1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/highmem.h> 18 #include <linux/hrtimer.h> 19 #include <linux/kernel.h> 20 #include <linux/kvm_host.h> 21 #include <linux/module.h> 22 #include <linux/moduleparam.h> 23 #include <linux/mod_devicetable.h> 24 #include <linux/mm.h> 25 #include <linux/objtool.h> 26 #include <linux/sched.h> 27 #include <linux/sched/smt.h> 28 #include <linux/slab.h> 29 #include <linux/tboot.h> 30 #include <linux/trace_events.h> 31 #include <linux/entry-kvm.h> 32 33 #include <asm/apic.h> 34 #include <asm/asm.h> 35 #include <asm/cpu.h> 36 #include <asm/cpu_device_id.h> 37 #include <asm/debugreg.h> 38 #include <asm/desc.h> 39 #include <asm/fpu/api.h> 40 #include <asm/fpu/xstate.h> 41 #include <asm/idtentry.h> 42 #include <asm/io.h> 43 #include <asm/irq_remapping.h> 44 #include <asm/reboot.h> 45 #include <asm/perf_event.h> 46 #include <asm/mmu_context.h> 47 #include <asm/mshyperv.h> 48 #include <asm/mwait.h> 49 #include <asm/spec-ctrl.h> 50 #include <asm/vmx.h> 51 52 #include "capabilities.h" 53 #include "cpuid.h" 54 #include "hyperv.h" 55 #include "kvm_onhyperv.h" 56 #include "irq.h" 57 #include "kvm_cache_regs.h" 58 #include "lapic.h" 59 #include "mmu.h" 60 #include "nested.h" 61 #include "pmu.h" 62 #include "sgx.h" 63 #include "trace.h" 64 #include "vmcs.h" 65 #include "vmcs12.h" 66 #include "vmx.h" 67 #include "x86.h" 68 #include "smm.h" 69 #include "vmx_onhyperv.h" 70 71 MODULE_AUTHOR("Qumranet"); 72 MODULE_LICENSE("GPL"); 73 74 #ifdef MODULE 75 static const struct x86_cpu_id vmx_cpu_id[] = { 76 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL), 77 {} 78 }; 79 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); 80 #endif 81 82 bool __read_mostly enable_vpid = 1; 83 module_param_named(vpid, enable_vpid, bool, 0444); 84 85 static bool __read_mostly enable_vnmi = 1; 86 module_param_named(vnmi, enable_vnmi, bool, 0444); 87 88 bool __read_mostly flexpriority_enabled = 1; 89 module_param_named(flexpriority, flexpriority_enabled, bool, 0444); 90 91 bool __read_mostly enable_ept = 1; 92 module_param_named(ept, enable_ept, bool, 0444); 93 94 bool __read_mostly enable_unrestricted_guest = 1; 95 module_param_named(unrestricted_guest, 96 enable_unrestricted_guest, bool, 0444); 97 98 bool __read_mostly enable_ept_ad_bits = 1; 99 module_param_named(eptad, enable_ept_ad_bits, bool, 0444); 100 101 static bool __read_mostly emulate_invalid_guest_state = true; 102 module_param(emulate_invalid_guest_state, bool, 0444); 103 104 static bool __read_mostly fasteoi = 1; 105 module_param(fasteoi, bool, 0444); 106 107 module_param(enable_apicv, bool, 0444); 108 109 bool __read_mostly enable_ipiv = true; 110 module_param(enable_ipiv, bool, 0444); 111 112 /* 113 * If nested=1, nested virtualization is supported, i.e., guests may use 114 * VMX and be a hypervisor for its own guests. If nested=0, guests may not 115 * use VMX instructions. 116 */ 117 static bool __read_mostly nested = 1; 118 module_param(nested, bool, 0444); 119 120 bool __read_mostly enable_pml = 1; 121 module_param_named(pml, enable_pml, bool, 0444); 122 123 static bool __read_mostly error_on_inconsistent_vmcs_config = true; 124 module_param(error_on_inconsistent_vmcs_config, bool, 0444); 125 126 static bool __read_mostly dump_invalid_vmcs = 0; 127 module_param(dump_invalid_vmcs, bool, 0644); 128 129 #define MSR_BITMAP_MODE_X2APIC 1 130 #define MSR_BITMAP_MODE_X2APIC_APICV 2 131 132 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL 133 134 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ 135 static int __read_mostly cpu_preemption_timer_multi; 136 static bool __read_mostly enable_preemption_timer = 1; 137 #ifdef CONFIG_X86_64 138 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); 139 #endif 140 141 extern bool __read_mostly allow_smaller_maxphyaddr; 142 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO); 143 144 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) 145 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE 146 #define KVM_VM_CR0_ALWAYS_ON \ 147 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE) 148 149 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE 150 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) 151 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) 152 153 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) 154 155 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ 156 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ 157 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ 158 RTIT_STATUS_BYTECNT)) 159 160 /* 161 * List of MSRs that can be directly passed to the guest. 162 * In addition to these x2apic and PT MSRs are handled specially. 163 */ 164 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = { 165 MSR_IA32_SPEC_CTRL, 166 MSR_IA32_PRED_CMD, 167 MSR_IA32_FLUSH_CMD, 168 MSR_IA32_TSC, 169 #ifdef CONFIG_X86_64 170 MSR_FS_BASE, 171 MSR_GS_BASE, 172 MSR_KERNEL_GS_BASE, 173 MSR_IA32_XFD, 174 MSR_IA32_XFD_ERR, 175 #endif 176 MSR_IA32_SYSENTER_CS, 177 MSR_IA32_SYSENTER_ESP, 178 MSR_IA32_SYSENTER_EIP, 179 MSR_CORE_C1_RES, 180 MSR_CORE_C3_RESIDENCY, 181 MSR_CORE_C6_RESIDENCY, 182 MSR_CORE_C7_RESIDENCY, 183 }; 184 185 /* 186 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 187 * ple_gap: upper bound on the amount of time between two successive 188 * executions of PAUSE in a loop. Also indicate if ple enabled. 189 * According to test, this time is usually smaller than 128 cycles. 190 * ple_window: upper bound on the amount of time a guest is allowed to execute 191 * in a PAUSE loop. Tests indicate that most spinlocks are held for 192 * less than 2^12 cycles 193 * Time is measured based on a counter that runs at the same rate as the TSC, 194 * refer SDM volume 3b section 21.6.13 & 22.1.3. 195 */ 196 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; 197 module_param(ple_gap, uint, 0444); 198 199 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; 200 module_param(ple_window, uint, 0444); 201 202 /* Default doubles per-vcpu window every exit. */ 203 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 204 module_param(ple_window_grow, uint, 0444); 205 206 /* Default resets per-vcpu window every exit to ple_window. */ 207 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 208 module_param(ple_window_shrink, uint, 0444); 209 210 /* Default is to compute the maximum so we can never overflow. */ 211 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; 212 module_param(ple_window_max, uint, 0444); 213 214 /* Default is SYSTEM mode, 1 for host-guest mode */ 215 int __read_mostly pt_mode = PT_MODE_SYSTEM; 216 module_param(pt_mode, int, S_IRUGO); 217 218 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); 219 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); 220 static DEFINE_MUTEX(vmx_l1d_flush_mutex); 221 222 /* Storage for pre module init parameter parsing */ 223 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; 224 225 static const struct { 226 const char *option; 227 bool for_parse; 228 } vmentry_l1d_param[] = { 229 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, 230 [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, 231 [VMENTER_L1D_FLUSH_COND] = {"cond", true}, 232 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, 233 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, 234 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, 235 }; 236 237 #define L1D_CACHE_ORDER 4 238 static void *vmx_l1d_flush_pages; 239 240 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) 241 { 242 struct page *page; 243 unsigned int i; 244 245 if (!boot_cpu_has_bug(X86_BUG_L1TF)) { 246 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 247 return 0; 248 } 249 250 if (!enable_ept) { 251 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; 252 return 0; 253 } 254 255 if (host_arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { 256 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 257 return 0; 258 } 259 260 /* If set to auto use the default l1tf mitigation method */ 261 if (l1tf == VMENTER_L1D_FLUSH_AUTO) { 262 switch (l1tf_mitigation) { 263 case L1TF_MITIGATION_OFF: 264 l1tf = VMENTER_L1D_FLUSH_NEVER; 265 break; 266 case L1TF_MITIGATION_FLUSH_NOWARN: 267 case L1TF_MITIGATION_FLUSH: 268 case L1TF_MITIGATION_FLUSH_NOSMT: 269 l1tf = VMENTER_L1D_FLUSH_COND; 270 break; 271 case L1TF_MITIGATION_FULL: 272 case L1TF_MITIGATION_FULL_FORCE: 273 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 274 break; 275 } 276 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { 277 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 278 } 279 280 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && 281 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { 282 /* 283 * This allocation for vmx_l1d_flush_pages is not tied to a VM 284 * lifetime and so should not be charged to a memcg. 285 */ 286 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); 287 if (!page) 288 return -ENOMEM; 289 vmx_l1d_flush_pages = page_address(page); 290 291 /* 292 * Initialize each page with a different pattern in 293 * order to protect against KSM in the nested 294 * virtualization case. 295 */ 296 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { 297 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, 298 PAGE_SIZE); 299 } 300 } 301 302 l1tf_vmx_mitigation = l1tf; 303 304 if (l1tf != VMENTER_L1D_FLUSH_NEVER) 305 static_branch_enable(&vmx_l1d_should_flush); 306 else 307 static_branch_disable(&vmx_l1d_should_flush); 308 309 if (l1tf == VMENTER_L1D_FLUSH_COND) 310 static_branch_enable(&vmx_l1d_flush_cond); 311 else 312 static_branch_disable(&vmx_l1d_flush_cond); 313 return 0; 314 } 315 316 static int vmentry_l1d_flush_parse(const char *s) 317 { 318 unsigned int i; 319 320 if (s) { 321 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { 322 if (vmentry_l1d_param[i].for_parse && 323 sysfs_streq(s, vmentry_l1d_param[i].option)) 324 return i; 325 } 326 } 327 return -EINVAL; 328 } 329 330 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) 331 { 332 int l1tf, ret; 333 334 l1tf = vmentry_l1d_flush_parse(s); 335 if (l1tf < 0) 336 return l1tf; 337 338 if (!boot_cpu_has(X86_BUG_L1TF)) 339 return 0; 340 341 /* 342 * Has vmx_init() run already? If not then this is the pre init 343 * parameter parsing. In that case just store the value and let 344 * vmx_init() do the proper setup after enable_ept has been 345 * established. 346 */ 347 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { 348 vmentry_l1d_flush_param = l1tf; 349 return 0; 350 } 351 352 mutex_lock(&vmx_l1d_flush_mutex); 353 ret = vmx_setup_l1d_flush(l1tf); 354 mutex_unlock(&vmx_l1d_flush_mutex); 355 return ret; 356 } 357 358 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) 359 { 360 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) 361 return sysfs_emit(s, "???\n"); 362 363 return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); 364 } 365 366 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx) 367 { 368 u64 msr; 369 370 if (!vmx->disable_fb_clear) 371 return; 372 373 msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL); 374 msr |= FB_CLEAR_DIS; 375 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr); 376 /* Cache the MSR value to avoid reading it later */ 377 vmx->msr_ia32_mcu_opt_ctrl = msr; 378 } 379 380 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx) 381 { 382 if (!vmx->disable_fb_clear) 383 return; 384 385 vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS; 386 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl); 387 } 388 389 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx) 390 { 391 /* 392 * Disable VERW's behavior of clearing CPU buffers for the guest if the 393 * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled 394 * the mitigation. Disabling the clearing behavior provides a 395 * performance boost for guests that aren't aware that manually clearing 396 * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry 397 * and VM-Exit. 398 */ 399 vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) && 400 (host_arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) && 401 !boot_cpu_has_bug(X86_BUG_MDS) && 402 !boot_cpu_has_bug(X86_BUG_TAA); 403 404 /* 405 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS 406 * at VMEntry. Skip the MSR read/write when a guest has no use case to 407 * execute VERW. 408 */ 409 if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) || 410 ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) && 411 (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) && 412 (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) && 413 (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) && 414 (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO))) 415 vmx->disable_fb_clear = false; 416 } 417 418 static const struct kernel_param_ops vmentry_l1d_flush_ops = { 419 .set = vmentry_l1d_flush_set, 420 .get = vmentry_l1d_flush_get, 421 }; 422 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); 423 424 static u32 vmx_segment_access_rights(struct kvm_segment *var); 425 426 void vmx_vmexit(void); 427 428 #define vmx_insn_failed(fmt...) \ 429 do { \ 430 WARN_ONCE(1, fmt); \ 431 pr_warn_ratelimited(fmt); \ 432 } while (0) 433 434 noinline void vmread_error(unsigned long field) 435 { 436 vmx_insn_failed("vmread failed: field=%lx\n", field); 437 } 438 439 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT 440 noinstr void vmread_error_trampoline2(unsigned long field, bool fault) 441 { 442 if (fault) { 443 kvm_spurious_fault(); 444 } else { 445 instrumentation_begin(); 446 vmread_error(field); 447 instrumentation_end(); 448 } 449 } 450 #endif 451 452 noinline void vmwrite_error(unsigned long field, unsigned long value) 453 { 454 vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n", 455 field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); 456 } 457 458 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr) 459 { 460 vmx_insn_failed("vmclear failed: %p/%llx err=%u\n", 461 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR)); 462 } 463 464 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr) 465 { 466 vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n", 467 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR)); 468 } 469 470 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva) 471 { 472 vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n", 473 ext, vpid, gva); 474 } 475 476 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa) 477 { 478 vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n", 479 ext, eptp, gpa); 480 } 481 482 static DEFINE_PER_CPU(struct vmcs *, vmxarea); 483 DEFINE_PER_CPU(struct vmcs *, current_vmcs); 484 /* 485 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed 486 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. 487 */ 488 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); 489 490 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); 491 static DEFINE_SPINLOCK(vmx_vpid_lock); 492 493 struct vmcs_config vmcs_config __ro_after_init; 494 struct vmx_capability vmx_capability __ro_after_init; 495 496 #define VMX_SEGMENT_FIELD(seg) \ 497 [VCPU_SREG_##seg] = { \ 498 .selector = GUEST_##seg##_SELECTOR, \ 499 .base = GUEST_##seg##_BASE, \ 500 .limit = GUEST_##seg##_LIMIT, \ 501 .ar_bytes = GUEST_##seg##_AR_BYTES, \ 502 } 503 504 static const struct kvm_vmx_segment_field { 505 unsigned selector; 506 unsigned base; 507 unsigned limit; 508 unsigned ar_bytes; 509 } kvm_vmx_segment_fields[] = { 510 VMX_SEGMENT_FIELD(CS), 511 VMX_SEGMENT_FIELD(DS), 512 VMX_SEGMENT_FIELD(ES), 513 VMX_SEGMENT_FIELD(FS), 514 VMX_SEGMENT_FIELD(GS), 515 VMX_SEGMENT_FIELD(SS), 516 VMX_SEGMENT_FIELD(TR), 517 VMX_SEGMENT_FIELD(LDTR), 518 }; 519 520 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx) 521 { 522 vmx->segment_cache.bitmask = 0; 523 } 524 525 static unsigned long host_idt_base; 526 527 #if IS_ENABLED(CONFIG_HYPERV) 528 static struct kvm_x86_ops vmx_x86_ops __initdata; 529 530 static bool __read_mostly enlightened_vmcs = true; 531 module_param(enlightened_vmcs, bool, 0444); 532 533 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu) 534 { 535 struct hv_enlightened_vmcs *evmcs; 536 hpa_t partition_assist_page = hv_get_partition_assist_page(vcpu); 537 538 if (partition_assist_page == INVALID_PAGE) 539 return -ENOMEM; 540 541 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs; 542 543 evmcs->partition_assist_page = partition_assist_page; 544 evmcs->hv_vm_id = (unsigned long)vcpu->kvm; 545 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1; 546 547 return 0; 548 } 549 550 static __init void hv_init_evmcs(void) 551 { 552 int cpu; 553 554 if (!enlightened_vmcs) 555 return; 556 557 /* 558 * Enlightened VMCS usage should be recommended and the host needs 559 * to support eVMCS v1 or above. 560 */ 561 if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && 562 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= 563 KVM_EVMCS_VERSION) { 564 565 /* Check that we have assist pages on all online CPUs */ 566 for_each_online_cpu(cpu) { 567 if (!hv_get_vp_assist_page(cpu)) { 568 enlightened_vmcs = false; 569 break; 570 } 571 } 572 573 if (enlightened_vmcs) { 574 pr_info("Using Hyper-V Enlightened VMCS\n"); 575 static_branch_enable(&__kvm_is_using_evmcs); 576 } 577 578 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH) 579 vmx_x86_ops.enable_l2_tlb_flush 580 = hv_enable_l2_tlb_flush; 581 582 } else { 583 enlightened_vmcs = false; 584 } 585 } 586 587 static void hv_reset_evmcs(void) 588 { 589 struct hv_vp_assist_page *vp_ap; 590 591 if (!kvm_is_using_evmcs()) 592 return; 593 594 /* 595 * KVM should enable eVMCS if and only if all CPUs have a VP assist 596 * page, and should reject CPU onlining if eVMCS is enabled the CPU 597 * doesn't have a VP assist page allocated. 598 */ 599 vp_ap = hv_get_vp_assist_page(smp_processor_id()); 600 if (WARN_ON_ONCE(!vp_ap)) 601 return; 602 603 /* 604 * Reset everything to support using non-enlightened VMCS access later 605 * (e.g. when we reload the module with enlightened_vmcs=0) 606 */ 607 vp_ap->nested_control.features.directhypercall = 0; 608 vp_ap->current_nested_vmcs = 0; 609 vp_ap->enlighten_vmentry = 0; 610 } 611 612 #else /* IS_ENABLED(CONFIG_HYPERV) */ 613 static void hv_init_evmcs(void) {} 614 static void hv_reset_evmcs(void) {} 615 #endif /* IS_ENABLED(CONFIG_HYPERV) */ 616 617 /* 618 * Comment's format: document - errata name - stepping - processor name. 619 * Refer from 620 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp 621 */ 622 static u32 vmx_preemption_cpu_tfms[] = { 623 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ 624 0x000206E6, 625 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ 626 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ 627 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ 628 0x00020652, 629 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ 630 0x00020655, 631 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ 632 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ 633 /* 634 * 320767.pdf - AAP86 - B1 - 635 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile 636 */ 637 0x000106E5, 638 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ 639 0x000106A0, 640 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ 641 0x000106A1, 642 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ 643 0x000106A4, 644 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ 645 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ 646 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ 647 0x000106A5, 648 /* Xeon E3-1220 V2 */ 649 0x000306A8, 650 }; 651 652 static inline bool cpu_has_broken_vmx_preemption_timer(void) 653 { 654 u32 eax = cpuid_eax(0x00000001), i; 655 656 /* Clear the reserved bits */ 657 eax &= ~(0x3U << 14 | 0xfU << 28); 658 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) 659 if (eax == vmx_preemption_cpu_tfms[i]) 660 return true; 661 662 return false; 663 } 664 665 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) 666 { 667 return flexpriority_enabled && lapic_in_kernel(vcpu); 668 } 669 670 static int possible_passthrough_msr_slot(u32 msr) 671 { 672 u32 i; 673 674 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) 675 if (vmx_possible_passthrough_msrs[i] == msr) 676 return i; 677 678 return -ENOENT; 679 } 680 681 static bool is_valid_passthrough_msr(u32 msr) 682 { 683 bool r; 684 685 switch (msr) { 686 case 0x800 ... 0x8ff: 687 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */ 688 return true; 689 case MSR_IA32_RTIT_STATUS: 690 case MSR_IA32_RTIT_OUTPUT_BASE: 691 case MSR_IA32_RTIT_OUTPUT_MASK: 692 case MSR_IA32_RTIT_CR3_MATCH: 693 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 694 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */ 695 case MSR_LBR_SELECT: 696 case MSR_LBR_TOS: 697 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31: 698 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31: 699 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31: 700 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8: 701 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8: 702 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */ 703 return true; 704 } 705 706 r = possible_passthrough_msr_slot(msr) != -ENOENT; 707 708 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr); 709 710 return r; 711 } 712 713 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr) 714 { 715 int i; 716 717 i = kvm_find_user_return_msr(msr); 718 if (i >= 0) 719 return &vmx->guest_uret_msrs[i]; 720 return NULL; 721 } 722 723 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx, 724 struct vmx_uret_msr *msr, u64 data) 725 { 726 unsigned int slot = msr - vmx->guest_uret_msrs; 727 int ret = 0; 728 729 if (msr->load_into_hardware) { 730 preempt_disable(); 731 ret = kvm_set_user_return_msr(slot, data, msr->mask); 732 preempt_enable(); 733 } 734 if (!ret) 735 msr->data = data; 736 return ret; 737 } 738 739 /* 740 * Disable VMX and clear CR4.VMXE (even if VMXOFF faults) 741 * 742 * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to 743 * atomically track post-VMXON state, e.g. this may be called in NMI context. 744 * Eat all faults as all other faults on VMXOFF faults are mode related, i.e. 745 * faults are guaranteed to be due to the !post-VMXON check unless the CPU is 746 * magically in RM, VM86, compat mode, or at CPL>0. 747 */ 748 static int kvm_cpu_vmxoff(void) 749 { 750 asm goto("1: vmxoff\n\t" 751 _ASM_EXTABLE(1b, %l[fault]) 752 ::: "cc", "memory" : fault); 753 754 cr4_clear_bits(X86_CR4_VMXE); 755 return 0; 756 757 fault: 758 cr4_clear_bits(X86_CR4_VMXE); 759 return -EIO; 760 } 761 762 static void vmx_emergency_disable(void) 763 { 764 int cpu = raw_smp_processor_id(); 765 struct loaded_vmcs *v; 766 767 kvm_rebooting = true; 768 769 /* 770 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be 771 * set in task context. If this races with VMX is disabled by an NMI, 772 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to 773 * kvm_rebooting set. 774 */ 775 if (!(__read_cr4() & X86_CR4_VMXE)) 776 return; 777 778 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), 779 loaded_vmcss_on_cpu_link) 780 vmcs_clear(v->vmcs); 781 782 kvm_cpu_vmxoff(); 783 } 784 785 static void __loaded_vmcs_clear(void *arg) 786 { 787 struct loaded_vmcs *loaded_vmcs = arg; 788 int cpu = raw_smp_processor_id(); 789 790 if (loaded_vmcs->cpu != cpu) 791 return; /* vcpu migration can race with cpu offline */ 792 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) 793 per_cpu(current_vmcs, cpu) = NULL; 794 795 vmcs_clear(loaded_vmcs->vmcs); 796 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) 797 vmcs_clear(loaded_vmcs->shadow_vmcs); 798 799 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); 800 801 /* 802 * Ensure all writes to loaded_vmcs, including deleting it from its 803 * current percpu list, complete before setting loaded_vmcs->cpu to 804 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first 805 * and add loaded_vmcs to its percpu list before it's deleted from this 806 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs(). 807 */ 808 smp_wmb(); 809 810 loaded_vmcs->cpu = -1; 811 loaded_vmcs->launched = 0; 812 } 813 814 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) 815 { 816 int cpu = loaded_vmcs->cpu; 817 818 if (cpu != -1) 819 smp_call_function_single(cpu, 820 __loaded_vmcs_clear, loaded_vmcs, 1); 821 } 822 823 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, 824 unsigned field) 825 { 826 bool ret; 827 u32 mask = 1 << (seg * SEG_FIELD_NR + field); 828 829 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) { 830 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS); 831 vmx->segment_cache.bitmask = 0; 832 } 833 ret = vmx->segment_cache.bitmask & mask; 834 vmx->segment_cache.bitmask |= mask; 835 return ret; 836 } 837 838 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) 839 { 840 u16 *p = &vmx->segment_cache.seg[seg].selector; 841 842 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) 843 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); 844 return *p; 845 } 846 847 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) 848 { 849 ulong *p = &vmx->segment_cache.seg[seg].base; 850 851 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) 852 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); 853 return *p; 854 } 855 856 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) 857 { 858 u32 *p = &vmx->segment_cache.seg[seg].limit; 859 860 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) 861 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); 862 return *p; 863 } 864 865 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) 866 { 867 u32 *p = &vmx->segment_cache.seg[seg].ar; 868 869 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) 870 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); 871 return *p; 872 } 873 874 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu) 875 { 876 u32 eb; 877 878 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | 879 (1u << DB_VECTOR) | (1u << AC_VECTOR); 880 /* 881 * Guest access to VMware backdoor ports could legitimately 882 * trigger #GP because of TSS I/O permission bitmap. 883 * We intercept those #GP and allow access to them anyway 884 * as VMware does. 885 */ 886 if (enable_vmware_backdoor) 887 eb |= (1u << GP_VECTOR); 888 if ((vcpu->guest_debug & 889 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == 890 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) 891 eb |= 1u << BP_VECTOR; 892 if (to_vmx(vcpu)->rmode.vm86_active) 893 eb = ~0; 894 if (!vmx_need_pf_intercept(vcpu)) 895 eb &= ~(1u << PF_VECTOR); 896 897 /* When we are running a nested L2 guest and L1 specified for it a 898 * certain exception bitmap, we must trap the same exceptions and pass 899 * them to L1. When running L2, we will only handle the exceptions 900 * specified above if L1 did not want them. 901 */ 902 if (is_guest_mode(vcpu)) 903 eb |= get_vmcs12(vcpu)->exception_bitmap; 904 else { 905 int mask = 0, match = 0; 906 907 if (enable_ept && (eb & (1u << PF_VECTOR))) { 908 /* 909 * If EPT is enabled, #PF is currently only intercepted 910 * if MAXPHYADDR is smaller on the guest than on the 911 * host. In that case we only care about present, 912 * non-reserved faults. For vmcs02, however, PFEC_MASK 913 * and PFEC_MATCH are set in prepare_vmcs02_rare. 914 */ 915 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK; 916 match = PFERR_PRESENT_MASK; 917 } 918 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask); 919 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match); 920 } 921 922 /* 923 * Disabling xfd interception indicates that dynamic xfeatures 924 * might be used in the guest. Always trap #NM in this case 925 * to save guest xfd_err timely. 926 */ 927 if (vcpu->arch.xfd_no_write_intercept) 928 eb |= (1u << NM_VECTOR); 929 930 vmcs_write32(EXCEPTION_BITMAP, eb); 931 } 932 933 /* 934 * Check if MSR is intercepted for currently loaded MSR bitmap. 935 */ 936 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr) 937 { 938 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS)) 939 return true; 940 941 return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr); 942 } 943 944 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx) 945 { 946 unsigned int flags = 0; 947 948 if (vmx->loaded_vmcs->launched) 949 flags |= VMX_RUN_VMRESUME; 950 951 /* 952 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free 953 * to change it directly without causing a vmexit. In that case read 954 * it after vmexit and store it in vmx->spec_ctrl. 955 */ 956 if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL)) 957 flags |= VMX_RUN_SAVE_SPEC_CTRL; 958 959 return flags; 960 } 961 962 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, 963 unsigned long entry, unsigned long exit) 964 { 965 vm_entry_controls_clearbit(vmx, entry); 966 vm_exit_controls_clearbit(vmx, exit); 967 } 968 969 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr) 970 { 971 unsigned int i; 972 973 for (i = 0; i < m->nr; ++i) { 974 if (m->val[i].index == msr) 975 return i; 976 } 977 return -ENOENT; 978 } 979 980 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) 981 { 982 int i; 983 struct msr_autoload *m = &vmx->msr_autoload; 984 985 switch (msr) { 986 case MSR_EFER: 987 if (cpu_has_load_ia32_efer()) { 988 clear_atomic_switch_msr_special(vmx, 989 VM_ENTRY_LOAD_IA32_EFER, 990 VM_EXIT_LOAD_IA32_EFER); 991 return; 992 } 993 break; 994 case MSR_CORE_PERF_GLOBAL_CTRL: 995 if (cpu_has_load_perf_global_ctrl()) { 996 clear_atomic_switch_msr_special(vmx, 997 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 998 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); 999 return; 1000 } 1001 break; 1002 } 1003 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 1004 if (i < 0) 1005 goto skip_guest; 1006 --m->guest.nr; 1007 m->guest.val[i] = m->guest.val[m->guest.nr]; 1008 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 1009 1010 skip_guest: 1011 i = vmx_find_loadstore_msr_slot(&m->host, msr); 1012 if (i < 0) 1013 return; 1014 1015 --m->host.nr; 1016 m->host.val[i] = m->host.val[m->host.nr]; 1017 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 1018 } 1019 1020 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, 1021 unsigned long entry, unsigned long exit, 1022 unsigned long guest_val_vmcs, unsigned long host_val_vmcs, 1023 u64 guest_val, u64 host_val) 1024 { 1025 vmcs_write64(guest_val_vmcs, guest_val); 1026 if (host_val_vmcs != HOST_IA32_EFER) 1027 vmcs_write64(host_val_vmcs, host_val); 1028 vm_entry_controls_setbit(vmx, entry); 1029 vm_exit_controls_setbit(vmx, exit); 1030 } 1031 1032 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, 1033 u64 guest_val, u64 host_val, bool entry_only) 1034 { 1035 int i, j = 0; 1036 struct msr_autoload *m = &vmx->msr_autoload; 1037 1038 switch (msr) { 1039 case MSR_EFER: 1040 if (cpu_has_load_ia32_efer()) { 1041 add_atomic_switch_msr_special(vmx, 1042 VM_ENTRY_LOAD_IA32_EFER, 1043 VM_EXIT_LOAD_IA32_EFER, 1044 GUEST_IA32_EFER, 1045 HOST_IA32_EFER, 1046 guest_val, host_val); 1047 return; 1048 } 1049 break; 1050 case MSR_CORE_PERF_GLOBAL_CTRL: 1051 if (cpu_has_load_perf_global_ctrl()) { 1052 add_atomic_switch_msr_special(vmx, 1053 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 1054 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, 1055 GUEST_IA32_PERF_GLOBAL_CTRL, 1056 HOST_IA32_PERF_GLOBAL_CTRL, 1057 guest_val, host_val); 1058 return; 1059 } 1060 break; 1061 case MSR_IA32_PEBS_ENABLE: 1062 /* PEBS needs a quiescent period after being disabled (to write 1063 * a record). Disabling PEBS through VMX MSR swapping doesn't 1064 * provide that period, so a CPU could write host's record into 1065 * guest's memory. 1066 */ 1067 wrmsrl(MSR_IA32_PEBS_ENABLE, 0); 1068 } 1069 1070 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 1071 if (!entry_only) 1072 j = vmx_find_loadstore_msr_slot(&m->host, msr); 1073 1074 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) || 1075 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) { 1076 printk_once(KERN_WARNING "Not enough msr switch entries. " 1077 "Can't add msr %x\n", msr); 1078 return; 1079 } 1080 if (i < 0) { 1081 i = m->guest.nr++; 1082 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 1083 } 1084 m->guest.val[i].index = msr; 1085 m->guest.val[i].value = guest_val; 1086 1087 if (entry_only) 1088 return; 1089 1090 if (j < 0) { 1091 j = m->host.nr++; 1092 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 1093 } 1094 m->host.val[j].index = msr; 1095 m->host.val[j].value = host_val; 1096 } 1097 1098 static bool update_transition_efer(struct vcpu_vmx *vmx) 1099 { 1100 u64 guest_efer = vmx->vcpu.arch.efer; 1101 u64 ignore_bits = 0; 1102 int i; 1103 1104 /* Shadow paging assumes NX to be available. */ 1105 if (!enable_ept) 1106 guest_efer |= EFER_NX; 1107 1108 /* 1109 * LMA and LME handled by hardware; SCE meaningless outside long mode. 1110 */ 1111 ignore_bits |= EFER_SCE; 1112 #ifdef CONFIG_X86_64 1113 ignore_bits |= EFER_LMA | EFER_LME; 1114 /* SCE is meaningful only in long mode on Intel */ 1115 if (guest_efer & EFER_LMA) 1116 ignore_bits &= ~(u64)EFER_SCE; 1117 #endif 1118 1119 /* 1120 * On EPT, we can't emulate NX, so we must switch EFER atomically. 1121 * On CPUs that support "load IA32_EFER", always switch EFER 1122 * atomically, since it's faster than switching it manually. 1123 */ 1124 if (cpu_has_load_ia32_efer() || 1125 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { 1126 if (!(guest_efer & EFER_LMA)) 1127 guest_efer &= ~EFER_LME; 1128 if (guest_efer != host_efer) 1129 add_atomic_switch_msr(vmx, MSR_EFER, 1130 guest_efer, host_efer, false); 1131 else 1132 clear_atomic_switch_msr(vmx, MSR_EFER); 1133 return false; 1134 } 1135 1136 i = kvm_find_user_return_msr(MSR_EFER); 1137 if (i < 0) 1138 return false; 1139 1140 clear_atomic_switch_msr(vmx, MSR_EFER); 1141 1142 guest_efer &= ~ignore_bits; 1143 guest_efer |= host_efer & ignore_bits; 1144 1145 vmx->guest_uret_msrs[i].data = guest_efer; 1146 vmx->guest_uret_msrs[i].mask = ~ignore_bits; 1147 1148 return true; 1149 } 1150 1151 #ifdef CONFIG_X86_32 1152 /* 1153 * On 32-bit kernels, VM exits still load the FS and GS bases from the 1154 * VMCS rather than the segment table. KVM uses this helper to figure 1155 * out the current bases to poke them into the VMCS before entry. 1156 */ 1157 static unsigned long segment_base(u16 selector) 1158 { 1159 struct desc_struct *table; 1160 unsigned long v; 1161 1162 if (!(selector & ~SEGMENT_RPL_MASK)) 1163 return 0; 1164 1165 table = get_current_gdt_ro(); 1166 1167 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { 1168 u16 ldt_selector = kvm_read_ldt(); 1169 1170 if (!