1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/highmem.h> 18 #include <linux/hrtimer.h> 19 #include <linux/kernel.h> 20 #include <linux/kvm_host.h> 21 #include <linux/module.h> 22 #include <linux/moduleparam.h> 23 #include <linux/mod_devicetable.h> 24 #include <linux/mm.h> 25 #include <linux/objtool.h> 26 #include <linux/sched.h> 27 #include <linux/sched/smt.h> 28 #include <linux/slab.h> 29 #include <linux/tboot.h> 30 #include <linux/trace_events.h> 31 #include <linux/entry-kvm.h> 32 33 #include <asm/apic.h> 34 #include <asm/asm.h> 35 #include <asm/cpu.h> 36 #include <asm/cpu_device_id.h> 37 #include <asm/debugreg.h> 38 #include <asm/desc.h> 39 #include <asm/fpu/api.h> 40 #include <asm/fpu/xstate.h> 41 #include <asm/fred.h> 42 #include <asm/idtentry.h> 43 #include <asm/io.h> 44 #include <asm/irq_remapping.h> 45 #include <asm/reboot.h> 46 #include <asm/perf_event.h> 47 #include <asm/mmu_context.h> 48 #include <asm/mshyperv.h> 49 #include <asm/mwait.h> 50 #include <asm/spec-ctrl.h> 51 #include <asm/vmx.h> 52 53 #include <trace/events/ipi.h> 54 55 #include "capabilities.h" 56 #include "cpuid.h" 57 #include "hyperv.h" 58 #include "kvm_onhyperv.h" 59 #include "irq.h" 60 #include "kvm_cache_regs.h" 61 #include "lapic.h" 62 #include "mmu.h" 63 #include "nested.h" 64 #include "pmu.h" 65 #include "sgx.h" 66 #include "trace.h" 67 #include "vmcs.h" 68 #include "vmcs12.h" 69 #include "vmx.h" 70 #include "x86.h" 71 #include "x86_ops.h" 72 #include "smm.h" 73 #include "vmx_onhyperv.h" 74 #include "posted_intr.h" 75 76 MODULE_AUTHOR("Qumranet"); 77 MODULE_DESCRIPTION("KVM support for VMX (Intel VT-x) extensions"); 78 MODULE_LICENSE("GPL"); 79 80 #ifdef MODULE 81 static const struct x86_cpu_id vmx_cpu_id[] = { 82 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL), 83 {} 84 }; 85 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); 86 #endif 87 88 bool __read_mostly enable_vpid = 1; 89 module_param_named(vpid, enable_vpid, bool, 0444); 90 91 static bool __read_mostly enable_vnmi = 1; 92 module_param_named(vnmi, enable_vnmi, bool, 0444); 93 94 bool __read_mostly flexpriority_enabled = 1; 95 module_param_named(flexpriority, flexpriority_enabled, bool, 0444); 96 97 bool __read_mostly enable_ept = 1; 98 module_param_named(ept, enable_ept, bool, 0444); 99 100 bool __read_mostly enable_unrestricted_guest = 1; 101 module_param_named(unrestricted_guest, 102 enable_unrestricted_guest, bool, 0444); 103 104 bool __read_mostly enable_ept_ad_bits = 1; 105 module_param_named(eptad, enable_ept_ad_bits, bool, 0444); 106 107 static bool __read_mostly emulate_invalid_guest_state = true; 108 module_param(emulate_invalid_guest_state, bool, 0444); 109 110 static bool __read_mostly fasteoi = 1; 111 module_param(fasteoi, bool, 0444); 112 113 module_param(enable_apicv, bool, 0444); 114 115 bool __read_mostly enable_ipiv = true; 116 module_param(enable_ipiv, bool, 0444); 117 118 /* 119 * If nested=1, nested virtualization is supported, i.e., guests may use 120 * VMX and be a hypervisor for its own guests. If nested=0, guests may not 121 * use VMX instructions. 122 */ 123 static bool __read_mostly nested = 1; 124 module_param(nested, bool, 0444); 125 126 bool __read_mostly enable_pml = 1; 127 module_param_named(pml, enable_pml, bool, 0444); 128 129 static bool __read_mostly error_on_inconsistent_vmcs_config = true; 130 module_param(error_on_inconsistent_vmcs_config, bool, 0444); 131 132 static bool __read_mostly dump_invalid_vmcs = 0; 133 module_param(dump_invalid_vmcs, bool, 0644); 134 135 #define MSR_BITMAP_MODE_X2APIC 1 136 #define MSR_BITMAP_MODE_X2APIC_APICV 2 137 138 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL 139 140 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ 141 static int __read_mostly cpu_preemption_timer_multi; 142 static bool __read_mostly enable_preemption_timer = 1; 143 #ifdef CONFIG_X86_64 144 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); 145 #endif 146 147 extern bool __read_mostly allow_smaller_maxphyaddr; 148 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO); 149 150 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) 151 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE 152 #define KVM_VM_CR0_ALWAYS_ON \ 153 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE) 154 155 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE 156 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) 157 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) 158 159 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) 160 161 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ 162 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ 163 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ 164 RTIT_STATUS_BYTECNT)) 165 166 /* 167 * List of MSRs that can be directly passed to the guest. 168 * In addition to these x2apic, PT and LBR MSRs are handled specially. 169 */ 170 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = { 171 MSR_IA32_SPEC_CTRL, 172 MSR_IA32_PRED_CMD, 173 MSR_IA32_FLUSH_CMD, 174 MSR_IA32_TSC, 175 #ifdef CONFIG_X86_64 176 MSR_FS_BASE, 177 MSR_GS_BASE, 178 MSR_KERNEL_GS_BASE, 179 MSR_IA32_XFD, 180 MSR_IA32_XFD_ERR, 181 #endif 182 MSR_IA32_SYSENTER_CS, 183 MSR_IA32_SYSENTER_ESP, 184 MSR_IA32_SYSENTER_EIP, 185 MSR_CORE_C1_RES, 186 MSR_CORE_C3_RESIDENCY, 187 MSR_CORE_C6_RESIDENCY, 188 MSR_CORE_C7_RESIDENCY, 189 }; 190 191 /* 192 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 193 * ple_gap: upper bound on the amount of time between two successive 194 * executions of PAUSE in a loop. Also indicate if ple enabled. 195 * According to test, this time is usually smaller than 128 cycles. 196 * ple_window: upper bound on the amount of time a guest is allowed to execute 197 * in a PAUSE loop. Tests indicate that most spinlocks are held for 198 * less than 2^12 cycles 199 * Time is measured based on a counter that runs at the same rate as the TSC, 200 * refer SDM volume 3b section 21.6.13 & 22.1.3. 201 */ 202 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; 203 module_param(ple_gap, uint, 0444); 204 205 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; 206 module_param(ple_window, uint, 0444); 207 208 /* Default doubles per-vcpu window every exit. */ 209 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 210 module_param(ple_window_grow, uint, 0444); 211 212 /* Default resets per-vcpu window every exit to ple_window. */ 213 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 214 module_param(ple_window_shrink, uint, 0444); 215 216 /* Default is to compute the maximum so we can never overflow. */ 217 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; 218 module_param(ple_window_max, uint, 0444); 219 220 /* Default is SYSTEM mode, 1 for host-guest mode */ 221 int __read_mostly pt_mode = PT_MODE_SYSTEM; 222 module_param(pt_mode, int, S_IRUGO); 223 224 struct x86_pmu_lbr __ro_after_init vmx_lbr_caps; 225 226 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); 227 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); 228 static DEFINE_MUTEX(vmx_l1d_flush_mutex); 229 230 /* Storage for pre module init parameter parsing */ 231 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; 232 233 static const struct { 234 const char *option; 235 bool for_parse; 236 } vmentry_l1d_param[] = { 237 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, 238 [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, 239 [VMENTER_L1D_FLUSH_COND] = {"cond", true}, 240 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, 241 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, 242 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, 243 }; 244 245 #define L1D_CACHE_ORDER 4 246 static void *vmx_l1d_flush_pages; 247 248 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) 249 { 250 struct page *page; 251 unsigned int i; 252 253 if (!boot_cpu_has_bug(X86_BUG_L1TF)) { 254 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 255 return 0; 256 } 257 258 if (!enable_ept) { 259 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; 260 return 0; 261 } 262 263 if (kvm_host.arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { 264 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 265 return 0; 266 } 267 268 /* If set to auto use the default l1tf mitigation method */ 269 if (l1tf == VMENTER_L1D_FLUSH_AUTO) { 270 switch (l1tf_mitigation) { 271 case L1TF_MITIGATION_OFF: 272 l1tf = VMENTER_L1D_FLUSH_NEVER; 273 break; 274 case L1TF_MITIGATION_FLUSH_NOWARN: 275 case L1TF_MITIGATION_FLUSH: 276 case L1TF_MITIGATION_FLUSH_NOSMT: 277 l1tf = VMENTER_L1D_FLUSH_COND; 278 break; 279 case L1TF_MITIGATION_FULL: 280 case L1TF_MITIGATION_FULL_FORCE: 281 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 282 break; 283 } 284 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { 285 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 286 } 287 288 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && 289 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { 290 /* 291 * This allocation for vmx_l1d_flush_pages is not tied to a VM 292 * lifetime and so should not be charged to a memcg. 293 */ 294 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); 295 if (!page) 296 return -ENOMEM; 297 vmx_l1d_flush_pages = page_address(page); 298 299 /* 300 * Initialize each page with a different pattern in 301 * order to protect against KSM in the nested 302 * virtualization case. 303 */ 304 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { 305 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, 306 PAGE_SIZE); 307 } 308 } 309 310 l1tf_vmx_mitigation = l1tf; 311 312 if (l1tf != VMENTER_L1D_FLUSH_NEVER) 313 static_branch_enable(&vmx_l1d_should_flush); 314 else 315 static_branch_disable(&vmx_l1d_should_flush); 316 317 if (l1tf == VMENTER_L1D_FLUSH_COND) 318 static_branch_enable(&vmx_l1d_flush_cond); 319 else 320 static_branch_disable(&vmx_l1d_flush_cond); 321 return 0; 322 } 323 324 static int vmentry_l1d_flush_parse(const char *s) 325 { 326 unsigned int i; 327 328 if (s) { 329 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { 330 if (vmentry_l1d_param[i].for_parse && 331 sysfs_streq(s, vmentry_l1d_param[i].option)) 332 return i; 333 } 334 } 335 return -EINVAL; 336 } 337 338 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) 339 { 340 int l1tf, ret; 341 342 l1tf = vmentry_l1d_flush_parse(s); 343 if (l1tf < 0) 344 return l1tf; 345 346 if (!boot_cpu_has(X86_BUG_L1TF)) 347 return 0; 348 349 /* 350 * Has vmx_init() run already? If not then this is the pre init 351 * parameter parsing. In that case just store the value and let 352 * vmx_init() do the proper setup after enable_ept has been 353 * established. 354 */ 355 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { 356 vmentry_l1d_flush_param = l1tf; 357 return 0; 358 } 359 360 mutex_lock(&vmx_l1d_flush_mutex); 361 ret = vmx_setup_l1d_flush(l1tf); 362 mutex_unlock(&vmx_l1d_flush_mutex); 363 return ret; 364 } 365 366 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) 367 { 368 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) 369 return sysfs_emit(s, "???\n"); 370 371 return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); 372 } 373 374 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx) 375 { 376 u64 msr; 377 378 if (!vmx->disable_fb_clear) 379 return; 380 381 msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL); 382 msr |= FB_CLEAR_DIS; 383 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr); 384 /* Cache the MSR value to avoid reading it later */ 385 vmx->msr_ia32_mcu_opt_ctrl = msr; 386 } 387 388 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx) 389 { 390 if (!vmx->disable_fb_clear) 391 return; 392 393 vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS; 394 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl); 395 } 396 397 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx) 398 { 399 /* 400 * Disable VERW's behavior of clearing CPU buffers for the guest if the 401 * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled 402 * the mitigation. Disabling the clearing behavior provides a 403 * performance boost for guests that aren't aware that manually clearing 404 * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry 405 * and VM-Exit. 406 */ 407 vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) && 408 (kvm_host.arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) && 409 !boot_cpu_has_bug(X86_BUG_MDS) && 410 !boot_cpu_has_bug(X86_BUG_TAA); 411 412 /* 413 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS 414 * at VMEntry. Skip the MSR read/write when a guest has no use case to 415 * execute VERW. 416 */ 417 if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) || 418 ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) && 419 (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) && 420 (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) && 421 (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) && 422 (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO))) 423 vmx->disable_fb_clear = false; 424 } 425 426 static const struct kernel_param_ops vmentry_l1d_flush_ops = { 427 .set = vmentry_l1d_flush_set, 428 .get = vmentry_l1d_flush_get, 429 }; 430 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); 431 432 static u32 vmx_segment_access_rights(struct kvm_segment *var); 433 434 void vmx_vmexit(void); 435 436 #define vmx_insn_failed(fmt...) \ 437 do { \ 438 WARN_ONCE(1, fmt); \ 439 pr_warn_ratelimited(fmt); \ 440 } while (0) 441 442 noinline void vmread_error(unsigned long field) 443 { 444 vmx_insn_failed("vmread failed: field=%lx\n", field); 445 } 446 447 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT 448 noinstr void vmread_error_trampoline2(unsigned long field, bool fault) 449 { 450 if (fault) { 451 kvm_spurious_fault(); 452 } else { 453 instrumentation_begin(); 454 vmread_error(field); 455 instrumentation_end(); 456 } 457 } 458 #endif 459 460 noinline void vmwrite_error(unsigned long field, unsigned long value) 461 { 462 vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n", 463 field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); 464 } 465 466 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr) 467 { 468 vmx_insn_failed("vmclear failed: %p/%llx err=%u\n", 469 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR)); 470 } 471 472 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr) 473 { 474 vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n", 475 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR)); 476 } 477 478 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva) 479 { 480 vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n", 481 ext, vpid, gva); 482 } 483 484 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa) 485 { 486 vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n", 487 ext, eptp, gpa); 488 } 489 490 static DEFINE_PER_CPU(struct vmcs *, vmxarea); 491 DEFINE_PER_CPU(struct vmcs *, current_vmcs); 492 /* 493 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed 494 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. 495 */ 496 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); 497 498 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); 499 static DEFINE_SPINLOCK(vmx_vpid_lock); 500 501 struct vmcs_config vmcs_config __ro_after_init; 502 struct vmx_capability vmx_capability __ro_after_init; 503 504 #define VMX_SEGMENT_FIELD(seg) \ 505 [VCPU_SREG_##seg] = { \ 506 .selector = GUEST_##seg##_SELECTOR, \ 507 .base = GUEST_##seg##_BASE, \ 508 .limit = GUEST_##seg##_LIMIT, \ 509 .ar_bytes = GUEST_##seg##_AR_BYTES, \ 510 } 511 512 static const struct kvm_vmx_segment_field { 513 unsigned selector; 514 unsigned base; 515 unsigned limit; 516 unsigned ar_bytes; 517 } kvm_vmx_segment_fields[] = { 518 VMX_SEGMENT_FIELD(CS), 519 VMX_SEGMENT_FIELD(DS), 520 VMX_SEGMENT_FIELD(ES), 521 VMX_SEGMENT_FIELD(FS), 522 VMX_SEGMENT_FIELD(GS), 523 VMX_SEGMENT_FIELD(SS), 524 VMX_SEGMENT_FIELD(TR), 525 VMX_SEGMENT_FIELD(LDTR), 526 }; 527 528 529 static unsigned long host_idt_base; 530 531 #if IS_ENABLED(CONFIG_HYPERV) 532 static bool __read_mostly enlightened_vmcs = true; 533 module_param(enlightened_vmcs, bool, 0444); 534 535 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu) 536 { 537 struct hv_enlightened_vmcs *evmcs; 538 hpa_t partition_assist_page = hv_get_partition_assist_page(vcpu); 539 540 if (partition_assist_page == INVALID_PAGE) 541 return -ENOMEM; 542 543 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs; 544 545 evmcs->partition_assist_page = partition_assist_page; 546 evmcs->hv_vm_id = (unsigned long)vcpu->kvm; 547 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1; 548 549 return 0; 550 } 551 552 static __init void hv_init_evmcs(void) 553 { 554 int cpu; 555 556 if (!enlightened_vmcs) 557 return; 558 559 /* 560 * Enlightened VMCS usage should be recommended and the host needs 561 * to support eVMCS v1 or above. 562 */ 563 if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && 564 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= 565 KVM_EVMCS_VERSION) { 566 567 /* Check that we have assist pages on all online CPUs */ 568 for_each_online_cpu(cpu) { 569 if (!hv_get_vp_assist_page(cpu)) { 570 enlightened_vmcs = false; 571 break; 572 } 573 } 574 575 if (enlightened_vmcs) { 576 pr_info("Using Hyper-V Enlightened VMCS\n"); 577 static_branch_enable(&__kvm_is_using_evmcs); 578 } 579 580 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH) 581 vt_x86_ops.enable_l2_tlb_flush 582 = hv_enable_l2_tlb_flush; 583 } else { 584 enlightened_vmcs = false; 585 } 586 } 587 588 static void hv_reset_evmcs(void) 589 { 590 struct hv_vp_assist_page *vp_ap; 591 592 if (!kvm_is_using_evmcs()) 593 return; 594 595 /* 596 * KVM should enable eVMCS if and only if all CPUs have a VP assist 597 * page, and should reject CPU onlining if eVMCS is enabled the CPU 598 * doesn't have a VP assist page allocated. 599 */ 600 vp_ap = hv_get_vp_assist_page(smp_processor_id()); 601 if (WARN_ON_ONCE(!vp_ap)) 602 return; 603 604 /* 605 * Reset everything to support using non-enlightened VMCS access later 606 * (e.g. when we reload the module with enlightened_vmcs=0) 607 */ 608 vp_ap->nested_control.features.directhypercall = 0; 609 vp_ap->current_nested_vmcs = 0; 610 vp_ap->enlighten_vmentry = 0; 611 } 612 613 #else /* IS_ENABLED(CONFIG_HYPERV) */ 614 static void hv_init_evmcs(void) {} 615 static void hv_reset_evmcs(void) {} 616 #endif /* IS_ENABLED(CONFIG_HYPERV) */ 617 618 /* 619 * Comment's format: document - errata name - stepping - processor name. 620 * Refer from 621 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp 622 */ 623 static u32 vmx_preemption_cpu_tfms[] = { 624 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ 625 0x000206E6, 626 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ 627 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ 628 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ 629 0x00020652, 630 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ 631 0x00020655, 632 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ 633 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ 634 /* 635 * 320767.pdf - AAP86 - B1 - 636 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile 637 */ 638 0x000106E5, 639 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ 640 0x000106A0, 641 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ 642 0x000106A1, 643 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ 644 0x000106A4, 645 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ 646 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ 647 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ 648 0x000106A5, 649 /* Xeon E3-1220 V2 */ 650 0x000306A8, 651 }; 652 653 static inline bool cpu_has_broken_vmx_preemption_timer(void) 654 { 655 u32 eax = cpuid_eax(0x00000001), i; 656 657 /* Clear the reserved bits */ 658 eax &= ~(0x3U << 14 | 0xfU << 28); 659 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) 660 if (eax == vmx_preemption_cpu_tfms[i]) 661 return true; 662 663 return false; 664 } 665 666 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) 667 { 668 return flexpriority_enabled && lapic_in_kernel(vcpu); 669 } 670 671 static int vmx_get_passthrough_msr_slot(u32 msr) 672 { 673 int i; 674 675 switch (msr) { 676 case 0x800 ... 0x8ff: 677 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */ 678 return -ENOENT; 679 case MSR_IA32_RTIT_STATUS: 680 case MSR_IA32_RTIT_OUTPUT_BASE: 681 case MSR_IA32_RTIT_OUTPUT_MASK: 682 case MSR_IA32_RTIT_CR3_MATCH: 683 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 684 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */ 685 case MSR_LBR_SELECT: 686 case MSR_LBR_TOS: 687 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31: 688 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31: 689 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31: 690 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8: 691 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8: 692 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */ 693 return -ENOENT; 694 } 695 696 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) { 697 if (vmx_possible_passthrough_msrs[i] == msr) 698 return i; 699 } 700 701 WARN(1, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr); 702 return -ENOENT; 703 } 704 705 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr) 706 { 707 int i; 708 709 i = kvm_find_user_return_msr(msr); 710 if (i >= 0) 711 return &vmx->guest_uret_msrs[i]; 712 return NULL; 713 } 714 715 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx, 716 struct vmx_uret_msr *msr, u64 data) 717 { 718 unsigned int slot = msr - vmx->guest_uret_msrs; 719 int ret = 0; 720 721 if (msr->load_into_hardware) { 722 preempt_disable(); 723 ret = kvm_set_user_return_msr(slot, data, msr->mask); 724 preempt_enable(); 725 } 726 if (!ret) 727 msr->data = data; 728 return ret; 729 } 730 731 /* 732 * Disable VMX and clear CR4.VMXE (even if VMXOFF faults) 733 * 734 * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to 735 * atomically track post-VMXON state, e.g. this may be called in NMI context. 736 * Eat all faults as all other faults on VMXOFF faults are mode related, i.e. 737 * faults are guaranteed to be due to the !post-VMXON check unless the CPU is 738 * magically in RM, VM86, compat mode, or at CPL>0. 739 */ 740 static int kvm_cpu_vmxoff(void) 741 { 742 asm goto("1: vmxoff\n\t" 743 _ASM_EXTABLE(1b, %l[fault]) 744 ::: "cc", "memory" : fault); 745 746 cr4_clear_bits(X86_CR4_VMXE); 747 return 0; 748 749 fault: 750 cr4_clear_bits(X86_CR4_VMXE); 751 return -EIO; 752 } 753 754 void vmx_emergency_disable_virtualization_cpu(void) 755 { 756 int cpu = raw_smp_processor_id(); 757 struct loaded_vmcs *v; 758 759 kvm_rebooting = true; 760 761 /* 762 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be 763 * set in task context. If this races with VMX is disabled by an NMI, 764 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to 765 * kvm_rebooting set. 766 */ 767 if (!(__read_cr4() & X86_CR4_VMXE)) 768 return; 769 770 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), 771 loaded_vmcss_on_cpu_link) 772 vmcs_clear(v->vmcs); 773 774 kvm_cpu_vmxoff(); 775 } 776 777 static void __loaded_vmcs_clear(void *arg) 778 { 779 struct loaded_vmcs *loaded_vmcs = arg; 780 int cpu = raw_smp_processor_id(); 781 782 if (loaded_vmcs->cpu != cpu) 783 return; /* vcpu migration can race with cpu offline */ 784 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) 785 per_cpu(current_vmcs, cpu) = NULL; 786 787 vmcs_clear(loaded_vmcs->vmcs); 788 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) 789 vmcs_clear(loaded_vmcs->shadow_vmcs); 790 791 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); 792 793 /* 794 * Ensure all writes to loaded_vmcs, including deleting it from its 795 * current percpu list, complete before setting loaded_vmcs->cpu to 796 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first 797 * and add loaded_vmcs to its percpu list before it's deleted from this 798 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs(). 799 */ 800 smp_wmb(); 801 802 loaded_vmcs->cpu = -1; 803 loaded_vmcs->launched = 0; 804 } 805 806 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) 807 { 808 int cpu = loaded_vmcs->cpu; 809 810 if (cpu != -1) 811 smp_call_function_single(cpu, 812 __loaded_vmcs_clear, loaded_vmcs, 1); 813 } 814 815 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, 816 unsigned field) 817 { 818 bool ret; 819 u32 mask = 1 << (seg * SEG_FIELD_NR + field); 820 821 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) { 822 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS); 823 vmx->segment_cache.bitmask = 0; 824 } 825 ret = vmx->segment_cache.bitmask & mask; 826 vmx->segment_cache.bitmask |= mask; 827 return ret; 828 } 829 830 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) 831 { 832 u16 *p = &vmx->segment_cache.seg[seg].selector; 833 834 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) 835 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); 836 return *p; 837 } 838 839 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) 840 { 841 ulong *p = &vmx->segment_cache.seg[seg].base; 842 843 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) 844 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); 845 return *p; 846 } 847 848 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) 849 { 850 u32 *p = &vmx->segment_cache.seg[seg].limit; 851 852 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) 853 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); 854 return *p; 855 } 856 857 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) 858 { 859 u32 *p = &vmx->segment_cache.seg[seg].ar; 860 861 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) 862 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); 863 return *p; 864 } 865 866 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu) 867 { 868 u32 eb; 869 870 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | 871 (1u << DB_VECTOR) | (1u << AC_VECTOR); 872 /* 873 * #VE isn't used for VMX. To test against unexpected changes 874 * related to #VE for VMX, intercept unexpected #VE and warn on it. 875 */ 876 if (IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE)) 877 eb |= 1u << VE_VECTOR; 878 /* 879 * Guest access to VMware backdoor ports could legitimately 880 * trigger #GP because of TSS I/O permission bitmap. 881 * We intercept those #GP and allow access to them anyway 882 * as VMware does. 883 */ 884 if (enable_vmware_backdoor) 885 eb |= (1u << GP_VECTOR); 886 if ((vcpu->guest_debug & 887 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == 888 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) 889 eb |= 1u << BP_VECTOR; 890 if (to_vmx(vcpu)->rmode.vm86_active) 891 eb = ~0; 892 if (!vmx_need_pf_intercept(vcpu)) 893 eb &= ~(1u << PF_VECTOR); 894 895 /* When we are running a nested L2 guest and L1 specified for it a 896 * certain exception bitmap, we must trap the same exceptions and pass 897 * them to L1. When running L2, we will only handle the exceptions 898 * specified above if L1 did not want them. 899 */ 900 if (is_guest_mode(vcpu)) 901 eb |= get_vmcs12(vcpu)->exception_bitmap; 902 else { 903 int mask = 0, match = 0; 904 905 if (enable_ept && (eb & (1u << PF_VECTOR))) { 906 /* 907 * If EPT is enabled, #PF is currently only intercepted 908 * if MAXPHYADDR is smaller on the guest than on the 909 * host. In that case we only care about present, 910 * non-reserved faults. For vmcs02, however, PFEC_MASK 911 * and PFEC_MATCH are set in prepare_vmcs02_rare. 912 */ 913 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK; 914 match = PFERR_PRESENT_MASK; 915 } 916 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask); 917 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match); 918 } 919 920 /* 921 * Disabling xfd interception indicates that dynamic xfeatures 922 * might be used in the guest. Always trap #NM in this case 923 * to save guest xfd_err timely. 924 */ 925 if (vcpu->arch.xfd_no_write_intercept) 926 eb |= (1u << NM_VECTOR); 927 928 vmcs_write32(EXCEPTION_BITMAP, eb); 929 } 930 931 /* 932 * Check if MSR is intercepted for currently loaded MSR bitmap. 933 */ 934 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr) 935 { 936 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS)) 937 return true; 938 939 return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr); 940 } 941 942 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx) 943 { 944 unsigned int flags = 0; 945 946 if (vmx->loaded_vmcs->launched) 947 flags |= VMX_RUN_VMRESUME; 948 949 /* 950 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free 951 * to change it directly without causing a vmexit. In that case read 952 * it after vmexit and store it in vmx->spec_ctrl. 953 */ 954 if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL)) 955 flags |= VMX_RUN_SAVE_SPEC_CTRL; 956 957 return flags; 958 } 959 960 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, 961 unsigned long entry, unsigned long exit) 962 { 963 vm_entry_controls_clearbit(vmx, entry); 964 vm_exit_controls_clearbit(vmx, exit); 965 } 966 967 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr) 968 { 969 unsigned int i; 970 971 for (i = 0; i < m->nr; ++i) { 972 if (m->val[i].index == msr) 973 return i; 974 } 975 return -ENOENT; 976 } 977 978 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) 979 { 980 int i; 981 struct msr_autoload *m = &vmx->msr_autoload; 982 983 switch (msr) { 984 case MSR_EFER: 985 if (cpu_has_load_ia32_efer()) { 986 clear_atomic_switch_msr_special(vmx, 987 VM_ENTRY_LOAD_IA32_EFER, 988 VM_EXIT_LOAD_IA32_EFER); 989 return; 990 } 991 break; 992 case MSR_CORE_PERF_GLOBAL_CTRL: 993 if (cpu_has_load_perf_global_ctrl()) { 994 clear_atomic_switch_msr_special(vmx, 995 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 996 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); 997 return; 998 } 999 break; 1000 } 1001 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 1002 if (i < 0) 1003 goto skip_guest; 1004 --m->guest.nr; 1005 m->guest.val[i] = m->guest.val[m->guest.nr]; 1006 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 1007 1008 skip_guest: 1009 i = vmx_find_loadstore_msr_slot(&m->host, msr); 1010 if (i < 0) 1011 return; 1012 1013 --m->host.nr; 1014 m->host.val[i] = m->host.val[m->host.nr]; 1015 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 1016 } 1017 1018 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, 1019 unsigned long entry, unsigned long exit, 1020 unsigned long guest_val_vmcs, unsigned long host_val_vmcs, 1021 u64 guest_val, u64 host_val) 1022 { 1023 vmcs_write64(guest_val_vmcs, guest_val); 1024 if (host_val_vmcs != HOST_IA32_EFER) 1025 vmcs_write64(host_val_vmcs, host_val); 1026 vm_entry_controls_setbit(vmx, entry); 1027 vm_exit_controls_setbit(vmx, exit); 1028 } 1029 1030 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, 1031 u64 guest_val, u64 host_val, bool entry_only) 1032 { 1033 int i, j = 0; 1034 struct msr_autoload *m = &vmx->msr_autoload; 1035 1036 switch (msr) { 1037 case MSR_EFER: 1038 if (cpu_has_load_ia32_efer()) { 1039 add_atomic_switch_msr_special(vmx, 1040 VM_ENTRY_LOAD_IA32_EFER, 1041 VM_EXIT_LOAD_IA32_EFER, 1042 GUEST_IA32_EFER, 1043 HOST_IA32_EFER, 1044 guest_val, host_val); 1045 return; 1046 } 1047 break; 1048 case MSR_CORE_PERF_GLOBAL_CTRL: 1049 if (cpu_has_load_perf_global_ctrl()) { 1050 add_atomic_switch_msr_special(vmx, 1051 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 1052 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, 1053 GUEST_IA32_PERF_GLOBAL_CTRL, 1054 HOST_IA32_PERF_GLOBAL_CTRL, 1055 guest_val, host_val); 1056 return; 1057 } 1058 break; 1059 case MSR_IA32_PEBS_ENABLE: 1060 /* PEBS needs a quiescent period after being disabled (to write 1061 * a record). Disabling PEBS through VMX MSR swapping doesn't 1062 * provide that period, so a CPU could write host's record into 1063 * guest's memory. 1064 */ 1065 wrmsrl(MSR_IA32_PEBS_ENABLE, 0); 1066 } 1067 1068 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 1069 if (!entry_only) 1070 j = vmx_find_loadstore_msr_slot(&m->host, msr); 1071 1072 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) || 1073 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) { 1074 printk_once(KERN_WARNING "Not enough msr switch entries. " 1075 "Can't add msr %x\n", msr); 1076 return; 1077 } 1078 if (i < 0) { 1079 i = m->guest.nr++; 1080 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 1081 } 1082 m->guest.val[i].index = msr; 1083 m->guest.val[i].value = guest_val; 1084 1085 if (entry_only) 1086 return; 1087 1088 if (j < 0) { 1089 j = m->host.nr++; 1090 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 1091 } 1092 m->host.val[j].index = msr; 1093 m->host.val[j].value = host_val; 1094 } 1095 1096 static bool update_transition_efer(struct vcpu_vmx *vmx) 1097 { 1098 u64 guest_efer = vmx->vcpu.arch.efer; 1099 u64 ignore_bits = 0; 1100 int i; 1101 1102 /* Shadow paging assumes NX to be available. */ 1103 if (!enable_ept) 1104 guest_efer |= EFER_NX; 1105 1106 /* 1107 * LMA and LME handled by hardware; SCE meaningless outside long mode. 1108 */ 1109 ignore_bits |= EFER_SCE; 1110 #ifdef CONFIG_X86_64 1111 ignore_bits |= EFER_LMA | EFER_LME; 1112 /* SCE is meaningful only in long mode on Intel */ 1113 if (guest_efer & EFER_LMA) 1114 ignore_bits &= ~(u64)EFER_SCE; 1115 #endif 1116 1117 /* 1118 * On EPT, we can't emulate NX, so we must switch EFER atomically. 1119 * On CPUs that support "load IA32_EFER", always switch EFER 1120 * atomically, since it's faster than switching it manually. 1121 */ 1122 if (cpu_has_load_ia32_efer() || 1123 (enable_ept && ((vmx->vcpu.arch.efer ^ kvm_host.efer) & EFER_NX))) { 1124 if (!(guest_efer & EFER_LMA)) 1125 guest_efer &= ~EFER_LME; 1126 if (guest_efer != kvm_host.efer) 1127 add_atomic_switch_msr(vmx, MSR_EFER, 1128 guest_efer, kvm_host.efer, false); 1129 else 1130 clear_atomic_switch_msr(vmx, MSR_EFER); 1131 return false; 1132 } 1133 1134 i = kvm_find_user_return_msr(MSR_EFER); 1135 if (i < 0) 1136 return false; 1137 1138 clear_atomic_switch_msr(vmx, MSR_EFER); 1139 1140 guest_efer &= ~ignore_bits; 1141 guest_efer |= kvm_host.efer & ignore_bits; 1142 1143 vmx->guest_uret_msrs[i].data = guest_efer; 1144 vmx->guest_uret_msrs[i].mask = ~ignore_bits; 1145 1146 return true; 1147 } 1148 1149 #ifdef CONFIG_X86_32 1150 /* 1151 * On 32-bit kernels, VM exits still load the FS and GS bases from the 1152 * VMCS rather than the segment table. KVM uses this helper to figure 1153 * out the current bases to poke them into the VMCS before entry. 1154 */ 1155 static unsigned long segment_base(u16 selector) 1156 { 1157 struct desc_struct *table; 1158 unsigned long v; 1159 1160 if (!