xref: /linux/arch/x86/kvm/vmx/vmx.h (revision e04e2b760ddbe3d7b283a05898c3a029085cd8cd)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __KVM_X86_VMX_H
3 #define __KVM_X86_VMX_H
4 
5 #include <linux/kvm_host.h>
6 
7 #include <asm/kvm.h>
8 #include <asm/intel_pt.h>
9 #include <asm/perf_event.h>
10 #include <asm/posted_intr.h>
11 
12 #include "capabilities.h"
13 #include "../kvm_cache_regs.h"
14 #include "vmcs.h"
15 #include "vmx_ops.h"
16 #include "../cpuid.h"
17 #include "run_flags.h"
18 #include "../mmu.h"
19 
20 #define MSR_TYPE_R	1
21 #define MSR_TYPE_W	2
22 #define MSR_TYPE_RW	3
23 
24 #define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
25 
26 #ifdef CONFIG_X86_64
27 #define MAX_NR_USER_RETURN_MSRS	7
28 #else
29 #define MAX_NR_USER_RETURN_MSRS	4
30 #endif
31 
32 #define MAX_NR_LOADSTORE_MSRS	8
33 
34 struct vmx_msrs {
35 	unsigned int		nr;
36 	struct vmx_msr_entry	val[MAX_NR_LOADSTORE_MSRS];
37 };
38 
39 struct vmx_uret_msr {
40 	bool load_into_hardware;
41 	u64 data;
42 	u64 mask;
43 };
44 
45 enum segment_cache_field {
46 	SEG_FIELD_SEL = 0,
47 	SEG_FIELD_BASE = 1,
48 	SEG_FIELD_LIMIT = 2,
49 	SEG_FIELD_AR = 3,
50 
51 	SEG_FIELD_NR = 4
52 };
53 
54 #define RTIT_ADDR_RANGE		4
55 
56 struct pt_ctx {
57 	u64 ctl;
58 	u64 status;
59 	u64 output_base;
60 	u64 output_mask;
61 	u64 cr3_match;
62 	u64 addr_a[RTIT_ADDR_RANGE];
63 	u64 addr_b[RTIT_ADDR_RANGE];
64 };
65 
66 struct pt_desc {
67 	u64 ctl_bitmask;
68 	u32 num_address_ranges;
69 	u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES];
70 	struct pt_ctx host;
71 	struct pt_ctx guest;
72 };
73 
74 union vmx_exit_reason {
75 	struct {
76 		u32	basic			: 16;
77 		u32	reserved16		: 1;
78 		u32	reserved17		: 1;
79 		u32	reserved18		: 1;
80 		u32	reserved19		: 1;
81 		u32	reserved20		: 1;
82 		u32	reserved21		: 1;
83 		u32	reserved22		: 1;
84 		u32	reserved23		: 1;
85 		u32	reserved24		: 1;
86 		u32	reserved25		: 1;
87 		u32	bus_lock_detected	: 1;
88 		u32	enclave_mode		: 1;
89 		u32	smi_pending_mtf		: 1;
90 		u32	smi_from_vmx_root	: 1;
91 		u32	reserved30		: 1;
92 		u32	failed_vmentry		: 1;
93 	};
94 	u32 full;
95 };
96 
97 struct lbr_desc {
98 	/* Basic info about guest LBR records. */
99 	struct x86_pmu_lbr records;
100 
101 	/*
102 	 * Emulate LBR feature via passthrough LBR registers when the
103 	 * per-vcpu guest LBR event is scheduled on the current pcpu.
104 	 *
105 	 * The records may be inaccurate if the host reclaims the LBR.
106 	 */
107 	struct perf_event *event;
108 
109 	/* True if LBRs are marked as not intercepted in the MSR bitmap */
110 	bool msr_passthrough;
111 };
112 
113 extern struct x86_pmu_lbr vmx_lbr_caps;
114 
115 /*
116  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
117  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
118  */
119 struct nested_vmx {
120 	/* Has the level1 guest done vmxon? */
121 	bool vmxon;
122 	gpa_t vmxon_ptr;
123 	bool pml_full;
124 
125 	/* The guest-physical address of the current VMCS L1 keeps for L2 */
126 	gpa_t current_vmptr;
127 	/*
128 	 * Cache of the guest's VMCS, existing outside of guest memory.
