1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef __KVM_X86_VMX_H 3 #define __KVM_X86_VMX_H 4 5 #include <linux/kvm_host.h> 6 7 #include <asm/kvm.h> 8 #include <asm/intel_pt.h> 9 #include <asm/perf_event.h> 10 #include <asm/posted_intr.h> 11 12 #include "capabilities.h" 13 #include "../kvm_cache_regs.h" 14 #include "vmcs.h" 15 #include "vmx_ops.h" 16 #include "../cpuid.h" 17 #include "run_flags.h" 18 #include "../mmu.h" 19 20 #define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4)) 21 22 #ifdef CONFIG_X86_64 23 #define MAX_NR_USER_RETURN_MSRS 7 24 #else 25 #define MAX_NR_USER_RETURN_MSRS 4 26 #endif 27 28 #define MAX_NR_LOADSTORE_MSRS 8 29 30 struct vmx_msrs { 31 unsigned int nr; 32 struct vmx_msr_entry val[MAX_NR_LOADSTORE_MSRS]; 33 }; 34 35 struct vmx_uret_msr { 36 bool load_into_hardware; 37 u64 data; 38 u64 mask; 39 }; 40 41 enum segment_cache_field { 42 SEG_FIELD_SEL = 0, 43 SEG_FIELD_BASE = 1, 44 SEG_FIELD_LIMIT = 2, 45 SEG_FIELD_AR = 3, 46 47 SEG_FIELD_NR = 4 48 }; 49 50 #define RTIT_ADDR_RANGE 4 51 52 struct pt_ctx { 53 u64 ctl; 54 u64 status; 55 u64 output_base; 56 u64 output_mask; 57 u64 cr3_match; 58 u64 addr_a[RTIT_ADDR_RANGE]; 59 u64 addr_b[RTIT_ADDR_RANGE]; 60 }; 61 62 struct pt_desc { 63 u64 ctl_bitmask; 64 u32 num_address_ranges; 65 u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES]; 66 struct pt_ctx host; 67 struct pt_ctx guest; 68 }; 69 70 union vmx_exit_reason { 71 struct { 72 u32 basic : 16; 73 u32 reserved16 : 1; 74 u32 reserved17 : 1; 75 u32 reserved18 : 1; 76 u32 reserved19 : 1; 77 u32 reserved20 : 1; 78 u32 reserved21 : 1; 79 u32 reserved22 : 1; 80 u32 reserved23 : 1; 81 u32 reserved24 : 1; 82 u32 reserved25 : 1; 83 u32 bus_lock_detected : 1; 84 u32 enclave_mode : 1; 85 u32 smi_pending_mtf : 1; 86 u32 smi_from_vmx_root : 1; 87 u32 reserved30 : 1; 88 u32 failed_vmentry : 1; 89 }; 90 u32 full; 91 }; 92 93 struct lbr_desc { 94 /* Basic info about guest LBR records. */ 95 struct x86_pmu_lbr records; 96 97 /* 98 * Emulate LBR feature via passthrough LBR registers when the 99 * per-vcpu guest LBR event is scheduled on the current pcpu. 100 * 101 * The records may be inaccurate if the host reclaims the LBR. 102 */ 103 struct perf_event *event; 104 105 /* True if LBRs are marked as not intercepted in the MSR bitmap */ 106 bool msr_passthrough; 107 }; 108 109 extern struct x86_pmu_lbr vmx_lbr_caps; 110 111 /* 112 * The nested_vmx structure is part of vcpu_vmx, and holds information we need 113 * for correct emulation of VMX (i.e., nested VMX) on this vcpu. 114 */ 115 struct nested_vmx { 116 /* Has the level1 guest done vmxon? */ 117 bool vmxon; 118 gpa_t vmxon_ptr; 119 bool pml_full; 120 121 /* The guest-physical address of the current VMCS L1 keeps for L2 */ 122 gpa_t current_vmptr; 123 /* 124 * Cache of the guest's VMCS, existing outside of guest memory. 125 * Loaded from guest memory during VMPTRLD. Flushed to guest 126 * memory during VMCLEAR and VMPTRLD. 127 */ 128 struct vmcs12 *cached_vmcs12; 129 /* 130 * Cache of the guest's shadow VMCS, existing outside of guest 131 * memory. Loaded from guest memory during VM entry. Flushed 132 * to guest memory during VM exit. 133 */ 134 struct vmcs12 *cached_shadow_vmcs12; 135 136 /* 137 * GPA to HVA cache for accessing vmcs12->vmcs_link_pointer 138 */ 139 struct gfn_to_hva_cache shadow_vmcs12_cache; 140 141 /* 142 * GPA to HVA cache for VMCS12 143 */ 144 struct gfn_to_hva_cache vmcs12_cache; 145 146 /* 147 * Indicates if the shadow vmcs or enlightened vmcs must be updated 148 * with the data held by struct vmcs12. 