(selector & ~SEGMENT_RPL_MASK)) 1161 return 0; 1162 1163 table = get_current_gdt_ro(); 1164 1165 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { 1166 u16 ldt_selector = kvm_read_ldt(); 1167 1168 if (!(ldt_selector & ~SEGMENT_RPL_MASK)) 1169 return 0; 1170 1171 table = (struct desc_struct *)segment_base(ldt_selector); 1172 } 1173 v = get_desc_base(&table[selector >> 3]); 1174 return v; 1175 } 1176 #endif 1177 1178 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx) 1179 { 1180 return vmx_pt_mode_is_host_guest() && 1181 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 1182 } 1183 1184 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base) 1185 { 1186 /* The base must be 128-byte aligned and a legal physical address. */ 1187 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128); 1188 } 1189 1190 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) 1191 { 1192 u32 i; 1193 1194 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1195 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1196 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1197 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1198 for (i = 0; i < addr_range; i++) { 1199 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1200 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1201 } 1202 } 1203 1204 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) 1205 { 1206 u32 i; 1207 1208 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1209 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1210 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1211 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1212 for (i = 0; i < addr_range; i++) { 1213 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1214 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1215 } 1216 } 1217 1218 static void pt_guest_enter(struct vcpu_vmx *vmx) 1219 { 1220 if (vmx_pt_mode_is_system()) 1221 return; 1222 1223 /* 1224 * GUEST_IA32_RTIT_CTL is already set in the VMCS. 1225 * Save host state before VM entry. 1226 */ 1227 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1228 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1229 wrmsrl(MSR_IA32_RTIT_CTL, 0); 1230 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1231 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1232 } 1233 } 1234 1235 static void pt_guest_exit(struct vcpu_vmx *vmx) 1236 { 1237 if (vmx_pt_mode_is_system()) 1238 return; 1239 1240 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1241 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1242 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1243 } 1244 1245 /* 1246 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest, 1247 * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary. 1248 */ 1249 if (vmx->pt_desc.host.ctl) 1250 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1251 } 1252 1253 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, 1254 unsigned long fs_base, unsigned long gs_base) 1255 { 1256 if (unlikely(fs_sel != host->fs_sel)) { 1257 if (!(fs_sel & 7)) 1258 vmcs_write16(HOST_FS_SELECTOR, fs_sel); 1259 else 1260 vmcs_write16(HOST_FS_SELECTOR, 0); 1261 host->fs_sel = fs_sel; 1262 } 1263 if (unlikely(gs_sel != host->gs_sel)) { 1264 if (!(gs_sel & 7)) 1265 vmcs_write16(HOST_GS_SELECTOR, gs_sel); 1266 else 1267 vmcs_write16(HOST_GS_SELECTOR, 0); 1268 host->gs_sel = gs_sel; 1269 } 1270 if (unlikely(fs_base != host->fs_base)) { 1271 vmcs_writel(HOST_FS_BASE, fs_base); 1272 host->fs_base = fs_base; 1273 } 1274 if (unlikely(gs_base != host->gs_base)) { 1275 vmcs_writel(HOST_GS_BASE, gs_base); 1276 host->gs_base = gs_base; 1277 } 1278 } 1279 1280 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1281 { 1282 struct vcpu_vmx *vmx = to_vmx(vcpu); 1283 struct vmcs_host_state *host_state; 1284 #ifdef CONFIG_X86_64 1285 int cpu = raw_smp_processor_id(); 1286 #endif 1287 unsigned long fs_base, gs_base; 1288 u16 fs_sel, gs_sel; 1289 int i; 1290 1291 /* 1292 * Note that guest MSRs to be saved/restored can also be changed 1293 * when guest state is loaded. This happens when guest transitions 1294 * to/from long-mode by setting MSR_EFER.LMA. 1295 */ 1296 if (!vmx->guest_uret_msrs_loaded) { 1297 vmx->guest_uret_msrs_loaded = true; 1298 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 1299 if (!vmx->guest_uret_msrs[i].load_into_hardware) 1300 continue; 1301 1302 kvm_set_user_return_msr(i, 1303 vmx->guest_uret_msrs[i].data, 1304 vmx->guest_uret_msrs[i].mask); 1305 } 1306 } 1307 1308 if (vmx->nested.need_vmcs12_to_shadow_sync) 1309 nested_sync_vmcs12_to_shadow(vcpu); 1310 1311 if (vmx->guest_state_loaded) 1312 return; 1313 1314 host_state = &vmx->loaded_vmcs->host_state; 1315 1316 /* 1317 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not 1318 * allow segment selectors with cpl > 0 or ti == 1. 1319 */ 1320 host_state->ldt_sel = kvm_read_ldt(); 1321 1322 #ifdef CONFIG_X86_64 1323 savesegment(ds, host_state->ds_sel); 1324 savesegment(es, host_state->es_sel); 1325 1326 gs_base = cpu_kernelmode_gs_base(cpu); 1327 if (likely(is_64bit_mm(current->mm))) { 1328 current_save_fsgs(); 1329 fs_sel = current->thread.fsindex; 1330 gs_sel = current->thread.gsindex; 1331 fs_base = current->thread.fsbase; 1332 vmx->msr_host_kernel_gs_base = current->thread.gsbase; 1333 } else { 1334 savesegment(fs, fs_sel); 1335 savesegment(gs, gs_sel); 1336 fs_base = read_msr(MSR_FS_BASE); 1337 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); 1338 } 1339 1340 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1341 #else 1342 savesegment(fs, fs_sel); 1343 savesegment(gs, gs_sel); 1344 fs_base = segment_base(fs_sel); 1345 gs_base = segment_base(gs_sel); 1346 #endif 1347 1348 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base); 1349 vmx->guest_state_loaded = true; 1350 } 1351 1352 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) 1353 { 1354 struct vmcs_host_state *host_state; 1355 1356 if (!vmx->guest_state_loaded) 1357 return; 1358 1359 host_state = &vmx->loaded_vmcs->host_state; 1360 1361 ++vmx->vcpu.stat.host_state_reload; 1362 1363 #ifdef CONFIG_X86_64 1364 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1365 #endif 1366 if (host_state->ldt_sel || (host_state->gs_sel & 7)) { 1367 kvm_load_ldt(host_state->ldt_sel); 1368 #ifdef CONFIG_X86_64 1369 load_gs_index(host_state->gs_sel); 1370 #else 1371 loadsegment(gs, host_state->gs_sel); 1372 #endif 1373 } 1374 if (host_state->fs_sel & 7) 1375 loadsegment(fs, host_state->fs_sel); 1376 #ifdef CONFIG_X86_64 1377 if (unlikely(host_state->ds_sel | host_state->es_sel)) { 1378 loadsegment(ds, host_state->ds_sel); 1379 loadsegment(es, host_state->es_sel); 1380 } 1381 #endif 1382 invalidate_tss_limit(); 1383 #ifdef CONFIG_X86_64 1384 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); 1385 #endif 1386 load_fixmap_gdt(raw_smp_processor_id()); 1387 vmx->guest_state_loaded = false; 1388 vmx->guest_uret_msrs_loaded = false; 1389 } 1390 1391 #ifdef CONFIG_X86_64 1392 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) 1393 { 1394 preempt_disable(); 1395 if (vmx->guest_state_loaded) 1396 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1397 preempt_enable(); 1398 return vmx->msr_guest_kernel_gs_base; 1399 } 1400 1401 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) 1402 { 1403 preempt_disable(); 1404 if (vmx->guest_state_loaded) 1405 wrmsrl(MSR_KERNEL_GS_BASE, data); 1406 preempt_enable(); 1407 vmx->msr_guest_kernel_gs_base = data; 1408 } 1409 #endif 1410 1411 static void grow_ple_window(struct kvm_vcpu *vcpu) 1412 { 1413 struct vcpu_vmx *vmx = to_vmx(vcpu); 1414 unsigned int old = vmx->ple_window; 1415 1416 vmx->ple_window = __grow_ple_window(old, ple_window, 1417 ple_window_grow, 1418 ple_window_max); 1419 1420 if (vmx->ple_window != old) { 1421 vmx->ple_window_dirty = true; 1422 trace_kvm_ple_window_update(vcpu->vcpu_id, 1423 vmx->ple_window, old); 1424 } 1425 } 1426 1427 static void shrink_ple_window(struct kvm_vcpu *vcpu) 1428 { 1429 struct vcpu_vmx *vmx = to_vmx(vcpu); 1430 unsigned int old = vmx->ple_window; 1431 1432 vmx->ple_window = __shrink_ple_window(old, ple_window, 1433 ple_window_shrink, 1434 ple_window); 1435 1436 if (vmx->ple_window != old) { 1437 vmx->ple_window_dirty = true; 1438 trace_kvm_ple_window_update(vcpu->vcpu_id, 1439 vmx->ple_window, old); 1440 } 1441 } 1442 1443 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu, 1444 struct loaded_vmcs *buddy) 1445 { 1446 struct vcpu_vmx *vmx = to_vmx(vcpu); 1447 bool already_loaded = vmx->loaded_vmcs->cpu == cpu; 1448 struct vmcs *prev; 1449 1450 if (!already_loaded) { 1451 loaded_vmcs_clear(vmx->loaded_vmcs); 1452 local_irq_disable(); 1453 1454 /* 1455 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to 1456 * this cpu's percpu list, otherwise it may not yet be deleted 1457 * from its previous cpu's percpu list. Pairs with the 1458 * smb_wmb() in __loaded_vmcs_clear(). 1459 */ 1460 smp_rmb(); 1461 1462 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, 1463 &per_cpu(loaded_vmcss_on_cpu, cpu)); 1464 local_irq_enable(); 1465 } 1466 1467 prev = per_cpu(current_vmcs, cpu); 1468 if (prev != vmx->loaded_vmcs->vmcs) { 1469 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; 1470 vmcs_load(vmx->loaded_vmcs->vmcs); 1471 1472 /* 1473 * No indirect branch prediction barrier needed when switching 1474 * the active VMCS within a vCPU, unless IBRS is advertised to 1475 * the vCPU. To minimize the number of IBPBs executed, KVM 1476 * performs IBPB on nested VM-Exit (a single nested transition 1477 * may switch the active VMCS multiple times). 1478 */ 1479 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev)) 1480 indirect_branch_prediction_barrier(); 1481 } 1482 1483 if (!already_loaded) { 1484 void *gdt = get_current_gdt_ro(); 1485 1486 /* 1487 * Flush all EPTP/VPID contexts, the new pCPU may have stale 1488 * TLB entries from its previous association with the vCPU. 1489 */ 1490 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 1491 1492 /* 1493 * Linux uses per-cpu TSS and GDT, so set these when switching 1494 * processors. See 22.2.4. 1495 */ 1496 vmcs_writel(HOST_TR_BASE, 1497 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); 1498 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ 1499 1500 if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) { 1501 /* 22.2.3 */ 1502 vmcs_writel(HOST_IA32_SYSENTER_ESP, 1503 (unsigned long)(cpu_entry_stack(cpu) + 1)); 1504 } 1505 1506 vmx->loaded_vmcs->cpu = cpu; 1507 } 1508 } 1509 1510 /* 1511 * Switches to specified vcpu, until a matching vcpu_put(), but assumes 1512 * vcpu mutex is already taken. 1513 */ 1514 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1515 { 1516 struct vcpu_vmx *vmx = to_vmx(vcpu); 1517 1518 if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm)) 1519 shrink_ple_window(vcpu); 1520 1521 vmx_vcpu_load_vmcs(vcpu, cpu, NULL); 1522 1523 vmx_vcpu_pi_load(vcpu, cpu); 1524 1525 vmx->host_debugctlmsr = get_debugctlmsr(); 1526 } 1527 1528 void vmx_vcpu_put(struct kvm_vcpu *vcpu) 1529 { 1530 vmx_vcpu_pi_put(vcpu); 1531 1532 vmx_prepare_switch_to_host(to_vmx(vcpu)); 1533 } 1534 1535 bool vmx_emulation_required(struct kvm_vcpu *vcpu) 1536 { 1537 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu); 1538 } 1539 1540 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) 1541 { 1542 struct vcpu_vmx *vmx = to_vmx(vcpu); 1543 unsigned long rflags, save_rflags; 1544 1545 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) { 1546 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1547 rflags = vmcs_readl(GUEST_RFLAGS); 1548 if (vmx->rmode.vm86_active) { 1549 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 1550 save_rflags = vmx->rmode.save_rflags; 1551 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 1552 } 1553 vmx->rflags = rflags; 1554 } 1555 return vmx->rflags; 1556 } 1557 1558 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1559 { 1560 struct vcpu_vmx *vmx = to_vmx(vcpu); 1561 unsigned long old_rflags; 1562 1563 /* 1564 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU 1565 * is an unrestricted guest in order to mark L2 as needing emulation 1566 * if L1 runs L2 as a restricted guest. 1567 */ 1568 if (is_unrestricted_guest(vcpu)) { 1569 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1570 vmx->rflags = rflags; 1571 vmcs_writel(GUEST_RFLAGS, rflags); 1572 return; 1573 } 1574 1575 old_rflags = vmx_get_rflags(vcpu); 1576 vmx->rflags = rflags; 1577 if (vmx->rmode.vm86_active) { 1578 vmx->rmode.save_rflags = rflags; 1579 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 1580 } 1581 vmcs_writel(GUEST_RFLAGS, rflags); 1582 1583 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM) 1584 vmx->emulation_required = vmx_emulation_required(vcpu); 1585 } 1586 1587 bool vmx_get_if_flag(struct kvm_vcpu *vcpu) 1588 { 1589 return vmx_get_rflags(vcpu) & X86_EFLAGS_IF; 1590 } 1591 1592 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) 1593 { 1594 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1595 int ret = 0; 1596 1597 if (interruptibility & GUEST_INTR_STATE_STI) 1598 ret |= KVM_X86_SHADOW_INT_STI; 1599 if (interruptibility & GUEST_INTR_STATE_MOV_SS) 1600 ret |= KVM_X86_SHADOW_INT_MOV_SS; 1601 1602 return ret; 1603 } 1604 1605 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 1606 { 1607 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1608 u32 interruptibility = interruptibility_old; 1609 1610 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); 1611 1612 if (mask & KVM_X86_SHADOW_INT_MOV_SS) 1613 interruptibility |= GUEST_INTR_STATE_MOV_SS; 1614 else if (mask & KVM_X86_SHADOW_INT_STI) 1615 interruptibility |= GUEST_INTR_STATE_STI; 1616 1617 if ((interruptibility != interruptibility_old)) 1618 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); 1619 } 1620 1621 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) 1622 { 1623 struct vcpu_vmx *vmx = to_vmx(vcpu); 1624 unsigned long value; 1625 1626 /* 1627 * Any MSR write that attempts to change bits marked reserved will 1628 * case a #GP fault. 1629 */ 1630 if (data & vmx->pt_desc.ctl_bitmask) 1631 return 1; 1632 1633 /* 1634 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will 1635 * result in a #GP unless the same write also clears TraceEn. 1636 */ 1637 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && 1638 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN)) 1639 return 1; 1640 1641 /* 1642 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit 1643 * and FabricEn would cause #GP, if 1644 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 1645 */ 1646 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && 1647 !(data & RTIT_CTL_FABRIC_EN) && 1648 !intel_pt_validate_cap(vmx->pt_desc.caps, 1649 PT_CAP_single_range_output)) 1650 return 1; 1651 1652 /* 1653 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that 1654 * utilize encodings marked reserved will cause a #GP fault. 1655 */ 1656 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); 1657 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && 1658 !test_bit((data & RTIT_CTL_MTC_RANGE) >> 1659 RTIT_CTL_MTC_RANGE_OFFSET, &value)) 1660 return 1; 1661 value = intel_pt_validate_cap(vmx->pt_desc.caps, 1662 PT_CAP_cycle_thresholds); 1663 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1664 !test_bit((data & RTIT_CTL_CYC_THRESH) >> 1665 RTIT_CTL_CYC_THRESH_OFFSET, &value)) 1666 return 1; 1667 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); 1668 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1669 !test_bit((data & RTIT_CTL_PSB_FREQ) >> 1670 RTIT_CTL_PSB_FREQ_OFFSET, &value)) 1671 return 1; 1672 1673 /* 1674 * If ADDRx_CFG is reserved or the encodings is >2 will 1675 * cause a #GP fault. 1676 */ 1677 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; 1678 if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2)) 1679 return 1; 1680 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; 1681 if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2)) 1682 return 1; 1683 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; 1684 if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2)) 1685 return 1; 1686 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; 1687 if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2)) 1688 return 1; 1689 1690 return 0; 1691 } 1692 1693 int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 1694 void *insn, int insn_len) 1695 { 1696 /* 1697 * Emulation of instructions in SGX enclaves is impossible as RIP does 1698 * not point at the failing instruction, and even if it did, the code 1699 * stream is inaccessible. Inject #UD instead of exiting to userspace 1700 * so that guest userspace can't DoS the guest simply by triggering 1701 * emulation (enclaves are CPL3 only). 1702 */ 1703 if (to_vmx(vcpu)->exit_reason.enclave_mode) { 1704 kvm_queue_exception(vcpu, UD_VECTOR); 1705 return X86EMUL_PROPAGATE_FAULT; 1706 } 1707 return X86EMUL_CONTINUE; 1708 } 1709 1710 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 1711 { 1712 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason; 1713 unsigned long rip, orig_rip; 1714 u32 instr_len; 1715 1716 /* 1717 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on 1718 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be 1719 * set when EPT misconfig occurs. In practice, real hardware updates 1720 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors 1721 * (namely Hyper-V) don't set it due to it being undefined behavior, 1722 * i.e. we end up advancing IP with some random value. 1723 */ 1724 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) || 1725 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) { 1726 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 1727 1728 /* 1729 * Emulating an enclave's instructions isn't supported as KVM 1730 * cannot access the enclave's memory or its true RIP, e.g. the 1731 * vmcs.GUEST_RIP points at the exit point of the enclave, not 1732 * the RIP that actually triggered the VM-Exit. But, because 1733 * most instructions that cause VM-Exit will #UD in an enclave, 1734 * most instruction-based VM-Exits simply do not occur. 1735 * 1736 * There are a few exceptions, notably the debug instructions 1737 * INT1ICEBRK and INT3, as they are allowed in debug enclaves 1738 * and generate #DB/#BP as expected, which KVM might intercept. 1739 * But again, the CPU does the dirty work and saves an instr 1740 * length of zero so VMMs don't shoot themselves in the foot. 1741 * WARN if KVM tries to skip a non-zero length instruction on 1742 * a VM-Exit from an enclave. 1743 */ 1744 if (!instr_len) 1745 goto rip_updated; 1746 1747 WARN_ONCE(exit_reason.enclave_mode, 1748 "skipping instruction after SGX enclave VM-Exit"); 1749 1750 orig_rip = kvm_rip_read(vcpu); 1751 rip = orig_rip + instr_len; 1752 #ifdef CONFIG_X86_64 1753 /* 1754 * We need to mask out the high 32 bits of RIP if not in 64-bit 1755 * mode, but just finding out that we are in 64-bit mode is 1756 * quite expensive. Only do it if there was a carry. 1757 */ 1758 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu)) 1759 rip = (u32)rip; 1760 #endif 1761 kvm_rip_write(vcpu, rip); 1762 } else { 1763 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 1764 return 0; 1765 } 1766 1767 rip_updated: 1768 /* skipping an emulated instruction also counts */ 1769 vmx_set_interrupt_shadow(vcpu, 0); 1770 1771 return 1; 1772 } 1773 1774 /* 1775 * Recognizes a pending MTF VM-exit and records the nested state for later 1776 * delivery. 1777 */ 1778 void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu) 1779 { 1780 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1781 struct vcpu_vmx *vmx = to_vmx(vcpu); 1782 1783 if (!is_guest_mode(vcpu)) 1784 return; 1785 1786 /* 1787 * Per the SDM, MTF takes priority over debug-trap exceptions besides 1788 * TSS T-bit traps and ICEBP (INT1). KVM doesn't emulate T-bit traps 1789 * or ICEBP (in the emulator proper), and skipping of ICEBP after an 1790 * intercepted #DB deliberately avoids single-step #DB and MTF updates 1791 * as ICEBP is higher priority than both. As instruction emulation is 1792 * completed at this point (i.e. KVM is at the instruction boundary), 1793 * any #DB exception pending delivery must be a debug-trap of lower 1794 * priority than MTF. Record the pending MTF state to be delivered in 1795 * vmx_check_nested_events(). 1796 */ 1797 if (nested_cpu_has_mtf(vmcs12) && 1798 (!vcpu->arch.exception.pending || 1799 vcpu->arch.exception.vector == DB_VECTOR) && 1800 (!vcpu->arch.exception_vmexit.pending || 1801 vcpu->arch.exception_vmexit.vector == DB_VECTOR)) { 1802 vmx->nested.mtf_pending = true; 1803 kvm_make_request(KVM_REQ_EVENT, vcpu); 1804 } else { 1805 vmx->nested.mtf_pending = false; 1806 } 1807 } 1808 1809 int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu) 1810 { 1811 vmx_update_emulated_instruction(vcpu); 1812 return skip_emulated_instruction(vcpu); 1813 } 1814 1815 static void vmx_clear_hlt(struct kvm_vcpu *vcpu) 1816 { 1817 /* 1818 * Ensure that we clear the HLT state in the VMCS. We don't need to 1819 * explicitly skip the instruction because if the HLT state is set, 1820 * then the instruction is already executing and RIP has already been 1821 * advanced. 1822 */ 1823 if (kvm_hlt_in_guest(vcpu->kvm) && 1824 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) 1825 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 1826 } 1827 1828 void vmx_inject_exception(struct kvm_vcpu *vcpu) 1829 { 1830 struct kvm_queued_exception *ex = &vcpu->arch.exception; 1831 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK; 1832 struct vcpu_vmx *vmx = to_vmx(vcpu); 1833 1834 kvm_deliver_exception_payload(vcpu, ex); 1835 1836 if (ex->has_error_code) { 1837 /* 1838 * Despite the error code being architecturally defined as 32 1839 * bits, and the VMCS field being 32 bits, Intel CPUs and thus 1840 * VMX don't actually supporting setting bits 31:16. Hardware 1841 * will (should) never provide a bogus error code, but AMD CPUs 1842 * do generate error codes with bits 31:16 set, and so KVM's 1843 * ABI lets userspace shove in arbitrary 32-bit values. Drop 1844 * the upper bits to avoid VM-Fail, losing information that 1845 * doesn't really exist is preferable to killing the VM. 1846 */ 1847 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code); 1848 intr_info |= INTR_INFO_DELIVER_CODE_MASK; 1849 } 1850 1851 if (vmx->rmode.vm86_active) { 1852 int inc_eip = 0; 1853 if (kvm_exception_is_soft(ex->vector)) 1854 inc_eip = vcpu->arch.event_exit_inst_len; 1855 kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip); 1856 return; 1857 } 1858 1859 WARN_ON_ONCE(vmx->emulation_required); 1860 1861 if (kvm_exception_is_soft(ex->vector)) { 1862 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1863 vmx->vcpu.arch.event_exit_inst_len); 1864 intr_info |= INTR_TYPE_SOFT_EXCEPTION; 1865 } else 1866 intr_info |= INTR_TYPE_HARD_EXCEPTION; 1867 1868 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); 1869 1870 vmx_clear_hlt(vcpu); 1871 } 1872 1873 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr, 1874 bool load_into_hardware) 1875 { 1876 struct vmx_uret_msr *uret_msr; 1877 1878 uret_msr = vmx_find_uret_msr(vmx, msr); 1879 if (!uret_msr) 1880 return; 1881 1882 uret_msr->load_into_hardware = load_into_hardware; 1883 } 1884 1885 /* 1886 * Configuring user return MSRs to automatically save, load, and restore MSRs 1887 * that need to be shoved into hardware when running the guest. Note, omitting 1888 * an MSR here does _NOT_ mean it's not emulated, only that it will not be 1889 * loaded into hardware when running the guest. 1890 */ 1891 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx) 1892 { 1893 #ifdef CONFIG_X86_64 1894 bool load_syscall_msrs; 1895 1896 /* 1897 * The SYSCALL MSRs are only needed on long mode guests, and only 1898 * when EFER.SCE is set. 1899 */ 1900 load_syscall_msrs = is_long_mode(&vmx->vcpu) && 1901 (vmx->vcpu.arch.efer & EFER_SCE); 1902 1903 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs); 1904 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs); 1905 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs); 1906 #endif 1907 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx)); 1908 1909 vmx_setup_uret_msr(vmx, MSR_TSC_AUX, 1910 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) || 1911 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID)); 1912 1913 /* 1914 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new 1915 * kernel and old userspace. If those guests run on a tsx=off host, do 1916 * allow guests to use TSX_CTRL, but don't change the value in hardware 1917 * so that TSX remains always disabled. 1918 */ 1919 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM)); 1920 1921 /* 1922 * The set of MSRs to load may have changed, reload MSRs before the 1923 * next VM-Enter. 1924 */ 1925 vmx->guest_uret_msrs_loaded = false; 1926 } 1927 1928 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1929 { 1930 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1931 1932 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) 1933 return vmcs12->tsc_offset; 1934 1935 return 0; 1936 } 1937 1938 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1939 { 1940 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1941 1942 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) && 1943 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING)) 1944 return vmcs12->tsc_multiplier; 1945 1946 return kvm_caps.default_tsc_scaling_ratio; 1947 } 1948 1949 void vmx_write_tsc_offset(struct kvm_vcpu *vcpu) 1950 { 1951 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset); 1952 } 1953 1954 void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu) 1955 { 1956 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio); 1957 } 1958 1959 /* 1960 * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of 1961 * guest CPUID. Note, KVM allows userspace to set "VMX in SMX" to maintain 1962 * backwards compatibility even though KVM doesn't support emulating SMX. And 1963 * because userspace set "VMX in SMX", the guest must also be allowed to set it, 1964 * e.g. if the MSR is left unlocked and the guest does a RMW operation. 1965 */ 1966 #define KVM_SUPPORTED_FEATURE_CONTROL (FEAT_CTL_LOCKED | \ 1967 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | \ 1968 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \ 1969 FEAT_CTL_SGX_LC_ENABLED | \ 1970 FEAT_CTL_SGX_ENABLED | \ 1971 FEAT_CTL_LMCE_ENABLED) 1972 1973 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx, 1974 struct msr_data *msr) 1975 { 1976 uint64_t valid_bits; 1977 1978 /* 1979 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are 1980 * exposed to the guest. 1981 */ 1982 WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits & 1983 ~KVM_SUPPORTED_FEATURE_CONTROL); 1984 1985 if (!msr->host_initiated && 1986 (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED)) 1987 return false; 1988 1989 if (msr->host_initiated) 1990 valid_bits = KVM_SUPPORTED_FEATURE_CONTROL; 1991 else 1992 valid_bits = vmx->msr_ia32_feature_control_valid_bits; 1993 1994 return !(msr->data & ~valid_bits); 1995 } 1996 1997 int vmx_get_feature_msr(u32 msr, u64 *data) 1998 { 1999 switch (msr) { 2000 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 2001 if (!nested) 2002 return 1; 2003 return vmx_get_vmx_msr(&vmcs_config.nested, msr, data); 2004 default: 2005 return KVM_MSR_RET_UNSUPPORTED; 2006 } 2007 } 2008 2009 /* 2010 * Reads an msr value (of 'msr_info->index') into 'msr_info->data'. 2011 * Returns 0 on success, non-0 otherwise. 2012 * Assumes vcpu_load() was already called. 2013 */ 2014 int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2015 { 2016 struct vcpu_vmx *vmx = to_vmx(vcpu); 2017 struct vmx_uret_msr *msr; 2018 u32 index; 2019 2020 switch (msr_info->index) { 2021 #ifdef CONFIG_X86_64 2022 case MSR_FS_BASE: 2023 msr_info->data = vmcs_readl(GUEST_FS_BASE); 2024 break; 2025 case MSR_GS_BASE: 2026 msr_info->data = vmcs_readl(GUEST_GS_BASE); 2027 break; 2028 case MSR_KERNEL_GS_BASE: 2029 msr_info->data = vmx_read_guest_kernel_gs_base(vmx); 2030 break; 2031 #endif 2032 case MSR_EFER: 2033 return kvm_get_msr_common(vcpu, msr_info); 2034 case MSR_IA32_TSX_CTRL: 2035 if (!msr_info->host_initiated && 2036 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2037 return 1; 2038 goto find_uret_msr; 2039 case MSR_IA32_UMWAIT_CONTROL: 2040 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2041 return 1; 2042 2043 msr_info->data = vmx->msr_ia32_umwait_control; 2044 break; 2045 case MSR_IA32_SPEC_CTRL: 2046 if (!msr_info->host_initiated && 2047 !guest_has_spec_ctrl_msr(vcpu)) 2048 return 1; 2049 2050 msr_info->data = to_vmx(vcpu)->spec_ctrl; 2051 break; 2052 case MSR_IA32_SYSENTER_CS: 2053 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); 2054 break; 2055 case MSR_IA32_SYSENTER_EIP: 2056 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); 2057 break; 2058 case MSR_IA32_SYSENTER_ESP: 2059 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); 2060 break; 2061 case MSR_IA32_BNDCFGS: 2062 if (!kvm_mpx_supported() || 2063 (!msr_info->host_initiated && 2064 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 2065 return 1; 2066 msr_info->data = vmcs_read64(GUEST_BNDCFGS); 2067 break; 2068 case MSR_IA32_MCG_EXT_CTL: 2069 if (!msr_info->host_initiated && 2070 !(vmx->msr_ia32_feature_control & 2071 FEAT_CTL_LMCE_ENABLED)) 2072 return 1; 2073 msr_info->data = vcpu->arch.mcg_ext_ctl; 2074 break; 2075 case MSR_IA32_FEAT_CTL: 2076 msr_info->data = vmx->msr_ia32_feature_control; 2077 break; 2078 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2079 if (!msr_info->host_initiated && 2080 !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 2081 return 1; 2082 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash 2083 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0]; 2084 break; 2085 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 2086 if (!guest_can_use(vcpu, X86_FEATURE_VMX)) 2087 return 1; 2088 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, 2089 &msr_info->data)) 2090 return 1; 2091 #ifdef CONFIG_KVM_HYPERV 2092 /* 2093 * Enlightened VMCS v1 doesn't have certain VMCS fields but 2094 * instead of just ignoring the features, different Hyper-V 2095 * versions are either trying to use them and fail or do some 2096 * sanity checking and refuse to boot. Filter all unsupported 2097 * features out. 2098 */ 2099 if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu)) 2100 nested_evmcs_filter_control_msr(vcpu, msr_info->index, 2101 &msr_info->data); 2102 #endif 2103 break; 2104 case MSR_IA32_RTIT_CTL: 2105 if (!vmx_pt_mode_is_host_guest()) 2106 return 1; 2107 msr_info->data = vmx->pt_desc.guest.ctl; 2108 break; 2109 case MSR_IA32_RTIT_STATUS: 2110 if (!vmx_pt_mode_is_host_guest()) 2111 return 1; 2112 msr_info->data = vmx->pt_desc.guest.status; 2113 break; 2114 case MSR_IA32_RTIT_CR3_MATCH: 2115 if (!vmx_pt_mode_is_host_guest() || 2116 !intel_pt_validate_cap(vmx->pt_desc.caps, 2117 PT_CAP_cr3_filtering)) 2118 return 1; 2119 msr_info->data = vmx->pt_desc.guest.cr3_match; 2120 break; 2121 case MSR_IA32_RTIT_OUTPUT_BASE: 2122 if (!vmx_pt_mode_is_host_guest() || 2123 (!intel_pt_validate_cap(vmx->pt_desc.caps, 2124 PT_CAP_topa_output) && 2125 !intel_pt_validate_cap(vmx->pt_desc.caps, 2126 PT_CAP_single_range_output))) 2127 return 1; 2128 msr_info->data = vmx->pt_desc.guest.output_base; 2129 break; 2130 case MSR_IA32_RTIT_OUTPUT_MASK: 2131 if (!vmx_pt_mode_is_host_guest() || 2132 (!intel_pt_validate_cap(vmx->pt_desc.caps, 2133 PT_CAP_topa_output) && 2134 !intel_pt_validate_cap(vmx->pt_desc.caps, 2135 PT_CAP_single_range_output))) 2136 return 1; 2137 msr_info->data = vmx->pt_desc.guest.output_mask; 2138 break; 2139 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2140 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2141 if (!vmx_pt_mode_is_host_guest() || 2142 (index >= 2 * vmx->pt_desc.num_address_ranges)) 2143 return 1; 2144 if (index % 2) 2145 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; 2146 else 2147 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; 2148 break; 2149 case MSR_IA32_DEBUGCTLMSR: 2150 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL); 2151 break; 2152 default: 2153 find_uret_msr: 2154 msr = vmx_find_uret_msr(vmx, msr_info->index); 2155 if (msr) { 2156 msr_info->data = msr->data; 2157 break; 2158 } 2159 return kvm_get_msr_common(vcpu, msr_info); 2160 } 2161 2162 return 0; 2163 } 2164 2165 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu, 2166 u64 data) 2167 { 2168 #ifdef CONFIG_X86_64 2169 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 2170 return (u32)data; 2171 #endif 2172 return (unsigned long)data; 2173 } 2174 2175 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated) 2176 { 2177 u64 debugctl = 0; 2178 2179 if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) && 2180 (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))) 2181 debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT; 2182 2183 if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) && 2184 (host_initiated || intel_pmu_lbr_is_enabled(vcpu))) 2185 debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI; 2186 2187 return debugctl; 2188 } 2189 2190 /* 2191 * Writes msr value into the appropriate "register". 2192 * Returns 0 on success, non-0 otherwise. 2193 * Assumes vcpu_load() was already called. 