xref: /linux/arch/x86/kvm/vmx/vmx.h (revision 9e7c9b8eb719835638ee74d93dccc2173581324c)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __KVM_X86_VMX_H
3 #define __KVM_X86_VMX_H
4 
5 #include <linux/kvm_host.h>
6 
7 #include <asm/kvm.h>
8 #include <asm/intel_pt.h>
9 
10 #include "capabilities.h"
11 #include "../kvm_cache_regs.h"
12 #include "posted_intr.h"
13 #include "vmcs.h"
14 #include "vmx_ops.h"
15 #include "../cpuid.h"
16 #include "run_flags.h"
17 
18 #define MSR_TYPE_R	1
19 #define MSR_TYPE_W	2
20 #define MSR_TYPE_RW	3
21 
22 #define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
23 
24 #ifdef CONFIG_X86_64
25 #define MAX_NR_USER_RETURN_MSRS	7
26 #else
27 #define MAX_NR_USER_RETURN_MSRS	4
28 #endif
29 
30 #define MAX_NR_LOADSTORE_MSRS	8
31 
32 struct vmx_msrs {
33 	unsigned int		nr;
34 	struct vmx_msr_entry	val[MAX_NR_LOADSTORE_MSRS];
35 };
36 
37 struct vmx_uret_msr {
38 	bool load_into_hardware;
39 	u64 data;
40 	u64 mask;
41 };
42 
43 enum segment_cache_field {
44 	SEG_FIELD_SEL = 0,
45 	SEG_FIELD_BASE = 1,
46 	SEG_FIELD_LIMIT = 2,
47 	SEG_FIELD_AR = 3,
48 
49 	SEG_FIELD_NR = 4
50 };
51 
52 #define RTIT_ADDR_RANGE		4
53 
54 struct pt_ctx {
55 	u64 ctl;
56 	u64 status;
57 	u64 output_base;
58 	u64 output_mask;
59 	u64 cr3_match;
60 	u64 addr_a[RTIT_ADDR_RANGE];
61 	u64 addr_b[RTIT_ADDR_RANGE];
62 };
63 
64 struct pt_desc {
65 	u64 ctl_bitmask;
66 	u32 num_address_ranges;
67 	u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES];
68 	struct pt_ctx host;
69 	struct pt_ctx guest;
70 };
71 
72 union vmx_exit_reason {
73 	struct {
74 		u32	basic			: 16;
75 		u32	reserved16		: 1;
76 		u32	reserved17		: 1;
77 		u32	reserved18		: 1;
78 		u32	reserved19		: 1;
79 		u32	reserved20		: 1;
80 		u32	reserved21		: 1;
81 		u32	reserved22		: 1;
82 		u32	reserved23		: 1;
83 		u32	reserved24		: 1;
84 		u32	reserved25		: 1;
85 		u32	bus_lock_detected	: 1;
86 		u32	enclave_mode		: 1;
87 		u32	smi_pending_mtf		: 1;
88 		u32	smi_from_vmx_root	: 1;
89 		u32	reserved30		: 1;
90 		u32	failed_vmentry		: 1;
91 	};
92 	u32 full;
93 };
94 
95 #define vcpu_to_lbr_desc(vcpu) (&to_vmx(vcpu)->lbr_desc)
96 #define vcpu_to_lbr_records(vcpu) (&to_vmx(vcpu)->lbr_desc.records)
97 
98 bool intel_pmu_lbr_is_compatible(struct kvm_vcpu *vcpu);
99 bool intel_pmu_lbr_is_enabled(struct kvm_vcpu *vcpu);
100 
101 int intel_pmu_create_guest_lbr_event(struct kvm_vcpu *vcpu);
102 void vmx_passthrough_lbr_msrs(struct kvm_vcpu *vcpu);
103 
104 struct lbr_desc {
105 	/* Basic info about guest LBR records. */
106 	struct x86_pmu_lbr records;
107 
108 	/*
109 	 * Emulate LBR feature via passthrough LBR registers when the
110 	 * per-vcpu guest LBR event is scheduled on the current pcpu.
111 	 *
112 	 * The records may be inaccurate if the host reclaims the LBR.
113 	 */
114 	struct perf_event *event;
115 
116 	/* True if LBRs are marked as not intercepted in the MSR bitmap */
117 	bool msr_passthrough;
118 };
119 
120 /*
121  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
122  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
123  */
124 struct nested_vmx {
125 	/* Has the level1 guest done vmxon? */
126 	bool vmxon;
127 	gpa_t vmxon_ptr;
128 	bool pml_full;
129 
130 	/* The guest-physical address of the current VMCS L1 keeps for L2 */
131 	gpa_t current_vmptr;
132 	/*
133 	 * Cache of the guest's VMCS, existing outside of guest memory.