(ldt_selector & ~SEGMENT_RPL_MASK)) 1171 return 0; 1172 1173 table = (struct desc_struct *)segment_base(ldt_selector); 1174 } 1175 v = get_desc_base(&table[selector >> 3]); 1176 return v; 1177 } 1178 #endif 1179 1180 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx) 1181 { 1182 return vmx_pt_mode_is_host_guest() && 1183 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 1184 } 1185 1186 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base) 1187 { 1188 /* The base must be 128-byte aligned and a legal physical address. */ 1189 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128); 1190 } 1191 1192 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) 1193 { 1194 u32 i; 1195 1196 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1197 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1198 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1199 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1200 for (i = 0; i < addr_range; i++) { 1201 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1202 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1203 } 1204 } 1205 1206 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) 1207 { 1208 u32 i; 1209 1210 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1211 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1212 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1213 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1214 for (i = 0; i < addr_range; i++) { 1215 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1216 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1217 } 1218 } 1219 1220 static void pt_guest_enter(struct vcpu_vmx *vmx) 1221 { 1222 if (vmx_pt_mode_is_system()) 1223 return; 1224 1225 /* 1226 * GUEST_IA32_RTIT_CTL is already set in the VMCS. 1227 * Save host state before VM entry. 1228 */ 1229 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1230 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1231 wrmsrl(MSR_IA32_RTIT_CTL, 0); 1232 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1233 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1234 } 1235 } 1236 1237 static void pt_guest_exit(struct vcpu_vmx *vmx) 1238 { 1239 if (vmx_pt_mode_is_system()) 1240 return; 1241 1242 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1243 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1244 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1245 } 1246 1247 /* 1248 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest, 1249 * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary. 1250 */ 1251 if (vmx->pt_desc.host.ctl) 1252 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1253 } 1254 1255 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, 1256 unsigned long fs_base, unsigned long gs_base) 1257 { 1258 if (unlikely(fs_sel != host->fs_sel)) { 1259 if (!(fs_sel & 7)) 1260 vmcs_write16(HOST_FS_SELECTOR, fs_sel); 1261 else 1262 vmcs_write16(HOST_FS_SELECTOR, 0); 1263 host->fs_sel = fs_sel; 1264 } 1265 if (unlikely(gs_sel != host->gs_sel)) { 1266 if (!(gs_sel & 7)) 1267 vmcs_write16(HOST_GS_SELECTOR, gs_sel); 1268 else 1269 vmcs_write16(HOST_GS_SELECTOR, 0); 1270 host->gs_sel = gs_sel; 1271 } 1272 if (unlikely(fs_base != host->fs_base)) { 1273 vmcs_writel(HOST_FS_BASE, fs_base); 1274 host->fs_base = fs_base; 1275 } 1276 if (unlikely(gs_base != host->gs_base)) { 1277 vmcs_writel(HOST_GS_BASE, gs_base); 1278 host->gs_base = gs_base; 1279 } 1280 } 1281 1282 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1283 { 1284 struct vcpu_vmx *vmx = to_vmx(vcpu); 1285 struct vmcs_host_state *host_state; 1286 #ifdef CONFIG_X86_64 1287 int cpu = raw_smp_processor_id(); 1288 #endif 1289 unsigned long fs_base, gs_base; 1290 u16 fs_sel, gs_sel; 1291 int i; 1292 1293 vmx->req_immediate_exit = false; 1294 1295 /* 1296 * Note that guest MSRs to be saved/restored can also be changed 1297 * when guest state is loaded. This happens when guest transitions 1298 * to/from long-mode by setting MSR_EFER.LMA. 1299 */ 1300 if (!vmx->guest_uret_msrs_loaded) { 1301 vmx->guest_uret_msrs_loaded = true; 1302 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 1303 if (!vmx->guest_uret_msrs[i].load_into_hardware) 1304 continue; 1305 1306 kvm_set_user_return_msr(i, 1307 vmx->guest_uret_msrs[i].data, 1308 vmx->guest_uret_msrs[i].mask); 1309 } 1310 } 1311 1312 if (vmx->nested.need_vmcs12_to_shadow_sync) 1313 nested_sync_vmcs12_to_shadow(vcpu); 1314 1315 if (vmx->guest_state_loaded) 1316 return; 1317 1318 host_state = &vmx->loaded_vmcs->host_state; 1319 1320 /* 1321 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not 1322 * allow segment selectors with cpl > 0 or ti == 1. 1323 */ 1324 host_state->ldt_sel = kvm_read_ldt(); 1325 1326 #ifdef CONFIG_X86_64 1327 savesegment(ds, host_state->ds_sel); 1328 savesegment(es, host_state->es_sel); 1329 1330 gs_base = cpu_kernelmode_gs_base(cpu); 1331 if (likely(is_64bit_mm(current->mm))) { 1332 current_save_fsgs(); 1333 fs_sel = current->thread.fsindex; 1334 gs_sel = current->thread.gsindex; 1335 fs_base = current->thread.fsbase; 1336 vmx->msr_host_kernel_gs_base = current->thread.gsbase; 1337 } else { 1338 savesegment(fs, fs_sel); 1339 savesegment(gs, gs_sel); 1340 fs_base = read_msr(MSR_FS_BASE); 1341 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); 1342 } 1343 1344 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1345 #else 1346 savesegment(fs, fs_sel); 1347 savesegment(gs, gs_sel); 1348 fs_base = segment_base(fs_sel); 1349 gs_base = segment_base(gs_sel); 1350 #endif 1351 1352 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base); 1353 vmx->guest_state_loaded = true; 1354 } 1355 1356 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) 1357 { 1358 struct vmcs_host_state *host_state; 1359 1360 if (!vmx->guest_state_loaded) 1361 return; 1362 1363 host_state = &vmx->loaded_vmcs->host_state; 1364 1365 ++vmx->vcpu.stat.host_state_reload; 1366 1367 #ifdef CONFIG_X86_64 1368 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1369 #endif 1370 if (host_state->ldt_sel || (host_state->gs_sel & 7)) { 1371 kvm_load_ldt(host_state->ldt_sel); 1372 #ifdef CONFIG_X86_64 1373 load_gs_index(host_state->gs_sel); 1374 #else 1375 loadsegment(gs, host_state->gs_sel); 1376 #endif 1377 } 1378 if (host_state->fs_sel & 7) 1379 loadsegment(fs, host_state->fs_sel); 1380 #ifdef CONFIG_X86_64 1381 if (unlikely(host_state->ds_sel | host_state->es_sel)) { 1382 loadsegment(ds, host_state->ds_sel); 1383 loadsegment(es, host_state->es_sel); 1384 } 1385 #endif 1386 invalidate_tss_limit(); 1387 #ifdef CONFIG_X86_64 1388 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); 1389 #endif 1390 load_fixmap_gdt(raw_smp_processor_id()); 1391 vmx->guest_state_loaded = false; 1392 vmx->guest_uret_msrs_loaded = false; 1393 } 1394 1395 #ifdef CONFIG_X86_64 1396 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) 1397 { 1398 preempt_disable(); 1399 if (vmx->guest_state_loaded) 1400 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1401 preempt_enable(); 1402 return vmx->msr_guest_kernel_gs_base; 1403 } 1404 1405 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) 1406 { 1407 preempt_disable(); 1408 if (vmx->guest_state_loaded) 1409 wrmsrl(MSR_KERNEL_GS_BASE, data); 1410 preempt_enable(); 1411 vmx->msr_guest_kernel_gs_base = data; 1412 } 1413 #endif 1414 1415 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu, 1416 struct loaded_vmcs *buddy) 1417 { 1418 struct vcpu_vmx *vmx = to_vmx(vcpu); 1419 bool already_loaded = vmx->loaded_vmcs->cpu == cpu; 1420 struct vmcs *prev; 1421 1422 if (!already_loaded) { 1423 loaded_vmcs_clear(vmx->loaded_vmcs); 1424 local_irq_disable(); 1425 1426 /* 1427 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to 1428 * this cpu's percpu list, otherwise it may not yet be deleted 1429 * from its previous cpu's percpu list. Pairs with the 1430 * smb_wmb() in __loaded_vmcs_clear(). 1431 */ 1432 smp_rmb(); 1433 1434 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, 1435 &per_cpu(loaded_vmcss_on_cpu, cpu)); 1436 local_irq_enable(); 1437 } 1438 1439 prev = per_cpu(current_vmcs, cpu); 1440 if (prev != vmx->loaded_vmcs->vmcs) { 1441 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; 1442 vmcs_load(vmx->loaded_vmcs->vmcs); 1443 1444 /* 1445 * No indirect branch prediction barrier needed when switching 1446 * the active VMCS within a vCPU, unless IBRS is advertised to 1447 * the vCPU. To minimize the number of IBPBs executed, KVM 1448 * performs IBPB on nested VM-Exit (a single nested transition 1449 * may switch the active VMCS multiple times). 1450 */ 1451 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev)) 1452 indirect_branch_prediction_barrier(); 1453 } 1454 1455 if (!already_loaded) { 1456 void *gdt = get_current_gdt_ro(); 1457 1458 /* 1459 * Flush all EPTP/VPID contexts, the new pCPU may have stale 1460 * TLB entries from its previous association with the vCPU. 1461 */ 1462 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 1463 1464 /* 1465 * Linux uses per-cpu TSS and GDT, so set these when switching 1466 * processors. See 22.2.4. 1467 */ 1468 vmcs_writel(HOST_TR_BASE, 1469 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); 1470 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ 1471 1472 if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) { 1473 /* 22.2.3 */ 1474 vmcs_writel(HOST_IA32_SYSENTER_ESP, 1475 (unsigned long)(cpu_entry_stack(cpu) + 1)); 1476 } 1477 1478 vmx->loaded_vmcs->cpu = cpu; 1479 } 1480 } 1481 1482 /* 1483 * Switches to specified vcpu, until a matching vcpu_put(), but assumes 1484 * vcpu mutex is already taken. 1485 */ 1486 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1487 { 1488 struct vcpu_vmx *vmx = to_vmx(vcpu); 1489 1490 vmx_vcpu_load_vmcs(vcpu, cpu, NULL); 1491 1492 vmx_vcpu_pi_load(vcpu, cpu); 1493 1494 vmx->host_debugctlmsr = get_debugctlmsr(); 1495 } 1496 1497 static void vmx_vcpu_put(struct kvm_vcpu *vcpu) 1498 { 1499 vmx_vcpu_pi_put(vcpu); 1500 1501 vmx_prepare_switch_to_host(to_vmx(vcpu)); 1502 } 1503 1504 bool vmx_emulation_required(struct kvm_vcpu *vcpu) 1505 { 1506 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu); 1507 } 1508 1509 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) 1510 { 1511 struct vcpu_vmx *vmx = to_vmx(vcpu); 1512 unsigned long rflags, save_rflags; 1513 1514 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) { 1515 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1516 rflags = vmcs_readl(GUEST_RFLAGS); 1517 if (vmx->rmode.vm86_active) { 1518 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 1519 save_rflags = vmx->rmode.save_rflags; 1520 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 1521 } 1522 vmx->rflags = rflags; 1523 } 1524 return vmx->rflags; 1525 } 1526 1527 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1528 { 1529 struct vcpu_vmx *vmx = to_vmx(vcpu); 1530 unsigned long old_rflags; 1531 1532 /* 1533 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU 1534 * is an unrestricted guest in order to mark L2 as needing emulation 1535 * if L1 runs L2 as a restricted guest. 1536 */ 1537 if (is_unrestricted_guest(vcpu)) { 1538 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1539 vmx->rflags = rflags; 1540 vmcs_writel(GUEST_RFLAGS, rflags); 1541 return; 1542 } 1543 1544 old_rflags = vmx_get_rflags(vcpu); 1545 vmx->rflags = rflags; 1546 if (vmx->rmode.vm86_active) { 1547 vmx->rmode.save_rflags = rflags; 1548 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 1549 } 1550 vmcs_writel(GUEST_RFLAGS, rflags); 1551 1552 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM) 1553 vmx->emulation_required = vmx_emulation_required(vcpu); 1554 } 1555 1556 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu) 1557 { 1558 return vmx_get_rflags(vcpu) & X86_EFLAGS_IF; 1559 } 1560 1561 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) 1562 { 1563 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1564 int ret = 0; 1565 1566 if (interruptibility & GUEST_INTR_STATE_STI) 1567 ret |= KVM_X86_SHADOW_INT_STI; 1568 if (interruptibility & GUEST_INTR_STATE_MOV_SS) 1569 ret |= KVM_X86_SHADOW_INT_MOV_SS; 1570 1571 return ret; 1572 } 1573 1574 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 1575 { 1576 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1577 u32 interruptibility = interruptibility_old; 1578 1579 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); 1580 1581 if (mask & KVM_X86_SHADOW_INT_MOV_SS) 1582 interruptibility |= GUEST_INTR_STATE_MOV_SS; 1583 else if (mask & KVM_X86_SHADOW_INT_STI) 1584 interruptibility |= GUEST_INTR_STATE_STI; 1585 1586 if ((interruptibility != interruptibility_old)) 1587 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); 1588 } 1589 1590 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) 1591 { 1592 struct vcpu_vmx *vmx = to_vmx(vcpu); 1593 unsigned long value; 1594 1595 /* 1596 * Any MSR write that attempts to change bits marked reserved will 1597 * case a #GP fault. 1598 */ 1599 if (data & vmx->pt_desc.ctl_bitmask) 1600 return 1; 1601 1602 /* 1603 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will 1604 * result in a #GP unless the same write also clears TraceEn. 1605 */ 1606 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && 1607 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN)) 1608 return 1; 1609 1610 /* 1611 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit 1612 * and FabricEn would cause #GP, if 1613 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 1614 */ 1615 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && 1616 !(data & RTIT_CTL_FABRIC_EN) && 1617 !intel_pt_validate_cap(vmx->pt_desc.caps, 1618 PT_CAP_single_range_output)) 1619 return 1; 1620 1621 /* 1622 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that 1623 * utilize encodings marked reserved will cause a #GP fault. 1624 */ 1625 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); 1626 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && 1627 !test_bit((data & RTIT_CTL_MTC_RANGE) >> 1628 RTIT_CTL_MTC_RANGE_OFFSET, &value)) 1629 return 1; 1630 value = intel_pt_validate_cap(vmx->pt_desc.caps, 1631 PT_CAP_cycle_thresholds); 1632 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1633 !test_bit((data & RTIT_CTL_CYC_THRESH) >> 1634 RTIT_CTL_CYC_THRESH_OFFSET, &value)) 1635 return 1; 1636 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); 1637 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1638 !test_bit((data & RTIT_CTL_PSB_FREQ) >> 1639 RTIT_CTL_PSB_FREQ_OFFSET, &value)) 1640 return 1; 1641 1642 /* 1643 * If ADDRx_CFG is reserved or the encodings is >2 will 1644 * cause a #GP fault. 1645 */ 1646 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; 1647 if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2)) 1648 return 1; 1649 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; 1650 if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2)) 1651 return 1; 1652 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; 1653 if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2)) 1654 return 1; 1655 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; 1656 if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2)) 1657 return 1; 1658 1659 return 0; 1660 } 1661 1662 static int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 1663 void *insn, int insn_len) 1664 { 1665 /* 1666 * Emulation of instructions in SGX enclaves is impossible as RIP does 1667 * not point at the failing instruction, and even if it did, the code 1668 * stream is inaccessible. Inject #UD instead of exiting to userspace 1669 * so that guest userspace can't DoS the guest simply by triggering 1670 * emulation (enclaves are CPL3 only). 1671 */ 1672 if (to_vmx(vcpu)->exit_reason.enclave_mode) { 1673 kvm_queue_exception(vcpu, UD_VECTOR); 1674 return X86EMUL_PROPAGATE_FAULT; 1675 } 1676 return X86EMUL_CONTINUE; 1677 } 1678 1679 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 1680 { 1681 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason; 1682 unsigned long rip, orig_rip; 1683 u32 instr_len; 1684 1685 /* 1686 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on 1687 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be 1688 * set when EPT misconfig occurs. In practice, real hardware updates 1689 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors 1690 * (namely Hyper-V) don't set it due to it being undefined behavior, 1691 * i.e. we end up advancing IP with some random value. 1692 */ 1693 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) || 1694 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) { 1695 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 1696 1697 /* 1698 * Emulating an enclave's instructions isn't supported as KVM 1699 * cannot access the enclave's memory or its true RIP, e.g. the 1700 * vmcs.GUEST_RIP points at the exit point of the enclave, not 1701 * the RIP that actually triggered the VM-Exit. But, because 1702 * most instructions that cause VM-Exit will #UD in an enclave, 1703 * most instruction-based VM-Exits simply do not occur. 1704 * 1705 * There are a few exceptions, notably the debug instructions 1706 * INT1ICEBRK and INT3, as they are allowed in debug enclaves 1707 * and generate #DB/#BP as expected, which KVM might intercept. 1708 * But again, the CPU does the dirty work and saves an instr 1709 * length of zero so VMMs don't shoot themselves in the foot. 1710 * WARN if KVM tries to skip a non-zero length instruction on 1711 * a VM-Exit from an enclave. 1712 */ 1713 if (!instr_len) 1714 goto rip_updated; 1715 1716 WARN_ONCE(exit_reason.enclave_mode, 1717 "skipping instruction after SGX enclave VM-Exit"); 1718 1719 orig_rip = kvm_rip_read(vcpu); 1720 rip = orig_rip + instr_len; 1721 #ifdef CONFIG_X86_64 1722 /* 1723 * We need to mask out the high 32 bits of RIP if not in 64-bit 1724 * mode, but just finding out that we are in 64-bit mode is 1725 * quite expensive. Only do it if there was a carry. 1726 */ 1727 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu)) 1728 rip = (u32)rip; 1729 #endif 1730 kvm_rip_write(vcpu, rip); 1731 } else { 1732 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 1733 return 0; 1734 } 1735 1736 rip_updated: 1737 /* skipping an emulated instruction also counts */ 1738 vmx_set_interrupt_shadow(vcpu, 0); 1739 1740 return 1; 1741 } 1742 1743 /* 1744 * Recognizes a pending MTF VM-exit and records the nested state for later 1745 * delivery. 1746 */ 1747 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu) 1748 { 1749 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1750 struct vcpu_vmx *vmx = to_vmx(vcpu); 1751 1752 if (!is_guest_mode(vcpu)) 1753 return; 1754 1755 /* 1756 * Per the SDM, MTF takes priority over debug-trap exceptions besides 1757 * TSS T-bit traps and ICEBP (INT1). KVM doesn't emulate T-bit traps 1758 * or ICEBP (in the emulator proper), and skipping of ICEBP after an 1759 * intercepted #DB deliberately avoids single-step #DB and MTF updates 1760 * as ICEBP is higher priority than both. As instruction emulation is 1761 * completed at this point (i.e. KVM is at the instruction boundary), 1762 * any #DB exception pending delivery must be a debug-trap of lower 1763 * priority than MTF. Record the pending MTF state to be delivered in 1764 * vmx_check_nested_events(). 1765 */ 1766 if (nested_cpu_has_mtf(vmcs12) && 1767 (!vcpu->arch.exception.pending || 1768 vcpu->arch.exception.vector == DB_VECTOR) && 1769 (!vcpu->arch.exception_vmexit.pending || 1770 vcpu->arch.exception_vmexit.vector == DB_VECTOR)) { 1771 vmx->nested.mtf_pending = true; 1772 kvm_make_request(KVM_REQ_EVENT, vcpu); 1773 } else { 1774 vmx->nested.mtf_pending = false; 1775 } 1776 } 1777 1778 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu) 1779 { 1780 vmx_update_emulated_instruction(vcpu); 1781 return skip_emulated_instruction(vcpu); 1782 } 1783 1784 static void vmx_clear_hlt(struct kvm_vcpu *vcpu) 1785 { 1786 /* 1787 * Ensure that we clear the HLT state in the VMCS. We don't need to 1788 * explicitly skip the instruction because if the HLT state is set, 1789 * then the instruction is already executing and RIP has already been 1790 * advanced. 1791 */ 1792 if (kvm_hlt_in_guest(vcpu->kvm) && 1793 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) 1794 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 1795 } 1796 1797 static void vmx_inject_exception(struct kvm_vcpu *vcpu) 1798 { 1799 struct kvm_queued_exception *ex = &vcpu->arch.exception; 1800 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK; 1801 struct vcpu_vmx *vmx = to_vmx(vcpu); 1802 1803 kvm_deliver_exception_payload(vcpu, ex); 1804 1805 if (ex->has_error_code) { 1806 /* 1807 * Despite the error code being architecturally defined as 32 1808 * bits, and the VMCS field being 32 bits, Intel CPUs and thus 1809 * VMX don't actually supporting setting bits 31:16. Hardware 1810 * will (should) never provide a bogus error code, but AMD CPUs 1811 * do generate error codes with bits 31:16 set, and so KVM's 1812 * ABI lets userspace shove in arbitrary 32-bit values. Drop 1813 * the upper bits to avoid VM-Fail, losing information that 1814 * doesn't really exist is preferable to killing the VM. 1815 */ 1816 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code); 1817 intr_info |= INTR_INFO_DELIVER_CODE_MASK; 1818 } 1819 1820 if (vmx->rmode.vm86_active) { 1821 int inc_eip = 0; 1822 if (kvm_exception_is_soft(ex->vector)) 1823 inc_eip = vcpu->arch.event_exit_inst_len; 1824 kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip); 1825 return; 1826 } 1827 1828 WARN_ON_ONCE(vmx->emulation_required); 1829 1830 if (kvm_exception_is_soft(ex->vector)) { 1831 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1832 vmx->vcpu.arch.event_exit_inst_len); 1833 intr_info |= INTR_TYPE_SOFT_EXCEPTION; 1834 } else 1835 intr_info |= INTR_TYPE_HARD_EXCEPTION; 1836 1837 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); 1838 1839 vmx_clear_hlt(vcpu); 1840 } 1841 1842 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr, 1843 bool load_into_hardware) 1844 { 1845 struct vmx_uret_msr *uret_msr; 1846 1847 uret_msr = vmx_find_uret_msr(vmx, msr); 1848 if (!uret_msr) 1849 return; 1850 1851 uret_msr->load_into_hardware = load_into_hardware; 1852 } 1853 1854 /* 1855 * Configuring user return MSRs to automatically save, load, and restore MSRs 1856 * that need to be shoved into hardware when running the guest. Note, omitting 1857 * an MSR here does _NOT_ mean it's not emulated, only that it will not be 1858 * loaded into hardware when running the guest. 1859 */ 1860 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx) 1861 { 1862 #ifdef CONFIG_X86_64 1863 bool load_syscall_msrs; 1864 1865 /* 1866 * The SYSCALL MSRs are only needed on long mode guests, and only 1867 * when EFER.SCE is set. 1868 */ 1869 load_syscall_msrs = is_long_mode(&vmx->vcpu) && 1870 (vmx->vcpu.arch.efer & EFER_SCE); 1871 1872 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs); 1873 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs); 1874 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs); 1875 #endif 1876 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx)); 1877 1878 vmx_setup_uret_msr(vmx, MSR_TSC_AUX, 1879 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) || 1880 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID)); 1881 1882 /* 1883 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new 1884 * kernel and old userspace. If those guests run on a tsx=off host, do 1885 * allow guests to use TSX_CTRL, but don't change the value in hardware 1886 * so that TSX remains always disabled. 1887 */ 1888 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM)); 1889 1890 /* 1891 * The set of MSRs to load may have changed, reload MSRs before the 1892 * next VM-Enter. 1893 */ 1894 vmx->guest_uret_msrs_loaded = false; 1895 } 1896 1897 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1898 { 1899 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1900 1901 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) 1902 return vmcs12->tsc_offset; 1903 1904 return 0; 1905 } 1906 1907 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1908 { 1909 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1910 1911 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) && 1912 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING)) 1913 return vmcs12->tsc_multiplier; 1914 1915 return kvm_caps.default_tsc_scaling_ratio; 1916 } 1917 1918 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu) 1919 { 1920 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset); 1921 } 1922 1923 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu) 1924 { 1925 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio); 1926 } 1927 1928 /* 1929 * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of 1930 * guest CPUID. Note, KVM allows userspace to set "VMX in SMX" to maintain 1931 * backwards compatibility even though KVM doesn't support emulating SMX. And 1932 * because userspace set "VMX in SMX", the guest must also be allowed to set it, 1933 * e.g. if the MSR is left unlocked and the guest does a RMW operation. 1934 */ 1935 #define KVM_SUPPORTED_FEATURE_CONTROL (FEAT_CTL_LOCKED | \ 1936 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | \ 1937 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \ 1938 FEAT_CTL_SGX_LC_ENABLED | \ 1939 FEAT_CTL_SGX_ENABLED | \ 1940 FEAT_CTL_LMCE_ENABLED) 1941 1942 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx, 1943 struct msr_data *msr) 1944 { 1945 uint64_t valid_bits; 1946 1947 /* 1948 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are 1949 * exposed to the guest. 1950 */ 1951 WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits & 1952 ~KVM_SUPPORTED_FEATURE_CONTROL); 1953 1954 if (!msr->host_initiated && 1955 (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED)) 1956 return false; 1957 1958 if (msr->host_initiated) 1959 valid_bits = KVM_SUPPORTED_FEATURE_CONTROL; 1960 else 1961 valid_bits = vmx->msr_ia32_feature_control_valid_bits; 1962 1963 return !(msr->data & ~valid_bits); 1964 } 1965 1966 static int vmx_get_msr_feature(struct kvm_msr_entry *msr) 1967 { 1968 switch (msr->index) { 1969 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 1970 if (!nested) 1971 return 1; 1972 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); 1973 default: 1974 return KVM_MSR_RET_INVALID; 1975 } 1976 } 1977 1978 /* 1979 * Reads an msr value (of 'msr_info->index') into 'msr_info->data'. 1980 * Returns 0 on success, non-0 otherwise. 1981 * Assumes vcpu_load() was already called. 1982 */ 1983 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1984 { 1985 struct vcpu_vmx *vmx = to_vmx(vcpu); 1986 struct vmx_uret_msr *msr; 1987 u32 index; 1988 1989 switch (msr_info->index) { 1990 #ifdef CONFIG_X86_64 1991 case MSR_FS_BASE: 1992 msr_info->data = vmcs_readl(GUEST_FS_BASE); 1993 break; 1994 case MSR_GS_BASE: 1995 msr_info->data = vmcs_readl(GUEST_GS_BASE); 1996 break; 1997 case MSR_KERNEL_GS_BASE: 1998 msr_info->data = vmx_read_guest_kernel_gs_base(vmx); 1999 break; 2000 #endif 2001 case MSR_EFER: 2002 return kvm_get_msr_common(vcpu, msr_info); 2003 case MSR_IA32_TSX_CTRL: 2004 if (!msr_info->host_initiated && 2005 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2006 return 1; 2007 goto find_uret_msr; 2008 case MSR_IA32_UMWAIT_CONTROL: 2009 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2010 return 1; 2011 2012 msr_info->data = vmx->msr_ia32_umwait_control; 2013 break; 2014 case MSR_IA32_SPEC_CTRL: 2015 if (!msr_info->host_initiated && 2016 !guest_has_spec_ctrl_msr(vcpu)) 2017 return 1; 2018 2019 msr_info->data = to_vmx(vcpu)->spec_ctrl; 2020 break; 2021 case MSR_IA32_SYSENTER_CS: 2022 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); 2023 break; 2024 case MSR_IA32_SYSENTER_EIP: 2025 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); 2026 break; 2027 case MSR_IA32_SYSENTER_ESP: 2028 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); 2029 break; 2030 case MSR_IA32_BNDCFGS: 2031 if (!kvm_mpx_supported() || 2032 (!msr_info->host_initiated && 2033 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 2034 return 1; 2035 msr_info->data = vmcs_read64(GUEST_BNDCFGS); 2036 break; 2037 case MSR_IA32_MCG_EXT_CTL: 2038 if (!msr_info->host_initiated && 2039 !(vmx->msr_ia32_feature_control & 2040 FEAT_CTL_LMCE_ENABLED)) 2041 return 1; 2042 msr_info->data = vcpu->arch.mcg_ext_ctl; 2043 break; 2044 case MSR_IA32_FEAT_CTL: 2045 msr_info->data = vmx->msr_ia32_feature_control; 2046 break; 2047 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2048 if (!msr_info->host_initiated && 2049 !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 2050 return 1; 2051 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash 2052 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0]; 2053 break; 2054 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 2055 if (!guest_can_use(vcpu, X86_FEATURE_VMX)) 2056 return 1; 2057 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, 2058 &msr_info->data)) 2059 return 1; 2060 #ifdef CONFIG_KVM_HYPERV 2061 /* 2062 * Enlightened VMCS v1 doesn't have certain VMCS fields but 2063 * instead of just ignoring the features, different Hyper-V 2064 * versions are either trying to use them and fail or do some 2065 * sanity checking and refuse to boot. Filter all unsupported 2066 * features out. 2067 */ 2068 if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu)) 2069 nested_evmcs_filter_control_msr(vcpu, msr_info->index, 2070 &msr_info->data); 2071 #endif 2072 break; 2073 case MSR_IA32_RTIT_CTL: 2074 if (!vmx_pt_mode_is_host_guest()) 2075 return 1; 2076 msr_info->data = vmx->pt_desc.guest.ctl; 2077 break; 2078 case MSR_IA32_RTIT_STATUS: 2079 if (!vmx_pt_mode_is_host_guest()) 2080 return 1; 2081 msr_info->data = vmx->pt_desc.guest.status; 2082 break; 2083 case MSR_IA32_RTIT_CR3_MATCH: 2084 if (!vmx_pt_mode_is_host_guest() || 2085 !intel_pt_validate_cap(vmx->pt_desc.caps, 2086 PT_CAP_cr3_filtering)) 2087 return 1; 2088 msr_info->data = vmx->pt_desc.guest.cr3_match; 2089 break; 2090 case MSR_IA32_RTIT_OUTPUT_BASE: 2091 if (!vmx_pt_mode_is_host_guest() || 2092 (!intel_pt_validate_cap(vmx->pt_desc.caps, 2093 PT_CAP_topa_output) && 2094 !intel_pt_validate_cap(vmx->pt_desc.caps, 2095 PT_CAP_single_range_output))) 2096 return 1; 2097 msr_info->data = vmx->pt_desc.guest.output_base; 2098 break; 2099 case MSR_IA32_RTIT_OUTPUT_MASK: 2100 if (!vmx_pt_mode_is_host_guest() || 2101 (!intel_pt_validate_cap(vmx->pt_desc.caps, 2102 PT_CAP_topa_output) && 2103 !intel_pt_validate_cap(vmx->pt_desc.caps, 2104 PT_CAP_single_range_output))) 2105 return 1; 2106 msr_info->data = vmx->pt_desc.guest.output_mask; 2107 break; 2108 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2109 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2110 if (!vmx_pt_mode_is_host_guest() || 2111 (index >= 2 * vmx->pt_desc.num_address_ranges)) 2112 return 1; 2113 if (index % 2) 2114 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; 2115 else 2116 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; 2117 break; 2118 case MSR_IA32_DEBUGCTLMSR: 2119 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL); 2120 break; 2121 default: 2122 find_uret_msr: 2123 msr = vmx_find_uret_msr(vmx, msr_info->index); 2124 if (msr) { 2125 msr_info->data = msr->data; 2126 break; 2127 } 2128 return kvm_get_msr_common(vcpu, msr_info); 2129 } 2130 2131 return 0; 2132 } 2133 2134 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu, 2135 u64 data) 2136 { 2137 #ifdef CONFIG_X86_64 2138 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 2139 return (u32)data; 2140 #endif 2141 return (unsigned long)data; 2142 } 2143 2144 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated) 2145 { 2146 u64 debugctl = 0; 2147 2148 if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) && 2149 (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))) 2150 debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT; 2151 2152 if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) && 2153 (host_initiated || intel_pmu_lbr_is_enabled(vcpu))) 2154 debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI; 2155 2156 return debugctl; 2157 } 2158 2159 /* 2160 * Writes msr value into the appropriate "register". 2161 * Returns 0 on success, non-0 otherwise. 2162 * Assumes vcpu_load() was already called. 2163 */ 2164 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2165 { 2166 struct vcpu_vmx *vmx = to_vmx(vcpu); 2167 struct vmx_uret_msr *msr; 2168 int ret = 0; 2169 u32 msr_index = msr_info->index; 2170 u64 data = msr_info->data; 2171 u32 index; 2172 2173 switch (msr_index) { 2174 case MSR_EFER: 2175 ret = kvm_set_msr_common(vcpu, msr_info); 2176 break; 2177 #ifdef CONFIG_X86_64 2178 case MSR_FS_BASE: 2179 vmx_segment_cache_clear(vmx); 2180 vmcs_writel(GUEST_FS_BASE, data); 2181 break; 2182 case MSR_GS_BASE: 2183 vmx_segment_cache_clear(vmx); 2184 vmcs_writel(GUEST_GS_BASE, data); 2185 break; 2186 case MSR_KERNEL_GS_BASE: 2187 vmx_write_guest_kernel_gs_base(vmx, data); 2188 break; 2189 case MSR_IA32_XFD: 2190 ret = kvm_set_msr_common(vcpu, msr_info); 2191 /* 2192 * Always intercepting WRMSR could incur non-negligible 2193 * overhead given xfd might be changed frequently in 2194 * guest context switch. Disable write interception 2195 * upon the first write with a non-zero value (indicating 2196 * potential usage on dynamic xfeatures). Also update 2197 * exception bitmap to trap #NM for proper virtualization 2198 * of guest xfd_err. 2199 */ 2200 if (!ret && data) { 2201 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD, 2202 MSR_TYPE_RW); 2203 vcpu->arch.xfd_no_write_intercept = true; 2204 vmx_update_exception_bitmap(vcpu); 2205 } 2206 break; 2207 #endif 2208 case MSR_IA32_SYSENTER_CS: 2209 if (is_guest_mode(vcpu)) 2210 get_vmcs12(vcpu)->guest_sysenter_cs = data; 2211 vmcs_write32(GUEST_SYSENTER_CS, data); 2212 break; 2213 case MSR_IA32_SYSENTER_EIP: 2214 if (is_guest_mode(vcpu)) { 2215 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2216 get_vmcs12(vcpu)->guest_sysenter_eip = data; 2217 } 2218 vmcs_writel(GUEST_SYSENTER_EIP, data); 2219 break; 2220 case MSR_IA32_SYSENTER_ESP: 2221 if (is_guest_mode(vcpu)) { 2222 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2223 get_vmcs12(vcpu)->guest_sysenter_esp = data; 2224 } 2225 vmcs_writel(GUEST_SYSENTER_ESP, data); 2226 break; 2227 case MSR_IA32_DEBUGCTLMSR: { 2228 u64 invalid; 2229 2230 invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated); 2231 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) { 2232 kvm_pr_unimpl_wrmsr(vcpu, msr_index, data); 2233 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2234 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2235 } 2236 2237 if (invalid) 2238 return 1; 2239 2240 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls & 2241 VM_EXIT_SAVE_DEBUG_CONTROLS) 2242 get_vmcs12(vcpu)->guest_ia32_debugctl = data; 2243 2244 vmcs_write64(GUEST_IA32_DEBUGCTL, data); 2245 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event && 2246 (data & DEBUGCTLMSR_LBR)) 2247 intel_pmu_create_guest_lbr_event(vcpu); 2248 return 0; 2249 } 2250 case MSR_IA32_BNDCFGS: 2251 if (!kvm_mpx_supported() || 2252 (!msr_info->host_initiated && 2253 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 2254 return 1; 2255 if (is_noncanonical_address(data & PAGE_MASK, vcpu) || 2256 (data & MSR_IA32_BNDCFGS_RSVD)) 2257 return 1; 2258 2259 if (is_guest_mode(vcpu) && 2260 ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) || 2261 (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS))) 2262 get_vmcs12(vcpu)->guest_bndcfgs = data; 2263 2264 vmcs_write64(GUEST_BNDCFGS, data); 2265 break; 2266 case MSR_IA32_UMWAIT_CONTROL: 2267 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2268 return 1; 2269 2270 /* The reserved bit 1 and non-32 bit [63:32] should be zero */ 2271 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32))) 2272 return 1; 2273 2274 vmx->msr_ia32_umwait_control = data; 2275 break; 2276 case MSR_IA32_SPEC_CTRL: 2277 if (!msr_info->host_initiated && 2278 !guest_has_spec_ctrl_msr(vcpu)) 2279 return 1; 2280 2281 if (kvm_spec_ctrl_test_value(data)) 2282 return 1; 2283 2284 vmx->spec_ctrl = data; 2285 if (!data) 2286 break; 2287 2288 /* 2289 * For non-nested: 2290 * When it's written (to non-zero) for the first time, pass 2291 * it through. 