xref: /linux/arch/x86/kvm/vmx/vmx.c (revision b45e0c30bc58fb6fcaa42f1d1d813cefb8ab4117)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <linux/frame.h>
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 
31 #include <asm/apic.h>
32 #include <asm/asm.h>
33 #include <asm/cpu.h>
34 #include <asm/debugreg.h>
35 #include <asm/desc.h>
36 #include <asm/fpu/internal.h>
37 #include <asm/io.h>
38 #include <asm/irq_remapping.h>
39 #include <asm/kexec.h>
40 #include <asm/perf_event.h>
41 #include <asm/mce.h>
42 #include <asm/mmu_context.h>
43 #include <asm/mshyperv.h>
44 #include <asm/spec-ctrl.h>
45 #include <asm/virtext.h>
46 #include <asm/vmx.h>
47 
48 #include "capabilities.h"
49 #include "cpuid.h"
50 #include "evmcs.h"
51 #include "irq.h"
52 #include "kvm_cache_regs.h"
53 #include "lapic.h"
54 #include "mmu.h"
55 #include "nested.h"
56 #include "ops.h"
57 #include "pmu.h"
58 #include "trace.h"
59 #include "vmcs.h"
60 #include "vmcs12.h"
61 #include "vmx.h"
62 #include "x86.h"
63 
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66 
67 static const struct x86_cpu_id vmx_cpu_id[] = {
68 	X86_FEATURE_MATCH(X86_FEATURE_VMX),
69 	{}
70 };
71 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
72 
73 bool __read_mostly enable_vpid = 1;
74 module_param_named(vpid, enable_vpid, bool, 0444);
75 
76 static bool __read_mostly enable_vnmi = 1;
77 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
78 
79 bool __read_mostly flexpriority_enabled = 1;
80 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
81 
82 bool __read_mostly enable_ept = 1;
83 module_param_named(ept, enable_ept, bool, S_IRUGO);
84 
85 bool __read_mostly enable_unrestricted_guest = 1;
86 module_param_named(unrestricted_guest,
87 			enable_unrestricted_guest, bool, S_IRUGO);
88 
89 bool __read_mostly enable_ept_ad_bits = 1;
90 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
91 
92 static bool __read_mostly emulate_invalid_guest_state = true;
93 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
94 
95 static bool __read_mostly fasteoi = 1;
96 module_param(fasteoi, bool, S_IRUGO);
97 
98 static bool __read_mostly enable_apicv = 1;
99 module_param(enable_apicv, bool, S_IRUGO);
100 
101 /*
102  * If nested=1, nested virtualization is supported, i.e., guests may use
103  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
104  * use VMX instructions.
105  */
106 static bool __read_mostly nested = 1;
107 module_param(nested, bool, S_IRUGO);
108 
109 static u64 __read_mostly host_xss;
110 
111 bool __read_mostly enable_pml = 1;
112 module_param_named(pml, enable_pml, bool, S_IRUGO);
113 
114 static bool __read_mostly dump_invalid_vmcs = 0;
115 module_param(dump_invalid_vmcs, bool, 0644);
116 
117 #define MSR_BITMAP_MODE_X2APIC		1
118 #define MSR_BITMAP_MODE_X2APIC_APICV	2
119 
120 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
121 
122 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
123 static int __read_mostly cpu_preemption_timer_multi;
124 static bool __read_mostly enable_preemption_timer = 1;
125 #ifdef CONFIG_X86_64
126 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
127 #endif
128 
129 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
130 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
131 #define KVM_VM_CR0_ALWAYS_ON				\
132 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | 	\
133 	 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
134 #define KVM_CR4_GUEST_OWNED_BITS				      \
135 	(X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
136 	 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
137 
138 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
139 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
140 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
141 
142 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
143 
144 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
145 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
146 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
147 	RTIT_STATUS_BYTECNT))
148 
149 #define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
150 	(~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
151 
152 /*
153  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
154  * ple_gap:    upper bound on the amount of time between two successive
155  *             executions of PAUSE in a loop. Also indicate if ple enabled.
156  *             According to test, this time is usually smaller than 128 cycles.
157  * ple_window: upper bound on the amount of time a guest is allowed to execute
158  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
159  *             less than 2^12 cycles
160  * Time is measured based on a counter that runs at the same rate as the TSC,
161  * refer SDM volume 3b section 21.6.13 & 22.1.3.
162  */
163 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
164 module_param(ple_gap, uint, 0444);
165 
166 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
167 module_param(ple_window, uint, 0444);
168 
169 /* Default doubles per-vcpu window every exit. */
170 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
171 module_param(ple_window_grow, uint, 0444);
172 
173 /* Default resets per-vcpu window every exit to ple_window. */
174 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
175 module_param(ple_window_shrink, uint, 0444);
176 
177 /* Default is to compute the maximum so we can never overflow. */
178 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179 module_param(ple_window_max, uint, 0444);
180 
181 /* Default is SYSTEM mode, 1 for host-guest mode */
182 int __read_mostly pt_mode = PT_MODE_SYSTEM;
183 module_param(pt_mode, int, S_IRUGO);
184 
185 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
186 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
187 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
188 
189 /* Storage for pre module init parameter parsing */
190 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
191 
192 static const struct {
193 	const char *option;
194 	bool for_parse;
195 } vmentry_l1d_param[] = {
196 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
197 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
198 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
199 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
200 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
201 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
202 };
203 
204 #define L1D_CACHE_ORDER 4
205 static void *vmx_l1d_flush_pages;
206 
207 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
208 {
209 	struct page *page;
210 	unsigned int i;
211 
212 	if (!enable_ept) {
213 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
214 		return 0;
215 	}
216 
217 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
218 		u64 msr;
219 
220 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
221 		if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
222 			l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
223 			return 0;
224 		}
225 	}
226 
227 	/* If set to auto use the default l1tf mitigation method */
228 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
229 		switch (l1tf_mitigation) {
230 		case L1TF_MITIGATION_OFF:
231 			l1tf = VMENTER_L1D_FLUSH_NEVER;
232 			break;
233 		case L1TF_MITIGATION_FLUSH_NOWARN:
234 		case L1TF_MITIGATION_FLUSH:
235 		case L1TF_MITIGATION_FLUSH_NOSMT:
236 			l1tf = VMENTER_L1D_FLUSH_COND;
237 			break;
238 		case L1TF_MITIGATION_FULL:
239 		case L1TF_MITIGATION_FULL_FORCE:
240 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
241 			break;
242 		}
243 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
244 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
245 	}
246 
247 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
248 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
249 		/*
250 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
251 		 * lifetime and so should not be charged to a memcg.
252 		 */
253 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
254 		if (!page)
255 			return -ENOMEM;
256 		vmx_l1d_flush_pages = page_address(page);
257 
258 		/*
259 		 * Initialize each page with a different pattern in
260 		 * order to protect against KSM in the nested
261 		 * virtualization case.
262 		 */
263 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
264 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
265 			       PAGE_SIZE);
266 		}
267 	}
268 
269 	l1tf_vmx_mitigation = l1tf;
270 
271 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
272 		static_branch_enable(&vmx_l1d_should_flush);
273 	else
274 		static_branch_disable(&vmx_l1d_should_flush);
275 
276 	if (l1tf == VMENTER_L1D_FLUSH_COND)
277 		static_branch_enable(&vmx_l1d_flush_cond);
278 	else
279 		static_branch_disable(&vmx_l1d_flush_cond);
280 	return 0;
281 }
282 
283 static int vmentry_l1d_flush_parse(const char *s)
284 {
285 	unsigned int i;
286 
287 	if (s) {
288 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
289 			if (vmentry_l1d_param[i].for_parse &&
290 			    sysfs_streq(s, vmentry_l1d_param[i].option))
291 				return i;
292 		}
293 	}
294 	return -EINVAL;
295 }
296 
297 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
298 {
299 	int l1tf, ret;
300 
301 	l1tf = vmentry_l1d_flush_parse(s);
302 	if (l1tf < 0)
303 		return l1tf;
304 
305 	if (!boot_cpu_has(X86_BUG_L1TF))
306 		return 0;
307 
308 	/*
309 	 * Has vmx_init() run already? If not then this is the pre init
310 	 * parameter parsing. In that case just store the value and let
311 	 * vmx_init() do the proper setup after enable_ept has been
312 	 * established.
313 	 */
314 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
315 		vmentry_l1d_flush_param = l1tf;
316 		return 0;
317 	}
318 
319 	mutex_lock(&vmx_l1d_flush_mutex);
320 	ret = vmx_setup_l1d_flush(l1tf);
321 	mutex_unlock(&vmx_l1d_flush_mutex);
322 	return ret;
323 }
324 
325 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
326 {
327 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
328 		return sprintf(s, "???\n");
329 
330 	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
331 }
332 
333 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
334 	.set = vmentry_l1d_flush_set,
335 	.get = vmentry_l1d_flush_get,
336 };
337 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
338 
339 static bool guest_state_valid(struct kvm_vcpu *vcpu);
340 static u32 vmx_segment_access_rights(struct kvm_segment *var);
341 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
342 							  u32 msr, int type);
343 
344 void vmx_vmexit(void);
345 
346 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
347 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
348 /*
349  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
350  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
351  */
352 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
353 
354 /*
355  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
356  * can find which vCPU should be waken up.