134 	 * Loaded from guest memory during VMPTRLD. Flushed to guest
135 	 * memory during VMCLEAR and VMPTRLD.
136 	 */
137 	struct vmcs12 *cached_vmcs12;
138 	/*
139 	 * Cache of the guest's shadow VMCS, existing outside of guest
140 	 * memory. Loaded from guest memory during VM entry. Flushed
141 	 * to guest memory during VM exit.
142 	 */
143 	struct vmcs12 *cached_shadow_vmcs12;
144 
145 	/*
146 	 * GPA to HVA cache for accessing vmcs12->vmcs_link_pointer
147 	 */
148 	struct gfn_to_hva_cache shadow_vmcs12_cache;
149 
150 	/*
151 	 * GPA to HVA cache for VMCS12
152 	 */
153 	struct gfn_to_hva_cache vmcs12_cache;
154 
155 	/*
156 	 * Indicates if the shadow vmcs or enlightened vmcs must be updated
157 	 * with the data held by struct vmcs12.
158 	 */
159 	bool need_vmcs12_to_shadow_sync;
160 	bool dirty_vmcs12;
161 
162 	/*
163 	 * Indicates whether MSR bitmap for L2 needs to be rebuilt due to
164 	 * changes in MSR bitmap for L1 or switching to a different L2. Note,
165 	 * this flag can only be used reliably in conjunction with a paravirt L1
166 	 * which informs L0 whether any changes to MSR bitmap for L2 were done
167 	 * on its side.
168 	 */
169 	bool force_msr_bitmap_recalc;
170 
171 	/*
172 	 * Indicates lazily loaded guest state has not yet been decached from
173 	 * vmcs02.
174 	 */
175 	bool need_sync_vmcs02_to_vmcs12_rare;
176 
177 	/*
178 	 * vmcs02 has been initialized, i.e. state that is constant for
179 	 * vmcs02 has been written to the backing VMCS.  Initialization
180 	 * is delayed until L1 actually attempts to run a nested VM.
181 	 */
182 	bool vmcs02_initialized;
183 
184 	bool change_vmcs01_virtual_apic_mode;
185 	bool reload_vmcs01_apic_access_page;
186 	bool update_vmcs01_cpu_dirty_logging;
187 	bool update_vmcs01_apicv_status;
188 
189 	/*
190 	 * Enlightened VMCS has been enabled. It does not mean that L1 has to
191 	 * use it. However, VMX features available to L1 will be limited based
192 	 * on what the enlightened VMCS supports.
193 	 */
194 	bool enlightened_vmcs_enabled;
195 
196 	/* L2 must run next, and mustn't decide to exit to L1. */
197 	bool nested_run_pending;
198 
199 	/* Pending MTF VM-exit into L1.  */
200 	bool mtf_pending;
201 
202 	struct loaded_vmcs vmcs02;
203 
204 	/*
205 	 * Guest pages referred to in the vmcs02 with host-physical
206 	 * pointers, so we must keep them pinned while L2 runs.
207 	 */
208 	struct page *apic_access_page;
209 	struct kvm_host_map virtual_apic_map;
210 	struct kvm_host_map pi_desc_map;
211 
212 	struct kvm_host_map msr_bitmap_map;
213 
214 	struct pi_desc *pi_desc;
215 	bool pi_pending;
216 	u16 posted_intr_nv;
217 
218 	struct hrtimer preemption_timer;
219 	u64 preemption_timer_deadline;
220 	bool has_preemption_timer_deadline;
221 	bool preemption_timer_expired;
222 
223 	/* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
224 	u64 vmcs01_debugctl;
225 	u64 vmcs01_guest_bndcfgs;
226 
227 	/* to migrate it to L1 if L2 writes to L1's CR8 directly */
228 	int l1_tpr_threshold;
229 
230 	u16 vpid02;
231 	u16 last_vpid;
232 
233 	struct nested_vmx_msrs msrs;
234 
235 	/* SMM related state */
236 	struct {
237 		/* in VMX operation on SMM entry? */
238 		bool vmxon;
239 		/* in guest mode on SMM entry? */
240 		bool guest_mode;
241 	} smm;
242 
243 	gpa_t hv_evmcs_vmptr;
244 	struct kvm_host_map hv_evmcs_map;
245 	struct hv_enlightened_vmcs *hv_evmcs;
246 };
247 
248 struct vcpu_vmx {
249 	struct kvm_vcpu       vcpu;
250 	u8                    fail;
251 	u8		      x2apic_msr_bitmap_mode;
252 
253 	/*
254 	 * If true, host state has been stored in vmx->loaded_vmcs for
255 	 * the CPU registers that only need to be switched when transitioning
256 	 * to/from the kernel, and the registers have been loaded with guest
257 	 * values.  If false, host state is loaded in the CPU registers
258 	 * and vmx->loaded_vmcs->host_state is invalid.