2292 * 2293 * For nested: 2294 * The handling of the MSR bitmap for L2 guests is done in 2295 * nested_vmx_prepare_msr_bitmap. We should not touch the 2296 * vmcs02.msr_bitmap here since it gets completely overwritten 2297 * in the merging. We update the vmcs01 here for L1 as well 2298 * since it will end up touching the MSR anyway now. 2299 */ 2300 vmx_disable_intercept_for_msr(vcpu, 2301 MSR_IA32_SPEC_CTRL, 2302 MSR_TYPE_RW); 2303 break; 2304 case MSR_IA32_TSX_CTRL: 2305 if (!msr_info->host_initiated && 2306 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2307 return 1; 2308 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR)) 2309 return 1; 2310 goto find_uret_msr; 2311 case MSR_IA32_CR_PAT: 2312 ret = kvm_set_msr_common(vcpu, msr_info); 2313 if (ret) 2314 break; 2315 2316 if (is_guest_mode(vcpu) && 2317 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) 2318 get_vmcs12(vcpu)->guest_ia32_pat = data; 2319 2320 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 2321 vmcs_write64(GUEST_IA32_PAT, data); 2322 break; 2323 case MSR_IA32_MCG_EXT_CTL: 2324 if ((!msr_info->host_initiated && 2325 !(to_vmx(vcpu)->msr_ia32_feature_control & 2326 FEAT_CTL_LMCE_ENABLED)) || 2327 (data & ~MCG_EXT_CTL_LMCE_EN)) 2328 return 1; 2329 vcpu->arch.mcg_ext_ctl = data; 2330 break; 2331 case MSR_IA32_FEAT_CTL: 2332 if (!is_vmx_feature_control_msr_valid(vmx, msr_info)) 2333 return 1; 2334 2335 vmx->msr_ia32_feature_control = data; 2336 if (msr_info->host_initiated && data == 0) 2337 vmx_leave_nested(vcpu); 2338 2339 /* SGX may be enabled/disabled by guest's firmware */ 2340 vmx_write_encls_bitmap(vcpu, NULL); 2341 break; 2342 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2343 /* 2344 * On real hardware, the LE hash MSRs are writable before 2345 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX), 2346 * at which point SGX related bits in IA32_FEATURE_CONTROL 2347 * become writable. 2348 * 2349 * KVM does not emulate SGX activation for simplicity, so 2350 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL 2351 * is unlocked. This is technically not architectural 2352 * behavior, but it's close enough. 2353 */ 2354 if (!msr_info->host_initiated && 2355 (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) || 2356 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) && 2357 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED)))) 2358 return 1; 2359 vmx->msr_ia32_sgxlepubkeyhash 2360 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data; 2361 break; 2362 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 2363 if (!msr_info->host_initiated) 2364 return 1; /* they are read-only */ 2365 if (!guest_can_use(vcpu, X86_FEATURE_VMX)) 2366 return 1; 2367 return vmx_set_vmx_msr(vcpu, msr_index, data); 2368 case MSR_IA32_RTIT_CTL: 2369 if (!vmx_pt_mode_is_host_guest() || 2370 vmx_rtit_ctl_check(vcpu, data) || 2371 vmx->nested.vmxon) 2372 return 1; 2373 vmcs_write64(GUEST_IA32_RTIT_CTL, data); 2374 vmx->pt_desc.guest.ctl = data; 2375 pt_update_intercept_for_msr(vcpu); 2376 break; 2377 case MSR_IA32_RTIT_STATUS: 2378 if (!pt_can_write_msr(vmx)) 2379 return 1; 2380 if (data & MSR_IA32_RTIT_STATUS_MASK) 2381 return 1; 2382 vmx->pt_desc.guest.status = data; 2383 break; 2384 case MSR_IA32_RTIT_CR3_MATCH: 2385 if (!pt_can_write_msr(vmx)) 2386 return 1; 2387 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2388 PT_CAP_cr3_filtering)) 2389 return 1; 2390 vmx->pt_desc.guest.cr3_match = data; 2391 break; 2392 case MSR_IA32_RTIT_OUTPUT_BASE: 2393 if (!pt_can_write_msr(vmx)) 2394 return 1; 2395 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2396 PT_CAP_topa_output) && 2397 !intel_pt_validate_cap(vmx->pt_desc.caps, 2398 PT_CAP_single_range_output)) 2399 return 1; 2400 if (!pt_output_base_valid(vcpu, data)) 2401 return 1; 2402 vmx->pt_desc.guest.output_base = data; 2403 break; 2404 case MSR_IA32_RTIT_OUTPUT_MASK: 2405 if (!pt_can_write_msr(vmx)) 2406 return 1; 2407 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2408 PT_CAP_topa_output) && 2409 !intel_pt_validate_cap(vmx->pt_desc.caps, 2410 PT_CAP_single_range_output)) 2411 return 1; 2412 vmx->pt_desc.guest.output_mask = data; 2413 break; 2414 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2415 if (!pt_can_write_msr(vmx)) 2416 return 1; 2417 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2418 if (index >= 2 * vmx->pt_desc.num_address_ranges) 2419 return 1; 2420 if (is_noncanonical_address(data, vcpu)) 2421 return 1; 2422 if (index % 2) 2423 vmx->pt_desc.guest.addr_b[index / 2] = data; 2424 else 2425 vmx->pt_desc.guest.addr_a[index / 2] = data; 2426 break; 2427 case MSR_IA32_PERF_CAPABILITIES: 2428 if (data && !vcpu_to_pmu(vcpu)->version) 2429 return 1; 2430 if (data & PMU_CAP_LBR_FMT) { 2431 if ((data & PMU_CAP_LBR_FMT) != 2432 (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT)) 2433 return 1; 2434 if (!cpuid_model_is_consistent(vcpu)) 2435 return 1; 2436 } 2437 if (data & PERF_CAP_PEBS_FORMAT) { 2438 if ((data & PERF_CAP_PEBS_MASK) != 2439 (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK)) 2440 return 1; 2441 if (!guest_cpuid_has(vcpu, X86_FEATURE_DS)) 2442 return 1; 2443 if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64)) 2444 return 1; 2445 if (!cpuid_model_is_consistent(vcpu)) 2446 return 1; 2447 } 2448 ret = kvm_set_msr_common(vcpu, msr_info); 2449 break; 2450 2451 default: 2452 find_uret_msr: 2453 msr = vmx_find_uret_msr(vmx, msr_index); 2454 if (msr) 2455 ret = vmx_set_guest_uret_msr(vmx, msr, data); 2456 else 2457 ret = kvm_set_msr_common(vcpu, msr_info); 2458 } 2459 2460 /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */ 2461 if (msr_index == MSR_IA32_ARCH_CAPABILITIES) 2462 vmx_update_fb_clear_dis(vcpu, vmx); 2463 2464 return ret; 2465 } 2466 2467 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 2468 { 2469 unsigned long guest_owned_bits; 2470 2471 kvm_register_mark_available(vcpu, reg); 2472 2473 switch (reg) { 2474 case VCPU_REGS_RSP: 2475 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); 2476 break; 2477 case VCPU_REGS_RIP: 2478 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); 2479 break; 2480 case VCPU_EXREG_PDPTR: 2481 if (enable_ept) 2482 ept_save_pdptrs(vcpu); 2483 break; 2484 case VCPU_EXREG_CR0: 2485 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; 2486 2487 vcpu->arch.cr0 &= ~guest_owned_bits; 2488 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits; 2489 break; 2490 case VCPU_EXREG_CR3: 2491 /* 2492 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's 2493 * CR3 is loaded into hardware, not the guest's CR3. 2494 */ 2495 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING)) 2496 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); 2497 break; 2498 case VCPU_EXREG_CR4: 2499 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; 2500 2501 vcpu->arch.cr4 &= ~guest_owned_bits; 2502 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits; 2503 break; 2504 default: 2505 KVM_BUG_ON(1, vcpu->kvm); 2506 break; 2507 } 2508 } 2509 2510 /* 2511 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID 2512 * directly instead of going through cpu_has(), to ensure KVM is trapping 2513 * ENCLS whenever it's supported in hardware. It does not matter whether 2514 * the host OS supports or has enabled SGX. 2515 */ 2516 static bool cpu_has_sgx(void) 2517 { 2518 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0)); 2519 } 2520 2521 /* 2522 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they 2523 * can't be used due to errata where VM Exit may incorrectly clear 2524 * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the 2525 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. 2526 */ 2527 static bool cpu_has_perf_global_ctrl_bug(void) 2528 { 2529 if (boot_cpu_data.x86 == 0x6) { 2530 switch (boot_cpu_data.x86_model) { 2531 case INTEL_FAM6_NEHALEM_EP: /* AAK155 */ 2532 case INTEL_FAM6_NEHALEM: /* AAP115 */ 2533 case INTEL_FAM6_WESTMERE: /* AAT100 */ 2534 case INTEL_FAM6_WESTMERE_EP: /* BC86,AAY89,BD102 */ 2535 case INTEL_FAM6_NEHALEM_EX: /* BA97 */ 2536 return true; 2537 default: 2538 break; 2539 } 2540 } 2541 2542 return false; 2543 } 2544 2545 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result) 2546 { 2547 u32 vmx_msr_low, vmx_msr_high; 2548 u32 ctl = ctl_min | ctl_opt; 2549 2550 rdmsr(msr, vmx_msr_low, vmx_msr_high); 2551 2552 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ 2553 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ 2554 2555 /* Ensure minimum (required) set of control bits are supported. */ 2556 if (ctl_min & ~ctl) 2557 return -EIO; 2558 2559 *result = ctl; 2560 return 0; 2561 } 2562 2563 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr) 2564 { 2565 u64 allowed; 2566 2567 rdmsrl(msr, allowed); 2568 2569 return ctl_opt & allowed; 2570 } 2571 2572 static int setup_vmcs_config(struct vmcs_config *vmcs_conf, 2573 struct vmx_capability *vmx_cap) 2574 { 2575 u32 vmx_msr_low, vmx_msr_high; 2576 u32 _pin_based_exec_control = 0; 2577 u32 _cpu_based_exec_control = 0; 2578 u32 _cpu_based_2nd_exec_control = 0; 2579 u64 _cpu_based_3rd_exec_control = 0; 2580 u32 _vmexit_control = 0; 2581 u32 _vmentry_control = 0; 2582 u64 misc_msr; 2583 int i; 2584 2585 /* 2586 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory. 2587 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always 2588 * intercepts writes to PAT and EFER, i.e. never enables those controls. 2589 */ 2590 struct { 2591 u32 entry_control; 2592 u32 exit_control; 2593 } const vmcs_entry_exit_pairs[] = { 2594 { VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL }, 2595 { VM_ENTRY_LOAD_IA32_PAT, VM_EXIT_LOAD_IA32_PAT }, 2596 { VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER }, 2597 { VM_ENTRY_LOAD_BNDCFGS, VM_EXIT_CLEAR_BNDCFGS }, 2598 { VM_ENTRY_LOAD_IA32_RTIT_CTL, VM_EXIT_CLEAR_IA32_RTIT_CTL }, 2599 }; 2600 2601 memset(vmcs_conf, 0, sizeof(*vmcs_conf)); 2602 2603 if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL, 2604 KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL, 2605 MSR_IA32_VMX_PROCBASED_CTLS, 2606 &_cpu_based_exec_control)) 2607 return -EIO; 2608 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { 2609 if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL, 2610 KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL, 2611 MSR_IA32_VMX_PROCBASED_CTLS2, 2612 &_cpu_based_2nd_exec_control)) 2613 return -EIO; 2614 } 2615 #ifndef CONFIG_X86_64 2616 if (!(_cpu_based_2nd_exec_control & 2617 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 2618 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; 2619 #endif 2620 2621 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2622 _cpu_based_2nd_exec_control &= ~( 2623 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2624 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2625 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 2626 2627 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, 2628 &vmx_cap->ept, &vmx_cap->vpid); 2629 2630 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) && 2631 vmx_cap->ept) { 2632 pr_warn_once("EPT CAP should not exist if not support " 2633 "1-setting enable EPT VM-execution control\n"); 2634 2635 if (error_on_inconsistent_vmcs_config) 2636 return -EIO; 2637 2638 vmx_cap->ept = 0; 2639 } 2640 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && 2641 vmx_cap->vpid) { 2642 pr_warn_once("VPID CAP should not exist if not support " 2643 "1-setting enable VPID VM-execution control\n"); 2644 2645 if (error_on_inconsistent_vmcs_config) 2646 return -EIO; 2647 2648 vmx_cap->vpid = 0; 2649 } 2650 2651 if (!cpu_has_sgx()) 2652 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING; 2653 2654 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS) 2655 _cpu_based_3rd_exec_control = 2656 adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL, 2657 MSR_IA32_VMX_PROCBASED_CTLS3); 2658 2659 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS, 2660 KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS, 2661 MSR_IA32_VMX_EXIT_CTLS, 2662 &_vmexit_control)) 2663 return -EIO; 2664 2665 if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL, 2666 KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL, 2667 MSR_IA32_VMX_PINBASED_CTLS, 2668 &_pin_based_exec_control)) 2669 return -EIO; 2670 2671 if (cpu_has_broken_vmx_preemption_timer()) 2672 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 2673 if (!(_cpu_based_2nd_exec_control & 2674 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) 2675 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; 2676 2677 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS, 2678 KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS, 2679 MSR_IA32_VMX_ENTRY_CTLS, 2680 &_vmentry_control)) 2681 return -EIO; 2682 2683 for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) { 2684 u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control; 2685 u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control; 2686 2687 if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl)) 2688 continue; 2689 2690 pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n", 2691 _vmentry_control & n_ctrl, _vmexit_control & x_ctrl); 2692 2693 if (error_on_inconsistent_vmcs_config) 2694 return -EIO; 2695 2696 _vmentry_control &= ~n_ctrl; 2697 _vmexit_control &= ~x_ctrl; 2698 } 2699 2700 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); 2701 2702 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ 2703 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) 2704 return -EIO; 2705 2706 #ifdef CONFIG_X86_64 2707 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ 2708 if (vmx_msr_high & (1u<<16)) 2709 return -EIO; 2710 #endif 2711 2712 /* Require Write-Back (WB) memory type for VMCS accesses. */ 2713 if (((vmx_msr_high >> 18) & 15) != 6) 2714 return -EIO; 2715 2716 rdmsrl(MSR_IA32_VMX_MISC, misc_msr); 2717 2718 vmcs_conf->size = vmx_msr_high & 0x1fff; 2719 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; 2720 2721 vmcs_conf->revision_id = vmx_msr_low; 2722 2723 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; 2724 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; 2725 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; 2726 vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control; 2727 vmcs_conf->vmexit_ctrl = _vmexit_control; 2728 vmcs_conf->vmentry_ctrl = _vmentry_control; 2729 vmcs_conf->misc = misc_msr; 2730 2731 #if IS_ENABLED(CONFIG_HYPERV) 2732 if (enlightened_vmcs) 2733 evmcs_sanitize_exec_ctrls(vmcs_conf); 2734 #endif 2735 2736 return 0; 2737 } 2738 2739 static bool __kvm_is_vmx_supported(void) 2740 { 2741 int cpu = smp_processor_id(); 2742 2743 if (!(cpuid_ecx(1) & feature_bit(VMX))) { 2744 pr_err("VMX not supported by CPU %d\n", cpu); 2745 return false; 2746 } 2747 2748 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 2749 !this_cpu_has(X86_FEATURE_VMX)) { 2750 pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu); 2751 return false; 2752 } 2753 2754 return true; 2755 } 2756 2757 static bool kvm_is_vmx_supported(void) 2758 { 2759 bool supported; 2760 2761 migrate_disable(); 2762 supported = __kvm_is_vmx_supported(); 2763 migrate_enable(); 2764 2765 return supported; 2766 } 2767 2768 static int vmx_check_processor_compat(void) 2769 { 2770 int cpu = raw_smp_processor_id(); 2771 struct vmcs_config vmcs_conf; 2772 struct vmx_capability vmx_cap; 2773 2774 if (!__kvm_is_vmx_supported()) 2775 return -EIO; 2776 2777 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) { 2778 pr_err("Failed to setup VMCS config on CPU %d\n", cpu); 2779 return -EIO; 2780 } 2781 if (nested) 2782 nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept); 2783 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) { 2784 pr_err("Inconsistent VMCS config on CPU %d\n", cpu); 2785 return -EIO; 2786 } 2787 return 0; 2788 } 2789 2790 static int kvm_cpu_vmxon(u64 vmxon_pointer) 2791 { 2792 u64 msr; 2793 2794 cr4_set_bits(X86_CR4_VMXE); 2795 2796 asm goto("1: vmxon %[vmxon_pointer]\n\t" 2797 _ASM_EXTABLE(1b, %l[fault]) 2798 : : [vmxon_pointer] "m"(vmxon_pointer) 2799 : : fault); 2800 return 0; 2801 2802 fault: 2803 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n", 2804 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr); 2805 cr4_clear_bits(X86_CR4_VMXE); 2806 2807 return -EFAULT; 2808 } 2809 2810 static int vmx_hardware_enable(void) 2811 { 2812 int cpu = raw_smp_processor_id(); 2813 u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); 2814 int r; 2815 2816 if (cr4_read_shadow() & X86_CR4_VMXE) 2817 return -EBUSY; 2818 2819 /* 2820 * This can happen if we hot-added a CPU but failed to allocate 2821 * VP assist page for it. 2822 */ 2823 if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu)) 2824 return -EFAULT; 2825 2826 intel_pt_handle_vmx(1); 2827 2828 r = kvm_cpu_vmxon(phys_addr); 2829 if (r) { 2830 intel_pt_handle_vmx(0); 2831 return r; 2832 } 2833 2834 if (enable_ept) 2835 ept_sync_global(); 2836 2837 return 0; 2838 } 2839 2840 static void vmclear_local_loaded_vmcss(void) 2841 { 2842 int cpu = raw_smp_processor_id(); 2843 struct loaded_vmcs *v, *n; 2844 2845 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), 2846 loaded_vmcss_on_cpu_link) 2847 __loaded_vmcs_clear(v); 2848 } 2849 2850 static void vmx_hardware_disable(void) 2851 { 2852 vmclear_local_loaded_vmcss(); 2853 2854 if (kvm_cpu_vmxoff()) 2855 kvm_spurious_fault(); 2856 2857 hv_reset_evmcs(); 2858 2859 intel_pt_handle_vmx(0); 2860 } 2861 2862 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags) 2863 { 2864 int node = cpu_to_node(cpu); 2865 struct page *pages; 2866 struct vmcs *vmcs; 2867 2868 pages = __alloc_pages_node(node, flags, 0); 2869 if (!pages) 2870 return NULL; 2871 vmcs = page_address(pages); 2872 memset(vmcs, 0, vmcs_config.size); 2873 2874 /* KVM supports Enlightened VMCS v1 only */ 2875 if (kvm_is_using_evmcs()) 2876 vmcs->hdr.revision_id = KVM_EVMCS_VERSION; 2877 else 2878 vmcs->hdr.revision_id = vmcs_config.revision_id; 2879 2880 if (shadow) 2881 vmcs->hdr.shadow_vmcs = 1; 2882 return vmcs; 2883 } 2884 2885 void free_vmcs(struct vmcs *vmcs) 2886 { 2887 free_page((unsigned long)vmcs); 2888 } 2889 2890 /* 2891 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded 2892 */ 2893 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2894 { 2895 if (!loaded_vmcs->vmcs) 2896 return; 2897 loaded_vmcs_clear(loaded_vmcs); 2898 free_vmcs(loaded_vmcs->vmcs); 2899 loaded_vmcs->vmcs = NULL; 2900 if (loaded_vmcs->msr_bitmap) 2901 free_page((unsigned long)loaded_vmcs->msr_bitmap); 2902 WARN_ON(loaded_vmcs->shadow_vmcs != NULL); 2903 } 2904 2905 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2906 { 2907 loaded_vmcs->vmcs = alloc_vmcs(false); 2908 if (!loaded_vmcs->vmcs) 2909 return -ENOMEM; 2910 2911 vmcs_clear(loaded_vmcs->vmcs); 2912 2913 loaded_vmcs->shadow_vmcs = NULL; 2914 loaded_vmcs->hv_timer_soft_disabled = false; 2915 loaded_vmcs->cpu = -1; 2916 loaded_vmcs->launched = 0; 2917 2918 if (cpu_has_vmx_msr_bitmap()) { 2919 loaded_vmcs->msr_bitmap = (unsigned long *) 2920 __get_free_page(GFP_KERNEL_ACCOUNT); 2921 if (!loaded_vmcs->msr_bitmap) 2922 goto out_vmcs; 2923 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); 2924 } 2925 2926 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); 2927 memset(&loaded_vmcs->controls_shadow, 0, 2928 sizeof(struct vmcs_controls_shadow)); 2929 2930 return 0; 2931 2932 out_vmcs: 2933 free_loaded_vmcs(loaded_vmcs); 2934 return -ENOMEM; 2935 } 2936 2937 static void free_kvm_area(void) 2938 { 2939 int cpu; 2940 2941 for_each_possible_cpu(cpu) { 2942 free_vmcs(per_cpu(vmxarea, cpu)); 2943 per_cpu(vmxarea, cpu) = NULL; 2944 } 2945 } 2946 2947 static __init int alloc_kvm_area(void) 2948 { 2949 int cpu; 2950 2951 for_each_possible_cpu(cpu) { 2952 struct vmcs *vmcs; 2953 2954 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL); 2955 if (!vmcs) { 2956 free_kvm_area(); 2957 return -ENOMEM; 2958 } 2959 2960 /* 2961 * When eVMCS is enabled, alloc_vmcs_cpu() sets 2962 * vmcs->revision_id to KVM_EVMCS_VERSION instead of 2963 * revision_id reported by MSR_IA32_VMX_BASIC. 2964 * 2965 * However, even though not explicitly documented by 2966 * TLFS, VMXArea passed as VMXON argument should 2967 * still be marked with revision_id reported by 2968 * physical CPU. 2969 */ 2970 if (kvm_is_using_evmcs()) 2971 vmcs->hdr.revision_id = vmcs_config.revision_id; 2972 2973 per_cpu(vmxarea, cpu) = vmcs; 2974 } 2975 return 0; 2976 } 2977 2978 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, 2979 struct kvm_segment *save) 2980 { 2981 if (!emulate_invalid_guest_state) { 2982 /* 2983 * CS and SS RPL should be equal during guest entry according 2984 * to VMX spec, but in reality it is not always so. Since vcpu 2985 * is in the middle of the transition from real mode to 2986 * protected mode it is safe to assume that RPL 0 is a good 2987 * default value. 2988 */ 2989 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) 2990 save->selector &= ~SEGMENT_RPL_MASK; 2991 save->dpl = save->selector & SEGMENT_RPL_MASK; 2992 save->s = 1; 2993 } 2994 __vmx_set_segment(vcpu, save, seg); 2995 } 2996 2997 static void enter_pmode(struct kvm_vcpu *vcpu) 2998 { 2999 unsigned long flags; 3000 struct vcpu_vmx *vmx = to_vmx(vcpu); 3001 3002 /* 3003 * Update real mode segment cache. It may be not up-to-date if segment 3004 * register was written while vcpu was in a guest mode. 3005 */ 3006 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 3007 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 3008 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 3009 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 3010 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 3011 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 3012 3013 vmx->rmode.vm86_active = 0; 3014 3015 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 3016 3017 flags = vmcs_readl(GUEST_RFLAGS); 3018 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 3019 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 3020 vmcs_writel(GUEST_RFLAGS, flags); 3021 3022 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | 3023 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); 3024 3025 vmx_update_exception_bitmap(vcpu); 3026 3027 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 3028 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 3029 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 3030 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 3031 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 3032 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 3033 } 3034 3035 static void fix_rmode_seg(int seg, struct kvm_segment *save) 3036 { 3037 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3038 struct kvm_segment var = *save; 3039 3040 var.dpl = 0x3; 3041 if (seg == VCPU_SREG_CS) 3042 var.type = 0x3; 3043 3044 if (!emulate_invalid_guest_state) { 3045 var.selector = var.base >> 4; 3046 var.base = var.base & 0xffff0; 3047 var.limit = 0xffff; 3048 var.g = 0; 3049 var.db = 0; 3050 var.present = 1; 3051 var.s = 1; 3052 var.l = 0; 3053 var.unusable = 0; 3054 var.type = 0x3; 3055 var.avl = 0; 3056 if (save->base & 0xf) 3057 pr_warn_once("segment base is not paragraph aligned " 3058 "when entering protected mode (seg=%d)", seg); 3059 } 3060 3061 vmcs_write16(sf->selector, var.selector); 3062 vmcs_writel(sf->base, var.base); 3063 vmcs_write32(sf->limit, var.limit); 3064 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); 3065 } 3066 3067 static void enter_rmode(struct kvm_vcpu *vcpu) 3068 { 3069 unsigned long flags; 3070 struct vcpu_vmx *vmx = to_vmx(vcpu); 3071 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); 3072 3073 /* 3074 * KVM should never use VM86 to virtualize Real Mode when L2 is active, 3075 * as using VM86 is unnecessary if unrestricted guest is enabled, and 3076 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0 3077 * should VM-Fail and KVM should reject userspace attempts to stuff 3078 * CR0.PG=0 when L2 is active. 3079 */ 3080 WARN_ON_ONCE(is_guest_mode(vcpu)); 3081 3082 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 3083 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 3084 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 3085 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 3086 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 3087 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 3088 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 3089 3090 vmx->rmode.vm86_active = 1; 3091 3092 vmx_segment_cache_clear(vmx); 3093 3094 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); 3095 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); 3096 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 3097 3098 flags = vmcs_readl(GUEST_RFLAGS); 3099 vmx->rmode.save_rflags = flags; 3100 3101 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 3102 3103 vmcs_writel(GUEST_RFLAGS, flags); 3104 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); 3105 vmx_update_exception_bitmap(vcpu); 3106 3107 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 3108 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 3109 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 3110 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 3111 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 3112 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 3113 } 3114 3115 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) 3116 { 3117 struct vcpu_vmx *vmx = to_vmx(vcpu); 3118 3119 /* Nothing to do if hardware doesn't support EFER. */ 3120 if (!vmx_find_uret_msr(vmx, MSR_EFER)) 3121 return 0; 3122 3123 vcpu->arch.efer = efer; 3124 #ifdef CONFIG_X86_64 3125 if (efer & EFER_LMA) 3126 vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE); 3127 else 3128 vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE); 3129 #else 3130 if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm)) 3131 return 1; 3132 #endif 3133 3134 vmx_setup_uret_msrs(vmx); 3135 return 0; 3136 } 3137 3138 #ifdef CONFIG_X86_64 3139 3140 static void enter_lmode(struct kvm_vcpu *vcpu) 3141 { 3142 u32 guest_tr_ar; 3143 3144 vmx_segment_cache_clear(to_vmx(vcpu)); 3145 3146 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); 3147 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { 3148 pr_debug_ratelimited("%s: tss fixup for long mode. \n", 3149 __func__); 3150 vmcs_write32(GUEST_TR_AR_BYTES, 3151 (guest_tr_ar & ~VMX_AR_TYPE_MASK) 3152 | VMX_AR_TYPE_BUSY_64_TSS); 3153 } 3154 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); 3155 } 3156 3157 static void exit_lmode(struct kvm_vcpu *vcpu) 3158 { 3159 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); 3160 } 3161 3162 #endif 3163 3164 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu) 3165 { 3166 struct vcpu_vmx *vmx = to_vmx(vcpu); 3167 3168 /* 3169 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as 3170 * the CPU is not required to invalidate guest-physical mappings on 3171 * VM-Entry, even if VPID is disabled. Guest-physical mappings are 3172 * associated with the root EPT structure and not any particular VPID 3173 * (INVVPID also isn't required to invalidate guest-physical mappings). 3174 */ 3175 if (enable_ept) { 3176 ept_sync_global(); 3177 } else if (enable_vpid) { 3178 if (cpu_has_vmx_invvpid_global()) { 3179 vpid_sync_vcpu_global(); 3180 } else { 3181 vpid_sync_vcpu_single(vmx->vpid); 3182 vpid_sync_vcpu_single(vmx->nested.vpid02); 3183 } 3184 } 3185 } 3186 3187 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu) 3188 { 3189 if (is_guest_mode(vcpu)) 3190 return nested_get_vpid02(vcpu); 3191 return to_vmx(vcpu)->vpid; 3192 } 3193 3194 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu) 3195 { 3196 struct kvm_mmu *mmu = vcpu->arch.mmu; 3197 u64 root_hpa = mmu->root.hpa; 3198 3199 /* No flush required if the current context is invalid. */ 3200 if (!VALID_PAGE(root_hpa)) 3201 return; 3202 3203 if (enable_ept) 3204 ept_sync_context(construct_eptp(vcpu, root_hpa, 3205 mmu->root_role.level)); 3206 else 3207 vpid_sync_context(vmx_get_current_vpid(vcpu)); 3208 } 3209 3210 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) 3211 { 3212 /* 3213 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in 3214 * vmx_flush_tlb_guest() for an explanation of why this is ok. 3215 */ 3216 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr); 3217 } 3218 3219 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu) 3220 { 3221 /* 3222 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a 3223 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are 3224 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is 3225 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed), 3226 * i.e. no explicit INVVPID is necessary. 3227 */ 3228 vpid_sync_context(vmx_get_current_vpid(vcpu)); 3229 } 3230 3231 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu) 3232 { 3233 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 3234 3235 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR)) 3236 return; 3237 3238 if (is_pae_paging(vcpu)) { 3239 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); 3240 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); 3241 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); 3242 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); 3243 } 3244 } 3245 3246 void ept_save_pdptrs(struct kvm_vcpu *vcpu) 3247 { 3248 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 3249 3250 if (WARN_ON_ONCE(!is_pae_paging(vcpu))) 3251 return; 3252 3253 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); 3254 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); 3255 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); 3256 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); 3257 3258 kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR); 3259 } 3260 3261 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \ 3262 CPU_BASED_CR3_STORE_EXITING) 3263 3264 static bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 3265 { 3266 if (is_guest_mode(vcpu)) 3267 return nested_guest_cr0_valid(vcpu, cr0); 3268 3269 if (to_vmx(vcpu)->nested.vmxon) 3270 return nested_host_cr0_valid(vcpu, cr0); 3271 3272 return true; 3273 } 3274 3275 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 3276 { 3277 struct vcpu_vmx *vmx = to_vmx(vcpu); 3278 unsigned long hw_cr0, old_cr0_pg; 3279 u32 tmp; 3280 3281 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG); 3282 3283 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); 3284 if (enable_unrestricted_guest) 3285 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; 3286 else { 3287 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; 3288 if (!enable_ept) 3289 hw_cr0 |= X86_CR0_WP; 3290 3291 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) 3292 enter_pmode(vcpu); 3293 3294 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) 3295 enter_rmode(vcpu); 3296 } 3297 3298 vmcs_writel(CR0_READ_SHADOW, cr0); 3299 vmcs_writel(GUEST_CR0, hw_cr0); 3300 vcpu->arch.cr0 = cr0; 3301 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0); 3302 3303 #ifdef CONFIG_X86_64 3304 if (vcpu->arch.efer & EFER_LME) { 3305 if (!old_cr0_pg && (cr0 & X86_CR0_PG)) 3306 enter_lmode(vcpu); 3307 else if (old_cr0_pg && !(cr0 & X86_CR0_PG)) 3308 exit_lmode(vcpu); 3309 } 3310 #endif 3311 3312 if (enable_ept && !enable_unrestricted_guest) { 3313 /* 3314 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If 3315 * the below code _enables_ CR3 exiting, vmx_cache_reg() will 3316 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks 3317 * KVM's CR3 is installed. 3318 */ 3319 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3)) 3320 vmx_cache_reg(vcpu, VCPU_EXREG_CR3); 3321 3322 /* 3323 * When running with EPT but not unrestricted guest, KVM must 3324 * intercept CR3 accesses when paging is _disabled_. This is 3325 * necessary because restricted guests can't actually run with 3326 * paging disabled, and so KVM stuffs its own CR3 in order to 3327 * run the guest when identity mapped page tables. 3328 * 3329 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the 3330 * update, it may be stale with respect to CR3 interception, 3331 * e.g. after nested VM-Enter. 3332 * 3333 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or 3334 * stores to forward them to L1, even if KVM does not need to 3335 * intercept them to preserve its identity mapped page tables. 3336 */ 3337 if (!(cr0 & X86_CR0_PG)) { 3338 exec_controls_setbit(vmx, CR3_EXITING_BITS); 3339 } else if (!is_guest_mode(vcpu)) { 3340 exec_controls_clearbit(vmx, CR3_EXITING_BITS); 3341 } else { 3342 tmp = exec_controls_get(vmx); 3343 tmp &= ~CR3_EXITING_BITS; 3344 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS; 3345 exec_controls_set(vmx, tmp); 3346 } 3347 3348 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */ 3349 if ((old_cr0_pg ^ cr0) & X86_CR0_PG) 3350 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 3351 3352 /* 3353 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but 3354 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG. 3355 */ 3356 if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG)) 3357 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 3358 } 3359 3360 /* depends on vcpu->arch.cr0 to be set to a new value */ 3361 vmx->emulation_required = vmx_emulation_required(vcpu); 3362 } 3363 3364 static int vmx_get_max_ept_level(void) 3365 { 3366 if (cpu_has_vmx_ept_5levels()) 3367 return 5; 3368 return 4; 3369 } 3370 3371 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level) 3372 { 3373 u64 eptp = VMX_EPTP_MT_WB; 3374 3375 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; 3376 3377 if (enable_ept_ad_bits && 3378 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) 3379 eptp |= VMX_EPTP_AD_ENABLE_BIT; 3380 eptp |= root_hpa; 3381 3382 return eptp; 3383 } 3384 3385 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 3386 int root_level) 3387 { 3388 struct kvm *kvm = vcpu->kvm; 3389 bool update_guest_cr3 = true; 3390 unsigned long guest_cr3; 3391 u64 eptp; 3392 3393 if (enable_ept) { 3394 eptp = construct_eptp(vcpu, root_hpa, root_level); 3395 vmcs_write64(EPT_POINTER, eptp); 3396 3397 hv_track_root_tdp(vcpu, root_hpa); 3398 3399 if (!enable_unrestricted_guest && !is_paging(vcpu)) 3400 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; 3401 else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3)) 3402 guest_cr3 = vcpu->arch.cr3; 3403 else /* vmcs.GUEST_CR3 is already up-to-date. */ 3404 update_guest_cr3 = false; 3405 vmx_ept_load_pdptrs(vcpu); 3406 } else { 3407 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu) | 3408 kvm_get_active_cr3_lam_bits(vcpu); 3409 } 3410 3411 if (update_guest_cr3) 3412 vmcs_writel(GUEST_CR3, guest_cr3); 3413 } 3414 3415 3416 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3417 { 3418 /* 3419 * We operate under the default treatment of SMM, so VMX cannot be 3420 * enabled under SMM. Note, whether or not VMXE is allowed at all, 3421 * i.e. is a reserved bit, is handled by common x86 code. 3422 */ 3423 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu)) 3424 return false; 3425 3426 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) 3427 return false; 3428 3429 return true; 3430 } 3431 3432 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3433 { 3434 unsigned long old_cr4 = kvm_read_cr4(vcpu); 3435 struct vcpu_vmx *vmx = to_vmx(vcpu); 3436 unsigned long hw_cr4; 3437 3438 /* 3439 * Pass through host's Machine Check Enable value to hw_cr4, which 3440 * is in force while we are in guest mode. Do not let guests control 3441 * this bit, even if host CR4.MCE == 0. 