpu->arch.regs_avail = ~0;
6863 	vcpu->arch.regs_dirty = ~0;
6864 
6865 	kvm_x86_ops->vcpu_reset(vcpu);
6866 }
6867 
6868 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector)
6869 {
6870 	struct kvm_segment cs;
6871 
6872 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6873 	cs.selector = vector << 8;
6874 	cs.base = vector << 12;
6875 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6876 	kvm_rip_write(vcpu, 0);
6877 }
6878 
6879 int kvm_arch_hardware_enable(void *garbage)
6880 {
6881 	struct kvm *kvm;
6882 	struct kvm_vcpu *vcpu;
6883 	int i;
6884 	int ret;
6885 	u64 local_tsc;
6886 	u64 max_tsc = 0;
6887 	bool stable, backwards_tsc = false;
6888 
6889 	kvm_shared_msr_cpu_online();
6890 	ret = kvm_x86_ops->hardware_enable(garbage);
6891 	if (ret != 0)
6892 		return ret;
6893 
6894 	local_tsc = native_read_tsc();
6895 	stable = !check_tsc_unstable();
6896 	list_for_each_entry(kvm, &vm_list, vm_list) {
6897 		kvm_for_each_vcpu(i, vcpu, kvm) {
6898 			if (!stable && vcpu->cpu == smp_processor_id())
6899 				set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6900 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6901 				backwards_tsc = true;
6902 				if (vcpu->arch.last_host_tsc > max_tsc)
6903 					max_tsc = vcpu->arch.last_host_tsc;
6904 			}
6905 		}
6906 	}
6907 
6908 	/*
6909 	 * Sometimes, even reliable TSCs go backwards.  This happens on
6910 	 * platforms that reset TSC during suspend or hibernate actions, but
6911 	 * maintain synchronization.  We must compensate.  Fortunately, we can
6912 	 * detect that condition here, which happens early in CPU bringup,
6913 	 * before any KVM threads can be running.  Unfortunately, we can't
6914 	 * bring the TSCs fully up to date with real time, as we aren't yet far
6915 	 * enough into CPU bringup that we know how much real time has actually
6916 	 * elapsed; our helper function, get_kernel_ns() will be using boot
6917 	 * variables that haven't been updated yet.
6918 	 *
6919 	 * So we simply find the maximum observed TSC above, then record the
6920 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6921 	 * the adjustment will be applied.  Note that we accumulate
6922 	 * adjustments, in case multiple suspend cycles happen before some VCPU
6923 	 * gets a chance to run again.  In the event that no KVM threads get a
6924 	 * chance to run, we will miss the entire elapsed period, as we'll have
6925 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6926 	 * loose cycle time.  This isn't too big a deal, since the loss will be
6927 	 * uniform across all VCPUs (not to mention the scenario is extremely
6928 	 * unlikely). It is possible that a second hibernate recovery happens
6929 	 * much faster than a first, causing the observed TSC here to be
6930 	 * smaller; this would require additional padding adjustment, which is
6931 	 * why we set last_host_tsc to the local tsc observed here.
6932 	 *
6933 	 * N.B. - this code below runs only on platforms with reliable TSC,
6934 	 * as that is the only way backwards_tsc is set above.  Also note
6935 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6936 	 * have the same delta_cyc adjustment applied if backwards_tsc
6937 	 * is detected.  Note further, this adjustment is only done once,
6938 	 * as we reset last_host_tsc on all VCPUs to stop this from being
6939 	 * called multiple times (one for each physical CPU bringup).
6940 	 *
6941 	 * Platforms with unreliable TSCs don't have to deal with this, they
6942 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
6943 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
6944 	 * guarantee that they stay in perfect synchronization.
6945 	 */
6946 	if (backwards_tsc) {
6947 		u64 delta_cyc = max_tsc - local_tsc;
6948 		list_for_each_entry(kvm, &vm_list, vm_list) {
6949 			kvm_for_each_vcpu(i, vcpu, kvm) {
6950 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
6951 				vcpu->arch.last_host_tsc = local_tsc;
6952 				set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6953 					&vcpu->requests);
6954 			}
6955 
6956 			/*
6957 			 * We have to disable TSC offset matching.. if you were
6958 			 * booting a VM while issuing an S4 host suspend....
6959 			 * you may have some problem.  Solving this issue is
6960 			 * left as an exercise to the reader.
