1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include "irq.h" 22 #include "ioapic.h" 23 #include "mmu.h" 24 #include "i8254.h" 25 #include "tss.h" 26 #include "kvm_cache_regs.h" 27 #include "kvm_emulate.h" 28 #include "mmu/page_track.h" 29 #include "x86.h" 30 #include "cpuid.h" 31 #include "pmu.h" 32 #include "hyperv.h" 33 #include "lapic.h" 34 #include "xen.h" 35 #include "smm.h" 36 37 #include <linux/clocksource.h> 38 #include <linux/interrupt.h> 39 #include <linux/kvm.h> 40 #include <linux/fs.h> 41 #include <linux/vmalloc.h> 42 #include <linux/export.h> 43 #include <linux/moduleparam.h> 44 #include <linux/mman.h> 45 #include <linux/highmem.h> 46 #include <linux/iommu.h> 47 #include <linux/cpufreq.h> 48 #include <linux/user-return-notifier.h> 49 #include <linux/srcu.h> 50 #include <linux/slab.h> 51 #include <linux/perf_event.h> 52 #include <linux/uaccess.h> 53 #include <linux/hash.h> 54 #include <linux/pci.h> 55 #include <linux/timekeeper_internal.h> 56 #include <linux/pvclock_gtod.h> 57 #include <linux/kvm_irqfd.h> 58 #include <linux/irqbypass.h> 59 #include <linux/sched/stat.h> 60 #include <linux/sched/isolation.h> 61 #include <linux/mem_encrypt.h> 62 #include <linux/entry-kvm.h> 63 #include <linux/suspend.h> 64 #include <linux/smp.h> 65 66 #include <trace/events/ipi.h> 67 #include <trace/events/kvm.h> 68 69 #include <asm/debugreg.h> 70 #include <asm/msr.h> 71 #include <asm/desc.h> 72 #include <asm/mce.h> 73 #include <asm/pkru.h> 74 #include <linux/kernel_stat.h> 75 #include <asm/fpu/api.h> 76 #include <asm/fpu/xcr.h> 77 #include <asm/fpu/xstate.h> 78 #include <asm/pvclock.h> 79 #include <asm/div64.h> 80 #include <asm/irq_remapping.h> 81 #include <asm/mshyperv.h> 82 #include <asm/hypervisor.h> 83 #include <asm/tlbflush.h> 84 #include <asm/intel_pt.h> 85 #include <asm/emulate_prefix.h> 86 #include <asm/sgx.h> 87 #include <clocksource/hyperv_timer.h> 88 89 #define CREATE_TRACE_POINTS 90 #include "trace.h" 91 92 #define MAX_IO_MSRS 256 93 94 /* 95 * Note, kvm_caps fields should *never* have default values, all fields must be 96 * recomputed from scratch during vendor module load, e.g. to account for a 97 * vendor module being reloaded with different module parameters. 98 */ 99 struct kvm_caps kvm_caps __read_mostly; 100 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_caps); 101 102 struct kvm_host_values kvm_host __read_mostly; 103 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_host); 104 105 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 106 107 #define emul_to_vcpu(ctxt) \ 108 ((struct kvm_vcpu *)(ctxt)->vcpu) 109 110 /* EFER defaults: 111 * - enable syscall per default because its emulated by KVM 112 * - enable LME and LMA per default on 64 bit KVM 113 */ 114 #ifdef CONFIG_X86_64 115 static 116 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 117 #else 118 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 119 #endif 120 121 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 122 123 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 124 125 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 126 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 127 128 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 129 static void process_nmi(struct kvm_vcpu *vcpu); 130 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 131 static void store_regs(struct kvm_vcpu *vcpu); 132 static int sync_regs(struct kvm_vcpu *vcpu); 133 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 134 135 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 136 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 137 138 static DEFINE_MUTEX(vendor_module_lock); 139 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu); 140 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu); 141 142 struct kvm_x86_ops kvm_x86_ops __read_mostly; 143 144 #define KVM_X86_OP(func) \ 145 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 146 *(((struct kvm_x86_ops *)0)->func)); 147 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 148 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 149 #include <asm/kvm-x86-ops.h> 150 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 151 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 152 153 static bool __read_mostly ignore_msrs = 0; 154 module_param(ignore_msrs, bool, 0644); 155 156 bool __read_mostly report_ignored_msrs = true; 157 module_param(report_ignored_msrs, bool, 0644); 158 EXPORT_SYMBOL_FOR_KVM_INTERNAL(report_ignored_msrs); 159 160 unsigned int min_timer_period_us = 200; 161 module_param(min_timer_period_us, uint, 0644); 162 163 static bool __read_mostly kvmclock_periodic_sync = true; 164 module_param(kvmclock_periodic_sync, bool, 0444); 165 166 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 167 static u32 __read_mostly tsc_tolerance_ppm = 250; 168 module_param(tsc_tolerance_ppm, uint, 0644); 169 170 bool __read_mostly enable_vmware_backdoor = false; 171 module_param(enable_vmware_backdoor, bool, 0444); 172 EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_vmware_backdoor); 173 174 /* 175 * Flags to manipulate forced emulation behavior (any non-zero value will 176 * enable forced emulation). 177 */ 178 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 179 static int __read_mostly force_emulation_prefix; 180 module_param(force_emulation_prefix, int, 0644); 181 182 int __read_mostly pi_inject_timer = -1; 183 module_param(pi_inject_timer, bint, 0644); 184 185 /* Enable/disable PMU virtualization */ 186 bool __read_mostly enable_pmu = true; 187 EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_pmu); 188 module_param(enable_pmu, bool, 0444); 189 190 bool __read_mostly eager_page_split = true; 191 module_param(eager_page_split, bool, 0644); 192 193 /* Enable/disable SMT_RSB bug mitigation */ 194 static bool __read_mostly mitigate_smt_rsb; 195 module_param(mitigate_smt_rsb, bool, 0444); 196 197 /* 198 * Restoring the host value for MSRs that are only consumed when running in 199 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 200 * returns to userspace, i.e. the kernel can run with the guest's value. 201 */ 202 #define KVM_MAX_NR_USER_RETURN_MSRS 16 203 204 struct kvm_user_return_msrs { 205 struct user_return_notifier urn; 206 bool registered; 207 struct kvm_user_return_msr_values { 208 u64 host; 209 u64 curr; 210 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 211 }; 212 213 u32 __read_mostly kvm_nr_uret_msrs; 214 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_nr_uret_msrs); 215 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 216 static struct kvm_user_return_msrs __percpu *user_return_msrs; 217 218 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 219 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 220 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 221 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 222 223 #define XFEATURE_MASK_CET_ALL (XFEATURE_MASK_CET_USER | XFEATURE_MASK_CET_KERNEL) 224 /* 225 * Note, KVM supports exposing PT to the guest, but does not support context 226 * switching PT via XSTATE (KVM's PT virtualization relies on perf; swapping 227 * PT via guest XSTATE would clobber perf state), i.e. KVM doesn't support 228 * IA32_XSS[bit 8] (guests can/must use RDMSR/WRMSR to save/restore PT MSRs). 229 */ 230 #define KVM_SUPPORTED_XSS (XFEATURE_MASK_CET_ALL) 231 232 bool __read_mostly allow_smaller_maxphyaddr = 0; 233 EXPORT_SYMBOL_FOR_KVM_INTERNAL(allow_smaller_maxphyaddr); 234 235 bool __read_mostly enable_apicv = true; 236 EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_apicv); 237 238 bool __read_mostly enable_ipiv = true; 239 EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_ipiv); 240 241 bool __read_mostly enable_device_posted_irqs = true; 242 EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_device_posted_irqs); 243 244 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 245 KVM_GENERIC_VM_STATS(), 246 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 247 STATS_DESC_COUNTER(VM, mmu_pte_write), 248 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 249 STATS_DESC_COUNTER(VM, mmu_flooded), 250 STATS_DESC_COUNTER(VM, mmu_recycled), 251 STATS_DESC_COUNTER(VM, mmu_cache_miss), 252 STATS_DESC_ICOUNTER(VM, mmu_unsync), 253 STATS_DESC_ICOUNTER(VM, pages_4k), 254 STATS_DESC_ICOUNTER(VM, pages_2m), 255 STATS_DESC_ICOUNTER(VM, pages_1g), 256 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 257 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 258 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 259 }; 260 261 const struct kvm_stats_header kvm_vm_stats_header = { 262 .name_size = KVM_STATS_NAME_SIZE, 263 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 264 .id_offset = sizeof(struct kvm_stats_header), 265 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 266 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 267 sizeof(kvm_vm_stats_desc), 268 }; 269 270 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 271 KVM_GENERIC_VCPU_STATS(), 272 STATS_DESC_COUNTER(VCPU, pf_taken), 273 STATS_DESC_COUNTER(VCPU, pf_fixed), 274 STATS_DESC_COUNTER(VCPU, pf_emulate), 275 STATS_DESC_COUNTER(VCPU, pf_spurious), 276 STATS_DESC_COUNTER(VCPU, pf_fast), 277 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 278 STATS_DESC_COUNTER(VCPU, pf_guest), 279 STATS_DESC_COUNTER(VCPU, tlb_flush), 280 STATS_DESC_COUNTER(VCPU, invlpg), 281 STATS_DESC_COUNTER(VCPU, exits), 282 STATS_DESC_COUNTER(VCPU, io_exits), 283 STATS_DESC_COUNTER(VCPU, mmio_exits), 284 STATS_DESC_COUNTER(VCPU, signal_exits), 285 STATS_DESC_COUNTER(VCPU, irq_window_exits), 286 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 287 STATS_DESC_COUNTER(VCPU, l1d_flush), 288 STATS_DESC_COUNTER(VCPU, halt_exits), 289 STATS_DESC_COUNTER(VCPU, request_irq_exits), 290 STATS_DESC_COUNTER(VCPU, irq_exits), 291 STATS_DESC_COUNTER(VCPU, host_state_reload), 292 STATS_DESC_COUNTER(VCPU, fpu_reload), 293 STATS_DESC_COUNTER(VCPU, insn_emulation), 294 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 295 STATS_DESC_COUNTER(VCPU, hypercalls), 296 STATS_DESC_COUNTER(VCPU, irq_injections), 297 STATS_DESC_COUNTER(VCPU, nmi_injections), 298 STATS_DESC_COUNTER(VCPU, req_event), 299 STATS_DESC_COUNTER(VCPU, nested_run), 300 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 301 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 302 STATS_DESC_COUNTER(VCPU, preemption_reported), 303 STATS_DESC_COUNTER(VCPU, preemption_other), 304 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 305 STATS_DESC_COUNTER(VCPU, notify_window_exits), 306 }; 307 308 const struct kvm_stats_header kvm_vcpu_stats_header = { 309 .name_size = KVM_STATS_NAME_SIZE, 310 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 311 .id_offset = sizeof(struct kvm_stats_header), 312 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 313 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 314 sizeof(kvm_vcpu_stats_desc), 315 }; 316 317 static struct kmem_cache *x86_emulator_cache; 318 319 /* 320 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track 321 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS, 322 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that 323 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds 324 * MSRs that KVM emulates without strictly requiring host support. 325 * msr_based_features holds MSRs that enumerate features, i.e. are effectively 326 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with 327 * msrs_to_save and emulated_msrs. 328 */ 329 330 static const u32 msrs_to_save_base[] = { 331 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 332 MSR_STAR, 333 #ifdef CONFIG_X86_64 334 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 335 #endif 336 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 337 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 338 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL, 339 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 340 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 341 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 342 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 343 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 344 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 345 MSR_IA32_UMWAIT_CONTROL, 346 347 MSR_IA32_XFD, MSR_IA32_XFD_ERR, MSR_IA32_XSS, 348 349 MSR_IA32_U_CET, MSR_IA32_S_CET, 350 MSR_IA32_PL0_SSP, MSR_IA32_PL1_SSP, MSR_IA32_PL2_SSP, 351 MSR_IA32_PL3_SSP, MSR_IA32_INT_SSP_TAB, 352 }; 353 354 static const u32 msrs_to_save_pmu[] = { 355 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 356 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 357 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 358 MSR_CORE_PERF_GLOBAL_CTRL, 359 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 360 361 /* This part of MSRs should match KVM_MAX_NR_INTEL_GP_COUNTERS. */ 362 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 363 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 364 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 365 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 366 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 367 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 368 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 369 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 370 371 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 372 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 373 374 /* This part of MSRs should match KVM_MAX_NR_AMD_GP_COUNTERS. */ 375 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 376 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 377 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 378 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 379 380 MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 381 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, 382 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, 383 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_SET, 384 }; 385 386 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) + 387 ARRAY_SIZE(msrs_to_save_pmu)]; 388 static unsigned num_msrs_to_save; 389 390 static const u32 emulated_msrs_all[] = { 391 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 392 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 393 394 #ifdef CONFIG_KVM_HYPERV 395 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 396 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 397 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 398 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 399 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 400 HV_X64_MSR_RESET, 401 HV_X64_MSR_VP_INDEX, 402 HV_X64_MSR_VP_RUNTIME, 403 HV_X64_MSR_SCONTROL, 404 HV_X64_MSR_STIMER0_CONFIG, 405 HV_X64_MSR_VP_ASSIST_PAGE, 406 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 407 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, 408 HV_X64_MSR_SYNDBG_OPTIONS, 409 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 410 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 411 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 412 #endif 413 414 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 415 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 416 417 MSR_IA32_TSC_ADJUST, 418 MSR_IA32_TSC_DEADLINE, 419 MSR_IA32_ARCH_CAPABILITIES, 420 MSR_IA32_PERF_CAPABILITIES, 421 MSR_IA32_MISC_ENABLE, 422 MSR_IA32_MCG_STATUS, 423 MSR_IA32_MCG_CTL, 424 MSR_IA32_MCG_EXT_CTL, 425 MSR_IA32_SMBASE, 426 MSR_SMI_COUNT, 427 MSR_PLATFORM_INFO, 428 MSR_MISC_FEATURES_ENABLES, 429 MSR_AMD64_VIRT_SPEC_CTRL, 430 MSR_AMD64_TSC_RATIO, 431 MSR_IA32_POWER_CTL, 432 MSR_IA32_UCODE_REV, 433 434 /* 435 * KVM always supports the "true" VMX control MSRs, even if the host 436 * does not. The VMX MSRs as a whole are considered "emulated" as KVM 437 * doesn't strictly require them to exist in the host (ignoring that 438 * KVM would refuse to load in the first place if the core set of MSRs 439 * aren't supported). 440 */ 441 MSR_IA32_VMX_BASIC, 442 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 443 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 444 MSR_IA32_VMX_TRUE_EXIT_CTLS, 445 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 446 MSR_IA32_VMX_MISC, 447 MSR_IA32_VMX_CR0_FIXED0, 448 MSR_IA32_VMX_CR4_FIXED0, 449 MSR_IA32_VMX_VMCS_ENUM, 450 MSR_IA32_VMX_PROCBASED_CTLS2, 451 MSR_IA32_VMX_EPT_VPID_CAP, 452 MSR_IA32_VMX_VMFUNC, 453 454 MSR_K7_HWCR, 455 MSR_KVM_POLL_CONTROL, 456 }; 457 458 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 459 static unsigned num_emulated_msrs; 460 461 /* 462 * List of MSRs that control the existence of MSR-based features, i.e. MSRs 463 * that are effectively CPUID leafs. VMX MSRs are also included in the set of 464 * feature MSRs, but are handled separately to allow expedited lookups. 465 */ 466 static const u32 msr_based_features_all_except_vmx[] = { 467 MSR_AMD64_DE_CFG, 468 MSR_IA32_UCODE_REV, 469 MSR_IA32_ARCH_CAPABILITIES, 470 MSR_IA32_PERF_CAPABILITIES, 471 MSR_PLATFORM_INFO, 472 }; 473 474 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) + 475 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)]; 476 static unsigned int num_msr_based_features; 477 478 /* 479 * All feature MSRs except uCode revID, which tracks the currently loaded uCode 480 * patch, are immutable once the vCPU model is defined. 481 */ 482 static bool kvm_is_immutable_feature_msr(u32 msr) 483 { 484 int i; 485 486 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR) 487 return true; 488 489 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) { 490 if (msr == msr_based_features_all_except_vmx[i]) 491 return msr != MSR_IA32_UCODE_REV; 492 } 493 494 return false; 495 } 496 497 static bool kvm_is_advertised_msr(u32 msr_index) 498 { 499 unsigned int i; 500 501 for (i = 0; i < num_msrs_to_save; i++) { 502 if (msrs_to_save[i] == msr_index) 503 return true; 504 } 505 506 for (i = 0; i < num_emulated_msrs; i++) { 507 if (emulated_msrs[i] == msr_index) 508 return true; 509 } 510 511 return false; 512 } 513 514 typedef int (*msr_access_t)(struct kvm_vcpu *vcpu, u32 index, u64 *data, 515 bool host_initiated); 516 517 static __always_inline int kvm_do_msr_access(struct kvm_vcpu *vcpu, u32 msr, 518 u64 *data, bool host_initiated, 519 enum kvm_msr_access rw, 520 msr_access_t msr_access_fn) 521 { 522 const char *op = rw == MSR_TYPE_W ? "wrmsr" : "rdmsr"; 523 int ret; 524 525 BUILD_BUG_ON(rw != MSR_TYPE_R && rw != MSR_TYPE_W); 526 527 /* 528 * Zero the data on read failures to avoid leaking stack data to the 529 * guest and/or userspace, e.g. if the failure is ignored below. 530 */ 531 ret = msr_access_fn(vcpu, msr, data, host_initiated); 532 if (ret && rw == MSR_TYPE_R) 533 *data = 0; 534 535 if (ret != KVM_MSR_RET_UNSUPPORTED) 536 return ret; 537 538 /* 539 * Userspace is allowed to read MSRs, and write '0' to MSRs, that KVM 540 * advertises to userspace, even if an MSR isn't fully supported. 541 * Simply check that @data is '0', which covers both the write '0' case 542 * and all reads (in which case @data is zeroed on failure; see above). 543 */ 544 if (host_initiated && !*data && kvm_is_advertised_msr(msr)) 545 return 0; 546 547 if (!ignore_msrs) { 548 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 549 op, msr, *data); 550 return ret; 551 } 552 553 if (report_ignored_msrs) 554 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", op, msr, *data); 555 556 return 0; 557 } 558 559 static struct kmem_cache *kvm_alloc_emulator_cache(void) 560 { 561 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 562 unsigned int size = sizeof(struct x86_emulate_ctxt); 563 564 return kmem_cache_create_usercopy("x86_emulator", size, 565 __alignof__(struct x86_emulate_ctxt), 566 SLAB_ACCOUNT, useroffset, 567 size - useroffset, NULL); 568 } 569 570 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 571 572 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 573 { 574 int i; 575 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 576 vcpu->arch.apf.gfns[i] = ~0; 577 } 578 579 static void kvm_on_user_return(struct user_return_notifier *urn) 580 { 581 unsigned slot; 582 struct kvm_user_return_msrs *msrs 583 = container_of(urn, struct kvm_user_return_msrs, urn); 584 struct kvm_user_return_msr_values *values; 585 unsigned long flags; 586 587 /* 588 * Disabling irqs at this point since the following code could be 589 * interrupted and executed through kvm_arch_disable_virtualization_cpu() 590 */ 591 local_irq_save(flags); 592 if (msrs->registered) { 593 msrs->registered = false; 594 user_return_notifier_unregister(urn); 595 } 596 local_irq_restore(flags); 597 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 598 values = &msrs->values[slot]; 599 if (values->host != values->curr) { 600 wrmsrq(kvm_uret_msrs_list[slot], values->host); 601 values->curr = values->host; 602 } 603 } 604 } 605 606 static int kvm_probe_user_return_msr(u32 msr) 607 { 608 u64 val; 609 int ret; 610 611 preempt_disable(); 612 ret = rdmsrq_safe(msr, &val); 613 if (ret) 614 goto out; 615 ret = wrmsrq_safe(msr, val); 616 out: 617 preempt_enable(); 618 return ret; 619 } 620 621 int kvm_add_user_return_msr(u32 msr) 622 { 623 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 624 625 if (kvm_probe_user_return_msr(msr)) 626 return -1; 627 628 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 629 return kvm_nr_uret_msrs++; 630 } 631 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_add_user_return_msr); 632 633 int kvm_find_user_return_msr(u32 msr) 634 { 635 int i; 636 637 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 638 if (kvm_uret_msrs_list[i] == msr) 639 return i; 640 } 641 return -1; 642 } 643 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_find_user_return_msr); 644 645 static void kvm_user_return_msr_cpu_online(void) 646 { 647 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs); 648 u64 value; 649 int i; 650 651 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 652 rdmsrq_safe(kvm_uret_msrs_list[i], &value); 653 msrs->values[i].host = value; 654 msrs->values[i].curr = value; 655 } 656 } 657 658 static void kvm_user_return_register_notifier(struct kvm_user_return_msrs *msrs) 659 { 660 if (!msrs->registered) { 661 msrs->urn.on_user_return = kvm_on_user_return; 662 user_return_notifier_register(&msrs->urn); 663 msrs->registered = true; 664 } 665 } 666 667 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 668 { 669 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs); 670 int err; 671 672 value = (value & mask) | (msrs->values[slot].host & ~mask); 673 if (value == msrs->values[slot].curr) 674 return 0; 675 err = wrmsrq_safe(kvm_uret_msrs_list[slot], value); 676 if (err) 677 return 1; 678 679 msrs->values[slot].curr = value; 680 kvm_user_return_register_notifier(msrs); 681 return 0; 682 } 683 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_user_return_msr); 684 685 void kvm_user_return_msr_update_cache(unsigned int slot, u64 value) 686 { 687 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs); 688 689 msrs->values[slot].curr = value; 690 kvm_user_return_register_notifier(msrs); 691 } 692 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_user_return_msr_update_cache); 693 694 u64 kvm_get_user_return_msr(unsigned int slot) 695 { 696 return this_cpu_ptr(user_return_msrs)->values[slot].curr; 697 } 698 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_user_return_msr); 699 700 static void drop_user_return_notifiers(void) 701 { 702 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs); 703 704 if (msrs->registered) 705 kvm_on_user_return(&msrs->urn); 706 } 707 708 /* 709 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 710 * 711 * Hardware virtualization extension instructions may fault if a reboot turns 712 * off virtualization while processes are running. Usually after catching the 713 * fault we just panic; during reboot instead the instruction is ignored. 714 */ 715 noinstr void kvm_spurious_fault(void) 716 { 717 /* Fault while not rebooting. We want the trace. */ 718 BUG_ON(!kvm_rebooting); 719 } 720 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_spurious_fault); 721 722 #define EXCPT_BENIGN 0 723 #define EXCPT_CONTRIBUTORY 1 724 #define EXCPT_PF 2 725 726 static int exception_class(int vector) 727 { 728 switch (vector) { 729 case PF_VECTOR: 730 return EXCPT_PF; 731 case DE_VECTOR: 732 case TS_VECTOR: 733 case NP_VECTOR: 734 case SS_VECTOR: 735 case GP_VECTOR: 736 return EXCPT_CONTRIBUTORY; 737 default: 738 break; 739 } 740 return EXCPT_BENIGN; 741 } 742 743 #define EXCPT_FAULT 0 744 #define EXCPT_TRAP 1 745 #define EXCPT_ABORT 2 746 #define EXCPT_INTERRUPT 3 747 #define EXCPT_DB 4 748 749 static int exception_type(int vector) 750 { 751 unsigned int mask; 752 753 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 754 return EXCPT_INTERRUPT; 755 756 mask = 1 << vector; 757 758 /* 759 * #DBs can be trap-like or fault-like, the caller must check other CPU 760 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 761 */ 762 if (mask & (1 << DB_VECTOR)) 763 return EXCPT_DB; 764 765 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 766 return EXCPT_TRAP; 767 768 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 769 return EXCPT_ABORT; 770 771 /* Reserved exceptions will result in fault */ 772 return EXCPT_FAULT; 773 } 774 775 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 776 struct kvm_queued_exception *ex) 777 { 778 if (!ex->has_payload) 779 return; 780 781 switch (ex->vector) { 782 case DB_VECTOR: 783 /* 784 * "Certain debug exceptions may clear bit 0-3. The 785 * remaining contents of the DR6 register are never 786 * cleared by the processor". 787 */ 788 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 789 /* 790 * In order to reflect the #DB exception payload in guest 791 * dr6, three components need to be considered: active low 792 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 793 * DR6_BS and DR6_BT) 794 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 795 * In the target guest dr6: 796 * FIXED_1 bits should always be set. 797 * Active low bits should be cleared if 1-setting in payload. 798 * Active high bits should be set if 1-setting in payload. 799 * 800 * Note, the payload is compatible with the pending debug 801 * exceptions/exit qualification under VMX, that active_low bits 802 * are active high in payload. 803 * So they need to be flipped for DR6. 804 */ 805 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 806 vcpu->arch.dr6 |= ex->payload; 807 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 808 809 /* 810 * The #DB payload is defined as compatible with the 'pending 811 * debug exceptions' field under VMX, not DR6. While bit 12 is 812 * defined in the 'pending debug exceptions' field (enabled 813 * breakpoint), it is reserved and must be zero in DR6. 814 */ 815 vcpu->arch.dr6 &= ~BIT(12); 816 break; 817 case PF_VECTOR: 818 vcpu->arch.cr2 = ex->payload; 819 break; 820 } 821 822 ex->has_payload = false; 823 ex->payload = 0; 824 } 825 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_deliver_exception_payload); 826 827 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 828 bool has_error_code, u32 error_code, 829 bool has_payload, unsigned long payload) 830 { 831 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 832 833 ex->vector = vector; 834 ex->injected = false; 835 ex->pending = true; 836 ex->has_error_code = has_error_code; 837 ex->error_code = error_code; 838 ex->has_payload = has_payload; 839 ex->payload = payload; 840 } 841 842 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, unsigned int nr, 843 bool has_error, u32 error_code, 844 bool has_payload, unsigned long payload) 845 { 846 u32 prev_nr; 847 int class1, class2; 848 849 kvm_make_request(KVM_REQ_EVENT, vcpu); 850 851 /* 852 * If the exception is destined for L2, morph it to a VM-Exit if L1 853 * wants to intercept the exception. 854 */ 855 if (is_guest_mode(vcpu) && 856 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 857 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 858 has_payload, payload); 859 return; 860 } 861 862 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 863 queue: 864 vcpu->arch.exception.pending = true; 865 vcpu->arch.exception.injected = false; 866 867 vcpu->arch.exception.has_error_code = has_error; 868 vcpu->arch.exception.vector = nr; 869 vcpu->arch.exception.error_code = error_code; 870 vcpu->arch.exception.has_payload = has_payload; 871 vcpu->arch.exception.payload = payload; 872 if (!is_guest_mode(vcpu)) 873 kvm_deliver_exception_payload(vcpu, 874 &vcpu->arch.exception); 875 return; 876 } 877 878 /* to check exception */ 879 prev_nr = vcpu->arch.exception.vector; 880 if (prev_nr == DF_VECTOR) { 881 /* triple fault -> shutdown */ 882 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 883 return; 884 } 885 class1 = exception_class(prev_nr); 886 class2 = exception_class(nr); 887 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 888 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 889 /* 890 * Synthesize #DF. Clear the previously injected or pending 891 * exception so as not to incorrectly trigger shutdown. 892 */ 893 vcpu->arch.exception.injected = false; 894 vcpu->arch.exception.pending = false; 895 896 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 897 } else { 898 /* replace previous exception with a new one in a hope 899 that instruction re-execution will regenerate lost 900 exception */ 901 goto queue; 902 } 903 } 904 905 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 906 { 907 kvm_multiple_exception(vcpu, nr, false, 0, false, 0); 908 } 909 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_queue_exception); 910 911 912 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 913 unsigned long payload) 914 { 915 kvm_multiple_exception(vcpu, nr, false, 0, true, payload); 916 } 917 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_queue_exception_p); 918 919 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 920 u32 error_code, unsigned long payload) 921 { 922 kvm_multiple_exception(vcpu, nr, true, error_code, true, payload); 923 } 924 925 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr, 926 bool has_error_code, u32 error_code) 927 { 928 929 /* 930 * On VM-Entry, an exception can be pending if and only if event 931 * injection was blocked by nested_run_pending. In that case, however, 932 * vcpu_enter_guest() requests an immediate exit, and the guest 933 * shouldn't proceed far enough to need reinjection. 934 */ 935 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 936 937 /* 938 * Do not check for interception when injecting an event for L2, as the 939 * exception was checked for intercept when it was original queued, and 940 * re-checking is incorrect if _L1_ injected the exception, in which 941 * case it's exempt from interception. 942 */ 943 kvm_make_request(KVM_REQ_EVENT, vcpu); 944 945 vcpu->arch.exception.injected = true; 946 vcpu->arch.exception.has_error_code = has_error_code; 947 vcpu->arch.exception.vector = nr; 948 vcpu->arch.exception.error_code = error_code; 949 vcpu->arch.exception.has_payload = false; 950 vcpu->arch.exception.payload = 0; 951 } 952 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_requeue_exception); 953 954 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 955 { 956 if (err) 957 kvm_inject_gp(vcpu, 0); 958 else 959 return kvm_skip_emulated_instruction(vcpu); 960 961 return 1; 962 } 963 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_complete_insn_gp); 964 965 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 966 { 967 if (err) { 968 kvm_inject_gp(vcpu, 0); 969 return 1; 970 } 971 972 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 973 EMULTYPE_COMPLETE_USER_EXIT); 974 } 975 976 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 977 { 978 ++vcpu->stat.pf_guest; 979 980 /* 981 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 982 * whether or not L1 wants to intercept "regular" #PF. 983 */ 984 if (is_guest_mode(vcpu) && fault->async_page_fault) 985 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 986 true, fault->error_code, 987 true, fault->address); 988 else 989 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 990 fault->address); 991 } 992 993 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 994 struct x86_exception *fault) 995 { 996 struct kvm_mmu *fault_mmu; 997 WARN_ON_ONCE(fault->vector != PF_VECTOR); 998 999 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 1000 vcpu->arch.walk_mmu; 1001 1002 /* 1003 * Invalidate the TLB entry for the faulting address, if it exists, 1004 * else the access will fault indefinitely (and to emulate hardware). 1005 */ 1006 if ((fault->error_code & PFERR_PRESENT_MASK) && 1007 !(fault->error_code & PFERR_RSVD_MASK)) 1008 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address, 1009 KVM_MMU_ROOT_CURRENT); 1010 1011 fault_mmu->inject_page_fault(vcpu, fault); 1012 } 1013 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_inject_emulated_page_fault); 1014 1015 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 1016 { 1017 atomic_inc(&vcpu->arch.nmi_queued); 1018 kvm_make_request(KVM_REQ_NMI, vcpu); 1019 } 1020 1021 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 1022 { 1023 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0); 1024 } 1025 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_queue_exception_e); 1026 1027 /* 1028 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 1029 * a #GP and return false. 1030 */ 1031 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 1032 { 1033 if (kvm_x86_call(get_cpl)(vcpu) <= required_cpl) 1034 return true; 1035 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 1036 return false; 1037 } 1038 1039 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 1040 { 1041 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE)) 1042 return true; 1043 1044 kvm_queue_exception(vcpu, UD_VECTOR); 1045 return false; 1046 } 1047 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_require_dr); 1048 1049 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 1050 { 1051 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 1052 } 1053 1054 /* 1055 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 1056 */ 1057 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 1058 { 1059 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 1060 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 1061 gpa_t real_gpa; 1062 int i; 1063 int ret; 1064 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 1065 1066 /* 1067 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 1068 * to an L1 GPA. 1069 */ 1070 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 1071 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 1072 if (real_gpa == INVALID_GPA) 1073 return 0; 1074 1075 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 1076 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 1077 cr3 & GENMASK(11, 5), sizeof(pdpte)); 1078 if (ret < 0) 1079 return 0; 1080 1081 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 1082 if ((pdpte[i] & PT_PRESENT_MASK) && 1083 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 1084 return 0; 1085 } 1086 } 1087 1088 /* 1089 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 1090 * Shadow page roots need to be reconstructed instead. 1091 */ 1092 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 1093 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 1094 1095 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 1096 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 1097 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 1098 vcpu->arch.pdptrs_from_userspace = false; 1099 1100 return 1; 1101 } 1102 EXPORT_SYMBOL_FOR_KVM_INTERNAL(load_pdptrs); 1103 1104 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1105 { 1106 #ifdef CONFIG_X86_64 1107 if (cr0 & 0xffffffff00000000UL) 1108 return false; 1109 #endif 1110 1111 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 1112 return false; 1113 1114 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 1115 return false; 1116 1117 return kvm_x86_call(is_valid_cr0)(vcpu, cr0); 1118 } 1119 1120 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 1121 { 1122 /* 1123 * CR0.WP is incorporated into the MMU role, but only for non-nested, 1124 * indirect shadow MMUs. If paging is disabled, no updates are needed 1125 * as there are no permission bits to emulate. If TDP is enabled, the 1126 * MMU's metadata needs to be updated, e.g. so that emulating guest 1127 * translations does the right thing, but there's no need to unload the 1128 * root as CR0.WP doesn't affect SPTEs. 1129 */ 1130 if ((cr0 ^ old_cr0) == X86_CR0_WP) { 1131 if (!(cr0 & X86_CR0_PG)) 1132 return; 1133 1134 if (tdp_enabled) { 1135 kvm_init_mmu(vcpu); 1136 return; 1137 } 1138 } 1139 1140 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 1141 kvm_clear_async_pf_completion_queue(vcpu); 1142 kvm_async_pf_hash_reset(vcpu); 1143 1144 /* 1145 * Clearing CR0.PG is defined to flush the TLB from the guest's 1146 * perspective. 1147 */ 1148 if (!(cr0 & X86_CR0_PG)) 1149 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1150 } 1151 1152 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 1153 kvm_mmu_reset_context(vcpu); 1154 } 1155 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_post_set_cr0); 1156 1157 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1158 { 1159 unsigned long old_cr0 = kvm_read_cr0(vcpu); 1160 1161 if (!kvm_is_valid_cr0(vcpu, cr0)) 1162 return 1; 1163 1164 cr0 |= X86_CR0_ET; 1165 1166 /* Write to CR0 reserved bits are ignored, even on Intel. */ 1167 cr0 &= ~CR0_RESERVED_BITS; 1168 1169 #ifdef CONFIG_X86_64 1170 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 1171 (cr0 & X86_CR0_PG)) { 1172 int cs_db, cs_l; 1173 1174 if (!is_pae(vcpu)) 1175 return 1; 1176 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 1177 if (cs_l) 1178 return 1; 1179 } 1180 #endif 1181 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 1182 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 1183 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1184 return 1; 1185 1186 if (!(cr0 & X86_CR0_PG) && 1187 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))) 1188 return 1; 1189 1190 if (!(cr0 & X86_CR0_WP) && kvm_is_cr4_bit_set(vcpu, X86_CR4_CET)) 1191 return 1; 1192 1193 kvm_x86_call(set_cr0)(vcpu, cr0); 1194 1195 kvm_post_set_cr0(vcpu, old_cr0, cr0); 1196 1197 return 0; 1198 } 1199 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_cr0); 1200 1201 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 1202 { 1203 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 1204 } 1205 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_lmsw); 1206 1207 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 1208 { 1209 if (vcpu->arch.guest_state_protected) 1210 return; 1211 1212 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1213 1214 if (vcpu->arch.xcr0 != kvm_host.xcr0) 1215 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 1216 1217 if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) && 1218 vcpu->arch.ia32_xss != kvm_host.xss) 1219 wrmsrq(MSR_IA32_XSS, vcpu->arch.ia32_xss); 1220 } 1221 1222 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1223 vcpu->arch.pkru != vcpu->arch.host_pkru && 1224 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1225 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) 1226 wrpkru(vcpu->arch.pkru); 1227 } 1228 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_load_guest_xsave_state); 1229 1230 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1231 { 1232 if (vcpu->arch.guest_state_protected) 1233 return; 1234 1235 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1236 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1237 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) { 1238 vcpu->arch.pkru = rdpkru(); 1239 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1240 wrpkru(vcpu->arch.host_pkru); 1241 } 1242 1243 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1244 1245 if (vcpu->arch.xcr0 != kvm_host.xcr0) 1246 xsetbv(XCR_XFEATURE_ENABLED_MASK, kvm_host.xcr0); 1247 1248 if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) && 1249 vcpu->arch.ia32_xss != kvm_host.xss) 1250 wrmsrq(MSR_IA32_XSS, kvm_host.xss); 1251 } 1252 1253 } 1254 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_load_host_xsave_state); 1255 1256 #ifdef CONFIG_X86_64 1257 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1258 { 1259 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1260 } 1261 #endif 1262 1263 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1264 { 1265 u64 xcr0 = xcr; 1266 u64 old_xcr0 = vcpu->arch.xcr0; 1267 u64 valid_bits; 1268 1269 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1270 if (index != XCR_XFEATURE_ENABLED_MASK) 1271 return 1; 1272 if (!(xcr0 & XFEATURE_MASK_FP)) 1273 return 1; 1274 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1275 return 1; 1276 1277 /* 1278 * Do not allow the guest to set bits that we do not support 1279 * saving. However, xcr0 bit 0 is always set, even if the 1280 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1281 */ 1282 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1283 if (xcr0 & ~valid_bits) 1284 return 1; 1285 1286 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1287 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1288 return 1; 1289 1290 if (xcr0 & XFEATURE_MASK_AVX512) { 1291 if (!(xcr0 & XFEATURE_MASK_YMM)) 1292 return 1; 1293 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1294 return 1; 1295 } 1296 1297 if ((xcr0 & XFEATURE_MASK_XTILE) && 1298 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1299 return 1; 1300 1301 vcpu->arch.xcr0 = xcr0; 1302 1303 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1304 vcpu->arch.cpuid_dynamic_bits_dirty = true; 1305 return 0; 1306 } 1307 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_set_xcr); 1308 1309 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1310 { 1311 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1312 if (kvm_x86_call(get_cpl)(vcpu) != 0 || 1313 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1314 kvm_inject_gp(vcpu, 0); 1315 return 1; 1316 } 1317 1318 return kvm_skip_emulated_instruction(vcpu); 1319 } 1320 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_xsetbv); 1321 1322 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1323 { 1324 return __kvm_is_valid_cr4(vcpu, cr4) && 1325 kvm_x86_call(is_valid_cr4)(vcpu, cr4); 1326 } 1327 1328 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1329 { 1330 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1331 kvm_mmu_reset_context(vcpu); 1332 1333 /* 1334 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1335 * according to the SDM; however, stale prev_roots could be reused 1336 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1337 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1338 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1339 * so fall through. 1340 */ 1341 if (!tdp_enabled && 1342 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1343 kvm_mmu_unload(vcpu); 1344 1345 /* 1346 * The TLB has to be flushed for all PCIDs if any of the following 1347 * (architecturally required) changes happen: 1348 * - CR4.PCIDE is changed from 1 to 0 1349 * - CR4.PGE is toggled 1350 * 1351 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1352 */ 1353 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1354 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1355 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1356 1357 /* 1358 * The TLB has to be flushed for the current PCID if any of the 1359 * following (architecturally required) changes happen: 1360 * - CR4.SMEP is changed from 0 to 1 1361 * - CR4.PAE is toggled 1362 */ 1363 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1364 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1365 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1366 1367 } 1368 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_post_set_cr4); 1369 1370 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1371 { 1372 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1373 1374 if (!kvm_is_valid_cr4(vcpu, cr4)) 1375 return 1; 1376 1377 if (is_long_mode(vcpu)) { 1378 if (!(cr4 & X86_CR4_PAE)) 1379 return 1; 1380 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1381 return 1; 1382 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1383 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1384 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1385 return 1; 1386 1387 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1388 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1389 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1390 return 1; 1391 } 1392 1393 if ((cr4 & X86_CR4_CET) && !kvm_is_cr0_bit_set(vcpu, X86_CR0_WP)) 1394 return 1; 1395 1396 kvm_x86_call(set_cr4)(vcpu, cr4); 1397 1398 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1399 1400 return 0; 1401 } 1402 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_cr4); 1403 1404 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1405 { 1406 struct kvm_mmu *mmu = vcpu->arch.mmu; 1407 unsigned long roots_to_free = 0; 1408 int i; 1409 1410 /* 1411 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1412 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1413 * also via the emulator. KVM's TDP page tables are not in the scope of 1414 * the invalidation, but the guest's TLB entries need to be flushed as 1415 * the CPU may have cached entries in its TLB for the target PCID. 1416 */ 1417 if (unlikely(tdp_enabled)) { 1418 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1419 return; 1420 } 1421 1422 /* 1423 * If neither the current CR3 nor any of the prev_roots use the given 1424 * PCID, then nothing needs to be done here because a resync will 1425 * happen anyway before switching to any other CR3. 1426 */ 1427 if (kvm_get_active_pcid(vcpu) == pcid) { 1428 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1429 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1430 } 1431 1432 /* 1433 * If PCID is disabled, there is no need to free prev_roots even if the 1434 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1435 * with PCIDE=0. 1436 */ 1437 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) 1438 return; 1439 1440 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1441 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1442 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1443 1444 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1445 } 1446 1447 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1448 { 1449 bool skip_tlb_flush = false; 1450 unsigned long pcid = 0; 1451 #ifdef CONFIG_X86_64 1452 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) { 1453 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1454 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1455 pcid = cr3 & X86_CR3_PCID_MASK; 1456 } 1457 #endif 1458 1459 /* PDPTRs are always reloaded for PAE paging. */ 1460 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1461 goto handle_tlb_flush; 1462 1463 /* 1464 * Do not condition the GPA check on long mode, this helper is used to 1465 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1466 * the current vCPU mode is accurate. 1467 */ 1468 if (!kvm_vcpu_is_legal_cr3(vcpu, cr3)) 1469 return 1; 1470 1471 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1472 return 1; 1473 1474 if (cr3 != kvm_read_cr3(vcpu)) 1475 kvm_mmu_new_pgd(vcpu, cr3); 1476 1477 vcpu->arch.cr3 = cr3; 1478 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1479 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1480 1481 handle_tlb_flush: 1482 /* 1483 * A load of CR3 that flushes the TLB flushes only the current PCID, 1484 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1485 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1486 * and it's impossible to use a non-zero PCID when PCID is disabled, 1487 * i.e. only PCID=0 can be relevant. 1488 */ 1489 if (!skip_tlb_flush) 1490 kvm_invalidate_pcid(vcpu, pcid); 1491 1492 return 0; 1493 } 1494 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_cr3); 1495 1496 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1497 { 1498 if (cr8 & CR8_RESERVED_BITS) 1499 return 1; 1500 if (lapic_in_kernel(vcpu)) 1501 kvm_lapic_set_tpr(vcpu, cr8); 1502 else 1503 vcpu->arch.cr8 = cr8; 1504 return 0; 1505 } 1506 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_cr8); 1507 1508 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1509 { 1510 if (lapic_in_kernel(vcpu)) 1511 return kvm_lapic_get_cr8(vcpu); 1512 else 1513 return vcpu->arch.cr8; 1514 } 1515 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_cr8); 1516 1517 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1518 { 1519 int i; 1520 1521 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1522 for (i = 0; i < KVM_NR_DB_REGS; i++) 1523 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1524 } 1525 } 1526 1527 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1528 { 1529 unsigned long dr7; 1530 1531 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1532 dr7 = vcpu->arch.guest_debug_dr7; 1533 else 1534 dr7 = vcpu->arch.dr7; 1535 kvm_x86_call(set_dr7)(vcpu, dr7); 1536 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1537 if (dr7 & DR7_BP_EN_MASK) 1538 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1539 } 1540 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_update_dr7); 1541 1542 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1543 { 1544 u64 fixed = DR6_FIXED_1; 1545 1546 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_RTM)) 1547 fixed |= DR6_RTM; 1548 1549 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1550 fixed |= DR6_BUS_LOCK; 1551 return fixed; 1552 } 1553 1554 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1555 { 1556 size_t size = ARRAY_SIZE(vcpu->arch.db); 1557 1558 switch (dr) { 1559 case 0 ... 3: 1560 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1561 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1562 vcpu->arch.eff_db[dr] = val; 1563 break; 1564 case 4: 1565 case 6: 1566 if (!kvm_dr6_valid(val)) 1567 return 1; /* #GP */ 1568 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1569 break; 1570 case 5: 1571 default: /* 7 */ 1572 if (!kvm_dr7_valid(val)) 1573 return 1; /* #GP */ 1574 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1575 kvm_update_dr7(vcpu); 1576 break; 1577 } 1578 1579 return 0; 1580 } 1581 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_dr); 1582 1583 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr) 1584 { 1585 size_t size = ARRAY_SIZE(vcpu->arch.db); 1586 1587 switch (dr) { 1588 case 0 ... 3: 1589 return vcpu->arch.db[array_index_nospec(dr, size)]; 1590 case 4: 1591 case 6: 1592 return vcpu->arch.dr6; 1593 case 5: 1594 default: /* 7 */ 1595 return vcpu->arch.dr7; 1596 } 1597 } 1598 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_dr); 1599 1600 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1601 { 1602 u32 pmc = kvm_rcx_read(vcpu); 1603 u64 data; 1604 1605 if (kvm_pmu_rdpmc(vcpu, pmc, &data)) { 1606 kvm_inject_gp(vcpu, 0); 1607 return 1; 1608 } 1609 1610 kvm_rax_write(vcpu, (u32)data); 1611 kvm_rdx_write(vcpu, data >> 32); 1612 return kvm_skip_emulated_instruction(vcpu); 1613 } 1614 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_rdpmc); 1615 1616 /* 1617 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1618 * does not yet virtualize. These include: 1619 * 10 - MISC_PACKAGE_CTRLS 1620 * 11 - ENERGY_FILTERING_CTL 1621 * 12 - DOITM 1622 * 18 - FB_CLEAR_CTRL 1623 * 21 - XAPIC_DISABLE_STATUS 1624 * 23 - OVERCLOCKING_STATUS 1625 */ 1626 1627 #define KVM_SUPPORTED_ARCH_CAP \ 1628 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1629 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1630 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1631 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1632 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \ 1633 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO | ARCH_CAP_ITS_NO) 1634 1635 static u64 kvm_get_arch_capabilities(void) 1636 { 1637 u64 data = kvm_host.arch_capabilities & KVM_SUPPORTED_ARCH_CAP; 1638 1639 /* 1640 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1641 * the nested hypervisor runs with NX huge pages. If it is not, 1642 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1643 * L1 guests, so it need not worry about its own (L2) guests. 1644 */ 1645 data |= ARCH_CAP_PSCHANGE_MC_NO; 1646 1647 /* 1648 * If we're doing cache flushes (either "always" or "cond") 1649 * we will do one whenever the guest does a vmlaunch/vmresume. 1650 * If an outer hypervisor is doing the cache flush for us 1651 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that 1652 * capability to the guest too, and if EPT is disabled we're not 1653 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1654 * require a nested hypervisor to do a flush of its own. 1655 */ 1656 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1657 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1658 1659 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1660 data |= ARCH_CAP_RDCL_NO; 1661 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1662 data |= ARCH_CAP_SSB_NO; 1663 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1664 data |= ARCH_CAP_MDS_NO; 1665 if (!boot_cpu_has_bug(X86_BUG_RFDS)) 1666 data |= ARCH_CAP_RFDS_NO; 1667 if (!boot_cpu_has_bug(X86_BUG_ITS)) 1668 data |= ARCH_CAP_ITS_NO; 1669 1670 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1671 /* 1672 * If RTM=0 because the kernel has disabled TSX, the host might 1673 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1674 * and therefore knows that there cannot be TAA) but keep 1675 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1676 * and we want to allow migrating those guests to tsx=off hosts. 1677 */ 1678 data &= ~ARCH_CAP_TAA_NO; 1679 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1680 data |= ARCH_CAP_TAA_NO; 1681 } else { 1682 /* 1683 * Nothing to do here; we emulate TSX_CTRL if present on the 1684 * host so the guest can choose between disabling TSX or 1685 * using VERW to clear CPU buffers. 1686 */ 1687 } 1688 1689 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated()) 1690 data |= ARCH_CAP_GDS_NO; 1691 1692 return data; 1693 } 1694 1695 static int kvm_get_feature_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1696 bool host_initiated) 1697 { 1698 WARN_ON_ONCE(!host_initiated); 1699 1700 switch (index) { 1701 case MSR_IA32_ARCH_CAPABILITIES: 1702 *data = kvm_get_arch_capabilities(); 1703 break; 1704 case MSR_IA32_PERF_CAPABILITIES: 1705 *data = kvm_caps.supported_perf_cap; 1706 break; 1707 case MSR_PLATFORM_INFO: 1708 *data = MSR_PLATFORM_INFO_CPUID_FAULT; 1709 break; 1710 case MSR_IA32_UCODE_REV: 1711 rdmsrq_safe(index, data); 1712 break; 1713 default: 1714 return kvm_x86_call(get_feature_msr)(index, data); 1715 } 1716 return 0; 1717 } 1718 1719 static int do_get_feature_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1720 { 1721 return kvm_do_msr_access(vcpu, index, data, true, MSR_TYPE_R, 1722 kvm_get_feature_msr); 1723 } 1724 1725 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1726 { 1727 if (efer & EFER_AUTOIBRS && !guest_cpu_cap_has(vcpu, X86_FEATURE_AUTOIBRS)) 1728 return false; 1729 1730 if (efer & EFER_FFXSR && !guest_cpu_cap_has(vcpu, X86_FEATURE_FXSR_OPT)) 1731 return false; 1732 1733 if (efer & EFER_SVME && !guest_cpu_cap_has(vcpu, X86_FEATURE_SVM)) 1734 return false; 1735 1736 if (efer & (EFER_LME | EFER_LMA) && 1737 !guest_cpu_cap_has(vcpu, X86_FEATURE_LM)) 1738 return false; 1739 1740 if (efer & EFER_NX && !guest_cpu_cap_has(vcpu, X86_FEATURE_NX)) 1741 return false; 1742 1743 return true; 1744 1745 } 1746 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1747 { 1748 if (efer & efer_reserved_bits) 1749 return false; 1750 1751 return __kvm_valid_efer(vcpu, efer); 1752 } 1753 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_valid_efer); 1754 1755 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1756 { 1757 u64 old_efer = vcpu->arch.efer; 1758 u64 efer = msr_info->data; 1759 int r; 1760 1761 if (efer & efer_reserved_bits) 1762 return 1; 1763 1764 if (!msr_info->host_initiated) { 1765 if (!