1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <linux/highmem.h> 17 #include <linux/hrtimer.h> 18 #include <linux/kernel.h> 19 #include <linux/kvm_host.h> 20 #include <linux/module.h> 21 #include <linux/moduleparam.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/mm.h> 24 #include <linux/objtool.h> 25 #include <linux/sched.h> 26 #include <linux/sched/smt.h> 27 #include <linux/slab.h> 28 #include <linux/tboot.h> 29 #include <linux/trace_events.h> 30 #include <linux/entry-kvm.h> 31 32 #include <asm/apic.h> 33 #include <asm/asm.h> 34 #include <asm/cpu.h> 35 #include <asm/cpu_device_id.h> 36 #include <asm/debugreg.h> 37 #include <asm/desc.h> 38 #include <asm/fpu/api.h> 39 #include <asm/idtentry.h> 40 #include <asm/io.h> 41 #include <asm/irq_remapping.h> 42 #include <asm/kexec.h> 43 #include <asm/perf_event.h> 44 #include <asm/mmu_context.h> 45 #include <asm/mshyperv.h> 46 #include <asm/mwait.h> 47 #include <asm/spec-ctrl.h> 48 #include <asm/virtext.h> 49 #include <asm/vmx.h> 50 51 #include "capabilities.h" 52 #include "cpuid.h" 53 #include "evmcs.h" 54 #include "hyperv.h" 55 #include "kvm_onhyperv.h" 56 #include "irq.h" 57 #include "kvm_cache_regs.h" 58 #include "lapic.h" 59 #include "mmu.h" 60 #include "nested.h" 61 #include "pmu.h" 62 #include "sgx.h" 63 #include "trace.h" 64 #include "vmcs.h" 65 #include "vmcs12.h" 66 #include "vmx.h" 67 #include "x86.h" 68 69 MODULE_AUTHOR("Qumranet"); 70 MODULE_LICENSE("GPL"); 71 72 #ifdef MODULE 73 static const struct x86_cpu_id vmx_cpu_id[] = { 74 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL), 75 {} 76 }; 77 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); 78 #endif 79 80 bool __read_mostly enable_vpid = 1; 81 module_param_named(vpid, enable_vpid, bool, 0444); 82 83 static bool __read_mostly enable_vnmi = 1; 84 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO); 85 86 bool __read_mostly flexpriority_enabled = 1; 87 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); 88 89 bool __read_mostly enable_ept = 1; 90 module_param_named(ept, enable_ept, bool, S_IRUGO); 91 92 bool __read_mostly enable_unrestricted_guest = 1; 93 module_param_named(unrestricted_guest, 94 enable_unrestricted_guest, bool, S_IRUGO); 95 96 bool __read_mostly enable_ept_ad_bits = 1; 97 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO); 98 99 static bool __read_mostly emulate_invalid_guest_state = true; 100 module_param(emulate_invalid_guest_state, bool, S_IRUGO); 101 102 static bool __read_mostly fasteoi = 1; 103 module_param(fasteoi, bool, S_IRUGO); 104 105 module_param(enable_apicv, bool, S_IRUGO); 106 107 /* 108 * If nested=1, nested virtualization is supported, i.e., guests may use 109 * VMX and be a hypervisor for its own guests. If nested=0, guests may not 110 * use VMX instructions. 111 */ 112 static bool __read_mostly nested = 1; 113 module_param(nested, bool, S_IRUGO); 114 115 bool __read_mostly enable_pml = 1; 116 module_param_named(pml, enable_pml, bool, S_IRUGO); 117 118 static bool __read_mostly dump_invalid_vmcs = 0; 119 module_param(dump_invalid_vmcs, bool, 0644); 120 121 #define MSR_BITMAP_MODE_X2APIC 1 122 #define MSR_BITMAP_MODE_X2APIC_APICV 2 123 124 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL 125 126 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ 127 static int __read_mostly cpu_preemption_timer_multi; 128 static bool __read_mostly enable_preemption_timer = 1; 129 #ifdef CONFIG_X86_64 130 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); 131 #endif 132 133 extern bool __read_mostly allow_smaller_maxphyaddr; 134 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO); 135 136 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) 137 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE 138 #define KVM_VM_CR0_ALWAYS_ON \ 139 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE) 140 141 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE 142 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) 143 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) 144 145 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) 146 147 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ 148 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ 149 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ 150 RTIT_STATUS_BYTECNT)) 151 152 /* 153 * List of MSRs that can be directly passed to the guest. 154 * In addition to these x2apic and PT MSRs are handled specially. 155 */ 156 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = { 157 MSR_IA32_SPEC_CTRL, 158 MSR_IA32_PRED_CMD, 159 MSR_IA32_TSC, 160 #ifdef CONFIG_X86_64 161 MSR_FS_BASE, 162 MSR_GS_BASE, 163 MSR_KERNEL_GS_BASE, 164 #endif 165 MSR_IA32_SYSENTER_CS, 166 MSR_IA32_SYSENTER_ESP, 167 MSR_IA32_SYSENTER_EIP, 168 MSR_CORE_C1_RES, 169 MSR_CORE_C3_RESIDENCY, 170 MSR_CORE_C6_RESIDENCY, 171 MSR_CORE_C7_RESIDENCY, 172 }; 173 174 /* 175 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 176 * ple_gap: upper bound on the amount of time between two successive 177 * executions of PAUSE in a loop. Also indicate if ple enabled. 178 * According to test, this time is usually smaller than 128 cycles. 179 * ple_window: upper bound on the amount of time a guest is allowed to execute 180 * in a PAUSE loop. Tests indicate that most spinlocks are held for 181 * less than 2^12 cycles 182 * Time is measured based on a counter that runs at the same rate as the TSC, 183 * refer SDM volume 3b section 21.6.13 & 22.1.3. 184 */ 185 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; 186 module_param(ple_gap, uint, 0444); 187 188 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; 189 module_param(ple_window, uint, 0444); 190 191 /* Default doubles per-vcpu window every exit. */ 192 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 193 module_param(ple_window_grow, uint, 0444); 194 195 /* Default resets per-vcpu window every exit to ple_window. */ 196 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 197 module_param(ple_window_shrink, uint, 0444); 198 199 /* Default is to compute the maximum so we can never overflow. */ 200 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; 201 module_param(ple_window_max, uint, 0444); 202 203 /* Default is SYSTEM mode, 1 for host-guest mode */ 204 int __read_mostly pt_mode = PT_MODE_SYSTEM; 205 module_param(pt_mode, int, S_IRUGO); 206 207 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); 208 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); 209 static DEFINE_MUTEX(vmx_l1d_flush_mutex); 210 211 /* Storage for pre module init parameter parsing */ 212 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; 213 214 static const struct { 215 const char *option; 216 bool for_parse; 217 } vmentry_l1d_param[] = { 218 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, 219 [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, 220 [VMENTER_L1D_FLUSH_COND] = {"cond", true}, 221 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, 222 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, 223 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, 224 }; 225 226 #define L1D_CACHE_ORDER 4 227 static void *vmx_l1d_flush_pages; 228 229 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) 230 { 231 struct page *page; 232 unsigned int i; 233 234 if (!boot_cpu_has_bug(X86_BUG_L1TF)) { 235 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 236 return 0; 237 } 238 239 if (!enable_ept) { 240 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; 241 return 0; 242 } 243 244 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 245 u64 msr; 246 247 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr); 248 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { 249 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 250 return 0; 251 } 252 } 253 254 /* If set to auto use the default l1tf mitigation method */ 255 if (l1tf == VMENTER_L1D_FLUSH_AUTO) { 256 switch (l1tf_mitigation) { 257 case L1TF_MITIGATION_OFF: 258 l1tf = VMENTER_L1D_FLUSH_NEVER; 259 break; 260 case L1TF_MITIGATION_FLUSH_NOWARN: 261 case L1TF_MITIGATION_FLUSH: 262 case L1TF_MITIGATION_FLUSH_NOSMT: 263 l1tf = VMENTER_L1D_FLUSH_COND; 264 break; 265 case L1TF_MITIGATION_FULL: 266 case L1TF_MITIGATION_FULL_FORCE: 267 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 268 break; 269 } 270 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { 271 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 272 } 273 274 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && 275 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { 276 /* 277 * This allocation for vmx_l1d_flush_pages is not tied to a VM 278 * lifetime and so should not be charged to a memcg. 279 */ 280 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); 281 if (!page) 282 return -ENOMEM; 283 vmx_l1d_flush_pages = page_address(page); 284 285 /* 286 * Initialize each page with a different pattern in 287 * order to protect against KSM in the nested 288 * virtualization case. 289 */ 290 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { 291 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, 292 PAGE_SIZE); 293 } 294 } 295 296 l1tf_vmx_mitigation = l1tf; 297 298 if (l1tf != VMENTER_L1D_FLUSH_NEVER) 299 static_branch_enable(&vmx_l1d_should_flush); 300 else 301 static_branch_disable(&vmx_l1d_should_flush); 302 303 if (l1tf == VMENTER_L1D_FLUSH_COND) 304 static_branch_enable(&vmx_l1d_flush_cond); 305 else 306 static_branch_disable(&vmx_l1d_flush_cond); 307 return 0; 308 } 309 310 static int vmentry_l1d_flush_parse(const char *s) 311 { 312 unsigned int i; 313 314 if (s) { 315 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { 316 if (vmentry_l1d_param[i].for_parse && 317 sysfs_streq(s, vmentry_l1d_param[i].option)) 318 return i; 319 } 320 } 321 return -EINVAL; 322 } 323 324 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) 325 { 326 int l1tf, ret; 327 328 l1tf = vmentry_l1d_flush_parse(s); 329 if (l1tf < 0) 330 return l1tf; 331 332 if (!boot_cpu_has(X86_BUG_L1TF)) 333 return 0; 334 335 /* 336 * Has vmx_init() run already? If not then this is the pre init 337 * parameter parsing. In that case just store the value and let 338 * vmx_init() do the proper setup after enable_ept has been 339 * established. 340 */ 341 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { 342 vmentry_l1d_flush_param = l1tf; 343 return 0; 344 } 345 346 mutex_lock(&vmx_l1d_flush_mutex); 347 ret = vmx_setup_l1d_flush(l1tf); 348 mutex_unlock(&vmx_l1d_flush_mutex); 349 return ret; 350 } 351 352 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) 353 { 354 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) 355 return sprintf(s, "???\n"); 356 357 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); 358 } 359 360 static const struct kernel_param_ops vmentry_l1d_flush_ops = { 361 .set = vmentry_l1d_flush_set, 362 .get = vmentry_l1d_flush_get, 363 }; 364 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); 365 366 static u32 vmx_segment_access_rights(struct kvm_segment *var); 367 368 void vmx_vmexit(void); 369 370 #define vmx_insn_failed(fmt...) \ 371 do { \ 372 WARN_ONCE(1, fmt); \ 373 pr_warn_ratelimited(fmt); \ 374 } while (0) 375 376 asmlinkage void vmread_error(unsigned long field, bool fault) 377 { 378 if (fault) 379 kvm_spurious_fault(); 380 else 381 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field); 382 } 383 384 noinline void vmwrite_error(unsigned long field, unsigned long value) 385 { 386 vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n", 387 field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); 388 } 389 390 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr) 391 { 392 vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr); 393 } 394 395 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr) 396 { 397 vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr); 398 } 399 400 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva) 401 { 402 vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n", 403 ext, vpid, gva); 404 } 405 406 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa) 407 { 408 vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n", 409 ext, eptp, gpa); 410 } 411 412 static DEFINE_PER_CPU(struct vmcs *, vmxarea); 413 DEFINE_PER_CPU(struct vmcs *, current_vmcs); 414 /* 415 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed 416 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. 417 */ 418 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); 419 420 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); 421 static DEFINE_SPINLOCK(vmx_vpid_lock); 422 423 struct vmcs_config vmcs_config; 424 struct vmx_capability vmx_capability; 425 426 #define VMX_SEGMENT_FIELD(seg) \ 427 [VCPU_SREG_##seg] = { \ 428 .selector = GUEST_##seg##_SELECTOR, \ 429 .base = GUEST_##seg##_BASE, \ 430 .limit = GUEST_##seg##_LIMIT, \ 431 .ar_bytes = GUEST_##seg##_AR_BYTES, \ 432 } 433 434 static const struct kvm_vmx_segment_field { 435 unsigned selector; 436 unsigned base; 437 unsigned limit; 438 unsigned ar_bytes; 439 } kvm_vmx_segment_fields[] = { 440 VMX_SEGMENT_FIELD(CS), 441 VMX_SEGMENT_FIELD(DS), 442 VMX_SEGMENT_FIELD(ES), 443 VMX_SEGMENT_FIELD(FS), 444 VMX_SEGMENT_FIELD(GS), 445 VMX_SEGMENT_FIELD(SS), 446 VMX_SEGMENT_FIELD(TR), 447 VMX_SEGMENT_FIELD(LDTR), 448 }; 449 450 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx) 451 { 452 vmx->segment_cache.bitmask = 0; 453 } 454 455 static unsigned long host_idt_base; 456 457 #if IS_ENABLED(CONFIG_HYPERV) 458 static bool __read_mostly enlightened_vmcs = true; 459 module_param(enlightened_vmcs, bool, 0444); 460 461 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu) 462 { 463 struct hv_enlightened_vmcs *evmcs; 464 struct hv_partition_assist_pg **p_hv_pa_pg = 465 &to_kvm_hv(vcpu->kvm)->hv_pa_pg; 466 /* 467 * Synthetic VM-Exit is not enabled in current code and so All 468 * evmcs in singe VM shares same assist page. 469 */ 470 if (!*p_hv_pa_pg) 471 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT); 472 473 if (!*p_hv_pa_pg) 474 return -ENOMEM; 475 476 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs; 477 478 evmcs->partition_assist_page = 479 __pa(*p_hv_pa_pg); 480 evmcs->hv_vm_id = (unsigned long)vcpu->kvm; 481 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1; 482 483 return 0; 484 } 485 486 #endif /* IS_ENABLED(CONFIG_HYPERV) */ 487 488 /* 489 * Comment's format: document - errata name - stepping - processor name. 490 * Refer from 491 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp 492 */ 493 static u32 vmx_preemption_cpu_tfms[] = { 494 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ 495 0x000206E6, 496 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ 497 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ 498 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ 499 0x00020652, 500 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ 501 0x00020655, 502 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ 503 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ 504 /* 505 * 320767.pdf - AAP86 - B1 - 506 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile 507 */ 508 0x000106E5, 509 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ 510 0x000106A0, 511 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ 512 0x000106A1, 513 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ 514 0x000106A4, 515 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ 516 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ 517 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ 518 0x000106A5, 519 /* Xeon E3-1220 V2 */ 520 0x000306A8, 521 }; 522 523 static inline bool cpu_has_broken_vmx_preemption_timer(void) 524 { 525 u32 eax = cpuid_eax(0x00000001), i; 526 527 /* Clear the reserved bits */ 528 eax &= ~(0x3U << 14 | 0xfU << 28); 529 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) 530 if (eax == vmx_preemption_cpu_tfms[i]) 531 return true; 532 533 return false; 534 } 535 536 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) 537 { 538 return flexpriority_enabled && lapic_in_kernel(vcpu); 539 } 540 541 static inline bool report_flexpriority(void) 542 { 543 return flexpriority_enabled; 544 } 545 546 static int possible_passthrough_msr_slot(u32 msr) 547 { 548 u32 i; 549 550 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) 551 if (vmx_possible_passthrough_msrs[i] == msr) 552 return i; 553 554 return -ENOENT; 555 } 556 557 static bool is_valid_passthrough_msr(u32 msr) 558 { 559 bool r; 560 561 switch (msr) { 562 case 0x800 ... 0x8ff: 563 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */ 564 return true; 565 case MSR_IA32_RTIT_STATUS: 566 case MSR_IA32_RTIT_OUTPUT_BASE: 567 case MSR_IA32_RTIT_OUTPUT_MASK: 568 case MSR_IA32_RTIT_CR3_MATCH: 569 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 570 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */ 571 case MSR_LBR_SELECT: 572 case MSR_LBR_TOS: 573 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31: 574 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31: 575 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31: 576 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8: 577 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8: 578 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */ 579 return true; 580 } 581 582 r = possible_passthrough_msr_slot(msr) != -ENOENT; 583 584 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr); 585 586 return r; 587 } 588 589 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr) 590 { 591 int i; 592 593 i = kvm_find_user_return_msr(msr); 594 if (i >= 0) 595 return &vmx->guest_uret_msrs[i]; 596 return NULL; 597 } 598 599 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx, 600 struct vmx_uret_msr *msr, u64 data) 601 { 602 unsigned int slot = msr - vmx->guest_uret_msrs; 603 int ret = 0; 604 605 u64 old_msr_data = msr->data; 606 msr->data = data; 607 if (msr->load_into_hardware) { 608 preempt_disable(); 609 ret = kvm_set_user_return_msr(slot, msr->data, msr->mask); 610 preempt_enable(); 611 if (ret) 612 msr->data = old_msr_data; 613 } 614 return ret; 615 } 616 617 #ifdef CONFIG_KEXEC_CORE 618 static void crash_vmclear_local_loaded_vmcss(void) 619 { 620 int cpu = raw_smp_processor_id(); 621 struct loaded_vmcs *v; 622 623 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), 624 loaded_vmcss_on_cpu_link) 625 vmcs_clear(v->vmcs); 626 } 627 #endif /* CONFIG_KEXEC_CORE */ 628 629 static void __loaded_vmcs_clear(void *arg) 630 { 631 struct loaded_vmcs *loaded_vmcs = arg; 632 int cpu = raw_smp_processor_id(); 633 634 if (loaded_vmcs->cpu != cpu) 635 return; /* vcpu migration can race with cpu offline */ 636 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) 637 per_cpu(current_vmcs, cpu) = NULL; 638 639 vmcs_clear(loaded_vmcs->vmcs); 640 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) 641 vmcs_clear(loaded_vmcs->shadow_vmcs); 642 643 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); 644 645 /* 646 * Ensure all writes to loaded_vmcs, including deleting it from its 647 * current percpu list, complete before setting loaded_vmcs->vcpu to 648 * -1, otherwise a different cpu can see vcpu == -1 first and add 649 * loaded_vmcs to its percpu list before it's deleted from this cpu's 650 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs(). 651 */ 652 smp_wmb(); 653 654 loaded_vmcs->cpu = -1; 655 loaded_vmcs->launched = 0; 656 } 657 658 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) 659 { 660 int cpu = loaded_vmcs->cpu; 661 662 if (cpu != -1) 663 smp_call_function_single(cpu, 664 __loaded_vmcs_clear, loaded_vmcs, 1); 665 } 666 667 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, 668 unsigned field) 669 { 670 bool ret; 671 u32 mask = 1 << (seg * SEG_FIELD_NR + field); 672 673 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) { 674 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS); 675 vmx->segment_cache.bitmask = 0; 676 } 677 ret = vmx->segment_cache.bitmask & mask; 678 vmx->segment_cache.bitmask |= mask; 679 return ret; 680 } 681 682 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) 683 { 684 u16 *p = &vmx->segment_cache.seg[seg].selector; 685 686 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) 687 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); 688 return *p; 689 } 690 691 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) 692 { 693 ulong *p = &vmx->segment_cache.seg[seg].base; 694 695 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) 696 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); 697 return *p; 698 } 699 700 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) 701 { 702 u32 *p = &vmx->segment_cache.seg[seg].limit; 703 704 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) 705 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); 706 return *p; 707 } 708 709 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) 710 { 711 u32 *p = &vmx->segment_cache.seg[seg].ar; 712 713 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) 714 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); 715 return *p; 716 } 717 718 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu) 719 { 720 u32 eb; 721 722 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | 723 (1u << DB_VECTOR) | (1u << AC_VECTOR); 724 /* 725 * Guest access to VMware backdoor ports could legitimately 726 * trigger #GP because of TSS I/O permission bitmap. 727 * We intercept those #GP and allow access to them anyway 728 * as VMware does. 729 */ 730 if (enable_vmware_backdoor) 731 eb |= (1u << GP_VECTOR); 732 if ((vcpu->guest_debug & 733 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == 734 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) 735 eb |= 1u << BP_VECTOR; 736 if (to_vmx(vcpu)->rmode.vm86_active) 737 eb = ~0; 738 if (!vmx_need_pf_intercept(vcpu)) 739 eb &= ~(1u << PF_VECTOR); 740 741 /* When we are running a nested L2 guest and L1 specified for it a 742 * certain exception bitmap, we must trap the same exceptions and pass 743 * them to L1. When running L2, we will only handle the exceptions 744 * specified above if L1 did not want them. 745 */ 746 if (is_guest_mode(vcpu)) 747 eb |= get_vmcs12(vcpu)->exception_bitmap; 748 else { 749 int mask = 0, match = 0; 750 751 if (enable_ept && (eb & (1u << PF_VECTOR))) { 752 /* 753 * If EPT is enabled, #PF is currently only intercepted 754 * if MAXPHYADDR is smaller on the guest than on the 755 * host. In that case we only care about present, 756 * non-reserved faults. For vmcs02, however, PFEC_MASK 757 * and PFEC_MATCH are set in prepare_vmcs02_rare. 758 */ 759 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK; 760 match = PFERR_PRESENT_MASK; 761 } 762 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask); 763 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match); 764 } 765 766 vmcs_write32(EXCEPTION_BITMAP, eb); 767 } 768 769 /* 770 * Check if MSR is intercepted for currently loaded MSR bitmap. 771 */ 772 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr) 773 { 774 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS)) 775 return true; 776 777 return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, 778 MSR_IA32_SPEC_CTRL); 779 } 780 781 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, 782 unsigned long entry, unsigned long exit) 783 { 784 vm_entry_controls_clearbit(vmx, entry); 785 vm_exit_controls_clearbit(vmx, exit); 786 } 787 788 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr) 789 { 790 unsigned int i; 791 792 for (i = 0; i < m->nr; ++i) { 793 if (m->val[i].index == msr) 794 return i; 795 } 796 return -ENOENT; 797 } 798 799 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) 800 { 801 int i; 802 struct msr_autoload *m = &vmx->msr_autoload; 803 804 switch (msr) { 805 case MSR_EFER: 806 if (cpu_has_load_ia32_efer()) { 807 clear_atomic_switch_msr_special(vmx, 808 VM_ENTRY_LOAD_IA32_EFER, 809 VM_EXIT_LOAD_IA32_EFER); 810 return; 811 } 812 break; 813 case MSR_CORE_PERF_GLOBAL_CTRL: 814 if (cpu_has_load_perf_global_ctrl()) { 815 clear_atomic_switch_msr_special(vmx, 816 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 817 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); 818 return; 819 } 820 break; 821 } 822 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 823 if (i < 0) 824 goto skip_guest; 825 --m->guest.nr; 826 m->guest.val[i] = m->guest.val[m->guest.nr]; 827 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 828 829 skip_guest: 830 i = vmx_find_loadstore_msr_slot(&m->host, msr); 831 if (i < 0) 832 return; 833 834 --m->host.nr; 835 m->host.val[i] = m->host.val[m->host.nr]; 836 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 837 } 838 839 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, 840 unsigned long entry, unsigned long exit, 841 unsigned long guest_val_vmcs, unsigned long host_val_vmcs, 842 u64 guest_val, u64 host_val) 843 { 844 vmcs_write64(guest_val_vmcs, guest_val); 845 if (host_val_vmcs != HOST_IA32_EFER) 846 vmcs_write64(host_val_vmcs, host_val); 847 vm_entry_controls_setbit(vmx, entry); 848 vm_exit_controls_setbit(vmx, exit); 849 } 850 851 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, 852 u64 guest_val, u64 host_val, bool entry_only) 853 { 854 int i, j = 0; 855 struct msr_autoload *m = &vmx->msr_autoload; 856 857 switch (msr) { 858 case MSR_EFER: 859 if (cpu_has_load_ia32_efer()) { 860 add_atomic_switch_msr_special(vmx, 861 VM_ENTRY_LOAD_IA32_EFER, 862 VM_EXIT_LOAD_IA32_EFER, 863 GUEST_IA32_EFER, 864 HOST_IA32_EFER, 865 guest_val, host_val); 866 return; 867 } 868 break; 869 case MSR_CORE_PERF_GLOBAL_CTRL: 870 if (cpu_has_load_perf_global_ctrl()) { 871 add_atomic_switch_msr_special(vmx, 872 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 873 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, 874 GUEST_IA32_PERF_GLOBAL_CTRL, 875 HOST_IA32_PERF_GLOBAL_CTRL, 876 guest_val, host_val); 877 return; 878 } 879 break; 880 case MSR_IA32_PEBS_ENABLE: 881 /* PEBS needs a quiescent period after being disabled (to write 882 * a record). Disabling PEBS through VMX MSR swapping doesn't 883 * provide that period, so a CPU could write host's record into 884 * guest's memory. 885 */ 886 wrmsrl(MSR_IA32_PEBS_ENABLE, 0); 887 } 888 889 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 890 if (!entry_only) 891 j = vmx_find_loadstore_msr_slot(&m->host, msr); 892 893 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) || 894 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) { 895 printk_once(KERN_WARNING "Not enough msr switch entries. " 896 "Can't add msr %x\n", msr); 897 return; 898 } 899 if (i < 0) { 900 i = m->guest.nr++; 901 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 902 } 903 m->guest.val[i].index = msr; 904 m->guest.val[i].value = guest_val; 905 906 if (entry_only) 907 return; 908 909 if (j < 0) { 910 j = m->host.nr++; 911 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 912 } 913 m->host.val[j].index = msr; 914 m->host.val[j].value = host_val; 915 } 916 917 static bool update_transition_efer(struct vcpu_vmx *vmx) 918 { 919 u64 guest_efer = vmx->vcpu.arch.efer; 920 u64 ignore_bits = 0; 921 int i; 922 923 /* Shadow paging assumes NX to be available. */ 924 if (!enable_ept) 925 guest_efer |= EFER_NX; 926 927 /* 928 * LMA and LME handled by hardware; SCE meaningless outside long mode. 929 */ 930 ignore_bits |= EFER_SCE; 931 #ifdef CONFIG_X86_64 932 ignore_bits |= EFER_LMA | EFER_LME; 933 /* SCE is meaningful only in long mode on Intel */ 934 if (guest_efer & EFER_LMA) 935 ignore_bits &= ~(u64)EFER_SCE; 936 #endif 937 938 /* 939 * On EPT, we can't emulate NX, so we must switch EFER atomically. 940 * On CPUs that support "load IA32_EFER", always switch EFER 941 * atomically, since it's faster than switching it manually. 942 */ 943 if (cpu_has_load_ia32_efer() || 944 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { 945 if (!(guest_efer & EFER_LMA)) 946 guest_efer &= ~EFER_LME; 947 if (guest_efer != host_efer) 948 add_atomic_switch_msr(vmx, MSR_EFER, 949 guest_efer, host_efer, false); 950 else 951 clear_atomic_switch_msr(vmx, MSR_EFER); 952 return false; 953 } 954 955 i = kvm_find_user_return_msr(MSR_EFER); 956 if (i < 0) 957 return false; 958 959 clear_atomic_switch_msr(vmx, MSR_EFER); 960 961 guest_efer &= ~ignore_bits; 962 guest_efer |= host_efer & ignore_bits; 963 964 vmx->guest_uret_msrs[i].data = guest_efer; 965 vmx->guest_uret_msrs[i].mask = ~ignore_bits; 966 967 return true; 968 } 969 970 #ifdef CONFIG_X86_32 971 /* 972 * On 32-bit kernels, VM exits still load the FS and GS bases from the 973 * VMCS rather than the segment table. KVM uses this helper to figure 974 * out the current bases to poke them into the VMCS before entry. 975 */ 976 static unsigned long segment_base(u16 selector) 977 { 978 struct desc_struct *table; 979 unsigned long v; 980 981 if (!(selector & ~SEGMENT_RPL_MASK)) 982 return 0; 983 984 table = get_current_gdt_ro(); 985 986 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { 987 u16 ldt_selector = kvm_read_ldt(); 988 989 if (!(ldt_selector & ~SEGMENT_RPL_MASK)) 990 return 0; 991 992 table = (struct desc_struct *)segment_base(ldt_selector); 993 } 994 v = get_desc_base(&table[selector >> 3]); 995 return v; 996 } 997 #endif 998 999 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx) 1000 { 1001 return vmx_pt_mode_is_host_guest() && 1002 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 1003 } 1004 1005 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base) 1006 { 1007 /* The base must be 128-byte aligned and a legal physical address. */ 1008 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128); 1009 } 1010 1011 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) 1012 { 1013 u32 i; 1014 1015 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1016 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1017 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1018 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1019 for (i = 0; i < addr_range; i++) { 1020 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1021 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1022 } 1023 } 1024 1025 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) 1026 { 1027 u32 i; 1028 1029 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1030 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1031 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1032 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1033 for (i = 0; i < addr_range; i++) { 1034 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1035 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1036 } 1037 } 1038 1039 static void pt_guest_enter(struct vcpu_vmx *vmx) 1040 { 1041 if (vmx_pt_mode_is_system()) 1042 return; 1043 1044 /* 1045 * GUEST_IA32_RTIT_CTL is already set in the VMCS. 1046 * Save host state before VM entry. 1047 */ 1048 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1049 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1050 wrmsrl(MSR_IA32_RTIT_CTL, 0); 1051 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1052 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1053 } 1054 } 1055 1056 static void pt_guest_exit(struct vcpu_vmx *vmx) 1057 { 1058 if (vmx_pt_mode_is_system()) 1059 return; 1060 1061 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1062 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1063 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1064 } 1065 1066 /* 1067 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest, 1068 * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary. 1069 */ 1070 if (vmx->pt_desc.host.ctl) 1071 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1072 } 1073 1074 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, 1075 unsigned long fs_base, unsigned long gs_base) 1076 { 1077 if (unlikely(fs_sel != host->fs_sel)) { 1078 if (!