2194 */ 2195 int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2196 { 2197 struct vcpu_vmx *vmx = to_vmx(vcpu); 2198 struct vmx_uret_msr *msr; 2199 int ret = 0; 2200 u32 msr_index = msr_info->index; 2201 u64 data = msr_info->data; 2202 u32 index; 2203 2204 switch (msr_index) { 2205 case MSR_EFER: 2206 ret = kvm_set_msr_common(vcpu, msr_info); 2207 break; 2208 #ifdef CONFIG_X86_64 2209 case MSR_FS_BASE: 2210 vmx_segment_cache_clear(vmx); 2211 vmcs_writel(GUEST_FS_BASE, data); 2212 break; 2213 case MSR_GS_BASE: 2214 vmx_segment_cache_clear(vmx); 2215 vmcs_writel(GUEST_GS_BASE, data); 2216 break; 2217 case MSR_KERNEL_GS_BASE: 2218 vmx_write_guest_kernel_gs_base(vmx, data); 2219 break; 2220 case MSR_IA32_XFD: 2221 ret = kvm_set_msr_common(vcpu, msr_info); 2222 /* 2223 * Always intercepting WRMSR could incur non-negligible 2224 * overhead given xfd might be changed frequently in 2225 * guest context switch. Disable write interception 2226 * upon the first write with a non-zero value (indicating 2227 * potential usage on dynamic xfeatures). Also update 2228 * exception bitmap to trap #NM for proper virtualization 2229 * of guest xfd_err. 2230 */ 2231 if (!ret && data) { 2232 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD, 2233 MSR_TYPE_RW); 2234 vcpu->arch.xfd_no_write_intercept = true; 2235 vmx_update_exception_bitmap(vcpu); 2236 } 2237 break; 2238 #endif 2239 case MSR_IA32_SYSENTER_CS: 2240 if (is_guest_mode(vcpu)) 2241 get_vmcs12(vcpu)->guest_sysenter_cs = data; 2242 vmcs_write32(GUEST_SYSENTER_CS, data); 2243 break; 2244 case MSR_IA32_SYSENTER_EIP: 2245 if (is_guest_mode(vcpu)) { 2246 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2247 get_vmcs12(vcpu)->guest_sysenter_eip = data; 2248 } 2249 vmcs_writel(GUEST_SYSENTER_EIP, data); 2250 break; 2251 case MSR_IA32_SYSENTER_ESP: 2252 if (is_guest_mode(vcpu)) { 2253 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2254 get_vmcs12(vcpu)->guest_sysenter_esp = data; 2255 } 2256 vmcs_writel(GUEST_SYSENTER_ESP, data); 2257 break; 2258 case MSR_IA32_DEBUGCTLMSR: { 2259 u64 invalid; 2260 2261 invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated); 2262 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) { 2263 kvm_pr_unimpl_wrmsr(vcpu, msr_index, data); 2264 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2265 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2266 } 2267 2268 if (invalid) 2269 return 1; 2270 2271 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls & 2272 VM_EXIT_SAVE_DEBUG_CONTROLS) 2273 get_vmcs12(vcpu)->guest_ia32_debugctl = data; 2274 2275 vmcs_write64(GUEST_IA32_DEBUGCTL, data); 2276 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event && 2277 (data & DEBUGCTLMSR_LBR)) 2278 intel_pmu_create_guest_lbr_event(vcpu); 2279 return 0; 2280 } 2281 case MSR_IA32_BNDCFGS: 2282 if (!kvm_mpx_supported() || 2283 (!msr_info->host_initiated && 2284 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 2285 return 1; 2286 if (is_noncanonical_address(data & PAGE_MASK, vcpu) || 2287 (data & MSR_IA32_BNDCFGS_RSVD)) 2288 return 1; 2289 2290 if (is_guest_mode(vcpu) && 2291 ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) || 2292 (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS))) 2293 get_vmcs12(vcpu)->guest_bndcfgs = data; 2294 2295 vmcs_write64(GUEST_BNDCFGS, data); 2296 break; 2297 case MSR_IA32_UMWAIT_CONTROL: 2298 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2299 return 1; 2300 2301 /* The reserved bit 1 and non-32 bit [63:32] should be zero */ 2302 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32))) 2303 return 1; 2304 2305 vmx->msr_ia32_umwait_control = data; 2306 break; 2307 case MSR_IA32_SPEC_CTRL: 2308 if (!msr_info->host_initiated && 2309 !guest_has_spec_ctrl_msr(vcpu)) 2310 return 1; 2311 2312 if (kvm_spec_ctrl_test_value(data)) 2313 return 1; 2314 2315 vmx->spec_ctrl = data; 2316 if (!data) 2317 break; 2318 2319 /* 2320 * For non-nested: 2321 * When it's written (to non-zero) for the first time, pass 2322 * it through. 2323 * 2324 * For nested: 2325 * The handling of the MSR bitmap for L2 guests is done in 2326 * nested_vmx_prepare_msr_bitmap. We should not touch the 2327 * vmcs02.msr_bitmap here since it gets completely overwritten 2328 * in the merging. We update the vmcs01 here for L1 as well 2329 * since it will end up touching the MSR anyway now. 2330 */ 2331 vmx_disable_intercept_for_msr(vcpu, 2332 MSR_IA32_SPEC_CTRL, 2333 MSR_TYPE_RW); 2334 break; 2335 case MSR_IA32_TSX_CTRL: 2336 if (!msr_info->host_initiated && 2337 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2338 return 1; 2339 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR)) 2340 return 1; 2341 goto find_uret_msr; 2342 case MSR_IA32_CR_PAT: 2343 ret = kvm_set_msr_common(vcpu, msr_info); 2344 if (ret) 2345 break; 2346 2347 if (is_guest_mode(vcpu) && 2348 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) 2349 get_vmcs12(vcpu)->guest_ia32_pat = data; 2350 2351 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 2352 vmcs_write64(GUEST_IA32_PAT, data); 2353 break; 2354 case MSR_IA32_MCG_EXT_CTL: 2355 if ((!msr_info->host_initiated && 2356 !(to_vmx(vcpu)->msr_ia32_feature_control & 2357 FEAT_CTL_LMCE_ENABLED)) || 2358 (data & ~MCG_EXT_CTL_LMCE_EN)) 2359 return 1; 2360 vcpu->arch.mcg_ext_ctl = data; 2361 break; 2362 case MSR_IA32_FEAT_CTL: 2363 if (!is_vmx_feature_control_msr_valid(vmx, msr_info)) 2364 return 1; 2365 2366 vmx->msr_ia32_feature_control = data; 2367 if (msr_info->host_initiated && data == 0) 2368 vmx_leave_nested(vcpu); 2369 2370 /* SGX may be enabled/disabled by guest's firmware */ 2371 vmx_write_encls_bitmap(vcpu, NULL); 2372 break; 2373 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2374 /* 2375 * On real hardware, the LE hash MSRs are writable before 2376 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX), 2377 * at which point SGX related bits in IA32_FEATURE_CONTROL 2378 * become writable. 2379 * 2380 * KVM does not emulate SGX activation for simplicity, so 2381 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL 2382 * is unlocked. This is technically not architectural 2383 * behavior, but it's close enough. 2384 */ 2385 if (!msr_info->host_initiated && 2386 (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) || 2387 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) && 2388 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED)))) 2389 return 1; 2390 vmx->msr_ia32_sgxlepubkeyhash 2391 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data; 2392 break; 2393 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 2394 if (!msr_info->host_initiated) 2395 return 1; /* they are read-only */ 2396 if (!guest_can_use(vcpu, X86_FEATURE_VMX)) 2397 return 1; 2398 return vmx_set_vmx_msr(vcpu, msr_index, data); 2399 case MSR_IA32_RTIT_CTL: 2400 if (!vmx_pt_mode_is_host_guest() || 2401 vmx_rtit_ctl_check(vcpu, data) || 2402 vmx->nested.vmxon) 2403 return 1; 2404 vmcs_write64(GUEST_IA32_RTIT_CTL, data); 2405 vmx->pt_desc.guest.ctl = data; 2406 pt_update_intercept_for_msr(vcpu); 2407 break; 2408 case MSR_IA32_RTIT_STATUS: 2409 if (!pt_can_write_msr(vmx)) 2410 return 1; 2411 if (data & MSR_IA32_RTIT_STATUS_MASK) 2412 return 1; 2413 vmx->pt_desc.guest.status = data; 2414 break; 2415 case MSR_IA32_RTIT_CR3_MATCH: 2416 if (!pt_can_write_msr(vmx)) 2417 return 1; 2418 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2419 PT_CAP_cr3_filtering)) 2420 return 1; 2421 vmx->pt_desc.guest.cr3_match = data; 2422 break; 2423 case MSR_IA32_RTIT_OUTPUT_BASE: 2424 if (!pt_can_write_msr(vmx)) 2425 return 1; 2426 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2427 PT_CAP_topa_output) && 2428 !intel_pt_validate_cap(vmx->pt_desc.caps, 2429 PT_CAP_single_range_output)) 2430 return 1; 2431 if (!pt_output_base_valid(vcpu, data)) 2432 return 1; 2433 vmx->pt_desc.guest.output_base = data; 2434 break; 2435 case MSR_IA32_RTIT_OUTPUT_MASK: 2436 if (!pt_can_write_msr(vmx)) 2437 return 1; 2438 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2439 PT_CAP_topa_output) && 2440 !intel_pt_validate_cap(vmx->pt_desc.caps, 2441 PT_CAP_single_range_output)) 2442 return 1; 2443 vmx->pt_desc.guest.output_mask = data; 2444 break; 2445 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2446 if (!pt_can_write_msr(vmx)) 2447 return 1; 2448 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2449 if (index >= 2 * vmx->pt_desc.num_address_ranges) 2450 return 1; 2451 if (is_noncanonical_address(data, vcpu)) 2452 return 1; 2453 if (index % 2) 2454 vmx->pt_desc.guest.addr_b[index / 2] = data; 2455 else 2456 vmx->pt_desc.guest.addr_a[index / 2] = data; 2457 break; 2458 case MSR_IA32_PERF_CAPABILITIES: 2459 if (data && !vcpu_to_pmu(vcpu)->version) 2460 return 1; 2461 if (data & PMU_CAP_LBR_FMT) { 2462 if ((data & PMU_CAP_LBR_FMT) != 2463 (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT)) 2464 return 1; 2465 if (!cpuid_model_is_consistent(vcpu)) 2466 return 1; 2467 } 2468 if (data & PERF_CAP_PEBS_FORMAT) { 2469 if ((data & PERF_CAP_PEBS_MASK) != 2470 (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK)) 2471 return 1; 2472 if (!guest_cpuid_has(vcpu, X86_FEATURE_DS)) 2473 return 1; 2474 if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64)) 2475 return 1; 2476 if (!cpuid_model_is_consistent(vcpu)) 2477 return 1; 2478 } 2479 ret = kvm_set_msr_common(vcpu, msr_info); 2480 break; 2481 2482 default: 2483 find_uret_msr: 2484 msr = vmx_find_uret_msr(vmx, msr_index); 2485 if (msr) 2486 ret = vmx_set_guest_uret_msr(vmx, msr, data); 2487 else 2488 ret = kvm_set_msr_common(vcpu, msr_info); 2489 } 2490 2491 /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */ 2492 if (msr_index == MSR_IA32_ARCH_CAPABILITIES) 2493 vmx_update_fb_clear_dis(vcpu, vmx); 2494 2495 return ret; 2496 } 2497 2498 void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 2499 { 2500 unsigned long guest_owned_bits; 2501 2502 kvm_register_mark_available(vcpu, reg); 2503 2504 switch (reg) { 2505 case VCPU_REGS_RSP: 2506 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); 2507 break; 2508 case VCPU_REGS_RIP: 2509 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); 2510 break; 2511 case VCPU_EXREG_PDPTR: 2512 if (enable_ept) 2513 ept_save_pdptrs(vcpu); 2514 break; 2515 case VCPU_EXREG_CR0: 2516 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; 2517 2518 vcpu->arch.cr0 &= ~guest_owned_bits; 2519 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits; 2520 break; 2521 case VCPU_EXREG_CR3: 2522 /* 2523 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's 2524 * CR3 is loaded into hardware, not the guest's CR3. 2525 */ 2526 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING)) 2527 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); 2528 break; 2529 case VCPU_EXREG_CR4: 2530 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; 2531 2532 vcpu->arch.cr4 &= ~guest_owned_bits; 2533 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits; 2534 break; 2535 default: 2536 KVM_BUG_ON(1, vcpu->kvm); 2537 break; 2538 } 2539 } 2540 2541 /* 2542 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID 2543 * directly instead of going through cpu_has(), to ensure KVM is trapping 2544 * ENCLS whenever it's supported in hardware. It does not matter whether 2545 * the host OS supports or has enabled SGX. 2546 */ 2547 static bool cpu_has_sgx(void) 2548 { 2549 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0)); 2550 } 2551 2552 /* 2553 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they 2554 * can't be used due to errata where VM Exit may incorrectly clear 2555 * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the 2556 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. 2557 */ 2558 static bool cpu_has_perf_global_ctrl_bug(void) 2559 { 2560 switch (boot_cpu_data.x86_vfm) { 2561 case INTEL_NEHALEM_EP: /* AAK155 */ 2562 case INTEL_NEHALEM: /* AAP115 */ 2563 case INTEL_WESTMERE: /* AAT100 */ 2564 case INTEL_WESTMERE_EP: /* BC86,AAY89,BD102 */ 2565 case INTEL_NEHALEM_EX: /* BA97 */ 2566 return true; 2567 default: 2568 break; 2569 } 2570 2571 return false; 2572 } 2573 2574 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result) 2575 { 2576 u32 vmx_msr_low, vmx_msr_high; 2577 u32 ctl = ctl_min | ctl_opt; 2578 2579 rdmsr(msr, vmx_msr_low, vmx_msr_high); 2580 2581 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ 2582 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ 2583 2584 /* Ensure minimum (required) set of control bits are supported. */ 2585 if (ctl_min & ~ctl) 2586 return -EIO; 2587 2588 *result = ctl; 2589 return 0; 2590 } 2591 2592 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr) 2593 { 2594 u64 allowed; 2595 2596 rdmsrl(msr, allowed); 2597 2598 return ctl_opt & allowed; 2599 } 2600 2601 static int setup_vmcs_config(struct vmcs_config *vmcs_conf, 2602 struct vmx_capability *vmx_cap) 2603 { 2604 u32 _pin_based_exec_control = 0; 2605 u32 _cpu_based_exec_control = 0; 2606 u32 _cpu_based_2nd_exec_control = 0; 2607 u64 _cpu_based_3rd_exec_control = 0; 2608 u32 _vmexit_control = 0; 2609 u32 _vmentry_control = 0; 2610 u64 basic_msr; 2611 u64 misc_msr; 2612 int i; 2613 2614 /* 2615 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory. 2616 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always 2617 * intercepts writes to PAT and EFER, i.e. never enables those controls. 2618 */ 2619 struct { 2620 u32 entry_control; 2621 u32 exit_control; 2622 } const vmcs_entry_exit_pairs[] = { 2623 { VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL }, 2624 { VM_ENTRY_LOAD_IA32_PAT, VM_EXIT_LOAD_IA32_PAT }, 2625 { VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER }, 2626 { VM_ENTRY_LOAD_BNDCFGS, VM_EXIT_CLEAR_BNDCFGS }, 2627 { VM_ENTRY_LOAD_IA32_RTIT_CTL, VM_EXIT_CLEAR_IA32_RTIT_CTL }, 2628 }; 2629 2630 memset(vmcs_conf, 0, sizeof(*vmcs_conf)); 2631 2632 if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL, 2633 KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL, 2634 MSR_IA32_VMX_PROCBASED_CTLS, 2635 &_cpu_based_exec_control)) 2636 return -EIO; 2637 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { 2638 if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL, 2639 KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL, 2640 MSR_IA32_VMX_PROCBASED_CTLS2, 2641 &_cpu_based_2nd_exec_control)) 2642 return -EIO; 2643 } 2644 if (!IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE)) 2645 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE; 2646 2647 #ifndef CONFIG_X86_64 2648 if (!(_cpu_based_2nd_exec_control & 2649 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 2650 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; 2651 #endif 2652 2653 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2654 _cpu_based_2nd_exec_control &= ~( 2655 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2656 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2657 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 2658 2659 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, 2660 &vmx_cap->ept, &vmx_cap->vpid); 2661 2662 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) && 2663 vmx_cap->ept) { 2664 pr_warn_once("EPT CAP should not exist if not support " 2665 "1-setting enable EPT VM-execution control\n"); 2666 2667 if (error_on_inconsistent_vmcs_config) 2668 return -EIO; 2669 2670 vmx_cap->ept = 0; 2671 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE; 2672 } 2673 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && 2674 vmx_cap->vpid) { 2675 pr_warn_once("VPID CAP should not exist if not support " 2676 "1-setting enable VPID VM-execution control\n"); 2677 2678 if (error_on_inconsistent_vmcs_config) 2679 return -EIO; 2680 2681 vmx_cap->vpid = 0; 2682 } 2683 2684 if (!cpu_has_sgx()) 2685 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING; 2686 2687 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS) 2688 _cpu_based_3rd_exec_control = 2689 adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL, 2690 MSR_IA32_VMX_PROCBASED_CTLS3); 2691 2692 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS, 2693 KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS, 2694 MSR_IA32_VMX_EXIT_CTLS, 2695 &_vmexit_control)) 2696 return -EIO; 2697 2698 if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL, 2699 KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL, 2700 MSR_IA32_VMX_PINBASED_CTLS, 2701 &_pin_based_exec_control)) 2702 return -EIO; 2703 2704 if (cpu_has_broken_vmx_preemption_timer()) 2705 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 2706 if (!(_cpu_based_2nd_exec_control & 2707 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) 2708 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; 2709 2710 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS, 2711 KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS, 2712 MSR_IA32_VMX_ENTRY_CTLS, 2713 &_vmentry_control)) 2714 return -EIO; 2715 2716 for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) { 2717 u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control; 2718 u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control; 2719 2720 if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl)) 2721 continue; 2722 2723 pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n", 2724 _vmentry_control & n_ctrl, _vmexit_control & x_ctrl); 2725 2726 if (error_on_inconsistent_vmcs_config) 2727 return -EIO; 2728 2729 _vmentry_control &= ~n_ctrl; 2730 _vmexit_control &= ~x_ctrl; 2731 } 2732 2733 rdmsrl(MSR_IA32_VMX_BASIC, basic_msr); 2734 2735 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ 2736 if (vmx_basic_vmcs_size(basic_msr) > PAGE_SIZE) 2737 return -EIO; 2738 2739 #ifdef CONFIG_X86_64 2740 /* 2741 * KVM expects to be able to shove all legal physical addresses into 2742 * VMCS fields for 64-bit kernels, and per the SDM, "This bit is always 2743 * 0 for processors that support Intel 64 architecture". 2744 */ 2745 if (basic_msr & VMX_BASIC_32BIT_PHYS_ADDR_ONLY) 2746 return -EIO; 2747 #endif 2748 2749 /* Require Write-Back (WB) memory type for VMCS accesses. */ 2750 if (vmx_basic_vmcs_mem_type(basic_msr) != X86_MEMTYPE_WB) 2751 return -EIO; 2752 2753 rdmsrl(MSR_IA32_VMX_MISC, misc_msr); 2754 2755 vmcs_conf->basic = basic_msr; 2756 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; 2757 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; 2758 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; 2759 vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control; 2760 vmcs_conf->vmexit_ctrl = _vmexit_control; 2761 vmcs_conf->vmentry_ctrl = _vmentry_control; 2762 vmcs_conf->misc = misc_msr; 2763 2764 #if IS_ENABLED(CONFIG_HYPERV) 2765 if (enlightened_vmcs) 2766 evmcs_sanitize_exec_ctrls(vmcs_conf); 2767 #endif 2768 2769 return 0; 2770 } 2771 2772 static bool __kvm_is_vmx_supported(void) 2773 { 2774 int cpu = smp_processor_id(); 2775 2776 if (!(cpuid_ecx(1) & feature_bit(VMX))) { 2777 pr_err("VMX not supported by CPU %d\n", cpu); 2778 return false; 2779 } 2780 2781 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 2782 !this_cpu_has(X86_FEATURE_VMX)) { 2783 pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu); 2784 return false; 2785 } 2786 2787 return true; 2788 } 2789 2790 static bool kvm_is_vmx_supported(void) 2791 { 2792 bool supported; 2793 2794 migrate_disable(); 2795 supported = __kvm_is_vmx_supported(); 2796 migrate_enable(); 2797 2798 return supported; 2799 } 2800 2801 int vmx_check_processor_compat(void) 2802 { 2803 int cpu = raw_smp_processor_id(); 2804 struct vmcs_config vmcs_conf; 2805 struct vmx_capability vmx_cap; 2806 2807 if (!__kvm_is_vmx_supported()) 2808 return -EIO; 2809 2810 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) { 2811 pr_err("Failed to setup VMCS config on CPU %d\n", cpu); 2812 return -EIO; 2813 } 2814 if (nested) 2815 nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept); 2816 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) { 2817 pr_err("Inconsistent VMCS config on CPU %d\n", cpu); 2818 return -EIO; 2819 } 2820 return 0; 2821 } 2822 2823 static int kvm_cpu_vmxon(u64 vmxon_pointer) 2824 { 2825 u64 msr; 2826 2827 cr4_set_bits(X86_CR4_VMXE); 2828 2829 asm goto("1: vmxon %[vmxon_pointer]\n\t" 2830 _ASM_EXTABLE(1b, %l[fault]) 2831 : : [vmxon_pointer] "m"(vmxon_pointer) 2832 : : fault); 2833 return 0; 2834 2835 fault: 2836 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n", 2837 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr); 2838 cr4_clear_bits(X86_CR4_VMXE); 2839 2840 return -EFAULT; 2841 } 2842 2843 int vmx_enable_virtualization_cpu(void) 2844 { 2845 int cpu = raw_smp_processor_id(); 2846 u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); 2847 int r; 2848 2849 if (cr4_read_shadow() & X86_CR4_VMXE) 2850 return -EBUSY; 2851 2852 /* 2853 * This can happen if we hot-added a CPU but failed to allocate 2854 * VP assist page for it. 2855 */ 2856 if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu)) 2857 return -EFAULT; 2858 2859 intel_pt_handle_vmx(1); 2860 2861 r = kvm_cpu_vmxon(phys_addr); 2862 if (r) { 2863 intel_pt_handle_vmx(0); 2864 return r; 2865 } 2866 2867 return 0; 2868 } 2869 2870 static void vmclear_local_loaded_vmcss(void) 2871 { 2872 int cpu = raw_smp_processor_id(); 2873 struct loaded_vmcs *v, *n; 2874 2875 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), 2876 loaded_vmcss_on_cpu_link) 2877 __loaded_vmcs_clear(v); 2878 } 2879 2880 void vmx_disable_virtualization_cpu(void) 2881 { 2882 vmclear_local_loaded_vmcss(); 2883 2884 if (kvm_cpu_vmxoff()) 2885 kvm_spurious_fault(); 2886 2887 hv_reset_evmcs(); 2888 2889 intel_pt_handle_vmx(0); 2890 } 2891 2892 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags) 2893 { 2894 int node = cpu_to_node(cpu); 2895 struct page *pages; 2896 struct vmcs *vmcs; 2897 2898 pages = __alloc_pages_node(node, flags, 0); 2899 if (!pages) 2900 return NULL; 2901 vmcs = page_address(pages); 2902 memset(vmcs, 0, vmx_basic_vmcs_size(vmcs_config.basic)); 2903 2904 /* KVM supports Enlightened VMCS v1 only */ 2905 if (kvm_is_using_evmcs()) 2906 vmcs->hdr.revision_id = KVM_EVMCS_VERSION; 2907 else 2908 vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic); 2909 2910 if (shadow) 2911 vmcs->hdr.shadow_vmcs = 1; 2912 return vmcs; 2913 } 2914 2915 void free_vmcs(struct vmcs *vmcs) 2916 { 2917 free_page((unsigned long)vmcs); 2918 } 2919 2920 /* 2921 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded 2922 */ 2923 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2924 { 2925 if (!loaded_vmcs->vmcs) 2926 return; 2927 loaded_vmcs_clear(loaded_vmcs); 2928 free_vmcs(loaded_vmcs->vmcs); 2929 loaded_vmcs->vmcs = NULL; 2930 if (loaded_vmcs->msr_bitmap) 2931 free_page((unsigned long)loaded_vmcs->msr_bitmap); 2932 WARN_ON(loaded_vmcs->shadow_vmcs != NULL); 2933 } 2934 2935 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2936 { 2937 loaded_vmcs->vmcs = alloc_vmcs(false); 2938 if (!loaded_vmcs->vmcs) 2939 return -ENOMEM; 2940 2941 vmcs_clear(loaded_vmcs->vmcs); 2942 2943 loaded_vmcs->shadow_vmcs = NULL; 2944 loaded_vmcs->hv_timer_soft_disabled = false; 2945 loaded_vmcs->cpu = -1; 2946 loaded_vmcs->launched = 0; 2947 2948 if (cpu_has_vmx_msr_bitmap()) { 2949 loaded_vmcs->msr_bitmap = (unsigned long *) 2950 __get_free_page(GFP_KERNEL_ACCOUNT); 2951 if (!loaded_vmcs->msr_bitmap) 2952 goto out_vmcs; 2953 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); 2954 } 2955 2956 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); 2957 memset(&loaded_vmcs->controls_shadow, 0, 2958 sizeof(struct vmcs_controls_shadow)); 2959 2960 return 0; 2961 2962 out_vmcs: 2963 free_loaded_vmcs(loaded_vmcs); 2964 return -ENOMEM; 2965 } 2966 2967 static void free_kvm_area(void) 2968 { 2969 int cpu; 2970 2971 for_each_possible_cpu(cpu) { 2972 free_vmcs(per_cpu(vmxarea, cpu)); 2973 per_cpu(vmxarea, cpu) = NULL; 2974 } 2975 } 2976 2977 static __init int alloc_kvm_area(void) 2978 { 2979 int cpu; 2980 2981 for_each_possible_cpu(cpu) { 2982 struct vmcs *vmcs; 2983 2984 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL); 2985 if (!vmcs) { 2986 free_kvm_area(); 2987 return -ENOMEM; 2988 } 2989 2990 /* 2991 * When eVMCS is enabled, alloc_vmcs_cpu() sets 2992 * vmcs->revision_id to KVM_EVMCS_VERSION instead of 2993 * revision_id reported by MSR_IA32_VMX_BASIC. 2994 * 2995 * However, even though not explicitly documented by 2996 * TLFS, VMXArea passed as VMXON argument should 2997 * still be marked with revision_id reported by 2998 * physical CPU. 2999 */ 3000 if (kvm_is_using_evmcs()) 3001 vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic); 3002 3003 per_cpu(vmxarea, cpu) = vmcs; 3004 } 3005 return 0; 3006 } 3007 3008 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, 3009 struct kvm_segment *save) 3010 { 3011 if (!emulate_invalid_guest_state) { 3012 /* 3013 * CS and SS RPL should be equal during guest entry according 3014 * to VMX spec, but in reality it is not always so. Since vcpu 3015 * is in the middle of the transition from real mode to 3016 * protected mode it is safe to assume that RPL 0 is a good 3017 * default value. 3018 */ 3019 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) 3020 save->selector &= ~SEGMENT_RPL_MASK; 3021 save->dpl = save->selector & SEGMENT_RPL_MASK; 3022 save->s = 1; 3023 } 3024 __vmx_set_segment(vcpu, save, seg); 3025 } 3026 3027 static void enter_pmode(struct kvm_vcpu *vcpu) 3028 { 3029 unsigned long flags; 3030 struct vcpu_vmx *vmx = to_vmx(vcpu); 3031 3032 /* 3033 * Update real mode segment cache. It may be not up-to-date if segment 3034 * register was written while vcpu was in a guest mode. 3035 */ 3036 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 3037 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 3038 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 3039 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 3040 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 3041 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 3042 3043 vmx->rmode.vm86_active = 0; 3044 3045 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 3046 3047 flags = vmcs_readl(GUEST_RFLAGS); 3048 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 3049 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 3050 vmcs_writel(GUEST_RFLAGS, flags); 3051 3052 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | 3053 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); 3054 3055 vmx_update_exception_bitmap(vcpu); 3056 3057 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 3058 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 3059 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 3060 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 3061 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 3062 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 3063 } 3064 3065 static void fix_rmode_seg(int seg, struct kvm_segment *save) 3066 { 3067 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3068 struct kvm_segment var = *save; 3069 3070 var.dpl = 0x3; 3071 if (seg == VCPU_SREG_CS) 3072 var.type = 0x3; 3073 3074 if (!emulate_invalid_guest_state) { 3075 var.selector = var.base >> 4; 3076 var.base = var.base & 0xffff0; 3077 var.limit = 0xffff; 3078 var.g = 0; 3079 var.db = 0; 3080 var.present = 1; 3081 var.s = 1; 3082 var.l = 0; 3083 var.unusable = 0; 3084 var.type = 0x3; 3085 var.avl = 0; 3086 if (save->base & 0xf) 3087 pr_warn_once("segment base is not paragraph aligned " 3088 "when entering protected mode (seg=%d)", seg); 3089 } 3090 3091 vmcs_write16(sf->selector, var.selector); 3092 vmcs_writel(sf->base, var.base); 3093 vmcs_write32(sf->limit, var.limit); 3094 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); 3095 } 3096 3097 static void enter_rmode(struct kvm_vcpu *vcpu) 3098 { 3099 unsigned long flags; 3100 struct vcpu_vmx *vmx = to_vmx(vcpu); 3101 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); 3102 3103 /* 3104 * KVM should never use VM86 to virtualize Real Mode when L2 is active, 3105 * as using VM86 is unnecessary if unrestricted guest is enabled, and 3106 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0 3107 * should VM-Fail and KVM should reject userspace attempts to stuff 3108 * CR0.PG=0 when L2 is active. 3109 */ 3110 WARN_ON_ONCE(is_guest_mode(vcpu)); 3111 3112 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 3113 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 3114 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 3115 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 3116 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 3117 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 3118 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 3119 3120 vmx->rmode.vm86_active = 1; 3121 3122 vmx_segment_cache_clear(vmx); 3123 3124 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); 3125 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); 3126 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 3127 3128 flags = vmcs_readl(GUEST_RFLAGS); 3129 vmx->rmode.save_rflags = flags; 3130 3131 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 3132 3133 vmcs_writel(GUEST_RFLAGS, flags); 3134 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); 3135 vmx_update_exception_bitmap(vcpu); 3136 3137 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 3138 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 3139 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 3140 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 3141 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 3142 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 3143 } 3144 3145 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) 3146 { 3147 struct vcpu_vmx *vmx = to_vmx(vcpu); 3148 3149 /* Nothing to do if hardware doesn't support EFER. */ 3150 if (!vmx_find_uret_msr(vmx, MSR_EFER)) 3151 return 0; 3152 3153 vcpu->arch.efer = efer; 3154 #ifdef CONFIG_X86_64 3155 if (efer & EFER_LMA) 3156 vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE); 3157 else 3158 vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE); 3159 #else 3160 if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm)) 3161 return 1; 3162 #endif 3163 3164 vmx_setup_uret_msrs(vmx); 3165 return 0; 3166 } 3167 3168 #ifdef CONFIG_X86_64 3169 3170 static void enter_lmode(struct kvm_vcpu *vcpu) 3171 { 3172 u32 guest_tr_ar; 3173 3174 vmx_segment_cache_clear(to_vmx(vcpu)); 3175 3176 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); 3177 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { 3178 pr_debug_ratelimited("%s: tss fixup for long mode. \n", 3179 __func__); 3180 vmcs_write32(GUEST_TR_AR_BYTES, 3181 (guest_tr_ar & ~VMX_AR_TYPE_MASK) 3182 | VMX_AR_TYPE_BUSY_64_TSS); 3183 } 3184 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); 3185 } 3186 3187 static void exit_lmode(struct kvm_vcpu *vcpu) 3188 { 3189 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); 3190 } 3191 3192 #endif 3193 3194 void vmx_flush_tlb_all(struct kvm_vcpu *vcpu) 3195 { 3196 struct vcpu_vmx *vmx = to_vmx(vcpu); 3197 3198 /* 3199 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as 3200 * the CPU is not required to invalidate guest-physical mappings on 3201 * VM-Entry, even if VPID is disabled. Guest-physical mappings are 3202 * associated with the root EPT structure and not any particular VPID 3203 * (INVVPID also isn't required to invalidate guest-physical mappings). 3204 */ 3205 if (enable_ept) { 3206 ept_sync_global(); 3207 } else if (enable_vpid) { 3208 if (cpu_has_vmx_invvpid_global()) { 3209 vpid_sync_vcpu_global(); 3210 } else { 3211 vpid_sync_vcpu_single(vmx->vpid); 3212 vpid_sync_vcpu_single(vmx->nested.vpid02); 3213 } 3214 } 3215 } 3216 3217 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu) 3218 { 3219 if (is_guest_mode(vcpu)) 3220 return nested_get_vpid02(vcpu); 3221 return to_vmx(vcpu)->vpid; 3222 } 3223 3224 void vmx_flush_tlb_current(struct kvm_vcpu *vcpu) 3225 { 3226 struct kvm_mmu *mmu = vcpu->arch.mmu; 3227 u64 root_hpa = mmu->root.hpa; 3228 3229 /* No flush required if the current context is invalid. */ 3230 if (!VALID_PAGE(root_hpa)) 3231 return; 3232 3233 if (enable_ept) 3234 ept_sync_context(construct_eptp(vcpu, root_hpa, 3235 mmu->root_role.level)); 3236 else 3237 vpid_sync_context(vmx_get_current_vpid(vcpu)); 3238 } 3239 3240 void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) 3241 { 3242 /* 3243 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in 3244 * vmx_flush_tlb_guest() for an explanation of why this is ok. 3245 */ 3246 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr); 3247 } 3248 3249 void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu) 3250 { 3251 /* 3252 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a 3253 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are 3254 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is 3255 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed), 3256 * i.e. no explicit INVVPID is necessary. 3257 */ 3258 vpid_sync_context(vmx_get_current_vpid(vcpu)); 3259 } 3260 3261 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu) 3262 { 3263 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 3264 3265 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR)) 3266 return; 3267 3268 if (is_pae_paging(vcpu)) { 3269 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); 3270 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); 3271 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); 3272 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); 3273 } 3274 } 3275 3276 void ept_save_pdptrs(struct kvm_vcpu *vcpu) 3277 { 3278 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 3279 3280 if (WARN_ON_ONCE(!is_pae_paging(vcpu))) 3281 return; 3282 3283 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); 3284 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); 3285 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); 3286 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); 3287 3288 kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR); 3289 } 3290 3291 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \ 3292 CPU_BASED_CR3_STORE_EXITING) 3293 3294 bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 3295 { 3296 if (is_guest_mode(vcpu)) 3297 return nested_guest_cr0_valid(vcpu, cr0); 3298 3299 if (to_vmx(vcpu)->nested.vmxon) 3300 return nested_host_cr0_valid(vcpu, cr0); 3301 3302 return true; 3303 } 3304 3305 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 3306 { 3307 struct vcpu_vmx *vmx = to_vmx(vcpu); 3308 unsigned long hw_cr0, old_cr0_pg; 3309 u32 tmp; 3310 3311 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG); 3312 3313 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); 3314 if (enable_unrestricted_guest) 3315 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; 3316 else { 3317 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; 3318 if (!enable_ept) 3319 hw_cr0 |= X86_CR0_WP; 3320 3321 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) 3322 enter_pmode(vcpu); 3323 3324 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) 3325 enter_rmode(vcpu); 3326 } 3327 3328 vmcs_writel(CR0_READ_SHADOW, cr0); 3329 vmcs_writel(GUEST_CR0, hw_cr0); 3330 vcpu->arch.cr0 = cr0; 3331 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0); 3332 3333 #ifdef CONFIG_X86_64 3334 if (vcpu->arch.efer & EFER_LME) { 3335 if (!old_cr0_pg && (cr0 & X86_CR0_PG)) 3336 enter_lmode(vcpu); 3337 else if (old_cr0_pg && !(cr0 & X86_CR0_PG)) 3338 exit_lmode(vcpu); 3339 } 3340 #endif 3341 3342 if (enable_ept && !enable_unrestricted_guest) { 3343 /* 3344 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If 3345 * the below code _enables_ CR3 exiting, vmx_cache_reg() will 3346 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks 3347 * KVM's CR3 is installed. 3348 */ 3349 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3)) 3350 vmx_cache_reg(vcpu, VCPU_EXREG_CR3); 3351 3352 /* 3353 * When running with EPT but not unrestricted guest, KVM must 3354 * intercept CR3 accesses when paging is _disabled_. This is 3355 * necessary because restricted guests can't actually run with 3356 * paging disabled, and so KVM stuffs its own CR3 in order to 3357 * run the guest when identity mapped page tables. 3358 * 3359 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the 3360 * update, it may be stale with respect to CR3 interception, 3361 * e.g. after nested VM-Enter. 