1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <linux/highmem.h> 17 #include <linux/hrtimer.h> 18 #include <linux/kernel.h> 19 #include <linux/kvm_host.h> 20 #include <linux/module.h> 21 #include <linux/moduleparam.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/mm.h> 24 #include <linux/objtool.h> 25 #include <linux/sched.h> 26 #include <linux/sched/smt.h> 27 #include <linux/slab.h> 28 #include <linux/tboot.h> 29 #include <linux/trace_events.h> 30 #include <linux/entry-kvm.h> 31 32 #include <asm/apic.h> 33 #include <asm/asm.h> 34 #include <asm/cpu.h> 35 #include <asm/cpu_device_id.h> 36 #include <asm/debugreg.h> 37 #include <asm/desc.h> 38 #include <asm/fpu/api.h> 39 #include <asm/idtentry.h> 40 #include <asm/io.h> 41 #include <asm/irq_remapping.h> 42 #include <asm/kexec.h> 43 #include <asm/perf_event.h> 44 #include <asm/mmu_context.h> 45 #include <asm/mshyperv.h> 46 #include <asm/mwait.h> 47 #include <asm/spec-ctrl.h> 48 #include <asm/virtext.h> 49 #include <asm/vmx.h> 50 51 #include "capabilities.h" 52 #include "cpuid.h" 53 #include "evmcs.h" 54 #include "hyperv.h" 55 #include "kvm_onhyperv.h" 56 #include "irq.h" 57 #include "kvm_cache_regs.h" 58 #include "lapic.h" 59 #include "mmu.h" 60 #include "nested.h" 61 #include "pmu.h" 62 #include "sgx.h" 63 #include "trace.h" 64 #include "vmcs.h" 65 #include "vmcs12.h" 66 #include "vmx.h" 67 #include "x86.h" 68 69 MODULE_AUTHOR("Qumranet"); 70 MODULE_LICENSE("GPL"); 71 72 #ifdef MODULE 73 static const struct x86_cpu_id vmx_cpu_id[] = { 74 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL), 75 {} 76 }; 77 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); 78 #endif 79 80 bool __read_mostly enable_vpid = 1; 81 module_param_named(vpid, enable_vpid, bool, 0444); 82 83 static bool __read_mostly enable_vnmi = 1; 84 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO); 85 86 bool __read_mostly flexpriority_enabled = 1; 87 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); 88 89 bool __read_mostly enable_ept = 1; 90 module_param_named(ept, enable_ept, bool, S_IRUGO); 91 92 bool __read_mostly enable_unrestricted_guest = 1; 93 module_param_named(unrestricted_guest, 94 enable_unrestricted_guest, bool, S_IRUGO); 95 96 bool __read_mostly enable_ept_ad_bits = 1; 97 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO); 98 99 static bool __read_mostly emulate_invalid_guest_state = true; 100 module_param(emulate_invalid_guest_state, bool, S_IRUGO); 101 102 static bool __read_mostly fasteoi = 1; 103 module_param(fasteoi, bool, S_IRUGO); 104 105 module_param(enable_apicv, bool, S_IRUGO); 106 107 /* 108 * If nested=1, nested virtualization is supported, i.e., guests may use 109 * VMX and be a hypervisor for its own guests. If nested=0, guests may not 110 * use VMX instructions. 111 */ 112 static bool __read_mostly nested = 1; 113 module_param(nested, bool, S_IRUGO); 114 115 bool __read_mostly enable_pml = 1; 116 module_param_named(pml, enable_pml, bool, S_IRUGO); 117 118 static bool __read_mostly dump_invalid_vmcs = 0; 119 module_param(dump_invalid_vmcs, bool, 0644); 120 121 #define MSR_BITMAP_MODE_X2APIC 1 122 #define MSR_BITMAP_MODE_X2APIC_APICV 2 123 124 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL 125 126 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ 127 static int __read_mostly cpu_preemption_timer_multi; 128 static bool __read_mostly enable_preemption_timer = 1; 129 #ifdef CONFIG_X86_64 130 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); 131 #endif 132 133 extern bool __read_mostly allow_smaller_maxphyaddr; 134 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO); 135 136 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) 137 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE 138 #define KVM_VM_CR0_ALWAYS_ON \ 139 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE) 140 141 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE 142 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) 143 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) 144 145 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) 146 147 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ 148 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ 149 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ 150 RTIT_STATUS_BYTECNT)) 151 152 /* 153 * List of MSRs that can be directly passed to the guest. 154 * In addition to these x2apic and PT MSRs are handled specially. 155 */ 156 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = { 157 MSR_IA32_SPEC_CTRL, 158 MSR_IA32_PRED_CMD, 159 MSR_IA32_TSC, 160 #ifdef CONFIG_X86_64 161 MSR_FS_BASE, 162 MSR_GS_BASE, 163 MSR_KERNEL_GS_BASE, 164 #endif 165 MSR_IA32_SYSENTER_CS, 166 MSR_IA32_SYSENTER_ESP, 167 MSR_IA32_SYSENTER_EIP, 168 MSR_CORE_C1_RES, 169 MSR_CORE_C3_RESIDENCY, 170 MSR_CORE_C6_RESIDENCY, 171 MSR_CORE_C7_RESIDENCY, 172 }; 173 174 /* 175 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 176 * ple_gap: upper bound on the amount of time between two successive 177 * executions of PAUSE in a loop. Also indicate if ple enabled. 178 * According to test, this time is usually smaller than 128 cycles. 179 * ple_window: upper bound on the amount of time a guest is allowed to execute 180 * in a PAUSE loop. Tests indicate that most spinlocks are held for 181 * less than 2^12 cycles 182 * Time is measured based on a counter that runs at the same rate as the TSC, 183 * refer SDM volume 3b section 21.6.13 & 22.1.3. 184 */ 185 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; 186 module_param(ple_gap, uint, 0444); 187 188 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; 189 module_param(ple_window, uint, 0444); 190 191 /* Default doubles per-vcpu window every exit. */ 192 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 193 module_param(ple_window_grow, uint, 0444); 194 195 /* Default resets per-vcpu window every exit to ple_window. */ 196 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 197 module_param(ple_window_shrink, uint, 0444); 198 199 /* Default is to compute the maximum so we can never overflow. */ 200 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; 201 module_param(ple_window_max, uint, 0444); 202 203 /* Default is SYSTEM mode, 1 for host-guest mode */ 204 int __read_mostly pt_mode = PT_MODE_SYSTEM; 205 module_param(pt_mode, int, S_IRUGO); 206 207 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); 208 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); 209 static DEFINE_MUTEX(vmx_l1d_flush_mutex); 210 211 /* Storage for pre module init parameter parsing */ 212 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; 213 214 static const struct { 215 const char *option; 216 bool for_parse; 217 } vmentry_l1d_param[] = { 218 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, 219 [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, 220 [VMENTER_L1D_FLUSH_COND] = {"cond", true}, 221 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, 222 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, 223 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, 224 }; 225 226 #define L1D_CACHE_ORDER 4 227 static void *vmx_l1d_flush_pages; 228 229 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) 230 { 231 struct page *page; 232 unsigned int i; 233 234 if (!boot_cpu_has_bug(X86_BUG_L1TF)) { 235 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 236 return 0; 237 } 238 239 if (!enable_ept) { 240 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; 241 return 0; 242 } 243 244 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 245 u64 msr; 246 247 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr); 248 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { 249 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 250 return 0; 251 } 252 } 253 254 /* If set to auto use the default l1tf mitigation method */ 255 if (l1tf == VMENTER_L1D_FLUSH_AUTO) { 256 switch (l1tf_mitigation) { 257 case L1TF_MITIGATION_OFF: 258 l1tf = VMENTER_L1D_FLUSH_NEVER; 259 break; 260 case L1TF_MITIGATION_FLUSH_NOWARN: 261 case L1TF_MITIGATION_FLUSH: 262 case L1TF_MITIGATION_FLUSH_NOSMT: 263 l1tf = VMENTER_L1D_FLUSH_COND; 264 break; 265 case L1TF_MITIGATION_FULL: 266 case L1TF_MITIGATION_FULL_FORCE: 267 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 268 break; 269 } 270 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { 271 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 272 } 273 274 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && 275 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { 276 /* 277 * This allocation for vmx_l1d_flush_pages is not tied to a VM 278 * lifetime and so should not be charged to a memcg. 279 */ 280 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); 281 if (!page) 282 return -ENOMEM; 283 vmx_l1d_flush_pages = page_address(page); 284 285 /* 286 * Initialize each page with a different pattern in 287 * order to protect against KSM in the nested 288 * virtualization case. 289 */ 290 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { 291 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, 292 PAGE_SIZE); 293 } 294 } 295 296 l1tf_vmx_mitigation = l1tf; 297 298 if (l1tf != VMENTER_L1D_FLUSH_NEVER) 299 static_branch_enable(&vmx_l1d_should_flush); 300 else 301 static_branch_disable(&vmx_l1d_should_flush); 302 303 if (l1tf == VMENTER_L1D_FLUSH_COND) 304 static_branch_enable(&vmx_l1d_flush_cond); 305 else 306 static_branch_disable(&vmx_l1d_flush_cond); 307 return 0; 308 } 309 310 static int vmentry_l1d_flush_parse(const char *s) 311 { 312 unsigned int i; 313 314 if (s) { 315 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { 316 if (vmentry_l1d_param[i].for_parse && 317 sysfs_streq(s, vmentry_l1d_param[i].option)) 318 return i; 319 } 320 } 321 return -EINVAL; 322 } 323 324 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) 325 { 326 int l1tf, ret; 327 328 l1tf = vmentry_l1d_flush_parse(s); 329 if (l1tf < 0) 330 return l1tf; 331 332 if (!boot_cpu_has(X86_BUG_L1TF)) 333 return 0; 334 335 /* 336 * Has vmx_init() run already? If not then this is the pre init 337 * parameter parsing. In that case just store the value and let 338 * vmx_init() do the proper setup after enable_ept has been 339 * established. 340 */ 341 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { 342 vmentry_l1d_flush_param = l1tf; 343 return 0; 344 } 345 346 mutex_lock(&vmx_l1d_flush_mutex); 347 ret = vmx_setup_l1d_flush(l1tf); 348 mutex_unlock(&vmx_l1d_flush_mutex); 349 return ret; 350 } 351 352 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) 353 { 354 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) 355 return sprintf(s, "???\n"); 356 357 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); 358 } 359 360 static const struct kernel_param_ops vmentry_l1d_flush_ops = { 361 .set = vmentry_l1d_flush_set, 362 .get = vmentry_l1d_flush_get, 363 }; 364 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); 365 366 static u32 vmx_segment_access_rights(struct kvm_segment *var); 367 368 void vmx_vmexit(void); 369 370 #define vmx_insn_failed(fmt...) \ 371 do { \ 372 WARN_ONCE(1, fmt); \ 373 pr_warn_ratelimited(fmt); \ 374 } while (0) 375 376 asmlinkage void vmread_error(unsigned long field, bool fault) 377 { 378 if (fault) 379 kvm_spurious_fault(); 380 else 381 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field); 382 } 383 384 noinline void vmwrite_error(unsigned long field, unsigned long value) 385 { 386 vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n", 387 field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); 388 } 389 390 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr) 391 { 392 vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr); 393 } 394 395 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr) 396 { 397 vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr); 398 } 399 400 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva) 401 { 402 vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n", 403 ext, vpid, gva); 404 } 405 406 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa) 407 { 408 vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n", 409 ext, eptp, gpa); 410 } 411 412 static DEFINE_PER_CPU(struct vmcs *, vmxarea); 413 DEFINE_PER_CPU(struct vmcs *, current_vmcs); 414 /* 415 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed 416 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. 417 */ 418 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); 419 420 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); 421 static DEFINE_SPINLOCK(vmx_vpid_lock); 422 423 struct vmcs_config vmcs_config; 424 struct vmx_capability vmx_capability; 425 426 #define VMX_SEGMENT_FIELD(seg) \ 427 [VCPU_SREG_##seg] = { \ 428 .selector = GUEST_##seg##_SELECTOR, \ 429 .base = GUEST_##seg##_BASE, \ 430 .limit = GUEST_##seg##_LIMIT, \ 431 .ar_bytes = GUEST_##seg##_AR_BYTES, \ 432 } 433 434 static const struct kvm_vmx_segment_field { 435 unsigned selector; 436 unsigned base; 437 unsigned limit; 438 unsigned ar_bytes; 439 } kvm_vmx_segment_fields[] = { 440 VMX_SEGMENT_FIELD(CS), 441 VMX_SEGMENT_FIELD(DS), 442 VMX_SEGMENT_FIELD(ES), 443 VMX_SEGMENT_FIELD(FS), 444 VMX_SEGMENT_FIELD(GS), 445 VMX_SEGMENT_FIELD(SS), 446 VMX_SEGMENT_FIELD(TR), 447 VMX_SEGMENT_FIELD(LDTR), 448 }; 449 450 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx) 451 { 452 vmx->segment_cache.bitmask = 0; 453 } 454 455 static unsigned long host_idt_base; 456 457 #if IS_ENABLED(CONFIG_HYPERV) 458 static bool __read_mostly enlightened_vmcs = true; 459 module_param(enlightened_vmcs, bool, 0444); 460 461 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu) 462 { 463 struct hv_enlightened_vmcs *evmcs; 464 struct hv_partition_assist_pg **p_hv_pa_pg = 465 &to_kvm_hv(vcpu->kvm)->hv_pa_pg; 466 /* 467 * Synthetic VM-Exit is not enabled in current code and so All 468 * evmcs in singe VM shares same assist page. 469 */ 470 if (!*p_hv_pa_pg) 471 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT); 472 473 if (!*p_hv_pa_pg) 474 return -ENOMEM; 475 476 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs; 477 478 evmcs->partition_assist_page = 479 __pa(*p_hv_pa_pg); 480 evmcs->hv_vm_id = (unsigned long)vcpu->kvm; 481 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1; 482 483 return 0; 484 } 485 486 #endif /* IS_ENABLED(CONFIG_HYPERV) */ 487 488 /* 489 * Comment's format: document - errata name - stepping - processor name. 490 * Refer from 491 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp 492 */ 493 static u32 vmx_preemption_cpu_tfms[] = { 494 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ 495 0x000206E6, 496 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ 497 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ 498 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ 499 0x00020652, 500 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ 501 0x00020655, 502 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ 503 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ 504 /* 505 * 320767.pdf - AAP86 - B1 - 506 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile 507 */ 508 0x000106E5, 509 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ 510 0x000106A0, 511 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ 512 0x000106A1, 513 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ 514 0x000106A4, 515 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ 516 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ 517 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ 518 0x000106A5, 519 /* Xeon E3-1220 V2 */ 520 0x000306A8, 521 }; 522 523 static inline bool cpu_has_broken_vmx_preemption_timer(void) 524 { 525 u32 eax = cpuid_eax(0x00000001), i; 526 527 /* Clear the reserved bits */ 528 eax &= ~(0x3U << 14 | 0xfU << 28); 529 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) 530 if (eax == vmx_preemption_cpu_tfms[i]) 531 return true; 532 533 return false; 534 } 535 536 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) 537 { 538 return flexpriority_enabled && lapic_in_kernel(vcpu); 539 } 540 541 static inline bool report_flexpriority(void) 542 { 543 return flexpriority_enabled; 544 } 545 546 static int possible_passthrough_msr_slot(u32 msr) 547 { 548 u32 i; 549 550 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) 551 if (vmx_possible_passthrough_msrs[i] == msr) 552 return i; 553 554 return -ENOENT; 555 } 556 557 static bool is_valid_passthrough_msr(u32 msr) 558 { 559 bool r; 560 561 switch (msr) { 562 case 0x800 ... 0x8ff: 563 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */ 564 return true; 565 case MSR_IA32_RTIT_STATUS: 566 case MSR_IA32_RTIT_OUTPUT_BASE: 567 case MSR_IA32_RTIT_OUTPUT_MASK: 568 case MSR_IA32_RTIT_CR3_MATCH: 569 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 570 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */ 571 case MSR_LBR_SELECT: 572 case MSR_LBR_TOS: 573 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31: 574 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31: 575 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31: 576 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8: 577 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8: 578 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */ 579 return true; 580 } 581 582 r = possible_passthrough_msr_slot(msr) != -ENOENT; 583 584 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr); 585 586 return r; 587 } 588 589 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr) 590 { 591 int i; 592 593 i = kvm_find_user_return_msr(msr); 594 if (i >= 0) 595 return &vmx->guest_uret_msrs[i]; 596 return NULL; 597 } 598 599 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx, 600 struct vmx_uret_msr *msr, u64 data) 601 { 602 unsigned int slot = msr - vmx->guest_uret_msrs; 603 int ret = 0; 604 605 u64 old_msr_data = msr->data; 606 msr->data = data; 607 if (msr->load_into_hardware) { 608 preempt_disable(); 609 ret = kvm_set_user_return_msr(slot, msr->data, msr->mask); 610 preempt_enable(); 611 if (ret) 612 msr->data = old_msr_data; 613 } 614 return ret; 615 } 616 617 #ifdef CONFIG_KEXEC_CORE 618 static void crash_vmclear_local_loaded_vmcss(void) 619 { 620 int cpu = raw_smp_processor_id(); 621 struct loaded_vmcs *v; 622 623 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), 624 loaded_vmcss_on_cpu_link) 625 vmcs_clear(v->vmcs); 626 } 627 #endif /* CONFIG_KEXEC_CORE */ 628 629 static void __loaded_vmcs_clear(void *arg) 630 { 631 struct loaded_vmcs *loaded_vmcs = arg; 632 int cpu = raw_smp_processor_id(); 633 634 if (loaded_vmcs->cpu != cpu) 635 return; /* vcpu migration can race with cpu offline */ 636 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) 637 per_cpu(current_vmcs, cpu) = NULL; 638 639 vmcs_clear(loaded_vmcs->vmcs); 640 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) 641 vmcs_clear(loaded_vmcs->shadow_vmcs); 642 643 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); 644 645 /* 646 * Ensure all writes to loaded_vmcs, including deleting it from its 647 * current percpu list, complete before setting loaded_vmcs->vcpu to 648 * -1, otherwise a different cpu can see vcpu == -1 first and add 649 * loaded_vmcs to its percpu list before it's deleted from this cpu's 650 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs(). 651 */ 652 smp_wmb(); 653 654 loaded_vmcs->cpu = -1; 655 loaded_vmcs->launched = 0; 656 } 657 658 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) 659 { 660 int cpu = loaded_vmcs->cpu; 661 662 if (cpu != -1) 663 smp_call_function_single(cpu, 664 __loaded_vmcs_clear, loaded_vmcs, 1); 665 } 666 667 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, 668 unsigned field) 669 { 670 bool ret; 671 u32 mask = 1 << (seg * SEG_FIELD_NR + field); 672 673 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) { 674 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS); 675 vmx->segment_cache.bitmask = 0; 676 } 677 ret = vmx->segment_cache.bitmask & mask; 678 vmx->segment_cache.bitmask |= mask; 679 return ret; 680 } 681 682 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) 683 { 684 u16 *p = &vmx->segment_cache.seg[seg].selector; 685 686 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) 687 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); 688 return *p; 689 } 690 691 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) 692 { 693 ulong *p = &vmx->segment_cache.seg[seg].base; 694 695 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) 696 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); 697 return *p; 698 } 699 700 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) 701 { 702 u32 *p = &vmx->segment_cache.seg[seg].limit; 703 704 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) 705 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); 706 return *p; 707 } 708 709 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) 710 { 711 u32 *p = &vmx->segment_cache.seg[seg].ar; 712 713 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) 714 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); 715 return *p; 716 } 717 718 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu) 719 { 720 u32 eb; 721 722 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | 723 (1u << DB_VECTOR) | (1u << AC_VECTOR); 724 /* 725 * Guest access to VMware backdoor ports could legitimately 726 * trigger #GP because of TSS I/O permission bitmap. 727 * We intercept those #GP and allow access to them anyway 728 * as VMware does. 729 */ 730 if (enable_vmware_backdoor) 731 eb |= (1u << GP_VECTOR); 732 if ((vcpu->guest_debug & 733 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == 734 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) 735 eb |= 1u << BP_VECTOR; 736 if (to_vmx(vcpu)->rmode.vm86_active) 737 eb = ~0; 738 if (!vmx_need_pf_intercept(vcpu)) 739 eb &= ~(1u << PF_VECTOR); 740 741 /* When we are running a nested L2 guest and L1 specified for it a 742 * certain exception bitmap, we must trap the same exceptions and pass 743 * them to L1. When running L2, we will only handle the exceptions 744 * specified above if L1 did not want them. 745 */ 746 if (is_guest_mode(vcpu)) 747 eb |= get_vmcs12(vcpu)->exception_bitmap; 748 else { 749 int mask = 0, match = 0; 750 751 if (enable_ept && (eb & (1u << PF_VECTOR))) { 752 /* 753 * If EPT is enabled, #PF is currently only intercepted 754 * if MAXPHYADDR is smaller on the guest than on the 755 * host. In that case we only care about present, 756 * non-reserved faults. For vmcs02, however, PFEC_MASK 757 * and PFEC_MATCH are set in prepare_vmcs02_rare. 758 */ 759 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK; 760 match = PFERR_PRESENT_MASK; 761 } 762 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask); 763 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match); 764 } 765 766 vmcs_write32(EXCEPTION_BITMAP, eb); 767 } 768 769 /* 770 * Check if MSR is intercepted for currently loaded MSR bitmap. 771 */ 772 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 773 { 774 unsigned long *msr_bitmap; 775 int f = sizeof(unsigned long); 776 777 if (!cpu_has_vmx_msr_bitmap()) 778 return true; 779 780 msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap; 781 782 if (msr <= 0x1fff) { 783 return !!test_bit(msr, msr_bitmap + 0x800 / f); 784 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { 785 msr &= 0x1fff; 786 return !!test_bit(msr, msr_bitmap + 0xc00 / f); 787 } 788 789 return true; 790 } 791 792 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, 793 unsigned long entry, unsigned long exit) 794 { 795 vm_entry_controls_clearbit(vmx, entry); 796 vm_exit_controls_clearbit(vmx, exit); 797 } 798 799 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr) 800 { 801 unsigned int i; 802 803 for (i = 0; i < m->nr; ++i) { 804 if (m->val[i].index == msr) 805 return i; 806 } 807 return -ENOENT; 808 } 809 810 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) 811 { 812 int i; 813 struct msr_autoload *m = &vmx->msr_autoload; 814 815 switch (msr) { 816 case MSR_EFER: 817 if (cpu_has_load_ia32_efer()) { 818 clear_atomic_switch_msr_special(vmx, 819 VM_ENTRY_LOAD_IA32_EFER, 820 VM_EXIT_LOAD_IA32_EFER); 821 return; 822 } 823 break; 824 case MSR_CORE_PERF_GLOBAL_CTRL: 825 if (cpu_has_load_perf_global_ctrl()) { 826 clear_atomic_switch_msr_special(vmx, 827 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 828 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); 829 return; 830 } 831 break; 832 } 833 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 834 if (i < 0) 835 goto skip_guest; 836 --m->guest.nr; 837 m->guest.val[i] = m->guest.val[m->guest.nr]; 838 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 839 840 skip_guest: 841 i = vmx_find_loadstore_msr_slot(&m->host, msr); 842 if (i < 0) 843 return; 844 845 --m->host.nr; 846 m->host.val[i] = m->host.val[m->host.nr]; 847 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 848 } 849 850 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, 851 unsigned long entry, unsigned long exit, 852 unsigned long guest_val_vmcs, unsigned long host_val_vmcs, 853 u64 guest_val, u64 host_val) 854 { 855 vmcs_write64(guest_val_vmcs, guest_val); 856 if (host_val_vmcs != HOST_IA32_EFER) 857 vmcs_write64(host_val_vmcs, host_val); 858 vm_entry_controls_setbit(vmx, entry); 859 vm_exit_controls_setbit(vmx, exit); 860 } 861 862 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, 863 u64 guest_val, u64 host_val, bool entry_only) 864 { 865 int i, j = 0; 866 struct msr_autoload *m = &vmx->msr_autoload; 867 868 switch (msr) { 869 case MSR_EFER: 870 if (cpu_has_load_ia32_efer()) { 871 add_atomic_switch_msr_special(vmx, 872 VM_ENTRY_LOAD_IA32_EFER, 873 VM_EXIT_LOAD_IA32_EFER, 874 GUEST_IA32_EFER, 875 HOST_IA32_EFER, 876 guest_val, host_val); 877 return; 878 } 879 break; 880 case MSR_CORE_PERF_GLOBAL_CTRL: 881 if (cpu_has_load_perf_global_ctrl()) { 882 add_atomic_switch_msr_special(vmx, 883 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 884 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, 885 GUEST_IA32_PERF_GLOBAL_CTRL, 886 HOST_IA32_PERF_GLOBAL_CTRL, 887 guest_val, host_val); 888 return; 889 } 890 break; 891 case MSR_IA32_PEBS_ENABLE: 892 /* PEBS needs a quiescent period after being disabled (to write 893 * a record). Disabling PEBS through VMX MSR swapping doesn't 894 * provide that period, so a CPU could write host's record into 895 * guest's memory. 896 */ 897 wrmsrl(MSR_IA32_PEBS_ENABLE, 0); 898 } 899 900 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 901 if (!entry_only) 902 j = vmx_find_loadstore_msr_slot(&m->host, msr); 903 904 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) || 905 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) { 906 printk_once(KERN_WARNING "Not enough msr switch entries. " 907 "Can't add msr %x\n", msr); 908 return; 909 } 910 if (i < 0) { 911 i = m->guest.nr++; 912 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 913 } 914 m->guest.val[i].index = msr; 915 m->guest.val[i].value = guest_val; 916 917 if (entry_only) 918 return; 919 920 if (j < 0) { 921 j = m->host.nr++; 922 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 923 } 924 m->host.val[j].index = msr; 925 m->host.val[j].value = host_val; 926 } 927 928 static bool update_transition_efer(struct vcpu_vmx *vmx) 929 { 930 u64 guest_efer = vmx->vcpu.arch.efer; 931 u64 ignore_bits = 0; 932 int i; 933 934 /* Shadow paging assumes NX to be available. */ 935 if (!enable_ept) 936 guest_efer |= EFER_NX; 937 938 /* 939 * LMA and LME handled by hardware; SCE meaningless outside long mode. 940 */ 941 ignore_bits |= EFER_SCE; 942 #ifdef CONFIG_X86_64 943 ignore_bits |= EFER_LMA | EFER_LME; 944 /* SCE is meaningful only in long mode on Intel */ 945 if (guest_efer & EFER_LMA) 946 ignore_bits &= ~(u64)EFER_SCE; 947 #endif 948 949 /* 950 * On EPT, we can't emulate NX, so we must switch EFER atomically. 951 * On CPUs that support "load IA32_EFER", always switch EFER 952 * atomically, since it's faster than switching it manually. 953 */ 954 if (cpu_has_load_ia32_efer() || 955 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { 956 if (!(guest_efer & EFER_LMA)) 957 guest_efer &= ~EFER_LME; 958 if (guest_efer != host_efer) 959 add_atomic_switch_msr(vmx, MSR_EFER, 960 guest_efer, host_efer, false); 961 else 962 clear_atomic_switch_msr(vmx, MSR_EFER); 963 return false; 964 } 965 966 i = kvm_find_user_return_msr(MSR_EFER); 967 if (i < 0) 968 return false; 969 970 clear_atomic_switch_msr(vmx, MSR_EFER); 971 972 guest_efer &= ~ignore_bits; 973 guest_efer |= host_efer & ignore_bits; 974 975 vmx->guest_uret_msrs[i].data = guest_efer; 976 vmx->guest_uret_msrs[i].mask = ~ignore_bits; 977 978 return true; 979 } 980 981 #ifdef CONFIG_X86_32 982 /* 983 * On 32-bit kernels, VM exits still load the FS and GS bases from the 984 * VMCS rather than the segment table. KVM uses this helper to figure 985 * out the current bases to poke them into the VMCS before entry. 986 */ 987 static unsigned long segment_base(u16 selector) 988 { 989 struct desc_struct *table; 990 unsigned long v; 991 992 if (!(selector & ~SEGMENT_RPL_MASK)) 993 return 0; 994 995 table = get_current_gdt_ro(); 996 997 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { 998 u16 ldt_selector = kvm_read_ldt(); 999 1000 if (!(ldt_selector & ~SEGMENT_RPL_MASK)) 1001 return 0; 1002 1003 table = (struct desc_struct *)segment_base(ldt_selector); 1004 } 1005 v = get_desc_base(&table[selector >> 3]); 1006 return v; 1007 } 1008 #endif 1009 1010 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx) 1011 { 1012 return vmx_pt_mode_is_host_guest() && 1013 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 1014 } 1015 1016 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base) 1017 { 1018 /* The base must be 128-byte aligned and a legal physical address. */ 1019 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128); 1020 } 1021 1022 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) 1023 { 1024 u32 i; 1025 1026 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1027 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1028 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1029 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1030 for (i = 0; i < addr_range; i++) { 1031 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1032 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1033 } 1034 } 1035 1036 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) 1037 { 1038 u32 i; 1039 1040 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1041 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1042 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1043 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1044 for (i = 0; i < addr_range; i++) { 1045 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1046 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1047 } 1048 } 1049 1050 static void pt_guest_enter(struct vcpu_vmx *vmx) 1051 { 1052 if (vmx_pt_mode_is_system()) 1053 return; 1054 1055 /* 1056 * GUEST_IA32_RTIT_CTL is already set in the VMCS. 1057 * Save host state before VM entry. 1058 */ 1059 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1060 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1061 wrmsrl(MSR_IA32_RTIT_CTL, 0); 1062 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1063 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1064 } 1065 } 1066 1067 static void pt_guest_exit(struct vcpu_vmx *vmx) 1068 { 1069 if (vmx_pt_mode_is_system()) 1070 return; 1071 1072 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1073 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1074 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1075 } 1076 1077 /* 1078 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest, 1079 * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary. 1080 */ 1081 if (vmx->pt_desc.host.ctl) 1082 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1083 } 1084 1085 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, 1086 unsigned long fs_base, unsigned long gs_base) 1087 { 1088 if (unlikely(fs_sel != host->fs_sel)) { 1089 if (!