xref: /linux/arch/x86/kvm/vmx/vmx.c (revision dee264c16a6334dcdbea5c186f5ff35f98b1df42)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/objtool.h>
26 #include <linux/sched.h>
27 #include <linux/sched/smt.h>
28 #include <linux/slab.h>
29 #include <linux/tboot.h>
30 #include <linux/trace_events.h>
31 #include <linux/entry-kvm.h>
32 
33 #include <asm/apic.h>
34 #include <asm/asm.h>
35 #include <asm/cpu.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/debugreg.h>
38 #include <asm/desc.h>
39 #include <asm/fpu/api.h>
40 #include <asm/fpu/xstate.h>
41 #include <asm/fred.h>
42 #include <asm/idtentry.h>
43 #include <asm/io.h>
44 #include <asm/irq_remapping.h>
45 #include <asm/reboot.h>
46 #include <asm/perf_event.h>
47 #include <asm/mmu_context.h>
48 #include <asm/mshyperv.h>
49 #include <asm/msr.h>
50 #include <asm/mwait.h>
51 #include <asm/spec-ctrl.h>
52 #include <asm/vmx.h>
53 
54 #include <trace/events/ipi.h>
55 
56 #include "capabilities.h"
57 #include "common.h"
58 #include "cpuid.h"
59 #include "hyperv.h"
60 #include "kvm_onhyperv.h"
61 #include "irq.h"
62 #include "kvm_cache_regs.h"
63 #include "lapic.h"
64 #include "mmu.h"
65 #include "nested.h"
66 #include "pmu.h"
67 #include "sgx.h"
68 #include "trace.h"
69 #include "vmcs.h"
70 #include "vmcs12.h"
71 #include "vmx.h"
72 #include "x86.h"
73 #include "x86_ops.h"
74 #include "smm.h"
75 #include "vmx_onhyperv.h"
76 #include "posted_intr.h"
77 
78 MODULE_AUTHOR("Qumranet");
79 MODULE_DESCRIPTION("KVM support for VMX (Intel VT-x) extensions");
80 MODULE_LICENSE("GPL");
81 
82 #ifdef MODULE
83 static const struct x86_cpu_id vmx_cpu_id[] = {
84 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
85 	{}
86 };
87 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
88 #endif
89 
90 bool __read_mostly enable_vpid = 1;
91 module_param_named(vpid, enable_vpid, bool, 0444);
92 
93 static bool __read_mostly enable_vnmi = 1;
94 module_param_named(vnmi, enable_vnmi, bool, 0444);
95 
96 bool __read_mostly flexpriority_enabled = 1;
97 module_param_named(flexpriority, flexpriority_enabled, bool, 0444);
98 
99 bool __read_mostly enable_ept = 1;
100 module_param_named(ept, enable_ept, bool, 0444);
101 
102 bool __read_mostly enable_unrestricted_guest = 1;
103 module_param_named(unrestricted_guest,
104 			enable_unrestricted_guest, bool, 0444);
105 
106 bool __read_mostly enable_ept_ad_bits = 1;
107 module_param_named(eptad, enable_ept_ad_bits, bool, 0444);
108 
109 static bool __read_mostly emulate_invalid_guest_state = true;
110 module_param(emulate_invalid_guest_state, bool, 0444);
111 
112 static bool __read_mostly fasteoi = 1;
113 module_param(fasteoi, bool, 0444);
114 
115 module_param(enable_apicv, bool, 0444);
116 
117 bool __read_mostly enable_ipiv = true;
118 module_param(enable_ipiv, bool, 0444);
119 
120 /*
121  * If nested=1, nested virtualization is supported, i.e., guests may use
122  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
123  * use VMX instructions.
124  */
125 static bool __read_mostly nested = 1;
126 module_param(nested, bool, 0444);
127 
128 bool __read_mostly enable_pml = 1;
129 module_param_named(pml, enable_pml, bool, 0444);
130 
131 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
132 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
133 
134 static bool __read_mostly dump_invalid_vmcs = 0;
135 module_param(dump_invalid_vmcs, bool, 0644);
136 
137 #define MSR_BITMAP_MODE_X2APIC		1
138 #define MSR_BITMAP_MODE_X2APIC_APICV	2
139 
140 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
141 
142 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
143 static int __read_mostly cpu_preemption_timer_multi;
144 static bool __read_mostly enable_preemption_timer = 1;
145 #ifdef CONFIG_X86_64
146 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
147 #endif
148 
149 extern bool __read_mostly allow_smaller_maxphyaddr;
150 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
151 
152 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
153 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
154 #define KVM_VM_CR0_ALWAYS_ON				\
155 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
156 
157 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
158 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
159 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
160 
161 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
162 
163 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
164 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
165 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
166 	RTIT_STATUS_BYTECNT))
167 
168 /*
169  * List of MSRs that can be directly passed to the guest.
170  * In addition to these x2apic, PT and LBR MSRs are handled specially.
171  */
172 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
173 	MSR_IA32_SPEC_CTRL,
174 	MSR_IA32_PRED_CMD,
175 	MSR_IA32_FLUSH_CMD,
176 	MSR_IA32_TSC,
177 #ifdef CONFIG_X86_64
178 	MSR_FS_BASE,
179 	MSR_GS_BASE,
180 	MSR_KERNEL_GS_BASE,
181 	MSR_IA32_XFD,
182 	MSR_IA32_XFD_ERR,
183 #endif
184 	MSR_IA32_SYSENTER_CS,
185 	MSR_IA32_SYSENTER_ESP,
186 	MSR_IA32_SYSENTER_EIP,
187 	MSR_CORE_C1_RES,
188 	MSR_CORE_C3_RESIDENCY,
189 	MSR_CORE_C6_RESIDENCY,
190 	MSR_CORE_C7_RESIDENCY,
191 };
192 
193 /*
194  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
195  * ple_gap:    upper bound on the amount of time between two successive
196  *             executions of PAUSE in a loop. Also indicate if ple enabled.
197  *             According to test, this time is usually smaller than 128 cycles.
198  * ple_window: upper bound on the amount of time a guest is allowed to execute
199  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
200  *             less than 2^12 cycles
201  * Time is measured based on a counter that runs at the same rate as the TSC,
202  * refer SDM volume 3b section 21.6.13 & 22.1.3.
203  */
204 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
205 module_param(ple_gap, uint, 0444);
206 
207 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
208 module_param(ple_window, uint, 0444);
209 
210 /* Default doubles per-vcpu window every exit. */
211 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
212 module_param(ple_window_grow, uint, 0444);
213 
214 /* Default resets per-vcpu window every exit to ple_window. */
215 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
216 module_param(ple_window_shrink, uint, 0444);
217 
218 /* Default is to compute the maximum so we can never overflow. */
219 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
220 module_param(ple_window_max, uint, 0444);
221 
222 /* Default is SYSTEM mode, 1 for host-guest mode (which is BROKEN) */
223 int __read_mostly pt_mode = PT_MODE_SYSTEM;
224 #ifdef CONFIG_BROKEN
225 module_param(pt_mode, int, S_IRUGO);
226 #endif
227 
228 struct x86_pmu_lbr __ro_after_init vmx_lbr_caps;
229 
230 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
231 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
232 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
233 
234 /* Storage for pre module init parameter parsing */
235 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
236 
237 static const struct {
238 	const char *option;
239 	bool for_parse;
240 } vmentry_l1d_param[] = {
241 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
242 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
243 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
244 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
245 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
246 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
247 };
248 
249 #define L1D_CACHE_ORDER 4
250 static void *vmx_l1d_flush_pages;
251 
252 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
253 {
254 	struct page *page;
255 	unsigned int i;
256 
257 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
258 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
259 		return 0;
260 	}
261 
262 	if (!enable_ept) {
263 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
264 		return 0;
265 	}
266 
267 	if (kvm_host.arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
268 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
269 		return 0;
270 	}
271 
272 	/* If set to auto use the default l1tf mitigation method */
273 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
274 		switch (l1tf_mitigation) {
275 		case L1TF_MITIGATION_OFF:
276 			l1tf = VMENTER_L1D_FLUSH_NEVER;
277 			break;
278 		case L1TF_MITIGATION_AUTO:
279 		case L1TF_MITIGATION_FLUSH_NOWARN:
280 		case L1TF_MITIGATION_FLUSH:
281 		case L1TF_MITIGATION_FLUSH_NOSMT:
282 			l1tf = VMENTER_L1D_FLUSH_COND;
283 			break;
284 		case L1TF_MITIGATION_FULL:
285 		case L1TF_MITIGATION_FULL_FORCE:
286 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
287 			break;
288 		}
289 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
290 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
291 	}
292 
293 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
294 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
295 		/*
296 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
297 		 * lifetime and so should not be charged to a memcg.
298 		 */
299 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
300 		if (!page)
301 			return -ENOMEM;
302 		vmx_l1d_flush_pages = page_address(page);
303 
304 		/*
305 		 * Initialize each page with a different pattern in
306 		 * order to protect against KSM in the nested
307 		 * virtualization case.
308 		 */
309 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
310 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
311 			       PAGE_SIZE);
312 		}
313 	}
314 
315 	l1tf_vmx_mitigation = l1tf;
316 
317 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
318 		static_branch_enable(&vmx_l1d_should_flush);
319 	else
320 		static_branch_disable(&vmx_l1d_should_flush);
321 
322 	if (l1tf == VMENTER_L1D_FLUSH_COND)
323 		static_branch_enable(&vmx_l1d_flush_cond);
324 	else
325 		static_branch_disable(&vmx_l1d_flush_cond);
326 	return 0;
327 }
328 
329 static int vmentry_l1d_flush_parse(const char *s)
330 {
331 	unsigned int i;
332 
333 	if (s) {
334 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
335 			if (vmentry_l1d_param[i].for_parse &&
336 			    sysfs_streq(s, vmentry_l1d_param[i].option))
337 				return i;
338 		}
339 	}
340 	return -EINVAL;
341 }
342 
343 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
344 {
345 	int l1tf, ret;
346 
347 	l1tf = vmentry_l1d_flush_parse(s);
348 	if (l1tf < 0)
349 		return l1tf;
350 
351 	if (!boot_cpu_has(X86_BUG_L1TF))
352 		return 0;
353 
354 	/*
355 	 * Has vmx_init() run already? If not then this is the pre init
356 	 * parameter parsing. In that case just store the value and let
357 	 * vmx_init() do the proper setup after enable_ept has been
358 	 * established.
359 	 */
360 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
361 		vmentry_l1d_flush_param = l1tf;
362 		return 0;
363 	}
364 
365 	mutex_lock(&vmx_l1d_flush_mutex);
366 	ret = vmx_setup_l1d_flush(l1tf);
367 	mutex_unlock(&vmx_l1d_flush_mutex);
368 	return ret;
369 }
370 
371 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
372 {
373 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
374 		return sysfs_emit(s, "???\n");
375 
376 	return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
377 }
378 
379 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
380 {
381 	u64 msr;
382 
383 	if (!vmx->disable_fb_clear)
384 		return;
385 
386 	msr = native_rdmsrq(MSR_IA32_MCU_OPT_CTRL);
387 	msr |= FB_CLEAR_DIS;
388 	native_wrmsrq(MSR_IA32_MCU_OPT_CTRL, msr);
389 	/* Cache the MSR value to avoid reading it later */
390 	vmx->msr_ia32_mcu_opt_ctrl = msr;
391 }
392 
393 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
394 {
395 	if (!vmx->disable_fb_clear)
396 		return;
397 
398 	vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
399 	native_wrmsrq(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
400 }
401 
402 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
403 {
404 	/*
405 	 * Disable VERW's behavior of clearing CPU buffers for the guest if the
406 	 * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled
407 	 * the mitigation. Disabling the clearing behavior provides a
408 	 * performance boost for guests that aren't aware that manually clearing
409 	 * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry
410 	 * and VM-Exit.
411 	 */
412 	vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) &&
413 				(kvm_host.arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) &&
414 				!boot_cpu_has_bug(X86_BUG_MDS) &&
415 				!boot_cpu_has_bug(X86_BUG_TAA);
416 
417 	/*
418 	 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
419 	 * at VMEntry. Skip the MSR read/write when a guest has no use case to
420 	 * execute VERW.
421 	 */
422 	if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
423 	   ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
424 	    (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
425 	    (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
426 	    (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
427 	    (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
428 		vmx->disable_fb_clear = false;
429 }
430 
431 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
432 	.set = vmentry_l1d_flush_set,
433 	.get = vmentry_l1d_flush_get,
434 };
435 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
436 
437 static u32 vmx_segment_access_rights(struct kvm_segment *var);
438 
439 void vmx_vmexit(void);
440 
441 #define vmx_insn_failed(fmt...)		\
442 do {					\
443 	WARN_ONCE(1, fmt);		\
444 	pr_warn_ratelimited(fmt);	\
445 } while (0)
446 
447 noinline void vmread_error(unsigned long field)
448 {
449 	vmx_insn_failed("vmread failed: field=%lx\n", field);
450 }
451 
452 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT
453 noinstr void vmread_error_trampoline2(unsigned long field, bool fault)
454 {
455 	if (fault) {
456 		kvm_spurious_fault();
457 	} else {
458 		instrumentation_begin();
459 		vmread_error(field);
460 		instrumentation_end();
461 	}
462 }
463 #endif
464 
465 noinline void vmwrite_error(unsigned long field, unsigned long value)
466 {
467 	vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
468 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
469 }
470 
471 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
472 {
473 	vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
474 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
475 }
476 
477 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
478 {
479 	vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
480 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
481 }
482 
483 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
484 {
485 	vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
486 			ext, vpid, gva);
487 }
488 
489 noinline void invept_error(unsigned long ext, u64 eptp)
490 {
491 	vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx\n", ext, eptp);
492 }
493 
494 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
495 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
496 /*
497  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
498  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
499  */
500 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
501 
502 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
503 static DEFINE_SPINLOCK(vmx_vpid_lock);
504 
505 struct vmcs_config vmcs_config __ro_after_init;
506 struct vmx_capability vmx_capability __ro_after_init;
507 
508 #define VMX_SEGMENT_FIELD(seg)					\
509 	[VCPU_SREG_##seg] = {                                   \
510 		.selector = GUEST_##seg##_SELECTOR,		\
511 		.base = GUEST_##seg##_BASE,		   	\
512 		.limit = GUEST_##seg##_LIMIT,		   	\
513 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
514 	}
515 
516 static const struct kvm_vmx_segment_field {
517 	unsigned selector;
518 	unsigned base;
519 	unsigned limit;
520 	unsigned ar_bytes;
521 } kvm_vmx_segment_fields[] = {
522 	VMX_SEGMENT_FIELD(CS),
523 	VMX_SEGMENT_FIELD(DS),
524 	VMX_SEGMENT_FIELD(ES),
525 	VMX_SEGMENT_FIELD(FS),
526 	VMX_SEGMENT_FIELD(GS),
527 	VMX_SEGMENT_FIELD(SS),
528 	VMX_SEGMENT_FIELD(TR),
529 	VMX_SEGMENT_FIELD(LDTR),
530 };
531 
532 
533 static unsigned long host_idt_base;
534 
535 #if IS_ENABLED(CONFIG_HYPERV)
536 static bool __read_mostly enlightened_vmcs = true;
537 module_param(enlightened_vmcs, bool, 0444);
538 
539 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
540 {
541 	struct hv_enlightened_vmcs *evmcs;
542 	hpa_t partition_assist_page = hv_get_partition_assist_page(vcpu);
543 
544 	if (partition_assist_page == INVALID_PAGE)
545 		return -ENOMEM;
546 
547 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
548 
549 	evmcs->partition_assist_page = partition_assist_page;
550 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
551 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
552 
553 	return 0;
554 }
555 
556 static __init void hv_init_evmcs(void)
557 {
558 	int cpu;
559 
560 	if (!enlightened_vmcs)
561 		return;
562 
563 	/*
564 	 * Enlightened VMCS usage should be recommended and the host needs
565 	 * to support eVMCS v1 or above.
566 	 */
567 	if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
568 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
569 	     KVM_EVMCS_VERSION) {
570 
571 		/* Check that we have assist pages on all online CPUs */
572 		for_each_online_cpu(cpu) {
573 			if (!hv_get_vp_assist_page(cpu)) {
574 				enlightened_vmcs = false;
575 				break;
576 			}
577 		}
578 
579 		if (enlightened_vmcs) {
580 			pr_info("Using Hyper-V Enlightened VMCS\n");
581 			static_branch_enable(&__kvm_is_using_evmcs);
582 		}
583 
584 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
585 			vt_x86_ops.enable_l2_tlb_flush
586 				= hv_enable_l2_tlb_flush;
587 	} else {
588 		enlightened_vmcs = false;
589 	}
590 }
591 
592 static void hv_reset_evmcs(void)
593 {
594 	struct hv_vp_assist_page *vp_ap;
595 
596 	if (!kvm_is_using_evmcs())
597 		return;
598 
599 	/*
600 	 * KVM should enable eVMCS if and only if all CPUs have a VP assist
601 	 * page, and should reject CPU onlining if eVMCS is enabled the CPU
602 	 * doesn't have a VP assist page allocated.
603 	 */
604 	vp_ap = hv_get_vp_assist_page(smp_processor_id());
605 	if (WARN_ON_ONCE(!vp_ap))
606 		return;
607 
608 	/*
609 	 * Reset everything to support using non-enlightened VMCS access later
610 	 * (e.g. when we reload the module with enlightened_vmcs=0)
611 	 */
612 	vp_ap->nested_control.features.directhypercall = 0;
613 	vp_ap->current_nested_vmcs = 0;
614 	vp_ap->enlighten_vmentry = 0;
615 }
616 
617 #else /* IS_ENABLED(CONFIG_HYPERV) */
618 static void hv_init_evmcs(void) {}
619 static void hv_reset_evmcs(void) {}
620 #endif /* IS_ENABLED(CONFIG_HYPERV) */
621 
622 /*
623  * Comment's format: document - errata name - stepping - processor name.
624  * Refer from
625  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
626  */
627 static u32 vmx_preemption_cpu_tfms[] = {
628 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
629 0x000206E6,
630 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
631 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
632 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
633 0x00020652,
634 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
635 0x00020655,
636 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
637 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
638 /*
639  * 320767.pdf - AAP86  - B1 -
640  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
641  */
642 0x000106E5,
643 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
644 0x000106A0,
645 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
646 0x000106A1,
647 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
648 0x000106A4,
649  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
650  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
651  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
652 0x000106A5,
653  /* Xeon E3-1220 V2 */
654 0x000306A8,
655 };
656 
657 static inline bool cpu_has_broken_vmx_preemption_timer(void)
658 {
659 	u32 eax = cpuid_eax(0x00000001), i;
660 
661 	/* Clear the reserved bits */
662 	eax &= ~(0x3U << 14 | 0xfU << 28);
663 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
664 		if (eax == vmx_preemption_cpu_tfms[i])
665 			return true;
666 
667 	return false;
668 }
669 
670 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
671 {
672 	return flexpriority_enabled && lapic_in_kernel(vcpu);
673 }
674 
675 static int vmx_get_passthrough_msr_slot(u32 msr)
676 {
677 	int i;
678 
679 	switch (msr) {
680 	case 0x800 ... 0x8ff:
681 		/* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
682 		return -ENOENT;
683 	case MSR_IA32_RTIT_STATUS:
684 	case MSR_IA32_RTIT_OUTPUT_BASE:
685 	case MSR_IA32_RTIT_OUTPUT_MASK:
686 	case MSR_IA32_RTIT_CR3_MATCH:
687 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
688 		/* PT MSRs. These are handled in pt_update_intercept_for_msr() */
689 	case MSR_LBR_SELECT:
690 	case MSR_LBR_TOS:
691 	case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
692 	case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
693 	case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
694 	case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
695 	case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
696 		/* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
697 		return -ENOENT;
698 	}
699 
700 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
701 		if (vmx_possible_passthrough_msrs[i] == msr)
702 			return i;
703 	}
704 
705 	WARN(1, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
706 	return -ENOENT;
707 }
708 
709 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
710 {
711 	int i;
712 
713 	i = kvm_find_user_return_msr(msr);
714 	if (i >= 0)
715 		return &vmx->guest_uret_msrs[i];
716 	return NULL;
717 }
718 
719 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
720 				  struct vmx_uret_msr *msr, u64 data)
721 {
722 	unsigned int slot = msr - vmx->guest_uret_msrs;
723 	int ret = 0;
724 
725 	if (msr->load_into_hardware) {
726 		preempt_disable();
727 		ret = kvm_set_user_return_msr(slot, data, msr->mask);
728 		preempt_enable();
729 	}
730 	if (!ret)
731 		msr->data = data;
732 	return ret;
733 }
734 
735 /*
736  * Disable VMX and clear CR4.VMXE (even if VMXOFF faults)
737  *
738  * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to
739  * atomically track post-VMXON state, e.g. this may be called in NMI context.
740  * Eat all faults as all other faults on VMXOFF faults are mode related, i.e.
741  * faults are guaranteed to be due to the !post-VMXON check unless the CPU is
742  * magically in RM, VM86, compat mode, or at CPL>0.
743  */
744 static int kvm_cpu_vmxoff(void)
745 {
746 	asm goto("1: vmxoff\n\t"
747 			  _ASM_EXTABLE(1b, %l[fault])
748 			  ::: "cc", "memory" : fault);
749 
750 	cr4_clear_bits(X86_CR4_VMXE);
751 	return 0;
752 
753 fault:
754 	cr4_clear_bits(X86_CR4_VMXE);
755 	return -EIO;
756 }
757 
758 void vmx_emergency_disable_virtualization_cpu(void)
759 {
760 	int cpu = raw_smp_processor_id();
761 	struct loaded_vmcs *v;
762 
763 	kvm_rebooting = true;
764 
765 	/*
766 	 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be
767 	 * set in task context.  If this races with VMX is disabled by an NMI,
768 	 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to
769 	 * kvm_rebooting set.
770 	 */
771 	if (!(__read_cr4() & X86_CR4_VMXE))
772 		return;
773 
774 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
775 			    loaded_vmcss_on_cpu_link)
776 		vmcs_clear(v->vmcs);
777 
778 	kvm_cpu_vmxoff();
779 }
780 
781 static void __loaded_vmcs_clear(void *arg)
782 {
783 	struct loaded_vmcs *loaded_vmcs = arg;
784 	int cpu = raw_smp_processor_id();
785 
786 	if (loaded_vmcs->cpu != cpu)
787 		return; /* vcpu migration can race with cpu offline */
788 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
789 		per_cpu(current_vmcs, cpu) = NULL;
790 
791 	vmcs_clear(loaded_vmcs->vmcs);
792 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
793 		vmcs_clear(loaded_vmcs->shadow_vmcs);
794 
795 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
796 
797 	/*
798 	 * Ensure all writes to loaded_vmcs, including deleting it from its
799 	 * current percpu list, complete before setting loaded_vmcs->cpu to
800 	 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
801 	 * and add loaded_vmcs to its percpu list before it's deleted from this
802 	 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
803 	 */
804 	smp_wmb();
805 
806 	loaded_vmcs->cpu = -1;
807 	loaded_vmcs->launched = 0;
808 }
809 
810 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
811 {
812 	int cpu = loaded_vmcs->cpu;
813 
814 	if (cpu != -1)
815 		smp_call_function_single(cpu,
816 			 __loaded_vmcs_clear, loaded_vmcs, 1);
817 }
818 
819 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
820 				       unsigned field)
821 {
822 	bool ret;
823 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
824 
825 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
826 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
827 		vmx->segment_cache.bitmask = 0;
828 	}
829 	ret = vmx->segment_cache.bitmask & mask;
830 	vmx->segment_cache.bitmask |= mask;
831 	return ret;
832 }
833 
834 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
835 {
836 	u16 *p = &vmx->segment_cache.seg[seg].selector;
837 
838 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
839 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
840 	return *p;
841 }
842 
843 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
844 {
845 	ulong *p = &vmx->segment_cache.seg[seg].base;
846 
847 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
848 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
849 	return *p;
850 }
851 
852 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
853 {
854 	u32 *p = &vmx->segment_cache.seg[seg].limit;
855 
856 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
857 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
858 	return *p;
859 }
860 
861 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
862 {
863 	u32 *p = &vmx->segment_cache.seg[seg].ar;
864 
865 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
866 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
867 	return *p;
868 }
869 
870 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
871 {
872 	u32 eb;
873 
874 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
875 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
876 	/*
877 	 * #VE isn't used for VMX.  To test against unexpected changes
878 	 * related to #VE for VMX, intercept unexpected #VE and warn on it.
879 	 */
880 	if (IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
881 		eb |= 1u << VE_VECTOR;
882 	/*
883 	 * Guest access to VMware backdoor ports could legitimately
884 	 * trigger #GP because of TSS I/O permission bitmap.
885 	 * We intercept those #GP and allow access to them anyway
886 	 * as VMware does.
887 	 */
888 	if (enable_vmware_backdoor)
889 		eb |= (1u << GP_VECTOR);
890 	if ((vcpu->guest_debug &
891 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
892 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
893 		eb |= 1u << BP_VECTOR;
894 	if (to_vmx(vcpu)->rmode.vm86_active)
895 		eb = ~0;
896 	if (!vmx_need_pf_intercept(vcpu))
897 		eb &= ~(1u << PF_VECTOR);
898 
899 	/* When we are running a nested L2 guest and L1 specified for it a
900 	 * certain exception bitmap, we must trap the same exceptions and pass
901 	 * them to L1. When running L2, we will only handle the exceptions
902 	 * specified above if L1 did not want them.
903 	 */
904 	if (is_guest_mode(vcpu))
905 		eb |= get_vmcs12(vcpu)->exception_bitmap;
906 	else {
907 		int mask = 0, match = 0;
908 
909 		if (enable_ept && (eb & (1u << PF_VECTOR))) {
910 			/*
911 			 * If EPT is enabled, #PF is currently only intercepted
912 			 * if MAXPHYADDR is smaller on the guest than on the
913 			 * host.  In that case we only care about present,
914 			 * non-reserved faults.  For vmcs02, however, PFEC_MASK
915 			 * and PFEC_MATCH are set in prepare_vmcs02_rare.
916 			 */
917 			mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
918 			match = PFERR_PRESENT_MASK;
919 		}
920 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
921 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
922 	}
923 
924 	/*
925 	 * Disabling xfd interception indicates that dynamic xfeatures
926 	 * might be used in the guest. Always trap #NM in this case
927 	 * to save guest xfd_err timely.
928 	 */
929 	if (vcpu->arch.xfd_no_write_intercept)
930 		eb |= (1u << NM_VECTOR);
931 
932 	vmcs_write32(EXCEPTION_BITMAP, eb);
933 }
934 
935 /*
936  * Check if MSR is intercepted for currently loaded MSR bitmap.
937  */
938 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
939 {
940 	if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
941 		return true;
942 
943 	return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
944 }
945 
946 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
947 {
948 	unsigned int flags = 0;
949 
950 	if (vmx->loaded_vmcs->launched)
951 		flags |= VMX_RUN_VMRESUME;
952 
953 	/*
954 	 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
955 	 * to change it directly without causing a vmexit.  In that case read
956 	 * it after vmexit and store it in vmx->spec_ctrl.
957 	 */
958 	if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
959 		flags |= VMX_RUN_SAVE_SPEC_CTRL;
960 
961 	return flags;
962 }
963 
964 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
965 		unsigned long entry, unsigned long exit)
966 {
967 	vm_entry_controls_clearbit(vmx, entry);
968 	vm_exit_controls_clearbit(vmx, exit);
969 }
970 
971 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
972 {
973 	unsigned int i;
974 
975 	for (i = 0; i < m->nr; ++i) {
976 		if (m->val[i].index == msr)
977 			return i;
978 	}
979 	return -ENOENT;
980 }
981 
982 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
983 {
984 	int i;
985 	struct msr_autoload *m = &vmx->msr_autoload;
986 
987 	switch (msr) {
988 	case MSR_EFER:
989 		if (cpu_has_load_ia32_efer()) {
990 			clear_atomic_switch_msr_special(vmx,
991 					VM_ENTRY_LOAD_IA32_EFER,
992 					VM_EXIT_LOAD_IA32_EFER);
993 			return;
994 		}
995 		break;
996 	case MSR_CORE_PERF_GLOBAL_CTRL:
997 		if (cpu_has_load_perf_global_ctrl()) {
998 			clear_atomic_switch_msr_special(vmx,
999 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1000 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1001 			return;
1002 		}
1003 		break;
1004 	}
1005 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1006 	if (i < 0)
1007 		goto skip_guest;
1008 	--m->guest.nr;
1009 	m->guest.val[i] = m->guest.val[m->guest.nr];
1010 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1011 
1012 skip_guest:
1013 	i = vmx_find_loadstore_msr_slot(&m->host, msr);
1014 	if (i < 0)
1015 		return;
1016 
1017 	--m->host.nr;
1018 	m->host.val[i] = m->host.val[m->host.nr];
1019 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1020 }
1021 
1022 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1023 		unsigned long entry, unsigned long exit,
1024 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1025 		u64 guest_val, u64 host_val)
1026 {
1027 	vmcs_write64(guest_val_vmcs, guest_val);
1028 	if (host_val_vmcs != HOST_IA32_EFER)
1029 		vmcs_write64(host_val_vmcs, host_val);
1030 	vm_entry_controls_setbit(vmx, entry);
1031 	vm_exit_controls_setbit(vmx, exit);
1032 }
1033 
1034 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1035 				  u64 guest_val, u64 host_val, bool entry_only)
1036 {
1037 	int i, j = 0;
1038 	struct msr_autoload *m = &vmx->msr_autoload;
1039 
1040 	switch (msr) {
1041 	case MSR_EFER:
1042 		if (cpu_has_load_ia32_efer()) {
1043 			add_atomic_switch_msr_special(vmx,
1044 					VM_ENTRY_LOAD_IA32_EFER,
1045 					VM_EXIT_LOAD_IA32_EFER,
1046 					GUEST_IA32_EFER,
1047 					HOST_IA32_EFER,
1048 					guest_val, host_val);
1049 			return;
1050 		}
1051 		break;
1052 	case MSR_CORE_PERF_GLOBAL_CTRL:
1053 		if (cpu_has_load_perf_global_ctrl()) {
1054 			add_atomic_switch_msr_special(vmx,
1055 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1056 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1057 					GUEST_IA32_PERF_GLOBAL_CTRL,
1058 					HOST_IA32_PERF_GLOBAL_CTRL,
1059 					guest_val, host_val);
1060 			return;
1061 		}
1062 		break;
1063 	case MSR_IA32_PEBS_ENABLE:
1064 		/* PEBS needs a quiescent period after being disabled (to write
1065 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
1066 		 * provide that period, so a CPU could write host's record into
1067 		 * guest's memory.
1068 		 */
1069 		wrmsrq(MSR_IA32_PEBS_ENABLE, 0);
1070 	}
1071 
1072 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1073 	if (!entry_only)
1074 		j = vmx_find_loadstore_msr_slot(&m->host, msr);
1075 
1076 	if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1077 	    (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1078 		printk_once(KERN_WARNING "Not enough msr switch entries. "
1079 				"Can't add msr %x\n", msr);
1080 		return;
1081 	}
1082 	if (i < 0) {
1083 		i = m->guest.nr++;
1084 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1085 	}
1086 	m->guest.val[i].index = msr;
1087 	m->guest.val[i].value = guest_val;
1088 
1089 	if (entry_only)
1090 		return;
1091 
1092 	if (j < 0) {
1093 		j = m->host.nr++;
1094 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1095 	}
1096 	m->host.val[j].index = msr;
1097 	m->host.val[j].value = host_val;
1098 }
1099 
1100 static bool update_transition_efer(struct vcpu_vmx *vmx)
1101 {
1102 	u64 guest_efer = vmx->vcpu.arch.efer;
1103 	u64 ignore_bits = 0;
1104 	int i;
1105 
1106 	/* Shadow paging assumes NX to be available.  */
1107 	if (!enable_ept)
1108 		guest_efer |= EFER_NX;
1109 
1110 	/*
1111 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1112 	 */
1113 	ignore_bits |= EFER_SCE;
1114 #ifdef CONFIG_X86_64
1115 	ignore_bits |= EFER_LMA | EFER_LME;
1116 	/* SCE is meaningful only in long mode on Intel */
1117 	if (guest_efer & EFER_LMA)
1118 		ignore_bits &= ~(u64)EFER_SCE;
1119 #endif
1120 
1121 	/*
1122 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1123 	 * On CPUs that support "load IA32_EFER", always switch EFER
1124 	 * atomically, since it's faster than switching it manually.
