xref: /linux/arch/x86/kvm/vmx/vmx.c (revision f683c9b134f2b0cb5d917296a142db1211468a78)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/objtool.h>
26 #include <linux/sched.h>
27 #include <linux/sched/smt.h>
28 #include <linux/slab.h>
29 #include <linux/tboot.h>
30 #include <linux/trace_events.h>
31 #include <linux/entry-kvm.h>
32 
33 #include <asm/apic.h>
34 #include <asm/asm.h>
35 #include <asm/cpu.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/debugreg.h>
38 #include <asm/desc.h>
39 #include <asm/fpu/api.h>
40 #include <asm/fpu/xstate.h>
41 #include <asm/fred.h>
42 #include <asm/idtentry.h>
43 #include <asm/io.h>
44 #include <asm/irq_remapping.h>
45 #include <asm/reboot.h>
46 #include <asm/perf_event.h>
47 #include <asm/mmu_context.h>
48 #include <asm/mshyperv.h>
49 #include <asm/mwait.h>
50 #include <asm/spec-ctrl.h>
51 #include <asm/vmx.h>
52 
53 #include <trace/events/ipi.h>
54 
55 #include "capabilities.h"
56 #include "cpuid.h"
57 #include "hyperv.h"
58 #include "kvm_onhyperv.h"
59 #include "irq.h"
60 #include "kvm_cache_regs.h"
61 #include "lapic.h"
62 #include "mmu.h"
63 #include "nested.h"
64 #include "pmu.h"
65 #include "sgx.h"
66 #include "trace.h"
67 #include "vmcs.h"
68 #include "vmcs12.h"
69 #include "vmx.h"
70 #include "x86.h"
71 #include "x86_ops.h"
72 #include "smm.h"
73 #include "vmx_onhyperv.h"
74 #include "posted_intr.h"
75 
76 MODULE_AUTHOR("Qumranet");
77 MODULE_DESCRIPTION("KVM support for VMX (Intel VT-x) extensions");
78 MODULE_LICENSE("GPL");
79 
80 #ifdef MODULE
81 static const struct x86_cpu_id vmx_cpu_id[] = {
82 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
83 	{}
84 };
85 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
86 #endif
87 
88 bool __read_mostly enable_vpid = 1;
89 module_param_named(vpid, enable_vpid, bool, 0444);
90 
91 static bool __read_mostly enable_vnmi = 1;
92 module_param_named(vnmi, enable_vnmi, bool, 0444);
93 
94 bool __read_mostly flexpriority_enabled = 1;
95 module_param_named(flexpriority, flexpriority_enabled, bool, 0444);
96 
97 bool __read_mostly enable_ept = 1;
98 module_param_named(ept, enable_ept, bool, 0444);
99 
100 bool __read_mostly enable_unrestricted_guest = 1;
101 module_param_named(unrestricted_guest,
102 			enable_unrestricted_guest, bool, 0444);
103 
104 bool __read_mostly enable_ept_ad_bits = 1;
105 module_param_named(eptad, enable_ept_ad_bits, bool, 0444);
106 
107 static bool __read_mostly emulate_invalid_guest_state = true;
108 module_param(emulate_invalid_guest_state, bool, 0444);
109 
110 static bool __read_mostly fasteoi = 1;
111 module_param(fasteoi, bool, 0444);
112 
113 module_param(enable_apicv, bool, 0444);
114 
115 bool __read_mostly enable_ipiv = true;
116 module_param(enable_ipiv, bool, 0444);
117 
118 /*
119  * If nested=1, nested virtualization is supported, i.e., guests may use
120  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
121  * use VMX instructions.
122  */
123 static bool __read_mostly nested = 1;
124 module_param(nested, bool, 0444);
125 
126 bool __read_mostly enable_pml = 1;
127 module_param_named(pml, enable_pml, bool, 0444);
128 
129 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
130 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
131 
132 static bool __read_mostly dump_invalid_vmcs = 0;
133 module_param(dump_invalid_vmcs, bool, 0644);
134 
135 #define MSR_BITMAP_MODE_X2APIC		1
136 #define MSR_BITMAP_MODE_X2APIC_APICV	2
137 
138 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
139 
140 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
141 static int __read_mostly cpu_preemption_timer_multi;
142 static bool __read_mostly enable_preemption_timer = 1;
143 #ifdef CONFIG_X86_64
144 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
145 #endif
146 
147 extern bool __read_mostly allow_smaller_maxphyaddr;
148 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
149 
150 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
151 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
152 #define KVM_VM_CR0_ALWAYS_ON				\
153 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
154 
155 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
156 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
157 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
158 
159 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
160 
161 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
162 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
163 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
164 	RTIT_STATUS_BYTECNT))
165 
166 /*
167  * List of MSRs that can be directly passed to the guest.
168  * In addition to these x2apic, PT and LBR MSRs are handled specially.
169  */
170 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
171 	MSR_IA32_SPEC_CTRL,
172 	MSR_IA32_PRED_CMD,
173 	MSR_IA32_FLUSH_CMD,
174 	MSR_IA32_TSC,
175 #ifdef CONFIG_X86_64
176 	MSR_FS_BASE,
177 	MSR_GS_BASE,
178 	MSR_KERNEL_GS_BASE,
179 	MSR_IA32_XFD,
180 	MSR_IA32_XFD_ERR,
181 #endif
182 	MSR_IA32_SYSENTER_CS,
183 	MSR_IA32_SYSENTER_ESP,
184 	MSR_IA32_SYSENTER_EIP,
185 	MSR_CORE_C1_RES,
186 	MSR_CORE_C3_RESIDENCY,
187 	MSR_CORE_C6_RESIDENCY,
188 	MSR_CORE_C7_RESIDENCY,
189 };
190 
191 /*
192  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
193  * ple_gap:    upper bound on the amount of time between two successive
194  *             executions of PAUSE in a loop. Also indicate if ple enabled.
195  *             According to test, this time is usually smaller than 128 cycles.
196  * ple_window: upper bound on the amount of time a guest is allowed to execute
197  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
198  *             less than 2^12 cycles
199  * Time is measured based on a counter that runs at the same rate as the TSC,
200  * refer SDM volume 3b section 21.6.13 & 22.1.3.
201  */
202 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
203 module_param(ple_gap, uint, 0444);
204 
205 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
206 module_param(ple_window, uint, 0444);
207 
208 /* Default doubles per-vcpu window every exit. */
209 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
210 module_param(ple_window_grow, uint, 0444);
211 
212 /* Default resets per-vcpu window every exit to ple_window. */
213 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
214 module_param(ple_window_shrink, uint, 0444);
215 
216 /* Default is to compute the maximum so we can never overflow. */
217 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
218 module_param(ple_window_max, uint, 0444);
219 
220 /* Default is SYSTEM mode, 1 for host-guest mode */
221 int __read_mostly pt_mode = PT_MODE_SYSTEM;
222 module_param(pt_mode, int, S_IRUGO);
223 
224 struct x86_pmu_lbr __ro_after_init vmx_lbr_caps;
225 
226 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
227 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
228 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
229 
230 /* Storage for pre module init parameter parsing */
231 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
232 
233 static const struct {
234 	const char *option;
235 	bool for_parse;
236 } vmentry_l1d_param[] = {
237 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
238 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
239 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
240 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
241 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
242 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
243 };
244 
245 #define L1D_CACHE_ORDER 4
246 static void *vmx_l1d_flush_pages;
247 
248 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
249 {
250 	struct page *page;
251 	unsigned int i;
252 
253 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
254 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
255 		return 0;
256 	}
257 
258 	if (!enable_ept) {
259 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
260 		return 0;
261 	}
262 
263 	if (kvm_host.arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
264 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
265 		return 0;
266 	}
267 
268 	/* If set to auto use the default l1tf mitigation method */
269 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
270 		switch (l1tf_mitigation) {
271 		case L1TF_MITIGATION_OFF:
272 			l1tf = VMENTER_L1D_FLUSH_NEVER;
273 			break;
274 		case L1TF_MITIGATION_FLUSH_NOWARN:
275 		case L1TF_MITIGATION_FLUSH:
276 		case L1TF_MITIGATION_FLUSH_NOSMT:
277 			l1tf = VMENTER_L1D_FLUSH_COND;
278 			break;
279 		case L1TF_MITIGATION_FULL:
280 		case L1TF_MITIGATION_FULL_FORCE:
281 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
282 			break;
283 		}
284 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
285 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
286 	}
287 
288 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
289 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
290 		/*
291 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
292 		 * lifetime and so should not be charged to a memcg.
293 		 */
294 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
295 		if (!page)
296 			return -ENOMEM;
297 		vmx_l1d_flush_pages = page_address(page);
298 
299 		/*
300 		 * Initialize each page with a different pattern in
301 		 * order to protect against KSM in the nested
302 		 * virtualization case.
303 		 */
304 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
305 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
306 			       PAGE_SIZE);
307 		}
308 	}
309 
310 	l1tf_vmx_mitigation = l1tf;
311 
312 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
313 		static_branch_enable(&vmx_l1d_should_flush);
314 	else
315 		static_branch_disable(&vmx_l1d_should_flush);
316 
317 	if (l1tf == VMENTER_L1D_FLUSH_COND)
318 		static_branch_enable(&vmx_l1d_flush_cond);
319 	else
320 		static_branch_disable(&vmx_l1d_flush_cond);
321 	return 0;
322 }
323 
324 static int vmentry_l1d_flush_parse(const char *s)
325 {
326 	unsigned int i;
327 
328 	if (s) {
329 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
330 			if (vmentry_l1d_param[i].for_parse &&
331 			    sysfs_streq(s, vmentry_l1d_param[i].option))
332 				return i;
333 		}
334 	}
335 	return -EINVAL;
336 }
337 
338 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
339 {
340 	int l1tf, ret;
341 
342 	l1tf = vmentry_l1d_flush_parse(s);
343 	if (l1tf < 0)
344 		return l1tf;
345 
346 	if (!boot_cpu_has(X86_BUG_L1TF))
347 		return 0;
348 
349 	/*
350 	 * Has vmx_init() run already? If not then this is the pre init
351 	 * parameter parsing. In that case just store the value and let
352 	 * vmx_init() do the proper setup after enable_ept has been
353 	 * established.
354 	 */
355 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
356 		vmentry_l1d_flush_param = l1tf;
357 		return 0;
358 	}
359 
360 	mutex_lock(&vmx_l1d_flush_mutex);
361 	ret = vmx_setup_l1d_flush(l1tf);
362 	mutex_unlock(&vmx_l1d_flush_mutex);
363 	return ret;
364 }
365 
366 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
367 {
368 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
369 		return sysfs_emit(s, "???\n");
370 
371 	return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
372 }
373 
374 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
375 {
376 	u64 msr;
377 
378 	if (!vmx->disable_fb_clear)
379 		return;
380 
381 	msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
382 	msr |= FB_CLEAR_DIS;
383 	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
384 	/* Cache the MSR value to avoid reading it later */
385 	vmx->msr_ia32_mcu_opt_ctrl = msr;
386 }
387 
388 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
389 {
390 	if (!vmx->disable_fb_clear)
391 		return;
392 
393 	vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
394 	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
395 }
396 
397 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
398 {
399 	/*
400 	 * Disable VERW's behavior of clearing CPU buffers for the guest if the
401 	 * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled
402 	 * the mitigation. Disabling the clearing behavior provides a
403 	 * performance boost for guests that aren't aware that manually clearing
404 	 * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry
405 	 * and VM-Exit.
406 	 */
407 	vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) &&
408 				(kvm_host.arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) &&
409 				!boot_cpu_has_bug(X86_BUG_MDS) &&
410 				!boot_cpu_has_bug(X86_BUG_TAA);
411 
412 	/*
413 	 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
414 	 * at VMEntry. Skip the MSR read/write when a guest has no use case to
415 	 * execute VERW.
416 	 */
417 	if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
418 	   ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
419 	    (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
420 	    (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
421 	    (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
422 	    (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
423 		vmx->disable_fb_clear = false;
424 }
425 
426 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
427 	.set = vmentry_l1d_flush_set,
428 	.get = vmentry_l1d_flush_get,
429 };
430 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
431 
432 static u32 vmx_segment_access_rights(struct kvm_segment *var);
433 
434 void vmx_vmexit(void);
435 
436 #define vmx_insn_failed(fmt...)		\
437 do {					\
438 	WARN_ONCE(1, fmt);		\
439 	pr_warn_ratelimited(fmt);	\
440 } while (0)
441 
442 noinline void vmread_error(unsigned long field)
443 {
444 	vmx_insn_failed("vmread failed: field=%lx\n", field);
445 }
446 
447 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT
448 noinstr void vmread_error_trampoline2(unsigned long field, bool fault)
449 {
450 	if (fault) {
451 		kvm_spurious_fault();
452 	} else {
453 		instrumentation_begin();
454 		vmread_error(field);
455 		instrumentation_end();
456 	}
457 }
458 #endif
459 
460 noinline void vmwrite_error(unsigned long field, unsigned long value)
461 {
462 	vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
463 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
464 }
465 
466 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
467 {
468 	vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
469 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
470 }
471 
472 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
473 {
474 	vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
475 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
476 }
477 
478 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
479 {
480 	vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
481 			ext, vpid, gva);
482 }
483 
484 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
485 {
486 	vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
487 			ext, eptp, gpa);
488 }
489 
490 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
491 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
492 /*
493  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
494  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
495  */
496 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
497 
498 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
499 static DEFINE_SPINLOCK(vmx_vpid_lock);
500 
501 struct vmcs_config vmcs_config __ro_after_init;
502 struct vmx_capability vmx_capability __ro_after_init;
503 
504 #define VMX_SEGMENT_FIELD(seg)					\
505 	[VCPU_SREG_##seg] = {                                   \
506 		.selector = GUEST_##seg##_SELECTOR,		\
507 		.base = GUEST_##seg##_BASE,		   	\
508 		.limit = GUEST_##seg##_LIMIT,		   	\
509 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
510 	}
511 
512 static const struct kvm_vmx_segment_field {
513 	unsigned selector;
514 	unsigned base;
515 	unsigned limit;
516 	unsigned ar_bytes;
517 } kvm_vmx_segment_fields[] = {
518 	VMX_SEGMENT_FIELD(CS),
519 	VMX_SEGMENT_FIELD(DS),
520 	VMX_SEGMENT_FIELD(ES),
521 	VMX_SEGMENT_FIELD(FS),
522 	VMX_SEGMENT_FIELD(GS),
523 	VMX_SEGMENT_FIELD(SS),
524 	VMX_SEGMENT_FIELD(TR),
525 	VMX_SEGMENT_FIELD(LDTR),
526 };
527 
528 
529 static unsigned long host_idt_base;
530 
531 #if IS_ENABLED(CONFIG_HYPERV)
532 static bool __read_mostly enlightened_vmcs = true;
533 module_param(enlightened_vmcs, bool, 0444);
534 
535 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
536 {
537 	struct hv_enlightened_vmcs *evmcs;
538 	hpa_t partition_assist_page = hv_get_partition_assist_page(vcpu);
539 
540 	if (partition_assist_page == INVALID_PAGE)
541 		return -ENOMEM;
542 
543 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
544 
545 	evmcs->partition_assist_page = partition_assist_page;
546 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
547 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
548 
549 	return 0;
550 }
551 
552 static __init void hv_init_evmcs(void)
553 {
554 	int cpu;
555 
556 	if (!enlightened_vmcs)
557 		return;
558 
559 	/*
560 	 * Enlightened VMCS usage should be recommended and the host needs
561 	 * to support eVMCS v1 or above.
562 	 */
563 	if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
564 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
565 	     KVM_EVMCS_VERSION) {
566 
567 		/* Check that we have assist pages on all online CPUs */
568 		for_each_online_cpu(cpu) {
569 			if (!hv_get_vp_assist_page(cpu)) {
570 				enlightened_vmcs = false;
571 				break;
572 			}
573 		}
574 
575 		if (enlightened_vmcs) {
576 			pr_info("Using Hyper-V Enlightened VMCS\n");
577 			static_branch_enable(&__kvm_is_using_evmcs);
578 		}
579 
580 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
581 			vt_x86_ops.enable_l2_tlb_flush
582 				= hv_enable_l2_tlb_flush;
583 	} else {
584 		enlightened_vmcs = false;
585 	}
586 }
587 
588 static void hv_reset_evmcs(void)
589 {
590 	struct hv_vp_assist_page *vp_ap;
591 
592 	if (!kvm_is_using_evmcs())
593 		return;
594 
595 	/*
596 	 * KVM should enable eVMCS if and only if all CPUs have a VP assist
597 	 * page, and should reject CPU onlining if eVMCS is enabled the CPU
598 	 * doesn't have a VP assist page allocated.
599 	 */
600 	vp_ap = hv_get_vp_assist_page(smp_processor_id());
601 	if (WARN_ON_ONCE(!vp_ap))
602 		return;
603 
604 	/*
605 	 * Reset everything to support using non-enlightened VMCS access later
606 	 * (e.g. when we reload the module with enlightened_vmcs=0)
607 	 */
608 	vp_ap->nested_control.features.directhypercall = 0;
609 	vp_ap->current_nested_vmcs = 0;
610 	vp_ap->enlighten_vmentry = 0;
611 }
612 
613 #else /* IS_ENABLED(CONFIG_HYPERV) */
614 static void hv_init_evmcs(void) {}
615 static void hv_reset_evmcs(void) {}
616 #endif /* IS_ENABLED(CONFIG_HYPERV) */
617 
618 /*
619  * Comment's format: document - errata name - stepping - processor name.
620  * Refer from
621  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
622  */
623 static u32 vmx_preemption_cpu_tfms[] = {
624 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
625 0x000206E6,
626 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
627 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
628 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
629 0x00020652,
630 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
631 0x00020655,
632 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
633 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
634 /*
635  * 320767.pdf - AAP86  - B1 -
636  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
637  */
638 0x000106E5,
639 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
640 0x000106A0,
641 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
642 0x000106A1,
643 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
644 0x000106A4,
645  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
646  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
647  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
648 0x000106A5,
649  /* Xeon E3-1220 V2 */
650 0x000306A8,
651 };
652 
653 static inline bool cpu_has_broken_vmx_preemption_timer(void)
654 {
655 	u32 eax = cpuid_eax(0x00000001), i;
656 
657 	/* Clear the reserved bits */
658 	eax &= ~(0x3U << 14 | 0xfU << 28);
659 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
660 		if (eax == vmx_preemption_cpu_tfms[i])
661 			return true;
662 
663 	return false;
664 }
665 
666 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
667 {
668 	return flexpriority_enabled && lapic_in_kernel(vcpu);
669 }
670 
671 static int vmx_get_passthrough_msr_slot(u32 msr)
672 {
673 	int i;
674 
675 	switch (msr) {
676 	case 0x800 ... 0x8ff:
677 		/* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
678 		return -ENOENT;
679 	case MSR_IA32_RTIT_STATUS:
680 	case MSR_IA32_RTIT_OUTPUT_BASE:
681 	case MSR_IA32_RTIT_OUTPUT_MASK:
682 	case MSR_IA32_RTIT_CR3_MATCH:
683 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
684 		/* PT MSRs. These are handled in pt_update_intercept_for_msr() */
685 	case MSR_LBR_SELECT:
686 	case MSR_LBR_TOS:
687 	case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
688 	case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
689 	case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
690 	case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
691 	case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
692 		/* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
693 		return -ENOENT;
694 	}
695 
696 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
697 		if (vmx_possible_passthrough_msrs[i] == msr)
698 			return i;
699 	}
700 
701 	WARN(1, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
702 	return -ENOENT;
703 }
704 
705 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
706 {
707 	int i;
708 
709 	i = kvm_find_user_return_msr(msr);
710 	if (i >= 0)
711 		return &vmx->guest_uret_msrs[i];
712 	return NULL;
713 }
714 
715 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
716 				  struct vmx_uret_msr *msr, u64 data)
717 {
718 	unsigned int slot = msr - vmx->guest_uret_msrs;
719 	int ret = 0;
720 
721 	if (msr->load_into_hardware) {
722 		preempt_disable();
723 		ret = kvm_set_user_return_msr(slot, data, msr->mask);
724 		preempt_enable();
725 	}
726 	if (!ret)
727 		msr->data = data;
728 	return ret;
729 }
730 
731 /*
732  * Disable VMX and clear CR4.VMXE (even if VMXOFF faults)
733  *
734  * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to
735  * atomically track post-VMXON state, e.g. this may be called in NMI context.
736  * Eat all faults as all other faults on VMXOFF faults are mode related, i.e.
737  * faults are guaranteed to be due to the !post-VMXON check unless the CPU is
738  * magically in RM, VM86, compat mode, or at CPL>0.
739  */
740 static int kvm_cpu_vmxoff(void)
741 {
742 	asm goto("1: vmxoff\n\t"
743 			  _ASM_EXTABLE(1b, %l[fault])
744 			  ::: "cc", "memory" : fault);
745 
746 	cr4_clear_bits(X86_CR4_VMXE);
747 	return 0;
748 
749 fault:
750 	cr4_clear_bits(X86_CR4_VMXE);
751 	return -EIO;
752 }
753 
754 void vmx_emergency_disable_virtualization_cpu(void)
755 {
756 	int cpu = raw_smp_processor_id();
757 	struct loaded_vmcs *v;
758 
759 	kvm_rebooting = true;
760 
761 	/*
762 	 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be
763 	 * set in task context.  If this races with VMX is disabled by an NMI,
764 	 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to
765 	 * kvm_rebooting set.
766 	 */
767 	if (!(__read_cr4() & X86_CR4_VMXE))
768 		return;
769 
770 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
771 			    loaded_vmcss_on_cpu_link)
772 		vmcs_clear(v->vmcs);
773 
774 	kvm_cpu_vmxoff();
775 }
776 
777 static void __loaded_vmcs_clear(void *arg)
778 {
779 	struct loaded_vmcs *loaded_vmcs = arg;
780 	int cpu = raw_smp_processor_id();
781 
782 	if (loaded_vmcs->cpu != cpu)
783 		return; /* vcpu migration can race with cpu offline */
784 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
785 		per_cpu(current_vmcs, cpu) = NULL;
786 
787 	vmcs_clear(loaded_vmcs->vmcs);
788 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
789 		vmcs_clear(loaded_vmcs->shadow_vmcs);
790 
791 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
792 
793 	/*
794 	 * Ensure all writes to loaded_vmcs, including deleting it from its
795 	 * current percpu list, complete before setting loaded_vmcs->cpu to
796 	 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
797 	 * and add loaded_vmcs to its percpu list before it's deleted from this
798 	 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
799 	 */
800 	smp_wmb();
801 
802 	loaded_vmcs->cpu = -1;
803 	loaded_vmcs->launched = 0;
804 }
805 
806 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
807 {
808 	int cpu = loaded_vmcs->cpu;
809 
810 	if (cpu != -1)
811 		smp_call_function_single(cpu,
812 			 __loaded_vmcs_clear, loaded_vmcs, 1);
813 }
814 
815 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
816 				       unsigned field)
817 {
818 	bool ret;
819 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
820 
821 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
822 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
823 		vmx->segment_cache.bitmask = 0;
824 	}
825 	ret = vmx->segment_cache.bitmask & mask;
826 	vmx->segment_cache.bitmask |= mask;
827 	return ret;
828 }
829 
830 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
831 {
832 	u16 *p = &vmx->segment_cache.seg[seg].selector;
833 
834 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
835 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
836 	return *p;
837 }
838 
839 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
840 {
841 	ulong *p = &vmx->segment_cache.seg[seg].base;
842 
843 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
844 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
845 	return *p;
846 }
847 
848 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
849 {
850 	u32 *p = &vmx->segment_cache.seg[seg].limit;
851 
852 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
853 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
854 	return *p;
855 }
856 
857 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
858 {
859 	u32 *p = &vmx->segment_cache.seg[seg].ar;
860 
861 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
862 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
863 	return *p;
864 }
865 
866 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
867 {
868 	u32 eb;
869 
870 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
871 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
872 	/*
873 	 * #VE isn't used for VMX.  To test against unexpected changes
874 	 * related to #VE for VMX, intercept unexpected #VE and warn on it.
875 	 */
876 	if (IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
877 		eb |= 1u << VE_VECTOR;
878 	/*
879 	 * Guest access to VMware backdoor ports could legitimately
880 	 * trigger #GP because of TSS I/O permission bitmap.
881 	 * We intercept those #GP and allow access to them anyway
882 	 * as VMware does.
883 	 */
884 	if (enable_vmware_backdoor)
885 		eb |= (1u << GP_VECTOR);
886 	if ((vcpu->guest_debug &
887 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
888 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
889 		eb |= 1u << BP_VECTOR;
890 	if (to_vmx(vcpu)->rmode.vm86_active)
891 		eb = ~0;
892 	if (!vmx_need_pf_intercept(vcpu))
893 		eb &= ~(1u << PF_VECTOR);
894 
895 	/* When we are running a nested L2 guest and L1 specified for it a
896 	 * certain exception bitmap, we must trap the same exceptions and pass
897 	 * them to L1. When running L2, we will only handle the exceptions
898 	 * specified above if L1 did not want them.
899 	 */
900 	if (is_guest_mode(vcpu))
901 		eb |= get_vmcs12(vcpu)->exception_bitmap;
902 	else {
903 		int mask = 0, match = 0;
904 
905 		if (enable_ept && (eb & (1u << PF_VECTOR))) {
906 			/*
907 			 * If EPT is enabled, #PF is currently only intercepted
908 			 * if MAXPHYADDR is smaller on the guest than on the
909 			 * host.  In that case we only care about present,
910 			 * non-reserved faults.  For vmcs02, however, PFEC_MASK
911 			 * and PFEC_MATCH are set in prepare_vmcs02_rare.
912 			 */
913 			mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
914 			match = PFERR_PRESENT_MASK;
915 		}
916 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
917 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
918 	}
919 
920 	/*
921 	 * Disabling xfd interception indicates that dynamic xfeatures
922 	 * might be used in the guest. Always trap #NM in this case
923 	 * to save guest xfd_err timely.
924 	 */
925 	if (vcpu->arch.xfd_no_write_intercept)
926 		eb |= (1u << NM_VECTOR);
927 
928 	vmcs_write32(EXCEPTION_BITMAP, eb);
929 }
930 
931 /*
932  * Check if MSR is intercepted for currently loaded MSR bitmap.
933  */
934 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
935 {
936 	if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
937 		return true;
938 
939 	return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
940 }
941 
942 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
943 {
944 	unsigned int flags = 0;
945 
946 	if (vmx->loaded_vmcs->launched)
947 		flags |= VMX_RUN_VMRESUME;
948 
949 	/*
950 	 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
951 	 * to change it directly without causing a vmexit.  In that case read
952 	 * it after vmexit and store it in vmx->spec_ctrl.
953 	 */
954 	if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
955 		flags |= VMX_RUN_SAVE_SPEC_CTRL;
956 
957 	return flags;
958 }
959 
960 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
961 		unsigned long entry, unsigned long exit)
962 {
963 	vm_entry_controls_clearbit(vmx, entry);
964 	vm_exit_controls_clearbit(vmx, exit);
965 }
966 
967 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
968 {
969 	unsigned int i;
970 
971 	for (i = 0; i < m->nr; ++i) {
972 		if (m->val[i].index == msr)
973 			return i;
974 	}
975 	return -ENOENT;
976 }
977 
978 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
979 {
980 	int i;
981 	struct msr_autoload *m = &vmx->msr_autoload;
982 
983 	switch (msr) {
984 	case MSR_EFER:
985 		if (cpu_has_load_ia32_efer()) {
986 			clear_atomic_switch_msr_special(vmx,
987 					VM_ENTRY_LOAD_IA32_EFER,
988 					VM_EXIT_LOAD_IA32_EFER);
989 			return;
990 		}
991 		break;
992 	case MSR_CORE_PERF_GLOBAL_CTRL:
993 		if (cpu_has_load_perf_global_ctrl()) {
994 			clear_atomic_switch_msr_special(vmx,
995 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
996 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
997 			return;
998 		}
999 		break;
1000 	}
1001 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1002 	if (i < 0)
1003 		goto skip_guest;
1004 	--m->guest.nr;
1005 	m->guest.val[i] = m->guest.val[m->guest.nr];
1006 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1007 
1008 skip_guest:
1009 	i = vmx_find_loadstore_msr_slot(&m->host, msr);
1010 	if (i < 0)
1011 		return;
1012 
1013 	--m->host.nr;
1014 	m->host.val[i] = m->host.val[m->host.nr];
1015 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1016 }
1017 
1018 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1019 		unsigned long entry, unsigned long exit,
1020 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1021 		u64 guest_val, u64 host_val)
1022 {
1023 	vmcs_write64(guest_val_vmcs, guest_val);
1024 	if (host_val_vmcs != HOST_IA32_EFER)
1025 		vmcs_write64(host_val_vmcs, host_val);
1026 	vm_entry_controls_setbit(vmx, entry);
1027 	vm_exit_controls_setbit(vmx, exit);
1028 }
1029 
1030 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1031 				  u64 guest_val, u64 host_val, bool entry_only)
1032 {
1033 	int i, j = 0;
1034 	struct msr_autoload *m = &vmx->msr_autoload;
1035 
1036 	switch (msr) {
1037 	case MSR_EFER:
1038 		if (cpu_has_load_ia32_efer()) {
1039 			add_atomic_switch_msr_special(vmx,
1040 					VM_ENTRY_LOAD_IA32_EFER,
1041 					VM_EXIT_LOAD_IA32_EFER,
1042 					GUEST_IA32_EFER,
1043 					HOST_IA32_EFER,
1044 					guest_val, host_val);
1045 			return;
1046 		}
1047 		break;
1048 	case MSR_CORE_PERF_GLOBAL_CTRL:
1049 		if (cpu_has_load_perf_global_ctrl()) {
1050 			add_atomic_switch_msr_special(vmx,
1051 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1052 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1053 					GUEST_IA32_PERF_GLOBAL_CTRL,
1054 					HOST_IA32_PERF_GLOBAL_CTRL,
1055 					guest_val, host_val);
1056 			return;
1057 		}
1058 		break;
1059 	case MSR_IA32_PEBS_ENABLE:
1060 		/* PEBS needs a quiescent period after being disabled (to write
1061 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
1062 		 * provide that period, so a CPU could write host's record into
1063 		 * guest's memory.
1064 		 */
1065 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1066 	}
1067 
1068 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1069 	if (!entry_only)
1070 		j = vmx_find_loadstore_msr_slot(&m->host, msr);
1071 
1072 	if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1073 	    (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1074 		printk_once(KERN_WARNING "Not enough msr switch entries. "
1075 				"Can't add msr %x\n", msr);
1076 		return;
1077 	}
1078 	if (i < 0) {
1079 		i = m->guest.nr++;
1080 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1081 	}
1082 	m->guest.val[i].index = msr;
1083 	m->guest.val[i].value = guest_val;
1084 
1085 	if (entry_only)
1086 		return;
1087 
1088 	if (j < 0) {
1089 		j = m->host.nr++;
1090 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1091 	}
1092 	m->host.val[j].index = msr;
1093 	m->host.val[j].value = host_val;
1094 }
1095 
1096 static bool update_transition_efer(struct vcpu_vmx *vmx)
1097 {
1098 	u64 guest_efer = vmx->vcpu.arch.efer;
1099 	u64 ignore_bits = 0;
1100 	int i;
1101 
1102 	/* Shadow paging assumes NX to be available.  */
1103 	if (!enable_ept)
1104 		guest_efer |= EFER_NX;
1105 
1106 	/*
1107 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1108 	 */
1109 	ignore_bits |= EFER_SCE;
1110 #ifdef CONFIG_X86_64
1111 	ignore_bits |= EFER_LMA | EFER_LME;
1112 	/* SCE is meaningful only in long mode on Intel */
1113 	if (guest_efer & EFER_LMA)
1114 		ignore_bits &= ~(u64)EFER_SCE;
1115 #endif
1116 
1117 	/*
1118 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1119 	 * On CPUs that support "load IA32_EFER", always switch EFER
1120 	 * atomically, since it's faster than switching it manually.