357  */
358 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
359 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
360 
361 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
362 static DEFINE_SPINLOCK(vmx_vpid_lock);
363 
364 struct vmcs_config vmcs_config;
365 struct vmx_capability vmx_capability;
366 
367 #define VMX_SEGMENT_FIELD(seg)					\
368 	[VCPU_SREG_##seg] = {                                   \
369 		.selector = GUEST_##seg##_SELECTOR,		\
370 		.base = GUEST_##seg##_BASE,		   	\
371 		.limit = GUEST_##seg##_LIMIT,		   	\
372 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
373 	}
374 
375 static const struct kvm_vmx_segment_field {
376 	unsigned selector;
377 	unsigned base;
378 	unsigned limit;
379 	unsigned ar_bytes;
380 } kvm_vmx_segment_fields[] = {
381 	VMX_SEGMENT_FIELD(CS),
382 	VMX_SEGMENT_FIELD(DS),
383 	VMX_SEGMENT_FIELD(ES),
384 	VMX_SEGMENT_FIELD(FS),
385 	VMX_SEGMENT_FIELD(GS),
386 	VMX_SEGMENT_FIELD(SS),
387 	VMX_SEGMENT_FIELD(TR),
388 	VMX_SEGMENT_FIELD(LDTR),
389 };
390 
391 u64 host_efer;
392 static unsigned long host_idt_base;
393 
394 /*
395  * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
396  * will emulate SYSCALL in legacy mode if the vendor string in guest
397  * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
398  * support this emulation, IA32_STAR must always be included in
399  * vmx_msr_index[], even in i386 builds.
400  */
401 const u32 vmx_msr_index[] = {
402 #ifdef CONFIG_X86_64
403 	MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
404 #endif
405 	MSR_EFER, MSR_TSC_AUX, MSR_STAR,
406 };
407 
408 #if IS_ENABLED(CONFIG_HYPERV)
409 static bool __read_mostly enlightened_vmcs = true;
410 module_param(enlightened_vmcs, bool, 0444);
411 
412 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
413 static void check_ept_pointer_match(struct kvm *kvm)
414 {
415 	struct kvm_vcpu *vcpu;
416 	u64 tmp_eptp = INVALID_PAGE;
417 	int i;
418 
419 	kvm_for_each_vcpu(i, vcpu, kvm) {
420 		if (!VALID_PAGE(tmp_eptp)) {
421 			tmp_eptp = to_vmx(vcpu)->ept_pointer;
422 		} else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
423 			to_kvm_vmx(kvm)->ept_pointers_match
424 				= EPT_POINTERS_MISMATCH;
425 			return;
426 		}
427 	}
428 
429 	to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
430 }
431 
432 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
433 		void *data)
434 {
435 	struct kvm_tlb_range *range = data;
436 
437 	return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
438 			range->pages);
439 }
440 
441 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
442 		struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
443 {
444 	u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
445 
446 	/*
447 	 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
448 	 * of the base of EPT PML4 table, strip off EPT configuration
449 	 * information.
450 	 */
451 	if (range)
452 		return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
453 				kvm_fill_hv_flush_list_func, (void *)range);
454 	else
455 		return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
456 }
457 
458 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
459 		struct kvm_tlb_range *range)
460 {
461 	struct kvm_vcpu *vcpu;
462 	int ret = 0, i;
463 
464 	spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
465 
466 	if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
467 		check_ept_pointer_match(kvm);
468 
469 	if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
470 		kvm_for_each_vcpu(i, vcpu, kvm) {
471 			/* If ept_pointer is invalid pointer, bypass flush request. */
472 			if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
473 				ret |= __hv_remote_flush_tlb_with_range(
474 					kvm, vcpu, range);
475 		}
476 	} else {
477 		ret = __hv_remote_flush_tlb_with_range(kvm,
478 				kvm_get_vcpu(kvm, 0), range);
479 	}
480 
481 	spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
482 	return ret;
483 }
484 static int hv_remote_flush_tlb(struct kvm *kvm)
485 {
486 	return hv_remote_flush_tlb_with_range(kvm, NULL);
487 }
488 
489 #endif /* IS_ENABLED(CONFIG_HYPERV) */
490 
491 /*
492  * Comment's format: document - errata name - stepping - processor name.
493  * Refer from
494  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
495  */
496 static u32 vmx_preemption_cpu_tfms[] = {
497 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
498 0x000206E6,
499 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
500 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
501 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
502 0x00020652,
503 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
504 0x00020655,
505 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
506 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
507 /*
508  * 320767.pdf - AAP86  - B1 -
509  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
510  */
511 0x000106E5,
512 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
513 0x000106A0,
514 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
515 0x000106A1,
516 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
517 0x000106A4,
518  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
519  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
520  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
521 0x000106A5,
522  /* Xeon E3-1220 V2 */
523 0x000306A8,
524 };
525 
526 static inline bool cpu_has_broken_vmx_preemption_timer(void)
527 {
528 	u32 eax = cpuid_eax(0x00000001), i;
529 
530 	/* Clear the reserved bits */
531 	eax &= ~(0x3U << 14 | 0xfU << 28);
532 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
533 		if (eax == vmx_preemption_cpu_tfms[i])
534 			return true;
535 
536 	return false;
537 }
538 
539 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
540 {
541 	return flexpriority_enabled && lapic_in_kernel(vcpu);
542 }
543 
544 static inline bool report_flexpriority(void)
545 {
546 	return flexpriority_enabled;
547 }
548 
549 static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
550 {
551 	int i;
552 
553 	for (i = 0; i < vmx->nmsrs; ++i)
554 		if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
555 			return i;
556 	return -1;
557 }
558 
559 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
560 {
561 	int i;
562 
563 	i = __find_msr_index(vmx, msr);
564 	if (i >= 0)
565 		return &vmx->guest_msrs[i];
566 	return NULL;
567 }
568 
569 void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
570 {
571 	vmcs_clear(loaded_vmcs->vmcs);
572 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
573 		vmcs_clear(loaded_vmcs->shadow_vmcs);
574 	loaded_vmcs->cpu = -1;
575 	loaded_vmcs->launched = 0;
576 }
577 
578 #ifdef CONFIG_KEXEC_CORE
579 /*
580  * This bitmap is used to indicate whether the vmclear
581  * operation is enabled on all cpus. All disabled by
582  * default.
583  */
584 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
585 
586 static inline void crash_enable_local_vmclear(int cpu)
587 {
588 	cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
589 }
590 
591 static inline void crash_disable_local_vmclear(int cpu)
592 {
593 	cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
594 }
595 
596 static inline int crash_local_vmclear_enabled(int cpu)
597 {
598 	return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
599 }
600 
601 static void crash_vmclear_local_loaded_vmcss(void)
602 {
603 	int cpu = raw_smp_processor_id();
604 	struct loaded_vmcs *v;
605 
606 	if (!crash_local_vmclear_enabled(cpu))
607 		return;
608 
609 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
610 			    loaded_vmcss_on_cpu_link)
611 		vmcs_clear(v->vmcs);
612 }
613 #else
614 static inline void crash_enable_local_vmclear(int cpu) { }
615 static inline void crash_disable_local_vmclear(int cpu) { }
616 #endif /* CONFIG_KEXEC_CORE */
617 
618 static void __loaded_vmcs_clear(void *arg)
619 {
620 	struct loaded_vmcs *loaded_vmcs = arg;
621 	int cpu = raw_smp_processor_id();
622 
623 	if (loaded_vmcs->cpu != cpu)
624 		return; /* vcpu migration can race with cpu offline */
625 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
626 		per_cpu(current_vmcs, cpu) = NULL;
627 	crash_disable_local_vmclear(cpu);
628 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
629 
630 	/*
631 	 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
632 	 * is before setting loaded_vmcs->vcpu to -1 which is done in
633 	 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
634 	 * then adds the vmcs into percpu list before it is deleted.