1125 	 */
1126 	if (cpu_has_load_ia32_efer() ||
1127 	    (enable_ept && ((vmx->vcpu.arch.efer ^ kvm_host.efer) & EFER_NX))) {
1128 		if (!(guest_efer & EFER_LMA))
1129 			guest_efer &= ~EFER_LME;
1130 		if (guest_efer != kvm_host.efer)
1131 			add_atomic_switch_msr(vmx, MSR_EFER,
1132 					      guest_efer, kvm_host.efer, false);
1133 		else
1134 			clear_atomic_switch_msr(vmx, MSR_EFER);
1135 		return false;
1136 	}
1137 
1138 	i = kvm_find_user_return_msr(MSR_EFER);
1139 	if (i < 0)
1140 		return false;
1141 
1142 	clear_atomic_switch_msr(vmx, MSR_EFER);
1143 
1144 	guest_efer &= ~ignore_bits;
1145 	guest_efer |= kvm_host.efer & ignore_bits;
1146 
1147 	vmx->guest_uret_msrs[i].data = guest_efer;
1148 	vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1149 
1150 	return true;
1151 }
1152 
1153 #ifdef CONFIG_X86_32
1154 /*
1155  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1156  * VMCS rather than the segment table.  KVM uses this helper to figure
1157  * out the current bases to poke them into the VMCS before entry.
1158  */
1159 static unsigned long segment_base(u16 selector)
1160 {
1161 	struct desc_struct *table;
1162 	unsigned long v;
1163 
1164 	if (!(selector & ~SEGMENT_RPL_MASK))
1165 		return 0;
1166 
1167 	table = get_current_gdt_ro();
1168 
1169 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1170 		u16 ldt_selector = kvm_read_ldt();
1171 
1172 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1173 			return 0;
1174 
1175 		table = (struct desc_struct *)segment_base(ldt_selector);
1176 	}
1177 	v = get_desc_base(&table[selector >> 3]);
1178 	return v;
1179 }
1180 #endif
1181 
1182 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1183 {
1184 	return vmx_pt_mode_is_host_guest() &&
1185 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1186 }
1187 
1188 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1189 {
1190 	/* The base must be 128-byte aligned and a legal physical address. */
1191 	return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1192 }
1193 
1194 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1195 {
1196 	u32 i;
1197 
1198 	wrmsrq(MSR_IA32_RTIT_STATUS, ctx->status);
1199 	wrmsrq(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1200 	wrmsrq(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1201 	wrmsrq(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1202 	for (i = 0; i < addr_range; i++) {
1203 		wrmsrq(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1204 		wrmsrq(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1205 	}
1206 }
1207 
1208 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1209 {
1210 	u32 i;
1211 
1212 	rdmsrq(MSR_IA32_RTIT_STATUS, ctx->status);
1213 	rdmsrq(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1214 	rdmsrq(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1215 	rdmsrq(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1216 	for (i = 0; i < addr_range; i++) {
1217 		rdmsrq(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1218 		rdmsrq(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1219 	}
1220 }
1221 
1222 static void pt_guest_enter(struct vcpu_vmx *vmx)
1223 {
1224 	if (vmx_pt_mode_is_system())
1225 		return;
1226 
1227 	/*
1228 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1229 	 * Save host state before VM entry.
1230 	 */
1231 	rdmsrq(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1232 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1233 		wrmsrq(MSR_IA32_RTIT_CTL, 0);
1234 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1235 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1236 	}
1237 }
1238 
1239 static void pt_guest_exit(struct vcpu_vmx *vmx)
1240 {
1241 	if (vmx_pt_mode_is_system())
1242 		return;
1243 
1244 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1245 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1246 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1247 	}
1248 
1249 	/*
1250 	 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1251 	 * i.e. RTIT_CTL is always cleared on VM-Exit.  Restore it if necessary.
1252 	 */
1253 	if (vmx->pt_desc.host.ctl)
1254 		wrmsrq(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1255 }
1256 
1257 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1258 			unsigned long fs_base, unsigned long gs_base)
1259 {
1260 	if (unlikely(fs_sel != host->fs_sel)) {
1261 		if (!(fs_sel & 7))
1262 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1263 		else
1264 			vmcs_write16(HOST_FS_SELECTOR, 0);
1265 		host->fs_sel = fs_sel;
1266 	}
1267 	if (unlikely(gs_sel != host->gs_sel)) {
1268 		if (!(gs_sel & 7))
1269 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1270 		else
1271 			vmcs_write16(HOST_GS_SELECTOR, 0);
1272 		host->gs_sel = gs_sel;
1273 	}
1274 	if (unlikely(fs_base != host->fs_base)) {
1275 		vmcs_writel(HOST_FS_BASE, fs_base);
1276 		host->fs_base = fs_base;
1277 	}
1278 	if (unlikely(gs_base != host->gs_base)) {
1279 		vmcs_writel(HOST_GS_BASE, gs_base);
1280 		host->gs_base = gs_base;
1281 	}
1282 }
1283 
1284 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1285 {
1286 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1287 	struct vcpu_vt *vt = to_vt(vcpu);
1288 	struct vmcs_host_state *host_state;
1289 #ifdef CONFIG_X86_64
1290 	int cpu = raw_smp_processor_id();
1291 #endif
1292 	unsigned long fs_base, gs_base;
1293 	u16 fs_sel, gs_sel;
1294 	int i;
1295 
1296 	/*
1297 	 * Note that guest MSRs to be saved/restored can also be changed
1298 	 * when guest state is loaded. This happens when guest transitions
1299 	 * to/from long-mode by setting MSR_EFER.LMA.
1300 	 */
1301 	if (!vmx->guest_uret_msrs_loaded) {
1302 		vmx->guest_uret_msrs_loaded = true;
1303 		for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1304 			if (!vmx->guest_uret_msrs[i].load_into_hardware)
1305 				continue;
1306 
1307 			kvm_set_user_return_msr(i,
1308 						vmx->guest_uret_msrs[i].data,
1309 						vmx->guest_uret_msrs[i].mask);
1310 		}
1311 	}
1312 
1313 	if (vmx->nested.need_vmcs12_to_shadow_sync)
1314 		nested_sync_vmcs12_to_shadow(vcpu);
1315 
1316 	if (vt->guest_state_loaded)
1317 		return;
1318 
1319 	host_state = &vmx->loaded_vmcs->host_state;
1320 
1321 	/*
1322 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1323 	 * allow segment selectors with cpl > 0 or ti == 1.
1324 	 */
1325 	host_state->ldt_sel = kvm_read_ldt();
1326 
1327 #ifdef CONFIG_X86_64
1328 	savesegment(ds, host_state->ds_sel);
1329 	savesegment(es, host_state->es_sel);
1330 
1331 	gs_base = cpu_kernelmode_gs_base(cpu);
1332 	if (likely(is_64bit_mm(current->mm))) {
1333 		current_save_fsgs();
1334 		fs_sel = current->thread.fsindex;
1335 		gs_sel = current->thread.gsindex;
1336 		fs_base = current->thread.fsbase;
1337 		vt->msr_host_kernel_gs_base = current->thread.gsbase;
1338 	} else {
1339 		savesegment(fs, fs_sel);
1340 		savesegment(gs, gs_sel);
1341 		fs_base = read_msr(MSR_FS_BASE);
1342 		vt->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1343 	}
1344 
1345 	wrmsrq(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1346 #else
1347 	savesegment(fs, fs_sel);
1348 	savesegment(gs, gs_sel);
1349 	fs_base = segment_base(fs_sel);
1350 	gs_base = segment_base(gs_sel);
1351 #endif
1352 
1353 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1354 	vt->guest_state_loaded = true;
1355 }
1356 
1357 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1358 {
1359 	struct vmcs_host_state *host_state;
1360 
1361 	if (!vmx->vt.guest_state_loaded)
1362 		return;
1363 
1364 	host_state = &vmx->loaded_vmcs->host_state;
1365 
1366 	++vmx->vcpu.stat.host_state_reload;
1367 
1368 #ifdef CONFIG_X86_64
1369 	rdmsrq(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1370 #endif
1371 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1372 		kvm_load_ldt(host_state->ldt_sel);
1373 #ifdef CONFIG_X86_64
1374 		load_gs_index(host_state->gs_sel);
1375 #else
1376 		loadsegment(gs, host_state->gs_sel);
1377 #endif
1378 	}
1379 	if (host_state->fs_sel & 7)
1380 		loadsegment(fs, host_state->fs_sel);
1381 #ifdef CONFIG_X86_64
1382 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1383 		loadsegment(ds, host_state->ds_sel);
1384 		loadsegment(es, host_state->es_sel);
1385 	}
1386 #endif
1387 	invalidate_tss_limit();
1388 #ifdef CONFIG_X86_64
1389 	wrmsrq(MSR_KERNEL_GS_BASE, vmx->vt.msr_host_kernel_gs_base);
1390 #endif
1391 	load_fixmap_gdt(raw_smp_processor_id());
1392 	vmx->vt.guest_state_loaded = false;
1393 	vmx->guest_uret_msrs_loaded = false;
1394 }
1395 
1396 #ifdef CONFIG_X86_64
1397 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1398 {
1399 	preempt_disable();
1400 	if (vmx->vt.guest_state_loaded)
1401 		rdmsrq(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1402 	preempt_enable();
1403 	return vmx->msr_guest_kernel_gs_base;
1404 }
1405 
1406 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1407 {
1408 	preempt_disable();
1409 	if (vmx->vt.guest_state_loaded)
1410 		wrmsrq(MSR_KERNEL_GS_BASE, data);
1411 	preempt_enable();
1412 	vmx->msr_guest_kernel_gs_base = data;
1413 }
1414 #endif
1415 
1416 static void grow_ple_window(struct kvm_vcpu *vcpu)
1417 {
1418 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1419 	unsigned int old = vmx->ple_window;
1420 
1421 	vmx->ple_window = __grow_ple_window(old, ple_window,
1422 					    ple_window_grow,
1423 					    ple_window_max);
1424 
1425 	if (vmx->ple_window != old) {
1426 		vmx->ple_window_dirty = true;
1427 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1428 					    vmx->ple_window, old);
1429 	}
1430 }
1431 
1432 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1433 {
1434 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1435 	unsigned int old = vmx->ple_window;
1436 
1437 	vmx->ple_window = __shrink_ple_window(old, ple_window,
1438 					      ple_window_shrink,
1439 					      ple_window);
1440 
1441 	if (vmx->ple_window != old) {
1442 		vmx->ple_window_dirty = true;
1443 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1444 					    vmx->ple_window, old);
1445 	}
1446 }
1447 
1448 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1449 			struct loaded_vmcs *buddy)
1450 {
1451 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1452 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1453 	struct vmcs *prev;
1454 
1455 	if (!already_loaded) {
1456 		loaded_vmcs_clear(vmx->loaded_vmcs);
1457 		local_irq_disable();
1458 
1459 		/*
1460 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1461 		 * this cpu's percpu list, otherwise it may not yet be deleted
1462 		 * from its previous cpu's percpu list.  Pairs with the
1463 		 * smb_wmb() in __loaded_vmcs_clear().
1464 		 */
1465 		smp_rmb();
1466 
1467 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1468 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1469 		local_irq_enable();
1470 	}
1471 
1472 	prev = per_cpu(current_vmcs, cpu);
1473 	if (prev != vmx->loaded_vmcs->vmcs) {
1474 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1475 		vmcs_load(vmx->loaded_vmcs->vmcs);
1476 
1477 		/*
1478 		 * No indirect branch prediction barrier needed when switching
1479 		 * the active VMCS within a vCPU, unless IBRS is advertised to
1480 		 * the vCPU.  To minimize the number of IBPBs executed, KVM
1481 		 * performs IBPB on nested VM-Exit (a single nested transition
1482 		 * may switch the active VMCS multiple times).
1483 		 */
1484 		if (static_branch_likely(&switch_vcpu_ibpb) &&
1485 		    (!buddy || WARN_ON_ONCE(buddy->vmcs != prev)))
1486 			indirect_branch_prediction_barrier();
1487 	}
1488 
1489 	if (!already_loaded) {
1490 		void *gdt = get_current_gdt_ro();
1491 
1492 		/*
1493 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1494 		 * TLB entries from its previous association with the vCPU.
1495 		 */
1496 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1497 
1498 		/*
1499 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1500 		 * processors.  See 22.2.4.
1501 		 */
1502 		vmcs_writel(HOST_TR_BASE,
1503 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1504 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1505 
1506 		if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1507 			/* 22.2.3 */
1508 			vmcs_writel(HOST_IA32_SYSENTER_ESP,
1509 				    (unsigned long)(cpu_entry_stack(cpu) + 1));
1510 		}
1511 
1512 		vmx->loaded_vmcs->cpu = cpu;
1513 	}
1514 }
1515 
1516 /*
1517  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1518  * vcpu mutex is already taken.
1519  */
1520 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1521 {
1522 	if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm))
1523 		shrink_ple_window(vcpu);
1524 
1525 	vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1526 
1527 	vmx_vcpu_pi_load(vcpu, cpu);
1528 }
1529 
1530 void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1531 {
1532 	vmx_vcpu_pi_put(vcpu);
1533 
1534 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1535 }
1536 
1537 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1538 {
1539 	return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1540 }
1541 
1542 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1543 {
1544 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1545 	unsigned long rflags, save_rflags;
1546 
1547 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1548 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1549 		rflags = vmcs_readl(GUEST_RFLAGS);
1550 		if (vmx->rmode.vm86_active) {
1551 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1552 			save_rflags = vmx->rmode.save_rflags;
1553 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1554 		}
1555 		vmx->rflags = rflags;
1556 	}
1557 	return vmx->rflags;
1558 }
1559 
1560 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1561 {
1562 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1563 	unsigned long old_rflags;
1564 
1565 	/*
1566 	 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU
1567 	 * is an unrestricted guest in order to mark L2 as needing emulation
1568 	 * if L1 runs L2 as a restricted guest.
1569 	 */
1570 	if (is_unrestricted_guest(vcpu)) {
1571 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1572 		vmx->rflags = rflags;
1573 		vmcs_writel(GUEST_RFLAGS, rflags);
1574 		return;
1575 	}
1576 
1577 	old_rflags = vmx_get_rflags(vcpu);
1578 	vmx->rflags = rflags;
1579 	if (vmx->rmode.vm86_active) {
1580 		vmx->rmode.save_rflags = rflags;
1581 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1582 	}
1583 	vmcs_writel(GUEST_RFLAGS, rflags);
1584 
1585 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1586 		vmx->vt.emulation_required = vmx_emulation_required(vcpu);
1587 }
1588 
1589 bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1590 {
1591 	return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1592 }
1593 
1594 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1595 {
1596 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1597 	int ret = 0;
1598 
1599 	if (interruptibility & GUEST_INTR_STATE_STI)
1600 		ret |= KVM_X86_SHADOW_INT_STI;
1601 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1602 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1603 
1604 	return ret;
1605 }
1606 
1607 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1608 {
1609 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1610 	u32 interruptibility = interruptibility_old;
1611 
1612 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1613 
1614 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1615 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1616 	else if (mask & KVM_X86_SHADOW_INT_STI)
1617 		interruptibility |= GUEST_INTR_STATE_STI;
1618 
1619 	if ((interruptibility != interruptibility_old))
1620 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1621 }
1622 
1623 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1624 {
1625 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1626 	unsigned long value;
1627 
1628 	/*
1629 	 * Any MSR write that attempts to change bits marked reserved will
1630 	 * case a #GP fault.
1631 	 */
1632 	if (data & vmx->pt_desc.ctl_bitmask)
1633 		return 1;
1634 
1635 	/*
1636 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1637 	 * result in a #GP unless the same write also clears TraceEn.
1638 	 */
1639 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1640 	    (data & RTIT_CTL_TRACEEN) &&
1641 	    data != vmx->pt_desc.guest.ctl)
1642 		return 1;
1643 
1644 	/*
1645 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1646 	 * and FabricEn would cause #GP, if
1647 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1648 	 */
1649 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1650 		!(data & RTIT_CTL_FABRIC_EN) &&
1651 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1652 					PT_CAP_single_range_output))
1653 		return 1;
1654 
1655 	/*
1656 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1657 	 * utilize encodings marked reserved will cause a #GP fault.
1658 	 */
1659 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1660 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1661 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1662 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1663 		return 1;
1664 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1665 						PT_CAP_cycle_thresholds);
1666 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1667 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1668 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1669 		return 1;
1670 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1671 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1672 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1673 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1674 		return 1;
1675 
1676 	/*
1677 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1678 	 * cause a #GP fault.
1679 	 */
1680 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1681 	if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1682 		return 1;
1683 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1684 	if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1685 		return 1;
1686 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1687 	if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1688 		return 1;
1689 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1690 	if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1691 		return 1;
1692 
1693 	return 0;
1694 }
1695 
1696 int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1697 				  void *insn, int insn_len)
1698 {
1699 	/*
1700 	 * Emulation of instructions in SGX enclaves is impossible as RIP does
1701 	 * not point at the failing instruction, and even if it did, the code
1702 	 * stream is inaccessible.  Inject #UD instead of exiting to userspace
1703 	 * so that guest userspace can't DoS the guest simply by triggering
1704 	 * emulation (enclaves are CPL3 only).
1705 	 */
1706 	if (vmx_get_exit_reason(vcpu).enclave_mode) {
1707 		kvm_queue_exception(vcpu, UD_VECTOR);
1708 		return X86EMUL_PROPAGATE_FAULT;
1709 	}
1710 
1711 	/* Check that emulation is possible during event vectoring */
1712 	if ((to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
1713 	    !kvm_can_emulate_event_vectoring(emul_type))
1714 		return X86EMUL_UNHANDLEABLE_VECTORING;
1715 
1716 	return X86EMUL_CONTINUE;
1717 }
1718 
1719 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1720 {
1721 	union vmx_exit_reason exit_reason = vmx_get_exit_reason(vcpu);
1722 	unsigned long rip, orig_rip;
1723 	u32 instr_len;
1724 
1725 	/*
1726 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1727 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1728 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1729 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1730 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1731 	 * i.e. we end up advancing IP with some random value.
1732 	 */
1733 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1734 	    exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1735 		instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1736 
1737 		/*
1738 		 * Emulating an enclave's instructions isn't supported as KVM
1739 		 * cannot access the enclave's memory or its true RIP, e.g. the
1740 		 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1741 		 * the RIP that actually triggered the VM-Exit.  But, because
1742 		 * most instructions that cause VM-Exit will #UD in an enclave,
1743 		 * most instruction-based VM-Exits simply do not occur.
1744 		 *
1745 		 * There are a few exceptions, notably the debug instructions
1746 		 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1747 		 * and generate #DB/#BP as expected, which KVM might intercept.
1748 		 * But again, the CPU does the dirty work and saves an instr
1749 		 * length of zero so VMMs don't shoot themselves in the foot.
1750 		 * WARN if KVM tries to skip a non-zero length instruction on
1751 		 * a VM-Exit from an enclave.
1752 		 */
1753 		if (!instr_len)
1754 			goto rip_updated;
1755 
1756 		WARN_ONCE(exit_reason.enclave_mode,
1757 			  "skipping instruction after SGX enclave VM-Exit");
1758 
1759 		orig_rip = kvm_rip_read(vcpu);
1760 		rip = orig_rip + instr_len;
1761 #ifdef CONFIG_X86_64
1762 		/*
1763 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1764 		 * mode, but just finding out that we are in 64-bit mode is
1765 		 * quite expensive.  Only do it if there was a carry.
1766 		 */
1767 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1768 			rip = (u32)rip;
1769 #endif
1770 		kvm_rip_write(vcpu, rip);
1771 	} else {
1772 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1773 			return 0;
1774 	}
1775 
1776 rip_updated:
1777 	/* skipping an emulated instruction also counts */
1778 	vmx_set_interrupt_shadow(vcpu, 0);
1779 
1780 	return 1;
1781 }
1782 
1783 /*
1784  * Recognizes a pending MTF VM-exit and records the nested state for later
1785  * delivery.
1786  */
1787 void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1788 {
1789 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1790 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1791 
1792 	if (!is_guest_mode(vcpu))
1793 		return;
1794 
1795 	/*
1796 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1797 	 * TSS T-bit traps and ICEBP (INT1).  KVM doesn't emulate T-bit traps
1798 	 * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1799 	 * intercepted #DB deliberately avoids single-step #DB and MTF updates
1800 	 * as ICEBP is higher priority than both.  As instruction emulation is
1801 	 * completed at this point (i.e. KVM is at the instruction boundary),
1802 	 * any #DB exception pending delivery must be a debug-trap of lower
1803 	 * priority than MTF.  Record the pending MTF state to be delivered in
1804 	 * vmx_check_nested_events().
1805 	 */
1806 	if (nested_cpu_has_mtf(vmcs12) &&
1807 	    (!vcpu->arch.exception.pending ||
1808 	     vcpu->arch.exception.vector == DB_VECTOR) &&
1809 	    (!vcpu->arch.exception_vmexit.pending ||
1810 	     vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1811 		vmx->nested.mtf_pending = true;
1812 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1813 	} else {
1814 		vmx->nested.mtf_pending = false;
1815 	}
1816 }
1817 
1818 int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1819 {
1820 	vmx_update_emulated_instruction(vcpu);
1821 	return skip_emulated_instruction(vcpu);
1822 }
1823 
1824 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1825 {
1826 	/*
1827 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1828 	 * explicitly skip the instruction because if the HLT state is set,
1829 	 * then the instruction is already executing and RIP has already been
1830 	 * advanced.
1831 	 */
1832 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1833 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1834 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1835 }
1836 
1837 void vmx_inject_exception(struct kvm_vcpu *vcpu)
1838 {
1839 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
1840 	u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1841 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1842 
1843 	kvm_deliver_exception_payload(vcpu, ex);
1844 
1845 	if (ex->has_error_code) {
1846 		/*
1847 		 * Despite the error code being architecturally defined as 32
1848 		 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1849 		 * VMX don't actually supporting setting bits 31:16.  Hardware
1850 		 * will (should) never provide a bogus error code, but AMD CPUs
1851 		 * do generate error codes with bits 31:16 set, and so KVM's
1852 		 * ABI lets userspace shove in arbitrary 32-bit values.  Drop
1853 		 * the upper bits to avoid VM-Fail, losing information that
1854 		 * doesn't really exist is preferable to killing the VM.
1855 		 */
1856 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1857 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1858 	}
1859 
1860 	if (vmx->rmode.vm86_active) {
1861 		int inc_eip = 0;
1862 		if (kvm_exception_is_soft(ex->vector))
1863 			inc_eip = vcpu->arch.event_exit_inst_len;
1864 		kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1865 		return;
1866 	}
1867 
1868 	WARN_ON_ONCE(vmx->vt.emulation_required);
1869 
1870 	if (kvm_exception_is_soft(ex->vector)) {
1871 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1872 			     vmx->vcpu.arch.event_exit_inst_len);
1873 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1874 	} else
1875 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1876 
1877 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1878 
1879 	vmx_clear_hlt(vcpu);
1880 }
1881 
1882 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1883 			       bool load_into_hardware)
1884 {
1885 	struct vmx_uret_msr *uret_msr;
1886 
1887 	uret_msr = vmx_find_uret_msr(vmx, msr);
1888 	if (!uret_msr)
1889 		return;
1890 
1891 	uret_msr->load_into_hardware = load_into_hardware;
1892 }
1893 
1894 /*
1895  * Configuring user return MSRs to automatically save, load, and restore MSRs
1896  * that need to be shoved into hardware when running the guest.  Note, omitting
1897  * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1898  * loaded into hardware when running the guest.
1899  */
1900 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1901 {
1902 #ifdef CONFIG_X86_64
1903 	bool load_syscall_msrs;
1904 
1905 	/*
1906 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1907 	 * when EFER.SCE is set.
1908 	 */
1909 	load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1910 			    (vmx->vcpu.arch.efer & EFER_SCE);
1911 
1912 	vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1913 	vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1914 	vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1915 #endif
1916 	vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1917 
1918 	vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1919 			   guest_cpu_cap_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1920 			   guest_cpu_cap_has(&vmx->vcpu, X86_FEATURE_RDPID));
1921 
1922 	/*
1923 	 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1924 	 * kernel and old userspace.  If those guests run on a tsx=off host, do
1925 	 * allow guests to use TSX_CTRL, but don't change the value in hardware
1926 	 * so that TSX remains always disabled.
1927 	 */
1928 	vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1929 
1930 	/*
1931 	 * The set of MSRs to load may have changed, reload MSRs before the
1932 	 * next VM-Enter.
1933 	 */
1934 	vmx->guest_uret_msrs_loaded = false;
1935 }
1936 
1937 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1938 {
1939 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1940 
1941 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1942 		return vmcs12->tsc_offset;
1943 
1944 	return 0;
1945 }
1946 
1947 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1948 {
1949 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1950 
1951 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1952 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1953 		return vmcs12->tsc_multiplier;
1954 
1955 	return kvm_caps.default_tsc_scaling_ratio;
1956 }
1957 
1958 void vmx_write_tsc_offset(struct kvm_vcpu *vcpu)
1959 {
1960 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
1961 }
1962 
1963 void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1964 {
1965 	vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
1966 }
1967 
1968 /*
1969  * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
1970  * guest CPUID.  Note, KVM allows userspace to set "VMX in SMX" to maintain
1971  * backwards compatibility even though KVM doesn't support emulating SMX.  And
1972  * because userspace set "VMX in SMX", the guest must also be allowed to set it,
1973  * e.g. if the MSR is left unlocked and the guest does a RMW operation.
1974  */
1975 #define KVM_SUPPORTED_FEATURE_CONTROL  (FEAT_CTL_LOCKED			 | \
1976 					FEAT_CTL_VMX_ENABLED_INSIDE_SMX	 | \
1977 					FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
1978 					FEAT_CTL_SGX_LC_ENABLED		 | \
1979 					FEAT_CTL_SGX_ENABLED		 | \
1980 					FEAT_CTL_LMCE_ENABLED)
1981 
1982 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
1983 						    struct msr_data *msr)
1984 {
1985 	uint64_t valid_bits;
1986 
1987 	/*
1988 	 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
1989 	 * exposed to the guest.
1990 	 */
1991 	WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
1992 		     ~KVM_SUPPORTED_FEATURE_CONTROL);
1993 
1994 	if (!msr->host_initiated &&
1995 	    (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
1996 		return false;
1997 
1998 	if (msr->host_initiated)
1999 		valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
2000 	else
2001 		valid_bits = vmx->msr_ia32_feature_control_valid_bits;
2002 
2003 	return !(msr->data & ~valid_bits);
2004 }
2005 
2006 int vmx_get_feature_msr(u32 msr, u64 *data)
2007 {
2008 	switch (msr) {
2009 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2010 		if (!nested)
2011 			return 1;
2012 		return vmx_get_vmx_msr(&vmcs_config.nested, msr, data);
2013 	default:
2014 		return KVM_MSR_RET_UNSUPPORTED;
2015 	}
2016 }
2017 
2018 /*
2019  * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
2020  * Returns 0 on success, non-0 otherwise.
2021  * Assumes vcpu_load() was already called.
2022  */
2023 int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2024 {
2025 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2026 	struct vmx_uret_msr *msr;
2027 	u32 index;
2028 
2029 	switch (msr_info->index) {
2030 #ifdef CONFIG_X86_64
2031 	case MSR_FS_BASE:
2032 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
2033 		break;
2034 	case MSR_GS_BASE:
2035 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
2036 		break;
2037 	case MSR_KERNEL_GS_BASE:
2038 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
2039 		break;
2040 #endif
2041 	case MSR_EFER:
2042 		return kvm_get_msr_common(vcpu, msr_info);
2043 	case MSR_IA32_TSX_CTRL:
2044 		if (!msr_info->host_initiated &&
2045 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2046 			return 1;
2047 		goto find_uret_msr;
2048 	case MSR_IA32_UMWAIT_CONTROL:
2049 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2050 			return 1;
2051 
2052 		msr_info->data = vmx->msr_ia32_umwait_control;
2053 		break;
2054 	case MSR_IA32_SPEC_CTRL:
2055 		if (!msr_info->host_initiated &&
2056 		    !guest_has_spec_ctrl_msr(vcpu))
2057 			return 1;
2058 
2059 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
2060 		break;
2061 	case MSR_IA32_SYSENTER_CS:
2062 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2063 		break;
2064 	case MSR_IA32_SYSENTER_EIP:
2065 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2066 		break;
2067 	case MSR_IA32_SYSENTER_ESP:
2068 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2069 		break;
2070 	case MSR_IA32_BNDCFGS:
2071 		if (!kvm_mpx_supported() ||
2072 		    (!msr_info->host_initiated &&
2073 		     !guest_cpu_cap_has(vcpu, X86_FEATURE_MPX)))
2074 			return 1;
2075 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2076 		break;
2077 	case MSR_IA32_MCG_EXT_CTL:
2078 		if (!msr_info->host_initiated &&
2079 		    !(vmx->msr_ia32_feature_control &
2080 		      FEAT_CTL_LMCE_ENABLED))
2081 			return 1;
2082 		msr_info->data = vcpu->arch.mcg_ext_ctl;
2083 		break;
2084 	case MSR_IA32_FEAT_CTL:
2085 		msr_info->data = vmx->msr_ia32_feature_control;
2086 		break;
2087 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2088 		if (!msr_info->host_initiated &&
2089 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC))
2090 			return 1;
2091 		msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
2092 			[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
2093 		break;
2094 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2095 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
2096 			return 1;
2097 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
2098 				    &msr_info->data))
2099 			return 1;
2100 #ifdef CONFIG_KVM_HYPERV
2101 		/*
2102 		 * Enlightened VMCS v1 doesn't have certain VMCS fields but
2103 		 * instead of just ignoring the features, different Hyper-V
2104 		 * versions are either trying to use them and fail or do some
2105 		 * sanity checking and refuse to boot. Filter all unsupported
2106 		 * features out.
2107 		 */
2108 		if (!msr_info->host_initiated && guest_cpu_cap_has_evmcs(vcpu))
2109 			nested_evmcs_filter_control_msr(vcpu, msr_info->index,
2110 							&msr_info->data);
2111 #endif
2112 		break;
2113 	case MSR_IA32_RTIT_CTL:
2114 		if (!vmx_pt_mode_is_host_guest())
2115 			return 1;
2116 		msr_info->data = vmx->pt_desc.guest.ctl;
2117 		break;
2118 	case MSR_IA32_RTIT_STATUS:
2119 		if (!vmx_pt_mode_is_host_guest())
2120 			return 1;
2121 		msr_info->data = vmx->pt_desc.guest.status;
2122 		break;
2123 	case MSR_IA32_RTIT_CR3_MATCH:
2124 		if (!vmx_pt_mode_is_host_guest() ||
2125 			!intel_pt_validate_cap(vmx->pt_desc.caps,
2126 						PT_CAP_cr3_filtering))
2127 			return 1;
2128 		msr_info->data = vmx->pt_desc.guest.cr3_match;
2129 		break;
2130 	case MSR_IA32_RTIT_OUTPUT_BASE:
2131 		if (!vmx_pt_mode_is_host_guest() ||
2132 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2133 					PT_CAP_topa_output) &&
2134 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2135 					PT_CAP_single_range_output)))
2136 			return 1;
2137 		msr_info->data = vmx->pt_desc.guest.output_base;
2138 		break;
2139 	case MSR_IA32_RTIT_OUTPUT_MASK:
2140 		if (!vmx_pt_mode_is_host_guest() ||
2141 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2142 					PT_CAP_topa_output) &&
2143 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2144 					PT_CAP_single_range_output)))
2145 			return 1;
2146 		msr_info->data = vmx->pt_desc.guest.output_mask;
2147 		break;
2148 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2149 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2150 		if (!vmx_pt_mode_is_host_guest() ||
2151 		    (index >= 2 * vmx->pt_desc.num_address_ranges))
2152 			return 1;
2153 		if (index % 2)
2154 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2155 		else
2156 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2157 		break;
2158 	case MSR_IA32_DEBUGCTLMSR:
2159 		msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
2160 		break;
2161 	default:
2162 	find_uret_msr:
2163 		msr = vmx_find_uret_msr(vmx, msr_info->index);
2164 		if (msr) {
2165 			msr_info->data = msr->data;
2166 			break;
2167 		}
2168 		return kvm_get_msr_common(vcpu, msr_info);
2169 	}
2170 
2171 	return 0;
2172 }
2173 
2174 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2175 						    u64 data)
2176 {
2177 #ifdef CONFIG_X86_64
2178 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
2179 		return (u32)data;
2180 #endif
2181 	return (unsigned long)data;
2182 }
2183 
2184 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2185 {
2186 	u64 debugctl = 0;
2187 
2188 	if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2189 	    (host_initiated || guest_cpu_cap_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2190 		debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2191 
2192 	if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) &&
2193 	    (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2194 		debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2195 
2196 	return debugctl;
2197 }
2198 
2199 /*
2200  * Writes msr value into the appropriate "register".
2201  * Returns 0 on success, non-0 otherwise.
2202  * Assumes vcpu_load() was already called.