__kvm_valid_efer(vcpu, efer)) 1766 return 1; 1767 1768 if (is_paging(vcpu) && 1769 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1770 return 1; 1771 } 1772 1773 efer &= ~EFER_LMA; 1774 efer |= vcpu->arch.efer & EFER_LMA; 1775 1776 r = kvm_x86_call(set_efer)(vcpu, efer); 1777 if (r) { 1778 WARN_ON(r > 0); 1779 return r; 1780 } 1781 1782 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1783 kvm_mmu_reset_context(vcpu); 1784 1785 if (!static_cpu_has(X86_FEATURE_XSAVES) && 1786 (efer & EFER_SVME)) 1787 kvm_hv_xsaves_xsavec_maybe_warn(vcpu); 1788 1789 return 0; 1790 } 1791 1792 void kvm_enable_efer_bits(u64 mask) 1793 { 1794 efer_reserved_bits &= ~mask; 1795 } 1796 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_enable_efer_bits); 1797 1798 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1799 { 1800 struct kvm_x86_msr_filter *msr_filter; 1801 struct msr_bitmap_range *ranges; 1802 struct kvm *kvm = vcpu->kvm; 1803 bool allowed; 1804 int idx; 1805 u32 i; 1806 1807 /* x2APIC MSRs do not support filtering. */ 1808 if (index >= 0x800 && index <= 0x8ff) 1809 return true; 1810 1811 idx = srcu_read_lock(&kvm->srcu); 1812 1813 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1814 if (!msr_filter) { 1815 allowed = true; 1816 goto out; 1817 } 1818 1819 allowed = msr_filter->default_allow; 1820 ranges = msr_filter->ranges; 1821 1822 for (i = 0; i < msr_filter->count; i++) { 1823 u32 start = ranges[i].base; 1824 u32 end = start + ranges[i].nmsrs; 1825 u32 flags = ranges[i].flags; 1826 unsigned long *bitmap = ranges[i].bitmap; 1827 1828 if ((index >= start) && (index < end) && (flags & type)) { 1829 allowed = test_bit(index - start, bitmap); 1830 break; 1831 } 1832 } 1833 1834 out: 1835 srcu_read_unlock(&kvm->srcu, idx); 1836 1837 return allowed; 1838 } 1839 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_msr_allowed); 1840 1841 /* 1842 * Write @data into the MSR specified by @index. Select MSR specific fault 1843 * checks are bypassed if @host_initiated is %true. 1844 * Returns 0 on success, non-0 otherwise. 1845 * Assumes vcpu_load() was already called. 1846 */ 1847 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1848 bool host_initiated) 1849 { 1850 struct msr_data msr; 1851 1852 switch (index) { 1853 case MSR_FS_BASE: 1854 case MSR_GS_BASE: 1855 case MSR_KERNEL_GS_BASE: 1856 case MSR_CSTAR: 1857 case MSR_LSTAR: 1858 if (is_noncanonical_msr_address(data, vcpu)) 1859 return 1; 1860 break; 1861 case MSR_IA32_SYSENTER_EIP: 1862 case MSR_IA32_SYSENTER_ESP: 1863 /* 1864 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1865 * non-canonical address is written on Intel but not on 1866 * AMD (which ignores the top 32-bits, because it does 1867 * not implement 64-bit SYSENTER). 1868 * 1869 * 64-bit code should hence be able to write a non-canonical 1870 * value on AMD. Making the address canonical ensures that 1871 * vmentry does not fail on Intel after writing a non-canonical 1872 * value, and that something deterministic happens if the guest 1873 * invokes 64-bit SYSENTER. 1874 */ 1875 data = __canonical_address(data, max_host_virt_addr_bits()); 1876 break; 1877 case MSR_TSC_AUX: 1878 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1879 return 1; 1880 1881 if (!host_initiated && 1882 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) && 1883 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID)) 1884 return 1; 1885 1886 /* 1887 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1888 * incomplete and conflicting architectural behavior. Current 1889 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1890 * reserved and always read as zeros. Enforce Intel's reserved 1891 * bits check if the guest CPU is Intel compatible, otherwise 1892 * clear the bits. This ensures cross-vendor migration will 1893 * provide consistent behavior for the guest. 1894 */ 1895 if (guest_cpuid_is_intel_compatible(vcpu) && (data >> 32) != 0) 1896 return 1; 1897 1898 data = (u32)data; 1899 break; 1900 case MSR_IA32_U_CET: 1901 case MSR_IA32_S_CET: 1902 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) && 1903 !guest_cpu_cap_has(vcpu, X86_FEATURE_IBT)) 1904 return KVM_MSR_RET_UNSUPPORTED; 1905 if (!kvm_is_valid_u_s_cet(vcpu, data)) 1906 return 1; 1907 break; 1908 case MSR_KVM_INTERNAL_GUEST_SSP: 1909 if (!host_initiated) 1910 return 1; 1911 fallthrough; 1912 /* 1913 * Note that the MSR emulation here is flawed when a vCPU 1914 * doesn't support the Intel 64 architecture. The expected 1915 * architectural behavior in this case is that the upper 32 1916 * bits do not exist and should always read '0'. However, 1917 * because the actual hardware on which the virtual CPU is 1918 * running does support Intel 64, XRSTORS/XSAVES in the 1919 * guest could observe behavior that violates the 1920 * architecture. Intercepting XRSTORS/XSAVES for this 1921 * special case isn't deemed worthwhile. 1922 */ 1923 case MSR_IA32_PL0_SSP ... MSR_IA32_INT_SSP_TAB: 1924 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK)) 1925 return KVM_MSR_RET_UNSUPPORTED; 1926 /* 1927 * MSR_IA32_INT_SSP_TAB is not present on processors that do 1928 * not support Intel 64 architecture. 1929 */ 1930 if (index == MSR_IA32_INT_SSP_TAB && !guest_cpu_cap_has(vcpu, X86_FEATURE_LM)) 1931 return KVM_MSR_RET_UNSUPPORTED; 1932 if (is_noncanonical_msr_address(data, vcpu)) 1933 return 1; 1934 /* All SSP MSRs except MSR_IA32_INT_SSP_TAB must be 4-byte aligned */ 1935 if (index != MSR_IA32_INT_SSP_TAB && !IS_ALIGNED(data, 4)) 1936 return 1; 1937 break; 1938 } 1939 1940 msr.data = data; 1941 msr.index = index; 1942 msr.host_initiated = host_initiated; 1943 1944 return kvm_x86_call(set_msr)(vcpu, &msr); 1945 } 1946 1947 static int _kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1948 bool host_initiated) 1949 { 1950 return __kvm_set_msr(vcpu, index, *data, host_initiated); 1951 } 1952 1953 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1954 u32 index, u64 data, bool host_initiated) 1955 { 1956 return kvm_do_msr_access(vcpu, index, &data, host_initiated, MSR_TYPE_W, 1957 _kvm_set_msr); 1958 } 1959 1960 /* 1961 * Read the MSR specified by @index into @data. Select MSR specific fault 1962 * checks are bypassed if @host_initiated is %true. 1963 * Returns 0 on success, non-0 otherwise. 1964 * Assumes vcpu_load() was already called. 1965 */ 1966 static int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1967 bool host_initiated) 1968 { 1969 struct msr_data msr; 1970 int ret; 1971 1972 switch (index) { 1973 case MSR_TSC_AUX: 1974 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1975 return 1; 1976 1977 if (!host_initiated && 1978 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) && 1979 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID)) 1980 return 1; 1981 break; 1982 case MSR_IA32_U_CET: 1983 case MSR_IA32_S_CET: 1984 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) && 1985 !guest_cpu_cap_has(vcpu, X86_FEATURE_IBT)) 1986 return KVM_MSR_RET_UNSUPPORTED; 1987 break; 1988 case MSR_KVM_INTERNAL_GUEST_SSP: 1989 if (!host_initiated) 1990 return 1; 1991 fallthrough; 1992 case MSR_IA32_PL0_SSP ... MSR_IA32_INT_SSP_TAB: 1993 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK)) 1994 return KVM_MSR_RET_UNSUPPORTED; 1995 break; 1996 } 1997 1998 msr.index = index; 1999 msr.host_initiated = host_initiated; 2000 2001 ret = kvm_x86_call(get_msr)(vcpu, &msr); 2002 if (!ret) 2003 *data = msr.data; 2004 return ret; 2005 } 2006 2007 int kvm_msr_write(struct kvm_vcpu *vcpu, u32 index, u64 data) 2008 { 2009 return __kvm_set_msr(vcpu, index, data, true); 2010 } 2011 2012 int kvm_msr_read(struct kvm_vcpu *vcpu, u32 index, u64 *data) 2013 { 2014 return __kvm_get_msr(vcpu, index, data, true); 2015 } 2016 2017 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 2018 u32 index, u64 *data, bool host_initiated) 2019 { 2020 return kvm_do_msr_access(vcpu, index, data, host_initiated, MSR_TYPE_R, 2021 __kvm_get_msr); 2022 } 2023 2024 int __kvm_emulate_msr_read(struct kvm_vcpu *vcpu, u32 index, u64 *data) 2025 { 2026 return kvm_get_msr_ignored_check(vcpu, index, data, false); 2027 } 2028 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_emulate_msr_read); 2029 2030 int __kvm_emulate_msr_write(struct kvm_vcpu *vcpu, u32 index, u64 data) 2031 { 2032 return kvm_set_msr_ignored_check(vcpu, index, data, false); 2033 } 2034 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_emulate_msr_write); 2035 2036 int kvm_emulate_msr_read(struct kvm_vcpu *vcpu, u32 index, u64 *data) 2037 { 2038 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 2039 return KVM_MSR_RET_FILTERED; 2040 2041 return __kvm_emulate_msr_read(vcpu, index, data); 2042 } 2043 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_msr_read); 2044 2045 int kvm_emulate_msr_write(struct kvm_vcpu *vcpu, u32 index, u64 data) 2046 { 2047 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 2048 return KVM_MSR_RET_FILTERED; 2049 2050 return __kvm_emulate_msr_write(vcpu, index, data); 2051 } 2052 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_msr_write); 2053 2054 2055 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 2056 { 2057 if (!vcpu->run->msr.error) { 2058 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 2059 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 2060 } 2061 } 2062 2063 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 2064 { 2065 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 2066 } 2067 2068 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 2069 { 2070 complete_userspace_rdmsr(vcpu); 2071 return complete_emulated_msr_access(vcpu); 2072 } 2073 2074 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 2075 { 2076 return kvm_x86_call(complete_emulated_msr)(vcpu, vcpu->run->msr.error); 2077 } 2078 2079 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 2080 { 2081 complete_userspace_rdmsr(vcpu); 2082 return complete_fast_msr_access(vcpu); 2083 } 2084 2085 static int complete_fast_rdmsr_imm(struct kvm_vcpu *vcpu) 2086 { 2087 if (!vcpu->run->msr.error) 2088 kvm_register_write(vcpu, vcpu->arch.cui_rdmsr_imm_reg, 2089 vcpu->run->msr.data); 2090 2091 return complete_fast_msr_access(vcpu); 2092 } 2093 2094 static u64 kvm_msr_reason(int r) 2095 { 2096 switch (r) { 2097 case KVM_MSR_RET_UNSUPPORTED: 2098 return KVM_MSR_EXIT_REASON_UNKNOWN; 2099 case KVM_MSR_RET_FILTERED: 2100 return KVM_MSR_EXIT_REASON_FILTER; 2101 default: 2102 return KVM_MSR_EXIT_REASON_INVAL; 2103 } 2104 } 2105 2106 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 2107 u32 exit_reason, u64 data, 2108 int (*completion)(struct kvm_vcpu *vcpu), 2109 int r) 2110 { 2111 u64 msr_reason = kvm_msr_reason(r); 2112 2113 /* Check if the user wanted to know about this MSR fault */ 2114 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2115 return 0; 2116 2117 vcpu->run->exit_reason = exit_reason; 2118 vcpu->run->msr.error = 0; 2119 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2120 vcpu->run->msr.reason = msr_reason; 2121 vcpu->run->msr.index = index; 2122 vcpu->run->msr.data = data; 2123 vcpu->arch.complete_userspace_io = completion; 2124 2125 return 1; 2126 } 2127 2128 static int __kvm_emulate_rdmsr(struct kvm_vcpu *vcpu, u32 msr, int reg, 2129 int (*complete_rdmsr)(struct kvm_vcpu *)) 2130 { 2131 u64 data; 2132 int r; 2133 2134 r = kvm_emulate_msr_read(vcpu, msr, &data); 2135 2136 if (!r) { 2137 trace_kvm_msr_read(msr, data); 2138 2139 if (reg < 0) { 2140 kvm_rax_write(vcpu, data & -1u); 2141 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2142 } else { 2143 kvm_register_write(vcpu, reg, data); 2144 } 2145 } else { 2146 /* MSR read failed? See if we should ask user space */ 2147 if (kvm_msr_user_space(vcpu, msr, KVM_EXIT_X86_RDMSR, 0, 2148 complete_rdmsr, r)) 2149 return 0; 2150 trace_kvm_msr_read_ex(msr); 2151 } 2152 2153 return kvm_x86_call(complete_emulated_msr)(vcpu, r); 2154 } 2155 2156 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2157 { 2158 return __kvm_emulate_rdmsr(vcpu, kvm_rcx_read(vcpu), -1, 2159 complete_fast_rdmsr); 2160 } 2161 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_rdmsr); 2162 2163 int kvm_emulate_rdmsr_imm(struct kvm_vcpu *vcpu, u32 msr, int reg) 2164 { 2165 vcpu->arch.cui_rdmsr_imm_reg = reg; 2166 2167 return __kvm_emulate_rdmsr(vcpu, msr, reg, complete_fast_rdmsr_imm); 2168 } 2169 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_rdmsr_imm); 2170 2171 static int __kvm_emulate_wrmsr(struct kvm_vcpu *vcpu, u32 msr, u64 data) 2172 { 2173 int r; 2174 2175 r = kvm_emulate_msr_write(vcpu, msr, data); 2176 if (!r) { 2177 trace_kvm_msr_write(msr, data); 2178 } else { 2179 /* MSR write failed? See if we should ask user space */ 2180 if (kvm_msr_user_space(vcpu, msr, KVM_EXIT_X86_WRMSR, data, 2181 complete_fast_msr_access, r)) 2182 return 0; 2183 /* Signal all other negative errors to userspace */ 2184 if (r < 0) 2185 return r; 2186 trace_kvm_msr_write_ex(msr, data); 2187 } 2188 2189 return kvm_x86_call(complete_emulated_msr)(vcpu, r); 2190 } 2191 2192 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2193 { 2194 return __kvm_emulate_wrmsr(vcpu, kvm_rcx_read(vcpu), 2195 kvm_read_edx_eax(vcpu)); 2196 } 2197 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_wrmsr); 2198 2199 int kvm_emulate_wrmsr_imm(struct kvm_vcpu *vcpu, u32 msr, int reg) 2200 { 2201 return __kvm_emulate_wrmsr(vcpu, msr, kvm_register_read(vcpu, reg)); 2202 } 2203 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_wrmsr_imm); 2204 2205 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2206 { 2207 return kvm_skip_emulated_instruction(vcpu); 2208 } 2209 2210 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2211 { 2212 /* Treat an INVD instruction as a NOP and just skip it. */ 2213 return kvm_emulate_as_nop(vcpu); 2214 } 2215 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_invd); 2216 2217 fastpath_t handle_fastpath_invd(struct kvm_vcpu *vcpu) 2218 { 2219 if (!kvm_emulate_invd(vcpu)) 2220 return EXIT_FASTPATH_EXIT_USERSPACE; 2221 2222 return EXIT_FASTPATH_REENTER_GUEST; 2223 } 2224 EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_fastpath_invd); 2225 2226 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2227 { 2228 kvm_queue_exception(vcpu, UD_VECTOR); 2229 return 1; 2230 } 2231 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_handle_invalid_op); 2232 2233 2234 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2235 { 2236 bool enabled; 2237 2238 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS)) 2239 goto emulate_as_nop; 2240 2241 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) 2242 enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_MWAIT); 2243 else 2244 enabled = vcpu->arch.ia32_misc_enable_msr & MSR_IA32_MISC_ENABLE_MWAIT; 2245 2246 if (!enabled) 2247 return kvm_handle_invalid_op(vcpu); 2248 2249 emulate_as_nop: 2250 pr_warn_once("%s instruction emulated as NOP!\n", insn); 2251 return kvm_emulate_as_nop(vcpu); 2252 } 2253 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2254 { 2255 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2256 } 2257 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_mwait); 2258 2259 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2260 { 2261 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2262 } 2263 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_monitor); 2264 2265 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2266 { 2267 xfer_to_guest_mode_prepare(); 2268 2269 return READ_ONCE(vcpu->mode) == EXITING_GUEST_MODE || 2270 kvm_request_pending(vcpu) || xfer_to_guest_mode_work_pending(); 2271 } 2272 2273 static fastpath_t __handle_fastpath_wrmsr(struct kvm_vcpu *vcpu, u32 msr, u64 data) 2274 { 2275 switch (msr) { 2276 case APIC_BASE_MSR + (APIC_ICR >> 4): 2277 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic) || 2278 kvm_x2apic_icr_write_fast(vcpu->arch.apic, data)) 2279 return EXIT_FASTPATH_NONE; 2280 break; 2281 case MSR_IA32_TSC_DEADLINE: 2282 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2283 break; 2284 default: 2285 return EXIT_FASTPATH_NONE; 2286 } 2287 2288 trace_kvm_msr_write(msr, data); 2289 2290 if (!kvm_skip_emulated_instruction(vcpu)) 2291 return EXIT_FASTPATH_EXIT_USERSPACE; 2292 2293 return EXIT_FASTPATH_REENTER_GUEST; 2294 } 2295 2296 fastpath_t handle_fastpath_wrmsr(struct kvm_vcpu *vcpu) 2297 { 2298 return __handle_fastpath_wrmsr(vcpu, kvm_rcx_read(vcpu), 2299 kvm_read_edx_eax(vcpu)); 2300 } 2301 EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_fastpath_wrmsr); 2302 2303 fastpath_t handle_fastpath_wrmsr_imm(struct kvm_vcpu *vcpu, u32 msr, int reg) 2304 { 2305 return __handle_fastpath_wrmsr(vcpu, msr, kvm_register_read(vcpu, reg)); 2306 } 2307 EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_fastpath_wrmsr_imm); 2308 2309 /* 2310 * Adapt set_msr() to msr_io()'s calling convention 2311 */ 2312 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2313 { 2314 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2315 } 2316 2317 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2318 { 2319 u64 val; 2320 2321 /* 2322 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does 2323 * not support modifying the guest vCPU model on the fly, e.g. changing 2324 * the nVMX capabilities while L2 is running is nonsensical. Allow 2325 * writes of the same value, e.g. to allow userspace to blindly stuff 2326 * all MSRs when emulating RESET. 2327 */ 2328 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index) && 2329 (do_get_msr(vcpu, index, &val) || *data != val)) 2330 return -EINVAL; 2331 2332 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2333 } 2334 2335 #ifdef CONFIG_X86_64 2336 struct pvclock_clock { 2337 int vclock_mode; 2338 u64 cycle_last; 2339 u64 mask; 2340 u32 mult; 2341 u32 shift; 2342 u64 base_cycles; 2343 u64 offset; 2344 }; 2345 2346 struct pvclock_gtod_data { 2347 seqcount_t seq; 2348 2349 struct pvclock_clock clock; /* extract of a clocksource struct */ 2350 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2351 2352 ktime_t offs_boot; 2353 u64 wall_time_sec; 2354 }; 2355 2356 static struct pvclock_gtod_data pvclock_gtod_data; 2357 2358 static void update_pvclock_gtod(struct timekeeper *tk) 2359 { 2360 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2361 2362 write_seqcount_begin(&vdata->seq); 2363 2364 /* copy pvclock gtod data */ 2365 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2366 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2367 vdata->clock.mask = tk->tkr_mono.mask; 2368 vdata->clock.mult = tk->tkr_mono.mult; 2369 vdata->clock.shift = tk->tkr_mono.shift; 2370 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2371 vdata->clock.offset = tk->tkr_mono.base; 2372 2373 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2374 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2375 vdata->raw_clock.mask = tk->tkr_raw.mask; 2376 vdata->raw_clock.mult = tk->tkr_raw.mult; 2377 vdata->raw_clock.shift = tk->tkr_raw.shift; 2378 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2379 vdata->raw_clock.offset = tk->tkr_raw.base; 2380 2381 vdata->wall_time_sec = tk->xtime_sec; 2382 2383 vdata->offs_boot = tk->offs_boot; 2384 2385 write_seqcount_end(&vdata->seq); 2386 } 2387 2388 static s64 get_kvmclock_base_ns(void) 2389 { 2390 /* Count up from boot time, but with the frequency of the raw clock. */ 2391 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2392 } 2393 #else 2394 static s64 get_kvmclock_base_ns(void) 2395 { 2396 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2397 return ktime_get_boottime_ns(); 2398 } 2399 #endif 2400 2401 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2402 { 2403 int version; 2404 int r; 2405 struct pvclock_wall_clock wc; 2406 u32 wc_sec_hi; 2407 u64 wall_nsec; 2408 2409 if (!wall_clock) 2410 return; 2411 2412 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2413 if (r) 2414 return; 2415 2416 if (version & 1) 2417 ++version; /* first time write, random junk */ 2418 2419 ++version; 2420 2421 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2422 return; 2423 2424 wall_nsec = kvm_get_wall_clock_epoch(kvm); 2425 2426 wc.nsec = do_div(wall_nsec, NSEC_PER_SEC); 2427 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2428 wc.version = version; 2429 2430 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2431 2432 if (sec_hi_ofs) { 2433 wc_sec_hi = wall_nsec >> 32; 2434 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2435 &wc_sec_hi, sizeof(wc_sec_hi)); 2436 } 2437 2438 version++; 2439 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2440 } 2441 2442 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2443 bool old_msr, bool host_initiated) 2444 { 2445 struct kvm_arch *ka = &vcpu->kvm->arch; 2446 2447 if (vcpu->vcpu_id == 0 && !host_initiated) { 2448 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2449 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2450 2451 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2452 } 2453 2454 vcpu->arch.time = system_time; 2455 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2456 2457 /* we verify if the enable bit is set... */ 2458 if (system_time & 1) 2459 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2460 sizeof(struct pvclock_vcpu_time_info)); 2461 else 2462 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2463 2464 return; 2465 } 2466 2467 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2468 { 2469 do_shl32_div32(dividend, divisor); 2470 return dividend; 2471 } 2472 2473 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2474 s8 *pshift, u32 *pmultiplier) 2475 { 2476 uint64_t scaled64; 2477 int32_t shift = 0; 2478 uint64_t tps64; 2479 uint32_t tps32; 2480 2481 tps64 = base_hz; 2482 scaled64 = scaled_hz; 2483 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2484 tps64 >>= 1; 2485 shift--; 2486 } 2487 2488 tps32 = (uint32_t)tps64; 2489 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2490 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2491 scaled64 >>= 1; 2492 else 2493 tps32 <<= 1; 2494 shift++; 2495 } 2496 2497 *pshift = shift; 2498 *pmultiplier = div_frac(scaled64, tps32); 2499 } 2500 2501 #ifdef CONFIG_X86_64 2502 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2503 #endif 2504 2505 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2506 static unsigned long max_tsc_khz; 2507 2508 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2509 { 2510 u64 v = (u64)khz * (1000000 + ppm); 2511 do_div(v, 1000000); 2512 return v; 2513 } 2514 2515 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2516 2517 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2518 { 2519 u64 ratio; 2520 2521 /* Guest TSC same frequency as host TSC? */ 2522 if (!scale) { 2523 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2524 return 0; 2525 } 2526 2527 /* TSC scaling supported? */ 2528 if (!kvm_caps.has_tsc_control) { 2529 if (user_tsc_khz > tsc_khz) { 2530 vcpu->arch.tsc_catchup = 1; 2531 vcpu->arch.tsc_always_catchup = 1; 2532 return 0; 2533 } else { 2534 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2535 return -1; 2536 } 2537 } 2538 2539 /* TSC scaling required - calculate ratio */ 2540 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2541 user_tsc_khz, tsc_khz); 2542 2543 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2544 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2545 user_tsc_khz); 2546 return -1; 2547 } 2548 2549 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2550 return 0; 2551 } 2552 2553 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2554 { 2555 u32 thresh_lo, thresh_hi; 2556 int use_scaling = 0; 2557 2558 /* tsc_khz can be zero if TSC calibration fails */ 2559 if (user_tsc_khz == 0) { 2560 /* set tsc_scaling_ratio to a safe value */ 2561 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2562 return -1; 2563 } 2564 2565 /* Compute a scale to convert nanoseconds in TSC cycles */ 2566 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2567 &vcpu->arch.virtual_tsc_shift, 2568 &vcpu->arch.virtual_tsc_mult); 2569 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2570 2571 /* 2572 * Compute the variation in TSC rate which is acceptable 2573 * within the range of tolerance and decide if the 2574 * rate being applied is within that bounds of the hardware 2575 * rate. If so, no scaling or compensation need be done. 2576 */ 2577 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2578 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2579 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2580 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n", 2581 user_tsc_khz, thresh_lo, thresh_hi); 2582 use_scaling = 1; 2583 } 2584 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2585 } 2586 2587 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2588 { 2589 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2590 vcpu->arch.virtual_tsc_mult, 2591 vcpu->arch.virtual_tsc_shift); 2592 tsc += vcpu->arch.this_tsc_write; 2593 return tsc; 2594 } 2595 2596 #ifdef CONFIG_X86_64 2597 static inline bool gtod_is_based_on_tsc(int mode) 2598 { 2599 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2600 } 2601 #endif 2602 2603 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation) 2604 { 2605 #ifdef CONFIG_X86_64 2606 struct kvm_arch *ka = &vcpu->kvm->arch; 2607 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2608 2609 /* 2610 * To use the masterclock, the host clocksource must be based on TSC 2611 * and all vCPUs must have matching TSCs. Note, the count for matching 2612 * vCPUs doesn't include the reference vCPU, hence "+1". 2613 */ 2614 bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 == 2615 atomic_read(&vcpu->kvm->online_vcpus)) && 2616 gtod_is_based_on_tsc(gtod->clock.vclock_mode); 2617 2618 /* 2619 * Request a masterclock update if the masterclock needs to be toggled 2620 * on/off, or when starting a new generation and the masterclock is 2621 * enabled (compute_guest_tsc() requires the masterclock snapshot to be 2622 * taken _after_ the new generation is created). 2623 */ 2624 if ((ka->use_master_clock && new_generation) || 2625 (ka->use_master_clock != use_master_clock)) 2626 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2627 2628 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2629 atomic_read(&vcpu->kvm->online_vcpus), 2630 ka->use_master_clock, gtod->clock.vclock_mode); 2631 #endif 2632 } 2633 2634 /* 2635 * Multiply tsc by a fixed point number represented by ratio. 2636 * 2637 * The most significant 64-N bits (mult) of ratio represent the 2638 * integral part of the fixed point number; the remaining N bits 2639 * (frac) represent the fractional part, ie. ratio represents a fixed 2640 * point number (mult + frac * 2^(-N)). 2641 * 2642 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2643 */ 2644 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2645 { 2646 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2647 } 2648 2649 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2650 { 2651 u64 _tsc = tsc; 2652 2653 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2654 _tsc = __scale_tsc(ratio, tsc); 2655 2656 return _tsc; 2657 } 2658 2659 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2660 { 2661 u64 tsc; 2662 2663 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2664 2665 return target_tsc - tsc; 2666 } 2667 2668 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2669 { 2670 return vcpu->arch.l1_tsc_offset + 2671 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2672 } 2673 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_l1_tsc); 2674 2675 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2676 { 2677 u64 nested_offset; 2678 2679 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2680 nested_offset = l1_offset; 2681 else 2682 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2683 kvm_caps.tsc_scaling_ratio_frac_bits); 2684 2685 nested_offset += l2_offset; 2686 return nested_offset; 2687 } 2688 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_calc_nested_tsc_offset); 2689 2690 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2691 { 2692 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2693 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2694 kvm_caps.tsc_scaling_ratio_frac_bits); 2695 2696 return l1_multiplier; 2697 } 2698 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_calc_nested_tsc_multiplier); 2699 2700 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2701 { 2702 if (vcpu->arch.guest_tsc_protected) 2703 return; 2704 2705 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2706 vcpu->arch.l1_tsc_offset, 2707 l1_offset); 2708 2709 vcpu->arch.l1_tsc_offset = l1_offset; 2710 2711 /* 2712 * If we are here because L1 chose not to trap WRMSR to TSC then 2713 * according to the spec this should set L1's TSC (as opposed to 2714 * setting L1's offset for L2). 2715 */ 2716 if (is_guest_mode(vcpu)) 2717 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2718 l1_offset, 2719 kvm_x86_call(get_l2_tsc_offset)(vcpu), 2720 kvm_x86_call(get_l2_tsc_multiplier)(vcpu)); 2721 else 2722 vcpu->arch.tsc_offset = l1_offset; 2723 2724 kvm_x86_call(write_tsc_offset)(vcpu); 2725 } 2726 2727 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2728 { 2729 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2730 2731 /* Userspace is changing the multiplier while L2 is active */ 2732 if (is_guest_mode(vcpu)) 2733 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2734 l1_multiplier, 2735 kvm_x86_call(get_l2_tsc_multiplier)(vcpu)); 2736 else 2737 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2738 2739 if (kvm_caps.has_tsc_control) 2740 kvm_x86_call(write_tsc_multiplier)(vcpu); 2741 } 2742 2743 static inline bool kvm_check_tsc_unstable(void) 2744 { 2745 #ifdef CONFIG_X86_64 2746 /* 2747 * TSC is marked unstable when we're running on Hyper-V, 2748 * 'TSC page' clocksource is good. 2749 */ 2750 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2751 return false; 2752 #endif 2753 return check_tsc_unstable(); 2754 } 2755 2756 /* 2757 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2758 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2759 * participates in. 2760 */ 2761 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2762 u64 ns, bool matched, bool user_set_tsc) 2763 { 2764 struct kvm *kvm = vcpu->kvm; 2765 2766 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2767 2768 if (vcpu->arch.guest_tsc_protected) 2769 return; 2770 2771 if (user_set_tsc) 2772 vcpu->kvm->arch.user_set_tsc = true; 2773 2774 /* 2775 * We also track th most recent recorded KHZ, write and time to 2776 * allow the matching interval to be extended at each write. 2777 */ 2778 kvm->arch.last_tsc_nsec = ns; 2779 kvm->arch.last_tsc_write = tsc; 2780 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2781 kvm->arch.last_tsc_offset = offset; 2782 2783 vcpu->arch.last_guest_tsc = tsc; 2784 2785 kvm_vcpu_write_tsc_offset(vcpu, offset); 2786 2787 if (!matched) { 2788 /* 2789 * We split periods of matched TSC writes into generations. 2790 * For each generation, we track the original measured 2791 * nanosecond time, offset, and write, so if TSCs are in 2792 * sync, we can match exact offset, and if not, we can match 2793 * exact software computation in compute_guest_tsc() 2794 * 2795 * These values are tracked in kvm->arch.cur_xxx variables. 2796 */ 2797 kvm->arch.cur_tsc_generation++; 2798 kvm->arch.cur_tsc_nsec = ns; 2799 kvm->arch.cur_tsc_write = tsc; 2800 kvm->arch.cur_tsc_offset = offset; 2801 kvm->arch.nr_vcpus_matched_tsc = 0; 2802 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2803 kvm->arch.nr_vcpus_matched_tsc++; 2804 } 2805 2806 /* Keep track of which generation this VCPU has synchronized to */ 2807 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2808 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2809 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2810 2811 kvm_track_tsc_matching(vcpu, !matched); 2812 } 2813 2814 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value) 2815 { 2816 u64 data = user_value ? *user_value : 0; 2817 struct kvm *kvm = vcpu->kvm; 2818 u64 offset, ns, elapsed; 2819 unsigned long flags; 2820 bool matched = false; 2821 bool synchronizing = false; 2822 2823 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2824 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2825 ns = get_kvmclock_base_ns(); 2826 elapsed = ns - kvm->arch.last_tsc_nsec; 2827 2828 if (vcpu->arch.virtual_tsc_khz) { 2829 if (data == 0) { 2830 /* 2831 * Force synchronization when creating a vCPU, or when 2832 * userspace explicitly writes a zero value. 2833 */ 2834 synchronizing = true; 2835 } else if (kvm->arch.user_set_tsc) { 2836 u64 tsc_exp = kvm->arch.last_tsc_write + 2837 nsec_to_cycles(vcpu, elapsed); 2838 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2839 /* 2840 * Here lies UAPI baggage: when a user-initiated TSC write has 2841 * a small delta (1 second) of virtual cycle time against the 2842 * previously set vCPU, we assume that they were intended to be 2843 * in sync and the delta was only due to the racy nature of the 2844 * legacy API. 2845 * 2846 * This trick falls down when restoring a guest which genuinely 2847 * has been running for less time than the 1 second of imprecision 2848 * which we allow for in the legacy API. In this case, the first 2849 * value written by userspace (on any vCPU) should not be subject 2850 * to this 'correction' to make it sync up with values that only 2851 * come from the kernel's default vCPU creation. Make the 1-second 2852 * slop hack only trigger if the user_set_tsc flag is already set. 2853 */ 2854 synchronizing = data < tsc_exp + tsc_hz && 2855 data + tsc_hz > tsc_exp; 2856 } 2857 } 2858 2859 2860 /* 2861 * For a reliable TSC, we can match TSC offsets, and for an unstable 2862 * TSC, we add elapsed time in this computation. We could let the 2863 * compensation code attempt to catch up if we fall behind, but 2864 * it's better to try to match offsets from the beginning. 2865 */ 2866 if (synchronizing && 2867 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2868 if (!kvm_check_tsc_unstable()) { 2869 offset = kvm->arch.cur_tsc_offset; 2870 } else { 2871 u64 delta = nsec_to_cycles(vcpu, elapsed); 2872 data += delta; 2873 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2874 } 2875 matched = true; 2876 } 2877 2878 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched, !!user_value); 2879 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2880 } 2881 2882 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2883 s64 adjustment) 2884 { 2885 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2886 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2887 } 2888 2889 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2890 { 2891 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2892 WARN_ON(adjustment < 0); 2893 adjustment = kvm_scale_tsc((u64) adjustment, 2894 vcpu->arch.l1_tsc_scaling_ratio); 2895 adjust_tsc_offset_guest(vcpu, adjustment); 2896 } 2897 2898 #ifdef CONFIG_X86_64 2899 2900 static u64 read_tsc(void) 2901 { 2902 u64 ret = (u64)rdtsc_ordered(); 2903 u64 last = pvclock_gtod_data.clock.cycle_last; 2904 2905 if (likely(ret >= last)) 2906 return ret; 2907 2908 /* 2909 * GCC likes to generate cmov here, but this branch is extremely 2910 * predictable (it's just a function of time and the likely is 2911 * very likely) and there's a data dependence, so force GCC 2912 * to generate a branch instead. I don't barrier() because 2913 * we don't actually need a barrier, and if this function 2914 * ever gets inlined it will generate worse code. 2915 */ 2916 asm volatile (""); 2917 return last; 2918 } 2919 2920 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2921 int *mode) 2922 { 2923 u64 tsc_pg_val; 2924 long v; 2925 2926 switch (clock->vclock_mode) { 2927 case VDSO_CLOCKMODE_HVCLOCK: 2928 if (hv_read_tsc_page_tsc(hv_get_tsc_page(), 2929 tsc_timestamp, &tsc_pg_val)) { 2930 /* TSC page valid */ 2931 *mode = VDSO_CLOCKMODE_HVCLOCK; 2932 v = (tsc_pg_val - clock->cycle_last) & 2933 clock->mask; 2934 } else { 2935 /* TSC page invalid */ 2936 *mode = VDSO_CLOCKMODE_NONE; 2937 } 2938 break; 2939 case VDSO_CLOCKMODE_TSC: 2940 *mode = VDSO_CLOCKMODE_TSC; 2941 *tsc_timestamp = read_tsc(); 2942 v = (*tsc_timestamp - clock->cycle_last) & 2943 clock->mask; 2944 break; 2945 default: 2946 *mode = VDSO_CLOCKMODE_NONE; 2947 } 2948 2949 if (*mode == VDSO_CLOCKMODE_NONE) 2950 *tsc_timestamp = v = 0; 2951 2952 return v * clock->mult; 2953 } 2954 2955 /* 2956 * As with get_kvmclock_base_ns(), this counts from boot time, at the 2957 * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot). 2958 */ 2959 static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp) 2960 { 2961 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2962 unsigned long seq; 2963 int mode; 2964 u64 ns; 2965 2966 do { 2967 seq = read_seqcount_begin(>od->seq); 2968 ns = gtod->raw_clock.base_cycles; 2969 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2970 ns >>= gtod->raw_clock.shift; 2971 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2972 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2973 *t = ns; 2974 2975 return mode; 2976 } 2977 2978 /* 2979 * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with 2980 * no boot time offset. 2981 */ 2982 static int do_monotonic(s64 *t, u64 *tsc_timestamp) 2983 { 2984 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2985 unsigned long seq; 2986 int mode; 2987 u64 ns; 2988 2989 do { 2990 seq = read_seqcount_begin(>od->seq); 2991 ns = gtod->clock.base_cycles; 2992 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2993 ns >>= gtod->clock.shift; 2994 ns += ktime_to_ns(gtod->clock.offset); 2995 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2996 *t = ns; 2997 2998 return mode; 2999 } 3000 3001 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 3002 { 3003 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 3004 unsigned long seq; 3005 int mode; 3006 u64 ns; 3007 3008 do { 3009 seq = read_seqcount_begin(>od->seq); 3010 ts->tv_sec = gtod->wall_time_sec; 3011 ns = gtod->clock.base_cycles; 3012 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 3013 ns >>= gtod->clock.shift; 3014 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 3015 3016 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 3017 ts->tv_nsec = ns; 3018 3019 return mode; 3020 } 3021 3022 /* 3023 * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and 3024 * reports the TSC value from which it do so. Returns true if host is 3025 * using TSC based clocksource. 3026 */ 3027 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 3028 { 3029 /* checked again under seqlock below */ 3030 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 3031 return false; 3032 3033 return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns, 3034 tsc_timestamp)); 3035 } 3036 3037 /* 3038 * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did 3039 * so. Returns true if host is using TSC based clocksource. 3040 */ 3041 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 3042 { 3043 /* checked again under seqlock below */ 3044 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 3045 return false; 3046 3047 return gtod_is_based_on_tsc(do_monotonic(kernel_ns, 3048 tsc_timestamp)); 3049 } 3050 3051 /* 3052 * Calculates CLOCK_REALTIME and reports the TSC value from which it did 3053 * so. Returns true if host is using TSC based clocksource. 3054 * 3055 * DO NOT USE this for anything related to migration. You want CLOCK_TAI 3056 * for that. 3057 */ 3058 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 3059 u64 *tsc_timestamp) 3060 { 3061 /* checked again under seqlock below */ 3062 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 3063 return false; 3064 3065 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 3066 } 3067 #endif 3068 3069 /* 3070 * 3071 * Assuming a stable TSC across physical CPUS, and a stable TSC 3072 * across virtual CPUs, the following condition is possible. 3073 * Each numbered line represents an event visible to both 3074 * CPUs at the next numbered event. 3075 * 3076 * "timespecX" represents host monotonic time. "tscX" represents 3077 * RDTSC value. 3078 * 3079 * VCPU0 on CPU0 | VCPU1 on CPU1 3080 * 3081 * 1. read timespec0,tsc0 3082 * 2. | timespec1 = timespec0 + N 3083 * | tsc1 = tsc0 + M 3084 * 3. transition to guest | transition to guest 3085 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 3086 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 3087 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 3088 * 3089 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 3090 * 3091 * - ret0 < ret1 3092 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 3093 * ... 3094 * - 0 < N - M => M < N 3095 * 3096 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 3097 * always the case (the difference between two distinct xtime instances 3098 * might be smaller then the difference between corresponding TSC reads, 3099 * when updating guest vcpus pvclock areas). 3100 * 3101 * To avoid that problem, do not allow visibility of distinct 3102 * system_timestamp/tsc_timestamp values simultaneously: use a master 3103 * copy of host monotonic time values. Update that master copy 3104 * in lockstep. 3105 * 3106 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 3107 * 3108 */ 3109 3110 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 3111 { 3112 #ifdef CONFIG_X86_64 3113 struct kvm_arch *ka = &kvm->arch; 3114 int vclock_mode; 3115 bool host_tsc_clocksource, vcpus_matched; 3116 3117 lockdep_assert_held(&kvm->arch.tsc_write_lock); 3118 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 3119 atomic_read(&kvm->online_vcpus)); 3120 3121 /* 3122 * If the host uses TSC clock, then passthrough TSC as stable 3123 * to the guest. 3124 */ 3125 host_tsc_clocksource = kvm_get_time_and_clockread( 3126 &ka->master_kernel_ns, 3127 &ka->master_cycle_now); 3128 3129 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 3130 && !ka->backwards_tsc_observed 3131 && !ka->boot_vcpu_runs_old_kvmclock; 3132 3133 if (ka->use_master_clock) 3134 atomic_set(&kvm_guest_has_master_clock, 1); 3135 3136 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 3137 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 3138 vcpus_matched); 3139 #endif 3140 } 3141 3142 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 3143 { 3144 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 3145 } 3146 3147 static void __kvm_start_pvclock_update(struct kvm *kvm) 3148 { 3149 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 3150 write_seqcount_begin(&kvm->arch.pvclock_sc); 3151 } 3152 3153 static void kvm_start_pvclock_update(struct kvm *kvm) 3154 { 3155 kvm_make_mclock_inprogress_request(kvm); 3156 3157 /* no guest entries from this point */ 3158 __kvm_start_pvclock_update(kvm); 3159 } 3160 3161 static void kvm_end_pvclock_update(struct kvm *kvm) 3162 { 3163 struct kvm_arch *ka = &kvm->arch; 3164 struct kvm_vcpu *vcpu; 3165 unsigned long i; 3166 3167 write_seqcount_end(&ka->pvclock_sc); 3168 raw_spin_unlock_irq(&ka->tsc_write_lock); 3169 kvm_for_each_vcpu(i, vcpu, kvm) 3170 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3171 3172 /* guest entries allowed */ 3173 kvm_for_each_vcpu(i, vcpu, kvm) 3174 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 3175 } 3176 3177 static void kvm_update_masterclock(struct kvm *kvm) 3178 { 3179 kvm_hv_request_tsc_page_update(kvm); 3180 kvm_start_pvclock_update(kvm); 3181 pvclock_update_vm_gtod_copy(kvm); 3182 kvm_end_pvclock_update(kvm); 3183 } 3184 3185 /* 3186 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 3187 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 3188 * can change during boot even if the TSC is constant, as it's possible for KVM 3189 * to be loaded before TSC calibration completes. Ideally, KVM would get a 3190 * notification when calibration completes, but practically speaking calibration 3191 * will complete before userspace is alive enough to create VMs. 3192 */ 3193 static unsigned long get_cpu_tsc_khz(void) 3194 { 3195 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 3196 return tsc_khz; 3197 else 3198 return __this_cpu_read(cpu_tsc_khz); 3199 } 3200 3201 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 3202 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3203 { 3204 struct kvm_arch *ka = &kvm->arch; 3205 struct pvclock_vcpu_time_info hv_clock; 3206 3207 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 3208 get_cpu(); 3209 3210 data->flags = 0; 3211 if (ka->use_master_clock && 3212 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 3213 #ifdef CONFIG_X86_64 3214 struct timespec64 ts; 3215 3216 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3217 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3218 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3219 } else 3220 #endif 3221 data->host_tsc = rdtsc(); 3222 3223 data->flags |= KVM_CLOCK_TSC_STABLE; 3224 hv_clock.tsc_timestamp = ka->master_cycle_now; 3225 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3226 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3227 &hv_clock.tsc_shift, 3228 &hv_clock.tsc_to_system_mul); 3229 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3230 } else { 3231 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3232 } 3233 3234 put_cpu(); 3235 } 3236 3237 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3238 { 3239 struct kvm_arch *ka = &kvm->arch; 3240 unsigned seq; 3241 3242 do { 3243 seq = read_seqcount_begin(&ka->pvclock_sc); 3244 __get_kvmclock(kvm, data); 3245 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3246 } 3247 3248 u64 get_kvmclock_ns(struct kvm *kvm) 3249 { 3250 struct kvm_clock_data data; 3251 3252 get_kvmclock(kvm, &data); 3253 return data.clock; 3254 } 3255 3256 static void kvm_setup_guest_pvclock(struct pvclock_vcpu_time_info *ref_hv_clock, 3257 struct kvm_vcpu *vcpu, 3258 struct gfn_to_pfn_cache *gpc, 3259 unsigned int offset) 3260 { 3261 struct pvclock_vcpu_time_info *guest_hv_clock; 3262 struct pvclock_vcpu_time_info hv_clock; 3263 unsigned long flags; 3264 3265 memcpy(&hv_clock, ref_hv_clock, sizeof(hv_clock)); 3266 3267 read_lock_irqsave(&gpc->lock, flags); 3268 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3269 read_unlock_irqrestore(&gpc->lock, flags); 3270 3271 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3272 return; 3273 3274 read_lock_irqsave(&gpc->lock, flags); 3275 } 3276 3277 guest_hv_clock = (void *)(gpc->khva + offset); 3278 3279 /* 3280 * This VCPU is paused, but it's legal for a guest to read another 3281 * VCPU's kvmclock, so we really have to follow the specification where 3282 * it says that version is odd if data is being modified, and even after 3283 * it is consistent. 3284 */ 3285 3286 guest_hv_clock->version = hv_clock.version = (guest_hv_clock->version + 1) | 1; 3287 smp_wmb(); 3288 3289 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3290 hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3291 3292 memcpy(guest_hv_clock, &hv_clock, sizeof(*guest_hv_clock)); 3293 3294 smp_wmb(); 3295 3296 guest_hv_clock->version = ++hv_clock.version; 3297 3298 kvm_gpc_mark_dirty_in_slot(gpc); 3299 read_unlock_irqrestore(&gpc->lock, flags); 3300 3301 trace_kvm_pvclock_update(vcpu->vcpu_id, &hv_clock); 3302 } 3303 3304 int kvm_guest_time_update(struct kvm_vcpu *v) 3305 { 3306 struct pvclock_vcpu_time_info hv_clock = {}; 3307 unsigned long flags, tgt_tsc_khz; 3308 unsigned seq; 3309 struct kvm_vcpu_arch *vcpu = &v->arch; 3310 struct kvm_arch *ka = &v->kvm->arch; 3311 s64 kernel_ns; 3312 u64 tsc_timestamp, host_tsc; 3313 bool use_master_clock; 3314 3315 kernel_ns = 0; 3316 host_tsc = 0; 3317 3318 /* 3319 * If the host uses TSC clock, then passthrough TSC as stable 3320 * to the guest. 3321 */ 3322 do { 3323 seq = read_seqcount_begin(&ka->pvclock_sc); 3324 use_master_clock = ka->use_master_clock; 3325 if (use_master_clock) { 3326 host_tsc = ka->master_cycle_now; 3327 kernel_ns = ka->master_kernel_ns; 3328 } 3329 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3330 3331 /* Keep irq disabled to prevent changes to the clock */ 3332 local_irq_save(flags); 3333 tgt_tsc_khz = get_cpu_tsc_khz(); 3334 if (unlikely(tgt_tsc_khz == 0)) { 3335 local_irq_restore(flags); 3336 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3337 return 1; 3338 } 3339 if (!use_master_clock) { 3340 host_tsc = rdtsc(); 3341 kernel_ns = get_kvmclock_base_ns(); 3342 } 3343 3344 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3345 3346 /* 3347 * We may have to catch up the TSC to match elapsed wall clock 3348 * time for two reasons, even if kvmclock is used. 3349 * 1) CPU could have been running below the maximum TSC rate 3350 * 2) Broken TSC compensation resets the base at each VCPU 3351 * entry to avoid unknown leaps of TSC even when running 3352 * again on the same CPU. This may cause apparent elapsed 3353 * time to disappear, and the guest to stand still or run 3354 * very slowly. 3355 */ 3356 if (vcpu->tsc_catchup) { 3357 u64 tsc = compute_guest_tsc(v, kernel_ns); 3358 if (tsc > tsc_timestamp) { 3359 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3360 tsc_timestamp = tsc; 3361 } 3362 } 3363 3364 local_irq_restore(flags); 3365 3366 /* With all the info we got, fill in the values */ 3367 3368 if (kvm_caps.has_tsc_control) { 3369 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3370 v->arch.l1_tsc_scaling_ratio); 3371 tgt_tsc_khz = tgt_tsc_khz ? : 1; 3372 } 3373 3374 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3375 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3376 &vcpu->pvclock_tsc_shift, 3377 &vcpu->pvclock_tsc_mul); 3378 vcpu->hw_tsc_khz = tgt_tsc_khz; 3379 } 3380 3381 hv_clock.tsc_shift = vcpu->pvclock_tsc_shift; 3382 hv_clock.tsc_to_system_mul = vcpu->pvclock_tsc_mul; 3383 hv_clock.tsc_timestamp = tsc_timestamp; 3384 hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3385 vcpu->last_guest_tsc = tsc_timestamp; 3386 3387 /* If the host uses TSC clocksource, then it is stable */ 3388 hv_clock.flags = 0; 3389 if (use_master_clock) 3390 hv_clock.flags |= PVCLOCK_TSC_STABLE_BIT; 3391 3392 if (vcpu->pv_time.active) { 3393 /* 3394 * GUEST_STOPPED is only supported by kvmclock, and KVM's 3395 * historic behavior is to only process the request if kvmclock 3396 * is active/enabled. 3397 */ 3398 if (vcpu->pvclock_set_guest_stopped_request) { 3399 hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3400 vcpu->pvclock_set_guest_stopped_request = false; 3401 } 3402 kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->pv_time, 0); 3403 3404 hv_clock.flags &= ~PVCLOCK_GUEST_STOPPED; 3405 } 3406 3407 kvm_hv_setup_tsc_page(v->kvm, &hv_clock); 3408 3409 #ifdef CONFIG_KVM_XEN 3410 /* 3411 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless 3412 * explicitly told to use TSC as its clocksource Xen will not set this bit. 3413 * This default behaviour led to bugs in some guest kernels which cause 3414 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags. 3415 * 3416 * Note! Clear TSC_STABLE only for Xen clocks, i.e. the order matters! 3417 */ 3418 if (ka->xen.hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE) 3419 hv_clock.flags &= ~PVCLOCK_TSC_STABLE_BIT; 3420 3421 if (vcpu->xen.vcpu_info_cache.active) 3422 kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->xen.vcpu_info_cache, 3423 offsetof(struct compat_vcpu_info, time)); 3424 if (vcpu->xen.vcpu_time_info_cache.active) 3425 kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->xen.vcpu_time_info_cache, 0); 3426 #endif 3427 return 0; 3428 } 3429 3430 /* 3431 * The pvclock_wall_clock ABI tells the guest the wall clock time at 3432 * which it started (i.e. its epoch, when its kvmclock was zero). 3433 * 3434 * In fact those clocks are subtly different; wall clock frequency is 3435 * adjusted by NTP and has leap seconds, while the kvmclock is a 3436 * simple function of the TSC without any such adjustment. 3437 * 3438 * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between 3439 * that and kvmclock, but even that would be subject to change over 3440 * time. 3441 * 3442 * Attempt to calculate the epoch at a given moment using the *same* 3443 * TSC reading via kvm_get_walltime_and_clockread() to obtain both 3444 * wallclock and kvmclock times, and subtracting one from the other. 3445 * 3446 * Fall back to using their values at slightly different moments by 3447 * calling ktime_get_real_ns() and get_kvmclock_ns() separately. 3448 */ 3449 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm) 3450 { 3451 #ifdef CONFIG_X86_64 3452 struct pvclock_vcpu_time_info hv_clock; 3453 struct kvm_arch *ka = &kvm->arch; 3454 unsigned long seq, local_tsc_khz; 3455 struct timespec64 ts; 3456 uint64_t host_tsc; 3457 3458 do { 3459 seq = read_seqcount_begin(&ka->pvclock_sc); 3460 3461 local_tsc_khz = 0; 3462 if (!ka->use_master_clock) 3463 break; 3464 3465 /* 3466 * The TSC read and the call to get_cpu_tsc_khz() must happen 3467 * on the same CPU. 3468 */ 3469 get_cpu(); 3470 3471 local_tsc_khz = get_cpu_tsc_khz(); 3472 3473 if (local_tsc_khz && 3474 !kvm_get_walltime_and_clockread(&ts, &host_tsc)) 3475 local_tsc_khz = 0; /* Fall back to old method */ 3476 3477 put_cpu(); 3478 3479 /* 3480 * These values must be snapshotted within the seqcount loop. 3481 * After that, it's just mathematics which can happen on any 3482 * CPU at any time. 3483 */ 3484 hv_clock.tsc_timestamp = ka->master_cycle_now; 3485 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3486 3487 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3488 3489 /* 3490 * If the conditions were right, and obtaining the wallclock+TSC was 3491 * successful, calculate the KVM clock at the corresponding time and 3492 * subtract one from the other to get the guest's epoch in nanoseconds 3493 * since 1970-01-01. 3494 */ 3495 if (local_tsc_khz) { 3496 kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC, 3497 &hv_clock.tsc_shift, 3498 &hv_clock.tsc_to_system_mul); 3499 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec - 3500 __pvclock_read_cycles(&hv_clock, host_tsc); 3501 } 3502 #endif 3503 return ktime_get_real_ns() - get_kvmclock_ns(kvm); 3504 } 3505 3506 /* 3507 * kvmclock updates which are isolated to a given vcpu, such as 3508 * vcpu->cpu migration, should not allow system_timestamp from 3509 * the rest of the vcpus to remain static. Otherwise ntp frequency 3510 * correction applies to one vcpu's system_timestamp but not 3511 * the others. 3512 * 3513 * So in those cases, request a kvmclock update for all vcpus. 