1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef __KVM_X86_VMX_H 3 #define __KVM_X86_VMX_H 4 5 #include <linux/kvm_host.h> 6 7 #include <asm/kvm.h> 8 #include <asm/intel_pt.h> 9 #include <asm/perf_event.h> 10 11 #include "capabilities.h" 12 #include "../kvm_cache_regs.h" 13 #include "posted_intr.h" 14 #include "vmcs.h" 15 #include "vmx_ops.h" 16 #include "../cpuid.h" 17 #include "run_flags.h" 18 19 #define MSR_TYPE_R 1 20 #define MSR_TYPE_W 2 21 #define MSR_TYPE_RW 3 22 23 #define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4)) 24 25 #ifdef CONFIG_X86_64 26 #define MAX_NR_USER_RETURN_MSRS 7 27 #else 28 #define MAX_NR_USER_RETURN_MSRS 4 29 #endif 30 31 #define MAX_NR_LOADSTORE_MSRS 8 32 33 struct vmx_msrs { 34 unsigned int nr; 35 struct vmx_msr_entry val[MAX_NR_LOADSTORE_MSRS]; 36 }; 37 38 struct vmx_uret_msr { 39 bool load_into_hardware; 40 u64 data; 41 u64 mask; 42 }; 43 44 enum segment_cache_field { 45 SEG_FIELD_SEL = 0, 46 SEG_FIELD_BASE = 1, 47 SEG_FIELD_LIMIT = 2, 48 SEG_FIELD_AR = 3, 49 50 SEG_FIELD_NR = 4 51 }; 52 53 #define RTIT_ADDR_RANGE 4 54 55 struct pt_ctx { 56 u64 ctl; 57 u64 status; 58 u64 output_base; 59 u64 output_mask; 60 u64 cr3_match; 61 u64 addr_a[RTIT_ADDR_RANGE]; 62 u64 addr_b[RTIT_ADDR_RANGE]; 63 }; 64 65 struct pt_desc { 66 u64 ctl_bitmask; 67 u32 num_address_ranges; 68 u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES]; 69 struct pt_ctx host; 70 struct pt_ctx guest; 71 }; 72 73 union vmx_exit_reason { 74 struct { 75 u32 basic : 16; 76 u32 reserved16 : 1; 77 u32 reserved17 : 1; 78 u32 reserved18 : 1; 79 u32 reserved19 : 1; 80 u32 reserved20 : 1; 81 u32 reserved21 : 1; 82 u32 reserved22 : 1; 83 u32 reserved23 : 1; 84 u32 reserved24 : 1; 85 u32 reserved25 : 1; 86 u32 bus_lock_detected : 1; 87 u32 enclave_mode : 1; 88 u32 smi_pending_mtf : 1; 89 u32 smi_from_vmx_root : 1; 90 u32 reserved30 : 1; 91 u32 failed_vmentry : 1; 92 }; 93 u32 full; 94 }; 95 96 static inline bool intel_pmu_has_perf_global_ctrl(struct kvm_pmu *pmu) 97 { 98 /* 99 * Architecturally, Intel's SDM states that IA32_PERF_GLOBAL_CTRL is 100 * supported if "CPUID.0AH: EAX[7:0] > 0", i.e. if the PMU version is 101 * greater than zero. However, KVM only exposes and emulates the MSR 102 * to/for the guest if the guest PMU supports at least "Architectural 103 * Performance Monitoring Version 2". 104 */ 105 return pmu->version > 1; 106 } 107 108 struct lbr_desc { 109 /* Basic info about guest LBR records. */ 110 struct x86_pmu_lbr records; 111 112 /* 113 * Emulate LBR feature via passthrough LBR registers when the 114 * per-vcpu guest LBR event is scheduled on the current pcpu. 115 * 116 * The records may be inaccurate if the host reclaims the LBR. 117 */ 118 struct perf_event *event; 119 120 /* True if LBRs are marked as not intercepted in the MSR bitmap */ 121 bool msr_passthrough; 122 }; 123 124 /* 125 * The nested_vmx structure is part of vcpu_vmx, and holds information we need 126 * for correct emulation of VMX (i.e., nested VMX) on this vcpu. 127 */ 128 struct nested_vmx { 129 /* Has the level1 guest done vmxon? */ 130 bool vmxon; 131 gpa_t vmxon_ptr; 132 bool pml_full; 133 134 /* The guest-physical address of the current VMCS L1 keeps for L2 */ 135 gpa_t current_vmptr; 136 /* 137 * Cache of the guest's VMCS, existing outside of guest memory. 