1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef __KVM_X86_VMX_H 3 #define __KVM_X86_VMX_H 4 5 #include <linux/kvm_host.h> 6 7 #include <asm/kvm.h> 8 #include <asm/intel_pt.h> 9 #include <asm/perf_event.h> 10 #include <asm/posted_intr.h> 11 12 #include "capabilities.h" 13 #include "../kvm_cache_regs.h" 14 #include "pmu_intel.h" 15 #include "vmcs.h" 16 #include "vmx_ops.h" 17 #include "../cpuid.h" 18 #include "run_flags.h" 19 #include "../mmu.h" 20 #include "common.h" 21 22 #ifdef CONFIG_X86_64 23 #define MAX_NR_USER_RETURN_MSRS 7 24 #else 25 #define MAX_NR_USER_RETURN_MSRS 4 26 #endif 27 28 #define MAX_NR_LOADSTORE_MSRS 8 29 30 struct vmx_msrs { 31 unsigned int nr; 32 struct vmx_msr_entry val[MAX_NR_LOADSTORE_MSRS]; 33 }; 34 35 struct vmx_uret_msr { 36 bool load_into_hardware; 37 u64 data; 38 u64 mask; 39 }; 40 41 enum segment_cache_field { 42 SEG_FIELD_SEL = 0, 43 SEG_FIELD_BASE = 1, 44 SEG_FIELD_LIMIT = 2, 45 SEG_FIELD_AR = 3, 46 47 SEG_FIELD_NR = 4 48 }; 49 50 #define RTIT_ADDR_RANGE 4 51 52 struct pt_ctx { 53 u64 ctl; 54 u64 status; 55 u64 output_base; 56 u64 output_mask; 57 u64 cr3_match; 58 u64 addr_a[RTIT_ADDR_RANGE]; 59 u64 addr_b[RTIT_ADDR_RANGE]; 60 }; 61 62 struct pt_desc { 63 u64 ctl_bitmask; 64 u32 num_address_ranges; 65 u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES]; 66 struct pt_ctx host; 67 struct pt_ctx guest; 68 }; 69 70 /* 71 * The nested_vmx structure is part of vcpu_vmx, and holds information we need 72 * for correct emulation of VMX (i.e., nested VMX) on this vcpu. 73 */ 74 struct nested_vmx { 75 /* Has the level1 guest done vmxon? */ 76 bool vmxon; 77 gpa_t vmxon_ptr; 78 bool pml_full; 79 80 /* The guest-physical address of the current VMCS L1 keeps for L2 */ 81 gpa_t current_vmptr; 82 /* 83 * Cache of the guest's VMCS, existing outside of guest memory. 84 * Loaded from guest memory during VMPTRLD. Flushed to guest 85 * memory during VMCLEAR and VMPTRLD. 86 */ 87 struct vmcs12 *cached_vmcs12; 88 /* 89 * Cache of the guest's shadow VMCS, existing outside of guest 90 * memory. Loaded from guest memory during VM entry. Flushed 91 * to guest memory during VM exit. 92 */ 93 struct vmcs12 *cached_shadow_vmcs12; 94 95 /* 96 * GPA to HVA cache for accessing vmcs12->vmcs_link_pointer 97 */ 98 struct gfn_to_hva_cache shadow_vmcs12_cache; 99 100 /* 101 * GPA to HVA cache for VMCS12 102 */ 103 struct gfn_to_hva_cache vmcs12_cache; 104 105 /* 106 * Indicates if the shadow vmcs or enlightened vmcs must be updated 107 * with the data held by struct vmcs12. 108 */ 109 bool need_vmcs12_to_shadow_sync; 110 bool dirty_vmcs12; 111 112 /* 113 * Indicates whether MSR bitmap for L2 needs to be rebuilt due to 114 * changes in MSR bitmap for L1 or switching to a different L2. Note, 115 * this flag can only be used reliably in conjunction with a paravirt L1 116 * which informs L0 whether any changes to MSR bitmap for L2 were done 117 * on its side. 118 */ 119 bool force_msr_bitmap_recalc; 120 121 /* 122 * Indicates lazily loaded guest state has not yet been decached from 123 * vmcs02. 124 */ 125 bool need_sync_vmcs02_to_vmcs12_rare; 126 127 /* 128 * vmcs02 has been initialized, i.e. state that is constant for 129 * vmcs02 has been written to the backing VMCS. Initialization 130 * is delayed until L1 actually attempts to run a nested VM. 131 */ 132 bool vmcs02_initialized; 133 134 bool change_vmcs01_virtual_apic_mode; 135 bool reload_vmcs01_apic_access_page; 136 bool update_vmcs01_cpu_dirty_logging; 137 bool update_vmcs01_apicv_status; 138 bool update_vmcs01_hwapic_isr; 139 140 /* 141 * Enlightened VMCS has been enabled. It does not mean that L1 has to 142 * use it. However, VMX features available to L1 will be limited based 143 * on what the enlightened VMCS supports. 