149 */ 150 bool need_vmcs12_to_shadow_sync; 151 bool dirty_vmcs12; 152 153 /* 154 * Indicates whether MSR bitmap for L2 needs to be rebuilt due to 155 * changes in MSR bitmap for L1 or switching to a different L2. Note, 156 * this flag can only be used reliably in conjunction with a paravirt L1 157 * which informs L0 whether any changes to MSR bitmap for L2 were done 158 * on its side. 159 */ 160 bool force_msr_bitmap_recalc; 161 162 /* 163 * Indicates lazily loaded guest state has not yet been decached from 164 * vmcs02. 165 */ 166 bool need_sync_vmcs02_to_vmcs12_rare; 167 168 /* 169 * vmcs02 has been initialized, i.e. state that is constant for 170 * vmcs02 has been written to the backing VMCS. Initialization 171 * is delayed until L1 actually attempts to run a nested VM. 172 */ 173 bool vmcs02_initialized; 174 175 bool change_vmcs01_virtual_apic_mode; 176 bool reload_vmcs01_apic_access_page; 177 bool update_vmcs01_cpu_dirty_logging; 178 bool update_vmcs01_apicv_status; 179 bool update_vmcs01_hwapic_isr; 180 181 /* 182 * Enlightened VMCS has been enabled. It does not mean that L1 has to 183 * use it. However, VMX features available to L1 will be limited based 184 * on what the enlightened VMCS supports. 185 */ 186 bool enlightened_vmcs_enabled; 187 188 /* L2 must run next, and mustn't decide to exit to L1. */ 189 bool nested_run_pending; 190 191 /* Pending MTF VM-exit into L1. */ 192 bool mtf_pending; 193 194 struct loaded_vmcs vmcs02; 195 196 /* 197 * Guest pages referred to in the vmcs02 with host-physical 198 * pointers, so we must keep them pinned while L2 runs. 199 */ 200 struct kvm_host_map apic_access_page_map; 201 struct kvm_host_map virtual_apic_map; 202 struct kvm_host_map pi_desc_map; 203 204 struct pi_desc *pi_desc; 205 bool pi_pending; 206 u16 posted_intr_nv; 207 208 struct hrtimer preemption_timer; 209 u64 preemption_timer_deadline; 210 bool has_preemption_timer_deadline; 211 bool preemption_timer_expired; 212 213 /* 214 * Used to snapshot MSRs that are conditionally loaded on VM-Enter in 215 * order to propagate the guest's pre-VM-Enter value into vmcs02. For 216 * emulation of VMLAUNCH/VMRESUME, the snapshot will be of L1's value. 217 * For KVM_SET_NESTED_STATE, the snapshot is of L2's value, _if_ 218 * userspace restores MSRs before nested state. If userspace restores 219 * MSRs after nested state, the snapshot holds garbage, but KVM can't 220 * detect that, and the garbage value in vmcs02 will be overwritten by 221 * MSR restoration in any case. 222 */ 223 u64 pre_vmenter_debugctl; 224 u64 pre_vmenter_bndcfgs; 225 226 /* to migrate it to L1 if L2 writes to L1's CR8 directly */ 227 int l1_tpr_threshold; 228 229 u16 vpid02; 230 u16 last_vpid; 231 232 struct nested_vmx_msrs msrs; 233 234 /* SMM related state */ 235 struct { 236 /* in VMX operation on SMM entry? */ 237 bool vmxon; 238 /* in guest mode on SMM entry? */ 239 bool guest_mode; 240 } smm; 241 242 #ifdef CONFIG_KVM_HYPERV 243 gpa_t hv_evmcs_vmptr; 244 struct kvm_host_map hv_evmcs_map; 245 struct hv_enlightened_vmcs *hv_evmcs; 246 #endif 247 }; 248 249 struct vcpu_vmx { 250 struct kvm_vcpu vcpu; 251 u8 fail; 252 u8 x2apic_msr_bitmap_mode; 253 254 /* 255 * If true, host state has been stored in vmx->loaded_vmcs for 256 * the CPU registers that only need to be switched when transitioning 257 * to/from the kernel, and the registers have been loaded with guest 258 * values. If false, host state is loaded in the CPU registers 259 * and vmx->loaded_vmcs->host_state is invalid. 