635 	 */
636 	smp_wmb();
637 
638 	loaded_vmcs_init(loaded_vmcs);
639 	crash_enable_local_vmclear(cpu);
640 }
641 
642 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
643 {
644 	int cpu = loaded_vmcs->cpu;
645 
646 	if (cpu != -1)
647 		smp_call_function_single(cpu,
648 			 __loaded_vmcs_clear, loaded_vmcs, 1);
649 }
650 
651 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
652 				       unsigned field)
653 {
654 	bool ret;
655 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
656 
657 	if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
658 		vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
659 		vmx->segment_cache.bitmask = 0;
660 	}
661 	ret = vmx->segment_cache.bitmask & mask;
662 	vmx->segment_cache.bitmask |= mask;
663 	return ret;
664 }
665 
666 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
667 {
668 	u16 *p = &vmx->segment_cache.seg[seg].selector;
669 
670 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
671 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
672 	return *p;
673 }
674 
675 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
676 {
677 	ulong *p = &vmx->segment_cache.seg[seg].base;
678 
679 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
680 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
681 	return *p;
682 }
683 
684 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
685 {
686 	u32 *p = &vmx->segment_cache.seg[seg].limit;
687 
688 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
689 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
690 	return *p;
691 }
692 
693 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
694 {
695 	u32 *p = &vmx->segment_cache.seg[seg].ar;
696 
697 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
698 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
699 	return *p;
700 }
701 
702 void update_exception_bitmap(struct kvm_vcpu *vcpu)
703 {
704 	u32 eb;
705 
706 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
707 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
708 	/*
709 	 * Guest access to VMware backdoor ports could legitimately
710 	 * trigger #GP because of TSS I/O permission bitmap.
711 	 * We intercept those #GP and allow access to them anyway
712 	 * as VMware does.
713 	 */
714 	if (enable_vmware_backdoor)
715 		eb |= (1u << GP_VECTOR);
716 	if ((vcpu->guest_debug &
717 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
718 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
719 		eb |= 1u << BP_VECTOR;
720 	if (to_vmx(vcpu)->rmode.vm86_active)
721 		eb = ~0;
722 	if (enable_ept)
723 		eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
724 
725 	/* When we are running a nested L2 guest and L1 specified for it a
726 	 * certain exception bitmap, we must trap the same exceptions and pass
727 	 * them to L1. When running L2, we will only handle the exceptions
728 	 * specified above if L1 did not want them.
729 	 */
730 	if (is_guest_mode(vcpu))
731 		eb |= get_vmcs12(vcpu)->exception_bitmap;
732 
733 	vmcs_write32(EXCEPTION_BITMAP, eb);
734 }
735 
736 /*
737  * Check if MSR is intercepted for currently loaded MSR bitmap.
738  */
739 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
740 {
741 	unsigned long *msr_bitmap;
742 	int f = sizeof(unsigned long);
743 
744 	if (!cpu_has_vmx_msr_bitmap())
745 		return true;
746 
747 	msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
748 
749 	if (msr <= 0x1fff) {
750 		return !!test_bit(msr, msr_bitmap + 0x800 / f);
751 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
752 		msr &= 0x1fff;
753 		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
754 	}
755 
756 	return true;
757 }
758 
759 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
760 		unsigned long entry, unsigned long exit)
761 {
762 	vm_entry_controls_clearbit(vmx, entry);
763 	vm_exit_controls_clearbit(vmx, exit);
764 }
765 
766 static int find_msr(struct vmx_msrs *m, unsigned int msr)
767 {
768 	unsigned int i;
769 
770 	for (i = 0; i < m->nr; ++i) {
771 		if (m->val[i].index == msr)
772 			return i;
773 	}
774 	return -ENOENT;
775 }
776 
777 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
778 {
779 	int i;
780 	struct msr_autoload *m = &vmx->msr_autoload;
781 
782 	switch (msr) {
783 	case MSR_EFER:
784 		if (cpu_has_load_ia32_efer()) {
785 			clear_atomic_switch_msr_special(vmx,
786 					VM_ENTRY_LOAD_IA32_EFER,
787 					VM_EXIT_LOAD_IA32_EFER);
788 			return;
789 		}
790 		break;
791 	case MSR_CORE_PERF_GLOBAL_CTRL:
792 		if (cpu_has_load_perf_global_ctrl()) {
793 			clear_atomic_switch_msr_special(vmx,
794 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
795 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
796 			return;
797 		}
798 		break;
799 	}
800 	i = find_msr(&m->guest, msr);
801 	if (i < 0)
802 		goto skip_guest;
803 	--m->guest.nr;
804 	m->guest.val[i] = m->guest.val[m->guest.nr];
805 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
806 
807 skip_guest:
808 	i = find_msr(&m->host, msr);
809 	if (i < 0)
810 		return;
811 
812 	--m->host.nr;
813 	m->host.val[i] = m->host.val[m->host.nr];
814 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
815 }
816 
817 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
818 		unsigned long entry, unsigned long exit,
819 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
820 		u64 guest_val, u64 host_val)
821 {
822 	vmcs_write64(guest_val_vmcs, guest_val);
823 	if (host_val_vmcs != HOST_IA32_EFER)
824 		vmcs_write64(host_val_vmcs, host_val);
825 	vm_entry_controls_setbit(vmx, entry);
826 	vm_exit_controls_setbit(vmx, exit);
827 }
828 
829 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
830 				  u64 guest_val, u64 host_val, bool entry_only)
831 {
832 	int i, j = 0;
833 	struct msr_autoload *m = &vmx->msr_autoload;
834 
835 	switch (msr) {
836 	case MSR_EFER:
837 		if (cpu_has_load_ia32_efer()) {
838 			add_atomic_switch_msr_special(vmx,
839 					VM_ENTRY_LOAD_IA32_EFER,
840 					VM_EXIT_LOAD_IA32_EFER,
841 					GUEST_IA32_EFER,
842 					HOST_IA32_EFER,
843 					guest_val, host_val);
844 			return;
845 		}
846 		break;
847 	case MSR_CORE_PERF_GLOBAL_CTRL:
848 		if (cpu_has_load_perf_global_ctrl()) {
849 			add_atomic_switch_msr_special(vmx,
850 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
851 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
852 					GUEST_IA32_PERF_GLOBAL_CTRL,
853 					HOST_IA32_PERF_GLOBAL_CTRL,
854 					guest_val, host_val);
855 			return;
856 		}
857 		break;
858 	case MSR_IA32_PEBS_ENABLE:
859 		/* PEBS needs a quiescent period after being disabled (to write
860 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
861 		 * provide that period, so a CPU could write host's record into
862 		 * guest's memory.
863 		 */
864 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
865 	}
866 
867 	i = find_msr(&m->guest, msr);
868 	if (!entry_only)
869 		j = find_msr(&m->host, msr);
870 
871 	if ((i < 0 && m->guest.nr == NR_AUTOLOAD_MSRS) ||
872 		(j < 0 &&  m->host.nr == NR_AUTOLOAD_MSRS)) {
873 		printk_once(KERN_WARNING "Not enough msr switch entries. "
874 				"Can't add msr %x\n", msr);
875 		return;
876 	}
877 	if (i < 0) {
878 		i = m->guest.nr++;
879 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
880 	}
881 	m->guest.val[i].index = msr;
882 	m->guest.val[i].value = guest_val;
883 
884 	if (entry_only)
885 		return;
886 
887 	if (j < 0) {
888 		j = m->host.nr++;
889 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
890 	}
891 	m->host.val[j].index = msr;
892 	m->host.val[j].value = host_val;
893 }
894 
895 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
896 {
897 	u64 guest_efer = vmx->vcpu.arch.efer;
898 	u64 ignore_bits = 0;
899 
900 	if (!enable_ept) {
901 		/*
902 		 * NX is needed to handle CR0.WP=1, CR4.SMEP=1.  Testing
903 		 * host CPUID is more efficient than testing guest CPUID
904 		 * or CR4.  Host SMEP is anyway a requirement for guest SMEP.
905 		 */
906 		if (boot_cpu_has(X86_FEATURE_SMEP))
907 			guest_efer |= EFER_NX;
908 		else if (!(guest_efer & EFER_NX))
909 			ignore_bits |= EFER_NX;
910 	}
911 
912 	/*
913 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
914 	 */
915 	ignore_bits |= EFER_SCE;
916 #ifdef CONFIG_X86_64
917 	ignore_bits |= EFER_LMA | EFER_LME;
918 	/* SCE is meaningful only in long mode on Intel */
919 	if (guest_efer & EFER_LMA)
920 		ignore_bits &= ~(u64)EFER_SCE;
921 #endif
922 
923 	/*
924 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
925 	 * On CPUs that support "load IA32_EFER", always switch EFER
926 	 * atomically, since it's faster than switching it manually.
927 	 */
928 	if (cpu_has_load_ia32_efer() ||
929 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
930 		if (!(guest_efer & EFER_LMA))
931 			guest_efer &= ~EFER_LME;
932 		if (guest_efer != host_efer)
933 			add_atomic_switch_msr(vmx, MSR_EFER,
934 					      guest_efer, host_efer, false);
935 		else
936 			clear_atomic_switch_msr(vmx, MSR_EFER);
937 		return false;
938 	} else {
939 		clear_atomic_switch_msr(vmx, MSR_EFER);
940 
941 		guest_efer &= ~ignore_bits;
942 		guest_efer |= host_efer & ignore_bits;
943 
944 		vmx->guest_msrs[efer_offset].data = guest_efer;
945 		vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
946 
947 		return true;
948 	}
949 }
950 
951 #ifdef CONFIG_X86_32
952 /*
953  * On 32-bit kernels, VM exits still load the FS and GS bases from the
954  * VMCS rather than the segment table.  KVM uses this helper to figure
955  * out the current bases to poke them into the VMCS before entry.
