xref: /linux/arch/x86/kvm/vmx/vmx.h (revision 6a9a092eb25851e16ecacc04ca2b155635d4e52f)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __KVM_X86_VMX_H
3 #define __KVM_X86_VMX_H
4 
5 #include <linux/kvm_host.h>
6 
7 #include <asm/kvm.h>
8 #include <asm/intel_pt.h>
9 #include <asm/perf_event.h>
10 
11 #include "capabilities.h"
12 #include "../kvm_cache_regs.h"
13 #include "posted_intr.h"
14 #include "vmcs.h"
15 #include "vmx_ops.h"
16 #include "../cpuid.h"
17 #include "run_flags.h"
18 
19 #define MSR_TYPE_R	1
20 #define MSR_TYPE_W	2
21 #define MSR_TYPE_RW	3
22 
23 #define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
24 
25 #ifdef CONFIG_X86_64
26 #define MAX_NR_USER_RETURN_MSRS	7
27 #else
28 #define MAX_NR_USER_RETURN_MSRS	4
29 #endif
30 
31 #define MAX_NR_LOADSTORE_MSRS	8
32 
33 struct vmx_msrs {
34 	unsigned int		nr;
35 	struct vmx_msr_entry	val[MAX_NR_LOADSTORE_MSRS];
36 };
37 
38 struct vmx_uret_msr {
39 	bool load_into_hardware;
40 	u64 data;
41 	u64 mask;
42 };
43 
44 enum segment_cache_field {
45 	SEG_FIELD_SEL = 0,
46 	SEG_FIELD_BASE = 1,
47 	SEG_FIELD_LIMIT = 2,
48 	SEG_FIELD_AR = 3,
49 
50 	SEG_FIELD_NR = 4
51 };
52 
53 #define RTIT_ADDR_RANGE		4
54 
55 struct pt_ctx {
56 	u64 ctl;
57 	u64 status;
58 	u64 output_base;
59 	u64 output_mask;
60 	u64 cr3_match;
61 	u64 addr_a[RTIT_ADDR_RANGE];
62 	u64 addr_b[RTIT_ADDR_RANGE];
63 };
64 
65 struct pt_desc {
66 	u64 ctl_bitmask;
67 	u32 num_address_ranges;
68 	u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES];
69 	struct pt_ctx host;
70 	struct pt_ctx guest;
71 };
72 
73 union vmx_exit_reason {
74 	struct {
75 		u32	basic			: 16;
76 		u32	reserved16		: 1;
77 		u32	reserved17		: 1;
78 		u32	reserved18		: 1;
79 		u32	reserved19		: 1;
80 		u32	reserved20		: 1;
81 		u32	reserved21		: 1;
82 		u32	reserved22		: 1;
83 		u32	reserved23		: 1;
84 		u32	reserved24		: 1;
85 		u32	reserved25		: 1;
86 		u32	bus_lock_detected	: 1;
87 		u32	enclave_mode		: 1;
88 		u32	smi_pending_mtf		: 1;
89 		u32	smi_from_vmx_root	: 1;
90 		u32	reserved30		: 1;
91 		u32	failed_vmentry		: 1;
92 	};
93 	u32 full;
94 };
95 
96 static inline bool intel_pmu_has_perf_global_ctrl(struct kvm_pmu *pmu)
97 {
98 	/*
99 	 * Architecturally, Intel's SDM states that IA32_PERF_GLOBAL_CTRL is
100 	 * supported if "CPUID.0AH: EAX[7:0] > 0", i.e. if the PMU version is
101 	 * greater than zero.  However, KVM only exposes and emulates the MSR
102 	 * to/for the guest if the guest PMU supports at least "Architectural
103 	 * Performance Monitoring Version 2".
104 	 */
105 	return pmu->version > 1;
106 }
107 
108 struct lbr_desc {
109 	/* Basic info about guest LBR records. */
110 	struct x86_pmu_lbr records;
111 
112 	/*
113 	 * Emulate LBR feature via passthrough LBR registers when the
114 	 * per-vcpu guest LBR event is scheduled on the current pcpu.