2203  */
2204 int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2205 {
2206 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2207 	struct vmx_uret_msr *msr;
2208 	int ret = 0;
2209 	u32 msr_index = msr_info->index;
2210 	u64 data = msr_info->data;
2211 	u32 index;
2212 
2213 	switch (msr_index) {
2214 	case MSR_EFER:
2215 		ret = kvm_set_msr_common(vcpu, msr_info);
2216 		break;
2217 #ifdef CONFIG_X86_64
2218 	case MSR_FS_BASE:
2219 		vmx_segment_cache_clear(vmx);
2220 		vmcs_writel(GUEST_FS_BASE, data);
2221 		break;
2222 	case MSR_GS_BASE:
2223 		vmx_segment_cache_clear(vmx);
2224 		vmcs_writel(GUEST_GS_BASE, data);
2225 		break;
2226 	case MSR_KERNEL_GS_BASE:
2227 		vmx_write_guest_kernel_gs_base(vmx, data);
2228 		break;
2229 	case MSR_IA32_XFD:
2230 		ret = kvm_set_msr_common(vcpu, msr_info);
2231 		/*
2232 		 * Always intercepting WRMSR could incur non-negligible
2233 		 * overhead given xfd might be changed frequently in
2234 		 * guest context switch. Disable write interception
2235 		 * upon the first write with a non-zero value (indicating
2236 		 * potential usage on dynamic xfeatures). Also update
2237 		 * exception bitmap to trap #NM for proper virtualization
2238 		 * of guest xfd_err.
2239 		 */
2240 		if (!ret && data) {
2241 			vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2242 						      MSR_TYPE_RW);
2243 			vcpu->arch.xfd_no_write_intercept = true;
2244 			vmx_update_exception_bitmap(vcpu);
2245 		}
2246 		break;
2247 #endif
2248 	case MSR_IA32_SYSENTER_CS:
2249 		if (is_guest_mode(vcpu))
2250 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
2251 		vmcs_write32(GUEST_SYSENTER_CS, data);
2252 		break;
2253 	case MSR_IA32_SYSENTER_EIP:
2254 		if (is_guest_mode(vcpu)) {
2255 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2256 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
2257 		}
2258 		vmcs_writel(GUEST_SYSENTER_EIP, data);
2259 		break;
2260 	case MSR_IA32_SYSENTER_ESP:
2261 		if (is_guest_mode(vcpu)) {
2262 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2263 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
2264 		}
2265 		vmcs_writel(GUEST_SYSENTER_ESP, data);
2266 		break;
2267 	case MSR_IA32_DEBUGCTLMSR: {
2268 		u64 invalid;
2269 
2270 		invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2271 		if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2272 			kvm_pr_unimpl_wrmsr(vcpu, msr_index, data);
2273 			data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2274 			invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2275 		}
2276 
2277 		if (invalid)
2278 			return 1;
2279 
2280 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2281 						VM_EXIT_SAVE_DEBUG_CONTROLS)
2282 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2283 
2284 		vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2285 		if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2286 		    (data & DEBUGCTLMSR_LBR))
2287 			intel_pmu_create_guest_lbr_event(vcpu);
2288 		return 0;
2289 	}
2290 	case MSR_IA32_BNDCFGS:
2291 		if (!kvm_mpx_supported() ||
2292 		    (!msr_info->host_initiated &&
2293 		     !guest_cpu_cap_has(vcpu, X86_FEATURE_MPX)))
2294 			return 1;
2295 		if (is_noncanonical_msr_address(data & PAGE_MASK, vcpu) ||
2296 		    (data & MSR_IA32_BNDCFGS_RSVD))
2297 			return 1;
2298 
2299 		if (is_guest_mode(vcpu) &&
2300 		    ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2301 		     (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2302 			get_vmcs12(vcpu)->guest_bndcfgs = data;
2303 
2304 		vmcs_write64(GUEST_BNDCFGS, data);
2305 		break;
2306 	case MSR_IA32_UMWAIT_CONTROL:
2307 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2308 			return 1;
2309 
2310 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2311 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2312 			return 1;
2313 
2314 		vmx->msr_ia32_umwait_control = data;
2315 		break;
2316 	case MSR_IA32_SPEC_CTRL:
2317 		if (!msr_info->host_initiated &&
2318 		    !guest_has_spec_ctrl_msr(vcpu))
2319 			return 1;
2320 
2321 		if (kvm_spec_ctrl_test_value(data))
2322 			return 1;
2323 
2324 		vmx->spec_ctrl = data;
2325 		if (!data)
2326 			break;
2327 
2328 		/*
2329 		 * For non-nested:
2330 		 * When it's written (to non-zero) for the first time, pass
2331 		 * it through.
2332 		 *
2333 		 * For nested:
2334 		 * The handling of the MSR bitmap for L2 guests is done in
2335 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2336 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2337 		 * in the merging. We update the vmcs01 here for L1 as well
2338 		 * since it will end up touching the MSR anyway now.
2339 		 */
2340 		vmx_disable_intercept_for_msr(vcpu,
2341 					      MSR_IA32_SPEC_CTRL,
2342 					      MSR_TYPE_RW);
2343 		break;
2344 	case MSR_IA32_TSX_CTRL:
2345 		if (!msr_info->host_initiated &&
2346 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2347 			return 1;
2348 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2349 			return 1;
2350 		goto find_uret_msr;
2351 	case MSR_IA32_CR_PAT:
2352 		ret = kvm_set_msr_common(vcpu, msr_info);
2353 		if (ret)
2354 			break;
2355 
2356 		if (is_guest_mode(vcpu) &&
2357 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2358 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2359 
2360 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
2361 			vmcs_write64(GUEST_IA32_PAT, data);
2362 		break;
2363 	case MSR_IA32_MCG_EXT_CTL:
2364 		if ((!msr_info->host_initiated &&
2365 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2366 		       FEAT_CTL_LMCE_ENABLED)) ||
2367 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2368 			return 1;
2369 		vcpu->arch.mcg_ext_ctl = data;
2370 		break;
2371 	case MSR_IA32_FEAT_CTL:
2372 		if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2373 			return 1;
2374 
2375 		vmx->msr_ia32_feature_control = data;
2376 		if (msr_info->host_initiated && data == 0)
2377 			vmx_leave_nested(vcpu);
2378 
2379 		/* SGX may be enabled/disabled by guest's firmware */
2380 		vmx_write_encls_bitmap(vcpu, NULL);
2381 		break;
2382 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2383 		/*
2384 		 * On real hardware, the LE hash MSRs are writable before
2385 		 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2386 		 * at which point SGX related bits in IA32_FEATURE_CONTROL
2387 		 * become writable.
2388 		 *
2389 		 * KVM does not emulate SGX activation for simplicity, so
2390 		 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2391 		 * is unlocked.  This is technically not architectural
2392 		 * behavior, but it's close enough.
2393 		 */
2394 		if (!msr_info->host_initiated &&
2395 		    (!guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC) ||
2396 		    ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2397 		    !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2398 			return 1;
2399 		vmx->msr_ia32_sgxlepubkeyhash
2400 			[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2401 		break;
2402 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2403 		if (!msr_info->host_initiated)
2404 			return 1; /* they are read-only */
2405 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
2406 			return 1;
2407 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2408 	case MSR_IA32_RTIT_CTL:
2409 		if (!vmx_pt_mode_is_host_guest() ||
2410 			vmx_rtit_ctl_check(vcpu, data) ||
2411 			vmx->nested.vmxon)
2412 			return 1;
2413 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2414 		vmx->pt_desc.guest.ctl = data;
2415 		pt_update_intercept_for_msr(vcpu);
2416 		break;
2417 	case MSR_IA32_RTIT_STATUS:
2418 		if (!pt_can_write_msr(vmx))
2419 			return 1;
2420 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2421 			return 1;
2422 		vmx->pt_desc.guest.status = data;
2423 		break;
2424 	case MSR_IA32_RTIT_CR3_MATCH:
2425 		if (!pt_can_write_msr(vmx))
2426 			return 1;
2427 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2428 					   PT_CAP_cr3_filtering))
2429 			return 1;
2430 		vmx->pt_desc.guest.cr3_match = data;
2431 		break;
2432 	case MSR_IA32_RTIT_OUTPUT_BASE:
2433 		if (!pt_can_write_msr(vmx))
2434 			return 1;
2435 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2436 					   PT_CAP_topa_output) &&
2437 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2438 					   PT_CAP_single_range_output))
2439 			return 1;
2440 		if (!pt_output_base_valid(vcpu, data))
2441 			return 1;
2442 		vmx->pt_desc.guest.output_base = data;
2443 		break;
2444 	case MSR_IA32_RTIT_OUTPUT_MASK:
2445 		if (!pt_can_write_msr(vmx))
2446 			return 1;
2447 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2448 					   PT_CAP_topa_output) &&
2449 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2450 					   PT_CAP_single_range_output))
2451 			return 1;
2452 		vmx->pt_desc.guest.output_mask = data;
2453 		break;
2454 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2455 		if (!pt_can_write_msr(vmx))
2456 			return 1;
2457 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2458 		if (index >= 2 * vmx->pt_desc.num_address_ranges)
2459 			return 1;
2460 		if (is_noncanonical_msr_address(data, vcpu))
2461 			return 1;
2462 		if (index % 2)
2463 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2464 		else
2465 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2466 		break;
2467 	case MSR_IA32_PERF_CAPABILITIES:
2468 		if (data & PMU_CAP_LBR_FMT) {
2469 			if ((data & PMU_CAP_LBR_FMT) !=
2470 			    (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT))
2471 				return 1;
2472 			if (!cpuid_model_is_consistent(vcpu))
2473 				return 1;
2474 		}
2475 		if (data & PERF_CAP_PEBS_FORMAT) {
2476 			if ((data & PERF_CAP_PEBS_MASK) !=
2477 			    (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2478 				return 1;
2479 			if (!guest_cpu_cap_has(vcpu, X86_FEATURE_DS))
2480 				return 1;
2481 			if (!guest_cpu_cap_has(vcpu, X86_FEATURE_DTES64))
2482 				return 1;
2483 			if (!cpuid_model_is_consistent(vcpu))
2484 				return 1;
2485 		}
2486 		ret = kvm_set_msr_common(vcpu, msr_info);
2487 		break;
2488 
2489 	default:
2490 	find_uret_msr:
2491 		msr = vmx_find_uret_msr(vmx, msr_index);
2492 		if (msr)
2493 			ret = vmx_set_guest_uret_msr(vmx, msr, data);
2494 		else
2495 			ret = kvm_set_msr_common(vcpu, msr_info);
2496 	}
2497 
2498 	/* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2499 	if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2500 		vmx_update_fb_clear_dis(vcpu, vmx);
2501 
2502 	return ret;
2503 }
2504 
2505 void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2506 {
2507 	unsigned long guest_owned_bits;
2508 
2509 	kvm_register_mark_available(vcpu, reg);
2510 
2511 	switch (reg) {
2512 	case VCPU_REGS_RSP:
2513 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2514 		break;
2515 	case VCPU_REGS_RIP:
2516 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2517 		break;
2518 	case VCPU_EXREG_PDPTR:
2519 		if (enable_ept)
2520 			ept_save_pdptrs(vcpu);
2521 		break;
2522 	case VCPU_EXREG_CR0:
2523 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2524 
2525 		vcpu->arch.cr0 &= ~guest_owned_bits;
2526 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2527 		break;
2528 	case VCPU_EXREG_CR3:
2529 		/*
2530 		 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2531 		 * CR3 is loaded into hardware, not the guest's CR3.
2532 		 */
2533 		if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2534 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2535 		break;
2536 	case VCPU_EXREG_CR4:
2537 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2538 
2539 		vcpu->arch.cr4 &= ~guest_owned_bits;
2540 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2541 		break;
2542 	default:
2543 		KVM_BUG_ON(1, vcpu->kvm);
2544 		break;
2545 	}
2546 }
2547 
2548 /*
2549  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2550  * directly instead of going through cpu_has(), to ensure KVM is trapping
2551  * ENCLS whenever it's supported in hardware.  It does not matter whether
2552  * the host OS supports or has enabled SGX.
2553  */
2554 static bool cpu_has_sgx(void)
2555 {
2556 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2557 }
2558 
2559 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
2560 {
2561 	u32 vmx_msr_low, vmx_msr_high;
2562 	u32 ctl = ctl_min | ctl_opt;
2563 
2564 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2565 
2566 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2567 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2568 
2569 	/* Ensure minimum (required) set of control bits are supported. */
2570 	if (ctl_min & ~ctl)
2571 		return -EIO;
2572 
2573 	*result = ctl;
2574 	return 0;
2575 }
2576 
2577 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2578 {
2579 	u64 allowed;
2580 
2581 	rdmsrq(msr, allowed);
2582 
2583 	return  ctl_opt & allowed;
2584 }
2585 
2586 #define vmx_check_entry_exit_pairs(pairs, entry_controls, exit_controls)	\
2587 ({										\
2588 	int i, r = 0;								\
2589 										\
2590 	BUILD_BUG_ON(sizeof(pairs[0].entry_control) != sizeof(entry_controls));	\
2591 	BUILD_BUG_ON(sizeof(pairs[0].exit_control)  != sizeof(exit_controls));	\
2592 										\
2593 	for (i = 0; i < ARRAY_SIZE(pairs); i++) {				\
2594 		typeof(entry_controls) n_ctrl = pairs[i].entry_control;		\
2595 		typeof(exit_controls) x_ctrl = pairs[i].exit_control;		\
2596 										\
2597 		if (!(entry_controls & n_ctrl) == !(exit_controls & x_ctrl))	\
2598 			continue;						\
2599 										\
2600 		pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, "		\
2601 			     "entry = %llx (%llx), exit = %llx (%llx)\n",	\
2602 			     (u64)(entry_controls & n_ctrl), (u64)n_ctrl,	\
2603 			     (u64)(exit_controls & x_ctrl), (u64)x_ctrl);	\
2604 										\
2605 		if (error_on_inconsistent_vmcs_config)				\
2606 			r = -EIO;						\
2607 										\
2608 		entry_controls &= ~n_ctrl;					\
2609 		exit_controls &= ~x_ctrl;					\
2610 	}									\
2611 	r;									\
2612 })
2613 
2614 static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2615 			     struct vmx_capability *vmx_cap)
2616 {
2617 	u32 _pin_based_exec_control = 0;
2618 	u32 _cpu_based_exec_control = 0;
2619 	u32 _cpu_based_2nd_exec_control = 0;
2620 	u64 _cpu_based_3rd_exec_control = 0;
2621 	u32 _vmexit_control = 0;
2622 	u32 _vmentry_control = 0;
2623 	u64 basic_msr;
2624 	u64 misc_msr;
2625 
2626 	/*
2627 	 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2628 	 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2629 	 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2630 	 */
2631 	struct {
2632 		u32 entry_control;
2633 		u32 exit_control;
2634 	} const vmcs_entry_exit_pairs[] = {
2635 		{ VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,	VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2636 		{ VM_ENTRY_LOAD_IA32_PAT,		VM_EXIT_LOAD_IA32_PAT },
2637 		{ VM_ENTRY_LOAD_IA32_EFER,		VM_EXIT_LOAD_IA32_EFER },
2638 		{ VM_ENTRY_LOAD_BNDCFGS,		VM_EXIT_CLEAR_BNDCFGS },
2639 		{ VM_ENTRY_LOAD_IA32_RTIT_CTL,		VM_EXIT_CLEAR_IA32_RTIT_CTL },
2640 	};
2641 
2642 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2643 
2644 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2645 				KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2646 				MSR_IA32_VMX_PROCBASED_CTLS,
2647 				&_cpu_based_exec_control))
2648 		return -EIO;
2649 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2650 		if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2651 					KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2652 					MSR_IA32_VMX_PROCBASED_CTLS2,
2653 					&_cpu_based_2nd_exec_control))
2654 			return -EIO;
2655 	}
2656 	if (!IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
2657 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2658 
2659 #ifndef CONFIG_X86_64
2660 	if (!(_cpu_based_2nd_exec_control &
2661 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2662 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2663 #endif
2664 
2665 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2666 		_cpu_based_2nd_exec_control &= ~(
2667 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2668 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2669 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2670 
2671 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2672 		&vmx_cap->ept, &vmx_cap->vpid);
2673 
2674 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2675 	    vmx_cap->ept) {
2676 		pr_warn_once("EPT CAP should not exist if not support "
2677 				"1-setting enable EPT VM-execution control\n");
2678 
2679 		if (error_on_inconsistent_vmcs_config)
2680 			return -EIO;
2681 
2682 		vmx_cap->ept = 0;
2683 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2684 	}
2685 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2686 	    vmx_cap->vpid) {
2687 		pr_warn_once("VPID CAP should not exist if not support "
2688 				"1-setting enable VPID VM-execution control\n");
2689 
2690 		if (error_on_inconsistent_vmcs_config)
2691 			return -EIO;
2692 
2693 		vmx_cap->vpid = 0;
2694 	}
2695 
2696 	if (!cpu_has_sgx())
2697 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2698 
2699 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2700 		_cpu_based_3rd_exec_control =
2701 			adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2702 					      MSR_IA32_VMX_PROCBASED_CTLS3);
2703 
2704 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2705 				KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2706 				MSR_IA32_VMX_EXIT_CTLS,
2707 				&_vmexit_control))
2708 		return -EIO;
2709 
2710 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2711 				KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2712 				MSR_IA32_VMX_PINBASED_CTLS,
2713 				&_pin_based_exec_control))
2714 		return -EIO;
2715 
2716 	if (cpu_has_broken_vmx_preemption_timer())
2717 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2718 	if (!(_cpu_based_2nd_exec_control &
2719 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2720 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2721 
2722 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2723 				KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2724 				MSR_IA32_VMX_ENTRY_CTLS,
2725 				&_vmentry_control))
2726 		return -EIO;
2727 
2728 	if (vmx_check_entry_exit_pairs(vmcs_entry_exit_pairs,
2729 				       _vmentry_control, _vmexit_control))
2730 		return -EIO;
2731 
2732 	/*
2733 	 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2734 	 * can't be used due to an errata where VM Exit may incorrectly clear
2735 	 * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2736 	 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2737 	 */
2738 	switch (boot_cpu_data.x86_vfm) {
2739 	case INTEL_NEHALEM_EP:	/* AAK155 */
2740 	case INTEL_NEHALEM:	/* AAP115 */
2741 	case INTEL_WESTMERE:	/* AAT100 */
2742 	case INTEL_WESTMERE_EP:	/* BC86,AAY89,BD102 */
2743 	case INTEL_NEHALEM_EX:	/* BA97 */
2744 		_vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2745 		_vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2746 		pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2747 			     "does not work properly. Using workaround\n");
2748 		break;
2749 	default:
2750 		break;
2751 	}
2752 
2753 	rdmsrq(MSR_IA32_VMX_BASIC, basic_msr);
2754 
2755 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2756 	if (vmx_basic_vmcs_size(basic_msr) > PAGE_SIZE)
2757 		return -EIO;
2758 
2759 #ifdef CONFIG_X86_64
2760 	/*
2761 	 * KVM expects to be able to shove all legal physical addresses into
2762 	 * VMCS fields for 64-bit kernels, and per the SDM, "This bit is always
2763 	 * 0 for processors that support Intel 64 architecture".
2764 	 */
2765 	if (basic_msr & VMX_BASIC_32BIT_PHYS_ADDR_ONLY)
2766 		return -EIO;
2767 #endif
2768 
2769 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2770 	if (vmx_basic_vmcs_mem_type(basic_msr) != X86_MEMTYPE_WB)
2771 		return -EIO;
2772 
2773 	rdmsrq(MSR_IA32_VMX_MISC, misc_msr);
2774 
2775 	vmcs_conf->basic = basic_msr;
2776 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2777 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2778 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2779 	vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2780 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2781 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2782 	vmcs_conf->misc	= misc_msr;
2783 
2784 #if IS_ENABLED(CONFIG_HYPERV)
2785 	if (enlightened_vmcs)
2786 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2787 #endif
2788 
2789 	return 0;
2790 }
2791 
2792 static bool __kvm_is_vmx_supported(void)
2793 {
2794 	int cpu = smp_processor_id();
2795 
2796 	if (!(cpuid_ecx(1) & feature_bit(VMX))) {
2797 		pr_err("VMX not supported by CPU %d\n", cpu);
2798 		return false;
2799 	}
2800 
2801 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2802 	    !this_cpu_has(X86_FEATURE_VMX)) {
2803 		pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
2804 		return false;
2805 	}
2806 
2807 	return true;
2808 }
2809 
2810 static bool kvm_is_vmx_supported(void)
2811 {
2812 	bool supported;
2813 
2814 	migrate_disable();
2815 	supported = __kvm_is_vmx_supported();
2816 	migrate_enable();
2817 
2818 	return supported;
2819 }
2820 
2821 int vmx_check_processor_compat(void)
2822 {
2823 	int cpu = raw_smp_processor_id();
2824 	struct vmcs_config vmcs_conf;
2825 	struct vmx_capability vmx_cap;
2826 
2827 	if (!__kvm_is_vmx_supported())
2828 		return -EIO;
2829 
2830 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
2831 		pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
2832 		return -EIO;
2833 	}
2834 	if (nested)
2835 		nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
2836 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
2837 		pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
2838 		return -EIO;
2839 	}
2840 	return 0;
2841 }
2842 
2843 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2844 {
2845 	u64 msr;
2846 
2847 	cr4_set_bits(X86_CR4_VMXE);
2848 
2849 	asm goto("1: vmxon %[vmxon_pointer]\n\t"
2850 			  _ASM_EXTABLE(1b, %l[fault])
2851 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2852 			  : : fault);
2853 	return 0;
2854 
2855 fault:
2856 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2857 		  rdmsrq_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2858 	cr4_clear_bits(X86_CR4_VMXE);
2859 
2860 	return -EFAULT;
2861 }
2862 
2863 int vmx_enable_virtualization_cpu(void)
2864 {
2865 	int cpu = raw_smp_processor_id();
2866 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2867 	int r;
2868 
2869 	if (cr4_read_shadow() & X86_CR4_VMXE)
2870 		return -EBUSY;
2871 
2872 	/*
2873 	 * This can happen if we hot-added a CPU but failed to allocate
2874 	 * VP assist page for it.
2875 	 */
2876 	if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
2877 		return -EFAULT;
2878 
2879 	intel_pt_handle_vmx(1);
2880 
2881 	r = kvm_cpu_vmxon(phys_addr);
2882 	if (r) {
2883 		intel_pt_handle_vmx(0);
2884 		return r;
2885 	}
2886 
2887 	return 0;
2888 }
2889 
2890 static void vmclear_local_loaded_vmcss(void)
2891 {
2892 	int cpu = raw_smp_processor_id();
2893 	struct loaded_vmcs *v, *n;
2894 
2895 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2896 				 loaded_vmcss_on_cpu_link)
2897 		__loaded_vmcs_clear(v);
2898 }
2899 
2900 void vmx_disable_virtualization_cpu(void)
2901 {
2902 	vmclear_local_loaded_vmcss();
2903 
2904 	if (kvm_cpu_vmxoff())
2905 		kvm_spurious_fault();
2906 
2907 	hv_reset_evmcs();
2908 
2909 	intel_pt_handle_vmx(0);
2910 }
2911 
2912 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2913 {
2914 	int node = cpu_to_node(cpu);
2915 	struct page *pages;
2916 	struct vmcs *vmcs;
2917 
2918 	pages = __alloc_pages_node(node, flags, 0);
2919 	if (!pages)
2920 		return NULL;
2921 	vmcs = page_address(pages);
2922 	memset(vmcs, 0, vmx_basic_vmcs_size(vmcs_config.basic));
2923 
2924 	/* KVM supports Enlightened VMCS v1 only */
2925 	if (kvm_is_using_evmcs())
2926 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2927 	else
2928 		vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic);
2929 
2930 	if (shadow)
2931 		vmcs->hdr.shadow_vmcs = 1;
2932 	return vmcs;
2933 }
2934 
2935 void free_vmcs(struct vmcs *vmcs)
2936 {
2937 	free_page((unsigned long)vmcs);
2938 }
2939 
2940 /*
2941  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2942  */
2943 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2944 {
2945 	if (!loaded_vmcs->vmcs)
2946 		return;
2947 	loaded_vmcs_clear(loaded_vmcs);
2948 	free_vmcs(loaded_vmcs->vmcs);
2949 	loaded_vmcs->vmcs = NULL;
2950 	if (loaded_vmcs->msr_bitmap)
2951 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2952 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2953 }
2954 
2955 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2956 {
2957 	loaded_vmcs->vmcs = alloc_vmcs(false);
2958 	if (!loaded_vmcs->vmcs)
2959 		return -ENOMEM;
2960 
2961 	vmcs_clear(loaded_vmcs->vmcs);
2962 
2963 	loaded_vmcs->shadow_vmcs = NULL;
2964 	loaded_vmcs->hv_timer_soft_disabled = false;
2965 	loaded_vmcs->cpu = -1;
2966 	loaded_vmcs->launched = 0;
2967 
2968 	if (cpu_has_vmx_msr_bitmap()) {
2969 		loaded_vmcs->msr_bitmap = (unsigned long *)
2970 				__get_free_page(GFP_KERNEL_ACCOUNT);
2971 		if (!loaded_vmcs->msr_bitmap)
2972 			goto out_vmcs;
2973 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2974 	}
2975 
2976 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2977 	memset(&loaded_vmcs->controls_shadow, 0,
2978 		sizeof(struct vmcs_controls_shadow));
2979 
2980 	return 0;
2981 
2982 out_vmcs:
2983 	free_loaded_vmcs(loaded_vmcs);
2984 	return -ENOMEM;
2985 }
2986 
2987 static void free_kvm_area(void)
2988 {
2989 	int cpu;
2990 
2991 	for_each_possible_cpu(cpu) {
2992 		free_vmcs(per_cpu(vmxarea, cpu));
2993 		per_cpu(vmxarea, cpu) = NULL;
2994 	}
2995 }
2996 
2997 static __init int alloc_kvm_area(void)
2998 {
2999 	int cpu;
3000 
3001 	for_each_possible_cpu(cpu) {
3002 		struct vmcs *vmcs;
3003 
3004 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
3005 		if (!vmcs) {
3006 			free_kvm_area();
3007 			return -ENOMEM;
3008 		}
3009 
3010 		/*
3011 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
3012 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
3013 		 * revision_id reported by MSR_IA32_VMX_BASIC.
3014 		 *
3015 		 * However, even though not explicitly documented by
3016 		 * TLFS, VMXArea passed as VMXON argument should
3017 		 * still be marked with revision_id reported by
3018 		 * physical CPU.
3019 		 */
3020 		if (kvm_is_using_evmcs())
3021 			vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic);
3022 
3023 		per_cpu(vmxarea, cpu) = vmcs;
3024 	}
3025 	return 0;
3026 }
3027 
3028 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3029 		struct kvm_segment *save)
3030 {
3031 	if (!emulate_invalid_guest_state) {
3032 		/*
3033 		 * CS and SS RPL should be equal during guest entry according
3034 		 * to VMX spec, but in reality it is not always so. Since vcpu
3035 		 * is in the middle of the transition from real mode to
3036 		 * protected mode it is safe to assume that RPL 0 is a good
3037 		 * default value.
3038 		 */
3039 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3040 			save->selector &= ~SEGMENT_RPL_MASK;
3041 		save->dpl = save->selector & SEGMENT_RPL_MASK;
3042 		save->s = 1;
3043 	}
3044 	__vmx_set_segment(vcpu, save, seg);
3045 }
3046 
3047 static void enter_pmode(struct kvm_vcpu *vcpu)
3048 {
3049 	unsigned long flags;
3050 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3051 
3052 	/*
3053 	 * Update real mode segment cache. It may be not up-to-date if segment
3054 	 * register was written while vcpu was in a guest mode.
3055 	 */
3056 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3057 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3058 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3059 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3060 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3061 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3062 
3063 	vmx->rmode.vm86_active = 0;
3064 
3065 	__vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3066 
3067 	flags = vmcs_readl(GUEST_RFLAGS);
3068 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3069 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3070 	vmcs_writel(GUEST_RFLAGS, flags);
3071 
3072 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3073 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3074 
3075 	vmx_update_exception_bitmap(vcpu);
3076 
3077 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3078 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3079 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3080 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3081 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3082 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3083 }
3084 
3085 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3086 {
3087 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3088 	struct kvm_segment var = *save;
3089 
3090 	var.dpl = 0x3;
3091 	if (seg == VCPU_SREG_CS)
3092 		var.type = 0x3;
3093 
3094 	if (!emulate_invalid_guest_state) {
3095 		var.selector = var.base >> 4;
3096 		var.base = var.base & 0xffff0;
3097 		var.limit = 0xffff;
3098 		var.g = 0;
3099 		var.db = 0;
3100 		var.present = 1;
3101 		var.s = 1;
3102 		var.l = 0;
3103 		var.unusable = 0;
3104 		var.type = 0x3;
3105 		var.avl = 0;
3106 		if (save->base & 0xf)
3107 			pr_warn_once("segment base is not paragraph aligned "
3108 				     "when entering protected mode (seg=%d)", seg);
3109 	}
3110 
3111 	vmcs_write16(sf->selector, var.selector);
3112 	vmcs_writel(sf->base, var.base);
3113 	vmcs_write32(sf->limit, var.limit);
3114 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3115 }
3116 
3117 static void enter_rmode(struct kvm_vcpu *vcpu)
3118 {
3119 	unsigned long flags;
3120 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3121 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
3122 
3123 	/*
3124 	 * KVM should never use VM86 to virtualize Real Mode when L2 is active,
3125 	 * as using VM86 is unnecessary if unrestricted guest is enabled, and
3126 	 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0
3127 	 * should VM-Fail and KVM should reject userspace attempts to stuff
3128 	 * CR0.PG=0 when L2 is active.
3129 	 */
3130 	WARN_ON_ONCE(is_guest_mode(vcpu));
3131 
3132 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3133 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3134 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3135 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3136 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3137 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3138 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3139 
3140 	vmx->rmode.vm86_active = 1;
3141 
3142 	vmx_segment_cache_clear(vmx);
3143 
3144 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3145 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3146 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3147 
3148 	flags = vmcs_readl(GUEST_RFLAGS);
3149 	vmx->rmode.save_rflags = flags;
3150 
3151 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3152 
3153 	vmcs_writel(GUEST_RFLAGS, flags);
3154 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3155 	vmx_update_exception_bitmap(vcpu);
3156 
3157 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3158 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3159 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3160 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3161 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3162 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3163 }
3164 
3165 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3166 {
3167 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3168 
3169 	/* Nothing to do if hardware doesn't support EFER. */
3170 	if (!vmx_find_uret_msr(vmx, MSR_EFER))
3171 		return 0;
3172 
3173 	vcpu->arch.efer = efer;
3174 #ifdef CONFIG_X86_64
3175 	if (efer & EFER_LMA)
3176 		vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3177 	else
3178 		vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3179 #else
3180 	if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3181 		return 1;
3182 #endif
3183 
3184 	vmx_setup_uret_msrs(vmx);
3185 	return 0;
3186 }
3187 
3188 #ifdef CONFIG_X86_64
3189 
3190 static void enter_lmode(struct kvm_vcpu *vcpu)
3191 {
3192 	u32 guest_tr_ar;
3193 
3194 	vmx_segment_cache_clear(to_vmx(vcpu));
3195 
3196 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3197 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3198 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3199 				     __func__);
3200 		vmcs_write32(GUEST_TR_AR_BYTES,
3201 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3202 			     | VMX_AR_TYPE_BUSY_64_TSS);
3203 	}
3204 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3205 }
3206 
3207 static void exit_lmode(struct kvm_vcpu *vcpu)
3208 {
3209 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3210 }
3211 
3212 #endif
3213 
3214 void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3215 {
3216 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3217 
3218 	/*
3219 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3220 	 * the CPU is not required to invalidate guest-physical mappings on
3221 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
3222 	 * associated with the root EPT structure and not any particular VPID
3223 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
3224 	 */
3225 	if (enable_ept) {
3226 		ept_sync_global();
3227 	} else if (enable_vpid) {
3228 		if (cpu_has_vmx_invvpid_global()) {
3229 			vpid_sync_vcpu_global();
3230 		} else {
3231 			vpid_sync_vcpu_single(vmx->vpid);
3232 			vpid_sync_vcpu_single(vmx->nested.vpid02);
3233 		}
3234 	}
3235 }
3236 
3237 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3238 {
3239 	if (is_guest_mode(vcpu) && nested_cpu_has_vpid(get_vmcs12(vcpu)))
3240 		return nested_get_vpid02(vcpu);
3241 	return to_vmx(vcpu)->vpid;
3242 }
3243 
3244 void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3245 {
3246 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3247 	u64 root_hpa = mmu->root.hpa;
3248 
3249 	/* No flush required if the current context is invalid. */
3250 	if (!VALID_PAGE(root_hpa))
3251 		return;
3252 
3253 	if (enable_ept)
3254 		ept_sync_context(construct_eptp(vcpu, root_hpa,
3255 						mmu->root_role.level));
3256 	else
3257 		vpid_sync_context(vmx_get_current_vpid(vcpu));
3258 }
3259 
3260 void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3261 {
3262 	/*
3263 	 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3264 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3265 	 */
3266 	vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3267 }
3268 
3269 void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3270 {
3271 	/*
3272 	 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3273 	 * vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit are
3274 	 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3275 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3276 	 * i.e. no explicit INVVPID is necessary.