3514 * We need to rate-limit these requests though, as they can 3515 * considerably slow guests that have a large number of vcpus. 3516 * The time for a remote vcpu to update its kvmclock is bound 3517 * by the delay we use to rate-limit the updates. 3518 */ 3519 3520 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3521 3522 static void kvmclock_update_fn(struct work_struct *work) 3523 { 3524 unsigned long i; 3525 struct delayed_work *dwork = to_delayed_work(work); 3526 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3527 kvmclock_update_work); 3528 struct kvm *kvm = container_of(ka, struct kvm, arch); 3529 struct kvm_vcpu *vcpu; 3530 3531 kvm_for_each_vcpu(i, vcpu, kvm) { 3532 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3533 kvm_vcpu_kick(vcpu); 3534 } 3535 } 3536 3537 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3538 { 3539 struct kvm *kvm = v->kvm; 3540 3541 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3542 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3543 KVMCLOCK_UPDATE_DELAY); 3544 } 3545 3546 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3547 3548 static void kvmclock_sync_fn(struct work_struct *work) 3549 { 3550 struct delayed_work *dwork = to_delayed_work(work); 3551 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3552 kvmclock_sync_work); 3553 struct kvm *kvm = container_of(ka, struct kvm, arch); 3554 3555 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3556 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3557 KVMCLOCK_SYNC_PERIOD); 3558 } 3559 3560 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3561 static bool is_mci_control_msr(u32 msr) 3562 { 3563 return (msr & 3) == 0; 3564 } 3565 static bool is_mci_status_msr(u32 msr) 3566 { 3567 return (msr & 3) == 1; 3568 } 3569 3570 /* 3571 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3572 */ 3573 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3574 { 3575 /* McStatusWrEn enabled? */ 3576 if (guest_cpuid_is_amd_compatible(vcpu)) 3577 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3578 3579 return false; 3580 } 3581 3582 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3583 { 3584 u64 mcg_cap = vcpu->arch.mcg_cap; 3585 unsigned bank_num = mcg_cap & 0xff; 3586 u32 msr = msr_info->index; 3587 u64 data = msr_info->data; 3588 u32 offset, last_msr; 3589 3590 switch (msr) { 3591 case MSR_IA32_MCG_STATUS: 3592 vcpu->arch.mcg_status = data; 3593 break; 3594 case MSR_IA32_MCG_CTL: 3595 if (!(mcg_cap & MCG_CTL_P) && 3596 (data || !msr_info->host_initiated)) 3597 return 1; 3598 if (data != 0 && data != ~(u64)0) 3599 return 1; 3600 vcpu->arch.mcg_ctl = data; 3601 break; 3602 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3603 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3604 if (msr > last_msr) 3605 return 1; 3606 3607 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3608 return 1; 3609 /* An attempt to write a 1 to a reserved bit raises #GP */ 3610 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3611 return 1; 3612 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3613 last_msr + 1 - MSR_IA32_MC0_CTL2); 3614 vcpu->arch.mci_ctl2_banks[offset] = data; 3615 break; 3616 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3617 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3618 if (msr > last_msr) 3619 return 1; 3620 3621 /* 3622 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3623 * values are architecturally undefined. But, some Linux 3624 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3625 * issue on AMD K8s, allow bit 10 to be clear when setting all 3626 * other bits in order to avoid an uncaught #GP in the guest. 3627 * 3628 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3629 * single-bit ECC data errors. 3630 */ 3631 if (is_mci_control_msr(msr) && 3632 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3633 return 1; 3634 3635 /* 3636 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3637 * AMD-based CPUs allow non-zero values, but if and only if 3638 * HWCR[McStatusWrEn] is set. 3639 */ 3640 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3641 data != 0 && !can_set_mci_status(vcpu)) 3642 return 1; 3643 3644 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3645 last_msr + 1 - MSR_IA32_MC0_CTL); 3646 vcpu->arch.mce_banks[offset] = data; 3647 break; 3648 default: 3649 return 1; 3650 } 3651 return 0; 3652 } 3653 3654 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3655 { 3656 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3657 3658 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3659 } 3660 3661 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3662 { 3663 gpa_t gpa = data & ~0x3f; 3664 3665 /* Bits 4:5 are reserved, Should be zero */ 3666 if (data & 0x30) 3667 return 1; 3668 3669 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3670 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3671 return 1; 3672 3673 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3674 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3675 return 1; 3676 3677 if (!lapic_in_kernel(vcpu)) 3678 return data ? 1 : 0; 3679 3680 vcpu->arch.apf.msr_en_val = data; 3681 3682 if (!kvm_pv_async_pf_enabled(vcpu)) { 3683 kvm_clear_async_pf_completion_queue(vcpu); 3684 kvm_async_pf_hash_reset(vcpu); 3685 return 0; 3686 } 3687 3688 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3689 sizeof(u64))) 3690 return 1; 3691 3692 vcpu->arch.apf.send_always = (data & KVM_ASYNC_PF_SEND_ALWAYS); 3693 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3694 3695 kvm_async_pf_wakeup_all(vcpu); 3696 3697 return 0; 3698 } 3699 3700 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3701 { 3702 /* Bits 8-63 are reserved */ 3703 if (data >> 8) 3704 return 1; 3705 3706 if (!lapic_in_kernel(vcpu)) 3707 return 1; 3708 3709 vcpu->arch.apf.msr_int_val = data; 3710 3711 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3712 3713 return 0; 3714 } 3715 3716 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3717 { 3718 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3719 vcpu->arch.time = 0; 3720 } 3721 3722 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3723 { 3724 ++vcpu->stat.tlb_flush; 3725 kvm_x86_call(flush_tlb_all)(vcpu); 3726 3727 /* Flushing all ASIDs flushes the current ASID... */ 3728 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3729 } 3730 3731 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3732 { 3733 ++vcpu->stat.tlb_flush; 3734 3735 if (!tdp_enabled) { 3736 /* 3737 * A TLB flush on behalf of the guest is equivalent to 3738 * INVPCID(all), toggling CR4.PGE, etc., which requires 3739 * a forced sync of the shadow page tables. Ensure all the 3740 * roots are synced and the guest TLB in hardware is clean. 3741 */ 3742 kvm_mmu_sync_roots(vcpu); 3743 kvm_mmu_sync_prev_roots(vcpu); 3744 } 3745 3746 kvm_x86_call(flush_tlb_guest)(vcpu); 3747 3748 /* 3749 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3750 * grained flushing. 3751 */ 3752 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3753 } 3754 3755 3756 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3757 { 3758 ++vcpu->stat.tlb_flush; 3759 kvm_x86_call(flush_tlb_current)(vcpu); 3760 } 3761 3762 /* 3763 * Service "local" TLB flush requests, which are specific to the current MMU 3764 * context. In addition to the generic event handling in vcpu_enter_guest(), 3765 * TLB flushes that are targeted at an MMU context also need to be serviced 3766 * prior before nested VM-Enter/VM-Exit. 3767 */ 3768 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3769 { 3770 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3771 kvm_vcpu_flush_tlb_current(vcpu); 3772 3773 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3774 kvm_vcpu_flush_tlb_guest(vcpu); 3775 } 3776 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_service_local_tlb_flush_requests); 3777 3778 static void record_steal_time(struct kvm_vcpu *vcpu) 3779 { 3780 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3781 struct kvm_steal_time __user *st; 3782 struct kvm_memslots *slots; 3783 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3784 u64 steal; 3785 u32 version; 3786 3787 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3788 kvm_xen_runstate_set_running(vcpu); 3789 return; 3790 } 3791 3792 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3793 return; 3794 3795 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3796 return; 3797 3798 slots = kvm_memslots(vcpu->kvm); 3799 3800 if (unlikely(slots->generation != ghc->generation || 3801 gpa != ghc->gpa || 3802 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3803 /* We rely on the fact that it fits in a single page. */ 3804 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3805 3806 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3807 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3808 return; 3809 } 3810 3811 st = (struct kvm_steal_time __user *)ghc->hva; 3812 /* 3813 * Doing a TLB flush here, on the guest's behalf, can avoid 3814 * expensive IPIs. 3815 */ 3816 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3817 u8 st_preempted = 0; 3818 int err = -EFAULT; 3819 3820 if (!user_access_begin(st, sizeof(*st))) 3821 return; 3822 3823 asm volatile("1: xchgb %0, %2\n" 3824 "xor %1, %1\n" 3825 "2:\n" 3826 _ASM_EXTABLE_UA(1b, 2b) 3827 : "+q" (st_preempted), 3828 "+&r" (err), 3829 "+m" (st->preempted)); 3830 if (err) 3831 goto out; 3832 3833 user_access_end(); 3834 3835 vcpu->arch.st.preempted = 0; 3836 3837 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3838 st_preempted & KVM_VCPU_FLUSH_TLB); 3839 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3840 kvm_vcpu_flush_tlb_guest(vcpu); 3841 3842 if (!user_access_begin(st, sizeof(*st))) 3843 goto dirty; 3844 } else { 3845 if (!user_access_begin(st, sizeof(*st))) 3846 return; 3847 3848 unsafe_put_user(0, &st->preempted, out); 3849 vcpu->arch.st.preempted = 0; 3850 } 3851 3852 unsafe_get_user(version, &st->version, out); 3853 if (version & 1) 3854 version += 1; /* first time write, random junk */ 3855 3856 version += 1; 3857 unsafe_put_user(version, &st->version, out); 3858 3859 smp_wmb(); 3860 3861 unsafe_get_user(steal, &st->steal, out); 3862 steal += current->sched_info.run_delay - 3863 vcpu->arch.st.last_steal; 3864 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3865 unsafe_put_user(steal, &st->steal, out); 3866 3867 version += 1; 3868 unsafe_put_user(version, &st->version, out); 3869 3870 out: 3871 user_access_end(); 3872 dirty: 3873 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3874 } 3875 3876 /* 3877 * Returns true if the MSR in question is managed via XSTATE, i.e. is context 3878 * switched with the rest of guest FPU state. Note! S_CET is _not_ context 3879 * switched via XSTATE even though it _is_ saved/restored via XSAVES/XRSTORS. 3880 * Because S_CET is loaded on VM-Enter and VM-Exit via dedicated VMCS fields, 3881 * the value saved/restored via XSTATE is always the host's value. That detail 3882 * is _extremely_ important, as the guest's S_CET must _never_ be resident in 3883 * hardware while executing in the host. Loading guest values for U_CET and 3884 * PL[0-3]_SSP while executing in the kernel is safe, as U_CET is specific to 3885 * userspace, and PL[0-3]_SSP are only consumed when transitioning to lower 3886 * privilege levels, i.e. are effectively only consumed by userspace as well. 3887 */ 3888 static bool is_xstate_managed_msr(struct kvm_vcpu *vcpu, u32 msr) 3889 { 3890 if (!vcpu) 3891 return false; 3892 3893 switch (msr) { 3894 case MSR_IA32_U_CET: 3895 return guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) || 3896 guest_cpu_cap_has(vcpu, X86_FEATURE_IBT); 3897 case MSR_IA32_PL0_SSP ... MSR_IA32_PL3_SSP: 3898 return guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK); 3899 default: 3900 return false; 3901 } 3902 } 3903 3904 /* 3905 * Lock (and if necessary, re-load) the guest FPU, i.e. XSTATE, and access an 3906 * MSR that is managed via XSTATE. Note, the caller is responsible for doing 3907 * the initial FPU load, this helper only ensures that guest state is resident 3908 * in hardware (the kernel can load its FPU state in IRQ context). 3909 */ 3910 static __always_inline void kvm_access_xstate_msr(struct kvm_vcpu *vcpu, 3911 struct msr_data *msr_info, 3912 int access) 3913 { 3914 BUILD_BUG_ON(access != MSR_TYPE_R && access != MSR_TYPE_W); 3915 3916 KVM_BUG_ON(!is_xstate_managed_msr(vcpu, msr_info->index), vcpu->kvm); 3917 KVM_BUG_ON(!vcpu->arch.guest_fpu.fpstate->in_use, vcpu->kvm); 3918 3919 kvm_fpu_get(); 3920 if (access == MSR_TYPE_R) 3921 rdmsrq(msr_info->index, msr_info->data); 3922 else 3923 wrmsrq(msr_info->index, msr_info->data); 3924 kvm_fpu_put(); 3925 } 3926 3927 static void kvm_set_xstate_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3928 { 3929 kvm_access_xstate_msr(vcpu, msr_info, MSR_TYPE_W); 3930 } 3931 3932 static void kvm_get_xstate_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3933 { 3934 kvm_access_xstate_msr(vcpu, msr_info, MSR_TYPE_R); 3935 } 3936 3937 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3938 { 3939 u32 msr = msr_info->index; 3940 u64 data = msr_info->data; 3941 3942 /* 3943 * Do not allow host-initiated writes to trigger the Xen hypercall 3944 * page setup; it could incur locking paths which are not expected 3945 * if userspace sets the MSR in an unusual location. 3946 */ 3947 if (kvm_xen_is_hypercall_page_msr(vcpu->kvm, msr) && 3948 !msr_info->host_initiated) 3949 return kvm_xen_write_hypercall_page(vcpu, data); 3950 3951 switch (msr) { 3952 case MSR_AMD64_NB_CFG: 3953 case MSR_IA32_UCODE_WRITE: 3954 case MSR_VM_HSAVE_PA: 3955 case MSR_AMD64_PATCH_LOADER: 3956 case MSR_AMD64_BU_CFG2: 3957 case MSR_AMD64_DC_CFG: 3958 case MSR_AMD64_TW_CFG: 3959 case MSR_F15H_EX_CFG: 3960 break; 3961 3962 case MSR_IA32_UCODE_REV: 3963 if (msr_info->host_initiated) 3964 vcpu->arch.microcode_version = data; 3965 break; 3966 case MSR_IA32_ARCH_CAPABILITIES: 3967 if (!msr_info->host_initiated || 3968 !guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 3969 return KVM_MSR_RET_UNSUPPORTED; 3970 vcpu->arch.arch_capabilities = data; 3971 break; 3972 case MSR_IA32_PERF_CAPABILITIES: 3973 if (!msr_info->host_initiated || 3974 !guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM)) 3975 return KVM_MSR_RET_UNSUPPORTED; 3976 3977 if (data & ~kvm_caps.supported_perf_cap) 3978 return 1; 3979 3980 /* 3981 * Note, this is not just a performance optimization! KVM 3982 * disallows changing feature MSRs after the vCPU has run; PMU 3983 * refresh will bug the VM if called after the vCPU has run. 3984 */ 3985 if (vcpu->arch.perf_capabilities == data) 3986 break; 3987 3988 vcpu->arch.perf_capabilities = data; 3989 kvm_pmu_refresh(vcpu); 3990 break; 3991 case MSR_IA32_PRED_CMD: { 3992 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB); 3993 3994 if (!msr_info->host_initiated) { 3995 if ((!guest_has_pred_cmd_msr(vcpu))) 3996 return 1; 3997 3998 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SPEC_CTRL) && 3999 !guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_IBPB)) 4000 reserved_bits |= PRED_CMD_IBPB; 4001 4002 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SBPB)) 4003 reserved_bits |= PRED_CMD_SBPB; 4004 } 4005 4006 if (!boot_cpu_has(X86_FEATURE_IBPB)) 4007 reserved_bits |= PRED_CMD_IBPB; 4008 4009 if (!boot_cpu_has(X86_FEATURE_SBPB)) 4010 reserved_bits |= PRED_CMD_SBPB; 4011 4012 if (data & reserved_bits) 4013 return 1; 4014 4015 if (!data) 4016 break; 4017 4018 wrmsrq(MSR_IA32_PRED_CMD, data); 4019 break; 4020 } 4021 case MSR_IA32_FLUSH_CMD: 4022 if (!msr_info->host_initiated && 4023 !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D)) 4024 return 1; 4025 4026 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH)) 4027 return 1; 4028 if (!data) 4029 break; 4030 4031 wrmsrq(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 4032 break; 4033 case MSR_EFER: 4034 return set_efer(vcpu, msr_info); 4035 case MSR_K7_HWCR: 4036 data &= ~(u64)0x40; /* ignore flush filter disable */ 4037 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 4038 data &= ~(u64)0x8; /* ignore TLB cache disable */ 4039 4040 /* 4041 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2 4042 * through at least v6.6 whine if TscFreqSel is clear, 4043 * depending on F/M/S. 4044 */ 4045 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) { 4046 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 4047 return 1; 4048 } 4049 vcpu->arch.msr_hwcr = data; 4050 break; 4051 case MSR_FAM10H_MMIO_CONF_BASE: 4052 if (data != 0) { 4053 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 4054 return 1; 4055 } 4056 break; 4057 case MSR_IA32_CR_PAT: 4058 if (!kvm_pat_valid(data)) 4059 return 1; 4060 4061 vcpu->arch.pat = data; 4062 break; 4063 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 4064 case MSR_MTRRdefType: 4065 return kvm_mtrr_set_msr(vcpu, msr, data); 4066 case MSR_IA32_APICBASE: 4067 return kvm_apic_set_base(vcpu, data, msr_info->host_initiated); 4068 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4069 return kvm_x2apic_msr_write(vcpu, msr, data); 4070 case MSR_IA32_TSC_DEADLINE: 4071 kvm_set_lapic_tscdeadline_msr(vcpu, data); 4072 break; 4073 case MSR_IA32_TSC_ADJUST: 4074 if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 4075 if (!msr_info->host_initiated) { 4076 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 4077 adjust_tsc_offset_guest(vcpu, adj); 4078 /* Before back to guest, tsc_timestamp must be adjusted 4079 * as well, otherwise guest's percpu pvclock time could jump. 4080 */ 4081 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4082 } 4083 vcpu->arch.ia32_tsc_adjust_msr = data; 4084 } 4085 break; 4086 case MSR_IA32_MISC_ENABLE: { 4087 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 4088 4089 if (!msr_info->host_initiated) { 4090 /* RO bits */ 4091 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 4092 return 1; 4093 4094 /* R bits, i.e. writes are ignored, but don't fault. */ 4095 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 4096 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 4097 } 4098 4099 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 4100 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 4101 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_XMM3)) 4102 return 1; 4103 vcpu->arch.ia32_misc_enable_msr = data; 4104 vcpu->arch.cpuid_dynamic_bits_dirty = true; 4105 } else { 4106 vcpu->arch.ia32_misc_enable_msr = data; 4107 } 4108 break; 4109 } 4110 case MSR_IA32_SMBASE: 4111 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4112 return 1; 4113 vcpu->arch.smbase = data; 4114 break; 4115 case MSR_IA32_POWER_CTL: 4116 vcpu->arch.msr_ia32_power_ctl = data; 4117 break; 4118 case MSR_IA32_TSC: 4119 if (msr_info->host_initiated) { 4120 kvm_synchronize_tsc(vcpu, &data); 4121 } else if (!vcpu->arch.guest_tsc_protected) { 4122 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 4123 adjust_tsc_offset_guest(vcpu, adj); 4124 vcpu->arch.ia32_tsc_adjust_msr += adj; 4125 } 4126 break; 4127 case MSR_IA32_XSS: 4128 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4129 return KVM_MSR_RET_UNSUPPORTED; 4130 4131 if (data & ~vcpu->arch.guest_supported_xss) 4132 return 1; 4133 if (vcpu->arch.ia32_xss == data) 4134 break; 4135 vcpu->arch.ia32_xss = data; 4136 vcpu->arch.cpuid_dynamic_bits_dirty = true; 4137 break; 4138 case MSR_SMI_COUNT: 4139 if (!msr_info->host_initiated) 4140 return 1; 4141 vcpu->arch.smi_count = data; 4142 break; 4143 case MSR_KVM_WALL_CLOCK_NEW: 4144 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4145 return 1; 4146 4147 vcpu->kvm->arch.wall_clock = data; 4148 kvm_write_wall_clock(vcpu->kvm, data, 0); 4149 break; 4150 case MSR_KVM_WALL_CLOCK: 4151 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4152 return 1; 4153 4154 vcpu->kvm->arch.wall_clock = data; 4155 kvm_write_wall_clock(vcpu->kvm, data, 0); 4156 break; 4157 case MSR_KVM_SYSTEM_TIME_NEW: 4158 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4159 return 1; 4160 4161 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 4162 break; 4163 case MSR_KVM_SYSTEM_TIME: 4164 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4165 return 1; 4166 4167 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 4168 break; 4169 case MSR_KVM_ASYNC_PF_EN: 4170 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4171 return 1; 4172 4173 if (kvm_pv_enable_async_pf(vcpu, data)) 4174 return 1; 4175 break; 4176 case MSR_KVM_ASYNC_PF_INT: 4177 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4178 return 1; 4179 4180 if (kvm_pv_enable_async_pf_int(vcpu, data)) 4181 return 1; 4182 break; 4183 case MSR_KVM_ASYNC_PF_ACK: 4184 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4185 return 1; 4186 if (data & 0x1) { 4187 vcpu->arch.apf.pageready_pending = false; 4188 kvm_check_async_pf_completion(vcpu); 4189 } 4190 break; 4191 case MSR_KVM_STEAL_TIME: 4192 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4193 return 1; 4194 4195 if (unlikely(!sched_info_on())) 4196 return 1; 4197 4198 if (data & KVM_STEAL_RESERVED_MASK) 4199 return 1; 4200 4201 vcpu->arch.st.msr_val = data; 4202 4203 if (!(data & KVM_MSR_ENABLED)) 4204 break; 4205 4206 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4207 4208 break; 4209 case MSR_KVM_PV_EOI_EN: 4210 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4211 return 1; 4212 4213 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 4214 return 1; 4215 break; 4216 4217 case MSR_KVM_POLL_CONTROL: 4218 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4219 return 1; 4220 4221 /* only enable bit supported */ 4222 if (data & (-1ULL << 1)) 4223 return 1; 4224 4225 vcpu->arch.msr_kvm_poll_control = data; 4226 break; 4227 4228 case MSR_IA32_MCG_CTL: 4229 case MSR_IA32_MCG_STATUS: 4230 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4231 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4232 return set_msr_mce(vcpu, msr_info); 4233 4234 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4235 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4236 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4237 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4238 if (kvm_pmu_is_valid_msr(vcpu, msr)) 4239 return kvm_pmu_set_msr(vcpu, msr_info); 4240 4241 if (data) 4242 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 4243 break; 4244 case MSR_K7_CLK_CTL: 4245 /* 4246 * Ignore all writes to this no longer documented MSR. 4247 * Writes are only relevant for old K7 processors, 4248 * all pre-dating SVM, but a recommended workaround from 4249 * AMD for these chips. It is possible to specify the 4250 * affected processor models on the command line, hence 4251 * the need to ignore the workaround. 4252 */ 4253 break; 4254 #ifdef CONFIG_KVM_HYPERV 4255 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4256 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4257 case HV_X64_MSR_SYNDBG_OPTIONS: 4258 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4259 case HV_X64_MSR_CRASH_CTL: 4260 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4261 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4262 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4263 case HV_X64_MSR_TSC_EMULATION_STATUS: 4264 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4265 return kvm_hv_set_msr_common(vcpu, msr, data, 4266 msr_info->host_initiated); 4267 #endif 4268 case MSR_IA32_BBL_CR_CTL3: 4269 /* Drop writes to this legacy MSR -- see rdmsr 4270 * counterpart for further detail. 4271 */ 4272 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 4273 break; 4274 case MSR_AMD64_OSVW_ID_LENGTH: 4275 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW)) 4276 return 1; 4277 vcpu->arch.osvw.length = data; 4278 break; 4279 case MSR_AMD64_OSVW_STATUS: 4280 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW)) 4281 return 1; 4282 vcpu->arch.osvw.status = data; 4283 break; 4284 case MSR_PLATFORM_INFO: 4285 if (!msr_info->host_initiated) 4286 return 1; 4287 vcpu->arch.msr_platform_info = data; 4288 break; 4289 case MSR_MISC_FEATURES_ENABLES: 4290 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 4291 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 4292 !supports_cpuid_fault(vcpu))) 4293 return 1; 4294 vcpu->arch.msr_misc_features_enables = data; 4295 break; 4296 #ifdef CONFIG_X86_64 4297 case MSR_IA32_XFD: 4298 if (!msr_info->host_initiated && 4299 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD)) 4300 return 1; 4301 4302 if (data & ~kvm_guest_supported_xfd(vcpu)) 4303 return 1; 4304 4305 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 4306 break; 4307 case MSR_IA32_XFD_ERR: 4308 if (!msr_info->host_initiated && 4309 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD)) 4310 return 1; 4311 4312 if (data & ~kvm_guest_supported_xfd(vcpu)) 4313 return 1; 4314 4315 vcpu->arch.guest_fpu.xfd_err = data; 4316 break; 4317 #endif 4318 case MSR_IA32_U_CET: 4319 case MSR_IA32_PL0_SSP ... MSR_IA32_PL3_SSP: 4320 kvm_set_xstate_msr(vcpu, msr_info); 4321 break; 4322 default: 4323 if (kvm_pmu_is_valid_msr(vcpu, msr)) 4324 return kvm_pmu_set_msr(vcpu, msr_info); 4325 4326 return KVM_MSR_RET_UNSUPPORTED; 4327 } 4328 return 0; 4329 } 4330 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_msr_common); 4331 4332 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 4333 { 4334 u64 data; 4335 u64 mcg_cap = vcpu->arch.mcg_cap; 4336 unsigned bank_num = mcg_cap & 0xff; 4337 u32 offset, last_msr; 4338 4339 switch (msr) { 4340 case MSR_IA32_P5_MC_ADDR: 4341 case MSR_IA32_P5_MC_TYPE: 4342 data = 0; 4343 break; 4344 case MSR_IA32_MCG_CAP: 4345 data = vcpu->arch.mcg_cap; 4346 break; 4347 case MSR_IA32_MCG_CTL: 4348 if (!(mcg_cap & MCG_CTL_P) && !host) 4349 return 1; 4350 data = vcpu->arch.mcg_ctl; 4351 break; 4352 case MSR_IA32_MCG_STATUS: 4353 data = vcpu->arch.mcg_status; 4354 break; 4355 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4356 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 4357 if (msr > last_msr) 4358 return 1; 4359 4360 if (!(mcg_cap & MCG_CMCI_P) && !host) 4361 return 1; 4362 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 4363 last_msr + 1 - MSR_IA32_MC0_CTL2); 4364 data = vcpu->arch.mci_ctl2_banks[offset]; 4365 break; 4366 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4367 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 4368 if (msr > last_msr) 4369 return 1; 4370 4371 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 4372 last_msr + 1 - MSR_IA32_MC0_CTL); 4373 data = vcpu->arch.mce_banks[offset]; 4374 break; 4375 default: 4376 return 1; 4377 } 4378 *pdata = data; 4379 return 0; 4380 } 4381 4382 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 4383 { 4384 switch (msr_info->index) { 4385 case MSR_IA32_PLATFORM_ID: 4386 case MSR_IA32_EBL_CR_POWERON: 4387 case MSR_IA32_LASTBRANCHFROMIP: 4388 case MSR_IA32_LASTBRANCHTOIP: 4389 case MSR_IA32_LASTINTFROMIP: 4390 case MSR_IA32_LASTINTTOIP: 4391 case MSR_AMD64_SYSCFG: 4392 case MSR_K8_TSEG_ADDR: 4393 case MSR_K8_TSEG_MASK: 4394 case MSR_VM_HSAVE_PA: 4395 case MSR_K8_INT_PENDING_MSG: 4396 case MSR_AMD64_NB_CFG: 4397 case MSR_FAM10H_MMIO_CONF_BASE: 4398 case MSR_AMD64_BU_CFG2: 4399 case MSR_IA32_PERF_CTL: 4400 case MSR_AMD64_DC_CFG: 4401 case MSR_AMD64_TW_CFG: 4402 case MSR_F15H_EX_CFG: 4403 /* 4404 * Intel Sandy Bridge CPUs must support the RAPL (running average power 4405 * limit) MSRs. Just return 0, as we do not want to expose the host 4406 * data here. Do not conditionalize this on CPUID, as KVM does not do 4407 * so for existing CPU-specific MSRs. 4408 */ 4409 case MSR_RAPL_POWER_UNIT: 4410 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 4411 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 4412 case MSR_PKG_ENERGY_STATUS: /* Total package */ 4413 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 4414 msr_info->data = 0; 4415 break; 4416 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4417 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4418 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4419 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4420 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4421 return kvm_pmu_get_msr(vcpu, msr_info); 4422 msr_info->data = 0; 4423 break; 4424 case MSR_IA32_UCODE_REV: 4425 msr_info->data = vcpu->arch.microcode_version; 4426 break; 4427 case MSR_IA32_ARCH_CAPABILITIES: 4428 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4429 return KVM_MSR_RET_UNSUPPORTED; 4430 msr_info->data = vcpu->arch.arch_capabilities; 4431 break; 4432 case MSR_IA32_PERF_CAPABILITIES: 4433 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM)) 4434 return KVM_MSR_RET_UNSUPPORTED; 4435 msr_info->data = vcpu->arch.perf_capabilities; 4436 break; 4437 case MSR_IA32_POWER_CTL: 4438 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4439 break; 4440 case MSR_IA32_TSC: { 4441 /* 4442 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4443 * even when not intercepted. AMD manual doesn't explicitly 4444 * state this but appears to behave the same. 4445 * 4446 * On userspace reads and writes, however, we unconditionally 4447 * return L1's TSC value to ensure backwards-compatible 4448 * behavior for migration. 4449 */ 4450 u64 offset, ratio; 4451 4452 if (msr_info->host_initiated) { 4453 offset = vcpu->arch.l1_tsc_offset; 4454 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4455 } else { 4456 offset = vcpu->arch.tsc_offset; 4457 ratio = vcpu->arch.tsc_scaling_ratio; 4458 } 4459 4460 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4461 break; 4462 } 4463 case MSR_IA32_CR_PAT: 4464 msr_info->data = vcpu->arch.pat; 4465 break; 4466 case MSR_MTRRcap: 4467 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 4468 case MSR_MTRRdefType: 4469 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4470 case 0xcd: /* fsb frequency */ 4471 msr_info->data = 3; 4472 break; 4473 /* 4474 * MSR_EBC_FREQUENCY_ID 4475 * Conservative value valid for even the basic CPU models. 4476 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4477 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4478 * and 266MHz for model 3, or 4. Set Core Clock 4479 * Frequency to System Bus Frequency Ratio to 1 (bits 4480 * 31:24) even though these are only valid for CPU 4481 * models > 2, however guests may end up dividing or 4482 * multiplying by zero otherwise. 4483 */ 4484 case MSR_EBC_FREQUENCY_ID: 4485 msr_info->data = 1 << 24; 4486 break; 4487 case MSR_IA32_APICBASE: 4488 msr_info->data = vcpu->arch.apic_base; 4489 break; 4490 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4491 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4492 case MSR_IA32_TSC_DEADLINE: 4493 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4494 break; 4495 case MSR_IA32_TSC_ADJUST: 4496 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4497 break; 4498 case MSR_IA32_MISC_ENABLE: 4499 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4500 break; 4501 case MSR_IA32_SMBASE: 4502 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4503 return 1; 4504 msr_info->data = vcpu->arch.smbase; 4505 break; 4506 case MSR_SMI_COUNT: 4507 msr_info->data = vcpu->arch.smi_count; 4508 break; 4509 case MSR_IA32_PERF_STATUS: 4510 /* TSC increment by tick */ 4511 msr_info->data = 1000ULL; 4512 /* CPU multiplier */ 4513 msr_info->data |= (((uint64_t)4ULL) << 40); 4514 break; 4515 case MSR_EFER: 4516 msr_info->data = vcpu->arch.efer; 4517 break; 4518 case MSR_KVM_WALL_CLOCK: 4519 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4520 return 1; 4521 4522 msr_info->data = vcpu->kvm->arch.wall_clock; 4523 break; 4524 case MSR_KVM_WALL_CLOCK_NEW: 4525 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4526 return 1; 4527 4528 msr_info->data = vcpu->kvm->arch.wall_clock; 4529 break; 4530 case MSR_KVM_SYSTEM_TIME: 4531 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4532 return 1; 4533 4534 msr_info->data = vcpu->arch.time; 4535 break; 4536 case MSR_KVM_SYSTEM_TIME_NEW: 4537 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4538 return 1; 4539 4540 msr_info->data = vcpu->arch.time; 4541 break; 4542 case MSR_KVM_ASYNC_PF_EN: 4543 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4544 return 1; 4545 4546 msr_info->data = vcpu->arch.apf.msr_en_val; 4547 break; 4548 case MSR_KVM_ASYNC_PF_INT: 4549 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4550 return 1; 4551 4552 msr_info->data = vcpu->arch.apf.msr_int_val; 4553 break; 4554 case MSR_KVM_ASYNC_PF_ACK: 4555 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4556 return 1; 4557 4558 msr_info->data = 0; 4559 break; 4560 case MSR_KVM_STEAL_TIME: 4561 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4562 return 1; 4563 4564 msr_info->data = vcpu->arch.st.msr_val; 4565 break; 4566 case MSR_KVM_PV_EOI_EN: 4567 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4568 return 1; 4569 4570 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4571 break; 4572 case MSR_KVM_POLL_CONTROL: 4573 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4574 return 1; 4575 4576 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4577 break; 4578 case MSR_IA32_P5_MC_ADDR: 4579 case MSR_IA32_P5_MC_TYPE: 4580 case MSR_IA32_MCG_CAP: 4581 case MSR_IA32_MCG_CTL: 4582 case MSR_IA32_MCG_STATUS: 4583 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4584 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4585 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4586 msr_info->host_initiated); 4587 case MSR_IA32_XSS: 4588 if (!msr_info->host_initiated && 4589 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4590 return 1; 4591 msr_info->data = vcpu->arch.ia32_xss; 4592 break; 4593 case MSR_K7_CLK_CTL: 4594 /* 4595 * Provide expected ramp-up count for K7. All other 4596 * are set to zero, indicating minimum divisors for 4597 * every field. 4598 * 4599 * This prevents guest kernels on AMD host with CPU 4600 * type 6, model 8 and higher from exploding due to 4601 * the rdmsr failing. 4602 */ 4603 msr_info->data = 0x20000000; 4604 break; 4605 #ifdef CONFIG_KVM_HYPERV 4606 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4607 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4608 case HV_X64_MSR_SYNDBG_OPTIONS: 4609 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4610 case HV_X64_MSR_CRASH_CTL: 4611 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4612 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4613 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4614 case HV_X64_MSR_TSC_EMULATION_STATUS: 4615 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4616 return kvm_hv_get_msr_common(vcpu, 4617 msr_info->index, &msr_info->data, 4618 msr_info->host_initiated); 4619 #endif 4620 case MSR_IA32_BBL_CR_CTL3: 4621 /* This legacy MSR exists but isn't fully documented in current 4622 * silicon. It is however accessed by winxp in very narrow 4623 * scenarios where it sets bit #19, itself documented as 4624 * a "reserved" bit. Best effort attempt to source coherent 4625 * read data here should the balance of the register be 4626 * interpreted by the guest: 4627 * 4628 * L2 cache control register 3: 64GB range, 256KB size, 4629 * enabled, latency 0x1, configured 4630 */ 4631 msr_info->data = 0xbe702111; 4632 break; 4633 case MSR_AMD64_OSVW_ID_LENGTH: 4634 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW)) 4635 return 1; 4636 msr_info->data = vcpu->arch.osvw.length; 4637 break; 4638 case MSR_AMD64_OSVW_STATUS: 4639 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW)) 4640 return 1; 4641 msr_info->data = vcpu->arch.osvw.status; 4642 break; 4643 case MSR_PLATFORM_INFO: 4644 if (!msr_info->host_initiated && 4645 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4646 return 1; 4647 msr_info->data = vcpu->arch.msr_platform_info; 4648 break; 4649 case MSR_MISC_FEATURES_ENABLES: 4650 msr_info->data = vcpu->arch.msr_misc_features_enables; 4651 break; 4652 case MSR_K7_HWCR: 4653 msr_info->data = vcpu->arch.msr_hwcr; 4654 break; 4655 #ifdef CONFIG_X86_64 4656 case MSR_IA32_XFD: 4657 if (!msr_info->host_initiated && 4658 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD)) 4659 return 1; 4660 4661 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4662 break; 4663 case MSR_IA32_XFD_ERR: 4664 if (!msr_info->host_initiated && 4665 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD)) 4666 return 1; 4667 4668 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4669 break; 4670 #endif 4671 case MSR_IA32_U_CET: 4672 case MSR_IA32_PL0_SSP ... MSR_IA32_PL3_SSP: 4673 kvm_get_xstate_msr(vcpu, msr_info); 4674 break; 4675 default: 4676 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4677 return kvm_pmu_get_msr(vcpu, msr_info); 4678 4679 return KVM_MSR_RET_UNSUPPORTED; 4680 } 4681 return 0; 4682 } 4683 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_msr_common); 4684 4685 /* 4686 * Read or write a bunch of msrs. All parameters are kernel addresses. 4687 * 4688 * @return number of msrs set successfully. 4689 */ 4690 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4691 struct kvm_msr_entry *entries, 4692 int (*do_msr)(struct kvm_vcpu *vcpu, 4693 unsigned index, u64 *data)) 4694 { 4695 bool fpu_loaded = false; 4696 int i; 4697 4698 for (i = 0; i < msrs->nmsrs; ++i) { 4699 /* 4700 * If userspace is accessing one or more XSTATE-managed MSRs, 4701 * temporarily load the guest's FPU state so that the guest's 4702 * MSR value(s) is resident in hardware and thus can be accessed 4703 * via RDMSR/WRMSR. 4704 */ 4705 if (!fpu_loaded && is_xstate_managed_msr(vcpu, entries[i].index)) { 4706 kvm_load_guest_fpu(vcpu); 4707 fpu_loaded = true; 4708 } 4709 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4710 break; 4711 } 4712 if (fpu_loaded) 4713 kvm_put_guest_fpu(vcpu); 4714 4715 return i; 4716 } 4717 4718 /* 4719 * Read or write a bunch of msrs. Parameters are user addresses. 4720 * 4721 * @return number of msrs set successfully. 4722 */ 4723 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4724 int (*do_msr)(struct kvm_vcpu *vcpu, 4725 unsigned index, u64 *data), 4726 int writeback) 4727 { 4728 struct kvm_msrs msrs; 4729 struct kvm_msr_entry *entries; 4730 unsigned size; 4731 int r; 4732 4733 r = -EFAULT; 4734 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4735 goto out; 4736 4737 r = -E2BIG; 4738 if (msrs.nmsrs >= MAX_IO_MSRS) 4739 goto out; 4740 4741 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4742 entries = memdup_user(user_msrs->entries, size); 4743 if (IS_ERR(entries)) { 4744 r = PTR_ERR(entries); 4745 goto out; 4746 } 4747 4748 r = __msr_io(vcpu, &msrs, entries, do_msr); 4749 4750 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4751 r = -EFAULT; 4752 4753 kfree(entries); 4754 out: 4755 return r; 4756 } 4757 4758 static inline bool kvm_can_mwait_in_guest(void) 4759 { 4760 return boot_cpu_has(X86_FEATURE_MWAIT) && 4761 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4762 boot_cpu_has(X86_FEATURE_ARAT); 4763 } 4764 4765 static u64 kvm_get_allowed_disable_exits(void) 4766 { 4767 u64 r = KVM_X86_DISABLE_EXITS_PAUSE; 4768 4769 if (boot_cpu_has(X86_FEATURE_APERFMPERF)) 4770 r |= KVM_X86_DISABLE_EXITS_APERFMPERF; 4771 4772 if (!mitigate_smt_rsb) { 4773 r |= KVM_X86_DISABLE_EXITS_HLT | 4774 KVM_X86_DISABLE_EXITS_CSTATE; 4775 4776 if (kvm_can_mwait_in_guest()) 4777 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4778 } 4779 return r; 4780 } 4781 4782 #ifdef CONFIG_KVM_HYPERV 4783 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4784 struct kvm_cpuid2 __user *cpuid_arg) 4785 { 4786 struct kvm_cpuid2 cpuid; 4787 int r; 4788 4789 r = -EFAULT; 4790 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4791 return r; 4792 4793 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4794 if (r) 4795 return r; 4796 4797 r = -EFAULT; 4798 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4799 return r; 4800 4801 return 0; 4802 } 4803 #endif 4804 4805 static bool kvm_is_vm_type_supported(unsigned long type) 4806 { 4807 return type < 32 && (kvm_caps.supported_vm_types & BIT(type)); 4808 } 4809 4810 static inline u64 kvm_sync_valid_fields(struct kvm *kvm) 4811 { 4812 return kvm && kvm->arch.has_protected_state ? 0 : KVM_SYNC_X86_VALID_FIELDS; 4813 } 4814 4815 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4816 { 4817 int r = 0; 4818 4819 switch (ext) { 4820 case KVM_CAP_IRQCHIP: 4821 case KVM_CAP_HLT: 4822 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4823 case KVM_CAP_SET_TSS_ADDR: 4824 case KVM_CAP_EXT_CPUID: 4825 case KVM_CAP_EXT_EMUL_CPUID: 4826 case KVM_CAP_CLOCKSOURCE: 4827 #ifdef CONFIG_KVM_IOAPIC 4828 case KVM_CAP_PIT: 4829 case KVM_CAP_PIT2: 4830 case KVM_CAP_PIT_STATE2: 4831 case KVM_CAP_REINJECT_CONTROL: 4832 #endif 4833 case KVM_CAP_NOP_IO_DELAY: 4834 case KVM_CAP_MP_STATE: 4835 case KVM_CAP_SYNC_MMU: 4836 case KVM_CAP_USER_NMI: 4837 case KVM_CAP_IRQ_INJECT_STATUS: 4838 case KVM_CAP_IOEVENTFD: 4839 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4840 4841 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4842 case KVM_CAP_VCPU_EVENTS: 4843 #ifdef CONFIG_KVM_HYPERV 4844 case KVM_CAP_HYPERV: 4845 case KVM_CAP_HYPERV_VAPIC: 4846 case KVM_CAP_HYPERV_SPIN: 4847 case KVM_CAP_HYPERV_TIME: 4848 case KVM_CAP_HYPERV_SYNIC: 4849 case KVM_CAP_HYPERV_SYNIC2: 4850 case KVM_CAP_HYPERV_VP_INDEX: 4851 case KVM_CAP_HYPERV_EVENTFD: 4852 case KVM_CAP_HYPERV_TLBFLUSH: 4853 case KVM_CAP_HYPERV_SEND_IPI: 4854 case KVM_CAP_HYPERV_CPUID: 4855 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4856 case KVM_CAP_SYS_HYPERV_CPUID: 4857 #endif 4858 case KVM_CAP_PCI_SEGMENT: 4859 case KVM_CAP_DEBUGREGS: 4860 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4861 case KVM_CAP_XSAVE: 4862 case KVM_CAP_ASYNC_PF: 4863 case KVM_CAP_ASYNC_PF_INT: 4864 case KVM_CAP_GET_TSC_KHZ: 4865 case KVM_CAP_KVMCLOCK_CTRL: 4866 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4867 case KVM_CAP_TSC_DEADLINE_TIMER: 4868 case KVM_CAP_DISABLE_QUIRKS: 4869 case KVM_CAP_SET_BOOT_CPU_ID: 4870 case KVM_CAP_SPLIT_IRQCHIP: 4871 case KVM_CAP_IMMEDIATE_EXIT: 4872 case KVM_CAP_PMU_EVENT_FILTER: 4873 case KVM_CAP_PMU_EVENT_MASKED_EVENTS: 4874 case KVM_CAP_GET_MSR_FEATURES: 4875 case KVM_CAP_MSR_PLATFORM_INFO: 4876 case KVM_CAP_EXCEPTION_PAYLOAD: 4877 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4878 case KVM_CAP_SET_GUEST_DEBUG: 4879 case KVM_CAP_LAST_CPU: 4880 case KVM_CAP_X86_USER_SPACE_MSR: 4881 case KVM_CAP_X86_MSR_FILTER: 4882 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4883 #ifdef CONFIG_X86_SGX_KVM 4884 case KVM_CAP_SGX_ATTRIBUTE: 4885 #endif 4886 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4887 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4888 case KVM_CAP_SREGS2: 4889 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4890 case KVM_CAP_VCPU_ATTRIBUTES: 4891 case KVM_CAP_SYS_ATTRIBUTES: 4892 case KVM_CAP_VAPIC: 4893 case KVM_CAP_ENABLE_CAP: 4894 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4895 case KVM_CAP_IRQFD_RESAMPLE: 4896 case KVM_CAP_MEMORY_FAULT_INFO: 4897 case KVM_CAP_X86_GUEST_MODE: 4898 case KVM_CAP_ONE_REG: 4899 r = 1; 4900 break; 4901 case KVM_CAP_PRE_FAULT_MEMORY: 4902 r = tdp_enabled; 4903 break; 4904 case KVM_CAP_X86_APIC_BUS_CYCLES_NS: 4905 r = APIC_BUS_CYCLE_NS_DEFAULT; 4906 break; 4907 case KVM_CAP_EXIT_HYPERCALL: 4908 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4909 break; 4910 case KVM_CAP_SET_GUEST_DEBUG2: 4911 return KVM_GUESTDBG_VALID_MASK; 4912 #ifdef CONFIG_KVM_XEN 4913 case KVM_CAP_XEN_HVM: 4914 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4915 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4916 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4917 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4918 KVM_XEN_HVM_CONFIG_EVTCHN_SEND | 4919 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE | 4920 KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA; 4921 if (sched_info_on()) 4922 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4923 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4924 break; 4925 #endif 4926 case KVM_CAP_SYNC_REGS: 4927 r = kvm_sync_valid_fields(kvm); 4928 break; 4929 case KVM_CAP_ADJUST_CLOCK: 4930 r = KVM_CLOCK_VALID_FLAGS; 4931 break; 4932 case KVM_CAP_X86_DISABLE_EXITS: 4933 r = kvm_get_allowed_disable_exits(); 4934 break; 4935 case KVM_CAP_X86_SMM: 4936 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4937 break; 4938 4939 /* SMBASE is usually relocated above 1M on modern chipsets, 4940 * and SMM handlers might indeed rely on 4G segment limits, 4941 * so do not report SMM to be available if real mode is 4942 * emulated via vm86 mode. Still, do not go to great lengths 4943 * to avoid userspace's usage of the feature, because it is a 4944 * fringe case that is not enabled except via specific settings 4945 * of the module parameters. 4946 */ 4947 r = kvm_x86_call(has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4948 break; 4949 case KVM_CAP_NR_VCPUS: 4950 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4951 break; 4952 case KVM_CAP_MAX_VCPUS: 4953 r = KVM_MAX_VCPUS; 4954 if (kvm) 4955 r = kvm->max_vcpus; 4956 break; 4957 case KVM_CAP_MAX_VCPU_ID: 4958 r = KVM_MAX_VCPU_IDS; 4959 break; 4960 case KVM_CAP_PV_MMU: /* obsolete */ 4961 r = 0; 4962 break; 4963 case KVM_CAP_MCE: 4964 r = KVM_MAX_MCE_BANKS; 4965 break; 4966 case KVM_CAP_XCRS: 4967 r = boot_cpu_has(X86_FEATURE_XSAVE); 4968 break; 4969 case KVM_CAP_TSC_CONTROL: 4970 case KVM_CAP_VM_TSC_CONTROL: 4971 r = kvm_caps.has_tsc_control; 4972 break; 4973 case KVM_CAP_X2APIC_API: 4974 r = KVM_X2APIC_API_VALID_FLAGS; 4975 break; 4976 case KVM_CAP_NESTED_STATE: 4977 r = kvm_x86_ops.nested_ops->get_state ? 4978 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4979 break; 4980 #ifdef CONFIG_KVM_HYPERV 4981 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4982 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4983 break; 4984 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4985 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4986 break; 4987 #endif 4988 case KVM_CAP_SMALLER_MAXPHYADDR: 4989 r = (int) allow_smaller_maxphyaddr; 4990 break; 4991 case KVM_CAP_STEAL_TIME: 4992 r = sched_info_on(); 4993 break; 4994 case KVM_CAP_X86_BUS_LOCK_EXIT: 4995 if (kvm_caps.has_bus_lock_exit) 4996 r = KVM_BUS_LOCK_DETECTION_OFF | 4997 KVM_BUS_LOCK_DETECTION_EXIT; 4998 else 4999 r = 0; 5000 break; 5001 case KVM_CAP_XSAVE2: { 5002 r = xstate_required_size(kvm_get_filtered_xcr0(), false); 5003 if (r < sizeof(struct kvm_xsave)) 5004 r = sizeof(struct kvm_xsave); 5005 break; 5006 } 5007 case KVM_CAP_PMU_CAPABILITY: 5008 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 5009 break; 5010 case KVM_CAP_DISABLE_QUIRKS2: 5011 r = kvm_caps.supported_quirks; 5012 break; 5013 case KVM_CAP_X86_NOTIFY_VMEXIT: 5014 r = kvm_caps.has_notify_vmexit; 5015 break; 5016 case KVM_CAP_VM_TYPES: 5017 r = kvm_caps.supported_vm_types; 5018 break; 5019 case KVM_CAP_READONLY_MEM: 5020 r = kvm ? kvm_arch_has_readonly_mem(kvm) : 1; 5021 break; 5022 default: 5023 break; 5024 } 5025 return r; 5026 } 5027 5028 static int __kvm_x86_dev_get_attr(struct kvm_device_attr *attr, u64 *val) 5029 { 5030 if (attr->group) { 5031 if (kvm_x86_ops.dev_get_attr) 5032 return kvm_x86_call(dev_get_attr)(attr->group, attr->attr, val); 5033 return -ENXIO; 5034 } 5035 5036 switch (attr->attr) { 5037 case KVM_X86_XCOMP_GUEST_SUPP: 5038 *val = kvm_caps.supported_xcr0; 5039 return 0; 5040 default: 5041 return -ENXIO; 5042 } 5043 } 5044 5045 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 5046 { 5047 u64 __user *uaddr = u64_to_user_ptr(attr->addr); 5048 int r; 5049 u64 val; 5050 5051 r = __kvm_x86_dev_get_attr(attr, &val); 5052 if (r < 0) 5053 return r; 5054 5055 if (put_user(val, uaddr)) 5056 return -EFAULT; 5057 5058 return 0; 5059 } 5060 5061 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 5062 { 5063 u64 val; 5064 5065 return __kvm_x86_dev_get_attr(attr, &val); 5066 } 5067 5068 long kvm_arch_dev_ioctl(struct file *filp, 5069 unsigned int ioctl, unsigned long arg) 5070 { 5071 void __user *argp = (void __user *)arg; 5072 long r; 5073 5074 switch (ioctl) { 5075 case KVM_GET_MSR_INDEX_LIST: { 5076 struct kvm_msr_list __user *user_msr_list = argp; 5077 struct kvm_msr_list msr_list; 5078 unsigned n; 5079 5080 r = -EFAULT; 5081 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 5082 goto out; 5083 n = msr_list.nmsrs; 5084 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 5085 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 5086 goto out; 5087 r = -E2BIG; 5088 if (n < msr_list.nmsrs) 5089 goto out; 5090 r = -EFAULT; 5091 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 5092 num_msrs_to_save * sizeof(u32))) 5093 goto out; 5094 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 5095 &emulated_msrs, 5096 num_emulated_msrs * sizeof(u32))) 5097 goto out; 5098 r = 0; 5099 break; 5100 } 5101 case KVM_GET_SUPPORTED_CPUID: 5102 case KVM_GET_EMULATED_CPUID: { 5103 struct kvm_cpuid2 __user *cpuid_arg = argp; 5104 struct kvm_cpuid2 cpuid; 5105 5106 r = -EFAULT; 5107 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5108 goto out; 5109 5110 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 5111 ioctl); 5112 if (r) 5113 goto out; 5114 5115 r = -EFAULT; 5116 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5117 goto out; 5118 r = 0; 5119 break; 5120 } 5121 case KVM_X86_GET_MCE_CAP_SUPPORTED: 5122 r = -EFAULT; 5123 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 5124 sizeof(kvm_caps.supported_mce_cap))) 5125 goto out; 5126 r = 0; 5127 break; 5128 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 5129 struct kvm_msr_list __user *user_msr_list = argp; 5130 struct kvm_msr_list msr_list; 5131 unsigned int n; 5132 5133 r = -EFAULT; 5134 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 5135 goto out; 5136 n = msr_list.nmsrs; 5137 msr_list.nmsrs = num_msr_based_features; 5138 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 5139 goto out; 5140 r = -E2BIG; 5141 if (n < msr_list.nmsrs) 5142 goto out; 5143 r = -EFAULT; 5144 if (copy_to_user(user_msr_list->indices, &msr_based_features, 5145 num_msr_based_features * sizeof(u32))) 5146 goto out; 5147 r = 0; 5148 break; 5149 } 5150 case KVM_GET_MSRS: 5151 r = msr_io(NULL, argp, do_get_feature_msr, 1); 5152 break; 5153 #ifdef CONFIG_KVM_HYPERV 5154 case KVM_GET_SUPPORTED_HV_CPUID: 5155 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 5156 break; 5157 #endif 5158 case KVM_GET_DEVICE_ATTR: { 5159 struct kvm_device_attr attr; 5160 r = -EFAULT; 5161 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 5162 break; 5163 r = kvm_x86_dev_get_attr(&attr); 5164 break; 5165 } 5166 case KVM_HAS_DEVICE_ATTR: { 5167 struct kvm_device_attr attr; 5168 r = -EFAULT; 5169 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 5170 break; 5171 r = kvm_x86_dev_has_attr(&attr); 5172 break; 5173 } 5174 default: 5175 r = -EINVAL; 5176 break; 5177 } 5178 out: 5179 return r; 5180 } 5181 5182 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 5183 { 5184 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 5185 } 5186 5187 static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu); 5188 5189 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 5190 { 5191 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 5192 5193 vcpu->arch.l1tf_flush_l1d = true; 5194 5195 if (vcpu->scheduled_out && pmu->version && pmu->event_count) { 5196 pmu->need_cleanup = true; 5197 kvm_make_request(KVM_REQ_PMU, vcpu); 5198 } 5199 5200 /* Address WBINVD may be executed by guest */ 5201 if (need_emulate_wbinvd(vcpu)) { 5202 if (kvm_x86_call(has_wbinvd_exit)()) 5203 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 5204 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 5205 wbinvd_on_cpu(vcpu->cpu); 5206 } 5207 5208 kvm_x86_call(vcpu_load)(vcpu, cpu); 5209 5210 if (vcpu != per_cpu(last_vcpu, cpu)) { 5211 /* 5212 * Flush the branch predictor when switching vCPUs on the same 5213 * physical CPU, as each vCPU needs its own branch prediction 5214 * domain. No IBPB is needed when switching between L1 and L2 5215 * on the same vCPU unless IBRS is advertised to the vCPU; that 5216 * is handled on the nested VM-Exit path. 5217 */ 5218 if (static_branch_likely(&switch_vcpu_ibpb)) 5219 indirect_branch_prediction_barrier(); 5220 per_cpu(last_vcpu, cpu) = vcpu; 5221 } 5222 5223 /* Save host pkru register if supported */ 5224 vcpu->arch.host_pkru = read_pkru(); 5225 5226 /* Apply any externally detected TSC adjustments (due to suspend) */ 5227 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 5228 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 5229 vcpu->arch.tsc_offset_adjustment = 0; 5230 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5231 } 5232 5233 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 5234 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 5235 rdtsc() - vcpu->arch.last_host_tsc; 5236 if (tsc_delta < 0) 5237 mark_tsc_unstable("KVM discovered backwards TSC"); 5238 5239 if (kvm_check_tsc_unstable()) { 5240 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 5241 vcpu->arch.last_guest_tsc); 5242 kvm_vcpu_write_tsc_offset(vcpu, offset); 5243 if (!vcpu->arch.guest_tsc_protected) 5244 vcpu->arch.tsc_catchup = 1; 5245 } 5246 5247 if (kvm_lapic_hv_timer_in_use(vcpu)) 5248 kvm_lapic_restart_hv_timer(vcpu); 5249 5250 /* 5251 * On a host with synchronized TSC, there is no need to update 5252 * kvmclock on vcpu->cpu migration 5253 */ 5254 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 5255 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 5256 if (vcpu->cpu != cpu) 5257 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 5258 vcpu->cpu = cpu; 5259 } 5260 5261 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 5262 } 5263 5264 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 5265 { 5266 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 5267 struct kvm_steal_time __user *st; 5268 struct kvm_memslots *slots; 5269 static const u8 preempted = KVM_VCPU_PREEMPTED; 5270 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 5271 5272 /* 5273 * The vCPU can be marked preempted if and only if the VM-Exit was on 5274 * an instruction boundary and will not trigger guest emulation of any 5275 * kind (see vcpu_run). Vendor specific code controls (conservatively) 5276 * when this is true, for example allowing the vCPU to be marked 5277 * preempted if and only if the VM-Exit was due to a host interrupt. 5278 */ 5279 if (!vcpu->arch.at_instruction_boundary) { 5280 vcpu->stat.preemption_other++; 5281 return; 5282 } 5283 5284 vcpu->stat.preemption_reported++; 5285 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 5286 return; 5287 5288 if (vcpu->arch.st.preempted) 5289 return; 5290 5291 /* This happens on process exit */ 5292 if (unlikely(current->mm != vcpu->kvm->mm)) 5293 return; 5294 5295 slots = kvm_memslots(vcpu->kvm); 5296 5297 if (unlikely(slots->generation != ghc->generation || 5298 gpa != ghc->gpa || 5299 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 5300 return; 5301 5302 st = (struct kvm_steal_time __user *)ghc->hva; 5303 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 5304 5305 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 5306 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 5307 5308 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 5309 } 5310 5311 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 5312 { 5313 int idx; 5314 5315 if (vcpu->preempted) { 5316 /* 5317 * Assume protected guests are in-kernel. Inefficient yielding 5318 * due to false positives is preferable to never yielding due 5319 * to false negatives. 