3362 * 3363 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or 3364 * stores to forward them to L1, even if KVM does not need to 3365 * intercept them to preserve its identity mapped page tables. 3366 */ 3367 if (!(cr0 & X86_CR0_PG)) { 3368 exec_controls_setbit(vmx, CR3_EXITING_BITS); 3369 } else if (!is_guest_mode(vcpu)) { 3370 exec_controls_clearbit(vmx, CR3_EXITING_BITS); 3371 } else { 3372 tmp = exec_controls_get(vmx); 3373 tmp &= ~CR3_EXITING_BITS; 3374 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS; 3375 exec_controls_set(vmx, tmp); 3376 } 3377 3378 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */ 3379 if ((old_cr0_pg ^ cr0) & X86_CR0_PG) 3380 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 3381 3382 /* 3383 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but 3384 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG. 3385 */ 3386 if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG)) 3387 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 3388 } 3389 3390 /* depends on vcpu->arch.cr0 to be set to a new value */ 3391 vmx->emulation_required = vmx_emulation_required(vcpu); 3392 } 3393 3394 static int vmx_get_max_ept_level(void) 3395 { 3396 if (cpu_has_vmx_ept_5levels()) 3397 return 5; 3398 return 4; 3399 } 3400 3401 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level) 3402 { 3403 u64 eptp = VMX_EPTP_MT_WB; 3404 3405 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; 3406 3407 if (enable_ept_ad_bits && 3408 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) 3409 eptp |= VMX_EPTP_AD_ENABLE_BIT; 3410 eptp |= root_hpa; 3411 3412 return eptp; 3413 } 3414 3415 void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level) 3416 { 3417 struct kvm *kvm = vcpu->kvm; 3418 bool update_guest_cr3 = true; 3419 unsigned long guest_cr3; 3420 u64 eptp; 3421 3422 if (enable_ept) { 3423 eptp = construct_eptp(vcpu, root_hpa, root_level); 3424 vmcs_write64(EPT_POINTER, eptp); 3425 3426 hv_track_root_tdp(vcpu, root_hpa); 3427 3428 if (!enable_unrestricted_guest && !is_paging(vcpu)) 3429 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; 3430 else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3)) 3431 guest_cr3 = vcpu->arch.cr3; 3432 else /* vmcs.GUEST_CR3 is already up-to-date. */ 3433 update_guest_cr3 = false; 3434 vmx_ept_load_pdptrs(vcpu); 3435 } else { 3436 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu) | 3437 kvm_get_active_cr3_lam_bits(vcpu); 3438 } 3439 3440 if (update_guest_cr3) 3441 vmcs_writel(GUEST_CR3, guest_cr3); 3442 } 3443 3444 bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3445 { 3446 /* 3447 * We operate under the default treatment of SMM, so VMX cannot be 3448 * enabled under SMM. Note, whether or not VMXE is allowed at all, 3449 * i.e. is a reserved bit, is handled by common x86 code. 3450 */ 3451 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu)) 3452 return false; 3453 3454 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) 3455 return false; 3456 3457 return true; 3458 } 3459 3460 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3461 { 3462 unsigned long old_cr4 = kvm_read_cr4(vcpu); 3463 struct vcpu_vmx *vmx = to_vmx(vcpu); 3464 unsigned long hw_cr4; 3465 3466 /* 3467 * Pass through host's Machine Check Enable value to hw_cr4, which 3468 * is in force while we are in guest mode. Do not let guests control 3469 * this bit, even if host CR4.MCE == 0. 3470 */ 3471 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); 3472 if (enable_unrestricted_guest) 3473 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; 3474 else if (vmx->rmode.vm86_active) 3475 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; 3476 else 3477 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; 3478 3479 if (vmx_umip_emulated()) { 3480 if (cr4 & X86_CR4_UMIP) { 3481 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC); 3482 hw_cr4 &= ~X86_CR4_UMIP; 3483 } else if (!is_guest_mode(vcpu) || 3484 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) { 3485 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC); 3486 } 3487 } 3488 3489 vcpu->arch.cr4 = cr4; 3490 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4); 3491 3492 if (!enable_unrestricted_guest) { 3493 if (enable_ept) { 3494 if (!is_paging(vcpu)) { 3495 hw_cr4 &= ~X86_CR4_PAE; 3496 hw_cr4 |= X86_CR4_PSE; 3497 } else if (!(cr4 & X86_CR4_PAE)) { 3498 hw_cr4 &= ~X86_CR4_PAE; 3499 } 3500 } 3501 3502 /* 3503 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in 3504 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs 3505 * to be manually disabled when guest switches to non-paging 3506 * mode. 3507 * 3508 * If !enable_unrestricted_guest, the CPU is always running 3509 * with CR0.PG=1 and CR4 needs to be modified. 3510 * If enable_unrestricted_guest, the CPU automatically 3511 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. 3512 */ 3513 if (!is_paging(vcpu)) 3514 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 3515 } 3516 3517 vmcs_writel(CR4_READ_SHADOW, cr4); 3518 vmcs_writel(GUEST_CR4, hw_cr4); 3519 3520 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 3521 kvm_update_cpuid_runtime(vcpu); 3522 } 3523 3524 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3525 { 3526 struct vcpu_vmx *vmx = to_vmx(vcpu); 3527 u32 ar; 3528 3529 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3530 *var = vmx->rmode.segs[seg]; 3531 if (seg == VCPU_SREG_TR 3532 || var->selector == vmx_read_guest_seg_selector(vmx, seg)) 3533 return; 3534 var->base = vmx_read_guest_seg_base(vmx, seg); 3535 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3536 return; 3537 } 3538 var->base = vmx_read_guest_seg_base(vmx, seg); 3539 var->limit = vmx_read_guest_seg_limit(vmx, seg); 3540 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3541 ar = vmx_read_guest_seg_ar(vmx, seg); 3542 var->unusable = (ar >> 16) & 1; 3543 var->type = ar & 15; 3544 var->s = (ar >> 4) & 1; 3545 var->dpl = (ar >> 5) & 3; 3546 /* 3547 * Some userspaces do not preserve unusable property. Since usable 3548 * segment has to be present according to VMX spec we can use present 3549 * property to amend userspace bug by making unusable segment always 3550 * nonpresent. vmx_segment_access_rights() already marks nonpresent 3551 * segment as unusable. 3552 */ 3553 var->present = !var->unusable; 3554 var->avl = (ar >> 12) & 1; 3555 var->l = (ar >> 13) & 1; 3556 var->db = (ar >> 14) & 1; 3557 var->g = (ar >> 15) & 1; 3558 } 3559 3560 u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) 3561 { 3562 struct kvm_segment s; 3563 3564 if (to_vmx(vcpu)->rmode.vm86_active) { 3565 vmx_get_segment(vcpu, &s, seg); 3566 return s.base; 3567 } 3568 return vmx_read_guest_seg_base(to_vmx(vcpu), seg); 3569 } 3570 3571 int vmx_get_cpl(struct kvm_vcpu *vcpu) 3572 { 3573 struct vcpu_vmx *vmx = to_vmx(vcpu); 3574 3575 if (unlikely(vmx->rmode.vm86_active)) 3576 return 0; 3577 else { 3578 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); 3579 return VMX_AR_DPL(ar); 3580 } 3581 } 3582 3583 static u32 vmx_segment_access_rights(struct kvm_segment *var) 3584 { 3585 u32 ar; 3586 3587 ar = var->type & 15; 3588 ar |= (var->s & 1) << 4; 3589 ar |= (var->dpl & 3) << 5; 3590 ar |= (var->present & 1) << 7; 3591 ar |= (var->avl & 1) << 12; 3592 ar |= (var->l & 1) << 13; 3593 ar |= (var->db & 1) << 14; 3594 ar |= (var->g & 1) << 15; 3595 ar |= (var->unusable || !var->present) << 16; 3596 3597 return ar; 3598 } 3599 3600 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3601 { 3602 struct vcpu_vmx *vmx = to_vmx(vcpu); 3603 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3604 3605 vmx_segment_cache_clear(vmx); 3606 3607 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3608 vmx->rmode.segs[seg] = *var; 3609 if (seg == VCPU_SREG_TR) 3610 vmcs_write16(sf->selector, var->selector); 3611 else if (var->s) 3612 fix_rmode_seg(seg, &vmx->rmode.segs[seg]); 3613 return; 3614 } 3615 3616 vmcs_writel(sf->base, var->base); 3617 vmcs_write32(sf->limit, var->limit); 3618 vmcs_write16(sf->selector, var->selector); 3619 3620 /* 3621 * Fix the "Accessed" bit in AR field of segment registers for older 3622 * qemu binaries. 3623 * IA32 arch specifies that at the time of processor reset the 3624 * "Accessed" bit in the AR field of segment registers is 1. And qemu 3625 * is setting it to 0 in the userland code. This causes invalid guest 3626 * state vmexit when "unrestricted guest" mode is turned on. 3627 * Fix for this setup issue in cpu_reset is being pushed in the qemu 3628 * tree. Newer qemu binaries with that qemu fix would not need this 3629 * kvm hack. 3630 */ 3631 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR)) 3632 var->type |= 0x1; /* Accessed */ 3633 3634 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); 3635 } 3636 3637 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3638 { 3639 __vmx_set_segment(vcpu, var, seg); 3640 3641 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu); 3642 } 3643 3644 void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 3645 { 3646 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); 3647 3648 *db = (ar >> 14) & 1; 3649 *l = (ar >> 13) & 1; 3650 } 3651 3652 void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3653 { 3654 dt->size = vmcs_read32(GUEST_IDTR_LIMIT); 3655 dt->address = vmcs_readl(GUEST_IDTR_BASE); 3656 } 3657 3658 void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3659 { 3660 vmcs_write32(GUEST_IDTR_LIMIT, dt->size); 3661 vmcs_writel(GUEST_IDTR_BASE, dt->address); 3662 } 3663 3664 void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3665 { 3666 dt->size = vmcs_read32(GUEST_GDTR_LIMIT); 3667 dt->address = vmcs_readl(GUEST_GDTR_BASE); 3668 } 3669 3670 void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3671 { 3672 vmcs_write32(GUEST_GDTR_LIMIT, dt->size); 3673 vmcs_writel(GUEST_GDTR_BASE, dt->address); 3674 } 3675 3676 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) 3677 { 3678 struct kvm_segment var; 3679 u32 ar; 3680 3681 vmx_get_segment(vcpu, &var, seg); 3682 var.dpl = 0x3; 3683 if (seg == VCPU_SREG_CS) 3684 var.type = 0x3; 3685 ar = vmx_segment_access_rights(&var); 3686 3687 if (var.base != (var.selector << 4)) 3688 return false; 3689 if (var.limit != 0xffff) 3690 return false; 3691 if (ar != 0xf3) 3692 return false; 3693 3694 return true; 3695 } 3696 3697 static bool code_segment_valid(struct kvm_vcpu *vcpu) 3698 { 3699 struct kvm_segment cs; 3700 unsigned int cs_rpl; 3701 3702 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3703 cs_rpl = cs.selector & SEGMENT_RPL_MASK; 3704 3705 if (cs.unusable) 3706 return false; 3707 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) 3708 return false; 3709 if (!cs.s) 3710 return false; 3711 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { 3712 if (cs.dpl > cs_rpl) 3713 return false; 3714 } else { 3715 if (cs.dpl != cs_rpl) 3716 return false; 3717 } 3718 if (!cs.present) 3719 return false; 3720 3721 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ 3722 return true; 3723 } 3724 3725 static bool stack_segment_valid(struct kvm_vcpu *vcpu) 3726 { 3727 struct kvm_segment ss; 3728 unsigned int ss_rpl; 3729 3730 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3731 ss_rpl = ss.selector & SEGMENT_RPL_MASK; 3732 3733 if (ss.unusable) 3734 return true; 3735 if (ss.type != 3 && ss.type != 7) 3736 return false; 3737 if (!ss.s) 3738 return false; 3739 if (ss.dpl != ss_rpl) /* DPL != RPL */ 3740 return false; 3741 if (!ss.present) 3742 return false; 3743 3744 return true; 3745 } 3746 3747 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) 3748 { 3749 struct kvm_segment var; 3750 unsigned int rpl; 3751 3752 vmx_get_segment(vcpu, &var, seg); 3753 rpl = var.selector & SEGMENT_RPL_MASK; 3754 3755 if (var.unusable) 3756 return true; 3757 if (!var.s) 3758 return false; 3759 if (!var.present) 3760 return false; 3761 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { 3762 if (var.dpl < rpl) /* DPL < RPL */ 3763 return false; 3764 } 3765 3766 /* TODO: Add other members to kvm_segment_field to allow checking for other access 3767 * rights flags 3768 */ 3769 return true; 3770 } 3771 3772 static bool tr_valid(struct kvm_vcpu *vcpu) 3773 { 3774 struct kvm_segment tr; 3775 3776 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); 3777 3778 if (tr.unusable) 3779 return false; 3780 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3781 return false; 3782 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ 3783 return false; 3784 if (!tr.present) 3785 return false; 3786 3787 return true; 3788 } 3789 3790 static bool ldtr_valid(struct kvm_vcpu *vcpu) 3791 { 3792 struct kvm_segment ldtr; 3793 3794 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); 3795 3796 if (ldtr.unusable) 3797 return true; 3798 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3799 return false; 3800 if (ldtr.type != 2) 3801 return false; 3802 if (!ldtr.present) 3803 return false; 3804 3805 return true; 3806 } 3807 3808 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) 3809 { 3810 struct kvm_segment cs, ss; 3811 3812 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3813 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3814 3815 return ((cs.selector & SEGMENT_RPL_MASK) == 3816 (ss.selector & SEGMENT_RPL_MASK)); 3817 } 3818 3819 /* 3820 * Check if guest state is valid. Returns true if valid, false if 3821 * not. 3822 * We assume that registers are always usable 3823 */ 3824 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu) 3825 { 3826 /* real mode guest state checks */ 3827 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { 3828 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) 3829 return false; 3830 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) 3831 return false; 3832 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) 3833 return false; 3834 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) 3835 return false; 3836 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) 3837 return false; 3838 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) 3839 return false; 3840 } else { 3841 /* protected mode guest state checks */ 3842 if (!cs_ss_rpl_check(vcpu)) 3843 return false; 3844 if (!code_segment_valid(vcpu)) 3845 return false; 3846 if (!stack_segment_valid(vcpu)) 3847 return false; 3848 if (!data_segment_valid(vcpu, VCPU_SREG_DS)) 3849 return false; 3850 if (!data_segment_valid(vcpu, VCPU_SREG_ES)) 3851 return false; 3852 if (!data_segment_valid(vcpu, VCPU_SREG_FS)) 3853 return false; 3854 if (!data_segment_valid(vcpu, VCPU_SREG_GS)) 3855 return false; 3856 if (!tr_valid(vcpu)) 3857 return false; 3858 if (!ldtr_valid(vcpu)) 3859 return false; 3860 } 3861 /* TODO: 3862 * - Add checks on RIP 3863 * - Add checks on RFLAGS 3864 */ 3865 3866 return true; 3867 } 3868 3869 static int init_rmode_tss(struct kvm *kvm, void __user *ua) 3870 { 3871 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3872 u16 data; 3873 int i; 3874 3875 for (i = 0; i < 3; i++) { 3876 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE)) 3877 return -EFAULT; 3878 } 3879 3880 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; 3881 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16))) 3882 return -EFAULT; 3883 3884 data = ~0; 3885 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8))) 3886 return -EFAULT; 3887 3888 return 0; 3889 } 3890 3891 static int init_rmode_identity_map(struct kvm *kvm) 3892 { 3893 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 3894 int i, r = 0; 3895 void __user *uaddr; 3896 u32 tmp; 3897 3898 /* Protect kvm_vmx->ept_identity_pagetable_done. */ 3899 mutex_lock(&kvm->slots_lock); 3900 3901 if (likely(kvm_vmx->ept_identity_pagetable_done)) 3902 goto out; 3903 3904 if (!kvm_vmx->ept_identity_map_addr) 3905 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; 3906 3907 uaddr = __x86_set_memory_region(kvm, 3908 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 3909 kvm_vmx->ept_identity_map_addr, 3910 PAGE_SIZE); 3911 if (IS_ERR(uaddr)) { 3912 r = PTR_ERR(uaddr); 3913 goto out; 3914 } 3915 3916 /* Set up identity-mapping pagetable for EPT in real mode */ 3917 for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) { 3918 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | 3919 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); 3920 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) { 3921 r = -EFAULT; 3922 goto out; 3923 } 3924 } 3925 kvm_vmx->ept_identity_pagetable_done = true; 3926 3927 out: 3928 mutex_unlock(&kvm->slots_lock); 3929 return r; 3930 } 3931 3932 static void seg_setup(int seg) 3933 { 3934 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3935 unsigned int ar; 3936 3937 vmcs_write16(sf->selector, 0); 3938 vmcs_writel(sf->base, 0); 3939 vmcs_write32(sf->limit, 0xffff); 3940 ar = 0x93; 3941 if (seg == VCPU_SREG_CS) 3942 ar |= 0x08; /* code segment */ 3943 3944 vmcs_write32(sf->ar_bytes, ar); 3945 } 3946 3947 int allocate_vpid(void) 3948 { 3949 int vpid; 3950 3951 if (!enable_vpid) 3952 return 0; 3953 spin_lock(&vmx_vpid_lock); 3954 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); 3955 if (vpid < VMX_NR_VPIDS) 3956 __set_bit(vpid, vmx_vpid_bitmap); 3957 else 3958 vpid = 0; 3959 spin_unlock(&vmx_vpid_lock); 3960 return vpid; 3961 } 3962 3963 void free_vpid(int vpid) 3964 { 3965 if (!enable_vpid || vpid == 0) 3966 return; 3967 spin_lock(&vmx_vpid_lock); 3968 __clear_bit(vpid, vmx_vpid_bitmap); 3969 spin_unlock(&vmx_vpid_lock); 3970 } 3971 3972 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx) 3973 { 3974 /* 3975 * When KVM is a nested hypervisor on top of Hyper-V and uses 3976 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR 3977 * bitmap has changed. 3978 */ 3979 if (kvm_is_using_evmcs()) { 3980 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; 3981 3982 if (evmcs->hv_enlightenments_control.msr_bitmap) 3983 evmcs->hv_clean_fields &= 3984 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP; 3985 } 3986 3987 vmx->nested.force_msr_bitmap_recalc = true; 3988 } 3989 3990 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3991 { 3992 struct vcpu_vmx *vmx = to_vmx(vcpu); 3993 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3994 int idx; 3995 3996 if (!cpu_has_vmx_msr_bitmap()) 3997 return; 3998 3999 vmx_msr_bitmap_l01_changed(vmx); 4000 4001 /* 4002 * Mark the desired intercept state in shadow bitmap, this is needed 4003 * for resync when the MSR filters change. 4004 */ 4005 idx = vmx_get_passthrough_msr_slot(msr); 4006 if (idx >= 0) { 4007 if (type & MSR_TYPE_R) 4008 clear_bit(idx, vmx->shadow_msr_intercept.read); 4009 if (type & MSR_TYPE_W) 4010 clear_bit(idx, vmx->shadow_msr_intercept.write); 4011 } 4012 4013 if ((type & MSR_TYPE_R) && 4014 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) { 4015 vmx_set_msr_bitmap_read(msr_bitmap, msr); 4016 type &= ~MSR_TYPE_R; 4017 } 4018 4019 if ((type & MSR_TYPE_W) && 4020 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) { 4021 vmx_set_msr_bitmap_write(msr_bitmap, msr); 4022 type &= ~MSR_TYPE_W; 4023 } 4024 4025 if (type & MSR_TYPE_R) 4026 vmx_clear_msr_bitmap_read(msr_bitmap, msr); 4027 4028 if (type & MSR_TYPE_W) 4029 vmx_clear_msr_bitmap_write(msr_bitmap, msr); 4030 } 4031 4032 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 4033 { 4034 struct vcpu_vmx *vmx = to_vmx(vcpu); 4035 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 4036 int idx; 4037 4038 if (!cpu_has_vmx_msr_bitmap()) 4039 return; 4040 4041 vmx_msr_bitmap_l01_changed(vmx); 4042 4043 /* 4044 * Mark the desired intercept state in shadow bitmap, this is needed 4045 * for resync when the MSR filter changes. 4046 */ 4047 idx = vmx_get_passthrough_msr_slot(msr); 4048 if (idx >= 0) { 4049 if (type & MSR_TYPE_R) 4050 set_bit(idx, vmx->shadow_msr_intercept.read); 4051 if (type & MSR_TYPE_W) 4052 set_bit(idx, vmx->shadow_msr_intercept.write); 4053 } 4054 4055 if (type & MSR_TYPE_R) 4056 vmx_set_msr_bitmap_read(msr_bitmap, msr); 4057 4058 if (type & MSR_TYPE_W) 4059 vmx_set_msr_bitmap_write(msr_bitmap, msr); 4060 } 4061 4062 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu) 4063 { 4064 /* 4065 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves 4066 * of the MSR bitmap. KVM emulates APIC registers up through 0x3f0, 4067 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits. 4068 */ 4069 const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG; 4070 const int write_idx = read_idx + (0x800 / sizeof(u64)); 4071 struct vcpu_vmx *vmx = to_vmx(vcpu); 4072 u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap; 4073 u8 mode; 4074 4075 if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu))) 4076 return; 4077 4078 if (cpu_has_secondary_exec_ctrls() && 4079 (secondary_exec_controls_get(vmx) & 4080 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { 4081 mode = MSR_BITMAP_MODE_X2APIC; 4082 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) 4083 mode |= MSR_BITMAP_MODE_X2APIC_APICV; 4084 } else { 4085 mode = 0; 4086 } 4087 4088 if (mode == vmx->x2apic_msr_bitmap_mode) 4089 return; 4090 4091 vmx->x2apic_msr_bitmap_mode = mode; 4092 4093 /* 4094 * Reset the bitmap for MSRs 0x800 - 0x83f. Leave AMD's uber-extended 4095 * registers (0x840 and above) intercepted, KVM doesn't support them. 4096 * Intercept all writes by default and poke holes as needed. Pass 4097 * through reads for all valid registers by default in x2APIC+APICv 4098 * mode, only the current timer count needs on-demand emulation by KVM. 4099 */ 4100 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) 4101 msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic); 4102 else 4103 msr_bitmap[read_idx] = ~0ull; 4104 msr_bitmap[write_idx] = ~0ull; 4105 4106 /* 4107 * TPR reads and writes can be virtualized even if virtual interrupt 4108 * delivery is not in use. 4109 */ 4110 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW, 4111 !(mode & MSR_BITMAP_MODE_X2APIC)); 4112 4113 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { 4114 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW); 4115 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); 4116 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); 4117 if (enable_ipiv) 4118 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW); 4119 } 4120 } 4121 4122 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu) 4123 { 4124 struct vcpu_vmx *vmx = to_vmx(vcpu); 4125 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 4126 u32 i; 4127 4128 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag); 4129 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag); 4130 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag); 4131 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag); 4132 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) { 4133 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); 4134 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); 4135 } 4136 } 4137 4138 void vmx_msr_filter_changed(struct kvm_vcpu *vcpu) 4139 { 4140 struct vcpu_vmx *vmx = to_vmx(vcpu); 4141 u32 i; 4142 4143 if (!cpu_has_vmx_msr_bitmap()) 4144 return; 4145 4146 /* 4147 * Redo intercept permissions for MSRs that KVM is passing through to 4148 * the guest. Disabling interception will check the new MSR filter and 4149 * ensure that KVM enables interception if usersepace wants to filter 4150 * the MSR. MSRs that KVM is already intercepting don't need to be 4151 * refreshed since KVM is going to intercept them regardless of what 4152 * userspace wants. 4153 */ 4154 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) { 4155 u32 msr = vmx_possible_passthrough_msrs[i]; 4156 4157 if (!test_bit(i, vmx->shadow_msr_intercept.read)) 4158 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R); 4159 4160 if (!test_bit(i, vmx->shadow_msr_intercept.write)) 4161 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W); 4162 } 4163 4164 /* PT MSRs can be passed through iff PT is exposed to the guest. */ 4165 if (vmx_pt_mode_is_host_guest()) 4166 pt_update_intercept_for_msr(vcpu); 4167 } 4168 4169 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, 4170 int pi_vec) 4171 { 4172 #ifdef CONFIG_SMP 4173 if (vcpu->mode == IN_GUEST_MODE) { 4174 /* 4175 * The vector of the virtual has already been set in the PIR. 4176 * Send a notification event to deliver the virtual interrupt 4177 * unless the vCPU is the currently running vCPU, i.e. the 4178 * event is being sent from a fastpath VM-Exit handler, in 4179 * which case the PIR will be synced to the vIRR before 4180 * re-entering the guest. 4181 * 4182 * When the target is not the running vCPU, the following 4183 * possibilities emerge: 4184 * 4185 * Case 1: vCPU stays in non-root mode. Sending a notification 4186 * event posts the interrupt to the vCPU. 4187 * 4188 * Case 2: vCPU exits to root mode and is still runnable. The 4189 * PIR will be synced to the vIRR before re-entering the guest. 4190 * Sending a notification event is ok as the host IRQ handler 4191 * will ignore the spurious event. 4192 * 4193 * Case 3: vCPU exits to root mode and is blocked. vcpu_block() 4194 * has already synced PIR to vIRR and never blocks the vCPU if 4195 * the vIRR is not empty. Therefore, a blocked vCPU here does 4196 * not wait for any requested interrupts in PIR, and sending a 4197 * notification event also results in a benign, spurious event. 4198 */ 4199 4200 if (vcpu != kvm_get_running_vcpu()) 4201 __apic_send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); 4202 return; 4203 } 4204 #endif 4205 /* 4206 * The vCPU isn't in the guest; wake the vCPU in case it is blocking, 4207 * otherwise do nothing as KVM will grab the highest priority pending 4208 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest(). 4209 */ 4210 kvm_vcpu_wake_up(vcpu); 4211 } 4212 4213 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, 4214 int vector) 4215 { 4216 struct vcpu_vmx *vmx = to_vmx(vcpu); 4217 4218 /* 4219 * DO NOT query the vCPU's vmcs12, as vmcs12 is dynamically allocated 4220 * and freed, and must not be accessed outside of vcpu->mutex. The 4221 * vCPU's cached PI NV is valid if and only if posted interrupts 4222 * enabled in its vmcs12, i.e. checking the vector also checks that 4223 * L1 has enabled posted interrupts for L2. 4224 */ 4225 if (is_guest_mode(vcpu) && 4226 vector == vmx->nested.posted_intr_nv) { 4227 /* 4228 * If a posted intr is not recognized by hardware, 4229 * we will accomplish it in the next vmentry. 4230 */ 4231 vmx->nested.pi_pending = true; 4232 kvm_make_request(KVM_REQ_EVENT, vcpu); 4233 4234 /* 4235 * This pairs with the smp_mb_*() after setting vcpu->mode in 4236 * vcpu_enter_guest() to guarantee the vCPU sees the event 4237 * request if triggering a posted interrupt "fails" because 4238 * vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as 4239 * the smb_wmb() in kvm_make_request() only ensures everything 4240 * done before making the request is visible when the request 4241 * is visible, it doesn't ensure ordering between the store to 4242 * vcpu->requests and the load from vcpu->mode. 4243 */ 4244 smp_mb__after_atomic(); 4245 4246 /* the PIR and ON have been set by L1. */ 4247 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR); 4248 return 0; 4249 } 4250 return -1; 4251 } 4252 /* 4253 * Send interrupt to vcpu via posted interrupt way. 4254 * 1. If target vcpu is running(non-root mode), send posted interrupt 4255 * notification to vcpu and hardware will sync PIR to vIRR atomically. 4256 * 2. If target vcpu isn't running(root mode), kick it to pick up the 4257 * interrupt from PIR in next vmentry. 4258 */ 4259 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) 4260 { 4261 struct vcpu_vmx *vmx = to_vmx(vcpu); 4262 int r; 4263 4264 r = vmx_deliver_nested_posted_interrupt(vcpu, vector); 4265 if (!r) 4266 return 0; 4267 4268 /* Note, this is called iff the local APIC is in-kernel. */ 4269 if (!vcpu->arch.apic->apicv_active) 4270 return -1; 4271 4272 if (pi_test_and_set_pir(vector, &vmx->pi_desc)) 4273 return 0; 4274 4275 /* If a previous notification has sent the IPI, nothing to do. */ 4276 if (pi_test_and_set_on(&vmx->pi_desc)) 4277 return 0; 4278 4279 /* 4280 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*() 4281 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is 4282 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a 4283 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE. 4284 */ 4285 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR); 4286 return 0; 4287 } 4288 4289 void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 4290 int trig_mode, int vector) 4291 { 4292 struct kvm_vcpu *vcpu = apic->vcpu; 4293 4294 if (vmx_deliver_posted_interrupt(vcpu, vector)) { 4295 kvm_lapic_set_irr(vector, apic); 4296 kvm_make_request(KVM_REQ_EVENT, vcpu); 4297 kvm_vcpu_kick(vcpu); 4298 } else { 4299 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, 4300 trig_mode, vector); 4301 } 4302 } 4303 4304 /* 4305 * Set up the vmcs's constant host-state fields, i.e., host-state fields that 4306 * will not change in the lifetime of the guest. 4307 * Note that host-state that does change is set elsewhere. E.g., host-state 4308 * that is set differently for each CPU is set in vmx_vcpu_load(), not here. 4309 */ 4310 void vmx_set_constant_host_state(struct vcpu_vmx *vmx) 4311 { 4312 u32 low32, high32; 4313 unsigned long tmpl; 4314 unsigned long cr0, cr3, cr4; 4315 4316 cr0 = read_cr0(); 4317 WARN_ON(cr0 & X86_CR0_TS); 4318 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ 4319 4320 /* 4321 * Save the most likely value for this task's CR3 in the VMCS. 4322 * We can't use __get_current_cr3_fast() because we're not atomic. 4323 */ 4324 cr3 = __read_cr3(); 4325 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ 4326 vmx->loaded_vmcs->host_state.cr3 = cr3; 4327 4328 /* Save the most likely value for this task's CR4 in the VMCS. */ 4329 cr4 = cr4_read_shadow(); 4330 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ 4331 vmx->loaded_vmcs->host_state.cr4 = cr4; 4332 4333 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ 4334 #ifdef CONFIG_X86_64 4335 /* 4336 * Load null selectors, so we can avoid reloading them in 4337 * vmx_prepare_switch_to_host(), in case userspace uses 4338 * the null selectors too (the expected case). 4339 */ 4340 vmcs_write16(HOST_DS_SELECTOR, 0); 4341 vmcs_write16(HOST_ES_SELECTOR, 0); 4342 #else 4343 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4344 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4345 #endif 4346 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4347 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ 4348 4349 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */ 4350 4351 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ 4352 4353 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); 4354 vmcs_write32(HOST_IA32_SYSENTER_CS, low32); 4355 4356 /* 4357 * SYSENTER is used for 32-bit system calls on either 32-bit or 4358 * 64-bit kernels. It is always zero If neither is allowed, otherwise 4359 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may 4360 * have already done so!). 4361 */ 4362 if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32)) 4363 vmcs_writel(HOST_IA32_SYSENTER_ESP, 0); 4364 4365 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); 4366 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ 4367 4368 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { 4369 rdmsr(MSR_IA32_CR_PAT, low32, high32); 4370 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); 4371 } 4372 4373 if (cpu_has_load_ia32_efer()) 4374 vmcs_write64(HOST_IA32_EFER, kvm_host.efer); 4375 } 4376 4377 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) 4378 { 4379 struct kvm_vcpu *vcpu = &vmx->vcpu; 4380 4381 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS & 4382 ~vcpu->arch.cr4_guest_rsvd_bits; 4383 if (!enable_ept) { 4384 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS; 4385 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS; 4386 } 4387 if (is_guest_mode(&vmx->vcpu)) 4388 vcpu->arch.cr4_guest_owned_bits &= 4389 ~get_vmcs12(vcpu)->cr4_guest_host_mask; 4390 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits); 4391 } 4392 4393 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) 4394 { 4395 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; 4396 4397 if (!kvm_vcpu_apicv_active(&vmx->vcpu)) 4398 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; 4399 4400 if (!enable_vnmi) 4401 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; 4402 4403 if (!enable_preemption_timer) 4404 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 4405 4406 return pin_based_exec_ctrl; 4407 } 4408 4409 static u32 vmx_vmentry_ctrl(void) 4410 { 4411 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl; 4412 4413 if (vmx_pt_mode_is_system()) 4414 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP | 4415 VM_ENTRY_LOAD_IA32_RTIT_CTL); 4416 /* 4417 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically. 4418 */ 4419 vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | 4420 VM_ENTRY_LOAD_IA32_EFER | 4421 VM_ENTRY_IA32E_MODE); 4422 4423 if (cpu_has_perf_global_ctrl_bug()) 4424 vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; 4425 4426 return vmentry_ctrl; 4427 } 4428 4429 static u32 vmx_vmexit_ctrl(void) 4430 { 4431 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl; 4432 4433 /* 4434 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for 4435 * nested virtualization and thus allowed to be set in vmcs12. 4436 */ 4437 vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER | 4438 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER); 4439 4440 if (vmx_pt_mode_is_system()) 4441 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP | 4442 VM_EXIT_CLEAR_IA32_RTIT_CTL); 4443 4444 if (cpu_has_perf_global_ctrl_bug()) 4445 vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; 4446 4447 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ 4448 return vmexit_ctrl & 4449 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER); 4450 } 4451 4452 void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) 4453 { 4454 struct vcpu_vmx *vmx = to_vmx(vcpu); 4455 4456 if (is_guest_mode(vcpu)) { 4457 vmx->nested.update_vmcs01_apicv_status = true; 4458 return; 4459 } 4460 4461 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4462 4463 if (kvm_vcpu_apicv_active(vcpu)) { 4464 secondary_exec_controls_setbit(vmx, 4465 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4466 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4467 if (enable_ipiv) 4468 tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT); 4469 } else { 4470 secondary_exec_controls_clearbit(vmx, 4471 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4472 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4473 if (enable_ipiv) 4474 tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT); 4475 } 4476 4477 vmx_update_msr_bitmap_x2apic(vcpu); 4478 } 4479 4480 static u32 vmx_exec_control(struct vcpu_vmx *vmx) 4481 { 4482 u32 exec_control = vmcs_config.cpu_based_exec_ctrl; 4483 4484 /* 4485 * Not used by KVM, but fully supported for nesting, i.e. are allowed in 4486 * vmcs12 and propagated to vmcs02 when set in vmcs12. 