3277 	 */
3278 	vpid_sync_context(vmx_get_current_vpid(vcpu));
3279 }
3280 
3281 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3282 {
3283 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3284 
3285 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3286 		return;
3287 
3288 	if (is_pae_paging(vcpu)) {
3289 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3290 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3291 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3292 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3293 	}
3294 }
3295 
3296 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3297 {
3298 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3299 
3300 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3301 		return;
3302 
3303 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3304 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3305 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3306 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3307 
3308 	kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3309 }
3310 
3311 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3312 			  CPU_BASED_CR3_STORE_EXITING)
3313 
3314 bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3315 {
3316 	if (is_guest_mode(vcpu))
3317 		return nested_guest_cr0_valid(vcpu, cr0);
3318 
3319 	if (to_vmx(vcpu)->nested.vmxon)
3320 		return nested_host_cr0_valid(vcpu, cr0);
3321 
3322 	return true;
3323 }
3324 
3325 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3326 {
3327 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3328 	unsigned long hw_cr0, old_cr0_pg;
3329 	u32 tmp;
3330 
3331 	old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3332 
3333 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3334 	if (enable_unrestricted_guest)
3335 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3336 	else {
3337 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3338 		if (!enable_ept)
3339 			hw_cr0 |= X86_CR0_WP;
3340 
3341 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3342 			enter_pmode(vcpu);
3343 
3344 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3345 			enter_rmode(vcpu);
3346 	}
3347 
3348 	vmcs_writel(CR0_READ_SHADOW, cr0);
3349 	vmcs_writel(GUEST_CR0, hw_cr0);
3350 	vcpu->arch.cr0 = cr0;
3351 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3352 
3353 #ifdef CONFIG_X86_64
3354 	if (vcpu->arch.efer & EFER_LME) {
3355 		if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3356 			enter_lmode(vcpu);
3357 		else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3358 			exit_lmode(vcpu);
3359 	}
3360 #endif
3361 
3362 	if (enable_ept && !enable_unrestricted_guest) {
3363 		/*
3364 		 * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3365 		 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3366 		 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3367 		 * KVM's CR3 is installed.
3368 		 */
3369 		if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3370 			vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3371 
3372 		/*
3373 		 * When running with EPT but not unrestricted guest, KVM must
3374 		 * intercept CR3 accesses when paging is _disabled_.  This is
3375 		 * necessary because restricted guests can't actually run with
3376 		 * paging disabled, and so KVM stuffs its own CR3 in order to
3377 		 * run the guest when identity mapped page tables.
3378 		 *
3379 		 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3380 		 * update, it may be stale with respect to CR3 interception,
3381 		 * e.g. after nested VM-Enter.
3382 		 *
3383 		 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3384 		 * stores to forward them to L1, even if KVM does not need to
3385 		 * intercept them to preserve its identity mapped page tables.
3386 		 */
3387 		if (!(cr0 & X86_CR0_PG)) {
3388 			exec_controls_setbit(vmx, CR3_EXITING_BITS);
3389 		} else if (!is_guest_mode(vcpu)) {
3390 			exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3391 		} else {
3392 			tmp = exec_controls_get(vmx);
3393 			tmp &= ~CR3_EXITING_BITS;
3394 			tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3395 			exec_controls_set(vmx, tmp);
3396 		}
3397 
3398 		/* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3399 		if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3400 			vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3401 
3402 		/*
3403 		 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3404 		 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3405 		 */
3406 		if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3407 			kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3408 	}
3409 
3410 	/* depends on vcpu->arch.cr0 to be set to a new value */
3411 	vmx->vt.emulation_required = vmx_emulation_required(vcpu);
3412 }
3413 
3414 static int vmx_get_max_ept_level(void)
3415 {
3416 	if (cpu_has_vmx_ept_5levels())
3417 		return 5;
3418 	return 4;
3419 }
3420 
3421 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3422 {
3423 	u64 eptp = VMX_EPTP_MT_WB;
3424 
3425 	eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3426 
3427 	if (enable_ept_ad_bits &&
3428 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3429 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3430 	eptp |= root_hpa;
3431 
3432 	return eptp;
3433 }
3434 
3435 void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3436 {
3437 	struct kvm *kvm = vcpu->kvm;
3438 	bool update_guest_cr3 = true;
3439 	unsigned long guest_cr3;
3440 	u64 eptp;
3441 
3442 	if (enable_ept) {
3443 		eptp = construct_eptp(vcpu, root_hpa, root_level);
3444 		vmcs_write64(EPT_POINTER, eptp);
3445 
3446 		hv_track_root_tdp(vcpu, root_hpa);
3447 
3448 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3449 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3450 		else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3451 			guest_cr3 = vcpu->arch.cr3;
3452 		else /* vmcs.GUEST_CR3 is already up-to-date. */
3453 			update_guest_cr3 = false;
3454 		vmx_ept_load_pdptrs(vcpu);
3455 	} else {
3456 		guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu) |
3457 			    kvm_get_active_cr3_lam_bits(vcpu);
3458 	}
3459 
3460 	if (update_guest_cr3)
3461 		vmcs_writel(GUEST_CR3, guest_cr3);
3462 }
3463 
3464 bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3465 {
3466 	/*
3467 	 * We operate under the default treatment of SMM, so VMX cannot be
3468 	 * enabled under SMM.  Note, whether or not VMXE is allowed at all,
3469 	 * i.e. is a reserved bit, is handled by common x86 code.
3470 	 */
3471 	if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3472 		return false;
3473 
3474 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3475 		return false;
3476 
3477 	return true;
3478 }
3479 
3480 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3481 {
3482 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
3483 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3484 	unsigned long hw_cr4;
3485 
3486 	/*
3487 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3488 	 * is in force while we are in guest mode.  Do not let guests control
3489 	 * this bit, even if host CR4.MCE == 0.
3490 	 */
3491 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3492 	if (enable_unrestricted_guest)
3493 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3494 	else if (vmx->rmode.vm86_active)
3495 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3496 	else
3497 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3498 
3499 	if (vmx_umip_emulated()) {
3500 		if (cr4 & X86_CR4_UMIP) {
3501 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3502 			hw_cr4 &= ~X86_CR4_UMIP;
3503 		} else if (!is_guest_mode(vcpu) ||
3504 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3505 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3506 		}
3507 	}
3508 
3509 	vcpu->arch.cr4 = cr4;
3510 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3511 
3512 	if (!enable_unrestricted_guest) {
3513 		if (enable_ept) {
3514 			if (!is_paging(vcpu)) {
3515 				hw_cr4 &= ~X86_CR4_PAE;
3516 				hw_cr4 |= X86_CR4_PSE;
3517 			} else if (!(cr4 & X86_CR4_PAE)) {
3518 				hw_cr4 &= ~X86_CR4_PAE;
3519 			}
3520 		}
3521 
3522 		/*
3523 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3524 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3525 		 * to be manually disabled when guest switches to non-paging
3526 		 * mode.
3527 		 *
3528 		 * If !enable_unrestricted_guest, the CPU is always running
3529 		 * with CR0.PG=1 and CR4 needs to be modified.
3530 		 * If enable_unrestricted_guest, the CPU automatically
3531 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3532 		 */
3533 		if (!is_paging(vcpu))
3534 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3535 	}
3536 
3537 	vmcs_writel(CR4_READ_SHADOW, cr4);
3538 	vmcs_writel(GUEST_CR4, hw_cr4);
3539 
3540 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3541 		vcpu->arch.cpuid_dynamic_bits_dirty = true;
3542 }
3543 
3544 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3545 {
3546 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3547 	u32 ar;
3548 
3549 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3550 		*var = vmx->rmode.segs[seg];
3551 		if (seg == VCPU_SREG_TR
3552 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3553 			return;
3554 		var->base = vmx_read_guest_seg_base(vmx, seg);
3555 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3556 		return;
3557 	}
3558 	var->base = vmx_read_guest_seg_base(vmx, seg);
3559 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3560 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3561 	ar = vmx_read_guest_seg_ar(vmx, seg);
3562 	var->unusable = (ar >> 16) & 1;
3563 	var->type = ar & 15;
3564 	var->s = (ar >> 4) & 1;
3565 	var->dpl = (ar >> 5) & 3;
3566 	/*
3567 	 * Some userspaces do not preserve unusable property. Since usable
3568 	 * segment has to be present according to VMX spec we can use present
3569 	 * property to amend userspace bug by making unusable segment always
3570 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3571 	 * segment as unusable.
3572 	 */
3573 	var->present = !var->unusable;
3574 	var->avl = (ar >> 12) & 1;
3575 	var->l = (ar >> 13) & 1;
3576 	var->db = (ar >> 14) & 1;
3577 	var->g = (ar >> 15) & 1;
3578 }
3579 
3580 u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3581 {
3582 	struct kvm_segment s;
3583 
3584 	if (to_vmx(vcpu)->rmode.vm86_active) {
3585 		vmx_get_segment(vcpu, &s, seg);
3586 		return s.base;
3587 	}
3588 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3589 }
3590 
3591 static int __vmx_get_cpl(struct kvm_vcpu *vcpu, bool no_cache)
3592 {
3593 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3594 	int ar;
3595 
3596 	if (unlikely(vmx->rmode.vm86_active))
3597 		return 0;
3598 
3599 	if (no_cache)
3600 		ar = vmcs_read32(GUEST_SS_AR_BYTES);
3601 	else
3602 		ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3603 	return VMX_AR_DPL(ar);
3604 }
3605 
3606 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3607 {
3608 	return __vmx_get_cpl(vcpu, false);
3609 }
3610 
3611 int vmx_get_cpl_no_cache(struct kvm_vcpu *vcpu)
3612 {
3613 	return __vmx_get_cpl(vcpu, true);
3614 }
3615 
3616 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3617 {
3618 	u32 ar;
3619 
3620 	ar = var->type & 15;
3621 	ar |= (var->s & 1) << 4;
3622 	ar |= (var->dpl & 3) << 5;
3623 	ar |= (var->present & 1) << 7;
3624 	ar |= (var->avl & 1) << 12;
3625 	ar |= (var->l & 1) << 13;
3626 	ar |= (var->db & 1) << 14;
3627 	ar |= (var->g & 1) << 15;
3628 	ar |= (var->unusable || !var->present) << 16;
3629 
3630 	return ar;
3631 }
3632 
3633 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3634 {
3635 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3636 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3637 
3638 	vmx_segment_cache_clear(vmx);
3639 
3640 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3641 		vmx->rmode.segs[seg] = *var;
3642 		if (seg == VCPU_SREG_TR)
3643 			vmcs_write16(sf->selector, var->selector);
3644 		else if (var->s)
3645 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3646 		return;
3647 	}
3648 
3649 	vmcs_writel(sf->base, var->base);
3650 	vmcs_write32(sf->limit, var->limit);
3651 	vmcs_write16(sf->selector, var->selector);
3652 
3653 	/*
3654 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3655 	 * qemu binaries.
3656 	 *   IA32 arch specifies that at the time of processor reset the
3657 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3658 	 * is setting it to 0 in the userland code. This causes invalid guest
3659 	 * state vmexit when "unrestricted guest" mode is turned on.
3660 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3661 	 * tree. Newer qemu binaries with that qemu fix would not need this
3662 	 * kvm hack.
3663 	 */
3664 	if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3665 		var->type |= 0x1; /* Accessed */
3666 
3667 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3668 }
3669 
3670 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3671 {
3672 	__vmx_set_segment(vcpu, var, seg);
3673 
3674 	to_vmx(vcpu)->vt.emulation_required = vmx_emulation_required(vcpu);
3675 }
3676 
3677 void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3678 {
3679 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3680 
3681 	*db = (ar >> 14) & 1;
3682 	*l = (ar >> 13) & 1;
3683 }
3684 
3685 void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3686 {
3687 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3688 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3689 }
3690 
3691 void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3692 {
3693 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3694 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3695 }
3696 
3697 void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3698 {
3699 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3700 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3701 }
3702 
3703 void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3704 {
3705 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3706 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3707 }
3708 
3709 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3710 {
3711 	struct kvm_segment var;
3712 	u32 ar;
3713 
3714 	vmx_get_segment(vcpu, &var, seg);
3715 	var.dpl = 0x3;
3716 	if (seg == VCPU_SREG_CS)
3717 		var.type = 0x3;
3718 	ar = vmx_segment_access_rights(&var);
3719 
3720 	if (var.base != (var.selector << 4))
3721 		return false;
3722 	if (var.limit != 0xffff)
3723 		return false;
3724 	if (ar != 0xf3)
3725 		return false;
3726 
3727 	return true;
3728 }
3729 
3730 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3731 {
3732 	struct kvm_segment cs;
3733 	unsigned int cs_rpl;
3734 
3735 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3736 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3737 
3738 	if (cs.unusable)
3739 		return false;
3740 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3741 		return false;
3742 	if (!cs.s)
3743 		return false;
3744 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3745 		if (cs.dpl > cs_rpl)
3746 			return false;
3747 	} else {
3748 		if (cs.dpl != cs_rpl)
3749 			return false;
3750 	}
3751 	if (!cs.present)
3752 		return false;
3753 
3754 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3755 	return true;
3756 }
3757 
3758 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3759 {
3760 	struct kvm_segment ss;
3761 	unsigned int ss_rpl;
3762 
3763 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3764 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3765 
3766 	if (ss.unusable)
3767 		return true;
3768 	if (ss.type != 3 && ss.type != 7)
3769 		return false;
3770 	if (!ss.s)
3771 		return false;
3772 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3773 		return false;
3774 	if (!ss.present)
3775 		return false;
3776 
3777 	return true;
3778 }
3779 
3780 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3781 {
3782 	struct kvm_segment var;
3783 	unsigned int rpl;
3784 
3785 	vmx_get_segment(vcpu, &var, seg);
3786 	rpl = var.selector & SEGMENT_RPL_MASK;
3787 
3788 	if (var.unusable)
3789 		return true;
3790 	if (!var.s)
3791 		return false;
3792 	if (!var.present)
3793 		return false;
3794 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3795 		if (var.dpl < rpl) /* DPL < RPL */
3796 			return false;
3797 	}
3798 
3799 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3800 	 * rights flags
3801 	 */
3802 	return true;
3803 }
3804 
3805 static bool tr_valid(struct kvm_vcpu *vcpu)
3806 {
3807 	struct kvm_segment tr;
3808 
3809 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3810 
3811 	if (tr.unusable)
3812 		return false;
3813 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3814 		return false;
3815 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3816 		return false;
3817 	if (!tr.present)
3818 		return false;
3819 
3820 	return true;
3821 }
3822 
3823 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3824 {
3825 	struct kvm_segment ldtr;
3826 
3827 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3828 
3829 	if (ldtr.unusable)
3830 		return true;
3831 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3832 		return false;
3833 	if (ldtr.type != 2)
3834 		return false;
3835 	if (!ldtr.present)
3836 		return false;
3837 
3838 	return true;
3839 }
3840 
3841 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3842 {
3843 	struct kvm_segment cs, ss;
3844 
3845 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3846 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3847 
3848 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3849 		 (ss.selector & SEGMENT_RPL_MASK));
3850 }
3851 
3852 /*
3853  * Check if guest state is valid. Returns true if valid, false if
3854  * not.
3855  * We assume that registers are always usable
3856  */
3857 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3858 {
3859 	/* real mode guest state checks */
3860 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3861 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3862 			return false;
3863 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3864 			return false;
3865 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3866 			return false;
3867 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3868 			return false;
3869 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3870 			return false;
3871 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3872 			return false;
3873 	} else {
3874 	/* protected mode guest state checks */
3875 		if (!cs_ss_rpl_check(vcpu))
3876 			return false;
3877 		if (!code_segment_valid(vcpu))
3878 			return false;
3879 		if (!stack_segment_valid(vcpu))
3880 			return false;
3881 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3882 			return false;
3883 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3884 			return false;
3885 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3886 			return false;
3887 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3888 			return false;
3889 		if (!tr_valid(vcpu))
3890 			return false;
3891 		if (!ldtr_valid(vcpu))
3892 			return false;
3893 	}
3894 	/* TODO:
3895 	 * - Add checks on RIP
3896 	 * - Add checks on RFLAGS
3897 	 */
3898 
3899 	return true;
3900 }
3901 
3902 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3903 {
3904 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3905 	u16 data;
3906 	int i;
3907 
3908 	for (i = 0; i < 3; i++) {
3909 		if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3910 			return -EFAULT;
3911 	}
3912 
3913 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3914 	if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3915 		return -EFAULT;
3916 
3917 	data = ~0;
3918 	if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3919 		return -EFAULT;
3920 
3921 	return 0;
3922 }
3923 
3924 static int init_rmode_identity_map(struct kvm *kvm)
3925 {
3926 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3927 	int i, r = 0;
3928 	void __user *uaddr;
3929 	u32 tmp;
3930 
3931 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3932 	mutex_lock(&kvm->slots_lock);
3933 
3934 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3935 		goto out;
3936 
3937 	if (!kvm_vmx->ept_identity_map_addr)
3938 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3939 
3940 	uaddr = __x86_set_memory_region(kvm,
3941 					IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3942 					kvm_vmx->ept_identity_map_addr,
3943 					PAGE_SIZE);
3944 	if (IS_ERR(uaddr)) {
3945 		r = PTR_ERR(uaddr);
3946 		goto out;
3947 	}
3948 
3949 	/* Set up identity-mapping pagetable for EPT in real mode */
3950 	for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3951 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3952 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3953 		if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3954 			r = -EFAULT;
3955 			goto out;
3956 		}
3957 	}
3958 	kvm_vmx->ept_identity_pagetable_done = true;
3959 
3960 out:
3961 	mutex_unlock(&kvm->slots_lock);
3962 	return r;
3963 }
3964 
3965 static void seg_setup(int seg)
3966 {
3967 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3968 	unsigned int ar;
3969 
3970 	vmcs_write16(sf->selector, 0);
3971 	vmcs_writel(sf->base, 0);
3972 	vmcs_write32(sf->limit, 0xffff);
3973 	ar = 0x93;
3974 	if (seg == VCPU_SREG_CS)
3975 		ar |= 0x08; /* code segment */
3976 
3977 	vmcs_write32(sf->ar_bytes, ar);
3978 }
3979 
3980 int allocate_vpid(void)
3981 {
3982 	int vpid;
3983 
3984 	if (!enable_vpid)
3985 		return 0;
3986 	spin_lock(&vmx_vpid_lock);
3987 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3988 	if (vpid < VMX_NR_VPIDS)
3989 		__set_bit(vpid, vmx_vpid_bitmap);
3990 	else
3991 		vpid = 0;
3992 	spin_unlock(&vmx_vpid_lock);
3993 	return vpid;
3994 }
3995 
3996 void free_vpid(int vpid)
3997 {
3998 	if (!enable_vpid || vpid == 0)
3999 		return;
4000 	spin_lock(&vmx_vpid_lock);
4001 	__clear_bit(vpid, vmx_vpid_bitmap);
4002 	spin_unlock(&vmx_vpid_lock);
4003 }
4004 
4005 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
4006 {
4007 	/*
4008 	 * When KVM is a nested hypervisor on top of Hyper-V and uses
4009 	 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
4010 	 * bitmap has changed.
4011 	 */
4012 	if (kvm_is_using_evmcs()) {
4013 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
4014 
4015 		if (evmcs->hv_enlightenments_control.msr_bitmap)
4016 			evmcs->hv_clean_fields &=
4017 				~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
4018 	}
4019 
4020 	vmx->nested.force_msr_bitmap_recalc = true;
4021 }
4022 
4023 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
4024 {
4025 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4026 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
4027 	int idx;
4028 
4029 	if (!cpu_has_vmx_msr_bitmap())
4030 		return;
4031 
4032 	vmx_msr_bitmap_l01_changed(vmx);
4033 
4034 	/*
4035 	 * Mark the desired intercept state in shadow bitmap, this is needed
4036 	 * for resync when the MSR filters change.
4037 	 */
4038 	idx = vmx_get_passthrough_msr_slot(msr);
4039 	if (idx >= 0) {
4040 		if (type & MSR_TYPE_R)
4041 			clear_bit(idx, vmx->shadow_msr_intercept.read);
4042 		if (type & MSR_TYPE_W)
4043 			clear_bit(idx, vmx->shadow_msr_intercept.write);
4044 	}
4045 
4046 	if ((type & MSR_TYPE_R) &&
4047 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
4048 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
4049 		type &= ~MSR_TYPE_R;
4050 	}
4051 
4052 	if ((type & MSR_TYPE_W) &&
4053 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
4054 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
4055 		type &= ~MSR_TYPE_W;
4056 	}
4057 
4058 	if (type & MSR_TYPE_R)
4059 		vmx_clear_msr_bitmap_read(msr_bitmap, msr);
4060 
4061 	if (type & MSR_TYPE_W)
4062 		vmx_clear_msr_bitmap_write(msr_bitmap, msr);
4063 }
4064 
4065 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
4066 {
4067 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4068 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
4069 	int idx;
4070 
4071 	if (!cpu_has_vmx_msr_bitmap())
4072 		return;
4073 
4074 	vmx_msr_bitmap_l01_changed(vmx);
4075 
4076 	/*
4077 	 * Mark the desired intercept state in shadow bitmap, this is needed
4078 	 * for resync when the MSR filter changes.
4079 	 */
4080 	idx = vmx_get_passthrough_msr_slot(msr);
4081 	if (idx >= 0) {
4082 		if (type & MSR_TYPE_R)
4083 			set_bit(idx, vmx->shadow_msr_intercept.read);
4084 		if (type & MSR_TYPE_W)
4085 			set_bit(idx, vmx->shadow_msr_intercept.write);
4086 	}
4087 
4088 	if (type & MSR_TYPE_R)
4089 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
4090 
4091 	if (type & MSR_TYPE_W)
4092 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
4093 }
4094 
4095 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
4096 {
4097 	/*
4098 	 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
4099 	 * of the MSR bitmap.  KVM emulates APIC registers up through 0x3f0,
4100 	 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
4101 	 */
4102 	const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
4103 	const int write_idx = read_idx + (0x800 / sizeof(u64));
4104 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4105 	u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
4106 	u8 mode;
4107 
4108 	if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
4109 		return;
4110 
4111 	if (cpu_has_secondary_exec_ctrls() &&
4112 	    (secondary_exec_controls_get(vmx) &
4113 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4114 		mode = MSR_BITMAP_MODE_X2APIC;
4115 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4116 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4117 	} else {
4118 		mode = 0;
4119 	}
4120 
4121 	if (mode == vmx->x2apic_msr_bitmap_mode)
4122 		return;
4123 
4124 	vmx->x2apic_msr_bitmap_mode = mode;
4125 
4126 	/*
4127 	 * Reset the bitmap for MSRs 0x800 - 0x83f.  Leave AMD's uber-extended
4128 	 * registers (0x840 and above) intercepted, KVM doesn't support them.
4129 	 * Intercept all writes by default and poke holes as needed.  Pass
4130 	 * through reads for all valid registers by default in x2APIC+APICv
4131 	 * mode, only the current timer count needs on-demand emulation by KVM.
4132 	 */
4133 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
4134 		msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
4135 	else
4136 		msr_bitmap[read_idx] = ~0ull;
4137 	msr_bitmap[write_idx] = ~0ull;
4138 
4139 	/*
4140 	 * TPR reads and writes can be virtualized even if virtual interrupt
4141 	 * delivery is not in use.
4142 	 */
4143 	vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4144 				  !(mode & MSR_BITMAP_MODE_X2APIC));
4145 
4146 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4147 		vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4148 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4149 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4150 		if (enable_ipiv)
4151 			vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4152 	}
4153 }
4154 
4155 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4156 {
4157 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4158 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4159 	u32 i;
4160 
4161 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4162 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4163 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4164 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4165 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4166 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4167 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4168 	}
4169 }
4170 
4171 void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
4172 {
4173 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4174 	u32 i;
4175 
4176 	if (!cpu_has_vmx_msr_bitmap())
4177 		return;
4178 
4179 	/*
4180 	 * Redo intercept permissions for MSRs that KVM is passing through to
4181 	 * the guest.  Disabling interception will check the new MSR filter and
4182 	 * ensure that KVM enables interception if usersepace wants to filter
4183 	 * the MSR.  MSRs that KVM is already intercepting don't need to be
4184 	 * refreshed since KVM is going to intercept them regardless of what
4185 	 * userspace wants.
4186 	 */
4187 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4188 		u32 msr = vmx_possible_passthrough_msrs[i];
4189 
4190 		if (!test_bit(i, vmx->shadow_msr_intercept.read))
4191 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R);
4192 
4193 		if (!test_bit(i, vmx->shadow_msr_intercept.write))
4194 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W);
4195 	}
4196 
4197 	/* PT MSRs can be passed through iff PT is exposed to the guest. */
4198 	if (vmx_pt_mode_is_host_guest())
4199 		pt_update_intercept_for_msr(vcpu);
4200 }
4201 
4202 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4203 						int vector)
4204 {
4205 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4206 
4207 	/*
4208 	 * DO NOT query the vCPU's vmcs12, as vmcs12 is dynamically allocated
4209 	 * and freed, and must not be accessed outside of vcpu->mutex.  The
4210 	 * vCPU's cached PI NV is valid if and only if posted interrupts
4211 	 * enabled in its vmcs12, i.e. checking the vector also checks that
4212 	 * L1 has enabled posted interrupts for L2.
4213 	 */
4214 	if (is_guest_mode(vcpu) &&
4215 	    vector == vmx->nested.posted_intr_nv) {
4216 		/*
4217 		 * If a posted intr is not recognized by hardware,
4218 		 * we will accomplish it in the next vmentry.
4219 		 */
4220 		vmx->nested.pi_pending = true;
4221 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4222 
4223 		/*
4224 		 * This pairs with the smp_mb_*() after setting vcpu->mode in
4225 		 * vcpu_enter_guest() to guarantee the vCPU sees the event
4226 		 * request if triggering a posted interrupt "fails" because
4227 		 * vcpu->mode != IN_GUEST_MODE.  The extra barrier is needed as
4228 		 * the smb_wmb() in kvm_make_request() only ensures everything
4229 		 * done before making the request is visible when the request
4230 		 * is visible, it doesn't ensure ordering between the store to
4231 		 * vcpu->requests and the load from vcpu->mode.
4232 		 */
4233 		smp_mb__after_atomic();
4234 
4235 		/* the PIR and ON have been set by L1. */
4236 		kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4237 		return 0;
4238 	}
4239 	return -1;
4240 }
4241 /*
4242  * Send interrupt to vcpu via posted interrupt way.
4243  * 1. If target vcpu is running(non-root mode), send posted interrupt
4244  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4245  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4246  * interrupt from PIR in next vmentry.
4247  */
4248 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4249 {
4250 	struct vcpu_vt *vt = to_vt(vcpu);
4251 	int r;
4252 
4253 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4254 	if (!r)
4255 		return 0;
4256 
4257 	/* Note, this is called iff the local APIC is in-kernel. */
4258 	if (!vcpu->arch.apic->apicv_active)
4259 		return -1;
4260 
4261 	__vmx_deliver_posted_interrupt(vcpu, &vt->pi_desc, vector);
4262 	return 0;
4263 }
4264 
4265 void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4266 			   int trig_mode, int vector)
4267 {
4268 	struct kvm_vcpu *vcpu = apic->vcpu;
4269 
4270 	if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4271 		kvm_lapic_set_irr(vector, apic);
4272 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4273 		kvm_vcpu_kick(vcpu);
4274 	} else {
4275 		trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4276 					   trig_mode, vector);
4277 	}
4278 }
4279 
4280 /*
4281  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4282  * will not change in the lifetime of the guest.
4283  * Note that host-state that does change is set elsewhere. E.g., host-state
4284  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4285  */
4286 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4287 {
4288 	u32 low32, high32;
4289 	unsigned long tmpl;
4290 	unsigned long cr0, cr3, cr4;
4291 
4292 	cr0 = read_cr0();
4293 	WARN_ON(cr0 & X86_CR0_TS);
4294 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4295 
4296 	/*
4297 	 * Save the most likely value for this task's CR3 in the VMCS.
4298 	 * We can't use __get_current_cr3_fast() because we're not atomic.
4299 	 */
4300 	cr3 = __read_cr3();
4301 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
4302 	vmx->loaded_vmcs->host_state.cr3 = cr3;
4303 
4304 	/* Save the most likely value for this task's CR4 in the VMCS. */
4305 	cr4 = cr4_read_shadow();
4306 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4307 	vmx->loaded_vmcs->host_state.cr4 = cr4;
4308 
4309 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4310 #ifdef CONFIG_X86_64
4311 	/*
4312 	 * Load null selectors, so we can avoid reloading them in
4313 	 * vmx_prepare_switch_to_host(), in case userspace uses
4314 	 * the null selectors too (the expected case).
4315 	 */
4316 	vmcs_write16(HOST_DS_SELECTOR, 0);
4317 	vmcs_write16(HOST_ES_SELECTOR, 0);
4318 #else
4319 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4320 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4321 #endif
4322 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4323 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4324 
4325 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4326 
4327 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4328 
4329 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4330 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4331 
4332 	/*
4333 	 * SYSENTER is used for 32-bit system calls on either 32-bit or
4334 	 * 64-bit kernels.  It is always zero If neither is allowed, otherwise
4335 	 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4336 	 * have already done so!).
4337 	 */
4338 	if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4339 		vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4340 
4341 	rdmsrq(MSR_IA32_SYSENTER_EIP, tmpl);
4342 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4343 
4344 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4345 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4346 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4347 	}
4348 
4349 	if (cpu_has_load_ia32_efer())
4350 		vmcs_write64(HOST_IA32_EFER, kvm_host.efer);
4351 }
4352 
4353 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4354 {
4355 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4356 
4357 	vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4358 					  ~vcpu->arch.cr4_guest_rsvd_bits;
4359 	if (!enable_ept) {
4360 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4361 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4362 	}
4363 	if (is_guest_mode(&vmx->vcpu))
4364 		vcpu->arch.cr4_guest_owned_bits &=
4365 			~get_vmcs12(vcpu)->cr4_guest_host_mask;
4366 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4367 }
4368 
4369 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4370 {
4371 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4372 
4373 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4374 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4375 
4376 	if (!enable_vnmi)
4377 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4378 
4379 	if (!enable_preemption_timer)
4380 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4381 
4382 	return pin_based_exec_ctrl;
4383 }
4384 
4385 static u32 vmx_vmentry_ctrl(void)
4386 {
4387 	u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4388 
4389 	if (vmx_pt_mode_is_system())
4390 		vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4391 				  VM_ENTRY_LOAD_IA32_RTIT_CTL);
4392 	/*
4393 	 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4394 	 */
4395 	vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4396 			  VM_ENTRY_LOAD_IA32_EFER |
4397 			  VM_ENTRY_IA32E_MODE);
4398 
4399 	return vmentry_ctrl;
4400 }
4401 
4402 static u32 vmx_vmexit_ctrl(void)
4403 {
4404 	u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4405 
4406 	/*
4407 	 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4408 	 * nested virtualization and thus allowed to be set in vmcs12.
4409 	 */
4410 	vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4411 			 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4412 
4413 	if (vmx_pt_mode_is_system())
4414 		vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4415 				 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4416 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4417 	return vmexit_ctrl &
4418 		~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4419 }
4420 
4421 void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4422 {
4423 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4424 
4425 	if (is_guest_mode(vcpu)) {
4426 		vmx->nested.update_vmcs01_apicv_status = true;
4427 		return;
4428 	}
4429 
4430 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4431 
4432 	if (kvm_vcpu_apicv_active(vcpu)) {
4433 		secondary_exec_controls_setbit(vmx,
4434 					       SECONDARY_EXEC_APIC_REGISTER_VIRT |
4435 					       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4436 		if (enable_ipiv)
4437 			tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4438 	} else {
4439 		secondary_exec_controls_clearbit(vmx,
4440 						 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4441 						 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4442 		if (enable_ipiv)
4443 			tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4444 	}
4445 
4446 	vmx_update_msr_bitmap_x2apic(vcpu);
4447 }
4448 
4449 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4450 {
4451 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4452 
4453 	/*
4454 	 * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4455 	 * vmcs12 and propagated to vmcs02 when set in vmcs12.