(fs_sel & 7)) 1079 vmcs_write16(HOST_FS_SELECTOR, fs_sel); 1080 else 1081 vmcs_write16(HOST_FS_SELECTOR, 0); 1082 host->fs_sel = fs_sel; 1083 } 1084 if (unlikely(gs_sel != host->gs_sel)) { 1085 if (!(gs_sel & 7)) 1086 vmcs_write16(HOST_GS_SELECTOR, gs_sel); 1087 else 1088 vmcs_write16(HOST_GS_SELECTOR, 0); 1089 host->gs_sel = gs_sel; 1090 } 1091 if (unlikely(fs_base != host->fs_base)) { 1092 vmcs_writel(HOST_FS_BASE, fs_base); 1093 host->fs_base = fs_base; 1094 } 1095 if (unlikely(gs_base != host->gs_base)) { 1096 vmcs_writel(HOST_GS_BASE, gs_base); 1097 host->gs_base = gs_base; 1098 } 1099 } 1100 1101 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1102 { 1103 struct vcpu_vmx *vmx = to_vmx(vcpu); 1104 struct vmcs_host_state *host_state; 1105 #ifdef CONFIG_X86_64 1106 int cpu = raw_smp_processor_id(); 1107 #endif 1108 unsigned long fs_base, gs_base; 1109 u16 fs_sel, gs_sel; 1110 int i; 1111 1112 vmx->req_immediate_exit = false; 1113 1114 /* 1115 * Note that guest MSRs to be saved/restored can also be changed 1116 * when guest state is loaded. This happens when guest transitions 1117 * to/from long-mode by setting MSR_EFER.LMA. 1118 */ 1119 if (!vmx->guest_uret_msrs_loaded) { 1120 vmx->guest_uret_msrs_loaded = true; 1121 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 1122 if (!vmx->guest_uret_msrs[i].load_into_hardware) 1123 continue; 1124 1125 kvm_set_user_return_msr(i, 1126 vmx->guest_uret_msrs[i].data, 1127 vmx->guest_uret_msrs[i].mask); 1128 } 1129 } 1130 1131 if (vmx->nested.need_vmcs12_to_shadow_sync) 1132 nested_sync_vmcs12_to_shadow(vcpu); 1133 1134 if (vmx->guest_state_loaded) 1135 return; 1136 1137 host_state = &vmx->loaded_vmcs->host_state; 1138 1139 /* 1140 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not 1141 * allow segment selectors with cpl > 0 or ti == 1. 1142 */ 1143 host_state->ldt_sel = kvm_read_ldt(); 1144 1145 #ifdef CONFIG_X86_64 1146 savesegment(ds, host_state->ds_sel); 1147 savesegment(es, host_state->es_sel); 1148 1149 gs_base = cpu_kernelmode_gs_base(cpu); 1150 if (likely(is_64bit_mm(current->mm))) { 1151 current_save_fsgs(); 1152 fs_sel = current->thread.fsindex; 1153 gs_sel = current->thread.gsindex; 1154 fs_base = current->thread.fsbase; 1155 vmx->msr_host_kernel_gs_base = current->thread.gsbase; 1156 } else { 1157 savesegment(fs, fs_sel); 1158 savesegment(gs, gs_sel); 1159 fs_base = read_msr(MSR_FS_BASE); 1160 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); 1161 } 1162 1163 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1164 #else 1165 savesegment(fs, fs_sel); 1166 savesegment(gs, gs_sel); 1167 fs_base = segment_base(fs_sel); 1168 gs_base = segment_base(gs_sel); 1169 #endif 1170 1171 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base); 1172 vmx->guest_state_loaded = true; 1173 } 1174 1175 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) 1176 { 1177 struct vmcs_host_state *host_state; 1178 1179 if (!vmx->guest_state_loaded) 1180 return; 1181 1182 host_state = &vmx->loaded_vmcs->host_state; 1183 1184 ++vmx->vcpu.stat.host_state_reload; 1185 1186 #ifdef CONFIG_X86_64 1187 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1188 #endif 1189 if (host_state->ldt_sel || (host_state->gs_sel & 7)) { 1190 kvm_load_ldt(host_state->ldt_sel); 1191 #ifdef CONFIG_X86_64 1192 load_gs_index(host_state->gs_sel); 1193 #else 1194 loadsegment(gs, host_state->gs_sel); 1195 #endif 1196 } 1197 if (host_state->fs_sel & 7) 1198 loadsegment(fs, host_state->fs_sel); 1199 #ifdef CONFIG_X86_64 1200 if (unlikely(host_state->ds_sel | host_state->es_sel)) { 1201 loadsegment(ds, host_state->ds_sel); 1202 loadsegment(es, host_state->es_sel); 1203 } 1204 #endif 1205 invalidate_tss_limit(); 1206 #ifdef CONFIG_X86_64 1207 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); 1208 #endif 1209 load_fixmap_gdt(raw_smp_processor_id()); 1210 vmx->guest_state_loaded = false; 1211 vmx->guest_uret_msrs_loaded = false; 1212 } 1213 1214 #ifdef CONFIG_X86_64 1215 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) 1216 { 1217 preempt_disable(); 1218 if (vmx->guest_state_loaded) 1219 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1220 preempt_enable(); 1221 return vmx->msr_guest_kernel_gs_base; 1222 } 1223 1224 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) 1225 { 1226 preempt_disable(); 1227 if (vmx->guest_state_loaded) 1228 wrmsrl(MSR_KERNEL_GS_BASE, data); 1229 preempt_enable(); 1230 vmx->msr_guest_kernel_gs_base = data; 1231 } 1232 #endif 1233 1234 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu, 1235 struct loaded_vmcs *buddy) 1236 { 1237 struct vcpu_vmx *vmx = to_vmx(vcpu); 1238 bool already_loaded = vmx->loaded_vmcs->cpu == cpu; 1239 struct vmcs *prev; 1240 1241 if (!already_loaded) { 1242 loaded_vmcs_clear(vmx->loaded_vmcs); 1243 local_irq_disable(); 1244 1245 /* 1246 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to 1247 * this cpu's percpu list, otherwise it may not yet be deleted 1248 * from its previous cpu's percpu list. Pairs with the 1249 * smb_wmb() in __loaded_vmcs_clear(). 1250 */ 1251 smp_rmb(); 1252 1253 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, 1254 &per_cpu(loaded_vmcss_on_cpu, cpu)); 1255 local_irq_enable(); 1256 } 1257 1258 prev = per_cpu(current_vmcs, cpu); 1259 if (prev != vmx->loaded_vmcs->vmcs) { 1260 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; 1261 vmcs_load(vmx->loaded_vmcs->vmcs); 1262 1263 /* 1264 * No indirect branch prediction barrier needed when switching 1265 * the active VMCS within a guest, e.g. on nested VM-Enter. 1266 * The L1 VMM can protect itself with retpolines, IBPB or IBRS. 1267 */ 1268 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev)) 1269 indirect_branch_prediction_barrier(); 1270 } 1271 1272 if (!already_loaded) { 1273 void *gdt = get_current_gdt_ro(); 1274 unsigned long sysenter_esp; 1275 1276 /* 1277 * Flush all EPTP/VPID contexts, the new pCPU may have stale 1278 * TLB entries from its previous association with the vCPU. 1279 */ 1280 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 1281 1282 /* 1283 * Linux uses per-cpu TSS and GDT, so set these when switching 1284 * processors. See 22.2.4. 1285 */ 1286 vmcs_writel(HOST_TR_BASE, 1287 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); 1288 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ 1289 1290 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp); 1291 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */ 1292 1293 vmx->loaded_vmcs->cpu = cpu; 1294 } 1295 } 1296 1297 /* 1298 * Switches to specified vcpu, until a matching vcpu_put(), but assumes 1299 * vcpu mutex is already taken. 1300 */ 1301 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1302 { 1303 struct vcpu_vmx *vmx = to_vmx(vcpu); 1304 1305 vmx_vcpu_load_vmcs(vcpu, cpu, NULL); 1306 1307 vmx_vcpu_pi_load(vcpu, cpu); 1308 1309 vmx->host_debugctlmsr = get_debugctlmsr(); 1310 } 1311 1312 static void vmx_vcpu_put(struct kvm_vcpu *vcpu) 1313 { 1314 vmx_vcpu_pi_put(vcpu); 1315 1316 vmx_prepare_switch_to_host(to_vmx(vcpu)); 1317 } 1318 1319 bool vmx_emulation_required(struct kvm_vcpu *vcpu) 1320 { 1321 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu); 1322 } 1323 1324 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) 1325 { 1326 struct vcpu_vmx *vmx = to_vmx(vcpu); 1327 unsigned long rflags, save_rflags; 1328 1329 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) { 1330 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1331 rflags = vmcs_readl(GUEST_RFLAGS); 1332 if (vmx->rmode.vm86_active) { 1333 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 1334 save_rflags = vmx->rmode.save_rflags; 1335 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 1336 } 1337 vmx->rflags = rflags; 1338 } 1339 return vmx->rflags; 1340 } 1341 1342 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1343 { 1344 struct vcpu_vmx *vmx = to_vmx(vcpu); 1345 unsigned long old_rflags; 1346 1347 if (is_unrestricted_guest(vcpu)) { 1348 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1349 vmx->rflags = rflags; 1350 vmcs_writel(GUEST_RFLAGS, rflags); 1351 return; 1352 } 1353 1354 old_rflags = vmx_get_rflags(vcpu); 1355 vmx->rflags = rflags; 1356 if (vmx->rmode.vm86_active) { 1357 vmx->rmode.save_rflags = rflags; 1358 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 1359 } 1360 vmcs_writel(GUEST_RFLAGS, rflags); 1361 1362 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM) 1363 vmx->emulation_required = vmx_emulation_required(vcpu); 1364 } 1365 1366 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) 1367 { 1368 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1369 int ret = 0; 1370 1371 if (interruptibility & GUEST_INTR_STATE_STI) 1372 ret |= KVM_X86_SHADOW_INT_STI; 1373 if (interruptibility & GUEST_INTR_STATE_MOV_SS) 1374 ret |= KVM_X86_SHADOW_INT_MOV_SS; 1375 1376 return ret; 1377 } 1378 1379 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 1380 { 1381 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1382 u32 interruptibility = interruptibility_old; 1383 1384 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); 1385 1386 if (mask & KVM_X86_SHADOW_INT_MOV_SS) 1387 interruptibility |= GUEST_INTR_STATE_MOV_SS; 1388 else if (mask & KVM_X86_SHADOW_INT_STI) 1389 interruptibility |= GUEST_INTR_STATE_STI; 1390 1391 if ((interruptibility != interruptibility_old)) 1392 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); 1393 } 1394 1395 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) 1396 { 1397 struct vcpu_vmx *vmx = to_vmx(vcpu); 1398 unsigned long value; 1399 1400 /* 1401 * Any MSR write that attempts to change bits marked reserved will 1402 * case a #GP fault. 1403 */ 1404 if (data & vmx->pt_desc.ctl_bitmask) 1405 return 1; 1406 1407 /* 1408 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will 1409 * result in a #GP unless the same write also clears TraceEn. 1410 */ 1411 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && 1412 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN)) 1413 return 1; 1414 1415 /* 1416 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit 1417 * and FabricEn would cause #GP, if 1418 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 1419 */ 1420 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && 1421 !(data & RTIT_CTL_FABRIC_EN) && 1422 !intel_pt_validate_cap(vmx->pt_desc.caps, 1423 PT_CAP_single_range_output)) 1424 return 1; 1425 1426 /* 1427 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that 1428 * utilize encodings marked reserved will cause a #GP fault. 1429 */ 1430 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); 1431 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && 1432 !test_bit((data & RTIT_CTL_MTC_RANGE) >> 1433 RTIT_CTL_MTC_RANGE_OFFSET, &value)) 1434 return 1; 1435 value = intel_pt_validate_cap(vmx->pt_desc.caps, 1436 PT_CAP_cycle_thresholds); 1437 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1438 !test_bit((data & RTIT_CTL_CYC_THRESH) >> 1439 RTIT_CTL_CYC_THRESH_OFFSET, &value)) 1440 return 1; 1441 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); 1442 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1443 !test_bit((data & RTIT_CTL_PSB_FREQ) >> 1444 RTIT_CTL_PSB_FREQ_OFFSET, &value)) 1445 return 1; 1446 1447 /* 1448 * If ADDRx_CFG is reserved or the encodings is >2 will 1449 * cause a #GP fault. 1450 */ 1451 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; 1452 if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2)) 1453 return 1; 1454 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; 1455 if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2)) 1456 return 1; 1457 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; 1458 if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2)) 1459 return 1; 1460 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; 1461 if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2)) 1462 return 1; 1463 1464 return 0; 1465 } 1466 1467 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len) 1468 { 1469 /* 1470 * Emulation of instructions in SGX enclaves is impossible as RIP does 1471 * not point tthe failing instruction, and even if it did, the code 1472 * stream is inaccessible. Inject #UD instead of exiting to userspace 1473 * so that guest userspace can't DoS the guest simply by triggering 1474 * emulation (enclaves are CPL3 only). 1475 */ 1476 if (to_vmx(vcpu)->exit_reason.enclave_mode) { 1477 kvm_queue_exception(vcpu, UD_VECTOR); 1478 return false; 1479 } 1480 return true; 1481 } 1482 1483 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 1484 { 1485 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason; 1486 unsigned long rip, orig_rip; 1487 u32 instr_len; 1488 1489 /* 1490 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on 1491 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be 1492 * set when EPT misconfig occurs. In practice, real hardware updates 1493 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors 1494 * (namely Hyper-V) don't set it due to it being undefined behavior, 1495 * i.e. we end up advancing IP with some random value. 1496 */ 1497 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) || 1498 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) { 1499 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 1500 1501 /* 1502 * Emulating an enclave's instructions isn't supported as KVM 1503 * cannot access the enclave's memory or its true RIP, e.g. the 1504 * vmcs.GUEST_RIP points at the exit point of the enclave, not 1505 * the RIP that actually triggered the VM-Exit. But, because 1506 * most instructions that cause VM-Exit will #UD in an enclave, 1507 * most instruction-based VM-Exits simply do not occur. 1508 * 1509 * There are a few exceptions, notably the debug instructions 1510 * INT1ICEBRK and INT3, as they are allowed in debug enclaves 1511 * and generate #DB/#BP as expected, which KVM might intercept. 1512 * But again, the CPU does the dirty work and saves an instr 1513 * length of zero so VMMs don't shoot themselves in the foot. 1514 * WARN if KVM tries to skip a non-zero length instruction on 1515 * a VM-Exit from an enclave. 1516 */ 1517 if (!instr_len) 1518 goto rip_updated; 1519 1520 WARN(exit_reason.enclave_mode, 1521 "KVM: skipping instruction after SGX enclave VM-Exit"); 1522 1523 orig_rip = kvm_rip_read(vcpu); 1524 rip = orig_rip + instr_len; 1525 #ifdef CONFIG_X86_64 1526 /* 1527 * We need to mask out the high 32 bits of RIP if not in 64-bit 1528 * mode, but just finding out that we are in 64-bit mode is 1529 * quite expensive. Only do it if there was a carry. 1530 */ 1531 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu)) 1532 rip = (u32)rip; 1533 #endif 1534 kvm_rip_write(vcpu, rip); 1535 } else { 1536 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 1537 return 0; 1538 } 1539 1540 rip_updated: 1541 /* skipping an emulated instruction also counts */ 1542 vmx_set_interrupt_shadow(vcpu, 0); 1543 1544 return 1; 1545 } 1546 1547 /* 1548 * Recognizes a pending MTF VM-exit and records the nested state for later 1549 * delivery. 1550 */ 1551 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu) 1552 { 1553 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1554 struct vcpu_vmx *vmx = to_vmx(vcpu); 1555 1556 if (!is_guest_mode(vcpu)) 1557 return; 1558 1559 /* 1560 * Per the SDM, MTF takes priority over debug-trap exceptions besides 1561 * T-bit traps. As instruction emulation is completed (i.e. at the 1562 * instruction boundary), any #DB exception pending delivery must be a 1563 * debug-trap. Record the pending MTF state to be delivered in 1564 * vmx_check_nested_events(). 1565 */ 1566 if (nested_cpu_has_mtf(vmcs12) && 1567 (!vcpu->arch.exception.pending || 1568 vcpu->arch.exception.nr == DB_VECTOR)) 1569 vmx->nested.mtf_pending = true; 1570 else 1571 vmx->nested.mtf_pending = false; 1572 } 1573 1574 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu) 1575 { 1576 vmx_update_emulated_instruction(vcpu); 1577 return skip_emulated_instruction(vcpu); 1578 } 1579 1580 static void vmx_clear_hlt(struct kvm_vcpu *vcpu) 1581 { 1582 /* 1583 * Ensure that we clear the HLT state in the VMCS. We don't need to 1584 * explicitly skip the instruction because if the HLT state is set, 1585 * then the instruction is already executing and RIP has already been 1586 * advanced. 1587 */ 1588 if (kvm_hlt_in_guest(vcpu->kvm) && 1589 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) 1590 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 1591 } 1592 1593 static void vmx_queue_exception(struct kvm_vcpu *vcpu) 1594 { 1595 struct vcpu_vmx *vmx = to_vmx(vcpu); 1596 unsigned nr = vcpu->arch.exception.nr; 1597 bool has_error_code = vcpu->arch.exception.has_error_code; 1598 u32 error_code = vcpu->arch.exception.error_code; 1599 u32 intr_info = nr | INTR_INFO_VALID_MASK; 1600 1601 kvm_deliver_exception_payload(vcpu); 1602 1603 if (has_error_code) { 1604 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code); 1605 intr_info |= INTR_INFO_DELIVER_CODE_MASK; 1606 } 1607 1608 if (vmx->rmode.vm86_active) { 1609 int inc_eip = 0; 1610 if (kvm_exception_is_soft(nr)) 1611 inc_eip = vcpu->arch.event_exit_inst_len; 1612 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip); 1613 return; 1614 } 1615 1616 WARN_ON_ONCE(vmx->emulation_required); 1617 1618 if (kvm_exception_is_soft(nr)) { 1619 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1620 vmx->vcpu.arch.event_exit_inst_len); 1621 intr_info |= INTR_TYPE_SOFT_EXCEPTION; 1622 } else 1623 intr_info |= INTR_TYPE_HARD_EXCEPTION; 1624 1625 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); 1626 1627 vmx_clear_hlt(vcpu); 1628 } 1629 1630 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr, 1631 bool load_into_hardware) 1632 { 1633 struct vmx_uret_msr *uret_msr; 1634 1635 uret_msr = vmx_find_uret_msr(vmx, msr); 1636 if (!uret_msr) 1637 return; 1638 1639 uret_msr->load_into_hardware = load_into_hardware; 1640 } 1641 1642 /* 1643 * Configuring user return MSRs to automatically save, load, and restore MSRs 1644 * that need to be shoved into hardware when running the guest. Note, omitting 1645 * an MSR here does _NOT_ mean it's not emulated, only that it will not be 1646 * loaded into hardware when running the guest. 1647 */ 1648 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx) 1649 { 1650 #ifdef CONFIG_X86_64 1651 bool load_syscall_msrs; 1652 1653 /* 1654 * The SYSCALL MSRs are only needed on long mode guests, and only 1655 * when EFER.SCE is set. 1656 */ 1657 load_syscall_msrs = is_long_mode(&vmx->vcpu) && 1658 (vmx->vcpu.arch.efer & EFER_SCE); 1659 1660 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs); 1661 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs); 1662 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs); 1663 #endif 1664 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx)); 1665 1666 vmx_setup_uret_msr(vmx, MSR_TSC_AUX, 1667 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) || 1668 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID)); 1669 1670 /* 1671 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new 1672 * kernel and old userspace. If those guests run on a tsx=off host, do 1673 * allow guests to use TSX_CTRL, but don't change the value in hardware 1674 * so that TSX remains always disabled. 1675 */ 1676 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM)); 1677 1678 /* 1679 * The set of MSRs to load may have changed, reload MSRs before the 1680 * next VM-Enter. 1681 */ 1682 vmx->guest_uret_msrs_loaded = false; 1683 } 1684 1685 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1686 { 1687 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1688 1689 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) 1690 return vmcs12->tsc_offset; 1691 1692 return 0; 1693 } 1694 1695 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1696 { 1697 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1698 1699 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) && 1700 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING)) 1701 return vmcs12->tsc_multiplier; 1702 1703 return kvm_default_tsc_scaling_ratio; 1704 } 1705 1706 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1707 { 1708 vmcs_write64(TSC_OFFSET, offset); 1709 } 1710 1711 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier) 1712 { 1713 vmcs_write64(TSC_MULTIPLIER, multiplier); 1714 } 1715 1716 /* 1717 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX 1718 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for 1719 * all guests if the "nested" module option is off, and can also be disabled 1720 * for a single guest by disabling its VMX cpuid bit. 1721 */ 1722 bool nested_vmx_allowed(struct kvm_vcpu *vcpu) 1723 { 1724 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX); 1725 } 1726 1727 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu, 1728 uint64_t val) 1729 { 1730 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits; 1731 1732 return !(val & ~valid_bits); 1733 } 1734 1735 static int vmx_get_msr_feature(struct kvm_msr_entry *msr) 1736 { 1737 switch (msr->index) { 1738 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1739 if (!nested) 1740 return 1; 1741 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); 1742 case MSR_IA32_PERF_CAPABILITIES: 1743 msr->data = vmx_get_perf_capabilities(); 1744 return 0; 1745 default: 1746 return KVM_MSR_RET_INVALID; 1747 } 1748 } 1749 1750 /* 1751 * Reads an msr value (of 'msr_index') into 'pdata'. 1752 * Returns 0 on success, non-0 otherwise. 1753 * Assumes vcpu_load() was already called. 1754 */ 1755 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1756 { 1757 struct vcpu_vmx *vmx = to_vmx(vcpu); 1758 struct vmx_uret_msr *msr; 1759 u32 index; 1760 1761 switch (msr_info->index) { 1762 #ifdef CONFIG_X86_64 1763 case MSR_FS_BASE: 1764 msr_info->data = vmcs_readl(GUEST_FS_BASE); 1765 break; 1766 case MSR_GS_BASE: 1767 msr_info->data = vmcs_readl(GUEST_GS_BASE); 1768 break; 1769 case MSR_KERNEL_GS_BASE: 1770 msr_info->data = vmx_read_guest_kernel_gs_base(vmx); 1771 break; 1772 #endif 1773 case MSR_EFER: 1774 return kvm_get_msr_common(vcpu, msr_info); 1775 case MSR_IA32_TSX_CTRL: 1776 if (!msr_info->host_initiated && 1777 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 1778 return 1; 1779 goto find_uret_msr; 1780 case MSR_IA32_UMWAIT_CONTROL: 1781 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 1782 return 1; 1783 1784 msr_info->data = vmx->msr_ia32_umwait_control; 1785 break; 1786 case MSR_IA32_SPEC_CTRL: 1787 if (!msr_info->host_initiated && 1788 !guest_has_spec_ctrl_msr(vcpu)) 1789 return 1; 1790 1791 msr_info->data = to_vmx(vcpu)->spec_ctrl; 1792 break; 1793 case MSR_IA32_SYSENTER_CS: 1794 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); 1795 break; 1796 case MSR_IA32_SYSENTER_EIP: 1797 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); 1798 break; 1799 case MSR_IA32_SYSENTER_ESP: 1800 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); 1801 break; 1802 case MSR_IA32_BNDCFGS: 1803 if (!kvm_mpx_supported() || 1804 (!msr_info->host_initiated && 1805 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 1806 return 1; 1807 msr_info->data = vmcs_read64(GUEST_BNDCFGS); 1808 break; 1809 case MSR_IA32_MCG_EXT_CTL: 1810 if (!msr_info->host_initiated && 1811 !(vmx->msr_ia32_feature_control & 1812 FEAT_CTL_LMCE_ENABLED)) 1813 return 1; 1814 msr_info->data = vcpu->arch.mcg_ext_ctl; 1815 break; 1816 case MSR_IA32_FEAT_CTL: 1817 msr_info->data = vmx->msr_ia32_feature_control; 1818 break; 1819 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 1820 if (!msr_info->host_initiated && 1821 !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 1822 return 1; 1823 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash 1824 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0]; 1825 break; 1826 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1827 if (!nested_vmx_allowed(vcpu)) 1828 return 1; 1829 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, 1830 &msr_info->data)) 1831 return 1; 1832 /* 1833 * Enlightened VMCS v1 doesn't have certain VMCS fields but 1834 * instead of just ignoring the features, different Hyper-V 1835 * versions are either trying to use them and fail or do some 1836 * sanity checking and refuse to boot. Filter all unsupported 1837 * features out. 1838 */ 1839 if (!msr_info->host_initiated && 1840 vmx->nested.enlightened_vmcs_enabled) 1841 nested_evmcs_filter_control_msr(msr_info->index, 1842 &msr_info->data); 1843 break; 1844 case MSR_IA32_RTIT_CTL: 1845 if (!vmx_pt_mode_is_host_guest()) 1846 return 1; 1847 msr_info->data = vmx->pt_desc.guest.ctl; 1848 break; 1849 case MSR_IA32_RTIT_STATUS: 1850 if (!vmx_pt_mode_is_host_guest()) 1851 return 1; 1852 msr_info->data = vmx->pt_desc.guest.status; 1853 break; 1854 case MSR_IA32_RTIT_CR3_MATCH: 1855 if (!vmx_pt_mode_is_host_guest() || 1856 !intel_pt_validate_cap(vmx->pt_desc.caps, 1857 PT_CAP_cr3_filtering)) 1858 return 1; 1859 msr_info->data = vmx->pt_desc.guest.cr3_match; 1860 break; 1861 case MSR_IA32_RTIT_OUTPUT_BASE: 1862 if (!vmx_pt_mode_is_host_guest() || 1863 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1864 PT_CAP_topa_output) && 1865 !intel_pt_validate_cap(vmx->pt_desc.caps, 1866 PT_CAP_single_range_output))) 1867 return 1; 1868 msr_info->data = vmx->pt_desc.guest.output_base; 1869 break; 1870 case MSR_IA32_RTIT_OUTPUT_MASK: 1871 if (!vmx_pt_mode_is_host_guest() || 1872 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1873 PT_CAP_topa_output) && 1874 !intel_pt_validate_cap(vmx->pt_desc.caps, 1875 PT_CAP_single_range_output))) 1876 return 1; 1877 msr_info->data = vmx->pt_desc.guest.output_mask; 1878 break; 1879 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 1880 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 1881 if (!vmx_pt_mode_is_host_guest() || 1882 (index >= 2 * vmx->pt_desc.num_address_ranges)) 1883 return 1; 1884 if (index % 2) 1885 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; 1886 else 1887 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; 1888 break; 1889 case MSR_IA32_DEBUGCTLMSR: 1890 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL); 1891 break; 1892 default: 1893 find_uret_msr: 1894 msr = vmx_find_uret_msr(vmx, msr_info->index); 1895 if (msr) { 1896 msr_info->data = msr->data; 1897 break; 1898 } 1899 return kvm_get_msr_common(vcpu, msr_info); 1900 } 1901 1902 return 0; 1903 } 1904 1905 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu, 1906 u64 data) 1907 { 1908 #ifdef CONFIG_X86_64 1909 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1910 return (u32)data; 1911 #endif 1912 return (unsigned long)data; 1913 } 1914 1915 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu) 1916 { 1917 u64 debugctl = vmx_supported_debugctl(); 1918 1919 if (!intel_pmu_lbr_is_enabled(vcpu)) 1920 debugctl &= ~DEBUGCTLMSR_LBR_MASK; 1921 1922 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1923 debugctl &= ~DEBUGCTLMSR_BUS_LOCK_DETECT; 1924 1925 return debugctl; 1926 } 1927 1928 /* 1929 * Writes msr value into the appropriate "register". 1930 * Returns 0 on success, non-0 otherwise. 1931 * Assumes vcpu_load() was already called. 1932 */ 1933 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1934 { 1935 struct vcpu_vmx *vmx = to_vmx(vcpu); 1936 struct vmx_uret_msr *msr; 1937 int ret = 0; 1938 u32 msr_index = msr_info->index; 1939 u64 data = msr_info->data; 1940 u32 index; 1941 1942 switch (msr_index) { 1943 case MSR_EFER: 1944 ret = kvm_set_msr_common(vcpu, msr_info); 1945 break; 1946 #ifdef CONFIG_X86_64 1947 case MSR_FS_BASE: 1948 vmx_segment_cache_clear(vmx); 1949 vmcs_writel(GUEST_FS_BASE, data); 1950 break; 1951 case MSR_GS_BASE: 1952 vmx_segment_cache_clear(vmx); 1953 vmcs_writel(GUEST_GS_BASE, data); 1954 break; 1955 case MSR_KERNEL_GS_BASE: 1956 vmx_write_guest_kernel_gs_base(vmx, data); 1957 break; 1958 #endif 1959 case MSR_IA32_SYSENTER_CS: 1960 if (is_guest_mode(vcpu)) 1961 get_vmcs12(vcpu)->guest_sysenter_cs = data; 1962 vmcs_write32(GUEST_SYSENTER_CS, data); 1963 break; 1964 case MSR_IA32_SYSENTER_EIP: 1965 if (is_guest_mode(vcpu)) { 1966 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 1967 get_vmcs12(vcpu)->guest_sysenter_eip = data; 1968 } 1969 vmcs_writel(GUEST_SYSENTER_EIP, data); 1970 break; 1971 case MSR_IA32_SYSENTER_ESP: 1972 if (is_guest_mode(vcpu)) { 1973 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 1974 get_vmcs12(vcpu)->guest_sysenter_esp = data; 1975 } 1976 vmcs_writel(GUEST_SYSENTER_ESP, data); 1977 break; 1978 case MSR_IA32_DEBUGCTLMSR: { 1979 u64 invalid = data & ~vcpu_supported_debugctl(vcpu); 1980 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) { 1981 if (report_ignored_msrs) 1982 vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n", 1983 __func__, data); 1984 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 1985 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 1986 } 1987 1988 if (invalid) 1989 return 1; 1990 1991 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls & 1992 VM_EXIT_SAVE_DEBUG_CONTROLS) 1993 get_vmcs12(vcpu)->guest_ia32_debugctl = data; 1994 1995 vmcs_write64(GUEST_IA32_DEBUGCTL, data); 1996 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event && 1997 (data & DEBUGCTLMSR_LBR)) 1998 intel_pmu_create_guest_lbr_event(vcpu); 1999 return 0; 2000 } 2001 case MSR_IA32_BNDCFGS: 2002 if (!kvm_mpx_supported() || 2003 (!msr_info->host_initiated && 2004 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 2005 return 1; 2006 if (is_noncanonical_address(data & PAGE_MASK, vcpu) || 2007 (data & MSR_IA32_BNDCFGS_RSVD)) 2008 return 1; 2009 vmcs_write64(GUEST_BNDCFGS, data); 2010 break; 2011 case MSR_IA32_UMWAIT_CONTROL: 2012 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2013 return 1; 2014 2015 /* The reserved bit 1 and non-32 bit [63:32] should be zero */ 2016 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32))) 2017 return 1; 2018 2019 vmx->msr_ia32_umwait_control = data; 2020 break; 2021 case MSR_IA32_SPEC_CTRL: 2022 if (!msr_info->host_initiated && 2023 !guest_has_spec_ctrl_msr(vcpu)) 2024 return 1; 2025 2026 if (kvm_spec_ctrl_test_value(data)) 2027 return 1; 2028 2029 vmx->spec_ctrl = data; 2030 if (!data) 2031 break; 2032 2033 /* 2034 * For non-nested: 2035 * When it's written (to non-zero) for the first time, pass 2036 * it through. 2037 * 2038 * For nested: 2039 * The handling of the MSR bitmap for L2 guests is done in 2040 * nested_vmx_prepare_msr_bitmap. We should not touch the 2041 * vmcs02.msr_bitmap here since it gets completely overwritten 2042 * in the merging. We update the vmcs01 here for L1 as well 2043 * since it will end up touching the MSR anyway now. 2044 */ 2045 vmx_disable_intercept_for_msr(vcpu, 2046 MSR_IA32_SPEC_CTRL, 2047 MSR_TYPE_RW); 2048 break; 2049 case MSR_IA32_TSX_CTRL: 2050 if (!msr_info->host_initiated && 2051 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2052 return 1; 2053 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR)) 2054 return 1; 2055 goto find_uret_msr; 2056 case MSR_IA32_PRED_CMD: 2057 if (!msr_info->host_initiated && 2058 !guest_has_pred_cmd_msr(vcpu)) 2059 return 1; 2060 2061 if (data & ~PRED_CMD_IBPB) 2062 return 1; 2063 if (!boot_cpu_has(X86_FEATURE_IBPB)) 2064 return 1; 2065 if (!data) 2066 break; 2067 2068 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 2069 2070 /* 2071 * For non-nested: 2072 * When it's written (to non-zero) for the first time, pass 2073 * it through. 