(fs_sel & 7)) 1090 vmcs_write16(HOST_FS_SELECTOR, fs_sel); 1091 else 1092 vmcs_write16(HOST_FS_SELECTOR, 0); 1093 host->fs_sel = fs_sel; 1094 } 1095 if (unlikely(gs_sel != host->gs_sel)) { 1096 if (!(gs_sel & 7)) 1097 vmcs_write16(HOST_GS_SELECTOR, gs_sel); 1098 else 1099 vmcs_write16(HOST_GS_SELECTOR, 0); 1100 host->gs_sel = gs_sel; 1101 } 1102 if (unlikely(fs_base != host->fs_base)) { 1103 vmcs_writel(HOST_FS_BASE, fs_base); 1104 host->fs_base = fs_base; 1105 } 1106 if (unlikely(gs_base != host->gs_base)) { 1107 vmcs_writel(HOST_GS_BASE, gs_base); 1108 host->gs_base = gs_base; 1109 } 1110 } 1111 1112 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1113 { 1114 struct vcpu_vmx *vmx = to_vmx(vcpu); 1115 struct vmcs_host_state *host_state; 1116 #ifdef CONFIG_X86_64 1117 int cpu = raw_smp_processor_id(); 1118 #endif 1119 unsigned long fs_base, gs_base; 1120 u16 fs_sel, gs_sel; 1121 int i; 1122 1123 vmx->req_immediate_exit = false; 1124 1125 /* 1126 * Note that guest MSRs to be saved/restored can also be changed 1127 * when guest state is loaded. This happens when guest transitions 1128 * to/from long-mode by setting MSR_EFER.LMA. 1129 */ 1130 if (!vmx->guest_uret_msrs_loaded) { 1131 vmx->guest_uret_msrs_loaded = true; 1132 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 1133 if (!vmx->guest_uret_msrs[i].load_into_hardware) 1134 continue; 1135 1136 kvm_set_user_return_msr(i, 1137 vmx->guest_uret_msrs[i].data, 1138 vmx->guest_uret_msrs[i].mask); 1139 } 1140 } 1141 1142 if (vmx->nested.need_vmcs12_to_shadow_sync) 1143 nested_sync_vmcs12_to_shadow(vcpu); 1144 1145 if (vmx->guest_state_loaded) 1146 return; 1147 1148 host_state = &vmx->loaded_vmcs->host_state; 1149 1150 /* 1151 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not 1152 * allow segment selectors with cpl > 0 or ti == 1. 1153 */ 1154 host_state->ldt_sel = kvm_read_ldt(); 1155 1156 #ifdef CONFIG_X86_64 1157 savesegment(ds, host_state->ds_sel); 1158 savesegment(es, host_state->es_sel); 1159 1160 gs_base = cpu_kernelmode_gs_base(cpu); 1161 if (likely(is_64bit_mm(current->mm))) { 1162 current_save_fsgs(); 1163 fs_sel = current->thread.fsindex; 1164 gs_sel = current->thread.gsindex; 1165 fs_base = current->thread.fsbase; 1166 vmx->msr_host_kernel_gs_base = current->thread.gsbase; 1167 } else { 1168 savesegment(fs, fs_sel); 1169 savesegment(gs, gs_sel); 1170 fs_base = read_msr(MSR_FS_BASE); 1171 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); 1172 } 1173 1174 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1175 #else 1176 savesegment(fs, fs_sel); 1177 savesegment(gs, gs_sel); 1178 fs_base = segment_base(fs_sel); 1179 gs_base = segment_base(gs_sel); 1180 #endif 1181 1182 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base); 1183 vmx->guest_state_loaded = true; 1184 } 1185 1186 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) 1187 { 1188 struct vmcs_host_state *host_state; 1189 1190 if (!vmx->guest_state_loaded) 1191 return; 1192 1193 host_state = &vmx->loaded_vmcs->host_state; 1194 1195 ++vmx->vcpu.stat.host_state_reload; 1196 1197 #ifdef CONFIG_X86_64 1198 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1199 #endif 1200 if (host_state->ldt_sel || (host_state->gs_sel & 7)) { 1201 kvm_load_ldt(host_state->ldt_sel); 1202 #ifdef CONFIG_X86_64 1203 load_gs_index(host_state->gs_sel); 1204 #else 1205 loadsegment(gs, host_state->gs_sel); 1206 #endif 1207 } 1208 if (host_state->fs_sel & 7) 1209 loadsegment(fs, host_state->fs_sel); 1210 #ifdef CONFIG_X86_64 1211 if (unlikely(host_state->ds_sel | host_state->es_sel)) { 1212 loadsegment(ds, host_state->ds_sel); 1213 loadsegment(es, host_state->es_sel); 1214 } 1215 #endif 1216 invalidate_tss_limit(); 1217 #ifdef CONFIG_X86_64 1218 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); 1219 #endif 1220 load_fixmap_gdt(raw_smp_processor_id()); 1221 vmx->guest_state_loaded = false; 1222 vmx->guest_uret_msrs_loaded = false; 1223 } 1224 1225 #ifdef CONFIG_X86_64 1226 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) 1227 { 1228 preempt_disable(); 1229 if (vmx->guest_state_loaded) 1230 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1231 preempt_enable(); 1232 return vmx->msr_guest_kernel_gs_base; 1233 } 1234 1235 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) 1236 { 1237 preempt_disable(); 1238 if (vmx->guest_state_loaded) 1239 wrmsrl(MSR_KERNEL_GS_BASE, data); 1240 preempt_enable(); 1241 vmx->msr_guest_kernel_gs_base = data; 1242 } 1243 #endif 1244 1245 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu, 1246 struct loaded_vmcs *buddy) 1247 { 1248 struct vcpu_vmx *vmx = to_vmx(vcpu); 1249 bool already_loaded = vmx->loaded_vmcs->cpu == cpu; 1250 struct vmcs *prev; 1251 1252 if (!already_loaded) { 1253 loaded_vmcs_clear(vmx->loaded_vmcs); 1254 local_irq_disable(); 1255 1256 /* 1257 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to 1258 * this cpu's percpu list, otherwise it may not yet be deleted 1259 * from its previous cpu's percpu list. Pairs with the 1260 * smb_wmb() in __loaded_vmcs_clear(). 1261 */ 1262 smp_rmb(); 1263 1264 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, 1265 &per_cpu(loaded_vmcss_on_cpu, cpu)); 1266 local_irq_enable(); 1267 } 1268 1269 prev = per_cpu(current_vmcs, cpu); 1270 if (prev != vmx->loaded_vmcs->vmcs) { 1271 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; 1272 vmcs_load(vmx->loaded_vmcs->vmcs); 1273 1274 /* 1275 * No indirect branch prediction barrier needed when switching 1276 * the active VMCS within a guest, e.g. on nested VM-Enter. 1277 * The L1 VMM can protect itself with retpolines, IBPB or IBRS. 1278 */ 1279 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev)) 1280 indirect_branch_prediction_barrier(); 1281 } 1282 1283 if (!already_loaded) { 1284 void *gdt = get_current_gdt_ro(); 1285 unsigned long sysenter_esp; 1286 1287 /* 1288 * Flush all EPTP/VPID contexts, the new pCPU may have stale 1289 * TLB entries from its previous association with the vCPU. 1290 */ 1291 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 1292 1293 /* 1294 * Linux uses per-cpu TSS and GDT, so set these when switching 1295 * processors. See 22.2.4. 1296 */ 1297 vmcs_writel(HOST_TR_BASE, 1298 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); 1299 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ 1300 1301 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp); 1302 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */ 1303 1304 vmx->loaded_vmcs->cpu = cpu; 1305 } 1306 } 1307 1308 /* 1309 * Switches to specified vcpu, until a matching vcpu_put(), but assumes 1310 * vcpu mutex is already taken. 1311 */ 1312 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1313 { 1314 struct vcpu_vmx *vmx = to_vmx(vcpu); 1315 1316 vmx_vcpu_load_vmcs(vcpu, cpu, NULL); 1317 1318 vmx_vcpu_pi_load(vcpu, cpu); 1319 1320 vmx->host_debugctlmsr = get_debugctlmsr(); 1321 } 1322 1323 static void vmx_vcpu_put(struct kvm_vcpu *vcpu) 1324 { 1325 vmx_vcpu_pi_put(vcpu); 1326 1327 vmx_prepare_switch_to_host(to_vmx(vcpu)); 1328 } 1329 1330 bool vmx_emulation_required(struct kvm_vcpu *vcpu) 1331 { 1332 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu); 1333 } 1334 1335 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) 1336 { 1337 struct vcpu_vmx *vmx = to_vmx(vcpu); 1338 unsigned long rflags, save_rflags; 1339 1340 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) { 1341 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1342 rflags = vmcs_readl(GUEST_RFLAGS); 1343 if (vmx->rmode.vm86_active) { 1344 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 1345 save_rflags = vmx->rmode.save_rflags; 1346 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 1347 } 1348 vmx->rflags = rflags; 1349 } 1350 return vmx->rflags; 1351 } 1352 1353 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1354 { 1355 struct vcpu_vmx *vmx = to_vmx(vcpu); 1356 unsigned long old_rflags; 1357 1358 if (is_unrestricted_guest(vcpu)) { 1359 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1360 vmx->rflags = rflags; 1361 vmcs_writel(GUEST_RFLAGS, rflags); 1362 return; 1363 } 1364 1365 old_rflags = vmx_get_rflags(vcpu); 1366 vmx->rflags = rflags; 1367 if (vmx->rmode.vm86_active) { 1368 vmx->rmode.save_rflags = rflags; 1369 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 1370 } 1371 vmcs_writel(GUEST_RFLAGS, rflags); 1372 1373 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM) 1374 vmx->emulation_required = vmx_emulation_required(vcpu); 1375 } 1376 1377 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) 1378 { 1379 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1380 int ret = 0; 1381 1382 if (interruptibility & GUEST_INTR_STATE_STI) 1383 ret |= KVM_X86_SHADOW_INT_STI; 1384 if (interruptibility & GUEST_INTR_STATE_MOV_SS) 1385 ret |= KVM_X86_SHADOW_INT_MOV_SS; 1386 1387 return ret; 1388 } 1389 1390 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 1391 { 1392 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1393 u32 interruptibility = interruptibility_old; 1394 1395 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); 1396 1397 if (mask & KVM_X86_SHADOW_INT_MOV_SS) 1398 interruptibility |= GUEST_INTR_STATE_MOV_SS; 1399 else if (mask & KVM_X86_SHADOW_INT_STI) 1400 interruptibility |= GUEST_INTR_STATE_STI; 1401 1402 if ((interruptibility != interruptibility_old)) 1403 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); 1404 } 1405 1406 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) 1407 { 1408 struct vcpu_vmx *vmx = to_vmx(vcpu); 1409 unsigned long value; 1410 1411 /* 1412 * Any MSR write that attempts to change bits marked reserved will 1413 * case a #GP fault. 1414 */ 1415 if (data & vmx->pt_desc.ctl_bitmask) 1416 return 1; 1417 1418 /* 1419 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will 1420 * result in a #GP unless the same write also clears TraceEn. 1421 */ 1422 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && 1423 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN)) 1424 return 1; 1425 1426 /* 1427 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit 1428 * and FabricEn would cause #GP, if 1429 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 1430 */ 1431 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && 1432 !(data & RTIT_CTL_FABRIC_EN) && 1433 !intel_pt_validate_cap(vmx->pt_desc.caps, 1434 PT_CAP_single_range_output)) 1435 return 1; 1436 1437 /* 1438 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that 1439 * utilize encodings marked reserved will cause a #GP fault. 1440 */ 1441 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); 1442 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && 1443 !test_bit((data & RTIT_CTL_MTC_RANGE) >> 1444 RTIT_CTL_MTC_RANGE_OFFSET, &value)) 1445 return 1; 1446 value = intel_pt_validate_cap(vmx->pt_desc.caps, 1447 PT_CAP_cycle_thresholds); 1448 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1449 !test_bit((data & RTIT_CTL_CYC_THRESH) >> 1450 RTIT_CTL_CYC_THRESH_OFFSET, &value)) 1451 return 1; 1452 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); 1453 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1454 !test_bit((data & RTIT_CTL_PSB_FREQ) >> 1455 RTIT_CTL_PSB_FREQ_OFFSET, &value)) 1456 return 1; 1457 1458 /* 1459 * If ADDRx_CFG is reserved or the encodings is >2 will 1460 * cause a #GP fault. 1461 */ 1462 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; 1463 if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2)) 1464 return 1; 1465 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; 1466 if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2)) 1467 return 1; 1468 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; 1469 if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2)) 1470 return 1; 1471 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; 1472 if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2)) 1473 return 1; 1474 1475 return 0; 1476 } 1477 1478 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len) 1479 { 1480 /* 1481 * Emulation of instructions in SGX enclaves is impossible as RIP does 1482 * not point tthe failing instruction, and even if it did, the code 1483 * stream is inaccessible. Inject #UD instead of exiting to userspace 1484 * so that guest userspace can't DoS the guest simply by triggering 1485 * emulation (enclaves are CPL3 only). 1486 */ 1487 if (to_vmx(vcpu)->exit_reason.enclave_mode) { 1488 kvm_queue_exception(vcpu, UD_VECTOR); 1489 return false; 1490 } 1491 return true; 1492 } 1493 1494 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 1495 { 1496 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason; 1497 unsigned long rip, orig_rip; 1498 u32 instr_len; 1499 1500 /* 1501 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on 1502 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be 1503 * set when EPT misconfig occurs. In practice, real hardware updates 1504 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors 1505 * (namely Hyper-V) don't set it due to it being undefined behavior, 1506 * i.e. we end up advancing IP with some random value. 1507 */ 1508 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) || 1509 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) { 1510 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 1511 1512 /* 1513 * Emulating an enclave's instructions isn't supported as KVM 1514 * cannot access the enclave's memory or its true RIP, e.g. the 1515 * vmcs.GUEST_RIP points at the exit point of the enclave, not 1516 * the RIP that actually triggered the VM-Exit. But, because 1517 * most instructions that cause VM-Exit will #UD in an enclave, 1518 * most instruction-based VM-Exits simply do not occur. 1519 * 1520 * There are a few exceptions, notably the debug instructions 1521 * INT1ICEBRK and INT3, as they are allowed in debug enclaves 1522 * and generate #DB/#BP as expected, which KVM might intercept. 1523 * But again, the CPU does the dirty work and saves an instr 1524 * length of zero so VMMs don't shoot themselves in the foot. 1525 * WARN if KVM tries to skip a non-zero length instruction on 1526 * a VM-Exit from an enclave. 1527 */ 1528 if (!instr_len) 1529 goto rip_updated; 1530 1531 WARN(exit_reason.enclave_mode, 1532 "KVM: skipping instruction after SGX enclave VM-Exit"); 1533 1534 orig_rip = kvm_rip_read(vcpu); 1535 rip = orig_rip + instr_len; 1536 #ifdef CONFIG_X86_64 1537 /* 1538 * We need to mask out the high 32 bits of RIP if not in 64-bit 1539 * mode, but just finding out that we are in 64-bit mode is 1540 * quite expensive. Only do it if there was a carry. 1541 */ 1542 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu)) 1543 rip = (u32)rip; 1544 #endif 1545 kvm_rip_write(vcpu, rip); 1546 } else { 1547 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 1548 return 0; 1549 } 1550 1551 rip_updated: 1552 /* skipping an emulated instruction also counts */ 1553 vmx_set_interrupt_shadow(vcpu, 0); 1554 1555 return 1; 1556 } 1557 1558 /* 1559 * Recognizes a pending MTF VM-exit and records the nested state for later 1560 * delivery. 1561 */ 1562 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu) 1563 { 1564 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1565 struct vcpu_vmx *vmx = to_vmx(vcpu); 1566 1567 if (!is_guest_mode(vcpu)) 1568 return; 1569 1570 /* 1571 * Per the SDM, MTF takes priority over debug-trap exceptions besides 1572 * T-bit traps. As instruction emulation is completed (i.e. at the 1573 * instruction boundary), any #DB exception pending delivery must be a 1574 * debug-trap. Record the pending MTF state to be delivered in 1575 * vmx_check_nested_events(). 1576 */ 1577 if (nested_cpu_has_mtf(vmcs12) && 1578 (!vcpu->arch.exception.pending || 1579 vcpu->arch.exception.nr == DB_VECTOR)) 1580 vmx->nested.mtf_pending = true; 1581 else 1582 vmx->nested.mtf_pending = false; 1583 } 1584 1585 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu) 1586 { 1587 vmx_update_emulated_instruction(vcpu); 1588 return skip_emulated_instruction(vcpu); 1589 } 1590 1591 static void vmx_clear_hlt(struct kvm_vcpu *vcpu) 1592 { 1593 /* 1594 * Ensure that we clear the HLT state in the VMCS. We don't need to 1595 * explicitly skip the instruction because if the HLT state is set, 1596 * then the instruction is already executing and RIP has already been 1597 * advanced. 1598 */ 1599 if (kvm_hlt_in_guest(vcpu->kvm) && 1600 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) 1601 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 1602 } 1603 1604 static void vmx_queue_exception(struct kvm_vcpu *vcpu) 1605 { 1606 struct vcpu_vmx *vmx = to_vmx(vcpu); 1607 unsigned nr = vcpu->arch.exception.nr; 1608 bool has_error_code = vcpu->arch.exception.has_error_code; 1609 u32 error_code = vcpu->arch.exception.error_code; 1610 u32 intr_info = nr | INTR_INFO_VALID_MASK; 1611 1612 kvm_deliver_exception_payload(vcpu); 1613 1614 if (has_error_code) { 1615 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code); 1616 intr_info |= INTR_INFO_DELIVER_CODE_MASK; 1617 } 1618 1619 if (vmx->rmode.vm86_active) { 1620 int inc_eip = 0; 1621 if (kvm_exception_is_soft(nr)) 1622 inc_eip = vcpu->arch.event_exit_inst_len; 1623 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip); 1624 return; 1625 } 1626 1627 WARN_ON_ONCE(vmx->emulation_required); 1628 1629 if (kvm_exception_is_soft(nr)) { 1630 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1631 vmx->vcpu.arch.event_exit_inst_len); 1632 intr_info |= INTR_TYPE_SOFT_EXCEPTION; 1633 } else 1634 intr_info |= INTR_TYPE_HARD_EXCEPTION; 1635 1636 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); 1637 1638 vmx_clear_hlt(vcpu); 1639 } 1640 1641 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr, 1642 bool load_into_hardware) 1643 { 1644 struct vmx_uret_msr *uret_msr; 1645 1646 uret_msr = vmx_find_uret_msr(vmx, msr); 1647 if (!uret_msr) 1648 return; 1649 1650 uret_msr->load_into_hardware = load_into_hardware; 1651 } 1652 1653 /* 1654 * Configuring user return MSRs to automatically save, load, and restore MSRs 1655 * that need to be shoved into hardware when running the guest. Note, omitting 1656 * an MSR here does _NOT_ mean it's not emulated, only that it will not be 1657 * loaded into hardware when running the guest. 1658 */ 1659 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx) 1660 { 1661 #ifdef CONFIG_X86_64 1662 bool load_syscall_msrs; 1663 1664 /* 1665 * The SYSCALL MSRs are only needed on long mode guests, and only 1666 * when EFER.SCE is set. 1667 */ 1668 load_syscall_msrs = is_long_mode(&vmx->vcpu) && 1669 (vmx->vcpu.arch.efer & EFER_SCE); 1670 1671 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs); 1672 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs); 1673 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs); 1674 #endif 1675 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx)); 1676 1677 vmx_setup_uret_msr(vmx, MSR_TSC_AUX, 1678 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) || 1679 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID)); 1680 1681 /* 1682 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new 1683 * kernel and old userspace. If those guests run on a tsx=off host, do 1684 * allow guests to use TSX_CTRL, but don't change the value in hardware 1685 * so that TSX remains always disabled. 1686 */ 1687 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM)); 1688 1689 /* 1690 * The set of MSRs to load may have changed, reload MSRs before the 1691 * next VM-Enter. 1692 */ 1693 vmx->guest_uret_msrs_loaded = false; 1694 } 1695 1696 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1697 { 1698 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1699 1700 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) 1701 return vmcs12->tsc_offset; 1702 1703 return 0; 1704 } 1705 1706 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1707 { 1708 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1709 1710 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) && 1711 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING)) 1712 return vmcs12->tsc_multiplier; 1713 1714 return kvm_default_tsc_scaling_ratio; 1715 } 1716 1717 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1718 { 1719 vmcs_write64(TSC_OFFSET, offset); 1720 } 1721 1722 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier) 1723 { 1724 vmcs_write64(TSC_MULTIPLIER, multiplier); 1725 } 1726 1727 /* 1728 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX 1729 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for 1730 * all guests if the "nested" module option is off, and can also be disabled 1731 * for a single guest by disabling its VMX cpuid bit. 1732 */ 1733 bool nested_vmx_allowed(struct kvm_vcpu *vcpu) 1734 { 1735 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX); 1736 } 1737 1738 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu, 1739 uint64_t val) 1740 { 1741 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits; 1742 1743 return !(val & ~valid_bits); 1744 } 1745 1746 static int vmx_get_msr_feature(struct kvm_msr_entry *msr) 1747 { 1748 switch (msr->index) { 1749 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1750 if (!nested) 1751 return 1; 1752 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); 1753 case MSR_IA32_PERF_CAPABILITIES: 1754 msr->data = vmx_get_perf_capabilities(); 1755 return 0; 1756 default: 1757 return KVM_MSR_RET_INVALID; 1758 } 1759 } 1760 1761 /* 1762 * Reads an msr value (of 'msr_index') into 'pdata'. 1763 * Returns 0 on success, non-0 otherwise. 1764 * Assumes vcpu_load() was already called. 1765 */ 1766 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1767 { 1768 struct vcpu_vmx *vmx = to_vmx(vcpu); 1769 struct vmx_uret_msr *msr; 1770 u32 index; 1771 1772 switch (msr_info->index) { 1773 #ifdef CONFIG_X86_64 1774 case MSR_FS_BASE: 1775 msr_info->data = vmcs_readl(GUEST_FS_BASE); 1776 break; 1777 case MSR_GS_BASE: 1778 msr_info->data = vmcs_readl(GUEST_GS_BASE); 1779 break; 1780 case MSR_KERNEL_GS_BASE: 1781 msr_info->data = vmx_read_guest_kernel_gs_base(vmx); 1782 break; 1783 #endif 1784 case MSR_EFER: 1785 return kvm_get_msr_common(vcpu, msr_info); 1786 case MSR_IA32_TSX_CTRL: 1787 if (!msr_info->host_initiated && 1788 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 1789 return 1; 1790 goto find_uret_msr; 1791 case MSR_IA32_UMWAIT_CONTROL: 1792 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 1793 return 1; 1794 1795 msr_info->data = vmx->msr_ia32_umwait_control; 1796 break; 1797 case MSR_IA32_SPEC_CTRL: 1798 if (!msr_info->host_initiated && 1799 !guest_has_spec_ctrl_msr(vcpu)) 1800 return 1; 1801 1802 msr_info->data = to_vmx(vcpu)->spec_ctrl; 1803 break; 1804 case MSR_IA32_SYSENTER_CS: 1805 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); 1806 break; 1807 case MSR_IA32_SYSENTER_EIP: 1808 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); 1809 break; 1810 case MSR_IA32_SYSENTER_ESP: 1811 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); 1812 break; 1813 case MSR_IA32_BNDCFGS: 1814 if (!kvm_mpx_supported() || 1815 (!msr_info->host_initiated && 1816 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 1817 return 1; 1818 msr_info->data = vmcs_read64(GUEST_BNDCFGS); 1819 break; 1820 case MSR_IA32_MCG_EXT_CTL: 1821 if (!msr_info->host_initiated && 1822 !(vmx->msr_ia32_feature_control & 1823 FEAT_CTL_LMCE_ENABLED)) 1824 return 1; 1825 msr_info->data = vcpu->arch.mcg_ext_ctl; 1826 break; 1827 case MSR_IA32_FEAT_CTL: 1828 msr_info->data = vmx->msr_ia32_feature_control; 1829 break; 1830 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 1831 if (!msr_info->host_initiated && 1832 !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 1833 return 1; 1834 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash 1835 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0]; 1836 break; 1837 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1838 if (!nested_vmx_allowed(vcpu)) 1839 return 1; 1840 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, 1841 &msr_info->data)) 1842 return 1; 1843 /* 1844 * Enlightened VMCS v1 doesn't have certain VMCS fields but 1845 * instead of just ignoring the features, different Hyper-V 1846 * versions are either trying to use them and fail or do some 1847 * sanity checking and refuse to boot. Filter all unsupported 1848 * features out. 1849 */ 1850 if (!msr_info->host_initiated && 1851 vmx->nested.enlightened_vmcs_enabled) 1852 nested_evmcs_filter_control_msr(msr_info->index, 1853 &msr_info->data); 1854 break; 1855 case MSR_IA32_RTIT_CTL: 1856 if (!vmx_pt_mode_is_host_guest()) 1857 return 1; 1858 msr_info->data = vmx->pt_desc.guest.ctl; 1859 break; 1860 case MSR_IA32_RTIT_STATUS: 1861 if (!vmx_pt_mode_is_host_guest()) 1862 return 1; 1863 msr_info->data = vmx->pt_desc.guest.status; 1864 break; 1865 case MSR_IA32_RTIT_CR3_MATCH: 1866 if (!vmx_pt_mode_is_host_guest() || 1867 !intel_pt_validate_cap(vmx->pt_desc.caps, 1868 PT_CAP_cr3_filtering)) 1869 return 1; 1870 msr_info->data = vmx->pt_desc.guest.cr3_match; 1871 break; 1872 case MSR_IA32_RTIT_OUTPUT_BASE: 1873 if (!vmx_pt_mode_is_host_guest() || 1874 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1875 PT_CAP_topa_output) && 1876 !intel_pt_validate_cap(vmx->pt_desc.caps, 1877 PT_CAP_single_range_output))) 1878 return 1; 1879 msr_info->data = vmx->pt_desc.guest.output_base; 1880 break; 1881 case MSR_IA32_RTIT_OUTPUT_MASK: 1882 if (!vmx_pt_mode_is_host_guest() || 1883 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1884 PT_CAP_topa_output) && 1885 !intel_pt_validate_cap(vmx->pt_desc.caps, 1886 PT_CAP_single_range_output))) 1887 return 1; 1888 msr_info->data = vmx->pt_desc.guest.output_mask; 1889 break; 1890 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 1891 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 1892 if (!vmx_pt_mode_is_host_guest() || 1893 (index >= 2 * vmx->pt_desc.num_address_ranges)) 1894 return 1; 1895 if (index % 2) 1896 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; 1897 else 1898 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; 1899 break; 1900 case MSR_IA32_DEBUGCTLMSR: 1901 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL); 1902 break; 1903 default: 1904 find_uret_msr: 1905 msr = vmx_find_uret_msr(vmx, msr_info->index); 1906 if (msr) { 1907 msr_info->data = msr->data; 1908 break; 1909 } 1910 return kvm_get_msr_common(vcpu, msr_info); 1911 } 1912 1913 return 0; 1914 } 1915 1916 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu, 1917 u64 data) 1918 { 1919 #ifdef CONFIG_X86_64 1920 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1921 return (u32)data; 1922 #endif 1923 return (unsigned long)data; 1924 } 1925 1926 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu) 1927 { 1928 u64 debugctl = vmx_supported_debugctl(); 1929 1930 if (!intel_pmu_lbr_is_enabled(vcpu)) 1931 debugctl &= ~DEBUGCTLMSR_LBR_MASK; 1932 1933 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1934 debugctl &= ~DEBUGCTLMSR_BUS_LOCK_DETECT; 1935 1936 return debugctl; 1937 } 1938 1939 /* 1940 * Writes msr value into the appropriate "register". 1941 * Returns 0 on success, non-0 otherwise. 1942 * Assumes vcpu_load() was already called. 1943 */ 1944 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1945 { 1946 struct vcpu_vmx *vmx = to_vmx(vcpu); 1947 struct vmx_uret_msr *msr; 1948 int ret = 0; 1949 u32 msr_index = msr_info->index; 1950 u64 data = msr_info->data; 1951 u32 index; 1952 1953 switch (msr_index) { 1954 case MSR_EFER: 1955 ret = kvm_set_msr_common(vcpu, msr_info); 1956 break; 1957 #ifdef CONFIG_X86_64 1958 case MSR_FS_BASE: 1959 vmx_segment_cache_clear(vmx); 1960 vmcs_writel(GUEST_FS_BASE, data); 1961 break; 1962 case MSR_GS_BASE: 1963 vmx_segment_cache_clear(vmx); 1964 vmcs_writel(GUEST_GS_BASE, data); 1965 break; 1966 case MSR_KERNEL_GS_BASE: 1967 vmx_write_guest_kernel_gs_base(vmx, data); 1968 break; 1969 #endif 1970 case MSR_IA32_SYSENTER_CS: 1971 if (is_guest_mode(vcpu)) 1972 get_vmcs12(vcpu)->guest_sysenter_cs = data; 1973 vmcs_write32(GUEST_SYSENTER_CS, data); 1974 break; 1975 case MSR_IA32_SYSENTER_EIP: 1976 if (is_guest_mode(vcpu)) { 1977 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 1978 get_vmcs12(vcpu)->guest_sysenter_eip = data; 1979 } 1980 vmcs_writel(GUEST_SYSENTER_EIP, data); 1981 break; 1982 case MSR_IA32_SYSENTER_ESP: 1983 if (is_guest_mode(vcpu)) { 1984 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 1985 get_vmcs12(vcpu)->guest_sysenter_esp = data; 1986 } 1987 vmcs_writel(GUEST_SYSENTER_ESP, data); 1988 break; 1989 case MSR_IA32_DEBUGCTLMSR: { 1990 u64 invalid = data & ~vcpu_supported_debugctl(vcpu); 1991 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) { 1992 if (report_ignored_msrs) 1993 vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n", 1994 __func__, data); 1995 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 1996 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 1997 } 1998 1999 if (invalid) 2000 return 1; 2001 2002 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls & 2003 VM_EXIT_SAVE_DEBUG_CONTROLS) 2004 get_vmcs12(vcpu)->guest_ia32_debugctl = data; 2005 2006 vmcs_write64(GUEST_IA32_DEBUGCTL, data); 2007 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event && 2008 (data & DEBUGCTLMSR_LBR)) 2009 intel_pmu_create_guest_lbr_event(vcpu); 2010 return 0; 2011 } 2012 case MSR_IA32_BNDCFGS: 2013 if (!kvm_mpx_supported() || 2014 (!msr_info->host_initiated && 2015 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 2016 return 1; 2017 if (is_noncanonical_address(data & PAGE_MASK, vcpu) || 2018 (data & MSR_IA32_BNDCFGS_RSVD)) 2019 return 1; 2020 vmcs_write64(GUEST_BNDCFGS, data); 2021 break; 2022 case MSR_IA32_UMWAIT_CONTROL: 2023 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2024 return 1; 2025 2026 /* The reserved bit 1 and non-32 bit [63:32] should be zero */ 2027 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32))) 2028 return 1; 2029 2030 vmx->msr_ia32_umwait_control = data; 2031 break; 2032 case MSR_IA32_SPEC_CTRL: 2033 if (!msr_info->host_initiated && 2034 !guest_has_spec_ctrl_msr(vcpu)) 2035 return 1; 2036 2037 if (kvm_spec_ctrl_test_value(data)) 2038 return 1; 2039 2040 vmx->spec_ctrl = data; 2041 if (!data) 2042 break; 2043 2044 /* 2045 * For non-nested: 2046 * When it's written (to non-zero) for the first time, pass 2047 * it through. 2048 * 2049 * For nested: 2050 * The handling of the MSR bitmap for L2 guests is done in 2051 * nested_vmx_prepare_msr_bitmap. We should not touch the 2052 * vmcs02.msr_bitmap here since it gets completely overwritten 2053 * in the merging. We update the vmcs01 here for L1 as well 2054 * since it will end up touching the MSR anyway now. 2055 */ 2056 vmx_disable_intercept_for_msr(vcpu, 2057 MSR_IA32_SPEC_CTRL, 2058 MSR_TYPE_RW); 2059 break; 2060 case MSR_IA32_TSX_CTRL: 2061 if (!msr_info->host_initiated && 2062 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2063 return 1; 2064 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR)) 2065 return 1; 2066 goto find_uret_msr; 2067 case MSR_IA32_PRED_CMD: 2068 if (!msr_info->host_initiated && 2069 !guest_has_pred_cmd_msr(vcpu)) 2070 return 1; 2071 2072 if (data & ~PRED_CMD_IBPB) 2073 return 1; 2074 if (!boot_cpu_has(X86_FEATURE_IBPB)) 2075 return 1; 2076 if (!data) 2077 break; 2078 2079 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 2080 2081 /* 2082 * For non-nested: 2083 * When it's written (to non-zero) for the first time, pass 2084 * it through. 