6961 			 */
6962 			kvm->arch.last_tsc_nsec = 0;
6963 			kvm->arch.last_tsc_write = 0;
6964 		}
6965 
6966 	}
6967 	return 0;
6968 }
6969 
6970 void kvm_arch_hardware_disable(void *garbage)
6971 {
6972 	kvm_x86_ops->hardware_disable(garbage);
6973 	drop_user_return_notifiers(garbage);
6974 }
6975 
6976 int kvm_arch_hardware_setup(void)
6977 {
6978 	return kvm_x86_ops->hardware_setup();
6979 }
6980 
6981 void kvm_arch_hardware_unsetup(void)
6982 {
6983 	kvm_x86_ops->hardware_unsetup();
6984 }
6985 
6986 void kvm_arch_check_processor_compat(void *rtn)
6987 {
6988 	kvm_x86_ops->check_processor_compatibility(rtn);
6989 }
6990 
6991 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6992 {
6993 	return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6994 }
6995 
6996 struct static_key kvm_no_apic_vcpu __read_mostly;
6997 
6998 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6999 {
7000 	struct page *page;
7001 	struct kvm *kvm;
7002 	int r;
7003 
7004 	BUG_ON(vcpu->kvm == NULL);
7005 	kvm = vcpu->kvm;
7006 
7007 	vcpu->arch.pv.pv_unhalted = false;
7008 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7009 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
7010 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7011 	else
7012 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7013 
7014 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7015 	if (!page) {
7016 		r = -ENOMEM;
7017 		goto fail;
7018 	}
7019 	vcpu->arch.pio_data = page_address(page);
7020 
7021 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
7022 
7023 	r = kvm_mmu_create(vcpu);
7024 	if (r < 0)
7025 		goto fail_free_pio_data;
7026 
7027 	if (irqchip_in_kernel(kvm)) {
7028 		r = kvm_create_lapic(vcpu);
7029 		if (r < 0)
7030 			goto fail_mmu_destroy;
7031 	} else
7032 		static_key_slow_inc(&kvm_no_apic_vcpu);
7033 
7034 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7035 				       GFP_KERNEL);
7036 	if (!vcpu->arch.mce_banks) {
7037 		r = -ENOMEM;
7038 		goto fail_free_lapic;
7039 	}
7040 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7041 
7042 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7043 		r = -ENOMEM;
7044 		goto fail_free_mce_banks;
7045 	}
7046 
7047 	r = fx_init(vcpu);
7048 	if (r)
7049 		goto fail_free_wbinvd_dirty_mask;
7050 
7051 	vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7052 	vcpu->arch.pv_time_enabled = false;
7053 
7054 	vcpu->arch.guest_supported_xcr0 = 0;
7055 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7056 
7057 	kvm_async_pf_hash_reset(vcpu);
7058 	kvm_pmu_init(vcpu);
7059 
7060 	return 0;
7061 fail_free_wbinvd_dirty_mask:
7062 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7063 fail_free_mce_banks:
7064 	kfree(vcpu->arch.mce_banks);
7065 fail_free_lapic:
7066 	kvm_free_lapic(vcpu);
7067 fail_mmu_destroy:
7068 	kvm_mmu_destroy(vcpu);
7069 fail_free_pio_data:
7070 	free_page((unsigned long)vcpu->arch.pio_data);
7071 fail:
7072 	return r;
7073 }
7074 
7075 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7076 {
7077 	int idx;
7078 
7079 	kvm_pmu_destroy(vcpu);
7080 	kfree(vcpu->arch.mce_banks);
7081 	kvm_free_lapic(vcpu);
7082 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7083 	kvm_mmu_destroy(vcpu);
7084 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7085 	free_page((unsigned long)vcpu->arch.pio_data);
7086 	if (!irqchip_in_kernel(vcpu->kvm))
7087 		static_key_slow_dec(&kvm_no_apic_vcpu);
7088 }
7089 
7090 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7091 {
7092 	if (type)
7093 		return -EINVAL;
7094 
7095 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7096 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7097 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7098 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7099 
7100 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7101 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7102 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7103 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7104 		&kvm->arch.irq_sources_bitmap);
7105 
7106 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7107 	mutex_init(&kvm->arch.apic_map_lock);
7108 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7109 
7110 	pvclock_update_vm_gtod_copy(kvm);
7111 
7112 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7113 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7114 
7115 	return 0;
7116 }
7117 
7118 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7119 {
7120 	int r;
7121 	r = vcpu_load(vcpu);
7122 	BUG_ON(r);
7123 	kvm_mmu_unload(vcpu);
7124 	vcpu_put(vcpu);
7125 }
7126 
7127 static void kvm_free_vcpus(struct kvm *kvm)
7128 {
7129 	unsigned int i;
7130 	struct kvm_vcpu *vcpu;
7131 
7132 	/*
7133 	 * Unpin any mmu pages first.
