1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/highmem.h> 18 #include <linux/hrtimer.h> 19 #include <linux/kernel.h> 20 #include <linux/kvm_host.h> 21 #include <linux/module.h> 22 #include <linux/moduleparam.h> 23 #include <linux/mod_devicetable.h> 24 #include <linux/mm.h> 25 #include <linux/objtool.h> 26 #include <linux/sched.h> 27 #include <linux/sched/smt.h> 28 #include <linux/slab.h> 29 #include <linux/tboot.h> 30 #include <linux/trace_events.h> 31 #include <linux/entry-kvm.h> 32 33 #include <asm/apic.h> 34 #include <asm/asm.h> 35 #include <asm/cpu.h> 36 #include <asm/cpu_device_id.h> 37 #include <asm/debugreg.h> 38 #include <asm/desc.h> 39 #include <asm/fpu/api.h> 40 #include <asm/fpu/xstate.h> 41 #include <asm/fred.h> 42 #include <asm/idtentry.h> 43 #include <asm/io.h> 44 #include <asm/irq_remapping.h> 45 #include <asm/reboot.h> 46 #include <asm/perf_event.h> 47 #include <asm/mmu_context.h> 48 #include <asm/mshyperv.h> 49 #include <asm/mwait.h> 50 #include <asm/spec-ctrl.h> 51 #include <asm/vmx.h> 52 53 #include "capabilities.h" 54 #include "cpuid.h" 55 #include "hyperv.h" 56 #include "kvm_onhyperv.h" 57 #include "irq.h" 58 #include "kvm_cache_regs.h" 59 #include "lapic.h" 60 #include "mmu.h" 61 #include "nested.h" 62 #include "pmu.h" 63 #include "sgx.h" 64 #include "trace.h" 65 #include "vmcs.h" 66 #include "vmcs12.h" 67 #include "vmx.h" 68 #include "x86.h" 69 #include "smm.h" 70 #include "vmx_onhyperv.h" 71 72 MODULE_AUTHOR("Qumranet"); 73 MODULE_LICENSE("GPL"); 74 75 #ifdef MODULE 76 static const struct x86_cpu_id vmx_cpu_id[] = { 77 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL), 78 {} 79 }; 80 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); 81 #endif 82 83 bool __read_mostly enable_vpid = 1; 84 module_param_named(vpid, enable_vpid, bool, 0444); 85 86 static bool __read_mostly enable_vnmi = 1; 87 module_param_named(vnmi, enable_vnmi, bool, 0444); 88 89 bool __read_mostly flexpriority_enabled = 1; 90 module_param_named(flexpriority, flexpriority_enabled, bool, 0444); 91 92 bool __read_mostly enable_ept = 1; 93 module_param_named(ept, enable_ept, bool, 0444); 94 95 bool __read_mostly enable_unrestricted_guest = 1; 96 module_param_named(unrestricted_guest, 97 enable_unrestricted_guest, bool, 0444); 98 99 bool __read_mostly enable_ept_ad_bits = 1; 100 module_param_named(eptad, enable_ept_ad_bits, bool, 0444); 101 102 static bool __read_mostly emulate_invalid_guest_state = true; 103 module_param(emulate_invalid_guest_state, bool, 0444); 104 105 static bool __read_mostly fasteoi = 1; 106 module_param(fasteoi, bool, 0444); 107 108 module_param(enable_apicv, bool, 0444); 109 110 bool __read_mostly enable_ipiv = true; 111 module_param(enable_ipiv, bool, 0444); 112 113 /* 114 * If nested=1, nested virtualization is supported, i.e., guests may use 115 * VMX and be a hypervisor for its own guests. If nested=0, guests may not 116 * use VMX instructions. 117 */ 118 static bool __read_mostly nested = 1; 119 module_param(nested, bool, 0444); 120 121 bool __read_mostly enable_pml = 1; 122 module_param_named(pml, enable_pml, bool, 0444); 123 124 static bool __read_mostly error_on_inconsistent_vmcs_config = true; 125 module_param(error_on_inconsistent_vmcs_config, bool, 0444); 126 127 static bool __read_mostly dump_invalid_vmcs = 0; 128 module_param(dump_invalid_vmcs, bool, 0644); 129 130 #define MSR_BITMAP_MODE_X2APIC 1 131 #define MSR_BITMAP_MODE_X2APIC_APICV 2 132 133 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL 134 135 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ 136 static int __read_mostly cpu_preemption_timer_multi; 137 static bool __read_mostly enable_preemption_timer = 1; 138 #ifdef CONFIG_X86_64 139 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); 140 #endif 141 142 extern bool __read_mostly allow_smaller_maxphyaddr; 143 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO); 144 145 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) 146 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE 147 #define KVM_VM_CR0_ALWAYS_ON \ 148 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE) 149 150 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE 151 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) 152 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) 153 154 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) 155 156 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ 157 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ 158 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ 159 RTIT_STATUS_BYTECNT)) 160 161 /* 162 * List of MSRs that can be directly passed to the guest. 163 * In addition to these x2apic and PT MSRs are handled specially. 164 */ 165 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = { 166 MSR_IA32_SPEC_CTRL, 167 MSR_IA32_PRED_CMD, 168 MSR_IA32_FLUSH_CMD, 169 MSR_IA32_TSC, 170 #ifdef CONFIG_X86_64 171 MSR_FS_BASE, 172 MSR_GS_BASE, 173 MSR_KERNEL_GS_BASE, 174 MSR_IA32_XFD, 175 MSR_IA32_XFD_ERR, 176 #endif 177 MSR_IA32_SYSENTER_CS, 178 MSR_IA32_SYSENTER_ESP, 179 MSR_IA32_SYSENTER_EIP, 180 MSR_CORE_C1_RES, 181 MSR_CORE_C3_RESIDENCY, 182 MSR_CORE_C6_RESIDENCY, 183 MSR_CORE_C7_RESIDENCY, 184 }; 185 186 /* 187 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 188 * ple_gap: upper bound on the amount of time between two successive 189 * executions of PAUSE in a loop. Also indicate if ple enabled. 190 * According to test, this time is usually smaller than 128 cycles. 191 * ple_window: upper bound on the amount of time a guest is allowed to execute 192 * in a PAUSE loop. Tests indicate that most spinlocks are held for 193 * less than 2^12 cycles 194 * Time is measured based on a counter that runs at the same rate as the TSC, 195 * refer SDM volume 3b section 21.6.13 & 22.1.3. 196 */ 197 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; 198 module_param(ple_gap, uint, 0444); 199 200 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; 201 module_param(ple_window, uint, 0444); 202 203 /* Default doubles per-vcpu window every exit. */ 204 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 205 module_param(ple_window_grow, uint, 0444); 206 207 /* Default resets per-vcpu window every exit to ple_window. */ 208 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 209 module_param(ple_window_shrink, uint, 0444); 210 211 /* Default is to compute the maximum so we can never overflow. */ 212 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; 213 module_param(ple_window_max, uint, 0444); 214 215 /* Default is SYSTEM mode, 1 for host-guest mode */ 216 int __read_mostly pt_mode = PT_MODE_SYSTEM; 217 module_param(pt_mode, int, S_IRUGO); 218 219 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); 220 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); 221 static DEFINE_MUTEX(vmx_l1d_flush_mutex); 222 223 /* Storage for pre module init parameter parsing */ 224 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; 225 226 static const struct { 227 const char *option; 228 bool for_parse; 229 } vmentry_l1d_param[] = { 230 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, 231 [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, 232 [VMENTER_L1D_FLUSH_COND] = {"cond", true}, 233 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, 234 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, 235 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, 236 }; 237 238 #define L1D_CACHE_ORDER 4 239 static void *vmx_l1d_flush_pages; 240 241 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) 242 { 243 struct page *page; 244 unsigned int i; 245 246 if (!boot_cpu_has_bug(X86_BUG_L1TF)) { 247 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 248 return 0; 249 } 250 251 if (!enable_ept) { 252 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; 253 return 0; 254 } 255 256 if (host_arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { 257 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 258 return 0; 259 } 260 261 /* If set to auto use the default l1tf mitigation method */ 262 if (l1tf == VMENTER_L1D_FLUSH_AUTO) { 263 switch (l1tf_mitigation) { 264 case L1TF_MITIGATION_OFF: 265 l1tf = VMENTER_L1D_FLUSH_NEVER; 266 break; 267 case L1TF_MITIGATION_FLUSH_NOWARN: 268 case L1TF_MITIGATION_FLUSH: 269 case L1TF_MITIGATION_FLUSH_NOSMT: 270 l1tf = VMENTER_L1D_FLUSH_COND; 271 break; 272 case L1TF_MITIGATION_FULL: 273 case L1TF_MITIGATION_FULL_FORCE: 274 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 275 break; 276 } 277 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { 278 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 279 } 280 281 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && 282 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { 283 /* 284 * This allocation for vmx_l1d_flush_pages is not tied to a VM 285 * lifetime and so should not be charged to a memcg. 286 */ 287 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); 288 if (!page) 289 return -ENOMEM; 290 vmx_l1d_flush_pages = page_address(page); 291 292 /* 293 * Initialize each page with a different pattern in 294 * order to protect against KSM in the nested 295 * virtualization case. 296 */ 297 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { 298 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, 299 PAGE_SIZE); 300 } 301 } 302 303 l1tf_vmx_mitigation = l1tf; 304 305 if (l1tf != VMENTER_L1D_FLUSH_NEVER) 306 static_branch_enable(&vmx_l1d_should_flush); 307 else 308 static_branch_disable(&vmx_l1d_should_flush); 309 310 if (l1tf == VMENTER_L1D_FLUSH_COND) 311 static_branch_enable(&vmx_l1d_flush_cond); 312 else 313 static_branch_disable(&vmx_l1d_flush_cond); 314 return 0; 315 } 316 317 static int vmentry_l1d_flush_parse(const char *s) 318 { 319 unsigned int i; 320 321 if (s) { 322 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { 323 if (vmentry_l1d_param[i].for_parse && 324 sysfs_streq(s, vmentry_l1d_param[i].option)) 325 return i; 326 } 327 } 328 return -EINVAL; 329 } 330 331 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) 332 { 333 int l1tf, ret; 334 335 l1tf = vmentry_l1d_flush_parse(s); 336 if (l1tf < 0) 337 return l1tf; 338 339 if (!boot_cpu_has(X86_BUG_L1TF)) 340 return 0; 341 342 /* 343 * Has vmx_init() run already? If not then this is the pre init 344 * parameter parsing. In that case just store the value and let 345 * vmx_init() do the proper setup after enable_ept has been 346 * established. 347 */ 348 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { 349 vmentry_l1d_flush_param = l1tf; 350 return 0; 351 } 352 353 mutex_lock(&vmx_l1d_flush_mutex); 354 ret = vmx_setup_l1d_flush(l1tf); 355 mutex_unlock(&vmx_l1d_flush_mutex); 356 return ret; 357 } 358 359 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) 360 { 361 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) 362 return sysfs_emit(s, "???\n"); 363 364 return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); 365 } 366 367 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx) 368 { 369 u64 msr; 370 371 if (!vmx->disable_fb_clear) 372 return; 373 374 msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL); 375 msr |= FB_CLEAR_DIS; 376 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr); 377 /* Cache the MSR value to avoid reading it later */ 378 vmx->msr_ia32_mcu_opt_ctrl = msr; 379 } 380 381 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx) 382 { 383 if (!vmx->disable_fb_clear) 384 return; 385 386 vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS; 387 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl); 388 } 389 390 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx) 391 { 392 /* 393 * Disable VERW's behavior of clearing CPU buffers for the guest if the 394 * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled 395 * the mitigation. Disabling the clearing behavior provides a 396 * performance boost for guests that aren't aware that manually clearing 397 * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry 398 * and VM-Exit. 399 */ 400 vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) && 401 (host_arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) && 402 !boot_cpu_has_bug(X86_BUG_MDS) && 403 !boot_cpu_has_bug(X86_BUG_TAA); 404 405 /* 406 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS 407 * at VMEntry. Skip the MSR read/write when a guest has no use case to 408 * execute VERW. 409 */ 410 if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) || 411 ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) && 412 (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) && 413 (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) && 414 (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) && 415 (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO))) 416 vmx->disable_fb_clear = false; 417 } 418 419 static const struct kernel_param_ops vmentry_l1d_flush_ops = { 420 .set = vmentry_l1d_flush_set, 421 .get = vmentry_l1d_flush_get, 422 }; 423 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); 424 425 static u32 vmx_segment_access_rights(struct kvm_segment *var); 426 427 void vmx_vmexit(void); 428 429 #define vmx_insn_failed(fmt...) \ 430 do { \ 431 WARN_ONCE(1, fmt); \ 432 pr_warn_ratelimited(fmt); \ 433 } while (0) 434 435 noinline void vmread_error(unsigned long field) 436 { 437 vmx_insn_failed("vmread failed: field=%lx\n", field); 438 } 439 440 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT 441 noinstr void vmread_error_trampoline2(unsigned long field, bool fault) 442 { 443 if (fault) { 444 kvm_spurious_fault(); 445 } else { 446 instrumentation_begin(); 447 vmread_error(field); 448 instrumentation_end(); 449 } 450 } 451 #endif 452 453 noinline void vmwrite_error(unsigned long field, unsigned long value) 454 { 455 vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n", 456 field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); 457 } 458 459 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr) 460 { 461 vmx_insn_failed("vmclear failed: %p/%llx err=%u\n", 462 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR)); 463 } 464 465 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr) 466 { 467 vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n", 468 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR)); 469 } 470 471 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva) 472 { 473 vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n", 474 ext, vpid, gva); 475 } 476 477 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa) 478 { 479 vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n", 480 ext, eptp, gpa); 481 } 482 483 static DEFINE_PER_CPU(struct vmcs *, vmxarea); 484 DEFINE_PER_CPU(struct vmcs *, current_vmcs); 485 /* 486 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed 487 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. 488 */ 489 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); 490 491 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); 492 static DEFINE_SPINLOCK(vmx_vpid_lock); 493 494 struct vmcs_config vmcs_config __ro_after_init; 495 struct vmx_capability vmx_capability __ro_after_init; 496 497 #define VMX_SEGMENT_FIELD(seg) \ 498 [VCPU_SREG_##seg] = { \ 499 .selector = GUEST_##seg##_SELECTOR, \ 500 .base = GUEST_##seg##_BASE, \ 501 .limit = GUEST_##seg##_LIMIT, \ 502 .ar_bytes = GUEST_##seg##_AR_BYTES, \ 503 } 504 505 static const struct kvm_vmx_segment_field { 506 unsigned selector; 507 unsigned base; 508 unsigned limit; 509 unsigned ar_bytes; 510 } kvm_vmx_segment_fields[] = { 511 VMX_SEGMENT_FIELD(CS), 512 VMX_SEGMENT_FIELD(DS), 513 VMX_SEGMENT_FIELD(ES), 514 VMX_SEGMENT_FIELD(FS), 515 VMX_SEGMENT_FIELD(GS), 516 VMX_SEGMENT_FIELD(SS), 517 VMX_SEGMENT_FIELD(TR), 518 VMX_SEGMENT_FIELD(LDTR), 519 }; 520 521 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx) 522 { 523 vmx->segment_cache.bitmask = 0; 524 } 525 526 static unsigned long host_idt_base; 527 528 #if IS_ENABLED(CONFIG_HYPERV) 529 static struct kvm_x86_ops vmx_x86_ops __initdata; 530 531 static bool __read_mostly enlightened_vmcs = true; 532 module_param(enlightened_vmcs, bool, 0444); 533 534 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu) 535 { 536 struct hv_enlightened_vmcs *evmcs; 537 hpa_t partition_assist_page = hv_get_partition_assist_page(vcpu); 538 539 if (partition_assist_page == INVALID_PAGE) 540 return -ENOMEM; 541 542 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs; 543 544 evmcs->partition_assist_page = partition_assist_page; 545 evmcs->hv_vm_id = (unsigned long)vcpu->kvm; 546 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1; 547 548 return 0; 549 } 550 551 static __init void hv_init_evmcs(void) 552 { 553 int cpu; 554 555 if (!enlightened_vmcs) 556 return; 557 558 /* 559 * Enlightened VMCS usage should be recommended and the host needs 560 * to support eVMCS v1 or above. 561 */ 562 if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && 563 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= 564 KVM_EVMCS_VERSION) { 565 566 /* Check that we have assist pages on all online CPUs */ 567 for_each_online_cpu(cpu) { 568 if (!hv_get_vp_assist_page(cpu)) { 569 enlightened_vmcs = false; 570 break; 571 } 572 } 573 574 if (enlightened_vmcs) { 575 pr_info("Using Hyper-V Enlightened VMCS\n"); 576 static_branch_enable(&__kvm_is_using_evmcs); 577 } 578 579 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH) 580 vmx_x86_ops.enable_l2_tlb_flush 581 = hv_enable_l2_tlb_flush; 582 583 } else { 584 enlightened_vmcs = false; 585 } 586 } 587 588 static void hv_reset_evmcs(void) 589 { 590 struct hv_vp_assist_page *vp_ap; 591 592 if (!kvm_is_using_evmcs()) 593 return; 594 595 /* 596 * KVM should enable eVMCS if and only if all CPUs have a VP assist 597 * page, and should reject CPU onlining if eVMCS is enabled the CPU 598 * doesn't have a VP assist page allocated. 599 */ 600 vp_ap = hv_get_vp_assist_page(smp_processor_id()); 601 if (WARN_ON_ONCE(!vp_ap)) 602 return; 603 604 /* 605 * Reset everything to support using non-enlightened VMCS access later 606 * (e.g. when we reload the module with enlightened_vmcs=0) 607 */ 608 vp_ap->nested_control.features.directhypercall = 0; 609 vp_ap->current_nested_vmcs = 0; 610 vp_ap->enlighten_vmentry = 0; 611 } 612 613 #else /* IS_ENABLED(CONFIG_HYPERV) */ 614 static void hv_init_evmcs(void) {} 615 static void hv_reset_evmcs(void) {} 616 #endif /* IS_ENABLED(CONFIG_HYPERV) */ 617 618 /* 619 * Comment's format: document - errata name - stepping - processor name. 620 * Refer from 621 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp 622 */ 623 static u32 vmx_preemption_cpu_tfms[] = { 624 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ 625 0x000206E6, 626 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ 627 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ 628 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ 629 0x00020652, 630 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ 631 0x00020655, 632 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ 633 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ 634 /* 635 * 320767.pdf - AAP86 - B1 - 636 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile 637 */ 638 0x000106E5, 639 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ 640 0x000106A0, 641 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ 642 0x000106A1, 643 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ 644 0x000106A4, 645 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ 646 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ 647 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ 648 0x000106A5, 649 /* Xeon E3-1220 V2 */ 650 0x000306A8, 651 }; 652 653 static inline bool cpu_has_broken_vmx_preemption_timer(void) 654 { 655 u32 eax = cpuid_eax(0x00000001), i; 656 657 /* Clear the reserved bits */ 658 eax &= ~(0x3U << 14 | 0xfU << 28); 659 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) 660 if (eax == vmx_preemption_cpu_tfms[i]) 661 return true; 662 663 return false; 664 } 665 666 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) 667 { 668 return flexpriority_enabled && lapic_in_kernel(vcpu); 669 } 670 671 static int possible_passthrough_msr_slot(u32 msr) 672 { 673 u32 i; 674 675 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) 676 if (vmx_possible_passthrough_msrs[i] == msr) 677 return i; 678 679 return -ENOENT; 680 } 681 682 static bool is_valid_passthrough_msr(u32 msr) 683 { 684 bool r; 685 686 switch (msr) { 687 case 0x800 ... 0x8ff: 688 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */ 689 return true; 690 case MSR_IA32_RTIT_STATUS: 691 case MSR_IA32_RTIT_OUTPUT_BASE: 692 case MSR_IA32_RTIT_OUTPUT_MASK: 693 case MSR_IA32_RTIT_CR3_MATCH: 694 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 695 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */ 696 case MSR_LBR_SELECT: 697 case MSR_LBR_TOS: 698 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31: 699 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31: 700 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31: 701 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8: 702 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8: 703 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */ 704 return true; 705 } 706 707 r = possible_passthrough_msr_slot(msr) != -ENOENT; 708 709 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr); 710 711 return r; 712 } 713 714 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr) 715 { 716 int i; 717 718 i = kvm_find_user_return_msr(msr); 719 if (i >= 0) 720 return &vmx->guest_uret_msrs[i]; 721 return NULL; 722 } 723 724 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx, 725 struct vmx_uret_msr *msr, u64 data) 726 { 727 unsigned int slot = msr - vmx->guest_uret_msrs; 728 int ret = 0; 729 730 if (msr->load_into_hardware) { 731 preempt_disable(); 732 ret = kvm_set_user_return_msr(slot, data, msr->mask); 733 preempt_enable(); 734 } 735 if (!ret) 736 msr->data = data; 737 return ret; 738 } 739 740 /* 741 * Disable VMX and clear CR4.VMXE (even if VMXOFF faults) 742 * 743 * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to 744 * atomically track post-VMXON state, e.g. this may be called in NMI context. 745 * Eat all faults as all other faults on VMXOFF faults are mode related, i.e. 746 * faults are guaranteed to be due to the !post-VMXON check unless the CPU is 747 * magically in RM, VM86, compat mode, or at CPL>0. 748 */ 749 static int kvm_cpu_vmxoff(void) 750 { 751 asm goto("1: vmxoff\n\t" 752 _ASM_EXTABLE(1b, %l[fault]) 753 ::: "cc", "memory" : fault); 754 755 cr4_clear_bits(X86_CR4_VMXE); 756 return 0; 757 758 fault: 759 cr4_clear_bits(X86_CR4_VMXE); 760 return -EIO; 761 } 762 763 static void vmx_emergency_disable(void) 764 { 765 int cpu = raw_smp_processor_id(); 766 struct loaded_vmcs *v; 767 768 kvm_rebooting = true; 769 770 /* 771 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be 772 * set in task context. If this races with VMX is disabled by an NMI, 773 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to 774 * kvm_rebooting set. 775 */ 776 if (!(__read_cr4() & X86_CR4_VMXE)) 777 return; 778 779 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), 780 loaded_vmcss_on_cpu_link) 781 vmcs_clear(v->vmcs); 782 783 kvm_cpu_vmxoff(); 784 } 785 786 static void __loaded_vmcs_clear(void *arg) 787 { 788 struct loaded_vmcs *loaded_vmcs = arg; 789 int cpu = raw_smp_processor_id(); 790 791 if (loaded_vmcs->cpu != cpu) 792 return; /* vcpu migration can race with cpu offline */ 793 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) 794 per_cpu(current_vmcs, cpu) = NULL; 795 796 vmcs_clear(loaded_vmcs->vmcs); 797 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) 798 vmcs_clear(loaded_vmcs->shadow_vmcs); 799 800 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); 801 802 /* 803 * Ensure all writes to loaded_vmcs, including deleting it from its 804 * current percpu list, complete before setting loaded_vmcs->cpu to 805 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first 806 * and add loaded_vmcs to its percpu list before it's deleted from this 807 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs(). 808 */ 809 smp_wmb(); 810 811 loaded_vmcs->cpu = -1; 812 loaded_vmcs->launched = 0; 813 } 814 815 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) 816 { 817 int cpu = loaded_vmcs->cpu; 818 819 if (cpu != -1) 820 smp_call_function_single(cpu, 821 __loaded_vmcs_clear, loaded_vmcs, 1); 822 } 823 824 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, 825 unsigned field) 826 { 827 bool ret; 828 u32 mask = 1 << (seg * SEG_FIELD_NR + field); 829 830 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) { 831 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS); 832 vmx->segment_cache.bitmask = 0; 833 } 834 ret = vmx->segment_cache.bitmask & mask; 835 vmx->segment_cache.bitmask |= mask; 836 return ret; 837 } 838 839 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) 840 { 841 u16 *p = &vmx->segment_cache.seg[seg].selector; 842 843 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) 844 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); 845 return *p; 846 } 847 848 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) 849 { 850 ulong *p = &vmx->segment_cache.seg[seg].base; 851 852 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) 853 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); 854 return *p; 855 } 856 857 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) 858 { 859 u32 *p = &vmx->segment_cache.seg[seg].limit; 860 861 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) 862 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); 863 return *p; 864 } 865 866 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) 867 { 868 u32 *p = &vmx->segment_cache.seg[seg].ar; 869 870 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) 871 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); 872 return *p; 873 } 874 875 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu) 876 { 877 u32 eb; 878 879 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | 880 (1u << DB_VECTOR) | (1u << AC_VECTOR); 881 /* 882 * Guest access to VMware backdoor ports could legitimately 883 * trigger #GP because of TSS I/O permission bitmap. 884 * We intercept those #GP and allow access to them anyway 885 * as VMware does. 886 */ 887 if (enable_vmware_backdoor) 888 eb |= (1u << GP_VECTOR); 889 if ((vcpu->guest_debug & 890 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == 891 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) 892 eb |= 1u << BP_VECTOR; 893 if (to_vmx(vcpu)->rmode.vm86_active) 894 eb = ~0; 895 if (!vmx_need_pf_intercept(vcpu)) 896 eb &= ~(1u << PF_VECTOR); 897 898 /* When we are running a nested L2 guest and L1 specified for it a 899 * certain exception bitmap, we must trap the same exceptions and pass 900 * them to L1. When running L2, we will only handle the exceptions 901 * specified above if L1 did not want them. 902 */ 903 if (is_guest_mode(vcpu)) 904 eb |= get_vmcs12(vcpu)->exception_bitmap; 905 else { 906 int mask = 0, match = 0; 907 908 if (enable_ept && (eb & (1u << PF_VECTOR))) { 909 /* 910 * If EPT is enabled, #PF is currently only intercepted 911 * if MAXPHYADDR is smaller on the guest than on the 912 * host. In that case we only care about present, 913 * non-reserved faults. For vmcs02, however, PFEC_MASK 914 * and PFEC_MATCH are set in prepare_vmcs02_rare. 915 */ 916 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK; 917 match = PFERR_PRESENT_MASK; 918 } 919 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask); 920 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match); 921 } 922 923 /* 924 * Disabling xfd interception indicates that dynamic xfeatures 925 * might be used in the guest. Always trap #NM in this case 926 * to save guest xfd_err timely. 927 */ 928 if (vcpu->arch.xfd_no_write_intercept) 929 eb |= (1u << NM_VECTOR); 930 931 vmcs_write32(EXCEPTION_BITMAP, eb); 932 } 933 934 /* 935 * Check if MSR is intercepted for currently loaded MSR bitmap. 936 */ 937 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr) 938 { 939 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS)) 940 return true; 941 942 return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr); 943 } 944 945 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx) 946 { 947 unsigned int flags = 0; 948 949 if (vmx->loaded_vmcs->launched) 950 flags |= VMX_RUN_VMRESUME; 951 952 /* 953 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free 954 * to change it directly without causing a vmexit. In that case read 955 * it after vmexit and store it in vmx->spec_ctrl. 956 */ 957 if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL)) 958 flags |= VMX_RUN_SAVE_SPEC_CTRL; 959 960 return flags; 961 } 962 963 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, 964 unsigned long entry, unsigned long exit) 965 { 966 vm_entry_controls_clearbit(vmx, entry); 967 vm_exit_controls_clearbit(vmx, exit); 968 } 969 970 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr) 971 { 972 unsigned int i; 973 974 for (i = 0; i < m->nr; ++i) { 975 if (m->val[i].index == msr) 976 return i; 977 } 978 return -ENOENT; 979 } 980 981 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) 982 { 983 int i; 984 struct msr_autoload *m = &vmx->msr_autoload; 985 986 switch (msr) { 987 case MSR_EFER: 988 if (cpu_has_load_ia32_efer()) { 989 clear_atomic_switch_msr_special(vmx, 990 VM_ENTRY_LOAD_IA32_EFER, 991 VM_EXIT_LOAD_IA32_EFER); 992 return; 993 } 994 break; 995 case MSR_CORE_PERF_GLOBAL_CTRL: 996 if (cpu_has_load_perf_global_ctrl()) { 997 clear_atomic_switch_msr_special(vmx, 998 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 999 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); 1000 return; 1001 } 1002 break; 1003 } 1004 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 1005 if (i < 0) 1006 goto skip_guest; 1007 --m->guest.nr; 1008 m->guest.val[i] = m->guest.val[m->guest.nr]; 1009 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 1010 1011 skip_guest: 1012 i = vmx_find_loadstore_msr_slot(&m->host, msr); 1013 if (i < 0) 1014 return; 1015 1016 --m->host.nr; 1017 m->host.val[i] = m->host.val[m->host.nr]; 1018 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 1019 } 1020 1021 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, 1022 unsigned long entry, unsigned long exit, 1023 unsigned long guest_val_vmcs, unsigned long host_val_vmcs, 1024 u64 guest_val, u64 host_val) 1025 { 1026 vmcs_write64(guest_val_vmcs, guest_val); 1027 if (host_val_vmcs != HOST_IA32_EFER) 1028 vmcs_write64(host_val_vmcs, host_val); 1029 vm_entry_controls_setbit(vmx, entry); 1030 vm_exit_controls_setbit(vmx, exit); 1031 } 1032 1033 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, 1034 u64 guest_val, u64 host_val, bool entry_only) 1035 { 1036 int i, j = 0; 1037 struct msr_autoload *m = &vmx->msr_autoload; 1038 1039 switch (msr) { 1040 case MSR_EFER: 1041 if (cpu_has_load_ia32_efer()) { 1042 add_atomic_switch_msr_special(vmx, 1043 VM_ENTRY_LOAD_IA32_EFER, 1044 VM_EXIT_LOAD_IA32_EFER, 1045 GUEST_IA32_EFER, 1046 HOST_IA32_EFER, 1047 guest_val, host_val); 1048 return; 1049 } 1050 break; 1051 case MSR_CORE_PERF_GLOBAL_CTRL: 1052 if (cpu_has_load_perf_global_ctrl()) { 1053 add_atomic_switch_msr_special(vmx, 1054 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 1055 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, 1056 GUEST_IA32_PERF_GLOBAL_CTRL, 1057 HOST_IA32_PERF_GLOBAL_CTRL, 1058 guest_val, host_val); 1059 return; 1060 } 1061 break; 1062 case MSR_IA32_PEBS_ENABLE: 1063 /* PEBS needs a quiescent period after being disabled (to write 1064 * a record). Disabling PEBS through VMX MSR swapping doesn't 1065 * provide that period, so a CPU could write host's record into 1066 * guest's memory. 1067 */ 1068 wrmsrl(MSR_IA32_PEBS_ENABLE, 0); 1069 } 1070 1071 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 1072 if (!entry_only) 1073 j = vmx_find_loadstore_msr_slot(&m->host, msr); 1074 1075 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) || 1076 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) { 1077 printk_once(KERN_WARNING "Not enough msr switch entries. " 1078 "Can't add msr %x\n", msr); 1079 return; 1080 } 1081 if (i < 0) { 1082 i = m->guest.nr++; 1083 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 1084 } 1085 m->guest.val[i].index = msr; 1086 m->guest.val[i].value = guest_val; 1087 1088 if (entry_only) 1089 return; 1090 1091 if (j < 0) { 1092 j = m->host.nr++; 1093 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 1094 } 1095 m->host.val[j].index = msr; 1096 m->host.val[j].value = host_val; 1097 } 1098 1099 static bool update_transition_efer(struct vcpu_vmx *vmx) 1100 { 1101 u64 guest_efer = vmx->vcpu.arch.efer; 1102 u64 ignore_bits = 0; 1103 int i; 1104 1105 /* Shadow paging assumes NX to be available. */ 1106 if (!enable_ept) 1107 guest_efer |= EFER_NX; 1108 1109 /* 1110 * LMA and LME handled by hardware; SCE meaningless outside long mode. 1111 */ 1112 ignore_bits |= EFER_SCE; 1113 #ifdef CONFIG_X86_64 1114 ignore_bits |= EFER_LMA | EFER_LME; 1115 /* SCE is meaningful only in long mode on Intel */ 1116 if (guest_efer & EFER_LMA) 1117 ignore_bits &= ~(u64)EFER_SCE; 1118 #endif 1119 1120 /* 1121 * On EPT, we can't emulate NX, so we must switch EFER atomically. 1122 * On CPUs that support "load IA32_EFER", always switch EFER 1123 * atomically, since it's faster than switching it manually. 1124 */ 1125 if (cpu_has_load_ia32_efer() || 1126 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { 1127 if (!(guest_efer & EFER_LMA)) 1128 guest_efer &= ~EFER_LME; 1129 if (guest_efer != host_efer) 1130 add_atomic_switch_msr(vmx, MSR_EFER, 1131 guest_efer, host_efer, false); 1132 else 1133 clear_atomic_switch_msr(vmx, MSR_EFER); 1134 return false; 1135 } 1136 1137 i = kvm_find_user_return_msr(MSR_EFER); 1138 if (i < 0) 1139 return false; 1140 1141 clear_atomic_switch_msr(vmx, MSR_EFER); 1142 1143 guest_efer &= ~ignore_bits; 1144 guest_efer |= host_efer & ignore_bits; 1145 1146 vmx->guest_uret_msrs[i].data = guest_efer; 1147 vmx->guest_uret_msrs[i].mask = ~ignore_bits; 1148 1149 return true; 1150 } 1151 1152 #ifdef CONFIG_X86_32 1153 /* 1154 * On 32-bit kernels, VM exits still load the FS and GS bases from the 1155 * VMCS rather than the segment table. KVM uses this helper to figure 1156 * out the current bases to poke them into the VMCS before entry. 1157 */ 1158 static unsigned long segment_base(u16 selector) 1159 { 1160 struct desc_struct *table; 1161 unsigned long v; 1162 1163 if (!(selector & ~SEGMENT_RPL_MASK)) 1164 return 0; 1165 1166 table = get_current_gdt_ro(); 1167 1168 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { 1169 u16 ldt_selector = kvm_read_ldt(); 1170 1171 if (!