144 */ 145 bool enlightened_vmcs_enabled; 146 147 /* L2 must run next, and mustn't decide to exit to L1. */ 148 bool nested_run_pending; 149 150 /* Pending MTF VM-exit into L1. */ 151 bool mtf_pending; 152 153 struct loaded_vmcs vmcs02; 154 155 /* 156 * Guest pages referred to in the vmcs02 with host-physical 157 * pointers, so we must keep them pinned while L2 runs. 158 */ 159 struct kvm_host_map apic_access_page_map; 160 struct kvm_host_map virtual_apic_map; 161 struct kvm_host_map pi_desc_map; 162 163 struct pi_desc *pi_desc; 164 bool pi_pending; 165 u16 posted_intr_nv; 166 167 struct hrtimer preemption_timer; 168 u64 preemption_timer_deadline; 169 bool has_preemption_timer_deadline; 170 bool preemption_timer_expired; 171 172 /* 173 * Used to snapshot MSRs that are conditionally loaded on VM-Enter in 174 * order to propagate the guest's pre-VM-Enter value into vmcs02. For 175 * emulation of VMLAUNCH/VMRESUME, the snapshot will be of L1's value. 176 * For KVM_SET_NESTED_STATE, the snapshot is of L2's value, _if_ 177 * userspace restores MSRs before nested state. If userspace restores 178 * MSRs after nested state, the snapshot holds garbage, but KVM can't 179 * detect that, and the garbage value in vmcs02 will be overwritten by 180 * MSR restoration in any case. 181 */ 182 u64 pre_vmenter_debugctl; 183 u64 pre_vmenter_bndcfgs; 184 185 /* to migrate it to L1 if L2 writes to L1's CR8 directly */ 186 int l1_tpr_threshold; 187 188 u16 vpid02; 189 u16 last_vpid; 190 191 struct nested_vmx_msrs msrs; 192 193 /* SMM related state */ 194 struct { 195 /* in VMX operation on SMM entry? */ 196 bool vmxon; 197 /* in guest mode on SMM entry? */ 198 bool guest_mode; 199 } smm; 200 201 #ifdef CONFIG_KVM_HYPERV 202 gpa_t hv_evmcs_vmptr; 203 struct kvm_host_map hv_evmcs_map; 204 struct hv_enlightened_vmcs *hv_evmcs; 205 #endif 206 }; 207 208 struct vcpu_vmx { 209 struct kvm_vcpu vcpu; 210 struct vcpu_vt vt; 211 u8 fail; 212 u8 x2apic_msr_bitmap_mode; 213 214 u32 idt_vectoring_info; 215 ulong rflags; 216 217 /* 218 * User return MSRs are always emulated when enabled in the guest, but 219 * only loaded into hardware when necessary, e.g. SYSCALL #UDs outside 220 * of 64-bit mode or if EFER.SCE=1, thus the SYSCALL MSRs don't need to 221 * be loaded into hardware if those conditions aren't met. 222 */ 223 struct vmx_uret_msr guest_uret_msrs[MAX_NR_USER_RETURN_MSRS]; 224 bool guest_uret_msrs_loaded; 225 #ifdef CONFIG_X86_64 226 u64 msr_guest_kernel_gs_base; 227 #endif 228 229 u64 spec_ctrl; 230 u32 msr_ia32_umwait_control; 231 232 /* 233 * loaded_vmcs points to the VMCS currently used in this vcpu. For a 234 * non-nested (L1) guest, it always points to vmcs01. For a nested 235 * guest (L2), it points to a different VMCS. 236 */ 237 struct loaded_vmcs vmcs01; 238 struct loaded_vmcs *loaded_vmcs; 239 240 struct msr_autoload { 241 struct vmx_msrs guest; 242 struct vmx_msrs host; 243 } msr_autoload; 244 245 struct msr_autostore { 246 struct vmx_msrs guest; 247 } msr_autostore; 248 249 struct { 250 int vm86_active; 251 ulong save_rflags; 252 struct kvm_segment segs[8]; 253 } rmode; 254 struct { 255 u32 bitmask; /* 4 bits per segment (1 bit per field) */ 256 