xref: /linux/arch/x86/kvm/vmx/vmx.c (revision e0c1b49f5b674cca7b10549c53b3791d0bbc90a8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <linux/highmem.h>
17 #include <linux/hrtimer.h>
18 #include <linux/kernel.h>
19 #include <linux/kvm_host.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mm.h>
24 #include <linux/objtool.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
31 
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/api.h>
39 #include <asm/idtentry.h>
40 #include <asm/io.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/kexec.h>
43 #include <asm/perf_event.h>
44 #include <asm/mmu_context.h>
45 #include <asm/mshyperv.h>
46 #include <asm/mwait.h>
47 #include <asm/spec-ctrl.h>
48 #include <asm/virtext.h>
49 #include <asm/vmx.h>
50 
51 #include "capabilities.h"
52 #include "cpuid.h"
53 #include "evmcs.h"
54 #include "hyperv.h"
55 #include "kvm_onhyperv.h"
56 #include "irq.h"
57 #include "kvm_cache_regs.h"
58 #include "lapic.h"
59 #include "mmu.h"
60 #include "nested.h"
61 #include "pmu.h"
62 #include "sgx.h"
63 #include "trace.h"
64 #include "vmcs.h"
65 #include "vmcs12.h"
66 #include "vmx.h"
67 #include "x86.h"
68 
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71 
72 #ifdef MODULE
73 static const struct x86_cpu_id vmx_cpu_id[] = {
74 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
75 	{}
76 };
77 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
78 #endif
79 
80 bool __read_mostly enable_vpid = 1;
81 module_param_named(vpid, enable_vpid, bool, 0444);
82 
83 static bool __read_mostly enable_vnmi = 1;
84 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
85 
86 bool __read_mostly flexpriority_enabled = 1;
87 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
88 
89 bool __read_mostly enable_ept = 1;
90 module_param_named(ept, enable_ept, bool, S_IRUGO);
91 
92 bool __read_mostly enable_unrestricted_guest = 1;
93 module_param_named(unrestricted_guest,
94 			enable_unrestricted_guest, bool, S_IRUGO);
95 
96 bool __read_mostly enable_ept_ad_bits = 1;
97 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
98 
99 static bool __read_mostly emulate_invalid_guest_state = true;
100 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
101 
102 static bool __read_mostly fasteoi = 1;
103 module_param(fasteoi, bool, S_IRUGO);
104 
105 module_param(enable_apicv, bool, S_IRUGO);
106 
107 /*
108  * If nested=1, nested virtualization is supported, i.e., guests may use
109  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
110  * use VMX instructions.
111  */
112 static bool __read_mostly nested = 1;
113 module_param(nested, bool, S_IRUGO);
114 
115 bool __read_mostly enable_pml = 1;
116 module_param_named(pml, enable_pml, bool, S_IRUGO);
117 
118 static bool __read_mostly dump_invalid_vmcs = 0;
119 module_param(dump_invalid_vmcs, bool, 0644);
120 
121 #define MSR_BITMAP_MODE_X2APIC		1
122 #define MSR_BITMAP_MODE_X2APIC_APICV	2
123 
124 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
125 
126 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
127 static int __read_mostly cpu_preemption_timer_multi;
128 static bool __read_mostly enable_preemption_timer = 1;
129 #ifdef CONFIG_X86_64
130 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
131 #endif
132 
133 extern bool __read_mostly allow_smaller_maxphyaddr;
134 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
135 
136 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
137 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
138 #define KVM_VM_CR0_ALWAYS_ON				\
139 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
140 
141 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
142 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
143 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
144 
145 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
146 
147 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
148 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
149 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
150 	RTIT_STATUS_BYTECNT))
151 
152 /*
153  * List of MSRs that can be directly passed to the guest.
154  * In addition to these x2apic and PT MSRs are handled specially.
155  */
156 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
157 	MSR_IA32_SPEC_CTRL,
158 	MSR_IA32_PRED_CMD,
159 	MSR_IA32_TSC,
160 #ifdef CONFIG_X86_64
161 	MSR_FS_BASE,
162 	MSR_GS_BASE,
163 	MSR_KERNEL_GS_BASE,
164 #endif
165 	MSR_IA32_SYSENTER_CS,
166 	MSR_IA32_SYSENTER_ESP,
167 	MSR_IA32_SYSENTER_EIP,
168 	MSR_CORE_C1_RES,
169 	MSR_CORE_C3_RESIDENCY,
170 	MSR_CORE_C6_RESIDENCY,
171 	MSR_CORE_C7_RESIDENCY,
172 };
173 
174 /*
175  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
176  * ple_gap:    upper bound on the amount of time between two successive
177  *             executions of PAUSE in a loop. Also indicate if ple enabled.
178  *             According to test, this time is usually smaller than 128 cycles.
179  * ple_window: upper bound on the amount of time a guest is allowed to execute
180  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
181  *             less than 2^12 cycles
182  * Time is measured based on a counter that runs at the same rate as the TSC,
183  * refer SDM volume 3b section 21.6.13 & 22.1.3.
184  */
185 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
186 module_param(ple_gap, uint, 0444);
187 
188 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
189 module_param(ple_window, uint, 0444);
190 
191 /* Default doubles per-vcpu window every exit. */
192 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
193 module_param(ple_window_grow, uint, 0444);
194 
195 /* Default resets per-vcpu window every exit to ple_window. */
196 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
197 module_param(ple_window_shrink, uint, 0444);
198 
199 /* Default is to compute the maximum so we can never overflow. */
200 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
201 module_param(ple_window_max, uint, 0444);
202 
203 /* Default is SYSTEM mode, 1 for host-guest mode */
204 int __read_mostly pt_mode = PT_MODE_SYSTEM;
205 module_param(pt_mode, int, S_IRUGO);
206 
207 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
208 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
209 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
210 
211 /* Storage for pre module init parameter parsing */
212 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
213 
214 static const struct {
215 	const char *option;
216 	bool for_parse;
217 } vmentry_l1d_param[] = {
218 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
219 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
220 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
221 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
222 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
223 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
224 };
225 
226 #define L1D_CACHE_ORDER 4
227 static void *vmx_l1d_flush_pages;
228 
229 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
230 {
231 	struct page *page;
232 	unsigned int i;
233 
234 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
235 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
236 		return 0;
237 	}
238 
239 	if (!enable_ept) {
240 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
241 		return 0;
242 	}
243 
244 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
245 		u64 msr;
246 
247 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
248 		if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
249 			l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
250 			return 0;
251 		}
252 	}
253 
254 	/* If set to auto use the default l1tf mitigation method */
255 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
256 		switch (l1tf_mitigation) {
257 		case L1TF_MITIGATION_OFF:
258 			l1tf = VMENTER_L1D_FLUSH_NEVER;
259 			break;
260 		case L1TF_MITIGATION_FLUSH_NOWARN:
261 		case L1TF_MITIGATION_FLUSH:
262 		case L1TF_MITIGATION_FLUSH_NOSMT:
263 			l1tf = VMENTER_L1D_FLUSH_COND;
264 			break;
265 		case L1TF_MITIGATION_FULL:
266 		case L1TF_MITIGATION_FULL_FORCE:
267 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
268 			break;
269 		}
270 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
271 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
272 	}
273 
274 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
275 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
276 		/*
277 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
278 		 * lifetime and so should not be charged to a memcg.
279 		 */
280 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
281 		if (!page)
282 			return -ENOMEM;
283 		vmx_l1d_flush_pages = page_address(page);
284 
285 		/*
286 		 * Initialize each page with a different pattern in
287 		 * order to protect against KSM in the nested
288 		 * virtualization case.
289 		 */
290 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
291 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
292 			       PAGE_SIZE);
293 		}
294 	}
295 
296 	l1tf_vmx_mitigation = l1tf;
297 
298 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
299 		static_branch_enable(&vmx_l1d_should_flush);
300 	else
301 		static_branch_disable(&vmx_l1d_should_flush);
302 
303 	if (l1tf == VMENTER_L1D_FLUSH_COND)
304 		static_branch_enable(&vmx_l1d_flush_cond);
305 	else
306 		static_branch_disable(&vmx_l1d_flush_cond);
307 	return 0;
308 }
309 
310 static int vmentry_l1d_flush_parse(const char *s)
311 {
312 	unsigned int i;
313 
314 	if (s) {
315 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
316 			if (vmentry_l1d_param[i].for_parse &&
317 			    sysfs_streq(s, vmentry_l1d_param[i].option))
318 				return i;
319 		}
320 	}
321 	return -EINVAL;
322 }
323 
324 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
325 {
326 	int l1tf, ret;
327 
328 	l1tf = vmentry_l1d_flush_parse(s);
329 	if (l1tf < 0)
330 		return l1tf;
331 
332 	if (!boot_cpu_has(X86_BUG_L1TF))
333 		return 0;
334 
335 	/*
336 	 * Has vmx_init() run already? If not then this is the pre init
337 	 * parameter parsing. In that case just store the value and let
338 	 * vmx_init() do the proper setup after enable_ept has been
339 	 * established.
340 	 */
341 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
342 		vmentry_l1d_flush_param = l1tf;
343 		return 0;
344 	}
345 
346 	mutex_lock(&vmx_l1d_flush_mutex);
347 	ret = vmx_setup_l1d_flush(l1tf);
348 	mutex_unlock(&vmx_l1d_flush_mutex);
349 	return ret;
350 }
351 
352 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
353 {
354 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
355 		return sprintf(s, "???\n");
356 
357 	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
358 }
359 
360 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
361 	.set = vmentry_l1d_flush_set,
362 	.get = vmentry_l1d_flush_get,
363 };
364 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
365 
366 static u32 vmx_segment_access_rights(struct kvm_segment *var);
367 
368 void vmx_vmexit(void);
369 
370 #define vmx_insn_failed(fmt...)		\
371 do {					\
372 	WARN_ONCE(1, fmt);		\
373 	pr_warn_ratelimited(fmt);	\
374 } while (0)
375 
376 asmlinkage void vmread_error(unsigned long field, bool fault)
377 {
378 	if (fault)
379 		kvm_spurious_fault();
380 	else
381 		vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
382 }
383 
384 noinline void vmwrite_error(unsigned long field, unsigned long value)
385 {
386 	vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
387 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
388 }
389 
390 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
391 {
392 	vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
393 }
394 
395 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
396 {
397 	vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
398 }
399 
400 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
401 {
402 	vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
403 			ext, vpid, gva);
404 }
405 
406 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
407 {
408 	vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
409 			ext, eptp, gpa);
410 }
411 
412 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
413 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
414 /*
415  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
416  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
417  */
418 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
419 
420 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
421 static DEFINE_SPINLOCK(vmx_vpid_lock);
422 
423 struct vmcs_config vmcs_config;
424 struct vmx_capability vmx_capability;
425 
426 #define VMX_SEGMENT_FIELD(seg)					\
427 	[VCPU_SREG_##seg] = {                                   \
428 		.selector = GUEST_##seg##_SELECTOR,		\
429 		.base = GUEST_##seg##_BASE,		   	\
430 		.limit = GUEST_##seg##_LIMIT,		   	\
431 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
432 	}
433 
434 static const struct kvm_vmx_segment_field {
435 	unsigned selector;
436 	unsigned base;
437 	unsigned limit;
438 	unsigned ar_bytes;
439 } kvm_vmx_segment_fields[] = {
440 	VMX_SEGMENT_FIELD(CS),
441 	VMX_SEGMENT_FIELD(DS),
442 	VMX_SEGMENT_FIELD(ES),
443 	VMX_SEGMENT_FIELD(FS),
444 	VMX_SEGMENT_FIELD(GS),
445 	VMX_SEGMENT_FIELD(SS),
446 	VMX_SEGMENT_FIELD(TR),
447 	VMX_SEGMENT_FIELD(LDTR),
448 };
449 
450 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
451 {
452 	vmx->segment_cache.bitmask = 0;
453 }
454 
455 static unsigned long host_idt_base;
456 
457 #if IS_ENABLED(CONFIG_HYPERV)
458 static bool __read_mostly enlightened_vmcs = true;
459 module_param(enlightened_vmcs, bool, 0444);
460 
461 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
462 {
463 	struct hv_enlightened_vmcs *evmcs;
464 	struct hv_partition_assist_pg **p_hv_pa_pg =
465 			&to_kvm_hv(vcpu->kvm)->hv_pa_pg;
466 	/*
467 	 * Synthetic VM-Exit is not enabled in current code and so All
468 	 * evmcs in singe VM shares same assist page.
469 	 */
470 	if (!*p_hv_pa_pg)
471 		*p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
472 
473 	if (!*p_hv_pa_pg)
474 		return -ENOMEM;
475 
476 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
477 
478 	evmcs->partition_assist_page =
479 		__pa(*p_hv_pa_pg);
480 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
481 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
482 
483 	return 0;
484 }
485 
486 #endif /* IS_ENABLED(CONFIG_HYPERV) */
487 
488 /*
489  * Comment's format: document - errata name - stepping - processor name.
490  * Refer from
491  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
492  */
493 static u32 vmx_preemption_cpu_tfms[] = {
494 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
495 0x000206E6,
496 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
497 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
498 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
499 0x00020652,
500 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
501 0x00020655,
502 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
503 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
504 /*
505  * 320767.pdf - AAP86  - B1 -
506  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
507  */
508 0x000106E5,
509 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
510 0x000106A0,
511 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
512 0x000106A1,
513 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
514 0x000106A4,
515  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
516  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
517  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
518 0x000106A5,
519  /* Xeon E3-1220 V2 */
520 0x000306A8,
521 };
522 
523 static inline bool cpu_has_broken_vmx_preemption_timer(void)
524 {
525 	u32 eax = cpuid_eax(0x00000001), i;
526 
527 	/* Clear the reserved bits */
528 	eax &= ~(0x3U << 14 | 0xfU << 28);
529 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
530 		if (eax == vmx_preemption_cpu_tfms[i])
531 			return true;
532 
533 	return false;
534 }
535 
536 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
537 {
538 	return flexpriority_enabled && lapic_in_kernel(vcpu);
539 }
540 
541 static inline bool report_flexpriority(void)
542 {
543 	return flexpriority_enabled;
544 }
545 
546 static int possible_passthrough_msr_slot(u32 msr)
547 {
548 	u32 i;
549 
550 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
551 		if (vmx_possible_passthrough_msrs[i] == msr)
552 			return i;
553 
554 	return -ENOENT;
555 }
556 
557 static bool is_valid_passthrough_msr(u32 msr)
558 {
559 	bool r;
560 
561 	switch (msr) {
562 	case 0x800 ... 0x8ff:
563 		/* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
564 		return true;
565 	case MSR_IA32_RTIT_STATUS:
566 	case MSR_IA32_RTIT_OUTPUT_BASE:
567 	case MSR_IA32_RTIT_OUTPUT_MASK:
568 	case MSR_IA32_RTIT_CR3_MATCH:
569 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
570 		/* PT MSRs. These are handled in pt_update_intercept_for_msr() */
571 	case MSR_LBR_SELECT:
572 	case MSR_LBR_TOS:
573 	case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
574 	case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
575 	case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
576 	case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
577 	case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
578 		/* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
579 		return true;
580 	}
581 
582 	r = possible_passthrough_msr_slot(msr) != -ENOENT;
583 
584 	WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
585 
586 	return r;
587 }
588 
589 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
590 {
591 	int i;
592 
593 	i = kvm_find_user_return_msr(msr);
594 	if (i >= 0)
595 		return &vmx->guest_uret_msrs[i];
596 	return NULL;
597 }
598 
599 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
600 				  struct vmx_uret_msr *msr, u64 data)
601 {
602 	unsigned int slot = msr - vmx->guest_uret_msrs;
603 	int ret = 0;
604 
605 	u64 old_msr_data = msr->data;
606 	msr->data = data;
607 	if (msr->load_into_hardware) {
608 		preempt_disable();
609 		ret = kvm_set_user_return_msr(slot, msr->data, msr->mask);
610 		preempt_enable();
611 		if (ret)
612 			msr->data = old_msr_data;
613 	}
614 	return ret;
615 }
616 
617 #ifdef CONFIG_KEXEC_CORE
618 static void crash_vmclear_local_loaded_vmcss(void)
619 {
620 	int cpu = raw_smp_processor_id();
621 	struct loaded_vmcs *v;
622 
623 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
624 			    loaded_vmcss_on_cpu_link)
625 		vmcs_clear(v->vmcs);
626 }
627 #endif /* CONFIG_KEXEC_CORE */
628 
629 static void __loaded_vmcs_clear(void *arg)
630 {
631 	struct loaded_vmcs *loaded_vmcs = arg;
632 	int cpu = raw_smp_processor_id();
633 
634 	if (loaded_vmcs->cpu != cpu)
635 		return; /* vcpu migration can race with cpu offline */
636 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
637 		per_cpu(current_vmcs, cpu) = NULL;
638 
639 	vmcs_clear(loaded_vmcs->vmcs);
640 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
641 		vmcs_clear(loaded_vmcs->shadow_vmcs);
642 
643 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
644 
645 	/*
646 	 * Ensure all writes to loaded_vmcs, including deleting it from its
647 	 * current percpu list, complete before setting loaded_vmcs->vcpu to
648 	 * -1, otherwise a different cpu can see vcpu == -1 first and add
649 	 * loaded_vmcs to its percpu list before it's deleted from this cpu's
650 	 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
651 	 */
652 	smp_wmb();
653 
654 	loaded_vmcs->cpu = -1;
655 	loaded_vmcs->launched = 0;
656 }
657 
658 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
659 {
660 	int cpu = loaded_vmcs->cpu;
661 
662 	if (cpu != -1)
663 		smp_call_function_single(cpu,
664 			 __loaded_vmcs_clear, loaded_vmcs, 1);
665 }
666 
667 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
668 				       unsigned field)
669 {
670 	bool ret;
671 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
672 
673 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
674 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
675 		vmx->segment_cache.bitmask = 0;
676 	}
677 	ret = vmx->segment_cache.bitmask & mask;
678 	vmx->segment_cache.bitmask |= mask;
679 	return ret;
680 }
681 
682 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
683 {
684 	u16 *p = &vmx->segment_cache.seg[seg].selector;
685 
686 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
687 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
688 	return *p;
689 }
690 
691 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
692 {
693 	ulong *p = &vmx->segment_cache.seg[seg].base;
694 
695 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
696 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
697 	return *p;
698 }
699 
700 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
701 {
702 	u32 *p = &vmx->segment_cache.seg[seg].limit;
703 
704 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
705 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
706 	return *p;
707 }
708 
709 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
710 {
711 	u32 *p = &vmx->segment_cache.seg[seg].ar;
712 
713 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
714 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
715 	return *p;
716 }
717 
718 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
719 {
720 	u32 eb;
721 
722 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
723 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
724 	/*
725 	 * Guest access to VMware backdoor ports could legitimately
726 	 * trigger #GP because of TSS I/O permission bitmap.
727 	 * We intercept those #GP and allow access to them anyway
728 	 * as VMware does.
729 	 */
730 	if (enable_vmware_backdoor)
731 		eb |= (1u << GP_VECTOR);
732 	if ((vcpu->guest_debug &
733 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
734 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
735 		eb |= 1u << BP_VECTOR;
736 	if (to_vmx(vcpu)->rmode.vm86_active)
737 		eb = ~0;
738 	if (!vmx_need_pf_intercept(vcpu))
739 		eb &= ~(1u << PF_VECTOR);
740 
741 	/* When we are running a nested L2 guest and L1 specified for it a
742 	 * certain exception bitmap, we must trap the same exceptions and pass
743 	 * them to L1. When running L2, we will only handle the exceptions
744 	 * specified above if L1 did not want them.
745 	 */
746 	if (is_guest_mode(vcpu))
747 		eb |= get_vmcs12(vcpu)->exception_bitmap;
748         else {
749 		int mask = 0, match = 0;
750 
751 		if (enable_ept && (eb & (1u << PF_VECTOR))) {
752 			/*
753 			 * If EPT is enabled, #PF is currently only intercepted
754 			 * if MAXPHYADDR is smaller on the guest than on the
755 			 * host.  In that case we only care about present,
756 			 * non-reserved faults.  For vmcs02, however, PFEC_MASK
757 			 * and PFEC_MATCH are set in prepare_vmcs02_rare.
758 			 */
759 			mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
760 			match = PFERR_PRESENT_MASK;
761 		}
762 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
763 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
764 	}
765 
766 	vmcs_write32(EXCEPTION_BITMAP, eb);
767 }
768 
769 /*
770  * Check if MSR is intercepted for currently loaded MSR bitmap.
771  */
772 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
773 {
774 	unsigned long *msr_bitmap;
775 	int f = sizeof(unsigned long);
776 
777 	if (!cpu_has_vmx_msr_bitmap())
778 		return true;
779 
780 	msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
781 
782 	if (msr <= 0x1fff) {
783 		return !!test_bit(msr, msr_bitmap + 0x800 / f);
784 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
785 		msr &= 0x1fff;
786 		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
787 	}
788 
789 	return true;
790 }
791 
792 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
793 		unsigned long entry, unsigned long exit)
794 {
795 	vm_entry_controls_clearbit(vmx, entry);
796 	vm_exit_controls_clearbit(vmx, exit);
797 }
798 
799 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
800 {
801 	unsigned int i;
802 
803 	for (i = 0; i < m->nr; ++i) {
804 		if (m->val[i].index == msr)
805 			return i;
806 	}
807 	return -ENOENT;
808 }
809 
810 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
811 {
812 	int i;
813 	struct msr_autoload *m = &vmx->msr_autoload;
814 
815 	switch (msr) {
816 	case MSR_EFER:
817 		if (cpu_has_load_ia32_efer()) {
818 			clear_atomic_switch_msr_special(vmx,
819 					VM_ENTRY_LOAD_IA32_EFER,
820 					VM_EXIT_LOAD_IA32_EFER);
821 			return;
822 		}
823 		break;
824 	case MSR_CORE_PERF_GLOBAL_CTRL:
825 		if (cpu_has_load_perf_global_ctrl()) {
826 			clear_atomic_switch_msr_special(vmx,
827 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
828 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
829 			return;
830 		}
831 		break;
832 	}
833 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
834 	if (i < 0)
835 		goto skip_guest;
836 	--m->guest.nr;
837 	m->guest.val[i] = m->guest.val[m->guest.nr];
838 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
839 
840 skip_guest:
841 	i = vmx_find_loadstore_msr_slot(&m->host, msr);
842 	if (i < 0)
843 		return;
844 
845 	--m->host.nr;
846 	m->host.val[i] = m->host.val[m->host.nr];
847 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
848 }
849 
850 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
851 		unsigned long entry, unsigned long exit,
852 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
853 		u64 guest_val, u64 host_val)
854 {
855 	vmcs_write64(guest_val_vmcs, guest_val);
856 	if (host_val_vmcs != HOST_IA32_EFER)
857 		vmcs_write64(host_val_vmcs, host_val);
858 	vm_entry_controls_setbit(vmx, entry);
859 	vm_exit_controls_setbit(vmx, exit);
860 }
861 
862 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
863 				  u64 guest_val, u64 host_val, bool entry_only)
864 {
865 	int i, j = 0;
866 	struct msr_autoload *m = &vmx->msr_autoload;
867 
868 	switch (msr) {
869 	case MSR_EFER:
870 		if (cpu_has_load_ia32_efer()) {
871 			add_atomic_switch_msr_special(vmx,
872 					VM_ENTRY_LOAD_IA32_EFER,
873 					VM_EXIT_LOAD_IA32_EFER,
874 					GUEST_IA32_EFER,
875 					HOST_IA32_EFER,
876 					guest_val, host_val);
877 			return;
878 		}
879 		break;
880 	case MSR_CORE_PERF_GLOBAL_CTRL:
881 		if (cpu_has_load_perf_global_ctrl()) {
882 			add_atomic_switch_msr_special(vmx,
883 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
884 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
885 					GUEST_IA32_PERF_GLOBAL_CTRL,
886 					HOST_IA32_PERF_GLOBAL_CTRL,
887 					guest_val, host_val);
888 			return;
889 		}
890 		break;
891 	case MSR_IA32_PEBS_ENABLE:
892 		/* PEBS needs a quiescent period after being disabled (to write
893 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
894 		 * provide that period, so a CPU could write host's record into
895 		 * guest's memory.
896 		 */
897 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
898 	}
899 
900 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
901 	if (!entry_only)
902 		j = vmx_find_loadstore_msr_slot(&m->host, msr);
903 
904 	if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
905 	    (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
906 		printk_once(KERN_WARNING "Not enough msr switch entries. "
907 				"Can't add msr %x\n", msr);
908 		return;
909 	}
910 	if (i < 0) {
911 		i = m->guest.nr++;
912 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
913 	}
914 	m->guest.val[i].index = msr;
915 	m->guest.val[i].value = guest_val;
916 
917 	if (entry_only)
918 		return;
919 
920 	if (j < 0) {
921 		j = m->host.nr++;
922 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
923 	}
924 	m->host.val[j].index = msr;
925 	m->host.val[j].value = host_val;
926 }
927 
928 static bool update_transition_efer(struct vcpu_vmx *vmx)
929 {
930 	u64 guest_efer = vmx->vcpu.arch.efer;
931 	u64 ignore_bits = 0;
932 	int i;
933 
934 	/* Shadow paging assumes NX to be available.  */
935 	if (!enable_ept)
936 		guest_efer |= EFER_NX;
937 
938 	/*
939 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
940 	 */
941 	ignore_bits |= EFER_SCE;
942 #ifdef CONFIG_X86_64
943 	ignore_bits |= EFER_LMA | EFER_LME;
944 	/* SCE is meaningful only in long mode on Intel */
945 	if (guest_efer & EFER_LMA)
946 		ignore_bits &= ~(u64)EFER_SCE;
947 #endif
948 
949 	/*
950 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
951 	 * On CPUs that support "load IA32_EFER", always switch EFER
952 	 * atomically, since it's faster than switching it manually.
953 	 */
954 	if (cpu_has_load_ia32_efer() ||
955 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
956 		if (!(guest_efer & EFER_LMA))
957 			guest_efer &= ~EFER_LME;
958 		if (guest_efer != host_efer)
959 			add_atomic_switch_msr(vmx, MSR_EFER,
960 					      guest_efer, host_efer, false);
961 		else
962 			clear_atomic_switch_msr(vmx, MSR_EFER);
963 		return false;
964 	}
965 
966 	i = kvm_find_user_return_msr(MSR_EFER);
967 	if (i < 0)
968 		return false;
969 
970 	clear_atomic_switch_msr(vmx, MSR_EFER);
971 
972 	guest_efer &= ~ignore_bits;
973 	guest_efer |= host_efer & ignore_bits;
974 
975 	vmx->guest_uret_msrs[i].data = guest_efer;
976 	vmx->guest_uret_msrs[i].mask = ~ignore_bits;
977 
978 	return true;
979 }
980 
981 #ifdef CONFIG_X86_32
982 /*
983  * On 32-bit kernels, VM exits still load the FS and GS bases from the
984  * VMCS rather than the segment table.  KVM uses this helper to figure
985  * out the current bases to poke them into the VMCS before entry.
986  */
987 static unsigned long segment_base(u16 selector)
988 {
989 	struct desc_struct *table;
990 	unsigned long v;
991 
992 	if (!(selector & ~SEGMENT_RPL_MASK))
993 		return 0;
994 
995 	table = get_current_gdt_ro();
996 
997 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
998 		u16 ldt_selector = kvm_read_ldt();
999 
1000 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1001 			return 0;
1002 
1003 		table = (struct desc_struct *)segment_base(ldt_selector);
1004 	}
1005 	v = get_desc_base(&table[selector >> 3]);
1006 	return v;
1007 }
1008 #endif
1009 
1010 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1011 {
1012 	return vmx_pt_mode_is_host_guest() &&
1013 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1014 }
1015 
1016 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1017 {
1018 	/* The base must be 128-byte aligned and a legal physical address. */
1019 	return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1020 }
1021 
1022 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1023 {
1024 	u32 i;
1025 
1026 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1027 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1028 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1029 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1030 	for (i = 0; i < addr_range; i++) {
1031 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1032 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1033 	}
1034 }
1035 
1036 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1037 {
1038 	u32 i;
1039 
1040 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1041 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1042 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1043 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1044 	for (i = 0; i < addr_range; i++) {
1045 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1046 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1047 	}
1048 }
1049 
1050 static void pt_guest_enter(struct vcpu_vmx *vmx)
1051 {
1052 	if (vmx_pt_mode_is_system())
1053 		return;
1054 
1055 	/*
1056 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1057 	 * Save host state before VM entry.