5320 */ 5321 vcpu->arch.preempted_in_kernel = vcpu->arch.guest_state_protected || 5322 !kvm_x86_call(get_cpl_no_cache)(vcpu); 5323 5324 /* 5325 * Take the srcu lock as memslots will be accessed to check the gfn 5326 * cache generation against the memslots generation. 5327 */ 5328 idx = srcu_read_lock(&vcpu->kvm->srcu); 5329 if (kvm_xen_msr_enabled(vcpu->kvm)) 5330 kvm_xen_runstate_set_preempted(vcpu); 5331 else 5332 kvm_steal_time_set_preempted(vcpu); 5333 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5334 } 5335 5336 kvm_x86_call(vcpu_put)(vcpu); 5337 vcpu->arch.last_host_tsc = rdtsc(); 5338 } 5339 5340 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 5341 struct kvm_lapic_state *s) 5342 { 5343 if (vcpu->arch.apic->guest_apic_protected) 5344 return -EINVAL; 5345 5346 kvm_x86_call(sync_pir_to_irr)(vcpu); 5347 5348 return kvm_apic_get_state(vcpu, s); 5349 } 5350 5351 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 5352 struct kvm_lapic_state *s) 5353 { 5354 int r; 5355 5356 if (vcpu->arch.apic->guest_apic_protected) 5357 return -EINVAL; 5358 5359 r = kvm_apic_set_state(vcpu, s); 5360 if (r) 5361 return r; 5362 update_cr8_intercept(vcpu); 5363 5364 return 0; 5365 } 5366 5367 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 5368 { 5369 /* 5370 * We can accept userspace's request for interrupt injection 5371 * as long as we have a place to store the interrupt number. 5372 * The actual injection will happen when the CPU is able to 5373 * deliver the interrupt. 5374 */ 5375 if (kvm_cpu_has_extint(vcpu)) 5376 return false; 5377 5378 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 5379 return (!lapic_in_kernel(vcpu) || 5380 kvm_apic_accept_pic_intr(vcpu)); 5381 } 5382 5383 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 5384 { 5385 /* 5386 * Do not cause an interrupt window exit if an exception 5387 * is pending or an event needs reinjection; userspace 5388 * might want to inject the interrupt manually using KVM_SET_REGS 5389 * or KVM_SET_SREGS. For that to work, we must be at an 5390 * instruction boundary and with no events half-injected. 5391 */ 5392 return (kvm_arch_interrupt_allowed(vcpu) && 5393 kvm_cpu_accept_dm_intr(vcpu) && 5394 !kvm_event_needs_reinjection(vcpu) && 5395 !kvm_is_exception_pending(vcpu)); 5396 } 5397 5398 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 5399 struct kvm_interrupt *irq) 5400 { 5401 if (irq->irq >= KVM_NR_INTERRUPTS) 5402 return -EINVAL; 5403 5404 if (!irqchip_in_kernel(vcpu->kvm)) { 5405 kvm_queue_interrupt(vcpu, irq->irq, false); 5406 kvm_make_request(KVM_REQ_EVENT, vcpu); 5407 return 0; 5408 } 5409 5410 /* 5411 * With in-kernel LAPIC, we only use this to inject EXTINT, so 5412 * fail for in-kernel 8259. 5413 */ 5414 if (pic_in_kernel(vcpu->kvm)) 5415 return -ENXIO; 5416 5417 if (vcpu->arch.pending_external_vector != -1) 5418 return -EEXIST; 5419 5420 vcpu->arch.pending_external_vector = irq->irq; 5421 kvm_make_request(KVM_REQ_EVENT, vcpu); 5422 return 0; 5423 } 5424 5425 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 5426 { 5427 kvm_inject_nmi(vcpu); 5428 5429 return 0; 5430 } 5431 5432 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 5433 struct kvm_tpr_access_ctl *tac) 5434 { 5435 if (tac->flags) 5436 return -EINVAL; 5437 vcpu->arch.tpr_access_reporting = !!tac->enabled; 5438 return 0; 5439 } 5440 5441 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 5442 u64 mcg_cap) 5443 { 5444 int r; 5445 unsigned bank_num = mcg_cap & 0xff, bank; 5446 5447 r = -EINVAL; 5448 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 5449 goto out; 5450 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 5451 goto out; 5452 r = 0; 5453 vcpu->arch.mcg_cap = mcg_cap; 5454 /* Init IA32_MCG_CTL to all 1s */ 5455 if (mcg_cap & MCG_CTL_P) 5456 vcpu->arch.mcg_ctl = ~(u64)0; 5457 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 5458 for (bank = 0; bank < bank_num; bank++) { 5459 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 5460 if (mcg_cap & MCG_CMCI_P) 5461 vcpu->arch.mci_ctl2_banks[bank] = 0; 5462 } 5463 5464 kvm_apic_after_set_mcg_cap(vcpu); 5465 5466 kvm_x86_call(setup_mce)(vcpu); 5467 out: 5468 return r; 5469 } 5470 5471 /* 5472 * Validate this is an UCNA (uncorrectable no action) error by checking the 5473 * MCG_STATUS and MCi_STATUS registers: 5474 * - none of the bits for Machine Check Exceptions are set 5475 * - both the VAL (valid) and UC (uncorrectable) bits are set 5476 * MCI_STATUS_PCC - Processor Context Corrupted 5477 * MCI_STATUS_S - Signaled as a Machine Check Exception 5478 * MCI_STATUS_AR - Software recoverable Action Required 5479 */ 5480 static bool is_ucna(struct kvm_x86_mce *mce) 5481 { 5482 return !mce->mcg_status && 5483 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 5484 (mce->status & MCI_STATUS_VAL) && 5485 (mce->status & MCI_STATUS_UC); 5486 } 5487 5488 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 5489 { 5490 u64 mcg_cap = vcpu->arch.mcg_cap; 5491 5492 banks[1] = mce->status; 5493 banks[2] = mce->addr; 5494 banks[3] = mce->misc; 5495 vcpu->arch.mcg_status = mce->mcg_status; 5496 5497 if (!(mcg_cap & MCG_CMCI_P) || 5498 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 5499 return 0; 5500 5501 if (lapic_in_kernel(vcpu)) 5502 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 5503 5504 return 0; 5505 } 5506 5507 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 5508 struct kvm_x86_mce *mce) 5509 { 5510 u64 mcg_cap = vcpu->arch.mcg_cap; 5511 unsigned bank_num = mcg_cap & 0xff; 5512 u64 *banks = vcpu->arch.mce_banks; 5513 5514 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 5515 return -EINVAL; 5516 5517 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5518 5519 if (is_ucna(mce)) 5520 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5521 5522 /* 5523 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5524 * reporting is disabled 5525 */ 5526 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5527 vcpu->arch.mcg_ctl != ~(u64)0) 5528 return 0; 5529 /* 5530 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5531 * reporting is disabled for the bank 5532 */ 5533 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5534 return 0; 5535 if (mce->status & MCI_STATUS_UC) { 5536 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5537 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) { 5538 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5539 return 0; 5540 } 5541 if (banks[1] & MCI_STATUS_VAL) 5542 mce->status |= MCI_STATUS_OVER; 5543 banks[2] = mce->addr; 5544 banks[3] = mce->misc; 5545 vcpu->arch.mcg_status = mce->mcg_status; 5546 banks[1] = mce->status; 5547 kvm_queue_exception(vcpu, MC_VECTOR); 5548 } else if (!(banks[1] & MCI_STATUS_VAL) 5549 || !(banks[1] & MCI_STATUS_UC)) { 5550 if (banks[1] & MCI_STATUS_VAL) 5551 mce->status |= MCI_STATUS_OVER; 5552 banks[2] = mce->addr; 5553 banks[3] = mce->misc; 5554 banks[1] = mce->status; 5555 } else 5556 banks[1] |= MCI_STATUS_OVER; 5557 return 0; 5558 } 5559 5560 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5561 struct kvm_vcpu_events *events) 5562 { 5563 struct kvm_queued_exception *ex; 5564 5565 process_nmi(vcpu); 5566 5567 #ifdef CONFIG_KVM_SMM 5568 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5569 process_smi(vcpu); 5570 #endif 5571 5572 /* 5573 * KVM's ABI only allows for one exception to be migrated. Luckily, 5574 * the only time there can be two queued exceptions is if there's a 5575 * non-exiting _injected_ exception, and a pending exiting exception. 5576 * In that case, ignore the VM-Exiting exception as it's an extension 5577 * of the injected exception. 5578 */ 5579 if (vcpu->arch.exception_vmexit.pending && 5580 !vcpu->arch.exception.pending && 5581 !vcpu->arch.exception.injected) 5582 ex = &vcpu->arch.exception_vmexit; 5583 else 5584 ex = &vcpu->arch.exception; 5585 5586 /* 5587 * In guest mode, payload delivery should be deferred if the exception 5588 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5589 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5590 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5591 * propagate the payload and so it cannot be safely deferred. Deliver 5592 * the payload if the capability hasn't been requested. 5593 */ 5594 if (!vcpu->kvm->arch.exception_payload_enabled && 5595 ex->pending && ex->has_payload) 5596 kvm_deliver_exception_payload(vcpu, ex); 5597 5598 memset(events, 0, sizeof(*events)); 5599 5600 /* 5601 * The API doesn't provide the instruction length for software 5602 * exceptions, so don't report them. As long as the guest RIP 5603 * isn't advanced, we should expect to encounter the exception 5604 * again. 5605 */ 5606 if (!kvm_exception_is_soft(ex->vector)) { 5607 events->exception.injected = ex->injected; 5608 events->exception.pending = ex->pending; 5609 /* 5610 * For ABI compatibility, deliberately conflate 5611 * pending and injected exceptions when 5612 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5613 */ 5614 if (!vcpu->kvm->arch.exception_payload_enabled) 5615 events->exception.injected |= ex->pending; 5616 } 5617 events->exception.nr = ex->vector; 5618 events->exception.has_error_code = ex->has_error_code; 5619 events->exception.error_code = ex->error_code; 5620 events->exception_has_payload = ex->has_payload; 5621 events->exception_payload = ex->payload; 5622 5623 events->interrupt.injected = 5624 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5625 events->interrupt.nr = vcpu->arch.interrupt.nr; 5626 events->interrupt.shadow = kvm_x86_call(get_interrupt_shadow)(vcpu); 5627 5628 events->nmi.injected = vcpu->arch.nmi_injected; 5629 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu); 5630 events->nmi.masked = kvm_x86_call(get_nmi_mask)(vcpu); 5631 5632 /* events->sipi_vector is never valid when reporting to user space */ 5633 5634 #ifdef CONFIG_KVM_SMM 5635 events->smi.smm = is_smm(vcpu); 5636 events->smi.pending = vcpu->arch.smi_pending; 5637 events->smi.smm_inside_nmi = 5638 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5639 #endif 5640 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5641 5642 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5643 | KVM_VCPUEVENT_VALID_SHADOW 5644 | KVM_VCPUEVENT_VALID_SMM); 5645 if (vcpu->kvm->arch.exception_payload_enabled) 5646 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5647 if (vcpu->kvm->arch.triple_fault_event) { 5648 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5649 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5650 } 5651 } 5652 5653 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5654 struct kvm_vcpu_events *events) 5655 { 5656 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5657 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5658 | KVM_VCPUEVENT_VALID_SHADOW 5659 | KVM_VCPUEVENT_VALID_SMM 5660 | KVM_VCPUEVENT_VALID_PAYLOAD 5661 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5662 return -EINVAL; 5663 5664 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5665 if (!vcpu->kvm->arch.exception_payload_enabled) 5666 return -EINVAL; 5667 if (events->exception.pending) 5668 events->exception.injected = 0; 5669 else 5670 events->exception_has_payload = 0; 5671 } else { 5672 events->exception.pending = 0; 5673 events->exception_has_payload = 0; 5674 } 5675 5676 if ((events->exception.injected || events->exception.pending) && 5677 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5678 return -EINVAL; 5679 5680 process_nmi(vcpu); 5681 5682 /* 5683 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5684 * morph the exception to a VM-Exit if appropriate. Do this only for 5685 * pending exceptions, already-injected exceptions are not subject to 5686 * intercpetion. Note, userspace that conflates pending and injected 5687 * is hosed, and will incorrectly convert an injected exception into a 5688 * pending exception, which in turn may cause a spurious VM-Exit. 5689 */ 5690 vcpu->arch.exception_from_userspace = events->exception.pending; 5691 5692 vcpu->arch.exception_vmexit.pending = false; 5693 5694 vcpu->arch.exception.injected = events->exception.injected; 5695 vcpu->arch.exception.pending = events->exception.pending; 5696 vcpu->arch.exception.vector = events->exception.nr; 5697 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5698 vcpu->arch.exception.error_code = events->exception.error_code; 5699 vcpu->arch.exception.has_payload = events->exception_has_payload; 5700 vcpu->arch.exception.payload = events->exception_payload; 5701 5702 vcpu->arch.interrupt.injected = events->interrupt.injected; 5703 vcpu->arch.interrupt.nr = events->interrupt.nr; 5704 vcpu->arch.interrupt.soft = events->interrupt.soft; 5705 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5706 kvm_x86_call(set_interrupt_shadow)(vcpu, 5707 events->interrupt.shadow); 5708 5709 vcpu->arch.nmi_injected = events->nmi.injected; 5710 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) { 5711 vcpu->arch.nmi_pending = 0; 5712 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending); 5713 if (events->nmi.pending) 5714 kvm_make_request(KVM_REQ_NMI, vcpu); 5715 } 5716 kvm_x86_call(set_nmi_mask)(vcpu, events->nmi.masked); 5717 5718 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5719 lapic_in_kernel(vcpu)) 5720 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5721 5722 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5723 #ifdef CONFIG_KVM_SMM 5724 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5725 kvm_leave_nested(vcpu); 5726 kvm_smm_changed(vcpu, events->smi.smm); 5727 } 5728 5729 vcpu->arch.smi_pending = events->smi.pending; 5730 5731 if (events->smi.smm) { 5732 if (events->smi.smm_inside_nmi) 5733 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5734 else 5735 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5736 } 5737 5738 #else 5739 if (events->smi.smm || events->smi.pending || 5740 events->smi.smm_inside_nmi) 5741 return -EINVAL; 5742 #endif 5743 5744 if (lapic_in_kernel(vcpu)) { 5745 if (events->smi.latched_init) 5746 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5747 else 5748 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5749 } 5750 } 5751 5752 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5753 if (!vcpu->kvm->arch.triple_fault_event) 5754 return -EINVAL; 5755 if (events->triple_fault.pending) 5756 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5757 else 5758 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5759 } 5760 5761 kvm_make_request(KVM_REQ_EVENT, vcpu); 5762 5763 return 0; 5764 } 5765 5766 static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5767 struct kvm_debugregs *dbgregs) 5768 { 5769 unsigned int i; 5770 5771 if (vcpu->kvm->arch.has_protected_state && 5772 vcpu->arch.guest_state_protected) 5773 return -EINVAL; 5774 5775 memset(dbgregs, 0, sizeof(*dbgregs)); 5776 5777 BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db)); 5778 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++) 5779 dbgregs->db[i] = vcpu->arch.db[i]; 5780 5781 dbgregs->dr6 = vcpu->arch.dr6; 5782 dbgregs->dr7 = vcpu->arch.dr7; 5783 return 0; 5784 } 5785 5786 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5787 struct kvm_debugregs *dbgregs) 5788 { 5789 unsigned int i; 5790 5791 if (vcpu->kvm->arch.has_protected_state && 5792 vcpu->arch.guest_state_protected) 5793 return -EINVAL; 5794 5795 if (dbgregs->flags) 5796 return -EINVAL; 5797 5798 if (!kvm_dr6_valid(dbgregs->dr6)) 5799 return -EINVAL; 5800 if (!kvm_dr7_valid(dbgregs->dr7)) 5801 return -EINVAL; 5802 5803 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++) 5804 vcpu->arch.db[i] = dbgregs->db[i]; 5805 5806 kvm_update_dr0123(vcpu); 5807 vcpu->arch.dr6 = dbgregs->dr6; 5808 vcpu->arch.dr7 = dbgregs->dr7; 5809 kvm_update_dr7(vcpu); 5810 5811 return 0; 5812 } 5813 5814 5815 static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5816 u8 *state, unsigned int size) 5817 { 5818 /* 5819 * Only copy state for features that are enabled for the guest. The 5820 * state itself isn't problematic, but setting bits in the header for 5821 * features that are supported in *this* host but not exposed to the 5822 * guest can result in KVM_SET_XSAVE failing when live migrating to a 5823 * compatible host without the features that are NOT exposed to the 5824 * guest. 5825 * 5826 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if 5827 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't 5828 * supported by the host. 5829 */ 5830 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 | 5831 XFEATURE_MASK_FPSSE; 5832 5833 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5834 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 5835 5836 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size, 5837 supported_xcr0, vcpu->arch.pkru); 5838 return 0; 5839 } 5840 5841 static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5842 struct kvm_xsave *guest_xsave) 5843 { 5844 return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region, 5845 sizeof(guest_xsave->region)); 5846 } 5847 5848 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5849 struct kvm_xsave *guest_xsave) 5850 { 5851 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5852 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 5853 5854 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5855 guest_xsave->region, 5856 kvm_caps.supported_xcr0, 5857 &vcpu->arch.pkru); 5858 } 5859 5860 static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5861 struct kvm_xcrs *guest_xcrs) 5862 { 5863 if (vcpu->kvm->arch.has_protected_state && 5864 vcpu->arch.guest_state_protected) 5865 return -EINVAL; 5866 5867 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5868 guest_xcrs->nr_xcrs = 0; 5869 return 0; 5870 } 5871 5872 guest_xcrs->nr_xcrs = 1; 5873 guest_xcrs->flags = 0; 5874 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5875 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5876 return 0; 5877 } 5878 5879 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5880 struct kvm_xcrs *guest_xcrs) 5881 { 5882 int i, r = 0; 5883 5884 if (vcpu->kvm->arch.has_protected_state && 5885 vcpu->arch.guest_state_protected) 5886 return -EINVAL; 5887 5888 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5889 return -EINVAL; 5890 5891 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5892 return -EINVAL; 5893 5894 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5895 /* Only support XCR0 currently */ 5896 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5897 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5898 guest_xcrs->xcrs[i].value); 5899 break; 5900 } 5901 if (r) 5902 r = -EINVAL; 5903 return r; 5904 } 5905 5906 /* 5907 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5908 * stopped by the hypervisor. This function will be called from the host only. 5909 * EINVAL is returned when the host attempts to set the flag for a guest that 5910 * does not support pv clocks. 5911 */ 5912 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5913 { 5914 if (!vcpu->arch.pv_time.active) 5915 return -EINVAL; 5916 vcpu->arch.pvclock_set_guest_stopped_request = true; 5917 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5918 return 0; 5919 } 5920 5921 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5922 struct kvm_device_attr *attr) 5923 { 5924 int r; 5925 5926 switch (attr->attr) { 5927 case KVM_VCPU_TSC_OFFSET: 5928 r = 0; 5929 break; 5930 default: 5931 r = -ENXIO; 5932 } 5933 5934 return r; 5935 } 5936 5937 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5938 struct kvm_device_attr *attr) 5939 { 5940 u64 __user *uaddr = u64_to_user_ptr(attr->addr); 5941 int r; 5942 5943 switch (attr->attr) { 5944 case KVM_VCPU_TSC_OFFSET: 5945 r = -EFAULT; 5946 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5947 break; 5948 r = 0; 5949 break; 5950 default: 5951 r = -ENXIO; 5952 } 5953 5954 return r; 5955 } 5956 5957 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5958 struct kvm_device_attr *attr) 5959 { 5960 u64 __user *uaddr = u64_to_user_ptr(attr->addr); 5961 struct kvm *kvm = vcpu->kvm; 5962 int r; 5963 5964 switch (attr->attr) { 5965 case KVM_VCPU_TSC_OFFSET: { 5966 u64 offset, tsc, ns; 5967 unsigned long flags; 5968 bool matched; 5969 5970 r = -EFAULT; 5971 if (get_user(offset, uaddr)) 5972 break; 5973 5974 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5975 5976 matched = (vcpu->arch.virtual_tsc_khz && 5977 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5978 kvm->arch.last_tsc_offset == offset); 5979 5980 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5981 ns = get_kvmclock_base_ns(); 5982 5983 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched, true); 5984 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5985 5986 r = 0; 5987 break; 5988 } 5989 default: 5990 r = -ENXIO; 5991 } 5992 5993 return r; 5994 } 5995 5996 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5997 unsigned int ioctl, 5998 void __user *argp) 5999 { 6000 struct kvm_device_attr attr; 6001 int r; 6002 6003 if (copy_from_user(&attr, argp, sizeof(attr))) 6004 return -EFAULT; 6005 6006 if (attr.group != KVM_VCPU_TSC_CTRL) 6007 return -ENXIO; 6008 6009 switch (ioctl) { 6010 case KVM_HAS_DEVICE_ATTR: 6011 r = kvm_arch_tsc_has_attr(vcpu, &attr); 6012 break; 6013 case KVM_GET_DEVICE_ATTR: 6014 r = kvm_arch_tsc_get_attr(vcpu, &attr); 6015 break; 6016 case KVM_SET_DEVICE_ATTR: 6017 r = kvm_arch_tsc_set_attr(vcpu, &attr); 6018 break; 6019 } 6020 6021 return r; 6022 } 6023 6024 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 6025 struct kvm_enable_cap *cap) 6026 { 6027 if (cap->flags) 6028 return -EINVAL; 6029 6030 switch (cap->cap) { 6031 #ifdef CONFIG_KVM_HYPERV 6032 case KVM_CAP_HYPERV_SYNIC2: 6033 if (cap->args[0]) 6034 return -EINVAL; 6035 fallthrough; 6036 6037 case KVM_CAP_HYPERV_SYNIC: 6038 if (!irqchip_in_kernel(vcpu->kvm)) 6039 return -EINVAL; 6040 return kvm_hv_activate_synic(vcpu, cap->cap == 6041 KVM_CAP_HYPERV_SYNIC2); 6042 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 6043 { 6044 int r; 6045 uint16_t vmcs_version; 6046 void __user *user_ptr; 6047 6048 if (!kvm_x86_ops.nested_ops->enable_evmcs) 6049 return -ENOTTY; 6050 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 6051 if (!r) { 6052 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 6053 if (copy_to_user(user_ptr, &vmcs_version, 6054 sizeof(vmcs_version))) 6055 r = -EFAULT; 6056 } 6057 return r; 6058 } 6059 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 6060 if (!kvm_x86_ops.enable_l2_tlb_flush) 6061 return -ENOTTY; 6062 6063 return kvm_x86_call(enable_l2_tlb_flush)(vcpu); 6064 6065 case KVM_CAP_HYPERV_ENFORCE_CPUID: 6066 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 6067 #endif 6068 6069 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 6070 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 6071 return 0; 6072 default: 6073 return -EINVAL; 6074 } 6075 } 6076 6077 struct kvm_x86_reg_id { 6078 __u32 index; 6079 __u8 type; 6080 __u8 rsvd1; 6081 __u8 rsvd2:4; 6082 __u8 size:4; 6083 __u8 x86; 6084 }; 6085 6086 static int kvm_translate_kvm_reg(struct kvm_vcpu *vcpu, 6087 struct kvm_x86_reg_id *reg) 6088 { 6089 switch (reg->index) { 6090 case KVM_REG_GUEST_SSP: 6091 /* 6092 * FIXME: If host-initiated accesses are ever exempted from 6093 * ignore_msrs (in kvm_do_msr_access()), drop this manual check 6094 * and rely on KVM's standard checks to reject accesses to regs 6095 * that don't exist. 6096 */ 6097 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK)) 6098 return -EINVAL; 6099 6100 reg->type = KVM_X86_REG_TYPE_MSR; 6101 reg->index = MSR_KVM_INTERNAL_GUEST_SSP; 6102 break; 6103 default: 6104 return -EINVAL; 6105 } 6106 return 0; 6107 } 6108 6109 static int kvm_get_one_msr(struct kvm_vcpu *vcpu, u32 msr, u64 __user *user_val) 6110 { 6111 u64 val; 6112 6113 if (do_get_msr(vcpu, msr, &val)) 6114 return -EINVAL; 6115 6116 if (put_user(val, user_val)) 6117 return -EFAULT; 6118 6119 return 0; 6120 } 6121 6122 static int kvm_set_one_msr(struct kvm_vcpu *vcpu, u32 msr, u64 __user *user_val) 6123 { 6124 u64 val; 6125 6126 if (get_user(val, user_val)) 6127 return -EFAULT; 6128 6129 if (do_set_msr(vcpu, msr, &val)) 6130 return -EINVAL; 6131 6132 return 0; 6133 } 6134 6135 static int kvm_get_set_one_reg(struct kvm_vcpu *vcpu, unsigned int ioctl, 6136 void __user *argp) 6137 { 6138 struct kvm_one_reg one_reg; 6139 struct kvm_x86_reg_id *reg; 6140 u64 __user *user_val; 6141 bool load_fpu; 6142 int r; 6143 6144 if (copy_from_user(&one_reg, argp, sizeof(one_reg))) 6145 return -EFAULT; 6146 6147 if ((one_reg.id & KVM_REG_ARCH_MASK) != KVM_REG_X86) 6148 return -EINVAL; 6149 6150 reg = (struct kvm_x86_reg_id *)&one_reg.id; 6151 if (reg->rsvd1 || reg->rsvd2) 6152 return -EINVAL; 6153 6154 if (reg->type == KVM_X86_REG_TYPE_KVM) { 6155 r = kvm_translate_kvm_reg(vcpu, reg); 6156 if (r) 6157 return r; 6158 } 6159 6160 if (reg->type != KVM_X86_REG_TYPE_MSR) 6161 return -EINVAL; 6162 6163 if ((one_reg.id & KVM_REG_SIZE_MASK) != KVM_REG_SIZE_U64) 6164 return -EINVAL; 6165 6166 guard(srcu)(&vcpu->kvm->srcu); 6167 6168 load_fpu = is_xstate_managed_msr(vcpu, reg->index); 6169 if (load_fpu) 6170 kvm_load_guest_fpu(vcpu); 6171 6172 user_val = u64_to_user_ptr(one_reg.addr); 6173 if (ioctl == KVM_GET_ONE_REG) 6174 r = kvm_get_one_msr(vcpu, reg->index, user_val); 6175 else 6176 r = kvm_set_one_msr(vcpu, reg->index, user_val); 6177 6178 if (load_fpu) 6179 kvm_put_guest_fpu(vcpu); 6180 return r; 6181 } 6182 6183 static int kvm_get_reg_list(struct kvm_vcpu *vcpu, 6184 struct kvm_reg_list __user *user_list) 6185 { 6186 u64 nr_regs = guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) ? 1 : 0; 6187 u64 user_nr_regs; 6188 6189 if (get_user(user_nr_regs, &user_list->n)) 6190 return -EFAULT; 6191 6192 if (put_user(nr_regs, &user_list->n)) 6193 return -EFAULT; 6194 6195 if (user_nr_regs < nr_regs) 6196 return -E2BIG; 6197 6198 if (nr_regs && 6199 put_user(KVM_X86_REG_KVM(KVM_REG_GUEST_SSP), &user_list->reg[0])) 6200 return -EFAULT; 6201 6202 return 0; 6203 } 6204 6205 long kvm_arch_vcpu_ioctl(struct file *filp, 6206 unsigned int ioctl, unsigned long arg) 6207 { 6208 struct kvm_vcpu *vcpu = filp->private_data; 6209 void __user *argp = (void __user *)arg; 6210 int r; 6211 union { 6212 struct kvm_sregs2 *sregs2; 6213 struct kvm_lapic_state *lapic; 6214 struct kvm_xsave *xsave; 6215 struct kvm_xcrs *xcrs; 6216 void *buffer; 6217 } u; 6218 6219 vcpu_load(vcpu); 6220 6221 u.buffer = NULL; 6222 switch (ioctl) { 6223 case KVM_GET_LAPIC: { 6224 r = -EINVAL; 6225 if (!lapic_in_kernel(vcpu)) 6226 goto out; 6227 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); 6228 6229 r = -ENOMEM; 6230 if (!u.lapic) 6231 goto out; 6232 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 6233 if (r) 6234 goto out; 6235 r = -EFAULT; 6236 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 6237 goto out; 6238 r = 0; 6239 break; 6240 } 6241 case KVM_SET_LAPIC: { 6242 r = -EINVAL; 6243 if (!lapic_in_kernel(vcpu)) 6244 goto out; 6245 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 6246 if (IS_ERR(u.lapic)) { 6247 r = PTR_ERR(u.lapic); 6248 goto out_nofree; 6249 } 6250 6251 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 6252 break; 6253 } 6254 case KVM_INTERRUPT: { 6255 struct kvm_interrupt irq; 6256 6257 r = -EFAULT; 6258 if (copy_from_user(&irq, argp, sizeof(irq))) 6259 goto out; 6260 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 6261 break; 6262 } 6263 case KVM_NMI: { 6264 r = kvm_vcpu_ioctl_nmi(vcpu); 6265 break; 6266 } 6267 case KVM_SMI: { 6268 r = kvm_inject_smi(vcpu); 6269 break; 6270 } 6271 case KVM_SET_CPUID: { 6272 struct kvm_cpuid __user *cpuid_arg = argp; 6273 struct kvm_cpuid cpuid; 6274 6275 r = -EFAULT; 6276 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 6277 goto out; 6278 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 6279 break; 6280 } 6281 case KVM_SET_CPUID2: { 6282 struct kvm_cpuid2 __user *cpuid_arg = argp; 6283 struct kvm_cpuid2 cpuid; 6284 6285 r = -EFAULT; 6286 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 6287 goto out; 6288 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 6289 cpuid_arg->entries); 6290 break; 6291 } 6292 case KVM_GET_CPUID2: { 6293 struct kvm_cpuid2 __user *cpuid_arg = argp; 6294 struct kvm_cpuid2 cpuid; 6295 6296 r = -EFAULT; 6297 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 6298 goto out; 6299 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 6300 cpuid_arg->entries); 6301 if (r) 6302 goto out; 6303 r = -EFAULT; 6304 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 6305 goto out; 6306 r = 0; 6307 break; 6308 } 6309 case KVM_GET_MSRS: { 6310 int idx = srcu_read_lock(&vcpu->kvm->srcu); 6311 r = msr_io(vcpu, argp, do_get_msr, 1); 6312 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6313 break; 6314 } 6315 case KVM_SET_MSRS: { 6316 int idx = srcu_read_lock(&vcpu->kvm->srcu); 6317 r = msr_io(vcpu, argp, do_set_msr, 0); 6318 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6319 break; 6320 } 6321 case KVM_GET_ONE_REG: 6322 case KVM_SET_ONE_REG: 6323 r = kvm_get_set_one_reg(vcpu, ioctl, argp); 6324 break; 6325 case KVM_GET_REG_LIST: 6326 r = kvm_get_reg_list(vcpu, argp); 6327 break; 6328 case KVM_TPR_ACCESS_REPORTING: { 6329 struct kvm_tpr_access_ctl tac; 6330 6331 r = -EFAULT; 6332 if (copy_from_user(&tac, argp, sizeof(tac))) 6333 goto out; 6334 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 6335 if (r) 6336 goto out; 6337 r = -EFAULT; 6338 if (copy_to_user(argp, &tac, sizeof(tac))) 6339 goto out; 6340 r = 0; 6341 break; 6342 }; 6343 case KVM_SET_VAPIC_ADDR: { 6344 struct kvm_vapic_addr va; 6345 int idx; 6346 6347 r = -EINVAL; 6348 if (!lapic_in_kernel(vcpu)) 6349 goto out; 6350 r = -EFAULT; 6351 if (copy_from_user(&va, argp, sizeof(va))) 6352 goto out; 6353 idx = srcu_read_lock(&vcpu->kvm->srcu); 6354 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 6355 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6356 break; 6357 } 6358 case KVM_X86_SETUP_MCE: { 6359 u64 mcg_cap; 6360 6361 r = -EFAULT; 6362 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 6363 goto out; 6364 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 6365 break; 6366 } 6367 case KVM_X86_SET_MCE: { 6368 struct kvm_x86_mce mce; 6369 6370 r = -EFAULT; 6371 if (copy_from_user(&mce, argp, sizeof(mce))) 6372 goto out; 6373 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 6374 break; 6375 } 6376 case KVM_GET_VCPU_EVENTS: { 6377 struct kvm_vcpu_events events; 6378 6379 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 6380 6381 r = -EFAULT; 6382 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 6383 break; 6384 r = 0; 6385 break; 6386 } 6387 case KVM_SET_VCPU_EVENTS: { 6388 struct kvm_vcpu_events events; 6389 6390 r = -EFAULT; 6391 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 6392 break; 6393 6394 kvm_vcpu_srcu_read_lock(vcpu); 6395 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 6396 kvm_vcpu_srcu_read_unlock(vcpu); 6397 break; 6398 } 6399 case KVM_GET_DEBUGREGS: { 6400 struct kvm_debugregs dbgregs; 6401 6402 r = kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 6403 if (r < 0) 6404 break; 6405 6406 r = -EFAULT; 6407 if (copy_to_user(argp, &dbgregs, 6408 sizeof(struct kvm_debugregs))) 6409 break; 6410 r = 0; 6411 break; 6412 } 6413 case KVM_SET_DEBUGREGS: { 6414 struct kvm_debugregs dbgregs; 6415 6416 r = -EFAULT; 6417 if (copy_from_user(&dbgregs, argp, 6418 sizeof(struct kvm_debugregs))) 6419 break; 6420 6421 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 6422 break; 6423 } 6424 case KVM_GET_XSAVE: { 6425 r = -EINVAL; 6426 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 6427 break; 6428 6429 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); 6430 r = -ENOMEM; 6431 if (!u.xsave) 6432 break; 6433 6434 r = kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 6435 if (r < 0) 6436 break; 6437 6438 r = -EFAULT; 6439 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 6440 break; 6441 r = 0; 6442 break; 6443 } 6444 case KVM_SET_XSAVE: { 6445 int size = vcpu->arch.guest_fpu.uabi_size; 6446 6447 u.xsave = memdup_user(argp, size); 6448 if (IS_ERR(u.xsave)) { 6449 r = PTR_ERR(u.xsave); 6450 goto out_nofree; 6451 } 6452 6453 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 6454 break; 6455 } 6456 6457 case KVM_GET_XSAVE2: { 6458 int size = vcpu->arch.guest_fpu.uabi_size; 6459 6460 u.xsave = kzalloc(size, GFP_KERNEL); 6461 r = -ENOMEM; 6462 if (!u.xsave) 6463 break; 6464 6465 r = kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 6466 if (r < 0) 6467 break; 6468 6469 r = -EFAULT; 6470 if (copy_to_user(argp, u.xsave, size)) 6471 break; 6472 6473 r = 0; 6474 break; 6475 } 6476 6477 case KVM_GET_XCRS: { 6478 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); 6479 r = -ENOMEM; 6480 if (!u.xcrs) 6481 break; 6482 6483 r = kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 6484 if (r < 0) 6485 break; 6486 6487 r = -EFAULT; 6488 if (copy_to_user(argp, u.xcrs, 6489 sizeof(struct kvm_xcrs))) 6490 break; 6491 r = 0; 6492 break; 6493 } 6494 case KVM_SET_XCRS: { 6495 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 6496 if (IS_ERR(u.xcrs)) { 6497 r = PTR_ERR(u.xcrs); 6498 goto out_nofree; 6499 } 6500 6501 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 6502 break; 6503 } 6504 case KVM_SET_TSC_KHZ: { 6505 u32 user_tsc_khz; 6506 6507 r = -EINVAL; 6508 6509 if (vcpu->arch.guest_tsc_protected) 6510 goto out; 6511 6512 user_tsc_khz = (u32)arg; 6513 6514 if (kvm_caps.has_tsc_control && 6515 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 6516 goto out; 6517 6518 if (user_tsc_khz == 0) 6519 user_tsc_khz = tsc_khz; 6520 6521 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 6522 r = 0; 6523 6524 goto out; 6525 } 6526 case KVM_GET_TSC_KHZ: { 6527 r = vcpu->arch.virtual_tsc_khz; 6528 goto out; 6529 } 6530 case KVM_KVMCLOCK_CTRL: { 6531 r = kvm_set_guest_paused(vcpu); 6532 goto out; 6533 } 6534 case KVM_ENABLE_CAP: { 6535 struct kvm_enable_cap cap; 6536 6537 r = -EFAULT; 6538 if (copy_from_user(&cap, argp, sizeof(cap))) 6539 goto out; 6540 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 6541 break; 6542 } 6543 case KVM_GET_NESTED_STATE: { 6544 struct kvm_nested_state __user *user_kvm_nested_state = argp; 6545 u32 user_data_size; 6546 6547 r = -EINVAL; 6548 if (!kvm_x86_ops.nested_ops->get_state) 6549 break; 6550 6551 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 6552 r = -EFAULT; 6553 if (get_user(user_data_size, &user_kvm_nested_state->size)) 6554 break; 6555 6556 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 6557 user_data_size); 6558 if (r < 0) 6559 break; 6560 6561 if (r > user_data_size) { 6562 if (put_user(r, &user_kvm_nested_state->size)) 6563 r = -EFAULT; 6564 else 6565 r = -E2BIG; 6566 break; 6567 } 6568 6569 r = 0; 6570 break; 6571 } 6572 case KVM_SET_NESTED_STATE: { 6573 struct kvm_nested_state __user *user_kvm_nested_state = argp; 6574 struct kvm_nested_state kvm_state; 6575 int idx; 6576 6577 r = -EINVAL; 6578 if (!kvm_x86_ops.nested_ops->set_state) 6579 break; 6580 6581 r = -EFAULT; 6582 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 6583 break; 6584 6585 r = -EINVAL; 6586 if (kvm_state.size < sizeof(kvm_state)) 6587 break; 6588 6589 if (kvm_state.flags & 6590 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 6591 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 6592 | KVM_STATE_NESTED_GIF_SET)) 6593 break; 6594 6595 /* nested_run_pending implies guest_mode. */ 6596 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 6597 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 6598 break; 6599 6600 idx = srcu_read_lock(&vcpu->kvm->srcu); 6601 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 6602 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6603 break; 6604 } 6605 #ifdef CONFIG_KVM_HYPERV 6606 case KVM_GET_SUPPORTED_HV_CPUID: 6607 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 6608 break; 6609 #endif 6610 #ifdef CONFIG_KVM_XEN 6611 case KVM_XEN_VCPU_GET_ATTR: { 6612 struct kvm_xen_vcpu_attr xva; 6613 6614 r = -EFAULT; 6615 if (copy_from_user(&xva, argp, sizeof(xva))) 6616 goto out; 6617 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 6618 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 6619 r = -EFAULT; 6620 break; 6621 } 6622 case KVM_XEN_VCPU_SET_ATTR: { 6623 struct kvm_xen_vcpu_attr xva; 6624 6625 r = -EFAULT; 6626 if (copy_from_user(&xva, argp, sizeof(xva))) 6627 goto out; 6628 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 6629 break; 6630 } 6631 #endif 6632 case KVM_GET_SREGS2: { 6633 r = -EINVAL; 6634 if (vcpu->kvm->arch.has_protected_state && 6635 vcpu->arch.guest_state_protected) 6636 goto out; 6637 6638 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 6639 r = -ENOMEM; 6640 if (!u.sregs2) 6641 goto out; 6642 __get_sregs2(vcpu, u.sregs2); 6643 r = -EFAULT; 6644 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 6645 goto out; 6646 r = 0; 6647 break; 6648 } 6649 case KVM_SET_SREGS2: { 6650 r = -EINVAL; 6651 if (vcpu->kvm->arch.has_protected_state && 6652 vcpu->arch.guest_state_protected) 6653 goto out; 6654 6655 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 6656 if (IS_ERR(u.sregs2)) { 6657 r = PTR_ERR(u.sregs2); 6658 u.sregs2 = NULL; 6659 goto out; 6660 } 6661 r = __set_sregs2(vcpu, u.sregs2); 6662 break; 6663 } 6664 case KVM_HAS_DEVICE_ATTR: 6665 case KVM_GET_DEVICE_ATTR: 6666 case KVM_SET_DEVICE_ATTR: 6667 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 6668 break; 6669 case KVM_MEMORY_ENCRYPT_OP: 6670 r = -ENOTTY; 6671 if (!kvm_x86_ops.vcpu_mem_enc_ioctl) 6672 goto out; 6673 r = kvm_x86_ops.vcpu_mem_enc_ioctl(vcpu, argp); 6674 break; 6675 default: 6676 r = -EINVAL; 6677 } 6678 out: 6679 kfree(u.buffer); 6680 out_nofree: 6681 vcpu_put(vcpu); 6682 return r; 6683 } 6684 6685 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 6686 { 6687 return VM_FAULT_SIGBUS; 6688 } 6689 6690 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 6691 { 6692 int ret; 6693 6694 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 6695 return -EINVAL; 6696 ret = kvm_x86_call(set_tss_addr)(kvm, addr); 6697 return ret; 6698 } 6699 6700 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 6701 u64 ident_addr) 6702 { 6703 return kvm_x86_call(set_identity_map_addr)(kvm, ident_addr); 6704 } 6705 6706 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 6707 unsigned long kvm_nr_mmu_pages) 6708 { 6709 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 6710 return -EINVAL; 6711 6712 mutex_lock(&kvm->slots_lock); 6713 6714 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6715 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6716 6717 mutex_unlock(&kvm->slots_lock); 6718 return 0; 6719 } 6720 6721 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6722 { 6723 6724 /* 6725 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6726 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6727 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6728 * VM-Exit. 6729 */ 6730 struct kvm_vcpu *vcpu; 6731 unsigned long i; 6732 6733 if (!kvm->arch.cpu_dirty_log_size) 6734 return; 6735 6736 kvm_for_each_vcpu(i, vcpu, kvm) 6737 kvm_vcpu_kick(vcpu); 6738 } 6739 6740 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6741 struct kvm_enable_cap *cap) 6742 { 6743 int r; 6744 6745 if (cap->flags) 6746 return -EINVAL; 6747 6748 switch (cap->cap) { 6749 case KVM_CAP_DISABLE_QUIRKS2: 6750 r = -EINVAL; 6751 if (cap->args[0] & ~kvm_caps.supported_quirks) 6752 break; 6753 fallthrough; 6754 case KVM_CAP_DISABLE_QUIRKS: 6755 kvm->arch.disabled_quirks |= cap->args[0] & kvm_caps.supported_quirks; 6756 r = 0; 6757 break; 6758 case KVM_CAP_SPLIT_IRQCHIP: { 6759 mutex_lock(&kvm->lock); 6760 r = -EINVAL; 6761 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6762 goto split_irqchip_unlock; 6763 r = -EEXIST; 6764 if (irqchip_in_kernel(kvm)) 6765 goto split_irqchip_unlock; 6766 if (kvm->created_vcpus) 6767 goto split_irqchip_unlock; 6768 /* Pairs with irqchip_in_kernel. */ 6769 smp_wmb(); 6770 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6771 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6772 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6773 r = 0; 6774 split_irqchip_unlock: 6775 mutex_unlock(&kvm->lock); 6776 break; 6777 } 6778 case KVM_CAP_X2APIC_API: 6779 r = -EINVAL; 6780 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6781 break; 6782 6783 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6784 kvm->arch.x2apic_format = true; 6785 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6786 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6787 6788 r = 0; 6789 break; 6790 case KVM_CAP_X86_DISABLE_EXITS: 6791 r = -EINVAL; 6792 if (cap->args[0] & ~kvm_get_allowed_disable_exits()) 6793 break; 6794 6795 mutex_lock(&kvm->lock); 6796 if (kvm->created_vcpus) 6797 goto disable_exits_unlock; 6798 6799 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \ 6800 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests." 6801 6802 if (!mitigate_smt_rsb && boot_cpu_has_bug(X86_BUG_SMT_RSB) && 6803 cpu_smt_possible() && 6804 (cap->args[0] & ~(KVM_X86_DISABLE_EXITS_PAUSE | 6805 KVM_X86_DISABLE_EXITS_APERFMPERF))) 6806 pr_warn_once(SMT_RSB_MSG); 6807 6808 kvm_disable_exits(kvm, cap->args[0]); 6809 r = 0; 6810 disable_exits_unlock: 6811 mutex_unlock(&kvm->lock); 6812 break; 6813 case KVM_CAP_MSR_PLATFORM_INFO: 6814 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6815 r = 0; 6816 break; 6817 case KVM_CAP_EXCEPTION_PAYLOAD: 6818 kvm->arch.exception_payload_enabled = cap->args[0]; 6819 r = 0; 6820 break; 6821 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6822 kvm->arch.triple_fault_event = cap->args[0]; 6823 r = 0; 6824 break; 6825 case KVM_CAP_X86_USER_SPACE_MSR: 6826 r = -EINVAL; 6827 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6828 break; 6829 kvm->arch.user_space_msr_mask = cap->args[0]; 6830 r = 0; 6831 break; 6832 case KVM_CAP_X86_BUS_LOCK_EXIT: 6833 r = -EINVAL; 6834 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6835 break; 6836 6837 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6838 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6839 break; 6840 6841 if (kvm_caps.has_bus_lock_exit && 6842 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6843 kvm->arch.bus_lock_detection_enabled = true; 6844 r = 0; 6845 break; 6846 #ifdef CONFIG_X86_SGX_KVM 6847 case KVM_CAP_SGX_ATTRIBUTE: { 6848 unsigned long allowed_attributes = 0; 6849 6850 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6851 if (r) 6852 break; 6853 6854 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6855 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6856 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6857 kvm->arch.sgx_provisioning_allowed = true; 6858 else 6859 r = -EINVAL; 6860 break; 6861 } 6862 #endif 6863 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6864 r = -EINVAL; 6865 if (!kvm_x86_ops.vm_copy_enc_context_from) 6866 break; 6867 6868 r = kvm_x86_call(vm_copy_enc_context_from)(kvm, cap->args[0]); 6869 break; 6870 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6871 r = -EINVAL; 6872 if (!kvm_x86_ops.vm_move_enc_context_from) 6873 break; 6874 6875 r = kvm_x86_call(vm_move_enc_context_from)(kvm, cap->args[0]); 6876 break; 6877 case KVM_CAP_EXIT_HYPERCALL: 6878 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6879 r = -EINVAL; 6880 break; 6881 } 6882 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6883 r = 0; 6884 break; 6885 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6886 r = -EINVAL; 6887 if (cap->args[0] & ~1) 6888 break; 6889 kvm->arch.exit_on_emulation_error = cap->args[0]; 6890 r = 0; 6891 break; 6892 case KVM_CAP_PMU_CAPABILITY: 6893 r = -EINVAL; 6894 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6895 break; 6896 6897 mutex_lock(&kvm->lock); 6898 if (!kvm->created_vcpus) { 6899 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6900 r = 0; 6901 } 6902 mutex_unlock(&kvm->lock); 6903 break; 6904 case KVM_CAP_MAX_VCPU_ID: 6905 r = -EINVAL; 6906 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6907 break; 6908 6909 mutex_lock(&kvm->lock); 6910 if (kvm->arch.bsp_vcpu_id > cap->args[0]) { 6911 ; 6912 } else if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6913 r = 0; 6914 } else if (!kvm->arch.max_vcpu_ids) { 6915 kvm->arch.max_vcpu_ids = cap->args[0]; 6916 r = 0; 6917 } 6918 mutex_unlock(&kvm->lock); 6919 break; 6920 case KVM_CAP_X86_NOTIFY_VMEXIT: 6921 r = -EINVAL; 6922 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6923 break; 6924 if (!kvm_caps.has_notify_vmexit) 6925 break; 6926 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6927 break; 6928 mutex_lock(&kvm->lock); 6929 if (!kvm->created_vcpus) { 6930 kvm->arch.notify_window = cap->args[0] >> 32; 6931 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6932 r = 0; 6933 } 6934 mutex_unlock(&kvm->lock); 6935 break; 6936 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6937 r = -EINVAL; 6938 6939 /* 6940 * Since the risk of disabling NX hugepages is a guest crashing 6941 * the system, ensure the userspace process has permission to 6942 * reboot the system. 6943 * 6944 * Note that unlike the reboot() syscall, the process must have 6945 * this capability in the root namespace because exposing 6946 * /dev/kvm into a container does not limit the scope of the 6947 * iTLB multihit bug to that container. In other words, 6948 * this must use capable(), not ns_capable(). 6949 */ 6950 if (!capable(CAP_SYS_BOOT)) { 6951 r = -EPERM; 6952 break; 6953 } 6954 6955 if (cap->args[0]) 6956 break; 6957 6958 mutex_lock(&kvm->lock); 6959 if (!kvm->created_vcpus) { 6960 kvm->arch.disable_nx_huge_pages = true; 6961 r = 0; 6962 } 6963 mutex_unlock(&kvm->lock); 6964 break; 6965 case KVM_CAP_X86_APIC_BUS_CYCLES_NS: { 6966 u64 bus_cycle_ns = cap->args[0]; 6967 u64 unused; 6968 6969 /* 6970 * Guard against overflow in tmict_to_ns(). 128 is the highest 6971 * divide value that can be programmed in APIC_TDCR. 6972 */ 6973 r = -EINVAL; 6974 if (!bus_cycle_ns || 6975 check_mul_overflow((u64)U32_MAX * 128, bus_cycle_ns, &unused)) 6976 break; 6977 6978 r = 0; 6979 mutex_lock(&kvm->lock); 6980 if (!irqchip_in_kernel(kvm)) 6981 r = -ENXIO; 6982 else if (kvm->created_vcpus) 6983 r = -EINVAL; 6984 else 6985 kvm->arch.apic_bus_cycle_ns = bus_cycle_ns; 6986 mutex_unlock(&kvm->lock); 6987 break; 6988 } 6989 default: 6990 r = -EINVAL; 6991 break; 6992 } 6993 return r; 6994 } 6995 6996 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6997 { 6998 struct kvm_x86_msr_filter *msr_filter; 6999 7000 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 7001 if (!msr_filter) 7002 return NULL; 7003 7004 msr_filter->default_allow = default_allow; 7005 return msr_filter; 7006 } 7007 7008 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 7009 { 7010 u32 i; 7011 7012 if (!msr_filter) 7013 return; 7014 7015 for (i = 0; i < msr_filter->count; i++) 7016 kfree(msr_filter->ranges[i].bitmap); 7017 7018 kfree(msr_filter); 7019 } 7020 7021 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 7022 struct kvm_msr_filter_range *user_range) 7023 { 7024 unsigned long *bitmap; 7025 size_t bitmap_size; 7026 7027 if (!user_range->nmsrs) 7028 return 0; 7029 7030 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 7031 return -EINVAL; 7032 7033 if (!user_range->flags) 7034 return -EINVAL; 7035 7036 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 7037 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 7038 return -EINVAL; 7039 7040 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 7041 if (IS_ERR(bitmap)) 7042 return PTR_ERR(bitmap); 7043 7044 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 7045 .flags = user_range->flags, 7046 .base = user_range->base, 7047 .nmsrs = user_range->nmsrs, 7048 .bitmap = bitmap, 7049 }; 7050 7051 msr_filter->count++; 7052 return 0; 7053 } 7054 7055 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 7056 struct kvm_msr_filter *filter) 7057 { 7058 struct kvm_x86_msr_filter *new_filter, *old_filter; 7059 bool default_allow; 7060 bool empty = true; 7061 int r; 7062 u32 i; 7063 7064 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 7065 return -EINVAL; 7066 7067 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 7068 empty &= !filter->ranges[i].nmsrs; 7069 7070 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 7071 if (empty && !default_allow) 7072 return -EINVAL; 7073 7074 new_filter = kvm_alloc_msr_filter(default_allow); 7075 if (!new_filter) 7076 return -ENOMEM; 7077 7078 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 7079 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 7080 if (r) { 7081 kvm_free_msr_filter(new_filter); 7082 return r; 7083 } 7084 } 7085 7086 mutex_lock(&kvm->lock); 7087 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter, 7088 mutex_is_locked(&kvm->lock)); 7089 mutex_unlock(&kvm->lock); 7090 synchronize_srcu(&kvm->srcu); 7091 7092 kvm_free_msr_filter(old_filter); 7093 7094 /* 7095 * Recalc MSR intercepts as userspace may want to intercept accesses to 7096 * MSRs that KVM would otherwise pass through to the guest. 7097 */ 7098 kvm_make_all_cpus_request(kvm, KVM_REQ_RECALC_INTERCEPTS); 7099 7100 return 0; 7101 } 7102 7103 #ifdef CONFIG_KVM_COMPAT 7104 /* for KVM_X86_SET_MSR_FILTER */ 7105 struct kvm_msr_filter_range_compat { 7106 __u32 flags; 7107 __u32 nmsrs; 7108 __u32 base; 7109 __u32 bitmap; 7110 }; 7111 7112 struct kvm_msr_filter_compat { 7113 __u32 flags; 7114 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 7115 }; 7116 7117 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 7118 7119 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 7120 unsigned long arg) 7121 { 7122 void __user *argp = (void __user *)arg; 7123 struct kvm *kvm = filp->private_data; 7124 long r = -ENOTTY; 7125 7126 switch (ioctl) { 7127 case KVM_X86_SET_MSR_FILTER_COMPAT: { 7128 struct kvm_msr_filter __user *user_msr_filter = argp; 7129 struct kvm_msr_filter_compat filter_compat; 7130 struct kvm_msr_filter filter; 7131 int i; 7132 7133 if (copy_from_user(&filter_compat, user_msr_filter, 7134 sizeof(filter_compat))) 7135 return -EFAULT; 7136 7137 filter.flags = filter_compat.flags; 7138 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 7139 struct kvm_msr_filter_range_compat *cr; 7140 7141 cr = &filter_compat.ranges[i]; 7142 filter.ranges[i] = (struct kvm_msr_filter_range) { 7143 .flags = cr->flags, 7144 .nmsrs = cr->nmsrs, 7145 .base = cr->base, 7146 .bitmap = (__u8 *)(ulong)cr->bitmap, 7147 }; 7148 } 7149 7150 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 7151 break; 7152 } 7153 } 7154 7155 return r; 7156 } 7157 #endif 7158 7159 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 7160 static int kvm_arch_suspend_notifier(struct kvm *kvm) 7161 { 7162 struct kvm_vcpu *vcpu; 7163 unsigned long i; 7164 7165 /* 7166 * Ignore the return, marking the guest paused only "fails" if the vCPU 7167 * isn't using kvmclock; continuing on is correct and desirable. 7168 */ 7169 kvm_for_each_vcpu(i, vcpu, kvm) 7170 (void)kvm_set_guest_paused(vcpu); 7171 7172 return NOTIFY_DONE; 7173 } 7174 7175 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 7176 { 7177 switch (state) { 7178 case PM_HIBERNATION_PREPARE: 7179 case PM_SUSPEND_PREPARE: 7180 return kvm_arch_suspend_notifier(kvm); 7181 } 7182 7183 return NOTIFY_DONE; 7184 } 7185 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 7186 7187 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 7188 { 7189 struct kvm_clock_data data = { 0 }; 7190 7191 get_kvmclock(kvm, &data); 7192 if (copy_to_user(argp, &data, sizeof(data))) 7193 return -EFAULT; 7194 7195 return 0; 7196 } 7197 7198 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 7199 { 7200 struct kvm_arch *ka = &kvm->arch; 7201 struct kvm_clock_data data; 7202 u64 now_raw_ns; 7203 7204 if (copy_from_user(&data, argp, sizeof(data))) 7205 return -EFAULT; 7206 7207 /* 7208 * Only KVM_CLOCK_REALTIME is used, but allow passing the 7209 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 7210 */ 7211 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 7212 return -EINVAL; 7213 7214 kvm_hv_request_tsc_page_update(kvm); 7215 kvm_start_pvclock_update(kvm); 7216 pvclock_update_vm_gtod_copy(kvm); 7217 7218 /* 7219 * This pairs with kvm_guest_time_update(): when masterclock is 7220 * in use, we use master_kernel_ns + kvmclock_offset to set 7221 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 7222 * is slightly ahead) here we risk going negative on unsigned 7223 * 'system_time' when 'data.clock' is very small. 7224 */ 7225 if (data.flags & KVM_CLOCK_REALTIME) { 7226 u64 now_real_ns = ktime_get_real_ns(); 7227 7228 /* 7229 * Avoid stepping the kvmclock backwards. 7230 */ 7231 if (now_real_ns > data.realtime) 7232 data.clock += now_real_ns - data.realtime; 7233 } 7234 7235 if (ka->use_master_clock) 7236 now_raw_ns = ka->master_kernel_ns; 7237 else 7238 now_raw_ns = get_kvmclock_base_ns(); 7239 ka->kvmclock_offset = data.clock - now_raw_ns; 7240 kvm_end_pvclock_update(kvm); 7241 return 0; 7242 } 7243 7244 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 7245 { 7246 struct kvm *kvm = filp->private_data; 7247 void __user *argp = (void __user *)arg; 7248 int r = -ENOTTY; 7249 7250 #ifdef CONFIG_KVM_IOAPIC 7251 /* 7252 * This union makes it completely explicit to gcc-3.x 7253 * that these three variables' stack usage should be 7254 * combined, not added together. 7255 */ 7256 union { 7257 struct kvm_pit_state ps; 7258 struct kvm_pit_state2 ps2; 7259 struct kvm_pit_config pit_config; 7260 } u; 7261 #endif 7262 7263 switch (ioctl) { 7264 case KVM_SET_TSS_ADDR: 7265 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 7266 break; 7267 case KVM_SET_IDENTITY_MAP_ADDR: { 7268 u64 ident_addr; 7269 7270 mutex_lock(&kvm->lock); 7271 r = -EINVAL; 7272 if (kvm->created_vcpus) 7273 goto set_identity_unlock; 7274 r = -EFAULT; 7275 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 7276 goto set_identity_unlock; 7277 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 7278 set_identity_unlock: 7279 mutex_unlock(&kvm->lock); 7280 break; 7281 } 7282 case KVM_SET_NR_MMU_PAGES: 7283 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 7284 break; 7285 #ifdef CONFIG_KVM_IOAPIC 7286 case KVM_CREATE_IRQCHIP: { 7287 mutex_lock(&kvm->lock); 7288 7289 r = -EEXIST; 7290 if (irqchip_in_kernel(kvm)) 7291 goto create_irqchip_unlock; 7292 7293 /* 7294 * Disallow an in-kernel I/O APIC if the VM has protected EOIs, 7295 * i.e. if KVM can't intercept EOIs and thus can't properly 7296 * emulate level-triggered interrupts. 