1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
29 #include "x86.h"
30 #include "cpuid.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 #include "lapic.h"
34 #include "xen.h"
35 #include "smm.h"
36
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
40 #include <linux/fs.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/suspend.h>
63 #include <linux/smp.h>
64
65 #include <trace/events/ipi.h>
66 #include <trace/events/kvm.h>
67
68 #include <asm/debugreg.h>
69 #include <asm/msr.h>
70 #include <asm/desc.h>
71 #include <asm/mce.h>
72 #include <asm/pkru.h>
73 #include <linux/kernel_stat.h>
74 #include <asm/fpu/api.h>
75 #include <asm/fpu/xcr.h>
76 #include <asm/fpu/xstate.h>
77 #include <asm/pvclock.h>
78 #include <asm/div64.h>
79 #include <asm/irq_remapping.h>
80 #include <asm/mshyperv.h>
81 #include <asm/hypervisor.h>
82 #include <asm/tlbflush.h>
83 #include <asm/intel_pt.h>
84 #include <asm/emulate_prefix.h>
85 #include <asm/sgx.h>
86 #include <clocksource/hyperv_timer.h>
87
88 #define CREATE_TRACE_POINTS
89 #include "trace.h"
90
91 #define MAX_IO_MSRS 256
92
93 /*
94 * Note, kvm_caps fields should *never* have default values, all fields must be
95 * recomputed from scratch during vendor module load, e.g. to account for a
96 * vendor module being reloaded with different module parameters.
97 */
98 struct kvm_caps kvm_caps __read_mostly;
99 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_caps);
100
101 struct kvm_host_values kvm_host __read_mostly;
102 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_host);
103
104 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
105
106 #define emul_to_vcpu(ctxt) \
107 ((struct kvm_vcpu *)(ctxt)->vcpu)
108
109 /* EFER defaults:
110 * - enable syscall per default because its emulated by KVM
111 * - enable LME and LMA per default on 64 bit KVM
112 */
113 #ifdef CONFIG_X86_64
114 static
115 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
116 #else
117 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
118 #endif
119
120 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
121
122 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
123
124 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
125 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
126
127 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
128 static void process_nmi(struct kvm_vcpu *vcpu);
129 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
130 static void store_regs(struct kvm_vcpu *vcpu);
131 static int sync_regs(struct kvm_vcpu *vcpu);
132 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
133
134 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
135 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
136
137 static DEFINE_MUTEX(vendor_module_lock);
138 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu);
139 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu);
140
141 struct kvm_x86_ops kvm_x86_ops __read_mostly;
142
143 #define KVM_X86_OP(func) \
144 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
145 *(((struct kvm_x86_ops *)0)->func));
146 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
147 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
148 #include <asm/kvm-x86-ops.h>
149 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
150 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
151
152 static bool __read_mostly ignore_msrs = 0;
153 module_param(ignore_msrs, bool, 0644);
154
155 bool __read_mostly report_ignored_msrs = true;
156 module_param(report_ignored_msrs, bool, 0644);
157 EXPORT_SYMBOL_FOR_KVM_INTERNAL(report_ignored_msrs);
158
159 unsigned int min_timer_period_us = 200;
160 module_param(min_timer_period_us, uint, 0644);
161
162 static bool __read_mostly kvmclock_periodic_sync = true;
163 module_param(kvmclock_periodic_sync, bool, 0444);
164
165 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
166 static u32 __read_mostly tsc_tolerance_ppm = 250;
167 module_param(tsc_tolerance_ppm, uint, 0644);
168
169 bool __read_mostly enable_vmware_backdoor = false;
170 module_param(enable_vmware_backdoor, bool, 0444);
171 EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_vmware_backdoor);
172
173 /*
174 * Flags to manipulate forced emulation behavior (any non-zero value will
175 * enable forced emulation).
176 */
177 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
178 static int __read_mostly force_emulation_prefix;
179 module_param(force_emulation_prefix, int, 0644);
180
181 int __read_mostly pi_inject_timer = -1;
182 module_param(pi_inject_timer, bint, 0644);
183
184 /* Enable/disable PMU virtualization */
185 bool __read_mostly enable_pmu = true;
186 EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_pmu);
187 module_param(enable_pmu, bool, 0444);
188
189 bool __read_mostly eager_page_split = true;
190 module_param(eager_page_split, bool, 0644);
191
192 /* Enable/disable SMT_RSB bug mitigation */
193 static bool __read_mostly mitigate_smt_rsb;
194 module_param(mitigate_smt_rsb, bool, 0444);
195
196 /*
197 * Restoring the host value for MSRs that are only consumed when running in
198 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
199 * returns to userspace, i.e. the kernel can run with the guest's value.
200 */
201 #define KVM_MAX_NR_USER_RETURN_MSRS 16
202
203 struct kvm_user_return_msrs {
204 struct user_return_notifier urn;
205 bool registered;
206 struct kvm_user_return_msr_values {
207 u64 host;
208 u64 curr;
209 } values[KVM_MAX_NR_USER_RETURN_MSRS];
210 };
211
212 u32 __read_mostly kvm_nr_uret_msrs;
213 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_nr_uret_msrs);
214 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
215 static struct kvm_user_return_msrs __percpu *user_return_msrs;
216
217 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
218 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
219 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
220 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
221
222 #define XFEATURE_MASK_CET_ALL (XFEATURE_MASK_CET_USER | XFEATURE_MASK_CET_KERNEL)
223 /*
224 * Note, KVM supports exposing PT to the guest, but does not support context
225 * switching PT via XSTATE (KVM's PT virtualization relies on perf; swapping
226 * PT via guest XSTATE would clobber perf state), i.e. KVM doesn't support
227 * IA32_XSS[bit 8] (guests can/must use RDMSR/WRMSR to save/restore PT MSRs).
228 */
229 #define KVM_SUPPORTED_XSS (XFEATURE_MASK_CET_ALL)
230
231 bool __read_mostly allow_smaller_maxphyaddr = 0;
232 EXPORT_SYMBOL_FOR_KVM_INTERNAL(allow_smaller_maxphyaddr);
233
234 bool __read_mostly enable_apicv = true;
235 EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_apicv);
236
237 bool __read_mostly enable_ipiv = true;
238 EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_ipiv);
239
240 bool __read_mostly enable_device_posted_irqs = true;
241 EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_device_posted_irqs);
242
243 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
244 KVM_GENERIC_VM_STATS(),
245 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
246 STATS_DESC_COUNTER(VM, mmu_pte_write),
247 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
248 STATS_DESC_COUNTER(VM, mmu_flooded),
249 STATS_DESC_COUNTER(VM, mmu_recycled),
250 STATS_DESC_COUNTER(VM, mmu_cache_miss),
251 STATS_DESC_ICOUNTER(VM, mmu_unsync),
252 STATS_DESC_ICOUNTER(VM, pages_4k),
253 STATS_DESC_ICOUNTER(VM, pages_2m),
254 STATS_DESC_ICOUNTER(VM, pages_1g),
255 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
256 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
257 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
258 };
259
260 const struct kvm_stats_header kvm_vm_stats_header = {
261 .name_size = KVM_STATS_NAME_SIZE,
262 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
263 .id_offset = sizeof(struct kvm_stats_header),
264 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
265 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
266 sizeof(kvm_vm_stats_desc),
267 };
268
269 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
270 KVM_GENERIC_VCPU_STATS(),
271 STATS_DESC_COUNTER(VCPU, pf_taken),
272 STATS_DESC_COUNTER(VCPU, pf_fixed),
273 STATS_DESC_COUNTER(VCPU, pf_emulate),
274 STATS_DESC_COUNTER(VCPU, pf_spurious),
275 STATS_DESC_COUNTER(VCPU, pf_fast),
276 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
277 STATS_DESC_COUNTER(VCPU, pf_guest),
278 STATS_DESC_COUNTER(VCPU, tlb_flush),
279 STATS_DESC_COUNTER(VCPU, invlpg),
280 STATS_DESC_COUNTER(VCPU, exits),
281 STATS_DESC_COUNTER(VCPU, io_exits),
282 STATS_DESC_COUNTER(VCPU, mmio_exits),
283 STATS_DESC_COUNTER(VCPU, signal_exits),
284 STATS_DESC_COUNTER(VCPU, irq_window_exits),
285 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
286 STATS_DESC_COUNTER(VCPU, l1d_flush),
287 STATS_DESC_COUNTER(VCPU, halt_exits),
288 STATS_DESC_COUNTER(VCPU, request_irq_exits),
289 STATS_DESC_COUNTER(VCPU, irq_exits),
290 STATS_DESC_COUNTER(VCPU, host_state_reload),
291 STATS_DESC_COUNTER(VCPU, fpu_reload),
292 STATS_DESC_COUNTER(VCPU, insn_emulation),
293 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
294 STATS_DESC_COUNTER(VCPU, hypercalls),
295 STATS_DESC_COUNTER(VCPU, irq_injections),
296 STATS_DESC_COUNTER(VCPU, nmi_injections),
297 STATS_DESC_COUNTER(VCPU, req_event),
298 STATS_DESC_COUNTER(VCPU, nested_run),
299 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
300 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
301 STATS_DESC_COUNTER(VCPU, preemption_reported),
302 STATS_DESC_COUNTER(VCPU, preemption_other),
303 STATS_DESC_IBOOLEAN(VCPU, guest_mode),
304 STATS_DESC_COUNTER(VCPU, notify_window_exits),
305 };
306
307 const struct kvm_stats_header kvm_vcpu_stats_header = {
308 .name_size = KVM_STATS_NAME_SIZE,
309 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
310 .id_offset = sizeof(struct kvm_stats_header),
311 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
312 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
313 sizeof(kvm_vcpu_stats_desc),
314 };
315
316 static struct kmem_cache *x86_emulator_cache;
317
318 /*
319 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
320 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
321 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that
322 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds
323 * MSRs that KVM emulates without strictly requiring host support.
324 * msr_based_features holds MSRs that enumerate features, i.e. are effectively
325 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with
326 * msrs_to_save and emulated_msrs.
327 */
328
329 static const u32 msrs_to_save_base[] = {
330 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
331 MSR_STAR,
332 #ifdef CONFIG_X86_64
333 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
334 #endif
335 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
336 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
337 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
338 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
339 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
340 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
341 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
342 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
343 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
344 MSR_IA32_UMWAIT_CONTROL,
345
346 MSR_IA32_XFD, MSR_IA32_XFD_ERR, MSR_IA32_XSS,
347
348 MSR_IA32_U_CET, MSR_IA32_S_CET,
349 MSR_IA32_PL0_SSP, MSR_IA32_PL1_SSP, MSR_IA32_PL2_SSP,
350 MSR_IA32_PL3_SSP, MSR_IA32_INT_SSP_TAB,
351 };
352
353 static const u32 msrs_to_save_pmu[] = {
354 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
355 MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
356 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
357 MSR_CORE_PERF_GLOBAL_CTRL,
358 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
359
360 /* This part of MSRs should match KVM_MAX_NR_INTEL_GP_COUNTERS. */
361 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
362 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
363 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
364 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
365 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
366 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
367 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
368 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
369
370 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
371 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
372
373 /* This part of MSRs should match KVM_MAX_NR_AMD_GP_COUNTERS. */
374 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
375 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
376 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
377 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
378
379 MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
380 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
381 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
382 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_SET,
383 };
384
385 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
386 ARRAY_SIZE(msrs_to_save_pmu)];
387 static unsigned num_msrs_to_save;
388
389 static const u32 emulated_msrs_all[] = {
390 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
391 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
392
393 #ifdef CONFIG_KVM_HYPERV
394 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
395 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
396 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
397 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
398 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
399 HV_X64_MSR_RESET,
400 HV_X64_MSR_VP_INDEX,
401 HV_X64_MSR_VP_RUNTIME,
402 HV_X64_MSR_SCONTROL,
403 HV_X64_MSR_STIMER0_CONFIG,
404 HV_X64_MSR_VP_ASSIST_PAGE,
405 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
406 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
407 HV_X64_MSR_SYNDBG_OPTIONS,
408 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
409 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
410 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
411 #endif
412
413 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
414 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
415
416 MSR_IA32_TSC_ADJUST,
417 MSR_IA32_TSC_DEADLINE,
418 MSR_IA32_ARCH_CAPABILITIES,
419 MSR_IA32_PERF_CAPABILITIES,
420 MSR_IA32_MISC_ENABLE,
421 MSR_IA32_MCG_STATUS,
422 MSR_IA32_MCG_CTL,
423 MSR_IA32_MCG_EXT_CTL,
424 MSR_IA32_SMBASE,
425 MSR_SMI_COUNT,
426 MSR_PLATFORM_INFO,
427 MSR_MISC_FEATURES_ENABLES,
428 MSR_AMD64_VIRT_SPEC_CTRL,
429 MSR_AMD64_TSC_RATIO,
430 MSR_IA32_POWER_CTL,
431 MSR_IA32_UCODE_REV,
432
433 /*
434 * KVM always supports the "true" VMX control MSRs, even if the host
435 * does not. The VMX MSRs as a whole are considered "emulated" as KVM
436 * doesn't strictly require them to exist in the host (ignoring that
437 * KVM would refuse to load in the first place if the core set of MSRs
438 * aren't supported).
439 */
440 MSR_IA32_VMX_BASIC,
441 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
442 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
443 MSR_IA32_VMX_TRUE_EXIT_CTLS,
444 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
445 MSR_IA32_VMX_MISC,
446 MSR_IA32_VMX_CR0_FIXED0,
447 MSR_IA32_VMX_CR4_FIXED0,
448 MSR_IA32_VMX_VMCS_ENUM,
449 MSR_IA32_VMX_PROCBASED_CTLS2,
450 MSR_IA32_VMX_EPT_VPID_CAP,
451 MSR_IA32_VMX_VMFUNC,
452
453 MSR_K7_HWCR,
454 MSR_KVM_POLL_CONTROL,
455 };
456
457 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
458 static unsigned num_emulated_msrs;
459
460 /*
461 * List of MSRs that control the existence of MSR-based features, i.e. MSRs
462 * that are effectively CPUID leafs. VMX MSRs are also included in the set of
463 * feature MSRs, but are handled separately to allow expedited lookups.
464 */
465 static const u32 msr_based_features_all_except_vmx[] = {
466 MSR_AMD64_DE_CFG,
467 MSR_IA32_UCODE_REV,
468 MSR_IA32_ARCH_CAPABILITIES,
469 MSR_IA32_PERF_CAPABILITIES,
470 MSR_PLATFORM_INFO,
471 };
472
473 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
474 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
475 static unsigned int num_msr_based_features;
476
477 /*
478 * All feature MSRs except uCode revID, which tracks the currently loaded uCode
479 * patch, are immutable once the vCPU model is defined.
480 */
kvm_is_immutable_feature_msr(u32 msr)481 static bool kvm_is_immutable_feature_msr(u32 msr)
482 {
483 int i;
484
485 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
486 return true;
487
488 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
489 if (msr == msr_based_features_all_except_vmx[i])
490 return msr != MSR_IA32_UCODE_REV;
491 }
492
493 return false;
494 }
495
kvm_is_advertised_msr(u32 msr_index)496 static bool kvm_is_advertised_msr(u32 msr_index)
497 {
498 unsigned int i;
499
500 for (i = 0; i < num_msrs_to_save; i++) {
501 if (msrs_to_save[i] == msr_index)
502 return true;
503 }
504
505 for (i = 0; i < num_emulated_msrs; i++) {
506 if (emulated_msrs[i] == msr_index)
507 return true;
508 }
509
510 return false;
511 }
512
513 typedef int (*msr_access_t)(struct kvm_vcpu *vcpu, u32 index, u64 *data,
514 bool host_initiated);
515
kvm_do_msr_access(struct kvm_vcpu * vcpu,u32 msr,u64 * data,bool host_initiated,enum kvm_msr_access rw,msr_access_t msr_access_fn)516 static __always_inline int kvm_do_msr_access(struct kvm_vcpu *vcpu, u32 msr,
517 u64 *data, bool host_initiated,
518 enum kvm_msr_access rw,
519 msr_access_t msr_access_fn)
520 {
521 const char *op = rw == MSR_TYPE_W ? "wrmsr" : "rdmsr";
522 int ret;
523
524 BUILD_BUG_ON(rw != MSR_TYPE_R && rw != MSR_TYPE_W);
525
526 /*
527 * Zero the data on read failures to avoid leaking stack data to the
528 * guest and/or userspace, e.g. if the failure is ignored below.
529 */
530 ret = msr_access_fn(vcpu, msr, data, host_initiated);
531 if (ret && rw == MSR_TYPE_R)
532 *data = 0;
533
534 if (ret != KVM_MSR_RET_UNSUPPORTED)
535 return ret;
536
537 /*
538 * Userspace is allowed to read MSRs, and write '0' to MSRs, that KVM
539 * advertises to userspace, even if an MSR isn't fully supported.
540 * Simply check that @data is '0', which covers both the write '0' case
541 * and all reads (in which case @data is zeroed on failure; see above).
542 */
543 if (host_initiated && !*data && kvm_is_advertised_msr(msr))
544 return 0;
545
546 if (!ignore_msrs) {
547 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
548 op, msr, *data);
549 return ret;
550 }
551
552 if (report_ignored_msrs)
553 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", op, msr, *data);
554
555 return 0;
556 }
557
kvm_alloc_emulator_cache(void)558 static struct kmem_cache *kvm_alloc_emulator_cache(void)
559 {
560 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
561 unsigned int size = sizeof(struct x86_emulate_ctxt);
562
563 return kmem_cache_create_usercopy("x86_emulator", size,
564 __alignof__(struct x86_emulate_ctxt),
565 SLAB_ACCOUNT, useroffset,
566 size - useroffset, NULL);
567 }
568
569 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
570
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)571 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
572 {
573 int i;
574 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
575 vcpu->arch.apf.gfns[i] = ~0;
576 }
577
kvm_on_user_return(struct user_return_notifier * urn)578 static void kvm_on_user_return(struct user_return_notifier *urn)
579 {
580 unsigned slot;
581 struct kvm_user_return_msrs *msrs
582 = container_of(urn, struct kvm_user_return_msrs, urn);
583 struct kvm_user_return_msr_values *values;
584 unsigned long flags;
585
586 /*
587 * Disabling irqs at this point since the following code could be
588 * interrupted and executed through kvm_arch_disable_virtualization_cpu()
589 */
590 local_irq_save(flags);
591 if (msrs->registered) {
592 msrs->registered = false;
593 user_return_notifier_unregister(urn);
594 }
595 local_irq_restore(flags);
596 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
597 values = &msrs->values[slot];
598 if (values->host != values->curr) {
599 wrmsrq(kvm_uret_msrs_list[slot], values->host);
600 values->curr = values->host;
601 }
602 }
603 }
604
kvm_probe_user_return_msr(u32 msr)605 static int kvm_probe_user_return_msr(u32 msr)
606 {
607 u64 val;
608 int ret;
609
610 preempt_disable();
611 ret = rdmsrq_safe(msr, &val);
612 if (ret)
613 goto out;
614 ret = wrmsrq_safe(msr, val);
615 out:
616 preempt_enable();
617 return ret;
618 }
619
kvm_add_user_return_msr(u32 msr)620 int kvm_add_user_return_msr(u32 msr)
621 {
622 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
623
624 if (kvm_probe_user_return_msr(msr))
625 return -1;
626
627 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
628 return kvm_nr_uret_msrs++;
629 }
630 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_add_user_return_msr);
631
kvm_find_user_return_msr(u32 msr)632 int kvm_find_user_return_msr(u32 msr)
633 {
634 int i;
635
636 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
637 if (kvm_uret_msrs_list[i] == msr)
638 return i;
639 }
640 return -1;
641 }
642 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_find_user_return_msr);
643
kvm_user_return_msr_cpu_online(void)644 static void kvm_user_return_msr_cpu_online(void)
645 {
646 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
647 u64 value;
648 int i;
649
650 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
651 rdmsrq_safe(kvm_uret_msrs_list[i], &value);
652 msrs->values[i].host = value;
653 msrs->values[i].curr = value;
654 }
655 }
656
kvm_user_return_register_notifier(struct kvm_user_return_msrs * msrs)657 static void kvm_user_return_register_notifier(struct kvm_user_return_msrs *msrs)
658 {
659 if (!msrs->registered) {
660 msrs->urn.on_user_return = kvm_on_user_return;
661 user_return_notifier_register(&msrs->urn);
662 msrs->registered = true;
663 }
664 }
665
kvm_set_user_return_msr(unsigned slot,u64 value,u64 mask)666 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
667 {
668 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
669 int err;
670
671 value = (value & mask) | (msrs->values[slot].host & ~mask);
672 if (value == msrs->values[slot].curr)
673 return 0;
674 err = wrmsrq_safe(kvm_uret_msrs_list[slot], value);
675 if (err)
676 return 1;
677
678 msrs->values[slot].curr = value;
679 kvm_user_return_register_notifier(msrs);
680 return 0;
681 }
682 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_user_return_msr);
683
kvm_user_return_msr_update_cache(unsigned int slot,u64 value)684 void kvm_user_return_msr_update_cache(unsigned int slot, u64 value)
685 {
686 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
687
688 msrs->values[slot].curr = value;
689 kvm_user_return_register_notifier(msrs);
690 }
691 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_user_return_msr_update_cache);
692
kvm_get_user_return_msr(unsigned int slot)693 u64 kvm_get_user_return_msr(unsigned int slot)
694 {
695 return this_cpu_ptr(user_return_msrs)->values[slot].curr;
696 }
697 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_user_return_msr);
698
drop_user_return_notifiers(void)699 static void drop_user_return_notifiers(void)
700 {
701 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
702
703 if (msrs->registered)
704 kvm_on_user_return(&msrs->urn);
705 }
706
707 /*
708 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
709 *
710 * Hardware virtualization extension instructions may fault if a reboot turns
711 * off virtualization while processes are running. Usually after catching the
712 * fault we just panic; during reboot instead the instruction is ignored.
713 */
kvm_spurious_fault(void)714 noinstr void kvm_spurious_fault(void)
715 {
716 /* Fault while not rebooting. We want the trace. */
717 BUG_ON(!kvm_rebooting);
718 }
719 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_spurious_fault);
720
721 #define EXCPT_BENIGN 0
722 #define EXCPT_CONTRIBUTORY 1
723 #define EXCPT_PF 2
724
exception_class(int vector)725 static int exception_class(int vector)
726 {
727 switch (vector) {
728 case PF_VECTOR:
729 return EXCPT_PF;
730 case DE_VECTOR:
731 case TS_VECTOR:
732 case NP_VECTOR:
733 case SS_VECTOR:
734 case GP_VECTOR:
735 return EXCPT_CONTRIBUTORY;
736 default:
737 break;
738 }
739 return EXCPT_BENIGN;
740 }
741
742 #define EXCPT_FAULT 0
743 #define EXCPT_TRAP 1
744 #define EXCPT_ABORT 2
745 #define EXCPT_INTERRUPT 3
746 #define EXCPT_DB 4
747
exception_type(int vector)748 static int exception_type(int vector)
749 {
750 unsigned int mask;
751
752 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
753 return EXCPT_INTERRUPT;
754
755 mask = 1 << vector;
756
757 /*
758 * #DBs can be trap-like or fault-like, the caller must check other CPU
759 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
760 */
761 if (mask & (1 << DB_VECTOR))
762 return EXCPT_DB;
763
764 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
765 return EXCPT_TRAP;
766
767 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
768 return EXCPT_ABORT;
769
770 /* Reserved exceptions will result in fault */
771 return EXCPT_FAULT;
772 }
773
kvm_deliver_exception_payload(struct kvm_vcpu * vcpu,struct kvm_queued_exception * ex)774 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
775 struct kvm_queued_exception *ex)
776 {
777 if (!ex->has_payload)
778 return;
779
780 switch (ex->vector) {
781 case DB_VECTOR:
782 /*
783 * "Certain debug exceptions may clear bit 0-3. The
784 * remaining contents of the DR6 register are never
785 * cleared by the processor".
786 */
787 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
788 /*
789 * In order to reflect the #DB exception payload in guest
790 * dr6, three components need to be considered: active low
791 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
792 * DR6_BS and DR6_BT)
793 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
794 * In the target guest dr6:
795 * FIXED_1 bits should always be set.
796 * Active low bits should be cleared if 1-setting in payload.
797 * Active high bits should be set if 1-setting in payload.
798 *
799 * Note, the payload is compatible with the pending debug
800 * exceptions/exit qualification under VMX, that active_low bits
801 * are active high in payload.
802 * So they need to be flipped for DR6.
803 */
804 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
805 vcpu->arch.dr6 |= ex->payload;
806 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
807
808 /*
809 * The #DB payload is defined as compatible with the 'pending
810 * debug exceptions' field under VMX, not DR6. While bit 12 is
811 * defined in the 'pending debug exceptions' field (enabled
812 * breakpoint), it is reserved and must be zero in DR6.
813 */
814 vcpu->arch.dr6 &= ~BIT(12);
815 break;
816 case PF_VECTOR:
817 vcpu->arch.cr2 = ex->payload;
818 break;
819 }
820
821 ex->has_payload = false;
822 ex->payload = 0;
823 }
824 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_deliver_exception_payload);
825
kvm_queue_exception_vmexit(struct kvm_vcpu * vcpu,unsigned int vector,bool has_error_code,u32 error_code,bool has_payload,unsigned long payload)826 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
827 bool has_error_code, u32 error_code,
828 bool has_payload, unsigned long payload)
829 {
830 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
831
832 ex->vector = vector;
833 ex->injected = false;
834 ex->pending = true;
835 ex->has_error_code = has_error_code;
836 ex->error_code = error_code;
837 ex->has_payload = has_payload;
838 ex->payload = payload;
839 }
840
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned int nr,bool has_error,u32 error_code,bool has_payload,unsigned long payload)841 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, unsigned int nr,
842 bool has_error, u32 error_code,
843 bool has_payload, unsigned long payload)
844 {
845 u32 prev_nr;
846 int class1, class2;
847
848 kvm_make_request(KVM_REQ_EVENT, vcpu);
849
850 /*
851 * If the exception is destined for L2, morph it to a VM-Exit if L1
852 * wants to intercept the exception.
853 */
854 if (is_guest_mode(vcpu) &&
855 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
856 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
857 has_payload, payload);
858 return;
859 }
860
861 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
862 queue:
863 vcpu->arch.exception.pending = true;
864 vcpu->arch.exception.injected = false;
865
866 vcpu->arch.exception.has_error_code = has_error;
867 vcpu->arch.exception.vector = nr;
868 vcpu->arch.exception.error_code = error_code;
869 vcpu->arch.exception.has_payload = has_payload;
870 vcpu->arch.exception.payload = payload;
871 if (!is_guest_mode(vcpu))
872 kvm_deliver_exception_payload(vcpu,
873 &vcpu->arch.exception);
874 return;
875 }
876
877 /* to check exception */
878 prev_nr = vcpu->arch.exception.vector;
879 if (prev_nr == DF_VECTOR) {
880 /* triple fault -> shutdown */
881 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
882 return;
883 }
884 class1 = exception_class(prev_nr);
885 class2 = exception_class(nr);
886 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
887 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
888 /*
889 * Synthesize #DF. Clear the previously injected or pending
890 * exception so as not to incorrectly trigger shutdown.
891 */
892 vcpu->arch.exception.injected = false;
893 vcpu->arch.exception.pending = false;
894
895 kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
896 } else {
897 /* replace previous exception with a new one in a hope
898 that instruction re-execution will regenerate lost
899 exception */
900 goto queue;
901 }
902 }
903
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)904 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
905 {
906 kvm_multiple_exception(vcpu, nr, false, 0, false, 0);
907 }
908 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_queue_exception);
909
910
kvm_queue_exception_p(struct kvm_vcpu * vcpu,unsigned nr,unsigned long payload)911 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
912 unsigned long payload)
913 {
914 kvm_multiple_exception(vcpu, nr, false, 0, true, payload);
915 }
916 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_queue_exception_p);
917
kvm_queue_exception_e_p(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code,unsigned long payload)918 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
919 u32 error_code, unsigned long payload)
920 {
921 kvm_multiple_exception(vcpu, nr, true, error_code, true, payload);
922 }
923
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned int nr,bool has_error_code,u32 error_code)924 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr,
925 bool has_error_code, u32 error_code)
926 {
927
928 /*
929 * On VM-Entry, an exception can be pending if and only if event
930 * injection was blocked by nested_run_pending. In that case, however,
931 * vcpu_enter_guest() requests an immediate exit, and the guest
932 * shouldn't proceed far enough to need reinjection.
933 */
934 WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
935
936 /*
937 * Do not check for interception when injecting an event for L2, as the
938 * exception was checked for intercept when it was original queued, and
939 * re-checking is incorrect if _L1_ injected the exception, in which
940 * case it's exempt from interception.
941 */
942 kvm_make_request(KVM_REQ_EVENT, vcpu);
943
944 vcpu->arch.exception.injected = true;
945 vcpu->arch.exception.has_error_code = has_error_code;
946 vcpu->arch.exception.vector = nr;
947 vcpu->arch.exception.error_code = error_code;
948 vcpu->arch.exception.has_payload = false;
949 vcpu->arch.exception.payload = 0;
950 }
951 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_requeue_exception);
952
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)953 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
954 {
955 if (err)
956 kvm_inject_gp(vcpu, 0);
957 else
958 return kvm_skip_emulated_instruction(vcpu);
959
960 return 1;
961 }
962 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_complete_insn_gp);
963
complete_emulated_insn_gp(struct kvm_vcpu * vcpu,int err)964 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
965 {
966 if (err) {
967 kvm_inject_gp(vcpu, 0);
968 return 1;
969 }
970
971 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
972 EMULTYPE_COMPLETE_USER_EXIT);
973 }
974
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)975 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
976 {
977 ++vcpu->stat.pf_guest;
978
979 /*
980 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
981 * whether or not L1 wants to intercept "regular" #PF.
982 */
983 if (is_guest_mode(vcpu) && fault->async_page_fault)
984 kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
985 true, fault->error_code,
986 true, fault->address);
987 else
988 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
989 fault->address);
990 }
991
kvm_inject_emulated_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)992 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
993 struct x86_exception *fault)
994 {
995 struct kvm_mmu *fault_mmu;
996 WARN_ON_ONCE(fault->vector != PF_VECTOR);
997
998 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
999 vcpu->arch.walk_mmu;
1000
1001 /*
1002 * Invalidate the TLB entry for the faulting address, if it exists,
1003 * else the access will fault indefinitely (and to emulate hardware).
1004 */
1005 if ((fault->error_code & PFERR_PRESENT_MASK) &&
1006 !(fault->error_code & PFERR_RSVD_MASK))
1007 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
1008 KVM_MMU_ROOT_CURRENT);
1009
1010 fault_mmu->inject_page_fault(vcpu, fault);
1011 }
1012 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_inject_emulated_page_fault);
1013
kvm_inject_nmi(struct kvm_vcpu * vcpu)1014 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
1015 {
1016 atomic_inc(&vcpu->arch.nmi_queued);
1017 kvm_make_request(KVM_REQ_NMI, vcpu);
1018 }
1019
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)1020 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
1021 {
1022 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0);
1023 }
1024 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_queue_exception_e);
1025
1026 /*
1027 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
1028 * a #GP and return false.
1029 */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)1030 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
1031 {
1032 if (kvm_x86_call(get_cpl)(vcpu) <= required_cpl)
1033 return true;
1034 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
1035 return false;
1036 }
1037
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)1038 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
1039 {
1040 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
1041 return true;
1042
1043 kvm_queue_exception(vcpu, UD_VECTOR);
1044 return false;
1045 }
1046 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_require_dr);
1047
pdptr_rsvd_bits(struct kvm_vcpu * vcpu)1048 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
1049 {
1050 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
1051 }
1052
1053 /*
1054 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
1055 */
load_pdptrs(struct kvm_vcpu * vcpu,unsigned long cr3)1056 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
1057 {
1058 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
1059 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
1060 gpa_t real_gpa;
1061 int i;
1062 int ret;
1063 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
1064
1065 /*
1066 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
1067 * to an L1 GPA.
1068 */
1069 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
1070 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
1071 if (real_gpa == INVALID_GPA)
1072 return 0;
1073
1074 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
1075 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
1076 cr3 & GENMASK(11, 5), sizeof(pdpte));
1077 if (ret < 0)
1078 return 0;
1079
1080 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
1081 if ((pdpte[i] & PT_PRESENT_MASK) &&
1082 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
1083 return 0;
1084 }
1085 }
1086
1087 /*
1088 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
1089 * Shadow page roots need to be reconstructed instead.
1090 */
1091 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
1092 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
1093
1094 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
1095 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
1096 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
1097 vcpu->arch.pdptrs_from_userspace = false;
1098
1099 return 1;
1100 }
1101 EXPORT_SYMBOL_FOR_KVM_INTERNAL(load_pdptrs);
1102
kvm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1103 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1104 {
1105 #ifdef CONFIG_X86_64
1106 if (cr0 & 0xffffffff00000000UL)
1107 return false;
1108 #endif
1109
1110 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
1111 return false;
1112
1113 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
1114 return false;
1115
1116 return kvm_x86_call(is_valid_cr0)(vcpu, cr0);
1117 }
1118
kvm_post_set_cr0(struct kvm_vcpu * vcpu,unsigned long old_cr0,unsigned long cr0)1119 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
1120 {
1121 /*
1122 * CR0.WP is incorporated into the MMU role, but only for non-nested,
1123 * indirect shadow MMUs. If paging is disabled, no updates are needed
1124 * as there are no permission bits to emulate. If TDP is enabled, the
1125 * MMU's metadata needs to be updated, e.g. so that emulating guest
1126 * translations does the right thing, but there's no need to unload the
1127 * root as CR0.WP doesn't affect SPTEs.
1128 */
1129 if ((cr0 ^ old_cr0) == X86_CR0_WP) {
1130 if (!(cr0 & X86_CR0_PG))
1131 return;
1132
1133 if (tdp_enabled) {
1134 kvm_init_mmu(vcpu);
1135 return;
1136 }
1137 }
1138
1139 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
1140 kvm_clear_async_pf_completion_queue(vcpu);
1141 kvm_async_pf_hash_reset(vcpu);
1142
1143 /*
1144 * Clearing CR0.PG is defined to flush the TLB from the guest's
1145 * perspective.
1146 */
1147 if (!(cr0 & X86_CR0_PG))
1148 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1149 }
1150
1151 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
1152 kvm_mmu_reset_context(vcpu);
1153 }
1154 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_post_set_cr0);
1155
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1156 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1157 {
1158 unsigned long old_cr0 = kvm_read_cr0(vcpu);
1159
1160 if (!kvm_is_valid_cr0(vcpu, cr0))
1161 return 1;
1162
1163 cr0 |= X86_CR0_ET;
1164
1165 /* Write to CR0 reserved bits are ignored, even on Intel. */
1166 cr0 &= ~CR0_RESERVED_BITS;
1167
1168 #ifdef CONFIG_X86_64
1169 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
1170 (cr0 & X86_CR0_PG)) {
1171 int cs_db, cs_l;
1172
1173 if (!is_pae(vcpu))
1174 return 1;
1175 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
1176 if (cs_l)
1177 return 1;
1178 }
1179 #endif
1180 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
1181 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
1182 !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1183 return 1;
1184
1185 if (!(cr0 & X86_CR0_PG) &&
1186 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1187 return 1;
1188
1189 if (!(cr0 & X86_CR0_WP) && kvm_is_cr4_bit_set(vcpu, X86_CR4_CET))
1190 return 1;
1191
1192 kvm_x86_call(set_cr0)(vcpu, cr0);
1193
1194 kvm_post_set_cr0(vcpu, old_cr0, cr0);
1195
1196 return 0;
1197 }
1198 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_cr0);
1199
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)1200 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1201 {
1202 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1203 }
1204 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_lmsw);
1205
kvm_load_guest_xsave_state(struct kvm_vcpu * vcpu)1206 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1207 {
1208 if (vcpu->arch.guest_state_protected)
1209 return;
1210
1211 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1212
1213 if (vcpu->arch.xcr0 != kvm_host.xcr0)
1214 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1215
1216 if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) &&
1217 vcpu->arch.ia32_xss != kvm_host.xss)
1218 wrmsrq(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1219 }
1220
1221 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1222 vcpu->arch.pkru != vcpu->arch.host_pkru &&
1223 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1224 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1225 wrpkru(vcpu->arch.pkru);
1226 }
1227 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_load_guest_xsave_state);
1228
kvm_load_host_xsave_state(struct kvm_vcpu * vcpu)1229 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1230 {
1231 if (vcpu->arch.guest_state_protected)
1232 return;
1233
1234 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1235 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1236 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1237 vcpu->arch.pkru = rdpkru();
1238 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1239 wrpkru(vcpu->arch.host_pkru);
1240 }
1241
1242 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1243
1244 if (vcpu->arch.xcr0 != kvm_host.xcr0)
1245 xsetbv(XCR_XFEATURE_ENABLED_MASK, kvm_host.xcr0);
1246
1247 if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) &&
1248 vcpu->arch.ia32_xss != kvm_host.xss)
1249 wrmsrq(MSR_IA32_XSS, kvm_host.xss);
1250 }
1251
1252 }
1253 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_load_host_xsave_state);
1254
1255 #ifdef CONFIG_X86_64
kvm_guest_supported_xfd(struct kvm_vcpu * vcpu)1256 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1257 {
1258 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1259 }
1260 #endif
1261
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)1262 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1263 {
1264 u64 xcr0 = xcr;
1265 u64 old_xcr0 = vcpu->arch.xcr0;
1266 u64 valid_bits;
1267
1268 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
1269 if (index != XCR_XFEATURE_ENABLED_MASK)
1270 return 1;
1271 if (!(xcr0 & XFEATURE_MASK_FP))
1272 return 1;
1273 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1274 return 1;
1275
1276 /*
1277 * Do not allow the guest to set bits that we do not support
1278 * saving. However, xcr0 bit 0 is always set, even if the
1279 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1280 */
1281 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1282 if (xcr0 & ~valid_bits)
1283 return 1;
1284
1285 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1286 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1287 return 1;
1288
1289 if (xcr0 & XFEATURE_MASK_AVX512) {
1290 if (!(xcr0 & XFEATURE_MASK_YMM))
1291 return 1;
1292 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1293 return 1;
1294 }
1295
1296 if ((xcr0 & XFEATURE_MASK_XTILE) &&
1297 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1298 return 1;
1299
1300 vcpu->arch.xcr0 = xcr0;
1301
1302 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1303 vcpu->arch.cpuid_dynamic_bits_dirty = true;
1304 return 0;
1305 }
1306 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_set_xcr);
1307
kvm_emulate_xsetbv(struct kvm_vcpu * vcpu)1308 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1309 {
1310 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1311 if (kvm_x86_call(get_cpl)(vcpu) != 0 ||
1312 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1313 kvm_inject_gp(vcpu, 0);
1314 return 1;
1315 }
1316
1317 return kvm_skip_emulated_instruction(vcpu);
1318 }
1319 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_xsetbv);
1320
kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1321 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1322 {
1323 return __kvm_is_valid_cr4(vcpu, cr4) &&
1324 kvm_x86_call(is_valid_cr4)(vcpu, cr4);
1325 }
1326
kvm_post_set_cr4(struct kvm_vcpu * vcpu,unsigned long old_cr4,unsigned long cr4)1327 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1328 {
1329 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1330 kvm_mmu_reset_context(vcpu);
1331
1332 /*
1333 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1334 * according to the SDM; however, stale prev_roots could be reused
1335 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1336 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1337 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1338 * so fall through.
1339 */
1340 if (!tdp_enabled &&
1341 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1342 kvm_mmu_unload(vcpu);
1343
1344 /*
1345 * The TLB has to be flushed for all PCIDs if any of the following
1346 * (architecturally required) changes happen:
1347 * - CR4.PCIDE is changed from 1 to 0
1348 * - CR4.PGE is toggled
1349 *
1350 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1351 */
1352 if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1353 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1354 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1355
1356 /*
1357 * The TLB has to be flushed for the current PCID if any of the
1358 * following (architecturally required) changes happen:
1359 * - CR4.SMEP is changed from 0 to 1
1360 * - CR4.PAE is toggled
1361 */
1362 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1363 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1364 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1365
1366 }
1367 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_post_set_cr4);
1368
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1369 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1370 {
1371 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1372
1373 if (!kvm_is_valid_cr4(vcpu, cr4))
1374 return 1;
1375
1376 if (is_long_mode(vcpu)) {
1377 if (!(cr4 & X86_CR4_PAE))
1378 return 1;
1379 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1380 return 1;
1381 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1382 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1383 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1384 return 1;
1385
1386 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1387 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1388 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1389 return 1;
1390 }
1391
1392 if ((cr4 & X86_CR4_CET) && !kvm_is_cr0_bit_set(vcpu, X86_CR0_WP))
1393 return 1;
1394
1395 kvm_x86_call(set_cr4)(vcpu, cr4);
1396
1397 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1398
1399 return 0;
1400 }
1401 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_cr4);
1402
kvm_invalidate_pcid(struct kvm_vcpu * vcpu,unsigned long pcid)1403 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1404 {
1405 struct kvm_mmu *mmu = vcpu->arch.mmu;
1406 unsigned long roots_to_free = 0;
1407 int i;
1408
1409 /*
1410 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1411 * this is reachable when running EPT=1 and unrestricted_guest=0, and
1412 * also via the emulator. KVM's TDP page tables are not in the scope of
1413 * the invalidation, but the guest's TLB entries need to be flushed as
1414 * the CPU may have cached entries in its TLB for the target PCID.
1415 */
1416 if (unlikely(tdp_enabled)) {
1417 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1418 return;
1419 }
1420
1421 /*
1422 * If neither the current CR3 nor any of the prev_roots use the given
1423 * PCID, then nothing needs to be done here because a resync will
1424 * happen anyway before switching to any other CR3.
1425 */
1426 if (kvm_get_active_pcid(vcpu) == pcid) {
1427 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1428 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1429 }
1430
1431 /*
1432 * If PCID is disabled, there is no need to free prev_roots even if the
1433 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1434 * with PCIDE=0.
1435 */
1436 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1437 return;
1438
1439 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1440 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1441 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1442
1443 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1444 }
1445
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1446 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1447 {
1448 bool skip_tlb_flush = false;
1449 unsigned long pcid = 0;
1450 #ifdef CONFIG_X86_64
1451 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1452 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1453 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1454 pcid = cr3 & X86_CR3_PCID_MASK;
1455 }
1456 #endif
1457
1458 /* PDPTRs are always reloaded for PAE paging. */
1459 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1460 goto handle_tlb_flush;
1461
1462 /*
1463 * Do not condition the GPA check on long mode, this helper is used to
1464 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1465 * the current vCPU mode is accurate.
1466 */
1467 if (!kvm_vcpu_is_legal_cr3(vcpu, cr3))
1468 return 1;
1469
1470 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1471 return 1;
1472
1473 if (cr3 != kvm_read_cr3(vcpu))
1474 kvm_mmu_new_pgd(vcpu, cr3);
1475
1476 vcpu->arch.cr3 = cr3;
1477 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1478 /* Do not call post_set_cr3, we do not get here for confidential guests. */
1479
1480 handle_tlb_flush:
1481 /*
1482 * A load of CR3 that flushes the TLB flushes only the current PCID,
1483 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1484 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1485 * and it's impossible to use a non-zero PCID when PCID is disabled,
1486 * i.e. only PCID=0 can be relevant.
1487 */
1488 if (!skip_tlb_flush)
1489 kvm_invalidate_pcid(vcpu, pcid);
1490
1491 return 0;
1492 }
1493 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_cr3);
1494
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)1495 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1496 {
1497 if (cr8 & CR8_RESERVED_BITS)
1498 return 1;
1499 if (lapic_in_kernel(vcpu))
1500 kvm_lapic_set_tpr(vcpu, cr8);
1501 else
1502 vcpu->arch.cr8 = cr8;
1503 return 0;
1504 }
1505 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_cr8);
1506
kvm_get_cr8(struct kvm_vcpu * vcpu)1507 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1508 {
1509 if (lapic_in_kernel(vcpu))
1510 return kvm_lapic_get_cr8(vcpu);
1511 else
1512 return vcpu->arch.cr8;
1513 }
1514 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_cr8);
1515
kvm_update_dr0123(struct kvm_vcpu * vcpu)1516 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1517 {
1518 int i;
1519
1520 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1521 for (i = 0; i < KVM_NR_DB_REGS; i++)
1522 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1523 }
1524 }
1525
kvm_update_dr7(struct kvm_vcpu * vcpu)1526 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1527 {
1528 unsigned long dr7;
1529
1530 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1531 dr7 = vcpu->arch.guest_debug_dr7;
1532 else
1533 dr7 = vcpu->arch.dr7;
1534 kvm_x86_call(set_dr7)(vcpu, dr7);
1535 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1536 if (dr7 & DR7_BP_EN_MASK)
1537 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1538 }
1539 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_update_dr7);
1540
kvm_dr6_fixed(struct kvm_vcpu * vcpu)1541 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1542 {
1543 u64 fixed = DR6_FIXED_1;
1544
1545 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_RTM))
1546 fixed |= DR6_RTM;
1547
1548 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1549 fixed |= DR6_BUS_LOCK;
1550 return fixed;
1551 }
1552
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1553 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1554 {
1555 size_t size = ARRAY_SIZE(vcpu->arch.db);
1556
1557 switch (dr) {
1558 case 0 ... 3:
1559 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1560 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1561 vcpu->arch.eff_db[dr] = val;
1562 break;
1563 case 4:
1564 case 6:
1565 if (!kvm_dr6_valid(val))
1566 return 1; /* #GP */
1567 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1568 break;
1569 case 5:
1570 default: /* 7 */
1571 if (!kvm_dr7_valid(val))
1572 return 1; /* #GP */
1573 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1574 kvm_update_dr7(vcpu);
1575 break;
1576 }
1577
1578 return 0;
1579 }
1580 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_dr);
1581
kvm_get_dr(struct kvm_vcpu * vcpu,int dr)1582 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr)
1583 {
1584 size_t size = ARRAY_SIZE(vcpu->arch.db);
1585
1586 switch (dr) {
1587 case 0 ... 3:
1588 return vcpu->arch.db[array_index_nospec(dr, size)];
1589 case 4:
1590 case 6:
1591 return vcpu->arch.dr6;
1592 case 5:
1593 default: /* 7 */
1594 return vcpu->arch.dr7;
1595 }
1596 }
1597 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_dr);
1598
kvm_emulate_rdpmc(struct kvm_vcpu * vcpu)1599 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1600 {
1601 u32 pmc = kvm_rcx_read(vcpu);
1602 u64 data;
1603
1604 if (kvm_pmu_rdpmc(vcpu, pmc, &data)) {
1605 kvm_inject_gp(vcpu, 0);
1606 return 1;
1607 }
1608
1609 kvm_rax_write(vcpu, (u32)data);
1610 kvm_rdx_write(vcpu, data >> 32);
1611 return kvm_skip_emulated_instruction(vcpu);
1612 }
1613 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_rdpmc);
1614
1615 /*
1616 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1617 * does not yet virtualize. These include:
1618 * 10 - MISC_PACKAGE_CTRLS
1619 * 11 - ENERGY_FILTERING_CTL
1620 * 12 - DOITM
1621 * 18 - FB_CLEAR_CTRL
1622 * 21 - XAPIC_DISABLE_STATUS
1623 * 23 - OVERCLOCKING_STATUS
1624 */
1625
1626 #define KVM_SUPPORTED_ARCH_CAP \
1627 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1628 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1629 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1630 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1631 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
1632 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO | ARCH_CAP_ITS_NO)
1633
kvm_get_arch_capabilities(void)1634 static u64 kvm_get_arch_capabilities(void)
1635 {
1636 u64 data = kvm_host.arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1637
1638 /*
1639 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1640 * the nested hypervisor runs with NX huge pages. If it is not,
1641 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1642 * L1 guests, so it need not worry about its own (L2) guests.
1643 */
1644 data |= ARCH_CAP_PSCHANGE_MC_NO;
1645
1646 /*
1647 * If we're doing cache flushes (either "always" or "cond")
1648 * we will do one whenever the guest does a vmlaunch/vmresume.
1649 * If an outer hypervisor is doing the cache flush for us
1650 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1651 * capability to the guest too, and if EPT is disabled we're not
1652 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1653 * require a nested hypervisor to do a flush of its own.
1654 */
1655 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1656 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1657
1658 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1659 data |= ARCH_CAP_RDCL_NO;
1660 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1661 data |= ARCH_CAP_SSB_NO;
1662 if (!boot_cpu_has_bug(X86_BUG_MDS))
1663 data |= ARCH_CAP_MDS_NO;
1664 if (!boot_cpu_has_bug(X86_BUG_RFDS))
1665 data |= ARCH_CAP_RFDS_NO;
1666 if (!boot_cpu_has_bug(X86_BUG_ITS))
1667 data |= ARCH_CAP_ITS_NO;
1668
1669 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1670 /*
1671 * If RTM=0 because the kernel has disabled TSX, the host might
1672 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1673 * and therefore knows that there cannot be TAA) but keep
1674 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1675 * and we want to allow migrating those guests to tsx=off hosts.
1676 */
1677 data &= ~ARCH_CAP_TAA_NO;
1678 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1679 data |= ARCH_CAP_TAA_NO;
1680 } else {
1681 /*
1682 * Nothing to do here; we emulate TSX_CTRL if present on the
1683 * host so the guest can choose between disabling TSX or
1684 * using VERW to clear CPU buffers.
1685 */
1686 }
1687
1688 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1689 data |= ARCH_CAP_GDS_NO;
1690
1691 return data;
1692 }
1693
kvm_get_feature_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1694 static int kvm_get_feature_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1695 bool host_initiated)
1696 {
1697 WARN_ON_ONCE(!host_initiated);
1698
1699 switch (index) {
1700 case MSR_IA32_ARCH_CAPABILITIES:
1701 *data = kvm_get_arch_capabilities();
1702 break;
1703 case MSR_IA32_PERF_CAPABILITIES:
1704 *data = kvm_caps.supported_perf_cap;
1705 break;
1706 case MSR_PLATFORM_INFO:
1707 *data = MSR_PLATFORM_INFO_CPUID_FAULT;
1708 break;
1709 case MSR_IA32_UCODE_REV:
1710 rdmsrq_safe(index, data);
1711 break;
1712 default:
1713 return kvm_x86_call(get_feature_msr)(index, data);
1714 }
1715 return 0;
1716 }
1717
do_get_feature_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1718 static int do_get_feature_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1719 {
1720 return kvm_do_msr_access(vcpu, index, data, true, MSR_TYPE_R,
1721 kvm_get_feature_msr);
1722 }
1723
__kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1724 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1725 {
1726 if (efer & EFER_AUTOIBRS && !guest_cpu_cap_has(vcpu, X86_FEATURE_AUTOIBRS))
1727 return false;
1728
1729 if (efer & EFER_FFXSR && !guest_cpu_cap_has(vcpu, X86_FEATURE_FXSR_OPT))
1730 return false;
1731
1732 if (efer & EFER_SVME && !guest_cpu_cap_has(vcpu, X86_FEATURE_SVM))
1733 return false;
1734
1735 if (efer & (EFER_LME | EFER_LMA) &&
1736 !guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
1737 return false;
1738
1739 if (efer & EFER_NX && !guest_cpu_cap_has(vcpu, X86_FEATURE_NX))
1740 return false;
1741
1742 return true;
1743
1744 }
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1745 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1746 {
1747 if (efer & efer_reserved_bits)
1748 return false;
1749
1750 return __kvm_valid_efer(vcpu, efer);
1751 }
1752 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_valid_efer);
1753
set_efer(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1754 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1755 {
1756 u64 old_efer = vcpu->arch.efer;
1757 u64 efer = msr_info->data;
1758 int r;
1759
1760 if (efer & efer_reserved_bits)
1761 return 1;
1762
1763 if (!msr_info->host_initiated) {
1764 if (!__kvm_valid_efer(vcpu, efer))
1765 return 1;
1766
1767 if (is_paging(vcpu) &&
1768 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1769 return 1;
1770 }
1771
1772 efer &= ~EFER_LMA;
1773 efer |= vcpu->arch.efer & EFER_LMA;
1774
1775 r = kvm_x86_call(set_efer)(vcpu, efer);
1776 if (r) {
1777 WARN_ON(r > 0);
1778 return r;
1779 }
1780
1781 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1782 kvm_mmu_reset_context(vcpu);
1783
1784 if (!static_cpu_has(X86_FEATURE_XSAVES) &&
1785 (efer & EFER_SVME))
1786 kvm_hv_xsaves_xsavec_maybe_warn(vcpu);
1787
1788 return 0;
1789 }
1790
kvm_enable_efer_bits(u64 mask)1791 void kvm_enable_efer_bits(u64 mask)
1792 {
1793 efer_reserved_bits &= ~mask;
1794 }
1795 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_enable_efer_bits);
1796
kvm_msr_allowed(struct kvm_vcpu * vcpu,u32 index,u32 type)1797 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1798 {
1799 struct kvm_x86_msr_filter *msr_filter;
1800 struct msr_bitmap_range *ranges;
1801 struct kvm *kvm = vcpu->kvm;
1802 bool allowed;
1803 int idx;
1804 u32 i;
1805
1806 /* x2APIC MSRs do not support filtering. */
1807 if (index >= 0x800 && index <= 0x8ff)
1808 return true;
1809
1810 idx = srcu_read_lock(&kvm->srcu);
1811
1812 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1813 if (!msr_filter) {
1814 allowed = true;
1815 goto out;
1816 }
1817
1818 allowed = msr_filter->default_allow;
1819 ranges = msr_filter->ranges;
1820
1821 for (i = 0; i < msr_filter->count; i++) {
1822 u32 start = ranges[i].base;
1823 u32 end = start + ranges[i].nmsrs;
1824 u32 flags = ranges[i].flags;
1825 unsigned long *bitmap = ranges[i].bitmap;
1826
1827 if ((index >= start) && (index < end) && (flags & type)) {
1828 allowed = test_bit(index - start, bitmap);
1829 break;
1830 }
1831 }
1832
1833 out:
1834 srcu_read_unlock(&kvm->srcu, idx);
1835
1836 return allowed;
1837 }
1838 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_msr_allowed);
1839
1840 /*
1841 * Write @data into the MSR specified by @index. Select MSR specific fault
1842 * checks are bypassed if @host_initiated is %true.
1843 * Returns 0 on success, non-0 otherwise.
1844 * Assumes vcpu_load() was already called.
1845 */
__kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1846 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1847 bool host_initiated)
1848 {
1849 struct msr_data msr;
1850
1851 switch (index) {
1852 case MSR_FS_BASE:
1853 case MSR_GS_BASE:
1854 case MSR_KERNEL_GS_BASE:
1855 case MSR_CSTAR:
1856 case MSR_LSTAR:
1857 if (is_noncanonical_msr_address(data, vcpu))
1858 return 1;
1859 break;
1860 case MSR_IA32_SYSENTER_EIP:
1861 case MSR_IA32_SYSENTER_ESP:
1862 /*
1863 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1864 * non-canonical address is written on Intel but not on
1865 * AMD (which ignores the top 32-bits, because it does
1866 * not implement 64-bit SYSENTER).
1867 *
1868 * 64-bit code should hence be able to write a non-canonical
1869 * value on AMD. Making the address canonical ensures that
1870 * vmentry does not fail on Intel after writing a non-canonical
1871 * value, and that something deterministic happens if the guest
1872 * invokes 64-bit SYSENTER.
1873 */
1874 data = __canonical_address(data, max_host_virt_addr_bits());
1875 break;
1876 case MSR_TSC_AUX:
1877 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1878 return 1;
1879
1880 if (!host_initiated &&
1881 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) &&
1882 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID))
1883 return 1;
1884
1885 /*
1886 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1887 * incomplete and conflicting architectural behavior. Current
1888 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1889 * reserved and always read as zeros. Enforce Intel's reserved
1890 * bits check if the guest CPU is Intel compatible, otherwise
1891 * clear the bits. This ensures cross-vendor migration will
1892 * provide consistent behavior for the guest.
1893 */
1894 if (guest_cpuid_is_intel_compatible(vcpu) && (data >> 32) != 0)
1895 return 1;
1896
1897 data = (u32)data;
1898 break;
1899 case MSR_IA32_U_CET:
1900 case MSR_IA32_S_CET:
1901 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) &&
1902 !guest_cpu_cap_has(vcpu, X86_FEATURE_IBT))
1903 return KVM_MSR_RET_UNSUPPORTED;
1904 if (!kvm_is_valid_u_s_cet(vcpu, data))
1905 return 1;
1906 break;
1907 case MSR_KVM_INTERNAL_GUEST_SSP:
1908 if (!host_initiated)
1909 return 1;
1910 fallthrough;
1911 /*
1912 * Note that the MSR emulation here is flawed when a vCPU
1913 * doesn't support the Intel 64 architecture. The expected
1914 * architectural behavior in this case is that the upper 32
1915 * bits do not exist and should always read '0'. However,
1916 * because the actual hardware on which the virtual CPU is
1917 * running does support Intel 64, XRSTORS/XSAVES in the
1918 * guest could observe behavior that violates the
1919 * architecture. Intercepting XRSTORS/XSAVES for this
1920 * special case isn't deemed worthwhile.