260 */ 261 bool guest_state_loaded; 262 263 unsigned long exit_qualification; 264 u32 exit_intr_info; 265 u32 idt_vectoring_info; 266 ulong rflags; 267 268 /* 269 * User return MSRs are always emulated when enabled in the guest, but 270 * only loaded into hardware when necessary, e.g. SYSCALL #UDs outside 271 * of 64-bit mode or if EFER.SCE=1, thus the SYSCALL MSRs don't need to 272 * be loaded into hardware if those conditions aren't met. 273 */ 274 struct vmx_uret_msr guest_uret_msrs[MAX_NR_USER_RETURN_MSRS]; 275 bool guest_uret_msrs_loaded; 276 #ifdef CONFIG_X86_64 277 u64 msr_host_kernel_gs_base; 278 u64 msr_guest_kernel_gs_base; 279 #endif 280 281 u64 spec_ctrl; 282 u32 msr_ia32_umwait_control; 283 284 /* 285 * loaded_vmcs points to the VMCS currently used in this vcpu. For a 286 * non-nested (L1) guest, it always points to vmcs01. For a nested 287 * guest (L2), it points to a different VMCS. 288 */ 289 struct loaded_vmcs vmcs01; 290 struct loaded_vmcs *loaded_vmcs; 291 292 struct msr_autoload { 293 struct vmx_msrs guest; 294 struct vmx_msrs host; 295 } msr_autoload; 296 297 struct msr_autostore { 298 struct vmx_msrs guest; 299 } msr_autostore; 300 301 struct { 302 int vm86_active; 303 ulong save_rflags; 304 struct kvm_segment segs[8]; 305 } rmode; 306 struct { 307 u32 bitmask; /* 4 bits per segment (1 bit per field) */ 308 struct kvm_save_segment { 309 u16 selector; 310 unsigned long base; 311 u32 limit; 312 u32 ar; 313 } seg[8]; 314 } segment_cache; 315 int vpid; 316 bool emulation_required; 317 318 union vmx_exit_reason exit_reason; 319 320 /* Posted interrupt descriptor */ 321 struct pi_desc pi_desc; 322 323 /* Used if this vCPU is waiting for PI notification wakeup. */ 324 struct list_head pi_wakeup_list; 325 326 /* Support for a guest hypervisor (nested VMX) */ 327 struct nested_vmx nested; 328 329 /* Dynamic PLE window. */ 330 unsigned int ple_window; 331 bool ple_window_dirty; 332 333 /* Support for PML */ 334 #define PML_LOG_NR_ENTRIES 512 335 /* PML is written backwards: this is the first entry written by the CPU */ 336 #define PML_HEAD_INDEX (PML_LOG_NR_ENTRIES-1) 337 338 struct page *pml_pg; 339 340 /* apic deadline value in host tsc */ 341 u64 hv_deadline_tsc; 342 343 /* 344 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in 345 * msr_ia32_feature_control. FEAT_CTL_LOCKED is always included 346 * in msr_ia32_feature_control_valid_bits. 347 */ 348 u64 msr_ia32_feature_control; 349 u64 msr_ia32_feature_control_valid_bits; 350 /* SGX Launch Control public key hash */ 351 u64 msr_ia32_sgxlepubkeyhash[4]; 352 u64 msr_ia32_mcu_opt_ctrl; 353 bool disable_fb_clear; 354 355 struct pt_desc pt_desc; 356 struct lbr_desc lbr_desc; 357 358 /* Save desired MSR intercept (read: pass-through) state */ 359 #define MAX_POSSIBLE_PASSTHROUGH_MSRS 16 360 struct { 361 DECLARE_BITMAP(read, MAX_POSSIBLE_PASSTHROUGH_MSRS); 362 DECLARE_BITMAP(write, MAX_POSSIBLE_PASSTHROUGH_MSRS); 363 } shadow_msr_intercept; 364 365 /* ve_info must be page aligned. */ 366 struct vmx_ve_information *ve_info; 367 }; 368 369 struct kvm_vmx { 370 struct kvm kvm; 371 372 unsigned int tss_addr; 373 bool ept_identity_pagetable_done; 374 gpa_t ept_identity_map_addr; 375 /* Posted Interrupt Descriptor (PID) table for IPI virtualization */ 376 u64 *pid_table; 377 }; 378 379 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu, 380 struct loaded_vmcs *buddy); 381 int allocate_vpid(void); 382 void free_vpid(int vpid); 383 void vmx_set_constant_host_state(struct vcpu_vmx *vmx); 384 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu); 385 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, 386 unsigned long fs_base, unsigned long gs_base); 387 int vmx_get_cpl(struct kvm_vcpu *vcpu); 388 int vmx_get_cpl_no_cache(struct kvm_vcpu *vcpu); 389 bool vmx_emulation_required(struct kvm_vcpu *vcpu); 390 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu); 391 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 392 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu); 393 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask); 394 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer); 395 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); 396 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); 397 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx); 398 void ept_save_pdptrs(struct kvm_vcpu *vcpu); 399 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 400 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 401 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level); 402 403 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu); 404 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu); 405 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu); 406 bool __vmx_interrupt_blocked(struct kvm_vcpu *vcpu); 407 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu); 408 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu); 409 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked); 410 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu); 411 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr); 412 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu); 413 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp); 414 void vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, unsigned int flags); 415 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx); 416 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, 417 unsigned int flags); 418 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr); 419 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu); 420 421 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type); 422 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type); 423 424 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu); 425 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu); 426 427 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags); 428 429 static inline void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, 430 int type, bool value) 431 { 432 if (value) 433 vmx_enable_intercept_for_msr(vcpu, msr, type); 434 else 435 vmx_disable_intercept_for_msr(vcpu, msr, type); 436 } 437 438 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu); 439 440 /* 441 * Note, early Intel manuals have the write-low and read-high bitmap offsets 442 * the wrong way round. The bitmaps control MSRs 0x00000000-0x00001fff and 443 * 0xc0000000-0xc0001fff. The former (low) uses bytes 0-0x3ff for reads and 444 * 0x800-0xbff for writes. The latter (high) uses 0x400-0x7ff for reads and 445 * 0xc00-0xfff for writes. MSRs not covered by either of the ranges always 446 * VM-Exit. 447 */ 448 #define __BUILD_VMX_MSR_BITMAP_HELPER(rtype, action, bitop, access, base) \ 449 static inline rtype vmx_##action##_msr_bitmap_##access(unsigned long *bitmap, \ 450 u32 msr) \ 451 { \ 452 int f = sizeof(unsigned long); \ 453 \ 454 if (msr <= 0x1fff) \ 455 return bitop##_bit(msr, bitmap + base / f); \ 456 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) \ 457 return bitop##_bit(msr & 0x1fff, bitmap + (base + 0x400) / f); \ 458 return (rtype)true; \ 459 } 460 #define BUILD_VMX_MSR_BITMAP_HELPERS(ret_type, action, bitop) \ 461 __BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, read, 0x0) \ 462 __BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, write, 