956  */
957 static unsigned long segment_base(u16 selector)
958 {
959 	struct desc_struct *table;
960 	unsigned long v;
961 
962 	if (!(selector & ~SEGMENT_RPL_MASK))
963 		return 0;
964 
965 	table = get_current_gdt_ro();
966 
967 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
968 		u16 ldt_selector = kvm_read_ldt();
969 
970 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
971 			return 0;
972 
973 		table = (struct desc_struct *)segment_base(ldt_selector);
974 	}
975 	v = get_desc_base(&table[selector >> 3]);
976 	return v;
977 }
978 #endif
979 
980 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
981 {
982 	u32 i;
983 
984 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
985 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
986 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
987 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
988 	for (i = 0; i < addr_range; i++) {
989 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
990 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
991 	}
992 }
993 
994 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
995 {
996 	u32 i;
997 
998 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
999 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1000 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1001 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1002 	for (i = 0; i < addr_range; i++) {
1003 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1004 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1005 	}
1006 }
1007 
1008 static void pt_guest_enter(struct vcpu_vmx *vmx)
1009 {
1010 	if (pt_mode == PT_MODE_SYSTEM)
1011 		return;
1012 
1013 	/*
1014 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1015 	 * Save host state before VM entry.
1016 	 */
1017 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1018 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1019 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1020 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1021 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1022 	}
1023 }
1024 
1025 static void pt_guest_exit(struct vcpu_vmx *vmx)
1026 {
1027 	if (pt_mode == PT_MODE_SYSTEM)
1028 		return;
1029 
1030 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1031 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1032 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1033 	}
1034 
1035 	/* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1036 	wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1037 }
1038 
1039 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1040 			unsigned long fs_base, unsigned long gs_base)
1041 {
1042 	if (unlikely(fs_sel != host->fs_sel)) {
1043 		if (!(fs_sel & 7))
1044 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1045 		else
1046 			vmcs_write16(HOST_FS_SELECTOR, 0);
1047 		host->fs_sel = fs_sel;
1048 	}
1049 	if (unlikely(gs_sel != host->gs_sel)) {
1050 		if (!(gs_sel & 7))
1051 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1052 		else
1053 			vmcs_write16(HOST_GS_SELECTOR, 0);
1054 		host->gs_sel = gs_sel;
1055 	}
1056 	if (unlikely(fs_base != host->fs_base)) {
1057 		vmcs_writel(HOST_FS_BASE, fs_base);
1058 		host->fs_base = fs_base;
1059 	}
1060 	if (unlikely(gs_base != host->gs_base)) {
1061 		vmcs_writel(HOST_GS_BASE, gs_base);
1062 		host->gs_base = gs_base;
1063 	}
1064 }
1065 
1066 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1067 {
1068 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1069 	struct vmcs_host_state *host_state;
1070 #ifdef CONFIG_X86_64
1071 	int cpu = raw_smp_processor_id();
1072 #endif
1073 	unsigned long fs_base, gs_base;
1074 	u16 fs_sel, gs_sel;
1075 	int i;
1076 
1077 	vmx->req_immediate_exit = false;
1078 
1079 	/*
1080 	 * Note that guest MSRs to be saved/restored can also be changed
1081 	 * when guest state is loaded. This happens when guest transitions
1082 	 * to/from long-mode by setting MSR_EFER.LMA.
1083 	 */
1084 	if (!vmx->guest_msrs_ready) {
1085 		vmx->guest_msrs_ready = true;
1086 		for (i = 0; i < vmx->save_nmsrs; ++i)
1087 			kvm_set_shared_msr(vmx->guest_msrs[i].index,
1088 					   vmx->guest_msrs[i].data,
1089 					   vmx->guest_msrs[i].mask);
1090 
1091 	}
1092 	if (vmx->guest_state_loaded)
1093 		return;
1094 
1095 	host_state = &vmx->loaded_vmcs->host_state;
1096 
1097 	/*
1098 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1099 	 * allow segment selectors with cpl > 0 or ti == 1.
1100 	 */
1101 	host_state->ldt_sel = kvm_read_ldt();
1102 
1103 #ifdef CONFIG_X86_64
1104 	savesegment(ds, host_state->ds_sel);
1105 	savesegment(es, host_state->es_sel);
1106 
1107 	gs_base = cpu_kernelmode_gs_base(cpu);
1108 	if (likely(is_64bit_mm(current->mm))) {
1109 		save_fsgs_for_kvm();
1110 		fs_sel = current->thread.fsindex;
1111 		gs_sel = current->thread.gsindex;
1112 		fs_base = current->thread.fsbase;
1113 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1114 	} else {
1115 		savesegment(fs, fs_sel);
1116 		savesegment(gs, gs_sel);
1117 		fs_base = read_msr(MSR_FS_BASE);
1118 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1119 	}
1120 
1121 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1122 #else
1123 	savesegment(fs, fs_sel);
1124 	savesegment(gs, gs_sel);
1125 	fs_base = segment_base(fs_sel);
1126 	gs_base = segment_base(gs_sel);
1127 #endif
1128 
1129 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1130 	vmx->guest_state_loaded = true;
1131 }
1132 
1133 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1134 {
1135 	struct vmcs_host_state *host_state;
1136 
1137 	if (!vmx->guest_state_loaded)
1138 		return;
1139 
1140 	host_state = &vmx->loaded_vmcs->host_state;
1141 
1142 	++vmx->vcpu.stat.host_state_reload;
1143 
1144 #ifdef CONFIG_X86_64
1145 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1146 #endif
1147 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1148 		kvm_load_ldt(host_state->ldt_sel);
1149 #ifdef CONFIG_X86_64
1150 		load_gs_index(host_state->gs_sel);
1151 #else
1152 		loadsegment(gs, host_state->gs_sel);
1153 #endif
1154 	}
1155 	if (host_state->fs_sel & 7)
1156 		loadsegment(fs, host_state->fs_sel);
1157 #ifdef CONFIG_X86_64
1158 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1159 		loadsegment(ds, host_state->ds_sel);
1160 		loadsegment(es, host_state->es_sel);
1161 	}
1162 #endif
1163 	invalidate_tss_limit();
1164 #ifdef CONFIG_X86_64
1165 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1166 #endif
1167 	load_fixmap_gdt(raw_smp_processor_id());
1168 	vmx->guest_state_loaded = false;
1169 	vmx->guest_msrs_ready = false;
1170 }
1171 
1172 #ifdef CONFIG_X86_64
1173 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1174 {
1175 	preempt_disable();
1176 	if (vmx->guest_state_loaded)
1177 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1178 	preempt_enable();
1179 	return vmx->msr_guest_kernel_gs_base;
1180 }
1181 
1182 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1183 {
1184 	preempt_disable();
1185 	if (vmx->guest_state_loaded)
1186 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1187 	preempt_enable();
1188 	vmx->msr_guest_kernel_gs_base = data;
1189 }
1190 #endif
1191 
1192 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1193 {
1194 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1195 	struct pi_desc old, new;
1196 	unsigned int dest;
1197 
1198 	/*
1199 	 * In case of hot-plug or hot-unplug, we may have to undo
1200 	 * vmx_vcpu_pi_put even if there is no assigned device.  And we
1201 	 * always keep PI.NDST up to date for simplicity: it makes the
1202 	 * code easier, and CPU migration is not a fast path.
1203 	 */
1204 	if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
1205 		return;
1206 
1207 	/* The full case.  */
1208 	do {
1209 		old.control = new.control = pi_desc->control;
1210 
1211 		dest = cpu_physical_id(cpu);
1212 
1213 		if (x2apic_enabled())
1214 			new.ndst = dest;
1215 		else
1216 			new.ndst = (dest << 8) & 0xFF00;
1217 
1218 		new.sn = 0;
1219 	} while (cmpxchg64(&pi_desc->control, old.control,
1220 			   new.control) != old.control);
1221 
1222 	/*
1223 	 * Clear SN before reading the bitmap.  The VT-d firmware
1224 	 * writes the bitmap and reads SN atomically (5.2.3 in the
1225 	 * spec), so it doesn't really have a memory barrier that
1226 	 * pairs with this, but we cannot do that and we need one.
1227 	 */
1228 	smp_mb__after_atomic();
1229 
1230 	if (!bitmap_empty((unsigned long *)pi_desc->pir, NR_VECTORS))
1231 		pi_set_on(pi_desc);
1232 }
1233 
1234 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu)
1235 {
1236 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1237 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1238 
1239 	if (!already_loaded) {
1240 		loaded_vmcs_clear(vmx->loaded_vmcs);
1241 		local_irq_disable();
1242 		crash_disable_local_vmclear(cpu);
1243 
1244 		/*
1245 		 * Read loaded_vmcs->cpu should be before fetching
1246 		 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1247 		 * See the comments in __loaded_vmcs_clear().