2074 * 2075 * For nested: 2076 * The handling of the MSR bitmap for L2 guests is done in 2077 * nested_vmx_prepare_msr_bitmap. We should not touch the 2078 * vmcs02.msr_bitmap here since it gets completely overwritten 2079 * in the merging. 2080 */ 2081 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W); 2082 break; 2083 case MSR_IA32_CR_PAT: 2084 if (!kvm_pat_valid(data)) 2085 return 1; 2086 2087 if (is_guest_mode(vcpu) && 2088 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) 2089 get_vmcs12(vcpu)->guest_ia32_pat = data; 2090 2091 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { 2092 vmcs_write64(GUEST_IA32_PAT, data); 2093 vcpu->arch.pat = data; 2094 break; 2095 } 2096 ret = kvm_set_msr_common(vcpu, msr_info); 2097 break; 2098 case MSR_IA32_TSC_ADJUST: 2099 ret = kvm_set_msr_common(vcpu, msr_info); 2100 break; 2101 case MSR_IA32_MCG_EXT_CTL: 2102 if ((!msr_info->host_initiated && 2103 !(to_vmx(vcpu)->msr_ia32_feature_control & 2104 FEAT_CTL_LMCE_ENABLED)) || 2105 (data & ~MCG_EXT_CTL_LMCE_EN)) 2106 return 1; 2107 vcpu->arch.mcg_ext_ctl = data; 2108 break; 2109 case MSR_IA32_FEAT_CTL: 2110 if (!vmx_feature_control_msr_valid(vcpu, data) || 2111 (to_vmx(vcpu)->msr_ia32_feature_control & 2112 FEAT_CTL_LOCKED && !msr_info->host_initiated)) 2113 return 1; 2114 vmx->msr_ia32_feature_control = data; 2115 if (msr_info->host_initiated && data == 0) 2116 vmx_leave_nested(vcpu); 2117 2118 /* SGX may be enabled/disabled by guest's firmware */ 2119 vmx_write_encls_bitmap(vcpu, NULL); 2120 break; 2121 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2122 /* 2123 * On real hardware, the LE hash MSRs are writable before 2124 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX), 2125 * at which point SGX related bits in IA32_FEATURE_CONTROL 2126 * become writable. 2127 * 2128 * KVM does not emulate SGX activation for simplicity, so 2129 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL 2130 * is unlocked. This is technically not architectural 2131 * behavior, but it's close enough. 2132 */ 2133 if (!msr_info->host_initiated && 2134 (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) || 2135 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) && 2136 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED)))) 2137 return 1; 2138 vmx->msr_ia32_sgxlepubkeyhash 2139 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data; 2140 break; 2141 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 2142 if (!msr_info->host_initiated) 2143 return 1; /* they are read-only */ 2144 if (!nested_vmx_allowed(vcpu)) 2145 return 1; 2146 return vmx_set_vmx_msr(vcpu, msr_index, data); 2147 case MSR_IA32_RTIT_CTL: 2148 if (!vmx_pt_mode_is_host_guest() || 2149 vmx_rtit_ctl_check(vcpu, data) || 2150 vmx->nested.vmxon) 2151 return 1; 2152 vmcs_write64(GUEST_IA32_RTIT_CTL, data); 2153 vmx->pt_desc.guest.ctl = data; 2154 pt_update_intercept_for_msr(vcpu); 2155 break; 2156 case MSR_IA32_RTIT_STATUS: 2157 if (!pt_can_write_msr(vmx)) 2158 return 1; 2159 if (data & MSR_IA32_RTIT_STATUS_MASK) 2160 return 1; 2161 vmx->pt_desc.guest.status = data; 2162 break; 2163 case MSR_IA32_RTIT_CR3_MATCH: 2164 if (!pt_can_write_msr(vmx)) 2165 return 1; 2166 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2167 PT_CAP_cr3_filtering)) 2168 return 1; 2169 vmx->pt_desc.guest.cr3_match = data; 2170 break; 2171 case MSR_IA32_RTIT_OUTPUT_BASE: 2172 if (!pt_can_write_msr(vmx)) 2173 return 1; 2174 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2175 PT_CAP_topa_output) && 2176 !intel_pt_validate_cap(vmx->pt_desc.caps, 2177 PT_CAP_single_range_output)) 2178 return 1; 2179 if (!pt_output_base_valid(vcpu, data)) 2180 return 1; 2181 vmx->pt_desc.guest.output_base = data; 2182 break; 2183 case MSR_IA32_RTIT_OUTPUT_MASK: 2184 if (!pt_can_write_msr(vmx)) 2185 return 1; 2186 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2187 PT_CAP_topa_output) && 2188 !intel_pt_validate_cap(vmx->pt_desc.caps, 2189 PT_CAP_single_range_output)) 2190 return 1; 2191 vmx->pt_desc.guest.output_mask = data; 2192 break; 2193 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2194 if (!pt_can_write_msr(vmx)) 2195 return 1; 2196 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2197 if (index >= 2 * vmx->pt_desc.num_address_ranges) 2198 return 1; 2199 if (is_noncanonical_address(data, vcpu)) 2200 return 1; 2201 if (index % 2) 2202 vmx->pt_desc.guest.addr_b[index / 2] = data; 2203 else 2204 vmx->pt_desc.guest.addr_a[index / 2] = data; 2205 break; 2206 case MSR_IA32_PERF_CAPABILITIES: 2207 if (data && !vcpu_to_pmu(vcpu)->version) 2208 return 1; 2209 if (data & PMU_CAP_LBR_FMT) { 2210 if ((data & PMU_CAP_LBR_FMT) != 2211 (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT)) 2212 return 1; 2213 if (!intel_pmu_lbr_is_compatible(vcpu)) 2214 return 1; 2215 } 2216 ret = kvm_set_msr_common(vcpu, msr_info); 2217 break; 2218 2219 default: 2220 find_uret_msr: 2221 msr = vmx_find_uret_msr(vmx, msr_index); 2222 if (msr) 2223 ret = vmx_set_guest_uret_msr(vmx, msr, data); 2224 else 2225 ret = kvm_set_msr_common(vcpu, msr_info); 2226 } 2227 2228 return ret; 2229 } 2230 2231 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 2232 { 2233 unsigned long guest_owned_bits; 2234 2235 kvm_register_mark_available(vcpu, reg); 2236 2237 switch (reg) { 2238 case VCPU_REGS_RSP: 2239 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); 2240 break; 2241 case VCPU_REGS_RIP: 2242 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); 2243 break; 2244 case VCPU_EXREG_PDPTR: 2245 if (enable_ept) 2246 ept_save_pdptrs(vcpu); 2247 break; 2248 case VCPU_EXREG_CR0: 2249 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; 2250 2251 vcpu->arch.cr0 &= ~guest_owned_bits; 2252 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits; 2253 break; 2254 case VCPU_EXREG_CR3: 2255 /* 2256 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's 2257 * CR3 is loaded into hardware, not the guest's CR3. 2258 */ 2259 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING)) 2260 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); 2261 break; 2262 case VCPU_EXREG_CR4: 2263 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; 2264 2265 vcpu->arch.cr4 &= ~guest_owned_bits; 2266 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits; 2267 break; 2268 default: 2269 KVM_BUG_ON(1, vcpu->kvm); 2270 break; 2271 } 2272 } 2273 2274 static __init int cpu_has_kvm_support(void) 2275 { 2276 return cpu_has_vmx(); 2277 } 2278 2279 static __init int vmx_disabled_by_bios(void) 2280 { 2281 return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 2282 !boot_cpu_has(X86_FEATURE_VMX); 2283 } 2284 2285 static int kvm_cpu_vmxon(u64 vmxon_pointer) 2286 { 2287 u64 msr; 2288 2289 cr4_set_bits(X86_CR4_VMXE); 2290 2291 asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t" 2292 _ASM_EXTABLE(1b, %l[fault]) 2293 : : [vmxon_pointer] "m"(vmxon_pointer) 2294 : : fault); 2295 return 0; 2296 2297 fault: 2298 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n", 2299 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr); 2300 cr4_clear_bits(X86_CR4_VMXE); 2301 2302 return -EFAULT; 2303 } 2304 2305 static int hardware_enable(void) 2306 { 2307 int cpu = raw_smp_processor_id(); 2308 u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); 2309 int r; 2310 2311 if (cr4_read_shadow() & X86_CR4_VMXE) 2312 return -EBUSY; 2313 2314 /* 2315 * This can happen if we hot-added a CPU but failed to allocate 2316 * VP assist page for it. 2317 */ 2318 if (static_branch_unlikely(&enable_evmcs) && 2319 !hv_get_vp_assist_page(cpu)) 2320 return -EFAULT; 2321 2322 intel_pt_handle_vmx(1); 2323 2324 r = kvm_cpu_vmxon(phys_addr); 2325 if (r) { 2326 intel_pt_handle_vmx(0); 2327 return r; 2328 } 2329 2330 if (enable_ept) 2331 ept_sync_global(); 2332 2333 return 0; 2334 } 2335 2336 static void vmclear_local_loaded_vmcss(void) 2337 { 2338 int cpu = raw_smp_processor_id(); 2339 struct loaded_vmcs *v, *n; 2340 2341 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), 2342 loaded_vmcss_on_cpu_link) 2343 __loaded_vmcs_clear(v); 2344 } 2345 2346 static void hardware_disable(void) 2347 { 2348 vmclear_local_loaded_vmcss(); 2349 2350 if (cpu_vmxoff()) 2351 kvm_spurious_fault(); 2352 2353 intel_pt_handle_vmx(0); 2354 } 2355 2356 /* 2357 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID 2358 * directly instead of going through cpu_has(), to ensure KVM is trapping 2359 * ENCLS whenever it's supported in hardware. It does not matter whether 2360 * the host OS supports or has enabled SGX. 2361 */ 2362 static bool cpu_has_sgx(void) 2363 { 2364 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0)); 2365 } 2366 2367 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, 2368 u32 msr, u32 *result) 2369 { 2370 u32 vmx_msr_low, vmx_msr_high; 2371 u32 ctl = ctl_min | ctl_opt; 2372 2373 rdmsr(msr, vmx_msr_low, vmx_msr_high); 2374 2375 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ 2376 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ 2377 2378 /* Ensure minimum (required) set of control bits are supported. */ 2379 if (ctl_min & ~ctl) 2380 return -EIO; 2381 2382 *result = ctl; 2383 return 0; 2384 } 2385 2386 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf, 2387 struct vmx_capability *vmx_cap) 2388 { 2389 u32 vmx_msr_low, vmx_msr_high; 2390 u32 min, opt, min2, opt2; 2391 u32 _pin_based_exec_control = 0; 2392 u32 _cpu_based_exec_control = 0; 2393 u32 _cpu_based_2nd_exec_control = 0; 2394 u32 _vmexit_control = 0; 2395 u32 _vmentry_control = 0; 2396 2397 memset(vmcs_conf, 0, sizeof(*vmcs_conf)); 2398 min = CPU_BASED_HLT_EXITING | 2399 #ifdef CONFIG_X86_64 2400 CPU_BASED_CR8_LOAD_EXITING | 2401 CPU_BASED_CR8_STORE_EXITING | 2402 #endif 2403 CPU_BASED_CR3_LOAD_EXITING | 2404 CPU_BASED_CR3_STORE_EXITING | 2405 CPU_BASED_UNCOND_IO_EXITING | 2406 CPU_BASED_MOV_DR_EXITING | 2407 CPU_BASED_USE_TSC_OFFSETTING | 2408 CPU_BASED_MWAIT_EXITING | 2409 CPU_BASED_MONITOR_EXITING | 2410 CPU_BASED_INVLPG_EXITING | 2411 CPU_BASED_RDPMC_EXITING; 2412 2413 opt = CPU_BASED_TPR_SHADOW | 2414 CPU_BASED_USE_MSR_BITMAPS | 2415 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; 2416 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS, 2417 &_cpu_based_exec_control) < 0) 2418 return -EIO; 2419 #ifdef CONFIG_X86_64 2420 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2421 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING & 2422 ~CPU_BASED_CR8_STORE_EXITING; 2423 #endif 2424 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { 2425 min2 = 0; 2426 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 2427 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2428 SECONDARY_EXEC_WBINVD_EXITING | 2429 SECONDARY_EXEC_ENABLE_VPID | 2430 SECONDARY_EXEC_ENABLE_EPT | 2431 SECONDARY_EXEC_UNRESTRICTED_GUEST | 2432 SECONDARY_EXEC_PAUSE_LOOP_EXITING | 2433 SECONDARY_EXEC_DESC | 2434 SECONDARY_EXEC_ENABLE_RDTSCP | 2435 SECONDARY_EXEC_ENABLE_INVPCID | 2436 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2437 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | 2438 SECONDARY_EXEC_SHADOW_VMCS | 2439 SECONDARY_EXEC_XSAVES | 2440 SECONDARY_EXEC_RDSEED_EXITING | 2441 SECONDARY_EXEC_RDRAND_EXITING | 2442 SECONDARY_EXEC_ENABLE_PML | 2443 SECONDARY_EXEC_TSC_SCALING | 2444 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE | 2445 SECONDARY_EXEC_PT_USE_GPA | 2446 SECONDARY_EXEC_PT_CONCEAL_VMX | 2447 SECONDARY_EXEC_ENABLE_VMFUNC | 2448 SECONDARY_EXEC_BUS_LOCK_DETECTION; 2449 if (cpu_has_sgx()) 2450 opt2 |= SECONDARY_EXEC_ENCLS_EXITING; 2451 if (adjust_vmx_controls(min2, opt2, 2452 MSR_IA32_VMX_PROCBASED_CTLS2, 2453 &_cpu_based_2nd_exec_control) < 0) 2454 return -EIO; 2455 } 2456 #ifndef CONFIG_X86_64 2457 if (!(_cpu_based_2nd_exec_control & 2458 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 2459 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; 2460 #endif 2461 2462 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2463 _cpu_based_2nd_exec_control &= ~( 2464 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2465 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2466 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 2467 2468 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, 2469 &vmx_cap->ept, &vmx_cap->vpid); 2470 2471 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) { 2472 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT 2473 enabled */ 2474 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | 2475 CPU_BASED_CR3_STORE_EXITING | 2476 CPU_BASED_INVLPG_EXITING); 2477 } else if (vmx_cap->ept) { 2478 vmx_cap->ept = 0; 2479 pr_warn_once("EPT CAP should not exist if not support " 2480 "1-setting enable EPT VM-execution control\n"); 2481 } 2482 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && 2483 vmx_cap->vpid) { 2484 vmx_cap->vpid = 0; 2485 pr_warn_once("VPID CAP should not exist if not support " 2486 "1-setting enable VPID VM-execution control\n"); 2487 } 2488 2489 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT; 2490 #ifdef CONFIG_X86_64 2491 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE; 2492 #endif 2493 opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | 2494 VM_EXIT_LOAD_IA32_PAT | 2495 VM_EXIT_LOAD_IA32_EFER | 2496 VM_EXIT_CLEAR_BNDCFGS | 2497 VM_EXIT_PT_CONCEAL_PIP | 2498 VM_EXIT_CLEAR_IA32_RTIT_CTL; 2499 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS, 2500 &_vmexit_control) < 0) 2501 return -EIO; 2502 2503 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING; 2504 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR | 2505 PIN_BASED_VMX_PREEMPTION_TIMER; 2506 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS, 2507 &_pin_based_exec_control) < 0) 2508 return -EIO; 2509 2510 if (cpu_has_broken_vmx_preemption_timer()) 2511 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 2512 if (!(_cpu_based_2nd_exec_control & 2513 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) 2514 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; 2515 2516 min = VM_ENTRY_LOAD_DEBUG_CONTROLS; 2517 opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | 2518 VM_ENTRY_LOAD_IA32_PAT | 2519 VM_ENTRY_LOAD_IA32_EFER | 2520 VM_ENTRY_LOAD_BNDCFGS | 2521 VM_ENTRY_PT_CONCEAL_PIP | 2522 VM_ENTRY_LOAD_IA32_RTIT_CTL; 2523 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS, 2524 &_vmentry_control) < 0) 2525 return -EIO; 2526 2527 /* 2528 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they 2529 * can't be used due to an errata where VM Exit may incorrectly clear 2530 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the 2531 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. 2532 */ 2533 if (boot_cpu_data.x86 == 0x6) { 2534 switch (boot_cpu_data.x86_model) { 2535 case 26: /* AAK155 */ 2536 case 30: /* AAP115 */ 2537 case 37: /* AAT100 */ 2538 case 44: /* BC86,AAY89,BD102 */ 2539 case 46: /* BA97 */ 2540 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; 2541 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; 2542 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " 2543 "does not work properly. Using workaround\n"); 2544 break; 2545 default: 2546 break; 2547 } 2548 } 2549 2550 2551 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); 2552 2553 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ 2554 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) 2555 return -EIO; 2556 2557 #ifdef CONFIG_X86_64 2558 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ 2559 if (vmx_msr_high & (1u<<16)) 2560 return -EIO; 2561 #endif 2562 2563 /* Require Write-Back (WB) memory type for VMCS accesses. */ 2564 if (((vmx_msr_high >> 18) & 15) != 6) 2565 return -EIO; 2566 2567 vmcs_conf->size = vmx_msr_high & 0x1fff; 2568 vmcs_conf->order = get_order(vmcs_conf->size); 2569 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; 2570 2571 vmcs_conf->revision_id = vmx_msr_low; 2572 2573 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; 2574 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; 2575 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; 2576 vmcs_conf->vmexit_ctrl = _vmexit_control; 2577 vmcs_conf->vmentry_ctrl = _vmentry_control; 2578 2579 #if IS_ENABLED(CONFIG_HYPERV) 2580 if (enlightened_vmcs) 2581 evmcs_sanitize_exec_ctrls(vmcs_conf); 2582 #endif 2583 2584 return 0; 2585 } 2586 2587 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags) 2588 { 2589 int node = cpu_to_node(cpu); 2590 struct page *pages; 2591 struct vmcs *vmcs; 2592 2593 pages = __alloc_pages_node(node, flags, vmcs_config.order); 2594 if (!pages) 2595 return NULL; 2596 vmcs = page_address(pages); 2597 memset(vmcs, 0, vmcs_config.size); 2598 2599 /* KVM supports Enlightened VMCS v1 only */ 2600 if (static_branch_unlikely(&enable_evmcs)) 2601 vmcs->hdr.revision_id = KVM_EVMCS_VERSION; 2602 else 2603 vmcs->hdr.revision_id = vmcs_config.revision_id; 2604 2605 if (shadow) 2606 vmcs->hdr.shadow_vmcs = 1; 2607 return vmcs; 2608 } 2609 2610 void free_vmcs(struct vmcs *vmcs) 2611 { 2612 free_pages((unsigned long)vmcs, vmcs_config.order); 2613 } 2614 2615 /* 2616 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded 2617 */ 2618 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2619 { 2620 if (!loaded_vmcs->vmcs) 2621 return; 2622 loaded_vmcs_clear(loaded_vmcs); 2623 free_vmcs(loaded_vmcs->vmcs); 2624 loaded_vmcs->vmcs = NULL; 2625 if (loaded_vmcs->msr_bitmap) 2626 free_page((unsigned long)loaded_vmcs->msr_bitmap); 2627 WARN_ON(loaded_vmcs->shadow_vmcs != NULL); 2628 } 2629 2630 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2631 { 2632 loaded_vmcs->vmcs = alloc_vmcs(false); 2633 if (!loaded_vmcs->vmcs) 2634 return -ENOMEM; 2635 2636 vmcs_clear(loaded_vmcs->vmcs); 2637 2638 loaded_vmcs->shadow_vmcs = NULL; 2639 loaded_vmcs->hv_timer_soft_disabled = false; 2640 loaded_vmcs->cpu = -1; 2641 loaded_vmcs->launched = 0; 2642 2643 if (cpu_has_vmx_msr_bitmap()) { 2644 loaded_vmcs->msr_bitmap = (unsigned long *) 2645 __get_free_page(GFP_KERNEL_ACCOUNT); 2646 if (!loaded_vmcs->msr_bitmap) 2647 goto out_vmcs; 2648 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); 2649 2650 if (IS_ENABLED(CONFIG_HYPERV) && 2651 static_branch_unlikely(&enable_evmcs) && 2652 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { 2653 struct hv_enlightened_vmcs *evmcs = 2654 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs; 2655 2656 evmcs->hv_enlightenments_control.msr_bitmap = 1; 2657 } 2658 } 2659 2660 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); 2661 memset(&loaded_vmcs->controls_shadow, 0, 2662 sizeof(struct vmcs_controls_shadow)); 2663 2664 return 0; 2665 2666 out_vmcs: 2667 free_loaded_vmcs(loaded_vmcs); 2668 return -ENOMEM; 2669 } 2670 2671 static void free_kvm_area(void) 2672 { 2673 int cpu; 2674 2675 for_each_possible_cpu(cpu) { 2676 free_vmcs(per_cpu(vmxarea, cpu)); 2677 per_cpu(vmxarea, cpu) = NULL; 2678 } 2679 } 2680 2681 static __init int alloc_kvm_area(void) 2682 { 2683 int cpu; 2684 2685 for_each_possible_cpu(cpu) { 2686 struct vmcs *vmcs; 2687 2688 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL); 2689 if (!vmcs) { 2690 free_kvm_area(); 2691 return -ENOMEM; 2692 } 2693 2694 /* 2695 * When eVMCS is enabled, alloc_vmcs_cpu() sets 2696 * vmcs->revision_id to KVM_EVMCS_VERSION instead of 2697 * revision_id reported by MSR_IA32_VMX_BASIC. 2698 * 2699 * However, even though not explicitly documented by 2700 * TLFS, VMXArea passed as VMXON argument should 2701 * still be marked with revision_id reported by 2702 * physical CPU. 2703 */ 2704 if (static_branch_unlikely(&enable_evmcs)) 2705 vmcs->hdr.revision_id = vmcs_config.revision_id; 2706 2707 per_cpu(vmxarea, cpu) = vmcs; 2708 } 2709 return 0; 2710 } 2711 2712 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, 2713 struct kvm_segment *save) 2714 { 2715 if (!emulate_invalid_guest_state) { 2716 /* 2717 * CS and SS RPL should be equal during guest entry according 2718 * to VMX spec, but in reality it is not always so. Since vcpu 2719 * is in the middle of the transition from real mode to 2720 * protected mode it is safe to assume that RPL 0 is a good 2721 * default value. 2722 */ 2723 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) 2724 save->selector &= ~SEGMENT_RPL_MASK; 2725 save->dpl = save->selector & SEGMENT_RPL_MASK; 2726 save->s = 1; 2727 } 2728 __vmx_set_segment(vcpu, save, seg); 2729 } 2730 2731 static void enter_pmode(struct kvm_vcpu *vcpu) 2732 { 2733 unsigned long flags; 2734 struct vcpu_vmx *vmx = to_vmx(vcpu); 2735 2736 /* 2737 * Update real mode segment cache. It may be not up-to-date if segment 2738 * register was written while vcpu was in a guest mode. 2739 */ 2740 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2741 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2742 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2743 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2744 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2745 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2746 2747 vmx->rmode.vm86_active = 0; 2748 2749 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2750 2751 flags = vmcs_readl(GUEST_RFLAGS); 2752 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 2753 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 2754 vmcs_writel(GUEST_RFLAGS, flags); 2755 2756 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | 2757 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); 2758 2759 vmx_update_exception_bitmap(vcpu); 2760 2761 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2762 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2763 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2764 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2765 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2766 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2767 } 2768 2769 static void fix_rmode_seg(int seg, struct kvm_segment *save) 2770 { 2771 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 2772 struct kvm_segment var = *save; 2773 2774 var.dpl = 0x3; 2775 if (seg == VCPU_SREG_CS) 2776 var.type = 0x3; 2777 2778 if (!emulate_invalid_guest_state) { 2779 var.selector = var.base >> 4; 2780 var.base = var.base & 0xffff0; 2781 var.limit = 0xffff; 2782 var.g = 0; 2783 var.db = 0; 2784 var.present = 1; 2785 var.s = 1; 2786 var.l = 0; 2787 var.unusable = 0; 2788 var.type = 0x3; 2789 var.avl = 0; 2790 if (save->base & 0xf) 2791 printk_once(KERN_WARNING "kvm: segment base is not " 2792 "paragraph aligned when entering " 2793 "protected mode (seg=%d)", seg); 2794 } 2795 2796 vmcs_write16(sf->selector, var.selector); 2797 vmcs_writel(sf->base, var.base); 2798 vmcs_write32(sf->limit, var.limit); 2799 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); 2800 } 2801 2802 static void enter_rmode(struct kvm_vcpu *vcpu) 2803 { 2804 unsigned long flags; 2805 struct vcpu_vmx *vmx = to_vmx(vcpu); 2806 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); 2807 2808 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2809 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2810 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2811 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2812 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2813 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2814 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2815 2816 vmx->rmode.vm86_active = 1; 2817 2818 /* 2819 * Very old userspace does not call KVM_SET_TSS_ADDR before entering 2820 * vcpu. Warn the user that an update is overdue. 2821 */ 2822 if (!kvm_vmx->tss_addr) 2823 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be " 2824 "called before entering vcpu\n"); 2825 2826 vmx_segment_cache_clear(vmx); 2827 2828 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); 2829 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); 2830 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 2831 2832 flags = vmcs_readl(GUEST_RFLAGS); 2833 vmx->rmode.save_rflags = flags; 2834 2835 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 2836 2837 vmcs_writel(GUEST_RFLAGS, flags); 2838 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); 2839 vmx_update_exception_bitmap(vcpu); 2840 2841 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2842 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2843 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2844 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2845 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2846 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2847 } 2848 2849 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) 2850 { 2851 struct vcpu_vmx *vmx = to_vmx(vcpu); 2852 struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER); 2853 2854 /* Nothing to do if hardware doesn't support EFER. */ 2855 if (!msr) 2856 return 0; 2857 2858 vcpu->arch.efer = efer; 2859 if (efer & EFER_LMA) { 2860 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2861 msr->data = efer; 2862 } else { 2863 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2864 2865 msr->data = efer & ~EFER_LME; 2866 } 2867 vmx_setup_uret_msrs(vmx); 2868 return 0; 2869 } 2870 2871 #ifdef CONFIG_X86_64 2872 2873 static void enter_lmode(struct kvm_vcpu *vcpu) 2874 { 2875 u32 guest_tr_ar; 2876 2877 vmx_segment_cache_clear(to_vmx(vcpu)); 2878 2879 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); 2880 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { 2881 pr_debug_ratelimited("%s: tss fixup for long mode. \n", 2882 __func__); 2883 vmcs_write32(GUEST_TR_AR_BYTES, 2884 (guest_tr_ar & ~VMX_AR_TYPE_MASK) 2885 | VMX_AR_TYPE_BUSY_64_TSS); 2886 } 2887 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); 2888 } 2889 2890 static void exit_lmode(struct kvm_vcpu *vcpu) 2891 { 2892 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2893 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); 2894 } 2895 2896 #endif 2897 2898 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu) 2899 { 2900 struct vcpu_vmx *vmx = to_vmx(vcpu); 2901 2902 /* 2903 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as 2904 * the CPU is not required to invalidate guest-physical mappings on 2905 * VM-Entry, even if VPID is disabled. Guest-physical mappings are 2906 * associated with the root EPT structure and not any particular VPID 2907 * (INVVPID also isn't required to invalidate guest-physical mappings). 2908 */ 2909 if (enable_ept) { 2910 ept_sync_global(); 2911 } else if (enable_vpid) { 2912 if (cpu_has_vmx_invvpid_global()) { 2913 vpid_sync_vcpu_global(); 2914 } else { 2915 vpid_sync_vcpu_single(vmx->vpid); 2916 vpid_sync_vcpu_single(vmx->nested.vpid02); 2917 } 2918 } 2919 } 2920 2921 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu) 2922 { 2923 struct kvm_mmu *mmu = vcpu->arch.mmu; 2924 u64 root_hpa = mmu->root_hpa; 2925 2926 /* No flush required if the current context is invalid. */ 2927 if (!VALID_PAGE(root_hpa)) 2928 return; 2929 2930 if (enable_ept) 2931 ept_sync_context(construct_eptp(vcpu, root_hpa, 2932 mmu->shadow_root_level)); 2933 else if (!is_guest_mode(vcpu)) 2934 vpid_sync_context(to_vmx(vcpu)->vpid); 2935 else 2936 vpid_sync_context(nested_get_vpid02(vcpu)); 2937 } 2938 2939 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) 2940 { 2941 /* 2942 * vpid_sync_vcpu_addr() is a nop if vmx->vpid==0, see the comment in 2943 * vmx_flush_tlb_guest() for an explanation of why this is ok. 2944 */ 2945 vpid_sync_vcpu_addr(to_vmx(vcpu)->vpid, addr); 2946 } 2947 2948 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu) 2949 { 2950 /* 2951 * vpid_sync_context() is a nop if vmx->vpid==0, e.g. if enable_vpid==0 2952 * or a vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit 2953 * are required to flush GVA->{G,H}PA mappings from the TLB if vpid is 2954 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed), 2955 * i.e. no explicit INVVPID is necessary. 2956 */ 2957 vpid_sync_context(to_vmx(vcpu)->vpid); 2958 } 2959 2960 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu) 2961 { 2962 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 2963 2964 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR)) 2965 return; 2966 2967 if (is_pae_paging(vcpu)) { 2968 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); 2969 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); 2970 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); 2971 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); 2972 } 2973 } 2974 2975 void ept_save_pdptrs(struct kvm_vcpu *vcpu) 2976 { 2977 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 2978 2979 if (WARN_ON_ONCE(!is_pae_paging(vcpu))) 2980 return; 2981 2982 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); 2983 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); 2984 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); 2985 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); 2986 2987 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 2988 } 2989 2990 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \ 2991 CPU_BASED_CR3_STORE_EXITING) 2992 2993 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 2994 { 2995 struct vcpu_vmx *vmx = to_vmx(vcpu); 2996 unsigned long hw_cr0, old_cr0_pg; 2997 u32 tmp; 2998 2999 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG); 3000 3001 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); 3002 if (is_unrestricted_guest(vcpu)) 3003 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; 3004 else { 3005 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; 3006 if (!enable_ept) 3007 hw_cr0 |= X86_CR0_WP; 3008 3009 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) 3010 enter_pmode(vcpu); 3011 3012 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) 3013 enter_rmode(vcpu); 3014 } 3015 3016 vmcs_writel(CR0_READ_SHADOW, cr0); 3017 vmcs_writel(GUEST_CR0, hw_cr0); 3018 vcpu->arch.cr0 = cr0; 3019 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0); 3020 3021 #ifdef CONFIG_X86_64 3022 if (vcpu->arch.efer & EFER_LME) { 3023 if (!old_cr0_pg && (cr0 & X86_CR0_PG)) 3024 enter_lmode(vcpu); 3025 else if (old_cr0_pg && !(cr0 & X86_CR0_PG)) 3026 exit_lmode(vcpu); 3027 } 3028 #endif 3029 3030 if (enable_ept && !is_unrestricted_guest(vcpu)) { 3031 /* 3032 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If 3033 * the below code _enables_ CR3 exiting, vmx_cache_reg() will 3034 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks 3035 * KVM's CR3 is installed. 3036 */ 3037 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3)) 3038 vmx_cache_reg(vcpu, VCPU_EXREG_CR3); 3039 3040 /* 3041 * When running with EPT but not unrestricted guest, KVM must 3042 * intercept CR3 accesses when paging is _disabled_. This is 3043 * necessary because restricted guests can't actually run with 3044 * paging disabled, and so KVM stuffs its own CR3 in order to 3045 * run the guest when identity mapped page tables. 3046 * 3047 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the 3048 * update, it may be stale with respect to CR3 interception, 3049 * e.g. after nested VM-Enter. 3050 * 3051 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or 3052 * stores to forward them to L1, even if KVM does not need to 3053 * intercept them to preserve its identity mapped page tables. 3054 */ 3055 if (!