(ldt_selector & ~SEGMENT_RPL_MASK)) 1172 return 0; 1173 1174 table = (struct desc_struct *)segment_base(ldt_selector); 1175 } 1176 v = get_desc_base(&table[selector >> 3]); 1177 return v; 1178 } 1179 #endif 1180 1181 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx) 1182 { 1183 return vmx_pt_mode_is_host_guest() && 1184 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 1185 } 1186 1187 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base) 1188 { 1189 /* The base must be 128-byte aligned and a legal physical address. */ 1190 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128); 1191 } 1192 1193 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) 1194 { 1195 u32 i; 1196 1197 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1198 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1199 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1200 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1201 for (i = 0; i < addr_range; i++) { 1202 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1203 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1204 } 1205 } 1206 1207 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) 1208 { 1209 u32 i; 1210 1211 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1212 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1213 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1214 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1215 for (i = 0; i < addr_range; i++) { 1216 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1217 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1218 } 1219 } 1220 1221 static void pt_guest_enter(struct vcpu_vmx *vmx) 1222 { 1223 if (vmx_pt_mode_is_system()) 1224 return; 1225 1226 /* 1227 * GUEST_IA32_RTIT_CTL is already set in the VMCS. 1228 * Save host state before VM entry. 1229 */ 1230 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1231 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1232 wrmsrl(MSR_IA32_RTIT_CTL, 0); 1233 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1234 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1235 } 1236 } 1237 1238 static void pt_guest_exit(struct vcpu_vmx *vmx) 1239 { 1240 if (vmx_pt_mode_is_system()) 1241 return; 1242 1243 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1244 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1245 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1246 } 1247 1248 /* 1249 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest, 1250 * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary. 1251 */ 1252 if (vmx->pt_desc.host.ctl) 1253 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1254 } 1255 1256 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, 1257 unsigned long fs_base, unsigned long gs_base) 1258 { 1259 if (unlikely(fs_sel != host->fs_sel)) { 1260 if (!(fs_sel & 7)) 1261 vmcs_write16(HOST_FS_SELECTOR, fs_sel); 1262 else 1263 vmcs_write16(HOST_FS_SELECTOR, 0); 1264 host->fs_sel = fs_sel; 1265 } 1266 if (unlikely(gs_sel != host->gs_sel)) { 1267 if (!(gs_sel & 7)) 1268 vmcs_write16(HOST_GS_SELECTOR, gs_sel); 1269 else 1270 vmcs_write16(HOST_GS_SELECTOR, 0); 1271 host->gs_sel = gs_sel; 1272 } 1273 if (unlikely(fs_base != host->fs_base)) { 1274 vmcs_writel(HOST_FS_BASE, fs_base); 1275 host->fs_base = fs_base; 1276 } 1277 if (unlikely(gs_base != host->gs_base)) { 1278 vmcs_writel(HOST_GS_BASE, gs_base); 1279 host->gs_base = gs_base; 1280 } 1281 } 1282 1283 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1284 { 1285 struct vcpu_vmx *vmx = to_vmx(vcpu); 1286 struct vmcs_host_state *host_state; 1287 #ifdef CONFIG_X86_64 1288 int cpu = raw_smp_processor_id(); 1289 #endif 1290 unsigned long fs_base, gs_base; 1291 u16 fs_sel, gs_sel; 1292 int i; 1293 1294 vmx->req_immediate_exit = false; 1295 1296 /* 1297 * Note that guest MSRs to be saved/restored can also be changed 1298 * when guest state is loaded. This happens when guest transitions 1299 * to/from long-mode by setting MSR_EFER.LMA. 1300 */ 1301 if (!vmx->guest_uret_msrs_loaded) { 1302 vmx->guest_uret_msrs_loaded = true; 1303 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 1304 if (!vmx->guest_uret_msrs[i].load_into_hardware) 1305 continue; 1306 1307 kvm_set_user_return_msr(i, 1308 vmx->guest_uret_msrs[i].data, 1309 vmx->guest_uret_msrs[i].mask); 1310 } 1311 } 1312 1313 if (vmx->nested.need_vmcs12_to_shadow_sync) 1314 nested_sync_vmcs12_to_shadow(vcpu); 1315 1316 if (vmx->guest_state_loaded) 1317 return; 1318 1319 host_state = &vmx->loaded_vmcs->host_state; 1320 1321 /* 1322 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not 1323 * allow segment selectors with cpl > 0 or ti == 1. 1324 */ 1325 host_state->ldt_sel = kvm_read_ldt(); 1326 1327 #ifdef CONFIG_X86_64 1328 savesegment(ds, host_state->ds_sel); 1329 savesegment(es, host_state->es_sel); 1330 1331 gs_base = cpu_kernelmode_gs_base(cpu); 1332 if (likely(is_64bit_mm(current->mm))) { 1333 current_save_fsgs(); 1334 fs_sel = current->thread.fsindex; 1335 gs_sel = current->thread.gsindex; 1336 fs_base = current->thread.fsbase; 1337 vmx->msr_host_kernel_gs_base = current->thread.gsbase; 1338 } else { 1339 savesegment(fs, fs_sel); 1340 savesegment(gs, gs_sel); 1341 fs_base = read_msr(MSR_FS_BASE); 1342 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); 1343 } 1344 1345 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1346 #else 1347 savesegment(fs, fs_sel); 1348 savesegment(gs, gs_sel); 1349 fs_base = segment_base(fs_sel); 1350 gs_base = segment_base(gs_sel); 1351 #endif 1352 1353 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base); 1354 vmx->guest_state_loaded = true; 1355 } 1356 1357 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) 1358 { 1359 struct vmcs_host_state *host_state; 1360 1361 if (!vmx->guest_state_loaded) 1362 return; 1363 1364 host_state = &vmx->loaded_vmcs->host_state; 1365 1366 ++vmx->vcpu.stat.host_state_reload; 1367 1368 #ifdef CONFIG_X86_64 1369 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1370 #endif 1371 if (host_state->ldt_sel || (host_state->gs_sel & 7)) { 1372 kvm_load_ldt(host_state->ldt_sel); 1373 #ifdef CONFIG_X86_64 1374 load_gs_index(host_state->gs_sel); 1375 #else 1376 loadsegment(gs, host_state->gs_sel); 1377 #endif 1378 } 1379 if (host_state->fs_sel & 7) 1380 loadsegment(fs, host_state->fs_sel); 1381 #ifdef CONFIG_X86_64 1382 if (unlikely(host_state->ds_sel | host_state->es_sel)) { 1383 loadsegment(ds, host_state->ds_sel); 1384 loadsegment(es, host_state->es_sel); 1385 } 1386 #endif 1387 invalidate_tss_limit(); 1388 #ifdef CONFIG_X86_64 1389 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); 1390 #endif 1391 load_fixmap_gdt(raw_smp_processor_id()); 1392 vmx->guest_state_loaded = false; 1393 vmx->guest_uret_msrs_loaded = false; 1394 } 1395 1396 #ifdef CONFIG_X86_64 1397 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) 1398 { 1399 preempt_disable(); 1400 if (vmx->guest_state_loaded) 1401 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1402 preempt_enable(); 1403 return vmx->msr_guest_kernel_gs_base; 1404 } 1405 1406 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) 1407 { 1408 preempt_disable(); 1409 if (vmx->guest_state_loaded) 1410 wrmsrl(MSR_KERNEL_GS_BASE, data); 1411 preempt_enable(); 1412 vmx->msr_guest_kernel_gs_base = data; 1413 } 1414 #endif 1415 1416 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu, 1417 struct loaded_vmcs *buddy) 1418 { 1419 struct vcpu_vmx *vmx = to_vmx(vcpu); 1420 bool already_loaded = vmx->loaded_vmcs->cpu == cpu; 1421 struct vmcs *prev; 1422 1423 if (!already_loaded) { 1424 loaded_vmcs_clear(vmx->loaded_vmcs); 1425 local_irq_disable(); 1426 1427 /* 1428 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to 1429 * this cpu's percpu list, otherwise it may not yet be deleted 1430 * from its previous cpu's percpu list. Pairs with the 1431 * smb_wmb() in __loaded_vmcs_clear(). 1432 */ 1433 smp_rmb(); 1434 1435 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, 1436 &per_cpu(loaded_vmcss_on_cpu, cpu)); 1437 local_irq_enable(); 1438 } 1439 1440 prev = per_cpu(current_vmcs, cpu); 1441 if (prev != vmx->loaded_vmcs->vmcs) { 1442 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; 1443 vmcs_load(vmx->loaded_vmcs->vmcs); 1444 1445 /* 1446 * No indirect branch prediction barrier needed when switching 1447 * the active VMCS within a vCPU, unless IBRS is advertised to 1448 * the vCPU. To minimize the number of IBPBs executed, KVM 1449 * performs IBPB on nested VM-Exit (a single nested transition 1450 * may switch the active VMCS multiple times). 1451 */ 1452 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev)) 1453 indirect_branch_prediction_barrier(); 1454 } 1455 1456 if (!already_loaded) { 1457 void *gdt = get_current_gdt_ro(); 1458 1459 /* 1460 * Flush all EPTP/VPID contexts, the new pCPU may have stale 1461 * TLB entries from its previous association with the vCPU. 1462 */ 1463 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 1464 1465 /* 1466 * Linux uses per-cpu TSS and GDT, so set these when switching 1467 * processors. See 22.2.4. 1468 */ 1469 vmcs_writel(HOST_TR_BASE, 1470 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); 1471 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ 1472 1473 if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) { 1474 /* 22.2.3 */ 1475 vmcs_writel(HOST_IA32_SYSENTER_ESP, 1476 (unsigned long)(cpu_entry_stack(cpu) + 1)); 1477 } 1478 1479 vmx->loaded_vmcs->cpu = cpu; 1480 } 1481 } 1482 1483 /* 1484 * Switches to specified vcpu, until a matching vcpu_put(), but assumes 1485 * vcpu mutex is already taken. 1486 */ 1487 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1488 { 1489 struct vcpu_vmx *vmx = to_vmx(vcpu); 1490 1491 vmx_vcpu_load_vmcs(vcpu, cpu, NULL); 1492 1493 vmx_vcpu_pi_load(vcpu, cpu); 1494 1495 vmx->host_debugctlmsr = get_debugctlmsr(); 1496 } 1497 1498 static void vmx_vcpu_put(struct kvm_vcpu *vcpu) 1499 { 1500 vmx_vcpu_pi_put(vcpu); 1501 1502 vmx_prepare_switch_to_host(to_vmx(vcpu)); 1503 } 1504 1505 bool vmx_emulation_required(struct kvm_vcpu *vcpu) 1506 { 1507 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu); 1508 } 1509 1510 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) 1511 { 1512 struct vcpu_vmx *vmx = to_vmx(vcpu); 1513 unsigned long rflags, save_rflags; 1514 1515 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) { 1516 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1517 rflags = vmcs_readl(GUEST_RFLAGS); 1518 if (vmx->rmode.vm86_active) { 1519 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 1520 save_rflags = vmx->rmode.save_rflags; 1521 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 1522 } 1523 vmx->rflags = rflags; 1524 } 1525 return vmx->rflags; 1526 } 1527 1528 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1529 { 1530 struct vcpu_vmx *vmx = to_vmx(vcpu); 1531 unsigned long old_rflags; 1532 1533 /* 1534 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU 1535 * is an unrestricted guest in order to mark L2 as needing emulation 1536 * if L1 runs L2 as a restricted guest. 1537 */ 1538 if (is_unrestricted_guest(vcpu)) { 1539 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1540 vmx->rflags = rflags; 1541 vmcs_writel(GUEST_RFLAGS, rflags); 1542 return; 1543 } 1544 1545 old_rflags = vmx_get_rflags(vcpu); 1546 vmx->rflags = rflags; 1547 if (vmx->rmode.vm86_active) { 1548 vmx->rmode.save_rflags = rflags; 1549 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 1550 } 1551 vmcs_writel(GUEST_RFLAGS, rflags); 1552 1553 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM) 1554 vmx->emulation_required = vmx_emulation_required(vcpu); 1555 } 1556 1557 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu) 1558 { 1559 return vmx_get_rflags(vcpu) & X86_EFLAGS_IF; 1560 } 1561 1562 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) 1563 { 1564 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1565 int ret = 0; 1566 1567 if (interruptibility & GUEST_INTR_STATE_STI) 1568 ret |= KVM_X86_SHADOW_INT_STI; 1569 if (interruptibility & GUEST_INTR_STATE_MOV_SS) 1570 ret |= KVM_X86_SHADOW_INT_MOV_SS; 1571 1572 return ret; 1573 } 1574 1575 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 1576 { 1577 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1578 u32 interruptibility = interruptibility_old; 1579 1580 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); 1581 1582 if (mask & KVM_X86_SHADOW_INT_MOV_SS) 1583 interruptibility |= GUEST_INTR_STATE_MOV_SS; 1584 else if (mask & KVM_X86_SHADOW_INT_STI) 1585 interruptibility |= GUEST_INTR_STATE_STI; 1586 1587 if ((interruptibility != interruptibility_old)) 1588 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); 1589 } 1590 1591 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) 1592 { 1593 struct vcpu_vmx *vmx = to_vmx(vcpu); 1594 unsigned long value; 1595 1596 /* 1597 * Any MSR write that attempts to change bits marked reserved will 1598 * case a #GP fault. 1599 */ 1600 if (data & vmx->pt_desc.ctl_bitmask) 1601 return 1; 1602 1603 /* 1604 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will 1605 * result in a #GP unless the same write also clears TraceEn. 1606 */ 1607 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && 1608 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN)) 1609 return 1; 1610 1611 /* 1612 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit 1613 * and FabricEn would cause #GP, if 1614 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 1615 */ 1616 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && 1617 !(data & RTIT_CTL_FABRIC_EN) && 1618 !intel_pt_validate_cap(vmx->pt_desc.caps, 1619 PT_CAP_single_range_output)) 1620 return 1; 1621 1622 /* 1623 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that 1624 * utilize encodings marked reserved will cause a #GP fault. 1625 */ 1626 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); 1627 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && 1628 !test_bit((data & RTIT_CTL_MTC_RANGE) >> 1629 RTIT_CTL_MTC_RANGE_OFFSET, &value)) 1630 return 1; 1631 value = intel_pt_validate_cap(vmx->pt_desc.caps, 1632 PT_CAP_cycle_thresholds); 1633 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1634 !test_bit((data & RTIT_CTL_CYC_THRESH) >> 1635 RTIT_CTL_CYC_THRESH_OFFSET, &value)) 1636 return 1; 1637 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); 1638 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1639 !test_bit((data & RTIT_CTL_PSB_FREQ) >> 1640 RTIT_CTL_PSB_FREQ_OFFSET, &value)) 1641 return 1; 1642 1643 /* 1644 * If ADDRx_CFG is reserved or the encodings is >2 will 1645 * cause a #GP fault. 1646 */ 1647 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; 1648 if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2)) 1649 return 1; 1650 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; 1651 if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2)) 1652 return 1; 1653 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; 1654 if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2)) 1655 return 1; 1656 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; 1657 if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2)) 1658 return 1; 1659 1660 return 0; 1661 } 1662 1663 static int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 1664 void *insn, int insn_len) 1665 { 1666 /* 1667 * Emulation of instructions in SGX enclaves is impossible as RIP does 1668 * not point at the failing instruction, and even if it did, the code 1669 * stream is inaccessible. Inject #UD instead of exiting to userspace 1670 * so that guest userspace can't DoS the guest simply by triggering 1671 * emulation (enclaves are CPL3 only). 1672 */ 1673 if (to_vmx(vcpu)->exit_reason.enclave_mode) { 1674 kvm_queue_exception(vcpu, UD_VECTOR); 1675 return X86EMUL_PROPAGATE_FAULT; 1676 } 1677 return X86EMUL_CONTINUE; 1678 } 1679 1680 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 1681 { 1682 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason; 1683 unsigned long rip, orig_rip; 1684 u32 instr_len; 1685 1686 /* 1687 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on 1688 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be 1689 * set when EPT misconfig occurs. In practice, real hardware updates 1690 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors 1691 * (namely Hyper-V) don't set it due to it being undefined behavior, 1692 * i.e. we end up advancing IP with some random value. 1693 */ 1694 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) || 1695 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) { 1696 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 1697 1698 /* 1699 * Emulating an enclave's instructions isn't supported as KVM 1700 * cannot access the enclave's memory or its true RIP, e.g. the 1701 * vmcs.GUEST_RIP points at the exit point of the enclave, not 1702 * the RIP that actually triggered the VM-Exit. But, because 1703 * most instructions that cause VM-Exit will #UD in an enclave, 1704 * most instruction-based VM-Exits simply do not occur. 1705 * 1706 * There are a few exceptions, notably the debug instructions 1707 * INT1ICEBRK and INT3, as they are allowed in debug enclaves 1708 * and generate #DB/#BP as expected, which KVM might intercept. 1709 * But again, the CPU does the dirty work and saves an instr 1710 * length of zero so VMMs don't shoot themselves in the foot. 1711 * WARN if KVM tries to skip a non-zero length instruction on 1712 * a VM-Exit from an enclave. 1713 */ 1714 if (!instr_len) 1715 goto rip_updated; 1716 1717 WARN_ONCE(exit_reason.enclave_mode, 1718 "skipping instruction after SGX enclave VM-Exit"); 1719 1720 orig_rip = kvm_rip_read(vcpu); 1721 rip = orig_rip + instr_len; 1722 #ifdef CONFIG_X86_64 1723 /* 1724 * We need to mask out the high 32 bits of RIP if not in 64-bit 1725 * mode, but just finding out that we are in 64-bit mode is 1726 * quite expensive. Only do it if there was a carry. 1727 */ 1728 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu)) 1729 rip = (u32)rip; 1730 #endif 1731 kvm_rip_write(vcpu, rip); 1732 } else { 1733 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 1734 return 0; 1735 } 1736 1737 rip_updated: 1738 /* skipping an emulated instruction also counts */ 1739 vmx_set_interrupt_shadow(vcpu, 0); 1740 1741 return 1; 1742 } 1743 1744 /* 1745 * Recognizes a pending MTF VM-exit and records the nested state for later 1746 * delivery. 1747 */ 1748 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu) 1749 { 1750 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1751 struct vcpu_vmx *vmx = to_vmx(vcpu); 1752 1753 if (!is_guest_mode(vcpu)) 1754 return; 1755 1756 /* 1757 * Per the SDM, MTF takes priority over debug-trap exceptions besides 1758 * TSS T-bit traps and ICEBP (INT1). KVM doesn't emulate T-bit traps 1759 * or ICEBP (in the emulator proper), and skipping of ICEBP after an 1760 * intercepted #DB deliberately avoids single-step #DB and MTF updates 1761 * as ICEBP is higher priority than both. As instruction emulation is 1762 * completed at this point (i.e. KVM is at the instruction boundary), 1763 * any #DB exception pending delivery must be a debug-trap of lower 1764 * priority than MTF. Record the pending MTF state to be delivered in 1765 * vmx_check_nested_events(). 1766 */ 1767 if (nested_cpu_has_mtf(vmcs12) && 1768 (!vcpu->arch.exception.pending || 1769 vcpu->arch.exception.vector == DB_VECTOR) && 1770 (!vcpu->arch.exception_vmexit.pending || 1771 vcpu->arch.exception_vmexit.vector == DB_VECTOR)) { 1772 vmx->nested.mtf_pending = true; 1773 kvm_make_request(KVM_REQ_EVENT, vcpu); 1774 } else { 1775 vmx->nested.mtf_pending = false; 1776 } 1777 } 1778 1779 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu) 1780 { 1781 vmx_update_emulated_instruction(vcpu); 1782 return skip_emulated_instruction(vcpu); 1783 } 1784 1785 static void vmx_clear_hlt(struct kvm_vcpu *vcpu) 1786 { 1787 /* 1788 * Ensure that we clear the HLT state in the VMCS. We don't need to 1789 * explicitly skip the instruction because if the HLT state is set, 1790 * then the instruction is already executing and RIP has already been 1791 * advanced. 1792 */ 1793 if (kvm_hlt_in_guest(vcpu->kvm) && 1794 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) 1795 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 1796 } 1797 1798 static void vmx_inject_exception(struct kvm_vcpu *vcpu) 1799 { 1800 struct kvm_queued_exception *ex = &vcpu->arch.exception; 1801 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK; 1802 struct vcpu_vmx *vmx = to_vmx(vcpu); 1803 1804 kvm_deliver_exception_payload(vcpu, ex); 1805 1806 if (ex->has_error_code) { 1807 /* 1808 * Despite the error code being architecturally defined as 32 1809 * bits, and the VMCS field being 32 bits, Intel CPUs and thus 1810 * VMX don't actually supporting setting bits 31:16. Hardware 1811 * will (should) never provide a bogus error code, but AMD CPUs 1812 * do generate error codes with bits 31:16 set, and so KVM's 1813 * ABI lets userspace shove in arbitrary 32-bit values. Drop 1814 * the upper bits to avoid VM-Fail, losing information that 1815 * doesn't really exist is preferable to killing the VM. 1816 */ 1817 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code); 1818 intr_info |= INTR_INFO_DELIVER_CODE_MASK; 1819 } 1820 1821 if (vmx->rmode.vm86_active) { 1822 int inc_eip = 0; 1823 if (kvm_exception_is_soft(ex->vector)) 1824 inc_eip = vcpu->arch.event_exit_inst_len; 1825 kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip); 1826 return; 1827 } 1828 1829 WARN_ON_ONCE(vmx->emulation_required); 1830 1831 if (kvm_exception_is_soft(ex->vector)) { 1832 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1833 vmx->vcpu.arch.event_exit_inst_len); 1834 intr_info |= INTR_TYPE_SOFT_EXCEPTION; 1835 } else 1836 intr_info |= INTR_TYPE_HARD_EXCEPTION; 1837 1838 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); 1839 1840 vmx_clear_hlt(vcpu); 1841 } 1842 1843 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr, 1844 bool load_into_hardware) 1845 { 1846 struct vmx_uret_msr *uret_msr; 1847 1848 uret_msr = vmx_find_uret_msr(vmx, msr); 1849 if (!uret_msr) 1850 return; 1851 1852 uret_msr->load_into_hardware = load_into_hardware; 1853 } 1854 1855 /* 1856 * Configuring user return MSRs to automatically save, load, and restore MSRs 1857 * that need to be shoved into hardware when running the guest. Note, omitting 1858 * an MSR here does _NOT_ mean it's not emulated, only that it will not be 1859 * loaded into hardware when running the guest. 1860 */ 1861 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx) 1862 { 1863 #ifdef CONFIG_X86_64 1864 bool load_syscall_msrs; 1865 1866 /* 1867 * The SYSCALL MSRs are only needed on long mode guests, and only 1868 * when EFER.SCE is set. 1869 */ 1870 load_syscall_msrs = is_long_mode(&vmx->vcpu) && 1871 (vmx->vcpu.arch.efer & EFER_SCE); 1872 1873 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs); 1874 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs); 1875 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs); 1876 #endif 1877 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx)); 1878 1879 vmx_setup_uret_msr(vmx, MSR_TSC_AUX, 1880 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) || 1881 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID)); 1882 1883 /* 1884 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new 1885 * kernel and old userspace. If those guests run on a tsx=off host, do 1886 * allow guests to use TSX_CTRL, but don't change the value in hardware 1887 * so that TSX remains always disabled. 1888 */ 1889 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM)); 1890 1891 /* 1892 * The set of MSRs to load may have changed, reload MSRs before the 1893 * next VM-Enter. 1894 */ 1895 vmx->guest_uret_msrs_loaded = false; 1896 } 1897 1898 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1899 { 1900 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1901 1902 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) 1903 return vmcs12->tsc_offset; 1904 1905 return 0; 1906 } 1907 1908 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1909 { 1910 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1911 1912 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) && 1913 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING)) 1914 return vmcs12->tsc_multiplier; 1915 1916 return kvm_caps.default_tsc_scaling_ratio; 1917 } 1918 1919 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu) 1920 { 1921 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset); 1922 } 1923 1924 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu) 1925 { 1926 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio); 1927 } 1928 1929 /* 1930 * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of 1931 * guest CPUID. Note, KVM allows userspace to set "VMX in SMX" to maintain 1932 * backwards compatibility even though KVM doesn't support emulating SMX. And 1933 * because userspace set "VMX in SMX", the guest must also be allowed to set it, 1934 * e.g. if the MSR is left unlocked and the guest does a RMW operation. 1935 */ 1936 #define KVM_SUPPORTED_FEATURE_CONTROL (FEAT_CTL_LOCKED | \ 1937 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | \ 1938 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \ 1939 FEAT_CTL_SGX_LC_ENABLED | \ 1940 FEAT_CTL_SGX_ENABLED | \ 1941 FEAT_CTL_LMCE_ENABLED) 1942 1943 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx, 1944 struct msr_data *msr) 1945 { 1946 uint64_t valid_bits; 1947 1948 /* 1949 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are 1950 * exposed to the guest. 1951 */ 1952 WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits & 1953 ~KVM_SUPPORTED_FEATURE_CONTROL); 1954 1955 if (!msr->host_initiated && 1956 (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED)) 1957 return false; 1958 1959 if (msr->host_initiated) 1960 valid_bits = KVM_SUPPORTED_FEATURE_CONTROL; 1961 else 1962 valid_bits = vmx->msr_ia32_feature_control_valid_bits; 1963 1964 return !(msr->data & ~valid_bits); 1965 } 1966 1967 static int vmx_get_msr_feature(struct kvm_msr_entry *msr) 1968 { 1969 switch (msr->index) { 1970 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 1971 if (!nested) 1972 return 1; 1973 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); 1974 default: 1975 return KVM_MSR_RET_INVALID; 1976 } 1977 } 1978 1979 /* 1980 * Reads an msr value (of 'msr_info->index') into 'msr_info->data'. 1981 * Returns 0 on success, non-0 otherwise. 1982 * Assumes vcpu_load() was already called. 1983 */ 1984 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1985 { 1986 struct vcpu_vmx *vmx = to_vmx(vcpu); 1987 struct vmx_uret_msr *msr; 1988 u32 index; 1989 1990 switch (msr_info->index) { 1991 #ifdef CONFIG_X86_64 1992 case MSR_FS_BASE: 1993 msr_info->data = vmcs_readl(GUEST_FS_BASE); 1994 break; 1995 case MSR_GS_BASE: 1996 msr_info->data = vmcs_readl(GUEST_GS_BASE); 1997 break; 1998 case MSR_KERNEL_GS_BASE: 1999 msr_info->data = vmx_read_guest_kernel_gs_base(vmx); 2000 break; 2001 #endif 2002 case MSR_EFER: 2003 return kvm_get_msr_common(vcpu, msr_info); 2004 case MSR_IA32_TSX_CTRL: 2005 if (!msr_info->host_initiated && 2006 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2007 return 1; 2008 goto find_uret_msr; 2009 case MSR_IA32_UMWAIT_CONTROL: 2010 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2011 return 1; 2012 2013 msr_info->data = vmx->msr_ia32_umwait_control; 2014 break; 2015 case MSR_IA32_SPEC_CTRL: 2016 if (!msr_info->host_initiated && 2017 !guest_has_spec_ctrl_msr(vcpu)) 2018 return 1; 2019 2020 msr_info->data = to_vmx(vcpu)->spec_ctrl; 2021 break; 2022 case MSR_IA32_SYSENTER_CS: 2023 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); 2024 break; 2025 case MSR_IA32_SYSENTER_EIP: 2026 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); 2027 break; 2028 case MSR_IA32_SYSENTER_ESP: 2029 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); 2030 break; 2031 case MSR_IA32_BNDCFGS: 2032 if (!kvm_mpx_supported() || 2033 (!msr_info->host_initiated && 2034 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 2035 return 1; 2036 msr_info->data = vmcs_read64(GUEST_BNDCFGS); 2037 break; 2038 case MSR_IA32_MCG_EXT_CTL: 2039 if (!msr_info->host_initiated && 2040 !(vmx->msr_ia32_feature_control & 2041 FEAT_CTL_LMCE_ENABLED)) 2042 return 1; 2043 msr_info->data = vcpu->arch.mcg_ext_ctl; 2044 break; 2045 case MSR_IA32_FEAT_CTL: 2046 msr_info->data = vmx->msr_ia32_feature_control; 2047 break; 2048 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2049 if (!msr_info->host_initiated && 2050 !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 2051 return 1; 2052 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash 2053 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0]; 2054 break; 2055 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 2056 if (!guest_can_use(vcpu, X86_FEATURE_VMX)) 2057 return 1; 2058 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, 2059 &msr_info->data)) 2060 return 1; 2061 #ifdef CONFIG_KVM_HYPERV 2062 /* 2063 * Enlightened VMCS v1 doesn't have certain VMCS fields but 2064 * instead of just ignoring the features, different Hyper-V 2065 * versions are either trying to use them and fail or do some 2066 * sanity checking and refuse to boot. Filter all unsupported 2067 * features out. 2068 */ 2069 if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu)) 2070 nested_evmcs_filter_control_msr(vcpu, msr_info->index, 2071 &msr_info->data); 2072 #endif 2073 break; 2074 case MSR_IA32_RTIT_CTL: 2075 if (!vmx_pt_mode_is_host_guest()) 2076 return 1; 2077 msr_info->data = vmx->pt_desc.guest.ctl; 2078 break; 2079 case MSR_IA32_RTIT_STATUS: 2080 if (!vmx_pt_mode_is_host_guest()) 2081 return 1; 2082 msr_info->data = vmx->pt_desc.guest.status; 2083 break; 2084 case MSR_IA32_RTIT_CR3_MATCH: 2085 if (!vmx_pt_mode_is_host_guest() || 2086 !intel_pt_validate_cap(vmx->pt_desc.caps, 2087 PT_CAP_cr3_filtering)) 2088 return 1; 2089 msr_info->data = vmx->pt_desc.guest.cr3_match; 2090 break; 2091 case MSR_IA32_RTIT_OUTPUT_BASE: 2092 if (!vmx_pt_mode_is_host_guest() || 2093 (!intel_pt_validate_cap(vmx->pt_desc.caps, 2094 PT_CAP_topa_output) && 2095 !intel_pt_validate_cap(vmx->pt_desc.caps, 2096 PT_CAP_single_range_output))) 2097 return 1; 2098 msr_info->data = vmx->pt_desc.guest.output_base; 2099 break; 2100 case MSR_IA32_RTIT_OUTPUT_MASK: 2101 if (!vmx_pt_mode_is_host_guest() || 2102 (!intel_pt_validate_cap(vmx->pt_desc.caps, 2103 PT_CAP_topa_output) && 2104 !intel_pt_validate_cap(vmx->pt_desc.caps, 2105 PT_CAP_single_range_output))) 2106 return 1; 2107 msr_info->data = vmx->pt_desc.guest.output_mask; 2108 break; 2109 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2110 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2111 if (!vmx_pt_mode_is_host_guest() || 2112 (index >= 2 * vmx->pt_desc.num_address_ranges)) 2113 return 1; 2114 if (index % 2) 2115 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; 2116 else 2117 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; 2118 break; 2119 case MSR_IA32_DEBUGCTLMSR: 2120 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL); 2121 break; 2122 default: 2123 find_uret_msr: 2124 msr = vmx_find_uret_msr(vmx, msr_info->index); 2125 if (msr) { 2126 msr_info->data = msr->data; 2127 break; 2128 } 2129 return kvm_get_msr_common(vcpu, msr_info); 2130 } 2131 2132 return 0; 2133 } 2134 2135 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu, 2136 u64 data) 2137 { 2138 #ifdef CONFIG_X86_64 2139 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 2140 return (u32)data; 2141 #endif 2142 return (unsigned long)data; 2143 } 2144 2145 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated) 2146 { 2147 u64 debugctl = 0; 2148 2149 if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) && 2150 (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))) 2151 debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT; 2152 2153 if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) && 2154 (host_initiated || intel_pmu_lbr_is_enabled(vcpu))) 2155 debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI; 2156 2157 return debugctl; 2158 } 2159 2160 /* 2161 * Writes msr value into the appropriate "register". 2162 * Returns 0 on success, non-0 otherwise. 2163 * Assumes vcpu_load() was already called. 2164 */ 2165 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2166 { 2167 struct vcpu_vmx *vmx = to_vmx(vcpu); 2168 struct vmx_uret_msr *msr; 2169 int ret = 0; 2170 u32 msr_index = msr_info->index; 2171 u64 data = msr_info->data; 2172 u32 index; 2173 2174 switch (msr_index) { 2175 case MSR_EFER: 2176 ret = kvm_set_msr_common(vcpu, msr_info); 2177 break; 2178 #ifdef CONFIG_X86_64 2179 case MSR_FS_BASE: 2180 vmx_segment_cache_clear(vmx); 2181 vmcs_writel(GUEST_FS_BASE, data); 2182 break; 2183 case MSR_GS_BASE: 2184 vmx_segment_cache_clear(vmx); 2185 vmcs_writel(GUEST_GS_BASE, data); 2186 break; 2187 case MSR_KERNEL_GS_BASE: 2188 vmx_write_guest_kernel_gs_base(vmx, data); 2189 break; 2190 case MSR_IA32_XFD: 2191 ret = kvm_set_msr_common(vcpu, msr_info); 2192 /* 2193 * Always intercepting WRMSR could incur non-negligible 2194 * overhead given xfd might be changed frequently in 2195 * guest context switch. Disable write interception 2196 * upon the first write with a non-zero value (indicating 2197 * potential usage on dynamic xfeatures). Also update 2198 * exception bitmap to trap #NM for proper virtualization 2199 * of guest xfd_err. 2200 */ 2201 if (!ret && data) { 2202 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD, 2203 MSR_TYPE_RW); 2204 vcpu->arch.xfd_no_write_intercept = true; 2205 vmx_update_exception_bitmap(vcpu); 2206 } 2207 break; 2208 #endif 2209 case MSR_IA32_SYSENTER_CS: 2210 if (is_guest_mode(vcpu)) 2211 get_vmcs12(vcpu)->guest_sysenter_cs = data; 2212 vmcs_write32(GUEST_SYSENTER_CS, data); 2213 break; 2214 case MSR_IA32_SYSENTER_EIP: 2215 if (is_guest_mode(vcpu)) { 2216 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2217 get_vmcs12(vcpu)->guest_sysenter_eip = data; 2218 } 2219 vmcs_writel(GUEST_SYSENTER_EIP, data); 2220 break; 2221 case MSR_IA32_SYSENTER_ESP: 2222 if (is_guest_mode(vcpu)) { 2223 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2224 get_vmcs12(vcpu)->guest_sysenter_esp = data; 2225 } 2226 vmcs_writel(GUEST_SYSENTER_ESP, data); 2227 break; 2228 case MSR_IA32_DEBUGCTLMSR: { 2229 u64 invalid; 2230 2231 invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated); 2232 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) { 2233 kvm_pr_unimpl_wrmsr(vcpu, msr_index, data); 2234 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2235 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2236 } 2237 2238 if (invalid) 2239 return 1; 2240 2241 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls & 2242 VM_EXIT_SAVE_DEBUG_CONTROLS) 2243 get_vmcs12(vcpu)->guest_ia32_debugctl = data; 2244 2245 vmcs_write64(GUEST_IA32_DEBUGCTL, data); 2246 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event && 2247 (data & DEBUGCTLMSR_LBR)) 2248 intel_pmu_create_guest_lbr_event(vcpu); 2249 return 0; 2250 } 2251 case MSR_IA32_BNDCFGS: 2252 if (!kvm_mpx_supported() || 2253 (!msr_info->host_initiated && 2254 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 2255 return 1; 2256 if (is_noncanonical_address(data & PAGE_MASK, vcpu) || 2257 (data & MSR_IA32_BNDCFGS_RSVD)) 2258 return 1; 2259 2260 if (is_guest_mode(vcpu) && 2261 ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) || 2262 (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS))) 2263 get_vmcs12(vcpu)->guest_bndcfgs = data; 2264 2265 vmcs_write64(GUEST_BNDCFGS, data); 2266 break; 2267 case MSR_IA32_UMWAIT_CONTROL: 2268 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2269 return 1; 2270 2271 /* The reserved bit 1 and non-32 bit [63:32] should be zero */ 2272 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32))) 2273 return 1; 2274 2275 vmx->msr_ia32_umwait_control = data; 2276 break; 2277 case MSR_IA32_SPEC_CTRL: 2278 if (!msr_info->host_initiated && 2279 !guest_has_spec_ctrl_msr(vcpu)) 2280 return 1; 2281 2282 if (kvm_spec_ctrl_test_value(data)) 2283 return 1; 2284 2285 vmx->spec_ctrl = data; 2286 if (!data) 2287 break; 2288 2289 /* 2290 * For non-nested: 2291 * When it's written (to non-zero) for the first time, pass 2292 * it through. 