1248 		 */
1249 		smp_rmb();
1250 
1251 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1252 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1253 		crash_enable_local_vmclear(cpu);
1254 		local_irq_enable();
1255 	}
1256 
1257 	if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1258 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1259 		vmcs_load(vmx->loaded_vmcs->vmcs);
1260 		indirect_branch_prediction_barrier();
1261 	}
1262 
1263 	if (!already_loaded) {
1264 		void *gdt = get_current_gdt_ro();
1265 		unsigned long sysenter_esp;
1266 
1267 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1268 
1269 		/*
1270 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1271 		 * processors.  See 22.2.4.
1272 		 */
1273 		vmcs_writel(HOST_TR_BASE,
1274 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1275 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1276 
1277 		/*
1278 		 * VM exits change the host TR limit to 0x67 after a VM
1279 		 * exit.  This is okay, since 0x67 covers everything except
1280 		 * the IO bitmap and have have code to handle the IO bitmap
1281 		 * being lost after a VM exit.
1282 		 */
1283 		BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
1284 
1285 		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1286 		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1287 
1288 		vmx->loaded_vmcs->cpu = cpu;
1289 	}
1290 
1291 	/* Setup TSC multiplier */
1292 	if (kvm_has_tsc_control &&
1293 	    vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1294 		decache_tsc_multiplier(vmx);
1295 }
1296 
1297 /*
1298  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1299  * vcpu mutex is already taken.
1300  */
1301 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1302 {
1303 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1304 
1305 	vmx_vcpu_load_vmcs(vcpu, cpu);
1306 
1307 	vmx_vcpu_pi_load(vcpu, cpu);
1308 
1309 	vmx->host_pkru = read_pkru();
1310 	vmx->host_debugctlmsr = get_debugctlmsr();
1311 }
1312 
1313 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
1314 {
1315 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1316 
1317 	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1318 		!irq_remapping_cap(IRQ_POSTING_CAP)  ||
1319 		!kvm_vcpu_apicv_active(vcpu))
1320 		return;
1321 
1322 	/* Set SN when the vCPU is preempted */
1323 	if (vcpu->preempted)
1324 		pi_set_sn(pi_desc);
1325 }
1326 
1327 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1328 {
1329 	vmx_vcpu_pi_put(vcpu);
1330 
1331 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1332 }
1333 
1334 static bool emulation_required(struct kvm_vcpu *vcpu)
1335 {
1336 	return emulate_invalid_guest_state && !guest_state_valid(vcpu);
1337 }
1338 
1339 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1340 
1341 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1342 {
1343 	unsigned long rflags, save_rflags;
1344 
1345 	if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1346 		__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1347 		rflags = vmcs_readl(GUEST_RFLAGS);
1348 		if (to_vmx(vcpu)->rmode.vm86_active) {
1349 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1350 			save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1351 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1352 		}
1353 		to_vmx(vcpu)->rflags = rflags;
1354 	}
1355 	return to_vmx(vcpu)->rflags;
1356 }
1357 
1358 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1359 {
1360 	unsigned long old_rflags = vmx_get_rflags(vcpu);
1361 
1362 	__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1363 	to_vmx(vcpu)->rflags = rflags;
1364 	if (to_vmx(vcpu)->rmode.vm86_active) {
1365 		to_vmx(vcpu)->rmode.save_rflags = rflags;
1366 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1367 	}
1368 	vmcs_writel(GUEST_RFLAGS, rflags);
1369 
1370 	if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
1371 		to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
1372 }
1373 
1374 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1375 {
1376 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1377 	int ret = 0;
1378 
1379 	if (interruptibility & GUEST_INTR_STATE_STI)
1380 		ret |= KVM_X86_SHADOW_INT_STI;
1381 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1382 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1383 
1384 	return ret;
1385 }
1386 
1387 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1388 {
1389 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1390 	u32 interruptibility = interruptibility_old;
1391 
1392 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1393 
1394 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1395 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1396 	else if (mask & KVM_X86_SHADOW_INT_STI)
1397 		interruptibility |= GUEST_INTR_STATE_STI;
1398 
1399 	if ((interruptibility != interruptibility_old))
1400 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1401 }
1402 
1403 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1404 {
1405 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1406 	unsigned long value;
1407 
1408 	/*
1409 	 * Any MSR write that attempts to change bits marked reserved will
1410 	 * case a #GP fault.
1411 	 */
1412 	if (data & vmx->pt_desc.ctl_bitmask)
1413 		return 1;
1414 
1415 	/*
1416 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1417 	 * result in a #GP unless the same write also clears TraceEn.
1418 	 */
1419 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1420 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1421 		return 1;
1422 
1423 	/*
1424 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1425 	 * and FabricEn would cause #GP, if
1426 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1427 	 */
1428 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1429 		!(data & RTIT_CTL_FABRIC_EN) &&
1430 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1431 					PT_CAP_single_range_output))
1432 		return 1;
1433 
1434 	/*
1435 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1436 	 * utilize encodings marked reserved will casue a #GP fault.
1437 	 */
1438 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1439 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1440 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1441 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1442 		return 1;
1443 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1444 						PT_CAP_cycle_thresholds);
1445 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1446 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1447 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1448 		return 1;
1449 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1450 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1451 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1452 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1453 		return 1;
1454 
1455 	/*
1456 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1457 	 * cause a #GP fault.
1458 	 */
1459 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1460 	if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1461 		return 1;
1462 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1463 	if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1464 		return 1;
1465 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1466 	if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1467 		return 1;
1468 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1469 	if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1470 		return 1;
1471 
1472 	return 0;
1473 }
1474 
1475 /*
1476  * Returns an int to be compatible with SVM implementation (which can fail).
1477  * Do not use directly, use skip_emulated_instruction() instead.
1478  */
1479 static int __skip_emulated_instruction(struct kvm_vcpu *vcpu)
1480 {
1481 	unsigned long rip;
1482 
1483 	rip = kvm_rip_read(vcpu);
1484 	rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1485 	kvm_rip_write(vcpu, rip);
1486 
1487 	/* skipping an emulated instruction also counts */
1488 	vmx_set_interrupt_shadow(vcpu, 0);
1489 
1490 	return EMULATE_DONE;
1491 }
1492 
1493 static inline void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1494 {
1495 	(void)__skip_emulated_instruction(vcpu);
1496 }
1497 
1498 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1499 {
1500 	/*
1501 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1502 	 * explicitly skip the instruction because if the HLT state is set,
1503 	 * then the instruction is already executing and RIP has already been
1504 	 * advanced.
1505 	 */
1506 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1507 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1508 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1509 }
1510 
1511 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1512 {
1513 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1514 	unsigned nr = vcpu->arch.exception.nr;
1515 	bool has_error_code = vcpu->arch.exception.has_error_code;
1516 	u32 error_code = vcpu->arch.exception.error_code;
1517 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
1518 
1519 	kvm_deliver_exception_payload(vcpu);
1520 
1521 	if (has_error_code) {
1522 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1523 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1524 	}
1525 
1526 	if (vmx->rmode.vm86_active) {
1527 		int inc_eip = 0;
1528 		if (kvm_exception_is_soft(nr))
1529 			inc_eip = vcpu->arch.event_exit_inst_len;
1530 		if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1531 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1532 		return;
1533 	}
1534 
1535 	WARN_ON_ONCE(vmx->emulation_required);
1536 
1537 	if (kvm_exception_is_soft(nr)) {
1538 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1539 			     vmx->vcpu.arch.event_exit_inst_len);
1540 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1541 	} else
1542 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1543 
1544 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1545 
1546 	vmx_clear_hlt(vcpu);
1547 }
1548 
1549 static bool vmx_rdtscp_supported(void)
1550 {
1551 	return cpu_has_vmx_rdtscp();
1552 }
1553 
1554 static bool vmx_invpcid_supported(void)
1555 {
1556 	return cpu_has_vmx_invpcid();
1557 }
1558 
1559 /*
1560  * Swap MSR entry in host/guest MSR entry array.
1561  */
1562 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1563 {
1564 	struct shared_msr_entry tmp;
1565 
1566 	tmp = vmx->guest_msrs[to];
1567 	vmx->guest_msrs[to] = vmx->guest_msrs[from];
1568 	vmx->guest_msrs[from] = tmp;
1569 }
1570 
1571 /*
1572  * Set up the vmcs to automatically save and restore system
1573  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1574  * mode, as fiddling with msrs is very expensive.
1575  */
1576 static void setup_msrs(struct vcpu_vmx *vmx)
1577 {
1578 	int save_nmsrs, index;
1579 
1580 	save_nmsrs = 0;
1581 #ifdef CONFIG_X86_64
1582 	/*
1583 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1584 	 * when EFER.SCE is set.