138 * Loaded from guest memory during VMPTRLD. Flushed to guest 139 * memory during VMCLEAR and VMPTRLD. 140 */ 141 struct vmcs12 *cached_vmcs12; 142 /* 143 * Cache of the guest's shadow VMCS, existing outside of guest 144 * memory. Loaded from guest memory during VM entry. Flushed 145 * to guest memory during VM exit. 146 */ 147 struct vmcs12 *cached_shadow_vmcs12; 148 149 /* 150 * GPA to HVA cache for accessing vmcs12->vmcs_link_pointer 151 */ 152 struct gfn_to_hva_cache shadow_vmcs12_cache; 153 154 /* 155 * GPA to HVA cache for VMCS12 156 */ 157 struct gfn_to_hva_cache vmcs12_cache; 158 159 /* 160 * Indicates if the shadow vmcs or enlightened vmcs must be updated 161 * with the data held by struct vmcs12. 162 */ 163 bool need_vmcs12_to_shadow_sync; 164 bool dirty_vmcs12; 165 166 /* 167 * Indicates whether MSR bitmap for L2 needs to be rebuilt due to 168 * changes in MSR bitmap for L1 or switching to a different L2. Note, 169 * this flag can only be used reliably in conjunction with a paravirt L1 170 * which informs L0 whether any changes to MSR bitmap for L2 were done 171 * on its side. 172 */ 173 bool force_msr_bitmap_recalc; 174 175 /* 176 * Indicates lazily loaded guest state has not yet been decached from 177 * vmcs02. 178 */ 179 bool need_sync_vmcs02_to_vmcs12_rare; 180 181 /* 182 * vmcs02 has been initialized, i.e. state that is constant for 183 * vmcs02 has been written to the backing VMCS. Initialization 184 * is delayed until L1 actually attempts to run a nested VM. 185 */ 186 bool vmcs02_initialized; 187 188 bool change_vmcs01_virtual_apic_mode; 189 bool reload_vmcs01_apic_access_page; 190 bool update_vmcs01_cpu_dirty_logging; 191 bool update_vmcs01_apicv_status; 192 193 /* 194 * Enlightened VMCS has been enabled. It does not mean that L1 has to 195 * use it. However, VMX features available to L1 will be limited based 196 * on what the enlightened VMCS supports. 197 */ 198 bool enlightened_vmcs_enabled; 199 200 /* L2 must run next, and mustn't decide to exit to L1. */ 201 bool nested_run_pending; 202 203 /* Pending MTF VM-exit into L1. */ 204 bool mtf_pending; 205 206 struct loaded_vmcs vmcs02; 207 208 /* 209 * Guest pages referred to in the vmcs02 with host-physical 210 * pointers, so we must keep them pinned while L2 runs. 211 */ 212 struct kvm_host_map apic_access_page_map; 213 struct kvm_host_map virtual_apic_map; 214 struct kvm_host_map pi_desc_map; 215 216 struct kvm_host_map msr_bitmap_map; 217 218 struct pi_desc *pi_desc; 219 bool pi_pending; 220 u16 posted_intr_nv; 221 222 struct hrtimer preemption_timer; 223 u64 preemption_timer_deadline; 224 bool has_preemption_timer_deadline; 225 bool preemption_timer_expired; 226 227 /* 228 * Used to snapshot MSRs that are conditionally loaded on VM-Enter in 229 * order to propagate the guest's pre-VM-Enter value into vmcs02. For 230 * emulation of VMLAUNCH/VMRESUME, the snapshot will be of L1's value. 