3442 */ 3443 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); 3444 if (enable_unrestricted_guest) 3445 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; 3446 else if (vmx->rmode.vm86_active) 3447 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; 3448 else 3449 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; 3450 3451 if (vmx_umip_emulated()) { 3452 if (cr4 & X86_CR4_UMIP) { 3453 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC); 3454 hw_cr4 &= ~X86_CR4_UMIP; 3455 } else if (!is_guest_mode(vcpu) || 3456 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) { 3457 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC); 3458 } 3459 } 3460 3461 vcpu->arch.cr4 = cr4; 3462 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4); 3463 3464 if (!enable_unrestricted_guest) { 3465 if (enable_ept) { 3466 if (!is_paging(vcpu)) { 3467 hw_cr4 &= ~X86_CR4_PAE; 3468 hw_cr4 |= X86_CR4_PSE; 3469 } else if (!(cr4 & X86_CR4_PAE)) { 3470 hw_cr4 &= ~X86_CR4_PAE; 3471 } 3472 } 3473 3474 /* 3475 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in 3476 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs 3477 * to be manually disabled when guest switches to non-paging 3478 * mode. 3479 * 3480 * If !enable_unrestricted_guest, the CPU is always running 3481 * with CR0.PG=1 and CR4 needs to be modified. 3482 * If enable_unrestricted_guest, the CPU automatically 3483 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. 3484 */ 3485 if (!is_paging(vcpu)) 3486 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 3487 } 3488 3489 vmcs_writel(CR4_READ_SHADOW, cr4); 3490 vmcs_writel(GUEST_CR4, hw_cr4); 3491 3492 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 3493 kvm_update_cpuid_runtime(vcpu); 3494 } 3495 3496 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3497 { 3498 struct vcpu_vmx *vmx = to_vmx(vcpu); 3499 u32 ar; 3500 3501 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3502 *var = vmx->rmode.segs[seg]; 3503 if (seg == VCPU_SREG_TR 3504 || var->selector == vmx_read_guest_seg_selector(vmx, seg)) 3505 return; 3506 var->base = vmx_read_guest_seg_base(vmx, seg); 3507 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3508 return; 3509 } 3510 var->base = vmx_read_guest_seg_base(vmx, seg); 3511 var->limit = vmx_read_guest_seg_limit(vmx, seg); 3512 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3513 ar = vmx_read_guest_seg_ar(vmx, seg); 3514 var->unusable = (ar >> 16) & 1; 3515 var->type = ar & 15; 3516 var->s = (ar >> 4) & 1; 3517 var->dpl = (ar >> 5) & 3; 3518 /* 3519 * Some userspaces do not preserve unusable property. Since usable 3520 * segment has to be present according to VMX spec we can use present 3521 * property to amend userspace bug by making unusable segment always 3522 * nonpresent. vmx_segment_access_rights() already marks nonpresent 3523 * segment as unusable. 3524 */ 3525 var->present = !var->unusable; 3526 var->avl = (ar >> 12) & 1; 3527 var->l = (ar >> 13) & 1; 3528 var->db = (ar >> 14) & 1; 3529 var->g = (ar >> 15) & 1; 3530 } 3531 3532 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) 3533 { 3534 struct kvm_segment s; 3535 3536 if (to_vmx(vcpu)->rmode.vm86_active) { 3537 vmx_get_segment(vcpu, &s, seg); 3538 return s.base; 3539 } 3540 return vmx_read_guest_seg_base(to_vmx(vcpu), seg); 3541 } 3542 3543 int vmx_get_cpl(struct kvm_vcpu *vcpu) 3544 { 3545 struct vcpu_vmx *vmx = to_vmx(vcpu); 3546 3547 if (unlikely(vmx->rmode.vm86_active)) 3548 return 0; 3549 else { 3550 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); 3551 return VMX_AR_DPL(ar); 3552 } 3553 } 3554 3555 static u32 vmx_segment_access_rights(struct kvm_segment *var) 3556 { 3557 u32 ar; 3558 3559 ar = var->type & 15; 3560 ar |= (var->s & 1) << 4; 3561 ar |= (var->dpl & 3) << 5; 3562 ar |= (var->present & 1) << 7; 3563 ar |= (var->avl & 1) << 12; 3564 ar |= (var->l & 1) << 13; 3565 ar |= (var->db & 1) << 14; 3566 ar |= (var->g & 1) << 15; 3567 ar |= (var->unusable || !var->present) << 16; 3568 3569 return ar; 3570 } 3571 3572 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3573 { 3574 struct vcpu_vmx *vmx = to_vmx(vcpu); 3575 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3576 3577 vmx_segment_cache_clear(vmx); 3578 3579 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3580 vmx->rmode.segs[seg] = *var; 3581 if (seg == VCPU_SREG_TR) 3582 vmcs_write16(sf->selector, var->selector); 3583 else if (var->s) 3584 fix_rmode_seg(seg, &vmx->rmode.segs[seg]); 3585 return; 3586 } 3587 3588 vmcs_writel(sf->base, var->base); 3589 vmcs_write32(sf->limit, var->limit); 3590 vmcs_write16(sf->selector, var->selector); 3591 3592 /* 3593 * Fix the "Accessed" bit in AR field of segment registers for older 3594 * qemu binaries. 3595 * IA32 arch specifies that at the time of processor reset the 3596 * "Accessed" bit in the AR field of segment registers is 1. And qemu 3597 * is setting it to 0 in the userland code. This causes invalid guest 3598 * state vmexit when "unrestricted guest" mode is turned on. 3599 * Fix for this setup issue in cpu_reset is being pushed in the qemu 3600 * tree. Newer qemu binaries with that qemu fix would not need this 3601 * kvm hack. 3602 */ 3603 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR)) 3604 var->type |= 0x1; /* Accessed */ 3605 3606 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); 3607 } 3608 3609 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3610 { 3611 __vmx_set_segment(vcpu, var, seg); 3612 3613 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu); 3614 } 3615 3616 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 3617 { 3618 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); 3619 3620 *db = (ar >> 14) & 1; 3621 *l = (ar >> 13) & 1; 3622 } 3623 3624 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3625 { 3626 dt->size = vmcs_read32(GUEST_IDTR_LIMIT); 3627 dt->address = vmcs_readl(GUEST_IDTR_BASE); 3628 } 3629 3630 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3631 { 3632 vmcs_write32(GUEST_IDTR_LIMIT, dt->size); 3633 vmcs_writel(GUEST_IDTR_BASE, dt->address); 3634 } 3635 3636 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3637 { 3638 dt->size = vmcs_read32(GUEST_GDTR_LIMIT); 3639 dt->address = vmcs_readl(GUEST_GDTR_BASE); 3640 } 3641 3642 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3643 { 3644 vmcs_write32(GUEST_GDTR_LIMIT, dt->size); 3645 vmcs_writel(GUEST_GDTR_BASE, dt->address); 3646 } 3647 3648 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) 3649 { 3650 struct kvm_segment var; 3651 u32 ar; 3652 3653 vmx_get_segment(vcpu, &var, seg); 3654 var.dpl = 0x3; 3655 if (seg == VCPU_SREG_CS) 3656 var.type = 0x3; 3657 ar = vmx_segment_access_rights(&var); 3658 3659 if (var.base != (var.selector << 4)) 3660 return false; 3661 if (var.limit != 0xffff) 3662 return false; 3663 if (ar != 0xf3) 3664 return false; 3665 3666 return true; 3667 } 3668 3669 static bool code_segment_valid(struct kvm_vcpu *vcpu) 3670 { 3671 struct kvm_segment cs; 3672 unsigned int cs_rpl; 3673 3674 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3675 cs_rpl = cs.selector & SEGMENT_RPL_MASK; 3676 3677 if (cs.unusable) 3678 return false; 3679 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) 3680 return false; 3681 if (!cs.s) 3682 return false; 3683 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { 3684 if (cs.dpl > cs_rpl) 3685 return false; 3686 } else { 3687 if (cs.dpl != cs_rpl) 3688 return false; 3689 } 3690 if (!cs.present) 3691 return false; 3692 3693 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ 3694 return true; 3695 } 3696 3697 static bool stack_segment_valid(struct kvm_vcpu *vcpu) 3698 { 3699 struct kvm_segment ss; 3700 unsigned int ss_rpl; 3701 3702 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3703 ss_rpl = ss.selector & SEGMENT_RPL_MASK; 3704 3705 if (ss.unusable) 3706 return true; 3707 if (ss.type != 3 && ss.type != 7) 3708 return false; 3709 if (!ss.s) 3710 return false; 3711 if (ss.dpl != ss_rpl) /* DPL != RPL */ 3712 return false; 3713 if (!ss.present) 3714 return false; 3715 3716 return true; 3717 } 3718 3719 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) 3720 { 3721 struct kvm_segment var; 3722 unsigned int rpl; 3723 3724 vmx_get_segment(vcpu, &var, seg); 3725 rpl = var.selector & SEGMENT_RPL_MASK; 3726 3727 if (var.unusable) 3728 return true; 3729 if (!var.s) 3730 return false; 3731 if (!var.present) 3732 return false; 3733 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { 3734 if (var.dpl < rpl) /* DPL < RPL */ 3735 return false; 3736 } 3737 3738 /* TODO: Add other members to kvm_segment_field to allow checking for other access 3739 * rights flags 3740 */ 3741 return true; 3742 } 3743 3744 static bool tr_valid(struct kvm_vcpu *vcpu) 3745 { 3746 struct kvm_segment tr; 3747 3748 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); 3749 3750 if (tr.unusable) 3751 return false; 3752 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3753 return false; 3754 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ 3755 return false; 3756 if (!tr.present) 3757 return false; 3758 3759 return true; 3760 } 3761 3762 static bool ldtr_valid(struct kvm_vcpu *vcpu) 3763 { 3764 struct kvm_segment ldtr; 3765 3766 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); 3767 3768 if (ldtr.unusable) 3769 return true; 3770 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3771 return false; 3772 if (ldtr.type != 2) 3773 return false; 3774 if (!ldtr.present) 3775 return false; 3776 3777 return true; 3778 } 3779 3780 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) 3781 { 3782 struct kvm_segment cs, ss; 3783 3784 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3785 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3786 3787 return ((cs.selector & SEGMENT_RPL_MASK) == 3788 (ss.selector & SEGMENT_RPL_MASK)); 3789 } 3790 3791 /* 3792 * Check if guest state is valid. Returns true if valid, false if 3793 * not. 3794 * We assume that registers are always usable 3795 */ 3796 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu) 3797 { 3798 /* real mode guest state checks */ 3799 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { 3800 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) 3801 return false; 3802 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) 3803 return false; 3804 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) 3805 return false; 3806 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) 3807 return false; 3808 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) 3809 return false; 3810 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) 3811 return false; 3812 } else { 3813 /* protected mode guest state checks */ 3814 if (!cs_ss_rpl_check(vcpu)) 3815 return false; 3816 if (!code_segment_valid(vcpu)) 3817 return false; 3818 if (!stack_segment_valid(vcpu)) 3819 return false; 3820 if (!data_segment_valid(vcpu, VCPU_SREG_DS)) 3821 return false; 3822 if (!data_segment_valid(vcpu, VCPU_SREG_ES)) 3823 return false; 3824 if (!data_segment_valid(vcpu, VCPU_SREG_FS)) 3825 return false; 3826 if (!data_segment_valid(vcpu, VCPU_SREG_GS)) 3827 return false; 3828 if (!tr_valid(vcpu)) 3829 return false; 3830 if (!ldtr_valid(vcpu)) 3831 return false; 3832 } 3833 /* TODO: 3834 * - Add checks on RIP 3835 * - Add checks on RFLAGS 3836 */ 3837 3838 return true; 3839 } 3840 3841 static int init_rmode_tss(struct kvm *kvm, void __user *ua) 3842 { 3843 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3844 u16 data; 3845 int i; 3846 3847 for (i = 0; i < 3; i++) { 3848 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE)) 3849 return -EFAULT; 3850 } 3851 3852 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; 3853 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16))) 3854 return -EFAULT; 3855 3856 data = ~0; 3857 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8))) 3858 return -EFAULT; 3859 3860 return 0; 3861 } 3862 3863 static int init_rmode_identity_map(struct kvm *kvm) 3864 { 3865 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 3866 int i, r = 0; 3867 void __user *uaddr; 3868 u32 tmp; 3869 3870 /* Protect kvm_vmx->ept_identity_pagetable_done. */ 3871 mutex_lock(&kvm->slots_lock); 3872 3873 if (likely(kvm_vmx->ept_identity_pagetable_done)) 3874 goto out; 3875 3876 if (!kvm_vmx->ept_identity_map_addr) 3877 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; 3878 3879 uaddr = __x86_set_memory_region(kvm, 3880 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 3881 kvm_vmx->ept_identity_map_addr, 3882 PAGE_SIZE); 3883 if (IS_ERR(uaddr)) { 3884 r = PTR_ERR(uaddr); 3885 goto out; 3886 } 3887 3888 /* Set up identity-mapping pagetable for EPT in real mode */ 3889 for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) { 3890 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | 3891 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); 3892 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) { 3893 r = -EFAULT; 3894 goto out; 3895 } 3896 } 3897 kvm_vmx->ept_identity_pagetable_done = true; 3898 3899 out: 3900 mutex_unlock(&kvm->slots_lock); 3901 return r; 3902 } 3903 3904 static void seg_setup(int seg) 3905 { 3906 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3907 unsigned int ar; 3908 3909 vmcs_write16(sf->selector, 0); 3910 vmcs_writel(sf->base, 0); 3911 vmcs_write32(sf->limit, 0xffff); 3912 ar = 0x93; 3913 if (seg == VCPU_SREG_CS) 3914 ar |= 0x08; /* code segment */ 3915 3916 vmcs_write32(sf->ar_bytes, ar); 3917 } 3918 3919 int allocate_vpid(void) 3920 { 3921 int vpid; 3922 3923 if (!enable_vpid) 3924 return 0; 3925 spin_lock(&vmx_vpid_lock); 3926 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); 3927 if (vpid < VMX_NR_VPIDS) 3928 __set_bit(vpid, vmx_vpid_bitmap); 3929 else 3930 vpid = 0; 3931 spin_unlock(&vmx_vpid_lock); 3932 return vpid; 3933 } 3934 3935 void free_vpid(int vpid) 3936 { 3937 if (!enable_vpid || vpid == 0) 3938 return; 3939 spin_lock(&vmx_vpid_lock); 3940 __clear_bit(vpid, vmx_vpid_bitmap); 3941 spin_unlock(&vmx_vpid_lock); 3942 } 3943 3944 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx) 3945 { 3946 /* 3947 * When KVM is a nested hypervisor on top of Hyper-V and uses 3948 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR 3949 * bitmap has changed. 3950 */ 3951 if (kvm_is_using_evmcs()) { 3952 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; 3953 3954 if (evmcs->hv_enlightenments_control.msr_bitmap) 3955 evmcs->hv_clean_fields &= 3956 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP; 3957 } 3958 3959 vmx->nested.force_msr_bitmap_recalc = true; 3960 } 3961 3962 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3963 { 3964 struct vcpu_vmx *vmx = to_vmx(vcpu); 3965 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3966 3967 if (!cpu_has_vmx_msr_bitmap()) 3968 return; 3969 3970 vmx_msr_bitmap_l01_changed(vmx); 3971 3972 /* 3973 * Mark the desired intercept state in shadow bitmap, this is needed 3974 * for resync when the MSR filters change. 3975 */ 3976 if (is_valid_passthrough_msr(msr)) { 3977 int idx = possible_passthrough_msr_slot(msr); 3978 3979 if (idx != -ENOENT) { 3980 if (type & MSR_TYPE_R) 3981 clear_bit(idx, vmx->shadow_msr_intercept.read); 3982 if (type & MSR_TYPE_W) 3983 clear_bit(idx, vmx->shadow_msr_intercept.write); 3984 } 3985 } 3986 3987 if ((type & MSR_TYPE_R) && 3988 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) { 3989 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3990 type &= ~MSR_TYPE_R; 3991 } 3992 3993 if ((type & MSR_TYPE_W) && 3994 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) { 3995 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3996 type &= ~MSR_TYPE_W; 3997 } 3998 3999 if (type & MSR_TYPE_R) 4000 vmx_clear_msr_bitmap_read(msr_bitmap, msr); 4001 4002 if (type & MSR_TYPE_W) 4003 vmx_clear_msr_bitmap_write(msr_bitmap, msr); 4004 } 4005 4006 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 4007 { 4008 struct vcpu_vmx *vmx = to_vmx(vcpu); 4009 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 4010 4011 if (!cpu_has_vmx_msr_bitmap()) 4012 return; 4013 4014 vmx_msr_bitmap_l01_changed(vmx); 4015 4016 /* 4017 * Mark the desired intercept state in shadow bitmap, this is needed 4018 * for resync when the MSR filter changes. 4019 */ 4020 if (is_valid_passthrough_msr(msr)) { 4021 int idx = possible_passthrough_msr_slot(msr); 4022 4023 if (idx != -ENOENT) { 4024 if (type & MSR_TYPE_R) 4025 set_bit(idx, vmx->shadow_msr_intercept.read); 4026 if (type & MSR_TYPE_W) 4027 set_bit(idx, vmx->shadow_msr_intercept.write); 4028 } 4029 } 4030 4031 if (type & MSR_TYPE_R) 4032 vmx_set_msr_bitmap_read(msr_bitmap, msr); 4033 4034 if (type & MSR_TYPE_W) 4035 vmx_set_msr_bitmap_write(msr_bitmap, msr); 4036 } 4037 4038 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu) 4039 { 4040 /* 4041 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves 4042 * of the MSR bitmap. KVM emulates APIC registers up through 0x3f0, 4043 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits. 4044 */ 4045 const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG; 4046 const int write_idx = read_idx + (0x800 / sizeof(u64)); 4047 struct vcpu_vmx *vmx = to_vmx(vcpu); 4048 u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap; 4049 u8 mode; 4050 4051 if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu))) 4052 return; 4053 4054 if (cpu_has_secondary_exec_ctrls() && 4055 (secondary_exec_controls_get(vmx) & 4056 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { 4057 mode = MSR_BITMAP_MODE_X2APIC; 4058 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) 4059 mode |= MSR_BITMAP_MODE_X2APIC_APICV; 4060 } else { 4061 mode = 0; 4062 } 4063 4064 if (mode == vmx->x2apic_msr_bitmap_mode) 4065 return; 4066 4067 vmx->x2apic_msr_bitmap_mode = mode; 4068 4069 /* 4070 * Reset the bitmap for MSRs 0x800 - 0x83f. Leave AMD's uber-extended 4071 * registers (0x840 and above) intercepted, KVM doesn't support them. 4072 * Intercept all writes by default and poke holes as needed. Pass 4073 * through reads for all valid registers by default in x2APIC+APICv 4074 * mode, only the current timer count needs on-demand emulation by KVM. 4075 */ 4076 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) 4077 msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic); 4078 else 4079 msr_bitmap[read_idx] = ~0ull; 4080 msr_bitmap[write_idx] = ~0ull; 4081 4082 /* 4083 * TPR reads and writes can be virtualized even if virtual interrupt 4084 * delivery is not in use. 4085 */ 4086 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW, 4087 !(mode & MSR_BITMAP_MODE_X2APIC)); 4088 4089 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { 4090 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW); 4091 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); 4092 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); 4093 if (enable_ipiv) 4094 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW); 4095 } 4096 } 4097 4098 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu) 4099 { 4100 struct vcpu_vmx *vmx = to_vmx(vcpu); 4101 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 4102 u32 i; 4103 4104 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag); 4105 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag); 4106 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag); 4107 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag); 4108 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) { 4109 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); 4110 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); 4111 } 4112 } 4113 4114 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 4115 { 4116 struct vcpu_vmx *vmx = to_vmx(vcpu); 4117 void *vapic_page; 4118 u32 vppr; 4119 int rvi; 4120 4121 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) || 4122 !nested_cpu_has_vid(get_vmcs12(vcpu)) || 4123 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn)) 4124 return false; 4125 4126 rvi = vmx_get_rvi(); 4127 4128 vapic_page = vmx->nested.virtual_apic_map.hva; 4129 vppr = *((u32 *)(vapic_page + APIC_PROCPRI)); 4130 4131 return ((rvi & 0xf0) > (vppr & 0xf0)); 4132 } 4133 4134 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu) 4135 { 4136 struct vcpu_vmx *vmx = to_vmx(vcpu); 4137 u32 i; 4138 4139 /* 4140 * Redo intercept permissions for MSRs that KVM is passing through to 4141 * the guest. Disabling interception will check the new MSR filter and 4142 * ensure that KVM enables interception if usersepace wants to filter 4143 * the MSR. MSRs that KVM is already intercepting don't need to be 4144 * refreshed since KVM is going to intercept them regardless of what 4145 * userspace wants. 4146 */ 4147 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) { 4148 u32 msr = vmx_possible_passthrough_msrs[i]; 4149 4150 if (!test_bit(i, vmx->shadow_msr_intercept.read)) 4151 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R); 4152 4153 if (!test_bit(i, vmx->shadow_msr_intercept.write)) 4154 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W); 4155 } 4156 4157 /* PT MSRs can be passed through iff PT is exposed to the guest. */ 4158 if (vmx_pt_mode_is_host_guest()) 4159 pt_update_intercept_for_msr(vcpu); 4160 } 4161 4162 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, 4163 int pi_vec) 4164 { 4165 #ifdef CONFIG_SMP 4166 if (vcpu->mode == IN_GUEST_MODE) { 4167 /* 4168 * The vector of the virtual has already been set in the PIR. 4169 * Send a notification event to deliver the virtual interrupt 4170 * unless the vCPU is the currently running vCPU, i.e. the 4171 * event is being sent from a fastpath VM-Exit handler, in 4172 * which case the PIR will be synced to the vIRR before 4173 * re-entering the guest. 4174 * 4175 * When the target is not the running vCPU, the following 4176 * possibilities emerge: 4177 * 4178 * Case 1: vCPU stays in non-root mode. Sending a notification 4179 * event posts the interrupt to the vCPU. 4180 * 4181 * Case 2: vCPU exits to root mode and is still runnable. The 4182 * PIR will be synced to the vIRR before re-entering the guest. 4183 * Sending a notification event is ok as the host IRQ handler 4184 * will ignore the spurious event. 4185 * 4186 * Case 3: vCPU exits to root mode and is blocked. vcpu_block() 4187 * has already synced PIR to vIRR and never blocks the vCPU if 4188 * the vIRR is not empty. Therefore, a blocked vCPU here does 4189 * not wait for any requested interrupts in PIR, and sending a 4190 * notification event also results in a benign, spurious event. 4191 */ 4192 4193 if (vcpu != kvm_get_running_vcpu()) 4194 __apic_send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); 4195 return; 4196 } 4197 #endif 4198 /* 4199 * The vCPU isn't in the guest; wake the vCPU in case it is blocking, 4200 * otherwise do nothing as KVM will grab the highest priority pending 4201 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest(). 4202 */ 4203 kvm_vcpu_wake_up(vcpu); 4204 } 4205 4206 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, 4207 int vector) 4208 { 4209 struct vcpu_vmx *vmx = to_vmx(vcpu); 4210 4211 if (is_guest_mode(vcpu) && 4212 vector == vmx->nested.posted_intr_nv) { 4213 /* 4214 * If a posted intr is not recognized by hardware, 4215 * we will accomplish it in the next vmentry. 4216 */ 4217 vmx->nested.pi_pending = true; 4218 kvm_make_request(KVM_REQ_EVENT, vcpu); 4219 4220 /* 4221 * This pairs with the smp_mb_*() after setting vcpu->mode in 4222 * vcpu_enter_guest() to guarantee the vCPU sees the event 4223 * request if triggering a posted interrupt "fails" because 4224 * vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as 4225 * the smb_wmb() in kvm_make_request() only ensures everything 4226 * done before making the request is visible when the request 4227 * is visible, it doesn't ensure ordering between the store to 4228 * vcpu->requests and the load from vcpu->mode. 4229 */ 4230 smp_mb__after_atomic(); 4231 4232 /* the PIR and ON have been set by L1. */ 4233 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR); 4234 return 0; 4235 } 4236 return -1; 4237 } 4238 /* 4239 * Send interrupt to vcpu via posted interrupt way. 4240 * 1. If target vcpu is running(non-root mode), send posted interrupt 4241 * notification to vcpu and hardware will sync PIR to vIRR atomically. 4242 * 2. If target vcpu isn't running(root mode), kick it to pick up the 4243 * interrupt from PIR in next vmentry. 4244 */ 4245 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) 4246 { 4247 struct vcpu_vmx *vmx = to_vmx(vcpu); 4248 int r; 4249 4250 r = vmx_deliver_nested_posted_interrupt(vcpu, vector); 4251 if (!r) 4252 return 0; 4253 4254 /* Note, this is called iff the local APIC is in-kernel. */ 4255 if (!vcpu->arch.apic->apicv_active) 4256 return -1; 4257 4258 if (pi_test_and_set_pir(vector, &vmx->pi_desc)) 4259 return 0; 4260 4261 /* If a previous notification has sent the IPI, nothing to do. */ 4262 if (pi_test_and_set_on(&vmx->pi_desc)) 4263 return 0; 4264 4265 /* 4266 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*() 4267 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is 4268 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a 4269 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE. 4270 */ 4271 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR); 4272 return 0; 4273 } 4274 4275 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 4276 int trig_mode, int vector) 4277 { 4278 struct kvm_vcpu *vcpu = apic->vcpu; 4279 4280 if (vmx_deliver_posted_interrupt(vcpu, vector)) { 4281 kvm_lapic_set_irr(vector, apic); 4282 kvm_make_request(KVM_REQ_EVENT, vcpu); 4283 kvm_vcpu_kick(vcpu); 4284 } else { 4285 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, 4286 trig_mode, vector); 4287 } 4288 } 4289 4290 /* 4291 * Set up the vmcs's constant host-state fields, i.e., host-state fields that 4292 * will not change in the lifetime of the guest. 4293 * Note that host-state that does change is set elsewhere. E.g., host-state 4294 * that is set differently for each CPU is set in vmx_vcpu_load(), not here. 4295 */ 4296 void vmx_set_constant_host_state(struct vcpu_vmx *vmx) 4297 { 4298 u32 low32, high32; 4299 unsigned long tmpl; 4300 unsigned long cr0, cr3, cr4; 4301 4302 cr0 = read_cr0(); 4303 WARN_ON(cr0 & X86_CR0_TS); 4304 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ 4305 4306 /* 4307 * Save the most likely value for this task's CR3 in the VMCS. 4308 * We can't use __get_current_cr3_fast() because we're not atomic. 4309 */ 4310 cr3 = __read_cr3(); 4311 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ 4312 vmx->loaded_vmcs->host_state.cr3 = cr3; 4313 4314 /* Save the most likely value for this task's CR4 in the VMCS. */ 4315 cr4 = cr4_read_shadow(); 4316 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ 4317 vmx->loaded_vmcs->host_state.cr4 = cr4; 4318 4319 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ 4320 #ifdef CONFIG_X86_64 4321 /* 4322 * Load null selectors, so we can avoid reloading them in 4323 * vmx_prepare_switch_to_host(), in case userspace uses 4324 * the null selectors too (the expected case). 4325 */ 4326 vmcs_write16(HOST_DS_SELECTOR, 0); 4327 vmcs_write16(HOST_ES_SELECTOR, 0); 4328 #else 4329 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4330 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4331 #endif 4332 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4333 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ 4334 4335 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */ 4336 4337 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ 4338 4339 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); 4340 vmcs_write32(HOST_IA32_SYSENTER_CS, low32); 4341 4342 /* 4343 * SYSENTER is used for 32-bit system calls on either 32-bit or 4344 * 64-bit kernels. It is always zero If neither is allowed, otherwise 4345 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may 4346 * have already done so!). 4347 */ 4348 if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32)) 4349 vmcs_writel(HOST_IA32_SYSENTER_ESP, 0); 4350 4351 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); 4352 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ 4353 4354 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { 4355 rdmsr(MSR_IA32_CR_PAT, low32, high32); 4356 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); 4357 } 4358 4359 if (cpu_has_load_ia32_efer()) 4360 vmcs_write64(HOST_IA32_EFER, host_efer); 4361 } 4362 4363 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) 4364 { 4365 struct kvm_vcpu *vcpu = &vmx->vcpu; 4366 4367 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS & 4368 ~vcpu->arch.cr4_guest_rsvd_bits; 4369 if (!enable_ept) { 4370 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS; 4371 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS; 4372 } 4373 if (is_guest_mode(&vmx->vcpu)) 4374 vcpu->arch.cr4_guest_owned_bits &= 4375 ~get_vmcs12(vcpu)->cr4_guest_host_mask; 4376 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits); 4377 } 4378 4379 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) 4380 { 4381 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; 4382 4383 if (!kvm_vcpu_apicv_active(&vmx->vcpu)) 4384 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; 4385 4386 if (!enable_vnmi) 4387 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; 4388 4389 if (!enable_preemption_timer) 4390 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 4391 4392 return pin_based_exec_ctrl; 4393 } 4394 4395 static u32 vmx_vmentry_ctrl(void) 4396 { 4397 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl; 4398 4399 if (vmx_pt_mode_is_system()) 4400 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP | 4401 VM_ENTRY_LOAD_IA32_RTIT_CTL); 4402 /* 4403 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically. 4404 */ 4405 vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | 4406 VM_ENTRY_LOAD_IA32_EFER | 4407 VM_ENTRY_IA32E_MODE); 4408 4409 if (cpu_has_perf_global_ctrl_bug()) 4410 vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; 4411 4412 return vmentry_ctrl; 4413 } 4414 4415 static u32 vmx_vmexit_ctrl(void) 4416 { 4417 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl; 4418 4419 /* 4420 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for 4421 * nested virtualization and thus allowed to be set in vmcs12. 4422 */ 4423 vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER | 4424 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER); 4425 4426 if (vmx_pt_mode_is_system()) 4427 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP | 4428 VM_EXIT_CLEAR_IA32_RTIT_CTL); 4429 4430 if (cpu_has_perf_global_ctrl_bug()) 4431 vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; 4432 4433 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ 4434 return vmexit_ctrl & 4435 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER); 4436 } 4437 4438 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) 4439 { 4440 struct vcpu_vmx *vmx = to_vmx(vcpu); 4441 4442 if (is_guest_mode(vcpu)) { 4443 vmx->nested.update_vmcs01_apicv_status = true; 4444 return; 4445 } 4446 4447 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4448 4449 if (kvm_vcpu_apicv_active(vcpu)) { 4450 secondary_exec_controls_setbit(vmx, 4451 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4452 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4453 if (enable_ipiv) 4454 tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT); 4455 } else { 4456 secondary_exec_controls_clearbit(vmx, 4457 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4458 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4459 if (enable_ipiv) 4460 tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT); 4461 } 4462 4463 vmx_update_msr_bitmap_x2apic(vcpu); 4464 } 4465 4466 static u32 vmx_exec_control(struct vcpu_vmx *vmx) 4467 { 4468 u32 exec_control = vmcs_config.cpu_based_exec_ctrl; 4469 4470 /* 4471 * Not used by KVM, but fully supported for nesting, i.e. are allowed in 4472 * vmcs12 and propagated to vmcs02 when set in vmcs12. 4473 */ 4474 exec_control &= ~(CPU_BASED_RDTSC_EXITING | 4475 CPU_BASED_USE_IO_BITMAPS | 4476 CPU_BASED_MONITOR_TRAP_FLAG | 4477 CPU_BASED_PAUSE_EXITING); 4478 4479 /* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */ 4480 exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING | 4481 CPU_BASED_NMI_WINDOW_EXITING); 4482 4483 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) 4484 exec_control &= ~CPU_BASED_MOV_DR_EXITING; 4485 4486 if (!cpu_need_tpr_shadow(&vmx->vcpu)) 4487 exec_control &= ~CPU_BASED_TPR_SHADOW; 4488 4489 #ifdef CONFIG_X86_64 4490 if (exec_control & CPU_BASED_TPR_SHADOW) 4491 exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING | 4492 CPU_BASED_CR8_STORE_EXITING); 4493 else 4494 exec_control |= CPU_BASED_CR8_STORE_EXITING | 4495 CPU_BASED_CR8_LOAD_EXITING; 4496 #endif 4497 /* No need to intercept CR3 access or INVPLG when using EPT. */ 4498 if (enable_ept) 4499 exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | 4500 CPU_BASED_CR3_STORE_EXITING | 4501 CPU_BASED_INVLPG_EXITING); 4502 if (kvm_mwait_in_guest(vmx->vcpu.kvm)) 4503 exec_control &= ~(CPU_BASED_MWAIT_EXITING | 4504 CPU_BASED_MONITOR_EXITING); 4505 if (kvm_hlt_in_guest(vmx->vcpu.kvm)) 4506 exec_control &= ~CPU_BASED_HLT_EXITING; 4507 return exec_control; 4508 } 4509 4510 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx) 4511 { 4512 u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl; 4513 4514 /* 4515 * IPI virtualization relies on APICv. Disable IPI virtualization if 4516 * APICv is inhibited. 4517 */ 4518 if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu)) 4519 exec_control &= ~TERTIARY_EXEC_IPI_VIRT; 4520 4521 return exec_control; 4522 } 4523 4524 /* 4525 * Adjust a single secondary execution control bit to intercept/allow an 4526 * instruction in the guest. This is usually done based on whether or not a 4527 * feature has been exposed to the guest in order to correctly emulate faults. 