(cr0 & X86_CR0_PG)) { 3056 exec_controls_setbit(vmx, CR3_EXITING_BITS); 3057 } else if (!is_guest_mode(vcpu)) { 3058 exec_controls_clearbit(vmx, CR3_EXITING_BITS); 3059 } else { 3060 tmp = exec_controls_get(vmx); 3061 tmp &= ~CR3_EXITING_BITS; 3062 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS; 3063 exec_controls_set(vmx, tmp); 3064 } 3065 3066 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */ 3067 if ((old_cr0_pg ^ cr0) & X86_CR0_PG) 3068 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 3069 } 3070 3071 /* depends on vcpu->arch.cr0 to be set to a new value */ 3072 vmx->emulation_required = vmx_emulation_required(vcpu); 3073 } 3074 3075 static int vmx_get_max_tdp_level(void) 3076 { 3077 if (cpu_has_vmx_ept_5levels()) 3078 return 5; 3079 return 4; 3080 } 3081 3082 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level) 3083 { 3084 u64 eptp = VMX_EPTP_MT_WB; 3085 3086 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; 3087 3088 if (enable_ept_ad_bits && 3089 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) 3090 eptp |= VMX_EPTP_AD_ENABLE_BIT; 3091 eptp |= root_hpa; 3092 3093 return eptp; 3094 } 3095 3096 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 3097 int root_level) 3098 { 3099 struct kvm *kvm = vcpu->kvm; 3100 bool update_guest_cr3 = true; 3101 unsigned long guest_cr3; 3102 u64 eptp; 3103 3104 if (enable_ept) { 3105 eptp = construct_eptp(vcpu, root_hpa, root_level); 3106 vmcs_write64(EPT_POINTER, eptp); 3107 3108 hv_track_root_tdp(vcpu, root_hpa); 3109 3110 if (!enable_unrestricted_guest && !is_paging(vcpu)) 3111 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; 3112 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) 3113 guest_cr3 = vcpu->arch.cr3; 3114 else /* vmcs01.GUEST_CR3 is already up-to-date. */ 3115 update_guest_cr3 = false; 3116 vmx_ept_load_pdptrs(vcpu); 3117 } else { 3118 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu); 3119 } 3120 3121 if (update_guest_cr3) 3122 vmcs_writel(GUEST_CR3, guest_cr3); 3123 } 3124 3125 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3126 { 3127 /* 3128 * We operate under the default treatment of SMM, so VMX cannot be 3129 * enabled under SMM. Note, whether or not VMXE is allowed at all is 3130 * handled by kvm_is_valid_cr4(). 3131 */ 3132 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu)) 3133 return false; 3134 3135 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) 3136 return false; 3137 3138 return true; 3139 } 3140 3141 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3142 { 3143 unsigned long old_cr4 = vcpu->arch.cr4; 3144 struct vcpu_vmx *vmx = to_vmx(vcpu); 3145 /* 3146 * Pass through host's Machine Check Enable value to hw_cr4, which 3147 * is in force while we are in guest mode. Do not let guests control 3148 * this bit, even if host CR4.MCE == 0. 3149 */ 3150 unsigned long hw_cr4; 3151 3152 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); 3153 if (is_unrestricted_guest(vcpu)) 3154 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; 3155 else if (vmx->rmode.vm86_active) 3156 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; 3157 else 3158 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; 3159 3160 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) { 3161 if (cr4 & X86_CR4_UMIP) { 3162 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC); 3163 hw_cr4 &= ~X86_CR4_UMIP; 3164 } else if (!is_guest_mode(vcpu) || 3165 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) { 3166 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC); 3167 } 3168 } 3169 3170 vcpu->arch.cr4 = cr4; 3171 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4); 3172 3173 if (!is_unrestricted_guest(vcpu)) { 3174 if (enable_ept) { 3175 if (!is_paging(vcpu)) { 3176 hw_cr4 &= ~X86_CR4_PAE; 3177 hw_cr4 |= X86_CR4_PSE; 3178 } else if (!(cr4 & X86_CR4_PAE)) { 3179 hw_cr4 &= ~X86_CR4_PAE; 3180 } 3181 } 3182 3183 /* 3184 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in 3185 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs 3186 * to be manually disabled when guest switches to non-paging 3187 * mode. 3188 * 3189 * If !enable_unrestricted_guest, the CPU is always running 3190 * with CR0.PG=1 and CR4 needs to be modified. 3191 * If enable_unrestricted_guest, the CPU automatically 3192 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. 3193 */ 3194 if (!is_paging(vcpu)) 3195 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 3196 } 3197 3198 vmcs_writel(CR4_READ_SHADOW, cr4); 3199 vmcs_writel(GUEST_CR4, hw_cr4); 3200 3201 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 3202 kvm_update_cpuid_runtime(vcpu); 3203 } 3204 3205 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3206 { 3207 struct vcpu_vmx *vmx = to_vmx(vcpu); 3208 u32 ar; 3209 3210 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3211 *var = vmx->rmode.segs[seg]; 3212 if (seg == VCPU_SREG_TR 3213 || var->selector == vmx_read_guest_seg_selector(vmx, seg)) 3214 return; 3215 var->base = vmx_read_guest_seg_base(vmx, seg); 3216 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3217 return; 3218 } 3219 var->base = vmx_read_guest_seg_base(vmx, seg); 3220 var->limit = vmx_read_guest_seg_limit(vmx, seg); 3221 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3222 ar = vmx_read_guest_seg_ar(vmx, seg); 3223 var->unusable = (ar >> 16) & 1; 3224 var->type = ar & 15; 3225 var->s = (ar >> 4) & 1; 3226 var->dpl = (ar >> 5) & 3; 3227 /* 3228 * Some userspaces do not preserve unusable property. Since usable 3229 * segment has to be present according to VMX spec we can use present 3230 * property to amend userspace bug by making unusable segment always 3231 * nonpresent. vmx_segment_access_rights() already marks nonpresent 3232 * segment as unusable. 3233 */ 3234 var->present = !var->unusable; 3235 var->avl = (ar >> 12) & 1; 3236 var->l = (ar >> 13) & 1; 3237 var->db = (ar >> 14) & 1; 3238 var->g = (ar >> 15) & 1; 3239 } 3240 3241 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) 3242 { 3243 struct kvm_segment s; 3244 3245 if (to_vmx(vcpu)->rmode.vm86_active) { 3246 vmx_get_segment(vcpu, &s, seg); 3247 return s.base; 3248 } 3249 return vmx_read_guest_seg_base(to_vmx(vcpu), seg); 3250 } 3251 3252 int vmx_get_cpl(struct kvm_vcpu *vcpu) 3253 { 3254 struct vcpu_vmx *vmx = to_vmx(vcpu); 3255 3256 if (unlikely(vmx->rmode.vm86_active)) 3257 return 0; 3258 else { 3259 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); 3260 return VMX_AR_DPL(ar); 3261 } 3262 } 3263 3264 static u32 vmx_segment_access_rights(struct kvm_segment *var) 3265 { 3266 u32 ar; 3267 3268 if (var->unusable || !var->present) 3269 ar = 1 << 16; 3270 else { 3271 ar = var->type & 15; 3272 ar |= (var->s & 1) << 4; 3273 ar |= (var->dpl & 3) << 5; 3274 ar |= (var->present & 1) << 7; 3275 ar |= (var->avl & 1) << 12; 3276 ar |= (var->l & 1) << 13; 3277 ar |= (var->db & 1) << 14; 3278 ar |= (var->g & 1) << 15; 3279 } 3280 3281 return ar; 3282 } 3283 3284 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3285 { 3286 struct vcpu_vmx *vmx = to_vmx(vcpu); 3287 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3288 3289 vmx_segment_cache_clear(vmx); 3290 3291 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3292 vmx->rmode.segs[seg] = *var; 3293 if (seg == VCPU_SREG_TR) 3294 vmcs_write16(sf->selector, var->selector); 3295 else if (var->s) 3296 fix_rmode_seg(seg, &vmx->rmode.segs[seg]); 3297 return; 3298 } 3299 3300 vmcs_writel(sf->base, var->base); 3301 vmcs_write32(sf->limit, var->limit); 3302 vmcs_write16(sf->selector, var->selector); 3303 3304 /* 3305 * Fix the "Accessed" bit in AR field of segment registers for older 3306 * qemu binaries. 3307 * IA32 arch specifies that at the time of processor reset the 3308 * "Accessed" bit in the AR field of segment registers is 1. And qemu 3309 * is setting it to 0 in the userland code. This causes invalid guest 3310 * state vmexit when "unrestricted guest" mode is turned on. 3311 * Fix for this setup issue in cpu_reset is being pushed in the qemu 3312 * tree. Newer qemu binaries with that qemu fix would not need this 3313 * kvm hack. 3314 */ 3315 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR)) 3316 var->type |= 0x1; /* Accessed */ 3317 3318 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); 3319 } 3320 3321 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3322 { 3323 __vmx_set_segment(vcpu, var, seg); 3324 3325 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu); 3326 } 3327 3328 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 3329 { 3330 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); 3331 3332 *db = (ar >> 14) & 1; 3333 *l = (ar >> 13) & 1; 3334 } 3335 3336 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3337 { 3338 dt->size = vmcs_read32(GUEST_IDTR_LIMIT); 3339 dt->address = vmcs_readl(GUEST_IDTR_BASE); 3340 } 3341 3342 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3343 { 3344 vmcs_write32(GUEST_IDTR_LIMIT, dt->size); 3345 vmcs_writel(GUEST_IDTR_BASE, dt->address); 3346 } 3347 3348 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3349 { 3350 dt->size = vmcs_read32(GUEST_GDTR_LIMIT); 3351 dt->address = vmcs_readl(GUEST_GDTR_BASE); 3352 } 3353 3354 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3355 { 3356 vmcs_write32(GUEST_GDTR_LIMIT, dt->size); 3357 vmcs_writel(GUEST_GDTR_BASE, dt->address); 3358 } 3359 3360 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) 3361 { 3362 struct kvm_segment var; 3363 u32 ar; 3364 3365 vmx_get_segment(vcpu, &var, seg); 3366 var.dpl = 0x3; 3367 if (seg == VCPU_SREG_CS) 3368 var.type = 0x3; 3369 ar = vmx_segment_access_rights(&var); 3370 3371 if (var.base != (var.selector << 4)) 3372 return false; 3373 if (var.limit != 0xffff) 3374 return false; 3375 if (ar != 0xf3) 3376 return false; 3377 3378 return true; 3379 } 3380 3381 static bool code_segment_valid(struct kvm_vcpu *vcpu) 3382 { 3383 struct kvm_segment cs; 3384 unsigned int cs_rpl; 3385 3386 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3387 cs_rpl = cs.selector & SEGMENT_RPL_MASK; 3388 3389 if (cs.unusable) 3390 return false; 3391 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) 3392 return false; 3393 if (!cs.s) 3394 return false; 3395 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { 3396 if (cs.dpl > cs_rpl) 3397 return false; 3398 } else { 3399 if (cs.dpl != cs_rpl) 3400 return false; 3401 } 3402 if (!cs.present) 3403 return false; 3404 3405 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ 3406 return true; 3407 } 3408 3409 static bool stack_segment_valid(struct kvm_vcpu *vcpu) 3410 { 3411 struct kvm_segment ss; 3412 unsigned int ss_rpl; 3413 3414 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3415 ss_rpl = ss.selector & SEGMENT_RPL_MASK; 3416 3417 if (ss.unusable) 3418 return true; 3419 if (ss.type != 3 && ss.type != 7) 3420 return false; 3421 if (!ss.s) 3422 return false; 3423 if (ss.dpl != ss_rpl) /* DPL != RPL */ 3424 return false; 3425 if (!ss.present) 3426 return false; 3427 3428 return true; 3429 } 3430 3431 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) 3432 { 3433 struct kvm_segment var; 3434 unsigned int rpl; 3435 3436 vmx_get_segment(vcpu, &var, seg); 3437 rpl = var.selector & SEGMENT_RPL_MASK; 3438 3439 if (var.unusable) 3440 return true; 3441 if (!var.s) 3442 return false; 3443 if (!var.present) 3444 return false; 3445 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { 3446 if (var.dpl < rpl) /* DPL < RPL */ 3447 return false; 3448 } 3449 3450 /* TODO: Add other members to kvm_segment_field to allow checking for other access 3451 * rights flags 3452 */ 3453 return true; 3454 } 3455 3456 static bool tr_valid(struct kvm_vcpu *vcpu) 3457 { 3458 struct kvm_segment tr; 3459 3460 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); 3461 3462 if (tr.unusable) 3463 return false; 3464 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3465 return false; 3466 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ 3467 return false; 3468 if (!tr.present) 3469 return false; 3470 3471 return true; 3472 } 3473 3474 static bool ldtr_valid(struct kvm_vcpu *vcpu) 3475 { 3476 struct kvm_segment ldtr; 3477 3478 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); 3479 3480 if (ldtr.unusable) 3481 return true; 3482 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3483 return false; 3484 if (ldtr.type != 2) 3485 return false; 3486 if (!ldtr.present) 3487 return false; 3488 3489 return true; 3490 } 3491 3492 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) 3493 { 3494 struct kvm_segment cs, ss; 3495 3496 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3497 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3498 3499 return ((cs.selector & SEGMENT_RPL_MASK) == 3500 (ss.selector & SEGMENT_RPL_MASK)); 3501 } 3502 3503 /* 3504 * Check if guest state is valid. Returns true if valid, false if 3505 * not. 3506 * We assume that registers are always usable 3507 */ 3508 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu) 3509 { 3510 /* real mode guest state checks */ 3511 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { 3512 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) 3513 return false; 3514 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) 3515 return false; 3516 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) 3517 return false; 3518 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) 3519 return false; 3520 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) 3521 return false; 3522 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) 3523 return false; 3524 } else { 3525 /* protected mode guest state checks */ 3526 if (!cs_ss_rpl_check(vcpu)) 3527 return false; 3528 if (!code_segment_valid(vcpu)) 3529 return false; 3530 if (!stack_segment_valid(vcpu)) 3531 return false; 3532 if (!data_segment_valid(vcpu, VCPU_SREG_DS)) 3533 return false; 3534 if (!data_segment_valid(vcpu, VCPU_SREG_ES)) 3535 return false; 3536 if (!data_segment_valid(vcpu, VCPU_SREG_FS)) 3537 return false; 3538 if (!data_segment_valid(vcpu, VCPU_SREG_GS)) 3539 return false; 3540 if (!tr_valid(vcpu)) 3541 return false; 3542 if (!ldtr_valid(vcpu)) 3543 return false; 3544 } 3545 /* TODO: 3546 * - Add checks on RIP 3547 * - Add checks on RFLAGS 3548 */ 3549 3550 return true; 3551 } 3552 3553 static int init_rmode_tss(struct kvm *kvm, void __user *ua) 3554 { 3555 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3556 u16 data; 3557 int i; 3558 3559 for (i = 0; i < 3; i++) { 3560 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE)) 3561 return -EFAULT; 3562 } 3563 3564 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; 3565 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16))) 3566 return -EFAULT; 3567 3568 data = ~0; 3569 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8))) 3570 return -EFAULT; 3571 3572 return 0; 3573 } 3574 3575 static int init_rmode_identity_map(struct kvm *kvm) 3576 { 3577 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 3578 int i, r = 0; 3579 void __user *uaddr; 3580 u32 tmp; 3581 3582 /* Protect kvm_vmx->ept_identity_pagetable_done. */ 3583 mutex_lock(&kvm->slots_lock); 3584 3585 if (likely(kvm_vmx->ept_identity_pagetable_done)) 3586 goto out; 3587 3588 if (!kvm_vmx->ept_identity_map_addr) 3589 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; 3590 3591 uaddr = __x86_set_memory_region(kvm, 3592 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 3593 kvm_vmx->ept_identity_map_addr, 3594 PAGE_SIZE); 3595 if (IS_ERR(uaddr)) { 3596 r = PTR_ERR(uaddr); 3597 goto out; 3598 } 3599 3600 /* Set up identity-mapping pagetable for EPT in real mode */ 3601 for (i = 0; i < PT32_ENT_PER_PAGE; i++) { 3602 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | 3603 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); 3604 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) { 3605 r = -EFAULT; 3606 goto out; 3607 } 3608 } 3609 kvm_vmx->ept_identity_pagetable_done = true; 3610 3611 out: 3612 mutex_unlock(&kvm->slots_lock); 3613 return r; 3614 } 3615 3616 static void seg_setup(int seg) 3617 { 3618 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3619 unsigned int ar; 3620 3621 vmcs_write16(sf->selector, 0); 3622 vmcs_writel(sf->base, 0); 3623 vmcs_write32(sf->limit, 0xffff); 3624 ar = 0x93; 3625 if (seg == VCPU_SREG_CS) 3626 ar |= 0x08; /* code segment */ 3627 3628 vmcs_write32(sf->ar_bytes, ar); 3629 } 3630 3631 static int alloc_apic_access_page(struct kvm *kvm) 3632 { 3633 struct page *page; 3634 void __user *hva; 3635 int ret = 0; 3636 3637 mutex_lock(&kvm->slots_lock); 3638 if (kvm->arch.apic_access_memslot_enabled) 3639 goto out; 3640 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 3641 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); 3642 if (IS_ERR(hva)) { 3643 ret = PTR_ERR(hva); 3644 goto out; 3645 } 3646 3647 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 3648 if (is_error_page(page)) { 3649 ret = -EFAULT; 3650 goto out; 3651 } 3652 3653 /* 3654 * Do not pin the page in memory, so that memory hot-unplug 3655 * is able to migrate it. 3656 */ 3657 put_page(page); 3658 kvm->arch.apic_access_memslot_enabled = true; 3659 out: 3660 mutex_unlock(&kvm->slots_lock); 3661 return ret; 3662 } 3663 3664 int allocate_vpid(void) 3665 { 3666 int vpid; 3667 3668 if (!enable_vpid) 3669 return 0; 3670 spin_lock(&vmx_vpid_lock); 3671 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); 3672 if (vpid < VMX_NR_VPIDS) 3673 __set_bit(vpid, vmx_vpid_bitmap); 3674 else 3675 vpid = 0; 3676 spin_unlock(&vmx_vpid_lock); 3677 return vpid; 3678 } 3679 3680 void free_vpid(int vpid) 3681 { 3682 if (!enable_vpid || vpid == 0) 3683 return; 3684 spin_lock(&vmx_vpid_lock); 3685 __clear_bit(vpid, vmx_vpid_bitmap); 3686 spin_unlock(&vmx_vpid_lock); 3687 } 3688 3689 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3690 { 3691 struct vcpu_vmx *vmx = to_vmx(vcpu); 3692 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3693 3694 if (!cpu_has_vmx_msr_bitmap()) 3695 return; 3696 3697 if (static_branch_unlikely(&enable_evmcs)) 3698 evmcs_touch_msr_bitmap(); 3699 3700 /* 3701 * Mark the desired intercept state in shadow bitmap, this is needed 3702 * for resync when the MSR filters change. 3703 */ 3704 if (is_valid_passthrough_msr(msr)) { 3705 int idx = possible_passthrough_msr_slot(msr); 3706 3707 if (idx != -ENOENT) { 3708 if (type & MSR_TYPE_R) 3709 clear_bit(idx, vmx->shadow_msr_intercept.read); 3710 if (type & MSR_TYPE_W) 3711 clear_bit(idx, vmx->shadow_msr_intercept.write); 3712 } 3713 } 3714 3715 if ((type & MSR_TYPE_R) && 3716 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) { 3717 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3718 type &= ~MSR_TYPE_R; 3719 } 3720 3721 if ((type & MSR_TYPE_W) && 3722 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) { 3723 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3724 type &= ~MSR_TYPE_W; 3725 } 3726 3727 if (type & MSR_TYPE_R) 3728 vmx_clear_msr_bitmap_read(msr_bitmap, msr); 3729 3730 if (type & MSR_TYPE_W) 3731 vmx_clear_msr_bitmap_write(msr_bitmap, msr); 3732 } 3733 3734 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3735 { 3736 struct vcpu_vmx *vmx = to_vmx(vcpu); 3737 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3738 3739 if (!cpu_has_vmx_msr_bitmap()) 3740 return; 3741 3742 if (static_branch_unlikely(&enable_evmcs)) 3743 evmcs_touch_msr_bitmap(); 3744 3745 /* 3746 * Mark the desired intercept state in shadow bitmap, this is needed 3747 * for resync when the MSR filter changes. 3748 */ 3749 if (is_valid_passthrough_msr(msr)) { 3750 int idx = possible_passthrough_msr_slot(msr); 3751 3752 if (idx != -ENOENT) { 3753 if (type & MSR_TYPE_R) 3754 set_bit(idx, vmx->shadow_msr_intercept.read); 3755 if (type & MSR_TYPE_W) 3756 set_bit(idx, vmx->shadow_msr_intercept.write); 3757 } 3758 } 3759 3760 if (type & MSR_TYPE_R) 3761 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3762 3763 if (type & MSR_TYPE_W) 3764 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3765 } 3766 3767 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode) 3768 { 3769 unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap; 3770 unsigned long read_intercept; 3771 int msr; 3772 3773 read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0; 3774 3775 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { 3776 unsigned int read_idx = msr / BITS_PER_LONG; 3777 unsigned int write_idx = read_idx + (0x800 / sizeof(long)); 3778 3779 msr_bitmap[read_idx] = read_intercept; 3780 msr_bitmap[write_idx] = ~0ul; 3781 } 3782 } 3783 3784 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu) 3785 { 3786 struct vcpu_vmx *vmx = to_vmx(vcpu); 3787 u8 mode; 3788 3789 if (!cpu_has_vmx_msr_bitmap()) 3790 return; 3791 3792 if (cpu_has_secondary_exec_ctrls() && 3793 (secondary_exec_controls_get(vmx) & 3794 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { 3795 mode = MSR_BITMAP_MODE_X2APIC; 3796 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) 3797 mode |= MSR_BITMAP_MODE_X2APIC_APICV; 3798 } else { 3799 mode = 0; 3800 } 3801 3802 if (mode == vmx->x2apic_msr_bitmap_mode) 3803 return; 3804 3805 vmx->x2apic_msr_bitmap_mode = mode; 3806 3807 vmx_reset_x2apic_msrs(vcpu, mode); 3808 3809 /* 3810 * TPR reads and writes can be virtualized even if virtual interrupt 3811 * delivery is not in use. 3812 */ 3813 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW, 3814 !(mode & MSR_BITMAP_MODE_X2APIC)); 3815 3816 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { 3817 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW); 3818 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); 3819 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); 3820 } 3821 } 3822 3823 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu) 3824 { 3825 struct vcpu_vmx *vmx = to_vmx(vcpu); 3826 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 3827 u32 i; 3828 3829 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag); 3830 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag); 3831 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag); 3832 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag); 3833 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) { 3834 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); 3835 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); 3836 } 3837 } 3838 3839 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 3840 { 3841 struct vcpu_vmx *vmx = to_vmx(vcpu); 3842 void *vapic_page; 3843 u32 vppr; 3844 int rvi; 3845 3846 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) || 3847 !nested_cpu_has_vid(get_vmcs12(vcpu)) || 3848 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn)) 3849 return false; 3850 3851 rvi = vmx_get_rvi(); 3852 3853 vapic_page = vmx->nested.virtual_apic_map.hva; 3854 vppr = *((u32 *)(vapic_page + APIC_PROCPRI)); 3855 3856 return ((rvi & 0xf0) > (vppr & 0xf0)); 3857 } 3858 3859 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu) 3860 { 3861 struct vcpu_vmx *vmx = to_vmx(vcpu); 3862 u32 i; 3863 3864 /* 3865 * Set intercept permissions for all potentially passed through MSRs 3866 * again. They will automatically get filtered through the MSR filter, 3867 * so we are back in sync after this. 3868 */ 3869 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) { 3870 u32 msr = vmx_possible_passthrough_msrs[i]; 3871 bool read = test_bit(i, vmx->shadow_msr_intercept.read); 3872 bool write = test_bit(i, vmx->shadow_msr_intercept.write); 3873 3874 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read); 3875 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write); 3876 } 3877 3878 pt_update_intercept_for_msr(vcpu); 3879 } 3880 3881 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, 3882 bool nested) 3883 { 3884 #ifdef CONFIG_SMP 3885 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR; 3886 3887 if (vcpu->mode == IN_GUEST_MODE) { 3888 /* 3889 * The vector of interrupt to be delivered to vcpu had 3890 * been set in PIR before this function. 3891 * 3892 * Following cases will be reached in this block, and 3893 * we always send a notification event in all cases as 3894 * explained below. 3895 * 3896 * Case 1: vcpu keeps in non-root mode. Sending a 3897 * notification event posts the interrupt to vcpu. 3898 * 3899 * Case 2: vcpu exits to root mode and is still 3900 * runnable. PIR will be synced to vIRR before the 3901 * next vcpu entry. Sending a notification event in 3902 * this case has no effect, as vcpu is not in root 3903 * mode. 3904 * 3905 * Case 3: vcpu exits to root mode and is blocked. 3906 * vcpu_block() has already synced PIR to vIRR and 3907 * never blocks vcpu if vIRR is not cleared. Therefore, 3908 * a blocked vcpu here does not wait for any requested 3909 * interrupts in PIR, and sending a notification event 3910 * which has no effect is safe here. 3911 */ 3912 3913 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); 3914 return true; 3915 } 3916 #endif 3917 return false; 3918 } 3919 3920 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, 3921 int vector) 3922 { 3923 struct vcpu_vmx *vmx = to_vmx(vcpu); 3924 3925 if (is_guest_mode(vcpu) && 3926 vector == vmx->nested.posted_intr_nv) { 3927 /* 3928 * If a posted intr is not recognized by hardware, 3929 * we will accomplish it in the next vmentry. 3930 */ 3931 vmx->nested.pi_pending = true; 3932 kvm_make_request(KVM_REQ_EVENT, vcpu); 3933 /* the PIR and ON have been set by L1. */ 3934 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true)) 3935 kvm_vcpu_kick(vcpu); 3936 return 0; 3937 } 3938 return -1; 3939 } 3940 /* 3941 * Send interrupt to vcpu via posted interrupt way. 3942 * 1. If target vcpu is running(non-root mode), send posted interrupt 3943 * notification to vcpu and hardware will sync PIR to vIRR atomically. 3944 * 2. If target vcpu isn't running(root mode), kick it to pick up the 3945 * interrupt from PIR in next vmentry. 3946 */ 3947 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) 3948 { 3949 struct vcpu_vmx *vmx = to_vmx(vcpu); 3950 int r; 3951 3952 r = vmx_deliver_nested_posted_interrupt(vcpu, vector); 3953 if (!r) 3954 return 0; 3955 3956 if (!vcpu->arch.apicv_active) 3957 return -1; 3958 3959 if (pi_test_and_set_pir(vector, &vmx->pi_desc)) 3960 return 0; 3961 3962 /* If a previous notification has sent the IPI, nothing to do. */ 3963 if (pi_test_and_set_on(&vmx->pi_desc)) 3964 return 0; 3965 3966 if (vcpu != kvm_get_running_vcpu() && 3967 !kvm_vcpu_trigger_posted_interrupt(vcpu, false)) 3968 kvm_vcpu_kick(vcpu); 3969 3970 return 0; 3971 } 3972 3973 /* 3974 * Set up the vmcs's constant host-state fields, i.e., host-state fields that 3975 * will not change in the lifetime of the guest. 3976 * Note that host-state that does change is set elsewhere. E.g., host-state 3977 * that is set differently for each CPU is set in vmx_vcpu_load(), not here. 3978 */ 3979 void vmx_set_constant_host_state(struct vcpu_vmx *vmx) 3980 { 3981 u32 low32, high32; 3982 unsigned long tmpl; 3983 unsigned long cr0, cr3, cr4; 3984 3985 cr0 = read_cr0(); 3986 WARN_ON(cr0 & X86_CR0_TS); 3987 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ 3988 3989 /* 3990 * Save the most likely value for this task's CR3 in the VMCS. 3991 * We can't use __get_current_cr3_fast() because we're not atomic. 3992 */ 3993 cr3 = __read_cr3(); 3994 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ 3995 vmx->loaded_vmcs->host_state.cr3 = cr3; 3996 3997 /* Save the most likely value for this task's CR4 in the VMCS. */ 3998 cr4 = cr4_read_shadow(); 3999 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ 4000 vmx->loaded_vmcs->host_state.cr4 = cr4; 4001 4002 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ 4003 #ifdef CONFIG_X86_64 4004 /* 4005 * Load null selectors, so we can avoid reloading them in 4006 * vmx_prepare_switch_to_host(), in case userspace uses 4007 * the null selectors too (the expected case). 4008 */ 4009 vmcs_write16(HOST_DS_SELECTOR, 0); 4010 vmcs_write16(HOST_ES_SELECTOR, 0); 4011 #else 4012 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4013 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4014 #endif 4015 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4016 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ 4017 4018 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */ 4019 4020 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ 4021 4022 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); 4023 vmcs_write32(HOST_IA32_SYSENTER_CS, low32); 4024 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); 4025 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ 4026 4027 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { 4028 rdmsr(MSR_IA32_CR_PAT, low32, high32); 4029 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); 4030 } 4031 4032 if (cpu_has_load_ia32_efer()) 4033 vmcs_write64(HOST_IA32_EFER, host_efer); 4034 } 4035 4036 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) 4037 { 4038 struct kvm_vcpu *vcpu = &vmx->vcpu; 4039 4040 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS & 4041 ~vcpu->arch.cr4_guest_rsvd_bits; 4042 if (!enable_ept) 4043 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE; 4044 if (is_guest_mode(&vmx->vcpu)) 4045 vcpu->arch.cr4_guest_owned_bits &= 4046 ~get_vmcs12(vcpu)->cr4_guest_host_mask; 4047 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits); 4048 } 4049 4050 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) 4051 { 4052 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; 4053 4054 if (!kvm_vcpu_apicv_active(&vmx->vcpu)) 4055 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; 4056 4057 if (!enable_vnmi) 4058 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; 4059 4060 if (!enable_preemption_timer) 4061 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 4062 4063 return pin_based_exec_ctrl; 4064 } 4065 4066 static u32 vmx_vmentry_ctrl(void) 4067 { 4068 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl; 4069 4070 if (vmx_pt_mode_is_system()) 4071 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP | 4072 VM_ENTRY_LOAD_IA32_RTIT_CTL); 4073 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ 4074 return vmentry_ctrl & 4075 ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER); 4076 } 4077 4078 static u32 vmx_vmexit_ctrl(void) 4079 { 4080 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl; 4081 4082 if (vmx_pt_mode_is_system()) 4083 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP | 4084 VM_EXIT_CLEAR_IA32_RTIT_CTL); 4085 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ 4086 return vmexit_ctrl & 4087 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER); 4088 } 4089 4090 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) 4091 { 4092 struct vcpu_vmx *vmx = to_vmx(vcpu); 4093 4094 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4095 if (cpu_has_secondary_exec_ctrls()) { 4096 if (kvm_vcpu_apicv_active(vcpu)) 4097 secondary_exec_controls_setbit(vmx, 4098 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4099 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4100 else 4101 secondary_exec_controls_clearbit(vmx, 4102 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4103 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4104 } 4105 4106 vmx_update_msr_bitmap_x2apic(vcpu); 4107 } 4108 4109 static u32 vmx_exec_control(struct vcpu_vmx *vmx) 4110 { 4111 u32 exec_control = vmcs_config.cpu_based_exec_ctrl; 4112 4113 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) 4114 exec_control &= ~CPU_BASED_MOV_DR_EXITING; 4115 4116 if (!cpu_need_tpr_shadow(&vmx->vcpu)) { 4117 exec_control &= ~CPU_BASED_TPR_SHADOW; 4118 #ifdef CONFIG_X86_64 4119 exec_control |= CPU_BASED_CR8_STORE_EXITING | 4120 CPU_BASED_CR8_LOAD_EXITING; 4121 #endif 4122 } 4123 if (!enable_ept) 4124 exec_control |= CPU_BASED_CR3_STORE_EXITING | 4125 CPU_BASED_CR3_LOAD_EXITING | 4126 CPU_BASED_INVLPG_EXITING; 4127 if (kvm_mwait_in_guest(vmx->vcpu.kvm)) 4128 exec_control &= ~(CPU_BASED_MWAIT_EXITING | 4129 CPU_BASED_MONITOR_EXITING); 4130 if (kvm_hlt_in_guest(vmx->vcpu.kvm)) 4131 exec_control &= ~CPU_BASED_HLT_EXITING; 4132 return exec_control; 4133 } 4134 4135 /* 4136 * Adjust a single secondary execution control bit to intercept/allow an 4137 * instruction in the guest. This is usually done based on whether or not a 4138 * feature has been exposed to the guest in order to correctly emulate faults. 