4456 	 */
4457 	exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4458 			  CPU_BASED_USE_IO_BITMAPS |
4459 			  CPU_BASED_MONITOR_TRAP_FLAG |
4460 			  CPU_BASED_PAUSE_EXITING);
4461 
4462 	/* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4463 	exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4464 			  CPU_BASED_NMI_WINDOW_EXITING);
4465 
4466 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4467 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4468 
4469 	if (!cpu_need_tpr_shadow(&vmx->vcpu))
4470 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4471 
4472 #ifdef CONFIG_X86_64
4473 	if (exec_control & CPU_BASED_TPR_SHADOW)
4474 		exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4475 				  CPU_BASED_CR8_STORE_EXITING);
4476 	else
4477 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4478 				CPU_BASED_CR8_LOAD_EXITING;
4479 #endif
4480 	/* No need to intercept CR3 access or INVPLG when using EPT. */
4481 	if (enable_ept)
4482 		exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4483 				  CPU_BASED_CR3_STORE_EXITING |
4484 				  CPU_BASED_INVLPG_EXITING);
4485 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4486 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4487 				CPU_BASED_MONITOR_EXITING);
4488 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4489 		exec_control &= ~CPU_BASED_HLT_EXITING;
4490 	return exec_control;
4491 }
4492 
4493 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4494 {
4495 	u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4496 
4497 	/*
4498 	 * IPI virtualization relies on APICv. Disable IPI virtualization if
4499 	 * APICv is inhibited.
4500 	 */
4501 	if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4502 		exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4503 
4504 	return exec_control;
4505 }
4506 
4507 /*
4508  * Adjust a single secondary execution control bit to intercept/allow an
4509  * instruction in the guest.  This is usually done based on whether or not a
4510  * feature has been exposed to the guest in order to correctly emulate faults.
4511  */
4512 static inline void
4513 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4514 				  u32 control, bool enabled, bool exiting)
4515 {
4516 	/*
4517 	 * If the control is for an opt-in feature, clear the control if the
4518 	 * feature is not exposed to the guest, i.e. not enabled.  If the
4519 	 * control is opt-out, i.e. an exiting control, clear the control if
4520 	 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4521 	 * disabled for the associated instruction.  Note, the caller is
4522 	 * responsible presetting exec_control to set all supported bits.
4523 	 */
4524 	if (enabled == exiting)
4525 		*exec_control &= ~control;
4526 
4527 	/*
4528 	 * Update the nested MSR settings so that a nested VMM can/can't set
4529 	 * controls for features that are/aren't exposed to the guest.
4530 	 */
4531 	if (nested &&
4532 	    kvm_check_has_quirk(vmx->vcpu.kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) {
4533 		/*
4534 		 * All features that can be added or removed to VMX MSRs must
4535 		 * be supported in the first place for nested virtualization.
4536 		 */
4537 		if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4538 			enabled = false;
4539 
4540 		if (enabled)
4541 			vmx->nested.msrs.secondary_ctls_high |= control;
4542 		else
4543 			vmx->nested.msrs.secondary_ctls_high &= ~control;
4544 	}
4545 }
4546 
4547 /*
4548  * Wrapper macro for the common case of adjusting a secondary execution control
4549  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4550  * verifies that the control is actually supported by KVM and hardware.
4551  */
4552 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting)	\
4553 ({												\
4554 	struct kvm_vcpu *__vcpu = &(vmx)->vcpu;							\
4555 	bool __enabled;										\
4556 												\
4557 	if (cpu_has_vmx_##name()) {								\
4558 		__enabled = guest_cpu_cap_has(__vcpu, X86_FEATURE_##feat_name);			\
4559 		vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\
4560 						  __enabled, exiting);				\
4561 	}											\
4562 })
4563 
4564 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4565 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4566 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4567 
4568 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4569 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4570 
4571 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4572 {
4573 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4574 
4575 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4576 
4577 	if (vmx_pt_mode_is_system())
4578 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4579 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4580 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4581 	if (vmx->vpid == 0)
4582 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4583 	if (!enable_ept) {
4584 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4585 		exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
4586 		enable_unrestricted_guest = 0;
4587 	}
4588 	if (!enable_unrestricted_guest)
4589 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4590 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4591 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4592 	if (!kvm_vcpu_apicv_active(vcpu))
4593 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4594 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4595 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4596 
4597 	/*
4598 	 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4599 	 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4600 	 */
4601 	exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
4602 
4603 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4604 	 * in vmx_set_cr4.  */
4605 	exec_control &= ~SECONDARY_EXEC_DESC;
4606 
4607 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4608 	   (handle_vmptrld).
4609 	   We can NOT enable shadow_vmcs here because we don't have yet
4610 	   a current VMCS12
4611 	*/
4612 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4613 
4614 	/*
4615 	 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4616 	 * it needs to be set here when dirty logging is already active, e.g.
4617 	 * if this vCPU was created after dirty logging was enabled.
4618 	 */
4619 	if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
4620 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4621 
4622 	vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES);
4623 
4624 	/*
4625 	 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4626 	 * feature is exposed to the guest.  This creates a virtualization hole
4627 	 * if both are supported in hardware but only one is exposed to the
4628 	 * guest, but letting the guest execute RDTSCP or RDPID when either one
4629 	 * is advertised is preferable to emulating the advertised instruction
4630 	 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4631 	 */
4632 	if (cpu_has_vmx_rdtscp()) {
4633 		bool rdpid_or_rdtscp_enabled =
4634 			guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) ||
4635 			guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID);
4636 
4637 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4638 						  SECONDARY_EXEC_ENABLE_RDTSCP,
4639 						  rdpid_or_rdtscp_enabled, false);
4640 	}
4641 
4642 	vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4643 
4644 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4645 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4646 
4647 	vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4648 				    ENABLE_USR_WAIT_PAUSE, false);
4649 
4650 	if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4651 		exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4652 
4653 	if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4654 		exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4655 
4656 	return exec_control;
4657 }
4658 
4659 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4660 {
4661 	return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4662 }
4663 
4664 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4665 {
4666 	struct page *pages;
4667 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4668 
4669 	if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4670 		return 0;
4671 
4672 	if (kvm_vmx->pid_table)
4673 		return 0;
4674 
4675 	pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO,
4676 			    vmx_get_pid_table_order(kvm));
4677 	if (!pages)
4678 		return -ENOMEM;
4679 
4680 	kvm_vmx->pid_table = (void *)page_address(pages);
4681 	return 0;
4682 }
4683 
4684 int vmx_vcpu_precreate(struct kvm *kvm)
4685 {
4686 	return vmx_alloc_ipiv_pid_table(kvm);
4687 }
4688 
4689 #define VMX_XSS_EXIT_BITMAP 0
4690 
4691 static void init_vmcs(struct vcpu_vmx *vmx)
4692 {
4693 	struct kvm *kvm = vmx->vcpu.kvm;
4694 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4695 
4696 	if (nested)
4697 		nested_vmx_set_vmcs_shadowing_bitmap();
4698 
4699 	if (cpu_has_vmx_msr_bitmap())
4700 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4701 
4702 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4703 
4704 	/* Control */
4705 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4706 
4707 	exec_controls_set(vmx, vmx_exec_control(vmx));
4708 
4709 	if (cpu_has_secondary_exec_ctrls()) {
4710 		secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4711 		if (vmx->ve_info)
4712 			vmcs_write64(VE_INFORMATION_ADDRESS,
4713 				     __pa(vmx->ve_info));
4714 	}
4715 
4716 	if (cpu_has_tertiary_exec_ctrls())
4717 		tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4718 
4719 	if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4720 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4721 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4722 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4723 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4724 
4725 		vmcs_write16(GUEST_INTR_STATUS, 0);
4726 
4727 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4728 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->vt.pi_desc)));
4729 	}
4730 
4731 	if (vmx_can_use_ipiv(&vmx->vcpu)) {
4732 		vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4733 		vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4734 	}
4735 
4736 	if (!kvm_pause_in_guest(kvm)) {
4737 		vmcs_write32(PLE_GAP, ple_gap);
4738 		vmx->ple_window = ple_window;
4739 		vmx->ple_window_dirty = true;
4740 	}
4741 
4742 	if (kvm_notify_vmexit_enabled(kvm))
4743 		vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4744 
4745 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4746 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4747 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4748 
4749 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4750 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4751 	vmx_set_constant_host_state(vmx);
4752 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4753 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4754 
4755 	if (cpu_has_vmx_vmfunc())
4756 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4757 
4758 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4759 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4760 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4761 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4762 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4763 
4764 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4765 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4766 
4767 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4768 
4769 	/* 22.2.1, 20.8.1 */
4770 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4771 
4772 	vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4773 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4774 
4775 	set_cr4_guest_host_mask(vmx);
4776 
4777 	if (vmx->vpid != 0)
4778 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4779 
4780 	if (cpu_has_vmx_xsaves())
4781 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4782 
4783 	if (enable_pml) {
4784 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4785 		vmcs_write16(GUEST_PML_INDEX, PML_HEAD_INDEX);
4786 	}
4787 
4788 	vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4789 
4790 	if (vmx_pt_mode_is_host_guest()) {
4791 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4792 		/* Bit[6~0] are forced to 1, writes are ignored. */
4793 		vmx->pt_desc.guest.output_mask = 0x7F;
4794 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4795 	}
4796 
4797 	vmcs_write32(GUEST_SYSENTER_CS, 0);
4798 	vmcs_writel(GUEST_SYSENTER_ESP, 0);
4799 	vmcs_writel(GUEST_SYSENTER_EIP, 0);
4800 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4801 
4802 	if (cpu_has_vmx_tpr_shadow()) {
4803 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4804 		if (cpu_need_tpr_shadow(&vmx->vcpu))
4805 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4806 				     __pa(vmx->vcpu.arch.apic->regs));
4807 		vmcs_write32(TPR_THRESHOLD, 0);
4808 	}
4809 
4810 	vmx_setup_uret_msrs(vmx);
4811 }
4812 
4813 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4814 {
4815 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4816 
4817 	init_vmcs(vmx);
4818 
4819 	if (nested &&
4820 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
4821 		memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4822 
4823 	vcpu_setup_sgx_lepubkeyhash(vcpu);
4824 
4825 	vmx->nested.posted_intr_nv = -1;
4826 	vmx->nested.vmxon_ptr = INVALID_GPA;
4827 	vmx->nested.current_vmptr = INVALID_GPA;
4828 
4829 #ifdef CONFIG_KVM_HYPERV
4830 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4831 #endif
4832 
4833 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
4834 		vcpu->arch.microcode_version = 0x100000000ULL;
4835 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4836 
4837 	/*
4838 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4839 	 * or POSTED_INTR_WAKEUP_VECTOR.
4840 	 */
4841 	vmx->vt.pi_desc.nv = POSTED_INTR_VECTOR;
4842 	__pi_set_sn(&vmx->vt.pi_desc);
4843 }
4844 
4845 void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4846 {
4847 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4848 
4849 	if (!init_event)
4850 		__vmx_vcpu_reset(vcpu);
4851 
4852 	vmx->rmode.vm86_active = 0;
4853 	vmx->spec_ctrl = 0;
4854 
4855 	vmx->msr_ia32_umwait_control = 0;
4856 
4857 	vmx->hv_deadline_tsc = -1;
4858 	kvm_set_cr8(vcpu, 0);
4859 
4860 	seg_setup(VCPU_SREG_CS);
4861 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4862 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4863 
4864 	seg_setup(VCPU_SREG_DS);
4865 	seg_setup(VCPU_SREG_ES);
4866 	seg_setup(VCPU_SREG_FS);
4867 	seg_setup(VCPU_SREG_GS);
4868 	seg_setup(VCPU_SREG_SS);
4869 
4870 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4871 	vmcs_writel(GUEST_TR_BASE, 0);
4872 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4873 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4874 
4875 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4876 	vmcs_writel(GUEST_LDTR_BASE, 0);
4877 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4878 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4879 
4880 	vmcs_writel(GUEST_GDTR_BASE, 0);
4881 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4882 
4883 	vmcs_writel(GUEST_IDTR_BASE, 0);
4884 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4885 
4886 	vmx_segment_cache_clear(vmx);
4887 	kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4888 
4889 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4890 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4891 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4892 	if (kvm_mpx_supported())
4893 		vmcs_write64(GUEST_BNDCFGS, 0);
4894 
4895 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4896 
4897 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4898 
4899 	vpid_sync_context(vmx->vpid);
4900 
4901 	vmx_update_fb_clear_dis(vcpu, vmx);
4902 }
4903 
4904 void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4905 {
4906 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4907 }
4908 
4909 void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4910 {
4911 	if (!enable_vnmi ||
4912 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4913 		vmx_enable_irq_window(vcpu);
4914 		return;
4915 	}
4916 
4917 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4918 }
4919 
4920 void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4921 {
4922 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4923 	uint32_t intr;
4924 	int irq = vcpu->arch.interrupt.nr;
4925 
4926 	trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4927 
4928 	++vcpu->stat.irq_injections;
4929 	if (vmx->rmode.vm86_active) {
4930 		int inc_eip = 0;
4931 		if (vcpu->arch.interrupt.soft)
4932 			inc_eip = vcpu->arch.event_exit_inst_len;
4933 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4934 		return;
4935 	}
4936 	intr = irq | INTR_INFO_VALID_MASK;
4937 	if (vcpu->arch.interrupt.soft) {
4938 		intr |= INTR_TYPE_SOFT_INTR;
4939 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4940 			     vmx->vcpu.arch.event_exit_inst_len);
4941 	} else
4942 		intr |= INTR_TYPE_EXT_INTR;
4943 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4944 
4945 	vmx_clear_hlt(vcpu);
4946 }
4947 
4948 void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4949 {
4950 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4951 
4952 	if (!enable_vnmi) {
4953 		/*
4954 		 * Tracking the NMI-blocked state in software is built upon
4955 		 * finding the next open IRQ window. This, in turn, depends on
4956 		 * well-behaving guests: They have to keep IRQs disabled at
4957 		 * least as long as the NMI handler runs. Otherwise we may
4958 		 * cause NMI nesting, maybe breaking the guest. But as this is
4959 		 * highly unlikely, we can live with the residual risk.
4960 		 */
4961 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4962 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4963 	}
4964 
4965 	++vcpu->stat.nmi_injections;
4966 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4967 
4968 	if (vmx->rmode.vm86_active) {
4969 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4970 		return;
4971 	}
4972 
4973 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4974 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4975 
4976 	vmx_clear_hlt(vcpu);
4977 }
4978 
4979 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4980 {
4981 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4982 	bool masked;
4983 
4984 	if (!enable_vnmi)
4985 		return vmx->loaded_vmcs->soft_vnmi_blocked;
4986 	if (vmx->loaded_vmcs->nmi_known_unmasked)
4987 		return false;
4988 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4989 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4990 	return masked;
4991 }
4992 
4993 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4994 {
4995 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4996 
4997 	if (!enable_vnmi) {
4998 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4999 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
5000 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
5001 		}
5002 	} else {
5003 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5004 		if (masked)
5005 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5006 				      GUEST_INTR_STATE_NMI);
5007 		else
5008 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5009 					GUEST_INTR_STATE_NMI);
5010 	}
5011 }
5012 
5013 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
5014 {
5015 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5016 		return false;
5017 
5018 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
5019 		return true;
5020 
5021 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5022 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
5023 		 GUEST_INTR_STATE_NMI));
5024 }
5025 
5026 int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5027 {
5028 	if (to_vmx(vcpu)->nested.nested_run_pending)
5029 		return -EBUSY;
5030 
5031 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
5032 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5033 		return -EBUSY;
5034 
5035 	return !vmx_nmi_blocked(vcpu);
5036 }
5037 
5038 bool __vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5039 {
5040 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
5041 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5042 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5043 }
5044 
5045 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5046 {
5047 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5048 		return false;
5049 
5050 	return __vmx_interrupt_blocked(vcpu);
5051 }
5052 
5053 int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5054 {
5055 	if (to_vmx(vcpu)->nested.nested_run_pending)
5056 		return -EBUSY;
5057 
5058 	/*
5059 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
5060 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
5061 	 */
5062 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5063 		return -EBUSY;
5064 
5065 	return !vmx_interrupt_blocked(vcpu);
5066 }
5067 
5068 int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5069 {
5070 	void __user *ret;
5071 
5072 	if (enable_unrestricted_guest)
5073 		return 0;
5074 
5075 	mutex_lock(&kvm->slots_lock);
5076 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5077 				      PAGE_SIZE * 3);
5078 	mutex_unlock(&kvm->slots_lock);
5079 
5080 	if (IS_ERR(ret))
5081 		return PTR_ERR(ret);
5082 
5083 	to_kvm_vmx(kvm)->tss_addr = addr;
5084 
5085 	return init_rmode_tss(kvm, ret);
5086 }
5087 
5088 int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5089 {
5090 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5091 	return 0;
5092 }
5093 
5094 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5095 {
5096 	switch (vec) {
5097 	case BP_VECTOR:
5098 		/*
5099 		 * Update instruction length as we may reinject the exception
5100 		 * from user space while in guest debugging mode.
5101 		 */
5102 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5103 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5104 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5105 			return false;
5106 		fallthrough;
5107 	case DB_VECTOR:
5108 		return !(vcpu->guest_debug &
5109 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5110 	case DE_VECTOR:
5111 	case OF_VECTOR:
5112 	case BR_VECTOR:
5113 	case UD_VECTOR:
5114 	case DF_VECTOR:
5115 	case SS_VECTOR:
5116 	case GP_VECTOR:
5117 	case MF_VECTOR:
5118 		return true;
5119 	}
5120 	return false;
5121 }
5122 
5123 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5124 				  int vec, u32 err_code)
5125 {
5126 	/*
5127 	 * Instruction with address size override prefix opcode 0x67
5128 	 * Cause the #SS fault with 0 error code in VM86 mode.
5129 	 */
5130 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5131 		if (kvm_emulate_instruction(vcpu, 0)) {
5132 			if (vcpu->arch.halt_request) {
5133 				vcpu->arch.halt_request = 0;
5134 				return kvm_emulate_halt_noskip(vcpu);
5135 			}
5136 			return 1;
5137 		}
5138 		return 0;
5139 	}
5140 
5141 	/*
5142 	 * Forward all other exceptions that are valid in real mode.
5143 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5144 	 *        the required debugging infrastructure rework.
5145 	 */
5146 	kvm_queue_exception(vcpu, vec);
5147 	return 1;
5148 }
5149 
5150 static int handle_machine_check(struct kvm_vcpu *vcpu)
5151 {
5152 	/* handled by vmx_vcpu_run() */
5153 	return 1;
5154 }
5155 
5156 /*
5157  * If the host has split lock detection disabled, then #AC is
5158  * unconditionally injected into the guest, which is the pre split lock
5159  * detection behaviour.
5160  *
5161  * If the host has split lock detection enabled then #AC is
5162  * only injected into the guest when:
5163  *  - Guest CPL == 3 (user mode)
5164  *  - Guest has #AC detection enabled in CR0
5165  *  - Guest EFLAGS has AC bit set
5166  */
5167 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5168 {
5169 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5170 		return true;
5171 
5172 	return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
5173 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5174 }
5175 
5176 static bool is_xfd_nm_fault(struct kvm_vcpu *vcpu)
5177 {
5178 	return vcpu->arch.guest_fpu.fpstate->xfd &&
5179 	       !kvm_is_cr0_bit_set(vcpu, X86_CR0_TS);
5180 }
5181 
5182 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5183 {
5184 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5185 	struct kvm_run *kvm_run = vcpu->run;
5186 	u32 intr_info, ex_no, error_code;
5187 	unsigned long cr2, dr6;
5188 	u32 vect_info;
5189 
5190 	vect_info = vmx->idt_vectoring_info;
5191 	intr_info = vmx_get_intr_info(vcpu);
5192 
5193 	/*
5194 	 * Machine checks are handled by handle_exception_irqoff(), or by
5195 	 * vmx_vcpu_run() if a #MC occurs on VM-Entry.  NMIs are handled by
5196 	 * vmx_vcpu_enter_exit().
5197 	 */
5198 	if (is_machine_check(intr_info) || is_nmi(intr_info))
5199 		return 1;
5200 
5201 	/*
5202 	 * Queue the exception here instead of in handle_nm_fault_irqoff().
5203 	 * This ensures the nested_vmx check is not skipped so vmexit can
5204 	 * be reflected to L1 (when it intercepts #NM) before reaching this
5205 	 * point.
5206 	 */
5207 	if (is_nm_fault(intr_info)) {
5208 		kvm_queue_exception_p(vcpu, NM_VECTOR,
5209 				      is_xfd_nm_fault(vcpu) ? vcpu->arch.guest_fpu.xfd_err : 0);
5210 		return 1;
5211 	}
5212 
5213 	if (is_invalid_opcode(intr_info))
5214 		return handle_ud(vcpu);
5215 
5216 	if (WARN_ON_ONCE(is_ve_fault(intr_info))) {
5217 		struct vmx_ve_information *ve_info = vmx->ve_info;
5218 
5219 		WARN_ONCE(ve_info->exit_reason != EXIT_REASON_EPT_VIOLATION,
5220 			  "Unexpected #VE on VM-Exit reason 0x%x", ve_info->exit_reason);
5221 		dump_vmcs(vcpu);
5222 		kvm_mmu_print_sptes(vcpu, ve_info->guest_physical_address, "#VE");
5223 		return 1;
5224 	}
5225 
5226 	error_code = 0;
5227 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5228 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5229 
5230 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5231 		WARN_ON_ONCE(!enable_vmware_backdoor);
5232 
5233 		/*
5234 		 * VMware backdoor emulation on #GP interception only handles
5235 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5236 		 * error code on #GP.
5237 		 */
5238 		if (error_code) {
5239 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5240 			return 1;
5241 		}
5242 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5243 	}
5244 
5245 	/*
5246 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5247 	 * MMIO, it is better to report an internal error.
5248 	 * See the comments in vmx_handle_exit.
5249 	 */
5250 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5251 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5252 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5253 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5254 		vcpu->run->internal.ndata = 4;
5255 		vcpu->run->internal.data[0] = vect_info;
5256 		vcpu->run->internal.data[1] = intr_info;
5257 		vcpu->run->internal.data[2] = error_code;
5258 		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5259 		return 0;
5260 	}
5261 
5262 	if (is_page_fault(intr_info)) {
5263 		cr2 = vmx_get_exit_qual(vcpu);
5264 		if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5265 			/*
5266 			 * EPT will cause page fault only if we need to
5267 			 * detect illegal GPAs.
5268 			 */
5269 			WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5270 			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5271 			return 1;
5272 		} else
5273 			return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5274 	}
5275 
5276 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5277 
5278 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5279 		return handle_rmode_exception(vcpu, ex_no, error_code);
5280 
5281 	switch (ex_no) {
5282 	case DB_VECTOR:
5283 		dr6 = vmx_get_exit_qual(vcpu);
5284 		if (!(vcpu->guest_debug &
5285 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5286 			/*
5287 			 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5288 			 * instruction.  ICEBP generates a trap-like #DB, but
5289 			 * despite its interception control being tied to #DB,
5290 			 * is an instruction intercept, i.e. the VM-Exit occurs
5291 			 * on the ICEBP itself.  Use the inner "skip" helper to
5292 			 * avoid single-step #DB and MTF updates, as ICEBP is
5293 			 * higher priority.  Note, skipping ICEBP still clears
5294 			 * STI and MOVSS blocking.
5295 			 *
5296 			 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5297 			 * if single-step is enabled in RFLAGS and STI or MOVSS
5298 			 * blocking is active, as the CPU doesn't set the bit
5299 			 * on VM-Exit due to #DB interception.  VM-Entry has a
5300 			 * consistency check that a single-step #DB is pending
5301 			 * in this scenario as the previous instruction cannot
5302 			 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5303 			 * don't modify RFLAGS), therefore the one instruction
5304 			 * delay when activating single-step breakpoints must
5305 			 * have already expired.  Note, the CPU sets/clears BS
5306 			 * as appropriate for all other VM-Exits types.
5307 			 */
5308 			if (is_icebp(intr_info))
5309 				WARN_ON(!skip_emulated_instruction(vcpu));
5310 			else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5311 				 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5312 				  (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5313 				vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5314 					    vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5315 
5316 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5317 			return 1;
5318 		}
5319 		kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5320 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5321 		fallthrough;
5322 	case BP_VECTOR:
5323 		/*
5324 		 * Update instruction length as we may reinject #BP from
5325 		 * user space while in guest debugging mode. Reading it for
5326 		 * #DB as well causes no harm, it is not used in that case.
5327 		 */
5328 		vmx->vcpu.arch.event_exit_inst_len =
5329 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5330 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5331 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5332 		kvm_run->debug.arch.exception = ex_no;
5333 		break;
5334 	case AC_VECTOR:
5335 		if (vmx_guest_inject_ac(vcpu)) {
5336 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5337 			return 1;
5338 		}
5339 
5340 		/*
5341 		 * Handle split lock. Depending on detection mode this will
5342 		 * either warn and disable split lock detection for this
5343 		 * task or force SIGBUS on it.
5344 		 */
5345 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5346 			return 1;
5347 		fallthrough;
5348 	default:
5349 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5350 		kvm_run->ex.exception = ex_no;
5351 		kvm_run->ex.error_code = error_code;
5352 		break;
5353 	}
5354 	return 0;
5355 }
5356 
5357 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5358 {
5359 	++vcpu->stat.irq_exits;
5360 	return 1;
5361 }
5362 
5363 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5364 {
5365 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5366 	vcpu->mmio_needed = 0;
5367 	return 0;
5368 }
5369 
5370 static int handle_io(struct kvm_vcpu *vcpu)
5371 {
5372 	unsigned long exit_qualification;
5373 	int size, in, string;
5374 	unsigned port;
5375 
5376 	exit_qualification = vmx_get_exit_qual(vcpu);
5377 	string = (exit_qualification & 16) != 0;
5378 
5379 	++vcpu->stat.io_exits;
5380 
5381 	if (string)
5382 		return kvm_emulate_instruction(vcpu, 0);
5383 
5384 	port = exit_qualification >> 16;
5385 	size = (exit_qualification & 7) + 1;
5386 	in = (exit_qualification & 8) != 0;
5387 
5388 	return kvm_fast_pio(vcpu, size, port, in);
5389 }
5390 
5391 void vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5392 {
5393 	/*
5394 	 * Patch in the VMCALL instruction:
5395 	 */
5396 	hypercall[0] = 0x0f;
5397 	hypercall[1] = 0x01;
5398 	hypercall[2] = 0xc1;
5399 }
5400 
5401 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5402 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5403 {
5404 	if (is_guest_mode(vcpu)) {
5405 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5406 		unsigned long orig_val = val;
5407 
5408 		/*
5409 		 * We get here when L2 changed cr0 in a way that did not change
5410 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5411 		 * but did change L0 shadowed bits. So we first calculate the
5412 		 * effective cr0 value that L1 would like to write into the
5413 		 * hardware. It consists of the L2-owned bits from the new
5414 		 * value combined with the L1-owned bits from L1's guest_cr0.
5415 		 */
5416 		val = (val & ~vmcs12->cr0_guest_host_mask) |
5417 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5418 
5419 		if (kvm_set_cr0(vcpu, val))
5420 			return 1;
5421 		vmcs_writel(CR0_READ_SHADOW, orig_val);
5422 		return 0;
5423 	} else {
5424 		return kvm_set_cr0(vcpu, val);
5425 	}
5426 }
5427 
5428 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5429 {
5430 	if (is_guest_mode(vcpu)) {
5431 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5432 		unsigned long orig_val = val;
5433 
5434 		/* analogously to handle_set_cr0 */
5435 		val = (val & ~vmcs12->cr4_guest_host_mask) |
5436 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5437 		if (kvm_set_cr4(vcpu, val))
5438 			return 1;
5439 		vmcs_writel(CR4_READ_SHADOW, orig_val);
5440 		return 0;
5441 	} else
5442 		return kvm_set_cr4(vcpu, val);
5443 }
5444 
5445 static int handle_desc(struct kvm_vcpu *vcpu)
5446 {
5447 	/*
5448 	 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this
5449 	 * and other code needs to be updated if UMIP can be guest owned.
5450 	 */
5451 	BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP);
5452 
5453 	WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP));
5454 	return kvm_emulate_instruction(vcpu, 0);
5455 }
5456 
5457 static int handle_cr(struct kvm_vcpu *vcpu)
5458 {
5459 	unsigned long exit_qualification, val;
5460 	int cr;
5461 	int reg;
5462 	int err;
5463 	int ret;
5464 
5465 	exit_qualification = vmx_get_exit_qual(vcpu);
5466 	cr = exit_qualification & 15;
5467 	reg = (exit_qualification >> 8) & 15;
5468 	switch ((exit_qualification >> 4) & 3) {
5469 	case 0: /* mov to cr */
5470 		val = kvm_register_read(vcpu, reg);
5471 		trace_kvm_cr_write(cr, val);
5472 		switch (cr) {
5473 		case 0:
5474 			err = handle_set_cr0(vcpu, val);
5475 			return kvm_complete_insn_gp(vcpu, err);
5476 		case 3:
5477 			WARN_ON_ONCE(enable_unrestricted_guest);
5478 
5479 			err = kvm_set_cr3(vcpu, val);
5480 			return kvm_complete_insn_gp(vcpu, err);
5481 		case 4:
5482 			err = handle_set_cr4(vcpu, val);
5483 			return kvm_complete_insn_gp(vcpu, err);
5484 		case 8: {
5485 				u8 cr8_prev = kvm_get_cr8(vcpu);
5486 				u8 cr8 = (u8)val;
5487 				err = kvm_set_cr8(vcpu, cr8);
5488 				ret = kvm_complete_insn_gp(vcpu, err);
5489 				if (lapic_in_kernel(vcpu))
5490 					return ret;
5491 				if (cr8_prev <= cr8)
5492 					return ret;
5493 				/*
5494 				 * TODO: we might be squashing a
5495 				 * KVM_GUESTDBG_SINGLESTEP-triggered
5496 				 * KVM_EXIT_DEBUG here.
5497 				 */
5498 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5499 				return 0;
5500 			}
5501 		}
5502 		break;
5503 	case 2: /* clts */
5504 		KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5505 		return -EIO;
5506 	case 1: /*mov from cr*/
5507 		switch (cr) {
5508 		case 3:
5509 			WARN_ON_ONCE(enable_unrestricted_guest);
5510 
5511 			val = kvm_read_cr3(vcpu);
5512 			kvm_register_write(vcpu, reg, val);
5513 			trace_kvm_cr_read(cr, val);
5514 			return kvm_skip_emulated_instruction(vcpu);
5515 		case 8:
5516 			val = kvm_get_cr8(vcpu);
5517 			kvm_register_write(vcpu, reg, val);
5518 			trace_kvm_cr_read(cr, val);
5519 			return kvm_skip_emulated_instruction(vcpu);
5520 		}
5521 		break;
5522 	case 3: /* lmsw */
5523 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5524 		trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
5525 		kvm_lmsw(vcpu, val);
5526 
5527 		return kvm_skip_emulated_instruction(vcpu);
5528 	default:
5529 		break;
5530 	}
5531 	vcpu->run->exit_reason = 0;
5532 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5533 	       (int)(exit_qualification >> 4) & 3, cr);
5534 	return 0;
5535 }
5536 
5537 static int handle_dr(struct kvm_vcpu *vcpu)
5538 {
5539 	unsigned long exit_qualification;
5540 	int dr, dr7, reg;
5541 	int err = 1;
5542 
5543 	exit_qualification = vmx_get_exit_qual(vcpu);
5544 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5545 
5546 	/* First, if DR does not exist, trigger UD */
5547 	if (!kvm_require_dr(vcpu, dr))
5548 		return 1;
5549 
5550 	if (vmx_get_cpl(vcpu) > 0)
5551 		goto out;
5552 
5553 	dr7 = vmcs_readl(GUEST_DR7);
5554 	if (dr7 & DR7_GD) {
5555 		/*
5556 		 * As the vm-exit takes precedence over the debug trap, we
5557 		 * need to emulate the latter, either for the host or the
5558 		 * guest debugging itself.
5559 		 */
5560 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5561 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5562 			vcpu->run->debug.arch.dr7 = dr7;
5563 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5564 			vcpu->run->debug.arch.exception = DB_VECTOR;
5565 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5566 			return 0;
5567 		} else {
5568 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5569 			return 1;
5570 		}
5571 	}
5572 
5573 	if (vcpu->guest_debug == 0) {
5574 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5575 
5576 		/*
5577 		 * No more DR vmexits; force a reload of the debug registers
5578 		 * and reenter on this instruction.  The next vmexit will
5579 		 * retrieve the full state of the debug registers.