115 	 *
116 	 * The records may be inaccurate if the host reclaims the LBR.
117 	 */
118 	struct perf_event *event;
119 
120 	/* True if LBRs are marked as not intercepted in the MSR bitmap */
121 	bool msr_passthrough;
122 };
123 
124 /*
125  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
126  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
127  */
128 struct nested_vmx {
129 	/* Has the level1 guest done vmxon? */
130 	bool vmxon;
131 	gpa_t vmxon_ptr;
132 	bool pml_full;
133 
134 	/* The guest-physical address of the current VMCS L1 keeps for L2 */
135 	gpa_t current_vmptr;
136 	/*
137 	 * Cache of the guest's VMCS, existing outside of guest memory.
138 	 * Loaded from guest memory during VMPTRLD. Flushed to guest
139 	 * memory during VMCLEAR and VMPTRLD.
140 	 */
141 	struct vmcs12 *cached_vmcs12;
142 	/*
143 	 * Cache of the guest's shadow VMCS, existing outside of guest
144 	 * memory. Loaded from guest memory during VM entry. Flushed
145 	 * to guest memory during VM exit.
146 	 */
147 	struct vmcs12 *cached_shadow_vmcs12;
148 
149 	/*
150 	 * GPA to HVA cache for accessing vmcs12->vmcs_link_pointer
151 	 */
152 	struct gfn_to_hva_cache shadow_vmcs12_cache;
153 
154 	/*
155 	 * GPA to HVA cache for VMCS12
156 	 */
157 	struct gfn_to_hva_cache vmcs12_cache;
158 
159 	/*
160 	 * Indicates if the shadow vmcs or enlightened vmcs must be updated
161 	 * with the data held by struct vmcs12.
162 	 */
163 	bool need_vmcs12_to_shadow_sync;
164 	bool dirty_vmcs12;
165 
166 	/*
167 	 * Indicates whether MSR bitmap for L2 needs to be rebuilt due to
168 	 * changes in MSR bitmap for L1 or switching to a different L2. Note,
169 	 * this flag can only be used reliably in conjunction with a paravirt L1
170 	 * which informs L0 whether any changes to MSR bitmap for L2 were done
171 	 * on its side.
172 	 */
173 	bool force_msr_bitmap_recalc;
174 
175 	/*
176 	 * Indicates lazily loaded guest state has not yet been decached from
177 	 * vmcs02.
178 	 */
179 	bool need_sync_vmcs02_to_vmcs12_rare;
180 
181 	/*
182 	 * vmcs02 has been initialized, i.e. state that is constant for
183 	 * vmcs02 has been written to the backing VMCS.  Initialization
184 	 * is delayed until L1 actually attempts to run a nested VM.
185 	 */
186 	bool vmcs02_initialized;
187 
188 	bool change_vmcs01_virtual_apic_mode;
189 	bool reload_vmcs01_apic_access_page;
190 	bool update_vmcs01_cpu_dirty_logging;
191 	bool update_vmcs01_apicv_status;
192 
193 	/*
194 	 * Enlightened VMCS has been enabled. It does not mean that L1 has to
195 	 * use it. However, VMX features available to L1 will be limited based
196 	 * on what the enlightened VMCS supports.
197 	 */
198 	bool enlightened_vmcs_enabled;
199 
200 	/* L2 must run next, and mustn't decide to exit to L1. */
201 	bool nested_run_pending;
202 
203 	/* Pending MTF VM-exit into L1.  */
204 	bool mtf_pending;
205 
206 	struct loaded_vmcs vmcs02;
207 
208 	/*
209 	 * Guest pages referred to in the vmcs02 with host-physical
210 	 * pointers, so we must keep them pinned while L2 runs.