4528 */ 4529 static inline void 4530 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control, 4531 u32 control, bool enabled, bool exiting) 4532 { 4533 /* 4534 * If the control is for an opt-in feature, clear the control if the 4535 * feature is not exposed to the guest, i.e. not enabled. If the 4536 * control is opt-out, i.e. an exiting control, clear the control if 4537 * the feature _is_ exposed to the guest, i.e. exiting/interception is 4538 * disabled for the associated instruction. Note, the caller is 4539 * responsible presetting exec_control to set all supported bits. 4540 */ 4541 if (enabled == exiting) 4542 *exec_control &= ~control; 4543 4544 /* 4545 * Update the nested MSR settings so that a nested VMM can/can't set 4546 * controls for features that are/aren't exposed to the guest. 4547 */ 4548 if (nested) { 4549 /* 4550 * All features that can be added or removed to VMX MSRs must 4551 * be supported in the first place for nested virtualization. 4552 */ 4553 if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control))) 4554 enabled = false; 4555 4556 if (enabled) 4557 vmx->nested.msrs.secondary_ctls_high |= control; 4558 else 4559 vmx->nested.msrs.secondary_ctls_high &= ~control; 4560 } 4561 } 4562 4563 /* 4564 * Wrapper macro for the common case of adjusting a secondary execution control 4565 * based on a single guest CPUID bit, with a dedicated feature bit. This also 4566 * verifies that the control is actually supported by KVM and hardware. 4567 */ 4568 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \ 4569 ({ \ 4570 struct kvm_vcpu *__vcpu = &(vmx)->vcpu; \ 4571 bool __enabled; \ 4572 \ 4573 if (cpu_has_vmx_##name()) { \ 4574 if (kvm_is_governed_feature(X86_FEATURE_##feat_name)) \ 4575 __enabled = guest_can_use(__vcpu, X86_FEATURE_##feat_name); \ 4576 else \ 4577 __enabled = guest_cpuid_has(__vcpu, X86_FEATURE_##feat_name); \ 4578 vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\ 4579 __enabled, exiting); \ 4580 } \ 4581 }) 4582 4583 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */ 4584 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \ 4585 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false) 4586 4587 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \ 4588 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true) 4589 4590 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx) 4591 { 4592 struct kvm_vcpu *vcpu = &vmx->vcpu; 4593 4594 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; 4595 4596 if (vmx_pt_mode_is_system()) 4597 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); 4598 if (!cpu_need_virtualize_apic_accesses(vcpu)) 4599 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 4600 if (vmx->vpid == 0) 4601 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; 4602 if (!enable_ept) { 4603 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; 4604 enable_unrestricted_guest = 0; 4605 } 4606 if (!enable_unrestricted_guest) 4607 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; 4608 if (kvm_pause_in_guest(vmx->vcpu.kvm)) 4609 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; 4610 if (!kvm_vcpu_apicv_active(vcpu)) 4611 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | 4612 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4613 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 4614 4615 /* 4616 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's 4617 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2. 4618 */ 4619 exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC; 4620 4621 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, 4622 * in vmx_set_cr4. */ 4623 exec_control &= ~SECONDARY_EXEC_DESC; 4624 4625 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD 4626 (handle_vmptrld). 4627 We can NOT enable shadow_vmcs here because we don't have yet 4628 a current VMCS12 4629 */ 4630 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; 4631 4632 /* 4633 * PML is enabled/disabled when dirty logging of memsmlots changes, but 4634 * it needs to be set here when dirty logging is already active, e.g. 4635 * if this vCPU was created after dirty logging was enabled. 4636 */ 4637 if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging)) 4638 exec_control &= ~SECONDARY_EXEC_ENABLE_PML; 4639 4640 vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES); 4641 4642 /* 4643 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either 4644 * feature is exposed to the guest. This creates a virtualization hole 4645 * if both are supported in hardware but only one is exposed to the 4646 * guest, but letting the guest execute RDTSCP or RDPID when either one 4647 * is advertised is preferable to emulating the advertised instruction 4648 * in KVM on #UD, and obviously better than incorrectly injecting #UD. 4649 */ 4650 if (cpu_has_vmx_rdtscp()) { 4651 bool rdpid_or_rdtscp_enabled = 4652 guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) || 4653 guest_cpuid_has(vcpu, X86_FEATURE_RDPID); 4654 4655 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4656 SECONDARY_EXEC_ENABLE_RDTSCP, 4657 rdpid_or_rdtscp_enabled, false); 4658 } 4659 4660 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID); 4661 4662 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND); 4663 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED); 4664 4665 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG, 4666 ENABLE_USR_WAIT_PAUSE, false); 4667 4668 if (!vcpu->kvm->arch.bus_lock_detection_enabled) 4669 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION; 4670 4671 if (!kvm_notify_vmexit_enabled(vcpu->kvm)) 4672 exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING; 4673 4674 return exec_control; 4675 } 4676 4677 static inline int vmx_get_pid_table_order(struct kvm *kvm) 4678 { 4679 return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table)); 4680 } 4681 4682 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm) 4683 { 4684 struct page *pages; 4685 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 4686 4687 if (!irqchip_in_kernel(kvm) || !enable_ipiv) 4688 return 0; 4689 4690 if (kvm_vmx->pid_table) 4691 return 0; 4692 4693 pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO, 4694 vmx_get_pid_table_order(kvm)); 4695 if (!pages) 4696 return -ENOMEM; 4697 4698 kvm_vmx->pid_table = (void *)page_address(pages); 4699 return 0; 4700 } 4701 4702 static int vmx_vcpu_precreate(struct kvm *kvm) 4703 { 4704 return vmx_alloc_ipiv_pid_table(kvm); 4705 } 4706 4707 #define VMX_XSS_EXIT_BITMAP 0 4708 4709 static void init_vmcs(struct vcpu_vmx *vmx) 4710 { 4711 struct kvm *kvm = vmx->vcpu.kvm; 4712 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 4713 4714 if (nested) 4715 nested_vmx_set_vmcs_shadowing_bitmap(); 4716 4717 if (cpu_has_vmx_msr_bitmap()) 4718 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); 4719 4720 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */ 4721 4722 /* Control */ 4723 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4724 4725 exec_controls_set(vmx, vmx_exec_control(vmx)); 4726 4727 if (cpu_has_secondary_exec_ctrls()) 4728 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx)); 4729 4730 if (cpu_has_tertiary_exec_ctrls()) 4731 tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx)); 4732 4733 if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) { 4734 vmcs_write64(EOI_EXIT_BITMAP0, 0); 4735 vmcs_write64(EOI_EXIT_BITMAP1, 0); 4736 vmcs_write64(EOI_EXIT_BITMAP2, 0); 4737 vmcs_write64(EOI_EXIT_BITMAP3, 0); 4738 4739 vmcs_write16(GUEST_INTR_STATUS, 0); 4740 4741 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); 4742 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); 4743 } 4744 4745 if (vmx_can_use_ipiv(&vmx->vcpu)) { 4746 vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table)); 4747 vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1); 4748 } 4749 4750 if (!kvm_pause_in_guest(kvm)) { 4751 vmcs_write32(PLE_GAP, ple_gap); 4752 vmx->ple_window = ple_window; 4753 vmx->ple_window_dirty = true; 4754 } 4755 4756 if (kvm_notify_vmexit_enabled(kvm)) 4757 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window); 4758 4759 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); 4760 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); 4761 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ 4762 4763 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ 4764 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ 4765 vmx_set_constant_host_state(vmx); 4766 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ 4767 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ 4768 4769 if (cpu_has_vmx_vmfunc()) 4770 vmcs_write64(VM_FUNCTION_CONTROL, 0); 4771 4772 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); 4773 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); 4774 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); 4775 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); 4776 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); 4777 4778 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 4779 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); 4780 4781 vm_exit_controls_set(vmx, vmx_vmexit_ctrl()); 4782 4783 /* 22.2.1, 20.8.1 */ 4784 vm_entry_controls_set(vmx, vmx_vmentry_ctrl()); 4785 4786 vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits(); 4787 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits); 4788 4789 set_cr4_guest_host_mask(vmx); 4790 4791 if (vmx->vpid != 0) 4792 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); 4793 4794 if (cpu_has_vmx_xsaves()) 4795 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); 4796 4797 if (enable_pml) { 4798 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); 4799 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 4800 } 4801 4802 vmx_write_encls_bitmap(&vmx->vcpu, NULL); 4803 4804 if (vmx_pt_mode_is_host_guest()) { 4805 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); 4806 /* Bit[6~0] are forced to 1, writes are ignored. */ 4807 vmx->pt_desc.guest.output_mask = 0x7F; 4808 vmcs_write64(GUEST_IA32_RTIT_CTL, 0); 4809 } 4810 4811 vmcs_write32(GUEST_SYSENTER_CS, 0); 4812 vmcs_writel(GUEST_SYSENTER_ESP, 0); 4813 vmcs_writel(GUEST_SYSENTER_EIP, 0); 4814 vmcs_write64(GUEST_IA32_DEBUGCTL, 0); 4815 4816 if (cpu_has_vmx_tpr_shadow()) { 4817 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); 4818 if (cpu_need_tpr_shadow(&vmx->vcpu)) 4819 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 4820 __pa(vmx->vcpu.arch.apic->regs)); 4821 vmcs_write32(TPR_THRESHOLD, 0); 4822 } 4823 4824 vmx_setup_uret_msrs(vmx); 4825 } 4826 4827 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu) 4828 { 4829 struct vcpu_vmx *vmx = to_vmx(vcpu); 4830 4831 init_vmcs(vmx); 4832 4833 if (nested) 4834 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs)); 4835 4836 vcpu_setup_sgx_lepubkeyhash(vcpu); 4837 4838 vmx->nested.posted_intr_nv = -1; 4839 vmx->nested.vmxon_ptr = INVALID_GPA; 4840 vmx->nested.current_vmptr = INVALID_GPA; 4841 4842 #ifdef CONFIG_KVM_HYPERV 4843 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID; 4844 #endif 4845 4846 vcpu->arch.microcode_version = 0x100000000ULL; 4847 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED; 4848 4849 /* 4850 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR 4851 * or POSTED_INTR_WAKEUP_VECTOR. 4852 */ 4853 vmx->pi_desc.nv = POSTED_INTR_VECTOR; 4854 vmx->pi_desc.sn = 1; 4855 } 4856 4857 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 4858 { 4859 struct vcpu_vmx *vmx = to_vmx(vcpu); 4860 4861 if (!init_event) 4862 __vmx_vcpu_reset(vcpu); 4863 4864 vmx->rmode.vm86_active = 0; 4865 vmx->spec_ctrl = 0; 4866 4867 vmx->msr_ia32_umwait_control = 0; 4868 4869 vmx->hv_deadline_tsc = -1; 4870 kvm_set_cr8(vcpu, 0); 4871 4872 vmx_segment_cache_clear(vmx); 4873 kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS); 4874 4875 seg_setup(VCPU_SREG_CS); 4876 vmcs_write16(GUEST_CS_SELECTOR, 0xf000); 4877 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); 4878 4879 seg_setup(VCPU_SREG_DS); 4880 seg_setup(VCPU_SREG_ES); 4881 seg_setup(VCPU_SREG_FS); 4882 seg_setup(VCPU_SREG_GS); 4883 seg_setup(VCPU_SREG_SS); 4884 4885 vmcs_write16(GUEST_TR_SELECTOR, 0); 4886 vmcs_writel(GUEST_TR_BASE, 0); 4887 vmcs_write32(GUEST_TR_LIMIT, 0xffff); 4888 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 4889 4890 vmcs_write16(GUEST_LDTR_SELECTOR, 0); 4891 vmcs_writel(GUEST_LDTR_BASE, 0); 4892 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); 4893 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); 4894 4895 vmcs_writel(GUEST_GDTR_BASE, 0); 4896 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); 4897 4898 vmcs_writel(GUEST_IDTR_BASE, 0); 4899 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); 4900 4901 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 4902 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); 4903 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); 4904 if (kvm_mpx_supported()) 4905 vmcs_write64(GUEST_BNDCFGS, 0); 4906 4907 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ 4908 4909 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 4910 4911 vpid_sync_context(vmx->vpid); 4912 4913 vmx_update_fb_clear_dis(vcpu, vmx); 4914 } 4915 4916 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu) 4917 { 4918 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 4919 } 4920 4921 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu) 4922 { 4923 if (!enable_vnmi || 4924 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { 4925 vmx_enable_irq_window(vcpu); 4926 return; 4927 } 4928 4929 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 4930 } 4931 4932 static void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) 4933 { 4934 struct vcpu_vmx *vmx = to_vmx(vcpu); 4935 uint32_t intr; 4936 int irq = vcpu->arch.interrupt.nr; 4937 4938 trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected); 4939 4940 ++vcpu->stat.irq_injections; 4941 if (vmx->rmode.vm86_active) { 4942 int inc_eip = 0; 4943 if (vcpu->arch.interrupt.soft) 4944 inc_eip = vcpu->arch.event_exit_inst_len; 4945 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip); 4946 return; 4947 } 4948 intr = irq | INTR_INFO_VALID_MASK; 4949 if (vcpu->arch.interrupt.soft) { 4950 intr |= INTR_TYPE_SOFT_INTR; 4951 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 4952 vmx->vcpu.arch.event_exit_inst_len); 4953 } else 4954 intr |= INTR_TYPE_EXT_INTR; 4955 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); 4956 4957 vmx_clear_hlt(vcpu); 4958 } 4959 4960 static void vmx_inject_nmi(struct kvm_vcpu *vcpu) 4961 { 4962 struct vcpu_vmx *vmx = to_vmx(vcpu); 4963 4964 if (!enable_vnmi) { 4965 /* 4966 * Tracking the NMI-blocked state in software is built upon 4967 * finding the next open IRQ window. This, in turn, depends on 4968 * well-behaving guests: They have to keep IRQs disabled at 4969 * least as long as the NMI handler runs. Otherwise we may 4970 * cause NMI nesting, maybe breaking the guest. But as this is 4971 * highly unlikely, we can live with the residual risk. 4972 */ 4973 vmx->loaded_vmcs->soft_vnmi_blocked = 1; 4974 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4975 } 4976 4977 ++vcpu->stat.nmi_injections; 4978 vmx->loaded_vmcs->nmi_known_unmasked = false; 4979 4980 if (vmx->rmode.vm86_active) { 4981 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0); 4982 return; 4983 } 4984 4985 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 4986 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); 4987 4988 vmx_clear_hlt(vcpu); 4989 } 4990 4991 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) 4992 { 4993 struct vcpu_vmx *vmx = to_vmx(vcpu); 4994 bool masked; 4995 4996 if (!enable_vnmi) 4997 return vmx->loaded_vmcs->soft_vnmi_blocked; 4998 if (vmx->loaded_vmcs->nmi_known_unmasked) 4999 return false; 5000 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; 5001 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 5002 return masked; 5003 } 5004 5005 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 5006 { 5007 struct vcpu_vmx *vmx = to_vmx(vcpu); 5008 5009 if (!enable_vnmi) { 5010 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { 5011 vmx->loaded_vmcs->soft_vnmi_blocked = masked; 5012 vmx->loaded_vmcs->vnmi_blocked_time = 0; 5013 } 5014 } else { 5015 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 5016 if (masked) 5017 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5018 GUEST_INTR_STATE_NMI); 5019 else 5020 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, 5021 GUEST_INTR_STATE_NMI); 5022 } 5023 } 5024 5025 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu) 5026 { 5027 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 5028 return false; 5029 5030 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) 5031 return true; 5032 5033 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5034 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI | 5035 GUEST_INTR_STATE_NMI)); 5036 } 5037 5038 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 5039 { 5040 if (to_vmx(vcpu)->nested.nested_run_pending) 5041 return -EBUSY; 5042 5043 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 5044 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 5045 return -EBUSY; 5046 5047 return !vmx_nmi_blocked(vcpu); 5048 } 5049 5050 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu) 5051 { 5052 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 5053 return false; 5054 5055 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) || 5056 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5057 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); 5058 } 5059 5060 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 5061 { 5062 if (to_vmx(vcpu)->nested.nested_run_pending) 5063 return -EBUSY; 5064 5065 /* 5066 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 5067 * e.g. if the IRQ arrived asynchronously after checking nested events. 5068 */ 5069 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 5070 return -EBUSY; 5071 5072 return !vmx_interrupt_blocked(vcpu); 5073 } 5074 5075 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) 5076 { 5077 void __user *ret; 5078 5079 if (enable_unrestricted_guest) 5080 return 0; 5081 5082 mutex_lock(&kvm->slots_lock); 5083 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, 5084 PAGE_SIZE * 3); 5085 mutex_unlock(&kvm->slots_lock); 5086 5087 if (IS_ERR(ret)) 5088 return PTR_ERR(ret); 5089 5090 to_kvm_vmx(kvm)->tss_addr = addr; 5091 5092 return init_rmode_tss(kvm, ret); 5093 } 5094 5095 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 5096 { 5097 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; 5098 return 0; 5099 } 5100 5101 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) 5102 { 5103 switch (vec) { 5104 case BP_VECTOR: 5105 /* 5106 * Update instruction length as we may reinject the exception 5107 * from user space while in guest debugging mode. 5108 */ 5109 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = 5110 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 5111 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 5112 return false; 5113 fallthrough; 5114 case DB_VECTOR: 5115 return !(vcpu->guest_debug & 5116 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)); 5117 case DE_VECTOR: 5118 case OF_VECTOR: 5119 case BR_VECTOR: 5120 case UD_VECTOR: 5121 case DF_VECTOR: 5122 case SS_VECTOR: 5123 case GP_VECTOR: 5124 case MF_VECTOR: 5125 return true; 5126 } 5127 return false; 5128 } 5129 5130 static int handle_rmode_exception(struct kvm_vcpu *vcpu, 5131 int vec, u32 err_code) 5132 { 5133 /* 5134 * Instruction with address size override prefix opcode 0x67 5135 * Cause the #SS fault with 0 error code in VM86 mode. 5136 */ 5137 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { 5138 if (kvm_emulate_instruction(vcpu, 0)) { 5139 if (vcpu->arch.halt_request) { 5140 vcpu->arch.halt_request = 0; 5141 return kvm_emulate_halt_noskip(vcpu); 5142 } 5143 return 1; 5144 } 5145 return 0; 5146 } 5147 5148 /* 5149 * Forward all other exceptions that are valid in real mode. 5150 * FIXME: Breaks guest debugging in real mode, needs to be fixed with 5151 * the required debugging infrastructure rework. 5152 */ 5153 kvm_queue_exception(vcpu, vec); 5154 return 1; 5155 } 5156 5157 static int handle_machine_check(struct kvm_vcpu *vcpu) 5158 { 5159 /* handled by vmx_vcpu_run() */ 5160 return 1; 5161 } 5162 5163 /* 5164 * If the host has split lock detection disabled, then #AC is 5165 * unconditionally injected into the guest, which is the pre split lock 5166 * detection behaviour. 5167 * 5168 * If the host has split lock detection enabled then #AC is 5169 * only injected into the guest when: 5170 * - Guest CPL == 3 (user mode) 5171 * - Guest has #AC detection enabled in CR0 5172 * - Guest EFLAGS has AC bit set 5173 */ 5174 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu) 5175 { 5176 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 5177 return true; 5178 5179 return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) && 5180 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC); 5181 } 5182 5183 static int handle_exception_nmi(struct kvm_vcpu *vcpu) 5184 { 5185 struct vcpu_vmx *vmx = to_vmx(vcpu); 5186 struct kvm_run *kvm_run = vcpu->run; 5187 u32 intr_info, ex_no, error_code; 5188 unsigned long cr2, dr6; 5189 u32 vect_info; 5190 5191 vect_info = vmx->idt_vectoring_info; 5192 intr_info = vmx_get_intr_info(vcpu); 5193 5194 /* 5195 * Machine checks are handled by handle_exception_irqoff(), or by 5196 * vmx_vcpu_run() if a #MC occurs on VM-Entry. NMIs are handled by 5197 * vmx_vcpu_enter_exit(). 5198 */ 5199 if (is_machine_check(intr_info) || is_nmi(intr_info)) 5200 return 1; 5201 5202 /* 5203 * Queue the exception here instead of in handle_nm_fault_irqoff(). 5204 * This ensures the nested_vmx check is not skipped so vmexit can 5205 * be reflected to L1 (when it intercepts #NM) before reaching this 5206 * point. 5207 */ 5208 if (is_nm_fault(intr_info)) { 5209 kvm_queue_exception(vcpu, NM_VECTOR); 5210 return 1; 5211 } 5212 5213 if (is_invalid_opcode(intr_info)) 5214 return handle_ud(vcpu); 5215 5216 error_code = 0; 5217 if (intr_info & INTR_INFO_DELIVER_CODE_MASK) 5218 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 5219 5220 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { 5221 WARN_ON_ONCE(!enable_vmware_backdoor); 5222 5223 /* 5224 * VMware backdoor emulation on #GP interception only handles 5225 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero 5226 * error code on #GP. 5227 */ 5228 if (error_code) { 5229 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 5230 return 1; 5231 } 5232 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); 5233 } 5234 5235 /* 5236 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing 5237 * MMIO, it is better to report an internal error. 5238 * See the comments in vmx_handle_exit. 5239 */ 5240 if ((vect_info & VECTORING_INFO_VALID_MASK) && 5241 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { 5242 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5243 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; 5244 vcpu->run->internal.ndata = 4; 5245 vcpu->run->internal.data[0] = vect_info; 5246 vcpu->run->internal.data[1] = intr_info; 5247 vcpu->run->internal.data[2] = error_code; 5248 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu; 5249 return 0; 5250 } 5251 5252 if (is_page_fault(intr_info)) { 5253 cr2 = vmx_get_exit_qual(vcpu); 5254 if (enable_ept && !vcpu->arch.apf.host_apf_flags) { 5255 /* 5256 * EPT will cause page fault only if we need to 5257 * detect illegal GPAs. 5258 */ 5259 WARN_ON_ONCE(!allow_smaller_maxphyaddr); 5260 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code); 5261 return 1; 5262 } else 5263 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); 5264 } 5265 5266 ex_no = intr_info & INTR_INFO_VECTOR_MASK; 5267 5268 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) 5269 return handle_rmode_exception(vcpu, ex_no, error_code); 5270 5271 switch (ex_no) { 5272 case DB_VECTOR: 5273 dr6 = vmx_get_exit_qual(vcpu); 5274 if (!(vcpu->guest_debug & 5275 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { 5276 /* 5277 * If the #DB was due to ICEBP, a.k.a. INT1, skip the 5278 * instruction. ICEBP generates a trap-like #DB, but 5279 * despite its interception control being tied to #DB, 5280 * is an instruction intercept, i.e. the VM-Exit occurs 5281 * on the ICEBP itself. Use the inner "skip" helper to 5282 * avoid single-step #DB and MTF updates, as ICEBP is 5283 * higher priority. Note, skipping ICEBP still clears 5284 * STI and MOVSS blocking. 5285 * 5286 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS 5287 * if single-step is enabled in RFLAGS and STI or MOVSS 5288 * blocking is active, as the CPU doesn't set the bit 5289 * on VM-Exit due to #DB interception. VM-Entry has a 5290 * consistency check that a single-step #DB is pending 5291 * in this scenario as the previous instruction cannot 5292 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV 5293 * don't modify RFLAGS), therefore the one instruction 5294 * delay when activating single-step breakpoints must 5295 * have already expired. Note, the CPU sets/clears BS 5296 * as appropriate for all other VM-Exits types. 5297 */ 5298 if (is_icebp(intr_info)) 5299 WARN_ON(!skip_emulated_instruction(vcpu)); 5300 else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) && 5301 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5302 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS))) 5303 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 5304 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS); 5305 5306 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 5307 return 1; 5308 } 5309 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 5310 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); 5311 fallthrough; 5312 case BP_VECTOR: 5313 /* 5314 * Update instruction length as we may reinject #BP from 5315 * user space while in guest debugging mode. Reading it for 5316 * #DB as well causes no harm, it is not used in that case. 5317 */ 5318 vmx->vcpu.arch.event_exit_inst_len = 5319 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 5320 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5321 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5322 kvm_run->debug.arch.exception = ex_no; 5323 break; 5324 case AC_VECTOR: 5325 if (vmx_guest_inject_ac(vcpu)) { 5326 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); 5327 return 1; 5328 } 5329 5330 /* 5331 * Handle split lock. Depending on detection mode this will 5332 * either warn and disable split lock detection for this 5333 * task or force SIGBUS on it. 5334 */ 5335 if (handle_guest_split_lock(kvm_rip_read(vcpu))) 5336 return 1; 5337 fallthrough; 5338 default: 5339 kvm_run->exit_reason = KVM_EXIT_EXCEPTION; 5340 kvm_run->ex.exception = ex_no; 5341 kvm_run->ex.error_code = error_code; 5342 break; 5343 } 5344 return 0; 5345 } 5346 5347 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu) 5348 { 5349 ++vcpu->stat.irq_exits; 5350 return 1; 5351 } 5352 5353 static int handle_triple_fault(struct kvm_vcpu *vcpu) 5354 { 5355 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 5356 vcpu->mmio_needed = 0; 5357 return 0; 5358 } 5359 5360 static int handle_io(struct kvm_vcpu *vcpu) 5361 { 5362 unsigned long exit_qualification; 5363 int size, in, string; 5364 unsigned port; 5365 5366 exit_qualification = vmx_get_exit_qual(vcpu); 5367 string = (exit_qualification & 16) != 0; 5368 5369 ++vcpu->stat.io_exits; 5370 5371 if (string) 5372 return kvm_emulate_instruction(vcpu, 0); 5373 5374 port = exit_qualification >> 16; 5375 size = (exit_qualification & 7) + 1; 5376 in = (exit_qualification & 8) != 0; 5377 5378 return kvm_fast_pio(vcpu, size, port, in); 5379 } 5380 5381 static void 5382 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 5383 { 5384 /* 5385 * Patch in the VMCALL instruction: 5386 */ 5387 hypercall[0] = 0x0f; 5388 hypercall[1] = 0x01; 5389 hypercall[2] = 0xc1; 5390 } 5391 5392 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ 5393 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) 5394 { 5395 if (is_guest_mode(vcpu)) { 5396 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5397 unsigned long orig_val = val; 5398 5399 /* 5400 * We get here when L2 changed cr0 in a way that did not change 5401 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), 5402 * but did change L0 shadowed bits. So we first calculate the 5403 * effective cr0 value that L1 would like to write into the 5404 * hardware. It consists of the L2-owned bits from the new 5405 * value combined with the L1-owned bits from L1's guest_cr0. 5406 */ 5407 val = (val & ~vmcs12->cr0_guest_host_mask) | 5408 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); 5409 5410 if (kvm_set_cr0(vcpu, val)) 5411 return 1; 5412 vmcs_writel(CR0_READ_SHADOW, orig_val); 5413 return 0; 5414 } else { 5415 return kvm_set_cr0(vcpu, val); 5416 } 5417 } 5418 5419 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) 5420 { 5421 if (is_guest_mode(vcpu)) { 5422 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5423 unsigned long orig_val = val; 5424 5425 /* analogously to handle_set_cr0 */ 5426 val = (val & ~vmcs12->cr4_guest_host_mask) | 5427 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); 5428 if (kvm_set_cr4(vcpu, val)) 5429 return 1; 5430 vmcs_writel(CR4_READ_SHADOW, orig_val); 5431 return 0; 5432 } else 5433 return kvm_set_cr4(vcpu, val); 5434 } 5435 5436 static int handle_desc(struct kvm_vcpu *vcpu) 5437 { 5438 /* 5439 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this 5440 * and other code needs to be updated if UMIP can be guest owned. 5441 */ 5442 BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP); 5443 5444 WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP)); 5445 return kvm_emulate_instruction(vcpu, 0); 5446 } 5447 5448 static int handle_cr(struct kvm_vcpu *vcpu) 5449 { 5450 unsigned long exit_qualification, val; 5451 int cr; 5452 int reg; 5453 int err; 5454 int ret; 5455 5456 exit_qualification = vmx_get_exit_qual(vcpu); 5457 cr = exit_qualification & 15; 5458 reg = (exit_qualification >> 8) & 15; 5459 switch ((exit_qualification >> 4) & 3) { 5460 case 0: /* mov to cr */ 5461 val = kvm_register_read(vcpu, reg); 5462 trace_kvm_cr_write(cr, val); 5463 switch (cr) { 5464 case 0: 5465 err = handle_set_cr0(vcpu, val); 5466 return kvm_complete_insn_gp(vcpu, err); 5467 case 3: 5468 WARN_ON_ONCE(enable_unrestricted_guest); 5469 5470 err = kvm_set_cr3(vcpu, val); 5471 return kvm_complete_insn_gp(vcpu, err); 5472 case 4: 5473 err = handle_set_cr4(vcpu, val); 5474 return kvm_complete_insn_gp(vcpu, err); 5475 case 8: { 5476 u8 cr8_prev = kvm_get_cr8(vcpu); 5477 u8 cr8 = (u8)val; 5478 err = kvm_set_cr8(vcpu, cr8); 5479 ret = kvm_complete_insn_gp(vcpu, err); 5480 if (lapic_in_kernel(vcpu)) 5481 return ret; 5482 if (cr8_prev <= cr8) 5483 return ret; 5484 /* 5485 * TODO: we might be squashing a 5486 * KVM_GUESTDBG_SINGLESTEP-triggered 5487 * KVM_EXIT_DEBUG here. 5488 */ 5489 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 5490 return 0; 5491 } 5492 } 5493 break; 5494 case 2: /* clts */ 5495 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS"); 5496 return -EIO; 5497 case 1: /*mov from cr*/ 5498 switch (cr) { 5499 case 3: 5500 WARN_ON_ONCE(enable_unrestricted_guest); 5501 5502 val = kvm_read_cr3(vcpu); 5503 kvm_register_write(vcpu, reg, val); 5504 trace_kvm_cr_read(cr, val); 5505 return kvm_skip_emulated_instruction(vcpu); 5506 case 8: 5507 val = kvm_get_cr8(vcpu); 5508 kvm_register_write(vcpu, reg, val); 5509 trace_kvm_cr_read(cr, val); 5510 return kvm_skip_emulated_instruction(vcpu); 5511 } 5512 break; 5513 case 3: /* lmsw */ 5514 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; 5515 trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val)); 5516 kvm_lmsw(vcpu, val); 5517 5518 return kvm_skip_emulated_instruction(vcpu); 5519 default: 5520 break; 5521 } 5522 vcpu->run->exit_reason = 0; 5523 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", 5524 (int)(exit_qualification >> 4) & 3, cr); 5525 return 0; 5526 } 5527 5528 static int handle_dr(struct kvm_vcpu *vcpu) 5529 { 5530 unsigned long exit_qualification; 5531 int dr, dr7, reg; 5532 int err = 1; 5533 5534 exit_qualification = vmx_get_exit_qual(vcpu); 5535 dr = exit_qualification & DEBUG_REG_ACCESS_NUM; 5536 5537 /* First, if DR does not exist, trigger UD */ 5538 if (!kvm_require_dr(vcpu, dr)) 5539 return 1; 5540 5541 if (vmx_get_cpl(vcpu) > 0) 5542 goto out; 5543 5544 dr7 = vmcs_readl(GUEST_DR7); 5545 if (dr7 & DR7_GD) { 5546 /* 5547 * As the vm-exit takes precedence over the debug trap, we 5548 * need to emulate the latter, either for the host or the 5549 * guest debugging itself. 5550 */ 5551 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 5552 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW; 5553 vcpu->run->debug.arch.dr7 = dr7; 5554 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5555 vcpu->run->debug.arch.exception = DB_VECTOR; 5556 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 5557 return 0; 5558 } else { 5559 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD); 5560 return 1; 5561 } 5562 } 5563 5564 if (vcpu->guest_debug == 0) { 5565 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5566 5567 /* 5568 * No more DR vmexits; force a reload of the debug registers 5569 * and reenter on this instruction. The next vmexit will 5570 * retrieve the full state of the debug registers. 5571 */ 5572 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 5573 return 1; 5574 } 5575 5576 reg = DEBUG_REG_ACCESS_REG(exit_qualification); 5577 if (exit_qualification & TYPE_MOV_FROM_DR) { 5578 unsigned long val; 5579 5580 kvm_get_dr(vcpu, dr, &val); 5581 kvm_register_write(vcpu, reg, val); 5582 err = 0; 5583 } else { 5584 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); 5585 } 5586 5587 out: 5588 return kvm_complete_insn_gp(vcpu, err); 5589 } 5590 5591 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 5592 { 5593 get_debugreg(vcpu->arch.db[0], 0); 5594 get_debugreg(vcpu->arch.db[1], 1); 5595 get_debugreg(vcpu->arch.db[2], 2); 5596 get_debugreg(vcpu->arch.db[3], 3); 5597 get_debugreg(vcpu->arch.dr6, 6); 5598 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); 5599 5600 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 5601 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5602 5603 /* 5604 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees 5605 * a stale dr6 from the guest. 