1921 */
1922 case MSR_IA32_PL0_SSP ... MSR_IA32_INT_SSP_TAB:
1923 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK))
1924 return KVM_MSR_RET_UNSUPPORTED;
1925 /*
1926 * MSR_IA32_INT_SSP_TAB is not present on processors that do
1927 * not support Intel 64 architecture.
1928 */
1929 if (index == MSR_IA32_INT_SSP_TAB && !guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
1930 return KVM_MSR_RET_UNSUPPORTED;
1931 if (is_noncanonical_msr_address(data, vcpu))
1932 return 1;
1933 /* All SSP MSRs except MSR_IA32_INT_SSP_TAB must be 4-byte aligned */
1934 if (index != MSR_IA32_INT_SSP_TAB && !IS_ALIGNED(data, 4))
1935 return 1;
1936 break;
1937 }
1938
1939 msr.data = data;
1940 msr.index = index;
1941 msr.host_initiated = host_initiated;
1942
1943 return kvm_x86_call(set_msr)(vcpu, &msr);
1944 }
1945
_kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1946 static int _kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1947 bool host_initiated)
1948 {
1949 return __kvm_set_msr(vcpu, index, *data, host_initiated);
1950 }
1951
kvm_set_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1952 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1953 u32 index, u64 data, bool host_initiated)
1954 {
1955 return kvm_do_msr_access(vcpu, index, &data, host_initiated, MSR_TYPE_W,
1956 _kvm_set_msr);
1957 }
1958
1959 /*
1960 * Read the MSR specified by @index into @data. Select MSR specific fault
1961 * checks are bypassed if @host_initiated is %true.
1962 * Returns 0 on success, non-0 otherwise.
1963 * Assumes vcpu_load() was already called.
1964 */
__kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1965 static int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1966 bool host_initiated)
1967 {
1968 struct msr_data msr;
1969 int ret;
1970
1971 switch (index) {
1972 case MSR_TSC_AUX:
1973 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1974 return 1;
1975
1976 if (!host_initiated &&
1977 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) &&
1978 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID))
1979 return 1;
1980 break;
1981 case MSR_IA32_U_CET:
1982 case MSR_IA32_S_CET:
1983 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) &&
1984 !guest_cpu_cap_has(vcpu, X86_FEATURE_IBT))
1985 return KVM_MSR_RET_UNSUPPORTED;
1986 break;
1987 case MSR_KVM_INTERNAL_GUEST_SSP:
1988 if (!host_initiated)
1989 return 1;
1990 fallthrough;
1991 case MSR_IA32_PL0_SSP ... MSR_IA32_INT_SSP_TAB:
1992 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK))
1993 return KVM_MSR_RET_UNSUPPORTED;
1994 break;
1995 }
1996
1997 msr.index = index;
1998 msr.host_initiated = host_initiated;
1999
2000 ret = kvm_x86_call(get_msr)(vcpu, &msr);
2001 if (!ret)
2002 *data = msr.data;
2003 return ret;
2004 }
2005
kvm_msr_write(struct kvm_vcpu * vcpu,u32 index,u64 data)2006 int kvm_msr_write(struct kvm_vcpu *vcpu, u32 index, u64 data)
2007 {
2008 return __kvm_set_msr(vcpu, index, data, true);
2009 }
2010
kvm_msr_read(struct kvm_vcpu * vcpu,u32 index,u64 * data)2011 int kvm_msr_read(struct kvm_vcpu *vcpu, u32 index, u64 *data)
2012 {
2013 return __kvm_get_msr(vcpu, index, data, true);
2014 }
2015
kvm_get_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)2016 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
2017 u32 index, u64 *data, bool host_initiated)
2018 {
2019 return kvm_do_msr_access(vcpu, index, data, host_initiated, MSR_TYPE_R,
2020 __kvm_get_msr);
2021 }
2022
__kvm_emulate_msr_read(struct kvm_vcpu * vcpu,u32 index,u64 * data)2023 int __kvm_emulate_msr_read(struct kvm_vcpu *vcpu, u32 index, u64 *data)
2024 {
2025 return kvm_get_msr_ignored_check(vcpu, index, data, false);
2026 }
2027 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_emulate_msr_read);
2028
__kvm_emulate_msr_write(struct kvm_vcpu * vcpu,u32 index,u64 data)2029 int __kvm_emulate_msr_write(struct kvm_vcpu *vcpu, u32 index, u64 data)
2030 {
2031 return kvm_set_msr_ignored_check(vcpu, index, data, false);
2032 }
2033 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_emulate_msr_write);
2034
kvm_emulate_msr_read(struct kvm_vcpu * vcpu,u32 index,u64 * data)2035 int kvm_emulate_msr_read(struct kvm_vcpu *vcpu, u32 index, u64 *data)
2036 {
2037 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
2038 return KVM_MSR_RET_FILTERED;
2039
2040 return __kvm_emulate_msr_read(vcpu, index, data);
2041 }
2042 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_msr_read);
2043
kvm_emulate_msr_write(struct kvm_vcpu * vcpu,u32 index,u64 data)2044 int kvm_emulate_msr_write(struct kvm_vcpu *vcpu, u32 index, u64 data)
2045 {
2046 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
2047 return KVM_MSR_RET_FILTERED;
2048
2049 return __kvm_emulate_msr_write(vcpu, index, data);
2050 }
2051 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_msr_write);
2052
2053
complete_userspace_rdmsr(struct kvm_vcpu * vcpu)2054 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
2055 {
2056 if (!vcpu->run->msr.error) {
2057 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
2058 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
2059 }
2060 }
2061
complete_emulated_msr_access(struct kvm_vcpu * vcpu)2062 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
2063 {
2064 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
2065 }
2066
complete_emulated_rdmsr(struct kvm_vcpu * vcpu)2067 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
2068 {
2069 complete_userspace_rdmsr(vcpu);
2070 return complete_emulated_msr_access(vcpu);
2071 }
2072
complete_fast_msr_access(struct kvm_vcpu * vcpu)2073 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
2074 {
2075 return kvm_x86_call(complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2076 }
2077
complete_fast_rdmsr(struct kvm_vcpu * vcpu)2078 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2079 {
2080 complete_userspace_rdmsr(vcpu);
2081 return complete_fast_msr_access(vcpu);
2082 }
2083
complete_fast_rdmsr_imm(struct kvm_vcpu * vcpu)2084 static int complete_fast_rdmsr_imm(struct kvm_vcpu *vcpu)
2085 {
2086 if (!vcpu->run->msr.error)
2087 kvm_register_write(vcpu, vcpu->arch.cui_rdmsr_imm_reg,
2088 vcpu->run->msr.data);
2089
2090 return complete_fast_msr_access(vcpu);
2091 }
2092
kvm_msr_reason(int r)2093 static u64 kvm_msr_reason(int r)
2094 {
2095 switch (r) {
2096 case KVM_MSR_RET_UNSUPPORTED:
2097 return KVM_MSR_EXIT_REASON_UNKNOWN;
2098 case KVM_MSR_RET_FILTERED:
2099 return KVM_MSR_EXIT_REASON_FILTER;
2100 default:
2101 return KVM_MSR_EXIT_REASON_INVAL;
2102 }
2103 }
2104
kvm_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u32 exit_reason,u64 data,int (* completion)(struct kvm_vcpu * vcpu),int r)2105 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2106 u32 exit_reason, u64 data,
2107 int (*completion)(struct kvm_vcpu *vcpu),
2108 int r)
2109 {
2110 u64 msr_reason = kvm_msr_reason(r);
2111
2112 /* Check if the user wanted to know about this MSR fault */
2113 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2114 return 0;
2115
2116 vcpu->run->exit_reason = exit_reason;
2117 vcpu->run->msr.error = 0;
2118 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2119 vcpu->run->msr.reason = msr_reason;
2120 vcpu->run->msr.index = index;
2121 vcpu->run->msr.data = data;
2122 vcpu->arch.complete_userspace_io = completion;
2123
2124 return 1;
2125 }
2126
__kvm_emulate_rdmsr(struct kvm_vcpu * vcpu,u32 msr,int reg,int (* complete_rdmsr)(struct kvm_vcpu *))2127 static int __kvm_emulate_rdmsr(struct kvm_vcpu *vcpu, u32 msr, int reg,
2128 int (*complete_rdmsr)(struct kvm_vcpu *))
2129 {
2130 u64 data;
2131 int r;
2132
2133 r = kvm_emulate_msr_read(vcpu, msr, &data);
2134
2135 if (!r) {
2136 trace_kvm_msr_read(msr, data);
2137
2138 if (reg < 0) {
2139 kvm_rax_write(vcpu, data & -1u);
2140 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2141 } else {
2142 kvm_register_write(vcpu, reg, data);
2143 }
2144 } else {
2145 /* MSR read failed? See if we should ask user space */
2146 if (kvm_msr_user_space(vcpu, msr, KVM_EXIT_X86_RDMSR, 0,
2147 complete_rdmsr, r))
2148 return 0;
2149 trace_kvm_msr_read_ex(msr);
2150 }
2151
2152 return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2153 }
2154
kvm_emulate_rdmsr(struct kvm_vcpu * vcpu)2155 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2156 {
2157 return __kvm_emulate_rdmsr(vcpu, kvm_rcx_read(vcpu), -1,
2158 complete_fast_rdmsr);
2159 }
2160 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_rdmsr);
2161
kvm_emulate_rdmsr_imm(struct kvm_vcpu * vcpu,u32 msr,int reg)2162 int kvm_emulate_rdmsr_imm(struct kvm_vcpu *vcpu, u32 msr, int reg)
2163 {
2164 vcpu->arch.cui_rdmsr_imm_reg = reg;
2165
2166 return __kvm_emulate_rdmsr(vcpu, msr, reg, complete_fast_rdmsr_imm);
2167 }
2168 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_rdmsr_imm);
2169
__kvm_emulate_wrmsr(struct kvm_vcpu * vcpu,u32 msr,u64 data)2170 static int __kvm_emulate_wrmsr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2171 {
2172 int r;
2173
2174 r = kvm_emulate_msr_write(vcpu, msr, data);
2175 if (!r) {
2176 trace_kvm_msr_write(msr, data);
2177 } else {
2178 /* MSR write failed? See if we should ask user space */
2179 if (kvm_msr_user_space(vcpu, msr, KVM_EXIT_X86_WRMSR, data,
2180 complete_fast_msr_access, r))
2181 return 0;
2182 /* Signal all other negative errors to userspace */
2183 if (r < 0)
2184 return r;
2185 trace_kvm_msr_write_ex(msr, data);
2186 }
2187
2188 return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2189 }
2190
kvm_emulate_wrmsr(struct kvm_vcpu * vcpu)2191 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2192 {
2193 return __kvm_emulate_wrmsr(vcpu, kvm_rcx_read(vcpu),
2194 kvm_read_edx_eax(vcpu));
2195 }
2196 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_wrmsr);
2197
kvm_emulate_wrmsr_imm(struct kvm_vcpu * vcpu,u32 msr,int reg)2198 int kvm_emulate_wrmsr_imm(struct kvm_vcpu *vcpu, u32 msr, int reg)
2199 {
2200 return __kvm_emulate_wrmsr(vcpu, msr, kvm_register_read(vcpu, reg));
2201 }
2202 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_wrmsr_imm);
2203
kvm_emulate_as_nop(struct kvm_vcpu * vcpu)2204 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2205 {
2206 return kvm_skip_emulated_instruction(vcpu);
2207 }
2208
kvm_emulate_invd(struct kvm_vcpu * vcpu)2209 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2210 {
2211 /* Treat an INVD instruction as a NOP and just skip it. */
2212 return kvm_emulate_as_nop(vcpu);
2213 }
2214 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_invd);
2215
handle_fastpath_invd(struct kvm_vcpu * vcpu)2216 fastpath_t handle_fastpath_invd(struct kvm_vcpu *vcpu)
2217 {
2218 if (!kvm_emulate_invd(vcpu))
2219 return EXIT_FASTPATH_EXIT_USERSPACE;
2220
2221 return EXIT_FASTPATH_REENTER_GUEST;
2222 }
2223 EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_fastpath_invd);
2224
kvm_handle_invalid_op(struct kvm_vcpu * vcpu)2225 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2226 {
2227 kvm_queue_exception(vcpu, UD_VECTOR);
2228 return 1;
2229 }
2230 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_handle_invalid_op);
2231
2232
kvm_emulate_monitor_mwait(struct kvm_vcpu * vcpu,const char * insn)2233 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2234 {
2235 bool enabled;
2236
2237 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS))
2238 goto emulate_as_nop;
2239
2240 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT))
2241 enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_MWAIT);
2242 else
2243 enabled = vcpu->arch.ia32_misc_enable_msr & MSR_IA32_MISC_ENABLE_MWAIT;
2244
2245 if (!enabled)
2246 return kvm_handle_invalid_op(vcpu);
2247
2248 emulate_as_nop:
2249 pr_warn_once("%s instruction emulated as NOP!\n", insn);
2250 return kvm_emulate_as_nop(vcpu);
2251 }
kvm_emulate_mwait(struct kvm_vcpu * vcpu)2252 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2253 {
2254 return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2255 }
2256 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_mwait);
2257
kvm_emulate_monitor(struct kvm_vcpu * vcpu)2258 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2259 {
2260 return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2261 }
2262 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_monitor);
2263
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu)2264 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2265 {
2266 xfer_to_guest_mode_prepare();
2267
2268 return READ_ONCE(vcpu->mode) == EXITING_GUEST_MODE ||
2269 kvm_request_pending(vcpu) || xfer_to_guest_mode_work_pending();
2270 }
2271
__handle_fastpath_wrmsr(struct kvm_vcpu * vcpu,u32 msr,u64 data)2272 static fastpath_t __handle_fastpath_wrmsr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2273 {
2274 switch (msr) {
2275 case APIC_BASE_MSR + (APIC_ICR >> 4):
2276 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic) ||
2277 kvm_x2apic_icr_write_fast(vcpu->arch.apic, data))
2278 return EXIT_FASTPATH_NONE;
2279 break;
2280 case MSR_IA32_TSC_DEADLINE:
2281 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2282 break;
2283 default:
2284 return EXIT_FASTPATH_NONE;
2285 }
2286
2287 trace_kvm_msr_write(msr, data);
2288
2289 if (!kvm_skip_emulated_instruction(vcpu))
2290 return EXIT_FASTPATH_EXIT_USERSPACE;
2291
2292 return EXIT_FASTPATH_REENTER_GUEST;
2293 }
2294
handle_fastpath_wrmsr(struct kvm_vcpu * vcpu)2295 fastpath_t handle_fastpath_wrmsr(struct kvm_vcpu *vcpu)
2296 {
2297 return __handle_fastpath_wrmsr(vcpu, kvm_rcx_read(vcpu),
2298 kvm_read_edx_eax(vcpu));
2299 }
2300 EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_fastpath_wrmsr);
2301
handle_fastpath_wrmsr_imm(struct kvm_vcpu * vcpu,u32 msr,int reg)2302 fastpath_t handle_fastpath_wrmsr_imm(struct kvm_vcpu *vcpu, u32 msr, int reg)
2303 {
2304 return __handle_fastpath_wrmsr(vcpu, msr, kvm_register_read(vcpu, reg));
2305 }
2306 EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_fastpath_wrmsr_imm);
2307
2308 /*
2309 * Adapt set_msr() to msr_io()'s calling convention
2310 */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2311 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2312 {
2313 return kvm_get_msr_ignored_check(vcpu, index, data, true);
2314 }
2315
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2316 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2317 {
2318 u64 val;
2319
2320 /*
2321 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does
2322 * not support modifying the guest vCPU model on the fly, e.g. changing
2323 * the nVMX capabilities while L2 is running is nonsensical. Allow
2324 * writes of the same value, e.g. to allow userspace to blindly stuff
2325 * all MSRs when emulating RESET.
2326 */
2327 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index) &&
2328 (do_get_msr(vcpu, index, &val) || *data != val))
2329 return -EINVAL;
2330
2331 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2332 }
2333
2334 #ifdef CONFIG_X86_64
2335 struct pvclock_clock {
2336 int vclock_mode;
2337 u64 cycle_last;
2338 u64 mask;
2339 u32 mult;
2340 u32 shift;
2341 u64 base_cycles;
2342 u64 offset;
2343 };
2344
2345 struct pvclock_gtod_data {
2346 seqcount_t seq;
2347
2348 struct pvclock_clock clock; /* extract of a clocksource struct */
2349 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2350
2351 ktime_t offs_boot;
2352 u64 wall_time_sec;
2353 };
2354
2355 static struct pvclock_gtod_data pvclock_gtod_data;
2356
update_pvclock_gtod(struct timekeeper * tk)2357 static void update_pvclock_gtod(struct timekeeper *tk)
2358 {
2359 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2360
2361 write_seqcount_begin(&vdata->seq);
2362
2363 /* copy pvclock gtod data */
2364 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2365 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2366 vdata->clock.mask = tk->tkr_mono.mask;
2367 vdata->clock.mult = tk->tkr_mono.mult;
2368 vdata->clock.shift = tk->tkr_mono.shift;
2369 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2370 vdata->clock.offset = tk->tkr_mono.base;
2371
2372 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2373 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2374 vdata->raw_clock.mask = tk->tkr_raw.mask;
2375 vdata->raw_clock.mult = tk->tkr_raw.mult;
2376 vdata->raw_clock.shift = tk->tkr_raw.shift;
2377 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2378 vdata->raw_clock.offset = tk->tkr_raw.base;
2379
2380 vdata->wall_time_sec = tk->xtime_sec;
2381
2382 vdata->offs_boot = tk->offs_boot;
2383
2384 write_seqcount_end(&vdata->seq);
2385 }
2386
get_kvmclock_base_ns(void)2387 static s64 get_kvmclock_base_ns(void)
2388 {
2389 /* Count up from boot time, but with the frequency of the raw clock. */
2390 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2391 }
2392 #else
get_kvmclock_base_ns(void)2393 static s64 get_kvmclock_base_ns(void)
2394 {
2395 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2396 return ktime_get_boottime_ns();
2397 }
2398 #endif
2399
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock,int sec_hi_ofs)2400 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2401 {
2402 int version;
2403 int r;
2404 struct pvclock_wall_clock wc;
2405 u32 wc_sec_hi;
2406 u64 wall_nsec;
2407
2408 if (!wall_clock)
2409 return;
2410
2411 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2412 if (r)
2413 return;
2414
2415 if (version & 1)
2416 ++version; /* first time write, random junk */
2417
2418 ++version;
2419
2420 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2421 return;
2422
2423 wall_nsec = kvm_get_wall_clock_epoch(kvm);
2424
2425 wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
2426 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2427 wc.version = version;
2428
2429 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2430
2431 if (sec_hi_ofs) {
2432 wc_sec_hi = wall_nsec >> 32;
2433 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2434 &wc_sec_hi, sizeof(wc_sec_hi));
2435 }
2436
2437 version++;
2438 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2439 }
2440
kvm_write_system_time(struct kvm_vcpu * vcpu,gpa_t system_time,bool old_msr,bool host_initiated)2441 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2442 bool old_msr, bool host_initiated)
2443 {
2444 struct kvm_arch *ka = &vcpu->kvm->arch;
2445
2446 if (vcpu->vcpu_id == 0 && !host_initiated) {
2447 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2448 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2449
2450 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2451 }
2452
2453 vcpu->arch.time = system_time;
2454 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2455
2456 /* we verify if the enable bit is set... */
2457 if (system_time & 1)
2458 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2459 sizeof(struct pvclock_vcpu_time_info));
2460 else
2461 kvm_gpc_deactivate(&vcpu->arch.pv_time);
2462
2463 return;
2464 }
2465
div_frac(uint32_t dividend,uint32_t divisor)2466 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2467 {
2468 do_shl32_div32(dividend, divisor);
2469 return dividend;
2470 }
2471
kvm_get_time_scale(uint64_t scaled_hz,uint64_t base_hz,s8 * pshift,u32 * pmultiplier)2472 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2473 s8 *pshift, u32 *pmultiplier)
2474 {
2475 uint64_t scaled64;
2476 int32_t shift = 0;
2477 uint64_t tps64;
2478 uint32_t tps32;
2479
2480 tps64 = base_hz;
2481 scaled64 = scaled_hz;
2482 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2483 tps64 >>= 1;
2484 shift--;
2485 }
2486
2487 tps32 = (uint32_t)tps64;
2488 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2489 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2490 scaled64 >>= 1;
2491 else
2492 tps32 <<= 1;
2493 shift++;
2494 }
2495
2496 *pshift = shift;
2497 *pmultiplier = div_frac(scaled64, tps32);
2498 }
2499
2500 #ifdef CONFIG_X86_64
2501 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2502 #endif
2503
2504 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2505 static unsigned long max_tsc_khz;
2506
adjust_tsc_khz(u32 khz,s32 ppm)2507 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2508 {
2509 u64 v = (u64)khz * (1000000 + ppm);
2510 do_div(v, 1000000);
2511 return v;
2512 }
2513
2514 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2515
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)2516 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2517 {
2518 u64 ratio;
2519
2520 /* Guest TSC same frequency as host TSC? */
2521 if (!scale) {
2522 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2523 return 0;
2524 }
2525
2526 /* TSC scaling supported? */
2527 if (!kvm_caps.has_tsc_control) {
2528 if (user_tsc_khz > tsc_khz) {
2529 vcpu->arch.tsc_catchup = 1;
2530 vcpu->arch.tsc_always_catchup = 1;
2531 return 0;
2532 } else {
2533 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2534 return -1;
2535 }
2536 }
2537
2538 /* TSC scaling required - calculate ratio */
2539 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2540 user_tsc_khz, tsc_khz);
2541
2542 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2543 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2544 user_tsc_khz);
2545 return -1;
2546 }
2547
2548 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2549 return 0;
2550 }
2551
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)2552 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2553 {
2554 u32 thresh_lo, thresh_hi;
2555 int use_scaling = 0;
2556
2557 /* tsc_khz can be zero if TSC calibration fails */
2558 if (user_tsc_khz == 0) {
2559 /* set tsc_scaling_ratio to a safe value */
2560 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2561 return -1;
2562 }
2563
2564 /* Compute a scale to convert nanoseconds in TSC cycles */
2565 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2566 &vcpu->arch.virtual_tsc_shift,
2567 &vcpu->arch.virtual_tsc_mult);
2568 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2569
2570 /*
2571 * Compute the variation in TSC rate which is acceptable
2572 * within the range of tolerance and decide if the
2573 * rate being applied is within that bounds of the hardware
2574 * rate. If so, no scaling or compensation need be done.
2575 */
2576 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2577 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2578 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2579 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2580 user_tsc_khz, thresh_lo, thresh_hi);
2581 use_scaling = 1;
2582 }
2583 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2584 }
2585
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)2586 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2587 {
2588 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2589 vcpu->arch.virtual_tsc_mult,
2590 vcpu->arch.virtual_tsc_shift);
2591 tsc += vcpu->arch.this_tsc_write;
2592 return tsc;
2593 }
2594
2595 #ifdef CONFIG_X86_64
gtod_is_based_on_tsc(int mode)2596 static inline bool gtod_is_based_on_tsc(int mode)
2597 {
2598 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2599 }
2600 #endif
2601
kvm_track_tsc_matching(struct kvm_vcpu * vcpu,bool new_generation)2602 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation)
2603 {
2604 #ifdef CONFIG_X86_64
2605 struct kvm_arch *ka = &vcpu->kvm->arch;
2606 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2607
2608 /*
2609 * To use the masterclock, the host clocksource must be based on TSC
2610 * and all vCPUs must have matching TSCs. Note, the count for matching
2611 * vCPUs doesn't include the reference vCPU, hence "+1".
2612 */
2613 bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 ==
2614 atomic_read(&vcpu->kvm->online_vcpus)) &&
2615 gtod_is_based_on_tsc(gtod->clock.vclock_mode);
2616
2617 /*
2618 * Request a masterclock update if the masterclock needs to be toggled
2619 * on/off, or when starting a new generation and the masterclock is
2620 * enabled (compute_guest_tsc() requires the masterclock snapshot to be
2621 * taken _after_ the new generation is created).
2622 */
2623 if ((ka->use_master_clock && new_generation) ||
2624 (ka->use_master_clock != use_master_clock))
2625 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2626
2627 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2628 atomic_read(&vcpu->kvm->online_vcpus),
2629 ka->use_master_clock, gtod->clock.vclock_mode);
2630 #endif
2631 }
2632
2633 /*
2634 * Multiply tsc by a fixed point number represented by ratio.
2635 *
2636 * The most significant 64-N bits (mult) of ratio represent the
2637 * integral part of the fixed point number; the remaining N bits
2638 * (frac) represent the fractional part, ie. ratio represents a fixed
2639 * point number (mult + frac * 2^(-N)).
2640 *
2641 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2642 */
__scale_tsc(u64 ratio,u64 tsc)2643 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2644 {
2645 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2646 }
2647
kvm_scale_tsc(u64 tsc,u64 ratio)2648 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2649 {
2650 u64 _tsc = tsc;
2651
2652 if (ratio != kvm_caps.default_tsc_scaling_ratio)
2653 _tsc = __scale_tsc(ratio, tsc);
2654
2655 return _tsc;
2656 }
2657
kvm_compute_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)2658 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2659 {
2660 u64 tsc;
2661
2662 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2663
2664 return target_tsc - tsc;
2665 }
2666
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)2667 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2668 {
2669 return vcpu->arch.l1_tsc_offset +
2670 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2671 }
2672 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_l1_tsc);
2673
kvm_calc_nested_tsc_offset(u64 l1_offset,u64 l2_offset,u64 l2_multiplier)2674 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2675 {
2676 u64 nested_offset;
2677
2678 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2679 nested_offset = l1_offset;
2680 else
2681 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2682 kvm_caps.tsc_scaling_ratio_frac_bits);
2683
2684 nested_offset += l2_offset;
2685 return nested_offset;
2686 }
2687 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_calc_nested_tsc_offset);
2688
kvm_calc_nested_tsc_multiplier(u64 l1_multiplier,u64 l2_multiplier)2689 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2690 {
2691 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2692 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2693 kvm_caps.tsc_scaling_ratio_frac_bits);
2694
2695 return l1_multiplier;
2696 }
2697 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_calc_nested_tsc_multiplier);
2698
kvm_vcpu_write_tsc_offset(struct kvm_vcpu * vcpu,u64 l1_offset)2699 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2700 {
2701 if (vcpu->arch.guest_tsc_protected)
2702 return;
2703
2704 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2705 vcpu->arch.l1_tsc_offset,
2706 l1_offset);
2707
2708 vcpu->arch.l1_tsc_offset = l1_offset;
2709
2710 /*
2711 * If we are here because L1 chose not to trap WRMSR to TSC then
2712 * according to the spec this should set L1's TSC (as opposed to
2713 * setting L1's offset for L2).
2714 */
2715 if (is_guest_mode(vcpu))
2716 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2717 l1_offset,
2718 kvm_x86_call(get_l2_tsc_offset)(vcpu),
2719 kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2720 else
2721 vcpu->arch.tsc_offset = l1_offset;
2722
2723 kvm_x86_call(write_tsc_offset)(vcpu);
2724 }
2725
kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu * vcpu,u64 l1_multiplier)2726 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2727 {
2728 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2729
2730 /* Userspace is changing the multiplier while L2 is active */
2731 if (is_guest_mode(vcpu))
2732 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2733 l1_multiplier,
2734 kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2735 else
2736 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2737
2738 if (kvm_caps.has_tsc_control)
2739 kvm_x86_call(write_tsc_multiplier)(vcpu);
2740 }
2741
kvm_check_tsc_unstable(void)2742 static inline bool kvm_check_tsc_unstable(void)
2743 {
2744 #ifdef CONFIG_X86_64
2745 /*
2746 * TSC is marked unstable when we're running on Hyper-V,
2747 * 'TSC page' clocksource is good.
2748 */
2749 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2750 return false;
2751 #endif
2752 return check_tsc_unstable();
2753 }
2754
2755 /*
2756 * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2757 * offset for the vcpu and tracks the TSC matching generation that the vcpu
2758 * participates in.
2759 */
__kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 offset,u64 tsc,u64 ns,bool matched,bool user_set_tsc)2760 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2761 u64 ns, bool matched, bool user_set_tsc)
2762 {
2763 struct kvm *kvm = vcpu->kvm;
2764
2765 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2766
2767 if (vcpu->arch.guest_tsc_protected)
2768 return;
2769
2770 if (user_set_tsc)
2771 vcpu->kvm->arch.user_set_tsc = true;
2772
2773 /*
2774 * We also track th most recent recorded KHZ, write and time to
2775 * allow the matching interval to be extended at each write.
2776 */
2777 kvm->arch.last_tsc_nsec = ns;
2778 kvm->arch.last_tsc_write = tsc;
2779 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2780 kvm->arch.last_tsc_offset = offset;
2781
2782 vcpu->arch.last_guest_tsc = tsc;
2783
2784 kvm_vcpu_write_tsc_offset(vcpu, offset);
2785
2786 if (!matched) {
2787 /*
2788 * We split periods of matched TSC writes into generations.
2789 * For each generation, we track the original measured
2790 * nanosecond time, offset, and write, so if TSCs are in
2791 * sync, we can match exact offset, and if not, we can match
2792 * exact software computation in compute_guest_tsc()
2793 *
2794 * These values are tracked in kvm->arch.cur_xxx variables.
2795 */
2796 kvm->arch.cur_tsc_generation++;
2797 kvm->arch.cur_tsc_nsec = ns;
2798 kvm->arch.cur_tsc_write = tsc;
2799 kvm->arch.cur_tsc_offset = offset;
2800 kvm->arch.nr_vcpus_matched_tsc = 0;
2801 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2802 kvm->arch.nr_vcpus_matched_tsc++;
2803 }
2804
2805 /* Keep track of which generation this VCPU has synchronized to */
2806 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2807 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2808 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2809
2810 kvm_track_tsc_matching(vcpu, !matched);
2811 }
2812
kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 * user_value)2813 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
2814 {
2815 u64 data = user_value ? *user_value : 0;
2816 struct kvm *kvm = vcpu->kvm;
2817 u64 offset, ns, elapsed;
2818 unsigned long flags;
2819 bool matched = false;
2820 bool synchronizing = false;
2821
2822 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2823 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2824 ns = get_kvmclock_base_ns();
2825 elapsed = ns - kvm->arch.last_tsc_nsec;
2826
2827 if (vcpu->arch.virtual_tsc_khz) {
2828 if (data == 0) {
2829 /*
2830 * Force synchronization when creating a vCPU, or when
2831 * userspace explicitly writes a zero value.
2832 */
2833 synchronizing = true;
2834 } else if (kvm->arch.user_set_tsc) {
2835 u64 tsc_exp = kvm->arch.last_tsc_write +
2836 nsec_to_cycles(vcpu, elapsed);
2837 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2838 /*
2839 * Here lies UAPI baggage: when a user-initiated TSC write has
2840 * a small delta (1 second) of virtual cycle time against the
2841 * previously set vCPU, we assume that they were intended to be
2842 * in sync and the delta was only due to the racy nature of the
2843 * legacy API.
2844 *
2845 * This trick falls down when restoring a guest which genuinely
2846 * has been running for less time than the 1 second of imprecision
2847 * which we allow for in the legacy API. In this case, the first
2848 * value written by userspace (on any vCPU) should not be subject
2849 * to this 'correction' to make it sync up with values that only
2850 * come from the kernel's default vCPU creation. Make the 1-second
2851 * slop hack only trigger if the user_set_tsc flag is already set.
2852 */
2853 synchronizing = data < tsc_exp + tsc_hz &&
2854 data + tsc_hz > tsc_exp;
2855 }
2856 }
2857
2858
2859 /*
2860 * For a reliable TSC, we can match TSC offsets, and for an unstable
2861 * TSC, we add elapsed time in this computation. We could let the
2862 * compensation code attempt to catch up if we fall behind, but
2863 * it's better to try to match offsets from the beginning.
2864 */
2865 if (synchronizing &&
2866 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2867 if (!kvm_check_tsc_unstable()) {
2868 offset = kvm->arch.cur_tsc_offset;
2869 } else {
2870 u64 delta = nsec_to_cycles(vcpu, elapsed);
2871 data += delta;
2872 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2873 }
2874 matched = true;
2875 }
2876
2877 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched, !!user_value);
2878 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2879 }
2880
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)2881 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2882 s64 adjustment)
2883 {
2884 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2885 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2886 }
2887
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)2888 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2889 {
2890 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2891 WARN_ON(adjustment < 0);
2892 adjustment = kvm_scale_tsc((u64) adjustment,
2893 vcpu->arch.l1_tsc_scaling_ratio);
2894 adjust_tsc_offset_guest(vcpu, adjustment);
2895 }
2896
2897 #ifdef CONFIG_X86_64
2898
read_tsc(void)2899 static u64 read_tsc(void)
2900 {
2901 u64 ret = (u64)rdtsc_ordered();
2902 u64 last = pvclock_gtod_data.clock.cycle_last;
2903
2904 if (likely(ret >= last))
2905 return ret;
2906
2907 /*
2908 * GCC likes to generate cmov here, but this branch is extremely
2909 * predictable (it's just a function of time and the likely is
2910 * very likely) and there's a data dependence, so force GCC
2911 * to generate a branch instead. I don't barrier() because
2912 * we don't actually need a barrier, and if this function
2913 * ever gets inlined it will generate worse code.
2914 */
2915 asm volatile ("");
2916 return last;
2917 }
2918
vgettsc(struct pvclock_clock * clock,u64 * tsc_timestamp,int * mode)2919 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2920 int *mode)
2921 {
2922 u64 tsc_pg_val;
2923 long v;
2924
2925 switch (clock->vclock_mode) {
2926 case VDSO_CLOCKMODE_HVCLOCK:
2927 if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2928 tsc_timestamp, &tsc_pg_val)) {
2929 /* TSC page valid */
2930 *mode = VDSO_CLOCKMODE_HVCLOCK;
2931 v = (tsc_pg_val - clock->cycle_last) &
2932 clock->mask;
2933 } else {
2934 /* TSC page invalid */
2935 *mode = VDSO_CLOCKMODE_NONE;
2936 }
2937 break;
2938 case VDSO_CLOCKMODE_TSC:
2939 *mode = VDSO_CLOCKMODE_TSC;
2940 *tsc_timestamp = read_tsc();
2941 v = (*tsc_timestamp - clock->cycle_last) &
2942 clock->mask;
2943 break;
2944 default:
2945 *mode = VDSO_CLOCKMODE_NONE;
2946 }
2947
2948 if (*mode == VDSO_CLOCKMODE_NONE)
2949 *tsc_timestamp = v = 0;
2950
2951 return v * clock->mult;
2952 }
2953
2954 /*
2955 * As with get_kvmclock_base_ns(), this counts from boot time, at the
2956 * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot).
2957 */
do_kvmclock_base(s64 * t,u64 * tsc_timestamp)2958 static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp)
2959 {
2960 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2961 unsigned long seq;
2962 int mode;
2963 u64 ns;
2964
2965 do {
2966 seq = read_seqcount_begin(>od->seq);
2967 ns = gtod->raw_clock.base_cycles;
2968 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode);
2969 ns >>= gtod->raw_clock.shift;
2970 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2971 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2972 *t = ns;
2973
2974 return mode;
2975 }
2976
2977 /*
2978 * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with
2979 * no boot time offset.
2980 */
do_monotonic(s64 * t,u64 * tsc_timestamp)2981 static int do_monotonic(s64 *t, u64 *tsc_timestamp)
2982 {
2983 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2984 unsigned long seq;
2985 int mode;
2986 u64 ns;
2987
2988 do {
2989 seq = read_seqcount_begin(>od->seq);
2990 ns = gtod->clock.base_cycles;
2991 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2992 ns >>= gtod->clock.shift;
2993 ns += ktime_to_ns(gtod->clock.offset);
2994 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2995 *t = ns;
2996
2997 return mode;
2998 }
2999
do_realtime(struct timespec64 * ts,u64 * tsc_timestamp)3000 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
3001 {
3002 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
3003 unsigned long seq;
3004 int mode;
3005 u64 ns;
3006
3007 do {
3008 seq = read_seqcount_begin(>od->seq);
3009 ts->tv_sec = gtod->wall_time_sec;
3010 ns = gtod->clock.base_cycles;
3011 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
3012 ns >>= gtod->clock.shift;
3013 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
3014
3015 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
3016 ts->tv_nsec = ns;
3017
3018 return mode;
3019 }
3020
3021 /*
3022 * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and
3023 * reports the TSC value from which it do so. Returns true if host is
3024 * using TSC based clocksource.
3025 */
kvm_get_time_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)3026 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
3027 {
3028 /* checked again under seqlock below */
3029 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
3030 return false;
3031
3032 return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns,
3033 tsc_timestamp));
3034 }
3035
3036 /*
3037 * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did
3038 * so. Returns true if host is using TSC based clocksource.
3039 */
kvm_get_monotonic_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)3040 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
3041 {
3042 /* checked again under seqlock below */
3043 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
3044 return false;
3045
3046 return gtod_is_based_on_tsc(do_monotonic(kernel_ns,
3047 tsc_timestamp));
3048 }
3049
3050 /*
3051 * Calculates CLOCK_REALTIME and reports the TSC value from which it did
3052 * so. Returns true if host is using TSC based clocksource.
3053 *
3054 * DO NOT USE this for anything related to migration. You want CLOCK_TAI
3055 * for that.
3056 */
kvm_get_walltime_and_clockread(struct timespec64 * ts,u64 * tsc_timestamp)3057 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
3058 u64 *tsc_timestamp)
3059 {
3060 /* checked again under seqlock below */
3061 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
3062 return false;
3063
3064 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
3065 }
3066 #endif
3067
3068 /*
3069 *
3070 * Assuming a stable TSC across physical CPUS, and a stable TSC
3071 * across virtual CPUs, the following condition is possible.
3072 * Each numbered line represents an event visible to both
3073 * CPUs at the next numbered event.
3074 *
3075 * "timespecX" represents host monotonic time. "tscX" represents
3076 * RDTSC value.
3077 *
3078 * VCPU0 on CPU0 | VCPU1 on CPU1
3079 *
3080 * 1. read timespec0,tsc0
3081 * 2. | timespec1 = timespec0 + N
3082 * | tsc1 = tsc0 + M
3083 * 3. transition to guest | transition to guest
3084 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
3085 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
3086 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
3087 *
3088 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
3089 *
3090 * - ret0 < ret1
3091 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
3092 * ...
3093 * - 0 < N - M => M < N
3094 *
3095 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
3096 * always the case (the difference between two distinct xtime instances
3097 * might be smaller then the difference between corresponding TSC reads,
3098 * when updating guest vcpus pvclock areas).
3099 *
3100 * To avoid that problem, do not allow visibility of distinct
3101 * system_timestamp/tsc_timestamp values simultaneously: use a master
3102 * copy of host monotonic time values. Update that master copy
3103 * in lockstep.
3104 *
3105 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
3106 *
3107 */
3108
pvclock_update_vm_gtod_copy(struct kvm * kvm)3109 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
3110 {
3111 #ifdef CONFIG_X86_64
3112 struct kvm_arch *ka = &kvm->arch;
3113 int vclock_mode;
3114 bool host_tsc_clocksource, vcpus_matched;
3115
3116 lockdep_assert_held(&kvm->arch.tsc_write_lock);
3117 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
3118 atomic_read(&kvm->online_vcpus));
3119
3120 /*
3121 * If the host uses TSC clock, then passthrough TSC as stable
3122 * to the guest.
3123 */
3124 host_tsc_clocksource = kvm_get_time_and_clockread(
3125 &ka->master_kernel_ns,
3126 &ka->master_cycle_now);
3127
3128 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
3129 && !ka->backwards_tsc_observed
3130 && !ka->boot_vcpu_runs_old_kvmclock;
3131
3132 if (ka->use_master_clock)
3133 atomic_set(&kvm_guest_has_master_clock, 1);
3134
3135 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
3136 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
3137 vcpus_matched);
3138 #endif
3139 }
3140
kvm_make_mclock_inprogress_request(struct kvm * kvm)3141 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
3142 {
3143 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
3144 }
3145
__kvm_start_pvclock_update(struct kvm * kvm)3146 static void __kvm_start_pvclock_update(struct kvm *kvm)
3147 {
3148 raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
3149 write_seqcount_begin(&kvm->arch.pvclock_sc);
3150 }
3151
kvm_start_pvclock_update(struct kvm * kvm)3152 static void kvm_start_pvclock_update(struct kvm *kvm)
3153 {
3154 kvm_make_mclock_inprogress_request(kvm);
3155
3156 /* no guest entries from this point */
3157 __kvm_start_pvclock_update(kvm);
3158 }
3159
kvm_end_pvclock_update(struct kvm * kvm)3160 static void kvm_end_pvclock_update(struct kvm *kvm)
3161 {
3162 struct kvm_arch *ka = &kvm->arch;
3163 struct kvm_vcpu *vcpu;
3164 unsigned long i;
3165
3166 write_seqcount_end(&ka->pvclock_sc);
3167 raw_spin_unlock_irq(&ka->tsc_write_lock);
3168 kvm_for_each_vcpu(i, vcpu, kvm)
3169 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3170
3171 /* guest entries allowed */
3172 kvm_for_each_vcpu(i, vcpu, kvm)
3173 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3174 }
3175
kvm_update_masterclock(struct kvm * kvm)3176 static void kvm_update_masterclock(struct kvm *kvm)
3177 {
3178 kvm_hv_request_tsc_page_update(kvm);
3179 kvm_start_pvclock_update(kvm);
3180 pvclock_update_vm_gtod_copy(kvm);
3181 kvm_end_pvclock_update(kvm);
3182 }
3183
3184 /*
3185 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3186 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz
3187 * can change during boot even if the TSC is constant, as it's possible for KVM
3188 * to be loaded before TSC calibration completes. Ideally, KVM would get a
3189 * notification when calibration completes, but practically speaking calibration
3190 * will complete before userspace is alive enough to create VMs.
3191 */
get_cpu_tsc_khz(void)3192 static unsigned long get_cpu_tsc_khz(void)
3193 {
3194 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3195 return tsc_khz;
3196 else
3197 return __this_cpu_read(cpu_tsc_khz);
3198 }
3199
3200 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */
__get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3201 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3202 {
3203 struct kvm_arch *ka = &kvm->arch;
3204 struct pvclock_vcpu_time_info hv_clock;
3205
3206 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
3207 get_cpu();
3208
3209 data->flags = 0;
3210 if (ka->use_master_clock &&
3211 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3212 #ifdef CONFIG_X86_64
3213 struct timespec64 ts;
3214
3215 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3216 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3217 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3218 } else
3219 #endif
3220 data->host_tsc = rdtsc();
3221
3222 data->flags |= KVM_CLOCK_TSC_STABLE;
3223 hv_clock.tsc_timestamp = ka->master_cycle_now;
3224 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3225 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3226 &hv_clock.tsc_shift,
3227 &hv_clock.tsc_to_system_mul);
3228 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3229 } else {
3230 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3231 }
3232
3233 put_cpu();
3234 }
3235
get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3236 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3237 {
3238 struct kvm_arch *ka = &kvm->arch;
3239 unsigned seq;
3240
3241 do {
3242 seq = read_seqcount_begin(&ka->pvclock_sc);
3243 __get_kvmclock(kvm, data);
3244 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3245 }
3246
get_kvmclock_ns(struct kvm * kvm)3247 u64 get_kvmclock_ns(struct kvm *kvm)
3248 {
3249 struct kvm_clock_data data;
3250
3251 get_kvmclock(kvm, &data);
3252 return data.clock;
3253 }
3254
kvm_setup_guest_pvclock(struct pvclock_vcpu_time_info * ref_hv_clock,struct kvm_vcpu * vcpu,struct gfn_to_pfn_cache * gpc,unsigned int offset)3255 static void kvm_setup_guest_pvclock(struct pvclock_vcpu_time_info *ref_hv_clock,
3256 struct kvm_vcpu *vcpu,
3257 struct gfn_to_pfn_cache *gpc,
3258 unsigned int offset)
3259 {
3260 struct pvclock_vcpu_time_info *guest_hv_clock;
3261 struct pvclock_vcpu_time_info hv_clock;
3262 unsigned long flags;
3263
3264 memcpy(&hv_clock, ref_hv_clock, sizeof(hv_clock));
3265
3266 read_lock_irqsave(&gpc->lock, flags);
3267 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3268 read_unlock_irqrestore(&gpc->lock, flags);
3269
3270 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3271 return;
3272
3273 read_lock_irqsave(&gpc->lock, flags);
3274 }
3275
3276 guest_hv_clock = (void *)(gpc->khva + offset);
3277
3278 /*
3279 * This VCPU is paused, but it's legal for a guest to read another
3280 * VCPU's kvmclock, so we really have to follow the specification where
3281 * it says that version is odd if data is being modified, and even after
3282 * it is consistent.
3283 */
3284
3285 guest_hv_clock->version = hv_clock.version = (guest_hv_clock->version + 1) | 1;
3286 smp_wmb();
3287
3288 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3289 hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3290
3291 memcpy(guest_hv_clock, &hv_clock, sizeof(*guest_hv_clock));
3292
3293 smp_wmb();
3294
3295 guest_hv_clock->version = ++hv_clock.version;
3296
3297 kvm_gpc_mark_dirty_in_slot(gpc);
3298 read_unlock_irqrestore(&gpc->lock, flags);
3299
3300 trace_kvm_pvclock_update(vcpu->vcpu_id, &hv_clock);
3301 }
3302
kvm_guest_time_update(struct kvm_vcpu * v)3303 int kvm_guest_time_update(struct kvm_vcpu *v)
3304 {
3305 struct pvclock_vcpu_time_info hv_clock = {};
3306 unsigned long flags, tgt_tsc_khz;
3307 unsigned seq;
3308 struct kvm_vcpu_arch *vcpu = &v->arch;
3309 struct kvm_arch *ka = &v->kvm->arch;
3310 s64 kernel_ns;
3311 u64 tsc_timestamp, host_tsc;
3312 bool use_master_clock;
3313
3314 kernel_ns = 0;
3315 host_tsc = 0;
3316
3317 /*
3318 * If the host uses TSC clock, then passthrough TSC as stable
3319 * to the guest.
3320 */
3321 do {
3322 seq = read_seqcount_begin(&ka->pvclock_sc);
3323 use_master_clock = ka->use_master_clock;
3324 if (use_master_clock) {
3325 host_tsc = ka->master_cycle_now;
3326 kernel_ns = ka->master_kernel_ns;
3327 }
3328 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3329
3330 /* Keep irq disabled to prevent changes to the clock */
3331 local_irq_save(flags);
3332 tgt_tsc_khz = get_cpu_tsc_khz();
3333 if (unlikely(tgt_tsc_khz == 0)) {
3334 local_irq_restore(flags);
3335 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3336 return 1;
3337 }
3338 if (!use_master_clock) {
3339 host_tsc = rdtsc();
3340 kernel_ns = get_kvmclock_base_ns();
3341 }
3342
3343 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3344
3345 /*
3346 * We may have to catch up the TSC to match elapsed wall clock
3347 * time for two reasons, even if kvmclock is used.
3348 * 1) CPU could have been running below the maximum TSC rate
3349 * 2) Broken TSC compensation resets the base at each VCPU
3350 * entry to avoid unknown leaps of TSC even when running
3351 * again on the same CPU. This may cause apparent elapsed
3352 * time to disappear, and the guest to stand still or run
3353 * very slowly.
3354 */
3355 if (vcpu->tsc_catchup) {
3356 u64 tsc = compute_guest_tsc(v, kernel_ns);
3357 if (tsc > tsc_timestamp) {
3358 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3359 tsc_timestamp = tsc;
3360 }
3361 }
3362
3363 local_irq_restore(flags);
3364
3365 /* With all the info we got, fill in the values */
3366
3367 if (kvm_caps.has_tsc_control) {
3368 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3369 v->arch.l1_tsc_scaling_ratio);
3370 tgt_tsc_khz = tgt_tsc_khz ? : 1;
3371 }
3372
3373 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3374 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3375 &vcpu->pvclock_tsc_shift,
3376 &vcpu->pvclock_tsc_mul);
3377 vcpu->hw_tsc_khz = tgt_tsc_khz;
3378 }
3379
3380 hv_clock.tsc_shift = vcpu->pvclock_tsc_shift;
3381 hv_clock.tsc_to_system_mul = vcpu->pvclock_tsc_mul;
3382 hv_clock.tsc_timestamp = tsc_timestamp;
3383 hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3384 vcpu->last_guest_tsc = tsc_timestamp;
3385
3386 /* If the host uses TSC clocksource, then it is stable */
3387 hv_clock.flags = 0;
3388 if (use_master_clock)
3389 hv_clock.flags |= PVCLOCK_TSC_STABLE_BIT;
3390
3391 if (vcpu->pv_time.active) {
3392 /*
3393 * GUEST_STOPPED is only supported by kvmclock, and KVM's
3394 * historic behavior is to only process the request if kvmclock
3395 * is active/enabled.
3396 */
3397 if (vcpu->pvclock_set_guest_stopped_request) {
3398 hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3399 vcpu->pvclock_set_guest_stopped_request = false;
3400 }
3401 kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->pv_time, 0);
3402
3403 hv_clock.flags &= ~PVCLOCK_GUEST_STOPPED;
3404 }
3405
3406 kvm_hv_setup_tsc_page(v->kvm, &hv_clock);
3407
3408 #ifdef CONFIG_KVM_XEN
3409 /*
3410 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless
3411 * explicitly told to use TSC as its clocksource Xen will not set this bit.
3412 * This default behaviour led to bugs in some guest kernels which cause
3413 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags.
3414 *
3415 * Note! Clear TSC_STABLE only for Xen clocks, i.e. the order matters!
3416 */
3417 if (ka->xen.hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE)
3418 hv_clock.flags &= ~PVCLOCK_TSC_STABLE_BIT;
3419
3420 if (vcpu->xen.vcpu_info_cache.active)
3421 kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->xen.vcpu_info_cache,
3422 offsetof(struct compat_vcpu_info, time));
3423 if (vcpu->xen.vcpu_time_info_cache.active)
3424 kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->xen.vcpu_time_info_cache, 0);
3425 #endif
3426 return 0;
3427 }
3428
3429 /*
3430 * The pvclock_wall_clock ABI tells the guest the wall clock time at
3431 * which it started (i.e. its epoch, when its kvmclock was zero).
3432 *
3433 * In fact those clocks are subtly different; wall clock frequency is
3434 * adjusted by NTP and has leap seconds, while the kvmclock is a
3435 * simple function of the TSC without any such adjustment.
3436 *
3437 * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3438 * that and kvmclock, but even that would be subject to change over
3439 * time.
3440 *
3441 * Attempt to calculate the epoch at a given moment using the *same*
3442 * TSC reading via kvm_get_walltime_and_clockread() to obtain both
3443 * wallclock and kvmclock times, and subtracting one from the other.
3444 *
3445 * Fall back to using their values at slightly different moments by
3446 * calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3447 */
kvm_get_wall_clock_epoch(struct kvm * kvm)3448 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
3449 {
3450 #ifdef CONFIG_X86_64
3451 struct pvclock_vcpu_time_info hv_clock;
3452 struct kvm_arch *ka = &kvm->arch;
3453 unsigned long seq, local_tsc_khz;
3454 struct timespec64 ts;
3455 uint64_t host_tsc;
3456
3457 do {
3458 seq = read_seqcount_begin(&ka->pvclock_sc);
3459
3460 local_tsc_khz = 0;
3461 if (!ka->use_master_clock)
3462 break;
3463
3464 /*
3465 * The TSC read and the call to get_cpu_tsc_khz() must happen
3466 * on the same CPU.
3467 */
3468 get_cpu();
3469
3470 local_tsc_khz = get_cpu_tsc_khz();
3471
3472 if (local_tsc_khz &&
3473 !kvm_get_walltime_and_clockread(&ts, &host_tsc))
3474 local_tsc_khz = 0; /* Fall back to old method */
3475
3476 put_cpu();
3477
3478 /*
3479 * These values must be snapshotted within the seqcount loop.
3480 * After that, it's just mathematics which can happen on any
3481 * CPU at any time.
3482 */
3483 hv_clock.tsc_timestamp = ka->master_cycle_now;
3484 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3485
3486 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3487
3488 /*
3489 * If the conditions were right, and obtaining the wallclock+TSC was
3490 * successful, calculate the KVM clock at the corresponding time and
3491 * subtract one from the other to get the guest's epoch in nanoseconds
3492 * since 1970-01-01.
3493 */
3494 if (local_tsc_khz) {
3495 kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC,
3496 &hv_clock.tsc_shift,
3497 &hv_clock.tsc_to_system_mul);
3498 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
3499 __pvclock_read_cycles(&hv_clock, host_tsc);
3500 }
3501 #endif
3502 return ktime_get_real_ns() - get_kvmclock_ns(kvm);
3503 }
3504
3505 /*
3506 * kvmclock updates which are isolated to a given vcpu, such as
3507 * vcpu->cpu migration, should not allow system_timestamp from
3508 * the rest of the vcpus to remain static. Otherwise ntp frequency
3509 * correction applies to one vcpu's system_timestamp but not
3510 * the others.
3511 *
3512 * So in those cases, request a kvmclock update for all vcpus.
3513 * We need to rate-limit these requests though, as they can
3514 * considerably slow guests that have a large number of vcpus.
3515 * The time for a remote vcpu to update its kvmclock is bound
3516 * by the delay we use to rate-limit the updates.
3517 */
3518
3519 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3520
kvmclock_update_fn(struct work_struct * work)3521 static void kvmclock_update_fn(struct work_struct *work)
3522 {
3523 unsigned long i;
3524 struct delayed_work *dwork = to_delayed_work(work);
3525 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3526 kvmclock_update_work);
3527 struct kvm *kvm = container_of(ka, struct kvm, arch);
3528 struct kvm_vcpu *vcpu;
3529
3530 kvm_for_each_vcpu(i, vcpu, kvm) {
3531 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3532 kvm_vcpu_kick(vcpu);
3533 }
3534 }
3535
kvm_gen_kvmclock_update(struct kvm_vcpu * v)3536 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3537 {
3538 struct kvm *kvm = v->kvm;
3539
3540 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3541 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3542 KVMCLOCK_UPDATE_DELAY);
3543 }
3544
3545 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3546
kvmclock_sync_fn(struct work_struct * work)3547 static void kvmclock_sync_fn(struct work_struct *work)
3548 {
3549 struct delayed_work *dwork = to_delayed_work(work);
3550 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3551 kvmclock_sync_work);
3552 struct kvm *kvm = container_of(ka, struct kvm, arch);
3553
3554 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3555 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3556 KVMCLOCK_SYNC_PERIOD);
3557 }
3558
3559 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
is_mci_control_msr(u32 msr)3560 static bool is_mci_control_msr(u32 msr)
3561 {
3562 return (msr & 3) == 0;
3563 }
is_mci_status_msr(u32 msr)3564 static bool is_mci_status_msr(u32 msr)
3565 {
3566 return (msr & 3) == 1;
3567 }
3568
3569 /*
3570 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3571 */
can_set_mci_status(struct kvm_vcpu * vcpu)3572 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3573 {
3574 /* McStatusWrEn enabled? */
3575 if (guest_cpuid_is_amd_compatible(vcpu))
3576 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3577
3578 return false;
3579 }
3580
set_msr_mce(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3581 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3582 {
3583 u64 mcg_cap = vcpu->arch.mcg_cap;
3584 unsigned bank_num = mcg_cap & 0xff;
3585 u32 msr = msr_info->index;
3586 u64 data = msr_info->data;
3587 u32 offset, last_msr;
3588
3589 switch (msr) {
3590 case MSR_IA32_MCG_STATUS:
3591 vcpu->arch.mcg_status = data;
3592 break;
3593 case MSR_IA32_MCG_CTL:
3594 if (!(mcg_cap & MCG_CTL_P) &&
3595 (data || !msr_info->host_initiated))
3596 return 1;
3597 if (data != 0 && data != ~(u64)0)
3598 return 1;
3599 vcpu->arch.mcg_ctl = data;
3600 break;
3601 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3602 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3603 if (msr > last_msr)
3604 return 1;
3605
3606 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3607 return 1;
3608 /* An attempt to write a 1 to a reserved bit raises #GP */
3609 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3610 return 1;
3611 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3612 last_msr + 1 - MSR_IA32_MC0_CTL2);
3613 vcpu->arch.mci_ctl2_banks[offset] = data;
3614 break;
3615 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3616 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3617 if (msr > last_msr)
3618 return 1;
3619
3620 /*
3621 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3622 * values are architecturally undefined. But, some Linux
3623 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3624 * issue on AMD K8s, allow bit 10 to be clear when setting all
3625 * other bits in order to avoid an uncaught #GP in the guest.