211 	 */
212 	struct kvm_host_map apic_access_page_map;
213 	struct kvm_host_map virtual_apic_map;
214 	struct kvm_host_map pi_desc_map;
215 
216 	struct kvm_host_map msr_bitmap_map;
217 
218 	struct pi_desc *pi_desc;
219 	bool pi_pending;
220 	u16 posted_intr_nv;
221 
222 	struct hrtimer preemption_timer;
223 	u64 preemption_timer_deadline;
224 	bool has_preemption_timer_deadline;
225 	bool preemption_timer_expired;
226 
227 	/*
228 	 * Used to snapshot MSRs that are conditionally loaded on VM-Enter in
229 	 * order to propagate the guest's pre-VM-Enter value into vmcs02.  For
230 	 * emulation of VMLAUNCH/VMRESUME, the snapshot will be of L1's value.
231 	 * For KVM_SET_NESTED_STATE, the snapshot is of L2's value, _if_
232 	 * userspace restores MSRs before nested state.  If userspace restores
233 	 * MSRs after nested state, the snapshot holds garbage, but KVM can't
234 	 * detect that, and the garbage value in vmcs02 will be overwritten by
235 	 * MSR restoration in any case.
236 	 */
237 	u64 pre_vmenter_debugctl;
238 	u64 pre_vmenter_bndcfgs;
239 
240 	/* to migrate it to L1 if L2 writes to L1's CR8 directly */
241 	int l1_tpr_threshold;
242 
243 	u16 vpid02;
244 	u16 last_vpid;
245 
246 	struct nested_vmx_msrs msrs;
247 
248 	/* SMM related state */
249 	struct {
250 		/* in VMX operation on SMM entry? */
251 		bool vmxon;
252 		/* in guest mode on SMM entry? */
253 		bool guest_mode;
254 	} smm;
255 
256 	gpa_t hv_evmcs_vmptr;
257 	struct kvm_host_map hv_evmcs_map;
258 	struct hv_enlightened_vmcs *hv_evmcs;
259 };
260 
261 struct vcpu_vmx {
262 	struct kvm_vcpu       vcpu;
263 	u8                    fail;
264 	u8		      x2apic_msr_bitmap_mode;
265 
266 	/*
267 	 * If true, host state has been stored in vmx->loaded_vmcs for
268 	 * the CPU registers that only need to be switched when transitioning
269 	 * to/from the kernel, and the registers have been loaded with guest
270 	 * values.  If false, host state is loaded in the CPU registers
271 	 * and vmx->loaded_vmcs->host_state is invalid.
272 	 */
273 	bool		      guest_state_loaded;
274 
275 	unsigned long         exit_qualification;
276 	u32                   exit_intr_info;
277 	u32                   idt_vectoring_info;
278 	ulong                 rflags;
279 
280 	/*
281 	 * User return MSRs are always emulated when enabled in the guest, but
282 	 * only loaded into hardware when necessary, e.g. SYSCALL #UDs outside
283 	 * of 64-bit mode or if EFER.SCE=1, thus the SYSCALL MSRs don't need to
284 	 * be loaded into hardware if those conditions aren't met.
285 	 */
286 	struct vmx_uret_msr   guest_uret_msrs[MAX_NR_USER_RETURN_MSRS];
287 	bool                  guest_uret_msrs_loaded;
288 #ifdef CONFIG_X86_64
289 	u64		      msr_host_kernel_gs_base;
290 	u64		      msr_guest_kernel_gs_base;
291 #endif
292 
293 	u64		      spec_ctrl;
294 	u32		      msr_ia32_umwait_control;
295 
296 	/*
297 	 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
298 	 * non-nested (L1) guest, it always points to vmcs01. For a nested
299 	 * guest (L2), it points to a different VMCS.