2293 * 2294 * For nested: 2295 * The handling of the MSR bitmap for L2 guests is done in 2296 * nested_vmx_prepare_msr_bitmap. We should not touch the 2297 * vmcs02.msr_bitmap here since it gets completely overwritten 2298 * in the merging. We update the vmcs01 here for L1 as well 2299 * since it will end up touching the MSR anyway now. 2300 */ 2301 vmx_disable_intercept_for_msr(vcpu, 2302 MSR_IA32_SPEC_CTRL, 2303 MSR_TYPE_RW); 2304 break; 2305 case MSR_IA32_TSX_CTRL: 2306 if (!msr_info->host_initiated && 2307 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2308 return 1; 2309 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR)) 2310 return 1; 2311 goto find_uret_msr; 2312 case MSR_IA32_CR_PAT: 2313 ret = kvm_set_msr_common(vcpu, msr_info); 2314 if (ret) 2315 break; 2316 2317 if (is_guest_mode(vcpu) && 2318 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) 2319 get_vmcs12(vcpu)->guest_ia32_pat = data; 2320 2321 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 2322 vmcs_write64(GUEST_IA32_PAT, data); 2323 break; 2324 case MSR_IA32_MCG_EXT_CTL: 2325 if ((!msr_info->host_initiated && 2326 !(to_vmx(vcpu)->msr_ia32_feature_control & 2327 FEAT_CTL_LMCE_ENABLED)) || 2328 (data & ~MCG_EXT_CTL_LMCE_EN)) 2329 return 1; 2330 vcpu->arch.mcg_ext_ctl = data; 2331 break; 2332 case MSR_IA32_FEAT_CTL: 2333 if (!is_vmx_feature_control_msr_valid(vmx, msr_info)) 2334 return 1; 2335 2336 vmx->msr_ia32_feature_control = data; 2337 if (msr_info->host_initiated && data == 0) 2338 vmx_leave_nested(vcpu); 2339 2340 /* SGX may be enabled/disabled by guest's firmware */ 2341 vmx_write_encls_bitmap(vcpu, NULL); 2342 break; 2343 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2344 /* 2345 * On real hardware, the LE hash MSRs are writable before 2346 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX), 2347 * at which point SGX related bits in IA32_FEATURE_CONTROL 2348 * become writable. 2349 * 2350 * KVM does not emulate SGX activation for simplicity, so 2351 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL 2352 * is unlocked. This is technically not architectural 2353 * behavior, but it's close enough. 2354 */ 2355 if (!msr_info->host_initiated && 2356 (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) || 2357 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) && 2358 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED)))) 2359 return 1; 2360 vmx->msr_ia32_sgxlepubkeyhash 2361 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data; 2362 break; 2363 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 2364 if (!msr_info->host_initiated) 2365 return 1; /* they are read-only */ 2366 if (!guest_can_use(vcpu, X86_FEATURE_VMX)) 2367 return 1; 2368 return vmx_set_vmx_msr(vcpu, msr_index, data); 2369 case MSR_IA32_RTIT_CTL: 2370 if (!vmx_pt_mode_is_host_guest() || 2371 vmx_rtit_ctl_check(vcpu, data) || 2372 vmx->nested.vmxon) 2373 return 1; 2374 vmcs_write64(GUEST_IA32_RTIT_CTL, data); 2375 vmx->pt_desc.guest.ctl = data; 2376 pt_update_intercept_for_msr(vcpu); 2377 break; 2378 case MSR_IA32_RTIT_STATUS: 2379 if (!pt_can_write_msr(vmx)) 2380 return 1; 2381 if (data & MSR_IA32_RTIT_STATUS_MASK) 2382 return 1; 2383 vmx->pt_desc.guest.status = data; 2384 break; 2385 case MSR_IA32_RTIT_CR3_MATCH: 2386 if (!pt_can_write_msr(vmx)) 2387 return 1; 2388 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2389 PT_CAP_cr3_filtering)) 2390 return 1; 2391 vmx->pt_desc.guest.cr3_match = data; 2392 break; 2393 case MSR_IA32_RTIT_OUTPUT_BASE: 2394 if (!pt_can_write_msr(vmx)) 2395 return 1; 2396 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2397 PT_CAP_topa_output) && 2398 !intel_pt_validate_cap(vmx->pt_desc.caps, 2399 PT_CAP_single_range_output)) 2400 return 1; 2401 if (!pt_output_base_valid(vcpu, data)) 2402 return 1; 2403 vmx->pt_desc.guest.output_base = data; 2404 break; 2405 case MSR_IA32_RTIT_OUTPUT_MASK: 2406 if (!pt_can_write_msr(vmx)) 2407 return 1; 2408 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2409 PT_CAP_topa_output) && 2410 !intel_pt_validate_cap(vmx->pt_desc.caps, 2411 PT_CAP_single_range_output)) 2412 return 1; 2413 vmx->pt_desc.guest.output_mask = data; 2414 break; 2415 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2416 if (!pt_can_write_msr(vmx)) 2417 return 1; 2418 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2419 if (index >= 2 * vmx->pt_desc.num_address_ranges) 2420 return 1; 2421 if (is_noncanonical_address(data, vcpu)) 2422 return 1; 2423 if (index % 2) 2424 vmx->pt_desc.guest.addr_b[index / 2] = data; 2425 else 2426 vmx->pt_desc.guest.addr_a[index / 2] = data; 2427 break; 2428 case MSR_IA32_PERF_CAPABILITIES: 2429 if (data && !vcpu_to_pmu(vcpu)->version) 2430 return 1; 2431 if (data & PMU_CAP_LBR_FMT) { 2432 if ((data & PMU_CAP_LBR_FMT) != 2433 (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT)) 2434 return 1; 2435 if (!cpuid_model_is_consistent(vcpu)) 2436 return 1; 2437 } 2438 if (data & PERF_CAP_PEBS_FORMAT) { 2439 if ((data & PERF_CAP_PEBS_MASK) != 2440 (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK)) 2441 return 1; 2442 if (!guest_cpuid_has(vcpu, X86_FEATURE_DS)) 2443 return 1; 2444 if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64)) 2445 return 1; 2446 if (!cpuid_model_is_consistent(vcpu)) 2447 return 1; 2448 } 2449 ret = kvm_set_msr_common(vcpu, msr_info); 2450 break; 2451 2452 default: 2453 find_uret_msr: 2454 msr = vmx_find_uret_msr(vmx, msr_index); 2455 if (msr) 2456 ret = vmx_set_guest_uret_msr(vmx, msr, data); 2457 else 2458 ret = kvm_set_msr_common(vcpu, msr_info); 2459 } 2460 2461 /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */ 2462 if (msr_index == MSR_IA32_ARCH_CAPABILITIES) 2463 vmx_update_fb_clear_dis(vcpu, vmx); 2464 2465 return ret; 2466 } 2467 2468 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 2469 { 2470 unsigned long guest_owned_bits; 2471 2472 kvm_register_mark_available(vcpu, reg); 2473 2474 switch (reg) { 2475 case VCPU_REGS_RSP: 2476 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); 2477 break; 2478 case VCPU_REGS_RIP: 2479 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); 2480 break; 2481 case VCPU_EXREG_PDPTR: 2482 if (enable_ept) 2483 ept_save_pdptrs(vcpu); 2484 break; 2485 case VCPU_EXREG_CR0: 2486 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; 2487 2488 vcpu->arch.cr0 &= ~guest_owned_bits; 2489 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits; 2490 break; 2491 case VCPU_EXREG_CR3: 2492 /* 2493 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's 2494 * CR3 is loaded into hardware, not the guest's CR3. 2495 */ 2496 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING)) 2497 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); 2498 break; 2499 case VCPU_EXREG_CR4: 2500 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; 2501 2502 vcpu->arch.cr4 &= ~guest_owned_bits; 2503 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits; 2504 break; 2505 default: 2506 KVM_BUG_ON(1, vcpu->kvm); 2507 break; 2508 } 2509 } 2510 2511 /* 2512 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID 2513 * directly instead of going through cpu_has(), to ensure KVM is trapping 2514 * ENCLS whenever it's supported in hardware. It does not matter whether 2515 * the host OS supports or has enabled SGX. 2516 */ 2517 static bool cpu_has_sgx(void) 2518 { 2519 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0)); 2520 } 2521 2522 /* 2523 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they 2524 * can't be used due to errata where VM Exit may incorrectly clear 2525 * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the 2526 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. 2527 */ 2528 static bool cpu_has_perf_global_ctrl_bug(void) 2529 { 2530 if (boot_cpu_data.x86 == 0x6) { 2531 switch (boot_cpu_data.x86_model) { 2532 case INTEL_FAM6_NEHALEM_EP: /* AAK155 */ 2533 case INTEL_FAM6_NEHALEM: /* AAP115 */ 2534 case INTEL_FAM6_WESTMERE: /* AAT100 */ 2535 case INTEL_FAM6_WESTMERE_EP: /* BC86,AAY89,BD102 */ 2536 case INTEL_FAM6_NEHALEM_EX: /* BA97 */ 2537 return true; 2538 default: 2539 break; 2540 } 2541 } 2542 2543 return false; 2544 } 2545 2546 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result) 2547 { 2548 u32 vmx_msr_low, vmx_msr_high; 2549 u32 ctl = ctl_min | ctl_opt; 2550 2551 rdmsr(msr, vmx_msr_low, vmx_msr_high); 2552 2553 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ 2554 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ 2555 2556 /* Ensure minimum (required) set of control bits are supported. */ 2557 if (ctl_min & ~ctl) 2558 return -EIO; 2559 2560 *result = ctl; 2561 return 0; 2562 } 2563 2564 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr) 2565 { 2566 u64 allowed; 2567 2568 rdmsrl(msr, allowed); 2569 2570 return ctl_opt & allowed; 2571 } 2572 2573 static int setup_vmcs_config(struct vmcs_config *vmcs_conf, 2574 struct vmx_capability *vmx_cap) 2575 { 2576 u32 vmx_msr_low, vmx_msr_high; 2577 u32 _pin_based_exec_control = 0; 2578 u32 _cpu_based_exec_control = 0; 2579 u32 _cpu_based_2nd_exec_control = 0; 2580 u64 _cpu_based_3rd_exec_control = 0; 2581 u32 _vmexit_control = 0; 2582 u32 _vmentry_control = 0; 2583 u64 misc_msr; 2584 int i; 2585 2586 /* 2587 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory. 2588 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always 2589 * intercepts writes to PAT and EFER, i.e. never enables those controls. 2590 */ 2591 struct { 2592 u32 entry_control; 2593 u32 exit_control; 2594 } const vmcs_entry_exit_pairs[] = { 2595 { VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL }, 2596 { VM_ENTRY_LOAD_IA32_PAT, VM_EXIT_LOAD_IA32_PAT }, 2597 { VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER }, 2598 { VM_ENTRY_LOAD_BNDCFGS, VM_EXIT_CLEAR_BNDCFGS }, 2599 { VM_ENTRY_LOAD_IA32_RTIT_CTL, VM_EXIT_CLEAR_IA32_RTIT_CTL }, 2600 }; 2601 2602 memset(vmcs_conf, 0, sizeof(*vmcs_conf)); 2603 2604 if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL, 2605 KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL, 2606 MSR_IA32_VMX_PROCBASED_CTLS, 2607 &_cpu_based_exec_control)) 2608 return -EIO; 2609 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { 2610 if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL, 2611 KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL, 2612 MSR_IA32_VMX_PROCBASED_CTLS2, 2613 &_cpu_based_2nd_exec_control)) 2614 return -EIO; 2615 } 2616 #ifndef CONFIG_X86_64 2617 if (!(_cpu_based_2nd_exec_control & 2618 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 2619 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; 2620 #endif 2621 2622 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2623 _cpu_based_2nd_exec_control &= ~( 2624 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2625 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2626 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 2627 2628 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, 2629 &vmx_cap->ept, &vmx_cap->vpid); 2630 2631 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) && 2632 vmx_cap->ept) { 2633 pr_warn_once("EPT CAP should not exist if not support " 2634 "1-setting enable EPT VM-execution control\n"); 2635 2636 if (error_on_inconsistent_vmcs_config) 2637 return -EIO; 2638 2639 vmx_cap->ept = 0; 2640 } 2641 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && 2642 vmx_cap->vpid) { 2643 pr_warn_once("VPID CAP should not exist if not support " 2644 "1-setting enable VPID VM-execution control\n"); 2645 2646 if (error_on_inconsistent_vmcs_config) 2647 return -EIO; 2648 2649 vmx_cap->vpid = 0; 2650 } 2651 2652 if (!cpu_has_sgx()) 2653 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING; 2654 2655 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS) 2656 _cpu_based_3rd_exec_control = 2657 adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL, 2658 MSR_IA32_VMX_PROCBASED_CTLS3); 2659 2660 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS, 2661 KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS, 2662 MSR_IA32_VMX_EXIT_CTLS, 2663 &_vmexit_control)) 2664 return -EIO; 2665 2666 if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL, 2667 KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL, 2668 MSR_IA32_VMX_PINBASED_CTLS, 2669 &_pin_based_exec_control)) 2670 return -EIO; 2671 2672 if (cpu_has_broken_vmx_preemption_timer()) 2673 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 2674 if (!(_cpu_based_2nd_exec_control & 2675 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) 2676 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; 2677 2678 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS, 2679 KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS, 2680 MSR_IA32_VMX_ENTRY_CTLS, 2681 &_vmentry_control)) 2682 return -EIO; 2683 2684 for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) { 2685 u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control; 2686 u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control; 2687 2688 if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl)) 2689 continue; 2690 2691 pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n", 2692 _vmentry_control & n_ctrl, _vmexit_control & x_ctrl); 2693 2694 if (error_on_inconsistent_vmcs_config) 2695 return -EIO; 2696 2697 _vmentry_control &= ~n_ctrl; 2698 _vmexit_control &= ~x_ctrl; 2699 } 2700 2701 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); 2702 2703 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ 2704 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) 2705 return -EIO; 2706 2707 #ifdef CONFIG_X86_64 2708 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ 2709 if (vmx_msr_high & (1u<<16)) 2710 return -EIO; 2711 #endif 2712 2713 /* Require Write-Back (WB) memory type for VMCS accesses. */ 2714 if (((vmx_msr_high >> 18) & 15) != 6) 2715 return -EIO; 2716 2717 rdmsrl(MSR_IA32_VMX_MISC, misc_msr); 2718 2719 vmcs_conf->size = vmx_msr_high & 0x1fff; 2720 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; 2721 2722 vmcs_conf->revision_id = vmx_msr_low; 2723 2724 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; 2725 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; 2726 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; 2727 vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control; 2728 vmcs_conf->vmexit_ctrl = _vmexit_control; 2729 vmcs_conf->vmentry_ctrl = _vmentry_control; 2730 vmcs_conf->misc = misc_msr; 2731 2732 #if IS_ENABLED(CONFIG_HYPERV) 2733 if (enlightened_vmcs) 2734 evmcs_sanitize_exec_ctrls(vmcs_conf); 2735 #endif 2736 2737 return 0; 2738 } 2739 2740 static bool __kvm_is_vmx_supported(void) 2741 { 2742 int cpu = smp_processor_id(); 2743 2744 if (!(cpuid_ecx(1) & feature_bit(VMX))) { 2745 pr_err("VMX not supported by CPU %d\n", cpu); 2746 return false; 2747 } 2748 2749 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 2750 !this_cpu_has(X86_FEATURE_VMX)) { 2751 pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu); 2752 return false; 2753 } 2754 2755 return true; 2756 } 2757 2758 static bool kvm_is_vmx_supported(void) 2759 { 2760 bool supported; 2761 2762 migrate_disable(); 2763 supported = __kvm_is_vmx_supported(); 2764 migrate_enable(); 2765 2766 return supported; 2767 } 2768 2769 static int vmx_check_processor_compat(void) 2770 { 2771 int cpu = raw_smp_processor_id(); 2772 struct vmcs_config vmcs_conf; 2773 struct vmx_capability vmx_cap; 2774 2775 if (!__kvm_is_vmx_supported()) 2776 return -EIO; 2777 2778 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) { 2779 pr_err("Failed to setup VMCS config on CPU %d\n", cpu); 2780 return -EIO; 2781 } 2782 if (nested) 2783 nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept); 2784 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) { 2785 pr_err("Inconsistent VMCS config on CPU %d\n", cpu); 2786 return -EIO; 2787 } 2788 return 0; 2789 } 2790 2791 static int kvm_cpu_vmxon(u64 vmxon_pointer) 2792 { 2793 u64 msr; 2794 2795 cr4_set_bits(X86_CR4_VMXE); 2796 2797 asm goto("1: vmxon %[vmxon_pointer]\n\t" 2798 _ASM_EXTABLE(1b, %l[fault]) 2799 : : [vmxon_pointer] "m"(vmxon_pointer) 2800 : : fault); 2801 return 0; 2802 2803 fault: 2804 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n", 2805 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr); 2806 cr4_clear_bits(X86_CR4_VMXE); 2807 2808 return -EFAULT; 2809 } 2810 2811 static int vmx_hardware_enable(void) 2812 { 2813 int cpu = raw_smp_processor_id(); 2814 u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); 2815 int r; 2816 2817 if (cr4_read_shadow() & X86_CR4_VMXE) 2818 return -EBUSY; 2819 2820 /* 2821 * This can happen if we hot-added a CPU but failed to allocate 2822 * VP assist page for it. 2823 */ 2824 if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu)) 2825 return -EFAULT; 2826 2827 intel_pt_handle_vmx(1); 2828 2829 r = kvm_cpu_vmxon(phys_addr); 2830 if (r) { 2831 intel_pt_handle_vmx(0); 2832 return r; 2833 } 2834 2835 if (enable_ept) 2836 ept_sync_global(); 2837 2838 return 0; 2839 } 2840 2841 static void vmclear_local_loaded_vmcss(void) 2842 { 2843 int cpu = raw_smp_processor_id(); 2844 struct loaded_vmcs *v, *n; 2845 2846 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), 2847 loaded_vmcss_on_cpu_link) 2848 __loaded_vmcs_clear(v); 2849 } 2850 2851 static void vmx_hardware_disable(void) 2852 { 2853 vmclear_local_loaded_vmcss(); 2854 2855 if (kvm_cpu_vmxoff()) 2856 kvm_spurious_fault(); 2857 2858 hv_reset_evmcs(); 2859 2860 intel_pt_handle_vmx(0); 2861 } 2862 2863 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags) 2864 { 2865 int node = cpu_to_node(cpu); 2866 struct page *pages; 2867 struct vmcs *vmcs; 2868 2869 pages = __alloc_pages_node(node, flags, 0); 2870 if (!pages) 2871 return NULL; 2872 vmcs = page_address(pages); 2873 memset(vmcs, 0, vmcs_config.size); 2874 2875 /* KVM supports Enlightened VMCS v1 only */ 2876 if (kvm_is_using_evmcs()) 2877 vmcs->hdr.revision_id = KVM_EVMCS_VERSION; 2878 else 2879 vmcs->hdr.revision_id = vmcs_config.revision_id; 2880 2881 if (shadow) 2882 vmcs->hdr.shadow_vmcs = 1; 2883 return vmcs; 2884 } 2885 2886 void free_vmcs(struct vmcs *vmcs) 2887 { 2888 free_page((unsigned long)vmcs); 2889 } 2890 2891 /* 2892 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded 2893 */ 2894 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2895 { 2896 if (!loaded_vmcs->vmcs) 2897 return; 2898 loaded_vmcs_clear(loaded_vmcs); 2899 free_vmcs(loaded_vmcs->vmcs); 2900 loaded_vmcs->vmcs = NULL; 2901 if (loaded_vmcs->msr_bitmap) 2902 free_page((unsigned long)loaded_vmcs->msr_bitmap); 2903 WARN_ON(loaded_vmcs->shadow_vmcs != NULL); 2904 } 2905 2906 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2907 { 2908 loaded_vmcs->vmcs = alloc_vmcs(false); 2909 if (!loaded_vmcs->vmcs) 2910 return -ENOMEM; 2911 2912 vmcs_clear(loaded_vmcs->vmcs); 2913 2914 loaded_vmcs->shadow_vmcs = NULL; 2915 loaded_vmcs->hv_timer_soft_disabled = false; 2916 loaded_vmcs->cpu = -1; 2917 loaded_vmcs->launched = 0; 2918 2919 if (cpu_has_vmx_msr_bitmap()) { 2920 loaded_vmcs->msr_bitmap = (unsigned long *) 2921 __get_free_page(GFP_KERNEL_ACCOUNT); 2922 if (!loaded_vmcs->msr_bitmap) 2923 goto out_vmcs; 2924 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); 2925 } 2926 2927 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); 2928 memset(&loaded_vmcs->controls_shadow, 0, 2929 sizeof(struct vmcs_controls_shadow)); 2930 2931 return 0; 2932 2933 out_vmcs: 2934 free_loaded_vmcs(loaded_vmcs); 2935 return -ENOMEM; 2936 } 2937 2938 static void free_kvm_area(void) 2939 { 2940 int cpu; 2941 2942 for_each_possible_cpu(cpu) { 2943 free_vmcs(per_cpu(vmxarea, cpu)); 2944 per_cpu(vmxarea, cpu) = NULL; 2945 } 2946 } 2947 2948 static __init int alloc_kvm_area(void) 2949 { 2950 int cpu; 2951 2952 for_each_possible_cpu(cpu) { 2953 struct vmcs *vmcs; 2954 2955 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL); 2956 if (!vmcs) { 2957 free_kvm_area(); 2958 return -ENOMEM; 2959 } 2960 2961 /* 2962 * When eVMCS is enabled, alloc_vmcs_cpu() sets 2963 * vmcs->revision_id to KVM_EVMCS_VERSION instead of 2964 * revision_id reported by MSR_IA32_VMX_BASIC. 2965 * 2966 * However, even though not explicitly documented by 2967 * TLFS, VMXArea passed as VMXON argument should 2968 * still be marked with revision_id reported by 2969 * physical CPU. 2970 */ 2971 if (kvm_is_using_evmcs()) 2972 vmcs->hdr.revision_id = vmcs_config.revision_id; 2973 2974 per_cpu(vmxarea, cpu) = vmcs; 2975 } 2976 return 0; 2977 } 2978 2979 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, 2980 struct kvm_segment *save) 2981 { 2982 if (!emulate_invalid_guest_state) { 2983 /* 2984 * CS and SS RPL should be equal during guest entry according 2985 * to VMX spec, but in reality it is not always so. Since vcpu 2986 * is in the middle of the transition from real mode to 2987 * protected mode it is safe to assume that RPL 0 is a good 2988 * default value. 2989 */ 2990 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) 2991 save->selector &= ~SEGMENT_RPL_MASK; 2992 save->dpl = save->selector & SEGMENT_RPL_MASK; 2993 save->s = 1; 2994 } 2995 __vmx_set_segment(vcpu, save, seg); 2996 } 2997 2998 static void enter_pmode(struct kvm_vcpu *vcpu) 2999 { 3000 unsigned long flags; 3001 struct vcpu_vmx *vmx = to_vmx(vcpu); 3002 3003 /* 3004 * Update real mode segment cache. It may be not up-to-date if segment 3005 * register was written while vcpu was in a guest mode. 3006 */ 3007 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 3008 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 3009 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 3010 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 3011 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 3012 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 3013 3014 vmx->rmode.vm86_active = 0; 3015 3016 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 3017 3018 flags = vmcs_readl(GUEST_RFLAGS); 3019 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 3020 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 3021 vmcs_writel(GUEST_RFLAGS, flags); 3022 3023 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | 3024 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); 3025 3026 vmx_update_exception_bitmap(vcpu); 3027 3028 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 3029 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 3030 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 3031 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 3032 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 3033 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 3034 } 3035 3036 static void fix_rmode_seg(int seg, struct kvm_segment *save) 3037 { 3038 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3039 struct kvm_segment var = *save; 3040 3041 var.dpl = 0x3; 3042 if (seg == VCPU_SREG_CS) 3043 var.type = 0x3; 3044 3045 if (!emulate_invalid_guest_state) { 3046 var.selector = var.base >> 4; 3047 var.base = var.base & 0xffff0; 3048 var.limit = 0xffff; 3049 var.g = 0; 3050 var.db = 0; 3051 var.present = 1; 3052 var.s = 1; 3053 var.l = 0; 3054 var.unusable = 0; 3055 var.type = 0x3; 3056 var.avl = 0; 3057 if (save->base & 0xf) 3058 pr_warn_once("segment base is not paragraph aligned " 3059 "when entering protected mode (seg=%d)", seg); 3060 } 3061 3062 vmcs_write16(sf->selector, var.selector); 3063 vmcs_writel(sf->base, var.base); 3064 vmcs_write32(sf->limit, var.limit); 3065 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); 3066 } 3067 3068 static void enter_rmode(struct kvm_vcpu *vcpu) 3069 { 3070 unsigned long flags; 3071 struct vcpu_vmx *vmx = to_vmx(vcpu); 3072 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); 3073 3074 /* 3075 * KVM should never use VM86 to virtualize Real Mode when L2 is active, 3076 * as using VM86 is unnecessary if unrestricted guest is enabled, and 3077 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0 3078 * should VM-Fail and KVM should reject userspace attempts to stuff 3079 * CR0.PG=0 when L2 is active. 3080 */ 3081 WARN_ON_ONCE(is_guest_mode(vcpu)); 3082 3083 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 3084 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 3085 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 3086 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 3087 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 3088 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 3089 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 3090 3091 vmx->rmode.vm86_active = 1; 3092 3093 vmx_segment_cache_clear(vmx); 3094 3095 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); 3096 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); 3097 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 3098 3099 flags = vmcs_readl(GUEST_RFLAGS); 3100 vmx->rmode.save_rflags = flags; 3101 3102 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 3103 3104 vmcs_writel(GUEST_RFLAGS, flags); 3105 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); 3106 vmx_update_exception_bitmap(vcpu); 3107 3108 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 3109 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 3110 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 3111 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 3112 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 3113 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 3114 } 3115 3116 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) 3117 { 3118 struct vcpu_vmx *vmx = to_vmx(vcpu); 3119 3120 /* Nothing to do if hardware doesn't support EFER. */ 3121 if (!vmx_find_uret_msr(vmx, MSR_EFER)) 3122 return 0; 3123 3124 vcpu->arch.efer = efer; 3125 #ifdef CONFIG_X86_64 3126 if (efer & EFER_LMA) 3127 vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE); 3128 else 3129 vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE); 3130 #else 3131 if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm)) 3132 return 1; 3133 #endif 3134 3135 vmx_setup_uret_msrs(vmx); 3136 return 0; 3137 } 3138 3139 #ifdef CONFIG_X86_64 3140 3141 static void enter_lmode(struct kvm_vcpu *vcpu) 3142 { 3143 u32 guest_tr_ar; 3144 3145 vmx_segment_cache_clear(to_vmx(vcpu)); 3146 3147 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); 3148 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { 3149 pr_debug_ratelimited("%s: tss fixup for long mode. \n", 3150 __func__); 3151 vmcs_write32(GUEST_TR_AR_BYTES, 3152 (guest_tr_ar & ~VMX_AR_TYPE_MASK) 3153 | VMX_AR_TYPE_BUSY_64_TSS); 3154 } 3155 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); 3156 } 3157 3158 static void exit_lmode(struct kvm_vcpu *vcpu) 3159 { 3160 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); 3161 } 3162 3163 #endif 3164 3165 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu) 3166 { 3167 struct vcpu_vmx *vmx = to_vmx(vcpu); 3168 3169 /* 3170 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as 3171 * the CPU is not required to invalidate guest-physical mappings on 3172 * VM-Entry, even if VPID is disabled. Guest-physical mappings are 3173 * associated with the root EPT structure and not any particular VPID 3174 * (INVVPID also isn't required to invalidate guest-physical mappings). 3175 */ 3176 if (enable_ept) { 3177 ept_sync_global(); 3178 } else if (enable_vpid) { 3179 if (cpu_has_vmx_invvpid_global()) { 3180 vpid_sync_vcpu_global(); 3181 } else { 3182 vpid_sync_vcpu_single(vmx->vpid); 3183 vpid_sync_vcpu_single(vmx->nested.vpid02); 3184 } 3185 } 3186 } 3187 3188 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu) 3189 { 3190 if (is_guest_mode(vcpu)) 3191 return nested_get_vpid02(vcpu); 3192 return to_vmx(vcpu)->vpid; 3193 } 3194 3195 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu) 3196 { 3197 struct kvm_mmu *mmu = vcpu->arch.mmu; 3198 u64 root_hpa = mmu->root.hpa; 3199 3200 /* No flush required if the current context is invalid. */ 3201 if (!VALID_PAGE(root_hpa)) 3202 return; 3203 3204 if (enable_ept) 3205 ept_sync_context(construct_eptp(vcpu, root_hpa, 3206 mmu->root_role.level)); 3207 else 3208 vpid_sync_context(vmx_get_current_vpid(vcpu)); 3209 } 3210 3211 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) 3212 { 3213 /* 3214 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in 3215 * vmx_flush_tlb_guest() for an explanation of why this is ok. 3216 */ 3217 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr); 3218 } 3219 3220 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu) 3221 { 3222 /* 3223 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a 3224 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are 3225 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is 3226 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed), 3227 * i.e. no explicit INVVPID is necessary. 3228 */ 3229 vpid_sync_context(vmx_get_current_vpid(vcpu)); 3230 } 3231 3232 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu) 3233 { 3234 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 3235 3236 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR)) 3237 return; 3238 3239 if (is_pae_paging(vcpu)) { 3240 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); 3241 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); 3242 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); 3243 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); 3244 } 3245 } 3246 3247 void ept_save_pdptrs(struct kvm_vcpu *vcpu) 3248 { 3249 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 3250 3251 if (WARN_ON_ONCE(!is_pae_paging(vcpu))) 3252 return; 3253 3254 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); 3255 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); 3256 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); 3257 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); 3258 3259 kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR); 3260 } 3261 3262 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \ 3263 CPU_BASED_CR3_STORE_EXITING) 3264 3265 static bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 3266 { 3267 if (is_guest_mode(vcpu)) 3268 return nested_guest_cr0_valid(vcpu, cr0); 3269 3270 if (to_vmx(vcpu)->nested.vmxon) 3271 return nested_host_cr0_valid(vcpu, cr0); 3272 3273 return true; 3274 } 3275 3276 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 3277 { 3278 struct vcpu_vmx *vmx = to_vmx(vcpu); 3279 unsigned long hw_cr0, old_cr0_pg; 3280 u32 tmp; 3281 3282 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG); 3283 3284 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); 3285 if (enable_unrestricted_guest) 3286 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; 3287 else { 3288 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; 3289 if (!enable_ept) 3290 hw_cr0 |= X86_CR0_WP; 3291 3292 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) 3293 enter_pmode(vcpu); 3294 3295 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) 3296 enter_rmode(vcpu); 3297 } 3298 3299 vmcs_writel(CR0_READ_SHADOW, cr0); 3300 vmcs_writel(GUEST_CR0, hw_cr0); 3301 vcpu->arch.cr0 = cr0; 3302 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0); 3303 3304 #ifdef CONFIG_X86_64 3305 if (vcpu->arch.efer & EFER_LME) { 3306 if (!old_cr0_pg && (cr0 & X86_CR0_PG)) 3307 enter_lmode(vcpu); 3308 else if (old_cr0_pg && !(cr0 & X86_CR0_PG)) 3309 exit_lmode(vcpu); 3310 } 3311 #endif 3312 3313 if (enable_ept && !enable_unrestricted_guest) { 3314 /* 3315 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If 3316 * the below code _enables_ CR3 exiting, vmx_cache_reg() will 3317 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks 3318 * KVM's CR3 is installed. 3319 */ 3320 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3)) 3321 vmx_cache_reg(vcpu, VCPU_EXREG_CR3); 3322 3323 /* 3324 * When running with EPT but not unrestricted guest, KVM must 3325 * intercept CR3 accesses when paging is _disabled_. This is 3326 * necessary because restricted guests can't actually run with 3327 * paging disabled, and so KVM stuffs its own CR3 in order to 3328 * run the guest when identity mapped page tables. 3329 * 3330 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the 3331 * update, it may be stale with respect to CR3 interception, 3332 * e.g. after nested VM-Enter. 3333 * 3334 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or 3335 * stores to forward them to L1, even if KVM does not need to 3336 * intercept them to preserve its identity mapped page tables. 3337 */ 3338 if (!(cr0 & X86_CR0_PG)) { 3339 exec_controls_setbit(vmx, CR3_EXITING_BITS); 3340 } else if (!is_guest_mode(vcpu)) { 3341 exec_controls_clearbit(vmx, CR3_EXITING_BITS); 3342 } else { 3343 tmp = exec_controls_get(vmx); 3344 tmp &= ~CR3_EXITING_BITS; 3345 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS; 3346 exec_controls_set(vmx, tmp); 3347 } 3348 3349 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */ 3350 if ((old_cr0_pg ^ cr0) & X86_CR0_PG) 3351 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 3352 3353 /* 3354 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but 3355 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG. 3356 */ 3357 if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG)) 3358 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 3359 } 3360 3361 /* depends on vcpu->arch.cr0 to be set to a new value */ 3362 vmx->emulation_required = vmx_emulation_required(vcpu); 3363 } 3364 3365 static int vmx_get_max_ept_level(void) 3366 { 3367 if (cpu_has_vmx_ept_5levels()) 3368 return 5; 3369 return 4; 3370 } 3371 3372 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level) 3373 { 3374 u64 eptp = VMX_EPTP_MT_WB; 3375 3376 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; 3377 3378 if (enable_ept_ad_bits && 3379 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) 3380 eptp |= VMX_EPTP_AD_ENABLE_BIT; 3381 eptp |= root_hpa; 3382 3383 return eptp; 3384 } 3385 3386 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 3387 int root_level) 3388 { 3389 struct kvm *kvm = vcpu->kvm; 3390 bool update_guest_cr3 = true; 3391 unsigned long guest_cr3; 3392 u64 eptp; 3393 3394 if (enable_ept) { 3395 eptp = construct_eptp(vcpu, root_hpa, root_level); 3396 vmcs_write64(EPT_POINTER, eptp); 3397 3398 hv_track_root_tdp(vcpu, root_hpa); 3399 3400 if (!enable_unrestricted_guest && !is_paging(vcpu)) 3401 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; 3402 else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3)) 3403 guest_cr3 = vcpu->arch.cr3; 3404 else /* vmcs.GUEST_CR3 is already up-to-date. */ 3405 update_guest_cr3 = false; 3406 vmx_ept_load_pdptrs(vcpu); 3407 } else { 3408 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu) | 3409 kvm_get_active_cr3_lam_bits(vcpu); 3410 } 3411 3412 if (update_guest_cr3) 3413 vmcs_writel(GUEST_CR3, guest_cr3); 3414 } 3415 3416 3417 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3418 { 3419 /* 3420 * We operate under the default treatment of SMM, so VMX cannot be 3421 * enabled under SMM. Note, whether or not VMXE is allowed at all, 3422 * i.e. is a reserved bit, is handled by common x86 code. 3423 */ 3424 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu)) 3425 return false; 3426 3427 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) 3428 return false; 3429 3430 return true; 3431 } 3432 3433 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3434 { 3435 unsigned long old_cr4 = kvm_read_cr4(vcpu); 3436 struct vcpu_vmx *vmx = to_vmx(vcpu); 3437 unsigned long hw_cr4; 3438 3439 /* 3440 * Pass through host's Machine Check Enable value to hw_cr4, which 3441 * is in force while we are in guest mode. Do not let guests control 3442 * this bit, even if host CR4.MCE == 0. 