231 * For KVM_SET_NESTED_STATE, the snapshot is of L2's value, _if_ 232 * userspace restores MSRs before nested state. If userspace restores 233 * MSRs after nested state, the snapshot holds garbage, but KVM can't 234 * detect that, and the garbage value in vmcs02 will be overwritten by 235 * MSR restoration in any case. 236 */ 237 u64 pre_vmenter_debugctl; 238 u64 pre_vmenter_bndcfgs; 239 240 /* to migrate it to L1 if L2 writes to L1's CR8 directly */ 241 int l1_tpr_threshold; 242 243 u16 vpid02; 244 u16 last_vpid; 245 246 struct nested_vmx_msrs msrs; 247 248 /* SMM related state */ 249 struct { 250 /* in VMX operation on SMM entry? */ 251 bool vmxon; 252 /* in guest mode on SMM entry? */ 253 bool guest_mode; 254 } smm; 255 256 gpa_t hv_evmcs_vmptr; 257 struct kvm_host_map hv_evmcs_map; 258 struct hv_enlightened_vmcs *hv_evmcs; 259 }; 260 261 struct vcpu_vmx { 262 struct kvm_vcpu vcpu; 263 u8 fail; 264 u8 x2apic_msr_bitmap_mode; 265 266 /* 267 * If true, host state has been stored in vmx->loaded_vmcs for 268 * the CPU registers that only need to be switched when transitioning 269 * to/from the kernel, and the registers have been loaded with guest 270 * values. If false, host state is loaded in the CPU registers 271 * and vmx->loaded_vmcs->host_state is invalid. 272 */ 273 bool guest_state_loaded; 274 275 unsigned long exit_qualification; 276 u32 exit_intr_info; 277 u32 idt_vectoring_info; 278 ulong rflags; 279 280 /* 281 * User return MSRs are always emulated when enabled in the guest, but 282 * only loaded into hardware when necessary, e.g. SYSCALL #UDs outside 283 * of 64-bit mode or if EFER.SCE=1, thus the SYSCALL MSRs don't need to 284 * be loaded into hardware if those conditions aren't met. 285 */ 286 struct vmx_uret_msr guest_uret_msrs[MAX_NR_USER_RETURN_MSRS]; 287 bool guest_uret_msrs_loaded; 288 #ifdef CONFIG_X86_64 289 u64 msr_host_kernel_gs_base; 290 u64 msr_guest_kernel_gs_base; 291 #endif 292 293 u64 spec_ctrl; 294 u32 msr_ia32_umwait_control; 295 296 /* 297 * loaded_vmcs points to the VMCS currently used in this vcpu. For a 298 * non-nested (L1) guest, it always points to vmcs01. For a nested 299 * guest (L2), it points to a different VMCS. 300 */ 301 struct loaded_vmcs vmcs01; 302 struct loaded_vmcs *loaded_vmcs; 303 304 struct msr_autoload { 305 struct vmx_msrs guest; 306 struct vmx_msrs host; 307 } msr_autoload; 308 309 struct msr_autostore { 310 struct vmx_msrs guest; 311 } msr_autostore; 312 313 struct { 314 int vm86_active; 315 ulong save_rflags; 316 struct kvm_segment segs[8]; 317 } rmode; 318 struct { 319 u32 bitmask; /* 4 bits per segment (1 bit per field) */ 320 struct kvm_save_segment { 321 u16 selector; 322 unsigned long base; 323 u32 limit; 324 u32 ar; 325 } seg[8]; 326 } segment_cache; 327 int vpid; 328 bool emulation_required; 329 330 union vmx_exit_reason exit_reason; 331 332 /* Posted interrupt descriptor */ 333 struct pi_desc pi_desc; 334 335 /* Used if this vCPU is waiting for PI notification wakeup. */ 336 struct list_head pi_wakeup_list; 337 338 /* Support for a guest hypervisor (nested VMX) */ 339 struct nested_vmx nested; 340 341 /* Dynamic PLE window. */ 342 unsigned int ple_window; 343 bool ple_window_dirty; 344 345 bool req_immediate_exit; 346 347 /* Support for PML */ 348 #define PML_ENTITY_NUM 512 349 struct page *pml_pg; 350 351 /* apic deadline value in host tsc */ 352 u64 hv_deadline_tsc; 353 354 unsigned long host_debugctlmsr; 355 356 /* 357 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in 358 * msr_ia32_feature_control. FEAT_CTL_LOCKED is always included 359 * in msr_ia32_feature_control_valid_bits. 360 */ 361 u64 msr_ia32_feature_control; 362 u64 msr_ia32_feature_control_valid_bits; 363 /* SGX Launch Control