300 	 */
301 	struct loaded_vmcs    vmcs01;
302 	struct loaded_vmcs   *loaded_vmcs;
303 
304 	struct msr_autoload {
305 		struct vmx_msrs guest;
306 		struct vmx_msrs host;
307 	} msr_autoload;
308 
309 	struct msr_autostore {
310 		struct vmx_msrs guest;
311 	} msr_autostore;
312 
313 	struct {
314 		int vm86_active;
315 		ulong save_rflags;
316 		struct kvm_segment segs[8];
317 	} rmode;
318 	struct {
319 		u32 bitmask; /* 4 bits per segment (1 bit per field) */
320 		struct kvm_save_segment {
321 			u16 selector;
322 			unsigned long base;
323 			u32 limit;
324 			u32 ar;
325 		} seg[8];
326 	} segment_cache;
327 	int vpid;
328 	bool emulation_required;
329 
330 	union vmx_exit_reason exit_reason;
331 
332 	/* Posted interrupt descriptor */
333 	struct pi_desc pi_desc;
334 
335 	/* Used if this vCPU is waiting for PI notification wakeup. */
336 	struct list_head pi_wakeup_list;
337 
338 	/* Support for a guest hypervisor (nested VMX) */
339 	struct nested_vmx nested;
340 
341 	/* Dynamic PLE window. */
342 	unsigned int ple_window;
343 	bool ple_window_dirty;
344 
345 	bool req_immediate_exit;
346 
347 	/* Support for PML */
348 #define PML_ENTITY_NUM		512
349 	struct page *pml_pg;
350 
351 	/* apic deadline value in host tsc */
352 	u64 hv_deadline_tsc;
353 
354 	unsigned long host_debugctlmsr;
355 
356 	/*
357 	 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
358 	 * msr_ia32_feature_control. FEAT_CTL_LOCKED is always included
359 	 * in msr_ia32_feature_control_valid_bits.
360 	 */
361 	u64 msr_ia32_feature_control;
362 	u64 msr_ia32_feature_control_valid_bits;
363 	/* SGX Launch Control public key hash */
364 	u64 msr_ia32_sgxlepubkeyhash[4];
365 	u64 msr_ia32_mcu_opt_ctrl;
366 	bool disable_fb_clear;
367 
368 	struct pt_desc pt_desc;
369 	struct lbr_desc lbr_desc;
370 
371 	/* Save desired MSR intercept (read: pass-through) state */
372 #define MAX_POSSIBLE_PASSTHROUGH_MSRS	16
373 	struct {
374 		DECLARE_BITMAP(read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
375 		DECLARE_BITMAP(write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
376 	} shadow_msr_intercept;
377 };
378 
379 struct kvm_vmx {
380 	struct kvm kvm;
381 
382 	unsigned int tss_addr;
383 	bool ept_identity_pagetable_done;
384 	gpa_t ept_identity_map_addr;
385 	/* Posted Interrupt Descriptor (PID) table for IPI virtualization */
386 	u64 *pid_table;
387 };
388 
389 bool nested_vmx_allowed(struct kvm_vcpu *vcpu);
390 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
391 			struct loaded_vmcs *buddy);
392 int allocate_vpid(void);
393 void free_vpid(int vpid);
394 void vmx_set_constant_host_state(struct vcpu_vmx *vmx);
395 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu);
396 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
397 			unsigned long fs_base, unsigned long gs_base);
398 int vmx_get_cpl(struct kvm_vcpu *vcpu);
399 bool vmx_emulation_required(struct kvm_vcpu *vcpu);
400 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu);
401 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
402 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu);
403 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask);
404 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer);
405 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
406 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
407 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx);
408 void ept_save_pdptrs(struct kvm_vcpu *vcpu);
409 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
410 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
411 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level);
412 
413 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu);
414 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu);
415 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu);
416 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu);
417 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
418 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
419 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu);
420 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr);
421 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu);
422 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp);
423 void vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, unsigned int flags);
424 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx);
425 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs,
426 		    unsigned int flags);
427 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr);
428 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu);
429 
430 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
431 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
432 
433 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu);
434 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu);
435 
436 static inline void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr,
437 					     int type, bool value)
438 {
439 	if (value)
440 		vmx_enable_intercept_for_msr(vcpu, msr, type);
441 	else
442 		vmx_disable_intercept_for_msr(vcpu, msr, type);
443 }
444 
445 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu);
446 
447 /*
448  * Note, early Intel manuals have the write-low and read-high bitmap offsets
449  * the wrong way round.  The bitmaps control MSRs 0x00000000-0x00001fff and
450  * 0xc0000000-0xc0001fff.  The former (low) uses bytes 0-0x3ff for reads and
451  * 0x800-0xbff for writes.  The latter (high) uses 0x400-0x7ff for reads and
452  * 0xc00-0xfff for writes.  MSRs not covered by either of the ranges always
453  * VM-Exit.