129 	 * Loaded from guest memory during VMPTRLD. Flushed to guest
130 	 * memory during VMCLEAR and VMPTRLD.
131 	 */
132 	struct vmcs12 *cached_vmcs12;
133 	/*
134 	 * Cache of the guest's shadow VMCS, existing outside of guest
135 	 * memory. Loaded from guest memory during VM entry. Flushed
136 	 * to guest memory during VM exit.
137 	 */
138 	struct vmcs12 *cached_shadow_vmcs12;
139 
140 	/*
141 	 * GPA to HVA cache for accessing vmcs12->vmcs_link_pointer
142 	 */
143 	struct gfn_to_hva_cache shadow_vmcs12_cache;
144 
145 	/*
146 	 * GPA to HVA cache for VMCS12
147 	 */
148 	struct gfn_to_hva_cache vmcs12_cache;
149 
150 	/*
151 	 * Indicates if the shadow vmcs or enlightened vmcs must be updated
152 	 * with the data held by struct vmcs12.
153 	 */
154 	bool need_vmcs12_to_shadow_sync;
155 	bool dirty_vmcs12;
156 
157 	/*
158 	 * Indicates whether MSR bitmap for L2 needs to be rebuilt due to
159 	 * changes in MSR bitmap for L1 or switching to a different L2. Note,
160 	 * this flag can only be used reliably in conjunction with a paravirt L1
161 	 * which informs L0 whether any changes to MSR bitmap for L2 were done
162 	 * on its side.
163 	 */
164 	bool force_msr_bitmap_recalc;
165 
166 	/*
167 	 * Indicates lazily loaded guest state has not yet been decached from
168 	 * vmcs02.
169 	 */
170 	bool need_sync_vmcs02_to_vmcs12_rare;
171 
172 	/*
173 	 * vmcs02 has been initialized, i.e. state that is constant for
174 	 * vmcs02 has been written to the backing VMCS.  Initialization
175 	 * is delayed until L1 actually attempts to run a nested VM.
176 	 */
177 	bool vmcs02_initialized;
178 
179 	bool change_vmcs01_virtual_apic_mode;
180 	bool reload_vmcs01_apic_access_page;
181 	bool update_vmcs01_cpu_dirty_logging;
182 	bool update_vmcs01_apicv_status;
183 
184 	/*
185 	 * Enlightened VMCS has been enabled. It does not mean that L1 has to
186 	 * use it. However, VMX features available to L1 will be limited based
187 	 * on what the enlightened VMCS supports.
188 	 */
189 	bool enlightened_vmcs_enabled;
190 
191 	/* L2 must run next, and mustn't decide to exit to L1. */
192 	bool nested_run_pending;
193 
194 	/* Pending MTF VM-exit into L1.  */
195 	bool mtf_pending;
196 
197 	struct loaded_vmcs vmcs02;
198 
199 	/*
200 	 * Guest pages referred to in the vmcs02 with host-physical
201 	 * pointers, so we must keep them pinned while L2 runs.
202 	 */
203 	struct kvm_host_map apic_access_page_map;
204 	struct kvm_host_map virtual_apic_map;
205 	struct kvm_host_map pi_desc_map;
206 
207 	struct kvm_host_map msr_bitmap_map;
208 
209 	struct pi_desc *pi_desc;
210 	bool pi_pending;
211 	u16 posted_intr_nv;
212 
213 	struct hrtimer preemption_timer;
214 	u64 preemption_timer_deadline;
215 	bool has_preemption_timer_deadline;
216 	bool preemption_timer_expired;
217 
218 	/*
219 	 * Used to snapshot MSRs that are conditionally loaded on VM-Enter in
220 	 * order to propagate the guest's pre-VM-Enter value into vmcs02.  For
221 	 * emulation of VMLAUNCH/VMRESUME, the snapshot will be of L1's value.