3626 *
3627 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3628 * single-bit ECC data errors.
3629 */
3630 if (is_mci_control_msr(msr) &&
3631 data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3632 return 1;
3633
3634 /*
3635 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3636 * AMD-based CPUs allow non-zero values, but if and only if
3637 * HWCR[McStatusWrEn] is set.
3638 */
3639 if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3640 data != 0 && !can_set_mci_status(vcpu))
3641 return 1;
3642
3643 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3644 last_msr + 1 - MSR_IA32_MC0_CTL);
3645 vcpu->arch.mce_banks[offset] = data;
3646 break;
3647 default:
3648 return 1;
3649 }
3650 return 0;
3651 }
3652
kvm_pv_async_pf_enabled(struct kvm_vcpu * vcpu)3653 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3654 {
3655 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3656
3657 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3658 }
3659
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)3660 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3661 {
3662 gpa_t gpa = data & ~0x3f;
3663
3664 /* Bits 4:5 are reserved, Should be zero */
3665 if (data & 0x30)
3666 return 1;
3667
3668 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3669 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3670 return 1;
3671
3672 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3673 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3674 return 1;
3675
3676 if (!lapic_in_kernel(vcpu))
3677 return data ? 1 : 0;
3678
3679 vcpu->arch.apf.msr_en_val = data;
3680
3681 if (!kvm_pv_async_pf_enabled(vcpu)) {
3682 kvm_clear_async_pf_completion_queue(vcpu);
3683 kvm_async_pf_hash_reset(vcpu);
3684 return 0;
3685 }
3686
3687 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3688 sizeof(u64)))
3689 return 1;
3690
3691 vcpu->arch.apf.send_always = (data & KVM_ASYNC_PF_SEND_ALWAYS);
3692 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3693
3694 kvm_async_pf_wakeup_all(vcpu);
3695
3696 return 0;
3697 }
3698
kvm_pv_enable_async_pf_int(struct kvm_vcpu * vcpu,u64 data)3699 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3700 {
3701 /* Bits 8-63 are reserved */
3702 if (data >> 8)
3703 return 1;
3704
3705 if (!lapic_in_kernel(vcpu))
3706 return 1;
3707
3708 vcpu->arch.apf.msr_int_val = data;
3709
3710 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3711
3712 return 0;
3713 }
3714
kvmclock_reset(struct kvm_vcpu * vcpu)3715 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3716 {
3717 kvm_gpc_deactivate(&vcpu->arch.pv_time);
3718 vcpu->arch.time = 0;
3719 }
3720
kvm_vcpu_flush_tlb_all(struct kvm_vcpu * vcpu)3721 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3722 {
3723 ++vcpu->stat.tlb_flush;
3724 kvm_x86_call(flush_tlb_all)(vcpu);
3725
3726 /* Flushing all ASIDs flushes the current ASID... */
3727 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3728 }
3729
kvm_vcpu_flush_tlb_guest(struct kvm_vcpu * vcpu)3730 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3731 {
3732 ++vcpu->stat.tlb_flush;
3733
3734 if (!tdp_enabled) {
3735 /*
3736 * A TLB flush on behalf of the guest is equivalent to
3737 * INVPCID(all), toggling CR4.PGE, etc., which requires
3738 * a forced sync of the shadow page tables. Ensure all the
3739 * roots are synced and the guest TLB in hardware is clean.
3740 */
3741 kvm_mmu_sync_roots(vcpu);
3742 kvm_mmu_sync_prev_roots(vcpu);
3743 }
3744
3745 kvm_x86_call(flush_tlb_guest)(vcpu);
3746
3747 /*
3748 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3749 * grained flushing.
3750 */
3751 kvm_hv_vcpu_purge_flush_tlb(vcpu);
3752 }
3753
3754
kvm_vcpu_flush_tlb_current(struct kvm_vcpu * vcpu)3755 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3756 {
3757 ++vcpu->stat.tlb_flush;
3758 kvm_x86_call(flush_tlb_current)(vcpu);
3759 }
3760
3761 /*
3762 * Service "local" TLB flush requests, which are specific to the current MMU
3763 * context. In addition to the generic event handling in vcpu_enter_guest(),
3764 * TLB flushes that are targeted at an MMU context also need to be serviced
3765 * prior before nested VM-Enter/VM-Exit.
3766 */
kvm_service_local_tlb_flush_requests(struct kvm_vcpu * vcpu)3767 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3768 {
3769 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3770 kvm_vcpu_flush_tlb_current(vcpu);
3771
3772 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3773 kvm_vcpu_flush_tlb_guest(vcpu);
3774 }
3775 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_service_local_tlb_flush_requests);
3776
record_steal_time(struct kvm_vcpu * vcpu)3777 static void record_steal_time(struct kvm_vcpu *vcpu)
3778 {
3779 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3780 struct kvm_steal_time __user *st;
3781 struct kvm_memslots *slots;
3782 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3783 u64 steal;
3784 u32 version;
3785
3786 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3787 kvm_xen_runstate_set_running(vcpu);
3788 return;
3789 }
3790
3791 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3792 return;
3793
3794 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3795 return;
3796
3797 slots = kvm_memslots(vcpu->kvm);
3798
3799 if (unlikely(slots->generation != ghc->generation ||
3800 gpa != ghc->gpa ||
3801 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3802 /* We rely on the fact that it fits in a single page. */
3803 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3804
3805 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3806 kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3807 return;
3808 }
3809
3810 st = (struct kvm_steal_time __user *)ghc->hva;
3811 /*
3812 * Doing a TLB flush here, on the guest's behalf, can avoid
3813 * expensive IPIs.
3814 */
3815 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3816 u8 st_preempted = 0;
3817 int err = -EFAULT;
3818
3819 if (!user_access_begin(st, sizeof(*st)))
3820 return;
3821
3822 asm volatile("1: xchgb %0, %2\n"
3823 "xor %1, %1\n"
3824 "2:\n"
3825 _ASM_EXTABLE_UA(1b, 2b)
3826 : "+q" (st_preempted),
3827 "+&r" (err),
3828 "+m" (st->preempted));
3829 if (err)
3830 goto out;
3831
3832 user_access_end();
3833
3834 vcpu->arch.st.preempted = 0;
3835
3836 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3837 st_preempted & KVM_VCPU_FLUSH_TLB);
3838 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3839 kvm_vcpu_flush_tlb_guest(vcpu);
3840
3841 if (!user_access_begin(st, sizeof(*st)))
3842 goto dirty;
3843 } else {
3844 if (!user_access_begin(st, sizeof(*st)))
3845 return;
3846
3847 unsafe_put_user(0, &st->preempted, out);
3848 vcpu->arch.st.preempted = 0;
3849 }
3850
3851 unsafe_get_user(version, &st->version, out);
3852 if (version & 1)
3853 version += 1; /* first time write, random junk */
3854
3855 version += 1;
3856 unsafe_put_user(version, &st->version, out);
3857
3858 smp_wmb();
3859
3860 unsafe_get_user(steal, &st->steal, out);
3861 steal += current->sched_info.run_delay -
3862 vcpu->arch.st.last_steal;
3863 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3864 unsafe_put_user(steal, &st->steal, out);
3865
3866 version += 1;
3867 unsafe_put_user(version, &st->version, out);
3868
3869 out:
3870 user_access_end();
3871 dirty:
3872 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3873 }
3874
3875 /*
3876 * Returns true if the MSR in question is managed via XSTATE, i.e. is context
3877 * switched with the rest of guest FPU state.
3878 *
3879 * Note, S_CET is _not_ saved/restored via XSAVES/XRSTORS.
3880 */
is_xstate_managed_msr(struct kvm_vcpu * vcpu,u32 msr)3881 static bool is_xstate_managed_msr(struct kvm_vcpu *vcpu, u32 msr)
3882 {
3883 if (!vcpu)
3884 return false;
3885
3886 switch (msr) {
3887 case MSR_IA32_U_CET:
3888 return guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) ||
3889 guest_cpu_cap_has(vcpu, X86_FEATURE_IBT);
3890 case MSR_IA32_PL0_SSP ... MSR_IA32_PL3_SSP:
3891 return guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK);
3892 default:
3893 return false;
3894 }
3895 }
3896
3897 /*
3898 * Lock (and if necessary, re-load) the guest FPU, i.e. XSTATE, and access an
3899 * MSR that is managed via XSTATE. Note, the caller is responsible for doing
3900 * the initial FPU load, this helper only ensures that guest state is resident
3901 * in hardware (the kernel can load its FPU state in IRQ context).
3902 *
3903 * Note, loading guest values for U_CET and PL[0-3]_SSP while executing in the
3904 * kernel is safe, as U_CET is specific to userspace, and PL[0-3]_SSP are only
3905 * consumed when transitioning to lower privilege levels, i.e. are effectively
3906 * only consumed by userspace as well.
3907 */
kvm_access_xstate_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info,int access)3908 static __always_inline void kvm_access_xstate_msr(struct kvm_vcpu *vcpu,
3909 struct msr_data *msr_info,
3910 int access)
3911 {
3912 BUILD_BUG_ON(access != MSR_TYPE_R && access != MSR_TYPE_W);
3913
3914 KVM_BUG_ON(!is_xstate_managed_msr(vcpu, msr_info->index), vcpu->kvm);
3915 KVM_BUG_ON(!vcpu->arch.guest_fpu.fpstate->in_use, vcpu->kvm);
3916
3917 kvm_fpu_get();
3918 if (access == MSR_TYPE_R)
3919 rdmsrq(msr_info->index, msr_info->data);
3920 else
3921 wrmsrq(msr_info->index, msr_info->data);
3922 kvm_fpu_put();
3923 }
3924
kvm_set_xstate_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3925 static void kvm_set_xstate_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3926 {
3927 kvm_access_xstate_msr(vcpu, msr_info, MSR_TYPE_W);
3928 }
3929
kvm_get_xstate_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3930 static void kvm_get_xstate_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3931 {
3932 kvm_access_xstate_msr(vcpu, msr_info, MSR_TYPE_R);
3933 }
3934
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3935 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3936 {
3937 u32 msr = msr_info->index;
3938 u64 data = msr_info->data;
3939
3940 /*
3941 * Do not allow host-initiated writes to trigger the Xen hypercall
3942 * page setup; it could incur locking paths which are not expected
3943 * if userspace sets the MSR in an unusual location.
3944 */
3945 if (kvm_xen_is_hypercall_page_msr(vcpu->kvm, msr) &&
3946 !msr_info->host_initiated)
3947 return kvm_xen_write_hypercall_page(vcpu, data);
3948
3949 switch (msr) {
3950 case MSR_AMD64_NB_CFG:
3951 case MSR_IA32_UCODE_WRITE:
3952 case MSR_VM_HSAVE_PA:
3953 case MSR_AMD64_PATCH_LOADER:
3954 case MSR_AMD64_BU_CFG2:
3955 case MSR_AMD64_DC_CFG:
3956 case MSR_AMD64_TW_CFG:
3957 case MSR_F15H_EX_CFG:
3958 break;
3959
3960 case MSR_IA32_UCODE_REV:
3961 if (msr_info->host_initiated)
3962 vcpu->arch.microcode_version = data;
3963 break;
3964 case MSR_IA32_ARCH_CAPABILITIES:
3965 if (!msr_info->host_initiated ||
3966 !guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3967 return KVM_MSR_RET_UNSUPPORTED;
3968 vcpu->arch.arch_capabilities = data;
3969 break;
3970 case MSR_IA32_PERF_CAPABILITIES:
3971 if (!msr_info->host_initiated ||
3972 !guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM))
3973 return KVM_MSR_RET_UNSUPPORTED;
3974
3975 if (data & ~kvm_caps.supported_perf_cap)
3976 return 1;
3977
3978 /*
3979 * Note, this is not just a performance optimization! KVM
3980 * disallows changing feature MSRs after the vCPU has run; PMU
3981 * refresh will bug the VM if called after the vCPU has run.
3982 */
3983 if (vcpu->arch.perf_capabilities == data)
3984 break;
3985
3986 vcpu->arch.perf_capabilities = data;
3987 kvm_pmu_refresh(vcpu);
3988 break;
3989 case MSR_IA32_PRED_CMD: {
3990 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
3991
3992 if (!msr_info->host_initiated) {
3993 if ((!guest_has_pred_cmd_msr(vcpu)))
3994 return 1;
3995
3996 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
3997 !guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_IBPB))
3998 reserved_bits |= PRED_CMD_IBPB;
3999
4000 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SBPB))
4001 reserved_bits |= PRED_CMD_SBPB;
4002 }
4003
4004 if (!boot_cpu_has(X86_FEATURE_IBPB))
4005 reserved_bits |= PRED_CMD_IBPB;
4006
4007 if (!boot_cpu_has(X86_FEATURE_SBPB))
4008 reserved_bits |= PRED_CMD_SBPB;
4009
4010 if (data & reserved_bits)
4011 return 1;
4012
4013 if (!data)
4014 break;
4015
4016 wrmsrq(MSR_IA32_PRED_CMD, data);
4017 break;
4018 }
4019 case MSR_IA32_FLUSH_CMD:
4020 if (!msr_info->host_initiated &&
4021 !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D))
4022 return 1;
4023
4024 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
4025 return 1;
4026 if (!data)
4027 break;
4028
4029 wrmsrq(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
4030 break;
4031 case MSR_EFER:
4032 return set_efer(vcpu, msr_info);
4033 case MSR_K7_HWCR:
4034 data &= ~(u64)0x40; /* ignore flush filter disable */
4035 data &= ~(u64)0x100; /* ignore ignne emulation enable */
4036 data &= ~(u64)0x8; /* ignore TLB cache disable */
4037
4038 /*
4039 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
4040 * through at least v6.6 whine if TscFreqSel is clear,
4041 * depending on F/M/S.
4042 */
4043 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
4044 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4045 return 1;
4046 }
4047 vcpu->arch.msr_hwcr = data;
4048 break;
4049 case MSR_FAM10H_MMIO_CONF_BASE:
4050 if (data != 0) {
4051 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4052 return 1;
4053 }
4054 break;
4055 case MSR_IA32_CR_PAT:
4056 if (!kvm_pat_valid(data))
4057 return 1;
4058
4059 vcpu->arch.pat = data;
4060 break;
4061 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4062 case MSR_MTRRdefType:
4063 return kvm_mtrr_set_msr(vcpu, msr, data);
4064 case MSR_IA32_APICBASE:
4065 return kvm_apic_set_base(vcpu, data, msr_info->host_initiated);
4066 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4067 return kvm_x2apic_msr_write(vcpu, msr, data);
4068 case MSR_IA32_TSC_DEADLINE:
4069 kvm_set_lapic_tscdeadline_msr(vcpu, data);
4070 break;
4071 case MSR_IA32_TSC_ADJUST:
4072 if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
4073 if (!msr_info->host_initiated) {
4074 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
4075 adjust_tsc_offset_guest(vcpu, adj);
4076 /* Before back to guest, tsc_timestamp must be adjusted
4077 * as well, otherwise guest's percpu pvclock time could jump.
4078 */
4079 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4080 }
4081 vcpu->arch.ia32_tsc_adjust_msr = data;
4082 }
4083 break;
4084 case MSR_IA32_MISC_ENABLE: {
4085 u64 old_val = vcpu->arch.ia32_misc_enable_msr;
4086
4087 if (!msr_info->host_initiated) {
4088 /* RO bits */
4089 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
4090 return 1;
4091
4092 /* R bits, i.e. writes are ignored, but don't fault. */
4093 data = data & ~MSR_IA32_MISC_ENABLE_EMON;
4094 data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
4095 }
4096
4097 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
4098 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
4099 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_XMM3))
4100 return 1;
4101 vcpu->arch.ia32_misc_enable_msr = data;
4102 vcpu->arch.cpuid_dynamic_bits_dirty = true;
4103 } else {
4104 vcpu->arch.ia32_misc_enable_msr = data;
4105 }
4106 break;
4107 }
4108 case MSR_IA32_SMBASE:
4109 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4110 return 1;
4111 vcpu->arch.smbase = data;
4112 break;
4113 case MSR_IA32_POWER_CTL:
4114 vcpu->arch.msr_ia32_power_ctl = data;
4115 break;
4116 case MSR_IA32_TSC:
4117 if (msr_info->host_initiated) {
4118 kvm_synchronize_tsc(vcpu, &data);
4119 } else if (!vcpu->arch.guest_tsc_protected) {
4120 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
4121 adjust_tsc_offset_guest(vcpu, adj);
4122 vcpu->arch.ia32_tsc_adjust_msr += adj;
4123 }
4124 break;
4125 case MSR_IA32_XSS:
4126 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4127 return KVM_MSR_RET_UNSUPPORTED;
4128
4129 if (data & ~vcpu->arch.guest_supported_xss)
4130 return 1;
4131 if (vcpu->arch.ia32_xss == data)
4132 break;
4133 vcpu->arch.ia32_xss = data;
4134 vcpu->arch.cpuid_dynamic_bits_dirty = true;
4135 break;
4136 case MSR_SMI_COUNT:
4137 if (!msr_info->host_initiated)
4138 return 1;
4139 vcpu->arch.smi_count = data;
4140 break;
4141 case MSR_KVM_WALL_CLOCK_NEW:
4142 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4143 return 1;
4144
4145 vcpu->kvm->arch.wall_clock = data;
4146 kvm_write_wall_clock(vcpu->kvm, data, 0);
4147 break;
4148 case MSR_KVM_WALL_CLOCK:
4149 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4150 return 1;
4151
4152 vcpu->kvm->arch.wall_clock = data;
4153 kvm_write_wall_clock(vcpu->kvm, data, 0);
4154 break;
4155 case MSR_KVM_SYSTEM_TIME_NEW:
4156 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4157 return 1;
4158
4159 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
4160 break;
4161 case MSR_KVM_SYSTEM_TIME:
4162 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4163 return 1;
4164
4165 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
4166 break;
4167 case MSR_KVM_ASYNC_PF_EN:
4168 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4169 return 1;
4170
4171 if (kvm_pv_enable_async_pf(vcpu, data))
4172 return 1;
4173 break;
4174 case MSR_KVM_ASYNC_PF_INT:
4175 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4176 return 1;
4177
4178 if (kvm_pv_enable_async_pf_int(vcpu, data))
4179 return 1;
4180 break;
4181 case MSR_KVM_ASYNC_PF_ACK:
4182 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4183 return 1;
4184 if (data & 0x1) {
4185 vcpu->arch.apf.pageready_pending = false;
4186 kvm_check_async_pf_completion(vcpu);
4187 }
4188 break;
4189 case MSR_KVM_STEAL_TIME:
4190 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4191 return 1;
4192
4193 if (unlikely(!sched_info_on()))
4194 return 1;
4195
4196 if (data & KVM_STEAL_RESERVED_MASK)
4197 return 1;
4198
4199 vcpu->arch.st.msr_val = data;
4200
4201 if (!(data & KVM_MSR_ENABLED))
4202 break;
4203
4204 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4205
4206 break;
4207 case MSR_KVM_PV_EOI_EN:
4208 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4209 return 1;
4210
4211 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
4212 return 1;
4213 break;
4214
4215 case MSR_KVM_POLL_CONTROL:
4216 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4217 return 1;
4218
4219 /* only enable bit supported */
4220 if (data & (-1ULL << 1))
4221 return 1;
4222
4223 vcpu->arch.msr_kvm_poll_control = data;
4224 break;
4225
4226 case MSR_IA32_MCG_CTL:
4227 case MSR_IA32_MCG_STATUS:
4228 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4229 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4230 return set_msr_mce(vcpu, msr_info);
4231
4232 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4233 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4234 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4235 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4236 if (kvm_pmu_is_valid_msr(vcpu, msr))
4237 return kvm_pmu_set_msr(vcpu, msr_info);
4238
4239 if (data)
4240 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4241 break;
4242 case MSR_K7_CLK_CTL:
4243 /*
4244 * Ignore all writes to this no longer documented MSR.
4245 * Writes are only relevant for old K7 processors,
4246 * all pre-dating SVM, but a recommended workaround from
4247 * AMD for these chips. It is possible to specify the
4248 * affected processor models on the command line, hence
4249 * the need to ignore the workaround.
4250 */
4251 break;
4252 #ifdef CONFIG_KVM_HYPERV
4253 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4254 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4255 case HV_X64_MSR_SYNDBG_OPTIONS:
4256 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4257 case HV_X64_MSR_CRASH_CTL:
4258 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4259 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4260 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4261 case HV_X64_MSR_TSC_EMULATION_STATUS:
4262 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4263 return kvm_hv_set_msr_common(vcpu, msr, data,
4264 msr_info->host_initiated);
4265 #endif
4266 case MSR_IA32_BBL_CR_CTL3:
4267 /* Drop writes to this legacy MSR -- see rdmsr
4268 * counterpart for further detail.
4269 */
4270 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4271 break;
4272 case MSR_AMD64_OSVW_ID_LENGTH:
4273 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4274 return 1;
4275 vcpu->arch.osvw.length = data;
4276 break;
4277 case MSR_AMD64_OSVW_STATUS:
4278 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4279 return 1;
4280 vcpu->arch.osvw.status = data;
4281 break;
4282 case MSR_PLATFORM_INFO:
4283 if (!msr_info->host_initiated)
4284 return 1;
4285 vcpu->arch.msr_platform_info = data;
4286 break;
4287 case MSR_MISC_FEATURES_ENABLES:
4288 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
4289 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
4290 !supports_cpuid_fault(vcpu)))
4291 return 1;
4292 vcpu->arch.msr_misc_features_enables = data;
4293 break;
4294 #ifdef CONFIG_X86_64
4295 case MSR_IA32_XFD:
4296 if (!msr_info->host_initiated &&
4297 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4298 return 1;
4299
4300 if (data & ~kvm_guest_supported_xfd(vcpu))
4301 return 1;
4302
4303 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
4304 break;
4305 case MSR_IA32_XFD_ERR:
4306 if (!msr_info->host_initiated &&
4307 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4308 return 1;
4309
4310 if (data & ~kvm_guest_supported_xfd(vcpu))
4311 return 1;
4312
4313 vcpu->arch.guest_fpu.xfd_err = data;
4314 break;
4315 #endif
4316 case MSR_IA32_U_CET:
4317 case MSR_IA32_PL0_SSP ... MSR_IA32_PL3_SSP:
4318 kvm_set_xstate_msr(vcpu, msr_info);
4319 break;
4320 default:
4321 if (kvm_pmu_is_valid_msr(vcpu, msr))
4322 return kvm_pmu_set_msr(vcpu, msr_info);
4323
4324 return KVM_MSR_RET_UNSUPPORTED;
4325 }
4326 return 0;
4327 }
4328 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_msr_common);
4329
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)4330 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4331 {
4332 u64 data;
4333 u64 mcg_cap = vcpu->arch.mcg_cap;
4334 unsigned bank_num = mcg_cap & 0xff;
4335 u32 offset, last_msr;
4336
4337 switch (msr) {
4338 case MSR_IA32_P5_MC_ADDR:
4339 case MSR_IA32_P5_MC_TYPE:
4340 data = 0;
4341 break;
4342 case MSR_IA32_MCG_CAP:
4343 data = vcpu->arch.mcg_cap;
4344 break;
4345 case MSR_IA32_MCG_CTL:
4346 if (!(mcg_cap & MCG_CTL_P) && !host)
4347 return 1;
4348 data = vcpu->arch.mcg_ctl;
4349 break;
4350 case MSR_IA32_MCG_STATUS:
4351 data = vcpu->arch.mcg_status;
4352 break;
4353 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4354 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4355 if (msr > last_msr)
4356 return 1;
4357
4358 if (!(mcg_cap & MCG_CMCI_P) && !host)
4359 return 1;
4360 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4361 last_msr + 1 - MSR_IA32_MC0_CTL2);
4362 data = vcpu->arch.mci_ctl2_banks[offset];
4363 break;
4364 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4365 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4366 if (msr > last_msr)
4367 return 1;
4368
4369 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4370 last_msr + 1 - MSR_IA32_MC0_CTL);
4371 data = vcpu->arch.mce_banks[offset];
4372 break;
4373 default:
4374 return 1;
4375 }
4376 *pdata = data;
4377 return 0;
4378 }
4379
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)4380 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4381 {
4382 switch (msr_info->index) {
4383 case MSR_IA32_PLATFORM_ID:
4384 case MSR_IA32_EBL_CR_POWERON:
4385 case MSR_IA32_LASTBRANCHFROMIP:
4386 case MSR_IA32_LASTBRANCHTOIP:
4387 case MSR_IA32_LASTINTFROMIP:
4388 case MSR_IA32_LASTINTTOIP:
4389 case MSR_AMD64_SYSCFG:
4390 case MSR_K8_TSEG_ADDR:
4391 case MSR_K8_TSEG_MASK:
4392 case MSR_VM_HSAVE_PA:
4393 case MSR_K8_INT_PENDING_MSG:
4394 case MSR_AMD64_NB_CFG:
4395 case MSR_FAM10H_MMIO_CONF_BASE:
4396 case MSR_AMD64_BU_CFG2:
4397 case MSR_IA32_PERF_CTL:
4398 case MSR_AMD64_DC_CFG:
4399 case MSR_AMD64_TW_CFG:
4400 case MSR_F15H_EX_CFG:
4401 /*
4402 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4403 * limit) MSRs. Just return 0, as we do not want to expose the host
4404 * data here. Do not conditionalize this on CPUID, as KVM does not do
4405 * so for existing CPU-specific MSRs.
4406 */
4407 case MSR_RAPL_POWER_UNIT:
4408 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
4409 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
4410 case MSR_PKG_ENERGY_STATUS: /* Total package */
4411 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
4412 msr_info->data = 0;
4413 break;
4414 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4415 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4416 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4417 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4418 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4419 return kvm_pmu_get_msr(vcpu, msr_info);
4420 msr_info->data = 0;
4421 break;
4422 case MSR_IA32_UCODE_REV:
4423 msr_info->data = vcpu->arch.microcode_version;
4424 break;
4425 case MSR_IA32_ARCH_CAPABILITIES:
4426 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4427 return KVM_MSR_RET_UNSUPPORTED;
4428 msr_info->data = vcpu->arch.arch_capabilities;
4429 break;
4430 case MSR_IA32_PERF_CAPABILITIES:
4431 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM))
4432 return KVM_MSR_RET_UNSUPPORTED;
4433 msr_info->data = vcpu->arch.perf_capabilities;
4434 break;
4435 case MSR_IA32_POWER_CTL:
4436 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4437 break;
4438 case MSR_IA32_TSC: {
4439 /*
4440 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4441 * even when not intercepted. AMD manual doesn't explicitly
4442 * state this but appears to behave the same.
4443 *
4444 * On userspace reads and writes, however, we unconditionally
4445 * return L1's TSC value to ensure backwards-compatible
4446 * behavior for migration.
4447 */
4448 u64 offset, ratio;
4449
4450 if (msr_info->host_initiated) {
4451 offset = vcpu->arch.l1_tsc_offset;
4452 ratio = vcpu->arch.l1_tsc_scaling_ratio;
4453 } else {
4454 offset = vcpu->arch.tsc_offset;
4455 ratio = vcpu->arch.tsc_scaling_ratio;
4456 }
4457
4458 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4459 break;
4460 }
4461 case MSR_IA32_CR_PAT:
4462 msr_info->data = vcpu->arch.pat;
4463 break;
4464 case MSR_MTRRcap:
4465 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4466 case MSR_MTRRdefType:
4467 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4468 case 0xcd: /* fsb frequency */
4469 msr_info->data = 3;
4470 break;
4471 /*
4472 * MSR_EBC_FREQUENCY_ID
4473 * Conservative value valid for even the basic CPU models.
4474 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4475 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4476 * and 266MHz for model 3, or 4. Set Core Clock
4477 * Frequency to System Bus Frequency Ratio to 1 (bits
4478 * 31:24) even though these are only valid for CPU
4479 * models > 2, however guests may end up dividing or
4480 * multiplying by zero otherwise.
4481 */
4482 case MSR_EBC_FREQUENCY_ID:
4483 msr_info->data = 1 << 24;
4484 break;
4485 case MSR_IA32_APICBASE:
4486 msr_info->data = vcpu->arch.apic_base;
4487 break;
4488 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4489 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4490 case MSR_IA32_TSC_DEADLINE:
4491 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4492 break;
4493 case MSR_IA32_TSC_ADJUST:
4494 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4495 break;
4496 case MSR_IA32_MISC_ENABLE:
4497 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4498 break;
4499 case MSR_IA32_SMBASE:
4500 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4501 return 1;
4502 msr_info->data = vcpu->arch.smbase;
4503 break;
4504 case MSR_SMI_COUNT:
4505 msr_info->data = vcpu->arch.smi_count;
4506 break;
4507 case MSR_IA32_PERF_STATUS:
4508 /* TSC increment by tick */
4509 msr_info->data = 1000ULL;
4510 /* CPU multiplier */
4511 msr_info->data |= (((uint64_t)4ULL) << 40);
4512 break;
4513 case MSR_EFER:
4514 msr_info->data = vcpu->arch.efer;
4515 break;
4516 case MSR_KVM_WALL_CLOCK:
4517 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4518 return 1;
4519
4520 msr_info->data = vcpu->kvm->arch.wall_clock;
4521 break;
4522 case MSR_KVM_WALL_CLOCK_NEW:
4523 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4524 return 1;
4525
4526 msr_info->data = vcpu->kvm->arch.wall_clock;
4527 break;
4528 case MSR_KVM_SYSTEM_TIME:
4529 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4530 return 1;
4531
4532 msr_info->data = vcpu->arch.time;
4533 break;
4534 case MSR_KVM_SYSTEM_TIME_NEW:
4535 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4536 return 1;
4537
4538 msr_info->data = vcpu->arch.time;
4539 break;
4540 case MSR_KVM_ASYNC_PF_EN:
4541 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4542 return 1;
4543
4544 msr_info->data = vcpu->arch.apf.msr_en_val;
4545 break;
4546 case MSR_KVM_ASYNC_PF_INT:
4547 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4548 return 1;
4549
4550 msr_info->data = vcpu->arch.apf.msr_int_val;
4551 break;
4552 case MSR_KVM_ASYNC_PF_ACK:
4553 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4554 return 1;
4555
4556 msr_info->data = 0;
4557 break;
4558 case MSR_KVM_STEAL_TIME:
4559 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4560 return 1;
4561
4562 msr_info->data = vcpu->arch.st.msr_val;
4563 break;
4564 case MSR_KVM_PV_EOI_EN:
4565 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4566 return 1;
4567
4568 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4569 break;
4570 case MSR_KVM_POLL_CONTROL:
4571 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4572 return 1;
4573
4574 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4575 break;
4576 case MSR_IA32_P5_MC_ADDR:
4577 case MSR_IA32_P5_MC_TYPE:
4578 case MSR_IA32_MCG_CAP:
4579 case MSR_IA32_MCG_CTL:
4580 case MSR_IA32_MCG_STATUS:
4581 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4582 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4583 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4584 msr_info->host_initiated);
4585 case MSR_IA32_XSS:
4586 if (!msr_info->host_initiated &&
4587 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4588 return 1;
4589 msr_info->data = vcpu->arch.ia32_xss;
4590 break;
4591 case MSR_K7_CLK_CTL:
4592 /*
4593 * Provide expected ramp-up count for K7. All other
4594 * are set to zero, indicating minimum divisors for
4595 * every field.
4596 *
4597 * This prevents guest kernels on AMD host with CPU
4598 * type 6, model 8 and higher from exploding due to
4599 * the rdmsr failing.
4600 */
4601 msr_info->data = 0x20000000;
4602 break;
4603 #ifdef CONFIG_KVM_HYPERV
4604 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4605 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4606 case HV_X64_MSR_SYNDBG_OPTIONS:
4607 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4608 case HV_X64_MSR_CRASH_CTL:
4609 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4610 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4611 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4612 case HV_X64_MSR_TSC_EMULATION_STATUS:
4613 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4614 return kvm_hv_get_msr_common(vcpu,
4615 msr_info->index, &msr_info->data,
4616 msr_info->host_initiated);
4617 #endif
4618 case MSR_IA32_BBL_CR_CTL3:
4619 /* This legacy MSR exists but isn't fully documented in current
4620 * silicon. It is however accessed by winxp in very narrow
4621 * scenarios where it sets bit #19, itself documented as
4622 * a "reserved" bit. Best effort attempt to source coherent
4623 * read data here should the balance of the register be
4624 * interpreted by the guest:
4625 *
4626 * L2 cache control register 3: 64GB range, 256KB size,
4627 * enabled, latency 0x1, configured
4628 */
4629 msr_info->data = 0xbe702111;
4630 break;
4631 case MSR_AMD64_OSVW_ID_LENGTH:
4632 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4633 return 1;
4634 msr_info->data = vcpu->arch.osvw.length;
4635 break;
4636 case MSR_AMD64_OSVW_STATUS:
4637 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4638 return 1;
4639 msr_info->data = vcpu->arch.osvw.status;
4640 break;
4641 case MSR_PLATFORM_INFO:
4642 if (!msr_info->host_initiated &&
4643 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4644 return 1;
4645 msr_info->data = vcpu->arch.msr_platform_info;
4646 break;
4647 case MSR_MISC_FEATURES_ENABLES:
4648 msr_info->data = vcpu->arch.msr_misc_features_enables;
4649 break;
4650 case MSR_K7_HWCR:
4651 msr_info->data = vcpu->arch.msr_hwcr;
4652 break;
4653 #ifdef CONFIG_X86_64
4654 case MSR_IA32_XFD:
4655 if (!msr_info->host_initiated &&
4656 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4657 return 1;
4658
4659 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4660 break;
4661 case MSR_IA32_XFD_ERR:
4662 if (!msr_info->host_initiated &&
4663 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4664 return 1;
4665
4666 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4667 break;
4668 #endif
4669 case MSR_IA32_U_CET:
4670 case MSR_IA32_PL0_SSP ... MSR_IA32_PL3_SSP:
4671 kvm_get_xstate_msr(vcpu, msr_info);
4672 break;
4673 default:
4674 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4675 return kvm_pmu_get_msr(vcpu, msr_info);
4676
4677 return KVM_MSR_RET_UNSUPPORTED;
4678 }
4679 return 0;
4680 }
4681 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_msr_common);
4682
4683 /*
4684 * Read or write a bunch of msrs. All parameters are kernel addresses.
4685 *
4686 * @return number of msrs set successfully.
4687 */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))4688 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4689 struct kvm_msr_entry *entries,
4690 int (*do_msr)(struct kvm_vcpu *vcpu,
4691 unsigned index, u64 *data))
4692 {
4693 bool fpu_loaded = false;
4694 int i;
4695
4696 for (i = 0; i < msrs->nmsrs; ++i) {
4697 /*
4698 * If userspace is accessing one or more XSTATE-managed MSRs,
4699 * temporarily load the guest's FPU state so that the guest's
4700 * MSR value(s) is resident in hardware and thus can be accessed
4701 * via RDMSR/WRMSR.
4702 */
4703 if (!fpu_loaded && is_xstate_managed_msr(vcpu, entries[i].index)) {
4704 kvm_load_guest_fpu(vcpu);
4705 fpu_loaded = true;
4706 }
4707 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4708 break;
4709 }
4710 if (fpu_loaded)
4711 kvm_put_guest_fpu(vcpu);
4712
4713 return i;
4714 }
4715
4716 /*
4717 * Read or write a bunch of msrs. Parameters are user addresses.
4718 *
4719 * @return number of msrs set successfully.
4720 */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)4721 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4722 int (*do_msr)(struct kvm_vcpu *vcpu,
4723 unsigned index, u64 *data),
4724 int writeback)
4725 {
4726 struct kvm_msrs msrs;
4727 struct kvm_msr_entry *entries;
4728 unsigned size;
4729 int r;
4730
4731 r = -EFAULT;
4732 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4733 goto out;
4734
4735 r = -E2BIG;
4736 if (msrs.nmsrs >= MAX_IO_MSRS)
4737 goto out;
4738
4739 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4740 entries = memdup_user(user_msrs->entries, size);
4741 if (IS_ERR(entries)) {
4742 r = PTR_ERR(entries);
4743 goto out;
4744 }
4745
4746 r = __msr_io(vcpu, &msrs, entries, do_msr);
4747
4748 if (writeback && copy_to_user(user_msrs->entries, entries, size))
4749 r = -EFAULT;
4750
4751 kfree(entries);
4752 out:
4753 return r;
4754 }
4755
kvm_can_mwait_in_guest(void)4756 static inline bool kvm_can_mwait_in_guest(void)
4757 {
4758 return boot_cpu_has(X86_FEATURE_MWAIT) &&
4759 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4760 boot_cpu_has(X86_FEATURE_ARAT);
4761 }
4762
kvm_get_allowed_disable_exits(void)4763 static u64 kvm_get_allowed_disable_exits(void)
4764 {
4765 u64 r = KVM_X86_DISABLE_EXITS_PAUSE;
4766
4767 if (boot_cpu_has(X86_FEATURE_APERFMPERF))
4768 r |= KVM_X86_DISABLE_EXITS_APERFMPERF;
4769
4770 if (!mitigate_smt_rsb) {
4771 r |= KVM_X86_DISABLE_EXITS_HLT |
4772 KVM_X86_DISABLE_EXITS_CSTATE;
4773
4774 if (kvm_can_mwait_in_guest())
4775 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4776 }
4777 return r;
4778 }
4779
4780 #ifdef CONFIG_KVM_HYPERV
kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid2 __user * cpuid_arg)4781 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4782 struct kvm_cpuid2 __user *cpuid_arg)
4783 {
4784 struct kvm_cpuid2 cpuid;
4785 int r;
4786
4787 r = -EFAULT;
4788 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4789 return r;
4790
4791 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4792 if (r)
4793 return r;
4794
4795 r = -EFAULT;
4796 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4797 return r;
4798
4799 return 0;
4800 }
4801 #endif
4802
kvm_is_vm_type_supported(unsigned long type)4803 static bool kvm_is_vm_type_supported(unsigned long type)
4804 {
4805 return type < 32 && (kvm_caps.supported_vm_types & BIT(type));
4806 }
4807
kvm_sync_valid_fields(struct kvm * kvm)4808 static inline u64 kvm_sync_valid_fields(struct kvm *kvm)
4809 {
4810 return kvm && kvm->arch.has_protected_state ? 0 : KVM_SYNC_X86_VALID_FIELDS;
4811 }
4812
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)4813 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4814 {
4815 int r = 0;
4816
4817 switch (ext) {
4818 case KVM_CAP_IRQCHIP:
4819 case KVM_CAP_HLT:
4820 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4821 case KVM_CAP_SET_TSS_ADDR:
4822 case KVM_CAP_EXT_CPUID:
4823 case KVM_CAP_EXT_EMUL_CPUID:
4824 case KVM_CAP_CLOCKSOURCE:
4825 #ifdef CONFIG_KVM_IOAPIC
4826 case KVM_CAP_PIT:
4827 case KVM_CAP_PIT2:
4828 case KVM_CAP_PIT_STATE2:
4829 case KVM_CAP_REINJECT_CONTROL:
4830 #endif
4831 case KVM_CAP_NOP_IO_DELAY:
4832 case KVM_CAP_MP_STATE:
4833 case KVM_CAP_SYNC_MMU:
4834 case KVM_CAP_USER_NMI:
4835 case KVM_CAP_IRQ_INJECT_STATUS:
4836 case KVM_CAP_IOEVENTFD:
4837 case KVM_CAP_IOEVENTFD_NO_LENGTH:
4838
4839 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4840 case KVM_CAP_VCPU_EVENTS:
4841 #ifdef CONFIG_KVM_HYPERV
4842 case KVM_CAP_HYPERV:
4843 case KVM_CAP_HYPERV_VAPIC:
4844 case KVM_CAP_HYPERV_SPIN:
4845 case KVM_CAP_HYPERV_TIME:
4846 case KVM_CAP_HYPERV_SYNIC:
4847 case KVM_CAP_HYPERV_SYNIC2:
4848 case KVM_CAP_HYPERV_VP_INDEX:
4849 case KVM_CAP_HYPERV_EVENTFD:
4850 case KVM_CAP_HYPERV_TLBFLUSH:
4851 case KVM_CAP_HYPERV_SEND_IPI:
4852 case KVM_CAP_HYPERV_CPUID:
4853 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4854 case KVM_CAP_SYS_HYPERV_CPUID:
4855 #endif
4856 case KVM_CAP_PCI_SEGMENT:
4857 case KVM_CAP_DEBUGREGS:
4858 case KVM_CAP_X86_ROBUST_SINGLESTEP:
4859 case KVM_CAP_XSAVE:
4860 case KVM_CAP_ASYNC_PF:
4861 case KVM_CAP_ASYNC_PF_INT:
4862 case KVM_CAP_GET_TSC_KHZ:
4863 case KVM_CAP_KVMCLOCK_CTRL:
4864 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4865 case KVM_CAP_TSC_DEADLINE_TIMER:
4866 case KVM_CAP_DISABLE_QUIRKS:
4867 case KVM_CAP_SET_BOOT_CPU_ID:
4868 case KVM_CAP_SPLIT_IRQCHIP:
4869 case KVM_CAP_IMMEDIATE_EXIT:
4870 case KVM_CAP_PMU_EVENT_FILTER:
4871 case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4872 case KVM_CAP_GET_MSR_FEATURES:
4873 case KVM_CAP_MSR_PLATFORM_INFO:
4874 case KVM_CAP_EXCEPTION_PAYLOAD:
4875 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4876 case KVM_CAP_SET_GUEST_DEBUG:
4877 case KVM_CAP_LAST_CPU:
4878 case KVM_CAP_X86_USER_SPACE_MSR:
4879 case KVM_CAP_X86_MSR_FILTER:
4880 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4881 #ifdef CONFIG_X86_SGX_KVM
4882 case KVM_CAP_SGX_ATTRIBUTE:
4883 #endif
4884 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4885 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4886 case KVM_CAP_SREGS2:
4887 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4888 case KVM_CAP_VCPU_ATTRIBUTES:
4889 case KVM_CAP_SYS_ATTRIBUTES:
4890 case KVM_CAP_VAPIC:
4891 case KVM_CAP_ENABLE_CAP:
4892 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4893 case KVM_CAP_IRQFD_RESAMPLE:
4894 case KVM_CAP_MEMORY_FAULT_INFO:
4895 case KVM_CAP_X86_GUEST_MODE:
4896 case KVM_CAP_ONE_REG:
4897 r = 1;
4898 break;
4899 case KVM_CAP_PRE_FAULT_MEMORY:
4900 r = tdp_enabled;
4901 break;
4902 case KVM_CAP_X86_APIC_BUS_CYCLES_NS:
4903 r = APIC_BUS_CYCLE_NS_DEFAULT;
4904 break;
4905 case KVM_CAP_EXIT_HYPERCALL:
4906 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4907 break;
4908 case KVM_CAP_SET_GUEST_DEBUG2:
4909 return KVM_GUESTDBG_VALID_MASK;
4910 #ifdef CONFIG_KVM_XEN
4911 case KVM_CAP_XEN_HVM:
4912 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4913 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4914 KVM_XEN_HVM_CONFIG_SHARED_INFO |
4915 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4916 KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
4917 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE |
4918 KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA;
4919 if (sched_info_on())
4920 r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4921 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4922 break;
4923 #endif
4924 case KVM_CAP_SYNC_REGS:
4925 r = kvm_sync_valid_fields(kvm);
4926 break;
4927 case KVM_CAP_ADJUST_CLOCK:
4928 r = KVM_CLOCK_VALID_FLAGS;
4929 break;
4930 case KVM_CAP_X86_DISABLE_EXITS:
4931 r = kvm_get_allowed_disable_exits();
4932 break;
4933 case KVM_CAP_X86_SMM:
4934 if (!IS_ENABLED(CONFIG_KVM_SMM))
4935 break;
4936
4937 /* SMBASE is usually relocated above 1M on modern chipsets,
4938 * and SMM handlers might indeed rely on 4G segment limits,
4939 * so do not report SMM to be available if real mode is
4940 * emulated via vm86 mode. Still, do not go to great lengths
4941 * to avoid userspace's usage of the feature, because it is a
4942 * fringe case that is not enabled except via specific settings
4943 * of the module parameters.
4944 */
4945 r = kvm_x86_call(has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4946 break;
4947 case KVM_CAP_NR_VCPUS:
4948 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4949 break;
4950 case KVM_CAP_MAX_VCPUS:
4951 r = KVM_MAX_VCPUS;
4952 if (kvm)
4953 r = kvm->max_vcpus;
4954 break;
4955 case KVM_CAP_MAX_VCPU_ID:
4956 r = KVM_MAX_VCPU_IDS;
4957 break;
4958 case KVM_CAP_PV_MMU: /* obsolete */
4959 r = 0;
4960 break;
4961 case KVM_CAP_MCE:
4962 r = KVM_MAX_MCE_BANKS;
4963 break;
4964 case KVM_CAP_XCRS:
4965 r = boot_cpu_has(X86_FEATURE_XSAVE);
4966 break;
4967 case KVM_CAP_TSC_CONTROL:
4968 case KVM_CAP_VM_TSC_CONTROL:
4969 r = kvm_caps.has_tsc_control;
4970 break;
4971 case KVM_CAP_X2APIC_API:
4972 r = KVM_X2APIC_API_VALID_FLAGS;
4973 break;
4974 case KVM_CAP_NESTED_STATE:
4975 r = kvm_x86_ops.nested_ops->get_state ?
4976 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4977 break;
4978 #ifdef CONFIG_KVM_HYPERV
4979 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4980 r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4981 break;
4982 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4983 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4984 break;
4985 #endif
4986 case KVM_CAP_SMALLER_MAXPHYADDR:
4987 r = (int) allow_smaller_maxphyaddr;
4988 break;
4989 case KVM_CAP_STEAL_TIME:
4990 r = sched_info_on();
4991 break;
4992 case KVM_CAP_X86_BUS_LOCK_EXIT:
4993 if (kvm_caps.has_bus_lock_exit)
4994 r = KVM_BUS_LOCK_DETECTION_OFF |
4995 KVM_BUS_LOCK_DETECTION_EXIT;
4996 else
4997 r = 0;
4998 break;
4999 case KVM_CAP_XSAVE2: {
5000 r = xstate_required_size(kvm_get_filtered_xcr0(), false);
5001 if (r < sizeof(struct kvm_xsave))
5002 r = sizeof(struct kvm_xsave);
5003 break;
5004 }
5005 case KVM_CAP_PMU_CAPABILITY:
5006 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
5007 break;
5008 case KVM_CAP_DISABLE_QUIRKS2:
5009 r = kvm_caps.supported_quirks;
5010 break;
5011 case KVM_CAP_X86_NOTIFY_VMEXIT:
5012 r = kvm_caps.has_notify_vmexit;
5013 break;
5014 case KVM_CAP_VM_TYPES:
5015 r = kvm_caps.supported_vm_types;
5016 break;
5017 case KVM_CAP_READONLY_MEM:
5018 r = kvm ? kvm_arch_has_readonly_mem(kvm) : 1;
5019 break;
5020 default:
5021 break;
5022 }
5023 return r;
5024 }
5025
__kvm_x86_dev_get_attr(struct kvm_device_attr * attr,u64 * val)5026 static int __kvm_x86_dev_get_attr(struct kvm_device_attr *attr, u64 *val)
5027 {
5028 if (attr->group) {
5029 if (kvm_x86_ops.dev_get_attr)
5030 return kvm_x86_call(dev_get_attr)(attr->group, attr->attr, val);
5031 return -ENXIO;
5032 }
5033
5034 switch (attr->attr) {
5035 case KVM_X86_XCOMP_GUEST_SUPP:
5036 *val = kvm_caps.supported_xcr0;
5037 return 0;
5038 default:
5039 return -ENXIO;
5040 }
5041 }
5042
kvm_x86_dev_get_attr(struct kvm_device_attr * attr)5043 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
5044 {
5045 u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5046 int r;
5047 u64 val;
5048
5049 r = __kvm_x86_dev_get_attr(attr, &val);
5050 if (r < 0)
5051 return r;
5052
5053 if (put_user(val, uaddr))
5054 return -EFAULT;
5055
5056 return 0;
5057 }
5058
kvm_x86_dev_has_attr(struct kvm_device_attr * attr)5059 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
5060 {
5061 u64 val;
5062
5063 return __kvm_x86_dev_get_attr(attr, &val);
5064 }
5065
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5066 long kvm_arch_dev_ioctl(struct file *filp,
5067 unsigned int ioctl, unsigned long arg)
5068 {
5069 void __user *argp = (void __user *)arg;
5070 long r;
5071
5072 switch (ioctl) {
5073 case KVM_GET_MSR_INDEX_LIST: {
5074 struct kvm_msr_list __user *user_msr_list = argp;
5075 struct kvm_msr_list msr_list;
5076 unsigned n;
5077
5078 r = -EFAULT;
5079 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
5080 goto out;
5081 n = msr_list.nmsrs;
5082 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
5083 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
5084 goto out;
5085 r = -E2BIG;
5086 if (n < msr_list.nmsrs)
5087 goto out;
5088 r = -EFAULT;
5089 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
5090 num_msrs_to_save * sizeof(u32)))
5091 goto out;
5092 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
5093 &emulated_msrs,
5094 num_emulated_msrs * sizeof(u32)))
5095 goto out;
5096 r = 0;
5097 break;
5098 }
5099 case KVM_GET_SUPPORTED_CPUID:
5100 case KVM_GET_EMULATED_CPUID: {
5101 struct kvm_cpuid2 __user *cpuid_arg = argp;
5102 struct kvm_cpuid2 cpuid;
5103
5104 r = -EFAULT;
5105 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5106 goto out;
5107
5108 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
5109 ioctl);
5110 if (r)
5111 goto out;
5112
5113 r = -EFAULT;
5114 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5115 goto out;
5116 r = 0;
5117 break;
5118 }
5119 case KVM_X86_GET_MCE_CAP_SUPPORTED:
5120 r = -EFAULT;
5121 if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
5122 sizeof(kvm_caps.supported_mce_cap)))
5123 goto out;
5124 r = 0;
5125 break;
5126 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
5127 struct kvm_msr_list __user *user_msr_list = argp;
5128 struct kvm_msr_list msr_list;
5129 unsigned int n;
5130
5131 r = -EFAULT;
5132 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
5133 goto out;
5134 n = msr_list.nmsrs;
5135 msr_list.nmsrs = num_msr_based_features;
5136 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
5137 goto out;
5138 r = -E2BIG;
5139 if (n < msr_list.nmsrs)
5140 goto out;
5141 r = -EFAULT;
5142 if (copy_to_user(user_msr_list->indices, &msr_based_features,
5143 num_msr_based_features * sizeof(u32)))
5144 goto out;
5145 r = 0;
5146 break;
5147 }
5148 case KVM_GET_MSRS:
5149 r = msr_io(NULL, argp, do_get_feature_msr, 1);
5150 break;
5151 #ifdef CONFIG_KVM_HYPERV
5152 case KVM_GET_SUPPORTED_HV_CPUID:
5153 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
5154 break;
5155 #endif
5156 case KVM_GET_DEVICE_ATTR: {
5157 struct kvm_device_attr attr;
5158 r = -EFAULT;
5159 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
5160 break;
5161 r = kvm_x86_dev_get_attr(&attr);
5162 break;
5163 }
5164 case KVM_HAS_DEVICE_ATTR: {
5165 struct kvm_device_attr attr;
5166 r = -EFAULT;
5167 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
5168 break;
5169 r = kvm_x86_dev_has_attr(&attr);
5170 break;
5171 }
5172 default:
5173 r = -EINVAL;
5174 break;
5175 }
5176 out:
5177 return r;
5178 }
5179
need_emulate_wbinvd(struct kvm_vcpu * vcpu)5180 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
5181 {
5182 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
5183 }
5184
5185 static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
5186
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)5187 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
5188 {
5189 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
5190
5191 vcpu->arch.l1tf_flush_l1d = true;
5192
5193 if (vcpu->scheduled_out && pmu->version && pmu->event_count) {
5194 pmu->need_cleanup = true;
5195 kvm_make_request(KVM_REQ_PMU, vcpu);
5196 }
5197
5198 /* Address WBINVD may be executed by guest */
5199 if (need_emulate_wbinvd(vcpu)) {
5200 if (kvm_x86_call(has_wbinvd_exit)())
5201 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5202 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
5203 wbinvd_on_cpu(vcpu->cpu);
5204 }
5205
5206 kvm_x86_call(vcpu_load)(vcpu, cpu);
5207
5208 if (vcpu != per_cpu(last_vcpu, cpu)) {
5209 /*
5210 * Flush the branch predictor when switching vCPUs on the same
5211 * physical CPU, as each vCPU needs its own branch prediction
5212 * domain. No IBPB is needed when switching between L1 and L2
5213 * on the same vCPU unless IBRS is advertised to the vCPU; that
5214 * is handled on the nested VM-Exit path.
5215 */
5216 if (static_branch_likely(&switch_vcpu_ibpb))
5217 indirect_branch_prediction_barrier();
5218 per_cpu(last_vcpu, cpu) = vcpu;
5219 }
5220
5221 /* Save host pkru register if supported */
5222 vcpu->arch.host_pkru = read_pkru();
5223
5224 /* Apply any externally detected TSC adjustments (due to suspend) */
5225 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
5226 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
5227 vcpu->arch.tsc_offset_adjustment = 0;
5228 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5229 }
5230
5231 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
5232 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
5233 rdtsc() - vcpu->arch.last_host_tsc;
5234 if (tsc_delta < 0)
5235 mark_tsc_unstable("KVM discovered backwards TSC");
5236
5237 if (kvm_check_tsc_unstable()) {
5238 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
5239 vcpu->arch.last_guest_tsc);
5240 kvm_vcpu_write_tsc_offset(vcpu, offset);
5241 if (!vcpu->arch.guest_tsc_protected)
5242 vcpu->arch.tsc_catchup = 1;
5243 }
5244
5245 if (kvm_lapic_hv_timer_in_use(vcpu))
5246 kvm_lapic_restart_hv_timer(vcpu);
5247
5248 /*
5249 * On a host with synchronized TSC, there is no need to update
5250 * kvmclock on vcpu->cpu migration
5251 */
5252 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
5253 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
5254 if (vcpu->cpu != cpu)
5255 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
5256 vcpu->cpu = cpu;
5257 }
5258
5259 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
5260 }
5261
kvm_steal_time_set_preempted(struct kvm_vcpu * vcpu)5262 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
5263 {
5264 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
5265 struct kvm_steal_time __user *st;
5266 struct kvm_memslots *slots;
5267 static const u8 preempted = KVM_VCPU_PREEMPTED;
5268 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
5269
5270 /*
5271 * The vCPU can be marked preempted if and only if the VM-Exit was on
5272 * an instruction boundary and will not trigger guest emulation of any
5273 * kind (see vcpu_run). Vendor specific code controls (conservatively)
5274 * when this is true, for example allowing the vCPU to be marked
5275 * preempted if and only if the VM-Exit was due to a host interrupt.
5276 */
5277 if (!vcpu->arch.at_instruction_boundary) {
5278 vcpu->stat.preemption_other++;
5279 return;
5280 }
5281
5282 vcpu->stat.preemption_reported++;
5283 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
5284 return;
5285
5286 if (vcpu->arch.st.preempted)
5287 return;
5288
5289 /* This happens on process exit */
5290 if (unlikely(current->mm != vcpu->kvm->mm))
5291 return;
5292
5293 slots = kvm_memslots(vcpu->kvm);
5294
5295 if (unlikely(slots->generation != ghc->generation ||
5296 gpa != ghc->gpa ||
5297 kvm_is_error_hva(ghc->hva) || !ghc->memslot))
5298 return;
5299
5300 st = (struct kvm_steal_time __user *)ghc->hva;
5301 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
5302
5303 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
5304 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
5305
5306 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
5307 }
5308
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)5309 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
5310 {
5311 int idx;
5312
5313 if (vcpu->preempted) {
5314 /*
5315 * Assume protected guests are in-kernel. Inefficient yielding
5316 * due to false positives is preferable to never yielding due
5317 * to false negatives.
5318 */
5319 vcpu->arch.preempted_in_kernel = vcpu->arch.guest_state_protected ||
5320 !kvm_x86_call(get_cpl_no_cache)(vcpu);
5321
5322 /*
5323 * Take the srcu lock as memslots will be accessed to check the gfn
5324 * cache generation against the memslots generation.