454  */
455 #define __BUILD_VMX_MSR_BITMAP_HELPER(rtype, action, bitop, access, base)      \
456 static inline rtype vmx_##action##_msr_bitmap_##access(unsigned long *bitmap,  \
457 						       u32 msr)		       \
458 {									       \
459 	int f = sizeof(unsigned long);					       \
460 									       \
461 	if (msr <= 0x1fff)						       \
462 		return bitop##_bit(msr, bitmap + base / f);		       \
463 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))		       \
464 		return bitop##_bit(msr & 0x1fff, bitmap + (base + 0x400) / f); \
465 	return (rtype)true;						       \
466 }
467 #define BUILD_VMX_MSR_BITMAP_HELPERS(ret_type, action, bitop)		       \
468 	__BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, read,  0x0)     \
469 	__BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, write, 0x800)
470 
471 BUILD_VMX_MSR_BITMAP_HELPERS(bool, test, test)
472 BUILD_VMX_MSR_BITMAP_HELPERS(void, clear, __clear)
473 BUILD_VMX_MSR_BITMAP_HELPERS(void, set, __set)
474 
475 static inline u8 vmx_get_rvi(void)
476 {
477 	return vmcs_read16(GUEST_INTR_STATUS) & 0xff;
478 }
479 
480 #define __KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS				\
481 	(VM_ENTRY_LOAD_DEBUG_CONTROLS)
482 #ifdef CONFIG_X86_64
483 	#define KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS			\
484 		(__KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS |			\
485 		 VM_ENTRY_IA32E_MODE)
486 #else
487 	#define KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS			\
488 		__KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS
489 #endif
490 #define KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS				\
491 	(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |				\
492 	 VM_ENTRY_LOAD_IA32_PAT |					\
493 	 VM_ENTRY_LOAD_IA32_EFER |					\
494 	 VM_ENTRY_LOAD_BNDCFGS |					\
495 	 VM_ENTRY_PT_CONCEAL_PIP |					\
496 	 VM_ENTRY_LOAD_IA32_RTIT_CTL)
497 
498 #define __KVM_REQUIRED_VMX_VM_EXIT_CONTROLS				\
499 	(VM_EXIT_SAVE_DEBUG_CONTROLS |					\
500 	 VM_EXIT_ACK_INTR_ON_EXIT)
501 #ifdef CONFIG_X86_64
502 	#define KVM_REQUIRED_VMX_VM_EXIT_CONTROLS			\
503 		(__KVM_REQUIRED_VMX_VM_EXIT_CONTROLS |			\
504 		 VM_EXIT_HOST_ADDR_SPACE_SIZE)
505 #else
506 	#define KVM_REQUIRED_VMX_VM_EXIT_CONTROLS			\
507 		__KVM_REQUIRED_VMX_VM_EXIT_CONTROLS
508 #endif
509 #define KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS				\
510 	      (VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |			\
511 	       VM_EXIT_SAVE_IA32_PAT |					\
512 	       VM_EXIT_LOAD_IA32_PAT |					\
513 	       VM_EXIT_SAVE_IA32_EFER |					\
514 	       VM_EXIT_SAVE_VMX_PREEMPTION_TIMER |			\
515 	       VM_EXIT_LOAD_IA32_EFER |					\
516 	       VM_EXIT_CLEAR_BNDCFGS |					\
517 	       VM_EXIT_PT_CONCEAL_PIP |					\
518 	       VM_EXIT_CLEAR_IA32_RTIT_CTL)
519 
520 #define KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL			\
521 	(PIN_BASED_EXT_INTR_MASK |					\
522 	 PIN_BASED_NMI_EXITING)
523 #define KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL			\