1058 	 */
1059 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1060 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1061 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1062 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1063 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1064 	}
1065 }
1066 
1067 static void pt_guest_exit(struct vcpu_vmx *vmx)
1068 {
1069 	if (vmx_pt_mode_is_system())
1070 		return;
1071 
1072 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1073 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1074 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1075 	}
1076 
1077 	/*
1078 	 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1079 	 * i.e. RTIT_CTL is always cleared on VM-Exit.  Restore it if necessary.
1080 	 */
1081 	if (vmx->pt_desc.host.ctl)
1082 		wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1083 }
1084 
1085 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1086 			unsigned long fs_base, unsigned long gs_base)
1087 {
1088 	if (unlikely(fs_sel != host->fs_sel)) {
1089 		if (!(fs_sel & 7))
1090 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1091 		else
1092 			vmcs_write16(HOST_FS_SELECTOR, 0);
1093 		host->fs_sel = fs_sel;
1094 	}
1095 	if (unlikely(gs_sel != host->gs_sel)) {
1096 		if (!(gs_sel & 7))
1097 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1098 		else
1099 			vmcs_write16(HOST_GS_SELECTOR, 0);
1100 		host->gs_sel = gs_sel;
1101 	}
1102 	if (unlikely(fs_base != host->fs_base)) {
1103 		vmcs_writel(HOST_FS_BASE, fs_base);
1104 		host->fs_base = fs_base;
1105 	}
1106 	if (unlikely(gs_base != host->gs_base)) {
1107 		vmcs_writel(HOST_GS_BASE, gs_base);
1108 		host->gs_base = gs_base;
1109 	}
1110 }
1111 
1112 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1113 {
1114 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1115 	struct vmcs_host_state *host_state;
1116 #ifdef CONFIG_X86_64
1117 	int cpu = raw_smp_processor_id();
1118 #endif
1119 	unsigned long fs_base, gs_base;
1120 	u16 fs_sel, gs_sel;
1121 	int i;
1122 
1123 	vmx->req_immediate_exit = false;
1124 
1125 	/*
1126 	 * Note that guest MSRs to be saved/restored can also be changed
1127 	 * when guest state is loaded. This happens when guest transitions
1128 	 * to/from long-mode by setting MSR_EFER.LMA.
1129 	 */
1130 	if (!vmx->guest_uret_msrs_loaded) {
1131 		vmx->guest_uret_msrs_loaded = true;
1132 		for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1133 			if (!vmx->guest_uret_msrs[i].load_into_hardware)
1134 				continue;
1135 
1136 			kvm_set_user_return_msr(i,
1137 						vmx->guest_uret_msrs[i].data,
1138 						vmx->guest_uret_msrs[i].mask);
1139 		}
1140 	}
1141 
1142     	if (vmx->nested.need_vmcs12_to_shadow_sync)
1143 		nested_sync_vmcs12_to_shadow(vcpu);
1144 
1145 	if (vmx->guest_state_loaded)
1146 		return;
1147 
1148 	host_state = &vmx->loaded_vmcs->host_state;
1149 
1150 	/*
1151 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1152 	 * allow segment selectors with cpl > 0 or ti == 1.
1153 	 */
1154 	host_state->ldt_sel = kvm_read_ldt();
1155 
1156 #ifdef CONFIG_X86_64
1157 	savesegment(ds, host_state->ds_sel);
1158 	savesegment(es, host_state->es_sel);
1159 
1160 	gs_base = cpu_kernelmode_gs_base(cpu);
1161 	if (likely(is_64bit_mm(current->mm))) {
1162 		current_save_fsgs();
1163 		fs_sel = current->thread.fsindex;
1164 		gs_sel = current->thread.gsindex;
1165 		fs_base = current->thread.fsbase;
1166 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1167 	} else {
1168 		savesegment(fs, fs_sel);
1169 		savesegment(gs, gs_sel);
1170 		fs_base = read_msr(MSR_FS_BASE);
1171 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1172 	}
1173 
1174 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1175 #else
1176 	savesegment(fs, fs_sel);
1177 	savesegment(gs, gs_sel);
1178 	fs_base = segment_base(fs_sel);
1179 	gs_base = segment_base(gs_sel);
1180 #endif
1181 
1182 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1183 	vmx->guest_state_loaded = true;
1184 }
1185 
1186 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1187 {
1188 	struct vmcs_host_state *host_state;
1189 
1190 	if (!vmx->guest_state_loaded)
1191 		return;
1192 
1193 	host_state = &vmx->loaded_vmcs->host_state;
1194 
1195 	++vmx->vcpu.stat.host_state_reload;
1196 
1197 #ifdef CONFIG_X86_64
1198 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1199 #endif
1200 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1201 		kvm_load_ldt(host_state->ldt_sel);
1202 #ifdef CONFIG_X86_64
1203 		load_gs_index(host_state->gs_sel);
1204 #else
1205 		loadsegment(gs, host_state->gs_sel);
1206 #endif
1207 	}
1208 	if (host_state->fs_sel & 7)
1209 		loadsegment(fs, host_state->fs_sel);
1210 #ifdef CONFIG_X86_64
1211 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1212 		loadsegment(ds, host_state->ds_sel);
1213 		loadsegment(es, host_state->es_sel);
1214 	}
1215 #endif
1216 	invalidate_tss_limit();
1217 #ifdef CONFIG_X86_64
1218 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1219 #endif
1220 	load_fixmap_gdt(raw_smp_processor_id());
1221 	vmx->guest_state_loaded = false;
1222 	vmx->guest_uret_msrs_loaded = false;
1223 }
1224 
1225 #ifdef CONFIG_X86_64
1226 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1227 {
1228 	preempt_disable();
1229 	if (vmx->guest_state_loaded)
1230 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1231 	preempt_enable();
1232 	return vmx->msr_guest_kernel_gs_base;
1233 }
1234 
1235 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1236 {
1237 	preempt_disable();
1238 	if (vmx->guest_state_loaded)
1239 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1240 	preempt_enable();
1241 	vmx->msr_guest_kernel_gs_base = data;
1242 }
1243 #endif
1244 
1245 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1246 			struct loaded_vmcs *buddy)
1247 {
1248 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1249 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1250 	struct vmcs *prev;
1251 
1252 	if (!already_loaded) {
1253 		loaded_vmcs_clear(vmx->loaded_vmcs);
1254 		local_irq_disable();
1255 
1256 		/*
1257 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1258 		 * this cpu's percpu list, otherwise it may not yet be deleted
1259 		 * from its previous cpu's percpu list.  Pairs with the
1260 		 * smb_wmb() in __loaded_vmcs_clear().
1261 		 */
1262 		smp_rmb();
1263 
1264 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1265 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1266 		local_irq_enable();
1267 	}
1268 
1269 	prev = per_cpu(current_vmcs, cpu);
1270 	if (prev != vmx->loaded_vmcs->vmcs) {
1271 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1272 		vmcs_load(vmx->loaded_vmcs->vmcs);
1273 
1274 		/*
1275 		 * No indirect branch prediction barrier needed when switching
1276 		 * the active VMCS within a guest, e.g. on nested VM-Enter.
1277 		 * The L1 VMM can protect itself with retpolines, IBPB or IBRS.
1278 		 */
1279 		if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1280 			indirect_branch_prediction_barrier();
1281 	}
1282 
1283 	if (!already_loaded) {
1284 		void *gdt = get_current_gdt_ro();
1285 		unsigned long sysenter_esp;
1286 
1287 		/*
1288 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1289 		 * TLB entries from its previous association with the vCPU.
1290 		 */
1291 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1292 
1293 		/*
1294 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1295 		 * processors.  See 22.2.4.
1296 		 */
1297 		vmcs_writel(HOST_TR_BASE,
1298 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1299 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1300 
1301 		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1302 		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1303 
1304 		vmx->loaded_vmcs->cpu = cpu;
1305 	}
1306 }
1307 
1308 /*
1309  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1310  * vcpu mutex is already taken.
1311  */
1312 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1313 {
1314 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1315 
1316 	vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1317 
1318 	vmx_vcpu_pi_load(vcpu, cpu);
1319 
1320 	vmx->host_debugctlmsr = get_debugctlmsr();
1321 }
1322 
1323 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1324 {
1325 	vmx_vcpu_pi_put(vcpu);
1326 
1327 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1328 }
1329 
1330 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1331 {
1332 	return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1333 }
1334 
1335 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1336 {
1337 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1338 	unsigned long rflags, save_rflags;
1339 
1340 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1341 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1342 		rflags = vmcs_readl(GUEST_RFLAGS);
1343 		if (vmx->rmode.vm86_active) {
1344 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1345 			save_rflags = vmx->rmode.save_rflags;
1346 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1347 		}
1348 		vmx->rflags = rflags;
1349 	}
1350 	return vmx->rflags;
1351 }
1352 
1353 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1354 {
1355 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1356 	unsigned long old_rflags;
1357 
1358 	if (is_unrestricted_guest(vcpu)) {
1359 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1360 		vmx->rflags = rflags;
1361 		vmcs_writel(GUEST_RFLAGS, rflags);
1362 		return;
1363 	}
1364 
1365 	old_rflags = vmx_get_rflags(vcpu);
1366 	vmx->rflags = rflags;
1367 	if (vmx->rmode.vm86_active) {
1368 		vmx->rmode.save_rflags = rflags;
1369 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1370 	}
1371 	vmcs_writel(GUEST_RFLAGS, rflags);
1372 
1373 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1374 		vmx->emulation_required = vmx_emulation_required(vcpu);
1375 }
1376 
1377 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1378 {
1379 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1380 	int ret = 0;
1381 
1382 	if (interruptibility & GUEST_INTR_STATE_STI)
1383 		ret |= KVM_X86_SHADOW_INT_STI;
1384 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1385 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1386 
1387 	return ret;
1388 }
1389 
1390 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1391 {
1392 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1393 	u32 interruptibility = interruptibility_old;
1394 
1395 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1396 
1397 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1398 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1399 	else if (mask & KVM_X86_SHADOW_INT_STI)
1400 		interruptibility |= GUEST_INTR_STATE_STI;
1401 
1402 	if ((interruptibility != interruptibility_old))
1403 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1404 }
1405 
1406 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1407 {
1408 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1409 	unsigned long value;
1410 
1411 	/*
1412 	 * Any MSR write that attempts to change bits marked reserved will
1413 	 * case a #GP fault.
1414 	 */
1415 	if (data & vmx->pt_desc.ctl_bitmask)
1416 		return 1;
1417 
1418 	/*
1419 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1420 	 * result in a #GP unless the same write also clears TraceEn.
1421 	 */
1422 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1423 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1424 		return 1;
1425 
1426 	/*
1427 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1428 	 * and FabricEn would cause #GP, if
1429 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1430 	 */
1431 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1432 		!(data & RTIT_CTL_FABRIC_EN) &&
1433 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1434 					PT_CAP_single_range_output))
1435 		return 1;
1436 
1437 	/*
1438 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1439 	 * utilize encodings marked reserved will cause a #GP fault.
1440 	 */
1441 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1442 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1443 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1444 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1445 		return 1;
1446 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1447 						PT_CAP_cycle_thresholds);
1448 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1449 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1450 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1451 		return 1;
1452 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1453 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1454 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1455 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1456 		return 1;
1457 
1458 	/*
1459 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1460 	 * cause a #GP fault.
1461 	 */
1462 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1463 	if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1464 		return 1;
1465 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1466 	if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1467 		return 1;
1468 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1469 	if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1470 		return 1;
1471 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1472 	if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1473 		return 1;
1474 
1475 	return 0;
1476 }
1477 
1478 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
1479 {
1480 	/*
1481 	 * Emulation of instructions in SGX enclaves is impossible as RIP does
1482 	 * not point  tthe failing instruction, and even if it did, the code
1483 	 * stream is inaccessible.  Inject #UD instead of exiting to userspace
1484 	 * so that guest userspace can't DoS the guest simply by triggering
1485 	 * emulation (enclaves are CPL3 only).
1486 	 */
1487 	if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1488 		kvm_queue_exception(vcpu, UD_VECTOR);
1489 		return false;
1490 	}
1491 	return true;
1492 }
1493 
1494 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1495 {
1496 	union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1497 	unsigned long rip, orig_rip;
1498 	u32 instr_len;
1499 
1500 	/*
1501 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1502 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1503 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1504 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1505 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1506 	 * i.e. we end up advancing IP with some random value.
1507 	 */
1508 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1509 	    exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1510 		instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1511 
1512 		/*
1513 		 * Emulating an enclave's instructions isn't supported as KVM
1514 		 * cannot access the enclave's memory or its true RIP, e.g. the
1515 		 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1516 		 * the RIP that actually triggered the VM-Exit.  But, because
1517 		 * most instructions that cause VM-Exit will #UD in an enclave,
1518 		 * most instruction-based VM-Exits simply do not occur.
1519 		 *
1520 		 * There are a few exceptions, notably the debug instructions
1521 		 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1522 		 * and generate #DB/#BP as expected, which KVM might intercept.
1523 		 * But again, the CPU does the dirty work and saves an instr
1524 		 * length of zero so VMMs don't shoot themselves in the foot.
1525 		 * WARN if KVM tries to skip a non-zero length instruction on
1526 		 * a VM-Exit from an enclave.
1527 		 */
1528 		if (!instr_len)
1529 			goto rip_updated;
1530 
1531 		WARN(exit_reason.enclave_mode,
1532 		     "KVM: skipping instruction after SGX enclave VM-Exit");
1533 
1534 		orig_rip = kvm_rip_read(vcpu);
1535 		rip = orig_rip + instr_len;
1536 #ifdef CONFIG_X86_64
1537 		/*
1538 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1539 		 * mode, but just finding out that we are in 64-bit mode is
1540 		 * quite expensive.  Only do it if there was a carry.
1541 		 */
1542 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1543 			rip = (u32)rip;
1544 #endif
1545 		kvm_rip_write(vcpu, rip);
1546 	} else {
1547 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1548 			return 0;
1549 	}
1550 
1551 rip_updated:
1552 	/* skipping an emulated instruction also counts */
1553 	vmx_set_interrupt_shadow(vcpu, 0);
1554 
1555 	return 1;
1556 }
1557 
1558 /*
1559  * Recognizes a pending MTF VM-exit and records the nested state for later
1560  * delivery.
1561  */
1562 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1563 {
1564 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1565 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1566 
1567 	if (!is_guest_mode(vcpu))
1568 		return;
1569 
1570 	/*
1571 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1572 	 * T-bit traps. As instruction emulation is completed (i.e. at the
1573 	 * instruction boundary), any #DB exception pending delivery must be a
1574 	 * debug-trap. Record the pending MTF state to be delivered in
1575 	 * vmx_check_nested_events().
1576 	 */
1577 	if (nested_cpu_has_mtf(vmcs12) &&
1578 	    (!vcpu->arch.exception.pending ||
1579 	     vcpu->arch.exception.nr == DB_VECTOR))
1580 		vmx->nested.mtf_pending = true;
1581 	else
1582 		vmx->nested.mtf_pending = false;
1583 }
1584 
1585 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1586 {
1587 	vmx_update_emulated_instruction(vcpu);
1588 	return skip_emulated_instruction(vcpu);
1589 }
1590 
1591 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1592 {
1593 	/*
1594 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1595 	 * explicitly skip the instruction because if the HLT state is set,
1596 	 * then the instruction is already executing and RIP has already been
1597 	 * advanced.
1598 	 */
1599 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1600 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1601 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1602 }
1603 
1604 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1605 {
1606 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1607 	unsigned nr = vcpu->arch.exception.nr;
1608 	bool has_error_code = vcpu->arch.exception.has_error_code;
1609 	u32 error_code = vcpu->arch.exception.error_code;
1610 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
1611 
1612 	kvm_deliver_exception_payload(vcpu);
1613 
1614 	if (has_error_code) {
1615 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1616 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1617 	}
1618 
1619 	if (vmx->rmode.vm86_active) {
1620 		int inc_eip = 0;
1621 		if (kvm_exception_is_soft(nr))
1622 			inc_eip = vcpu->arch.event_exit_inst_len;
1623 		kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1624 		return;
1625 	}
1626 
1627 	WARN_ON_ONCE(vmx->emulation_required);
1628 
1629 	if (kvm_exception_is_soft(nr)) {
1630 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1631 			     vmx->vcpu.arch.event_exit_inst_len);
1632 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1633 	} else
1634 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1635 
1636 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1637 
1638 	vmx_clear_hlt(vcpu);
1639 }
1640 
1641 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1642 			       bool load_into_hardware)
1643 {
1644 	struct vmx_uret_msr *uret_msr;
1645 
1646 	uret_msr = vmx_find_uret_msr(vmx, msr);
1647 	if (!uret_msr)
1648 		return;
1649 
1650 	uret_msr->load_into_hardware = load_into_hardware;
1651 }
1652 
1653 /*
1654  * Configuring user return MSRs to automatically save, load, and restore MSRs
1655  * that need to be shoved into hardware when running the guest.  Note, omitting
1656  * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1657  * loaded into hardware when running the guest.
1658  */
1659 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1660 {
1661 #ifdef CONFIG_X86_64
1662 	bool load_syscall_msrs;
1663 
1664 	/*
1665 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1666 	 * when EFER.SCE is set.
1667 	 */
1668 	load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1669 			    (vmx->vcpu.arch.efer & EFER_SCE);
1670 
1671 	vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1672 	vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1673 	vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1674 #endif
1675 	vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1676 
1677 	vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1678 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1679 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1680 
1681 	/*
1682 	 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1683 	 * kernel and old userspace.  If those guests run on a tsx=off host, do
1684 	 * allow guests to use TSX_CTRL, but don't change the value in hardware
1685 	 * so that TSX remains always disabled.
1686 	 */
1687 	vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1688 
1689 	/*
1690 	 * The set of MSRs to load may have changed, reload MSRs before the
1691 	 * next VM-Enter.
1692 	 */
1693 	vmx->guest_uret_msrs_loaded = false;
1694 }
1695 
1696 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1697 {
1698 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1699 
1700 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1701 		return vmcs12->tsc_offset;
1702 
1703 	return 0;
1704 }
1705 
1706 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1707 {
1708 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1709 
1710 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1711 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1712 		return vmcs12->tsc_multiplier;
1713 
1714 	return kvm_default_tsc_scaling_ratio;
1715 }
1716 
1717 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1718 {
1719 	vmcs_write64(TSC_OFFSET, offset);
1720 }
1721 
1722 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1723 {
1724 	vmcs_write64(TSC_MULTIPLIER, multiplier);
1725 }
1726 
1727 /*
1728  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1729  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1730  * all guests if the "nested" module option is off, and can also be disabled
1731  * for a single guest by disabling its VMX cpuid bit.
1732  */
1733 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1734 {
1735 	return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1736 }
1737 
1738 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1739 						 uint64_t val)
1740 {
1741 	uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1742 
1743 	return !(val & ~valid_bits);
1744 }
1745 
1746 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1747 {
1748 	switch (msr->index) {
1749 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1750 		if (!nested)
1751 			return 1;
1752 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1753 	case MSR_IA32_PERF_CAPABILITIES:
1754 		msr->data = vmx_get_perf_capabilities();
1755 		return 0;
1756 	default:
1757 		return KVM_MSR_RET_INVALID;
1758 	}
1759 }
1760 
1761 /*
1762  * Reads an msr value (of 'msr_index') into 'pdata'.
1763  * Returns 0 on success, non-0 otherwise.
1764  * Assumes vcpu_load() was already called.
1765  */
1766 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1767 {
1768 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1769 	struct vmx_uret_msr *msr;
1770 	u32 index;
1771 
1772 	switch (msr_info->index) {
1773 #ifdef CONFIG_X86_64
1774 	case MSR_FS_BASE:
1775 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1776 		break;
1777 	case MSR_GS_BASE:
1778 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1779 		break;
1780 	case MSR_KERNEL_GS_BASE:
1781 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1782 		break;
1783 #endif
1784 	case MSR_EFER:
1785 		return kvm_get_msr_common(vcpu, msr_info);
1786 	case MSR_IA32_TSX_CTRL:
1787 		if (!msr_info->host_initiated &&
1788 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1789 			return 1;
1790 		goto find_uret_msr;
1791 	case MSR_IA32_UMWAIT_CONTROL:
1792 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1793 			return 1;
1794 
1795 		msr_info->data = vmx->msr_ia32_umwait_control;
1796 		break;
1797 	case MSR_IA32_SPEC_CTRL:
1798 		if (!msr_info->host_initiated &&
1799 		    !guest_has_spec_ctrl_msr(vcpu))
1800 			return 1;
1801 
1802 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
1803 		break;
1804 	case MSR_IA32_SYSENTER_CS:
1805 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1806 		break;
1807 	case MSR_IA32_SYSENTER_EIP:
1808 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1809 		break;
1810 	case MSR_IA32_SYSENTER_ESP:
1811 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1812 		break;
1813 	case MSR_IA32_BNDCFGS:
1814 		if (!kvm_mpx_supported() ||
1815 		    (!msr_info->host_initiated &&
1816 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1817 			return 1;
1818 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1819 		break;
1820 	case MSR_IA32_MCG_EXT_CTL:
1821 		if (!msr_info->host_initiated &&
1822 		    !(vmx->msr_ia32_feature_control &
1823 		      FEAT_CTL_LMCE_ENABLED))
1824 			return 1;
1825 		msr_info->data = vcpu->arch.mcg_ext_ctl;
1826 		break;
1827 	case MSR_IA32_FEAT_CTL:
1828 		msr_info->data = vmx->msr_ia32_feature_control;
1829 		break;
1830 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
1831 		if (!msr_info->host_initiated &&
1832 		    !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
1833 			return 1;
1834 		msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
1835 			[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
1836 		break;
1837 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1838 		if (!nested_vmx_allowed(vcpu))
1839 			return 1;
1840 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1841 				    &msr_info->data))
1842 			return 1;
1843 		/*
1844 		 * Enlightened VMCS v1 doesn't have certain VMCS fields but
1845 		 * instead of just ignoring the features, different Hyper-V
1846 		 * versions are either trying to use them and fail or do some
1847 		 * sanity checking and refuse to boot. Filter all unsupported
1848 		 * features out.
1849 		 */
1850 		if (!msr_info->host_initiated &&
1851 		    vmx->nested.enlightened_vmcs_enabled)
1852 			nested_evmcs_filter_control_msr(msr_info->index,
1853 							&msr_info->data);
1854 		break;
1855 	case MSR_IA32_RTIT_CTL:
1856 		if (!vmx_pt_mode_is_host_guest())
1857 			return 1;
1858 		msr_info->data = vmx->pt_desc.guest.ctl;
1859 		break;
1860 	case MSR_IA32_RTIT_STATUS:
1861 		if (!vmx_pt_mode_is_host_guest())
1862 			return 1;
1863 		msr_info->data = vmx->pt_desc.guest.status;
1864 		break;
1865 	case MSR_IA32_RTIT_CR3_MATCH:
1866 		if (!vmx_pt_mode_is_host_guest() ||
1867 			!intel_pt_validate_cap(vmx->pt_desc.caps,
1868 						PT_CAP_cr3_filtering))
1869 			return 1;
1870 		msr_info->data = vmx->pt_desc.guest.cr3_match;
1871 		break;
1872 	case MSR_IA32_RTIT_OUTPUT_BASE:
1873 		if (!vmx_pt_mode_is_host_guest() ||
1874 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1875 					PT_CAP_topa_output) &&
1876 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1877 					PT_CAP_single_range_output)))
1878 			return 1;
1879 		msr_info->data = vmx->pt_desc.guest.output_base;
1880 		break;
1881 	case MSR_IA32_RTIT_OUTPUT_MASK:
1882 		if (!vmx_pt_mode_is_host_guest() ||
1883 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1884 					PT_CAP_topa_output) &&
1885 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1886 					PT_CAP_single_range_output)))
1887 			return 1;
1888 		msr_info->data = vmx->pt_desc.guest.output_mask;
1889 		break;
1890 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1891 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1892 		if (!vmx_pt_mode_is_host_guest() ||
1893 		    (index >= 2 * vmx->pt_desc.num_address_ranges))
1894 			return 1;
1895 		if (index % 2)
1896 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1897 		else
1898 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1899 		break;
1900 	case MSR_IA32_DEBUGCTLMSR:
1901 		msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
1902 		break;
1903 	default:
1904 	find_uret_msr:
1905 		msr = vmx_find_uret_msr(vmx, msr_info->index);
1906 		if (msr) {
1907 			msr_info->data = msr->data;
1908 			break;
1909 		}
1910 		return kvm_get_msr_common(vcpu, msr_info);
1911 	}
1912 
1913 	return 0;
1914 }
1915 
1916 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
1917 						    u64 data)
1918 {
1919 #ifdef CONFIG_X86_64
1920 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
1921 		return (u32)data;
1922 #endif
1923 	return (unsigned long)data;
1924 }
1925 
1926 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu)
1927 {
1928 	u64 debugctl = vmx_supported_debugctl();
1929 
1930 	if (!intel_pmu_lbr_is_enabled(vcpu))
1931 		debugctl &= ~DEBUGCTLMSR_LBR_MASK;
1932 
1933 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1934 		debugctl &= ~DEBUGCTLMSR_BUS_LOCK_DETECT;
1935 
1936 	return debugctl;
1937 }
1938 
1939 /*
1940  * Writes msr value into the appropriate "register".
1941  * Returns 0 on success, non-0 otherwise.
1942  * Assumes vcpu_load() was already called.
1943  */
1944 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1945 {
1946 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1947 	struct vmx_uret_msr *msr;
1948 	int ret = 0;
1949 	u32 msr_index = msr_info->index;
1950 	u64 data = msr_info->data;
1951 	u32 index;
1952 
1953 	switch (msr_index) {
1954 	case MSR_EFER:
1955 		ret = kvm_set_msr_common(vcpu, msr_info);
1956 		break;
1957 #ifdef CONFIG_X86_64
1958 	case MSR_FS_BASE:
1959 		vmx_segment_cache_clear(vmx);
1960 		vmcs_writel(GUEST_FS_BASE, data);
1961 		break;
1962 	case MSR_GS_BASE:
1963 		vmx_segment_cache_clear(vmx);
1964 		vmcs_writel(GUEST_GS_BASE, data);
1965 		break;
1966 	case MSR_KERNEL_GS_BASE:
1967 		vmx_write_guest_kernel_gs_base(vmx, data);
1968 		break;
1969 #endif
1970 	case MSR_IA32_SYSENTER_CS:
1971 		if (is_guest_mode(vcpu))
1972 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
1973 		vmcs_write32(GUEST_SYSENTER_CS, data);
1974 		break;
1975 	case MSR_IA32_SYSENTER_EIP:
1976 		if (is_guest_mode(vcpu)) {
1977 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
1978 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
1979 		}
1980 		vmcs_writel(GUEST_SYSENTER_EIP, data);
1981 		break;
1982 	case MSR_IA32_SYSENTER_ESP:
1983 		if (is_guest_mode(vcpu)) {
1984 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
1985 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
1986 		}
1987 		vmcs_writel(GUEST_SYSENTER_ESP, data);
1988 		break;
1989 	case MSR_IA32_DEBUGCTLMSR: {
1990 		u64 invalid = data & ~vcpu_supported_debugctl(vcpu);
1991 		if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
1992 			if (report_ignored_msrs)
1993 				vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n",
1994 					    __func__, data);
1995 			data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
1996 			invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
1997 		}
1998 
1999 		if (invalid)
2000 			return 1;
2001 
2002 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2003 						VM_EXIT_SAVE_DEBUG_CONTROLS)
2004 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2005 
2006 		vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2007 		if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2008 		    (data & DEBUGCTLMSR_LBR))
2009 			intel_pmu_create_guest_lbr_event(vcpu);
2010 		return 0;
2011 	}
2012 	case MSR_IA32_BNDCFGS:
2013 		if (!kvm_mpx_supported() ||
2014 		    (!msr_info->host_initiated &&
2015 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2016 			return 1;
2017 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2018 		    (data & MSR_IA32_BNDCFGS_RSVD))
2019 			return 1;
2020 		vmcs_write64(GUEST_BNDCFGS, data);
2021 		break;
2022 	case MSR_IA32_UMWAIT_CONTROL:
2023 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2024 			return 1;
2025 
2026 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2027 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2028 			return 1;
2029 
2030 		vmx->msr_ia32_umwait_control = data;
2031 		break;
2032 	case MSR_IA32_SPEC_CTRL:
2033 		if (!msr_info->host_initiated &&
2034 		    !guest_has_spec_ctrl_msr(vcpu))
2035 			return 1;
2036 
2037 		if (kvm_spec_ctrl_test_value(data))
2038 			return 1;
2039 
2040 		vmx->spec_ctrl = data;
2041 		if (!data)
2042 			break;
2043 
2044 		/*
2045 		 * For non-nested:
2046 		 * When it's written (to non-zero) for the first time, pass
2047 		 * it through.