222 	 * For KVM_SET_NESTED_STATE, the snapshot is of L2's value, _if_
223 	 * userspace restores MSRs before nested state.  If userspace restores
224 	 * MSRs after nested state, the snapshot holds garbage, but KVM can't
225 	 * detect that, and the garbage value in vmcs02 will be overwritten by
226 	 * MSR restoration in any case.
227 	 */
228 	u64 pre_vmenter_debugctl;
229 	u64 pre_vmenter_bndcfgs;
230 
231 	/* to migrate it to L1 if L2 writes to L1's CR8 directly */
232 	int l1_tpr_threshold;
233 
234 	u16 vpid02;
235 	u16 last_vpid;
236 
237 	struct nested_vmx_msrs msrs;
238 
239 	/* SMM related state */
240 	struct {
241 		/* in VMX operation on SMM entry? */
242 		bool vmxon;
243 		/* in guest mode on SMM entry? */
244 		bool guest_mode;
245 	} smm;
246 
247 #ifdef CONFIG_KVM_HYPERV
248 	gpa_t hv_evmcs_vmptr;
249 	struct kvm_host_map hv_evmcs_map;
250 	struct hv_enlightened_vmcs *hv_evmcs;
251 #endif
252 };
253 
254 struct vcpu_vmx {
255 	struct kvm_vcpu       vcpu;
256 	u8                    fail;
257 	u8		      x2apic_msr_bitmap_mode;
258 
259 	/*
260 	 * If true, host state has been stored in vmx->loaded_vmcs for
261 	 * the CPU registers that only need to be switched when transitioning
262 	 * to/from the kernel, and the registers have been loaded with guest
263 	 * values.  If false, host state is loaded in the CPU registers
264 	 * and vmx->loaded_vmcs->host_state is invalid.
265 	 */
266 	bool		      guest_state_loaded;
267 
268 	unsigned long         exit_qualification;
269 	u32                   exit_intr_info;
270 	u32                   idt_vectoring_info;
271 	ulong                 rflags;
272 
273 	/*
274 	 * User return MSRs are always emulated when enabled in the guest, but
275 	 * only loaded into hardware when necessary, e.g. SYSCALL #UDs outside
276 	 * of 64-bit mode or if EFER.SCE=1, thus the SYSCALL MSRs don't need to
277 	 * be loaded into hardware if those conditions aren't met.
278 	 */
279 	struct vmx_uret_msr   guest_uret_msrs[MAX_NR_USER_RETURN_MSRS];
280 	bool                  guest_uret_msrs_loaded;
281 #ifdef CONFIG_X86_64
282 	u64		      msr_host_kernel_gs_base;
283 	u64		      msr_guest_kernel_gs_base;
284 #endif
285 
286 	u64		      spec_ctrl;
287 	u32		      msr_ia32_umwait_control;
288 
289 	/*
290 	 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
291 	 * non-nested (L1) guest, it always points to vmcs01. For a nested
292 	 * guest (L2), it points to a different VMCS.