2085 * 2086 * For nested: 2087 * The handling of the MSR bitmap for L2 guests is done in 2088 * nested_vmx_prepare_msr_bitmap. We should not touch the 2089 * vmcs02.msr_bitmap here since it gets completely overwritten 2090 * in the merging. 2091 */ 2092 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W); 2093 break; 2094 case MSR_IA32_CR_PAT: 2095 if (!kvm_pat_valid(data)) 2096 return 1; 2097 2098 if (is_guest_mode(vcpu) && 2099 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) 2100 get_vmcs12(vcpu)->guest_ia32_pat = data; 2101 2102 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { 2103 vmcs_write64(GUEST_IA32_PAT, data); 2104 vcpu->arch.pat = data; 2105 break; 2106 } 2107 ret = kvm_set_msr_common(vcpu, msr_info); 2108 break; 2109 case MSR_IA32_TSC_ADJUST: 2110 ret = kvm_set_msr_common(vcpu, msr_info); 2111 break; 2112 case MSR_IA32_MCG_EXT_CTL: 2113 if ((!msr_info->host_initiated && 2114 !(to_vmx(vcpu)->msr_ia32_feature_control & 2115 FEAT_CTL_LMCE_ENABLED)) || 2116 (data & ~MCG_EXT_CTL_LMCE_EN)) 2117 return 1; 2118 vcpu->arch.mcg_ext_ctl = data; 2119 break; 2120 case MSR_IA32_FEAT_CTL: 2121 if (!vmx_feature_control_msr_valid(vcpu, data) || 2122 (to_vmx(vcpu)->msr_ia32_feature_control & 2123 FEAT_CTL_LOCKED && !msr_info->host_initiated)) 2124 return 1; 2125 vmx->msr_ia32_feature_control = data; 2126 if (msr_info->host_initiated && data == 0) 2127 vmx_leave_nested(vcpu); 2128 2129 /* SGX may be enabled/disabled by guest's firmware */ 2130 vmx_write_encls_bitmap(vcpu, NULL); 2131 break; 2132 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2133 /* 2134 * On real hardware, the LE hash MSRs are writable before 2135 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX), 2136 * at which point SGX related bits in IA32_FEATURE_CONTROL 2137 * become writable. 2138 * 2139 * KVM does not emulate SGX activation for simplicity, so 2140 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL 2141 * is unlocked. This is technically not architectural 2142 * behavior, but it's close enough. 2143 */ 2144 if (!msr_info->host_initiated && 2145 (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) || 2146 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) && 2147 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED)))) 2148 return 1; 2149 vmx->msr_ia32_sgxlepubkeyhash 2150 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data; 2151 break; 2152 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 2153 if (!msr_info->host_initiated) 2154 return 1; /* they are read-only */ 2155 if (!nested_vmx_allowed(vcpu)) 2156 return 1; 2157 return vmx_set_vmx_msr(vcpu, msr_index, data); 2158 case MSR_IA32_RTIT_CTL: 2159 if (!vmx_pt_mode_is_host_guest() || 2160 vmx_rtit_ctl_check(vcpu, data) || 2161 vmx->nested.vmxon) 2162 return 1; 2163 vmcs_write64(GUEST_IA32_RTIT_CTL, data); 2164 vmx->pt_desc.guest.ctl = data; 2165 pt_update_intercept_for_msr(vcpu); 2166 break; 2167 case MSR_IA32_RTIT_STATUS: 2168 if (!pt_can_write_msr(vmx)) 2169 return 1; 2170 if (data & MSR_IA32_RTIT_STATUS_MASK) 2171 return 1; 2172 vmx->pt_desc.guest.status = data; 2173 break; 2174 case MSR_IA32_RTIT_CR3_MATCH: 2175 if (!pt_can_write_msr(vmx)) 2176 return 1; 2177 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2178 PT_CAP_cr3_filtering)) 2179 return 1; 2180 vmx->pt_desc.guest.cr3_match = data; 2181 break; 2182 case MSR_IA32_RTIT_OUTPUT_BASE: 2183 if (!pt_can_write_msr(vmx)) 2184 return 1; 2185 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2186 PT_CAP_topa_output) && 2187 !intel_pt_validate_cap(vmx->pt_desc.caps, 2188 PT_CAP_single_range_output)) 2189 return 1; 2190 if (!pt_output_base_valid(vcpu, data)) 2191 return 1; 2192 vmx->pt_desc.guest.output_base = data; 2193 break; 2194 case MSR_IA32_RTIT_OUTPUT_MASK: 2195 if (!pt_can_write_msr(vmx)) 2196 return 1; 2197 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2198 PT_CAP_topa_output) && 2199 !intel_pt_validate_cap(vmx->pt_desc.caps, 2200 PT_CAP_single_range_output)) 2201 return 1; 2202 vmx->pt_desc.guest.output_mask = data; 2203 break; 2204 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2205 if (!pt_can_write_msr(vmx)) 2206 return 1; 2207 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2208 if (index >= 2 * vmx->pt_desc.num_address_ranges) 2209 return 1; 2210 if (is_noncanonical_address(data, vcpu)) 2211 return 1; 2212 if (index % 2) 2213 vmx->pt_desc.guest.addr_b[index / 2] = data; 2214 else 2215 vmx->pt_desc.guest.addr_a[index / 2] = data; 2216 break; 2217 case MSR_IA32_PERF_CAPABILITIES: 2218 if (data && !vcpu_to_pmu(vcpu)->version) 2219 return 1; 2220 if (data & PMU_CAP_LBR_FMT) { 2221 if ((data & PMU_CAP_LBR_FMT) != 2222 (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT)) 2223 return 1; 2224 if (!intel_pmu_lbr_is_compatible(vcpu)) 2225 return 1; 2226 } 2227 ret = kvm_set_msr_common(vcpu, msr_info); 2228 break; 2229 2230 default: 2231 find_uret_msr: 2232 msr = vmx_find_uret_msr(vmx, msr_index); 2233 if (msr) 2234 ret = vmx_set_guest_uret_msr(vmx, msr, data); 2235 else 2236 ret = kvm_set_msr_common(vcpu, msr_info); 2237 } 2238 2239 return ret; 2240 } 2241 2242 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 2243 { 2244 unsigned long guest_owned_bits; 2245 2246 kvm_register_mark_available(vcpu, reg); 2247 2248 switch (reg) { 2249 case VCPU_REGS_RSP: 2250 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); 2251 break; 2252 case VCPU_REGS_RIP: 2253 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); 2254 break; 2255 case VCPU_EXREG_PDPTR: 2256 if (enable_ept) 2257 ept_save_pdptrs(vcpu); 2258 break; 2259 case VCPU_EXREG_CR0: 2260 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; 2261 2262 vcpu->arch.cr0 &= ~guest_owned_bits; 2263 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits; 2264 break; 2265 case VCPU_EXREG_CR3: 2266 /* 2267 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's 2268 * CR3 is loaded into hardware, not the guest's CR3. 2269 */ 2270 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING)) 2271 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); 2272 break; 2273 case VCPU_EXREG_CR4: 2274 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; 2275 2276 vcpu->arch.cr4 &= ~guest_owned_bits; 2277 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits; 2278 break; 2279 default: 2280 KVM_BUG_ON(1, vcpu->kvm); 2281 break; 2282 } 2283 } 2284 2285 static __init int cpu_has_kvm_support(void) 2286 { 2287 return cpu_has_vmx(); 2288 } 2289 2290 static __init int vmx_disabled_by_bios(void) 2291 { 2292 return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 2293 !boot_cpu_has(X86_FEATURE_VMX); 2294 } 2295 2296 static int kvm_cpu_vmxon(u64 vmxon_pointer) 2297 { 2298 u64 msr; 2299 2300 cr4_set_bits(X86_CR4_VMXE); 2301 2302 asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t" 2303 _ASM_EXTABLE(1b, %l[fault]) 2304 : : [vmxon_pointer] "m"(vmxon_pointer) 2305 : : fault); 2306 return 0; 2307 2308 fault: 2309 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n", 2310 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr); 2311 cr4_clear_bits(X86_CR4_VMXE); 2312 2313 return -EFAULT; 2314 } 2315 2316 static int hardware_enable(void) 2317 { 2318 int cpu = raw_smp_processor_id(); 2319 u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); 2320 int r; 2321 2322 if (cr4_read_shadow() & X86_CR4_VMXE) 2323 return -EBUSY; 2324 2325 /* 2326 * This can happen if we hot-added a CPU but failed to allocate 2327 * VP assist page for it. 2328 */ 2329 if (static_branch_unlikely(&enable_evmcs) && 2330 !hv_get_vp_assist_page(cpu)) 2331 return -EFAULT; 2332 2333 intel_pt_handle_vmx(1); 2334 2335 r = kvm_cpu_vmxon(phys_addr); 2336 if (r) { 2337 intel_pt_handle_vmx(0); 2338 return r; 2339 } 2340 2341 if (enable_ept) 2342 ept_sync_global(); 2343 2344 return 0; 2345 } 2346 2347 static void vmclear_local_loaded_vmcss(void) 2348 { 2349 int cpu = raw_smp_processor_id(); 2350 struct loaded_vmcs *v, *n; 2351 2352 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), 2353 loaded_vmcss_on_cpu_link) 2354 __loaded_vmcs_clear(v); 2355 } 2356 2357 static void hardware_disable(void) 2358 { 2359 vmclear_local_loaded_vmcss(); 2360 2361 if (cpu_vmxoff()) 2362 kvm_spurious_fault(); 2363 2364 intel_pt_handle_vmx(0); 2365 } 2366 2367 /* 2368 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID 2369 * directly instead of going through cpu_has(), to ensure KVM is trapping 2370 * ENCLS whenever it's supported in hardware. It does not matter whether 2371 * the host OS supports or has enabled SGX. 2372 */ 2373 static bool cpu_has_sgx(void) 2374 { 2375 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0)); 2376 } 2377 2378 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, 2379 u32 msr, u32 *result) 2380 { 2381 u32 vmx_msr_low, vmx_msr_high; 2382 u32 ctl = ctl_min | ctl_opt; 2383 2384 rdmsr(msr, vmx_msr_low, vmx_msr_high); 2385 2386 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ 2387 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ 2388 2389 /* Ensure minimum (required) set of control bits are supported. */ 2390 if (ctl_min & ~ctl) 2391 return -EIO; 2392 2393 *result = ctl; 2394 return 0; 2395 } 2396 2397 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf, 2398 struct vmx_capability *vmx_cap) 2399 { 2400 u32 vmx_msr_low, vmx_msr_high; 2401 u32 min, opt, min2, opt2; 2402 u32 _pin_based_exec_control = 0; 2403 u32 _cpu_based_exec_control = 0; 2404 u32 _cpu_based_2nd_exec_control = 0; 2405 u32 _vmexit_control = 0; 2406 u32 _vmentry_control = 0; 2407 2408 memset(vmcs_conf, 0, sizeof(*vmcs_conf)); 2409 min = CPU_BASED_HLT_EXITING | 2410 #ifdef CONFIG_X86_64 2411 CPU_BASED_CR8_LOAD_EXITING | 2412 CPU_BASED_CR8_STORE_EXITING | 2413 #endif 2414 CPU_BASED_CR3_LOAD_EXITING | 2415 CPU_BASED_CR3_STORE_EXITING | 2416 CPU_BASED_UNCOND_IO_EXITING | 2417 CPU_BASED_MOV_DR_EXITING | 2418 CPU_BASED_USE_TSC_OFFSETTING | 2419 CPU_BASED_MWAIT_EXITING | 2420 CPU_BASED_MONITOR_EXITING | 2421 CPU_BASED_INVLPG_EXITING | 2422 CPU_BASED_RDPMC_EXITING; 2423 2424 opt = CPU_BASED_TPR_SHADOW | 2425 CPU_BASED_USE_MSR_BITMAPS | 2426 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; 2427 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS, 2428 &_cpu_based_exec_control) < 0) 2429 return -EIO; 2430 #ifdef CONFIG_X86_64 2431 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2432 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING & 2433 ~CPU_BASED_CR8_STORE_EXITING; 2434 #endif 2435 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { 2436 min2 = 0; 2437 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 2438 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2439 SECONDARY_EXEC_WBINVD_EXITING | 2440 SECONDARY_EXEC_ENABLE_VPID | 2441 SECONDARY_EXEC_ENABLE_EPT | 2442 SECONDARY_EXEC_UNRESTRICTED_GUEST | 2443 SECONDARY_EXEC_PAUSE_LOOP_EXITING | 2444 SECONDARY_EXEC_DESC | 2445 SECONDARY_EXEC_ENABLE_RDTSCP | 2446 SECONDARY_EXEC_ENABLE_INVPCID | 2447 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2448 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | 2449 SECONDARY_EXEC_SHADOW_VMCS | 2450 SECONDARY_EXEC_XSAVES | 2451 SECONDARY_EXEC_RDSEED_EXITING | 2452 SECONDARY_EXEC_RDRAND_EXITING | 2453 SECONDARY_EXEC_ENABLE_PML | 2454 SECONDARY_EXEC_TSC_SCALING | 2455 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE | 2456 SECONDARY_EXEC_PT_USE_GPA | 2457 SECONDARY_EXEC_PT_CONCEAL_VMX | 2458 SECONDARY_EXEC_ENABLE_VMFUNC | 2459 SECONDARY_EXEC_BUS_LOCK_DETECTION; 2460 if (cpu_has_sgx()) 2461 opt2 |= SECONDARY_EXEC_ENCLS_EXITING; 2462 if (adjust_vmx_controls(min2, opt2, 2463 MSR_IA32_VMX_PROCBASED_CTLS2, 2464 &_cpu_based_2nd_exec_control) < 0) 2465 return -EIO; 2466 } 2467 #ifndef CONFIG_X86_64 2468 if (!(_cpu_based_2nd_exec_control & 2469 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 2470 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; 2471 #endif 2472 2473 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2474 _cpu_based_2nd_exec_control &= ~( 2475 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2476 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2477 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 2478 2479 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, 2480 &vmx_cap->ept, &vmx_cap->vpid); 2481 2482 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) { 2483 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT 2484 enabled */ 2485 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | 2486 CPU_BASED_CR3_STORE_EXITING | 2487 CPU_BASED_INVLPG_EXITING); 2488 } else if (vmx_cap->ept) { 2489 vmx_cap->ept = 0; 2490 pr_warn_once("EPT CAP should not exist if not support " 2491 "1-setting enable EPT VM-execution control\n"); 2492 } 2493 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && 2494 vmx_cap->vpid) { 2495 vmx_cap->vpid = 0; 2496 pr_warn_once("VPID CAP should not exist if not support " 2497 "1-setting enable VPID VM-execution control\n"); 2498 } 2499 2500 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT; 2501 #ifdef CONFIG_X86_64 2502 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE; 2503 #endif 2504 opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | 2505 VM_EXIT_LOAD_IA32_PAT | 2506 VM_EXIT_LOAD_IA32_EFER | 2507 VM_EXIT_CLEAR_BNDCFGS | 2508 VM_EXIT_PT_CONCEAL_PIP | 2509 VM_EXIT_CLEAR_IA32_RTIT_CTL; 2510 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS, 2511 &_vmexit_control) < 0) 2512 return -EIO; 2513 2514 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING; 2515 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR | 2516 PIN_BASED_VMX_PREEMPTION_TIMER; 2517 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS, 2518 &_pin_based_exec_control) < 0) 2519 return -EIO; 2520 2521 if (cpu_has_broken_vmx_preemption_timer()) 2522 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 2523 if (!(_cpu_based_2nd_exec_control & 2524 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) 2525 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; 2526 2527 min = VM_ENTRY_LOAD_DEBUG_CONTROLS; 2528 opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | 2529 VM_ENTRY_LOAD_IA32_PAT | 2530 VM_ENTRY_LOAD_IA32_EFER | 2531 VM_ENTRY_LOAD_BNDCFGS | 2532 VM_ENTRY_PT_CONCEAL_PIP | 2533 VM_ENTRY_LOAD_IA32_RTIT_CTL; 2534 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS, 2535 &_vmentry_control) < 0) 2536 return -EIO; 2537 2538 /* 2539 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they 2540 * can't be used due to an errata where VM Exit may incorrectly clear 2541 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the 2542 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. 2543 */ 2544 if (boot_cpu_data.x86 == 0x6) { 2545 switch (boot_cpu_data.x86_model) { 2546 case 26: /* AAK155 */ 2547 case 30: /* AAP115 */ 2548 case 37: /* AAT100 */ 2549 case 44: /* BC86,AAY89,BD102 */ 2550 case 46: /* BA97 */ 2551 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; 2552 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; 2553 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " 2554 "does not work properly. Using workaround\n"); 2555 break; 2556 default: 2557 break; 2558 } 2559 } 2560 2561 2562 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); 2563 2564 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ 2565 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) 2566 return -EIO; 2567 2568 #ifdef CONFIG_X86_64 2569 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ 2570 if (vmx_msr_high & (1u<<16)) 2571 return -EIO; 2572 #endif 2573 2574 /* Require Write-Back (WB) memory type for VMCS accesses. */ 2575 if (((vmx_msr_high >> 18) & 15) != 6) 2576 return -EIO; 2577 2578 vmcs_conf->size = vmx_msr_high & 0x1fff; 2579 vmcs_conf->order = get_order(vmcs_conf->size); 2580 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; 2581 2582 vmcs_conf->revision_id = vmx_msr_low; 2583 2584 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; 2585 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; 2586 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; 2587 vmcs_conf->vmexit_ctrl = _vmexit_control; 2588 vmcs_conf->vmentry_ctrl = _vmentry_control; 2589 2590 #if IS_ENABLED(CONFIG_HYPERV) 2591 if (enlightened_vmcs) 2592 evmcs_sanitize_exec_ctrls(vmcs_conf); 2593 #endif 2594 2595 return 0; 2596 } 2597 2598 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags) 2599 { 2600 int node = cpu_to_node(cpu); 2601 struct page *pages; 2602 struct vmcs *vmcs; 2603 2604 pages = __alloc_pages_node(node, flags, vmcs_config.order); 2605 if (!pages) 2606 return NULL; 2607 vmcs = page_address(pages); 2608 memset(vmcs, 0, vmcs_config.size); 2609 2610 /* KVM supports Enlightened VMCS v1 only */ 2611 if (static_branch_unlikely(&enable_evmcs)) 2612 vmcs->hdr.revision_id = KVM_EVMCS_VERSION; 2613 else 2614 vmcs->hdr.revision_id = vmcs_config.revision_id; 2615 2616 if (shadow) 2617 vmcs->hdr.shadow_vmcs = 1; 2618 return vmcs; 2619 } 2620 2621 void free_vmcs(struct vmcs *vmcs) 2622 { 2623 free_pages((unsigned long)vmcs, vmcs_config.order); 2624 } 2625 2626 /* 2627 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded 2628 */ 2629 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2630 { 2631 if (!loaded_vmcs->vmcs) 2632 return; 2633 loaded_vmcs_clear(loaded_vmcs); 2634 free_vmcs(loaded_vmcs->vmcs); 2635 loaded_vmcs->vmcs = NULL; 2636 if (loaded_vmcs->msr_bitmap) 2637 free_page((unsigned long)loaded_vmcs->msr_bitmap); 2638 WARN_ON(loaded_vmcs->shadow_vmcs != NULL); 2639 } 2640 2641 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2642 { 2643 loaded_vmcs->vmcs = alloc_vmcs(false); 2644 if (!loaded_vmcs->vmcs) 2645 return -ENOMEM; 2646 2647 vmcs_clear(loaded_vmcs->vmcs); 2648 2649 loaded_vmcs->shadow_vmcs = NULL; 2650 loaded_vmcs->hv_timer_soft_disabled = false; 2651 loaded_vmcs->cpu = -1; 2652 loaded_vmcs->launched = 0; 2653 2654 if (cpu_has_vmx_msr_bitmap()) { 2655 loaded_vmcs->msr_bitmap = (unsigned long *) 2656 __get_free_page(GFP_KERNEL_ACCOUNT); 2657 if (!loaded_vmcs->msr_bitmap) 2658 goto out_vmcs; 2659 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); 2660 2661 if (IS_ENABLED(CONFIG_HYPERV) && 2662 static_branch_unlikely(&enable_evmcs) && 2663 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { 2664 struct hv_enlightened_vmcs *evmcs = 2665 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs; 2666 2667 evmcs->hv_enlightenments_control.msr_bitmap = 1; 2668 } 2669 } 2670 2671 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); 2672 memset(&loaded_vmcs->controls_shadow, 0, 2673 sizeof(struct vmcs_controls_shadow)); 2674 2675 return 0; 2676 2677 out_vmcs: 2678 free_loaded_vmcs(loaded_vmcs); 2679 return -ENOMEM; 2680 } 2681 2682 static void free_kvm_area(void) 2683 { 2684 int cpu; 2685 2686 for_each_possible_cpu(cpu) { 2687 free_vmcs(per_cpu(vmxarea, cpu)); 2688 per_cpu(vmxarea, cpu) = NULL; 2689 } 2690 } 2691 2692 static __init int alloc_kvm_area(void) 2693 { 2694 int cpu; 2695 2696 for_each_possible_cpu(cpu) { 2697 struct vmcs *vmcs; 2698 2699 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL); 2700 if (!vmcs) { 2701 free_kvm_area(); 2702 return -ENOMEM; 2703 } 2704 2705 /* 2706 * When eVMCS is enabled, alloc_vmcs_cpu() sets 2707 * vmcs->revision_id to KVM_EVMCS_VERSION instead of 2708 * revision_id reported by MSR_IA32_VMX_BASIC. 2709 * 2710 * However, even though not explicitly documented by 2711 * TLFS, VMXArea passed as VMXON argument should 2712 * still be marked with revision_id reported by 2713 * physical CPU. 2714 */ 2715 if (static_branch_unlikely(&enable_evmcs)) 2716 vmcs->hdr.revision_id = vmcs_config.revision_id; 2717 2718 per_cpu(vmxarea, cpu) = vmcs; 2719 } 2720 return 0; 2721 } 2722 2723 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, 2724 struct kvm_segment *save) 2725 { 2726 if (!emulate_invalid_guest_state) { 2727 /* 2728 * CS and SS RPL should be equal during guest entry according 2729 * to VMX spec, but in reality it is not always so. Since vcpu 2730 * is in the middle of the transition from real mode to 2731 * protected mode it is safe to assume that RPL 0 is a good 2732 * default value. 2733 */ 2734 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) 2735 save->selector &= ~SEGMENT_RPL_MASK; 2736 save->dpl = save->selector & SEGMENT_RPL_MASK; 2737 save->s = 1; 2738 } 2739 __vmx_set_segment(vcpu, save, seg); 2740 } 2741 2742 static void enter_pmode(struct kvm_vcpu *vcpu) 2743 { 2744 unsigned long flags; 2745 struct vcpu_vmx *vmx = to_vmx(vcpu); 2746 2747 /* 2748 * Update real mode segment cache. It may be not up-to-date if segment 2749 * register was written while vcpu was in a guest mode. 2750 */ 2751 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2752 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2753 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2754 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2755 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2756 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2757 2758 vmx->rmode.vm86_active = 0; 2759 2760 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2761 2762 flags = vmcs_readl(GUEST_RFLAGS); 2763 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 2764 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 2765 vmcs_writel(GUEST_RFLAGS, flags); 2766 2767 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | 2768 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); 2769 2770 vmx_update_exception_bitmap(vcpu); 2771 2772 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2773 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2774 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2775 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2776 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2777 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2778 } 2779 2780 static void fix_rmode_seg(int seg, struct kvm_segment *save) 2781 { 2782 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 2783 struct kvm_segment var = *save; 2784 2785 var.dpl = 0x3; 2786 if (seg == VCPU_SREG_CS) 2787 var.type = 0x3; 2788 2789 if (!emulate_invalid_guest_state) { 2790 var.selector = var.base >> 4; 2791 var.base = var.base & 0xffff0; 2792 var.limit = 0xffff; 2793 var.g = 0; 2794 var.db = 0; 2795 var.present = 1; 2796 var.s = 1; 2797 var.l = 0; 2798 var.unusable = 0; 2799 var.type = 0x3; 2800 var.avl = 0; 2801 if (save->base & 0xf) 2802 printk_once(KERN_WARNING "kvm: segment base is not " 2803 "paragraph aligned when entering " 2804 "protected mode (seg=%d)", seg); 2805 } 2806 2807 vmcs_write16(sf->selector, var.selector); 2808 vmcs_writel(sf->base, var.base); 2809 vmcs_write32(sf->limit, var.limit); 2810 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); 2811 } 2812 2813 static void enter_rmode(struct kvm_vcpu *vcpu) 2814 { 2815 unsigned long flags; 2816 struct vcpu_vmx *vmx = to_vmx(vcpu); 2817 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); 2818 2819 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2820 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2821 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2822 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2823 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2824 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2825 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2826 2827 vmx->rmode.vm86_active = 1; 2828 2829 /* 2830 * Very old userspace does not call KVM_SET_TSS_ADDR before entering 2831 * vcpu. Warn the user that an update is overdue. 2832 */ 2833 if (!kvm_vmx->tss_addr) 2834 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be " 2835 "called before entering vcpu\n"); 2836 2837 vmx_segment_cache_clear(vmx); 2838 2839 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); 2840 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); 2841 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 2842 2843 flags = vmcs_readl(GUEST_RFLAGS); 2844 vmx->rmode.save_rflags = flags; 2845 2846 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 2847 2848 vmcs_writel(GUEST_RFLAGS, flags); 2849 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); 2850 vmx_update_exception_bitmap(vcpu); 2851 2852 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2853 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2854 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2855 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2856 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2857 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2858 } 2859 2860 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) 2861 { 2862 struct vcpu_vmx *vmx = to_vmx(vcpu); 2863 struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER); 2864 2865 /* Nothing to do if hardware doesn't support EFER. */ 2866 if (!msr) 2867 return 0; 2868 2869 vcpu->arch.efer = efer; 2870 if (efer & EFER_LMA) { 2871 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2872 msr->data = efer; 2873 } else { 2874 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2875 2876 msr->data = efer & ~EFER_LME; 2877 } 2878 vmx_setup_uret_msrs(vmx); 2879 return 0; 2880 } 2881 2882 #ifdef CONFIG_X86_64 2883 2884 static void enter_lmode(struct kvm_vcpu *vcpu) 2885 { 2886 u32 guest_tr_ar; 2887 2888 vmx_segment_cache_clear(to_vmx(vcpu)); 2889 2890 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); 2891 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { 2892 pr_debug_ratelimited("%s: tss fixup for long mode. \n", 2893 __func__); 2894 vmcs_write32(GUEST_TR_AR_BYTES, 2895 (guest_tr_ar & ~VMX_AR_TYPE_MASK) 2896 | VMX_AR_TYPE_BUSY_64_TSS); 2897 } 2898 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); 2899 } 2900 2901 static void exit_lmode(struct kvm_vcpu *vcpu) 2902 { 2903 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2904 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); 2905 } 2906 2907 #endif 2908 2909 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu) 2910 { 2911 struct vcpu_vmx *vmx = to_vmx(vcpu); 2912 2913 /* 2914 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as 2915 * the CPU is not required to invalidate guest-physical mappings on 2916 * VM-Entry, even if VPID is disabled. Guest-physical mappings are 2917 * associated with the root EPT structure and not any particular VPID 2918 * (INVVPID also isn't required to invalidate guest-physical mappings). 2919 */ 2920 if (enable_ept) { 2921 ept_sync_global(); 2922 } else if (enable_vpid) { 2923 if (cpu_has_vmx_invvpid_global()) { 2924 vpid_sync_vcpu_global(); 2925 } else { 2926 vpid_sync_vcpu_single(vmx->vpid); 2927 vpid_sync_vcpu_single(vmx->nested.vpid02); 2928 } 2929 } 2930 } 2931 2932 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu) 2933 { 2934 struct kvm_mmu *mmu = vcpu->arch.mmu; 2935 u64 root_hpa = mmu->root_hpa; 2936 2937 /* No flush required if the current context is invalid. */ 2938 if (!VALID_PAGE(root_hpa)) 2939 return; 2940 2941 if (enable_ept) 2942 ept_sync_context(construct_eptp(vcpu, root_hpa, 2943 mmu->shadow_root_level)); 2944 else if (!is_guest_mode(vcpu)) 2945 vpid_sync_context(to_vmx(vcpu)->vpid); 2946 else 2947 vpid_sync_context(nested_get_vpid02(vcpu)); 2948 } 2949 2950 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) 2951 { 2952 /* 2953 * vpid_sync_vcpu_addr() is a nop if vmx->vpid==0, see the comment in 2954 * vmx_flush_tlb_guest() for an explanation of why this is ok. 2955 */ 2956 vpid_sync_vcpu_addr(to_vmx(vcpu)->vpid, addr); 2957 } 2958 2959 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu) 2960 { 2961 /* 2962 * vpid_sync_context() is a nop if vmx->vpid==0, e.g. if enable_vpid==0 2963 * or a vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit 2964 * are required to flush GVA->{G,H}PA mappings from the TLB if vpid is 2965 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed), 2966 * i.e. no explicit INVVPID is necessary. 2967 */ 2968 vpid_sync_context(to_vmx(vcpu)->vpid); 2969 } 2970 2971 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu) 2972 { 2973 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 2974 2975 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR)) 2976 return; 2977 2978 if (is_pae_paging(vcpu)) { 2979 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); 2980 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); 2981 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); 2982 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); 2983 } 2984 } 2985 2986 void ept_save_pdptrs(struct kvm_vcpu *vcpu) 2987 { 2988 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 2989 2990 if (WARN_ON_ONCE(!is_pae_paging(vcpu))) 2991 return; 2992 2993 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); 2994 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); 2995 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); 2996 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); 2997 2998 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 2999 } 3000 3001 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \ 3002 CPU_BASED_CR3_STORE_EXITING) 3003 3004 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 3005 { 3006 struct vcpu_vmx *vmx = to_vmx(vcpu); 3007 unsigned long hw_cr0, old_cr0_pg; 3008 u32 tmp; 3009 3010 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG); 3011 3012 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); 3013 if (is_unrestricted_guest(vcpu)) 3014 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; 3015 else { 3016 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; 3017 if (!enable_ept) 3018 hw_cr0 |= X86_CR0_WP; 3019 3020 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) 3021 enter_pmode(vcpu); 3022 3023 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) 3024 enter_rmode(vcpu); 3025 } 3026 3027 vmcs_writel(CR0_READ_SHADOW, cr0); 3028 vmcs_writel(GUEST_CR0, hw_cr0); 3029 vcpu->arch.cr0 = cr0; 3030 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0); 3031 3032 #ifdef CONFIG_X86_64 3033 if (vcpu->arch.efer & EFER_LME) { 3034 if (!old_cr0_pg && (cr0 & X86_CR0_PG)) 3035 enter_lmode(vcpu); 3036 else if (old_cr0_pg && !(cr0 & X86_CR0_PG)) 3037 exit_lmode(vcpu); 3038 } 3039 #endif 3040 3041 if (enable_ept && !is_unrestricted_guest(vcpu)) { 3042 /* 3043 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If 3044 * the below code _enables_ CR3 exiting, vmx_cache_reg() will 3045 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks 3046 * KVM's CR3 is installed. 3047 */ 3048 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3)) 3049 vmx_cache_reg(vcpu, VCPU_EXREG_CR3); 3050 3051 /* 3052 * When running with EPT but not unrestricted guest, KVM must 3053 * intercept CR3 accesses when paging is _disabled_. This is 3054 * necessary because restricted guests can't actually run with 3055 * paging disabled, and so KVM stuffs its own CR3 in order to 3056 * run the guest when identity mapped page tables. 3057 * 3058 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the 3059 * update, it may be stale with respect to CR3 interception, 3060 * e.g. after nested VM-Enter. 3061 * 3062 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or 3063 * stores to forward them to L1, even if KVM does not need to 3064 * intercept them to preserve its identity mapped page tables. 3065 */ 3066 if (!