7297 */ 7298 r = -ENOTTY; 7299 if (kvm->arch.has_protected_eoi) 7300 goto create_irqchip_unlock; 7301 7302 r = -EINVAL; 7303 if (kvm->created_vcpus) 7304 goto create_irqchip_unlock; 7305 7306 r = kvm_pic_init(kvm); 7307 if (r) 7308 goto create_irqchip_unlock; 7309 7310 r = kvm_ioapic_init(kvm); 7311 if (r) { 7312 kvm_pic_destroy(kvm); 7313 goto create_irqchip_unlock; 7314 } 7315 7316 r = kvm_setup_default_ioapic_and_pic_routing(kvm); 7317 if (r) { 7318 kvm_ioapic_destroy(kvm); 7319 kvm_pic_destroy(kvm); 7320 goto create_irqchip_unlock; 7321 } 7322 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 7323 smp_wmb(); 7324 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 7325 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 7326 create_irqchip_unlock: 7327 mutex_unlock(&kvm->lock); 7328 break; 7329 } 7330 case KVM_CREATE_PIT: 7331 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 7332 goto create_pit; 7333 case KVM_CREATE_PIT2: 7334 r = -EFAULT; 7335 if (copy_from_user(&u.pit_config, argp, 7336 sizeof(struct kvm_pit_config))) 7337 goto out; 7338 create_pit: 7339 mutex_lock(&kvm->lock); 7340 r = -EEXIST; 7341 if (kvm->arch.vpit) 7342 goto create_pit_unlock; 7343 r = -ENOENT; 7344 if (!pic_in_kernel(kvm)) 7345 goto create_pit_unlock; 7346 r = -ENOMEM; 7347 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 7348 if (kvm->arch.vpit) 7349 r = 0; 7350 create_pit_unlock: 7351 mutex_unlock(&kvm->lock); 7352 break; 7353 case KVM_GET_IRQCHIP: { 7354 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 7355 struct kvm_irqchip *chip; 7356 7357 chip = memdup_user(argp, sizeof(*chip)); 7358 if (IS_ERR(chip)) { 7359 r = PTR_ERR(chip); 7360 goto out; 7361 } 7362 7363 r = -ENXIO; 7364 if (!irqchip_full(kvm)) 7365 goto get_irqchip_out; 7366 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 7367 if (r) 7368 goto get_irqchip_out; 7369 r = -EFAULT; 7370 if (copy_to_user(argp, chip, sizeof(*chip))) 7371 goto get_irqchip_out; 7372 r = 0; 7373 get_irqchip_out: 7374 kfree(chip); 7375 break; 7376 } 7377 case KVM_SET_IRQCHIP: { 7378 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 7379 struct kvm_irqchip *chip; 7380 7381 chip = memdup_user(argp, sizeof(*chip)); 7382 if (IS_ERR(chip)) { 7383 r = PTR_ERR(chip); 7384 goto out; 7385 } 7386 7387 r = -ENXIO; 7388 if (!irqchip_full(kvm)) 7389 goto set_irqchip_out; 7390 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 7391 set_irqchip_out: 7392 kfree(chip); 7393 break; 7394 } 7395 case KVM_GET_PIT: { 7396 r = -EFAULT; 7397 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 7398 goto out; 7399 r = -ENXIO; 7400 if (!kvm->arch.vpit) 7401 goto out; 7402 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 7403 if (r) 7404 goto out; 7405 r = -EFAULT; 7406 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 7407 goto out; 7408 r = 0; 7409 break; 7410 } 7411 case KVM_SET_PIT: { 7412 r = -EFAULT; 7413 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 7414 goto out; 7415 mutex_lock(&kvm->lock); 7416 r = -ENXIO; 7417 if (!kvm->arch.vpit) 7418 goto set_pit_out; 7419 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 7420 set_pit_out: 7421 mutex_unlock(&kvm->lock); 7422 break; 7423 } 7424 case KVM_GET_PIT2: { 7425 r = -ENXIO; 7426 if (!kvm->arch.vpit) 7427 goto out; 7428 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 7429 if (r) 7430 goto out; 7431 r = -EFAULT; 7432 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 7433 goto out; 7434 r = 0; 7435 break; 7436 } 7437 case KVM_SET_PIT2: { 7438 r = -EFAULT; 7439 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 7440 goto out; 7441 mutex_lock(&kvm->lock); 7442 r = -ENXIO; 7443 if (!kvm->arch.vpit) 7444 goto set_pit2_out; 7445 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 7446 set_pit2_out: 7447 mutex_unlock(&kvm->lock); 7448 break; 7449 } 7450 case KVM_REINJECT_CONTROL: { 7451 struct kvm_reinject_control control; 7452 r = -EFAULT; 7453 if (copy_from_user(&control, argp, sizeof(control))) 7454 goto out; 7455 r = -ENXIO; 7456 if (!kvm->arch.vpit) 7457 goto out; 7458 r = kvm_vm_ioctl_reinject(kvm, &control); 7459 break; 7460 } 7461 #endif 7462 case KVM_SET_BOOT_CPU_ID: 7463 r = 0; 7464 mutex_lock(&kvm->lock); 7465 if (kvm->created_vcpus) 7466 r = -EBUSY; 7467 else if (arg > KVM_MAX_VCPU_IDS || 7468 (kvm->arch.max_vcpu_ids && arg > kvm->arch.max_vcpu_ids)) 7469 r = -EINVAL; 7470 else 7471 kvm->arch.bsp_vcpu_id = arg; 7472 mutex_unlock(&kvm->lock); 7473 break; 7474 #ifdef CONFIG_KVM_XEN 7475 case KVM_XEN_HVM_CONFIG: { 7476 struct kvm_xen_hvm_config xhc; 7477 r = -EFAULT; 7478 if (copy_from_user(&xhc, argp, sizeof(xhc))) 7479 goto out; 7480 r = kvm_xen_hvm_config(kvm, &xhc); 7481 break; 7482 } 7483 case KVM_XEN_HVM_GET_ATTR: { 7484 struct kvm_xen_hvm_attr xha; 7485 7486 r = -EFAULT; 7487 if (copy_from_user(&xha, argp, sizeof(xha))) 7488 goto out; 7489 r = kvm_xen_hvm_get_attr(kvm, &xha); 7490 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 7491 r = -EFAULT; 7492 break; 7493 } 7494 case KVM_XEN_HVM_SET_ATTR: { 7495 struct kvm_xen_hvm_attr xha; 7496 7497 r = -EFAULT; 7498 if (copy_from_user(&xha, argp, sizeof(xha))) 7499 goto out; 7500 r = kvm_xen_hvm_set_attr(kvm, &xha); 7501 break; 7502 } 7503 case KVM_XEN_HVM_EVTCHN_SEND: { 7504 struct kvm_irq_routing_xen_evtchn uxe; 7505 7506 r = -EFAULT; 7507 if (copy_from_user(&uxe, argp, sizeof(uxe))) 7508 goto out; 7509 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 7510 break; 7511 } 7512 #endif 7513 case KVM_SET_CLOCK: 7514 r = kvm_vm_ioctl_set_clock(kvm, argp); 7515 break; 7516 case KVM_GET_CLOCK: 7517 r = kvm_vm_ioctl_get_clock(kvm, argp); 7518 break; 7519 case KVM_SET_TSC_KHZ: { 7520 u32 user_tsc_khz; 7521 7522 r = -EINVAL; 7523 user_tsc_khz = (u32)arg; 7524 7525 if (kvm_caps.has_tsc_control && 7526 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 7527 goto out; 7528 7529 if (user_tsc_khz == 0) 7530 user_tsc_khz = tsc_khz; 7531 7532 mutex_lock(&kvm->lock); 7533 if (!kvm->created_vcpus) { 7534 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 7535 r = 0; 7536 } 7537 mutex_unlock(&kvm->lock); 7538 goto out; 7539 } 7540 case KVM_GET_TSC_KHZ: { 7541 r = READ_ONCE(kvm->arch.default_tsc_khz); 7542 goto out; 7543 } 7544 case KVM_MEMORY_ENCRYPT_OP: 7545 r = -ENOTTY; 7546 if (!kvm_x86_ops.mem_enc_ioctl) 7547 goto out; 7548 7549 r = kvm_x86_call(mem_enc_ioctl)(kvm, argp); 7550 break; 7551 case KVM_MEMORY_ENCRYPT_REG_REGION: { 7552 struct kvm_enc_region region; 7553 7554 r = -EFAULT; 7555 if (copy_from_user(®ion, argp, sizeof(region))) 7556 goto out; 7557 7558 r = -ENOTTY; 7559 if (!kvm_x86_ops.mem_enc_register_region) 7560 goto out; 7561 7562 r = kvm_x86_call(mem_enc_register_region)(kvm, ®ion); 7563 break; 7564 } 7565 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 7566 struct kvm_enc_region region; 7567 7568 r = -EFAULT; 7569 if (copy_from_user(®ion, argp, sizeof(region))) 7570 goto out; 7571 7572 r = -ENOTTY; 7573 if (!kvm_x86_ops.mem_enc_unregister_region) 7574 goto out; 7575 7576 r = kvm_x86_call(mem_enc_unregister_region)(kvm, ®ion); 7577 break; 7578 } 7579 #ifdef CONFIG_KVM_HYPERV 7580 case KVM_HYPERV_EVENTFD: { 7581 struct kvm_hyperv_eventfd hvevfd; 7582 7583 r = -EFAULT; 7584 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 7585 goto out; 7586 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 7587 break; 7588 } 7589 #endif 7590 case KVM_SET_PMU_EVENT_FILTER: 7591 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 7592 break; 7593 case KVM_X86_SET_MSR_FILTER: { 7594 struct kvm_msr_filter __user *user_msr_filter = argp; 7595 struct kvm_msr_filter filter; 7596 7597 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 7598 return -EFAULT; 7599 7600 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 7601 break; 7602 } 7603 default: 7604 r = -ENOTTY; 7605 } 7606 out: 7607 return r; 7608 } 7609 7610 static void kvm_probe_feature_msr(u32 msr_index) 7611 { 7612 u64 data; 7613 7614 if (kvm_get_feature_msr(NULL, msr_index, &data, true)) 7615 return; 7616 7617 msr_based_features[num_msr_based_features++] = msr_index; 7618 } 7619 7620 static void kvm_probe_msr_to_save(u32 msr_index) 7621 { 7622 u32 dummy[2]; 7623 7624 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1])) 7625 return; 7626 7627 /* 7628 * Even MSRs that are valid in the host may not be exposed to guests in 7629 * some cases. 7630 */ 7631 switch (msr_index) { 7632 case MSR_IA32_BNDCFGS: 7633 if (!kvm_mpx_supported()) 7634 return; 7635 break; 7636 case MSR_TSC_AUX: 7637 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7638 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7639 return; 7640 break; 7641 case MSR_IA32_UMWAIT_CONTROL: 7642 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7643 return; 7644 break; 7645 case MSR_IA32_RTIT_CTL: 7646 case MSR_IA32_RTIT_STATUS: 7647 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7648 return; 7649 break; 7650 case MSR_IA32_RTIT_CR3_MATCH: 7651 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7652 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7653 return; 7654 break; 7655 case MSR_IA32_RTIT_OUTPUT_BASE: 7656 case MSR_IA32_RTIT_OUTPUT_MASK: 7657 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7658 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7659 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7660 return; 7661 break; 7662 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7663 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7664 (msr_index - MSR_IA32_RTIT_ADDR0_A >= 7665 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)) 7666 return; 7667 break; 7668 case MSR_ARCH_PERFMON_PERFCTR0 ... 7669 MSR_ARCH_PERFMON_PERFCTR0 + KVM_MAX_NR_GP_COUNTERS - 1: 7670 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >= 7671 kvm_pmu_cap.num_counters_gp) 7672 return; 7673 break; 7674 case MSR_ARCH_PERFMON_EVENTSEL0 ... 7675 MSR_ARCH_PERFMON_EVENTSEL0 + KVM_MAX_NR_GP_COUNTERS - 1: 7676 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >= 7677 kvm_pmu_cap.num_counters_gp) 7678 return; 7679 break; 7680 case MSR_ARCH_PERFMON_FIXED_CTR0 ... 7681 MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_MAX_NR_FIXED_COUNTERS - 1: 7682 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >= 7683 kvm_pmu_cap.num_counters_fixed) 7684 return; 7685 break; 7686 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL: 7687 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS: 7688 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR: 7689 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_SET: 7690 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) 7691 return; 7692 break; 7693 case MSR_IA32_XFD: 7694 case MSR_IA32_XFD_ERR: 7695 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7696 return; 7697 break; 7698 case MSR_IA32_TSX_CTRL: 7699 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR)) 7700 return; 7701 break; 7702 case MSR_IA32_XSS: 7703 if (!kvm_caps.supported_xss) 7704 return; 7705 break; 7706 case MSR_IA32_U_CET: 7707 case MSR_IA32_S_CET: 7708 if (!kvm_cpu_cap_has(X86_FEATURE_SHSTK) && 7709 !kvm_cpu_cap_has(X86_FEATURE_IBT)) 7710 return; 7711 break; 7712 case MSR_IA32_INT_SSP_TAB: 7713 if (!kvm_cpu_cap_has(X86_FEATURE_LM)) 7714 return; 7715 fallthrough; 7716 case MSR_IA32_PL0_SSP ... MSR_IA32_PL3_SSP: 7717 if (!kvm_cpu_cap_has(X86_FEATURE_SHSTK)) 7718 return; 7719 break; 7720 default: 7721 break; 7722 } 7723 7724 msrs_to_save[num_msrs_to_save++] = msr_index; 7725 } 7726 7727 static void kvm_init_msr_lists(void) 7728 { 7729 unsigned i; 7730 7731 BUILD_BUG_ON_MSG(KVM_MAX_NR_FIXED_COUNTERS != 3, 7732 "Please update the fixed PMCs in msrs_to_save_pmu[]"); 7733 7734 num_msrs_to_save = 0; 7735 num_emulated_msrs = 0; 7736 num_msr_based_features = 0; 7737 7738 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++) 7739 kvm_probe_msr_to_save(msrs_to_save_base[i]); 7740 7741 if (enable_pmu) { 7742 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++) 7743 kvm_probe_msr_to_save(msrs_to_save_pmu[i]); 7744 } 7745 7746 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7747 if (!kvm_x86_call(has_emulated_msr)(NULL, 7748 emulated_msrs_all[i])) 7749 continue; 7750 7751 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7752 } 7753 7754 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++) 7755 kvm_probe_feature_msr(i); 7756 7757 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) 7758 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]); 7759 } 7760 7761 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7762 const void *v) 7763 { 7764 int handled = 0; 7765 int n; 7766 7767 do { 7768 n = min(len, 8); 7769 if (!(lapic_in_kernel(vcpu) && 7770 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7771 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7772 break; 7773 handled += n; 7774 addr += n; 7775 len -= n; 7776 v += n; 7777 } while (len); 7778 7779 return handled; 7780 } 7781 7782 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7783 { 7784 int handled = 0; 7785 int n; 7786 7787 do { 7788 n = min(len, 8); 7789 if (!(lapic_in_kernel(vcpu) && 7790 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7791 addr, n, v)) 7792 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7793 break; 7794 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7795 handled += n; 7796 addr += n; 7797 len -= n; 7798 v += n; 7799 } while (len); 7800 7801 return handled; 7802 } 7803 7804 void kvm_set_segment(struct kvm_vcpu *vcpu, 7805 struct kvm_segment *var, int seg) 7806 { 7807 kvm_x86_call(set_segment)(vcpu, var, seg); 7808 } 7809 7810 void kvm_get_segment(struct kvm_vcpu *vcpu, 7811 struct kvm_segment *var, int seg) 7812 { 7813 kvm_x86_call(get_segment)(vcpu, var, seg); 7814 } 7815 7816 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7817 struct x86_exception *exception) 7818 { 7819 struct kvm_mmu *mmu = vcpu->arch.mmu; 7820 gpa_t t_gpa; 7821 7822 BUG_ON(!mmu_is_nested(vcpu)); 7823 7824 /* NPT walks are always user-walks */ 7825 access |= PFERR_USER_MASK; 7826 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7827 7828 return t_gpa; 7829 } 7830 7831 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7832 struct x86_exception *exception) 7833 { 7834 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7835 7836 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7837 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7838 } 7839 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_gva_to_gpa_read); 7840 7841 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7842 struct x86_exception *exception) 7843 { 7844 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7845 7846 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7847 access |= PFERR_WRITE_MASK; 7848 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7849 } 7850 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_gva_to_gpa_write); 7851 7852 /* uses this to access any guest's mapped memory without checking CPL */ 7853 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7854 struct x86_exception *exception) 7855 { 7856 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7857 7858 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7859 } 7860 7861 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7862 struct kvm_vcpu *vcpu, u64 access, 7863 struct x86_exception *exception) 7864 { 7865 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7866 void *data = val; 7867 int r = X86EMUL_CONTINUE; 7868 7869 while (bytes) { 7870 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7871 unsigned offset = addr & (PAGE_SIZE-1); 7872 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7873 int ret; 7874 7875 if (gpa == INVALID_GPA) 7876 return X86EMUL_PROPAGATE_FAULT; 7877 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7878 offset, toread); 7879 if (ret < 0) { 7880 r = X86EMUL_IO_NEEDED; 7881 goto out; 7882 } 7883 7884 bytes -= toread; 7885 data += toread; 7886 addr += toread; 7887 } 7888 out: 7889 return r; 7890 } 7891 7892 /* used for instruction fetching */ 7893 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7894 gva_t addr, void *val, unsigned int bytes, 7895 struct x86_exception *exception) 7896 { 7897 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7898 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7899 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7900 unsigned offset; 7901 int ret; 7902 7903 /* Inline kvm_read_guest_virt_helper for speed. */ 7904 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7905 exception); 7906 if (unlikely(gpa == INVALID_GPA)) 7907 return X86EMUL_PROPAGATE_FAULT; 7908 7909 offset = addr & (PAGE_SIZE-1); 7910 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7911 bytes = (unsigned)PAGE_SIZE - offset; 7912 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7913 offset, bytes); 7914 if (unlikely(ret < 0)) 7915 return X86EMUL_IO_NEEDED; 7916 7917 return X86EMUL_CONTINUE; 7918 } 7919 7920 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7921 gva_t addr, void *val, unsigned int bytes, 7922 struct x86_exception *exception) 7923 { 7924 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7925 7926 /* 7927 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7928 * is returned, but our callers are not ready for that and they blindly 7929 * call kvm_inject_page_fault. Ensure that they at least do not leak 7930 * uninitialized kernel stack memory into cr2 and error code. 7931 */ 7932 memset(exception, 0, sizeof(*exception)); 7933 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7934 exception); 7935 } 7936 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest_virt); 7937 7938 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7939 gva_t addr, void *val, unsigned int bytes, 7940 struct x86_exception *exception, bool system) 7941 { 7942 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7943 u64 access = 0; 7944 7945 if (system) 7946 access |= PFERR_IMPLICIT_ACCESS; 7947 else if (kvm_x86_call(get_cpl)(vcpu) == 3) 7948 access |= PFERR_USER_MASK; 7949 7950 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7951 } 7952 7953 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7954 struct kvm_vcpu *vcpu, u64 access, 7955 struct x86_exception *exception) 7956 { 7957 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7958 void *data = val; 7959 int r = X86EMUL_CONTINUE; 7960 7961 while (bytes) { 7962 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7963 unsigned offset = addr & (PAGE_SIZE-1); 7964 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7965 int ret; 7966 7967 if (gpa == INVALID_GPA) 7968 return X86EMUL_PROPAGATE_FAULT; 7969 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7970 if (ret < 0) { 7971 r = X86EMUL_IO_NEEDED; 7972 goto out; 7973 } 7974 7975 bytes -= towrite; 7976 data += towrite; 7977 addr += towrite; 7978 } 7979 out: 7980 return r; 7981 } 7982 7983 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7984 unsigned int bytes, struct x86_exception *exception, 7985 bool system) 7986 { 7987 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7988 u64 access = PFERR_WRITE_MASK; 7989 7990 if (system) 7991 access |= PFERR_IMPLICIT_ACCESS; 7992 else if (kvm_x86_call(get_cpl)(vcpu) == 3) 7993 access |= PFERR_USER_MASK; 7994 7995 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7996 access, exception); 7997 } 7998 7999 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 8000 unsigned int bytes, struct x86_exception *exception) 8001 { 8002 /* kvm_write_guest_virt_system can pull in tons of pages. */ 8003 vcpu->arch.l1tf_flush_l1d = true; 8004 8005 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 8006 PFERR_WRITE_MASK, exception); 8007 } 8008 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest_virt_system); 8009 8010 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 8011 void *insn, int insn_len) 8012 { 8013 return kvm_x86_call(check_emulate_instruction)(vcpu, emul_type, 8014 insn, insn_len); 8015 } 8016 8017 int handle_ud(struct kvm_vcpu *vcpu) 8018 { 8019 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 8020 int fep_flags = READ_ONCE(force_emulation_prefix); 8021 int emul_type = EMULTYPE_TRAP_UD; 8022 char sig[5]; /* ud2; .ascii "kvm" */ 8023 struct x86_exception e; 8024 int r; 8025 8026 r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0); 8027 if (r != X86EMUL_CONTINUE) 8028 return 1; 8029 8030 if (fep_flags && 8031 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 8032 sig, sizeof(sig), &e) == 0 && 8033 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 8034 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 8035 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 8036 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 8037 emul_type = EMULTYPE_TRAP_UD_FORCED; 8038 } 8039 8040 return kvm_emulate_instruction(vcpu, emul_type); 8041 } 8042 EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_ud); 8043 8044 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 8045 gpa_t gpa, bool write) 8046 { 8047 /* For APIC access vmexit */ 8048 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 8049 return 1; 8050 8051 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 8052 trace_vcpu_match_mmio(gva, gpa, write, true); 8053 return 1; 8054 } 8055 8056 return 0; 8057 } 8058 8059 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 8060 gpa_t *gpa, struct x86_exception *exception, 8061 bool write) 8062 { 8063 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 8064 u64 access = ((kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 8065 | (write ? PFERR_WRITE_MASK : 0); 8066 8067 /* 8068 * currently PKRU is only applied to ept enabled guest so 8069 * there is no pkey in EPT page table for L1 guest or EPT 8070 * shadow page table for L2 guest. 8071 */ 8072 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 8073 !permission_fault(vcpu, vcpu->arch.walk_mmu, 8074 vcpu->arch.mmio_access, 0, access))) { 8075 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 8076 (gva & (PAGE_SIZE - 1)); 8077 trace_vcpu_match_mmio(gva, *gpa, write, false); 8078 return 1; 8079 } 8080 8081 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 8082 8083 if (*gpa == INVALID_GPA) 8084 return -1; 8085 8086 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 8087 } 8088 8089 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 8090 const void *val, int bytes) 8091 { 8092 int ret; 8093 8094 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 8095 if (ret < 0) 8096 return 0; 8097 kvm_page_track_write(vcpu, gpa, val, bytes); 8098 return 1; 8099 } 8100 8101 struct read_write_emulator_ops { 8102 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 8103 int bytes); 8104 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 8105 void *val, int bytes); 8106 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 8107 int bytes, void *val); 8108 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 8109 void *val, int bytes); 8110 bool write; 8111 }; 8112 8113 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 8114 { 8115 if (vcpu->mmio_read_completed) { 8116 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 8117 vcpu->mmio_fragments[0].gpa, val); 8118 vcpu->mmio_read_completed = 0; 8119 return 1; 8120 } 8121 8122 return 0; 8123 } 8124 8125 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 8126 void *val, int bytes) 8127 { 8128 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 8129 } 8130 8131 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 8132 void *val, int bytes) 8133 { 8134 return emulator_write_phys(vcpu, gpa, val, bytes); 8135 } 8136 8137 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 8138 { 8139 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 8140 return vcpu_mmio_write(vcpu, gpa, bytes, val); 8141 } 8142 8143 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 8144 void *val, int bytes) 8145 { 8146 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 8147 return X86EMUL_IO_NEEDED; 8148 } 8149 8150 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 8151 void *val, int bytes) 8152 { 8153 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 8154 8155 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 8156 return X86EMUL_CONTINUE; 8157 } 8158 8159 static const struct read_write_emulator_ops read_emultor = { 8160 .read_write_prepare = read_prepare, 8161 .read_write_emulate = read_emulate, 8162 .read_write_mmio = vcpu_mmio_read, 8163 .read_write_exit_mmio = read_exit_mmio, 8164 }; 8165 8166 static const struct read_write_emulator_ops write_emultor = { 8167 .read_write_emulate = write_emulate, 8168 .read_write_mmio = write_mmio, 8169 .read_write_exit_mmio = write_exit_mmio, 8170 .write = true, 8171 }; 8172 8173 static int emulator_read_write_onepage(unsigned long addr, void *val, 8174 unsigned int bytes, 8175 struct x86_exception *exception, 8176 struct kvm_vcpu *vcpu, 8177 const struct read_write_emulator_ops *ops) 8178 { 8179 gpa_t gpa; 8180 int handled, ret; 8181 bool write = ops->write; 8182 struct kvm_mmio_fragment *frag; 8183 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8184 8185 /* 8186 * If the exit was due to a NPF we may already have a GPA. 8187 * If the GPA is present, use it to avoid the GVA to GPA table walk. 8188 * Note, this cannot be used on string operations since string 8189 * operation using rep will only have the initial GPA from the NPF 8190 * occurred. 8191 */ 8192 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 8193 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 8194 gpa = ctxt->gpa_val; 8195 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 8196 } else { 8197 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 8198 if (ret < 0) 8199 return X86EMUL_PROPAGATE_FAULT; 8200 } 8201 8202 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 8203 return X86EMUL_CONTINUE; 8204 8205 /* 8206 * Is this MMIO handled locally? 8207 */ 8208 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 8209 if (handled == bytes) 8210 return X86EMUL_CONTINUE; 8211 8212 gpa += handled; 8213 bytes -= handled; 8214 val += handled; 8215 8216 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 8217 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 8218 frag->gpa = gpa; 8219 frag->data = val; 8220 frag->len = bytes; 8221 return X86EMUL_CONTINUE; 8222 } 8223 8224 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 8225 unsigned long addr, 8226 void *val, unsigned int bytes, 8227 struct x86_exception *exception, 8228 const struct read_write_emulator_ops *ops) 8229 { 8230 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8231 gpa_t gpa; 8232 int rc; 8233 8234 if (ops->read_write_prepare && 8235 ops->read_write_prepare(vcpu, val, bytes)) 8236 return X86EMUL_CONTINUE; 8237 8238 vcpu->mmio_nr_fragments = 0; 8239 8240 /* Crossing a page boundary? */ 8241 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 8242 int now; 8243 8244 now = -addr & ~PAGE_MASK; 8245 rc = emulator_read_write_onepage(addr, val, now, exception, 8246 vcpu, ops); 8247 8248 if (rc != X86EMUL_CONTINUE) 8249 return rc; 8250 addr += now; 8251 if (ctxt->mode != X86EMUL_MODE_PROT64) 8252 addr = (u32)addr; 8253 val += now; 8254 bytes -= now; 8255 } 8256 8257 rc = emulator_read_write_onepage(addr, val, bytes, exception, 8258 vcpu, ops); 8259 if (rc != X86EMUL_CONTINUE) 8260 return rc; 8261 8262 if (!vcpu->mmio_nr_fragments) 8263 return X86EMUL_CONTINUE; 8264 8265 gpa = vcpu->mmio_fragments[0].gpa; 8266 8267 vcpu->mmio_needed = 1; 8268 vcpu->mmio_cur_fragment = 0; 8269 8270 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 8271 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 8272 vcpu->run->exit_reason = KVM_EXIT_MMIO; 8273 vcpu->run->mmio.phys_addr = gpa; 8274 8275 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 8276 } 8277 8278 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 8279 unsigned long addr, 8280 void *val, 8281 unsigned int bytes, 8282 struct x86_exception *exception) 8283 { 8284 return emulator_read_write(ctxt, addr, val, bytes, 8285 exception, &read_emultor); 8286 } 8287 8288 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 8289 unsigned long addr, 8290 const void *val, 8291 unsigned int bytes, 8292 struct x86_exception *exception) 8293 { 8294 return emulator_read_write(ctxt, addr, (void *)val, bytes, 8295 exception, &write_emultor); 8296 } 8297 8298 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 8299 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 8300 8301 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 8302 unsigned long addr, 8303 const void *old, 8304 const void *new, 8305 unsigned int bytes, 8306 struct x86_exception *exception) 8307 { 8308 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8309 u64 page_line_mask; 8310 unsigned long hva; 8311 gpa_t gpa; 8312 int r; 8313 8314 /* guests cmpxchg8b have to be emulated atomically */ 8315 if (bytes > 8 || (bytes & (bytes - 1))) 8316 goto emul_write; 8317 8318 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 8319 8320 if (gpa == INVALID_GPA || 8321 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 8322 goto emul_write; 8323 8324 /* 8325 * Emulate the atomic as a straight write to avoid #AC if SLD is 8326 * enabled in the host and the access splits a cache line. 8327 */ 8328 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 8329 page_line_mask = ~(cache_line_size() - 1); 8330 else 8331 page_line_mask = PAGE_MASK; 8332 8333 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 8334 goto emul_write; 8335 8336 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 8337 if (kvm_is_error_hva(hva)) 8338 goto emul_write; 8339 8340 hva += offset_in_page(gpa); 8341 8342 switch (bytes) { 8343 case 1: 8344 r = emulator_try_cmpxchg_user(u8, hva, old, new); 8345 break; 8346 case 2: 8347 r = emulator_try_cmpxchg_user(u16, hva, old, new); 8348 break; 8349 case 4: 8350 r = emulator_try_cmpxchg_user(u32, hva, old, new); 8351 break; 8352 case 8: 8353 r = emulator_try_cmpxchg_user(u64, hva, old, new); 8354 break; 8355 default: 8356 BUG(); 8357 } 8358 8359 if (r < 0) 8360 return X86EMUL_UNHANDLEABLE; 8361 8362 /* 8363 * Mark the page dirty _before_ checking whether or not the CMPXCHG was 8364 * successful, as the old value is written back on failure. Note, for 8365 * live migration, this is unnecessarily conservative as CMPXCHG writes 8366 * back the original value and the access is atomic, but KVM's ABI is 8367 * that all writes are dirty logged, regardless of the value written. 8368 */ 8369 kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa)); 8370 8371 if (r) 8372 return X86EMUL_CMPXCHG_FAILED; 8373 8374 kvm_page_track_write(vcpu, gpa, new, bytes); 8375 8376 return X86EMUL_CONTINUE; 8377 8378 emul_write: 8379 pr_warn_once("emulating exchange as write\n"); 8380 8381 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 8382 } 8383 8384 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 8385 unsigned short port, void *data, 8386 unsigned int count, bool in) 8387 { 8388 unsigned i; 8389 int r; 8390 8391 WARN_ON_ONCE(vcpu->arch.pio.count); 8392 for (i = 0; i < count; i++) { 8393 if (in) 8394 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 8395 else 8396 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 8397 8398 if (r) { 8399 if (i == 0) 8400 goto userspace_io; 8401 8402 /* 8403 * Userspace must have unregistered the device while PIO 8404 * was running. Drop writes / read as 0. 8405 */ 8406 if (in) 8407 memset(data, 0, size * (count - i)); 8408 break; 8409 } 8410 8411 data += size; 8412 } 8413 return 1; 8414 8415 userspace_io: 8416 vcpu->arch.pio.port = port; 8417 vcpu->arch.pio.in = in; 8418 vcpu->arch.pio.count = count; 8419 vcpu->arch.pio.size = size; 8420 8421 if (in) 8422 memset(vcpu->arch.pio_data, 0, size * count); 8423 else 8424 memcpy(vcpu->arch.pio_data, data, size * count); 8425 8426 vcpu->run->exit_reason = KVM_EXIT_IO; 8427 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 8428 vcpu->run->io.size = size; 8429 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 8430 vcpu->run->io.count = count; 8431 vcpu->run->io.port = port; 8432 return 0; 8433 } 8434 8435 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 8436 unsigned short port, void *val, unsigned int count) 8437 { 8438 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 8439 if (r) 8440 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 8441 8442 return r; 8443 } 8444 8445 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 8446 { 8447 int size = vcpu->arch.pio.size; 8448 unsigned int count = vcpu->arch.pio.count; 8449 memcpy(val, vcpu->arch.pio_data, size * count); 8450 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 8451 vcpu->arch.pio.count = 0; 8452 } 8453 8454 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 8455 int size, unsigned short port, void *val, 8456 unsigned int count) 8457 { 8458 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8459 if (vcpu->arch.pio.count) { 8460 /* 8461 * Complete a previous iteration that required userspace I/O. 8462 * Note, @count isn't guaranteed to match pio.count as userspace 8463 * can modify ECX before rerunning the vCPU. Ignore any such 8464 * shenanigans as KVM doesn't support modifying the rep count, 8465 * and the emulator ensures @count doesn't overflow the buffer. 8466 */ 8467 complete_emulator_pio_in(vcpu, val); 8468 return 1; 8469 } 8470 8471 return emulator_pio_in(vcpu, size, port, val, count); 8472 } 8473 8474 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 8475 unsigned short port, const void *val, 8476 unsigned int count) 8477 { 8478 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 8479 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 8480 } 8481 8482 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 8483 int size, unsigned short port, 8484 const void *val, unsigned int count) 8485 { 8486 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 8487 } 8488 8489 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 8490 { 8491 return kvm_x86_call(get_segment_base)(vcpu, seg); 8492 } 8493 8494 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 8495 { 8496 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 8497 } 8498 8499 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 8500 { 8501 if (!need_emulate_wbinvd(vcpu)) 8502 return X86EMUL_CONTINUE; 8503 8504 if (kvm_x86_call(has_wbinvd_exit)()) { 8505 int cpu = get_cpu(); 8506 8507 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 8508 wbinvd_on_cpus_mask(vcpu->arch.wbinvd_dirty_mask); 8509 put_cpu(); 8510 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 8511 } else 8512 wbinvd(); 8513 return X86EMUL_CONTINUE; 8514 } 8515 8516 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 8517 { 8518 kvm_emulate_wbinvd_noskip(vcpu); 8519 return kvm_skip_emulated_instruction(vcpu); 8520 } 8521 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_wbinvd); 8522 8523 8524 8525 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 8526 { 8527 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 8528 } 8529 8530 static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr) 8531 { 8532 return kvm_get_dr(emul_to_vcpu(ctxt), dr); 8533 } 8534 8535 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 8536 unsigned long value) 8537 { 8538 8539 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 8540 } 8541 8542 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 8543 { 8544 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 8545 } 8546 8547 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 8548 { 8549 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8550 unsigned long value; 8551 8552 switch (cr) { 8553 case 0: 8554 value = kvm_read_cr0(vcpu); 8555 break; 8556 case 2: 8557 value = vcpu->arch.cr2; 8558 break; 8559 case 3: 8560 value = kvm_read_cr3(vcpu); 8561 break; 8562 case 4: 8563 value = kvm_read_cr4(vcpu); 8564 break; 8565 case 8: 8566 value = kvm_get_cr8(vcpu); 8567 break; 8568 default: 8569 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8570 return 0; 8571 } 8572 8573 return value; 8574 } 8575 8576 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 8577 { 8578 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8579 int res = 0; 8580 8581 switch (cr) { 8582 case 0: 8583 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 8584 break; 8585 case 2: 8586 vcpu->arch.cr2 = val; 8587 break; 8588 case 3: 8589 res = kvm_set_cr3(vcpu, val); 8590 break; 8591 case 4: 8592 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 8593 break; 8594 case 8: 8595 res = kvm_set_cr8(vcpu, val); 8596 break; 8597 default: 8598 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8599 res = -1; 8600 } 8601 8602 return res; 8603 } 8604 8605 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 8606 { 8607 return kvm_x86_call(get_cpl)(emul_to_vcpu(ctxt)); 8608 } 8609 8610 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8611 { 8612 kvm_x86_call(get_gdt)(emul_to_vcpu(ctxt), dt); 8613 } 8614 8615 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8616 { 8617 kvm_x86_call(get_idt)(emul_to_vcpu(ctxt), dt); 8618 } 8619 8620 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8621 { 8622 kvm_x86_call(set_gdt)(emul_to_vcpu(ctxt), dt); 8623 } 8624 8625 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8626 { 8627 kvm_x86_call(set_idt)(emul_to_vcpu(ctxt), dt); 8628 } 8629 8630 static unsigned long emulator_get_cached_segment_base( 8631 struct x86_emulate_ctxt *ctxt, int seg) 8632 { 8633 return get_segment_base(emul_to_vcpu(ctxt), seg); 8634 } 8635 8636 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 8637 struct desc_struct *desc, u32 *base3, 8638 int seg) 8639 { 8640 struct kvm_segment var; 8641 8642 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 8643 *selector = var.selector; 8644 8645 if (var.unusable) { 8646 memset(desc, 0, sizeof(*desc)); 8647 if (base3) 8648 *base3 = 0; 8649 return false; 8650 } 8651 8652 if (var.g) 8653 var.limit >>= 12; 8654 set_desc_limit(desc, var.limit); 8655 set_desc_base(desc, (unsigned long)var.base); 8656 #ifdef CONFIG_X86_64 8657 if (base3) 8658 *base3 = var.base >> 32; 8659 #endif 8660 desc->type = var.type; 8661 desc->s = var.s; 8662 desc->dpl = var.dpl; 8663 desc->p = var.present; 8664 desc->avl = var.avl; 8665 desc->l = var.l; 8666 desc->d = var.db; 8667 desc->g = var.g; 8668 8669 return true; 8670 } 8671 8672 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8673 struct desc_struct *desc, u32 base3, 8674 int seg) 8675 { 8676 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8677 struct kvm_segment var; 8678 8679 var.selector = selector; 8680 var.base = get_desc_base(desc); 8681 #ifdef CONFIG_X86_64 8682 var.base |= ((u64)base3) << 32; 8683 #endif 8684 var.limit = get_desc_limit(desc); 8685 if (desc->g) 8686 var.limit = (var.limit << 12) | 0xfff; 8687 var.type = desc->type; 8688 var.dpl = desc->dpl; 8689 var.db = desc->d; 8690 var.s = desc->s; 8691 var.l = desc->l; 8692 var.g = desc->g; 8693 var.avl = desc->avl; 8694 var.present = desc->p; 8695 var.unusable = !var.present; 8696 var.padding = 0; 8697 8698 kvm_set_segment(vcpu, &var, seg); 8699 return; 8700 } 8701 8702 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8703 u32 msr_index, u64 *pdata) 8704 { 8705 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8706 int r; 8707 8708 r = kvm_emulate_msr_read(vcpu, msr_index, pdata); 8709 if (r < 0) 8710 return X86EMUL_UNHANDLEABLE; 8711 8712 if (r) { 8713 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8714 complete_emulated_rdmsr, r)) 8715 return X86EMUL_IO_NEEDED; 8716 8717 trace_kvm_msr_read_ex(msr_index); 8718 return X86EMUL_PROPAGATE_FAULT; 8719 } 8720 8721 trace_kvm_msr_read(msr_index, *pdata); 8722 return X86EMUL_CONTINUE; 8723 } 8724 8725 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8726 u32 msr_index, u64 data) 8727 { 8728 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8729 int r; 8730 8731 r = kvm_emulate_msr_write(vcpu, msr_index, data); 8732 if (r < 0) 8733 return X86EMUL_UNHANDLEABLE; 8734 8735 if (r) { 8736 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8737 complete_emulated_msr_access, r)) 8738 return X86EMUL_IO_NEEDED; 8739 8740 trace_kvm_msr_write_ex(msr_index, data); 8741 return X86EMUL_PROPAGATE_FAULT; 8742 } 8743 8744 trace_kvm_msr_write(msr_index, data); 8745 return X86EMUL_CONTINUE; 8746 } 8747 8748 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8749 u32 msr_index, u64 *pdata) 8750 { 8751 /* 8752 * Treat emulator accesses to the current shadow stack pointer as host- 8753 * initiated, as they aren't true MSR accesses (SSP is a "just a reg"), 8754 * and this API is used only for implicit accesses, i.e. not RDMSR, and 8755 * so the index is fully KVM-controlled. 8756 */ 8757 if (unlikely(msr_index == MSR_KVM_INTERNAL_GUEST_SSP)) 8758 return kvm_msr_read(emul_to_vcpu(ctxt), msr_index, pdata); 8759 8760 return __kvm_emulate_msr_read(emul_to_vcpu(ctxt), msr_index, pdata); 8761 } 8762 8763 static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc) 8764 { 8765 return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc); 8766 } 8767 8768 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8769 u32 pmc, u64 *pdata) 8770 { 8771 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8772 } 8773 8774 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8775 { 8776 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8777 } 8778 8779 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8780 struct x86_instruction_info *info, 8781 enum x86_intercept_stage stage) 8782 { 8783 return kvm_x86_call(check_intercept)(emul_to_vcpu(ctxt), info, stage, 8784 &ctxt->exception); 8785 } 8786 8787 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8788 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8789 bool exact_only) 8790 { 8791 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8792 } 8793 8794 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8795 { 8796 return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8797 } 8798 8799 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8800 { 8801 return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8802 } 8803 8804 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8805 { 8806 return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8807 } 8808 8809 static bool emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt *ctxt) 8810 { 8811 return guest_cpuid_is_intel_compatible(emul_to_vcpu(ctxt)); 8812 } 8813 8814 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8815 { 8816 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8817 } 8818 8819 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8820 { 8821 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8822 } 8823 8824 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8825 { 8826 kvm_x86_call(set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8827 } 8828 8829 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt) 8830 { 8831 return is_smm(emul_to_vcpu(ctxt)); 8832 } 8833 8834 #ifndef CONFIG_KVM_SMM 8835 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8836 { 8837 WARN_ON_ONCE(1); 8838 return X86EMUL_UNHANDLEABLE; 8839 } 8840 #endif 8841 8842 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8843 { 8844 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8845 } 8846 8847 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8848 { 8849 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8850 } 8851 8852 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8853 { 8854 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8855 8856 if (!kvm->vm_bugged) 8857 kvm_vm_bugged(kvm); 8858 } 8859 8860 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt, 8861 gva_t addr, unsigned int flags) 8862 { 8863 if (!kvm_x86_ops.get_untagged_addr) 8864 return addr; 8865 8866 return kvm_x86_call(get_untagged_addr)(emul_to_vcpu(ctxt), 8867 addr, flags); 8868 } 8869 8870 static bool emulator_is_canonical_addr(struct x86_emulate_ctxt *ctxt, 8871 gva_t addr, unsigned int flags) 8872 { 8873 return !is_noncanonical_address(addr, emul_to_vcpu(ctxt), flags); 8874 } 8875 8876 static const struct x86_emulate_ops emulate_ops = { 8877 .vm_bugged = emulator_vm_bugged, 8878 .read_gpr = emulator_read_gpr, 8879 .write_gpr = emulator_write_gpr, 8880 .read_std = emulator_read_std, 8881 .write_std = emulator_write_std, 8882 .fetch = kvm_fetch_guest_virt, 8883 .read_emulated = emulator_read_emulated, 8884 .write_emulated = emulator_write_emulated, 8885 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8886 .invlpg = emulator_invlpg, 8887 .pio_in_emulated = emulator_pio_in_emulated, 8888 .pio_out_emulated = emulator_pio_out_emulated, 8889 .get_segment = emulator_get_segment, 8890 .set_segment = emulator_set_segment, 8891 .get_cached_segment_base = emulator_get_cached_segment_base, 8892 .get_gdt = emulator_get_gdt, 8893 .get_idt = emulator_get_idt, 8894 .set_gdt = emulator_set_gdt, 8895 .set_idt = emulator_set_idt, 8896 .get_cr = emulator_get_cr, 8897 .set_cr = emulator_set_cr, 8898 .cpl = emulator_get_cpl, 8899 .get_dr = emulator_get_dr, 8900 .set_dr = emulator_set_dr, 8901 .set_msr_with_filter = emulator_set_msr_with_filter, 8902 .get_msr_with_filter = emulator_get_msr_with_filter, 8903 .get_msr = emulator_get_msr, 8904 .check_rdpmc_early = emulator_check_rdpmc_early, 8905 .read_pmc = emulator_read_pmc, 8906 .halt = emulator_halt, 8907 .wbinvd = emulator_wbinvd, 8908 .fix_hypercall = emulator_fix_hypercall, 8909 .intercept = emulator_intercept, 8910 .get_cpuid = emulator_get_cpuid, 8911 .guest_has_movbe = emulator_guest_has_movbe, 8912 .guest_has_fxsr = emulator_guest_has_fxsr, 8913 .guest_has_rdpid = emulator_guest_has_rdpid, 8914 .guest_cpuid_is_intel_compatible = emulator_guest_cpuid_is_intel_compatible, 8915 .set_nmi_mask = emulator_set_nmi_mask, 8916 .is_smm = emulator_is_smm, 8917 .leave_smm = emulator_leave_smm, 8918 .triple_fault = emulator_triple_fault, 8919 .set_xcr = emulator_set_xcr, 8920 .get_untagged_addr = emulator_get_untagged_addr, 8921 .is_canonical_addr = emulator_is_canonical_addr, 8922 }; 8923 8924 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8925 { 8926 u32 int_shadow = kvm_x86_call(get_interrupt_shadow)(vcpu); 8927 /* 8928 * an sti; sti; sequence only disable interrupts for the first 8929 * instruction. So, if the last instruction, be it emulated or 8930 * not, left the system with the INT_STI flag enabled, it 8931 * means that the last instruction is an sti. We should not 8932 * leave the flag on in this case. The same goes for mov ss 8933 */ 8934 if (int_shadow & mask) 8935 mask = 0; 8936 if (unlikely(int_shadow || mask)) { 8937 kvm_x86_call(set_interrupt_shadow)(vcpu, mask); 8938 if (!mask) 8939 kvm_make_request(KVM_REQ_EVENT, vcpu); 8940 } 8941 } 8942 8943 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8944 { 8945 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8946 8947 if (ctxt->exception.vector == PF_VECTOR) 8948 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8949 else if (ctxt->exception.error_code_valid) 8950 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8951 ctxt->exception.error_code); 8952 else 8953 kvm_queue_exception(vcpu, ctxt->exception.vector); 8954 } 8955 8956 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8957 { 8958 struct x86_emulate_ctxt *ctxt; 8959 8960 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8961 if (!ctxt) { 8962 pr_err("failed to allocate vcpu's emulator\n"); 8963 return NULL; 8964 } 8965 8966 ctxt->vcpu = vcpu; 8967 ctxt->ops = &emulate_ops; 8968 vcpu->arch.emulate_ctxt = ctxt; 8969 8970 return ctxt; 8971 } 8972 8973 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8974 { 8975 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8976 int cs_db, cs_l; 8977 8978 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8979 8980 ctxt->gpa_available = false; 8981 ctxt->eflags = kvm_get_rflags(vcpu); 8982 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8983 8984 ctxt->eip = kvm_rip_read(vcpu); 8985 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8986 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8987 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8988 cs_db ? X86EMUL_MODE_PROT32 : 8989 X86EMUL_MODE_PROT16; 8990 ctxt->interruptibility = 0; 8991 ctxt->have_exception = false; 8992 ctxt->exception.vector = -1; 8993 ctxt->perm_ok = false; 8994 8995 init_decode_cache(ctxt); 8996 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8997 } 8998 8999 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 9000 { 9001 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9002 int ret; 9003 9004 init_emulate_ctxt(vcpu); 9005 9006 ctxt->op_bytes = 2; 9007 ctxt->ad_bytes = 2; 9008 ctxt->_eip = ctxt->eip + inc_eip; 9009 ret = emulate_int_real(ctxt, irq); 9010 9011 if (ret != X86EMUL_CONTINUE) { 9012 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 9013 } else { 9014 ctxt->eip = ctxt->_eip; 9015 kvm_rip_write(vcpu, ctxt->eip); 9016 kvm_set_rflags(vcpu, ctxt->eflags); 9017 } 9018 } 9019 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_inject_realmode_interrupt); 9020 9021 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 9022 u8 ndata, u8 *insn_bytes, u8 insn_size) 9023 { 9024 struct kvm_run *run = vcpu->run; 9025 u64 info[5]; 9026 u8 info_start; 9027 9028 /* 9029 * Zero the whole array used to retrieve the exit info, as casting to 9030 * u32 for select entries will leave some chunks uninitialized. 9031 */ 9032 memset(&info, 0, sizeof(info)); 9033 9034 kvm_x86_call(get_exit_info)(vcpu, (u32 *)&info[0], &info[1], &info[2], 9035 (u32 *)&info[3], (u32 *)&info[4]); 9036 9037 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 9038 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 9039 9040 /* 9041 * There's currently space for 13 entries, but 5 are used for the exit 9042 * reason and info. Restrict to 4 to reduce the maintenance burden 9043 * when expanding kvm_run.emulation_failure in the future. 9044 */ 9045 if (WARN_ON_ONCE(ndata > 4)) 9046 ndata = 4; 9047 9048 /* Always include the flags as a 'data' entry. */ 9049 info_start = 1; 9050 run->emulation_failure.flags = 0; 9051 9052 if (insn_size) { 9053 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 9054 sizeof(run->emulation_failure.insn_bytes) != 16)); 9055 info_start += 2; 9056 run->emulation_failure.flags |= 9057 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 9058 run->emulation_failure.insn_size = insn_size; 9059 memset(run->emulation_failure.insn_bytes, 0x90, 9060 sizeof(run->emulation_failure.insn_bytes)); 9061 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 9062 } 9063 9064 memcpy(&run->internal.data[info_start], info, sizeof(info)); 9065 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 9066 ndata * sizeof(data[0])); 9067 9068 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 9069 } 9070 9071 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 9072 { 9073 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9074 9075 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 9076 ctxt->fetch.end - ctxt->fetch.data); 9077 } 9078 9079 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 9080 u8 ndata) 9081 { 9082 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 9083 } 9084 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_prepare_emulation_failure_exit); 9085 9086 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 9087 { 9088 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 9089 } 9090 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_prepare_emulation_failure_exit); 9091 9092 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa) 9093 { 9094 u32 reason, intr_info, error_code; 9095 struct kvm_run *run = vcpu->run; 9096 u64 info1, info2; 9097 int ndata = 0; 9098 9099 kvm_x86_call(get_exit_info)(vcpu, &reason, &info1, &info2, 9100 &intr_info, &error_code); 9101 9102 run->internal.data[ndata++] = info2; 9103 run->internal.data[ndata++] = reason; 9104 run->internal.data[ndata++] = info1; 9105 run->internal.data[ndata++] = gpa; 9106 run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu; 9107 9108 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 9109 run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; 9110 run->internal.ndata = ndata; 9111 } 9112 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_prepare_event_vectoring_exit); 9113 9114 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 9115 { 9116 struct kvm *kvm = vcpu->kvm; 9117 9118 ++vcpu->stat.insn_emulation_fail; 9119 trace_kvm_emulate_insn_failed(vcpu); 9120 9121 if (emulation_type & EMULTYPE_VMWARE_GP) { 9122 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 9123 return 1; 9124 } 9125 9126 if (kvm->arch.exit_on_emulation_error || 9127 (emulation_type & EMULTYPE_SKIP)) { 9128 prepare_emulation_ctxt_failure_exit(vcpu); 9129 return 0; 9130 } 9131 9132 kvm_queue_exception(vcpu, UD_VECTOR); 9133 9134 if (!is_guest_mode(vcpu) && kvm_x86_call(get_cpl)(vcpu) == 0) { 9135 prepare_emulation_ctxt_failure_exit(vcpu); 9136 return 0; 9137 } 9138 9139 return 1; 9140 } 9141 9142 static bool kvm_unprotect_and_retry_on_failure(struct kvm_vcpu *vcpu, 9143 gpa_t cr2_or_gpa, 9144 int emulation_type) 9145 { 9146 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 9147 return false; 9148 9149 /* 9150 * If the failed instruction faulted on an access to page tables that 9151 * are used to translate any part of the instruction, KVM can't resolve 9152 * the issue by unprotecting the gfn, as zapping the shadow page will 9153 * result in the instruction taking a !PRESENT page fault and thus put 9154 * the vCPU into an infinite loop of page faults. E.g. KVM will create 9155 * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and 9156 * then zap the SPTE to unprotect the gfn, and then do it all over 9157 * again. Report the error to userspace. 9158 */ 9159 if (emulation_type & EMULTYPE_WRITE_PF_TO_SP) 9160 return false; 9161 9162 /* 9163 * If emulation may have been triggered by a write to a shadowed page 9164 * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the 9165 * guest to let the CPU re-execute the instruction in the hope that the 9166 * CPU can cleanly execute the instruction that KVM failed to emulate. 9167 */ 9168 __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, true); 9169 9170 /* 9171 * Retry even if _this_ vCPU didn't unprotect the gfn, as it's possible 9172 * all SPTEs were already zapped by a different task. The alternative 9173 * is to report the error to userspace and likely terminate the guest, 9174 * and the last_retry_{eip,addr} checks will prevent retrying the page 9175 * fault indefinitely, i.e. there's nothing to lose by retrying. 9176 */ 9177 return true; 9178 } 9179 9180 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 9181 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 9182 9183 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 9184 unsigned long *db) 9185 { 9186 u32 dr6 = 0; 9187 int i; 9188 u32 enable, rwlen; 9189 9190 enable = dr7; 9191 rwlen = dr7 >> 16; 9192 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 9193 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 9194 dr6 |= (1 << i); 9195 return dr6; 9196 } 9197 9198 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 9199 { 9200 struct kvm_run *kvm_run = vcpu->run; 9201 9202 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 9203 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 9204 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 9205 kvm_run->debug.arch.exception = DB_VECTOR; 9206 kvm_run->exit_reason = KVM_EXIT_DEBUG; 9207 return 0; 9208 } 9209 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 9210 return 1; 9211 } 9212 9213 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 9214 { 9215 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu); 9216 int r; 9217 9218 r = kvm_x86_call(skip_emulated_instruction)(vcpu); 9219 if (unlikely(!r)) 9220 return 0; 9221 9222 kvm_pmu_instruction_retired(vcpu); 9223 9224 /* 9225 * rflags is the old, "raw" value of the flags. The new value has 9226 * not been saved yet. 9227 * 9228 * This is correct even for TF set by the guest, because "the 9229 * processor will not generate this exception after the instruction 9230 * that sets the TF flag". 