259 	 */
260 	bool		      guest_state_loaded;
261 
262 	unsigned long         exit_qualification;
263 	u32                   exit_intr_info;
264 	u32                   idt_vectoring_info;
265 	ulong                 rflags;
266 
267 	/*
268 	 * User return MSRs are always emulated when enabled in the guest, but
269 	 * only loaded into hardware when necessary, e.g. SYSCALL #UDs outside
270 	 * of 64-bit mode or if EFER.SCE=1, thus the SYSCALL MSRs don't need to
271 	 * be loaded into hardware if those conditions aren't met.
272 	 */
273 	struct vmx_uret_msr   guest_uret_msrs[MAX_NR_USER_RETURN_MSRS];
274 	bool                  guest_uret_msrs_loaded;
275 #ifdef CONFIG_X86_64
276 	u64		      msr_host_kernel_gs_base;
277 	u64		      msr_guest_kernel_gs_base;
278 #endif
279 
280 	u64		      spec_ctrl;
281 	u32		      msr_ia32_umwait_control;
282 
283 	/*
284 	 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
285 	 * non-nested (L1) guest, it always points to vmcs01. For a nested
286 	 * guest (L2), it points to a different VMCS.
287 	 */
288 	struct loaded_vmcs    vmcs01;
289 	struct loaded_vmcs   *loaded_vmcs;
290 
291 	struct msr_autoload {
292 		struct vmx_msrs guest;
293 		struct vmx_msrs host;
294 	} msr_autoload;
295 
296 	struct msr_autostore {
297 		struct vmx_msrs guest;
298 	} msr_autostore;
299 
300 	struct {
301 		int vm86_active;
302 		ulong save_rflags;
303 		struct kvm_segment segs[8];
304 	} rmode;
305 	struct {
306 		u32 bitmask; /* 4 bits per segment (1 bit per field) */
307 		struct kvm_save_segment {
308 			u16 selector;
309 			unsigned long base;
310 			u32 limit;
311 			u32 ar;
312 		} seg[8];
313 	} segment_cache;
314 	int vpid;
315 	bool emulation_required;
316 
317 	union vmx_exit_reason exit_reason;
318 
319 	/* Posted interrupt descriptor */
320 	struct pi_desc pi_desc;
321 
322 	/* Used if this vCPU is waiting for PI notification wakeup. */
323 	struct list_head pi_wakeup_list;
324 
325 	/* Support for a guest hypervisor (nested VMX) */
326 	struct nested_vmx nested;
327 
328 	/* Dynamic PLE window. */
329 	unsigned int ple_window;
330 	bool ple_window_dirty;
331 
332 	bool req_immediate_exit;
333 
334 	/* Support for PML */
335 #define PML_ENTITY_NUM		512
336 	struct page *pml_pg;
337 
338 	/* apic deadline value in host tsc */
339 	u64 hv_deadline_tsc;
340 
341 	unsigned long host_debugctlmsr;
342 
343 	/*
344 	 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
345 	 * msr_ia32_feature_control. FEAT_CTL_LOCKED is always included
346 	 * in msr_ia32_feature_control_valid_bits.