524 	(PIN_BASED_VIRTUAL_NMIS |					\
525 	 PIN_BASED_POSTED_INTR |					\
526 	 PIN_BASED_VMX_PREEMPTION_TIMER)
527 
528 #define __KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL			\
529 	(CPU_BASED_HLT_EXITING |					\
530 	 CPU_BASED_CR3_LOAD_EXITING |					\
531 	 CPU_BASED_CR3_STORE_EXITING |					\
532 	 CPU_BASED_UNCOND_IO_EXITING |					\
533 	 CPU_BASED_MOV_DR_EXITING |					\
534 	 CPU_BASED_USE_TSC_OFFSETTING |					\
535 	 CPU_BASED_MWAIT_EXITING |					\
536 	 CPU_BASED_MONITOR_EXITING |					\
537 	 CPU_BASED_INVLPG_EXITING |					\
538 	 CPU_BASED_RDPMC_EXITING |					\
539 	 CPU_BASED_INTR_WINDOW_EXITING)
540 
541 #ifdef CONFIG_X86_64
542 	#define KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL		\
543 		(__KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL |		\
544 		 CPU_BASED_CR8_LOAD_EXITING |				\
545 		 CPU_BASED_CR8_STORE_EXITING)
546 #else
547 	#define KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL		\
548 		__KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL
549 #endif
550 
551 #define KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL			\
552 	(CPU_BASED_RDTSC_EXITING |					\
553 	 CPU_BASED_TPR_SHADOW |						\
554 	 CPU_BASED_USE_IO_BITMAPS |					\
555 	 CPU_BASED_MONITOR_TRAP_FLAG |					\
556 	 CPU_BASED_USE_MSR_BITMAPS |					\
557 	 CPU_BASED_NMI_WINDOW_EXITING |					\
558 	 CPU_BASED_PAUSE_EXITING |					\
559 	 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS |			\
560 	 CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
561 
562 #define KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL 0
563 #define KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL			\
564 	(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |			\
565 	 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |			\
566 	 SECONDARY_EXEC_WBINVD_EXITING |				\
567 	 SECONDARY_EXEC_ENABLE_VPID |					\
568 	 SECONDARY_EXEC_ENABLE_EPT |					\
569 	 SECONDARY_EXEC_UNRESTRICTED_GUEST |				\
570 	 SECONDARY_EXEC_PAUSE_LOOP_EXITING |				\
571 	 SECONDARY_EXEC_DESC |						\
572 	 SECONDARY_EXEC_ENABLE_RDTSCP |					\
573 	 SECONDARY_EXEC_ENABLE_INVPCID |				\
574 	 SECONDARY_EXEC_APIC_REGISTER_VIRT |				\
575 	 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |				\
576 	 SECONDARY_EXEC_SHADOW_VMCS |					\
577 	 SECONDARY_EXEC_XSAVES |					\
578 	 SECONDARY_EXEC_RDSEED_EXITING |				\
579 	 SECONDARY_EXEC_RDRAND_EXITING |				\
580 	 SECONDARY_EXEC_ENABLE_PML |					\
581 	 SECONDARY_EXEC_TSC_SCALING |					\
582 	 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |				\
583 	 SECONDARY_EXEC_PT_USE_GPA |					\
584 	 SECONDARY_EXEC_PT_CONCEAL_VMX |				\
585 	 SECONDARY_EXEC_ENABLE_VMFUNC |					\
586 	 SECONDARY_EXEC_BUS_LOCK_DETECTION |				\
587 	 SECONDARY_EXEC_NOTIFY_VM_EXITING |				\
588 	 SECONDARY_EXEC_ENCLS_EXITING)
589 
590 #define KVM_REQUIRED_VMX_TERTIARY_VM_EXEC_CONTROL 0
591 #define KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL			\
592 	(TERTIARY_EXEC_IPI_VIRT)