2048 		 *
2049 		 * For nested:
2050 		 * The handling of the MSR bitmap for L2 guests is done in
2051 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2052 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2053 		 * in the merging. We update the vmcs01 here for L1 as well
2054 		 * since it will end up touching the MSR anyway now.
2055 		 */
2056 		vmx_disable_intercept_for_msr(vcpu,
2057 					      MSR_IA32_SPEC_CTRL,
2058 					      MSR_TYPE_RW);
2059 		break;
2060 	case MSR_IA32_TSX_CTRL:
2061 		if (!msr_info->host_initiated &&
2062 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2063 			return 1;
2064 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2065 			return 1;
2066 		goto find_uret_msr;
2067 	case MSR_IA32_PRED_CMD:
2068 		if (!msr_info->host_initiated &&
2069 		    !guest_has_pred_cmd_msr(vcpu))
2070 			return 1;
2071 
2072 		if (data & ~PRED_CMD_IBPB)
2073 			return 1;
2074 		if (!boot_cpu_has(X86_FEATURE_IBPB))
2075 			return 1;
2076 		if (!data)
2077 			break;
2078 
2079 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2080 
2081 		/*
2082 		 * For non-nested:
2083 		 * When it's written (to non-zero) for the first time, pass
2084 		 * it through.
2085 		 *
2086 		 * For nested:
2087 		 * The handling of the MSR bitmap for L2 guests is done in
2088 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2089 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2090 		 * in the merging.
2091 		 */
2092 		vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2093 		break;
2094 	case MSR_IA32_CR_PAT:
2095 		if (!kvm_pat_valid(data))
2096 			return 1;
2097 
2098 		if (is_guest_mode(vcpu) &&
2099 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2100 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2101 
2102 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2103 			vmcs_write64(GUEST_IA32_PAT, data);
2104 			vcpu->arch.pat = data;
2105 			break;
2106 		}
2107 		ret = kvm_set_msr_common(vcpu, msr_info);
2108 		break;
2109 	case MSR_IA32_TSC_ADJUST:
2110 		ret = kvm_set_msr_common(vcpu, msr_info);
2111 		break;
2112 	case MSR_IA32_MCG_EXT_CTL:
2113 		if ((!msr_info->host_initiated &&
2114 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2115 		       FEAT_CTL_LMCE_ENABLED)) ||
2116 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2117 			return 1;
2118 		vcpu->arch.mcg_ext_ctl = data;
2119 		break;
2120 	case MSR_IA32_FEAT_CTL:
2121 		if (!vmx_feature_control_msr_valid(vcpu, data) ||
2122 		    (to_vmx(vcpu)->msr_ia32_feature_control &
2123 		     FEAT_CTL_LOCKED && !msr_info->host_initiated))
2124 			return 1;
2125 		vmx->msr_ia32_feature_control = data;
2126 		if (msr_info->host_initiated && data == 0)
2127 			vmx_leave_nested(vcpu);
2128 
2129 		/* SGX may be enabled/disabled by guest's firmware */
2130 		vmx_write_encls_bitmap(vcpu, NULL);
2131 		break;
2132 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2133 		/*
2134 		 * On real hardware, the LE hash MSRs are writable before
2135 		 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2136 		 * at which point SGX related bits in IA32_FEATURE_CONTROL
2137 		 * become writable.
2138 		 *
2139 		 * KVM does not emulate SGX activation for simplicity, so
2140 		 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2141 		 * is unlocked.  This is technically not architectural
2142 		 * behavior, but it's close enough.
2143 		 */
2144 		if (!msr_info->host_initiated &&
2145 		    (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2146 		    ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2147 		    !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2148 			return 1;
2149 		vmx->msr_ia32_sgxlepubkeyhash
2150 			[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2151 		break;
2152 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2153 		if (!msr_info->host_initiated)
2154 			return 1; /* they are read-only */
2155 		if (!nested_vmx_allowed(vcpu))
2156 			return 1;
2157 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2158 	case MSR_IA32_RTIT_CTL:
2159 		if (!vmx_pt_mode_is_host_guest() ||
2160 			vmx_rtit_ctl_check(vcpu, data) ||
2161 			vmx->nested.vmxon)
2162 			return 1;
2163 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2164 		vmx->pt_desc.guest.ctl = data;
2165 		pt_update_intercept_for_msr(vcpu);
2166 		break;
2167 	case MSR_IA32_RTIT_STATUS:
2168 		if (!pt_can_write_msr(vmx))
2169 			return 1;
2170 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2171 			return 1;
2172 		vmx->pt_desc.guest.status = data;
2173 		break;
2174 	case MSR_IA32_RTIT_CR3_MATCH:
2175 		if (!pt_can_write_msr(vmx))
2176 			return 1;
2177 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2178 					   PT_CAP_cr3_filtering))
2179 			return 1;
2180 		vmx->pt_desc.guest.cr3_match = data;
2181 		break;
2182 	case MSR_IA32_RTIT_OUTPUT_BASE:
2183 		if (!pt_can_write_msr(vmx))
2184 			return 1;
2185 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2186 					   PT_CAP_topa_output) &&
2187 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2188 					   PT_CAP_single_range_output))
2189 			return 1;
2190 		if (!pt_output_base_valid(vcpu, data))
2191 			return 1;
2192 		vmx->pt_desc.guest.output_base = data;
2193 		break;
2194 	case MSR_IA32_RTIT_OUTPUT_MASK:
2195 		if (!pt_can_write_msr(vmx))
2196 			return 1;
2197 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2198 					   PT_CAP_topa_output) &&
2199 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2200 					   PT_CAP_single_range_output))
2201 			return 1;
2202 		vmx->pt_desc.guest.output_mask = data;
2203 		break;
2204 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2205 		if (!pt_can_write_msr(vmx))
2206 			return 1;
2207 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2208 		if (index >= 2 * vmx->pt_desc.num_address_ranges)
2209 			return 1;
2210 		if (is_noncanonical_address(data, vcpu))
2211 			return 1;
2212 		if (index % 2)
2213 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2214 		else
2215 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2216 		break;
2217 	case MSR_IA32_PERF_CAPABILITIES:
2218 		if (data && !vcpu_to_pmu(vcpu)->version)
2219 			return 1;
2220 		if (data & PMU_CAP_LBR_FMT) {
2221 			if ((data & PMU_CAP_LBR_FMT) !=
2222 			    (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT))
2223 				return 1;
2224 			if (!intel_pmu_lbr_is_compatible(vcpu))
2225 				return 1;
2226 		}
2227 		ret = kvm_set_msr_common(vcpu, msr_info);
2228 		break;
2229 
2230 	default:
2231 	find_uret_msr:
2232 		msr = vmx_find_uret_msr(vmx, msr_index);
2233 		if (msr)
2234 			ret = vmx_set_guest_uret_msr(vmx, msr, data);
2235 		else
2236 			ret = kvm_set_msr_common(vcpu, msr_info);
2237 	}
2238 
2239 	return ret;
2240 }
2241 
2242 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2243 {
2244 	unsigned long guest_owned_bits;
2245 
2246 	kvm_register_mark_available(vcpu, reg);
2247 
2248 	switch (reg) {
2249 	case VCPU_REGS_RSP:
2250 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2251 		break;
2252 	case VCPU_REGS_RIP:
2253 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2254 		break;
2255 	case VCPU_EXREG_PDPTR:
2256 		if (enable_ept)
2257 			ept_save_pdptrs(vcpu);
2258 		break;
2259 	case VCPU_EXREG_CR0:
2260 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2261 
2262 		vcpu->arch.cr0 &= ~guest_owned_bits;
2263 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2264 		break;
2265 	case VCPU_EXREG_CR3:
2266 		/*
2267 		 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2268 		 * CR3 is loaded into hardware, not the guest's CR3.
2269 		 */
2270 		if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2271 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2272 		break;
2273 	case VCPU_EXREG_CR4:
2274 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2275 
2276 		vcpu->arch.cr4 &= ~guest_owned_bits;
2277 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2278 		break;
2279 	default:
2280 		KVM_BUG_ON(1, vcpu->kvm);
2281 		break;
2282 	}
2283 }
2284 
2285 static __init int cpu_has_kvm_support(void)
2286 {
2287 	return cpu_has_vmx();
2288 }
2289 
2290 static __init int vmx_disabled_by_bios(void)
2291 {
2292 	return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2293 	       !boot_cpu_has(X86_FEATURE_VMX);
2294 }
2295 
2296 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2297 {
2298 	u64 msr;
2299 
2300 	cr4_set_bits(X86_CR4_VMXE);
2301 
2302 	asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2303 			  _ASM_EXTABLE(1b, %l[fault])
2304 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2305 			  : : fault);
2306 	return 0;
2307 
2308 fault:
2309 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2310 		  rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2311 	cr4_clear_bits(X86_CR4_VMXE);
2312 
2313 	return -EFAULT;
2314 }
2315 
2316 static int hardware_enable(void)
2317 {
2318 	int cpu = raw_smp_processor_id();
2319 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2320 	int r;
2321 
2322 	if (cr4_read_shadow() & X86_CR4_VMXE)
2323 		return -EBUSY;
2324 
2325 	/*
2326 	 * This can happen if we hot-added a CPU but failed to allocate
2327 	 * VP assist page for it.
2328 	 */
2329 	if (static_branch_unlikely(&enable_evmcs) &&
2330 	    !hv_get_vp_assist_page(cpu))
2331 		return -EFAULT;
2332 
2333 	intel_pt_handle_vmx(1);
2334 
2335 	r = kvm_cpu_vmxon(phys_addr);
2336 	if (r) {
2337 		intel_pt_handle_vmx(0);
2338 		return r;
2339 	}
2340 
2341 	if (enable_ept)
2342 		ept_sync_global();
2343 
2344 	return 0;
2345 }
2346 
2347 static void vmclear_local_loaded_vmcss(void)
2348 {
2349 	int cpu = raw_smp_processor_id();
2350 	struct loaded_vmcs *v, *n;
2351 
2352 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2353 				 loaded_vmcss_on_cpu_link)
2354 		__loaded_vmcs_clear(v);
2355 }
2356 
2357 static void hardware_disable(void)
2358 {
2359 	vmclear_local_loaded_vmcss();
2360 
2361 	if (cpu_vmxoff())
2362 		kvm_spurious_fault();
2363 
2364 	intel_pt_handle_vmx(0);
2365 }
2366 
2367 /*
2368  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2369  * directly instead of going through cpu_has(), to ensure KVM is trapping
2370  * ENCLS whenever it's supported in hardware.  It does not matter whether
2371  * the host OS supports or has enabled SGX.
2372  */
2373 static bool cpu_has_sgx(void)
2374 {
2375 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2376 }
2377 
2378 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2379 				      u32 msr, u32 *result)
2380 {
2381 	u32 vmx_msr_low, vmx_msr_high;
2382 	u32 ctl = ctl_min | ctl_opt;
2383 
2384 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2385 
2386 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2387 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2388 
2389 	/* Ensure minimum (required) set of control bits are supported. */
2390 	if (ctl_min & ~ctl)
2391 		return -EIO;
2392 
2393 	*result = ctl;
2394 	return 0;
2395 }
2396 
2397 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2398 				    struct vmx_capability *vmx_cap)
2399 {
2400 	u32 vmx_msr_low, vmx_msr_high;
2401 	u32 min, opt, min2, opt2;
2402 	u32 _pin_based_exec_control = 0;
2403 	u32 _cpu_based_exec_control = 0;
2404 	u32 _cpu_based_2nd_exec_control = 0;
2405 	u32 _vmexit_control = 0;
2406 	u32 _vmentry_control = 0;
2407 
2408 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2409 	min = CPU_BASED_HLT_EXITING |
2410 #ifdef CONFIG_X86_64
2411 	      CPU_BASED_CR8_LOAD_EXITING |
2412 	      CPU_BASED_CR8_STORE_EXITING |
2413 #endif
2414 	      CPU_BASED_CR3_LOAD_EXITING |
2415 	      CPU_BASED_CR3_STORE_EXITING |
2416 	      CPU_BASED_UNCOND_IO_EXITING |
2417 	      CPU_BASED_MOV_DR_EXITING |
2418 	      CPU_BASED_USE_TSC_OFFSETTING |
2419 	      CPU_BASED_MWAIT_EXITING |
2420 	      CPU_BASED_MONITOR_EXITING |
2421 	      CPU_BASED_INVLPG_EXITING |
2422 	      CPU_BASED_RDPMC_EXITING;
2423 
2424 	opt = CPU_BASED_TPR_SHADOW |
2425 	      CPU_BASED_USE_MSR_BITMAPS |
2426 	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2427 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2428 				&_cpu_based_exec_control) < 0)
2429 		return -EIO;
2430 #ifdef CONFIG_X86_64
2431 	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2432 		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2433 					   ~CPU_BASED_CR8_STORE_EXITING;
2434 #endif
2435 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2436 		min2 = 0;
2437 		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2438 			SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2439 			SECONDARY_EXEC_WBINVD_EXITING |
2440 			SECONDARY_EXEC_ENABLE_VPID |
2441 			SECONDARY_EXEC_ENABLE_EPT |
2442 			SECONDARY_EXEC_UNRESTRICTED_GUEST |
2443 			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2444 			SECONDARY_EXEC_DESC |
2445 			SECONDARY_EXEC_ENABLE_RDTSCP |
2446 			SECONDARY_EXEC_ENABLE_INVPCID |
2447 			SECONDARY_EXEC_APIC_REGISTER_VIRT |
2448 			SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2449 			SECONDARY_EXEC_SHADOW_VMCS |
2450 			SECONDARY_EXEC_XSAVES |
2451 			SECONDARY_EXEC_RDSEED_EXITING |
2452 			SECONDARY_EXEC_RDRAND_EXITING |
2453 			SECONDARY_EXEC_ENABLE_PML |
2454 			SECONDARY_EXEC_TSC_SCALING |
2455 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2456 			SECONDARY_EXEC_PT_USE_GPA |
2457 			SECONDARY_EXEC_PT_CONCEAL_VMX |
2458 			SECONDARY_EXEC_ENABLE_VMFUNC |
2459 			SECONDARY_EXEC_BUS_LOCK_DETECTION;
2460 		if (cpu_has_sgx())
2461 			opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2462 		if (adjust_vmx_controls(min2, opt2,
2463 					MSR_IA32_VMX_PROCBASED_CTLS2,
2464 					&_cpu_based_2nd_exec_control) < 0)
2465 			return -EIO;
2466 	}
2467 #ifndef CONFIG_X86_64
2468 	if (!(_cpu_based_2nd_exec_control &
2469 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2470 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2471 #endif
2472 
2473 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2474 		_cpu_based_2nd_exec_control &= ~(
2475 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2476 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2477 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2478 
2479 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2480 		&vmx_cap->ept, &vmx_cap->vpid);
2481 
2482 	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2483 		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2484 		   enabled */
2485 		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2486 					     CPU_BASED_CR3_STORE_EXITING |
2487 					     CPU_BASED_INVLPG_EXITING);
2488 	} else if (vmx_cap->ept) {
2489 		vmx_cap->ept = 0;
2490 		pr_warn_once("EPT CAP should not exist if not support "
2491 				"1-setting enable EPT VM-execution control\n");
2492 	}
2493 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2494 		vmx_cap->vpid) {
2495 		vmx_cap->vpid = 0;
2496 		pr_warn_once("VPID CAP should not exist if not support "
2497 				"1-setting enable VPID VM-execution control\n");
2498 	}
2499 
2500 	min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2501 #ifdef CONFIG_X86_64
2502 	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2503 #endif
2504 	opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2505 	      VM_EXIT_LOAD_IA32_PAT |
2506 	      VM_EXIT_LOAD_IA32_EFER |
2507 	      VM_EXIT_CLEAR_BNDCFGS |
2508 	      VM_EXIT_PT_CONCEAL_PIP |
2509 	      VM_EXIT_CLEAR_IA32_RTIT_CTL;
2510 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2511 				&_vmexit_control) < 0)
2512 		return -EIO;
2513 
2514 	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2515 	opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2516 		 PIN_BASED_VMX_PREEMPTION_TIMER;
2517 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2518 				&_pin_based_exec_control) < 0)
2519 		return -EIO;
2520 
2521 	if (cpu_has_broken_vmx_preemption_timer())
2522 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2523 	if (!(_cpu_based_2nd_exec_control &
2524 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2525 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2526 
2527 	min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2528 	opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2529 	      VM_ENTRY_LOAD_IA32_PAT |
2530 	      VM_ENTRY_LOAD_IA32_EFER |
2531 	      VM_ENTRY_LOAD_BNDCFGS |
2532 	      VM_ENTRY_PT_CONCEAL_PIP |
2533 	      VM_ENTRY_LOAD_IA32_RTIT_CTL;
2534 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2535 				&_vmentry_control) < 0)
2536 		return -EIO;
2537 
2538 	/*
2539 	 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2540 	 * can't be used due to an errata where VM Exit may incorrectly clear
2541 	 * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2542 	 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2543 	 */
2544 	if (boot_cpu_data.x86 == 0x6) {
2545 		switch (boot_cpu_data.x86_model) {
2546 		case 26: /* AAK155 */
2547 		case 30: /* AAP115 */
2548 		case 37: /* AAT100 */
2549 		case 44: /* BC86,AAY89,BD102 */
2550 		case 46: /* BA97 */
2551 			_vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2552 			_vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2553 			pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2554 					"does not work properly. Using workaround\n");
2555 			break;
2556 		default:
2557 			break;
2558 		}
2559 	}
2560 
2561 
2562 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2563 
2564 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2565 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2566 		return -EIO;
2567 
2568 #ifdef CONFIG_X86_64
2569 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2570 	if (vmx_msr_high & (1u<<16))
2571 		return -EIO;
2572 #endif
2573 
2574 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2575 	if (((vmx_msr_high >> 18) & 15) != 6)
2576 		return -EIO;
2577 
2578 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2579 	vmcs_conf->order = get_order(vmcs_conf->size);
2580 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2581 
2582 	vmcs_conf->revision_id = vmx_msr_low;
2583 
2584 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2585 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2586 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2587 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2588 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2589 
2590 #if IS_ENABLED(CONFIG_HYPERV)
2591 	if (enlightened_vmcs)
2592 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2593 #endif
2594 
2595 	return 0;
2596 }
2597 
2598 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2599 {
2600 	int node = cpu_to_node(cpu);
2601 	struct page *pages;
2602 	struct vmcs *vmcs;
2603 
2604 	pages = __alloc_pages_node(node, flags, vmcs_config.order);
2605 	if (!pages)
2606 		return NULL;
2607 	vmcs = page_address(pages);
2608 	memset(vmcs, 0, vmcs_config.size);
2609 
2610 	/* KVM supports Enlightened VMCS v1 only */
2611 	if (static_branch_unlikely(&enable_evmcs))
2612 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2613 	else
2614 		vmcs->hdr.revision_id = vmcs_config.revision_id;
2615 
2616 	if (shadow)
2617 		vmcs->hdr.shadow_vmcs = 1;
2618 	return vmcs;
2619 }
2620 
2621 void free_vmcs(struct vmcs *vmcs)
2622 {
2623 	free_pages((unsigned long)vmcs, vmcs_config.order);
2624 }
2625 
2626 /*
2627  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2628  */
2629 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2630 {
2631 	if (!loaded_vmcs->vmcs)
2632 		return;
2633 	loaded_vmcs_clear(loaded_vmcs);
2634 	free_vmcs(loaded_vmcs->vmcs);
2635 	loaded_vmcs->vmcs = NULL;
2636 	if (loaded_vmcs->msr_bitmap)
2637 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2638 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2639 }
2640 
2641 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2642 {
2643 	loaded_vmcs->vmcs = alloc_vmcs(false);
2644 	if (!loaded_vmcs->vmcs)
2645 		return -ENOMEM;
2646 
2647 	vmcs_clear(loaded_vmcs->vmcs);
2648 
2649 	loaded_vmcs->shadow_vmcs = NULL;
2650 	loaded_vmcs->hv_timer_soft_disabled = false;
2651 	loaded_vmcs->cpu = -1;
2652 	loaded_vmcs->launched = 0;
2653 
2654 	if (cpu_has_vmx_msr_bitmap()) {
2655 		loaded_vmcs->msr_bitmap = (unsigned long *)
2656 				__get_free_page(GFP_KERNEL_ACCOUNT);
2657 		if (!loaded_vmcs->msr_bitmap)
2658 			goto out_vmcs;
2659 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2660 
2661 		if (IS_ENABLED(CONFIG_HYPERV) &&
2662 		    static_branch_unlikely(&enable_evmcs) &&
2663 		    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2664 			struct hv_enlightened_vmcs *evmcs =
2665 				(struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2666 
2667 			evmcs->hv_enlightenments_control.msr_bitmap = 1;
2668 		}
2669 	}
2670 
2671 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2672 	memset(&loaded_vmcs->controls_shadow, 0,
2673 		sizeof(struct vmcs_controls_shadow));
2674 
2675 	return 0;
2676 
2677 out_vmcs:
2678 	free_loaded_vmcs(loaded_vmcs);
2679 	return -ENOMEM;
2680 }
2681 
2682 static void free_kvm_area(void)
2683 {
2684 	int cpu;
2685 
2686 	for_each_possible_cpu(cpu) {
2687 		free_vmcs(per_cpu(vmxarea, cpu));
2688 		per_cpu(vmxarea, cpu) = NULL;
2689 	}
2690 }
2691 
2692 static __init int alloc_kvm_area(void)
2693 {
2694 	int cpu;
2695 
2696 	for_each_possible_cpu(cpu) {
2697 		struct vmcs *vmcs;
2698 
2699 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2700 		if (!vmcs) {
2701 			free_kvm_area();
2702 			return -ENOMEM;
2703 		}
2704 
2705 		/*
2706 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2707 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2708 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2709 		 *
2710 		 * However, even though not explicitly documented by
2711 		 * TLFS, VMXArea passed as VMXON argument should
2712 		 * still be marked with revision_id reported by
2713 		 * physical CPU.
2714 		 */
2715 		if (static_branch_unlikely(&enable_evmcs))
2716 			vmcs->hdr.revision_id = vmcs_config.revision_id;
2717 
2718 		per_cpu(vmxarea, cpu) = vmcs;
2719 	}
2720 	return 0;
2721 }
2722 
2723 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2724 		struct kvm_segment *save)
2725 {
2726 	if (!emulate_invalid_guest_state) {
2727 		/*
2728 		 * CS and SS RPL should be equal during guest entry according
2729 		 * to VMX spec, but in reality it is not always so. Since vcpu
2730 		 * is in the middle of the transition from real mode to
2731 		 * protected mode it is safe to assume that RPL 0 is a good
2732 		 * default value.
2733 		 */
2734 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2735 			save->selector &= ~SEGMENT_RPL_MASK;
2736 		save->dpl = save->selector & SEGMENT_RPL_MASK;
2737 		save->s = 1;
2738 	}
2739 	__vmx_set_segment(vcpu, save, seg);
2740 }
2741 
2742 static void enter_pmode(struct kvm_vcpu *vcpu)
2743 {
2744 	unsigned long flags;
2745 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2746 
2747 	/*
2748 	 * Update real mode segment cache. It may be not up-to-date if segment
2749 	 * register was written while vcpu was in a guest mode.
2750 	 */
2751 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2752 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2753 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2754 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2755 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2756 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2757 
2758 	vmx->rmode.vm86_active = 0;
2759 
2760 	__vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2761 
2762 	flags = vmcs_readl(GUEST_RFLAGS);
2763 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2764 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2765 	vmcs_writel(GUEST_RFLAGS, flags);
2766 
2767 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2768 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2769 
2770 	vmx_update_exception_bitmap(vcpu);
2771 
2772 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2773 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2774 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2775 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2776 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2777 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2778 }
2779 
2780 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2781 {
2782 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2783 	struct kvm_segment var = *save;
2784 
2785 	var.dpl = 0x3;
2786 	if (seg == VCPU_SREG_CS)
2787 		var.type = 0x3;
2788 
2789 	if (!emulate_invalid_guest_state) {
2790 		var.selector = var.base >> 4;
2791 		var.base = var.base & 0xffff0;
2792 		var.limit = 0xffff;
2793 		var.g = 0;
2794 		var.db = 0;
2795 		var.present = 1;
2796 		var.s = 1;
2797 		var.l = 0;
2798 		var.unusable = 0;
2799 		var.type = 0x3;
2800 		var.avl = 0;
2801 		if (save->base & 0xf)
2802 			printk_once(KERN_WARNING "kvm: segment base is not "
2803 					"paragraph aligned when entering "
2804 					"protected mode (seg=%d)", seg);
2805 	}
2806 
2807 	vmcs_write16(sf->selector, var.selector);
2808 	vmcs_writel(sf->base, var.base);
2809 	vmcs_write32(sf->limit, var.limit);
2810 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2811 }
2812 
2813 static void enter_rmode(struct kvm_vcpu *vcpu)
2814 {
2815 	unsigned long flags;
2816 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2817 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2818 
2819 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2820 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2821 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2822 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2823 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2824 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2825 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2826 
2827 	vmx->rmode.vm86_active = 1;
2828 
2829 	/*
2830 	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2831 	 * vcpu. Warn the user that an update is overdue.
2832 	 */
2833 	if (!kvm_vmx->tss_addr)
2834 		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2835 			     "called before entering vcpu\n");
2836 
2837 	vmx_segment_cache_clear(vmx);
2838 
2839 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2840 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2841 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2842 
2843 	flags = vmcs_readl(GUEST_RFLAGS);
2844 	vmx->rmode.save_rflags = flags;
2845 
2846 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2847 
2848 	vmcs_writel(GUEST_RFLAGS, flags);
2849 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2850 	vmx_update_exception_bitmap(vcpu);
2851 
2852 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2853 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2854 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2855 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2856 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2857 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2858 }
2859 
2860 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2861 {
2862 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2863 	struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER);
2864 
2865 	/* Nothing to do if hardware doesn't support EFER. */
2866 	if (!msr)
2867 		return 0;
2868 
2869 	vcpu->arch.efer = efer;
2870 	if (efer & EFER_LMA) {
2871 		vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2872 		msr->data = efer;
2873 	} else {
2874 		vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2875 
2876 		msr->data = efer & ~EFER_LME;
2877 	}
2878 	vmx_setup_uret_msrs(vmx);
2879 	return 0;
2880 }
2881 
2882 #ifdef CONFIG_X86_64
2883 
2884 static void enter_lmode(struct kvm_vcpu *vcpu)
2885 {
2886 	u32 guest_tr_ar;
2887 
2888 	vmx_segment_cache_clear(to_vmx(vcpu));
2889 
2890 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2891 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2892 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2893 				     __func__);
2894 		vmcs_write32(GUEST_TR_AR_BYTES,
2895 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2896 			     | VMX_AR_TYPE_BUSY_64_TSS);
2897 	}
2898 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2899 }
2900 
2901 static void exit_lmode(struct kvm_vcpu *vcpu)
2902 {
2903 	vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2904 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2905 }
2906 
2907 #endif
2908 
2909 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
2910 {
2911 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2912 
2913 	/*
2914 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
2915 	 * the CPU is not required to invalidate guest-physical mappings on
2916 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
2917 	 * associated with the root EPT structure and not any particular VPID
2918 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
2919 	 */
2920 	if (enable_ept) {
2921 		ept_sync_global();
2922 	} else if (enable_vpid) {
2923 		if (cpu_has_vmx_invvpid_global()) {
2924 			vpid_sync_vcpu_global();
2925 		} else {
2926 			vpid_sync_vcpu_single(vmx->vpid);
2927 			vpid_sync_vcpu_single(vmx->nested.vpid02);
2928 		}
2929 	}
2930 }
2931 
2932 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
2933 {
2934 	struct kvm_mmu *mmu = vcpu->arch.mmu;
2935 	u64 root_hpa = mmu->root_hpa;
2936 
2937 	/* No flush required if the current context is invalid. */
2938 	if (!VALID_PAGE(root_hpa))
2939 		return;
2940 
2941 	if (enable_ept)
2942 		ept_sync_context(construct_eptp(vcpu, root_hpa,
2943 						mmu->shadow_root_level));
2944 	else if (!is_guest_mode(vcpu))
2945 		vpid_sync_context(to_vmx(vcpu)->vpid);
2946 	else
2947 		vpid_sync_context(nested_get_vpid02(vcpu));
2948 }
2949 
2950 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2951 {
2952 	/*
2953 	 * vpid_sync_vcpu_addr() is a nop if vmx->vpid==0, see the comment in
2954 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
2955 	 */
2956 	vpid_sync_vcpu_addr(to_vmx(vcpu)->vpid, addr);
2957 }
2958 
2959 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
2960 {
2961 	/*
2962 	 * vpid_sync_context() is a nop if vmx->vpid==0, e.g. if enable_vpid==0
2963 	 * or a vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit
2964 	 * are required to flush GVA->{G,H}PA mappings from the TLB if vpid is
2965 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
2966 	 * i.e. no explicit INVVPID is necessary.