1121 	 */
1122 	if (cpu_has_load_ia32_efer() ||
1123 	    (enable_ept && ((vmx->vcpu.arch.efer ^ kvm_host.efer) & EFER_NX))) {
1124 		if (!(guest_efer & EFER_LMA))
1125 			guest_efer &= ~EFER_LME;
1126 		if (guest_efer != kvm_host.efer)
1127 			add_atomic_switch_msr(vmx, MSR_EFER,
1128 					      guest_efer, kvm_host.efer, false);
1129 		else
1130 			clear_atomic_switch_msr(vmx, MSR_EFER);
1131 		return false;
1132 	}
1133 
1134 	i = kvm_find_user_return_msr(MSR_EFER);
1135 	if (i < 0)
1136 		return false;
1137 
1138 	clear_atomic_switch_msr(vmx, MSR_EFER);
1139 
1140 	guest_efer &= ~ignore_bits;
1141 	guest_efer |= kvm_host.efer & ignore_bits;
1142 
1143 	vmx->guest_uret_msrs[i].data = guest_efer;
1144 	vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1145 
1146 	return true;
1147 }
1148 
1149 #ifdef CONFIG_X86_32
1150 /*
1151  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1152  * VMCS rather than the segment table.  KVM uses this helper to figure
1153  * out the current bases to poke them into the VMCS before entry.
1154  */
1155 static unsigned long segment_base(u16 selector)
1156 {
1157 	struct desc_struct *table;
1158 	unsigned long v;
1159 
1160 	if (!(selector & ~SEGMENT_RPL_MASK))
1161 		return 0;
1162 
1163 	table = get_current_gdt_ro();
1164 
1165 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1166 		u16 ldt_selector = kvm_read_ldt();
1167 
1168 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1169 			return 0;
1170 
1171 		table = (struct desc_struct *)segment_base(ldt_selector);
1172 	}
1173 	v = get_desc_base(&table[selector >> 3]);
1174 	return v;
1175 }
1176 #endif
1177 
1178 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1179 {
1180 	return vmx_pt_mode_is_host_guest() &&
1181 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1182 }
1183 
1184 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1185 {
1186 	/* The base must be 128-byte aligned and a legal physical address. */
1187 	return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1188 }
1189 
1190 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1191 {
1192 	u32 i;
1193 
1194 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1195 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1196 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1197 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1198 	for (i = 0; i < addr_range; i++) {
1199 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1200 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1201 	}
1202 }
1203 
1204 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1205 {
1206 	u32 i;
1207 
1208 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1209 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1210 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1211 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1212 	for (i = 0; i < addr_range; i++) {
1213 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1214 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1215 	}
1216 }
1217 
1218 static void pt_guest_enter(struct vcpu_vmx *vmx)
1219 {
1220 	if (vmx_pt_mode_is_system())
1221 		return;
1222 
1223 	/*
1224 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1225 	 * Save host state before VM entry.
1226 	 */
1227 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1228 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1229 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1230 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1231 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1232 	}
1233 }
1234 
1235 static void pt_guest_exit(struct vcpu_vmx *vmx)
1236 {
1237 	if (vmx_pt_mode_is_system())
1238 		return;
1239 
1240 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1241 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1242 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1243 	}
1244 
1245 	/*
1246 	 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1247 	 * i.e. RTIT_CTL is always cleared on VM-Exit.  Restore it if necessary.
1248 	 */
1249 	if (vmx->pt_desc.host.ctl)
1250 		wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1251 }
1252 
1253 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1254 			unsigned long fs_base, unsigned long gs_base)
1255 {
1256 	if (unlikely(fs_sel != host->fs_sel)) {
1257 		if (!(fs_sel & 7))
1258 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1259 		else
1260 			vmcs_write16(HOST_FS_SELECTOR, 0);
1261 		host->fs_sel = fs_sel;
1262 	}
1263 	if (unlikely(gs_sel != host->gs_sel)) {
1264 		if (!(gs_sel & 7))
1265 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1266 		else
1267 			vmcs_write16(HOST_GS_SELECTOR, 0);
1268 		host->gs_sel = gs_sel;
1269 	}
1270 	if (unlikely(fs_base != host->fs_base)) {
1271 		vmcs_writel(HOST_FS_BASE, fs_base);
1272 		host->fs_base = fs_base;
1273 	}
1274 	if (unlikely(gs_base != host->gs_base)) {
1275 		vmcs_writel(HOST_GS_BASE, gs_base);
1276 		host->gs_base = gs_base;
1277 	}
1278 }
1279 
1280 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1281 {
1282 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1283 	struct vmcs_host_state *host_state;
1284 #ifdef CONFIG_X86_64
1285 	int cpu = raw_smp_processor_id();
1286 #endif
1287 	unsigned long fs_base, gs_base;
1288 	u16 fs_sel, gs_sel;
1289 	int i;
1290 
1291 	/*
1292 	 * Note that guest MSRs to be saved/restored can also be changed
1293 	 * when guest state is loaded. This happens when guest transitions
1294 	 * to/from long-mode by setting MSR_EFER.LMA.
1295 	 */
1296 	if (!vmx->guest_uret_msrs_loaded) {
1297 		vmx->guest_uret_msrs_loaded = true;
1298 		for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1299 			if (!vmx->guest_uret_msrs[i].load_into_hardware)
1300 				continue;
1301 
1302 			kvm_set_user_return_msr(i,
1303 						vmx->guest_uret_msrs[i].data,
1304 						vmx->guest_uret_msrs[i].mask);
1305 		}
1306 	}
1307 
1308 	if (vmx->nested.need_vmcs12_to_shadow_sync)
1309 		nested_sync_vmcs12_to_shadow(vcpu);
1310 
1311 	if (vmx->guest_state_loaded)
1312 		return;
1313 
1314 	host_state = &vmx->loaded_vmcs->host_state;
1315 
1316 	/*
1317 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1318 	 * allow segment selectors with cpl > 0 or ti == 1.
1319 	 */
1320 	host_state->ldt_sel = kvm_read_ldt();
1321 
1322 #ifdef CONFIG_X86_64
1323 	savesegment(ds, host_state->ds_sel);
1324 	savesegment(es, host_state->es_sel);
1325 
1326 	gs_base = cpu_kernelmode_gs_base(cpu);
1327 	if (likely(is_64bit_mm(current->mm))) {
1328 		current_save_fsgs();
1329 		fs_sel = current->thread.fsindex;
1330 		gs_sel = current->thread.gsindex;
1331 		fs_base = current->thread.fsbase;
1332 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1333 	} else {
1334 		savesegment(fs, fs_sel);
1335 		savesegment(gs, gs_sel);
1336 		fs_base = read_msr(MSR_FS_BASE);
1337 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1338 	}
1339 
1340 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1341 #else
1342 	savesegment(fs, fs_sel);
1343 	savesegment(gs, gs_sel);
1344 	fs_base = segment_base(fs_sel);
1345 	gs_base = segment_base(gs_sel);
1346 #endif
1347 
1348 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1349 	vmx->guest_state_loaded = true;
1350 }
1351 
1352 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1353 {
1354 	struct vmcs_host_state *host_state;
1355 
1356 	if (!vmx->guest_state_loaded)
1357 		return;
1358 
1359 	host_state = &vmx->loaded_vmcs->host_state;
1360 
1361 	++vmx->vcpu.stat.host_state_reload;
1362 
1363 #ifdef CONFIG_X86_64
1364 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1365 #endif
1366 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1367 		kvm_load_ldt(host_state->ldt_sel);
1368 #ifdef CONFIG_X86_64
1369 		load_gs_index(host_state->gs_sel);
1370 #else
1371 		loadsegment(gs, host_state->gs_sel);
1372 #endif
1373 	}
1374 	if (host_state->fs_sel & 7)
1375 		loadsegment(fs, host_state->fs_sel);
1376 #ifdef CONFIG_X86_64
1377 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1378 		loadsegment(ds, host_state->ds_sel);
1379 		loadsegment(es, host_state->es_sel);
1380 	}
1381 #endif
1382 	invalidate_tss_limit();
1383 #ifdef CONFIG_X86_64
1384 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1385 #endif
1386 	load_fixmap_gdt(raw_smp_processor_id());
1387 	vmx->guest_state_loaded = false;
1388 	vmx->guest_uret_msrs_loaded = false;
1389 }
1390 
1391 #ifdef CONFIG_X86_64
1392 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1393 {
1394 	preempt_disable();
1395 	if (vmx->guest_state_loaded)
1396 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1397 	preempt_enable();
1398 	return vmx->msr_guest_kernel_gs_base;
1399 }
1400 
1401 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1402 {
1403 	preempt_disable();
1404 	if (vmx->guest_state_loaded)
1405 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1406 	preempt_enable();
1407 	vmx->msr_guest_kernel_gs_base = data;
1408 }
1409 #endif
1410 
1411 static void grow_ple_window(struct kvm_vcpu *vcpu)
1412 {
1413 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1414 	unsigned int old = vmx->ple_window;
1415 
1416 	vmx->ple_window = __grow_ple_window(old, ple_window,
1417 					    ple_window_grow,
1418 					    ple_window_max);
1419 
1420 	if (vmx->ple_window != old) {
1421 		vmx->ple_window_dirty = true;
1422 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1423 					    vmx->ple_window, old);
1424 	}
1425 }
1426 
1427 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1428 {
1429 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1430 	unsigned int old = vmx->ple_window;
1431 
1432 	vmx->ple_window = __shrink_ple_window(old, ple_window,
1433 					      ple_window_shrink,
1434 					      ple_window);
1435 
1436 	if (vmx->ple_window != old) {
1437 		vmx->ple_window_dirty = true;
1438 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1439 					    vmx->ple_window, old);
1440 	}
1441 }
1442 
1443 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1444 			struct loaded_vmcs *buddy)
1445 {
1446 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1447 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1448 	struct vmcs *prev;
1449 
1450 	if (!already_loaded) {
1451 		loaded_vmcs_clear(vmx->loaded_vmcs);
1452 		local_irq_disable();
1453 
1454 		/*
1455 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1456 		 * this cpu's percpu list, otherwise it may not yet be deleted
1457 		 * from its previous cpu's percpu list.  Pairs with the
1458 		 * smb_wmb() in __loaded_vmcs_clear().
1459 		 */
1460 		smp_rmb();
1461 
1462 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1463 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1464 		local_irq_enable();
1465 	}
1466 
1467 	prev = per_cpu(current_vmcs, cpu);
1468 	if (prev != vmx->loaded_vmcs->vmcs) {
1469 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1470 		vmcs_load(vmx->loaded_vmcs->vmcs);
1471 
1472 		/*
1473 		 * No indirect branch prediction barrier needed when switching
1474 		 * the active VMCS within a vCPU, unless IBRS is advertised to
1475 		 * the vCPU.  To minimize the number of IBPBs executed, KVM
1476 		 * performs IBPB on nested VM-Exit (a single nested transition
1477 		 * may switch the active VMCS multiple times).
1478 		 */
1479 		if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1480 			indirect_branch_prediction_barrier();
1481 	}
1482 
1483 	if (!already_loaded) {
1484 		void *gdt = get_current_gdt_ro();
1485 
1486 		/*
1487 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1488 		 * TLB entries from its previous association with the vCPU.
1489 		 */
1490 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1491 
1492 		/*
1493 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1494 		 * processors.  See 22.2.4.
1495 		 */
1496 		vmcs_writel(HOST_TR_BASE,
1497 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1498 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1499 
1500 		if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1501 			/* 22.2.3 */
1502 			vmcs_writel(HOST_IA32_SYSENTER_ESP,
1503 				    (unsigned long)(cpu_entry_stack(cpu) + 1));
1504 		}
1505 
1506 		vmx->loaded_vmcs->cpu = cpu;
1507 	}
1508 }
1509 
1510 /*
1511  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1512  * vcpu mutex is already taken.
1513  */
1514 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1515 {
1516 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1517 
1518 	if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm))
1519 		shrink_ple_window(vcpu);
1520 
1521 	vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1522 
1523 	vmx_vcpu_pi_load(vcpu, cpu);
1524 
1525 	vmx->host_debugctlmsr = get_debugctlmsr();
1526 }
1527 
1528 void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1529 {
1530 	vmx_vcpu_pi_put(vcpu);
1531 
1532 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1533 }
1534 
1535 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1536 {
1537 	return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1538 }
1539 
1540 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1541 {
1542 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1543 	unsigned long rflags, save_rflags;
1544 
1545 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1546 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1547 		rflags = vmcs_readl(GUEST_RFLAGS);
1548 		if (vmx->rmode.vm86_active) {
1549 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1550 			save_rflags = vmx->rmode.save_rflags;
1551 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1552 		}
1553 		vmx->rflags = rflags;
1554 	}
1555 	return vmx->rflags;
1556 }
1557 
1558 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1559 {
1560 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1561 	unsigned long old_rflags;
1562 
1563 	/*
1564 	 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU
1565 	 * is an unrestricted guest in order to mark L2 as needing emulation
1566 	 * if L1 runs L2 as a restricted guest.
1567 	 */
1568 	if (is_unrestricted_guest(vcpu)) {
1569 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1570 		vmx->rflags = rflags;
1571 		vmcs_writel(GUEST_RFLAGS, rflags);
1572 		return;
1573 	}
1574 
1575 	old_rflags = vmx_get_rflags(vcpu);
1576 	vmx->rflags = rflags;
1577 	if (vmx->rmode.vm86_active) {
1578 		vmx->rmode.save_rflags = rflags;
1579 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1580 	}
1581 	vmcs_writel(GUEST_RFLAGS, rflags);
1582 
1583 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1584 		vmx->emulation_required = vmx_emulation_required(vcpu);
1585 }
1586 
1587 bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1588 {
1589 	return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1590 }
1591 
1592 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1593 {
1594 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1595 	int ret = 0;
1596 
1597 	if (interruptibility & GUEST_INTR_STATE_STI)
1598 		ret |= KVM_X86_SHADOW_INT_STI;
1599 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1600 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1601 
1602 	return ret;
1603 }
1604 
1605 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1606 {
1607 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1608 	u32 interruptibility = interruptibility_old;
1609 
1610 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1611 
1612 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1613 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1614 	else if (mask & KVM_X86_SHADOW_INT_STI)
1615 		interruptibility |= GUEST_INTR_STATE_STI;
1616 
1617 	if ((interruptibility != interruptibility_old))
1618 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1619 }
1620 
1621 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1622 {
1623 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1624 	unsigned long value;
1625 
1626 	/*
1627 	 * Any MSR write that attempts to change bits marked reserved will
1628 	 * case a #GP fault.
1629 	 */
1630 	if (data & vmx->pt_desc.ctl_bitmask)
1631 		return 1;
1632 
1633 	/*
1634 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1635 	 * result in a #GP unless the same write also clears TraceEn.
1636 	 */
1637 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1638 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1639 		return 1;
1640 
1641 	/*
1642 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1643 	 * and FabricEn would cause #GP, if
1644 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1645 	 */
1646 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1647 		!(data & RTIT_CTL_FABRIC_EN) &&
1648 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1649 					PT_CAP_single_range_output))
1650 		return 1;
1651 
1652 	/*
1653 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1654 	 * utilize encodings marked reserved will cause a #GP fault.
1655 	 */
1656 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1657 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1658 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1659 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1660 		return 1;
1661 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1662 						PT_CAP_cycle_thresholds);
1663 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1664 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1665 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1666 		return 1;
1667 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1668 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1669 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1670 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1671 		return 1;
1672 
1673 	/*
1674 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1675 	 * cause a #GP fault.
1676 	 */
1677 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1678 	if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1679 		return 1;
1680 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1681 	if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1682 		return 1;
1683 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1684 	if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1685 		return 1;
1686 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1687 	if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1688 		return 1;
1689 
1690 	return 0;
1691 }
1692 
1693 int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1694 				  void *insn, int insn_len)
1695 {
1696 	/*
1697 	 * Emulation of instructions in SGX enclaves is impossible as RIP does
1698 	 * not point at the failing instruction, and even if it did, the code
1699 	 * stream is inaccessible.  Inject #UD instead of exiting to userspace
1700 	 * so that guest userspace can't DoS the guest simply by triggering
1701 	 * emulation (enclaves are CPL3 only).
1702 	 */
1703 	if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1704 		kvm_queue_exception(vcpu, UD_VECTOR);
1705 		return X86EMUL_PROPAGATE_FAULT;
1706 	}
1707 	return X86EMUL_CONTINUE;
1708 }
1709 
1710 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1711 {
1712 	union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1713 	unsigned long rip, orig_rip;
1714 	u32 instr_len;
1715 
1716 	/*
1717 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1718 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1719 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1720 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1721 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1722 	 * i.e. we end up advancing IP with some random value.
1723 	 */
1724 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1725 	    exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1726 		instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1727 
1728 		/*
1729 		 * Emulating an enclave's instructions isn't supported as KVM
1730 		 * cannot access the enclave's memory or its true RIP, e.g. the
1731 		 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1732 		 * the RIP that actually triggered the VM-Exit.  But, because
1733 		 * most instructions that cause VM-Exit will #UD in an enclave,
1734 		 * most instruction-based VM-Exits simply do not occur.
1735 		 *
1736 		 * There are a few exceptions, notably the debug instructions
1737 		 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1738 		 * and generate #DB/#BP as expected, which KVM might intercept.
1739 		 * But again, the CPU does the dirty work and saves an instr
1740 		 * length of zero so VMMs don't shoot themselves in the foot.
1741 		 * WARN if KVM tries to skip a non-zero length instruction on
1742 		 * a VM-Exit from an enclave.
1743 		 */
1744 		if (!instr_len)
1745 			goto rip_updated;
1746 
1747 		WARN_ONCE(exit_reason.enclave_mode,
1748 			  "skipping instruction after SGX enclave VM-Exit");
1749 
1750 		orig_rip = kvm_rip_read(vcpu);
1751 		rip = orig_rip + instr_len;
1752 #ifdef CONFIG_X86_64
1753 		/*
1754 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1755 		 * mode, but just finding out that we are in 64-bit mode is
1756 		 * quite expensive.  Only do it if there was a carry.
1757 		 */
1758 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1759 			rip = (u32)rip;
1760 #endif
1761 		kvm_rip_write(vcpu, rip);
1762 	} else {
1763 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1764 			return 0;
1765 	}
1766 
1767 rip_updated:
1768 	/* skipping an emulated instruction also counts */
1769 	vmx_set_interrupt_shadow(vcpu, 0);
1770 
1771 	return 1;
1772 }
1773 
1774 /*
1775  * Recognizes a pending MTF VM-exit and records the nested state for later
1776  * delivery.
1777  */
1778 void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1779 {
1780 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1781 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1782 
1783 	if (!is_guest_mode(vcpu))
1784 		return;
1785 
1786 	/*
1787 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1788 	 * TSS T-bit traps and ICEBP (INT1).  KVM doesn't emulate T-bit traps
1789 	 * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1790 	 * intercepted #DB deliberately avoids single-step #DB and MTF updates
1791 	 * as ICEBP is higher priority than both.  As instruction emulation is
1792 	 * completed at this point (i.e. KVM is at the instruction boundary),
1793 	 * any #DB exception pending delivery must be a debug-trap of lower
1794 	 * priority than MTF.  Record the pending MTF state to be delivered in
1795 	 * vmx_check_nested_events().
1796 	 */
1797 	if (nested_cpu_has_mtf(vmcs12) &&
1798 	    (!vcpu->arch.exception.pending ||
1799 	     vcpu->arch.exception.vector == DB_VECTOR) &&
1800 	    (!vcpu->arch.exception_vmexit.pending ||
1801 	     vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1802 		vmx->nested.mtf_pending = true;
1803 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1804 	} else {
1805 		vmx->nested.mtf_pending = false;
1806 	}
1807 }
1808 
1809 int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1810 {
1811 	vmx_update_emulated_instruction(vcpu);
1812 	return skip_emulated_instruction(vcpu);
1813 }
1814 
1815 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1816 {
1817 	/*
1818 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1819 	 * explicitly skip the instruction because if the HLT state is set,
1820 	 * then the instruction is already executing and RIP has already been
1821 	 * advanced.
1822 	 */
1823 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1824 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1825 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1826 }
1827 
1828 void vmx_inject_exception(struct kvm_vcpu *vcpu)
1829 {
1830 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
1831 	u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1832 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1833 
1834 	kvm_deliver_exception_payload(vcpu, ex);
1835 
1836 	if (ex->has_error_code) {
1837 		/*
1838 		 * Despite the error code being architecturally defined as 32
1839 		 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1840 		 * VMX don't actually supporting setting bits 31:16.  Hardware
1841 		 * will (should) never provide a bogus error code, but AMD CPUs
1842 		 * do generate error codes with bits 31:16 set, and so KVM's
1843 		 * ABI lets userspace shove in arbitrary 32-bit values.  Drop
1844 		 * the upper bits to avoid VM-Fail, losing information that
1845 		 * doesn't really exist is preferable to killing the VM.
1846 		 */
1847 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1848 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1849 	}
1850 
1851 	if (vmx->rmode.vm86_active) {
1852 		int inc_eip = 0;
1853 		if (kvm_exception_is_soft(ex->vector))
1854 			inc_eip = vcpu->arch.event_exit_inst_len;
1855 		kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1856 		return;
1857 	}
1858 
1859 	WARN_ON_ONCE(vmx->emulation_required);
1860 
1861 	if (kvm_exception_is_soft(ex->vector)) {
1862 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1863 			     vmx->vcpu.arch.event_exit_inst_len);
1864 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1865 	} else
1866 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1867 
1868 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1869 
1870 	vmx_clear_hlt(vcpu);
1871 }
1872 
1873 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1874 			       bool load_into_hardware)
1875 {
1876 	struct vmx_uret_msr *uret_msr;
1877 
1878 	uret_msr = vmx_find_uret_msr(vmx, msr);
1879 	if (!uret_msr)
1880 		return;
1881 
1882 	uret_msr->load_into_hardware = load_into_hardware;
1883 }
1884 
1885 /*
1886  * Configuring user return MSRs to automatically save, load, and restore MSRs
1887  * that need to be shoved into hardware when running the guest.  Note, omitting
1888  * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1889  * loaded into hardware when running the guest.
1890  */
1891 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1892 {
1893 #ifdef CONFIG_X86_64
1894 	bool load_syscall_msrs;
1895 
1896 	/*
1897 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1898 	 * when EFER.SCE is set.
1899 	 */
1900 	load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1901 			    (vmx->vcpu.arch.efer & EFER_SCE);
1902 
1903 	vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1904 	vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1905 	vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1906 #endif
1907 	vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1908 
1909 	vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1910 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1911 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1912 
1913 	/*
1914 	 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1915 	 * kernel and old userspace.  If those guests run on a tsx=off host, do
1916 	 * allow guests to use TSX_CTRL, but don't change the value in hardware
1917 	 * so that TSX remains always disabled.
1918 	 */
1919 	vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1920 
1921 	/*
1922 	 * The set of MSRs to load may have changed, reload MSRs before the
1923 	 * next VM-Enter.
1924 	 */
1925 	vmx->guest_uret_msrs_loaded = false;
1926 }
1927 
1928 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1929 {
1930 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1931 
1932 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1933 		return vmcs12->tsc_offset;
1934 
1935 	return 0;
1936 }
1937 
1938 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1939 {
1940 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1941 
1942 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1943 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1944 		return vmcs12->tsc_multiplier;
1945 
1946 	return kvm_caps.default_tsc_scaling_ratio;
1947 }
1948 
1949 void vmx_write_tsc_offset(struct kvm_vcpu *vcpu)
1950 {
1951 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
1952 }
1953 
1954 void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1955 {
1956 	vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
1957 }
1958 
1959 /*
1960  * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
1961  * guest CPUID.  Note, KVM allows userspace to set "VMX in SMX" to maintain
1962  * backwards compatibility even though KVM doesn't support emulating SMX.  And
1963  * because userspace set "VMX in SMX", the guest must also be allowed to set it,
1964  * e.g. if the MSR is left unlocked and the guest does a RMW operation.
1965  */
1966 #define KVM_SUPPORTED_FEATURE_CONTROL  (FEAT_CTL_LOCKED			 | \
1967 					FEAT_CTL_VMX_ENABLED_INSIDE_SMX	 | \
1968 					FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
1969 					FEAT_CTL_SGX_LC_ENABLED		 | \
1970 					FEAT_CTL_SGX_ENABLED		 | \
1971 					FEAT_CTL_LMCE_ENABLED)
1972 
1973 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
1974 						    struct msr_data *msr)
1975 {
1976 	uint64_t valid_bits;
1977 
1978 	/*
1979 	 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
1980 	 * exposed to the guest.
1981 	 */
1982 	WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
1983 		     ~KVM_SUPPORTED_FEATURE_CONTROL);
1984 
1985 	if (!msr->host_initiated &&
1986 	    (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
1987 		return false;
1988 
1989 	if (msr->host_initiated)
1990 		valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
1991 	else
1992 		valid_bits = vmx->msr_ia32_feature_control_valid_bits;
1993 
1994 	return !(msr->data & ~valid_bits);
1995 }
1996 
1997 int vmx_get_feature_msr(u32 msr, u64 *data)
1998 {
1999 	switch (msr) {
2000 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2001 		if (!nested)
2002 			return 1;
2003 		return vmx_get_vmx_msr(&vmcs_config.nested, msr, data);
2004 	default:
2005 		return KVM_MSR_RET_UNSUPPORTED;
2006 	}
2007 }
2008 
2009 /*
2010  * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
2011  * Returns 0 on success, non-0 otherwise.
2012  * Assumes vcpu_load() was already called.
2013  */
2014 int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2015 {
2016 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2017 	struct vmx_uret_msr *msr;
2018 	u32 index;
2019 
2020 	switch (msr_info->index) {
2021 #ifdef CONFIG_X86_64
2022 	case MSR_FS_BASE:
2023 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
2024 		break;
2025 	case MSR_GS_BASE:
2026 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
2027 		break;
2028 	case MSR_KERNEL_GS_BASE:
2029 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
2030 		break;
2031 #endif
2032 	case MSR_EFER:
2033 		return kvm_get_msr_common(vcpu, msr_info);
2034 	case MSR_IA32_TSX_CTRL:
2035 		if (!msr_info->host_initiated &&
2036 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2037 			return 1;
2038 		goto find_uret_msr;
2039 	case MSR_IA32_UMWAIT_CONTROL:
2040 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2041 			return 1;
2042 
2043 		msr_info->data = vmx->msr_ia32_umwait_control;
2044 		break;
2045 	case MSR_IA32_SPEC_CTRL:
2046 		if (!msr_info->host_initiated &&
2047 		    !guest_has_spec_ctrl_msr(vcpu))
2048 			return 1;
2049 
2050 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
2051 		break;
2052 	case MSR_IA32_SYSENTER_CS:
2053 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2054 		break;
2055 	case MSR_IA32_SYSENTER_EIP:
2056 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2057 		break;
2058 	case MSR_IA32_SYSENTER_ESP:
2059 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2060 		break;
2061 	case MSR_IA32_BNDCFGS:
2062 		if (!kvm_mpx_supported() ||
2063 		    (!msr_info->host_initiated &&
2064 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2065 			return 1;
2066 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2067 		break;
2068 	case MSR_IA32_MCG_EXT_CTL:
2069 		if (!msr_info->host_initiated &&
2070 		    !(vmx->msr_ia32_feature_control &
2071 		      FEAT_CTL_LMCE_ENABLED))
2072 			return 1;
2073 		msr_info->data = vcpu->arch.mcg_ext_ctl;
2074 		break;
2075 	case MSR_IA32_FEAT_CTL:
2076 		msr_info->data = vmx->msr_ia32_feature_control;
2077 		break;
2078 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2079 		if (!msr_info->host_initiated &&
2080 		    !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
2081 			return 1;
2082 		msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
2083 			[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
2084 		break;
2085 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2086 		if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2087 			return 1;
2088 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
2089 				    &msr_info->data))
2090 			return 1;
2091 #ifdef CONFIG_KVM_HYPERV
2092 		/*
2093 		 * Enlightened VMCS v1 doesn't have certain VMCS fields but
2094 		 * instead of just ignoring the features, different Hyper-V
2095 		 * versions are either trying to use them and fail or do some
2096 		 * sanity checking and refuse to boot. Filter all unsupported
2097 		 * features out.
2098 		 */
2099 		if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu))
2100 			nested_evmcs_filter_control_msr(vcpu, msr_info->index,
2101 							&msr_info->data);
2102 #endif
2103 		break;
2104 	case MSR_IA32_RTIT_CTL:
2105 		if (!vmx_pt_mode_is_host_guest())
2106 			return 1;
2107 		msr_info->data = vmx->pt_desc.guest.ctl;
2108 		break;
2109 	case MSR_IA32_RTIT_STATUS:
2110 		if (!vmx_pt_mode_is_host_guest())
2111 			return 1;
2112 		msr_info->data = vmx->pt_desc.guest.status;
2113 		break;
2114 	case MSR_IA32_RTIT_CR3_MATCH:
2115 		if (!vmx_pt_mode_is_host_guest() ||
2116 			!intel_pt_validate_cap(vmx->pt_desc.caps,
2117 						PT_CAP_cr3_filtering))
2118 			return 1;
2119 		msr_info->data = vmx->pt_desc.guest.cr3_match;
2120 		break;
2121 	case MSR_IA32_RTIT_OUTPUT_BASE:
2122 		if (!vmx_pt_mode_is_host_guest() ||
2123 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2124 					PT_CAP_topa_output) &&
2125 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2126 					PT_CAP_single_range_output)))
2127 			return 1;
2128 		msr_info->data = vmx->pt_desc.guest.output_base;
2129 		break;
2130 	case MSR_IA32_RTIT_OUTPUT_MASK:
2131 		if (!vmx_pt_mode_is_host_guest() ||
2132 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2133 					PT_CAP_topa_output) &&
2134 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2135 					PT_CAP_single_range_output)))
2136 			return 1;
2137 		msr_info->data = vmx->pt_desc.guest.output_mask;
2138 		break;
2139 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2140 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2141 		if (!vmx_pt_mode_is_host_guest() ||
2142 		    (index >= 2 * vmx->pt_desc.num_address_ranges))
2143 			return 1;
2144 		if (index % 2)
2145 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2146 		else
2147 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2148 		break;
2149 	case MSR_IA32_DEBUGCTLMSR:
2150 		msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
2151 		break;
2152 	default:
2153 	find_uret_msr:
2154 		msr = vmx_find_uret_msr(vmx, msr_info->index);
2155 		if (msr) {
2156 			msr_info->data = msr->data;
2157 			break;
2158 		}
2159 		return kvm_get_msr_common(vcpu, msr_info);
2160 	}
2161 
2162 	return 0;
2163 }
2164 
2165 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2166 						    u64 data)
2167 {
2168 #ifdef CONFIG_X86_64
2169 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2170 		return (u32)data;
2171 #endif
2172 	return (unsigned long)data;
2173 }
2174 
2175 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2176 {
2177 	u64 debugctl = 0;
2178 
2179 	if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2180 	    (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2181 		debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2182 
2183 	if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) &&
2184 	    (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2185 		debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2186 
2187 	return debugctl;
2188 }
2189 
2190 /*
2191  * Writes msr value into the appropriate "register".