347 	 */
348 	u64 msr_ia32_feature_control;
349 	u64 msr_ia32_feature_control_valid_bits;
350 	/* SGX Launch Control public key hash */
351 	u64 msr_ia32_sgxlepubkeyhash[4];
352 	u64 msr_ia32_mcu_opt_ctrl;
353 	bool disable_fb_clear;
354 
355 	struct pt_desc pt_desc;
356 	struct lbr_desc lbr_desc;
357 
358 	/* Save desired MSR intercept (read: pass-through) state */
359 #define MAX_POSSIBLE_PASSTHROUGH_MSRS	15
360 	struct {
361 		DECLARE_BITMAP(read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
362 		DECLARE_BITMAP(write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
363 	} shadow_msr_intercept;
364 };
365 
366 struct kvm_vmx {
367 	struct kvm kvm;
368 
369 	unsigned int tss_addr;
370 	bool ept_identity_pagetable_done;
371 	gpa_t ept_identity_map_addr;
372 };
373 
374 bool nested_vmx_allowed(struct kvm_vcpu *vcpu);
375 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
376 			struct loaded_vmcs *buddy);
377 int allocate_vpid(void);
378 void free_vpid(int vpid);
379 void vmx_set_constant_host_state(struct vcpu_vmx *vmx);
380 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu);
381 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
382 			unsigned long fs_base, unsigned long gs_base);
383 int vmx_get_cpl(struct kvm_vcpu *vcpu);
384 bool vmx_emulation_required(struct kvm_vcpu *vcpu);
385 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu);
386 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
387 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu);
388 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask);
389 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer);
390 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
391 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
392 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx);
393 void ept_save_pdptrs(struct kvm_vcpu *vcpu);
394 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
395 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
396 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level);
397 
398 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu);
399 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu);
400 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu);
401 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu);
402 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
403 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
404 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu);
405 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr);
406 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu);
407 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp);
408 void vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, unsigned int flags);
409 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx);
410 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs,
411 		    unsigned int flags);
412 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr);
413 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu);
414 
415 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
416 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
417 
418 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu);
419 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu);
420 
421 static inline void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr,
422 					     int type, bool value)
423 {
424 	if (value)
425 		vmx_enable_intercept_for_msr(vcpu, msr, type);
426 	else
427 		vmx_disable_intercept_for_msr(vcpu, msr, type);
428 }
429 
430 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu);
431 
432 /*
433  * Note, early Intel manuals have the write-low and read-high bitmap offsets
434  * the wrong way round.  The bitmaps control MSRs 0x00000000-0x00001fff and
435  * 0xc0000000-0xc0001fff.  The former (low) uses bytes 0-0x3ff for reads and
436  * 0x800-0xbff for writes.  The latter (high) uses 0x400-0x7ff for reads and
437  * 0xc00-0xfff for writes.  MSRs not covered by either of the ranges always
438  * VM-Exit.
439  */
440 #define __BUILD_VMX_MSR_BITMAP_HELPER(rtype, action, bitop, access, base)      \
441 static inline rtype vmx_##action##_msr_bitmap_##access(unsigned long *bitmap,  \
442 						       u32 msr)		       \
443 {									       \
444 	int f = sizeof(unsigned long);					       \
445 									       \
446 	if (msr <= 0x1fff)						       \
447 		return bitop##_bit(msr, bitmap + base / f);		       \
448 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))		       \
449 		return bitop##_bit(msr & 0x1fff, bitmap + (base + 0x400) / f); \
450 	return (rtype)true;						       \
451 }
452 #define BUILD_VMX_MSR_BITMAP_HELPERS(ret_type, action, bitop)		       \
453 	__BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, read,  0x0)     \
454 	__BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, write, 0x800)
455 
456 BUILD_VMX_MSR_BITMAP_HELPERS(bool, test, test)
457 BUILD_VMX_MSR_BITMAP_HELPERS(void, clear, __clear)
458 BUILD_VMX_MSR_BITMAP_HELPERS(void, set, __set)
459 
460 static inline u8 vmx_get_rvi(void)
461 {
462 	return vmcs_read16(GUEST_INTR_STATUS) & 0xff;
463 }
464 
465 #define BUILD_CONTROLS_SHADOW(lname, uname)				    \
466 static inline void lname##_controls_set(struct vcpu_vmx *vmx, u32 val)	    \
467 {									    \
468 	if (vmx->loaded_vmcs->controls_shadow.lname != val) {		    \
469 		vmcs_write32(uname, val);				    \
470 		vmx->loaded_vmcs->controls_shadow.lname = val;		    \
471 	}								    \
472 }									    \
473 static inline u32 __##lname##_controls_get(struct loaded_vmcs *vmcs)	    \
474 {									    \
475 	return vmcs->controls_shadow.lname;				    \
476 }									    \
477 static inline u32 lname##_controls_get(struct vcpu_vmx *vmx)		    \
478 {									    \
479 	return __##lname##_controls_get(vmx->loaded_vmcs);		    \
480 }									    \
481 static inline void lname##_controls_setbit(struct vcpu_vmx *vmx, u32 val)   \
482 {									    \
483 	lname##_controls_set(vmx, lname##_controls_get(vmx) | val);	    \
484 }									    \
485 static inline void lname##_controls_clearbit(struct vcpu_vmx *vmx, u32 val) \
486 {									    \
487 	lname##_controls_set(vmx, lname##_controls_get(vmx) & ~val);	    \
488 }
489 BUILD_CONTROLS_SHADOW(vm_entry, VM_ENTRY_CONTROLS)
490 BUILD_CONTROLS_SHADOW(vm_exit, VM_EXIT_CONTROLS)
491 BUILD_CONTROLS_SHADOW(pin, PIN_BASED_VM_EXEC_CONTROL)
492 BUILD_CONTROLS_SHADOW(exec, CPU_BASED_VM_EXEC_CONTROL)
493 BUILD_CONTROLS_SHADOW(secondary_exec, SECONDARY_VM_EXEC_CONTROL)
494 
495 /*
496  * VMX_REGS_LAZY_LOAD_SET - The set of registers that will be updated in the
497  * cache on demand.  Other registers not listed here are synced to
498  * the cache immediately after VM-Exit.