2967 	 */
2968 	vpid_sync_context(to_vmx(vcpu)->vpid);
2969 }
2970 
2971 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
2972 {
2973 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2974 
2975 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
2976 		return;
2977 
2978 	if (is_pae_paging(vcpu)) {
2979 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2980 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2981 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2982 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2983 	}
2984 }
2985 
2986 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2987 {
2988 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2989 
2990 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
2991 		return;
2992 
2993 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2994 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2995 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2996 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2997 
2998 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
2999 }
3000 
3001 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3002 			  CPU_BASED_CR3_STORE_EXITING)
3003 
3004 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3005 {
3006 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3007 	unsigned long hw_cr0, old_cr0_pg;
3008 	u32 tmp;
3009 
3010 	old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3011 
3012 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3013 	if (is_unrestricted_guest(vcpu))
3014 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3015 	else {
3016 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3017 		if (!enable_ept)
3018 			hw_cr0 |= X86_CR0_WP;
3019 
3020 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3021 			enter_pmode(vcpu);
3022 
3023 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3024 			enter_rmode(vcpu);
3025 	}
3026 
3027 	vmcs_writel(CR0_READ_SHADOW, cr0);
3028 	vmcs_writel(GUEST_CR0, hw_cr0);
3029 	vcpu->arch.cr0 = cr0;
3030 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3031 
3032 #ifdef CONFIG_X86_64
3033 	if (vcpu->arch.efer & EFER_LME) {
3034 		if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3035 			enter_lmode(vcpu);
3036 		else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3037 			exit_lmode(vcpu);
3038 	}
3039 #endif
3040 
3041 	if (enable_ept && !is_unrestricted_guest(vcpu)) {
3042 		/*
3043 		 * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3044 		 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3045 		 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3046 		 * KVM's CR3 is installed.
3047 		 */
3048 		if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3049 			vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3050 
3051 		/*
3052 		 * When running with EPT but not unrestricted guest, KVM must
3053 		 * intercept CR3 accesses when paging is _disabled_.  This is
3054 		 * necessary because restricted guests can't actually run with
3055 		 * paging disabled, and so KVM stuffs its own CR3 in order to
3056 		 * run the guest when identity mapped page tables.
3057 		 *
3058 		 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3059 		 * update, it may be stale with respect to CR3 interception,
3060 		 * e.g. after nested VM-Enter.
3061 		 *
3062 		 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3063 		 * stores to forward them to L1, even if KVM does not need to
3064 		 * intercept them to preserve its identity mapped page tables.
3065 		 */
3066 		if (!(cr0 & X86_CR0_PG)) {
3067 			exec_controls_setbit(vmx, CR3_EXITING_BITS);
3068 		} else if (!is_guest_mode(vcpu)) {
3069 			exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3070 		} else {
3071 			tmp = exec_controls_get(vmx);
3072 			tmp &= ~CR3_EXITING_BITS;
3073 			tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3074 			exec_controls_set(vmx, tmp);
3075 		}
3076 
3077 		/* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3078 		if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3079 			vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3080 	}
3081 
3082 	/* depends on vcpu->arch.cr0 to be set to a new value */
3083 	vmx->emulation_required = vmx_emulation_required(vcpu);
3084 }
3085 
3086 static int vmx_get_max_tdp_level(void)
3087 {
3088 	if (cpu_has_vmx_ept_5levels())
3089 		return 5;
3090 	return 4;
3091 }
3092 
3093 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3094 {
3095 	u64 eptp = VMX_EPTP_MT_WB;
3096 
3097 	eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3098 
3099 	if (enable_ept_ad_bits &&
3100 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3101 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3102 	eptp |= root_hpa;
3103 
3104 	return eptp;
3105 }
3106 
3107 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3108 			     int root_level)
3109 {
3110 	struct kvm *kvm = vcpu->kvm;
3111 	bool update_guest_cr3 = true;
3112 	unsigned long guest_cr3;
3113 	u64 eptp;
3114 
3115 	if (enable_ept) {
3116 		eptp = construct_eptp(vcpu, root_hpa, root_level);
3117 		vmcs_write64(EPT_POINTER, eptp);
3118 
3119 		hv_track_root_tdp(vcpu, root_hpa);
3120 
3121 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3122 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3123 		else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3124 			guest_cr3 = vcpu->arch.cr3;
3125 		else /* vmcs01.GUEST_CR3 is already up-to-date. */
3126 			update_guest_cr3 = false;
3127 		vmx_ept_load_pdptrs(vcpu);
3128 	} else {
3129 		guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
3130 	}
3131 
3132 	if (update_guest_cr3)
3133 		vmcs_writel(GUEST_CR3, guest_cr3);
3134 }
3135 
3136 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3137 {
3138 	/*
3139 	 * We operate under the default treatment of SMM, so VMX cannot be
3140 	 * enabled under SMM.  Note, whether or not VMXE is allowed at all is
3141 	 * handled by kvm_is_valid_cr4().
3142 	 */
3143 	if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3144 		return false;
3145 
3146 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3147 		return false;
3148 
3149 	return true;
3150 }
3151 
3152 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3153 {
3154 	unsigned long old_cr4 = vcpu->arch.cr4;
3155 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3156 	/*
3157 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3158 	 * is in force while we are in guest mode.  Do not let guests control
3159 	 * this bit, even if host CR4.MCE == 0.
3160 	 */
3161 	unsigned long hw_cr4;
3162 
3163 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3164 	if (is_unrestricted_guest(vcpu))
3165 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3166 	else if (vmx->rmode.vm86_active)
3167 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3168 	else
3169 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3170 
3171 	if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3172 		if (cr4 & X86_CR4_UMIP) {
3173 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3174 			hw_cr4 &= ~X86_CR4_UMIP;
3175 		} else if (!is_guest_mode(vcpu) ||
3176 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3177 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3178 		}
3179 	}
3180 
3181 	vcpu->arch.cr4 = cr4;
3182 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3183 
3184 	if (!is_unrestricted_guest(vcpu)) {
3185 		if (enable_ept) {
3186 			if (!is_paging(vcpu)) {
3187 				hw_cr4 &= ~X86_CR4_PAE;
3188 				hw_cr4 |= X86_CR4_PSE;
3189 			} else if (!(cr4 & X86_CR4_PAE)) {
3190 				hw_cr4 &= ~X86_CR4_PAE;
3191 			}
3192 		}
3193 
3194 		/*
3195 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3196 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3197 		 * to be manually disabled when guest switches to non-paging
3198 		 * mode.
3199 		 *
3200 		 * If !enable_unrestricted_guest, the CPU is always running
3201 		 * with CR0.PG=1 and CR4 needs to be modified.
3202 		 * If enable_unrestricted_guest, the CPU automatically
3203 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3204 		 */
3205 		if (!is_paging(vcpu))
3206 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3207 	}
3208 
3209 	vmcs_writel(CR4_READ_SHADOW, cr4);
3210 	vmcs_writel(GUEST_CR4, hw_cr4);
3211 
3212 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3213 		kvm_update_cpuid_runtime(vcpu);
3214 }
3215 
3216 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3217 {
3218 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3219 	u32 ar;
3220 
3221 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3222 		*var = vmx->rmode.segs[seg];
3223 		if (seg == VCPU_SREG_TR
3224 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3225 			return;
3226 		var->base = vmx_read_guest_seg_base(vmx, seg);
3227 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3228 		return;
3229 	}
3230 	var->base = vmx_read_guest_seg_base(vmx, seg);
3231 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3232 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3233 	ar = vmx_read_guest_seg_ar(vmx, seg);
3234 	var->unusable = (ar >> 16) & 1;
3235 	var->type = ar & 15;
3236 	var->s = (ar >> 4) & 1;
3237 	var->dpl = (ar >> 5) & 3;
3238 	/*
3239 	 * Some userspaces do not preserve unusable property. Since usable
3240 	 * segment has to be present according to VMX spec we can use present
3241 	 * property to amend userspace bug by making unusable segment always
3242 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3243 	 * segment as unusable.
3244 	 */
3245 	var->present = !var->unusable;
3246 	var->avl = (ar >> 12) & 1;
3247 	var->l = (ar >> 13) & 1;
3248 	var->db = (ar >> 14) & 1;
3249 	var->g = (ar >> 15) & 1;
3250 }
3251 
3252 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3253 {
3254 	struct kvm_segment s;
3255 
3256 	if (to_vmx(vcpu)->rmode.vm86_active) {
3257 		vmx_get_segment(vcpu, &s, seg);
3258 		return s.base;
3259 	}
3260 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3261 }
3262 
3263 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3264 {
3265 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3266 
3267 	if (unlikely(vmx->rmode.vm86_active))
3268 		return 0;
3269 	else {
3270 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3271 		return VMX_AR_DPL(ar);
3272 	}
3273 }
3274 
3275 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3276 {
3277 	u32 ar;
3278 
3279 	if (var->unusable || !var->present)
3280 		ar = 1 << 16;
3281 	else {
3282 		ar = var->type & 15;
3283 		ar |= (var->s & 1) << 4;
3284 		ar |= (var->dpl & 3) << 5;
3285 		ar |= (var->present & 1) << 7;
3286 		ar |= (var->avl & 1) << 12;
3287 		ar |= (var->l & 1) << 13;
3288 		ar |= (var->db & 1) << 14;
3289 		ar |= (var->g & 1) << 15;
3290 	}
3291 
3292 	return ar;
3293 }
3294 
3295 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3296 {
3297 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3298 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3299 
3300 	vmx_segment_cache_clear(vmx);
3301 
3302 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3303 		vmx->rmode.segs[seg] = *var;
3304 		if (seg == VCPU_SREG_TR)
3305 			vmcs_write16(sf->selector, var->selector);
3306 		else if (var->s)
3307 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3308 		return;
3309 	}
3310 
3311 	vmcs_writel(sf->base, var->base);
3312 	vmcs_write32(sf->limit, var->limit);
3313 	vmcs_write16(sf->selector, var->selector);
3314 
3315 	/*
3316 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3317 	 * qemu binaries.
3318 	 *   IA32 arch specifies that at the time of processor reset the
3319 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3320 	 * is setting it to 0 in the userland code. This causes invalid guest
3321 	 * state vmexit when "unrestricted guest" mode is turned on.
3322 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3323 	 * tree. Newer qemu binaries with that qemu fix would not need this
3324 	 * kvm hack.
3325 	 */
3326 	if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3327 		var->type |= 0x1; /* Accessed */
3328 
3329 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3330 }
3331 
3332 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3333 {
3334 	__vmx_set_segment(vcpu, var, seg);
3335 
3336 	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3337 }
3338 
3339 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3340 {
3341 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3342 
3343 	*db = (ar >> 14) & 1;
3344 	*l = (ar >> 13) & 1;
3345 }
3346 
3347 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3348 {
3349 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3350 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3351 }
3352 
3353 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3354 {
3355 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3356 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3357 }
3358 
3359 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3360 {
3361 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3362 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3363 }
3364 
3365 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3366 {
3367 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3368 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3369 }
3370 
3371 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3372 {
3373 	struct kvm_segment var;
3374 	u32 ar;
3375 
3376 	vmx_get_segment(vcpu, &var, seg);
3377 	var.dpl = 0x3;
3378 	if (seg == VCPU_SREG_CS)
3379 		var.type = 0x3;
3380 	ar = vmx_segment_access_rights(&var);
3381 
3382 	if (var.base != (var.selector << 4))
3383 		return false;
3384 	if (var.limit != 0xffff)
3385 		return false;
3386 	if (ar != 0xf3)
3387 		return false;
3388 
3389 	return true;
3390 }
3391 
3392 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3393 {
3394 	struct kvm_segment cs;
3395 	unsigned int cs_rpl;
3396 
3397 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3398 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3399 
3400 	if (cs.unusable)
3401 		return false;
3402 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3403 		return false;
3404 	if (!cs.s)
3405 		return false;
3406 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3407 		if (cs.dpl > cs_rpl)
3408 			return false;
3409 	} else {
3410 		if (cs.dpl != cs_rpl)
3411 			return false;
3412 	}
3413 	if (!cs.present)
3414 		return false;
3415 
3416 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3417 	return true;
3418 }
3419 
3420 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3421 {
3422 	struct kvm_segment ss;
3423 	unsigned int ss_rpl;
3424 
3425 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3426 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3427 
3428 	if (ss.unusable)
3429 		return true;
3430 	if (ss.type != 3 && ss.type != 7)
3431 		return false;
3432 	if (!ss.s)
3433 		return false;
3434 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3435 		return false;
3436 	if (!ss.present)
3437 		return false;
3438 
3439 	return true;
3440 }
3441 
3442 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3443 {
3444 	struct kvm_segment var;
3445 	unsigned int rpl;
3446 
3447 	vmx_get_segment(vcpu, &var, seg);
3448 	rpl = var.selector & SEGMENT_RPL_MASK;
3449 
3450 	if (var.unusable)
3451 		return true;
3452 	if (!var.s)
3453 		return false;
3454 	if (!var.present)
3455 		return false;
3456 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3457 		if (var.dpl < rpl) /* DPL < RPL */
3458 			return false;
3459 	}
3460 
3461 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3462 	 * rights flags
3463 	 */
3464 	return true;
3465 }
3466 
3467 static bool tr_valid(struct kvm_vcpu *vcpu)
3468 {
3469 	struct kvm_segment tr;
3470 
3471 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3472 
3473 	if (tr.unusable)
3474 		return false;
3475 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3476 		return false;
3477 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3478 		return false;
3479 	if (!tr.present)
3480 		return false;
3481 
3482 	return true;
3483 }
3484 
3485 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3486 {
3487 	struct kvm_segment ldtr;
3488 
3489 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3490 
3491 	if (ldtr.unusable)
3492 		return true;
3493 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3494 		return false;
3495 	if (ldtr.type != 2)
3496 		return false;
3497 	if (!ldtr.present)
3498 		return false;
3499 
3500 	return true;
3501 }
3502 
3503 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3504 {
3505 	struct kvm_segment cs, ss;
3506 
3507 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3508 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3509 
3510 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3511 		 (ss.selector & SEGMENT_RPL_MASK));
3512 }
3513 
3514 /*
3515  * Check if guest state is valid. Returns true if valid, false if
3516  * not.
3517  * We assume that registers are always usable
3518  */
3519 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3520 {
3521 	/* real mode guest state checks */
3522 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3523 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3524 			return false;
3525 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3526 			return false;
3527 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3528 			return false;
3529 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3530 			return false;
3531 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3532 			return false;
3533 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3534 			return false;
3535 	} else {
3536 	/* protected mode guest state checks */
3537 		if (!cs_ss_rpl_check(vcpu))
3538 			return false;
3539 		if (!code_segment_valid(vcpu))
3540 			return false;
3541 		if (!stack_segment_valid(vcpu))
3542 			return false;
3543 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3544 			return false;
3545 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3546 			return false;
3547 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3548 			return false;
3549 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3550 			return false;
3551 		if (!tr_valid(vcpu))
3552 			return false;
3553 		if (!ldtr_valid(vcpu))
3554 			return false;
3555 	}
3556 	/* TODO:
3557 	 * - Add checks on RIP
3558 	 * - Add checks on RFLAGS
3559 	 */
3560 
3561 	return true;
3562 }
3563 
3564 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3565 {
3566 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3567 	u16 data;
3568 	int i;
3569 
3570 	for (i = 0; i < 3; i++) {
3571 		if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3572 			return -EFAULT;
3573 	}
3574 
3575 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3576 	if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3577 		return -EFAULT;
3578 
3579 	data = ~0;
3580 	if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3581 		return -EFAULT;
3582 
3583 	return 0;
3584 }
3585 
3586 static int init_rmode_identity_map(struct kvm *kvm)
3587 {
3588 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3589 	int i, r = 0;
3590 	void __user *uaddr;
3591 	u32 tmp;
3592 
3593 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3594 	mutex_lock(&kvm->slots_lock);
3595 
3596 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3597 		goto out;
3598 
3599 	if (!kvm_vmx->ept_identity_map_addr)
3600 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3601 
3602 	uaddr = __x86_set_memory_region(kvm,
3603 					IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3604 					kvm_vmx->ept_identity_map_addr,
3605 					PAGE_SIZE);
3606 	if (IS_ERR(uaddr)) {
3607 		r = PTR_ERR(uaddr);
3608 		goto out;
3609 	}
3610 
3611 	/* Set up identity-mapping pagetable for EPT in real mode */
3612 	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3613 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3614 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3615 		if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3616 			r = -EFAULT;
3617 			goto out;
3618 		}
3619 	}
3620 	kvm_vmx->ept_identity_pagetable_done = true;
3621 
3622 out:
3623 	mutex_unlock(&kvm->slots_lock);
3624 	return r;
3625 }
3626 
3627 static void seg_setup(int seg)
3628 {
3629 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3630 	unsigned int ar;
3631 
3632 	vmcs_write16(sf->selector, 0);
3633 	vmcs_writel(sf->base, 0);
3634 	vmcs_write32(sf->limit, 0xffff);
3635 	ar = 0x93;
3636 	if (seg == VCPU_SREG_CS)
3637 		ar |= 0x08; /* code segment */
3638 
3639 	vmcs_write32(sf->ar_bytes, ar);
3640 }
3641 
3642 static int alloc_apic_access_page(struct kvm *kvm)
3643 {
3644 	struct page *page;
3645 	void __user *hva;
3646 	int ret = 0;
3647 
3648 	mutex_lock(&kvm->slots_lock);
3649 	if (kvm->arch.apic_access_memslot_enabled)
3650 		goto out;
3651 	hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3652 				      APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3653 	if (IS_ERR(hva)) {
3654 		ret = PTR_ERR(hva);
3655 		goto out;
3656 	}
3657 
3658 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3659 	if (is_error_page(page)) {
3660 		ret = -EFAULT;
3661 		goto out;
3662 	}
3663 
3664 	/*
3665 	 * Do not pin the page in memory, so that memory hot-unplug
3666 	 * is able to migrate it.
3667 	 */
3668 	put_page(page);
3669 	kvm->arch.apic_access_memslot_enabled = true;
3670 out:
3671 	mutex_unlock(&kvm->slots_lock);
3672 	return ret;
3673 }
3674 
3675 int allocate_vpid(void)
3676 {
3677 	int vpid;
3678 
3679 	if (!enable_vpid)
3680 		return 0;
3681 	spin_lock(&vmx_vpid_lock);
3682 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3683 	if (vpid < VMX_NR_VPIDS)
3684 		__set_bit(vpid, vmx_vpid_bitmap);
3685 	else
3686 		vpid = 0;
3687 	spin_unlock(&vmx_vpid_lock);
3688 	return vpid;
3689 }
3690 
3691 void free_vpid(int vpid)
3692 {
3693 	if (!enable_vpid || vpid == 0)
3694 		return;
3695 	spin_lock(&vmx_vpid_lock);
3696 	__clear_bit(vpid, vmx_vpid_bitmap);
3697 	spin_unlock(&vmx_vpid_lock);
3698 }
3699 
3700 static void vmx_clear_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3701 {
3702 	int f = sizeof(unsigned long);
3703 
3704 	if (msr <= 0x1fff)
3705 		__clear_bit(msr, msr_bitmap + 0x000 / f);
3706 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3707 		__clear_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3708 }
3709 
3710 static void vmx_clear_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3711 {
3712 	int f = sizeof(unsigned long);
3713 
3714 	if (msr <= 0x1fff)
3715 		__clear_bit(msr, msr_bitmap + 0x800 / f);
3716 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3717 		__clear_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3718 }
3719 
3720 static void vmx_set_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3721 {
3722 	int f = sizeof(unsigned long);
3723 
3724 	if (msr <= 0x1fff)
3725 		__set_bit(msr, msr_bitmap + 0x000 / f);
3726 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3727 		__set_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3728 }
3729 
3730 static void vmx_set_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3731 {
3732 	int f = sizeof(unsigned long);
3733 
3734 	if (msr <= 0x1fff)
3735 		__set_bit(msr, msr_bitmap + 0x800 / f);
3736 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3737 		__set_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3738 }
3739 
3740 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3741 {
3742 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3743 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3744 
3745 	if (!cpu_has_vmx_msr_bitmap())
3746 		return;
3747 
3748 	if (static_branch_unlikely(&enable_evmcs))
3749 		evmcs_touch_msr_bitmap();
3750 
3751 	/*
3752 	 * Mark the desired intercept state in shadow bitmap, this is needed
3753 	 * for resync when the MSR filters change.
3754 	*/
3755 	if (is_valid_passthrough_msr(msr)) {
3756 		int idx = possible_passthrough_msr_slot(msr);
3757 
3758 		if (idx != -ENOENT) {
3759 			if (type & MSR_TYPE_R)
3760 				clear_bit(idx, vmx->shadow_msr_intercept.read);
3761 			if (type & MSR_TYPE_W)
3762 				clear_bit(idx, vmx->shadow_msr_intercept.write);
3763 		}
3764 	}
3765 
3766 	if ((type & MSR_TYPE_R) &&
3767 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3768 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3769 		type &= ~MSR_TYPE_R;
3770 	}
3771 
3772 	if ((type & MSR_TYPE_W) &&
3773 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3774 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3775 		type &= ~MSR_TYPE_W;
3776 	}
3777 
3778 	if (type & MSR_TYPE_R)
3779 		vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3780 
3781 	if (type & MSR_TYPE_W)
3782 		vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3783 }
3784 
3785 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3786 {
3787 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3788 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3789 
3790 	if (!cpu_has_vmx_msr_bitmap())
3791 		return;
3792 
3793 	if (static_branch_unlikely(&enable_evmcs))
3794 		evmcs_touch_msr_bitmap();
3795 
3796 	/*
3797 	 * Mark the desired intercept state in shadow bitmap, this is needed
3798 	 * for resync when the MSR filter changes.
3799 	*/
3800 	if (is_valid_passthrough_msr(msr)) {
3801 		int idx = possible_passthrough_msr_slot(msr);
3802 
3803 		if (idx != -ENOENT) {
3804 			if (type & MSR_TYPE_R)
3805 				set_bit(idx, vmx->shadow_msr_intercept.read);
3806 			if (type & MSR_TYPE_W)
3807 				set_bit(idx, vmx->shadow_msr_intercept.write);
3808 		}
3809 	}
3810 
3811 	if (type & MSR_TYPE_R)
3812 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3813 
3814 	if (type & MSR_TYPE_W)
3815 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3816 }
3817 
3818 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
3819 {
3820 	unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
3821 	unsigned long read_intercept;
3822 	int msr;
3823 
3824 	read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3825 
3826 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3827 		unsigned int read_idx = msr / BITS_PER_LONG;
3828 		unsigned int write_idx = read_idx + (0x800 / sizeof(long));
3829 
3830 		msr_bitmap[read_idx] = read_intercept;
3831 		msr_bitmap[write_idx] = ~0ul;
3832 	}
3833 }
3834 
3835 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
3836 {
3837 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3838 	u8 mode;
3839 
3840 	if (!cpu_has_vmx_msr_bitmap())
3841 		return;
3842 
3843 	if (cpu_has_secondary_exec_ctrls() &&
3844 	    (secondary_exec_controls_get(vmx) &
3845 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3846 		mode = MSR_BITMAP_MODE_X2APIC;
3847 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3848 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3849 	} else {
3850 		mode = 0;
3851 	}
3852 
3853 	if (mode == vmx->x2apic_msr_bitmap_mode)
3854 		return;
3855 
3856 	vmx->x2apic_msr_bitmap_mode = mode;
3857 
3858 	vmx_reset_x2apic_msrs(vcpu, mode);
3859 
3860 	/*
3861 	 * TPR reads and writes can be virtualized even if virtual interrupt
3862 	 * delivery is not in use.
3863 	 */
3864 	vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
3865 				  !(mode & MSR_BITMAP_MODE_X2APIC));
3866 
3867 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3868 		vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
3869 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3870 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3871 	}
3872 }
3873 
3874 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
3875 {
3876 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3877 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3878 	u32 i;
3879 
3880 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
3881 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
3882 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
3883 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
3884 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
3885 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3886 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3887 	}
3888 }
3889 
3890 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3891 {
3892 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3893 	void *vapic_page;
3894 	u32 vppr;
3895 	int rvi;
3896 
3897 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3898 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3899 		WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3900 		return false;
3901 
3902 	rvi = vmx_get_rvi();
3903 
3904 	vapic_page = vmx->nested.virtual_apic_map.hva;
3905 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3906 
3907 	return ((rvi & 0xf0) > (vppr & 0xf0));
3908 }
3909 
3910 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
3911 {
3912 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3913 	u32 i;
3914 
3915 	/*
3916 	 * Set intercept permissions for all potentially passed through MSRs
3917 	 * again. They will automatically get filtered through the MSR filter,
3918 	 * so we are back in sync after this.
3919 	 */
3920 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
3921 		u32 msr = vmx_possible_passthrough_msrs[i];
3922 		bool read = test_bit(i, vmx->shadow_msr_intercept.read);
3923 		bool write = test_bit(i, vmx->shadow_msr_intercept.write);
3924 
3925 		vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read);
3926 		vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write);
3927 	}
3928 
3929 	pt_update_intercept_for_msr(vcpu);
3930 }
3931 
3932 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3933 						     bool nested)
3934 {
3935 #ifdef CONFIG_SMP
3936 	int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3937 
3938 	if (vcpu->mode == IN_GUEST_MODE) {
3939 		/*
3940 		 * The vector of interrupt to be delivered to vcpu had
3941 		 * been set in PIR before this function.
3942 		 *
3943 		 * Following cases will be reached in this block, and
3944 		 * we always send a notification event in all cases as
3945 		 * explained below.
3946 		 *
3947 		 * Case 1: vcpu keeps in non-root mode. Sending a
3948 		 * notification event posts the interrupt to vcpu.
3949 		 *
3950 		 * Case 2: vcpu exits to root mode and is still
3951 		 * runnable. PIR will be synced to vIRR before the
3952 		 * next vcpu entry. Sending a notification event in
3953 		 * this case has no effect, as vcpu is not in root
3954 		 * mode.
3955 		 *
3956 		 * Case 3: vcpu exits to root mode and is blocked.
3957 		 * vcpu_block() has already synced PIR to vIRR and
3958 		 * never blocks vcpu if vIRR is not cleared. Therefore,
3959 		 * a blocked vcpu here does not wait for any requested
3960 		 * interrupts in PIR, and sending a notification event
3961 		 * which has no effect is safe here.
3962 		 */
3963 
3964 		apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3965 		return true;
3966 	}
3967 #endif
3968 	return false;
3969 }
3970 
3971 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3972 						int vector)
3973 {
3974 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3975 
3976 	if (is_guest_mode(vcpu) &&
3977 	    vector == vmx->nested.posted_intr_nv) {
3978 		/*
3979 		 * If a posted intr is not recognized by hardware,
3980 		 * we will accomplish it in the next vmentry.
3981 		 */
3982 		vmx->nested.pi_pending = true;
3983 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3984 		/* the PIR and ON have been set by L1. */
3985 		if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3986 			kvm_vcpu_kick(vcpu);
3987 		return 0;
3988 	}
3989 	return -1;
3990 }
3991 /*
3992  * Send interrupt to vcpu via posted interrupt way.
3993  * 1. If target vcpu is running(non-root mode), send posted interrupt
3994  * notification to vcpu and hardware will sync PIR to vIRR atomically.
3995  * 2. If target vcpu isn't running(root mode), kick it to pick up the
3996  * interrupt from PIR in next vmentry.
3997  */
3998 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3999 {
4000 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4001 	int r;
4002 
4003 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4004 	if (!r)
4005 		return 0;
4006 
4007 	if (!vcpu->arch.apicv_active)
4008 		return -1;
4009 
4010 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4011 		return 0;
4012 
4013 	/* If a previous notification has sent the IPI, nothing to do.  */
4014 	if (pi_test_and_set_on(&vmx->pi_desc))
4015 		return 0;
4016 
4017 	if (vcpu != kvm_get_running_vcpu() &&
4018 	    !kvm_vcpu_trigger_posted_interrupt(vcpu, false))
4019 		kvm_vcpu_kick(vcpu);
4020 
4021 	return 0;
4022 }
4023 
4024 /*
4025  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4026  * will not change in the lifetime of the guest.
4027  * Note that host-state that does change is set elsewhere. E.g., host-state
4028  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4029  */
4030 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4031 {
4032 	u32 low32, high32;
4033 	unsigned long tmpl;
4034 	unsigned long cr0, cr3, cr4;
4035 
4036 	cr0 = read_cr0();
4037 	WARN_ON(cr0 & X86_CR0_TS);
4038 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4039 
4040 	/*
4041 	 * Save the most likely value for this task's CR3 in the VMCS.