0x800) 463 464 BUILD_VMX_MSR_BITMAP_HELPERS(bool, test, test) 465 BUILD_VMX_MSR_BITMAP_HELPERS(void, clear, __clear) 466 BUILD_VMX_MSR_BITMAP_HELPERS(void, set, __set) 467 468 static inline u8 vmx_get_rvi(void) 469 { 470 return vmcs_read16(GUEST_INTR_STATUS) & 0xff; 471 } 472 473 #define __KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS \ 474 (VM_ENTRY_LOAD_DEBUG_CONTROLS) 475 #ifdef CONFIG_X86_64 476 #define KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS \ 477 (__KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS | \ 478 VM_ENTRY_IA32E_MODE) 479 #else 480 #define KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS \ 481 __KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS 482 #endif 483 #define KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS \ 484 (VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | \ 485 VM_ENTRY_LOAD_IA32_PAT | \ 486 VM_ENTRY_LOAD_IA32_EFER | \ 487 VM_ENTRY_LOAD_BNDCFGS | \ 488 VM_ENTRY_PT_CONCEAL_PIP | \ 489 VM_ENTRY_LOAD_IA32_RTIT_CTL) 490 491 #define __KVM_REQUIRED_VMX_VM_EXIT_CONTROLS \ 492 (VM_EXIT_SAVE_DEBUG_CONTROLS | \ 493 VM_EXIT_ACK_INTR_ON_EXIT) 494 #ifdef CONFIG_X86_64 495 #define KVM_REQUIRED_VMX_VM_EXIT_CONTROLS \ 496 (__KVM_REQUIRED_VMX_VM_EXIT_CONTROLS | \ 497 VM_EXIT_HOST_ADDR_SPACE_SIZE) 498 #else 499 #define KVM_REQUIRED_VMX_VM_EXIT_CONTROLS \ 500 __KVM_REQUIRED_VMX_VM_EXIT_CONTROLS 501 #endif 502 #define KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS \ 503 (VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | \ 504 VM_EXIT_SAVE_IA32_PAT | \ 505 VM_EXIT_LOAD_IA32_PAT | \ 506 VM_EXIT_SAVE_IA32_EFER | \ 507 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | \ 508 VM_EXIT_LOAD_IA32_EFER | \ 509 VM_EXIT_CLEAR_BNDCFGS | \ 510 VM_EXIT_PT_CONCEAL_PIP | \ 511 VM_EXIT_CLEAR_IA32_RTIT_CTL) 512 513 #define KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL \ 514 (PIN_BASED_EXT_INTR_MASK | \ 515 PIN_BASED_NMI_EXITING) 516 #define KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL \ 517 (PIN_BASED_VIRTUAL_NMIS | \ 518 PIN_BASED_POSTED_INTR | \ 519 PIN_BASED_VMX_PREEMPTION_TIMER) 520 521 #define __KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL \ 522 (CPU_BASED_HLT_EXITING | \ 523 CPU_BASED_CR3_LOAD_EXITING | \ 524 CPU_BASED_CR3_STORE_EXITING | \ 525 CPU_BASED_UNCOND_IO_EXITING | \ 526 CPU_BASED_MOV_DR_EXITING | \ 527 CPU_BASED_USE_TSC_OFFSETTING | \ 528 CPU_BASED_MWAIT_EXITING | \ 529 CPU_BASED_MONITOR_EXITING | \ 530 CPU_BASED_INVLPG_EXITING | \ 531 CPU_BASED_RDPMC_EXITING | \ 532 CPU_BASED_INTR_WINDOW_EXITING) 533 534 #ifdef CONFIG_X86_64 535 #define KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL \ 536 (__KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL | \ 537 CPU_BASED_CR8_LOAD_EXITING | \ 538 CPU_BASED_CR8_STORE_EXITING) 539 #else 540 #define KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL \ 541 __KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL 542 #endif 543 544 #define KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL \ 545 (CPU_BASED_RDTSC_EXITING | \ 546 CPU_BASED_TPR_SHADOW | \ 547 CPU_BASED_USE_IO_BITMAPS | \ 548 CPU_BASED_MONITOR_TRAP_FLAG | \ 549 CPU_BASED_USE_MSR_BITMAPS | \ 550 CPU_BASED_NMI_WINDOW_EXITING | \ 551 CPU_BASED_PAUSE_EXITING | \ 552 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS | \ 553 CPU_BASED_ACTIVATE_TERTIARY_CONTROLS) 554 555 #define KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL 0 556 #define KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL \ 557 (SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | \ 558 