4487 */ 4488 exec_control &= ~(CPU_BASED_RDTSC_EXITING | 4489 CPU_BASED_USE_IO_BITMAPS | 4490 CPU_BASED_MONITOR_TRAP_FLAG | 4491 CPU_BASED_PAUSE_EXITING); 4492 4493 /* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */ 4494 exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING | 4495 CPU_BASED_NMI_WINDOW_EXITING); 4496 4497 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) 4498 exec_control &= ~CPU_BASED_MOV_DR_EXITING; 4499 4500 if (!cpu_need_tpr_shadow(&vmx->vcpu)) 4501 exec_control &= ~CPU_BASED_TPR_SHADOW; 4502 4503 #ifdef CONFIG_X86_64 4504 if (exec_control & CPU_BASED_TPR_SHADOW) 4505 exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING | 4506 CPU_BASED_CR8_STORE_EXITING); 4507 else 4508 exec_control |= CPU_BASED_CR8_STORE_EXITING | 4509 CPU_BASED_CR8_LOAD_EXITING; 4510 #endif 4511 /* No need to intercept CR3 access or INVPLG when using EPT. */ 4512 if (enable_ept) 4513 exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | 4514 CPU_BASED_CR3_STORE_EXITING | 4515 CPU_BASED_INVLPG_EXITING); 4516 if (kvm_mwait_in_guest(vmx->vcpu.kvm)) 4517 exec_control &= ~(CPU_BASED_MWAIT_EXITING | 4518 CPU_BASED_MONITOR_EXITING); 4519 if (kvm_hlt_in_guest(vmx->vcpu.kvm)) 4520 exec_control &= ~CPU_BASED_HLT_EXITING; 4521 return exec_control; 4522 } 4523 4524 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx) 4525 { 4526 u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl; 4527 4528 /* 4529 * IPI virtualization relies on APICv. Disable IPI virtualization if 4530 * APICv is inhibited. 4531 */ 4532 if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu)) 4533 exec_control &= ~TERTIARY_EXEC_IPI_VIRT; 4534 4535 return exec_control; 4536 } 4537 4538 /* 4539 * Adjust a single secondary execution control bit to intercept/allow an 4540 * instruction in the guest. This is usually done based on whether or not a 4541 * feature has been exposed to the guest in order to correctly emulate faults. 4542 */ 4543 static inline void 4544 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control, 4545 u32 control, bool enabled, bool exiting) 4546 { 4547 /* 4548 * If the control is for an opt-in feature, clear the control if the 4549 * feature is not exposed to the guest, i.e. not enabled. If the 4550 * control is opt-out, i.e. an exiting control, clear the control if 4551 * the feature _is_ exposed to the guest, i.e. exiting/interception is 4552 * disabled for the associated instruction. Note, the caller is 4553 * responsible presetting exec_control to set all supported bits. 4554 */ 4555 if (enabled == exiting) 4556 *exec_control &= ~control; 4557 4558 /* 4559 * Update the nested MSR settings so that a nested VMM can/can't set 4560 * controls for features that are/aren't exposed to the guest. 4561 */ 4562 if (nested) { 4563 /* 4564 * All features that can be added or removed to VMX MSRs must 4565 * be supported in the first place for nested virtualization. 4566 */ 4567 if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control))) 4568 enabled = false; 4569 4570 if (enabled) 4571 vmx->nested.msrs.secondary_ctls_high |= control; 4572 else 4573 vmx->nested.msrs.secondary_ctls_high &= ~control; 4574 } 4575 } 4576 4577 /* 4578 * Wrapper macro for the common case of adjusting a secondary execution control 4579 * based on a single guest CPUID bit, with a dedicated feature bit. This also 4580 * verifies that the control is actually supported by KVM and hardware. 4581 */ 4582 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \ 4583 ({ \ 4584 struct kvm_vcpu *__vcpu = &(vmx)->vcpu; \ 4585 bool __enabled; \ 4586 \ 4587 if (cpu_has_vmx_##name()) { \ 4588 if (kvm_is_governed_feature(X86_FEATURE_##feat_name)) \ 4589 __enabled = guest_can_use(__vcpu, X86_FEATURE_##feat_name); \ 4590 else \ 4591 __enabled = guest_cpuid_has(__vcpu, X86_FEATURE_##feat_name); \ 4592 vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\ 4593 __enabled, exiting); \ 4594 } \ 4595 }) 4596 4597 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */ 4598 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \ 4599 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false) 4600 4601 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \ 4602 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true) 4603 4604 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx) 4605 { 4606 struct kvm_vcpu *vcpu = &vmx->vcpu; 4607 4608 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; 4609 4610 if (vmx_pt_mode_is_system()) 4611 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); 4612 if (!cpu_need_virtualize_apic_accesses(vcpu)) 4613 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 4614 if (vmx->vpid == 0) 4615 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; 4616 if (!enable_ept) { 4617 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; 4618 exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE; 4619 enable_unrestricted_guest = 0; 4620 } 4621 if (!enable_unrestricted_guest) 4622 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; 4623 if (kvm_pause_in_guest(vmx->vcpu.kvm)) 4624 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; 4625 if (!kvm_vcpu_apicv_active(vcpu)) 4626 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | 4627 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4628 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 4629 4630 /* 4631 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's 4632 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2. 4633 */ 4634 exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC; 4635 4636 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, 4637 * in vmx_set_cr4. */ 4638 exec_control &= ~SECONDARY_EXEC_DESC; 4639 4640 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD 4641 (handle_vmptrld). 4642 We can NOT enable shadow_vmcs here because we don't have yet 4643 a current VMCS12 4644 */ 4645 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; 4646 4647 /* 4648 * PML is enabled/disabled when dirty logging of memsmlots changes, but 4649 * it needs to be set here when dirty logging is already active, e.g. 4650 * if this vCPU was created after dirty logging was enabled. 4651 */ 4652 if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging)) 4653 exec_control &= ~SECONDARY_EXEC_ENABLE_PML; 4654 4655 vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES); 4656 4657 /* 4658 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either 4659 * feature is exposed to the guest. This creates a virtualization hole 4660 * if both are supported in hardware but only one is exposed to the 4661 * guest, but letting the guest execute RDTSCP or RDPID when either one 4662 * is advertised is preferable to emulating the advertised instruction 4663 * in KVM on #UD, and obviously better than incorrectly injecting #UD. 4664 */ 4665 if (cpu_has_vmx_rdtscp()) { 4666 bool rdpid_or_rdtscp_enabled = 4667 guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) || 4668 guest_cpuid_has(vcpu, X86_FEATURE_RDPID); 4669 4670 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4671 SECONDARY_EXEC_ENABLE_RDTSCP, 4672 rdpid_or_rdtscp_enabled, false); 4673 } 4674 4675 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID); 4676 4677 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND); 4678 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED); 4679 4680 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG, 4681 ENABLE_USR_WAIT_PAUSE, false); 4682 4683 if (!vcpu->kvm->arch.bus_lock_detection_enabled) 4684 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION; 4685 4686 if (!kvm_notify_vmexit_enabled(vcpu->kvm)) 4687 exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING; 4688 4689 return exec_control; 4690 } 4691 4692 static inline int vmx_get_pid_table_order(struct kvm *kvm) 4693 { 4694 return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table)); 4695 } 4696 4697 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm) 4698 { 4699 struct page *pages; 4700 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 4701 4702 if (!irqchip_in_kernel(kvm) || !enable_ipiv) 4703 return 0; 4704 4705 if (kvm_vmx->pid_table) 4706 return 0; 4707 4708 pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO, 4709 vmx_get_pid_table_order(kvm)); 4710 if (!pages) 4711 return -ENOMEM; 4712 4713 kvm_vmx->pid_table = (void *)page_address(pages); 4714 return 0; 4715 } 4716 4717 int vmx_vcpu_precreate(struct kvm *kvm) 4718 { 4719 return vmx_alloc_ipiv_pid_table(kvm); 4720 } 4721 4722 #define VMX_XSS_EXIT_BITMAP 0 4723 4724 static void init_vmcs(struct vcpu_vmx *vmx) 4725 { 4726 struct kvm *kvm = vmx->vcpu.kvm; 4727 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 4728 4729 if (nested) 4730 nested_vmx_set_vmcs_shadowing_bitmap(); 4731 4732 if (cpu_has_vmx_msr_bitmap()) 4733 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); 4734 4735 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */ 4736 4737 /* Control */ 4738 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4739 4740 exec_controls_set(vmx, vmx_exec_control(vmx)); 4741 4742 if (cpu_has_secondary_exec_ctrls()) { 4743 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx)); 4744 if (vmx->ve_info) 4745 vmcs_write64(VE_INFORMATION_ADDRESS, 4746 __pa(vmx->ve_info)); 4747 } 4748 4749 if (cpu_has_tertiary_exec_ctrls()) 4750 tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx)); 4751 4752 if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) { 4753 vmcs_write64(EOI_EXIT_BITMAP0, 0); 4754 vmcs_write64(EOI_EXIT_BITMAP1, 0); 4755 vmcs_write64(EOI_EXIT_BITMAP2, 0); 4756 vmcs_write64(EOI_EXIT_BITMAP3, 0); 4757 4758 vmcs_write16(GUEST_INTR_STATUS, 0); 4759 4760 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); 4761 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); 4762 } 4763 4764 if (vmx_can_use_ipiv(&vmx->vcpu)) { 4765 vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table)); 4766 vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1); 4767 } 4768 4769 if (!kvm_pause_in_guest(kvm)) { 4770 vmcs_write32(PLE_GAP, ple_gap); 4771 vmx->ple_window = ple_window; 4772 vmx->ple_window_dirty = true; 4773 } 4774 4775 if (kvm_notify_vmexit_enabled(kvm)) 4776 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window); 4777 4778 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); 4779 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); 4780 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ 4781 4782 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ 4783 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ 4784 vmx_set_constant_host_state(vmx); 4785 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ 4786 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ 4787 4788 if (cpu_has_vmx_vmfunc()) 4789 vmcs_write64(VM_FUNCTION_CONTROL, 0); 4790 4791 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); 4792 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); 4793 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); 4794 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); 4795 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); 4796 4797 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 4798 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); 4799 4800 vm_exit_controls_set(vmx, vmx_vmexit_ctrl()); 4801 4802 /* 22.2.1, 20.8.1 */ 4803 vm_entry_controls_set(vmx, vmx_vmentry_ctrl()); 4804 4805 vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits(); 4806 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits); 4807 4808 set_cr4_guest_host_mask(vmx); 4809 4810 if (vmx->vpid != 0) 4811 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); 4812 4813 if (cpu_has_vmx_xsaves()) 4814 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); 4815 4816 if (enable_pml) { 4817 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); 4818 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 4819 } 4820 4821 vmx_write_encls_bitmap(&vmx->vcpu, NULL); 4822 4823 if (vmx_pt_mode_is_host_guest()) { 4824 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); 4825 /* Bit[6~0] are forced to 1, writes are ignored. */ 4826 vmx->pt_desc.guest.output_mask = 0x7F; 4827 vmcs_write64(GUEST_IA32_RTIT_CTL, 0); 4828 } 4829 4830 vmcs_write32(GUEST_SYSENTER_CS, 0); 4831 vmcs_writel(GUEST_SYSENTER_ESP, 0); 4832 vmcs_writel(GUEST_SYSENTER_EIP, 0); 4833 vmcs_write64(GUEST_IA32_DEBUGCTL, 0); 4834 4835 if (cpu_has_vmx_tpr_shadow()) { 4836 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); 4837 if (cpu_need_tpr_shadow(&vmx->vcpu)) 4838 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 4839 __pa(vmx->vcpu.arch.apic->regs)); 4840 vmcs_write32(TPR_THRESHOLD, 0); 4841 } 4842 4843 vmx_setup_uret_msrs(vmx); 4844 } 4845 4846 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu) 4847 { 4848 struct vcpu_vmx *vmx = to_vmx(vcpu); 4849 4850 init_vmcs(vmx); 4851 4852 if (nested) 4853 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs)); 4854 4855 vcpu_setup_sgx_lepubkeyhash(vcpu); 4856 4857 vmx->nested.posted_intr_nv = -1; 4858 vmx->nested.vmxon_ptr = INVALID_GPA; 4859 vmx->nested.current_vmptr = INVALID_GPA; 4860 4861 #ifdef CONFIG_KVM_HYPERV 4862 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID; 4863 #endif 4864 4865 vcpu->arch.microcode_version = 0x100000000ULL; 4866 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED; 4867 4868 /* 4869 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR 4870 * or POSTED_INTR_WAKEUP_VECTOR. 4871 */ 4872 vmx->pi_desc.nv = POSTED_INTR_VECTOR; 4873 __pi_set_sn(&vmx->pi_desc); 4874 } 4875 4876 void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 4877 { 4878 struct vcpu_vmx *vmx = to_vmx(vcpu); 4879 4880 if (!init_event) 4881 __vmx_vcpu_reset(vcpu); 4882 4883 vmx->rmode.vm86_active = 0; 4884 vmx->spec_ctrl = 0; 4885 4886 vmx->msr_ia32_umwait_control = 0; 4887 4888 vmx->hv_deadline_tsc = -1; 4889 kvm_set_cr8(vcpu, 0); 4890 4891 seg_setup(VCPU_SREG_CS); 4892 vmcs_write16(GUEST_CS_SELECTOR, 0xf000); 4893 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); 4894 4895 seg_setup(VCPU_SREG_DS); 4896 seg_setup(VCPU_SREG_ES); 4897 seg_setup(VCPU_SREG_FS); 4898 seg_setup(VCPU_SREG_GS); 4899 seg_setup(VCPU_SREG_SS); 4900 4901 vmcs_write16(GUEST_TR_SELECTOR, 0); 4902 vmcs_writel(GUEST_TR_BASE, 0); 4903 vmcs_write32(GUEST_TR_LIMIT, 0xffff); 4904 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 4905 4906 vmcs_write16(GUEST_LDTR_SELECTOR, 0); 4907 vmcs_writel(GUEST_LDTR_BASE, 0); 4908 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); 4909 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); 4910 4911 vmcs_writel(GUEST_GDTR_BASE, 0); 4912 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); 4913 4914 vmcs_writel(GUEST_IDTR_BASE, 0); 4915 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); 4916 4917 vmx_segment_cache_clear(vmx); 4918 kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS); 4919 4920 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 4921 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); 4922 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); 4923 if (kvm_mpx_supported()) 4924 vmcs_write64(GUEST_BNDCFGS, 0); 4925 4926 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ 4927 4928 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 4929 4930 vpid_sync_context(vmx->vpid); 4931 4932 vmx_update_fb_clear_dis(vcpu, vmx); 4933 } 4934 4935 void vmx_enable_irq_window(struct kvm_vcpu *vcpu) 4936 { 4937 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 4938 } 4939 4940 void vmx_enable_nmi_window(struct kvm_vcpu *vcpu) 4941 { 4942 if (!enable_vnmi || 4943 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { 4944 vmx_enable_irq_window(vcpu); 4945 return; 4946 } 4947 4948 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 4949 } 4950 4951 void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) 4952 { 4953 struct vcpu_vmx *vmx = to_vmx(vcpu); 4954 uint32_t intr; 4955 int irq = vcpu->arch.interrupt.nr; 4956 4957 trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected); 4958 4959 ++vcpu->stat.irq_injections; 4960 if (vmx->rmode.vm86_active) { 4961 int inc_eip = 0; 4962 if (vcpu->arch.interrupt.soft) 4963 inc_eip = vcpu->arch.event_exit_inst_len; 4964 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip); 4965 return; 4966 } 4967 intr = irq | INTR_INFO_VALID_MASK; 4968 if (vcpu->arch.interrupt.soft) { 4969 intr |= INTR_TYPE_SOFT_INTR; 4970 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 4971 vmx->vcpu.arch.event_exit_inst_len); 4972 } else 4973 intr |= INTR_TYPE_EXT_INTR; 4974 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); 4975 4976 vmx_clear_hlt(vcpu); 4977 } 4978 4979 void vmx_inject_nmi(struct kvm_vcpu *vcpu) 4980 { 4981 struct vcpu_vmx *vmx = to_vmx(vcpu); 4982 4983 if (!enable_vnmi) { 4984 /* 4985 * Tracking the NMI-blocked state in software is built upon 4986 * finding the next open IRQ window. This, in turn, depends on 4987 * well-behaving guests: They have to keep IRQs disabled at 4988 * least as long as the NMI handler runs. Otherwise we may 4989 * cause NMI nesting, maybe breaking the guest. But as this is 4990 * highly unlikely, we can live with the residual risk. 4991 */ 4992 vmx->loaded_vmcs->soft_vnmi_blocked = 1; 4993 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4994 } 4995 4996 ++vcpu->stat.nmi_injections; 4997 vmx->loaded_vmcs->nmi_known_unmasked = false; 4998 4999 if (vmx->rmode.vm86_active) { 5000 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0); 5001 return; 5002 } 5003 5004 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 5005 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); 5006 5007 vmx_clear_hlt(vcpu); 5008 } 5009 5010 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) 5011 { 5012 struct vcpu_vmx *vmx = to_vmx(vcpu); 5013 bool masked; 5014 5015 if (!enable_vnmi) 5016 return vmx->loaded_vmcs->soft_vnmi_blocked; 5017 if (vmx->loaded_vmcs->nmi_known_unmasked) 5018 return false; 5019 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; 5020 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 5021 return masked; 5022 } 5023 5024 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 5025 { 5026 struct vcpu_vmx *vmx = to_vmx(vcpu); 5027 5028 if (!enable_vnmi) { 5029 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { 5030 vmx->loaded_vmcs->soft_vnmi_blocked = masked; 5031 vmx->loaded_vmcs->vnmi_blocked_time = 0; 5032 } 5033 } else { 5034 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 5035 if (masked) 5036 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5037 GUEST_INTR_STATE_NMI); 5038 else 5039 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, 5040 GUEST_INTR_STATE_NMI); 5041 } 5042 } 5043 5044 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu) 5045 { 5046 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 5047 return false; 5048 5049 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) 5050 return true; 5051 5052 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5053 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI | 5054 GUEST_INTR_STATE_NMI)); 5055 } 5056 5057 int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 5058 { 5059 if (to_vmx(vcpu)->nested.nested_run_pending) 5060 return -EBUSY; 5061 5062 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 5063 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 5064 return -EBUSY; 5065 5066 return !vmx_nmi_blocked(vcpu); 5067 } 5068 5069 bool __vmx_interrupt_blocked(struct kvm_vcpu *vcpu) 5070 { 5071 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) || 5072 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5073 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); 5074 } 5075 5076 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu) 5077 { 5078 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 5079 return false; 5080 5081 return __vmx_interrupt_blocked(vcpu); 5082 } 5083 5084 int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 5085 { 5086 if (to_vmx(vcpu)->nested.nested_run_pending) 5087 return -EBUSY; 5088 5089 /* 5090 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 5091 * e.g. if the IRQ arrived asynchronously after checking nested events. 5092 */ 5093 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 5094 return -EBUSY; 5095 5096 return !vmx_interrupt_blocked(vcpu); 5097 } 5098 5099 int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) 5100 { 5101 void __user *ret; 5102 5103 if (enable_unrestricted_guest) 5104 return 0; 5105 5106 mutex_lock(&kvm->slots_lock); 5107 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, 5108 PAGE_SIZE * 3); 5109 mutex_unlock(&kvm->slots_lock); 5110 5111 if (IS_ERR(ret)) 5112 return PTR_ERR(ret); 5113 5114 to_kvm_vmx(kvm)->tss_addr = addr; 5115 5116 return init_rmode_tss(kvm, ret); 5117 } 5118 5119 int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 5120 { 5121 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; 5122 return 0; 5123 } 5124 5125 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) 5126 { 5127 switch (vec) { 5128 case BP_VECTOR: 5129 /* 5130 * Update instruction length as we may reinject the exception 5131 * from user space while in guest debugging mode. 5132 */ 5133 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = 5134 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 5135 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 5136 return false; 5137 fallthrough; 5138 case DB_VECTOR: 5139 return !(vcpu->guest_debug & 5140 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)); 5141 case DE_VECTOR: 5142 case OF_VECTOR: 5143 case BR_VECTOR: 5144 case UD_VECTOR: 5145 case DF_VECTOR: 5146 case SS_VECTOR: 5147 case GP_VECTOR: 5148 case MF_VECTOR: 5149 return true; 5150 } 5151 return false; 5152 } 5153 5154 static int handle_rmode_exception(struct kvm_vcpu *vcpu, 5155 int vec, u32 err_code) 5156 { 5157 /* 5158 * Instruction with address size override prefix opcode 0x67 5159 * Cause the #SS fault with 0 error code in VM86 mode. 5160 */ 5161 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { 5162 if (kvm_emulate_instruction(vcpu, 0)) { 5163 if (vcpu->arch.halt_request) { 5164 vcpu->arch.halt_request = 0; 5165 return kvm_emulate_halt_noskip(vcpu); 5166 } 5167 return 1; 5168 } 5169 return 0; 5170 } 5171 5172 /* 5173 * Forward all other exceptions that are valid in real mode. 5174 * FIXME: Breaks guest debugging in real mode, needs to be fixed with 5175 * the required debugging infrastructure rework. 5176 */ 5177 kvm_queue_exception(vcpu, vec); 5178 return 1; 5179 } 5180 5181 static int handle_machine_check(struct kvm_vcpu *vcpu) 5182 { 5183 /* handled by vmx_vcpu_run() */ 5184 return 1; 5185 } 5186 5187 /* 5188 * If the host has split lock detection disabled, then #AC is 5189 * unconditionally injected into the guest, which is the pre split lock 5190 * detection behaviour. 5191 * 5192 * If the host has split lock detection enabled then #AC is 5193 * only injected into the guest when: 5194 * - Guest CPL == 3 (user mode) 5195 * - Guest has #AC detection enabled in CR0 5196 * - Guest EFLAGS has AC bit set 5197 */ 5198 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu) 5199 { 5200 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 5201 return true; 5202 5203 return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) && 5204 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC); 5205 } 5206 5207 static int handle_exception_nmi(struct kvm_vcpu *vcpu) 5208 { 5209 struct vcpu_vmx *vmx = to_vmx(vcpu); 5210 struct kvm_run *kvm_run = vcpu->run; 5211 u32 intr_info, ex_no, error_code; 5212 unsigned long cr2, dr6; 5213 u32 vect_info; 5214 5215 vect_info = vmx->idt_vectoring_info; 5216 intr_info = vmx_get_intr_info(vcpu); 5217 5218 /* 5219 * Machine checks are handled by handle_exception_irqoff(), or by 5220 * vmx_vcpu_run() if a #MC occurs on VM-Entry. NMIs are handled by 5221 * vmx_vcpu_enter_exit(). 5222 */ 5223 if (is_machine_check(intr_info) || is_nmi(intr_info)) 5224 return 1; 5225 5226 /* 5227 * Queue the exception here instead of in handle_nm_fault_irqoff(). 5228 * This ensures the nested_vmx check is not skipped so vmexit can 5229 * be reflected to L1 (when it intercepts #NM) before reaching this 5230 * point. 5231 */ 5232 if (is_nm_fault(intr_info)) { 5233 kvm_queue_exception(vcpu, NM_VECTOR); 5234 return 1; 5235 } 5236 5237 if (is_invalid_opcode(intr_info)) 5238 return handle_ud(vcpu); 5239 5240 if (WARN_ON_ONCE(is_ve_fault(intr_info))) { 5241 struct vmx_ve_information *ve_info = vmx->ve_info; 5242 5243 WARN_ONCE(ve_info->exit_reason != EXIT_REASON_EPT_VIOLATION, 5244 "Unexpected #VE on VM-Exit reason 0x%x", ve_info->exit_reason); 5245 dump_vmcs(vcpu); 5246 kvm_mmu_print_sptes(vcpu, ve_info->guest_physical_address, "#VE"); 5247 return 1; 5248 } 5249 5250 error_code = 0; 5251 if (intr_info & INTR_INFO_DELIVER_CODE_MASK) 5252 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 5253 5254 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { 5255 WARN_ON_ONCE(!enable_vmware_backdoor); 5256 5257 /* 5258 * VMware backdoor emulation on #GP interception only handles 5259 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero 5260 * error code on #GP. 5261 */ 5262 if (error_code) { 5263 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 5264 return 1; 5265 } 5266 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); 5267 } 5268 5269 /* 5270 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing 5271 * MMIO, it is better to report an internal error. 5272 * See the comments in vmx_handle_exit. 5273 */ 5274 if ((vect_info & VECTORING_INFO_VALID_MASK) && 5275 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { 5276 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5277 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; 5278 vcpu->run->internal.ndata = 4; 5279 vcpu->run->internal.data[0] = vect_info; 5280 vcpu->run->internal.data[1] = intr_info; 5281 vcpu->run->internal.data[2] = error_code; 5282 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu; 5283 return 0; 5284 } 5285 5286 if (is_page_fault(intr_info)) { 5287 cr2 = vmx_get_exit_qual(vcpu); 5288 if (enable_ept && !vcpu->arch.apf.host_apf_flags) { 5289 /* 5290 * EPT will cause page fault only if we need to 5291 * detect illegal GPAs. 5292 */ 5293 WARN_ON_ONCE(!allow_smaller_maxphyaddr); 5294 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code); 5295 return 1; 5296 } else 5297 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); 5298 } 5299 5300 ex_no = intr_info & INTR_INFO_VECTOR_MASK; 5301 5302 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) 5303 return handle_rmode_exception(vcpu, ex_no, error_code); 5304 5305 switch (ex_no) { 5306 case DB_VECTOR: 5307 dr6 = vmx_get_exit_qual(vcpu); 5308 if (!(vcpu->guest_debug & 5309 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { 5310 /* 5311 * If the #DB was due to ICEBP, a.k.a. INT1, skip the 5312 * instruction. ICEBP generates a trap-like #DB, but 5313 * despite its interception control being tied to #DB, 5314 * is an instruction intercept, i.e. the VM-Exit occurs 5315 * on the ICEBP itself. Use the inner "skip" helper to 5316 * avoid single-step #DB and MTF updates, as ICEBP is 5317 * higher priority. Note, skipping ICEBP still clears 5318 * STI and MOVSS blocking. 5319 * 5320 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS 5321 * if single-step is enabled in RFLAGS and STI or MOVSS 5322 * blocking is active, as the CPU doesn't set the bit 5323 * on VM-Exit due to #DB interception. VM-Entry has a 5324 * consistency check that a single-step #DB is pending 5325 * in this scenario as the previous instruction cannot 5326 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV 5327 * don't modify RFLAGS), therefore the one instruction 5328 * delay when activating single-step breakpoints must 5329 * have already expired. Note, the CPU sets/clears BS 5330 * as appropriate for all other VM-Exits types. 5331 */ 5332 if (is_icebp(intr_info)) 5333 WARN_ON(!skip_emulated_instruction(vcpu)); 5334 else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) && 5335 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5336 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS))) 5337 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 5338 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS); 5339 5340 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 5341 return 1; 5342 } 5343 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 5344 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); 5345 fallthrough; 5346 case BP_VECTOR: 5347 /* 5348 * Update instruction length as we may reinject #BP from 5349 * user space while in guest debugging mode. Reading it for 5350 * #DB as well causes no harm, it is not used in that case. 5351 */ 5352 vmx->vcpu.arch.event_exit_inst_len = 5353 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 5354 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5355 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5356 kvm_run->debug.arch.exception = ex_no; 5357 break; 5358 case AC_VECTOR: 5359 if (vmx_guest_inject_ac(vcpu)) { 5360 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); 5361 return 1; 5362 } 5363 5364 /* 5365 * Handle split lock. Depending on detection mode this will 5366 * either warn and disable split lock detection for this 5367 * task or force SIGBUS on it. 5368 */ 5369 if (handle_guest_split_lock(kvm_rip_read(vcpu))) 5370 return 1; 5371 fallthrough; 5372 default: 5373 kvm_run->exit_reason = KVM_EXIT_EXCEPTION; 5374 kvm_run->ex.exception = ex_no; 5375 kvm_run->ex.error_code = error_code; 5376 break; 5377 } 5378 return 0; 5379 } 5380 5381 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu) 5382 { 5383 ++vcpu->stat.irq_exits; 5384 return 1; 5385 } 5386 5387 static int handle_triple_fault(struct kvm_vcpu *vcpu) 5388 { 5389 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 5390 vcpu->mmio_needed = 0; 5391 return 0; 5392 } 5393 5394 static int handle_io(struct kvm_vcpu *vcpu) 5395 { 5396 unsigned long exit_qualification; 5397 int size, in, string; 5398 unsigned port; 5399 5400 exit_qualification = vmx_get_exit_qual(vcpu); 5401 string = (exit_qualification & 16) != 0; 5402 5403 ++vcpu->stat.io_exits; 5404 5405 if (string) 5406 return kvm_emulate_instruction(vcpu, 0); 5407 5408 port = exit_qualification >> 16; 5409 size = (exit_qualification & 7) + 1; 5410 in = (exit_qualification & 8) != 0; 5411 5412 return kvm_fast_pio(vcpu, size, port, in); 5413 } 5414 5415 void vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 5416 { 5417 /* 5418 * Patch in the VMCALL instruction: 5419 */ 5420 hypercall[0] = 0x0f; 5421 hypercall[1] = 0x01; 5422 hypercall[2] = 0xc1; 5423 } 5424 5425 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ 5426 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) 5427 { 5428 if (is_guest_mode(vcpu)) { 5429 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5430 unsigned long orig_val = val; 5431 5432 /* 5433 * We get here when L2 changed cr0 in a way that did not change 5434 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), 5435 * but did change L0 shadowed bits. So we first calculate the 5436 * effective cr0 value that L1 would like to write into the 5437 * hardware. It consists of the L2-owned bits from the new 5438 * value combined with the L1-owned bits from L1's guest_cr0. 5439 */ 5440 val = (val & ~vmcs12->cr0_guest_host_mask) | 5441 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); 5442 5443 if (kvm_set_cr0(vcpu, val)) 5444 return 1; 5445 vmcs_writel(CR0_READ_SHADOW, orig_val); 5446 return 0; 5447 } else { 5448 return kvm_set_cr0(vcpu, val); 5449 } 5450 } 5451 5452 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) 5453 { 5454 if (is_guest_mode(vcpu)) { 5455 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5456 unsigned long orig_val = val; 5457 5458 /* analogously to handle_set_cr0 */ 5459 val = (val & ~vmcs12->cr4_guest_host_mask) | 5460 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); 5461 if (kvm_set_cr4(vcpu, val)) 5462 return 1; 5463 vmcs_writel(CR4_READ_SHADOW, orig_val); 5464 return 0; 5465 } else 5466 return kvm_set_cr4(vcpu, val); 5467 } 5468 5469 static int handle_desc(struct kvm_vcpu *vcpu) 5470 { 5471 /* 5472 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this 5473 * and other code needs to be updated if UMIP can be guest owned. 5474 */ 5475 BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP); 5476 5477 WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP)); 5478 return kvm_emulate_instruction(vcpu, 0); 5479 } 5480 5481 static int handle_cr(struct kvm_vcpu *vcpu) 5482 { 5483 unsigned long exit_qualification, val; 5484 int cr; 5485 int reg; 5486 int err; 5487 int ret; 5488 5489 exit_qualification = vmx_get_exit_qual(vcpu); 5490 cr = exit_qualification & 15; 5491 reg = (exit_qualification >> 8) & 15; 5492 switch ((exit_qualification >> 4) & 3) { 5493 case 0: /* mov to cr */ 5494 val = kvm_register_read(vcpu, reg); 5495 trace_kvm_cr_write(cr, val); 5496 switch (cr) { 5497 case 0: 5498 err = handle_set_cr0(vcpu, val); 5499 return kvm_complete_insn_gp(vcpu, err); 5500 case 3: 5501 WARN_ON_ONCE(enable_unrestricted_guest); 5502 5503 err = kvm_set_cr3(vcpu, val); 5504 return kvm_complete_insn_gp(vcpu, err); 5505 case 4: 5506 err = handle_set_cr4(vcpu, val); 5507 return kvm_complete_insn_gp(vcpu, err); 5508 case 8: { 5509 u8 cr8_prev = kvm_get_cr8(vcpu); 5510 u8 cr8 = (u8)val; 5511 err = kvm_set_cr8(vcpu, cr8); 5512 ret = kvm_complete_insn_gp(vcpu, err); 5513 if (lapic_in_kernel(vcpu)) 5514 return ret; 5515 if (cr8_prev <= cr8) 5516 return ret; 5517 /* 5518 * TODO: we might be squashing a 5519 * KVM_GUESTDBG_SINGLESTEP-triggered 5520 * KVM_EXIT_DEBUG here. 5521 */ 5522 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 5523 return 0; 5524 } 5525 } 5526 break; 5527 case 2: /* clts */ 5528 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS"); 5529 return -EIO; 5530 case 1: /*mov from cr*/ 5531 switch (cr) { 5532 case 3: 5533 WARN_ON_ONCE(enable_unrestricted_guest); 5534 5535 val = kvm_read_cr3(vcpu); 5536 kvm_register_write(vcpu, reg, val); 5537 trace_kvm_cr_read(cr, val); 5538 return kvm_skip_emulated_instruction(vcpu); 5539 case 8: 5540 val = kvm_get_cr8(vcpu); 5541 kvm_register_write(vcpu, reg, val); 5542 trace_kvm_cr_read(cr, val); 5543 return kvm_skip_emulated_instruction(vcpu); 5544 } 5545 break; 5546 case 3: /* lmsw */ 5547 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; 5548 trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val)); 5549 kvm_lmsw(vcpu, val); 5550 5551 return kvm_skip_emulated_instruction(vcpu); 5552 default: 5553 break; 5554 } 5555 vcpu->run->exit_reason = 0; 5556 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", 5557 (int)(exit_qualification >> 4) & 3, cr); 5558 return 0; 5559 } 5560 5561 static int handle_dr(struct kvm_vcpu *vcpu) 5562 { 5563 unsigned long exit_qualification; 5564 int dr, dr7, reg; 5565 int err = 1; 5566 5567 exit_qualification = vmx_get_exit_qual(vcpu); 5568 dr = exit_qualification & DEBUG_REG_ACCESS_NUM; 5569 5570 /* First, if DR does not exist, trigger UD */ 5571 if (!kvm_require_dr(vcpu, dr)) 5572 return 1; 5573 5574 if (vmx_get_cpl(vcpu) > 0) 5575 goto out; 5576 5577 dr7 = vmcs_readl(GUEST_DR7); 5578 if (dr7 & DR7_GD) { 5579 /* 5580 * As the vm-exit takes precedence over the debug trap, we 5581 * need to emulate the latter, either for the host or the 5582 * guest debugging itself. 