9231 */ 9232 if (unlikely(rflags & X86_EFLAGS_TF)) 9233 r = kvm_vcpu_do_singlestep(vcpu); 9234 return r; 9235 } 9236 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_skip_emulated_instruction); 9237 9238 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 9239 { 9240 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 9241 return true; 9242 9243 /* 9244 * Intel compatible CPUs inhibit code #DBs when MOV/POP SS blocking is 9245 * active, but AMD compatible CPUs do not. 9246 */ 9247 if (!guest_cpuid_is_intel_compatible(vcpu)) 9248 return false; 9249 9250 return kvm_x86_call(get_interrupt_shadow)(vcpu) & KVM_X86_SHADOW_INT_MOV_SS; 9251 } 9252 9253 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 9254 int emulation_type, int *r) 9255 { 9256 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 9257 9258 /* 9259 * Do not check for code breakpoints if hardware has already done the 9260 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 9261 * the instruction has passed all exception checks, and all intercepted 9262 * exceptions that trigger emulation have lower priority than code 9263 * breakpoints, i.e. the fact that the intercepted exception occurred 9264 * means any code breakpoints have already been serviced. 9265 * 9266 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 9267 * hardware has checked the RIP of the magic prefix, but not the RIP of 9268 * the instruction being emulated. The intent of forced emulation is 9269 * to behave as if KVM intercepted the instruction without an exception 9270 * and without a prefix. 9271 */ 9272 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 9273 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 9274 return false; 9275 9276 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 9277 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 9278 struct kvm_run *kvm_run = vcpu->run; 9279 unsigned long eip = kvm_get_linear_rip(vcpu); 9280 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 9281 vcpu->arch.guest_debug_dr7, 9282 vcpu->arch.eff_db); 9283 9284 if (dr6 != 0) { 9285 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 9286 kvm_run->debug.arch.pc = eip; 9287 kvm_run->debug.arch.exception = DB_VECTOR; 9288 kvm_run->exit_reason = KVM_EXIT_DEBUG; 9289 *r = 0; 9290 return true; 9291 } 9292 } 9293 9294 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 9295 !kvm_is_code_breakpoint_inhibited(vcpu)) { 9296 unsigned long eip = kvm_get_linear_rip(vcpu); 9297 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 9298 vcpu->arch.dr7, 9299 vcpu->arch.db); 9300 9301 if (dr6 != 0) { 9302 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 9303 *r = 1; 9304 return true; 9305 } 9306 } 9307 9308 return false; 9309 } 9310 9311 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 9312 { 9313 switch (ctxt->opcode_len) { 9314 case 1: 9315 switch (ctxt->b) { 9316 case 0xe4: /* IN */ 9317 case 0xe5: 9318 case 0xec: 9319 case 0xed: 9320 case 0xe6: /* OUT */ 9321 case 0xe7: 9322 case 0xee: 9323 case 0xef: 9324 case 0x6c: /* INS */ 9325 case 0x6d: 9326 case 0x6e: /* OUTS */ 9327 case 0x6f: 9328 return true; 9329 } 9330 break; 9331 case 2: 9332 switch (ctxt->b) { 9333 case 0x33: /* RDPMC */ 9334 return true; 9335 } 9336 break; 9337 } 9338 9339 return false; 9340 } 9341 9342 /* 9343 * Decode an instruction for emulation. The caller is responsible for handling 9344 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 9345 * (and wrong) when emulating on an intercepted fault-like exception[*], as 9346 * code breakpoints have higher priority and thus have already been done by 9347 * hardware. 9348 * 9349 * [*] Except #MC, which is higher priority, but KVM should never emulate in 9350 * response to a machine check. 9351 */ 9352 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 9353 void *insn, int insn_len) 9354 { 9355 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9356 int r; 9357 9358 init_emulate_ctxt(vcpu); 9359 9360 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 9361 9362 trace_kvm_emulate_insn_start(vcpu); 9363 ++vcpu->stat.insn_emulation; 9364 9365 return r; 9366 } 9367 EXPORT_SYMBOL_FOR_KVM_INTERNAL(x86_decode_emulated_instruction); 9368 9369 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 9370 int emulation_type, void *insn, int insn_len) 9371 { 9372 int r; 9373 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9374 bool writeback = true; 9375 9376 if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) && 9377 (WARN_ON_ONCE(is_guest_mode(vcpu)) || 9378 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))) 9379 emulation_type &= ~EMULTYPE_ALLOW_RETRY_PF; 9380 9381 r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len); 9382 if (r != X86EMUL_CONTINUE) { 9383 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT) 9384 return 1; 9385 9386 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa, 9387 emulation_type)) 9388 return 1; 9389 9390 if (r == X86EMUL_UNHANDLEABLE_VECTORING) { 9391 kvm_prepare_event_vectoring_exit(vcpu, cr2_or_gpa); 9392 return 0; 9393 } 9394 9395 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE); 9396 return handle_emulation_failure(vcpu, emulation_type); 9397 } 9398 9399 vcpu->arch.l1tf_flush_l1d = true; 9400 9401 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 9402 kvm_clear_exception_queue(vcpu); 9403 9404 /* 9405 * Return immediately if RIP hits a code breakpoint, such #DBs 9406 * are fault-like and are higher priority than any faults on 9407 * the code fetch itself. 9408 */ 9409 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 9410 return r; 9411 9412 r = x86_decode_emulated_instruction(vcpu, emulation_type, 9413 insn, insn_len); 9414 if (r != EMULATION_OK) { 9415 if ((emulation_type & EMULTYPE_TRAP_UD) || 9416 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 9417 kvm_queue_exception(vcpu, UD_VECTOR); 9418 return 1; 9419 } 9420 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa, 9421 emulation_type)) 9422 return 1; 9423 9424 if (ctxt->have_exception && 9425 !(emulation_type & EMULTYPE_SKIP)) { 9426 /* 9427 * #UD should result in just EMULATION_FAILED, and trap-like 9428 * exception should not be encountered during decode. 9429 */ 9430 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 9431 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 9432 inject_emulated_exception(vcpu); 9433 return 1; 9434 } 9435 return handle_emulation_failure(vcpu, emulation_type); 9436 } 9437 } 9438 9439 if ((emulation_type & EMULTYPE_VMWARE_GP) && 9440 !is_vmware_backdoor_opcode(ctxt)) { 9441 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 9442 return 1; 9443 } 9444 9445 /* 9446 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 9447 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 9448 * The caller is responsible for updating interruptibility state and 9449 * injecting single-step #DBs. 9450 */ 9451 if (emulation_type & EMULTYPE_SKIP) { 9452 if (ctxt->mode != X86EMUL_MODE_PROT64) 9453 ctxt->eip = (u32)ctxt->_eip; 9454 else 9455 ctxt->eip = ctxt->_eip; 9456 9457 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 9458 r = 1; 9459 goto writeback; 9460 } 9461 9462 kvm_rip_write(vcpu, ctxt->eip); 9463 if (ctxt->eflags & X86_EFLAGS_RF) 9464 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 9465 return 1; 9466 } 9467 9468 /* 9469 * If emulation was caused by a write-protection #PF on a non-page_table 9470 * writing instruction, try to unprotect the gfn, i.e. zap shadow pages, 9471 * and retry the instruction, as the vCPU is likely no longer using the 9472 * gfn as a page table. 9473 */ 9474 if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) && 9475 !x86_page_table_writing_insn(ctxt) && 9476 kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa)) 9477 return 1; 9478 9479 /* this is needed for vmware backdoor interface to work since it 9480 changes registers values during IO operation */ 9481 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 9482 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 9483 emulator_invalidate_register_cache(ctxt); 9484 } 9485 9486 restart: 9487 if (emulation_type & EMULTYPE_PF) { 9488 /* Save the faulting GPA (cr2) in the address field */ 9489 ctxt->exception.address = cr2_or_gpa; 9490 9491 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 9492 if (vcpu->arch.mmu->root_role.direct) { 9493 ctxt->gpa_available = true; 9494 ctxt->gpa_val = cr2_or_gpa; 9495 } 9496 } else { 9497 /* Sanitize the address out of an abundance of paranoia. */ 9498 ctxt->exception.address = 0; 9499 } 9500 9501 /* 9502 * Check L1's instruction intercepts when emulating instructions for 9503 * L2, unless KVM is re-emulating a previously decoded instruction, 9504 * e.g. to complete userspace I/O, in which case KVM has already 9505 * checked the intercepts. 9506 */ 9507 r = x86_emulate_insn(ctxt, is_guest_mode(vcpu) && 9508 !(emulation_type & EMULTYPE_NO_DECODE)); 9509 9510 if (r == EMULATION_INTERCEPTED) 9511 return 1; 9512 9513 if (r == EMULATION_FAILED) { 9514 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa, 9515 emulation_type)) 9516 return 1; 9517 9518 return handle_emulation_failure(vcpu, emulation_type); 9519 } 9520 9521 if (ctxt->have_exception) { 9522 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write); 9523 vcpu->mmio_needed = false; 9524 r = 1; 9525 inject_emulated_exception(vcpu); 9526 } else if (vcpu->arch.pio.count) { 9527 if (!vcpu->arch.pio.in) { 9528 /* FIXME: return into emulator if single-stepping. */ 9529 vcpu->arch.pio.count = 0; 9530 } else { 9531 writeback = false; 9532 vcpu->arch.complete_userspace_io = complete_emulated_pio; 9533 } 9534 r = 0; 9535 } else if (vcpu->mmio_needed) { 9536 ++vcpu->stat.mmio_exits; 9537 9538 if (!vcpu->mmio_is_write) 9539 writeback = false; 9540 r = 0; 9541 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 9542 } else if (vcpu->arch.complete_userspace_io) { 9543 writeback = false; 9544 r = 0; 9545 } else if (r == EMULATION_RESTART) 9546 goto restart; 9547 else 9548 r = 1; 9549 9550 writeback: 9551 if (writeback) { 9552 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu); 9553 toggle_interruptibility(vcpu, ctxt->interruptibility); 9554 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 9555 9556 /* 9557 * Note, EXCPT_DB is assumed to be fault-like as the emulator 9558 * only supports code breakpoints and general detect #DB, both 9559 * of which are fault-like. 9560 */ 9561 if (!ctxt->have_exception || 9562 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 9563 kvm_pmu_instruction_retired(vcpu); 9564 if (ctxt->is_branch) 9565 kvm_pmu_branch_retired(vcpu); 9566 kvm_rip_write(vcpu, ctxt->eip); 9567 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 9568 r = kvm_vcpu_do_singlestep(vcpu); 9569 kvm_x86_call(update_emulated_instruction)(vcpu); 9570 __kvm_set_rflags(vcpu, ctxt->eflags); 9571 } 9572 9573 /* 9574 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 9575 * do nothing, and it will be requested again as soon as 9576 * the shadow expires. But we still need to check here, 9577 * because POPF has no interrupt shadow. 9578 */ 9579 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 9580 kvm_make_request(KVM_REQ_EVENT, vcpu); 9581 } else 9582 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 9583 9584 return r; 9585 } 9586 9587 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 9588 { 9589 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 9590 } 9591 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_instruction); 9592 9593 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 9594 void *insn, int insn_len) 9595 { 9596 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 9597 } 9598 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_instruction_from_buffer); 9599 9600 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 9601 { 9602 vcpu->arch.pio.count = 0; 9603 return 1; 9604 } 9605 9606 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 9607 { 9608 vcpu->arch.pio.count = 0; 9609 9610 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip))) 9611 return 1; 9612 9613 return kvm_skip_emulated_instruction(vcpu); 9614 } 9615 9616 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 9617 unsigned short port) 9618 { 9619 unsigned long val = kvm_rax_read(vcpu); 9620 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 9621 9622 if (ret) 9623 return ret; 9624 9625 /* 9626 * Workaround userspace that relies on old KVM behavior of %rip being 9627 * incremented prior to exiting to userspace to handle "OUT 0x7e". 9628 */ 9629 if (port == 0x7e && 9630 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 9631 vcpu->arch.complete_userspace_io = 9632 complete_fast_pio_out_port_0x7e; 9633 kvm_skip_emulated_instruction(vcpu); 9634 } else { 9635 vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu); 9636 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 9637 } 9638 return 0; 9639 } 9640 9641 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 9642 { 9643 unsigned long val; 9644 9645 /* We should only ever be called with arch.pio.count equal to 1 */ 9646 BUG_ON(vcpu->arch.pio.count != 1); 9647 9648 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip))) { 9649 vcpu->arch.pio.count = 0; 9650 return 1; 9651 } 9652 9653 /* For size less than 4 we merge, else we zero extend */ 9654 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 9655 9656 complete_emulator_pio_in(vcpu, &val); 9657 kvm_rax_write(vcpu, val); 9658 9659 return kvm_skip_emulated_instruction(vcpu); 9660 } 9661 9662 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9663 unsigned short port) 9664 { 9665 unsigned long val; 9666 int ret; 9667 9668 /* For size less than 4 we merge, else we zero extend */ 9669 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9670 9671 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9672 if (ret) { 9673 kvm_rax_write(vcpu, val); 9674 return ret; 9675 } 9676 9677 vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu); 9678 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9679 9680 return 0; 9681 } 9682 9683 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9684 { 9685 int ret; 9686 9687 if (in) 9688 ret = kvm_fast_pio_in(vcpu, size, port); 9689 else 9690 ret = kvm_fast_pio_out(vcpu, size, port); 9691 return ret && kvm_skip_emulated_instruction(vcpu); 9692 } 9693 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_fast_pio); 9694 9695 static int kvmclock_cpu_down_prep(unsigned int cpu) 9696 { 9697 __this_cpu_write(cpu_tsc_khz, 0); 9698 return 0; 9699 } 9700 9701 static void tsc_khz_changed(void *data) 9702 { 9703 struct cpufreq_freqs *freq = data; 9704 unsigned long khz; 9705 9706 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9707 9708 if (data) 9709 khz = freq->new; 9710 else 9711 khz = cpufreq_quick_get(raw_smp_processor_id()); 9712 if (!khz) 9713 khz = tsc_khz; 9714 __this_cpu_write(cpu_tsc_khz, khz); 9715 } 9716 9717 #ifdef CONFIG_X86_64 9718 static void kvm_hyperv_tsc_notifier(void) 9719 { 9720 struct kvm *kvm; 9721 int cpu; 9722 9723 mutex_lock(&kvm_lock); 9724 list_for_each_entry(kvm, &vm_list, vm_list) 9725 kvm_make_mclock_inprogress_request(kvm); 9726 9727 /* no guest entries from this point */ 9728 hyperv_stop_tsc_emulation(); 9729 9730 /* TSC frequency always matches when on Hyper-V */ 9731 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9732 for_each_present_cpu(cpu) 9733 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9734 } 9735 kvm_caps.max_guest_tsc_khz = tsc_khz; 9736 9737 list_for_each_entry(kvm, &vm_list, vm_list) { 9738 __kvm_start_pvclock_update(kvm); 9739 pvclock_update_vm_gtod_copy(kvm); 9740 kvm_end_pvclock_update(kvm); 9741 } 9742 9743 mutex_unlock(&kvm_lock); 9744 } 9745 #endif 9746 9747 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9748 { 9749 struct kvm *kvm; 9750 struct kvm_vcpu *vcpu; 9751 int send_ipi = 0; 9752 unsigned long i; 9753 9754 /* 9755 * We allow guests to temporarily run on slowing clocks, 9756 * provided we notify them after, or to run on accelerating 9757 * clocks, provided we notify them before. Thus time never 9758 * goes backwards. 9759 * 9760 * However, we have a problem. We can't atomically update 9761 * the frequency of a given CPU from this function; it is 9762 * merely a notifier, which can be called from any CPU. 9763 * Changing the TSC frequency at arbitrary points in time 9764 * requires a recomputation of local variables related to 9765 * the TSC for each VCPU. We must flag these local variables 9766 * to be updated and be sure the update takes place with the 9767 * new frequency before any guests proceed. 9768 * 9769 * Unfortunately, the combination of hotplug CPU and frequency 9770 * change creates an intractable locking scenario; the order 9771 * of when these callouts happen is undefined with respect to 9772 * CPU hotplug, and they can race with each other. As such, 9773 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9774 * undefined; you can actually have a CPU frequency change take 9775 * place in between the computation of X and the setting of the 9776 * variable. To protect against this problem, all updates of 9777 * the per_cpu tsc_khz variable are done in an interrupt 9778 * protected IPI, and all callers wishing to update the value 9779 * must wait for a synchronous IPI to complete (which is trivial 9780 * if the caller is on the CPU already). This establishes the 9781 * necessary total order on variable updates. 9782 * 9783 * Note that because a guest time update may take place 9784 * anytime after the setting of the VCPU's request bit, the 9785 * correct TSC value must be set before the request. However, 9786 * to ensure the update actually makes it to any guest which 9787 * starts running in hardware virtualization between the set 9788 * and the acquisition of the spinlock, we must also ping the 9789 * CPU after setting the request bit. 9790 * 9791 */ 9792 9793 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9794 9795 mutex_lock(&kvm_lock); 9796 list_for_each_entry(kvm, &vm_list, vm_list) { 9797 kvm_for_each_vcpu(i, vcpu, kvm) { 9798 if (vcpu->cpu != cpu) 9799 continue; 9800 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9801 if (vcpu->cpu != raw_smp_processor_id()) 9802 send_ipi = 1; 9803 } 9804 } 9805 mutex_unlock(&kvm_lock); 9806 9807 if (freq->old < freq->new && send_ipi) { 9808 /* 9809 * We upscale the frequency. Must make the guest 9810 * doesn't see old kvmclock values while running with 9811 * the new frequency, otherwise we risk the guest sees 9812 * time go backwards. 9813 * 9814 * In case we update the frequency for another cpu 9815 * (which might be in guest context) send an interrupt 9816 * to kick the cpu out of guest context. Next time 9817 * guest context is entered kvmclock will be updated, 9818 * so the guest will not see stale values. 9819 */ 9820 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9821 } 9822 } 9823 9824 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9825 void *data) 9826 { 9827 struct cpufreq_freqs *freq = data; 9828 int cpu; 9829 9830 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9831 return 0; 9832 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9833 return 0; 9834 9835 for_each_cpu(cpu, freq->policy->cpus) 9836 __kvmclock_cpufreq_notifier(freq, cpu); 9837 9838 return 0; 9839 } 9840 9841 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9842 .notifier_call = kvmclock_cpufreq_notifier 9843 }; 9844 9845 static int kvmclock_cpu_online(unsigned int cpu) 9846 { 9847 tsc_khz_changed(NULL); 9848 return 0; 9849 } 9850 9851 static void kvm_timer_init(void) 9852 { 9853 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9854 max_tsc_khz = tsc_khz; 9855 9856 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9857 struct cpufreq_policy *policy; 9858 int cpu; 9859 9860 cpu = get_cpu(); 9861 policy = cpufreq_cpu_get(cpu); 9862 if (policy) { 9863 if (policy->cpuinfo.max_freq) 9864 max_tsc_khz = policy->cpuinfo.max_freq; 9865 cpufreq_cpu_put(policy); 9866 } 9867 put_cpu(); 9868 } 9869 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9870 CPUFREQ_TRANSITION_NOTIFIER); 9871 9872 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9873 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9874 } 9875 } 9876 9877 #ifdef CONFIG_X86_64 9878 static void pvclock_gtod_update_fn(struct work_struct *work) 9879 { 9880 struct kvm *kvm; 9881 struct kvm_vcpu *vcpu; 9882 unsigned long i; 9883 9884 mutex_lock(&kvm_lock); 9885 list_for_each_entry(kvm, &vm_list, vm_list) 9886 kvm_for_each_vcpu(i, vcpu, kvm) 9887 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9888 atomic_set(&kvm_guest_has_master_clock, 0); 9889 mutex_unlock(&kvm_lock); 9890 } 9891 9892 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9893 9894 /* 9895 * Indirection to move queue_work() out of the tk_core.seq write held 9896 * region to prevent possible deadlocks against time accessors which 9897 * are invoked with work related locks held. 9898 */ 9899 static void pvclock_irq_work_fn(struct irq_work *w) 9900 { 9901 queue_work(system_long_wq, &pvclock_gtod_work); 9902 } 9903 9904 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9905 9906 /* 9907 * Notification about pvclock gtod data update. 9908 */ 9909 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9910 void *priv) 9911 { 9912 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9913 struct timekeeper *tk = priv; 9914 9915 update_pvclock_gtod(tk); 9916 9917 /* 9918 * Disable master clock if host does not trust, or does not use, 9919 * TSC based clocksource. Delegate queue_work() to irq_work as 9920 * this is invoked with tk_core.seq write held. 9921 */ 9922 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9923 atomic_read(&kvm_guest_has_master_clock) != 0) 9924 irq_work_queue(&pvclock_irq_work); 9925 return 0; 9926 } 9927 9928 static struct notifier_block pvclock_gtod_notifier = { 9929 .notifier_call = pvclock_gtod_notify, 9930 }; 9931 #endif 9932 9933 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 9934 { 9935 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9936 9937 #define __KVM_X86_OP(func) \ 9938 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 9939 #define KVM_X86_OP(func) \ 9940 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 9941 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 9942 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 9943 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 9944 (void *)__static_call_return0); 9945 #include <asm/kvm-x86-ops.h> 9946 #undef __KVM_X86_OP 9947 9948 kvm_pmu_ops_update(ops->pmu_ops); 9949 } 9950 9951 static int kvm_x86_check_processor_compatibility(void) 9952 { 9953 int cpu = smp_processor_id(); 9954 struct cpuinfo_x86 *c = &cpu_data(cpu); 9955 9956 /* 9957 * Compatibility checks are done when loading KVM and when enabling 9958 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are 9959 * compatible, i.e. KVM should never perform a compatibility check on 9960 * an offline CPU. 9961 */ 9962 WARN_ON(!cpu_online(cpu)); 9963 9964 if (__cr4_reserved_bits(cpu_has, c) != 9965 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 9966 return -EIO; 9967 9968 return kvm_x86_call(check_processor_compatibility)(); 9969 } 9970 9971 static void kvm_x86_check_cpu_compat(void *ret) 9972 { 9973 *(int *)ret = kvm_x86_check_processor_compatibility(); 9974 } 9975 9976 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9977 { 9978 u64 host_pat; 9979 int r, cpu; 9980 9981 guard(mutex)(&vendor_module_lock); 9982 9983 if (kvm_x86_ops.enable_virtualization_cpu) { 9984 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name); 9985 return -EEXIST; 9986 } 9987 9988 /* 9989 * KVM explicitly assumes that the guest has an FPU and 9990 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9991 * vCPU's FPU state as a fxregs_state struct. 9992 */ 9993 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9994 pr_err("inadequate fpu\n"); 9995 return -EOPNOTSUPP; 9996 } 9997 9998 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9999 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 10000 return -EOPNOTSUPP; 10001 } 10002 10003 /* 10004 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 10005 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 10006 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 10007 * with an exception. PAT[0] is set to WB on RESET and also by the 10008 * kernel, i.e. failure indicates a kernel bug or broken firmware. 10009 */ 10010 if (rdmsrq_safe(MSR_IA32_CR_PAT, &host_pat) || 10011 (host_pat & GENMASK(2, 0)) != 6) { 10012 pr_err("host PAT[0] is not WB\n"); 10013 return -EIO; 10014 } 10015 10016 if (boot_cpu_has(X86_FEATURE_SHSTK) || boot_cpu_has(X86_FEATURE_IBT)) { 10017 rdmsrq(MSR_IA32_S_CET, kvm_host.s_cet); 10018 /* 10019 * Linux doesn't yet support supervisor shadow stacks (SSS), so 10020 * KVM doesn't save/restore the associated MSRs, i.e. KVM may 10021 * clobber the host values. Yell and refuse to load if SSS is 10022 * unexpectedly enabled, e.g. to avoid crashing the host. 10023 */ 10024 if (WARN_ON_ONCE(kvm_host.s_cet & CET_SHSTK_EN)) 10025 return -EIO; 10026 } 10027 10028 memset(&kvm_caps, 0, sizeof(kvm_caps)); 10029 10030 x86_emulator_cache = kvm_alloc_emulator_cache(); 10031 if (!x86_emulator_cache) { 10032 pr_err("failed to allocate cache for x86 emulator\n"); 10033 return -ENOMEM; 10034 } 10035 10036 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 10037 if (!user_return_msrs) { 10038 pr_err("failed to allocate percpu kvm_user_return_msrs\n"); 10039 r = -ENOMEM; 10040 goto out_free_x86_emulator_cache; 10041 } 10042 kvm_nr_uret_msrs = 0; 10043 10044 r = kvm_mmu_vendor_module_init(); 10045 if (r) 10046 goto out_free_percpu; 10047 10048 kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM); 10049 kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P; 10050 10051 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 10052 kvm_host.xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 10053 kvm_caps.supported_xcr0 = kvm_host.xcr0 & KVM_SUPPORTED_XCR0; 10054 } 10055 10056 if (boot_cpu_has(X86_FEATURE_XSAVES)) { 10057 rdmsrq(MSR_IA32_XSS, kvm_host.xss); 10058 kvm_caps.supported_xss = kvm_host.xss & KVM_SUPPORTED_XSS; 10059 } 10060 10061 kvm_caps.supported_quirks = KVM_X86_VALID_QUIRKS; 10062 kvm_caps.inapplicable_quirks = KVM_X86_CONDITIONAL_QUIRKS; 10063 10064 rdmsrq_safe(MSR_EFER, &kvm_host.efer); 10065 10066 kvm_init_pmu_capability(ops->pmu_ops); 10067 10068 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 10069 rdmsrq(MSR_IA32_ARCH_CAPABILITIES, kvm_host.arch_capabilities); 10070 10071 r = ops->hardware_setup(); 10072 if (r != 0) 10073 goto out_mmu_exit; 10074 10075 enable_device_posted_irqs &= enable_apicv && 10076 irq_remapping_cap(IRQ_POSTING_CAP); 10077 10078 kvm_ops_update(ops); 10079 10080 for_each_online_cpu(cpu) { 10081 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1); 10082 if (r < 0) 10083 goto out_unwind_ops; 10084 } 10085 10086 /* 10087 * Point of no return! DO NOT add error paths below this point unless 10088 * absolutely necessary, as most operations from this point forward 10089 * require unwinding. 10090 */ 10091 kvm_timer_init(); 10092 10093 if (pi_inject_timer == -1) 10094 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 10095 #ifdef CONFIG_X86_64 10096 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 10097 10098 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 10099 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 10100 #endif 10101 10102 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 10103 10104 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled) 10105 kvm_caps.supported_vm_types |= BIT(KVM_X86_SW_PROTECTED_VM); 10106 10107 /* KVM always ignores guest PAT for shadow paging. */ 10108 if (!tdp_enabled) 10109 kvm_caps.supported_quirks &= ~KVM_X86_QUIRK_IGNORE_GUEST_PAT; 10110 10111 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 10112 kvm_caps.supported_xss = 0; 10113 10114 if (!kvm_cpu_cap_has(X86_FEATURE_SHSTK) && 10115 !kvm_cpu_cap_has(X86_FEATURE_IBT)) 10116 kvm_caps.supported_xss &= ~XFEATURE_MASK_CET_ALL; 10117 10118 if ((kvm_caps.supported_xss & XFEATURE_MASK_CET_ALL) != XFEATURE_MASK_CET_ALL) { 10119 kvm_cpu_cap_clear(X86_FEATURE_SHSTK); 10120 kvm_cpu_cap_clear(X86_FEATURE_IBT); 10121 kvm_caps.supported_xss &= ~XFEATURE_MASK_CET_ALL; 10122 } 10123 10124 if (kvm_caps.has_tsc_control) { 10125 /* 10126 * Make sure the user can only configure tsc_khz values that 10127 * fit into a signed integer. 10128 * A min value is not calculated because it will always 10129 * be 1 on all machines. 10130 */ 10131 u64 max = min(0x7fffffffULL, 10132 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 10133 kvm_caps.max_guest_tsc_khz = max; 10134 } 10135 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 10136 kvm_init_msr_lists(); 10137 return 0; 10138 10139 out_unwind_ops: 10140 kvm_x86_ops.enable_virtualization_cpu = NULL; 10141 kvm_x86_call(hardware_unsetup)(); 10142 out_mmu_exit: 10143 kvm_mmu_vendor_module_exit(); 10144 out_free_percpu: 10145 free_percpu(user_return_msrs); 10146 out_free_x86_emulator_cache: 10147 kmem_cache_destroy(x86_emulator_cache); 10148 return r; 10149 } 10150 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_x86_vendor_init); 10151 10152 void kvm_x86_vendor_exit(void) 10153 { 10154 kvm_unregister_perf_callbacks(); 10155 10156 #ifdef CONFIG_X86_64 10157 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 10158 clear_hv_tscchange_cb(); 10159 #endif 10160 kvm_lapic_exit(); 10161 10162 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 10163 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 10164 CPUFREQ_TRANSITION_NOTIFIER); 10165 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 10166 } 10167 #ifdef CONFIG_X86_64 10168 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 10169 irq_work_sync(&pvclock_irq_work); 10170 cancel_work_sync(&pvclock_gtod_work); 10171 #endif 10172 kvm_x86_call(hardware_unsetup)(); 10173 kvm_mmu_vendor_module_exit(); 10174 free_percpu(user_return_msrs); 10175 kmem_cache_destroy(x86_emulator_cache); 10176 #ifdef CONFIG_KVM_XEN 10177 static_key_deferred_flush(&kvm_xen_enabled); 10178 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 10179 #endif 10180 mutex_lock(&vendor_module_lock); 10181 kvm_x86_ops.enable_virtualization_cpu = NULL; 10182 mutex_unlock(&vendor_module_lock); 10183 } 10184 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_x86_vendor_exit); 10185 10186 #ifdef CONFIG_X86_64 10187 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 10188 unsigned long clock_type) 10189 { 10190 struct kvm_clock_pairing clock_pairing; 10191 struct timespec64 ts; 10192 u64 cycle; 10193 int ret; 10194 10195 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 10196 return -KVM_EOPNOTSUPP; 10197 10198 /* 10199 * When tsc is in permanent catchup mode guests won't be able to use 10200 * pvclock_read_retry loop to get consistent view of pvclock 10201 */ 10202 if (vcpu->arch.tsc_always_catchup) 10203 return -KVM_EOPNOTSUPP; 10204 10205 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 10206 return -KVM_EOPNOTSUPP; 10207 10208 clock_pairing.sec = ts.tv_sec; 10209 clock_pairing.nsec = ts.tv_nsec; 10210 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 10211 clock_pairing.flags = 0; 10212 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 10213 10214 ret = 0; 10215 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 10216 sizeof(struct kvm_clock_pairing))) 10217 ret = -KVM_EFAULT; 10218 10219 return ret; 10220 } 10221 #endif 10222 10223 /* 10224 * kvm_pv_kick_cpu_op: Kick a vcpu. 10225 * 10226 * @apicid - apicid of vcpu to be kicked. 10227 */ 10228 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 10229 { 10230 /* 10231 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 10232 * common code, e.g. for tracing. Defer initialization to the compiler. 10233 */ 10234 struct kvm_lapic_irq lapic_irq = { 10235 .delivery_mode = APIC_DM_REMRD, 10236 .dest_mode = APIC_DEST_PHYSICAL, 10237 .shorthand = APIC_DEST_NOSHORT, 10238 .dest_id = apicid, 10239 }; 10240 10241 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 10242 } 10243 10244 bool kvm_apicv_activated(struct kvm *kvm) 10245 { 10246 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 10247 } 10248 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_apicv_activated); 10249 10250 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 10251 { 10252 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 10253 ulong vcpu_reasons = 10254 kvm_x86_call(vcpu_get_apicv_inhibit_reasons)(vcpu); 10255 10256 return (vm_reasons | vcpu_reasons) == 0; 10257 } 10258 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_apicv_activated); 10259 10260 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 10261 enum kvm_apicv_inhibit reason, bool set) 10262 { 10263 const struct trace_print_flags apicv_inhibits[] = { APICV_INHIBIT_REASONS }; 10264 10265 BUILD_BUG_ON(ARRAY_SIZE(apicv_inhibits) != NR_APICV_INHIBIT_REASONS); 10266 10267 if (set) 10268 __set_bit(reason, inhibits); 10269 else 10270 __clear_bit(reason, inhibits); 10271 10272 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 10273 } 10274 10275 static void kvm_apicv_init(struct kvm *kvm) 10276 { 10277 enum kvm_apicv_inhibit reason = enable_apicv ? APICV_INHIBIT_REASON_ABSENT : 10278 APICV_INHIBIT_REASON_DISABLED; 10279 10280 set_or_clear_apicv_inhibit(&kvm->arch.apicv_inhibit_reasons, reason, true); 10281 10282 init_rwsem(&kvm->arch.apicv_update_lock); 10283 } 10284 10285 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 10286 { 10287 struct kvm_vcpu *target = NULL; 10288 struct kvm_apic_map *map; 10289 10290 vcpu->stat.directed_yield_attempted++; 10291 10292 if (single_task_running()) 10293 goto no_yield; 10294 10295 rcu_read_lock(); 10296 map = rcu_dereference(vcpu->kvm->arch.apic_map); 10297 10298 if (likely(map) && dest_id <= map->max_apic_id) { 10299 dest_id = array_index_nospec(dest_id, map->max_apic_id + 1); 10300 if (map->phys_map[dest_id]) 10301 target = map->phys_map[dest_id]->vcpu; 10302 } 10303 10304 rcu_read_unlock(); 10305 10306 if (!target || !READ_ONCE(target->ready)) 10307 goto no_yield; 10308 10309 /* Ignore requests to yield to self */ 10310 if (vcpu == target) 10311 goto no_yield; 10312 10313 if (kvm_vcpu_yield_to(target) <= 0) 10314 goto no_yield; 10315 10316 vcpu->stat.directed_yield_successful++; 10317 10318 no_yield: 10319 return; 10320 } 10321 10322 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 10323 { 10324 u64 ret = vcpu->run->hypercall.ret; 10325 10326 if (!is_64_bit_hypercall(vcpu)) 10327 ret = (u32)ret; 10328 kvm_rax_write(vcpu, ret); 10329 return kvm_skip_emulated_instruction(vcpu); 10330 } 10331 10332 int ____kvm_emulate_hypercall(struct kvm_vcpu *vcpu, int cpl, 10333 int (*complete_hypercall)(struct kvm_vcpu *)) 10334 { 10335 unsigned long ret; 10336 unsigned long nr = kvm_rax_read(vcpu); 10337 unsigned long a0 = kvm_rbx_read(vcpu); 10338 unsigned long a1 = kvm_rcx_read(vcpu); 10339 unsigned long a2 = kvm_rdx_read(vcpu); 10340 unsigned long a3 = kvm_rsi_read(vcpu); 10341 int op_64_bit = is_64_bit_hypercall(vcpu); 10342 10343 ++vcpu->stat.hypercalls; 10344 10345 trace_kvm_hypercall(nr, a0, a1, a2, a3); 10346 10347 if (!op_64_bit) { 10348 nr &= 0xFFFFFFFF; 10349 a0 &= 0xFFFFFFFF; 10350 a1 &= 0xFFFFFFFF; 10351 a2 &= 0xFFFFFFFF; 10352 a3 &= 0xFFFFFFFF; 10353 } 10354 10355 if (cpl) { 10356 ret = -KVM_EPERM; 10357 goto out; 10358 } 10359 10360 ret = -KVM_ENOSYS; 10361 10362 switch (nr) { 10363 case KVM_HC_VAPIC_POLL_IRQ: 10364 ret = 0; 10365 break; 10366 case KVM_HC_KICK_CPU: 10367 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 10368 break; 10369 10370 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 10371 kvm_sched_yield(vcpu, a1); 10372 ret = 0; 10373 break; 10374 #ifdef CONFIG_X86_64 10375 case KVM_HC_CLOCK_PAIRING: 10376 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 10377 break; 10378 #endif 10379 case KVM_HC_SEND_IPI: 10380 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 10381 break; 10382 10383 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 10384 break; 10385 case KVM_HC_SCHED_YIELD: 10386 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 10387 break; 10388 10389 kvm_sched_yield(vcpu, a0); 10390 ret = 0; 10391 break; 10392 case KVM_HC_MAP_GPA_RANGE: { 10393 u64 gpa = a0, npages = a1, attrs = a2; 10394 10395 ret = -KVM_ENOSYS; 10396 if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) 10397 break; 10398 10399 if (!PAGE_ALIGNED(gpa) || !npages || 10400 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 10401 ret = -KVM_EINVAL; 10402 break; 10403 } 10404 10405 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 10406 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 10407 /* 10408 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2) 10409 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that 10410 * it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting 10411 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU. 10412 */ 10413 vcpu->run->hypercall.ret = 0; 10414 vcpu->run->hypercall.args[0] = gpa; 10415 vcpu->run->hypercall.args[1] = npages; 10416 vcpu->run->hypercall.args[2] = attrs; 10417 vcpu->run->hypercall.flags = 0; 10418 if (op_64_bit) 10419 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE; 10420 10421 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ); 10422 vcpu->arch.complete_userspace_io = complete_hypercall; 10423 return 0; 10424 } 10425 default: 10426 ret = -KVM_ENOSYS; 10427 break; 10428 } 10429 10430 out: 10431 vcpu->run->hypercall.ret = ret; 10432 return 1; 10433 } 10434 EXPORT_SYMBOL_FOR_KVM_INTERNAL(____kvm_emulate_hypercall); 10435 10436 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 10437 { 10438 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 10439 return kvm_xen_hypercall(vcpu); 10440 10441 if (kvm_hv_hypercall_enabled(vcpu)) 10442 return kvm_hv_hypercall(vcpu); 10443 10444 return __kvm_emulate_hypercall(vcpu, kvm_x86_call(get_cpl)(vcpu), 10445 complete_hypercall_exit); 10446 } 10447 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_hypercall); 10448 10449 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 10450 { 10451 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 10452 char instruction[3]; 10453 unsigned long rip = kvm_rip_read(vcpu); 10454 10455 /* 10456 * If the quirk is disabled, synthesize a #UD and let the guest pick up 10457 * the pieces. 10458 */ 10459 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 10460 ctxt->exception.error_code_valid = false; 10461 ctxt->exception.vector = UD_VECTOR; 10462 ctxt->have_exception = true; 10463 return X86EMUL_PROPAGATE_FAULT; 10464 } 10465 10466 kvm_x86_call(patch_hypercall)(vcpu, instruction); 10467 10468 return emulator_write_emulated(ctxt, rip, instruction, 3, 10469 &ctxt->exception); 10470 } 10471 10472 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 10473 { 10474 return vcpu->run->request_interrupt_window && 10475 likely(!pic_in_kernel(vcpu->kvm)); 10476 } 10477 10478 /* Called within kvm->srcu read side. */ 10479 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 10480 { 10481 struct kvm_run *kvm_run = vcpu->run; 10482 10483 kvm_run->if_flag = kvm_x86_call(get_if_flag)(vcpu); 10484 kvm_run->cr8 = kvm_get_cr8(vcpu); 10485 kvm_run->apic_base = vcpu->arch.apic_base; 10486 10487 kvm_run->ready_for_interrupt_injection = 10488 pic_in_kernel(vcpu->kvm) || 10489 kvm_vcpu_ready_for_interrupt_injection(vcpu); 10490 10491 if (is_smm(vcpu)) 10492 kvm_run->flags |= KVM_RUN_X86_SMM; 10493 if (is_guest_mode(vcpu)) 10494 kvm_run->flags |= KVM_RUN_X86_GUEST_MODE; 10495 } 10496 10497 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 10498 { 10499 int max_irr, tpr; 10500 10501 if (!kvm_x86_ops.update_cr8_intercept) 10502 return; 10503 10504 if (!lapic_in_kernel(vcpu)) 10505 return; 10506 10507 if (vcpu->arch.apic->apicv_active) 10508 return; 10509 10510 if (!vcpu->arch.apic->vapic_addr) 10511 max_irr = kvm_lapic_find_highest_irr(vcpu); 10512 else 10513 max_irr = -1; 10514 10515 if (max_irr != -1) 10516 max_irr >>= 4; 10517 10518 tpr = kvm_lapic_get_cr8(vcpu); 10519 10520 kvm_x86_call(update_cr8_intercept)(vcpu, tpr, max_irr); 10521 } 10522 10523 10524 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 10525 { 10526 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10527 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10528 return 1; 10529 } 10530 10531 return kvm_x86_ops.nested_ops->check_events(vcpu); 10532 } 10533 10534 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 10535 { 10536 /* 10537 * Suppress the error code if the vCPU is in Real Mode, as Real Mode 10538 * exceptions don't report error codes. The presence of an error code 10539 * is carried with the exception and only stripped when the exception 10540 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do 10541 * report an error code despite the CPU being in Real Mode. 10542 */ 10543 vcpu->arch.exception.has_error_code &= is_protmode(vcpu); 10544 10545 trace_kvm_inj_exception(vcpu->arch.exception.vector, 10546 vcpu->arch.exception.has_error_code, 10547 vcpu->arch.exception.error_code, 10548 vcpu->arch.exception.injected); 10549 10550 kvm_x86_call(inject_exception)(vcpu); 10551 } 10552 10553 /* 10554 * Check for any event (interrupt or exception) that is ready to be injected, 10555 * and if there is at least one event, inject the event with the highest 10556 * priority. This handles both "pending" events, i.e. events that have never 10557 * been injected into the guest, and "injected" events, i.e. events that were 10558 * injected as part of a previous VM-Enter, but weren't successfully delivered 10559 * and need to be re-injected. 10560 * 10561 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 10562 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 10563 * be able to inject exceptions in the "middle" of an instruction, and so must 10564 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 10565 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 10566 * boundaries is necessary and correct. 10567 * 10568 * For simplicity, KVM uses a single path to inject all events (except events 10569 * that are injected directly from L1 to L2) and doesn't explicitly track 10570 * instruction boundaries for asynchronous events. However, because VM-Exits 10571 * that can occur during instruction execution typically result in KVM skipping 10572 * the instruction or injecting an exception, e.g. instruction and exception 10573 * intercepts, and because pending exceptions have higher priority than pending 10574 * interrupts, KVM still honors instruction boundaries in most scenarios. 10575 * 10576 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 10577 * the instruction or inject an exception, then KVM can incorrecty inject a new 10578 * asynchronous event if the event became pending after the CPU fetched the 10579 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 10580 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 10581 * injected on the restarted instruction instead of being deferred until the 10582 * instruction completes. 10583 * 10584 * In practice, this virtualization hole is unlikely to be observed by the 10585 * guest, and even less likely to cause functional problems. To detect the 10586 * hole, the guest would have to trigger an event on a side effect of an early 10587 * phase of instruction execution, e.g. on the instruction fetch from memory. 10588 * And for it to be a functional problem, the guest would need to depend on the 10589 * ordering between that side effect, the instruction completing, _and_ the 10590 * delivery of the asynchronous event. 10591 */ 10592 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 10593 bool *req_immediate_exit) 10594 { 10595 bool can_inject; 10596 int r; 10597 10598 /* 10599 * Process nested events first, as nested VM-Exit supersedes event 10600 * re-injection. If there's an event queued for re-injection, it will 10601 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 10602 */ 10603 if (is_guest_mode(vcpu)) 10604 r = kvm_check_nested_events(vcpu); 10605 else 10606 r = 0; 10607 10608 /* 10609 * Re-inject exceptions and events *especially* if immediate entry+exit 10610 * to/from L2 is needed, as any event that has already been injected 10611 * into L2 needs to complete its lifecycle before injecting a new event. 10612 * 10613 * Don't re-inject an NMI or interrupt if there is a pending exception. 10614 * This collision arises if an exception occurred while vectoring the 10615 * injected event, KVM intercepted said exception, and KVM ultimately 10616 * determined the fault belongs to the guest and queues the exception 10617 * for injection back into the guest. 10618 * 10619 * "Injected" interrupts can also collide with pending exceptions if 10620 * userspace ignores the "ready for injection" flag and blindly queues 10621 * an interrupt. In that case, prioritizing the exception is correct, 10622 * as the exception "occurred" before the exit to userspace. Trap-like 10623 * exceptions, e.g. most #DBs, have higher priority than interrupts. 10624 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 10625 * priority, they're only generated (pended) during instruction 10626 * execution, and interrupts are recognized at instruction boundaries. 10627 * Thus a pending fault-like exception means the fault occurred on the 10628 * *previous* instruction and must be serviced prior to recognizing any 10629 * new events in order to fully complete the previous instruction. 10630 */ 10631 if (vcpu->arch.exception.injected) 10632 kvm_inject_exception(vcpu); 10633 else if (kvm_is_exception_pending(vcpu)) 10634 ; /* see above */ 10635 else if (vcpu->arch.nmi_injected) 10636 kvm_x86_call(inject_nmi)(vcpu); 10637 else if (vcpu->arch.interrupt.injected) 10638 kvm_x86_call(inject_irq)(vcpu, true); 10639 10640 /* 10641 * Exceptions that morph to VM-Exits are handled above, and pending 10642 * exceptions on top of injected exceptions that do not VM-Exit should 10643 * either morph to #DF or, sadly, override the injected exception. 10644 */ 10645 WARN_ON_ONCE(vcpu->arch.exception.injected && 10646 vcpu->arch.exception.pending); 10647 10648 /* 10649 * Bail if immediate entry+exit to/from the guest is needed to complete 10650 * nested VM-Enter or event re-injection so that a different pending 10651 * event can be serviced (or if KVM needs to exit to userspace). 10652 * 10653 * Otherwise, continue processing events even if VM-Exit occurred. The 10654 * VM-Exit will have cleared exceptions that were meant for L2, but 10655 * there may now be events that can be injected into L1. 10656 */ 10657 if (r < 0) 10658 goto out; 10659 10660 /* 10661 * A pending exception VM-Exit should either result in nested VM-Exit 10662 * or force an immediate re-entry and exit to/from L2, and exception 10663 * VM-Exits cannot be injected (flag should _never_ be set). 10664 */ 10665 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 10666 vcpu->arch.exception_vmexit.pending); 10667 10668 /* 10669 * New events, other than exceptions, cannot be injected if KVM needs 10670 * to re-inject a previous event. See above comments on re-injecting 10671 * for why pending exceptions get priority. 10672 */ 10673 can_inject = !kvm_event_needs_reinjection(vcpu); 10674 10675 if (vcpu->arch.exception.pending) { 10676 /* 10677 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 10678 * value pushed on the stack. Trap-like exception and all #DBs 10679 * leave RF as-is (KVM follows Intel's behavior in this regard; 10680 * AMD states that code breakpoint #DBs excplitly clear RF=0). 10681 * 10682 * Note, most versions of Intel's SDM and AMD's APM incorrectly 10683 * describe the behavior of General Detect #DBs, which are 10684 * fault-like. They do _not_ set RF, a la code breakpoints. 10685 */ 10686 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 10687 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 10688 X86_EFLAGS_RF); 10689 10690 if (vcpu->arch.exception.vector == DB_VECTOR) { 10691 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 10692 if (vcpu->arch.dr7 & DR7_GD) { 10693 vcpu->arch.dr7 &= ~DR7_GD; 10694 kvm_update_dr7(vcpu); 10695 } 10696 } 10697 10698 kvm_inject_exception(vcpu); 10699 10700 vcpu->arch.exception.pending = false; 10701 vcpu->arch.exception.injected = true; 10702 10703 can_inject = false; 10704 } 10705 10706 /* Don't inject interrupts if the user asked to avoid doing so */ 10707 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 10708 return 0; 10709 10710 /* 10711 * Finally, inject interrupt events. If an event cannot be injected 10712 * due to architectural conditions (e.g. IF=0) a window-open exit 10713 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 10714 * and can architecturally be injected, but we cannot do it right now: 10715 * an interrupt could have arrived just now and we have to inject it 10716 * as a vmexit, or there could already an event in the queue, which is 10717 * indicated by can_inject. In that case we request an immediate exit 10718 * in order to make progress and get back here for another iteration. 10719 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 10720 */ 10721 #ifdef CONFIG_KVM_SMM 10722 if (vcpu->arch.smi_pending) { 10723 r = can_inject ? kvm_x86_call(smi_allowed)(vcpu, true) : 10724 -EBUSY; 10725 if (r < 0) 10726 goto out; 10727 if (r) { 10728 vcpu->arch.smi_pending = false; 10729 ++vcpu->arch.smi_count; 10730 enter_smm(vcpu); 10731 can_inject = false; 10732 } else 10733 kvm_x86_call(enable_smi_window)(vcpu); 10734 } 10735 #endif 10736 10737 if (vcpu->arch.nmi_pending) { 10738 r = can_inject ? kvm_x86_call(nmi_allowed)(vcpu, true) : 10739 -EBUSY; 10740 if (r < 0) 10741 goto out; 10742 if (r) { 10743 --vcpu->arch.nmi_pending; 10744 vcpu->arch.nmi_injected = true; 10745 kvm_x86_call(inject_nmi)(vcpu); 10746 can_inject = false; 10747 WARN_ON(kvm_x86_call(nmi_allowed)(vcpu, true) < 0); 10748 } 10749 if (vcpu->arch.nmi_pending) 10750 kvm_x86_call(enable_nmi_window)(vcpu); 10751 } 10752 10753 if (kvm_cpu_has_injectable_intr(vcpu)) { 10754 r = can_inject ? kvm_x86_call(interrupt_allowed)(vcpu, true) : 10755 -EBUSY; 10756 if (r < 0) 10757 goto out; 10758 if (r) { 10759 int irq = kvm_cpu_get_interrupt(vcpu); 10760 10761 if (!WARN_ON_ONCE(irq == -1)) { 10762 kvm_queue_interrupt(vcpu, irq, false); 10763 kvm_x86_call(inject_irq)(vcpu, false); 10764 WARN_ON(kvm_x86_call(interrupt_allowed)(vcpu, true) < 0); 10765 } 10766 } 10767 if (kvm_cpu_has_injectable_intr(vcpu)) 10768 kvm_x86_call(enable_irq_window)(vcpu); 10769 } 10770 10771 if (is_guest_mode(vcpu) && 10772 kvm_x86_ops.nested_ops->has_events && 10773 kvm_x86_ops.nested_ops->has_events(vcpu, true)) 10774 *req_immediate_exit = true; 10775 10776 /* 10777 * KVM must never queue a new exception while injecting an event; KVM 10778 * is done emulating and should only propagate the to-be-injected event 10779 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10780 * infinite loop as KVM will bail from VM-Enter to inject the pending 10781 * exception and start the cycle all over. 10782 * 10783 * Exempt triple faults as they have special handling and won't put the 10784 * vCPU into an infinite loop. Triple fault can be queued when running 10785 * VMX without unrestricted guest, as that requires KVM to emulate Real 10786 * Mode events (see kvm_inject_realmode_interrupt()). 10787 */ 10788 WARN_ON_ONCE(vcpu->arch.exception.pending || 10789 vcpu->arch.exception_vmexit.pending); 10790 return 0; 10791 10792 out: 10793 if (r == -EBUSY) { 10794 *req_immediate_exit = true; 10795 r = 0; 10796 } 10797 return r; 10798 } 10799 10800 static void process_nmi(struct kvm_vcpu *vcpu) 10801 { 10802 unsigned int limit; 10803 10804 /* 10805 * x86 is limited to one NMI pending, but because KVM can't react to 10806 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is 10807 * scheduled out, KVM needs to play nice with two queued NMIs showing 10808 * up at the same time. To handle this scenario, allow two NMIs to be 10809 * (temporarily) pending so long as NMIs are not blocked and KVM is not 10810 * waiting for a previous NMI injection to complete (which effectively 10811 * blocks NMIs). KVM will immediately inject one of the two NMIs, and 10812 * will request an NMI window to handle the second NMI. 10813 */ 10814 if (kvm_x86_call(get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10815 limit = 1; 10816 else 10817 limit = 2; 10818 10819 /* 10820 * Adjust the limit to account for pending virtual NMIs, which aren't 10821 * tracked in vcpu->arch.nmi_pending. 10822 */ 10823 if (kvm_x86_call(is_vnmi_pending)(vcpu)) 10824 limit--; 10825 10826 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10827 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10828 10829 if (vcpu->arch.nmi_pending && 10830 (kvm_x86_call(set_vnmi_pending)(vcpu))) 10831 vcpu->arch.nmi_pending--; 10832 10833 if (vcpu->arch.nmi_pending) 10834 kvm_make_request(KVM_REQ_EVENT, vcpu); 10835 } 10836 10837 /* Return total number of NMIs pending injection to the VM */ 10838 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu) 10839 { 10840 return vcpu->arch.nmi_pending + 10841 kvm_x86_call(is_vnmi_pending)(vcpu); 10842 } 10843 10844 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10845 unsigned long *vcpu_bitmap) 10846 { 10847 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10848 } 10849 10850 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10851 { 10852 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10853 } 10854 10855 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10856 { 10857 struct kvm_lapic *apic = vcpu->arch.apic; 10858 bool activate; 10859 10860 if (!lapic_in_kernel(vcpu)) 10861 return; 10862 10863 down_read(&vcpu->kvm->arch.apicv_update_lock); 10864 preempt_disable(); 10865 10866 /* Do not activate APICV when APIC is disabled */ 10867 activate = kvm_vcpu_apicv_activated(vcpu) && 10868 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10869 10870 if (apic->apicv_active == activate) 10871 goto out; 10872 10873 apic->apicv_active = activate; 10874 kvm_apic_update_apicv(vcpu); 10875 kvm_x86_call(refresh_apicv_exec_ctrl)(vcpu); 10876 10877 /* 10878 * When APICv gets disabled, we may still have injected interrupts 10879 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10880 * still active when the interrupt got accepted. Make sure 10881 * kvm_check_and_inject_events() is called to check for that. 10882 */ 10883 if (!apic->apicv_active) 10884 kvm_make_request(KVM_REQ_EVENT, vcpu); 10885 10886 out: 10887 preempt_enable(); 10888 up_read(&vcpu->kvm->arch.apicv_update_lock); 10889 } 10890 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_vcpu_update_apicv); 10891 10892 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10893 { 10894 if (!lapic_in_kernel(vcpu)) 10895 return; 10896 10897 /* 10898 * Due to sharing page tables across vCPUs, the xAPIC memslot must be 10899 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but 10900 * and hardware doesn't support x2APIC virtualization. E.g. some AMD 10901 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in 10902 * this case so that KVM can use the AVIC doorbell to inject interrupts 10903 * to running vCPUs, but KVM must not create SPTEs for the APIC base as 10904 * the vCPU would incorrectly be able to access the vAPIC page via MMIO 10905 * despite being in x2APIC mode. For simplicity, inhibiting the APIC 10906 * access page is sticky. 