2192  * Returns 0 on success, non-0 otherwise.
2193  * Assumes vcpu_load() was already called.
2194  */
2195 int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2196 {
2197 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2198 	struct vmx_uret_msr *msr;
2199 	int ret = 0;
2200 	u32 msr_index = msr_info->index;
2201 	u64 data = msr_info->data;
2202 	u32 index;
2203 
2204 	switch (msr_index) {
2205 	case MSR_EFER:
2206 		ret = kvm_set_msr_common(vcpu, msr_info);
2207 		break;
2208 #ifdef CONFIG_X86_64
2209 	case MSR_FS_BASE:
2210 		vmx_segment_cache_clear(vmx);
2211 		vmcs_writel(GUEST_FS_BASE, data);
2212 		break;
2213 	case MSR_GS_BASE:
2214 		vmx_segment_cache_clear(vmx);
2215 		vmcs_writel(GUEST_GS_BASE, data);
2216 		break;
2217 	case MSR_KERNEL_GS_BASE:
2218 		vmx_write_guest_kernel_gs_base(vmx, data);
2219 		break;
2220 	case MSR_IA32_XFD:
2221 		ret = kvm_set_msr_common(vcpu, msr_info);
2222 		/*
2223 		 * Always intercepting WRMSR could incur non-negligible
2224 		 * overhead given xfd might be changed frequently in
2225 		 * guest context switch. Disable write interception
2226 		 * upon the first write with a non-zero value (indicating
2227 		 * potential usage on dynamic xfeatures). Also update
2228 		 * exception bitmap to trap #NM for proper virtualization
2229 		 * of guest xfd_err.
2230 		 */
2231 		if (!ret && data) {
2232 			vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2233 						      MSR_TYPE_RW);
2234 			vcpu->arch.xfd_no_write_intercept = true;
2235 			vmx_update_exception_bitmap(vcpu);
2236 		}
2237 		break;
2238 #endif
2239 	case MSR_IA32_SYSENTER_CS:
2240 		if (is_guest_mode(vcpu))
2241 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
2242 		vmcs_write32(GUEST_SYSENTER_CS, data);
2243 		break;
2244 	case MSR_IA32_SYSENTER_EIP:
2245 		if (is_guest_mode(vcpu)) {
2246 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2247 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
2248 		}
2249 		vmcs_writel(GUEST_SYSENTER_EIP, data);
2250 		break;
2251 	case MSR_IA32_SYSENTER_ESP:
2252 		if (is_guest_mode(vcpu)) {
2253 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2254 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
2255 		}
2256 		vmcs_writel(GUEST_SYSENTER_ESP, data);
2257 		break;
2258 	case MSR_IA32_DEBUGCTLMSR: {
2259 		u64 invalid;
2260 
2261 		invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2262 		if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2263 			kvm_pr_unimpl_wrmsr(vcpu, msr_index, data);
2264 			data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2265 			invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2266 		}
2267 
2268 		if (invalid)
2269 			return 1;
2270 
2271 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2272 						VM_EXIT_SAVE_DEBUG_CONTROLS)
2273 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2274 
2275 		vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2276 		if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2277 		    (data & DEBUGCTLMSR_LBR))
2278 			intel_pmu_create_guest_lbr_event(vcpu);
2279 		return 0;
2280 	}
2281 	case MSR_IA32_BNDCFGS:
2282 		if (!kvm_mpx_supported() ||
2283 		    (!msr_info->host_initiated &&
2284 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2285 			return 1;
2286 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2287 		    (data & MSR_IA32_BNDCFGS_RSVD))
2288 			return 1;
2289 
2290 		if (is_guest_mode(vcpu) &&
2291 		    ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2292 		     (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2293 			get_vmcs12(vcpu)->guest_bndcfgs = data;
2294 
2295 		vmcs_write64(GUEST_BNDCFGS, data);
2296 		break;
2297 	case MSR_IA32_UMWAIT_CONTROL:
2298 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2299 			return 1;
2300 
2301 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2302 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2303 			return 1;
2304 
2305 		vmx->msr_ia32_umwait_control = data;
2306 		break;
2307 	case MSR_IA32_SPEC_CTRL:
2308 		if (!msr_info->host_initiated &&
2309 		    !guest_has_spec_ctrl_msr(vcpu))
2310 			return 1;
2311 
2312 		if (kvm_spec_ctrl_test_value(data))
2313 			return 1;
2314 
2315 		vmx->spec_ctrl = data;
2316 		if (!data)
2317 			break;
2318 
2319 		/*
2320 		 * For non-nested:
2321 		 * When it's written (to non-zero) for the first time, pass
2322 		 * it through.
2323 		 *
2324 		 * For nested:
2325 		 * The handling of the MSR bitmap for L2 guests is done in
2326 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2327 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2328 		 * in the merging. We update the vmcs01 here for L1 as well
2329 		 * since it will end up touching the MSR anyway now.
2330 		 */
2331 		vmx_disable_intercept_for_msr(vcpu,
2332 					      MSR_IA32_SPEC_CTRL,
2333 					      MSR_TYPE_RW);
2334 		break;
2335 	case MSR_IA32_TSX_CTRL:
2336 		if (!msr_info->host_initiated &&
2337 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2338 			return 1;
2339 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2340 			return 1;
2341 		goto find_uret_msr;
2342 	case MSR_IA32_CR_PAT:
2343 		ret = kvm_set_msr_common(vcpu, msr_info);
2344 		if (ret)
2345 			break;
2346 
2347 		if (is_guest_mode(vcpu) &&
2348 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2349 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2350 
2351 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
2352 			vmcs_write64(GUEST_IA32_PAT, data);
2353 		break;
2354 	case MSR_IA32_MCG_EXT_CTL:
2355 		if ((!msr_info->host_initiated &&
2356 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2357 		       FEAT_CTL_LMCE_ENABLED)) ||
2358 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2359 			return 1;
2360 		vcpu->arch.mcg_ext_ctl = data;
2361 		break;
2362 	case MSR_IA32_FEAT_CTL:
2363 		if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2364 			return 1;
2365 
2366 		vmx->msr_ia32_feature_control = data;
2367 		if (msr_info->host_initiated && data == 0)
2368 			vmx_leave_nested(vcpu);
2369 
2370 		/* SGX may be enabled/disabled by guest's firmware */
2371 		vmx_write_encls_bitmap(vcpu, NULL);
2372 		break;
2373 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2374 		/*
2375 		 * On real hardware, the LE hash MSRs are writable before
2376 		 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2377 		 * at which point SGX related bits in IA32_FEATURE_CONTROL
2378 		 * become writable.
2379 		 *
2380 		 * KVM does not emulate SGX activation for simplicity, so
2381 		 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2382 		 * is unlocked.  This is technically not architectural
2383 		 * behavior, but it's close enough.
2384 		 */
2385 		if (!msr_info->host_initiated &&
2386 		    (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2387 		    ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2388 		    !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2389 			return 1;
2390 		vmx->msr_ia32_sgxlepubkeyhash
2391 			[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2392 		break;
2393 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2394 		if (!msr_info->host_initiated)
2395 			return 1; /* they are read-only */
2396 		if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2397 			return 1;
2398 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2399 	case MSR_IA32_RTIT_CTL:
2400 		if (!vmx_pt_mode_is_host_guest() ||
2401 			vmx_rtit_ctl_check(vcpu, data) ||
2402 			vmx->nested.vmxon)
2403 			return 1;
2404 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2405 		vmx->pt_desc.guest.ctl = data;
2406 		pt_update_intercept_for_msr(vcpu);
2407 		break;
2408 	case MSR_IA32_RTIT_STATUS:
2409 		if (!pt_can_write_msr(vmx))
2410 			return 1;
2411 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2412 			return 1;
2413 		vmx->pt_desc.guest.status = data;
2414 		break;
2415 	case MSR_IA32_RTIT_CR3_MATCH:
2416 		if (!pt_can_write_msr(vmx))
2417 			return 1;
2418 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2419 					   PT_CAP_cr3_filtering))
2420 			return 1;
2421 		vmx->pt_desc.guest.cr3_match = data;
2422 		break;
2423 	case MSR_IA32_RTIT_OUTPUT_BASE:
2424 		if (!pt_can_write_msr(vmx))
2425 			return 1;
2426 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2427 					   PT_CAP_topa_output) &&
2428 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2429 					   PT_CAP_single_range_output))
2430 			return 1;
2431 		if (!pt_output_base_valid(vcpu, data))
2432 			return 1;
2433 		vmx->pt_desc.guest.output_base = data;
2434 		break;
2435 	case MSR_IA32_RTIT_OUTPUT_MASK:
2436 		if (!pt_can_write_msr(vmx))
2437 			return 1;
2438 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2439 					   PT_CAP_topa_output) &&
2440 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2441 					   PT_CAP_single_range_output))
2442 			return 1;
2443 		vmx->pt_desc.guest.output_mask = data;
2444 		break;
2445 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2446 		if (!pt_can_write_msr(vmx))
2447 			return 1;
2448 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2449 		if (index >= 2 * vmx->pt_desc.num_address_ranges)
2450 			return 1;
2451 		if (is_noncanonical_address(data, vcpu))
2452 			return 1;
2453 		if (index % 2)
2454 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2455 		else
2456 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2457 		break;
2458 	case MSR_IA32_PERF_CAPABILITIES:
2459 		if (data && !vcpu_to_pmu(vcpu)->version)
2460 			return 1;
2461 		if (data & PMU_CAP_LBR_FMT) {
2462 			if ((data & PMU_CAP_LBR_FMT) !=
2463 			    (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT))
2464 				return 1;
2465 			if (!cpuid_model_is_consistent(vcpu))
2466 				return 1;
2467 		}
2468 		if (data & PERF_CAP_PEBS_FORMAT) {
2469 			if ((data & PERF_CAP_PEBS_MASK) !=
2470 			    (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2471 				return 1;
2472 			if (!guest_cpuid_has(vcpu, X86_FEATURE_DS))
2473 				return 1;
2474 			if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64))
2475 				return 1;
2476 			if (!cpuid_model_is_consistent(vcpu))
2477 				return 1;
2478 		}
2479 		ret = kvm_set_msr_common(vcpu, msr_info);
2480 		break;
2481 
2482 	default:
2483 	find_uret_msr:
2484 		msr = vmx_find_uret_msr(vmx, msr_index);
2485 		if (msr)
2486 			ret = vmx_set_guest_uret_msr(vmx, msr, data);
2487 		else
2488 			ret = kvm_set_msr_common(vcpu, msr_info);
2489 	}
2490 
2491 	/* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2492 	if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2493 		vmx_update_fb_clear_dis(vcpu, vmx);
2494 
2495 	return ret;
2496 }
2497 
2498 void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2499 {
2500 	unsigned long guest_owned_bits;
2501 
2502 	kvm_register_mark_available(vcpu, reg);
2503 
2504 	switch (reg) {
2505 	case VCPU_REGS_RSP:
2506 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2507 		break;
2508 	case VCPU_REGS_RIP:
2509 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2510 		break;
2511 	case VCPU_EXREG_PDPTR:
2512 		if (enable_ept)
2513 			ept_save_pdptrs(vcpu);
2514 		break;
2515 	case VCPU_EXREG_CR0:
2516 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2517 
2518 		vcpu->arch.cr0 &= ~guest_owned_bits;
2519 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2520 		break;
2521 	case VCPU_EXREG_CR3:
2522 		/*
2523 		 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2524 		 * CR3 is loaded into hardware, not the guest's CR3.
2525 		 */
2526 		if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2527 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2528 		break;
2529 	case VCPU_EXREG_CR4:
2530 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2531 
2532 		vcpu->arch.cr4 &= ~guest_owned_bits;
2533 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2534 		break;
2535 	default:
2536 		KVM_BUG_ON(1, vcpu->kvm);
2537 		break;
2538 	}
2539 }
2540 
2541 /*
2542  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2543  * directly instead of going through cpu_has(), to ensure KVM is trapping
2544  * ENCLS whenever it's supported in hardware.  It does not matter whether
2545  * the host OS supports or has enabled SGX.
2546  */
2547 static bool cpu_has_sgx(void)
2548 {
2549 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2550 }
2551 
2552 /*
2553  * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2554  * can't be used due to errata where VM Exit may incorrectly clear
2555  * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the
2556  * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2557  */
2558 static bool cpu_has_perf_global_ctrl_bug(void)
2559 {
2560 	switch (boot_cpu_data.x86_vfm) {
2561 	case INTEL_NEHALEM_EP:	/* AAK155 */
2562 	case INTEL_NEHALEM:	/* AAP115 */
2563 	case INTEL_WESTMERE:	/* AAT100 */
2564 	case INTEL_WESTMERE_EP:	/* BC86,AAY89,BD102 */
2565 	case INTEL_NEHALEM_EX:	/* BA97 */
2566 		return true;
2567 	default:
2568 		break;
2569 	}
2570 
2571 	return false;
2572 }
2573 
2574 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
2575 {
2576 	u32 vmx_msr_low, vmx_msr_high;
2577 	u32 ctl = ctl_min | ctl_opt;
2578 
2579 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2580 
2581 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2582 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2583 
2584 	/* Ensure minimum (required) set of control bits are supported. */
2585 	if (ctl_min & ~ctl)
2586 		return -EIO;
2587 
2588 	*result = ctl;
2589 	return 0;
2590 }
2591 
2592 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2593 {
2594 	u64 allowed;
2595 
2596 	rdmsrl(msr, allowed);
2597 
2598 	return  ctl_opt & allowed;
2599 }
2600 
2601 static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2602 			     struct vmx_capability *vmx_cap)
2603 {
2604 	u32 _pin_based_exec_control = 0;
2605 	u32 _cpu_based_exec_control = 0;
2606 	u32 _cpu_based_2nd_exec_control = 0;
2607 	u64 _cpu_based_3rd_exec_control = 0;
2608 	u32 _vmexit_control = 0;
2609 	u32 _vmentry_control = 0;
2610 	u64 basic_msr;
2611 	u64 misc_msr;
2612 	int i;
2613 
2614 	/*
2615 	 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2616 	 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2617 	 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2618 	 */
2619 	struct {
2620 		u32 entry_control;
2621 		u32 exit_control;
2622 	} const vmcs_entry_exit_pairs[] = {
2623 		{ VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,	VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2624 		{ VM_ENTRY_LOAD_IA32_PAT,		VM_EXIT_LOAD_IA32_PAT },
2625 		{ VM_ENTRY_LOAD_IA32_EFER,		VM_EXIT_LOAD_IA32_EFER },
2626 		{ VM_ENTRY_LOAD_BNDCFGS,		VM_EXIT_CLEAR_BNDCFGS },
2627 		{ VM_ENTRY_LOAD_IA32_RTIT_CTL,		VM_EXIT_CLEAR_IA32_RTIT_CTL },
2628 	};
2629 
2630 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2631 
2632 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2633 				KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2634 				MSR_IA32_VMX_PROCBASED_CTLS,
2635 				&_cpu_based_exec_control))
2636 		return -EIO;
2637 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2638 		if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2639 					KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2640 					MSR_IA32_VMX_PROCBASED_CTLS2,
2641 					&_cpu_based_2nd_exec_control))
2642 			return -EIO;
2643 	}
2644 	if (!IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
2645 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2646 
2647 #ifndef CONFIG_X86_64
2648 	if (!(_cpu_based_2nd_exec_control &
2649 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2650 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2651 #endif
2652 
2653 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2654 		_cpu_based_2nd_exec_control &= ~(
2655 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2656 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2657 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2658 
2659 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2660 		&vmx_cap->ept, &vmx_cap->vpid);
2661 
2662 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2663 	    vmx_cap->ept) {
2664 		pr_warn_once("EPT CAP should not exist if not support "
2665 				"1-setting enable EPT VM-execution control\n");
2666 
2667 		if (error_on_inconsistent_vmcs_config)
2668 			return -EIO;
2669 
2670 		vmx_cap->ept = 0;
2671 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2672 	}
2673 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2674 	    vmx_cap->vpid) {
2675 		pr_warn_once("VPID CAP should not exist if not support "
2676 				"1-setting enable VPID VM-execution control\n");
2677 
2678 		if (error_on_inconsistent_vmcs_config)
2679 			return -EIO;
2680 
2681 		vmx_cap->vpid = 0;
2682 	}
2683 
2684 	if (!cpu_has_sgx())
2685 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2686 
2687 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2688 		_cpu_based_3rd_exec_control =
2689 			adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2690 					      MSR_IA32_VMX_PROCBASED_CTLS3);
2691 
2692 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2693 				KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2694 				MSR_IA32_VMX_EXIT_CTLS,
2695 				&_vmexit_control))
2696 		return -EIO;
2697 
2698 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2699 				KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2700 				MSR_IA32_VMX_PINBASED_CTLS,
2701 				&_pin_based_exec_control))
2702 		return -EIO;
2703 
2704 	if (cpu_has_broken_vmx_preemption_timer())
2705 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2706 	if (!(_cpu_based_2nd_exec_control &
2707 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2708 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2709 
2710 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2711 				KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2712 				MSR_IA32_VMX_ENTRY_CTLS,
2713 				&_vmentry_control))
2714 		return -EIO;
2715 
2716 	for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) {
2717 		u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control;
2718 		u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control;
2719 
2720 		if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl))
2721 			continue;
2722 
2723 		pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n",
2724 			     _vmentry_control & n_ctrl, _vmexit_control & x_ctrl);
2725 
2726 		if (error_on_inconsistent_vmcs_config)
2727 			return -EIO;
2728 
2729 		_vmentry_control &= ~n_ctrl;
2730 		_vmexit_control &= ~x_ctrl;
2731 	}
2732 
2733 	rdmsrl(MSR_IA32_VMX_BASIC, basic_msr);
2734 
2735 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2736 	if (vmx_basic_vmcs_size(basic_msr) > PAGE_SIZE)
2737 		return -EIO;
2738 
2739 #ifdef CONFIG_X86_64
2740 	/*
2741 	 * KVM expects to be able to shove all legal physical addresses into
2742 	 * VMCS fields for 64-bit kernels, and per the SDM, "This bit is always
2743 	 * 0 for processors that support Intel 64 architecture".
2744 	 */
2745 	if (basic_msr & VMX_BASIC_32BIT_PHYS_ADDR_ONLY)
2746 		return -EIO;
2747 #endif
2748 
2749 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2750 	if (vmx_basic_vmcs_mem_type(basic_msr) != X86_MEMTYPE_WB)
2751 		return -EIO;
2752 
2753 	rdmsrl(MSR_IA32_VMX_MISC, misc_msr);
2754 
2755 	vmcs_conf->basic = basic_msr;
2756 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2757 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2758 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2759 	vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2760 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2761 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2762 	vmcs_conf->misc	= misc_msr;
2763 
2764 #if IS_ENABLED(CONFIG_HYPERV)
2765 	if (enlightened_vmcs)
2766 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2767 #endif
2768 
2769 	return 0;
2770 }
2771 
2772 static bool __kvm_is_vmx_supported(void)
2773 {
2774 	int cpu = smp_processor_id();
2775 
2776 	if (!(cpuid_ecx(1) & feature_bit(VMX))) {
2777 		pr_err("VMX not supported by CPU %d\n", cpu);
2778 		return false;
2779 	}
2780 
2781 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2782 	    !this_cpu_has(X86_FEATURE_VMX)) {
2783 		pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
2784 		return false;
2785 	}
2786 
2787 	return true;
2788 }
2789 
2790 static bool kvm_is_vmx_supported(void)
2791 {
2792 	bool supported;
2793 
2794 	migrate_disable();
2795 	supported = __kvm_is_vmx_supported();
2796 	migrate_enable();
2797 
2798 	return supported;
2799 }
2800 
2801 int vmx_check_processor_compat(void)
2802 {
2803 	int cpu = raw_smp_processor_id();
2804 	struct vmcs_config vmcs_conf;
2805 	struct vmx_capability vmx_cap;
2806 
2807 	if (!__kvm_is_vmx_supported())
2808 		return -EIO;
2809 
2810 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
2811 		pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
2812 		return -EIO;
2813 	}
2814 	if (nested)
2815 		nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
2816 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
2817 		pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
2818 		return -EIO;
2819 	}
2820 	return 0;
2821 }
2822 
2823 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2824 {
2825 	u64 msr;
2826 
2827 	cr4_set_bits(X86_CR4_VMXE);
2828 
2829 	asm goto("1: vmxon %[vmxon_pointer]\n\t"
2830 			  _ASM_EXTABLE(1b, %l[fault])
2831 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2832 			  : : fault);
2833 	return 0;
2834 
2835 fault:
2836 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2837 		  rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2838 	cr4_clear_bits(X86_CR4_VMXE);
2839 
2840 	return -EFAULT;
2841 }
2842 
2843 int vmx_enable_virtualization_cpu(void)
2844 {
2845 	int cpu = raw_smp_processor_id();
2846 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2847 	int r;
2848 
2849 	if (cr4_read_shadow() & X86_CR4_VMXE)
2850 		return -EBUSY;
2851 
2852 	/*
2853 	 * This can happen if we hot-added a CPU but failed to allocate
2854 	 * VP assist page for it.
2855 	 */
2856 	if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
2857 		return -EFAULT;
2858 
2859 	intel_pt_handle_vmx(1);
2860 
2861 	r = kvm_cpu_vmxon(phys_addr);
2862 	if (r) {
2863 		intel_pt_handle_vmx(0);
2864 		return r;
2865 	}
2866 
2867 	return 0;
2868 }
2869 
2870 static void vmclear_local_loaded_vmcss(void)
2871 {
2872 	int cpu = raw_smp_processor_id();
2873 	struct loaded_vmcs *v, *n;
2874 
2875 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2876 				 loaded_vmcss_on_cpu_link)
2877 		__loaded_vmcs_clear(v);
2878 }
2879 
2880 void vmx_disable_virtualization_cpu(void)
2881 {
2882 	vmclear_local_loaded_vmcss();
2883 
2884 	if (kvm_cpu_vmxoff())
2885 		kvm_spurious_fault();
2886 
2887 	hv_reset_evmcs();
2888 
2889 	intel_pt_handle_vmx(0);
2890 }
2891 
2892 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2893 {
2894 	int node = cpu_to_node(cpu);
2895 	struct page *pages;
2896 	struct vmcs *vmcs;
2897 
2898 	pages = __alloc_pages_node(node, flags, 0);
2899 	if (!pages)
2900 		return NULL;
2901 	vmcs = page_address(pages);
2902 	memset(vmcs, 0, vmx_basic_vmcs_size(vmcs_config.basic));
2903 
2904 	/* KVM supports Enlightened VMCS v1 only */
2905 	if (kvm_is_using_evmcs())
2906 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2907 	else
2908 		vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic);
2909 
2910 	if (shadow)
2911 		vmcs->hdr.shadow_vmcs = 1;
2912 	return vmcs;
2913 }
2914 
2915 void free_vmcs(struct vmcs *vmcs)
2916 {
2917 	free_page((unsigned long)vmcs);
2918 }
2919 
2920 /*
2921  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2922  */
2923 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2924 {
2925 	if (!loaded_vmcs->vmcs)
2926 		return;
2927 	loaded_vmcs_clear(loaded_vmcs);
2928 	free_vmcs(loaded_vmcs->vmcs);
2929 	loaded_vmcs->vmcs = NULL;
2930 	if (loaded_vmcs->msr_bitmap)
2931 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2932 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2933 }
2934 
2935 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2936 {
2937 	loaded_vmcs->vmcs = alloc_vmcs(false);
2938 	if (!loaded_vmcs->vmcs)
2939 		return -ENOMEM;
2940 
2941 	vmcs_clear(loaded_vmcs->vmcs);
2942 
2943 	loaded_vmcs->shadow_vmcs = NULL;
2944 	loaded_vmcs->hv_timer_soft_disabled = false;
2945 	loaded_vmcs->cpu = -1;
2946 	loaded_vmcs->launched = 0;
2947 
2948 	if (cpu_has_vmx_msr_bitmap()) {
2949 		loaded_vmcs->msr_bitmap = (unsigned long *)
2950 				__get_free_page(GFP_KERNEL_ACCOUNT);
2951 		if (!loaded_vmcs->msr_bitmap)
2952 			goto out_vmcs;
2953 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2954 	}
2955 
2956 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2957 	memset(&loaded_vmcs->controls_shadow, 0,
2958 		sizeof(struct vmcs_controls_shadow));
2959 
2960 	return 0;
2961 
2962 out_vmcs:
2963 	free_loaded_vmcs(loaded_vmcs);
2964 	return -ENOMEM;
2965 }
2966 
2967 static void free_kvm_area(void)
2968 {
2969 	int cpu;
2970 
2971 	for_each_possible_cpu(cpu) {
2972 		free_vmcs(per_cpu(vmxarea, cpu));
2973 		per_cpu(vmxarea, cpu) = NULL;
2974 	}
2975 }
2976 
2977 static __init int alloc_kvm_area(void)
2978 {
2979 	int cpu;
2980 
2981 	for_each_possible_cpu(cpu) {
2982 		struct vmcs *vmcs;
2983 
2984 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2985 		if (!vmcs) {
2986 			free_kvm_area();
2987 			return -ENOMEM;
2988 		}
2989 
2990 		/*
2991 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2992 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2993 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2994 		 *
2995 		 * However, even though not explicitly documented by
2996 		 * TLFS, VMXArea passed as VMXON argument should
2997 		 * still be marked with revision_id reported by
2998 		 * physical CPU.
2999 		 */
3000 		if (kvm_is_using_evmcs())
3001 			vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic);
3002 
3003 		per_cpu(vmxarea, cpu) = vmcs;
3004 	}
3005 	return 0;
3006 }
3007 
3008 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3009 		struct kvm_segment *save)
3010 {
3011 	if (!emulate_invalid_guest_state) {
3012 		/*
3013 		 * CS and SS RPL should be equal during guest entry according
3014 		 * to VMX spec, but in reality it is not always so. Since vcpu
3015 		 * is in the middle of the transition from real mode to
3016 		 * protected mode it is safe to assume that RPL 0 is a good
3017 		 * default value.
3018 		 */
3019 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3020 			save->selector &= ~SEGMENT_RPL_MASK;
3021 		save->dpl = save->selector & SEGMENT_RPL_MASK;
3022 		save->s = 1;
3023 	}
3024 	__vmx_set_segment(vcpu, save, seg);
3025 }
3026 
3027 static void enter_pmode(struct kvm_vcpu *vcpu)
3028 {
3029 	unsigned long flags;
3030 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3031 
3032 	/*
3033 	 * Update real mode segment cache. It may be not up-to-date if segment
3034 	 * register was written while vcpu was in a guest mode.
3035 	 */
3036 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3037 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3038 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3039 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3040 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3041 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3042 
3043 	vmx->rmode.vm86_active = 0;
3044 
3045 	__vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3046 
3047 	flags = vmcs_readl(GUEST_RFLAGS);
3048 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3049 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3050 	vmcs_writel(GUEST_RFLAGS, flags);
3051 
3052 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3053 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3054 
3055 	vmx_update_exception_bitmap(vcpu);
3056 
3057 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3058 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3059 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3060 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3061 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3062 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3063 }
3064 
3065 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3066 {
3067 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3068 	struct kvm_segment var = *save;
3069 
3070 	var.dpl = 0x3;
3071 	if (seg == VCPU_SREG_CS)
3072 		var.type = 0x3;
3073 
3074 	if (!emulate_invalid_guest_state) {
3075 		var.selector = var.base >> 4;
3076 		var.base = var.base & 0xffff0;
3077 		var.limit = 0xffff;
3078 		var.g = 0;
3079 		var.db = 0;
3080 		var.present = 1;
3081 		var.s = 1;
3082 		var.l = 0;
3083 		var.unusable = 0;
3084 		var.type = 0x3;
3085 		var.avl = 0;
3086 		if (save->base & 0xf)
3087 			pr_warn_once("segment base is not paragraph aligned "
3088 				     "when entering protected mode (seg=%d)", seg);
3089 	}
3090 
3091 	vmcs_write16(sf->selector, var.selector);
3092 	vmcs_writel(sf->base, var.base);
3093 	vmcs_write32(sf->limit, var.limit);
3094 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3095 }
3096 
3097 static void enter_rmode(struct kvm_vcpu *vcpu)
3098 {
3099 	unsigned long flags;
3100 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3101 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
3102 
3103 	/*
3104 	 * KVM should never use VM86 to virtualize Real Mode when L2 is active,
3105 	 * as using VM86 is unnecessary if unrestricted guest is enabled, and
3106 	 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0
3107 	 * should VM-Fail and KVM should reject userspace attempts to stuff
3108 	 * CR0.PG=0 when L2 is active.
3109 	 */
3110 	WARN_ON_ONCE(is_guest_mode(vcpu));
3111 
3112 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3113 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3114 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3115 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3116 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3117 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3118 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3119 
3120 	vmx->rmode.vm86_active = 1;
3121 
3122 	vmx_segment_cache_clear(vmx);
3123 
3124 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3125 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3126 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3127 
3128 	flags = vmcs_readl(GUEST_RFLAGS);
3129 	vmx->rmode.save_rflags = flags;
3130 
3131 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3132 
3133 	vmcs_writel(GUEST_RFLAGS, flags);
3134 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3135 	vmx_update_exception_bitmap(vcpu);
3136 
3137 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3138 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3139 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3140 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3141 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3142 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3143 }
3144 
3145 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3146 {
3147 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3148 
3149 	/* Nothing to do if hardware doesn't support EFER. */
3150 	if (!vmx_find_uret_msr(vmx, MSR_EFER))
3151 		return 0;
3152 
3153 	vcpu->arch.efer = efer;
3154 #ifdef CONFIG_X86_64
3155 	if (efer & EFER_LMA)
3156 		vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3157 	else
3158 		vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3159 #else
3160 	if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3161 		return 1;
3162 #endif
3163 
3164 	vmx_setup_uret_msrs(vmx);
3165 	return 0;
3166 }
3167 
3168 #ifdef CONFIG_X86_64
3169 
3170 static void enter_lmode(struct kvm_vcpu *vcpu)
3171 {
3172 	u32 guest_tr_ar;
3173 
3174 	vmx_segment_cache_clear(to_vmx(vcpu));
3175 
3176 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3177 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3178 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3179 				     __func__);
3180 		vmcs_write32(GUEST_TR_AR_BYTES,
3181 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3182 			     | VMX_AR_TYPE_BUSY_64_TSS);
3183 	}
3184 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3185 }
3186 
3187 static void exit_lmode(struct kvm_vcpu *vcpu)
3188 {
3189 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3190 }
3191 
3192 #endif
3193 
3194 void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3195 {
3196 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3197 
3198 	/*
3199 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3200 	 * the CPU is not required to invalidate guest-physical mappings on
3201 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
3202 	 * associated with the root EPT structure and not any particular VPID
3203 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
3204 	 */
3205 	if (enable_ept) {
3206 		ept_sync_global();
3207 	} else if (enable_vpid) {
3208 		if (cpu_has_vmx_invvpid_global()) {
3209 			vpid_sync_vcpu_global();
3210 		} else {
3211 			vpid_sync_vcpu_single(vmx->vpid);
3212 			vpid_sync_vcpu_single(vmx->nested.vpid02);
3213 		}
3214 	}
3215 }
3216 
3217 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3218 {
3219 	if (is_guest_mode(vcpu))
3220 		return nested_get_vpid02(vcpu);
3221 	return to_vmx(vcpu)->vpid;
3222 }
3223 
3224 void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3225 {
3226 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3227 	u64 root_hpa = mmu->root.hpa;
3228 
3229 	/* No flush required if the current context is invalid. */
3230 	if (!VALID_PAGE(root_hpa))
3231 		return;
3232 
3233 	if (enable_ept)
3234 		ept_sync_context(construct_eptp(vcpu, root_hpa,
3235 						mmu->root_role.level));
3236 	else
3237 		vpid_sync_context(vmx_get_current_vpid(vcpu));
3238 }
3239 
3240 void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3241 {
3242 	/*
3243 	 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3244 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3245 	 */
3246 	vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3247 }
3248 
3249 void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3250 {
3251 	/*
3252 	 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3253 	 * vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit are
3254 	 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3255 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3256 	 * i.e. no explicit INVVPID is necessary.