5583 */ 5584 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 5585 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW; 5586 vcpu->run->debug.arch.dr7 = dr7; 5587 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5588 vcpu->run->debug.arch.exception = DB_VECTOR; 5589 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 5590 return 0; 5591 } else { 5592 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD); 5593 return 1; 5594 } 5595 } 5596 5597 if (vcpu->guest_debug == 0) { 5598 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5599 5600 /* 5601 * No more DR vmexits; force a reload of the debug registers 5602 * and reenter on this instruction. The next vmexit will 5603 * retrieve the full state of the debug registers. 5604 */ 5605 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 5606 return 1; 5607 } 5608 5609 reg = DEBUG_REG_ACCESS_REG(exit_qualification); 5610 if (exit_qualification & TYPE_MOV_FROM_DR) { 5611 kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr)); 5612 err = 0; 5613 } else { 5614 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); 5615 } 5616 5617 out: 5618 return kvm_complete_insn_gp(vcpu, err); 5619 } 5620 5621 void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 5622 { 5623 get_debugreg(vcpu->arch.db[0], 0); 5624 get_debugreg(vcpu->arch.db[1], 1); 5625 get_debugreg(vcpu->arch.db[2], 2); 5626 get_debugreg(vcpu->arch.db[3], 3); 5627 get_debugreg(vcpu->arch.dr6, 6); 5628 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); 5629 5630 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 5631 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5632 5633 /* 5634 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees 5635 * a stale dr6 from the guest. 5636 */ 5637 set_debugreg(DR6_RESERVED, 6); 5638 } 5639 5640 void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) 5641 { 5642 vmcs_writel(GUEST_DR7, val); 5643 } 5644 5645 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) 5646 { 5647 kvm_apic_update_ppr(vcpu); 5648 return 1; 5649 } 5650 5651 static int handle_interrupt_window(struct kvm_vcpu *vcpu) 5652 { 5653 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 5654 5655 kvm_make_request(KVM_REQ_EVENT, vcpu); 5656 5657 ++vcpu->stat.irq_window_exits; 5658 return 1; 5659 } 5660 5661 static int handle_invlpg(struct kvm_vcpu *vcpu) 5662 { 5663 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5664 5665 kvm_mmu_invlpg(vcpu, exit_qualification); 5666 return kvm_skip_emulated_instruction(vcpu); 5667 } 5668 5669 static int handle_apic_access(struct kvm_vcpu *vcpu) 5670 { 5671 if (likely(fasteoi)) { 5672 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5673 int access_type, offset; 5674 5675 access_type = exit_qualification & APIC_ACCESS_TYPE; 5676 offset = exit_qualification & APIC_ACCESS_OFFSET; 5677 /* 5678 * Sane guest uses MOV to write EOI, with written value 5679 * not cared. So make a short-circuit here by avoiding 5680 * heavy instruction emulation. 5681 */ 5682 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && 5683 (offset == APIC_EOI)) { 5684 kvm_lapic_set_eoi(vcpu); 5685 return kvm_skip_emulated_instruction(vcpu); 5686 } 5687 } 5688 return kvm_emulate_instruction(vcpu, 0); 5689 } 5690 5691 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) 5692 { 5693 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5694 int vector = exit_qualification & 0xff; 5695 5696 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ 5697 kvm_apic_set_eoi_accelerated(vcpu, vector); 5698 return 1; 5699 } 5700 5701 static int handle_apic_write(struct kvm_vcpu *vcpu) 5702 { 5703 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5704 5705 /* 5706 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and 5707 * hardware has done any necessary aliasing, offset adjustments, etc... 5708 * for the access. I.e. the correct value has already been written to 5709 * the vAPIC page for the correct 16-byte chunk. KVM needs only to 5710 * retrieve the register value and emulate the access. 5711 */ 5712 u32 offset = exit_qualification & 0xff0; 5713 5714 kvm_apic_write_nodecode(vcpu, offset); 5715 return 1; 5716 } 5717 5718 static int handle_task_switch(struct kvm_vcpu *vcpu) 5719 { 5720 struct vcpu_vmx *vmx = to_vmx(vcpu); 5721 unsigned long exit_qualification; 5722 bool has_error_code = false; 5723 u32 error_code = 0; 5724 u16 tss_selector; 5725 int reason, type, idt_v, idt_index; 5726 5727 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); 5728 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); 5729 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); 5730 5731 exit_qualification = vmx_get_exit_qual(vcpu); 5732 5733 reason = (u32)exit_qualification >> 30; 5734 if (reason == TASK_SWITCH_GATE && idt_v) { 5735 switch (type) { 5736 case INTR_TYPE_NMI_INTR: 5737 vcpu->arch.nmi_injected = false; 5738 vmx_set_nmi_mask(vcpu, true); 5739 break; 5740 case INTR_TYPE_EXT_INTR: 5741 case INTR_TYPE_SOFT_INTR: 5742 kvm_clear_interrupt_queue(vcpu); 5743 break; 5744 case INTR_TYPE_HARD_EXCEPTION: 5745 if (vmx->idt_vectoring_info & 5746 VECTORING_INFO_DELIVER_CODE_MASK) { 5747 has_error_code = true; 5748 error_code = 5749 vmcs_read32(IDT_VECTORING_ERROR_CODE); 5750 } 5751 fallthrough; 5752 case INTR_TYPE_SOFT_EXCEPTION: 5753 kvm_clear_exception_queue(vcpu); 5754 break; 5755 default: 5756 break; 5757 } 5758 } 5759 tss_selector = exit_qualification; 5760 5761 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && 5762 type != INTR_TYPE_EXT_INTR && 5763 type != INTR_TYPE_NMI_INTR)) 5764 WARN_ON(!skip_emulated_instruction(vcpu)); 5765 5766 /* 5767 * TODO: What about debug traps on tss switch? 5768 * Are we supposed to inject them and update dr6? 5769 */ 5770 return kvm_task_switch(vcpu, tss_selector, 5771 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, 5772 reason, has_error_code, error_code); 5773 } 5774 5775 static int handle_ept_violation(struct kvm_vcpu *vcpu) 5776 { 5777 unsigned long exit_qualification; 5778 gpa_t gpa; 5779 u64 error_code; 5780 5781 exit_qualification = vmx_get_exit_qual(vcpu); 5782 5783 /* 5784 * EPT violation happened while executing iret from NMI, 5785 * "blocked by NMI" bit has to be set before next VM entry. 5786 * There are errata that may cause this bit to not be set: 5787 * AAK134, BY25. 5788 */ 5789 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5790 enable_vnmi && 5791 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5792 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); 5793 5794 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5795 trace_kvm_page_fault(vcpu, gpa, exit_qualification); 5796 5797 /* Is it a read fault? */ 5798 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) 5799 ? PFERR_USER_MASK : 0; 5800 /* Is it a write fault? */ 5801 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) 5802 ? PFERR_WRITE_MASK : 0; 5803 /* Is it a fetch fault? */ 5804 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) 5805 ? PFERR_FETCH_MASK : 0; 5806 /* ept page table entry is present? */ 5807 error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK) 5808 ? PFERR_PRESENT_MASK : 0; 5809 5810 if (error_code & EPT_VIOLATION_GVA_IS_VALID) 5811 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) ? 5812 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; 5813 5814 /* 5815 * Check that the GPA doesn't exceed physical memory limits, as that is 5816 * a guest page fault. We have to emulate the instruction here, because 5817 * if the illegal address is that of a paging structure, then 5818 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we 5819 * would also use advanced VM-exit information for EPT violations to 5820 * reconstruct the page fault error code. 5821 */ 5822 if (unlikely(allow_smaller_maxphyaddr && !kvm_vcpu_is_legal_gpa(vcpu, gpa))) 5823 return kvm_emulate_instruction(vcpu, 0); 5824 5825 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); 5826 } 5827 5828 static int handle_ept_misconfig(struct kvm_vcpu *vcpu) 5829 { 5830 gpa_t gpa; 5831 5832 if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0)) 5833 return 1; 5834 5835 /* 5836 * A nested guest cannot optimize MMIO vmexits, because we have an 5837 * nGPA here instead of the required GPA. 5838 */ 5839 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5840 if (!is_guest_mode(vcpu) && 5841 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { 5842 trace_kvm_fast_mmio(gpa); 5843 return kvm_skip_emulated_instruction(vcpu); 5844 } 5845 5846 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); 5847 } 5848 5849 static int handle_nmi_window(struct kvm_vcpu *vcpu) 5850 { 5851 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm)) 5852 return -EIO; 5853 5854 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 5855 ++vcpu->stat.nmi_window_exits; 5856 kvm_make_request(KVM_REQ_EVENT, vcpu); 5857 5858 return 1; 5859 } 5860 5861 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu) 5862 { 5863 struct vcpu_vmx *vmx = to_vmx(vcpu); 5864 5865 return vmx->emulation_required && !vmx->rmode.vm86_active && 5866 (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected); 5867 } 5868 5869 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) 5870 { 5871 struct vcpu_vmx *vmx = to_vmx(vcpu); 5872 bool intr_window_requested; 5873 unsigned count = 130; 5874 5875 intr_window_requested = exec_controls_get(vmx) & 5876 CPU_BASED_INTR_WINDOW_EXITING; 5877 5878 while (vmx->emulation_required && count-- != 0) { 5879 if (intr_window_requested && !vmx_interrupt_blocked(vcpu)) 5880 return handle_interrupt_window(&vmx->vcpu); 5881 5882 if (kvm_test_request(KVM_REQ_EVENT, vcpu)) 5883 return 1; 5884 5885 if (!kvm_emulate_instruction(vcpu, 0)) 5886 return 0; 5887 5888 if (vmx_emulation_required_with_pending_exception(vcpu)) { 5889 kvm_prepare_emulation_failure_exit(vcpu); 5890 return 0; 5891 } 5892 5893 if (vcpu->arch.halt_request) { 5894 vcpu->arch.halt_request = 0; 5895 return kvm_emulate_halt_noskip(vcpu); 5896 } 5897 5898 /* 5899 * Note, return 1 and not 0, vcpu_run() will invoke 5900 * xfer_to_guest_mode() which will create a proper return 5901 * code. 5902 */ 5903 if (__xfer_to_guest_mode_work_pending()) 5904 return 1; 5905 } 5906 5907 return 1; 5908 } 5909 5910 int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu) 5911 { 5912 if (vmx_emulation_required_with_pending_exception(vcpu)) { 5913 kvm_prepare_emulation_failure_exit(vcpu); 5914 return 0; 5915 } 5916 5917 return 1; 5918 } 5919 5920 /* 5921 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE 5922 * exiting, so only get here on cpu with PAUSE-Loop-Exiting. 5923 */ 5924 static int handle_pause(struct kvm_vcpu *vcpu) 5925 { 5926 if (!kvm_pause_in_guest(vcpu->kvm)) 5927 grow_ple_window(vcpu); 5928 5929 /* 5930 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" 5931 * VM-execution control is ignored if CPL > 0. OTOH, KVM 5932 * never set PAUSE_EXITING and just set PLE if supported, 5933 * so the vcpu must be CPL=0 if it gets a PAUSE exit. 5934 */ 5935 kvm_vcpu_on_spin(vcpu, true); 5936 return kvm_skip_emulated_instruction(vcpu); 5937 } 5938 5939 static int handle_monitor_trap(struct kvm_vcpu *vcpu) 5940 { 5941 return 1; 5942 } 5943 5944 static int handle_invpcid(struct kvm_vcpu *vcpu) 5945 { 5946 u32 vmx_instruction_info; 5947 unsigned long type; 5948 gva_t gva; 5949 struct { 5950 u64 pcid; 5951 u64 gla; 5952 } operand; 5953 int gpr_index; 5954 5955 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 5956 kvm_queue_exception(vcpu, UD_VECTOR); 5957 return 1; 5958 } 5959 5960 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5961 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info); 5962 type = kvm_register_read(vcpu, gpr_index); 5963 5964 /* According to the Intel instruction reference, the memory operand 5965 * is read even if it isn't needed (e.g., for type==all) 5966 */ 5967 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), 5968 vmx_instruction_info, false, 5969 sizeof(operand), &gva)) 5970 return 1; 5971 5972 return kvm_handle_invpcid(vcpu, type, gva); 5973 } 5974 5975 static int handle_pml_full(struct kvm_vcpu *vcpu) 5976 { 5977 unsigned long exit_qualification; 5978 5979 trace_kvm_pml_full(vcpu->vcpu_id); 5980 5981 exit_qualification = vmx_get_exit_qual(vcpu); 5982 5983 /* 5984 * PML buffer FULL happened while executing iret from NMI, 5985 * "blocked by NMI" bit has to be set before next VM entry. 5986 */ 5987 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5988 enable_vnmi && 5989 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5990 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5991 GUEST_INTR_STATE_NMI); 5992 5993 /* 5994 * PML buffer already flushed at beginning of VMEXIT. Nothing to do 5995 * here.., and there's no userspace involvement needed for PML. 5996 */ 5997 return 1; 5998 } 5999 6000 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu, 6001 bool force_immediate_exit) 6002 { 6003 struct vcpu_vmx *vmx = to_vmx(vcpu); 6004 6005 /* 6006 * In the *extremely* unlikely scenario that this is a spurious VM-Exit 6007 * due to the timer expiring while it was "soft" disabled, just eat the 6008 * exit and re-enter the guest. 6009 */ 6010 if (unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) 6011 return EXIT_FASTPATH_REENTER_GUEST; 6012 6013 /* 6014 * If the timer expired because KVM used it to force an immediate exit, 6015 * then mission accomplished. 6016 */ 6017 if (force_immediate_exit) 6018 return EXIT_FASTPATH_EXIT_HANDLED; 6019 6020 /* 6021 * If L2 is active, go down the slow path as emulating the guest timer 6022 * expiration likely requires synthesizing a nested VM-Exit. 6023 */ 6024 if (is_guest_mode(vcpu)) 6025 return EXIT_FASTPATH_NONE; 6026 6027 kvm_lapic_expired_hv_timer(vcpu); 6028 return EXIT_FASTPATH_REENTER_GUEST; 6029 } 6030 6031 static int handle_preemption_timer(struct kvm_vcpu *vcpu) 6032 { 6033 /* 6034 * This non-fastpath handler is reached if and only if the preemption 6035 * timer was being used to emulate a guest timer while L2 is active. 6036 * All other scenarios are supposed to be handled in the fastpath. 6037 */ 6038 WARN_ON_ONCE(!is_guest_mode(vcpu)); 6039 kvm_lapic_expired_hv_timer(vcpu); 6040 return 1; 6041 } 6042 6043 /* 6044 * When nested=0, all VMX instruction VM Exits filter here. The handlers 6045 * are overwritten by nested_vmx_setup() when nested=1. 6046 */ 6047 static int handle_vmx_instruction(struct kvm_vcpu *vcpu) 6048 { 6049 kvm_queue_exception(vcpu, UD_VECTOR); 6050 return 1; 6051 } 6052 6053 #ifndef CONFIG_X86_SGX_KVM 6054 static int handle_encls(struct kvm_vcpu *vcpu) 6055 { 6056 /* 6057 * SGX virtualization is disabled. There is no software enable bit for 6058 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent 6059 * the guest from executing ENCLS (when SGX is supported by hardware). 6060 */ 6061 kvm_queue_exception(vcpu, UD_VECTOR); 6062 return 1; 6063 } 6064 #endif /* CONFIG_X86_SGX_KVM */ 6065 6066 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu) 6067 { 6068 /* 6069 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK 6070 * VM-Exits. Unconditionally set the flag here and leave the handling to 6071 * vmx_handle_exit(). 6072 */ 6073 to_vmx(vcpu)->exit_reason.bus_lock_detected = true; 6074 return 1; 6075 } 6076 6077 static int handle_notify(struct kvm_vcpu *vcpu) 6078 { 6079 unsigned long exit_qual = vmx_get_exit_qual(vcpu); 6080 bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID; 6081 6082 ++vcpu->stat.notify_window_exits; 6083 6084 /* 6085 * Notify VM exit happened while executing iret from NMI, 6086 * "blocked by NMI" bit has to be set before next VM entry. 6087 */ 6088 if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI)) 6089 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 6090 GUEST_INTR_STATE_NMI); 6091 6092 if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER || 6093 context_invalid) { 6094 vcpu->run->exit_reason = KVM_EXIT_NOTIFY; 6095 vcpu->run->notify.flags = context_invalid ? 6096 KVM_NOTIFY_CONTEXT_INVALID : 0; 6097 return 0; 6098 } 6099 6100 return 1; 6101 } 6102 6103 /* 6104 * The exit handlers return 1 if the exit was handled fully and guest execution 6105 * may resume. Otherwise they set the kvm_run parameter to indicate what needs 6106 * to be done to userspace and return 0. 6107 */ 6108 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { 6109 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi, 6110 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, 6111 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, 6112 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, 6113 [EXIT_REASON_IO_INSTRUCTION] = handle_io, 6114 [EXIT_REASON_CR_ACCESS] = handle_cr, 6115 [EXIT_REASON_DR_ACCESS] = handle_dr, 6116 [EXIT_REASON_CPUID] = kvm_emulate_cpuid, 6117 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr, 6118 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr, 6119 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window, 6120 [EXIT_REASON_HLT] = kvm_emulate_halt, 6121 [EXIT_REASON_INVD] = kvm_emulate_invd, 6122 [EXIT_REASON_INVLPG] = handle_invlpg, 6123 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc, 6124 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall, 6125 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, 6126 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, 6127 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, 6128 [EXIT_REASON_VMPTRST] = handle_vmx_instruction, 6129 [EXIT_REASON_VMREAD] = handle_vmx_instruction, 6130 [EXIT_REASON_VMRESUME] = handle_vmx_instruction, 6131 [EXIT_REASON_VMWRITE] = handle_vmx_instruction, 6132 [EXIT_REASON_VMOFF] = handle_vmx_instruction, 6133 [EXIT_REASON_VMON] = handle_vmx_instruction, 6134 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, 6135 [EXIT_REASON_APIC_ACCESS] = handle_apic_access, 6136 [EXIT_REASON_APIC_WRITE] = handle_apic_write, 6137 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, 6138 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd, 6139 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv, 6140 [EXIT_REASON_TASK_SWITCH] = handle_task_switch, 6141 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, 6142 [EXIT_REASON_GDTR_IDTR] = handle_desc, 6143 [EXIT_REASON_LDTR_TR] = handle_desc, 6144 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, 6145 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, 6146 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, 6147 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait, 6148 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, 6149 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor, 6150 [EXIT_REASON_INVEPT] = handle_vmx_instruction, 6151 [EXIT_REASON_INVVPID] = handle_vmx_instruction, 6152 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op, 6153 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op, 6154 [EXIT_REASON_PML_FULL] = handle_pml_full, 6155 [EXIT_REASON_INVPCID] = handle_invpcid, 6156 [EXIT_REASON_VMFUNC] = handle_vmx_instruction, 6157 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, 6158 [EXIT_REASON_ENCLS] = handle_encls, 6159 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit, 6160 [EXIT_REASON_NOTIFY] = handle_notify, 6161 }; 6162 6163 static const int kvm_vmx_max_exit_handlers = 6164 ARRAY_SIZE(kvm_vmx_exit_handlers); 6165 6166 void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 6167 u64 *info1, u64 *info2, u32 *intr_info, u32 *error_code) 6168 { 6169 struct vcpu_vmx *vmx = to_vmx(vcpu); 6170 6171 *reason = vmx->exit_reason.full; 6172 *info1 = vmx_get_exit_qual(vcpu); 6173 if (!(vmx->exit_reason.failed_vmentry)) { 6174 *info2 = vmx->idt_vectoring_info; 6175 *intr_info = vmx_get_intr_info(vcpu); 6176 if (is_exception_with_error_code(*intr_info)) 6177 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 6178 else 6179 *error_code = 0; 6180 } else { 6181 *info2 = 0; 6182 *intr_info = 0; 6183 *error_code = 0; 6184 } 6185 } 6186 6187 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) 6188 { 6189 if (vmx->pml_pg) { 6190 __free_page(vmx->pml_pg); 6191 vmx->pml_pg = NULL; 6192 } 6193 } 6194 6195 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) 6196 { 6197 struct vcpu_vmx *vmx = to_vmx(vcpu); 6198 u64 *pml_buf; 6199 u16 pml_idx; 6200 6201 pml_idx = vmcs_read16(GUEST_PML_INDEX); 6202 6203 /* Do nothing if PML buffer is empty */ 6204 if (pml_idx == (PML_ENTITY_NUM - 1)) 6205 return; 6206 6207 /* PML index always points to next available PML buffer entity */ 6208 if (pml_idx >= PML_ENTITY_NUM) 6209 pml_idx = 0; 6210 else 6211 pml_idx++; 6212 6213 pml_buf = page_address(vmx->pml_pg); 6214 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { 6215 u64 gpa; 6216 6217 gpa = pml_buf[pml_idx]; 6218 WARN_ON(gpa & (PAGE_SIZE - 1)); 6219 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 6220 } 6221 6222 /* reset PML index */ 6223 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 6224 } 6225 6226 static void vmx_dump_sel(char *name, uint32_t sel) 6227 { 6228 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", 6229 name, vmcs_read16(sel), 6230 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), 6231 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), 6232 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); 6233 } 6234 6235 static void vmx_dump_dtsel(char *name, uint32_t limit) 6236 { 6237 pr_err("%s limit=0x%08x, base=0x%016lx\n", 6238 name, vmcs_read32(limit), 6239 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); 6240 } 6241 6242 static void vmx_dump_msrs(char *name, struct vmx_msrs *m) 6243 { 6244 unsigned int i; 6245 struct vmx_msr_entry *e; 6246 6247 pr_err("MSR %s:\n", name); 6248 for (i = 0, e = m->val; i < m->nr; ++i, ++e) 6249 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value); 6250 } 6251 6252 void dump_vmcs(struct kvm_vcpu *vcpu) 6253 { 6254 struct vcpu_vmx *vmx = to_vmx(vcpu); 6255 u32 vmentry_ctl, vmexit_ctl; 6256 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control; 6257 u64 tertiary_exec_control; 6258 unsigned long cr4; 6259 int efer_slot; 6260 6261 if (!dump_invalid_vmcs) { 6262 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n"); 6263 return; 6264 } 6265 6266 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); 6267 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); 6268 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); 6269 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); 6270 cr4 = vmcs_readl(GUEST_CR4); 6271 6272 if (cpu_has_secondary_exec_ctrls()) 6273 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); 6274 else 6275 secondary_exec_control = 0; 6276 6277 if (cpu_has_tertiary_exec_ctrls()) 6278 tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL); 6279 else 6280 tertiary_exec_control = 0; 6281 6282 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n", 6283 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu); 6284 pr_err("*** Guest State ***\n"); 6285 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 6286 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), 6287 vmcs_readl(CR0_GUEST_HOST_MASK)); 6288 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 6289 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); 6290 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); 6291 if (cpu_has_vmx_ept()) { 6292 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", 6293 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); 6294 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", 6295 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); 6296 } 6297 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", 6298 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); 6299 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", 6300 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); 6301 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 6302 vmcs_readl(GUEST_SYSENTER_ESP), 6303 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); 6304 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); 6305 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); 6306 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); 6307 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); 6308 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); 6309 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); 6310 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); 6311 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); 6312 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); 6313 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); 6314 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER); 6315 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER) 6316 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER)); 6317 else if (efer_slot >= 0) 6318 pr_err("EFER= 0x%016llx (autoload)\n", 6319 vmx->msr_autoload.guest.val[efer_slot].value); 6320 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE) 6321 pr_err("EFER= 0x%016llx (effective)\n", 6322 vcpu->arch.efer | (EFER_LMA | EFER_LME)); 6323 else 6324 pr_err("EFER= 0x%016llx (effective)\n", 6325 vcpu->arch.efer & ~(EFER_LMA | EFER_LME)); 6326 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT) 6327 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT)); 6328 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", 6329 vmcs_read64(GUEST_IA32_DEBUGCTL), 6330 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); 6331 if (cpu_has_load_perf_global_ctrl() && 6332 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) 6333 pr_err("PerfGlobCtl = 0x%016llx\n", 6334 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); 6335 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) 6336 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); 6337 pr_err("Interruptibility = %08x ActivityState = %08x\n", 6338 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), 6339 vmcs_read32(GUEST_ACTIVITY_STATE)); 6340 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) 6341 pr_err("InterruptStatus = %04x\n", 6342 vmcs_read16(GUEST_INTR_STATUS)); 6343 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0) 6344 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest); 6345 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0) 6346 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest); 6347 6348 pr_err("*** Host State ***\n"); 6349 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", 6350 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); 6351 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", 6352 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), 6353 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), 6354 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), 6355 vmcs_read16(HOST_TR_SELECTOR)); 6356 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", 6357 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), 6358 vmcs_readl(HOST_TR_BASE)); 6359 pr_err("GDTBase=%016lx IDTBase=%016lx\n", 6360 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); 6361 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", 6362 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), 6363 vmcs_readl(HOST_CR4)); 6364 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 6365 vmcs_readl(HOST_IA32_SYSENTER_ESP), 6366 vmcs_read32(HOST_IA32_SYSENTER_CS), 6367 vmcs_readl(HOST_IA32_SYSENTER_EIP)); 6368 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER) 6369 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER)); 6370 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT) 6371 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT)); 6372 if (cpu_has_load_perf_global_ctrl() && 6373 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) 6374 pr_err("PerfGlobCtl = 0x%016llx\n", 6375 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); 6376 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0) 6377 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host); 6378 6379 pr_err("*** Control State ***\n"); 6380 pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n", 6381 cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control); 6382 pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n", 6383 pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl); 6384 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", 6385 vmcs_read32(EXCEPTION_BITMAP), 6386 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), 6387 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); 6388 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", 6389 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 6390 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), 6391 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); 6392 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", 6393 vmcs_read32(VM_EXIT_INTR_INFO), 6394 vmcs_read32(VM_EXIT_INTR_ERROR_CODE), 6395 vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); 6396 pr_err(" reason=%08x qualification=%016lx\n", 6397 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); 6398 pr_err("IDTVectoring: info=%08x errcode=%08x\n", 6399 vmcs_read32(IDT_VECTORING_INFO_FIELD), 6400 vmcs_read32(IDT_VECTORING_ERROR_CODE)); 6401 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); 6402 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) 6403 pr_err("TSC Multiplier = 0x%016llx\n", 6404 vmcs_read64(TSC_MULTIPLIER)); 6405 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) { 6406 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { 6407 u16 status = vmcs_read16(GUEST_INTR_STATUS); 6408 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff); 6409 } 6410 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); 6411 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) 6412 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR)); 6413 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR)); 6414 } 6415 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) 6416 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); 6417 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) 6418 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); 6419 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) 6420 pr_err("PLE Gap=%08x Window=%08x\n", 6421 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); 6422 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) 6423 pr_err("Virtual processor ID = 0x%04x\n", 6424 vmcs_read16(VIRTUAL_PROCESSOR_ID)); 6425 if (secondary_exec_control & SECONDARY_EXEC_EPT_VIOLATION_VE) { 6426 struct vmx_ve_information *ve_info = vmx->ve_info; 6427 u64 ve_info_pa = vmcs_read64(VE_INFORMATION_ADDRESS); 6428 6429 /* 6430 * If KVM is dumping the VMCS, then something has gone wrong 6431 * already. Derefencing an address from the VMCS, which could 6432 * very well be corrupted, is a terrible idea. The virtual 6433 * address is known so use it. 6434 */ 6435 pr_err("VE info address = 0x%016llx%s\n", ve_info_pa, 6436 ve_info_pa == __pa(ve_info) ? "" : "(corrupted!)"); 6437 pr_err("ve_info: 0x%08x 0x%08x 0x%016llx 0x%016llx 0x%016llx 0x%04x\n", 6438 ve_info->exit_reason, ve_info->delivery, 6439 ve_info->exit_qualification, 6440 ve_info->guest_linear_address, 6441 ve_info->guest_physical_address, ve_info->eptp_index); 6442 } 6443 } 6444 6445 /* 6446 * The guest has exited. See if we can fix it or if we need userspace 6447 * assistance. 6448 */ 6449 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6450 { 6451 struct vcpu_vmx *vmx = to_vmx(vcpu); 6452 union vmx_exit_reason exit_reason = vmx->exit_reason; 6453 u32 vectoring_info = vmx->idt_vectoring_info; 6454 u16 exit_handler_index; 6455 6456 /* 6457 * Flush logged GPAs PML buffer, this will make dirty_bitmap more 6458 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before 6459 * querying dirty_bitmap, we only need to kick all vcpus out of guest 6460 * mode as if vcpus is in root mode, the PML buffer must has been 6461 * flushed already. Note, PML is never enabled in hardware while 6462 * running L2. 6463 */ 6464 if (enable_pml && !is_guest_mode(vcpu)) 6465 vmx_flush_pml_buffer(vcpu); 6466 6467 /* 6468 * KVM should never reach this point with a pending nested VM-Enter. 6469 * More specifically, short-circuiting VM-Entry to emulate L2 due to 6470 * invalid guest state should never happen as that means KVM knowingly 6471 * allowed a nested VM-Enter with an invalid vmcs12. More below. 6472 */ 6473 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm)) 6474 return -EIO; 6475 6476 if (is_guest_mode(vcpu)) { 6477 /* 6478 * PML is never enabled when running L2, bail immediately if a 6479 * PML full exit occurs as something is horribly wrong. 6480 */ 6481 if (exit_reason.basic == EXIT_REASON_PML_FULL) 6482 goto unexpected_vmexit; 6483 6484 /* 6485 * The host physical addresses of some pages of guest memory 6486 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC 6487 * Page). The CPU may write to these pages via their host 6488 * physical address while L2 is running, bypassing any 6489 * address-translation-based dirty tracking (e.g. EPT write 6490 * protection). 6491 * 6492 * Mark them dirty on every exit from L2 to prevent them from 6493 * getting out of sync with dirty tracking. 6494 */ 6495 nested_mark_vmcs12_pages_dirty(vcpu); 6496 6497 /* 6498 * Synthesize a triple fault if L2 state is invalid. In normal 6499 * operation, nested VM-Enter rejects any attempt to enter L2 6500 * with invalid state. However, those checks are skipped if 6501 * state is being stuffed via RSM or KVM_SET_NESTED_STATE. If 6502 * L2 state is invalid, it means either L1 modified SMRAM state 6503 * or userspace provided bad state. Synthesize TRIPLE_FAULT as 6504 * doing so is architecturally allowed in the RSM case, and is 6505 * the least awful solution for the userspace case without 6506 * risking false positives. 