10907 */ 10908 if (apic_x2apic_mode(vcpu->arch.apic) && 10909 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) 10910 kvm_inhibit_apic_access_page(vcpu); 10911 10912 __kvm_vcpu_update_apicv(vcpu); 10913 } 10914 10915 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10916 enum kvm_apicv_inhibit reason, bool set) 10917 { 10918 unsigned long old, new; 10919 10920 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10921 10922 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) 10923 return; 10924 10925 old = new = kvm->arch.apicv_inhibit_reasons; 10926 10927 set_or_clear_apicv_inhibit(&new, reason, set); 10928 10929 if (!!old != !!new) { 10930 /* 10931 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10932 * false positives in the sanity check WARN in vcpu_enter_guest(). 10933 * This task will wait for all vCPUs to ack the kick IRQ before 10934 * updating apicv_inhibit_reasons, and all other vCPUs will 10935 * block on acquiring apicv_update_lock so that vCPUs can't 10936 * redo vcpu_enter_guest() without seeing the new inhibit state. 10937 * 10938 * Note, holding apicv_update_lock and taking it in the read 10939 * side (handling the request) also prevents other vCPUs from 10940 * servicing the request with a stale apicv_inhibit_reasons. 10941 */ 10942 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10943 kvm->arch.apicv_inhibit_reasons = new; 10944 if (new) { 10945 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10946 int idx = srcu_read_lock(&kvm->srcu); 10947 10948 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10949 srcu_read_unlock(&kvm->srcu, idx); 10950 } 10951 } else { 10952 kvm->arch.apicv_inhibit_reasons = new; 10953 } 10954 } 10955 10956 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10957 enum kvm_apicv_inhibit reason, bool set) 10958 { 10959 if (!enable_apicv) 10960 return; 10961 10962 down_write(&kvm->arch.apicv_update_lock); 10963 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10964 up_write(&kvm->arch.apicv_update_lock); 10965 } 10966 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_or_clear_apicv_inhibit); 10967 10968 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10969 { 10970 if (!kvm_apic_present(vcpu)) 10971 return; 10972 10973 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10974 vcpu->arch.highest_stale_pending_ioapic_eoi = -1; 10975 10976 kvm_x86_call(sync_pir_to_irr)(vcpu); 10977 10978 if (irqchip_split(vcpu->kvm)) 10979 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10980 #ifdef CONFIG_KVM_IOAPIC 10981 else if (ioapic_in_kernel(vcpu->kvm)) 10982 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10983 #endif 10984 10985 if (is_guest_mode(vcpu)) 10986 vcpu->arch.load_eoi_exitmap_pending = true; 10987 else 10988 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10989 } 10990 10991 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10992 { 10993 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10994 return; 10995 10996 #ifdef CONFIG_KVM_HYPERV 10997 if (to_hv_vcpu(vcpu)) { 10998 u64 eoi_exit_bitmap[4]; 10999 11000 bitmap_or((ulong *)eoi_exit_bitmap, 11001 vcpu->arch.ioapic_handled_vectors, 11002 to_hv_synic(vcpu)->vec_bitmap, 256); 11003 kvm_x86_call(load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 11004 return; 11005 } 11006 #endif 11007 kvm_x86_call(load_eoi_exitmap)( 11008 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 11009 } 11010 11011 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 11012 { 11013 kvm_x86_call(guest_memory_reclaimed)(kvm); 11014 } 11015 11016 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 11017 { 11018 if (!lapic_in_kernel(vcpu)) 11019 return; 11020 11021 kvm_x86_call(set_apic_access_page_addr)(vcpu); 11022 } 11023 11024 /* 11025 * Called within kvm->srcu read side. 11026 * Returns 1 to let vcpu_run() continue the guest execution loop without 11027 * exiting to the userspace. Otherwise, the value will be returned to the 11028 * userspace. 11029 */ 11030 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 11031 { 11032 int r; 11033 bool req_int_win = 11034 dm_request_for_irq_injection(vcpu) && 11035 kvm_cpu_accept_dm_intr(vcpu); 11036 fastpath_t exit_fastpath; 11037 u64 run_flags, debug_ctl; 11038 11039 bool req_immediate_exit = false; 11040 11041 if (kvm_request_pending(vcpu)) { 11042 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 11043 r = -EIO; 11044 goto out; 11045 } 11046 11047 if (kvm_dirty_ring_check_request(vcpu)) { 11048 r = 0; 11049 goto out; 11050 } 11051 11052 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 11053 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 11054 r = 0; 11055 goto out; 11056 } 11057 } 11058 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 11059 kvm_mmu_free_obsolete_roots(vcpu); 11060 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 11061 __kvm_migrate_timers(vcpu); 11062 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 11063 kvm_update_masterclock(vcpu->kvm); 11064 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 11065 kvm_gen_kvmclock_update(vcpu); 11066 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 11067 r = kvm_guest_time_update(vcpu); 11068 if (unlikely(r)) 11069 goto out; 11070 } 11071 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 11072 kvm_mmu_sync_roots(vcpu); 11073 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 11074 kvm_mmu_load_pgd(vcpu); 11075 11076 /* 11077 * Note, the order matters here, as flushing "all" TLB entries 11078 * also flushes the "current" TLB entries, i.e. servicing the 11079 * flush "all" will clear any request to flush "current". 11080 */ 11081 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 11082 kvm_vcpu_flush_tlb_all(vcpu); 11083 11084 kvm_service_local_tlb_flush_requests(vcpu); 11085 11086 /* 11087 * Fall back to a "full" guest flush if Hyper-V's precise 11088 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 11089 * the flushes are considered "remote" and not "local" because 11090 * the requests can be initiated from other vCPUs. 11091 */ 11092 #ifdef CONFIG_KVM_HYPERV 11093 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 11094 kvm_hv_vcpu_flush_tlb(vcpu)) 11095 kvm_vcpu_flush_tlb_guest(vcpu); 11096 #endif 11097 11098 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 11099 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 11100 r = 0; 11101 goto out; 11102 } 11103 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 11104 if (is_guest_mode(vcpu)) 11105 kvm_x86_ops.nested_ops->triple_fault(vcpu); 11106 11107 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 11108 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 11109 vcpu->mmio_needed = 0; 11110 r = 0; 11111 goto out; 11112 } 11113 } 11114 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 11115 /* Page is swapped out. Do synthetic halt */ 11116 vcpu->arch.apf.halted = true; 11117 r = 1; 11118 goto out; 11119 } 11120 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 11121 record_steal_time(vcpu); 11122 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 11123 kvm_pmu_handle_event(vcpu); 11124 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 11125 kvm_pmu_deliver_pmi(vcpu); 11126 #ifdef CONFIG_KVM_SMM 11127 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 11128 process_smi(vcpu); 11129 #endif 11130 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 11131 process_nmi(vcpu); 11132 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 11133 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 11134 if (test_bit(vcpu->arch.pending_ioapic_eoi, 11135 vcpu->arch.ioapic_handled_vectors)) { 11136 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 11137 vcpu->run->eoi.vector = 11138 vcpu->arch.pending_ioapic_eoi; 11139 r = 0; 11140 goto out; 11141 } 11142 } 11143 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 11144 vcpu_scan_ioapic(vcpu); 11145 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 11146 vcpu_load_eoi_exitmap(vcpu); 11147 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 11148 kvm_vcpu_reload_apic_access_page(vcpu); 11149 #ifdef CONFIG_KVM_HYPERV 11150 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 11151 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 11152 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 11153 vcpu->run->system_event.ndata = 0; 11154 r = 0; 11155 goto out; 11156 } 11157 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 11158 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 11159 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 11160 vcpu->run->system_event.ndata = 0; 11161 r = 0; 11162 goto out; 11163 } 11164 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 11165 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 11166 11167 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 11168 vcpu->run->hyperv = hv_vcpu->exit; 11169 r = 0; 11170 goto out; 11171 } 11172 11173 /* 11174 * KVM_REQ_HV_STIMER has to be processed after 11175 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 11176 * depend on the guest clock being up-to-date 11177 */ 11178 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 11179 kvm_hv_process_stimers(vcpu); 11180 #endif 11181 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 11182 kvm_vcpu_update_apicv(vcpu); 11183 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 11184 kvm_check_async_pf_completion(vcpu); 11185 11186 if (kvm_check_request(KVM_REQ_RECALC_INTERCEPTS, vcpu)) 11187 kvm_x86_call(recalc_intercepts)(vcpu); 11188 11189 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 11190 kvm_x86_call(update_cpu_dirty_logging)(vcpu); 11191 11192 if (kvm_check_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) { 11193 kvm_vcpu_reset(vcpu, true); 11194 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE) { 11195 r = 1; 11196 goto out; 11197 } 11198 } 11199 } 11200 11201 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 11202 kvm_xen_has_interrupt(vcpu)) { 11203 ++vcpu->stat.req_event; 11204 r = kvm_apic_accept_events(vcpu); 11205 if (r < 0) { 11206 r = 0; 11207 goto out; 11208 } 11209 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 11210 r = 1; 11211 goto out; 11212 } 11213 11214 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 11215 if (r < 0) { 11216 r = 0; 11217 goto out; 11218 } 11219 if (req_int_win) 11220 kvm_x86_call(enable_irq_window)(vcpu); 11221 11222 if (kvm_lapic_enabled(vcpu)) { 11223 update_cr8_intercept(vcpu); 11224 kvm_lapic_sync_to_vapic(vcpu); 11225 } 11226 } 11227 11228 r = kvm_mmu_reload(vcpu); 11229 if (unlikely(r)) { 11230 goto cancel_injection; 11231 } 11232 11233 preempt_disable(); 11234 11235 kvm_x86_call(prepare_switch_to_guest)(vcpu); 11236 11237 /* 11238 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 11239 * IPI are then delayed after guest entry, which ensures that they 11240 * result in virtual interrupt delivery. 11241 */ 11242 local_irq_disable(); 11243 11244 /* Store vcpu->apicv_active before vcpu->mode. */ 11245 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 11246 11247 kvm_vcpu_srcu_read_unlock(vcpu); 11248 11249 /* 11250 * 1) We should set ->mode before checking ->requests. Please see 11251 * the comment in kvm_vcpu_exiting_guest_mode(). 11252 * 11253 * 2) For APICv, we should set ->mode before checking PID.ON. This 11254 * pairs with the memory barrier implicit in pi_test_and_set_on 11255 * (see vmx_deliver_posted_interrupt). 11256 * 11257 * 3) This also orders the write to mode from any reads to the page 11258 * tables done while the VCPU is running. Please see the comment 11259 * in kvm_flush_remote_tlbs. 11260 */ 11261 smp_mb__after_srcu_read_unlock(); 11262 11263 /* 11264 * Process pending posted interrupts to handle the case where the 11265 * notification IRQ arrived in the host, or was never sent (because the 11266 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 11267 * status, KVM doesn't update assigned devices when APICv is inhibited, 11268 * i.e. they can post interrupts even if APICv is temporarily disabled. 11269 */ 11270 if (kvm_lapic_enabled(vcpu)) 11271 kvm_x86_call(sync_pir_to_irr)(vcpu); 11272 11273 if (kvm_vcpu_exit_request(vcpu)) { 11274 vcpu->mode = OUTSIDE_GUEST_MODE; 11275 smp_wmb(); 11276 local_irq_enable(); 11277 preempt_enable(); 11278 kvm_vcpu_srcu_read_lock(vcpu); 11279 r = 1; 11280 goto cancel_injection; 11281 } 11282 11283 run_flags = 0; 11284 if (req_immediate_exit) { 11285 run_flags |= KVM_RUN_FORCE_IMMEDIATE_EXIT; 11286 kvm_make_request(KVM_REQ_EVENT, vcpu); 11287 } 11288 11289 fpregs_assert_state_consistent(); 11290 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 11291 switch_fpu_return(); 11292 11293 if (vcpu->arch.guest_fpu.xfd_err) 11294 wrmsrq(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 11295 11296 if (unlikely(vcpu->arch.switch_db_regs && 11297 !(vcpu->arch.switch_db_regs & KVM_DEBUGREG_AUTO_SWITCH))) { 11298 set_debugreg(DR7_FIXED_1, 7); 11299 set_debugreg(vcpu->arch.eff_db[0], 0); 11300 set_debugreg(vcpu->arch.eff_db[1], 1); 11301 set_debugreg(vcpu->arch.eff_db[2], 2); 11302 set_debugreg(vcpu->arch.eff_db[3], 3); 11303 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */ 11304 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 11305 run_flags |= KVM_RUN_LOAD_GUEST_DR6; 11306 } else if (unlikely(hw_breakpoint_active())) { 11307 set_debugreg(DR7_FIXED_1, 7); 11308 } 11309 11310 /* 11311 * Refresh the host DEBUGCTL snapshot after disabling IRQs, as DEBUGCTL 11312 * can be modified in IRQ context, e.g. via SMP function calls. Inform 11313 * vendor code if any host-owned bits were changed, e.g. so that the 11314 * value loaded into hardware while running the guest can be updated. 11315 */ 11316 debug_ctl = get_debugctlmsr(); 11317 if ((debug_ctl ^ vcpu->arch.host_debugctl) & kvm_x86_ops.HOST_OWNED_DEBUGCTL && 11318 !vcpu->arch.guest_state_protected) 11319 run_flags |= KVM_RUN_LOAD_DEBUGCTL; 11320 vcpu->arch.host_debugctl = debug_ctl; 11321 11322 guest_timing_enter_irqoff(); 11323 11324 for (;;) { 11325 /* 11326 * Assert that vCPU vs. VM APICv state is consistent. An APICv 11327 * update must kick and wait for all vCPUs before toggling the 11328 * per-VM state, and responding vCPUs must wait for the update 11329 * to complete before servicing KVM_REQ_APICV_UPDATE. 11330 */ 11331 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 11332 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 11333 11334 exit_fastpath = kvm_x86_call(vcpu_run)(vcpu, run_flags); 11335 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 11336 break; 11337 11338 if (kvm_lapic_enabled(vcpu)) 11339 kvm_x86_call(sync_pir_to_irr)(vcpu); 11340 11341 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 11342 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 11343 break; 11344 } 11345 11346 run_flags = 0; 11347 11348 /* Note, VM-Exits that go down the "slow" path are accounted below. */ 11349 ++vcpu->stat.exits; 11350 } 11351 11352 /* 11353 * Do this here before restoring debug registers on the host. And 11354 * since we do this before handling the vmexit, a DR access vmexit 11355 * can (a) read the correct value of the debug registers, (b) set 11356 * KVM_DEBUGREG_WONT_EXIT again. 11357 */ 11358 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 11359 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 11360 WARN_ON(vcpu->arch.switch_db_regs & KVM_DEBUGREG_AUTO_SWITCH); 11361 kvm_x86_call(sync_dirty_debug_regs)(vcpu); 11362 kvm_update_dr0123(vcpu); 11363 kvm_update_dr7(vcpu); 11364 } 11365 11366 /* 11367 * If the guest has used debug registers, at least dr7 11368 * will be disabled while returning to the host. 11369 * If we don't have active breakpoints in the host, we don't 11370 * care about the messed up debug address registers. But if 11371 * we have some of them active, restore the old state. 11372 */ 11373 if (hw_breakpoint_active()) 11374 hw_breakpoint_restore(); 11375 11376 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 11377 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 11378 11379 vcpu->mode = OUTSIDE_GUEST_MODE; 11380 smp_wmb(); 11381 11382 /* 11383 * Sync xfd before calling handle_exit_irqoff() which may 11384 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 11385 * in #NM irqoff handler). 11386 */ 11387 if (vcpu->arch.xfd_no_write_intercept) 11388 fpu_sync_guest_vmexit_xfd_state(); 11389 11390 kvm_x86_call(handle_exit_irqoff)(vcpu); 11391 11392 if (vcpu->arch.guest_fpu.xfd_err) 11393 wrmsrq(MSR_IA32_XFD_ERR, 0); 11394 11395 /* 11396 * Mark this CPU as needing a branch predictor flush before running 11397 * userspace. Must be done before enabling preemption to ensure it gets 11398 * set for the CPU that actually ran the guest, and not the CPU that it 11399 * may migrate to. 11400 */ 11401 if (cpu_feature_enabled(X86_FEATURE_IBPB_EXIT_TO_USER)) 11402 this_cpu_write(x86_ibpb_exit_to_user, true); 11403 11404 /* 11405 * Consume any pending interrupts, including the possible source of 11406 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 11407 * An instruction is required after local_irq_enable() to fully unblock 11408 * interrupts on processors that implement an interrupt shadow, the 11409 * stat.exits increment will do nicely. 11410 */ 11411 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 11412 local_irq_enable(); 11413 ++vcpu->stat.exits; 11414 local_irq_disable(); 11415 kvm_after_interrupt(vcpu); 11416 11417 /* 11418 * Wait until after servicing IRQs to account guest time so that any 11419 * ticks that occurred while running the guest are properly accounted 11420 * to the guest. Waiting until IRQs are enabled degrades the accuracy 11421 * of accounting via context tracking, but the loss of accuracy is 11422 * acceptable for all known use cases. 11423 */ 11424 guest_timing_exit_irqoff(); 11425 11426 local_irq_enable(); 11427 preempt_enable(); 11428 11429 kvm_vcpu_srcu_read_lock(vcpu); 11430 11431 /* 11432 * Call this to ensure WC buffers in guest are evicted after each VM 11433 * Exit, so that the evicted WC writes can be snooped across all cpus 11434 */ 11435 smp_mb__after_srcu_read_lock(); 11436 11437 /* 11438 * Profile KVM exit RIPs: 11439 */ 11440 if (unlikely(prof_on == KVM_PROFILING && 11441 !vcpu->arch.guest_state_protected)) { 11442 unsigned long rip = kvm_rip_read(vcpu); 11443 profile_hit(KVM_PROFILING, (void *)rip); 11444 } 11445 11446 if (unlikely(vcpu->arch.tsc_always_catchup)) 11447 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 11448 11449 if (vcpu->arch.apic_attention) 11450 kvm_lapic_sync_from_vapic(vcpu); 11451 11452 if (unlikely(exit_fastpath == EXIT_FASTPATH_EXIT_USERSPACE)) 11453 return 0; 11454 11455 r = kvm_x86_call(handle_exit)(vcpu, exit_fastpath); 11456 return r; 11457 11458 cancel_injection: 11459 if (req_immediate_exit) 11460 kvm_make_request(KVM_REQ_EVENT, vcpu); 11461 kvm_x86_call(cancel_injection)(vcpu); 11462 if (unlikely(vcpu->arch.apic_attention)) 11463 kvm_lapic_sync_from_vapic(vcpu); 11464 out: 11465 return r; 11466 } 11467 11468 static bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 11469 { 11470 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 11471 !vcpu->arch.apf.halted); 11472 } 11473 11474 bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 11475 { 11476 if (!list_empty_careful(&vcpu->async_pf.done)) 11477 return true; 11478 11479 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 11480 kvm_apic_init_sipi_allowed(vcpu)) 11481 return true; 11482 11483 if (kvm_is_exception_pending(vcpu)) 11484 return true; 11485 11486 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 11487 (vcpu->arch.nmi_pending && 11488 kvm_x86_call(nmi_allowed)(vcpu, false))) 11489 return true; 11490 11491 #ifdef CONFIG_KVM_SMM 11492 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 11493 (vcpu->arch.smi_pending && 11494 kvm_x86_call(smi_allowed)(vcpu, false))) 11495 return true; 11496 #endif 11497 11498 if (kvm_test_request(KVM_REQ_PMI, vcpu)) 11499 return true; 11500 11501 if (kvm_test_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) 11502 return true; 11503 11504 if (kvm_arch_interrupt_allowed(vcpu) && kvm_cpu_has_interrupt(vcpu)) 11505 return true; 11506 11507 if (kvm_hv_has_stimer_pending(vcpu)) 11508 return true; 11509 11510 if (is_guest_mode(vcpu) && 11511 kvm_x86_ops.nested_ops->has_events && 11512 kvm_x86_ops.nested_ops->has_events(vcpu, false)) 11513 return true; 11514 11515 if (kvm_xen_has_pending_events(vcpu)) 11516 return true; 11517 11518 return false; 11519 } 11520 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_has_events); 11521 11522 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 11523 { 11524 return kvm_vcpu_running(vcpu) || vcpu->arch.pv.pv_unhalted || 11525 kvm_vcpu_has_events(vcpu); 11526 } 11527 11528 /* Called within kvm->srcu read side. */ 11529 static inline int vcpu_block(struct kvm_vcpu *vcpu) 11530 { 11531 bool hv_timer; 11532 11533 if (!kvm_arch_vcpu_runnable(vcpu)) { 11534 /* 11535 * Switch to the software timer before halt-polling/blocking as 11536 * the guest's timer may be a break event for the vCPU, and the 11537 * hypervisor timer runs only when the CPU is in guest mode. 11538 * Switch before halt-polling so that KVM recognizes an expired 11539 * timer before blocking. 11540 */ 11541 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 11542 if (hv_timer) 11543 kvm_lapic_switch_to_sw_timer(vcpu); 11544 11545 kvm_vcpu_srcu_read_unlock(vcpu); 11546 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 11547 kvm_vcpu_halt(vcpu); 11548 else 11549 kvm_vcpu_block(vcpu); 11550 kvm_vcpu_srcu_read_lock(vcpu); 11551 11552 if (hv_timer) 11553 kvm_lapic_switch_to_hv_timer(vcpu); 11554 11555 /* 11556 * If the vCPU is not runnable, a signal or another host event 11557 * of some kind is pending; service it without changing the 11558 * vCPU's activity state. 11559 */ 11560 if (!kvm_arch_vcpu_runnable(vcpu)) 11561 return 1; 11562 } 11563 11564 /* 11565 * Evaluate nested events before exiting the halted state. This allows 11566 * the halt state to be recorded properly in the VMCS12's activity 11567 * state field (AMD does not have a similar field and a VM-Exit always 11568 * causes a spurious wakeup from HLT). 11569 */ 11570 if (is_guest_mode(vcpu)) { 11571 int r = kvm_check_nested_events(vcpu); 11572 11573 WARN_ON_ONCE(r == -EBUSY); 11574 if (r < 0) 11575 return 0; 11576 } 11577 11578 if (kvm_apic_accept_events(vcpu) < 0) 11579 return 0; 11580 switch(vcpu->arch.mp_state) { 11581 case KVM_MP_STATE_HALTED: 11582 case KVM_MP_STATE_AP_RESET_HOLD: 11583 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 11584 fallthrough; 11585 case KVM_MP_STATE_RUNNABLE: 11586 vcpu->arch.apf.halted = false; 11587 break; 11588 case KVM_MP_STATE_INIT_RECEIVED: 11589 break; 11590 default: 11591 WARN_ON_ONCE(1); 11592 break; 11593 } 11594 return 1; 11595 } 11596 11597 /* Called within kvm->srcu read side. */ 11598 static int vcpu_run(struct kvm_vcpu *vcpu) 11599 { 11600 int r; 11601 11602 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN; 11603 11604 for (;;) { 11605 /* 11606 * If another guest vCPU requests a PV TLB flush in the middle 11607 * of instruction emulation, the rest of the emulation could 11608 * use a stale page translation. Assume that any code after 11609 * this point can start executing an instruction. 11610 */ 11611 vcpu->arch.at_instruction_boundary = false; 11612 if (kvm_vcpu_running(vcpu)) { 11613 r = vcpu_enter_guest(vcpu); 11614 } else { 11615 r = vcpu_block(vcpu); 11616 } 11617 11618 if (r <= 0) 11619 break; 11620 11621 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 11622 if (kvm_xen_has_pending_events(vcpu)) 11623 kvm_xen_inject_pending_events(vcpu); 11624 11625 if (kvm_cpu_has_pending_timer(vcpu)) 11626 kvm_inject_pending_timer_irqs(vcpu); 11627 11628 if (dm_request_for_irq_injection(vcpu) && 11629 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 11630 r = 0; 11631 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 11632 ++vcpu->stat.request_irq_exits; 11633 break; 11634 } 11635 11636 if (__xfer_to_guest_mode_work_pending()) { 11637 kvm_vcpu_srcu_read_unlock(vcpu); 11638 r = xfer_to_guest_mode_handle_work(vcpu); 11639 kvm_vcpu_srcu_read_lock(vcpu); 11640 if (r) 11641 return r; 11642 } 11643 } 11644 11645 return r; 11646 } 11647 11648 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 11649 { 11650 /* 11651 * The vCPU has halted, e.g. executed HLT. Update the run state if the 11652 * local APIC is in-kernel, the run loop will detect the non-runnable 11653 * state and halt the vCPU. Exit to userspace if the local APIC is 11654 * managed by userspace, in which case userspace is responsible for 11655 * handling wake events. 11656 */ 11657 ++vcpu->stat.halt_exits; 11658 if (lapic_in_kernel(vcpu)) { 11659 if (kvm_vcpu_has_events(vcpu) || vcpu->arch.pv.pv_unhalted) 11660 state = KVM_MP_STATE_RUNNABLE; 11661 kvm_set_mp_state(vcpu, state); 11662 return 1; 11663 } else { 11664 vcpu->run->exit_reason = reason; 11665 return 0; 11666 } 11667 } 11668 11669 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 11670 { 11671 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 11672 } 11673 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_halt_noskip); 11674 11675 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 11676 { 11677 int ret = kvm_skip_emulated_instruction(vcpu); 11678 /* 11679 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 11680 * KVM_EXIT_DEBUG here. 11681 */ 11682 return kvm_emulate_halt_noskip(vcpu) && ret; 11683 } 11684 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_halt); 11685 11686 fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu) 11687 { 11688 if (!kvm_emulate_halt(vcpu)) 11689 return EXIT_FASTPATH_EXIT_USERSPACE; 11690 11691 if (kvm_vcpu_running(vcpu)) 11692 return EXIT_FASTPATH_REENTER_GUEST; 11693 11694 return EXIT_FASTPATH_EXIT_HANDLED; 11695 } 11696 EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_fastpath_hlt); 11697 11698 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 11699 { 11700 int ret = kvm_skip_emulated_instruction(vcpu); 11701 11702 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 11703 KVM_EXIT_AP_RESET_HOLD) && ret; 11704 } 11705 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_ap_reset_hold); 11706 11707 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 11708 { 11709 return kvm_vcpu_apicv_active(vcpu) && 11710 kvm_x86_call(dy_apicv_has_pending_interrupt)(vcpu); 11711 } 11712 11713 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu) 11714 { 11715 return vcpu->arch.preempted_in_kernel; 11716 } 11717 11718 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 11719 { 11720 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 11721 return true; 11722 11723 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 11724 #ifdef CONFIG_KVM_SMM 11725 kvm_test_request(KVM_REQ_SMI, vcpu) || 11726 #endif 11727 kvm_test_request(KVM_REQ_EVENT, vcpu)) 11728 return true; 11729 11730 return kvm_arch_dy_has_pending_interrupt(vcpu); 11731 } 11732 11733 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 11734 { 11735 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 11736 } 11737 11738 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 11739 { 11740 BUG_ON(!vcpu->arch.pio.count); 11741 11742 return complete_emulated_io(vcpu); 11743 } 11744 11745 /* 11746 * Implements the following, as a state machine: 11747 * 11748 * read: 11749 * for each fragment 11750 * for each mmio piece in the fragment 11751 * write gpa, len 11752 * exit 11753 * copy data 11754 * execute insn 11755 * 11756 * write: 11757 * for each fragment 11758 * for each mmio piece in the fragment 11759 * write gpa, len 11760 * copy data 11761 * exit 11762 */ 11763 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 11764 { 11765 struct kvm_run *run = vcpu->run; 11766 struct kvm_mmio_fragment *frag; 11767 unsigned len; 11768 11769 BUG_ON(!vcpu->mmio_needed); 11770 11771 /* Complete previous fragment */ 11772 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 11773 len = min(8u, frag->len); 11774 if (!vcpu->mmio_is_write) 11775 memcpy(frag->data, run->mmio.data, len); 11776 11777 if (frag->len <= 8) { 11778 /* Switch to the next fragment. */ 11779 frag++; 11780 vcpu->mmio_cur_fragment++; 11781 } else { 11782 /* Go forward to the next mmio piece. */ 11783 frag->data += len; 11784 frag->gpa += len; 11785 frag->len -= len; 11786 } 11787 11788 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 11789 vcpu->mmio_needed = 0; 11790 11791 /* FIXME: return into emulator if single-stepping. */ 11792 if (vcpu->mmio_is_write) 11793 return 1; 11794 vcpu->mmio_read_completed = 1; 11795 return complete_emulated_io(vcpu); 11796 } 11797 11798 run->exit_reason = KVM_EXIT_MMIO; 11799 run->mmio.phys_addr = frag->gpa; 11800 if (vcpu->mmio_is_write) 11801 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 11802 run->mmio.len = min(8u, frag->len); 11803 run->mmio.is_write = vcpu->mmio_is_write; 11804 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 11805 return 0; 11806 } 11807 11808 /* Swap (qemu) user FPU context for the guest FPU context. */ 11809 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 11810 { 11811 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 11812 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 11813 trace_kvm_fpu(1); 11814 } 11815 11816 /* When vcpu_run ends, restore user space FPU context. */ 11817 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 11818 { 11819 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 11820 ++vcpu->stat.fpu_reload; 11821 trace_kvm_fpu(0); 11822 } 11823 11824 static int kvm_x86_vcpu_pre_run(struct kvm_vcpu *vcpu) 11825 { 11826 /* 11827 * SIPI_RECEIVED is obsolete; KVM leaves the vCPU in Wait-For-SIPI and 11828 * tracks the pending SIPI separately. SIPI_RECEIVED is still accepted 11829 * by KVM_SET_VCPU_EVENTS for backwards compatibility, but should be 11830 * converted to INIT_RECEIVED. 11831 */ 11832 if (WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) 11833 return -EINVAL; 11834 11835 /* 11836 * Disallow running the vCPU if userspace forced it into an impossible 11837 * MP_STATE, e.g. if the vCPU is in WFS but SIPI is blocked. 11838 */ 11839 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED && 11840 !kvm_apic_init_sipi_allowed(vcpu)) 11841 return -EINVAL; 11842 11843 return kvm_x86_call(vcpu_pre_run)(vcpu); 11844 } 11845 11846 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 11847 { 11848 struct kvm_queued_exception *ex = &vcpu->arch.exception; 11849 struct kvm_run *kvm_run = vcpu->run; 11850 u64 sync_valid_fields; 11851 int r; 11852 11853 r = kvm_mmu_post_init_vm(vcpu->kvm); 11854 if (r) 11855 return r; 11856 11857 vcpu_load(vcpu); 11858 kvm_sigset_activate(vcpu); 11859 kvm_run->flags = 0; 11860 kvm_load_guest_fpu(vcpu); 11861 11862 kvm_vcpu_srcu_read_lock(vcpu); 11863 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 11864 if (!vcpu->wants_to_run) { 11865 r = -EINTR; 11866 goto out; 11867 } 11868 11869 /* 11870 * Don't bother switching APIC timer emulation from the 11871 * hypervisor timer to the software timer, the only way for the 11872 * APIC timer to be active is if userspace stuffed vCPU state, 11873 * i.e. put the vCPU into a nonsensical state. Only an INIT 11874 * will transition the vCPU out of UNINITIALIZED (without more 11875 * state stuffing from userspace), which will reset the local 11876 * APIC and thus cancel the timer or drop the IRQ (if the timer 11877 * already expired). 11878 */ 11879 kvm_vcpu_srcu_read_unlock(vcpu); 11880 kvm_vcpu_block(vcpu); 11881 kvm_vcpu_srcu_read_lock(vcpu); 11882 11883 if (kvm_apic_accept_events(vcpu) < 0) { 11884 r = 0; 11885 goto out; 11886 } 11887 r = -EAGAIN; 11888 if (signal_pending(current)) { 11889 r = -EINTR; 11890 kvm_run->exit_reason = KVM_EXIT_INTR; 11891 ++vcpu->stat.signal_exits; 11892 } 11893 goto out; 11894 } 11895 11896 sync_valid_fields = kvm_sync_valid_fields(vcpu->kvm); 11897 if ((kvm_run->kvm_valid_regs & ~sync_valid_fields) || 11898 (kvm_run->kvm_dirty_regs & ~sync_valid_fields)) { 11899 r = -EINVAL; 11900 goto out; 11901 } 11902 11903 if (kvm_run->kvm_dirty_regs) { 11904 r = sync_regs(vcpu); 11905 if (r != 0) 11906 goto out; 11907 } 11908 11909 /* re-sync apic's tpr */ 11910 if (!lapic_in_kernel(vcpu)) { 11911 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 11912 r = -EINVAL; 11913 goto out; 11914 } 11915 } 11916 11917 /* 11918 * If userspace set a pending exception and L2 is active, convert it to 11919 * a pending VM-Exit if L1 wants to intercept the exception. 11920 */ 11921 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 11922 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 11923 ex->error_code)) { 11924 kvm_queue_exception_vmexit(vcpu, ex->vector, 11925 ex->has_error_code, ex->error_code, 11926 ex->has_payload, ex->payload); 11927 ex->injected = false; 11928 ex->pending = false; 11929 } 11930 vcpu->arch.exception_from_userspace = false; 11931 11932 if (unlikely(vcpu->arch.complete_userspace_io)) { 11933 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 11934 vcpu->arch.complete_userspace_io = NULL; 11935 r = cui(vcpu); 11936 if (r <= 0) 11937 goto out; 11938 } else { 11939 WARN_ON_ONCE(vcpu->arch.pio.count); 11940 WARN_ON_ONCE(vcpu->mmio_needed); 11941 } 11942 11943 if (!vcpu->wants_to_run) { 11944 r = -EINTR; 11945 goto out; 11946 } 11947 11948 r = kvm_x86_vcpu_pre_run(vcpu); 11949 if (r <= 0) 11950 goto out; 11951 11952 r = vcpu_run(vcpu); 11953 11954 out: 11955 kvm_put_guest_fpu(vcpu); 11956 if (kvm_run->kvm_valid_regs && likely(!vcpu->arch.guest_state_protected)) 11957 store_regs(vcpu); 11958 post_kvm_run_save(vcpu); 11959 kvm_vcpu_srcu_read_unlock(vcpu); 11960 11961 kvm_sigset_deactivate(vcpu); 11962 vcpu_put(vcpu); 11963 return r; 11964 } 11965 11966 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11967 { 11968 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 11969 /* 11970 * We are here if userspace calls get_regs() in the middle of 11971 * instruction emulation. Registers state needs to be copied 11972 * back from emulation context to vcpu. Userspace shouldn't do 11973 * that usually, but some bad designed PV devices (vmware 11974 * backdoor interface) need this to work 11975 */ 11976 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 11977 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11978 } 11979 regs->rax = kvm_rax_read(vcpu); 11980 regs->rbx = kvm_rbx_read(vcpu); 11981 regs->rcx = kvm_rcx_read(vcpu); 11982 regs->rdx = kvm_rdx_read(vcpu); 11983 regs->rsi = kvm_rsi_read(vcpu); 11984 regs->rdi = kvm_rdi_read(vcpu); 11985 regs->rsp = kvm_rsp_read(vcpu); 11986 regs->rbp = kvm_rbp_read(vcpu); 11987 #ifdef CONFIG_X86_64 11988 regs->r8 = kvm_r8_read(vcpu); 11989 regs->r9 = kvm_r9_read(vcpu); 11990 regs->r10 = kvm_r10_read(vcpu); 11991 regs->r11 = kvm_r11_read(vcpu); 11992 regs->r12 = kvm_r12_read(vcpu); 11993 regs->r13 = kvm_r13_read(vcpu); 11994 regs->r14 = kvm_r14_read(vcpu); 11995 regs->r15 = kvm_r15_read(vcpu); 11996 #endif 11997 11998 regs->rip = kvm_rip_read(vcpu); 11999 regs->rflags = kvm_get_rflags(vcpu); 12000 } 12001 12002 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 12003 { 12004 if (vcpu->kvm->arch.has_protected_state && 12005 vcpu->arch.guest_state_protected) 12006 return -EINVAL; 12007 12008 vcpu_load(vcpu); 12009 __get_regs(vcpu, regs); 12010 vcpu_put(vcpu); 12011 return 0; 12012 } 12013 12014 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 12015 { 12016 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 12017 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 12018 12019 kvm_rax_write(vcpu, regs->rax); 12020 kvm_rbx_write(vcpu, regs->rbx); 12021 kvm_rcx_write(vcpu, regs->rcx); 12022 kvm_rdx_write(vcpu, regs->rdx); 12023 kvm_rsi_write(vcpu, regs->rsi); 12024 kvm_rdi_write(vcpu, regs->rdi); 12025 kvm_rsp_write(vcpu, regs->rsp); 12026 kvm_rbp_write(vcpu, regs->rbp); 12027 #ifdef CONFIG_X86_64 12028 kvm_r8_write(vcpu, regs->r8); 12029 kvm_r9_write(vcpu, regs->r9); 12030 kvm_r10_write(vcpu, regs->r10); 12031 kvm_r11_write(vcpu, regs->r11); 12032 kvm_r12_write(vcpu, regs->r12); 12033 kvm_r13_write(vcpu, regs->r13); 12034 kvm_r14_write(vcpu, regs->r14); 12035 kvm_r15_write(vcpu, regs->r15); 12036 #endif 12037 12038 kvm_rip_write(vcpu, regs->rip); 12039 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 12040 12041 vcpu->arch.exception.pending = false; 12042 vcpu->arch.exception_vmexit.pending = false; 12043 12044 kvm_make_request(KVM_REQ_EVENT, vcpu); 12045 } 12046 12047 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 12048 { 12049 if (vcpu->kvm->arch.has_protected_state && 12050 vcpu->arch.guest_state_protected) 12051 return -EINVAL; 12052 12053 vcpu_load(vcpu); 12054 __set_regs(vcpu, regs); 12055 vcpu_put(vcpu); 12056 return 0; 12057 } 12058 12059 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 12060 { 12061 struct desc_ptr dt; 12062 12063 if (vcpu->arch.guest_state_protected) 12064 goto skip_protected_regs; 12065 12066 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 12067 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 12068 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 12069 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 12070 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 12071 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 12072 12073 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 12074 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 12075 12076 kvm_x86_call(get_idt)(vcpu, &dt); 12077 sregs->idt.limit = dt.size; 12078 sregs->idt.base = dt.address; 12079 kvm_x86_call(get_gdt)(vcpu, &dt); 12080 sregs->gdt.limit = dt.size; 12081 sregs->gdt.base = dt.address; 12082 12083 sregs->cr2 = vcpu->arch.cr2; 12084 sregs->cr3 = kvm_read_cr3(vcpu); 12085 12086 skip_protected_regs: 12087 sregs->cr0 = kvm_read_cr0(vcpu); 12088 sregs->cr4 = kvm_read_cr4(vcpu); 12089 sregs->cr8 = kvm_get_cr8(vcpu); 12090 sregs->efer = vcpu->arch.efer; 12091 sregs->apic_base = vcpu->arch.apic_base; 12092 } 12093 12094 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 12095 { 12096 __get_sregs_common(vcpu, sregs); 12097 12098 if (vcpu->arch.guest_state_protected) 12099 return; 12100 12101 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 12102 set_bit(vcpu->arch.interrupt.nr, 12103 (unsigned long *)sregs->interrupt_bitmap); 12104 } 12105 12106 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 12107 { 12108 int i; 12109 12110 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 12111 12112 if (vcpu->arch.guest_state_protected) 12113 return; 12114 12115 if (is_pae_paging(vcpu)) { 12116 for (i = 0 ; i < 4 ; i++) 12117 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 12118 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 12119 } 12120 } 12121 12122 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 12123 struct kvm_sregs *sregs) 12124 { 12125 if (vcpu->kvm->arch.has_protected_state && 12126 vcpu->arch.guest_state_protected) 12127 return -EINVAL; 12128 12129 vcpu_load(vcpu); 12130 __get_sregs(vcpu, sregs); 12131 vcpu_put(vcpu); 12132 return 0; 12133 } 12134 12135 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 12136 struct kvm_mp_state *mp_state) 12137 { 12138 int r; 12139 12140 vcpu_load(vcpu); 12141 if (kvm_mpx_supported()) 12142 kvm_load_guest_fpu(vcpu); 12143 12144 kvm_vcpu_srcu_read_lock(vcpu); 12145 12146 r = kvm_apic_accept_events(vcpu); 12147 if (r < 0) 12148 goto out; 12149 r = 0; 12150 12151 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 12152 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 12153 vcpu->arch.pv.pv_unhalted) 12154 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 12155 else 12156 mp_state->mp_state = vcpu->arch.mp_state; 12157 12158 out: 12159 kvm_vcpu_srcu_read_unlock(vcpu); 12160 12161 if (kvm_mpx_supported()) 12162 kvm_put_guest_fpu(vcpu); 12163 vcpu_put(vcpu); 12164 return r; 12165 } 12166 12167 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 12168 struct kvm_mp_state *mp_state) 12169 { 12170 int ret = -EINVAL; 12171 12172 vcpu_load(vcpu); 12173 12174 switch (mp_state->mp_state) { 12175 case KVM_MP_STATE_UNINITIALIZED: 12176 case KVM_MP_STATE_HALTED: 12177 case KVM_MP_STATE_AP_RESET_HOLD: 12178 case KVM_MP_STATE_INIT_RECEIVED: 12179 case KVM_MP_STATE_SIPI_RECEIVED: 12180 if (!lapic_in_kernel(vcpu)) 12181 goto out; 12182 break; 12183 12184 case KVM_MP_STATE_RUNNABLE: 12185 break; 12186 12187 default: 12188 goto out; 12189 } 12190 12191 /* 12192 * SIPI_RECEIVED is obsolete and no longer used internally; KVM instead 12193 * leaves the vCPU in INIT_RECIEVED (Wait-For-SIPI) and pends the SIPI. 12194 * Translate SIPI_RECEIVED as appropriate for backwards compatibility. 12195 */ 12196 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 12197 mp_state->mp_state = KVM_MP_STATE_INIT_RECEIVED; 12198 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 12199 } 12200 12201 kvm_set_mp_state(vcpu, mp_state->mp_state); 12202 kvm_make_request(KVM_REQ_EVENT, vcpu); 12203 12204 ret = 0; 12205 out: 12206 vcpu_put(vcpu); 12207 return ret; 12208 } 12209 12210 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 12211 int reason, bool has_error_code, u32 error_code) 12212 { 12213 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 12214 int ret; 12215 12216 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_CET)) { 12217 u64 u_cet, s_cet; 12218 12219 /* 12220 * Check both User and Supervisor on task switches as inter- 12221 * privilege level task switches are impacted by CET at both 12222 * the current privilege level and the new privilege level, and 12223 * that information is not known at this time. The expectation 12224 * is that the guest won't require emulation of task switches 12225 * while using IBT or Shadow Stacks. 12226 */ 12227 if (__kvm_emulate_msr_read(vcpu, MSR_IA32_U_CET, &u_cet) || 12228 __kvm_emulate_msr_read(vcpu, MSR_IA32_S_CET, &s_cet)) 12229 goto unhandled_task_switch; 12230 12231 if ((u_cet | s_cet) & (CET_ENDBR_EN | CET_SHSTK_EN)) 12232 goto unhandled_task_switch; 12233 } 12234 12235 init_emulate_ctxt(vcpu); 12236 12237 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 12238 has_error_code, error_code); 12239 12240 /* 12241 * Report an error userspace if MMIO is needed, as KVM doesn't support 12242 * MMIO during a task switch (or any other complex operation). 12243 */ 12244 if (ret || vcpu->mmio_needed) 12245 goto unhandled_task_switch; 12246 12247 kvm_rip_write(vcpu, ctxt->eip); 12248 kvm_set_rflags(vcpu, ctxt->eflags); 12249 return 1; 12250 12251 unhandled_task_switch: 12252 vcpu->mmio_needed = false; 12253 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 12254 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 12255 vcpu->run->internal.ndata = 0; 12256 return 0; 12257 } 12258 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_task_switch); 12259 12260 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 12261 { 12262 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 12263 /* 12264 * When EFER.LME and CR0.PG are set, the processor is in 12265 * 64-bit mode (though maybe in a 32-bit code segment). 12266 * CR4.PAE and EFER.LMA must be set. 12267 */ 12268 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 12269 return false; 12270 if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3)) 12271 return false; 12272 } else { 12273 /* 12274 * Not in 64-bit mode: EFER.LMA is clear and the code 12275 * segment cannot be 64-bit. 12276 */ 12277 if (sregs->efer & EFER_LMA || sregs->cs.l) 12278 return false; 12279 } 12280 12281 return kvm_is_valid_cr4(vcpu, sregs->cr4) && 12282 kvm_is_valid_cr0(vcpu, sregs->cr0); 12283 } 12284 12285 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 12286 int *mmu_reset_needed, bool update_pdptrs) 12287 { 12288 int idx; 12289 struct desc_ptr dt; 12290 12291 if (!kvm_is_valid_sregs(vcpu, sregs)) 12292 return -EINVAL; 12293 12294 if (kvm_apic_set_base(vcpu, sregs->apic_base, true)) 12295 return -EINVAL; 12296 12297 if (vcpu->arch.guest_state_protected) 12298 return 0; 12299 12300 dt.size = sregs->idt.limit; 12301 dt.address = sregs->idt.base; 12302 kvm_x86_call(set_idt)(vcpu, &dt); 12303 dt.size = sregs->gdt.limit; 12304 dt.address = sregs->gdt.base; 12305 kvm_x86_call(set_gdt)(vcpu, &dt); 12306 12307 vcpu->arch.cr2 = sregs->cr2; 12308 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 12309 vcpu->arch.cr3 = sregs->cr3; 12310 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 12311 kvm_x86_call(post_set_cr3)(vcpu, sregs->cr3); 12312 12313 kvm_set_cr8(vcpu, sregs->cr8); 12314 12315 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 12316 kvm_x86_call(set_efer)(vcpu, sregs->efer); 12317 12318 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 12319 kvm_x86_call(set_cr0)(vcpu, sregs->cr0); 12320 12321 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 12322 kvm_x86_call(set_cr4)(vcpu, sregs->cr4); 12323 12324 if (update_pdptrs) { 12325 idx = srcu_read_lock(&vcpu->kvm->srcu); 12326 if (is_pae_paging(vcpu)) { 12327 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 12328 *mmu_reset_needed = 1; 12329 } 12330 srcu_read_unlock(&vcpu->kvm->srcu, idx); 12331 } 12332 12333 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 12334 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 12335 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 12336 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 12337 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 12338 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 12339 12340 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 12341 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 12342 12343 update_cr8_intercept(vcpu); 12344 12345 /* Older userspace won't unhalt the vcpu on reset. */ 12346 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 12347 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 12348 !is_protmode(vcpu)) 12349 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 12350 12351 return 0; 12352 } 12353 12354 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 12355 { 12356 int pending_vec, max_bits; 12357 int mmu_reset_needed = 0; 12358 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 12359 12360 if (ret) 12361 return ret; 12362 12363 if (mmu_reset_needed) { 12364 kvm_mmu_reset_context(vcpu); 12365 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12366 } 12367 12368 max_bits = KVM_NR_INTERRUPTS; 12369 pending_vec = find_first_bit( 12370 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 12371 12372 if (pending_vec < max_bits) { 12373 kvm_queue_interrupt(vcpu, pending_vec, false); 12374 pr_debug("Set back pending irq %d\n", pending_vec); 12375 kvm_make_request(KVM_REQ_EVENT, vcpu); 12376 } 12377 return 0; 12378 } 12379 12380 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 12381 { 12382 int mmu_reset_needed = 0; 12383 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 12384 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 12385 !(sregs2->efer & EFER_LMA); 12386 int i, ret; 12387 12388 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 12389 return -EINVAL; 12390 12391 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 12392 return -EINVAL; 12393 12394 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 12395 &mmu_reset_needed, !valid_pdptrs); 12396 if (ret) 12397 return ret; 12398 12399 if (valid_pdptrs) { 12400 for (i = 0; i < 4 ; i++) 12401 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 12402 12403 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 12404 mmu_reset_needed = 1; 12405 vcpu->arch.pdptrs_from_userspace = true; 12406 } 12407 if (mmu_reset_needed) { 12408 kvm_mmu_reset_context(vcpu); 12409 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12410 } 12411 return 0; 12412 } 12413 12414 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 12415 struct kvm_sregs *sregs) 12416 { 12417 int ret; 12418 12419 if (vcpu->kvm->arch.has_protected_state && 12420 vcpu->arch.guest_state_protected) 12421 return -EINVAL; 12422 12423 vcpu_load(vcpu); 12424 ret = __set_sregs(vcpu, sregs); 12425 vcpu_put(vcpu); 12426 return ret; 12427 } 12428 12429 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 12430 { 12431 bool set = false; 12432 struct kvm_vcpu *vcpu; 12433 unsigned long i; 12434 12435 if (!enable_apicv) 12436 return; 12437 12438 down_write(&kvm->arch.apicv_update_lock); 12439 12440 kvm_for_each_vcpu(i, vcpu, kvm) { 12441 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 12442 set = true; 12443 break; 12444 } 12445 } 12446 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 12447 up_write(&kvm->arch.apicv_update_lock); 12448 } 12449 12450 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 12451 struct kvm_guest_debug *dbg) 12452 { 12453 unsigned long rflags; 12454 int i, r; 12455 12456 if (vcpu->arch.guest_state_protected) 12457 return -EINVAL; 12458 12459 vcpu_load(vcpu); 12460 12461 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 12462 r = -EBUSY; 12463 if (kvm_is_exception_pending(vcpu)) 12464 goto out; 12465 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 12466 kvm_queue_exception(vcpu, DB_VECTOR); 12467 else 12468 kvm_queue_exception(vcpu, BP_VECTOR); 12469 } 12470 12471 /* 12472 * Read rflags as long as potentially injected trace flags are still 12473 * filtered out. 12474 */ 12475 rflags = kvm_get_rflags(vcpu); 12476 12477 vcpu->guest_debug = dbg->control; 12478 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 12479 vcpu->guest_debug = 0; 12480 12481 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 12482 for (i = 0; i < KVM_NR_DB_REGS; ++i) 12483 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 12484 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 12485 } else { 12486 for (i = 0; i < KVM_NR_DB_REGS; i++) 12487 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 12488 } 12489 kvm_update_dr7(vcpu); 12490 12491 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12492 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 12493 12494 /* 12495 * Trigger an rflags update that will inject or remove the trace 12496 * flags. 12497 */ 12498 kvm_set_rflags(vcpu, rflags); 12499 12500 kvm_x86_call(update_exception_bitmap)(vcpu); 12501 12502 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 12503 12504 r = 0; 12505 12506 out: 12507 vcpu_put(vcpu); 12508 return r; 12509 } 12510 12511 /* 12512 * Translate a guest virtual address to a guest physical address. 12513 */ 12514 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 12515 struct kvm_translation *tr) 12516 { 12517 unsigned long vaddr = tr->linear_address; 12518 gpa_t gpa; 12519 int idx; 12520 12521 vcpu_load(vcpu); 12522 12523 idx = srcu_read_lock(&vcpu->kvm->srcu); 12524 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 12525 srcu_read_unlock(&vcpu->kvm->srcu, idx); 12526 tr->physical_address = gpa; 12527 tr->valid = gpa != INVALID_GPA; 12528 tr->writeable = 1; 12529 tr->usermode = 0; 12530 12531 vcpu_put(vcpu); 12532 return 0; 12533 } 12534 12535 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 12536 { 12537 struct fxregs_state *fxsave; 12538 12539 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 12540 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 12541 12542 vcpu_load(vcpu); 12543 12544 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 12545 memcpy(fpu->fpr, fxsave->st_space, 128); 12546 fpu->fcw = fxsave->cwd; 12547 fpu->fsw = fxsave->swd; 12548 fpu->ftwx = fxsave->twd; 12549 fpu->last_opcode = fxsave->fop; 12550 fpu->last_ip = fxsave->rip; 12551 fpu->last_dp = fxsave->rdp; 12552 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 12553 12554 vcpu_put(vcpu); 12555 return 0; 12556 } 12557 12558 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 12559 { 12560 struct fxregs_state *fxsave; 12561 12562 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 12563 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 12564 12565 vcpu_load(vcpu); 12566 12567 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 12568 12569 memcpy(fxsave->st_space, fpu->fpr, 128); 12570 fxsave->cwd = fpu->fcw; 12571 fxsave->swd = fpu->fsw; 12572 fxsave->twd = fpu->ftwx; 12573 fxsave->fop = fpu->last_opcode; 12574 fxsave->rip = fpu->last_ip; 12575 fxsave->rdp = fpu->last_dp; 12576 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 12577 12578 vcpu_put(vcpu); 12579 return 0; 12580 } 12581 12582 static void store_regs(struct kvm_vcpu *vcpu) 12583 { 12584 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 12585 12586 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 12587 __get_regs(vcpu, &vcpu->run->s.regs.regs); 12588 12589 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 12590 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 12591 12592 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 12593 kvm_vcpu_ioctl_x86_get_vcpu_events( 12594 vcpu, &vcpu->run->s.regs.events); 12595 } 12596 12597 static int sync_regs(struct kvm_vcpu *vcpu) 12598 { 12599 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 12600 __set_regs(vcpu, &vcpu->run->s.regs.regs); 12601 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 12602 } 12603 12604 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 12605 struct kvm_sregs sregs = vcpu->run->s.regs.sregs; 12606 12607 if (__set_sregs(vcpu, &sregs)) 12608 return -EINVAL; 12609 12610 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 12611 } 12612 12613 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 12614 struct kvm_vcpu_events events = vcpu->run->s.regs.events; 12615 12616 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events)) 12617 return -EINVAL; 12618 12619 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 12620 } 12621 12622 return 0; 12623 } 12624 12625 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 12626 { 12627 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 12628 pr_warn_once("SMP vm created on host with unstable TSC; " 12629 "guest TSC will not be reliable\n"); 12630 12631 if (!kvm->arch.max_vcpu_ids) 12632 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 12633 12634 if (id >= kvm->arch.max_vcpu_ids) 12635 return -EINVAL; 12636 12637 return kvm_x86_call(vcpu_precreate)(kvm); 12638 } 12639 12640 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 12641 { 12642 struct page *page; 12643 int r; 12644 12645 vcpu->arch.last_vmentry_cpu = -1; 12646 vcpu->arch.regs_avail = ~0; 12647 vcpu->arch.regs_dirty = ~0; 12648 12649 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm); 12650 12651 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 12652 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 12653 else 12654 kvm_set_mp_state(vcpu, KVM_MP_STATE_UNINITIALIZED); 12655 12656 r = kvm_mmu_create(vcpu); 12657 if (r < 0) 12658 return r; 12659 12660 r = kvm_create_lapic(vcpu); 12661 if (r < 0) 12662 goto fail_mmu_destroy; 12663 12664 r = -ENOMEM; 12665 12666 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 12667 if (!page) 12668 goto fail_free_lapic; 12669 vcpu->arch.pio_data = page_address(page); 12670 12671 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 12672 GFP_KERNEL_ACCOUNT); 12673 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 12674 GFP_KERNEL_ACCOUNT); 12675 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 12676 goto fail_free_mce_banks; 12677 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 12678 12679 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 12680 GFP_KERNEL_ACCOUNT)) 12681 goto fail_free_mce_banks; 12682 12683 if (!alloc_emulate_ctxt(vcpu)) 12684 goto free_wbinvd_dirty_mask; 12685 12686 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 12687 pr_err("failed to allocate vcpu's fpu\n"); 12688 goto free_emulate_ctxt; 12689 } 12690 12691 kvm_async_pf_hash_reset(vcpu); 12692 12693 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) { 12694 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 12695 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 12696 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 12697 } 12698 kvm_pmu_init(vcpu); 12699 12700 vcpu->arch.pending_external_vector = -1; 12701 vcpu->arch.preempted_in_kernel = false; 12702 12703 #if IS_ENABLED(CONFIG_HYPERV) 12704 vcpu->arch.hv_root_tdp = INVALID_PAGE; 12705 #endif 12706 12707 r = kvm_x86_call(vcpu_create)(vcpu); 12708 if (r) 12709 goto free_guest_fpu; 12710 12711 kvm_xen_init_vcpu(vcpu); 12712 vcpu_load(vcpu); 12713 kvm_vcpu_after_set_cpuid(vcpu); 12714 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 12715 kvm_vcpu_reset(vcpu, false); 12716 kvm_init_mmu(vcpu); 12717 vcpu_put(vcpu); 12718 return 0; 12719 12720 free_guest_fpu: 12721 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 12722 free_emulate_ctxt: 12723 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 12724 free_wbinvd_dirty_mask: 12725 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 12726 fail_free_mce_banks: 12727 kfree(vcpu->arch.mce_banks); 12728 kfree(vcpu->arch.mci_ctl2_banks); 12729 free_page((unsigned long)vcpu->arch.pio_data); 12730 fail_free_lapic: 12731 kvm_free_lapic(vcpu); 12732 fail_mmu_destroy: 12733 kvm_mmu_destroy(vcpu); 12734 return r; 12735 } 12736 12737 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 12738 { 12739 struct kvm *kvm = vcpu->kvm; 12740 12741 if (mutex_lock_killable(&vcpu->mutex)) 12742 return; 12743 vcpu_load(vcpu); 12744 kvm_synchronize_tsc(vcpu, NULL); 12745 vcpu_put(vcpu); 12746 12747 /* poll control enabled by default */ 12748 vcpu->arch.msr_kvm_poll_control = 1; 12749 12750 mutex_unlock(&vcpu->mutex); 12751 12752 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 12753 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 12754 KVMCLOCK_SYNC_PERIOD); 12755 } 12756 12757 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 12758 { 12759 int idx, cpu; 12760 12761 kvm_clear_async_pf_completion_queue(vcpu); 12762 kvm_mmu_unload(vcpu); 12763 12764 kvmclock_reset(vcpu); 12765 12766 for_each_possible_cpu(cpu) 12767 cmpxchg(per_cpu_ptr(&last_vcpu, cpu), vcpu, NULL); 12768 12769 kvm_x86_call(vcpu_free)(vcpu); 12770 12771 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 12772 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 12773 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 12774 12775 kvm_xen_destroy_vcpu(vcpu); 12776 kvm_hv_vcpu_uninit(vcpu); 12777 kvm_pmu_destroy(vcpu); 12778 kfree(vcpu->arch.mce_banks); 12779 kfree(vcpu->arch.mci_ctl2_banks); 12780 kvm_free_lapic(vcpu); 12781 idx = srcu_read_lock(&vcpu->kvm->srcu); 12782 kvm_mmu_destroy(vcpu); 12783 srcu_read_unlock(&vcpu->kvm->srcu, idx); 12784 free_page((unsigned long)vcpu->arch.pio_data); 12785 kvfree(vcpu->arch.cpuid_entries); 12786 } 12787 12788 static void kvm_xstate_reset(struct kvm_vcpu *vcpu, bool init_event) 12789 { 12790 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 12791 u64 xfeatures_mask; 12792 int i; 12793 12794 /* 12795 * Guest FPU state is zero allocated and so doesn't need to be manually 12796 * cleared on RESET, i.e. during vCPU creation. 