public key hash */ 364 u64 msr_ia32_sgxlepubkeyhash[4]; 365 u64 msr_ia32_mcu_opt_ctrl; 366 bool disable_fb_clear; 367 368 struct pt_desc pt_desc; 369 struct lbr_desc lbr_desc; 370 371 /* Save desired MSR intercept (read: pass-through) state */ 372 #define MAX_POSSIBLE_PASSTHROUGH_MSRS 15 373 struct { 374 DECLARE_BITMAP(read, MAX_POSSIBLE_PASSTHROUGH_MSRS); 375 DECLARE_BITMAP(write, MAX_POSSIBLE_PASSTHROUGH_MSRS); 376 } shadow_msr_intercept; 377 }; 378 379 struct kvm_vmx { 380 struct kvm kvm; 381 382 unsigned int tss_addr; 383 bool ept_identity_pagetable_done; 384 gpa_t ept_identity_map_addr; 385 /* Posted Interrupt Descriptor (PID) table for IPI virtualization */ 386 u64 *pid_table; 387 }; 388 389 bool nested_vmx_allowed(struct kvm_vcpu *vcpu); 390 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu, 391 struct loaded_vmcs *buddy); 392 int allocate_vpid(void); 393 void free_vpid(int vpid); 394 void vmx_set_constant_host_state(struct vcpu_vmx *vmx); 395 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu); 396 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, 397 unsigned long fs_base, unsigned long gs_base); 398 int vmx_get_cpl(struct kvm_vcpu *vcpu); 399 bool vmx_emulation_required(struct kvm_vcpu *vcpu); 400 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu); 401 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 402 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu); 403 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask); 404 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer); 405 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); 406 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); 407 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx); 408 void ept_save_pdptrs(struct kvm_vcpu *vcpu); 409 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 410 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 411 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level); 412 413 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu); 414 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu); 415 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu); 416 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu); 417 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu); 418 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked); 419 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu); 420 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr); 421 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu); 422 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp); 423 void vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, unsigned int flags); 424 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx); 425 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, 426 unsigned int flags); 427 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr); 428 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu); 429 430 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type); 431 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type); 432 433 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu); 434 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu); 435 436 static inline void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, 437 int type, bool value) 438 { 439 if (value) 440 