7134 	 */
7135 	kvm_for_each_vcpu(i, vcpu, kvm) {
7136 		kvm_clear_async_pf_completion_queue(vcpu);
7137 		kvm_unload_vcpu_mmu(vcpu);
7138 	}
7139 	kvm_for_each_vcpu(i, vcpu, kvm)
7140 		kvm_arch_vcpu_free(vcpu);
7141 
7142 	mutex_lock(&kvm->lock);
7143 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7144 		kvm->vcpus[i] = NULL;
7145 
7146 	atomic_set(&kvm->online_vcpus, 0);
7147 	mutex_unlock(&kvm->lock);
7148 }
7149 
7150 void kvm_arch_sync_events(struct kvm *kvm)
7151 {
7152 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7153 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7154 	kvm_free_all_assigned_devices(kvm);
7155 	kvm_free_pit(kvm);
7156 }
7157 
7158 void kvm_arch_destroy_vm(struct kvm *kvm)
7159 {
7160 	if (current->mm == kvm->mm) {
7161 		/*
7162 		 * Free memory regions allocated on behalf of userspace,
7163 		 * unless the the memory map has changed due to process exit
7164 		 * or fd copying.
7165 		 */
7166 		struct kvm_userspace_memory_region mem;
7167 		memset(&mem, 0, sizeof(mem));
7168 		mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7169 		kvm_set_memory_region(kvm, &mem);
7170 
7171 		mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7172 		kvm_set_memory_region(kvm, &mem);
7173 
7174 		mem.slot = TSS_PRIVATE_MEMSLOT;
7175 		kvm_set_memory_region(kvm, &mem);
7176 	}
7177 	kvm_iommu_unmap_guest(kvm);
7178 	kfree(kvm->arch.vpic);
7179 	kfree(kvm->arch.vioapic);
7180 	kvm_free_vcpus(kvm);
7181 	if (kvm->arch.apic_access_page)
7182 		put_page(kvm->arch.apic_access_page);
7183 	if (kvm->arch.ept_identity_pagetable)
7184 		put_page(kvm->arch.ept_identity_pagetable);
7185 	kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7186 }
7187 
7188 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7189 			   struct kvm_memory_slot *dont)
7190 {
7191 	int i;
7192 
7193 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7194 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7195 			kvm_kvfree(free->arch.rmap[i]);
7196 			free->arch.rmap[i] = NULL;
7197 		}
7198 		if (i == 0)
7199 			continue;
7200 
7201 		if (!dont || free->arch.lpage_info[i - 1] !=
7202 			     dont->arch.lpage_info[i - 1]) {
7203 			kvm_kvfree(free->arch.lpage_info[i - 1]);
7204 			free->arch.lpage_info[i - 1] = NULL;
7205 		}
7206 	}
7207 }
7208 
7209 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7210 			    unsigned long npages)
7211 {
7212 	int i;
7213 
7214 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7215 		unsigned long ugfn;
7216 		int lpages;
7217 		int level = i + 1;
7218 
7219 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
7220 				      slot->base_gfn, level) + 1;
7221 
7222 		slot->arch.rmap[i] =
7223 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7224 		if (!slot->arch.rmap[i])
7225 			goto out_free;
7226 		if (i == 0)
7227 			continue;
7228 
7229 		slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7230 					sizeof(*slot->arch.lpage_info[i - 1]));
7231 		if (!slot->arch.lpage_info[i - 1])
7232 			goto out_free;
7233 
7234 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7235 			slot->arch.lpage_info[i - 1][0].write_count = 1;
7236 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7237 			slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7238 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
7239 		/*
7240 		 * If the gfn and userspace address are not aligned wrt each
7241 		 * other, or if explicitly asked to, disable large page
7242 		 * support for this slot
7243 		 */
7244 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7245 		    !kvm_largepages_enabled()) {
7246 			unsigned long j;
7247 
7248 			for (j = 0; j < lpages; ++j)
7249 				slot->arch.lpage_info[i - 1][j].write_count = 1;
7250 		}
7251 	}
7252 
7253 	return 0;
7254 
7255 out_free:
7256 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7257 		kvm_kvfree(slot->arch.rmap[i]);
7258 		slot->arch.rmap[i] = NULL;
7259 		if (i == 0)
7260 			continue;
7261 
7262 		kvm_kvfree(slot->arch.lpage_info[i - 1]);
7263 		slot->arch.lpage_info[i - 1] = NULL;
7264 	}
7265 	return -ENOMEM;
7266 }
7267 
7268 void kvm_arch_memslots_updated(struct kvm *kvm)
7269 {
7270 	/*
7271 	 * memslots->generation has been incremented.