6507 */ 6508 if (vmx->emulation_required) { 6509 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0); 6510 return 1; 6511 } 6512 6513 if (nested_vmx_reflect_vmexit(vcpu)) 6514 return 1; 6515 } 6516 6517 /* If guest state is invalid, start emulating. L2 is handled above. */ 6518 if (vmx->emulation_required) 6519 return handle_invalid_guest_state(vcpu); 6520 6521 if (exit_reason.failed_vmentry) { 6522 dump_vmcs(vcpu); 6523 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6524 vcpu->run->fail_entry.hardware_entry_failure_reason 6525 = exit_reason.full; 6526 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6527 return 0; 6528 } 6529 6530 if (unlikely(vmx->fail)) { 6531 dump_vmcs(vcpu); 6532 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6533 vcpu->run->fail_entry.hardware_entry_failure_reason 6534 = vmcs_read32(VM_INSTRUCTION_ERROR); 6535 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6536 return 0; 6537 } 6538 6539 /* 6540 * Note: 6541 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by 6542 * delivery event since it indicates guest is accessing MMIO. 6543 * The vm-exit can be triggered again after return to guest that 6544 * will cause infinite loop. 6545 */ 6546 if ((vectoring_info & VECTORING_INFO_VALID_MASK) && 6547 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI && 6548 exit_reason.basic != EXIT_REASON_EPT_VIOLATION && 6549 exit_reason.basic != EXIT_REASON_PML_FULL && 6550 exit_reason.basic != EXIT_REASON_APIC_ACCESS && 6551 exit_reason.basic != EXIT_REASON_TASK_SWITCH && 6552 exit_reason.basic != EXIT_REASON_NOTIFY)) { 6553 int ndata = 3; 6554 6555 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6556 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; 6557 vcpu->run->internal.data[0] = vectoring_info; 6558 vcpu->run->internal.data[1] = exit_reason.full; 6559 vcpu->run->internal.data[2] = vmx_get_exit_qual(vcpu); 6560 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) { 6561 vcpu->run->internal.data[ndata++] = 6562 vmcs_read64(GUEST_PHYSICAL_ADDRESS); 6563 } 6564 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu; 6565 vcpu->run->internal.ndata = ndata; 6566 return 0; 6567 } 6568 6569 if (unlikely(!enable_vnmi && 6570 vmx->loaded_vmcs->soft_vnmi_blocked)) { 6571 if (!vmx_interrupt_blocked(vcpu)) { 6572 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6573 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && 6574 vcpu->arch.nmi_pending) { 6575 /* 6576 * This CPU don't support us in finding the end of an 6577 * NMI-blocked window if the guest runs with IRQs 6578 * disabled. So we pull the trigger after 1 s of 6579 * futile waiting, but inform the user about this. 6580 */ 6581 printk(KERN_WARNING "%s: Breaking out of NMI-blocked " 6582 "state on VCPU %d after 1 s timeout\n", 6583 __func__, vcpu->vcpu_id); 6584 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6585 } 6586 } 6587 6588 if (exit_fastpath != EXIT_FASTPATH_NONE) 6589 return 1; 6590 6591 if (exit_reason.basic >= kvm_vmx_max_exit_handlers) 6592 goto unexpected_vmexit; 6593 #ifdef CONFIG_MITIGATION_RETPOLINE 6594 if (exit_reason.basic == EXIT_REASON_MSR_WRITE) 6595 return kvm_emulate_wrmsr(vcpu); 6596 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER) 6597 return handle_preemption_timer(vcpu); 6598 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW) 6599 return handle_interrupt_window(vcpu); 6600 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6601 return handle_external_interrupt(vcpu); 6602 else if (exit_reason.basic == EXIT_REASON_HLT) 6603 return kvm_emulate_halt(vcpu); 6604 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) 6605 return handle_ept_misconfig(vcpu); 6606 #endif 6607 6608 exit_handler_index = array_index_nospec((u16)exit_reason.basic, 6609 kvm_vmx_max_exit_handlers); 6610 if (!kvm_vmx_exit_handlers[exit_handler_index]) 6611 goto unexpected_vmexit; 6612 6613 return kvm_vmx_exit_handlers[exit_handler_index](vcpu); 6614 6615 unexpected_vmexit: 6616 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", 6617 exit_reason.full); 6618 dump_vmcs(vcpu); 6619 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6620 vcpu->run->internal.suberror = 6621 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 6622 vcpu->run->internal.ndata = 2; 6623 vcpu->run->internal.data[0] = exit_reason.full; 6624 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 6625 return 0; 6626 } 6627 6628 int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6629 { 6630 int ret = __vmx_handle_exit(vcpu, exit_fastpath); 6631 6632 /* 6633 * Exit to user space when bus lock detected to inform that there is 6634 * a bus lock in guest. 6635 */ 6636 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) { 6637 if (ret > 0) 6638 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; 6639 6640 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; 6641 return 0; 6642 } 6643 return ret; 6644 } 6645 6646 /* 6647 * Software based L1D cache flush which is used when microcode providing 6648 * the cache control MSR is not loaded. 6649 * 6650 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to 6651 * flush it is required to read in 64 KiB because the replacement algorithm 6652 * is not exactly LRU. This could be sized at runtime via topology 6653 * information but as all relevant affected CPUs have 32KiB L1D cache size 6654 * there is no point in doing so. 6655 */ 6656 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu) 6657 { 6658 int size = PAGE_SIZE << L1D_CACHE_ORDER; 6659 6660 /* 6661 * This code is only executed when the flush mode is 'cond' or 6662 * 'always' 6663 */ 6664 if (static_branch_likely(&vmx_l1d_flush_cond)) { 6665 bool flush_l1d; 6666 6667 /* 6668 * Clear the per-vcpu flush bit, it gets set again if the vCPU 6669 * is reloaded, i.e. if the vCPU is scheduled out or if KVM 6670 * exits to userspace, or if KVM reaches one of the unsafe 6671 * VMEXIT handlers, e.g. if KVM calls into the emulator. 6672 */ 6673 flush_l1d = vcpu->arch.l1tf_flush_l1d; 6674 vcpu->arch.l1tf_flush_l1d = false; 6675 6676 /* 6677 * Clear the per-cpu flush bit, it gets set again from 6678 * the interrupt handlers. 6679 */ 6680 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); 6681 kvm_clear_cpu_l1tf_flush_l1d(); 6682 6683 if (!flush_l1d) 6684 return; 6685 } 6686 6687 vcpu->stat.l1d_flush++; 6688 6689 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { 6690 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 6691 return; 6692 } 6693 6694 asm volatile( 6695 /* First ensure the pages are in the TLB */ 6696 "xorl %%eax, %%eax\n" 6697 ".Lpopulate_tlb:\n\t" 6698 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6699 "addl $4096, %%eax\n\t" 6700 "cmpl %%eax, %[size]\n\t" 6701 "jne .Lpopulate_tlb\n\t" 6702 "xorl %%eax, %%eax\n\t" 6703 "cpuid\n\t" 6704 /* Now fill the cache */ 6705 "xorl %%eax, %%eax\n" 6706 ".Lfill_cache:\n" 6707 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6708 "addl $64, %%eax\n\t" 6709 "cmpl %%eax, %[size]\n\t" 6710 "jne .Lfill_cache\n\t" 6711 "lfence\n" 6712 :: [flush_pages] "r" (vmx_l1d_flush_pages), 6713 [size] "r" (size) 6714 : "eax", "ebx", "ecx", "edx"); 6715 } 6716 6717 void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 6718 { 6719 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 6720 int tpr_threshold; 6721 6722 if (is_guest_mode(vcpu) && 6723 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) 6724 return; 6725 6726 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr; 6727 if (is_guest_mode(vcpu)) 6728 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold; 6729 else 6730 vmcs_write32(TPR_THRESHOLD, tpr_threshold); 6731 } 6732 6733 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) 6734 { 6735 struct vcpu_vmx *vmx = to_vmx(vcpu); 6736 u32 sec_exec_control; 6737 6738 if (!lapic_in_kernel(vcpu)) 6739 return; 6740 6741 if (!flexpriority_enabled && 6742 !cpu_has_vmx_virtualize_x2apic_mode()) 6743 return; 6744 6745 /* Postpone execution until vmcs01 is the current VMCS. */ 6746 if (is_guest_mode(vcpu)) { 6747 vmx->nested.change_vmcs01_virtual_apic_mode = true; 6748 return; 6749 } 6750 6751 sec_exec_control = secondary_exec_controls_get(vmx); 6752 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 6753 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); 6754 6755 switch (kvm_get_apic_mode(vcpu)) { 6756 case LAPIC_MODE_INVALID: 6757 WARN_ONCE(true, "Invalid local APIC state"); 6758 break; 6759 case LAPIC_MODE_DISABLED: 6760 break; 6761 case LAPIC_MODE_XAPIC: 6762 if (flexpriority_enabled) { 6763 sec_exec_control |= 6764 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 6765 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6766 6767 /* 6768 * Flush the TLB, reloading the APIC access page will 6769 * only do so if its physical address has changed, but 6770 * the guest may have inserted a non-APIC mapping into 6771 * the TLB while the APIC access page was disabled. 6772 */ 6773 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 6774 } 6775 break; 6776 case LAPIC_MODE_X2APIC: 6777 if (cpu_has_vmx_virtualize_x2apic_mode()) 6778 sec_exec_control |= 6779 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 6780 break; 6781 } 6782 secondary_exec_controls_set(vmx, sec_exec_control); 6783 6784 vmx_update_msr_bitmap_x2apic(vcpu); 6785 } 6786 6787 void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu) 6788 { 6789 const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT; 6790 struct kvm *kvm = vcpu->kvm; 6791 struct kvm_memslots *slots = kvm_memslots(kvm); 6792 struct kvm_memory_slot *slot; 6793 unsigned long mmu_seq; 6794 kvm_pfn_t pfn; 6795 6796 /* Defer reload until vmcs01 is the current VMCS. */ 6797 if (is_guest_mode(vcpu)) { 6798 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true; 6799 return; 6800 } 6801 6802 if (!(secondary_exec_controls_get(to_vmx(vcpu)) & 6803 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 6804 return; 6805 6806 /* 6807 * Explicitly grab the memslot using KVM's internal slot ID to ensure 6808 * KVM doesn't unintentionally grab a userspace memslot. It _should_ 6809 * be impossible for userspace to create a memslot for the APIC when 6810 * APICv is enabled, but paranoia won't hurt in this case. 6811 */ 6812 slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT); 6813 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 6814 return; 6815 6816 /* 6817 * Ensure that the mmu_notifier sequence count is read before KVM 6818 * retrieves the pfn from the primary MMU. Note, the memslot is 6819 * protected by SRCU, not the mmu_notifier. Pairs with the smp_wmb() 6820 * in kvm_mmu_invalidate_end(). 6821 */ 6822 mmu_seq = kvm->mmu_invalidate_seq; 6823 smp_rmb(); 6824 6825 /* 6826 * No need to retry if the memslot does not exist or is invalid. KVM 6827 * controls the APIC-access page memslot, and only deletes the memslot 6828 * if APICv is permanently inhibited, i.e. the memslot won't reappear. 6829 */ 6830 pfn = gfn_to_pfn_memslot(slot, gfn); 6831 if (is_error_noslot_pfn(pfn)) 6832 return; 6833 6834 read_lock(&vcpu->kvm->mmu_lock); 6835 if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn)) { 6836 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6837 read_unlock(&vcpu->kvm->mmu_lock); 6838 goto out; 6839 } 6840 6841 vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn)); 6842 read_unlock(&vcpu->kvm->mmu_lock); 6843 6844 /* 6845 * No need for a manual TLB flush at this point, KVM has already done a 6846 * flush if there were SPTEs pointing at the previous page. 6847 */ 6848 out: 6849 /* 6850 * Do not pin apic access page in memory, the MMU notifier 6851 * will call us again if it is migrated or swapped out. 6852 */ 6853 kvm_release_pfn_clean(pfn); 6854 } 6855 6856 void vmx_hwapic_isr_update(int max_isr) 6857 { 6858 u16 status; 6859 u8 old; 6860 6861 if (max_isr == -1) 6862 max_isr = 0; 6863 6864 status = vmcs_read16(GUEST_INTR_STATUS); 6865 old = status >> 8; 6866 if (max_isr != old) { 6867 status &= 0xff; 6868 status |= max_isr << 8; 6869 vmcs_write16(GUEST_INTR_STATUS, status); 6870 } 6871 } 6872 6873 static void vmx_set_rvi(int vector) 6874 { 6875 u16 status; 6876 u8 old; 6877 6878 if (vector == -1) 6879 vector = 0; 6880 6881 status = vmcs_read16(GUEST_INTR_STATUS); 6882 old = (u8)status & 0xff; 6883 if ((u8)vector != old) { 6884 status &= ~0xff; 6885 status |= (u8)vector; 6886 vmcs_write16(GUEST_INTR_STATUS, status); 6887 } 6888 } 6889 6890 void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) 6891 { 6892 /* 6893 * When running L2, updating RVI is only relevant when 6894 * vmcs12 virtual-interrupt-delivery enabled. 6895 * However, it can be enabled only when L1 also 6896 * intercepts external-interrupts and in that case 6897 * we should not update vmcs02 RVI but instead intercept 6898 * interrupt. Therefore, do nothing when running L2. 6899 */ 6900 if (!is_guest_mode(vcpu)) 6901 vmx_set_rvi(max_irr); 6902 } 6903 6904 int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) 6905 { 6906 struct vcpu_vmx *vmx = to_vmx(vcpu); 6907 int max_irr; 6908 bool got_posted_interrupt; 6909 6910 if (KVM_BUG_ON(!enable_apicv, vcpu->kvm)) 6911 return -EIO; 6912 6913 if (pi_test_on(&vmx->pi_desc)) { 6914 pi_clear_on(&vmx->pi_desc); 6915 /* 6916 * IOMMU can write to PID.ON, so the barrier matters even on UP. 6917 * But on x86 this is just a compiler barrier anyway. 6918 */ 6919 smp_mb__after_atomic(); 6920 got_posted_interrupt = 6921 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); 6922 } else { 6923 max_irr = kvm_lapic_find_highest_irr(vcpu); 6924 got_posted_interrupt = false; 6925 } 6926 6927 /* 6928 * Newly recognized interrupts are injected via either virtual interrupt 6929 * delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is 6930 * disabled in two cases: 6931 * 6932 * 1) If L2 is running and the vCPU has a new pending interrupt. If L1 6933 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a 6934 * VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected 6935 * into L2, but KVM doesn't use virtual interrupt delivery to inject 6936 * interrupts into L2, and so KVM_REQ_EVENT is again needed. 6937 * 6938 * 2) If APICv is disabled for this vCPU, assigned devices may still 6939 * attempt to post interrupts. The posted interrupt vector will cause 6940 * a VM-Exit and the subsequent entry will call sync_pir_to_irr. 6941 */ 6942 if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu)) 6943 vmx_set_rvi(max_irr); 6944 else if (got_posted_interrupt) 6945 kvm_make_request(KVM_REQ_EVENT, vcpu); 6946 6947 return max_irr; 6948 } 6949 6950 void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) 6951 { 6952 if (!kvm_vcpu_apicv_active(vcpu)) 6953 return; 6954 6955 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); 6956 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); 6957 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); 6958 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); 6959 } 6960 6961 void vmx_apicv_pre_state_restore(struct kvm_vcpu *vcpu) 6962 { 6963 struct vcpu_vmx *vmx = to_vmx(vcpu); 6964 6965 pi_clear_on(&vmx->pi_desc); 6966 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); 6967 } 6968 6969 void vmx_do_interrupt_irqoff(unsigned long entry); 6970 void vmx_do_nmi_irqoff(void); 6971 6972 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu) 6973 { 6974 /* 6975 * Save xfd_err to guest_fpu before interrupt is enabled, so the 6976 * MSR value is not clobbered by the host activity before the guest 6977 * has chance to consume it. 6978 * 6979 * Do not blindly read xfd_err here, since this exception might 6980 * be caused by L1 interception on a platform which doesn't 6981 * support xfd at all. 6982 * 6983 * Do it conditionally upon guest_fpu::xfd. xfd_err matters 6984 * only when xfd contains a non-zero value. 6985 * 6986 * Queuing exception is done in vmx_handle_exit. See comment there. 6987 */ 6988 if (vcpu->arch.guest_fpu.fpstate->xfd) 6989 rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 6990 } 6991 6992 static void handle_exception_irqoff(struct kvm_vcpu *vcpu, u32 intr_info) 6993 { 6994 /* if exit due to PF check for async PF */ 6995 if (is_page_fault(intr_info)) 6996 vcpu->arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags(); 6997 /* if exit due to NM, handle before interrupts are enabled */ 6998 else if (is_nm_fault(intr_info)) 6999 handle_nm_fault_irqoff(vcpu); 7000 /* Handle machine checks before interrupts are enabled */ 7001 else if (is_machine_check(intr_info)) 7002 kvm_machine_check(); 7003 } 7004 7005 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu, 7006 u32 intr_info) 7007 { 7008 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK; 7009 7010 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm, 7011 "unexpected VM-Exit interrupt info: 0x%x", intr_info)) 7012 return; 7013 7014 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 7015 if (cpu_feature_enabled(X86_FEATURE_FRED)) 7016 fred_entry_from_kvm(EVENT_TYPE_EXTINT, vector); 7017 else 7018 vmx_do_interrupt_irqoff(gate_offset((gate_desc *)host_idt_base + vector)); 7019 kvm_after_interrupt(vcpu); 7020 7021 vcpu->arch.at_instruction_boundary = true; 7022 } 7023 7024 void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu) 7025 { 7026 struct vcpu_vmx *vmx = to_vmx(vcpu); 7027 7028 if (vmx->emulation_required) 7029 return; 7030 7031 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 7032 handle_external_interrupt_irqoff(vcpu, vmx_get_intr_info(vcpu)); 7033 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI) 7034 handle_exception_irqoff(vcpu, vmx_get_intr_info(vcpu)); 7035 } 7036 7037 /* 7038 * The kvm parameter can be NULL (module initialization, or invocation before 7039 * VM creation). Be sure to check the kvm parameter before using it. 7040 */ 7041 bool vmx_has_emulated_msr(struct kvm *kvm, u32 index) 7042 { 7043 switch (index) { 7044 case MSR_IA32_SMBASE: 7045 if (!IS_ENABLED(CONFIG_KVM_SMM)) 7046 return false; 7047 /* 7048 * We cannot do SMM unless we can run the guest in big 7049 * real mode. 7050 */ 7051 return enable_unrestricted_guest || emulate_invalid_guest_state; 7052 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 7053 return nested; 7054 case MSR_AMD64_VIRT_SPEC_CTRL: 7055 case MSR_AMD64_TSC_RATIO: 7056 /* This is AMD only. */ 7057 return false; 7058 default: 7059 return true; 7060 } 7061 } 7062 7063 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) 7064 { 7065 u32 exit_intr_info; 7066 bool unblock_nmi; 7067 u8 vector; 7068 bool idtv_info_valid; 7069 7070 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; 7071 7072 if (enable_vnmi) { 7073 if (vmx->loaded_vmcs->nmi_known_unmasked) 7074 return; 7075 7076 exit_intr_info = vmx_get_intr_info(&vmx->vcpu); 7077 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; 7078 vector = exit_intr_info & INTR_INFO_VECTOR_MASK; 7079 /* 7080 * SDM 3: 27.7.1.2 (September 2008) 7081 * Re-set bit "block by NMI" before VM entry if vmexit caused by 7082 * a guest IRET fault. 7083 * SDM 3: 23.2.2 (September 2008) 7084 * Bit 12 is undefined in any of the following cases: 7085 * If the VM exit sets the valid bit in the IDT-vectoring 7086 * information field. 7087 * If the VM exit is due to a double fault. 7088 */ 7089 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && 7090 vector != DF_VECTOR && !idtv_info_valid) 7091 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 7092 GUEST_INTR_STATE_NMI); 7093 else 7094 vmx->loaded_vmcs->nmi_known_unmasked = 7095 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) 7096 & GUEST_INTR_STATE_NMI); 7097 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) 7098 vmx->loaded_vmcs->vnmi_blocked_time += 7099 ktime_to_ns(ktime_sub(ktime_get(), 7100 vmx->loaded_vmcs->entry_time)); 7101 } 7102 7103 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, 7104 u32 idt_vectoring_info, 7105 int instr_len_field, 7106 int error_code_field) 7107 { 7108 u8 vector; 7109 int type; 7110 bool idtv_info_valid; 7111 7112 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; 7113 7114 vcpu->arch.nmi_injected = false; 7115 kvm_clear_exception_queue(vcpu); 7116 kvm_clear_interrupt_queue(vcpu); 7117 7118 if (!idtv_info_valid) 7119 return; 7120 7121 kvm_make_request(KVM_REQ_EVENT, vcpu); 7122 7123 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; 7124 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; 7125 7126 switch (type) { 7127 case INTR_TYPE_NMI_INTR: 7128 vcpu->arch.nmi_injected = true; 7129 /* 7130 * SDM 3: 27.7.1.2 (September 2008) 7131 * Clear bit "block by NMI" before VM entry if a NMI 7132 * delivery faulted. 7133 */ 7134 vmx_set_nmi_mask(vcpu, false); 7135 break; 7136 case INTR_TYPE_SOFT_EXCEPTION: 7137 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 7138 fallthrough; 7139 case INTR_TYPE_HARD_EXCEPTION: 7140 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { 7141 u32 err = vmcs_read32(error_code_field); 7142 kvm_requeue_exception_e(vcpu, vector, err); 7143 } else 7144 kvm_requeue_exception(vcpu, vector); 7145 break; 7146 case INTR_TYPE_SOFT_INTR: 7147 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 7148 fallthrough; 7149 case INTR_TYPE_EXT_INTR: 7150 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); 7151 break; 7152 default: 7153 break; 7154 } 7155 } 7156 7157 static void vmx_complete_interrupts(struct vcpu_vmx *vmx) 7158 { 7159 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, 7160 VM_EXIT_INSTRUCTION_LEN, 7161 IDT_VECTORING_ERROR_CODE); 7162 } 7163 7164 void vmx_cancel_injection(struct kvm_vcpu *vcpu) 7165 { 7166 __vmx_complete_interrupts(vcpu, 7167 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 7168 VM_ENTRY_INSTRUCTION_LEN, 7169 VM_ENTRY_EXCEPTION_ERROR_CODE); 7170 7171 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); 7172 } 7173 7174 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) 7175 { 7176 int i, nr_msrs; 7177 struct perf_guest_switch_msr *msrs; 7178 struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu); 7179 7180 pmu->host_cross_mapped_mask = 0; 7181 if (pmu->pebs_enable & pmu->global_ctrl) 7182 intel_pmu_cross_mapped_check(pmu); 7183 7184 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */ 7185 msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu); 7186 if (!msrs) 7187 return; 7188 7189 for (i = 0; i < nr_msrs; i++) 7190 if (msrs[i].host == msrs[i].guest) 7191 clear_atomic_switch_msr(vmx, msrs[i].msr); 7192 else 7193 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, 7194 msrs[i].host, false); 7195 } 7196 7197 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu, bool force_immediate_exit) 7198 { 7199 struct vcpu_vmx *vmx = to_vmx(vcpu); 7200 u64 tscl; 7201 u32 delta_tsc; 7202 7203 if (force_immediate_exit) { 7204 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0); 7205 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 7206 } else if (vmx->hv_deadline_tsc != -1) { 7207 tscl = rdtsc(); 7208 if (vmx->hv_deadline_tsc > tscl) 7209 /* set_hv_timer ensures the delta fits in 32-bits */ 7210 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> 7211 cpu_preemption_timer_multi); 7212 else 7213 delta_tsc = 0; 7214 7215 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc); 7216 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 7217 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) { 7218 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1); 7219 vmx->loaded_vmcs->hv_timer_soft_disabled = true; 7220 } 7221 } 7222 7223 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp) 7224 { 7225 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) { 7226 vmx->loaded_vmcs->host_state.rsp = host_rsp; 7227 vmcs_writel(HOST_RSP, host_rsp); 7228 } 7229 } 7230 7231 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, 7232 unsigned int flags) 7233 { 7234 u64 hostval = this_cpu_read(x86_spec_ctrl_current); 7235 7236 if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) 7237 return; 7238 7239 if (flags & VMX_RUN_SAVE_SPEC_CTRL) 7240 vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL); 7241 7242 /* 7243 * If the guest/host SPEC_CTRL values differ, restore the host value. 7244 * 7245 * For legacy IBRS, the IBRS bit always needs to be written after 7246 * transitioning from a less privileged predictor mode, regardless of 7247 * whether the guest/host values differ. 7248 */ 7249 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) || 7250 vmx->spec_ctrl != hostval) 7251 native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval); 7252 7253 barrier_nospec(); 7254 } 7255 7256 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu, 7257 bool force_immediate_exit) 7258 { 7259 /* 7260 * If L2 is active, some VMX preemption timer exits can be handled in 7261 * the fastpath even, all other exits must use the slow path. 7262 */ 7263 if (is_guest_mode(vcpu) && 7264 to_vmx(vcpu)->exit_reason.basic != EXIT_REASON_PREEMPTION_TIMER) 7265 return EXIT_FASTPATH_NONE; 7266 7267 switch (to_vmx(vcpu)->exit_reason.basic) { 7268 case EXIT_REASON_MSR_WRITE: 7269 return handle_fastpath_set_msr_irqoff(vcpu); 7270 case EXIT_REASON_PREEMPTION_TIMER: 7271 return handle_fastpath_preemption_timer(vcpu, force_immediate_exit); 7272 case EXIT_REASON_HLT: 7273 return handle_fastpath_hlt(vcpu); 7274 default: 7275 return EXIT_FASTPATH_NONE; 7276 } 7277 } 7278 7279 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu, 7280 unsigned int flags) 7281 { 7282 struct vcpu_vmx *vmx = to_vmx(vcpu); 7283 7284 guest_state_enter_irqoff(); 7285 7286 /* 7287 * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW 7288 * mitigation for MDS is done late in VMentry and is still 7289 * executed in spite of L1D Flush. This is because an extra VERW 7290 * should not matter much after the big hammer L1D Flush. 7291 */ 7292 if (static_branch_unlikely(&vmx_l1d_should_flush)) 7293 vmx_l1d_flush(vcpu); 7294 else if (static_branch_unlikely(&mmio_stale_data_clear) && 7295 kvm_arch_has_assigned_device(vcpu->kvm)) 7296 mds_clear_cpu_buffers(); 7297 7298 vmx_disable_fb_clear(vmx); 7299 7300 if (vcpu->arch.cr2 != native_read_cr2()) 7301 native_write_cr2(vcpu->arch.cr2); 7302 7303 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, 7304 flags); 7305 7306 vcpu->arch.cr2 = native_read_cr2(); 7307 vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET; 7308 7309 vmx->idt_vectoring_info = 0; 7310 7311 vmx_enable_fb_clear(vmx); 7312 7313 if (unlikely(vmx->fail)) { 7314 vmx->exit_reason.full = 0xdead; 7315 goto out; 7316 } 7317 7318 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON); 7319 if (likely(!vmx->exit_reason.failed_vmentry)) 7320 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); 7321 7322 if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI && 7323 is_nmi(vmx_get_intr_info(vcpu))) { 7324 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); 7325 if (cpu_feature_enabled(X86_FEATURE_FRED)) 7326 fred_entry_from_kvm(EVENT_TYPE_NMI, NMI_VECTOR); 7327 else 7328 vmx_do_nmi_irqoff(); 7329 kvm_after_interrupt(vcpu); 7330 } 7331 7332 out: 7333 guest_state_exit_irqoff(); 7334 } 7335 7336 fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu, bool force_immediate_exit) 7337 { 7338 struct vcpu_vmx *vmx = to_vmx(vcpu); 7339 unsigned long cr3, cr4; 7340 7341 /* Record the guest's net vcpu time for enforced NMI injections. */ 7342 if (unlikely(!enable_vnmi && 7343 vmx->loaded_vmcs->soft_vnmi_blocked)) 7344 vmx->loaded_vmcs->entry_time = ktime_get(); 7345 7346 /* 7347 * Don't enter VMX if guest state is invalid, let the exit handler 7348 * start emulation until we arrive back to a valid state. Synthesize a 7349 * consistency check VM-Exit due to invalid guest state and bail. 7350 */ 7351 if (unlikely(vmx->emulation_required)) { 7352 vmx->fail = 0; 7353 7354 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE; 7355 vmx->exit_reason.failed_vmentry = 1; 7356 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1); 7357 vmx->exit_qualification = ENTRY_FAIL_DEFAULT; 7358 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2); 7359 vmx->exit_intr_info = 0; 7360 return EXIT_FASTPATH_NONE; 7361 } 7362 7363 trace_kvm_entry(vcpu, force_immediate_exit); 7364 7365 if (vmx->ple_window_dirty) { 7366 vmx->ple_window_dirty = false; 7367 vmcs_write32(PLE_WINDOW, vmx->ple_window); 7368 } 7369 7370 /* 7371 * We did this in prepare_switch_to_guest, because it needs to 7372 * be within srcu_read_lock. 7373 */ 7374 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync); 7375 7376 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP)) 7377 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); 7378 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP)) 7379 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); 7380 vcpu->arch.regs_dirty = 0; 7381 7382 /* 7383 * Refresh vmcs.HOST_CR3 if necessary. This must be done immediately 7384 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time 7385 * it switches back to the current->mm, which can occur in KVM context 7386 * when switching to a temporary mm to patch kernel code, e.g. if KVM 7387 * toggles a static key while handling a VM-Exit. 7388 */ 7389 cr3 = __get_current_cr3_fast(); 7390 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { 7391 vmcs_writel(HOST_CR3, cr3); 7392 vmx->loaded_vmcs->host_state.cr3 = cr3; 7393 } 7394 7395 cr4 = cr4_read_shadow(); 7396 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { 7397 vmcs_writel(HOST_CR4, cr4); 7398 vmx->loaded_vmcs->host_state.cr4 = cr4; 7399 } 7400 7401 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */ 7402 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 7403 set_debugreg(vcpu->arch.dr6, 6); 7404 7405 /* When single-stepping over STI and MOV SS, we must clear the 7406 * corresponding interruptibility bits in the guest state. Otherwise 7407 * vmentry fails as it then expects bit 14 (BS) in pending debug 7408 * exceptions being set, but that's not correct for the guest debugging 7409 * case. */ 7410 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 7411 vmx_set_interrupt_shadow(vcpu, 0); 7412 7413 kvm_load_guest_xsave_state(vcpu); 7414 7415 pt_guest_enter(vmx); 7416 7417 atomic_switch_perf_msrs(vmx); 7418 if (intel_pmu_lbr_is_enabled(vcpu)) 7419 vmx_passthrough_lbr_msrs(vcpu); 7420 7421 if (enable_preemption_timer) 7422 vmx_update_hv_timer(vcpu, force_immediate_exit); 7423 else if (force_immediate_exit) 7424 smp_send_reschedule(vcpu->cpu); 7425 7426 kvm_wait_lapic_expire(vcpu); 7427 7428 /* The actual VMENTER/EXIT is in the .noinstr.text section. */ 7429 vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx)); 7430 7431 /* All fields are clean at this point */ 7432 if (kvm_is_using_evmcs()) { 7433 current_evmcs->hv_clean_fields |= 7434 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; 7435 7436 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu); 7437 } 7438 7439 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ 7440 if (vmx->host_debugctlmsr) 7441 update_debugctlmsr(vmx->host_debugctlmsr); 7442 7443 #ifndef CONFIG_X86_64 7444 /* 7445 * The sysexit path does not restore ds/es, so we must set them to 7446 * a reasonable value ourselves. 7447 * 7448 * We can't defer this to vmx_prepare_switch_to_host() since that 7449 * function may be executed in interrupt context, which saves and 7450 * restore segments around it, nullifying its effect. 7451 */ 7452 loadsegment(ds, __USER_DS); 7453 loadsegment(es, __USER_DS); 7454 #endif 7455 7456 pt_guest_exit(vmx); 7457 7458 kvm_load_host_xsave_state(vcpu); 7459 7460 if (is_guest_mode(vcpu)) { 7461 /* 7462 * Track VMLAUNCH/VMRESUME that have made past guest state 7463 * checking. 7464 */ 7465 if (vmx->nested.nested_run_pending && 7466 !vmx->exit_reason.failed_vmentry) 7467 ++vcpu->stat.nested_run; 7468 7469 vmx->nested.nested_run_pending = 0; 7470 } 7471 7472 if (unlikely(vmx->fail)) 7473 return EXIT_FASTPATH_NONE; 7474 7475 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY)) 7476 kvm_machine_check(); 7477 7478 trace_kvm_exit(vcpu, KVM_ISA_VMX); 7479 7480 if (unlikely(vmx->exit_reason.failed_vmentry)) 7481 return EXIT_FASTPATH_NONE; 7482 7483 vmx->loaded_vmcs->launched = 1; 7484 7485 vmx_recover_nmi_blocking(vmx); 7486 vmx_complete_interrupts(vmx); 7487 7488 return vmx_exit_handlers_fastpath(vcpu, force_immediate_exit); 7489 } 7490 7491 void vmx_vcpu_free(struct kvm_vcpu *vcpu) 7492 { 7493 struct vcpu_vmx *vmx = to_vmx(vcpu); 7494 7495 if (enable_pml) 7496 vmx_destroy_pml_buffer(vmx); 7497 free_vpid(vmx->vpid); 7498 nested_vmx_free_vcpu(vcpu); 7499 free_loaded_vmcs(vmx->loaded_vmcs); 7500 free_page((unsigned long)vmx->ve_info); 7501 } 7502 7503 int vmx_vcpu_create(struct kvm_vcpu *vcpu) 7504 { 7505 struct vmx_uret_msr *tsx_ctrl; 7506 struct vcpu_vmx *vmx; 7507 int i, err; 7508 7509 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0); 7510 vmx = to_vmx(vcpu); 7511 7512 INIT_LIST_HEAD(&vmx->pi_wakeup_list); 7513 7514 err = -ENOMEM; 7515 7516 vmx->vpid = allocate_vpid(); 7517 7518 /* 7519 * If PML is turned on, failure on enabling PML just results in failure 7520 * of creating the vcpu, therefore we can simplify PML logic (by 7521 * avoiding dealing with cases, such as enabling PML partially on vcpus 7522 * for the guest), etc. 7523 */ 7524 if (enable_pml) { 7525 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 7526 if (!vmx->pml_pg) 7527 goto free_vpid; 7528 } 7529 7530 for (i = 0; i < kvm_nr_uret_msrs; ++i) 7531 vmx->guest_uret_msrs[i].mask = -1ull; 7532 if (boot_cpu_has(X86_FEATURE_RTM)) { 7533 /* 7534 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception. 7535 * Keep the host value unchanged to avoid changing CPUID bits 7536 * under the host kernel's feet. 7537 */ 7538 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7539 if (tsx_ctrl) 7540 tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR; 7541 } 7542 7543 err = alloc_loaded_vmcs(&vmx->vmcs01); 7544 if (err < 0) 7545 goto free_pml; 7546 7547 /* 7548 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a 7549 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the 7550 * feature only for vmcs01, KVM currently isn't equipped to realize any 7551 * performance benefits from enabling it for vmcs02. 