vmx_enable_intercept_for_msr(vcpu, msr, type); 441 else 442 vmx_disable_intercept_for_msr(vcpu, msr, type); 443 } 444 445 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu); 446 447 /* 448 * Note, early Intel manuals have the write-low and read-high bitmap offsets 449 * the wrong way round. The bitmaps control MSRs 0x00000000-0x00001fff and 450 * 0xc0000000-0xc0001fff. The former (low) uses bytes 0-0x3ff for reads and 451 * 0x800-0xbff for writes. The latter (high) uses 0x400-0x7ff for reads and 452 * 0xc00-0xfff for writes. MSRs not covered by either of the ranges always 453 * VM-Exit. 454 */ 455 #define __BUILD_VMX_MSR_BITMAP_HELPER(rtype, action, bitop, access, base) \ 456 static inline rtype vmx_##action##_msr_bitmap_##access(unsigned long *bitmap, \ 457 u32 msr) \ 458 { \ 459 int f = sizeof(unsigned long); \ 460 \ 461 if (msr <= 0x1fff) \ 462 return bitop##_bit(msr, bitmap + base / f); \ 463 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) \ 464 return bitop##_bit(msr & 0x1fff, bitmap + (base + 0x400) / f); \ 465 return (rtype)true; \ 466 } 467 #define BUILD_VMX_MSR_BITMAP_HELPERS(ret_type, action, bitop) \ 468 __BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, read, 0x0) \ 469 __BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, write, 0x800) 470 471 BUILD_VMX_MSR_BITMAP_HELPERS(bool, test, test) 472 BUILD_VMX_MSR_BITMAP_HELPERS(void, clear, __clear) 473 BUILD_VMX_MSR_BITMAP_HELPERS(void, set, __set) 474 475 static inline u8 vmx_get_rvi(void) 476 { 477 return vmcs_read16(GUEST_INTR_STATUS) & 0xff; 478 } 479 480 #define BUILD_CONTROLS_SHADOW(lname, uname, bits) \ 481 static inline void lname##_controls_set(struct vcpu_vmx *vmx, u##bits val) \ 482 { \ 483 if (vmx->loaded_vmcs->controls_shadow.lname != val) { \ 484 vmcs_write##bits(uname, val); \ 485 vmx->loaded_vmcs->controls_shadow.lname = val; \ 486 } \ 487 } \ 488 static inline u##bits __##lname##_controls_get(struct loaded_vmcs *vmcs) \ 489 { \ 490 return vmcs->controls_shadow.lname; \ 491 } \ 492 static inline u##bits lname##_controls_get(struct vcpu_vmx *vmx) \ 493 { \ 494 return __##lname##_controls_get(vmx->loaded_vmcs); \ 495 } \ 496 static inline void lname##_controls_setbit(struct vcpu_vmx *vmx, u##bits val) \ 497 { \ 498 lname##_controls_set(vmx, lname##_controls_get(vmx) | val); \ 499 } \ 500 static inline void lname##_controls_clearbit(struct vcpu_vmx *vmx, u##bits val) \ 501 { \ 502 lname##_controls_set(vmx, lname##_controls_get(vmx) & ~val); \ 503 } 504 BUILD_CONTROLS_SHADOW(vm_entry, VM_ENTRY_CONTROLS, 32) 505 BUILD_CONTROLS_SHADOW(vm_exit, VM_EXIT_CONTROLS, 32) 506 BUILD_CONTROLS_SHADOW(pin, PIN_BASED_VM_EXEC_CONTROL, 32) 507 BUILD_CONTROLS_SHADOW(exec, CPU_BASED_VM_EXEC_CONTROL, 32) 508 BUILD_CONTROLS_SHADOW(secondary_exec, SECONDARY_VM_EXEC_CONTROL, 32) 509 BUILD_CONTROLS_SHADOW(tertiary_exec, TERTIARY_VM_EXEC_CONTROL, 64) 510 511 /* 512 * VMX_REGS_LAZY_LOAD_SET - The set of registers that will be updated in the 513 * cache on demand. Other registers not listed here are synced to 514 * the cache immediately after VM-Exit. 515 */ 516 #define VMX_REGS_LAZY_LOAD_SET ((1 << VCPU_REGS_RIP) | \ 517 (1 << VCPU_REGS_RSP) | \ 518 (1 << VCPU_EXREG_RFLAGS) | \ 519 (1 << VCPU_EXREG_PDPTR) | \ 520 (1 << VCPU_EXREG_SEGMENTS) | \ 521 (1 << VCPU_EXREG_CR0) | \ 522 (1 << VCPU_EXREG_CR3) | \ 