293 	 */
294 	struct loaded_vmcs    vmcs01;
295 	struct loaded_vmcs   *loaded_vmcs;
296 
297 	struct msr_autoload {
298 		struct vmx_msrs guest;
299 		struct vmx_msrs host;
300 	} msr_autoload;
301 
302 	struct msr_autostore {
303 		struct vmx_msrs guest;
304 	} msr_autostore;
305 
306 	struct {
307 		int vm86_active;
308 		ulong save_rflags;
309 		struct kvm_segment segs[8];
310 	} rmode;
311 	struct {
312 		u32 bitmask; /* 4 bits per segment (1 bit per field) */
313 		struct kvm_save_segment {
314 			u16 selector;
315 			unsigned long base;
316 			u32 limit;
317 			u32 ar;
318 		} seg[8];
319 	} segment_cache;
320 	int vpid;
321 	bool emulation_required;
322 
323 	union vmx_exit_reason exit_reason;
324 
325 	/* Posted interrupt descriptor */
326 	struct pi_desc pi_desc;
327 
328 	/* Used if this vCPU is waiting for PI notification wakeup. */
329 	struct list_head pi_wakeup_list;
330 
331 	/* Support for a guest hypervisor (nested VMX) */
332 	struct nested_vmx nested;
333 
334 	/* Dynamic PLE window. */
335 	unsigned int ple_window;
336 	bool ple_window_dirty;
337 
338 	/* Support for PML */
339 #define PML_ENTITY_NUM		512
340 	struct page *pml_pg;
341 
342 	/* apic deadline value in host tsc */
343 	u64 hv_deadline_tsc;
344 
345 	unsigned long host_debugctlmsr;
346 
347 	/*
348 	 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
349 	 * msr_ia32_feature_control. FEAT_CTL_LOCKED is always included
350 	 * in msr_ia32_feature_control_valid_bits.
351 	 */
352 	u64 msr_ia32_feature_control;
353 	u64 msr_ia32_feature_control_valid_bits;
354 	/* SGX Launch Control public key hash */
355 	u64 msr_ia32_sgxlepubkeyhash[4];
356 	u64 msr_ia32_mcu_opt_ctrl;
357 	bool disable_fb_clear;
358 
359 	struct pt_desc pt_desc;
360 	struct lbr_desc lbr_desc;
361 
362 	/* Save desired MSR intercept (read: pass-through) state */
363 #define MAX_POSSIBLE_PASSTHROUGH_MSRS	16
364 	struct {
365 		DECLARE_BITMAP(read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
366 		DECLARE_BITMAP(write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
367 	} shadow_msr_intercept;
368 
369 	/* ve_info must be page aligned. */
370 	struct vmx_ve_information *ve_info;
371 };
372 
373 struct kvm_vmx {
374 	struct kvm kvm;
375 
376 	unsigned int tss_addr;
377 	bool ept_identity_pagetable_done;
378 	gpa_t ept_identity_map_addr;
379 	/* Posted Interrupt Descriptor (PID) table for IPI virtualization */
380 	u64 *pid_table;
381 };
382 
383 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
384 			struct loaded_vmcs *buddy);
385 int allocate_vpid(void);
386 void free_vpid(int vpid);
387 void vmx_set_constant_host_state(struct vcpu_vmx *vmx);
388 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu);
389 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
390 			unsigned long fs_base, unsigned long gs_base);
391 int vmx_get_cpl(struct kvm_vcpu *vcpu);
392 bool vmx_emulation_required(struct kvm_vcpu *vcpu);
393 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu);
394 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
395 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu);
396 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask);
397 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer);
398 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
399 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
400 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx);
401 void ept_save_pdptrs(struct kvm_vcpu *vcpu);
402 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
403 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
404 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level);
405 
406 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu);
407 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu);
408 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu);
409 bool __vmx_interrupt_blocked(struct kvm_vcpu *vcpu);
410 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu);
411 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
412 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
413 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu);
414 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr);
415 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu);
416 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp);
417 void vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, unsigned int flags);
418 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx);
419 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs,
420 		    unsigned int flags);
421 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr);
422 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu);
423 
424 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
425 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
426 
427 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu);
428 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu);
429 
430 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags);
431 
432 static inline void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr,
433 					     int type, bool value)
434 {
435 	if (value)
436 		vmx_enable_intercept_for_msr(vcpu, msr, type);
437 	else
438 		vmx_disable_intercept_for_msr(vcpu, msr, type);
439 }
440 
441 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu);
442 
443 /*
444  * Note, early Intel manuals have the write-low and read-high bitmap offsets
445  * the wrong way round.  The bitmaps control MSRs 0x00000000-0x00001fff and
446  * 0xc0000000-0xc0001fff.  The former (low) uses bytes 0-0x3ff for reads and
447  * 0x800-0xbff for writes.  The latter (high) uses 0x400-0x7ff for reads and
448  * 0xc00-0xfff for writes.  MSRs not covered by either of the ranges always
449  * VM-Exit.