593 
594 #define BUILD_CONTROLS_SHADOW(lname, uname, bits)						\
595 static inline void lname##_controls_set(struct vcpu_vmx *vmx, u##bits val)			\
596 {												\
597 	if (vmx->loaded_vmcs->controls_shadow.lname != val) {					\
598 		vmcs_write##bits(uname, val);							\
599 		vmx->loaded_vmcs->controls_shadow.lname = val;					\
600 	}											\
601 }												\
602 static inline u##bits __##lname##_controls_get(struct loaded_vmcs *vmcs)			\
603 {												\
604 	return vmcs->controls_shadow.lname;							\
605 }												\
606 static inline u##bits lname##_controls_get(struct vcpu_vmx *vmx)				\
607 {												\
608 	return __##lname##_controls_get(vmx->loaded_vmcs);					\
609 }												\
610 static __always_inline void lname##_controls_setbit(struct vcpu_vmx *vmx, u##bits val)		\
611 {												\
612 	BUILD_BUG_ON(!(val & (KVM_REQUIRED_VMX_##uname | KVM_OPTIONAL_VMX_##uname)));		\
613 	lname##_controls_set(vmx, lname##_controls_get(vmx) | val);				\
614 }												\
615 static __always_inline void lname##_controls_clearbit(struct vcpu_vmx *vmx, u##bits val)	\
616 {												\
617 	BUILD_BUG_ON(!(val & (KVM_REQUIRED_VMX_##uname | KVM_OPTIONAL_VMX_##uname)));		\
618 	lname##_controls_set(vmx, lname##_controls_get(vmx) & ~val);				\
619 }
620 BUILD_CONTROLS_SHADOW(vm_entry, VM_ENTRY_CONTROLS, 32)
621 BUILD_CONTROLS_SHADOW(vm_exit, VM_EXIT_CONTROLS, 32)
622 BUILD_CONTROLS_SHADOW(pin, PIN_BASED_VM_EXEC_CONTROL, 32)
623 BUILD_CONTROLS_SHADOW(exec, CPU_BASED_VM_EXEC_CONTROL, 32)
624 BUILD_CONTROLS_SHADOW(secondary_exec, SECONDARY_VM_EXEC_CONTROL, 32)
625 BUILD_CONTROLS_SHADOW(tertiary_exec, TERTIARY_VM_EXEC_CONTROL, 64)
626 
627 /*
628  * VMX_REGS_LAZY_LOAD_SET - The set of registers that will be updated in the
629  * cache on demand.  Other registers not listed here are synced to
630  * the cache immediately after VM-Exit.
631  */
632 #define VMX_REGS_LAZY_LOAD_SET	((1 << VCPU_REGS_RIP) |         \
633 				(1 << VCPU_REGS_RSP) |          \
634 				(1 << VCPU_EXREG_RFLAGS) |      \
635 				(1 << VCPU_EXREG_PDPTR) |       \
636 				(1 << VCPU_EXREG_SEGMENTS) |    \
637 				(1 << VCPU_EXREG_CR0) |         \
638 				(1 << VCPU_EXREG_CR3) |         \
639 				(1 << VCPU_EXREG_CR4) |         \
640 				(1 << VCPU_EXREG_EXIT_INFO_1) | \
641 				(1 << VCPU_EXREG_EXIT_INFO_2))
642 
643 static inline unsigned long vmx_l1_guest_owned_cr0_bits(void)
644 {
645 	unsigned long bits = KVM_POSSIBLE_CR0_GUEST_BITS;
646 
647 	/*
648 	 * CR0.WP needs to be intercepted when KVM is shadowing legacy paging
649 	 * in order to construct shadow PTEs with the correct protections.
650 	 * Note!  CR0.WP technically can be passed through to the guest if
651 	 * paging is disabled, but checking CR0.PG would generate a cyclical
652 	 * dependency of sorts due to forcing the caller to ensure CR0 holds
653 	 * the correct value prior to determining which CR0 bits can be owned
654 	 * by L1.  Keep it simple and limit the optimization to EPT.