5325 */
5326 idx = srcu_read_lock(&vcpu->kvm->srcu);
5327 if (kvm_xen_msr_enabled(vcpu->kvm))
5328 kvm_xen_runstate_set_preempted(vcpu);
5329 else
5330 kvm_steal_time_set_preempted(vcpu);
5331 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5332 }
5333
5334 kvm_x86_call(vcpu_put)(vcpu);
5335 vcpu->arch.last_host_tsc = rdtsc();
5336 }
5337
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)5338 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
5339 struct kvm_lapic_state *s)
5340 {
5341 if (vcpu->arch.apic->guest_apic_protected)
5342 return -EINVAL;
5343
5344 kvm_x86_call(sync_pir_to_irr)(vcpu);
5345
5346 return kvm_apic_get_state(vcpu, s);
5347 }
5348
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)5349 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
5350 struct kvm_lapic_state *s)
5351 {
5352 int r;
5353
5354 if (vcpu->arch.apic->guest_apic_protected)
5355 return -EINVAL;
5356
5357 r = kvm_apic_set_state(vcpu, s);
5358 if (r)
5359 return r;
5360 update_cr8_intercept(vcpu);
5361
5362 return 0;
5363 }
5364
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)5365 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
5366 {
5367 /*
5368 * We can accept userspace's request for interrupt injection
5369 * as long as we have a place to store the interrupt number.
5370 * The actual injection will happen when the CPU is able to
5371 * deliver the interrupt.
5372 */
5373 if (kvm_cpu_has_extint(vcpu))
5374 return false;
5375
5376 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
5377 return (!lapic_in_kernel(vcpu) ||
5378 kvm_apic_accept_pic_intr(vcpu));
5379 }
5380
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)5381 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
5382 {
5383 /*
5384 * Do not cause an interrupt window exit if an exception
5385 * is pending or an event needs reinjection; userspace
5386 * might want to inject the interrupt manually using KVM_SET_REGS
5387 * or KVM_SET_SREGS. For that to work, we must be at an
5388 * instruction boundary and with no events half-injected.
5389 */
5390 return (kvm_arch_interrupt_allowed(vcpu) &&
5391 kvm_cpu_accept_dm_intr(vcpu) &&
5392 !kvm_event_needs_reinjection(vcpu) &&
5393 !kvm_is_exception_pending(vcpu));
5394 }
5395
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)5396 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
5397 struct kvm_interrupt *irq)
5398 {
5399 if (irq->irq >= KVM_NR_INTERRUPTS)
5400 return -EINVAL;
5401
5402 if (!irqchip_in_kernel(vcpu->kvm)) {
5403 kvm_queue_interrupt(vcpu, irq->irq, false);
5404 kvm_make_request(KVM_REQ_EVENT, vcpu);
5405 return 0;
5406 }
5407
5408 /*
5409 * With in-kernel LAPIC, we only use this to inject EXTINT, so
5410 * fail for in-kernel 8259.
5411 */
5412 if (pic_in_kernel(vcpu->kvm))
5413 return -ENXIO;
5414
5415 if (vcpu->arch.pending_external_vector != -1)
5416 return -EEXIST;
5417
5418 vcpu->arch.pending_external_vector = irq->irq;
5419 kvm_make_request(KVM_REQ_EVENT, vcpu);
5420 return 0;
5421 }
5422
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)5423 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5424 {
5425 kvm_inject_nmi(vcpu);
5426
5427 return 0;
5428 }
5429
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)5430 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5431 struct kvm_tpr_access_ctl *tac)
5432 {
5433 if (tac->flags)
5434 return -EINVAL;
5435 vcpu->arch.tpr_access_reporting = !!tac->enabled;
5436 return 0;
5437 }
5438
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)5439 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5440 u64 mcg_cap)
5441 {
5442 int r;
5443 unsigned bank_num = mcg_cap & 0xff, bank;
5444
5445 r = -EINVAL;
5446 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5447 goto out;
5448 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5449 goto out;
5450 r = 0;
5451 vcpu->arch.mcg_cap = mcg_cap;
5452 /* Init IA32_MCG_CTL to all 1s */
5453 if (mcg_cap & MCG_CTL_P)
5454 vcpu->arch.mcg_ctl = ~(u64)0;
5455 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5456 for (bank = 0; bank < bank_num; bank++) {
5457 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5458 if (mcg_cap & MCG_CMCI_P)
5459 vcpu->arch.mci_ctl2_banks[bank] = 0;
5460 }
5461
5462 kvm_apic_after_set_mcg_cap(vcpu);
5463
5464 kvm_x86_call(setup_mce)(vcpu);
5465 out:
5466 return r;
5467 }
5468
5469 /*
5470 * Validate this is an UCNA (uncorrectable no action) error by checking the
5471 * MCG_STATUS and MCi_STATUS registers:
5472 * - none of the bits for Machine Check Exceptions are set
5473 * - both the VAL (valid) and UC (uncorrectable) bits are set
5474 * MCI_STATUS_PCC - Processor Context Corrupted
5475 * MCI_STATUS_S - Signaled as a Machine Check Exception
5476 * MCI_STATUS_AR - Software recoverable Action Required
5477 */
is_ucna(struct kvm_x86_mce * mce)5478 static bool is_ucna(struct kvm_x86_mce *mce)
5479 {
5480 return !mce->mcg_status &&
5481 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5482 (mce->status & MCI_STATUS_VAL) &&
5483 (mce->status & MCI_STATUS_UC);
5484 }
5485
kvm_vcpu_x86_set_ucna(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce,u64 * banks)5486 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5487 {
5488 u64 mcg_cap = vcpu->arch.mcg_cap;
5489
5490 banks[1] = mce->status;
5491 banks[2] = mce->addr;
5492 banks[3] = mce->misc;
5493 vcpu->arch.mcg_status = mce->mcg_status;
5494
5495 if (!(mcg_cap & MCG_CMCI_P) ||
5496 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5497 return 0;
5498
5499 if (lapic_in_kernel(vcpu))
5500 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5501
5502 return 0;
5503 }
5504
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)5505 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5506 struct kvm_x86_mce *mce)
5507 {
5508 u64 mcg_cap = vcpu->arch.mcg_cap;
5509 unsigned bank_num = mcg_cap & 0xff;
5510 u64 *banks = vcpu->arch.mce_banks;
5511
5512 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5513 return -EINVAL;
5514
5515 banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5516
5517 if (is_ucna(mce))
5518 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5519
5520 /*
5521 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5522 * reporting is disabled
5523 */
5524 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5525 vcpu->arch.mcg_ctl != ~(u64)0)
5526 return 0;
5527 /*
5528 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5529 * reporting is disabled for the bank
5530 */
5531 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5532 return 0;
5533 if (mce->status & MCI_STATUS_UC) {
5534 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5535 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5536 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5537 return 0;
5538 }
5539 if (banks[1] & MCI_STATUS_VAL)
5540 mce->status |= MCI_STATUS_OVER;
5541 banks[2] = mce->addr;
5542 banks[3] = mce->misc;
5543 vcpu->arch.mcg_status = mce->mcg_status;
5544 banks[1] = mce->status;
5545 kvm_queue_exception(vcpu, MC_VECTOR);
5546 } else if (!(banks[1] & MCI_STATUS_VAL)
5547 || !(banks[1] & MCI_STATUS_UC)) {
5548 if (banks[1] & MCI_STATUS_VAL)
5549 mce->status |= MCI_STATUS_OVER;
5550 banks[2] = mce->addr;
5551 banks[3] = mce->misc;
5552 banks[1] = mce->status;
5553 } else
5554 banks[1] |= MCI_STATUS_OVER;
5555 return 0;
5556 }
5557
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5558 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5559 struct kvm_vcpu_events *events)
5560 {
5561 struct kvm_queued_exception *ex;
5562
5563 process_nmi(vcpu);
5564
5565 #ifdef CONFIG_KVM_SMM
5566 if (kvm_check_request(KVM_REQ_SMI, vcpu))
5567 process_smi(vcpu);
5568 #endif
5569
5570 /*
5571 * KVM's ABI only allows for one exception to be migrated. Luckily,
5572 * the only time there can be two queued exceptions is if there's a
5573 * non-exiting _injected_ exception, and a pending exiting exception.
5574 * In that case, ignore the VM-Exiting exception as it's an extension
5575 * of the injected exception.
5576 */
5577 if (vcpu->arch.exception_vmexit.pending &&
5578 !vcpu->arch.exception.pending &&
5579 !vcpu->arch.exception.injected)
5580 ex = &vcpu->arch.exception_vmexit;
5581 else
5582 ex = &vcpu->arch.exception;
5583
5584 /*
5585 * In guest mode, payload delivery should be deferred if the exception
5586 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5587 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability,
5588 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5589 * propagate the payload and so it cannot be safely deferred. Deliver
5590 * the payload if the capability hasn't been requested.
5591 */
5592 if (!vcpu->kvm->arch.exception_payload_enabled &&
5593 ex->pending && ex->has_payload)
5594 kvm_deliver_exception_payload(vcpu, ex);
5595
5596 memset(events, 0, sizeof(*events));
5597
5598 /*
5599 * The API doesn't provide the instruction length for software
5600 * exceptions, so don't report them. As long as the guest RIP
5601 * isn't advanced, we should expect to encounter the exception
5602 * again.
5603 */
5604 if (!kvm_exception_is_soft(ex->vector)) {
5605 events->exception.injected = ex->injected;
5606 events->exception.pending = ex->pending;
5607 /*
5608 * For ABI compatibility, deliberately conflate
5609 * pending and injected exceptions when
5610 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5611 */
5612 if (!vcpu->kvm->arch.exception_payload_enabled)
5613 events->exception.injected |= ex->pending;
5614 }
5615 events->exception.nr = ex->vector;
5616 events->exception.has_error_code = ex->has_error_code;
5617 events->exception.error_code = ex->error_code;
5618 events->exception_has_payload = ex->has_payload;
5619 events->exception_payload = ex->payload;
5620
5621 events->interrupt.injected =
5622 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5623 events->interrupt.nr = vcpu->arch.interrupt.nr;
5624 events->interrupt.shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
5625
5626 events->nmi.injected = vcpu->arch.nmi_injected;
5627 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5628 events->nmi.masked = kvm_x86_call(get_nmi_mask)(vcpu);
5629
5630 /* events->sipi_vector is never valid when reporting to user space */
5631
5632 #ifdef CONFIG_KVM_SMM
5633 events->smi.smm = is_smm(vcpu);
5634 events->smi.pending = vcpu->arch.smi_pending;
5635 events->smi.smm_inside_nmi =
5636 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5637 #endif
5638 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5639
5640 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5641 | KVM_VCPUEVENT_VALID_SHADOW
5642 | KVM_VCPUEVENT_VALID_SMM);
5643 if (vcpu->kvm->arch.exception_payload_enabled)
5644 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5645 if (vcpu->kvm->arch.triple_fault_event) {
5646 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5647 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5648 }
5649 }
5650
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5651 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5652 struct kvm_vcpu_events *events)
5653 {
5654 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5655 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5656 | KVM_VCPUEVENT_VALID_SHADOW
5657 | KVM_VCPUEVENT_VALID_SMM
5658 | KVM_VCPUEVENT_VALID_PAYLOAD
5659 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5660 return -EINVAL;
5661
5662 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5663 if (!vcpu->kvm->arch.exception_payload_enabled)
5664 return -EINVAL;
5665 if (events->exception.pending)
5666 events->exception.injected = 0;
5667 else
5668 events->exception_has_payload = 0;
5669 } else {
5670 events->exception.pending = 0;
5671 events->exception_has_payload = 0;
5672 }
5673
5674 if ((events->exception.injected || events->exception.pending) &&
5675 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5676 return -EINVAL;
5677
5678 process_nmi(vcpu);
5679
5680 /*
5681 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5682 * morph the exception to a VM-Exit if appropriate. Do this only for
5683 * pending exceptions, already-injected exceptions are not subject to
5684 * intercpetion. Note, userspace that conflates pending and injected
5685 * is hosed, and will incorrectly convert an injected exception into a
5686 * pending exception, which in turn may cause a spurious VM-Exit.
5687 */
5688 vcpu->arch.exception_from_userspace = events->exception.pending;
5689
5690 vcpu->arch.exception_vmexit.pending = false;
5691
5692 vcpu->arch.exception.injected = events->exception.injected;
5693 vcpu->arch.exception.pending = events->exception.pending;
5694 vcpu->arch.exception.vector = events->exception.nr;
5695 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5696 vcpu->arch.exception.error_code = events->exception.error_code;
5697 vcpu->arch.exception.has_payload = events->exception_has_payload;
5698 vcpu->arch.exception.payload = events->exception_payload;
5699
5700 vcpu->arch.interrupt.injected = events->interrupt.injected;
5701 vcpu->arch.interrupt.nr = events->interrupt.nr;
5702 vcpu->arch.interrupt.soft = events->interrupt.soft;
5703 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5704 kvm_x86_call(set_interrupt_shadow)(vcpu,
5705 events->interrupt.shadow);
5706
5707 vcpu->arch.nmi_injected = events->nmi.injected;
5708 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5709 vcpu->arch.nmi_pending = 0;
5710 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5711 if (events->nmi.pending)
5712 kvm_make_request(KVM_REQ_NMI, vcpu);
5713 }
5714 kvm_x86_call(set_nmi_mask)(vcpu, events->nmi.masked);
5715
5716 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5717 lapic_in_kernel(vcpu))
5718 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5719
5720 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5721 #ifdef CONFIG_KVM_SMM
5722 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5723 kvm_leave_nested(vcpu);
5724 kvm_smm_changed(vcpu, events->smi.smm);
5725 }
5726
5727 vcpu->arch.smi_pending = events->smi.pending;
5728
5729 if (events->smi.smm) {
5730 if (events->smi.smm_inside_nmi)
5731 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5732 else
5733 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5734 }
5735
5736 #else
5737 if (events->smi.smm || events->smi.pending ||
5738 events->smi.smm_inside_nmi)
5739 return -EINVAL;
5740 #endif
5741
5742 if (lapic_in_kernel(vcpu)) {
5743 if (events->smi.latched_init)
5744 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5745 else
5746 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5747 }
5748 }
5749
5750 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5751 if (!vcpu->kvm->arch.triple_fault_event)
5752 return -EINVAL;
5753 if (events->triple_fault.pending)
5754 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5755 else
5756 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5757 }
5758
5759 kvm_make_request(KVM_REQ_EVENT, vcpu);
5760
5761 return 0;
5762 }
5763
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5764 static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5765 struct kvm_debugregs *dbgregs)
5766 {
5767 unsigned int i;
5768
5769 if (vcpu->kvm->arch.has_protected_state &&
5770 vcpu->arch.guest_state_protected)
5771 return -EINVAL;
5772
5773 memset(dbgregs, 0, sizeof(*dbgregs));
5774
5775 BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db));
5776 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5777 dbgregs->db[i] = vcpu->arch.db[i];
5778
5779 dbgregs->dr6 = vcpu->arch.dr6;
5780 dbgregs->dr7 = vcpu->arch.dr7;
5781 return 0;
5782 }
5783
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5784 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5785 struct kvm_debugregs *dbgregs)
5786 {
5787 unsigned int i;
5788
5789 if (vcpu->kvm->arch.has_protected_state &&
5790 vcpu->arch.guest_state_protected)
5791 return -EINVAL;
5792
5793 if (dbgregs->flags)
5794 return -EINVAL;
5795
5796 if (!kvm_dr6_valid(dbgregs->dr6))
5797 return -EINVAL;
5798 if (!kvm_dr7_valid(dbgregs->dr7))
5799 return -EINVAL;
5800
5801 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5802 vcpu->arch.db[i] = dbgregs->db[i];
5803
5804 kvm_update_dr0123(vcpu);
5805 vcpu->arch.dr6 = dbgregs->dr6;
5806 vcpu->arch.dr7 = dbgregs->dr7;
5807 kvm_update_dr7(vcpu);
5808
5809 return 0;
5810 }
5811
5812
kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu * vcpu,u8 * state,unsigned int size)5813 static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5814 u8 *state, unsigned int size)
5815 {
5816 /*
5817 * Only copy state for features that are enabled for the guest. The
5818 * state itself isn't problematic, but setting bits in the header for
5819 * features that are supported in *this* host but not exposed to the
5820 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5821 * compatible host without the features that are NOT exposed to the
5822 * guest.
5823 *
5824 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5825 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5826 * supported by the host.
5827 */
5828 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5829 XFEATURE_MASK_FPSSE;
5830
5831 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5832 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5833
5834 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5835 supported_xcr0, vcpu->arch.pkru);
5836 return 0;
5837 }
5838
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5839 static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5840 struct kvm_xsave *guest_xsave)
5841 {
5842 return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5843 sizeof(guest_xsave->region));
5844 }
5845
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5846 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5847 struct kvm_xsave *guest_xsave)
5848 {
5849 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5850 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5851
5852 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5853 guest_xsave->region,
5854 kvm_caps.supported_xcr0,
5855 &vcpu->arch.pkru);
5856 }
5857
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5858 static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5859 struct kvm_xcrs *guest_xcrs)
5860 {
5861 if (vcpu->kvm->arch.has_protected_state &&
5862 vcpu->arch.guest_state_protected)
5863 return -EINVAL;
5864
5865 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5866 guest_xcrs->nr_xcrs = 0;
5867 return 0;
5868 }
5869
5870 guest_xcrs->nr_xcrs = 1;
5871 guest_xcrs->flags = 0;
5872 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5873 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5874 return 0;
5875 }
5876
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5877 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5878 struct kvm_xcrs *guest_xcrs)
5879 {
5880 int i, r = 0;
5881
5882 if (vcpu->kvm->arch.has_protected_state &&
5883 vcpu->arch.guest_state_protected)
5884 return -EINVAL;
5885
5886 if (!boot_cpu_has(X86_FEATURE_XSAVE))
5887 return -EINVAL;
5888
5889 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5890 return -EINVAL;
5891
5892 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5893 /* Only support XCR0 currently */
5894 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5895 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5896 guest_xcrs->xcrs[i].value);
5897 break;
5898 }
5899 if (r)
5900 r = -EINVAL;
5901 return r;
5902 }
5903
5904 /*
5905 * kvm_set_guest_paused() indicates to the guest kernel that it has been
5906 * stopped by the hypervisor. This function will be called from the host only.
5907 * EINVAL is returned when the host attempts to set the flag for a guest that
5908 * does not support pv clocks.
5909 */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)5910 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5911 {
5912 if (!vcpu->arch.pv_time.active)
5913 return -EINVAL;
5914 vcpu->arch.pvclock_set_guest_stopped_request = true;
5915 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5916 return 0;
5917 }
5918
kvm_arch_tsc_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5919 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5920 struct kvm_device_attr *attr)
5921 {
5922 int r;
5923
5924 switch (attr->attr) {
5925 case KVM_VCPU_TSC_OFFSET:
5926 r = 0;
5927 break;
5928 default:
5929 r = -ENXIO;
5930 }
5931
5932 return r;
5933 }
5934
kvm_arch_tsc_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5935 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5936 struct kvm_device_attr *attr)
5937 {
5938 u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5939 int r;
5940
5941 switch (attr->attr) {
5942 case KVM_VCPU_TSC_OFFSET:
5943 r = -EFAULT;
5944 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5945 break;
5946 r = 0;
5947 break;
5948 default:
5949 r = -ENXIO;
5950 }
5951
5952 return r;
5953 }
5954
kvm_arch_tsc_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5955 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5956 struct kvm_device_attr *attr)
5957 {
5958 u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5959 struct kvm *kvm = vcpu->kvm;
5960 int r;
5961
5962 switch (attr->attr) {
5963 case KVM_VCPU_TSC_OFFSET: {
5964 u64 offset, tsc, ns;
5965 unsigned long flags;
5966 bool matched;
5967
5968 r = -EFAULT;
5969 if (get_user(offset, uaddr))
5970 break;
5971
5972 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5973
5974 matched = (vcpu->arch.virtual_tsc_khz &&
5975 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5976 kvm->arch.last_tsc_offset == offset);
5977
5978 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5979 ns = get_kvmclock_base_ns();
5980
5981 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched, true);
5982 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5983
5984 r = 0;
5985 break;
5986 }
5987 default:
5988 r = -ENXIO;
5989 }
5990
5991 return r;
5992 }
5993
kvm_vcpu_ioctl_device_attr(struct kvm_vcpu * vcpu,unsigned int ioctl,void __user * argp)5994 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5995 unsigned int ioctl,
5996 void __user *argp)
5997 {
5998 struct kvm_device_attr attr;
5999 int r;
6000
6001 if (copy_from_user(&attr, argp, sizeof(attr)))
6002 return -EFAULT;
6003
6004 if (attr.group != KVM_VCPU_TSC_CTRL)
6005 return -ENXIO;
6006
6007 switch (ioctl) {
6008 case KVM_HAS_DEVICE_ATTR:
6009 r = kvm_arch_tsc_has_attr(vcpu, &attr);
6010 break;
6011 case KVM_GET_DEVICE_ATTR:
6012 r = kvm_arch_tsc_get_attr(vcpu, &attr);
6013 break;
6014 case KVM_SET_DEVICE_ATTR:
6015 r = kvm_arch_tsc_set_attr(vcpu, &attr);
6016 break;
6017 }
6018
6019 return r;
6020 }
6021
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)6022 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
6023 struct kvm_enable_cap *cap)
6024 {
6025 if (cap->flags)
6026 return -EINVAL;
6027
6028 switch (cap->cap) {
6029 #ifdef CONFIG_KVM_HYPERV
6030 case KVM_CAP_HYPERV_SYNIC2:
6031 if (cap->args[0])
6032 return -EINVAL;
6033 fallthrough;
6034
6035 case KVM_CAP_HYPERV_SYNIC:
6036 if (!irqchip_in_kernel(vcpu->kvm))
6037 return -EINVAL;
6038 return kvm_hv_activate_synic(vcpu, cap->cap ==
6039 KVM_CAP_HYPERV_SYNIC2);
6040 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
6041 {
6042 int r;
6043 uint16_t vmcs_version;
6044 void __user *user_ptr;
6045
6046 if (!kvm_x86_ops.nested_ops->enable_evmcs)
6047 return -ENOTTY;
6048 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
6049 if (!r) {
6050 user_ptr = (void __user *)(uintptr_t)cap->args[0];
6051 if (copy_to_user(user_ptr, &vmcs_version,
6052 sizeof(vmcs_version)))
6053 r = -EFAULT;
6054 }
6055 return r;
6056 }
6057 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
6058 if (!kvm_x86_ops.enable_l2_tlb_flush)
6059 return -ENOTTY;
6060
6061 return kvm_x86_call(enable_l2_tlb_flush)(vcpu);
6062
6063 case KVM_CAP_HYPERV_ENFORCE_CPUID:
6064 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
6065 #endif
6066
6067 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
6068 vcpu->arch.pv_cpuid.enforce = cap->args[0];
6069 return 0;
6070 default:
6071 return -EINVAL;
6072 }
6073 }
6074
6075 struct kvm_x86_reg_id {
6076 __u32 index;
6077 __u8 type;
6078 __u8 rsvd1;
6079 __u8 rsvd2:4;
6080 __u8 size:4;
6081 __u8 x86;
6082 };
6083
kvm_translate_kvm_reg(struct kvm_vcpu * vcpu,struct kvm_x86_reg_id * reg)6084 static int kvm_translate_kvm_reg(struct kvm_vcpu *vcpu,
6085 struct kvm_x86_reg_id *reg)
6086 {
6087 switch (reg->index) {
6088 case KVM_REG_GUEST_SSP:
6089 /*
6090 * FIXME: If host-initiated accesses are ever exempted from
6091 * ignore_msrs (in kvm_do_msr_access()), drop this manual check
6092 * and rely on KVM's standard checks to reject accesses to regs
6093 * that don't exist.
6094 */
6095 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK))
6096 return -EINVAL;
6097
6098 reg->type = KVM_X86_REG_TYPE_MSR;
6099 reg->index = MSR_KVM_INTERNAL_GUEST_SSP;
6100 break;
6101 default:
6102 return -EINVAL;
6103 }
6104 return 0;
6105 }
6106
kvm_get_one_msr(struct kvm_vcpu * vcpu,u32 msr,u64 __user * user_val)6107 static int kvm_get_one_msr(struct kvm_vcpu *vcpu, u32 msr, u64 __user *user_val)
6108 {
6109 u64 val;
6110
6111 if (do_get_msr(vcpu, msr, &val))
6112 return -EINVAL;
6113
6114 if (put_user(val, user_val))
6115 return -EFAULT;
6116
6117 return 0;
6118 }
6119
kvm_set_one_msr(struct kvm_vcpu * vcpu,u32 msr,u64 __user * user_val)6120 static int kvm_set_one_msr(struct kvm_vcpu *vcpu, u32 msr, u64 __user *user_val)
6121 {
6122 u64 val;
6123
6124 if (get_user(val, user_val))
6125 return -EFAULT;
6126
6127 if (do_set_msr(vcpu, msr, &val))
6128 return -EINVAL;
6129
6130 return 0;
6131 }
6132
kvm_get_set_one_reg(struct kvm_vcpu * vcpu,unsigned int ioctl,void __user * argp)6133 static int kvm_get_set_one_reg(struct kvm_vcpu *vcpu, unsigned int ioctl,
6134 void __user *argp)
6135 {
6136 struct kvm_one_reg one_reg;
6137 struct kvm_x86_reg_id *reg;
6138 u64 __user *user_val;
6139 bool load_fpu;
6140 int r;
6141
6142 if (copy_from_user(&one_reg, argp, sizeof(one_reg)))
6143 return -EFAULT;
6144
6145 if ((one_reg.id & KVM_REG_ARCH_MASK) != KVM_REG_X86)
6146 return -EINVAL;
6147
6148 reg = (struct kvm_x86_reg_id *)&one_reg.id;
6149 if (reg->rsvd1 || reg->rsvd2)
6150 return -EINVAL;
6151
6152 if (reg->type == KVM_X86_REG_TYPE_KVM) {
6153 r = kvm_translate_kvm_reg(vcpu, reg);
6154 if (r)
6155 return r;
6156 }
6157
6158 if (reg->type != KVM_X86_REG_TYPE_MSR)
6159 return -EINVAL;
6160
6161 if ((one_reg.id & KVM_REG_SIZE_MASK) != KVM_REG_SIZE_U64)
6162 return -EINVAL;
6163
6164 guard(srcu)(&vcpu->kvm->srcu);
6165
6166 load_fpu = is_xstate_managed_msr(vcpu, reg->index);
6167 if (load_fpu)
6168 kvm_load_guest_fpu(vcpu);
6169
6170 user_val = u64_to_user_ptr(one_reg.addr);
6171 if (ioctl == KVM_GET_ONE_REG)
6172 r = kvm_get_one_msr(vcpu, reg->index, user_val);
6173 else
6174 r = kvm_set_one_msr(vcpu, reg->index, user_val);
6175
6176 if (load_fpu)
6177 kvm_put_guest_fpu(vcpu);
6178 return r;
6179 }
6180
kvm_get_reg_list(struct kvm_vcpu * vcpu,struct kvm_reg_list __user * user_list)6181 static int kvm_get_reg_list(struct kvm_vcpu *vcpu,
6182 struct kvm_reg_list __user *user_list)
6183 {
6184 u64 nr_regs = guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK) ? 1 : 0;
6185 u64 user_nr_regs;
6186
6187 if (get_user(user_nr_regs, &user_list->n))
6188 return -EFAULT;
6189
6190 if (put_user(nr_regs, &user_list->n))
6191 return -EFAULT;
6192
6193 if (user_nr_regs < nr_regs)
6194 return -E2BIG;
6195
6196 if (nr_regs &&
6197 put_user(KVM_X86_REG_KVM(KVM_REG_GUEST_SSP), &user_list->reg[0]))
6198 return -EFAULT;
6199
6200 return 0;
6201 }
6202
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)6203 long kvm_arch_vcpu_ioctl(struct file *filp,
6204 unsigned int ioctl, unsigned long arg)
6205 {
6206 struct kvm_vcpu *vcpu = filp->private_data;
6207 void __user *argp = (void __user *)arg;
6208 int r;
6209 union {
6210 struct kvm_sregs2 *sregs2;
6211 struct kvm_lapic_state *lapic;
6212 struct kvm_xsave *xsave;
6213 struct kvm_xcrs *xcrs;
6214 void *buffer;
6215 } u;
6216
6217 vcpu_load(vcpu);
6218
6219 u.buffer = NULL;
6220 switch (ioctl) {
6221 case KVM_GET_LAPIC: {
6222 r = -EINVAL;
6223 if (!lapic_in_kernel(vcpu))
6224 goto out;
6225 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
6226
6227 r = -ENOMEM;
6228 if (!u.lapic)
6229 goto out;
6230 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
6231 if (r)
6232 goto out;
6233 r = -EFAULT;
6234 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
6235 goto out;
6236 r = 0;
6237 break;
6238 }
6239 case KVM_SET_LAPIC: {
6240 r = -EINVAL;
6241 if (!lapic_in_kernel(vcpu))
6242 goto out;
6243 u.lapic = memdup_user(argp, sizeof(*u.lapic));
6244 if (IS_ERR(u.lapic)) {
6245 r = PTR_ERR(u.lapic);
6246 goto out_nofree;
6247 }
6248
6249 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
6250 break;
6251 }
6252 case KVM_INTERRUPT: {
6253 struct kvm_interrupt irq;
6254
6255 r = -EFAULT;
6256 if (copy_from_user(&irq, argp, sizeof(irq)))
6257 goto out;
6258 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
6259 break;
6260 }
6261 case KVM_NMI: {
6262 r = kvm_vcpu_ioctl_nmi(vcpu);
6263 break;
6264 }
6265 case KVM_SMI: {
6266 r = kvm_inject_smi(vcpu);
6267 break;
6268 }
6269 case KVM_SET_CPUID: {
6270 struct kvm_cpuid __user *cpuid_arg = argp;
6271 struct kvm_cpuid cpuid;
6272
6273 r = -EFAULT;
6274 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
6275 goto out;
6276 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
6277 break;
6278 }
6279 case KVM_SET_CPUID2: {
6280 struct kvm_cpuid2 __user *cpuid_arg = argp;
6281 struct kvm_cpuid2 cpuid;
6282
6283 r = -EFAULT;
6284 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
6285 goto out;
6286 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
6287 cpuid_arg->entries);
6288 break;
6289 }
6290 case KVM_GET_CPUID2: {
6291 struct kvm_cpuid2 __user *cpuid_arg = argp;
6292 struct kvm_cpuid2 cpuid;
6293
6294 r = -EFAULT;
6295 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
6296 goto out;
6297 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
6298 cpuid_arg->entries);
6299 if (r)
6300 goto out;
6301 r = -EFAULT;
6302 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
6303 goto out;
6304 r = 0;
6305 break;
6306 }
6307 case KVM_GET_MSRS: {
6308 int idx = srcu_read_lock(&vcpu->kvm->srcu);
6309 r = msr_io(vcpu, argp, do_get_msr, 1);
6310 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6311 break;
6312 }
6313 case KVM_SET_MSRS: {
6314 int idx = srcu_read_lock(&vcpu->kvm->srcu);
6315 r = msr_io(vcpu, argp, do_set_msr, 0);
6316 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6317 break;
6318 }
6319 case KVM_GET_ONE_REG:
6320 case KVM_SET_ONE_REG:
6321 r = kvm_get_set_one_reg(vcpu, ioctl, argp);
6322 break;
6323 case KVM_GET_REG_LIST:
6324 r = kvm_get_reg_list(vcpu, argp);
6325 break;
6326 case KVM_TPR_ACCESS_REPORTING: {
6327 struct kvm_tpr_access_ctl tac;
6328
6329 r = -EFAULT;
6330 if (copy_from_user(&tac, argp, sizeof(tac)))
6331 goto out;
6332 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
6333 if (r)
6334 goto out;
6335 r = -EFAULT;
6336 if (copy_to_user(argp, &tac, sizeof(tac)))
6337 goto out;
6338 r = 0;
6339 break;
6340 };
6341 case KVM_SET_VAPIC_ADDR: {
6342 struct kvm_vapic_addr va;
6343 int idx;
6344
6345 r = -EINVAL;
6346 if (!lapic_in_kernel(vcpu))
6347 goto out;
6348 r = -EFAULT;
6349 if (copy_from_user(&va, argp, sizeof(va)))
6350 goto out;
6351 idx = srcu_read_lock(&vcpu->kvm->srcu);
6352 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
6353 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6354 break;
6355 }
6356 case KVM_X86_SETUP_MCE: {
6357 u64 mcg_cap;
6358
6359 r = -EFAULT;
6360 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
6361 goto out;
6362 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
6363 break;
6364 }
6365 case KVM_X86_SET_MCE: {
6366 struct kvm_x86_mce mce;
6367
6368 r = -EFAULT;
6369 if (copy_from_user(&mce, argp, sizeof(mce)))
6370 goto out;
6371 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
6372 break;
6373 }
6374 case KVM_GET_VCPU_EVENTS: {
6375 struct kvm_vcpu_events events;
6376
6377 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
6378
6379 r = -EFAULT;
6380 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
6381 break;
6382 r = 0;
6383 break;
6384 }
6385 case KVM_SET_VCPU_EVENTS: {
6386 struct kvm_vcpu_events events;
6387
6388 r = -EFAULT;
6389 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
6390 break;
6391
6392 kvm_vcpu_srcu_read_lock(vcpu);
6393 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
6394 kvm_vcpu_srcu_read_unlock(vcpu);
6395 break;
6396 }
6397 case KVM_GET_DEBUGREGS: {
6398 struct kvm_debugregs dbgregs;
6399
6400 r = kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
6401 if (r < 0)
6402 break;
6403
6404 r = -EFAULT;
6405 if (copy_to_user(argp, &dbgregs,
6406 sizeof(struct kvm_debugregs)))
6407 break;
6408 r = 0;
6409 break;
6410 }
6411 case KVM_SET_DEBUGREGS: {
6412 struct kvm_debugregs dbgregs;
6413
6414 r = -EFAULT;
6415 if (copy_from_user(&dbgregs, argp,
6416 sizeof(struct kvm_debugregs)))
6417 break;
6418
6419 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
6420 break;
6421 }
6422 case KVM_GET_XSAVE: {
6423 r = -EINVAL;
6424 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
6425 break;
6426
6427 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
6428 r = -ENOMEM;
6429 if (!u.xsave)
6430 break;
6431
6432 r = kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
6433 if (r < 0)
6434 break;
6435
6436 r = -EFAULT;
6437 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
6438 break;
6439 r = 0;
6440 break;
6441 }
6442 case KVM_SET_XSAVE: {
6443 int size = vcpu->arch.guest_fpu.uabi_size;
6444
6445 u.xsave = memdup_user(argp, size);
6446 if (IS_ERR(u.xsave)) {
6447 r = PTR_ERR(u.xsave);
6448 goto out_nofree;
6449 }
6450
6451 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
6452 break;
6453 }
6454
6455 case KVM_GET_XSAVE2: {
6456 int size = vcpu->arch.guest_fpu.uabi_size;
6457
6458 u.xsave = kzalloc(size, GFP_KERNEL);
6459 r = -ENOMEM;
6460 if (!u.xsave)
6461 break;
6462
6463 r = kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
6464 if (r < 0)
6465 break;
6466
6467 r = -EFAULT;
6468 if (copy_to_user(argp, u.xsave, size))
6469 break;
6470
6471 r = 0;
6472 break;
6473 }
6474
6475 case KVM_GET_XCRS: {
6476 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
6477 r = -ENOMEM;
6478 if (!u.xcrs)
6479 break;
6480
6481 r = kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
6482 if (r < 0)
6483 break;
6484
6485 r = -EFAULT;
6486 if (copy_to_user(argp, u.xcrs,
6487 sizeof(struct kvm_xcrs)))
6488 break;
6489 r = 0;
6490 break;
6491 }
6492 case KVM_SET_XCRS: {
6493 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
6494 if (IS_ERR(u.xcrs)) {
6495 r = PTR_ERR(u.xcrs);
6496 goto out_nofree;
6497 }
6498
6499 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
6500 break;
6501 }
6502 case KVM_SET_TSC_KHZ: {
6503 u32 user_tsc_khz;
6504
6505 r = -EINVAL;
6506
6507 if (vcpu->arch.guest_tsc_protected)
6508 goto out;
6509
6510 user_tsc_khz = (u32)arg;
6511
6512 if (kvm_caps.has_tsc_control &&
6513 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6514 goto out;
6515
6516 if (user_tsc_khz == 0)
6517 user_tsc_khz = tsc_khz;
6518
6519 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
6520 r = 0;
6521
6522 goto out;
6523 }
6524 case KVM_GET_TSC_KHZ: {
6525 r = vcpu->arch.virtual_tsc_khz;
6526 goto out;
6527 }
6528 case KVM_KVMCLOCK_CTRL: {
6529 r = kvm_set_guest_paused(vcpu);
6530 goto out;
6531 }
6532 case KVM_ENABLE_CAP: {
6533 struct kvm_enable_cap cap;
6534
6535 r = -EFAULT;
6536 if (copy_from_user(&cap, argp, sizeof(cap)))
6537 goto out;
6538 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
6539 break;
6540 }
6541 case KVM_GET_NESTED_STATE: {
6542 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6543 u32 user_data_size;
6544
6545 r = -EINVAL;
6546 if (!kvm_x86_ops.nested_ops->get_state)
6547 break;
6548
6549 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
6550 r = -EFAULT;
6551 if (get_user(user_data_size, &user_kvm_nested_state->size))
6552 break;
6553
6554 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
6555 user_data_size);
6556 if (r < 0)
6557 break;
6558
6559 if (r > user_data_size) {
6560 if (put_user(r, &user_kvm_nested_state->size))
6561 r = -EFAULT;
6562 else
6563 r = -E2BIG;
6564 break;
6565 }
6566
6567 r = 0;
6568 break;
6569 }
6570 case KVM_SET_NESTED_STATE: {
6571 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6572 struct kvm_nested_state kvm_state;
6573 int idx;
6574
6575 r = -EINVAL;
6576 if (!kvm_x86_ops.nested_ops->set_state)
6577 break;
6578
6579 r = -EFAULT;
6580 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6581 break;
6582
6583 r = -EINVAL;
6584 if (kvm_state.size < sizeof(kvm_state))
6585 break;
6586
6587 if (kvm_state.flags &
6588 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6589 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6590 | KVM_STATE_NESTED_GIF_SET))
6591 break;
6592
6593 /* nested_run_pending implies guest_mode. */
6594 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6595 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6596 break;
6597
6598 idx = srcu_read_lock(&vcpu->kvm->srcu);
6599 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6600 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6601 break;
6602 }
6603 #ifdef CONFIG_KVM_HYPERV
6604 case KVM_GET_SUPPORTED_HV_CPUID:
6605 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6606 break;
6607 #endif
6608 #ifdef CONFIG_KVM_XEN
6609 case KVM_XEN_VCPU_GET_ATTR: {
6610 struct kvm_xen_vcpu_attr xva;
6611
6612 r = -EFAULT;
6613 if (copy_from_user(&xva, argp, sizeof(xva)))
6614 goto out;
6615 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6616 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6617 r = -EFAULT;
6618 break;
6619 }
6620 case KVM_XEN_VCPU_SET_ATTR: {
6621 struct kvm_xen_vcpu_attr xva;
6622
6623 r = -EFAULT;
6624 if (copy_from_user(&xva, argp, sizeof(xva)))
6625 goto out;
6626 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6627 break;
6628 }
6629 #endif
6630 case KVM_GET_SREGS2: {
6631 r = -EINVAL;
6632 if (vcpu->kvm->arch.has_protected_state &&
6633 vcpu->arch.guest_state_protected)
6634 goto out;
6635
6636 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6637 r = -ENOMEM;
6638 if (!u.sregs2)
6639 goto out;
6640 __get_sregs2(vcpu, u.sregs2);
6641 r = -EFAULT;
6642 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6643 goto out;
6644 r = 0;
6645 break;
6646 }
6647 case KVM_SET_SREGS2: {
6648 r = -EINVAL;
6649 if (vcpu->kvm->arch.has_protected_state &&
6650 vcpu->arch.guest_state_protected)
6651 goto out;
6652
6653 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6654 if (IS_ERR(u.sregs2)) {
6655 r = PTR_ERR(u.sregs2);
6656 u.sregs2 = NULL;
6657 goto out;
6658 }
6659 r = __set_sregs2(vcpu, u.sregs2);
6660 break;
6661 }
6662 case KVM_HAS_DEVICE_ATTR:
6663 case KVM_GET_DEVICE_ATTR:
6664 case KVM_SET_DEVICE_ATTR:
6665 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6666 break;
6667 case KVM_MEMORY_ENCRYPT_OP:
6668 r = -ENOTTY;
6669 if (!kvm_x86_ops.vcpu_mem_enc_ioctl)
6670 goto out;
6671 r = kvm_x86_ops.vcpu_mem_enc_ioctl(vcpu, argp);
6672 break;
6673 default:
6674 r = -EINVAL;
6675 }
6676 out:
6677 kfree(u.buffer);
6678 out_nofree:
6679 vcpu_put(vcpu);
6680 return r;
6681 }
6682
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)6683 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6684 {
6685 return VM_FAULT_SIGBUS;
6686 }
6687
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)6688 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6689 {
6690 int ret;
6691
6692 if (addr > (unsigned int)(-3 * PAGE_SIZE))
6693 return -EINVAL;
6694 ret = kvm_x86_call(set_tss_addr)(kvm, addr);
6695 return ret;
6696 }
6697
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)6698 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6699 u64 ident_addr)
6700 {
6701 return kvm_x86_call(set_identity_map_addr)(kvm, ident_addr);
6702 }
6703
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,unsigned long kvm_nr_mmu_pages)6704 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6705 unsigned long kvm_nr_mmu_pages)
6706 {
6707 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6708 return -EINVAL;
6709
6710 mutex_lock(&kvm->slots_lock);
6711
6712 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6713 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6714
6715 mutex_unlock(&kvm->slots_lock);
6716 return 0;
6717 }
6718
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)6719 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6720 {
6721
6722 /*
6723 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
6724 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
6725 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6726 * VM-Exit.
6727 */
6728 struct kvm_vcpu *vcpu;
6729 unsigned long i;
6730
6731 if (!kvm->arch.cpu_dirty_log_size)
6732 return;
6733
6734 kvm_for_each_vcpu(i, vcpu, kvm)
6735 kvm_vcpu_kick(vcpu);
6736 }
6737
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)6738 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6739 struct kvm_enable_cap *cap)
6740 {
6741 int r;
6742
6743 if (cap->flags)
6744 return -EINVAL;
6745
6746 switch (cap->cap) {
6747 case KVM_CAP_DISABLE_QUIRKS2:
6748 r = -EINVAL;
6749 if (cap->args[0] & ~kvm_caps.supported_quirks)
6750 break;
6751 fallthrough;
6752 case KVM_CAP_DISABLE_QUIRKS:
6753 kvm->arch.disabled_quirks |= cap->args[0] & kvm_caps.supported_quirks;
6754 r = 0;
6755 break;
6756 case KVM_CAP_SPLIT_IRQCHIP: {
6757 mutex_lock(&kvm->lock);
6758 r = -EINVAL;
6759 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6760 goto split_irqchip_unlock;
6761 r = -EEXIST;
6762 if (irqchip_in_kernel(kvm))
6763 goto split_irqchip_unlock;
6764 if (kvm->created_vcpus)
6765 goto split_irqchip_unlock;
6766 /* Pairs with irqchip_in_kernel. */
6767 smp_wmb();
6768 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6769 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6770 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6771 r = 0;
6772 split_irqchip_unlock:
6773 mutex_unlock(&kvm->lock);
6774 break;
6775 }
6776 case KVM_CAP_X2APIC_API:
6777 r = -EINVAL;
6778 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6779 break;
6780
6781 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6782 kvm->arch.x2apic_format = true;
6783 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6784 kvm->arch.x2apic_broadcast_quirk_disabled = true;
6785
6786 r = 0;
6787 break;
6788 case KVM_CAP_X86_DISABLE_EXITS:
6789 r = -EINVAL;
6790 if (cap->args[0] & ~kvm_get_allowed_disable_exits())
6791 break;
6792
6793 mutex_lock(&kvm->lock);
6794 if (kvm->created_vcpus)
6795 goto disable_exits_unlock;
6796
6797 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6798 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6799
6800 if (!mitigate_smt_rsb && boot_cpu_has_bug(X86_BUG_SMT_RSB) &&
6801 cpu_smt_possible() &&
6802 (cap->args[0] & ~(KVM_X86_DISABLE_EXITS_PAUSE |
6803 KVM_X86_DISABLE_EXITS_APERFMPERF)))
6804 pr_warn_once(SMT_RSB_MSG);
6805
6806 kvm_disable_exits(kvm, cap->args[0]);
6807 r = 0;
6808 disable_exits_unlock:
6809 mutex_unlock(&kvm->lock);
6810 break;
6811 case KVM_CAP_MSR_PLATFORM_INFO:
6812 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6813 r = 0;
6814 break;
6815 case KVM_CAP_EXCEPTION_PAYLOAD:
6816 kvm->arch.exception_payload_enabled = cap->args[0];
6817 r = 0;
6818 break;
6819 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6820 kvm->arch.triple_fault_event = cap->args[0];
6821 r = 0;
6822 break;
6823 case KVM_CAP_X86_USER_SPACE_MSR:
6824 r = -EINVAL;
6825 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6826 break;
6827 kvm->arch.user_space_msr_mask = cap->args[0];
6828 r = 0;
6829 break;
6830 case KVM_CAP_X86_BUS_LOCK_EXIT:
6831 r = -EINVAL;
6832 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6833 break;
6834
6835 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6836 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6837 break;
6838
6839 if (kvm_caps.has_bus_lock_exit &&
6840 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6841 kvm->arch.bus_lock_detection_enabled = true;
6842 r = 0;
6843 break;
6844 #ifdef CONFIG_X86_SGX_KVM
6845 case KVM_CAP_SGX_ATTRIBUTE: {
6846 unsigned long allowed_attributes = 0;
6847
6848 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6849 if (r)
6850 break;
6851
6852 /* KVM only supports the PROVISIONKEY privileged attribute. */
6853 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6854 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6855 kvm->arch.sgx_provisioning_allowed = true;
6856 else
6857 r = -EINVAL;
6858 break;
6859 }
6860 #endif
6861 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6862 r = -EINVAL;
6863 if (!kvm_x86_ops.vm_copy_enc_context_from)
6864 break;
6865
6866 r = kvm_x86_call(vm_copy_enc_context_from)(kvm, cap->args[0]);
6867 break;
6868 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6869 r = -EINVAL;
6870 if (!kvm_x86_ops.vm_move_enc_context_from)
6871 break;
6872
6873 r = kvm_x86_call(vm_move_enc_context_from)(kvm, cap->args[0]);
6874 break;
6875 case KVM_CAP_EXIT_HYPERCALL:
6876 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6877 r = -EINVAL;
6878 break;
6879 }
6880 kvm->arch.hypercall_exit_enabled = cap->args[0];
6881 r = 0;
6882 break;
6883 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6884 r = -EINVAL;
6885 if (cap->args[0] & ~1)
6886 break;
6887 kvm->arch.exit_on_emulation_error = cap->args[0];
6888 r = 0;
6889 break;
6890 case KVM_CAP_PMU_CAPABILITY:
6891 r = -EINVAL;
6892 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6893 break;
6894
6895 mutex_lock(&kvm->lock);
6896 if (!kvm->created_vcpus) {
6897 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6898 r = 0;
6899 }
6900 mutex_unlock(&kvm->lock);
6901 break;
6902 case KVM_CAP_MAX_VCPU_ID:
6903 r = -EINVAL;
6904 if (cap->args[0] > KVM_MAX_VCPU_IDS)
6905 break;
6906
6907 mutex_lock(&kvm->lock);
6908 if (kvm->arch.bsp_vcpu_id > cap->args[0]) {
6909 ;
6910 } else if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6911 r = 0;
6912 } else if (!kvm->arch.max_vcpu_ids) {
6913 kvm->arch.max_vcpu_ids = cap->args[0];
6914 r = 0;
6915 }
6916 mutex_unlock(&kvm->lock);
6917 break;
6918 case KVM_CAP_X86_NOTIFY_VMEXIT:
6919 r = -EINVAL;
6920 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6921 break;
6922 if (!kvm_caps.has_notify_vmexit)
6923 break;
6924 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6925 break;
6926 mutex_lock(&kvm->lock);
6927 if (!kvm->created_vcpus) {
6928 kvm->arch.notify_window = cap->args[0] >> 32;
6929 kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6930 r = 0;
6931 }
6932 mutex_unlock(&kvm->lock);
6933 break;
6934 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6935 r = -EINVAL;
6936
6937 /*
6938 * Since the risk of disabling NX hugepages is a guest crashing
6939 * the system, ensure the userspace process has permission to
6940 * reboot the system.
6941 *
6942 * Note that unlike the reboot() syscall, the process must have
6943 * this capability in the root namespace because exposing
6944 * /dev/kvm into a container does not limit the scope of the
6945 * iTLB multihit bug to that container. In other words,
6946 * this must use capable(), not ns_capable().
6947 */
6948 if (!capable(CAP_SYS_BOOT)) {
6949 r = -EPERM;
6950 break;
6951 }
6952
6953 if (cap->args[0])
6954 break;
6955
6956 mutex_lock(&kvm->lock);
6957 if (!kvm->created_vcpus) {
6958 kvm->arch.disable_nx_huge_pages = true;
6959 r = 0;
6960 }
6961 mutex_unlock(&kvm->lock);
6962 break;
6963 case KVM_CAP_X86_APIC_BUS_CYCLES_NS: {
6964 u64 bus_cycle_ns = cap->args[0];
6965 u64 unused;
6966
6967 /*
6968 * Guard against overflow in tmict_to_ns(). 128 is the highest
6969 * divide value that can be programmed in APIC_TDCR.
6970 */
6971 r = -EINVAL;
6972 if (!bus_cycle_ns ||
6973 check_mul_overflow((u64)U32_MAX * 128, bus_cycle_ns, &unused))
6974 break;
6975
6976 r = 0;
6977 mutex_lock(&kvm->lock);
6978 if (!irqchip_in_kernel(kvm))
6979 r = -ENXIO;
6980 else if (kvm->created_vcpus)
6981 r = -EINVAL;
6982 else
6983 kvm->arch.apic_bus_cycle_ns = bus_cycle_ns;
6984 mutex_unlock(&kvm->lock);
6985 break;
6986 }
6987 default:
6988 r = -EINVAL;
6989 break;
6990 }
6991 return r;
6992 }
6993
kvm_alloc_msr_filter(bool default_allow)6994 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6995 {
6996 struct kvm_x86_msr_filter *msr_filter;
6997
6998 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6999 if (!msr_filter)
7000 return NULL;
7001
7002 msr_filter->default_allow = default_allow;
7003 return msr_filter;
7004 }
7005
kvm_free_msr_filter(struct kvm_x86_msr_filter * msr_filter)7006 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
7007 {
7008 u32 i;
7009
7010 if (!msr_filter)
7011 return;
7012
7013 for (i = 0; i < msr_filter->count; i++)
7014 kfree(msr_filter->ranges[i].bitmap);
7015
7016 kfree(msr_filter);
7017 }
7018
kvm_add_msr_filter(struct kvm_x86_msr_filter * msr_filter,struct kvm_msr_filter_range * user_range)7019 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
7020 struct kvm_msr_filter_range *user_range)
7021 {
7022 unsigned long *bitmap;
7023 size_t bitmap_size;
7024
7025 if (!user_range->nmsrs)
7026 return 0;
7027
7028 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
7029 return -EINVAL;
7030
7031 if (!user_range->flags)
7032 return -EINVAL;
7033
7034 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
7035 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
7036 return -EINVAL;
7037
7038 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
7039 if (IS_ERR(bitmap))
7040 return PTR_ERR(bitmap);
7041
7042 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
7043 .flags = user_range->flags,
7044 .base = user_range->base,
7045 .nmsrs = user_range->nmsrs,
7046 .bitmap = bitmap,
7047 };
7048
7049 msr_filter->count++;
7050 return 0;
7051 }
7052
kvm_vm_ioctl_set_msr_filter(struct kvm * kvm,struct kvm_msr_filter * filter)7053 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
7054 struct kvm_msr_filter *filter)
7055 {
7056 struct kvm_x86_msr_filter *new_filter, *old_filter;
7057 bool default_allow;
7058 bool empty = true;
7059 int r;
7060 u32 i;
7061
7062 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
7063 return -EINVAL;
7064
7065 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
7066 empty &= !filter->ranges[i].nmsrs;
7067
7068 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
7069 if (empty && !default_allow)
7070 return -EINVAL;
7071
7072 new_filter = kvm_alloc_msr_filter(default_allow);
7073 if (!new_filter)
7074 return -ENOMEM;
7075
7076 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
7077 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
7078 if (r) {
7079 kvm_free_msr_filter(new_filter);
7080 return r;
7081 }
7082 }
7083
7084 mutex_lock(&kvm->lock);
7085 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
7086 mutex_is_locked(&kvm->lock));
7087 mutex_unlock(&kvm->lock);
7088 synchronize_srcu(&kvm->srcu);
7089
7090 kvm_free_msr_filter(old_filter);
7091
7092 /*
7093 * Recalc MSR intercepts as userspace may want to intercept accesses to
7094 * MSRs that KVM would otherwise pass through to the guest.
7095 */
7096 kvm_make_all_cpus_request(kvm, KVM_REQ_RECALC_INTERCEPTS);
7097
7098 return 0;
7099 }
7100
7101 #ifdef CONFIG_KVM_COMPAT
7102 /* for KVM_X86_SET_MSR_FILTER */
7103 struct kvm_msr_filter_range_compat {
7104 __u32 flags;
7105 __u32 nmsrs;
7106 __u32 base;
7107 __u32 bitmap;
7108 };
7109
7110 struct kvm_msr_filter_compat {
7111 __u32 flags;
7112 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
7113 };
7114
7115 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
7116
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)7117 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
7118 unsigned long arg)
7119 {
7120 void __user *argp = (void __user *)arg;
7121 struct kvm *kvm = filp->private_data;
7122 long r = -ENOTTY;
7123
7124 switch (ioctl) {
7125 case KVM_X86_SET_MSR_FILTER_COMPAT: {
7126 struct kvm_msr_filter __user *user_msr_filter = argp;
7127 struct kvm_msr_filter_compat filter_compat;
7128 struct kvm_msr_filter filter;
7129 int i;
7130
7131 if (copy_from_user(&filter_compat, user_msr_filter,
7132 sizeof(filter_compat)))
7133 return -EFAULT;
7134
7135 filter.flags = filter_compat.flags;
7136 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
7137 struct kvm_msr_filter_range_compat *cr;
7138
7139 cr = &filter_compat.ranges[i];
7140 filter.ranges[i] = (struct kvm_msr_filter_range) {
7141 .flags = cr->flags,
7142 .nmsrs = cr->nmsrs,
7143 .base = cr->base,
7144 .bitmap = (__u8 *)(ulong)cr->bitmap,
7145 };
7146 }
7147
7148 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7149 break;
7150 }
7151 }
7152
7153 return r;
7154 }
7155 #endif
7156
7157 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_arch_suspend_notifier(struct kvm * kvm)7158 static int kvm_arch_suspend_notifier(struct kvm *kvm)
7159 {
7160 struct kvm_vcpu *vcpu;
7161 unsigned long i;
7162
7163 /*
7164 * Ignore the return, marking the guest paused only "fails" if the vCPU
7165 * isn't using kvmclock; continuing on is correct and desirable.
7166 */
7167 kvm_for_each_vcpu(i, vcpu, kvm)
7168 (void)kvm_set_guest_paused(vcpu);
7169
7170 return NOTIFY_DONE;
7171 }
7172
kvm_arch_pm_notifier(struct kvm * kvm,unsigned long state)7173 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
7174 {
7175 switch (state) {
7176 case PM_HIBERNATION_PREPARE:
7177 case PM_SUSPEND_PREPARE:
7178 return kvm_arch_suspend_notifier(kvm);
7179 }
7180
7181 return NOTIFY_DONE;
7182 }
7183 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
7184
kvm_vm_ioctl_get_clock(struct kvm * kvm,void __user * argp)7185 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
7186 {
7187 struct kvm_clock_data data = { 0 };
7188
7189 get_kvmclock(kvm, &data);
7190 if (copy_to_user(argp, &data, sizeof(data)))
7191 return -EFAULT;
7192
7193 return 0;
7194 }
7195
kvm_vm_ioctl_set_clock(struct kvm * kvm,void __user * argp)7196 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
7197 {
7198 struct kvm_arch *ka = &kvm->arch;
7199 struct kvm_clock_data data;
7200 u64 now_raw_ns;
7201
7202 if (copy_from_user(&data, argp, sizeof(data)))
7203 return -EFAULT;
7204
7205 /*
7206 * Only KVM_CLOCK_REALTIME is used, but allow passing the
7207 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
7208 */
7209 if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
7210 return -EINVAL;
7211
7212 kvm_hv_request_tsc_page_update(kvm);
7213 kvm_start_pvclock_update(kvm);
7214 pvclock_update_vm_gtod_copy(kvm);
7215
7216 /*
7217 * This pairs with kvm_guest_time_update(): when masterclock is
7218 * in use, we use master_kernel_ns + kvmclock_offset to set
7219 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
7220 * is slightly ahead) here we risk going negative on unsigned
7221 * 'system_time' when 'data.clock' is very small.