3443 */ 3444 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); 3445 if (enable_unrestricted_guest) 3446 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; 3447 else if (vmx->rmode.vm86_active) 3448 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; 3449 else 3450 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; 3451 3452 if (vmx_umip_emulated()) { 3453 if (cr4 & X86_CR4_UMIP) { 3454 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC); 3455 hw_cr4 &= ~X86_CR4_UMIP; 3456 } else if (!is_guest_mode(vcpu) || 3457 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) { 3458 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC); 3459 } 3460 } 3461 3462 vcpu->arch.cr4 = cr4; 3463 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4); 3464 3465 if (!enable_unrestricted_guest) { 3466 if (enable_ept) { 3467 if (!is_paging(vcpu)) { 3468 hw_cr4 &= ~X86_CR4_PAE; 3469 hw_cr4 |= X86_CR4_PSE; 3470 } else if (!(cr4 & X86_CR4_PAE)) { 3471 hw_cr4 &= ~X86_CR4_PAE; 3472 } 3473 } 3474 3475 /* 3476 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in 3477 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs 3478 * to be manually disabled when guest switches to non-paging 3479 * mode. 3480 * 3481 * If !enable_unrestricted_guest, the CPU is always running 3482 * with CR0.PG=1 and CR4 needs to be modified. 3483 * If enable_unrestricted_guest, the CPU automatically 3484 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. 3485 */ 3486 if (!is_paging(vcpu)) 3487 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 3488 } 3489 3490 vmcs_writel(CR4_READ_SHADOW, cr4); 3491 vmcs_writel(GUEST_CR4, hw_cr4); 3492 3493 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 3494 kvm_update_cpuid_runtime(vcpu); 3495 } 3496 3497 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3498 { 3499 struct vcpu_vmx *vmx = to_vmx(vcpu); 3500 u32 ar; 3501 3502 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3503 *var = vmx->rmode.segs[seg]; 3504 if (seg == VCPU_SREG_TR 3505 || var->selector == vmx_read_guest_seg_selector(vmx, seg)) 3506 return; 3507 var->base = vmx_read_guest_seg_base(vmx, seg); 3508 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3509 return; 3510 } 3511 var->base = vmx_read_guest_seg_base(vmx, seg); 3512 var->limit = vmx_read_guest_seg_limit(vmx, seg); 3513 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3514 ar = vmx_read_guest_seg_ar(vmx, seg); 3515 var->unusable = (ar >> 16) & 1; 3516 var->type = ar & 15; 3517 var->s = (ar >> 4) & 1; 3518 var->dpl = (ar >> 5) & 3; 3519 /* 3520 * Some userspaces do not preserve unusable property. Since usable 3521 * segment has to be present according to VMX spec we can use present 3522 * property to amend userspace bug by making unusable segment always 3523 * nonpresent. vmx_segment_access_rights() already marks nonpresent 3524 * segment as unusable. 3525 */ 3526 var->present = !var->unusable; 3527 var->avl = (ar >> 12) & 1; 3528 var->l = (ar >> 13) & 1; 3529 var->db = (ar >> 14) & 1; 3530 var->g = (ar >> 15) & 1; 3531 } 3532 3533 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) 3534 { 3535 struct kvm_segment s; 3536 3537 if (to_vmx(vcpu)->rmode.vm86_active) { 3538 vmx_get_segment(vcpu, &s, seg); 3539 return s.base; 3540 } 3541 return vmx_read_guest_seg_base(to_vmx(vcpu), seg); 3542 } 3543 3544 int vmx_get_cpl(struct kvm_vcpu *vcpu) 3545 { 3546 struct vcpu_vmx *vmx = to_vmx(vcpu); 3547 3548 if (unlikely(vmx->rmode.vm86_active)) 3549 return 0; 3550 else { 3551 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); 3552 return VMX_AR_DPL(ar); 3553 } 3554 } 3555 3556 static u32 vmx_segment_access_rights(struct kvm_segment *var) 3557 { 3558 u32 ar; 3559 3560 ar = var->type & 15; 3561 ar |= (var->s & 1) << 4; 3562 ar |= (var->dpl & 3) << 5; 3563 ar |= (var->present & 1) << 7; 3564 ar |= (var->avl & 1) << 12; 3565 ar |= (var->l & 1) << 13; 3566 ar |= (var->db & 1) << 14; 3567 ar |= (var->g & 1) << 15; 3568 ar |= (var->unusable || !var->present) << 16; 3569 3570 return ar; 3571 } 3572 3573 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3574 { 3575 struct vcpu_vmx *vmx = to_vmx(vcpu); 3576 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3577 3578 vmx_segment_cache_clear(vmx); 3579 3580 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3581 vmx->rmode.segs[seg] = *var; 3582 if (seg == VCPU_SREG_TR) 3583 vmcs_write16(sf->selector, var->selector); 3584 else if (var->s) 3585 fix_rmode_seg(seg, &vmx->rmode.segs[seg]); 3586 return; 3587 } 3588 3589 vmcs_writel(sf->base, var->base); 3590 vmcs_write32(sf->limit, var->limit); 3591 vmcs_write16(sf->selector, var->selector); 3592 3593 /* 3594 * Fix the "Accessed" bit in AR field of segment registers for older 3595 * qemu binaries. 3596 * IA32 arch specifies that at the time of processor reset the 3597 * "Accessed" bit in the AR field of segment registers is 1. And qemu 3598 * is setting it to 0 in the userland code. This causes invalid guest 3599 * state vmexit when "unrestricted guest" mode is turned on. 3600 * Fix for this setup issue in cpu_reset is being pushed in the qemu 3601 * tree. Newer qemu binaries with that qemu fix would not need this 3602 * kvm hack. 3603 */ 3604 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR)) 3605 var->type |= 0x1; /* Accessed */ 3606 3607 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); 3608 } 3609 3610 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3611 { 3612 __vmx_set_segment(vcpu, var, seg); 3613 3614 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu); 3615 } 3616 3617 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 3618 { 3619 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); 3620 3621 *db = (ar >> 14) & 1; 3622 *l = (ar >> 13) & 1; 3623 } 3624 3625 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3626 { 3627 dt->size = vmcs_read32(GUEST_IDTR_LIMIT); 3628 dt->address = vmcs_readl(GUEST_IDTR_BASE); 3629 } 3630 3631 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3632 { 3633 vmcs_write32(GUEST_IDTR_LIMIT, dt->size); 3634 vmcs_writel(GUEST_IDTR_BASE, dt->address); 3635 } 3636 3637 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3638 { 3639 dt->size = vmcs_read32(GUEST_GDTR_LIMIT); 3640 dt->address = vmcs_readl(GUEST_GDTR_BASE); 3641 } 3642 3643 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3644 { 3645 vmcs_write32(GUEST_GDTR_LIMIT, dt->size); 3646 vmcs_writel(GUEST_GDTR_BASE, dt->address); 3647 } 3648 3649 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) 3650 { 3651 struct kvm_segment var; 3652 u32 ar; 3653 3654 vmx_get_segment(vcpu, &var, seg); 3655 var.dpl = 0x3; 3656 if (seg == VCPU_SREG_CS) 3657 var.type = 0x3; 3658 ar = vmx_segment_access_rights(&var); 3659 3660 if (var.base != (var.selector << 4)) 3661 return false; 3662 if (var.limit != 0xffff) 3663 return false; 3664 if (ar != 0xf3) 3665 return false; 3666 3667 return true; 3668 } 3669 3670 static bool code_segment_valid(struct kvm_vcpu *vcpu) 3671 { 3672 struct kvm_segment cs; 3673 unsigned int cs_rpl; 3674 3675 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3676 cs_rpl = cs.selector & SEGMENT_RPL_MASK; 3677 3678 if (cs.unusable) 3679 return false; 3680 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) 3681 return false; 3682 if (!cs.s) 3683 return false; 3684 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { 3685 if (cs.dpl > cs_rpl) 3686 return false; 3687 } else { 3688 if (cs.dpl != cs_rpl) 3689 return false; 3690 } 3691 if (!cs.present) 3692 return false; 3693 3694 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ 3695 return true; 3696 } 3697 3698 static bool stack_segment_valid(struct kvm_vcpu *vcpu) 3699 { 3700 struct kvm_segment ss; 3701 unsigned int ss_rpl; 3702 3703 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3704 ss_rpl = ss.selector & SEGMENT_RPL_MASK; 3705 3706 if (ss.unusable) 3707 return true; 3708 if (ss.type != 3 && ss.type != 7) 3709 return false; 3710 if (!ss.s) 3711 return false; 3712 if (ss.dpl != ss_rpl) /* DPL != RPL */ 3713 return false; 3714 if (!ss.present) 3715 return false; 3716 3717 return true; 3718 } 3719 3720 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) 3721 { 3722 struct kvm_segment var; 3723 unsigned int rpl; 3724 3725 vmx_get_segment(vcpu, &var, seg); 3726 rpl = var.selector & SEGMENT_RPL_MASK; 3727 3728 if (var.unusable) 3729 return true; 3730 if (!var.s) 3731 return false; 3732 if (!var.present) 3733 return false; 3734 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { 3735 if (var.dpl < rpl) /* DPL < RPL */ 3736 return false; 3737 } 3738 3739 /* TODO: Add other members to kvm_segment_field to allow checking for other access 3740 * rights flags 3741 */ 3742 return true; 3743 } 3744 3745 static bool tr_valid(struct kvm_vcpu *vcpu) 3746 { 3747 struct kvm_segment tr; 3748 3749 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); 3750 3751 if (tr.unusable) 3752 return false; 3753 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3754 return false; 3755 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ 3756 return false; 3757 if (!tr.present) 3758 return false; 3759 3760 return true; 3761 } 3762 3763 static bool ldtr_valid(struct kvm_vcpu *vcpu) 3764 { 3765 struct kvm_segment ldtr; 3766 3767 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); 3768 3769 if (ldtr.unusable) 3770 return true; 3771 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3772 return false; 3773 if (ldtr.type != 2) 3774 return false; 3775 if (!ldtr.present) 3776 return false; 3777 3778 return true; 3779 } 3780 3781 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) 3782 { 3783 struct kvm_segment cs, ss; 3784 3785 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3786 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3787 3788 return ((cs.selector & SEGMENT_RPL_MASK) == 3789 (ss.selector & SEGMENT_RPL_MASK)); 3790 } 3791 3792 /* 3793 * Check if guest state is valid. Returns true if valid, false if 3794 * not. 3795 * We assume that registers are always usable 3796 */ 3797 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu) 3798 { 3799 /* real mode guest state checks */ 3800 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { 3801 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) 3802 return false; 3803 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) 3804 return false; 3805 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) 3806 return false; 3807 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) 3808 return false; 3809 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) 3810 return false; 3811 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) 3812 return false; 3813 } else { 3814 /* protected mode guest state checks */ 3815 if (!cs_ss_rpl_check(vcpu)) 3816 return false; 3817 if (!code_segment_valid(vcpu)) 3818 return false; 3819 if (!stack_segment_valid(vcpu)) 3820 return false; 3821 if (!data_segment_valid(vcpu, VCPU_SREG_DS)) 3822 return false; 3823 if (!data_segment_valid(vcpu, VCPU_SREG_ES)) 3824 return false; 3825 if (!data_segment_valid(vcpu, VCPU_SREG_FS)) 3826 return false; 3827 if (!data_segment_valid(vcpu, VCPU_SREG_GS)) 3828 return false; 3829 if (!tr_valid(vcpu)) 3830 return false; 3831 if (!ldtr_valid(vcpu)) 3832 return false; 3833 } 3834 /* TODO: 3835 * - Add checks on RIP 3836 * - Add checks on RFLAGS 3837 */ 3838 3839 return true; 3840 } 3841 3842 static int init_rmode_tss(struct kvm *kvm, void __user *ua) 3843 { 3844 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3845 u16 data; 3846 int i; 3847 3848 for (i = 0; i < 3; i++) { 3849 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE)) 3850 return -EFAULT; 3851 } 3852 3853 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; 3854 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16))) 3855 return -EFAULT; 3856 3857 data = ~0; 3858 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8))) 3859 return -EFAULT; 3860 3861 return 0; 3862 } 3863 3864 static int init_rmode_identity_map(struct kvm *kvm) 3865 { 3866 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 3867 int i, r = 0; 3868 void __user *uaddr; 3869 u32 tmp; 3870 3871 /* Protect kvm_vmx->ept_identity_pagetable_done. */ 3872 mutex_lock(&kvm->slots_lock); 3873 3874 if (likely(kvm_vmx->ept_identity_pagetable_done)) 3875 goto out; 3876 3877 if (!kvm_vmx->ept_identity_map_addr) 3878 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; 3879 3880 uaddr = __x86_set_memory_region(kvm, 3881 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 3882 kvm_vmx->ept_identity_map_addr, 3883 PAGE_SIZE); 3884 if (IS_ERR(uaddr)) { 3885 r = PTR_ERR(uaddr); 3886 goto out; 3887 } 3888 3889 /* Set up identity-mapping pagetable for EPT in real mode */ 3890 for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) { 3891 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | 3892 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); 3893 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) { 3894 r = -EFAULT; 3895 goto out; 3896 } 3897 } 3898 kvm_vmx->ept_identity_pagetable_done = true; 3899 3900 out: 3901 mutex_unlock(&kvm->slots_lock); 3902 return r; 3903 } 3904 3905 static void seg_setup(int seg) 3906 { 3907 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3908 unsigned int ar; 3909 3910 vmcs_write16(sf->selector, 0); 3911 vmcs_writel(sf->base, 0); 3912 vmcs_write32(sf->limit, 0xffff); 3913 ar = 0x93; 3914 if (seg == VCPU_SREG_CS) 3915 ar |= 0x08; /* code segment */ 3916 3917 vmcs_write32(sf->ar_bytes, ar); 3918 } 3919 3920 int allocate_vpid(void) 3921 { 3922 int vpid; 3923 3924 if (!enable_vpid) 3925 return 0; 3926 spin_lock(&vmx_vpid_lock); 3927 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); 3928 if (vpid < VMX_NR_VPIDS) 3929 __set_bit(vpid, vmx_vpid_bitmap); 3930 else 3931 vpid = 0; 3932 spin_unlock(&vmx_vpid_lock); 3933 return vpid; 3934 } 3935 3936 void free_vpid(int vpid) 3937 { 3938 if (!enable_vpid || vpid == 0) 3939 return; 3940 spin_lock(&vmx_vpid_lock); 3941 __clear_bit(vpid, vmx_vpid_bitmap); 3942 spin_unlock(&vmx_vpid_lock); 3943 } 3944 3945 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx) 3946 { 3947 /* 3948 * When KVM is a nested hypervisor on top of Hyper-V and uses 3949 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR 3950 * bitmap has changed. 3951 */ 3952 if (kvm_is_using_evmcs()) { 3953 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; 3954 3955 if (evmcs->hv_enlightenments_control.msr_bitmap) 3956 evmcs->hv_clean_fields &= 3957 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP; 3958 } 3959 3960 vmx->nested.force_msr_bitmap_recalc = true; 3961 } 3962 3963 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3964 { 3965 struct vcpu_vmx *vmx = to_vmx(vcpu); 3966 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3967 3968 if (!cpu_has_vmx_msr_bitmap()) 3969 return; 3970 3971 vmx_msr_bitmap_l01_changed(vmx); 3972 3973 /* 3974 * Mark the desired intercept state in shadow bitmap, this is needed 3975 * for resync when the MSR filters change. 3976 */ 3977 if (is_valid_passthrough_msr(msr)) { 3978 int idx = possible_passthrough_msr_slot(msr); 3979 3980 if (idx != -ENOENT) { 3981 if (type & MSR_TYPE_R) 3982 clear_bit(idx, vmx->shadow_msr_intercept.read); 3983 if (type & MSR_TYPE_W) 3984 clear_bit(idx, vmx->shadow_msr_intercept.write); 3985 } 3986 } 3987 3988 if ((type & MSR_TYPE_R) && 3989 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) { 3990 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3991 type &= ~MSR_TYPE_R; 3992 } 3993 3994 if ((type & MSR_TYPE_W) && 3995 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) { 3996 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3997 type &= ~MSR_TYPE_W; 3998 } 3999 4000 if (type & MSR_TYPE_R) 4001 vmx_clear_msr_bitmap_read(msr_bitmap, msr); 4002 4003 if (type & MSR_TYPE_W) 4004 vmx_clear_msr_bitmap_write(msr_bitmap, msr); 4005 } 4006 4007 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 4008 { 4009 struct vcpu_vmx *vmx = to_vmx(vcpu); 4010 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 4011 4012 if (!cpu_has_vmx_msr_bitmap()) 4013 return; 4014 4015 vmx_msr_bitmap_l01_changed(vmx); 4016 4017 /* 4018 * Mark the desired intercept state in shadow bitmap, this is needed 4019 * for resync when the MSR filter changes. 4020 */ 4021 if (is_valid_passthrough_msr(msr)) { 4022 int idx = possible_passthrough_msr_slot(msr); 4023 4024 if (idx != -ENOENT) { 4025 if (type & MSR_TYPE_R) 4026 set_bit(idx, vmx->shadow_msr_intercept.read); 4027 if (type & MSR_TYPE_W) 4028 set_bit(idx, vmx->shadow_msr_intercept.write); 4029 } 4030 } 4031 4032 if (type & MSR_TYPE_R) 4033 vmx_set_msr_bitmap_read(msr_bitmap, msr); 4034 4035 if (type & MSR_TYPE_W) 4036 vmx_set_msr_bitmap_write(msr_bitmap, msr); 4037 } 4038 4039 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu) 4040 { 4041 /* 4042 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves 4043 * of the MSR bitmap. KVM emulates APIC registers up through 0x3f0, 4044 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits. 4045 */ 4046 const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG; 4047 const int write_idx = read_idx + (0x800 / sizeof(u64)); 4048 struct vcpu_vmx *vmx = to_vmx(vcpu); 4049 u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap; 4050 u8 mode; 4051 4052 if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu))) 4053 return; 4054 4055 if (cpu_has_secondary_exec_ctrls() && 4056 (secondary_exec_controls_get(vmx) & 4057 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { 4058 mode = MSR_BITMAP_MODE_X2APIC; 4059 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) 4060 mode |= MSR_BITMAP_MODE_X2APIC_APICV; 4061 } else { 4062 mode = 0; 4063 } 4064 4065 if (mode == vmx->x2apic_msr_bitmap_mode) 4066 return; 4067 4068 vmx->x2apic_msr_bitmap_mode = mode; 4069 4070 /* 4071 * Reset the bitmap for MSRs 0x800 - 0x83f. Leave AMD's uber-extended 4072 * registers (0x840 and above) intercepted, KVM doesn't support them. 4073 * Intercept all writes by default and poke holes as needed. Pass 4074 * through reads for all valid registers by default in x2APIC+APICv 4075 * mode, only the current timer count needs on-demand emulation by KVM. 4076 */ 4077 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) 4078 msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic); 4079 else 4080 msr_bitmap[read_idx] = ~0ull; 4081 msr_bitmap[write_idx] = ~0ull; 4082 4083 /* 4084 * TPR reads and writes can be virtualized even if virtual interrupt 4085 * delivery is not in use. 4086 */ 4087 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW, 4088 !(mode & MSR_BITMAP_MODE_X2APIC)); 4089 4090 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { 4091 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW); 4092 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); 4093 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); 4094 if (enable_ipiv) 4095 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW); 4096 } 4097 } 4098 4099 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu) 4100 { 4101 struct vcpu_vmx *vmx = to_vmx(vcpu); 4102 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 4103 u32 i; 4104 4105 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag); 4106 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag); 4107 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag); 4108 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag); 4109 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) { 4110 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); 4111 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); 4112 } 4113 } 4114 4115 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 4116 { 4117 struct vcpu_vmx *vmx = to_vmx(vcpu); 4118 void *vapic_page; 4119 u32 vppr; 4120 int rvi; 4121 4122 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) || 4123 !nested_cpu_has_vid(get_vmcs12(vcpu)) || 4124 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn)) 4125 return false; 4126 4127 rvi = vmx_get_rvi(); 4128 4129 vapic_page = vmx->nested.virtual_apic_map.hva; 4130 vppr = *((u32 *)(vapic_page + APIC_PROCPRI)); 4131 4132 return ((rvi & 0xf0) > (vppr & 0xf0)); 4133 } 4134 4135 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu) 4136 { 4137 struct vcpu_vmx *vmx = to_vmx(vcpu); 4138 u32 i; 4139 4140 /* 4141 * Redo intercept permissions for MSRs that KVM is passing through to 4142 * the guest. Disabling interception will check the new MSR filter and 4143 * ensure that KVM enables interception if usersepace wants to filter 4144 * the MSR. MSRs that KVM is already intercepting don't need to be 4145 * refreshed since KVM is going to intercept them regardless of what 4146 * userspace wants. 4147 */ 4148 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) { 4149 u32 msr = vmx_possible_passthrough_msrs[i]; 4150 4151 if (!test_bit(i, vmx->shadow_msr_intercept.read)) 4152 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R); 4153 4154 if (!test_bit(i, vmx->shadow_msr_intercept.write)) 4155 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W); 4156 } 4157 4158 /* PT MSRs can be passed through iff PT is exposed to the guest. */ 4159 if (vmx_pt_mode_is_host_guest()) 4160 pt_update_intercept_for_msr(vcpu); 4161 } 4162 4163 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, 4164 int pi_vec) 4165 { 4166 #ifdef CONFIG_SMP 4167 if (vcpu->mode == IN_GUEST_MODE) { 4168 /* 4169 * The vector of the virtual has already been set in the PIR. 4170 * Send a notification event to deliver the virtual interrupt 4171 * unless the vCPU is the currently running vCPU, i.e. the 4172 * event is being sent from a fastpath VM-Exit handler, in 4173 * which case the PIR will be synced to the vIRR before 4174 * re-entering the guest. 4175 * 4176 * When the target is not the running vCPU, the following 4177 * possibilities emerge: 4178 * 4179 * Case 1: vCPU stays in non-root mode. Sending a notification 4180 * event posts the interrupt to the vCPU. 4181 * 4182 * Case 2: vCPU exits to root mode and is still runnable. The 4183 * PIR will be synced to the vIRR before re-entering the guest. 4184 * Sending a notification event is ok as the host IRQ handler 4185 * will ignore the spurious event. 4186 * 4187 * Case 3: vCPU exits to root mode and is blocked. vcpu_block() 4188 * has already synced PIR to vIRR and never blocks the vCPU if 4189 * the vIRR is not empty. Therefore, a blocked vCPU here does 4190 * not wait for any requested interrupts in PIR, and sending a 4191 * notification event also results in a benign, spurious event. 4192 */ 4193 4194 if (vcpu != kvm_get_running_vcpu()) 4195 __apic_send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); 4196 return; 4197 } 4198 #endif 4199 /* 4200 * The vCPU isn't in the guest; wake the vCPU in case it is blocking, 4201 * otherwise do nothing as KVM will grab the highest priority pending 4202 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest(). 4203 */ 4204 kvm_vcpu_wake_up(vcpu); 4205 } 4206 4207 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, 4208 int vector) 4209 { 4210 struct vcpu_vmx *vmx = to_vmx(vcpu); 4211 4212 if (is_guest_mode(vcpu) && 4213 vector == vmx->nested.posted_intr_nv) { 4214 /* 4215 * If a posted intr is not recognized by hardware, 4216 * we will accomplish it in the next vmentry. 4217 */ 4218 vmx->nested.pi_pending = true; 4219 kvm_make_request(KVM_REQ_EVENT, vcpu); 4220 4221 /* 4222 * This pairs with the smp_mb_*() after setting vcpu->mode in 4223 * vcpu_enter_guest() to guarantee the vCPU sees the event 4224 * request if triggering a posted interrupt "fails" because 4225 * vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as 4226 * the smb_wmb() in kvm_make_request() only ensures everything 4227 * done before making the request is visible when the request 4228 * is visible, it doesn't ensure ordering between the store to 4229 * vcpu->requests and the load from vcpu->mode. 4230 */ 4231 smp_mb__after_atomic(); 4232 4233 /* the PIR and ON have been set by L1. */ 4234 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR); 4235 return 0; 4236 } 4237 return -1; 4238 } 4239 /* 4240 * Send interrupt to vcpu via posted interrupt way. 4241 * 1. If target vcpu is running(non-root mode), send posted interrupt 4242 * notification to vcpu and hardware will sync PIR to vIRR atomically. 4243 * 2. If target vcpu isn't running(root mode), kick it to pick up the 4244 * interrupt from PIR in next vmentry. 4245 */ 4246 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) 4247 { 4248 struct vcpu_vmx *vmx = to_vmx(vcpu); 4249 int r; 4250 4251 r = vmx_deliver_nested_posted_interrupt(vcpu, vector); 4252 if (!r) 4253 return 0; 4254 4255 /* Note, this is called iff the local APIC is in-kernel. */ 4256 if (!vcpu->arch.apic->apicv_active) 4257 return -1; 4258 4259 if (pi_test_and_set_pir(vector, &vmx->pi_desc)) 4260 return 0; 4261 4262 /* If a previous notification has sent the IPI, nothing to do. */ 4263 if (pi_test_and_set_on(&vmx->pi_desc)) 4264 return 0; 4265 4266 /* 4267 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*() 4268 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is 4269 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a 4270 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE. 4271 */ 4272 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR); 4273 return 0; 4274 } 4275 4276 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 4277 int trig_mode, int vector) 4278 { 4279 struct kvm_vcpu *vcpu = apic->vcpu; 4280 4281 if (vmx_deliver_posted_interrupt(vcpu, vector)) { 4282 kvm_lapic_set_irr(vector, apic); 4283 kvm_make_request(KVM_REQ_EVENT, vcpu); 4284 kvm_vcpu_kick(vcpu); 4285 } else { 4286 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, 4287 trig_mode, vector); 4288 } 4289 } 4290 4291 /* 4292 * Set up the vmcs's constant host-state fields, i.e., host-state fields that 4293 * will not change in the lifetime of the guest. 4294 * Note that host-state that does change is set elsewhere. E.g., host-state 4295 * that is set differently for each CPU is set in vmx_vcpu_load(), not here. 4296 */ 4297 void vmx_set_constant_host_state(struct vcpu_vmx *vmx) 4298 { 4299 u32 low32, high32; 4300 unsigned long tmpl; 4301 unsigned long cr0, cr3, cr4; 4302 4303 cr0 = read_cr0(); 4304 WARN_ON(cr0 & X86_CR0_TS); 4305 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ 4306 4307 /* 4308 * Save the most likely value for this task's CR3 in the VMCS. 4309 * We can't use __get_current_cr3_fast() because we're not atomic. 4310 */ 4311 cr3 = __read_cr3(); 4312 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ 4313 vmx->loaded_vmcs->host_state.cr3 = cr3; 4314 4315 /* Save the most likely value for this task's CR4 in the VMCS. */ 4316 cr4 = cr4_read_shadow(); 4317 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ 4318 vmx->loaded_vmcs->host_state.cr4 = cr4; 4319 4320 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ 4321 #ifdef CONFIG_X86_64 4322 /* 4323 * Load null selectors, so we can avoid reloading them in 4324 * vmx_prepare_switch_to_host(), in case userspace uses 4325 * the null selectors too (the expected case). 4326 */ 4327 vmcs_write16(HOST_DS_SELECTOR, 0); 4328 vmcs_write16(HOST_ES_SELECTOR, 0); 4329 #else 4330 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4331 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4332 #endif 4333 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4334 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ 4335 4336 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */ 4337 4338 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ 4339 4340 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); 4341 vmcs_write32(HOST_IA32_SYSENTER_CS, low32); 4342 4343 /* 4344 * SYSENTER is used for 32-bit system calls on either 32-bit or 4345 * 64-bit kernels. It is always zero If neither is allowed, otherwise 4346 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may 4347 * have already done so!). 4348 */ 4349 if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32)) 4350 vmcs_writel(HOST_IA32_SYSENTER_ESP, 0); 4351 4352 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); 4353 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ 4354 4355 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { 4356 rdmsr(MSR_IA32_CR_PAT, low32, high32); 4357 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); 4358 } 4359 4360 if (cpu_has_load_ia32_efer()) 4361 vmcs_write64(HOST_IA32_EFER, host_efer); 4362 } 4363 4364 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) 4365 { 4366 struct kvm_vcpu *vcpu = &vmx->vcpu; 4367 4368 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS & 4369 ~vcpu->arch.cr4_guest_rsvd_bits; 4370 if (!enable_ept) { 4371 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS; 4372 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS; 4373 } 4374 if (is_guest_mode(&vmx->vcpu)) 4375 vcpu->arch.cr4_guest_owned_bits &= 4376 ~get_vmcs12(vcpu)->cr4_guest_host_mask; 4377 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits); 4378 } 4379 4380 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) 4381 { 4382 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; 4383 4384 if (!kvm_vcpu_apicv_active(&vmx->vcpu)) 4385 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; 4386 4387 if (!enable_vnmi) 4388 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; 4389 4390 if (!enable_preemption_timer) 4391 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 4392 4393 return pin_based_exec_ctrl; 4394 } 4395 4396 static u32 vmx_vmentry_ctrl(void) 4397 { 4398 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl; 4399 4400 if (vmx_pt_mode_is_system()) 4401 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP | 4402 VM_ENTRY_LOAD_IA32_RTIT_CTL); 4403 /* 4404 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically. 4405 */ 4406 vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | 4407 VM_ENTRY_LOAD_IA32_EFER | 4408 VM_ENTRY_IA32E_MODE); 4409 4410 if (cpu_has_perf_global_ctrl_bug()) 4411 vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; 4412 4413 return vmentry_ctrl; 4414 } 4415 4416 static u32 vmx_vmexit_ctrl(void) 4417 { 4418 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl; 4419 4420 /* 4421 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for 4422 * nested virtualization and thus allowed to be set in vmcs12. 4423 */ 4424 vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER | 4425 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER); 4426 4427 if (vmx_pt_mode_is_system()) 4428 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP | 4429 VM_EXIT_CLEAR_IA32_RTIT_CTL); 4430 4431 if (cpu_has_perf_global_ctrl_bug()) 4432 vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; 4433 4434 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ 4435 return vmexit_ctrl & 4436 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER); 4437 } 4438 4439 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) 4440 { 4441 struct vcpu_vmx *vmx = to_vmx(vcpu); 4442 4443 if (is_guest_mode(vcpu)) { 4444 vmx->nested.update_vmcs01_apicv_status = true; 4445 return; 4446 } 4447 4448 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4449 4450 if (kvm_vcpu_apicv_active(vcpu)) { 4451 secondary_exec_controls_setbit(vmx, 4452 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4453 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4454 if (enable_ipiv) 4455 tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT); 4456 } else { 4457 secondary_exec_controls_clearbit(vmx, 4458 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4459 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4460 if (enable_ipiv) 4461 tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT); 4462 } 4463 4464 vmx_update_msr_bitmap_x2apic(vcpu); 4465 } 4466 4467 static u32 vmx_exec_control(struct vcpu_vmx *vmx) 4468 { 4469 u32 exec_control = vmcs_config.cpu_based_exec_ctrl; 4470 4471 /* 4472 * Not used by KVM, but fully supported for nesting, i.e. are allowed in 4473 * vmcs12 and propagated to vmcs02 when set in vmcs12. 4474 */ 4475 exec_control &= ~(CPU_BASED_RDTSC_EXITING | 4476 CPU_BASED_USE_IO_BITMAPS | 4477 CPU_BASED_MONITOR_TRAP_FLAG | 4478 CPU_BASED_PAUSE_EXITING); 4479 4480 /* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */ 4481 exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING | 4482 CPU_BASED_NMI_WINDOW_EXITING); 4483 4484 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) 4485 exec_control &= ~CPU_BASED_MOV_DR_EXITING; 4486 4487 if (!cpu_need_tpr_shadow(&vmx->vcpu)) 4488 exec_control &= ~CPU_BASED_TPR_SHADOW; 4489 4490 #ifdef CONFIG_X86_64 4491 if (exec_control & CPU_BASED_TPR_SHADOW) 4492 exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING | 4493 CPU_BASED_CR8_STORE_EXITING); 4494 else 4495 exec_control |= CPU_BASED_CR8_STORE_EXITING | 4496 CPU_BASED_CR8_LOAD_EXITING; 4497 #endif 4498 /* No need to intercept CR3 access or INVPLG when using EPT. */ 4499 if (enable_ept) 4500 exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | 4501 CPU_BASED_CR3_STORE_EXITING | 4502 CPU_BASED_INVLPG_EXITING); 4503 if (kvm_mwait_in_guest(vmx->vcpu.kvm)) 4504 exec_control &= ~(CPU_BASED_MWAIT_EXITING | 4505 CPU_BASED_MONITOR_EXITING); 4506 if (kvm_hlt_in_guest(vmx->vcpu.kvm)) 4507 exec_control &= ~CPU_BASED_HLT_EXITING; 4508 return exec_control; 4509 } 4510 4511 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx) 4512 { 4513 u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl; 4514 4515 /* 4516 * IPI virtualization relies on APICv. Disable IPI virtualization if 4517 * APICv is inhibited. 4518 */ 4519 if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu)) 4520 exec_control &= ~TERTIARY_EXEC_IPI_VIRT; 4521 4522 return exec_control; 4523 } 4524 4525 /* 4526 * Adjust a single secondary execution control bit to intercept/allow an 4527 * instruction in the guest. This is usually done based on whether or not a 4528 * feature has been exposed to the guest in order to correctly emulate faults. 