4139 */ 4140 static inline void 4141 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control, 4142 u32 control, bool enabled, bool exiting) 4143 { 4144 /* 4145 * If the control is for an opt-in feature, clear the control if the 4146 * feature is not exposed to the guest, i.e. not enabled. If the 4147 * control is opt-out, i.e. an exiting control, clear the control if 4148 * the feature _is_ exposed to the guest, i.e. exiting/interception is 4149 * disabled for the associated instruction. Note, the caller is 4150 * responsible presetting exec_control to set all supported bits. 4151 */ 4152 if (enabled == exiting) 4153 *exec_control &= ~control; 4154 4155 /* 4156 * Update the nested MSR settings so that a nested VMM can/can't set 4157 * controls for features that are/aren't exposed to the guest. 4158 */ 4159 if (nested) { 4160 if (enabled) 4161 vmx->nested.msrs.secondary_ctls_high |= control; 4162 else 4163 vmx->nested.msrs.secondary_ctls_high &= ~control; 4164 } 4165 } 4166 4167 /* 4168 * Wrapper macro for the common case of adjusting a secondary execution control 4169 * based on a single guest CPUID bit, with a dedicated feature bit. This also 4170 * verifies that the control is actually supported by KVM and hardware. 4171 */ 4172 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \ 4173 ({ \ 4174 bool __enabled; \ 4175 \ 4176 if (cpu_has_vmx_##name()) { \ 4177 __enabled = guest_cpuid_has(&(vmx)->vcpu, \ 4178 X86_FEATURE_##feat_name); \ 4179 vmx_adjust_secondary_exec_control(vmx, exec_control, \ 4180 SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \ 4181 } \ 4182 }) 4183 4184 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */ 4185 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \ 4186 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false) 4187 4188 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \ 4189 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true) 4190 4191 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx) 4192 { 4193 struct kvm_vcpu *vcpu = &vmx->vcpu; 4194 4195 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; 4196 4197 if (vmx_pt_mode_is_system()) 4198 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); 4199 if (!cpu_need_virtualize_apic_accesses(vcpu)) 4200 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 4201 if (vmx->vpid == 0) 4202 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; 4203 if (!enable_ept) { 4204 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; 4205 enable_unrestricted_guest = 0; 4206 } 4207 if (!enable_unrestricted_guest) 4208 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; 4209 if (kvm_pause_in_guest(vmx->vcpu.kvm)) 4210 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; 4211 if (!kvm_vcpu_apicv_active(vcpu)) 4212 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | 4213 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4214 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 4215 4216 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, 4217 * in vmx_set_cr4. */ 4218 exec_control &= ~SECONDARY_EXEC_DESC; 4219 4220 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD 4221 (handle_vmptrld). 4222 We can NOT enable shadow_vmcs here because we don't have yet 4223 a current VMCS12 4224 */ 4225 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; 4226 4227 /* 4228 * PML is enabled/disabled when dirty logging of memsmlots changes, but 4229 * it needs to be set here when dirty logging is already active, e.g. 4230 * if this vCPU was created after dirty logging was enabled. 4231 */ 4232 if (!vcpu->kvm->arch.cpu_dirty_logging_count) 4233 exec_control &= ~SECONDARY_EXEC_ENABLE_PML; 4234 4235 if (cpu_has_vmx_xsaves()) { 4236 /* Exposing XSAVES only when XSAVE is exposed */ 4237 bool xsaves_enabled = 4238 boot_cpu_has(X86_FEATURE_XSAVE) && 4239 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 4240 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES); 4241 4242 vcpu->arch.xsaves_enabled = xsaves_enabled; 4243 4244 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4245 SECONDARY_EXEC_XSAVES, 4246 xsaves_enabled, false); 4247 } 4248 4249 /* 4250 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either 4251 * feature is exposed to the guest. This creates a virtualization hole 4252 * if both are supported in hardware but only one is exposed to the 4253 * guest, but letting the guest execute RDTSCP or RDPID when either one 4254 * is advertised is preferable to emulating the advertised instruction 4255 * in KVM on #UD, and obviously better than incorrectly injecting #UD. 4256 */ 4257 if (cpu_has_vmx_rdtscp()) { 4258 bool rdpid_or_rdtscp_enabled = 4259 guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) || 4260 guest_cpuid_has(vcpu, X86_FEATURE_RDPID); 4261 4262 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4263 SECONDARY_EXEC_ENABLE_RDTSCP, 4264 rdpid_or_rdtscp_enabled, false); 4265 } 4266 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID); 4267 4268 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND); 4269 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED); 4270 4271 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG, 4272 ENABLE_USR_WAIT_PAUSE, false); 4273 4274 if (!vcpu->kvm->arch.bus_lock_detection_enabled) 4275 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION; 4276 4277 return exec_control; 4278 } 4279 4280 #define VMX_XSS_EXIT_BITMAP 0 4281 4282 static void init_vmcs(struct vcpu_vmx *vmx) 4283 { 4284 if (nested) 4285 nested_vmx_set_vmcs_shadowing_bitmap(); 4286 4287 if (cpu_has_vmx_msr_bitmap()) 4288 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); 4289 4290 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */ 4291 4292 /* Control */ 4293 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4294 4295 exec_controls_set(vmx, vmx_exec_control(vmx)); 4296 4297 if (cpu_has_secondary_exec_ctrls()) 4298 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx)); 4299 4300 if (kvm_vcpu_apicv_active(&vmx->vcpu)) { 4301 vmcs_write64(EOI_EXIT_BITMAP0, 0); 4302 vmcs_write64(EOI_EXIT_BITMAP1, 0); 4303 vmcs_write64(EOI_EXIT_BITMAP2, 0); 4304 vmcs_write64(EOI_EXIT_BITMAP3, 0); 4305 4306 vmcs_write16(GUEST_INTR_STATUS, 0); 4307 4308 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); 4309 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); 4310 } 4311 4312 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) { 4313 vmcs_write32(PLE_GAP, ple_gap); 4314 vmx->ple_window = ple_window; 4315 vmx->ple_window_dirty = true; 4316 } 4317 4318 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); 4319 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); 4320 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ 4321 4322 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ 4323 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ 4324 vmx_set_constant_host_state(vmx); 4325 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ 4326 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ 4327 4328 if (cpu_has_vmx_vmfunc()) 4329 vmcs_write64(VM_FUNCTION_CONTROL, 0); 4330 4331 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); 4332 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); 4333 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); 4334 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); 4335 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); 4336 4337 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 4338 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); 4339 4340 vm_exit_controls_set(vmx, vmx_vmexit_ctrl()); 4341 4342 /* 22.2.1, 20.8.1 */ 4343 vm_entry_controls_set(vmx, vmx_vmentry_ctrl()); 4344 4345 vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS; 4346 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits); 4347 4348 set_cr4_guest_host_mask(vmx); 4349 4350 if (vmx->vpid != 0) 4351 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); 4352 4353 if (cpu_has_vmx_xsaves()) 4354 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); 4355 4356 if (enable_pml) { 4357 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); 4358 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 4359 } 4360 4361 vmx_write_encls_bitmap(&vmx->vcpu, NULL); 4362 4363 if (vmx_pt_mode_is_host_guest()) { 4364 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); 4365 /* Bit[6~0] are forced to 1, writes are ignored. */ 4366 vmx->pt_desc.guest.output_mask = 0x7F; 4367 vmcs_write64(GUEST_IA32_RTIT_CTL, 0); 4368 } 4369 4370 vmcs_write32(GUEST_SYSENTER_CS, 0); 4371 vmcs_writel(GUEST_SYSENTER_ESP, 0); 4372 vmcs_writel(GUEST_SYSENTER_EIP, 0); 4373 vmcs_write64(GUEST_IA32_DEBUGCTL, 0); 4374 4375 if (cpu_has_vmx_tpr_shadow()) { 4376 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); 4377 if (cpu_need_tpr_shadow(&vmx->vcpu)) 4378 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 4379 __pa(vmx->vcpu.arch.apic->regs)); 4380 vmcs_write32(TPR_THRESHOLD, 0); 4381 } 4382 4383 vmx_setup_uret_msrs(vmx); 4384 } 4385 4386 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu) 4387 { 4388 struct vcpu_vmx *vmx = to_vmx(vcpu); 4389 4390 init_vmcs(vmx); 4391 4392 if (nested) 4393 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs)); 4394 4395 vcpu_setup_sgx_lepubkeyhash(vcpu); 4396 4397 vmx->nested.posted_intr_nv = -1; 4398 vmx->nested.vmxon_ptr = INVALID_GPA; 4399 vmx->nested.current_vmptr = INVALID_GPA; 4400 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID; 4401 4402 vcpu->arch.microcode_version = 0x100000000ULL; 4403 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED; 4404 4405 /* 4406 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR 4407 * or POSTED_INTR_WAKEUP_VECTOR. 4408 */ 4409 vmx->pi_desc.nv = POSTED_INTR_VECTOR; 4410 vmx->pi_desc.sn = 1; 4411 } 4412 4413 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 4414 { 4415 struct vcpu_vmx *vmx = to_vmx(vcpu); 4416 4417 if (!init_event) 4418 __vmx_vcpu_reset(vcpu); 4419 4420 vmx->rmode.vm86_active = 0; 4421 vmx->spec_ctrl = 0; 4422 4423 vmx->msr_ia32_umwait_control = 0; 4424 4425 vmx->hv_deadline_tsc = -1; 4426 kvm_set_cr8(vcpu, 0); 4427 4428 vmx_segment_cache_clear(vmx); 4429 kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS); 4430 4431 seg_setup(VCPU_SREG_CS); 4432 vmcs_write16(GUEST_CS_SELECTOR, 0xf000); 4433 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); 4434 4435 seg_setup(VCPU_SREG_DS); 4436 seg_setup(VCPU_SREG_ES); 4437 seg_setup(VCPU_SREG_FS); 4438 seg_setup(VCPU_SREG_GS); 4439 seg_setup(VCPU_SREG_SS); 4440 4441 vmcs_write16(GUEST_TR_SELECTOR, 0); 4442 vmcs_writel(GUEST_TR_BASE, 0); 4443 vmcs_write32(GUEST_TR_LIMIT, 0xffff); 4444 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 4445 4446 vmcs_write16(GUEST_LDTR_SELECTOR, 0); 4447 vmcs_writel(GUEST_LDTR_BASE, 0); 4448 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); 4449 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); 4450 4451 vmcs_writel(GUEST_GDTR_BASE, 0); 4452 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); 4453 4454 vmcs_writel(GUEST_IDTR_BASE, 0); 4455 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); 4456 4457 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 4458 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); 4459 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); 4460 if (kvm_mpx_supported()) 4461 vmcs_write64(GUEST_BNDCFGS, 0); 4462 4463 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ 4464 4465 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 4466 4467 vpid_sync_context(vmx->vpid); 4468 } 4469 4470 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu) 4471 { 4472 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 4473 } 4474 4475 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu) 4476 { 4477 if (!enable_vnmi || 4478 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { 4479 vmx_enable_irq_window(vcpu); 4480 return; 4481 } 4482 4483 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 4484 } 4485 4486 static void vmx_inject_irq(struct kvm_vcpu *vcpu) 4487 { 4488 struct vcpu_vmx *vmx = to_vmx(vcpu); 4489 uint32_t intr; 4490 int irq = vcpu->arch.interrupt.nr; 4491 4492 trace_kvm_inj_virq(irq); 4493 4494 ++vcpu->stat.irq_injections; 4495 if (vmx->rmode.vm86_active) { 4496 int inc_eip = 0; 4497 if (vcpu->arch.interrupt.soft) 4498 inc_eip = vcpu->arch.event_exit_inst_len; 4499 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip); 4500 return; 4501 } 4502 intr = irq | INTR_INFO_VALID_MASK; 4503 if (vcpu->arch.interrupt.soft) { 4504 intr |= INTR_TYPE_SOFT_INTR; 4505 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 4506 vmx->vcpu.arch.event_exit_inst_len); 4507 } else 4508 intr |= INTR_TYPE_EXT_INTR; 4509 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); 4510 4511 vmx_clear_hlt(vcpu); 4512 } 4513 4514 static void vmx_inject_nmi(struct kvm_vcpu *vcpu) 4515 { 4516 struct vcpu_vmx *vmx = to_vmx(vcpu); 4517 4518 if (!enable_vnmi) { 4519 /* 4520 * Tracking the NMI-blocked state in software is built upon 4521 * finding the next open IRQ window. This, in turn, depends on 4522 * well-behaving guests: They have to keep IRQs disabled at 4523 * least as long as the NMI handler runs. Otherwise we may 4524 * cause NMI nesting, maybe breaking the guest. But as this is 4525 * highly unlikely, we can live with the residual risk. 4526 */ 4527 vmx->loaded_vmcs->soft_vnmi_blocked = 1; 4528 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4529 } 4530 4531 ++vcpu->stat.nmi_injections; 4532 vmx->loaded_vmcs->nmi_known_unmasked = false; 4533 4534 if (vmx->rmode.vm86_active) { 4535 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0); 4536 return; 4537 } 4538 4539 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 4540 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); 4541 4542 vmx_clear_hlt(vcpu); 4543 } 4544 4545 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) 4546 { 4547 struct vcpu_vmx *vmx = to_vmx(vcpu); 4548 bool masked; 4549 4550 if (!enable_vnmi) 4551 return vmx->loaded_vmcs->soft_vnmi_blocked; 4552 if (vmx->loaded_vmcs->nmi_known_unmasked) 4553 return false; 4554 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; 4555 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4556 return masked; 4557 } 4558 4559 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 4560 { 4561 struct vcpu_vmx *vmx = to_vmx(vcpu); 4562 4563 if (!enable_vnmi) { 4564 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { 4565 vmx->loaded_vmcs->soft_vnmi_blocked = masked; 4566 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4567 } 4568 } else { 4569 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4570 if (masked) 4571 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 4572 GUEST_INTR_STATE_NMI); 4573 else 4574 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, 4575 GUEST_INTR_STATE_NMI); 4576 } 4577 } 4578 4579 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu) 4580 { 4581 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 4582 return false; 4583 4584 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) 4585 return true; 4586 4587 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4588 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI | 4589 GUEST_INTR_STATE_NMI)); 4590 } 4591 4592 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4593 { 4594 if (to_vmx(vcpu)->nested.nested_run_pending) 4595 return -EBUSY; 4596 4597 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 4598 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 4599 return -EBUSY; 4600 4601 return !vmx_nmi_blocked(vcpu); 4602 } 4603 4604 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu) 4605 { 4606 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 4607 return false; 4608 4609 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) || 4610 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4611 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); 4612 } 4613 4614 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4615 { 4616 if (to_vmx(vcpu)->nested.nested_run_pending) 4617 return -EBUSY; 4618 4619 /* 4620 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 4621 * e.g. if the IRQ arrived asynchronously after checking nested events. 4622 */ 4623 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 4624 return -EBUSY; 4625 4626 return !vmx_interrupt_blocked(vcpu); 4627 } 4628 4629 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) 4630 { 4631 void __user *ret; 4632 4633 if (enable_unrestricted_guest) 4634 return 0; 4635 4636 mutex_lock(&kvm->slots_lock); 4637 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, 4638 PAGE_SIZE * 3); 4639 mutex_unlock(&kvm->slots_lock); 4640 4641 if (IS_ERR(ret)) 4642 return PTR_ERR(ret); 4643 4644 to_kvm_vmx(kvm)->tss_addr = addr; 4645 4646 return init_rmode_tss(kvm, ret); 4647 } 4648 4649 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 4650 { 4651 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; 4652 return 0; 4653 } 4654 4655 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) 4656 { 4657 switch (vec) { 4658 case BP_VECTOR: 4659 /* 4660 * Update instruction length as we may reinject the exception 4661 * from user space while in guest debugging mode. 4662 */ 4663 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = 4664 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4665 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 4666 return false; 4667 fallthrough; 4668 case DB_VECTOR: 4669 return !(vcpu->guest_debug & 4670 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)); 4671 case DE_VECTOR: 4672 case OF_VECTOR: 4673 case BR_VECTOR: 4674 case UD_VECTOR: 4675 case DF_VECTOR: 4676 case SS_VECTOR: 4677 case GP_VECTOR: 4678 case MF_VECTOR: 4679 return true; 4680 } 4681 return false; 4682 } 4683 4684 static int handle_rmode_exception(struct kvm_vcpu *vcpu, 4685 int vec, u32 err_code) 4686 { 4687 /* 4688 * Instruction with address size override prefix opcode 0x67 4689 * Cause the #SS fault with 0 error code in VM86 mode. 4690 */ 4691 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { 4692 if (kvm_emulate_instruction(vcpu, 0)) { 4693 if (vcpu->arch.halt_request) { 4694 vcpu->arch.halt_request = 0; 4695 return kvm_vcpu_halt(vcpu); 4696 } 4697 return 1; 4698 } 4699 return 0; 4700 } 4701 4702 /* 4703 * Forward all other exceptions that are valid in real mode. 4704 * FIXME: Breaks guest debugging in real mode, needs to be fixed with 4705 * the required debugging infrastructure rework. 4706 */ 4707 kvm_queue_exception(vcpu, vec); 4708 return 1; 4709 } 4710 4711 static int handle_machine_check(struct kvm_vcpu *vcpu) 4712 { 4713 /* handled by vmx_vcpu_run() */ 4714 return 1; 4715 } 4716 4717 /* 4718 * If the host has split lock detection disabled, then #AC is 4719 * unconditionally injected into the guest, which is the pre split lock 4720 * detection behaviour. 4721 * 4722 * If the host has split lock detection enabled then #AC is 4723 * only injected into the guest when: 4724 * - Guest CPL == 3 (user mode) 4725 * - Guest has #AC detection enabled in CR0 4726 * - Guest EFLAGS has AC bit set 4727 */ 4728 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu) 4729 { 4730 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 4731 return true; 4732 4733 return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) && 4734 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC); 4735 } 4736 4737 static int handle_exception_nmi(struct kvm_vcpu *vcpu) 4738 { 4739 struct vcpu_vmx *vmx = to_vmx(vcpu); 4740 struct kvm_run *kvm_run = vcpu->run; 4741 u32 intr_info, ex_no, error_code; 4742 unsigned long cr2, dr6; 4743 u32 vect_info; 4744 4745 vect_info = vmx->idt_vectoring_info; 4746 intr_info = vmx_get_intr_info(vcpu); 4747 4748 if (is_machine_check(intr_info) || is_nmi(intr_info)) 4749 return 1; /* handled by handle_exception_nmi_irqoff() */ 4750 4751 if (is_invalid_opcode(intr_info)) 4752 return handle_ud(vcpu); 4753 4754 error_code = 0; 4755 if (intr_info & INTR_INFO_DELIVER_CODE_MASK) 4756 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 4757 4758 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { 4759 WARN_ON_ONCE(!enable_vmware_backdoor); 4760 4761 /* 4762 * VMware backdoor emulation on #GP interception only handles 4763 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero 4764 * error code on #GP. 4765 */ 4766 if (error_code) { 4767 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 4768 return 1; 4769 } 4770 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); 4771 } 4772 4773 /* 4774 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing 4775 * MMIO, it is better to report an internal error. 4776 * See the comments in vmx_handle_exit. 4777 */ 4778 if ((vect_info & VECTORING_INFO_VALID_MASK) && 4779 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { 4780 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4781 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; 4782 vcpu->run->internal.ndata = 4; 4783 vcpu->run->internal.data[0] = vect_info; 4784 vcpu->run->internal.data[1] = intr_info; 4785 vcpu->run->internal.data[2] = error_code; 4786 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu; 4787 return 0; 4788 } 4789 4790 if (is_page_fault(intr_info)) { 4791 cr2 = vmx_get_exit_qual(vcpu); 4792 if (enable_ept && !vcpu->arch.apf.host_apf_flags) { 4793 /* 4794 * EPT will cause page fault only if we need to 4795 * detect illegal GPAs. 4796 */ 4797 WARN_ON_ONCE(!allow_smaller_maxphyaddr); 4798 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code); 4799 return 1; 4800 } else 4801 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); 4802 } 4803 4804 ex_no = intr_info & INTR_INFO_VECTOR_MASK; 4805 4806 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) 4807 return handle_rmode_exception(vcpu, ex_no, error_code); 4808 4809 switch (ex_no) { 4810 case DB_VECTOR: 4811 dr6 = vmx_get_exit_qual(vcpu); 4812 if (!(vcpu->guest_debug & 4813 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { 4814 if (is_icebp(intr_info)) 4815 WARN_ON(!skip_emulated_instruction(vcpu)); 4816 4817 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 4818 return 1; 4819 } 4820 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 4821 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); 4822 fallthrough; 4823 case BP_VECTOR: 4824 /* 4825 * Update instruction length as we may reinject #BP from 4826 * user space while in guest debugging mode. Reading it for 4827 * #DB as well causes no harm, it is not used in that case. 4828 */ 4829 vmx->vcpu.arch.event_exit_inst_len = 4830 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4831 kvm_run->exit_reason = KVM_EXIT_DEBUG; 4832 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 4833 kvm_run->debug.arch.exception = ex_no; 4834 break; 4835 case AC_VECTOR: 4836 if (vmx_guest_inject_ac(vcpu)) { 4837 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); 4838 return 1; 4839 } 4840 4841 /* 4842 * Handle split lock. Depending on detection mode this will 4843 * either warn and disable split lock detection for this 4844 * task or force SIGBUS on it. 4845 */ 4846 if (handle_guest_split_lock(kvm_rip_read(vcpu))) 4847 return 1; 4848 fallthrough; 4849 default: 4850 kvm_run->exit_reason = KVM_EXIT_EXCEPTION; 4851 kvm_run->ex.exception = ex_no; 4852 kvm_run->ex.error_code = error_code; 4853 break; 4854 } 4855 return 0; 4856 } 4857 4858 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu) 4859 { 4860 ++vcpu->stat.irq_exits; 4861 return 1; 4862 } 4863 4864 static int handle_triple_fault(struct kvm_vcpu *vcpu) 4865 { 4866 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 4867 vcpu->mmio_needed = 0; 4868 return 0; 4869 } 4870 4871 static int handle_io(struct kvm_vcpu *vcpu) 4872 { 4873 unsigned long exit_qualification; 4874 int size, in, string; 4875 unsigned port; 4876 4877 exit_qualification = vmx_get_exit_qual(vcpu); 4878 string = (exit_qualification & 16) != 0; 4879 4880 ++vcpu->stat.io_exits; 4881 4882 if (string) 4883 return kvm_emulate_instruction(vcpu, 0); 4884 4885 port = exit_qualification >> 16; 4886 size = (exit_qualification & 7) + 1; 4887 in = (exit_qualification & 8) != 0; 4888 4889 return kvm_fast_pio(vcpu, size, port, in); 4890 } 4891 4892 static void 4893 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 4894 { 4895 /* 4896 * Patch in the VMCALL instruction: 4897 */ 4898 hypercall[0] = 0x0f; 4899 hypercall[1] = 0x01; 4900 hypercall[2] = 0xc1; 4901 } 4902 4903 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ 4904 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) 4905 { 4906 if (is_guest_mode(vcpu)) { 4907 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 4908 unsigned long orig_val = val; 4909 4910 /* 4911 * We get here when L2 changed cr0 in a way that did not change 4912 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), 4913 * but did change L0 shadowed bits. So we first calculate the 4914 * effective cr0 value that L1 would like to write into the 4915 * hardware. It consists of the L2-owned bits from the new 4916 * value combined with the L1-owned bits from L1's guest_cr0. 4917 */ 4918 val = (val & ~vmcs12->cr0_guest_host_mask) | 4919 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); 4920 4921 if (!nested_guest_cr0_valid(vcpu, val)) 4922 return 1; 4923 4924 if (kvm_set_cr0(vcpu, val)) 4925 return 1; 4926 vmcs_writel(CR0_READ_SHADOW, orig_val); 4927 return 0; 4928 } else { 4929 if (to_vmx(vcpu)->nested.vmxon && 4930 !nested_host_cr0_valid(vcpu, val)) 4931 return 1; 4932 4933 return kvm_set_cr0(vcpu, val); 4934 } 4935 } 4936 4937 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) 4938 { 4939 if (is_guest_mode(vcpu)) { 4940 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 4941 unsigned long orig_val = val; 4942 4943 /* analogously to handle_set_cr0 */ 4944 val = (val & ~vmcs12->cr4_guest_host_mask) | 4945 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); 4946 if (kvm_set_cr4(vcpu, val)) 4947 return 1; 4948 vmcs_writel(CR4_READ_SHADOW, orig_val); 4949 return 0; 4950 } else 4951 return kvm_set_cr4(vcpu, val); 4952 } 4953 4954 static int handle_desc(struct kvm_vcpu *vcpu) 4955 { 4956 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP)); 4957 return kvm_emulate_instruction(vcpu, 0); 4958 } 4959 4960 static int handle_cr(struct kvm_vcpu *vcpu) 4961 { 4962 unsigned long exit_qualification, val; 4963 int cr; 4964 int reg; 4965 int err; 4966 int ret; 4967 4968 exit_qualification = vmx_get_exit_qual(vcpu); 4969 cr = exit_qualification & 15; 4970 reg = (exit_qualification >> 8) & 15; 4971 switch ((exit_qualification >> 4) & 3) { 4972 case 0: /* mov to cr */ 4973 val = kvm_register_read(vcpu, reg); 4974 trace_kvm_cr_write(cr, val); 4975 switch (cr) { 4976 case 0: 4977 err = handle_set_cr0(vcpu, val); 4978 return kvm_complete_insn_gp(vcpu, err); 4979 case 3: 4980 WARN_ON_ONCE(enable_unrestricted_guest); 4981 4982 err = kvm_set_cr3(vcpu, val); 4983 return kvm_complete_insn_gp(vcpu, err); 4984 case 4: 4985 err = handle_set_cr4(vcpu, val); 4986 return kvm_complete_insn_gp(vcpu, err); 4987 case 8: { 4988 u8 cr8_prev = kvm_get_cr8(vcpu); 4989 u8 cr8 = (u8)val; 4990 err = kvm_set_cr8(vcpu, cr8); 4991 ret = kvm_complete_insn_gp(vcpu, err); 4992 if (lapic_in_kernel(vcpu)) 4993 return ret; 4994 if (cr8_prev <= cr8) 4995 return ret; 4996 /* 4997 * TODO: we might be squashing a 4998 * KVM_GUESTDBG_SINGLESTEP-triggered 4999 * KVM_EXIT_DEBUG here. 5000 */ 5001 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 5002 return 0; 5003 } 5004 } 5005 break; 5006 case 2: /* clts */ 5007 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS"); 5008 return -EIO; 5009 case 1: /*mov from cr*/ 5010 switch (cr) { 5011 case 3: 5012 WARN_ON_ONCE(enable_unrestricted_guest); 5013 5014 val = kvm_read_cr3(vcpu); 5015 kvm_register_write(vcpu, reg, val); 5016 trace_kvm_cr_read(cr, val); 5017 return kvm_skip_emulated_instruction(vcpu); 5018 case 8: 5019 val = kvm_get_cr8(vcpu); 5020 kvm_register_write(vcpu, reg, val); 5021 trace_kvm_cr_read(cr, val); 5022 return kvm_skip_emulated_instruction(vcpu); 5023 } 5024 break; 5025 case 3: /* lmsw */ 5026 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; 5027 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val); 5028 kvm_lmsw(vcpu, val); 5029 5030 return kvm_skip_emulated_instruction(vcpu); 5031 default: 5032 break; 5033 } 5034 vcpu->run->exit_reason = 0; 5035 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", 5036 (int)(exit_qualification >> 4) & 3, cr); 5037 return 0; 5038 } 5039 5040 static int handle_dr(struct kvm_vcpu *vcpu) 5041 { 5042 unsigned long exit_qualification; 5043 int dr, dr7, reg; 5044 int err = 1; 5045 5046 exit_qualification = vmx_get_exit_qual(vcpu); 5047 dr = exit_qualification & DEBUG_REG_ACCESS_NUM; 5048 5049 /* First, if DR does not exist, trigger UD */ 5050 if (!kvm_require_dr(vcpu, dr)) 5051 return 1; 5052 5053 if (kvm_x86_ops.get_cpl(vcpu) > 0) 5054 goto out; 5055 5056 dr7 = vmcs_readl(GUEST_DR7); 5057 if (dr7 & DR7_GD) { 5058 /* 5059 * As the vm-exit takes precedence over the debug trap, we 5060 * need to emulate the latter, either for the host or the 5061 * guest debugging itself. 5062 */ 5063 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 5064 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW; 5065 vcpu->run->debug.arch.dr7 = dr7; 5066 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5067 vcpu->run->debug.arch.exception = DB_VECTOR; 5068 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 5069 return 0; 5070 } else { 5071 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD); 5072 return 1; 5073 } 5074 } 5075 5076 if (vcpu->guest_debug == 0) { 5077 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5078 5079 /* 5080 * No more DR vmexits; force a reload of the debug registers 5081 * and reenter on this instruction. The next vmexit will 5082 * retrieve the full state of the debug registers. 5083 */ 5084 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 5085 return 1; 5086 } 5087 5088 reg = DEBUG_REG_ACCESS_REG(exit_qualification); 5089 if (exit_qualification & TYPE_MOV_FROM_DR) { 5090 unsigned long val; 5091 5092 kvm_get_dr(vcpu, dr, &val); 5093 kvm_register_write(vcpu, reg, val); 5094 err = 0; 5095 } else { 5096 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); 5097 } 5098 5099 out: 5100 return kvm_complete_insn_gp(vcpu, err); 5101 } 5102 5103 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 5104 { 5105 get_debugreg(vcpu->arch.db[0], 0); 5106 get_debugreg(vcpu->arch.db[1], 1); 5107 get_debugreg(vcpu->arch.db[2], 2); 5108 get_debugreg(vcpu->arch.db[3], 3); 5109 get_debugreg(vcpu->arch.dr6, 6); 5110 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); 5111 5112 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 5113 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5114 5115 /* 5116 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees 5117 * a stale dr6 from the guest. 