5606 */ 5607 set_debugreg(DR6_RESERVED, 6); 5608 } 5609 5610 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) 5611 { 5612 vmcs_writel(GUEST_DR7, val); 5613 } 5614 5615 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) 5616 { 5617 kvm_apic_update_ppr(vcpu); 5618 return 1; 5619 } 5620 5621 static int handle_interrupt_window(struct kvm_vcpu *vcpu) 5622 { 5623 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 5624 5625 kvm_make_request(KVM_REQ_EVENT, vcpu); 5626 5627 ++vcpu->stat.irq_window_exits; 5628 return 1; 5629 } 5630 5631 static int handle_invlpg(struct kvm_vcpu *vcpu) 5632 { 5633 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5634 5635 kvm_mmu_invlpg(vcpu, exit_qualification); 5636 return kvm_skip_emulated_instruction(vcpu); 5637 } 5638 5639 static int handle_apic_access(struct kvm_vcpu *vcpu) 5640 { 5641 if (likely(fasteoi)) { 5642 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5643 int access_type, offset; 5644 5645 access_type = exit_qualification & APIC_ACCESS_TYPE; 5646 offset = exit_qualification & APIC_ACCESS_OFFSET; 5647 /* 5648 * Sane guest uses MOV to write EOI, with written value 5649 * not cared. So make a short-circuit here by avoiding 5650 * heavy instruction emulation. 5651 */ 5652 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && 5653 (offset == APIC_EOI)) { 5654 kvm_lapic_set_eoi(vcpu); 5655 return kvm_skip_emulated_instruction(vcpu); 5656 } 5657 } 5658 return kvm_emulate_instruction(vcpu, 0); 5659 } 5660 5661 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) 5662 { 5663 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5664 int vector = exit_qualification & 0xff; 5665 5666 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ 5667 kvm_apic_set_eoi_accelerated(vcpu, vector); 5668 return 1; 5669 } 5670 5671 static int handle_apic_write(struct kvm_vcpu *vcpu) 5672 { 5673 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5674 5675 /* 5676 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and 5677 * hardware has done any necessary aliasing, offset adjustments, etc... 5678 * for the access. I.e. the correct value has already been written to 5679 * the vAPIC page for the correct 16-byte chunk. KVM needs only to 5680 * retrieve the register value and emulate the access. 5681 */ 5682 u32 offset = exit_qualification & 0xff0; 5683 5684 kvm_apic_write_nodecode(vcpu, offset); 5685 return 1; 5686 } 5687 5688 static int handle_task_switch(struct kvm_vcpu *vcpu) 5689 { 5690 struct vcpu_vmx *vmx = to_vmx(vcpu); 5691 unsigned long exit_qualification; 5692 bool has_error_code = false; 5693 u32 error_code = 0; 5694 u16 tss_selector; 5695 int reason, type, idt_v, idt_index; 5696 5697 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); 5698 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); 5699 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); 5700 5701 exit_qualification = vmx_get_exit_qual(vcpu); 5702 5703 reason = (u32)exit_qualification >> 30; 5704 if (reason == TASK_SWITCH_GATE && idt_v) { 5705 switch (type) { 5706 case INTR_TYPE_NMI_INTR: 5707 vcpu->arch.nmi_injected = false; 5708 vmx_set_nmi_mask(vcpu, true); 5709 break; 5710 case INTR_TYPE_EXT_INTR: 5711 case INTR_TYPE_SOFT_INTR: 5712 kvm_clear_interrupt_queue(vcpu); 5713 break; 5714 case INTR_TYPE_HARD_EXCEPTION: 5715 if (vmx->idt_vectoring_info & 5716 VECTORING_INFO_DELIVER_CODE_MASK) { 5717 has_error_code = true; 5718 error_code = 5719 vmcs_read32(IDT_VECTORING_ERROR_CODE); 5720 } 5721 fallthrough; 5722 case INTR_TYPE_SOFT_EXCEPTION: 5723 kvm_clear_exception_queue(vcpu); 5724 break; 5725 default: 5726 break; 5727 } 5728 } 5729 tss_selector = exit_qualification; 5730 5731 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && 5732 type != INTR_TYPE_EXT_INTR && 5733 type != INTR_TYPE_NMI_INTR)) 5734 WARN_ON(!skip_emulated_instruction(vcpu)); 5735 5736 /* 5737 * TODO: What about debug traps on tss switch? 5738 * Are we supposed to inject them and update dr6? 5739 */ 5740 return kvm_task_switch(vcpu, tss_selector, 5741 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, 5742 reason, has_error_code, error_code); 5743 } 5744 5745 static int handle_ept_violation(struct kvm_vcpu *vcpu) 5746 { 5747 unsigned long exit_qualification; 5748 gpa_t gpa; 5749 u64 error_code; 5750 5751 exit_qualification = vmx_get_exit_qual(vcpu); 5752 5753 /* 5754 * EPT violation happened while executing iret from NMI, 5755 * "blocked by NMI" bit has to be set before next VM entry. 5756 * There are errata that may cause this bit to not be set: 5757 * AAK134, BY25. 5758 */ 5759 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5760 enable_vnmi && 5761 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5762 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); 5763 5764 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5765 trace_kvm_page_fault(vcpu, gpa, exit_qualification); 5766 5767 /* Is it a read fault? */ 5768 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) 5769 ? PFERR_USER_MASK : 0; 5770 /* Is it a write fault? */ 5771 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) 5772 ? PFERR_WRITE_MASK : 0; 5773 /* Is it a fetch fault? */ 5774 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) 5775 ? PFERR_FETCH_MASK : 0; 5776 /* ept page table entry is present? */ 5777 error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK) 5778 ? PFERR_PRESENT_MASK : 0; 5779 5780 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ? 5781 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; 5782 5783 vcpu->arch.exit_qualification = exit_qualification; 5784 5785 /* 5786 * Check that the GPA doesn't exceed physical memory limits, as that is 5787 * a guest page fault. We have to emulate the instruction here, because 5788 * if the illegal address is that of a paging structure, then 5789 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we 5790 * would also use advanced VM-exit information for EPT violations to 5791 * reconstruct the page fault error code. 5792 */ 5793 if (unlikely(allow_smaller_maxphyaddr && !kvm_vcpu_is_legal_gpa(vcpu, gpa))) 5794 return kvm_emulate_instruction(vcpu, 0); 5795 5796 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); 5797 } 5798 5799 static int handle_ept_misconfig(struct kvm_vcpu *vcpu) 5800 { 5801 gpa_t gpa; 5802 5803 if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0)) 5804 return 1; 5805 5806 /* 5807 * A nested guest cannot optimize MMIO vmexits, because we have an 5808 * nGPA here instead of the required GPA. 5809 */ 5810 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5811 if (!is_guest_mode(vcpu) && 5812 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { 5813 trace_kvm_fast_mmio(gpa); 5814 return kvm_skip_emulated_instruction(vcpu); 5815 } 5816 5817 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); 5818 } 5819 5820 static int handle_nmi_window(struct kvm_vcpu *vcpu) 5821 { 5822 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm)) 5823 return -EIO; 5824 5825 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 5826 ++vcpu->stat.nmi_window_exits; 5827 kvm_make_request(KVM_REQ_EVENT, vcpu); 5828 5829 return 1; 5830 } 5831 5832 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu) 5833 { 5834 struct vcpu_vmx *vmx = to_vmx(vcpu); 5835 5836 return vmx->emulation_required && !vmx->rmode.vm86_active && 5837 (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected); 5838 } 5839 5840 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) 5841 { 5842 struct vcpu_vmx *vmx = to_vmx(vcpu); 5843 bool intr_window_requested; 5844 unsigned count = 130; 5845 5846 intr_window_requested = exec_controls_get(vmx) & 5847 CPU_BASED_INTR_WINDOW_EXITING; 5848 5849 while (vmx->emulation_required && count-- != 0) { 5850 if (intr_window_requested && !vmx_interrupt_blocked(vcpu)) 5851 return handle_interrupt_window(&vmx->vcpu); 5852 5853 if (kvm_test_request(KVM_REQ_EVENT, vcpu)) 5854 return 1; 5855 5856 if (!kvm_emulate_instruction(vcpu, 0)) 5857 return 0; 5858 5859 if (vmx_emulation_required_with_pending_exception(vcpu)) { 5860 kvm_prepare_emulation_failure_exit(vcpu); 5861 return 0; 5862 } 5863 5864 if (vcpu->arch.halt_request) { 5865 vcpu->arch.halt_request = 0; 5866 return kvm_emulate_halt_noskip(vcpu); 5867 } 5868 5869 /* 5870 * Note, return 1 and not 0, vcpu_run() will invoke 5871 * xfer_to_guest_mode() which will create a proper return 5872 * code. 5873 */ 5874 if (__xfer_to_guest_mode_work_pending()) 5875 return 1; 5876 } 5877 5878 return 1; 5879 } 5880 5881 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu) 5882 { 5883 if (vmx_emulation_required_with_pending_exception(vcpu)) { 5884 kvm_prepare_emulation_failure_exit(vcpu); 5885 return 0; 5886 } 5887 5888 return 1; 5889 } 5890 5891 static void grow_ple_window(struct kvm_vcpu *vcpu) 5892 { 5893 struct vcpu_vmx *vmx = to_vmx(vcpu); 5894 unsigned int old = vmx->ple_window; 5895 5896 vmx->ple_window = __grow_ple_window(old, ple_window, 5897 ple_window_grow, 5898 ple_window_max); 5899 5900 if (vmx->ple_window != old) { 5901 vmx->ple_window_dirty = true; 5902 trace_kvm_ple_window_update(vcpu->vcpu_id, 5903 vmx->ple_window, old); 5904 } 5905 } 5906 5907 static void shrink_ple_window(struct kvm_vcpu *vcpu) 5908 { 5909 struct vcpu_vmx *vmx = to_vmx(vcpu); 5910 unsigned int old = vmx->ple_window; 5911 5912 vmx->ple_window = __shrink_ple_window(old, ple_window, 5913 ple_window_shrink, 5914 ple_window); 5915 5916 if (vmx->ple_window != old) { 5917 vmx->ple_window_dirty = true; 5918 trace_kvm_ple_window_update(vcpu->vcpu_id, 5919 vmx->ple_window, old); 5920 } 5921 } 5922 5923 /* 5924 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE 5925 * exiting, so only get here on cpu with PAUSE-Loop-Exiting. 5926 */ 5927 static int handle_pause(struct kvm_vcpu *vcpu) 5928 { 5929 if (!kvm_pause_in_guest(vcpu->kvm)) 5930 grow_ple_window(vcpu); 5931 5932 /* 5933 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" 5934 * VM-execution control is ignored if CPL > 0. OTOH, KVM 5935 * never set PAUSE_EXITING and just set PLE if supported, 5936 * so the vcpu must be CPL=0 if it gets a PAUSE exit. 5937 */ 5938 kvm_vcpu_on_spin(vcpu, true); 5939 return kvm_skip_emulated_instruction(vcpu); 5940 } 5941 5942 static int handle_monitor_trap(struct kvm_vcpu *vcpu) 5943 { 5944 return 1; 5945 } 5946 5947 static int handle_invpcid(struct kvm_vcpu *vcpu) 5948 { 5949 u32 vmx_instruction_info; 5950 unsigned long type; 5951 gva_t gva; 5952 struct { 5953 u64 pcid; 5954 u64 gla; 5955 } operand; 5956 int gpr_index; 5957 5958 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 5959 kvm_queue_exception(vcpu, UD_VECTOR); 5960 return 1; 5961 } 5962 5963 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5964 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info); 5965 type = kvm_register_read(vcpu, gpr_index); 5966 5967 /* According to the Intel instruction reference, the memory operand 5968 * is read even if it isn't needed (e.g., for type==all) 5969 */ 5970 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), 5971 vmx_instruction_info, false, 5972 sizeof(operand), &gva)) 5973 return 1; 5974 5975 return kvm_handle_invpcid(vcpu, type, gva); 5976 } 5977 5978 static int handle_pml_full(struct kvm_vcpu *vcpu) 5979 { 5980 unsigned long exit_qualification; 5981 5982 trace_kvm_pml_full(vcpu->vcpu_id); 5983 5984 exit_qualification = vmx_get_exit_qual(vcpu); 5985 5986 /* 5987 * PML buffer FULL happened while executing iret from NMI, 5988 * "blocked by NMI" bit has to be set before next VM entry. 5989 */ 5990 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5991 enable_vnmi && 5992 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5993 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5994 GUEST_INTR_STATE_NMI); 5995 5996 /* 5997 * PML buffer already flushed at beginning of VMEXIT. Nothing to do 5998 * here.., and there's no userspace involvement needed for PML. 5999 */ 6000 return 1; 6001 } 6002 6003 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu) 6004 { 6005 struct vcpu_vmx *vmx = to_vmx(vcpu); 6006 6007 if (!vmx->req_immediate_exit && 6008 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) { 6009 kvm_lapic_expired_hv_timer(vcpu); 6010 return EXIT_FASTPATH_REENTER_GUEST; 6011 } 6012 6013 return EXIT_FASTPATH_NONE; 6014 } 6015 6016 static int handle_preemption_timer(struct kvm_vcpu *vcpu) 6017 { 6018 handle_fastpath_preemption_timer(vcpu); 6019 return 1; 6020 } 6021 6022 /* 6023 * When nested=0, all VMX instruction VM Exits filter here. The handlers 6024 * are overwritten by nested_vmx_setup() when nested=1. 6025 */ 6026 static int handle_vmx_instruction(struct kvm_vcpu *vcpu) 6027 { 6028 kvm_queue_exception(vcpu, UD_VECTOR); 6029 return 1; 6030 } 6031 6032 #ifndef CONFIG_X86_SGX_KVM 6033 static int handle_encls(struct kvm_vcpu *vcpu) 6034 { 6035 /* 6036 * SGX virtualization is disabled. There is no software enable bit for 6037 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent 6038 * the guest from executing ENCLS (when SGX is supported by hardware). 6039 */ 6040 kvm_queue_exception(vcpu, UD_VECTOR); 6041 return 1; 6042 } 6043 #endif /* CONFIG_X86_SGX_KVM */ 6044 6045 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu) 6046 { 6047 /* 6048 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK 6049 * VM-Exits. Unconditionally set the flag here and leave the handling to 6050 * vmx_handle_exit(). 6051 */ 6052 to_vmx(vcpu)->exit_reason.bus_lock_detected = true; 6053 return 1; 6054 } 6055 6056 static int handle_notify(struct kvm_vcpu *vcpu) 6057 { 6058 unsigned long exit_qual = vmx_get_exit_qual(vcpu); 6059 bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID; 6060 6061 ++vcpu->stat.notify_window_exits; 6062 6063 /* 6064 * Notify VM exit happened while executing iret from NMI, 6065 * "blocked by NMI" bit has to be set before next VM entry. 6066 */ 6067 if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI)) 6068 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 6069 GUEST_INTR_STATE_NMI); 6070 6071 if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER || 6072 context_invalid) { 6073 vcpu->run->exit_reason = KVM_EXIT_NOTIFY; 6074 vcpu->run->notify.flags = context_invalid ? 6075 KVM_NOTIFY_CONTEXT_INVALID : 0; 6076 return 0; 6077 } 6078 6079 return 1; 6080 } 6081 6082 /* 6083 * The exit handlers return 1 if the exit was handled fully and guest execution 6084 * may resume. Otherwise they set the kvm_run parameter to indicate what needs 6085 * to be done to userspace and return 0. 6086 */ 6087 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { 6088 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi, 6089 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, 6090 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, 6091 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, 6092 [EXIT_REASON_IO_INSTRUCTION] = handle_io, 6093 [EXIT_REASON_CR_ACCESS] = handle_cr, 6094 [EXIT_REASON_DR_ACCESS] = handle_dr, 6095 [EXIT_REASON_CPUID] = kvm_emulate_cpuid, 6096 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr, 6097 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr, 6098 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window, 6099 [EXIT_REASON_HLT] = kvm_emulate_halt, 6100 [EXIT_REASON_INVD] = kvm_emulate_invd, 6101 [EXIT_REASON_INVLPG] = handle_invlpg, 6102 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc, 6103 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall, 6104 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, 6105 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, 6106 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, 6107 [EXIT_REASON_VMPTRST] = handle_vmx_instruction, 6108 [EXIT_REASON_VMREAD] = handle_vmx_instruction, 6109 [EXIT_REASON_VMRESUME] = handle_vmx_instruction, 6110 [EXIT_REASON_VMWRITE] = handle_vmx_instruction, 6111 [EXIT_REASON_VMOFF] = handle_vmx_instruction, 6112 [EXIT_REASON_VMON] = handle_vmx_instruction, 6113 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, 6114 [EXIT_REASON_APIC_ACCESS] = handle_apic_access, 6115 [EXIT_REASON_APIC_WRITE] = handle_apic_write, 6116 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, 6117 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd, 6118 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv, 6119 [EXIT_REASON_TASK_SWITCH] = handle_task_switch, 6120 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, 6121 [EXIT_REASON_GDTR_IDTR] = handle_desc, 6122 [EXIT_REASON_LDTR_TR] = handle_desc, 6123 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, 6124 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, 6125 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, 6126 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait, 6127 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, 6128 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor, 6129 [EXIT_REASON_INVEPT] = handle_vmx_instruction, 6130 [EXIT_REASON_INVVPID] = handle_vmx_instruction, 6131 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op, 6132 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op, 6133 [EXIT_REASON_PML_FULL] = handle_pml_full, 6134 [EXIT_REASON_INVPCID] = handle_invpcid, 6135 [EXIT_REASON_VMFUNC] = handle_vmx_instruction, 6136 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, 6137 [EXIT_REASON_ENCLS] = handle_encls, 6138 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit, 6139 [EXIT_REASON_NOTIFY] = handle_notify, 6140 }; 6141 6142 static const int kvm_vmx_max_exit_handlers = 6143 ARRAY_SIZE(kvm_vmx_exit_handlers); 6144 6145 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 6146 u64 *info1, u64 *info2, 6147 u32 *intr_info, u32 *error_code) 6148 { 6149 struct vcpu_vmx *vmx = to_vmx(vcpu); 6150 6151 *reason = vmx->exit_reason.full; 6152 *info1 = vmx_get_exit_qual(vcpu); 6153 if (!(vmx->exit_reason.failed_vmentry)) { 6154 *info2 = vmx->idt_vectoring_info; 6155 *intr_info = vmx_get_intr_info(vcpu); 6156 if (is_exception_with_error_code(*intr_info)) 6157 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 6158 else 6159 *error_code = 0; 6160 } else { 6161 *info2 = 0; 6162 *intr_info = 0; 6163 *error_code = 0; 6164 } 6165 } 6166 6167 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) 6168 { 6169 if (vmx->pml_pg) { 6170 __free_page(vmx->pml_pg); 6171 vmx->pml_pg = NULL; 6172 } 6173 } 6174 6175 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) 6176 { 6177 struct vcpu_vmx *vmx = to_vmx(vcpu); 6178 u64 *pml_buf; 6179 u16 pml_idx; 6180 6181 pml_idx = vmcs_read16(GUEST_PML_INDEX); 6182 6183 /* Do nothing if PML buffer is empty */ 6184 if (pml_idx == (PML_ENTITY_NUM - 1)) 6185 return; 6186 6187 /* PML index always points to next available PML buffer entity */ 6188 if (pml_idx >= PML_ENTITY_NUM) 6189 pml_idx = 0; 6190 else 6191 pml_idx++; 6192 6193 pml_buf = page_address(vmx->pml_pg); 6194 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { 6195 u64 gpa; 6196 6197 gpa = pml_buf[pml_idx]; 6198 WARN_ON(gpa & (PAGE_SIZE - 1)); 6199 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 6200 } 6201 6202 /* reset PML index */ 6203 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 6204 } 6205 6206 static void vmx_dump_sel(char *name, uint32_t sel) 6207 { 6208 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", 6209 name, vmcs_read16(sel), 6210 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), 6211 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), 6212 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); 6213 } 6214 6215 static void vmx_dump_dtsel(char *name, uint32_t limit) 6216 { 6217 pr_err("%s limit=0x%08x, base=0x%016lx\n", 6218 name, vmcs_read32(limit), 6219 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); 6220 } 6221 6222 static void vmx_dump_msrs(char *name, struct vmx_msrs *m) 6223 { 6224 unsigned int i; 6225 struct vmx_msr_entry *e; 6226 6227 pr_err("MSR %s:\n", name); 6228 for (i = 0, e = m->val; i < m->nr; ++i, ++e) 6229 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value); 6230 } 6231 6232 void dump_vmcs(struct kvm_vcpu *vcpu) 6233 { 6234 struct vcpu_vmx *vmx = to_vmx(vcpu); 6235 u32 vmentry_ctl, vmexit_ctl; 6236 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control; 6237 u64 tertiary_exec_control; 6238 unsigned long cr4; 6239 int efer_slot; 6240 6241 if (!dump_invalid_vmcs) { 6242 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n"); 6243 return; 6244 } 6245 6246 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); 6247 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); 6248 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); 6249 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); 6250 cr4 = vmcs_readl(GUEST_CR4); 6251 6252 if (cpu_has_secondary_exec_ctrls()) 6253 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); 6254 else 6255 secondary_exec_control = 0; 6256 6257 if (cpu_has_tertiary_exec_ctrls()) 6258 tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL); 6259 else 6260 tertiary_exec_control = 0; 6261 6262 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n", 6263 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu); 6264 pr_err("*** Guest State ***\n"); 6265 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 6266 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), 6267 vmcs_readl(CR0_GUEST_HOST_MASK)); 6268 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 6269 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); 6270 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); 6271 if (cpu_has_vmx_ept()) { 6272 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", 6273 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); 6274 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", 6275 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); 6276 } 6277 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", 6278 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); 6279 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", 6280 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); 6281 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 6282 vmcs_readl(GUEST_SYSENTER_ESP), 6283 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); 6284 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); 6285 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); 6286 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); 6287 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); 6288 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); 6289 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); 6290 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); 6291 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); 6292 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); 6293 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); 6294 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER); 6295 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER) 6296 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER)); 6297 else if (efer_slot >= 0) 6298 pr_err("EFER= 0x%016llx (autoload)\n", 6299 vmx->msr_autoload.guest.val[efer_slot].value); 6300 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE) 6301 pr_err("EFER= 0x%016llx (effective)\n", 6302 vcpu->arch.efer | (EFER_LMA | EFER_LME)); 6303 else 6304 pr_err("EFER= 0x%016llx (effective)\n", 6305 vcpu->arch.efer & ~(EFER_LMA | EFER_LME)); 6306 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT) 6307 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT)); 6308 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", 6309 vmcs_read64(GUEST_IA32_DEBUGCTL), 6310 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); 6311 if (cpu_has_load_perf_global_ctrl() && 6312 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) 6313 pr_err("PerfGlobCtl = 0x%016llx\n", 6314 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); 6315 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) 6316 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); 6317 pr_err("Interruptibility = %08x ActivityState = %08x\n", 6318 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), 6319 vmcs_read32(GUEST_ACTIVITY_STATE)); 6320 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) 6321 pr_err("InterruptStatus = %04x\n", 6322 vmcs_read16(GUEST_INTR_STATUS)); 6323 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0) 6324 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest); 6325 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0) 6326 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest); 6327 6328 pr_err("*** Host State ***\n"); 6329 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", 6330 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); 6331 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", 6332 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), 6333 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), 6334 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), 6335 vmcs_read16(HOST_TR_SELECTOR)); 6336 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", 6337 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), 6338 vmcs_readl(HOST_TR_BASE)); 6339 pr_err("GDTBase=%016lx IDTBase=%016lx\n", 6340 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); 6341 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", 6342 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), 6343 vmcs_readl(HOST_CR4)); 6344 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 6345 vmcs_readl(HOST_IA32_SYSENTER_ESP), 6346 vmcs_read32(HOST_IA32_SYSENTER_CS), 6347 vmcs_readl(HOST_IA32_SYSENTER_EIP)); 6348 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER) 6349 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER)); 6350 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT) 6351 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT)); 6352 if (cpu_has_load_perf_global_ctrl() && 6353 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) 6354 pr_err("PerfGlobCtl = 0x%016llx\n", 6355 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); 6356 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0) 6357 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host); 6358 6359 pr_err("*** Control State ***\n"); 6360 pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n", 6361 cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control); 6362 pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n", 6363 pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl); 6364 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", 6365 vmcs_read32(EXCEPTION_BITMAP), 6366 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), 6367 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); 6368 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", 6369 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 6370 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), 6371 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); 6372 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", 6373 vmcs_read32(VM_EXIT_INTR_INFO), 6374 vmcs_read32(VM_EXIT_INTR_ERROR_CODE), 6375 vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); 6376 pr_err(" reason=%08x qualification=%016lx\n", 6377 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); 6378 pr_err("IDTVectoring: info=%08x errcode=%08x\n", 6379 vmcs_read32(IDT_VECTORING_INFO_FIELD), 6380 vmcs_read32(IDT_VECTORING_ERROR_CODE)); 6381 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); 6382 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) 6383 pr_err("TSC Multiplier = 0x%016llx\n", 6384 vmcs_read64(TSC_MULTIPLIER)); 6385 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) { 6386 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { 6387 u16 status = vmcs_read16(GUEST_INTR_STATUS); 6388 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff); 6389 } 6390 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); 6391 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) 6392 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR)); 6393 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR)); 6394 } 6395 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) 6396 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); 6397 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) 6398 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); 6399 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) 6400 pr_err("PLE Gap=%08x Window=%08x\n", 6401 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); 6402 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) 6403 pr_err("Virtual processor ID = 0x%04x\n", 6404 vmcs_read16(VIRTUAL_PROCESSOR_ID)); 6405 } 6406 6407 /* 6408 * The guest has exited. See if we can fix it or if we need userspace 6409 * assistance. 6410 */ 6411 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6412 { 6413 struct vcpu_vmx *vmx = to_vmx(vcpu); 6414 union vmx_exit_reason exit_reason = vmx->exit_reason; 6415 u32 vectoring_info = vmx->idt_vectoring_info; 6416 u16 exit_handler_index; 6417 6418 /* 6419 * Flush logged GPAs PML buffer, this will make dirty_bitmap more 6420 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before 6421 * querying dirty_bitmap, we only need to kick all vcpus out of guest 6422 * mode as if vcpus is in root mode, the PML buffer must has been 6423 * flushed already. Note, PML is never enabled in hardware while 6424 * running L2. 6425 */ 6426 if (enable_pml && !is_guest_mode(vcpu)) 6427 vmx_flush_pml_buffer(vcpu); 6428 6429 /* 6430 * KVM should never reach this point with a pending nested VM-Enter. 6431 * More specifically, short-circuiting VM-Entry to emulate L2 due to 6432 * invalid guest state should never happen as that means KVM knowingly 6433 * allowed a nested VM-Enter with an invalid vmcs12. More below. 6434 */ 6435 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm)) 6436 return -EIO; 6437 6438 if (is_guest_mode(vcpu)) { 6439 /* 6440 * PML is never enabled when running L2, bail immediately if a 6441 * PML full exit occurs as something is horribly wrong. 6442 */ 6443 if (exit_reason.basic == EXIT_REASON_PML_FULL) 6444 goto unexpected_vmexit; 6445 6446 /* 6447 * The host physical addresses of some pages of guest memory 6448 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC 6449 * Page). The CPU may write to these pages via their host 6450 * physical address while L2 is running, bypassing any 6451 * address-translation-based dirty tracking (e.g. EPT write 6452 * protection). 6453 * 6454 * Mark them dirty on every exit from L2 to prevent them from 6455 * getting out of sync with dirty tracking. 6456 */ 6457 nested_mark_vmcs12_pages_dirty(vcpu); 6458 6459 /* 6460 * Synthesize a triple fault if L2 state is invalid. In normal 6461 * operation, nested VM-Enter rejects any attempt to enter L2 6462 * with invalid state. However, those checks are skipped if 6463 * state is being stuffed via RSM or KVM_SET_NESTED_STATE. If 6464 * L2 state is invalid, it means either L1 modified SMRAM state 6465 * or userspace provided bad state. Synthesize TRIPLE_FAULT as 6466 * doing so is architecturally allowed in the RSM case, and is 6467 * the least awful solution for the userspace case without 6468 * risking false positives. 6469 */ 6470 if (vmx->emulation_required) { 6471 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0); 6472 return 1; 6473 } 6474 6475 if (nested_vmx_reflect_vmexit(vcpu)) 6476 return 1; 6477 } 6478 6479 /* If guest state is invalid, start emulating. L2 is handled above. */ 6480 if (vmx->emulation_required) 6481 return handle_invalid_guest_state(vcpu); 6482 6483 if (exit_reason.failed_vmentry) { 6484 dump_vmcs(vcpu); 6485 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6486 vcpu->run->fail_entry.hardware_entry_failure_reason 6487 = exit_reason.full; 6488 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6489 return 0; 6490 } 6491 6492 if (unlikely(vmx->fail)) { 6493 dump_vmcs(vcpu); 6494 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6495 vcpu->run->fail_entry.hardware_entry_failure_reason 6496 = vmcs_read32(VM_INSTRUCTION_ERROR); 6497 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6498 return 0; 6499 } 6500 6501 /* 6502 * Note: 6503 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by 6504 * delivery event since it indicates guest is accessing MMIO. 6505 * The vm-exit can be triggered again after return to guest that 6506 * will cause infinite loop. 6507 */ 6508 if ((vectoring_info & VECTORING_INFO_VALID_MASK) && 6509 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI && 6510 exit_reason.basic != EXIT_REASON_EPT_VIOLATION && 6511 exit_reason.basic != EXIT_REASON_PML_FULL && 6512 exit_reason.basic != EXIT_REASON_APIC_ACCESS && 6513 exit_reason.basic != EXIT_REASON_TASK_SWITCH && 6514 exit_reason.basic != EXIT_REASON_NOTIFY)) { 6515 int ndata = 3; 6516 6517 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6518 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; 6519 vcpu->run->internal.data[0] = vectoring_info; 6520 vcpu->run->internal.data[1] = exit_reason.full; 6521 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification; 6522 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) { 6523 vcpu->run->internal.data[ndata++] = 6524 vmcs_read64(GUEST_PHYSICAL_ADDRESS); 6525 } 6526 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu; 6527 vcpu->run->internal.ndata = ndata; 6528 return 0; 6529 } 6530 6531 if (unlikely(!enable_vnmi && 6532 vmx->loaded_vmcs->soft_vnmi_blocked)) { 6533 if (!vmx_interrupt_blocked(vcpu)) { 6534 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6535 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && 6536 vcpu->arch.nmi_pending) { 6537 /* 6538 * This CPU don't support us in finding the end of an 6539 * NMI-blocked window if the guest runs with IRQs 6540 * disabled. So we pull the trigger after 1 s of 6541 * futile waiting, but inform the user about this. 6542 */ 6543 printk(KERN_WARNING "%s: Breaking out of NMI-blocked " 6544 "state on VCPU %d after 1 s timeout\n", 6545 __func__, vcpu->vcpu_id); 6546 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6547 } 6548 } 6549 6550 if (exit_fastpath != EXIT_FASTPATH_NONE) 6551 return 1; 6552 6553 if (exit_reason.basic >= kvm_vmx_max_exit_handlers) 6554 goto unexpected_vmexit; 6555 #ifdef CONFIG_RETPOLINE 6556 if (exit_reason.basic == EXIT_REASON_MSR_WRITE) 6557 return kvm_emulate_wrmsr(vcpu); 6558 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER) 6559 return handle_preemption_timer(vcpu); 6560 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW) 6561 return handle_interrupt_window(vcpu); 6562 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6563 return handle_external_interrupt(vcpu); 6564 else if (exit_reason.basic == EXIT_REASON_HLT) 6565 return kvm_emulate_halt(vcpu); 6566 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) 6567 return handle_ept_misconfig(vcpu); 6568 #endif 6569 6570 exit_handler_index = array_index_nospec((u16)exit_reason.basic, 6571 kvm_vmx_max_exit_handlers); 6572 if (!kvm_vmx_exit_handlers[exit_handler_index]) 6573 goto unexpected_vmexit; 6574 6575 return kvm_vmx_exit_handlers[exit_handler_index](vcpu); 6576 6577 unexpected_vmexit: 6578 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", 6579 exit_reason.full); 6580 dump_vmcs(vcpu); 6581 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6582 vcpu->run->internal.suberror = 6583 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 6584 vcpu->run->internal.ndata = 2; 6585 vcpu->run->internal.data[0] = exit_reason.full; 6586 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 6587 return 0; 6588 } 6589 6590 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6591 { 6592 int ret = __vmx_handle_exit(vcpu, exit_fastpath); 6593 6594 /* 6595 * Exit to user space when bus lock detected to inform that there is 6596 * a bus lock in guest. 