1585 	 */
1586 	if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1587 		index = __find_msr_index(vmx, MSR_STAR);
1588 		if (index >= 0)
1589 			move_msr_up(vmx, index, save_nmsrs++);
1590 		index = __find_msr_index(vmx, MSR_LSTAR);
1591 		if (index >= 0)
1592 			move_msr_up(vmx, index, save_nmsrs++);
1593 		index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1594 		if (index >= 0)
1595 			move_msr_up(vmx, index, save_nmsrs++);
1596 	}
1597 #endif
1598 	index = __find_msr_index(vmx, MSR_EFER);
1599 	if (index >= 0 && update_transition_efer(vmx, index))
1600 		move_msr_up(vmx, index, save_nmsrs++);
1601 	index = __find_msr_index(vmx, MSR_TSC_AUX);
1602 	if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1603 		move_msr_up(vmx, index, save_nmsrs++);
1604 
1605 	vmx->save_nmsrs = save_nmsrs;
1606 	vmx->guest_msrs_ready = false;
1607 
1608 	if (cpu_has_vmx_msr_bitmap())
1609 		vmx_update_msr_bitmap(&vmx->vcpu);
1610 }
1611 
1612 static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1613 {
1614 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1615 
1616 	if (is_guest_mode(vcpu) &&
1617 	    (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1618 		return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
1619 
1620 	return vcpu->arch.tsc_offset;
1621 }
1622 
1623 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1624 {
1625 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1626 	u64 g_tsc_offset = 0;
1627 
1628 	/*
1629 	 * We're here if L1 chose not to trap WRMSR to TSC. According
1630 	 * to the spec, this should set L1's TSC; The offset that L1
1631 	 * set for L2 remains unchanged, and still needs to be added
1632 	 * to the newly set TSC to get L2's TSC.
1633 	 */
1634 	if (is_guest_mode(vcpu) &&
1635 	    (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1636 		g_tsc_offset = vmcs12->tsc_offset;
1637 
1638 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1639 				   vcpu->arch.tsc_offset - g_tsc_offset,
1640 				   offset);
1641 	vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1642 	return offset + g_tsc_offset;
1643 }
1644 
1645 /*
1646  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1647  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1648  * all guests if the "nested" module option is off, and can also be disabled
1649  * for a single guest by disabling its VMX cpuid bit.
1650  */
1651 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1652 {
1653 	return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1654 }
1655 
1656 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1657 						 uint64_t val)
1658 {
1659 	uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1660 
1661 	return !(val & ~valid_bits);
1662 }
1663 
1664 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1665 {
1666 	switch (msr->index) {
1667 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1668 		if (!nested)
1669 			return 1;
1670 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1671 	default:
1672 		return 1;
1673 	}
1674 
1675 	return 0;
1676 }
1677 
1678 /*
1679  * Reads an msr value (of 'msr_index') into 'pdata'.
1680  * Returns 0 on success, non-0 otherwise.
1681  * Assumes vcpu_load() was already called.
1682  */
1683 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1684 {
1685 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1686 	struct shared_msr_entry *msr;
1687 	u32 index;
1688 
1689 	switch (msr_info->index) {
1690 #ifdef CONFIG_X86_64
1691 	case MSR_FS_BASE:
1692 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1693 		break;
1694 	case MSR_GS_BASE:
1695 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1696 		break;
1697 	case MSR_KERNEL_GS_BASE:
1698 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1699 		break;
1700 #endif
1701 	case MSR_EFER:
1702 		return kvm_get_msr_common(vcpu, msr_info);
1703 	case MSR_IA32_SPEC_CTRL:
1704 		if (!msr_info->host_initiated &&
1705 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1706 			return 1;
1707 
1708 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
1709 		break;
1710 	case MSR_IA32_SYSENTER_CS:
1711 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1712 		break;
1713 	case MSR_IA32_SYSENTER_EIP:
1714 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1715 		break;
1716 	case MSR_IA32_SYSENTER_ESP:
1717 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1718 		break;
1719 	case MSR_IA32_BNDCFGS:
1720 		if (!kvm_mpx_supported() ||
1721 		    (!msr_info->host_initiated &&
1722 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1723 			return 1;
1724 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1725 		break;
1726 	case MSR_IA32_MCG_EXT_CTL:
1727 		if (!msr_info->host_initiated &&
1728 		    !(vmx->msr_ia32_feature_control &
1729 		      FEATURE_CONTROL_LMCE))
1730 			return 1;
1731 		msr_info->data = vcpu->arch.mcg_ext_ctl;
1732 		break;
1733 	case MSR_IA32_FEATURE_CONTROL:
1734 		msr_info->data = vmx->msr_ia32_feature_control;
1735 		break;
1736 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1737 		if (!nested_vmx_allowed(vcpu))
1738 			return 1;
1739 		return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1740 				       &msr_info->data);
1741 	case MSR_IA32_XSS:
1742 		if (!vmx_xsaves_supported() ||
1743 		    (!msr_info->host_initiated &&
1744 		     !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
1745 		       guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))))
1746 			return 1;
1747 		msr_info->data = vcpu->arch.ia32_xss;
1748 		break;
1749 	case MSR_IA32_RTIT_CTL:
1750 		if (pt_mode != PT_MODE_HOST_GUEST)
1751 			return 1;
1752 		msr_info->data = vmx->pt_desc.guest.ctl;
1753 		break;
1754 	case MSR_IA32_RTIT_STATUS:
1755 		if (pt_mode != PT_MODE_HOST_GUEST)
1756 			return 1;
1757 		msr_info->data = vmx->pt_desc.guest.status;
1758 		break;
1759 	case MSR_IA32_RTIT_CR3_MATCH:
1760 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
1761 			!intel_pt_validate_cap(vmx->pt_desc.caps,
1762 						PT_CAP_cr3_filtering))
1763 			return 1;
1764 		msr_info->data = vmx->pt_desc.guest.cr3_match;
1765 		break;
1766 	case MSR_IA32_RTIT_OUTPUT_BASE:
1767 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
1768 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1769 					PT_CAP_topa_output) &&
1770 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1771 					PT_CAP_single_range_output)))
1772 			return 1;
1773 		msr_info->data = vmx->pt_desc.guest.output_base;
1774 		break;
1775 	case MSR_IA32_RTIT_OUTPUT_MASK:
1776 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
1777 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1778 					PT_CAP_topa_output) &&
1779 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1780 					PT_CAP_single_range_output)))
1781 			return 1;
1782 		msr_info->data = vmx->pt_desc.guest.output_mask;
1783 		break;
1784 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1785 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1786 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
1787 			(index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1788 					PT_CAP_num_address_ranges)))
1789 			return 1;
1790 		if (index % 2)
1791 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1792 		else
1793 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1794 		break;
1795 	case MSR_TSC_AUX:
1796 		if (!msr_info->host_initiated &&
1797 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1798 			return 1;
1799 		/* Else, falls through */
1800 	default:
1801 		msr = find_msr_entry(vmx, msr_info->index);
1802 		if (msr) {
1803 			msr_info->data = msr->data;
1804 			break;
1805 		}
1806 		return kvm_get_msr_common(vcpu, msr_info);
1807 	}
1808 
1809 	return 0;
1810 }
1811 
1812 /*
1813  * Writes msr value into into the appropriate "register".
1814  * Returns 0 on success, non-0 otherwise.
1815  * Assumes vcpu_load() was already called.
1816  */
1817 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1818 {
1819 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1820 	struct shared_msr_entry *msr;
1821 	int ret = 0;
1822 	u32 msr_index = msr_info->index;
1823 	u64 data = msr_info->data;
1824 	u32 index;
1825 
1826 	switch (msr_index) {
1827 	case MSR_EFER:
1828 		ret = kvm_set_msr_common(vcpu, msr_info);
1829 		break;
1830 #ifdef CONFIG_X86_64
1831 	case MSR_FS_BASE:
1832 		vmx_segment_cache_clear(vmx);
1833 		vmcs_writel(GUEST_FS_BASE, data);
1834 		break;
1835 	case MSR_GS_BASE:
1836 		vmx_segment_cache_clear(vmx);
1837 		vmcs_writel(GUEST_GS_BASE, data);
1838 		break;
1839 	case MSR_KERNEL_GS_BASE:
1840 		vmx_write_guest_kernel_gs_base(vmx, data);
1841 		break;
1842 #endif
1843 	case MSR_IA32_SYSENTER_CS:
1844 		if (is_guest_mode(vcpu))
1845 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
1846 		vmcs_write32(GUEST_SYSENTER_CS, data);
1847 		break;
1848 	case MSR_IA32_SYSENTER_EIP:
1849 		if (is_guest_mode(vcpu))
1850 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
1851 		vmcs_writel(GUEST_SYSENTER_EIP, data);
1852 		break;
1853 	case MSR_IA32_SYSENTER_ESP:
1854 		if (is_guest_mode(vcpu))
1855 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
1856 		vmcs_writel(GUEST_SYSENTER_ESP, data);
1857 		break;
1858 	case MSR_IA32_DEBUGCTLMSR:
1859 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
1860 						VM_EXIT_SAVE_DEBUG_CONTROLS)
1861 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
1862 
1863 		ret = kvm_set_msr_common(vcpu, msr_info);
1864 		break;
1865 
1866 	case MSR_IA32_BNDCFGS:
1867 		if (!kvm_mpx_supported() ||
1868 		    (!msr_info->host_initiated &&
1869 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1870 			return 1;
1871 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
1872 		    (data & MSR_IA32_BNDCFGS_RSVD))
1873 			return 1;
1874 		vmcs_write64(GUEST_BNDCFGS, data);
1875 		break;
1876 	case MSR_IA32_SPEC_CTRL:
1877 		if (!msr_info->host_initiated &&
1878 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1879 			return 1;
1880 
1881 		/* The STIBP bit doesn't fault even if it's not advertised */
1882 		if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
1883 			return 1;
1884 
1885 		vmx->spec_ctrl = data;
1886 
1887 		if (!data)
1888 			break;
1889 
1890 		/*
1891 		 * For non-nested:
1892 		 * When it's written (to non-zero) for the first time, pass
1893 		 * it through.