450  */
451 #define __BUILD_VMX_MSR_BITMAP_HELPER(rtype, action, bitop, access, base)      \
452 static inline rtype vmx_##action##_msr_bitmap_##access(unsigned long *bitmap,  \
453 						       u32 msr)		       \
454 {									       \
455 	int f = sizeof(unsigned long);					       \
456 									       \
457 	if (msr <= 0x1fff)						       \
458 		return bitop##_bit(msr, bitmap + base / f);		       \
459 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))		       \
460 		return bitop##_bit(msr & 0x1fff, bitmap + (base + 0x400) / f); \
461 	return (rtype)true;						       \
462 }
463 #define BUILD_VMX_MSR_BITMAP_HELPERS(ret_type, action, bitop)		       \
464 	__BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, read,  0x0)     \
465 	__BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, write, 0x800)
466 
467 BUILD_VMX_MSR_BITMAP_HELPERS(bool, test, test)
468 BUILD_VMX_MSR_BITMAP_HELPERS(void, clear, __clear)
469 BUILD_VMX_MSR_BITMAP_HELPERS(void, set, __set)
470 
471 static inline u8 vmx_get_rvi(void)
472 {
473 	return vmcs_read16(GUEST_INTR_STATUS) & 0xff;
474 }
475 
476 #define __KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS				\
477 	(VM_ENTRY_LOAD_DEBUG_CONTROLS)
478 #ifdef CONFIG_X86_64
479 	#define KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS			\
480 		(__KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS |			\
481 		 VM_ENTRY_IA32E_MODE)
482 #else
483 	#define KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS			\
484 		__KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS
485 #endif
486 #define KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS				\
487 	(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |				\
488 	 VM_ENTRY_LOAD_IA32_PAT |					\
489 	 VM_ENTRY_LOAD_IA32_EFER |					\
490 	 VM_ENTRY_LOAD_BNDCFGS |					\
491 	 VM_ENTRY_PT_CONCEAL_PIP |					\
492 	 VM_ENTRY_LOAD_IA32_RTIT_CTL)
493 
494 #define __KVM_REQUIRED_VMX_VM_EXIT_CONTROLS				\
495 	(VM_EXIT_SAVE_DEBUG_CONTROLS |					\
496 	 VM_EXIT_ACK_INTR_ON_EXIT)
497 #ifdef CONFIG_X86_64
498 	#define KVM_REQUIRED_VMX_VM_EXIT_CONTROLS			\
499 		(__KVM_REQUIRED_VMX_VM_EXIT_CONTROLS |			\
500 		 VM_EXIT_HOST_ADDR_SPACE_SIZE)
501 #else
502 	#define KVM_REQUIRED_VMX_VM_EXIT_CONTROLS			\
503 		__KVM_REQUIRED_VMX_VM_EXIT_CONTROLS
504 #endif
505 #define KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS				\
506 	      (VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |			\
507 	       VM_EXIT_SAVE_IA32_PAT |					\
508 	       VM_EXIT_LOAD_IA32_PAT |					\
509 	       VM_EXIT_SAVE_IA32_EFER |					\
510 	       VM_EXIT_SAVE_VMX_PREEMPTION_TIMER |			\
511 	       VM_EXIT_LOAD_IA32_EFER |					\
512 	       VM_EXIT_CLEAR_BNDCFGS |					\
513 	       VM_EXIT_PT_CONCEAL_PIP |					\
514 	       VM_EXIT_CLEAR_IA32_RTIT_CTL)
515 
516 #define KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL			\
517 	(PIN_BASED_EXT_INTR_MASK |					\
518 	 PIN_BASED_NMI_EXITING)
519 #define KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL			\