4042 	 * We can't use __get_current_cr3_fast() because we're not atomic.
4043 	 */
4044 	cr3 = __read_cr3();
4045 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
4046 	vmx->loaded_vmcs->host_state.cr3 = cr3;
4047 
4048 	/* Save the most likely value for this task's CR4 in the VMCS. */
4049 	cr4 = cr4_read_shadow();
4050 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4051 	vmx->loaded_vmcs->host_state.cr4 = cr4;
4052 
4053 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4054 #ifdef CONFIG_X86_64
4055 	/*
4056 	 * Load null selectors, so we can avoid reloading them in
4057 	 * vmx_prepare_switch_to_host(), in case userspace uses
4058 	 * the null selectors too (the expected case).
4059 	 */
4060 	vmcs_write16(HOST_DS_SELECTOR, 0);
4061 	vmcs_write16(HOST_ES_SELECTOR, 0);
4062 #else
4063 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4064 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4065 #endif
4066 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4067 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4068 
4069 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4070 
4071 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4072 
4073 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4074 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4075 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4076 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4077 
4078 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4079 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4080 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4081 	}
4082 
4083 	if (cpu_has_load_ia32_efer())
4084 		vmcs_write64(HOST_IA32_EFER, host_efer);
4085 }
4086 
4087 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4088 {
4089 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4090 
4091 	vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4092 					  ~vcpu->arch.cr4_guest_rsvd_bits;
4093 	if (!enable_ept)
4094 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE;
4095 	if (is_guest_mode(&vmx->vcpu))
4096 		vcpu->arch.cr4_guest_owned_bits &=
4097 			~get_vmcs12(vcpu)->cr4_guest_host_mask;
4098 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4099 }
4100 
4101 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4102 {
4103 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4104 
4105 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4106 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4107 
4108 	if (!enable_vnmi)
4109 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4110 
4111 	if (!enable_preemption_timer)
4112 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4113 
4114 	return pin_based_exec_ctrl;
4115 }
4116 
4117 static u32 vmx_vmentry_ctrl(void)
4118 {
4119 	u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4120 
4121 	if (vmx_pt_mode_is_system())
4122 		vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4123 				  VM_ENTRY_LOAD_IA32_RTIT_CTL);
4124 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4125 	return vmentry_ctrl &
4126 		~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER);
4127 }
4128 
4129 static u32 vmx_vmexit_ctrl(void)
4130 {
4131 	u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4132 
4133 	if (vmx_pt_mode_is_system())
4134 		vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4135 				 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4136 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4137 	return vmexit_ctrl &
4138 		~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4139 }
4140 
4141 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4142 {
4143 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4144 
4145 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4146 	if (cpu_has_secondary_exec_ctrls()) {
4147 		if (kvm_vcpu_apicv_active(vcpu))
4148 			secondary_exec_controls_setbit(vmx,
4149 				      SECONDARY_EXEC_APIC_REGISTER_VIRT |
4150 				      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4151 		else
4152 			secondary_exec_controls_clearbit(vmx,
4153 					SECONDARY_EXEC_APIC_REGISTER_VIRT |
4154 					SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4155 	}
4156 
4157 	vmx_update_msr_bitmap_x2apic(vcpu);
4158 }
4159 
4160 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4161 {
4162 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4163 
4164 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4165 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4166 
4167 	if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4168 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4169 #ifdef CONFIG_X86_64
4170 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4171 				CPU_BASED_CR8_LOAD_EXITING;
4172 #endif
4173 	}
4174 	if (!enable_ept)
4175 		exec_control |= CPU_BASED_CR3_STORE_EXITING |
4176 				CPU_BASED_CR3_LOAD_EXITING  |
4177 				CPU_BASED_INVLPG_EXITING;
4178 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4179 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4180 				CPU_BASED_MONITOR_EXITING);
4181 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4182 		exec_control &= ~CPU_BASED_HLT_EXITING;
4183 	return exec_control;
4184 }
4185 
4186 /*
4187  * Adjust a single secondary execution control bit to intercept/allow an
4188  * instruction in the guest.  This is usually done based on whether or not a
4189  * feature has been exposed to the guest in order to correctly emulate faults.
4190  */
4191 static inline void
4192 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4193 				  u32 control, bool enabled, bool exiting)
4194 {
4195 	/*
4196 	 * If the control is for an opt-in feature, clear the control if the
4197 	 * feature is not exposed to the guest, i.e. not enabled.  If the
4198 	 * control is opt-out, i.e. an exiting control, clear the control if
4199 	 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4200 	 * disabled for the associated instruction.  Note, the caller is
4201 	 * responsible presetting exec_control to set all supported bits.
4202 	 */
4203 	if (enabled == exiting)
4204 		*exec_control &= ~control;
4205 
4206 	/*
4207 	 * Update the nested MSR settings so that a nested VMM can/can't set
4208 	 * controls for features that are/aren't exposed to the guest.
4209 	 */
4210 	if (nested) {
4211 		if (enabled)
4212 			vmx->nested.msrs.secondary_ctls_high |= control;
4213 		else
4214 			vmx->nested.msrs.secondary_ctls_high &= ~control;
4215 	}
4216 }
4217 
4218 /*
4219  * Wrapper macro for the common case of adjusting a secondary execution control
4220  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4221  * verifies that the control is actually supported by KVM and hardware.
4222  */
4223 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4224 ({									 \
4225 	bool __enabled;							 \
4226 									 \
4227 	if (cpu_has_vmx_##name()) {					 \
4228 		__enabled = guest_cpuid_has(&(vmx)->vcpu,		 \
4229 					    X86_FEATURE_##feat_name);	 \
4230 		vmx_adjust_secondary_exec_control(vmx, exec_control,	 \
4231 			SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4232 	}								 \
4233 })
4234 
4235 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4236 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4237 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4238 
4239 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4240 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4241 
4242 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4243 {
4244 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4245 
4246 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4247 
4248 	if (vmx_pt_mode_is_system())
4249 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4250 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4251 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4252 	if (vmx->vpid == 0)
4253 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4254 	if (!enable_ept) {
4255 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4256 		enable_unrestricted_guest = 0;
4257 	}
4258 	if (!enable_unrestricted_guest)
4259 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4260 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4261 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4262 	if (!kvm_vcpu_apicv_active(vcpu))
4263 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4264 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4265 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4266 
4267 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4268 	 * in vmx_set_cr4.  */
4269 	exec_control &= ~SECONDARY_EXEC_DESC;
4270 
4271 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4272 	   (handle_vmptrld).
4273 	   We can NOT enable shadow_vmcs here because we don't have yet
4274 	   a current VMCS12
4275 	*/
4276 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4277 
4278 	/*
4279 	 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4280 	 * it needs to be set here when dirty logging is already active, e.g.
4281 	 * if this vCPU was created after dirty logging was enabled.
4282 	 */
4283 	if (!vcpu->kvm->arch.cpu_dirty_logging_count)
4284 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4285 
4286 	if (cpu_has_vmx_xsaves()) {
4287 		/* Exposing XSAVES only when XSAVE is exposed */
4288 		bool xsaves_enabled =
4289 			boot_cpu_has(X86_FEATURE_XSAVE) &&
4290 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4291 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4292 
4293 		vcpu->arch.xsaves_enabled = xsaves_enabled;
4294 
4295 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4296 						  SECONDARY_EXEC_XSAVES,
4297 						  xsaves_enabled, false);
4298 	}
4299 
4300 	/*
4301 	 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4302 	 * feature is exposed to the guest.  This creates a virtualization hole
4303 	 * if both are supported in hardware but only one is exposed to the
4304 	 * guest, but letting the guest execute RDTSCP or RDPID when either one
4305 	 * is advertised is preferable to emulating the advertised instruction
4306 	 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4307 	 */
4308 	if (cpu_has_vmx_rdtscp()) {
4309 		bool rdpid_or_rdtscp_enabled =
4310 			guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4311 			guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4312 
4313 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4314 						  SECONDARY_EXEC_ENABLE_RDTSCP,
4315 						  rdpid_or_rdtscp_enabled, false);
4316 	}
4317 	vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4318 
4319 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4320 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4321 
4322 	vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4323 				    ENABLE_USR_WAIT_PAUSE, false);
4324 
4325 	if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4326 		exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4327 
4328 	return exec_control;
4329 }
4330 
4331 #define VMX_XSS_EXIT_BITMAP 0
4332 
4333 static void init_vmcs(struct vcpu_vmx *vmx)
4334 {
4335 	if (nested)
4336 		nested_vmx_set_vmcs_shadowing_bitmap();
4337 
4338 	if (cpu_has_vmx_msr_bitmap())
4339 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4340 
4341 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4342 
4343 	/* Control */
4344 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4345 
4346 	exec_controls_set(vmx, vmx_exec_control(vmx));
4347 
4348 	if (cpu_has_secondary_exec_ctrls())
4349 		secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4350 
4351 	if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4352 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4353 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4354 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4355 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4356 
4357 		vmcs_write16(GUEST_INTR_STATUS, 0);
4358 
4359 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4360 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4361 	}
4362 
4363 	if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4364 		vmcs_write32(PLE_GAP, ple_gap);
4365 		vmx->ple_window = ple_window;
4366 		vmx->ple_window_dirty = true;
4367 	}
4368 
4369 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4370 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4371 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4372 
4373 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4374 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4375 	vmx_set_constant_host_state(vmx);
4376 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4377 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4378 
4379 	if (cpu_has_vmx_vmfunc())
4380 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4381 
4382 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4383 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4384 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4385 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4386 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4387 
4388 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4389 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4390 
4391 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4392 
4393 	/* 22.2.1, 20.8.1 */
4394 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4395 
4396 	vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4397 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4398 
4399 	set_cr4_guest_host_mask(vmx);
4400 
4401 	if (vmx->vpid != 0)
4402 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4403 
4404 	if (cpu_has_vmx_xsaves())
4405 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4406 
4407 	if (enable_pml) {
4408 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4409 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4410 	}
4411 
4412 	vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4413 
4414 	if (vmx_pt_mode_is_host_guest()) {
4415 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4416 		/* Bit[6~0] are forced to 1, writes are ignored. */
4417 		vmx->pt_desc.guest.output_mask = 0x7F;
4418 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4419 	}
4420 
4421 	vmcs_write32(GUEST_SYSENTER_CS, 0);
4422 	vmcs_writel(GUEST_SYSENTER_ESP, 0);
4423 	vmcs_writel(GUEST_SYSENTER_EIP, 0);
4424 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4425 
4426 	if (cpu_has_vmx_tpr_shadow()) {
4427 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4428 		if (cpu_need_tpr_shadow(&vmx->vcpu))
4429 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4430 				     __pa(vmx->vcpu.arch.apic->regs));
4431 		vmcs_write32(TPR_THRESHOLD, 0);
4432 	}
4433 
4434 	vmx_setup_uret_msrs(vmx);
4435 }
4436 
4437 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4438 {
4439 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4440 
4441 	init_vmcs(vmx);
4442 
4443 	if (nested)
4444 		memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4445 
4446 	vcpu_setup_sgx_lepubkeyhash(vcpu);
4447 
4448 	vmx->nested.posted_intr_nv = -1;
4449 	vmx->nested.vmxon_ptr = INVALID_GPA;
4450 	vmx->nested.current_vmptr = INVALID_GPA;
4451 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4452 
4453 	vcpu->arch.microcode_version = 0x100000000ULL;
4454 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4455 
4456 	/*
4457 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4458 	 * or POSTED_INTR_WAKEUP_VECTOR.
4459 	 */
4460 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4461 	vmx->pi_desc.sn = 1;
4462 }
4463 
4464 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4465 {
4466 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4467 
4468 	if (!init_event)
4469 		__vmx_vcpu_reset(vcpu);
4470 
4471 	vmx->rmode.vm86_active = 0;
4472 	vmx->spec_ctrl = 0;
4473 
4474 	vmx->msr_ia32_umwait_control = 0;
4475 
4476 	vmx->hv_deadline_tsc = -1;
4477 	kvm_set_cr8(vcpu, 0);
4478 
4479 	vmx_segment_cache_clear(vmx);
4480 	kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4481 
4482 	seg_setup(VCPU_SREG_CS);
4483 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4484 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4485 
4486 	seg_setup(VCPU_SREG_DS);
4487 	seg_setup(VCPU_SREG_ES);
4488 	seg_setup(VCPU_SREG_FS);
4489 	seg_setup(VCPU_SREG_GS);
4490 	seg_setup(VCPU_SREG_SS);
4491 
4492 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4493 	vmcs_writel(GUEST_TR_BASE, 0);
4494 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4495 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4496 
4497 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4498 	vmcs_writel(GUEST_LDTR_BASE, 0);
4499 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4500 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4501 
4502 	vmcs_writel(GUEST_GDTR_BASE, 0);
4503 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4504 
4505 	vmcs_writel(GUEST_IDTR_BASE, 0);
4506 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4507 
4508 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4509 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4510 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4511 	if (kvm_mpx_supported())
4512 		vmcs_write64(GUEST_BNDCFGS, 0);
4513 
4514 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4515 
4516 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4517 
4518 	vpid_sync_context(vmx->vpid);
4519 }
4520 
4521 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4522 {
4523 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4524 }
4525 
4526 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4527 {
4528 	if (!enable_vnmi ||
4529 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4530 		vmx_enable_irq_window(vcpu);
4531 		return;
4532 	}
4533 
4534 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4535 }
4536 
4537 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4538 {
4539 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4540 	uint32_t intr;
4541 	int irq = vcpu->arch.interrupt.nr;
4542 
4543 	trace_kvm_inj_virq(irq);
4544 
4545 	++vcpu->stat.irq_injections;
4546 	if (vmx->rmode.vm86_active) {
4547 		int inc_eip = 0;
4548 		if (vcpu->arch.interrupt.soft)
4549 			inc_eip = vcpu->arch.event_exit_inst_len;
4550 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4551 		return;
4552 	}
4553 	intr = irq | INTR_INFO_VALID_MASK;
4554 	if (vcpu->arch.interrupt.soft) {
4555 		intr |= INTR_TYPE_SOFT_INTR;
4556 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4557 			     vmx->vcpu.arch.event_exit_inst_len);
4558 	} else
4559 		intr |= INTR_TYPE_EXT_INTR;
4560 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4561 
4562 	vmx_clear_hlt(vcpu);
4563 }
4564 
4565 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4566 {
4567 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4568 
4569 	if (!enable_vnmi) {
4570 		/*
4571 		 * Tracking the NMI-blocked state in software is built upon
4572 		 * finding the next open IRQ window. This, in turn, depends on
4573 		 * well-behaving guests: They have to keep IRQs disabled at
4574 		 * least as long as the NMI handler runs. Otherwise we may
4575 		 * cause NMI nesting, maybe breaking the guest. But as this is
4576 		 * highly unlikely, we can live with the residual risk.
4577 		 */
4578 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4579 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4580 	}
4581 
4582 	++vcpu->stat.nmi_injections;
4583 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4584 
4585 	if (vmx->rmode.vm86_active) {
4586 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4587 		return;
4588 	}
4589 
4590 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4591 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4592 
4593 	vmx_clear_hlt(vcpu);
4594 }
4595 
4596 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4597 {
4598 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4599 	bool masked;
4600 
4601 	if (!enable_vnmi)
4602 		return vmx->loaded_vmcs->soft_vnmi_blocked;
4603 	if (vmx->loaded_vmcs->nmi_known_unmasked)
4604 		return false;
4605 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4606 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4607 	return masked;
4608 }
4609 
4610 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4611 {
4612 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4613 
4614 	if (!enable_vnmi) {
4615 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4616 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4617 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
4618 		}
4619 	} else {
4620 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4621 		if (masked)
4622 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4623 				      GUEST_INTR_STATE_NMI);
4624 		else
4625 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4626 					GUEST_INTR_STATE_NMI);
4627 	}
4628 }
4629 
4630 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4631 {
4632 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4633 		return false;
4634 
4635 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4636 		return true;
4637 
4638 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4639 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4640 		 GUEST_INTR_STATE_NMI));
4641 }
4642 
4643 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4644 {
4645 	if (to_vmx(vcpu)->nested.nested_run_pending)
4646 		return -EBUSY;
4647 
4648 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
4649 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4650 		return -EBUSY;
4651 
4652 	return !vmx_nmi_blocked(vcpu);
4653 }
4654 
4655 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4656 {
4657 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4658 		return false;
4659 
4660 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4661 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4662 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4663 }
4664 
4665 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4666 {
4667 	if (to_vmx(vcpu)->nested.nested_run_pending)
4668 		return -EBUSY;
4669 
4670        /*
4671         * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4672         * e.g. if the IRQ arrived asynchronously after checking nested events.
4673         */
4674 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4675 		return -EBUSY;
4676 
4677 	return !vmx_interrupt_blocked(vcpu);
4678 }
4679 
4680 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4681 {
4682 	void __user *ret;
4683 
4684 	if (enable_unrestricted_guest)
4685 		return 0;
4686 
4687 	mutex_lock(&kvm->slots_lock);
4688 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4689 				      PAGE_SIZE * 3);
4690 	mutex_unlock(&kvm->slots_lock);
4691 
4692 	if (IS_ERR(ret))
4693 		return PTR_ERR(ret);
4694 
4695 	to_kvm_vmx(kvm)->tss_addr = addr;
4696 
4697 	return init_rmode_tss(kvm, ret);
4698 }
4699 
4700 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4701 {
4702 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4703 	return 0;
4704 }
4705 
4706 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4707 {
4708 	switch (vec) {
4709 	case BP_VECTOR:
4710 		/*
4711 		 * Update instruction length as we may reinject the exception
4712 		 * from user space while in guest debugging mode.
4713 		 */
4714 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4715 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4716 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4717 			return false;
4718 		fallthrough;
4719 	case DB_VECTOR:
4720 		return !(vcpu->guest_debug &
4721 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4722 	case DE_VECTOR:
4723 	case OF_VECTOR:
4724 	case BR_VECTOR:
4725 	case UD_VECTOR:
4726 	case DF_VECTOR:
4727 	case SS_VECTOR:
4728 	case GP_VECTOR:
4729 	case MF_VECTOR:
4730 		return true;
4731 	}
4732 	return false;
4733 }
4734 
4735 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4736 				  int vec, u32 err_code)
4737 {
4738 	/*
4739 	 * Instruction with address size override prefix opcode 0x67
4740 	 * Cause the #SS fault with 0 error code in VM86 mode.
4741 	 */
4742 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4743 		if (kvm_emulate_instruction(vcpu, 0)) {
4744 			if (vcpu->arch.halt_request) {
4745 				vcpu->arch.halt_request = 0;
4746 				return kvm_vcpu_halt(vcpu);
4747 			}
4748 			return 1;
4749 		}
4750 		return 0;
4751 	}
4752 
4753 	/*
4754 	 * Forward all other exceptions that are valid in real mode.
4755 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4756 	 *        the required debugging infrastructure rework.
4757 	 */
4758 	kvm_queue_exception(vcpu, vec);
4759 	return 1;
4760 }
4761 
4762 static int handle_machine_check(struct kvm_vcpu *vcpu)
4763 {
4764 	/* handled by vmx_vcpu_run() */
4765 	return 1;
4766 }
4767 
4768 /*
4769  * If the host has split lock detection disabled, then #AC is
4770  * unconditionally injected into the guest, which is the pre split lock
4771  * detection behaviour.
4772  *
4773  * If the host has split lock detection enabled then #AC is
4774  * only injected into the guest when:
4775  *  - Guest CPL == 3 (user mode)
4776  *  - Guest has #AC detection enabled in CR0
4777  *  - Guest EFLAGS has AC bit set
4778  */
4779 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
4780 {
4781 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4782 		return true;
4783 
4784 	return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4785 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4786 }
4787 
4788 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4789 {
4790 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4791 	struct kvm_run *kvm_run = vcpu->run;
4792 	u32 intr_info, ex_no, error_code;
4793 	unsigned long cr2, dr6;
4794 	u32 vect_info;
4795 
4796 	vect_info = vmx->idt_vectoring_info;
4797 	intr_info = vmx_get_intr_info(vcpu);
4798 
4799 	if (is_machine_check(intr_info) || is_nmi(intr_info))
4800 		return 1; /* handled by handle_exception_nmi_irqoff() */
4801 
4802 	if (is_invalid_opcode(intr_info))
4803 		return handle_ud(vcpu);
4804 
4805 	error_code = 0;
4806 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4807 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4808 
4809 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4810 		WARN_ON_ONCE(!enable_vmware_backdoor);
4811 
4812 		/*
4813 		 * VMware backdoor emulation on #GP interception only handles
4814 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4815 		 * error code on #GP.
4816 		 */
4817 		if (error_code) {
4818 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4819 			return 1;
4820 		}
4821 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4822 	}
4823 
4824 	/*
4825 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4826 	 * MMIO, it is better to report an internal error.
4827 	 * See the comments in vmx_handle_exit.
4828 	 */
4829 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4830 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4831 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4832 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4833 		vcpu->run->internal.ndata = 4;
4834 		vcpu->run->internal.data[0] = vect_info;
4835 		vcpu->run->internal.data[1] = intr_info;
4836 		vcpu->run->internal.data[2] = error_code;
4837 		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
4838 		return 0;
4839 	}
4840 
4841 	if (is_page_fault(intr_info)) {
4842 		cr2 = vmx_get_exit_qual(vcpu);
4843 		if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
4844 			/*
4845 			 * EPT will cause page fault only if we need to
4846 			 * detect illegal GPAs.
4847 			 */
4848 			WARN_ON_ONCE(!allow_smaller_maxphyaddr);
4849 			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
4850 			return 1;
4851 		} else
4852 			return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4853 	}
4854 
4855 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4856 
4857 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4858 		return handle_rmode_exception(vcpu, ex_no, error_code);
4859 
4860 	switch (ex_no) {
4861 	case DB_VECTOR:
4862 		dr6 = vmx_get_exit_qual(vcpu);
4863 		if (!(vcpu->guest_debug &
4864 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4865 			if (is_icebp(intr_info))
4866 				WARN_ON(!skip_emulated_instruction(vcpu));
4867 
4868 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4869 			return 1;
4870 		}
4871 		kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
4872 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4873 		fallthrough;
4874 	case BP_VECTOR:
4875 		/*
4876 		 * Update instruction length as we may reinject #BP from
4877 		 * user space while in guest debugging mode. Reading it for
4878 		 * #DB as well causes no harm, it is not used in that case.
4879 		 */
4880 		vmx->vcpu.arch.event_exit_inst_len =
4881 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4882 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
4883 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4884 		kvm_run->debug.arch.exception = ex_no;
4885 		break;
4886 	case AC_VECTOR:
4887 		if (vmx_guest_inject_ac(vcpu)) {
4888 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4889 			return 1;
4890 		}
4891 
4892 		/*
4893 		 * Handle split lock. Depending on detection mode this will
4894 		 * either warn and disable split lock detection for this
4895 		 * task or force SIGBUS on it.
4896 		 */
4897 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
4898 			return 1;
4899 		fallthrough;
4900 	default:
4901 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4902 		kvm_run->ex.exception = ex_no;
4903 		kvm_run->ex.error_code = error_code;
4904 		break;
4905 	}
4906 	return 0;
4907 }
4908 
4909 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4910 {
4911 	++vcpu->stat.irq_exits;
4912 	return 1;
4913 }
4914 
4915 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4916 {
4917 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4918 	vcpu->mmio_needed = 0;
4919 	return 0;
4920 }
4921 
4922 static int handle_io(struct kvm_vcpu *vcpu)
4923 {
4924 	unsigned long exit_qualification;
4925 	int size, in, string;
4926 	unsigned port;
4927 
4928 	exit_qualification = vmx_get_exit_qual(vcpu);
4929 	string = (exit_qualification & 16) != 0;
4930 
4931 	++vcpu->stat.io_exits;
4932 
4933 	if (string)
4934 		return kvm_emulate_instruction(vcpu, 0);
4935 
4936 	port = exit_qualification >> 16;
4937 	size = (exit_qualification & 7) + 1;
4938 	in = (exit_qualification & 8) != 0;
4939 
4940 	return kvm_fast_pio(vcpu, size, port, in);
4941 }
4942 
4943 static void
4944 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4945 {
4946 	/*
4947 	 * Patch in the VMCALL instruction:
4948 	 */
4949 	hypercall[0] = 0x0f;
4950 	hypercall[1] = 0x01;
4951 	hypercall[2] = 0xc1;
4952 }
4953 
4954 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4955 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4956 {
4957 	if (is_guest_mode(vcpu)) {
4958 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4959 		unsigned long orig_val = val;
4960 
4961 		/*
4962 		 * We get here when L2 changed cr0 in a way that did not change
4963 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4964 		 * but did change L0 shadowed bits. So we first calculate the
4965 		 * effective cr0 value that L1 would like to write into the
4966 		 * hardware. It consists of the L2-owned bits from the new
4967 		 * value combined with the L1-owned bits from L1's guest_cr0.
4968 		 */
4969 		val = (val & ~vmcs12->cr0_guest_host_mask) |
4970 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4971 
4972 		if (!nested_guest_cr0_valid(vcpu, val))
4973 			return 1;
4974 
4975 		if (kvm_set_cr0(vcpu, val))
4976 			return 1;
4977 		vmcs_writel(CR0_READ_SHADOW, orig_val);
4978 		return 0;
4979 	} else {
4980 		if (to_vmx(vcpu)->nested.vmxon &&
4981 		    !nested_host_cr0_valid(vcpu, val))
4982 			return 1;
4983 
4984 		return kvm_set_cr0(vcpu, val);
4985 	}
4986 }
4987 
4988 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4989 {
4990 	if (is_guest_mode(vcpu)) {
4991 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4992 		unsigned long orig_val = val;
4993 
4994 		/* analogously to handle_set_cr0 */
4995 		val = (val & ~vmcs12->cr4_guest_host_mask) |
4996 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4997 		if (kvm_set_cr4(vcpu, val))
4998 			return 1;
4999 		vmcs_writel(CR4_READ_SHADOW, orig_val);
5000 		return 0;
5001 	} else
5002 		return kvm_set_cr4(vcpu, val);
5003 }
5004 
5005 static int handle_desc(struct kvm_vcpu *vcpu)
5006 {
5007 	WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
5008 	return kvm_emulate_instruction(vcpu, 0);
5009 }
5010 
5011 static int handle_cr(struct kvm_vcpu *vcpu)
5012 {
5013 	unsigned long exit_qualification, val;
5014 	int cr;
5015 	int reg;
5016 	int err;
5017 	int ret;
5018 
5019 	exit_qualification = vmx_get_exit_qual(vcpu);
5020 	cr = exit_qualification & 15;
5021 	reg = (exit_qualification >> 8) & 15;
5022 	switch ((exit_qualification >> 4) & 3) {
5023 	case 0: /* mov to cr */
5024 		val = kvm_register_read(vcpu, reg);
5025 		trace_kvm_cr_write(cr, val);
5026 		switch (cr) {
5027 		case 0:
5028 			err = handle_set_cr0(vcpu, val);
5029 			return kvm_complete_insn_gp(vcpu, err);
5030 		case 3:
5031 			WARN_ON_ONCE(enable_unrestricted_guest);
5032 
5033 			err = kvm_set_cr3(vcpu, val);
5034 			return kvm_complete_insn_gp(vcpu, err);
5035 		case 4:
5036 			err = handle_set_cr4(vcpu, val);
5037 			return kvm_complete_insn_gp(vcpu, err);
5038 		case 8: {
5039 				u8 cr8_prev = kvm_get_cr8(vcpu);
5040 				u8 cr8 = (u8)val;
5041 				err = kvm_set_cr8(vcpu, cr8);
5042 				ret = kvm_complete_insn_gp(vcpu, err);
5043 				if (lapic_in_kernel(vcpu))
5044 					return ret;
5045 				if (cr8_prev <= cr8)
5046 					return ret;
5047 				/*
5048 				 * TODO: we might be squashing a
5049 				 * KVM_GUESTDBG_SINGLESTEP-triggered
5050 				 * KVM_EXIT_DEBUG here.