6597 */ 6598 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) { 6599 if (ret > 0) 6600 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; 6601 6602 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; 6603 return 0; 6604 } 6605 return ret; 6606 } 6607 6608 /* 6609 * Software based L1D cache flush which is used when microcode providing 6610 * the cache control MSR is not loaded. 6611 * 6612 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to 6613 * flush it is required to read in 64 KiB because the replacement algorithm 6614 * is not exactly LRU. This could be sized at runtime via topology 6615 * information but as all relevant affected CPUs have 32KiB L1D cache size 6616 * there is no point in doing so. 6617 */ 6618 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu) 6619 { 6620 int size = PAGE_SIZE << L1D_CACHE_ORDER; 6621 6622 /* 6623 * This code is only executed when the flush mode is 'cond' or 6624 * 'always' 6625 */ 6626 if (static_branch_likely(&vmx_l1d_flush_cond)) { 6627 bool flush_l1d; 6628 6629 /* 6630 * Clear the per-vcpu flush bit, it gets set again 6631 * either from vcpu_run() or from one of the unsafe 6632 * VMEXIT handlers. 6633 */ 6634 flush_l1d = vcpu->arch.l1tf_flush_l1d; 6635 vcpu->arch.l1tf_flush_l1d = false; 6636 6637 /* 6638 * Clear the per-cpu flush bit, it gets set again from 6639 * the interrupt handlers. 6640 */ 6641 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); 6642 kvm_clear_cpu_l1tf_flush_l1d(); 6643 6644 if (!flush_l1d) 6645 return; 6646 } 6647 6648 vcpu->stat.l1d_flush++; 6649 6650 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { 6651 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 6652 return; 6653 } 6654 6655 asm volatile( 6656 /* First ensure the pages are in the TLB */ 6657 "xorl %%eax, %%eax\n" 6658 ".Lpopulate_tlb:\n\t" 6659 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6660 "addl $4096, %%eax\n\t" 6661 "cmpl %%eax, %[size]\n\t" 6662 "jne .Lpopulate_tlb\n\t" 6663 "xorl %%eax, %%eax\n\t" 6664 "cpuid\n\t" 6665 /* Now fill the cache */ 6666 "xorl %%eax, %%eax\n" 6667 ".Lfill_cache:\n" 6668 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6669 "addl $64, %%eax\n\t" 6670 "cmpl %%eax, %[size]\n\t" 6671 "jne .Lfill_cache\n\t" 6672 "lfence\n" 6673 :: [flush_pages] "r" (vmx_l1d_flush_pages), 6674 [size] "r" (size) 6675 : "eax", "ebx", "ecx", "edx"); 6676 } 6677 6678 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 6679 { 6680 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 6681 int tpr_threshold; 6682 6683 if (is_guest_mode(vcpu) && 6684 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) 6685 return; 6686 6687 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr; 6688 if (is_guest_mode(vcpu)) 6689 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold; 6690 else 6691 vmcs_write32(TPR_THRESHOLD, tpr_threshold); 6692 } 6693 6694 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) 6695 { 6696 struct vcpu_vmx *vmx = to_vmx(vcpu); 6697 u32 sec_exec_control; 6698 6699 if (!lapic_in_kernel(vcpu)) 6700 return; 6701 6702 if (!flexpriority_enabled && 6703 !cpu_has_vmx_virtualize_x2apic_mode()) 6704 return; 6705 6706 /* Postpone execution until vmcs01 is the current VMCS. */ 6707 if (is_guest_mode(vcpu)) { 6708 vmx->nested.change_vmcs01_virtual_apic_mode = true; 6709 return; 6710 } 6711 6712 sec_exec_control = secondary_exec_controls_get(vmx); 6713 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 6714 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); 6715 6716 switch (kvm_get_apic_mode(vcpu)) { 6717 case LAPIC_MODE_INVALID: 6718 WARN_ONCE(true, "Invalid local APIC state"); 6719 break; 6720 case LAPIC_MODE_DISABLED: 6721 break; 6722 case LAPIC_MODE_XAPIC: 6723 if (flexpriority_enabled) { 6724 sec_exec_control |= 6725 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 6726 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6727 6728 /* 6729 * Flush the TLB, reloading the APIC access page will 6730 * only do so if its physical address has changed, but 6731 * the guest may have inserted a non-APIC mapping into 6732 * the TLB while the APIC access page was disabled. 6733 */ 6734 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 6735 } 6736 break; 6737 case LAPIC_MODE_X2APIC: 6738 if (cpu_has_vmx_virtualize_x2apic_mode()) 6739 sec_exec_control |= 6740 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 6741 break; 6742 } 6743 secondary_exec_controls_set(vmx, sec_exec_control); 6744 6745 vmx_update_msr_bitmap_x2apic(vcpu); 6746 } 6747 6748 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu) 6749 { 6750 const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT; 6751 struct kvm *kvm = vcpu->kvm; 6752 struct kvm_memslots *slots = kvm_memslots(kvm); 6753 struct kvm_memory_slot *slot; 6754 unsigned long mmu_seq; 6755 kvm_pfn_t pfn; 6756 6757 /* Defer reload until vmcs01 is the current VMCS. */ 6758 if (is_guest_mode(vcpu)) { 6759 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true; 6760 return; 6761 } 6762 6763 if (!(secondary_exec_controls_get(to_vmx(vcpu)) & 6764 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 6765 return; 6766 6767 /* 6768 * Explicitly grab the memslot using KVM's internal slot ID to ensure 6769 * KVM doesn't unintentionally grab a userspace memslot. It _should_ 6770 * be impossible for userspace to create a memslot for the APIC when 6771 * APICv is enabled, but paranoia won't hurt in this case. 6772 */ 6773 slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT); 6774 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 6775 return; 6776 6777 /* 6778 * Ensure that the mmu_notifier sequence count is read before KVM 6779 * retrieves the pfn from the primary MMU. Note, the memslot is 6780 * protected by SRCU, not the mmu_notifier. Pairs with the smp_wmb() 6781 * in kvm_mmu_invalidate_end(). 6782 */ 6783 mmu_seq = kvm->mmu_invalidate_seq; 6784 smp_rmb(); 6785 6786 /* 6787 * No need to retry if the memslot does not exist or is invalid. KVM 6788 * controls the APIC-access page memslot, and only deletes the memslot 6789 * if APICv is permanently inhibited, i.e. the memslot won't reappear. 6790 */ 6791 pfn = gfn_to_pfn_memslot(slot, gfn); 6792 if (is_error_noslot_pfn(pfn)) 6793 return; 6794 6795 read_lock(&vcpu->kvm->mmu_lock); 6796 if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn)) { 6797 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6798 read_unlock(&vcpu->kvm->mmu_lock); 6799 goto out; 6800 } 6801 6802 vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn)); 6803 read_unlock(&vcpu->kvm->mmu_lock); 6804 6805 /* 6806 * No need for a manual TLB flush at this point, KVM has already done a 6807 * flush if there were SPTEs pointing at the previous page. 6808 */ 6809 out: 6810 /* 6811 * Do not pin apic access page in memory, the MMU notifier 6812 * will call us again if it is migrated or swapped out. 6813 */ 6814 kvm_release_pfn_clean(pfn); 6815 } 6816 6817 static void vmx_hwapic_isr_update(int max_isr) 6818 { 6819 u16 status; 6820 u8 old; 6821 6822 if (max_isr == -1) 6823 max_isr = 0; 6824 6825 status = vmcs_read16(GUEST_INTR_STATUS); 6826 old = status >> 8; 6827 if (max_isr != old) { 6828 status &= 0xff; 6829 status |= max_isr << 8; 6830 vmcs_write16(GUEST_INTR_STATUS, status); 6831 } 6832 } 6833 6834 static void vmx_set_rvi(int vector) 6835 { 6836 u16 status; 6837 u8 old; 6838 6839 if (vector == -1) 6840 vector = 0; 6841 6842 status = vmcs_read16(GUEST_INTR_STATUS); 6843 old = (u8)status & 0xff; 6844 if ((u8)vector != old) { 6845 status &= ~0xff; 6846 status |= (u8)vector; 6847 vmcs_write16(GUEST_INTR_STATUS, status); 6848 } 6849 } 6850 6851 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) 6852 { 6853 /* 6854 * When running L2, updating RVI is only relevant when 6855 * vmcs12 virtual-interrupt-delivery enabled. 6856 * However, it can be enabled only when L1 also 6857 * intercepts external-interrupts and in that case 6858 * we should not update vmcs02 RVI but instead intercept 6859 * interrupt. Therefore, do nothing when running L2. 6860 */ 6861 if (!is_guest_mode(vcpu)) 6862 vmx_set_rvi(max_irr); 6863 } 6864 6865 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) 6866 { 6867 struct vcpu_vmx *vmx = to_vmx(vcpu); 6868 int max_irr; 6869 bool got_posted_interrupt; 6870 6871 if (KVM_BUG_ON(!enable_apicv, vcpu->kvm)) 6872 return -EIO; 6873 6874 if (pi_test_on(&vmx->pi_desc)) { 6875 pi_clear_on(&vmx->pi_desc); 6876 /* 6877 * IOMMU can write to PID.ON, so the barrier matters even on UP. 6878 * But on x86 this is just a compiler barrier anyway. 6879 */ 6880 smp_mb__after_atomic(); 6881 got_posted_interrupt = 6882 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); 6883 } else { 6884 max_irr = kvm_lapic_find_highest_irr(vcpu); 6885 got_posted_interrupt = false; 6886 } 6887 6888 /* 6889 * Newly recognized interrupts are injected via either virtual interrupt 6890 * delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is 6891 * disabled in two cases: 6892 * 6893 * 1) If L2 is running and the vCPU has a new pending interrupt. If L1 6894 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a 6895 * VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected 6896 * into L2, but KVM doesn't use virtual interrupt delivery to inject 6897 * interrupts into L2, and so KVM_REQ_EVENT is again needed. 6898 * 6899 * 2) If APICv is disabled for this vCPU, assigned devices may still 6900 * attempt to post interrupts. The posted interrupt vector will cause 6901 * a VM-Exit and the subsequent entry will call sync_pir_to_irr. 6902 */ 6903 if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu)) 6904 vmx_set_rvi(max_irr); 6905 else if (got_posted_interrupt) 6906 kvm_make_request(KVM_REQ_EVENT, vcpu); 6907 6908 return max_irr; 6909 } 6910 6911 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) 6912 { 6913 if (!kvm_vcpu_apicv_active(vcpu)) 6914 return; 6915 6916 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); 6917 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); 6918 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); 6919 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); 6920 } 6921 6922 static void vmx_apicv_pre_state_restore(struct kvm_vcpu *vcpu) 6923 { 6924 struct vcpu_vmx *vmx = to_vmx(vcpu); 6925 6926 pi_clear_on(&vmx->pi_desc); 6927 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); 6928 } 6929 6930 void vmx_do_interrupt_irqoff(unsigned long entry); 6931 void vmx_do_nmi_irqoff(void); 6932 6933 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu) 6934 { 6935 /* 6936 * Save xfd_err to guest_fpu before interrupt is enabled, so the 6937 * MSR value is not clobbered by the host activity before the guest 6938 * has chance to consume it. 6939 * 6940 * Do not blindly read xfd_err here, since this exception might 6941 * be caused by L1 interception on a platform which doesn't 6942 * support xfd at all. 6943 * 6944 * Do it conditionally upon guest_fpu::xfd. xfd_err matters 6945 * only when xfd contains a non-zero value. 6946 * 6947 * Queuing exception is done in vmx_handle_exit. See comment there. 6948 */ 6949 if (vcpu->arch.guest_fpu.fpstate->xfd) 6950 rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 6951 } 6952 6953 static void handle_exception_irqoff(struct vcpu_vmx *vmx) 6954 { 6955 u32 intr_info = vmx_get_intr_info(&vmx->vcpu); 6956 6957 /* if exit due to PF check for async PF */ 6958 if (is_page_fault(intr_info)) 6959 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags(); 6960 /* if exit due to NM, handle before interrupts are enabled */ 6961 else if (is_nm_fault(intr_info)) 6962 handle_nm_fault_irqoff(&vmx->vcpu); 6963 /* Handle machine checks before interrupts are enabled */ 6964 else if (is_machine_check(intr_info)) 6965 kvm_machine_check(); 6966 } 6967 6968 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu) 6969 { 6970 u32 intr_info = vmx_get_intr_info(vcpu); 6971 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK; 6972 gate_desc *desc = (gate_desc *)host_idt_base + vector; 6973 6974 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm, 6975 "unexpected VM-Exit interrupt info: 0x%x", intr_info)) 6976 return; 6977 6978 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 6979 vmx_do_interrupt_irqoff(gate_offset(desc)); 6980 kvm_after_interrupt(vcpu); 6981 6982 vcpu->arch.at_instruction_boundary = true; 6983 } 6984 6985 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu) 6986 { 6987 struct vcpu_vmx *vmx = to_vmx(vcpu); 6988 6989 if (vmx->emulation_required) 6990 return; 6991 6992 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6993 handle_external_interrupt_irqoff(vcpu); 6994 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI) 6995 handle_exception_irqoff(vmx); 6996 } 6997 6998 /* 6999 * The kvm parameter can be NULL (module initialization, or invocation before 7000 * VM creation). Be sure to check the kvm parameter before using it. 7001 */ 7002 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index) 7003 { 7004 switch (index) { 7005 case MSR_IA32_SMBASE: 7006 if (!IS_ENABLED(CONFIG_KVM_SMM)) 7007 return false; 7008 /* 7009 * We cannot do SMM unless we can run the guest in big 7010 * real mode. 7011 */ 7012 return enable_unrestricted_guest || emulate_invalid_guest_state; 7013 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 7014 return nested; 7015 case MSR_AMD64_VIRT_SPEC_CTRL: 7016 case MSR_AMD64_TSC_RATIO: 7017 /* This is AMD only. */ 7018 return false; 7019 default: 7020 return true; 7021 } 7022 } 7023 7024 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) 7025 { 7026 u32 exit_intr_info; 7027 bool unblock_nmi; 7028 u8 vector; 7029 bool idtv_info_valid; 7030 7031 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; 7032 7033 if (enable_vnmi) { 7034 if (vmx->loaded_vmcs->nmi_known_unmasked) 7035 return; 7036 7037 exit_intr_info = vmx_get_intr_info(&vmx->vcpu); 7038 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; 7039 vector = exit_intr_info & INTR_INFO_VECTOR_MASK; 7040 /* 7041 * SDM 3: 27.7.1.2 (September 2008) 7042 * Re-set bit "block by NMI" before VM entry if vmexit caused by 7043 * a guest IRET fault. 7044 * SDM 3: 23.2.2 (September 2008) 7045 * Bit 12 is undefined in any of the following cases: 7046 * If the VM exit sets the valid bit in the IDT-vectoring 7047 * information field. 7048 * If the VM exit is due to a double fault. 7049 */ 7050 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && 7051 vector != DF_VECTOR && !idtv_info_valid) 7052 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 7053 GUEST_INTR_STATE_NMI); 7054 else 7055 vmx->loaded_vmcs->nmi_known_unmasked = 7056 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) 7057 & GUEST_INTR_STATE_NMI); 7058 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) 7059 vmx->loaded_vmcs->vnmi_blocked_time += 7060 ktime_to_ns(ktime_sub(ktime_get(), 7061 vmx->loaded_vmcs->entry_time)); 7062 } 7063 7064 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, 7065 u32 idt_vectoring_info, 7066 int instr_len_field, 7067 int error_code_field) 7068 { 7069 u8 vector; 7070 int type; 7071 bool idtv_info_valid; 7072 7073 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; 7074 7075 vcpu->arch.nmi_injected = false; 7076 kvm_clear_exception_queue(vcpu); 7077 kvm_clear_interrupt_queue(vcpu); 7078 7079 if (!idtv_info_valid) 7080 return; 7081 7082 kvm_make_request(KVM_REQ_EVENT, vcpu); 7083 7084 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; 7085 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; 7086 7087 switch (type) { 7088 case INTR_TYPE_NMI_INTR: 7089 vcpu->arch.nmi_injected = true; 7090 /* 7091 * SDM 3: 27.7.1.2 (September 2008) 7092 * Clear bit "block by NMI" before VM entry if a NMI 7093 * delivery faulted. 7094 */ 7095 vmx_set_nmi_mask(vcpu, false); 7096 break; 7097 case INTR_TYPE_SOFT_EXCEPTION: 7098 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 7099 fallthrough; 7100 case INTR_TYPE_HARD_EXCEPTION: 7101 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { 7102 u32 err = vmcs_read32(error_code_field); 7103 kvm_requeue_exception_e(vcpu, vector, err); 7104 } else 7105 kvm_requeue_exception(vcpu, vector); 7106 break; 7107 case INTR_TYPE_SOFT_INTR: 7108 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 7109 fallthrough; 7110 case INTR_TYPE_EXT_INTR: 7111 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); 7112 break; 7113 default: 7114 break; 7115 } 7116 } 7117 7118 static void vmx_complete_interrupts(struct vcpu_vmx *vmx) 7119 { 7120 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, 7121 VM_EXIT_INSTRUCTION_LEN, 7122 IDT_VECTORING_ERROR_CODE); 7123 } 7124 7125 static void vmx_cancel_injection(struct kvm_vcpu *vcpu) 7126 { 7127 __vmx_complete_interrupts(vcpu, 7128 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 7129 VM_ENTRY_INSTRUCTION_LEN, 7130 VM_ENTRY_EXCEPTION_ERROR_CODE); 7131 7132 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); 7133 } 7134 7135 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) 7136 { 7137 int i, nr_msrs; 7138 struct perf_guest_switch_msr *msrs; 7139 struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu); 7140 7141 pmu->host_cross_mapped_mask = 0; 7142 if (pmu->pebs_enable & pmu->global_ctrl) 7143 intel_pmu_cross_mapped_check(pmu); 7144 7145 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */ 7146 msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu); 7147 if (!msrs) 7148 return; 7149 7150 for (i = 0; i < nr_msrs; i++) 7151 if (msrs[i].host == msrs[i].guest) 7152 clear_atomic_switch_msr(vmx, msrs[i].msr); 7153 else 7154 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, 7155 msrs[i].host, false); 7156 } 7157 7158 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu) 7159 { 7160 struct vcpu_vmx *vmx = to_vmx(vcpu); 7161 u64 tscl; 7162 u32 delta_tsc; 7163 7164 if (vmx->req_immediate_exit) { 7165 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0); 7166 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 7167 } else if (vmx->hv_deadline_tsc != -1) { 7168 tscl = rdtsc(); 7169 if (vmx->hv_deadline_tsc > tscl) 7170 /* set_hv_timer ensures the delta fits in 32-bits */ 7171 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> 7172 cpu_preemption_timer_multi); 7173 else 7174 delta_tsc = 0; 7175 7176 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc); 7177 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 7178 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) { 7179 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1); 7180 vmx->loaded_vmcs->hv_timer_soft_disabled = true; 7181 } 7182 } 7183 7184 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp) 7185 { 7186 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) { 7187 vmx->loaded_vmcs->host_state.rsp = host_rsp; 7188 vmcs_writel(HOST_RSP, host_rsp); 7189 } 7190 } 7191 7192 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, 7193 unsigned int flags) 7194 { 7195 u64 hostval = this_cpu_read(x86_spec_ctrl_current); 7196 7197 if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) 7198 return; 7199 7200 if (flags & VMX_RUN_SAVE_SPEC_CTRL) 7201 vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL); 7202 7203 /* 7204 * If the guest/host SPEC_CTRL values differ, restore the host value. 7205 * 7206 * For legacy IBRS, the IBRS bit always needs to be written after 7207 * transitioning from a less privileged predictor mode, regardless of 7208 * whether the guest/host values differ. 7209 */ 7210 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) || 7211 vmx->spec_ctrl != hostval) 7212 native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval); 7213 7214 barrier_nospec(); 7215 } 7216 7217 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 7218 { 7219 switch (to_vmx(vcpu)->exit_reason.basic) { 7220 case EXIT_REASON_MSR_WRITE: 7221 return handle_fastpath_set_msr_irqoff(vcpu); 7222 case EXIT_REASON_PREEMPTION_TIMER: 7223 return handle_fastpath_preemption_timer(vcpu); 7224 default: 7225 return EXIT_FASTPATH_NONE; 7226 } 7227 } 7228 7229 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu, 7230 unsigned int flags) 7231 { 7232 struct vcpu_vmx *vmx = to_vmx(vcpu); 7233 7234 guest_state_enter_irqoff(); 7235 7236 /* 7237 * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW 7238 * mitigation for MDS is done late in VMentry and is still 7239 * executed in spite of L1D Flush. This is because an extra VERW 7240 * should not matter much after the big hammer L1D Flush. 7241 */ 7242 if (static_branch_unlikely(&vmx_l1d_should_flush)) 7243 vmx_l1d_flush(vcpu); 7244 else if (static_branch_unlikely(&mmio_stale_data_clear) && 7245 kvm_arch_has_assigned_device(vcpu->kvm)) 7246 mds_clear_cpu_buffers(); 7247 7248 vmx_disable_fb_clear(vmx); 7249 7250 if (vcpu->arch.cr2 != native_read_cr2()) 7251 native_write_cr2(vcpu->arch.cr2); 7252 7253 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, 7254 flags); 7255 7256 vcpu->arch.cr2 = native_read_cr2(); 7257 vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET; 7258 7259 vmx->idt_vectoring_info = 0; 7260 7261 vmx_enable_fb_clear(vmx); 7262 7263 if (unlikely(vmx->fail)) { 7264 vmx->exit_reason.full = 0xdead; 7265 goto out; 7266 } 7267 7268 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON); 7269 if (likely(!vmx->exit_reason.failed_vmentry)) 7270 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); 7271 7272 if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI && 7273 is_nmi(vmx_get_intr_info(vcpu))) { 7274 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); 7275 vmx_do_nmi_irqoff(); 7276 kvm_after_interrupt(vcpu); 7277 } 7278 7279 out: 7280 guest_state_exit_irqoff(); 7281 } 7282 7283 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu) 7284 { 7285 struct vcpu_vmx *vmx = to_vmx(vcpu); 7286 unsigned long cr3, cr4; 7287 7288 /* Record the guest's net vcpu time for enforced NMI injections. */ 7289 if (unlikely(!enable_vnmi && 7290 vmx->loaded_vmcs->soft_vnmi_blocked)) 7291 vmx->loaded_vmcs->entry_time = ktime_get(); 7292 7293 /* 7294 * Don't enter VMX if guest state is invalid, let the exit handler 7295 * start emulation until we arrive back to a valid state. Synthesize a 7296 * consistency check VM-Exit due to invalid guest state and bail. 7297 */ 7298 if (unlikely(vmx->emulation_required)) { 7299 vmx->fail = 0; 7300 7301 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE; 7302 vmx->exit_reason.failed_vmentry = 1; 7303 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1); 7304 vmx->exit_qualification = ENTRY_FAIL_DEFAULT; 7305 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2); 7306 vmx->exit_intr_info = 0; 7307 return EXIT_FASTPATH_NONE; 7308 } 7309 7310 trace_kvm_entry(vcpu); 7311 7312 if (vmx->ple_window_dirty) { 7313 vmx->ple_window_dirty = false; 7314 vmcs_write32(PLE_WINDOW, vmx->ple_window); 7315 } 7316 7317 /* 7318 * We did this in prepare_switch_to_guest, because it needs to 7319 * be within srcu_read_lock. 7320 */ 7321 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync); 7322 7323 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP)) 7324 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); 7325 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP)) 7326 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); 7327 vcpu->arch.regs_dirty = 0; 7328 7329 /* 7330 * Refresh vmcs.HOST_CR3 if necessary. This must be done immediately 7331 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time 7332 * it switches back to the current->mm, which can occur in KVM context 7333 * when switching to a temporary mm to patch kernel code, e.g. if KVM 7334 * toggles a static key while handling a VM-Exit. 7335 */ 7336 cr3 = __get_current_cr3_fast(); 7337 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { 7338 vmcs_writel(HOST_CR3, cr3); 7339 vmx->loaded_vmcs->host_state.cr3 = cr3; 7340 } 7341 7342 cr4 = cr4_read_shadow(); 7343 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { 7344 vmcs_writel(HOST_CR4, cr4); 7345 vmx->loaded_vmcs->host_state.cr4 = cr4; 7346 } 7347 7348 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */ 7349 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 7350 set_debugreg(vcpu->arch.dr6, 6); 7351 7352 /* When single-stepping over STI and MOV SS, we must clear the 7353 * corresponding interruptibility bits in the guest state. Otherwise 7354 * vmentry fails as it then expects bit 14 (BS) in pending debug 7355 * exceptions being set, but that's not correct for the guest debugging 7356 * case. */ 7357 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 7358 vmx_set_interrupt_shadow(vcpu, 0); 7359 7360 kvm_load_guest_xsave_state(vcpu); 7361 7362 pt_guest_enter(vmx); 7363 7364 atomic_switch_perf_msrs(vmx); 7365 if (intel_pmu_lbr_is_enabled(vcpu)) 7366 vmx_passthrough_lbr_msrs(vcpu); 7367 7368 if (enable_preemption_timer) 7369 vmx_update_hv_timer(vcpu); 7370 7371 kvm_wait_lapic_expire(vcpu); 7372 7373 /* The actual VMENTER/EXIT is in the .noinstr.text section. */ 7374 vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx)); 7375 7376 /* All fields are clean at this point */ 7377 if (kvm_is_using_evmcs()) { 7378 current_evmcs->hv_clean_fields |= 7379 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; 7380 7381 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu); 7382 } 7383 7384 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ 7385 if (vmx->host_debugctlmsr) 7386 update_debugctlmsr(vmx->host_debugctlmsr); 7387 7388 #ifndef CONFIG_X86_64 7389 /* 7390 * The sysexit path does not restore ds/es, so we must set them to 7391 * a reasonable value ourselves. 7392 * 7393 * We can't defer this to vmx_prepare_switch_to_host() since that 7394 * function may be executed in interrupt context, which saves and 7395 * restore segments around it, nullifying its effect. 7396 */ 7397 loadsegment(ds, __USER_DS); 7398 loadsegment(es, __USER_DS); 7399 #endif 7400 7401 pt_guest_exit(vmx); 7402 7403 kvm_load_host_xsave_state(vcpu); 7404 7405 if (is_guest_mode(vcpu)) { 7406 /* 7407 * Track VMLAUNCH/VMRESUME that have made past guest state 7408 * checking. 7409 */ 7410 if (vmx->nested.nested_run_pending && 7411 !vmx->exit_reason.failed_vmentry) 7412 ++vcpu->stat.nested_run; 7413 7414 vmx->nested.nested_run_pending = 0; 7415 } 7416 7417 if (unlikely(vmx->fail)) 7418 return EXIT_FASTPATH_NONE; 7419 7420 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY)) 7421 kvm_machine_check(); 7422 7423 trace_kvm_exit(vcpu, KVM_ISA_VMX); 7424 7425 if (unlikely(vmx->exit_reason.failed_vmentry)) 7426 return EXIT_FASTPATH_NONE; 7427 7428 vmx->loaded_vmcs->launched = 1; 7429 7430 vmx_recover_nmi_blocking(vmx); 7431 vmx_complete_interrupts(vmx); 7432 7433 if (is_guest_mode(vcpu)) 7434 return EXIT_FASTPATH_NONE; 7435 7436 return vmx_exit_handlers_fastpath(vcpu); 7437 } 7438 7439 static void vmx_vcpu_free(struct kvm_vcpu *vcpu) 7440 { 7441 struct vcpu_vmx *vmx = to_vmx(vcpu); 7442 7443 if (enable_pml) 7444 vmx_destroy_pml_buffer(vmx); 7445 free_vpid(vmx->vpid); 7446 nested_vmx_free_vcpu(vcpu); 7447 free_loaded_vmcs(vmx->loaded_vmcs); 7448 } 7449 7450 static int vmx_vcpu_create(struct kvm_vcpu *vcpu) 7451 { 7452 struct vmx_uret_msr *tsx_ctrl; 7453 struct vcpu_vmx *vmx; 7454 int i, err; 7455 7456 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0); 7457 vmx = to_vmx(vcpu); 7458 7459 INIT_LIST_HEAD(&vmx->pi_wakeup_list); 7460 7461 err = -ENOMEM; 7462 7463 vmx->vpid = allocate_vpid(); 7464 7465 /* 7466 * If PML is turned on, failure on enabling PML just results in failure 7467 * of creating the vcpu, therefore we can simplify PML logic (by 7468 * avoiding dealing with cases, such as enabling PML partially on vcpus 7469 * for the guest), etc. 7470 */ 7471 if (enable_pml) { 7472 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 7473 if (!vmx->pml_pg) 7474 goto free_vpid; 7475 } 7476 7477 for (i = 0; i < kvm_nr_uret_msrs; ++i) 7478 vmx->guest_uret_msrs[i].mask = -1ull; 7479 if (boot_cpu_has(X86_FEATURE_RTM)) { 7480 /* 7481 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception. 7482 * Keep the host value unchanged to avoid changing CPUID bits 7483 * under the host kernel's feet. 7484 */ 7485 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7486 if (tsx_ctrl) 7487 tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR; 7488 } 7489 7490 err = alloc_loaded_vmcs(&vmx->vmcs01); 7491 if (err < 0) 7492 goto free_pml; 7493 7494 /* 7495 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a 7496 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the 7497 * feature only for vmcs01, KVM currently isn't equipped to realize any 7498 * performance benefits from enabling it for vmcs02. 7499 */ 7500 if (kvm_is_using_evmcs() && 7501 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { 7502 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; 7503 7504 evmcs->hv_enlightenments_control.msr_bitmap = 1; 7505 } 7506 7507 /* The MSR bitmap starts with all ones */ 7508 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS); 7509 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS); 7510 7511 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R); 7512 #ifdef CONFIG_X86_64 7513 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW); 7514 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW); 7515 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); 7516 #endif 7517 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); 7518 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); 7519 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); 7520 if (kvm_cstate_in_guest(vcpu->kvm)) { 7521 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R); 7522 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R); 7523 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R); 7524 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R); 7525 } 7526 7527 vmx->loaded_vmcs = &vmx->vmcs01; 7528 7529 if (cpu_need_virtualize_apic_accesses(vcpu)) { 7530 err = kvm_alloc_apic_access_page(vcpu->kvm); 7531 if (err) 7532 goto free_vmcs; 7533 } 7534 7535 if (enable_ept && !enable_unrestricted_guest) { 7536 err = init_rmode_identity_map(vcpu->kvm); 7537 if (err) 7538 goto free_vmcs; 7539 } 7540 7541 if (vmx_can_use_ipiv(vcpu)) 7542 WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id], 7543 __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID); 7544 7545 return 0; 7546 7547 free_vmcs: 7548 free_loaded_vmcs(vmx->loaded_vmcs); 7549 free_pml: 7550 vmx_destroy_pml_buffer(vmx); 7551 free_vpid: 7552 free_vpid(vmx->vpid); 7553 return err; 7554 } 7555 7556 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7557 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7558 7559 static int vmx_vm_init(struct kvm *kvm) 7560 { 7561 if (!ple_gap) 7562 kvm->arch.pause_in_guest = true; 7563 7564 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { 7565 switch (l1tf_mitigation) { 7566 case L1TF_MITIGATION_OFF: 7567 case L1TF_MITIGATION_FLUSH_NOWARN: 7568 /* 'I explicitly don't care' is set */ 7569 break; 7570 case L1TF_MITIGATION_FLUSH: 7571 case L1TF_MITIGATION_FLUSH_NOSMT: 7572 case L1TF_MITIGATION_FULL: 7573 /* 7574 * Warn upon starting the first VM in a potentially 7575 * insecure environment. 7576 */ 7577 if (sched_smt_active()) 7578 pr_warn_once(L1TF_MSG_SMT); 7579 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) 7580 pr_warn_once(L1TF_MSG_L1D); 7581 break; 7582 case L1TF_MITIGATION_FULL_FORCE: 7583 /* Flush is enforced */ 7584 break; 7585 } 7586 } 7587 return 0; 7588 } 7589 7590 static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 7591 { 7592 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in 7593 * memory aliases with conflicting memory types and sometimes MCEs. 7594 * We have to be careful as to what are honored and when. 7595 * 7596 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to 7597 * UC. The effective memory type is UC or WC depending on guest PAT. 7598 * This was historically the source of MCEs and we want to be 7599 * conservative. 7600 * 7601 * When there is no need to deal with noncoherent DMA (e.g., no VT-d 7602 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The 7603 * EPT memory type is set to WB. The effective memory type is forced 7604 * WB. 7605 * 7606 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The 7607 * EPT memory type is used to emulate guest CD/MTRR. 7608 */ 7609 7610 if (is_mmio) 7611 return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT; 7612 7613 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) 7614 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT; 7615 7616 if (kvm_read_cr0_bits(vcpu, X86_CR0_CD)) { 7617 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 7618 return MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT; 7619 else 7620 return (MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT) | 7621 VMX_EPT_IPAT_BIT; 7622 } 7623 7624 return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT; 7625 } 7626 7627 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl) 7628 { 7629 /* 7630 * These bits in the secondary execution controls field 7631 * are dynamic, the others are mostly based on the hypervisor 7632 * architecture and the guest's CPUID. Do not touch the 7633 * dynamic bits. 7634 */ 7635 u32 mask = 7636 SECONDARY_EXEC_SHADOW_VMCS | 7637 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 7638 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 7639 SECONDARY_EXEC_DESC; 7640 7641 u32 cur_ctl = secondary_exec_controls_get(vmx); 7642 7643 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask)); 7644 } 7645 7646 /* 7647 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits 7648 * (indicating "allowed-1") if they are supported in the guest's CPUID. 