7272 	 * mmio generation may have reached its maximum value.
7273 	 */
7274 	kvm_mmu_invalidate_mmio_sptes(kvm);
7275 }
7276 
7277 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7278 				struct kvm_memory_slot *memslot,
7279 				struct kvm_userspace_memory_region *mem,
7280 				enum kvm_mr_change change)
7281 {
7282 	/*
7283 	 * Only private memory slots need to be mapped here since
7284 	 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7285 	 */
7286 	if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7287 		unsigned long userspace_addr;
7288 
7289 		/*
7290 		 * MAP_SHARED to prevent internal slot pages from being moved
7291 		 * by fork()/COW.
7292 		 */
7293 		userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7294 					 PROT_READ | PROT_WRITE,
7295 					 MAP_SHARED | MAP_ANONYMOUS, 0);
7296 
7297 		if (IS_ERR((void *)userspace_addr))
7298 			return PTR_ERR((void *)userspace_addr);
7299 
7300 		memslot->userspace_addr = userspace_addr;
7301 	}
7302 
7303 	return 0;
7304 }
7305 
7306 void kvm_arch_commit_memory_region(struct kvm *kvm,
7307 				struct kvm_userspace_memory_region *mem,
7308 				const struct kvm_memory_slot *old,
7309 				enum kvm_mr_change change)
7310 {
7311 
7312 	int nr_mmu_pages = 0;
7313 
7314 	if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7315 		int ret;
7316 
7317 		ret = vm_munmap(old->userspace_addr,
7318 				old->npages * PAGE_SIZE);
7319 		if (ret < 0)
7320 			printk(KERN_WARNING
7321 			       "kvm_vm_ioctl_set_memory_region: "
7322 			       "failed to munmap memory\n");
7323 	}
7324 
7325 	if (!kvm->arch.n_requested_mmu_pages)
7326 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7327 
7328 	if (nr_mmu_pages)
7329 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7330 	/*
7331 	 * Write protect all pages for dirty logging.
7332 	 * Existing largepage mappings are destroyed here and new ones will
7333 	 * not be created until the end of the logging.
7334 	 */
7335 	if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
7336 		kvm_mmu_slot_remove_write_access(kvm, mem->slot);
7337 }
7338 
7339 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7340 {
7341 	kvm_mmu_invalidate_zap_all_pages(kvm);
7342 }
7343 
7344 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7345 				   struct kvm_memory_slot *slot)
7346 {
7347 	kvm_mmu_invalidate_zap_all_pages(kvm);
7348 }
7349 
7350 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7351 {
7352 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7353 		kvm_x86_ops->check_nested_events(vcpu, false);
7354 
7355 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7356 		!vcpu->arch.apf.halted)
7357 		|| !list_empty_careful(&vcpu->async_pf.done)
7358 		|| kvm_apic_has_events(vcpu)
7359 		|| vcpu->arch.pv.pv_unhalted
7360 		|| atomic_read(&vcpu->arch.nmi_queued) ||
7361 		(kvm_arch_interrupt_allowed(vcpu) &&
7362 		 kvm_cpu_has_interrupt(vcpu));
7363 }
7364 
7365 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7366 {
7367 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7368 }
7369 
7370 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7371 {
7372 	return kvm_x86_ops->interrupt_allowed(vcpu);
7373 }
7374 
7375 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7376 {
7377 	unsigned long current_rip = kvm_rip_read(vcpu) +
7378 		get_segment_base(vcpu, VCPU_SREG_CS);
7379 
7380 	return current_rip == linear_rip;
7381 }
7382 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7383 
7384 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7385 {
7386 	unsigned long rflags;
7387 
7388 	rflags = kvm_x86_ops->get_rflags(vcpu);
7389 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7390 		rflags &= ~X86_EFLAGS_TF;
7391 	return rflags;
7392 }
7393 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7394 
7395 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7396 {
7397 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7398 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7399 		rflags |= X86_EFLAGS_TF;
7400 	kvm_x86_ops->set_rflags(vcpu, rflags);
7401 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7402 }
7403 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7404 
7405 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7406 {
7407 	int r;
7408 
7409 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7410 	      work->wakeup_all)
7411 		return;
7412 
7413 	r = kvm_mmu_reload(vcpu);
7414 	if (unlikely(r))
7415 		return;
7416 
7417 	if (!vcpu->arch.mmu.direct_map &&
7418 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7419 		return;
7420 
7421 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7422 }
7423 
7424 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7425 {
7426 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7427 }
7428 
7429 static inline u32 kvm_async_pf_next_probe(u32 key)
7430 {