5051 				 */
5052 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5053 				return 0;
5054 			}
5055 		}
5056 		break;
5057 	case 2: /* clts */
5058 		KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5059 		return -EIO;
5060 	case 1: /*mov from cr*/
5061 		switch (cr) {
5062 		case 3:
5063 			WARN_ON_ONCE(enable_unrestricted_guest);
5064 
5065 			val = kvm_read_cr3(vcpu);
5066 			kvm_register_write(vcpu, reg, val);
5067 			trace_kvm_cr_read(cr, val);
5068 			return kvm_skip_emulated_instruction(vcpu);
5069 		case 8:
5070 			val = kvm_get_cr8(vcpu);
5071 			kvm_register_write(vcpu, reg, val);
5072 			trace_kvm_cr_read(cr, val);
5073 			return kvm_skip_emulated_instruction(vcpu);
5074 		}
5075 		break;
5076 	case 3: /* lmsw */
5077 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5078 		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5079 		kvm_lmsw(vcpu, val);
5080 
5081 		return kvm_skip_emulated_instruction(vcpu);
5082 	default:
5083 		break;
5084 	}
5085 	vcpu->run->exit_reason = 0;
5086 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5087 	       (int)(exit_qualification >> 4) & 3, cr);
5088 	return 0;
5089 }
5090 
5091 static int handle_dr(struct kvm_vcpu *vcpu)
5092 {
5093 	unsigned long exit_qualification;
5094 	int dr, dr7, reg;
5095 	int err = 1;
5096 
5097 	exit_qualification = vmx_get_exit_qual(vcpu);
5098 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5099 
5100 	/* First, if DR does not exist, trigger UD */
5101 	if (!kvm_require_dr(vcpu, dr))
5102 		return 1;
5103 
5104 	if (kvm_x86_ops.get_cpl(vcpu) > 0)
5105 		goto out;
5106 
5107 	dr7 = vmcs_readl(GUEST_DR7);
5108 	if (dr7 & DR7_GD) {
5109 		/*
5110 		 * As the vm-exit takes precedence over the debug trap, we
5111 		 * need to emulate the latter, either for the host or the
5112 		 * guest debugging itself.
5113 		 */
5114 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5115 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5116 			vcpu->run->debug.arch.dr7 = dr7;
5117 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5118 			vcpu->run->debug.arch.exception = DB_VECTOR;
5119 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5120 			return 0;
5121 		} else {
5122 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5123 			return 1;
5124 		}
5125 	}
5126 
5127 	if (vcpu->guest_debug == 0) {
5128 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5129 
5130 		/*
5131 		 * No more DR vmexits; force a reload of the debug registers
5132 		 * and reenter on this instruction.  The next vmexit will
5133 		 * retrieve the full state of the debug registers.
5134 		 */
5135 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5136 		return 1;
5137 	}
5138 
5139 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5140 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5141 		unsigned long val;
5142 
5143 		kvm_get_dr(vcpu, dr, &val);
5144 		kvm_register_write(vcpu, reg, val);
5145 		err = 0;
5146 	} else {
5147 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5148 	}
5149 
5150 out:
5151 	return kvm_complete_insn_gp(vcpu, err);
5152 }
5153 
5154 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5155 {
5156 	get_debugreg(vcpu->arch.db[0], 0);
5157 	get_debugreg(vcpu->arch.db[1], 1);
5158 	get_debugreg(vcpu->arch.db[2], 2);
5159 	get_debugreg(vcpu->arch.db[3], 3);
5160 	get_debugreg(vcpu->arch.dr6, 6);
5161 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5162 
5163 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5164 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5165 
5166 	/*
5167 	 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5168 	 * a stale dr6 from the guest.
5169 	 */
5170 	set_debugreg(DR6_RESERVED, 6);
5171 }
5172 
5173 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5174 {
5175 	vmcs_writel(GUEST_DR7, val);
5176 }
5177 
5178 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5179 {
5180 	kvm_apic_update_ppr(vcpu);
5181 	return 1;
5182 }
5183 
5184 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5185 {
5186 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5187 
5188 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5189 
5190 	++vcpu->stat.irq_window_exits;
5191 	return 1;
5192 }
5193 
5194 static int handle_invlpg(struct kvm_vcpu *vcpu)
5195 {
5196 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5197 
5198 	kvm_mmu_invlpg(vcpu, exit_qualification);
5199 	return kvm_skip_emulated_instruction(vcpu);
5200 }
5201 
5202 static int handle_apic_access(struct kvm_vcpu *vcpu)
5203 {
5204 	if (likely(fasteoi)) {
5205 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5206 		int access_type, offset;
5207 
5208 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5209 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5210 		/*
5211 		 * Sane guest uses MOV to write EOI, with written value
5212 		 * not cared. So make a short-circuit here by avoiding
5213 		 * heavy instruction emulation.
5214 		 */
5215 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5216 		    (offset == APIC_EOI)) {
5217 			kvm_lapic_set_eoi(vcpu);
5218 			return kvm_skip_emulated_instruction(vcpu);
5219 		}
5220 	}
5221 	return kvm_emulate_instruction(vcpu, 0);
5222 }
5223 
5224 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5225 {
5226 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5227 	int vector = exit_qualification & 0xff;
5228 
5229 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5230 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5231 	return 1;
5232 }
5233 
5234 static int handle_apic_write(struct kvm_vcpu *vcpu)
5235 {
5236 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5237 	u32 offset = exit_qualification & 0xfff;
5238 
5239 	/* APIC-write VM exit is trap-like and thus no need to adjust IP */
5240 	kvm_apic_write_nodecode(vcpu, offset);
5241 	return 1;
5242 }
5243 
5244 static int handle_task_switch(struct kvm_vcpu *vcpu)
5245 {
5246 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5247 	unsigned long exit_qualification;
5248 	bool has_error_code = false;
5249 	u32 error_code = 0;
5250 	u16 tss_selector;
5251 	int reason, type, idt_v, idt_index;
5252 
5253 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5254 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5255 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5256 
5257 	exit_qualification = vmx_get_exit_qual(vcpu);
5258 
5259 	reason = (u32)exit_qualification >> 30;
5260 	if (reason == TASK_SWITCH_GATE && idt_v) {
5261 		switch (type) {
5262 		case INTR_TYPE_NMI_INTR:
5263 			vcpu->arch.nmi_injected = false;
5264 			vmx_set_nmi_mask(vcpu, true);
5265 			break;
5266 		case INTR_TYPE_EXT_INTR:
5267 		case INTR_TYPE_SOFT_INTR:
5268 			kvm_clear_interrupt_queue(vcpu);
5269 			break;
5270 		case INTR_TYPE_HARD_EXCEPTION:
5271 			if (vmx->idt_vectoring_info &
5272 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5273 				has_error_code = true;
5274 				error_code =
5275 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5276 			}
5277 			fallthrough;
5278 		case INTR_TYPE_SOFT_EXCEPTION:
5279 			kvm_clear_exception_queue(vcpu);
5280 			break;
5281 		default:
5282 			break;
5283 		}
5284 	}
5285 	tss_selector = exit_qualification;
5286 
5287 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5288 		       type != INTR_TYPE_EXT_INTR &&
5289 		       type != INTR_TYPE_NMI_INTR))
5290 		WARN_ON(!skip_emulated_instruction(vcpu));
5291 
5292 	/*
5293 	 * TODO: What about debug traps on tss switch?
5294 	 *       Are we supposed to inject them and update dr6?
5295 	 */
5296 	return kvm_task_switch(vcpu, tss_selector,
5297 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5298 			       reason, has_error_code, error_code);
5299 }
5300 
5301 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5302 {
5303 	unsigned long exit_qualification;
5304 	gpa_t gpa;
5305 	u64 error_code;
5306 
5307 	exit_qualification = vmx_get_exit_qual(vcpu);
5308 
5309 	/*
5310 	 * EPT violation happened while executing iret from NMI,
5311 	 * "blocked by NMI" bit has to be set before next VM entry.
5312 	 * There are errata that may cause this bit to not be set:
5313 	 * AAK134, BY25.
5314 	 */
5315 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5316 			enable_vnmi &&
5317 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5318 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5319 
5320 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5321 	trace_kvm_page_fault(gpa, exit_qualification);
5322 
5323 	/* Is it a read fault? */
5324 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5325 		     ? PFERR_USER_MASK : 0;
5326 	/* Is it a write fault? */
5327 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5328 		      ? PFERR_WRITE_MASK : 0;
5329 	/* Is it a fetch fault? */
5330 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5331 		      ? PFERR_FETCH_MASK : 0;
5332 	/* ept page table entry is present? */
5333 	error_code |= (exit_qualification &
5334 		       (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5335 			EPT_VIOLATION_EXECUTABLE))
5336 		      ? PFERR_PRESENT_MASK : 0;
5337 
5338 	error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5339 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5340 
5341 	vcpu->arch.exit_qualification = exit_qualification;
5342 
5343 	/*
5344 	 * Check that the GPA doesn't exceed physical memory limits, as that is
5345 	 * a guest page fault.  We have to emulate the instruction here, because
5346 	 * if the illegal address is that of a paging structure, then
5347 	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5348 	 * would also use advanced VM-exit information for EPT violations to
5349 	 * reconstruct the page fault error code.
5350 	 */
5351 	if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5352 		return kvm_emulate_instruction(vcpu, 0);
5353 
5354 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5355 }
5356 
5357 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5358 {
5359 	gpa_t gpa;
5360 
5361 	if (!vmx_can_emulate_instruction(vcpu, NULL, 0))
5362 		return 1;
5363 
5364 	/*
5365 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5366 	 * nGPA here instead of the required GPA.
5367 	 */
5368 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5369 	if (!is_guest_mode(vcpu) &&
5370 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5371 		trace_kvm_fast_mmio(gpa);
5372 		return kvm_skip_emulated_instruction(vcpu);
5373 	}
5374 
5375 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5376 }
5377 
5378 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5379 {
5380 	if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5381 		return -EIO;
5382 
5383 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5384 	++vcpu->stat.nmi_window_exits;
5385 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5386 
5387 	return 1;
5388 }
5389 
5390 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5391 {
5392 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5393 	bool intr_window_requested;
5394 	unsigned count = 130;
5395 
5396 	intr_window_requested = exec_controls_get(vmx) &
5397 				CPU_BASED_INTR_WINDOW_EXITING;
5398 
5399 	while (vmx->emulation_required && count-- != 0) {
5400 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5401 			return handle_interrupt_window(&vmx->vcpu);
5402 
5403 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5404 			return 1;
5405 
5406 		if (!kvm_emulate_instruction(vcpu, 0))
5407 			return 0;
5408 
5409 		if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5410 		    vcpu->arch.exception.pending) {
5411 			kvm_prepare_emulation_failure_exit(vcpu);
5412 			return 0;
5413 		}
5414 
5415 		if (vcpu->arch.halt_request) {
5416 			vcpu->arch.halt_request = 0;
5417 			return kvm_vcpu_halt(vcpu);
5418 		}
5419 
5420 		/*
5421 		 * Note, return 1 and not 0, vcpu_run() will invoke
5422 		 * xfer_to_guest_mode() which will create a proper return
5423 		 * code.
5424 		 */
5425 		if (__xfer_to_guest_mode_work_pending())
5426 			return 1;
5427 	}
5428 
5429 	return 1;
5430 }
5431 
5432 static void grow_ple_window(struct kvm_vcpu *vcpu)
5433 {
5434 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5435 	unsigned int old = vmx->ple_window;
5436 
5437 	vmx->ple_window = __grow_ple_window(old, ple_window,
5438 					    ple_window_grow,
5439 					    ple_window_max);
5440 
5441 	if (vmx->ple_window != old) {
5442 		vmx->ple_window_dirty = true;
5443 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5444 					    vmx->ple_window, old);
5445 	}
5446 }
5447 
5448 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5449 {
5450 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5451 	unsigned int old = vmx->ple_window;
5452 
5453 	vmx->ple_window = __shrink_ple_window(old, ple_window,
5454 					      ple_window_shrink,
5455 					      ple_window);
5456 
5457 	if (vmx->ple_window != old) {
5458 		vmx->ple_window_dirty = true;
5459 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5460 					    vmx->ple_window, old);
5461 	}
5462 }
5463 
5464 /*
5465  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5466  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5467  */
5468 static int handle_pause(struct kvm_vcpu *vcpu)
5469 {
5470 	if (!kvm_pause_in_guest(vcpu->kvm))
5471 		grow_ple_window(vcpu);
5472 
5473 	/*
5474 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5475 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5476 	 * never set PAUSE_EXITING and just set PLE if supported,
5477 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5478 	 */
5479 	kvm_vcpu_on_spin(vcpu, true);
5480 	return kvm_skip_emulated_instruction(vcpu);
5481 }
5482 
5483 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5484 {
5485 	return 1;
5486 }
5487 
5488 static int handle_invpcid(struct kvm_vcpu *vcpu)
5489 {
5490 	u32 vmx_instruction_info;
5491 	unsigned long type;
5492 	gva_t gva;
5493 	struct {
5494 		u64 pcid;
5495 		u64 gla;
5496 	} operand;
5497 
5498 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5499 		kvm_queue_exception(vcpu, UD_VECTOR);
5500 		return 1;
5501 	}
5502 
5503 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5504 	type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
5505 
5506 	if (type > 3) {
5507 		kvm_inject_gp(vcpu, 0);
5508 		return 1;
5509 	}
5510 
5511 	/* According to the Intel instruction reference, the memory operand
5512 	 * is read even if it isn't needed (e.g., for type==all)
5513 	 */
5514 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5515 				vmx_instruction_info, false,
5516 				sizeof(operand), &gva))
5517 		return 1;
5518 
5519 	return kvm_handle_invpcid(vcpu, type, gva);
5520 }
5521 
5522 static int handle_pml_full(struct kvm_vcpu *vcpu)
5523 {
5524 	unsigned long exit_qualification;
5525 
5526 	trace_kvm_pml_full(vcpu->vcpu_id);
5527 
5528 	exit_qualification = vmx_get_exit_qual(vcpu);
5529 
5530 	/*
5531 	 * PML buffer FULL happened while executing iret from NMI,
5532 	 * "blocked by NMI" bit has to be set before next VM entry.
5533 	 */
5534 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5535 			enable_vnmi &&
5536 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5537 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5538 				GUEST_INTR_STATE_NMI);
5539 
5540 	/*
5541 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5542 	 * here.., and there's no userspace involvement needed for PML.
5543 	 */
5544 	return 1;
5545 }
5546 
5547 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5548 {
5549 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5550 
5551 	if (!vmx->req_immediate_exit &&
5552 	    !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5553 		kvm_lapic_expired_hv_timer(vcpu);
5554 		return EXIT_FASTPATH_REENTER_GUEST;
5555 	}
5556 
5557 	return EXIT_FASTPATH_NONE;
5558 }
5559 
5560 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5561 {
5562 	handle_fastpath_preemption_timer(vcpu);
5563 	return 1;
5564 }
5565 
5566 /*
5567  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5568  * are overwritten by nested_vmx_setup() when nested=1.
5569  */
5570 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5571 {
5572 	kvm_queue_exception(vcpu, UD_VECTOR);
5573 	return 1;
5574 }
5575 
5576 #ifndef CONFIG_X86_SGX_KVM
5577 static int handle_encls(struct kvm_vcpu *vcpu)
5578 {
5579 	/*
5580 	 * SGX virtualization is disabled.  There is no software enable bit for
5581 	 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
5582 	 * the guest from executing ENCLS (when SGX is supported by hardware).
5583 	 */
5584 	kvm_queue_exception(vcpu, UD_VECTOR);
5585 	return 1;
5586 }
5587 #endif /* CONFIG_X86_SGX_KVM */
5588 
5589 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
5590 {
5591 	/*
5592 	 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
5593 	 * VM-Exits. Unconditionally set the flag here and leave the handling to
5594 	 * vmx_handle_exit().
5595 	 */
5596 	to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
5597 	return 1;
5598 }
5599 
5600 /*
5601  * The exit handlers return 1 if the exit was handled fully and guest execution
5602  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5603  * to be done to userspace and return 0.
5604  */
5605 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5606 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5607 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5608 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5609 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
5610 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5611 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
5612 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
5613 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5614 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5615 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5616 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
5617 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
5618 	[EXIT_REASON_INVD]		      = kvm_emulate_invd,
5619 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
5620 	[EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
5621 	[EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
5622 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
5623 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
5624 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
5625 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
5626 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
5627 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
5628 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
5629 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
5630 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
5631 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5632 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5633 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5634 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5635 	[EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
5636 	[EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
5637 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5638 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5639 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
5640 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
5641 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
5642 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5643 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5644 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = kvm_emulate_mwait,
5645 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5646 	[EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
5647 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5648 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5649 	[EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
5650 	[EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
5651 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
5652 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
5653 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
5654 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
5655 	[EXIT_REASON_ENCLS]		      = handle_encls,
5656 	[EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
5657 };
5658 
5659 static const int kvm_vmx_max_exit_handlers =
5660 	ARRAY_SIZE(kvm_vmx_exit_handlers);
5661 
5662 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
5663 			      u64 *info1, u64 *info2,
5664 			      u32 *intr_info, u32 *error_code)
5665 {
5666 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5667 
5668 	*reason = vmx->exit_reason.full;
5669 	*info1 = vmx_get_exit_qual(vcpu);
5670 	if (!(vmx->exit_reason.failed_vmentry)) {
5671 		*info2 = vmx->idt_vectoring_info;
5672 		*intr_info = vmx_get_intr_info(vcpu);
5673 		if (is_exception_with_error_code(*intr_info))
5674 			*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5675 		else
5676 			*error_code = 0;
5677 	} else {
5678 		*info2 = 0;
5679 		*intr_info = 0;
5680 		*error_code = 0;
5681 	}
5682 }
5683 
5684 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5685 {
5686 	if (vmx->pml_pg) {
5687 		__free_page(vmx->pml_pg);
5688 		vmx->pml_pg = NULL;
5689 	}
5690 }
5691 
5692 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5693 {
5694 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5695 	u64 *pml_buf;
5696 	u16 pml_idx;
5697 
5698 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
5699 
5700 	/* Do nothing if PML buffer is empty */
5701 	if (pml_idx == (PML_ENTITY_NUM - 1))
5702 		return;
5703 
5704 	/* PML index always points to next available PML buffer entity */
5705 	if (pml_idx >= PML_ENTITY_NUM)
5706 		pml_idx = 0;
5707 	else
5708 		pml_idx++;
5709 
5710 	pml_buf = page_address(vmx->pml_pg);
5711 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5712 		u64 gpa;
5713 
5714 		gpa = pml_buf[pml_idx];
5715 		WARN_ON(gpa & (PAGE_SIZE - 1));
5716 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5717 	}
5718 
5719 	/* reset PML index */
5720 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5721 }
5722 
5723 static void vmx_dump_sel(char *name, uint32_t sel)
5724 {
5725 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5726 	       name, vmcs_read16(sel),
5727 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5728 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5729 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5730 }
5731 
5732 static void vmx_dump_dtsel(char *name, uint32_t limit)
5733 {
5734 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5735 	       name, vmcs_read32(limit),
5736 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5737 }
5738 
5739 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
5740 {
5741 	unsigned int i;
5742 	struct vmx_msr_entry *e;
5743 
5744 	pr_err("MSR %s:\n", name);
5745 	for (i = 0, e = m->val; i < m->nr; ++i, ++e)
5746 		pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
5747 }
5748 
5749 void dump_vmcs(struct kvm_vcpu *vcpu)
5750 {
5751 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5752 	u32 vmentry_ctl, vmexit_ctl;
5753 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5754 	unsigned long cr4;
5755 	int efer_slot;
5756 
5757 	if (!dump_invalid_vmcs) {
5758 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5759 		return;
5760 	}
5761 
5762 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5763 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5764 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5765 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5766 	cr4 = vmcs_readl(GUEST_CR4);
5767 	secondary_exec_control = 0;
5768 	if (cpu_has_secondary_exec_ctrls())
5769 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5770 
5771 	pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
5772 	       vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
5773 	pr_err("*** Guest State ***\n");
5774 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5775 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5776 	       vmcs_readl(CR0_GUEST_HOST_MASK));
5777 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5778 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5779 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5780 	if (cpu_has_vmx_ept()) {
5781 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5782 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5783 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5784 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5785 	}
5786 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5787 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5788 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5789 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5790 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5791 	       vmcs_readl(GUEST_SYSENTER_ESP),
5792 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5793 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5794 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5795 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5796 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5797 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5798 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5799 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5800 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5801 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5802 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5803 	efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
5804 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
5805 		pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
5806 	else if (efer_slot >= 0)
5807 		pr_err("EFER= 0x%016llx (autoload)\n",
5808 		       vmx->msr_autoload.guest.val[efer_slot].value);
5809 	else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
5810 		pr_err("EFER= 0x%016llx (effective)\n",
5811 		       vcpu->arch.efer | (EFER_LMA | EFER_LME));
5812 	else
5813 		pr_err("EFER= 0x%016llx (effective)\n",
5814 		       vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
5815 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
5816 		pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
5817 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5818 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
5819 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5820 	if (cpu_has_load_perf_global_ctrl() &&
5821 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5822 		pr_err("PerfGlobCtl = 0x%016llx\n",
5823 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5824 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5825 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5826 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5827 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5828 	       vmcs_read32(GUEST_ACTIVITY_STATE));
5829 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5830 		pr_err("InterruptStatus = %04x\n",
5831 		       vmcs_read16(GUEST_INTR_STATUS));
5832 	if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
5833 		vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
5834 	if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
5835 		vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
5836 
5837 	pr_err("*** Host State ***\n");
5838 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5839 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5840 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5841 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5842 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5843 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5844 	       vmcs_read16(HOST_TR_SELECTOR));
5845 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5846 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5847 	       vmcs_readl(HOST_TR_BASE));
5848 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5849 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5850 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5851 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5852 	       vmcs_readl(HOST_CR4));
5853 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5854 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
5855 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
5856 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
5857 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
5858 		pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
5859 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
5860 		pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
5861 	if (cpu_has_load_perf_global_ctrl() &&
5862 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5863 		pr_err("PerfGlobCtl = 0x%016llx\n",
5864 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5865 	if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
5866 		vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
5867 
5868 	pr_err("*** Control State ***\n");
5869 	pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5870 	       pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5871 	pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5872 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5873 	       vmcs_read32(EXCEPTION_BITMAP),
5874 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5875 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5876 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5877 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5878 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5879 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5880 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5881 	       vmcs_read32(VM_EXIT_INTR_INFO),
5882 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5883 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5884 	pr_err("        reason=%08x qualification=%016lx\n",
5885 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5886 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5887 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
5888 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
5889 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5890 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5891 		pr_err("TSC Multiplier = 0x%016llx\n",
5892 		       vmcs_read64(TSC_MULTIPLIER));
5893 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5894 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5895 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
5896 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5897 		}
5898 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5899 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5900 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5901 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5902 	}
5903 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5904 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5905 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5906 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5907 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5908 		pr_err("PLE Gap=%08x Window=%08x\n",
5909 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5910 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5911 		pr_err("Virtual processor ID = 0x%04x\n",
5912 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
5913 }
5914 
5915 /*
5916  * The guest has exited.  See if we can fix it or if we need userspace
5917  * assistance.
5918  */
5919 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
5920 {
5921 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5922 	union vmx_exit_reason exit_reason = vmx->exit_reason;
5923 	u32 vectoring_info = vmx->idt_vectoring_info;
5924 	u16 exit_handler_index;
5925 
5926 	/*
5927 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5928 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5929 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
5930 	 * mode as if vcpus is in root mode, the PML buffer must has been
5931 	 * flushed already.  Note, PML is never enabled in hardware while
5932 	 * running L2.
5933 	 */
5934 	if (enable_pml && !is_guest_mode(vcpu))
5935 		vmx_flush_pml_buffer(vcpu);
5936 
5937 	/*
5938 	 * We should never reach this point with a pending nested VM-Enter, and
5939 	 * more specifically emulation of L2 due to invalid guest state (see
5940 	 * below) should never happen as that means we incorrectly allowed a
5941 	 * nested VM-Enter with an invalid vmcs12.
5942 	 */
5943 	if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
5944 		return -EIO;
5945 
5946 	/* If guest state is invalid, start emulating */
5947 	if (vmx->emulation_required)
5948 		return handle_invalid_guest_state(vcpu);
5949 
5950 	if (is_guest_mode(vcpu)) {
5951 		/*
5952 		 * PML is never enabled when running L2, bail immediately if a
5953 		 * PML full exit occurs as something is horribly wrong.
5954 		 */
5955 		if (exit_reason.basic == EXIT_REASON_PML_FULL)
5956 			goto unexpected_vmexit;
5957 
5958 		/*
5959 		 * The host physical addresses of some pages of guest memory
5960 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5961 		 * Page). The CPU may write to these pages via their host
5962 		 * physical address while L2 is running, bypassing any
5963 		 * address-translation-based dirty tracking (e.g. EPT write
5964 		 * protection).
5965 		 *
5966 		 * Mark them dirty on every exit from L2 to prevent them from
5967 		 * getting out of sync with dirty tracking.
5968 		 */
5969 		nested_mark_vmcs12_pages_dirty(vcpu);
5970 
5971 		if (nested_vmx_reflect_vmexit(vcpu))
5972 			return 1;
5973 	}
5974 
5975 	if (exit_reason.failed_vmentry) {
5976 		dump_vmcs(vcpu);
5977 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5978 		vcpu->run->fail_entry.hardware_entry_failure_reason
5979 			= exit_reason.full;
5980 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
5981 		return 0;
5982 	}
5983 
5984 	if (unlikely(vmx->fail)) {
5985 		dump_vmcs(vcpu);
5986 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5987 		vcpu->run->fail_entry.hardware_entry_failure_reason
5988 			= vmcs_read32(VM_INSTRUCTION_ERROR);
5989 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
5990 		return 0;
5991 	}
5992 
5993 	/*
5994 	 * Note:
5995 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5996 	 * delivery event since it indicates guest is accessing MMIO.
5997 	 * The vm-exit can be triggered again after return to guest that
5998 	 * will cause infinite loop.
5999 	 */
6000 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6001 	    (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6002 	     exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6003 	     exit_reason.basic != EXIT_REASON_PML_FULL &&
6004 	     exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6005 	     exit_reason.basic != EXIT_REASON_TASK_SWITCH)) {
6006 		int ndata = 3;
6007 
6008 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6009 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6010 		vcpu->run->internal.data[0] = vectoring_info;
6011 		vcpu->run->internal.data[1] = exit_reason.full;
6012 		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6013 		if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6014 			vcpu->run->internal.data[ndata++] =
6015 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6016 		}
6017 		vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6018 		vcpu->run->internal.ndata = ndata;
6019 		return 0;
6020 	}
6021 
6022 	if (unlikely(!enable_vnmi &&
6023 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
6024 		if (!vmx_interrupt_blocked(vcpu)) {
6025 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6026 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6027 			   vcpu->arch.nmi_pending) {
6028 			/*
6029 			 * This CPU don't support us in finding the end of an
6030 			 * NMI-blocked window if the guest runs with IRQs
6031 			 * disabled. So we pull the trigger after 1 s of
6032 			 * futile waiting, but inform the user about this.
6033 			 */
6034 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6035 			       "state on VCPU %d after 1 s timeout\n",
6036 			       __func__, vcpu->vcpu_id);
6037 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6038 		}
6039 	}
6040 
6041 	if (exit_fastpath != EXIT_FASTPATH_NONE)
6042 		return 1;
6043 
6044 	if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6045 		goto unexpected_vmexit;
6046 #ifdef CONFIG_RETPOLINE
6047 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6048 		return kvm_emulate_wrmsr(vcpu);
6049 	else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6050 		return handle_preemption_timer(vcpu);
6051 	else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6052 		return handle_interrupt_window(vcpu);
6053 	else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6054 		return handle_external_interrupt(vcpu);
6055 	else if (exit_reason.basic == EXIT_REASON_HLT)
6056 		return kvm_emulate_halt(vcpu);
6057 	else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6058 		return handle_ept_misconfig(vcpu);
6059 #endif
6060 
6061 	exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6062 						kvm_vmx_max_exit_handlers);
6063 	if (!kvm_vmx_exit_handlers[exit_handler_index])
6064 		goto unexpected_vmexit;
6065 
6066 	return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6067 
6068 unexpected_vmexit:
6069 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6070 		    exit_reason.full);
6071 	dump_vmcs(vcpu);
6072 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6073 	vcpu->run->internal.suberror =
6074 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6075 	vcpu->run->internal.ndata = 2;
6076 	vcpu->run->internal.data[0] = exit_reason.full;
6077 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6078 	return 0;
6079 }
6080 
6081 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6082 {
6083 	int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6084 
6085 	/*
6086 	 * Exit to user space when bus lock detected to inform that there is
6087 	 * a bus lock in guest.
6088 	 */
6089 	if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6090 		if (ret > 0)
6091 			vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6092 
6093 		vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6094 		return 0;
6095 	}
6096 	return ret;
6097 }
6098 
6099 /*
6100  * Software based L1D cache flush which is used when microcode providing
6101  * the cache control MSR is not loaded.
6102  *
6103  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6104  * flush it is required to read in 64 KiB because the replacement algorithm
6105  * is not exactly LRU. This could be sized at runtime via topology
6106  * information but as all relevant affected CPUs have 32KiB L1D cache size
6107  * there is no point in doing so.