7552 */ 7553 if (kvm_is_using_evmcs() && 7554 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { 7555 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; 7556 7557 evmcs->hv_enlightenments_control.msr_bitmap = 1; 7558 } 7559 7560 /* The MSR bitmap starts with all ones */ 7561 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS); 7562 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS); 7563 7564 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R); 7565 #ifdef CONFIG_X86_64 7566 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW); 7567 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW); 7568 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); 7569 #endif 7570 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); 7571 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); 7572 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); 7573 if (kvm_cstate_in_guest(vcpu->kvm)) { 7574 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R); 7575 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R); 7576 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R); 7577 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R); 7578 } 7579 7580 vmx->loaded_vmcs = &vmx->vmcs01; 7581 7582 if (cpu_need_virtualize_apic_accesses(vcpu)) { 7583 err = kvm_alloc_apic_access_page(vcpu->kvm); 7584 if (err) 7585 goto free_vmcs; 7586 } 7587 7588 if (enable_ept && !enable_unrestricted_guest) { 7589 err = init_rmode_identity_map(vcpu->kvm); 7590 if (err) 7591 goto free_vmcs; 7592 } 7593 7594 err = -ENOMEM; 7595 if (vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_EPT_VIOLATION_VE) { 7596 struct page *page; 7597 7598 BUILD_BUG_ON(sizeof(*vmx->ve_info) > PAGE_SIZE); 7599 7600 /* ve_info must be page aligned. */ 7601 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 7602 if (!page) 7603 goto free_vmcs; 7604 7605 vmx->ve_info = page_to_virt(page); 7606 } 7607 7608 if (vmx_can_use_ipiv(vcpu)) 7609 WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id], 7610 __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID); 7611 7612 return 0; 7613 7614 free_vmcs: 7615 free_loaded_vmcs(vmx->loaded_vmcs); 7616 free_pml: 7617 vmx_destroy_pml_buffer(vmx); 7618 free_vpid: 7619 free_vpid(vmx->vpid); 7620 return err; 7621 } 7622 7623 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7624 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7625 7626 int vmx_vm_init(struct kvm *kvm) 7627 { 7628 if (!ple_gap) 7629 kvm->arch.pause_in_guest = true; 7630 7631 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { 7632 switch (l1tf_mitigation) { 7633 case L1TF_MITIGATION_OFF: 7634 case L1TF_MITIGATION_FLUSH_NOWARN: 7635 /* 'I explicitly don't care' is set */ 7636 break; 7637 case L1TF_MITIGATION_FLUSH: 7638 case L1TF_MITIGATION_FLUSH_NOSMT: 7639 case L1TF_MITIGATION_FULL: 7640 /* 7641 * Warn upon starting the first VM in a potentially 7642 * insecure environment. 7643 */ 7644 if (sched_smt_active()) 7645 pr_warn_once(L1TF_MSG_SMT); 7646 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) 7647 pr_warn_once(L1TF_MSG_L1D); 7648 break; 7649 case L1TF_MITIGATION_FULL_FORCE: 7650 /* Flush is enforced */ 7651 break; 7652 } 7653 } 7654 return 0; 7655 } 7656 7657 u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 7658 { 7659 /* 7660 * Force UC for host MMIO regions, as allowing the guest to access MMIO 7661 * with cacheable accesses will result in Machine Checks. 7662 */ 7663 if (is_mmio) 7664 return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT; 7665 7666 /* 7667 * Force WB and ignore guest PAT if the VM does NOT have a non-coherent 7668 * device attached. Letting the guest control memory types on Intel 7669 * CPUs may result in unexpected behavior, and so KVM's ABI is to trust 7670 * the guest to behave only as a last resort. 7671 */ 7672 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) 7673 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT; 7674 7675 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT); 7676 } 7677 7678 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl) 7679 { 7680 /* 7681 * These bits in the secondary execution controls field 7682 * are dynamic, the others are mostly based on the hypervisor 7683 * architecture and the guest's CPUID. Do not touch the 7684 * dynamic bits. 7685 */ 7686 u32 mask = 7687 SECONDARY_EXEC_SHADOW_VMCS | 7688 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 7689 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 7690 SECONDARY_EXEC_DESC; 7691 7692 u32 cur_ctl = secondary_exec_controls_get(vmx); 7693 7694 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask)); 7695 } 7696 7697 /* 7698 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits 7699 * (indicating "allowed-1") if they are supported in the guest's CPUID. 7700 */ 7701 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) 7702 { 7703 struct vcpu_vmx *vmx = to_vmx(vcpu); 7704 struct kvm_cpuid_entry2 *entry; 7705 7706 vmx->nested.msrs.cr0_fixed1 = 0xffffffff; 7707 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; 7708 7709 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ 7710 if (entry && (entry->_reg & (_cpuid_mask))) \ 7711 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ 7712 } while (0) 7713 7714 entry = kvm_find_cpuid_entry(vcpu, 0x1); 7715 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME)); 7716 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME)); 7717 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC)); 7718 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE)); 7719 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE)); 7720 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE)); 7721 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE)); 7722 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE)); 7723 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR)); 7724 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM)); 7725 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX)); 7726 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX)); 7727 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID)); 7728 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE)); 7729 7730 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0); 7731 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE)); 7732 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP)); 7733 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP)); 7734 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU)); 7735 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP)); 7736 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57)); 7737 7738 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 1); 7739 cr4_fixed1_update(X86_CR4_LAM_SUP, eax, feature_bit(LAM)); 7740 7741 #undef cr4_fixed1_update 7742 } 7743 7744 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) 7745 { 7746 struct vcpu_vmx *vmx = to_vmx(vcpu); 7747 struct kvm_cpuid_entry2 *best = NULL; 7748 int i; 7749 7750 for (i = 0; i < PT_CPUID_LEAVES; i++) { 7751 best = kvm_find_cpuid_entry_index(vcpu, 0x14, i); 7752 if (!best) 7753 return; 7754 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; 7755 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; 7756 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; 7757 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; 7758 } 7759 7760 /* Get the number of configurable Address Ranges for filtering */ 7761 vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps, 7762 PT_CAP_num_address_ranges); 7763 7764 /* Initialize and clear the no dependency bits */ 7765 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | 7766 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC | 7767 RTIT_CTL_BRANCH_EN); 7768 7769 /* 7770 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise 7771 * will inject an #GP 7772 */ 7773 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) 7774 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; 7775 7776 /* 7777 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and 7778 * PSBFreq can be set 7779 */ 7780 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) 7781 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | 7782 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); 7783 7784 /* 7785 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set 7786 */ 7787 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) 7788 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | 7789 RTIT_CTL_MTC_RANGE); 7790 7791 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ 7792 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) 7793 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | 7794 RTIT_CTL_PTW_EN); 7795 7796 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ 7797 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) 7798 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; 7799 7800 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ 7801 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) 7802 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; 7803 7804 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */ 7805 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) 7806 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; 7807 7808 /* unmask address range configure area */ 7809 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) 7810 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4)); 7811 } 7812 7813 void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 7814 { 7815 struct vcpu_vmx *vmx = to_vmx(vcpu); 7816 7817 /* 7818 * XSAVES is effectively enabled if and only if XSAVE is also exposed 7819 * to the guest. XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be 7820 * set if and only if XSAVE is supported. 7821 */ 7822 if (boot_cpu_has(X86_FEATURE_XSAVE) && 7823 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE)) 7824 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_XSAVES); 7825 7826 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VMX); 7827 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LAM); 7828 7829 vmx_setup_uret_msrs(vmx); 7830 7831 if (cpu_has_secondary_exec_ctrls()) 7832 vmcs_set_secondary_exec_control(vmx, 7833 vmx_secondary_exec_control(vmx)); 7834 7835 if (guest_can_use(vcpu, X86_FEATURE_VMX)) 7836 vmx->msr_ia32_feature_control_valid_bits |= 7837 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7838 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; 7839 else 7840 vmx->msr_ia32_feature_control_valid_bits &= 7841 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7842 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX); 7843 7844 if (guest_can_use(vcpu, X86_FEATURE_VMX)) 7845 nested_vmx_cr_fixed1_bits_update(vcpu); 7846 7847 if (boot_cpu_has(X86_FEATURE_INTEL_PT) && 7848 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT)) 7849 update_intel_pt_cfg(vcpu); 7850 7851 if (boot_cpu_has(X86_FEATURE_RTM)) { 7852 struct vmx_uret_msr *msr; 7853 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7854 if (msr) { 7855 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM); 7856 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE); 7857 } 7858 } 7859 7860 if (kvm_cpu_cap_has(X86_FEATURE_XFD)) 7861 vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R, 7862 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)); 7863 7864 if (boot_cpu_has(X86_FEATURE_IBPB)) 7865 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W, 7866 !guest_has_pred_cmd_msr(vcpu)); 7867 7868 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D)) 7869 vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W, 7870 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)); 7871 7872 set_cr4_guest_host_mask(vmx); 7873 7874 vmx_write_encls_bitmap(vcpu, NULL); 7875 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX)) 7876 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED; 7877 else 7878 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED; 7879 7880 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 7881 vmx->msr_ia32_feature_control_valid_bits |= 7882 FEAT_CTL_SGX_LC_ENABLED; 7883 else 7884 vmx->msr_ia32_feature_control_valid_bits &= 7885 ~FEAT_CTL_SGX_LC_ENABLED; 7886 7887 /* Refresh #PF interception to account for MAXPHYADDR changes. */ 7888 vmx_update_exception_bitmap(vcpu); 7889 } 7890 7891 static __init u64 vmx_get_perf_capabilities(void) 7892 { 7893 u64 perf_cap = PMU_CAP_FW_WRITES; 7894 u64 host_perf_cap = 0; 7895 7896 if (!enable_pmu) 7897 return 0; 7898 7899 if (boot_cpu_has(X86_FEATURE_PDCM)) 7900 rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap); 7901 7902 if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) { 7903 x86_perf_get_lbr(&vmx_lbr_caps); 7904 7905 /* 7906 * KVM requires LBR callstack support, as the overhead due to 7907 * context switching LBRs without said support is too high. 7908 * See intel_pmu_create_guest_lbr_event() for more info. 7909 */ 7910 if (!vmx_lbr_caps.has_callstack) 7911 memset(&vmx_lbr_caps, 0, sizeof(vmx_lbr_caps)); 7912 else if (vmx_lbr_caps.nr) 7913 perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT; 7914 } 7915 7916 if (vmx_pebs_supported()) { 7917 perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK; 7918 7919 /* 7920 * Disallow adaptive PEBS as it is functionally broken, can be 7921 * used by the guest to read *host* LBRs, and can be used to 7922 * bypass userspace event filters. To correctly and safely 7923 * support adaptive PEBS, KVM needs to: 7924 * 7925 * 1. Account for the ADAPTIVE flag when (re)programming fixed 7926 * counters. 7927 * 7928 * 2. Gain support from perf (or take direct control of counter 7929 * programming) to support events without adaptive PEBS 7930 * enabled for the hardware counter. 7931 * 7932 * 3. Ensure LBR MSRs cannot hold host data on VM-Entry with 7933 * adaptive PEBS enabled and MSR_PEBS_DATA_CFG.LBRS=1. 7934 * 7935 * 4. Document which PMU events are effectively exposed to the 7936 * guest via adaptive PEBS, and make adaptive PEBS mutually 7937 * exclusive with KVM_SET_PMU_EVENT_FILTER if necessary. 7938 */ 7939 perf_cap &= ~PERF_CAP_PEBS_BASELINE; 7940 } 7941 7942 return perf_cap; 7943 } 7944 7945 static __init void vmx_set_cpu_caps(void) 7946 { 7947 kvm_set_cpu_caps(); 7948 7949 /* CPUID 0x1 */ 7950 if (nested) 7951 kvm_cpu_cap_set(X86_FEATURE_VMX); 7952 7953 /* CPUID 0x7 */ 7954 if (kvm_mpx_supported()) 7955 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX); 7956 if (!cpu_has_vmx_invpcid()) 7957 kvm_cpu_cap_clear(X86_FEATURE_INVPCID); 7958 if (vmx_pt_mode_is_host_guest()) 7959 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT); 7960 if (vmx_pebs_supported()) { 7961 kvm_cpu_cap_check_and_set(X86_FEATURE_DS); 7962 kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64); 7963 } 7964 7965 if (!enable_pmu) 7966 kvm_cpu_cap_clear(X86_FEATURE_PDCM); 7967 kvm_caps.supported_perf_cap = vmx_get_perf_capabilities(); 7968 7969 if (!enable_sgx) { 7970 kvm_cpu_cap_clear(X86_FEATURE_SGX); 7971 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC); 7972 kvm_cpu_cap_clear(X86_FEATURE_SGX1); 7973 kvm_cpu_cap_clear(X86_FEATURE_SGX2); 7974 kvm_cpu_cap_clear(X86_FEATURE_SGX_EDECCSSA); 7975 } 7976 7977 if (vmx_umip_emulated()) 7978 kvm_cpu_cap_set(X86_FEATURE_UMIP); 7979 7980 /* CPUID 0xD.1 */ 7981 kvm_caps.supported_xss = 0; 7982 if (!cpu_has_vmx_xsaves()) 7983 kvm_cpu_cap_clear(X86_FEATURE_XSAVES); 7984 7985 /* CPUID 0x80000001 and 0x7 (RDPID) */ 7986 if (!cpu_has_vmx_rdtscp()) { 7987 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP); 7988 kvm_cpu_cap_clear(X86_FEATURE_RDPID); 7989 } 7990 7991 if (cpu_has_vmx_waitpkg()) 7992 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG); 7993 } 7994 7995 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu, 7996 struct x86_instruction_info *info) 7997 { 7998 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7999 unsigned short port; 8000 bool intercept; 8001 int size; 8002 8003 if (info->intercept == x86_intercept_in || 8004 info->intercept == x86_intercept_ins) { 8005 port = info->src_val; 8006 size = info->dst_bytes; 8007 } else { 8008 port = info->dst_val; 8009 size = info->src_bytes; 8010 } 8011 8012 /* 8013 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction 8014 * VM-exits depend on the 'unconditional IO exiting' VM-execution 8015 * control. 8016 * 8017 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps. 8018 */ 8019 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) 8020 intercept = nested_cpu_has(vmcs12, 8021 CPU_BASED_UNCOND_IO_EXITING); 8022 else 8023 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size); 8024 8025 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 8026 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; 8027 } 8028 8029 int vmx_check_intercept(struct kvm_vcpu *vcpu, 8030 struct x86_instruction_info *info, 8031 enum x86_intercept_stage stage, 8032 struct x86_exception *exception) 8033 { 8034 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 8035 8036 switch (info->intercept) { 8037 /* 8038 * RDPID causes #UD if disabled through secondary execution controls. 8039 * Because it is marked as EmulateOnUD, we need to intercept it here. 8040 * Note, RDPID is hidden behind ENABLE_RDTSCP. 8041 */ 8042 case x86_intercept_rdpid: 8043 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) { 8044 exception->vector = UD_VECTOR; 8045 exception->error_code_valid = false; 8046 return X86EMUL_PROPAGATE_FAULT; 8047 } 8048 break; 8049 8050 case x86_intercept_in: 8051 case x86_intercept_ins: 8052 case x86_intercept_out: 8053 case x86_intercept_outs: 8054 return vmx_check_intercept_io(vcpu, info); 8055 8056 case x86_intercept_lgdt: 8057 case x86_intercept_lidt: 8058 case x86_intercept_lldt: 8059 case x86_intercept_ltr: 8060 case x86_intercept_sgdt: 8061 case x86_intercept_sidt: 8062 case x86_intercept_sldt: 8063 case x86_intercept_str: 8064 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC)) 8065 return X86EMUL_CONTINUE; 8066 8067 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 8068 break; 8069 8070 case x86_intercept_pause: 8071 /* 8072 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides 8073 * with vanilla NOPs in the emulator. Apply the interception 8074 * check only to actual PAUSE instructions. Don't check 8075 * PAUSE-loop-exiting, software can't expect a given PAUSE to 8076 * exit, i.e. KVM is within its rights to allow L2 to execute 8077 * the PAUSE. 8078 */ 8079 if ((info->rep_prefix != REPE_PREFIX) || 8080 !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING)) 8081 return X86EMUL_CONTINUE; 8082 8083 break; 8084 8085 /* TODO: check more intercepts... */ 8086 default: 8087 break; 8088 } 8089 8090 return X86EMUL_UNHANDLEABLE; 8091 } 8092 8093 #ifdef CONFIG_X86_64 8094 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ 8095 static inline int u64_shl_div_u64(u64 a, unsigned int shift, 8096 u64 divisor, u64 *result) 8097 { 8098 u64 low = a << shift, high = a >> (64 - shift); 8099 8100 /* To avoid the overflow on divq */ 8101 if (high >= divisor) 8102 return 1; 8103 8104 /* Low hold the result, high hold rem which is discarded */ 8105 asm("divq %2\n\t" : "=a" (low), "=d" (high) : 8106 "rm" (divisor), "0" (low), "1" (high)); 8107 *result = low; 8108 8109 return 0; 8110 } 8111 8112 int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 8113 bool *expired) 8114 { 8115 struct vcpu_vmx *vmx; 8116 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; 8117 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer; 8118 8119 vmx = to_vmx(vcpu); 8120 tscl = rdtsc(); 8121 guest_tscl = kvm_read_l1_tsc(vcpu, tscl); 8122 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; 8123 lapic_timer_advance_cycles = nsec_to_cycles(vcpu, 8124 ktimer->timer_advance_ns); 8125 8126 if (delta_tsc > lapic_timer_advance_cycles) 8127 delta_tsc -= lapic_timer_advance_cycles; 8128 else 8129 delta_tsc = 0; 8130 8131 /* Convert to host delta tsc if tsc scaling is enabled */ 8132 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio && 8133 delta_tsc && u64_shl_div_u64(delta_tsc, 8134 kvm_caps.tsc_scaling_ratio_frac_bits, 8135 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc)) 8136 return -ERANGE; 8137 8138 /* 8139 * If the delta tsc can't fit in the 32 bit after the multi shift, 8140 * we can't use the preemption timer. 8141 * It's possible that it fits on later vmentries, but checking 8142 * on every vmentry is costly so we just use an hrtimer. 8143 */ 8144 if (delta_tsc >> (cpu_preemption_timer_multi + 32)) 8145 return -ERANGE; 8146 8147 vmx->hv_deadline_tsc = tscl + delta_tsc; 8148 *expired = !delta_tsc; 8149 return 0; 8150 } 8151 8152 void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) 8153 { 8154 to_vmx(vcpu)->hv_deadline_tsc = -1; 8155 } 8156 #endif 8157 8158 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu) 8159 { 8160 struct vcpu_vmx *vmx = to_vmx(vcpu); 8161 8162 if (WARN_ON_ONCE(!enable_pml)) 8163 return; 8164 8165 if (is_guest_mode(vcpu)) { 8166 vmx->nested.update_vmcs01_cpu_dirty_logging = true; 8167 return; 8168 } 8169 8170 /* 8171 * Note, nr_memslots_dirty_logging can be changed concurrent with this 8172 * code, but in that case another update request will be made and so 8173 * the guest will never run with a stale PML value. 8174 */ 8175 if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging)) 8176 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML); 8177 else 8178 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML); 8179 } 8180 8181 void vmx_setup_mce(struct kvm_vcpu *vcpu) 8182 { 8183 if (vcpu->arch.mcg_cap & MCG_LMCE_P) 8184 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 8185 FEAT_CTL_LMCE_ENABLED; 8186 else 8187 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 8188 ~FEAT_CTL_LMCE_ENABLED; 8189 } 8190 8191 #ifdef CONFIG_KVM_SMM 8192 int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 8193 { 8194 /* we need a nested vmexit to enter SMM, postpone if run is pending */ 8195 if (to_vmx(vcpu)->nested.nested_run_pending) 8196 return -EBUSY; 8197 return !is_smm(vcpu); 8198 } 8199 8200 int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) 8201 { 8202 struct vcpu_vmx *vmx = to_vmx(vcpu); 8203 8204 /* 8205 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on 8206 * SMI and RSM. Using the common VM-Exit + VM-Enter routines is wrong 8207 * SMI and RSM only modify state that is saved and restored via SMRAM. 8208 * E.g. most MSRs are left untouched, but many are modified by VM-Exit 8209 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM. 8210 */ 8211 vmx->nested.smm.guest_mode = is_guest_mode(vcpu); 8212 if (vmx->nested.smm.guest_mode) 8213 nested_vmx_vmexit(vcpu, -1, 0, 0); 8214 8215 vmx->nested.smm.vmxon = vmx->nested.vmxon; 8216 vmx->nested.vmxon = false; 8217 vmx_clear_hlt(vcpu); 8218 return 0; 8219 } 8220 8221 int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) 8222 { 8223 struct vcpu_vmx *vmx = to_vmx(vcpu); 8224 int ret; 8225 8226 if (vmx->nested.smm.vmxon) { 8227 vmx->nested.vmxon = true; 8228 vmx->nested.smm.vmxon = false; 8229 } 8230 8231 if (vmx->nested.smm.guest_mode) { 8232 ret = nested_vmx_enter_non_root_mode(vcpu, false); 8233 if (ret) 8234 return ret; 8235 8236 vmx->nested.nested_run_pending = 1; 8237 vmx->nested.smm.guest_mode = false; 8238 } 8239 return 0; 8240 } 8241 8242 void vmx_enable_smi_window(struct kvm_vcpu *vcpu) 8243 { 8244 /* RSM will cause a vmexit anyway. */ 8245 } 8246 #endif 8247 8248 bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 8249 { 8250 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu); 8251 } 8252 8253 void vmx_migrate_timers(struct kvm_vcpu *vcpu) 8254 { 8255 if (is_guest_mode(vcpu)) { 8256 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer; 8257 8258 if (hrtimer_try_to_cancel(timer) == 1) 8259 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 8260 } 8261 } 8262 8263 void vmx_hardware_unsetup(void) 8264 { 8265 kvm_set_posted_intr_wakeup_handler(NULL); 8266 8267 if (nested) 8268 nested_vmx_hardware_unsetup(); 8269 8270 free_kvm_area(); 8271 } 8272 8273 void vmx_vm_destroy(struct kvm *kvm) 8274 { 8275 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 8276 8277 free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm)); 8278 } 8279 8280 /* 8281 * Note, the SDM states that the linear address is masked *after* the modified 8282 * canonicality check, whereas KVM masks (untags) the address and then performs 8283 * a "normal" canonicality check. Functionally, the two methods are identical, 8284 * and when the masking occurs relative to the canonicality check isn't visible 8285 * to software, i.e. KVM's behavior doesn't violate the SDM. 8286 */ 8287 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags) 8288 { 8289 int lam_bit; 8290 unsigned long cr3_bits; 8291 8292 if (flags & (X86EMUL_F_FETCH | X86EMUL_F_IMPLICIT | X86EMUL_F_INVLPG)) 8293 return gva; 8294 8295 if (!is_64_bit_mode(vcpu)) 8296 return gva; 8297 8298 /* 8299 * Bit 63 determines if the address should be treated as user address 8300 * or a supervisor address. 8301 */ 8302 if (!(gva & BIT_ULL(63))) { 8303 cr3_bits = kvm_get_active_cr3_lam_bits(vcpu); 8304 if (!(cr3_bits & (X86_CR3_LAM_U57 | X86_CR3_LAM_U48))) 8305 return gva; 8306 8307 /* LAM_U48 is ignored if LAM_U57 is set. */ 8308 lam_bit = cr3_bits & X86_CR3_LAM_U57 ? 56 : 47; 8309 } else { 8310 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_LAM_SUP)) 8311 return gva; 8312 8313 lam_bit = kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 56 : 47; 8314 } 8315 8316 /* 8317 * Untag the address by sign-extending the lam_bit, but NOT to bit 63. 8318 * Bit 63 is retained from the raw virtual address so that untagging 8319 * doesn't change a user access to a supervisor access, and vice versa. 8320 */ 8321 return (sign_extend64(gva, lam_bit) & ~BIT_ULL(63)) | (gva & BIT_ULL(63)); 8322 } 8323 8324 static unsigned int vmx_handle_intel_pt_intr(void) 8325 { 8326 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 8327 8328 /* '0' on failure so that the !PT case can use a RET0 static call. */ 8329 if (!vcpu || !kvm_handling_nmi_from_guest(vcpu)) 8330 return 0; 8331 8332 kvm_make_request(KVM_REQ_PMI, vcpu); 8333 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT, 8334 (unsigned long *)&vcpu->arch.pmu.global_status); 8335 return 1; 8336 } 8337 8338 static __init void vmx_setup_user_return_msrs(void) 8339 { 8340 8341 /* 8342 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm 8343 * will emulate SYSCALL in legacy mode if the vendor string in guest 8344 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To 8345 * support this emulation, MSR_STAR is included in the list for i386, 8346 * but is never loaded into hardware. MSR_CSTAR is also never loaded 8347 * into hardware and is here purely for emulation purposes. 8348 */ 8349 const u32 vmx_uret_msrs_list[] = { 8350 #ifdef CONFIG_X86_64 8351 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, 8352 #endif 8353 MSR_EFER, MSR_TSC_AUX, MSR_STAR, 8354 MSR_IA32_TSX_CTRL, 8355 }; 8356 int i; 8357 8358 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS); 8359 8360 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) 8361 kvm_add_user_return_msr(vmx_uret_msrs_list[i]); 8362 } 8363 8364 static void __init vmx_setup_me_spte_mask(void) 8365 { 8366 u64 me_mask = 0; 8367 8368 /* 8369 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to 8370 * kvm_host.maxphyaddr. On MKTME and/or TDX capable systems, 8371 * boot_cpu_data.x86_phys_bits holds the actual physical address 8372 * w/o the KeyID bits, and kvm_host.maxphyaddr equals to 8373 * MAXPHYADDR reported by CPUID. Those bits between are KeyID bits. 8374 */ 8375 if (boot_cpu_data.x86_phys_bits != kvm_host.maxphyaddr) 8376 me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits, 8377 kvm_host.maxphyaddr - 1); 8378 8379 /* 8380 * Unlike SME, host kernel doesn't support setting up any 8381 * MKTME KeyID on Intel platforms. No memory encryption 8382 * bits should be included into the SPTE. 8383 */ 8384 kvm_mmu_set_me_spte_mask(0, me_mask); 8385 } 8386 8387 __init int vmx_hardware_setup(void) 8388 { 8389 unsigned long host_bndcfgs; 8390 struct desc_ptr dt; 8391 int r; 8392 8393 store_idt(&dt); 8394 host_idt_base = dt.address; 8395 8396 vmx_setup_user_return_msrs(); 8397 8398 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) 8399 return -EIO; 8400 8401 if (cpu_has_perf_global_ctrl_bug()) 8402 pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " 8403 "does not work properly. Using workaround\n"); 8404 8405 if (boot_cpu_has(X86_FEATURE_NX)) 8406 kvm_enable_efer_bits(EFER_NX); 8407 8408 if (boot_cpu_has(X86_FEATURE_MPX)) { 8409 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); 8410 WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost"); 8411 } 8412 8413 if (!cpu_has_vmx_mpx()) 8414 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 8415 XFEATURE_MASK_BNDCSR); 8416 8417 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || 8418 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) 8419 enable_vpid = 0; 8420 8421 if (!cpu_has_vmx_ept() || 8422 !cpu_has_vmx_ept_4levels() || 8423 !cpu_has_vmx_ept_mt_wb() || 8424 !cpu_has_vmx_invept_global()) 8425 enable_ept = 0; 8426 8427 /* NX support is required for shadow paging. */ 8428 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) { 8429 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 8430 return -EOPNOTSUPP; 8431 } 8432 8433 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) 8434 enable_ept_ad_bits = 0; 8435 8436 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) 8437 enable_unrestricted_guest = 0; 8438 8439 if (!cpu_has_vmx_flexpriority()) 8440 flexpriority_enabled = 0; 8441 8442 if (!cpu_has_virtual_nmis()) 8443 enable_vnmi = 0; 8444 8445 #ifdef CONFIG_X86_SGX_KVM 8446 if (!cpu_has_vmx_encls_vmexit()) 8447 enable_sgx = false; 8448 #endif 8449 8450 /* 8451 * set_apic_access_page_addr() is used to reload apic access 8452 * page upon invalidation. No need to do anything if not 8453 * using the APIC_ACCESS_ADDR VMCS field. 8454 */ 8455 if (!flexpriority_enabled) 8456 vt_x86_ops.set_apic_access_page_addr = NULL; 8457 8458 if (!cpu_has_vmx_tpr_shadow()) 8459 vt_x86_ops.update_cr8_intercept = NULL; 8460 8461 #if IS_ENABLED(CONFIG_HYPERV) 8462 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH 8463 && enable_ept) { 8464 vt_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs; 8465 vt_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range; 8466 } 8467 #endif 8468 8469 if (!cpu_has_vmx_ple()) { 8470 ple_gap = 0; 8471 ple_window = 0; 8472 ple_window_grow = 0; 8473 ple_window_max = 0; 8474 ple_window_shrink = 0; 8475 } 8476 8477 if (!cpu_has_vmx_apicv()) 8478 enable_apicv = 0; 8479 if (!enable_apicv) 8480 vt_x86_ops.sync_pir_to_irr = NULL; 8481 8482 if (!enable_apicv || !cpu_has_vmx_ipiv()) 8483 enable_ipiv = false; 8484 8485 if (cpu_has_vmx_tsc_scaling()) 8486 kvm_caps.has_tsc_control = true; 8487 8488 kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; 8489 kvm_caps.tsc_scaling_ratio_frac_bits = 48; 8490 kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection(); 8491 kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit(); 8492 8493 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ 8494 8495 if (enable_ept) 8496 kvm_mmu_set_ept_masks(enable_ept_ad_bits, 8497 cpu_has_vmx_ept_execute_only()); 8498 8499 /* 8500 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID 8501 * bits to shadow_zero_check. 8502 */ 8503 vmx_setup_me_spte_mask(); 8504 8505 kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(), 8506 ept_caps_to_lpage_level(vmx_capability.ept)); 8507 8508 /* 8509 * Only enable PML when hardware supports PML feature, and both EPT 8510 * and EPT A/D bit features are enabled -- PML depends on them to work. 8511 */ 8512 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) 8513 enable_pml = 0; 8514 8515 if (!enable_pml) 8516 vt_x86_ops.cpu_dirty_log_size = 0; 8517 8518 if (!cpu_has_vmx_preemption_timer()) 8519 enable_preemption_timer = false; 8520 8521 if (enable_preemption_timer) { 8522 u64 use_timer_freq = 5000ULL * 1000 * 1000; 8523 8524 cpu_preemption_timer_multi = 8525 vmx_misc_preemption_timer_rate(vmcs_config.misc); 8526 8527 if (tsc_khz) 8528 use_timer_freq = (u64)tsc_khz * 1000; 8529 use_timer_freq >>= cpu_preemption_timer_multi; 8530 8531 /* 8532 * KVM "disables" the preemption timer by setting it to its max 8533 * value. Don't use the timer if it might cause spurious exits 8534 * at a rate faster than 0.1 Hz (of uninterrupted guest time). 8535 */ 8536 if (use_timer_freq > 0xffffffffu / 10) 8537 enable_preemption_timer = false; 8538 } 8539 8540 if (!enable_preemption_timer) { 8541 vt_x86_ops.set_hv_timer = NULL; 8542 vt_x86_ops.cancel_hv_timer = NULL; 8543 } 8544 8545 kvm_caps.supported_mce_cap |= MCG_LMCE_P; 8546 kvm_caps.supported_mce_cap |= MCG_CMCI_P; 8547 8548 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) 8549 return -EINVAL; 8550 if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt()) 8551 pt_mode = PT_MODE_SYSTEM; 8552 if (pt_mode == PT_MODE_HOST_GUEST) 8553 vt_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr; 8554 else 8555 vt_init_ops.handle_intel_pt_intr = NULL; 8556 8557 setup_default_sgx_lepubkeyhash(); 8558 8559 if (nested) { 8560 nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept); 8561 8562 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); 8563 if (r) 8564 return r; 8565 } 8566 8567 vmx_set_cpu_caps(); 8568 8569 r = alloc_kvm_area(); 8570 if (r && nested) 8571 nested_vmx_hardware_unsetup(); 8572 8573 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler); 8574 8575 return r; 8576 } 8577 8578 static void vmx_cleanup_l1d_flush(void) 8579 { 8580 if (vmx_l1d_flush_pages) { 8581 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); 8582 vmx_l1d_flush_pages = NULL; 8583 } 8584 /* Restore state so sysfs ignores VMX */ 8585 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 8586 } 8587 8588 static void __vmx_exit(void) 8589 { 8590 allow_smaller_maxphyaddr = false; 8591 8592 vmx_cleanup_l1d_flush(); 8593 } 8594 8595 static void vmx_exit(void) 8596 { 8597 kvm_exit(); 8598 __vmx_exit(); 8599 kvm_x86_vendor_exit(); 8600 8601 } 8602 module_exit(vmx_exit); 8603 8604 static int __init vmx_init(void) 8605 { 8606 int r, cpu; 8607 8608 if (!kvm_is_vmx_supported()) 8609 return -EOPNOTSUPP; 8610 8611 /* 8612 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing 8613 * to unwind if a later step fails. 8614 */ 8615 hv_init_evmcs(); 8616 8617 r = kvm_x86_vendor_init(&vt_init_ops); 8618 if (r) 8619 return r; 8620 8621 /* 8622 * Must be called after common x86 init so enable_ept is properly set 8623 * up. Hand the parameter mitigation value in which was stored in 8624 * the pre module init parser. If no parameter was given, it will 8625 * contain 'auto' which will be turned into the default 'cond' 8626 * mitigation mode. 8627 */ 8628 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); 8629 if (r) 8630 goto err_l1d_flush; 8631 8632 for_each_possible_cpu(cpu) { 8633 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); 8634 8635 pi_init_cpu(cpu); 8636 } 8637 8638 vmx_check_vmcs12_offsets(); 8639 8640 /* 8641 * Shadow paging doesn't have a (further) performance penalty 8642 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it 8643 * by default 8644 */ 8645 if (!enable_ept) 8646 allow_smaller_maxphyaddr = true; 8647 8648 /* 8649 * Common KVM initialization _must_ come last, after this, /dev/kvm is 8650 * exposed to userspace! 8651 */ 8652 r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx), 8653 THIS_MODULE); 8654 if (r) 8655 goto err_kvm_init; 8656 8657 return 0; 8658 8659 err_kvm_init: 8660 __vmx_exit(); 8661 err_l1d_flush: 8662 kvm_x86_vendor_exit(); 8663 return r; 8664 } 8665 module_init(vmx_init); 8666