3257 	 */
3258 	vpid_sync_context(vmx_get_current_vpid(vcpu));
3259 }
3260 
3261 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3262 {
3263 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3264 
3265 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3266 		return;
3267 
3268 	if (is_pae_paging(vcpu)) {
3269 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3270 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3271 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3272 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3273 	}
3274 }
3275 
3276 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3277 {
3278 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3279 
3280 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3281 		return;
3282 
3283 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3284 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3285 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3286 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3287 
3288 	kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3289 }
3290 
3291 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3292 			  CPU_BASED_CR3_STORE_EXITING)
3293 
3294 bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3295 {
3296 	if (is_guest_mode(vcpu))
3297 		return nested_guest_cr0_valid(vcpu, cr0);
3298 
3299 	if (to_vmx(vcpu)->nested.vmxon)
3300 		return nested_host_cr0_valid(vcpu, cr0);
3301 
3302 	return true;
3303 }
3304 
3305 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3306 {
3307 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3308 	unsigned long hw_cr0, old_cr0_pg;
3309 	u32 tmp;
3310 
3311 	old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3312 
3313 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3314 	if (enable_unrestricted_guest)
3315 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3316 	else {
3317 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3318 		if (!enable_ept)
3319 			hw_cr0 |= X86_CR0_WP;
3320 
3321 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3322 			enter_pmode(vcpu);
3323 
3324 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3325 			enter_rmode(vcpu);
3326 	}
3327 
3328 	vmcs_writel(CR0_READ_SHADOW, cr0);
3329 	vmcs_writel(GUEST_CR0, hw_cr0);
3330 	vcpu->arch.cr0 = cr0;
3331 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3332 
3333 #ifdef CONFIG_X86_64
3334 	if (vcpu->arch.efer & EFER_LME) {
3335 		if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3336 			enter_lmode(vcpu);
3337 		else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3338 			exit_lmode(vcpu);
3339 	}
3340 #endif
3341 
3342 	if (enable_ept && !enable_unrestricted_guest) {
3343 		/*
3344 		 * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3345 		 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3346 		 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3347 		 * KVM's CR3 is installed.
3348 		 */
3349 		if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3350 			vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3351 
3352 		/*
3353 		 * When running with EPT but not unrestricted guest, KVM must
3354 		 * intercept CR3 accesses when paging is _disabled_.  This is
3355 		 * necessary because restricted guests can't actually run with
3356 		 * paging disabled, and so KVM stuffs its own CR3 in order to
3357 		 * run the guest when identity mapped page tables.
3358 		 *
3359 		 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3360 		 * update, it may be stale with respect to CR3 interception,
3361 		 * e.g. after nested VM-Enter.
3362 		 *
3363 		 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3364 		 * stores to forward them to L1, even if KVM does not need to
3365 		 * intercept them to preserve its identity mapped page tables.
3366 		 */
3367 		if (!(cr0 & X86_CR0_PG)) {
3368 			exec_controls_setbit(vmx, CR3_EXITING_BITS);
3369 		} else if (!is_guest_mode(vcpu)) {
3370 			exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3371 		} else {
3372 			tmp = exec_controls_get(vmx);
3373 			tmp &= ~CR3_EXITING_BITS;
3374 			tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3375 			exec_controls_set(vmx, tmp);
3376 		}
3377 
3378 		/* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3379 		if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3380 			vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3381 
3382 		/*
3383 		 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3384 		 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3385 		 */
3386 		if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3387 			kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3388 	}
3389 
3390 	/* depends on vcpu->arch.cr0 to be set to a new value */
3391 	vmx->emulation_required = vmx_emulation_required(vcpu);
3392 }
3393 
3394 static int vmx_get_max_ept_level(void)
3395 {
3396 	if (cpu_has_vmx_ept_5levels())
3397 		return 5;
3398 	return 4;
3399 }
3400 
3401 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3402 {
3403 	u64 eptp = VMX_EPTP_MT_WB;
3404 
3405 	eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3406 
3407 	if (enable_ept_ad_bits &&
3408 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3409 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3410 	eptp |= root_hpa;
3411 
3412 	return eptp;
3413 }
3414 
3415 void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3416 {
3417 	struct kvm *kvm = vcpu->kvm;
3418 	bool update_guest_cr3 = true;
3419 	unsigned long guest_cr3;
3420 	u64 eptp;
3421 
3422 	if (enable_ept) {
3423 		eptp = construct_eptp(vcpu, root_hpa, root_level);
3424 		vmcs_write64(EPT_POINTER, eptp);
3425 
3426 		hv_track_root_tdp(vcpu, root_hpa);
3427 
3428 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3429 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3430 		else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3431 			guest_cr3 = vcpu->arch.cr3;
3432 		else /* vmcs.GUEST_CR3 is already up-to-date. */
3433 			update_guest_cr3 = false;
3434 		vmx_ept_load_pdptrs(vcpu);
3435 	} else {
3436 		guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu) |
3437 			    kvm_get_active_cr3_lam_bits(vcpu);
3438 	}
3439 
3440 	if (update_guest_cr3)
3441 		vmcs_writel(GUEST_CR3, guest_cr3);
3442 }
3443 
3444 bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3445 {
3446 	/*
3447 	 * We operate under the default treatment of SMM, so VMX cannot be
3448 	 * enabled under SMM.  Note, whether or not VMXE is allowed at all,
3449 	 * i.e. is a reserved bit, is handled by common x86 code.
3450 	 */
3451 	if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3452 		return false;
3453 
3454 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3455 		return false;
3456 
3457 	return true;
3458 }
3459 
3460 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3461 {
3462 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
3463 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3464 	unsigned long hw_cr4;
3465 
3466 	/*
3467 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3468 	 * is in force while we are in guest mode.  Do not let guests control
3469 	 * this bit, even if host CR4.MCE == 0.
3470 	 */
3471 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3472 	if (enable_unrestricted_guest)
3473 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3474 	else if (vmx->rmode.vm86_active)
3475 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3476 	else
3477 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3478 
3479 	if (vmx_umip_emulated()) {
3480 		if (cr4 & X86_CR4_UMIP) {
3481 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3482 			hw_cr4 &= ~X86_CR4_UMIP;
3483 		} else if (!is_guest_mode(vcpu) ||
3484 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3485 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3486 		}
3487 	}
3488 
3489 	vcpu->arch.cr4 = cr4;
3490 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3491 
3492 	if (!enable_unrestricted_guest) {
3493 		if (enable_ept) {
3494 			if (!is_paging(vcpu)) {
3495 				hw_cr4 &= ~X86_CR4_PAE;
3496 				hw_cr4 |= X86_CR4_PSE;
3497 			} else if (!(cr4 & X86_CR4_PAE)) {
3498 				hw_cr4 &= ~X86_CR4_PAE;
3499 			}
3500 		}
3501 
3502 		/*
3503 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3504 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3505 		 * to be manually disabled when guest switches to non-paging
3506 		 * mode.
3507 		 *
3508 		 * If !enable_unrestricted_guest, the CPU is always running
3509 		 * with CR0.PG=1 and CR4 needs to be modified.
3510 		 * If enable_unrestricted_guest, the CPU automatically
3511 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3512 		 */
3513 		if (!is_paging(vcpu))
3514 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3515 	}
3516 
3517 	vmcs_writel(CR4_READ_SHADOW, cr4);
3518 	vmcs_writel(GUEST_CR4, hw_cr4);
3519 
3520 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3521 		kvm_update_cpuid_runtime(vcpu);
3522 }
3523 
3524 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3525 {
3526 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3527 	u32 ar;
3528 
3529 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3530 		*var = vmx->rmode.segs[seg];
3531 		if (seg == VCPU_SREG_TR
3532 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3533 			return;
3534 		var->base = vmx_read_guest_seg_base(vmx, seg);
3535 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3536 		return;
3537 	}
3538 	var->base = vmx_read_guest_seg_base(vmx, seg);
3539 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3540 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3541 	ar = vmx_read_guest_seg_ar(vmx, seg);
3542 	var->unusable = (ar >> 16) & 1;
3543 	var->type = ar & 15;
3544 	var->s = (ar >> 4) & 1;
3545 	var->dpl = (ar >> 5) & 3;
3546 	/*
3547 	 * Some userspaces do not preserve unusable property. Since usable
3548 	 * segment has to be present according to VMX spec we can use present
3549 	 * property to amend userspace bug by making unusable segment always
3550 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3551 	 * segment as unusable.
3552 	 */
3553 	var->present = !var->unusable;
3554 	var->avl = (ar >> 12) & 1;
3555 	var->l = (ar >> 13) & 1;
3556 	var->db = (ar >> 14) & 1;
3557 	var->g = (ar >> 15) & 1;
3558 }
3559 
3560 u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3561 {
3562 	struct kvm_segment s;
3563 
3564 	if (to_vmx(vcpu)->rmode.vm86_active) {
3565 		vmx_get_segment(vcpu, &s, seg);
3566 		return s.base;
3567 	}
3568 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3569 }
3570 
3571 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3572 {
3573 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3574 
3575 	if (unlikely(vmx->rmode.vm86_active))
3576 		return 0;
3577 	else {
3578 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3579 		return VMX_AR_DPL(ar);
3580 	}
3581 }
3582 
3583 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3584 {
3585 	u32 ar;
3586 
3587 	ar = var->type & 15;
3588 	ar |= (var->s & 1) << 4;
3589 	ar |= (var->dpl & 3) << 5;
3590 	ar |= (var->present & 1) << 7;
3591 	ar |= (var->avl & 1) << 12;
3592 	ar |= (var->l & 1) << 13;
3593 	ar |= (var->db & 1) << 14;
3594 	ar |= (var->g & 1) << 15;
3595 	ar |= (var->unusable || !var->present) << 16;
3596 
3597 	return ar;
3598 }
3599 
3600 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3601 {
3602 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3603 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3604 
3605 	vmx_segment_cache_clear(vmx);
3606 
3607 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3608 		vmx->rmode.segs[seg] = *var;
3609 		if (seg == VCPU_SREG_TR)
3610 			vmcs_write16(sf->selector, var->selector);
3611 		else if (var->s)
3612 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3613 		return;
3614 	}
3615 
3616 	vmcs_writel(sf->base, var->base);
3617 	vmcs_write32(sf->limit, var->limit);
3618 	vmcs_write16(sf->selector, var->selector);
3619 
3620 	/*
3621 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3622 	 * qemu binaries.
3623 	 *   IA32 arch specifies that at the time of processor reset the
3624 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3625 	 * is setting it to 0 in the userland code. This causes invalid guest
3626 	 * state vmexit when "unrestricted guest" mode is turned on.
3627 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3628 	 * tree. Newer qemu binaries with that qemu fix would not need this
3629 	 * kvm hack.
3630 	 */
3631 	if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3632 		var->type |= 0x1; /* Accessed */
3633 
3634 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3635 }
3636 
3637 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3638 {
3639 	__vmx_set_segment(vcpu, var, seg);
3640 
3641 	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3642 }
3643 
3644 void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3645 {
3646 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3647 
3648 	*db = (ar >> 14) & 1;
3649 	*l = (ar >> 13) & 1;
3650 }
3651 
3652 void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3653 {
3654 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3655 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3656 }
3657 
3658 void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3659 {
3660 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3661 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3662 }
3663 
3664 void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3665 {
3666 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3667 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3668 }
3669 
3670 void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3671 {
3672 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3673 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3674 }
3675 
3676 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3677 {
3678 	struct kvm_segment var;
3679 	u32 ar;
3680 
3681 	vmx_get_segment(vcpu, &var, seg);
3682 	var.dpl = 0x3;
3683 	if (seg == VCPU_SREG_CS)
3684 		var.type = 0x3;
3685 	ar = vmx_segment_access_rights(&var);
3686 
3687 	if (var.base != (var.selector << 4))
3688 		return false;
3689 	if (var.limit != 0xffff)
3690 		return false;
3691 	if (ar != 0xf3)
3692 		return false;
3693 
3694 	return true;
3695 }
3696 
3697 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3698 {
3699 	struct kvm_segment cs;
3700 	unsigned int cs_rpl;
3701 
3702 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3703 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3704 
3705 	if (cs.unusable)
3706 		return false;
3707 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3708 		return false;
3709 	if (!cs.s)
3710 		return false;
3711 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3712 		if (cs.dpl > cs_rpl)
3713 			return false;
3714 	} else {
3715 		if (cs.dpl != cs_rpl)
3716 			return false;
3717 	}
3718 	if (!cs.present)
3719 		return false;
3720 
3721 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3722 	return true;
3723 }
3724 
3725 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3726 {
3727 	struct kvm_segment ss;
3728 	unsigned int ss_rpl;
3729 
3730 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3731 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3732 
3733 	if (ss.unusable)
3734 		return true;
3735 	if (ss.type != 3 && ss.type != 7)
3736 		return false;
3737 	if (!ss.s)
3738 		return false;
3739 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3740 		return false;
3741 	if (!ss.present)
3742 		return false;
3743 
3744 	return true;
3745 }
3746 
3747 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3748 {
3749 	struct kvm_segment var;
3750 	unsigned int rpl;
3751 
3752 	vmx_get_segment(vcpu, &var, seg);
3753 	rpl = var.selector & SEGMENT_RPL_MASK;
3754 
3755 	if (var.unusable)
3756 		return true;
3757 	if (!var.s)
3758 		return false;
3759 	if (!var.present)
3760 		return false;
3761 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3762 		if (var.dpl < rpl) /* DPL < RPL */
3763 			return false;
3764 	}
3765 
3766 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3767 	 * rights flags
3768 	 */
3769 	return true;
3770 }
3771 
3772 static bool tr_valid(struct kvm_vcpu *vcpu)
3773 {
3774 	struct kvm_segment tr;
3775 
3776 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3777 
3778 	if (tr.unusable)
3779 		return false;
3780 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3781 		return false;
3782 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3783 		return false;
3784 	if (!tr.present)
3785 		return false;
3786 
3787 	return true;
3788 }
3789 
3790 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3791 {
3792 	struct kvm_segment ldtr;
3793 
3794 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3795 
3796 	if (ldtr.unusable)
3797 		return true;
3798 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3799 		return false;
3800 	if (ldtr.type != 2)
3801 		return false;
3802 	if (!ldtr.present)
3803 		return false;
3804 
3805 	return true;
3806 }
3807 
3808 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3809 {
3810 	struct kvm_segment cs, ss;
3811 
3812 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3813 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3814 
3815 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3816 		 (ss.selector & SEGMENT_RPL_MASK));
3817 }
3818 
3819 /*
3820  * Check if guest state is valid. Returns true if valid, false if
3821  * not.
3822  * We assume that registers are always usable
3823  */
3824 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3825 {
3826 	/* real mode guest state checks */
3827 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3828 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3829 			return false;
3830 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3831 			return false;
3832 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3833 			return false;
3834 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3835 			return false;
3836 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3837 			return false;
3838 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3839 			return false;
3840 	} else {
3841 	/* protected mode guest state checks */
3842 		if (!cs_ss_rpl_check(vcpu))
3843 			return false;
3844 		if (!code_segment_valid(vcpu))
3845 			return false;
3846 		if (!stack_segment_valid(vcpu))
3847 			return false;
3848 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3849 			return false;
3850 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3851 			return false;
3852 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3853 			return false;
3854 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3855 			return false;
3856 		if (!tr_valid(vcpu))
3857 			return false;
3858 		if (!ldtr_valid(vcpu))
3859 			return false;
3860 	}
3861 	/* TODO:
3862 	 * - Add checks on RIP
3863 	 * - Add checks on RFLAGS
3864 	 */
3865 
3866 	return true;
3867 }
3868 
3869 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3870 {
3871 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3872 	u16 data;
3873 	int i;
3874 
3875 	for (i = 0; i < 3; i++) {
3876 		if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3877 			return -EFAULT;
3878 	}
3879 
3880 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3881 	if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3882 		return -EFAULT;
3883 
3884 	data = ~0;
3885 	if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3886 		return -EFAULT;
3887 
3888 	return 0;
3889 }
3890 
3891 static int init_rmode_identity_map(struct kvm *kvm)
3892 {
3893 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3894 	int i, r = 0;
3895 	void __user *uaddr;
3896 	u32 tmp;
3897 
3898 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3899 	mutex_lock(&kvm->slots_lock);
3900 
3901 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3902 		goto out;
3903 
3904 	if (!kvm_vmx->ept_identity_map_addr)
3905 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3906 
3907 	uaddr = __x86_set_memory_region(kvm,
3908 					IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3909 					kvm_vmx->ept_identity_map_addr,
3910 					PAGE_SIZE);
3911 	if (IS_ERR(uaddr)) {
3912 		r = PTR_ERR(uaddr);
3913 		goto out;
3914 	}
3915 
3916 	/* Set up identity-mapping pagetable for EPT in real mode */
3917 	for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3918 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3919 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3920 		if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3921 			r = -EFAULT;
3922 			goto out;
3923 		}
3924 	}
3925 	kvm_vmx->ept_identity_pagetable_done = true;
3926 
3927 out:
3928 	mutex_unlock(&kvm->slots_lock);
3929 	return r;
3930 }
3931 
3932 static void seg_setup(int seg)
3933 {
3934 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3935 	unsigned int ar;
3936 
3937 	vmcs_write16(sf->selector, 0);
3938 	vmcs_writel(sf->base, 0);
3939 	vmcs_write32(sf->limit, 0xffff);
3940 	ar = 0x93;
3941 	if (seg == VCPU_SREG_CS)
3942 		ar |= 0x08; /* code segment */
3943 
3944 	vmcs_write32(sf->ar_bytes, ar);
3945 }
3946 
3947 int allocate_vpid(void)
3948 {
3949 	int vpid;
3950 
3951 	if (!enable_vpid)
3952 		return 0;
3953 	spin_lock(&vmx_vpid_lock);
3954 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3955 	if (vpid < VMX_NR_VPIDS)
3956 		__set_bit(vpid, vmx_vpid_bitmap);
3957 	else
3958 		vpid = 0;
3959 	spin_unlock(&vmx_vpid_lock);
3960 	return vpid;
3961 }
3962 
3963 void free_vpid(int vpid)
3964 {
3965 	if (!enable_vpid || vpid == 0)
3966 		return;
3967 	spin_lock(&vmx_vpid_lock);
3968 	__clear_bit(vpid, vmx_vpid_bitmap);
3969 	spin_unlock(&vmx_vpid_lock);
3970 }
3971 
3972 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3973 {
3974 	/*
3975 	 * When KVM is a nested hypervisor on top of Hyper-V and uses
3976 	 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3977 	 * bitmap has changed.
3978 	 */
3979 	if (kvm_is_using_evmcs()) {
3980 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
3981 
3982 		if (evmcs->hv_enlightenments_control.msr_bitmap)
3983 			evmcs->hv_clean_fields &=
3984 				~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
3985 	}
3986 
3987 	vmx->nested.force_msr_bitmap_recalc = true;
3988 }
3989 
3990 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3991 {
3992 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3993 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3994 	int idx;
3995 
3996 	if (!cpu_has_vmx_msr_bitmap())
3997 		return;
3998 
3999 	vmx_msr_bitmap_l01_changed(vmx);
4000 
4001 	/*
4002 	 * Mark the desired intercept state in shadow bitmap, this is needed
4003 	 * for resync when the MSR filters change.
4004 	 */
4005 	idx = vmx_get_passthrough_msr_slot(msr);
4006 	if (idx >= 0) {
4007 		if (type & MSR_TYPE_R)
4008 			clear_bit(idx, vmx->shadow_msr_intercept.read);
4009 		if (type & MSR_TYPE_W)
4010 			clear_bit(idx, vmx->shadow_msr_intercept.write);
4011 	}
4012 
4013 	if ((type & MSR_TYPE_R) &&
4014 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
4015 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
4016 		type &= ~MSR_TYPE_R;
4017 	}
4018 
4019 	if ((type & MSR_TYPE_W) &&
4020 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
4021 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
4022 		type &= ~MSR_TYPE_W;
4023 	}
4024 
4025 	if (type & MSR_TYPE_R)
4026 		vmx_clear_msr_bitmap_read(msr_bitmap, msr);
4027 
4028 	if (type & MSR_TYPE_W)
4029 		vmx_clear_msr_bitmap_write(msr_bitmap, msr);
4030 }
4031 
4032 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
4033 {
4034 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4035 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
4036 	int idx;
4037 
4038 	if (!cpu_has_vmx_msr_bitmap())
4039 		return;
4040 
4041 	vmx_msr_bitmap_l01_changed(vmx);
4042 
4043 	/*
4044 	 * Mark the desired intercept state in shadow bitmap, this is needed
4045 	 * for resync when the MSR filter changes.
4046 	 */
4047 	idx = vmx_get_passthrough_msr_slot(msr);
4048 	if (idx >= 0) {
4049 		if (type & MSR_TYPE_R)
4050 			set_bit(idx, vmx->shadow_msr_intercept.read);
4051 		if (type & MSR_TYPE_W)
4052 			set_bit(idx, vmx->shadow_msr_intercept.write);
4053 	}
4054 
4055 	if (type & MSR_TYPE_R)
4056 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
4057 
4058 	if (type & MSR_TYPE_W)
4059 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
4060 }
4061 
4062 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
4063 {
4064 	/*
4065 	 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
4066 	 * of the MSR bitmap.  KVM emulates APIC registers up through 0x3f0,
4067 	 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
4068 	 */
4069 	const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
4070 	const int write_idx = read_idx + (0x800 / sizeof(u64));
4071 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4072 	u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
4073 	u8 mode;
4074 
4075 	if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
4076 		return;
4077 
4078 	if (cpu_has_secondary_exec_ctrls() &&
4079 	    (secondary_exec_controls_get(vmx) &
4080 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4081 		mode = MSR_BITMAP_MODE_X2APIC;
4082 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4083 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4084 	} else {
4085 		mode = 0;
4086 	}
4087 
4088 	if (mode == vmx->x2apic_msr_bitmap_mode)
4089 		return;
4090 
4091 	vmx->x2apic_msr_bitmap_mode = mode;
4092 
4093 	/*
4094 	 * Reset the bitmap for MSRs 0x800 - 0x83f.  Leave AMD's uber-extended
4095 	 * registers (0x840 and above) intercepted, KVM doesn't support them.
4096 	 * Intercept all writes by default and poke holes as needed.  Pass
4097 	 * through reads for all valid registers by default in x2APIC+APICv
4098 	 * mode, only the current timer count needs on-demand emulation by KVM.
4099 	 */
4100 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
4101 		msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
4102 	else
4103 		msr_bitmap[read_idx] = ~0ull;
4104 	msr_bitmap[write_idx] = ~0ull;
4105 
4106 	/*
4107 	 * TPR reads and writes can be virtualized even if virtual interrupt
4108 	 * delivery is not in use.
4109 	 */
4110 	vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4111 				  !(mode & MSR_BITMAP_MODE_X2APIC));
4112 
4113 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4114 		vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4115 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4116 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4117 		if (enable_ipiv)
4118 			vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4119 	}
4120 }
4121 
4122 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4123 {
4124 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4125 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4126 	u32 i;
4127 
4128 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4129 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4130 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4131 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4132 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4133 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4134 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4135 	}
4136 }
4137 
4138 void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
4139 {
4140 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4141 	u32 i;
4142 
4143 	if (!cpu_has_vmx_msr_bitmap())
4144 		return;
4145 
4146 	/*
4147 	 * Redo intercept permissions for MSRs that KVM is passing through to
4148 	 * the guest.  Disabling interception will check the new MSR filter and
4149 	 * ensure that KVM enables interception if usersepace wants to filter
4150 	 * the MSR.  MSRs that KVM is already intercepting don't need to be
4151 	 * refreshed since KVM is going to intercept them regardless of what
4152 	 * userspace wants.
4153 	 */
4154 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4155 		u32 msr = vmx_possible_passthrough_msrs[i];
4156 
4157 		if (!test_bit(i, vmx->shadow_msr_intercept.read))
4158 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R);
4159 
4160 		if (!test_bit(i, vmx->shadow_msr_intercept.write))
4161 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W);
4162 	}
4163 
4164 	/* PT MSRs can be passed through iff PT is exposed to the guest. */
4165 	if (vmx_pt_mode_is_host_guest())
4166 		pt_update_intercept_for_msr(vcpu);
4167 }
4168 
4169 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4170 						     int pi_vec)
4171 {
4172 #ifdef CONFIG_SMP
4173 	if (vcpu->mode == IN_GUEST_MODE) {
4174 		/*
4175 		 * The vector of the virtual has already been set in the PIR.
4176 		 * Send a notification event to deliver the virtual interrupt
4177 		 * unless the vCPU is the currently running vCPU, i.e. the
4178 		 * event is being sent from a fastpath VM-Exit handler, in
4179 		 * which case the PIR will be synced to the vIRR before
4180 		 * re-entering the guest.
4181 		 *
4182 		 * When the target is not the running vCPU, the following
4183 		 * possibilities emerge:
4184 		 *
4185 		 * Case 1: vCPU stays in non-root mode. Sending a notification
4186 		 * event posts the interrupt to the vCPU.
4187 		 *
4188 		 * Case 2: vCPU exits to root mode and is still runnable. The
4189 		 * PIR will be synced to the vIRR before re-entering the guest.
4190 		 * Sending a notification event is ok as the host IRQ handler
4191 		 * will ignore the spurious event.
4192 		 *
4193 		 * Case 3: vCPU exits to root mode and is blocked. vcpu_block()
4194 		 * has already synced PIR to vIRR and never blocks the vCPU if
4195 		 * the vIRR is not empty. Therefore, a blocked vCPU here does
4196 		 * not wait for any requested interrupts in PIR, and sending a
4197 		 * notification event also results in a benign, spurious event.
4198 		 */
4199 
4200 		if (vcpu != kvm_get_running_vcpu())
4201 			__apic_send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4202 		return;
4203 	}
4204 #endif
4205 	/*
4206 	 * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
4207 	 * otherwise do nothing as KVM will grab the highest priority pending
4208 	 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
4209 	 */
4210 	kvm_vcpu_wake_up(vcpu);
4211 }
4212 
4213 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4214 						int vector)
4215 {
4216 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4217 
4218 	/*
4219 	 * DO NOT query the vCPU's vmcs12, as vmcs12 is dynamically allocated
4220 	 * and freed, and must not be accessed outside of vcpu->mutex.  The
4221 	 * vCPU's cached PI NV is valid if and only if posted interrupts
4222 	 * enabled in its vmcs12, i.e. checking the vector also checks that
4223 	 * L1 has enabled posted interrupts for L2.
4224 	 */
4225 	if (is_guest_mode(vcpu) &&
4226 	    vector == vmx->nested.posted_intr_nv) {
4227 		/*
4228 		 * If a posted intr is not recognized by hardware,
4229 		 * we will accomplish it in the next vmentry.
4230 		 */
4231 		vmx->nested.pi_pending = true;
4232 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4233 
4234 		/*
4235 		 * This pairs with the smp_mb_*() after setting vcpu->mode in
4236 		 * vcpu_enter_guest() to guarantee the vCPU sees the event
4237 		 * request if triggering a posted interrupt "fails" because
4238 		 * vcpu->mode != IN_GUEST_MODE.  The extra barrier is needed as
4239 		 * the smb_wmb() in kvm_make_request() only ensures everything
4240 		 * done before making the request is visible when the request
4241 		 * is visible, it doesn't ensure ordering between the store to
4242 		 * vcpu->requests and the load from vcpu->mode.
4243 		 */
4244 		smp_mb__after_atomic();
4245 
4246 		/* the PIR and ON have been set by L1. */
4247 		kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4248 		return 0;
4249 	}
4250 	return -1;
4251 }
4252 /*
4253  * Send interrupt to vcpu via posted interrupt way.
4254  * 1. If target vcpu is running(non-root mode), send posted interrupt
4255  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4256  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4257  * interrupt from PIR in next vmentry.
4258  */
4259 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4260 {
4261 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4262 	int r;
4263 
4264 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4265 	if (!r)
4266 		return 0;
4267 
4268 	/* Note, this is called iff the local APIC is in-kernel. */
4269 	if (!vcpu->arch.apic->apicv_active)
4270 		return -1;
4271 
4272 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4273 		return 0;
4274 
4275 	/* If a previous notification has sent the IPI, nothing to do.  */
4276 	if (pi_test_and_set_on(&vmx->pi_desc))
4277 		return 0;
4278 
4279 	/*
4280 	 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4281 	 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4282 	 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4283 	 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4284 	 */
4285 	kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4286 	return 0;
4287 }
4288 
4289 void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4290 			   int trig_mode, int vector)
4291 {
4292 	struct kvm_vcpu *vcpu = apic->vcpu;
4293 
4294 	if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4295 		kvm_lapic_set_irr(vector, apic);
4296 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4297 		kvm_vcpu_kick(vcpu);
4298 	} else {
4299 		trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4300 					   trig_mode, vector);
4301 	}
4302 }
4303 
4304 /*
4305  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4306  * will not change in the lifetime of the guest.
4307  * Note that host-state that does change is set elsewhere. E.g., host-state
4308  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4309  */
4310 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4311 {
4312 	u32 low32, high32;
4313 	unsigned long tmpl;
4314 	unsigned long cr0, cr3, cr4;
4315 
4316 	cr0 = read_cr0();
4317 	WARN_ON(cr0 & X86_CR0_TS);
4318 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4319 
4320 	/*
4321 	 * Save the most likely value for this task's CR3 in the VMCS.
4322 	 * We can't use __get_current_cr3_fast() because we're not atomic.
4323 	 */
4324 	cr3 = __read_cr3();
4325 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
4326 	vmx->loaded_vmcs->host_state.cr3 = cr3;
4327 
4328 	/* Save the most likely value for this task's CR4 in the VMCS. */
4329 	cr4 = cr4_read_shadow();
4330 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4331 	vmx->loaded_vmcs->host_state.cr4 = cr4;
4332 
4333 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4334 #ifdef CONFIG_X86_64
4335 	/*
4336 	 * Load null selectors, so we can avoid reloading them in
4337 	 * vmx_prepare_switch_to_host(), in case userspace uses
4338 	 * the null selectors too (the expected case).
4339 	 */
4340 	vmcs_write16(HOST_DS_SELECTOR, 0);
4341 	vmcs_write16(HOST_ES_SELECTOR, 0);
4342 #else
4343 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4344 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4345 #endif
4346 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4347 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4348 
4349 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4350 
4351 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4352 
4353 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4354 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4355 
4356 	/*
4357 	 * SYSENTER is used for 32-bit system calls on either 32-bit or
4358 	 * 64-bit kernels.  It is always zero If neither is allowed, otherwise
4359 	 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4360 	 * have already done so!).