6108  */
6109 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6110 {
6111 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6112 
6113 	/*
6114 	 * This code is only executed when the the flush mode is 'cond' or
6115 	 * 'always'
6116 	 */
6117 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6118 		bool flush_l1d;
6119 
6120 		/*
6121 		 * Clear the per-vcpu flush bit, it gets set again
6122 		 * either from vcpu_run() or from one of the unsafe
6123 		 * VMEXIT handlers.
6124 		 */
6125 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6126 		vcpu->arch.l1tf_flush_l1d = false;
6127 
6128 		/*
6129 		 * Clear the per-cpu flush bit, it gets set again from
6130 		 * the interrupt handlers.
6131 		 */
6132 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6133 		kvm_clear_cpu_l1tf_flush_l1d();
6134 
6135 		if (!flush_l1d)
6136 			return;
6137 	}
6138 
6139 	vcpu->stat.l1d_flush++;
6140 
6141 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6142 		native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6143 		return;
6144 	}
6145 
6146 	asm volatile(
6147 		/* First ensure the pages are in the TLB */
6148 		"xorl	%%eax, %%eax\n"
6149 		".Lpopulate_tlb:\n\t"
6150 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6151 		"addl	$4096, %%eax\n\t"
6152 		"cmpl	%%eax, %[size]\n\t"
6153 		"jne	.Lpopulate_tlb\n\t"
6154 		"xorl	%%eax, %%eax\n\t"
6155 		"cpuid\n\t"
6156 		/* Now fill the cache */
6157 		"xorl	%%eax, %%eax\n"
6158 		".Lfill_cache:\n"
6159 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6160 		"addl	$64, %%eax\n\t"
6161 		"cmpl	%%eax, %[size]\n\t"
6162 		"jne	.Lfill_cache\n\t"
6163 		"lfence\n"
6164 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6165 		    [size] "r" (size)
6166 		: "eax", "ebx", "ecx", "edx");
6167 }
6168 
6169 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6170 {
6171 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6172 	int tpr_threshold;
6173 
6174 	if (is_guest_mode(vcpu) &&
6175 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6176 		return;
6177 
6178 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6179 	if (is_guest_mode(vcpu))
6180 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6181 	else
6182 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6183 }
6184 
6185 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6186 {
6187 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6188 	u32 sec_exec_control;
6189 
6190 	if (!lapic_in_kernel(vcpu))
6191 		return;
6192 
6193 	if (!flexpriority_enabled &&
6194 	    !cpu_has_vmx_virtualize_x2apic_mode())
6195 		return;
6196 
6197 	/* Postpone execution until vmcs01 is the current VMCS. */
6198 	if (is_guest_mode(vcpu)) {
6199 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6200 		return;
6201 	}
6202 
6203 	sec_exec_control = secondary_exec_controls_get(vmx);
6204 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6205 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6206 
6207 	switch (kvm_get_apic_mode(vcpu)) {
6208 	case LAPIC_MODE_INVALID:
6209 		WARN_ONCE(true, "Invalid local APIC state");
6210 		break;
6211 	case LAPIC_MODE_DISABLED:
6212 		break;
6213 	case LAPIC_MODE_XAPIC:
6214 		if (flexpriority_enabled) {
6215 			sec_exec_control |=
6216 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6217 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6218 
6219 			/*
6220 			 * Flush the TLB, reloading the APIC access page will
6221 			 * only do so if its physical address has changed, but
6222 			 * the guest may have inserted a non-APIC mapping into
6223 			 * the TLB while the APIC access page was disabled.
6224 			 */
6225 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6226 		}
6227 		break;
6228 	case LAPIC_MODE_X2APIC:
6229 		if (cpu_has_vmx_virtualize_x2apic_mode())
6230 			sec_exec_control |=
6231 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6232 		break;
6233 	}
6234 	secondary_exec_controls_set(vmx, sec_exec_control);
6235 
6236 	vmx_update_msr_bitmap_x2apic(vcpu);
6237 }
6238 
6239 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6240 {
6241 	struct page *page;
6242 
6243 	/* Defer reload until vmcs01 is the current VMCS. */
6244 	if (is_guest_mode(vcpu)) {
6245 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6246 		return;
6247 	}
6248 
6249 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6250 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6251 		return;
6252 
6253 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6254 	if (is_error_page(page))
6255 		return;
6256 
6257 	vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6258 	vmx_flush_tlb_current(vcpu);
6259 
6260 	/*
6261 	 * Do not pin apic access page in memory, the MMU notifier
6262 	 * will call us again if it is migrated or swapped out.
6263 	 */
6264 	put_page(page);
6265 }
6266 
6267 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6268 {
6269 	u16 status;
6270 	u8 old;
6271 
6272 	if (max_isr == -1)
6273 		max_isr = 0;
6274 
6275 	status = vmcs_read16(GUEST_INTR_STATUS);
6276 	old = status >> 8;
6277 	if (max_isr != old) {
6278 		status &= 0xff;
6279 		status |= max_isr << 8;
6280 		vmcs_write16(GUEST_INTR_STATUS, status);
6281 	}
6282 }
6283 
6284 static void vmx_set_rvi(int vector)
6285 {
6286 	u16 status;
6287 	u8 old;
6288 
6289 	if (vector == -1)
6290 		vector = 0;
6291 
6292 	status = vmcs_read16(GUEST_INTR_STATUS);
6293 	old = (u8)status & 0xff;
6294 	if ((u8)vector != old) {
6295 		status &= ~0xff;
6296 		status |= (u8)vector;
6297 		vmcs_write16(GUEST_INTR_STATUS, status);
6298 	}
6299 }
6300 
6301 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6302 {
6303 	/*
6304 	 * When running L2, updating RVI is only relevant when
6305 	 * vmcs12 virtual-interrupt-delivery enabled.
6306 	 * However, it can be enabled only when L1 also
6307 	 * intercepts external-interrupts and in that case
6308 	 * we should not update vmcs02 RVI but instead intercept
6309 	 * interrupt. Therefore, do nothing when running L2.
6310 	 */
6311 	if (!is_guest_mode(vcpu))
6312 		vmx_set_rvi(max_irr);
6313 }
6314 
6315 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6316 {
6317 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6318 	int max_irr;
6319 	bool max_irr_updated;
6320 
6321 	if (KVM_BUG_ON(!vcpu->arch.apicv_active, vcpu->kvm))
6322 		return -EIO;
6323 
6324 	if (pi_test_on(&vmx->pi_desc)) {
6325 		pi_clear_on(&vmx->pi_desc);
6326 		/*
6327 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6328 		 * But on x86 this is just a compiler barrier anyway.
6329 		 */
6330 		smp_mb__after_atomic();
6331 		max_irr_updated =
6332 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6333 
6334 		/*
6335 		 * If we are running L2 and L1 has a new pending interrupt
6336 		 * which can be injected, this may cause a vmexit or it may
6337 		 * be injected into L2.  Either way, this interrupt will be
6338 		 * processed via KVM_REQ_EVENT, not RVI, because we do not use
6339 		 * virtual interrupt delivery to inject L1 interrupts into L2.
6340 		 */
6341 		if (is_guest_mode(vcpu) && max_irr_updated)
6342 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6343 	} else {
6344 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6345 	}
6346 	vmx_hwapic_irr_update(vcpu, max_irr);
6347 	return max_irr;
6348 }
6349 
6350 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6351 {
6352 	if (!kvm_vcpu_apicv_active(vcpu))
6353 		return;
6354 
6355 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6356 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6357 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6358 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6359 }
6360 
6361 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6362 {
6363 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6364 
6365 	pi_clear_on(&vmx->pi_desc);
6366 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6367 }
6368 
6369 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
6370 
6371 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu,
6372 					unsigned long entry)
6373 {
6374 	kvm_before_interrupt(vcpu);
6375 	vmx_do_interrupt_nmi_irqoff(entry);
6376 	kvm_after_interrupt(vcpu);
6377 }
6378 
6379 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6380 {
6381 	const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist;
6382 	u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6383 
6384 	/* if exit due to PF check for async PF */
6385 	if (is_page_fault(intr_info))
6386 		vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6387 	/* Handle machine checks before interrupts are enabled */
6388 	else if (is_machine_check(intr_info))
6389 		kvm_machine_check();
6390 	/* We need to handle NMIs before interrupts are enabled */
6391 	else if (is_nmi(intr_info))
6392 		handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry);
6393 }
6394 
6395 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6396 {
6397 	u32 intr_info = vmx_get_intr_info(vcpu);
6398 	unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6399 	gate_desc *desc = (gate_desc *)host_idt_base + vector;
6400 
6401 	if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6402 	    "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6403 		return;
6404 
6405 	handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc));
6406 }
6407 
6408 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6409 {
6410 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6411 
6412 	if (vmx->emulation_required)
6413 		return;
6414 
6415 	if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6416 		handle_external_interrupt_irqoff(vcpu);
6417 	else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6418 		handle_exception_nmi_irqoff(vmx);
6419 }
6420 
6421 /*
6422  * The kvm parameter can be NULL (module initialization, or invocation before
6423  * VM creation). Be sure to check the kvm parameter before using it.
6424  */
6425 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6426 {
6427 	switch (index) {
6428 	case MSR_IA32_SMBASE:
6429 		/*
6430 		 * We cannot do SMM unless we can run the guest in big
6431 		 * real mode.
6432 		 */
6433 		return enable_unrestricted_guest || emulate_invalid_guest_state;
6434 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6435 		return nested;
6436 	case MSR_AMD64_VIRT_SPEC_CTRL:
6437 	case MSR_AMD64_TSC_RATIO:
6438 		/* This is AMD only.  */
6439 		return false;
6440 	default:
6441 		return true;
6442 	}
6443 }
6444 
6445 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6446 {
6447 	u32 exit_intr_info;
6448 	bool unblock_nmi;
6449 	u8 vector;
6450 	bool idtv_info_valid;
6451 
6452 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6453 
6454 	if (enable_vnmi) {
6455 		if (vmx->loaded_vmcs->nmi_known_unmasked)
6456 			return;
6457 
6458 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6459 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6460 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6461 		/*
6462 		 * SDM 3: 27.7.1.2 (September 2008)
6463 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6464 		 * a guest IRET fault.
6465 		 * SDM 3: 23.2.2 (September 2008)
6466 		 * Bit 12 is undefined in any of the following cases:
6467 		 *  If the VM exit sets the valid bit in the IDT-vectoring
6468 		 *   information field.
6469 		 *  If the VM exit is due to a double fault.
6470 		 */
6471 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6472 		    vector != DF_VECTOR && !idtv_info_valid)
6473 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6474 				      GUEST_INTR_STATE_NMI);
6475 		else
6476 			vmx->loaded_vmcs->nmi_known_unmasked =
6477 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6478 				  & GUEST_INTR_STATE_NMI);
6479 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6480 		vmx->loaded_vmcs->vnmi_blocked_time +=
6481 			ktime_to_ns(ktime_sub(ktime_get(),
6482 					      vmx->loaded_vmcs->entry_time));
6483 }
6484 
6485 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6486 				      u32 idt_vectoring_info,
6487 				      int instr_len_field,
6488 				      int error_code_field)
6489 {
6490 	u8 vector;
6491 	int type;
6492 	bool idtv_info_valid;
6493 
6494 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6495 
6496 	vcpu->arch.nmi_injected = false;
6497 	kvm_clear_exception_queue(vcpu);
6498 	kvm_clear_interrupt_queue(vcpu);
6499 
6500 	if (!idtv_info_valid)
6501 		return;
6502 
6503 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6504 
6505 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6506 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6507 
6508 	switch (type) {
6509 	case INTR_TYPE_NMI_INTR:
6510 		vcpu->arch.nmi_injected = true;
6511 		/*
6512 		 * SDM 3: 27.7.1.2 (September 2008)
6513 		 * Clear bit "block by NMI" before VM entry if a NMI
6514 		 * delivery faulted.
6515 		 */
6516 		vmx_set_nmi_mask(vcpu, false);
6517 		break;
6518 	case INTR_TYPE_SOFT_EXCEPTION:
6519 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6520 		fallthrough;
6521 	case INTR_TYPE_HARD_EXCEPTION:
6522 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6523 			u32 err = vmcs_read32(error_code_field);
6524 			kvm_requeue_exception_e(vcpu, vector, err);
6525 		} else
6526 			kvm_requeue_exception(vcpu, vector);
6527 		break;
6528 	case INTR_TYPE_SOFT_INTR:
6529 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6530 		fallthrough;
6531 	case INTR_TYPE_EXT_INTR:
6532 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6533 		break;
6534 	default:
6535 		break;
6536 	}
6537 }
6538 
6539 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6540 {
6541 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6542 				  VM_EXIT_INSTRUCTION_LEN,
6543 				  IDT_VECTORING_ERROR_CODE);
6544 }
6545 
6546 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6547 {
6548 	__vmx_complete_interrupts(vcpu,
6549 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6550 				  VM_ENTRY_INSTRUCTION_LEN,
6551 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
6552 
6553 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6554 }
6555 
6556 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6557 {
6558 	int i, nr_msrs;
6559 	struct perf_guest_switch_msr *msrs;
6560 
6561 	/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
6562 	msrs = perf_guest_get_msrs(&nr_msrs);
6563 	if (!msrs)
6564 		return;
6565 
6566 	for (i = 0; i < nr_msrs; i++)
6567 		if (msrs[i].host == msrs[i].guest)
6568 			clear_atomic_switch_msr(vmx, msrs[i].msr);
6569 		else
6570 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6571 					msrs[i].host, false);
6572 }
6573 
6574 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6575 {
6576 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6577 	u64 tscl;
6578 	u32 delta_tsc;
6579 
6580 	if (vmx->req_immediate_exit) {
6581 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6582 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6583 	} else if (vmx->hv_deadline_tsc != -1) {
6584 		tscl = rdtsc();
6585 		if (vmx->hv_deadline_tsc > tscl)
6586 			/* set_hv_timer ensures the delta fits in 32-bits */
6587 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6588 				cpu_preemption_timer_multi);
6589 		else
6590 			delta_tsc = 0;
6591 
6592 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6593 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6594 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6595 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6596 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6597 	}
6598 }
6599 
6600 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6601 {
6602 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6603 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
6604 		vmcs_writel(HOST_RSP, host_rsp);
6605 	}
6606 }
6607 
6608 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
6609 {
6610 	switch (to_vmx(vcpu)->exit_reason.basic) {
6611 	case EXIT_REASON_MSR_WRITE:
6612 		return handle_fastpath_set_msr_irqoff(vcpu);
6613 	case EXIT_REASON_PREEMPTION_TIMER:
6614 		return handle_fastpath_preemption_timer(vcpu);
6615 	default:
6616 		return EXIT_FASTPATH_NONE;
6617 	}
6618 }
6619 
6620 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
6621 					struct vcpu_vmx *vmx)
6622 {
6623 	kvm_guest_enter_irqoff();
6624 
6625 	/* L1D Flush includes CPU buffer clear to mitigate MDS */
6626 	if (static_branch_unlikely(&vmx_l1d_should_flush))
6627 		vmx_l1d_flush(vcpu);
6628 	else if (static_branch_unlikely(&mds_user_clear))
6629 		mds_clear_cpu_buffers();
6630 
6631 	if (vcpu->arch.cr2 != native_read_cr2())
6632 		native_write_cr2(vcpu->arch.cr2);
6633 
6634 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6635 				   vmx->loaded_vmcs->launched);
6636 
6637 	vcpu->arch.cr2 = native_read_cr2();
6638 
6639 	kvm_guest_exit_irqoff();
6640 }
6641 
6642 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
6643 {
6644 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6645 	unsigned long cr3, cr4;
6646 
6647 	/* Record the guest's net vcpu time for enforced NMI injections. */
6648 	if (unlikely(!enable_vnmi &&
6649 		     vmx->loaded_vmcs->soft_vnmi_blocked))
6650 		vmx->loaded_vmcs->entry_time = ktime_get();
6651 
6652 	/*
6653 	 * Don't enter VMX if guest state is invalid, let the exit handler
6654 	 * start emulation until we arrive back to a valid state.  Synthesize a
6655 	 * consistency check VM-Exit due to invalid guest state and bail.
6656 	 */
6657 	if (unlikely(vmx->emulation_required)) {
6658 
6659 		/* We don't emulate invalid state of a nested guest */
6660 		vmx->fail = is_guest_mode(vcpu);
6661 
6662 		vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
6663 		vmx->exit_reason.failed_vmentry = 1;
6664 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
6665 		vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
6666 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
6667 		vmx->exit_intr_info = 0;
6668 		return EXIT_FASTPATH_NONE;
6669 	}
6670 
6671 	trace_kvm_entry(vcpu);
6672 
6673 	if (vmx->ple_window_dirty) {
6674 		vmx->ple_window_dirty = false;
6675 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
6676 	}
6677 
6678 	/*
6679 	 * We did this in prepare_switch_to_guest, because it needs to
6680 	 * be within srcu_read_lock.
6681 	 */
6682 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6683 
6684 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6685 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6686 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6687 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6688 
6689 	cr3 = __get_current_cr3_fast();
6690 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6691 		vmcs_writel(HOST_CR3, cr3);
6692 		vmx->loaded_vmcs->host_state.cr3 = cr3;
6693 	}
6694 
6695 	cr4 = cr4_read_shadow();
6696 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6697 		vmcs_writel(HOST_CR4, cr4);
6698 		vmx->loaded_vmcs->host_state.cr4 = cr4;
6699 	}
6700 
6701 	/* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
6702 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
6703 		set_debugreg(vcpu->arch.dr6, 6);
6704 
6705 	/* When single-stepping over STI and MOV SS, we must clear the
6706 	 * corresponding interruptibility bits in the guest state. Otherwise
6707 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
6708 	 * exceptions being set, but that's not correct for the guest debugging
6709 	 * case. */
6710 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6711 		vmx_set_interrupt_shadow(vcpu, 0);
6712 
6713 	kvm_load_guest_xsave_state(vcpu);
6714 
6715 	pt_guest_enter(vmx);
6716 
6717 	atomic_switch_perf_msrs(vmx);
6718 	if (intel_pmu_lbr_is_enabled(vcpu))
6719 		vmx_passthrough_lbr_msrs(vcpu);
6720 
6721 	if (enable_preemption_timer)
6722 		vmx_update_hv_timer(vcpu);
6723 
6724 	kvm_wait_lapic_expire(vcpu);
6725 
6726 	/*
6727 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6728 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6729 	 * is no need to worry about the conditional branch over the wrmsr
6730 	 * being speculatively taken.
6731 	 */
6732 	x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6733 
6734 	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
6735 	vmx_vcpu_enter_exit(vcpu, vmx);
6736 
6737 	/*
6738 	 * We do not use IBRS in the kernel. If this vCPU has used the
6739 	 * SPEC_CTRL MSR it may have left it on; save the value and
6740 	 * turn it off. This is much more efficient than blindly adding
6741 	 * it to the atomic save/restore list. Especially as the former
6742 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6743 	 *
6744 	 * For non-nested case:
6745 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
6746 	 * save it.
6747 	 *
6748 	 * For nested case:
6749 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
6750 	 * save it.
6751 	 */
6752 	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6753 		vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6754 
6755 	x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6756 
6757 	/* All fields are clean at this point */
6758 	if (static_branch_unlikely(&enable_evmcs)) {
6759 		current_evmcs->hv_clean_fields |=
6760 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6761 
6762 		current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
6763 	}
6764 
6765 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6766 	if (vmx->host_debugctlmsr)
6767 		update_debugctlmsr(vmx->host_debugctlmsr);
6768 
6769 #ifndef CONFIG_X86_64
6770 	/*
6771 	 * The sysexit path does not restore ds/es, so we must set them to
6772 	 * a reasonable value ourselves.
6773 	 *
6774 	 * We can't defer this to vmx_prepare_switch_to_host() since that
6775 	 * function may be executed in interrupt context, which saves and
6776 	 * restore segments around it, nullifying its effect.
6777 	 */
6778 	loadsegment(ds, __USER_DS);
6779 	loadsegment(es, __USER_DS);
6780 #endif
6781 
6782 	vmx_register_cache_reset(vcpu);
6783 
6784 	pt_guest_exit(vmx);
6785 
6786 	kvm_load_host_xsave_state(vcpu);
6787 
6788 	if (is_guest_mode(vcpu)) {
6789 		/*
6790 		 * Track VMLAUNCH/VMRESUME that have made past guest state
6791 		 * checking.
6792 		 */
6793 		if (vmx->nested.nested_run_pending &&
6794 		    !vmx->exit_reason.failed_vmentry)
6795 			++vcpu->stat.nested_run;
6796 
6797 		vmx->nested.nested_run_pending = 0;
6798 	}
6799 
6800 	vmx->idt_vectoring_info = 0;
6801 
6802 	if (unlikely(vmx->fail)) {
6803 		vmx->exit_reason.full = 0xdead;
6804 		return EXIT_FASTPATH_NONE;
6805 	}
6806 
6807 	vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
6808 	if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
6809 		kvm_machine_check();
6810 
6811 	if (likely(!vmx->exit_reason.failed_vmentry))
6812 		vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6813 
6814 	trace_kvm_exit(vcpu, KVM_ISA_VMX);
6815 
6816 	if (unlikely(vmx->exit_reason.failed_vmentry))
6817 		return EXIT_FASTPATH_NONE;
6818 
6819 	vmx->loaded_vmcs->launched = 1;
6820 
6821 	vmx_recover_nmi_blocking(vmx);
6822 	vmx_complete_interrupts(vmx);
6823 
6824 	if (is_guest_mode(vcpu))
6825 		return EXIT_FASTPATH_NONE;
6826 
6827 	return vmx_exit_handlers_fastpath(vcpu);
6828 }
6829 
6830 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6831 {
6832 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6833 
6834 	if (enable_pml)
6835 		vmx_destroy_pml_buffer(vmx);
6836 	free_vpid(vmx->vpid);
6837 	nested_vmx_free_vcpu(vcpu);
6838 	free_loaded_vmcs(vmx->loaded_vmcs);
6839 }
6840 
6841 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6842 {
6843 	struct vmx_uret_msr *tsx_ctrl;
6844 	struct vcpu_vmx *vmx;
6845 	int i, err;
6846 
6847 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6848 	vmx = to_vmx(vcpu);
6849 
6850 	err = -ENOMEM;
6851 
6852 	vmx->vpid = allocate_vpid();
6853 
6854 	/*
6855 	 * If PML is turned on, failure on enabling PML just results in failure
6856 	 * of creating the vcpu, therefore we can simplify PML logic (by
6857 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
6858 	 * for the guest), etc.
6859 	 */
6860 	if (enable_pml) {
6861 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6862 		if (!vmx->pml_pg)
6863 			goto free_vpid;
6864 	}
6865 
6866 	for (i = 0; i < kvm_nr_uret_msrs; ++i)
6867 		vmx->guest_uret_msrs[i].mask = -1ull;
6868 	if (boot_cpu_has(X86_FEATURE_RTM)) {
6869 		/*
6870 		 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
6871 		 * Keep the host value unchanged to avoid changing CPUID bits
6872 		 * under the host kernel's feet.
6873 		 */
6874 		tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
6875 		if (tsx_ctrl)
6876 			tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
6877 	}
6878 
6879 	err = alloc_loaded_vmcs(&vmx->vmcs01);
6880 	if (err < 0)
6881 		goto free_pml;
6882 
6883 	/* The MSR bitmap starts with all ones */
6884 	bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6885 	bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6886 
6887 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
6888 #ifdef CONFIG_X86_64
6889 	vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
6890 	vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
6891 	vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6892 #endif
6893 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6894 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6895 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6896 	if (kvm_cstate_in_guest(vcpu->kvm)) {
6897 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
6898 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6899 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6900 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6901 	}
6902 
6903 	vmx->loaded_vmcs = &vmx->vmcs01;
6904 
6905 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
6906 		err = alloc_apic_access_page(vcpu->kvm);
6907 		if (err)
6908 			goto free_vmcs;
6909 	}
6910 
6911 	if (enable_ept && !enable_unrestricted_guest) {
6912 		err = init_rmode_identity_map(vcpu->kvm);
6913 		if (err)
6914 			goto free_vmcs;
6915 	}
6916 
6917 	return 0;
6918 
6919 free_vmcs:
6920 	free_loaded_vmcs(vmx->loaded_vmcs);
6921 free_pml:
6922 	vmx_destroy_pml_buffer(vmx);
6923 free_vpid:
6924 	free_vpid(vmx->vpid);
6925 	return err;
6926 }
6927 
6928 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6929 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6930 
6931 static int vmx_vm_init(struct kvm *kvm)
6932 {
6933 	if (!ple_gap)
6934 		kvm->arch.pause_in_guest = true;
6935 
6936 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6937 		switch (l1tf_mitigation) {
6938 		case L1TF_MITIGATION_OFF:
6939 		case L1TF_MITIGATION_FLUSH_NOWARN:
6940 			/* 'I explicitly don't care' is set */
6941 			break;
6942 		case L1TF_MITIGATION_FLUSH:
6943 		case L1TF_MITIGATION_FLUSH_NOSMT:
6944 		case L1TF_MITIGATION_FULL:
6945 			/*
6946 			 * Warn upon starting the first VM in a potentially
6947 			 * insecure environment.
6948 			 */
6949 			if (sched_smt_active())
6950 				pr_warn_once(L1TF_MSG_SMT);
6951 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6952 				pr_warn_once(L1TF_MSG_L1D);
6953 			break;
6954 		case L1TF_MITIGATION_FULL_FORCE:
6955 			/* Flush is enforced */
6956 			break;
6957 		}
6958 	}
6959 	return 0;
6960 }
6961 
6962 static int __init vmx_check_processor_compat(void)
6963 {
6964 	struct vmcs_config vmcs_conf;
6965 	struct vmx_capability vmx_cap;
6966 
6967 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
6968 	    !this_cpu_has(X86_FEATURE_VMX)) {
6969 		pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
6970 		return -EIO;
6971 	}
6972 
6973 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6974 		return -EIO;
6975 	if (nested)
6976 		nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
6977 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6978 		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6979 				smp_processor_id());
6980 		return -EIO;
6981 	}
6982 	return 0;
6983 }
6984 
6985 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6986 {
6987 	u8 cache;
6988 	u64 ipat = 0;
6989 
6990 	/* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
6991 	 * memory aliases with conflicting memory types and sometimes MCEs.
6992 	 * We have to be careful as to what are honored and when.
6993 	 *
6994 	 * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
6995 	 * UC.  The effective memory type is UC or WC depending on guest PAT.
6996 	 * This was historically the source of MCEs and we want to be
6997 	 * conservative.
6998 	 *
6999 	 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7000 	 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
7001 	 * EPT memory type is set to WB.  The effective memory type is forced
7002 	 * WB.
7003 	 *
7004 	 * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
7005 	 * EPT memory type is used to emulate guest CD/MTRR.
7006 	 */
7007 
7008 	if (is_mmio) {
7009 		cache = MTRR_TYPE_UNCACHABLE;
7010 		goto exit;
7011 	}
7012 
7013 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
7014 		ipat = VMX_EPT_IPAT_BIT;
7015 		cache = MTRR_TYPE_WRBACK;
7016 		goto exit;
7017 	}
7018 
7019 	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7020 		ipat = VMX_EPT_IPAT_BIT;
7021 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7022 			cache = MTRR_TYPE_WRBACK;
7023 		else
7024 			cache = MTRR_TYPE_UNCACHABLE;
7025 		goto exit;
7026 	}
7027 
7028 	cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
7029 
7030 exit:
7031 	return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
7032 }
7033 
7034 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7035 {
7036 	/*
7037 	 * These bits in the secondary execution controls field
7038 	 * are dynamic, the others are mostly based on the hypervisor
7039 	 * architecture and the guest's CPUID.  Do not touch the
7040 	 * dynamic bits.