(cr0 & X86_CR0_PG)) { 3067 exec_controls_setbit(vmx, CR3_EXITING_BITS); 3068 } else if (!is_guest_mode(vcpu)) { 3069 exec_controls_clearbit(vmx, CR3_EXITING_BITS); 3070 } else { 3071 tmp = exec_controls_get(vmx); 3072 tmp &= ~CR3_EXITING_BITS; 3073 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS; 3074 exec_controls_set(vmx, tmp); 3075 } 3076 3077 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */ 3078 if ((old_cr0_pg ^ cr0) & X86_CR0_PG) 3079 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 3080 } 3081 3082 /* depends on vcpu->arch.cr0 to be set to a new value */ 3083 vmx->emulation_required = vmx_emulation_required(vcpu); 3084 } 3085 3086 static int vmx_get_max_tdp_level(void) 3087 { 3088 if (cpu_has_vmx_ept_5levels()) 3089 return 5; 3090 return 4; 3091 } 3092 3093 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level) 3094 { 3095 u64 eptp = VMX_EPTP_MT_WB; 3096 3097 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; 3098 3099 if (enable_ept_ad_bits && 3100 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) 3101 eptp |= VMX_EPTP_AD_ENABLE_BIT; 3102 eptp |= root_hpa; 3103 3104 return eptp; 3105 } 3106 3107 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 3108 int root_level) 3109 { 3110 struct kvm *kvm = vcpu->kvm; 3111 bool update_guest_cr3 = true; 3112 unsigned long guest_cr3; 3113 u64 eptp; 3114 3115 if (enable_ept) { 3116 eptp = construct_eptp(vcpu, root_hpa, root_level); 3117 vmcs_write64(EPT_POINTER, eptp); 3118 3119 hv_track_root_tdp(vcpu, root_hpa); 3120 3121 if (!enable_unrestricted_guest && !is_paging(vcpu)) 3122 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; 3123 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) 3124 guest_cr3 = vcpu->arch.cr3; 3125 else /* vmcs01.GUEST_CR3 is already up-to-date. */ 3126 update_guest_cr3 = false; 3127 vmx_ept_load_pdptrs(vcpu); 3128 } else { 3129 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu); 3130 } 3131 3132 if (update_guest_cr3) 3133 vmcs_writel(GUEST_CR3, guest_cr3); 3134 } 3135 3136 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3137 { 3138 /* 3139 * We operate under the default treatment of SMM, so VMX cannot be 3140 * enabled under SMM. Note, whether or not VMXE is allowed at all is 3141 * handled by kvm_is_valid_cr4(). 3142 */ 3143 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu)) 3144 return false; 3145 3146 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) 3147 return false; 3148 3149 return true; 3150 } 3151 3152 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3153 { 3154 unsigned long old_cr4 = vcpu->arch.cr4; 3155 struct vcpu_vmx *vmx = to_vmx(vcpu); 3156 /* 3157 * Pass through host's Machine Check Enable value to hw_cr4, which 3158 * is in force while we are in guest mode. Do not let guests control 3159 * this bit, even if host CR4.MCE == 0. 3160 */ 3161 unsigned long hw_cr4; 3162 3163 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); 3164 if (is_unrestricted_guest(vcpu)) 3165 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; 3166 else if (vmx->rmode.vm86_active) 3167 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; 3168 else 3169 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; 3170 3171 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) { 3172 if (cr4 & X86_CR4_UMIP) { 3173 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC); 3174 hw_cr4 &= ~X86_CR4_UMIP; 3175 } else if (!is_guest_mode(vcpu) || 3176 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) { 3177 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC); 3178 } 3179 } 3180 3181 vcpu->arch.cr4 = cr4; 3182 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4); 3183 3184 if (!is_unrestricted_guest(vcpu)) { 3185 if (enable_ept) { 3186 if (!is_paging(vcpu)) { 3187 hw_cr4 &= ~X86_CR4_PAE; 3188 hw_cr4 |= X86_CR4_PSE; 3189 } else if (!(cr4 & X86_CR4_PAE)) { 3190 hw_cr4 &= ~X86_CR4_PAE; 3191 } 3192 } 3193 3194 /* 3195 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in 3196 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs 3197 * to be manually disabled when guest switches to non-paging 3198 * mode. 3199 * 3200 * If !enable_unrestricted_guest, the CPU is always running 3201 * with CR0.PG=1 and CR4 needs to be modified. 3202 * If enable_unrestricted_guest, the CPU automatically 3203 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. 3204 */ 3205 if (!is_paging(vcpu)) 3206 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 3207 } 3208 3209 vmcs_writel(CR4_READ_SHADOW, cr4); 3210 vmcs_writel(GUEST_CR4, hw_cr4); 3211 3212 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 3213 kvm_update_cpuid_runtime(vcpu); 3214 } 3215 3216 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3217 { 3218 struct vcpu_vmx *vmx = to_vmx(vcpu); 3219 u32 ar; 3220 3221 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3222 *var = vmx->rmode.segs[seg]; 3223 if (seg == VCPU_SREG_TR 3224 || var->selector == vmx_read_guest_seg_selector(vmx, seg)) 3225 return; 3226 var->base = vmx_read_guest_seg_base(vmx, seg); 3227 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3228 return; 3229 } 3230 var->base = vmx_read_guest_seg_base(vmx, seg); 3231 var->limit = vmx_read_guest_seg_limit(vmx, seg); 3232 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3233 ar = vmx_read_guest_seg_ar(vmx, seg); 3234 var->unusable = (ar >> 16) & 1; 3235 var->type = ar & 15; 3236 var->s = (ar >> 4) & 1; 3237 var->dpl = (ar >> 5) & 3; 3238 /* 3239 * Some userspaces do not preserve unusable property. Since usable 3240 * segment has to be present according to VMX spec we can use present 3241 * property to amend userspace bug by making unusable segment always 3242 * nonpresent. vmx_segment_access_rights() already marks nonpresent 3243 * segment as unusable. 3244 */ 3245 var->present = !var->unusable; 3246 var->avl = (ar >> 12) & 1; 3247 var->l = (ar >> 13) & 1; 3248 var->db = (ar >> 14) & 1; 3249 var->g = (ar >> 15) & 1; 3250 } 3251 3252 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) 3253 { 3254 struct kvm_segment s; 3255 3256 if (to_vmx(vcpu)->rmode.vm86_active) { 3257 vmx_get_segment(vcpu, &s, seg); 3258 return s.base; 3259 } 3260 return vmx_read_guest_seg_base(to_vmx(vcpu), seg); 3261 } 3262 3263 int vmx_get_cpl(struct kvm_vcpu *vcpu) 3264 { 3265 struct vcpu_vmx *vmx = to_vmx(vcpu); 3266 3267 if (unlikely(vmx->rmode.vm86_active)) 3268 return 0; 3269 else { 3270 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); 3271 return VMX_AR_DPL(ar); 3272 } 3273 } 3274 3275 static u32 vmx_segment_access_rights(struct kvm_segment *var) 3276 { 3277 u32 ar; 3278 3279 if (var->unusable || !var->present) 3280 ar = 1 << 16; 3281 else { 3282 ar = var->type & 15; 3283 ar |= (var->s & 1) << 4; 3284 ar |= (var->dpl & 3) << 5; 3285 ar |= (var->present & 1) << 7; 3286 ar |= (var->avl & 1) << 12; 3287 ar |= (var->l & 1) << 13; 3288 ar |= (var->db & 1) << 14; 3289 ar |= (var->g & 1) << 15; 3290 } 3291 3292 return ar; 3293 } 3294 3295 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3296 { 3297 struct vcpu_vmx *vmx = to_vmx(vcpu); 3298 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3299 3300 vmx_segment_cache_clear(vmx); 3301 3302 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3303 vmx->rmode.segs[seg] = *var; 3304 if (seg == VCPU_SREG_TR) 3305 vmcs_write16(sf->selector, var->selector); 3306 else if (var->s) 3307 fix_rmode_seg(seg, &vmx->rmode.segs[seg]); 3308 return; 3309 } 3310 3311 vmcs_writel(sf->base, var->base); 3312 vmcs_write32(sf->limit, var->limit); 3313 vmcs_write16(sf->selector, var->selector); 3314 3315 /* 3316 * Fix the "Accessed" bit in AR field of segment registers for older 3317 * qemu binaries. 3318 * IA32 arch specifies that at the time of processor reset the 3319 * "Accessed" bit in the AR field of segment registers is 1. And qemu 3320 * is setting it to 0 in the userland code. This causes invalid guest 3321 * state vmexit when "unrestricted guest" mode is turned on. 3322 * Fix for this setup issue in cpu_reset is being pushed in the qemu 3323 * tree. Newer qemu binaries with that qemu fix would not need this 3324 * kvm hack. 3325 */ 3326 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR)) 3327 var->type |= 0x1; /* Accessed */ 3328 3329 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); 3330 } 3331 3332 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3333 { 3334 __vmx_set_segment(vcpu, var, seg); 3335 3336 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu); 3337 } 3338 3339 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 3340 { 3341 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); 3342 3343 *db = (ar >> 14) & 1; 3344 *l = (ar >> 13) & 1; 3345 } 3346 3347 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3348 { 3349 dt->size = vmcs_read32(GUEST_IDTR_LIMIT); 3350 dt->address = vmcs_readl(GUEST_IDTR_BASE); 3351 } 3352 3353 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3354 { 3355 vmcs_write32(GUEST_IDTR_LIMIT, dt->size); 3356 vmcs_writel(GUEST_IDTR_BASE, dt->address); 3357 } 3358 3359 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3360 { 3361 dt->size = vmcs_read32(GUEST_GDTR_LIMIT); 3362 dt->address = vmcs_readl(GUEST_GDTR_BASE); 3363 } 3364 3365 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3366 { 3367 vmcs_write32(GUEST_GDTR_LIMIT, dt->size); 3368 vmcs_writel(GUEST_GDTR_BASE, dt->address); 3369 } 3370 3371 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) 3372 { 3373 struct kvm_segment var; 3374 u32 ar; 3375 3376 vmx_get_segment(vcpu, &var, seg); 3377 var.dpl = 0x3; 3378 if (seg == VCPU_SREG_CS) 3379 var.type = 0x3; 3380 ar = vmx_segment_access_rights(&var); 3381 3382 if (var.base != (var.selector << 4)) 3383 return false; 3384 if (var.limit != 0xffff) 3385 return false; 3386 if (ar != 0xf3) 3387 return false; 3388 3389 return true; 3390 } 3391 3392 static bool code_segment_valid(struct kvm_vcpu *vcpu) 3393 { 3394 struct kvm_segment cs; 3395 unsigned int cs_rpl; 3396 3397 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3398 cs_rpl = cs.selector & SEGMENT_RPL_MASK; 3399 3400 if (cs.unusable) 3401 return false; 3402 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) 3403 return false; 3404 if (!cs.s) 3405 return false; 3406 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { 3407 if (cs.dpl > cs_rpl) 3408 return false; 3409 } else { 3410 if (cs.dpl != cs_rpl) 3411 return false; 3412 } 3413 if (!cs.present) 3414 return false; 3415 3416 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ 3417 return true; 3418 } 3419 3420 static bool stack_segment_valid(struct kvm_vcpu *vcpu) 3421 { 3422 struct kvm_segment ss; 3423 unsigned int ss_rpl; 3424 3425 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3426 ss_rpl = ss.selector & SEGMENT_RPL_MASK; 3427 3428 if (ss.unusable) 3429 return true; 3430 if (ss.type != 3 && ss.type != 7) 3431 return false; 3432 if (!ss.s) 3433 return false; 3434 if (ss.dpl != ss_rpl) /* DPL != RPL */ 3435 return false; 3436 if (!ss.present) 3437 return false; 3438 3439 return true; 3440 } 3441 3442 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) 3443 { 3444 struct kvm_segment var; 3445 unsigned int rpl; 3446 3447 vmx_get_segment(vcpu, &var, seg); 3448 rpl = var.selector & SEGMENT_RPL_MASK; 3449 3450 if (var.unusable) 3451 return true; 3452 if (!var.s) 3453 return false; 3454 if (!var.present) 3455 return false; 3456 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { 3457 if (var.dpl < rpl) /* DPL < RPL */ 3458 return false; 3459 } 3460 3461 /* TODO: Add other members to kvm_segment_field to allow checking for other access 3462 * rights flags 3463 */ 3464 return true; 3465 } 3466 3467 static bool tr_valid(struct kvm_vcpu *vcpu) 3468 { 3469 struct kvm_segment tr; 3470 3471 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); 3472 3473 if (tr.unusable) 3474 return false; 3475 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3476 return false; 3477 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ 3478 return false; 3479 if (!tr.present) 3480 return false; 3481 3482 return true; 3483 } 3484 3485 static bool ldtr_valid(struct kvm_vcpu *vcpu) 3486 { 3487 struct kvm_segment ldtr; 3488 3489 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); 3490 3491 if (ldtr.unusable) 3492 return true; 3493 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3494 return false; 3495 if (ldtr.type != 2) 3496 return false; 3497 if (!ldtr.present) 3498 return false; 3499 3500 return true; 3501 } 3502 3503 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) 3504 { 3505 struct kvm_segment cs, ss; 3506 3507 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3508 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3509 3510 return ((cs.selector & SEGMENT_RPL_MASK) == 3511 (ss.selector & SEGMENT_RPL_MASK)); 3512 } 3513 3514 /* 3515 * Check if guest state is valid. Returns true if valid, false if 3516 * not. 3517 * We assume that registers are always usable 3518 */ 3519 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu) 3520 { 3521 /* real mode guest state checks */ 3522 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { 3523 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) 3524 return false; 3525 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) 3526 return false; 3527 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) 3528 return false; 3529 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) 3530 return false; 3531 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) 3532 return false; 3533 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) 3534 return false; 3535 } else { 3536 /* protected mode guest state checks */ 3537 if (!cs_ss_rpl_check(vcpu)) 3538 return false; 3539 if (!code_segment_valid(vcpu)) 3540 return false; 3541 if (!stack_segment_valid(vcpu)) 3542 return false; 3543 if (!data_segment_valid(vcpu, VCPU_SREG_DS)) 3544 return false; 3545 if (!data_segment_valid(vcpu, VCPU_SREG_ES)) 3546 return false; 3547 if (!data_segment_valid(vcpu, VCPU_SREG_FS)) 3548 return false; 3549 if (!data_segment_valid(vcpu, VCPU_SREG_GS)) 3550 return false; 3551 if (!tr_valid(vcpu)) 3552 return false; 3553 if (!ldtr_valid(vcpu)) 3554 return false; 3555 } 3556 /* TODO: 3557 * - Add checks on RIP 3558 * - Add checks on RFLAGS 3559 */ 3560 3561 return true; 3562 } 3563 3564 static int init_rmode_tss(struct kvm *kvm, void __user *ua) 3565 { 3566 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3567 u16 data; 3568 int i; 3569 3570 for (i = 0; i < 3; i++) { 3571 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE)) 3572 return -EFAULT; 3573 } 3574 3575 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; 3576 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16))) 3577 return -EFAULT; 3578 3579 data = ~0; 3580 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8))) 3581 return -EFAULT; 3582 3583 return 0; 3584 } 3585 3586 static int init_rmode_identity_map(struct kvm *kvm) 3587 { 3588 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 3589 int i, r = 0; 3590 void __user *uaddr; 3591 u32 tmp; 3592 3593 /* Protect kvm_vmx->ept_identity_pagetable_done. */ 3594 mutex_lock(&kvm->slots_lock); 3595 3596 if (likely(kvm_vmx->ept_identity_pagetable_done)) 3597 goto out; 3598 3599 if (!kvm_vmx->ept_identity_map_addr) 3600 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; 3601 3602 uaddr = __x86_set_memory_region(kvm, 3603 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 3604 kvm_vmx->ept_identity_map_addr, 3605 PAGE_SIZE); 3606 if (IS_ERR(uaddr)) { 3607 r = PTR_ERR(uaddr); 3608 goto out; 3609 } 3610 3611 /* Set up identity-mapping pagetable for EPT in real mode */ 3612 for (i = 0; i < PT32_ENT_PER_PAGE; i++) { 3613 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | 3614 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); 3615 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) { 3616 r = -EFAULT; 3617 goto out; 3618 } 3619 } 3620 kvm_vmx->ept_identity_pagetable_done = true; 3621 3622 out: 3623 mutex_unlock(&kvm->slots_lock); 3624 return r; 3625 } 3626 3627 static void seg_setup(int seg) 3628 { 3629 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3630 unsigned int ar; 3631 3632 vmcs_write16(sf->selector, 0); 3633 vmcs_writel(sf->base, 0); 3634 vmcs_write32(sf->limit, 0xffff); 3635 ar = 0x93; 3636 if (seg == VCPU_SREG_CS) 3637 ar |= 0x08; /* code segment */ 3638 3639 vmcs_write32(sf->ar_bytes, ar); 3640 } 3641 3642 static int alloc_apic_access_page(struct kvm *kvm) 3643 { 3644 struct page *page; 3645 void __user *hva; 3646 int ret = 0; 3647 3648 mutex_lock(&kvm->slots_lock); 3649 if (kvm->arch.apic_access_memslot_enabled) 3650 goto out; 3651 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 3652 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); 3653 if (IS_ERR(hva)) { 3654 ret = PTR_ERR(hva); 3655 goto out; 3656 } 3657 3658 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 3659 if (is_error_page(page)) { 3660 ret = -EFAULT; 3661 goto out; 3662 } 3663 3664 /* 3665 * Do not pin the page in memory, so that memory hot-unplug 3666 * is able to migrate it. 3667 */ 3668 put_page(page); 3669 kvm->arch.apic_access_memslot_enabled = true; 3670 out: 3671 mutex_unlock(&kvm->slots_lock); 3672 return ret; 3673 } 3674 3675 int allocate_vpid(void) 3676 { 3677 int vpid; 3678 3679 if (!enable_vpid) 3680 return 0; 3681 spin_lock(&vmx_vpid_lock); 3682 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); 3683 if (vpid < VMX_NR_VPIDS) 3684 __set_bit(vpid, vmx_vpid_bitmap); 3685 else 3686 vpid = 0; 3687 spin_unlock(&vmx_vpid_lock); 3688 return vpid; 3689 } 3690 3691 void free_vpid(int vpid) 3692 { 3693 if (!enable_vpid || vpid == 0) 3694 return; 3695 spin_lock(&vmx_vpid_lock); 3696 __clear_bit(vpid, vmx_vpid_bitmap); 3697 spin_unlock(&vmx_vpid_lock); 3698 } 3699 3700 static void vmx_clear_msr_bitmap_read(ulong *msr_bitmap, u32 msr) 3701 { 3702 int f = sizeof(unsigned long); 3703 3704 if (msr <= 0x1fff) 3705 __clear_bit(msr, msr_bitmap + 0x000 / f); 3706 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) 3707 __clear_bit(msr & 0x1fff, msr_bitmap + 0x400 / f); 3708 } 3709 3710 static void vmx_clear_msr_bitmap_write(ulong *msr_bitmap, u32 msr) 3711 { 3712 int f = sizeof(unsigned long); 3713 3714 if (msr <= 0x1fff) 3715 __clear_bit(msr, msr_bitmap + 0x800 / f); 3716 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) 3717 __clear_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f); 3718 } 3719 3720 static void vmx_set_msr_bitmap_read(ulong *msr_bitmap, u32 msr) 3721 { 3722 int f = sizeof(unsigned long); 3723 3724 if (msr <= 0x1fff) 3725 __set_bit(msr, msr_bitmap + 0x000 / f); 3726 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) 3727 __set_bit(msr & 0x1fff, msr_bitmap + 0x400 / f); 3728 } 3729 3730 static void vmx_set_msr_bitmap_write(ulong *msr_bitmap, u32 msr) 3731 { 3732 int f = sizeof(unsigned long); 3733 3734 if (msr <= 0x1fff) 3735 __set_bit(msr, msr_bitmap + 0x800 / f); 3736 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) 3737 __set_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f); 3738 } 3739 3740 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3741 { 3742 struct vcpu_vmx *vmx = to_vmx(vcpu); 3743 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3744 3745 if (!cpu_has_vmx_msr_bitmap()) 3746 return; 3747 3748 if (static_branch_unlikely(&enable_evmcs)) 3749 evmcs_touch_msr_bitmap(); 3750 3751 /* 3752 * Mark the desired intercept state in shadow bitmap, this is needed 3753 * for resync when the MSR filters change. 3754 */ 3755 if (is_valid_passthrough_msr(msr)) { 3756 int idx = possible_passthrough_msr_slot(msr); 3757 3758 if (idx != -ENOENT) { 3759 if (type & MSR_TYPE_R) 3760 clear_bit(idx, vmx->shadow_msr_intercept.read); 3761 if (type & MSR_TYPE_W) 3762 clear_bit(idx, vmx->shadow_msr_intercept.write); 3763 } 3764 } 3765 3766 if ((type & MSR_TYPE_R) && 3767 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) { 3768 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3769 type &= ~MSR_TYPE_R; 3770 } 3771 3772 if ((type & MSR_TYPE_W) && 3773 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) { 3774 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3775 type &= ~MSR_TYPE_W; 3776 } 3777 3778 if (type & MSR_TYPE_R) 3779 vmx_clear_msr_bitmap_read(msr_bitmap, msr); 3780 3781 if (type & MSR_TYPE_W) 3782 vmx_clear_msr_bitmap_write(msr_bitmap, msr); 3783 } 3784 3785 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3786 { 3787 struct vcpu_vmx *vmx = to_vmx(vcpu); 3788 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3789 3790 if (!cpu_has_vmx_msr_bitmap()) 3791 return; 3792 3793 if (static_branch_unlikely(&enable_evmcs)) 3794 evmcs_touch_msr_bitmap(); 3795 3796 /* 3797 * Mark the desired intercept state in shadow bitmap, this is needed 3798 * for resync when the MSR filter changes. 3799 */ 3800 if (is_valid_passthrough_msr(msr)) { 3801 int idx = possible_passthrough_msr_slot(msr); 3802 3803 if (idx != -ENOENT) { 3804 if (type & MSR_TYPE_R) 3805 set_bit(idx, vmx->shadow_msr_intercept.read); 3806 if (type & MSR_TYPE_W) 3807 set_bit(idx, vmx->shadow_msr_intercept.write); 3808 } 3809 } 3810 3811 if (type & MSR_TYPE_R) 3812 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3813 3814 if (type & MSR_TYPE_W) 3815 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3816 } 3817 3818 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode) 3819 { 3820 unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap; 3821 unsigned long read_intercept; 3822 int msr; 3823 3824 read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0; 3825 3826 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { 3827 unsigned int read_idx = msr / BITS_PER_LONG; 3828 unsigned int write_idx = read_idx + (0x800 / sizeof(long)); 3829 3830 msr_bitmap[read_idx] = read_intercept; 3831 msr_bitmap[write_idx] = ~0ul; 3832 } 3833 } 3834 3835 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu) 3836 { 3837 struct vcpu_vmx *vmx = to_vmx(vcpu); 3838 u8 mode; 3839 3840 if (!cpu_has_vmx_msr_bitmap()) 3841 return; 3842 3843 if (cpu_has_secondary_exec_ctrls() && 3844 (secondary_exec_controls_get(vmx) & 3845 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { 3846 mode = MSR_BITMAP_MODE_X2APIC; 3847 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) 3848 mode |= MSR_BITMAP_MODE_X2APIC_APICV; 3849 } else { 3850 mode = 0; 3851 } 3852 3853 if (mode == vmx->x2apic_msr_bitmap_mode) 3854 return; 3855 3856 vmx->x2apic_msr_bitmap_mode = mode; 3857 3858 vmx_reset_x2apic_msrs(vcpu, mode); 3859 3860 /* 3861 * TPR reads and writes can be virtualized even if virtual interrupt 3862 * delivery is not in use. 3863 */ 3864 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW, 3865 !(mode & MSR_BITMAP_MODE_X2APIC)); 3866 3867 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { 3868 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW); 3869 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); 3870 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); 3871 } 3872 } 3873 3874 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu) 3875 { 3876 struct vcpu_vmx *vmx = to_vmx(vcpu); 3877 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 3878 u32 i; 3879 3880 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag); 3881 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag); 3882 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag); 3883 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag); 3884 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) { 3885 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); 3886 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); 3887 } 3888 } 3889 3890 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 3891 { 3892 struct vcpu_vmx *vmx = to_vmx(vcpu); 3893 void *vapic_page; 3894 u32 vppr; 3895 int rvi; 3896 3897 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) || 3898 !nested_cpu_has_vid(get_vmcs12(vcpu)) || 3899 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn)) 3900 return false; 3901 3902 rvi = vmx_get_rvi(); 3903 3904 vapic_page = vmx->nested.virtual_apic_map.hva; 3905 vppr = *((u32 *)(vapic_page + APIC_PROCPRI)); 3906 3907 return ((rvi & 0xf0) > (vppr & 0xf0)); 3908 } 3909 3910 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu) 3911 { 3912 struct vcpu_vmx *vmx = to_vmx(vcpu); 3913 u32 i; 3914 3915 /* 3916 * Set intercept permissions for all potentially passed through MSRs 3917 * again. They will automatically get filtered through the MSR filter, 3918 * so we are back in sync after this. 3919 */ 3920 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) { 3921 u32 msr = vmx_possible_passthrough_msrs[i]; 3922 bool read = test_bit(i, vmx->shadow_msr_intercept.read); 3923 bool write = test_bit(i, vmx->shadow_msr_intercept.write); 3924 3925 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read); 3926 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write); 3927 } 3928 3929 pt_update_intercept_for_msr(vcpu); 3930 } 3931 3932 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, 3933 bool nested) 3934 { 3935 #ifdef CONFIG_SMP 3936 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR; 3937 3938 if (vcpu->mode == IN_GUEST_MODE) { 3939 /* 3940 * The vector of interrupt to be delivered to vcpu had 3941 * been set in PIR before this function. 3942 * 3943 * Following cases will be reached in this block, and 3944 * we always send a notification event in all cases as 3945 * explained below. 3946 * 3947 * Case 1: vcpu keeps in non-root mode. Sending a 3948 * notification event posts the interrupt to vcpu. 3949 * 3950 * Case 2: vcpu exits to root mode and is still 3951 * runnable. PIR will be synced to vIRR before the 3952 * next vcpu entry. Sending a notification event in 3953 * this case has no effect, as vcpu is not in root 3954 * mode. 3955 * 3956 * Case 3: vcpu exits to root mode and is blocked. 3957 * vcpu_block() has already synced PIR to vIRR and 3958 * never blocks vcpu if vIRR is not cleared. Therefore, 3959 * a blocked vcpu here does not wait for any requested 3960 * interrupts in PIR, and sending a notification event 3961 * which has no effect is safe here. 3962 */ 3963 3964 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); 3965 return true; 3966 } 3967 #endif 3968 return false; 3969 } 3970 3971 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, 3972 int vector) 3973 { 3974 struct vcpu_vmx *vmx = to_vmx(vcpu); 3975 3976 if (is_guest_mode(vcpu) && 3977 vector == vmx->nested.posted_intr_nv) { 3978 /* 3979 * If a posted intr is not recognized by hardware, 3980 * we will accomplish it in the next vmentry. 3981 */ 3982 vmx->nested.pi_pending = true; 3983 kvm_make_request(KVM_REQ_EVENT, vcpu); 3984 /* the PIR and ON have been set by L1. */ 3985 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true)) 3986 kvm_vcpu_kick(vcpu); 3987 return 0; 3988 } 3989 return -1; 3990 } 3991 /* 3992 * Send interrupt to vcpu via posted interrupt way. 3993 * 1. If target vcpu is running(non-root mode), send posted interrupt 3994 * notification to vcpu and hardware will sync PIR to vIRR atomically. 3995 * 2. If target vcpu isn't running(root mode), kick it to pick up the 3996 * interrupt from PIR in next vmentry. 3997 */ 3998 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) 3999 { 4000 struct vcpu_vmx *vmx = to_vmx(vcpu); 4001 int r; 4002 4003 r = vmx_deliver_nested_posted_interrupt(vcpu, vector); 4004 if (!r) 4005 return 0; 4006 4007 if (!vcpu->arch.apicv_active) 4008 return -1; 4009 4010 if (pi_test_and_set_pir(vector, &vmx->pi_desc)) 4011 return 0; 4012 4013 /* If a previous notification has sent the IPI, nothing to do. */ 4014 if (pi_test_and_set_on(&vmx->pi_desc)) 4015 return 0; 4016 4017 if (vcpu != kvm_get_running_vcpu() && 4018 !kvm_vcpu_trigger_posted_interrupt(vcpu, false)) 4019 kvm_vcpu_kick(vcpu); 4020 4021 return 0; 4022 } 4023 4024 /* 4025 * Set up the vmcs's constant host-state fields, i.e., host-state fields that 4026 * will not change in the lifetime of the guest. 4027 * Note that host-state that does change is set elsewhere. E.g., host-state 4028 * that is set differently for each CPU is set in vmx_vcpu_load(), not here. 4029 */ 4030 void vmx_set_constant_host_state(struct vcpu_vmx *vmx) 4031 { 4032 u32 low32, high32; 4033 unsigned long tmpl; 4034 unsigned long cr0, cr3, cr4; 4035 4036 cr0 = read_cr0(); 4037 WARN_ON(cr0 & X86_CR0_TS); 4038 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ 4039 4040 /* 4041 * Save the most likely value for this task's CR3 in the VMCS. 4042 * We can't use __get_current_cr3_fast() because we're not atomic. 4043 */ 4044 cr3 = __read_cr3(); 4045 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ 4046 vmx->loaded_vmcs->host_state.cr3 = cr3; 4047 4048 /* Save the most likely value for this task's CR4 in the VMCS. */ 4049 cr4 = cr4_read_shadow(); 4050 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ 4051 vmx->loaded_vmcs->host_state.cr4 = cr4; 4052 4053 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ 4054 #ifdef CONFIG_X86_64 4055 /* 4056 * Load null selectors, so we can avoid reloading them in 4057 * vmx_prepare_switch_to_host(), in case userspace uses 4058 * the null selectors too (the expected case). 4059 */ 4060 vmcs_write16(HOST_DS_SELECTOR, 0); 4061 vmcs_write16(HOST_ES_SELECTOR, 0); 4062 #else 4063 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4064 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4065 #endif 4066 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4067 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ 4068 4069 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */ 4070 4071 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ 4072 4073 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); 4074 vmcs_write32(HOST_IA32_SYSENTER_CS, low32); 4075 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); 4076 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ 4077 4078 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { 4079 rdmsr(MSR_IA32_CR_PAT, low32, high32); 4080 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); 4081 } 4082 4083 if (cpu_has_load_ia32_efer()) 4084 vmcs_write64(HOST_IA32_EFER, host_efer); 4085 } 4086 4087 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) 4088 { 4089 struct kvm_vcpu *vcpu = &vmx->vcpu; 4090 4091 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS & 4092 ~vcpu->arch.cr4_guest_rsvd_bits; 4093 if (!enable_ept) 4094 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE; 4095 if (is_guest_mode(&vmx->vcpu)) 4096 vcpu->arch.cr4_guest_owned_bits &= 4097 ~get_vmcs12(vcpu)->cr4_guest_host_mask; 4098 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits); 4099 } 4100 4101 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) 4102 { 4103 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; 4104 4105 if (!kvm_vcpu_apicv_active(&vmx->vcpu)) 4106 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; 4107 4108 if (!enable_vnmi) 4109 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; 4110 4111 if (!enable_preemption_timer) 4112 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 4113 4114 return pin_based_exec_ctrl; 4115 } 4116 4117 static u32 vmx_vmentry_ctrl(void) 4118 { 4119 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl; 4120 4121 if (vmx_pt_mode_is_system()) 4122 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP | 4123 VM_ENTRY_LOAD_IA32_RTIT_CTL); 4124 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ 4125 return vmentry_ctrl & 4126 ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER); 4127 } 4128 4129 static u32 vmx_vmexit_ctrl(void) 4130 { 4131 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl; 4132 4133 if (vmx_pt_mode_is_system()) 4134 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP | 4135 VM_EXIT_CLEAR_IA32_RTIT_CTL); 4136 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ 4137 return vmexit_ctrl & 4138 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER); 4139 } 4140 4141 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) 4142 { 4143 struct vcpu_vmx *vmx = to_vmx(vcpu); 4144 4145 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4146 if (cpu_has_secondary_exec_ctrls()) { 4147 if (kvm_vcpu_apicv_active(vcpu)) 4148 secondary_exec_controls_setbit(vmx, 4149 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4150 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4151 else 4152 secondary_exec_controls_clearbit(vmx, 4153 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4154 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4155 } 4156 4157 vmx_update_msr_bitmap_x2apic(vcpu); 4158 } 4159 4160 static u32 vmx_exec_control(struct vcpu_vmx *vmx) 4161 { 4162 u32 exec_control = vmcs_config.cpu_based_exec_ctrl; 4163 4164 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) 4165 exec_control &= ~CPU_BASED_MOV_DR_EXITING; 4166 4167 if (!cpu_need_tpr_shadow(&vmx->vcpu)) { 4168 exec_control &= ~CPU_BASED_TPR_SHADOW; 4169 #ifdef CONFIG_X86_64 4170 exec_control |= CPU_BASED_CR8_STORE_EXITING | 4171 CPU_BASED_CR8_LOAD_EXITING; 4172 #endif 4173 } 4174 if (!enable_ept) 4175 exec_control |= CPU_BASED_CR3_STORE_EXITING | 4176 CPU_BASED_CR3_LOAD_EXITING | 4177 CPU_BASED_INVLPG_EXITING; 4178 if (kvm_mwait_in_guest(vmx->vcpu.kvm)) 4179 exec_control &= ~(CPU_BASED_MWAIT_EXITING | 4180 CPU_BASED_MONITOR_EXITING); 4181 if (kvm_hlt_in_guest(vmx->vcpu.kvm)) 4182 exec_control &= ~CPU_BASED_HLT_EXITING; 4183 return exec_control; 4184 } 4185 4186 /* 4187 * Adjust a single secondary execution control bit to intercept/allow an 4188 * instruction in the guest. This is usually done based on whether or not a 4189 * feature has been exposed to the guest in order to correctly emulate faults. 