7431 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7432 }
7433 
7434 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7435 {
7436 	u32 key = kvm_async_pf_hash_fn(gfn);
7437 
7438 	while (vcpu->arch.apf.gfns[key] != ~0)
7439 		key = kvm_async_pf_next_probe(key);
7440 
7441 	vcpu->arch.apf.gfns[key] = gfn;
7442 }
7443 
7444 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7445 {
7446 	int i;
7447 	u32 key = kvm_async_pf_hash_fn(gfn);
7448 
7449 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7450 		     (vcpu->arch.apf.gfns[key] != gfn &&
7451 		      vcpu->arch.apf.gfns[key] != ~0); i++)
7452 		key = kvm_async_pf_next_probe(key);
7453 
7454 	return key;
7455 }
7456 
7457 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7458 {
7459 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7460 }
7461 
7462 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7463 {
7464 	u32 i, j, k;
7465 
7466 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7467 	while (true) {
7468 		vcpu->arch.apf.gfns[i] = ~0;
7469 		do {
7470 			j = kvm_async_pf_next_probe(j);
7471 			if (vcpu->arch.apf.gfns[j] == ~0)
7472 				return;
7473 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7474 			/*
7475 			 * k lies cyclically in ]i,j]
7476 			 * |    i.k.j |
7477 			 * |....j i.k.| or  |.k..j i...|
7478 			 */
7479 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7480 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7481 		i = j;
7482 	}
7483 }
7484 
7485 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7486 {
7487 
7488 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7489 				      sizeof(val));
7490 }
7491 
7492 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7493 				     struct kvm_async_pf *work)
7494 {
7495 	struct x86_exception fault;
7496 
7497 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7498 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7499 
7500 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7501 	    (vcpu->arch.apf.send_user_only &&
7502 	     kvm_x86_ops->get_cpl(vcpu) == 0))
7503 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7504 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7505 		fault.vector = PF_VECTOR;
7506 		fault.error_code_valid = true;
7507 		fault.error_code = 0;
7508 		fault.nested_page_fault = false;
7509 		fault.address = work->arch.token;
7510 		kvm_inject_page_fault(vcpu, &fault);
7511 	}
7512 }
7513 
7514 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7515 				 struct kvm_async_pf *work)
7516 {
7517 	struct x86_exception fault;
7518 
7519 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
7520 	if (work->wakeup_all)
7521 		work->arch.token = ~0; /* broadcast wakeup */
7522 	else
7523 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7524 
7525 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7526 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7527 		fault.vector = PF_VECTOR;
7528 		fault.error_code_valid = true;
7529 		fault.error_code = 0;
7530 		fault.nested_page_fault = false;
7531 		fault.address = work->arch.token;
7532 		kvm_inject_page_fault(vcpu, &fault);
7533 	}
7534 	vcpu->arch.apf.halted = false;
7535 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7536 }
7537 
7538 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7539 {
7540 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7541 		return true;
7542 	else
7543 		return !kvm_event_needs_reinjection(vcpu) &&
7544 			kvm_x86_ops->interrupt_allowed(vcpu);
7545 }
7546 
7547 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
7548 {
7549 	atomic_inc(&kvm->arch.noncoherent_dma_count);
7550 }
7551 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
7552 
7553 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
7554 {
7555 	atomic_dec(&kvm->arch.noncoherent_dma_count);
7556 }
7557 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
7558 
7559 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
7560 {
7561 	return atomic_read(&kvm->arch.noncoherent_dma_count);
7562 }
7563 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
7564 
7565 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7566 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7567 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7568 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7569 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7570 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7571 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7572 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7573 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7574 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7575 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7576 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7577 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
7578