4529 */ 4530 static inline void 4531 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control, 4532 u32 control, bool enabled, bool exiting) 4533 { 4534 /* 4535 * If the control is for an opt-in feature, clear the control if the 4536 * feature is not exposed to the guest, i.e. not enabled. If the 4537 * control is opt-out, i.e. an exiting control, clear the control if 4538 * the feature _is_ exposed to the guest, i.e. exiting/interception is 4539 * disabled for the associated instruction. Note, the caller is 4540 * responsible presetting exec_control to set all supported bits. 4541 */ 4542 if (enabled == exiting) 4543 *exec_control &= ~control; 4544 4545 /* 4546 * Update the nested MSR settings so that a nested VMM can/can't set 4547 * controls for features that are/aren't exposed to the guest. 4548 */ 4549 if (nested) { 4550 /* 4551 * All features that can be added or removed to VMX MSRs must 4552 * be supported in the first place for nested virtualization. 4553 */ 4554 if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control))) 4555 enabled = false; 4556 4557 if (enabled) 4558 vmx->nested.msrs.secondary_ctls_high |= control; 4559 else 4560 vmx->nested.msrs.secondary_ctls_high &= ~control; 4561 } 4562 } 4563 4564 /* 4565 * Wrapper macro for the common case of adjusting a secondary execution control 4566 * based on a single guest CPUID bit, with a dedicated feature bit. This also 4567 * verifies that the control is actually supported by KVM and hardware. 4568 */ 4569 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \ 4570 ({ \ 4571 struct kvm_vcpu *__vcpu = &(vmx)->vcpu; \ 4572 bool __enabled; \ 4573 \ 4574 if (cpu_has_vmx_##name()) { \ 4575 if (kvm_is_governed_feature(X86_FEATURE_##feat_name)) \ 4576 __enabled = guest_can_use(__vcpu, X86_FEATURE_##feat_name); \ 4577 else \ 4578 __enabled = guest_cpuid_has(__vcpu, X86_FEATURE_##feat_name); \ 4579 vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\ 4580 __enabled, exiting); \ 4581 } \ 4582 }) 4583 4584 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */ 4585 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \ 4586 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false) 4587 4588 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \ 4589 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true) 4590 4591 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx) 4592 { 4593 struct kvm_vcpu *vcpu = &vmx->vcpu; 4594 4595 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; 4596 4597 if (vmx_pt_mode_is_system()) 4598 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); 4599 if (!cpu_need_virtualize_apic_accesses(vcpu)) 4600 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 4601 if (vmx->vpid == 0) 4602 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; 4603 if (!enable_ept) { 4604 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; 4605 enable_unrestricted_guest = 0; 4606 } 4607 if (!enable_unrestricted_guest) 4608 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; 4609 if (kvm_pause_in_guest(vmx->vcpu.kvm)) 4610 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; 4611 if (!kvm_vcpu_apicv_active(vcpu)) 4612 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | 4613 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4614 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 4615 4616 /* 4617 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's 4618 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2. 4619 */ 4620 exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC; 4621 4622 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, 4623 * in vmx_set_cr4. */ 4624 exec_control &= ~SECONDARY_EXEC_DESC; 4625 4626 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD 4627 (handle_vmptrld). 4628 We can NOT enable shadow_vmcs here because we don't have yet 4629 a current VMCS12 4630 */ 4631 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; 4632 4633 /* 4634 * PML is enabled/disabled when dirty logging of memsmlots changes, but 4635 * it needs to be set here when dirty logging is already active, e.g. 4636 * if this vCPU was created after dirty logging was enabled. 4637 */ 4638 if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging)) 4639 exec_control &= ~SECONDARY_EXEC_ENABLE_PML; 4640 4641 vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES); 4642 4643 /* 4644 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either 4645 * feature is exposed to the guest. This creates a virtualization hole 4646 * if both are supported in hardware but only one is exposed to the 4647 * guest, but letting the guest execute RDTSCP or RDPID when either one 4648 * is advertised is preferable to emulating the advertised instruction 4649 * in KVM on #UD, and obviously better than incorrectly injecting #UD. 4650 */ 4651 if (cpu_has_vmx_rdtscp()) { 4652 bool rdpid_or_rdtscp_enabled = 4653 guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) || 4654 guest_cpuid_has(vcpu, X86_FEATURE_RDPID); 4655 4656 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4657 SECONDARY_EXEC_ENABLE_RDTSCP, 4658 rdpid_or_rdtscp_enabled, false); 4659 } 4660 4661 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID); 4662 4663 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND); 4664 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED); 4665 4666 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG, 4667 ENABLE_USR_WAIT_PAUSE, false); 4668 4669 if (!vcpu->kvm->arch.bus_lock_detection_enabled) 4670 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION; 4671 4672 if (!kvm_notify_vmexit_enabled(vcpu->kvm)) 4673 exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING; 4674 4675 return exec_control; 4676 } 4677 4678 static inline int vmx_get_pid_table_order(struct kvm *kvm) 4679 { 4680 return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table)); 4681 } 4682 4683 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm) 4684 { 4685 struct page *pages; 4686 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 4687 4688 if (!irqchip_in_kernel(kvm) || !enable_ipiv) 4689 return 0; 4690 4691 if (kvm_vmx->pid_table) 4692 return 0; 4693 4694 pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO, 4695 vmx_get_pid_table_order(kvm)); 4696 if (!pages) 4697 return -ENOMEM; 4698 4699 kvm_vmx->pid_table = (void *)page_address(pages); 4700 return 0; 4701 } 4702 4703 static int vmx_vcpu_precreate(struct kvm *kvm) 4704 { 4705 return vmx_alloc_ipiv_pid_table(kvm); 4706 } 4707 4708 #define VMX_XSS_EXIT_BITMAP 0 4709 4710 static void init_vmcs(struct vcpu_vmx *vmx) 4711 { 4712 struct kvm *kvm = vmx->vcpu.kvm; 4713 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 4714 4715 if (nested) 4716 nested_vmx_set_vmcs_shadowing_bitmap(); 4717 4718 if (cpu_has_vmx_msr_bitmap()) 4719 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); 4720 4721 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */ 4722 4723 /* Control */ 4724 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4725 4726 exec_controls_set(vmx, vmx_exec_control(vmx)); 4727 4728 if (cpu_has_secondary_exec_ctrls()) 4729 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx)); 4730 4731 if (cpu_has_tertiary_exec_ctrls()) 4732 tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx)); 4733 4734 if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) { 4735 vmcs_write64(EOI_EXIT_BITMAP0, 0); 4736 vmcs_write64(EOI_EXIT_BITMAP1, 0); 4737 vmcs_write64(EOI_EXIT_BITMAP2, 0); 4738 vmcs_write64(EOI_EXIT_BITMAP3, 0); 4739 4740 vmcs_write16(GUEST_INTR_STATUS, 0); 4741 4742 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); 4743 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); 4744 } 4745 4746 if (vmx_can_use_ipiv(&vmx->vcpu)) { 4747 vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table)); 4748 vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1); 4749 } 4750 4751 if (!kvm_pause_in_guest(kvm)) { 4752 vmcs_write32(PLE_GAP, ple_gap); 4753 vmx->ple_window = ple_window; 4754 vmx->ple_window_dirty = true; 4755 } 4756 4757 if (kvm_notify_vmexit_enabled(kvm)) 4758 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window); 4759 4760 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); 4761 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); 4762 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ 4763 4764 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ 4765 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ 4766 vmx_set_constant_host_state(vmx); 4767 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ 4768 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ 4769 4770 if (cpu_has_vmx_vmfunc()) 4771 vmcs_write64(VM_FUNCTION_CONTROL, 0); 4772 4773 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); 4774 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); 4775 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); 4776 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); 4777 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); 4778 4779 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 4780 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); 4781 4782 vm_exit_controls_set(vmx, vmx_vmexit_ctrl()); 4783 4784 /* 22.2.1, 20.8.1 */ 4785 vm_entry_controls_set(vmx, vmx_vmentry_ctrl()); 4786 4787 vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits(); 4788 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits); 4789 4790 set_cr4_guest_host_mask(vmx); 4791 4792 if (vmx->vpid != 0) 4793 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); 4794 4795 if (cpu_has_vmx_xsaves()) 4796 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); 4797 4798 if (enable_pml) { 4799 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); 4800 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 4801 } 4802 4803 vmx_write_encls_bitmap(&vmx->vcpu, NULL); 4804 4805 if (vmx_pt_mode_is_host_guest()) { 4806 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); 4807 /* Bit[6~0] are forced to 1, writes are ignored. */ 4808 vmx->pt_desc.guest.output_mask = 0x7F; 4809 vmcs_write64(GUEST_IA32_RTIT_CTL, 0); 4810 } 4811 4812 vmcs_write32(GUEST_SYSENTER_CS, 0); 4813 vmcs_writel(GUEST_SYSENTER_ESP, 0); 4814 vmcs_writel(GUEST_SYSENTER_EIP, 0); 4815 vmcs_write64(GUEST_IA32_DEBUGCTL, 0); 4816 4817 if (cpu_has_vmx_tpr_shadow()) { 4818 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); 4819 if (cpu_need_tpr_shadow(&vmx->vcpu)) 4820 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 4821 __pa(vmx->vcpu.arch.apic->regs)); 4822 vmcs_write32(TPR_THRESHOLD, 0); 4823 } 4824 4825 vmx_setup_uret_msrs(vmx); 4826 } 4827 4828 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu) 4829 { 4830 struct vcpu_vmx *vmx = to_vmx(vcpu); 4831 4832 init_vmcs(vmx); 4833 4834 if (nested) 4835 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs)); 4836 4837 vcpu_setup_sgx_lepubkeyhash(vcpu); 4838 4839 vmx->nested.posted_intr_nv = -1; 4840 vmx->nested.vmxon_ptr = INVALID_GPA; 4841 vmx->nested.current_vmptr = INVALID_GPA; 4842 4843 #ifdef CONFIG_KVM_HYPERV 4844 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID; 4845 #endif 4846 4847 vcpu->arch.microcode_version = 0x100000000ULL; 4848 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED; 4849 4850 /* 4851 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR 4852 * or POSTED_INTR_WAKEUP_VECTOR. 4853 */ 4854 vmx->pi_desc.nv = POSTED_INTR_VECTOR; 4855 vmx->pi_desc.sn = 1; 4856 } 4857 4858 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 4859 { 4860 struct vcpu_vmx *vmx = to_vmx(vcpu); 4861 4862 if (!init_event) 4863 __vmx_vcpu_reset(vcpu); 4864 4865 vmx->rmode.vm86_active = 0; 4866 vmx->spec_ctrl = 0; 4867 4868 vmx->msr_ia32_umwait_control = 0; 4869 4870 vmx->hv_deadline_tsc = -1; 4871 kvm_set_cr8(vcpu, 0); 4872 4873 vmx_segment_cache_clear(vmx); 4874 kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS); 4875 4876 seg_setup(VCPU_SREG_CS); 4877 vmcs_write16(GUEST_CS_SELECTOR, 0xf000); 4878 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); 4879 4880 seg_setup(VCPU_SREG_DS); 4881 seg_setup(VCPU_SREG_ES); 4882 seg_setup(VCPU_SREG_FS); 4883 seg_setup(VCPU_SREG_GS); 4884 seg_setup(VCPU_SREG_SS); 4885 4886 vmcs_write16(GUEST_TR_SELECTOR, 0); 4887 vmcs_writel(GUEST_TR_BASE, 0); 4888 vmcs_write32(GUEST_TR_LIMIT, 0xffff); 4889 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 4890 4891 vmcs_write16(GUEST_LDTR_SELECTOR, 0); 4892 vmcs_writel(GUEST_LDTR_BASE, 0); 4893 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); 4894 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); 4895 4896 vmcs_writel(GUEST_GDTR_BASE, 0); 4897 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); 4898 4899 vmcs_writel(GUEST_IDTR_BASE, 0); 4900 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); 4901 4902 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 4903 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); 4904 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); 4905 if (kvm_mpx_supported()) 4906 vmcs_write64(GUEST_BNDCFGS, 0); 4907 4908 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ 4909 4910 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 4911 4912 vpid_sync_context(vmx->vpid); 4913 4914 vmx_update_fb_clear_dis(vcpu, vmx); 4915 } 4916 4917 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu) 4918 { 4919 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 4920 } 4921 4922 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu) 4923 { 4924 if (!enable_vnmi || 4925 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { 4926 vmx_enable_irq_window(vcpu); 4927 return; 4928 } 4929 4930 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 4931 } 4932 4933 static void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) 4934 { 4935 struct vcpu_vmx *vmx = to_vmx(vcpu); 4936 uint32_t intr; 4937 int irq = vcpu->arch.interrupt.nr; 4938 4939 trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected); 4940 4941 ++vcpu->stat.irq_injections; 4942 if (vmx->rmode.vm86_active) { 4943 int inc_eip = 0; 4944 if (vcpu->arch.interrupt.soft) 4945 inc_eip = vcpu->arch.event_exit_inst_len; 4946 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip); 4947 return; 4948 } 4949 intr = irq | INTR_INFO_VALID_MASK; 4950 if (vcpu->arch.interrupt.soft) { 4951 intr |= INTR_TYPE_SOFT_INTR; 4952 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 4953 vmx->vcpu.arch.event_exit_inst_len); 4954 } else 4955 intr |= INTR_TYPE_EXT_INTR; 4956 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); 4957 4958 vmx_clear_hlt(vcpu); 4959 } 4960 4961 static void vmx_inject_nmi(struct kvm_vcpu *vcpu) 4962 { 4963 struct vcpu_vmx *vmx = to_vmx(vcpu); 4964 4965 if (!enable_vnmi) { 4966 /* 4967 * Tracking the NMI-blocked state in software is built upon 4968 * finding the next open IRQ window. This, in turn, depends on 4969 * well-behaving guests: They have to keep IRQs disabled at 4970 * least as long as the NMI handler runs. Otherwise we may 4971 * cause NMI nesting, maybe breaking the guest. But as this is 4972 * highly unlikely, we can live with the residual risk. 4973 */ 4974 vmx->loaded_vmcs->soft_vnmi_blocked = 1; 4975 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4976 } 4977 4978 ++vcpu->stat.nmi_injections; 4979 vmx->loaded_vmcs->nmi_known_unmasked = false; 4980 4981 if (vmx->rmode.vm86_active) { 4982 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0); 4983 return; 4984 } 4985 4986 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 4987 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); 4988 4989 vmx_clear_hlt(vcpu); 4990 } 4991 4992 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) 4993 { 4994 struct vcpu_vmx *vmx = to_vmx(vcpu); 4995 bool masked; 4996 4997 if (!enable_vnmi) 4998 return vmx->loaded_vmcs->soft_vnmi_blocked; 4999 if (vmx->loaded_vmcs->nmi_known_unmasked) 5000 return false; 5001 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; 5002 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 5003 return masked; 5004 } 5005 5006 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 5007 { 5008 struct vcpu_vmx *vmx = to_vmx(vcpu); 5009 5010 if (!enable_vnmi) { 5011 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { 5012 vmx->loaded_vmcs->soft_vnmi_blocked = masked; 5013 vmx->loaded_vmcs->vnmi_blocked_time = 0; 5014 } 5015 } else { 5016 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 5017 if (masked) 5018 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5019 GUEST_INTR_STATE_NMI); 5020 else 5021 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, 5022 GUEST_INTR_STATE_NMI); 5023 } 5024 } 5025 5026 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu) 5027 { 5028 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 5029 return false; 5030 5031 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) 5032 return true; 5033 5034 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5035 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI | 5036 GUEST_INTR_STATE_NMI)); 5037 } 5038 5039 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 5040 { 5041 if (to_vmx(vcpu)->nested.nested_run_pending) 5042 return -EBUSY; 5043 5044 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 5045 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 5046 return -EBUSY; 5047 5048 return !vmx_nmi_blocked(vcpu); 5049 } 5050 5051 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu) 5052 { 5053 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 5054 return false; 5055 5056 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) || 5057 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5058 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); 5059 } 5060 5061 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 5062 { 5063 if (to_vmx(vcpu)->nested.nested_run_pending) 5064 return -EBUSY; 5065 5066 /* 5067 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 5068 * e.g. if the IRQ arrived asynchronously after checking nested events. 5069 */ 5070 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 5071 return -EBUSY; 5072 5073 return !vmx_interrupt_blocked(vcpu); 5074 } 5075 5076 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) 5077 { 5078 void __user *ret; 5079 5080 if (enable_unrestricted_guest) 5081 return 0; 5082 5083 mutex_lock(&kvm->slots_lock); 5084 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, 5085 PAGE_SIZE * 3); 5086 mutex_unlock(&kvm->slots_lock); 5087 5088 if (IS_ERR(ret)) 5089 return PTR_ERR(ret); 5090 5091 to_kvm_vmx(kvm)->tss_addr = addr; 5092 5093 return init_rmode_tss(kvm, ret); 5094 } 5095 5096 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 5097 { 5098 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; 5099 return 0; 5100 } 5101 5102 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) 5103 { 5104 switch (vec) { 5105 case BP_VECTOR: 5106 /* 5107 * Update instruction length as we may reinject the exception 5108 * from user space while in guest debugging mode. 5109 */ 5110 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = 5111 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 5112 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 5113 return false; 5114 fallthrough; 5115 case DB_VECTOR: 5116 return !(vcpu->guest_debug & 5117 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)); 5118 case DE_VECTOR: 5119 case OF_VECTOR: 5120 case BR_VECTOR: 5121 case UD_VECTOR: 5122 case DF_VECTOR: 5123 case SS_VECTOR: 5124 case GP_VECTOR: 5125 case MF_VECTOR: 5126 return true; 5127 } 5128 return false; 5129 } 5130 5131 static int handle_rmode_exception(struct kvm_vcpu *vcpu, 5132 int vec, u32 err_code) 5133 { 5134 /* 5135 * Instruction with address size override prefix opcode 0x67 5136 * Cause the #SS fault with 0 error code in VM86 mode. 5137 */ 5138 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { 5139 if (kvm_emulate_instruction(vcpu, 0)) { 5140 if (vcpu->arch.halt_request) { 5141 vcpu->arch.halt_request = 0; 5142 return kvm_emulate_halt_noskip(vcpu); 5143 } 5144 return 1; 5145 } 5146 return 0; 5147 } 5148 5149 /* 5150 * Forward all other exceptions that are valid in real mode. 5151 * FIXME: Breaks guest debugging in real mode, needs to be fixed with 5152 * the required debugging infrastructure rework. 5153 */ 5154 kvm_queue_exception(vcpu, vec); 5155 return 1; 5156 } 5157 5158 static int handle_machine_check(struct kvm_vcpu *vcpu) 5159 { 5160 /* handled by vmx_vcpu_run() */ 5161 return 1; 5162 } 5163 5164 /* 5165 * If the host has split lock detection disabled, then #AC is 5166 * unconditionally injected into the guest, which is the pre split lock 5167 * detection behaviour. 5168 * 5169 * If the host has split lock detection enabled then #AC is 5170 * only injected into the guest when: 5171 * - Guest CPL == 3 (user mode) 5172 * - Guest has #AC detection enabled in CR0 5173 * - Guest EFLAGS has AC bit set 5174 */ 5175 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu) 5176 { 5177 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 5178 return true; 5179 5180 return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) && 5181 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC); 5182 } 5183 5184 static int handle_exception_nmi(struct kvm_vcpu *vcpu) 5185 { 5186 struct vcpu_vmx *vmx = to_vmx(vcpu); 5187 struct kvm_run *kvm_run = vcpu->run; 5188 u32 intr_info, ex_no, error_code; 5189 unsigned long cr2, dr6; 5190 u32 vect_info; 5191 5192 vect_info = vmx->idt_vectoring_info; 5193 intr_info = vmx_get_intr_info(vcpu); 5194 5195 /* 5196 * Machine checks are handled by handle_exception_irqoff(), or by 5197 * vmx_vcpu_run() if a #MC occurs on VM-Entry. NMIs are handled by 5198 * vmx_vcpu_enter_exit(). 5199 */ 5200 if (is_machine_check(intr_info) || is_nmi(intr_info)) 5201 return 1; 5202 5203 /* 5204 * Queue the exception here instead of in handle_nm_fault_irqoff(). 5205 * This ensures the nested_vmx check is not skipped so vmexit can 5206 * be reflected to L1 (when it intercepts #NM) before reaching this 5207 * point. 5208 */ 5209 if (is_nm_fault(intr_info)) { 5210 kvm_queue_exception(vcpu, NM_VECTOR); 5211 return 1; 5212 } 5213 5214 if (is_invalid_opcode(intr_info)) 5215 return handle_ud(vcpu); 5216 5217 error_code = 0; 5218 if (intr_info & INTR_INFO_DELIVER_CODE_MASK) 5219 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 5220 5221 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { 5222 WARN_ON_ONCE(!enable_vmware_backdoor); 5223 5224 /* 5225 * VMware backdoor emulation on #GP interception only handles 5226 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero 5227 * error code on #GP. 5228 */ 5229 if (error_code) { 5230 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 5231 return 1; 5232 } 5233 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); 5234 } 5235 5236 /* 5237 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing 5238 * MMIO, it is better to report an internal error. 5239 * See the comments in vmx_handle_exit. 5240 */ 5241 if ((vect_info & VECTORING_INFO_VALID_MASK) && 5242 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { 5243 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5244 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; 5245 vcpu->run->internal.ndata = 4; 5246 vcpu->run->internal.data[0] = vect_info; 5247 vcpu->run->internal.data[1] = intr_info; 5248 vcpu->run->internal.data[2] = error_code; 5249 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu; 5250 return 0; 5251 } 5252 5253 if (is_page_fault(intr_info)) { 5254 cr2 = vmx_get_exit_qual(vcpu); 5255 if (enable_ept && !vcpu->arch.apf.host_apf_flags) { 5256 /* 5257 * EPT will cause page fault only if we need to 5258 * detect illegal GPAs. 5259 */ 5260 WARN_ON_ONCE(!allow_smaller_maxphyaddr); 5261 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code); 5262 return 1; 5263 } else 5264 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); 5265 } 5266 5267 ex_no = intr_info & INTR_INFO_VECTOR_MASK; 5268 5269 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) 5270 return handle_rmode_exception(vcpu, ex_no, error_code); 5271 5272 switch (ex_no) { 5273 case DB_VECTOR: 5274 dr6 = vmx_get_exit_qual(vcpu); 5275 if (!(vcpu->guest_debug & 5276 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { 5277 /* 5278 * If the #DB was due to ICEBP, a.k.a. INT1, skip the 5279 * instruction. ICEBP generates a trap-like #DB, but 5280 * despite its interception control being tied to #DB, 5281 * is an instruction intercept, i.e. the VM-Exit occurs 5282 * on the ICEBP itself. Use the inner "skip" helper to 5283 * avoid single-step #DB and MTF updates, as ICEBP is 5284 * higher priority. Note, skipping ICEBP still clears 5285 * STI and MOVSS blocking. 5286 * 5287 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS 5288 * if single-step is enabled in RFLAGS and STI or MOVSS 5289 * blocking is active, as the CPU doesn't set the bit 5290 * on VM-Exit due to #DB interception. VM-Entry has a 5291 * consistency check that a single-step #DB is pending 5292 * in this scenario as the previous instruction cannot 5293 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV 5294 * don't modify RFLAGS), therefore the one instruction 5295 * delay when activating single-step breakpoints must 5296 * have already expired. Note, the CPU sets/clears BS 5297 * as appropriate for all other VM-Exits types. 5298 */ 5299 if (is_icebp(intr_info)) 5300 WARN_ON(!skip_emulated_instruction(vcpu)); 5301 else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) && 5302 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5303 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS))) 5304 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 5305 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS); 5306 5307 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 5308 return 1; 5309 } 5310 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 5311 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); 5312 fallthrough; 5313 case BP_VECTOR: 5314 /* 5315 * Update instruction length as we may reinject #BP from 5316 * user space while in guest debugging mode. Reading it for 5317 * #DB as well causes no harm, it is not used in that case. 5318 */ 5319 vmx->vcpu.arch.event_exit_inst_len = 5320 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 5321 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5322 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5323 kvm_run->debug.arch.exception = ex_no; 5324 break; 5325 case AC_VECTOR: 5326 if (vmx_guest_inject_ac(vcpu)) { 5327 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); 5328 return 1; 5329 } 5330 5331 /* 5332 * Handle split lock. Depending on detection mode this will 5333 * either warn and disable split lock detection for this 5334 * task or force SIGBUS on it. 5335 */ 5336 if (handle_guest_split_lock(kvm_rip_read(vcpu))) 5337 return 1; 5338 fallthrough; 5339 default: 5340 kvm_run->exit_reason = KVM_EXIT_EXCEPTION; 5341 kvm_run->ex.exception = ex_no; 5342 kvm_run->ex.error_code = error_code; 5343 break; 5344 } 5345 return 0; 5346 } 5347 5348 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu) 5349 { 5350 ++vcpu->stat.irq_exits; 5351 return 1; 5352 } 5353 5354 static int handle_triple_fault(struct kvm_vcpu *vcpu) 5355 { 5356 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 5357 vcpu->mmio_needed = 0; 5358 return 0; 5359 } 5360 5361 static int handle_io(struct kvm_vcpu *vcpu) 5362 { 5363 unsigned long exit_qualification; 5364 int size, in, string; 5365 unsigned port; 5366 5367 exit_qualification = vmx_get_exit_qual(vcpu); 5368 string = (exit_qualification & 16) != 0; 5369 5370 ++vcpu->stat.io_exits; 5371 5372 if (string) 5373 return kvm_emulate_instruction(vcpu, 0); 5374 5375 port = exit_qualification >> 16; 5376 size = (exit_qualification & 7) + 1; 5377 in = (exit_qualification & 8) != 0; 5378 5379 return kvm_fast_pio(vcpu, size, port, in); 5380 } 5381 5382 static void 5383 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 5384 { 5385 /* 5386 * Patch in the VMCALL instruction: 5387 */ 5388 hypercall[0] = 0x0f; 5389 hypercall[1] = 0x01; 5390 hypercall[2] = 0xc1; 5391 } 5392 5393 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ 5394 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) 5395 { 5396 if (is_guest_mode(vcpu)) { 5397 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5398 unsigned long orig_val = val; 5399 5400 /* 5401 * We get here when L2 changed cr0 in a way that did not change 5402 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), 5403 * but did change L0 shadowed bits. So we first calculate the 5404 * effective cr0 value that L1 would like to write into the 5405 * hardware. It consists of the L2-owned bits from the new 5406 * value combined with the L1-owned bits from L1's guest_cr0. 5407 */ 5408 val = (val & ~vmcs12->cr0_guest_host_mask) | 5409 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); 5410 5411 if (kvm_set_cr0(vcpu, val)) 5412 return 1; 5413 vmcs_writel(CR0_READ_SHADOW, orig_val); 5414 return 0; 5415 } else { 5416 return kvm_set_cr0(vcpu, val); 5417 } 5418 } 5419 5420 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) 5421 { 5422 if (is_guest_mode(vcpu)) { 5423 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5424 unsigned long orig_val = val; 5425 5426 /* analogously to handle_set_cr0 */ 5427 val = (val & ~vmcs12->cr4_guest_host_mask) | 5428 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); 5429 if (kvm_set_cr4(vcpu, val)) 5430 return 1; 5431 vmcs_writel(CR4_READ_SHADOW, orig_val); 5432 return 0; 5433 } else 5434 return kvm_set_cr4(vcpu, val); 5435 } 5436 5437 static int handle_desc(struct kvm_vcpu *vcpu) 5438 { 5439 /* 5440 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this 5441 * and other code needs to be updated if UMIP can be guest owned. 5442 */ 5443 BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP); 5444 5445 WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP)); 5446 return kvm_emulate_instruction(vcpu, 0); 5447 } 5448 5449 static int handle_cr(struct kvm_vcpu *vcpu) 5450 { 5451 unsigned long exit_qualification, val; 5452 int cr; 5453 int reg; 5454 int err; 5455 int ret; 5456 5457 exit_qualification = vmx_get_exit_qual(vcpu); 5458 cr = exit_qualification & 15; 5459 reg = (exit_qualification >> 8) & 15; 5460 switch ((exit_qualification >> 4) & 3) { 5461 case 0: /* mov to cr */ 5462 val = kvm_register_read(vcpu, reg); 5463 trace_kvm_cr_write(cr, val); 5464 switch (cr) { 5465 case 0: 5466 err = handle_set_cr0(vcpu, val); 5467 return kvm_complete_insn_gp(vcpu, err); 5468 case 3: 5469 WARN_ON_ONCE(enable_unrestricted_guest); 5470 5471 err = kvm_set_cr3(vcpu, val); 5472 return kvm_complete_insn_gp(vcpu, err); 5473 case 4: 5474 err = handle_set_cr4(vcpu, val); 5475 return kvm_complete_insn_gp(vcpu, err); 5476 case 8: { 5477 u8 cr8_prev = kvm_get_cr8(vcpu); 5478 u8 cr8 = (u8)val; 5479 err = kvm_set_cr8(vcpu, cr8); 5480 ret = kvm_complete_insn_gp(vcpu, err); 5481 if (lapic_in_kernel(vcpu)) 5482 return ret; 5483 if (cr8_prev <= cr8) 5484 return ret; 5485 /* 5486 * TODO: we might be squashing a 5487 * KVM_GUESTDBG_SINGLESTEP-triggered 5488 * KVM_EXIT_DEBUG here. 5489 */ 5490 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 5491 return 0; 5492 } 5493 } 5494 break; 5495 case 2: /* clts */ 5496 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS"); 5497 return -EIO; 5498 case 1: /*mov from cr*/ 5499 switch (cr) { 5500 case 3: 5501 WARN_ON_ONCE(enable_unrestricted_guest); 5502 5503 val = kvm_read_cr3(vcpu); 5504 kvm_register_write(vcpu, reg, val); 5505 trace_kvm_cr_read(cr, val); 5506 return kvm_skip_emulated_instruction(vcpu); 5507 case 8: 5508 val = kvm_get_cr8(vcpu); 5509 kvm_register_write(vcpu, reg, val); 5510 trace_kvm_cr_read(cr, val); 5511 return kvm_skip_emulated_instruction(vcpu); 5512 } 5513 break; 5514 case 3: /* lmsw */ 5515 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; 5516 trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val)); 5517 kvm_lmsw(vcpu, val); 5518 5519 return kvm_skip_emulated_instruction(vcpu); 5520 default: 5521 break; 5522 } 5523 vcpu->run->exit_reason = 0; 5524 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", 5525 (int)(exit_qualification >> 4) & 3, cr); 5526 return 0; 5527 } 5528 5529 static int handle_dr(struct kvm_vcpu *vcpu) 5530 { 5531 unsigned long exit_qualification; 5532 int dr, dr7, reg; 5533 int err = 1; 5534 5535 exit_qualification = vmx_get_exit_qual(vcpu); 5536 dr = exit_qualification & DEBUG_REG_ACCESS_NUM; 5537 5538 /* First, if DR does not exist, trigger UD */ 5539 if (!kvm_require_dr(vcpu, dr)) 5540 return 1; 5541 5542 if (vmx_get_cpl(vcpu) > 0) 5543 goto out; 5544 5545 dr7 = vmcs_readl(GUEST_DR7); 5546 if (dr7 & DR7_GD) { 5547 /* 5548 * As the vm-exit takes precedence over the debug trap, we 5549 * need to emulate the latter, either for the host or the 5550 * guest debugging itself. 5551 */ 5552 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 5553 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW; 5554 vcpu->run->debug.arch.dr7 = dr7; 5555 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5556 vcpu->run->debug.arch.exception = DB_VECTOR; 5557 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 5558 return 0; 5559 } else { 5560 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD); 5561 return 1; 5562 } 5563 } 5564 5565 if (vcpu->guest_debug == 0) { 5566 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5567 5568 /* 5569 * No more DR vmexits; force a reload of the debug registers 5570 * and reenter on this instruction. The next vmexit will 5571 * retrieve the full state of the debug registers. 5572 */ 5573 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 5574 return 1; 5575 } 5576 5577 reg = DEBUG_REG_ACCESS_REG(exit_qualification); 5578 if (exit_qualification & TYPE_MOV_FROM_DR) { 5579 unsigned long val; 5580 5581 kvm_get_dr(vcpu, dr, &val); 5582 kvm_register_write(vcpu, reg, val); 5583 err = 0; 5584 } else { 5585 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); 5586 } 5587 5588 out: 5589 return kvm_complete_insn_gp(vcpu, err); 5590 } 5591 5592 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 5593 { 5594 get_debugreg(vcpu->arch.db[0], 0); 5595 get_debugreg(vcpu->arch.db[1], 1); 5596 get_debugreg(vcpu->arch.db[2], 2); 5597 get_debugreg(vcpu->arch.db[3], 3); 5598 get_debugreg(vcpu->arch.dr6, 6); 5599 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); 5600 5601 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 5602 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5603 5604 /* 5605 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees 5606 * a stale dr6 from the guest. 