4190 */ 4191 static inline void 4192 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control, 4193 u32 control, bool enabled, bool exiting) 4194 { 4195 /* 4196 * If the control is for an opt-in feature, clear the control if the 4197 * feature is not exposed to the guest, i.e. not enabled. If the 4198 * control is opt-out, i.e. an exiting control, clear the control if 4199 * the feature _is_ exposed to the guest, i.e. exiting/interception is 4200 * disabled for the associated instruction. Note, the caller is 4201 * responsible presetting exec_control to set all supported bits. 4202 */ 4203 if (enabled == exiting) 4204 *exec_control &= ~control; 4205 4206 /* 4207 * Update the nested MSR settings so that a nested VMM can/can't set 4208 * controls for features that are/aren't exposed to the guest. 4209 */ 4210 if (nested) { 4211 if (enabled) 4212 vmx->nested.msrs.secondary_ctls_high |= control; 4213 else 4214 vmx->nested.msrs.secondary_ctls_high &= ~control; 4215 } 4216 } 4217 4218 /* 4219 * Wrapper macro for the common case of adjusting a secondary execution control 4220 * based on a single guest CPUID bit, with a dedicated feature bit. This also 4221 * verifies that the control is actually supported by KVM and hardware. 4222 */ 4223 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \ 4224 ({ \ 4225 bool __enabled; \ 4226 \ 4227 if (cpu_has_vmx_##name()) { \ 4228 __enabled = guest_cpuid_has(&(vmx)->vcpu, \ 4229 X86_FEATURE_##feat_name); \ 4230 vmx_adjust_secondary_exec_control(vmx, exec_control, \ 4231 SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \ 4232 } \ 4233 }) 4234 4235 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */ 4236 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \ 4237 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false) 4238 4239 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \ 4240 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true) 4241 4242 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx) 4243 { 4244 struct kvm_vcpu *vcpu = &vmx->vcpu; 4245 4246 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; 4247 4248 if (vmx_pt_mode_is_system()) 4249 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); 4250 if (!cpu_need_virtualize_apic_accesses(vcpu)) 4251 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 4252 if (vmx->vpid == 0) 4253 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; 4254 if (!enable_ept) { 4255 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; 4256 enable_unrestricted_guest = 0; 4257 } 4258 if (!enable_unrestricted_guest) 4259 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; 4260 if (kvm_pause_in_guest(vmx->vcpu.kvm)) 4261 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; 4262 if (!kvm_vcpu_apicv_active(vcpu)) 4263 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | 4264 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4265 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 4266 4267 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, 4268 * in vmx_set_cr4. */ 4269 exec_control &= ~SECONDARY_EXEC_DESC; 4270 4271 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD 4272 (handle_vmptrld). 4273 We can NOT enable shadow_vmcs here because we don't have yet 4274 a current VMCS12 4275 */ 4276 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; 4277 4278 /* 4279 * PML is enabled/disabled when dirty logging of memsmlots changes, but 4280 * it needs to be set here when dirty logging is already active, e.g. 4281 * if this vCPU was created after dirty logging was enabled. 4282 */ 4283 if (!vcpu->kvm->arch.cpu_dirty_logging_count) 4284 exec_control &= ~SECONDARY_EXEC_ENABLE_PML; 4285 4286 if (cpu_has_vmx_xsaves()) { 4287 /* Exposing XSAVES only when XSAVE is exposed */ 4288 bool xsaves_enabled = 4289 boot_cpu_has(X86_FEATURE_XSAVE) && 4290 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 4291 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES); 4292 4293 vcpu->arch.xsaves_enabled = xsaves_enabled; 4294 4295 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4296 SECONDARY_EXEC_XSAVES, 4297 xsaves_enabled, false); 4298 } 4299 4300 /* 4301 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either 4302 * feature is exposed to the guest. This creates a virtualization hole 4303 * if both are supported in hardware but only one is exposed to the 4304 * guest, but letting the guest execute RDTSCP or RDPID when either one 4305 * is advertised is preferable to emulating the advertised instruction 4306 * in KVM on #UD, and obviously better than incorrectly injecting #UD. 4307 */ 4308 if (cpu_has_vmx_rdtscp()) { 4309 bool rdpid_or_rdtscp_enabled = 4310 guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) || 4311 guest_cpuid_has(vcpu, X86_FEATURE_RDPID); 4312 4313 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4314 SECONDARY_EXEC_ENABLE_RDTSCP, 4315 rdpid_or_rdtscp_enabled, false); 4316 } 4317 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID); 4318 4319 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND); 4320 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED); 4321 4322 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG, 4323 ENABLE_USR_WAIT_PAUSE, false); 4324 4325 if (!vcpu->kvm->arch.bus_lock_detection_enabled) 4326 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION; 4327 4328 return exec_control; 4329 } 4330 4331 #define VMX_XSS_EXIT_BITMAP 0 4332 4333 static void init_vmcs(struct vcpu_vmx *vmx) 4334 { 4335 if (nested) 4336 nested_vmx_set_vmcs_shadowing_bitmap(); 4337 4338 if (cpu_has_vmx_msr_bitmap()) 4339 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); 4340 4341 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */ 4342 4343 /* Control */ 4344 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4345 4346 exec_controls_set(vmx, vmx_exec_control(vmx)); 4347 4348 if (cpu_has_secondary_exec_ctrls()) 4349 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx)); 4350 4351 if (kvm_vcpu_apicv_active(&vmx->vcpu)) { 4352 vmcs_write64(EOI_EXIT_BITMAP0, 0); 4353 vmcs_write64(EOI_EXIT_BITMAP1, 0); 4354 vmcs_write64(EOI_EXIT_BITMAP2, 0); 4355 vmcs_write64(EOI_EXIT_BITMAP3, 0); 4356 4357 vmcs_write16(GUEST_INTR_STATUS, 0); 4358 4359 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); 4360 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); 4361 } 4362 4363 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) { 4364 vmcs_write32(PLE_GAP, ple_gap); 4365 vmx->ple_window = ple_window; 4366 vmx->ple_window_dirty = true; 4367 } 4368 4369 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); 4370 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); 4371 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ 4372 4373 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ 4374 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ 4375 vmx_set_constant_host_state(vmx); 4376 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ 4377 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ 4378 4379 if (cpu_has_vmx_vmfunc()) 4380 vmcs_write64(VM_FUNCTION_CONTROL, 0); 4381 4382 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); 4383 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); 4384 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); 4385 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); 4386 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); 4387 4388 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 4389 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); 4390 4391 vm_exit_controls_set(vmx, vmx_vmexit_ctrl()); 4392 4393 /* 22.2.1, 20.8.1 */ 4394 vm_entry_controls_set(vmx, vmx_vmentry_ctrl()); 4395 4396 vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS; 4397 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits); 4398 4399 set_cr4_guest_host_mask(vmx); 4400 4401 if (vmx->vpid != 0) 4402 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); 4403 4404 if (cpu_has_vmx_xsaves()) 4405 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); 4406 4407 if (enable_pml) { 4408 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); 4409 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 4410 } 4411 4412 vmx_write_encls_bitmap(&vmx->vcpu, NULL); 4413 4414 if (vmx_pt_mode_is_host_guest()) { 4415 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); 4416 /* Bit[6~0] are forced to 1, writes are ignored. */ 4417 vmx->pt_desc.guest.output_mask = 0x7F; 4418 vmcs_write64(GUEST_IA32_RTIT_CTL, 0); 4419 } 4420 4421 vmcs_write32(GUEST_SYSENTER_CS, 0); 4422 vmcs_writel(GUEST_SYSENTER_ESP, 0); 4423 vmcs_writel(GUEST_SYSENTER_EIP, 0); 4424 vmcs_write64(GUEST_IA32_DEBUGCTL, 0); 4425 4426 if (cpu_has_vmx_tpr_shadow()) { 4427 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); 4428 if (cpu_need_tpr_shadow(&vmx->vcpu)) 4429 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 4430 __pa(vmx->vcpu.arch.apic->regs)); 4431 vmcs_write32(TPR_THRESHOLD, 0); 4432 } 4433 4434 vmx_setup_uret_msrs(vmx); 4435 } 4436 4437 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu) 4438 { 4439 struct vcpu_vmx *vmx = to_vmx(vcpu); 4440 4441 init_vmcs(vmx); 4442 4443 if (nested) 4444 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs)); 4445 4446 vcpu_setup_sgx_lepubkeyhash(vcpu); 4447 4448 vmx->nested.posted_intr_nv = -1; 4449 vmx->nested.vmxon_ptr = INVALID_GPA; 4450 vmx->nested.current_vmptr = INVALID_GPA; 4451 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID; 4452 4453 vcpu->arch.microcode_version = 0x100000000ULL; 4454 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED; 4455 4456 /* 4457 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR 4458 * or POSTED_INTR_WAKEUP_VECTOR. 4459 */ 4460 vmx->pi_desc.nv = POSTED_INTR_VECTOR; 4461 vmx->pi_desc.sn = 1; 4462 } 4463 4464 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 4465 { 4466 struct vcpu_vmx *vmx = to_vmx(vcpu); 4467 4468 if (!init_event) 4469 __vmx_vcpu_reset(vcpu); 4470 4471 vmx->rmode.vm86_active = 0; 4472 vmx->spec_ctrl = 0; 4473 4474 vmx->msr_ia32_umwait_control = 0; 4475 4476 vmx->hv_deadline_tsc = -1; 4477 kvm_set_cr8(vcpu, 0); 4478 4479 vmx_segment_cache_clear(vmx); 4480 kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS); 4481 4482 seg_setup(VCPU_SREG_CS); 4483 vmcs_write16(GUEST_CS_SELECTOR, 0xf000); 4484 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); 4485 4486 seg_setup(VCPU_SREG_DS); 4487 seg_setup(VCPU_SREG_ES); 4488 seg_setup(VCPU_SREG_FS); 4489 seg_setup(VCPU_SREG_GS); 4490 seg_setup(VCPU_SREG_SS); 4491 4492 vmcs_write16(GUEST_TR_SELECTOR, 0); 4493 vmcs_writel(GUEST_TR_BASE, 0); 4494 vmcs_write32(GUEST_TR_LIMIT, 0xffff); 4495 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 4496 4497 vmcs_write16(GUEST_LDTR_SELECTOR, 0); 4498 vmcs_writel(GUEST_LDTR_BASE, 0); 4499 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); 4500 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); 4501 4502 vmcs_writel(GUEST_GDTR_BASE, 0); 4503 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); 4504 4505 vmcs_writel(GUEST_IDTR_BASE, 0); 4506 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); 4507 4508 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 4509 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); 4510 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); 4511 if (kvm_mpx_supported()) 4512 vmcs_write64(GUEST_BNDCFGS, 0); 4513 4514 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ 4515 4516 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 4517 4518 vpid_sync_context(vmx->vpid); 4519 } 4520 4521 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu) 4522 { 4523 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 4524 } 4525 4526 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu) 4527 { 4528 if (!enable_vnmi || 4529 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { 4530 vmx_enable_irq_window(vcpu); 4531 return; 4532 } 4533 4534 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 4535 } 4536 4537 static void vmx_inject_irq(struct kvm_vcpu *vcpu) 4538 { 4539 struct vcpu_vmx *vmx = to_vmx(vcpu); 4540 uint32_t intr; 4541 int irq = vcpu->arch.interrupt.nr; 4542 4543 trace_kvm_inj_virq(irq); 4544 4545 ++vcpu->stat.irq_injections; 4546 if (vmx->rmode.vm86_active) { 4547 int inc_eip = 0; 4548 if (vcpu->arch.interrupt.soft) 4549 inc_eip = vcpu->arch.event_exit_inst_len; 4550 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip); 4551 return; 4552 } 4553 intr = irq | INTR_INFO_VALID_MASK; 4554 if (vcpu->arch.interrupt.soft) { 4555 intr |= INTR_TYPE_SOFT_INTR; 4556 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 4557 vmx->vcpu.arch.event_exit_inst_len); 4558 } else 4559 intr |= INTR_TYPE_EXT_INTR; 4560 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); 4561 4562 vmx_clear_hlt(vcpu); 4563 } 4564 4565 static void vmx_inject_nmi(struct kvm_vcpu *vcpu) 4566 { 4567 struct vcpu_vmx *vmx = to_vmx(vcpu); 4568 4569 if (!enable_vnmi) { 4570 /* 4571 * Tracking the NMI-blocked state in software is built upon 4572 * finding the next open IRQ window. This, in turn, depends on 4573 * well-behaving guests: They have to keep IRQs disabled at 4574 * least as long as the NMI handler runs. Otherwise we may 4575 * cause NMI nesting, maybe breaking the guest. But as this is 4576 * highly unlikely, we can live with the residual risk. 4577 */ 4578 vmx->loaded_vmcs->soft_vnmi_blocked = 1; 4579 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4580 } 4581 4582 ++vcpu->stat.nmi_injections; 4583 vmx->loaded_vmcs->nmi_known_unmasked = false; 4584 4585 if (vmx->rmode.vm86_active) { 4586 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0); 4587 return; 4588 } 4589 4590 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 4591 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); 4592 4593 vmx_clear_hlt(vcpu); 4594 } 4595 4596 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) 4597 { 4598 struct vcpu_vmx *vmx = to_vmx(vcpu); 4599 bool masked; 4600 4601 if (!enable_vnmi) 4602 return vmx->loaded_vmcs->soft_vnmi_blocked; 4603 if (vmx->loaded_vmcs->nmi_known_unmasked) 4604 return false; 4605 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; 4606 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4607 return masked; 4608 } 4609 4610 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 4611 { 4612 struct vcpu_vmx *vmx = to_vmx(vcpu); 4613 4614 if (!enable_vnmi) { 4615 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { 4616 vmx->loaded_vmcs->soft_vnmi_blocked = masked; 4617 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4618 } 4619 } else { 4620 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4621 if (masked) 4622 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 4623 GUEST_INTR_STATE_NMI); 4624 else 4625 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, 4626 GUEST_INTR_STATE_NMI); 4627 } 4628 } 4629 4630 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu) 4631 { 4632 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 4633 return false; 4634 4635 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) 4636 return true; 4637 4638 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4639 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI | 4640 GUEST_INTR_STATE_NMI)); 4641 } 4642 4643 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4644 { 4645 if (to_vmx(vcpu)->nested.nested_run_pending) 4646 return -EBUSY; 4647 4648 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 4649 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 4650 return -EBUSY; 4651 4652 return !vmx_nmi_blocked(vcpu); 4653 } 4654 4655 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu) 4656 { 4657 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 4658 return false; 4659 4660 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) || 4661 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4662 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); 4663 } 4664 4665 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4666 { 4667 if (to_vmx(vcpu)->nested.nested_run_pending) 4668 return -EBUSY; 4669 4670 /* 4671 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 4672 * e.g. if the IRQ arrived asynchronously after checking nested events. 4673 */ 4674 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 4675 return -EBUSY; 4676 4677 return !vmx_interrupt_blocked(vcpu); 4678 } 4679 4680 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) 4681 { 4682 void __user *ret; 4683 4684 if (enable_unrestricted_guest) 4685 return 0; 4686 4687 mutex_lock(&kvm->slots_lock); 4688 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, 4689 PAGE_SIZE * 3); 4690 mutex_unlock(&kvm->slots_lock); 4691 4692 if (IS_ERR(ret)) 4693 return PTR_ERR(ret); 4694 4695 to_kvm_vmx(kvm)->tss_addr = addr; 4696 4697 return init_rmode_tss(kvm, ret); 4698 } 4699 4700 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 4701 { 4702 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; 4703 return 0; 4704 } 4705 4706 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) 4707 { 4708 switch (vec) { 4709 case BP_VECTOR: 4710 /* 4711 * Update instruction length as we may reinject the exception 4712 * from user space while in guest debugging mode. 4713 */ 4714 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = 4715 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4716 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 4717 return false; 4718 fallthrough; 4719 case DB_VECTOR: 4720 return !(vcpu->guest_debug & 4721 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)); 4722 case DE_VECTOR: 4723 case OF_VECTOR: 4724 case BR_VECTOR: 4725 case UD_VECTOR: 4726 case DF_VECTOR: 4727 case SS_VECTOR: 4728 case GP_VECTOR: 4729 case MF_VECTOR: 4730 return true; 4731 } 4732 return false; 4733 } 4734 4735 static int handle_rmode_exception(struct kvm_vcpu *vcpu, 4736 int vec, u32 err_code) 4737 { 4738 /* 4739 * Instruction with address size override prefix opcode 0x67 4740 * Cause the #SS fault with 0 error code in VM86 mode. 4741 */ 4742 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { 4743 if (kvm_emulate_instruction(vcpu, 0)) { 4744 if (vcpu->arch.halt_request) { 4745 vcpu->arch.halt_request = 0; 4746 return kvm_vcpu_halt(vcpu); 4747 } 4748 return 1; 4749 } 4750 return 0; 4751 } 4752 4753 /* 4754 * Forward all other exceptions that are valid in real mode. 4755 * FIXME: Breaks guest debugging in real mode, needs to be fixed with 4756 * the required debugging infrastructure rework. 4757 */ 4758 kvm_queue_exception(vcpu, vec); 4759 return 1; 4760 } 4761 4762 static int handle_machine_check(struct kvm_vcpu *vcpu) 4763 { 4764 /* handled by vmx_vcpu_run() */ 4765 return 1; 4766 } 4767 4768 /* 4769 * If the host has split lock detection disabled, then #AC is 4770 * unconditionally injected into the guest, which is the pre split lock 4771 * detection behaviour. 4772 * 4773 * If the host has split lock detection enabled then #AC is 4774 * only injected into the guest when: 4775 * - Guest CPL == 3 (user mode) 4776 * - Guest has #AC detection enabled in CR0 4777 * - Guest EFLAGS has AC bit set 4778 */ 4779 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu) 4780 { 4781 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 4782 return true; 4783 4784 return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) && 4785 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC); 4786 } 4787 4788 static int handle_exception_nmi(struct kvm_vcpu *vcpu) 4789 { 4790 struct vcpu_vmx *vmx = to_vmx(vcpu); 4791 struct kvm_run *kvm_run = vcpu->run; 4792 u32 intr_info, ex_no, error_code; 4793 unsigned long cr2, dr6; 4794 u32 vect_info; 4795 4796 vect_info = vmx->idt_vectoring_info; 4797 intr_info = vmx_get_intr_info(vcpu); 4798 4799 if (is_machine_check(intr_info) || is_nmi(intr_info)) 4800 return 1; /* handled by handle_exception_nmi_irqoff() */ 4801 4802 if (is_invalid_opcode(intr_info)) 4803 return handle_ud(vcpu); 4804 4805 error_code = 0; 4806 if (intr_info & INTR_INFO_DELIVER_CODE_MASK) 4807 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 4808 4809 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { 4810 WARN_ON_ONCE(!enable_vmware_backdoor); 4811 4812 /* 4813 * VMware backdoor emulation on #GP interception only handles 4814 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero 4815 * error code on #GP. 4816 */ 4817 if (error_code) { 4818 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 4819 return 1; 4820 } 4821 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); 4822 } 4823 4824 /* 4825 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing 4826 * MMIO, it is better to report an internal error. 4827 * See the comments in vmx_handle_exit. 4828 */ 4829 if ((vect_info & VECTORING_INFO_VALID_MASK) && 4830 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { 4831 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4832 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; 4833 vcpu->run->internal.ndata = 4; 4834 vcpu->run->internal.data[0] = vect_info; 4835 vcpu->run->internal.data[1] = intr_info; 4836 vcpu->run->internal.data[2] = error_code; 4837 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu; 4838 return 0; 4839 } 4840 4841 if (is_page_fault(intr_info)) { 4842 cr2 = vmx_get_exit_qual(vcpu); 4843 if (enable_ept && !vcpu->arch.apf.host_apf_flags) { 4844 /* 4845 * EPT will cause page fault only if we need to 4846 * detect illegal GPAs. 4847 */ 4848 WARN_ON_ONCE(!allow_smaller_maxphyaddr); 4849 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code); 4850 return 1; 4851 } else 4852 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); 4853 } 4854 4855 ex_no = intr_info & INTR_INFO_VECTOR_MASK; 4856 4857 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) 4858 return handle_rmode_exception(vcpu, ex_no, error_code); 4859 4860 switch (ex_no) { 4861 case DB_VECTOR: 4862 dr6 = vmx_get_exit_qual(vcpu); 4863 if (!(vcpu->guest_debug & 4864 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { 4865 if (is_icebp(intr_info)) 4866 WARN_ON(!skip_emulated_instruction(vcpu)); 4867 4868 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 4869 return 1; 4870 } 4871 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 4872 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); 4873 fallthrough; 4874 case BP_VECTOR: 4875 /* 4876 * Update instruction length as we may reinject #BP from 4877 * user space while in guest debugging mode. Reading it for 4878 * #DB as well causes no harm, it is not used in that case. 4879 */ 4880 vmx->vcpu.arch.event_exit_inst_len = 4881 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4882 kvm_run->exit_reason = KVM_EXIT_DEBUG; 4883 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 4884 kvm_run->debug.arch.exception = ex_no; 4885 break; 4886 case AC_VECTOR: 4887 if (vmx_guest_inject_ac(vcpu)) { 4888 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); 4889 return 1; 4890 } 4891 4892 /* 4893 * Handle split lock. Depending on detection mode this will 4894 * either warn and disable split lock detection for this 4895 * task or force SIGBUS on it. 4896 */ 4897 if (handle_guest_split_lock(kvm_rip_read(vcpu))) 4898 return 1; 4899 fallthrough; 4900 default: 4901 kvm_run->exit_reason = KVM_EXIT_EXCEPTION; 4902 kvm_run->ex.exception = ex_no; 4903 kvm_run->ex.error_code = error_code; 4904 break; 4905 } 4906 return 0; 4907 } 4908 4909 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu) 4910 { 4911 ++vcpu->stat.irq_exits; 4912 return 1; 4913 } 4914 4915 static int handle_triple_fault(struct kvm_vcpu *vcpu) 4916 { 4917 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 4918 vcpu->mmio_needed = 0; 4919 return 0; 4920 } 4921 4922 static int handle_io(struct kvm_vcpu *vcpu) 4923 { 4924 unsigned long exit_qualification; 4925 int size, in, string; 4926 unsigned port; 4927 4928 exit_qualification = vmx_get_exit_qual(vcpu); 4929 string = (exit_qualification & 16) != 0; 4930 4931 ++vcpu->stat.io_exits; 4932 4933 if (string) 4934 return kvm_emulate_instruction(vcpu, 0); 4935 4936 port = exit_qualification >> 16; 4937 size = (exit_qualification & 7) + 1; 4938 in = (exit_qualification & 8) != 0; 4939 4940 return kvm_fast_pio(vcpu, size, port, in); 4941 } 4942 4943 static void 4944 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 4945 { 4946 /* 4947 * Patch in the VMCALL instruction: 4948 */ 4949 hypercall[0] = 0x0f; 4950 hypercall[1] = 0x01; 4951 hypercall[2] = 0xc1; 4952 } 4953 4954 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ 4955 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) 4956 { 4957 if (is_guest_mode(vcpu)) { 4958 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 4959 unsigned long orig_val = val; 4960 4961 /* 4962 * We get here when L2 changed cr0 in a way that did not change 4963 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), 4964 * but did change L0 shadowed bits. So we first calculate the 4965 * effective cr0 value that L1 would like to write into the 4966 * hardware. It consists of the L2-owned bits from the new 4967 * value combined with the L1-owned bits from L1's guest_cr0. 4968 */ 4969 val = (val & ~vmcs12->cr0_guest_host_mask) | 4970 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); 4971 4972 if (!nested_guest_cr0_valid(vcpu, val)) 4973 return 1; 4974 4975 if (kvm_set_cr0(vcpu, val)) 4976 return 1; 4977 vmcs_writel(CR0_READ_SHADOW, orig_val); 4978 return 0; 4979 } else { 4980 if (to_vmx(vcpu)->nested.vmxon && 4981 !nested_host_cr0_valid(vcpu, val)) 4982 return 1; 4983 4984 return kvm_set_cr0(vcpu, val); 4985 } 4986 } 4987 4988 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) 4989 { 4990 if (is_guest_mode(vcpu)) { 4991 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 4992 unsigned long orig_val = val; 4993 4994 /* analogously to handle_set_cr0 */ 4995 val = (val & ~vmcs12->cr4_guest_host_mask) | 4996 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); 4997 if (kvm_set_cr4(vcpu, val)) 4998 return 1; 4999 vmcs_writel(CR4_READ_SHADOW, orig_val); 5000 return 0; 5001 } else 5002 return kvm_set_cr4(vcpu, val); 5003 } 5004 5005 static int handle_desc(struct kvm_vcpu *vcpu) 5006 { 5007 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP)); 5008 return kvm_emulate_instruction(vcpu, 0); 5009 } 5010 5011 static int handle_cr(struct kvm_vcpu *vcpu) 5012 { 5013 unsigned long exit_qualification, val; 5014 int cr; 5015 int reg; 5016 int err; 5017 int ret; 5018 5019 exit_qualification = vmx_get_exit_qual(vcpu); 5020 cr = exit_qualification & 15; 5021 reg = (exit_qualification >> 8) & 15; 5022 switch ((exit_qualification >> 4) & 3) { 5023 case 0: /* mov to cr */ 5024 val = kvm_register_read(vcpu, reg); 5025 trace_kvm_cr_write(cr, val); 5026 switch (cr) { 5027 case 0: 5028 err = handle_set_cr0(vcpu, val); 5029 return kvm_complete_insn_gp(vcpu, err); 5030 case 3: 5031 WARN_ON_ONCE(enable_unrestricted_guest); 5032 5033 err = kvm_set_cr3(vcpu, val); 5034 return kvm_complete_insn_gp(vcpu, err); 5035 case 4: 5036 err = handle_set_cr4(vcpu, val); 5037 return kvm_complete_insn_gp(vcpu, err); 5038 case 8: { 5039 u8 cr8_prev = kvm_get_cr8(vcpu); 5040 u8 cr8 = (u8)val; 5041 err = kvm_set_cr8(vcpu, cr8); 5042 ret = kvm_complete_insn_gp(vcpu, err); 5043 if (lapic_in_kernel(vcpu)) 5044 return ret; 5045 if (cr8_prev <= cr8) 5046 return ret; 5047 /* 5048 * TODO: we might be squashing a 5049 * KVM_GUESTDBG_SINGLESTEP-triggered 5050 * KVM_EXIT_DEBUG here. 5051 */ 5052 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 5053 return 0; 5054 } 5055 } 5056 break; 5057 case 2: /* clts */ 5058 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS"); 5059 return -EIO; 5060 case 1: /*mov from cr*/ 5061 switch (cr) { 5062 case 3: 5063 WARN_ON_ONCE(enable_unrestricted_guest); 5064 5065 val = kvm_read_cr3(vcpu); 5066 kvm_register_write(vcpu, reg, val); 5067 trace_kvm_cr_read(cr, val); 5068 return kvm_skip_emulated_instruction(vcpu); 5069 case 8: 5070 val = kvm_get_cr8(vcpu); 5071 kvm_register_write(vcpu, reg, val); 5072 trace_kvm_cr_read(cr, val); 5073 return kvm_skip_emulated_instruction(vcpu); 5074 } 5075 break; 5076 case 3: /* lmsw */ 5077 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; 5078 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val); 5079 kvm_lmsw(vcpu, val); 5080 5081 return kvm_skip_emulated_instruction(vcpu); 5082 default: 5083 break; 5084 } 5085 vcpu->run->exit_reason = 0; 5086 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", 5087 (int)(exit_qualification >> 4) & 3, cr); 5088 return 0; 5089 } 5090 5091 static int handle_dr(struct kvm_vcpu *vcpu) 5092 { 5093 unsigned long exit_qualification; 5094 int dr, dr7, reg; 5095 int err = 1; 5096 5097 exit_qualification = vmx_get_exit_qual(vcpu); 5098 dr = exit_qualification & DEBUG_REG_ACCESS_NUM; 5099 5100 /* First, if DR does not exist, trigger UD */ 5101 if (!kvm_require_dr(vcpu, dr)) 5102 return 1; 5103 5104 if (kvm_x86_ops.get_cpl(vcpu) > 0) 5105 goto out; 5106 5107 dr7 = vmcs_readl(GUEST_DR7); 5108 if (dr7 & DR7_GD) { 5109 /* 5110 * As the vm-exit takes precedence over the debug trap, we 5111 * need to emulate the latter, either for the host or the 5112 * guest debugging itself. 5113 */ 5114 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 5115 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW; 5116 vcpu->run->debug.arch.dr7 = dr7; 5117 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5118 vcpu->run->debug.arch.exception = DB_VECTOR; 5119 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 5120 return 0; 5121 } else { 5122 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD); 5123 return 1; 5124 } 5125 } 5126 5127 if (vcpu->guest_debug == 0) { 5128 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5129 5130 /* 5131 * No more DR vmexits; force a reload of the debug registers 5132 * and reenter on this instruction. The next vmexit will 5133 * retrieve the full state of the debug registers. 