5118 */ 5119 set_debugreg(DR6_RESERVED, 6); 5120 } 5121 5122 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) 5123 { 5124 vmcs_writel(GUEST_DR7, val); 5125 } 5126 5127 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) 5128 { 5129 kvm_apic_update_ppr(vcpu); 5130 return 1; 5131 } 5132 5133 static int handle_interrupt_window(struct kvm_vcpu *vcpu) 5134 { 5135 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 5136 5137 kvm_make_request(KVM_REQ_EVENT, vcpu); 5138 5139 ++vcpu->stat.irq_window_exits; 5140 return 1; 5141 } 5142 5143 static int handle_invlpg(struct kvm_vcpu *vcpu) 5144 { 5145 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5146 5147 kvm_mmu_invlpg(vcpu, exit_qualification); 5148 return kvm_skip_emulated_instruction(vcpu); 5149 } 5150 5151 static int handle_apic_access(struct kvm_vcpu *vcpu) 5152 { 5153 if (likely(fasteoi)) { 5154 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5155 int access_type, offset; 5156 5157 access_type = exit_qualification & APIC_ACCESS_TYPE; 5158 offset = exit_qualification & APIC_ACCESS_OFFSET; 5159 /* 5160 * Sane guest uses MOV to write EOI, with written value 5161 * not cared. So make a short-circuit here by avoiding 5162 * heavy instruction emulation. 5163 */ 5164 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && 5165 (offset == APIC_EOI)) { 5166 kvm_lapic_set_eoi(vcpu); 5167 return kvm_skip_emulated_instruction(vcpu); 5168 } 5169 } 5170 return kvm_emulate_instruction(vcpu, 0); 5171 } 5172 5173 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) 5174 { 5175 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5176 int vector = exit_qualification & 0xff; 5177 5178 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ 5179 kvm_apic_set_eoi_accelerated(vcpu, vector); 5180 return 1; 5181 } 5182 5183 static int handle_apic_write(struct kvm_vcpu *vcpu) 5184 { 5185 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5186 u32 offset = exit_qualification & 0xfff; 5187 5188 /* APIC-write VM exit is trap-like and thus no need to adjust IP */ 5189 kvm_apic_write_nodecode(vcpu, offset); 5190 return 1; 5191 } 5192 5193 static int handle_task_switch(struct kvm_vcpu *vcpu) 5194 { 5195 struct vcpu_vmx *vmx = to_vmx(vcpu); 5196 unsigned long exit_qualification; 5197 bool has_error_code = false; 5198 u32 error_code = 0; 5199 u16 tss_selector; 5200 int reason, type, idt_v, idt_index; 5201 5202 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); 5203 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); 5204 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); 5205 5206 exit_qualification = vmx_get_exit_qual(vcpu); 5207 5208 reason = (u32)exit_qualification >> 30; 5209 if (reason == TASK_SWITCH_GATE && idt_v) { 5210 switch (type) { 5211 case INTR_TYPE_NMI_INTR: 5212 vcpu->arch.nmi_injected = false; 5213 vmx_set_nmi_mask(vcpu, true); 5214 break; 5215 case INTR_TYPE_EXT_INTR: 5216 case INTR_TYPE_SOFT_INTR: 5217 kvm_clear_interrupt_queue(vcpu); 5218 break; 5219 case INTR_TYPE_HARD_EXCEPTION: 5220 if (vmx->idt_vectoring_info & 5221 VECTORING_INFO_DELIVER_CODE_MASK) { 5222 has_error_code = true; 5223 error_code = 5224 vmcs_read32(IDT_VECTORING_ERROR_CODE); 5225 } 5226 fallthrough; 5227 case INTR_TYPE_SOFT_EXCEPTION: 5228 kvm_clear_exception_queue(vcpu); 5229 break; 5230 default: 5231 break; 5232 } 5233 } 5234 tss_selector = exit_qualification; 5235 5236 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && 5237 type != INTR_TYPE_EXT_INTR && 5238 type != INTR_TYPE_NMI_INTR)) 5239 WARN_ON(!skip_emulated_instruction(vcpu)); 5240 5241 /* 5242 * TODO: What about debug traps on tss switch? 5243 * Are we supposed to inject them and update dr6? 5244 */ 5245 return kvm_task_switch(vcpu, tss_selector, 5246 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, 5247 reason, has_error_code, error_code); 5248 } 5249 5250 static int handle_ept_violation(struct kvm_vcpu *vcpu) 5251 { 5252 unsigned long exit_qualification; 5253 gpa_t gpa; 5254 u64 error_code; 5255 5256 exit_qualification = vmx_get_exit_qual(vcpu); 5257 5258 /* 5259 * EPT violation happened while executing iret from NMI, 5260 * "blocked by NMI" bit has to be set before next VM entry. 5261 * There are errata that may cause this bit to not be set: 5262 * AAK134, BY25. 5263 */ 5264 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5265 enable_vnmi && 5266 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5267 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); 5268 5269 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5270 trace_kvm_page_fault(gpa, exit_qualification); 5271 5272 /* Is it a read fault? */ 5273 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) 5274 ? PFERR_USER_MASK : 0; 5275 /* Is it a write fault? */ 5276 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) 5277 ? PFERR_WRITE_MASK : 0; 5278 /* Is it a fetch fault? */ 5279 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) 5280 ? PFERR_FETCH_MASK : 0; 5281 /* ept page table entry is present? */ 5282 error_code |= (exit_qualification & 5283 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE | 5284 EPT_VIOLATION_EXECUTABLE)) 5285 ? PFERR_PRESENT_MASK : 0; 5286 5287 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ? 5288 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; 5289 5290 vcpu->arch.exit_qualification = exit_qualification; 5291 5292 /* 5293 * Check that the GPA doesn't exceed physical memory limits, as that is 5294 * a guest page fault. We have to emulate the instruction here, because 5295 * if the illegal address is that of a paging structure, then 5296 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we 5297 * would also use advanced VM-exit information for EPT violations to 5298 * reconstruct the page fault error code. 5299 */ 5300 if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa))) 5301 return kvm_emulate_instruction(vcpu, 0); 5302 5303 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); 5304 } 5305 5306 static int handle_ept_misconfig(struct kvm_vcpu *vcpu) 5307 { 5308 gpa_t gpa; 5309 5310 if (!vmx_can_emulate_instruction(vcpu, NULL, 0)) 5311 return 1; 5312 5313 /* 5314 * A nested guest cannot optimize MMIO vmexits, because we have an 5315 * nGPA here instead of the required GPA. 5316 */ 5317 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5318 if (!is_guest_mode(vcpu) && 5319 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { 5320 trace_kvm_fast_mmio(gpa); 5321 return kvm_skip_emulated_instruction(vcpu); 5322 } 5323 5324 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); 5325 } 5326 5327 static int handle_nmi_window(struct kvm_vcpu *vcpu) 5328 { 5329 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm)) 5330 return -EIO; 5331 5332 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 5333 ++vcpu->stat.nmi_window_exits; 5334 kvm_make_request(KVM_REQ_EVENT, vcpu); 5335 5336 return 1; 5337 } 5338 5339 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) 5340 { 5341 struct vcpu_vmx *vmx = to_vmx(vcpu); 5342 bool intr_window_requested; 5343 unsigned count = 130; 5344 5345 intr_window_requested = exec_controls_get(vmx) & 5346 CPU_BASED_INTR_WINDOW_EXITING; 5347 5348 while (vmx->emulation_required && count-- != 0) { 5349 if (intr_window_requested && !vmx_interrupt_blocked(vcpu)) 5350 return handle_interrupt_window(&vmx->vcpu); 5351 5352 if (kvm_test_request(KVM_REQ_EVENT, vcpu)) 5353 return 1; 5354 5355 if (!kvm_emulate_instruction(vcpu, 0)) 5356 return 0; 5357 5358 if (vmx->emulation_required && !vmx->rmode.vm86_active && 5359 vcpu->arch.exception.pending) { 5360 kvm_prepare_emulation_failure_exit(vcpu); 5361 return 0; 5362 } 5363 5364 if (vcpu->arch.halt_request) { 5365 vcpu->arch.halt_request = 0; 5366 return kvm_vcpu_halt(vcpu); 5367 } 5368 5369 /* 5370 * Note, return 1 and not 0, vcpu_run() will invoke 5371 * xfer_to_guest_mode() which will create a proper return 5372 * code. 5373 */ 5374 if (__xfer_to_guest_mode_work_pending()) 5375 return 1; 5376 } 5377 5378 return 1; 5379 } 5380 5381 static void grow_ple_window(struct kvm_vcpu *vcpu) 5382 { 5383 struct vcpu_vmx *vmx = to_vmx(vcpu); 5384 unsigned int old = vmx->ple_window; 5385 5386 vmx->ple_window = __grow_ple_window(old, ple_window, 5387 ple_window_grow, 5388 ple_window_max); 5389 5390 if (vmx->ple_window != old) { 5391 vmx->ple_window_dirty = true; 5392 trace_kvm_ple_window_update(vcpu->vcpu_id, 5393 vmx->ple_window, old); 5394 } 5395 } 5396 5397 static void shrink_ple_window(struct kvm_vcpu *vcpu) 5398 { 5399 struct vcpu_vmx *vmx = to_vmx(vcpu); 5400 unsigned int old = vmx->ple_window; 5401 5402 vmx->ple_window = __shrink_ple_window(old, ple_window, 5403 ple_window_shrink, 5404 ple_window); 5405 5406 if (vmx->ple_window != old) { 5407 vmx->ple_window_dirty = true; 5408 trace_kvm_ple_window_update(vcpu->vcpu_id, 5409 vmx->ple_window, old); 5410 } 5411 } 5412 5413 /* 5414 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE 5415 * exiting, so only get here on cpu with PAUSE-Loop-Exiting. 5416 */ 5417 static int handle_pause(struct kvm_vcpu *vcpu) 5418 { 5419 if (!kvm_pause_in_guest(vcpu->kvm)) 5420 grow_ple_window(vcpu); 5421 5422 /* 5423 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" 5424 * VM-execution control is ignored if CPL > 0. OTOH, KVM 5425 * never set PAUSE_EXITING and just set PLE if supported, 5426 * so the vcpu must be CPL=0 if it gets a PAUSE exit. 5427 */ 5428 kvm_vcpu_on_spin(vcpu, true); 5429 return kvm_skip_emulated_instruction(vcpu); 5430 } 5431 5432 static int handle_monitor_trap(struct kvm_vcpu *vcpu) 5433 { 5434 return 1; 5435 } 5436 5437 static int handle_invpcid(struct kvm_vcpu *vcpu) 5438 { 5439 u32 vmx_instruction_info; 5440 unsigned long type; 5441 gva_t gva; 5442 struct { 5443 u64 pcid; 5444 u64 gla; 5445 } operand; 5446 int gpr_index; 5447 5448 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 5449 kvm_queue_exception(vcpu, UD_VECTOR); 5450 return 1; 5451 } 5452 5453 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5454 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info); 5455 type = kvm_register_read(vcpu, gpr_index); 5456 5457 /* According to the Intel instruction reference, the memory operand 5458 * is read even if it isn't needed (e.g., for type==all) 5459 */ 5460 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), 5461 vmx_instruction_info, false, 5462 sizeof(operand), &gva)) 5463 return 1; 5464 5465 return kvm_handle_invpcid(vcpu, type, gva); 5466 } 5467 5468 static int handle_pml_full(struct kvm_vcpu *vcpu) 5469 { 5470 unsigned long exit_qualification; 5471 5472 trace_kvm_pml_full(vcpu->vcpu_id); 5473 5474 exit_qualification = vmx_get_exit_qual(vcpu); 5475 5476 /* 5477 * PML buffer FULL happened while executing iret from NMI, 5478 * "blocked by NMI" bit has to be set before next VM entry. 5479 */ 5480 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5481 enable_vnmi && 5482 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5483 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5484 GUEST_INTR_STATE_NMI); 5485 5486 /* 5487 * PML buffer already flushed at beginning of VMEXIT. Nothing to do 5488 * here.., and there's no userspace involvement needed for PML. 5489 */ 5490 return 1; 5491 } 5492 5493 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu) 5494 { 5495 struct vcpu_vmx *vmx = to_vmx(vcpu); 5496 5497 if (!vmx->req_immediate_exit && 5498 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) { 5499 kvm_lapic_expired_hv_timer(vcpu); 5500 return EXIT_FASTPATH_REENTER_GUEST; 5501 } 5502 5503 return EXIT_FASTPATH_NONE; 5504 } 5505 5506 static int handle_preemption_timer(struct kvm_vcpu *vcpu) 5507 { 5508 handle_fastpath_preemption_timer(vcpu); 5509 return 1; 5510 } 5511 5512 /* 5513 * When nested=0, all VMX instruction VM Exits filter here. The handlers 5514 * are overwritten by nested_vmx_setup() when nested=1. 5515 */ 5516 static int handle_vmx_instruction(struct kvm_vcpu *vcpu) 5517 { 5518 kvm_queue_exception(vcpu, UD_VECTOR); 5519 return 1; 5520 } 5521 5522 #ifndef CONFIG_X86_SGX_KVM 5523 static int handle_encls(struct kvm_vcpu *vcpu) 5524 { 5525 /* 5526 * SGX virtualization is disabled. There is no software enable bit for 5527 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent 5528 * the guest from executing ENCLS (when SGX is supported by hardware). 5529 */ 5530 kvm_queue_exception(vcpu, UD_VECTOR); 5531 return 1; 5532 } 5533 #endif /* CONFIG_X86_SGX_KVM */ 5534 5535 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu) 5536 { 5537 /* 5538 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK 5539 * VM-Exits. Unconditionally set the flag here and leave the handling to 5540 * vmx_handle_exit(). 5541 */ 5542 to_vmx(vcpu)->exit_reason.bus_lock_detected = true; 5543 return 1; 5544 } 5545 5546 /* 5547 * The exit handlers return 1 if the exit was handled fully and guest execution 5548 * may resume. Otherwise they set the kvm_run parameter to indicate what needs 5549 * to be done to userspace and return 0. 5550 */ 5551 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { 5552 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi, 5553 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, 5554 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, 5555 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, 5556 [EXIT_REASON_IO_INSTRUCTION] = handle_io, 5557 [EXIT_REASON_CR_ACCESS] = handle_cr, 5558 [EXIT_REASON_DR_ACCESS] = handle_dr, 5559 [EXIT_REASON_CPUID] = kvm_emulate_cpuid, 5560 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr, 5561 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr, 5562 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window, 5563 [EXIT_REASON_HLT] = kvm_emulate_halt, 5564 [EXIT_REASON_INVD] = kvm_emulate_invd, 5565 [EXIT_REASON_INVLPG] = handle_invlpg, 5566 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc, 5567 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall, 5568 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, 5569 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, 5570 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, 5571 [EXIT_REASON_VMPTRST] = handle_vmx_instruction, 5572 [EXIT_REASON_VMREAD] = handle_vmx_instruction, 5573 [EXIT_REASON_VMRESUME] = handle_vmx_instruction, 5574 [EXIT_REASON_VMWRITE] = handle_vmx_instruction, 5575 [EXIT_REASON_VMOFF] = handle_vmx_instruction, 5576 [EXIT_REASON_VMON] = handle_vmx_instruction, 5577 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, 5578 [EXIT_REASON_APIC_ACCESS] = handle_apic_access, 5579 [EXIT_REASON_APIC_WRITE] = handle_apic_write, 5580 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, 5581 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd, 5582 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv, 5583 [EXIT_REASON_TASK_SWITCH] = handle_task_switch, 5584 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, 5585 [EXIT_REASON_GDTR_IDTR] = handle_desc, 5586 [EXIT_REASON_LDTR_TR] = handle_desc, 5587 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, 5588 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, 5589 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, 5590 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait, 5591 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, 5592 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor, 5593 [EXIT_REASON_INVEPT] = handle_vmx_instruction, 5594 [EXIT_REASON_INVVPID] = handle_vmx_instruction, 5595 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op, 5596 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op, 5597 [EXIT_REASON_PML_FULL] = handle_pml_full, 5598 [EXIT_REASON_INVPCID] = handle_invpcid, 5599 [EXIT_REASON_VMFUNC] = handle_vmx_instruction, 5600 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, 5601 [EXIT_REASON_ENCLS] = handle_encls, 5602 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit, 5603 }; 5604 5605 static const int kvm_vmx_max_exit_handlers = 5606 ARRAY_SIZE(kvm_vmx_exit_handlers); 5607 5608 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 5609 u64 *info1, u64 *info2, 5610 u32 *intr_info, u32 *error_code) 5611 { 5612 struct vcpu_vmx *vmx = to_vmx(vcpu); 5613 5614 *reason = vmx->exit_reason.full; 5615 *info1 = vmx_get_exit_qual(vcpu); 5616 if (!(vmx->exit_reason.failed_vmentry)) { 5617 *info2 = vmx->idt_vectoring_info; 5618 *intr_info = vmx_get_intr_info(vcpu); 5619 if (is_exception_with_error_code(*intr_info)) 5620 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 5621 else 5622 *error_code = 0; 5623 } else { 5624 *info2 = 0; 5625 *intr_info = 0; 5626 *error_code = 0; 5627 } 5628 } 5629 5630 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) 5631 { 5632 if (vmx->pml_pg) { 5633 __free_page(vmx->pml_pg); 5634 vmx->pml_pg = NULL; 5635 } 5636 } 5637 5638 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) 5639 { 5640 struct vcpu_vmx *vmx = to_vmx(vcpu); 5641 u64 *pml_buf; 5642 u16 pml_idx; 5643 5644 pml_idx = vmcs_read16(GUEST_PML_INDEX); 5645 5646 /* Do nothing if PML buffer is empty */ 5647 if (pml_idx == (PML_ENTITY_NUM - 1)) 5648 return; 5649 5650 /* PML index always points to next available PML buffer entity */ 5651 if (pml_idx >= PML_ENTITY_NUM) 5652 pml_idx = 0; 5653 else 5654 pml_idx++; 5655 5656 pml_buf = page_address(vmx->pml_pg); 5657 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { 5658 u64 gpa; 5659 5660 gpa = pml_buf[pml_idx]; 5661 WARN_ON(gpa & (PAGE_SIZE - 1)); 5662 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 5663 } 5664 5665 /* reset PML index */ 5666 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 5667 } 5668 5669 static void vmx_dump_sel(char *name, uint32_t sel) 5670 { 5671 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", 5672 name, vmcs_read16(sel), 5673 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), 5674 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), 5675 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); 5676 } 5677 5678 static void vmx_dump_dtsel(char *name, uint32_t limit) 5679 { 5680 pr_err("%s limit=0x%08x, base=0x%016lx\n", 5681 name, vmcs_read32(limit), 5682 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); 5683 } 5684 5685 static void vmx_dump_msrs(char *name, struct vmx_msrs *m) 5686 { 5687 unsigned int i; 5688 struct vmx_msr_entry *e; 5689 5690 pr_err("MSR %s:\n", name); 5691 for (i = 0, e = m->val; i < m->nr; ++i, ++e) 5692 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value); 5693 } 5694 5695 void dump_vmcs(struct kvm_vcpu *vcpu) 5696 { 5697 struct vcpu_vmx *vmx = to_vmx(vcpu); 5698 u32 vmentry_ctl, vmexit_ctl; 5699 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control; 5700 unsigned long cr4; 5701 int efer_slot; 5702 5703 if (!dump_invalid_vmcs) { 5704 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n"); 5705 return; 5706 } 5707 5708 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); 5709 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); 5710 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); 5711 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); 5712 cr4 = vmcs_readl(GUEST_CR4); 5713 secondary_exec_control = 0; 5714 if (cpu_has_secondary_exec_ctrls()) 5715 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); 5716 5717 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n", 5718 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu); 5719 pr_err("*** Guest State ***\n"); 5720 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 5721 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), 5722 vmcs_readl(CR0_GUEST_HOST_MASK)); 5723 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 5724 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); 5725 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); 5726 if (cpu_has_vmx_ept()) { 5727 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", 5728 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); 5729 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", 5730 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); 5731 } 5732 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", 5733 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); 5734 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", 5735 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); 5736 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 5737 vmcs_readl(GUEST_SYSENTER_ESP), 5738 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); 5739 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); 5740 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); 5741 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); 5742 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); 5743 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); 5744 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); 5745 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); 5746 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); 5747 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); 5748 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); 5749 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER); 5750 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER) 5751 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER)); 5752 else if (efer_slot >= 0) 5753 pr_err("EFER= 0x%016llx (autoload)\n", 5754 vmx->msr_autoload.guest.val[efer_slot].value); 5755 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE) 5756 pr_err("EFER= 0x%016llx (effective)\n", 5757 vcpu->arch.efer | (EFER_LMA | EFER_LME)); 5758 else 5759 pr_err("EFER= 0x%016llx (effective)\n", 5760 vcpu->arch.efer & ~(EFER_LMA | EFER_LME)); 5761 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT) 5762 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT)); 5763 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", 5764 vmcs_read64(GUEST_IA32_DEBUGCTL), 5765 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); 5766 if (cpu_has_load_perf_global_ctrl() && 5767 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) 5768 pr_err("PerfGlobCtl = 0x%016llx\n", 5769 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); 5770 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) 5771 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); 5772 pr_err("Interruptibility = %08x ActivityState = %08x\n", 5773 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), 5774 vmcs_read32(GUEST_ACTIVITY_STATE)); 5775 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) 5776 pr_err("InterruptStatus = %04x\n", 5777 vmcs_read16(GUEST_INTR_STATUS)); 5778 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0) 5779 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest); 5780 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0) 5781 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest); 5782 5783 pr_err("*** Host State ***\n"); 5784 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", 5785 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); 5786 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", 5787 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), 5788 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), 5789 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), 5790 vmcs_read16(HOST_TR_SELECTOR)); 5791 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", 5792 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), 5793 vmcs_readl(HOST_TR_BASE)); 5794 pr_err("GDTBase=%016lx IDTBase=%016lx\n", 5795 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); 5796 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", 5797 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), 5798 vmcs_readl(HOST_CR4)); 5799 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 5800 vmcs_readl(HOST_IA32_SYSENTER_ESP), 5801 vmcs_read32(HOST_IA32_SYSENTER_CS), 5802 vmcs_readl(HOST_IA32_SYSENTER_EIP)); 5803 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER) 5804 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER)); 5805 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT) 5806 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT)); 5807 if (cpu_has_load_perf_global_ctrl() && 5808 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) 5809 pr_err("PerfGlobCtl = 0x%016llx\n", 5810 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); 5811 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0) 5812 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host); 5813 5814 pr_err("*** Control State ***\n"); 5815 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n", 5816 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control); 5817 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl); 5818 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", 5819 vmcs_read32(EXCEPTION_BITMAP), 5820 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), 5821 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); 5822 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", 5823 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 5824 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), 5825 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); 5826 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", 5827 vmcs_read32(VM_EXIT_INTR_INFO), 5828 vmcs_read32(VM_EXIT_INTR_ERROR_CODE), 5829 vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); 5830 pr_err(" reason=%08x qualification=%016lx\n", 5831 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); 5832 pr_err("IDTVectoring: info=%08x errcode=%08x\n", 5833 vmcs_read32(IDT_VECTORING_INFO_FIELD), 5834 vmcs_read32(IDT_VECTORING_ERROR_CODE)); 5835 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); 5836 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) 5837 pr_err("TSC Multiplier = 0x%016llx\n", 5838 vmcs_read64(TSC_MULTIPLIER)); 5839 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) { 5840 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { 5841 u16 status = vmcs_read16(GUEST_INTR_STATUS); 5842 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff); 5843 } 5844 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); 5845 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) 5846 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR)); 5847 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR)); 5848 } 5849 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) 5850 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); 5851 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) 5852 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); 5853 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) 5854 pr_err("PLE Gap=%08x Window=%08x\n", 5855 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); 5856 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) 5857 pr_err("Virtual processor ID = 0x%04x\n", 5858 vmcs_read16(VIRTUAL_PROCESSOR_ID)); 5859 } 5860 5861 /* 5862 * The guest has exited. See if we can fix it or if we need userspace 5863 * assistance. 5864 */ 5865 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 5866 { 5867 struct vcpu_vmx *vmx = to_vmx(vcpu); 5868 union vmx_exit_reason exit_reason = vmx->exit_reason; 5869 u32 vectoring_info = vmx->idt_vectoring_info; 5870 u16 exit_handler_index; 5871 5872 /* 5873 * Flush logged GPAs PML buffer, this will make dirty_bitmap more 5874 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before 5875 * querying dirty_bitmap, we only need to kick all vcpus out of guest 5876 * mode as if vcpus is in root mode, the PML buffer must has been 5877 * flushed already. Note, PML is never enabled in hardware while 5878 * running L2. 5879 */ 5880 if (enable_pml && !is_guest_mode(vcpu)) 5881 vmx_flush_pml_buffer(vcpu); 5882 5883 /* 5884 * We should never reach this point with a pending nested VM-Enter, and 5885 * more specifically emulation of L2 due to invalid guest state (see 5886 * below) should never happen as that means we incorrectly allowed a 5887 * nested VM-Enter with an invalid vmcs12. 5888 */ 5889 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm)) 5890 return -EIO; 5891 5892 /* If guest state is invalid, start emulating */ 5893 if (vmx->emulation_required) 5894 return handle_invalid_guest_state(vcpu); 5895 5896 if (is_guest_mode(vcpu)) { 5897 /* 5898 * PML is never enabled when running L2, bail immediately if a 5899 * PML full exit occurs as something is horribly wrong. 5900 */ 5901 if (exit_reason.basic == EXIT_REASON_PML_FULL) 5902 goto unexpected_vmexit; 5903 5904 /* 5905 * The host physical addresses of some pages of guest memory 5906 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC 5907 * Page). The CPU may write to these pages via their host 5908 * physical address while L2 is running, bypassing any 5909 * address-translation-based dirty tracking (e.g. EPT write 5910 * protection). 5911 * 5912 * Mark them dirty on every exit from L2 to prevent them from 5913 * getting out of sync with dirty tracking. 5914 */ 5915 nested_mark_vmcs12_pages_dirty(vcpu); 5916 5917 if (nested_vmx_reflect_vmexit(vcpu)) 5918 return 1; 5919 } 5920 5921 if (exit_reason.failed_vmentry) { 5922 dump_vmcs(vcpu); 5923 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 5924 vcpu->run->fail_entry.hardware_entry_failure_reason 5925 = exit_reason.full; 5926 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 5927 return 0; 5928 } 5929 5930 if (unlikely(vmx->fail)) { 5931 dump_vmcs(vcpu); 5932 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 5933 vcpu->run->fail_entry.hardware_entry_failure_reason 5934 = vmcs_read32(VM_INSTRUCTION_ERROR); 5935 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 5936 return 0; 5937 } 5938 5939 /* 5940 * Note: 5941 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by 5942 * delivery event since it indicates guest is accessing MMIO. 5943 * The vm-exit can be triggered again after return to guest that 5944 * will cause infinite loop. 5945 */ 5946 if ((vectoring_info & VECTORING_INFO_VALID_MASK) && 5947 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI && 5948 exit_reason.basic != EXIT_REASON_EPT_VIOLATION && 5949 exit_reason.basic != EXIT_REASON_PML_FULL && 5950 exit_reason.basic != EXIT_REASON_APIC_ACCESS && 5951 exit_reason.basic != EXIT_REASON_TASK_SWITCH)) { 5952 int ndata = 3; 5953 5954 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5955 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; 5956 vcpu->run->internal.data[0] = vectoring_info; 5957 vcpu->run->internal.data[1] = exit_reason.full; 5958 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification; 5959 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) { 5960 vcpu->run->internal.data[ndata++] = 5961 vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5962 } 5963 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu; 5964 vcpu->run->internal.ndata = ndata; 5965 return 0; 5966 } 5967 5968 if (unlikely(!enable_vnmi && 5969 vmx->loaded_vmcs->soft_vnmi_blocked)) { 5970 if (!vmx_interrupt_blocked(vcpu)) { 5971 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 5972 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && 5973 vcpu->arch.nmi_pending) { 5974 /* 5975 * This CPU don't support us in finding the end of an 5976 * NMI-blocked window if the guest runs with IRQs 5977 * disabled. So we pull the trigger after 1 s of 5978 * futile waiting, but inform the user about this. 5979 */ 5980 printk(KERN_WARNING "%s: Breaking out of NMI-blocked " 5981 "state on VCPU %d after 1 s timeout\n", 5982 __func__, vcpu->vcpu_id); 5983 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 5984 } 5985 } 5986 5987 if (exit_fastpath != EXIT_FASTPATH_NONE) 5988 return 1; 5989 5990 if (exit_reason.basic >= kvm_vmx_max_exit_handlers) 5991 goto unexpected_vmexit; 5992 #ifdef CONFIG_RETPOLINE 5993 if (exit_reason.basic == EXIT_REASON_MSR_WRITE) 5994 return kvm_emulate_wrmsr(vcpu); 5995 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER) 5996 return handle_preemption_timer(vcpu); 5997 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW) 5998 return handle_interrupt_window(vcpu); 5999 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6000 return handle_external_interrupt(vcpu); 6001 else if (exit_reason.basic == EXIT_REASON_HLT) 6002 return kvm_emulate_halt(vcpu); 6003 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) 6004 return handle_ept_misconfig(vcpu); 6005 #endif 6006 6007 exit_handler_index = array_index_nospec((u16)exit_reason.basic, 6008 kvm_vmx_max_exit_handlers); 6009 if (!kvm_vmx_exit_handlers[exit_handler_index]) 6010 goto unexpected_vmexit; 6011 6012 return kvm_vmx_exit_handlers[exit_handler_index](vcpu); 6013 6014 unexpected_vmexit: 6015 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", 6016 exit_reason.full); 6017 dump_vmcs(vcpu); 6018 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6019 vcpu->run->internal.suberror = 6020 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 6021 vcpu->run->internal.ndata = 2; 6022 vcpu->run->internal.data[0] = exit_reason.full; 6023 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 6024 return 0; 6025 } 6026 6027 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6028 { 6029 int ret = __vmx_handle_exit(vcpu, exit_fastpath); 6030 6031 /* 6032 * Exit to user space when bus lock detected to inform that there is 6033 * a bus lock in guest. 