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | \ 559 SECONDARY_EXEC_WBINVD_EXITING | \ 560 SECONDARY_EXEC_ENABLE_VPID | \ 561 SECONDARY_EXEC_ENABLE_EPT | \ 562 SECONDARY_EXEC_UNRESTRICTED_GUEST | \ 563 SECONDARY_EXEC_PAUSE_LOOP_EXITING | \ 564 SECONDARY_EXEC_DESC | \ 565 SECONDARY_EXEC_ENABLE_RDTSCP | \ 566 SECONDARY_EXEC_ENABLE_INVPCID | \ 567 SECONDARY_EXEC_APIC_REGISTER_VIRT | \ 568 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | \ 569 SECONDARY_EXEC_SHADOW_VMCS | \ 570 SECONDARY_EXEC_ENABLE_XSAVES | \ 571 SECONDARY_EXEC_RDSEED_EXITING | \ 572 SECONDARY_EXEC_RDRAND_EXITING | \ 573 SECONDARY_EXEC_ENABLE_PML | \ 574 SECONDARY_EXEC_TSC_SCALING | \ 575 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE | \ 576 SECONDARY_EXEC_PT_USE_GPA | \ 577 SECONDARY_EXEC_PT_CONCEAL_VMX | \ 578 SECONDARY_EXEC_ENABLE_VMFUNC | \ 579 SECONDARY_EXEC_BUS_LOCK_DETECTION | \ 580 SECONDARY_EXEC_NOTIFY_VM_EXITING | \ 581 SECONDARY_EXEC_ENCLS_EXITING | \ 582 SECONDARY_EXEC_EPT_VIOLATION_VE) 583 584 #define KVM_REQUIRED_VMX_TERTIARY_VM_EXEC_CONTROL 0 585 #define KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL \ 586 (TERTIARY_EXEC_IPI_VIRT) 587 588 #define BUILD_CONTROLS_SHADOW(lname, uname, bits) \ 589 static inline void lname##_controls_set(struct vcpu_vmx *vmx, u##bits val) \ 590 { \ 591 if (vmx->loaded_vmcs->controls_shadow.lname != val) { \ 592 vmcs_write##bits(uname, val); \ 593 vmx->loaded_vmcs->controls_shadow.lname = val; \ 594 } \ 595 } \ 596 static inline u##bits __##lname##_controls_get(struct loaded_vmcs *vmcs) \ 597 { \ 598 return vmcs->controls_shadow.lname; \ 599 } \ 600 static inline u##bits lname##_controls_get(struct vcpu_vmx *vmx) \ 601 { \ 602 return __##lname##_controls_get(vmx->loaded_vmcs); \ 603 } \ 604 static __always_inline void lname##_controls_setbit(struct vcpu_vmx *vmx, u##bits val) \ 605 { \ 606 BUILD_BUG_ON(!(val & (KVM_REQUIRED_VMX_##uname | KVM_OPTIONAL_VMX_##uname))); \ 607 lname##_controls_set(vmx, lname##_controls_get(vmx) | val); \ 608 } \ 609 static __always_inline void lname##_controls_clearbit(struct vcpu_vmx *vmx, u##bits val) \ 610 { \ 611 BUILD_BUG_ON(!(val & (KVM_REQUIRED_VMX_##uname | KVM_OPTIONAL_VMX_##uname))); \ 612 lname##_controls_set(vmx, lname##_controls_get(vmx) & ~val); \ 613 } 614 BUILD_CONTROLS_SHADOW(vm_entry, VM_ENTRY_CONTROLS, 32) 615 BUILD_CONTROLS_SHADOW(vm_exit, VM_EXIT_CONTROLS, 32) 616 BUILD_CONTROLS_SHADOW(pin, PIN_BASED_VM_EXEC_CONTROL, 32) 617 BUILD_CONTROLS_SHADOW(exec, CPU_BASED_VM_EXEC_CONTROL, 32) 618 BUILD_CONTROLS_SHADOW(secondary_exec, SECONDARY_VM_EXEC_CONTROL, 32) 619 BUILD_CONTROLS_SHADOW(tertiary_exec, TERTIARY_VM_EXEC_CONTROL, 64) 620 621 /* 622 * VMX_REGS_LAZY_LOAD_SET - The set of registers that will be updated in the 623 * cache on demand. Other registers not listed here are synced to 624 * the cache immediately after VM-Exit. 625 */ 626 #define VMX_REGS_LAZY_LOAD_SET ((1 << VCPU_REGS_RIP) | \ 627 (1 << VCPU_REGS_RSP) | \ 628 (1 << VCPU_EXREG_RFLAGS) | \ 629 (1 << VCPU_EXREG_PDPTR) | \ 630 (1 << VCPU_EXREG_SEGMENTS) | \ 631 (1 << VCPU_EXREG_CR0) | \ 632 (1 << VCPU_EXREG_CR3) | \ 633 (1 << VCPU_EXREG_CR4) | \ 634 (1 << VCPU_EXREG_EXIT_INFO_1) | \ 635 (1 << VCPU_EXREG_EXIT_INFO_2)) 636 637 static inline unsigned long vmx_l1_guest_owned_cr0_bits(void) 638 { 639 unsigned long bits = KVM_POSSIBLE_CR0_GUEST_BITS; 640 641 /* 642 * CR0.WP needs to be intercepted when KVM is shadowing legacy paging 643 * in order to construct shadow PTEs with the correct protections. 