4361 	 */
4362 	if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4363 		vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4364 
4365 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4366 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4367 
4368 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4369 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4370 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4371 	}
4372 
4373 	if (cpu_has_load_ia32_efer())
4374 		vmcs_write64(HOST_IA32_EFER, kvm_host.efer);
4375 }
4376 
4377 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4378 {
4379 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4380 
4381 	vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4382 					  ~vcpu->arch.cr4_guest_rsvd_bits;
4383 	if (!enable_ept) {
4384 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4385 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4386 	}
4387 	if (is_guest_mode(&vmx->vcpu))
4388 		vcpu->arch.cr4_guest_owned_bits &=
4389 			~get_vmcs12(vcpu)->cr4_guest_host_mask;
4390 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4391 }
4392 
4393 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4394 {
4395 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4396 
4397 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4398 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4399 
4400 	if (!enable_vnmi)
4401 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4402 
4403 	if (!enable_preemption_timer)
4404 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4405 
4406 	return pin_based_exec_ctrl;
4407 }
4408 
4409 static u32 vmx_vmentry_ctrl(void)
4410 {
4411 	u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4412 
4413 	if (vmx_pt_mode_is_system())
4414 		vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4415 				  VM_ENTRY_LOAD_IA32_RTIT_CTL);
4416 	/*
4417 	 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4418 	 */
4419 	vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4420 			  VM_ENTRY_LOAD_IA32_EFER |
4421 			  VM_ENTRY_IA32E_MODE);
4422 
4423 	if (cpu_has_perf_global_ctrl_bug())
4424 		vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4425 
4426 	return vmentry_ctrl;
4427 }
4428 
4429 static u32 vmx_vmexit_ctrl(void)
4430 {
4431 	u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4432 
4433 	/*
4434 	 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4435 	 * nested virtualization and thus allowed to be set in vmcs12.
4436 	 */
4437 	vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4438 			 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4439 
4440 	if (vmx_pt_mode_is_system())
4441 		vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4442 				 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4443 
4444 	if (cpu_has_perf_global_ctrl_bug())
4445 		vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4446 
4447 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4448 	return vmexit_ctrl &
4449 		~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4450 }
4451 
4452 void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4453 {
4454 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4455 
4456 	if (is_guest_mode(vcpu)) {
4457 		vmx->nested.update_vmcs01_apicv_status = true;
4458 		return;
4459 	}
4460 
4461 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4462 
4463 	if (kvm_vcpu_apicv_active(vcpu)) {
4464 		secondary_exec_controls_setbit(vmx,
4465 					       SECONDARY_EXEC_APIC_REGISTER_VIRT |
4466 					       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4467 		if (enable_ipiv)
4468 			tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4469 	} else {
4470 		secondary_exec_controls_clearbit(vmx,
4471 						 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4472 						 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4473 		if (enable_ipiv)
4474 			tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4475 	}
4476 
4477 	vmx_update_msr_bitmap_x2apic(vcpu);
4478 }
4479 
4480 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4481 {
4482 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4483 
4484 	/*
4485 	 * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4486 	 * vmcs12 and propagated to vmcs02 when set in vmcs12.
4487 	 */
4488 	exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4489 			  CPU_BASED_USE_IO_BITMAPS |
4490 			  CPU_BASED_MONITOR_TRAP_FLAG |
4491 			  CPU_BASED_PAUSE_EXITING);
4492 
4493 	/* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4494 	exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4495 			  CPU_BASED_NMI_WINDOW_EXITING);
4496 
4497 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4498 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4499 
4500 	if (!cpu_need_tpr_shadow(&vmx->vcpu))
4501 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4502 
4503 #ifdef CONFIG_X86_64
4504 	if (exec_control & CPU_BASED_TPR_SHADOW)
4505 		exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4506 				  CPU_BASED_CR8_STORE_EXITING);
4507 	else
4508 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4509 				CPU_BASED_CR8_LOAD_EXITING;
4510 #endif
4511 	/* No need to intercept CR3 access or INVPLG when using EPT. */
4512 	if (enable_ept)
4513 		exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4514 				  CPU_BASED_CR3_STORE_EXITING |
4515 				  CPU_BASED_INVLPG_EXITING);
4516 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4517 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4518 				CPU_BASED_MONITOR_EXITING);
4519 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4520 		exec_control &= ~CPU_BASED_HLT_EXITING;
4521 	return exec_control;
4522 }
4523 
4524 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4525 {
4526 	u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4527 
4528 	/*
4529 	 * IPI virtualization relies on APICv. Disable IPI virtualization if
4530 	 * APICv is inhibited.
4531 	 */
4532 	if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4533 		exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4534 
4535 	return exec_control;
4536 }
4537 
4538 /*
4539  * Adjust a single secondary execution control bit to intercept/allow an
4540  * instruction in the guest.  This is usually done based on whether or not a
4541  * feature has been exposed to the guest in order to correctly emulate faults.
4542  */
4543 static inline void
4544 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4545 				  u32 control, bool enabled, bool exiting)
4546 {
4547 	/*
4548 	 * If the control is for an opt-in feature, clear the control if the
4549 	 * feature is not exposed to the guest, i.e. not enabled.  If the
4550 	 * control is opt-out, i.e. an exiting control, clear the control if
4551 	 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4552 	 * disabled for the associated instruction.  Note, the caller is
4553 	 * responsible presetting exec_control to set all supported bits.
4554 	 */
4555 	if (enabled == exiting)
4556 		*exec_control &= ~control;
4557 
4558 	/*
4559 	 * Update the nested MSR settings so that a nested VMM can/can't set
4560 	 * controls for features that are/aren't exposed to the guest.
4561 	 */
4562 	if (nested) {
4563 		/*
4564 		 * All features that can be added or removed to VMX MSRs must
4565 		 * be supported in the first place for nested virtualization.
4566 		 */
4567 		if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4568 			enabled = false;
4569 
4570 		if (enabled)
4571 			vmx->nested.msrs.secondary_ctls_high |= control;
4572 		else
4573 			vmx->nested.msrs.secondary_ctls_high &= ~control;
4574 	}
4575 }
4576 
4577 /*
4578  * Wrapper macro for the common case of adjusting a secondary execution control
4579  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4580  * verifies that the control is actually supported by KVM and hardware.
4581  */
4582 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting)	\
4583 ({												\
4584 	struct kvm_vcpu *__vcpu = &(vmx)->vcpu;							\
4585 	bool __enabled;										\
4586 												\
4587 	if (cpu_has_vmx_##name()) {								\
4588 		if (kvm_is_governed_feature(X86_FEATURE_##feat_name))				\
4589 			__enabled = guest_can_use(__vcpu, X86_FEATURE_##feat_name);		\
4590 		else										\
4591 			__enabled = guest_cpuid_has(__vcpu, X86_FEATURE_##feat_name);		\
4592 		vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\
4593 						  __enabled, exiting);				\
4594 	}											\
4595 })
4596 
4597 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4598 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4599 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4600 
4601 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4602 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4603 
4604 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4605 {
4606 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4607 
4608 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4609 
4610 	if (vmx_pt_mode_is_system())
4611 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4612 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4613 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4614 	if (vmx->vpid == 0)
4615 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4616 	if (!enable_ept) {
4617 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4618 		exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
4619 		enable_unrestricted_guest = 0;
4620 	}
4621 	if (!enable_unrestricted_guest)
4622 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4623 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4624 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4625 	if (!kvm_vcpu_apicv_active(vcpu))
4626 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4627 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4628 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4629 
4630 	/*
4631 	 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4632 	 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4633 	 */
4634 	exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
4635 
4636 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4637 	 * in vmx_set_cr4.  */
4638 	exec_control &= ~SECONDARY_EXEC_DESC;
4639 
4640 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4641 	   (handle_vmptrld).
4642 	   We can NOT enable shadow_vmcs here because we don't have yet
4643 	   a current VMCS12
4644 	*/
4645 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4646 
4647 	/*
4648 	 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4649 	 * it needs to be set here when dirty logging is already active, e.g.
4650 	 * if this vCPU was created after dirty logging was enabled.
4651 	 */
4652 	if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
4653 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4654 
4655 	vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES);
4656 
4657 	/*
4658 	 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4659 	 * feature is exposed to the guest.  This creates a virtualization hole
4660 	 * if both are supported in hardware but only one is exposed to the
4661 	 * guest, but letting the guest execute RDTSCP or RDPID when either one
4662 	 * is advertised is preferable to emulating the advertised instruction
4663 	 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4664 	 */
4665 	if (cpu_has_vmx_rdtscp()) {
4666 		bool rdpid_or_rdtscp_enabled =
4667 			guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4668 			guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4669 
4670 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4671 						  SECONDARY_EXEC_ENABLE_RDTSCP,
4672 						  rdpid_or_rdtscp_enabled, false);
4673 	}
4674 
4675 	vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4676 
4677 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4678 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4679 
4680 	vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4681 				    ENABLE_USR_WAIT_PAUSE, false);
4682 
4683 	if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4684 		exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4685 
4686 	if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4687 		exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4688 
4689 	return exec_control;
4690 }
4691 
4692 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4693 {
4694 	return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4695 }
4696 
4697 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4698 {
4699 	struct page *pages;
4700 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4701 
4702 	if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4703 		return 0;
4704 
4705 	if (kvm_vmx->pid_table)
4706 		return 0;
4707 
4708 	pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO,
4709 			    vmx_get_pid_table_order(kvm));
4710 	if (!pages)
4711 		return -ENOMEM;
4712 
4713 	kvm_vmx->pid_table = (void *)page_address(pages);
4714 	return 0;
4715 }
4716 
4717 int vmx_vcpu_precreate(struct kvm *kvm)
4718 {
4719 	return vmx_alloc_ipiv_pid_table(kvm);
4720 }
4721 
4722 #define VMX_XSS_EXIT_BITMAP 0
4723 
4724 static void init_vmcs(struct vcpu_vmx *vmx)
4725 {
4726 	struct kvm *kvm = vmx->vcpu.kvm;
4727 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4728 
4729 	if (nested)
4730 		nested_vmx_set_vmcs_shadowing_bitmap();
4731 
4732 	if (cpu_has_vmx_msr_bitmap())
4733 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4734 
4735 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4736 
4737 	/* Control */
4738 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4739 
4740 	exec_controls_set(vmx, vmx_exec_control(vmx));
4741 
4742 	if (cpu_has_secondary_exec_ctrls()) {
4743 		secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4744 		if (vmx->ve_info)
4745 			vmcs_write64(VE_INFORMATION_ADDRESS,
4746 				     __pa(vmx->ve_info));
4747 	}
4748 
4749 	if (cpu_has_tertiary_exec_ctrls())
4750 		tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4751 
4752 	if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4753 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4754 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4755 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4756 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4757 
4758 		vmcs_write16(GUEST_INTR_STATUS, 0);
4759 
4760 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4761 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4762 	}
4763 
4764 	if (vmx_can_use_ipiv(&vmx->vcpu)) {
4765 		vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4766 		vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4767 	}
4768 
4769 	if (!kvm_pause_in_guest(kvm)) {
4770 		vmcs_write32(PLE_GAP, ple_gap);
4771 		vmx->ple_window = ple_window;
4772 		vmx->ple_window_dirty = true;
4773 	}
4774 
4775 	if (kvm_notify_vmexit_enabled(kvm))
4776 		vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4777 
4778 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4779 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4780 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4781 
4782 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4783 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4784 	vmx_set_constant_host_state(vmx);
4785 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4786 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4787 
4788 	if (cpu_has_vmx_vmfunc())
4789 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4790 
4791 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4792 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4793 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4794 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4795 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4796 
4797 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4798 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4799 
4800 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4801 
4802 	/* 22.2.1, 20.8.1 */
4803 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4804 
4805 	vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4806 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4807 
4808 	set_cr4_guest_host_mask(vmx);
4809 
4810 	if (vmx->vpid != 0)
4811 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4812 
4813 	if (cpu_has_vmx_xsaves())
4814 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4815 
4816 	if (enable_pml) {
4817 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4818 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4819 	}
4820 
4821 	vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4822 
4823 	if (vmx_pt_mode_is_host_guest()) {
4824 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4825 		/* Bit[6~0] are forced to 1, writes are ignored. */
4826 		vmx->pt_desc.guest.output_mask = 0x7F;
4827 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4828 	}
4829 
4830 	vmcs_write32(GUEST_SYSENTER_CS, 0);
4831 	vmcs_writel(GUEST_SYSENTER_ESP, 0);
4832 	vmcs_writel(GUEST_SYSENTER_EIP, 0);
4833 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4834 
4835 	if (cpu_has_vmx_tpr_shadow()) {
4836 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4837 		if (cpu_need_tpr_shadow(&vmx->vcpu))
4838 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4839 				     __pa(vmx->vcpu.arch.apic->regs));
4840 		vmcs_write32(TPR_THRESHOLD, 0);
4841 	}
4842 
4843 	vmx_setup_uret_msrs(vmx);
4844 }
4845 
4846 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4847 {
4848 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4849 
4850 	init_vmcs(vmx);
4851 
4852 	if (nested)
4853 		memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4854 
4855 	vcpu_setup_sgx_lepubkeyhash(vcpu);
4856 
4857 	vmx->nested.posted_intr_nv = -1;
4858 	vmx->nested.vmxon_ptr = INVALID_GPA;
4859 	vmx->nested.current_vmptr = INVALID_GPA;
4860 
4861 #ifdef CONFIG_KVM_HYPERV
4862 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4863 #endif
4864 
4865 	vcpu->arch.microcode_version = 0x100000000ULL;
4866 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4867 
4868 	/*
4869 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4870 	 * or POSTED_INTR_WAKEUP_VECTOR.
4871 	 */
4872 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4873 	__pi_set_sn(&vmx->pi_desc);
4874 }
4875 
4876 void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4877 {
4878 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4879 
4880 	if (!init_event)
4881 		__vmx_vcpu_reset(vcpu);
4882 
4883 	vmx->rmode.vm86_active = 0;
4884 	vmx->spec_ctrl = 0;
4885 
4886 	vmx->msr_ia32_umwait_control = 0;
4887 
4888 	vmx->hv_deadline_tsc = -1;
4889 	kvm_set_cr8(vcpu, 0);
4890 
4891 	vmx_segment_cache_clear(vmx);
4892 	kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4893 
4894 	seg_setup(VCPU_SREG_CS);
4895 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4896 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4897 
4898 	seg_setup(VCPU_SREG_DS);
4899 	seg_setup(VCPU_SREG_ES);
4900 	seg_setup(VCPU_SREG_FS);
4901 	seg_setup(VCPU_SREG_GS);
4902 	seg_setup(VCPU_SREG_SS);
4903 
4904 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4905 	vmcs_writel(GUEST_TR_BASE, 0);
4906 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4907 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4908 
4909 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4910 	vmcs_writel(GUEST_LDTR_BASE, 0);
4911 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4912 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4913 
4914 	vmcs_writel(GUEST_GDTR_BASE, 0);
4915 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4916 
4917 	vmcs_writel(GUEST_IDTR_BASE, 0);
4918 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4919 
4920 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4921 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4922 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4923 	if (kvm_mpx_supported())
4924 		vmcs_write64(GUEST_BNDCFGS, 0);
4925 
4926 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4927 
4928 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4929 
4930 	vpid_sync_context(vmx->vpid);
4931 
4932 	vmx_update_fb_clear_dis(vcpu, vmx);
4933 }
4934 
4935 void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4936 {
4937 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4938 }
4939 
4940 void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4941 {
4942 	if (!enable_vnmi ||
4943 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4944 		vmx_enable_irq_window(vcpu);
4945 		return;
4946 	}
4947 
4948 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4949 }
4950 
4951 void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4952 {
4953 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4954 	uint32_t intr;
4955 	int irq = vcpu->arch.interrupt.nr;
4956 
4957 	trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4958 
4959 	++vcpu->stat.irq_injections;
4960 	if (vmx->rmode.vm86_active) {
4961 		int inc_eip = 0;
4962 		if (vcpu->arch.interrupt.soft)
4963 			inc_eip = vcpu->arch.event_exit_inst_len;
4964 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4965 		return;
4966 	}
4967 	intr = irq | INTR_INFO_VALID_MASK;
4968 	if (vcpu->arch.interrupt.soft) {
4969 		intr |= INTR_TYPE_SOFT_INTR;
4970 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4971 			     vmx->vcpu.arch.event_exit_inst_len);
4972 	} else
4973 		intr |= INTR_TYPE_EXT_INTR;
4974 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4975 
4976 	vmx_clear_hlt(vcpu);
4977 }
4978 
4979 void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4980 {
4981 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4982 
4983 	if (!enable_vnmi) {
4984 		/*
4985 		 * Tracking the NMI-blocked state in software is built upon
4986 		 * finding the next open IRQ window. This, in turn, depends on
4987 		 * well-behaving guests: They have to keep IRQs disabled at
4988 		 * least as long as the NMI handler runs. Otherwise we may
4989 		 * cause NMI nesting, maybe breaking the guest. But as this is
4990 		 * highly unlikely, we can live with the residual risk.
4991 		 */
4992 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4993 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4994 	}
4995 
4996 	++vcpu->stat.nmi_injections;
4997 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4998 
4999 	if (vmx->rmode.vm86_active) {
5000 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
5001 		return;
5002 	}
5003 
5004 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5005 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5006 
5007 	vmx_clear_hlt(vcpu);
5008 }
5009 
5010 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5011 {
5012 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5013 	bool masked;
5014 
5015 	if (!enable_vnmi)
5016 		return vmx->loaded_vmcs->soft_vnmi_blocked;
5017 	if (vmx->loaded_vmcs->nmi_known_unmasked)
5018 		return false;
5019 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5020 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5021 	return masked;
5022 }
5023 
5024 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5025 {
5026 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5027 
5028 	if (!enable_vnmi) {
5029 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
5030 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
5031 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
5032 		}
5033 	} else {
5034 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5035 		if (masked)
5036 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5037 				      GUEST_INTR_STATE_NMI);
5038 		else
5039 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5040 					GUEST_INTR_STATE_NMI);
5041 	}
5042 }
5043 
5044 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
5045 {
5046 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5047 		return false;
5048 
5049 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
5050 		return true;
5051 
5052 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5053 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
5054 		 GUEST_INTR_STATE_NMI));
5055 }
5056 
5057 int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5058 {
5059 	if (to_vmx(vcpu)->nested.nested_run_pending)
5060 		return -EBUSY;
5061 
5062 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
5063 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5064 		return -EBUSY;
5065 
5066 	return !vmx_nmi_blocked(vcpu);
5067 }
5068 
5069 bool __vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5070 {
5071 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
5072 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5073 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5074 }
5075 
5076 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5077 {
5078 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5079 		return false;
5080 
5081 	return __vmx_interrupt_blocked(vcpu);
5082 }
5083 
5084 int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5085 {
5086 	if (to_vmx(vcpu)->nested.nested_run_pending)
5087 		return -EBUSY;
5088 
5089 	/*
5090 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
5091 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
5092 	 */
5093 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5094 		return -EBUSY;
5095 
5096 	return !vmx_interrupt_blocked(vcpu);
5097 }
5098 
5099 int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5100 {
5101 	void __user *ret;
5102 
5103 	if (enable_unrestricted_guest)
5104 		return 0;
5105 
5106 	mutex_lock(&kvm->slots_lock);
5107 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5108 				      PAGE_SIZE * 3);
5109 	mutex_unlock(&kvm->slots_lock);
5110 
5111 	if (IS_ERR(ret))
5112 		return PTR_ERR(ret);
5113 
5114 	to_kvm_vmx(kvm)->tss_addr = addr;
5115 
5116 	return init_rmode_tss(kvm, ret);
5117 }
5118 
5119 int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5120 {
5121 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5122 	return 0;
5123 }
5124 
5125 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5126 {
5127 	switch (vec) {
5128 	case BP_VECTOR:
5129 		/*
5130 		 * Update instruction length as we may reinject the exception
5131 		 * from user space while in guest debugging mode.
5132 		 */
5133 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5134 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5135 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5136 			return false;
5137 		fallthrough;
5138 	case DB_VECTOR:
5139 		return !(vcpu->guest_debug &
5140 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5141 	case DE_VECTOR:
5142 	case OF_VECTOR:
5143 	case BR_VECTOR:
5144 	case UD_VECTOR:
5145 	case DF_VECTOR:
5146 	case SS_VECTOR:
5147 	case GP_VECTOR:
5148 	case MF_VECTOR:
5149 		return true;
5150 	}
5151 	return false;
5152 }
5153 
5154 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5155 				  int vec, u32 err_code)
5156 {
5157 	/*
5158 	 * Instruction with address size override prefix opcode 0x67
5159 	 * Cause the #SS fault with 0 error code in VM86 mode.
5160 	 */
5161 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5162 		if (kvm_emulate_instruction(vcpu, 0)) {
5163 			if (vcpu->arch.halt_request) {
5164 				vcpu->arch.halt_request = 0;
5165 				return kvm_emulate_halt_noskip(vcpu);
5166 			}
5167 			return 1;
5168 		}
5169 		return 0;
5170 	}
5171 
5172 	/*
5173 	 * Forward all other exceptions that are valid in real mode.
5174 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5175 	 *        the required debugging infrastructure rework.
5176 	 */
5177 	kvm_queue_exception(vcpu, vec);
5178 	return 1;
5179 }
5180 
5181 static int handle_machine_check(struct kvm_vcpu *vcpu)
5182 {
5183 	/* handled by vmx_vcpu_run() */
5184 	return 1;
5185 }
5186 
5187 /*
5188  * If the host has split lock detection disabled, then #AC is
5189  * unconditionally injected into the guest, which is the pre split lock
5190  * detection behaviour.
5191  *
5192  * If the host has split lock detection enabled then #AC is
5193  * only injected into the guest when:
5194  *  - Guest CPL == 3 (user mode)
5195  *  - Guest has #AC detection enabled in CR0
5196  *  - Guest EFLAGS has AC bit set
5197  */
5198 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5199 {
5200 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5201 		return true;
5202 
5203 	return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
5204 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5205 }
5206 
5207 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5208 {
5209 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5210 	struct kvm_run *kvm_run = vcpu->run;
5211 	u32 intr_info, ex_no, error_code;
5212 	unsigned long cr2, dr6;
5213 	u32 vect_info;
5214 
5215 	vect_info = vmx->idt_vectoring_info;
5216 	intr_info = vmx_get_intr_info(vcpu);
5217 
5218 	/*
5219 	 * Machine checks are handled by handle_exception_irqoff(), or by
5220 	 * vmx_vcpu_run() if a #MC occurs on VM-Entry.  NMIs are handled by
5221 	 * vmx_vcpu_enter_exit().
5222 	 */
5223 	if (is_machine_check(intr_info) || is_nmi(intr_info))
5224 		return 1;
5225 
5226 	/*
5227 	 * Queue the exception here instead of in handle_nm_fault_irqoff().
5228 	 * This ensures the nested_vmx check is not skipped so vmexit can
5229 	 * be reflected to L1 (when it intercepts #NM) before reaching this
5230 	 * point.
5231 	 */
5232 	if (is_nm_fault(intr_info)) {
5233 		kvm_queue_exception(vcpu, NM_VECTOR);
5234 		return 1;
5235 	}
5236 
5237 	if (is_invalid_opcode(intr_info))
5238 		return handle_ud(vcpu);
5239 
5240 	if (WARN_ON_ONCE(is_ve_fault(intr_info))) {
5241 		struct vmx_ve_information *ve_info = vmx->ve_info;
5242 
5243 		WARN_ONCE(ve_info->exit_reason != EXIT_REASON_EPT_VIOLATION,
5244 			  "Unexpected #VE on VM-Exit reason 0x%x", ve_info->exit_reason);
5245 		dump_vmcs(vcpu);
5246 		kvm_mmu_print_sptes(vcpu, ve_info->guest_physical_address, "#VE");
5247 		return 1;
5248 	}
5249 
5250 	error_code = 0;
5251 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5252 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5253 
5254 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5255 		WARN_ON_ONCE(!enable_vmware_backdoor);
5256 
5257 		/*
5258 		 * VMware backdoor emulation on #GP interception only handles
5259 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5260 		 * error code on #GP.
5261 		 */
5262 		if (error_code) {
5263 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5264 			return 1;
5265 		}
5266 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5267 	}
5268 
5269 	/*
5270 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5271 	 * MMIO, it is better to report an internal error.
5272 	 * See the comments in vmx_handle_exit.
5273 	 */
5274 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5275 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5276 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5277 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5278 		vcpu->run->internal.ndata = 4;
5279 		vcpu->run->internal.data[0] = vect_info;
5280 		vcpu->run->internal.data[1] = intr_info;
5281 		vcpu->run->internal.data[2] = error_code;
5282 		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5283 		return 0;
5284 	}
5285 
5286 	if (is_page_fault(intr_info)) {
5287 		cr2 = vmx_get_exit_qual(vcpu);
5288 		if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5289 			/*
5290 			 * EPT will cause page fault only if we need to
5291 			 * detect illegal GPAs.
5292 			 */
5293 			WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5294 			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5295 			return 1;
5296 		} else
5297 			return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5298 	}
5299 
5300 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5301 
5302 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5303 		return handle_rmode_exception(vcpu, ex_no, error_code);
5304 
5305 	switch (ex_no) {
5306 	case DB_VECTOR:
5307 		dr6 = vmx_get_exit_qual(vcpu);
5308 		if (!(vcpu->guest_debug &
5309 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5310 			/*
5311 			 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5312 			 * instruction.  ICEBP generates a trap-like #DB, but
5313 			 * despite its interception control being tied to #DB,
5314 			 * is an instruction intercept, i.e. the VM-Exit occurs
5315 			 * on the ICEBP itself.  Use the inner "skip" helper to
5316 			 * avoid single-step #DB and MTF updates, as ICEBP is
5317 			 * higher priority.  Note, skipping ICEBP still clears
5318 			 * STI and MOVSS blocking.
5319 			 *
5320 			 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5321 			 * if single-step is enabled in RFLAGS and STI or MOVSS
5322 			 * blocking is active, as the CPU doesn't set the bit
5323 			 * on VM-Exit due to #DB interception.  VM-Entry has a
5324 			 * consistency check that a single-step #DB is pending
5325 			 * in this scenario as the previous instruction cannot
5326 			 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5327 			 * don't modify RFLAGS), therefore the one instruction
5328 			 * delay when activating single-step breakpoints must
5329 			 * have already expired.  Note, the CPU sets/clears BS
5330 			 * as appropriate for all other VM-Exits types.
5331 			 */
5332 			if (is_icebp(intr_info))
5333 				WARN_ON(!skip_emulated_instruction(vcpu));
5334 			else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5335 				 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5336 				  (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5337 				vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5338 					    vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5339 
5340 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5341 			return 1;
5342 		}
5343 		kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5344 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5345 		fallthrough;
5346 	case BP_VECTOR:
5347 		/*
5348 		 * Update instruction length as we may reinject #BP from
5349 		 * user space while in guest debugging mode. Reading it for
5350 		 * #DB as well causes no harm, it is not used in that case.
5351 		 */
5352 		vmx->vcpu.arch.event_exit_inst_len =
5353 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5354 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5355 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5356 		kvm_run->debug.arch.exception = ex_no;
5357 		break;
5358 	case AC_VECTOR:
5359 		if (vmx_guest_inject_ac(vcpu)) {
5360 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5361 			return 1;
5362 		}
5363 
5364 		/*
5365 		 * Handle split lock. Depending on detection mode this will
5366 		 * either warn and disable split lock detection for this
5367 		 * task or force SIGBUS on it.
5368 		 */
5369 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5370 			return 1;
5371 		fallthrough;
5372 	default:
5373 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5374 		kvm_run->ex.exception = ex_no;
5375 		kvm_run->ex.error_code = error_code;
5376 		break;
5377 	}
5378 	return 0;
5379 }
5380 
5381 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5382 {
5383 	++vcpu->stat.irq_exits;
5384 	return 1;
5385 }
5386 
5387 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5388 {
5389 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5390 	vcpu->mmio_needed = 0;
5391 	return 0;
5392 }
5393 
5394 static int handle_io(struct kvm_vcpu *vcpu)
5395 {
5396 	unsigned long exit_qualification;
5397 	int size, in, string;
5398 	unsigned port;
5399 
5400 	exit_qualification = vmx_get_exit_qual(vcpu);
5401 	string = (exit_qualification & 16) != 0;
5402 
5403 	++vcpu->stat.io_exits;
5404 
5405 	if (string)
5406 		return kvm_emulate_instruction(vcpu, 0);
5407 
5408 	port = exit_qualification >> 16;
5409 	size = (exit_qualification & 7) + 1;
5410 	in = (exit_qualification & 8) != 0;
5411 
5412 	return kvm_fast_pio(vcpu, size, port, in);
5413 }
5414 
5415 void vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5416 {
5417 	/*
5418 	 * Patch in the VMCALL instruction:
5419 	 */
5420 	hypercall[0] = 0x0f;
5421 	hypercall[1] = 0x01;
5422 	hypercall[2] = 0xc1;
5423 }
5424 
5425 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5426 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5427 {
5428 	if (is_guest_mode(vcpu)) {
5429 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5430 		unsigned long orig_val = val;
5431 
5432 		/*
5433 		 * We get here when L2 changed cr0 in a way that did not change
5434 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5435 		 * but did change L0 shadowed bits. So we first calculate the
5436 		 * effective cr0 value that L1 would like to write into the
5437 		 * hardware. It consists of the L2-owned bits from the new
5438 		 * value combined with the L1-owned bits from L1's guest_cr0.
5439 		 */
5440 		val = (val & ~vmcs12->cr0_guest_host_mask) |
5441 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5442 
5443 		if (kvm_set_cr0(vcpu, val))
5444 			return 1;
5445 		vmcs_writel(CR0_READ_SHADOW, orig_val);
5446 		return 0;
5447 	} else {
5448 		return kvm_set_cr0(vcpu, val);
5449 	}
5450 }
5451 
5452 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5453 {
5454 	if (is_guest_mode(vcpu)) {
5455 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5456 		unsigned long orig_val = val;
5457 
5458 		/* analogously to handle_set_cr0 */
5459 		val = (val & ~vmcs12->cr4_guest_host_mask) |
5460 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5461 		if (kvm_set_cr4(vcpu, val))
5462 			return 1;
5463 		vmcs_writel(CR4_READ_SHADOW, orig_val);
5464 		return 0;
5465 	} else
5466 		return kvm_set_cr4(vcpu, val);
5467 }
5468 
5469 static int handle_desc(struct kvm_vcpu *vcpu)
5470 {
5471 	/*
5472 	 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this
5473 	 * and other code needs to be updated if UMIP can be guest owned.
5474 	 */
5475 	BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP);
5476 
5477 	WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP));
5478 	return kvm_emulate_instruction(vcpu, 0);
5479 }
5480 
5481 static int handle_cr(struct kvm_vcpu *vcpu)
5482 {
5483 	unsigned long exit_qualification, val;
5484 	int cr;
5485 	int reg;
5486 	int err;
5487 	int ret;
5488 
5489 	exit_qualification = vmx_get_exit_qual(vcpu);
5490 	cr = exit_qualification & 15;
5491 	reg = (exit_qualification >> 8) & 15;
5492 	switch ((exit_qualification >> 4) & 3) {
5493 	case 0: /* mov to cr */
5494 		val = kvm_register_read(vcpu, reg);
5495 		trace_kvm_cr_write(cr, val);
5496 		switch (cr) {
5497 		case 0:
5498 			err = handle_set_cr0(vcpu, val);
5499 			return kvm_complete_insn_gp(vcpu, err);
5500 		case 3:
5501 			WARN_ON_ONCE(enable_unrestricted_guest);
5502 
5503 			err = kvm_set_cr3(vcpu, val);
5504 			return kvm_complete_insn_gp(vcpu, err);
5505 		case 4:
5506 			err = handle_set_cr4(vcpu, val);
5507 			return kvm_complete_insn_gp(vcpu, err);
5508 		case 8: {
5509 				u8 cr8_prev = kvm_get_cr8(vcpu);
5510 				u8 cr8 = (u8)val;
5511 				err = kvm_set_cr8(vcpu, cr8);
5512 				ret = kvm_complete_insn_gp(vcpu, err);
5513 				if (lapic_in_kernel(vcpu))
5514 					return ret;
5515 				if (cr8_prev <= cr8)
5516 					return ret;
5517 				/*
5518 				 * TODO: we might be squashing a
5519 				 * KVM_GUESTDBG_SINGLESTEP-triggered
5520 				 * KVM_EXIT_DEBUG here.