5134 */ 5135 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 5136 return 1; 5137 } 5138 5139 reg = DEBUG_REG_ACCESS_REG(exit_qualification); 5140 if (exit_qualification & TYPE_MOV_FROM_DR) { 5141 unsigned long val; 5142 5143 kvm_get_dr(vcpu, dr, &val); 5144 kvm_register_write(vcpu, reg, val); 5145 err = 0; 5146 } else { 5147 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); 5148 } 5149 5150 out: 5151 return kvm_complete_insn_gp(vcpu, err); 5152 } 5153 5154 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 5155 { 5156 get_debugreg(vcpu->arch.db[0], 0); 5157 get_debugreg(vcpu->arch.db[1], 1); 5158 get_debugreg(vcpu->arch.db[2], 2); 5159 get_debugreg(vcpu->arch.db[3], 3); 5160 get_debugreg(vcpu->arch.dr6, 6); 5161 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); 5162 5163 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 5164 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5165 5166 /* 5167 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees 5168 * a stale dr6 from the guest. 5169 */ 5170 set_debugreg(DR6_RESERVED, 6); 5171 } 5172 5173 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) 5174 { 5175 vmcs_writel(GUEST_DR7, val); 5176 } 5177 5178 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) 5179 { 5180 kvm_apic_update_ppr(vcpu); 5181 return 1; 5182 } 5183 5184 static int handle_interrupt_window(struct kvm_vcpu *vcpu) 5185 { 5186 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 5187 5188 kvm_make_request(KVM_REQ_EVENT, vcpu); 5189 5190 ++vcpu->stat.irq_window_exits; 5191 return 1; 5192 } 5193 5194 static int handle_invlpg(struct kvm_vcpu *vcpu) 5195 { 5196 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5197 5198 kvm_mmu_invlpg(vcpu, exit_qualification); 5199 return kvm_skip_emulated_instruction(vcpu); 5200 } 5201 5202 static int handle_apic_access(struct kvm_vcpu *vcpu) 5203 { 5204 if (likely(fasteoi)) { 5205 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5206 int access_type, offset; 5207 5208 access_type = exit_qualification & APIC_ACCESS_TYPE; 5209 offset = exit_qualification & APIC_ACCESS_OFFSET; 5210 /* 5211 * Sane guest uses MOV to write EOI, with written value 5212 * not cared. So make a short-circuit here by avoiding 5213 * heavy instruction emulation. 5214 */ 5215 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && 5216 (offset == APIC_EOI)) { 5217 kvm_lapic_set_eoi(vcpu); 5218 return kvm_skip_emulated_instruction(vcpu); 5219 } 5220 } 5221 return kvm_emulate_instruction(vcpu, 0); 5222 } 5223 5224 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) 5225 { 5226 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5227 int vector = exit_qualification & 0xff; 5228 5229 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ 5230 kvm_apic_set_eoi_accelerated(vcpu, vector); 5231 return 1; 5232 } 5233 5234 static int handle_apic_write(struct kvm_vcpu *vcpu) 5235 { 5236 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5237 u32 offset = exit_qualification & 0xfff; 5238 5239 /* APIC-write VM exit is trap-like and thus no need to adjust IP */ 5240 kvm_apic_write_nodecode(vcpu, offset); 5241 return 1; 5242 } 5243 5244 static int handle_task_switch(struct kvm_vcpu *vcpu) 5245 { 5246 struct vcpu_vmx *vmx = to_vmx(vcpu); 5247 unsigned long exit_qualification; 5248 bool has_error_code = false; 5249 u32 error_code = 0; 5250 u16 tss_selector; 5251 int reason, type, idt_v, idt_index; 5252 5253 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); 5254 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); 5255 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); 5256 5257 exit_qualification = vmx_get_exit_qual(vcpu); 5258 5259 reason = (u32)exit_qualification >> 30; 5260 if (reason == TASK_SWITCH_GATE && idt_v) { 5261 switch (type) { 5262 case INTR_TYPE_NMI_INTR: 5263 vcpu->arch.nmi_injected = false; 5264 vmx_set_nmi_mask(vcpu, true); 5265 break; 5266 case INTR_TYPE_EXT_INTR: 5267 case INTR_TYPE_SOFT_INTR: 5268 kvm_clear_interrupt_queue(vcpu); 5269 break; 5270 case INTR_TYPE_HARD_EXCEPTION: 5271 if (vmx->idt_vectoring_info & 5272 VECTORING_INFO_DELIVER_CODE_MASK) { 5273 has_error_code = true; 5274 error_code = 5275 vmcs_read32(IDT_VECTORING_ERROR_CODE); 5276 } 5277 fallthrough; 5278 case INTR_TYPE_SOFT_EXCEPTION: 5279 kvm_clear_exception_queue(vcpu); 5280 break; 5281 default: 5282 break; 5283 } 5284 } 5285 tss_selector = exit_qualification; 5286 5287 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && 5288 type != INTR_TYPE_EXT_INTR && 5289 type != INTR_TYPE_NMI_INTR)) 5290 WARN_ON(!skip_emulated_instruction(vcpu)); 5291 5292 /* 5293 * TODO: What about debug traps on tss switch? 5294 * Are we supposed to inject them and update dr6? 5295 */ 5296 return kvm_task_switch(vcpu, tss_selector, 5297 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, 5298 reason, has_error_code, error_code); 5299 } 5300 5301 static int handle_ept_violation(struct kvm_vcpu *vcpu) 5302 { 5303 unsigned long exit_qualification; 5304 gpa_t gpa; 5305 u64 error_code; 5306 5307 exit_qualification = vmx_get_exit_qual(vcpu); 5308 5309 /* 5310 * EPT violation happened while executing iret from NMI, 5311 * "blocked by NMI" bit has to be set before next VM entry. 5312 * There are errata that may cause this bit to not be set: 5313 * AAK134, BY25. 5314 */ 5315 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5316 enable_vnmi && 5317 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5318 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); 5319 5320 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5321 trace_kvm_page_fault(gpa, exit_qualification); 5322 5323 /* Is it a read fault? */ 5324 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) 5325 ? PFERR_USER_MASK : 0; 5326 /* Is it a write fault? */ 5327 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) 5328 ? PFERR_WRITE_MASK : 0; 5329 /* Is it a fetch fault? */ 5330 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) 5331 ? PFERR_FETCH_MASK : 0; 5332 /* ept page table entry is present? */ 5333 error_code |= (exit_qualification & 5334 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE | 5335 EPT_VIOLATION_EXECUTABLE)) 5336 ? PFERR_PRESENT_MASK : 0; 5337 5338 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ? 5339 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; 5340 5341 vcpu->arch.exit_qualification = exit_qualification; 5342 5343 /* 5344 * Check that the GPA doesn't exceed physical memory limits, as that is 5345 * a guest page fault. We have to emulate the instruction here, because 5346 * if the illegal address is that of a paging structure, then 5347 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we 5348 * would also use advanced VM-exit information for EPT violations to 5349 * reconstruct the page fault error code. 5350 */ 5351 if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa))) 5352 return kvm_emulate_instruction(vcpu, 0); 5353 5354 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); 5355 } 5356 5357 static int handle_ept_misconfig(struct kvm_vcpu *vcpu) 5358 { 5359 gpa_t gpa; 5360 5361 if (!vmx_can_emulate_instruction(vcpu, NULL, 0)) 5362 return 1; 5363 5364 /* 5365 * A nested guest cannot optimize MMIO vmexits, because we have an 5366 * nGPA here instead of the required GPA. 5367 */ 5368 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5369 if (!is_guest_mode(vcpu) && 5370 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { 5371 trace_kvm_fast_mmio(gpa); 5372 return kvm_skip_emulated_instruction(vcpu); 5373 } 5374 5375 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); 5376 } 5377 5378 static int handle_nmi_window(struct kvm_vcpu *vcpu) 5379 { 5380 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm)) 5381 return -EIO; 5382 5383 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 5384 ++vcpu->stat.nmi_window_exits; 5385 kvm_make_request(KVM_REQ_EVENT, vcpu); 5386 5387 return 1; 5388 } 5389 5390 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) 5391 { 5392 struct vcpu_vmx *vmx = to_vmx(vcpu); 5393 bool intr_window_requested; 5394 unsigned count = 130; 5395 5396 intr_window_requested = exec_controls_get(vmx) & 5397 CPU_BASED_INTR_WINDOW_EXITING; 5398 5399 while (vmx->emulation_required && count-- != 0) { 5400 if (intr_window_requested && !vmx_interrupt_blocked(vcpu)) 5401 return handle_interrupt_window(&vmx->vcpu); 5402 5403 if (kvm_test_request(KVM_REQ_EVENT, vcpu)) 5404 return 1; 5405 5406 if (!kvm_emulate_instruction(vcpu, 0)) 5407 return 0; 5408 5409 if (vmx->emulation_required && !vmx->rmode.vm86_active && 5410 vcpu->arch.exception.pending) { 5411 kvm_prepare_emulation_failure_exit(vcpu); 5412 return 0; 5413 } 5414 5415 if (vcpu->arch.halt_request) { 5416 vcpu->arch.halt_request = 0; 5417 return kvm_vcpu_halt(vcpu); 5418 } 5419 5420 /* 5421 * Note, return 1 and not 0, vcpu_run() will invoke 5422 * xfer_to_guest_mode() which will create a proper return 5423 * code. 5424 */ 5425 if (__xfer_to_guest_mode_work_pending()) 5426 return 1; 5427 } 5428 5429 return 1; 5430 } 5431 5432 static void grow_ple_window(struct kvm_vcpu *vcpu) 5433 { 5434 struct vcpu_vmx *vmx = to_vmx(vcpu); 5435 unsigned int old = vmx->ple_window; 5436 5437 vmx->ple_window = __grow_ple_window(old, ple_window, 5438 ple_window_grow, 5439 ple_window_max); 5440 5441 if (vmx->ple_window != old) { 5442 vmx->ple_window_dirty = true; 5443 trace_kvm_ple_window_update(vcpu->vcpu_id, 5444 vmx->ple_window, old); 5445 } 5446 } 5447 5448 static void shrink_ple_window(struct kvm_vcpu *vcpu) 5449 { 5450 struct vcpu_vmx *vmx = to_vmx(vcpu); 5451 unsigned int old = vmx->ple_window; 5452 5453 vmx->ple_window = __shrink_ple_window(old, ple_window, 5454 ple_window_shrink, 5455 ple_window); 5456 5457 if (vmx->ple_window != old) { 5458 vmx->ple_window_dirty = true; 5459 trace_kvm_ple_window_update(vcpu->vcpu_id, 5460 vmx->ple_window, old); 5461 } 5462 } 5463 5464 /* 5465 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE 5466 * exiting, so only get here on cpu with PAUSE-Loop-Exiting. 5467 */ 5468 static int handle_pause(struct kvm_vcpu *vcpu) 5469 { 5470 if (!kvm_pause_in_guest(vcpu->kvm)) 5471 grow_ple_window(vcpu); 5472 5473 /* 5474 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" 5475 * VM-execution control is ignored if CPL > 0. OTOH, KVM 5476 * never set PAUSE_EXITING and just set PLE if supported, 5477 * so the vcpu must be CPL=0 if it gets a PAUSE exit. 5478 */ 5479 kvm_vcpu_on_spin(vcpu, true); 5480 return kvm_skip_emulated_instruction(vcpu); 5481 } 5482 5483 static int handle_monitor_trap(struct kvm_vcpu *vcpu) 5484 { 5485 return 1; 5486 } 5487 5488 static int handle_invpcid(struct kvm_vcpu *vcpu) 5489 { 5490 u32 vmx_instruction_info; 5491 unsigned long type; 5492 gva_t gva; 5493 struct { 5494 u64 pcid; 5495 u64 gla; 5496 } operand; 5497 5498 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 5499 kvm_queue_exception(vcpu, UD_VECTOR); 5500 return 1; 5501 } 5502 5503 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5504 type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf); 5505 5506 if (type > 3) { 5507 kvm_inject_gp(vcpu, 0); 5508 return 1; 5509 } 5510 5511 /* According to the Intel instruction reference, the memory operand 5512 * is read even if it isn't needed (e.g., for type==all) 5513 */ 5514 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), 5515 vmx_instruction_info, false, 5516 sizeof(operand), &gva)) 5517 return 1; 5518 5519 return kvm_handle_invpcid(vcpu, type, gva); 5520 } 5521 5522 static int handle_pml_full(struct kvm_vcpu *vcpu) 5523 { 5524 unsigned long exit_qualification; 5525 5526 trace_kvm_pml_full(vcpu->vcpu_id); 5527 5528 exit_qualification = vmx_get_exit_qual(vcpu); 5529 5530 /* 5531 * PML buffer FULL happened while executing iret from NMI, 5532 * "blocked by NMI" bit has to be set before next VM entry. 5533 */ 5534 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5535 enable_vnmi && 5536 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5537 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5538 GUEST_INTR_STATE_NMI); 5539 5540 /* 5541 * PML buffer already flushed at beginning of VMEXIT. Nothing to do 5542 * here.., and there's no userspace involvement needed for PML. 5543 */ 5544 return 1; 5545 } 5546 5547 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu) 5548 { 5549 struct vcpu_vmx *vmx = to_vmx(vcpu); 5550 5551 if (!vmx->req_immediate_exit && 5552 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) { 5553 kvm_lapic_expired_hv_timer(vcpu); 5554 return EXIT_FASTPATH_REENTER_GUEST; 5555 } 5556 5557 return EXIT_FASTPATH_NONE; 5558 } 5559 5560 static int handle_preemption_timer(struct kvm_vcpu *vcpu) 5561 { 5562 handle_fastpath_preemption_timer(vcpu); 5563 return 1; 5564 } 5565 5566 /* 5567 * When nested=0, all VMX instruction VM Exits filter here. The handlers 5568 * are overwritten by nested_vmx_setup() when nested=1. 5569 */ 5570 static int handle_vmx_instruction(struct kvm_vcpu *vcpu) 5571 { 5572 kvm_queue_exception(vcpu, UD_VECTOR); 5573 return 1; 5574 } 5575 5576 #ifndef CONFIG_X86_SGX_KVM 5577 static int handle_encls(struct kvm_vcpu *vcpu) 5578 { 5579 /* 5580 * SGX virtualization is disabled. There is no software enable bit for 5581 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent 5582 * the guest from executing ENCLS (when SGX is supported by hardware). 5583 */ 5584 kvm_queue_exception(vcpu, UD_VECTOR); 5585 return 1; 5586 } 5587 #endif /* CONFIG_X86_SGX_KVM */ 5588 5589 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu) 5590 { 5591 /* 5592 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK 5593 * VM-Exits. Unconditionally set the flag here and leave the handling to 5594 * vmx_handle_exit(). 5595 */ 5596 to_vmx(vcpu)->exit_reason.bus_lock_detected = true; 5597 return 1; 5598 } 5599 5600 /* 5601 * The exit handlers return 1 if the exit was handled fully and guest execution 5602 * may resume. Otherwise they set the kvm_run parameter to indicate what needs 5603 * to be done to userspace and return 0. 5604 */ 5605 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { 5606 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi, 5607 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, 5608 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, 5609 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, 5610 [EXIT_REASON_IO_INSTRUCTION] = handle_io, 5611 [EXIT_REASON_CR_ACCESS] = handle_cr, 5612 [EXIT_REASON_DR_ACCESS] = handle_dr, 5613 [EXIT_REASON_CPUID] = kvm_emulate_cpuid, 5614 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr, 5615 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr, 5616 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window, 5617 [EXIT_REASON_HLT] = kvm_emulate_halt, 5618 [EXIT_REASON_INVD] = kvm_emulate_invd, 5619 [EXIT_REASON_INVLPG] = handle_invlpg, 5620 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc, 5621 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall, 5622 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, 5623 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, 5624 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, 5625 [EXIT_REASON_VMPTRST] = handle_vmx_instruction, 5626 [EXIT_REASON_VMREAD] = handle_vmx_instruction, 5627 [EXIT_REASON_VMRESUME] = handle_vmx_instruction, 5628 [EXIT_REASON_VMWRITE] = handle_vmx_instruction, 5629 [EXIT_REASON_VMOFF] = handle_vmx_instruction, 5630 [EXIT_REASON_VMON] = handle_vmx_instruction, 5631 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, 5632 [EXIT_REASON_APIC_ACCESS] = handle_apic_access, 5633 [EXIT_REASON_APIC_WRITE] = handle_apic_write, 5634 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, 5635 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd, 5636 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv, 5637 [EXIT_REASON_TASK_SWITCH] = handle_task_switch, 5638 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, 5639 [EXIT_REASON_GDTR_IDTR] = handle_desc, 5640 [EXIT_REASON_LDTR_TR] = handle_desc, 5641 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, 5642 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, 5643 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, 5644 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait, 5645 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, 5646 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor, 5647 [EXIT_REASON_INVEPT] = handle_vmx_instruction, 5648 [EXIT_REASON_INVVPID] = handle_vmx_instruction, 5649 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op, 5650 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op, 5651 [EXIT_REASON_PML_FULL] = handle_pml_full, 5652 [EXIT_REASON_INVPCID] = handle_invpcid, 5653 [EXIT_REASON_VMFUNC] = handle_vmx_instruction, 5654 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, 5655 [EXIT_REASON_ENCLS] = handle_encls, 5656 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit, 5657 }; 5658 5659 static const int kvm_vmx_max_exit_handlers = 5660 ARRAY_SIZE(kvm_vmx_exit_handlers); 5661 5662 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 5663 u64 *info1, u64 *info2, 5664 u32 *intr_info, u32 *error_code) 5665 { 5666 struct vcpu_vmx *vmx = to_vmx(vcpu); 5667 5668 *reason = vmx->exit_reason.full; 5669 *info1 = vmx_get_exit_qual(vcpu); 5670 if (!(vmx->exit_reason.failed_vmentry)) { 5671 *info2 = vmx->idt_vectoring_info; 5672 *intr_info = vmx_get_intr_info(vcpu); 5673 if (is_exception_with_error_code(*intr_info)) 5674 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 5675 else 5676 *error_code = 0; 5677 } else { 5678 *info2 = 0; 5679 *intr_info = 0; 5680 *error_code = 0; 5681 } 5682 } 5683 5684 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) 5685 { 5686 if (vmx->pml_pg) { 5687 __free_page(vmx->pml_pg); 5688 vmx->pml_pg = NULL; 5689 } 5690 } 5691 5692 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) 5693 { 5694 struct vcpu_vmx *vmx = to_vmx(vcpu); 5695 u64 *pml_buf; 5696 u16 pml_idx; 5697 5698 pml_idx = vmcs_read16(GUEST_PML_INDEX); 5699 5700 /* Do nothing if PML buffer is empty */ 5701 if (pml_idx == (PML_ENTITY_NUM - 1)) 5702 return; 5703 5704 /* PML index always points to next available PML buffer entity */ 5705 if (pml_idx >= PML_ENTITY_NUM) 5706 pml_idx = 0; 5707 else 5708 pml_idx++; 5709 5710 pml_buf = page_address(vmx->pml_pg); 5711 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { 5712 u64 gpa; 5713 5714 gpa = pml_buf[pml_idx]; 5715 WARN_ON(gpa & (PAGE_SIZE - 1)); 5716 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 5717 } 5718 5719 /* reset PML index */ 5720 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 5721 } 5722 5723 static void vmx_dump_sel(char *name, uint32_t sel) 5724 { 5725 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", 5726 name, vmcs_read16(sel), 5727 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), 5728 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), 5729 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); 5730 } 5731 5732 static void vmx_dump_dtsel(char *name, uint32_t limit) 5733 { 5734 pr_err("%s limit=0x%08x, base=0x%016lx\n", 5735 name, vmcs_read32(limit), 5736 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); 5737 } 5738 5739 static void vmx_dump_msrs(char *name, struct vmx_msrs *m) 5740 { 5741 unsigned int i; 5742 struct vmx_msr_entry *e; 5743 5744 pr_err("MSR %s:\n", name); 5745 for (i = 0, e = m->val; i < m->nr; ++i, ++e) 5746 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value); 5747 } 5748 5749 void dump_vmcs(struct kvm_vcpu *vcpu) 5750 { 5751 struct vcpu_vmx *vmx = to_vmx(vcpu); 5752 u32 vmentry_ctl, vmexit_ctl; 5753 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control; 5754 unsigned long cr4; 5755 int efer_slot; 5756 5757 if (!dump_invalid_vmcs) { 5758 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n"); 5759 return; 5760 } 5761 5762 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); 5763 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); 5764 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); 5765 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); 5766 cr4 = vmcs_readl(GUEST_CR4); 5767 secondary_exec_control = 0; 5768 if (cpu_has_secondary_exec_ctrls()) 5769 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); 5770 5771 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n", 5772 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu); 5773 pr_err("*** Guest State ***\n"); 5774 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 5775 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), 5776 vmcs_readl(CR0_GUEST_HOST_MASK)); 5777 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 5778 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); 5779 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); 5780 if (cpu_has_vmx_ept()) { 5781 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", 5782 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); 5783 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", 5784 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); 5785 } 5786 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", 5787 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); 5788 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", 5789 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); 5790 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 5791 vmcs_readl(GUEST_SYSENTER_ESP), 5792 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); 5793 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); 5794 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); 5795 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); 5796 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); 5797 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); 5798 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); 5799 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); 5800 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); 5801 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); 5802 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); 5803 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER); 5804 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER) 5805 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER)); 5806 else if (efer_slot >= 0) 5807 pr_err("EFER= 0x%016llx (autoload)\n", 5808 vmx->msr_autoload.guest.val[efer_slot].value); 5809 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE) 5810 pr_err("EFER= 0x%016llx (effective)\n", 5811 vcpu->arch.efer | (EFER_LMA | EFER_LME)); 5812 else 5813 pr_err("EFER= 0x%016llx (effective)\n", 5814 vcpu->arch.efer & ~(EFER_LMA | EFER_LME)); 5815 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT) 5816 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT)); 5817 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", 5818 vmcs_read64(GUEST_IA32_DEBUGCTL), 5819 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); 5820 if (cpu_has_load_perf_global_ctrl() && 5821 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) 5822 pr_err("PerfGlobCtl = 0x%016llx\n", 5823 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); 5824 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) 5825 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); 5826 pr_err("Interruptibility = %08x ActivityState = %08x\n", 5827 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), 5828 vmcs_read32(GUEST_ACTIVITY_STATE)); 5829 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) 5830 pr_err("InterruptStatus = %04x\n", 5831 vmcs_read16(GUEST_INTR_STATUS)); 5832 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0) 5833 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest); 5834 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0) 5835 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest); 5836 5837 pr_err("*** Host State ***\n"); 5838 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", 5839 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); 5840 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", 5841 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), 5842 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), 5843 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), 5844 vmcs_read16(HOST_TR_SELECTOR)); 5845 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", 5846 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), 5847 vmcs_readl(HOST_TR_BASE)); 5848 pr_err("GDTBase=%016lx IDTBase=%016lx\n", 5849 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); 5850 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", 5851 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), 5852 vmcs_readl(HOST_CR4)); 5853 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 5854 vmcs_readl(HOST_IA32_SYSENTER_ESP), 5855 vmcs_read32(HOST_IA32_SYSENTER_CS), 5856 vmcs_readl(HOST_IA32_SYSENTER_EIP)); 5857 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER) 5858 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER)); 5859 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT) 5860 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT)); 5861 if (cpu_has_load_perf_global_ctrl() && 5862 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) 5863 pr_err("PerfGlobCtl = 0x%016llx\n", 5864 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); 5865 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0) 5866 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host); 5867 5868 pr_err("*** Control State ***\n"); 5869 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n", 5870 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control); 5871 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl); 5872 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", 5873 vmcs_read32(EXCEPTION_BITMAP), 5874 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), 5875 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); 5876 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", 5877 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 5878 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), 5879 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); 5880 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", 5881 vmcs_read32(VM_EXIT_INTR_INFO), 5882 vmcs_read32(VM_EXIT_INTR_ERROR_CODE), 5883 vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); 5884 pr_err(" reason=%08x qualification=%016lx\n", 5885 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); 5886 pr_err("IDTVectoring: info=%08x errcode=%08x\n", 5887 vmcs_read32(IDT_VECTORING_INFO_FIELD), 5888 vmcs_read32(IDT_VECTORING_ERROR_CODE)); 5889 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); 5890 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) 5891 pr_err("TSC Multiplier = 0x%016llx\n", 5892 vmcs_read64(TSC_MULTIPLIER)); 5893 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) { 5894 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { 5895 u16 status = vmcs_read16(GUEST_INTR_STATUS); 5896 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff); 5897 } 5898 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); 5899 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) 5900 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR)); 5901 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR)); 5902 } 5903 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) 5904 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); 5905 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) 5906 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); 5907 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) 5908 pr_err("PLE Gap=%08x Window=%08x\n", 5909 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); 5910 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) 5911 pr_err("Virtual processor ID = 0x%04x\n", 5912 vmcs_read16(VIRTUAL_PROCESSOR_ID)); 5913 } 5914 5915 /* 5916 * The guest has exited. See if we can fix it or if we need userspace 5917 * assistance. 5918 */ 5919 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 5920 { 5921 struct vcpu_vmx *vmx = to_vmx(vcpu); 5922 union vmx_exit_reason exit_reason = vmx->exit_reason; 5923 u32 vectoring_info = vmx->idt_vectoring_info; 5924 u16 exit_handler_index; 5925 5926 /* 5927 * Flush logged GPAs PML buffer, this will make dirty_bitmap more 5928 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before 5929 * querying dirty_bitmap, we only need to kick all vcpus out of guest 5930 * mode as if vcpus is in root mode, the PML buffer must has been 5931 * flushed already. Note, PML is never enabled in hardware while 5932 * running L2. 5933 */ 5934 if (enable_pml && !is_guest_mode(vcpu)) 5935 vmx_flush_pml_buffer(vcpu); 5936 5937 /* 5938 * We should never reach this point with a pending nested VM-Enter, and 5939 * more specifically emulation of L2 due to invalid guest state (see 5940 * below) should never happen as that means we incorrectly allowed a 5941 * nested VM-Enter with an invalid vmcs12. 5942 */ 5943 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm)) 5944 return -EIO; 5945 5946 /* If guest state is invalid, start emulating */ 5947 if (vmx->emulation_required) 5948 return handle_invalid_guest_state(vcpu); 5949 5950 if (is_guest_mode(vcpu)) { 5951 /* 5952 * PML is never enabled when running L2, bail immediately if a 5953 * PML full exit occurs as something is horribly wrong. 5954 */ 5955 if (exit_reason.basic == EXIT_REASON_PML_FULL) 5956 goto unexpected_vmexit; 5957 5958 /* 5959 * The host physical addresses of some pages of guest memory 5960 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC 5961 * Page). The CPU may write to these pages via their host 5962 * physical address while L2 is running, bypassing any 5963 * address-translation-based dirty tracking (e.g. EPT write 5964 * protection). 5965 * 5966 * Mark them dirty on every exit from L2 to prevent them from 5967 * getting out of sync with dirty tracking. 5968 */ 5969 nested_mark_vmcs12_pages_dirty(vcpu); 5970 5971 if (nested_vmx_reflect_vmexit(vcpu)) 5972 return 1; 5973 } 5974 5975 if (exit_reason.failed_vmentry) { 5976 dump_vmcs(vcpu); 5977 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 5978 vcpu->run->fail_entry.hardware_entry_failure_reason 5979 = exit_reason.full; 5980 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 5981 return 0; 5982 } 5983 5984 if (unlikely(vmx->fail)) { 5985 dump_vmcs(vcpu); 5986 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 5987 vcpu->run->fail_entry.hardware_entry_failure_reason 5988 = vmcs_read32(VM_INSTRUCTION_ERROR); 5989 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 5990 return 0; 5991 } 5992 5993 /* 5994 * Note: 5995 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by 5996 * delivery event since it indicates guest is accessing MMIO. 5997 * The vm-exit can be triggered again after return to guest that 5998 * will cause infinite loop. 5999 */ 6000 if ((vectoring_info & VECTORING_INFO_VALID_MASK) && 6001 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI && 6002 exit_reason.basic != EXIT_REASON_EPT_VIOLATION && 6003 exit_reason.basic != EXIT_REASON_PML_FULL && 6004 exit_reason.basic != EXIT_REASON_APIC_ACCESS && 6005 exit_reason.basic != EXIT_REASON_TASK_SWITCH)) { 6006 int ndata = 3; 6007 6008 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6009 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; 6010 vcpu->run->internal.data[0] = vectoring_info; 6011 vcpu->run->internal.data[1] = exit_reason.full; 6012 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification; 6013 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) { 6014 vcpu->run->internal.data[ndata++] = 6015 vmcs_read64(GUEST_PHYSICAL_ADDRESS); 6016 } 6017 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu; 6018 vcpu->run->internal.ndata = ndata; 6019 return 0; 6020 } 6021 6022 if (unlikely(!enable_vnmi && 6023 vmx->loaded_vmcs->soft_vnmi_blocked)) { 6024 if (!vmx_interrupt_blocked(vcpu)) { 6025 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6026 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && 6027 vcpu->arch.nmi_pending) { 6028 /* 6029 * This CPU don't support us in finding the end of an 6030 * NMI-blocked window if the guest runs with IRQs 6031 * disabled. So we pull the trigger after 1 s of 6032 * futile waiting, but inform the user about this. 6033 */ 6034 printk(KERN_WARNING "%s: Breaking out of NMI-blocked " 6035 "state on VCPU %d after 1 s timeout\n", 6036 __func__, vcpu->vcpu_id); 6037 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6038 } 6039 } 6040 6041 if (exit_fastpath != EXIT_FASTPATH_NONE) 6042 return 1; 6043 6044 if (exit_reason.basic >= kvm_vmx_max_exit_handlers) 6045 goto unexpected_vmexit; 6046 #ifdef CONFIG_RETPOLINE 6047 if (exit_reason.basic == EXIT_REASON_MSR_WRITE) 6048 return kvm_emulate_wrmsr(vcpu); 6049 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER) 6050 return handle_preemption_timer(vcpu); 6051 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW) 6052 return handle_interrupt_window(vcpu); 6053 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6054 return handle_external_interrupt(vcpu); 6055 else if (exit_reason.basic == EXIT_REASON_HLT) 6056 return kvm_emulate_halt(vcpu); 6057 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) 6058 return handle_ept_misconfig(vcpu); 6059 #endif 6060 6061 exit_handler_index = array_index_nospec((u16)exit_reason.basic, 6062 kvm_vmx_max_exit_handlers); 6063 if (!kvm_vmx_exit_handlers[exit_handler_index]) 6064 goto unexpected_vmexit; 6065 6066 return kvm_vmx_exit_handlers[exit_handler_index](vcpu); 6067 6068 unexpected_vmexit: 6069 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", 6070 exit_reason.full); 6071 dump_vmcs(vcpu); 6072 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6073 vcpu->run->internal.suberror = 6074 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 6075 vcpu->run->internal.ndata = 2; 6076 vcpu->run->internal.data[0] = exit_reason.full; 6077 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 6078 return 0; 6079 } 6080 6081 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6082 { 6083 int ret = __vmx_handle_exit(vcpu, exit_fastpath); 6084 6085 /* 6086 * Exit to user space when bus lock detected to inform that there is 6087 * a bus lock in guest. 