520 	(PIN_BASED_VIRTUAL_NMIS |					\
521 	 PIN_BASED_POSTED_INTR |					\
522 	 PIN_BASED_VMX_PREEMPTION_TIMER)
523 
524 #define __KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL			\
525 	(CPU_BASED_HLT_EXITING |					\
526 	 CPU_BASED_CR3_LOAD_EXITING |					\
527 	 CPU_BASED_CR3_STORE_EXITING |					\
528 	 CPU_BASED_UNCOND_IO_EXITING |					\
529 	 CPU_BASED_MOV_DR_EXITING |					\
530 	 CPU_BASED_USE_TSC_OFFSETTING |					\
531 	 CPU_BASED_MWAIT_EXITING |					\
532 	 CPU_BASED_MONITOR_EXITING |					\
533 	 CPU_BASED_INVLPG_EXITING |					\
534 	 CPU_BASED_RDPMC_EXITING |					\
535 	 CPU_BASED_INTR_WINDOW_EXITING)
536 
537 #ifdef CONFIG_X86_64
538 	#define KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL		\
539 		(__KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL |		\
540 		 CPU_BASED_CR8_LOAD_EXITING |				\
541 		 CPU_BASED_CR8_STORE_EXITING)
542 #else
543 	#define KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL		\
544 		__KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL
545 #endif
546 
547 #define KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL			\
548 	(CPU_BASED_RDTSC_EXITING |					\
549 	 CPU_BASED_TPR_SHADOW |						\
550 	 CPU_BASED_USE_IO_BITMAPS |					\
551 	 CPU_BASED_MONITOR_TRAP_FLAG |					\
552 	 CPU_BASED_USE_MSR_BITMAPS |					\
553 	 CPU_BASED_NMI_WINDOW_EXITING |					\
554 	 CPU_BASED_PAUSE_EXITING |					\
555 	 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS |			\
556 	 CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
557 
558 #define KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL 0
559 #define KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL			\
560 	(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |			\
561 	 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |			\
562 	 SECONDARY_EXEC_WBINVD_EXITING |				\
563 	 SECONDARY_EXEC_ENABLE_VPID |					\
564 	 SECONDARY_EXEC_ENABLE_EPT |					\
565 	 SECONDARY_EXEC_UNRESTRICTED_GUEST |				\
566 	 SECONDARY_EXEC_PAUSE_LOOP_EXITING |				\
567 	 SECONDARY_EXEC_DESC |						\
568 	 SECONDARY_EXEC_ENABLE_RDTSCP |					\
569 	 SECONDARY_EXEC_ENABLE_INVPCID |				\
570 	 SECONDARY_EXEC_APIC_REGISTER_VIRT |				\
571 	 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |				\
572 	 SECONDARY_EXEC_SHADOW_VMCS |					\
573 	 SECONDARY_EXEC_ENABLE_XSAVES |					\
574 	 SECONDARY_EXEC_RDSEED_EXITING |				\
575 	 SECONDARY_EXEC_RDRAND_EXITING |				\
576 	 SECONDARY_EXEC_ENABLE_PML |					\
577 	 SECONDARY_EXEC_TSC_SCALING |					\
578 	 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |				\
579 	 SECONDARY_EXEC_PT_USE_GPA |					\
580 	 SECONDARY_EXEC_PT_CONCEAL_VMX |				\
581 	 SECONDARY_EXEC_ENABLE_VMFUNC |					\
582 	 SECONDARY_EXEC_BUS_LOCK_DETECTION |				\
583 	 SECONDARY_EXEC_NOTIFY_VM_EXITING |				\
584 	 SECONDARY_EXEC_ENCLS_EXITING |					\
585 	 SECONDARY_EXEC_EPT_VIOLATION_VE)
586 
587 #define KVM_REQUIRED_VMX_TERTIARY_VM_EXEC_CONTROL 0
588 #define KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL			\