5521 				 */
5522 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5523 				return 0;
5524 			}
5525 		}
5526 		break;
5527 	case 2: /* clts */
5528 		KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5529 		return -EIO;
5530 	case 1: /*mov from cr*/
5531 		switch (cr) {
5532 		case 3:
5533 			WARN_ON_ONCE(enable_unrestricted_guest);
5534 
5535 			val = kvm_read_cr3(vcpu);
5536 			kvm_register_write(vcpu, reg, val);
5537 			trace_kvm_cr_read(cr, val);
5538 			return kvm_skip_emulated_instruction(vcpu);
5539 		case 8:
5540 			val = kvm_get_cr8(vcpu);
5541 			kvm_register_write(vcpu, reg, val);
5542 			trace_kvm_cr_read(cr, val);
5543 			return kvm_skip_emulated_instruction(vcpu);
5544 		}
5545 		break;
5546 	case 3: /* lmsw */
5547 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5548 		trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
5549 		kvm_lmsw(vcpu, val);
5550 
5551 		return kvm_skip_emulated_instruction(vcpu);
5552 	default:
5553 		break;
5554 	}
5555 	vcpu->run->exit_reason = 0;
5556 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5557 	       (int)(exit_qualification >> 4) & 3, cr);
5558 	return 0;
5559 }
5560 
5561 static int handle_dr(struct kvm_vcpu *vcpu)
5562 {
5563 	unsigned long exit_qualification;
5564 	int dr, dr7, reg;
5565 	int err = 1;
5566 
5567 	exit_qualification = vmx_get_exit_qual(vcpu);
5568 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5569 
5570 	/* First, if DR does not exist, trigger UD */
5571 	if (!kvm_require_dr(vcpu, dr))
5572 		return 1;
5573 
5574 	if (vmx_get_cpl(vcpu) > 0)
5575 		goto out;
5576 
5577 	dr7 = vmcs_readl(GUEST_DR7);
5578 	if (dr7 & DR7_GD) {
5579 		/*
5580 		 * As the vm-exit takes precedence over the debug trap, we
5581 		 * need to emulate the latter, either for the host or the
5582 		 * guest debugging itself.
5583 		 */
5584 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5585 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5586 			vcpu->run->debug.arch.dr7 = dr7;
5587 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5588 			vcpu->run->debug.arch.exception = DB_VECTOR;
5589 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5590 			return 0;
5591 		} else {
5592 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5593 			return 1;
5594 		}
5595 	}
5596 
5597 	if (vcpu->guest_debug == 0) {
5598 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5599 
5600 		/*
5601 		 * No more DR vmexits; force a reload of the debug registers
5602 		 * and reenter on this instruction.  The next vmexit will
5603 		 * retrieve the full state of the debug registers.
5604 		 */
5605 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5606 		return 1;
5607 	}
5608 
5609 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5610 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5611 		kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
5612 		err = 0;
5613 	} else {
5614 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5615 	}
5616 
5617 out:
5618 	return kvm_complete_insn_gp(vcpu, err);
5619 }
5620 
5621 void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5622 {
5623 	get_debugreg(vcpu->arch.db[0], 0);
5624 	get_debugreg(vcpu->arch.db[1], 1);
5625 	get_debugreg(vcpu->arch.db[2], 2);
5626 	get_debugreg(vcpu->arch.db[3], 3);
5627 	get_debugreg(vcpu->arch.dr6, 6);
5628 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5629 
5630 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5631 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5632 
5633 	/*
5634 	 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5635 	 * a stale dr6 from the guest.
5636 	 */
5637 	set_debugreg(DR6_RESERVED, 6);
5638 }
5639 
5640 void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5641 {
5642 	vmcs_writel(GUEST_DR7, val);
5643 }
5644 
5645 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5646 {
5647 	kvm_apic_update_ppr(vcpu);
5648 	return 1;
5649 }
5650 
5651 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5652 {
5653 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5654 
5655 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5656 
5657 	++vcpu->stat.irq_window_exits;
5658 	return 1;
5659 }
5660 
5661 static int handle_invlpg(struct kvm_vcpu *vcpu)
5662 {
5663 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5664 
5665 	kvm_mmu_invlpg(vcpu, exit_qualification);
5666 	return kvm_skip_emulated_instruction(vcpu);
5667 }
5668 
5669 static int handle_apic_access(struct kvm_vcpu *vcpu)
5670 {
5671 	if (likely(fasteoi)) {
5672 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5673 		int access_type, offset;
5674 
5675 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5676 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5677 		/*
5678 		 * Sane guest uses MOV to write EOI, with written value
5679 		 * not cared. So make a short-circuit here by avoiding
5680 		 * heavy instruction emulation.
5681 		 */
5682 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5683 		    (offset == APIC_EOI)) {
5684 			kvm_lapic_set_eoi(vcpu);
5685 			return kvm_skip_emulated_instruction(vcpu);
5686 		}
5687 	}
5688 	return kvm_emulate_instruction(vcpu, 0);
5689 }
5690 
5691 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5692 {
5693 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5694 	int vector = exit_qualification & 0xff;
5695 
5696 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5697 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5698 	return 1;
5699 }
5700 
5701 static int handle_apic_write(struct kvm_vcpu *vcpu)
5702 {
5703 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5704 
5705 	/*
5706 	 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5707 	 * hardware has done any necessary aliasing, offset adjustments, etc...
5708 	 * for the access.  I.e. the correct value has already been  written to
5709 	 * the vAPIC page for the correct 16-byte chunk.  KVM needs only to
5710 	 * retrieve the register value and emulate the access.
5711 	 */
5712 	u32 offset = exit_qualification & 0xff0;
5713 
5714 	kvm_apic_write_nodecode(vcpu, offset);
5715 	return 1;
5716 }
5717 
5718 static int handle_task_switch(struct kvm_vcpu *vcpu)
5719 {
5720 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5721 	unsigned long exit_qualification;
5722 	bool has_error_code = false;
5723 	u32 error_code = 0;
5724 	u16 tss_selector;
5725 	int reason, type, idt_v, idt_index;
5726 
5727 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5728 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5729 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5730 
5731 	exit_qualification = vmx_get_exit_qual(vcpu);
5732 
5733 	reason = (u32)exit_qualification >> 30;
5734 	if (reason == TASK_SWITCH_GATE && idt_v) {
5735 		switch (type) {
5736 		case INTR_TYPE_NMI_INTR:
5737 			vcpu->arch.nmi_injected = false;
5738 			vmx_set_nmi_mask(vcpu, true);
5739 			break;
5740 		case INTR_TYPE_EXT_INTR:
5741 		case INTR_TYPE_SOFT_INTR:
5742 			kvm_clear_interrupt_queue(vcpu);
5743 			break;
5744 		case INTR_TYPE_HARD_EXCEPTION:
5745 			if (vmx->idt_vectoring_info &
5746 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5747 				has_error_code = true;
5748 				error_code =
5749 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5750 			}
5751 			fallthrough;
5752 		case INTR_TYPE_SOFT_EXCEPTION:
5753 			kvm_clear_exception_queue(vcpu);
5754 			break;
5755 		default:
5756 			break;
5757 		}
5758 	}
5759 	tss_selector = exit_qualification;
5760 
5761 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5762 		       type != INTR_TYPE_EXT_INTR &&
5763 		       type != INTR_TYPE_NMI_INTR))
5764 		WARN_ON(!skip_emulated_instruction(vcpu));
5765 
5766 	/*
5767 	 * TODO: What about debug traps on tss switch?
5768 	 *       Are we supposed to inject them and update dr6?
5769 	 */
5770 	return kvm_task_switch(vcpu, tss_selector,
5771 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5772 			       reason, has_error_code, error_code);
5773 }
5774 
5775 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5776 {
5777 	unsigned long exit_qualification;
5778 	gpa_t gpa;
5779 	u64 error_code;
5780 
5781 	exit_qualification = vmx_get_exit_qual(vcpu);
5782 
5783 	/*
5784 	 * EPT violation happened while executing iret from NMI,
5785 	 * "blocked by NMI" bit has to be set before next VM entry.
5786 	 * There are errata that may cause this bit to not be set:
5787 	 * AAK134, BY25.
5788 	 */
5789 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5790 			enable_vnmi &&
5791 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5792 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5793 
5794 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5795 	trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5796 
5797 	/* Is it a read fault? */
5798 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5799 		     ? PFERR_USER_MASK : 0;
5800 	/* Is it a write fault? */
5801 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5802 		      ? PFERR_WRITE_MASK : 0;
5803 	/* Is it a fetch fault? */
5804 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5805 		      ? PFERR_FETCH_MASK : 0;
5806 	/* ept page table entry is present? */
5807 	error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK)
5808 		      ? PFERR_PRESENT_MASK : 0;
5809 
5810 	if (error_code & EPT_VIOLATION_GVA_IS_VALID)
5811 		error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) ?
5812 			      PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5813 
5814 	/*
5815 	 * Check that the GPA doesn't exceed physical memory limits, as that is
5816 	 * a guest page fault.  We have to emulate the instruction here, because
5817 	 * if the illegal address is that of a paging structure, then
5818 	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5819 	 * would also use advanced VM-exit information for EPT violations to
5820 	 * reconstruct the page fault error code.
5821 	 */
5822 	if (unlikely(allow_smaller_maxphyaddr && !kvm_vcpu_is_legal_gpa(vcpu, gpa)))
5823 		return kvm_emulate_instruction(vcpu, 0);
5824 
5825 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5826 }
5827 
5828 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5829 {
5830 	gpa_t gpa;
5831 
5832 	if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5833 		return 1;
5834 
5835 	/*
5836 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5837 	 * nGPA here instead of the required GPA.
5838 	 */
5839 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5840 	if (!is_guest_mode(vcpu) &&
5841 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5842 		trace_kvm_fast_mmio(gpa);
5843 		return kvm_skip_emulated_instruction(vcpu);
5844 	}
5845 
5846 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5847 }
5848 
5849 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5850 {
5851 	if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5852 		return -EIO;
5853 
5854 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5855 	++vcpu->stat.nmi_window_exits;
5856 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5857 
5858 	return 1;
5859 }
5860 
5861 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
5862 {
5863 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5864 
5865 	return vmx->emulation_required && !vmx->rmode.vm86_active &&
5866 	       (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5867 }
5868 
5869 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5870 {
5871 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5872 	bool intr_window_requested;
5873 	unsigned count = 130;
5874 
5875 	intr_window_requested = exec_controls_get(vmx) &
5876 				CPU_BASED_INTR_WINDOW_EXITING;
5877 
5878 	while (vmx->emulation_required && count-- != 0) {
5879 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5880 			return handle_interrupt_window(&vmx->vcpu);
5881 
5882 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5883 			return 1;
5884 
5885 		if (!kvm_emulate_instruction(vcpu, 0))
5886 			return 0;
5887 
5888 		if (vmx_emulation_required_with_pending_exception(vcpu)) {
5889 			kvm_prepare_emulation_failure_exit(vcpu);
5890 			return 0;
5891 		}
5892 
5893 		if (vcpu->arch.halt_request) {
5894 			vcpu->arch.halt_request = 0;
5895 			return kvm_emulate_halt_noskip(vcpu);
5896 		}
5897 
5898 		/*
5899 		 * Note, return 1 and not 0, vcpu_run() will invoke
5900 		 * xfer_to_guest_mode() which will create a proper return
5901 		 * code.
5902 		 */
5903 		if (__xfer_to_guest_mode_work_pending())
5904 			return 1;
5905 	}
5906 
5907 	return 1;
5908 }
5909 
5910 int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5911 {
5912 	if (vmx_emulation_required_with_pending_exception(vcpu)) {
5913 		kvm_prepare_emulation_failure_exit(vcpu);
5914 		return 0;
5915 	}
5916 
5917 	return 1;
5918 }
5919 
5920 /*
5921  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5922  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5923  */
5924 static int handle_pause(struct kvm_vcpu *vcpu)
5925 {
5926 	if (!kvm_pause_in_guest(vcpu->kvm))
5927 		grow_ple_window(vcpu);
5928 
5929 	/*
5930 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5931 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5932 	 * never set PAUSE_EXITING and just set PLE if supported,
5933 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5934 	 */
5935 	kvm_vcpu_on_spin(vcpu, true);
5936 	return kvm_skip_emulated_instruction(vcpu);
5937 }
5938 
5939 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5940 {
5941 	return 1;
5942 }
5943 
5944 static int handle_invpcid(struct kvm_vcpu *vcpu)
5945 {
5946 	u32 vmx_instruction_info;
5947 	unsigned long type;
5948 	gva_t gva;
5949 	struct {
5950 		u64 pcid;
5951 		u64 gla;
5952 	} operand;
5953 	int gpr_index;
5954 
5955 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5956 		kvm_queue_exception(vcpu, UD_VECTOR);
5957 		return 1;
5958 	}
5959 
5960 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5961 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5962 	type = kvm_register_read(vcpu, gpr_index);
5963 
5964 	/* According to the Intel instruction reference, the memory operand
5965 	 * is read even if it isn't needed (e.g., for type==all)
5966 	 */
5967 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5968 				vmx_instruction_info, false,
5969 				sizeof(operand), &gva))
5970 		return 1;
5971 
5972 	return kvm_handle_invpcid(vcpu, type, gva);
5973 }
5974 
5975 static int handle_pml_full(struct kvm_vcpu *vcpu)
5976 {
5977 	unsigned long exit_qualification;
5978 
5979 	trace_kvm_pml_full(vcpu->vcpu_id);
5980 
5981 	exit_qualification = vmx_get_exit_qual(vcpu);
5982 
5983 	/*
5984 	 * PML buffer FULL happened while executing iret from NMI,
5985 	 * "blocked by NMI" bit has to be set before next VM entry.
5986 	 */
5987 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5988 			enable_vnmi &&
5989 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5990 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5991 				GUEST_INTR_STATE_NMI);
5992 
5993 	/*
5994 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5995 	 * here.., and there's no userspace involvement needed for PML.
5996 	 */
5997 	return 1;
5998 }
5999 
6000 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu,
6001 						   bool force_immediate_exit)
6002 {
6003 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6004 
6005 	/*
6006 	 * In the *extremely* unlikely scenario that this is a spurious VM-Exit
6007 	 * due to the timer expiring while it was "soft" disabled, just eat the
6008 	 * exit and re-enter the guest.
6009 	 */
6010 	if (unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
6011 		return EXIT_FASTPATH_REENTER_GUEST;
6012 
6013 	/*
6014 	 * If the timer expired because KVM used it to force an immediate exit,
6015 	 * then mission accomplished.
6016 	 */
6017 	if (force_immediate_exit)
6018 		return EXIT_FASTPATH_EXIT_HANDLED;
6019 
6020 	/*
6021 	 * If L2 is active, go down the slow path as emulating the guest timer
6022 	 * expiration likely requires synthesizing a nested VM-Exit.
6023 	 */
6024 	if (is_guest_mode(vcpu))
6025 		return EXIT_FASTPATH_NONE;
6026 
6027 	kvm_lapic_expired_hv_timer(vcpu);
6028 	return EXIT_FASTPATH_REENTER_GUEST;
6029 }
6030 
6031 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
6032 {
6033 	/*
6034 	 * This non-fastpath handler is reached if and only if the preemption
6035 	 * timer was being used to emulate a guest timer while L2 is active.
6036 	 * All other scenarios are supposed to be handled in the fastpath.
6037 	 */
6038 	WARN_ON_ONCE(!is_guest_mode(vcpu));
6039 	kvm_lapic_expired_hv_timer(vcpu);
6040 	return 1;
6041 }
6042 
6043 /*
6044  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
6045  * are overwritten by nested_vmx_setup() when nested=1.
6046  */
6047 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
6048 {
6049 	kvm_queue_exception(vcpu, UD_VECTOR);
6050 	return 1;
6051 }
6052 
6053 #ifndef CONFIG_X86_SGX_KVM
6054 static int handle_encls(struct kvm_vcpu *vcpu)
6055 {
6056 	/*
6057 	 * SGX virtualization is disabled.  There is no software enable bit for
6058 	 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
6059 	 * the guest from executing ENCLS (when SGX is supported by hardware).
6060 	 */
6061 	kvm_queue_exception(vcpu, UD_VECTOR);
6062 	return 1;
6063 }
6064 #endif /* CONFIG_X86_SGX_KVM */
6065 
6066 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
6067 {
6068 	/*
6069 	 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
6070 	 * VM-Exits. Unconditionally set the flag here and leave the handling to
6071 	 * vmx_handle_exit().
6072 	 */
6073 	to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
6074 	return 1;
6075 }
6076 
6077 static int handle_notify(struct kvm_vcpu *vcpu)
6078 {
6079 	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
6080 	bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
6081 
6082 	++vcpu->stat.notify_window_exits;
6083 
6084 	/*
6085 	 * Notify VM exit happened while executing iret from NMI,
6086 	 * "blocked by NMI" bit has to be set before next VM entry.
6087 	 */
6088 	if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
6089 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6090 			      GUEST_INTR_STATE_NMI);
6091 
6092 	if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
6093 	    context_invalid) {
6094 		vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
6095 		vcpu->run->notify.flags = context_invalid ?
6096 					  KVM_NOTIFY_CONTEXT_INVALID : 0;
6097 		return 0;
6098 	}
6099 
6100 	return 1;
6101 }
6102 
6103 /*
6104  * The exit handlers return 1 if the exit was handled fully and guest execution
6105  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6106  * to be done to userspace and return 0.
6107  */
6108 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6109 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
6110 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6111 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6112 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
6113 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6114 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
6115 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
6116 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
6117 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
6118 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
6119 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
6120 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
6121 	[EXIT_REASON_INVD]		      = kvm_emulate_invd,
6122 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
6123 	[EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
6124 	[EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
6125 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
6126 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
6127 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
6128 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
6129 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
6130 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
6131 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
6132 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
6133 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
6134 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6135 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6136 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6137 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6138 	[EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
6139 	[EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
6140 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6141 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6142 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
6143 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
6144 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
6145 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6146 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6147 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = kvm_emulate_mwait,
6148 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
6149 	[EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
6150 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
6151 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
6152 	[EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
6153 	[EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
6154 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
6155 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
6156 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
6157 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
6158 	[EXIT_REASON_ENCLS]		      = handle_encls,
6159 	[EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
6160 	[EXIT_REASON_NOTIFY]		      = handle_notify,
6161 };
6162 
6163 static const int kvm_vmx_max_exit_handlers =
6164 	ARRAY_SIZE(kvm_vmx_exit_handlers);
6165 
6166 void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6167 		       u64 *info1, u64 *info2, u32 *intr_info, u32 *error_code)
6168 {
6169 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6170 
6171 	*reason = vmx->exit_reason.full;
6172 	*info1 = vmx_get_exit_qual(vcpu);
6173 	if (!(vmx->exit_reason.failed_vmentry)) {
6174 		*info2 = vmx->idt_vectoring_info;
6175 		*intr_info = vmx_get_intr_info(vcpu);
6176 		if (is_exception_with_error_code(*intr_info))
6177 			*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6178 		else
6179 			*error_code = 0;
6180 	} else {
6181 		*info2 = 0;
6182 		*intr_info = 0;
6183 		*error_code = 0;
6184 	}
6185 }
6186 
6187 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6188 {
6189 	if (vmx->pml_pg) {
6190 		__free_page(vmx->pml_pg);
6191 		vmx->pml_pg = NULL;
6192 	}
6193 }
6194 
6195 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6196 {
6197 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6198 	u64 *pml_buf;
6199 	u16 pml_idx;
6200 
6201 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
6202 
6203 	/* Do nothing if PML buffer is empty */
6204 	if (pml_idx == (PML_ENTITY_NUM - 1))
6205 		return;
6206 
6207 	/* PML index always points to next available PML buffer entity */
6208 	if (pml_idx >= PML_ENTITY_NUM)
6209 		pml_idx = 0;
6210 	else
6211 		pml_idx++;
6212 
6213 	pml_buf = page_address(vmx->pml_pg);
6214 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
6215 		u64 gpa;
6216 
6217 		gpa = pml_buf[pml_idx];
6218 		WARN_ON(gpa & (PAGE_SIZE - 1));
6219 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6220 	}
6221 
6222 	/* reset PML index */
6223 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
6224 }
6225 
6226 static void vmx_dump_sel(char *name, uint32_t sel)
6227 {
6228 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6229 	       name, vmcs_read16(sel),
6230 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6231 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6232 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6233 }
6234 
6235 static void vmx_dump_dtsel(char *name, uint32_t limit)
6236 {
6237 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
6238 	       name, vmcs_read32(limit),
6239 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6240 }
6241 
6242 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6243 {
6244 	unsigned int i;
6245 	struct vmx_msr_entry *e;
6246 
6247 	pr_err("MSR %s:\n", name);
6248 	for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6249 		pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6250 }
6251 
6252 void dump_vmcs(struct kvm_vcpu *vcpu)
6253 {
6254 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6255 	u32 vmentry_ctl, vmexit_ctl;
6256 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6257 	u64 tertiary_exec_control;
6258 	unsigned long cr4;
6259 	int efer_slot;
6260 
6261 	if (!dump_invalid_vmcs) {
6262 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6263 		return;
6264 	}
6265 
6266 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6267 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6268 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6269 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6270 	cr4 = vmcs_readl(GUEST_CR4);
6271 
6272 	if (cpu_has_secondary_exec_ctrls())
6273 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6274 	else
6275 		secondary_exec_control = 0;
6276 
6277 	if (cpu_has_tertiary_exec_ctrls())
6278 		tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6279 	else
6280 		tertiary_exec_control = 0;
6281 
6282 	pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6283 	       vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6284 	pr_err("*** Guest State ***\n");
6285 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6286 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6287 	       vmcs_readl(CR0_GUEST_HOST_MASK));
6288 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6289 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6290 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6291 	if (cpu_has_vmx_ept()) {
6292 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
6293 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6294 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
6295 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6296 	}
6297 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
6298 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6299 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
6300 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6301 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6302 	       vmcs_readl(GUEST_SYSENTER_ESP),
6303 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6304 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
6305 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
6306 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
6307 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
6308 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
6309 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
6310 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6311 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6312 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6313 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
6314 	efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6315 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6316 		pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6317 	else if (efer_slot >= 0)
6318 		pr_err("EFER= 0x%016llx (autoload)\n",
6319 		       vmx->msr_autoload.guest.val[efer_slot].value);
6320 	else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6321 		pr_err("EFER= 0x%016llx (effective)\n",
6322 		       vcpu->arch.efer | (EFER_LMA | EFER_LME));
6323 	else
6324 		pr_err("EFER= 0x%016llx (effective)\n",
6325 		       vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6326 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6327 		pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6328 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
6329 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
6330 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6331 	if (cpu_has_load_perf_global_ctrl() &&
6332 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6333 		pr_err("PerfGlobCtl = 0x%016llx\n",
6334 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6335 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6336 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6337 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
6338 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6339 	       vmcs_read32(GUEST_ACTIVITY_STATE));
6340 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6341 		pr_err("InterruptStatus = %04x\n",
6342 		       vmcs_read16(GUEST_INTR_STATUS));
6343 	if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6344 		vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6345 	if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6346 		vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6347 
6348 	pr_err("*** Host State ***\n");
6349 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
6350 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6351 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6352 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6353 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6354 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6355 	       vmcs_read16(HOST_TR_SELECTOR));
6356 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6357 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6358 	       vmcs_readl(HOST_TR_BASE));
6359 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6360 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6361 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6362 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6363 	       vmcs_readl(HOST_CR4));
6364 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6365 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
6366 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
6367 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
6368 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6369 		pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6370 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6371 		pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6372 	if (cpu_has_load_perf_global_ctrl() &&
6373 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6374 		pr_err("PerfGlobCtl = 0x%016llx\n",
6375 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6376 	if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6377 		vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6378 
6379 	pr_err("*** Control State ***\n");
6380 	pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6381 	       cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6382 	pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6383 	       pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6384 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6385 	       vmcs_read32(EXCEPTION_BITMAP),
6386 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6387 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6388 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6389 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6390 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6391 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6392 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6393 	       vmcs_read32(VM_EXIT_INTR_INFO),
6394 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6395 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6396 	pr_err("        reason=%08x qualification=%016lx\n",
6397 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6398 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6399 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
6400 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
6401 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6402 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6403 		pr_err("TSC Multiplier = 0x%016llx\n",
6404 		       vmcs_read64(TSC_MULTIPLIER));
6405 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6406 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6407 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
6408 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6409 		}
6410 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6411 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6412 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6413 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6414 	}
6415 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6416 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6417 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6418 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6419 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6420 		pr_err("PLE Gap=%08x Window=%08x\n",
6421 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6422 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6423 		pr_err("Virtual processor ID = 0x%04x\n",
6424 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
6425 	if (secondary_exec_control & SECONDARY_EXEC_EPT_VIOLATION_VE) {
6426 		struct vmx_ve_information *ve_info = vmx->ve_info;
6427 		u64 ve_info_pa = vmcs_read64(VE_INFORMATION_ADDRESS);
6428 
6429 		/*
6430 		 * If KVM is dumping the VMCS, then something has gone wrong
6431 		 * already.  Derefencing an address from the VMCS, which could
6432 		 * very well be corrupted, is a terrible idea.  The virtual
6433 		 * address is known so use it.
6434 		 */
6435 		pr_err("VE info address = 0x%016llx%s\n", ve_info_pa,
6436 		       ve_info_pa == __pa(ve_info) ? "" : "(corrupted!)");
6437 		pr_err("ve_info: 0x%08x 0x%08x 0x%016llx 0x%016llx 0x%016llx 0x%04x\n",
6438 		       ve_info->exit_reason, ve_info->delivery,
6439 		       ve_info->exit_qualification,
6440 		       ve_info->guest_linear_address,
6441 		       ve_info->guest_physical_address, ve_info->eptp_index);
6442 	}
6443 }
6444 
6445 /*
6446  * The guest has exited.  See if we can fix it or if we need userspace
6447  * assistance.
6448  */
6449 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6450 {
6451 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6452 	union vmx_exit_reason exit_reason = vmx->exit_reason;
6453 	u32 vectoring_info = vmx->idt_vectoring_info;
6454 	u16 exit_handler_index;
6455 
6456 	/*
6457 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6458 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6459 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6460 	 * mode as if vcpus is in root mode, the PML buffer must has been
6461 	 * flushed already.  Note, PML is never enabled in hardware while
6462 	 * running L2.
6463 	 */
6464 	if (enable_pml && !is_guest_mode(vcpu))
6465 		vmx_flush_pml_buffer(vcpu);
6466 
6467 	/*
6468 	 * KVM should never reach this point with a pending nested VM-Enter.
6469 	 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6470 	 * invalid guest state should never happen as that means KVM knowingly
6471 	 * allowed a nested VM-Enter with an invalid vmcs12.  More below.
6472 	 */
6473 	if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6474 		return -EIO;
6475 
6476 	if (is_guest_mode(vcpu)) {
6477 		/*
6478 		 * PML is never enabled when running L2, bail immediately if a
6479 		 * PML full exit occurs as something is horribly wrong.
6480 		 */
6481 		if (exit_reason.basic == EXIT_REASON_PML_FULL)
6482 			goto unexpected_vmexit;
6483 
6484 		/*
6485 		 * The host physical addresses of some pages of guest memory
6486 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6487 		 * Page). The CPU may write to these pages via their host
6488 		 * physical address while L2 is running, bypassing any
6489 		 * address-translation-based dirty tracking (e.g. EPT write
6490 		 * protection).
6491 		 *
6492 		 * Mark them dirty on every exit from L2 to prevent them from
6493 		 * getting out of sync with dirty tracking.
6494 		 */
6495 		nested_mark_vmcs12_pages_dirty(vcpu);
6496 
6497 		/*
6498 		 * Synthesize a triple fault if L2 state is invalid.  In normal
6499 		 * operation, nested VM-Enter rejects any attempt to enter L2
6500 		 * with invalid state.  However, those checks are skipped if
6501 		 * state is being stuffed via RSM or KVM_SET_NESTED_STATE.  If
6502 		 * L2 state is invalid, it means either L1 modified SMRAM state
6503 		 * or userspace provided bad state.  Synthesize TRIPLE_FAULT as
6504 		 * doing so is architecturally allowed in the RSM case, and is
6505 		 * the least awful solution for the userspace case without
6506 		 * risking false positives.
6507 		 */
6508 		if (vmx->emulation_required) {
6509 			nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6510 			return 1;
6511 		}
6512 
6513 		if (nested_vmx_reflect_vmexit(vcpu))
6514 			return 1;
6515 	}
6516 
6517 	/* If guest state is invalid, start emulating.  L2 is handled above. */
6518 	if (vmx->emulation_required)
6519 		return handle_invalid_guest_state(vcpu);
6520 
6521 	if (exit_reason.failed_vmentry) {
6522 		dump_vmcs(vcpu);
6523 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6524 		vcpu->run->fail_entry.hardware_entry_failure_reason
6525 			= exit_reason.full;
6526 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6527 		return 0;
6528 	}
6529 
6530 	if (unlikely(vmx->fail)) {
6531 		dump_vmcs(vcpu);
6532 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6533 		vcpu->run->fail_entry.hardware_entry_failure_reason
6534 			= vmcs_read32(VM_INSTRUCTION_ERROR);
6535 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6536 		return 0;
6537 	}
6538 
6539 	/*
6540 	 * Note:
6541 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6542 	 * delivery event since it indicates guest is accessing MMIO.
6543 	 * The vm-exit can be triggered again after return to guest that
6544 	 * will cause infinite loop.
6545 	 */
6546 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6547 	    (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6548 	     exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6549 	     exit_reason.basic != EXIT_REASON_PML_FULL &&
6550 	     exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6551 	     exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6552 	     exit_reason.basic != EXIT_REASON_NOTIFY)) {
6553 		int ndata = 3;
6554 
6555 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6556 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6557 		vcpu->run->internal.data[0] = vectoring_info;
6558 		vcpu->run->internal.data[1] = exit_reason.full;
6559 		vcpu->run->internal.data[2] = vmx_get_exit_qual(vcpu);
6560 		if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6561 			vcpu->run->internal.data[ndata++] =
6562 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6563 		}
6564 		vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6565 		vcpu->run->internal.ndata = ndata;
6566 		return 0;
6567 	}
6568 
6569 	if (unlikely(!enable_vnmi &&
6570 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
6571 		if (!vmx_interrupt_blocked(vcpu)) {
6572 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6573 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6574 			   vcpu->arch.nmi_pending) {
6575 			/*
6576 			 * This CPU don't support us in finding the end of an
6577 			 * NMI-blocked window if the guest runs with IRQs
6578 			 * disabled. So we pull the trigger after 1 s of
6579 			 * futile waiting, but inform the user about this.