struct kvm_save_segment { 257 u16 selector; 258 unsigned long base; 259 u32 limit; 260 u32 ar; 261 } seg[8]; 262 } segment_cache; 263 int vpid; 264 265 /* Support for a guest hypervisor (nested VMX) */ 266 struct nested_vmx nested; 267 268 /* Dynamic PLE window. */ 269 unsigned int ple_window; 270 bool ple_window_dirty; 271 272 /* Support for PML */ 273 #define PML_LOG_NR_ENTRIES 512 274 /* PML is written backwards: this is the first entry written by the CPU */ 275 #define PML_HEAD_INDEX (PML_LOG_NR_ENTRIES-1) 276 277 struct page *pml_pg; 278 279 /* apic deadline value in host tsc */ 280 u64 hv_deadline_tsc; 281 282 /* 283 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in 284 * msr_ia32_feature_control. FEAT_CTL_LOCKED is always included 285 * in msr_ia32_feature_control_valid_bits. 286 */ 287 u64 msr_ia32_feature_control; 288 u64 msr_ia32_feature_control_valid_bits; 289 /* SGX Launch Control public key hash */ 290 u64 msr_ia32_sgxlepubkeyhash[4]; 291 u64 msr_ia32_mcu_opt_ctrl; 292 bool disable_fb_clear; 293 294 struct pt_desc pt_desc; 295 struct lbr_desc lbr_desc; 296 297 /* ve_info must be page aligned. */ 298 struct vmx_ve_information *ve_info; 299 }; 300 301 struct kvm_vmx { 302 struct kvm kvm; 303 304 unsigned int tss_addr; 305 bool ept_identity_pagetable_done; 306 gpa_t ept_identity_map_addr; 307 /* Posted Interrupt Descriptor (PID) table for IPI virtualization */ 308 u64 *pid_table; 309 }; 310 311 static __always_inline struct vcpu_vt *to_vt(struct kvm_vcpu *vcpu) 312 { 313 return &(container_of(vcpu, struct vcpu_vmx, vcpu)->vt); 314 } 315 316 static __always_inline struct kvm_vcpu *vt_to_vcpu(struct vcpu_vt *vt) 317 { 318 return &(container_of(vt, struct vcpu_vmx, vt)->vcpu); 319 } 320 321 static __always_inline union vmx_exit_reason vmx_get_exit_reason(struct kvm_vcpu *vcpu) 322 { 323 return to_vt(vcpu)->exit_reason; 324 } 325 326 static __always_inline unsigned long vmx_get_exit_qual(struct kvm_vcpu *vcpu) 327 { 328 struct vcpu_vt *vt = to_vt(vcpu); 329 330 if (!kvm_register_test_and_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1) && 331 !WARN_ON_ONCE(is_td_vcpu(vcpu))) 332 vt->exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 333 334 return vt->exit_qualification; 335 } 336 337 static __always_inline u32 vmx_get_intr_info(struct kvm_vcpu *vcpu) 338 { 339 struct vcpu_vt *vt = to_vt(vcpu); 340 341 if (!kvm_register_test_and_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2) && 342 !WARN_ON_ONCE(is_td_vcpu(vcpu))) 343 vt->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); 344 345 return vt->exit_intr_info; 346 } 347 348 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu); 349 int allocate_vpid(void); 350 void free_vpid(int vpid); 351 void vmx_set_constant_host_state(struct vcpu_vmx *vmx); 352 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu); 353 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, 354 unsigned long fs_base, unsigned long gs_base); 355 int vmx_get_cpl(struct kvm_vcpu *vcpu); 356 int vmx_get_cpl_no_cache(struct kvm_vcpu *vcpu); 357 bool vmx_emulation_required(struct kvm_vcpu *vcpu); 358 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu); 359 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 360 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu); 361 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask); 362 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer); 363 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); 364 