523 (1 << VCPU_EXREG_CR4) | \ 524 (1 << VCPU_EXREG_EXIT_INFO_1) | \ 525 (1 << VCPU_EXREG_EXIT_INFO_2)) 526 527 static inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm) 528 { 529 return container_of(kvm, struct kvm_vmx, kvm); 530 } 531 532 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu) 533 { 534 return container_of(vcpu, struct vcpu_vmx, vcpu); 535 } 536 537 static inline struct lbr_desc *vcpu_to_lbr_desc(struct kvm_vcpu *vcpu) 538 { 539 return &to_vmx(vcpu)->lbr_desc; 540 } 541 542 static inline struct x86_pmu_lbr *vcpu_to_lbr_records(struct kvm_vcpu *vcpu) 543 { 544 return &vcpu_to_lbr_desc(vcpu)->records; 545 } 546 547 static inline bool intel_pmu_lbr_is_enabled(struct kvm_vcpu *vcpu) 548 { 549 return !!vcpu_to_lbr_records(vcpu)->nr; 550 } 551 552 void intel_pmu_cross_mapped_check(struct kvm_pmu *pmu); 553 int intel_pmu_create_guest_lbr_event(struct kvm_vcpu *vcpu); 554 void vmx_passthrough_lbr_msrs(struct kvm_vcpu *vcpu); 555 556 static inline unsigned long vmx_get_exit_qual(struct kvm_vcpu *vcpu) 557 { 558 struct vcpu_vmx *vmx = to_vmx(vcpu); 559 560 if (!kvm_register_is_available(vcpu, VCPU_EXREG_EXIT_INFO_1)) { 561 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1); 562 vmx->exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 563 } 564 return vmx->exit_qualification; 565 } 566 567 static inline u32 vmx_get_intr_info(struct kvm_vcpu *vcpu) 568 { 569 struct vcpu_vmx *vmx = to_vmx(vcpu); 570 571 if (!kvm_register_is_available(vcpu, VCPU_EXREG_EXIT_INFO_2)) { 572 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2); 573 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); 574 } 575 return vmx->exit_intr_info; 576 } 577 578 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags); 579 void free_vmcs(struct vmcs *vmcs); 580 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs); 581 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs); 582 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs); 583 584 static inline struct vmcs *alloc_vmcs(bool shadow) 585 { 586 return alloc_vmcs_cpu(shadow, raw_smp_processor_id(), 587 GFP_KERNEL_ACCOUNT); 588 } 589 590 static inline bool vmx_has_waitpkg(struct vcpu_vmx *vmx) 591 { 592 return secondary_exec_controls_get(vmx) & 593 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE; 594 } 595 596 static inline bool vmx_need_pf_intercept(struct kvm_vcpu *vcpu) 597 { 598 if (!enable_ept) 599 return true; 600 601 return allow_smaller_maxphyaddr && cpuid_maxphyaddr(vcpu) < boot_cpu_data.x86_phys_bits; 602 } 603 604 static inline bool is_unrestricted_guest(struct kvm_vcpu *vcpu) 605 { 606 return enable_unrestricted_guest && (!is_guest_mode(vcpu) || 607 (secondary_exec_controls_get(to_vmx(vcpu)) & 608 SECONDARY_EXEC_UNRESTRICTED_GUEST)); 609 } 610 611 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu); 612 static inline bool vmx_guest_state_valid(struct kvm_vcpu *vcpu) 613 { 614 return is_unrestricted_guest(vcpu) || __vmx_guest_state_valid(vcpu); 615 } 616 617 void dump_vmcs(struct kvm_vcpu *vcpu); 618 619 static inline int vmx_get_instr_info_reg2(u32 vmx_instr_info) 620 { 621 return (vmx_instr_info >> 28) & 0xf; 622 } 623 624 static inline bool vmx_can_use_ipiv(struct kvm_vcpu *vcpu) 625 { 626 return lapic_in_kernel(vcpu) && enable_ipiv; 627 } 628 629 #endif /* __KVM_X86_VMX_H */ 630