6580 			 */
6581 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6582 			       "state on VCPU %d after 1 s timeout\n",
6583 			       __func__, vcpu->vcpu_id);
6584 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6585 		}
6586 	}
6587 
6588 	if (exit_fastpath != EXIT_FASTPATH_NONE)
6589 		return 1;
6590 
6591 	if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6592 		goto unexpected_vmexit;
6593 #ifdef CONFIG_MITIGATION_RETPOLINE
6594 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6595 		return kvm_emulate_wrmsr(vcpu);
6596 	else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6597 		return handle_preemption_timer(vcpu);
6598 	else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6599 		return handle_interrupt_window(vcpu);
6600 	else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6601 		return handle_external_interrupt(vcpu);
6602 	else if (exit_reason.basic == EXIT_REASON_HLT)
6603 		return kvm_emulate_halt(vcpu);
6604 	else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6605 		return handle_ept_misconfig(vcpu);
6606 #endif
6607 
6608 	exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6609 						kvm_vmx_max_exit_handlers);
6610 	if (!kvm_vmx_exit_handlers[exit_handler_index])
6611 		goto unexpected_vmexit;
6612 
6613 	return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6614 
6615 unexpected_vmexit:
6616 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6617 		    exit_reason.full);
6618 	dump_vmcs(vcpu);
6619 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6620 	vcpu->run->internal.suberror =
6621 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6622 	vcpu->run->internal.ndata = 2;
6623 	vcpu->run->internal.data[0] = exit_reason.full;
6624 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6625 	return 0;
6626 }
6627 
6628 int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6629 {
6630 	int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6631 
6632 	/*
6633 	 * Exit to user space when bus lock detected to inform that there is
6634 	 * a bus lock in guest.
6635 	 */
6636 	if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6637 		if (ret > 0)
6638 			vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6639 
6640 		vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6641 		return 0;
6642 	}
6643 	return ret;
6644 }
6645 
6646 /*
6647  * Software based L1D cache flush which is used when microcode providing
6648  * the cache control MSR is not loaded.
6649  *
6650  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6651  * flush it is required to read in 64 KiB because the replacement algorithm
6652  * is not exactly LRU. This could be sized at runtime via topology
6653  * information but as all relevant affected CPUs have 32KiB L1D cache size
6654  * there is no point in doing so.
6655  */
6656 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6657 {
6658 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6659 
6660 	/*
6661 	 * This code is only executed when the flush mode is 'cond' or
6662 	 * 'always'
6663 	 */
6664 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6665 		bool flush_l1d;
6666 
6667 		/*
6668 		 * Clear the per-vcpu flush bit, it gets set again if the vCPU
6669 		 * is reloaded, i.e. if the vCPU is scheduled out or if KVM
6670 		 * exits to userspace, or if KVM reaches one of the unsafe
6671 		 * VMEXIT handlers, e.g. if KVM calls into the emulator.
6672 		 */
6673 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6674 		vcpu->arch.l1tf_flush_l1d = false;
6675 
6676 		/*
6677 		 * Clear the per-cpu flush bit, it gets set again from
6678 		 * the interrupt handlers.
6679 		 */
6680 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6681 		kvm_clear_cpu_l1tf_flush_l1d();
6682 
6683 		if (!flush_l1d)
6684 			return;
6685 	}
6686 
6687 	vcpu->stat.l1d_flush++;
6688 
6689 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6690 		native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6691 		return;
6692 	}
6693 
6694 	asm volatile(
6695 		/* First ensure the pages are in the TLB */
6696 		"xorl	%%eax, %%eax\n"
6697 		".Lpopulate_tlb:\n\t"
6698 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6699 		"addl	$4096, %%eax\n\t"
6700 		"cmpl	%%eax, %[size]\n\t"
6701 		"jne	.Lpopulate_tlb\n\t"
6702 		"xorl	%%eax, %%eax\n\t"
6703 		"cpuid\n\t"
6704 		/* Now fill the cache */
6705 		"xorl	%%eax, %%eax\n"
6706 		".Lfill_cache:\n"
6707 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6708 		"addl	$64, %%eax\n\t"
6709 		"cmpl	%%eax, %[size]\n\t"
6710 		"jne	.Lfill_cache\n\t"
6711 		"lfence\n"
6712 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6713 		    [size] "r" (size)
6714 		: "eax", "ebx", "ecx", "edx");
6715 }
6716 
6717 void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6718 {
6719 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6720 	int tpr_threshold;
6721 
6722 	if (is_guest_mode(vcpu) &&
6723 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6724 		return;
6725 
6726 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6727 	if (is_guest_mode(vcpu))
6728 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6729 	else
6730 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6731 }
6732 
6733 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6734 {
6735 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6736 	u32 sec_exec_control;
6737 
6738 	if (!lapic_in_kernel(vcpu))
6739 		return;
6740 
6741 	if (!flexpriority_enabled &&
6742 	    !cpu_has_vmx_virtualize_x2apic_mode())
6743 		return;
6744 
6745 	/* Postpone execution until vmcs01 is the current VMCS. */
6746 	if (is_guest_mode(vcpu)) {
6747 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6748 		return;
6749 	}
6750 
6751 	sec_exec_control = secondary_exec_controls_get(vmx);
6752 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6753 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6754 
6755 	switch (kvm_get_apic_mode(vcpu)) {
6756 	case LAPIC_MODE_INVALID:
6757 		WARN_ONCE(true, "Invalid local APIC state");
6758 		break;
6759 	case LAPIC_MODE_DISABLED:
6760 		break;
6761 	case LAPIC_MODE_XAPIC:
6762 		if (flexpriority_enabled) {
6763 			sec_exec_control |=
6764 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6765 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6766 
6767 			/*
6768 			 * Flush the TLB, reloading the APIC access page will
6769 			 * only do so if its physical address has changed, but
6770 			 * the guest may have inserted a non-APIC mapping into
6771 			 * the TLB while the APIC access page was disabled.
6772 			 */
6773 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6774 		}
6775 		break;
6776 	case LAPIC_MODE_X2APIC:
6777 		if (cpu_has_vmx_virtualize_x2apic_mode())
6778 			sec_exec_control |=
6779 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6780 		break;
6781 	}
6782 	secondary_exec_controls_set(vmx, sec_exec_control);
6783 
6784 	vmx_update_msr_bitmap_x2apic(vcpu);
6785 }
6786 
6787 void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6788 {
6789 	const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT;
6790 	struct kvm *kvm = vcpu->kvm;
6791 	struct kvm_memslots *slots = kvm_memslots(kvm);
6792 	struct kvm_memory_slot *slot;
6793 	unsigned long mmu_seq;
6794 	kvm_pfn_t pfn;
6795 
6796 	/* Defer reload until vmcs01 is the current VMCS. */
6797 	if (is_guest_mode(vcpu)) {
6798 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6799 		return;
6800 	}
6801 
6802 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6803 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6804 		return;
6805 
6806 	/*
6807 	 * Explicitly grab the memslot using KVM's internal slot ID to ensure
6808 	 * KVM doesn't unintentionally grab a userspace memslot.  It _should_
6809 	 * be impossible for userspace to create a memslot for the APIC when
6810 	 * APICv is enabled, but paranoia won't hurt in this case.
6811 	 */
6812 	slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT);
6813 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
6814 		return;
6815 
6816 	/*
6817 	 * Ensure that the mmu_notifier sequence count is read before KVM
6818 	 * retrieves the pfn from the primary MMU.  Note, the memslot is
6819 	 * protected by SRCU, not the mmu_notifier.  Pairs with the smp_wmb()
6820 	 * in kvm_mmu_invalidate_end().
6821 	 */
6822 	mmu_seq = kvm->mmu_invalidate_seq;
6823 	smp_rmb();
6824 
6825 	/*
6826 	 * No need to retry if the memslot does not exist or is invalid.  KVM
6827 	 * controls the APIC-access page memslot, and only deletes the memslot
6828 	 * if APICv is permanently inhibited, i.e. the memslot won't reappear.
6829 	 */
6830 	pfn = gfn_to_pfn_memslot(slot, gfn);
6831 	if (is_error_noslot_pfn(pfn))
6832 		return;
6833 
6834 	read_lock(&vcpu->kvm->mmu_lock);
6835 	if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn)) {
6836 		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6837 		read_unlock(&vcpu->kvm->mmu_lock);
6838 		goto out;
6839 	}
6840 
6841 	vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn));
6842 	read_unlock(&vcpu->kvm->mmu_lock);
6843 
6844 	/*
6845 	 * No need for a manual TLB flush at this point, KVM has already done a
6846 	 * flush if there were SPTEs pointing at the previous page.
6847 	 */
6848 out:
6849 	/*
6850 	 * Do not pin apic access page in memory, the MMU notifier
6851 	 * will call us again if it is migrated or swapped out.
6852 	 */
6853 	kvm_release_pfn_clean(pfn);
6854 }
6855 
6856 void vmx_hwapic_isr_update(int max_isr)
6857 {
6858 	u16 status;
6859 	u8 old;
6860 
6861 	if (max_isr == -1)
6862 		max_isr = 0;
6863 
6864 	status = vmcs_read16(GUEST_INTR_STATUS);
6865 	old = status >> 8;
6866 	if (max_isr != old) {
6867 		status &= 0xff;
6868 		status |= max_isr << 8;
6869 		vmcs_write16(GUEST_INTR_STATUS, status);
6870 	}
6871 }
6872 
6873 static void vmx_set_rvi(int vector)
6874 {
6875 	u16 status;
6876 	u8 old;
6877 
6878 	if (vector == -1)
6879 		vector = 0;
6880 
6881 	status = vmcs_read16(GUEST_INTR_STATUS);
6882 	old = (u8)status & 0xff;
6883 	if ((u8)vector != old) {
6884 		status &= ~0xff;
6885 		status |= (u8)vector;
6886 		vmcs_write16(GUEST_INTR_STATUS, status);
6887 	}
6888 }
6889 
6890 void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6891 {
6892 	/*
6893 	 * When running L2, updating RVI is only relevant when
6894 	 * vmcs12 virtual-interrupt-delivery enabled.
6895 	 * However, it can be enabled only when L1 also
6896 	 * intercepts external-interrupts and in that case
6897 	 * we should not update vmcs02 RVI but instead intercept
6898 	 * interrupt. Therefore, do nothing when running L2.
6899 	 */
6900 	if (!is_guest_mode(vcpu))
6901 		vmx_set_rvi(max_irr);
6902 }
6903 
6904 int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6905 {
6906 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6907 	int max_irr;
6908 	bool got_posted_interrupt;
6909 
6910 	if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6911 		return -EIO;
6912 
6913 	if (pi_test_on(&vmx->pi_desc)) {
6914 		pi_clear_on(&vmx->pi_desc);
6915 		/*
6916 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6917 		 * But on x86 this is just a compiler barrier anyway.
6918 		 */
6919 		smp_mb__after_atomic();
6920 		got_posted_interrupt =
6921 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6922 	} else {
6923 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6924 		got_posted_interrupt = false;
6925 	}
6926 
6927 	/*
6928 	 * Newly recognized interrupts are injected via either virtual interrupt
6929 	 * delivery (RVI) or KVM_REQ_EVENT.  Virtual interrupt delivery is
6930 	 * disabled in two cases:
6931 	 *
6932 	 * 1) If L2 is running and the vCPU has a new pending interrupt.  If L1
6933 	 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6934 	 * VM-Exit to L1.  If L1 doesn't want to exit, the interrupt is injected
6935 	 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6936 	 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6937 	 *
6938 	 * 2) If APICv is disabled for this vCPU, assigned devices may still
6939 	 * attempt to post interrupts.  The posted interrupt vector will cause
6940 	 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6941 	 */
6942 	if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6943 		vmx_set_rvi(max_irr);
6944 	else if (got_posted_interrupt)
6945 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6946 
6947 	return max_irr;
6948 }
6949 
6950 void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6951 {
6952 	if (!kvm_vcpu_apicv_active(vcpu))
6953 		return;
6954 
6955 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6956 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6957 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6958 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6959 }
6960 
6961 void vmx_apicv_pre_state_restore(struct kvm_vcpu *vcpu)
6962 {
6963 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6964 
6965 	pi_clear_on(&vmx->pi_desc);
6966 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6967 }
6968 
6969 void vmx_do_interrupt_irqoff(unsigned long entry);
6970 void vmx_do_nmi_irqoff(void);
6971 
6972 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6973 {
6974 	/*
6975 	 * Save xfd_err to guest_fpu before interrupt is enabled, so the
6976 	 * MSR value is not clobbered by the host activity before the guest
6977 	 * has chance to consume it.
6978 	 *
6979 	 * Do not blindly read xfd_err here, since this exception might
6980 	 * be caused by L1 interception on a platform which doesn't
6981 	 * support xfd at all.
6982 	 *
6983 	 * Do it conditionally upon guest_fpu::xfd. xfd_err matters
6984 	 * only when xfd contains a non-zero value.
6985 	 *
6986 	 * Queuing exception is done in vmx_handle_exit. See comment there.
6987 	 */
6988 	if (vcpu->arch.guest_fpu.fpstate->xfd)
6989 		rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6990 }
6991 
6992 static void handle_exception_irqoff(struct kvm_vcpu *vcpu, u32 intr_info)
6993 {
6994 	/* if exit due to PF check for async PF */
6995 	if (is_page_fault(intr_info))
6996 		vcpu->arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6997 	/* if exit due to NM, handle before interrupts are enabled */
6998 	else if (is_nm_fault(intr_info))
6999 		handle_nm_fault_irqoff(vcpu);
7000 	/* Handle machine checks before interrupts are enabled */
7001 	else if (is_machine_check(intr_info))
7002 		kvm_machine_check();
7003 }
7004 
7005 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu,
7006 					     u32 intr_info)
7007 {
7008 	unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
7009 
7010 	if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
7011 	    "unexpected VM-Exit interrupt info: 0x%x", intr_info))
7012 		return;
7013 
7014 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
7015 	if (cpu_feature_enabled(X86_FEATURE_FRED))
7016 		fred_entry_from_kvm(EVENT_TYPE_EXTINT, vector);
7017 	else
7018 		vmx_do_interrupt_irqoff(gate_offset((gate_desc *)host_idt_base + vector));
7019 	kvm_after_interrupt(vcpu);
7020 
7021 	vcpu->arch.at_instruction_boundary = true;
7022 }
7023 
7024 void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
7025 {
7026 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7027 
7028 	if (vmx->emulation_required)
7029 		return;
7030 
7031 	if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
7032 		handle_external_interrupt_irqoff(vcpu, vmx_get_intr_info(vcpu));
7033 	else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
7034 		handle_exception_irqoff(vcpu, vmx_get_intr_info(vcpu));
7035 }
7036 
7037 /*
7038  * The kvm parameter can be NULL (module initialization, or invocation before
7039  * VM creation). Be sure to check the kvm parameter before using it.
7040  */
7041 bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
7042 {
7043 	switch (index) {
7044 	case MSR_IA32_SMBASE:
7045 		if (!IS_ENABLED(CONFIG_KVM_SMM))
7046 			return false;
7047 		/*
7048 		 * We cannot do SMM unless we can run the guest in big
7049 		 * real mode.
7050 		 */
7051 		return enable_unrestricted_guest || emulate_invalid_guest_state;
7052 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
7053 		return nested;
7054 	case MSR_AMD64_VIRT_SPEC_CTRL:
7055 	case MSR_AMD64_TSC_RATIO:
7056 		/* This is AMD only.  */
7057 		return false;
7058 	default:
7059 		return true;
7060 	}
7061 }
7062 
7063 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7064 {
7065 	u32 exit_intr_info;
7066 	bool unblock_nmi;
7067 	u8 vector;
7068 	bool idtv_info_valid;
7069 
7070 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7071 
7072 	if (enable_vnmi) {
7073 		if (vmx->loaded_vmcs->nmi_known_unmasked)
7074 			return;
7075 
7076 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
7077 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7078 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7079 		/*
7080 		 * SDM 3: 27.7.1.2 (September 2008)
7081 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7082 		 * a guest IRET fault.
7083 		 * SDM 3: 23.2.2 (September 2008)
7084 		 * Bit 12 is undefined in any of the following cases:
7085 		 *  If the VM exit sets the valid bit in the IDT-vectoring
7086 		 *   information field.
7087 		 *  If the VM exit is due to a double fault.
7088 		 */
7089 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7090 		    vector != DF_VECTOR && !idtv_info_valid)
7091 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7092 				      GUEST_INTR_STATE_NMI);
7093 		else
7094 			vmx->loaded_vmcs->nmi_known_unmasked =
7095 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7096 				  & GUEST_INTR_STATE_NMI);
7097 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
7098 		vmx->loaded_vmcs->vnmi_blocked_time +=
7099 			ktime_to_ns(ktime_sub(ktime_get(),
7100 					      vmx->loaded_vmcs->entry_time));
7101 }
7102 
7103 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7104 				      u32 idt_vectoring_info,
7105 				      int instr_len_field,
7106 				      int error_code_field)
7107 {
7108 	u8 vector;
7109 	int type;
7110 	bool idtv_info_valid;
7111 
7112 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7113 
7114 	vcpu->arch.nmi_injected = false;
7115 	kvm_clear_exception_queue(vcpu);
7116 	kvm_clear_interrupt_queue(vcpu);
7117 
7118 	if (!idtv_info_valid)
7119 		return;
7120 
7121 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7122 
7123 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7124 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7125 
7126 	switch (type) {
7127 	case INTR_TYPE_NMI_INTR:
7128 		vcpu->arch.nmi_injected = true;
7129 		/*
7130 		 * SDM 3: 27.7.1.2 (September 2008)
7131 		 * Clear bit "block by NMI" before VM entry if a NMI
7132 		 * delivery faulted.
7133 		 */
7134 		vmx_set_nmi_mask(vcpu, false);
7135 		break;
7136 	case INTR_TYPE_SOFT_EXCEPTION:
7137 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7138 		fallthrough;
7139 	case INTR_TYPE_HARD_EXCEPTION:
7140 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7141 			u32 err = vmcs_read32(error_code_field);
7142 			kvm_requeue_exception_e(vcpu, vector, err);
7143 		} else
7144 			kvm_requeue_exception(vcpu, vector);
7145 		break;
7146 	case INTR_TYPE_SOFT_INTR:
7147 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7148 		fallthrough;
7149 	case INTR_TYPE_EXT_INTR:
7150 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7151 		break;
7152 	default:
7153 		break;
7154 	}
7155 }
7156 
7157 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7158 {
7159 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7160 				  VM_EXIT_INSTRUCTION_LEN,
7161 				  IDT_VECTORING_ERROR_CODE);
7162 }
7163 
7164 void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7165 {
7166 	__vmx_complete_interrupts(vcpu,
7167 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7168 				  VM_ENTRY_INSTRUCTION_LEN,
7169 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
7170 
7171 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7172 }
7173 
7174 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7175 {
7176 	int i, nr_msrs;
7177 	struct perf_guest_switch_msr *msrs;
7178 	struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7179 
7180 	pmu->host_cross_mapped_mask = 0;
7181 	if (pmu->pebs_enable & pmu->global_ctrl)
7182 		intel_pmu_cross_mapped_check(pmu);
7183 
7184 	/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7185 	msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7186 	if (!msrs)
7187 		return;
7188 
7189 	for (i = 0; i < nr_msrs; i++)
7190 		if (msrs[i].host == msrs[i].guest)
7191 			clear_atomic_switch_msr(vmx, msrs[i].msr);
7192 		else
7193 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7194 					msrs[i].host, false);
7195 }
7196 
7197 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu, bool force_immediate_exit)
7198 {
7199 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7200 	u64 tscl;
7201 	u32 delta_tsc;
7202 
7203 	if (force_immediate_exit) {
7204 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7205 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7206 	} else if (vmx->hv_deadline_tsc != -1) {
7207 		tscl = rdtsc();
7208 		if (vmx->hv_deadline_tsc > tscl)
7209 			/* set_hv_timer ensures the delta fits in 32-bits */
7210 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7211 				cpu_preemption_timer_multi);
7212 		else
7213 			delta_tsc = 0;
7214 
7215 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7216 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7217 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7218 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7219 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7220 	}
7221 }
7222 
7223 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7224 {
7225 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7226 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
7227 		vmcs_writel(HOST_RSP, host_rsp);
7228 	}
7229 }
7230 
7231 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7232 					unsigned int flags)
7233 {
7234 	u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7235 
7236 	if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7237 		return;
7238 
7239 	if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7240 		vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
7241 
7242 	/*
7243 	 * If the guest/host SPEC_CTRL values differ, restore the host value.
7244 	 *
7245 	 * For legacy IBRS, the IBRS bit always needs to be written after
7246 	 * transitioning from a less privileged predictor mode, regardless of
7247 	 * whether the guest/host values differ.
7248 	 */
7249 	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7250 	    vmx->spec_ctrl != hostval)
7251 		native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
7252 
7253 	barrier_nospec();
7254 }
7255 
7256 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu,
7257 					     bool force_immediate_exit)
7258 {
7259 	/*
7260 	 * If L2 is active, some VMX preemption timer exits can be handled in
7261 	 * the fastpath even, all other exits must use the slow path.
7262 	 */
7263 	if (is_guest_mode(vcpu) &&
7264 	    to_vmx(vcpu)->exit_reason.basic != EXIT_REASON_PREEMPTION_TIMER)
7265 		return EXIT_FASTPATH_NONE;
7266 
7267 	switch (to_vmx(vcpu)->exit_reason.basic) {
7268 	case EXIT_REASON_MSR_WRITE:
7269 		return handle_fastpath_set_msr_irqoff(vcpu);
7270 	case EXIT_REASON_PREEMPTION_TIMER:
7271 		return handle_fastpath_preemption_timer(vcpu, force_immediate_exit);
7272 	case EXIT_REASON_HLT:
7273 		return handle_fastpath_hlt(vcpu);
7274 	default:
7275 		return EXIT_FASTPATH_NONE;
7276 	}
7277 }
7278 
7279 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7280 					unsigned int flags)
7281 {
7282 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7283 
7284 	guest_state_enter_irqoff();
7285 
7286 	/*
7287 	 * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW
7288 	 * mitigation for MDS is done late in VMentry and is still
7289 	 * executed in spite of L1D Flush. This is because an extra VERW
7290 	 * should not matter much after the big hammer L1D Flush.
7291 	 */
7292 	if (static_branch_unlikely(&vmx_l1d_should_flush))
7293 		vmx_l1d_flush(vcpu);
7294 	else if (static_branch_unlikely(&mmio_stale_data_clear) &&
7295 		 kvm_arch_has_assigned_device(vcpu->kvm))
7296 		mds_clear_cpu_buffers();
7297 
7298 	vmx_disable_fb_clear(vmx);
7299 
7300 	if (vcpu->arch.cr2 != native_read_cr2())
7301 		native_write_cr2(vcpu->arch.cr2);
7302 
7303 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7304 				   flags);
7305 
7306 	vcpu->arch.cr2 = native_read_cr2();
7307 	vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7308 
7309 	vmx->idt_vectoring_info = 0;
7310 
7311 	vmx_enable_fb_clear(vmx);
7312 
7313 	if (unlikely(vmx->fail)) {
7314 		vmx->exit_reason.full = 0xdead;
7315 		goto out;
7316 	}
7317 
7318 	vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7319 	if (likely(!vmx->exit_reason.failed_vmentry))
7320 		vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7321 
7322 	if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI &&
7323 	    is_nmi(vmx_get_intr_info(vcpu))) {
7324 		kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
7325 		if (cpu_feature_enabled(X86_FEATURE_FRED))
7326 			fred_entry_from_kvm(EVENT_TYPE_NMI, NMI_VECTOR);
7327 		else
7328 			vmx_do_nmi_irqoff();
7329 		kvm_after_interrupt(vcpu);
7330 	}
7331 
7332 out:
7333 	guest_state_exit_irqoff();
7334 }
7335 
7336 fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu, bool force_immediate_exit)
7337 {
7338 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7339 	unsigned long cr3, cr4;
7340 
7341 	/* Record the guest's net vcpu time for enforced NMI injections. */
7342 	if (unlikely(!enable_vnmi &&
7343 		     vmx->loaded_vmcs->soft_vnmi_blocked))
7344 		vmx->loaded_vmcs->entry_time = ktime_get();
7345 
7346 	/*
7347 	 * Don't enter VMX if guest state is invalid, let the exit handler
7348 	 * start emulation until we arrive back to a valid state.  Synthesize a
7349 	 * consistency check VM-Exit due to invalid guest state and bail.
7350 	 */
7351 	if (unlikely(vmx->emulation_required)) {
7352 		vmx->fail = 0;
7353 
7354 		vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
7355 		vmx->exit_reason.failed_vmentry = 1;
7356 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7357 		vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
7358 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7359 		vmx->exit_intr_info = 0;
7360 		return EXIT_FASTPATH_NONE;
7361 	}
7362 
7363 	trace_kvm_entry(vcpu, force_immediate_exit);
7364 
7365 	if (vmx->ple_window_dirty) {
7366 		vmx->ple_window_dirty = false;
7367 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
7368 	}
7369 
7370 	/*
7371 	 * We did this in prepare_switch_to_guest, because it needs to
7372 	 * be within srcu_read_lock.
7373 	 */
7374 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7375 
7376 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7377 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7378 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7379 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7380 	vcpu->arch.regs_dirty = 0;
7381 
7382 	/*
7383 	 * Refresh vmcs.HOST_CR3 if necessary.  This must be done immediately
7384 	 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7385 	 * it switches back to the current->mm, which can occur in KVM context
7386 	 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7387 	 * toggles a static key while handling a VM-Exit.
7388 	 */
7389 	cr3 = __get_current_cr3_fast();
7390 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7391 		vmcs_writel(HOST_CR3, cr3);
7392 		vmx->loaded_vmcs->host_state.cr3 = cr3;
7393 	}
7394 
7395 	cr4 = cr4_read_shadow();
7396 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7397 		vmcs_writel(HOST_CR4, cr4);
7398 		vmx->loaded_vmcs->host_state.cr4 = cr4;
7399 	}
7400 
7401 	/* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
7402 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
7403 		set_debugreg(vcpu->arch.dr6, 6);
7404 
7405 	/* When single-stepping over STI and MOV SS, we must clear the
7406 	 * corresponding interruptibility bits in the guest state. Otherwise
7407 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
7408 	 * exceptions being set, but that's not correct for the guest debugging
7409 	 * case. */
7410 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7411 		vmx_set_interrupt_shadow(vcpu, 0);
7412 
7413 	kvm_load_guest_xsave_state(vcpu);
7414 
7415 	pt_guest_enter(vmx);
7416 
7417 	atomic_switch_perf_msrs(vmx);
7418 	if (intel_pmu_lbr_is_enabled(vcpu))
7419 		vmx_passthrough_lbr_msrs(vcpu);
7420 
7421 	if (enable_preemption_timer)
7422 		vmx_update_hv_timer(vcpu, force_immediate_exit);
7423 	else if (force_immediate_exit)
7424 		smp_send_reschedule(vcpu->cpu);
7425 
7426 	kvm_wait_lapic_expire(vcpu);
7427 
7428 	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
7429 	vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
7430 
7431 	/* All fields are clean at this point */
7432 	if (kvm_is_using_evmcs()) {
7433 		current_evmcs->hv_clean_fields |=
7434 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7435 
7436 		current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7437 	}
7438 
7439 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7440 	if (vmx->host_debugctlmsr)
7441 		update_debugctlmsr(vmx->host_debugctlmsr);
7442 
7443 #ifndef CONFIG_X86_64
7444 	/*
7445 	 * The sysexit path does not restore ds/es, so we must set them to
7446 	 * a reasonable value ourselves.
7447 	 *
7448 	 * We can't defer this to vmx_prepare_switch_to_host() since that
7449 	 * function may be executed in interrupt context, which saves and
7450 	 * restore segments around it, nullifying its effect.
7451 	 */
7452 	loadsegment(ds, __USER_DS);
7453 	loadsegment(es, __USER_DS);
7454 #endif
7455 
7456 	pt_guest_exit(vmx);
7457 
7458 	kvm_load_host_xsave_state(vcpu);
7459 
7460 	if (is_guest_mode(vcpu)) {
7461 		/*
7462 		 * Track VMLAUNCH/VMRESUME that have made past guest state
7463 		 * checking.
7464 		 */
7465 		if (vmx->nested.nested_run_pending &&
7466 		    !vmx->exit_reason.failed_vmentry)
7467 			++vcpu->stat.nested_run;
7468 
7469 		vmx->nested.nested_run_pending = 0;
7470 	}
7471 
7472 	if (unlikely(vmx->fail))
7473 		return EXIT_FASTPATH_NONE;
7474 
7475 	if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
7476 		kvm_machine_check();
7477 
7478 	trace_kvm_exit(vcpu, KVM_ISA_VMX);
7479 
7480 	if (unlikely(vmx->exit_reason.failed_vmentry))
7481 		return EXIT_FASTPATH_NONE;
7482 
7483 	vmx->loaded_vmcs->launched = 1;
7484 
7485 	vmx_recover_nmi_blocking(vmx);
7486 	vmx_complete_interrupts(vmx);
7487 
7488 	return vmx_exit_handlers_fastpath(vcpu, force_immediate_exit);
7489 }
7490 
7491 void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7492 {
7493 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7494 
7495 	if (enable_pml)
7496 		vmx_destroy_pml_buffer(vmx);
7497 	free_vpid(vmx->vpid);
7498 	nested_vmx_free_vcpu(vcpu);
7499 	free_loaded_vmcs(vmx->loaded_vmcs);
7500 	free_page((unsigned long)vmx->ve_info);
7501 }
7502 
7503 int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7504 {
7505 	struct vmx_uret_msr *tsx_ctrl;
7506 	struct vcpu_vmx *vmx;
7507 	int i, err;
7508 
7509 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7510 	vmx = to_vmx(vcpu);
7511 
7512 	INIT_LIST_HEAD(&vmx->pi_wakeup_list);
7513 
7514 	err = -ENOMEM;
7515 
7516 	vmx->vpid = allocate_vpid();
7517 
7518 	/*
7519 	 * If PML is turned on, failure on enabling PML just results in failure
7520 	 * of creating the vcpu, therefore we can simplify PML logic (by
7521 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
7522 	 * for the guest), etc.
7523 	 */
7524 	if (enable_pml) {
7525 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7526 		if (!vmx->pml_pg)
7527 			goto free_vpid;
7528 	}
7529 
7530 	for (i = 0; i < kvm_nr_uret_msrs; ++i)
7531 		vmx->guest_uret_msrs[i].mask = -1ull;
7532 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7533 		/*
7534 		 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7535 		 * Keep the host value unchanged to avoid changing CPUID bits
7536 		 * under the host kernel's feet.
7537 		 */
7538 		tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7539 		if (tsx_ctrl)
7540 			tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7541 	}
7542 
7543 	err = alloc_loaded_vmcs(&vmx->vmcs01);
7544 	if (err < 0)
7545 		goto free_pml;
7546 
7547 	/*
7548 	 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7549 	 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7550 	 * feature only for vmcs01, KVM currently isn't equipped to realize any
7551 	 * performance benefits from enabling it for vmcs02.