7222 */
7223 if (data.flags & KVM_CLOCK_REALTIME) {
7224 u64 now_real_ns = ktime_get_real_ns();
7225
7226 /*
7227 * Avoid stepping the kvmclock backwards.
7228 */
7229 if (now_real_ns > data.realtime)
7230 data.clock += now_real_ns - data.realtime;
7231 }
7232
7233 if (ka->use_master_clock)
7234 now_raw_ns = ka->master_kernel_ns;
7235 else
7236 now_raw_ns = get_kvmclock_base_ns();
7237 ka->kvmclock_offset = data.clock - now_raw_ns;
7238 kvm_end_pvclock_update(kvm);
7239 return 0;
7240 }
7241
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)7242 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
7243 {
7244 struct kvm *kvm = filp->private_data;
7245 void __user *argp = (void __user *)arg;
7246 int r = -ENOTTY;
7247
7248 #ifdef CONFIG_KVM_IOAPIC
7249 /*
7250 * This union makes it completely explicit to gcc-3.x
7251 * that these three variables' stack usage should be
7252 * combined, not added together.
7253 */
7254 union {
7255 struct kvm_pit_state ps;
7256 struct kvm_pit_state2 ps2;
7257 struct kvm_pit_config pit_config;
7258 } u;
7259 #endif
7260
7261 switch (ioctl) {
7262 case KVM_SET_TSS_ADDR:
7263 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
7264 break;
7265 case KVM_SET_IDENTITY_MAP_ADDR: {
7266 u64 ident_addr;
7267
7268 mutex_lock(&kvm->lock);
7269 r = -EINVAL;
7270 if (kvm->created_vcpus)
7271 goto set_identity_unlock;
7272 r = -EFAULT;
7273 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
7274 goto set_identity_unlock;
7275 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
7276 set_identity_unlock:
7277 mutex_unlock(&kvm->lock);
7278 break;
7279 }
7280 case KVM_SET_NR_MMU_PAGES:
7281 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
7282 break;
7283 #ifdef CONFIG_KVM_IOAPIC
7284 case KVM_CREATE_IRQCHIP: {
7285 mutex_lock(&kvm->lock);
7286
7287 r = -EEXIST;
7288 if (irqchip_in_kernel(kvm))
7289 goto create_irqchip_unlock;
7290
7291 /*
7292 * Disallow an in-kernel I/O APIC if the VM has protected EOIs,
7293 * i.e. if KVM can't intercept EOIs and thus can't properly
7294 * emulate level-triggered interrupts.
7295 */
7296 r = -ENOTTY;
7297 if (kvm->arch.has_protected_eoi)
7298 goto create_irqchip_unlock;
7299
7300 r = -EINVAL;
7301 if (kvm->created_vcpus)
7302 goto create_irqchip_unlock;
7303
7304 r = kvm_pic_init(kvm);
7305 if (r)
7306 goto create_irqchip_unlock;
7307
7308 r = kvm_ioapic_init(kvm);
7309 if (r) {
7310 kvm_pic_destroy(kvm);
7311 goto create_irqchip_unlock;
7312 }
7313
7314 r = kvm_setup_default_ioapic_and_pic_routing(kvm);
7315 if (r) {
7316 kvm_ioapic_destroy(kvm);
7317 kvm_pic_destroy(kvm);
7318 goto create_irqchip_unlock;
7319 }
7320 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
7321 smp_wmb();
7322 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
7323 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
7324 create_irqchip_unlock:
7325 mutex_unlock(&kvm->lock);
7326 break;
7327 }
7328 case KVM_CREATE_PIT:
7329 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
7330 goto create_pit;
7331 case KVM_CREATE_PIT2:
7332 r = -EFAULT;
7333 if (copy_from_user(&u.pit_config, argp,
7334 sizeof(struct kvm_pit_config)))
7335 goto out;
7336 create_pit:
7337 mutex_lock(&kvm->lock);
7338 r = -EEXIST;
7339 if (kvm->arch.vpit)
7340 goto create_pit_unlock;
7341 r = -ENOENT;
7342 if (!pic_in_kernel(kvm))
7343 goto create_pit_unlock;
7344 r = -ENOMEM;
7345 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
7346 if (kvm->arch.vpit)
7347 r = 0;
7348 create_pit_unlock:
7349 mutex_unlock(&kvm->lock);
7350 break;
7351 case KVM_GET_IRQCHIP: {
7352 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7353 struct kvm_irqchip *chip;
7354
7355 chip = memdup_user(argp, sizeof(*chip));
7356 if (IS_ERR(chip)) {
7357 r = PTR_ERR(chip);
7358 goto out;
7359 }
7360
7361 r = -ENXIO;
7362 if (!irqchip_full(kvm))
7363 goto get_irqchip_out;
7364 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
7365 if (r)
7366 goto get_irqchip_out;
7367 r = -EFAULT;
7368 if (copy_to_user(argp, chip, sizeof(*chip)))
7369 goto get_irqchip_out;
7370 r = 0;
7371 get_irqchip_out:
7372 kfree(chip);
7373 break;
7374 }
7375 case KVM_SET_IRQCHIP: {
7376 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7377 struct kvm_irqchip *chip;
7378
7379 chip = memdup_user(argp, sizeof(*chip));
7380 if (IS_ERR(chip)) {
7381 r = PTR_ERR(chip);
7382 goto out;
7383 }
7384
7385 r = -ENXIO;
7386 if (!irqchip_full(kvm))
7387 goto set_irqchip_out;
7388 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
7389 set_irqchip_out:
7390 kfree(chip);
7391 break;
7392 }
7393 case KVM_GET_PIT: {
7394 r = -EFAULT;
7395 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
7396 goto out;
7397 r = -ENXIO;
7398 if (!kvm->arch.vpit)
7399 goto out;
7400 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
7401 if (r)
7402 goto out;
7403 r = -EFAULT;
7404 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
7405 goto out;
7406 r = 0;
7407 break;
7408 }
7409 case KVM_SET_PIT: {
7410 r = -EFAULT;
7411 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
7412 goto out;
7413 mutex_lock(&kvm->lock);
7414 r = -ENXIO;
7415 if (!kvm->arch.vpit)
7416 goto set_pit_out;
7417 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7418 set_pit_out:
7419 mutex_unlock(&kvm->lock);
7420 break;
7421 }
7422 case KVM_GET_PIT2: {
7423 r = -ENXIO;
7424 if (!kvm->arch.vpit)
7425 goto out;
7426 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
7427 if (r)
7428 goto out;
7429 r = -EFAULT;
7430 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
7431 goto out;
7432 r = 0;
7433 break;
7434 }
7435 case KVM_SET_PIT2: {
7436 r = -EFAULT;
7437 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
7438 goto out;
7439 mutex_lock(&kvm->lock);
7440 r = -ENXIO;
7441 if (!kvm->arch.vpit)
7442 goto set_pit2_out;
7443 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7444 set_pit2_out:
7445 mutex_unlock(&kvm->lock);
7446 break;
7447 }
7448 case KVM_REINJECT_CONTROL: {
7449 struct kvm_reinject_control control;
7450 r = -EFAULT;
7451 if (copy_from_user(&control, argp, sizeof(control)))
7452 goto out;
7453 r = -ENXIO;
7454 if (!kvm->arch.vpit)
7455 goto out;
7456 r = kvm_vm_ioctl_reinject(kvm, &control);
7457 break;
7458 }
7459 #endif
7460 case KVM_SET_BOOT_CPU_ID:
7461 r = 0;
7462 mutex_lock(&kvm->lock);
7463 if (kvm->created_vcpus)
7464 r = -EBUSY;
7465 else if (arg > KVM_MAX_VCPU_IDS ||
7466 (kvm->arch.max_vcpu_ids && arg > kvm->arch.max_vcpu_ids))
7467 r = -EINVAL;
7468 else
7469 kvm->arch.bsp_vcpu_id = arg;
7470 mutex_unlock(&kvm->lock);
7471 break;
7472 #ifdef CONFIG_KVM_XEN
7473 case KVM_XEN_HVM_CONFIG: {
7474 struct kvm_xen_hvm_config xhc;
7475 r = -EFAULT;
7476 if (copy_from_user(&xhc, argp, sizeof(xhc)))
7477 goto out;
7478 r = kvm_xen_hvm_config(kvm, &xhc);
7479 break;
7480 }
7481 case KVM_XEN_HVM_GET_ATTR: {
7482 struct kvm_xen_hvm_attr xha;
7483
7484 r = -EFAULT;
7485 if (copy_from_user(&xha, argp, sizeof(xha)))
7486 goto out;
7487 r = kvm_xen_hvm_get_attr(kvm, &xha);
7488 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7489 r = -EFAULT;
7490 break;
7491 }
7492 case KVM_XEN_HVM_SET_ATTR: {
7493 struct kvm_xen_hvm_attr xha;
7494
7495 r = -EFAULT;
7496 if (copy_from_user(&xha, argp, sizeof(xha)))
7497 goto out;
7498 r = kvm_xen_hvm_set_attr(kvm, &xha);
7499 break;
7500 }
7501 case KVM_XEN_HVM_EVTCHN_SEND: {
7502 struct kvm_irq_routing_xen_evtchn uxe;
7503
7504 r = -EFAULT;
7505 if (copy_from_user(&uxe, argp, sizeof(uxe)))
7506 goto out;
7507 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7508 break;
7509 }
7510 #endif
7511 case KVM_SET_CLOCK:
7512 r = kvm_vm_ioctl_set_clock(kvm, argp);
7513 break;
7514 case KVM_GET_CLOCK:
7515 r = kvm_vm_ioctl_get_clock(kvm, argp);
7516 break;
7517 case KVM_SET_TSC_KHZ: {
7518 u32 user_tsc_khz;
7519
7520 r = -EINVAL;
7521 user_tsc_khz = (u32)arg;
7522
7523 if (kvm_caps.has_tsc_control &&
7524 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7525 goto out;
7526
7527 if (user_tsc_khz == 0)
7528 user_tsc_khz = tsc_khz;
7529
7530 mutex_lock(&kvm->lock);
7531 if (!kvm->created_vcpus) {
7532 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7533 r = 0;
7534 }
7535 mutex_unlock(&kvm->lock);
7536 goto out;
7537 }
7538 case KVM_GET_TSC_KHZ: {
7539 r = READ_ONCE(kvm->arch.default_tsc_khz);
7540 goto out;
7541 }
7542 case KVM_MEMORY_ENCRYPT_OP:
7543 r = -ENOTTY;
7544 if (!kvm_x86_ops.mem_enc_ioctl)
7545 goto out;
7546
7547 r = kvm_x86_call(mem_enc_ioctl)(kvm, argp);
7548 break;
7549 case KVM_MEMORY_ENCRYPT_REG_REGION: {
7550 struct kvm_enc_region region;
7551
7552 r = -EFAULT;
7553 if (copy_from_user(®ion, argp, sizeof(region)))
7554 goto out;
7555
7556 r = -ENOTTY;
7557 if (!kvm_x86_ops.mem_enc_register_region)
7558 goto out;
7559
7560 r = kvm_x86_call(mem_enc_register_region)(kvm, ®ion);
7561 break;
7562 }
7563 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7564 struct kvm_enc_region region;
7565
7566 r = -EFAULT;
7567 if (copy_from_user(®ion, argp, sizeof(region)))
7568 goto out;
7569
7570 r = -ENOTTY;
7571 if (!kvm_x86_ops.mem_enc_unregister_region)
7572 goto out;
7573
7574 r = kvm_x86_call(mem_enc_unregister_region)(kvm, ®ion);
7575 break;
7576 }
7577 #ifdef CONFIG_KVM_HYPERV
7578 case KVM_HYPERV_EVENTFD: {
7579 struct kvm_hyperv_eventfd hvevfd;
7580
7581 r = -EFAULT;
7582 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7583 goto out;
7584 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7585 break;
7586 }
7587 #endif
7588 case KVM_SET_PMU_EVENT_FILTER:
7589 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7590 break;
7591 case KVM_X86_SET_MSR_FILTER: {
7592 struct kvm_msr_filter __user *user_msr_filter = argp;
7593 struct kvm_msr_filter filter;
7594
7595 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7596 return -EFAULT;
7597
7598 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7599 break;
7600 }
7601 default:
7602 r = -ENOTTY;
7603 }
7604 out:
7605 return r;
7606 }
7607
kvm_probe_feature_msr(u32 msr_index)7608 static void kvm_probe_feature_msr(u32 msr_index)
7609 {
7610 u64 data;
7611
7612 if (kvm_get_feature_msr(NULL, msr_index, &data, true))
7613 return;
7614
7615 msr_based_features[num_msr_based_features++] = msr_index;
7616 }
7617
kvm_probe_msr_to_save(u32 msr_index)7618 static void kvm_probe_msr_to_save(u32 msr_index)
7619 {
7620 u32 dummy[2];
7621
7622 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7623 return;
7624
7625 /*
7626 * Even MSRs that are valid in the host may not be exposed to guests in
7627 * some cases.
7628 */
7629 switch (msr_index) {
7630 case MSR_IA32_BNDCFGS:
7631 if (!kvm_mpx_supported())
7632 return;
7633 break;
7634 case MSR_TSC_AUX:
7635 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7636 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7637 return;
7638 break;
7639 case MSR_IA32_UMWAIT_CONTROL:
7640 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7641 return;
7642 break;
7643 case MSR_IA32_RTIT_CTL:
7644 case MSR_IA32_RTIT_STATUS:
7645 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7646 return;
7647 break;
7648 case MSR_IA32_RTIT_CR3_MATCH:
7649 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7650 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7651 return;
7652 break;
7653 case MSR_IA32_RTIT_OUTPUT_BASE:
7654 case MSR_IA32_RTIT_OUTPUT_MASK:
7655 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7656 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7657 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7658 return;
7659 break;
7660 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7661 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7662 (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7663 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7664 return;
7665 break;
7666 case MSR_ARCH_PERFMON_PERFCTR0 ...
7667 MSR_ARCH_PERFMON_PERFCTR0 + KVM_MAX_NR_GP_COUNTERS - 1:
7668 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7669 kvm_pmu_cap.num_counters_gp)
7670 return;
7671 break;
7672 case MSR_ARCH_PERFMON_EVENTSEL0 ...
7673 MSR_ARCH_PERFMON_EVENTSEL0 + KVM_MAX_NR_GP_COUNTERS - 1:
7674 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7675 kvm_pmu_cap.num_counters_gp)
7676 return;
7677 break;
7678 case MSR_ARCH_PERFMON_FIXED_CTR0 ...
7679 MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_MAX_NR_FIXED_COUNTERS - 1:
7680 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7681 kvm_pmu_cap.num_counters_fixed)
7682 return;
7683 break;
7684 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7685 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7686 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7687 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_SET:
7688 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7689 return;
7690 break;
7691 case MSR_IA32_XFD:
7692 case MSR_IA32_XFD_ERR:
7693 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7694 return;
7695 break;
7696 case MSR_IA32_TSX_CTRL:
7697 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7698 return;
7699 break;
7700 case MSR_IA32_XSS:
7701 if (!kvm_caps.supported_xss)
7702 return;
7703 break;
7704 case MSR_IA32_U_CET:
7705 case MSR_IA32_S_CET:
7706 if (!kvm_cpu_cap_has(X86_FEATURE_SHSTK) &&
7707 !kvm_cpu_cap_has(X86_FEATURE_IBT))
7708 return;
7709 break;
7710 case MSR_IA32_INT_SSP_TAB:
7711 if (!kvm_cpu_cap_has(X86_FEATURE_LM))
7712 return;
7713 fallthrough;
7714 case MSR_IA32_PL0_SSP ... MSR_IA32_PL3_SSP:
7715 if (!kvm_cpu_cap_has(X86_FEATURE_SHSTK))
7716 return;
7717 break;
7718 default:
7719 break;
7720 }
7721
7722 msrs_to_save[num_msrs_to_save++] = msr_index;
7723 }
7724
kvm_init_msr_lists(void)7725 static void kvm_init_msr_lists(void)
7726 {
7727 unsigned i;
7728
7729 BUILD_BUG_ON_MSG(KVM_MAX_NR_FIXED_COUNTERS != 3,
7730 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7731
7732 num_msrs_to_save = 0;
7733 num_emulated_msrs = 0;
7734 num_msr_based_features = 0;
7735
7736 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7737 kvm_probe_msr_to_save(msrs_to_save_base[i]);
7738
7739 if (enable_pmu) {
7740 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7741 kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7742 }
7743
7744 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7745 if (!kvm_x86_call(has_emulated_msr)(NULL,
7746 emulated_msrs_all[i]))
7747 continue;
7748
7749 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7750 }
7751
7752 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7753 kvm_probe_feature_msr(i);
7754
7755 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7756 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7757 }
7758
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)7759 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7760 const void *v)
7761 {
7762 int handled = 0;
7763 int n;
7764
7765 do {
7766 n = min(len, 8);
7767 if (!(lapic_in_kernel(vcpu) &&
7768 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7769 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7770 break;
7771 handled += n;
7772 addr += n;
7773 len -= n;
7774 v += n;
7775 } while (len);
7776
7777 return handled;
7778 }
7779
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)7780 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7781 {
7782 int handled = 0;
7783 int n;
7784
7785 do {
7786 n = min(len, 8);
7787 if (!(lapic_in_kernel(vcpu) &&
7788 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7789 addr, n, v))
7790 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7791 break;
7792 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7793 handled += n;
7794 addr += n;
7795 len -= n;
7796 v += n;
7797 } while (len);
7798
7799 return handled;
7800 }
7801
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7802 void kvm_set_segment(struct kvm_vcpu *vcpu,
7803 struct kvm_segment *var, int seg)
7804 {
7805 kvm_x86_call(set_segment)(vcpu, var, seg);
7806 }
7807
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7808 void kvm_get_segment(struct kvm_vcpu *vcpu,
7809 struct kvm_segment *var, int seg)
7810 {
7811 kvm_x86_call(get_segment)(vcpu, var, seg);
7812 }
7813
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u64 access,struct x86_exception * exception)7814 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7815 struct x86_exception *exception)
7816 {
7817 struct kvm_mmu *mmu = vcpu->arch.mmu;
7818 gpa_t t_gpa;
7819
7820 BUG_ON(!mmu_is_nested(vcpu));
7821
7822 /* NPT walks are always user-walks */
7823 access |= PFERR_USER_MASK;
7824 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7825
7826 return t_gpa;
7827 }
7828
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7829 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7830 struct x86_exception *exception)
7831 {
7832 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7833
7834 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7835 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7836 }
7837 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_gva_to_gpa_read);
7838
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7839 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7840 struct x86_exception *exception)
7841 {
7842 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7843
7844 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7845 access |= PFERR_WRITE_MASK;
7846 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7847 }
7848 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_gva_to_gpa_write);
7849
7850 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7851 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7852 struct x86_exception *exception)
7853 {
7854 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7855
7856 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7857 }
7858
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7859 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7860 struct kvm_vcpu *vcpu, u64 access,
7861 struct x86_exception *exception)
7862 {
7863 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7864 void *data = val;
7865 int r = X86EMUL_CONTINUE;
7866
7867 while (bytes) {
7868 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7869 unsigned offset = addr & (PAGE_SIZE-1);
7870 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7871 int ret;
7872
7873 if (gpa == INVALID_GPA)
7874 return X86EMUL_PROPAGATE_FAULT;
7875 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7876 offset, toread);
7877 if (ret < 0) {
7878 r = X86EMUL_IO_NEEDED;
7879 goto out;
7880 }
7881
7882 bytes -= toread;
7883 data += toread;
7884 addr += toread;
7885 }
7886 out:
7887 return r;
7888 }
7889
7890 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7891 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7892 gva_t addr, void *val, unsigned int bytes,
7893 struct x86_exception *exception)
7894 {
7895 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7896 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7897 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7898 unsigned offset;
7899 int ret;
7900
7901 /* Inline kvm_read_guest_virt_helper for speed. */
7902 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7903 exception);
7904 if (unlikely(gpa == INVALID_GPA))
7905 return X86EMUL_PROPAGATE_FAULT;
7906
7907 offset = addr & (PAGE_SIZE-1);
7908 if (WARN_ON(offset + bytes > PAGE_SIZE))
7909 bytes = (unsigned)PAGE_SIZE - offset;
7910 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7911 offset, bytes);
7912 if (unlikely(ret < 0))
7913 return X86EMUL_IO_NEEDED;
7914
7915 return X86EMUL_CONTINUE;
7916 }
7917
kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7918 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7919 gva_t addr, void *val, unsigned int bytes,
7920 struct x86_exception *exception)
7921 {
7922 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7923
7924 /*
7925 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7926 * is returned, but our callers are not ready for that and they blindly
7927 * call kvm_inject_page_fault. Ensure that they at least do not leak
7928 * uninitialized kernel stack memory into cr2 and error code.
7929 */
7930 memset(exception, 0, sizeof(*exception));
7931 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7932 exception);
7933 }
7934 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest_virt);
7935
emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7936 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7937 gva_t addr, void *val, unsigned int bytes,
7938 struct x86_exception *exception, bool system)
7939 {
7940 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7941 u64 access = 0;
7942
7943 if (system)
7944 access |= PFERR_IMPLICIT_ACCESS;
7945 else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7946 access |= PFERR_USER_MASK;
7947
7948 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7949 }
7950
kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7951 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7952 struct kvm_vcpu *vcpu, u64 access,
7953 struct x86_exception *exception)
7954 {
7955 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7956 void *data = val;
7957 int r = X86EMUL_CONTINUE;
7958
7959 while (bytes) {
7960 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7961 unsigned offset = addr & (PAGE_SIZE-1);
7962 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7963 int ret;
7964
7965 if (gpa == INVALID_GPA)
7966 return X86EMUL_PROPAGATE_FAULT;
7967 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7968 if (ret < 0) {
7969 r = X86EMUL_IO_NEEDED;
7970 goto out;
7971 }
7972
7973 bytes -= towrite;
7974 data += towrite;
7975 addr += towrite;
7976 }
7977 out:
7978 return r;
7979 }
7980
emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7981 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7982 unsigned int bytes, struct x86_exception *exception,
7983 bool system)
7984 {
7985 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7986 u64 access = PFERR_WRITE_MASK;
7987
7988 if (system)
7989 access |= PFERR_IMPLICIT_ACCESS;
7990 else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7991 access |= PFERR_USER_MASK;
7992
7993 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7994 access, exception);
7995 }
7996
kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7997 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7998 unsigned int bytes, struct x86_exception *exception)
7999 {
8000 /* kvm_write_guest_virt_system can pull in tons of pages. */
8001 vcpu->arch.l1tf_flush_l1d = true;
8002
8003 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
8004 PFERR_WRITE_MASK, exception);
8005 }
8006 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest_virt_system);
8007
kvm_check_emulate_insn(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)8008 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
8009 void *insn, int insn_len)
8010 {
8011 return kvm_x86_call(check_emulate_instruction)(vcpu, emul_type,
8012 insn, insn_len);
8013 }
8014
handle_ud(struct kvm_vcpu * vcpu)8015 int handle_ud(struct kvm_vcpu *vcpu)
8016 {
8017 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
8018 int fep_flags = READ_ONCE(force_emulation_prefix);
8019 int emul_type = EMULTYPE_TRAP_UD;
8020 char sig[5]; /* ud2; .ascii "kvm" */
8021 struct x86_exception e;
8022 int r;
8023
8024 r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0);
8025 if (r != X86EMUL_CONTINUE)
8026 return 1;
8027
8028 if (fep_flags &&
8029 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
8030 sig, sizeof(sig), &e) == 0 &&
8031 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
8032 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
8033 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
8034 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
8035 emul_type = EMULTYPE_TRAP_UD_FORCED;
8036 }
8037
8038 return kvm_emulate_instruction(vcpu, emul_type);
8039 }
8040 EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_ud);
8041
vcpu_is_mmio_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t gpa,bool write)8042 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
8043 gpa_t gpa, bool write)
8044 {
8045 /* For APIC access vmexit */
8046 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
8047 return 1;
8048
8049 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
8050 trace_vcpu_match_mmio(gva, gpa, write, true);
8051 return 1;
8052 }
8053
8054 return 0;
8055 }
8056
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)8057 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
8058 gpa_t *gpa, struct x86_exception *exception,
8059 bool write)
8060 {
8061 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
8062 u64 access = ((kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
8063 | (write ? PFERR_WRITE_MASK : 0);
8064
8065 /*
8066 * currently PKRU is only applied to ept enabled guest so
8067 * there is no pkey in EPT page table for L1 guest or EPT
8068 * shadow page table for L2 guest.
8069 */
8070 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
8071 !permission_fault(vcpu, vcpu->arch.walk_mmu,
8072 vcpu->arch.mmio_access, 0, access))) {
8073 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
8074 (gva & (PAGE_SIZE - 1));
8075 trace_vcpu_match_mmio(gva, *gpa, write, false);
8076 return 1;
8077 }
8078
8079 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
8080
8081 if (*gpa == INVALID_GPA)
8082 return -1;
8083
8084 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
8085 }
8086
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)8087 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
8088 const void *val, int bytes)
8089 {
8090 int ret;
8091
8092 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
8093 if (ret < 0)
8094 return 0;
8095 kvm_page_track_write(vcpu, gpa, val, bytes);
8096 return 1;
8097 }
8098
8099 struct read_write_emulator_ops {
8100 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
8101 int bytes);
8102 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
8103 void *val, int bytes);
8104 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
8105 int bytes, void *val);
8106 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
8107 void *val, int bytes);
8108 bool write;
8109 };
8110
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)8111 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
8112 {
8113 if (vcpu->mmio_read_completed) {
8114 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
8115 vcpu->mmio_fragments[0].gpa, val);
8116 vcpu->mmio_read_completed = 0;
8117 return 1;
8118 }
8119
8120 return 0;
8121 }
8122
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)8123 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
8124 void *val, int bytes)
8125 {
8126 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
8127 }
8128
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)8129 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
8130 void *val, int bytes)
8131 {
8132 return emulator_write_phys(vcpu, gpa, val, bytes);
8133 }
8134
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)8135 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
8136 {
8137 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
8138 return vcpu_mmio_write(vcpu, gpa, bytes, val);
8139 }
8140
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)8141 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
8142 void *val, int bytes)
8143 {
8144 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
8145 return X86EMUL_IO_NEEDED;
8146 }
8147
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)8148 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
8149 void *val, int bytes)
8150 {
8151 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
8152
8153 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
8154 return X86EMUL_CONTINUE;
8155 }
8156
8157 static const struct read_write_emulator_ops read_emultor = {
8158 .read_write_prepare = read_prepare,
8159 .read_write_emulate = read_emulate,
8160 .read_write_mmio = vcpu_mmio_read,
8161 .read_write_exit_mmio = read_exit_mmio,
8162 };
8163
8164 static const struct read_write_emulator_ops write_emultor = {
8165 .read_write_emulate = write_emulate,
8166 .read_write_mmio = write_mmio,
8167 .read_write_exit_mmio = write_exit_mmio,
8168 .write = true,
8169 };
8170
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)8171 static int emulator_read_write_onepage(unsigned long addr, void *val,
8172 unsigned int bytes,
8173 struct x86_exception *exception,
8174 struct kvm_vcpu *vcpu,
8175 const struct read_write_emulator_ops *ops)
8176 {
8177 gpa_t gpa;
8178 int handled, ret;
8179 bool write = ops->write;
8180 struct kvm_mmio_fragment *frag;
8181 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8182
8183 /*
8184 * If the exit was due to a NPF we may already have a GPA.
8185 * If the GPA is present, use it to avoid the GVA to GPA table walk.
8186 * Note, this cannot be used on string operations since string
8187 * operation using rep will only have the initial GPA from the NPF
8188 * occurred.
8189 */
8190 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
8191 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
8192 gpa = ctxt->gpa_val;
8193 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
8194 } else {
8195 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
8196 if (ret < 0)
8197 return X86EMUL_PROPAGATE_FAULT;
8198 }
8199
8200 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
8201 return X86EMUL_CONTINUE;
8202
8203 /*
8204 * Is this MMIO handled locally?
8205 */
8206 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
8207 if (handled == bytes)
8208 return X86EMUL_CONTINUE;
8209
8210 gpa += handled;
8211 bytes -= handled;
8212 val += handled;
8213
8214 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
8215 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
8216 frag->gpa = gpa;
8217 frag->data = val;
8218 frag->len = bytes;
8219 return X86EMUL_CONTINUE;
8220 }
8221
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)8222 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
8223 unsigned long addr,
8224 void *val, unsigned int bytes,
8225 struct x86_exception *exception,
8226 const struct read_write_emulator_ops *ops)
8227 {
8228 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8229 gpa_t gpa;
8230 int rc;
8231
8232 if (ops->read_write_prepare &&
8233 ops->read_write_prepare(vcpu, val, bytes))
8234 return X86EMUL_CONTINUE;
8235
8236 vcpu->mmio_nr_fragments = 0;
8237
8238 /* Crossing a page boundary? */
8239 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
8240 int now;
8241
8242 now = -addr & ~PAGE_MASK;
8243 rc = emulator_read_write_onepage(addr, val, now, exception,
8244 vcpu, ops);
8245
8246 if (rc != X86EMUL_CONTINUE)
8247 return rc;
8248 addr += now;
8249 if (ctxt->mode != X86EMUL_MODE_PROT64)
8250 addr = (u32)addr;
8251 val += now;
8252 bytes -= now;
8253 }
8254
8255 rc = emulator_read_write_onepage(addr, val, bytes, exception,
8256 vcpu, ops);
8257 if (rc != X86EMUL_CONTINUE)
8258 return rc;
8259
8260 if (!vcpu->mmio_nr_fragments)
8261 return X86EMUL_CONTINUE;
8262
8263 gpa = vcpu->mmio_fragments[0].gpa;
8264
8265 vcpu->mmio_needed = 1;
8266 vcpu->mmio_cur_fragment = 0;
8267
8268 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
8269 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
8270 vcpu->run->exit_reason = KVM_EXIT_MMIO;
8271 vcpu->run->mmio.phys_addr = gpa;
8272
8273 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
8274 }
8275
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)8276 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
8277 unsigned long addr,
8278 void *val,
8279 unsigned int bytes,
8280 struct x86_exception *exception)
8281 {
8282 return emulator_read_write(ctxt, addr, val, bytes,
8283 exception, &read_emultor);
8284 }
8285
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)8286 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
8287 unsigned long addr,
8288 const void *val,
8289 unsigned int bytes,
8290 struct x86_exception *exception)
8291 {
8292 return emulator_read_write(ctxt, addr, (void *)val, bytes,
8293 exception, &write_emultor);
8294 }
8295
8296 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
8297 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
8298
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)8299 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
8300 unsigned long addr,
8301 const void *old,
8302 const void *new,
8303 unsigned int bytes,
8304 struct x86_exception *exception)
8305 {
8306 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8307 u64 page_line_mask;
8308 unsigned long hva;
8309 gpa_t gpa;
8310 int r;
8311
8312 /* guests cmpxchg8b have to be emulated atomically */
8313 if (bytes > 8 || (bytes & (bytes - 1)))
8314 goto emul_write;
8315
8316 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
8317
8318 if (gpa == INVALID_GPA ||
8319 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
8320 goto emul_write;
8321
8322 /*
8323 * Emulate the atomic as a straight write to avoid #AC if SLD is
8324 * enabled in the host and the access splits a cache line.
8325 */
8326 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
8327 page_line_mask = ~(cache_line_size() - 1);
8328 else
8329 page_line_mask = PAGE_MASK;
8330
8331 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
8332 goto emul_write;
8333
8334 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
8335 if (kvm_is_error_hva(hva))
8336 goto emul_write;
8337
8338 hva += offset_in_page(gpa);
8339
8340 switch (bytes) {
8341 case 1:
8342 r = emulator_try_cmpxchg_user(u8, hva, old, new);
8343 break;
8344 case 2:
8345 r = emulator_try_cmpxchg_user(u16, hva, old, new);
8346 break;
8347 case 4:
8348 r = emulator_try_cmpxchg_user(u32, hva, old, new);
8349 break;
8350 case 8:
8351 r = emulator_try_cmpxchg_user(u64, hva, old, new);
8352 break;
8353 default:
8354 BUG();
8355 }
8356
8357 if (r < 0)
8358 return X86EMUL_UNHANDLEABLE;
8359
8360 /*
8361 * Mark the page dirty _before_ checking whether or not the CMPXCHG was
8362 * successful, as the old value is written back on failure. Note, for
8363 * live migration, this is unnecessarily conservative as CMPXCHG writes
8364 * back the original value and the access is atomic, but KVM's ABI is
8365 * that all writes are dirty logged, regardless of the value written.
8366 */
8367 kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa));
8368
8369 if (r)
8370 return X86EMUL_CMPXCHG_FAILED;
8371
8372 kvm_page_track_write(vcpu, gpa, new, bytes);
8373
8374 return X86EMUL_CONTINUE;
8375
8376 emul_write:
8377 pr_warn_once("emulating exchange as write\n");
8378
8379 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
8380 }
8381
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * data,unsigned int count,bool in)8382 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
8383 unsigned short port, void *data,
8384 unsigned int count, bool in)
8385 {
8386 unsigned i;
8387 int r;
8388
8389 WARN_ON_ONCE(vcpu->arch.pio.count);
8390 for (i = 0; i < count; i++) {
8391 if (in)
8392 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
8393 else
8394 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
8395
8396 if (r) {
8397 if (i == 0)
8398 goto userspace_io;
8399
8400 /*
8401 * Userspace must have unregistered the device while PIO
8402 * was running. Drop writes / read as 0.
8403 */
8404 if (in)
8405 memset(data, 0, size * (count - i));
8406 break;
8407 }
8408
8409 data += size;
8410 }
8411 return 1;
8412
8413 userspace_io:
8414 vcpu->arch.pio.port = port;
8415 vcpu->arch.pio.in = in;
8416 vcpu->arch.pio.count = count;
8417 vcpu->arch.pio.size = size;
8418
8419 if (in)
8420 memset(vcpu->arch.pio_data, 0, size * count);
8421 else
8422 memcpy(vcpu->arch.pio_data, data, size * count);
8423
8424 vcpu->run->exit_reason = KVM_EXIT_IO;
8425 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
8426 vcpu->run->io.size = size;
8427 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
8428 vcpu->run->io.count = count;
8429 vcpu->run->io.port = port;
8430 return 0;
8431 }
8432
emulator_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count)8433 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
8434 unsigned short port, void *val, unsigned int count)
8435 {
8436 int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
8437 if (r)
8438 trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
8439
8440 return r;
8441 }
8442
complete_emulator_pio_in(struct kvm_vcpu * vcpu,void * val)8443 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
8444 {
8445 int size = vcpu->arch.pio.size;
8446 unsigned int count = vcpu->arch.pio.count;
8447 memcpy(val, vcpu->arch.pio_data, size * count);
8448 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
8449 vcpu->arch.pio.count = 0;
8450 }
8451
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)8452 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
8453 int size, unsigned short port, void *val,
8454 unsigned int count)
8455 {
8456 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8457 if (vcpu->arch.pio.count) {
8458 /*
8459 * Complete a previous iteration that required userspace I/O.
8460 * Note, @count isn't guaranteed to match pio.count as userspace
8461 * can modify ECX before rerunning the vCPU. Ignore any such
8462 * shenanigans as KVM doesn't support modifying the rep count,
8463 * and the emulator ensures @count doesn't overflow the buffer.
8464 */
8465 complete_emulator_pio_in(vcpu, val);
8466 return 1;
8467 }
8468
8469 return emulator_pio_in(vcpu, size, port, val, count);
8470 }
8471
emulator_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port,const void * val,unsigned int count)8472 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
8473 unsigned short port, const void *val,
8474 unsigned int count)
8475 {
8476 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
8477 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
8478 }
8479
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)8480 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
8481 int size, unsigned short port,
8482 const void *val, unsigned int count)
8483 {
8484 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
8485 }
8486
get_segment_base(struct kvm_vcpu * vcpu,int seg)8487 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
8488 {
8489 return kvm_x86_call(get_segment_base)(vcpu, seg);
8490 }
8491
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)8492 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
8493 {
8494 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
8495 }
8496
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)8497 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
8498 {
8499 if (!need_emulate_wbinvd(vcpu))
8500 return X86EMUL_CONTINUE;
8501
8502 if (kvm_x86_call(has_wbinvd_exit)()) {
8503 int cpu = get_cpu();
8504
8505 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
8506 wbinvd_on_cpus_mask(vcpu->arch.wbinvd_dirty_mask);
8507 put_cpu();
8508 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
8509 } else
8510 wbinvd();
8511 return X86EMUL_CONTINUE;
8512 }
8513
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)8514 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8515 {
8516 kvm_emulate_wbinvd_noskip(vcpu);
8517 return kvm_skip_emulated_instruction(vcpu);
8518 }
8519 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_wbinvd);
8520
8521
8522
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)8523 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8524 {
8525 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8526 }
8527
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr)8528 static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr)
8529 {
8530 return kvm_get_dr(emul_to_vcpu(ctxt), dr);
8531 }
8532
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)8533 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8534 unsigned long value)
8535 {
8536
8537 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8538 }
8539
mk_cr_64(u64 curr_cr,u32 new_val)8540 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8541 {
8542 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8543 }
8544
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)8545 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8546 {
8547 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8548 unsigned long value;
8549
8550 switch (cr) {
8551 case 0:
8552 value = kvm_read_cr0(vcpu);
8553 break;
8554 case 2:
8555 value = vcpu->arch.cr2;
8556 break;
8557 case 3:
8558 value = kvm_read_cr3(vcpu);
8559 break;
8560 case 4:
8561 value = kvm_read_cr4(vcpu);
8562 break;
8563 case 8:
8564 value = kvm_get_cr8(vcpu);
8565 break;
8566 default:
8567 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8568 return 0;
8569 }
8570
8571 return value;
8572 }
8573
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)8574 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8575 {
8576 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8577 int res = 0;
8578
8579 switch (cr) {
8580 case 0:
8581 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8582 break;
8583 case 2:
8584 vcpu->arch.cr2 = val;
8585 break;
8586 case 3:
8587 res = kvm_set_cr3(vcpu, val);
8588 break;
8589 case 4:
8590 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8591 break;
8592 case 8:
8593 res = kvm_set_cr8(vcpu, val);
8594 break;
8595 default:
8596 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8597 res = -1;
8598 }
8599
8600 return res;
8601 }
8602
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)8603 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8604 {
8605 return kvm_x86_call(get_cpl)(emul_to_vcpu(ctxt));
8606 }
8607
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8608 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8609 {
8610 kvm_x86_call(get_gdt)(emul_to_vcpu(ctxt), dt);
8611 }
8612
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8613 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8614 {
8615 kvm_x86_call(get_idt)(emul_to_vcpu(ctxt), dt);
8616 }
8617
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8618 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8619 {
8620 kvm_x86_call(set_gdt)(emul_to_vcpu(ctxt), dt);
8621 }
8622
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8623 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8624 {
8625 kvm_x86_call(set_idt)(emul_to_vcpu(ctxt), dt);
8626 }
8627
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)8628 static unsigned long emulator_get_cached_segment_base(
8629 struct x86_emulate_ctxt *ctxt, int seg)
8630 {
8631 return get_segment_base(emul_to_vcpu(ctxt), seg);
8632 }
8633
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)8634 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8635 struct desc_struct *desc, u32 *base3,
8636 int seg)
8637 {
8638 struct kvm_segment var;
8639
8640 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8641 *selector = var.selector;
8642
8643 if (var.unusable) {
8644 memset(desc, 0, sizeof(*desc));
8645 if (base3)
8646 *base3 = 0;
8647 return false;
8648 }
8649
8650 if (var.g)
8651 var.limit >>= 12;
8652 set_desc_limit(desc, var.limit);
8653 set_desc_base(desc, (unsigned long)var.base);
8654 #ifdef CONFIG_X86_64
8655 if (base3)
8656 *base3 = var.base >> 32;
8657 #endif
8658 desc->type = var.type;
8659 desc->s = var.s;
8660 desc->dpl = var.dpl;
8661 desc->p = var.present;
8662 desc->avl = var.avl;
8663 desc->l = var.l;
8664 desc->d = var.db;
8665 desc->g = var.g;
8666
8667 return true;
8668 }
8669
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)8670 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8671 struct desc_struct *desc, u32 base3,
8672 int seg)
8673 {
8674 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8675 struct kvm_segment var;
8676
8677 var.selector = selector;
8678 var.base = get_desc_base(desc);
8679 #ifdef CONFIG_X86_64
8680 var.base |= ((u64)base3) << 32;
8681 #endif
8682 var.limit = get_desc_limit(desc);
8683 if (desc->g)
8684 var.limit = (var.limit << 12) | 0xfff;
8685 var.type = desc->type;
8686 var.dpl = desc->dpl;
8687 var.db = desc->d;
8688 var.s = desc->s;
8689 var.l = desc->l;
8690 var.g = desc->g;
8691 var.avl = desc->avl;
8692 var.present = desc->p;
8693 var.unusable = !var.present;
8694 var.padding = 0;
8695
8696 kvm_set_segment(vcpu, &var, seg);
8697 return;
8698 }
8699
emulator_get_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8700 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8701 u32 msr_index, u64 *pdata)
8702 {
8703 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8704 int r;
8705
8706 r = kvm_emulate_msr_read(vcpu, msr_index, pdata);
8707 if (r < 0)
8708 return X86EMUL_UNHANDLEABLE;
8709
8710 if (r) {
8711 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8712 complete_emulated_rdmsr, r))
8713 return X86EMUL_IO_NEEDED;
8714
8715 trace_kvm_msr_read_ex(msr_index);
8716 return X86EMUL_PROPAGATE_FAULT;
8717 }
8718
8719 trace_kvm_msr_read(msr_index, *pdata);
8720 return X86EMUL_CONTINUE;
8721 }
8722
emulator_set_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)8723 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8724 u32 msr_index, u64 data)
8725 {
8726 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8727 int r;
8728
8729 r = kvm_emulate_msr_write(vcpu, msr_index, data);
8730 if (r < 0)
8731 return X86EMUL_UNHANDLEABLE;
8732
8733 if (r) {
8734 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8735 complete_emulated_msr_access, r))
8736 return X86EMUL_IO_NEEDED;
8737
8738 trace_kvm_msr_write_ex(msr_index, data);
8739 return X86EMUL_PROPAGATE_FAULT;
8740 }
8741
8742 trace_kvm_msr_write(msr_index, data);
8743 return X86EMUL_CONTINUE;
8744 }
8745
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8746 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8747 u32 msr_index, u64 *pdata)
8748 {
8749 /*
8750 * Treat emulator accesses to the current shadow stack pointer as host-
8751 * initiated, as they aren't true MSR accesses (SSP is a "just a reg"),
8752 * and this API is used only for implicit accesses, i.e. not RDMSR, and
8753 * so the index is fully KVM-controlled.
8754 */
8755 if (unlikely(msr_index == MSR_KVM_INTERNAL_GUEST_SSP))
8756 return kvm_msr_read(emul_to_vcpu(ctxt), msr_index, pdata);
8757
8758 return __kvm_emulate_msr_read(emul_to_vcpu(ctxt), msr_index, pdata);
8759 }
8760
emulator_check_rdpmc_early(struct x86_emulate_ctxt * ctxt,u32 pmc)8761 static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc)
8762 {
8763 return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc);
8764 }
8765
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)8766 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8767 u32 pmc, u64 *pdata)
8768 {
8769 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8770 }
8771
emulator_halt(struct x86_emulate_ctxt * ctxt)8772 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8773 {
8774 emul_to_vcpu(ctxt)->arch.halt_request = 1;
8775 }
8776
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)8777 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8778 struct x86_instruction_info *info,
8779 enum x86_intercept_stage stage)
8780 {
8781 return kvm_x86_call(check_intercept)(emul_to_vcpu(ctxt), info, stage,
8782 &ctxt->exception);
8783 }
8784
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)8785 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8786 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8787 bool exact_only)
8788 {
8789 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8790 }
8791
emulator_guest_has_movbe(struct x86_emulate_ctxt * ctxt)8792 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8793 {
8794 return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8795 }
8796
emulator_guest_has_fxsr(struct x86_emulate_ctxt * ctxt)8797 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8798 {
8799 return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8800 }
8801
emulator_guest_has_rdpid(struct x86_emulate_ctxt * ctxt)8802 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8803 {
8804 return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8805 }
8806
emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt * ctxt)8807 static bool emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt *ctxt)
8808 {
8809 return guest_cpuid_is_intel_compatible(emul_to_vcpu(ctxt));
8810 }
8811
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)8812 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8813 {
8814 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8815 }
8816
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)8817 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8818 {
8819 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8820 }
8821
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)8822 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8823 {
8824 kvm_x86_call(set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8825 }
8826
emulator_is_smm(struct x86_emulate_ctxt * ctxt)8827 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8828 {
8829 return is_smm(emul_to_vcpu(ctxt));
8830 }
8831
8832 #ifndef CONFIG_KVM_SMM
emulator_leave_smm(struct x86_emulate_ctxt * ctxt)8833 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8834 {
8835 WARN_ON_ONCE(1);
8836 return X86EMUL_UNHANDLEABLE;
8837 }
8838 #endif
8839
emulator_triple_fault(struct x86_emulate_ctxt * ctxt)8840 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8841 {
8842 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8843 }
8844
emulator_set_xcr(struct x86_emulate_ctxt * ctxt,u32 index,u64 xcr)8845 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8846 {
8847 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8848 }
8849
emulator_vm_bugged(struct x86_emulate_ctxt * ctxt)8850 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8851 {
8852 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8853
8854 if (!kvm->vm_bugged)
8855 kvm_vm_bugged(kvm);
8856 }
8857
emulator_get_untagged_addr(struct x86_emulate_ctxt * ctxt,gva_t addr,unsigned int flags)8858 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt,
8859 gva_t addr, unsigned int flags)
8860 {
8861 if (!kvm_x86_ops.get_untagged_addr)
8862 return addr;
8863
8864 return kvm_x86_call(get_untagged_addr)(emul_to_vcpu(ctxt),
8865 addr, flags);
8866 }
8867
emulator_is_canonical_addr(struct x86_emulate_ctxt * ctxt,gva_t addr,unsigned int flags)8868 static bool emulator_is_canonical_addr(struct x86_emulate_ctxt *ctxt,
8869 gva_t addr, unsigned int flags)
8870 {
8871 return !is_noncanonical_address(addr, emul_to_vcpu(ctxt), flags);
8872 }
8873
8874 static const struct x86_emulate_ops emulate_ops = {
8875 .vm_bugged = emulator_vm_bugged,
8876 .read_gpr = emulator_read_gpr,
8877 .write_gpr = emulator_write_gpr,
8878 .read_std = emulator_read_std,
8879 .write_std = emulator_write_std,
8880 .fetch = kvm_fetch_guest_virt,
8881 .read_emulated = emulator_read_emulated,
8882 .write_emulated = emulator_write_emulated,
8883 .cmpxchg_emulated = emulator_cmpxchg_emulated,
8884 .invlpg = emulator_invlpg,
8885 .pio_in_emulated = emulator_pio_in_emulated,
8886 .pio_out_emulated = emulator_pio_out_emulated,
8887 .get_segment = emulator_get_segment,
8888 .set_segment = emulator_set_segment,
8889 .get_cached_segment_base = emulator_get_cached_segment_base,
8890 .get_gdt = emulator_get_gdt,
8891 .get_idt = emulator_get_idt,
8892 .set_gdt = emulator_set_gdt,
8893 .set_idt = emulator_set_idt,
8894 .get_cr = emulator_get_cr,
8895 .set_cr = emulator_set_cr,
8896 .cpl = emulator_get_cpl,
8897 .get_dr = emulator_get_dr,
8898 .set_dr = emulator_set_dr,
8899 .set_msr_with_filter = emulator_set_msr_with_filter,
8900 .get_msr_with_filter = emulator_get_msr_with_filter,
8901 .get_msr = emulator_get_msr,
8902 .check_rdpmc_early = emulator_check_rdpmc_early,
8903 .read_pmc = emulator_read_pmc,
8904 .halt = emulator_halt,
8905 .wbinvd = emulator_wbinvd,
8906 .fix_hypercall = emulator_fix_hypercall,
8907 .intercept = emulator_intercept,
8908 .get_cpuid = emulator_get_cpuid,
8909 .guest_has_movbe = emulator_guest_has_movbe,
8910 .guest_has_fxsr = emulator_guest_has_fxsr,
8911 .guest_has_rdpid = emulator_guest_has_rdpid,
8912 .guest_cpuid_is_intel_compatible = emulator_guest_cpuid_is_intel_compatible,
8913 .set_nmi_mask = emulator_set_nmi_mask,
8914 .is_smm = emulator_is_smm,
8915 .leave_smm = emulator_leave_smm,
8916 .triple_fault = emulator_triple_fault,
8917 .set_xcr = emulator_set_xcr,
8918 .get_untagged_addr = emulator_get_untagged_addr,
8919 .is_canonical_addr = emulator_is_canonical_addr,
8920 };
8921
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)8922 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8923 {
8924 u32 int_shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
8925 /*
8926 * an sti; sti; sequence only disable interrupts for the first
8927 * instruction. So, if the last instruction, be it emulated or
8928 * not, left the system with the INT_STI flag enabled, it
8929 * means that the last instruction is an sti. We should not
8930 * leave the flag on in this case. The same goes for mov ss
8931 */
8932 if (int_shadow & mask)
8933 mask = 0;
8934 if (unlikely(int_shadow || mask)) {
8935 kvm_x86_call(set_interrupt_shadow)(vcpu, mask);
8936 if (!mask)
8937 kvm_make_request(KVM_REQ_EVENT, vcpu);
8938 }
8939 }
8940
inject_emulated_exception(struct kvm_vcpu * vcpu)8941 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8942 {
8943 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8944
8945 if (ctxt->exception.vector == PF_VECTOR)
8946 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8947 else if (ctxt->exception.error_code_valid)
8948 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8949 ctxt->exception.error_code);
8950 else
8951 kvm_queue_exception(vcpu, ctxt->exception.vector);
8952 }
8953
alloc_emulate_ctxt(struct kvm_vcpu * vcpu)8954 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8955 {
8956 struct x86_emulate_ctxt *ctxt;
8957
8958 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8959 if (!ctxt) {
8960 pr_err("failed to allocate vcpu's emulator\n");
8961 return NULL;
8962 }
8963
8964 ctxt->vcpu = vcpu;
8965 ctxt->ops = &emulate_ops;
8966 vcpu->arch.emulate_ctxt = ctxt;
8967
8968 return ctxt;
8969 }
8970
init_emulate_ctxt(struct kvm_vcpu * vcpu)8971 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8972 {
8973 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8974 int cs_db, cs_l;
8975
8976 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8977
8978 ctxt->gpa_available = false;
8979 ctxt->eflags = kvm_get_rflags(vcpu);
8980 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8981
8982 ctxt->eip = kvm_rip_read(vcpu);
8983 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
8984 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
8985 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
8986 cs_db ? X86EMUL_MODE_PROT32 :
8987 X86EMUL_MODE_PROT16;
8988 ctxt->interruptibility = 0;
8989 ctxt->have_exception = false;
8990 ctxt->exception.vector = -1;
8991 ctxt->perm_ok = false;
8992
8993 init_decode_cache(ctxt);
8994 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8995 }
8996
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)8997 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8998 {
8999 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9000 int ret;
9001
9002 init_emulate_ctxt(vcpu);
9003
9004 ctxt->op_bytes = 2;
9005 ctxt->ad_bytes = 2;
9006 ctxt->_eip = ctxt->eip + inc_eip;
9007 ret = emulate_int_real(ctxt, irq);
9008
9009 if (ret != X86EMUL_CONTINUE) {
9010 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
9011 } else {
9012 ctxt->eip = ctxt->_eip;
9013 kvm_rip_write(vcpu, ctxt->eip);
9014 kvm_set_rflags(vcpu, ctxt->eflags);
9015 }
9016 }
9017 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_inject_realmode_interrupt);
9018
prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata,u8 * insn_bytes,u8 insn_size)9019 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
9020 u8 ndata, u8 *insn_bytes, u8 insn_size)
9021 {
9022 struct kvm_run *run = vcpu->run;
9023 u64 info[5];
9024 u8 info_start;
9025
9026 /*
9027 * Zero the whole array used to retrieve the exit info, as casting to
9028 * u32 for select entries will leave some chunks uninitialized.
9029 */
9030 memset(&info, 0, sizeof(info));
9031
9032 kvm_x86_call(get_exit_info)(vcpu, (u32 *)&info[0], &info[1], &info[2],
9033 (u32 *)&info[3], (u32 *)&info[4]);
9034
9035 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9036 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
9037
9038 /*
9039 * There's currently space for 13 entries, but 5 are used for the exit
9040 * reason and info. Restrict to 4 to reduce the maintenance burden
9041 * when expanding kvm_run.emulation_failure in the future.
9042 */
9043 if (WARN_ON_ONCE(ndata > 4))
9044 ndata = 4;
9045
9046 /* Always include the flags as a 'data' entry. */
9047 info_start = 1;
9048 run->emulation_failure.flags = 0;
9049
9050 if (insn_size) {
9051 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
9052 sizeof(run->emulation_failure.insn_bytes) != 16));
9053 info_start += 2;
9054 run->emulation_failure.flags |=
9055 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
9056 run->emulation_failure.insn_size = insn_size;
9057 memset(run->emulation_failure.insn_bytes, 0x90,
9058 sizeof(run->emulation_failure.insn_bytes));
9059 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
9060 }
9061
9062 memcpy(&run->internal.data[info_start], info, sizeof(info));
9063 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
9064 ndata * sizeof(data[0]));
9065
9066 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
9067 }
9068
prepare_emulation_ctxt_failure_exit(struct kvm_vcpu * vcpu)9069 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
9070 {
9071 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9072
9073 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
9074 ctxt->fetch.end - ctxt->fetch.data);
9075 }
9076
__kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata)9077 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
9078 u8 ndata)
9079 {
9080 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
9081 }
9082 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_prepare_emulation_failure_exit);
9083
kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu)9084 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
9085 {
9086 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
9087 }
9088 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_prepare_emulation_failure_exit);
9089
kvm_prepare_event_vectoring_exit(struct kvm_vcpu * vcpu,gpa_t gpa)9090 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa)
9091 {
9092 u32 reason, intr_info, error_code;
9093 struct kvm_run *run = vcpu->run;
9094 u64 info1, info2;
9095 int ndata = 0;
9096
9097 kvm_x86_call(get_exit_info)(vcpu, &reason, &info1, &info2,
9098 &intr_info, &error_code);
9099
9100 run->internal.data[ndata++] = info2;
9101 run->internal.data[ndata++] = reason;
9102 run->internal.data[ndata++] = info1;
9103 run->internal.data[ndata++] = gpa;
9104 run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
9105
9106 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9107 run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
9108 run->internal.ndata = ndata;
9109 }
9110 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_prepare_event_vectoring_exit);
9111
handle_emulation_failure(struct kvm_vcpu * vcpu,int emulation_type)9112 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
9113 {
9114 struct kvm *kvm = vcpu->kvm;
9115
9116 ++vcpu->stat.insn_emulation_fail;
9117 trace_kvm_emulate_insn_failed(vcpu);
9118
9119 if (emulation_type & EMULTYPE_VMWARE_GP) {
9120 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9121 return 1;
9122 }
9123
9124 if (kvm->arch.exit_on_emulation_error ||
9125 (emulation_type & EMULTYPE_SKIP)) {
9126 prepare_emulation_ctxt_failure_exit(vcpu);
9127 return 0;
9128 }
9129
9130 kvm_queue_exception(vcpu, UD_VECTOR);
9131
9132 if (!is_guest_mode(vcpu) && kvm_x86_call(get_cpl)(vcpu) == 0) {
9133 prepare_emulation_ctxt_failure_exit(vcpu);
9134 return 0;
9135 }
9136
9137 return 1;
9138 }
9139
kvm_unprotect_and_retry_on_failure(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type)9140 static bool kvm_unprotect_and_retry_on_failure(struct kvm_vcpu *vcpu,
9141 gpa_t cr2_or_gpa,
9142 int emulation_type)
9143 {
9144 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
9145 return false;
9146
9147 /*
9148 * If the failed instruction faulted on an access to page tables that
9149 * are used to translate any part of the instruction, KVM can't resolve
9150 * the issue by unprotecting the gfn, as zapping the shadow page will
9151 * result in the instruction taking a !PRESENT page fault and thus put
9152 * the vCPU into an infinite loop of page faults. E.g. KVM will create
9153 * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and
9154 * then zap the SPTE to unprotect the gfn, and then do it all over
9155 * again. Report the error to userspace.