7041 	 */
7042 	u32 mask =
7043 		SECONDARY_EXEC_SHADOW_VMCS |
7044 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7045 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7046 		SECONDARY_EXEC_DESC;
7047 
7048 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7049 
7050 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7051 }
7052 
7053 /*
7054  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7055  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7056  */
7057 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7058 {
7059 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7060 	struct kvm_cpuid_entry2 *entry;
7061 
7062 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7063 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7064 
7065 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7066 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7067 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7068 } while (0)
7069 
7070 	entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7071 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7072 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7073 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7074 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7075 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7076 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7077 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7078 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7079 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7080 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7081 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7082 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7083 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7084 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7085 
7086 	entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7087 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7088 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7089 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7090 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7091 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7092 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7093 
7094 #undef cr4_fixed1_update
7095 }
7096 
7097 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7098 {
7099 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7100 
7101 	if (kvm_mpx_supported()) {
7102 		bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7103 
7104 		if (mpx_enabled) {
7105 			vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7106 			vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7107 		} else {
7108 			vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7109 			vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7110 		}
7111 	}
7112 }
7113 
7114 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7115 {
7116 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7117 	struct kvm_cpuid_entry2 *best = NULL;
7118 	int i;
7119 
7120 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7121 		best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7122 		if (!best)
7123 			return;
7124 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7125 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7126 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7127 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7128 	}
7129 
7130 	/* Get the number of configurable Address Ranges for filtering */
7131 	vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7132 						PT_CAP_num_address_ranges);
7133 
7134 	/* Initialize and clear the no dependency bits */
7135 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7136 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7137 			RTIT_CTL_BRANCH_EN);
7138 
7139 	/*
7140 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7141 	 * will inject an #GP
7142 	 */
7143 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7144 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7145 
7146 	/*
7147 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7148 	 * PSBFreq can be set
7149 	 */
7150 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7151 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7152 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7153 
7154 	/*
7155 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7156 	 */
7157 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7158 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7159 					      RTIT_CTL_MTC_RANGE);
7160 
7161 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7162 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7163 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7164 							RTIT_CTL_PTW_EN);
7165 
7166 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7167 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7168 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7169 
7170 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7171 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7172 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7173 
7174 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7175 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7176 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7177 
7178 	/* unmask address range configure area */
7179 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7180 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7181 }
7182 
7183 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7184 {
7185 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7186 
7187 	/* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7188 	vcpu->arch.xsaves_enabled = false;
7189 
7190 	vmx_setup_uret_msrs(vmx);
7191 
7192 	if (cpu_has_secondary_exec_ctrls())
7193 		vmcs_set_secondary_exec_control(vmx,
7194 						vmx_secondary_exec_control(vmx));
7195 
7196 	if (nested_vmx_allowed(vcpu))
7197 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7198 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7199 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7200 	else
7201 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7202 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7203 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7204 
7205 	if (nested_vmx_allowed(vcpu)) {
7206 		nested_vmx_cr_fixed1_bits_update(vcpu);
7207 		nested_vmx_entry_exit_ctls_update(vcpu);
7208 	}
7209 
7210 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7211 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7212 		update_intel_pt_cfg(vcpu);
7213 
7214 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7215 		struct vmx_uret_msr *msr;
7216 		msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7217 		if (msr) {
7218 			bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7219 			vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7220 		}
7221 	}
7222 
7223 	set_cr4_guest_host_mask(vmx);
7224 
7225 	vmx_write_encls_bitmap(vcpu, NULL);
7226 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7227 		vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7228 	else
7229 		vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7230 
7231 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7232 		vmx->msr_ia32_feature_control_valid_bits |=
7233 			FEAT_CTL_SGX_LC_ENABLED;
7234 	else
7235 		vmx->msr_ia32_feature_control_valid_bits &=
7236 			~FEAT_CTL_SGX_LC_ENABLED;
7237 
7238 	/* Refresh #PF interception to account for MAXPHYADDR changes. */
7239 	vmx_update_exception_bitmap(vcpu);
7240 }
7241 
7242 static __init void vmx_set_cpu_caps(void)
7243 {
7244 	kvm_set_cpu_caps();
7245 
7246 	/* CPUID 0x1 */
7247 	if (nested)
7248 		kvm_cpu_cap_set(X86_FEATURE_VMX);
7249 
7250 	/* CPUID 0x7 */
7251 	if (kvm_mpx_supported())
7252 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7253 	if (!cpu_has_vmx_invpcid())
7254 		kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7255 	if (vmx_pt_mode_is_host_guest())
7256 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7257 
7258 	if (!enable_sgx) {
7259 		kvm_cpu_cap_clear(X86_FEATURE_SGX);
7260 		kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7261 		kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7262 		kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7263 	}
7264 
7265 	if (vmx_umip_emulated())
7266 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7267 
7268 	/* CPUID 0xD.1 */
7269 	supported_xss = 0;
7270 	if (!cpu_has_vmx_xsaves())
7271 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7272 
7273 	/* CPUID 0x80000001 and 0x7 (RDPID) */
7274 	if (!cpu_has_vmx_rdtscp()) {
7275 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7276 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7277 	}
7278 
7279 	if (cpu_has_vmx_waitpkg())
7280 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7281 }
7282 
7283 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7284 {
7285 	to_vmx(vcpu)->req_immediate_exit = true;
7286 }
7287 
7288 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7289 				  struct x86_instruction_info *info)
7290 {
7291 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7292 	unsigned short port;
7293 	bool intercept;
7294 	int size;
7295 
7296 	if (info->intercept == x86_intercept_in ||
7297 	    info->intercept == x86_intercept_ins) {
7298 		port = info->src_val;
7299 		size = info->dst_bytes;
7300 	} else {
7301 		port = info->dst_val;
7302 		size = info->src_bytes;
7303 	}
7304 
7305 	/*
7306 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7307 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7308 	 * control.
7309 	 *
7310 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7311 	 */
7312 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7313 		intercept = nested_cpu_has(vmcs12,
7314 					   CPU_BASED_UNCOND_IO_EXITING);
7315 	else
7316 		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7317 
7318 	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7319 	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7320 }
7321 
7322 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7323 			       struct x86_instruction_info *info,
7324 			       enum x86_intercept_stage stage,
7325 			       struct x86_exception *exception)
7326 {
7327 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7328 
7329 	switch (info->intercept) {
7330 	/*
7331 	 * RDPID causes #UD if disabled through secondary execution controls.
7332 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
7333 	 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7334 	 */
7335 	case x86_intercept_rdpid:
7336 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7337 			exception->vector = UD_VECTOR;
7338 			exception->error_code_valid = false;
7339 			return X86EMUL_PROPAGATE_FAULT;
7340 		}
7341 		break;
7342 
7343 	case x86_intercept_in:
7344 	case x86_intercept_ins:
7345 	case x86_intercept_out:
7346 	case x86_intercept_outs:
7347 		return vmx_check_intercept_io(vcpu, info);
7348 
7349 	case x86_intercept_lgdt:
7350 	case x86_intercept_lidt:
7351 	case x86_intercept_lldt:
7352 	case x86_intercept_ltr:
7353 	case x86_intercept_sgdt:
7354 	case x86_intercept_sidt:
7355 	case x86_intercept_sldt:
7356 	case x86_intercept_str:
7357 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7358 			return X86EMUL_CONTINUE;
7359 
7360 		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7361 		break;
7362 
7363 	/* TODO: check more intercepts... */
7364 	default:
7365 		break;
7366 	}
7367 
7368 	return X86EMUL_UNHANDLEABLE;
7369 }
7370 
7371 #ifdef CONFIG_X86_64
7372 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7373 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7374 				  u64 divisor, u64 *result)
7375 {
7376 	u64 low = a << shift, high = a >> (64 - shift);
7377 
7378 	/* To avoid the overflow on divq */
7379 	if (high >= divisor)
7380 		return 1;
7381 
7382 	/* Low hold the result, high hold rem which is discarded */
7383 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7384 	    "rm" (divisor), "0" (low), "1" (high));
7385 	*result = low;
7386 
7387 	return 0;
7388 }
7389 
7390 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7391 			    bool *expired)
7392 {
7393 	struct vcpu_vmx *vmx;
7394 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7395 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7396 
7397 	vmx = to_vmx(vcpu);
7398 	tscl = rdtsc();
7399 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7400 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7401 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7402 						    ktimer->timer_advance_ns);
7403 
7404 	if (delta_tsc > lapic_timer_advance_cycles)
7405 		delta_tsc -= lapic_timer_advance_cycles;
7406 	else
7407 		delta_tsc = 0;
7408 
7409 	/* Convert to host delta tsc if tsc scaling is enabled */
7410 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7411 	    delta_tsc && u64_shl_div_u64(delta_tsc,
7412 				kvm_tsc_scaling_ratio_frac_bits,
7413 				vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
7414 		return -ERANGE;
7415 
7416 	/*
7417 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
7418 	 * we can't use the preemption timer.
7419 	 * It's possible that it fits on later vmentries, but checking
7420 	 * on every vmentry is costly so we just use an hrtimer.
7421 	 */
7422 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7423 		return -ERANGE;
7424 
7425 	vmx->hv_deadline_tsc = tscl + delta_tsc;
7426 	*expired = !delta_tsc;
7427 	return 0;
7428 }
7429 
7430 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7431 {
7432 	to_vmx(vcpu)->hv_deadline_tsc = -1;
7433 }
7434 #endif
7435 
7436 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7437 {
7438 	if (!kvm_pause_in_guest(vcpu->kvm))
7439 		shrink_ple_window(vcpu);
7440 }
7441 
7442 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
7443 {
7444 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7445 
7446 	if (is_guest_mode(vcpu)) {
7447 		vmx->nested.update_vmcs01_cpu_dirty_logging = true;
7448 		return;
7449 	}
7450 
7451 	/*
7452 	 * Note, cpu_dirty_logging_count can be changed concurrent with this
7453 	 * code, but in that case another update request will be made and so
7454 	 * the guest will never run with a stale PML value.
7455 	 */
7456 	if (vcpu->kvm->arch.cpu_dirty_logging_count)
7457 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7458 	else
7459 		secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7460 }
7461 
7462 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7463 {
7464 	if (pi_pre_block(vcpu))
7465 		return 1;
7466 
7467 	if (kvm_lapic_hv_timer_in_use(vcpu))
7468 		kvm_lapic_switch_to_sw_timer(vcpu);
7469 
7470 	return 0;
7471 }
7472 
7473 static void vmx_post_block(struct kvm_vcpu *vcpu)
7474 {
7475 	if (kvm_x86_ops.set_hv_timer)
7476 		kvm_lapic_switch_to_hv_timer(vcpu);
7477 
7478 	pi_post_block(vcpu);
7479 }
7480 
7481 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7482 {
7483 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7484 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7485 			FEAT_CTL_LMCE_ENABLED;
7486 	else
7487 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7488 			~FEAT_CTL_LMCE_ENABLED;
7489 }
7490 
7491 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7492 {
7493 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
7494 	if (to_vmx(vcpu)->nested.nested_run_pending)
7495 		return -EBUSY;
7496 	return !is_smm(vcpu);
7497 }
7498 
7499 static int vmx_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7500 {
7501 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7502 
7503 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7504 	if (vmx->nested.smm.guest_mode)
7505 		nested_vmx_vmexit(vcpu, -1, 0, 0);
7506 
7507 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
7508 	vmx->nested.vmxon = false;
7509 	vmx_clear_hlt(vcpu);
7510 	return 0;
7511 }
7512 
7513 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7514 {
7515 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7516 	int ret;
7517 
7518 	if (vmx->nested.smm.vmxon) {
7519 		vmx->nested.vmxon = true;
7520 		vmx->nested.smm.vmxon = false;
7521 	}
7522 
7523 	if (vmx->nested.smm.guest_mode) {
7524 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
7525 		if (ret)
7526 			return ret;
7527 
7528 		vmx->nested.smm.guest_mode = false;
7529 	}
7530 	return 0;
7531 }
7532 
7533 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
7534 {
7535 	/* RSM will cause a vmexit anyway.  */
7536 }
7537 
7538 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7539 {
7540 	return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
7541 }
7542 
7543 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7544 {
7545 	if (is_guest_mode(vcpu)) {
7546 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7547 
7548 		if (hrtimer_try_to_cancel(timer) == 1)
7549 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7550 	}
7551 }
7552 
7553 static void hardware_unsetup(void)
7554 {
7555 	kvm_set_posted_intr_wakeup_handler(NULL);
7556 
7557 	if (nested)
7558 		nested_vmx_hardware_unsetup();
7559 
7560 	free_kvm_area();
7561 }
7562 
7563 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7564 {
7565 	ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7566 			  BIT(APICV_INHIBIT_REASON_HYPERV);
7567 
7568 	return supported & BIT(bit);
7569 }
7570 
7571 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7572 	.name = "kvm_intel",
7573 
7574 	.hardware_unsetup = hardware_unsetup,
7575 
7576 	.hardware_enable = hardware_enable,
7577 	.hardware_disable = hardware_disable,
7578 	.cpu_has_accelerated_tpr = report_flexpriority,
7579 	.has_emulated_msr = vmx_has_emulated_msr,
7580 
7581 	.vm_size = sizeof(struct kvm_vmx),
7582 	.vm_init = vmx_vm_init,
7583 
7584 	.vcpu_create = vmx_create_vcpu,
7585 	.vcpu_free = vmx_free_vcpu,
7586 	.vcpu_reset = vmx_vcpu_reset,
7587 
7588 	.prepare_guest_switch = vmx_prepare_switch_to_guest,
7589 	.vcpu_load = vmx_vcpu_load,
7590 	.vcpu_put = vmx_vcpu_put,
7591 
7592 	.update_exception_bitmap = vmx_update_exception_bitmap,
7593 	.get_msr_feature = vmx_get_msr_feature,
7594 	.get_msr = vmx_get_msr,
7595 	.set_msr = vmx_set_msr,
7596 	.get_segment_base = vmx_get_segment_base,
7597 	.get_segment = vmx_get_segment,
7598 	.set_segment = vmx_set_segment,
7599 	.get_cpl = vmx_get_cpl,
7600 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7601 	.set_cr0 = vmx_set_cr0,
7602 	.is_valid_cr4 = vmx_is_valid_cr4,
7603 	.set_cr4 = vmx_set_cr4,
7604 	.set_efer = vmx_set_efer,
7605 	.get_idt = vmx_get_idt,
7606 	.set_idt = vmx_set_idt,
7607 	.get_gdt = vmx_get_gdt,
7608 	.set_gdt = vmx_set_gdt,
7609 	.set_dr7 = vmx_set_dr7,
7610 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7611 	.cache_reg = vmx_cache_reg,
7612 	.get_rflags = vmx_get_rflags,
7613 	.set_rflags = vmx_set_rflags,
7614 
7615 	.tlb_flush_all = vmx_flush_tlb_all,
7616 	.tlb_flush_current = vmx_flush_tlb_current,
7617 	.tlb_flush_gva = vmx_flush_tlb_gva,
7618 	.tlb_flush_guest = vmx_flush_tlb_guest,
7619 
7620 	.run = vmx_vcpu_run,
7621 	.handle_exit = vmx_handle_exit,
7622 	.skip_emulated_instruction = vmx_skip_emulated_instruction,
7623 	.update_emulated_instruction = vmx_update_emulated_instruction,
7624 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
7625 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
7626 	.patch_hypercall = vmx_patch_hypercall,
7627 	.set_irq = vmx_inject_irq,
7628 	.set_nmi = vmx_inject_nmi,
7629 	.queue_exception = vmx_queue_exception,
7630 	.cancel_injection = vmx_cancel_injection,
7631 	.interrupt_allowed = vmx_interrupt_allowed,
7632 	.nmi_allowed = vmx_nmi_allowed,
7633 	.get_nmi_mask = vmx_get_nmi_mask,
7634 	.set_nmi_mask = vmx_set_nmi_mask,
7635 	.enable_nmi_window = vmx_enable_nmi_window,
7636 	.enable_irq_window = vmx_enable_irq_window,
7637 	.update_cr8_intercept = vmx_update_cr8_intercept,
7638 	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7639 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7640 	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7641 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
7642 	.apicv_post_state_restore = vmx_apicv_post_state_restore,
7643 	.check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7644 	.hwapic_irr_update = vmx_hwapic_irr_update,
7645 	.hwapic_isr_update = vmx_hwapic_isr_update,
7646 	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7647 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
7648 	.deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7649 	.dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
7650 
7651 	.set_tss_addr = vmx_set_tss_addr,
7652 	.set_identity_map_addr = vmx_set_identity_map_addr,
7653 	.get_mt_mask = vmx_get_mt_mask,
7654 
7655 	.get_exit_info = vmx_get_exit_info,
7656 
7657 	.vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
7658 
7659 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7660 
7661 	.get_l2_tsc_offset = vmx_get_l2_tsc_offset,
7662 	.get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
7663 	.write_tsc_offset = vmx_write_tsc_offset,
7664 	.write_tsc_multiplier = vmx_write_tsc_multiplier,
7665 
7666 	.load_mmu_pgd = vmx_load_mmu_pgd,
7667 
7668 	.check_intercept = vmx_check_intercept,
7669 	.handle_exit_irqoff = vmx_handle_exit_irqoff,
7670 
7671 	.request_immediate_exit = vmx_request_immediate_exit,
7672 
7673 	.sched_in = vmx_sched_in,
7674 
7675 	.cpu_dirty_log_size = PML_ENTITY_NUM,
7676 	.update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
7677 
7678 	.pre_block = vmx_pre_block,
7679 	.post_block = vmx_post_block,
7680 
7681 	.pmu_ops = &intel_pmu_ops,
7682 	.nested_ops = &vmx_nested_ops,
7683 
7684 	.update_pi_irte = pi_update_irte,
7685 	.start_assignment = vmx_pi_start_assignment,
7686 
7687 #ifdef CONFIG_X86_64
7688 	.set_hv_timer = vmx_set_hv_timer,
7689 	.cancel_hv_timer = vmx_cancel_hv_timer,
7690 #endif
7691 
7692 	.setup_mce = vmx_setup_mce,
7693 
7694 	.smi_allowed = vmx_smi_allowed,
7695 	.enter_smm = vmx_enter_smm,
7696 	.leave_smm = vmx_leave_smm,
7697 	.enable_smi_window = vmx_enable_smi_window,
7698 
7699 	.can_emulate_instruction = vmx_can_emulate_instruction,
7700 	.apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7701 	.migrate_timers = vmx_migrate_timers,
7702 
7703 	.msr_filter_changed = vmx_msr_filter_changed,
7704 	.complete_emulated_msr = kvm_complete_insn_gp,
7705 
7706 	.vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
7707 };
7708 
7709 static __init void vmx_setup_user_return_msrs(void)
7710 {
7711 
7712 	/*
7713 	 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
7714 	 * will emulate SYSCALL in legacy mode if the vendor string in guest
7715 	 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
7716 	 * support this emulation, MSR_STAR is included in the list for i386,
7717 	 * but is never loaded into hardware.  MSR_CSTAR is also never loaded
7718 	 * into hardware and is here purely for emulation purposes.
7719 	 */
7720 	const u32 vmx_uret_msrs_list[] = {
7721 	#ifdef CONFIG_X86_64
7722 		MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
7723 	#endif
7724 		MSR_EFER, MSR_TSC_AUX, MSR_STAR,
7725 		MSR_IA32_TSX_CTRL,
7726 	};
7727 	int i;
7728 
7729 	BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
7730 
7731 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
7732 		kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
7733 }
7734 
7735 static __init int hardware_setup(void)
7736 {
7737 	unsigned long host_bndcfgs;
7738 	struct desc_ptr dt;
7739 	int r, ept_lpage_level;
7740 
7741 	store_idt(&dt);
7742 	host_idt_base = dt.address;
7743 
7744 	vmx_setup_user_return_msrs();
7745 
7746 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7747 		return -EIO;
7748 
7749 	if (boot_cpu_has(X86_FEATURE_NX))
7750 		kvm_enable_efer_bits(EFER_NX);
7751 
7752 	if (boot_cpu_has(X86_FEATURE_MPX)) {
7753 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7754 		WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7755 	}
7756 
7757 	if (!cpu_has_vmx_mpx())
7758 		supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7759 				    XFEATURE_MASK_BNDCSR);
7760 
7761 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7762 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7763 		enable_vpid = 0;
7764 
7765 	if (!cpu_has_vmx_ept() ||
7766 	    !cpu_has_vmx_ept_4levels() ||
7767 	    !cpu_has_vmx_ept_mt_wb() ||
7768 	    !cpu_has_vmx_invept_global())
7769 		enable_ept = 0;
7770 
7771 	/* NX support is required for shadow paging. */
7772 	if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
7773 		pr_err_ratelimited("kvm: NX (Execute Disable) not supported\n");
7774 		return -EOPNOTSUPP;
7775 	}
7776 
7777 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7778 		enable_ept_ad_bits = 0;
7779 
7780 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7781 		enable_unrestricted_guest = 0;
7782 
7783 	if (!cpu_has_vmx_flexpriority())
7784 		flexpriority_enabled = 0;
7785 
7786 	if (!cpu_has_virtual_nmis())
7787 		enable_vnmi = 0;
7788 
7789 	/*
7790 	 * set_apic_access_page_addr() is used to reload apic access
7791 	 * page upon invalidation.  No need to do anything if not
7792 	 * using the APIC_ACCESS_ADDR VMCS field.
7793 	 */
7794 	if (!flexpriority_enabled)
7795 		vmx_x86_ops.set_apic_access_page_addr = NULL;
7796 
7797 	if (!cpu_has_vmx_tpr_shadow())
7798 		vmx_x86_ops.update_cr8_intercept = NULL;
7799 
7800 #if IS_ENABLED(CONFIG_HYPERV)
7801 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7802 	    && enable_ept) {
7803 		vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
7804 		vmx_x86_ops.tlb_remote_flush_with_range =
7805 				hv_remote_flush_tlb_with_range;
7806 	}
7807 #endif
7808 
7809 	if (!cpu_has_vmx_ple()) {
7810 		ple_gap = 0;
7811 		ple_window = 0;
7812 		ple_window_grow = 0;
7813 		ple_window_max = 0;
7814 		ple_window_shrink = 0;
7815 	}
7816 
7817 	if (!cpu_has_vmx_apicv()) {
7818 		enable_apicv = 0;
7819 		vmx_x86_ops.sync_pir_to_irr = NULL;
7820 	}
7821 
7822 	if (cpu_has_vmx_tsc_scaling()) {
7823 		kvm_has_tsc_control = true;
7824 		kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7825 		kvm_tsc_scaling_ratio_frac_bits = 48;
7826 	}
7827 
7828 	kvm_has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
7829 
7830 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7831 
7832 	if (enable_ept)
7833 		kvm_mmu_set_ept_masks(enable_ept_ad_bits,
7834 				      cpu_has_vmx_ept_execute_only());
7835 
7836 	if (!enable_ept)
7837 		ept_lpage_level = 0;
7838 	else if (cpu_has_vmx_ept_1g_page())
7839 		ept_lpage_level = PG_LEVEL_1G;
7840 	else if (cpu_has_vmx_ept_2m_page())
7841 		ept_lpage_level = PG_LEVEL_2M;
7842 	else
7843 		ept_lpage_level = PG_LEVEL_4K;
7844 	kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(),
7845 			  ept_lpage_level);
7846 
7847 	/*
7848 	 * Only enable PML when hardware supports PML feature, and both EPT
7849 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
7850 	 */
7851 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7852 		enable_pml = 0;
7853 
7854 	if (!enable_pml)
7855 		vmx_x86_ops.cpu_dirty_log_size = 0;
7856 
7857 	if (!cpu_has_vmx_preemption_timer())
7858 		enable_preemption_timer = false;
7859 
7860 	if (enable_preemption_timer) {
7861 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
7862 		u64 vmx_msr;
7863 
7864 		rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7865 		cpu_preemption_timer_multi =
7866 			vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7867 
7868 		if (tsc_khz)
7869 			use_timer_freq = (u64)tsc_khz * 1000;
7870 		use_timer_freq >>= cpu_preemption_timer_multi;
7871 
7872 		/*
7873 		 * KVM "disables" the preemption timer by setting it to its max
7874 		 * value.  Don't use the timer if it might cause spurious exits
7875 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7876 		 */
7877 		if (use_timer_freq > 0xffffffffu / 10)
7878 			enable_preemption_timer = false;
7879 	}
7880 
7881 	if (!enable_preemption_timer) {
7882 		vmx_x86_ops.set_hv_timer = NULL;
7883 		vmx_x86_ops.cancel_hv_timer = NULL;
7884 		vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
7885 	}
7886 
7887 	kvm_mce_cap_supported |= MCG_LMCE_P;
7888 
7889 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7890 		return -EINVAL;
7891 	if (!enable_ept || !cpu_has_vmx_intel_pt())
7892 		pt_mode = PT_MODE_SYSTEM;
7893 
7894 	setup_default_sgx_lepubkeyhash();
7895 
7896 	if (nested) {
7897 		nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7898 					   vmx_capability.ept);
7899 
7900 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7901 		if (r)
7902 			return r;
7903 	}
7904 
7905 	vmx_set_cpu_caps();
7906 
7907 	r = alloc_kvm_area();
7908 	if (r)
7909 		nested_vmx_hardware_unsetup();
7910 
7911 	kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
7912 
7913 	return r;
7914 }
7915 
7916 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
7917 	.cpu_has_kvm_support = cpu_has_kvm_support,
7918 	.disabled_by_bios = vmx_disabled_by_bios,
7919 	.check_processor_compatibility = vmx_check_processor_compat,
7920 	.hardware_setup = hardware_setup,
7921 
7922 	.runtime_ops = &vmx_x86_ops,
7923 };
7924 
7925 static void vmx_cleanup_l1d_flush(void)
7926 {
7927 	if (vmx_l1d_flush_pages) {
7928 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7929 		vmx_l1d_flush_pages = NULL;
7930 	}
7931 	/* Restore state so sysfs ignores VMX */
7932 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7933 }
7934 
7935 static void vmx_exit(void)
7936 {
7937 #ifdef CONFIG_KEXEC_CORE
7938 	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7939 	synchronize_rcu();
7940 #endif
7941 
7942 	kvm_exit();
7943 
7944 #if IS_ENABLED(CONFIG_HYPERV)
7945 	if (static_branch_unlikely(&enable_evmcs)) {
7946 		int cpu;
7947 		struct hv_vp_assist_page *vp_ap;
7948 		/*
7949 		 * Reset everything to support using non-enlightened VMCS
7950 		 * access later (e.g. when we reload the module with
7951 		 * enlightened_vmcs=0)
7952 		 */
7953 		for_each_online_cpu(cpu) {
7954 			vp_ap =	hv_get_vp_assist_page(cpu);
7955 
7956 			if (!vp_ap)
7957 				continue;
7958 
7959 			vp_ap->nested_control.features.directhypercall = 0;
7960 			vp_ap->current_nested_vmcs = 0;
7961 			vp_ap->enlighten_vmentry = 0;
7962 		}
7963 
7964 		static_branch_disable(&enable_evmcs);
7965 	}
7966 #endif
7967 	vmx_cleanup_l1d_flush();
7968 
7969 	allow_smaller_maxphyaddr = false;
7970 }
7971 module_exit(vmx_exit);
7972 
7973 static int __init vmx_init(void)
7974 {
7975 	int r, cpu;
7976 
7977 #if IS_ENABLED(CONFIG_HYPERV)
7978 	/*
7979 	 * Enlightened VMCS usage should be recommended and the host needs
7980 	 * to support eVMCS v1 or above. We can also disable eVMCS support
7981 	 * with module parameter.
7982 	 */
7983 	if (enlightened_vmcs &&
7984 	    ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7985 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7986 	    KVM_EVMCS_VERSION) {
7987 		int cpu;
7988 
7989 		/* Check that we have assist pages on all online CPUs */
7990 		for_each_online_cpu(cpu) {
7991 			if (!hv_get_vp_assist_page(cpu)) {
7992 				enlightened_vmcs = false;
7993 				break;
7994 			}
7995 		}
7996 
7997 		if (enlightened_vmcs) {
7998 			pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
7999 			static_branch_enable(&enable_evmcs);
8000 		}
8001 
8002 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
8003 			vmx_x86_ops.enable_direct_tlbflush
8004 				= hv_enable_direct_tlbflush;
8005 
8006 	} else {
8007 		enlightened_vmcs = false;
8008 	}
8009 #endif
8010 
8011 	r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
8012 		     __alignof__(struct vcpu_vmx), THIS_MODULE);
8013 	if (r)
8014 		return r;
8015 
8016 	/*
8017 	 * Must be called after kvm_init() so enable_ept is properly set
8018 	 * up. Hand the parameter mitigation value in which was stored in
8019 	 * the pre module init parser. If no parameter was given, it will
8020 	 * contain 'auto' which will be turned into the default 'cond'
8021 	 * mitigation mode.
8022 	 */
8023 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8024 	if (r) {
8025 		vmx_exit();
8026 		return r;
8027 	}
8028 
8029 	for_each_possible_cpu(cpu) {
8030 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8031 
8032 		pi_init_cpu(cpu);
8033 	}
8034 
8035 #ifdef CONFIG_KEXEC_CORE
8036 	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8037 			   crash_vmclear_local_loaded_vmcss);
8038 #endif
8039 	vmx_check_vmcs12_offsets();
8040 
8041 	/*
8042 	 * Shadow paging doesn't have a (further) performance penalty
8043 	 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8044 	 * by default
8045 	 */
8046 	if (!enable_ept)
8047 		allow_smaller_maxphyaddr = true;
8048 
8049 	return 0;
8050 }
8051 module_init(vmx_init);
8052