6088 */ 6089 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) { 6090 if (ret > 0) 6091 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; 6092 6093 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; 6094 return 0; 6095 } 6096 return ret; 6097 } 6098 6099 /* 6100 * Software based L1D cache flush which is used when microcode providing 6101 * the cache control MSR is not loaded. 6102 * 6103 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to 6104 * flush it is required to read in 64 KiB because the replacement algorithm 6105 * is not exactly LRU. This could be sized at runtime via topology 6106 * information but as all relevant affected CPUs have 32KiB L1D cache size 6107 * there is no point in doing so. 6108 */ 6109 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu) 6110 { 6111 int size = PAGE_SIZE << L1D_CACHE_ORDER; 6112 6113 /* 6114 * This code is only executed when the the flush mode is 'cond' or 6115 * 'always' 6116 */ 6117 if (static_branch_likely(&vmx_l1d_flush_cond)) { 6118 bool flush_l1d; 6119 6120 /* 6121 * Clear the per-vcpu flush bit, it gets set again 6122 * either from vcpu_run() or from one of the unsafe 6123 * VMEXIT handlers. 6124 */ 6125 flush_l1d = vcpu->arch.l1tf_flush_l1d; 6126 vcpu->arch.l1tf_flush_l1d = false; 6127 6128 /* 6129 * Clear the per-cpu flush bit, it gets set again from 6130 * the interrupt handlers. 6131 */ 6132 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); 6133 kvm_clear_cpu_l1tf_flush_l1d(); 6134 6135 if (!flush_l1d) 6136 return; 6137 } 6138 6139 vcpu->stat.l1d_flush++; 6140 6141 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { 6142 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 6143 return; 6144 } 6145 6146 asm volatile( 6147 /* First ensure the pages are in the TLB */ 6148 "xorl %%eax, %%eax\n" 6149 ".Lpopulate_tlb:\n\t" 6150 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6151 "addl $4096, %%eax\n\t" 6152 "cmpl %%eax, %[size]\n\t" 6153 "jne .Lpopulate_tlb\n\t" 6154 "xorl %%eax, %%eax\n\t" 6155 "cpuid\n\t" 6156 /* Now fill the cache */ 6157 "xorl %%eax, %%eax\n" 6158 ".Lfill_cache:\n" 6159 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6160 "addl $64, %%eax\n\t" 6161 "cmpl %%eax, %[size]\n\t" 6162 "jne .Lfill_cache\n\t" 6163 "lfence\n" 6164 :: [flush_pages] "r" (vmx_l1d_flush_pages), 6165 [size] "r" (size) 6166 : "eax", "ebx", "ecx", "edx"); 6167 } 6168 6169 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 6170 { 6171 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 6172 int tpr_threshold; 6173 6174 if (is_guest_mode(vcpu) && 6175 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) 6176 return; 6177 6178 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr; 6179 if (is_guest_mode(vcpu)) 6180 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold; 6181 else 6182 vmcs_write32(TPR_THRESHOLD, tpr_threshold); 6183 } 6184 6185 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) 6186 { 6187 struct vcpu_vmx *vmx = to_vmx(vcpu); 6188 u32 sec_exec_control; 6189 6190 if (!lapic_in_kernel(vcpu)) 6191 return; 6192 6193 if (!flexpriority_enabled && 6194 !cpu_has_vmx_virtualize_x2apic_mode()) 6195 return; 6196 6197 /* Postpone execution until vmcs01 is the current VMCS. */ 6198 if (is_guest_mode(vcpu)) { 6199 vmx->nested.change_vmcs01_virtual_apic_mode = true; 6200 return; 6201 } 6202 6203 sec_exec_control = secondary_exec_controls_get(vmx); 6204 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 6205 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); 6206 6207 switch (kvm_get_apic_mode(vcpu)) { 6208 case LAPIC_MODE_INVALID: 6209 WARN_ONCE(true, "Invalid local APIC state"); 6210 break; 6211 case LAPIC_MODE_DISABLED: 6212 break; 6213 case LAPIC_MODE_XAPIC: 6214 if (flexpriority_enabled) { 6215 sec_exec_control |= 6216 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 6217 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6218 6219 /* 6220 * Flush the TLB, reloading the APIC access page will 6221 * only do so if its physical address has changed, but 6222 * the guest may have inserted a non-APIC mapping into 6223 * the TLB while the APIC access page was disabled. 6224 */ 6225 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 6226 } 6227 break; 6228 case LAPIC_MODE_X2APIC: 6229 if (cpu_has_vmx_virtualize_x2apic_mode()) 6230 sec_exec_control |= 6231 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 6232 break; 6233 } 6234 secondary_exec_controls_set(vmx, sec_exec_control); 6235 6236 vmx_update_msr_bitmap_x2apic(vcpu); 6237 } 6238 6239 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu) 6240 { 6241 struct page *page; 6242 6243 /* Defer reload until vmcs01 is the current VMCS. */ 6244 if (is_guest_mode(vcpu)) { 6245 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true; 6246 return; 6247 } 6248 6249 if (!(secondary_exec_controls_get(to_vmx(vcpu)) & 6250 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 6251 return; 6252 6253 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 6254 if (is_error_page(page)) 6255 return; 6256 6257 vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page)); 6258 vmx_flush_tlb_current(vcpu); 6259 6260 /* 6261 * Do not pin apic access page in memory, the MMU notifier 6262 * will call us again if it is migrated or swapped out. 6263 */ 6264 put_page(page); 6265 } 6266 6267 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr) 6268 { 6269 u16 status; 6270 u8 old; 6271 6272 if (max_isr == -1) 6273 max_isr = 0; 6274 6275 status = vmcs_read16(GUEST_INTR_STATUS); 6276 old = status >> 8; 6277 if (max_isr != old) { 6278 status &= 0xff; 6279 status |= max_isr << 8; 6280 vmcs_write16(GUEST_INTR_STATUS, status); 6281 } 6282 } 6283 6284 static void vmx_set_rvi(int vector) 6285 { 6286 u16 status; 6287 u8 old; 6288 6289 if (vector == -1) 6290 vector = 0; 6291 6292 status = vmcs_read16(GUEST_INTR_STATUS); 6293 old = (u8)status & 0xff; 6294 if ((u8)vector != old) { 6295 status &= ~0xff; 6296 status |= (u8)vector; 6297 vmcs_write16(GUEST_INTR_STATUS, status); 6298 } 6299 } 6300 6301 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) 6302 { 6303 /* 6304 * When running L2, updating RVI is only relevant when 6305 * vmcs12 virtual-interrupt-delivery enabled. 6306 * However, it can be enabled only when L1 also 6307 * intercepts external-interrupts and in that case 6308 * we should not update vmcs02 RVI but instead intercept 6309 * interrupt. Therefore, do nothing when running L2. 6310 */ 6311 if (!is_guest_mode(vcpu)) 6312 vmx_set_rvi(max_irr); 6313 } 6314 6315 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) 6316 { 6317 struct vcpu_vmx *vmx = to_vmx(vcpu); 6318 int max_irr; 6319 bool max_irr_updated; 6320 6321 if (KVM_BUG_ON(!vcpu->arch.apicv_active, vcpu->kvm)) 6322 return -EIO; 6323 6324 if (pi_test_on(&vmx->pi_desc)) { 6325 pi_clear_on(&vmx->pi_desc); 6326 /* 6327 * IOMMU can write to PID.ON, so the barrier matters even on UP. 6328 * But on x86 this is just a compiler barrier anyway. 6329 */ 6330 smp_mb__after_atomic(); 6331 max_irr_updated = 6332 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); 6333 6334 /* 6335 * If we are running L2 and L1 has a new pending interrupt 6336 * which can be injected, this may cause a vmexit or it may 6337 * be injected into L2. Either way, this interrupt will be 6338 * processed via KVM_REQ_EVENT, not RVI, because we do not use 6339 * virtual interrupt delivery to inject L1 interrupts into L2. 6340 */ 6341 if (is_guest_mode(vcpu) && max_irr_updated) 6342 kvm_make_request(KVM_REQ_EVENT, vcpu); 6343 } else { 6344 max_irr = kvm_lapic_find_highest_irr(vcpu); 6345 } 6346 vmx_hwapic_irr_update(vcpu, max_irr); 6347 return max_irr; 6348 } 6349 6350 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) 6351 { 6352 if (!kvm_vcpu_apicv_active(vcpu)) 6353 return; 6354 6355 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); 6356 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); 6357 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); 6358 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); 6359 } 6360 6361 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu) 6362 { 6363 struct vcpu_vmx *vmx = to_vmx(vcpu); 6364 6365 pi_clear_on(&vmx->pi_desc); 6366 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); 6367 } 6368 6369 void vmx_do_interrupt_nmi_irqoff(unsigned long entry); 6370 6371 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu, 6372 unsigned long entry) 6373 { 6374 kvm_before_interrupt(vcpu); 6375 vmx_do_interrupt_nmi_irqoff(entry); 6376 kvm_after_interrupt(vcpu); 6377 } 6378 6379 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx) 6380 { 6381 const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist; 6382 u32 intr_info = vmx_get_intr_info(&vmx->vcpu); 6383 6384 /* if exit due to PF check for async PF */ 6385 if (is_page_fault(intr_info)) 6386 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags(); 6387 /* Handle machine checks before interrupts are enabled */ 6388 else if (is_machine_check(intr_info)) 6389 kvm_machine_check(); 6390 /* We need to handle NMIs before interrupts are enabled */ 6391 else if (is_nmi(intr_info)) 6392 handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry); 6393 } 6394 6395 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu) 6396 { 6397 u32 intr_info = vmx_get_intr_info(vcpu); 6398 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK; 6399 gate_desc *desc = (gate_desc *)host_idt_base + vector; 6400 6401 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm, 6402 "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info)) 6403 return; 6404 6405 handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc)); 6406 } 6407 6408 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu) 6409 { 6410 struct vcpu_vmx *vmx = to_vmx(vcpu); 6411 6412 if (vmx->emulation_required) 6413 return; 6414 6415 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6416 handle_external_interrupt_irqoff(vcpu); 6417 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI) 6418 handle_exception_nmi_irqoff(vmx); 6419 } 6420 6421 /* 6422 * The kvm parameter can be NULL (module initialization, or invocation before 6423 * VM creation). Be sure to check the kvm parameter before using it. 6424 */ 6425 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index) 6426 { 6427 switch (index) { 6428 case MSR_IA32_SMBASE: 6429 /* 6430 * We cannot do SMM unless we can run the guest in big 6431 * real mode. 6432 */ 6433 return enable_unrestricted_guest || emulate_invalid_guest_state; 6434 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 6435 return nested; 6436 case MSR_AMD64_VIRT_SPEC_CTRL: 6437 case MSR_AMD64_TSC_RATIO: 6438 /* This is AMD only. */ 6439 return false; 6440 default: 6441 return true; 6442 } 6443 } 6444 6445 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) 6446 { 6447 u32 exit_intr_info; 6448 bool unblock_nmi; 6449 u8 vector; 6450 bool idtv_info_valid; 6451 6452 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6453 6454 if (enable_vnmi) { 6455 if (vmx->loaded_vmcs->nmi_known_unmasked) 6456 return; 6457 6458 exit_intr_info = vmx_get_intr_info(&vmx->vcpu); 6459 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; 6460 vector = exit_intr_info & INTR_INFO_VECTOR_MASK; 6461 /* 6462 * SDM 3: 27.7.1.2 (September 2008) 6463 * Re-set bit "block by NMI" before VM entry if vmexit caused by 6464 * a guest IRET fault. 6465 * SDM 3: 23.2.2 (September 2008) 6466 * Bit 12 is undefined in any of the following cases: 6467 * If the VM exit sets the valid bit in the IDT-vectoring 6468 * information field. 6469 * If the VM exit is due to a double fault. 6470 */ 6471 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && 6472 vector != DF_VECTOR && !idtv_info_valid) 6473 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 6474 GUEST_INTR_STATE_NMI); 6475 else 6476 vmx->loaded_vmcs->nmi_known_unmasked = 6477 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) 6478 & GUEST_INTR_STATE_NMI); 6479 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) 6480 vmx->loaded_vmcs->vnmi_blocked_time += 6481 ktime_to_ns(ktime_sub(ktime_get(), 6482 vmx->loaded_vmcs->entry_time)); 6483 } 6484 6485 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, 6486 u32 idt_vectoring_info, 6487 int instr_len_field, 6488 int error_code_field) 6489 { 6490 u8 vector; 6491 int type; 6492 bool idtv_info_valid; 6493 6494 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6495 6496 vcpu->arch.nmi_injected = false; 6497 kvm_clear_exception_queue(vcpu); 6498 kvm_clear_interrupt_queue(vcpu); 6499 6500 if (!idtv_info_valid) 6501 return; 6502 6503 kvm_make_request(KVM_REQ_EVENT, vcpu); 6504 6505 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; 6506 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; 6507 6508 switch (type) { 6509 case INTR_TYPE_NMI_INTR: 6510 vcpu->arch.nmi_injected = true; 6511 /* 6512 * SDM 3: 27.7.1.2 (September 2008) 6513 * Clear bit "block by NMI" before VM entry if a NMI 6514 * delivery faulted. 6515 */ 6516 vmx_set_nmi_mask(vcpu, false); 6517 break; 6518 case INTR_TYPE_SOFT_EXCEPTION: 6519 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6520 fallthrough; 6521 case INTR_TYPE_HARD_EXCEPTION: 6522 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { 6523 u32 err = vmcs_read32(error_code_field); 6524 kvm_requeue_exception_e(vcpu, vector, err); 6525 } else 6526 kvm_requeue_exception(vcpu, vector); 6527 break; 6528 case INTR_TYPE_SOFT_INTR: 6529 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6530 fallthrough; 6531 case INTR_TYPE_EXT_INTR: 6532 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); 6533 break; 6534 default: 6535 break; 6536 } 6537 } 6538 6539 static void vmx_complete_interrupts(struct vcpu_vmx *vmx) 6540 { 6541 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, 6542 VM_EXIT_INSTRUCTION_LEN, 6543 IDT_VECTORING_ERROR_CODE); 6544 } 6545 6546 static void vmx_cancel_injection(struct kvm_vcpu *vcpu) 6547 { 6548 __vmx_complete_interrupts(vcpu, 6549 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 6550 VM_ENTRY_INSTRUCTION_LEN, 6551 VM_ENTRY_EXCEPTION_ERROR_CODE); 6552 6553 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); 6554 } 6555 6556 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) 6557 { 6558 int i, nr_msrs; 6559 struct perf_guest_switch_msr *msrs; 6560 6561 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */ 6562 msrs = perf_guest_get_msrs(&nr_msrs); 6563 if (!msrs) 6564 return; 6565 6566 for (i = 0; i < nr_msrs; i++) 6567 if (msrs[i].host == msrs[i].guest) 6568 clear_atomic_switch_msr(vmx, msrs[i].msr); 6569 else 6570 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, 6571 msrs[i].host, false); 6572 } 6573 6574 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu) 6575 { 6576 struct vcpu_vmx *vmx = to_vmx(vcpu); 6577 u64 tscl; 6578 u32 delta_tsc; 6579 6580 if (vmx->req_immediate_exit) { 6581 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0); 6582 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 6583 } else if (vmx->hv_deadline_tsc != -1) { 6584 tscl = rdtsc(); 6585 if (vmx->hv_deadline_tsc > tscl) 6586 /* set_hv_timer ensures the delta fits in 32-bits */ 6587 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> 6588 cpu_preemption_timer_multi); 6589 else 6590 delta_tsc = 0; 6591 6592 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc); 6593 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 6594 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) { 6595 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1); 6596 vmx->loaded_vmcs->hv_timer_soft_disabled = true; 6597 } 6598 } 6599 6600 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp) 6601 { 6602 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) { 6603 vmx->loaded_vmcs->host_state.rsp = host_rsp; 6604 vmcs_writel(HOST_RSP, host_rsp); 6605 } 6606 } 6607 6608 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 6609 { 6610 switch (to_vmx(vcpu)->exit_reason.basic) { 6611 case EXIT_REASON_MSR_WRITE: 6612 return handle_fastpath_set_msr_irqoff(vcpu); 6613 case EXIT_REASON_PREEMPTION_TIMER: 6614 return handle_fastpath_preemption_timer(vcpu); 6615 default: 6616 return EXIT_FASTPATH_NONE; 6617 } 6618 } 6619 6620 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu, 6621 struct vcpu_vmx *vmx) 6622 { 6623 kvm_guest_enter_irqoff(); 6624 6625 /* L1D Flush includes CPU buffer clear to mitigate MDS */ 6626 if (static_branch_unlikely(&vmx_l1d_should_flush)) 6627 vmx_l1d_flush(vcpu); 6628 else if (static_branch_unlikely(&mds_user_clear)) 6629 mds_clear_cpu_buffers(); 6630 6631 if (vcpu->arch.cr2 != native_read_cr2()) 6632 native_write_cr2(vcpu->arch.cr2); 6633 6634 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, 6635 vmx->loaded_vmcs->launched); 6636 6637 vcpu->arch.cr2 = native_read_cr2(); 6638 6639 kvm_guest_exit_irqoff(); 6640 } 6641 6642 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu) 6643 { 6644 struct vcpu_vmx *vmx = to_vmx(vcpu); 6645 unsigned long cr3, cr4; 6646 6647 /* Record the guest's net vcpu time for enforced NMI injections. */ 6648 if (unlikely(!enable_vnmi && 6649 vmx->loaded_vmcs->soft_vnmi_blocked)) 6650 vmx->loaded_vmcs->entry_time = ktime_get(); 6651 6652 /* 6653 * Don't enter VMX if guest state is invalid, let the exit handler 6654 * start emulation until we arrive back to a valid state. Synthesize a 6655 * consistency check VM-Exit due to invalid guest state and bail. 6656 */ 6657 if (unlikely(vmx->emulation_required)) { 6658 6659 /* We don't emulate invalid state of a nested guest */ 6660 vmx->fail = is_guest_mode(vcpu); 6661 6662 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE; 6663 vmx->exit_reason.failed_vmentry = 1; 6664 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1); 6665 vmx->exit_qualification = ENTRY_FAIL_DEFAULT; 6666 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2); 6667 vmx->exit_intr_info = 0; 6668 return EXIT_FASTPATH_NONE; 6669 } 6670 6671 trace_kvm_entry(vcpu); 6672 6673 if (vmx->ple_window_dirty) { 6674 vmx->ple_window_dirty = false; 6675 vmcs_write32(PLE_WINDOW, vmx->ple_window); 6676 } 6677 6678 /* 6679 * We did this in prepare_switch_to_guest, because it needs to 6680 * be within srcu_read_lock. 6681 */ 6682 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync); 6683 6684 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP)) 6685 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); 6686 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP)) 6687 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); 6688 6689 cr3 = __get_current_cr3_fast(); 6690 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { 6691 vmcs_writel(HOST_CR3, cr3); 6692 vmx->loaded_vmcs->host_state.cr3 = cr3; 6693 } 6694 6695 cr4 = cr4_read_shadow(); 6696 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { 6697 vmcs_writel(HOST_CR4, cr4); 6698 vmx->loaded_vmcs->host_state.cr4 = cr4; 6699 } 6700 6701 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */ 6702 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 6703 set_debugreg(vcpu->arch.dr6, 6); 6704 6705 /* When single-stepping over STI and MOV SS, we must clear the 6706 * corresponding interruptibility bits in the guest state. Otherwise 6707 * vmentry fails as it then expects bit 14 (BS) in pending debug 6708 * exceptions being set, but that's not correct for the guest debugging 6709 * case. */ 6710 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 6711 vmx_set_interrupt_shadow(vcpu, 0); 6712 6713 kvm_load_guest_xsave_state(vcpu); 6714 6715 pt_guest_enter(vmx); 6716 6717 atomic_switch_perf_msrs(vmx); 6718 if (intel_pmu_lbr_is_enabled(vcpu)) 6719 vmx_passthrough_lbr_msrs(vcpu); 6720 6721 if (enable_preemption_timer) 6722 vmx_update_hv_timer(vcpu); 6723 6724 kvm_wait_lapic_expire(vcpu); 6725 6726 /* 6727 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 6728 * it's non-zero. Since vmentry is serialising on affected CPUs, there 6729 * is no need to worry about the conditional branch over the wrmsr 6730 * being speculatively taken. 6731 */ 6732 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0); 6733 6734 /* The actual VMENTER/EXIT is in the .noinstr.text section. */ 6735 vmx_vcpu_enter_exit(vcpu, vmx); 6736 6737 /* 6738 * We do not use IBRS in the kernel. If this vCPU has used the 6739 * SPEC_CTRL MSR it may have left it on; save the value and 6740 * turn it off. This is much more efficient than blindly adding 6741 * it to the atomic save/restore list. Especially as the former 6742 * (Saving guest MSRs on vmexit) doesn't even exist in KVM. 6743 * 6744 * For non-nested case: 6745 * If the L01 MSR bitmap does not intercept the MSR, then we need to 6746 * save it. 6747 * 6748 * For nested case: 6749 * If the L02 MSR bitmap does not intercept the MSR, then we need to 6750 * save it. 6751 */ 6752 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) 6753 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); 6754 6755 x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0); 6756 6757 /* All fields are clean at this point */ 6758 if (static_branch_unlikely(&enable_evmcs)) { 6759 current_evmcs->hv_clean_fields |= 6760 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; 6761 6762 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu); 6763 } 6764 6765 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ 6766 if (vmx->host_debugctlmsr) 6767 update_debugctlmsr(vmx->host_debugctlmsr); 6768 6769 #ifndef CONFIG_X86_64 6770 /* 6771 * The sysexit path does not restore ds/es, so we must set them to 6772 * a reasonable value ourselves. 6773 * 6774 * We can't defer this to vmx_prepare_switch_to_host() since that 6775 * function may be executed in interrupt context, which saves and 6776 * restore segments around it, nullifying its effect. 6777 */ 6778 loadsegment(ds, __USER_DS); 6779 loadsegment(es, __USER_DS); 6780 #endif 6781 6782 vmx_register_cache_reset(vcpu); 6783 6784 pt_guest_exit(vmx); 6785 6786 kvm_load_host_xsave_state(vcpu); 6787 6788 if (is_guest_mode(vcpu)) { 6789 /* 6790 * Track VMLAUNCH/VMRESUME that have made past guest state 6791 * checking. 6792 */ 6793 if (vmx->nested.nested_run_pending && 6794 !vmx->exit_reason.failed_vmentry) 6795 ++vcpu->stat.nested_run; 6796 6797 vmx->nested.nested_run_pending = 0; 6798 } 6799 6800 vmx->idt_vectoring_info = 0; 6801 6802 if (unlikely(vmx->fail)) { 6803 vmx->exit_reason.full = 0xdead; 6804 return EXIT_FASTPATH_NONE; 6805 } 6806 6807 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON); 6808 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY)) 6809 kvm_machine_check(); 6810 6811 if (likely(!vmx->exit_reason.failed_vmentry)) 6812 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); 6813 6814 trace_kvm_exit(vcpu, KVM_ISA_VMX); 6815 6816 if (unlikely(vmx->exit_reason.failed_vmentry)) 6817 return EXIT_FASTPATH_NONE; 6818 6819 vmx->loaded_vmcs->launched = 1; 6820 6821 vmx_recover_nmi_blocking(vmx); 6822 vmx_complete_interrupts(vmx); 6823 6824 if (is_guest_mode(vcpu)) 6825 return EXIT_FASTPATH_NONE; 6826 6827 return vmx_exit_handlers_fastpath(vcpu); 6828 } 6829 6830 static void vmx_free_vcpu(struct kvm_vcpu *vcpu) 6831 { 6832 struct vcpu_vmx *vmx = to_vmx(vcpu); 6833 6834 if (enable_pml) 6835 vmx_destroy_pml_buffer(vmx); 6836 free_vpid(vmx->vpid); 6837 nested_vmx_free_vcpu(vcpu); 6838 free_loaded_vmcs(vmx->loaded_vmcs); 6839 } 6840 6841 static int vmx_create_vcpu(struct kvm_vcpu *vcpu) 6842 { 6843 struct vmx_uret_msr *tsx_ctrl; 6844 struct vcpu_vmx *vmx; 6845 int i, err; 6846 6847 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0); 6848 vmx = to_vmx(vcpu); 6849 6850 err = -ENOMEM; 6851 6852 vmx->vpid = allocate_vpid(); 6853 6854 /* 6855 * If PML is turned on, failure on enabling PML just results in failure 6856 * of creating the vcpu, therefore we can simplify PML logic (by 6857 * avoiding dealing with cases, such as enabling PML partially on vcpus 6858 * for the guest), etc. 6859 */ 6860 if (enable_pml) { 6861 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 6862 if (!vmx->pml_pg) 6863 goto free_vpid; 6864 } 6865 6866 for (i = 0; i < kvm_nr_uret_msrs; ++i) 6867 vmx->guest_uret_msrs[i].mask = -1ull; 6868 if (boot_cpu_has(X86_FEATURE_RTM)) { 6869 /* 6870 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception. 6871 * Keep the host value unchanged to avoid changing CPUID bits 6872 * under the host kernel's feet. 6873 */ 6874 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 6875 if (tsx_ctrl) 6876 tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR; 6877 } 6878 6879 err = alloc_loaded_vmcs(&vmx->vmcs01); 6880 if (err < 0) 6881 goto free_pml; 6882 6883 /* The MSR bitmap starts with all ones */ 6884 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS); 6885 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS); 6886 6887 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R); 6888 #ifdef CONFIG_X86_64 6889 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW); 6890 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW); 6891 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); 6892 #endif 6893 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); 6894 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); 6895 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); 6896 if (kvm_cstate_in_guest(vcpu->kvm)) { 6897 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R); 6898 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R); 6899 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R); 6900 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R); 6901 } 6902 6903 vmx->loaded_vmcs = &vmx->vmcs01; 6904 6905 if (cpu_need_virtualize_apic_accesses(vcpu)) { 6906 err = alloc_apic_access_page(vcpu->kvm); 6907 if (err) 6908 goto free_vmcs; 6909 } 6910 6911 if (enable_ept && !enable_unrestricted_guest) { 6912 err = init_rmode_identity_map(vcpu->kvm); 6913 if (err) 6914 goto free_vmcs; 6915 } 6916 6917 return 0; 6918 6919 free_vmcs: 6920 free_loaded_vmcs(vmx->loaded_vmcs); 6921 free_pml: 6922 vmx_destroy_pml_buffer(vmx); 6923 free_vpid: 6924 free_vpid(vmx->vpid); 6925 return err; 6926 } 6927 6928 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 6929 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 6930 6931 static int vmx_vm_init(struct kvm *kvm) 6932 { 6933 if (!ple_gap) 6934 kvm->arch.pause_in_guest = true; 6935 6936 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { 6937 switch (l1tf_mitigation) { 6938 case L1TF_MITIGATION_OFF: 6939 case L1TF_MITIGATION_FLUSH_NOWARN: 6940 /* 'I explicitly don't care' is set */ 6941 break; 6942 case L1TF_MITIGATION_FLUSH: 6943 case L1TF_MITIGATION_FLUSH_NOSMT: 6944 case L1TF_MITIGATION_FULL: 6945 /* 6946 * Warn upon starting the first VM in a potentially 6947 * insecure environment. 6948 */ 6949 if (sched_smt_active()) 6950 pr_warn_once(L1TF_MSG_SMT); 6951 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) 6952 pr_warn_once(L1TF_MSG_L1D); 6953 break; 6954 case L1TF_MITIGATION_FULL_FORCE: 6955 /* Flush is enforced */ 6956 break; 6957 } 6958 } 6959 return 0; 6960 } 6961 6962 static int __init vmx_check_processor_compat(void) 6963 { 6964 struct vmcs_config vmcs_conf; 6965 struct vmx_capability vmx_cap; 6966 6967 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 6968 !this_cpu_has(X86_FEATURE_VMX)) { 6969 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id()); 6970 return -EIO; 6971 } 6972 6973 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) 6974 return -EIO; 6975 if (nested) 6976 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept); 6977 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) { 6978 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n", 6979 smp_processor_id()); 6980 return -EIO; 6981 } 6982 return 0; 6983 } 6984 6985 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 6986 { 6987 u8 cache; 6988 u64 ipat = 0; 6989 6990 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in 6991 * memory aliases with conflicting memory types and sometimes MCEs. 6992 * We have to be careful as to what are honored and when. 6993 * 6994 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to 6995 * UC. The effective memory type is UC or WC depending on guest PAT. 6996 * This was historically the source of MCEs and we want to be 6997 * conservative. 6998 * 6999 * When there is no need to deal with noncoherent DMA (e.g., no VT-d 7000 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The 7001 * EPT memory type is set to WB. The effective memory type is forced 7002 * WB. 7003 * 7004 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The 7005 * EPT memory type is used to emulate guest CD/MTRR. 7006 */ 7007 7008 if (is_mmio) { 7009 cache = MTRR_TYPE_UNCACHABLE; 7010 goto exit; 7011 } 7012 7013 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) { 7014 ipat = VMX_EPT_IPAT_BIT; 7015 cache = MTRR_TYPE_WRBACK; 7016 goto exit; 7017 } 7018 7019 if (kvm_read_cr0(vcpu) & X86_CR0_CD) { 7020 ipat = VMX_EPT_IPAT_BIT; 7021 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 7022 cache = MTRR_TYPE_WRBACK; 7023 else 7024 cache = MTRR_TYPE_UNCACHABLE; 7025 goto exit; 7026 } 7027 7028 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn); 7029 7030 exit: 7031 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat; 7032 } 7033 7034 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl) 7035 { 7036 /* 7037 * These bits in the secondary execution controls field 7038 * are dynamic, the others are mostly based on the hypervisor 7039 * architecture and the guest's CPUID. Do not touch the 7040 * dynamic bits. 7041 */ 7042 u32 mask = 7043 SECONDARY_EXEC_SHADOW_VMCS | 7044 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 7045 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 7046 SECONDARY_EXEC_DESC; 7047 7048 u32 cur_ctl = secondary_exec_controls_get(vmx); 7049 7050 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask)); 7051 } 7052 7053 /* 7054 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits 7055 * (indicating "allowed-1") if they are supported in the guest's CPUID. 