644 * Note! CR0.WP technically can be passed through to the guest if 645 * paging is disabled, but checking CR0.PG would generate a cyclical 646 * dependency of sorts due to forcing the caller to ensure CR0 holds 647 * the correct value prior to determining which CR0 bits can be owned 648 * by L1. Keep it simple and limit the optimization to EPT. 649 */ 650 if (!enable_ept) 651 bits &= ~X86_CR0_WP; 652 return bits; 653 } 654 655 static __always_inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm) 656 { 657 return container_of(kvm, struct kvm_vmx, kvm); 658 } 659 660 static __always_inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu) 661 { 662 return container_of(vcpu, struct vcpu_vmx, vcpu); 663 } 664 665 static inline struct lbr_desc *vcpu_to_lbr_desc(struct kvm_vcpu *vcpu) 666 { 667 return &to_vmx(vcpu)->lbr_desc; 668 } 669 670 static inline struct x86_pmu_lbr *vcpu_to_lbr_records(struct kvm_vcpu *vcpu) 671 { 672 return &vcpu_to_lbr_desc(vcpu)->records; 673 } 674 675 static inline bool intel_pmu_lbr_is_enabled(struct kvm_vcpu *vcpu) 676 { 677 return !!vcpu_to_lbr_records(vcpu)->nr; 678 } 679 680 void intel_pmu_cross_mapped_check(struct kvm_pmu *pmu); 681 int intel_pmu_create_guest_lbr_event(struct kvm_vcpu *vcpu); 682 void vmx_passthrough_lbr_msrs(struct kvm_vcpu *vcpu); 683 684 static __always_inline unsigned long vmx_get_exit_qual(struct kvm_vcpu *vcpu) 685 { 686 struct vcpu_vmx *vmx = to_vmx(vcpu); 687 688 if (!kvm_register_test_and_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1)) 689 vmx->exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 690 691 return vmx->exit_qualification; 692 } 693 694 static __always_inline u32 vmx_get_intr_info(struct kvm_vcpu *vcpu) 695 { 696 struct vcpu_vmx *vmx = to_vmx(vcpu); 697 698 if (!kvm_register_test_and_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2)) 699 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); 700 701 return vmx->exit_intr_info; 702 } 703 704 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags); 705 void free_vmcs(struct vmcs *vmcs); 706 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs); 707 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs); 708 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs); 709 710 static inline struct vmcs *alloc_vmcs(bool shadow) 711 { 712 return alloc_vmcs_cpu(shadow, raw_smp_processor_id(), 713 GFP_KERNEL_ACCOUNT); 714 } 715 716 static inline bool vmx_has_waitpkg(struct vcpu_vmx *vmx) 717 { 718 return secondary_exec_controls_get(vmx) & 719 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE; 720 } 721 722 static inline bool vmx_need_pf_intercept(struct kvm_vcpu *vcpu) 723 { 724 if (!enable_ept) 725 return true; 726 727 return allow_smaller_maxphyaddr && 728 cpuid_maxphyaddr(vcpu) < kvm_host.maxphyaddr; 729 } 730 731 static inline bool is_unrestricted_guest(struct kvm_vcpu *vcpu) 732 { 733 return enable_unrestricted_guest && (!is_guest_mode(vcpu) || 734 (secondary_exec_controls_get(to_vmx(vcpu)) & 735 SECONDARY_EXEC_UNRESTRICTED_GUEST)); 736 } 737 738 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu); 739 static inline bool vmx_guest_state_valid(struct kvm_vcpu *vcpu) 740 { 741 return is_unrestricted_guest(vcpu) || __vmx_guest_state_valid(vcpu); 742 } 743 744 void dump_vmcs(struct kvm_vcpu *vcpu); 745 746 static inline int vmx_get_instr_info_reg2(u32 vmx_instr_info) 747 { 748 return (vmx_instr_info >> 28) & 0xf; 749 } 750 751 static inline bool vmx_can_use_ipiv(struct kvm_vcpu *vcpu) 752 { 753 return lapic_in_kernel(vcpu) && enable_ipiv; 754 } 755 756 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx) 757 { 758 vmx->segment_cache.bitmask = 0; 759 } 760 761 #endif /* __KVM_X86_VMX_H */ 762