7552 	 */
7553 	if (kvm_is_using_evmcs() &&
7554 	    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7555 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7556 
7557 		evmcs->hv_enlightenments_control.msr_bitmap = 1;
7558 	}
7559 
7560 	/* The MSR bitmap starts with all ones */
7561 	bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7562 	bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7563 
7564 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7565 #ifdef CONFIG_X86_64
7566 	vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7567 	vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7568 	vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7569 #endif
7570 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7571 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7572 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7573 	if (kvm_cstate_in_guest(vcpu->kvm)) {
7574 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7575 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7576 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7577 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7578 	}
7579 
7580 	vmx->loaded_vmcs = &vmx->vmcs01;
7581 
7582 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
7583 		err = kvm_alloc_apic_access_page(vcpu->kvm);
7584 		if (err)
7585 			goto free_vmcs;
7586 	}
7587 
7588 	if (enable_ept && !enable_unrestricted_guest) {
7589 		err = init_rmode_identity_map(vcpu->kvm);
7590 		if (err)
7591 			goto free_vmcs;
7592 	}
7593 
7594 	err = -ENOMEM;
7595 	if (vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_EPT_VIOLATION_VE) {
7596 		struct page *page;
7597 
7598 		BUILD_BUG_ON(sizeof(*vmx->ve_info) > PAGE_SIZE);
7599 
7600 		/* ve_info must be page aligned. */
7601 		page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7602 		if (!page)
7603 			goto free_vmcs;
7604 
7605 		vmx->ve_info = page_to_virt(page);
7606 	}
7607 
7608 	if (vmx_can_use_ipiv(vcpu))
7609 		WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7610 			   __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID);
7611 
7612 	return 0;
7613 
7614 free_vmcs:
7615 	free_loaded_vmcs(vmx->loaded_vmcs);
7616 free_pml:
7617 	vmx_destroy_pml_buffer(vmx);
7618 free_vpid:
7619 	free_vpid(vmx->vpid);
7620 	return err;
7621 }
7622 
7623 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7624 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7625 
7626 int vmx_vm_init(struct kvm *kvm)
7627 {
7628 	if (!ple_gap)
7629 		kvm->arch.pause_in_guest = true;
7630 
7631 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7632 		switch (l1tf_mitigation) {
7633 		case L1TF_MITIGATION_OFF:
7634 		case L1TF_MITIGATION_FLUSH_NOWARN:
7635 			/* 'I explicitly don't care' is set */
7636 			break;
7637 		case L1TF_MITIGATION_FLUSH:
7638 		case L1TF_MITIGATION_FLUSH_NOSMT:
7639 		case L1TF_MITIGATION_FULL:
7640 			/*
7641 			 * Warn upon starting the first VM in a potentially
7642 			 * insecure environment.
7643 			 */
7644 			if (sched_smt_active())
7645 				pr_warn_once(L1TF_MSG_SMT);
7646 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7647 				pr_warn_once(L1TF_MSG_L1D);
7648 			break;
7649 		case L1TF_MITIGATION_FULL_FORCE:
7650 			/* Flush is enforced */
7651 			break;
7652 		}
7653 	}
7654 	return 0;
7655 }
7656 
7657 u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7658 {
7659 	/*
7660 	 * Force UC for host MMIO regions, as allowing the guest to access MMIO
7661 	 * with cacheable accesses will result in Machine Checks.
7662 	 */
7663 	if (is_mmio)
7664 		return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7665 
7666 	/*
7667 	 * Force WB and ignore guest PAT if the VM does NOT have a non-coherent
7668 	 * device attached.  Letting the guest control memory types on Intel
7669 	 * CPUs may result in unexpected behavior, and so KVM's ABI is to trust
7670 	 * the guest to behave only as a last resort.
7671 	 */
7672 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
7673 		return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7674 
7675 	return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT);
7676 }
7677 
7678 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7679 {
7680 	/*
7681 	 * These bits in the secondary execution controls field
7682 	 * are dynamic, the others are mostly based on the hypervisor
7683 	 * architecture and the guest's CPUID.  Do not touch the
7684 	 * dynamic bits.
7685 	 */
7686 	u32 mask =
7687 		SECONDARY_EXEC_SHADOW_VMCS |
7688 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7689 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7690 		SECONDARY_EXEC_DESC;
7691 
7692 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7693 
7694 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7695 }
7696 
7697 /*
7698  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7699  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7700  */
7701 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7702 {
7703 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7704 	struct kvm_cpuid_entry2 *entry;
7705 
7706 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7707 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7708 
7709 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7710 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7711 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7712 } while (0)
7713 
7714 	entry = kvm_find_cpuid_entry(vcpu, 0x1);
7715 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7716 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7717 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7718 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7719 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7720 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7721 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7722 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7723 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7724 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7725 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7726 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7727 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7728 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7729 
7730 	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7731 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7732 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7733 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7734 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7735 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7736 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7737 
7738 	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 1);
7739 	cr4_fixed1_update(X86_CR4_LAM_SUP,    eax, feature_bit(LAM));
7740 
7741 #undef cr4_fixed1_update
7742 }
7743 
7744 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7745 {
7746 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7747 	struct kvm_cpuid_entry2 *best = NULL;
7748 	int i;
7749 
7750 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7751 		best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7752 		if (!best)
7753 			return;
7754 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7755 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7756 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7757 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7758 	}
7759 
7760 	/* Get the number of configurable Address Ranges for filtering */
7761 	vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7762 						PT_CAP_num_address_ranges);
7763 
7764 	/* Initialize and clear the no dependency bits */
7765 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7766 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7767 			RTIT_CTL_BRANCH_EN);
7768 
7769 	/*
7770 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7771 	 * will inject an #GP
7772 	 */
7773 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7774 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7775 
7776 	/*
7777 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7778 	 * PSBFreq can be set
7779 	 */
7780 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7781 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7782 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7783 
7784 	/*
7785 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7786 	 */
7787 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7788 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7789 					      RTIT_CTL_MTC_RANGE);
7790 
7791 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7792 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7793 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7794 							RTIT_CTL_PTW_EN);
7795 
7796 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7797 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7798 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7799 
7800 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7801 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7802 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7803 
7804 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7805 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7806 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7807 
7808 	/* unmask address range configure area */
7809 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7810 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7811 }
7812 
7813 void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7814 {
7815 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7816 
7817 	/*
7818 	 * XSAVES is effectively enabled if and only if XSAVE is also exposed
7819 	 * to the guest.  XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be
7820 	 * set if and only if XSAVE is supported.
7821 	 */
7822 	if (boot_cpu_has(X86_FEATURE_XSAVE) &&
7823 	    guest_cpuid_has(vcpu, X86_FEATURE_XSAVE))
7824 		kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_XSAVES);
7825 
7826 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VMX);
7827 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LAM);
7828 
7829 	vmx_setup_uret_msrs(vmx);
7830 
7831 	if (cpu_has_secondary_exec_ctrls())
7832 		vmcs_set_secondary_exec_control(vmx,
7833 						vmx_secondary_exec_control(vmx));
7834 
7835 	if (guest_can_use(vcpu, X86_FEATURE_VMX))
7836 		vmx->msr_ia32_feature_control_valid_bits |=
7837 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7838 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7839 	else
7840 		vmx->msr_ia32_feature_control_valid_bits &=
7841 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7842 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7843 
7844 	if (guest_can_use(vcpu, X86_FEATURE_VMX))
7845 		nested_vmx_cr_fixed1_bits_update(vcpu);
7846 
7847 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7848 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7849 		update_intel_pt_cfg(vcpu);
7850 
7851 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7852 		struct vmx_uret_msr *msr;
7853 		msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7854 		if (msr) {
7855 			bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7856 			vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7857 		}
7858 	}
7859 
7860 	if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7861 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7862 					  !guest_cpuid_has(vcpu, X86_FEATURE_XFD));
7863 
7864 	if (boot_cpu_has(X86_FEATURE_IBPB))
7865 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
7866 					  !guest_has_pred_cmd_msr(vcpu));
7867 
7868 	if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
7869 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
7870 					  !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
7871 
7872 	set_cr4_guest_host_mask(vmx);
7873 
7874 	vmx_write_encls_bitmap(vcpu, NULL);
7875 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7876 		vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7877 	else
7878 		vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7879 
7880 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7881 		vmx->msr_ia32_feature_control_valid_bits |=
7882 			FEAT_CTL_SGX_LC_ENABLED;
7883 	else
7884 		vmx->msr_ia32_feature_control_valid_bits &=
7885 			~FEAT_CTL_SGX_LC_ENABLED;
7886 
7887 	/* Refresh #PF interception to account for MAXPHYADDR changes. */
7888 	vmx_update_exception_bitmap(vcpu);
7889 }
7890 
7891 static __init u64 vmx_get_perf_capabilities(void)
7892 {
7893 	u64 perf_cap = PMU_CAP_FW_WRITES;
7894 	u64 host_perf_cap = 0;
7895 
7896 	if (!enable_pmu)
7897 		return 0;
7898 
7899 	if (boot_cpu_has(X86_FEATURE_PDCM))
7900 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
7901 
7902 	if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) {
7903 		x86_perf_get_lbr(&vmx_lbr_caps);
7904 
7905 		/*
7906 		 * KVM requires LBR callstack support, as the overhead due to
7907 		 * context switching LBRs without said support is too high.
7908 		 * See intel_pmu_create_guest_lbr_event() for more info.
7909 		 */
7910 		if (!vmx_lbr_caps.has_callstack)
7911 			memset(&vmx_lbr_caps, 0, sizeof(vmx_lbr_caps));
7912 		else if (vmx_lbr_caps.nr)
7913 			perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT;
7914 	}
7915 
7916 	if (vmx_pebs_supported()) {
7917 		perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
7918 
7919 		/*
7920 		 * Disallow adaptive PEBS as it is functionally broken, can be
7921 		 * used by the guest to read *host* LBRs, and can be used to
7922 		 * bypass userspace event filters.  To correctly and safely
7923 		 * support adaptive PEBS, KVM needs to:
7924 		 *
7925 		 * 1. Account for the ADAPTIVE flag when (re)programming fixed
7926 		 *    counters.
7927 		 *
7928 		 * 2. Gain support from perf (or take direct control of counter
7929 		 *    programming) to support events without adaptive PEBS
7930 		 *    enabled for the hardware counter.
7931 		 *
7932 		 * 3. Ensure LBR MSRs cannot hold host data on VM-Entry with
7933 		 *    adaptive PEBS enabled and MSR_PEBS_DATA_CFG.LBRS=1.
7934 		 *
7935 		 * 4. Document which PMU events are effectively exposed to the
7936 		 *    guest via adaptive PEBS, and make adaptive PEBS mutually
7937 		 *    exclusive with KVM_SET_PMU_EVENT_FILTER if necessary.
7938 		 */
7939 		perf_cap &= ~PERF_CAP_PEBS_BASELINE;
7940 	}
7941 
7942 	return perf_cap;
7943 }
7944 
7945 static __init void vmx_set_cpu_caps(void)
7946 {
7947 	kvm_set_cpu_caps();
7948 
7949 	/* CPUID 0x1 */
7950 	if (nested)
7951 		kvm_cpu_cap_set(X86_FEATURE_VMX);
7952 
7953 	/* CPUID 0x7 */
7954 	if (kvm_mpx_supported())
7955 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7956 	if (!cpu_has_vmx_invpcid())
7957 		kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7958 	if (vmx_pt_mode_is_host_guest())
7959 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7960 	if (vmx_pebs_supported()) {
7961 		kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7962 		kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7963 	}
7964 
7965 	if (!enable_pmu)
7966 		kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7967 	kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
7968 
7969 	if (!enable_sgx) {
7970 		kvm_cpu_cap_clear(X86_FEATURE_SGX);
7971 		kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7972 		kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7973 		kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7974 		kvm_cpu_cap_clear(X86_FEATURE_SGX_EDECCSSA);
7975 	}
7976 
7977 	if (vmx_umip_emulated())
7978 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7979 
7980 	/* CPUID 0xD.1 */
7981 	kvm_caps.supported_xss = 0;
7982 	if (!cpu_has_vmx_xsaves())
7983 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7984 
7985 	/* CPUID 0x80000001 and 0x7 (RDPID) */
7986 	if (!cpu_has_vmx_rdtscp()) {
7987 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7988 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7989 	}
7990 
7991 	if (cpu_has_vmx_waitpkg())
7992 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7993 }
7994 
7995 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7996 				  struct x86_instruction_info *info)
7997 {
7998 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7999 	unsigned short port;
8000 	bool intercept;
8001 	int size;
8002 
8003 	if (info->intercept == x86_intercept_in ||
8004 	    info->intercept == x86_intercept_ins) {
8005 		port = info->src_val;
8006 		size = info->dst_bytes;
8007 	} else {
8008 		port = info->dst_val;
8009 		size = info->src_bytes;
8010 	}
8011 
8012 	/*
8013 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
8014 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
8015 	 * control.
8016 	 *
8017 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
8018 	 */
8019 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
8020 		intercept = nested_cpu_has(vmcs12,
8021 					   CPU_BASED_UNCOND_IO_EXITING);
8022 	else
8023 		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
8024 
8025 	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
8026 	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
8027 }
8028 
8029 int vmx_check_intercept(struct kvm_vcpu *vcpu,
8030 			struct x86_instruction_info *info,
8031 			enum x86_intercept_stage stage,
8032 			struct x86_exception *exception)
8033 {
8034 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8035 
8036 	switch (info->intercept) {
8037 	/*
8038 	 * RDPID causes #UD if disabled through secondary execution controls.
8039 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
8040 	 * Note, RDPID is hidden behind ENABLE_RDTSCP.
8041 	 */
8042 	case x86_intercept_rdpid:
8043 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
8044 			exception->vector = UD_VECTOR;
8045 			exception->error_code_valid = false;
8046 			return X86EMUL_PROPAGATE_FAULT;
8047 		}
8048 		break;
8049 
8050 	case x86_intercept_in:
8051 	case x86_intercept_ins:
8052 	case x86_intercept_out:
8053 	case x86_intercept_outs:
8054 		return vmx_check_intercept_io(vcpu, info);
8055 
8056 	case x86_intercept_lgdt:
8057 	case x86_intercept_lidt:
8058 	case x86_intercept_lldt:
8059 	case x86_intercept_ltr:
8060 	case x86_intercept_sgdt:
8061 	case x86_intercept_sidt:
8062 	case x86_intercept_sldt:
8063 	case x86_intercept_str:
8064 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
8065 			return X86EMUL_CONTINUE;
8066 
8067 		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
8068 		break;
8069 
8070 	case x86_intercept_pause:
8071 		/*
8072 		 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
8073 		 * with vanilla NOPs in the emulator.  Apply the interception
8074 		 * check only to actual PAUSE instructions.  Don't check
8075 		 * PAUSE-loop-exiting, software can't expect a given PAUSE to
8076 		 * exit, i.e. KVM is within its rights to allow L2 to execute
8077 		 * the PAUSE.
8078 		 */
8079 		if ((info->rep_prefix != REPE_PREFIX) ||
8080 		    !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING))
8081 			return X86EMUL_CONTINUE;
8082 
8083 		break;
8084 
8085 	/* TODO: check more intercepts... */
8086 	default:
8087 		break;
8088 	}
8089 
8090 	return X86EMUL_UNHANDLEABLE;
8091 }
8092 
8093 #ifdef CONFIG_X86_64
8094 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
8095 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
8096 				  u64 divisor, u64 *result)
8097 {
8098 	u64 low = a << shift, high = a >> (64 - shift);
8099 
8100 	/* To avoid the overflow on divq */
8101 	if (high >= divisor)
8102 		return 1;
8103 
8104 	/* Low hold the result, high hold rem which is discarded */
8105 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
8106 	    "rm" (divisor), "0" (low), "1" (high));
8107 	*result = low;
8108 
8109 	return 0;
8110 }
8111 
8112 int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
8113 		     bool *expired)
8114 {
8115 	struct vcpu_vmx *vmx;
8116 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
8117 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
8118 
8119 	vmx = to_vmx(vcpu);
8120 	tscl = rdtsc();
8121 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
8122 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
8123 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
8124 						    ktimer->timer_advance_ns);
8125 
8126 	if (delta_tsc > lapic_timer_advance_cycles)
8127 		delta_tsc -= lapic_timer_advance_cycles;
8128 	else
8129 		delta_tsc = 0;
8130 
8131 	/* Convert to host delta tsc if tsc scaling is enabled */
8132 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
8133 	    delta_tsc && u64_shl_div_u64(delta_tsc,
8134 				kvm_caps.tsc_scaling_ratio_frac_bits,
8135 				vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
8136 		return -ERANGE;
8137 
8138 	/*
8139 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
8140 	 * we can't use the preemption timer.
8141 	 * It's possible that it fits on later vmentries, but checking
8142 	 * on every vmentry is costly so we just use an hrtimer.
8143 	 */
8144 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
8145 		return -ERANGE;
8146 
8147 	vmx->hv_deadline_tsc = tscl + delta_tsc;
8148 	*expired = !delta_tsc;
8149 	return 0;
8150 }
8151 
8152 void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
8153 {
8154 	to_vmx(vcpu)->hv_deadline_tsc = -1;
8155 }
8156 #endif
8157 
8158 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
8159 {
8160 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8161 
8162 	if (WARN_ON_ONCE(!enable_pml))
8163 		return;
8164 
8165 	if (is_guest_mode(vcpu)) {
8166 		vmx->nested.update_vmcs01_cpu_dirty_logging = true;
8167 		return;
8168 	}
8169 
8170 	/*
8171 	 * Note, nr_memslots_dirty_logging can be changed concurrent with this
8172 	 * code, but in that case another update request will be made and so
8173 	 * the guest will never run with a stale PML value.
8174 	 */
8175 	if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
8176 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8177 	else
8178 		secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8179 }
8180 
8181 void vmx_setup_mce(struct kvm_vcpu *vcpu)
8182 {
8183 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
8184 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
8185 			FEAT_CTL_LMCE_ENABLED;
8186 	else
8187 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
8188 			~FEAT_CTL_LMCE_ENABLED;
8189 }
8190 
8191 #ifdef CONFIG_KVM_SMM
8192 int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
8193 {
8194 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
8195 	if (to_vmx(vcpu)->nested.nested_run_pending)
8196 		return -EBUSY;
8197 	return !is_smm(vcpu);
8198 }
8199 
8200 int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
8201 {
8202 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8203 
8204 	/*
8205 	 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8206 	 * SMI and RSM.  Using the common VM-Exit + VM-Enter routines is wrong
8207 	 * SMI and RSM only modify state that is saved and restored via SMRAM.
8208 	 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
8209 	 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8210 	 */
8211 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
8212 	if (vmx->nested.smm.guest_mode)
8213 		nested_vmx_vmexit(vcpu, -1, 0, 0);
8214 
8215 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
8216 	vmx->nested.vmxon = false;
8217 	vmx_clear_hlt(vcpu);
8218 	return 0;
8219 }
8220 
8221 int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8222 {
8223 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8224 	int ret;
8225 
8226 	if (vmx->nested.smm.vmxon) {
8227 		vmx->nested.vmxon = true;
8228 		vmx->nested.smm.vmxon = false;
8229 	}
8230 
8231 	if (vmx->nested.smm.guest_mode) {
8232 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
8233 		if (ret)
8234 			return ret;
8235 
8236 		vmx->nested.nested_run_pending = 1;
8237 		vmx->nested.smm.guest_mode = false;
8238 	}
8239 	return 0;
8240 }
8241 
8242 void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8243 {
8244 	/* RSM will cause a vmexit anyway.  */
8245 }
8246 #endif
8247 
8248 bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8249 {
8250 	return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8251 }
8252 
8253 void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8254 {
8255 	if (is_guest_mode(vcpu)) {
8256 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8257 
8258 		if (hrtimer_try_to_cancel(timer) == 1)
8259 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8260 	}
8261 }
8262 
8263 void vmx_hardware_unsetup(void)
8264 {
8265 	kvm_set_posted_intr_wakeup_handler(NULL);
8266 
8267 	if (nested)
8268 		nested_vmx_hardware_unsetup();
8269 
8270 	free_kvm_area();
8271 }
8272 
8273 void vmx_vm_destroy(struct kvm *kvm)
8274 {
8275 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8276 
8277 	free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8278 }
8279 
8280 /*
8281  * Note, the SDM states that the linear address is masked *after* the modified
8282  * canonicality check, whereas KVM masks (untags) the address and then performs
8283  * a "normal" canonicality check.  Functionally, the two methods are identical,
8284  * and when the masking occurs relative to the canonicality check isn't visible
8285  * to software, i.e. KVM's behavior doesn't violate the SDM.
8286  */
8287 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags)
8288 {
8289 	int lam_bit;
8290 	unsigned long cr3_bits;
8291 
8292 	if (flags & (X86EMUL_F_FETCH | X86EMUL_F_IMPLICIT | X86EMUL_F_INVLPG))
8293 		return gva;
8294 
8295 	if (!is_64_bit_mode(vcpu))
8296 		return gva;
8297 
8298 	/*
8299 	 * Bit 63 determines if the address should be treated as user address
8300 	 * or a supervisor address.
8301 	 */
8302 	if (!(gva & BIT_ULL(63))) {
8303 		cr3_bits = kvm_get_active_cr3_lam_bits(vcpu);
8304 		if (!(cr3_bits & (X86_CR3_LAM_U57 | X86_CR3_LAM_U48)))
8305 			return gva;
8306 
8307 		/* LAM_U48 is ignored if LAM_U57 is set. */
8308 		lam_bit = cr3_bits & X86_CR3_LAM_U57 ? 56 : 47;
8309 	} else {
8310 		if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_LAM_SUP))
8311 			return gva;
8312 
8313 		lam_bit = kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 56 : 47;
8314 	}
8315 
8316 	/*
8317 	 * Untag the address by sign-extending the lam_bit, but NOT to bit 63.
8318 	 * Bit 63 is retained from the raw virtual address so that untagging
8319 	 * doesn't change a user access to a supervisor access, and vice versa.
8320 	 */
8321 	return (sign_extend64(gva, lam_bit) & ~BIT_ULL(63)) | (gva & BIT_ULL(63));
8322 }
8323 
8324 static unsigned int vmx_handle_intel_pt_intr(void)
8325 {
8326 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8327 
8328 	/* '0' on failure so that the !PT case can use a RET0 static call. */
8329 	if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8330 		return 0;
8331 
8332 	kvm_make_request(KVM_REQ_PMI, vcpu);
8333 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8334 		  (unsigned long *)&vcpu->arch.pmu.global_status);
8335 	return 1;
8336 }
8337 
8338 static __init void vmx_setup_user_return_msrs(void)
8339 {
8340 
8341 	/*
8342 	 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8343 	 * will emulate SYSCALL in legacy mode if the vendor string in guest
8344 	 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8345 	 * support this emulation, MSR_STAR is included in the list for i386,
8346 	 * but is never loaded into hardware.  MSR_CSTAR is also never loaded
8347 	 * into hardware and is here purely for emulation purposes.
8348 	 */
8349 	const u32 vmx_uret_msrs_list[] = {
8350 	#ifdef CONFIG_X86_64
8351 		MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8352 	#endif
8353 		MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8354 		MSR_IA32_TSX_CTRL,
8355 	};
8356 	int i;
8357 
8358 	BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8359 
8360 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8361 		kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8362 }
8363 
8364 static void __init vmx_setup_me_spte_mask(void)
8365 {
8366 	u64 me_mask = 0;
8367 
8368 	/*
8369 	 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8370 	 * kvm_host.maxphyaddr.  On MKTME and/or TDX capable systems,
8371 	 * boot_cpu_data.x86_phys_bits holds the actual physical address
8372 	 * w/o the KeyID bits, and kvm_host.maxphyaddr equals to
8373 	 * MAXPHYADDR reported by CPUID.  Those bits between are KeyID bits.
8374 	 */
8375 	if (boot_cpu_data.x86_phys_bits != kvm_host.maxphyaddr)
8376 		me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8377 				    kvm_host.maxphyaddr - 1);
8378 
8379 	/*
8380 	 * Unlike SME, host kernel doesn't support setting up any
8381 	 * MKTME KeyID on Intel platforms.  No memory encryption
8382 	 * bits should be included into the SPTE.
8383 	 */
8384 	kvm_mmu_set_me_spte_mask(0, me_mask);
8385 }
8386 
8387 __init int vmx_hardware_setup(void)
8388 {
8389 	unsigned long host_bndcfgs;
8390 	struct desc_ptr dt;
8391 	int r;
8392 
8393 	store_idt(&dt);
8394 	host_idt_base = dt.address;
8395 
8396 	vmx_setup_user_return_msrs();
8397 
8398 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8399 		return -EIO;
8400 
8401 	if (cpu_has_perf_global_ctrl_bug())
8402 		pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
8403 			     "does not work properly. Using workaround\n");
8404 
8405 	if (boot_cpu_has(X86_FEATURE_NX))
8406 		kvm_enable_efer_bits(EFER_NX);
8407 
8408 	if (boot_cpu_has(X86_FEATURE_MPX)) {
8409 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
8410 		WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
8411 	}
8412 
8413 	if (!cpu_has_vmx_mpx())
8414 		kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8415 					     XFEATURE_MASK_BNDCSR);
8416 
8417 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8418 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8419 		enable_vpid = 0;
8420 
8421 	if (!cpu_has_vmx_ept() ||
8422 	    !cpu_has_vmx_ept_4levels() ||
8423 	    !cpu_has_vmx_ept_mt_wb() ||
8424 	    !cpu_has_vmx_invept_global())
8425 		enable_ept = 0;
8426 
8427 	/* NX support is required for shadow paging. */
8428 	if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8429 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
8430 		return -EOPNOTSUPP;
8431 	}
8432 
8433 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8434 		enable_ept_ad_bits = 0;
8435 
8436 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8437 		enable_unrestricted_guest = 0;
8438 
8439 	if (!cpu_has_vmx_flexpriority())
8440 		flexpriority_enabled = 0;
8441 
8442 	if (!cpu_has_virtual_nmis())
8443 		enable_vnmi = 0;
8444 
8445 #ifdef CONFIG_X86_SGX_KVM
8446 	if (!cpu_has_vmx_encls_vmexit())
8447 		enable_sgx = false;
8448 #endif
8449 
8450 	/*
8451 	 * set_apic_access_page_addr() is used to reload apic access
8452 	 * page upon invalidation.  No need to do anything if not
8453 	 * using the APIC_ACCESS_ADDR VMCS field.
8454 	 */
8455 	if (!flexpriority_enabled)
8456 		vt_x86_ops.set_apic_access_page_addr = NULL;
8457 
8458 	if (!cpu_has_vmx_tpr_shadow())
8459 		vt_x86_ops.update_cr8_intercept = NULL;
8460 
8461 #if IS_ENABLED(CONFIG_HYPERV)
8462 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8463 	    && enable_ept) {
8464 		vt_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
8465 		vt_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
8466 	}
8467 #endif
8468 
8469 	if (!cpu_has_vmx_ple()) {
8470 		ple_gap = 0;
8471 		ple_window = 0;
8472 		ple_window_grow = 0;
8473 		ple_window_max = 0;
8474 		ple_window_shrink = 0;
8475 	}
8476 
8477 	if (!cpu_has_vmx_apicv())
8478 		enable_apicv = 0;
8479 	if (!enable_apicv)
8480 		vt_x86_ops.sync_pir_to_irr = NULL;
8481 
8482 	if (!enable_apicv || !cpu_has_vmx_ipiv())
8483 		enable_ipiv = false;
8484 
8485 	if (cpu_has_vmx_tsc_scaling())
8486 		kvm_caps.has_tsc_control = true;
8487 
8488 	kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8489 	kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8490 	kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8491 	kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8492 
8493 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8494 
8495 	if (enable_ept)
8496 		kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8497 				      cpu_has_vmx_ept_execute_only());
8498 
8499 	/*
8500 	 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8501 	 * bits to shadow_zero_check.
8502 	 */
8503 	vmx_setup_me_spte_mask();
8504 
8505 	kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(),
8506 			  ept_caps_to_lpage_level(vmx_capability.ept));
8507 
8508 	/*
8509 	 * Only enable PML when hardware supports PML feature, and both EPT
8510 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
8511 	 */
8512 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8513 		enable_pml = 0;
8514 
8515 	if (!enable_pml)
8516 		vt_x86_ops.cpu_dirty_log_size = 0;
8517 
8518 	if (!cpu_has_vmx_preemption_timer())
8519 		enable_preemption_timer = false;
8520 
8521 	if (enable_preemption_timer) {
8522 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
8523 
8524 		cpu_preemption_timer_multi =
8525 			vmx_misc_preemption_timer_rate(vmcs_config.misc);
8526 
8527 		if (tsc_khz)
8528 			use_timer_freq = (u64)tsc_khz * 1000;
8529 		use_timer_freq >>= cpu_preemption_timer_multi;
8530 
8531 		/*
8532 		 * KVM "disables" the preemption timer by setting it to its max
8533 		 * value.  Don't use the timer if it might cause spurious exits
8534 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8535 		 */
8536 		if (use_timer_freq > 0xffffffffu / 10)
8537 			enable_preemption_timer = false;
8538 	}
8539 
8540 	if (!enable_preemption_timer) {
8541 		vt_x86_ops.set_hv_timer = NULL;
8542 		vt_x86_ops.cancel_hv_timer = NULL;
8543 	}
8544 
8545 	kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8546 	kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8547 
8548 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8549 		return -EINVAL;
8550 	if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8551 		pt_mode = PT_MODE_SYSTEM;
8552 	if (pt_mode == PT_MODE_HOST_GUEST)
8553 		vt_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8554 	else
8555 		vt_init_ops.handle_intel_pt_intr = NULL;
8556 
8557 	setup_default_sgx_lepubkeyhash();
8558 
8559 	if (nested) {
8560 		nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8561 
8562 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8563 		if (r)
8564 			return r;
8565 	}
8566 
8567 	vmx_set_cpu_caps();
8568 
8569 	r = alloc_kvm_area();
8570 	if (r && nested)
8571 		nested_vmx_hardware_unsetup();
8572 
8573 	kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8574 
8575 	return r;
8576 }
8577 
8578 static void vmx_cleanup_l1d_flush(void)
8579 {
8580 	if (vmx_l1d_flush_pages) {
8581 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8582 		vmx_l1d_flush_pages = NULL;
8583 	}
8584 	/* Restore state so sysfs ignores VMX */
8585 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8586 }
8587 
8588 static void __vmx_exit(void)
8589 {
8590 	allow_smaller_maxphyaddr = false;
8591 
8592 	vmx_cleanup_l1d_flush();
8593 }
8594 
8595 static void vmx_exit(void)
8596 {
8597 	kvm_exit();
8598 	__vmx_exit();
8599 	kvm_x86_vendor_exit();
8600 
8601 }
8602 module_exit(vmx_exit);
8603 
8604 static int __init vmx_init(void)
8605 {
8606 	int r, cpu;
8607 
8608 	if (!kvm_is_vmx_supported())
8609 		return -EOPNOTSUPP;
8610 
8611 	/*
8612 	 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing
8613 	 * to unwind if a later step fails.
8614 	 */
8615 	hv_init_evmcs();
8616 
8617 	r = kvm_x86_vendor_init(&vt_init_ops);
8618 	if (r)
8619 		return r;
8620 
8621 	/*
8622 	 * Must be called after common x86 init so enable_ept is properly set
8623 	 * up. Hand the parameter mitigation value in which was stored in
8624 	 * the pre module init parser. If no parameter was given, it will
8625 	 * contain 'auto' which will be turned into the default 'cond'
8626 	 * mitigation mode.
8627 	 */
8628 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8629 	if (r)
8630 		goto err_l1d_flush;
8631 
8632 	for_each_possible_cpu(cpu) {
8633 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8634 
8635 		pi_init_cpu(cpu);
8636 	}
8637 
8638 	vmx_check_vmcs12_offsets();
8639 
8640 	/*
8641 	 * Shadow paging doesn't have a (further) performance penalty
8642 	 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8643 	 * by default
8644 	 */
8645 	if (!enable_ept)
8646 		allow_smaller_maxphyaddr = true;
8647 
8648 	/*
8649 	 * Common KVM initialization _must_ come last, after this, /dev/kvm is
8650 	 * exposed to userspace!
8651 	 */
8652 	r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx),
8653 		     THIS_MODULE);
8654 	if (r)
8655 		goto err_kvm_init;
8656 
8657 	return 0;
8658 
8659 err_kvm_init:
8660 	__vmx_exit();
8661 err_l1d_flush:
8662 	kvm_x86_vendor_exit();
8663 	return r;
8664 }
8665 module_init(vmx_init);
8666