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); 365 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx); 366 void ept_save_pdptrs(struct kvm_vcpu *vcpu); 367 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 368 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 369 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level); 370 371 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu); 372 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu); 373 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu); 374 bool __vmx_interrupt_blocked(struct kvm_vcpu *vcpu); 375 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu); 376 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu); 377 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked); 378 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu); 379 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr); 380 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu); 381 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp); 382 void vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, unsigned int flags); 383 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx); 384 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, 385 unsigned int flags); 386 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr); 387 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu); 388 389 void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type, bool set); 390 391 static inline void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, 392 u32 msr, int type) 393 { 394 vmx_set_intercept_for_msr(vcpu, msr, type, false); 395 } 396 397 static inline void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, 398 u32 msr, int type) 399 { 400 vmx_set_intercept_for_msr(vcpu, msr, type, true); 401 } 402 403 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu); 404 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu); 405 406 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags); 407 408 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu); 409 410 u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated); 411 bool vmx_is_valid_debugctl(struct kvm_vcpu *vcpu, u64 data, bool host_initiated); 412 413 #define VMX_HOST_OWNED_DEBUGCTL_BITS (DEBUGCTLMSR_FREEZE_IN_SMM) 414 415 static inline void vmx_guest_debugctl_write(struct kvm_vcpu *vcpu, u64 val) 416 { 417 WARN_ON_ONCE(val & VMX_HOST_OWNED_DEBUGCTL_BITS); 418 419 val |= vcpu->arch.host_debugctl & VMX_HOST_OWNED_DEBUGCTL_BITS; 420 vmcs_write64(GUEST_IA32_DEBUGCTL, val); 421 } 422 423 static inline u64 vmx_guest_debugctl_read(void) 424 { 425 return vmcs_read64(GUEST_IA32_DEBUGCTL) & ~VMX_HOST_OWNED_DEBUGCTL_BITS; 426 } 427 428 static inline void vmx_reload_guest_debugctl(struct kvm_vcpu *vcpu) 429 { 430 u64 val = vmcs_read64(GUEST_IA32_DEBUGCTL); 431 432 if (!((val ^ vcpu->arch.host_debugctl) & VMX_HOST_OWNED_DEBUGCTL_BITS)) 433 return; 434 435 vmx_guest_debugctl_write(vcpu, val & ~VMX_HOST_OWNED_DEBUGCTL_BITS); 436 } 437 438 /* 439 * Note, early Intel manuals have the write-low and read-high bitmap offsets 440 * the wrong way round. The bitmaps control MSRs 0x00000000-0x00001fff and 441 * 0xc0000000-0xc0001fff. The former (low) uses bytes 0-0x3ff for reads and 442 * 0x800-0xbff for writes. The latter (high) uses 0x400-0x7ff for reads and 443 * 0xc00-0xfff for writes. MSRs not covered by either of the ranges always 444 * VM-Exit. 445 */ 446 #define __BUILD_VMX_MSR_BITMAP_HELPER(rtype, action, bitop, access, base) \ 447 static inline rtype vmx_##action##_msr_bitmap_##access(unsigned long *bitmap, \ 448 u32 msr) \ 449 { \ 450 int f = sizeof(unsigned long); \ 451 \ 452 if (msr <= 0x1fff) \ 453 return bitop##_bit(msr, bitmap + base / f); \ 454 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) \ 455 return bitop##_bit(msr & 0x1fff, bitmap + (base + 0x400) / f); \ 456 return (rtype)true; \ 457 } 458 #define BUILD_VMX_MSR_BITMAP_HELPERS(ret_type, action, bitop) \ 459 __BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, read, 0x0) \ 460 __BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, write, 0x800) 461 462 BUILD_VMX_MSR_BITMAP_HELPERS(bool, test, test) 463 BUILD_VMX_MSR_BITMAP_HELPERS(void, clear, __clear) 464 BUILD_VMX_MSR_BITMAP_HELPERS(void, set, __set) 465 466 static inline u8 vmx_get_rvi(void) 467 { 468 return vmcs_read16(GUEST_INTR_STATUS) & 0xff; 469 } 470 471 #define __KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS \ 472 (VM_ENTRY_LOAD_DEBUG_CONTROLS) 473 #ifdef CONFIG_X86_64 474 #define KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS \ 475 (__KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS | \ 476 VM_ENTRY_IA32E_MODE) 477 #else 478 #define KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS \ 479 __KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS 480 #endif 481 #define KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS \ 482 (VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | \ 483 VM_ENTRY_LOAD_IA32_PAT | \ 484 VM_ENTRY_LOAD_IA32_EFER | \ 485 VM_ENTRY_LOAD_BNDCFGS | \ 486 VM_ENTRY_PT_CONCEAL_PIP | \ 487 VM_ENTRY_LOAD_IA32_RTIT_CTL) 488 489 #define __KVM_REQUIRED_VMX_VM_EXIT_CONTROLS \ 490 (VM_EXIT_SAVE_DEBUG_CONTROLS | \ 491 VM_EXIT_ACK_INTR_ON_EXIT) 492 #ifdef CONFIG_X86_64 493 #define KVM_REQUIRED_VMX_VM_EXIT_CONTROLS \ 494 (__KVM_REQUIRED_VMX_VM_EXIT_CONTROLS | \ 495 VM_EXIT_HOST_ADDR_SPACE_SIZE) 496 #else 497 #define KVM_REQUIRED_VMX_VM_EXIT_CONTROLS \ 498 __KVM_REQUIRED_VMX_VM_EXIT_CONTROLS 499 #endif 500 #define KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS \ 501 (VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | \ 502 VM_EXIT_SAVE_IA32_PAT | \ 503 VM_EXIT_LOAD_IA32_PAT | \ 504 VM_EXIT_SAVE_IA32_EFER | \ 505 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | \ 506 VM_EXIT_LOAD_IA32_EFER | \ 507 VM_EXIT_CLEAR_BNDCFGS | \ 508 VM_EXIT_PT_CONCEAL_PIP | \ 509 VM_EXIT_CLEAR_IA32_RTIT_CTL) 510 511 #define KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL \ 512 (PIN_BASED_EXT_INTR_MASK | \ 513 PIN_BASED_NMI_EXITING) 514 #define KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL \ 515 (PIN_BASED_VIRTUAL_NMIS | \ 516 PIN_BASED_POSTED_INTR | \ 517 PIN_BASED_VMX_PREEMPTION_TIMER) 518 519 #define __KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL \ 520 (CPU_BASED_HLT_EXITING | \ 521 CPU_BASED_CR3_LOAD_EXITING | \ 522 CPU_BASED_CR3_STORE_EXITING | \ 523 CPU_BASED_UNCOND_IO_EXITING | \ 524 CPU_BASED_MOV_DR_EXITING | \ 525 CPU_BASED_USE_TSC_OFFSETTING | \ 526 CPU_BASED_MWAIT_EXITING | \ 527 CPU_BASED_MONITOR_EXITING | \ 528 CPU_BASED_INVLPG_EXITING | \ 529 CPU_BASED_RDPMC_EXITING | \ 530 CPU_BASED_INTR_WINDOW_EXITING) 531 532 #ifdef CONFIG_X86_64 533 #define KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL \ 534 (__KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL | \ 535 CPU_BASED_CR8_LOAD_EXITING | \ 536 CPU_BASED_CR8_STORE_EXITING) 537 #else 538 #define KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL \ 539 __KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL 540 #endif 541 542 #define KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL \ 543 (CPU_BASED_RDTSC_EXITING | \ 544 CPU_BASED_TPR_SHADOW | \ 545 CPU_BASED_USE_IO_BITMAPS | \ 546 CPU_BASED_MONITOR_TRAP_FLAG | \ 547 CPU_BASED_USE_MSR_BITMAPS | \ 548 CPU_BASED_NMI_WINDOW_EXITING | \ 549 CPU_BASED_PAUSE_EXITING | \ 550 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS | \ 551 CPU_BASED_ACTIVATE_TERTIARY_CONTROLS) 552 553 #define KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL 0 554 #define KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL \ 555 (SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | \ 556 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | \ 557 SECONDARY_EXEC_WBINVD_EXITING | \ 558 SECONDARY_EXEC_ENABLE_VPID | \ 559 SECONDARY_EXEC_ENABLE_EPT | \ 560 SECONDARY_EXEC_UNRESTRICTED_GUEST | \ 561 SECONDARY_EXEC_PAUSE_LOOP_EXITING | \ 562 SECONDARY_EXEC_DESC | \ 563 SECONDARY_EXEC_ENABLE_RDTSCP | \ 564 SECONDARY_EXEC_ENABLE_INVPCID | \ 565 SECONDARY_EXEC_APIC_REGISTER_VIRT | \ 566 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | \ 567 SECONDARY_EXEC_SHADOW_VMCS | \ 568 SECONDARY_EXEC_ENABLE_XSAVES | \ 569 SECONDARY_EXEC_RDSEED_EXITING | \ 570 SECONDARY_EXEC_RDRAND_EXITING | \ 571 SECONDARY_EXEC_ENABLE_PML | \ 572 SECONDARY_EXEC_TSC_SCALING | \ 573 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE | \ 574 SECONDARY_EXEC_PT_USE_GPA | \ 575 SECONDARY_EXEC_PT_CONCEAL_VMX | \ 576 SECONDARY_EXEC_ENABLE_VMFUNC | \ 577 SECONDARY_EXEC_BUS_LOCK_DETECTION | \ 578 SECONDARY_EXEC_NOTIFY_VM_EXITING | \ 579 SECONDARY_EXEC_ENCLS_EXITING | \ 580 SECONDARY_EXEC_EPT_VIOLATION_VE) 581 582 #define KVM_REQUIRED_VMX_TERTIARY_VM_EXEC_CONTROL 0 583 #define KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL \ 584 (TERTIARY_EXEC_IPI_VIRT) 585 586 #define BUILD_CONTROLS_SHADOW(lname, uname, bits) \ 587 static inline void lname##_controls_set(struct vcpu_vmx *vmx, u##bits val) \ 588 { \ 589 if (vmx->loaded_vmcs->controls_shadow.lname != val) { \ 590 vmcs_write##bits(uname, val); \ 591 vmx->loaded_vmcs->controls_shadow.lname = val; \ 592 } \ 593 } \ 594 static inline u##bits __##lname##_controls_get(struct loaded_vmcs *vmcs) \ 595 { \ 596 return vmcs->controls_shadow.lname; \ 597 } \ 598 static inline u##bits lname##_controls_get(struct vcpu_vmx *vmx) \ 599 { \ 600 return __##lname##_controls_get(vmx->loaded_vmcs); \ 601 } \ 602 static __always_inline void lname##_controls_setbit(struct vcpu_vmx *vmx, u##bits val) \ 603 { \ 604 BUILD_BUG_ON(!(val & (KVM_REQUIRED_VMX_##uname | KVM_OPTIONAL_VMX_##uname))); \ 605 lname##_controls_set(vmx, lname##_controls_get(vmx) | val); \ 606 } \ 607 static __always_inline void lname##_controls_clearbit(struct vcpu_vmx *vmx, u##bits val) \ 608 { \ 609 BUILD_BUG_ON(!(val & (KVM_REQUIRED_VMX_##uname | KVM_OPTIONAL_VMX_##uname))); \ 610 lname##_controls_set(vmx, lname##_controls_get(vmx) & ~val); \ 611 } 612 BUILD_CONTROLS_SHADOW(vm_entry, VM_ENTRY_CONTROLS, 32) 613 BUILD_CONTROLS_SHADOW(vm_exit, VM_EXIT_CONTROLS, 32) 614 BUILD_CONTROLS_SHADOW(pin, PIN_BASED_VM_EXEC_CONTROL, 32) 615 BUILD_CONTROLS_SHADOW(exec, CPU_BASED_VM_EXEC_CONTROL, 32) 616 BUILD_CONTROLS_SHADOW(secondary_exec, SECONDARY_VM_EXEC_CONTROL, 32) 617 BUILD_CONTROLS_SHADOW(tertiary_exec, TERTIARY_VM_EXEC_CONTROL, 64) 618 619 /* 620 * VMX_REGS_LAZY_LOAD_SET - The set of registers that will be updated