5580 		 */
5581 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5582 		return 1;
5583 	}
5584 
5585 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5586 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5587 		kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
5588 		err = 0;
5589 	} else {
5590 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5591 	}
5592 
5593 out:
5594 	return kvm_complete_insn_gp(vcpu, err);
5595 }
5596 
5597 void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5598 {
5599 	get_debugreg(vcpu->arch.db[0], 0);
5600 	get_debugreg(vcpu->arch.db[1], 1);
5601 	get_debugreg(vcpu->arch.db[2], 2);
5602 	get_debugreg(vcpu->arch.db[3], 3);
5603 	get_debugreg(vcpu->arch.dr6, 6);
5604 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5605 
5606 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5607 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5608 
5609 	/*
5610 	 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5611 	 * a stale dr6 from the guest.
5612 	 */
5613 	set_debugreg(DR6_RESERVED, 6);
5614 }
5615 
5616 void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5617 {
5618 	lockdep_assert_irqs_disabled();
5619 	set_debugreg(vcpu->arch.dr6, 6);
5620 }
5621 
5622 void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5623 {
5624 	vmcs_writel(GUEST_DR7, val);
5625 }
5626 
5627 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5628 {
5629 	kvm_apic_update_ppr(vcpu);
5630 	return 1;
5631 }
5632 
5633 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5634 {
5635 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5636 
5637 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5638 
5639 	++vcpu->stat.irq_window_exits;
5640 	return 1;
5641 }
5642 
5643 static int handle_invlpg(struct kvm_vcpu *vcpu)
5644 {
5645 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5646 
5647 	kvm_mmu_invlpg(vcpu, exit_qualification);
5648 	return kvm_skip_emulated_instruction(vcpu);
5649 }
5650 
5651 static int handle_apic_access(struct kvm_vcpu *vcpu)
5652 {
5653 	if (likely(fasteoi)) {
5654 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5655 		int access_type, offset;
5656 
5657 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5658 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5659 		/*
5660 		 * Sane guest uses MOV to write EOI, with written value
5661 		 * not cared. So make a short-circuit here by avoiding
5662 		 * heavy instruction emulation.
5663 		 */
5664 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5665 		    (offset == APIC_EOI)) {
5666 			kvm_lapic_set_eoi(vcpu);
5667 			return kvm_skip_emulated_instruction(vcpu);
5668 		}
5669 	}
5670 	return kvm_emulate_instruction(vcpu, 0);
5671 }
5672 
5673 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5674 {
5675 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5676 	int vector = exit_qualification & 0xff;
5677 
5678 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5679 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5680 	return 1;
5681 }
5682 
5683 static int handle_apic_write(struct kvm_vcpu *vcpu)
5684 {
5685 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5686 
5687 	/*
5688 	 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5689 	 * hardware has done any necessary aliasing, offset adjustments, etc...
5690 	 * for the access.  I.e. the correct value has already been  written to
5691 	 * the vAPIC page for the correct 16-byte chunk.  KVM needs only to
5692 	 * retrieve the register value and emulate the access.
5693 	 */
5694 	u32 offset = exit_qualification & 0xff0;
5695 
5696 	kvm_apic_write_nodecode(vcpu, offset);
5697 	return 1;
5698 }
5699 
5700 static int handle_task_switch(struct kvm_vcpu *vcpu)
5701 {
5702 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5703 	unsigned long exit_qualification;
5704 	bool has_error_code = false;
5705 	u32 error_code = 0;
5706 	u16 tss_selector;
5707 	int reason, type, idt_v, idt_index;
5708 
5709 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5710 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5711 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5712 
5713 	exit_qualification = vmx_get_exit_qual(vcpu);
5714 
5715 	reason = (u32)exit_qualification >> 30;
5716 	if (reason == TASK_SWITCH_GATE && idt_v) {
5717 		switch (type) {
5718 		case INTR_TYPE_NMI_INTR:
5719 			vcpu->arch.nmi_injected = false;
5720 			vmx_set_nmi_mask(vcpu, true);
5721 			break;
5722 		case INTR_TYPE_EXT_INTR:
5723 		case INTR_TYPE_SOFT_INTR:
5724 			kvm_clear_interrupt_queue(vcpu);
5725 			break;
5726 		case INTR_TYPE_HARD_EXCEPTION:
5727 			if (vmx->idt_vectoring_info &
5728 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5729 				has_error_code = true;
5730 				error_code =
5731 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5732 			}
5733 			fallthrough;
5734 		case INTR_TYPE_SOFT_EXCEPTION:
5735 			kvm_clear_exception_queue(vcpu);
5736 			break;
5737 		default:
5738 			break;
5739 		}
5740 	}
5741 	tss_selector = exit_qualification;
5742 
5743 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5744 		       type != INTR_TYPE_EXT_INTR &&
5745 		       type != INTR_TYPE_NMI_INTR))
5746 		WARN_ON(!skip_emulated_instruction(vcpu));
5747 
5748 	/*
5749 	 * TODO: What about debug traps on tss switch?
5750 	 *       Are we supposed to inject them and update dr6?
5751 	 */
5752 	return kvm_task_switch(vcpu, tss_selector,
5753 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5754 			       reason, has_error_code, error_code);
5755 }
5756 
5757 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5758 {
5759 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5760 	gpa_t gpa;
5761 
5762 	/*
5763 	 * EPT violation happened while executing iret from NMI,
5764 	 * "blocked by NMI" bit has to be set before next VM entry.
5765 	 * There are errata that may cause this bit to not be set:
5766 	 * AAK134, BY25.
5767 	 */
5768 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5769 			enable_vnmi &&
5770 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5771 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5772 
5773 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5774 	trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5775 
5776 	/*
5777 	 * Check that the GPA doesn't exceed physical memory limits, as that is
5778 	 * a guest page fault.  We have to emulate the instruction here, because
5779 	 * if the illegal address is that of a paging structure, then
5780 	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5781 	 * would also use advanced VM-exit information for EPT violations to
5782 	 * reconstruct the page fault error code.
5783 	 */
5784 	if (unlikely(allow_smaller_maxphyaddr && !kvm_vcpu_is_legal_gpa(vcpu, gpa)))
5785 		return kvm_emulate_instruction(vcpu, 0);
5786 
5787 	return __vmx_handle_ept_violation(vcpu, gpa, exit_qualification);
5788 }
5789 
5790 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5791 {
5792 	gpa_t gpa;
5793 
5794 	if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5795 		return 1;
5796 
5797 	/*
5798 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5799 	 * nGPA here instead of the required GPA.
5800 	 */
5801 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5802 	if (!is_guest_mode(vcpu) &&
5803 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5804 		trace_kvm_fast_mmio(gpa);
5805 		return kvm_skip_emulated_instruction(vcpu);
5806 	}
5807 
5808 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5809 }
5810 
5811 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5812 {
5813 	if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5814 		return -EIO;
5815 
5816 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5817 	++vcpu->stat.nmi_window_exits;
5818 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5819 
5820 	return 1;
5821 }
5822 
5823 /*
5824  * Returns true if emulation is required (due to the vCPU having invalid state
5825  * with unsrestricted guest mode disabled) and KVM can't faithfully emulate the
5826  * current vCPU state.
5827  */
5828 static bool vmx_unhandleable_emulation_required(struct kvm_vcpu *vcpu)
5829 {
5830 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5831 
5832 	if (!vmx->vt.emulation_required)
5833 		return false;
5834 
5835 	/*
5836 	 * It is architecturally impossible for emulation to be required when a
5837 	 * nested VM-Enter is pending completion, as VM-Enter will VM-Fail if
5838 	 * guest state is invalid and unrestricted guest is disabled, i.e. KVM
5839 	 * should synthesize VM-Fail instead emulation L2 code.  This path is
5840 	 * only reachable if userspace modifies L2 guest state after KVM has
5841 	 * performed the nested VM-Enter consistency checks.
5842 	 */
5843 	if (vmx->nested.nested_run_pending)
5844 		return true;
5845 
5846 	/*
5847 	 * KVM only supports emulating exceptions if the vCPU is in Real Mode.
5848 	 * If emulation is required, KVM can't perform a successful VM-Enter to
5849 	 * inject the exception.
5850 	 */
5851 	return !vmx->rmode.vm86_active &&
5852 	       (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5853 }
5854 
5855 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5856 {
5857 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5858 	bool intr_window_requested;
5859 	unsigned count = 130;
5860 
5861 	intr_window_requested = exec_controls_get(vmx) &
5862 				CPU_BASED_INTR_WINDOW_EXITING;
5863 
5864 	while (vmx->vt.emulation_required && count-- != 0) {
5865 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5866 			return handle_interrupt_window(&vmx->vcpu);
5867 
5868 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5869 			return 1;
5870 
5871 		if (!kvm_emulate_instruction(vcpu, 0))
5872 			return 0;
5873 
5874 		if (vmx_unhandleable_emulation_required(vcpu)) {
5875 			kvm_prepare_emulation_failure_exit(vcpu);
5876 			return 0;
5877 		}
5878 
5879 		if (vcpu->arch.halt_request) {
5880 			vcpu->arch.halt_request = 0;
5881 			return kvm_emulate_halt_noskip(vcpu);
5882 		}
5883 
5884 		/*
5885 		 * Note, return 1 and not 0, vcpu_run() will invoke
5886 		 * xfer_to_guest_mode() which will create a proper return
5887 		 * code.
5888 		 */
5889 		if (__xfer_to_guest_mode_work_pending())
5890 			return 1;
5891 	}
5892 
5893 	return 1;
5894 }
5895 
5896 int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5897 {
5898 	if (vmx_unhandleable_emulation_required(vcpu)) {
5899 		kvm_prepare_emulation_failure_exit(vcpu);
5900 		return 0;
5901 	}
5902 
5903 	return 1;
5904 }
5905 
5906 /*
5907  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5908  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5909  */
5910 static int handle_pause(struct kvm_vcpu *vcpu)
5911 {
5912 	if (!kvm_pause_in_guest(vcpu->kvm))
5913 		grow_ple_window(vcpu);
5914 
5915 	/*
5916 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5917 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5918 	 * never set PAUSE_EXITING and just set PLE if supported,
5919 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5920 	 */
5921 	kvm_vcpu_on_spin(vcpu, true);
5922 	return kvm_skip_emulated_instruction(vcpu);
5923 }
5924 
5925 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5926 {
5927 	return 1;
5928 }
5929 
5930 static int handle_invpcid(struct kvm_vcpu *vcpu)
5931 {
5932 	u32 vmx_instruction_info;
5933 	unsigned long type;
5934 	gva_t gva;
5935 	struct {
5936 		u64 pcid;
5937 		u64 gla;
5938 	} operand;
5939 	int gpr_index;
5940 
5941 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_INVPCID)) {
5942 		kvm_queue_exception(vcpu, UD_VECTOR);
5943 		return 1;
5944 	}
5945 
5946 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5947 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5948 	type = kvm_register_read(vcpu, gpr_index);
5949 
5950 	/* According to the Intel instruction reference, the memory operand
5951 	 * is read even if it isn't needed (e.g., for type==all)
5952 	 */
5953 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5954 				vmx_instruction_info, false,
5955 				sizeof(operand), &gva))
5956 		return 1;
5957 
5958 	return kvm_handle_invpcid(vcpu, type, gva);
5959 }
5960 
5961 static int handle_pml_full(struct kvm_vcpu *vcpu)
5962 {
5963 	unsigned long exit_qualification;
5964 
5965 	trace_kvm_pml_full(vcpu->vcpu_id);
5966 
5967 	exit_qualification = vmx_get_exit_qual(vcpu);
5968 
5969 	/*
5970 	 * PML buffer FULL happened while executing iret from NMI,
5971 	 * "blocked by NMI" bit has to be set before next VM entry.
5972 	 */
5973 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5974 			enable_vnmi &&
5975 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5976 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5977 				GUEST_INTR_STATE_NMI);
5978 
5979 	/*
5980 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5981 	 * here.., and there's no userspace involvement needed for PML.
5982 	 */
5983 	return 1;
5984 }
5985 
5986 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu,
5987 						   bool force_immediate_exit)
5988 {
5989 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5990 
5991 	/*
5992 	 * In the *extremely* unlikely scenario that this is a spurious VM-Exit
5993 	 * due to the timer expiring while it was "soft" disabled, just eat the
5994 	 * exit and re-enter the guest.
5995 	 */
5996 	if (unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
5997 		return EXIT_FASTPATH_REENTER_GUEST;
5998 
5999 	/*
6000 	 * If the timer expired because KVM used it to force an immediate exit,
6001 	 * then mission accomplished.
6002 	 */
6003 	if (force_immediate_exit)
6004 		return EXIT_FASTPATH_EXIT_HANDLED;
6005 
6006 	/*
6007 	 * If L2 is active, go down the slow path as emulating the guest timer
6008 	 * expiration likely requires synthesizing a nested VM-Exit.
6009 	 */
6010 	if (is_guest_mode(vcpu))
6011 		return EXIT_FASTPATH_NONE;
6012 
6013 	kvm_lapic_expired_hv_timer(vcpu);
6014 	return EXIT_FASTPATH_REENTER_GUEST;
6015 }
6016 
6017 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
6018 {
6019 	/*
6020 	 * This non-fastpath handler is reached if and only if the preemption
6021 	 * timer was being used to emulate a guest timer while L2 is active.
6022 	 * All other scenarios are supposed to be handled in the fastpath.
6023 	 */
6024 	WARN_ON_ONCE(!is_guest_mode(vcpu));
6025 	kvm_lapic_expired_hv_timer(vcpu);
6026 	return 1;
6027 }
6028 
6029 /*
6030  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
6031  * are overwritten by nested_vmx_hardware_setup() when nested=1.
6032  */
6033 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
6034 {
6035 	kvm_queue_exception(vcpu, UD_VECTOR);
6036 	return 1;
6037 }
6038 
6039 #ifndef CONFIG_X86_SGX_KVM
6040 static int handle_encls(struct kvm_vcpu *vcpu)
6041 {
6042 	/*
6043 	 * SGX virtualization is disabled.  There is no software enable bit for
6044 	 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
6045 	 * the guest from executing ENCLS (when SGX is supported by hardware).
6046 	 */
6047 	kvm_queue_exception(vcpu, UD_VECTOR);
6048 	return 1;
6049 }
6050 #endif /* CONFIG_X86_SGX_KVM */
6051 
6052 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
6053 {
6054 	/*
6055 	 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
6056 	 * VM-Exits. Unconditionally set the flag here and leave the handling to
6057 	 * vmx_handle_exit().
6058 	 */
6059 	to_vt(vcpu)->exit_reason.bus_lock_detected = true;
6060 	return 1;
6061 }
6062 
6063 static int handle_notify(struct kvm_vcpu *vcpu)
6064 {
6065 	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
6066 	bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
6067 
6068 	++vcpu->stat.notify_window_exits;
6069 
6070 	/*
6071 	 * Notify VM exit happened while executing iret from NMI,
6072 	 * "blocked by NMI" bit has to be set before next VM entry.
6073 	 */
6074 	if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
6075 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6076 			      GUEST_INTR_STATE_NMI);
6077 
6078 	if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
6079 	    context_invalid) {
6080 		vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
6081 		vcpu->run->notify.flags = context_invalid ?
6082 					  KVM_NOTIFY_CONTEXT_INVALID : 0;
6083 		return 0;
6084 	}
6085 
6086 	return 1;
6087 }
6088 
6089 /*
6090  * The exit handlers return 1 if the exit was handled fully and guest execution
6091  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6092  * to be done to userspace and return 0.
6093  */
6094 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6095 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
6096 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6097 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6098 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
6099 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6100 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
6101 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
6102 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
6103 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
6104 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
6105 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
6106 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
6107 	[EXIT_REASON_INVD]		      = kvm_emulate_invd,
6108 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
6109 	[EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
6110 	[EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
6111 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
6112 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
6113 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
6114 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
6115 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
6116 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
6117 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
6118 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
6119 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
6120 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6121 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6122 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6123 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6124 	[EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
6125 	[EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
6126 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6127 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6128 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
6129 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
6130 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
6131 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6132 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6133 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = kvm_emulate_mwait,
6134 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
6135 	[EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
6136 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
6137 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
6138 	[EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
6139 	[EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
6140 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
6141 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
6142 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
6143 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
6144 	[EXIT_REASON_ENCLS]		      = handle_encls,
6145 	[EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
6146 	[EXIT_REASON_NOTIFY]		      = handle_notify,
6147 };
6148 
6149 static const int kvm_vmx_max_exit_handlers =
6150 	ARRAY_SIZE(kvm_vmx_exit_handlers);
6151 
6152 void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6153 		       u64 *info1, u64 *info2, u32 *intr_info, u32 *error_code)
6154 {
6155 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6156 
6157 	*reason = vmx->vt.exit_reason.full;
6158 	*info1 = vmx_get_exit_qual(vcpu);
6159 	if (!(vmx->vt.exit_reason.failed_vmentry)) {
6160 		*info2 = vmx->idt_vectoring_info;
6161 		*intr_info = vmx_get_intr_info(vcpu);
6162 		if (is_exception_with_error_code(*intr_info))
6163 			*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6164 		else
6165 			*error_code = 0;
6166 	} else {
6167 		*info2 = 0;
6168 		*intr_info = 0;
6169 		*error_code = 0;
6170 	}
6171 }
6172 
6173 void vmx_get_entry_info(struct kvm_vcpu *vcpu, u32 *intr_info, u32 *error_code)
6174 {
6175 	*intr_info = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
6176 	if (is_exception_with_error_code(*intr_info))
6177 		*error_code = vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE);
6178 	else
6179 		*error_code = 0;
6180 }
6181 
6182 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6183 {
6184 	if (vmx->pml_pg) {
6185 		__free_page(vmx->pml_pg);
6186 		vmx->pml_pg = NULL;
6187 	}
6188 }
6189 
6190 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6191 {
6192 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6193 	u16 pml_idx, pml_tail_index;
6194 	u64 *pml_buf;
6195 	int i;
6196 
6197 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
6198 
6199 	/* Do nothing if PML buffer is empty */
6200 	if (pml_idx == PML_HEAD_INDEX)
6201 		return;
6202 	/*
6203 	 * PML index always points to the next available PML buffer entity
6204 	 * unless PML log has just overflowed.
6205 	 */
6206 	pml_tail_index = (pml_idx >= PML_LOG_NR_ENTRIES) ? 0 : pml_idx + 1;
6207 
6208 	/*
6209 	 * PML log is written backwards: the CPU first writes the entry 511
6210 	 * then the entry 510, and so on.
6211 	 *
6212 	 * Read the entries in the same order they were written, to ensure that
6213 	 * the dirty ring is filled in the same order the CPU wrote them.
6214 	 */
6215 	pml_buf = page_address(vmx->pml_pg);
6216 
6217 	for (i = PML_HEAD_INDEX; i >= pml_tail_index; i--) {
6218 		u64 gpa;
6219 
6220 		gpa = pml_buf[i];
6221 		WARN_ON(gpa & (PAGE_SIZE - 1));
6222 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6223 	}
6224 
6225 	/* reset PML index */
6226 	vmcs_write16(GUEST_PML_INDEX, PML_HEAD_INDEX);
6227 }
6228 
6229 static void vmx_dump_sel(char *name, uint32_t sel)
6230 {
6231 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6232 	       name, vmcs_read16(sel),
6233 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6234 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6235 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6236 }
6237 
6238 static void vmx_dump_dtsel(char *name, uint32_t limit)
6239 {
6240 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
6241 	       name, vmcs_read32(limit),
6242 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6243 }
6244 
6245 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6246 {
6247 	unsigned int i;
6248 	struct vmx_msr_entry *e;
6249 
6250 	pr_err("MSR %s:\n", name);
6251 	for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6252 		pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6253 }
6254 
6255 void dump_vmcs(struct kvm_vcpu *vcpu)
6256 {
6257 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6258 	u32 vmentry_ctl, vmexit_ctl;
6259 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6260 	u64 tertiary_exec_control;
6261 	unsigned long cr4;
6262 	int efer_slot;
6263 
6264 	if (!dump_invalid_vmcs) {
6265 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6266 		return;
6267 	}
6268 
6269 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6270 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6271 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6272 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6273 	cr4 = vmcs_readl(GUEST_CR4);
6274 
6275 	if (cpu_has_secondary_exec_ctrls())
6276 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6277 	else
6278 		secondary_exec_control = 0;
6279 
6280 	if (cpu_has_tertiary_exec_ctrls())
6281 		tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6282 	else
6283 		tertiary_exec_control = 0;
6284 
6285 	pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6286 	       vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6287 	pr_err("*** Guest State ***\n");
6288 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6289 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6290 	       vmcs_readl(CR0_GUEST_HOST_MASK));
6291 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6292 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6293 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6294 	if (cpu_has_vmx_ept()) {
6295 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
6296 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6297 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
6298 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6299 	}
6300 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
6301 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6302 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
6303 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6304 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6305 	       vmcs_readl(GUEST_SYSENTER_ESP),
6306 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6307 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
6308 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
6309 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
6310 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
6311 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
6312 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
6313 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6314 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6315 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6316 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
6317 	efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6318 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6319 		pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6320 	else if (efer_slot >= 0)
6321 		pr_err("EFER= 0x%016llx (autoload)\n",
6322 		       vmx->msr_autoload.guest.val[efer_slot].value);
6323 	else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6324 		pr_err("EFER= 0x%016llx (effective)\n",
6325 		       vcpu->arch.efer | (EFER_LMA | EFER_LME));
6326 	else
6327 		pr_err("EFER= 0x%016llx (effective)\n",
6328 		       vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6329 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6330 		pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6331 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
6332 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
6333 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6334 	if (cpu_has_load_perf_global_ctrl() &&
6335 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6336 		pr_err("PerfGlobCtl = 0x%016llx\n",
6337 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6338 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6339 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6340 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
6341 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6342 	       vmcs_read32(GUEST_ACTIVITY_STATE));
6343 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6344 		pr_err("InterruptStatus = %04x\n",
6345 		       vmcs_read16(GUEST_INTR_STATUS));
6346 	if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6347 		vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6348 	if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6349 		vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6350 
6351 	pr_err("*** Host State ***\n");
6352 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
6353 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6354 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6355 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6356 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6357 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6358 	       vmcs_read16(HOST_TR_SELECTOR));
6359 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6360 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6361 	       vmcs_readl(HOST_TR_BASE));
6362 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6363 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6364 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6365 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6366 	       vmcs_readl(HOST_CR4));
6367 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6368 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
6369 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
6370 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
6371 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6372 		pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6373 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6374 		pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6375 	if (cpu_has_load_perf_global_ctrl() &&
6376 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6377 		pr_err("PerfGlobCtl = 0x%016llx\n",
6378 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6379 	if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6380 		vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6381 
6382 	pr_err("*** Control State ***\n");
6383 	pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6384 	       cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6385 	pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6386 	       pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6387 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6388 	       vmcs_read32(EXCEPTION_BITMAP),
6389 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6390 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6391 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6392 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6393 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6394 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6395 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6396 	       vmcs_read32(VM_EXIT_INTR_INFO),
6397 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6398 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6399 	pr_err("        reason=%08x qualification=%016lx\n",
6400 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6401 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6402 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
6403 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
6404 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6405 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6406 		pr_err("TSC Multiplier = 0x%016llx\n",
6407 		       vmcs_read64(TSC_MULTIPLIER));
6408 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6409 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6410 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
6411 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6412 		}
6413 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6414 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6415 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6416 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6417 	}
6418 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6419 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6420 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6421 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6422 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6423 		pr_err("PLE Gap=%08x Window=%08x\n",
6424 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6425 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6426 		pr_err("Virtual processor ID = 0x%04x\n",
6427 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
6428 	if (secondary_exec_control & SECONDARY_EXEC_EPT_VIOLATION_VE) {
6429 		struct vmx_ve_information *ve_info = vmx->ve_info;
6430 		u64 ve_info_pa = vmcs_read64(VE_INFORMATION_ADDRESS);
6431 
6432 		/*
6433 		 * If KVM is dumping the VMCS, then something has gone wrong
6434 		 * already.  Derefencing an address from the VMCS, which could
6435 		 * very well be corrupted, is a terrible idea.  The virtual
6436 		 * address is known so use it.
6437 		 */
6438 		pr_err("VE info address = 0x%016llx%s\n", ve_info_pa,
6439 		       ve_info_pa == __pa(ve_info) ? "" : "(corrupted!)");
6440 		pr_err("ve_info: 0x%08x 0x%08x 0x%016llx 0x%016llx 0x%016llx 0x%04x\n",
6441 		       ve_info->exit_reason, ve_info->delivery,
6442 		       ve_info->exit_qualification,
6443 		       ve_info->guest_linear_address,
6444 		       ve_info->guest_physical_address, ve_info->eptp_index);
6445 	}
6446 }
6447 
6448 /*
6449  * The guest has exited.  See if we can fix it or if we need userspace
6450  * assistance.
6451  */
6452 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6453 {
6454 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6455 	union vmx_exit_reason exit_reason = vmx_get_exit_reason(vcpu);
6456 	u32 vectoring_info = vmx->idt_vectoring_info;
6457 	u16 exit_handler_index;
6458 
6459 	/*
6460 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6461 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6462 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6463 	 * mode as if vcpus is in root mode, the PML buffer must has been
6464 	 * flushed already.  Note, PML is never enabled in hardware while
6465 	 * running L2.
6466 	 */
6467 	if (enable_pml && !is_guest_mode(vcpu))
6468 		vmx_flush_pml_buffer(vcpu);
6469 
6470 	/*
6471 	 * KVM should never reach this point with a pending nested VM-Enter.
6472 	 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6473 	 * invalid guest state should never happen as that means KVM knowingly
6474 	 * allowed a nested VM-Enter with an invalid vmcs12.  More below.
6475 	 */
6476 	if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6477 		return -EIO;
6478 
6479 	if (is_guest_mode(vcpu)) {
6480 		/*
6481 		 * PML is never enabled when running L2, bail immediately if a
6482 		 * PML full exit occurs as something is horribly wrong.
6483 		 */
6484 		if (exit_reason.basic == EXIT_REASON_PML_FULL)
6485 			goto unexpected_vmexit;
6486 
6487 		/*
6488 		 * The host physical addresses of some pages of guest memory
6489 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6490 		 * Page). The CPU may write to these pages via their host
6491 		 * physical address while L2 is running, bypassing any
6492 		 * address-translation-based dirty tracking (e.g. EPT write
6493 		 * protection).
6494 		 *
6495 		 * Mark them dirty on every exit from L2 to prevent them from
6496 		 * getting out of sync with dirty tracking.
6497 		 */
6498 		nested_mark_vmcs12_pages_dirty(vcpu);
6499 
6500 		/*
6501 		 * Synthesize a triple fault if L2 state is invalid.  In normal
6502 		 * operation, nested VM-Enter rejects any attempt to enter L2
6503 		 * with invalid state.  However, those checks are skipped if
6504 		 * state is being stuffed via RSM or KVM_SET_NESTED_STATE.  If
6505 		 * L2 state is invalid, it means either L1 modified SMRAM state
6506 		 * or userspace provided bad state.  Synthesize TRIPLE_FAULT as
6507 		 * doing so is architecturally allowed in the RSM case, and is
6508 		 * the least awful solution for the userspace case without
6509 		 * risking false positives.
6510 		 */
6511 		if (vmx->vt.emulation_required) {
6512 			nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6513 			return 1;
6514 		}
6515 
6516 		if (nested_vmx_reflect_vmexit(vcpu))
6517 			return 1;
6518 	}
6519 
6520 	/* If guest state is invalid, start emulating.  L2 is handled above. */
6521 	if (vmx->vt.emulation_required)
6522 		return handle_invalid_guest_state(vcpu);
6523 
6524 	if (exit_reason.failed_vmentry) {
6525 		dump_vmcs(vcpu);
6526 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6527 		vcpu->run->fail_entry.hardware_entry_failure_reason
6528 			= exit_reason.full;
6529 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6530 		return 0;
6531 	}
6532 
6533 	if (unlikely(vmx->fail)) {
6534 		dump_vmcs(vcpu);
6535 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6536 		vcpu->run->fail_entry.hardware_entry_failure_reason
6537 			= vmcs_read32(VM_INSTRUCTION_ERROR);
6538 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6539 		return 0;
6540 	}
6541 
6542 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6543 	    (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6544 	     exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6545 	     exit_reason.basic != EXIT_REASON_PML_FULL &&
6546 	     exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6547 	     exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6548 	     exit_reason.basic != EXIT_REASON_NOTIFY &&
6549 	     exit_reason.basic != EXIT_REASON_EPT_MISCONFIG)) {
6550 		kvm_prepare_event_vectoring_exit(vcpu, INVALID_GPA);
6551 		return 0;
6552 	}
6553 
6554 	if (unlikely(!enable_vnmi &&
6555 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
6556 		if (!vmx_interrupt_blocked(vcpu)) {
6557 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6558 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6559 			   vcpu->arch.nmi_pending) {
6560 			/*
6561 			 * This CPU don't support us in finding the end of an
6562 			 * NMI-blocked window if the guest runs with IRQs
6563 			 * disabled. So we pull the trigger after 1 s of
6564 			 * futile waiting, but inform the user about this.
6565 			 */
6566 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6567 			       "state on VCPU %d after 1 s timeout\n",
6568 			       __func__, vcpu->vcpu_id);
6569 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6570 		}
6571 	}
6572 
6573 	if (exit_fastpath != EXIT_FASTPATH_NONE)
6574 		return 1;
6575 
6576 	if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6577 		goto unexpected_vmexit;
6578 #ifdef CONFIG_MITIGATION_RETPOLINE
6579 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6580 		return kvm_emulate_wrmsr(vcpu);
6581 	else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6582 		return handle_preemption_timer(vcpu);
6583 	else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6584 		return handle_interrupt_window(vcpu);
6585 	else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6586 		return handle_external_interrupt(vcpu);
6587 	else if (exit_reason.basic == EXIT_REASON_HLT)
6588 		return kvm_emulate_halt(vcpu);
6589 	else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6590 		return handle_ept_misconfig(vcpu);
6591 #endif
6592 
6593 	exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6594 						kvm_vmx_max_exit_handlers);
6595 	if (!kvm_vmx_exit_handlers[exit_handler_index])
6596 		goto unexpected_vmexit;
6597 
6598 	return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6599 
6600 unexpected_vmexit:
6601 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6602 		    exit_reason.full);
6603 	dump_vmcs(vcpu);
6604 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6605 	vcpu->run->internal.suberror =
6606 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6607 	vcpu->run->internal.ndata = 2;
6608 	vcpu->run->internal.data[0] = exit_reason.full;
6609 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6610 	return 0;
6611 }
6612 
6613 int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6614 {
6615 	int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6616 
6617 	/*
6618 	 * Exit to user space when bus lock detected to inform that there is
6619 	 * a bus lock in guest.
6620 	 */
6621 	if (vmx_get_exit_reason(vcpu).bus_lock_detected) {
6622 		if (ret > 0)
6623 			vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6624 
6625 		vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6626 		return 0;
6627 	}
6628 	return ret;
6629 }
6630 
6631 /*
6632  * Software based L1D cache flush which is used when microcode providing
6633  * the cache control MSR is not loaded.
6634  *
6635  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6636  * flush it is required to read in 64 KiB because the replacement algorithm
6637  * is not exactly LRU. This could be sized at runtime via topology
6638  * information but as all relevant affected CPUs have 32KiB L1D cache size
6639  * there is no point in doing so.
6640  */
6641 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6642 {
6643 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6644 
6645 	/*
6646 	 * This code is only executed when the flush mode is 'cond' or
6647 	 * 'always'
6648 	 */
6649 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6650 		bool flush_l1d;
6651 
6652 		/*
6653 		 * Clear the per-vcpu flush bit, it gets set again if the vCPU
6654 		 * is reloaded, i.e. if the vCPU is scheduled out or if KVM
6655 		 * exits to userspace, or if KVM reaches one of the unsafe
6656 		 * VMEXIT handlers, e.g. if KVM calls into the emulator.
6657 		 */
6658 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6659 		vcpu->arch.l1tf_flush_l1d = false;
6660 
6661 		/*
6662 		 * Clear the per-cpu flush bit, it gets set again from
6663 		 * the interrupt handlers.