6034 */ 6035 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) { 6036 if (ret > 0) 6037 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; 6038 6039 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; 6040 return 0; 6041 } 6042 return ret; 6043 } 6044 6045 /* 6046 * Software based L1D cache flush which is used when microcode providing 6047 * the cache control MSR is not loaded. 6048 * 6049 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to 6050 * flush it is required to read in 64 KiB because the replacement algorithm 6051 * is not exactly LRU. This could be sized at runtime via topology 6052 * information but as all relevant affected CPUs have 32KiB L1D cache size 6053 * there is no point in doing so. 6054 */ 6055 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu) 6056 { 6057 int size = PAGE_SIZE << L1D_CACHE_ORDER; 6058 6059 /* 6060 * This code is only executed when the the flush mode is 'cond' or 6061 * 'always' 6062 */ 6063 if (static_branch_likely(&vmx_l1d_flush_cond)) { 6064 bool flush_l1d; 6065 6066 /* 6067 * Clear the per-vcpu flush bit, it gets set again 6068 * either from vcpu_run() or from one of the unsafe 6069 * VMEXIT handlers. 6070 */ 6071 flush_l1d = vcpu->arch.l1tf_flush_l1d; 6072 vcpu->arch.l1tf_flush_l1d = false; 6073 6074 /* 6075 * Clear the per-cpu flush bit, it gets set again from 6076 * the interrupt handlers. 6077 */ 6078 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); 6079 kvm_clear_cpu_l1tf_flush_l1d(); 6080 6081 if (!flush_l1d) 6082 return; 6083 } 6084 6085 vcpu->stat.l1d_flush++; 6086 6087 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { 6088 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 6089 return; 6090 } 6091 6092 asm volatile( 6093 /* First ensure the pages are in the TLB */ 6094 "xorl %%eax, %%eax\n" 6095 ".Lpopulate_tlb:\n\t" 6096 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6097 "addl $4096, %%eax\n\t" 6098 "cmpl %%eax, %[size]\n\t" 6099 "jne .Lpopulate_tlb\n\t" 6100 "xorl %%eax, %%eax\n\t" 6101 "cpuid\n\t" 6102 /* Now fill the cache */ 6103 "xorl %%eax, %%eax\n" 6104 ".Lfill_cache:\n" 6105 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6106 "addl $64, %%eax\n\t" 6107 "cmpl %%eax, %[size]\n\t" 6108 "jne .Lfill_cache\n\t" 6109 "lfence\n" 6110 :: [flush_pages] "r" (vmx_l1d_flush_pages), 6111 [size] "r" (size) 6112 : "eax", "ebx", "ecx", "edx"); 6113 } 6114 6115 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 6116 { 6117 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 6118 int tpr_threshold; 6119 6120 if (is_guest_mode(vcpu) && 6121 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) 6122 return; 6123 6124 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr; 6125 if (is_guest_mode(vcpu)) 6126 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold; 6127 else 6128 vmcs_write32(TPR_THRESHOLD, tpr_threshold); 6129 } 6130 6131 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) 6132 { 6133 struct vcpu_vmx *vmx = to_vmx(vcpu); 6134 u32 sec_exec_control; 6135 6136 if (!lapic_in_kernel(vcpu)) 6137 return; 6138 6139 if (!flexpriority_enabled && 6140 !cpu_has_vmx_virtualize_x2apic_mode()) 6141 return; 6142 6143 /* Postpone execution until vmcs01 is the current VMCS. */ 6144 if (is_guest_mode(vcpu)) { 6145 vmx->nested.change_vmcs01_virtual_apic_mode = true; 6146 return; 6147 } 6148 6149 sec_exec_control = secondary_exec_controls_get(vmx); 6150 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 6151 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); 6152 6153 switch (kvm_get_apic_mode(vcpu)) { 6154 case LAPIC_MODE_INVALID: 6155 WARN_ONCE(true, "Invalid local APIC state"); 6156 break; 6157 case LAPIC_MODE_DISABLED: 6158 break; 6159 case LAPIC_MODE_XAPIC: 6160 if (flexpriority_enabled) { 6161 sec_exec_control |= 6162 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 6163 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6164 6165 /* 6166 * Flush the TLB, reloading the APIC access page will 6167 * only do so if its physical address has changed, but 6168 * the guest may have inserted a non-APIC mapping into 6169 * the TLB while the APIC access page was disabled. 6170 */ 6171 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 6172 } 6173 break; 6174 case LAPIC_MODE_X2APIC: 6175 if (cpu_has_vmx_virtualize_x2apic_mode()) 6176 sec_exec_control |= 6177 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 6178 break; 6179 } 6180 secondary_exec_controls_set(vmx, sec_exec_control); 6181 6182 vmx_update_msr_bitmap_x2apic(vcpu); 6183 } 6184 6185 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu) 6186 { 6187 struct page *page; 6188 6189 /* Defer reload until vmcs01 is the current VMCS. */ 6190 if (is_guest_mode(vcpu)) { 6191 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true; 6192 return; 6193 } 6194 6195 if (!(secondary_exec_controls_get(to_vmx(vcpu)) & 6196 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 6197 return; 6198 6199 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 6200 if (is_error_page(page)) 6201 return; 6202 6203 vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page)); 6204 vmx_flush_tlb_current(vcpu); 6205 6206 /* 6207 * Do not pin apic access page in memory, the MMU notifier 6208 * will call us again if it is migrated or swapped out. 6209 */ 6210 put_page(page); 6211 } 6212 6213 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr) 6214 { 6215 u16 status; 6216 u8 old; 6217 6218 if (max_isr == -1) 6219 max_isr = 0; 6220 6221 status = vmcs_read16(GUEST_INTR_STATUS); 6222 old = status >> 8; 6223 if (max_isr != old) { 6224 status &= 0xff; 6225 status |= max_isr << 8; 6226 vmcs_write16(GUEST_INTR_STATUS, status); 6227 } 6228 } 6229 6230 static void vmx_set_rvi(int vector) 6231 { 6232 u16 status; 6233 u8 old; 6234 6235 if (vector == -1) 6236 vector = 0; 6237 6238 status = vmcs_read16(GUEST_INTR_STATUS); 6239 old = (u8)status & 0xff; 6240 if ((u8)vector != old) { 6241 status &= ~0xff; 6242 status |= (u8)vector; 6243 vmcs_write16(GUEST_INTR_STATUS, status); 6244 } 6245 } 6246 6247 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) 6248 { 6249 /* 6250 * When running L2, updating RVI is only relevant when 6251 * vmcs12 virtual-interrupt-delivery enabled. 6252 * However, it can be enabled only when L1 also 6253 * intercepts external-interrupts and in that case 6254 * we should not update vmcs02 RVI but instead intercept 6255 * interrupt. Therefore, do nothing when running L2. 6256 */ 6257 if (!is_guest_mode(vcpu)) 6258 vmx_set_rvi(max_irr); 6259 } 6260 6261 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) 6262 { 6263 struct vcpu_vmx *vmx = to_vmx(vcpu); 6264 int max_irr; 6265 bool max_irr_updated; 6266 6267 if (KVM_BUG_ON(!vcpu->arch.apicv_active, vcpu->kvm)) 6268 return -EIO; 6269 6270 if (pi_test_on(&vmx->pi_desc)) { 6271 pi_clear_on(&vmx->pi_desc); 6272 /* 6273 * IOMMU can write to PID.ON, so the barrier matters even on UP. 6274 * But on x86 this is just a compiler barrier anyway. 6275 */ 6276 smp_mb__after_atomic(); 6277 max_irr_updated = 6278 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); 6279 6280 /* 6281 * If we are running L2 and L1 has a new pending interrupt 6282 * which can be injected, this may cause a vmexit or it may 6283 * be injected into L2. Either way, this interrupt will be 6284 * processed via KVM_REQ_EVENT, not RVI, because we do not use 6285 * virtual interrupt delivery to inject L1 interrupts into L2. 6286 */ 6287 if (is_guest_mode(vcpu) && max_irr_updated) 6288 kvm_make_request(KVM_REQ_EVENT, vcpu); 6289 } else { 6290 max_irr = kvm_lapic_find_highest_irr(vcpu); 6291 } 6292 vmx_hwapic_irr_update(vcpu, max_irr); 6293 return max_irr; 6294 } 6295 6296 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) 6297 { 6298 if (!kvm_vcpu_apicv_active(vcpu)) 6299 return; 6300 6301 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); 6302 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); 6303 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); 6304 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); 6305 } 6306 6307 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu) 6308 { 6309 struct vcpu_vmx *vmx = to_vmx(vcpu); 6310 6311 pi_clear_on(&vmx->pi_desc); 6312 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); 6313 } 6314 6315 void vmx_do_interrupt_nmi_irqoff(unsigned long entry); 6316 6317 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu, 6318 unsigned long entry) 6319 { 6320 kvm_before_interrupt(vcpu); 6321 vmx_do_interrupt_nmi_irqoff(entry); 6322 kvm_after_interrupt(vcpu); 6323 } 6324 6325 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx) 6326 { 6327 const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist; 6328 u32 intr_info = vmx_get_intr_info(&vmx->vcpu); 6329 6330 /* if exit due to PF check for async PF */ 6331 if (is_page_fault(intr_info)) 6332 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags(); 6333 /* Handle machine checks before interrupts are enabled */ 6334 else if (is_machine_check(intr_info)) 6335 kvm_machine_check(); 6336 /* We need to handle NMIs before interrupts are enabled */ 6337 else if (is_nmi(intr_info)) 6338 handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry); 6339 } 6340 6341 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu) 6342 { 6343 u32 intr_info = vmx_get_intr_info(vcpu); 6344 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK; 6345 gate_desc *desc = (gate_desc *)host_idt_base + vector; 6346 6347 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm, 6348 "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info)) 6349 return; 6350 6351 handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc)); 6352 } 6353 6354 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu) 6355 { 6356 struct vcpu_vmx *vmx = to_vmx(vcpu); 6357 6358 if (vmx->emulation_required) 6359 return; 6360 6361 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6362 handle_external_interrupt_irqoff(vcpu); 6363 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI) 6364 handle_exception_nmi_irqoff(vmx); 6365 } 6366 6367 /* 6368 * The kvm parameter can be NULL (module initialization, or invocation before 6369 * VM creation). Be sure to check the kvm parameter before using it. 6370 */ 6371 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index) 6372 { 6373 switch (index) { 6374 case MSR_IA32_SMBASE: 6375 /* 6376 * We cannot do SMM unless we can run the guest in big 6377 * real mode. 6378 */ 6379 return enable_unrestricted_guest || emulate_invalid_guest_state; 6380 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 6381 return nested; 6382 case MSR_AMD64_VIRT_SPEC_CTRL: 6383 case MSR_AMD64_TSC_RATIO: 6384 /* This is AMD only. */ 6385 return false; 6386 default: 6387 return true; 6388 } 6389 } 6390 6391 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) 6392 { 6393 u32 exit_intr_info; 6394 bool unblock_nmi; 6395 u8 vector; 6396 bool idtv_info_valid; 6397 6398 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6399 6400 if (enable_vnmi) { 6401 if (vmx->loaded_vmcs->nmi_known_unmasked) 6402 return; 6403 6404 exit_intr_info = vmx_get_intr_info(&vmx->vcpu); 6405 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; 6406 vector = exit_intr_info & INTR_INFO_VECTOR_MASK; 6407 /* 6408 * SDM 3: 27.7.1.2 (September 2008) 6409 * Re-set bit "block by NMI" before VM entry if vmexit caused by 6410 * a guest IRET fault. 6411 * SDM 3: 23.2.2 (September 2008) 6412 * Bit 12 is undefined in any of the following cases: 6413 * If the VM exit sets the valid bit in the IDT-vectoring 6414 * information field. 6415 * If the VM exit is due to a double fault. 6416 */ 6417 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && 6418 vector != DF_VECTOR && !idtv_info_valid) 6419 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 6420 GUEST_INTR_STATE_NMI); 6421 else 6422 vmx->loaded_vmcs->nmi_known_unmasked = 6423 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) 6424 & GUEST_INTR_STATE_NMI); 6425 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) 6426 vmx->loaded_vmcs->vnmi_blocked_time += 6427 ktime_to_ns(ktime_sub(ktime_get(), 6428 vmx->loaded_vmcs->entry_time)); 6429 } 6430 6431 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, 6432 u32 idt_vectoring_info, 6433 int instr_len_field, 6434 int error_code_field) 6435 { 6436 u8 vector; 6437 int type; 6438 bool idtv_info_valid; 6439 6440 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6441 6442 vcpu->arch.nmi_injected = false; 6443 kvm_clear_exception_queue(vcpu); 6444 kvm_clear_interrupt_queue(vcpu); 6445 6446 if (!idtv_info_valid) 6447 return; 6448 6449 kvm_make_request(KVM_REQ_EVENT, vcpu); 6450 6451 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; 6452 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; 6453 6454 switch (type) { 6455 case INTR_TYPE_NMI_INTR: 6456 vcpu->arch.nmi_injected = true; 6457 /* 6458 * SDM 3: 27.7.1.2 (September 2008) 6459 * Clear bit "block by NMI" before VM entry if a NMI 6460 * delivery faulted. 6461 */ 6462 vmx_set_nmi_mask(vcpu, false); 6463 break; 6464 case INTR_TYPE_SOFT_EXCEPTION: 6465 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6466 fallthrough; 6467 case INTR_TYPE_HARD_EXCEPTION: 6468 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { 6469 u32 err = vmcs_read32(error_code_field); 6470 kvm_requeue_exception_e(vcpu, vector, err); 6471 } else 6472 kvm_requeue_exception(vcpu, vector); 6473 break; 6474 case INTR_TYPE_SOFT_INTR: 6475 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6476 fallthrough; 6477 case INTR_TYPE_EXT_INTR: 6478 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); 6479 break; 6480 default: 6481 break; 6482 } 6483 } 6484 6485 static void vmx_complete_interrupts(struct vcpu_vmx *vmx) 6486 { 6487 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, 6488 VM_EXIT_INSTRUCTION_LEN, 6489 IDT_VECTORING_ERROR_CODE); 6490 } 6491 6492 static void vmx_cancel_injection(struct kvm_vcpu *vcpu) 6493 { 6494 __vmx_complete_interrupts(vcpu, 6495 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 6496 VM_ENTRY_INSTRUCTION_LEN, 6497 VM_ENTRY_EXCEPTION_ERROR_CODE); 6498 6499 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); 6500 } 6501 6502 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) 6503 { 6504 int i, nr_msrs; 6505 struct perf_guest_switch_msr *msrs; 6506 6507 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */ 6508 msrs = perf_guest_get_msrs(&nr_msrs); 6509 if (!msrs) 6510 return; 6511 6512 for (i = 0; i < nr_msrs; i++) 6513 if (msrs[i].host == msrs[i].guest) 6514 clear_atomic_switch_msr(vmx, msrs[i].msr); 6515 else 6516 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, 6517 msrs[i].host, false); 6518 } 6519 6520 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu) 6521 { 6522 struct vcpu_vmx *vmx = to_vmx(vcpu); 6523 u64 tscl; 6524 u32 delta_tsc; 6525 6526 if (vmx->req_immediate_exit) { 6527 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0); 6528 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 6529 } else if (vmx->hv_deadline_tsc != -1) { 6530 tscl = rdtsc(); 6531 if (vmx->hv_deadline_tsc > tscl) 6532 /* set_hv_timer ensures the delta fits in 32-bits */ 6533 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> 6534 cpu_preemption_timer_multi); 6535 else 6536 delta_tsc = 0; 6537 6538 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc); 6539 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 6540 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) { 6541 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1); 6542 vmx->loaded_vmcs->hv_timer_soft_disabled = true; 6543 } 6544 } 6545 6546 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp) 6547 { 6548 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) { 6549 vmx->loaded_vmcs->host_state.rsp = host_rsp; 6550 vmcs_writel(HOST_RSP, host_rsp); 6551 } 6552 } 6553 6554 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 6555 { 6556 switch (to_vmx(vcpu)->exit_reason.basic) { 6557 case EXIT_REASON_MSR_WRITE: 6558 return handle_fastpath_set_msr_irqoff(vcpu); 6559 case EXIT_REASON_PREEMPTION_TIMER: 6560 return handle_fastpath_preemption_timer(vcpu); 6561 default: 6562 return EXIT_FASTPATH_NONE; 6563 } 6564 } 6565 6566 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu, 6567 struct vcpu_vmx *vmx) 6568 { 6569 kvm_guest_enter_irqoff(); 6570 6571 /* L1D Flush includes CPU buffer clear to mitigate MDS */ 6572 if (static_branch_unlikely(&vmx_l1d_should_flush)) 6573 vmx_l1d_flush(vcpu); 6574 else if (static_branch_unlikely(&mds_user_clear)) 6575 mds_clear_cpu_buffers(); 6576 6577 if (vcpu->arch.cr2 != native_read_cr2()) 6578 native_write_cr2(vcpu->arch.cr2); 6579 6580 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, 6581 vmx->loaded_vmcs->launched); 6582 6583 vcpu->arch.cr2 = native_read_cr2(); 6584 6585 kvm_guest_exit_irqoff(); 6586 } 6587 6588 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu) 6589 { 6590 struct vcpu_vmx *vmx = to_vmx(vcpu); 6591 unsigned long cr3, cr4; 6592 6593 /* Record the guest's net vcpu time for enforced NMI injections. */ 6594 if (unlikely(!enable_vnmi && 6595 vmx->loaded_vmcs->soft_vnmi_blocked)) 6596 vmx->loaded_vmcs->entry_time = ktime_get(); 6597 6598 /* 6599 * Don't enter VMX if guest state is invalid, let the exit handler 6600 * start emulation until we arrive back to a valid state. Synthesize a 6601 * consistency check VM-Exit due to invalid guest state and bail. 6602 */ 6603 if (unlikely(vmx->emulation_required)) { 6604 6605 /* We don't emulate invalid state of a nested guest */ 6606 vmx->fail = is_guest_mode(vcpu); 6607 6608 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE; 6609 vmx->exit_reason.failed_vmentry = 1; 6610 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1); 6611 vmx->exit_qualification = ENTRY_FAIL_DEFAULT; 6612 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2); 6613 vmx->exit_intr_info = 0; 6614 return EXIT_FASTPATH_NONE; 6615 } 6616 6617 trace_kvm_entry(vcpu); 6618 6619 if (vmx->ple_window_dirty) { 6620 vmx->ple_window_dirty = false; 6621 vmcs_write32(PLE_WINDOW, vmx->ple_window); 6622 } 6623 6624 /* 6625 * We did this in prepare_switch_to_guest, because it needs to 6626 * be within srcu_read_lock. 6627 */ 6628 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync); 6629 6630 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP)) 6631 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); 6632 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP)) 6633 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); 6634 6635 cr3 = __get_current_cr3_fast(); 6636 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { 6637 vmcs_writel(HOST_CR3, cr3); 6638 vmx->loaded_vmcs->host_state.cr3 = cr3; 6639 } 6640 6641 cr4 = cr4_read_shadow(); 6642 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { 6643 vmcs_writel(HOST_CR4, cr4); 6644 vmx->loaded_vmcs->host_state.cr4 = cr4; 6645 } 6646 6647 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */ 6648 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 6649 set_debugreg(vcpu->arch.dr6, 6); 6650 6651 /* When single-stepping over STI and MOV SS, we must clear the 6652 * corresponding interruptibility bits in the guest state. Otherwise 6653 * vmentry fails as it then expects bit 14 (BS) in pending debug 6654 * exceptions being set, but that's not correct for the guest debugging 6655 * case. */ 6656 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 6657 vmx_set_interrupt_shadow(vcpu, 0); 6658 6659 kvm_load_guest_xsave_state(vcpu); 6660 6661 pt_guest_enter(vmx); 6662 6663 atomic_switch_perf_msrs(vmx); 6664 if (intel_pmu_lbr_is_enabled(vcpu)) 6665 vmx_passthrough_lbr_msrs(vcpu); 6666 6667 if (enable_preemption_timer) 6668 vmx_update_hv_timer(vcpu); 6669 6670 kvm_wait_lapic_expire(vcpu); 6671 6672 /* 6673 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 6674 * it's non-zero. Since vmentry is serialising on affected CPUs, there 6675 * is no need to worry about the conditional branch over the wrmsr 6676 * being speculatively taken. 6677 */ 6678 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0); 6679 6680 /* The actual VMENTER/EXIT is in the .noinstr.text section. */ 6681 vmx_vcpu_enter_exit(vcpu, vmx); 6682 6683 /* 6684 * We do not use IBRS in the kernel. If this vCPU has used the 6685 * SPEC_CTRL MSR it may have left it on; save the value and 6686 * turn it off. This is much more efficient than blindly adding 6687 * it to the atomic save/restore list. Especially as the former 6688 * (Saving guest MSRs on vmexit) doesn't even exist in KVM. 6689 * 6690 * For non-nested case: 6691 * If the L01 MSR bitmap does not intercept the MSR, then we need to 6692 * save it. 6693 * 6694 * For nested case: 6695 * If the L02 MSR bitmap does not intercept the MSR, then we need to 6696 * save it. 6697 */ 6698 if (unlikely(!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))) 6699 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); 6700 6701 x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0); 6702 6703 /* All fields are clean at this point */ 6704 if (static_branch_unlikely(&enable_evmcs)) { 6705 current_evmcs->hv_clean_fields |= 6706 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; 6707 6708 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu); 6709 } 6710 6711 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ 6712 if (vmx->host_debugctlmsr) 6713 update_debugctlmsr(vmx->host_debugctlmsr); 6714 6715 #ifndef CONFIG_X86_64 6716 /* 6717 * The sysexit path does not restore ds/es, so we must set them to 6718 * a reasonable value ourselves. 6719 * 6720 * We can't defer this to vmx_prepare_switch_to_host() since that 6721 * function may be executed in interrupt context, which saves and 6722 * restore segments around it, nullifying its effect. 6723 */ 6724 loadsegment(ds, __USER_DS); 6725 loadsegment(es, __USER_DS); 6726 #endif 6727 6728 vmx_register_cache_reset(vcpu); 6729 6730 pt_guest_exit(vmx); 6731 6732 kvm_load_host_xsave_state(vcpu); 6733 6734 if (is_guest_mode(vcpu)) { 6735 /* 6736 * Track VMLAUNCH/VMRESUME that have made past guest state 6737 * checking. 6738 */ 6739 if (vmx->nested.nested_run_pending && 6740 !vmx->exit_reason.failed_vmentry) 6741 ++vcpu->stat.nested_run; 6742 6743 vmx->nested.nested_run_pending = 0; 6744 } 6745 6746 vmx->idt_vectoring_info = 0; 6747 6748 if (unlikely(vmx->fail)) { 6749 vmx->exit_reason.full = 0xdead; 6750 return EXIT_FASTPATH_NONE; 6751 } 6752 6753 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON); 6754 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY)) 6755 kvm_machine_check(); 6756 6757 if (likely(!vmx->exit_reason.failed_vmentry)) 6758 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); 6759 6760 trace_kvm_exit(vcpu, KVM_ISA_VMX); 6761 6762 if (unlikely(vmx->exit_reason.failed_vmentry)) 6763 return EXIT_FASTPATH_NONE; 6764 6765 vmx->loaded_vmcs->launched = 1; 6766 6767 vmx_recover_nmi_blocking(vmx); 6768 vmx_complete_interrupts(vmx); 6769 6770 if (is_guest_mode(vcpu)) 6771 return EXIT_FASTPATH_NONE; 6772 6773 return vmx_exit_handlers_fastpath(vcpu); 6774 } 6775 6776 static void vmx_free_vcpu(struct kvm_vcpu *vcpu) 6777 { 6778 struct vcpu_vmx *vmx = to_vmx(vcpu); 6779 6780 if (enable_pml) 6781 vmx_destroy_pml_buffer(vmx); 6782 free_vpid(vmx->vpid); 6783 nested_vmx_free_vcpu(vcpu); 6784 free_loaded_vmcs(vmx->loaded_vmcs); 6785 } 6786 6787 static int vmx_create_vcpu(struct kvm_vcpu *vcpu) 6788 { 6789 struct vmx_uret_msr *tsx_ctrl; 6790 struct vcpu_vmx *vmx; 6791 int i, err; 6792 6793 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0); 6794 vmx = to_vmx(vcpu); 6795 6796 err = -ENOMEM; 6797 6798 vmx->vpid = allocate_vpid(); 6799 6800 /* 6801 * If PML is turned on, failure on enabling PML just results in failure 6802 * of creating the vcpu, therefore we can simplify PML logic (by 6803 * avoiding dealing with cases, such as enabling PML partially on vcpus 6804 * for the guest), etc. 6805 */ 6806 if (enable_pml) { 6807 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 6808 if (!vmx->pml_pg) 6809 goto free_vpid; 6810 } 6811 6812 for (i = 0; i < kvm_nr_uret_msrs; ++i) 6813 vmx->guest_uret_msrs[i].mask = -1ull; 6814 if (boot_cpu_has(X86_FEATURE_RTM)) { 6815 /* 6816 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception. 6817 * Keep the host value unchanged to avoid changing CPUID bits 6818 * under the host kernel's feet. 6819 */ 6820 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 6821 if (tsx_ctrl) 6822 tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR; 6823 } 6824 6825 err = alloc_loaded_vmcs(&vmx->vmcs01); 6826 if (err < 0) 6827 goto free_pml; 6828 6829 /* The MSR bitmap starts with all ones */ 6830 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS); 6831 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS); 6832 6833 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R); 6834 #ifdef CONFIG_X86_64 6835 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW); 6836 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW); 6837 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); 6838 #endif 6839 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); 6840 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); 6841 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); 6842 if (kvm_cstate_in_guest(vcpu->kvm)) { 6843 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R); 6844 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R); 6845 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R); 6846 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R); 6847 } 6848 6849 vmx->loaded_vmcs = &vmx->vmcs01; 6850 6851 if (cpu_need_virtualize_apic_accesses(vcpu)) { 6852 err = alloc_apic_access_page(vcpu->kvm); 6853 if (err) 6854 goto free_vmcs; 6855 } 6856 6857 if (enable_ept && !enable_unrestricted_guest) { 6858 err = init_rmode_identity_map(vcpu->kvm); 6859 if (err) 6860 goto free_vmcs; 6861 } 6862 6863 return 0; 6864 6865 free_vmcs: 6866 free_loaded_vmcs(vmx->loaded_vmcs); 6867 free_pml: 6868 vmx_destroy_pml_buffer(vmx); 6869 free_vpid: 6870 free_vpid(vmx->vpid); 6871 return err; 6872 } 6873 6874 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 6875 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 6876 6877 static int vmx_vm_init(struct kvm *kvm) 6878 { 6879 if (!ple_gap) 6880 kvm->arch.pause_in_guest = true; 6881 6882 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { 6883 switch (l1tf_mitigation) { 6884 case L1TF_MITIGATION_OFF: 6885 case L1TF_MITIGATION_FLUSH_NOWARN: 6886 /* 'I explicitly don't care' is set */ 6887 break; 6888 case L1TF_MITIGATION_FLUSH: 6889 case L1TF_MITIGATION_FLUSH_NOSMT: 6890 case L1TF_MITIGATION_FULL: 6891 /* 6892 * Warn upon starting the first VM in a potentially 6893 * insecure environment. 6894 */ 6895 if (sched_smt_active()) 6896 pr_warn_once(L1TF_MSG_SMT); 6897 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) 6898 pr_warn_once(L1TF_MSG_L1D); 6899 break; 6900 case L1TF_MITIGATION_FULL_FORCE: 6901 /* Flush is enforced */ 6902 break; 6903 } 6904 } 6905 return 0; 6906 } 6907 6908 static int __init vmx_check_processor_compat(void) 6909 { 6910 struct vmcs_config vmcs_conf; 6911 struct vmx_capability vmx_cap; 6912 6913 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 6914 !this_cpu_has(X86_FEATURE_VMX)) { 6915 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id()); 6916 return -EIO; 6917 } 6918 6919 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) 6920 return -EIO; 6921 if (nested) 6922 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept); 6923 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) { 6924 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n", 6925 smp_processor_id()); 6926 return -EIO; 6927 } 6928 return 0; 6929 } 6930 6931 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 6932 { 6933 u8 cache; 6934 u64 ipat = 0; 6935 6936 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in 6937 * memory aliases with conflicting memory types and sometimes MCEs. 6938 * We have to be careful as to what are honored and when. 6939 * 6940 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to 6941 * UC. The effective memory type is UC or WC depending on guest PAT. 6942 * This was historically the source of MCEs and we want to be 6943 * conservative. 6944 * 6945 * When there is no need to deal with noncoherent DMA (e.g., no VT-d 6946 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The 6947 * EPT memory type is set to WB. The effective memory type is forced 6948 * WB. 6949 * 6950 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The 6951 * EPT memory type is used to emulate guest CD/MTRR. 6952 */ 6953 6954 if (is_mmio) { 6955 cache = MTRR_TYPE_UNCACHABLE; 6956 goto exit; 6957 } 6958 6959 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) { 6960 ipat = VMX_EPT_IPAT_BIT; 6961 cache = MTRR_TYPE_WRBACK; 6962 goto exit; 6963 } 6964 6965 if (kvm_read_cr0(vcpu) & X86_CR0_CD) { 6966 ipat = VMX_EPT_IPAT_BIT; 6967 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 6968 cache = MTRR_TYPE_WRBACK; 6969 else 6970 cache = MTRR_TYPE_UNCACHABLE; 6971 goto exit; 6972 } 6973 6974 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn); 6975 6976 exit: 6977 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat; 6978 } 6979 6980 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl) 6981 { 6982 /* 6983 * These bits in the secondary execution controls field 6984 * are dynamic, the others are mostly based on the hypervisor 6985 * architecture and the guest's CPUID. Do not touch the 6986 * dynamic bits. 6987 */ 6988 u32 mask = 6989 SECONDARY_EXEC_SHADOW_VMCS | 6990 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 6991 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 6992 SECONDARY_EXEC_DESC; 6993 6994 u32 cur_ctl = secondary_exec_controls_get(vmx); 6995 6996 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask)); 6997 } 6998 6999 /* 7000 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits 7001 * (indicating "allowed-1") if they are supported in the guest's CPUID. 