1894 		 *
1895 		 * For nested:
1896 		 * The handling of the MSR bitmap for L2 guests is done in
1897 		 * nested_vmx_merge_msr_bitmap. We should not touch the
1898 		 * vmcs02.msr_bitmap here since it gets completely overwritten
1899 		 * in the merging. We update the vmcs01 here for L1 as well
1900 		 * since it will end up touching the MSR anyway now.
1901 		 */
1902 		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
1903 					      MSR_IA32_SPEC_CTRL,
1904 					      MSR_TYPE_RW);
1905 		break;
1906 	case MSR_IA32_PRED_CMD:
1907 		if (!msr_info->host_initiated &&
1908 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1909 			return 1;
1910 
1911 		if (data & ~PRED_CMD_IBPB)
1912 			return 1;
1913 
1914 		if (!data)
1915 			break;
1916 
1917 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
1918 
1919 		/*
1920 		 * For non-nested:
1921 		 * When it's written (to non-zero) for the first time, pass
1922 		 * it through.
1923 		 *
1924 		 * For nested:
1925 		 * The handling of the MSR bitmap for L2 guests is done in
1926 		 * nested_vmx_merge_msr_bitmap. We should not touch the
1927 		 * vmcs02.msr_bitmap here since it gets completely overwritten
1928 		 * in the merging.
1929 		 */
1930 		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
1931 					      MSR_TYPE_W);
1932 		break;
1933 	case MSR_IA32_CR_PAT:
1934 		if (!kvm_pat_valid(data))
1935 			return 1;
1936 
1937 		if (is_guest_mode(vcpu) &&
1938 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
1939 			get_vmcs12(vcpu)->guest_ia32_pat = data;
1940 
1941 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1942 			vmcs_write64(GUEST_IA32_PAT, data);
1943 			vcpu->arch.pat = data;
1944 			break;
1945 		}
1946 		ret = kvm_set_msr_common(vcpu, msr_info);
1947 		break;
1948 	case MSR_IA32_TSC_ADJUST:
1949 		ret = kvm_set_msr_common(vcpu, msr_info);
1950 		break;
1951 	case MSR_IA32_MCG_EXT_CTL:
1952 		if ((!msr_info->host_initiated &&
1953 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
1954 		       FEATURE_CONTROL_LMCE)) ||
1955 		    (data & ~MCG_EXT_CTL_LMCE_EN))
1956 			return 1;
1957 		vcpu->arch.mcg_ext_ctl = data;
1958 		break;
1959 	case MSR_IA32_FEATURE_CONTROL:
1960 		if (!vmx_feature_control_msr_valid(vcpu, data) ||
1961 		    (to_vmx(vcpu)->msr_ia32_feature_control &
1962 		     FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
1963 			return 1;
1964 		vmx->msr_ia32_feature_control = data;
1965 		if (msr_info->host_initiated && data == 0)
1966 			vmx_leave_nested(vcpu);
1967 		break;
1968 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1969 		if (!msr_info->host_initiated)
1970 			return 1; /* they are read-only */
1971 		if (!nested_vmx_allowed(vcpu))
1972 			return 1;
1973 		return vmx_set_vmx_msr(vcpu, msr_index, data);
1974 	case MSR_IA32_XSS:
1975 		if (!vmx_xsaves_supported() ||
1976 		    (!msr_info->host_initiated &&
1977 		     !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
1978 		       guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))))
1979 			return 1;
1980 		/*
1981 		 * The only supported bit as of Skylake is bit 8, but
1982 		 * it is not supported on KVM.
1983 		 */
1984 		if (data != 0)
1985 			return 1;
1986 		vcpu->arch.ia32_xss = data;
1987 		if (vcpu->arch.ia32_xss != host_xss)
1988 			add_atomic_switch_msr(vmx, MSR_IA32_XSS,
1989 				vcpu->arch.ia32_xss, host_xss, false);
1990 		else
1991 			clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
1992 		break;
1993 	case MSR_IA32_RTIT_CTL:
1994 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
1995 			vmx_rtit_ctl_check(vcpu, data) ||
1996 			vmx->nested.vmxon)
1997 			return 1;
1998 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
1999 		vmx->pt_desc.guest.ctl = data;
2000 		pt_update_intercept_for_msr(vmx);
2001 		break;
2002 	case MSR_IA32_RTIT_STATUS:
2003 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
2004 			(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2005 			(data & MSR_IA32_RTIT_STATUS_MASK))
2006 			return 1;
2007 		vmx->pt_desc.guest.status = data;
2008 		break;
2009 	case MSR_IA32_RTIT_CR3_MATCH:
2010 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
2011 			(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2012 			!intel_pt_validate_cap(vmx->pt_desc.caps,
2013 						PT_CAP_cr3_filtering))
2014 			return 1;
2015 		vmx->pt_desc.guest.cr3_match = data;
2016 		break;
2017 	case MSR_IA32_RTIT_OUTPUT_BASE:
2018 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
2019 			(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2020 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2021 					PT_CAP_topa_output) &&
2022 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2023 					PT_CAP_single_range_output)) ||
2024 			(data & MSR_IA32_RTIT_OUTPUT_BASE_MASK))
2025 			return 1;
2026 		vmx->pt_desc.guest.output_base = data;
2027 		break;
2028 	case MSR_IA32_RTIT_OUTPUT_MASK:
2029 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
2030 			(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2031 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2032 					PT_CAP_topa_output) &&
2033 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2034 					PT_CAP_single_range_output)))
2035 			return 1;
2036 		vmx->pt_desc.guest.output_mask = data;
2037 		break;
2038 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2039 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2040 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
2041 			(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2042 			(index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2043 					PT_CAP_num_address_ranges)))
2044 			return 1;
2045 		if (index % 2)
2046 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2047 		else
2048 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2049 		break;
2050 	case MSR_TSC_AUX:
2051 		if (!msr_info->host_initiated &&
2052 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2053 			return 1;
2054 		/* Check reserved bit, higher 32 bits should be zero */
2055 		if ((data >> 32) != 0)
2056 			return 1;
2057 		/* Else, falls through */
2058 	default:
2059 		msr = find_msr_entry(vmx, msr_index);
2060 		if (msr) {
2061 			u64 old_msr_data = msr->data;
2062 			msr->data = data;
2063 			if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2064 				preempt_disable();
2065 				ret = kvm_set_shared_msr(msr->index, msr->data,
2066 							 msr->mask);
2067 				preempt_enable();
2068 				if (ret)
2069 					msr->data = old_msr_data;
2070 			}
2071 			break;
2072 		}
2073 		ret = kvm_set_msr_common(vcpu, msr_info);
2074 	}
2075 
2076 	return ret;
2077 }
2078 
2079 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2080 {
2081 	__set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2082 	switch (reg) {
2083 	case VCPU_REGS_RSP:
2084 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2085 		break;
2086 	case VCPU_REGS_RIP:
2087 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2088 		break;
2089 	case VCPU_EXREG_PDPTR:
2090 		if (enable_ept)
2091 			ept_save_pdptrs(vcpu);
2092 		break;
2093 	default:
2094 		break;
2095 	}
2096 }
2097 
2098 static __init int cpu_has_kvm_support(void)
2099 {
2100 	return cpu_has_vmx();
2101 }
2102 
2103 static __init int vmx_disabled_by_bios(void)
2104 {
2105 	u64 msr;
2106 
2107 	rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2108 	if (msr & FEATURE_CONTROL_LOCKED) {
2109 		/* launched w/ TXT and VMX disabled */
2110 		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2111 			&& tboot_enabled())
2112 			return 1;
2113 		/* launched w/o TXT and VMX only enabled w/ TXT */
2114 		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2115 			&& (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2116 			&& !tboot_enabled()) {
2117 			printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2118 				"activate TXT before enabling KVM\n");
2119 			return 1;
2120 		}
2121 		/* launched w/o TXT and VMX disabled */
2122 		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2123 			&& !tboot_enabled())
2124 			return 1;
2125 	}
2126 
2127 	return 0;
2128 }
2129 
2130 static void kvm_cpu_vmxon(u64 addr)
2131 {
2132 	cr4_set_bits(X86_CR4_VMXE);
2133 	intel_pt_handle_vmx(1);
2134 
2135 	asm volatile ("vmxon %0" : : "m"(addr));
2136 }
2137 
2138 static int hardware_enable(void)
2139 {
2140 	int cpu = raw_smp_processor_id();
2141 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2142 	u64 old, test_bits;
2143 
2144 	if (cr4_read_shadow() & X86_CR4_VMXE)
2145 		return -EBUSY;
2146 
2147 	/*
2148 	 * This can happen if we hot-added a CPU but failed to allocate
2149 	 * VP assist page for it.