9156 */
9157 if (emulation_type & EMULTYPE_WRITE_PF_TO_SP)
9158 return false;
9159
9160 /*
9161 * If emulation may have been triggered by a write to a shadowed page
9162 * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the
9163 * guest to let the CPU re-execute the instruction in the hope that the
9164 * CPU can cleanly execute the instruction that KVM failed to emulate.
9165 */
9166 __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, true);
9167
9168 /*
9169 * Retry even if _this_ vCPU didn't unprotect the gfn, as it's possible
9170 * all SPTEs were already zapped by a different task. The alternative
9171 * is to report the error to userspace and likely terminate the guest,
9172 * and the last_retry_{eip,addr} checks will prevent retrying the page
9173 * fault indefinitely, i.e. there's nothing to lose by retrying.
9174 */
9175 return true;
9176 }
9177
9178 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
9179 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
9180
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)9181 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
9182 unsigned long *db)
9183 {
9184 u32 dr6 = 0;
9185 int i;
9186 u32 enable, rwlen;
9187
9188 enable = dr7;
9189 rwlen = dr7 >> 16;
9190 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
9191 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
9192 dr6 |= (1 << i);
9193 return dr6;
9194 }
9195
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu)9196 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
9197 {
9198 struct kvm_run *kvm_run = vcpu->run;
9199
9200 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
9201 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
9202 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
9203 kvm_run->debug.arch.exception = DB_VECTOR;
9204 kvm_run->exit_reason = KVM_EXIT_DEBUG;
9205 return 0;
9206 }
9207 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
9208 return 1;
9209 }
9210
kvm_skip_emulated_instruction(struct kvm_vcpu * vcpu)9211 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
9212 {
9213 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
9214 int r;
9215
9216 r = kvm_x86_call(skip_emulated_instruction)(vcpu);
9217 if (unlikely(!r))
9218 return 0;
9219
9220 kvm_pmu_instruction_retired(vcpu);
9221
9222 /*
9223 * rflags is the old, "raw" value of the flags. The new value has
9224 * not been saved yet.
9225 *
9226 * This is correct even for TF set by the guest, because "the
9227 * processor will not generate this exception after the instruction
9228 * that sets the TF flag".
9229 */
9230 if (unlikely(rflags & X86_EFLAGS_TF))
9231 r = kvm_vcpu_do_singlestep(vcpu);
9232 return r;
9233 }
9234 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_skip_emulated_instruction);
9235
kvm_is_code_breakpoint_inhibited(struct kvm_vcpu * vcpu)9236 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
9237 {
9238 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
9239 return true;
9240
9241 /*
9242 * Intel compatible CPUs inhibit code #DBs when MOV/POP SS blocking is
9243 * active, but AMD compatible CPUs do not.
9244 */
9245 if (!guest_cpuid_is_intel_compatible(vcpu))
9246 return false;
9247
9248 return kvm_x86_call(get_interrupt_shadow)(vcpu) & KVM_X86_SHADOW_INT_MOV_SS;
9249 }
9250
kvm_vcpu_check_code_breakpoint(struct kvm_vcpu * vcpu,int emulation_type,int * r)9251 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
9252 int emulation_type, int *r)
9253 {
9254 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
9255
9256 /*
9257 * Do not check for code breakpoints if hardware has already done the
9258 * checks, as inferred from the emulation type. On NO_DECODE and SKIP,
9259 * the instruction has passed all exception checks, and all intercepted
9260 * exceptions that trigger emulation have lower priority than code
9261 * breakpoints, i.e. the fact that the intercepted exception occurred
9262 * means any code breakpoints have already been serviced.
9263 *
9264 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
9265 * hardware has checked the RIP of the magic prefix, but not the RIP of
9266 * the instruction being emulated. The intent of forced emulation is
9267 * to behave as if KVM intercepted the instruction without an exception
9268 * and without a prefix.
9269 */
9270 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
9271 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
9272 return false;
9273
9274 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
9275 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
9276 struct kvm_run *kvm_run = vcpu->run;
9277 unsigned long eip = kvm_get_linear_rip(vcpu);
9278 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9279 vcpu->arch.guest_debug_dr7,
9280 vcpu->arch.eff_db);
9281
9282 if (dr6 != 0) {
9283 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
9284 kvm_run->debug.arch.pc = eip;
9285 kvm_run->debug.arch.exception = DB_VECTOR;
9286 kvm_run->exit_reason = KVM_EXIT_DEBUG;
9287 *r = 0;
9288 return true;
9289 }
9290 }
9291
9292 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
9293 !kvm_is_code_breakpoint_inhibited(vcpu)) {
9294 unsigned long eip = kvm_get_linear_rip(vcpu);
9295 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9296 vcpu->arch.dr7,
9297 vcpu->arch.db);
9298
9299 if (dr6 != 0) {
9300 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
9301 *r = 1;
9302 return true;
9303 }
9304 }
9305
9306 return false;
9307 }
9308
is_vmware_backdoor_opcode(struct x86_emulate_ctxt * ctxt)9309 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
9310 {
9311 switch (ctxt->opcode_len) {
9312 case 1:
9313 switch (ctxt->b) {
9314 case 0xe4: /* IN */
9315 case 0xe5:
9316 case 0xec:
9317 case 0xed:
9318 case 0xe6: /* OUT */
9319 case 0xe7:
9320 case 0xee:
9321 case 0xef:
9322 case 0x6c: /* INS */
9323 case 0x6d:
9324 case 0x6e: /* OUTS */
9325 case 0x6f:
9326 return true;
9327 }
9328 break;
9329 case 2:
9330 switch (ctxt->b) {
9331 case 0x33: /* RDPMC */
9332 return true;
9333 }
9334 break;
9335 }
9336
9337 return false;
9338 }
9339
9340 /*
9341 * Decode an instruction for emulation. The caller is responsible for handling
9342 * code breakpoints. Note, manually detecting code breakpoints is unnecessary
9343 * (and wrong) when emulating on an intercepted fault-like exception[*], as
9344 * code breakpoints have higher priority and thus have already been done by
9345 * hardware.
9346 *
9347 * [*] Except #MC, which is higher priority, but KVM should never emulate in
9348 * response to a machine check.
9349 */
x86_decode_emulated_instruction(struct kvm_vcpu * vcpu,int emulation_type,void * insn,int insn_len)9350 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
9351 void *insn, int insn_len)
9352 {
9353 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9354 int r;
9355
9356 init_emulate_ctxt(vcpu);
9357
9358 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
9359
9360 trace_kvm_emulate_insn_start(vcpu);
9361 ++vcpu->stat.insn_emulation;
9362
9363 return r;
9364 }
9365 EXPORT_SYMBOL_FOR_KVM_INTERNAL(x86_decode_emulated_instruction);
9366
x86_emulate_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type,void * insn,int insn_len)9367 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
9368 int emulation_type, void *insn, int insn_len)
9369 {
9370 int r;
9371 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9372 bool writeback = true;
9373
9374 if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9375 (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
9376 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))))
9377 emulation_type &= ~EMULTYPE_ALLOW_RETRY_PF;
9378
9379 r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
9380 if (r != X86EMUL_CONTINUE) {
9381 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
9382 return 1;
9383
9384 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9385 emulation_type))
9386 return 1;
9387
9388 if (r == X86EMUL_UNHANDLEABLE_VECTORING) {
9389 kvm_prepare_event_vectoring_exit(vcpu, cr2_or_gpa);
9390 return 0;
9391 }
9392
9393 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
9394 return handle_emulation_failure(vcpu, emulation_type);
9395 }
9396
9397 vcpu->arch.l1tf_flush_l1d = true;
9398
9399 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
9400 kvm_clear_exception_queue(vcpu);
9401
9402 /*
9403 * Return immediately if RIP hits a code breakpoint, such #DBs
9404 * are fault-like and are higher priority than any faults on
9405 * the code fetch itself.
9406 */
9407 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
9408 return r;
9409
9410 r = x86_decode_emulated_instruction(vcpu, emulation_type,
9411 insn, insn_len);
9412 if (r != EMULATION_OK) {
9413 if ((emulation_type & EMULTYPE_TRAP_UD) ||
9414 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
9415 kvm_queue_exception(vcpu, UD_VECTOR);
9416 return 1;
9417 }
9418 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9419 emulation_type))
9420 return 1;
9421
9422 if (ctxt->have_exception &&
9423 !(emulation_type & EMULTYPE_SKIP)) {
9424 /*
9425 * #UD should result in just EMULATION_FAILED, and trap-like
9426 * exception should not be encountered during decode.
9427 */
9428 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
9429 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
9430 inject_emulated_exception(vcpu);
9431 return 1;
9432 }
9433 return handle_emulation_failure(vcpu, emulation_type);
9434 }
9435 }
9436
9437 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
9438 !is_vmware_backdoor_opcode(ctxt)) {
9439 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9440 return 1;
9441 }
9442
9443 /*
9444 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9445 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9446 * The caller is responsible for updating interruptibility state and
9447 * injecting single-step #DBs.
9448 */
9449 if (emulation_type & EMULTYPE_SKIP) {
9450 if (ctxt->mode != X86EMUL_MODE_PROT64)
9451 ctxt->eip = (u32)ctxt->_eip;
9452 else
9453 ctxt->eip = ctxt->_eip;
9454
9455 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
9456 r = 1;
9457 goto writeback;
9458 }
9459
9460 kvm_rip_write(vcpu, ctxt->eip);
9461 if (ctxt->eflags & X86_EFLAGS_RF)
9462 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
9463 return 1;
9464 }
9465
9466 /*
9467 * If emulation was caused by a write-protection #PF on a non-page_table
9468 * writing instruction, try to unprotect the gfn, i.e. zap shadow pages,
9469 * and retry the instruction, as the vCPU is likely no longer using the
9470 * gfn as a page table.
9471 */
9472 if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9473 !x86_page_table_writing_insn(ctxt) &&
9474 kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa))
9475 return 1;
9476
9477 /* this is needed for vmware backdoor interface to work since it
9478 changes registers values during IO operation */
9479 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
9480 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
9481 emulator_invalidate_register_cache(ctxt);
9482 }
9483
9484 restart:
9485 if (emulation_type & EMULTYPE_PF) {
9486 /* Save the faulting GPA (cr2) in the address field */
9487 ctxt->exception.address = cr2_or_gpa;
9488
9489 /* With shadow page tables, cr2 contains a GVA or nGPA. */
9490 if (vcpu->arch.mmu->root_role.direct) {
9491 ctxt->gpa_available = true;
9492 ctxt->gpa_val = cr2_or_gpa;
9493 }
9494 } else {
9495 /* Sanitize the address out of an abundance of paranoia. */
9496 ctxt->exception.address = 0;
9497 }
9498
9499 /*
9500 * Check L1's instruction intercepts when emulating instructions for
9501 * L2, unless KVM is re-emulating a previously decoded instruction,
9502 * e.g. to complete userspace I/O, in which case KVM has already
9503 * checked the intercepts.
9504 */
9505 r = x86_emulate_insn(ctxt, is_guest_mode(vcpu) &&
9506 !(emulation_type & EMULTYPE_NO_DECODE));
9507
9508 if (r == EMULATION_INTERCEPTED)
9509 return 1;
9510
9511 if (r == EMULATION_FAILED) {
9512 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9513 emulation_type))
9514 return 1;
9515
9516 return handle_emulation_failure(vcpu, emulation_type);
9517 }
9518
9519 if (ctxt->have_exception) {
9520 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9521 vcpu->mmio_needed = false;
9522 r = 1;
9523 inject_emulated_exception(vcpu);
9524 } else if (vcpu->arch.pio.count) {
9525 if (!vcpu->arch.pio.in) {
9526 /* FIXME: return into emulator if single-stepping. */
9527 vcpu->arch.pio.count = 0;
9528 } else {
9529 writeback = false;
9530 vcpu->arch.complete_userspace_io = complete_emulated_pio;
9531 }
9532 r = 0;
9533 } else if (vcpu->mmio_needed) {
9534 ++vcpu->stat.mmio_exits;
9535
9536 if (!vcpu->mmio_is_write)
9537 writeback = false;
9538 r = 0;
9539 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9540 } else if (vcpu->arch.complete_userspace_io) {
9541 writeback = false;
9542 r = 0;
9543 } else if (r == EMULATION_RESTART)
9544 goto restart;
9545 else
9546 r = 1;
9547
9548 writeback:
9549 if (writeback) {
9550 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
9551 toggle_interruptibility(vcpu, ctxt->interruptibility);
9552 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9553
9554 /*
9555 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9556 * only supports code breakpoints and general detect #DB, both
9557 * of which are fault-like.
9558 */
9559 if (!ctxt->have_exception ||
9560 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9561 kvm_pmu_instruction_retired(vcpu);
9562 if (ctxt->is_branch)
9563 kvm_pmu_branch_retired(vcpu);
9564 kvm_rip_write(vcpu, ctxt->eip);
9565 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9566 r = kvm_vcpu_do_singlestep(vcpu);
9567 kvm_x86_call(update_emulated_instruction)(vcpu);
9568 __kvm_set_rflags(vcpu, ctxt->eflags);
9569 }
9570
9571 /*
9572 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9573 * do nothing, and it will be requested again as soon as
9574 * the shadow expires. But we still need to check here,
9575 * because POPF has no interrupt shadow.
9576 */
9577 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9578 kvm_make_request(KVM_REQ_EVENT, vcpu);
9579 } else
9580 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9581
9582 return r;
9583 }
9584
kvm_emulate_instruction(struct kvm_vcpu * vcpu,int emulation_type)9585 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9586 {
9587 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9588 }
9589 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_instruction);
9590
kvm_emulate_instruction_from_buffer(struct kvm_vcpu * vcpu,void * insn,int insn_len)9591 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9592 void *insn, int insn_len)
9593 {
9594 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9595 }
9596 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_instruction_from_buffer);
9597
complete_fast_pio_out_port_0x7e(struct kvm_vcpu * vcpu)9598 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9599 {
9600 vcpu->arch.pio.count = 0;
9601 return 1;
9602 }
9603
complete_fast_pio_out(struct kvm_vcpu * vcpu)9604 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9605 {
9606 vcpu->arch.pio.count = 0;
9607
9608 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip)))
9609 return 1;
9610
9611 return kvm_skip_emulated_instruction(vcpu);
9612 }
9613
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)9614 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9615 unsigned short port)
9616 {
9617 unsigned long val = kvm_rax_read(vcpu);
9618 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9619
9620 if (ret)
9621 return ret;
9622
9623 /*
9624 * Workaround userspace that relies on old KVM behavior of %rip being
9625 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9626 */
9627 if (port == 0x7e &&
9628 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9629 vcpu->arch.complete_userspace_io =
9630 complete_fast_pio_out_port_0x7e;
9631 kvm_skip_emulated_instruction(vcpu);
9632 } else {
9633 vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu);
9634 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9635 }
9636 return 0;
9637 }
9638
complete_fast_pio_in(struct kvm_vcpu * vcpu)9639 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9640 {
9641 unsigned long val;
9642
9643 /* We should only ever be called with arch.pio.count equal to 1 */
9644 BUG_ON(vcpu->arch.pio.count != 1);
9645
9646 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip))) {
9647 vcpu->arch.pio.count = 0;
9648 return 1;
9649 }
9650
9651 /* For size less than 4 we merge, else we zero extend */
9652 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9653
9654 complete_emulator_pio_in(vcpu, &val);
9655 kvm_rax_write(vcpu, val);
9656
9657 return kvm_skip_emulated_instruction(vcpu);
9658 }
9659
kvm_fast_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port)9660 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9661 unsigned short port)
9662 {
9663 unsigned long val;
9664 int ret;
9665
9666 /* For size less than 4 we merge, else we zero extend */
9667 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9668
9669 ret = emulator_pio_in(vcpu, size, port, &val, 1);
9670 if (ret) {
9671 kvm_rax_write(vcpu, val);
9672 return ret;
9673 }
9674
9675 vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu);
9676 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9677
9678 return 0;
9679 }
9680
kvm_fast_pio(struct kvm_vcpu * vcpu,int size,unsigned short port,int in)9681 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9682 {
9683 int ret;
9684
9685 if (in)
9686 ret = kvm_fast_pio_in(vcpu, size, port);
9687 else
9688 ret = kvm_fast_pio_out(vcpu, size, port);
9689 return ret && kvm_skip_emulated_instruction(vcpu);
9690 }
9691 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_fast_pio);
9692
kvmclock_cpu_down_prep(unsigned int cpu)9693 static int kvmclock_cpu_down_prep(unsigned int cpu)
9694 {
9695 __this_cpu_write(cpu_tsc_khz, 0);
9696 return 0;
9697 }
9698
tsc_khz_changed(void * data)9699 static void tsc_khz_changed(void *data)
9700 {
9701 struct cpufreq_freqs *freq = data;
9702 unsigned long khz;
9703
9704 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9705
9706 if (data)
9707 khz = freq->new;
9708 else
9709 khz = cpufreq_quick_get(raw_smp_processor_id());
9710 if (!khz)
9711 khz = tsc_khz;
9712 __this_cpu_write(cpu_tsc_khz, khz);
9713 }
9714
9715 #ifdef CONFIG_X86_64
kvm_hyperv_tsc_notifier(void)9716 static void kvm_hyperv_tsc_notifier(void)
9717 {
9718 struct kvm *kvm;
9719 int cpu;
9720
9721 mutex_lock(&kvm_lock);
9722 list_for_each_entry(kvm, &vm_list, vm_list)
9723 kvm_make_mclock_inprogress_request(kvm);
9724
9725 /* no guest entries from this point */
9726 hyperv_stop_tsc_emulation();
9727
9728 /* TSC frequency always matches when on Hyper-V */
9729 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9730 for_each_present_cpu(cpu)
9731 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9732 }
9733 kvm_caps.max_guest_tsc_khz = tsc_khz;
9734
9735 list_for_each_entry(kvm, &vm_list, vm_list) {
9736 __kvm_start_pvclock_update(kvm);
9737 pvclock_update_vm_gtod_copy(kvm);
9738 kvm_end_pvclock_update(kvm);
9739 }
9740
9741 mutex_unlock(&kvm_lock);
9742 }
9743 #endif
9744
__kvmclock_cpufreq_notifier(struct cpufreq_freqs * freq,int cpu)9745 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9746 {
9747 struct kvm *kvm;
9748 struct kvm_vcpu *vcpu;
9749 int send_ipi = 0;
9750 unsigned long i;
9751
9752 /*
9753 * We allow guests to temporarily run on slowing clocks,
9754 * provided we notify them after, or to run on accelerating
9755 * clocks, provided we notify them before. Thus time never
9756 * goes backwards.
9757 *
9758 * However, we have a problem. We can't atomically update
9759 * the frequency of a given CPU from this function; it is
9760 * merely a notifier, which can be called from any CPU.
9761 * Changing the TSC frequency at arbitrary points in time
9762 * requires a recomputation of local variables related to
9763 * the TSC for each VCPU. We must flag these local variables
9764 * to be updated and be sure the update takes place with the
9765 * new frequency before any guests proceed.
9766 *
9767 * Unfortunately, the combination of hotplug CPU and frequency
9768 * change creates an intractable locking scenario; the order
9769 * of when these callouts happen is undefined with respect to
9770 * CPU hotplug, and they can race with each other. As such,
9771 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9772 * undefined; you can actually have a CPU frequency change take
9773 * place in between the computation of X and the setting of the
9774 * variable. To protect against this problem, all updates of
9775 * the per_cpu tsc_khz variable are done in an interrupt
9776 * protected IPI, and all callers wishing to update the value
9777 * must wait for a synchronous IPI to complete (which is trivial
9778 * if the caller is on the CPU already). This establishes the
9779 * necessary total order on variable updates.
9780 *
9781 * Note that because a guest time update may take place
9782 * anytime after the setting of the VCPU's request bit, the
9783 * correct TSC value must be set before the request. However,
9784 * to ensure the update actually makes it to any guest which
9785 * starts running in hardware virtualization between the set
9786 * and the acquisition of the spinlock, we must also ping the
9787 * CPU after setting the request bit.
9788 *
9789 */
9790
9791 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9792
9793 mutex_lock(&kvm_lock);
9794 list_for_each_entry(kvm, &vm_list, vm_list) {
9795 kvm_for_each_vcpu(i, vcpu, kvm) {
9796 if (vcpu->cpu != cpu)
9797 continue;
9798 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9799 if (vcpu->cpu != raw_smp_processor_id())
9800 send_ipi = 1;
9801 }
9802 }
9803 mutex_unlock(&kvm_lock);
9804
9805 if (freq->old < freq->new && send_ipi) {
9806 /*
9807 * We upscale the frequency. Must make the guest
9808 * doesn't see old kvmclock values while running with
9809 * the new frequency, otherwise we risk the guest sees
9810 * time go backwards.
9811 *
9812 * In case we update the frequency for another cpu
9813 * (which might be in guest context) send an interrupt
9814 * to kick the cpu out of guest context. Next time
9815 * guest context is entered kvmclock will be updated,
9816 * so the guest will not see stale values.
9817 */
9818 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9819 }
9820 }
9821
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)9822 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9823 void *data)
9824 {
9825 struct cpufreq_freqs *freq = data;
9826 int cpu;
9827
9828 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9829 return 0;
9830 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9831 return 0;
9832
9833 for_each_cpu(cpu, freq->policy->cpus)
9834 __kvmclock_cpufreq_notifier(freq, cpu);
9835
9836 return 0;
9837 }
9838
9839 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9840 .notifier_call = kvmclock_cpufreq_notifier
9841 };
9842
kvmclock_cpu_online(unsigned int cpu)9843 static int kvmclock_cpu_online(unsigned int cpu)
9844 {
9845 tsc_khz_changed(NULL);
9846 return 0;
9847 }
9848
kvm_timer_init(void)9849 static void kvm_timer_init(void)
9850 {
9851 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9852 max_tsc_khz = tsc_khz;
9853
9854 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9855 struct cpufreq_policy *policy;
9856 int cpu;
9857
9858 cpu = get_cpu();
9859 policy = cpufreq_cpu_get(cpu);
9860 if (policy) {
9861 if (policy->cpuinfo.max_freq)
9862 max_tsc_khz = policy->cpuinfo.max_freq;
9863 cpufreq_cpu_put(policy);
9864 }
9865 put_cpu();
9866 }
9867 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9868 CPUFREQ_TRANSITION_NOTIFIER);
9869
9870 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9871 kvmclock_cpu_online, kvmclock_cpu_down_prep);
9872 }
9873 }
9874
9875 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)9876 static void pvclock_gtod_update_fn(struct work_struct *work)
9877 {
9878 struct kvm *kvm;
9879 struct kvm_vcpu *vcpu;
9880 unsigned long i;
9881
9882 mutex_lock(&kvm_lock);
9883 list_for_each_entry(kvm, &vm_list, vm_list)
9884 kvm_for_each_vcpu(i, vcpu, kvm)
9885 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9886 atomic_set(&kvm_guest_has_master_clock, 0);
9887 mutex_unlock(&kvm_lock);
9888 }
9889
9890 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9891
9892 /*
9893 * Indirection to move queue_work() out of the tk_core.seq write held
9894 * region to prevent possible deadlocks against time accessors which
9895 * are invoked with work related locks held.
9896 */
pvclock_irq_work_fn(struct irq_work * w)9897 static void pvclock_irq_work_fn(struct irq_work *w)
9898 {
9899 queue_work(system_long_wq, &pvclock_gtod_work);
9900 }
9901
9902 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9903
9904 /*
9905 * Notification about pvclock gtod data update.
9906 */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)9907 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9908 void *priv)
9909 {
9910 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9911 struct timekeeper *tk = priv;
9912
9913 update_pvclock_gtod(tk);
9914
9915 /*
9916 * Disable master clock if host does not trust, or does not use,
9917 * TSC based clocksource. Delegate queue_work() to irq_work as
9918 * this is invoked with tk_core.seq write held.
9919 */
9920 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9921 atomic_read(&kvm_guest_has_master_clock) != 0)
9922 irq_work_queue(&pvclock_irq_work);
9923 return 0;
9924 }
9925
9926 static struct notifier_block pvclock_gtod_notifier = {
9927 .notifier_call = pvclock_gtod_notify,
9928 };
9929 #endif
9930
kvm_ops_update(struct kvm_x86_init_ops * ops)9931 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9932 {
9933 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9934
9935 #define __KVM_X86_OP(func) \
9936 static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9937 #define KVM_X86_OP(func) \
9938 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9939 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9940 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9941 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9942 (void *)__static_call_return0);
9943 #include <asm/kvm-x86-ops.h>
9944 #undef __KVM_X86_OP
9945
9946 kvm_pmu_ops_update(ops->pmu_ops);
9947 }
9948
kvm_x86_check_processor_compatibility(void)9949 static int kvm_x86_check_processor_compatibility(void)
9950 {
9951 int cpu = smp_processor_id();
9952 struct cpuinfo_x86 *c = &cpu_data(cpu);
9953
9954 /*
9955 * Compatibility checks are done when loading KVM and when enabling
9956 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9957 * compatible, i.e. KVM should never perform a compatibility check on
9958 * an offline CPU.
9959 */
9960 WARN_ON(!cpu_online(cpu));
9961
9962 if (__cr4_reserved_bits(cpu_has, c) !=
9963 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9964 return -EIO;
9965
9966 return kvm_x86_call(check_processor_compatibility)();
9967 }
9968
kvm_x86_check_cpu_compat(void * ret)9969 static void kvm_x86_check_cpu_compat(void *ret)
9970 {
9971 *(int *)ret = kvm_x86_check_processor_compatibility();
9972 }
9973
kvm_x86_vendor_init(struct kvm_x86_init_ops * ops)9974 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9975 {
9976 u64 host_pat;
9977 int r, cpu;
9978
9979 guard(mutex)(&vendor_module_lock);
9980
9981 if (kvm_x86_ops.enable_virtualization_cpu) {
9982 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9983 return -EEXIST;
9984 }
9985
9986 /*
9987 * KVM explicitly assumes that the guest has an FPU and
9988 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9989 * vCPU's FPU state as a fxregs_state struct.
9990 */
9991 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9992 pr_err("inadequate fpu\n");
9993 return -EOPNOTSUPP;
9994 }
9995
9996 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9997 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9998 return -EOPNOTSUPP;
9999 }
10000
10001 /*
10002 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
10003 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something
10004 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother
10005 * with an exception. PAT[0] is set to WB on RESET and also by the
10006 * kernel, i.e. failure indicates a kernel bug or broken firmware.
10007 */
10008 if (rdmsrq_safe(MSR_IA32_CR_PAT, &host_pat) ||
10009 (host_pat & GENMASK(2, 0)) != 6) {
10010 pr_err("host PAT[0] is not WB\n");
10011 return -EIO;
10012 }
10013
10014 if (boot_cpu_has(X86_FEATURE_SHSTK) || boot_cpu_has(X86_FEATURE_IBT)) {
10015 rdmsrq(MSR_IA32_S_CET, kvm_host.s_cet);
10016 /*
10017 * Linux doesn't yet support supervisor shadow stacks (SSS), so
10018 * KVM doesn't save/restore the associated MSRs, i.e. KVM may
10019 * clobber the host values. Yell and refuse to load if SSS is
10020 * unexpectedly enabled, e.g. to avoid crashing the host.
10021 */
10022 if (WARN_ON_ONCE(kvm_host.s_cet & CET_SHSTK_EN))
10023 return -EIO;
10024 }
10025
10026 memset(&kvm_caps, 0, sizeof(kvm_caps));
10027
10028 x86_emulator_cache = kvm_alloc_emulator_cache();
10029 if (!x86_emulator_cache) {
10030 pr_err("failed to allocate cache for x86 emulator\n");
10031 return -ENOMEM;
10032 }
10033
10034 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
10035 if (!user_return_msrs) {
10036 pr_err("failed to allocate percpu kvm_user_return_msrs\n");
10037 r = -ENOMEM;
10038 goto out_free_x86_emulator_cache;
10039 }
10040 kvm_nr_uret_msrs = 0;
10041
10042 r = kvm_mmu_vendor_module_init();
10043 if (r)
10044 goto out_free_percpu;
10045
10046 kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM);
10047 kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P;
10048
10049 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
10050 kvm_host.xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
10051 kvm_caps.supported_xcr0 = kvm_host.xcr0 & KVM_SUPPORTED_XCR0;
10052 }
10053
10054 if (boot_cpu_has(X86_FEATURE_XSAVES)) {
10055 rdmsrq(MSR_IA32_XSS, kvm_host.xss);
10056 kvm_caps.supported_xss = kvm_host.xss & KVM_SUPPORTED_XSS;
10057 }
10058
10059 kvm_caps.supported_quirks = KVM_X86_VALID_QUIRKS;
10060 kvm_caps.inapplicable_quirks = KVM_X86_CONDITIONAL_QUIRKS;
10061
10062 rdmsrq_safe(MSR_EFER, &kvm_host.efer);
10063
10064 kvm_init_pmu_capability(ops->pmu_ops);
10065
10066 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
10067 rdmsrq(MSR_IA32_ARCH_CAPABILITIES, kvm_host.arch_capabilities);
10068
10069 r = ops->hardware_setup();
10070 if (r != 0)
10071 goto out_mmu_exit;
10072
10073 enable_device_posted_irqs &= enable_apicv &&
10074 irq_remapping_cap(IRQ_POSTING_CAP);
10075
10076 kvm_ops_update(ops);
10077
10078 for_each_online_cpu(cpu) {
10079 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
10080 if (r < 0)
10081 goto out_unwind_ops;
10082 }
10083
10084 /*
10085 * Point of no return! DO NOT add error paths below this point unless
10086 * absolutely necessary, as most operations from this point forward
10087 * require unwinding.
10088 */
10089 kvm_timer_init();
10090
10091 if (pi_inject_timer == -1)
10092 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
10093 #ifdef CONFIG_X86_64
10094 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
10095
10096 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
10097 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
10098 #endif
10099
10100 kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
10101
10102 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled)
10103 kvm_caps.supported_vm_types |= BIT(KVM_X86_SW_PROTECTED_VM);
10104
10105 /* KVM always ignores guest PAT for shadow paging. */
10106 if (!tdp_enabled)
10107 kvm_caps.supported_quirks &= ~KVM_X86_QUIRK_IGNORE_GUEST_PAT;
10108
10109 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
10110 kvm_caps.supported_xss = 0;
10111
10112 if (!kvm_cpu_cap_has(X86_FEATURE_SHSTK) &&
10113 !kvm_cpu_cap_has(X86_FEATURE_IBT))
10114 kvm_caps.supported_xss &= ~XFEATURE_MASK_CET_ALL;
10115
10116 if ((kvm_caps.supported_xss & XFEATURE_MASK_CET_ALL) != XFEATURE_MASK_CET_ALL) {
10117 kvm_cpu_cap_clear(X86_FEATURE_SHSTK);
10118 kvm_cpu_cap_clear(X86_FEATURE_IBT);
10119 kvm_caps.supported_xss &= ~XFEATURE_MASK_CET_ALL;
10120 }
10121
10122 if (kvm_caps.has_tsc_control) {
10123 /*
10124 * Make sure the user can only configure tsc_khz values that
10125 * fit into a signed integer.
10126 * A min value is not calculated because it will always
10127 * be 1 on all machines.
10128 */
10129 u64 max = min(0x7fffffffULL,
10130 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
10131 kvm_caps.max_guest_tsc_khz = max;
10132 }
10133 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
10134 kvm_init_msr_lists();
10135 return 0;
10136
10137 out_unwind_ops:
10138 kvm_x86_ops.enable_virtualization_cpu = NULL;
10139 kvm_x86_call(hardware_unsetup)();
10140 out_mmu_exit:
10141 kvm_mmu_vendor_module_exit();
10142 out_free_percpu:
10143 free_percpu(user_return_msrs);
10144 out_free_x86_emulator_cache:
10145 kmem_cache_destroy(x86_emulator_cache);
10146 return r;
10147 }
10148 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_x86_vendor_init);
10149
kvm_x86_vendor_exit(void)10150 void kvm_x86_vendor_exit(void)
10151 {
10152 kvm_unregister_perf_callbacks();
10153
10154 #ifdef CONFIG_X86_64
10155 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
10156 clear_hv_tscchange_cb();
10157 #endif
10158 kvm_lapic_exit();
10159
10160 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
10161 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
10162 CPUFREQ_TRANSITION_NOTIFIER);
10163 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
10164 }
10165 #ifdef CONFIG_X86_64
10166 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
10167 irq_work_sync(&pvclock_irq_work);
10168 cancel_work_sync(&pvclock_gtod_work);
10169 #endif
10170 kvm_x86_call(hardware_unsetup)();
10171 kvm_mmu_vendor_module_exit();
10172 free_percpu(user_return_msrs);
10173 kmem_cache_destroy(x86_emulator_cache);
10174 #ifdef CONFIG_KVM_XEN
10175 static_key_deferred_flush(&kvm_xen_enabled);
10176 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
10177 #endif
10178 mutex_lock(&vendor_module_lock);
10179 kvm_x86_ops.enable_virtualization_cpu = NULL;
10180 mutex_unlock(&vendor_module_lock);
10181 }
10182 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_x86_vendor_exit);
10183
10184 #ifdef CONFIG_X86_64
kvm_pv_clock_pairing(struct kvm_vcpu * vcpu,gpa_t paddr,unsigned long clock_type)10185 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
10186 unsigned long clock_type)
10187 {
10188 struct kvm_clock_pairing clock_pairing;
10189 struct timespec64 ts;
10190 u64 cycle;
10191 int ret;
10192
10193 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
10194 return -KVM_EOPNOTSUPP;
10195
10196 /*
10197 * When tsc is in permanent catchup mode guests won't be able to use
10198 * pvclock_read_retry loop to get consistent view of pvclock
10199 */
10200 if (vcpu->arch.tsc_always_catchup)
10201 return -KVM_EOPNOTSUPP;
10202
10203 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
10204 return -KVM_EOPNOTSUPP;
10205
10206 clock_pairing.sec = ts.tv_sec;
10207 clock_pairing.nsec = ts.tv_nsec;
10208 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
10209 clock_pairing.flags = 0;
10210 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
10211
10212 ret = 0;
10213 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
10214 sizeof(struct kvm_clock_pairing)))
10215 ret = -KVM_EFAULT;
10216
10217 return ret;
10218 }
10219 #endif
10220
10221 /*
10222 * kvm_pv_kick_cpu_op: Kick a vcpu.
10223 *
10224 * @apicid - apicid of vcpu to be kicked.
10225 */
kvm_pv_kick_cpu_op(struct kvm * kvm,int apicid)10226 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
10227 {
10228 /*
10229 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
10230 * common code, e.g. for tracing. Defer initialization to the compiler.
10231 */
10232 struct kvm_lapic_irq lapic_irq = {
10233 .delivery_mode = APIC_DM_REMRD,
10234 .dest_mode = APIC_DEST_PHYSICAL,
10235 .shorthand = APIC_DEST_NOSHORT,
10236 .dest_id = apicid,
10237 };
10238
10239 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
10240 }
10241
kvm_apicv_activated(struct kvm * kvm)10242 bool kvm_apicv_activated(struct kvm *kvm)
10243 {
10244 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
10245 }
10246 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_apicv_activated);
10247
kvm_vcpu_apicv_activated(struct kvm_vcpu * vcpu)10248 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
10249 {
10250 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
10251 ulong vcpu_reasons =
10252 kvm_x86_call(vcpu_get_apicv_inhibit_reasons)(vcpu);
10253
10254 return (vm_reasons | vcpu_reasons) == 0;
10255 }
10256 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_apicv_activated);
10257
set_or_clear_apicv_inhibit(unsigned long * inhibits,enum kvm_apicv_inhibit reason,bool set)10258 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
10259 enum kvm_apicv_inhibit reason, bool set)
10260 {
10261 const struct trace_print_flags apicv_inhibits[] = { APICV_INHIBIT_REASONS };
10262
10263 BUILD_BUG_ON(ARRAY_SIZE(apicv_inhibits) != NR_APICV_INHIBIT_REASONS);
10264
10265 if (set)
10266 __set_bit(reason, inhibits);
10267 else
10268 __clear_bit(reason, inhibits);
10269
10270 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
10271 }
10272
kvm_apicv_init(struct kvm * kvm)10273 static void kvm_apicv_init(struct kvm *kvm)
10274 {
10275 enum kvm_apicv_inhibit reason = enable_apicv ? APICV_INHIBIT_REASON_ABSENT :
10276 APICV_INHIBIT_REASON_DISABLED;
10277
10278 set_or_clear_apicv_inhibit(&kvm->arch.apicv_inhibit_reasons, reason, true);
10279
10280 init_rwsem(&kvm->arch.apicv_update_lock);
10281 }
10282
kvm_sched_yield(struct kvm_vcpu * vcpu,unsigned long dest_id)10283 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
10284 {
10285 struct kvm_vcpu *target = NULL;
10286 struct kvm_apic_map *map;
10287
10288 vcpu->stat.directed_yield_attempted++;
10289
10290 if (single_task_running())
10291 goto no_yield;
10292
10293 rcu_read_lock();
10294 map = rcu_dereference(vcpu->kvm->arch.apic_map);
10295
10296 if (likely(map) && dest_id <= map->max_apic_id) {
10297 dest_id = array_index_nospec(dest_id, map->max_apic_id + 1);
10298 if (map->phys_map[dest_id])
10299 target = map->phys_map[dest_id]->vcpu;
10300 }
10301
10302 rcu_read_unlock();
10303
10304 if (!target || !READ_ONCE(target->ready))
10305 goto no_yield;
10306
10307 /* Ignore requests to yield to self */
10308 if (vcpu == target)
10309 goto no_yield;
10310
10311 if (kvm_vcpu_yield_to(target) <= 0)
10312 goto no_yield;
10313
10314 vcpu->stat.directed_yield_successful++;
10315
10316 no_yield:
10317 return;
10318 }
10319
complete_hypercall_exit(struct kvm_vcpu * vcpu)10320 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
10321 {
10322 u64 ret = vcpu->run->hypercall.ret;
10323
10324 if (!is_64_bit_hypercall(vcpu))
10325 ret = (u32)ret;
10326 kvm_rax_write(vcpu, ret);
10327 return kvm_skip_emulated_instruction(vcpu);
10328 }
10329
____kvm_emulate_hypercall(struct kvm_vcpu * vcpu,int cpl,int (* complete_hypercall)(struct kvm_vcpu *))10330 int ____kvm_emulate_hypercall(struct kvm_vcpu *vcpu, int cpl,
10331 int (*complete_hypercall)(struct kvm_vcpu *))
10332 {
10333 unsigned long ret;
10334 unsigned long nr = kvm_rax_read(vcpu);
10335 unsigned long a0 = kvm_rbx_read(vcpu);
10336 unsigned long a1 = kvm_rcx_read(vcpu);
10337 unsigned long a2 = kvm_rdx_read(vcpu);
10338 unsigned long a3 = kvm_rsi_read(vcpu);
10339 int op_64_bit = is_64_bit_hypercall(vcpu);
10340
10341 ++vcpu->stat.hypercalls;
10342
10343 trace_kvm_hypercall(nr, a0, a1, a2, a3);
10344
10345 if (!op_64_bit) {
10346 nr &= 0xFFFFFFFF;
10347 a0 &= 0xFFFFFFFF;
10348 a1 &= 0xFFFFFFFF;
10349 a2 &= 0xFFFFFFFF;
10350 a3 &= 0xFFFFFFFF;
10351 }
10352
10353 if (cpl) {
10354 ret = -KVM_EPERM;
10355 goto out;
10356 }
10357
10358 ret = -KVM_ENOSYS;
10359
10360 switch (nr) {
10361 case KVM_HC_VAPIC_POLL_IRQ:
10362 ret = 0;
10363 break;
10364 case KVM_HC_KICK_CPU:
10365 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
10366 break;
10367
10368 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
10369 kvm_sched_yield(vcpu, a1);
10370 ret = 0;
10371 break;
10372 #ifdef CONFIG_X86_64
10373 case KVM_HC_CLOCK_PAIRING:
10374 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
10375 break;
10376 #endif
10377 case KVM_HC_SEND_IPI:
10378 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
10379 break;
10380
10381 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
10382 break;
10383 case KVM_HC_SCHED_YIELD:
10384 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
10385 break;
10386
10387 kvm_sched_yield(vcpu, a0);
10388 ret = 0;
10389 break;
10390 case KVM_HC_MAP_GPA_RANGE: {
10391 u64 gpa = a0, npages = a1, attrs = a2;
10392
10393 ret = -KVM_ENOSYS;
10394 if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE))
10395 break;
10396
10397 if (!PAGE_ALIGNED(gpa) || !npages ||
10398 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
10399 ret = -KVM_EINVAL;
10400 break;
10401 }
10402
10403 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
10404 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
10405 /*
10406 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2)
10407 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that
10408 * it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting
10409 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU.
10410 */
10411 vcpu->run->hypercall.ret = 0;
10412 vcpu->run->hypercall.args[0] = gpa;
10413 vcpu->run->hypercall.args[1] = npages;
10414 vcpu->run->hypercall.args[2] = attrs;
10415 vcpu->run->hypercall.flags = 0;
10416 if (op_64_bit)
10417 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
10418
10419 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
10420 vcpu->arch.complete_userspace_io = complete_hypercall;
10421 return 0;
10422 }
10423 default:
10424 ret = -KVM_ENOSYS;
10425 break;
10426 }
10427
10428 out:
10429 vcpu->run->hypercall.ret = ret;
10430 return 1;
10431 }
10432 EXPORT_SYMBOL_FOR_KVM_INTERNAL(____kvm_emulate_hypercall);
10433
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)10434 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
10435 {
10436 if (kvm_xen_hypercall_enabled(vcpu->kvm))
10437 return kvm_xen_hypercall(vcpu);
10438
10439 if (kvm_hv_hypercall_enabled(vcpu))
10440 return kvm_hv_hypercall(vcpu);
10441
10442 return __kvm_emulate_hypercall(vcpu, kvm_x86_call(get_cpl)(vcpu),
10443 complete_hypercall_exit);
10444 }
10445 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_hypercall);
10446
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)10447 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
10448 {
10449 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
10450 char instruction[3];
10451 unsigned long rip = kvm_rip_read(vcpu);
10452
10453 /*
10454 * If the quirk is disabled, synthesize a #UD and let the guest pick up
10455 * the pieces.
10456 */
10457 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
10458 ctxt->exception.error_code_valid = false;
10459 ctxt->exception.vector = UD_VECTOR;
10460 ctxt->have_exception = true;
10461 return X86EMUL_PROPAGATE_FAULT;
10462 }
10463
10464 kvm_x86_call(patch_hypercall)(vcpu, instruction);
10465
10466 return emulator_write_emulated(ctxt, rip, instruction, 3,
10467 &ctxt->exception);
10468 }
10469
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)10470 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
10471 {
10472 return vcpu->run->request_interrupt_window &&
10473 likely(!pic_in_kernel(vcpu->kvm));
10474 }
10475
10476 /* Called within kvm->srcu read side. */
post_kvm_run_save(struct kvm_vcpu * vcpu)10477 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
10478 {
10479 struct kvm_run *kvm_run = vcpu->run;
10480
10481 kvm_run->if_flag = kvm_x86_call(get_if_flag)(vcpu);
10482 kvm_run->cr8 = kvm_get_cr8(vcpu);
10483 kvm_run->apic_base = vcpu->arch.apic_base;
10484
10485 kvm_run->ready_for_interrupt_injection =
10486 pic_in_kernel(vcpu->kvm) ||
10487 kvm_vcpu_ready_for_interrupt_injection(vcpu);
10488
10489 if (is_smm(vcpu))
10490 kvm_run->flags |= KVM_RUN_X86_SMM;
10491 if (is_guest_mode(vcpu))
10492 kvm_run->flags |= KVM_RUN_X86_GUEST_MODE;
10493 }
10494
update_cr8_intercept(struct kvm_vcpu * vcpu)10495 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
10496 {
10497 int max_irr, tpr;
10498
10499 if (!kvm_x86_ops.update_cr8_intercept)
10500 return;
10501
10502 if (!lapic_in_kernel(vcpu))
10503 return;
10504
10505 if (vcpu->arch.apic->apicv_active)
10506 return;
10507
10508 if (!vcpu->arch.apic->vapic_addr)
10509 max_irr = kvm_lapic_find_highest_irr(vcpu);
10510 else
10511 max_irr = -1;
10512
10513 if (max_irr != -1)
10514 max_irr >>= 4;
10515
10516 tpr = kvm_lapic_get_cr8(vcpu);
10517
10518 kvm_x86_call(update_cr8_intercept)(vcpu, tpr, max_irr);
10519 }
10520
10521
kvm_check_nested_events(struct kvm_vcpu * vcpu)10522 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10523 {
10524 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10525 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10526 return 1;
10527 }
10528
10529 return kvm_x86_ops.nested_ops->check_events(vcpu);
10530 }
10531
kvm_inject_exception(struct kvm_vcpu * vcpu)10532 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10533 {
10534 /*
10535 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10536 * exceptions don't report error codes. The presence of an error code
10537 * is carried with the exception and only stripped when the exception
10538 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10539 * report an error code despite the CPU being in Real Mode.
10540 */
10541 vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10542
10543 trace_kvm_inj_exception(vcpu->arch.exception.vector,
10544 vcpu->arch.exception.has_error_code,
10545 vcpu->arch.exception.error_code,
10546 vcpu->arch.exception.injected);
10547
10548 kvm_x86_call(inject_exception)(vcpu);
10549 }
10550
10551 /*
10552 * Check for any event (interrupt or exception) that is ready to be injected,
10553 * and if there is at least one event, inject the event with the highest
10554 * priority. This handles both "pending" events, i.e. events that have never
10555 * been injected into the guest, and "injected" events, i.e. events that were
10556 * injected as part of a previous VM-Enter, but weren't successfully delivered
10557 * and need to be re-injected.
10558 *
10559 * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10560 * i.e. doesn't guarantee that there's an event window in the guest. KVM must
10561 * be able to inject exceptions in the "middle" of an instruction, and so must
10562 * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10563 * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10564 * boundaries is necessary and correct.
10565 *
10566 * For simplicity, KVM uses a single path to inject all events (except events
10567 * that are injected directly from L1 to L2) and doesn't explicitly track
10568 * instruction boundaries for asynchronous events. However, because VM-Exits
10569 * that can occur during instruction execution typically result in KVM skipping
10570 * the instruction or injecting an exception, e.g. instruction and exception
10571 * intercepts, and because pending exceptions have higher priority than pending
10572 * interrupts, KVM still honors instruction boundaries in most scenarios.
10573 *
10574 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10575 * the instruction or inject an exception, then KVM can incorrecty inject a new
10576 * asynchronous event if the event became pending after the CPU fetched the
10577 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation)
10578 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10579 * injected on the restarted instruction instead of being deferred until the
10580 * instruction completes.
10581 *
10582 * In practice, this virtualization hole is unlikely to be observed by the
10583 * guest, and even less likely to cause functional problems. To detect the
10584 * hole, the guest would have to trigger an event on a side effect of an early
10585 * phase of instruction execution, e.g. on the instruction fetch from memory.
10586 * And for it to be a functional problem, the guest would need to depend on the
10587 * ordering between that side effect, the instruction completing, _and_ the
10588 * delivery of the asynchronous event.
10589 */
kvm_check_and_inject_events(struct kvm_vcpu * vcpu,bool * req_immediate_exit)10590 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10591 bool *req_immediate_exit)
10592 {
10593 bool can_inject;
10594 int r;
10595
10596 /*
10597 * Process nested events first, as nested VM-Exit supersedes event
10598 * re-injection. If there's an event queued for re-injection, it will
10599 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10600 */
10601 if (is_guest_mode(vcpu))
10602 r = kvm_check_nested_events(vcpu);
10603 else
10604 r = 0;
10605
10606 /*
10607 * Re-inject exceptions and events *especially* if immediate entry+exit
10608 * to/from L2 is needed, as any event that has already been injected
10609 * into L2 needs to complete its lifecycle before injecting a new event.
10610 *
10611 * Don't re-inject an NMI or interrupt if there is a pending exception.
10612 * This collision arises if an exception occurred while vectoring the
10613 * injected event, KVM intercepted said exception, and KVM ultimately
10614 * determined the fault belongs to the guest and queues the exception
10615 * for injection back into the guest.
10616 *
10617 * "Injected" interrupts can also collide with pending exceptions if
10618 * userspace ignores the "ready for injection" flag and blindly queues
10619 * an interrupt. In that case, prioritizing the exception is correct,
10620 * as the exception "occurred" before the exit to userspace. Trap-like
10621 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10622 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10623 * priority, they're only generated (pended) during instruction
10624 * execution, and interrupts are recognized at instruction boundaries.
10625 * Thus a pending fault-like exception means the fault occurred on the
10626 * *previous* instruction and must be serviced prior to recognizing any
10627 * new events in order to fully complete the previous instruction.
10628 */
10629 if (vcpu->arch.exception.injected)
10630 kvm_inject_exception(vcpu);
10631 else if (kvm_is_exception_pending(vcpu))
10632 ; /* see above */
10633 else if (vcpu->arch.nmi_injected)
10634 kvm_x86_call(inject_nmi)(vcpu);
10635 else if (vcpu->arch.interrupt.injected)
10636 kvm_x86_call(inject_irq)(vcpu, true);
10637
10638 /*
10639 * Exceptions that morph to VM-Exits are handled above, and pending
10640 * exceptions on top of injected exceptions that do not VM-Exit should
10641 * either morph to #DF or, sadly, override the injected exception.
10642 */
10643 WARN_ON_ONCE(vcpu->arch.exception.injected &&
10644 vcpu->arch.exception.pending);
10645
10646 /*
10647 * Bail if immediate entry+exit to/from the guest is needed to complete
10648 * nested VM-Enter or event re-injection so that a different pending
10649 * event can be serviced (or if KVM needs to exit to userspace).
10650 *
10651 * Otherwise, continue processing events even if VM-Exit occurred. The
10652 * VM-Exit will have cleared exceptions that were meant for L2, but
10653 * there may now be events that can be injected into L1.
10654 */
10655 if (r < 0)
10656 goto out;
10657
10658 /*
10659 * A pending exception VM-Exit should either result in nested VM-Exit
10660 * or force an immediate re-entry and exit to/from L2, and exception
10661 * VM-Exits cannot be injected (flag should _never_ be set).
10662 */
10663 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10664 vcpu->arch.exception_vmexit.pending);
10665
10666 /*
10667 * New events, other than exceptions, cannot be injected if KVM needs
10668 * to re-inject a previous event. See above comments on re-injecting
10669 * for why pending exceptions get priority.
10670 */
10671 can_inject = !kvm_event_needs_reinjection(vcpu);
10672
10673 if (vcpu->arch.exception.pending) {
10674 /*
10675 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10676 * value pushed on the stack. Trap-like exception and all #DBs
10677 * leave RF as-is (KVM follows Intel's behavior in this regard;
10678 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10679 *
10680 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10681 * describe the behavior of General Detect #DBs, which are
10682 * fault-like. They do _not_ set RF, a la code breakpoints.
10683 */
10684 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10685 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10686 X86_EFLAGS_RF);
10687
10688 if (vcpu->arch.exception.vector == DB_VECTOR) {
10689 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10690 if (vcpu->arch.dr7 & DR7_GD) {
10691 vcpu->arch.dr7 &= ~DR7_GD;
10692 kvm_update_dr7(vcpu);
10693 }
10694 }
10695
10696 kvm_inject_exception(vcpu);
10697
10698 vcpu->arch.exception.pending = false;
10699 vcpu->arch.exception.injected = true;
10700
10701 can_inject = false;
10702 }
10703
10704 /* Don't inject interrupts if the user asked to avoid doing so */
10705 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10706 return 0;
10707
10708 /*
10709 * Finally, inject interrupt events. If an event cannot be injected
10710 * due to architectural conditions (e.g. IF=0) a window-open exit
10711 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
10712 * and can architecturally be injected, but we cannot do it right now:
10713 * an interrupt could have arrived just now and we have to inject it
10714 * as a vmexit, or there could already an event in the queue, which is
10715 * indicated by can_inject. In that case we request an immediate exit
10716 * in order to make progress and get back here for another iteration.
10717 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10718 */
10719 #ifdef CONFIG_KVM_SMM
10720 if (vcpu->arch.smi_pending) {
10721 r = can_inject ? kvm_x86_call(smi_allowed)(vcpu, true) :
10722 -EBUSY;
10723 if (r < 0)
10724 goto out;
10725 if (r) {
10726 vcpu->arch.smi_pending = false;
10727 ++vcpu->arch.smi_count;
10728 enter_smm(vcpu);
10729 can_inject = false;
10730 } else
10731 kvm_x86_call(enable_smi_window)(vcpu);
10732 }
10733 #endif
10734
10735 if (vcpu->arch.nmi_pending) {
10736 r = can_inject ? kvm_x86_call(nmi_allowed)(vcpu, true) :
10737 -EBUSY;
10738 if (r < 0)
10739 goto out;
10740 if (r) {
10741 --vcpu->arch.nmi_pending;
10742 vcpu->arch.nmi_injected = true;
10743 kvm_x86_call(inject_nmi)(vcpu);
10744 can_inject = false;
10745 WARN_ON(kvm_x86_call(nmi_allowed)(vcpu, true) < 0);
10746 }
10747 if (vcpu->arch.nmi_pending)
10748 kvm_x86_call(enable_nmi_window)(vcpu);
10749 }
10750
10751 if (kvm_cpu_has_injectable_intr(vcpu)) {
10752 r = can_inject ? kvm_x86_call(interrupt_allowed)(vcpu, true) :
10753 -EBUSY;
10754 if (r < 0)
10755 goto out;
10756 if (r) {
10757 int irq = kvm_cpu_get_interrupt(vcpu);
10758
10759 if (!WARN_ON_ONCE(irq == -1)) {
10760 kvm_queue_interrupt(vcpu, irq, false);
10761 kvm_x86_call(inject_irq)(vcpu, false);
10762 WARN_ON(kvm_x86_call(interrupt_allowed)(vcpu, true) < 0);
10763 }
10764 }
10765 if (kvm_cpu_has_injectable_intr(vcpu))
10766 kvm_x86_call(enable_irq_window)(vcpu);
10767 }
10768
10769 if (is_guest_mode(vcpu) &&
10770 kvm_x86_ops.nested_ops->has_events &&
10771 kvm_x86_ops.nested_ops->has_events(vcpu, true))
10772 *req_immediate_exit = true;
10773
10774 /*
10775 * KVM must never queue a new exception while injecting an event; KVM
10776 * is done emulating and should only propagate the to-be-injected event
10777 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an
10778 * infinite loop as KVM will bail from VM-Enter to inject the pending
10779 * exception and start the cycle all over.
10780 *
10781 * Exempt triple faults as they have special handling and won't put the
10782 * vCPU into an infinite loop. Triple fault can be queued when running
10783 * VMX without unrestricted guest, as that requires KVM to emulate Real
10784 * Mode events (see kvm_inject_realmode_interrupt()).
10785 */
10786 WARN_ON_ONCE(vcpu->arch.exception.pending ||
10787 vcpu->arch.exception_vmexit.pending);
10788 return 0;
10789
10790 out:
10791 if (r == -EBUSY) {
10792 *req_immediate_exit = true;
10793 r = 0;
10794 }
10795 return r;
10796 }
10797
process_nmi(struct kvm_vcpu * vcpu)10798 static void process_nmi(struct kvm_vcpu *vcpu)
10799 {
10800 unsigned int limit;
10801
10802 /*
10803 * x86 is limited to one NMI pending, but because KVM can't react to
10804 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10805 * scheduled out, KVM needs to play nice with two queued NMIs showing
10806 * up at the same time. To handle this scenario, allow two NMIs to be
10807 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10808 * waiting for a previous NMI injection to complete (which effectively
10809 * blocks NMIs). KVM will immediately inject one of the two NMIs, and
10810 * will request an NMI window to handle the second NMI.
10811 */
10812 if (kvm_x86_call(get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10813 limit = 1;
10814 else
10815 limit = 2;
10816
10817 /*
10818 * Adjust the limit to account for pending virtual NMIs, which aren't
10819 * tracked in vcpu->arch.nmi_pending.