7002 */ 7003 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) 7004 { 7005 struct vcpu_vmx *vmx = to_vmx(vcpu); 7006 struct kvm_cpuid_entry2 *entry; 7007 7008 vmx->nested.msrs.cr0_fixed1 = 0xffffffff; 7009 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; 7010 7011 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ 7012 if (entry && (entry->_reg & (_cpuid_mask))) \ 7013 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ 7014 } while (0) 7015 7016 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0); 7017 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME)); 7018 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME)); 7019 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC)); 7020 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE)); 7021 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE)); 7022 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE)); 7023 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE)); 7024 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE)); 7025 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR)); 7026 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM)); 7027 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX)); 7028 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX)); 7029 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID)); 7030 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE)); 7031 7032 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0); 7033 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE)); 7034 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP)); 7035 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP)); 7036 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU)); 7037 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP)); 7038 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57)); 7039 7040 #undef cr4_fixed1_update 7041 } 7042 7043 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu) 7044 { 7045 struct vcpu_vmx *vmx = to_vmx(vcpu); 7046 7047 if (kvm_mpx_supported()) { 7048 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX); 7049 7050 if (mpx_enabled) { 7051 vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS; 7052 vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS; 7053 } else { 7054 vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS; 7055 vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS; 7056 } 7057 } 7058 } 7059 7060 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) 7061 { 7062 struct vcpu_vmx *vmx = to_vmx(vcpu); 7063 struct kvm_cpuid_entry2 *best = NULL; 7064 int i; 7065 7066 for (i = 0; i < PT_CPUID_LEAVES; i++) { 7067 best = kvm_find_cpuid_entry(vcpu, 0x14, i); 7068 if (!best) 7069 return; 7070 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; 7071 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; 7072 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; 7073 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; 7074 } 7075 7076 /* Get the number of configurable Address Ranges for filtering */ 7077 vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps, 7078 PT_CAP_num_address_ranges); 7079 7080 /* Initialize and clear the no dependency bits */ 7081 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | 7082 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC | 7083 RTIT_CTL_BRANCH_EN); 7084 7085 /* 7086 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise 7087 * will inject an #GP 7088 */ 7089 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) 7090 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; 7091 7092 /* 7093 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and 7094 * PSBFreq can be set 7095 */ 7096 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) 7097 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | 7098 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); 7099 7100 /* 7101 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set 7102 */ 7103 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) 7104 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | 7105 RTIT_CTL_MTC_RANGE); 7106 7107 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ 7108 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) 7109 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | 7110 RTIT_CTL_PTW_EN); 7111 7112 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ 7113 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) 7114 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; 7115 7116 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ 7117 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) 7118 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; 7119 7120 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */ 7121 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) 7122 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; 7123 7124 /* unmask address range configure area */ 7125 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) 7126 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4)); 7127 } 7128 7129 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 7130 { 7131 struct vcpu_vmx *vmx = to_vmx(vcpu); 7132 7133 /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */ 7134 vcpu->arch.xsaves_enabled = false; 7135 7136 vmx_setup_uret_msrs(vmx); 7137 7138 if (cpu_has_secondary_exec_ctrls()) 7139 vmcs_set_secondary_exec_control(vmx, 7140 vmx_secondary_exec_control(vmx)); 7141 7142 if (nested_vmx_allowed(vcpu)) 7143 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 7144 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7145 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; 7146 else 7147 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 7148 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7149 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX); 7150 7151 if (nested_vmx_allowed(vcpu)) { 7152 nested_vmx_cr_fixed1_bits_update(vcpu); 7153 nested_vmx_entry_exit_ctls_update(vcpu); 7154 } 7155 7156 if (boot_cpu_has(X86_FEATURE_INTEL_PT) && 7157 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT)) 7158 update_intel_pt_cfg(vcpu); 7159 7160 if (boot_cpu_has(X86_FEATURE_RTM)) { 7161 struct vmx_uret_msr *msr; 7162 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7163 if (msr) { 7164 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM); 7165 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE); 7166 } 7167 } 7168 7169 set_cr4_guest_host_mask(vmx); 7170 7171 vmx_write_encls_bitmap(vcpu, NULL); 7172 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX)) 7173 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED; 7174 else 7175 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED; 7176 7177 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 7178 vmx->msr_ia32_feature_control_valid_bits |= 7179 FEAT_CTL_SGX_LC_ENABLED; 7180 else 7181 vmx->msr_ia32_feature_control_valid_bits &= 7182 ~FEAT_CTL_SGX_LC_ENABLED; 7183 7184 /* Refresh #PF interception to account for MAXPHYADDR changes. */ 7185 vmx_update_exception_bitmap(vcpu); 7186 } 7187 7188 static __init void vmx_set_cpu_caps(void) 7189 { 7190 kvm_set_cpu_caps(); 7191 7192 /* CPUID 0x1 */ 7193 if (nested) 7194 kvm_cpu_cap_set(X86_FEATURE_VMX); 7195 7196 /* CPUID 0x7 */ 7197 if (kvm_mpx_supported()) 7198 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX); 7199 if (!cpu_has_vmx_invpcid()) 7200 kvm_cpu_cap_clear(X86_FEATURE_INVPCID); 7201 if (vmx_pt_mode_is_host_guest()) 7202 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT); 7203 7204 if (!enable_sgx) { 7205 kvm_cpu_cap_clear(X86_FEATURE_SGX); 7206 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC); 7207 kvm_cpu_cap_clear(X86_FEATURE_SGX1); 7208 kvm_cpu_cap_clear(X86_FEATURE_SGX2); 7209 } 7210 7211 if (vmx_umip_emulated()) 7212 kvm_cpu_cap_set(X86_FEATURE_UMIP); 7213 7214 /* CPUID 0xD.1 */ 7215 supported_xss = 0; 7216 if (!cpu_has_vmx_xsaves()) 7217 kvm_cpu_cap_clear(X86_FEATURE_XSAVES); 7218 7219 /* CPUID 0x80000001 and 0x7 (RDPID) */ 7220 if (!cpu_has_vmx_rdtscp()) { 7221 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP); 7222 kvm_cpu_cap_clear(X86_FEATURE_RDPID); 7223 } 7224 7225 if (cpu_has_vmx_waitpkg()) 7226 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG); 7227 } 7228 7229 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu) 7230 { 7231 to_vmx(vcpu)->req_immediate_exit = true; 7232 } 7233 7234 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu, 7235 struct x86_instruction_info *info) 7236 { 7237 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7238 unsigned short port; 7239 bool intercept; 7240 int size; 7241 7242 if (info->intercept == x86_intercept_in || 7243 info->intercept == x86_intercept_ins) { 7244 port = info->src_val; 7245 size = info->dst_bytes; 7246 } else { 7247 port = info->dst_val; 7248 size = info->src_bytes; 7249 } 7250 7251 /* 7252 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction 7253 * VM-exits depend on the 'unconditional IO exiting' VM-execution 7254 * control. 7255 * 7256 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps. 7257 */ 7258 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) 7259 intercept = nested_cpu_has(vmcs12, 7260 CPU_BASED_UNCOND_IO_EXITING); 7261 else 7262 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size); 7263 7264 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7265 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; 7266 } 7267 7268 static int vmx_check_intercept(struct kvm_vcpu *vcpu, 7269 struct x86_instruction_info *info, 7270 enum x86_intercept_stage stage, 7271 struct x86_exception *exception) 7272 { 7273 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7274 7275 switch (info->intercept) { 7276 /* 7277 * RDPID causes #UD if disabled through secondary execution controls. 7278 * Because it is marked as EmulateOnUD, we need to intercept it here. 7279 * Note, RDPID is hidden behind ENABLE_RDTSCP. 7280 */ 7281 case x86_intercept_rdpid: 7282 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) { 7283 exception->vector = UD_VECTOR; 7284 exception->error_code_valid = false; 7285 return X86EMUL_PROPAGATE_FAULT; 7286 } 7287 break; 7288 7289 case x86_intercept_in: 7290 case x86_intercept_ins: 7291 case x86_intercept_out: 7292 case x86_intercept_outs: 7293 return vmx_check_intercept_io(vcpu, info); 7294 7295 case x86_intercept_lgdt: 7296 case x86_intercept_lidt: 7297 case x86_intercept_lldt: 7298 case x86_intercept_ltr: 7299 case x86_intercept_sgdt: 7300 case x86_intercept_sidt: 7301 case x86_intercept_sldt: 7302 case x86_intercept_str: 7303 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC)) 7304 return X86EMUL_CONTINUE; 7305 7306 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7307 break; 7308 7309 /* TODO: check more intercepts... */ 7310 default: 7311 break; 7312 } 7313 7314 return X86EMUL_UNHANDLEABLE; 7315 } 7316 7317 #ifdef CONFIG_X86_64 7318 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ 7319 static inline int u64_shl_div_u64(u64 a, unsigned int shift, 7320 u64 divisor, u64 *result) 7321 { 7322 u64 low = a << shift, high = a >> (64 - shift); 7323 7324 /* To avoid the overflow on divq */ 7325 if (high >= divisor) 7326 return 1; 7327 7328 /* Low hold the result, high hold rem which is discarded */ 7329 asm("divq %2\n\t" : "=a" (low), "=d" (high) : 7330 "rm" (divisor), "0" (low), "1" (high)); 7331 *result = low; 7332 7333 return 0; 7334 } 7335 7336 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 7337 bool *expired) 7338 { 7339 struct vcpu_vmx *vmx; 7340 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; 7341 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer; 7342 7343 vmx = to_vmx(vcpu); 7344 tscl = rdtsc(); 7345 guest_tscl = kvm_read_l1_tsc(vcpu, tscl); 7346 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; 7347 lapic_timer_advance_cycles = nsec_to_cycles(vcpu, 7348 ktimer->timer_advance_ns); 7349 7350 if (delta_tsc > lapic_timer_advance_cycles) 7351 delta_tsc -= lapic_timer_advance_cycles; 7352 else 7353 delta_tsc = 0; 7354 7355 /* Convert to host delta tsc if tsc scaling is enabled */ 7356 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio && 7357 delta_tsc && u64_shl_div_u64(delta_tsc, 7358 kvm_tsc_scaling_ratio_frac_bits, 7359 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc)) 7360 return -ERANGE; 7361 7362 /* 7363 * If the delta tsc can't fit in the 32 bit after the multi shift, 7364 * we can't use the preemption timer. 7365 * It's possible that it fits on later vmentries, but checking 7366 * on every vmentry is costly so we just use an hrtimer. 7367 */ 7368 if (delta_tsc >> (cpu_preemption_timer_multi + 32)) 7369 return -ERANGE; 7370 7371 vmx->hv_deadline_tsc = tscl + delta_tsc; 7372 *expired = !delta_tsc; 7373 return 0; 7374 } 7375 7376 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) 7377 { 7378 to_vmx(vcpu)->hv_deadline_tsc = -1; 7379 } 7380 #endif 7381 7382 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) 7383 { 7384 if (!kvm_pause_in_guest(vcpu->kvm)) 7385 shrink_ple_window(vcpu); 7386 } 7387 7388 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu) 7389 { 7390 struct vcpu_vmx *vmx = to_vmx(vcpu); 7391 7392 if (is_guest_mode(vcpu)) { 7393 vmx->nested.update_vmcs01_cpu_dirty_logging = true; 7394 return; 7395 } 7396 7397 /* 7398 * Note, cpu_dirty_logging_count can be changed concurrent with this 7399 * code, but in that case another update request will be made and so 7400 * the guest will never run with a stale PML value. 7401 */ 7402 if (vcpu->kvm->arch.cpu_dirty_logging_count) 7403 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML); 7404 else 7405 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML); 7406 } 7407 7408 static int vmx_pre_block(struct kvm_vcpu *vcpu) 7409 { 7410 if (pi_pre_block(vcpu)) 7411 return 1; 7412 7413 if (kvm_lapic_hv_timer_in_use(vcpu)) 7414 kvm_lapic_switch_to_sw_timer(vcpu); 7415 7416 return 0; 7417 } 7418 7419 static void vmx_post_block(struct kvm_vcpu *vcpu) 7420 { 7421 if (kvm_x86_ops.set_hv_timer) 7422 kvm_lapic_switch_to_hv_timer(vcpu); 7423 7424 pi_post_block(vcpu); 7425 } 7426 7427 static void vmx_setup_mce(struct kvm_vcpu *vcpu) 7428 { 7429 if (vcpu->arch.mcg_cap & MCG_LMCE_P) 7430 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 7431 FEAT_CTL_LMCE_ENABLED; 7432 else 7433 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 7434 ~FEAT_CTL_LMCE_ENABLED; 7435 } 7436 7437 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 7438 { 7439 /* we need a nested vmexit to enter SMM, postpone if run is pending */ 7440 if (to_vmx(vcpu)->nested.nested_run_pending) 7441 return -EBUSY; 7442 return !is_smm(vcpu); 7443 } 7444 7445 static int vmx_enter_smm(struct kvm_vcpu *vcpu, char *smstate) 7446 { 7447 struct vcpu_vmx *vmx = to_vmx(vcpu); 7448 7449 vmx->nested.smm.guest_mode = is_guest_mode(vcpu); 7450 if (vmx->nested.smm.guest_mode) 7451 nested_vmx_vmexit(vcpu, -1, 0, 0); 7452 7453 vmx->nested.smm.vmxon = vmx->nested.vmxon; 7454 vmx->nested.vmxon = false; 7455 vmx_clear_hlt(vcpu); 7456 return 0; 7457 } 7458 7459 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) 7460 { 7461 struct vcpu_vmx *vmx = to_vmx(vcpu); 7462 int ret; 7463 7464 if (vmx->nested.smm.vmxon) { 7465 vmx->nested.vmxon = true; 7466 vmx->nested.smm.vmxon = false; 7467 } 7468 7469 if (vmx->nested.smm.guest_mode) { 7470 ret = nested_vmx_enter_non_root_mode(vcpu, false); 7471 if (ret) 7472 return ret; 7473 7474 vmx->nested.smm.guest_mode = false; 7475 } 7476 return 0; 7477 } 7478 7479 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu) 7480 { 7481 /* RSM will cause a vmexit anyway. */ 7482 } 7483 7484 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 7485 { 7486 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu); 7487 } 7488 7489 static void vmx_migrate_timers(struct kvm_vcpu *vcpu) 7490 { 7491 if (is_guest_mode(vcpu)) { 7492 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer; 7493 7494 if (hrtimer_try_to_cancel(timer) == 1) 7495 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 7496 } 7497 } 7498 7499 static void hardware_unsetup(void) 7500 { 7501 kvm_set_posted_intr_wakeup_handler(NULL); 7502 7503 if (nested) 7504 nested_vmx_hardware_unsetup(); 7505 7506 free_kvm_area(); 7507 } 7508 7509 static bool vmx_check_apicv_inhibit_reasons(ulong bit) 7510 { 7511 ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) | 7512 BIT(APICV_INHIBIT_REASON_HYPERV) | 7513 BIT(APICV_INHIBIT_REASON_BLOCKIRQ); 7514 7515 return supported & BIT(bit); 7516 } 7517 7518 static struct kvm_x86_ops vmx_x86_ops __initdata = { 7519 .name = "kvm_intel", 7520 7521 .hardware_unsetup = hardware_unsetup, 7522 7523 .hardware_enable = hardware_enable, 7524 .hardware_disable = hardware_disable, 7525 .cpu_has_accelerated_tpr = report_flexpriority, 7526 .has_emulated_msr = vmx_has_emulated_msr, 7527 7528 .vm_size = sizeof(struct kvm_vmx), 7529 .vm_init = vmx_vm_init, 7530 7531 .vcpu_create = vmx_create_vcpu, 7532 .vcpu_free = vmx_free_vcpu, 7533 .vcpu_reset = vmx_vcpu_reset, 7534 7535 .prepare_guest_switch = vmx_prepare_switch_to_guest, 7536 .vcpu_load = vmx_vcpu_load, 7537 .vcpu_put = vmx_vcpu_put, 7538 7539 .update_exception_bitmap = vmx_update_exception_bitmap, 7540 .get_msr_feature = vmx_get_msr_feature, 7541 .get_msr = vmx_get_msr, 7542 .set_msr = vmx_set_msr, 7543 .get_segment_base = vmx_get_segment_base, 7544 .get_segment = vmx_get_segment, 7545 .set_segment = vmx_set_segment, 7546 .get_cpl = vmx_get_cpl, 7547 .get_cs_db_l_bits = vmx_get_cs_db_l_bits, 7548 .set_cr0 = vmx_set_cr0, 7549 .is_valid_cr4 = vmx_is_valid_cr4, 7550 .set_cr4 = vmx_set_cr4, 7551 .set_efer = vmx_set_efer, 7552 .get_idt = vmx_get_idt, 7553 .set_idt = vmx_set_idt, 7554 .get_gdt = vmx_get_gdt, 7555 .set_gdt = vmx_set_gdt, 7556 .set_dr7 = vmx_set_dr7, 7557 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, 7558 .cache_reg = vmx_cache_reg, 7559 .get_rflags = vmx_get_rflags, 7560 .set_rflags = vmx_set_rflags, 7561 7562 .tlb_flush_all = vmx_flush_tlb_all, 7563 .tlb_flush_current = vmx_flush_tlb_current, 7564 .tlb_flush_gva = vmx_flush_tlb_gva, 7565 .tlb_flush_guest = vmx_flush_tlb_guest, 7566 7567 .run = vmx_vcpu_run, 7568 .handle_exit = vmx_handle_exit, 7569 .skip_emulated_instruction = vmx_skip_emulated_instruction, 7570 .update_emulated_instruction = vmx_update_emulated_instruction, 7571 .set_interrupt_shadow = vmx_set_interrupt_shadow, 7572 .get_interrupt_shadow = vmx_get_interrupt_shadow, 7573 .patch_hypercall = vmx_patch_hypercall, 7574 .set_irq = vmx_inject_irq, 7575 .set_nmi = vmx_inject_nmi, 7576 .queue_exception = vmx_queue_exception, 7577 .cancel_injection = vmx_cancel_injection, 7578 .interrupt_allowed = vmx_interrupt_allowed, 7579 .nmi_allowed = vmx_nmi_allowed, 7580 .get_nmi_mask = vmx_get_nmi_mask, 7581 .set_nmi_mask = vmx_set_nmi_mask, 7582 .enable_nmi_window = vmx_enable_nmi_window, 7583 .enable_irq_window = vmx_enable_irq_window, 7584 .update_cr8_intercept = vmx_update_cr8_intercept, 7585 .set_virtual_apic_mode = vmx_set_virtual_apic_mode, 7586 .set_apic_access_page_addr = vmx_set_apic_access_page_addr, 7587 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, 7588 .load_eoi_exitmap = vmx_load_eoi_exitmap, 7589 .apicv_post_state_restore = vmx_apicv_post_state_restore, 7590 .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons, 7591 .hwapic_irr_update = vmx_hwapic_irr_update, 7592 .hwapic_isr_update = vmx_hwapic_isr_update, 7593 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt, 7594 .sync_pir_to_irr = vmx_sync_pir_to_irr, 7595 .deliver_posted_interrupt = vmx_deliver_posted_interrupt, 7596 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt, 7597 7598 .set_tss_addr = vmx_set_tss_addr, 7599 .set_identity_map_addr = vmx_set_identity_map_addr, 7600 .get_mt_mask = vmx_get_mt_mask, 7601 7602 .get_exit_info = vmx_get_exit_info, 7603 7604 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid, 7605 7606 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, 7607 7608 .get_l2_tsc_offset = vmx_get_l2_tsc_offset, 7609 .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier, 7610 .write_tsc_offset = vmx_write_tsc_offset, 7611 .write_tsc_multiplier = vmx_write_tsc_multiplier, 7612 7613 .load_mmu_pgd = vmx_load_mmu_pgd, 7614 7615 .check_intercept = vmx_check_intercept, 7616 .handle_exit_irqoff = vmx_handle_exit_irqoff, 7617 7618 .request_immediate_exit = vmx_request_immediate_exit, 7619 7620 .sched_in = vmx_sched_in, 7621 7622 .cpu_dirty_log_size = PML_ENTITY_NUM, 7623 .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging, 7624 7625 .pre_block = vmx_pre_block, 7626 .post_block = vmx_post_block, 7627 7628 .pmu_ops = &intel_pmu_ops, 7629 .nested_ops = &vmx_nested_ops, 7630 7631 .update_pi_irte = pi_update_irte, 7632 .start_assignment = vmx_pi_start_assignment, 7633 7634 #ifdef CONFIG_X86_64 7635 .set_hv_timer = vmx_set_hv_timer, 7636 .cancel_hv_timer = vmx_cancel_hv_timer, 7637 #endif 7638 7639 .setup_mce = vmx_setup_mce, 7640 7641 .smi_allowed = vmx_smi_allowed, 7642 .enter_smm = vmx_enter_smm, 7643 .leave_smm = vmx_leave_smm, 7644 .enable_smi_window = vmx_enable_smi_window, 7645 7646 .can_emulate_instruction = vmx_can_emulate_instruction, 7647 .apic_init_signal_blocked = vmx_apic_init_signal_blocked, 7648 .migrate_timers = vmx_migrate_timers, 7649 7650 .msr_filter_changed = vmx_msr_filter_changed, 7651 .complete_emulated_msr = kvm_complete_insn_gp, 7652 7653 .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector, 7654 }; 7655 7656 static __init void vmx_setup_user_return_msrs(void) 7657 { 7658 7659 /* 7660 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm 7661 * will emulate SYSCALL in legacy mode if the vendor string in guest 7662 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To 7663 * support this emulation, MSR_STAR is included in the list for i386, 7664 * but is never loaded into hardware. MSR_CSTAR is also never loaded 7665 * into hardware and is here purely for emulation purposes. 7666 */ 7667 const u32 vmx_uret_msrs_list[] = { 7668 #ifdef CONFIG_X86_64 7669 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, 7670 #endif 7671 MSR_EFER, MSR_TSC_AUX, MSR_STAR, 7672 MSR_IA32_TSX_CTRL, 7673 }; 7674 int i; 7675 7676 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS); 7677 7678 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) 7679 kvm_add_user_return_msr(vmx_uret_msrs_list[i]); 7680 } 7681 7682 static __init int hardware_setup(void) 7683 { 7684 unsigned long host_bndcfgs; 7685 struct desc_ptr dt; 7686 int r, ept_lpage_level; 7687 7688 store_idt(&dt); 7689 host_idt_base = dt.address; 7690 7691 vmx_setup_user_return_msrs(); 7692 7693 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) 7694 return -EIO; 7695 7696 if (boot_cpu_has(X86_FEATURE_NX)) 7697 kvm_enable_efer_bits(EFER_NX); 7698 7699 if (boot_cpu_has(X86_FEATURE_MPX)) { 7700 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); 7701 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost"); 7702 } 7703 7704 if (!cpu_has_vmx_mpx()) 7705 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 7706 XFEATURE_MASK_BNDCSR); 7707 7708 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || 7709 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) 7710 enable_vpid = 0; 7711 7712 if (!cpu_has_vmx_ept() || 7713 !cpu_has_vmx_ept_4levels() || 7714 !cpu_has_vmx_ept_mt_wb() || 7715 !cpu_has_vmx_invept_global()) 7716 enable_ept = 0; 7717 7718 /* NX support is required for shadow paging. */ 7719 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) { 7720 pr_err_ratelimited("kvm: NX (Execute Disable) not supported\n"); 7721 return -EOPNOTSUPP; 7722 } 7723 7724 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) 7725 enable_ept_ad_bits = 0; 7726 7727 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) 7728 enable_unrestricted_guest = 0; 7729 7730 if (!cpu_has_vmx_flexpriority()) 7731 flexpriority_enabled = 0; 7732 7733 if (!cpu_has_virtual_nmis()) 7734 enable_vnmi = 0; 7735 7736 /* 7737 * set_apic_access_page_addr() is used to reload apic access 7738 * page upon invalidation. No need to do anything if not 7739 * using the APIC_ACCESS_ADDR VMCS field. 7740 */ 7741 if (!flexpriority_enabled) 7742 vmx_x86_ops.set_apic_access_page_addr = NULL; 7743 7744 if (!cpu_has_vmx_tpr_shadow()) 7745 vmx_x86_ops.update_cr8_intercept = NULL; 7746 7747 #if IS_ENABLED(CONFIG_HYPERV) 7748 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH 7749 && enable_ept) { 7750 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb; 7751 vmx_x86_ops.tlb_remote_flush_with_range = 7752 hv_remote_flush_tlb_with_range; 7753 } 7754 #endif 7755 7756 if (!cpu_has_vmx_ple()) { 7757 ple_gap = 0; 7758 ple_window = 0; 7759 ple_window_grow = 0; 7760 ple_window_max = 0; 7761 ple_window_shrink = 0; 7762 } 7763 7764 if (!cpu_has_vmx_apicv()) { 7765 enable_apicv = 0; 7766 vmx_x86_ops.sync_pir_to_irr = NULL; 7767 } 7768 7769 if (cpu_has_vmx_tsc_scaling()) { 7770 kvm_has_tsc_control = true; 7771 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; 7772 kvm_tsc_scaling_ratio_frac_bits = 48; 7773 } 7774 7775 kvm_has_bus_lock_exit = cpu_has_vmx_bus_lock_detection(); 7776 7777 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ 7778 7779 if (enable_ept) 7780 kvm_mmu_set_ept_masks(enable_ept_ad_bits, 7781 cpu_has_vmx_ept_execute_only()); 7782 7783 if (!enable_ept) 7784 ept_lpage_level = 0; 7785 else if (cpu_has_vmx_ept_1g_page()) 7786 ept_lpage_level = PG_LEVEL_1G; 7787 else if (cpu_has_vmx_ept_2m_page()) 7788 ept_lpage_level = PG_LEVEL_2M; 7789 else 7790 ept_lpage_level = PG_LEVEL_4K; 7791 kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(), 7792 ept_lpage_level); 7793 7794 /* 7795 * Only enable PML when hardware supports PML feature, and both EPT 7796 * and EPT A/D bit features are enabled -- PML depends on them to work. 7797 */ 7798 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) 7799 enable_pml = 0; 7800 7801 if (!enable_pml) 7802 vmx_x86_ops.cpu_dirty_log_size = 0; 7803 7804 if (!cpu_has_vmx_preemption_timer()) 7805 enable_preemption_timer = false; 7806 7807 if (enable_preemption_timer) { 7808 u64 use_timer_freq = 5000ULL * 1000 * 1000; 7809 u64 vmx_msr; 7810 7811 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr); 7812 cpu_preemption_timer_multi = 7813 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; 7814 7815 if (tsc_khz) 7816 use_timer_freq = (u64)tsc_khz * 1000; 7817 use_timer_freq >>= cpu_preemption_timer_multi; 7818 7819 /* 7820 * KVM "disables" the preemption timer by setting it to its max 7821 * value. Don't use the timer if it might cause spurious exits 7822 * at a rate faster than 0.1 Hz (of uninterrupted guest time). 7823 */ 7824 if (use_timer_freq > 0xffffffffu / 10) 7825 enable_preemption_timer = false; 7826 } 7827 7828 if (!enable_preemption_timer) { 7829 vmx_x86_ops.set_hv_timer = NULL; 7830 vmx_x86_ops.cancel_hv_timer = NULL; 7831 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit; 7832 } 7833 7834 kvm_mce_cap_supported |= MCG_LMCE_P; 7835 7836 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) 7837 return -EINVAL; 7838 if (!enable_ept || !cpu_has_vmx_intel_pt()) 7839 pt_mode = PT_MODE_SYSTEM; 7840 7841 setup_default_sgx_lepubkeyhash(); 7842 7843 if (nested) { 7844 nested_vmx_setup_ctls_msrs(&vmcs_config.nested, 7845 vmx_capability.ept); 7846 7847 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); 7848 if (r) 7849 return r; 7850 } 7851 7852 vmx_set_cpu_caps(); 7853 7854 r = alloc_kvm_area(); 7855 if (r) 7856 nested_vmx_hardware_unsetup(); 7857 7858 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler); 7859 7860 return r; 7861 } 7862 7863 static struct kvm_x86_init_ops vmx_init_ops __initdata = { 7864 .cpu_has_kvm_support = cpu_has_kvm_support, 7865 .disabled_by_bios = vmx_disabled_by_bios, 7866 .check_processor_compatibility = vmx_check_processor_compat, 7867 .hardware_setup = hardware_setup, 7868 7869 .runtime_ops = &vmx_x86_ops, 7870 }; 7871 7872 static void vmx_cleanup_l1d_flush(void) 7873 { 7874 if (vmx_l1d_flush_pages) { 7875 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); 7876 vmx_l1d_flush_pages = NULL; 7877 } 7878 /* Restore state so sysfs ignores VMX */ 7879 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 7880 } 7881 7882 static void vmx_exit(void) 7883 { 7884 #ifdef CONFIG_KEXEC_CORE 7885 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL); 7886 synchronize_rcu(); 7887 #endif 7888 7889 kvm_exit(); 7890 7891 #if IS_ENABLED(CONFIG_HYPERV) 7892 if (static_branch_unlikely(&enable_evmcs)) { 7893 int cpu; 7894 struct hv_vp_assist_page *vp_ap; 7895 /* 7896 * Reset everything to support using non-enlightened VMCS 7897 * access later (e.g. when we reload the module with 7898 * enlightened_vmcs=0) 7899 */ 7900 for_each_online_cpu(cpu) { 7901 vp_ap = hv_get_vp_assist_page(cpu); 7902 7903 if (!vp_ap) 7904 continue; 7905 7906 vp_ap->nested_control.features.directhypercall = 0; 7907 vp_ap->current_nested_vmcs = 0; 7908 vp_ap->enlighten_vmentry = 0; 7909 } 7910 7911 static_branch_disable(&enable_evmcs); 7912 } 7913 #endif 7914 vmx_cleanup_l1d_flush(); 7915 7916 allow_smaller_maxphyaddr = false; 7917 } 7918 module_exit(vmx_exit); 7919 7920 static int __init vmx_init(void) 7921 { 7922 int r, cpu; 7923 7924 #if IS_ENABLED(CONFIG_HYPERV) 7925 /* 7926 * Enlightened VMCS usage should be recommended and the host needs 7927 * to support eVMCS v1 or above. We can also disable eVMCS support 7928 * with module parameter. 7929 */ 7930 if (enlightened_vmcs && 7931 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && 7932 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= 7933 KVM_EVMCS_VERSION) { 7934 int cpu; 7935 7936 /* Check that we have assist pages on all online CPUs */ 7937 for_each_online_cpu(cpu) { 7938 if (!hv_get_vp_assist_page(cpu)) { 7939 enlightened_vmcs = false; 7940 break; 7941 } 7942 } 7943 7944 if (enlightened_vmcs) { 7945 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n"); 7946 static_branch_enable(&enable_evmcs); 7947 } 7948 7949 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH) 7950 vmx_x86_ops.enable_direct_tlbflush 7951 = hv_enable_direct_tlbflush; 7952 7953 } else { 7954 enlightened_vmcs = false; 7955 } 7956 #endif 7957 7958 r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx), 7959 __alignof__(struct vcpu_vmx), THIS_MODULE); 7960 if (r) 7961 return r; 7962 7963 /* 7964 * Must be called after kvm_init() so enable_ept is properly set 7965 * up. Hand the parameter mitigation value in which was stored in 7966 * the pre module init parser. If no parameter was given, it will 7967 * contain 'auto' which will be turned into the default 'cond' 7968 * mitigation mode. 7969 */ 7970 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); 7971 if (r) { 7972 vmx_exit(); 7973 return r; 7974 } 7975 7976 for_each_possible_cpu(cpu) { 7977 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); 7978 7979 pi_init_cpu(cpu); 7980 } 7981 7982 #ifdef CONFIG_KEXEC_CORE 7983 rcu_assign_pointer(crash_vmclear_loaded_vmcss, 7984 crash_vmclear_local_loaded_vmcss); 7985 #endif 7986 vmx_check_vmcs12_offsets(); 7987 7988 /* 7989 * Shadow paging doesn't have a (further) performance penalty 7990 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it 7991 * by default 7992 */ 7993 if (!enable_ept) 7994 allow_smaller_maxphyaddr = true; 7995 7996 return 0; 7997 } 7998 module_init(vmx_init); 7999