7056 */ 7057 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) 7058 { 7059 struct vcpu_vmx *vmx = to_vmx(vcpu); 7060 struct kvm_cpuid_entry2 *entry; 7061 7062 vmx->nested.msrs.cr0_fixed1 = 0xffffffff; 7063 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; 7064 7065 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ 7066 if (entry && (entry->_reg & (_cpuid_mask))) \ 7067 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ 7068 } while (0) 7069 7070 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0); 7071 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME)); 7072 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME)); 7073 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC)); 7074 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE)); 7075 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE)); 7076 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE)); 7077 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE)); 7078 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE)); 7079 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR)); 7080 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM)); 7081 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX)); 7082 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX)); 7083 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID)); 7084 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE)); 7085 7086 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0); 7087 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE)); 7088 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP)); 7089 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP)); 7090 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU)); 7091 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP)); 7092 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57)); 7093 7094 #undef cr4_fixed1_update 7095 } 7096 7097 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu) 7098 { 7099 struct vcpu_vmx *vmx = to_vmx(vcpu); 7100 7101 if (kvm_mpx_supported()) { 7102 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX); 7103 7104 if (mpx_enabled) { 7105 vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS; 7106 vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS; 7107 } else { 7108 vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS; 7109 vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS; 7110 } 7111 } 7112 } 7113 7114 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) 7115 { 7116 struct vcpu_vmx *vmx = to_vmx(vcpu); 7117 struct kvm_cpuid_entry2 *best = NULL; 7118 int i; 7119 7120 for (i = 0; i < PT_CPUID_LEAVES; i++) { 7121 best = kvm_find_cpuid_entry(vcpu, 0x14, i); 7122 if (!best) 7123 return; 7124 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; 7125 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; 7126 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; 7127 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; 7128 } 7129 7130 /* Get the number of configurable Address Ranges for filtering */ 7131 vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps, 7132 PT_CAP_num_address_ranges); 7133 7134 /* Initialize and clear the no dependency bits */ 7135 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | 7136 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC | 7137 RTIT_CTL_BRANCH_EN); 7138 7139 /* 7140 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise 7141 * will inject an #GP 7142 */ 7143 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) 7144 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; 7145 7146 /* 7147 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and 7148 * PSBFreq can be set 7149 */ 7150 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) 7151 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | 7152 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); 7153 7154 /* 7155 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set 7156 */ 7157 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) 7158 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | 7159 RTIT_CTL_MTC_RANGE); 7160 7161 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ 7162 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) 7163 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | 7164 RTIT_CTL_PTW_EN); 7165 7166 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ 7167 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) 7168 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; 7169 7170 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ 7171 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) 7172 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; 7173 7174 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */ 7175 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) 7176 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; 7177 7178 /* unmask address range configure area */ 7179 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) 7180 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4)); 7181 } 7182 7183 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 7184 { 7185 struct vcpu_vmx *vmx = to_vmx(vcpu); 7186 7187 /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */ 7188 vcpu->arch.xsaves_enabled = false; 7189 7190 vmx_setup_uret_msrs(vmx); 7191 7192 if (cpu_has_secondary_exec_ctrls()) 7193 vmcs_set_secondary_exec_control(vmx, 7194 vmx_secondary_exec_control(vmx)); 7195 7196 if (nested_vmx_allowed(vcpu)) 7197 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 7198 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7199 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; 7200 else 7201 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 7202 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7203 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX); 7204 7205 if (nested_vmx_allowed(vcpu)) { 7206 nested_vmx_cr_fixed1_bits_update(vcpu); 7207 nested_vmx_entry_exit_ctls_update(vcpu); 7208 } 7209 7210 if (boot_cpu_has(X86_FEATURE_INTEL_PT) && 7211 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT)) 7212 update_intel_pt_cfg(vcpu); 7213 7214 if (boot_cpu_has(X86_FEATURE_RTM)) { 7215 struct vmx_uret_msr *msr; 7216 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7217 if (msr) { 7218 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM); 7219 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE); 7220 } 7221 } 7222 7223 set_cr4_guest_host_mask(vmx); 7224 7225 vmx_write_encls_bitmap(vcpu, NULL); 7226 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX)) 7227 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED; 7228 else 7229 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED; 7230 7231 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 7232 vmx->msr_ia32_feature_control_valid_bits |= 7233 FEAT_CTL_SGX_LC_ENABLED; 7234 else 7235 vmx->msr_ia32_feature_control_valid_bits &= 7236 ~FEAT_CTL_SGX_LC_ENABLED; 7237 7238 /* Refresh #PF interception to account for MAXPHYADDR changes. */ 7239 vmx_update_exception_bitmap(vcpu); 7240 } 7241 7242 static __init void vmx_set_cpu_caps(void) 7243 { 7244 kvm_set_cpu_caps(); 7245 7246 /* CPUID 0x1 */ 7247 if (nested) 7248 kvm_cpu_cap_set(X86_FEATURE_VMX); 7249 7250 /* CPUID 0x7 */ 7251 if (kvm_mpx_supported()) 7252 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX); 7253 if (!cpu_has_vmx_invpcid()) 7254 kvm_cpu_cap_clear(X86_FEATURE_INVPCID); 7255 if (vmx_pt_mode_is_host_guest()) 7256 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT); 7257 7258 if (!enable_sgx) { 7259 kvm_cpu_cap_clear(X86_FEATURE_SGX); 7260 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC); 7261 kvm_cpu_cap_clear(X86_FEATURE_SGX1); 7262 kvm_cpu_cap_clear(X86_FEATURE_SGX2); 7263 } 7264 7265 if (vmx_umip_emulated()) 7266 kvm_cpu_cap_set(X86_FEATURE_UMIP); 7267 7268 /* CPUID 0xD.1 */ 7269 supported_xss = 0; 7270 if (!cpu_has_vmx_xsaves()) 7271 kvm_cpu_cap_clear(X86_FEATURE_XSAVES); 7272 7273 /* CPUID 0x80000001 and 0x7 (RDPID) */ 7274 if (!cpu_has_vmx_rdtscp()) { 7275 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP); 7276 kvm_cpu_cap_clear(X86_FEATURE_RDPID); 7277 } 7278 7279 if (cpu_has_vmx_waitpkg()) 7280 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG); 7281 } 7282 7283 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu) 7284 { 7285 to_vmx(vcpu)->req_immediate_exit = true; 7286 } 7287 7288 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu, 7289 struct x86_instruction_info *info) 7290 { 7291 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7292 unsigned short port; 7293 bool intercept; 7294 int size; 7295 7296 if (info->intercept == x86_intercept_in || 7297 info->intercept == x86_intercept_ins) { 7298 port = info->src_val; 7299 size = info->dst_bytes; 7300 } else { 7301 port = info->dst_val; 7302 size = info->src_bytes; 7303 } 7304 7305 /* 7306 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction 7307 * VM-exits depend on the 'unconditional IO exiting' VM-execution 7308 * control. 7309 * 7310 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps. 7311 */ 7312 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) 7313 intercept = nested_cpu_has(vmcs12, 7314 CPU_BASED_UNCOND_IO_EXITING); 7315 else 7316 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size); 7317 7318 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7319 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; 7320 } 7321 7322 static int vmx_check_intercept(struct kvm_vcpu *vcpu, 7323 struct x86_instruction_info *info, 7324 enum x86_intercept_stage stage, 7325 struct x86_exception *exception) 7326 { 7327 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7328 7329 switch (info->intercept) { 7330 /* 7331 * RDPID causes #UD if disabled through secondary execution controls. 7332 * Because it is marked as EmulateOnUD, we need to intercept it here. 7333 * Note, RDPID is hidden behind ENABLE_RDTSCP. 7334 */ 7335 case x86_intercept_rdpid: 7336 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) { 7337 exception->vector = UD_VECTOR; 7338 exception->error_code_valid = false; 7339 return X86EMUL_PROPAGATE_FAULT; 7340 } 7341 break; 7342 7343 case x86_intercept_in: 7344 case x86_intercept_ins: 7345 case x86_intercept_out: 7346 case x86_intercept_outs: 7347 return vmx_check_intercept_io(vcpu, info); 7348 7349 case x86_intercept_lgdt: 7350 case x86_intercept_lidt: 7351 case x86_intercept_lldt: 7352 case x86_intercept_ltr: 7353 case x86_intercept_sgdt: 7354 case x86_intercept_sidt: 7355 case x86_intercept_sldt: 7356 case x86_intercept_str: 7357 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC)) 7358 return X86EMUL_CONTINUE; 7359 7360 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7361 break; 7362 7363 /* TODO: check more intercepts... */ 7364 default: 7365 break; 7366 } 7367 7368 return X86EMUL_UNHANDLEABLE; 7369 } 7370 7371 #ifdef CONFIG_X86_64 7372 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ 7373 static inline int u64_shl_div_u64(u64 a, unsigned int shift, 7374 u64 divisor, u64 *result) 7375 { 7376 u64 low = a << shift, high = a >> (64 - shift); 7377 7378 /* To avoid the overflow on divq */ 7379 if (high >= divisor) 7380 return 1; 7381 7382 /* Low hold the result, high hold rem which is discarded */ 7383 asm("divq %2\n\t" : "=a" (low), "=d" (high) : 7384 "rm" (divisor), "0" (low), "1" (high)); 7385 *result = low; 7386 7387 return 0; 7388 } 7389 7390 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 7391 bool *expired) 7392 { 7393 struct vcpu_vmx *vmx; 7394 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; 7395 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer; 7396 7397 vmx = to_vmx(vcpu); 7398 tscl = rdtsc(); 7399 guest_tscl = kvm_read_l1_tsc(vcpu, tscl); 7400 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; 7401 lapic_timer_advance_cycles = nsec_to_cycles(vcpu, 7402 ktimer->timer_advance_ns); 7403 7404 if (delta_tsc > lapic_timer_advance_cycles) 7405 delta_tsc -= lapic_timer_advance_cycles; 7406 else 7407 delta_tsc = 0; 7408 7409 /* Convert to host delta tsc if tsc scaling is enabled */ 7410 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio && 7411 delta_tsc && u64_shl_div_u64(delta_tsc, 7412 kvm_tsc_scaling_ratio_frac_bits, 7413 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc)) 7414 return -ERANGE; 7415 7416 /* 7417 * If the delta tsc can't fit in the 32 bit after the multi shift, 7418 * we can't use the preemption timer. 7419 * It's possible that it fits on later vmentries, but checking 7420 * on every vmentry is costly so we just use an hrtimer. 7421 */ 7422 if (delta_tsc >> (cpu_preemption_timer_multi + 32)) 7423 return -ERANGE; 7424 7425 vmx->hv_deadline_tsc = tscl + delta_tsc; 7426 *expired = !delta_tsc; 7427 return 0; 7428 } 7429 7430 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) 7431 { 7432 to_vmx(vcpu)->hv_deadline_tsc = -1; 7433 } 7434 #endif 7435 7436 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) 7437 { 7438 if (!kvm_pause_in_guest(vcpu->kvm)) 7439 shrink_ple_window(vcpu); 7440 } 7441 7442 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu) 7443 { 7444 struct vcpu_vmx *vmx = to_vmx(vcpu); 7445 7446 if (is_guest_mode(vcpu)) { 7447 vmx->nested.update_vmcs01_cpu_dirty_logging = true; 7448 return; 7449 } 7450 7451 /* 7452 * Note, cpu_dirty_logging_count can be changed concurrent with this 7453 * code, but in that case another update request will be made and so 7454 * the guest will never run with a stale PML value. 7455 */ 7456 if (vcpu->kvm->arch.cpu_dirty_logging_count) 7457 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML); 7458 else 7459 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML); 7460 } 7461 7462 static int vmx_pre_block(struct kvm_vcpu *vcpu) 7463 { 7464 if (pi_pre_block(vcpu)) 7465 return 1; 7466 7467 if (kvm_lapic_hv_timer_in_use(vcpu)) 7468 kvm_lapic_switch_to_sw_timer(vcpu); 7469 7470 return 0; 7471 } 7472 7473 static void vmx_post_block(struct kvm_vcpu *vcpu) 7474 { 7475 if (kvm_x86_ops.set_hv_timer) 7476 kvm_lapic_switch_to_hv_timer(vcpu); 7477 7478 pi_post_block(vcpu); 7479 } 7480 7481 static void vmx_setup_mce(struct kvm_vcpu *vcpu) 7482 { 7483 if (vcpu->arch.mcg_cap & MCG_LMCE_P) 7484 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 7485 FEAT_CTL_LMCE_ENABLED; 7486 else 7487 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 7488 ~FEAT_CTL_LMCE_ENABLED; 7489 } 7490 7491 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 7492 { 7493 /* we need a nested vmexit to enter SMM, postpone if run is pending */ 7494 if (to_vmx(vcpu)->nested.nested_run_pending) 7495 return -EBUSY; 7496 return !is_smm(vcpu); 7497 } 7498 7499 static int vmx_enter_smm(struct kvm_vcpu *vcpu, char *smstate) 7500 { 7501 struct vcpu_vmx *vmx = to_vmx(vcpu); 7502 7503 vmx->nested.smm.guest_mode = is_guest_mode(vcpu); 7504 if (vmx->nested.smm.guest_mode) 7505 nested_vmx_vmexit(vcpu, -1, 0, 0); 7506 7507 vmx->nested.smm.vmxon = vmx->nested.vmxon; 7508 vmx->nested.vmxon = false; 7509 vmx_clear_hlt(vcpu); 7510 return 0; 7511 } 7512 7513 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) 7514 { 7515 struct vcpu_vmx *vmx = to_vmx(vcpu); 7516 int ret; 7517 7518 if (vmx->nested.smm.vmxon) { 7519 vmx->nested.vmxon = true; 7520 vmx->nested.smm.vmxon = false; 7521 } 7522 7523 if (vmx->nested.smm.guest_mode) { 7524 ret = nested_vmx_enter_non_root_mode(vcpu, false); 7525 if (ret) 7526 return ret; 7527 7528 vmx->nested.smm.guest_mode = false; 7529 } 7530 return 0; 7531 } 7532 7533 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu) 7534 { 7535 /* RSM will cause a vmexit anyway. */ 7536 } 7537 7538 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 7539 { 7540 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu); 7541 } 7542 7543 static void vmx_migrate_timers(struct kvm_vcpu *vcpu) 7544 { 7545 if (is_guest_mode(vcpu)) { 7546 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer; 7547 7548 if (hrtimer_try_to_cancel(timer) == 1) 7549 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 7550 } 7551 } 7552 7553 static void hardware_unsetup(void) 7554 { 7555 kvm_set_posted_intr_wakeup_handler(NULL); 7556 7557 if (nested) 7558 nested_vmx_hardware_unsetup(); 7559 7560 free_kvm_area(); 7561 } 7562 7563 static bool vmx_check_apicv_inhibit_reasons(ulong bit) 7564 { 7565 ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) | 7566 BIT(APICV_INHIBIT_REASON_HYPERV); 7567 7568 return supported & BIT(bit); 7569 } 7570 7571 static struct kvm_x86_ops vmx_x86_ops __initdata = { 7572 .name = "kvm_intel", 7573 7574 .hardware_unsetup = hardware_unsetup, 7575 7576 .hardware_enable = hardware_enable, 7577 .hardware_disable = hardware_disable, 7578 .cpu_has_accelerated_tpr = report_flexpriority, 7579 .has_emulated_msr = vmx_has_emulated_msr, 7580 7581 .vm_size = sizeof(struct kvm_vmx), 7582 .vm_init = vmx_vm_init, 7583 7584 .vcpu_create = vmx_create_vcpu, 7585 .vcpu_free = vmx_free_vcpu, 7586 .vcpu_reset = vmx_vcpu_reset, 7587 7588 .prepare_guest_switch = vmx_prepare_switch_to_guest, 7589 .vcpu_load = vmx_vcpu_load, 7590 .vcpu_put = vmx_vcpu_put, 7591 7592 .update_exception_bitmap = vmx_update_exception_bitmap, 7593 .get_msr_feature = vmx_get_msr_feature, 7594 .get_msr = vmx_get_msr, 7595 .set_msr = vmx_set_msr, 7596 .get_segment_base = vmx_get_segment_base, 7597 .get_segment = vmx_get_segment, 7598 .set_segment = vmx_set_segment, 7599 .get_cpl = vmx_get_cpl, 7600 .get_cs_db_l_bits = vmx_get_cs_db_l_bits, 7601 .set_cr0 = vmx_set_cr0, 7602 .is_valid_cr4 = vmx_is_valid_cr4, 7603 .set_cr4 = vmx_set_cr4, 7604 .set_efer = vmx_set_efer, 7605 .get_idt = vmx_get_idt, 7606 .set_idt = vmx_set_idt, 7607 .get_gdt = vmx_get_gdt, 7608 .set_gdt = vmx_set_gdt, 7609 .set_dr7 = vmx_set_dr7, 7610 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, 7611 .cache_reg = vmx_cache_reg, 7612 .get_rflags = vmx_get_rflags, 7613 .set_rflags = vmx_set_rflags, 7614 7615 .tlb_flush_all = vmx_flush_tlb_all, 7616 .tlb_flush_current = vmx_flush_tlb_current, 7617 .tlb_flush_gva = vmx_flush_tlb_gva, 7618 .tlb_flush_guest = vmx_flush_tlb_guest, 7619 7620 .run = vmx_vcpu_run, 7621 .handle_exit = vmx_handle_exit, 7622 .skip_emulated_instruction = vmx_skip_emulated_instruction, 7623 .update_emulated_instruction = vmx_update_emulated_instruction, 7624 .set_interrupt_shadow = vmx_set_interrupt_shadow, 7625 .get_interrupt_shadow = vmx_get_interrupt_shadow, 7626 .patch_hypercall = vmx_patch_hypercall, 7627 .set_irq = vmx_inject_irq, 7628 .set_nmi = vmx_inject_nmi, 7629 .queue_exception = vmx_queue_exception, 7630 .cancel_injection = vmx_cancel_injection, 7631 .interrupt_allowed = vmx_interrupt_allowed, 7632 .nmi_allowed = vmx_nmi_allowed, 7633 .get_nmi_mask = vmx_get_nmi_mask, 7634 .set_nmi_mask = vmx_set_nmi_mask, 7635 .enable_nmi_window = vmx_enable_nmi_window, 7636 .enable_irq_window = vmx_enable_irq_window, 7637 .update_cr8_intercept = vmx_update_cr8_intercept, 7638 .set_virtual_apic_mode = vmx_set_virtual_apic_mode, 7639 .set_apic_access_page_addr = vmx_set_apic_access_page_addr, 7640 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, 7641 .load_eoi_exitmap = vmx_load_eoi_exitmap, 7642 .apicv_post_state_restore = vmx_apicv_post_state_restore, 7643 .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons, 7644 .hwapic_irr_update = vmx_hwapic_irr_update, 7645 .hwapic_isr_update = vmx_hwapic_isr_update, 7646 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt, 7647 .sync_pir_to_irr = vmx_sync_pir_to_irr, 7648 .deliver_posted_interrupt = vmx_deliver_posted_interrupt, 7649 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt, 7650 7651 .set_tss_addr = vmx_set_tss_addr, 7652 .set_identity_map_addr = vmx_set_identity_map_addr, 7653 .get_mt_mask = vmx_get_mt_mask, 7654 7655 .get_exit_info = vmx_get_exit_info, 7656 7657 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid, 7658 7659 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, 7660 7661 .get_l2_tsc_offset = vmx_get_l2_tsc_offset, 7662 .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier, 7663 .write_tsc_offset = vmx_write_tsc_offset, 7664 .write_tsc_multiplier = vmx_write_tsc_multiplier, 7665 7666 .load_mmu_pgd = vmx_load_mmu_pgd, 7667 7668 .check_intercept = vmx_check_intercept, 7669 .handle_exit_irqoff = vmx_handle_exit_irqoff, 7670 7671 .request_immediate_exit = vmx_request_immediate_exit, 7672 7673 .sched_in = vmx_sched_in, 7674 7675 .cpu_dirty_log_size = PML_ENTITY_NUM, 7676 .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging, 7677 7678 .pre_block = vmx_pre_block, 7679 .post_block = vmx_post_block, 7680 7681 .pmu_ops = &intel_pmu_ops, 7682 .nested_ops = &vmx_nested_ops, 7683 7684 .update_pi_irte = pi_update_irte, 7685 .start_assignment = vmx_pi_start_assignment, 7686 7687 #ifdef CONFIG_X86_64 7688 .set_hv_timer = vmx_set_hv_timer, 7689 .cancel_hv_timer = vmx_cancel_hv_timer, 7690 #endif 7691 7692 .setup_mce = vmx_setup_mce, 7693 7694 .smi_allowed = vmx_smi_allowed, 7695 .enter_smm = vmx_enter_smm, 7696 .leave_smm = vmx_leave_smm, 7697 .enable_smi_window = vmx_enable_smi_window, 7698 7699 .can_emulate_instruction = vmx_can_emulate_instruction, 7700 .apic_init_signal_blocked = vmx_apic_init_signal_blocked, 7701 .migrate_timers = vmx_migrate_timers, 7702 7703 .msr_filter_changed = vmx_msr_filter_changed, 7704 .complete_emulated_msr = kvm_complete_insn_gp, 7705 7706 .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector, 7707 }; 7708 7709 static __init void vmx_setup_user_return_msrs(void) 7710 { 7711 7712 /* 7713 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm 7714 * will emulate SYSCALL in legacy mode if the vendor string in guest 7715 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To 7716 * support this emulation, MSR_STAR is included in the list for i386, 7717 * but is never loaded into hardware. MSR_CSTAR is also never loaded 7718 * into hardware and is here purely for emulation purposes. 7719 */ 7720 const u32 vmx_uret_msrs_list[] = { 7721 #ifdef CONFIG_X86_64 7722 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, 7723 #endif 7724 MSR_EFER, MSR_TSC_AUX, MSR_STAR, 7725 MSR_IA32_TSX_CTRL, 7726 }; 7727 int i; 7728 7729 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS); 7730 7731 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) 7732 kvm_add_user_return_msr(vmx_uret_msrs_list[i]); 7733 } 7734 7735 static __init int hardware_setup(void) 7736 { 7737 unsigned long host_bndcfgs; 7738 struct desc_ptr dt; 7739 int r, ept_lpage_level; 7740 7741 store_idt(&dt); 7742 host_idt_base = dt.address; 7743 7744 vmx_setup_user_return_msrs(); 7745 7746 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) 7747 return -EIO; 7748 7749 if (boot_cpu_has(X86_FEATURE_NX)) 7750 kvm_enable_efer_bits(EFER_NX); 7751 7752 if (boot_cpu_has(X86_FEATURE_MPX)) { 7753 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); 7754 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost"); 7755 } 7756 7757 if (!cpu_has_vmx_mpx()) 7758 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 7759 XFEATURE_MASK_BNDCSR); 7760 7761 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || 7762 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) 7763 enable_vpid = 0; 7764 7765 if (!cpu_has_vmx_ept() || 7766 !cpu_has_vmx_ept_4levels() || 7767 !cpu_has_vmx_ept_mt_wb() || 7768 !cpu_has_vmx_invept_global()) 7769 enable_ept = 0; 7770 7771 /* NX support is required for shadow paging. */ 7772 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) { 7773 pr_err_ratelimited("kvm: NX (Execute Disable) not supported\n"); 7774 return -EOPNOTSUPP; 7775 } 7776 7777 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) 7778 enable_ept_ad_bits = 0; 7779 7780 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) 7781 enable_unrestricted_guest = 0; 7782 7783 if (!cpu_has_vmx_flexpriority()) 7784 flexpriority_enabled = 0; 7785 7786 if (!cpu_has_virtual_nmis()) 7787 enable_vnmi = 0; 7788 7789 /* 7790 * set_apic_access_page_addr() is used to reload apic access 7791 * page upon invalidation. No need to do anything if not 7792 * using the APIC_ACCESS_ADDR VMCS field. 7793 */ 7794 if (!flexpriority_enabled) 7795 vmx_x86_ops.set_apic_access_page_addr = NULL; 7796 7797 if (!cpu_has_vmx_tpr_shadow()) 7798 vmx_x86_ops.update_cr8_intercept = NULL; 7799 7800 #if IS_ENABLED(CONFIG_HYPERV) 7801 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH 7802 && enable_ept) { 7803 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb; 7804 vmx_x86_ops.tlb_remote_flush_with_range = 7805 hv_remote_flush_tlb_with_range; 7806 } 7807 #endif 7808 7809 if (!cpu_has_vmx_ple()) { 7810 ple_gap = 0; 7811 ple_window = 0; 7812 ple_window_grow = 0; 7813 ple_window_max = 0; 7814 ple_window_shrink = 0; 7815 } 7816 7817 if (!cpu_has_vmx_apicv()) { 7818 enable_apicv = 0; 7819 vmx_x86_ops.sync_pir_to_irr = NULL; 7820 } 7821 7822 if (cpu_has_vmx_tsc_scaling()) { 7823 kvm_has_tsc_control = true; 7824 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; 7825 kvm_tsc_scaling_ratio_frac_bits = 48; 7826 } 7827 7828 kvm_has_bus_lock_exit = cpu_has_vmx_bus_lock_detection(); 7829 7830 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ 7831 7832 if (enable_ept) 7833 kvm_mmu_set_ept_masks(enable_ept_ad_bits, 7834 cpu_has_vmx_ept_execute_only()); 7835 7836 if (!enable_ept) 7837 ept_lpage_level = 0; 7838 else if (cpu_has_vmx_ept_1g_page()) 7839 ept_lpage_level = PG_LEVEL_1G; 7840 else if (cpu_has_vmx_ept_2m_page()) 7841 ept_lpage_level = PG_LEVEL_2M; 7842 else 7843 ept_lpage_level = PG_LEVEL_4K; 7844 kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(), 7845 ept_lpage_level); 7846 7847 /* 7848 * Only enable PML when hardware supports PML feature, and both EPT 7849 * and EPT A/D bit features are enabled -- PML depends on them to work. 7850 */ 7851 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) 7852 enable_pml = 0; 7853 7854 if (!enable_pml) 7855 vmx_x86_ops.cpu_dirty_log_size = 0; 7856 7857 if (!cpu_has_vmx_preemption_timer()) 7858 enable_preemption_timer = false; 7859 7860 if (enable_preemption_timer) { 7861 u64 use_timer_freq = 5000ULL * 1000 * 1000; 7862 u64 vmx_msr; 7863 7864 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr); 7865 cpu_preemption_timer_multi = 7866 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; 7867 7868 if (tsc_khz) 7869 use_timer_freq = (u64)tsc_khz * 1000; 7870 use_timer_freq >>= cpu_preemption_timer_multi; 7871 7872 /* 7873 * KVM "disables" the preemption timer by setting it to its max 7874 * value. Don't use the timer if it might cause spurious exits 7875 * at a rate faster than 0.1 Hz (of uninterrupted guest time). 7876 */ 7877 if (use_timer_freq > 0xffffffffu / 10) 7878 enable_preemption_timer = false; 7879 } 7880 7881 if (!enable_preemption_timer) { 7882 vmx_x86_ops.set_hv_timer = NULL; 7883 vmx_x86_ops.cancel_hv_timer = NULL; 7884 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit; 7885 } 7886 7887 kvm_mce_cap_supported |= MCG_LMCE_P; 7888 7889 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) 7890 return -EINVAL; 7891 if (!enable_ept || !cpu_has_vmx_intel_pt()) 7892 pt_mode = PT_MODE_SYSTEM; 7893 7894 setup_default_sgx_lepubkeyhash(); 7895 7896 if (nested) { 7897 nested_vmx_setup_ctls_msrs(&vmcs_config.nested, 7898 vmx_capability.ept); 7899 7900 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); 7901 if (r) 7902 return r; 7903 } 7904 7905 vmx_set_cpu_caps(); 7906 7907 r = alloc_kvm_area(); 7908 if (r) 7909 nested_vmx_hardware_unsetup(); 7910 7911 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler); 7912 7913 return r; 7914 } 7915 7916 static struct kvm_x86_init_ops vmx_init_ops __initdata = { 7917 .cpu_has_kvm_support = cpu_has_kvm_support, 7918 .disabled_by_bios = vmx_disabled_by_bios, 7919 .check_processor_compatibility = vmx_check_processor_compat, 7920 .hardware_setup = hardware_setup, 7921 7922 .runtime_ops = &vmx_x86_ops, 7923 }; 7924 7925 static void vmx_cleanup_l1d_flush(void) 7926 { 7927 if (vmx_l1d_flush_pages) { 7928 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); 7929 vmx_l1d_flush_pages = NULL; 7930 } 7931 /* Restore state so sysfs ignores VMX */ 7932 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 7933 } 7934 7935 static void vmx_exit(void) 7936 { 7937 #ifdef CONFIG_KEXEC_CORE 7938 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL); 7939 synchronize_rcu(); 7940 #endif 7941 7942 kvm_exit(); 7943 7944 #if IS_ENABLED(CONFIG_HYPERV) 7945 if (static_branch_unlikely(&enable_evmcs)) { 7946 int cpu; 7947 struct hv_vp_assist_page *vp_ap; 7948 /* 7949 * Reset everything to support using non-enlightened VMCS 7950 * access later (e.g. when we reload the module with 7951 * enlightened_vmcs=0) 7952 */ 7953 for_each_online_cpu(cpu) { 7954 vp_ap = hv_get_vp_assist_page(cpu); 7955 7956 if (!vp_ap) 7957 continue; 7958 7959 vp_ap->nested_control.features.directhypercall = 0; 7960 vp_ap->current_nested_vmcs = 0; 7961 vp_ap->enlighten_vmentry = 0; 7962 } 7963 7964 static_branch_disable(&enable_evmcs); 7965 } 7966 #endif 7967 vmx_cleanup_l1d_flush(); 7968 7969 allow_smaller_maxphyaddr = false; 7970 } 7971 module_exit(vmx_exit); 7972 7973 static int __init vmx_init(void) 7974 { 7975 int r, cpu; 7976 7977 #if IS_ENABLED(CONFIG_HYPERV) 7978 /* 7979 * Enlightened VMCS usage should be recommended and the host needs 7980 * to support eVMCS v1 or above. We can also disable eVMCS support 7981 * with module parameter. 7982 */ 7983 if (enlightened_vmcs && 7984 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && 7985 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= 7986 KVM_EVMCS_VERSION) { 7987 int cpu; 7988 7989 /* Check that we have assist pages on all online CPUs */ 7990 for_each_online_cpu(cpu) { 7991 if (!hv_get_vp_assist_page(cpu)) { 7992 enlightened_vmcs = false; 7993 break; 7994 } 7995 } 7996 7997 if (enlightened_vmcs) { 7998 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n"); 7999 static_branch_enable(&enable_evmcs); 8000 } 8001 8002 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH) 8003 vmx_x86_ops.enable_direct_tlbflush 8004 = hv_enable_direct_tlbflush; 8005 8006 } else { 8007 enlightened_vmcs = false; 8008 } 8009 #endif 8010 8011 r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx), 8012 __alignof__(struct vcpu_vmx), THIS_MODULE); 8013 if (r) 8014 return r; 8015 8016 /* 8017 * Must be called after kvm_init() so enable_ept is properly set 8018 * up. Hand the parameter mitigation value in which was stored in 8019 * the pre module init parser. If no parameter was given, it will 8020 * contain 'auto' which will be turned into the default 'cond' 8021 * mitigation mode. 8022 */ 8023 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); 8024 if (r) { 8025 vmx_exit(); 8026 return r; 8027 } 8028 8029 for_each_possible_cpu(cpu) { 8030 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); 8031 8032 pi_init_cpu(cpu); 8033 } 8034 8035 #ifdef CONFIG_KEXEC_CORE 8036 rcu_assign_pointer(crash_vmclear_loaded_vmcss, 8037 crash_vmclear_local_loaded_vmcss); 8038 #endif 8039 vmx_check_vmcs12_offsets(); 8040 8041 /* 8042 * Shadow paging doesn't have a (further) performance penalty 8043 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it 8044 * by default 8045 */ 8046 if (!enable_ept) 8047 allow_smaller_maxphyaddr = true; 8048 8049 return 0; 8050 } 8051 module_init(vmx_init); 8052