5607 */ 5608 set_debugreg(DR6_RESERVED, 6); 5609 } 5610 5611 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) 5612 { 5613 vmcs_writel(GUEST_DR7, val); 5614 } 5615 5616 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) 5617 { 5618 kvm_apic_update_ppr(vcpu); 5619 return 1; 5620 } 5621 5622 static int handle_interrupt_window(struct kvm_vcpu *vcpu) 5623 { 5624 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 5625 5626 kvm_make_request(KVM_REQ_EVENT, vcpu); 5627 5628 ++vcpu->stat.irq_window_exits; 5629 return 1; 5630 } 5631 5632 static int handle_invlpg(struct kvm_vcpu *vcpu) 5633 { 5634 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5635 5636 kvm_mmu_invlpg(vcpu, exit_qualification); 5637 return kvm_skip_emulated_instruction(vcpu); 5638 } 5639 5640 static int handle_apic_access(struct kvm_vcpu *vcpu) 5641 { 5642 if (likely(fasteoi)) { 5643 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5644 int access_type, offset; 5645 5646 access_type = exit_qualification & APIC_ACCESS_TYPE; 5647 offset = exit_qualification & APIC_ACCESS_OFFSET; 5648 /* 5649 * Sane guest uses MOV to write EOI, with written value 5650 * not cared. So make a short-circuit here by avoiding 5651 * heavy instruction emulation. 5652 */ 5653 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && 5654 (offset == APIC_EOI)) { 5655 kvm_lapic_set_eoi(vcpu); 5656 return kvm_skip_emulated_instruction(vcpu); 5657 } 5658 } 5659 return kvm_emulate_instruction(vcpu, 0); 5660 } 5661 5662 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) 5663 { 5664 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5665 int vector = exit_qualification & 0xff; 5666 5667 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ 5668 kvm_apic_set_eoi_accelerated(vcpu, vector); 5669 return 1; 5670 } 5671 5672 static int handle_apic_write(struct kvm_vcpu *vcpu) 5673 { 5674 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5675 5676 /* 5677 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and 5678 * hardware has done any necessary aliasing, offset adjustments, etc... 5679 * for the access. I.e. the correct value has already been written to 5680 * the vAPIC page for the correct 16-byte chunk. KVM needs only to 5681 * retrieve the register value and emulate the access. 5682 */ 5683 u32 offset = exit_qualification & 0xff0; 5684 5685 kvm_apic_write_nodecode(vcpu, offset); 5686 return 1; 5687 } 5688 5689 static int handle_task_switch(struct kvm_vcpu *vcpu) 5690 { 5691 struct vcpu_vmx *vmx = to_vmx(vcpu); 5692 unsigned long exit_qualification; 5693 bool has_error_code = false; 5694 u32 error_code = 0; 5695 u16 tss_selector; 5696 int reason, type, idt_v, idt_index; 5697 5698 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); 5699 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); 5700 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); 5701 5702 exit_qualification = vmx_get_exit_qual(vcpu); 5703 5704 reason = (u32)exit_qualification >> 30; 5705 if (reason == TASK_SWITCH_GATE && idt_v) { 5706 switch (type) { 5707 case INTR_TYPE_NMI_INTR: 5708 vcpu->arch.nmi_injected = false; 5709 vmx_set_nmi_mask(vcpu, true); 5710 break; 5711 case INTR_TYPE_EXT_INTR: 5712 case INTR_TYPE_SOFT_INTR: 5713 kvm_clear_interrupt_queue(vcpu); 5714 break; 5715 case INTR_TYPE_HARD_EXCEPTION: 5716 if (vmx->idt_vectoring_info & 5717 VECTORING_INFO_DELIVER_CODE_MASK) { 5718 has_error_code = true; 5719 error_code = 5720 vmcs_read32(IDT_VECTORING_ERROR_CODE); 5721 } 5722 fallthrough; 5723 case INTR_TYPE_SOFT_EXCEPTION: 5724 kvm_clear_exception_queue(vcpu); 5725 break; 5726 default: 5727 break; 5728 } 5729 } 5730 tss_selector = exit_qualification; 5731 5732 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && 5733 type != INTR_TYPE_EXT_INTR && 5734 type != INTR_TYPE_NMI_INTR)) 5735 WARN_ON(!skip_emulated_instruction(vcpu)); 5736 5737 /* 5738 * TODO: What about debug traps on tss switch? 5739 * Are we supposed to inject them and update dr6? 5740 */ 5741 return kvm_task_switch(vcpu, tss_selector, 5742 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, 5743 reason, has_error_code, error_code); 5744 } 5745 5746 static int handle_ept_violation(struct kvm_vcpu *vcpu) 5747 { 5748 unsigned long exit_qualification; 5749 gpa_t gpa; 5750 u64 error_code; 5751 5752 exit_qualification = vmx_get_exit_qual(vcpu); 5753 5754 /* 5755 * EPT violation happened while executing iret from NMI, 5756 * "blocked by NMI" bit has to be set before next VM entry. 5757 * There are errata that may cause this bit to not be set: 5758 * AAK134, BY25. 5759 */ 5760 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5761 enable_vnmi && 5762 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5763 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); 5764 5765 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5766 trace_kvm_page_fault(vcpu, gpa, exit_qualification); 5767 5768 /* Is it a read fault? */ 5769 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) 5770 ? PFERR_USER_MASK : 0; 5771 /* Is it a write fault? */ 5772 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) 5773 ? PFERR_WRITE_MASK : 0; 5774 /* Is it a fetch fault? */ 5775 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) 5776 ? PFERR_FETCH_MASK : 0; 5777 /* ept page table entry is present? */ 5778 error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK) 5779 ? PFERR_PRESENT_MASK : 0; 5780 5781 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ? 5782 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; 5783 5784 vcpu->arch.exit_qualification = exit_qualification; 5785 5786 /* 5787 * Check that the GPA doesn't exceed physical memory limits, as that is 5788 * a guest page fault. We have to emulate the instruction here, because 5789 * if the illegal address is that of a paging structure, then 5790 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we 5791 * would also use advanced VM-exit information for EPT violations to 5792 * reconstruct the page fault error code. 5793 */ 5794 if (unlikely(allow_smaller_maxphyaddr && !kvm_vcpu_is_legal_gpa(vcpu, gpa))) 5795 return kvm_emulate_instruction(vcpu, 0); 5796 5797 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); 5798 } 5799 5800 static int handle_ept_misconfig(struct kvm_vcpu *vcpu) 5801 { 5802 gpa_t gpa; 5803 5804 if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0)) 5805 return 1; 5806 5807 /* 5808 * A nested guest cannot optimize MMIO vmexits, because we have an 5809 * nGPA here instead of the required GPA. 5810 */ 5811 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5812 if (!is_guest_mode(vcpu) && 5813 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { 5814 trace_kvm_fast_mmio(gpa); 5815 return kvm_skip_emulated_instruction(vcpu); 5816 } 5817 5818 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); 5819 } 5820 5821 static int handle_nmi_window(struct kvm_vcpu *vcpu) 5822 { 5823 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm)) 5824 return -EIO; 5825 5826 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 5827 ++vcpu->stat.nmi_window_exits; 5828 kvm_make_request(KVM_REQ_EVENT, vcpu); 5829 5830 return 1; 5831 } 5832 5833 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu) 5834 { 5835 struct vcpu_vmx *vmx = to_vmx(vcpu); 5836 5837 return vmx->emulation_required && !vmx->rmode.vm86_active && 5838 (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected); 5839 } 5840 5841 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) 5842 { 5843 struct vcpu_vmx *vmx = to_vmx(vcpu); 5844 bool intr_window_requested; 5845 unsigned count = 130; 5846 5847 intr_window_requested = exec_controls_get(vmx) & 5848 CPU_BASED_INTR_WINDOW_EXITING; 5849 5850 while (vmx->emulation_required && count-- != 0) { 5851 if (intr_window_requested && !vmx_interrupt_blocked(vcpu)) 5852 return handle_interrupt_window(&vmx->vcpu); 5853 5854 if (kvm_test_request(KVM_REQ_EVENT, vcpu)) 5855 return 1; 5856 5857 if (!kvm_emulate_instruction(vcpu, 0)) 5858 return 0; 5859 5860 if (vmx_emulation_required_with_pending_exception(vcpu)) { 5861 kvm_prepare_emulation_failure_exit(vcpu); 5862 return 0; 5863 } 5864 5865 if (vcpu->arch.halt_request) { 5866 vcpu->arch.halt_request = 0; 5867 return kvm_emulate_halt_noskip(vcpu); 5868 } 5869 5870 /* 5871 * Note, return 1 and not 0, vcpu_run() will invoke 5872 * xfer_to_guest_mode() which will create a proper return 5873 * code. 5874 */ 5875 if (__xfer_to_guest_mode_work_pending()) 5876 return 1; 5877 } 5878 5879 return 1; 5880 } 5881 5882 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu) 5883 { 5884 if (vmx_emulation_required_with_pending_exception(vcpu)) { 5885 kvm_prepare_emulation_failure_exit(vcpu); 5886 return 0; 5887 } 5888 5889 return 1; 5890 } 5891 5892 static void grow_ple_window(struct kvm_vcpu *vcpu) 5893 { 5894 struct vcpu_vmx *vmx = to_vmx(vcpu); 5895 unsigned int old = vmx->ple_window; 5896 5897 vmx->ple_window = __grow_ple_window(old, ple_window, 5898 ple_window_grow, 5899 ple_window_max); 5900 5901 if (vmx->ple_window != old) { 5902 vmx->ple_window_dirty = true; 5903 trace_kvm_ple_window_update(vcpu->vcpu_id, 5904 vmx->ple_window, old); 5905 } 5906 } 5907 5908 static void shrink_ple_window(struct kvm_vcpu *vcpu) 5909 { 5910 struct vcpu_vmx *vmx = to_vmx(vcpu); 5911 unsigned int old = vmx->ple_window; 5912 5913 vmx->ple_window = __shrink_ple_window(old, ple_window, 5914 ple_window_shrink, 5915 ple_window); 5916 5917 if (vmx->ple_window != old) { 5918 vmx->ple_window_dirty = true; 5919 trace_kvm_ple_window_update(vcpu->vcpu_id, 5920 vmx->ple_window, old); 5921 } 5922 } 5923 5924 /* 5925 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE 5926 * exiting, so only get here on cpu with PAUSE-Loop-Exiting. 5927 */ 5928 static int handle_pause(struct kvm_vcpu *vcpu) 5929 { 5930 if (!kvm_pause_in_guest(vcpu->kvm)) 5931 grow_ple_window(vcpu); 5932 5933 /* 5934 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" 5935 * VM-execution control is ignored if CPL > 0. OTOH, KVM 5936 * never set PAUSE_EXITING and just set PLE if supported, 5937 * so the vcpu must be CPL=0 if it gets a PAUSE exit. 5938 */ 5939 kvm_vcpu_on_spin(vcpu, true); 5940 return kvm_skip_emulated_instruction(vcpu); 5941 } 5942 5943 static int handle_monitor_trap(struct kvm_vcpu *vcpu) 5944 { 5945 return 1; 5946 } 5947 5948 static int handle_invpcid(struct kvm_vcpu *vcpu) 5949 { 5950 u32 vmx_instruction_info; 5951 unsigned long type; 5952 gva_t gva; 5953 struct { 5954 u64 pcid; 5955 u64 gla; 5956 } operand; 5957 int gpr_index; 5958 5959 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 5960 kvm_queue_exception(vcpu, UD_VECTOR); 5961 return 1; 5962 } 5963 5964 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5965 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info); 5966 type = kvm_register_read(vcpu, gpr_index); 5967 5968 /* According to the Intel instruction reference, the memory operand 5969 * is read even if it isn't needed (e.g., for type==all) 5970 */ 5971 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), 5972 vmx_instruction_info, false, 5973 sizeof(operand), &gva)) 5974 return 1; 5975 5976 return kvm_handle_invpcid(vcpu, type, gva); 5977 } 5978 5979 static int handle_pml_full(struct kvm_vcpu *vcpu) 5980 { 5981 unsigned long exit_qualification; 5982 5983 trace_kvm_pml_full(vcpu->vcpu_id); 5984 5985 exit_qualification = vmx_get_exit_qual(vcpu); 5986 5987 /* 5988 * PML buffer FULL happened while executing iret from NMI, 5989 * "blocked by NMI" bit has to be set before next VM entry. 5990 */ 5991 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5992 enable_vnmi && 5993 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5994 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5995 GUEST_INTR_STATE_NMI); 5996 5997 /* 5998 * PML buffer already flushed at beginning of VMEXIT. Nothing to do 5999 * here.., and there's no userspace involvement needed for PML. 6000 */ 6001 return 1; 6002 } 6003 6004 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu) 6005 { 6006 struct vcpu_vmx *vmx = to_vmx(vcpu); 6007 6008 if (!vmx->req_immediate_exit && 6009 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) { 6010 kvm_lapic_expired_hv_timer(vcpu); 6011 return EXIT_FASTPATH_REENTER_GUEST; 6012 } 6013 6014 return EXIT_FASTPATH_NONE; 6015 } 6016 6017 static int handle_preemption_timer(struct kvm_vcpu *vcpu) 6018 { 6019 handle_fastpath_preemption_timer(vcpu); 6020 return 1; 6021 } 6022 6023 /* 6024 * When nested=0, all VMX instruction VM Exits filter here. The handlers 6025 * are overwritten by nested_vmx_setup() when nested=1. 6026 */ 6027 static int handle_vmx_instruction(struct kvm_vcpu *vcpu) 6028 { 6029 kvm_queue_exception(vcpu, UD_VECTOR); 6030 return 1; 6031 } 6032 6033 #ifndef CONFIG_X86_SGX_KVM 6034 static int handle_encls(struct kvm_vcpu *vcpu) 6035 { 6036 /* 6037 * SGX virtualization is disabled. There is no software enable bit for 6038 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent 6039 * the guest from executing ENCLS (when SGX is supported by hardware). 6040 */ 6041 kvm_queue_exception(vcpu, UD_VECTOR); 6042 return 1; 6043 } 6044 #endif /* CONFIG_X86_SGX_KVM */ 6045 6046 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu) 6047 { 6048 /* 6049 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK 6050 * VM-Exits. Unconditionally set the flag here and leave the handling to 6051 * vmx_handle_exit(). 6052 */ 6053 to_vmx(vcpu)->exit_reason.bus_lock_detected = true; 6054 return 1; 6055 } 6056 6057 static int handle_notify(struct kvm_vcpu *vcpu) 6058 { 6059 unsigned long exit_qual = vmx_get_exit_qual(vcpu); 6060 bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID; 6061 6062 ++vcpu->stat.notify_window_exits; 6063 6064 /* 6065 * Notify VM exit happened while executing iret from NMI, 6066 * "blocked by NMI" bit has to be set before next VM entry. 6067 */ 6068 if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI)) 6069 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 6070 GUEST_INTR_STATE_NMI); 6071 6072 if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER || 6073 context_invalid) { 6074 vcpu->run->exit_reason = KVM_EXIT_NOTIFY; 6075 vcpu->run->notify.flags = context_invalid ? 6076 KVM_NOTIFY_CONTEXT_INVALID : 0; 6077 return 0; 6078 } 6079 6080 return 1; 6081 } 6082 6083 /* 6084 * The exit handlers return 1 if the exit was handled fully and guest execution 6085 * may resume. Otherwise they set the kvm_run parameter to indicate what needs 6086 * to be done to userspace and return 0. 6087 */ 6088 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { 6089 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi, 6090 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, 6091 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, 6092 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, 6093 [EXIT_REASON_IO_INSTRUCTION] = handle_io, 6094 [EXIT_REASON_CR_ACCESS] = handle_cr, 6095 [EXIT_REASON_DR_ACCESS] = handle_dr, 6096 [EXIT_REASON_CPUID] = kvm_emulate_cpuid, 6097 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr, 6098 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr, 6099 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window, 6100 [EXIT_REASON_HLT] = kvm_emulate_halt, 6101 [EXIT_REASON_INVD] = kvm_emulate_invd, 6102 [EXIT_REASON_INVLPG] = handle_invlpg, 6103 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc, 6104 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall, 6105 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, 6106 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, 6107 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, 6108 [EXIT_REASON_VMPTRST] = handle_vmx_instruction, 6109 [EXIT_REASON_VMREAD] = handle_vmx_instruction, 6110 [EXIT_REASON_VMRESUME] = handle_vmx_instruction, 6111 [EXIT_REASON_VMWRITE] = handle_vmx_instruction, 6112 [EXIT_REASON_VMOFF] = handle_vmx_instruction, 6113 [EXIT_REASON_VMON] = handle_vmx_instruction, 6114 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, 6115 [EXIT_REASON_APIC_ACCESS] = handle_apic_access, 6116 [EXIT_REASON_APIC_WRITE] = handle_apic_write, 6117 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, 6118 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd, 6119 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv, 6120 [EXIT_REASON_TASK_SWITCH] = handle_task_switch, 6121 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, 6122 [EXIT_REASON_GDTR_IDTR] = handle_desc, 6123 [EXIT_REASON_LDTR_TR] = handle_desc, 6124 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, 6125 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, 6126 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, 6127 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait, 6128 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, 6129 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor, 6130 [EXIT_REASON_INVEPT] = handle_vmx_instruction, 6131 [EXIT_REASON_INVVPID] = handle_vmx_instruction, 6132 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op, 6133 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op, 6134 [EXIT_REASON_PML_FULL] = handle_pml_full, 6135 [EXIT_REASON_INVPCID] = handle_invpcid, 6136 [EXIT_REASON_VMFUNC] = handle_vmx_instruction, 6137 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, 6138 [EXIT_REASON_ENCLS] = handle_encls, 6139 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit, 6140 [EXIT_REASON_NOTIFY] = handle_notify, 6141 }; 6142 6143 static const int kvm_vmx_max_exit_handlers = 6144 ARRAY_SIZE(kvm_vmx_exit_handlers); 6145 6146 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 6147 u64 *info1, u64 *info2, 6148 u32 *intr_info, u32 *error_code) 6149 { 6150 struct vcpu_vmx *vmx = to_vmx(vcpu); 6151 6152 *reason = vmx->exit_reason.full; 6153 *info1 = vmx_get_exit_qual(vcpu); 6154 if (!(vmx->exit_reason.failed_vmentry)) { 6155 *info2 = vmx->idt_vectoring_info; 6156 *intr_info = vmx_get_intr_info(vcpu); 6157 if (is_exception_with_error_code(*intr_info)) 6158 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 6159 else 6160 *error_code = 0; 6161 } else { 6162 *info2 = 0; 6163 *intr_info = 0; 6164 *error_code = 0; 6165 } 6166 } 6167 6168 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) 6169 { 6170 if (vmx->pml_pg) { 6171 __free_page(vmx->pml_pg); 6172 vmx->pml_pg = NULL; 6173 } 6174 } 6175 6176 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) 6177 { 6178 struct vcpu_vmx *vmx = to_vmx(vcpu); 6179 u64 *pml_buf; 6180 u16 pml_idx; 6181 6182 pml_idx = vmcs_read16(GUEST_PML_INDEX); 6183 6184 /* Do nothing if PML buffer is empty */ 6185 if (pml_idx == (PML_ENTITY_NUM - 1)) 6186 return; 6187 6188 /* PML index always points to next available PML buffer entity */ 6189 if (pml_idx >= PML_ENTITY_NUM) 6190 pml_idx = 0; 6191 else 6192 pml_idx++; 6193 6194 pml_buf = page_address(vmx->pml_pg); 6195 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { 6196 u64 gpa; 6197 6198 gpa = pml_buf[pml_idx]; 6199 WARN_ON(gpa & (PAGE_SIZE - 1)); 6200 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 6201 } 6202 6203 /* reset PML index */ 6204 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 6205 } 6206 6207 static void vmx_dump_sel(char *name, uint32_t sel) 6208 { 6209 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", 6210 name, vmcs_read16(sel), 6211 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), 6212 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), 6213 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); 6214 } 6215 6216 static void vmx_dump_dtsel(char *name, uint32_t limit) 6217 { 6218 pr_err("%s limit=0x%08x, base=0x%016lx\n", 6219 name, vmcs_read32(limit), 6220 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); 6221 } 6222 6223 static void vmx_dump_msrs(char *name, struct vmx_msrs *m) 6224 { 6225 unsigned int i; 6226 struct vmx_msr_entry *e; 6227 6228 pr_err("MSR %s:\n", name); 6229 for (i = 0, e = m->val; i < m->nr; ++i, ++e) 6230 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value); 6231 } 6232 6233 void dump_vmcs(struct kvm_vcpu *vcpu) 6234 { 6235 struct vcpu_vmx *vmx = to_vmx(vcpu); 6236 u32 vmentry_ctl, vmexit_ctl; 6237 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control; 6238 u64 tertiary_exec_control; 6239 unsigned long cr4; 6240 int efer_slot; 6241 6242 if (!dump_invalid_vmcs) { 6243 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n"); 6244 return; 6245 } 6246 6247 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); 6248 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); 6249 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); 6250 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); 6251 cr4 = vmcs_readl(GUEST_CR4); 6252 6253 if (cpu_has_secondary_exec_ctrls()) 6254 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); 6255 else 6256 secondary_exec_control = 0; 6257 6258 if (cpu_has_tertiary_exec_ctrls()) 6259 tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL); 6260 else 6261 tertiary_exec_control = 0; 6262 6263 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n", 6264 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu); 6265 pr_err("*** Guest State ***\n"); 6266 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 6267 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), 6268 vmcs_readl(CR0_GUEST_HOST_MASK)); 6269 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 6270 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); 6271 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); 6272 if (cpu_has_vmx_ept()) { 6273 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", 6274 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); 6275 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", 6276 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); 6277 } 6278 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", 6279 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); 6280 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", 6281 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); 6282 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 6283 vmcs_readl(GUEST_SYSENTER_ESP), 6284 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); 6285 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); 6286 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); 6287 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); 6288 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); 6289 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); 6290 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); 6291 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); 6292 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); 6293 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); 6294 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); 6295 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER); 6296 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER) 6297 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER)); 6298 else if (efer_slot >= 0) 6299 pr_err("EFER= 0x%016llx (autoload)\n", 6300 vmx->msr_autoload.guest.val[efer_slot].value); 6301 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE) 6302 pr_err("EFER= 0x%016llx (effective)\n", 6303 vcpu->arch.efer | (EFER_LMA | EFER_LME)); 6304 else 6305 pr_err("EFER= 0x%016llx (effective)\n", 6306 vcpu->arch.efer & ~(EFER_LMA | EFER_LME)); 6307 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT) 6308 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT)); 6309 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", 6310 vmcs_read64(GUEST_IA32_DEBUGCTL), 6311 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); 6312 if (cpu_has_load_perf_global_ctrl() && 6313 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) 6314 pr_err("PerfGlobCtl = 0x%016llx\n", 6315 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); 6316 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) 6317 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); 6318 pr_err("Interruptibility = %08x ActivityState = %08x\n", 6319 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), 6320 vmcs_read32(GUEST_ACTIVITY_STATE)); 6321 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) 6322 pr_err("InterruptStatus = %04x\n", 6323 vmcs_read16(GUEST_INTR_STATUS)); 6324 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0) 6325 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest); 6326 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0) 6327 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest); 6328 6329 pr_err("*** Host State ***\n"); 6330 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", 6331 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); 6332 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", 6333 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), 6334 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), 6335 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), 6336 vmcs_read16(HOST_TR_SELECTOR)); 6337 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", 6338 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), 6339 vmcs_readl(HOST_TR_BASE)); 6340 pr_err("GDTBase=%016lx IDTBase=%016lx\n", 6341 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); 6342 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", 6343 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), 6344 vmcs_readl(HOST_CR4)); 6345 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 6346 vmcs_readl(HOST_IA32_SYSENTER_ESP), 6347 vmcs_read32(HOST_IA32_SYSENTER_CS), 6348 vmcs_readl(HOST_IA32_SYSENTER_EIP)); 6349 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER) 6350 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER)); 6351 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT) 6352 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT)); 6353 if (cpu_has_load_perf_global_ctrl() && 6354 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) 6355 pr_err("PerfGlobCtl = 0x%016llx\n", 6356 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); 6357 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0) 6358 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host); 6359 6360 pr_err("*** Control State ***\n"); 6361 pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n", 6362 cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control); 6363 pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n", 6364 pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl); 6365 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", 6366 vmcs_read32(EXCEPTION_BITMAP), 6367 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), 6368 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); 6369 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", 6370 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 6371 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), 6372 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); 6373 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", 6374 vmcs_read32(VM_EXIT_INTR_INFO), 6375 vmcs_read32(VM_EXIT_INTR_ERROR_CODE), 6376 vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); 6377 pr_err(" reason=%08x qualification=%016lx\n", 6378 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); 6379 pr_err("IDTVectoring: info=%08x errcode=%08x\n", 6380 vmcs_read32(IDT_VECTORING_INFO_FIELD), 6381 vmcs_read32(IDT_VECTORING_ERROR_CODE)); 6382 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); 6383 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) 6384 pr_err("TSC Multiplier = 0x%016llx\n", 6385 vmcs_read64(TSC_MULTIPLIER)); 6386 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) { 6387 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { 6388 u16 status = vmcs_read16(GUEST_INTR_STATUS); 6389 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff); 6390 } 6391 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); 6392 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) 6393 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR)); 6394 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR)); 6395 } 6396 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) 6397 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); 6398 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) 6399 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); 6400 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) 6401 pr_err("PLE Gap=%08x Window=%08x\n", 6402 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); 6403 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) 6404 pr_err("Virtual processor ID = 0x%04x\n", 6405 vmcs_read16(VIRTUAL_PROCESSOR_ID)); 6406 } 6407 6408 /* 6409 * The guest has exited. See if we can fix it or if we need userspace 6410 * assistance. 6411 */ 6412 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6413 { 6414 struct vcpu_vmx *vmx = to_vmx(vcpu); 6415 union vmx_exit_reason exit_reason = vmx->exit_reason; 6416 u32 vectoring_info = vmx->idt_vectoring_info; 6417 u16 exit_handler_index; 6418 6419 /* 6420 * Flush logged GPAs PML buffer, this will make dirty_bitmap more 6421 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before 6422 * querying dirty_bitmap, we only need to kick all vcpus out of guest 6423 * mode as if vcpus is in root mode, the PML buffer must has been 6424 * flushed already. Note, PML is never enabled in hardware while 6425 * running L2. 6426 */ 6427 if (enable_pml && !is_guest_mode(vcpu)) 6428 vmx_flush_pml_buffer(vcpu); 6429 6430 /* 6431 * KVM should never reach this point with a pending nested VM-Enter. 6432 * More specifically, short-circuiting VM-Entry to emulate L2 due to 6433 * invalid guest state should never happen as that means KVM knowingly 6434 * allowed a nested VM-Enter with an invalid vmcs12. More below. 6435 */ 6436 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm)) 6437 return -EIO; 6438 6439 if (is_guest_mode(vcpu)) { 6440 /* 6441 * PML is never enabled when running L2, bail immediately if a 6442 * PML full exit occurs as something is horribly wrong. 6443 */ 6444 if (exit_reason.basic == EXIT_REASON_PML_FULL) 6445 goto unexpected_vmexit; 6446 6447 /* 6448 * The host physical addresses of some pages of guest memory 6449 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC 6450 * Page). The CPU may write to these pages via their host 6451 * physical address while L2 is running, bypassing any 6452 * address-translation-based dirty tracking (e.g. EPT write 6453 * protection). 6454 * 6455 * Mark them dirty on every exit from L2 to prevent them from 6456 * getting out of sync with dirty tracking. 6457 */ 6458 nested_mark_vmcs12_pages_dirty(vcpu); 6459 6460 /* 6461 * Synthesize a triple fault if L2 state is invalid. In normal 6462 * operation, nested VM-Enter rejects any attempt to enter L2 6463 * with invalid state. However, those checks are skipped if 6464 * state is being stuffed via RSM or KVM_SET_NESTED_STATE. If 6465 * L2 state is invalid, it means either L1 modified SMRAM state 6466 * or userspace provided bad state. Synthesize TRIPLE_FAULT as 6467 * doing so is architecturally allowed in the RSM case, and is 6468 * the least awful solution for the userspace case without 6469 * risking false positives. 6470 */ 6471 if (vmx->emulation_required) { 6472 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0); 6473 return 1; 6474 } 6475 6476 if (nested_vmx_reflect_vmexit(vcpu)) 6477 return 1; 6478 } 6479 6480 /* If guest state is invalid, start emulating. L2 is handled above. */ 6481 if (vmx->emulation_required) 6482 return handle_invalid_guest_state(vcpu); 6483 6484 if (exit_reason.failed_vmentry) { 6485 dump_vmcs(vcpu); 6486 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6487 vcpu->run->fail_entry.hardware_entry_failure_reason 6488 = exit_reason.full; 6489 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6490 return 0; 6491 } 6492 6493 if (unlikely(vmx->fail)) { 6494 dump_vmcs(vcpu); 6495 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6496 vcpu->run->fail_entry.hardware_entry_failure_reason 6497 = vmcs_read32(VM_INSTRUCTION_ERROR); 6498 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6499 return 0; 6500 } 6501 6502 /* 6503 * Note: 6504 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by 6505 * delivery event since it indicates guest is accessing MMIO. 6506 * The vm-exit can be triggered again after return to guest that 6507 * will cause infinite loop. 6508 */ 6509 if ((vectoring_info & VECTORING_INFO_VALID_MASK) && 6510 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI && 6511 exit_reason.basic != EXIT_REASON_EPT_VIOLATION && 6512 exit_reason.basic != EXIT_REASON_PML_FULL && 6513 exit_reason.basic != EXIT_REASON_APIC_ACCESS && 6514 exit_reason.basic != EXIT_REASON_TASK_SWITCH && 6515 exit_reason.basic != EXIT_REASON_NOTIFY)) { 6516 int ndata = 3; 6517 6518 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6519 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; 6520 vcpu->run->internal.data[0] = vectoring_info; 6521 vcpu->run->internal.data[1] = exit_reason.full; 6522 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification; 6523 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) { 6524 vcpu->run->internal.data[ndata++] = 6525 vmcs_read64(GUEST_PHYSICAL_ADDRESS); 6526 } 6527 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu; 6528 vcpu->run->internal.ndata = ndata; 6529 return 0; 6530 } 6531 6532 if (unlikely(!enable_vnmi && 6533 vmx->loaded_vmcs->soft_vnmi_blocked)) { 6534 if (!vmx_interrupt_blocked(vcpu)) { 6535 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6536 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && 6537 vcpu->arch.nmi_pending) { 6538 /* 6539 * This CPU don't support us in finding the end of an 6540 * NMI-blocked window if the guest runs with IRQs 6541 * disabled. So we pull the trigger after 1 s of 6542 * futile waiting, but inform the user about this. 6543 */ 6544 printk(KERN_WARNING "%s: Breaking out of NMI-blocked " 6545 "state on VCPU %d after 1 s timeout\n", 6546 __func__, vcpu->vcpu_id); 6547 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6548 } 6549 } 6550 6551 if (exit_fastpath != EXIT_FASTPATH_NONE) 6552 return 1; 6553 6554 if (exit_reason.basic >= kvm_vmx_max_exit_handlers) 6555 goto unexpected_vmexit; 6556 #ifdef CONFIG_MITIGATION_RETPOLINE 6557 if (exit_reason.basic == EXIT_REASON_MSR_WRITE) 6558 return kvm_emulate_wrmsr(vcpu); 6559 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER) 6560 return handle_preemption_timer(vcpu); 6561 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW) 6562 return handle_interrupt_window(vcpu); 6563 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6564 return handle_external_interrupt(vcpu); 6565 else if (exit_reason.basic == EXIT_REASON_HLT) 6566 return kvm_emulate_halt(vcpu); 6567 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) 6568 return handle_ept_misconfig(vcpu); 6569 #endif 6570 6571 exit_handler_index = array_index_nospec((u16)exit_reason.basic, 6572 kvm_vmx_max_exit_handlers); 6573 if (!kvm_vmx_exit_handlers[exit_handler_index]) 6574 goto unexpected_vmexit; 6575 6576 return kvm_vmx_exit_handlers[exit_handler_index](vcpu); 6577 6578 unexpected_vmexit: 6579 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", 6580 exit_reason.full); 6581 dump_vmcs(vcpu); 6582 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6583 vcpu->run->internal.suberror = 6584 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 6585 vcpu->run->internal.ndata = 2; 6586 vcpu->run->internal.data[0] = exit_reason.full; 6587 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 6588 return 0; 6589 } 6590 6591 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6592 { 6593 int ret = __vmx_handle_exit(vcpu, exit_fastpath); 6594 6595 /* 6596 * Exit to user space when bus lock detected to inform that there is 6597 * a bus lock in guest. 