589 	(TERTIARY_EXEC_IPI_VIRT)
590 
591 #define BUILD_CONTROLS_SHADOW(lname, uname, bits)						\
592 static inline void lname##_controls_set(struct vcpu_vmx *vmx, u##bits val)			\
593 {												\
594 	if (vmx->loaded_vmcs->controls_shadow.lname != val) {					\
595 		vmcs_write##bits(uname, val);							\
596 		vmx->loaded_vmcs->controls_shadow.lname = val;					\
597 	}											\
598 }												\
599 static inline u##bits __##lname##_controls_get(struct loaded_vmcs *vmcs)			\
600 {												\
601 	return vmcs->controls_shadow.lname;							\
602 }												\
603 static inline u##bits lname##_controls_get(struct vcpu_vmx *vmx)				\
604 {												\
605 	return __##lname##_controls_get(vmx->loaded_vmcs);					\
606 }												\
607 static __always_inline void lname##_controls_setbit(struct vcpu_vmx *vmx, u##bits val)		\
608 {												\
609 	BUILD_BUG_ON(!(val & (KVM_REQUIRED_VMX_##uname | KVM_OPTIONAL_VMX_##uname)));		\
610 	lname##_controls_set(vmx, lname##_controls_get(vmx) | val);				\
611 }												\
612 static __always_inline void lname##_controls_clearbit(struct vcpu_vmx *vmx, u##bits val)	\
613 {												\
614 	BUILD_BUG_ON(!(val & (KVM_REQUIRED_VMX_##uname | KVM_OPTIONAL_VMX_##uname)));		\
615 	lname##_controls_set(vmx, lname##_controls_get(vmx) & ~val);				\
616 }
617 BUILD_CONTROLS_SHADOW(vm_entry, VM_ENTRY_CONTROLS, 32)
618 BUILD_CONTROLS_SHADOW(vm_exit, VM_EXIT_CONTROLS, 32)
619 BUILD_CONTROLS_SHADOW(pin, PIN_BASED_VM_EXEC_CONTROL, 32)
620 BUILD_CONTROLS_SHADOW(exec, CPU_BASED_VM_EXEC_CONTROL, 32)
621 BUILD_CONTROLS_SHADOW(secondary_exec, SECONDARY_VM_EXEC_CONTROL, 32)
622 BUILD_CONTROLS_SHADOW(tertiary_exec, TERTIARY_VM_EXEC_CONTROL, 64)
623 
624 /*
625  * VMX_REGS_LAZY_LOAD_SET - The set of registers that will be updated in the
626  * cache on demand.  Other registers not listed here are synced to
627  * the cache immediately after VM-Exit.
628  */
629 #define VMX_REGS_LAZY_LOAD_SET	((1 << VCPU_REGS_RIP) |         \
630 				(1 << VCPU_REGS_RSP) |          \
631 				(1 << VCPU_EXREG_RFLAGS) |      \
632 				(1 << VCPU_EXREG_PDPTR) |       \
633 				(1 << VCPU_EXREG_SEGMENTS) |    \
634 				(1 << VCPU_EXREG_CR0) |         \
635 				(1 << VCPU_EXREG_CR3) |         \
636 				(1 << VCPU_EXREG_CR4) |         \
637 				(1 << VCPU_EXREG_EXIT_INFO_1) | \
638 				(1 << VCPU_EXREG_EXIT_INFO_2))
639 
640 static inline unsigned long vmx_l1_guest_owned_cr0_bits(void)
641 {
642 	unsigned long bits = KVM_POSSIBLE_CR0_GUEST_BITS;
643 
644 	/*
645 	 * CR0.WP needs to be intercepted when KVM is shadowing legacy paging
646 	 * in order to construct shadow PTEs with the correct protections.
647 	 * Note!  CR0.WP technically can be passed through to the guest if
648 	 * paging is disabled, but checking CR0.PG would generate a cyclical
649 	 * dependency of sorts due to forcing the caller to ensure CR0 holds
650 	 * the correct value prior to determining which CR0 bits can be owned
651 	 * by L1.  Keep it simple and limit the optimization to EPT.