10820 */
10821 if (kvm_x86_call(is_vnmi_pending)(vcpu))
10822 limit--;
10823
10824 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10825 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10826
10827 if (vcpu->arch.nmi_pending &&
10828 (kvm_x86_call(set_vnmi_pending)(vcpu)))
10829 vcpu->arch.nmi_pending--;
10830
10831 if (vcpu->arch.nmi_pending)
10832 kvm_make_request(KVM_REQ_EVENT, vcpu);
10833 }
10834
10835 /* Return total number of NMIs pending injection to the VM */
kvm_get_nr_pending_nmis(struct kvm_vcpu * vcpu)10836 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10837 {
10838 return vcpu->arch.nmi_pending +
10839 kvm_x86_call(is_vnmi_pending)(vcpu);
10840 }
10841
kvm_make_scan_ioapic_request_mask(struct kvm * kvm,unsigned long * vcpu_bitmap)10842 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10843 unsigned long *vcpu_bitmap)
10844 {
10845 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10846 }
10847
kvm_make_scan_ioapic_request(struct kvm * kvm)10848 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10849 {
10850 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10851 }
10852
__kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10853 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10854 {
10855 struct kvm_lapic *apic = vcpu->arch.apic;
10856 bool activate;
10857
10858 if (!lapic_in_kernel(vcpu))
10859 return;
10860
10861 down_read(&vcpu->kvm->arch.apicv_update_lock);
10862 preempt_disable();
10863
10864 /* Do not activate APICV when APIC is disabled */
10865 activate = kvm_vcpu_apicv_activated(vcpu) &&
10866 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10867
10868 if (apic->apicv_active == activate)
10869 goto out;
10870
10871 apic->apicv_active = activate;
10872 kvm_apic_update_apicv(vcpu);
10873 kvm_x86_call(refresh_apicv_exec_ctrl)(vcpu);
10874
10875 /*
10876 * When APICv gets disabled, we may still have injected interrupts
10877 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10878 * still active when the interrupt got accepted. Make sure
10879 * kvm_check_and_inject_events() is called to check for that.
10880 */
10881 if (!apic->apicv_active)
10882 kvm_make_request(KVM_REQ_EVENT, vcpu);
10883
10884 out:
10885 preempt_enable();
10886 up_read(&vcpu->kvm->arch.apicv_update_lock);
10887 }
10888 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_vcpu_update_apicv);
10889
kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10890 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10891 {
10892 if (!lapic_in_kernel(vcpu))
10893 return;
10894
10895 /*
10896 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10897 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10898 * and hardware doesn't support x2APIC virtualization. E.g. some AMD
10899 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in
10900 * this case so that KVM can use the AVIC doorbell to inject interrupts
10901 * to running vCPUs, but KVM must not create SPTEs for the APIC base as
10902 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10903 * despite being in x2APIC mode. For simplicity, inhibiting the APIC
10904 * access page is sticky.
10905 */
10906 if (apic_x2apic_mode(vcpu->arch.apic) &&
10907 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10908 kvm_inhibit_apic_access_page(vcpu);
10909
10910 __kvm_vcpu_update_apicv(vcpu);
10911 }
10912
__kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10913 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10914 enum kvm_apicv_inhibit reason, bool set)
10915 {
10916 unsigned long old, new;
10917
10918 lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10919
10920 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10921 return;
10922
10923 old = new = kvm->arch.apicv_inhibit_reasons;
10924
10925 set_or_clear_apicv_inhibit(&new, reason, set);
10926
10927 if (!!old != !!new) {
10928 /*
10929 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10930 * false positives in the sanity check WARN in vcpu_enter_guest().
10931 * This task will wait for all vCPUs to ack the kick IRQ before
10932 * updating apicv_inhibit_reasons, and all other vCPUs will
10933 * block on acquiring apicv_update_lock so that vCPUs can't
10934 * redo vcpu_enter_guest() without seeing the new inhibit state.
10935 *
10936 * Note, holding apicv_update_lock and taking it in the read
10937 * side (handling the request) also prevents other vCPUs from
10938 * servicing the request with a stale apicv_inhibit_reasons.
10939 */
10940 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10941 kvm->arch.apicv_inhibit_reasons = new;
10942 if (new) {
10943 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10944 int idx = srcu_read_lock(&kvm->srcu);
10945
10946 kvm_zap_gfn_range(kvm, gfn, gfn+1);
10947 srcu_read_unlock(&kvm->srcu, idx);
10948 }
10949 } else {
10950 kvm->arch.apicv_inhibit_reasons = new;
10951 }
10952 }
10953
kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10954 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10955 enum kvm_apicv_inhibit reason, bool set)
10956 {
10957 if (!enable_apicv)
10958 return;
10959
10960 down_write(&kvm->arch.apicv_update_lock);
10961 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10962 up_write(&kvm->arch.apicv_update_lock);
10963 }
10964 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_or_clear_apicv_inhibit);
10965
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)10966 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10967 {
10968 if (!kvm_apic_present(vcpu))
10969 return;
10970
10971 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10972 vcpu->arch.highest_stale_pending_ioapic_eoi = -1;
10973
10974 kvm_x86_call(sync_pir_to_irr)(vcpu);
10975
10976 if (irqchip_split(vcpu->kvm))
10977 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10978 #ifdef CONFIG_KVM_IOAPIC
10979 else if (ioapic_in_kernel(vcpu->kvm))
10980 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10981 #endif
10982
10983 if (is_guest_mode(vcpu))
10984 vcpu->arch.load_eoi_exitmap_pending = true;
10985 else
10986 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10987 }
10988
vcpu_load_eoi_exitmap(struct kvm_vcpu * vcpu)10989 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10990 {
10991 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10992 return;
10993
10994 #ifdef CONFIG_KVM_HYPERV
10995 if (to_hv_vcpu(vcpu)) {
10996 u64 eoi_exit_bitmap[4];
10997
10998 bitmap_or((ulong *)eoi_exit_bitmap,
10999 vcpu->arch.ioapic_handled_vectors,
11000 to_hv_synic(vcpu)->vec_bitmap, 256);
11001 kvm_x86_call(load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
11002 return;
11003 }
11004 #endif
11005 kvm_x86_call(load_eoi_exitmap)(
11006 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
11007 }
11008
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)11009 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
11010 {
11011 kvm_x86_call(guest_memory_reclaimed)(kvm);
11012 }
11013
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)11014 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
11015 {
11016 if (!lapic_in_kernel(vcpu))
11017 return;
11018
11019 kvm_x86_call(set_apic_access_page_addr)(vcpu);
11020 }
11021
11022 /*
11023 * Called within kvm->srcu read side.
11024 * Returns 1 to let vcpu_run() continue the guest execution loop without
11025 * exiting to the userspace. Otherwise, the value will be returned to the
11026 * userspace.
11027 */
vcpu_enter_guest(struct kvm_vcpu * vcpu)11028 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
11029 {
11030 int r;
11031 bool req_int_win =
11032 dm_request_for_irq_injection(vcpu) &&
11033 kvm_cpu_accept_dm_intr(vcpu);
11034 fastpath_t exit_fastpath;
11035 u64 run_flags, debug_ctl;
11036
11037 bool req_immediate_exit = false;
11038
11039 if (kvm_request_pending(vcpu)) {
11040 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
11041 r = -EIO;
11042 goto out;
11043 }
11044
11045 if (kvm_dirty_ring_check_request(vcpu)) {
11046 r = 0;
11047 goto out;
11048 }
11049
11050 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
11051 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
11052 r = 0;
11053 goto out;
11054 }
11055 }
11056 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
11057 kvm_mmu_free_obsolete_roots(vcpu);
11058 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
11059 __kvm_migrate_timers(vcpu);
11060 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
11061 kvm_update_masterclock(vcpu->kvm);
11062 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
11063 kvm_gen_kvmclock_update(vcpu);
11064 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
11065 r = kvm_guest_time_update(vcpu);
11066 if (unlikely(r))
11067 goto out;
11068 }
11069 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
11070 kvm_mmu_sync_roots(vcpu);
11071 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
11072 kvm_mmu_load_pgd(vcpu);
11073
11074 /*
11075 * Note, the order matters here, as flushing "all" TLB entries
11076 * also flushes the "current" TLB entries, i.e. servicing the
11077 * flush "all" will clear any request to flush "current".
11078 */
11079 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
11080 kvm_vcpu_flush_tlb_all(vcpu);
11081
11082 kvm_service_local_tlb_flush_requests(vcpu);
11083
11084 /*
11085 * Fall back to a "full" guest flush if Hyper-V's precise
11086 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but
11087 * the flushes are considered "remote" and not "local" because
11088 * the requests can be initiated from other vCPUs.
11089 */
11090 #ifdef CONFIG_KVM_HYPERV
11091 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
11092 kvm_hv_vcpu_flush_tlb(vcpu))
11093 kvm_vcpu_flush_tlb_guest(vcpu);
11094 #endif
11095
11096 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
11097 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
11098 r = 0;
11099 goto out;
11100 }
11101 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
11102 if (is_guest_mode(vcpu))
11103 kvm_x86_ops.nested_ops->triple_fault(vcpu);
11104
11105 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
11106 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
11107 vcpu->mmio_needed = 0;
11108 r = 0;
11109 goto out;
11110 }
11111 }
11112 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
11113 /* Page is swapped out. Do synthetic halt */
11114 vcpu->arch.apf.halted = true;
11115 r = 1;
11116 goto out;
11117 }
11118 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
11119 record_steal_time(vcpu);
11120 if (kvm_check_request(KVM_REQ_PMU, vcpu))
11121 kvm_pmu_handle_event(vcpu);
11122 if (kvm_check_request(KVM_REQ_PMI, vcpu))
11123 kvm_pmu_deliver_pmi(vcpu);
11124 #ifdef CONFIG_KVM_SMM
11125 if (kvm_check_request(KVM_REQ_SMI, vcpu))
11126 process_smi(vcpu);
11127 #endif
11128 if (kvm_check_request(KVM_REQ_NMI, vcpu))
11129 process_nmi(vcpu);
11130 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
11131 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
11132 if (test_bit(vcpu->arch.pending_ioapic_eoi,
11133 vcpu->arch.ioapic_handled_vectors)) {
11134 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
11135 vcpu->run->eoi.vector =
11136 vcpu->arch.pending_ioapic_eoi;
11137 r = 0;
11138 goto out;
11139 }
11140 }
11141 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
11142 vcpu_scan_ioapic(vcpu);
11143 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
11144 vcpu_load_eoi_exitmap(vcpu);
11145 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
11146 kvm_vcpu_reload_apic_access_page(vcpu);
11147 #ifdef CONFIG_KVM_HYPERV
11148 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
11149 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
11150 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
11151 vcpu->run->system_event.ndata = 0;
11152 r = 0;
11153 goto out;
11154 }
11155 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
11156 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
11157 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
11158 vcpu->run->system_event.ndata = 0;
11159 r = 0;
11160 goto out;
11161 }
11162 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
11163 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
11164
11165 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
11166 vcpu->run->hyperv = hv_vcpu->exit;
11167 r = 0;
11168 goto out;
11169 }
11170
11171 /*
11172 * KVM_REQ_HV_STIMER has to be processed after
11173 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
11174 * depend on the guest clock being up-to-date
11175 */
11176 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
11177 kvm_hv_process_stimers(vcpu);
11178 #endif
11179 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
11180 kvm_vcpu_update_apicv(vcpu);
11181 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
11182 kvm_check_async_pf_completion(vcpu);
11183
11184 if (kvm_check_request(KVM_REQ_RECALC_INTERCEPTS, vcpu))
11185 kvm_x86_call(recalc_intercepts)(vcpu);
11186
11187 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
11188 kvm_x86_call(update_cpu_dirty_logging)(vcpu);
11189
11190 if (kvm_check_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) {
11191 kvm_vcpu_reset(vcpu, true);
11192 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE) {
11193 r = 1;
11194 goto out;
11195 }
11196 }
11197 }
11198
11199 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
11200 kvm_xen_has_interrupt(vcpu)) {
11201 ++vcpu->stat.req_event;
11202 r = kvm_apic_accept_events(vcpu);
11203 if (r < 0) {
11204 r = 0;
11205 goto out;
11206 }
11207 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
11208 r = 1;
11209 goto out;
11210 }
11211
11212 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
11213 if (r < 0) {
11214 r = 0;
11215 goto out;
11216 }
11217 if (req_int_win)
11218 kvm_x86_call(enable_irq_window)(vcpu);
11219
11220 if (kvm_lapic_enabled(vcpu)) {
11221 update_cr8_intercept(vcpu);
11222 kvm_lapic_sync_to_vapic(vcpu);
11223 }
11224 }
11225
11226 r = kvm_mmu_reload(vcpu);
11227 if (unlikely(r)) {
11228 goto cancel_injection;
11229 }
11230
11231 preempt_disable();
11232
11233 kvm_x86_call(prepare_switch_to_guest)(vcpu);
11234
11235 /*
11236 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
11237 * IPI are then delayed after guest entry, which ensures that they
11238 * result in virtual interrupt delivery.
11239 */
11240 local_irq_disable();
11241
11242 /* Store vcpu->apicv_active before vcpu->mode. */
11243 smp_store_release(&vcpu->mode, IN_GUEST_MODE);
11244
11245 kvm_vcpu_srcu_read_unlock(vcpu);
11246
11247 /*
11248 * 1) We should set ->mode before checking ->requests. Please see
11249 * the comment in kvm_vcpu_exiting_guest_mode().
11250 *
11251 * 2) For APICv, we should set ->mode before checking PID.ON. This
11252 * pairs with the memory barrier implicit in pi_test_and_set_on
11253 * (see vmx_deliver_posted_interrupt).
11254 *
11255 * 3) This also orders the write to mode from any reads to the page
11256 * tables done while the VCPU is running. Please see the comment
11257 * in kvm_flush_remote_tlbs.
11258 */
11259 smp_mb__after_srcu_read_unlock();
11260
11261 /*
11262 * Process pending posted interrupts to handle the case where the
11263 * notification IRQ arrived in the host, or was never sent (because the
11264 * target vCPU wasn't running). Do this regardless of the vCPU's APICv
11265 * status, KVM doesn't update assigned devices when APICv is inhibited,
11266 * i.e. they can post interrupts even if APICv is temporarily disabled.
11267 */
11268 if (kvm_lapic_enabled(vcpu))
11269 kvm_x86_call(sync_pir_to_irr)(vcpu);
11270
11271 if (kvm_vcpu_exit_request(vcpu)) {
11272 vcpu->mode = OUTSIDE_GUEST_MODE;
11273 smp_wmb();
11274 local_irq_enable();
11275 preempt_enable();
11276 kvm_vcpu_srcu_read_lock(vcpu);
11277 r = 1;
11278 goto cancel_injection;
11279 }
11280
11281 run_flags = 0;
11282 if (req_immediate_exit) {
11283 run_flags |= KVM_RUN_FORCE_IMMEDIATE_EXIT;
11284 kvm_make_request(KVM_REQ_EVENT, vcpu);
11285 }
11286
11287 fpregs_assert_state_consistent();
11288 if (test_thread_flag(TIF_NEED_FPU_LOAD))
11289 switch_fpu_return();
11290
11291 if (vcpu->arch.guest_fpu.xfd_err)
11292 wrmsrq(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
11293
11294 if (unlikely(vcpu->arch.switch_db_regs &&
11295 !(vcpu->arch.switch_db_regs & KVM_DEBUGREG_AUTO_SWITCH))) {
11296 set_debugreg(DR7_FIXED_1, 7);
11297 set_debugreg(vcpu->arch.eff_db[0], 0);
11298 set_debugreg(vcpu->arch.eff_db[1], 1);
11299 set_debugreg(vcpu->arch.eff_db[2], 2);
11300 set_debugreg(vcpu->arch.eff_db[3], 3);
11301 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
11302 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
11303 run_flags |= KVM_RUN_LOAD_GUEST_DR6;
11304 } else if (unlikely(hw_breakpoint_active())) {
11305 set_debugreg(DR7_FIXED_1, 7);
11306 }
11307
11308 /*
11309 * Refresh the host DEBUGCTL snapshot after disabling IRQs, as DEBUGCTL
11310 * can be modified in IRQ context, e.g. via SMP function calls. Inform
11311 * vendor code if any host-owned bits were changed, e.g. so that the
11312 * value loaded into hardware while running the guest can be updated.
11313 */
11314 debug_ctl = get_debugctlmsr();
11315 if ((debug_ctl ^ vcpu->arch.host_debugctl) & kvm_x86_ops.HOST_OWNED_DEBUGCTL &&
11316 !vcpu->arch.guest_state_protected)
11317 run_flags |= KVM_RUN_LOAD_DEBUGCTL;
11318 vcpu->arch.host_debugctl = debug_ctl;
11319
11320 guest_timing_enter_irqoff();
11321
11322 for (;;) {
11323 /*
11324 * Assert that vCPU vs. VM APICv state is consistent. An APICv
11325 * update must kick and wait for all vCPUs before toggling the
11326 * per-VM state, and responding vCPUs must wait for the update
11327 * to complete before servicing KVM_REQ_APICV_UPDATE.
11328 */
11329 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
11330 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
11331
11332 exit_fastpath = kvm_x86_call(vcpu_run)(vcpu, run_flags);
11333 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
11334 break;
11335
11336 if (kvm_lapic_enabled(vcpu))
11337 kvm_x86_call(sync_pir_to_irr)(vcpu);
11338
11339 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
11340 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
11341 break;
11342 }
11343
11344 run_flags = 0;
11345
11346 /* Note, VM-Exits that go down the "slow" path are accounted below. */
11347 ++vcpu->stat.exits;
11348 }
11349
11350 /*
11351 * Do this here before restoring debug registers on the host. And
11352 * since we do this before handling the vmexit, a DR access vmexit
11353 * can (a) read the correct value of the debug registers, (b) set
11354 * KVM_DEBUGREG_WONT_EXIT again.
11355 */
11356 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
11357 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
11358 WARN_ON(vcpu->arch.switch_db_regs & KVM_DEBUGREG_AUTO_SWITCH);
11359 kvm_x86_call(sync_dirty_debug_regs)(vcpu);
11360 kvm_update_dr0123(vcpu);
11361 kvm_update_dr7(vcpu);
11362 }
11363
11364 /*
11365 * If the guest has used debug registers, at least dr7
11366 * will be disabled while returning to the host.
11367 * If we don't have active breakpoints in the host, we don't
11368 * care about the messed up debug address registers. But if
11369 * we have some of them active, restore the old state.
11370 */
11371 if (hw_breakpoint_active())
11372 hw_breakpoint_restore();
11373
11374 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
11375 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
11376
11377 vcpu->mode = OUTSIDE_GUEST_MODE;
11378 smp_wmb();
11379
11380 /*
11381 * Sync xfd before calling handle_exit_irqoff() which may
11382 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
11383 * in #NM irqoff handler).
11384 */
11385 if (vcpu->arch.xfd_no_write_intercept)
11386 fpu_sync_guest_vmexit_xfd_state();
11387
11388 kvm_x86_call(handle_exit_irqoff)(vcpu);
11389
11390 if (vcpu->arch.guest_fpu.xfd_err)
11391 wrmsrq(MSR_IA32_XFD_ERR, 0);
11392
11393 /*
11394 * Mark this CPU as needing a branch predictor flush before running
11395 * userspace. Must be done before enabling preemption to ensure it gets
11396 * set for the CPU that actually ran the guest, and not the CPU that it
11397 * may migrate to.
11398 */
11399 if (cpu_feature_enabled(X86_FEATURE_IBPB_EXIT_TO_USER))
11400 this_cpu_write(x86_ibpb_exit_to_user, true);
11401
11402 /*
11403 * Consume any pending interrupts, including the possible source of
11404 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
11405 * An instruction is required after local_irq_enable() to fully unblock
11406 * interrupts on processors that implement an interrupt shadow, the
11407 * stat.exits increment will do nicely.
11408 */
11409 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
11410 local_irq_enable();
11411 ++vcpu->stat.exits;
11412 local_irq_disable();
11413 kvm_after_interrupt(vcpu);
11414
11415 /*
11416 * Wait until after servicing IRQs to account guest time so that any
11417 * ticks that occurred while running the guest are properly accounted
11418 * to the guest. Waiting until IRQs are enabled degrades the accuracy
11419 * of accounting via context tracking, but the loss of accuracy is
11420 * acceptable for all known use cases.
11421 */
11422 guest_timing_exit_irqoff();
11423
11424 local_irq_enable();
11425 preempt_enable();
11426
11427 kvm_vcpu_srcu_read_lock(vcpu);
11428
11429 /*
11430 * Call this to ensure WC buffers in guest are evicted after each VM
11431 * Exit, so that the evicted WC writes can be snooped across all cpus
11432 */
11433 smp_mb__after_srcu_read_lock();
11434
11435 /*
11436 * Profile KVM exit RIPs:
11437 */
11438 if (unlikely(prof_on == KVM_PROFILING &&
11439 !vcpu->arch.guest_state_protected)) {
11440 unsigned long rip = kvm_rip_read(vcpu);
11441 profile_hit(KVM_PROFILING, (void *)rip);
11442 }
11443
11444 if (unlikely(vcpu->arch.tsc_always_catchup))
11445 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11446
11447 if (vcpu->arch.apic_attention)
11448 kvm_lapic_sync_from_vapic(vcpu);
11449
11450 if (unlikely(exit_fastpath == EXIT_FASTPATH_EXIT_USERSPACE))
11451 return 0;
11452
11453 r = kvm_x86_call(handle_exit)(vcpu, exit_fastpath);
11454 return r;
11455
11456 cancel_injection:
11457 if (req_immediate_exit)
11458 kvm_make_request(KVM_REQ_EVENT, vcpu);
11459 kvm_x86_call(cancel_injection)(vcpu);
11460 if (unlikely(vcpu->arch.apic_attention))
11461 kvm_lapic_sync_from_vapic(vcpu);
11462 out:
11463 return r;
11464 }
11465
kvm_vcpu_running(struct kvm_vcpu * vcpu)11466 static bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
11467 {
11468 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
11469 !vcpu->arch.apf.halted);
11470 }
11471
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)11472 bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11473 {
11474 if (!list_empty_careful(&vcpu->async_pf.done))
11475 return true;
11476
11477 if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
11478 kvm_apic_init_sipi_allowed(vcpu))
11479 return true;
11480
11481 if (kvm_is_exception_pending(vcpu))
11482 return true;
11483
11484 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11485 (vcpu->arch.nmi_pending &&
11486 kvm_x86_call(nmi_allowed)(vcpu, false)))
11487 return true;
11488
11489 #ifdef CONFIG_KVM_SMM
11490 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11491 (vcpu->arch.smi_pending &&
11492 kvm_x86_call(smi_allowed)(vcpu, false)))
11493 return true;
11494 #endif
11495
11496 if (kvm_test_request(KVM_REQ_PMI, vcpu))
11497 return true;
11498
11499 if (kvm_test_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu))
11500 return true;
11501
11502 if (kvm_arch_interrupt_allowed(vcpu) && kvm_cpu_has_interrupt(vcpu))
11503 return true;
11504
11505 if (kvm_hv_has_stimer_pending(vcpu))
11506 return true;
11507
11508 if (is_guest_mode(vcpu) &&
11509 kvm_x86_ops.nested_ops->has_events &&
11510 kvm_x86_ops.nested_ops->has_events(vcpu, false))
11511 return true;
11512
11513 if (kvm_xen_has_pending_events(vcpu))
11514 return true;
11515
11516 return false;
11517 }
11518 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_has_events);
11519
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)11520 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11521 {
11522 return kvm_vcpu_running(vcpu) || vcpu->arch.pv.pv_unhalted ||
11523 kvm_vcpu_has_events(vcpu);
11524 }
11525
11526 /* Called within kvm->srcu read side. */
vcpu_block(struct kvm_vcpu * vcpu)11527 static inline int vcpu_block(struct kvm_vcpu *vcpu)
11528 {
11529 bool hv_timer;
11530
11531 if (!kvm_arch_vcpu_runnable(vcpu)) {
11532 /*
11533 * Switch to the software timer before halt-polling/blocking as
11534 * the guest's timer may be a break event for the vCPU, and the
11535 * hypervisor timer runs only when the CPU is in guest mode.
11536 * Switch before halt-polling so that KVM recognizes an expired
11537 * timer before blocking.
11538 */
11539 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
11540 if (hv_timer)
11541 kvm_lapic_switch_to_sw_timer(vcpu);
11542
11543 kvm_vcpu_srcu_read_unlock(vcpu);
11544 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11545 kvm_vcpu_halt(vcpu);
11546 else
11547 kvm_vcpu_block(vcpu);
11548 kvm_vcpu_srcu_read_lock(vcpu);
11549
11550 if (hv_timer)
11551 kvm_lapic_switch_to_hv_timer(vcpu);
11552
11553 /*
11554 * If the vCPU is not runnable, a signal or another host event
11555 * of some kind is pending; service it without changing the
11556 * vCPU's activity state.
11557 */
11558 if (!kvm_arch_vcpu_runnable(vcpu))
11559 return 1;
11560 }
11561
11562 /*
11563 * Evaluate nested events before exiting the halted state. This allows
11564 * the halt state to be recorded properly in the VMCS12's activity
11565 * state field (AMD does not have a similar field and a VM-Exit always
11566 * causes a spurious wakeup from HLT).
11567 */
11568 if (is_guest_mode(vcpu)) {
11569 int r = kvm_check_nested_events(vcpu);
11570
11571 WARN_ON_ONCE(r == -EBUSY);
11572 if (r < 0)
11573 return 0;
11574 }
11575
11576 if (kvm_apic_accept_events(vcpu) < 0)
11577 return 0;
11578 switch(vcpu->arch.mp_state) {
11579 case KVM_MP_STATE_HALTED:
11580 case KVM_MP_STATE_AP_RESET_HOLD:
11581 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
11582 fallthrough;
11583 case KVM_MP_STATE_RUNNABLE:
11584 vcpu->arch.apf.halted = false;
11585 break;
11586 case KVM_MP_STATE_INIT_RECEIVED:
11587 break;
11588 default:
11589 WARN_ON_ONCE(1);
11590 break;
11591 }
11592 return 1;
11593 }
11594
11595 /* Called within kvm->srcu read side. */
vcpu_run(struct kvm_vcpu * vcpu)11596 static int vcpu_run(struct kvm_vcpu *vcpu)
11597 {
11598 int r;
11599
11600 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
11601
11602 for (;;) {
11603 /*
11604 * If another guest vCPU requests a PV TLB flush in the middle
11605 * of instruction emulation, the rest of the emulation could
11606 * use a stale page translation. Assume that any code after
11607 * this point can start executing an instruction.
11608 */
11609 vcpu->arch.at_instruction_boundary = false;
11610 if (kvm_vcpu_running(vcpu)) {
11611 r = vcpu_enter_guest(vcpu);
11612 } else {
11613 r = vcpu_block(vcpu);
11614 }
11615
11616 if (r <= 0)
11617 break;
11618
11619 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11620 if (kvm_xen_has_pending_events(vcpu))
11621 kvm_xen_inject_pending_events(vcpu);
11622
11623 if (kvm_cpu_has_pending_timer(vcpu))
11624 kvm_inject_pending_timer_irqs(vcpu);
11625
11626 if (dm_request_for_irq_injection(vcpu) &&
11627 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11628 r = 0;
11629 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11630 ++vcpu->stat.request_irq_exits;
11631 break;
11632 }
11633
11634 if (__xfer_to_guest_mode_work_pending()) {
11635 kvm_vcpu_srcu_read_unlock(vcpu);
11636 r = kvm_xfer_to_guest_mode_handle_work(vcpu);
11637 kvm_vcpu_srcu_read_lock(vcpu);
11638 if (r)
11639 return r;
11640 }
11641 }
11642
11643 return r;
11644 }
11645
__kvm_emulate_halt(struct kvm_vcpu * vcpu,int state,int reason)11646 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
11647 {
11648 /*
11649 * The vCPU has halted, e.g. executed HLT. Update the run state if the
11650 * local APIC is in-kernel, the run loop will detect the non-runnable
11651 * state and halt the vCPU. Exit to userspace if the local APIC is
11652 * managed by userspace, in which case userspace is responsible for
11653 * handling wake events.
11654 */
11655 ++vcpu->stat.halt_exits;
11656 if (lapic_in_kernel(vcpu)) {
11657 if (kvm_vcpu_has_events(vcpu) || vcpu->arch.pv.pv_unhalted)
11658 state = KVM_MP_STATE_RUNNABLE;
11659 kvm_set_mp_state(vcpu, state);
11660 return 1;
11661 } else {
11662 vcpu->run->exit_reason = reason;
11663 return 0;
11664 }
11665 }
11666
kvm_emulate_halt_noskip(struct kvm_vcpu * vcpu)11667 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
11668 {
11669 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
11670 }
11671 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_halt_noskip);
11672
kvm_emulate_halt(struct kvm_vcpu * vcpu)11673 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
11674 {
11675 int ret = kvm_skip_emulated_instruction(vcpu);
11676 /*
11677 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
11678 * KVM_EXIT_DEBUG here.
11679 */
11680 return kvm_emulate_halt_noskip(vcpu) && ret;
11681 }
11682 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_halt);
11683
handle_fastpath_hlt(struct kvm_vcpu * vcpu)11684 fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu)
11685 {
11686 if (!kvm_emulate_halt(vcpu))
11687 return EXIT_FASTPATH_EXIT_USERSPACE;
11688
11689 if (kvm_vcpu_running(vcpu))
11690 return EXIT_FASTPATH_REENTER_GUEST;
11691
11692 return EXIT_FASTPATH_EXIT_HANDLED;
11693 }
11694 EXPORT_SYMBOL_FOR_KVM_INTERNAL(handle_fastpath_hlt);
11695
kvm_emulate_ap_reset_hold(struct kvm_vcpu * vcpu)11696 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
11697 {
11698 int ret = kvm_skip_emulated_instruction(vcpu);
11699
11700 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
11701 KVM_EXIT_AP_RESET_HOLD) && ret;
11702 }
11703 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_ap_reset_hold);
11704
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)11705 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11706 {
11707 return kvm_vcpu_apicv_active(vcpu) &&
11708 kvm_x86_call(dy_apicv_has_pending_interrupt)(vcpu);
11709 }
11710
kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu * vcpu)11711 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
11712 {
11713 return vcpu->arch.preempted_in_kernel;
11714 }
11715
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)11716 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11717 {
11718 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11719 return true;
11720
11721 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11722 #ifdef CONFIG_KVM_SMM
11723 kvm_test_request(KVM_REQ_SMI, vcpu) ||
11724 #endif
11725 kvm_test_request(KVM_REQ_EVENT, vcpu))
11726 return true;
11727
11728 return kvm_arch_dy_has_pending_interrupt(vcpu);
11729 }
11730
complete_emulated_io(struct kvm_vcpu * vcpu)11731 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11732 {
11733 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11734 }
11735
complete_emulated_pio(struct kvm_vcpu * vcpu)11736 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11737 {
11738 BUG_ON(!vcpu->arch.pio.count);
11739
11740 return complete_emulated_io(vcpu);
11741 }
11742
11743 /*
11744 * Implements the following, as a state machine:
11745 *
11746 * read:
11747 * for each fragment
11748 * for each mmio piece in the fragment
11749 * write gpa, len
11750 * exit
11751 * copy data
11752 * execute insn
11753 *
11754 * write:
11755 * for each fragment
11756 * for each mmio piece in the fragment
11757 * write gpa, len
11758 * copy data
11759 * exit
11760 */
complete_emulated_mmio(struct kvm_vcpu * vcpu)11761 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11762 {
11763 struct kvm_run *run = vcpu->run;
11764 struct kvm_mmio_fragment *frag;
11765 unsigned len;
11766
11767 BUG_ON(!vcpu->mmio_needed);
11768
11769 /* Complete previous fragment */
11770 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11771 len = min(8u, frag->len);
11772 if (!vcpu->mmio_is_write)
11773 memcpy(frag->data, run->mmio.data, len);
11774
11775 if (frag->len <= 8) {
11776 /* Switch to the next fragment. */
11777 frag++;
11778 vcpu->mmio_cur_fragment++;
11779 } else {
11780 /* Go forward to the next mmio piece. */
11781 frag->data += len;
11782 frag->gpa += len;
11783 frag->len -= len;
11784 }
11785
11786 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11787 vcpu->mmio_needed = 0;
11788
11789 /* FIXME: return into emulator if single-stepping. */
11790 if (vcpu->mmio_is_write)
11791 return 1;
11792 vcpu->mmio_read_completed = 1;
11793 return complete_emulated_io(vcpu);
11794 }
11795
11796 run->exit_reason = KVM_EXIT_MMIO;
11797 run->mmio.phys_addr = frag->gpa;
11798 if (vcpu->mmio_is_write)
11799 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11800 run->mmio.len = min(8u, frag->len);
11801 run->mmio.is_write = vcpu->mmio_is_write;
11802 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11803 return 0;
11804 }
11805
11806 /* Swap (qemu) user FPU context for the guest FPU context. */
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)11807 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11808 {
11809 if (KVM_BUG_ON(vcpu->arch.guest_fpu.fpstate->in_use, vcpu->kvm))
11810 return;
11811
11812 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11813 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11814 trace_kvm_fpu(1);
11815 }
11816
11817 /* When vcpu_run ends, restore user space FPU context. */
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)11818 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11819 {
11820 if (KVM_BUG_ON(!vcpu->arch.guest_fpu.fpstate->in_use, vcpu->kvm))
11821 return;
11822
11823 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11824 ++vcpu->stat.fpu_reload;
11825 trace_kvm_fpu(0);
11826 }
11827
kvm_x86_vcpu_pre_run(struct kvm_vcpu * vcpu)11828 static int kvm_x86_vcpu_pre_run(struct kvm_vcpu *vcpu)
11829 {
11830 /*
11831 * SIPI_RECEIVED is obsolete; KVM leaves the vCPU in Wait-For-SIPI and
11832 * tracks the pending SIPI separately. SIPI_RECEIVED is still accepted
11833 * by KVM_SET_VCPU_EVENTS for backwards compatibility, but should be
11834 * converted to INIT_RECEIVED.
11835 */
11836 if (WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED))
11837 return -EINVAL;
11838
11839 /*
11840 * Disallow running the vCPU if userspace forced it into an impossible
11841 * MP_STATE, e.g. if the vCPU is in WFS but SIPI is blocked.
11842 */
11843 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED &&
11844 !kvm_apic_init_sipi_allowed(vcpu))
11845 return -EINVAL;
11846
11847 return kvm_x86_call(vcpu_pre_run)(vcpu);
11848 }
11849
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)11850 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11851 {
11852 struct kvm_queued_exception *ex = &vcpu->arch.exception;
11853 struct kvm_run *kvm_run = vcpu->run;
11854 u64 sync_valid_fields;
11855 int r;
11856
11857 r = kvm_mmu_post_init_vm(vcpu->kvm);
11858 if (r)
11859 return r;
11860
11861 vcpu_load(vcpu);
11862 kvm_sigset_activate(vcpu);
11863 kvm_run->flags = 0;
11864 kvm_load_guest_fpu(vcpu);
11865
11866 kvm_vcpu_srcu_read_lock(vcpu);
11867 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11868 if (!vcpu->wants_to_run) {
11869 r = -EINTR;
11870 goto out;
11871 }
11872
11873 /*
11874 * Don't bother switching APIC timer emulation from the
11875 * hypervisor timer to the software timer, the only way for the
11876 * APIC timer to be active is if userspace stuffed vCPU state,
11877 * i.e. put the vCPU into a nonsensical state. Only an INIT
11878 * will transition the vCPU out of UNINITIALIZED (without more
11879 * state stuffing from userspace), which will reset the local
11880 * APIC and thus cancel the timer or drop the IRQ (if the timer
11881 * already expired).
11882 */
11883 kvm_vcpu_srcu_read_unlock(vcpu);
11884 kvm_vcpu_block(vcpu);
11885 kvm_vcpu_srcu_read_lock(vcpu);
11886
11887 if (kvm_apic_accept_events(vcpu) < 0) {
11888 r = 0;
11889 goto out;
11890 }
11891 r = -EAGAIN;
11892 if (signal_pending(current)) {
11893 r = -EINTR;
11894 kvm_run->exit_reason = KVM_EXIT_INTR;
11895 ++vcpu->stat.signal_exits;
11896 }
11897 goto out;
11898 }
11899
11900 sync_valid_fields = kvm_sync_valid_fields(vcpu->kvm);
11901 if ((kvm_run->kvm_valid_regs & ~sync_valid_fields) ||
11902 (kvm_run->kvm_dirty_regs & ~sync_valid_fields)) {
11903 r = -EINVAL;
11904 goto out;
11905 }
11906
11907 if (kvm_run->kvm_dirty_regs) {
11908 r = sync_regs(vcpu);
11909 if (r != 0)
11910 goto out;
11911 }
11912
11913 /* re-sync apic's tpr */
11914 if (!lapic_in_kernel(vcpu)) {
11915 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11916 r = -EINVAL;
11917 goto out;
11918 }
11919 }
11920
11921 /*
11922 * If userspace set a pending exception and L2 is active, convert it to
11923 * a pending VM-Exit if L1 wants to intercept the exception.
11924 */
11925 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11926 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11927 ex->error_code)) {
11928 kvm_queue_exception_vmexit(vcpu, ex->vector,
11929 ex->has_error_code, ex->error_code,
11930 ex->has_payload, ex->payload);
11931 ex->injected = false;
11932 ex->pending = false;
11933 }
11934 vcpu->arch.exception_from_userspace = false;
11935
11936 if (unlikely(vcpu->arch.complete_userspace_io)) {
11937 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11938 vcpu->arch.complete_userspace_io = NULL;
11939 r = cui(vcpu);
11940 if (r <= 0)
11941 goto out;
11942 } else {
11943 WARN_ON_ONCE(vcpu->arch.pio.count);
11944 WARN_ON_ONCE(vcpu->mmio_needed);
11945 }
11946
11947 if (!vcpu->wants_to_run) {
11948 r = -EINTR;
11949 goto out;
11950 }
11951
11952 r = kvm_x86_vcpu_pre_run(vcpu);
11953 if (r <= 0)
11954 goto out;
11955
11956 r = vcpu_run(vcpu);
11957
11958 out:
11959 kvm_put_guest_fpu(vcpu);
11960 if (kvm_run->kvm_valid_regs && likely(!vcpu->arch.guest_state_protected))
11961 store_regs(vcpu);
11962 post_kvm_run_save(vcpu);
11963 kvm_vcpu_srcu_read_unlock(vcpu);
11964
11965 kvm_sigset_deactivate(vcpu);
11966 vcpu_put(vcpu);
11967 return r;
11968 }
11969
__get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11970 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11971 {
11972 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11973 /*
11974 * We are here if userspace calls get_regs() in the middle of
11975 * instruction emulation. Registers state needs to be copied
11976 * back from emulation context to vcpu. Userspace shouldn't do
11977 * that usually, but some bad designed PV devices (vmware
11978 * backdoor interface) need this to work
11979 */
11980 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11981 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11982 }
11983 regs->rax = kvm_rax_read(vcpu);
11984 regs->rbx = kvm_rbx_read(vcpu);
11985 regs->rcx = kvm_rcx_read(vcpu);
11986 regs->rdx = kvm_rdx_read(vcpu);
11987 regs->rsi = kvm_rsi_read(vcpu);
11988 regs->rdi = kvm_rdi_read(vcpu);
11989 regs->rsp = kvm_rsp_read(vcpu);
11990 regs->rbp = kvm_rbp_read(vcpu);
11991 #ifdef CONFIG_X86_64
11992 regs->r8 = kvm_r8_read(vcpu);
11993 regs->r9 = kvm_r9_read(vcpu);
11994 regs->r10 = kvm_r10_read(vcpu);
11995 regs->r11 = kvm_r11_read(vcpu);
11996 regs->r12 = kvm_r12_read(vcpu);
11997 regs->r13 = kvm_r13_read(vcpu);
11998 regs->r14 = kvm_r14_read(vcpu);
11999 regs->r15 = kvm_r15_read(vcpu);
12000 #endif
12001
12002 regs->rip = kvm_rip_read(vcpu);
12003 regs->rflags = kvm_get_rflags(vcpu);
12004 }
12005
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)12006 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
12007 {
12008 if (vcpu->kvm->arch.has_protected_state &&
12009 vcpu->arch.guest_state_protected)
12010 return -EINVAL;
12011
12012 vcpu_load(vcpu);
12013 __get_regs(vcpu, regs);
12014 vcpu_put(vcpu);
12015 return 0;
12016 }
12017
__set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)12018 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
12019 {
12020 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
12021 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
12022
12023 kvm_rax_write(vcpu, regs->rax);
12024 kvm_rbx_write(vcpu, regs->rbx);
12025 kvm_rcx_write(vcpu, regs->rcx);
12026 kvm_rdx_write(vcpu, regs->rdx);
12027 kvm_rsi_write(vcpu, regs->rsi);
12028 kvm_rdi_write(vcpu, regs->rdi);
12029 kvm_rsp_write(vcpu, regs->rsp);
12030 kvm_rbp_write(vcpu, regs->rbp);
12031 #ifdef CONFIG_X86_64
12032 kvm_r8_write(vcpu, regs->r8);
12033 kvm_r9_write(vcpu, regs->r9);
12034 kvm_r10_write(vcpu, regs->r10);
12035 kvm_r11_write(vcpu, regs->r11);
12036 kvm_r12_write(vcpu, regs->r12);
12037 kvm_r13_write(vcpu, regs->r13);
12038 kvm_r14_write(vcpu, regs->r14);
12039 kvm_r15_write(vcpu, regs->r15);
12040 #endif
12041
12042 kvm_rip_write(vcpu, regs->rip);
12043 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
12044
12045 vcpu->arch.exception.pending = false;
12046 vcpu->arch.exception_vmexit.pending = false;
12047
12048 kvm_make_request(KVM_REQ_EVENT, vcpu);
12049 }
12050
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)12051 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
12052 {
12053 if (vcpu->kvm->arch.has_protected_state &&
12054 vcpu->arch.guest_state_protected)
12055 return -EINVAL;
12056
12057 vcpu_load(vcpu);
12058 __set_regs(vcpu, regs);
12059 vcpu_put(vcpu);
12060 return 0;
12061 }
12062
__get_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12063 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
12064 {
12065 struct desc_ptr dt;
12066
12067 if (vcpu->arch.guest_state_protected)
12068 goto skip_protected_regs;
12069
12070 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
12071 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
12072 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
12073 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
12074 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
12075 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
12076
12077 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
12078 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
12079
12080 kvm_x86_call(get_idt)(vcpu, &dt);
12081 sregs->idt.limit = dt.size;
12082 sregs->idt.base = dt.address;
12083 kvm_x86_call(get_gdt)(vcpu, &dt);
12084 sregs->gdt.limit = dt.size;
12085 sregs->gdt.base = dt.address;
12086
12087 sregs->cr2 = vcpu->arch.cr2;
12088 sregs->cr3 = kvm_read_cr3(vcpu);
12089
12090 skip_protected_regs:
12091 sregs->cr0 = kvm_read_cr0(vcpu);
12092 sregs->cr4 = kvm_read_cr4(vcpu);
12093 sregs->cr8 = kvm_get_cr8(vcpu);
12094 sregs->efer = vcpu->arch.efer;
12095 sregs->apic_base = vcpu->arch.apic_base;
12096 }
12097
__get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12098 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
12099 {
12100 __get_sregs_common(vcpu, sregs);
12101
12102 if (vcpu->arch.guest_state_protected)
12103 return;
12104
12105 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
12106 set_bit(vcpu->arch.interrupt.nr,
12107 (unsigned long *)sregs->interrupt_bitmap);
12108 }
12109
__get_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)12110 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
12111 {
12112 int i;
12113
12114 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
12115
12116 if (vcpu->arch.guest_state_protected)
12117 return;
12118
12119 if (is_pae_paging(vcpu)) {
12120 for (i = 0 ; i < 4 ; i++)
12121 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
12122 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
12123 }
12124 }
12125
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12126 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
12127 struct kvm_sregs *sregs)
12128 {
12129 if (vcpu->kvm->arch.has_protected_state &&
12130 vcpu->arch.guest_state_protected)
12131 return -EINVAL;
12132
12133 vcpu_load(vcpu);
12134 __get_sregs(vcpu, sregs);
12135 vcpu_put(vcpu);
12136 return 0;
12137 }
12138
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)12139 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
12140 struct kvm_mp_state *mp_state)
12141 {
12142 int r;
12143
12144 vcpu_load(vcpu);
12145 kvm_vcpu_srcu_read_lock(vcpu);
12146
12147 r = kvm_apic_accept_events(vcpu);
12148 if (r < 0)
12149 goto out;
12150 r = 0;
12151
12152 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
12153 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
12154 vcpu->arch.pv.pv_unhalted)
12155 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
12156 else
12157 mp_state->mp_state = vcpu->arch.mp_state;
12158
12159 out:
12160 kvm_vcpu_srcu_read_unlock(vcpu);
12161 vcpu_put(vcpu);
12162 return r;
12163 }
12164
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)12165 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
12166 struct kvm_mp_state *mp_state)
12167 {
12168 int ret = -EINVAL;
12169
12170 vcpu_load(vcpu);
12171
12172 switch (mp_state->mp_state) {
12173 case KVM_MP_STATE_UNINITIALIZED:
12174 case KVM_MP_STATE_HALTED:
12175 case KVM_MP_STATE_AP_RESET_HOLD:
12176 case KVM_MP_STATE_INIT_RECEIVED:
12177 case KVM_MP_STATE_SIPI_RECEIVED:
12178 if (!lapic_in_kernel(vcpu))
12179 goto out;
12180 break;
12181
12182 case KVM_MP_STATE_RUNNABLE:
12183 break;
12184
12185 default:
12186 goto out;
12187 }
12188
12189 /*
12190 * SIPI_RECEIVED is obsolete and no longer used internally; KVM instead
12191 * leaves the vCPU in INIT_RECIEVED (Wait-For-SIPI) and pends the SIPI.
12192 * Translate SIPI_RECEIVED as appropriate for backwards compatibility.
12193 */
12194 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
12195 mp_state->mp_state = KVM_MP_STATE_INIT_RECEIVED;
12196 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
12197 }
12198
12199 kvm_set_mp_state(vcpu, mp_state->mp_state);
12200 kvm_make_request(KVM_REQ_EVENT, vcpu);
12201
12202 ret = 0;
12203 out:
12204 vcpu_put(vcpu);
12205 return ret;
12206 }
12207
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)12208 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
12209 int reason, bool has_error_code, u32 error_code)
12210 {
12211 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
12212 int ret;
12213
12214 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_CET)) {
12215 u64 u_cet, s_cet;
12216
12217 /*
12218 * Check both User and Supervisor on task switches as inter-
12219 * privilege level task switches are impacted by CET at both
12220 * the current privilege level and the new privilege level, and
12221 * that information is not known at this time. The expectation
12222 * is that the guest won't require emulation of task switches
12223 * while using IBT or Shadow Stacks.
12224 */
12225 if (__kvm_emulate_msr_read(vcpu, MSR_IA32_U_CET, &u_cet) ||
12226 __kvm_emulate_msr_read(vcpu, MSR_IA32_S_CET, &s_cet))
12227 goto unhandled_task_switch;
12228
12229 if ((u_cet | s_cet) & (CET_ENDBR_EN | CET_SHSTK_EN))
12230 goto unhandled_task_switch;
12231 }
12232
12233 init_emulate_ctxt(vcpu);
12234
12235 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
12236 has_error_code, error_code);
12237
12238 /*
12239 * Report an error userspace if MMIO is needed, as KVM doesn't support
12240 * MMIO during a task switch (or any other complex operation).
12241 */
12242 if (ret || vcpu->mmio_needed)
12243 goto unhandled_task_switch;
12244
12245 kvm_rip_write(vcpu, ctxt->eip);
12246 kvm_set_rflags(vcpu, ctxt->eflags);
12247 return 1;
12248
12249 unhandled_task_switch:
12250 vcpu->mmio_needed = false;
12251 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
12252 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
12253 vcpu->run->internal.ndata = 0;
12254 return 0;
12255 }
12256 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_task_switch);
12257
kvm_is_valid_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12258 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
12259 {
12260 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
12261 /*
12262 * When EFER.LME and CR0.PG are set, the processor is in
12263 * 64-bit mode (though maybe in a 32-bit code segment).
12264 * CR4.PAE and EFER.LMA must be set.
12265 */
12266 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
12267 return false;
12268 if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3))
12269 return false;
12270 } else {
12271 /*
12272 * Not in 64-bit mode: EFER.LMA is clear and the code
12273 * segment cannot be 64-bit.
12274 */
12275 if (sregs->efer & EFER_LMA || sregs->cs.l)
12276 return false;
12277 }
12278
12279 return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
12280 kvm_is_valid_cr0(vcpu, sregs->cr0);
12281 }
12282
__set_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs,int * mmu_reset_needed,bool update_pdptrs)12283 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
12284 int *mmu_reset_needed, bool update_pdptrs)
12285 {
12286 int idx;
12287 struct desc_ptr dt;
12288
12289 if (!kvm_is_valid_sregs(vcpu, sregs))
12290 return -EINVAL;
12291
12292 if (kvm_apic_set_base(vcpu, sregs->apic_base, true))
12293 return -EINVAL;
12294
12295 if (vcpu->arch.guest_state_protected)
12296 return 0;
12297
12298 dt.size = sregs->idt.limit;
12299 dt.address = sregs->idt.base;
12300 kvm_x86_call(set_idt)(vcpu, &dt);
12301 dt.size = sregs->gdt.limit;
12302 dt.address = sregs->gdt.base;
12303 kvm_x86_call(set_gdt)(vcpu, &dt);
12304
12305 vcpu->arch.cr2 = sregs->cr2;
12306 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
12307 vcpu->arch.cr3 = sregs->cr3;
12308 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12309 kvm_x86_call(post_set_cr3)(vcpu, sregs->cr3);
12310
12311 kvm_set_cr8(vcpu, sregs->cr8);
12312
12313 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
12314 kvm_x86_call(set_efer)(vcpu, sregs->efer);
12315
12316 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
12317 kvm_x86_call(set_cr0)(vcpu, sregs->cr0);
12318
12319 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
12320 kvm_x86_call(set_cr4)(vcpu, sregs->cr4);
12321
12322 if (update_pdptrs) {
12323 idx = srcu_read_lock(&vcpu->kvm->srcu);
12324 if (is_pae_paging(vcpu)) {
12325 load_pdptrs(vcpu, kvm_read_cr3(vcpu));
12326 *mmu_reset_needed = 1;
12327 }
12328 srcu_read_unlock(&vcpu->kvm->srcu, idx);
12329 }
12330
12331 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
12332 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
12333 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
12334 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
12335 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
12336 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
12337
12338 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
12339 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
12340
12341 update_cr8_intercept(vcpu);
12342
12343 /* Older userspace won't unhalt the vcpu on reset. */
12344 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
12345 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
12346 !is_protmode(vcpu))
12347 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
12348
12349 return 0;
12350 }
12351
__set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12352 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
12353 {
12354 int pending_vec, max_bits;
12355 int mmu_reset_needed = 0;
12356 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
12357
12358 if (ret)
12359 return ret;
12360
12361 if (mmu_reset_needed) {
12362 kvm_mmu_reset_context(vcpu);
12363 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12364 }
12365
12366 max_bits = KVM_NR_INTERRUPTS;
12367 pending_vec = find_first_bit(
12368 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
12369
12370 if (pending_vec < max_bits) {
12371 kvm_queue_interrupt(vcpu, pending_vec, false);
12372 pr_debug("Set back pending irq %d\n", pending_vec);
12373 kvm_make_request(KVM_REQ_EVENT, vcpu);
12374 }
12375 return 0;
12376 }
12377
__set_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)12378 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
12379 {
12380 int mmu_reset_needed = 0;
12381 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
12382 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
12383 !(sregs2->efer & EFER_LMA);
12384 int i, ret;
12385
12386 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
12387 return -EINVAL;
12388
12389 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
12390 return -EINVAL;
12391
12392 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
12393 &mmu_reset_needed, !valid_pdptrs);
12394 if (ret)
12395 return ret;
12396
12397 if (valid_pdptrs) {
12398 for (i = 0; i < 4 ; i++)
12399 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
12400
12401 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
12402 mmu_reset_needed = 1;
12403 vcpu->arch.pdptrs_from_userspace = true;
12404 }
12405 if (mmu_reset_needed) {
12406 kvm_mmu_reset_context(vcpu);
12407 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12408 }
12409 return 0;
12410 }
12411
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12412 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
12413 struct kvm_sregs *sregs)
12414 {
12415 int ret;
12416
12417 if (vcpu->kvm->arch.has_protected_state &&
12418 vcpu->arch.guest_state_protected)
12419 return -EINVAL;
12420
12421 vcpu_load(vcpu);
12422 ret = __set_sregs(vcpu, sregs);
12423 vcpu_put(vcpu);
12424 return ret;
12425 }
12426
kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm * kvm)12427 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
12428 {
12429 bool set = false;
12430 struct kvm_vcpu *vcpu;
12431 unsigned long i;
12432
12433 if (!enable_apicv)
12434 return;
12435
12436 down_write(&kvm->arch.apicv_update_lock);
12437
12438 kvm_for_each_vcpu(i, vcpu, kvm) {
12439 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
12440 set = true;
12441 break;
12442 }
12443 }
12444 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
12445 up_write(&kvm->arch.apicv_update_lock);
12446 }
12447
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)12448 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
12449 struct kvm_guest_debug *dbg)
12450 {
12451 unsigned long rflags;
12452 int i, r;
12453
12454 if (vcpu->arch.guest_state_protected)
12455 return -EINVAL;
12456
12457 vcpu_load(vcpu);
12458
12459 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
12460 r = -EBUSY;
12461 if (kvm_is_exception_pending(vcpu))
12462 goto out;
12463 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
12464 kvm_queue_exception(vcpu, DB_VECTOR);
12465 else
12466 kvm_queue_exception(vcpu, BP_VECTOR);
12467 }
12468
12469 /*
12470 * Read rflags as long as potentially injected trace flags are still
12471 * filtered out.
12472 */
12473 rflags = kvm_get_rflags(vcpu);
12474
12475 vcpu->guest_debug = dbg->control;
12476 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
12477 vcpu->guest_debug = 0;
12478
12479 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
12480 for (i = 0; i < KVM_NR_DB_REGS; ++i)
12481 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
12482 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
12483 } else {
12484 for (i = 0; i < KVM_NR_DB_REGS; i++)
12485 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
12486 }
12487 kvm_update_dr7(vcpu);
12488
12489 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12490 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
12491
12492 /*
12493 * Trigger an rflags update that will inject or remove the trace
12494 * flags.
12495 */
12496 kvm_set_rflags(vcpu, rflags);
12497
12498 kvm_x86_call(update_exception_bitmap)(vcpu);
12499
12500 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
12501
12502 r = 0;
12503
12504 out:
12505 vcpu_put(vcpu);
12506 return r;
12507 }
12508
12509 /*
12510 * Translate a guest virtual address to a guest physical address.