6598 */ 6599 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) { 6600 if (ret > 0) 6601 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; 6602 6603 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; 6604 return 0; 6605 } 6606 return ret; 6607 } 6608 6609 /* 6610 * Software based L1D cache flush which is used when microcode providing 6611 * the cache control MSR is not loaded. 6612 * 6613 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to 6614 * flush it is required to read in 64 KiB because the replacement algorithm 6615 * is not exactly LRU. This could be sized at runtime via topology 6616 * information but as all relevant affected CPUs have 32KiB L1D cache size 6617 * there is no point in doing so. 6618 */ 6619 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu) 6620 { 6621 int size = PAGE_SIZE << L1D_CACHE_ORDER; 6622 6623 /* 6624 * This code is only executed when the flush mode is 'cond' or 6625 * 'always' 6626 */ 6627 if (static_branch_likely(&vmx_l1d_flush_cond)) { 6628 bool flush_l1d; 6629 6630 /* 6631 * Clear the per-vcpu flush bit, it gets set again 6632 * either from vcpu_run() or from one of the unsafe 6633 * VMEXIT handlers. 6634 */ 6635 flush_l1d = vcpu->arch.l1tf_flush_l1d; 6636 vcpu->arch.l1tf_flush_l1d = false; 6637 6638 /* 6639 * Clear the per-cpu flush bit, it gets set again from 6640 * the interrupt handlers. 6641 */ 6642 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); 6643 kvm_clear_cpu_l1tf_flush_l1d(); 6644 6645 if (!flush_l1d) 6646 return; 6647 } 6648 6649 vcpu->stat.l1d_flush++; 6650 6651 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { 6652 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 6653 return; 6654 } 6655 6656 asm volatile( 6657 /* First ensure the pages are in the TLB */ 6658 "xorl %%eax, %%eax\n" 6659 ".Lpopulate_tlb:\n\t" 6660 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6661 "addl $4096, %%eax\n\t" 6662 "cmpl %%eax, %[size]\n\t" 6663 "jne .Lpopulate_tlb\n\t" 6664 "xorl %%eax, %%eax\n\t" 6665 "cpuid\n\t" 6666 /* Now fill the cache */ 6667 "xorl %%eax, %%eax\n" 6668 ".Lfill_cache:\n" 6669 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6670 "addl $64, %%eax\n\t" 6671 "cmpl %%eax, %[size]\n\t" 6672 "jne .Lfill_cache\n\t" 6673 "lfence\n" 6674 :: [flush_pages] "r" (vmx_l1d_flush_pages), 6675 [size] "r" (size) 6676 : "eax", "ebx", "ecx", "edx"); 6677 } 6678 6679 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 6680 { 6681 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 6682 int tpr_threshold; 6683 6684 if (is_guest_mode(vcpu) && 6685 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) 6686 return; 6687 6688 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr; 6689 if (is_guest_mode(vcpu)) 6690 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold; 6691 else 6692 vmcs_write32(TPR_THRESHOLD, tpr_threshold); 6693 } 6694 6695 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) 6696 { 6697 struct vcpu_vmx *vmx = to_vmx(vcpu); 6698 u32 sec_exec_control; 6699 6700 if (!lapic_in_kernel(vcpu)) 6701 return; 6702 6703 if (!flexpriority_enabled && 6704 !cpu_has_vmx_virtualize_x2apic_mode()) 6705 return; 6706 6707 /* Postpone execution until vmcs01 is the current VMCS. */ 6708 if (is_guest_mode(vcpu)) { 6709 vmx->nested.change_vmcs01_virtual_apic_mode = true; 6710 return; 6711 } 6712 6713 sec_exec_control = secondary_exec_controls_get(vmx); 6714 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 6715 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); 6716 6717 switch (kvm_get_apic_mode(vcpu)) { 6718 case LAPIC_MODE_INVALID: 6719 WARN_ONCE(true, "Invalid local APIC state"); 6720 break; 6721 case LAPIC_MODE_DISABLED: 6722 break; 6723 case LAPIC_MODE_XAPIC: 6724 if (flexpriority_enabled) { 6725 sec_exec_control |= 6726 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 6727 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6728 6729 /* 6730 * Flush the TLB, reloading the APIC access page will 6731 * only do so if its physical address has changed, but 6732 * the guest may have inserted a non-APIC mapping into 6733 * the TLB while the APIC access page was disabled. 6734 */ 6735 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 6736 } 6737 break; 6738 case LAPIC_MODE_X2APIC: 6739 if (cpu_has_vmx_virtualize_x2apic_mode()) 6740 sec_exec_control |= 6741 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 6742 break; 6743 } 6744 secondary_exec_controls_set(vmx, sec_exec_control); 6745 6746 vmx_update_msr_bitmap_x2apic(vcpu); 6747 } 6748 6749 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu) 6750 { 6751 const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT; 6752 struct kvm *kvm = vcpu->kvm; 6753 struct kvm_memslots *slots = kvm_memslots(kvm); 6754 struct kvm_memory_slot *slot; 6755 unsigned long mmu_seq; 6756 kvm_pfn_t pfn; 6757 6758 /* Defer reload until vmcs01 is the current VMCS. */ 6759 if (is_guest_mode(vcpu)) { 6760 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true; 6761 return; 6762 } 6763 6764 if (!(secondary_exec_controls_get(to_vmx(vcpu)) & 6765 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 6766 return; 6767 6768 /* 6769 * Explicitly grab the memslot using KVM's internal slot ID to ensure 6770 * KVM doesn't unintentionally grab a userspace memslot. It _should_ 6771 * be impossible for userspace to create a memslot for the APIC when 6772 * APICv is enabled, but paranoia won't hurt in this case. 6773 */ 6774 slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT); 6775 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 6776 return; 6777 6778 /* 6779 * Ensure that the mmu_notifier sequence count is read before KVM 6780 * retrieves the pfn from the primary MMU. Note, the memslot is 6781 * protected by SRCU, not the mmu_notifier. Pairs with the smp_wmb() 6782 * in kvm_mmu_invalidate_end(). 6783 */ 6784 mmu_seq = kvm->mmu_invalidate_seq; 6785 smp_rmb(); 6786 6787 /* 6788 * No need to retry if the memslot does not exist or is invalid. KVM 6789 * controls the APIC-access page memslot, and only deletes the memslot 6790 * if APICv is permanently inhibited, i.e. the memslot won't reappear. 6791 */ 6792 pfn = gfn_to_pfn_memslot(slot, gfn); 6793 if (is_error_noslot_pfn(pfn)) 6794 return; 6795 6796 read_lock(&vcpu->kvm->mmu_lock); 6797 if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn)) { 6798 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6799 read_unlock(&vcpu->kvm->mmu_lock); 6800 goto out; 6801 } 6802 6803 vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn)); 6804 read_unlock(&vcpu->kvm->mmu_lock); 6805 6806 /* 6807 * No need for a manual TLB flush at this point, KVM has already done a 6808 * flush if there were SPTEs pointing at the previous page. 6809 */ 6810 out: 6811 /* 6812 * Do not pin apic access page in memory, the MMU notifier 6813 * will call us again if it is migrated or swapped out. 6814 */ 6815 kvm_release_pfn_clean(pfn); 6816 } 6817 6818 static void vmx_hwapic_isr_update(int max_isr) 6819 { 6820 u16 status; 6821 u8 old; 6822 6823 if (max_isr == -1) 6824 max_isr = 0; 6825 6826 status = vmcs_read16(GUEST_INTR_STATUS); 6827 old = status >> 8; 6828 if (max_isr != old) { 6829 status &= 0xff; 6830 status |= max_isr << 8; 6831 vmcs_write16(GUEST_INTR_STATUS, status); 6832 } 6833 } 6834 6835 static void vmx_set_rvi(int vector) 6836 { 6837 u16 status; 6838 u8 old; 6839 6840 if (vector == -1) 6841 vector = 0; 6842 6843 status = vmcs_read16(GUEST_INTR_STATUS); 6844 old = (u8)status & 0xff; 6845 if ((u8)vector != old) { 6846 status &= ~0xff; 6847 status |= (u8)vector; 6848 vmcs_write16(GUEST_INTR_STATUS, status); 6849 } 6850 } 6851 6852 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) 6853 { 6854 /* 6855 * When running L2, updating RVI is only relevant when 6856 * vmcs12 virtual-interrupt-delivery enabled. 6857 * However, it can be enabled only when L1 also 6858 * intercepts external-interrupts and in that case 6859 * we should not update vmcs02 RVI but instead intercept 6860 * interrupt. Therefore, do nothing when running L2. 6861 */ 6862 if (!is_guest_mode(vcpu)) 6863 vmx_set_rvi(max_irr); 6864 } 6865 6866 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) 6867 { 6868 struct vcpu_vmx *vmx = to_vmx(vcpu); 6869 int max_irr; 6870 bool got_posted_interrupt; 6871 6872 if (KVM_BUG_ON(!enable_apicv, vcpu->kvm)) 6873 return -EIO; 6874 6875 if (pi_test_on(&vmx->pi_desc)) { 6876 pi_clear_on(&vmx->pi_desc); 6877 /* 6878 * IOMMU can write to PID.ON, so the barrier matters even on UP. 6879 * But on x86 this is just a compiler barrier anyway. 6880 */ 6881 smp_mb__after_atomic(); 6882 got_posted_interrupt = 6883 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); 6884 } else { 6885 max_irr = kvm_lapic_find_highest_irr(vcpu); 6886 got_posted_interrupt = false; 6887 } 6888 6889 /* 6890 * Newly recognized interrupts are injected via either virtual interrupt 6891 * delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is 6892 * disabled in two cases: 6893 * 6894 * 1) If L2 is running and the vCPU has a new pending interrupt. If L1 6895 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a 6896 * VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected 6897 * into L2, but KVM doesn't use virtual interrupt delivery to inject 6898 * interrupts into L2, and so KVM_REQ_EVENT is again needed. 6899 * 6900 * 2) If APICv is disabled for this vCPU, assigned devices may still 6901 * attempt to post interrupts. The posted interrupt vector will cause 6902 * a VM-Exit and the subsequent entry will call sync_pir_to_irr. 6903 */ 6904 if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu)) 6905 vmx_set_rvi(max_irr); 6906 else if (got_posted_interrupt) 6907 kvm_make_request(KVM_REQ_EVENT, vcpu); 6908 6909 return max_irr; 6910 } 6911 6912 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) 6913 { 6914 if (!kvm_vcpu_apicv_active(vcpu)) 6915 return; 6916 6917 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); 6918 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); 6919 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); 6920 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); 6921 } 6922 6923 static void vmx_apicv_pre_state_restore(struct kvm_vcpu *vcpu) 6924 { 6925 struct vcpu_vmx *vmx = to_vmx(vcpu); 6926 6927 pi_clear_on(&vmx->pi_desc); 6928 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); 6929 } 6930 6931 void vmx_do_interrupt_irqoff(unsigned long entry); 6932 void vmx_do_nmi_irqoff(void); 6933 6934 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu) 6935 { 6936 /* 6937 * Save xfd_err to guest_fpu before interrupt is enabled, so the 6938 * MSR value is not clobbered by the host activity before the guest 6939 * has chance to consume it. 6940 * 6941 * Do not blindly read xfd_err here, since this exception might 6942 * be caused by L1 interception on a platform which doesn't 6943 * support xfd at all. 6944 * 6945 * Do it conditionally upon guest_fpu::xfd. xfd_err matters 6946 * only when xfd contains a non-zero value. 6947 * 6948 * Queuing exception is done in vmx_handle_exit. See comment there. 6949 */ 6950 if (vcpu->arch.guest_fpu.fpstate->xfd) 6951 rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 6952 } 6953 6954 static void handle_exception_irqoff(struct vcpu_vmx *vmx) 6955 { 6956 u32 intr_info = vmx_get_intr_info(&vmx->vcpu); 6957 6958 /* if exit due to PF check for async PF */ 6959 if (is_page_fault(intr_info)) 6960 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags(); 6961 /* if exit due to NM, handle before interrupts are enabled */ 6962 else if (is_nm_fault(intr_info)) 6963 handle_nm_fault_irqoff(&vmx->vcpu); 6964 /* Handle machine checks before interrupts are enabled */ 6965 else if (is_machine_check(intr_info)) 6966 kvm_machine_check(); 6967 } 6968 6969 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu) 6970 { 6971 u32 intr_info = vmx_get_intr_info(vcpu); 6972 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK; 6973 6974 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm, 6975 "unexpected VM-Exit interrupt info: 0x%x", intr_info)) 6976 return; 6977 6978 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 6979 if (cpu_feature_enabled(X86_FEATURE_FRED)) 6980 fred_entry_from_kvm(EVENT_TYPE_EXTINT, vector); 6981 else 6982 vmx_do_interrupt_irqoff(gate_offset((gate_desc *)host_idt_base + vector)); 6983 kvm_after_interrupt(vcpu); 6984 6985 vcpu->arch.at_instruction_boundary = true; 6986 } 6987 6988 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu) 6989 { 6990 struct vcpu_vmx *vmx = to_vmx(vcpu); 6991 6992 if (vmx->emulation_required) 6993 return; 6994 6995 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6996 handle_external_interrupt_irqoff(vcpu); 6997 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI) 6998 handle_exception_irqoff(vmx); 6999 } 7000 7001 /* 7002 * The kvm parameter can be NULL (module initialization, or invocation before 7003 * VM creation). Be sure to check the kvm parameter before using it. 7004 */ 7005 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index) 7006 { 7007 switch (index) { 7008 case MSR_IA32_SMBASE: 7009 if (!IS_ENABLED(CONFIG_KVM_SMM)) 7010 return false; 7011 /* 7012 * We cannot do SMM unless we can run the guest in big 7013 * real mode. 7014 */ 7015 return enable_unrestricted_guest || emulate_invalid_guest_state; 7016 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 7017 return nested; 7018 case MSR_AMD64_VIRT_SPEC_CTRL: 7019 case MSR_AMD64_TSC_RATIO: 7020 /* This is AMD only. */ 7021 return false; 7022 default: 7023 return true; 7024 } 7025 } 7026 7027 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) 7028 { 7029 u32 exit_intr_info; 7030 bool unblock_nmi; 7031 u8 vector; 7032 bool idtv_info_valid; 7033 7034 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; 7035 7036 if (enable_vnmi) { 7037 if (vmx->loaded_vmcs->nmi_known_unmasked) 7038 return; 7039 7040 exit_intr_info = vmx_get_intr_info(&vmx->vcpu); 7041 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; 7042 vector = exit_intr_info & INTR_INFO_VECTOR_MASK; 7043 /* 7044 * SDM 3: 27.7.1.2 (September 2008) 7045 * Re-set bit "block by NMI" before VM entry if vmexit caused by 7046 * a guest IRET fault. 7047 * SDM 3: 23.2.2 (September 2008) 7048 * Bit 12 is undefined in any of the following cases: 7049 * If the VM exit sets the valid bit in the IDT-vectoring 7050 * information field. 7051 * If the VM exit is due to a double fault. 7052 */ 7053 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && 7054 vector != DF_VECTOR && !idtv_info_valid) 7055 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 7056 GUEST_INTR_STATE_NMI); 7057 else 7058 vmx->loaded_vmcs->nmi_known_unmasked = 7059 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) 7060 & GUEST_INTR_STATE_NMI); 7061 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) 7062 vmx->loaded_vmcs->vnmi_blocked_time += 7063 ktime_to_ns(ktime_sub(ktime_get(), 7064 vmx->loaded_vmcs->entry_time)); 7065 } 7066 7067 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, 7068 u32 idt_vectoring_info, 7069 int instr_len_field, 7070 int error_code_field) 7071 { 7072 u8 vector; 7073 int type; 7074 bool idtv_info_valid; 7075 7076 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; 7077 7078 vcpu->arch.nmi_injected = false; 7079 kvm_clear_exception_queue(vcpu); 7080 kvm_clear_interrupt_queue(vcpu); 7081 7082 if (!idtv_info_valid) 7083 return; 7084 7085 kvm_make_request(KVM_REQ_EVENT, vcpu); 7086 7087 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; 7088 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; 7089 7090 switch (type) { 7091 case INTR_TYPE_NMI_INTR: 7092 vcpu->arch.nmi_injected = true; 7093 /* 7094 * SDM 3: 27.7.1.2 (September 2008) 7095 * Clear bit "block by NMI" before VM entry if a NMI 7096 * delivery faulted. 7097 */ 7098 vmx_set_nmi_mask(vcpu, false); 7099 break; 7100 case INTR_TYPE_SOFT_EXCEPTION: 7101 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 7102 fallthrough; 7103 case INTR_TYPE_HARD_EXCEPTION: 7104 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { 7105 u32 err = vmcs_read32(error_code_field); 7106 kvm_requeue_exception_e(vcpu, vector, err); 7107 } else 7108 kvm_requeue_exception(vcpu, vector); 7109 break; 7110 case INTR_TYPE_SOFT_INTR: 7111 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 7112 fallthrough; 7113 case INTR_TYPE_EXT_INTR: 7114 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); 7115 break; 7116 default: 7117 break; 7118 } 7119 } 7120 7121 static void vmx_complete_interrupts(struct vcpu_vmx *vmx) 7122 { 7123 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, 7124 VM_EXIT_INSTRUCTION_LEN, 7125 IDT_VECTORING_ERROR_CODE); 7126 } 7127 7128 static void vmx_cancel_injection(struct kvm_vcpu *vcpu) 7129 { 7130 __vmx_complete_interrupts(vcpu, 7131 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 7132 VM_ENTRY_INSTRUCTION_LEN, 7133 VM_ENTRY_EXCEPTION_ERROR_CODE); 7134 7135 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); 7136 } 7137 7138 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) 7139 { 7140 int i, nr_msrs; 7141 struct perf_guest_switch_msr *msrs; 7142 struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu); 7143 7144 pmu->host_cross_mapped_mask = 0; 7145 if (pmu->pebs_enable & pmu->global_ctrl) 7146 intel_pmu_cross_mapped_check(pmu); 7147 7148 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */ 7149 msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu); 7150 if (!msrs) 7151 return; 7152 7153 for (i = 0; i < nr_msrs; i++) 7154 if (msrs[i].host == msrs[i].guest) 7155 clear_atomic_switch_msr(vmx, msrs[i].msr); 7156 else 7157 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, 7158 msrs[i].host, false); 7159 } 7160 7161 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu) 7162 { 7163 struct vcpu_vmx *vmx = to_vmx(vcpu); 7164 u64 tscl; 7165 u32 delta_tsc; 7166 7167 if (vmx->req_immediate_exit) { 7168 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0); 7169 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 7170 } else if (vmx->hv_deadline_tsc != -1) { 7171 tscl = rdtsc(); 7172 if (vmx->hv_deadline_tsc > tscl) 7173 /* set_hv_timer ensures the delta fits in 32-bits */ 7174 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> 7175 cpu_preemption_timer_multi); 7176 else 7177 delta_tsc = 0; 7178 7179 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc); 7180 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 7181 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) { 7182 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1); 7183 vmx->loaded_vmcs->hv_timer_soft_disabled = true; 7184 } 7185 } 7186 7187 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp) 7188 { 7189 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) { 7190 vmx->loaded_vmcs->host_state.rsp = host_rsp; 7191 vmcs_writel(HOST_RSP, host_rsp); 7192 } 7193 } 7194 7195 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, 7196 unsigned int flags) 7197 { 7198 u64 hostval = this_cpu_read(x86_spec_ctrl_current); 7199 7200 if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) 7201 return; 7202 7203 if (flags & VMX_RUN_SAVE_SPEC_CTRL) 7204 vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL); 7205 7206 /* 7207 * If the guest/host SPEC_CTRL values differ, restore the host value. 7208 * 7209 * For legacy IBRS, the IBRS bit always needs to be written after 7210 * transitioning from a less privileged predictor mode, regardless of 7211 * whether the guest/host values differ. 7212 */ 7213 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) || 7214 vmx->spec_ctrl != hostval) 7215 native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval); 7216 7217 barrier_nospec(); 7218 } 7219 7220 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 7221 { 7222 switch (to_vmx(vcpu)->exit_reason.basic) { 7223 case EXIT_REASON_MSR_WRITE: 7224 return handle_fastpath_set_msr_irqoff(vcpu); 7225 case EXIT_REASON_PREEMPTION_TIMER: 7226 return handle_fastpath_preemption_timer(vcpu); 7227 default: 7228 return EXIT_FASTPATH_NONE; 7229 } 7230 } 7231 7232 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu, 7233 unsigned int flags) 7234 { 7235 struct vcpu_vmx *vmx = to_vmx(vcpu); 7236 7237 guest_state_enter_irqoff(); 7238 7239 /* 7240 * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW 7241 * mitigation for MDS is done late in VMentry and is still 7242 * executed in spite of L1D Flush. This is because an extra VERW 7243 * should not matter much after the big hammer L1D Flush. 7244 */ 7245 if (static_branch_unlikely(&vmx_l1d_should_flush)) 7246 vmx_l1d_flush(vcpu); 7247 else if (static_branch_unlikely(&mmio_stale_data_clear) && 7248 kvm_arch_has_assigned_device(vcpu->kvm)) 7249 mds_clear_cpu_buffers(); 7250 7251 vmx_disable_fb_clear(vmx); 7252 7253 if (vcpu->arch.cr2 != native_read_cr2()) 7254 native_write_cr2(vcpu->arch.cr2); 7255 7256 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, 7257 flags); 7258 7259 vcpu->arch.cr2 = native_read_cr2(); 7260 vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET; 7261 7262 vmx->idt_vectoring_info = 0; 7263 7264 vmx_enable_fb_clear(vmx); 7265 7266 if (unlikely(vmx->fail)) { 7267 vmx->exit_reason.full = 0xdead; 7268 goto out; 7269 } 7270 7271 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON); 7272 if (likely(!vmx->exit_reason.failed_vmentry)) 7273 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); 7274 7275 if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI && 7276 is_nmi(vmx_get_intr_info(vcpu))) { 7277 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); 7278 if (cpu_feature_enabled(X86_FEATURE_FRED)) 7279 fred_entry_from_kvm(EVENT_TYPE_NMI, NMI_VECTOR); 7280 else 7281 vmx_do_nmi_irqoff(); 7282 kvm_after_interrupt(vcpu); 7283 } 7284 7285 out: 7286 guest_state_exit_irqoff(); 7287 } 7288 7289 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu) 7290 { 7291 struct vcpu_vmx *vmx = to_vmx(vcpu); 7292 unsigned long cr3, cr4; 7293 7294 /* Record the guest's net vcpu time for enforced NMI injections. */ 7295 if (unlikely(!enable_vnmi && 7296 vmx->loaded_vmcs->soft_vnmi_blocked)) 7297 vmx->loaded_vmcs->entry_time = ktime_get(); 7298 7299 /* 7300 * Don't enter VMX if guest state is invalid, let the exit handler 7301 * start emulation until we arrive back to a valid state. Synthesize a 7302 * consistency check VM-Exit due to invalid guest state and bail. 7303 */ 7304 if (unlikely(vmx->emulation_required)) { 7305 vmx->fail = 0; 7306 7307 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE; 7308 vmx->exit_reason.failed_vmentry = 1; 7309 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1); 7310 vmx->exit_qualification = ENTRY_FAIL_DEFAULT; 7311 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2); 7312 vmx->exit_intr_info = 0; 7313 return EXIT_FASTPATH_NONE; 7314 } 7315 7316 trace_kvm_entry(vcpu); 7317 7318 if (vmx->ple_window_dirty) { 7319 vmx->ple_window_dirty = false; 7320 vmcs_write32(PLE_WINDOW, vmx->ple_window); 7321 } 7322 7323 /* 7324 * We did this in prepare_switch_to_guest, because it needs to 7325 * be within srcu_read_lock. 7326 */ 7327 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync); 7328 7329 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP)) 7330 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); 7331 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP)) 7332 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); 7333 vcpu->arch.regs_dirty = 0; 7334 7335 /* 7336 * Refresh vmcs.HOST_CR3 if necessary. This must be done immediately 7337 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time 7338 * it switches back to the current->mm, which can occur in KVM context 7339 * when switching to a temporary mm to patch kernel code, e.g. if KVM 7340 * toggles a static key while handling a VM-Exit. 7341 */ 7342 cr3 = __get_current_cr3_fast(); 7343 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { 7344 vmcs_writel(HOST_CR3, cr3); 7345 vmx->loaded_vmcs->host_state.cr3 = cr3; 7346 } 7347 7348 cr4 = cr4_read_shadow(); 7349 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { 7350 vmcs_writel(HOST_CR4, cr4); 7351 vmx->loaded_vmcs->host_state.cr4 = cr4; 7352 } 7353 7354 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */ 7355 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 7356 set_debugreg(vcpu->arch.dr6, 6); 7357 7358 /* When single-stepping over STI and MOV SS, we must clear the 7359 * corresponding interruptibility bits in the guest state. Otherwise 7360 * vmentry fails as it then expects bit 14 (BS) in pending debug 7361 * exceptions being set, but that's not correct for the guest debugging 7362 * case. */ 7363 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 7364 vmx_set_interrupt_shadow(vcpu, 0); 7365 7366 kvm_load_guest_xsave_state(vcpu); 7367 7368 pt_guest_enter(vmx); 7369 7370 atomic_switch_perf_msrs(vmx); 7371 if (intel_pmu_lbr_is_enabled(vcpu)) 7372 vmx_passthrough_lbr_msrs(vcpu); 7373 7374 if (enable_preemption_timer) 7375 vmx_update_hv_timer(vcpu); 7376 7377 kvm_wait_lapic_expire(vcpu); 7378 7379 /* The actual VMENTER/EXIT is in the .noinstr.text section. */ 7380 vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx)); 7381 7382 /* All fields are clean at this point */ 7383 if (kvm_is_using_evmcs()) { 7384 current_evmcs->hv_clean_fields |= 7385 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; 7386 7387 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu); 7388 } 7389 7390 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ 7391 if (vmx->host_debugctlmsr) 7392 update_debugctlmsr(vmx->host_debugctlmsr); 7393 7394 #ifndef CONFIG_X86_64 7395 /* 7396 * The sysexit path does not restore ds/es, so we must set them to 7397 * a reasonable value ourselves. 7398 * 7399 * We can't defer this to vmx_prepare_switch_to_host() since that 7400 * function may be executed in interrupt context, which saves and 7401 * restore segments around it, nullifying its effect. 7402 */ 7403 loadsegment(ds, __USER_DS); 7404 loadsegment(es, __USER_DS); 7405 #endif 7406 7407 pt_guest_exit(vmx); 7408 7409 kvm_load_host_xsave_state(vcpu); 7410 7411 if (is_guest_mode(vcpu)) { 7412 /* 7413 * Track VMLAUNCH/VMRESUME that have made past guest state 7414 * checking. 7415 */ 7416 if (vmx->nested.nested_run_pending && 7417 !vmx->exit_reason.failed_vmentry) 7418 ++vcpu->stat.nested_run; 7419 7420 vmx->nested.nested_run_pending = 0; 7421 } 7422 7423 if (unlikely(vmx->fail)) 7424 return EXIT_FASTPATH_NONE; 7425 7426 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY)) 7427 kvm_machine_check(); 7428 7429 trace_kvm_exit(vcpu, KVM_ISA_VMX); 7430 7431 if (unlikely(vmx->exit_reason.failed_vmentry)) 7432 return EXIT_FASTPATH_NONE; 7433 7434 vmx->loaded_vmcs->launched = 1; 7435 7436 vmx_recover_nmi_blocking(vmx); 7437 vmx_complete_interrupts(vmx); 7438 7439 if (is_guest_mode(vcpu)) 7440 return EXIT_FASTPATH_NONE; 7441 7442 return vmx_exit_handlers_fastpath(vcpu); 7443 } 7444 7445 static void vmx_vcpu_free(struct kvm_vcpu *vcpu) 7446 { 7447 struct vcpu_vmx *vmx = to_vmx(vcpu); 7448 7449 if (enable_pml) 7450 vmx_destroy_pml_buffer(vmx); 7451 free_vpid(vmx->vpid); 7452 nested_vmx_free_vcpu(vcpu); 7453 free_loaded_vmcs(vmx->loaded_vmcs); 7454 } 7455 7456 static int vmx_vcpu_create(struct kvm_vcpu *vcpu) 7457 { 7458 struct vmx_uret_msr *tsx_ctrl; 7459 struct vcpu_vmx *vmx; 7460 int i, err; 7461 7462 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0); 7463 vmx = to_vmx(vcpu); 7464 7465 INIT_LIST_HEAD(&vmx->pi_wakeup_list); 7466 7467 err = -ENOMEM; 7468 7469 vmx->vpid = allocate_vpid(); 7470 7471 /* 7472 * If PML is turned on, failure on enabling PML just results in failure 7473 * of creating the vcpu, therefore we can simplify PML logic (by 7474 * avoiding dealing with cases, such as enabling PML partially on vcpus 7475 * for the guest), etc. 7476 */ 7477 if (enable_pml) { 7478 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 7479 if (!vmx->pml_pg) 7480 goto free_vpid; 7481 } 7482 7483 for (i = 0; i < kvm_nr_uret_msrs; ++i) 7484 vmx->guest_uret_msrs[i].mask = -1ull; 7485 if (boot_cpu_has(X86_FEATURE_RTM)) { 7486 /* 7487 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception. 7488 * Keep the host value unchanged to avoid changing CPUID bits 7489 * under the host kernel's feet. 7490 */ 7491 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7492 if (tsx_ctrl) 7493 tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR; 7494 } 7495 7496 err = alloc_loaded_vmcs(&vmx->vmcs01); 7497 if (err < 0) 7498 goto free_pml; 7499 7500 /* 7501 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a 7502 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the 7503 * feature only for vmcs01, KVM currently isn't equipped to realize any 7504 * performance benefits from enabling it for vmcs02. 7505 */ 7506 if (kvm_is_using_evmcs() && 7507 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { 7508 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; 7509 7510 evmcs->hv_enlightenments_control.msr_bitmap = 1; 7511 } 7512 7513 /* The MSR bitmap starts with all ones */ 7514 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS); 7515 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS); 7516 7517 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R); 7518 #ifdef CONFIG_X86_64 7519 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW); 7520 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW); 7521 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); 7522 #endif 7523 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); 7524 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); 7525 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); 7526 if (kvm_cstate_in_guest(vcpu->kvm)) { 7527 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R); 7528 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R); 7529 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R); 7530 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R); 7531 } 7532 7533 vmx->loaded_vmcs = &vmx->vmcs01; 7534 7535 if (cpu_need_virtualize_apic_accesses(vcpu)) { 7536 err = kvm_alloc_apic_access_page(vcpu->kvm); 7537 if (err) 7538 goto free_vmcs; 7539 } 7540 7541 if (enable_ept && !enable_unrestricted_guest) { 7542 err = init_rmode_identity_map(vcpu->kvm); 7543 if (err) 7544 goto free_vmcs; 7545 } 7546 7547 if (vmx_can_use_ipiv(vcpu)) 7548 WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id], 7549 __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID); 7550 7551 return 0; 7552 7553 free_vmcs: 7554 free_loaded_vmcs(vmx->loaded_vmcs); 7555 free_pml: 7556 vmx_destroy_pml_buffer(vmx); 7557 free_vpid: 7558 free_vpid(vmx->vpid); 7559 return err; 7560 } 7561 7562 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7563 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7564 7565 static int vmx_vm_init(struct kvm *kvm) 7566 { 7567 if (!ple_gap) 7568 kvm->arch.pause_in_guest = true; 7569 7570 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { 7571 switch (l1tf_mitigation) { 7572 case L1TF_MITIGATION_OFF: 7573 case L1TF_MITIGATION_FLUSH_NOWARN: 7574 /* 'I explicitly don't care' is set */ 7575 break; 7576 case L1TF_MITIGATION_FLUSH: 7577 case L1TF_MITIGATION_FLUSH_NOSMT: 7578 case L1TF_MITIGATION_FULL: 7579 /* 7580 * Warn upon starting the first VM in a potentially 7581 * insecure environment. 7582 */ 7583 if (sched_smt_active()) 7584 pr_warn_once(L1TF_MSG_SMT); 7585 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) 7586 pr_warn_once(L1TF_MSG_L1D); 7587 break; 7588 case L1TF_MITIGATION_FULL_FORCE: 7589 /* Flush is enforced */ 7590 break; 7591 } 7592 } 7593 return 0; 7594 } 7595 7596 static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 7597 { 7598 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in 7599 * memory aliases with conflicting memory types and sometimes MCEs. 7600 * We have to be careful as to what are honored and when. 7601 * 7602 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to 7603 * UC. The effective memory type is UC or WC depending on guest PAT. 7604 * This was historically the source of MCEs and we want to be 7605 * conservative. 7606 * 7607 * When there is no need to deal with noncoherent DMA (e.g., no VT-d 7608 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The 7609 * EPT memory type is set to WB. The effective memory type is forced 7610 * WB. 7611 * 7612 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The 7613 * EPT memory type is used to emulate guest CD/MTRR. 7614 */ 7615 7616 if (is_mmio) 7617 return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT; 7618 7619 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) 7620 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT; 7621 7622 if (kvm_read_cr0_bits(vcpu, X86_CR0_CD)) { 7623 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 7624 return MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT; 7625 else 7626 return (MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT) | 7627 VMX_EPT_IPAT_BIT; 7628 } 7629 7630 return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT; 7631 } 7632 7633 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl) 7634 { 7635 /* 7636 * These bits in the secondary execution controls field 7637 * are dynamic, the others are mostly based on the hypervisor 7638 * architecture and the guest's CPUID. Do not touch the 7639 * dynamic bits. 7640 */ 7641 u32 mask = 7642 SECONDARY_EXEC_SHADOW_VMCS | 7643 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 7644 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 7645 SECONDARY_EXEC_DESC; 7646 7647 u32 cur_ctl = secondary_exec_controls_get(vmx); 7648 7649 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask)); 7650 } 7651 7652 /* 7653 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits 7654 * (indicating "allowed-1") if they are supported in the guest's CPUID. 