12797 */ 12798 if (!init_event || !fpstate) 12799 return; 12800 12801 /* 12802 * On INIT, only select XSTATE components are zeroed, most components 12803 * are unchanged. Currently, the only components that are zeroed and 12804 * supported by KVM are MPX and CET related. 12805 */ 12806 xfeatures_mask = (kvm_caps.supported_xcr0 | kvm_caps.supported_xss) & 12807 (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR | 12808 XFEATURE_MASK_CET_ALL); 12809 if (!xfeatures_mask) 12810 return; 12811 12812 BUILD_BUG_ON(sizeof(xfeatures_mask) * BITS_PER_BYTE <= XFEATURE_MAX); 12813 12814 /* 12815 * All paths that lead to INIT are required to load the guest's FPU 12816 * state (because most paths are buried in KVM_RUN). 12817 */ 12818 kvm_put_guest_fpu(vcpu); 12819 for_each_set_bit(i, (unsigned long *)&xfeatures_mask, XFEATURE_MAX) 12820 fpstate_clear_xstate_component(fpstate, i); 12821 kvm_load_guest_fpu(vcpu); 12822 } 12823 12824 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 12825 { 12826 struct kvm_cpuid_entry2 *cpuid_0x1; 12827 unsigned long old_cr0 = kvm_read_cr0(vcpu); 12828 unsigned long new_cr0; 12829 12830 /* 12831 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 12832 * to handle side effects. RESET emulation hits those flows and relies 12833 * on emulated/virtualized registers, including those that are loaded 12834 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 12835 * to detect improper or missing initialization. 12836 */ 12837 WARN_ON_ONCE(!init_event && 12838 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 12839 12840 /* 12841 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 12842 * possible to INIT the vCPU while L2 is active. Force the vCPU back 12843 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 12844 * bits), i.e. virtualization is disabled. 12845 */ 12846 if (is_guest_mode(vcpu)) 12847 kvm_leave_nested(vcpu); 12848 12849 kvm_lapic_reset(vcpu, init_event); 12850 12851 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 12852 vcpu->arch.hflags = 0; 12853 12854 vcpu->arch.smi_pending = 0; 12855 vcpu->arch.smi_count = 0; 12856 atomic_set(&vcpu->arch.nmi_queued, 0); 12857 vcpu->arch.nmi_pending = 0; 12858 vcpu->arch.nmi_injected = false; 12859 kvm_clear_interrupt_queue(vcpu); 12860 kvm_clear_exception_queue(vcpu); 12861 12862 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 12863 kvm_update_dr0123(vcpu); 12864 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 12865 vcpu->arch.dr7 = DR7_FIXED_1; 12866 kvm_update_dr7(vcpu); 12867 12868 vcpu->arch.cr2 = 0; 12869 12870 kvm_make_request(KVM_REQ_EVENT, vcpu); 12871 vcpu->arch.apf.msr_en_val = 0; 12872 vcpu->arch.apf.msr_int_val = 0; 12873 vcpu->arch.st.msr_val = 0; 12874 12875 kvmclock_reset(vcpu); 12876 12877 kvm_clear_async_pf_completion_queue(vcpu); 12878 kvm_async_pf_hash_reset(vcpu); 12879 vcpu->arch.apf.halted = false; 12880 12881 kvm_xstate_reset(vcpu, init_event); 12882 12883 if (!init_event) { 12884 vcpu->arch.smbase = 0x30000; 12885 12886 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 12887 12888 vcpu->arch.msr_misc_features_enables = 0; 12889 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 12890 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 12891 12892 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 12893 kvm_msr_write(vcpu, MSR_IA32_XSS, 0); 12894 } 12895 12896 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 12897 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 12898 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 12899 12900 /* 12901 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 12902 * if no CPUID match is found. Note, it's impossible to get a match at 12903 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 12904 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 12905 * on RESET. But, go through the motions in case that's ever remedied. 12906 */ 12907 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 12908 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 12909 12910 kvm_x86_call(vcpu_reset)(vcpu, init_event); 12911 12912 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 12913 kvm_rip_write(vcpu, 0xfff0); 12914 12915 vcpu->arch.cr3 = 0; 12916 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 12917 12918 /* 12919 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 12920 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 12921 * (or qualify) that with a footnote stating that CD/NW are preserved. 12922 */ 12923 new_cr0 = X86_CR0_ET; 12924 if (init_event) 12925 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 12926 else 12927 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 12928 12929 kvm_x86_call(set_cr0)(vcpu, new_cr0); 12930 kvm_x86_call(set_cr4)(vcpu, 0); 12931 kvm_x86_call(set_efer)(vcpu, 0); 12932 kvm_x86_call(update_exception_bitmap)(vcpu); 12933 12934 /* 12935 * On the standard CR0/CR4/EFER modification paths, there are several 12936 * complex conditions determining whether the MMU has to be reset and/or 12937 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 12938 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 12939 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 12940 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 12941 */ 12942 if (old_cr0 & X86_CR0_PG) { 12943 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12944 kvm_mmu_reset_context(vcpu); 12945 } 12946 12947 /* 12948 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 12949 * APM states the TLBs are untouched by INIT, but it also states that 12950 * the TLBs are flushed on "External initialization of the processor." 12951 * Flush the guest TLB regardless of vendor, there is no meaningful 12952 * benefit in relying on the guest to flush the TLB immediately after 12953 * INIT. A spurious TLB flush is benign and likely negligible from a 12954 * performance perspective. 12955 */ 12956 if (init_event) 12957 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12958 } 12959 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_reset); 12960 12961 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 12962 { 12963 struct kvm_segment cs; 12964 12965 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 12966 cs.selector = vector << 8; 12967 cs.base = vector << 12; 12968 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 12969 kvm_rip_write(vcpu, 0); 12970 } 12971 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_deliver_sipi_vector); 12972 12973 void kvm_arch_enable_virtualization(void) 12974 { 12975 cpu_emergency_register_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu); 12976 } 12977 12978 void kvm_arch_disable_virtualization(void) 12979 { 12980 cpu_emergency_unregister_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu); 12981 } 12982 12983 int kvm_arch_enable_virtualization_cpu(void) 12984 { 12985 struct kvm *kvm; 12986 struct kvm_vcpu *vcpu; 12987 unsigned long i; 12988 int ret; 12989 u64 local_tsc; 12990 u64 max_tsc = 0; 12991 bool stable, backwards_tsc = false; 12992 12993 kvm_user_return_msr_cpu_online(); 12994 12995 ret = kvm_x86_check_processor_compatibility(); 12996 if (ret) 12997 return ret; 12998 12999 ret = kvm_x86_call(enable_virtualization_cpu)(); 13000 if (ret != 0) 13001 return ret; 13002 13003 local_tsc = rdtsc(); 13004 stable = !kvm_check_tsc_unstable(); 13005 list_for_each_entry(kvm, &vm_list, vm_list) { 13006 kvm_for_each_vcpu(i, vcpu, kvm) { 13007 if (!stable && vcpu->cpu == smp_processor_id()) 13008 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 13009 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 13010 backwards_tsc = true; 13011 if (vcpu->arch.last_host_tsc > max_tsc) 13012 max_tsc = vcpu->arch.last_host_tsc; 13013 } 13014 } 13015 } 13016 13017 /* 13018 * Sometimes, even reliable TSCs go backwards. This happens on 13019 * platforms that reset TSC during suspend or hibernate actions, but 13020 * maintain synchronization. We must compensate. Fortunately, we can 13021 * detect that condition here, which happens early in CPU bringup, 13022 * before any KVM threads can be running. Unfortunately, we can't 13023 * bring the TSCs fully up to date with real time, as we aren't yet far 13024 * enough into CPU bringup that we know how much real time has actually 13025 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 13026 * variables that haven't been updated yet. 13027 * 13028 * So we simply find the maximum observed TSC above, then record the 13029 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 13030 * the adjustment will be applied. Note that we accumulate 13031 * adjustments, in case multiple suspend cycles happen before some VCPU 13032 * gets a chance to run again. In the event that no KVM threads get a 13033 * chance to run, we will miss the entire elapsed period, as we'll have 13034 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 13035 * loose cycle time. This isn't too big a deal, since the loss will be 13036 * uniform across all VCPUs (not to mention the scenario is extremely 13037 * unlikely). It is possible that a second hibernate recovery happens 13038 * much faster than a first, causing the observed TSC here to be 13039 * smaller; this would require additional padding adjustment, which is 13040 * why we set last_host_tsc to the local tsc observed here. 13041 * 13042 * N.B. - this code below runs only on platforms with reliable TSC, 13043 * as that is the only way backwards_tsc is set above. Also note 13044 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 13045 * have the same delta_cyc adjustment applied if backwards_tsc 13046 * is detected. Note further, this adjustment is only done once, 13047 * as we reset last_host_tsc on all VCPUs to stop this from being 13048 * called multiple times (one for each physical CPU bringup). 13049 * 13050 * Platforms with unreliable TSCs don't have to deal with this, they 13051 * will be compensated by the logic in vcpu_load, which sets the TSC to 13052 * catchup mode. This will catchup all VCPUs to real time, but cannot 13053 * guarantee that they stay in perfect synchronization. 13054 */ 13055 if (backwards_tsc) { 13056 u64 delta_cyc = max_tsc - local_tsc; 13057 list_for_each_entry(kvm, &vm_list, vm_list) { 13058 kvm->arch.backwards_tsc_observed = true; 13059 kvm_for_each_vcpu(i, vcpu, kvm) { 13060 vcpu->arch.tsc_offset_adjustment += delta_cyc; 13061 vcpu->arch.last_host_tsc = local_tsc; 13062 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 13063 } 13064 13065 /* 13066 * We have to disable TSC offset matching.. if you were 13067 * booting a VM while issuing an S4 host suspend.... 13068 * you may have some problem. Solving this issue is 13069 * left as an exercise to the reader. 13070 */ 13071 kvm->arch.last_tsc_nsec = 0; 13072 kvm->arch.last_tsc_write = 0; 13073 } 13074 13075 } 13076 return 0; 13077 } 13078 13079 void kvm_arch_disable_virtualization_cpu(void) 13080 { 13081 kvm_x86_call(disable_virtualization_cpu)(); 13082 drop_user_return_notifiers(); 13083 } 13084 13085 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 13086 { 13087 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 13088 } 13089 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_is_reset_bsp); 13090 13091 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 13092 { 13093 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 13094 } 13095 13096 void kvm_arch_free_vm(struct kvm *kvm) 13097 { 13098 #if IS_ENABLED(CONFIG_HYPERV) 13099 kfree(kvm->arch.hv_pa_pg); 13100 #endif 13101 __kvm_arch_free_vm(kvm); 13102 } 13103 13104 13105 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 13106 { 13107 int ret; 13108 unsigned long flags; 13109 13110 if (!kvm_is_vm_type_supported(type)) 13111 return -EINVAL; 13112 13113 kvm->arch.vm_type = type; 13114 kvm->arch.has_private_mem = 13115 (type == KVM_X86_SW_PROTECTED_VM); 13116 /* Decided by the vendor code for other VM types. */ 13117 kvm->arch.pre_fault_allowed = 13118 type == KVM_X86_DEFAULT_VM || type == KVM_X86_SW_PROTECTED_VM; 13119 kvm->arch.disabled_quirks = kvm_caps.inapplicable_quirks & kvm_caps.supported_quirks; 13120 13121 ret = kvm_page_track_init(kvm); 13122 if (ret) 13123 goto out; 13124 13125 ret = kvm_mmu_init_vm(kvm); 13126 if (ret) 13127 goto out_cleanup_page_track; 13128 13129 ret = kvm_x86_call(vm_init)(kvm); 13130 if (ret) 13131 goto out_uninit_mmu; 13132 13133 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 13134 13135 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 13136 mutex_init(&kvm->arch.apic_map_lock); 13137 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 13138 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 13139 13140 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 13141 pvclock_update_vm_gtod_copy(kvm); 13142 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 13143 13144 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 13145 kvm->arch.apic_bus_cycle_ns = APIC_BUS_CYCLE_NS_DEFAULT; 13146 kvm->arch.guest_can_read_msr_platform_info = true; 13147 kvm->arch.enable_pmu = enable_pmu; 13148 13149 #if IS_ENABLED(CONFIG_HYPERV) 13150 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 13151 kvm->arch.hv_root_tdp = INVALID_PAGE; 13152 #endif 13153 13154 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 13155 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 13156 13157 kvm_apicv_init(kvm); 13158 kvm_hv_init_vm(kvm); 13159 kvm_xen_init_vm(kvm); 13160 13161 if (ignore_msrs && !report_ignored_msrs) { 13162 pr_warn_once("Running KVM with ignore_msrs=1 and report_ignored_msrs=0 is not a\n" 13163 "a supported configuration. Lying to the guest about the existence of MSRs\n" 13164 "may cause the guest operating system to hang or produce errors. If a guest\n" 13165 "does not run without ignore_msrs=1, please report it to kvm@vger.kernel.org.\n"); 13166 } 13167 13168 once_init(&kvm->arch.nx_once); 13169 return 0; 13170 13171 out_uninit_mmu: 13172 kvm_mmu_uninit_vm(kvm); 13173 out_cleanup_page_track: 13174 kvm_page_track_cleanup(kvm); 13175 out: 13176 return ret; 13177 } 13178 13179 /** 13180 * __x86_set_memory_region: Setup KVM internal memory slot 13181 * 13182 * @kvm: the kvm pointer to the VM. 13183 * @id: the slot ID to setup. 13184 * @gpa: the GPA to install the slot (unused when @size == 0). 13185 * @size: the size of the slot. Set to zero to uninstall a slot. 13186 * 13187 * This function helps to setup a KVM internal memory slot. Specify 13188 * @size > 0 to install a new slot, while @size == 0 to uninstall a 13189 * slot. The return code can be one of the following: 13190 * 13191 * HVA: on success (uninstall will return a bogus HVA) 13192 * -errno: on error 13193 * 13194 * The caller should always use IS_ERR() to check the return value 13195 * before use. Note, the KVM internal memory slots are guaranteed to 13196 * remain valid and unchanged until the VM is destroyed, i.e., the 13197 * GPA->HVA translation will not change. However, the HVA is a user 13198 * address, i.e. its accessibility is not guaranteed, and must be 13199 * accessed via __copy_{to,from}_user(). 13200 */ 13201 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 13202 u32 size) 13203 { 13204 int i, r; 13205 unsigned long hva, old_npages; 13206 struct kvm_memslots *slots = kvm_memslots(kvm); 13207 struct kvm_memory_slot *slot; 13208 13209 lockdep_assert_held(&kvm->slots_lock); 13210 13211 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 13212 return ERR_PTR_USR(-EINVAL); 13213 13214 slot = id_to_memslot(slots, id); 13215 if (size) { 13216 if (slot && slot->npages) 13217 return ERR_PTR_USR(-EEXIST); 13218 13219 /* 13220 * MAP_SHARED to prevent internal slot pages from being moved 13221 * by fork()/COW. 13222 */ 13223 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 13224 MAP_SHARED | MAP_ANONYMOUS, 0); 13225 if (IS_ERR_VALUE(hva)) 13226 return (void __user *)hva; 13227 } else { 13228 if (!slot || !slot->npages) 13229 return NULL; 13230 13231 old_npages = slot->npages; 13232 hva = slot->userspace_addr; 13233 } 13234 13235 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 13236 struct kvm_userspace_memory_region2 m; 13237 13238 m.slot = id | (i << 16); 13239 m.flags = 0; 13240 m.guest_phys_addr = gpa; 13241 m.userspace_addr = hva; 13242 m.memory_size = size; 13243 r = kvm_set_internal_memslot(kvm, &m); 13244 if (r < 0) 13245 return ERR_PTR_USR(r); 13246 } 13247 13248 if (!size) 13249 vm_munmap(hva, old_npages * PAGE_SIZE); 13250 13251 return (void __user *)hva; 13252 } 13253 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__x86_set_memory_region); 13254 13255 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 13256 { 13257 /* 13258 * Stop all background workers and kthreads before destroying vCPUs, as 13259 * iterating over vCPUs in a different task while vCPUs are being freed 13260 * is unsafe, i.e. will lead to use-after-free. The PIT also needs to 13261 * be stopped before IRQ routing is freed. 13262 */ 13263 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 13264 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 13265 13266 #ifdef CONFIG_KVM_IOAPIC 13267 kvm_free_pit(kvm); 13268 #endif 13269 13270 kvm_mmu_pre_destroy_vm(kvm); 13271 static_call_cond(kvm_x86_vm_pre_destroy)(kvm); 13272 } 13273 13274 void kvm_arch_destroy_vm(struct kvm *kvm) 13275 { 13276 if (current->mm == kvm->mm) { 13277 /* 13278 * Free memory regions allocated on behalf of userspace, 13279 * unless the memory map has changed due to process exit 13280 * or fd copying. 13281 */ 13282 mutex_lock(&kvm->slots_lock); 13283 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 13284 0, 0); 13285 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 13286 0, 0); 13287 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 13288 mutex_unlock(&kvm->slots_lock); 13289 } 13290 kvm_destroy_vcpus(kvm); 13291 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 13292 #ifdef CONFIG_KVM_IOAPIC 13293 kvm_pic_destroy(kvm); 13294 kvm_ioapic_destroy(kvm); 13295 #endif 13296 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 13297 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 13298 kvm_mmu_uninit_vm(kvm); 13299 kvm_page_track_cleanup(kvm); 13300 kvm_xen_destroy_vm(kvm); 13301 kvm_hv_destroy_vm(kvm); 13302 kvm_x86_call(vm_destroy)(kvm); 13303 } 13304 13305 static void memslot_rmap_free(struct kvm_memory_slot *slot) 13306 { 13307 int i; 13308 13309 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 13310 vfree(slot->arch.rmap[i]); 13311 slot->arch.rmap[i] = NULL; 13312 } 13313 } 13314 13315 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 13316 { 13317 int i; 13318 13319 memslot_rmap_free(slot); 13320 13321 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 13322 vfree(slot->arch.lpage_info[i - 1]); 13323 slot->arch.lpage_info[i - 1] = NULL; 13324 } 13325 13326 kvm_page_track_free_memslot(slot); 13327 } 13328 13329 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 13330 { 13331 const int sz = sizeof(*slot->arch.rmap[0]); 13332 int i; 13333 13334 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 13335 int level = i + 1; 13336 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 13337 13338 if (slot->arch.rmap[i]) 13339 continue; 13340 13341 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 13342 if (!slot->arch.rmap[i]) { 13343 memslot_rmap_free(slot); 13344 return -ENOMEM; 13345 } 13346 } 13347 13348 return 0; 13349 } 13350 13351 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 13352 struct kvm_memory_slot *slot) 13353 { 13354 unsigned long npages = slot->npages; 13355 int i, r; 13356 13357 /* 13358 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 13359 * old arrays will be freed by kvm_set_memory_region() if installing 13360 * the new memslot is successful. 13361 */ 13362 memset(&slot->arch, 0, sizeof(slot->arch)); 13363 13364 if (kvm_memslots_have_rmaps(kvm)) { 13365 r = memslot_rmap_alloc(slot, npages); 13366 if (r) 13367 return r; 13368 } 13369 13370 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 13371 struct kvm_lpage_info *linfo; 13372 unsigned long ugfn; 13373 int lpages; 13374 int level = i + 1; 13375 13376 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 13377 13378 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 13379 if (!linfo) 13380 goto out_free; 13381 13382 slot->arch.lpage_info[i - 1] = linfo; 13383 13384 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 13385 linfo[0].disallow_lpage = 1; 13386 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 13387 linfo[lpages - 1].disallow_lpage = 1; 13388 ugfn = slot->userspace_addr >> PAGE_SHIFT; 13389 /* 13390 * If the gfn and userspace address are not aligned wrt each 13391 * other, disable large page support for this slot. 13392 */ 13393 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 13394 unsigned long j; 13395 13396 for (j = 0; j < lpages; ++j) 13397 linfo[j].disallow_lpage = 1; 13398 } 13399 } 13400 13401 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 13402 kvm_mmu_init_memslot_memory_attributes(kvm, slot); 13403 #endif 13404 13405 if (kvm_page_track_create_memslot(kvm, slot, npages)) 13406 goto out_free; 13407 13408 return 0; 13409 13410 out_free: 13411 memslot_rmap_free(slot); 13412 13413 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 13414 vfree(slot->arch.lpage_info[i - 1]); 13415 slot->arch.lpage_info[i - 1] = NULL; 13416 } 13417 return -ENOMEM; 13418 } 13419 13420 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 13421 { 13422 struct kvm_vcpu *vcpu; 13423 unsigned long i; 13424 13425 /* 13426 * memslots->generation has been incremented. 13427 * mmio generation may have reached its maximum value. 13428 */ 13429 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 13430 13431 /* Force re-initialization of steal_time cache */ 13432 kvm_for_each_vcpu(i, vcpu, kvm) 13433 kvm_vcpu_kick(vcpu); 13434 } 13435 13436 int kvm_arch_prepare_memory_region(struct kvm *kvm, 13437 const struct kvm_memory_slot *old, 13438 struct kvm_memory_slot *new, 13439 enum kvm_mr_change change) 13440 { 13441 /* 13442 * KVM doesn't support moving memslots when there are external page 13443 * trackers attached to the VM, i.e. if KVMGT is in use. 13444 */ 13445 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm)) 13446 return -EINVAL; 13447 13448 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 13449 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 13450 return -EINVAL; 13451 13452 if (kvm_is_gfn_alias(kvm, new->base_gfn + new->npages - 1)) 13453 return -EINVAL; 13454 13455 return kvm_alloc_memslot_metadata(kvm, new); 13456 } 13457 13458 if (change == KVM_MR_FLAGS_ONLY) 13459 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 13460 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 13461 return -EIO; 13462 13463 return 0; 13464 } 13465 13466 13467 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 13468 { 13469 int nr_slots; 13470 13471 if (!kvm->arch.cpu_dirty_log_size) 13472 return; 13473 13474 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging); 13475 if ((enable && nr_slots == 1) || !nr_slots) 13476 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 13477 } 13478 13479 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 13480 struct kvm_memory_slot *old, 13481 const struct kvm_memory_slot *new, 13482 enum kvm_mr_change change) 13483 { 13484 u32 old_flags = old ? old->flags : 0; 13485 u32 new_flags = new ? new->flags : 0; 13486 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 13487 13488 /* 13489 * Update CPU dirty logging if dirty logging is being toggled. This 13490 * applies to all operations. 13491 */ 13492 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 13493 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 13494 13495 /* 13496 * Nothing more to do for RO slots (which can't be dirtied and can't be 13497 * made writable) or CREATE/MOVE/DELETE of a slot. 13498 * 13499 * For a memslot with dirty logging disabled: 13500 * CREATE: No dirty mappings will already exist. 13501 * MOVE/DELETE: The old mappings will already have been cleaned up by 13502 * kvm_arch_flush_shadow_memslot() 13503 * 13504 * For a memslot with dirty logging enabled: 13505 * CREATE: No shadow pages exist, thus nothing to write-protect 13506 * and no dirty bits to clear. 13507 * MOVE/DELETE: The old mappings will already have been cleaned up by 13508 * kvm_arch_flush_shadow_memslot(). 13509 */ 13510 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 13511 return; 13512 13513 /* 13514 * READONLY and non-flags changes were filtered out above, and the only 13515 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 13516 * logging isn't being toggled on or off. 13517 */ 13518 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 13519 return; 13520 13521 if (!log_dirty_pages) { 13522 /* 13523 * Recover huge page mappings in the slot now that dirty logging 13524 * is disabled, i.e. now that KVM does not have to track guest 13525 * writes at 4KiB granularity. 13526 * 13527 * Dirty logging might be disabled by userspace if an ongoing VM 13528 * live migration is cancelled and the VM must continue running 13529 * on the source. 13530 */ 13531 kvm_mmu_recover_huge_pages(kvm, new); 13532 } else { 13533 /* 13534 * Initially-all-set does not require write protecting any page, 13535 * because they're all assumed to be dirty. 13536 */ 13537 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 13538 return; 13539 13540 if (READ_ONCE(eager_page_split)) 13541 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 13542 13543 if (kvm->arch.cpu_dirty_log_size) { 13544 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 13545 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 13546 } else { 13547 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 13548 } 13549 13550 /* 13551 * Unconditionally flush the TLBs after enabling dirty logging. 13552 * A flush is almost always going to be necessary (see below), 13553 * and unconditionally flushing allows the helpers to omit 13554 * the subtly complex checks when removing write access. 13555 * 13556 * Do the flush outside of mmu_lock to reduce the amount of 13557 * time mmu_lock is held. Flushing after dropping mmu_lock is 13558 * safe as KVM only needs to guarantee the slot is fully 13559 * write-protected before returning to userspace, i.e. before 13560 * userspace can consume the dirty status. 13561 * 13562 * Flushing outside of mmu_lock requires KVM to be careful when 13563 * making decisions based on writable status of an SPTE, e.g. a 13564 * !writable SPTE doesn't guarantee a CPU can't perform writes. 13565 * 13566 * Specifically, KVM also write-protects guest page tables to 13567 * monitor changes when using shadow paging, and must guarantee 13568 * no CPUs can write to those page before mmu_lock is dropped. 13569 * Because CPUs may have stale TLB entries at this point, a 13570 * !writable SPTE doesn't guarantee CPUs can't perform writes. 13571 * 13572 * KVM also allows making SPTES writable outside of mmu_lock, 13573 * e.g. to allow dirty logging without taking mmu_lock. 13574 * 13575 * To handle these scenarios, KVM uses a separate software-only 13576 * bit (MMU-writable) to track if a SPTE is !writable due to 13577 * a guest page table being write-protected (KVM clears the 13578 * MMU-writable flag when write-protecting for shadow paging). 13579 * 13580 * The use of MMU-writable is also the primary motivation for 13581 * the unconditional flush. Because KVM must guarantee that a 13582 * CPU doesn't contain stale, writable TLB entries for a 13583 * !MMU-writable SPTE, KVM must flush if it encounters any 13584 * MMU-writable SPTE regardless of whether the actual hardware 13585 * writable bit was set. I.e. KVM is almost guaranteed to need 13586 * to flush, while unconditionally flushing allows the "remove 13587 * write access" helpers to ignore MMU-writable entirely. 13588 * 13589 * See is_writable_pte() for more details (the case involving 13590 * access-tracked SPTEs is particularly relevant). 13591 */ 13592 kvm_flush_remote_tlbs_memslot(kvm, new); 13593 } 13594 } 13595 13596 void kvm_arch_commit_memory_region(struct kvm *kvm, 13597 struct kvm_memory_slot *old, 13598 const struct kvm_memory_slot *new, 13599 enum kvm_mr_change change) 13600 { 13601 if (change == KVM_MR_DELETE) 13602 kvm_page_track_delete_slot(kvm, old); 13603 13604 if (!kvm->arch.n_requested_mmu_pages && 13605 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 13606 unsigned long nr_mmu_pages; 13607 13608 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 13609 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 13610 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 13611 } 13612 13613 kvm_mmu_slot_apply_flags(kvm, old, new, change); 13614 13615 /* Free the arrays associated with the old memslot. */ 13616 if (change == KVM_MR_MOVE) 13617 kvm_arch_free_memslot(kvm, old); 13618 } 13619 13620 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 13621 { 13622 WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)); 13623 13624 if (vcpu->arch.guest_state_protected) 13625 return true; 13626 13627 return kvm_x86_call(get_cpl)(vcpu) == 0; 13628 } 13629 13630 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 13631 { 13632 WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)); 13633 13634 if (vcpu->arch.guest_state_protected) 13635 return 0; 13636 13637 return kvm_rip_read(vcpu); 13638 } 13639 13640 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 13641 { 13642 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 13643 } 13644 13645 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 13646 { 13647 return kvm_x86_call(interrupt_allowed)(vcpu, false); 13648 } 13649 13650 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 13651 { 13652 /* Can't read the RIP when guest state is protected, just return 0 */ 13653 if (vcpu->arch.guest_state_protected) 13654 return 0; 13655 13656 if (is_64_bit_mode(vcpu)) 13657 return kvm_rip_read(vcpu); 13658 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 13659 kvm_rip_read(vcpu)); 13660 } 13661 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_linear_rip); 13662 13663 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 13664 { 13665 return kvm_get_linear_rip(vcpu) == linear_rip; 13666 } 13667 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_is_linear_rip); 13668 13669 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 13670 { 13671 unsigned long rflags; 13672 13673 rflags = kvm_x86_call(get_rflags)(vcpu); 13674 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 13675 rflags &= ~X86_EFLAGS_TF; 13676 return rflags; 13677 } 13678 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_rflags); 13679 13680 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13681 { 13682 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 13683 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 13684 rflags |= X86_EFLAGS_TF; 13685 kvm_x86_call(set_rflags)(vcpu, rflags); 13686 } 13687 13688 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13689 { 13690 __kvm_set_rflags(vcpu, rflags); 13691 kvm_make_request(KVM_REQ_EVENT, vcpu); 13692 } 13693 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_rflags); 13694 13695 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 13696 { 13697 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 13698 13699 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 13700 } 13701 13702 static inline u32 kvm_async_pf_next_probe(u32 key) 13703 { 13704 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 13705 } 13706 13707 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13708 { 13709 u32 key = kvm_async_pf_hash_fn(gfn); 13710 13711 while (vcpu->arch.apf.gfns[key] != ~0) 13712 key = kvm_async_pf_next_probe(key); 13713 13714 vcpu->arch.apf.gfns[key] = gfn; 13715 } 13716 13717 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 13718 { 13719 int i; 13720 u32 key = kvm_async_pf_hash_fn(gfn); 13721 13722 for (i = 0; i < ASYNC_PF_PER_VCPU && 13723 (vcpu->arch.apf.gfns[key] != gfn && 13724 vcpu->arch.apf.gfns[key] != ~0); i++) 13725 key = kvm_async_pf_next_probe(key); 13726 13727 return key; 13728 } 13729 13730 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13731 { 13732 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 13733 } 13734 13735 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13736 { 13737 u32 i, j, k; 13738 13739 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 13740 13741 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 13742 return; 13743 13744 while (true) { 13745 vcpu->arch.apf.gfns[i] = ~0; 13746 do { 13747 j = kvm_async_pf_next_probe(j); 13748 if (vcpu->arch.apf.gfns[j] == ~0) 13749 return; 13750 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 13751 /* 13752 * k lies cyclically in ]i,j] 13753 * | i.k.j | 13754 * |....j i.k.| or |.k..j i...| 13755 */ 13756 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 13757 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 13758 i = j; 13759 } 13760 } 13761 13762 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 13763 { 13764 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 13765 13766 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 13767 sizeof(reason)); 13768 } 13769 13770 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 13771 { 13772 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13773 13774 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13775 &token, offset, sizeof(token)); 13776 } 13777 13778 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 13779 { 13780 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13781 u32 val; 13782 13783 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13784 &val, offset, sizeof(val))) 13785 return false; 13786 13787 return !val; 13788 } 13789 13790 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 13791 { 13792 13793 if (!kvm_pv_async_pf_enabled(vcpu)) 13794 return false; 13795 13796 if (!vcpu->arch.apf.send_always && 13797 (vcpu->arch.guest_state_protected || !kvm_x86_call(get_cpl)(vcpu))) 13798 return false; 13799 13800 if (is_guest_mode(vcpu)) { 13801 /* 13802 * L1 needs to opt into the special #PF vmexits that are 13803 * used to deliver async page faults. 13804 */ 13805 return vcpu->arch.apf.delivery_as_pf_vmexit; 13806 } else { 13807 /* 13808 * Play it safe in case the guest temporarily disables paging. 13809 * The real mode IDT in particular is unlikely to have a #PF 13810 * exception setup. 13811 */ 13812 return is_paging(vcpu); 13813 } 13814 } 13815 13816 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 13817 { 13818 if (unlikely(!lapic_in_kernel(vcpu) || 13819 kvm_event_needs_reinjection(vcpu) || 13820 kvm_is_exception_pending(vcpu))) 13821 return false; 13822 13823 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 13824 return false; 13825 13826 /* 13827 * If interrupts are off we cannot even use an artificial 13828 * halt state. 13829 */ 13830 return kvm_arch_interrupt_allowed(vcpu); 13831 } 13832 13833 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 13834 struct kvm_async_pf *work) 13835 { 13836 struct x86_exception fault; 13837 13838 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 13839 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 13840 13841 if (kvm_can_deliver_async_pf(vcpu) && 13842 !apf_put_user_notpresent(vcpu)) { 13843 fault.vector = PF_VECTOR; 13844 fault.error_code_valid = true; 13845 fault.error_code = 0; 13846 fault.nested_page_fault = false; 13847 fault.address = work->arch.token; 13848 fault.async_page_fault = true; 13849 kvm_inject_page_fault(vcpu, &fault); 13850 return true; 13851 } else { 13852 /* 13853 * It is not possible to deliver a paravirtualized asynchronous 13854 * page fault, but putting the guest in an artificial halt state 13855 * can be beneficial nevertheless: if an interrupt arrives, we 13856 * can deliver it timely and perhaps the guest will schedule 13857 * another process. When the instruction that triggered a page 13858 * fault is retried, hopefully the page will be ready in the host. 13859 */ 13860 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 13861 return false; 13862 } 13863 } 13864 13865 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 13866 struct kvm_async_pf *work) 13867 { 13868 struct kvm_lapic_irq irq = { 13869 .delivery_mode = APIC_DM_FIXED, 13870 .vector = vcpu->arch.apf.vec 13871 }; 13872 13873 if (work->wakeup_all) 13874 work->arch.token = ~0; /* broadcast wakeup */ 13875 else 13876 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 13877 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 13878 13879 if ((work->wakeup_all || work->notpresent_injected) && 13880 kvm_pv_async_pf_enabled(vcpu) && 13881 !apf_put_user_ready(vcpu, work->arch.token)) { 13882 vcpu->arch.apf.pageready_pending = true; 13883 kvm_apic_set_irq(vcpu, &irq, NULL); 13884 } 13885 13886 vcpu->arch.apf.halted = false; 13887 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 13888 } 13889 13890 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 13891 { 13892 kvm_make_request(KVM_REQ_APF_READY, vcpu); 13893 if (!vcpu->arch.apf.pageready_pending) 13894 kvm_vcpu_kick(vcpu); 13895 } 13896 13897 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 13898 { 13899 if (!kvm_pv_async_pf_enabled(vcpu)) 13900 return true; 13901 else 13902 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 13903 } 13904 13905 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm) 13906 { 13907 /* 13908 * Non-coherent DMA assignment and de-assignment may affect whether or 13909 * not KVM honors guest PAT, and thus may cause changes in EPT SPTEs 13910 * due to toggling the "ignore PAT" bit. Zap all SPTEs when the first 13911 * (or last) non-coherent device is (un)registered to so that new SPTEs 13912 * with the correct "ignore guest PAT" setting are created. 13913 * 13914 * If KVM always honors guest PAT, however, there is nothing to do. 13915 */ 13916 if (kvm_check_has_quirk(kvm, KVM_X86_QUIRK_IGNORE_GUEST_PAT)) 13917 kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL)); 13918 } 13919 13920 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13921 { 13922 if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1) 13923 kvm_noncoherent_dma_assignment_start_or_stop(kvm); 13924 } 13925 13926 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13927 { 13928 if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count)) 13929 kvm_noncoherent_dma_assignment_start_or_stop(kvm); 13930 } 13931 13932 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13933 { 13934 return atomic_read(&kvm->arch.noncoherent_dma_count); 13935 } 13936 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_arch_has_noncoherent_dma); 13937 13938 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13939 { 13940 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13941 } 13942 13943 #ifdef CONFIG_KVM_GUEST_MEMFD 13944 /* 13945 * KVM doesn't yet support mmap() on guest_memfd for VMs with private memory 13946 * (the private vs. shared tracking needs to be moved into guest_memfd). 13947 */ 13948 bool kvm_arch_supports_gmem_mmap(struct kvm *kvm) 13949 { 13950 return !kvm_arch_has_private_mem(kvm); 13951 } 13952 13953 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE 13954 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order) 13955 { 13956 return kvm_x86_call(gmem_prepare)(kvm, pfn, gfn, max_order); 13957 } 13958 #endif 13959 13960 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE 13961 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end) 13962 { 13963 kvm_x86_call(gmem_invalidate)(start, end); 13964 } 13965 #endif 13966 #endif 13967 13968 int kvm_spec_ctrl_test_value(u64 value) 13969 { 13970 /* 13971 * test that setting IA32_SPEC_CTRL to given value 13972 * is allowed by the host processor 13973 */ 13974 13975 u64 saved_value; 13976 unsigned long flags; 13977 int ret = 0; 13978 13979 local_irq_save(flags); 13980 13981 if (rdmsrq_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13982 ret = 1; 13983 else if (wrmsrq_safe(MSR_IA32_SPEC_CTRL, value)) 13984 ret = 1; 13985 else 13986 wrmsrq(MSR_IA32_SPEC_CTRL, saved_value); 13987 13988 local_irq_restore(flags); 13989 13990 return ret; 13991 } 13992 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_spec_ctrl_test_value); 13993 13994 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13995 { 13996 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13997 struct x86_exception fault; 13998 u64 access = error_code & 13999 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 14000 14001 if (!(error_code & PFERR_PRESENT_MASK) || 14002 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 14003 /* 14004 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 14005 * tables probably do not match the TLB. Just proceed 14006 * with the error code that the processor gave. 14007 */ 14008 fault.vector = PF_VECTOR; 14009 fault.error_code_valid = true; 14010 fault.error_code = error_code; 14011 fault.nested_page_fault = false; 14012 fault.address = gva; 14013 fault.async_page_fault = false; 14014 } 14015 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 14016 } 14017 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_fixup_and_inject_pf_error); 14018 14019 /* 14020 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 14021 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 14022 * indicates whether exit to userspace is needed. 14023 */ 14024 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 14025 struct x86_exception *e) 14026 { 14027 if (r == X86EMUL_PROPAGATE_FAULT) { 14028 if (KVM_BUG_ON(!e, vcpu->kvm)) 14029 return -EIO; 14030 14031 kvm_inject_emulated_page_fault(vcpu, e); 14032 return 1; 14033 } 14034 14035 /* 14036 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 14037 * while handling a VMX instruction KVM could've handled the request 14038 * correctly by exiting to userspace and performing I/O but there 14039 * doesn't seem to be a real use-case behind such requests, just return 14040 * KVM_EXIT_INTERNAL_ERROR for now. 14041 */ 14042 kvm_prepare_emulation_failure_exit(vcpu); 14043 14044 return 0; 14045 } 14046 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_handle_memory_failure); 14047 14048 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 14049 { 14050 bool pcid_enabled; 14051 struct x86_exception e; 14052 struct { 14053 u64 pcid; 14054 u64 gla; 14055 } operand; 14056 int r; 14057 14058 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 14059 if (r != X86EMUL_CONTINUE) 14060 return kvm_handle_memory_failure(vcpu, r, &e); 14061 14062 if (operand.pcid >> 12 != 0) { 14063 kvm_inject_gp(vcpu, 0); 14064 return 1; 14065 } 14066 14067 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE); 14068 14069 switch (type) { 14070 case INVPCID_TYPE_INDIV_ADDR: 14071 /* 14072 * LAM doesn't apply to addresses that are inputs to TLB 14073 * invalidation. 14074 */ 14075 if ((!pcid_enabled && (operand.pcid != 0)) || 14076 is_noncanonical_invlpg_address(operand.gla, vcpu)) { 14077 kvm_inject_gp(vcpu, 0); 14078 return 1; 14079 } 14080 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 14081 return kvm_skip_emulated_instruction(vcpu); 14082 14083 case INVPCID_TYPE_SINGLE_CTXT: 14084 if (!pcid_enabled && (operand.pcid != 0)) { 14085 kvm_inject_gp(vcpu, 0); 14086 return 1; 14087 } 14088 14089 kvm_invalidate_pcid(vcpu, operand.pcid); 14090 return kvm_skip_emulated_instruction(vcpu); 14091 14092 case INVPCID_TYPE_ALL_NON_GLOBAL: 14093 /* 14094 * Currently, KVM doesn't mark global entries in the shadow 14095 * page tables, so a non-global flush just degenerates to a 14096 * global flush. If needed, we could optimize this later by 14097 * keeping track of global entries in shadow page tables. 14098 */ 14099 14100 fallthrough; 14101 case INVPCID_TYPE_ALL_INCL_GLOBAL: 14102 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 14103 return kvm_skip_emulated_instruction(vcpu); 14104 14105 default: 14106 kvm_inject_gp(vcpu, 0); 14107 return 1; 14108 } 14109 } 14110 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_handle_invpcid); 14111 14112 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 14113 { 14114 struct kvm_run *run = vcpu->run; 14115 struct kvm_mmio_fragment *frag; 14116 unsigned int len; 14117 14118 BUG_ON(!vcpu->mmio_needed); 14119 14120 /* Complete previous fragment */ 14121 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 14122 len = min(8u, frag->len); 14123 if (!vcpu->mmio_is_write) 14124 memcpy(frag->data, run->mmio.data, len); 14125 14126 if (frag->len <= 8) { 14127 /* Switch to the next fragment. */ 14128 frag++; 14129 vcpu->mmio_cur_fragment++; 14130 } else { 14131 /* Go forward to the next mmio piece. */ 14132 frag->data += len; 14133 frag->gpa += len; 14134 frag->len -= len; 14135 } 14136 14137 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 14138 vcpu->mmio_needed = 0; 14139 14140 // VMG change, at this point, we're always done 14141 // RIP has already been advanced 14142 return 1; 14143 } 14144 14145 // More MMIO is needed 14146 run->mmio.phys_addr = frag->gpa; 14147 run->mmio.len = min(8u, frag->len); 14148 run->mmio.is_write = vcpu->mmio_is_write; 14149 if (run->mmio.is_write) 14150 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 14151 run->exit_reason = KVM_EXIT_MMIO; 14152 14153 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 14154 14155 return 0; 14156 } 14157 14158 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 14159 void *data) 14160 { 14161 int handled; 14162 struct kvm_mmio_fragment *frag; 14163 14164 if (!data) 14165 return -EINVAL; 14166 14167 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 14168 if (handled == bytes) 14169 return 1; 14170 14171 bytes -= handled; 14172 gpa += handled; 14173 data += handled; 14174 14175 /*TODO: Check if need to increment number of frags */ 14176 frag = vcpu->mmio_fragments; 14177 vcpu->mmio_nr_fragments = 1; 14178 frag->len = bytes; 14179 frag->gpa = gpa; 14180 frag->data = data; 14181 14182 vcpu->mmio_needed = 1; 14183 vcpu->mmio_cur_fragment = 0; 14184 14185 vcpu->run->mmio.phys_addr = gpa; 14186 vcpu->run->mmio.len = min(8u, frag->len); 14187 vcpu->run->mmio.is_write = 1; 14188 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 14189 vcpu->run->exit_reason = KVM_EXIT_MMIO; 14190 14191 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 14192 14193 return 0; 14194 } 14195 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_sev_es_mmio_write); 14196 14197 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 14198 void *data) 14199 { 14200 int handled; 14201 struct kvm_mmio_fragment *frag; 14202 14203 if (!data) 14204 return -EINVAL; 14205 14206 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 14207 if (handled == bytes) 14208 return 1; 14209 14210 bytes -= handled; 14211 gpa += handled; 14212 data += handled; 14213 14214 /*TODO: Check if need to increment number of frags */ 14215 frag = vcpu->mmio_fragments; 14216 vcpu->mmio_nr_fragments = 1; 14217 frag->len = bytes; 14218 frag->gpa = gpa; 14219 frag->data = data; 14220 14221 vcpu->mmio_needed = 1; 14222 vcpu->mmio_cur_fragment = 0; 14223 14224 vcpu->run->mmio.phys_addr = gpa; 14225 vcpu->run->mmio.len = min(8u, frag->len); 14226 vcpu->run->mmio.is_write = 0; 14227 vcpu->run->exit_reason = KVM_EXIT_MMIO; 14228 14229 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 14230 14231 return 0; 14232 } 14233 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_sev_es_mmio_read); 14234 14235 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 14236 { 14237 vcpu->arch.sev_pio_count -= count; 14238 vcpu->arch.sev_pio_data += count * size; 14239 } 14240 14241 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 14242 unsigned int port); 14243 14244 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 14245 { 14246 int size = vcpu->arch.pio.size; 14247 int port = vcpu->arch.pio.port; 14248 14249 vcpu->arch.pio.count = 0; 14250 if (vcpu->arch.sev_pio_count) 14251 return kvm_sev_es_outs(vcpu, size, port); 14252 return 1; 14253 } 14254 14255 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 14256 unsigned int port) 14257 { 14258 for (;;) { 14259 unsigned int count = 14260 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 14261 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 14262 14263 /* memcpy done already by emulator_pio_out. */ 14264 advance_sev_es_emulated_pio(vcpu, count, size); 14265 if (!ret) 14266 break; 14267 14268 /* Emulation done by the kernel. */ 14269 if (!vcpu->arch.sev_pio_count) 14270 return 1; 14271 } 14272 14273 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 14274 return 0; 14275 } 14276 14277 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 14278 unsigned int port); 14279 14280 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 14281 { 14282 unsigned count = vcpu->arch.pio.count; 14283 int size = vcpu->arch.pio.size; 14284 int port = vcpu->arch.pio.port; 14285 14286 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 14287 advance_sev_es_emulated_pio(vcpu, count, size); 14288 if (vcpu->arch.sev_pio_count) 14289 return kvm_sev_es_ins(vcpu, size, port); 14290 return 1; 14291 } 14292 14293 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 14294 unsigned int port) 14295 { 14296 for (;;) { 14297 unsigned int count = 14298 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 14299 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 14300 break; 14301 14302 /* Emulation done by the kernel. */ 14303 advance_sev_es_emulated_pio(vcpu, count, size); 14304 if (!vcpu->arch.sev_pio_count) 14305 return 1; 14306 } 14307 14308 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 14309 return 0; 14310 } 14311 14312 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 14313 unsigned int port, void *data, unsigned int count, 14314 int in) 14315 { 14316 vcpu->arch.sev_pio_data = data; 14317 vcpu->arch.sev_pio_count = count; 14318 return in ? kvm_sev_es_ins(vcpu, size, port) 14319 : kvm_sev_es_outs(vcpu, size, port); 14320 } 14321 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_sev_es_string_io); 14322 14323 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 14324 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 14325 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_mmio); 14326 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 14327 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 14328 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 14329 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 14330 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 14331 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 14332 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 14333 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 14334 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 14335 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 14336 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 14337 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 14338 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 14339 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 14340 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 14341 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 14342 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 14343 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 14344 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 14345 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 14346 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 14347 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 14348 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 14349 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 14350 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 14351 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 14352 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_rmp_fault); 14353 14354 static int __init kvm_x86_init(void) 14355 { 14356 kvm_init_xstate_sizes(); 14357 14358 kvm_mmu_x86_module_init(); 14359 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible(); 14360 return 0; 14361 } 14362 module_init(kvm_x86_init); 14363 14364 static void __exit kvm_x86_exit(void) 14365 { 14366 WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu)); 14367 } 14368 module_exit(kvm_x86_exit); 14369