6664 		 */
6665 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6666 		kvm_clear_cpu_l1tf_flush_l1d();
6667 
6668 		if (!flush_l1d)
6669 			return;
6670 	}
6671 
6672 	vcpu->stat.l1d_flush++;
6673 
6674 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6675 		native_wrmsrq(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6676 		return;
6677 	}
6678 
6679 	asm volatile(
6680 		/* First ensure the pages are in the TLB */
6681 		"xorl	%%eax, %%eax\n"
6682 		".Lpopulate_tlb:\n\t"
6683 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6684 		"addl	$4096, %%eax\n\t"
6685 		"cmpl	%%eax, %[size]\n\t"
6686 		"jne	.Lpopulate_tlb\n\t"
6687 		"xorl	%%eax, %%eax\n\t"
6688 		"cpuid\n\t"
6689 		/* Now fill the cache */
6690 		"xorl	%%eax, %%eax\n"
6691 		".Lfill_cache:\n"
6692 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6693 		"addl	$64, %%eax\n\t"
6694 		"cmpl	%%eax, %[size]\n\t"
6695 		"jne	.Lfill_cache\n\t"
6696 		"lfence\n"
6697 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6698 		    [size] "r" (size)
6699 		: "eax", "ebx", "ecx", "edx");
6700 }
6701 
6702 void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6703 {
6704 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6705 	int tpr_threshold;
6706 
6707 	if (is_guest_mode(vcpu) &&
6708 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6709 		return;
6710 
6711 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6712 	if (is_guest_mode(vcpu))
6713 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6714 	else
6715 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6716 }
6717 
6718 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6719 {
6720 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6721 	u32 sec_exec_control;
6722 
6723 	if (!lapic_in_kernel(vcpu))
6724 		return;
6725 
6726 	if (!flexpriority_enabled &&
6727 	    !cpu_has_vmx_virtualize_x2apic_mode())
6728 		return;
6729 
6730 	/* Postpone execution until vmcs01 is the current VMCS. */
6731 	if (is_guest_mode(vcpu)) {
6732 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6733 		return;
6734 	}
6735 
6736 	sec_exec_control = secondary_exec_controls_get(vmx);
6737 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6738 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6739 
6740 	switch (kvm_get_apic_mode(vcpu)) {
6741 	case LAPIC_MODE_INVALID:
6742 		WARN_ONCE(true, "Invalid local APIC state");
6743 		break;
6744 	case LAPIC_MODE_DISABLED:
6745 		break;
6746 	case LAPIC_MODE_XAPIC:
6747 		if (flexpriority_enabled) {
6748 			sec_exec_control |=
6749 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6750 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6751 
6752 			/*
6753 			 * Flush the TLB, reloading the APIC access page will
6754 			 * only do so if its physical address has changed, but
6755 			 * the guest may have inserted a non-APIC mapping into
6756 			 * the TLB while the APIC access page was disabled.
6757 			 */
6758 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6759 		}
6760 		break;
6761 	case LAPIC_MODE_X2APIC:
6762 		if (cpu_has_vmx_virtualize_x2apic_mode())
6763 			sec_exec_control |=
6764 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6765 		break;
6766 	}
6767 	secondary_exec_controls_set(vmx, sec_exec_control);
6768 
6769 	vmx_update_msr_bitmap_x2apic(vcpu);
6770 }
6771 
6772 void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6773 {
6774 	const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT;
6775 	struct kvm *kvm = vcpu->kvm;
6776 	struct kvm_memslots *slots = kvm_memslots(kvm);
6777 	struct kvm_memory_slot *slot;
6778 	struct page *refcounted_page;
6779 	unsigned long mmu_seq;
6780 	kvm_pfn_t pfn;
6781 	bool writable;
6782 
6783 	/* Defer reload until vmcs01 is the current VMCS. */
6784 	if (is_guest_mode(vcpu)) {
6785 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6786 		return;
6787 	}
6788 
6789 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6790 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6791 		return;
6792 
6793 	/*
6794 	 * Explicitly grab the memslot using KVM's internal slot ID to ensure
6795 	 * KVM doesn't unintentionally grab a userspace memslot.  It _should_
6796 	 * be impossible for userspace to create a memslot for the APIC when
6797 	 * APICv is enabled, but paranoia won't hurt in this case.
6798 	 */
6799 	slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT);
6800 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
6801 		return;
6802 
6803 	/*
6804 	 * Ensure that the mmu_notifier sequence count is read before KVM
6805 	 * retrieves the pfn from the primary MMU.  Note, the memslot is
6806 	 * protected by SRCU, not the mmu_notifier.  Pairs with the smp_wmb()
6807 	 * in kvm_mmu_invalidate_end().
6808 	 */
6809 	mmu_seq = kvm->mmu_invalidate_seq;
6810 	smp_rmb();
6811 
6812 	/*
6813 	 * No need to retry if the memslot does not exist or is invalid.  KVM
6814 	 * controls the APIC-access page memslot, and only deletes the memslot
6815 	 * if APICv is permanently inhibited, i.e. the memslot won't reappear.
6816 	 */
6817 	pfn = __kvm_faultin_pfn(slot, gfn, FOLL_WRITE, &writable, &refcounted_page);
6818 	if (is_error_noslot_pfn(pfn))
6819 		return;
6820 
6821 	read_lock(&vcpu->kvm->mmu_lock);
6822 	if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn))
6823 		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6824 	else
6825 		vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn));
6826 
6827 	/*
6828 	 * Do not pin the APIC access page in memory so that it can be freely
6829 	 * migrated, the MMU notifier will call us again if it is migrated or
6830 	 * swapped out.  KVM backs the memslot with anonymous memory, the pfn
6831 	 * should always point at a refcounted page (if the pfn is valid).
6832 	 */
6833 	if (!WARN_ON_ONCE(!refcounted_page))
6834 		kvm_release_page_clean(refcounted_page);
6835 
6836 	/*
6837 	 * No need for a manual TLB flush at this point, KVM has already done a
6838 	 * flush if there were SPTEs pointing at the previous page.
6839 	 */
6840 	read_unlock(&vcpu->kvm->mmu_lock);
6841 }
6842 
6843 void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6844 {
6845 	u16 status;
6846 	u8 old;
6847 
6848 	/*
6849 	 * If L2 is active, defer the SVI update until vmcs01 is loaded, as SVI
6850 	 * is only relevant for if and only if Virtual Interrupt Delivery is
6851 	 * enabled in vmcs12, and if VID is enabled then L2 EOIs affect L2's
6852 	 * vAPIC, not L1's vAPIC.  KVM must update vmcs01 on the next nested
6853 	 * VM-Exit, otherwise L1 with run with a stale SVI.
6854 	 */
6855 	if (is_guest_mode(vcpu)) {
6856 		/*
6857 		 * KVM is supposed to forward intercepted L2 EOIs to L1 if VID
6858 		 * is enabled in vmcs12; as above, the EOIs affect L2's vAPIC.
6859 		 * Note, userspace can stuff state while L2 is active; assert
6860 		 * that VID is disabled if and only if the vCPU is in KVM_RUN
6861 		 * to avoid false positives if userspace is setting APIC state.
6862 		 */
6863 		WARN_ON_ONCE(vcpu->wants_to_run &&
6864 			     nested_cpu_has_vid(get_vmcs12(vcpu)));
6865 		to_vmx(vcpu)->nested.update_vmcs01_hwapic_isr = true;
6866 		return;
6867 	}
6868 
6869 	if (max_isr == -1)
6870 		max_isr = 0;
6871 
6872 	status = vmcs_read16(GUEST_INTR_STATUS);
6873 	old = status >> 8;
6874 	if (max_isr != old) {
6875 		status &= 0xff;
6876 		status |= max_isr << 8;
6877 		vmcs_write16(GUEST_INTR_STATUS, status);
6878 	}
6879 }
6880 
6881 static void vmx_set_rvi(int vector)
6882 {
6883 	u16 status;
6884 	u8 old;
6885 
6886 	if (vector == -1)
6887 		vector = 0;
6888 
6889 	status = vmcs_read16(GUEST_INTR_STATUS);
6890 	old = (u8)status & 0xff;
6891 	if ((u8)vector != old) {
6892 		status &= ~0xff;
6893 		status |= (u8)vector;
6894 		vmcs_write16(GUEST_INTR_STATUS, status);
6895 	}
6896 }
6897 
6898 int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6899 {
6900 	struct vcpu_vt *vt = to_vt(vcpu);
6901 	int max_irr;
6902 	bool got_posted_interrupt;
6903 
6904 	if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6905 		return -EIO;
6906 
6907 	if (pi_test_on(&vt->pi_desc)) {
6908 		pi_clear_on(&vt->pi_desc);
6909 		/*
6910 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6911 		 * But on x86 this is just a compiler barrier anyway.
6912 		 */
6913 		smp_mb__after_atomic();
6914 		got_posted_interrupt =
6915 			kvm_apic_update_irr(vcpu, vt->pi_desc.pir, &max_irr);
6916 	} else {
6917 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6918 		got_posted_interrupt = false;
6919 	}
6920 
6921 	/*
6922 	 * Newly recognized interrupts are injected via either virtual interrupt
6923 	 * delivery (RVI) or KVM_REQ_EVENT.  Virtual interrupt delivery is
6924 	 * disabled in two cases:
6925 	 *
6926 	 * 1) If L2 is running and the vCPU has a new pending interrupt.  If L1
6927 	 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6928 	 * VM-Exit to L1.  If L1 doesn't want to exit, the interrupt is injected
6929 	 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6930 	 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6931 	 *
6932 	 * 2) If APICv is disabled for this vCPU, assigned devices may still
6933 	 * attempt to post interrupts.  The posted interrupt vector will cause
6934 	 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6935 	 */
6936 	if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6937 		vmx_set_rvi(max_irr);
6938 	else if (got_posted_interrupt)
6939 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6940 
6941 	return max_irr;
6942 }
6943 
6944 void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6945 {
6946 	if (!kvm_vcpu_apicv_active(vcpu))
6947 		return;
6948 
6949 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6950 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6951 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6952 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6953 }
6954 
6955 void vmx_do_interrupt_irqoff(unsigned long entry);
6956 void vmx_do_nmi_irqoff(void);
6957 
6958 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6959 {
6960 	/*
6961 	 * Save xfd_err to guest_fpu before interrupt is enabled, so the
6962 	 * MSR value is not clobbered by the host activity before the guest
6963 	 * has chance to consume it.
6964 	 *
6965 	 * Update the guest's XFD_ERR if and only if XFD is enabled, as the #NM
6966 	 * interception may have been caused by L1 interception.  Per the SDM,
6967 	 * XFD_ERR is not modified for non-XFD #NM, i.e. if CR0.TS=1.
6968 	 *
6969 	 * Note, XFD_ERR is updated _before_ the #NM interception check, i.e.
6970 	 * unlike CR2 and DR6, the value is not a payload that is attached to
6971 	 * the #NM exception.
6972 	 */
6973 	if (is_xfd_nm_fault(vcpu))
6974 		rdmsrq(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6975 }
6976 
6977 static void handle_exception_irqoff(struct kvm_vcpu *vcpu, u32 intr_info)
6978 {
6979 	/* if exit due to PF check for async PF */
6980 	if (is_page_fault(intr_info))
6981 		vcpu->arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6982 	/* if exit due to NM, handle before interrupts are enabled */
6983 	else if (is_nm_fault(intr_info))
6984 		handle_nm_fault_irqoff(vcpu);
6985 	/* Handle machine checks before interrupts are enabled */
6986 	else if (is_machine_check(intr_info))
6987 		kvm_machine_check();
6988 }
6989 
6990 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu,
6991 					     u32 intr_info)
6992 {
6993 	unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6994 
6995 	if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6996 	    "unexpected VM-Exit interrupt info: 0x%x", intr_info))
6997 		return;
6998 
6999 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
7000 	if (cpu_feature_enabled(X86_FEATURE_FRED))
7001 		fred_entry_from_kvm(EVENT_TYPE_EXTINT, vector);
7002 	else
7003 		vmx_do_interrupt_irqoff(gate_offset((gate_desc *)host_idt_base + vector));
7004 	kvm_after_interrupt(vcpu);
7005 
7006 	vcpu->arch.at_instruction_boundary = true;
7007 }
7008 
7009 void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
7010 {
7011 	if (to_vt(vcpu)->emulation_required)
7012 		return;
7013 
7014 	if (vmx_get_exit_reason(vcpu).basic == EXIT_REASON_EXTERNAL_INTERRUPT)
7015 		handle_external_interrupt_irqoff(vcpu, vmx_get_intr_info(vcpu));
7016 	else if (vmx_get_exit_reason(vcpu).basic == EXIT_REASON_EXCEPTION_NMI)
7017 		handle_exception_irqoff(vcpu, vmx_get_intr_info(vcpu));
7018 }
7019 
7020 /*
7021  * The kvm parameter can be NULL (module initialization, or invocation before
7022  * VM creation). Be sure to check the kvm parameter before using it.
7023  */
7024 bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
7025 {
7026 	switch (index) {
7027 	case MSR_IA32_SMBASE:
7028 		if (!IS_ENABLED(CONFIG_KVM_SMM))
7029 			return false;
7030 		/*
7031 		 * We cannot do SMM unless we can run the guest in big
7032 		 * real mode.
7033 		 */
7034 		return enable_unrestricted_guest || emulate_invalid_guest_state;
7035 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
7036 		return nested;
7037 	case MSR_AMD64_VIRT_SPEC_CTRL:
7038 	case MSR_AMD64_TSC_RATIO:
7039 		/* This is AMD only.  */
7040 		return false;
7041 	default:
7042 		return true;
7043 	}
7044 }
7045 
7046 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7047 {
7048 	u32 exit_intr_info;
7049 	bool unblock_nmi;
7050 	u8 vector;
7051 	bool idtv_info_valid;
7052 
7053 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7054 
7055 	if (enable_vnmi) {
7056 		if (vmx->loaded_vmcs->nmi_known_unmasked)
7057 			return;
7058 
7059 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
7060 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7061 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7062 		/*
7063 		 * SDM 3: 27.7.1.2 (September 2008)
7064 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7065 		 * a guest IRET fault.
7066 		 * SDM 3: 23.2.2 (September 2008)
7067 		 * Bit 12 is undefined in any of the following cases:
7068 		 *  If the VM exit sets the valid bit in the IDT-vectoring
7069 		 *   information field.
7070 		 *  If the VM exit is due to a double fault.
7071 		 */
7072 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7073 		    vector != DF_VECTOR && !idtv_info_valid)
7074 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7075 				      GUEST_INTR_STATE_NMI);
7076 		else
7077 			vmx->loaded_vmcs->nmi_known_unmasked =
7078 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7079 				  & GUEST_INTR_STATE_NMI);
7080 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
7081 		vmx->loaded_vmcs->vnmi_blocked_time +=
7082 			ktime_to_ns(ktime_sub(ktime_get(),
7083 					      vmx->loaded_vmcs->entry_time));
7084 }
7085 
7086 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7087 				      u32 idt_vectoring_info,
7088 				      int instr_len_field,
7089 				      int error_code_field)
7090 {
7091 	u8 vector;
7092 	int type;
7093 	bool idtv_info_valid;
7094 
7095 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7096 
7097 	vcpu->arch.nmi_injected = false;
7098 	kvm_clear_exception_queue(vcpu);
7099 	kvm_clear_interrupt_queue(vcpu);
7100 
7101 	if (!idtv_info_valid)
7102 		return;
7103 
7104 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7105 
7106 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7107 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7108 
7109 	switch (type) {
7110 	case INTR_TYPE_NMI_INTR:
7111 		vcpu->arch.nmi_injected = true;
7112 		/*
7113 		 * SDM 3: 27.7.1.2 (September 2008)
7114 		 * Clear bit "block by NMI" before VM entry if a NMI
7115 		 * delivery faulted.
7116 		 */
7117 		vmx_set_nmi_mask(vcpu, false);
7118 		break;
7119 	case INTR_TYPE_SOFT_EXCEPTION:
7120 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7121 		fallthrough;
7122 	case INTR_TYPE_HARD_EXCEPTION: {
7123 		u32 error_code = 0;
7124 
7125 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK)
7126 			error_code = vmcs_read32(error_code_field);
7127 
7128 		kvm_requeue_exception(vcpu, vector,
7129 				      idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK,
7130 				      error_code);
7131 		break;
7132 	}
7133 	case INTR_TYPE_SOFT_INTR:
7134 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7135 		fallthrough;
7136 	case INTR_TYPE_EXT_INTR:
7137 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7138 		break;
7139 	default:
7140 		break;
7141 	}
7142 }
7143 
7144 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7145 {
7146 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7147 				  VM_EXIT_INSTRUCTION_LEN,
7148 				  IDT_VECTORING_ERROR_CODE);
7149 }
7150 
7151 void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7152 {
7153 	__vmx_complete_interrupts(vcpu,
7154 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7155 				  VM_ENTRY_INSTRUCTION_LEN,
7156 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
7157 
7158 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7159 }
7160 
7161 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7162 {
7163 	int i, nr_msrs;
7164 	struct perf_guest_switch_msr *msrs;
7165 	struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7166 
7167 	pmu->host_cross_mapped_mask = 0;
7168 	if (pmu->pebs_enable & pmu->global_ctrl)
7169 		intel_pmu_cross_mapped_check(pmu);
7170 
7171 	/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7172 	msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7173 	if (!msrs)
7174 		return;
7175 
7176 	for (i = 0; i < nr_msrs; i++)
7177 		if (msrs[i].host == msrs[i].guest)
7178 			clear_atomic_switch_msr(vmx, msrs[i].msr);
7179 		else
7180 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7181 					msrs[i].host, false);
7182 }
7183 
7184 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu, bool force_immediate_exit)
7185 {
7186 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7187 	u64 tscl;
7188 	u32 delta_tsc;
7189 
7190 	if (force_immediate_exit) {
7191 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7192 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7193 	} else if (vmx->hv_deadline_tsc != -1) {
7194 		tscl = rdtsc();
7195 		if (vmx->hv_deadline_tsc > tscl)
7196 			/* set_hv_timer ensures the delta fits in 32-bits */
7197 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7198 				cpu_preemption_timer_multi);
7199 		else
7200 			delta_tsc = 0;
7201 
7202 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7203 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7204 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7205 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7206 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7207 	}
7208 }
7209 
7210 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7211 {
7212 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7213 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
7214 		vmcs_writel(HOST_RSP, host_rsp);
7215 	}
7216 }
7217 
7218 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7219 					unsigned int flags)
7220 {
7221 	u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7222 
7223 	if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7224 		return;
7225 
7226 	if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7227 		vmx->spec_ctrl = native_rdmsrq(MSR_IA32_SPEC_CTRL);
7228 
7229 	/*
7230 	 * If the guest/host SPEC_CTRL values differ, restore the host value.
7231 	 *
7232 	 * For legacy IBRS, the IBRS bit always needs to be written after
7233 	 * transitioning from a less privileged predictor mode, regardless of
7234 	 * whether the guest/host values differ.
7235 	 */
7236 	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7237 	    vmx->spec_ctrl != hostval)
7238 		native_wrmsrq(MSR_IA32_SPEC_CTRL, hostval);
7239 
7240 	barrier_nospec();
7241 }
7242 
7243 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu,
7244 					     bool force_immediate_exit)
7245 {
7246 	/*
7247 	 * If L2 is active, some VMX preemption timer exits can be handled in
7248 	 * the fastpath even, all other exits must use the slow path.
7249 	 */
7250 	if (is_guest_mode(vcpu) &&
7251 	    vmx_get_exit_reason(vcpu).basic != EXIT_REASON_PREEMPTION_TIMER)
7252 		return EXIT_FASTPATH_NONE;
7253 
7254 	switch (vmx_get_exit_reason(vcpu).basic) {
7255 	case EXIT_REASON_MSR_WRITE:
7256 		return handle_fastpath_set_msr_irqoff(vcpu);
7257 	case EXIT_REASON_PREEMPTION_TIMER:
7258 		return handle_fastpath_preemption_timer(vcpu, force_immediate_exit);
7259 	case EXIT_REASON_HLT:
7260 		return handle_fastpath_hlt(vcpu);
7261 	default:
7262 		return EXIT_FASTPATH_NONE;
7263 	}
7264 }
7265 
7266 noinstr void vmx_handle_nmi(struct kvm_vcpu *vcpu)
7267 {
7268 	if ((u16)vmx_get_exit_reason(vcpu).basic != EXIT_REASON_EXCEPTION_NMI ||
7269 	    !is_nmi(vmx_get_intr_info(vcpu)))
7270 		return;
7271 
7272 	kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
7273 	if (cpu_feature_enabled(X86_FEATURE_FRED))
7274 		fred_entry_from_kvm(EVENT_TYPE_NMI, NMI_VECTOR);
7275 	else
7276 		vmx_do_nmi_irqoff();
7277 	kvm_after_interrupt(vcpu);
7278 }
7279 
7280 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7281 					unsigned int flags)
7282 {
7283 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7284 
7285 	guest_state_enter_irqoff();
7286 
7287 	/*
7288 	 * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW
7289 	 * mitigation for MDS is done late in VMentry and is still
7290 	 * executed in spite of L1D Flush. This is because an extra VERW
7291 	 * should not matter much after the big hammer L1D Flush.
7292 	 *
7293 	 * cpu_buf_vm_clear is used when system is not vulnerable to MDS/TAA,
7294 	 * and is affected by MMIO Stale Data. In such cases mitigation in only
7295 	 * needed against an MMIO capable guest.
7296 	 */
7297 	if (static_branch_unlikely(&vmx_l1d_should_flush))
7298 		vmx_l1d_flush(vcpu);
7299 	else if (static_branch_unlikely(&cpu_buf_vm_clear) &&
7300 		 kvm_arch_has_assigned_device(vcpu->kvm))
7301 		mds_clear_cpu_buffers();
7302 
7303 	vmx_disable_fb_clear(vmx);
7304 
7305 	if (vcpu->arch.cr2 != native_read_cr2())
7306 		native_write_cr2(vcpu->arch.cr2);
7307 
7308 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7309 				   flags);
7310 
7311 	vcpu->arch.cr2 = native_read_cr2();
7312 	vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7313 
7314 	vmx->idt_vectoring_info = 0;
7315 
7316 	vmx_enable_fb_clear(vmx);
7317 
7318 	if (unlikely(vmx->fail)) {
7319 		vmx->vt.exit_reason.full = 0xdead;
7320 		goto out;
7321 	}
7322 
7323 	vmx->vt.exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7324 	if (likely(!vmx_get_exit_reason(vcpu).failed_vmentry))
7325 		vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7326 
7327 	vmx_handle_nmi(vcpu);
7328 
7329 out:
7330 	guest_state_exit_irqoff();
7331 }
7332 
7333 fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu, bool force_immediate_exit)
7334 {
7335 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7336 	unsigned long cr3, cr4;
7337 
7338 	/* Record the guest's net vcpu time for enforced NMI injections. */
7339 	if (unlikely(!enable_vnmi &&
7340 		     vmx->loaded_vmcs->soft_vnmi_blocked))
7341 		vmx->loaded_vmcs->entry_time = ktime_get();
7342 
7343 	/*
7344 	 * Don't enter VMX if guest state is invalid, let the exit handler
7345 	 * start emulation until we arrive back to a valid state.  Synthesize a
7346 	 * consistency check VM-Exit due to invalid guest state and bail.
7347 	 */
7348 	if (unlikely(vmx->vt.emulation_required)) {
7349 		vmx->fail = 0;
7350 
7351 		vmx->vt.exit_reason.full = EXIT_REASON_INVALID_STATE;
7352 		vmx->vt.exit_reason.failed_vmentry = 1;
7353 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7354 		vmx->vt.exit_qualification = ENTRY_FAIL_DEFAULT;
7355 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7356 		vmx->vt.exit_intr_info = 0;
7357 		return EXIT_FASTPATH_NONE;
7358 	}
7359 
7360 	trace_kvm_entry(vcpu, force_immediate_exit);
7361 
7362 	if (vmx->ple_window_dirty) {
7363 		vmx->ple_window_dirty = false;
7364 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
7365 	}
7366 
7367 	/*
7368 	 * We did this in prepare_switch_to_guest, because it needs to
7369 	 * be within srcu_read_lock.
7370 	 */
7371 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7372 
7373 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7374 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7375 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7376 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7377 	vcpu->arch.regs_dirty = 0;
7378 
7379 	/*
7380 	 * Refresh vmcs.HOST_CR3 if necessary.  This must be done immediately
7381 	 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7382 	 * it switches back to the current->mm, which can occur in KVM context
7383 	 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7384 	 * toggles a static key while handling a VM-Exit.
7385 	 */
7386 	cr3 = __get_current_cr3_fast();
7387 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7388 		vmcs_writel(HOST_CR3, cr3);
7389 		vmx->loaded_vmcs->host_state.cr3 = cr3;
7390 	}
7391 
7392 	cr4 = cr4_read_shadow();
7393 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7394 		vmcs_writel(HOST_CR4, cr4);
7395 		vmx->loaded_vmcs->host_state.cr4 = cr4;
7396 	}
7397 
7398 	/* When single-stepping over STI and MOV SS, we must clear the
7399 	 * corresponding interruptibility bits in the guest state. Otherwise
7400 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
7401 	 * exceptions being set, but that's not correct for the guest debugging
7402 	 * case. */
7403 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7404 		vmx_set_interrupt_shadow(vcpu, 0);
7405 
7406 	kvm_load_guest_xsave_state(vcpu);
7407 
7408 	pt_guest_enter(vmx);
7409 
7410 	atomic_switch_perf_msrs(vmx);
7411 	if (intel_pmu_lbr_is_enabled(vcpu))
7412 		vmx_passthrough_lbr_msrs(vcpu);
7413 
7414 	if (enable_preemption_timer)
7415 		vmx_update_hv_timer(vcpu, force_immediate_exit);
7416 	else if (force_immediate_exit)
7417 		smp_send_reschedule(vcpu->cpu);
7418 
7419 	kvm_wait_lapic_expire(vcpu);
7420 
7421 	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
7422 	vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
7423 
7424 	/* All fields are clean at this point */
7425 	if (kvm_is_using_evmcs()) {
7426 		current_evmcs->hv_clean_fields |=
7427 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7428 
7429 		current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7430 	}
7431 
7432 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7433 	if (vcpu->arch.host_debugctl)
7434 		update_debugctlmsr(vcpu->arch.host_debugctl);
7435 
7436 #ifndef CONFIG_X86_64
7437 	/*
7438 	 * The sysexit path does not restore ds/es, so we must set them to
7439 	 * a reasonable value ourselves.
7440 	 *
7441 	 * We can't defer this to vmx_prepare_switch_to_host() since that
7442 	 * function may be executed in interrupt context, which saves and
7443 	 * restore segments around it, nullifying its effect.
7444 	 */
7445 	loadsegment(ds, __USER_DS);
7446 	loadsegment(es, __USER_DS);
7447 #endif
7448 
7449 	pt_guest_exit(vmx);
7450 
7451 	kvm_load_host_xsave_state(vcpu);
7452 
7453 	if (is_guest_mode(vcpu)) {
7454 		/*
7455 		 * Track VMLAUNCH/VMRESUME that have made past guest state
7456 		 * checking.
7457 		 */
7458 		if (vmx->nested.nested_run_pending &&
7459 		    !vmx_get_exit_reason(vcpu).failed_vmentry)
7460 			++vcpu->stat.nested_run;
7461 
7462 		vmx->nested.nested_run_pending = 0;
7463 	}
7464 
7465 	if (unlikely(vmx->fail))
7466 		return EXIT_FASTPATH_NONE;
7467 
7468 	if (unlikely((u16)vmx_get_exit_reason(vcpu).basic == EXIT_REASON_MCE_DURING_VMENTRY))
7469 		kvm_machine_check();
7470 
7471 	trace_kvm_exit(vcpu, KVM_ISA_VMX);
7472 
7473 	if (unlikely(vmx_get_exit_reason(vcpu).failed_vmentry))
7474 		return EXIT_FASTPATH_NONE;
7475 
7476 	vmx->loaded_vmcs->launched = 1;
7477 
7478 	vmx_recover_nmi_blocking(vmx);
7479 	vmx_complete_interrupts(vmx);
7480 
7481 	return vmx_exit_handlers_fastpath(vcpu, force_immediate_exit);
7482 }
7483 
7484 void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7485 {
7486 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7487 
7488 	if (enable_pml)
7489 		vmx_destroy_pml_buffer(vmx);
7490 	free_vpid(vmx->vpid);
7491 	nested_vmx_free_vcpu(vcpu);
7492 	free_loaded_vmcs(vmx->loaded_vmcs);
7493 	free_page((unsigned long)vmx->ve_info);
7494 }
7495 
7496 int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7497 {
7498 	struct vmx_uret_msr *tsx_ctrl;
7499 	struct vcpu_vmx *vmx;
7500 	int i, err;
7501 
7502 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7503 	vmx = to_vmx(vcpu);
7504 
7505 	INIT_LIST_HEAD(&vmx->vt.pi_wakeup_list);
7506 
7507 	err = -ENOMEM;
7508 
7509 	vmx->vpid = allocate_vpid();
7510 
7511 	/*
7512 	 * If PML is turned on, failure on enabling PML just results in failure
7513 	 * of creating the vcpu, therefore we can simplify PML logic (by
7514 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
7515 	 * for the guest), etc.
7516 	 */
7517 	if (enable_pml) {
7518 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7519 		if (!vmx->pml_pg)
7520 			goto free_vpid;
7521 	}
7522 
7523 	for (i = 0; i < kvm_nr_uret_msrs; ++i)
7524 		vmx->guest_uret_msrs[i].mask = -1ull;
7525 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7526 		/*
7527 		 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7528 		 * Keep the host value unchanged to avoid changing CPUID bits
7529 		 * under the host kernel's feet.
7530 		 */
7531 		tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7532 		if (tsx_ctrl)
7533 			tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7534 	}
7535 
7536 	err = alloc_loaded_vmcs(&vmx->vmcs01);
7537 	if (err < 0)
7538 		goto free_pml;
7539 
7540 	/*
7541 	 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7542 	 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7543 	 * feature only for vmcs01, KVM currently isn't equipped to realize any
7544 	 * performance benefits from enabling it for vmcs02.
7545 	 */
7546 	if (kvm_is_using_evmcs() &&
7547 	    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7548 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7549 
7550 		evmcs->hv_enlightenments_control.msr_bitmap = 1;
7551 	}
7552 
7553 	/* The MSR bitmap starts with all ones */
7554 	bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7555 	bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7556 
7557 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7558 #ifdef CONFIG_X86_64
7559 	vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7560 	vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7561 	vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7562 #endif
7563 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7564 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7565 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7566 	if (kvm_cstate_in_guest(vcpu->kvm)) {
7567 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7568 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7569 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7570 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7571 	}
7572 
7573 	vmx->loaded_vmcs = &vmx->vmcs01;
7574 
7575 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
7576 		err = kvm_alloc_apic_access_page(vcpu->kvm);
7577 		if (err)
7578 			goto free_vmcs;
7579 	}
7580 
7581 	if (enable_ept && !enable_unrestricted_guest) {
7582 		err = init_rmode_identity_map(vcpu->kvm);
7583 		if (err)
7584 			goto free_vmcs;
7585 	}
7586 
7587 	err = -ENOMEM;
7588 	if (vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_EPT_VIOLATION_VE) {
7589 		struct page *page;
7590 
7591 		BUILD_BUG_ON(sizeof(*vmx->ve_info) > PAGE_SIZE);
7592 
7593 		/* ve_info must be page aligned. */
7594 		page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7595 		if (!page)
7596 			goto free_vmcs;
7597 
7598 		vmx->ve_info = page_to_virt(page);
7599 	}
7600 
7601 	if (vmx_can_use_ipiv(vcpu))
7602 		WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7603 			   __pa(&vmx->vt.pi_desc) | PID_TABLE_ENTRY_VALID);
7604 
7605 	return 0;
7606 
7607 free_vmcs:
7608 	free_loaded_vmcs(vmx->loaded_vmcs);
7609 free_pml:
7610 	vmx_destroy_pml_buffer(vmx);
7611 free_vpid:
7612 	free_vpid(vmx->vpid);
7613 	return err;
7614 }
7615 
7616 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7617 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7618 
7619 int vmx_vm_init(struct kvm *kvm)
7620 {
7621 	if (!ple_gap)
7622 		kvm->arch.pause_in_guest = true;
7623 
7624 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7625 		switch (l1tf_mitigation) {
7626 		case L1TF_MITIGATION_OFF:
7627 		case L1TF_MITIGATION_FLUSH_NOWARN:
7628 			/* 'I explicitly don't care' is set */
7629 			break;
7630 		case L1TF_MITIGATION_AUTO:
7631 		case L1TF_MITIGATION_FLUSH:
7632 		case L1TF_MITIGATION_FLUSH_NOSMT:
7633 		case L1TF_MITIGATION_FULL:
7634 			/*
7635 			 * Warn upon starting the first VM in a potentially
7636 			 * insecure environment.
7637 			 */
7638 			if (sched_smt_active())
7639 				pr_warn_once(L1TF_MSG_SMT);
7640 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7641 				pr_warn_once(L1TF_MSG_L1D);
7642 			break;
7643 		case L1TF_MITIGATION_FULL_FORCE:
7644 			/* Flush is enforced */
7645 			break;
7646 		}
7647 	}
7648 
7649 	if (enable_pml)
7650 		kvm->arch.cpu_dirty_log_size = PML_LOG_NR_ENTRIES;
7651 	return 0;
7652 }
7653 
7654 static inline bool vmx_ignore_guest_pat(struct kvm *kvm)
7655 {
7656 	/*
7657 	 * Non-coherent DMA devices need the guest to flush CPU properly.