12511 */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)12512 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
12513 struct kvm_translation *tr)
12514 {
12515 unsigned long vaddr = tr->linear_address;
12516 gpa_t gpa;
12517 int idx;
12518
12519 vcpu_load(vcpu);
12520
12521 idx = srcu_read_lock(&vcpu->kvm->srcu);
12522 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
12523 srcu_read_unlock(&vcpu->kvm->srcu, idx);
12524 tr->physical_address = gpa;
12525 tr->valid = gpa != INVALID_GPA;
12526 tr->writeable = 1;
12527 tr->usermode = 0;
12528
12529 vcpu_put(vcpu);
12530 return 0;
12531 }
12532
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)12533 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12534 {
12535 struct fxregs_state *fxsave;
12536
12537 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12538 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12539
12540 vcpu_load(vcpu);
12541
12542 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12543 memcpy(fpu->fpr, fxsave->st_space, 128);
12544 fpu->fcw = fxsave->cwd;
12545 fpu->fsw = fxsave->swd;
12546 fpu->ftwx = fxsave->twd;
12547 fpu->last_opcode = fxsave->fop;
12548 fpu->last_ip = fxsave->rip;
12549 fpu->last_dp = fxsave->rdp;
12550 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
12551
12552 vcpu_put(vcpu);
12553 return 0;
12554 }
12555
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)12556 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12557 {
12558 struct fxregs_state *fxsave;
12559
12560 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12561 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12562
12563 vcpu_load(vcpu);
12564
12565 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12566
12567 memcpy(fxsave->st_space, fpu->fpr, 128);
12568 fxsave->cwd = fpu->fcw;
12569 fxsave->swd = fpu->fsw;
12570 fxsave->twd = fpu->ftwx;
12571 fxsave->fop = fpu->last_opcode;
12572 fxsave->rip = fpu->last_ip;
12573 fxsave->rdp = fpu->last_dp;
12574 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
12575
12576 vcpu_put(vcpu);
12577 return 0;
12578 }
12579
store_regs(struct kvm_vcpu * vcpu)12580 static void store_regs(struct kvm_vcpu *vcpu)
12581 {
12582 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
12583
12584 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
12585 __get_regs(vcpu, &vcpu->run->s.regs.regs);
12586
12587 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
12588 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
12589
12590 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
12591 kvm_vcpu_ioctl_x86_get_vcpu_events(
12592 vcpu, &vcpu->run->s.regs.events);
12593 }
12594
sync_regs(struct kvm_vcpu * vcpu)12595 static int sync_regs(struct kvm_vcpu *vcpu)
12596 {
12597 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
12598 __set_regs(vcpu, &vcpu->run->s.regs.regs);
12599 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
12600 }
12601
12602 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
12603 struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
12604
12605 if (__set_sregs(vcpu, &sregs))
12606 return -EINVAL;
12607
12608 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
12609 }
12610
12611 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
12612 struct kvm_vcpu_events events = vcpu->run->s.regs.events;
12613
12614 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
12615 return -EINVAL;
12616
12617 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
12618 }
12619
12620 return 0;
12621 }
12622
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)12623 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
12624 {
12625 if (kvm_check_tsc_unstable() && kvm->created_vcpus)
12626 pr_warn_once("SMP vm created on host with unstable TSC; "
12627 "guest TSC will not be reliable\n");
12628
12629 if (!kvm->arch.max_vcpu_ids)
12630 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
12631
12632 if (id >= kvm->arch.max_vcpu_ids)
12633 return -EINVAL;
12634
12635 return kvm_x86_call(vcpu_precreate)(kvm);
12636 }
12637
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)12638 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
12639 {
12640 struct page *page;
12641 int r;
12642
12643 vcpu->arch.last_vmentry_cpu = -1;
12644 vcpu->arch.regs_avail = ~0;
12645 vcpu->arch.regs_dirty = ~0;
12646
12647 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm);
12648
12649 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
12650 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
12651 else
12652 kvm_set_mp_state(vcpu, KVM_MP_STATE_UNINITIALIZED);
12653
12654 r = kvm_mmu_create(vcpu);
12655 if (r < 0)
12656 return r;
12657
12658 r = kvm_create_lapic(vcpu);
12659 if (r < 0)
12660 goto fail_mmu_destroy;
12661
12662 r = -ENOMEM;
12663
12664 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
12665 if (!page)
12666 goto fail_free_lapic;
12667 vcpu->arch.pio_data = page_address(page);
12668
12669 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
12670 GFP_KERNEL_ACCOUNT);
12671 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
12672 GFP_KERNEL_ACCOUNT);
12673 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
12674 goto fail_free_mce_banks;
12675 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
12676
12677 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
12678 GFP_KERNEL_ACCOUNT))
12679 goto fail_free_mce_banks;
12680
12681 if (!alloc_emulate_ctxt(vcpu))
12682 goto free_wbinvd_dirty_mask;
12683
12684 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
12685 pr_err("failed to allocate vcpu's fpu\n");
12686 goto free_emulate_ctxt;
12687 }
12688
12689 kvm_async_pf_hash_reset(vcpu);
12690
12691 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) {
12692 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
12693 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
12694 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
12695 }
12696 kvm_pmu_init(vcpu);
12697
12698 vcpu->arch.pending_external_vector = -1;
12699 vcpu->arch.preempted_in_kernel = false;
12700
12701 #if IS_ENABLED(CONFIG_HYPERV)
12702 vcpu->arch.hv_root_tdp = INVALID_PAGE;
12703 #endif
12704
12705 r = kvm_x86_call(vcpu_create)(vcpu);
12706 if (r)
12707 goto free_guest_fpu;
12708
12709 kvm_xen_init_vcpu(vcpu);
12710 vcpu_load(vcpu);
12711 kvm_vcpu_after_set_cpuid(vcpu);
12712 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
12713 kvm_vcpu_reset(vcpu, false);
12714 kvm_init_mmu(vcpu);
12715 vcpu_put(vcpu);
12716 return 0;
12717
12718 free_guest_fpu:
12719 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12720 free_emulate_ctxt:
12721 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12722 free_wbinvd_dirty_mask:
12723 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12724 fail_free_mce_banks:
12725 kfree(vcpu->arch.mce_banks);
12726 kfree(vcpu->arch.mci_ctl2_banks);
12727 free_page((unsigned long)vcpu->arch.pio_data);
12728 fail_free_lapic:
12729 kvm_free_lapic(vcpu);
12730 fail_mmu_destroy:
12731 kvm_mmu_destroy(vcpu);
12732 return r;
12733 }
12734
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)12735 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12736 {
12737 struct kvm *kvm = vcpu->kvm;
12738
12739 if (mutex_lock_killable(&vcpu->mutex))
12740 return;
12741 vcpu_load(vcpu);
12742 kvm_synchronize_tsc(vcpu, NULL);
12743 vcpu_put(vcpu);
12744
12745 /* poll control enabled by default */
12746 vcpu->arch.msr_kvm_poll_control = 1;
12747
12748 mutex_unlock(&vcpu->mutex);
12749
12750 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
12751 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12752 KVMCLOCK_SYNC_PERIOD);
12753 }
12754
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)12755 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12756 {
12757 int idx, cpu;
12758
12759 kvm_clear_async_pf_completion_queue(vcpu);
12760 kvm_mmu_unload(vcpu);
12761
12762 kvmclock_reset(vcpu);
12763
12764 for_each_possible_cpu(cpu)
12765 cmpxchg(per_cpu_ptr(&last_vcpu, cpu), vcpu, NULL);
12766
12767 kvm_x86_call(vcpu_free)(vcpu);
12768
12769 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12770 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12771 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12772
12773 kvm_xen_destroy_vcpu(vcpu);
12774 kvm_hv_vcpu_uninit(vcpu);
12775 kvm_pmu_destroy(vcpu);
12776 kfree(vcpu->arch.mce_banks);
12777 kfree(vcpu->arch.mci_ctl2_banks);
12778 kvm_free_lapic(vcpu);
12779 idx = srcu_read_lock(&vcpu->kvm->srcu);
12780 kvm_mmu_destroy(vcpu);
12781 srcu_read_unlock(&vcpu->kvm->srcu, idx);
12782 free_page((unsigned long)vcpu->arch.pio_data);
12783 kvfree(vcpu->arch.cpuid_entries);
12784 }
12785
kvm_xstate_reset(struct kvm_vcpu * vcpu,bool init_event)12786 static void kvm_xstate_reset(struct kvm_vcpu *vcpu, bool init_event)
12787 {
12788 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12789 u64 xfeatures_mask;
12790 bool fpu_in_use;
12791 int i;
12792
12793 /*
12794 * Guest FPU state is zero allocated and so doesn't need to be manually
12795 * cleared on RESET, i.e. during vCPU creation.
12796 */
12797 if (!init_event || !fpstate)
12798 return;
12799
12800 /*
12801 * On INIT, only select XSTATE components are zeroed, most components
12802 * are unchanged. Currently, the only components that are zeroed and
12803 * supported by KVM are MPX and CET related.
12804 */
12805 xfeatures_mask = (kvm_caps.supported_xcr0 | kvm_caps.supported_xss) &
12806 (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR |
12807 XFEATURE_MASK_CET_ALL);
12808 if (!xfeatures_mask)
12809 return;
12810
12811 BUILD_BUG_ON(sizeof(xfeatures_mask) * BITS_PER_BYTE <= XFEATURE_MAX);
12812
12813 /*
12814 * Unload guest FPU state (if necessary) before zeroing XSTATE fields
12815 * as the kernel can only modify the state when its resident in memory,
12816 * i.e. when it's not loaded into hardware.
12817 *
12818 * WARN if the vCPU's desire to run, i.e. whether or not its in KVM_RUN,
12819 * doesn't match the loaded/in-use state of the FPU, as KVM_RUN is the
12820 * only path that can trigger INIT emulation _and_ loads FPU state, and
12821 * KVM_RUN should _always_ load FPU state.
12822 */
12823 WARN_ON_ONCE(vcpu->wants_to_run != fpstate->in_use);
12824 fpu_in_use = fpstate->in_use;
12825 if (fpu_in_use)
12826 kvm_put_guest_fpu(vcpu);
12827 for_each_set_bit(i, (unsigned long *)&xfeatures_mask, XFEATURE_MAX)
12828 fpstate_clear_xstate_component(fpstate, i);
12829 if (fpu_in_use)
12830 kvm_load_guest_fpu(vcpu);
12831 }
12832
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)12833 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12834 {
12835 struct kvm_cpuid_entry2 *cpuid_0x1;
12836 unsigned long old_cr0 = kvm_read_cr0(vcpu);
12837 unsigned long new_cr0;
12838
12839 /*
12840 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12841 * to handle side effects. RESET emulation hits those flows and relies
12842 * on emulated/virtualized registers, including those that are loaded
12843 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel
12844 * to detect improper or missing initialization.
12845 */
12846 WARN_ON_ONCE(!init_event &&
12847 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12848
12849 /*
12850 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12851 * possible to INIT the vCPU while L2 is active. Force the vCPU back
12852 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12853 * bits), i.e. virtualization is disabled.
12854 */
12855 if (is_guest_mode(vcpu))
12856 kvm_leave_nested(vcpu);
12857
12858 kvm_lapic_reset(vcpu, init_event);
12859
12860 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12861 vcpu->arch.hflags = 0;
12862
12863 vcpu->arch.smi_pending = 0;
12864 vcpu->arch.smi_count = 0;
12865 atomic_set(&vcpu->arch.nmi_queued, 0);
12866 vcpu->arch.nmi_pending = 0;
12867 vcpu->arch.nmi_injected = false;
12868 kvm_clear_interrupt_queue(vcpu);
12869 kvm_clear_exception_queue(vcpu);
12870
12871 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12872 kvm_update_dr0123(vcpu);
12873 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12874 vcpu->arch.dr7 = DR7_FIXED_1;
12875 kvm_update_dr7(vcpu);
12876
12877 vcpu->arch.cr2 = 0;
12878
12879 kvm_make_request(KVM_REQ_EVENT, vcpu);
12880 vcpu->arch.apf.msr_en_val = 0;
12881 vcpu->arch.apf.msr_int_val = 0;
12882 vcpu->arch.st.msr_val = 0;
12883
12884 kvmclock_reset(vcpu);
12885
12886 kvm_clear_async_pf_completion_queue(vcpu);
12887 kvm_async_pf_hash_reset(vcpu);
12888 vcpu->arch.apf.halted = false;
12889
12890 kvm_xstate_reset(vcpu, init_event);
12891
12892 if (!init_event) {
12893 vcpu->arch.smbase = 0x30000;
12894
12895 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
12896
12897 vcpu->arch.msr_misc_features_enables = 0;
12898 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12899 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12900
12901 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12902 kvm_msr_write(vcpu, MSR_IA32_XSS, 0);
12903 }
12904
12905 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12906 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12907 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12908
12909 /*
12910 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12911 * if no CPUID match is found. Note, it's impossible to get a match at
12912 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12913 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12914 * on RESET. But, go through the motions in case that's ever remedied.
12915 */
12916 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12917 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12918
12919 kvm_x86_call(vcpu_reset)(vcpu, init_event);
12920
12921 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12922 kvm_rip_write(vcpu, 0xfff0);
12923
12924 vcpu->arch.cr3 = 0;
12925 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12926
12927 /*
12928 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
12929 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12930 * (or qualify) that with a footnote stating that CD/NW are preserved.
12931 */
12932 new_cr0 = X86_CR0_ET;
12933 if (init_event)
12934 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12935 else
12936 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12937
12938 kvm_x86_call(set_cr0)(vcpu, new_cr0);
12939 kvm_x86_call(set_cr4)(vcpu, 0);
12940 kvm_x86_call(set_efer)(vcpu, 0);
12941 kvm_x86_call(update_exception_bitmap)(vcpu);
12942
12943 /*
12944 * On the standard CR0/CR4/EFER modification paths, there are several
12945 * complex conditions determining whether the MMU has to be reset and/or
12946 * which PCIDs have to be flushed. However, CR0.WP and the paging-related
12947 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12948 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12949 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here.
12950 */
12951 if (old_cr0 & X86_CR0_PG) {
12952 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12953 kvm_mmu_reset_context(vcpu);
12954 }
12955
12956 /*
12957 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
12958 * APM states the TLBs are untouched by INIT, but it also states that
12959 * the TLBs are flushed on "External initialization of the processor."
12960 * Flush the guest TLB regardless of vendor, there is no meaningful
12961 * benefit in relying on the guest to flush the TLB immediately after
12962 * INIT. A spurious TLB flush is benign and likely negligible from a
12963 * performance perspective.
12964 */
12965 if (init_event)
12966 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12967 }
12968 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_reset);
12969
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)12970 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12971 {
12972 struct kvm_segment cs;
12973
12974 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12975 cs.selector = vector << 8;
12976 cs.base = vector << 12;
12977 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12978 kvm_rip_write(vcpu, 0);
12979 }
12980 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_deliver_sipi_vector);
12981
kvm_arch_enable_virtualization(void)12982 void kvm_arch_enable_virtualization(void)
12983 {
12984 cpu_emergency_register_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
12985 }
12986
kvm_arch_disable_virtualization(void)12987 void kvm_arch_disable_virtualization(void)
12988 {
12989 cpu_emergency_unregister_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
12990 }
12991
kvm_arch_enable_virtualization_cpu(void)12992 int kvm_arch_enable_virtualization_cpu(void)
12993 {
12994 struct kvm *kvm;
12995 struct kvm_vcpu *vcpu;
12996 unsigned long i;
12997 int ret;
12998 u64 local_tsc;
12999 u64 max_tsc = 0;
13000 bool stable, backwards_tsc = false;
13001
13002 kvm_user_return_msr_cpu_online();
13003
13004 ret = kvm_x86_check_processor_compatibility();
13005 if (ret)
13006 return ret;
13007
13008 ret = kvm_x86_call(enable_virtualization_cpu)();
13009 if (ret != 0)
13010 return ret;
13011
13012 local_tsc = rdtsc();
13013 stable = !kvm_check_tsc_unstable();
13014 list_for_each_entry(kvm, &vm_list, vm_list) {
13015 kvm_for_each_vcpu(i, vcpu, kvm) {
13016 if (!stable && vcpu->cpu == smp_processor_id())
13017 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
13018 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
13019 backwards_tsc = true;
13020 if (vcpu->arch.last_host_tsc > max_tsc)
13021 max_tsc = vcpu->arch.last_host_tsc;
13022 }
13023 }
13024 }
13025
13026 /*
13027 * Sometimes, even reliable TSCs go backwards. This happens on
13028 * platforms that reset TSC during suspend or hibernate actions, but
13029 * maintain synchronization. We must compensate. Fortunately, we can
13030 * detect that condition here, which happens early in CPU bringup,
13031 * before any KVM threads can be running. Unfortunately, we can't
13032 * bring the TSCs fully up to date with real time, as we aren't yet far
13033 * enough into CPU bringup that we know how much real time has actually
13034 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
13035 * variables that haven't been updated yet.
13036 *
13037 * So we simply find the maximum observed TSC above, then record the
13038 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
13039 * the adjustment will be applied. Note that we accumulate
13040 * adjustments, in case multiple suspend cycles happen before some VCPU
13041 * gets a chance to run again. In the event that no KVM threads get a
13042 * chance to run, we will miss the entire elapsed period, as we'll have
13043 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
13044 * loose cycle time. This isn't too big a deal, since the loss will be
13045 * uniform across all VCPUs (not to mention the scenario is extremely
13046 * unlikely). It is possible that a second hibernate recovery happens
13047 * much faster than a first, causing the observed TSC here to be
13048 * smaller; this would require additional padding adjustment, which is
13049 * why we set last_host_tsc to the local tsc observed here.
13050 *
13051 * N.B. - this code below runs only on platforms with reliable TSC,
13052 * as that is the only way backwards_tsc is set above. Also note
13053 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
13054 * have the same delta_cyc adjustment applied if backwards_tsc
13055 * is detected. Note further, this adjustment is only done once,
13056 * as we reset last_host_tsc on all VCPUs to stop this from being
13057 * called multiple times (one for each physical CPU bringup).
13058 *
13059 * Platforms with unreliable TSCs don't have to deal with this, they
13060 * will be compensated by the logic in vcpu_load, which sets the TSC to
13061 * catchup mode. This will catchup all VCPUs to real time, but cannot
13062 * guarantee that they stay in perfect synchronization.
13063 */
13064 if (backwards_tsc) {
13065 u64 delta_cyc = max_tsc - local_tsc;
13066 list_for_each_entry(kvm, &vm_list, vm_list) {
13067 kvm->arch.backwards_tsc_observed = true;
13068 kvm_for_each_vcpu(i, vcpu, kvm) {
13069 vcpu->arch.tsc_offset_adjustment += delta_cyc;
13070 vcpu->arch.last_host_tsc = local_tsc;
13071 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
13072 }
13073
13074 /*
13075 * We have to disable TSC offset matching.. if you were
13076 * booting a VM while issuing an S4 host suspend....
13077 * you may have some problem. Solving this issue is
13078 * left as an exercise to the reader.
13079 */
13080 kvm->arch.last_tsc_nsec = 0;
13081 kvm->arch.last_tsc_write = 0;
13082 }
13083
13084 }
13085 return 0;
13086 }
13087
kvm_arch_disable_virtualization_cpu(void)13088 void kvm_arch_disable_virtualization_cpu(void)
13089 {
13090 kvm_x86_call(disable_virtualization_cpu)();
13091 drop_user_return_notifiers();
13092 }
13093
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)13094 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
13095 {
13096 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
13097 }
13098 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_is_reset_bsp);
13099
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)13100 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
13101 {
13102 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
13103 }
13104
kvm_arch_free_vm(struct kvm * kvm)13105 void kvm_arch_free_vm(struct kvm *kvm)
13106 {
13107 #if IS_ENABLED(CONFIG_HYPERV)
13108 kfree(kvm->arch.hv_pa_pg);
13109 #endif
13110 __kvm_arch_free_vm(kvm);
13111 }
13112
13113
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)13114 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
13115 {
13116 int ret;
13117 unsigned long flags;
13118
13119 if (!kvm_is_vm_type_supported(type))
13120 return -EINVAL;
13121
13122 kvm->arch.vm_type = type;
13123 kvm->arch.has_private_mem =
13124 (type == KVM_X86_SW_PROTECTED_VM);
13125 /* Decided by the vendor code for other VM types. */
13126 kvm->arch.pre_fault_allowed =
13127 type == KVM_X86_DEFAULT_VM || type == KVM_X86_SW_PROTECTED_VM;
13128 kvm->arch.disabled_quirks = kvm_caps.inapplicable_quirks & kvm_caps.supported_quirks;
13129
13130 ret = kvm_page_track_init(kvm);
13131 if (ret)
13132 goto out;
13133
13134 ret = kvm_mmu_init_vm(kvm);
13135 if (ret)
13136 goto out_cleanup_page_track;
13137
13138 ret = kvm_x86_call(vm_init)(kvm);
13139 if (ret)
13140 goto out_uninit_mmu;
13141
13142 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
13143
13144 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
13145 mutex_init(&kvm->arch.apic_map_lock);
13146 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
13147 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
13148
13149 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
13150 pvclock_update_vm_gtod_copy(kvm);
13151 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
13152
13153 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
13154 kvm->arch.apic_bus_cycle_ns = APIC_BUS_CYCLE_NS_DEFAULT;
13155 kvm->arch.guest_can_read_msr_platform_info = true;
13156 kvm->arch.enable_pmu = enable_pmu;
13157
13158 #if IS_ENABLED(CONFIG_HYPERV)
13159 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
13160 kvm->arch.hv_root_tdp = INVALID_PAGE;
13161 #endif
13162
13163 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
13164 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
13165
13166 kvm_apicv_init(kvm);
13167 kvm_hv_init_vm(kvm);
13168 kvm_xen_init_vm(kvm);
13169
13170 if (ignore_msrs && !report_ignored_msrs) {
13171 pr_warn_once("Running KVM with ignore_msrs=1 and report_ignored_msrs=0 is not a\n"
13172 "a supported configuration. Lying to the guest about the existence of MSRs\n"
13173 "may cause the guest operating system to hang or produce errors. If a guest\n"
13174 "does not run without ignore_msrs=1, please report it to kvm@vger.kernel.org.\n");
13175 }
13176
13177 once_init(&kvm->arch.nx_once);
13178 return 0;
13179
13180 out_uninit_mmu:
13181 kvm_mmu_uninit_vm(kvm);
13182 out_cleanup_page_track:
13183 kvm_page_track_cleanup(kvm);
13184 out:
13185 return ret;
13186 }
13187
13188 /**
13189 * __x86_set_memory_region: Setup KVM internal memory slot
13190 *
13191 * @kvm: the kvm pointer to the VM.
13192 * @id: the slot ID to setup.
13193 * @gpa: the GPA to install the slot (unused when @size == 0).
13194 * @size: the size of the slot. Set to zero to uninstall a slot.
13195 *
13196 * This function helps to setup a KVM internal memory slot. Specify
13197 * @size > 0 to install a new slot, while @size == 0 to uninstall a
13198 * slot. The return code can be one of the following:
13199 *
13200 * HVA: on success (uninstall will return a bogus HVA)
13201 * -errno: on error
13202 *
13203 * The caller should always use IS_ERR() to check the return value
13204 * before use. Note, the KVM internal memory slots are guaranteed to
13205 * remain valid and unchanged until the VM is destroyed, i.e., the
13206 * GPA->HVA translation will not change. However, the HVA is a user
13207 * address, i.e. its accessibility is not guaranteed, and must be
13208 * accessed via __copy_{to,from}_user().
13209 */
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)13210 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
13211 u32 size)
13212 {
13213 int i, r;
13214 unsigned long hva, old_npages;
13215 struct kvm_memslots *slots = kvm_memslots(kvm);
13216 struct kvm_memory_slot *slot;
13217
13218 lockdep_assert_held(&kvm->slots_lock);
13219
13220 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
13221 return ERR_PTR_USR(-EINVAL);
13222
13223 slot = id_to_memslot(slots, id);
13224 if (size) {
13225 if (slot && slot->npages)
13226 return ERR_PTR_USR(-EEXIST);
13227
13228 /*
13229 * MAP_SHARED to prevent internal slot pages from being moved
13230 * by fork()/COW.
13231 */
13232 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
13233 MAP_SHARED | MAP_ANONYMOUS, 0);
13234 if (IS_ERR_VALUE(hva))
13235 return (void __user *)hva;
13236 } else {
13237 if (!slot || !slot->npages)
13238 return NULL;
13239
13240 old_npages = slot->npages;
13241 hva = slot->userspace_addr;
13242 }
13243
13244 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
13245 struct kvm_userspace_memory_region2 m;
13246
13247 m.slot = id | (i << 16);
13248 m.flags = 0;
13249 m.guest_phys_addr = gpa;
13250 m.userspace_addr = hva;
13251 m.memory_size = size;
13252 r = kvm_set_internal_memslot(kvm, &m);
13253 if (r < 0)
13254 return ERR_PTR_USR(r);
13255 }
13256
13257 if (!size)
13258 vm_munmap(hva, old_npages * PAGE_SIZE);
13259
13260 return (void __user *)hva;
13261 }
13262 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__x86_set_memory_region);
13263
kvm_arch_pre_destroy_vm(struct kvm * kvm)13264 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
13265 {
13266 /*
13267 * Stop all background workers and kthreads before destroying vCPUs, as
13268 * iterating over vCPUs in a different task while vCPUs are being freed
13269 * is unsafe, i.e. will lead to use-after-free. The PIT also needs to
13270 * be stopped before IRQ routing is freed.
13271 */
13272 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
13273 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
13274
13275 #ifdef CONFIG_KVM_IOAPIC
13276 kvm_free_pit(kvm);
13277 #endif
13278
13279 kvm_mmu_pre_destroy_vm(kvm);
13280 static_call_cond(kvm_x86_vm_pre_destroy)(kvm);
13281 }
13282
kvm_arch_destroy_vm(struct kvm * kvm)13283 void kvm_arch_destroy_vm(struct kvm *kvm)
13284 {
13285 if (current->mm == kvm->mm) {
13286 /*
13287 * Free memory regions allocated on behalf of userspace,
13288 * unless the memory map has changed due to process exit
13289 * or fd copying.
13290 */
13291 mutex_lock(&kvm->slots_lock);
13292 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
13293 0, 0);
13294 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
13295 0, 0);
13296 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
13297 mutex_unlock(&kvm->slots_lock);
13298 }
13299 kvm_destroy_vcpus(kvm);
13300 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
13301 #ifdef CONFIG_KVM_IOAPIC
13302 kvm_pic_destroy(kvm);
13303 kvm_ioapic_destroy(kvm);
13304 #endif
13305 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
13306 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
13307 kvm_mmu_uninit_vm(kvm);
13308 kvm_page_track_cleanup(kvm);
13309 kvm_xen_destroy_vm(kvm);
13310 kvm_hv_destroy_vm(kvm);
13311 kvm_x86_call(vm_destroy)(kvm);
13312 }
13313
memslot_rmap_free(struct kvm_memory_slot * slot)13314 static void memslot_rmap_free(struct kvm_memory_slot *slot)
13315 {
13316 int i;
13317
13318 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
13319 vfree(slot->arch.rmap[i]);
13320 slot->arch.rmap[i] = NULL;
13321 }
13322 }
13323
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)13324 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
13325 {
13326 int i;
13327
13328 memslot_rmap_free(slot);
13329
13330 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
13331 vfree(slot->arch.lpage_info[i - 1]);
13332 slot->arch.lpage_info[i - 1] = NULL;
13333 }
13334
13335 kvm_page_track_free_memslot(slot);
13336 }
13337
memslot_rmap_alloc(struct kvm_memory_slot * slot,unsigned long npages)13338 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
13339 {
13340 const int sz = sizeof(*slot->arch.rmap[0]);
13341 int i;
13342
13343 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
13344 int level = i + 1;
13345 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
13346
13347 if (slot->arch.rmap[i])
13348 continue;
13349
13350 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
13351 if (!slot->arch.rmap[i]) {
13352 memslot_rmap_free(slot);
13353 return -ENOMEM;
13354 }
13355 }
13356
13357 return 0;
13358 }
13359
kvm_alloc_memslot_metadata(struct kvm * kvm,struct kvm_memory_slot * slot)13360 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
13361 struct kvm_memory_slot *slot)
13362 {
13363 unsigned long npages = slot->npages;
13364 int i, r;
13365
13366 /*
13367 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
13368 * old arrays will be freed by kvm_set_memory_region() if installing
13369 * the new memslot is successful.
13370 */
13371 memset(&slot->arch, 0, sizeof(slot->arch));
13372
13373 if (kvm_memslots_have_rmaps(kvm)) {
13374 r = memslot_rmap_alloc(slot, npages);
13375 if (r)
13376 return r;
13377 }
13378
13379 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
13380 struct kvm_lpage_info *linfo;
13381 unsigned long ugfn;
13382 int lpages;
13383 int level = i + 1;
13384
13385 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
13386
13387 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
13388 if (!linfo)
13389 goto out_free;
13390
13391 slot->arch.lpage_info[i - 1] = linfo;
13392
13393 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
13394 linfo[0].disallow_lpage = 1;
13395 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
13396 linfo[lpages - 1].disallow_lpage = 1;
13397 ugfn = slot->userspace_addr >> PAGE_SHIFT;
13398 /*
13399 * If the gfn and userspace address are not aligned wrt each
13400 * other, disable large page support for this slot.
13401 */
13402 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
13403 unsigned long j;
13404
13405 for (j = 0; j < lpages; ++j)
13406 linfo[j].disallow_lpage = 1;
13407 }
13408 }
13409
13410 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
13411 kvm_mmu_init_memslot_memory_attributes(kvm, slot);
13412 #endif
13413
13414 if (kvm_page_track_create_memslot(kvm, slot, npages))
13415 goto out_free;
13416
13417 return 0;
13418
13419 out_free:
13420 memslot_rmap_free(slot);
13421
13422 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
13423 vfree(slot->arch.lpage_info[i - 1]);
13424 slot->arch.lpage_info[i - 1] = NULL;
13425 }
13426 return -ENOMEM;
13427 }
13428
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)13429 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
13430 {
13431 struct kvm_vcpu *vcpu;
13432 unsigned long i;
13433
13434 /*
13435 * memslots->generation has been incremented.
13436 * mmio generation may have reached its maximum value.
13437 */
13438 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
13439
13440 /* Force re-initialization of steal_time cache */
13441 kvm_for_each_vcpu(i, vcpu, kvm)
13442 kvm_vcpu_kick(vcpu);
13443 }
13444
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)13445 int kvm_arch_prepare_memory_region(struct kvm *kvm,
13446 const struct kvm_memory_slot *old,
13447 struct kvm_memory_slot *new,
13448 enum kvm_mr_change change)
13449 {
13450 /*
13451 * KVM doesn't support moving memslots when there are external page
13452 * trackers attached to the VM, i.e. if KVMGT is in use.
13453 */
13454 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
13455 return -EINVAL;
13456
13457 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
13458 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
13459 return -EINVAL;
13460
13461 if (kvm_is_gfn_alias(kvm, new->base_gfn + new->npages - 1))
13462 return -EINVAL;
13463
13464 return kvm_alloc_memslot_metadata(kvm, new);
13465 }
13466
13467 if (change == KVM_MR_FLAGS_ONLY)
13468 memcpy(&new->arch, &old->arch, sizeof(old->arch));
13469 else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
13470 return -EIO;
13471
13472 return 0;
13473 }
13474
13475
kvm_mmu_update_cpu_dirty_logging(struct kvm * kvm,bool enable)13476 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
13477 {
13478 int nr_slots;
13479
13480 if (!kvm->arch.cpu_dirty_log_size)
13481 return;
13482
13483 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
13484 if ((enable && nr_slots == 1) || !nr_slots)
13485 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
13486 }
13487
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)13488 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
13489 struct kvm_memory_slot *old,
13490 const struct kvm_memory_slot *new,
13491 enum kvm_mr_change change)
13492 {
13493 u32 old_flags = old ? old->flags : 0;
13494 u32 new_flags = new ? new->flags : 0;
13495 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
13496
13497 /*
13498 * Update CPU dirty logging if dirty logging is being toggled. This
13499 * applies to all operations.
13500 */
13501 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
13502 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
13503
13504 /*
13505 * Nothing more to do for RO slots (which can't be dirtied and can't be
13506 * made writable) or CREATE/MOVE/DELETE of a slot.
13507 *
13508 * For a memslot with dirty logging disabled:
13509 * CREATE: No dirty mappings will already exist.
13510 * MOVE/DELETE: The old mappings will already have been cleaned up by
13511 * kvm_arch_flush_shadow_memslot()
13512 *
13513 * For a memslot with dirty logging enabled:
13514 * CREATE: No shadow pages exist, thus nothing to write-protect
13515 * and no dirty bits to clear.
13516 * MOVE/DELETE: The old mappings will already have been cleaned up by
13517 * kvm_arch_flush_shadow_memslot().
13518 */
13519 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
13520 return;
13521
13522 /*
13523 * READONLY and non-flags changes were filtered out above, and the only
13524 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
13525 * logging isn't being toggled on or off.
13526 */
13527 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
13528 return;
13529
13530 if (!log_dirty_pages) {
13531 /*
13532 * Recover huge page mappings in the slot now that dirty logging
13533 * is disabled, i.e. now that KVM does not have to track guest
13534 * writes at 4KiB granularity.
13535 *
13536 * Dirty logging might be disabled by userspace if an ongoing VM
13537 * live migration is cancelled and the VM must continue running
13538 * on the source.
13539 */
13540 kvm_mmu_recover_huge_pages(kvm, new);
13541 } else {
13542 /*
13543 * Initially-all-set does not require write protecting any page,
13544 * because they're all assumed to be dirty.
13545 */
13546 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
13547 return;
13548
13549 if (READ_ONCE(eager_page_split))
13550 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
13551
13552 if (kvm->arch.cpu_dirty_log_size) {
13553 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
13554 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
13555 } else {
13556 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
13557 }
13558
13559 /*
13560 * Unconditionally flush the TLBs after enabling dirty logging.
13561 * A flush is almost always going to be necessary (see below),
13562 * and unconditionally flushing allows the helpers to omit
13563 * the subtly complex checks when removing write access.
13564 *
13565 * Do the flush outside of mmu_lock to reduce the amount of
13566 * time mmu_lock is held. Flushing after dropping mmu_lock is
13567 * safe as KVM only needs to guarantee the slot is fully
13568 * write-protected before returning to userspace, i.e. before
13569 * userspace can consume the dirty status.
13570 *
13571 * Flushing outside of mmu_lock requires KVM to be careful when
13572 * making decisions based on writable status of an SPTE, e.g. a
13573 * !writable SPTE doesn't guarantee a CPU can't perform writes.
13574 *
13575 * Specifically, KVM also write-protects guest page tables to
13576 * monitor changes when using shadow paging, and must guarantee
13577 * no CPUs can write to those page before mmu_lock is dropped.
13578 * Because CPUs may have stale TLB entries at this point, a
13579 * !writable SPTE doesn't guarantee CPUs can't perform writes.
13580 *
13581 * KVM also allows making SPTES writable outside of mmu_lock,
13582 * e.g. to allow dirty logging without taking mmu_lock.
13583 *
13584 * To handle these scenarios, KVM uses a separate software-only
13585 * bit (MMU-writable) to track if a SPTE is !writable due to
13586 * a guest page table being write-protected (KVM clears the
13587 * MMU-writable flag when write-protecting for shadow paging).
13588 *
13589 * The use of MMU-writable is also the primary motivation for
13590 * the unconditional flush. Because KVM must guarantee that a
13591 * CPU doesn't contain stale, writable TLB entries for a
13592 * !MMU-writable SPTE, KVM must flush if it encounters any
13593 * MMU-writable SPTE regardless of whether the actual hardware
13594 * writable bit was set. I.e. KVM is almost guaranteed to need
13595 * to flush, while unconditionally flushing allows the "remove
13596 * write access" helpers to ignore MMU-writable entirely.
13597 *
13598 * See is_writable_pte() for more details (the case involving
13599 * access-tracked SPTEs is particularly relevant).
13600 */
13601 kvm_flush_remote_tlbs_memslot(kvm, new);
13602 }
13603 }
13604
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)13605 void kvm_arch_commit_memory_region(struct kvm *kvm,
13606 struct kvm_memory_slot *old,
13607 const struct kvm_memory_slot *new,
13608 enum kvm_mr_change change)
13609 {
13610 if (change == KVM_MR_DELETE)
13611 kvm_page_track_delete_slot(kvm, old);
13612
13613 if (!kvm->arch.n_requested_mmu_pages &&
13614 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
13615 unsigned long nr_mmu_pages;
13616
13617 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
13618 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
13619 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
13620 }
13621
13622 kvm_mmu_slot_apply_flags(kvm, old, new, change);
13623
13624 /* Free the arrays associated with the old memslot. */
13625 if (change == KVM_MR_MOVE)
13626 kvm_arch_free_memslot(kvm, old);
13627 }
13628
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)13629 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13630 {
13631 WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu));
13632
13633 if (vcpu->arch.guest_state_protected)
13634 return true;
13635
13636 return kvm_x86_call(get_cpl)(vcpu) == 0;
13637 }
13638
kvm_arch_vcpu_get_ip(struct kvm_vcpu * vcpu)13639 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13640 {
13641 WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu));
13642
13643 if (vcpu->arch.guest_state_protected)
13644 return 0;
13645
13646 return kvm_rip_read(vcpu);
13647 }
13648
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)13649 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13650 {
13651 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13652 }
13653
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)13654 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13655 {
13656 return kvm_x86_call(interrupt_allowed)(vcpu, false);
13657 }
13658
kvm_get_linear_rip(struct kvm_vcpu * vcpu)13659 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13660 {
13661 /* Can't read the RIP when guest state is protected, just return 0 */
13662 if (vcpu->arch.guest_state_protected)
13663 return 0;
13664
13665 if (is_64_bit_mode(vcpu))
13666 return kvm_rip_read(vcpu);
13667 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
13668 kvm_rip_read(vcpu));
13669 }
13670 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_linear_rip);
13671
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)13672 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13673 {
13674 return kvm_get_linear_rip(vcpu) == linear_rip;
13675 }
13676 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_is_linear_rip);
13677
kvm_get_rflags(struct kvm_vcpu * vcpu)13678 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13679 {
13680 unsigned long rflags;
13681
13682 rflags = kvm_x86_call(get_rflags)(vcpu);
13683 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13684 rflags &= ~X86_EFLAGS_TF;
13685 return rflags;
13686 }
13687 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_rflags);
13688
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)13689 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13690 {
13691 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13692 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13693 rflags |= X86_EFLAGS_TF;
13694 kvm_x86_call(set_rflags)(vcpu, rflags);
13695 }
13696
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)13697 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13698 {
13699 __kvm_set_rflags(vcpu, rflags);
13700 kvm_make_request(KVM_REQ_EVENT, vcpu);
13701 }
13702 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_rflags);
13703
kvm_async_pf_hash_fn(gfn_t gfn)13704 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13705 {
13706 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13707
13708 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13709 }
13710
kvm_async_pf_next_probe(u32 key)13711 static inline u32 kvm_async_pf_next_probe(u32 key)
13712 {
13713 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13714 }
13715
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13716 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13717 {
13718 u32 key = kvm_async_pf_hash_fn(gfn);
13719
13720 while (vcpu->arch.apf.gfns[key] != ~0)
13721 key = kvm_async_pf_next_probe(key);
13722
13723 vcpu->arch.apf.gfns[key] = gfn;
13724 }
13725
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)13726 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13727 {
13728 int i;
13729 u32 key = kvm_async_pf_hash_fn(gfn);
13730
13731 for (i = 0; i < ASYNC_PF_PER_VCPU &&
13732 (vcpu->arch.apf.gfns[key] != gfn &&
13733 vcpu->arch.apf.gfns[key] != ~0); i++)
13734 key = kvm_async_pf_next_probe(key);
13735
13736 return key;
13737 }
13738
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13739 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13740 {
13741 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13742 }
13743
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13744 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13745 {
13746 u32 i, j, k;
13747
13748 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13749
13750 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13751 return;
13752
13753 while (true) {
13754 vcpu->arch.apf.gfns[i] = ~0;
13755 do {
13756 j = kvm_async_pf_next_probe(j);
13757 if (vcpu->arch.apf.gfns[j] == ~0)
13758 return;
13759 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13760 /*
13761 * k lies cyclically in ]i,j]
13762 * | i.k.j |
13763 * |....j i.k.| or |.k..j i...|
13764 */
13765 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13766 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13767 i = j;
13768 }
13769 }
13770
apf_put_user_notpresent(struct kvm_vcpu * vcpu)13771 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13772 {
13773 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13774
13775 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13776 sizeof(reason));
13777 }
13778
apf_put_user_ready(struct kvm_vcpu * vcpu,u32 token)13779 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13780 {
13781 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13782
13783 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13784 &token, offset, sizeof(token));
13785 }
13786
apf_pageready_slot_free(struct kvm_vcpu * vcpu)13787 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13788 {
13789 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13790 u32 val;
13791
13792 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13793 &val, offset, sizeof(val)))
13794 return false;
13795
13796 return !val;
13797 }
13798
kvm_can_deliver_async_pf(struct kvm_vcpu * vcpu)13799 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13800 {
13801
13802 if (!kvm_pv_async_pf_enabled(vcpu))
13803 return false;
13804
13805 if (!vcpu->arch.apf.send_always &&
13806 (vcpu->arch.guest_state_protected || !kvm_x86_call(get_cpl)(vcpu)))
13807 return false;
13808
13809 if (is_guest_mode(vcpu)) {
13810 /*
13811 * L1 needs to opt into the special #PF vmexits that are
13812 * used to deliver async page faults.
13813 */
13814 return vcpu->arch.apf.delivery_as_pf_vmexit;
13815 } else {
13816 /*
13817 * Play it safe in case the guest temporarily disables paging.
13818 * The real mode IDT in particular is unlikely to have a #PF
13819 * exception setup.
13820 */
13821 return is_paging(vcpu);
13822 }
13823 }
13824
kvm_can_do_async_pf(struct kvm_vcpu * vcpu)13825 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13826 {
13827 if (unlikely(!lapic_in_kernel(vcpu) ||
13828 kvm_event_needs_reinjection(vcpu) ||
13829 kvm_is_exception_pending(vcpu)))
13830 return false;
13831
13832 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13833 return false;
13834
13835 /*
13836 * If interrupts are off we cannot even use an artificial
13837 * halt state.
13838 */
13839 return kvm_arch_interrupt_allowed(vcpu);
13840 }
13841
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13842 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13843 struct kvm_async_pf *work)
13844 {
13845 struct x86_exception fault;
13846
13847 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13848 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13849
13850 if (kvm_can_deliver_async_pf(vcpu) &&
13851 !apf_put_user_notpresent(vcpu)) {
13852 fault.vector = PF_VECTOR;
13853 fault.error_code_valid = true;
13854 fault.error_code = 0;
13855 fault.nested_page_fault = false;
13856 fault.address = work->arch.token;
13857 fault.async_page_fault = true;
13858 kvm_inject_page_fault(vcpu, &fault);
13859 return true;
13860 } else {
13861 /*
13862 * It is not possible to deliver a paravirtualized asynchronous
13863 * page fault, but putting the guest in an artificial halt state
13864 * can be beneficial nevertheless: if an interrupt arrives, we
13865 * can deliver it timely and perhaps the guest will schedule
13866 * another process. When the instruction that triggered a page
13867 * fault is retried, hopefully the page will be ready in the host.
13868 */
13869 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13870 return false;
13871 }
13872 }
13873
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13874 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13875 struct kvm_async_pf *work)
13876 {
13877 struct kvm_lapic_irq irq = {
13878 .delivery_mode = APIC_DM_FIXED,
13879 .vector = vcpu->arch.apf.vec
13880 };
13881
13882 if (work->wakeup_all)
13883 work->arch.token = ~0; /* broadcast wakeup */
13884 else
13885 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13886 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13887
13888 if ((work->wakeup_all || work->notpresent_injected) &&
13889 kvm_pv_async_pf_enabled(vcpu) &&
13890 !apf_put_user_ready(vcpu, work->arch.token)) {
13891 vcpu->arch.apf.pageready_pending = true;
13892 kvm_apic_set_irq(vcpu, &irq, NULL);
13893 }
13894
13895 vcpu->arch.apf.halted = false;
13896 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
13897 }
13898
kvm_arch_async_page_present_queued(struct kvm_vcpu * vcpu)13899 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13900 {
13901 kvm_make_request(KVM_REQ_APF_READY, vcpu);
13902 if (!vcpu->arch.apf.pageready_pending)
13903 kvm_vcpu_kick(vcpu);
13904 }
13905
kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu * vcpu)13906 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13907 {
13908 if (!kvm_pv_async_pf_enabled(vcpu))
13909 return true;
13910 else
13911 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13912 }
13913
kvm_noncoherent_dma_assignment_start_or_stop(struct kvm * kvm)13914 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
13915 {
13916 /*
13917 * Non-coherent DMA assignment and de-assignment may affect whether or
13918 * not KVM honors guest PAT, and thus may cause changes in EPT SPTEs
13919 * due to toggling the "ignore PAT" bit. Zap all SPTEs when the first
13920 * (or last) non-coherent device is (un)registered to so that new SPTEs
13921 * with the correct "ignore guest PAT" setting are created.
13922 *
13923 * If KVM always honors guest PAT, however, there is nothing to do.
13924 */
13925 if (kvm_check_has_quirk(kvm, KVM_X86_QUIRK_IGNORE_GUEST_PAT))
13926 kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
13927 }
13928
kvm_arch_register_noncoherent_dma(struct kvm * kvm)13929 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13930 {
13931 if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1)
13932 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13933 }
13934
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)13935 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13936 {
13937 if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count))
13938 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13939 }
13940
kvm_arch_has_noncoherent_dma(struct kvm * kvm)13941 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13942 {
13943 return atomic_read(&kvm->arch.noncoherent_dma_count);
13944 }
13945 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_arch_has_noncoherent_dma);
13946
kvm_arch_no_poll(struct kvm_vcpu * vcpu)13947 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13948 {
13949 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13950 }
13951
13952 #ifdef CONFIG_KVM_GUEST_MEMFD
13953 /*
13954 * KVM doesn't yet support initializing guest_memfd memory as shared for VMs
13955 * with private memory (the private vs. shared tracking needs to be moved into
13956 * guest_memfd).
13957 */
kvm_arch_supports_gmem_init_shared(struct kvm * kvm)13958 bool kvm_arch_supports_gmem_init_shared(struct kvm *kvm)
13959 {
13960 return !kvm_arch_has_private_mem(kvm);
13961 }
13962
13963 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
kvm_arch_gmem_prepare(struct kvm * kvm,gfn_t gfn,kvm_pfn_t pfn,int max_order)13964 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order)
13965 {
13966 return kvm_x86_call(gmem_prepare)(kvm, pfn, gfn, max_order);
13967 }
13968 #endif
13969
13970 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
kvm_arch_gmem_invalidate(kvm_pfn_t start,kvm_pfn_t end)13971 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end)
13972 {
13973 kvm_x86_call(gmem_invalidate)(start, end);
13974 }
13975 #endif
13976 #endif
13977
kvm_spec_ctrl_test_value(u64 value)13978 int kvm_spec_ctrl_test_value(u64 value)
13979 {
13980 /*
13981 * test that setting IA32_SPEC_CTRL to given value
13982 * is allowed by the host processor
13983 */
13984
13985 u64 saved_value;
13986 unsigned long flags;
13987 int ret = 0;
13988
13989 local_irq_save(flags);
13990
13991 if (rdmsrq_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13992 ret = 1;
13993 else if (wrmsrq_safe(MSR_IA32_SPEC_CTRL, value))
13994 ret = 1;
13995 else
13996 wrmsrq(MSR_IA32_SPEC_CTRL, saved_value);
13997
13998 local_irq_restore(flags);
13999
14000 return ret;
14001 }
14002 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_spec_ctrl_test_value);
14003
kvm_fixup_and_inject_pf_error(struct kvm_vcpu * vcpu,gva_t gva,u16 error_code)14004 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
14005 {
14006 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
14007 struct x86_exception fault;
14008 u64 access = error_code &
14009 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
14010
14011 if (!(error_code & PFERR_PRESENT_MASK) ||
14012 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
14013 /*
14014 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
14015 * tables probably do not match the TLB. Just proceed
14016 * with the error code that the processor gave.
14017 */
14018 fault.vector = PF_VECTOR;
14019 fault.error_code_valid = true;
14020 fault.error_code = error_code;
14021 fault.nested_page_fault = false;
14022 fault.address = gva;
14023 fault.async_page_fault = false;
14024 }
14025 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
14026 }
14027 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_fixup_and_inject_pf_error);
14028
14029 /*
14030 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
14031 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
14032 * indicates whether exit to userspace is needed.
14033 */
kvm_handle_memory_failure(struct kvm_vcpu * vcpu,int r,struct x86_exception * e)14034 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
14035 struct x86_exception *e)
14036 {
14037 if (r == X86EMUL_PROPAGATE_FAULT) {
14038 if (KVM_BUG_ON(!e, vcpu->kvm))
14039 return -EIO;
14040
14041 kvm_inject_emulated_page_fault(vcpu, e);
14042 return 1;
14043 }
14044
14045 /*
14046 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
14047 * while handling a VMX instruction KVM could've handled the request
14048 * correctly by exiting to userspace and performing I/O but there
14049 * doesn't seem to be a real use-case behind such requests, just return
14050 * KVM_EXIT_INTERNAL_ERROR for now.
14051 */
14052 kvm_prepare_emulation_failure_exit(vcpu);
14053
14054 return 0;
14055 }
14056 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_handle_memory_failure);
14057
kvm_handle_invpcid(struct kvm_vcpu * vcpu,unsigned long type,gva_t gva)14058 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
14059 {
14060 bool pcid_enabled;
14061 struct x86_exception e;
14062 struct {
14063 u64 pcid;
14064 u64 gla;
14065 } operand;
14066 int r;
14067
14068 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
14069 if (r != X86EMUL_CONTINUE)
14070 return kvm_handle_memory_failure(vcpu, r, &e);
14071
14072 if (operand.pcid >> 12 != 0) {
14073 kvm_inject_gp(vcpu, 0);
14074 return 1;
14075 }
14076
14077 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
14078
14079 switch (type) {
14080 case INVPCID_TYPE_INDIV_ADDR:
14081 /*
14082 * LAM doesn't apply to addresses that are inputs to TLB
14083 * invalidation.
14084 */
14085 if ((!pcid_enabled && (operand.pcid != 0)) ||
14086 is_noncanonical_invlpg_address(operand.gla, vcpu)) {
14087 kvm_inject_gp(vcpu, 0);
14088 return 1;
14089 }
14090 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
14091 return kvm_skip_emulated_instruction(vcpu);
14092
14093 case INVPCID_TYPE_SINGLE_CTXT:
14094 if (!pcid_enabled && (operand.pcid != 0)) {
14095 kvm_inject_gp(vcpu, 0);
14096 return 1;
14097 }
14098
14099 kvm_invalidate_pcid(vcpu, operand.pcid);
14100 return kvm_skip_emulated_instruction(vcpu);
14101
14102 case INVPCID_TYPE_ALL_NON_GLOBAL:
14103 /*
14104 * Currently, KVM doesn't mark global entries in the shadow
14105 * page tables, so a non-global flush just degenerates to a
14106 * global flush. If needed, we could optimize this later by
14107 * keeping track of global entries in shadow page tables.
14108 */
14109
14110 fallthrough;
14111 case INVPCID_TYPE_ALL_INCL_GLOBAL:
14112 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
14113 return kvm_skip_emulated_instruction(vcpu);
14114
14115 default:
14116 kvm_inject_gp(vcpu, 0);
14117 return 1;
14118 }
14119 }
14120 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_handle_invpcid);
14121
complete_sev_es_emulated_mmio(struct kvm_vcpu * vcpu)14122 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
14123 {
14124 struct kvm_run *run = vcpu->run;
14125 struct kvm_mmio_fragment *frag;
14126 unsigned int len;
14127
14128 BUG_ON(!vcpu->mmio_needed);
14129
14130 /* Complete previous fragment */
14131 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
14132 len = min(8u, frag->len);
14133 if (!vcpu->mmio_is_write)
14134 memcpy(frag->data, run->mmio.data, len);
14135
14136 if (frag->len <= 8) {
14137 /* Switch to the next fragment. */
14138 frag++;
14139 vcpu->mmio_cur_fragment++;
14140 } else {
14141 /* Go forward to the next mmio piece. */
14142 frag->data += len;
14143 frag->gpa += len;
14144 frag->len -= len;
14145 }
14146
14147 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
14148 vcpu->mmio_needed = 0;
14149
14150 // VMG change, at this point, we're always done
14151 // RIP has already been advanced
14152 return 1;
14153 }
14154
14155 // More MMIO is needed
14156 run->mmio.phys_addr = frag->gpa;
14157 run->mmio.len = min(8u, frag->len);
14158 run->mmio.is_write = vcpu->mmio_is_write;
14159 if (run->mmio.is_write)
14160 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
14161 run->exit_reason = KVM_EXIT_MMIO;
14162
14163 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
14164
14165 return 0;
14166 }
14167
kvm_sev_es_mmio_write(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)14168 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
14169 void *data)
14170 {
14171 int handled;
14172 struct kvm_mmio_fragment *frag;
14173
14174 if (!data)
14175 return -EINVAL;
14176
14177 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
14178 if (handled == bytes)
14179 return 1;
14180
14181 bytes -= handled;
14182 gpa += handled;
14183 data += handled;
14184
14185 /*TODO: Check if need to increment number of frags */
14186 frag = vcpu->mmio_fragments;
14187 vcpu->mmio_nr_fragments = 1;
14188 frag->len = bytes;
14189 frag->gpa = gpa;
14190 frag->data = data;
14191
14192 vcpu->mmio_needed = 1;
14193 vcpu->mmio_cur_fragment = 0;
14194
14195 vcpu->run->mmio.phys_addr = gpa;
14196 vcpu->run->mmio.len = min(8u, frag->len);
14197 vcpu->run->mmio.is_write = 1;
14198 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
14199 vcpu->run->exit_reason = KVM_EXIT_MMIO;
14200
14201 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
14202
14203 return 0;
14204 }
14205 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_sev_es_mmio_write);
14206
kvm_sev_es_mmio_read(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)14207 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
14208 void *data)
14209 {
14210 int handled;
14211 struct kvm_mmio_fragment *frag;
14212
14213 if (!data)
14214 return -EINVAL;
14215
14216 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
14217 if (handled == bytes)
14218 return 1;
14219
14220 bytes -= handled;
14221 gpa += handled;
14222 data += handled;
14223
14224 /*TODO: Check if need to increment number of frags */
14225 frag = vcpu->mmio_fragments;
14226 vcpu->mmio_nr_fragments = 1;
14227 frag->len = bytes;
14228 frag->gpa = gpa;
14229 frag->data = data;
14230
14231 vcpu->mmio_needed = 1;
14232 vcpu->mmio_cur_fragment = 0;
14233
14234 vcpu->run->mmio.phys_addr = gpa;
14235 vcpu->run->mmio.len = min(8u, frag->len);
14236 vcpu->run->mmio.is_write = 0;
14237 vcpu->run->exit_reason = KVM_EXIT_MMIO;
14238
14239 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
14240
14241 return 0;
14242 }
14243 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_sev_es_mmio_read);
14244
advance_sev_es_emulated_pio(struct kvm_vcpu * vcpu,unsigned count,int size)14245 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
14246 {
14247 vcpu->arch.sev_pio_count -= count;
14248 vcpu->arch.sev_pio_data += count * size;
14249 }
14250
14251 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
14252 unsigned int port);
14253
complete_sev_es_emulated_outs(struct kvm_vcpu * vcpu)14254 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
14255 {
14256 int size = vcpu->arch.pio.size;
14257 int port = vcpu->arch.pio.port;
14258
14259 vcpu->arch.pio.count = 0;
14260 if (vcpu->arch.sev_pio_count)
14261 return kvm_sev_es_outs(vcpu, size, port);
14262 return 1;
14263 }
14264
kvm_sev_es_outs(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)14265 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
14266 unsigned int port)
14267 {
14268 for (;;) {
14269 unsigned int count =
14270 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
14271 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
14272
14273 /* memcpy done already by emulator_pio_out. */
14274 advance_sev_es_emulated_pio(vcpu, count, size);
14275 if (!ret)
14276 break;
14277
14278 /* Emulation done by the kernel. */
14279 if (!vcpu->arch.sev_pio_count)
14280 return 1;
14281 }
14282
14283 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
14284 return 0;
14285 }
14286
14287 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
14288 unsigned int port);
14289
complete_sev_es_emulated_ins(struct kvm_vcpu * vcpu)14290 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
14291 {
14292 unsigned count = vcpu->arch.pio.count;
14293 int size = vcpu->arch.pio.size;
14294 int port = vcpu->arch.pio.port;
14295
14296 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
14297 advance_sev_es_emulated_pio(vcpu, count, size);
14298 if (vcpu->arch.sev_pio_count)
14299 return kvm_sev_es_ins(vcpu, size, port);
14300 return 1;
14301 }
14302
kvm_sev_es_ins(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)14303 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
14304 unsigned int port)
14305 {
14306 for (;;) {
14307 unsigned int count =
14308 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
14309 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
14310 break;
14311
14312 /* Emulation done by the kernel. */
14313 advance_sev_es_emulated_pio(vcpu, count, size);
14314 if (!vcpu->arch.sev_pio_count)
14315 return 1;
14316 }
14317
14318 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
14319 return 0;
14320 }
14321
kvm_sev_es_string_io(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port,void * data,unsigned int count,int in)14322 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
14323 unsigned int port, void *data, unsigned int count,
14324 int in)
14325 {
14326 vcpu->arch.sev_pio_data = data;
14327 vcpu->arch.sev_pio_count = count;
14328 return in ? kvm_sev_es_ins(vcpu, size, port)
14329 : kvm_sev_es_outs(vcpu, size, port);
14330 }
14331 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_sev_es_string_io);
14332
14333 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
14334 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
14335 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_mmio);
14336 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
14337 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
14338 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
14339 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
14340 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
14341 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
14342 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
14343 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
14344 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
14345 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
14346 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
14347 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
14348 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
14349 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
14350 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
14351 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
14352 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
14353 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
14354 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
14355 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
14356 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
14357 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
14358 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
14359 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
14360 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
14361 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
14362 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_rmp_fault);
14363
kvm_x86_init(void)14364 static int __init kvm_x86_init(void)
14365 {
14366 kvm_init_xstate_sizes();
14367
14368 kvm_mmu_x86_module_init();
14369 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
14370 return 0;
14371 }
14372 module_init(kvm_x86_init);
14373
kvm_x86_exit(void)14374 static void __exit kvm_x86_exit(void)
14375 {
14376 WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu));
14377 }
14378 module_exit(kvm_x86_exit);
14379