7649 */ 7650 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) 7651 { 7652 struct vcpu_vmx *vmx = to_vmx(vcpu); 7653 struct kvm_cpuid_entry2 *entry; 7654 7655 vmx->nested.msrs.cr0_fixed1 = 0xffffffff; 7656 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; 7657 7658 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ 7659 if (entry && (entry->_reg & (_cpuid_mask))) \ 7660 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ 7661 } while (0) 7662 7663 entry = kvm_find_cpuid_entry(vcpu, 0x1); 7664 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME)); 7665 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME)); 7666 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC)); 7667 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE)); 7668 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE)); 7669 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE)); 7670 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE)); 7671 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE)); 7672 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR)); 7673 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM)); 7674 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX)); 7675 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX)); 7676 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID)); 7677 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE)); 7678 7679 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0); 7680 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE)); 7681 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP)); 7682 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP)); 7683 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU)); 7684 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP)); 7685 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57)); 7686 7687 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 1); 7688 cr4_fixed1_update(X86_CR4_LAM_SUP, eax, feature_bit(LAM)); 7689 7690 #undef cr4_fixed1_update 7691 } 7692 7693 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) 7694 { 7695 struct vcpu_vmx *vmx = to_vmx(vcpu); 7696 struct kvm_cpuid_entry2 *best = NULL; 7697 int i; 7698 7699 for (i = 0; i < PT_CPUID_LEAVES; i++) { 7700 best = kvm_find_cpuid_entry_index(vcpu, 0x14, i); 7701 if (!best) 7702 return; 7703 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; 7704 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; 7705 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; 7706 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; 7707 } 7708 7709 /* Get the number of configurable Address Ranges for filtering */ 7710 vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps, 7711 PT_CAP_num_address_ranges); 7712 7713 /* Initialize and clear the no dependency bits */ 7714 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | 7715 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC | 7716 RTIT_CTL_BRANCH_EN); 7717 7718 /* 7719 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise 7720 * will inject an #GP 7721 */ 7722 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) 7723 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; 7724 7725 /* 7726 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and 7727 * PSBFreq can be set 7728 */ 7729 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) 7730 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | 7731 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); 7732 7733 /* 7734 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set 7735 */ 7736 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) 7737 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | 7738 RTIT_CTL_MTC_RANGE); 7739 7740 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ 7741 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) 7742 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | 7743 RTIT_CTL_PTW_EN); 7744 7745 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ 7746 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) 7747 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; 7748 7749 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ 7750 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) 7751 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; 7752 7753 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */ 7754 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) 7755 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; 7756 7757 /* unmask address range configure area */ 7758 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) 7759 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4)); 7760 } 7761 7762 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 7763 { 7764 struct vcpu_vmx *vmx = to_vmx(vcpu); 7765 7766 /* 7767 * XSAVES is effectively enabled if and only if XSAVE is also exposed 7768 * to the guest. XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be 7769 * set if and only if XSAVE is supported. 7770 */ 7771 if (boot_cpu_has(X86_FEATURE_XSAVE) && 7772 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE)) 7773 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_XSAVES); 7774 7775 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VMX); 7776 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LAM); 7777 7778 vmx_setup_uret_msrs(vmx); 7779 7780 if (cpu_has_secondary_exec_ctrls()) 7781 vmcs_set_secondary_exec_control(vmx, 7782 vmx_secondary_exec_control(vmx)); 7783 7784 if (guest_can_use(vcpu, X86_FEATURE_VMX)) 7785 vmx->msr_ia32_feature_control_valid_bits |= 7786 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7787 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; 7788 else 7789 vmx->msr_ia32_feature_control_valid_bits &= 7790 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7791 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX); 7792 7793 if (guest_can_use(vcpu, X86_FEATURE_VMX)) 7794 nested_vmx_cr_fixed1_bits_update(vcpu); 7795 7796 if (boot_cpu_has(X86_FEATURE_INTEL_PT) && 7797 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT)) 7798 update_intel_pt_cfg(vcpu); 7799 7800 if (boot_cpu_has(X86_FEATURE_RTM)) { 7801 struct vmx_uret_msr *msr; 7802 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7803 if (msr) { 7804 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM); 7805 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE); 7806 } 7807 } 7808 7809 if (kvm_cpu_cap_has(X86_FEATURE_XFD)) 7810 vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R, 7811 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)); 7812 7813 if (boot_cpu_has(X86_FEATURE_IBPB)) 7814 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W, 7815 !guest_has_pred_cmd_msr(vcpu)); 7816 7817 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D)) 7818 vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W, 7819 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)); 7820 7821 set_cr4_guest_host_mask(vmx); 7822 7823 vmx_write_encls_bitmap(vcpu, NULL); 7824 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX)) 7825 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED; 7826 else 7827 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED; 7828 7829 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 7830 vmx->msr_ia32_feature_control_valid_bits |= 7831 FEAT_CTL_SGX_LC_ENABLED; 7832 else 7833 vmx->msr_ia32_feature_control_valid_bits &= 7834 ~FEAT_CTL_SGX_LC_ENABLED; 7835 7836 /* Refresh #PF interception to account for MAXPHYADDR changes. */ 7837 vmx_update_exception_bitmap(vcpu); 7838 } 7839 7840 static u64 vmx_get_perf_capabilities(void) 7841 { 7842 u64 perf_cap = PMU_CAP_FW_WRITES; 7843 struct x86_pmu_lbr lbr; 7844 u64 host_perf_cap = 0; 7845 7846 if (!enable_pmu) 7847 return 0; 7848 7849 if (boot_cpu_has(X86_FEATURE_PDCM)) 7850 rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap); 7851 7852 if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) { 7853 x86_perf_get_lbr(&lbr); 7854 if (lbr.nr) 7855 perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT; 7856 } 7857 7858 if (vmx_pebs_supported()) { 7859 perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK; 7860 if ((perf_cap & PERF_CAP_PEBS_FORMAT) < 4) 7861 perf_cap &= ~PERF_CAP_PEBS_BASELINE; 7862 } 7863 7864 return perf_cap; 7865 } 7866 7867 static __init void vmx_set_cpu_caps(void) 7868 { 7869 kvm_set_cpu_caps(); 7870 7871 /* CPUID 0x1 */ 7872 if (nested) 7873 kvm_cpu_cap_set(X86_FEATURE_VMX); 7874 7875 /* CPUID 0x7 */ 7876 if (kvm_mpx_supported()) 7877 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX); 7878 if (!cpu_has_vmx_invpcid()) 7879 kvm_cpu_cap_clear(X86_FEATURE_INVPCID); 7880 if (vmx_pt_mode_is_host_guest()) 7881 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT); 7882 if (vmx_pebs_supported()) { 7883 kvm_cpu_cap_check_and_set(X86_FEATURE_DS); 7884 kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64); 7885 } 7886 7887 if (!enable_pmu) 7888 kvm_cpu_cap_clear(X86_FEATURE_PDCM); 7889 kvm_caps.supported_perf_cap = vmx_get_perf_capabilities(); 7890 7891 if (!enable_sgx) { 7892 kvm_cpu_cap_clear(X86_FEATURE_SGX); 7893 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC); 7894 kvm_cpu_cap_clear(X86_FEATURE_SGX1); 7895 kvm_cpu_cap_clear(X86_FEATURE_SGX2); 7896 } 7897 7898 if (vmx_umip_emulated()) 7899 kvm_cpu_cap_set(X86_FEATURE_UMIP); 7900 7901 /* CPUID 0xD.1 */ 7902 kvm_caps.supported_xss = 0; 7903 if (!cpu_has_vmx_xsaves()) 7904 kvm_cpu_cap_clear(X86_FEATURE_XSAVES); 7905 7906 /* CPUID 0x80000001 and 0x7 (RDPID) */ 7907 if (!cpu_has_vmx_rdtscp()) { 7908 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP); 7909 kvm_cpu_cap_clear(X86_FEATURE_RDPID); 7910 } 7911 7912 if (cpu_has_vmx_waitpkg()) 7913 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG); 7914 } 7915 7916 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu) 7917 { 7918 to_vmx(vcpu)->req_immediate_exit = true; 7919 } 7920 7921 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu, 7922 struct x86_instruction_info *info) 7923 { 7924 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7925 unsigned short port; 7926 bool intercept; 7927 int size; 7928 7929 if (info->intercept == x86_intercept_in || 7930 info->intercept == x86_intercept_ins) { 7931 port = info->src_val; 7932 size = info->dst_bytes; 7933 } else { 7934 port = info->dst_val; 7935 size = info->src_bytes; 7936 } 7937 7938 /* 7939 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction 7940 * VM-exits depend on the 'unconditional IO exiting' VM-execution 7941 * control. 7942 * 7943 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps. 7944 */ 7945 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) 7946 intercept = nested_cpu_has(vmcs12, 7947 CPU_BASED_UNCOND_IO_EXITING); 7948 else 7949 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size); 7950 7951 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7952 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; 7953 } 7954 7955 static int vmx_check_intercept(struct kvm_vcpu *vcpu, 7956 struct x86_instruction_info *info, 7957 enum x86_intercept_stage stage, 7958 struct x86_exception *exception) 7959 { 7960 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7961 7962 switch (info->intercept) { 7963 /* 7964 * RDPID causes #UD if disabled through secondary execution controls. 7965 * Because it is marked as EmulateOnUD, we need to intercept it here. 7966 * Note, RDPID is hidden behind ENABLE_RDTSCP. 7967 */ 7968 case x86_intercept_rdpid: 7969 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) { 7970 exception->vector = UD_VECTOR; 7971 exception->error_code_valid = false; 7972 return X86EMUL_PROPAGATE_FAULT; 7973 } 7974 break; 7975 7976 case x86_intercept_in: 7977 case x86_intercept_ins: 7978 case x86_intercept_out: 7979 case x86_intercept_outs: 7980 return vmx_check_intercept_io(vcpu, info); 7981 7982 case x86_intercept_lgdt: 7983 case x86_intercept_lidt: 7984 case x86_intercept_lldt: 7985 case x86_intercept_ltr: 7986 case x86_intercept_sgdt: 7987 case x86_intercept_sidt: 7988 case x86_intercept_sldt: 7989 case x86_intercept_str: 7990 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC)) 7991 return X86EMUL_CONTINUE; 7992 7993 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7994 break; 7995 7996 case x86_intercept_pause: 7997 /* 7998 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides 7999 * with vanilla NOPs in the emulator. Apply the interception 8000 * check only to actual PAUSE instructions. Don't check 8001 * PAUSE-loop-exiting, software can't expect a given PAUSE to 8002 * exit, i.e. KVM is within its rights to allow L2 to execute 8003 * the PAUSE. 8004 */ 8005 if ((info->rep_prefix != REPE_PREFIX) || 8006 !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING)) 8007 return X86EMUL_CONTINUE; 8008 8009 break; 8010 8011 /* TODO: check more intercepts... */ 8012 default: 8013 break; 8014 } 8015 8016 return X86EMUL_UNHANDLEABLE; 8017 } 8018 8019 #ifdef CONFIG_X86_64 8020 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ 8021 static inline int u64_shl_div_u64(u64 a, unsigned int shift, 8022 u64 divisor, u64 *result) 8023 { 8024 u64 low = a << shift, high = a >> (64 - shift); 8025 8026 /* To avoid the overflow on divq */ 8027 if (high >= divisor) 8028 return 1; 8029 8030 /* Low hold the result, high hold rem which is discarded */ 8031 asm("divq %2\n\t" : "=a" (low), "=d" (high) : 8032 "rm" (divisor), "0" (low), "1" (high)); 8033 *result = low; 8034 8035 return 0; 8036 } 8037 8038 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 8039 bool *expired) 8040 { 8041 struct vcpu_vmx *vmx; 8042 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; 8043 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer; 8044 8045 vmx = to_vmx(vcpu); 8046 tscl = rdtsc(); 8047 guest_tscl = kvm_read_l1_tsc(vcpu, tscl); 8048 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; 8049 lapic_timer_advance_cycles = nsec_to_cycles(vcpu, 8050 ktimer->timer_advance_ns); 8051 8052 if (delta_tsc > lapic_timer_advance_cycles) 8053 delta_tsc -= lapic_timer_advance_cycles; 8054 else 8055 delta_tsc = 0; 8056 8057 /* Convert to host delta tsc if tsc scaling is enabled */ 8058 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio && 8059 delta_tsc && u64_shl_div_u64(delta_tsc, 8060 kvm_caps.tsc_scaling_ratio_frac_bits, 8061 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc)) 8062 return -ERANGE; 8063 8064 /* 8065 * If the delta tsc can't fit in the 32 bit after the multi shift, 8066 * we can't use the preemption timer. 8067 * It's possible that it fits on later vmentries, but checking 8068 * on every vmentry is costly so we just use an hrtimer. 8069 */ 8070 if (delta_tsc >> (cpu_preemption_timer_multi + 32)) 8071 return -ERANGE; 8072 8073 vmx->hv_deadline_tsc = tscl + delta_tsc; 8074 *expired = !delta_tsc; 8075 return 0; 8076 } 8077 8078 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) 8079 { 8080 to_vmx(vcpu)->hv_deadline_tsc = -1; 8081 } 8082 #endif 8083 8084 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) 8085 { 8086 if (!kvm_pause_in_guest(vcpu->kvm)) 8087 shrink_ple_window(vcpu); 8088 } 8089 8090 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu) 8091 { 8092 struct vcpu_vmx *vmx = to_vmx(vcpu); 8093 8094 if (WARN_ON_ONCE(!enable_pml)) 8095 return; 8096 8097 if (is_guest_mode(vcpu)) { 8098 vmx->nested.update_vmcs01_cpu_dirty_logging = true; 8099 return; 8100 } 8101 8102 /* 8103 * Note, nr_memslots_dirty_logging can be changed concurrent with this 8104 * code, but in that case another update request will be made and so 8105 * the guest will never run with a stale PML value. 8106 */ 8107 if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging)) 8108 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML); 8109 else 8110 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML); 8111 } 8112 8113 static void vmx_setup_mce(struct kvm_vcpu *vcpu) 8114 { 8115 if (vcpu->arch.mcg_cap & MCG_LMCE_P) 8116 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 8117 FEAT_CTL_LMCE_ENABLED; 8118 else 8119 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 8120 ~FEAT_CTL_LMCE_ENABLED; 8121 } 8122 8123 #ifdef CONFIG_KVM_SMM 8124 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 8125 { 8126 /* we need a nested vmexit to enter SMM, postpone if run is pending */ 8127 if (to_vmx(vcpu)->nested.nested_run_pending) 8128 return -EBUSY; 8129 return !is_smm(vcpu); 8130 } 8131 8132 static int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) 8133 { 8134 struct vcpu_vmx *vmx = to_vmx(vcpu); 8135 8136 /* 8137 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on 8138 * SMI and RSM. Using the common VM-Exit + VM-Enter routines is wrong 8139 * SMI and RSM only modify state that is saved and restored via SMRAM. 8140 * E.g. most MSRs are left untouched, but many are modified by VM-Exit 8141 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM. 8142 */ 8143 vmx->nested.smm.guest_mode = is_guest_mode(vcpu); 8144 if (vmx->nested.smm.guest_mode) 8145 nested_vmx_vmexit(vcpu, -1, 0, 0); 8146 8147 vmx->nested.smm.vmxon = vmx->nested.vmxon; 8148 vmx->nested.vmxon = false; 8149 vmx_clear_hlt(vcpu); 8150 return 0; 8151 } 8152 8153 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) 8154 { 8155 struct vcpu_vmx *vmx = to_vmx(vcpu); 8156 int ret; 8157 8158 if (vmx->nested.smm.vmxon) { 8159 vmx->nested.vmxon = true; 8160 vmx->nested.smm.vmxon = false; 8161 } 8162 8163 if (vmx->nested.smm.guest_mode) { 8164 ret = nested_vmx_enter_non_root_mode(vcpu, false); 8165 if (ret) 8166 return ret; 8167 8168 vmx->nested.nested_run_pending = 1; 8169 vmx->nested.smm.guest_mode = false; 8170 } 8171 return 0; 8172 } 8173 8174 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu) 8175 { 8176 /* RSM will cause a vmexit anyway. */ 8177 } 8178 #endif 8179 8180 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 8181 { 8182 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu); 8183 } 8184 8185 static void vmx_migrate_timers(struct kvm_vcpu *vcpu) 8186 { 8187 if (is_guest_mode(vcpu)) { 8188 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer; 8189 8190 if (hrtimer_try_to_cancel(timer) == 1) 8191 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 8192 } 8193 } 8194 8195 static void vmx_hardware_unsetup(void) 8196 { 8197 kvm_set_posted_intr_wakeup_handler(NULL); 8198 8199 if (nested) 8200 nested_vmx_hardware_unsetup(); 8201 8202 free_kvm_area(); 8203 } 8204 8205 #define VMX_REQUIRED_APICV_INHIBITS \ 8206 ( \ 8207 BIT(APICV_INHIBIT_REASON_DISABLE)| \ 8208 BIT(APICV_INHIBIT_REASON_ABSENT) | \ 8209 BIT(APICV_INHIBIT_REASON_HYPERV) | \ 8210 BIT(APICV_INHIBIT_REASON_BLOCKIRQ) | \ 8211 BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) | \ 8212 BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) | \ 8213 BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED) \ 8214 ) 8215 8216 static void vmx_vm_destroy(struct kvm *kvm) 8217 { 8218 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 8219 8220 free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm)); 8221 } 8222 8223 /* 8224 * Note, the SDM states that the linear address is masked *after* the modified 8225 * canonicality check, whereas KVM masks (untags) the address and then performs 8226 * a "normal" canonicality check. Functionally, the two methods are identical, 8227 * and when the masking occurs relative to the canonicality check isn't visible 8228 * to software, i.e. KVM's behavior doesn't violate the SDM. 8229 */ 8230 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags) 8231 { 8232 int lam_bit; 8233 unsigned long cr3_bits; 8234 8235 if (flags & (X86EMUL_F_FETCH | X86EMUL_F_IMPLICIT | X86EMUL_F_INVLPG)) 8236 return gva; 8237 8238 if (!is_64_bit_mode(vcpu)) 8239 return gva; 8240 8241 /* 8242 * Bit 63 determines if the address should be treated as user address 8243 * or a supervisor address. 8244 */ 8245 if (!(gva & BIT_ULL(63))) { 8246 cr3_bits = kvm_get_active_cr3_lam_bits(vcpu); 8247 if (!(cr3_bits & (X86_CR3_LAM_U57 | X86_CR3_LAM_U48))) 8248 return gva; 8249 8250 /* LAM_U48 is ignored if LAM_U57 is set. */ 8251 lam_bit = cr3_bits & X86_CR3_LAM_U57 ? 56 : 47; 8252 } else { 8253 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_LAM_SUP)) 8254 return gva; 8255 8256 lam_bit = kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 56 : 47; 8257 } 8258 8259 /* 8260 * Untag the address by sign-extending the lam_bit, but NOT to bit 63. 8261 * Bit 63 is retained from the raw virtual address so that untagging 8262 * doesn't change a user access to a supervisor access, and vice versa. 8263 */ 8264 return (sign_extend64(gva, lam_bit) & ~BIT_ULL(63)) | (gva & BIT_ULL(63)); 8265 } 8266 8267 static struct kvm_x86_ops vmx_x86_ops __initdata = { 8268 .name = KBUILD_MODNAME, 8269 8270 .check_processor_compatibility = vmx_check_processor_compat, 8271 8272 .hardware_unsetup = vmx_hardware_unsetup, 8273 8274 .hardware_enable = vmx_hardware_enable, 8275 .hardware_disable = vmx_hardware_disable, 8276 .has_emulated_msr = vmx_has_emulated_msr, 8277 8278 .vm_size = sizeof(struct kvm_vmx), 8279 .vm_init = vmx_vm_init, 8280 .vm_destroy = vmx_vm_destroy, 8281 8282 .vcpu_precreate = vmx_vcpu_precreate, 8283 .vcpu_create = vmx_vcpu_create, 8284 .vcpu_free = vmx_vcpu_free, 8285 .vcpu_reset = vmx_vcpu_reset, 8286 8287 .prepare_switch_to_guest = vmx_prepare_switch_to_guest, 8288 .vcpu_load = vmx_vcpu_load, 8289 .vcpu_put = vmx_vcpu_put, 8290 8291 .update_exception_bitmap = vmx_update_exception_bitmap, 8292 .get_msr_feature = vmx_get_msr_feature, 8293 .get_msr = vmx_get_msr, 8294 .set_msr = vmx_set_msr, 8295 .get_segment_base = vmx_get_segment_base, 8296 .get_segment = vmx_get_segment, 8297 .set_segment = vmx_set_segment, 8298 .get_cpl = vmx_get_cpl, 8299 .get_cs_db_l_bits = vmx_get_cs_db_l_bits, 8300 .is_valid_cr0 = vmx_is_valid_cr0, 8301 .set_cr0 = vmx_set_cr0, 8302 .is_valid_cr4 = vmx_is_valid_cr4, 8303 .set_cr4 = vmx_set_cr4, 8304 .set_efer = vmx_set_efer, 8305 .get_idt = vmx_get_idt, 8306 .set_idt = vmx_set_idt, 8307 .get_gdt = vmx_get_gdt, 8308 .set_gdt = vmx_set_gdt, 8309 .set_dr7 = vmx_set_dr7, 8310 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, 8311 .cache_reg = vmx_cache_reg, 8312 .get_rflags = vmx_get_rflags, 8313 .set_rflags = vmx_set_rflags, 8314 .get_if_flag = vmx_get_if_flag, 8315 8316 .flush_tlb_all = vmx_flush_tlb_all, 8317 .flush_tlb_current = vmx_flush_tlb_current, 8318 .flush_tlb_gva = vmx_flush_tlb_gva, 8319 .flush_tlb_guest = vmx_flush_tlb_guest, 8320 8321 .vcpu_pre_run = vmx_vcpu_pre_run, 8322 .vcpu_run = vmx_vcpu_run, 8323 .handle_exit = vmx_handle_exit, 8324 .skip_emulated_instruction = vmx_skip_emulated_instruction, 8325 .update_emulated_instruction = vmx_update_emulated_instruction, 8326 .set_interrupt_shadow = vmx_set_interrupt_shadow, 8327 .get_interrupt_shadow = vmx_get_interrupt_shadow, 8328 .patch_hypercall = vmx_patch_hypercall, 8329 .inject_irq = vmx_inject_irq, 8330 .inject_nmi = vmx_inject_nmi, 8331 .inject_exception = vmx_inject_exception, 8332 .cancel_injection = vmx_cancel_injection, 8333 .interrupt_allowed = vmx_interrupt_allowed, 8334 .nmi_allowed = vmx_nmi_allowed, 8335 .get_nmi_mask = vmx_get_nmi_mask, 8336 .set_nmi_mask = vmx_set_nmi_mask, 8337 .enable_nmi_window = vmx_enable_nmi_window, 8338 .enable_irq_window = vmx_enable_irq_window, 8339 .update_cr8_intercept = vmx_update_cr8_intercept, 8340 .set_virtual_apic_mode = vmx_set_virtual_apic_mode, 8341 .set_apic_access_page_addr = vmx_set_apic_access_page_addr, 8342 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, 8343 .load_eoi_exitmap = vmx_load_eoi_exitmap, 8344 .apicv_pre_state_restore = vmx_apicv_pre_state_restore, 8345 .required_apicv_inhibits = VMX_REQUIRED_APICV_INHIBITS, 8346 .hwapic_irr_update = vmx_hwapic_irr_update, 8347 .hwapic_isr_update = vmx_hwapic_isr_update, 8348 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt, 8349 .sync_pir_to_irr = vmx_sync_pir_to_irr, 8350 .deliver_interrupt = vmx_deliver_interrupt, 8351 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt, 8352 8353 .set_tss_addr = vmx_set_tss_addr, 8354 .set_identity_map_addr = vmx_set_identity_map_addr, 8355 .get_mt_mask = vmx_get_mt_mask, 8356 8357 .get_exit_info = vmx_get_exit_info, 8358 8359 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid, 8360 8361 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, 8362 8363 .get_l2_tsc_offset = vmx_get_l2_tsc_offset, 8364 .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier, 8365 .write_tsc_offset = vmx_write_tsc_offset, 8366 .write_tsc_multiplier = vmx_write_tsc_multiplier, 8367 8368 .load_mmu_pgd = vmx_load_mmu_pgd, 8369 8370 .check_intercept = vmx_check_intercept, 8371 .handle_exit_irqoff = vmx_handle_exit_irqoff, 8372 8373 .request_immediate_exit = vmx_request_immediate_exit, 8374 8375 .sched_in = vmx_sched_in, 8376 8377 .cpu_dirty_log_size = PML_ENTITY_NUM, 8378 .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging, 8379 8380 .nested_ops = &vmx_nested_ops, 8381 8382 .pi_update_irte = vmx_pi_update_irte, 8383 .pi_start_assignment = vmx_pi_start_assignment, 8384 8385 #ifdef CONFIG_X86_64 8386 .set_hv_timer = vmx_set_hv_timer, 8387 .cancel_hv_timer = vmx_cancel_hv_timer, 8388 #endif 8389 8390 .setup_mce = vmx_setup_mce, 8391 8392 #ifdef CONFIG_KVM_SMM 8393 .smi_allowed = vmx_smi_allowed, 8394 .enter_smm = vmx_enter_smm, 8395 .leave_smm = vmx_leave_smm, 8396 .enable_smi_window = vmx_enable_smi_window, 8397 #endif 8398 8399 .check_emulate_instruction = vmx_check_emulate_instruction, 8400 .apic_init_signal_blocked = vmx_apic_init_signal_blocked, 8401 .migrate_timers = vmx_migrate_timers, 8402 8403 .msr_filter_changed = vmx_msr_filter_changed, 8404 .complete_emulated_msr = kvm_complete_insn_gp, 8405 8406 .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector, 8407 8408 .get_untagged_addr = vmx_get_untagged_addr, 8409 }; 8410 8411 static unsigned int vmx_handle_intel_pt_intr(void) 8412 { 8413 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 8414 8415 /* '0' on failure so that the !PT case can use a RET0 static call. */ 8416 if (!vcpu || !kvm_handling_nmi_from_guest(vcpu)) 8417 return 0; 8418 8419 kvm_make_request(KVM_REQ_PMI, vcpu); 8420 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT, 8421 (unsigned long *)&vcpu->arch.pmu.global_status); 8422 return 1; 8423 } 8424 8425 static __init void vmx_setup_user_return_msrs(void) 8426 { 8427 8428 /* 8429 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm 8430 * will emulate SYSCALL in legacy mode if the vendor string in guest 8431 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To 8432 * support this emulation, MSR_STAR is included in the list for i386, 8433 * but is never loaded into hardware. MSR_CSTAR is also never loaded 8434 * into hardware and is here purely for emulation purposes. 8435 */ 8436 const u32 vmx_uret_msrs_list[] = { 8437 #ifdef CONFIG_X86_64 8438 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, 8439 #endif 8440 MSR_EFER, MSR_TSC_AUX, MSR_STAR, 8441 MSR_IA32_TSX_CTRL, 8442 }; 8443 int i; 8444 8445 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS); 8446 8447 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) 8448 kvm_add_user_return_msr(vmx_uret_msrs_list[i]); 8449 } 8450 8451 static void __init vmx_setup_me_spte_mask(void) 8452 { 8453 u64 me_mask = 0; 8454 8455 /* 8456 * kvm_get_shadow_phys_bits() returns shadow_phys_bits. Use 8457 * the former to avoid exposing shadow_phys_bits. 8458 * 8459 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to 8460 * shadow_phys_bits. On MKTME and/or TDX capable systems, 8461 * boot_cpu_data.x86_phys_bits holds the actual physical address 8462 * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR 8463 * reported by CPUID. Those bits between are KeyID bits. 8464 */ 8465 if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits()) 8466 me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits, 8467 kvm_get_shadow_phys_bits() - 1); 8468 /* 8469 * Unlike SME, host kernel doesn't support setting up any 8470 * MKTME KeyID on Intel platforms. No memory encryption 8471 * bits should be included into the SPTE. 8472 */ 8473 kvm_mmu_set_me_spte_mask(0, me_mask); 8474 } 8475 8476 static struct kvm_x86_init_ops vmx_init_ops __initdata; 8477 8478 static __init int hardware_setup(void) 8479 { 8480 unsigned long host_bndcfgs; 8481 struct desc_ptr dt; 8482 int r; 8483 8484 store_idt(&dt); 8485 host_idt_base = dt.address; 8486 8487 vmx_setup_user_return_msrs(); 8488 8489 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) 8490 return -EIO; 8491 8492 if (cpu_has_perf_global_ctrl_bug()) 8493 pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " 8494 "does not work properly. Using workaround\n"); 8495 8496 if (boot_cpu_has(X86_FEATURE_NX)) 8497 kvm_enable_efer_bits(EFER_NX); 8498 8499 if (boot_cpu_has(X86_FEATURE_MPX)) { 8500 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); 8501 WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost"); 8502 } 8503 8504 if (!cpu_has_vmx_mpx()) 8505 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 8506 XFEATURE_MASK_BNDCSR); 8507 8508 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || 8509 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) 8510 enable_vpid = 0; 8511 8512 if (!cpu_has_vmx_ept() || 8513 !cpu_has_vmx_ept_4levels() || 8514 !cpu_has_vmx_ept_mt_wb() || 8515 !cpu_has_vmx_invept_global()) 8516 enable_ept = 0; 8517 8518 /* NX support is required for shadow paging. */ 8519 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) { 8520 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 8521 return -EOPNOTSUPP; 8522 } 8523 8524 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) 8525 enable_ept_ad_bits = 0; 8526 8527 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) 8528 enable_unrestricted_guest = 0; 8529 8530 if (!cpu_has_vmx_flexpriority()) 8531 flexpriority_enabled = 0; 8532 8533 if (!cpu_has_virtual_nmis()) 8534 enable_vnmi = 0; 8535 8536 #ifdef CONFIG_X86_SGX_KVM 8537 if (!cpu_has_vmx_encls_vmexit()) 8538 enable_sgx = false; 8539 #endif 8540 8541 /* 8542 * set_apic_access_page_addr() is used to reload apic access 8543 * page upon invalidation. No need to do anything if not 8544 * using the APIC_ACCESS_ADDR VMCS field. 8545 */ 8546 if (!flexpriority_enabled) 8547 vmx_x86_ops.set_apic_access_page_addr = NULL; 8548 8549 if (!cpu_has_vmx_tpr_shadow()) 8550 vmx_x86_ops.update_cr8_intercept = NULL; 8551 8552 #if IS_ENABLED(CONFIG_HYPERV) 8553 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH 8554 && enable_ept) { 8555 vmx_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs; 8556 vmx_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range; 8557 } 8558 #endif 8559 8560 if (!cpu_has_vmx_ple()) { 8561 ple_gap = 0; 8562 ple_window = 0; 8563 ple_window_grow = 0; 8564 ple_window_max = 0; 8565 ple_window_shrink = 0; 8566 } 8567 8568 if (!cpu_has_vmx_apicv()) 8569 enable_apicv = 0; 8570 if (!enable_apicv) 8571 vmx_x86_ops.sync_pir_to_irr = NULL; 8572 8573 if (!enable_apicv || !cpu_has_vmx_ipiv()) 8574 enable_ipiv = false; 8575 8576 if (cpu_has_vmx_tsc_scaling()) 8577 kvm_caps.has_tsc_control = true; 8578 8579 kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; 8580 kvm_caps.tsc_scaling_ratio_frac_bits = 48; 8581 kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection(); 8582 kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit(); 8583 8584 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ 8585 8586 if (enable_ept) 8587 kvm_mmu_set_ept_masks(enable_ept_ad_bits, 8588 cpu_has_vmx_ept_execute_only()); 8589 8590 /* 8591 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID 8592 * bits to shadow_zero_check. 8593 */ 8594 vmx_setup_me_spte_mask(); 8595 8596 kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(), 8597 ept_caps_to_lpage_level(vmx_capability.ept)); 8598 8599 /* 8600 * Only enable PML when hardware supports PML feature, and both EPT 8601 * and EPT A/D bit features are enabled -- PML depends on them to work. 8602 */ 8603 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) 8604 enable_pml = 0; 8605 8606 if (!enable_pml) 8607 vmx_x86_ops.cpu_dirty_log_size = 0; 8608 8609 if (!cpu_has_vmx_preemption_timer()) 8610 enable_preemption_timer = false; 8611 8612 if (enable_preemption_timer) { 8613 u64 use_timer_freq = 5000ULL * 1000 * 1000; 8614 8615 cpu_preemption_timer_multi = 8616 vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; 8617 8618 if (tsc_khz) 8619 use_timer_freq = (u64)tsc_khz * 1000; 8620 use_timer_freq >>= cpu_preemption_timer_multi; 8621 8622 /* 8623 * KVM "disables" the preemption timer by setting it to its max 8624 * value. Don't use the timer if it might cause spurious exits 8625 * at a rate faster than 0.1 Hz (of uninterrupted guest time). 8626 */ 8627 if (use_timer_freq > 0xffffffffu / 10) 8628 enable_preemption_timer = false; 8629 } 8630 8631 if (!enable_preemption_timer) { 8632 vmx_x86_ops.set_hv_timer = NULL; 8633 vmx_x86_ops.cancel_hv_timer = NULL; 8634 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit; 8635 } 8636 8637 kvm_caps.supported_mce_cap |= MCG_LMCE_P; 8638 kvm_caps.supported_mce_cap |= MCG_CMCI_P; 8639 8640 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) 8641 return -EINVAL; 8642 if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt()) 8643 pt_mode = PT_MODE_SYSTEM; 8644 if (pt_mode == PT_MODE_HOST_GUEST) 8645 vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr; 8646 else 8647 vmx_init_ops.handle_intel_pt_intr = NULL; 8648 8649 setup_default_sgx_lepubkeyhash(); 8650 8651 if (nested) { 8652 nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept); 8653 8654 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); 8655 if (r) 8656 return r; 8657 } 8658 8659 vmx_set_cpu_caps(); 8660 8661 r = alloc_kvm_area(); 8662 if (r && nested) 8663 nested_vmx_hardware_unsetup(); 8664 8665 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler); 8666 8667 return r; 8668 } 8669 8670 static struct kvm_x86_init_ops vmx_init_ops __initdata = { 8671 .hardware_setup = hardware_setup, 8672 .handle_intel_pt_intr = NULL, 8673 8674 .runtime_ops = &vmx_x86_ops, 8675 .pmu_ops = &intel_pmu_ops, 8676 }; 8677 8678 static void vmx_cleanup_l1d_flush(void) 8679 { 8680 if (vmx_l1d_flush_pages) { 8681 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); 8682 vmx_l1d_flush_pages = NULL; 8683 } 8684 /* Restore state so sysfs ignores VMX */ 8685 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 8686 } 8687 8688 static void __vmx_exit(void) 8689 { 8690 allow_smaller_maxphyaddr = false; 8691 8692 cpu_emergency_unregister_virt_callback(vmx_emergency_disable); 8693 8694 vmx_cleanup_l1d_flush(); 8695 } 8696 8697 static void vmx_exit(void) 8698 { 8699 kvm_exit(); 8700 kvm_x86_vendor_exit(); 8701 8702 __vmx_exit(); 8703 } 8704 module_exit(vmx_exit); 8705 8706 static int __init vmx_init(void) 8707 { 8708 int r, cpu; 8709 8710 if (!kvm_is_vmx_supported()) 8711 return -EOPNOTSUPP; 8712 8713 /* 8714 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing 8715 * to unwind if a later step fails. 8716 */ 8717 hv_init_evmcs(); 8718 8719 r = kvm_x86_vendor_init(&vmx_init_ops); 8720 if (r) 8721 return r; 8722 8723 /* 8724 * Must be called after common x86 init so enable_ept is properly set 8725 * up. Hand the parameter mitigation value in which was stored in 8726 * the pre module init parser. If no parameter was given, it will 8727 * contain 'auto' which will be turned into the default 'cond' 8728 * mitigation mode. 8729 */ 8730 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); 8731 if (r) 8732 goto err_l1d_flush; 8733 8734 for_each_possible_cpu(cpu) { 8735 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); 8736 8737 pi_init_cpu(cpu); 8738 } 8739 8740 cpu_emergency_register_virt_callback(vmx_emergency_disable); 8741 8742 vmx_check_vmcs12_offsets(); 8743 8744 /* 8745 * Shadow paging doesn't have a (further) performance penalty 8746 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it 8747 * by default 8748 */ 8749 if (!enable_ept) 8750 allow_smaller_maxphyaddr = true; 8751 8752 /* 8753 * Common KVM initialization _must_ come last, after this, /dev/kvm is 8754 * exposed to userspace! 8755 */ 8756 r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx), 8757 THIS_MODULE); 8758 if (r) 8759 goto err_kvm_init; 8760 8761 return 0; 8762 8763 err_kvm_init: 8764 __vmx_exit(); 8765 err_l1d_flush: 8766 kvm_x86_vendor_exit(); 8767 return r; 8768 } 8769 module_init(vmx_init); 8770