7658 	 * In that case it is not possible to map all guest RAM as WB, so
7659 	 * always trust guest PAT.
7660 	 */
7661 	return !kvm_arch_has_noncoherent_dma(kvm) &&
7662 	       kvm_check_has_quirk(kvm, KVM_X86_QUIRK_IGNORE_GUEST_PAT);
7663 }
7664 
7665 u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7666 {
7667 	/*
7668 	 * Force UC for host MMIO regions, as allowing the guest to access MMIO
7669 	 * with cacheable accesses will result in Machine Checks.
7670 	 */
7671 	if (is_mmio)
7672 		return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7673 
7674 	/* Force WB if ignoring guest PAT */
7675 	if (vmx_ignore_guest_pat(vcpu->kvm))
7676 		return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7677 
7678 	return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT);
7679 }
7680 
7681 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7682 {
7683 	/*
7684 	 * These bits in the secondary execution controls field
7685 	 * are dynamic, the others are mostly based on the hypervisor
7686 	 * architecture and the guest's CPUID.  Do not touch the
7687 	 * dynamic bits.
7688 	 */
7689 	u32 mask =
7690 		SECONDARY_EXEC_SHADOW_VMCS |
7691 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7692 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7693 		SECONDARY_EXEC_DESC;
7694 
7695 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7696 
7697 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7698 }
7699 
7700 /*
7701  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7702  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7703  */
7704 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7705 {
7706 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7707 	struct kvm_cpuid_entry2 *entry;
7708 
7709 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7710 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7711 
7712 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7713 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7714 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7715 } while (0)
7716 
7717 	entry = kvm_find_cpuid_entry(vcpu, 0x1);
7718 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7719 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7720 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7721 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7722 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7723 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7724 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7725 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7726 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7727 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7728 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7729 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7730 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7731 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7732 
7733 	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7734 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7735 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7736 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7737 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7738 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7739 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7740 
7741 	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 1);
7742 	cr4_fixed1_update(X86_CR4_LAM_SUP,    eax, feature_bit(LAM));
7743 
7744 #undef cr4_fixed1_update
7745 }
7746 
7747 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7748 {
7749 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7750 	struct kvm_cpuid_entry2 *best = NULL;
7751 	int i;
7752 
7753 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7754 		best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7755 		if (!best)
7756 			return;
7757 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7758 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7759 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7760 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7761 	}
7762 
7763 	/* Get the number of configurable Address Ranges for filtering */
7764 	vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7765 						PT_CAP_num_address_ranges);
7766 
7767 	/* Initialize and clear the no dependency bits */
7768 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7769 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7770 			RTIT_CTL_BRANCH_EN);
7771 
7772 	/*
7773 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7774 	 * will inject an #GP
7775 	 */
7776 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7777 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7778 
7779 	/*
7780 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7781 	 * PSBFreq can be set
7782 	 */
7783 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7784 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7785 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7786 
7787 	/*
7788 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7789 	 */
7790 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7791 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7792 					      RTIT_CTL_MTC_RANGE);
7793 
7794 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7795 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7796 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7797 							RTIT_CTL_PTW_EN);
7798 
7799 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7800 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7801 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7802 
7803 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7804 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7805 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7806 
7807 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7808 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7809 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7810 
7811 	/* unmask address range configure area */
7812 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7813 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7814 }
7815 
7816 void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7817 {
7818 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7819 
7820 	/*
7821 	 * XSAVES is effectively enabled if and only if XSAVE is also exposed
7822 	 * to the guest.  XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be
7823 	 * set if and only if XSAVE is supported.
7824 	 */
7825 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVE))
7826 		guest_cpu_cap_clear(vcpu, X86_FEATURE_XSAVES);
7827 
7828 	vmx_setup_uret_msrs(vmx);
7829 
7830 	if (cpu_has_secondary_exec_ctrls())
7831 		vmcs_set_secondary_exec_control(vmx,
7832 						vmx_secondary_exec_control(vmx));
7833 
7834 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
7835 		vmx->msr_ia32_feature_control_valid_bits |=
7836 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7837 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7838 	else
7839 		vmx->msr_ia32_feature_control_valid_bits &=
7840 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7841 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7842 
7843 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
7844 		nested_vmx_cr_fixed1_bits_update(vcpu);
7845 
7846 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7847 			guest_cpu_cap_has(vcpu, X86_FEATURE_INTEL_PT))
7848 		update_intel_pt_cfg(vcpu);
7849 
7850 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7851 		struct vmx_uret_msr *msr;
7852 		msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7853 		if (msr) {
7854 			bool enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_RTM);
7855 			vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7856 		}
7857 	}
7858 
7859 	if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7860 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7861 					  !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD));
7862 
7863 	if (boot_cpu_has(X86_FEATURE_IBPB))
7864 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
7865 					  !guest_has_pred_cmd_msr(vcpu));
7866 
7867 	if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
7868 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
7869 					  !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D));
7870 
7871 	set_cr4_guest_host_mask(vmx);
7872 
7873 	vmx_write_encls_bitmap(vcpu, NULL);
7874 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_SGX))
7875 		vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7876 	else
7877 		vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7878 
7879 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC))
7880 		vmx->msr_ia32_feature_control_valid_bits |=
7881 			FEAT_CTL_SGX_LC_ENABLED;
7882 	else
7883 		vmx->msr_ia32_feature_control_valid_bits &=
7884 			~FEAT_CTL_SGX_LC_ENABLED;
7885 
7886 	/* Refresh #PF interception to account for MAXPHYADDR changes. */
7887 	vmx_update_exception_bitmap(vcpu);
7888 }
7889 
7890 static __init u64 vmx_get_perf_capabilities(void)
7891 {
7892 	u64 perf_cap = PMU_CAP_FW_WRITES;
7893 	u64 host_perf_cap = 0;
7894 
7895 	if (!enable_pmu)
7896 		return 0;
7897 
7898 	if (boot_cpu_has(X86_FEATURE_PDCM))
7899 		rdmsrq(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
7900 
7901 	if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) {
7902 		x86_perf_get_lbr(&vmx_lbr_caps);
7903 
7904 		/*
7905 		 * KVM requires LBR callstack support, as the overhead due to
7906 		 * context switching LBRs without said support is too high.
7907 		 * See intel_pmu_create_guest_lbr_event() for more info.
7908 		 */
7909 		if (!vmx_lbr_caps.has_callstack)
7910 			memset(&vmx_lbr_caps, 0, sizeof(vmx_lbr_caps));
7911 		else if (vmx_lbr_caps.nr)
7912 			perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT;
7913 	}
7914 
7915 	if (vmx_pebs_supported()) {
7916 		perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
7917 
7918 		/*
7919 		 * Disallow adaptive PEBS as it is functionally broken, can be
7920 		 * used by the guest to read *host* LBRs, and can be used to
7921 		 * bypass userspace event filters.  To correctly and safely
7922 		 * support adaptive PEBS, KVM needs to:
7923 		 *
7924 		 * 1. Account for the ADAPTIVE flag when (re)programming fixed
7925 		 *    counters.
7926 		 *
7927 		 * 2. Gain support from perf (or take direct control of counter
7928 		 *    programming) to support events without adaptive PEBS
7929 		 *    enabled for the hardware counter.
7930 		 *
7931 		 * 3. Ensure LBR MSRs cannot hold host data on VM-Entry with
7932 		 *    adaptive PEBS enabled and MSR_PEBS_DATA_CFG.LBRS=1.
7933 		 *
7934 		 * 4. Document which PMU events are effectively exposed to the
7935 		 *    guest via adaptive PEBS, and make adaptive PEBS mutually
7936 		 *    exclusive with KVM_SET_PMU_EVENT_FILTER if necessary.
7937 		 */
7938 		perf_cap &= ~PERF_CAP_PEBS_BASELINE;
7939 	}
7940 
7941 	return perf_cap;
7942 }
7943 
7944 static __init void vmx_set_cpu_caps(void)
7945 {
7946 	kvm_set_cpu_caps();
7947 
7948 	/* CPUID 0x1 */
7949 	if (nested)
7950 		kvm_cpu_cap_set(X86_FEATURE_VMX);
7951 
7952 	/* CPUID 0x7 */
7953 	if (kvm_mpx_supported())
7954 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7955 	if (!cpu_has_vmx_invpcid())
7956 		kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7957 	if (vmx_pt_mode_is_host_guest())
7958 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7959 	if (vmx_pebs_supported()) {
7960 		kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7961 		kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7962 	}
7963 
7964 	if (!enable_pmu)
7965 		kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7966 	kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
7967 
7968 	if (!enable_sgx) {
7969 		kvm_cpu_cap_clear(X86_FEATURE_SGX);
7970 		kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7971 		kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7972 		kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7973 		kvm_cpu_cap_clear(X86_FEATURE_SGX_EDECCSSA);
7974 	}
7975 
7976 	if (vmx_umip_emulated())
7977 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7978 
7979 	/* CPUID 0xD.1 */
7980 	kvm_caps.supported_xss = 0;
7981 	if (!cpu_has_vmx_xsaves())
7982 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7983 
7984 	/* CPUID 0x80000001 and 0x7 (RDPID) */
7985 	if (!cpu_has_vmx_rdtscp()) {
7986 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7987 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7988 	}
7989 
7990 	if (cpu_has_vmx_waitpkg())
7991 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7992 }
7993 
7994 static bool vmx_is_io_intercepted(struct kvm_vcpu *vcpu,
7995 				  struct x86_instruction_info *info,
7996 				  unsigned long *exit_qualification)
7997 {
7998 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7999 	unsigned short port;
8000 	int size;
8001 	bool imm;
8002 
8003 	/*
8004 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
8005 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
8006 	 * control.
8007 	 *
8008 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
8009 	 */
8010 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
8011 		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
8012 
8013 	if (info->intercept == x86_intercept_in ||
8014 	    info->intercept == x86_intercept_ins) {
8015 		port = info->src_val;
8016 		size = info->dst_bytes;
8017 		imm  = info->src_type == OP_IMM;
8018 	} else {
8019 		port = info->dst_val;
8020 		size = info->src_bytes;
8021 		imm  = info->dst_type == OP_IMM;
8022 	}
8023 
8024 
8025 	*exit_qualification = ((unsigned long)port << 16) | (size - 1);
8026 
8027 	if (info->intercept == x86_intercept_ins ||
8028 	    info->intercept == x86_intercept_outs)
8029 		*exit_qualification |= BIT(4);
8030 
8031 	if (info->rep_prefix)
8032 		*exit_qualification |= BIT(5);
8033 
8034 	if (imm)
8035 		*exit_qualification |= BIT(6);
8036 
8037 	return nested_vmx_check_io_bitmaps(vcpu, port, size);
8038 }
8039 
8040 int vmx_check_intercept(struct kvm_vcpu *vcpu,
8041 			struct x86_instruction_info *info,
8042 			enum x86_intercept_stage stage,
8043 			struct x86_exception *exception)
8044 {
8045 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8046 	unsigned long exit_qualification = 0;
8047 	u32 vm_exit_reason;
8048 	u64 exit_insn_len;
8049 
8050 	switch (info->intercept) {
8051 	case x86_intercept_rdpid:
8052 		/*
8053 		 * RDPID causes #UD if not enabled through secondary execution
8054 		 * controls (ENABLE_RDTSCP).  Note, the implicit MSR access to
8055 		 * TSC_AUX is NOT subject to interception, i.e. checking only
8056 		 * the dedicated execution control is architecturally correct.
8057 		 */
8058 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
8059 			exception->vector = UD_VECTOR;
8060 			exception->error_code_valid = false;
8061 			return X86EMUL_PROPAGATE_FAULT;
8062 		}
8063 		return X86EMUL_CONTINUE;
8064 
8065 	case x86_intercept_in:
8066 	case x86_intercept_ins:
8067 	case x86_intercept_out:
8068 	case x86_intercept_outs:
8069 		if (!vmx_is_io_intercepted(vcpu, info, &exit_qualification))
8070 			return X86EMUL_CONTINUE;
8071 
8072 		vm_exit_reason = EXIT_REASON_IO_INSTRUCTION;
8073 		break;
8074 
8075 	case x86_intercept_lgdt:
8076 	case x86_intercept_lidt:
8077 	case x86_intercept_lldt:
8078 	case x86_intercept_ltr:
8079 	case x86_intercept_sgdt:
8080 	case x86_intercept_sidt:
8081 	case x86_intercept_sldt:
8082 	case x86_intercept_str:
8083 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
8084 			return X86EMUL_CONTINUE;
8085 
8086 		if (info->intercept == x86_intercept_lldt ||
8087 		    info->intercept == x86_intercept_ltr ||
8088 		    info->intercept == x86_intercept_sldt ||
8089 		    info->intercept == x86_intercept_str)
8090 			vm_exit_reason = EXIT_REASON_LDTR_TR;
8091 		else
8092 			vm_exit_reason = EXIT_REASON_GDTR_IDTR;
8093 		/*
8094 		 * FIXME: Decode the ModR/M to generate the correct exit
8095 		 *        qualification for memory operands.
8096 		 */
8097 		break;
8098 
8099 	case x86_intercept_hlt:
8100 		if (!nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING))
8101 			return X86EMUL_CONTINUE;
8102 
8103 		vm_exit_reason = EXIT_REASON_HLT;
8104 		break;
8105 
8106 	case x86_intercept_pause:
8107 		/*
8108 		 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
8109 		 * with vanilla NOPs in the emulator.  Apply the interception
8110 		 * check only to actual PAUSE instructions.  Don't check
8111 		 * PAUSE-loop-exiting, software can't expect a given PAUSE to
8112 		 * exit, i.e. KVM is within its rights to allow L2 to execute
8113 		 * the PAUSE.
8114 		 */
8115 		if ((info->rep_prefix != REPE_PREFIX) ||
8116 		    !nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING))
8117 			return X86EMUL_CONTINUE;
8118 
8119 		vm_exit_reason = EXIT_REASON_PAUSE_INSTRUCTION;
8120 		break;
8121 
8122 	/* TODO: check more intercepts... */
8123 	default:
8124 		return X86EMUL_UNHANDLEABLE;
8125 	}
8126 
8127 	exit_insn_len = abs_diff((s64)info->next_rip, (s64)info->rip);
8128 	if (!exit_insn_len || exit_insn_len > X86_MAX_INSTRUCTION_LENGTH)
8129 		return X86EMUL_UNHANDLEABLE;
8130 
8131 	__nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification,
8132 			    exit_insn_len);
8133 	return X86EMUL_INTERCEPTED;
8134 }
8135 
8136 #ifdef CONFIG_X86_64
8137 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
8138 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
8139 				  u64 divisor, u64 *result)
8140 {
8141 	u64 low = a << shift, high = a >> (64 - shift);
8142 
8143 	/* To avoid the overflow on divq */
8144 	if (high >= divisor)
8145 		return 1;
8146 
8147 	/* Low hold the result, high hold rem which is discarded */
8148 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
8149 	    "rm" (divisor), "0" (low), "1" (high));
8150 	*result = low;
8151 
8152 	return 0;
8153 }
8154 
8155 int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
8156 		     bool *expired)
8157 {
8158 	struct vcpu_vmx *vmx;
8159 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
8160 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
8161 
8162 	vmx = to_vmx(vcpu);
8163 	tscl = rdtsc();
8164 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
8165 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
8166 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
8167 						    ktimer->timer_advance_ns);
8168 
8169 	if (delta_tsc > lapic_timer_advance_cycles)
8170 		delta_tsc -= lapic_timer_advance_cycles;
8171 	else
8172 		delta_tsc = 0;
8173 
8174 	/* Convert to host delta tsc if tsc scaling is enabled */
8175 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
8176 	    delta_tsc && u64_shl_div_u64(delta_tsc,
8177 				kvm_caps.tsc_scaling_ratio_frac_bits,
8178 				vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
8179 		return -ERANGE;
8180 
8181 	/*
8182 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
8183 	 * we can't use the preemption timer.
8184 	 * It's possible that it fits on later vmentries, but checking
8185 	 * on every vmentry is costly so we just use an hrtimer.
8186 	 */
8187 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
8188 		return -ERANGE;
8189 
8190 	vmx->hv_deadline_tsc = tscl + delta_tsc;
8191 	*expired = !delta_tsc;
8192 	return 0;
8193 }
8194 
8195 void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
8196 {
8197 	to_vmx(vcpu)->hv_deadline_tsc = -1;
8198 }
8199 #endif
8200 
8201 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
8202 {
8203 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8204 
8205 	if (WARN_ON_ONCE(!enable_pml))
8206 		return;
8207 
8208 	if (is_guest_mode(vcpu)) {
8209 		vmx->nested.update_vmcs01_cpu_dirty_logging = true;
8210 		return;
8211 	}
8212 
8213 	/*
8214 	 * Note, nr_memslots_dirty_logging can be changed concurrent with this
8215 	 * code, but in that case another update request will be made and so
8216 	 * the guest will never run with a stale PML value.
8217 	 */
8218 	if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
8219 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8220 	else
8221 		secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8222 }
8223 
8224 void vmx_setup_mce(struct kvm_vcpu *vcpu)
8225 {
8226 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
8227 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
8228 			FEAT_CTL_LMCE_ENABLED;
8229 	else
8230 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
8231 			~FEAT_CTL_LMCE_ENABLED;
8232 }
8233 
8234 #ifdef CONFIG_KVM_SMM
8235 int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
8236 {
8237 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
8238 	if (to_vmx(vcpu)->nested.nested_run_pending)
8239 		return -EBUSY;
8240 	return !is_smm(vcpu);
8241 }
8242 
8243 int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
8244 {
8245 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8246 
8247 	/*
8248 	 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8249 	 * SMI and RSM.  Using the common VM-Exit + VM-Enter routines is wrong
8250 	 * SMI and RSM only modify state that is saved and restored via SMRAM.
8251 	 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
8252 	 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8253 	 */
8254 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
8255 	if (vmx->nested.smm.guest_mode)
8256 		nested_vmx_vmexit(vcpu, -1, 0, 0);
8257 
8258 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
8259 	vmx->nested.vmxon = false;
8260 	vmx_clear_hlt(vcpu);
8261 	return 0;
8262 }
8263 
8264 int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8265 {
8266 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8267 	int ret;
8268 
8269 	if (vmx->nested.smm.vmxon) {
8270 		vmx->nested.vmxon = true;
8271 		vmx->nested.smm.vmxon = false;
8272 	}
8273 
8274 	if (vmx->nested.smm.guest_mode) {
8275 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
8276 		if (ret)
8277 			return ret;
8278 
8279 		vmx->nested.nested_run_pending = 1;
8280 		vmx->nested.smm.guest_mode = false;
8281 	}
8282 	return 0;
8283 }
8284 
8285 void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8286 {
8287 	/* RSM will cause a vmexit anyway.  */
8288 }
8289 #endif
8290 
8291 bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8292 {
8293 	return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8294 }
8295 
8296 void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8297 {
8298 	if (is_guest_mode(vcpu)) {
8299 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8300 
8301 		if (hrtimer_try_to_cancel(timer) == 1)
8302 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8303 	}
8304 }
8305 
8306 void vmx_hardware_unsetup(void)
8307 {
8308 	kvm_set_posted_intr_wakeup_handler(NULL);
8309 
8310 	if (nested)
8311 		nested_vmx_hardware_unsetup();
8312 
8313 	free_kvm_area();
8314 }
8315 
8316 void vmx_vm_destroy(struct kvm *kvm)
8317 {
8318 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8319 
8320 	free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8321 }
8322 
8323 /*
8324  * Note, the SDM states that the linear address is masked *after* the modified
8325  * canonicality check, whereas KVM masks (untags) the address and then performs
8326  * a "normal" canonicality check.  Functionally, the two methods are identical,
8327  * and when the masking occurs relative to the canonicality check isn't visible
8328  * to software, i.e. KVM's behavior doesn't violate the SDM.
8329  */
8330 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags)
8331 {
8332 	int lam_bit;
8333 	unsigned long cr3_bits;
8334 
8335 	if (flags & (X86EMUL_F_FETCH | X86EMUL_F_IMPLICIT | X86EMUL_F_INVLPG))
8336 		return gva;
8337 
8338 	if (!is_64_bit_mode(vcpu))
8339 		return gva;
8340 
8341 	/*
8342 	 * Bit 63 determines if the address should be treated as user address
8343 	 * or a supervisor address.
8344 	 */
8345 	if (!(gva & BIT_ULL(63))) {
8346 		cr3_bits = kvm_get_active_cr3_lam_bits(vcpu);
8347 		if (!(cr3_bits & (X86_CR3_LAM_U57 | X86_CR3_LAM_U48)))
8348 			return gva;
8349 
8350 		/* LAM_U48 is ignored if LAM_U57 is set. */
8351 		lam_bit = cr3_bits & X86_CR3_LAM_U57 ? 56 : 47;
8352 	} else {
8353 		if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_LAM_SUP))
8354 			return gva;
8355 
8356 		lam_bit = kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 56 : 47;
8357 	}
8358 
8359 	/*
8360 	 * Untag the address by sign-extending the lam_bit, but NOT to bit 63.
8361 	 * Bit 63 is retained from the raw virtual address so that untagging
8362 	 * doesn't change a user access to a supervisor access, and vice versa.
8363 	 */
8364 	return (sign_extend64(gva, lam_bit) & ~BIT_ULL(63)) | (gva & BIT_ULL(63));
8365 }
8366 
8367 static unsigned int vmx_handle_intel_pt_intr(void)
8368 {
8369 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8370 
8371 	/* '0' on failure so that the !PT case can use a RET0 static call. */
8372 	if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8373 		return 0;
8374 
8375 	kvm_make_request(KVM_REQ_PMI, vcpu);
8376 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8377 		  (unsigned long *)&vcpu->arch.pmu.global_status);
8378 	return 1;
8379 }
8380 
8381 static __init void vmx_setup_user_return_msrs(void)
8382 {
8383 
8384 	/*
8385 	 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8386 	 * will emulate SYSCALL in legacy mode if the vendor string in guest
8387 	 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8388 	 * support this emulation, MSR_STAR is included in the list for i386,
8389 	 * but is never loaded into hardware.  MSR_CSTAR is also never loaded
8390 	 * into hardware and is here purely for emulation purposes.
8391 	 */
8392 	const u32 vmx_uret_msrs_list[] = {
8393 	#ifdef CONFIG_X86_64
8394 		MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8395 	#endif
8396 		MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8397 		MSR_IA32_TSX_CTRL,
8398 	};
8399 	int i;
8400 
8401 	BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8402 
8403 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8404 		kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8405 }
8406 
8407 static void __init vmx_setup_me_spte_mask(void)
8408 {
8409 	u64 me_mask = 0;
8410 
8411 	/*
8412 	 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8413 	 * kvm_host.maxphyaddr.  On MKTME and/or TDX capable systems,
8414 	 * boot_cpu_data.x86_phys_bits holds the actual physical address
8415 	 * w/o the KeyID bits, and kvm_host.maxphyaddr equals to
8416 	 * MAXPHYADDR reported by CPUID.  Those bits between are KeyID bits.
8417 	 */
8418 	if (boot_cpu_data.x86_phys_bits != kvm_host.maxphyaddr)
8419 		me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8420 				    kvm_host.maxphyaddr - 1);
8421 
8422 	/*
8423 	 * Unlike SME, host kernel doesn't support setting up any
8424 	 * MKTME KeyID on Intel platforms.  No memory encryption
8425 	 * bits should be included into the SPTE.
8426 	 */
8427 	kvm_mmu_set_me_spte_mask(0, me_mask);
8428 }
8429 
8430 __init int vmx_hardware_setup(void)
8431 {
8432 	unsigned long host_bndcfgs;
8433 	struct desc_ptr dt;
8434 	int r;
8435 
8436 	store_idt(&dt);
8437 	host_idt_base = dt.address;
8438 
8439 	vmx_setup_user_return_msrs();
8440 
8441 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8442 		return -EIO;
8443 
8444 	if (boot_cpu_has(X86_FEATURE_NX))
8445 		kvm_enable_efer_bits(EFER_NX);
8446 
8447 	if (boot_cpu_has(X86_FEATURE_MPX)) {
8448 		rdmsrq(MSR_IA32_BNDCFGS, host_bndcfgs);
8449 		WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
8450 	}
8451 
8452 	if (!cpu_has_vmx_mpx())
8453 		kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8454 					     XFEATURE_MASK_BNDCSR);
8455 
8456 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8457 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8458 		enable_vpid = 0;
8459 
8460 	if (!cpu_has_vmx_ept() ||
8461 	    !cpu_has_vmx_ept_4levels() ||
8462 	    !cpu_has_vmx_ept_mt_wb() ||
8463 	    !cpu_has_vmx_invept_global())
8464 		enable_ept = 0;
8465 
8466 	/* NX support is required for shadow paging. */
8467 	if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8468 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
8469 		return -EOPNOTSUPP;
8470 	}
8471 
8472 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8473 		enable_ept_ad_bits = 0;
8474 
8475 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8476 		enable_unrestricted_guest = 0;
8477 
8478 	if (!cpu_has_vmx_flexpriority())
8479 		flexpriority_enabled = 0;
8480 
8481 	if (!cpu_has_virtual_nmis())
8482 		enable_vnmi = 0;
8483 
8484 #ifdef CONFIG_X86_SGX_KVM
8485 	if (!cpu_has_vmx_encls_vmexit())
8486 		enable_sgx = false;
8487 #endif
8488 
8489 	/*
8490 	 * set_apic_access_page_addr() is used to reload apic access
8491 	 * page upon invalidation.  No need to do anything if not
8492 	 * using the APIC_ACCESS_ADDR VMCS field.
8493 	 */
8494 	if (!flexpriority_enabled)
8495 		vt_x86_ops.set_apic_access_page_addr = NULL;
8496 
8497 	if (!cpu_has_vmx_tpr_shadow())
8498 		vt_x86_ops.update_cr8_intercept = NULL;
8499 
8500 #if IS_ENABLED(CONFIG_HYPERV)
8501 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8502 	    && enable_ept) {
8503 		vt_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
8504 		vt_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
8505 	}
8506 #endif
8507 
8508 	if (!cpu_has_vmx_ple()) {
8509 		ple_gap = 0;
8510 		ple_window = 0;
8511 		ple_window_grow = 0;
8512 		ple_window_max = 0;
8513 		ple_window_shrink = 0;
8514 	}
8515 
8516 	if (!cpu_has_vmx_apicv())
8517 		enable_apicv = 0;
8518 	if (!enable_apicv)
8519 		vt_x86_ops.sync_pir_to_irr = NULL;
8520 
8521 	if (!enable_apicv || !cpu_has_vmx_ipiv())
8522 		enable_ipiv = false;
8523 
8524 	if (cpu_has_vmx_tsc_scaling())
8525 		kvm_caps.has_tsc_control = true;
8526 
8527 	kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8528 	kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8529 	kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8530 	kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8531 
8532 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8533 
8534 	if (enable_ept)
8535 		kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8536 				      cpu_has_vmx_ept_execute_only());
8537 	else
8538 		vt_x86_ops.get_mt_mask = NULL;
8539 
8540 	/*
8541 	 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8542 	 * bits to shadow_zero_check.
8543 	 */
8544 	vmx_setup_me_spte_mask();
8545 
8546 	kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(),
8547 			  ept_caps_to_lpage_level(vmx_capability.ept));
8548 
8549 	/*
8550 	 * Only enable PML when hardware supports PML feature, and both EPT
8551 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
8552 	 */
8553 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8554 		enable_pml = 0;
8555 
8556 	if (!cpu_has_vmx_preemption_timer())
8557 		enable_preemption_timer = false;
8558 
8559 	if (enable_preemption_timer) {
8560 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
8561 
8562 		cpu_preemption_timer_multi =
8563 			vmx_misc_preemption_timer_rate(vmcs_config.misc);
8564 
8565 		if (tsc_khz)
8566 			use_timer_freq = (u64)tsc_khz * 1000;
8567 		use_timer_freq >>= cpu_preemption_timer_multi;
8568 
8569 		/*
8570 		 * KVM "disables" the preemption timer by setting it to its max
8571 		 * value.  Don't use the timer if it might cause spurious exits
8572 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8573 		 */
8574 		if (use_timer_freq > 0xffffffffu / 10)
8575 			enable_preemption_timer = false;
8576 	}
8577 
8578 	if (!enable_preemption_timer) {
8579 		vt_x86_ops.set_hv_timer = NULL;
8580 		vt_x86_ops.cancel_hv_timer = NULL;
8581 	}
8582 
8583 	kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8584 	kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8585 
8586 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8587 		return -EINVAL;
8588 	if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8589 		pt_mode = PT_MODE_SYSTEM;
8590 	if (pt_mode == PT_MODE_HOST_GUEST)
8591 		vt_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8592 	else
8593 		vt_init_ops.handle_intel_pt_intr = NULL;
8594 
8595 	setup_default_sgx_lepubkeyhash();
8596 
8597 	if (nested) {
8598 		nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8599 
8600 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8601 		if (r)
8602 			return r;
8603 	}
8604 
8605 	vmx_set_cpu_caps();
8606 
8607 	r = alloc_kvm_area();
8608 	if (r && nested)
8609 		nested_vmx_hardware_unsetup();
8610 
8611 	kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8612 
8613 	/*
8614 	 * On Intel CPUs that lack self-snoop feature, letting the guest control
8615 	 * memory types may result in unexpected behavior. So always ignore guest
8616 	 * PAT on those CPUs and map VM as writeback, not allowing userspace to
8617 	 * disable the quirk.
8618 	 *
8619 	 * On certain Intel CPUs (e.g. SPR, ICX), though self-snoop feature is
8620 	 * supported, UC is slow enough to cause issues with some older guests (e.g.
8621 	 * an old version of bochs driver uses ioremap() instead of ioremap_wc() to
8622 	 * map the video RAM, causing wayland desktop to fail to get started
8623 	 * correctly). To avoid breaking those older guests that rely on KVM to force
8624 	 * memory type to WB, provide KVM_X86_QUIRK_IGNORE_GUEST_PAT to preserve the
8625 	 * safer (for performance) default behavior.
8626 	 *
8627 	 * On top of this, non-coherent DMA devices need the guest to flush CPU
8628 	 * caches properly.  This also requires honoring guest PAT, and is forced
8629 	 * independent of the quirk in vmx_ignore_guest_pat().
8630 	 */
8631 	if (!static_cpu_has(X86_FEATURE_SELFSNOOP))
8632 		kvm_caps.supported_quirks &= ~KVM_X86_QUIRK_IGNORE_GUEST_PAT;
8633        kvm_caps.inapplicable_quirks &= ~KVM_X86_QUIRK_IGNORE_GUEST_PAT;
8634 	return r;
8635 }
8636 
8637 static void vmx_cleanup_l1d_flush(void)
8638 {
8639 	if (vmx_l1d_flush_pages) {
8640 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8641 		vmx_l1d_flush_pages = NULL;
8642 	}
8643 	/* Restore state so sysfs ignores VMX */
8644 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8645 }
8646 
8647 void vmx_exit(void)
8648 {
8649 	allow_smaller_maxphyaddr = false;
8650 
8651 	vmx_cleanup_l1d_flush();
8652 
8653 	kvm_x86_vendor_exit();
8654 }
8655 
8656 int __init vmx_init(void)
8657 {
8658 	int r, cpu;
8659 
8660 	if (!kvm_is_vmx_supported())
8661 		return -EOPNOTSUPP;
8662 
8663 	/*
8664 	 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing
8665 	 * to unwind if a later step fails.
8666 	 */
8667 	hv_init_evmcs();
8668 
8669 	r = kvm_x86_vendor_init(&vt_init_ops);
8670 	if (r)
8671 		return r;
8672 
8673 	/*
8674 	 * Must be called after common x86 init so enable_ept is properly set
8675 	 * up. Hand the parameter mitigation value in which was stored in
8676 	 * the pre module init parser. If no parameter was given, it will
8677 	 * contain 'auto' which will be turned into the default 'cond'
8678 	 * mitigation mode.
8679 	 */
8680 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8681 	if (r)
8682 		goto err_l1d_flush;
8683 
8684 	for_each_possible_cpu(cpu) {
8685 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8686 
8687 		pi_init_cpu(cpu);
8688 	}
8689 
8690 	vmx_check_vmcs12_offsets();
8691 
8692 	/*
8693 	 * Shadow paging doesn't have a (further) performance penalty
8694 	 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8695 	 * by default
8696 	 */
8697 	if (!enable_ept)
8698 		allow_smaller_maxphyaddr = true;
8699 
8700 	return 0;
8701 
8702 err_l1d_flush:
8703 	kvm_x86_vendor_exit();
8704 	return r;
8705 }
8706