499  */
500 #define VMX_REGS_LAZY_LOAD_SET	((1 << VCPU_REGS_RIP) |         \
501 				(1 << VCPU_REGS_RSP) |          \
502 				(1 << VCPU_EXREG_RFLAGS) |      \
503 				(1 << VCPU_EXREG_PDPTR) |       \
504 				(1 << VCPU_EXREG_SEGMENTS) |    \
505 				(1 << VCPU_EXREG_CR0) |         \
506 				(1 << VCPU_EXREG_CR3) |         \
507 				(1 << VCPU_EXREG_CR4) |         \
508 				(1 << VCPU_EXREG_EXIT_INFO_1) | \
509 				(1 << VCPU_EXREG_EXIT_INFO_2))
510 
511 static inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm)
512 {
513 	return container_of(kvm, struct kvm_vmx, kvm);
514 }
515 
516 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
517 {
518 	return container_of(vcpu, struct vcpu_vmx, vcpu);
519 }
520 
521 static inline unsigned long vmx_get_exit_qual(struct kvm_vcpu *vcpu)
522 {
523 	struct vcpu_vmx *vmx = to_vmx(vcpu);
524 
525 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_EXIT_INFO_1)) {
526 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
527 		vmx->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
528 	}
529 	return vmx->exit_qualification;
530 }
531 
532 static inline u32 vmx_get_intr_info(struct kvm_vcpu *vcpu)
533 {
534 	struct vcpu_vmx *vmx = to_vmx(vcpu);
535 
536 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_EXIT_INFO_2)) {
537 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
538 		vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
539 	}
540 	return vmx->exit_intr_info;
541 }
542 
543 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags);
544 void free_vmcs(struct vmcs *vmcs);
545 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
546 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
547 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs);
548 
549 static inline struct vmcs *alloc_vmcs(bool shadow)
550 {
551 	return alloc_vmcs_cpu(shadow, raw_smp_processor_id(),
552 			      GFP_KERNEL_ACCOUNT);
553 }
554 
555 static inline bool vmx_has_waitpkg(struct vcpu_vmx *vmx)
556 {
557 	return secondary_exec_controls_get(vmx) &
558 		SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
559 }
560 
561 static inline bool vmx_need_pf_intercept(struct kvm_vcpu *vcpu)
562 {
563 	if (!enable_ept)
564 		return true;
565 
566 	return allow_smaller_maxphyaddr && cpuid_maxphyaddr(vcpu) < boot_cpu_data.x86_phys_bits;
567 }
568 
569 static inline bool is_unrestricted_guest(struct kvm_vcpu *vcpu)
570 {
571 	return enable_unrestricted_guest && (!is_guest_mode(vcpu) ||
572 	    (secondary_exec_controls_get(to_vmx(vcpu)) &
573 	    SECONDARY_EXEC_UNRESTRICTED_GUEST));
574 }
575 
576 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu);
577 static inline bool vmx_guest_state_valid(struct kvm_vcpu *vcpu)
578 {
579 	return is_unrestricted_guest(vcpu) || __vmx_guest_state_valid(vcpu);
580 }
581 
582 void dump_vmcs(struct kvm_vcpu *vcpu);
583 
584 static inline int vmx_get_instr_info_reg2(u32 vmx_instr_info)
585 {
586 	return (vmx_instr_info >> 28) & 0xf;
587 }
588 
589 #endif /* __KVM_X86_VMX_H */
590