655 	 */
656 	if (!enable_ept)
657 		bits &= ~X86_CR0_WP;
658 	return bits;
659 }
660 
661 static __always_inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm)
662 {
663 	return container_of(kvm, struct kvm_vmx, kvm);
664 }
665 
666 static __always_inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
667 {
668 	return container_of(vcpu, struct vcpu_vmx, vcpu);
669 }
670 
671 static inline struct lbr_desc *vcpu_to_lbr_desc(struct kvm_vcpu *vcpu)
672 {
673 	return &to_vmx(vcpu)->lbr_desc;
674 }
675 
676 static inline struct x86_pmu_lbr *vcpu_to_lbr_records(struct kvm_vcpu *vcpu)
677 {
678 	return &vcpu_to_lbr_desc(vcpu)->records;
679 }
680 
681 static inline bool intel_pmu_lbr_is_enabled(struct kvm_vcpu *vcpu)
682 {
683 	return !!vcpu_to_lbr_records(vcpu)->nr;
684 }
685 
686 void intel_pmu_cross_mapped_check(struct kvm_pmu *pmu);
687 int intel_pmu_create_guest_lbr_event(struct kvm_vcpu *vcpu);
688 void vmx_passthrough_lbr_msrs(struct kvm_vcpu *vcpu);
689 
690 static __always_inline unsigned long vmx_get_exit_qual(struct kvm_vcpu *vcpu)
691 {
692 	struct vcpu_vmx *vmx = to_vmx(vcpu);
693 
694 	if (!kvm_register_test_and_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1))
695 		vmx->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
696 
697 	return vmx->exit_qualification;
698 }
699 
700 static __always_inline u32 vmx_get_intr_info(struct kvm_vcpu *vcpu)
701 {
702 	struct vcpu_vmx *vmx = to_vmx(vcpu);
703 
704 	if (!kvm_register_test_and_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2))
705 		vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
706 
707 	return vmx->exit_intr_info;
708 }
709 
710 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags);
711 void free_vmcs(struct vmcs *vmcs);
712 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
713 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
714 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs);
715 
716 static inline struct vmcs *alloc_vmcs(bool shadow)
717 {
718 	return alloc_vmcs_cpu(shadow, raw_smp_processor_id(),
719 			      GFP_KERNEL_ACCOUNT);
720 }
721 
722 static inline bool vmx_has_waitpkg(struct vcpu_vmx *vmx)
723 {
724 	return secondary_exec_controls_get(vmx) &
725 		SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
726 }
727 
728 static inline bool vmx_need_pf_intercept(struct kvm_vcpu *vcpu)
729 {
730 	if (!enable_ept)
731 		return true;
732 
733 	return allow_smaller_maxphyaddr && cpuid_maxphyaddr(vcpu) < boot_cpu_data.x86_phys_bits;
734 }
735 
736 static inline bool is_unrestricted_guest(struct kvm_vcpu *vcpu)
737 {
738 	return enable_unrestricted_guest && (!is_guest_mode(vcpu) ||
739 	    (secondary_exec_controls_get(to_vmx(vcpu)) &
740 	    SECONDARY_EXEC_UNRESTRICTED_GUEST));
741 }
742 
743 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu);
744 static inline bool vmx_guest_state_valid(struct kvm_vcpu *vcpu)
745 {
746 	return is_unrestricted_guest(vcpu) || __vmx_guest_state_valid(vcpu);
747 }
748 
749 void dump_vmcs(struct kvm_vcpu *vcpu);
750 
751 static inline int vmx_get_instr_info_reg2(u32 vmx_instr_info)
752 {
753 	return (vmx_instr_info >> 28) & 0xf;
754 }
755 
756 static inline bool vmx_can_use_ipiv(struct kvm_vcpu *vcpu)
757 {
758 	return  lapic_in_kernel(vcpu) && enable_ipiv;
759 }
760 
761 static inline bool guest_cpuid_has_evmcs(struct kvm_vcpu *vcpu)
762 {
763 	/*
764 	 * eVMCS is exposed to the guest if Hyper-V is enabled in CPUID and
765 	 * eVMCS has been explicitly enabled by userspace.
766 	 */
767 	return vcpu->arch.hyperv_enabled &&
768 	       to_vmx(vcpu)->nested.enlightened_vmcs_enabled;
769 }
770 
771 #endif /* __KVM_X86_VMX_H */
772