7655 */ 7656 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) 7657 { 7658 struct vcpu_vmx *vmx = to_vmx(vcpu); 7659 struct kvm_cpuid_entry2 *entry; 7660 7661 vmx->nested.msrs.cr0_fixed1 = 0xffffffff; 7662 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; 7663 7664 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ 7665 if (entry && (entry->_reg & (_cpuid_mask))) \ 7666 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ 7667 } while (0) 7668 7669 entry = kvm_find_cpuid_entry(vcpu, 0x1); 7670 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME)); 7671 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME)); 7672 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC)); 7673 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE)); 7674 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE)); 7675 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE)); 7676 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE)); 7677 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE)); 7678 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR)); 7679 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM)); 7680 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX)); 7681 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX)); 7682 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID)); 7683 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE)); 7684 7685 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0); 7686 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE)); 7687 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP)); 7688 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP)); 7689 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU)); 7690 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP)); 7691 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57)); 7692 7693 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 1); 7694 cr4_fixed1_update(X86_CR4_LAM_SUP, eax, feature_bit(LAM)); 7695 7696 #undef cr4_fixed1_update 7697 } 7698 7699 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) 7700 { 7701 struct vcpu_vmx *vmx = to_vmx(vcpu); 7702 struct kvm_cpuid_entry2 *best = NULL; 7703 int i; 7704 7705 for (i = 0; i < PT_CPUID_LEAVES; i++) { 7706 best = kvm_find_cpuid_entry_index(vcpu, 0x14, i); 7707 if (!best) 7708 return; 7709 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; 7710 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; 7711 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; 7712 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; 7713 } 7714 7715 /* Get the number of configurable Address Ranges for filtering */ 7716 vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps, 7717 PT_CAP_num_address_ranges); 7718 7719 /* Initialize and clear the no dependency bits */ 7720 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | 7721 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC | 7722 RTIT_CTL_BRANCH_EN); 7723 7724 /* 7725 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise 7726 * will inject an #GP 7727 */ 7728 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) 7729 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; 7730 7731 /* 7732 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and 7733 * PSBFreq can be set 7734 */ 7735 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) 7736 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | 7737 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); 7738 7739 /* 7740 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set 7741 */ 7742 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) 7743 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | 7744 RTIT_CTL_MTC_RANGE); 7745 7746 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ 7747 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) 7748 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | 7749 RTIT_CTL_PTW_EN); 7750 7751 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ 7752 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) 7753 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; 7754 7755 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ 7756 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) 7757 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; 7758 7759 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */ 7760 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) 7761 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; 7762 7763 /* unmask address range configure area */ 7764 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) 7765 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4)); 7766 } 7767 7768 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 7769 { 7770 struct vcpu_vmx *vmx = to_vmx(vcpu); 7771 7772 /* 7773 * XSAVES is effectively enabled if and only if XSAVE is also exposed 7774 * to the guest. XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be 7775 * set if and only if XSAVE is supported. 7776 */ 7777 if (boot_cpu_has(X86_FEATURE_XSAVE) && 7778 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE)) 7779 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_XSAVES); 7780 7781 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VMX); 7782 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LAM); 7783 7784 vmx_setup_uret_msrs(vmx); 7785 7786 if (cpu_has_secondary_exec_ctrls()) 7787 vmcs_set_secondary_exec_control(vmx, 7788 vmx_secondary_exec_control(vmx)); 7789 7790 if (guest_can_use(vcpu, X86_FEATURE_VMX)) 7791 vmx->msr_ia32_feature_control_valid_bits |= 7792 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7793 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; 7794 else 7795 vmx->msr_ia32_feature_control_valid_bits &= 7796 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7797 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX); 7798 7799 if (guest_can_use(vcpu, X86_FEATURE_VMX)) 7800 nested_vmx_cr_fixed1_bits_update(vcpu); 7801 7802 if (boot_cpu_has(X86_FEATURE_INTEL_PT) && 7803 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT)) 7804 update_intel_pt_cfg(vcpu); 7805 7806 if (boot_cpu_has(X86_FEATURE_RTM)) { 7807 struct vmx_uret_msr *msr; 7808 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7809 if (msr) { 7810 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM); 7811 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE); 7812 } 7813 } 7814 7815 if (kvm_cpu_cap_has(X86_FEATURE_XFD)) 7816 vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R, 7817 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)); 7818 7819 if (boot_cpu_has(X86_FEATURE_IBPB)) 7820 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W, 7821 !guest_has_pred_cmd_msr(vcpu)); 7822 7823 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D)) 7824 vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W, 7825 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)); 7826 7827 set_cr4_guest_host_mask(vmx); 7828 7829 vmx_write_encls_bitmap(vcpu, NULL); 7830 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX)) 7831 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED; 7832 else 7833 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED; 7834 7835 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 7836 vmx->msr_ia32_feature_control_valid_bits |= 7837 FEAT_CTL_SGX_LC_ENABLED; 7838 else 7839 vmx->msr_ia32_feature_control_valid_bits &= 7840 ~FEAT_CTL_SGX_LC_ENABLED; 7841 7842 /* Refresh #PF interception to account for MAXPHYADDR changes. */ 7843 vmx_update_exception_bitmap(vcpu); 7844 } 7845 7846 static u64 vmx_get_perf_capabilities(void) 7847 { 7848 u64 perf_cap = PMU_CAP_FW_WRITES; 7849 struct x86_pmu_lbr lbr; 7850 u64 host_perf_cap = 0; 7851 7852 if (!enable_pmu) 7853 return 0; 7854 7855 if (boot_cpu_has(X86_FEATURE_PDCM)) 7856 rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap); 7857 7858 if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) { 7859 x86_perf_get_lbr(&lbr); 7860 if (lbr.nr) 7861 perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT; 7862 } 7863 7864 if (vmx_pebs_supported()) { 7865 perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK; 7866 if ((perf_cap & PERF_CAP_PEBS_FORMAT) < 4) 7867 perf_cap &= ~PERF_CAP_PEBS_BASELINE; 7868 } 7869 7870 return perf_cap; 7871 } 7872 7873 static __init void vmx_set_cpu_caps(void) 7874 { 7875 kvm_set_cpu_caps(); 7876 7877 /* CPUID 0x1 */ 7878 if (nested) 7879 kvm_cpu_cap_set(X86_FEATURE_VMX); 7880 7881 /* CPUID 0x7 */ 7882 if (kvm_mpx_supported()) 7883 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX); 7884 if (!cpu_has_vmx_invpcid()) 7885 kvm_cpu_cap_clear(X86_FEATURE_INVPCID); 7886 if (vmx_pt_mode_is_host_guest()) 7887 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT); 7888 if (vmx_pebs_supported()) { 7889 kvm_cpu_cap_check_and_set(X86_FEATURE_DS); 7890 kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64); 7891 } 7892 7893 if (!enable_pmu) 7894 kvm_cpu_cap_clear(X86_FEATURE_PDCM); 7895 kvm_caps.supported_perf_cap = vmx_get_perf_capabilities(); 7896 7897 if (!enable_sgx) { 7898 kvm_cpu_cap_clear(X86_FEATURE_SGX); 7899 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC); 7900 kvm_cpu_cap_clear(X86_FEATURE_SGX1); 7901 kvm_cpu_cap_clear(X86_FEATURE_SGX2); 7902 } 7903 7904 if (vmx_umip_emulated()) 7905 kvm_cpu_cap_set(X86_FEATURE_UMIP); 7906 7907 /* CPUID 0xD.1 */ 7908 kvm_caps.supported_xss = 0; 7909 if (!cpu_has_vmx_xsaves()) 7910 kvm_cpu_cap_clear(X86_FEATURE_XSAVES); 7911 7912 /* CPUID 0x80000001 and 0x7 (RDPID) */ 7913 if (!cpu_has_vmx_rdtscp()) { 7914 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP); 7915 kvm_cpu_cap_clear(X86_FEATURE_RDPID); 7916 } 7917 7918 if (cpu_has_vmx_waitpkg()) 7919 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG); 7920 } 7921 7922 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu) 7923 { 7924 to_vmx(vcpu)->req_immediate_exit = true; 7925 } 7926 7927 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu, 7928 struct x86_instruction_info *info) 7929 { 7930 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7931 unsigned short port; 7932 bool intercept; 7933 int size; 7934 7935 if (info->intercept == x86_intercept_in || 7936 info->intercept == x86_intercept_ins) { 7937 port = info->src_val; 7938 size = info->dst_bytes; 7939 } else { 7940 port = info->dst_val; 7941 size = info->src_bytes; 7942 } 7943 7944 /* 7945 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction 7946 * VM-exits depend on the 'unconditional IO exiting' VM-execution 7947 * control. 7948 * 7949 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps. 7950 */ 7951 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) 7952 intercept = nested_cpu_has(vmcs12, 7953 CPU_BASED_UNCOND_IO_EXITING); 7954 else 7955 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size); 7956 7957 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7958 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; 7959 } 7960 7961 static int vmx_check_intercept(struct kvm_vcpu *vcpu, 7962 struct x86_instruction_info *info, 7963 enum x86_intercept_stage stage, 7964 struct x86_exception *exception) 7965 { 7966 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7967 7968 switch (info->intercept) { 7969 /* 7970 * RDPID causes #UD if disabled through secondary execution controls. 7971 * Because it is marked as EmulateOnUD, we need to intercept it here. 7972 * Note, RDPID is hidden behind ENABLE_RDTSCP. 7973 */ 7974 case x86_intercept_rdpid: 7975 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) { 7976 exception->vector = UD_VECTOR; 7977 exception->error_code_valid = false; 7978 return X86EMUL_PROPAGATE_FAULT; 7979 } 7980 break; 7981 7982 case x86_intercept_in: 7983 case x86_intercept_ins: 7984 case x86_intercept_out: 7985 case x86_intercept_outs: 7986 return vmx_check_intercept_io(vcpu, info); 7987 7988 case x86_intercept_lgdt: 7989 case x86_intercept_lidt: 7990 case x86_intercept_lldt: 7991 case x86_intercept_ltr: 7992 case x86_intercept_sgdt: 7993 case x86_intercept_sidt: 7994 case x86_intercept_sldt: 7995 case x86_intercept_str: 7996 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC)) 7997 return X86EMUL_CONTINUE; 7998 7999 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 8000 break; 8001 8002 case x86_intercept_pause: 8003 /* 8004 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides 8005 * with vanilla NOPs in the emulator. Apply the interception 8006 * check only to actual PAUSE instructions. Don't check 8007 * PAUSE-loop-exiting, software can't expect a given PAUSE to 8008 * exit, i.e. KVM is within its rights to allow L2 to execute 8009 * the PAUSE. 8010 */ 8011 if ((info->rep_prefix != REPE_PREFIX) || 8012 !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING)) 8013 return X86EMUL_CONTINUE; 8014 8015 break; 8016 8017 /* TODO: check more intercepts... */ 8018 default: 8019 break; 8020 } 8021 8022 return X86EMUL_UNHANDLEABLE; 8023 } 8024 8025 #ifdef CONFIG_X86_64 8026 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ 8027 static inline int u64_shl_div_u64(u64 a, unsigned int shift, 8028 u64 divisor, u64 *result) 8029 { 8030 u64 low = a << shift, high = a >> (64 - shift); 8031 8032 /* To avoid the overflow on divq */ 8033 if (high >= divisor) 8034 return 1; 8035 8036 /* Low hold the result, high hold rem which is discarded */ 8037 asm("divq %2\n\t" : "=a" (low), "=d" (high) : 8038 "rm" (divisor), "0" (low), "1" (high)); 8039 *result = low; 8040 8041 return 0; 8042 } 8043 8044 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 8045 bool *expired) 8046 { 8047 struct vcpu_vmx *vmx; 8048 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; 8049 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer; 8050 8051 vmx = to_vmx(vcpu); 8052 tscl = rdtsc(); 8053 guest_tscl = kvm_read_l1_tsc(vcpu, tscl); 8054 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; 8055 lapic_timer_advance_cycles = nsec_to_cycles(vcpu, 8056 ktimer->timer_advance_ns); 8057 8058 if (delta_tsc > lapic_timer_advance_cycles) 8059 delta_tsc -= lapic_timer_advance_cycles; 8060 else 8061 delta_tsc = 0; 8062 8063 /* Convert to host delta tsc if tsc scaling is enabled */ 8064 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio && 8065 delta_tsc && u64_shl_div_u64(delta_tsc, 8066 kvm_caps.tsc_scaling_ratio_frac_bits, 8067 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc)) 8068 return -ERANGE; 8069 8070 /* 8071 * If the delta tsc can't fit in the 32 bit after the multi shift, 8072 * we can't use the preemption timer. 8073 * It's possible that it fits on later vmentries, but checking 8074 * on every vmentry is costly so we just use an hrtimer. 8075 */ 8076 if (delta_tsc >> (cpu_preemption_timer_multi + 32)) 8077 return -ERANGE; 8078 8079 vmx->hv_deadline_tsc = tscl + delta_tsc; 8080 *expired = !delta_tsc; 8081 return 0; 8082 } 8083 8084 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) 8085 { 8086 to_vmx(vcpu)->hv_deadline_tsc = -1; 8087 } 8088 #endif 8089 8090 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) 8091 { 8092 if (!kvm_pause_in_guest(vcpu->kvm)) 8093 shrink_ple_window(vcpu); 8094 } 8095 8096 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu) 8097 { 8098 struct vcpu_vmx *vmx = to_vmx(vcpu); 8099 8100 if (WARN_ON_ONCE(!enable_pml)) 8101 return; 8102 8103 if (is_guest_mode(vcpu)) { 8104 vmx->nested.update_vmcs01_cpu_dirty_logging = true; 8105 return; 8106 } 8107 8108 /* 8109 * Note, nr_memslots_dirty_logging can be changed concurrent with this 8110 * code, but in that case another update request will be made and so 8111 * the guest will never run with a stale PML value. 8112 */ 8113 if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging)) 8114 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML); 8115 else 8116 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML); 8117 } 8118 8119 static void vmx_setup_mce(struct kvm_vcpu *vcpu) 8120 { 8121 if (vcpu->arch.mcg_cap & MCG_LMCE_P) 8122 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 8123 FEAT_CTL_LMCE_ENABLED; 8124 else 8125 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 8126 ~FEAT_CTL_LMCE_ENABLED; 8127 } 8128 8129 #ifdef CONFIG_KVM_SMM 8130 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 8131 { 8132 /* we need a nested vmexit to enter SMM, postpone if run is pending */ 8133 if (to_vmx(vcpu)->nested.nested_run_pending) 8134 return -EBUSY; 8135 return !is_smm(vcpu); 8136 } 8137 8138 static int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) 8139 { 8140 struct vcpu_vmx *vmx = to_vmx(vcpu); 8141 8142 /* 8143 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on 8144 * SMI and RSM. Using the common VM-Exit + VM-Enter routines is wrong 8145 * SMI and RSM only modify state that is saved and restored via SMRAM. 8146 * E.g. most MSRs are left untouched, but many are modified by VM-Exit 8147 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM. 8148 */ 8149 vmx->nested.smm.guest_mode = is_guest_mode(vcpu); 8150 if (vmx->nested.smm.guest_mode) 8151 nested_vmx_vmexit(vcpu, -1, 0, 0); 8152 8153 vmx->nested.smm.vmxon = vmx->nested.vmxon; 8154 vmx->nested.vmxon = false; 8155 vmx_clear_hlt(vcpu); 8156 return 0; 8157 } 8158 8159 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) 8160 { 8161 struct vcpu_vmx *vmx = to_vmx(vcpu); 8162 int ret; 8163 8164 if (vmx->nested.smm.vmxon) { 8165 vmx->nested.vmxon = true; 8166 vmx->nested.smm.vmxon = false; 8167 } 8168 8169 if (vmx->nested.smm.guest_mode) { 8170 ret = nested_vmx_enter_non_root_mode(vcpu, false); 8171 if (ret) 8172 return ret; 8173 8174 vmx->nested.nested_run_pending = 1; 8175 vmx->nested.smm.guest_mode = false; 8176 } 8177 return 0; 8178 } 8179 8180 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu) 8181 { 8182 /* RSM will cause a vmexit anyway. */ 8183 } 8184 #endif 8185 8186 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 8187 { 8188 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu); 8189 } 8190 8191 static void vmx_migrate_timers(struct kvm_vcpu *vcpu) 8192 { 8193 if (is_guest_mode(vcpu)) { 8194 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer; 8195 8196 if (hrtimer_try_to_cancel(timer) == 1) 8197 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 8198 } 8199 } 8200 8201 static void vmx_hardware_unsetup(void) 8202 { 8203 kvm_set_posted_intr_wakeup_handler(NULL); 8204 8205 if (nested) 8206 nested_vmx_hardware_unsetup(); 8207 8208 free_kvm_area(); 8209 } 8210 8211 #define VMX_REQUIRED_APICV_INHIBITS \ 8212 ( \ 8213 BIT(APICV_INHIBIT_REASON_DISABLE)| \ 8214 BIT(APICV_INHIBIT_REASON_ABSENT) | \ 8215 BIT(APICV_INHIBIT_REASON_HYPERV) | \ 8216 BIT(APICV_INHIBIT_REASON_BLOCKIRQ) | \ 8217 BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) | \ 8218 BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) | \ 8219 BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED) \ 8220 ) 8221 8222 static void vmx_vm_destroy(struct kvm *kvm) 8223 { 8224 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 8225 8226 free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm)); 8227 } 8228 8229 /* 8230 * Note, the SDM states that the linear address is masked *after* the modified 8231 * canonicality check, whereas KVM masks (untags) the address and then performs 8232 * a "normal" canonicality check. Functionally, the two methods are identical, 8233 * and when the masking occurs relative to the canonicality check isn't visible 8234 * to software, i.e. KVM's behavior doesn't violate the SDM. 8235 */ 8236 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags) 8237 { 8238 int lam_bit; 8239 unsigned long cr3_bits; 8240 8241 if (flags & (X86EMUL_F_FETCH | X86EMUL_F_IMPLICIT | X86EMUL_F_INVLPG)) 8242 return gva; 8243 8244 if (!is_64_bit_mode(vcpu)) 8245 return gva; 8246 8247 /* 8248 * Bit 63 determines if the address should be treated as user address 8249 * or a supervisor address. 8250 */ 8251 if (!(gva & BIT_ULL(63))) { 8252 cr3_bits = kvm_get_active_cr3_lam_bits(vcpu); 8253 if (!(cr3_bits & (X86_CR3_LAM_U57 | X86_CR3_LAM_U48))) 8254 return gva; 8255 8256 /* LAM_U48 is ignored if LAM_U57 is set. */ 8257 lam_bit = cr3_bits & X86_CR3_LAM_U57 ? 56 : 47; 8258 } else { 8259 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_LAM_SUP)) 8260 return gva; 8261 8262 lam_bit = kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 56 : 47; 8263 } 8264 8265 /* 8266 * Untag the address by sign-extending the lam_bit, but NOT to bit 63. 8267 * Bit 63 is retained from the raw virtual address so that untagging 8268 * doesn't change a user access to a supervisor access, and vice versa. 8269 */ 8270 return (sign_extend64(gva, lam_bit) & ~BIT_ULL(63)) | (gva & BIT_ULL(63)); 8271 } 8272 8273 static struct kvm_x86_ops vmx_x86_ops __initdata = { 8274 .name = KBUILD_MODNAME, 8275 8276 .check_processor_compatibility = vmx_check_processor_compat, 8277 8278 .hardware_unsetup = vmx_hardware_unsetup, 8279 8280 .hardware_enable = vmx_hardware_enable, 8281 .hardware_disable = vmx_hardware_disable, 8282 .has_emulated_msr = vmx_has_emulated_msr, 8283 8284 .vm_size = sizeof(struct kvm_vmx), 8285 .vm_init = vmx_vm_init, 8286 .vm_destroy = vmx_vm_destroy, 8287 8288 .vcpu_precreate = vmx_vcpu_precreate, 8289 .vcpu_create = vmx_vcpu_create, 8290 .vcpu_free = vmx_vcpu_free, 8291 .vcpu_reset = vmx_vcpu_reset, 8292 8293 .prepare_switch_to_guest = vmx_prepare_switch_to_guest, 8294 .vcpu_load = vmx_vcpu_load, 8295 .vcpu_put = vmx_vcpu_put, 8296 8297 .update_exception_bitmap = vmx_update_exception_bitmap, 8298 .get_msr_feature = vmx_get_msr_feature, 8299 .get_msr = vmx_get_msr, 8300 .set_msr = vmx_set_msr, 8301 .get_segment_base = vmx_get_segment_base, 8302 .get_segment = vmx_get_segment, 8303 .set_segment = vmx_set_segment, 8304 .get_cpl = vmx_get_cpl, 8305 .get_cs_db_l_bits = vmx_get_cs_db_l_bits, 8306 .is_valid_cr0 = vmx_is_valid_cr0, 8307 .set_cr0 = vmx_set_cr0, 8308 .is_valid_cr4 = vmx_is_valid_cr4, 8309 .set_cr4 = vmx_set_cr4, 8310 .set_efer = vmx_set_efer, 8311 .get_idt = vmx_get_idt, 8312 .set_idt = vmx_set_idt, 8313 .get_gdt = vmx_get_gdt, 8314 .set_gdt = vmx_set_gdt, 8315 .set_dr7 = vmx_set_dr7, 8316 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, 8317 .cache_reg = vmx_cache_reg, 8318 .get_rflags = vmx_get_rflags, 8319 .set_rflags = vmx_set_rflags, 8320 .get_if_flag = vmx_get_if_flag, 8321 8322 .flush_tlb_all = vmx_flush_tlb_all, 8323 .flush_tlb_current = vmx_flush_tlb_current, 8324 .flush_tlb_gva = vmx_flush_tlb_gva, 8325 .flush_tlb_guest = vmx_flush_tlb_guest, 8326 8327 .vcpu_pre_run = vmx_vcpu_pre_run, 8328 .vcpu_run = vmx_vcpu_run, 8329 .handle_exit = vmx_handle_exit, 8330 .skip_emulated_instruction = vmx_skip_emulated_instruction, 8331 .update_emulated_instruction = vmx_update_emulated_instruction, 8332 .set_interrupt_shadow = vmx_set_interrupt_shadow, 8333 .get_interrupt_shadow = vmx_get_interrupt_shadow, 8334 .patch_hypercall = vmx_patch_hypercall, 8335 .inject_irq = vmx_inject_irq, 8336 .inject_nmi = vmx_inject_nmi, 8337 .inject_exception = vmx_inject_exception, 8338 .cancel_injection = vmx_cancel_injection, 8339 .interrupt_allowed = vmx_interrupt_allowed, 8340 .nmi_allowed = vmx_nmi_allowed, 8341 .get_nmi_mask = vmx_get_nmi_mask, 8342 .set_nmi_mask = vmx_set_nmi_mask, 8343 .enable_nmi_window = vmx_enable_nmi_window, 8344 .enable_irq_window = vmx_enable_irq_window, 8345 .update_cr8_intercept = vmx_update_cr8_intercept, 8346 .set_virtual_apic_mode = vmx_set_virtual_apic_mode, 8347 .set_apic_access_page_addr = vmx_set_apic_access_page_addr, 8348 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, 8349 .load_eoi_exitmap = vmx_load_eoi_exitmap, 8350 .apicv_pre_state_restore = vmx_apicv_pre_state_restore, 8351 .required_apicv_inhibits = VMX_REQUIRED_APICV_INHIBITS, 8352 .hwapic_irr_update = vmx_hwapic_irr_update, 8353 .hwapic_isr_update = vmx_hwapic_isr_update, 8354 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt, 8355 .sync_pir_to_irr = vmx_sync_pir_to_irr, 8356 .deliver_interrupt = vmx_deliver_interrupt, 8357 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt, 8358 8359 .set_tss_addr = vmx_set_tss_addr, 8360 .set_identity_map_addr = vmx_set_identity_map_addr, 8361 .get_mt_mask = vmx_get_mt_mask, 8362 8363 .get_exit_info = vmx_get_exit_info, 8364 8365 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid, 8366 8367 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, 8368 8369 .get_l2_tsc_offset = vmx_get_l2_tsc_offset, 8370 .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier, 8371 .write_tsc_offset = vmx_write_tsc_offset, 8372 .write_tsc_multiplier = vmx_write_tsc_multiplier, 8373 8374 .load_mmu_pgd = vmx_load_mmu_pgd, 8375 8376 .check_intercept = vmx_check_intercept, 8377 .handle_exit_irqoff = vmx_handle_exit_irqoff, 8378 8379 .request_immediate_exit = vmx_request_immediate_exit, 8380 8381 .sched_in = vmx_sched_in, 8382 8383 .cpu_dirty_log_size = PML_ENTITY_NUM, 8384 .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging, 8385 8386 .nested_ops = &vmx_nested_ops, 8387 8388 .pi_update_irte = vmx_pi_update_irte, 8389 .pi_start_assignment = vmx_pi_start_assignment, 8390 8391 #ifdef CONFIG_X86_64 8392 .set_hv_timer = vmx_set_hv_timer, 8393 .cancel_hv_timer = vmx_cancel_hv_timer, 8394 #endif 8395 8396 .setup_mce = vmx_setup_mce, 8397 8398 #ifdef CONFIG_KVM_SMM 8399 .smi_allowed = vmx_smi_allowed, 8400 .enter_smm = vmx_enter_smm, 8401 .leave_smm = vmx_leave_smm, 8402 .enable_smi_window = vmx_enable_smi_window, 8403 #endif 8404 8405 .check_emulate_instruction = vmx_check_emulate_instruction, 8406 .apic_init_signal_blocked = vmx_apic_init_signal_blocked, 8407 .migrate_timers = vmx_migrate_timers, 8408 8409 .msr_filter_changed = vmx_msr_filter_changed, 8410 .complete_emulated_msr = kvm_complete_insn_gp, 8411 8412 .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector, 8413 8414 .get_untagged_addr = vmx_get_untagged_addr, 8415 }; 8416 8417 static unsigned int vmx_handle_intel_pt_intr(void) 8418 { 8419 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 8420 8421 /* '0' on failure so that the !PT case can use a RET0 static call. */ 8422 if (!vcpu || !kvm_handling_nmi_from_guest(vcpu)) 8423 return 0; 8424 8425 kvm_make_request(KVM_REQ_PMI, vcpu); 8426 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT, 8427 (unsigned long *)&vcpu->arch.pmu.global_status); 8428 return 1; 8429 } 8430 8431 static __init void vmx_setup_user_return_msrs(void) 8432 { 8433 8434 /* 8435 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm 8436 * will emulate SYSCALL in legacy mode if the vendor string in guest 8437 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To 8438 * support this emulation, MSR_STAR is included in the list for i386, 8439 * but is never loaded into hardware. MSR_CSTAR is also never loaded 8440 * into hardware and is here purely for emulation purposes. 8441 */ 8442 const u32 vmx_uret_msrs_list[] = { 8443 #ifdef CONFIG_X86_64 8444 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, 8445 #endif 8446 MSR_EFER, MSR_TSC_AUX, MSR_STAR, 8447 MSR_IA32_TSX_CTRL, 8448 }; 8449 int i; 8450 8451 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS); 8452 8453 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) 8454 kvm_add_user_return_msr(vmx_uret_msrs_list[i]); 8455 } 8456 8457 static void __init vmx_setup_me_spte_mask(void) 8458 { 8459 u64 me_mask = 0; 8460 8461 /* 8462 * kvm_get_shadow_phys_bits() returns shadow_phys_bits. Use 8463 * the former to avoid exposing shadow_phys_bits. 8464 * 8465 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to 8466 * shadow_phys_bits. On MKTME and/or TDX capable systems, 8467 * boot_cpu_data.x86_phys_bits holds the actual physical address 8468 * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR 8469 * reported by CPUID. Those bits between are KeyID bits. 8470 */ 8471 if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits()) 8472 me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits, 8473 kvm_get_shadow_phys_bits() - 1); 8474 /* 8475 * Unlike SME, host kernel doesn't support setting up any 8476 * MKTME KeyID on Intel platforms. No memory encryption 8477 * bits should be included into the SPTE. 8478 */ 8479 kvm_mmu_set_me_spte_mask(0, me_mask); 8480 } 8481 8482 static struct kvm_x86_init_ops vmx_init_ops __initdata; 8483 8484 static __init int hardware_setup(void) 8485 { 8486 unsigned long host_bndcfgs; 8487 struct desc_ptr dt; 8488 int r; 8489 8490 store_idt(&dt); 8491 host_idt_base = dt.address; 8492 8493 vmx_setup_user_return_msrs(); 8494 8495 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) 8496 return -EIO; 8497 8498 if (cpu_has_perf_global_ctrl_bug()) 8499 pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " 8500 "does not work properly. Using workaround\n"); 8501 8502 if (boot_cpu_has(X86_FEATURE_NX)) 8503 kvm_enable_efer_bits(EFER_NX); 8504 8505 if (boot_cpu_has(X86_FEATURE_MPX)) { 8506 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); 8507 WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost"); 8508 } 8509 8510 if (!cpu_has_vmx_mpx()) 8511 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 8512 XFEATURE_MASK_BNDCSR); 8513 8514 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || 8515 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) 8516 enable_vpid = 0; 8517 8518 if (!cpu_has_vmx_ept() || 8519 !cpu_has_vmx_ept_4levels() || 8520 !cpu_has_vmx_ept_mt_wb() || 8521 !cpu_has_vmx_invept_global()) 8522 enable_ept = 0; 8523 8524 /* NX support is required for shadow paging. */ 8525 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) { 8526 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 8527 return -EOPNOTSUPP; 8528 } 8529 8530 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) 8531 enable_ept_ad_bits = 0; 8532 8533 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) 8534 enable_unrestricted_guest = 0; 8535 8536 if (!cpu_has_vmx_flexpriority()) 8537 flexpriority_enabled = 0; 8538 8539 if (!cpu_has_virtual_nmis()) 8540 enable_vnmi = 0; 8541 8542 #ifdef CONFIG_X86_SGX_KVM 8543 if (!cpu_has_vmx_encls_vmexit()) 8544 enable_sgx = false; 8545 #endif 8546 8547 /* 8548 * set_apic_access_page_addr() is used to reload apic access 8549 * page upon invalidation. No need to do anything if not 8550 * using the APIC_ACCESS_ADDR VMCS field. 8551 */ 8552 if (!flexpriority_enabled) 8553 vmx_x86_ops.set_apic_access_page_addr = NULL; 8554 8555 if (!cpu_has_vmx_tpr_shadow()) 8556 vmx_x86_ops.update_cr8_intercept = NULL; 8557 8558 #if IS_ENABLED(CONFIG_HYPERV) 8559 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH 8560 && enable_ept) { 8561 vmx_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs; 8562 vmx_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range; 8563 } 8564 #endif 8565 8566 if (!cpu_has_vmx_ple()) { 8567 ple_gap = 0; 8568 ple_window = 0; 8569 ple_window_grow = 0; 8570 ple_window_max = 0; 8571 ple_window_shrink = 0; 8572 } 8573 8574 if (!cpu_has_vmx_apicv()) 8575 enable_apicv = 0; 8576 if (!enable_apicv) 8577 vmx_x86_ops.sync_pir_to_irr = NULL; 8578 8579 if (!enable_apicv || !cpu_has_vmx_ipiv()) 8580 enable_ipiv = false; 8581 8582 if (cpu_has_vmx_tsc_scaling()) 8583 kvm_caps.has_tsc_control = true; 8584 8585 kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; 8586 kvm_caps.tsc_scaling_ratio_frac_bits = 48; 8587 kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection(); 8588 kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit(); 8589 8590 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ 8591 8592 if (enable_ept) 8593 kvm_mmu_set_ept_masks(enable_ept_ad_bits, 8594 cpu_has_vmx_ept_execute_only()); 8595 8596 /* 8597 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID 8598 * bits to shadow_zero_check. 8599 */ 8600 vmx_setup_me_spte_mask(); 8601 8602 kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(), 8603 ept_caps_to_lpage_level(vmx_capability.ept)); 8604 8605 /* 8606 * Only enable PML when hardware supports PML feature, and both EPT 8607 * and EPT A/D bit features are enabled -- PML depends on them to work. 8608 */ 8609 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) 8610 enable_pml = 0; 8611 8612 if (!enable_pml) 8613 vmx_x86_ops.cpu_dirty_log_size = 0; 8614 8615 if (!cpu_has_vmx_preemption_timer()) 8616 enable_preemption_timer = false; 8617 8618 if (enable_preemption_timer) { 8619 u64 use_timer_freq = 5000ULL * 1000 * 1000; 8620 8621 cpu_preemption_timer_multi = 8622 vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; 8623 8624 if (tsc_khz) 8625 use_timer_freq = (u64)tsc_khz * 1000; 8626 use_timer_freq >>= cpu_preemption_timer_multi; 8627 8628 /* 8629 * KVM "disables" the preemption timer by setting it to its max 8630 * value. Don't use the timer if it might cause spurious exits 8631 * at a rate faster than 0.1 Hz (of uninterrupted guest time). 8632 */ 8633 if (use_timer_freq > 0xffffffffu / 10) 8634 enable_preemption_timer = false; 8635 } 8636 8637 if (!enable_preemption_timer) { 8638 vmx_x86_ops.set_hv_timer = NULL; 8639 vmx_x86_ops.cancel_hv_timer = NULL; 8640 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit; 8641 } 8642 8643 kvm_caps.supported_mce_cap |= MCG_LMCE_P; 8644 kvm_caps.supported_mce_cap |= MCG_CMCI_P; 8645 8646 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) 8647 return -EINVAL; 8648 if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt()) 8649 pt_mode = PT_MODE_SYSTEM; 8650 if (pt_mode == PT_MODE_HOST_GUEST) 8651 vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr; 8652 else 8653 vmx_init_ops.handle_intel_pt_intr = NULL; 8654 8655 setup_default_sgx_lepubkeyhash(); 8656 8657 if (nested) { 8658 nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept); 8659 8660 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); 8661 if (r) 8662 return r; 8663 } 8664 8665 vmx_set_cpu_caps(); 8666 8667 r = alloc_kvm_area(); 8668 if (r && nested) 8669 nested_vmx_hardware_unsetup(); 8670 8671 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler); 8672 8673 return r; 8674 } 8675 8676 static struct kvm_x86_init_ops vmx_init_ops __initdata = { 8677 .hardware_setup = hardware_setup, 8678 .handle_intel_pt_intr = NULL, 8679 8680 .runtime_ops = &vmx_x86_ops, 8681 .pmu_ops = &intel_pmu_ops, 8682 }; 8683 8684 static void vmx_cleanup_l1d_flush(void) 8685 { 8686 if (vmx_l1d_flush_pages) { 8687 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); 8688 vmx_l1d_flush_pages = NULL; 8689 } 8690 /* Restore state so sysfs ignores VMX */ 8691 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 8692 } 8693 8694 static void __vmx_exit(void) 8695 { 8696 allow_smaller_maxphyaddr = false; 8697 8698 cpu_emergency_unregister_virt_callback(vmx_emergency_disable); 8699 8700 vmx_cleanup_l1d_flush(); 8701 } 8702 8703 static void vmx_exit(void) 8704 { 8705 kvm_exit(); 8706 kvm_x86_vendor_exit(); 8707 8708 __vmx_exit(); 8709 } 8710 module_exit(vmx_exit); 8711 8712 static int __init vmx_init(void) 8713 { 8714 int r, cpu; 8715 8716 if (!kvm_is_vmx_supported()) 8717 return -EOPNOTSUPP; 8718 8719 /* 8720 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing 8721 * to unwind if a later step fails. 8722 */ 8723 hv_init_evmcs(); 8724 8725 r = kvm_x86_vendor_init(&vmx_init_ops); 8726 if (r) 8727 return r; 8728 8729 /* 8730 * Must be called after common x86 init so enable_ept is properly set 8731 * up. Hand the parameter mitigation value in which was stored in 8732 * the pre module init parser. If no parameter was given, it will 8733 * contain 'auto' which will be turned into the default 'cond' 8734 * mitigation mode. 8735 */ 8736 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); 8737 if (r) 8738 goto err_l1d_flush; 8739 8740 for_each_possible_cpu(cpu) { 8741 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); 8742 8743 pi_init_cpu(cpu); 8744 } 8745 8746 cpu_emergency_register_virt_callback(vmx_emergency_disable); 8747 8748 vmx_check_vmcs12_offsets(); 8749 8750 /* 8751 * Shadow paging doesn't have a (further) performance penalty 8752 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it 8753 * by default 8754 */ 8755 if (!enable_ept) 8756 allow_smaller_maxphyaddr = true; 8757 8758 /* 8759 * Common KVM initialization _must_ come last, after this, /dev/kvm is 8760 * exposed to userspace! 8761 */ 8762 r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx), 8763 THIS_MODULE); 8764 if (r) 8765 goto err_kvm_init; 8766 8767 return 0; 8768 8769 err_kvm_init: 8770 __vmx_exit(); 8771 err_l1d_flush: 8772 kvm_x86_vendor_exit(); 8773 return r; 8774 } 8775 module_init(vmx_init); 8776