in the 621 * cache on demand. Other registers not listed here are synced to 622 * the cache immediately after VM-Exit. 623 */ 624 #define VMX_REGS_LAZY_LOAD_SET ((1 << VCPU_REGS_RIP) | \ 625 (1 << VCPU_REGS_RSP) | \ 626 (1 << VCPU_EXREG_RFLAGS) | \ 627 (1 << VCPU_EXREG_PDPTR) | \ 628 (1 << VCPU_EXREG_SEGMENTS) | \ 629 (1 << VCPU_EXREG_CR0) | \ 630 (1 << VCPU_EXREG_CR3) | \ 631 (1 << VCPU_EXREG_CR4) | \ 632 (1 << VCPU_EXREG_EXIT_INFO_1) | \ 633 (1 << VCPU_EXREG_EXIT_INFO_2)) 634 635 static inline unsigned long vmx_l1_guest_owned_cr0_bits(void) 636 { 637 unsigned long bits = KVM_POSSIBLE_CR0_GUEST_BITS; 638 639 /* 640 * CR0.WP needs to be intercepted when KVM is shadowing legacy paging 641 * in order to construct shadow PTEs with the correct protections. 642 * Note! CR0.WP technically can be passed through to the guest if 643 * paging is disabled, but checking CR0.PG would generate a cyclical 644 * dependency of sorts due to forcing the caller to ensure CR0 holds 645 * the correct value prior to determining which CR0 bits can be owned 646 * by L1. Keep it simple and limit the optimization to EPT. 647 */ 648 if (!enable_ept) 649 bits &= ~X86_CR0_WP; 650 return bits; 651 } 652 653 static __always_inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm) 654 { 655 return container_of(kvm, struct kvm_vmx, kvm); 656 } 657 658 static __always_inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu) 659 { 660 return container_of(vcpu, struct vcpu_vmx, vcpu); 661 } 662 663 void intel_pmu_cross_mapped_check(struct kvm_pmu *pmu); 664 int intel_pmu_create_guest_lbr_event(struct kvm_vcpu *vcpu); 665 void vmx_passthrough_lbr_msrs(struct kvm_vcpu *vcpu); 666 667 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags); 668 void free_vmcs(struct vmcs *vmcs); 669 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs); 670 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs); 671 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs); 672 673 static inline struct vmcs *alloc_vmcs(bool shadow) 674 { 675 return alloc_vmcs_cpu(shadow, raw_smp_processor_id(), 676 GFP_KERNEL_ACCOUNT); 677 } 678 679 static inline bool vmx_has_waitpkg(struct vcpu_vmx *vmx) 680 { 681 return secondary_exec_controls_get(vmx) & 682 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE; 683 } 684 685 static inline bool vmx_need_pf_intercept(struct kvm_vcpu *vcpu) 686 { 687 if (!enable_ept) 688 return true; 689 690 return allow_smaller_maxphyaddr && 691 cpuid_maxphyaddr(vcpu) < kvm_host.maxphyaddr; 692 } 693 694 static inline bool is_unrestricted_guest(struct kvm_vcpu *vcpu) 695 { 696 return enable_unrestricted_guest && (!is_guest_mode(vcpu) || 697 (secondary_exec_controls_get(to_vmx(vcpu)) & 698 SECONDARY_EXEC_UNRESTRICTED_GUEST)); 699 } 700 701 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu); 702 static inline bool vmx_guest_state_valid(struct kvm_vcpu *vcpu) 703 { 704 return is_unrestricted_guest(vcpu) || __vmx_guest_state_valid(vcpu); 705 } 706 707 void dump_vmcs(struct kvm_vcpu *vcpu); 708 709 static inline int vmx_get_instr_info_reg2(u32 vmx_instr_info) 710 { 711 return (vmx_instr_info >> 28) & 0xf; 712 } 713 714 static inline bool vmx_can_use_ipiv(struct kvm_vcpu *vcpu) 715 { 716 return lapic_in_kernel(vcpu) && enable_ipiv; 717 } 718 719 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx) 720 { 721 vmx->segment_cache.bitmask = 0; 722 } 723 724 int vmx_init(void); 725 void vmx_exit(void); 726 727 #endif /* __KVM_X86_VMX_H */ 728