652 	 */
653 	if (!enable_ept)
654 		bits &= ~X86_CR0_WP;
655 	return bits;
656 }
657 
658 static __always_inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm)
659 {
660 	return container_of(kvm, struct kvm_vmx, kvm);
661 }
662 
663 static __always_inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
664 {
665 	return container_of(vcpu, struct vcpu_vmx, vcpu);
666 }
667 
668 static inline struct lbr_desc *vcpu_to_lbr_desc(struct kvm_vcpu *vcpu)
669 {
670 	return &to_vmx(vcpu)->lbr_desc;
671 }
672 
673 static inline struct x86_pmu_lbr *vcpu_to_lbr_records(struct kvm_vcpu *vcpu)
674 {
675 	return &vcpu_to_lbr_desc(vcpu)->records;
676 }
677 
678 static inline bool intel_pmu_lbr_is_enabled(struct kvm_vcpu *vcpu)
679 {
680 	return !!vcpu_to_lbr_records(vcpu)->nr;
681 }
682 
683 void intel_pmu_cross_mapped_check(struct kvm_pmu *pmu);
684 int intel_pmu_create_guest_lbr_event(struct kvm_vcpu *vcpu);
685 void vmx_passthrough_lbr_msrs(struct kvm_vcpu *vcpu);
686 
687 static __always_inline unsigned long vmx_get_exit_qual(struct kvm_vcpu *vcpu)
688 {
689 	struct vcpu_vmx *vmx = to_vmx(vcpu);
690 
691 	if (!kvm_register_test_and_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1))
692 		vmx->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
693 
694 	return vmx->exit_qualification;
695 }
696 
697 static __always_inline u32 vmx_get_intr_info(struct kvm_vcpu *vcpu)
698 {
699 	struct vcpu_vmx *vmx = to_vmx(vcpu);
700 
701 	if (!kvm_register_test_and_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2))
702 		vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
703 
704 	return vmx->exit_intr_info;
705 }
706 
707 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags);
708 void free_vmcs(struct vmcs *vmcs);
709 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
710 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
711 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs);
712 
713 static inline struct vmcs *alloc_vmcs(bool shadow)
714 {
715 	return alloc_vmcs_cpu(shadow, raw_smp_processor_id(),
716 			      GFP_KERNEL_ACCOUNT);
717 }
718 
719 static inline bool vmx_has_waitpkg(struct vcpu_vmx *vmx)
720 {
721 	return secondary_exec_controls_get(vmx) &
722 		SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
723 }
724 
725 static inline bool vmx_need_pf_intercept(struct kvm_vcpu *vcpu)
726 {
727 	if (!enable_ept)
728 		return true;
729 
730 	return allow_smaller_maxphyaddr &&
731 	       cpuid_maxphyaddr(vcpu) < kvm_host.maxphyaddr;
732 }
733 
734 static inline bool is_unrestricted_guest(struct kvm_vcpu *vcpu)
735 {
736 	return enable_unrestricted_guest && (!is_guest_mode(vcpu) ||
737 	    (secondary_exec_controls_get(to_vmx(vcpu)) &
738 	    SECONDARY_EXEC_UNRESTRICTED_GUEST));
739 }
740 
741 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu);
742 static inline bool vmx_guest_state_valid(struct kvm_vcpu *vcpu)
743 {
744 	return is_unrestricted_guest(vcpu) || __vmx_guest_state_valid(vcpu);
745 }
746 
747 void dump_vmcs(struct kvm_vcpu *vcpu);
748 
749 static inline int vmx_get_instr_info_reg2(u32 vmx_instr_info)
750 {
751 	return (vmx_instr_info >> 28) & 0xf;
752 }
753 
754 static inline bool vmx_can_use_ipiv(struct kvm_vcpu *vcpu)
755 {
756 	return  lapic_in_kernel(vcpu) && enable_ipiv;
757 }
758 
759 #endif /* __KVM_X86_VMX_H */
760