2150 	 */
2151 	if (static_branch_unlikely(&enable_evmcs) &&
2152 	    !hv_get_vp_assist_page(cpu))
2153 		return -EFAULT;
2154 
2155 	INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2156 	INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
2157 	spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
2158 
2159 	/*
2160 	 * Now we can enable the vmclear operation in kdump
2161 	 * since the loaded_vmcss_on_cpu list on this cpu
2162 	 * has been initialized.
2163 	 *
2164 	 * Though the cpu is not in VMX operation now, there
2165 	 * is no problem to enable the vmclear operation
2166 	 * for the loaded_vmcss_on_cpu list is empty!
2167 	 */
2168 	crash_enable_local_vmclear(cpu);
2169 
2170 	rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2171 
2172 	test_bits = FEATURE_CONTROL_LOCKED;
2173 	test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2174 	if (tboot_enabled())
2175 		test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2176 
2177 	if ((old & test_bits) != test_bits) {
2178 		/* enable and lock */
2179 		wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2180 	}
2181 	kvm_cpu_vmxon(phys_addr);
2182 	if (enable_ept)
2183 		ept_sync_global();
2184 
2185 	return 0;
2186 }
2187 
2188 static void vmclear_local_loaded_vmcss(void)
2189 {
2190 	int cpu = raw_smp_processor_id();
2191 	struct loaded_vmcs *v, *n;
2192 
2193 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2194 				 loaded_vmcss_on_cpu_link)
2195 		__loaded_vmcs_clear(v);
2196 }
2197 
2198 
2199 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2200  * tricks.
2201  */
2202 static void kvm_cpu_vmxoff(void)
2203 {
2204 	asm volatile (__ex("vmxoff"));
2205 
2206 	intel_pt_handle_vmx(0);
2207 	cr4_clear_bits(X86_CR4_VMXE);
2208 }
2209 
2210 static void hardware_disable(void)
2211 {
2212 	vmclear_local_loaded_vmcss();
2213 	kvm_cpu_vmxoff();
2214 }
2215 
2216 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2217 				      u32 msr, u32 *result)
2218 {
2219 	u32 vmx_msr_low, vmx_msr_high;
2220 	u32 ctl = ctl_min | ctl_opt;
2221 
2222 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2223 
2224 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2225 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2226 
2227 	/* Ensure minimum (required) set of control bits are supported. */
2228 	if (ctl_min & ~ctl)
2229 		return -EIO;
2230 
2231 	*result = ctl;
2232 	return 0;
2233 }
2234 
2235 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2236 				    struct vmx_capability *vmx_cap)
2237 {
2238 	u32 vmx_msr_low, vmx_msr_high;
2239 	u32 min, opt, min2, opt2;
2240 	u32 _pin_based_exec_control = 0;
2241 	u32 _cpu_based_exec_control = 0;
2242 	u32 _cpu_based_2nd_exec_control = 0;
2243 	u32 _vmexit_control = 0;
2244 	u32 _vmentry_control = 0;
2245 
2246 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2247 	min = CPU_BASED_HLT_EXITING |
2248 #ifdef CONFIG_X86_64
2249 	      CPU_BASED_CR8_LOAD_EXITING |
2250 	      CPU_BASED_CR8_STORE_EXITING |
2251 #endif
2252 	      CPU_BASED_CR3_LOAD_EXITING |
2253 	      CPU_BASED_CR3_STORE_EXITING |
2254 	      CPU_BASED_UNCOND_IO_EXITING |
2255 	      CPU_BASED_MOV_DR_EXITING |
2256 	      CPU_BASED_USE_TSC_OFFSETING |
2257 	      CPU_BASED_MWAIT_EXITING |
2258 	      CPU_BASED_MONITOR_EXITING |
2259 	      CPU_BASED_INVLPG_EXITING |
2260 	      CPU_BASED_RDPMC_EXITING;
2261 
2262 	opt = CPU_BASED_TPR_SHADOW |
2263 	      CPU_BASED_USE_MSR_BITMAPS |
2264 	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2265 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2266 				&_cpu_based_exec_control) < 0)
2267 		return -EIO;
2268 #ifdef CONFIG_X86_64
2269 	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2270 		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2271 					   ~CPU_BASED_CR8_STORE_EXITING;
2272 #endif
2273 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2274 		min2 = 0;
2275 		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2276 			SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2277 			SECONDARY_EXEC_WBINVD_EXITING |
2278 			SECONDARY_EXEC_ENABLE_VPID |
2279 			SECONDARY_EXEC_ENABLE_EPT |
2280 			SECONDARY_EXEC_UNRESTRICTED_GUEST |
2281 			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2282 			SECONDARY_EXEC_DESC |
2283 			SECONDARY_EXEC_RDTSCP |
2284 			SECONDARY_EXEC_ENABLE_INVPCID |
2285 			SECONDARY_EXEC_APIC_REGISTER_VIRT |
2286 			SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2287 			SECONDARY_EXEC_SHADOW_VMCS |
2288 			SECONDARY_EXEC_XSAVES |
2289 			SECONDARY_EXEC_RDSEED_EXITING |
2290 			SECONDARY_EXEC_RDRAND_EXITING |
2291 			SECONDARY_EXEC_ENABLE_PML |
2292 			SECONDARY_EXEC_TSC_SCALING |
2293 			SECONDARY_EXEC_PT_USE_GPA |
2294 			SECONDARY_EXEC_PT_CONCEAL_VMX |
2295 			SECONDARY_EXEC_ENABLE_VMFUNC |
2296 			SECONDARY_EXEC_ENCLS_EXITING;
2297 		if (adjust_vmx_controls(min2, opt2,
2298 					MSR_IA32_VMX_PROCBASED_CTLS2,
2299 					&_cpu_based_2nd_exec_control) < 0)
2300 			return -EIO;
2301 	}
2302 #ifndef CONFIG_X86_64
2303 	if (!(_cpu_based_2nd_exec_control &
2304 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2305 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2306 #endif
2307 
2308 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2309 		_cpu_based_2nd_exec_control &= ~(
2310 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2311 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2312 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2313 
2314 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2315 		&vmx_cap->ept, &vmx_cap->vpid);
2316 
2317 	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2318 		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2319 		   enabled */
2320 		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2321 					     CPU_BASED_CR3_STORE_EXITING |
2322 					     CPU_BASED_INVLPG_EXITING);
2323 	} else if (vmx_cap->ept) {
2324 		vmx_cap->ept = 0;
2325 		pr_warn_once("EPT CAP should not exist if not support "
2326 				"1-setting enable EPT VM-execution control\n");
2327 	}
2328 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2329 		vmx_cap->vpid) {
2330 		vmx_cap->vpid = 0;
2331 		pr_warn_once("VPID CAP should not exist if not support "
2332 				"1-setting enable VPID VM-execution control\n");
2333 	}
2334 
2335 	min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2336 #ifdef CONFIG_X86_64
2337 	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2338 #endif
2339 	opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2340 	      VM_EXIT_LOAD_IA32_PAT |
2341 	      VM_EXIT_LOAD_IA32_EFER |
2342 	      VM_EXIT_CLEAR_BNDCFGS |
2343 	      VM_EXIT_PT_CONCEAL_PIP |
2344 	      VM_EXIT_CLEAR_IA32_RTIT_CTL;
2345 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2346 				&_vmexit_control) < 0)
2347 		return -EIO;
2348 
2349 	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2350 	opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2351 		 PIN_BASED_VMX_PREEMPTION_TIMER;
2352 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2353 				&_pin_based_exec_control) < 0)
2354 		return -EIO;
2355 
2356 	if (cpu_has_broken_vmx_preemption_timer())
2357 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2358 	if (!(_cpu_based_2nd_exec_control &
2359 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2360 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2361 
2362 	min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2363 	opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2364 	      VM_ENTRY_LOAD_IA32_PAT |
2365 	      VM_ENTRY_LOAD_IA32_EFER |
2366 	      VM_ENTRY_LOAD_BNDCFGS |
2367 	      VM_ENTRY_PT_CONCEAL_PIP |
2368 	      VM_ENTRY_LOAD_IA32_RTIT_CTL;
2369 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2370 				&_vmentry_control) < 0)
2371 		return -EIO;
2372 
2373 	/*
2374 	 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2375 	 * can't be used due to an errata where VM Exit may incorrectly clear
2376 	 * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2377 	 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2378 	 */
2379 	if (boot_cpu_data.x86 == 0x6) {
2380 		switch (boot_cpu_data.x86_model) {
2381 		case 26: /* AAK155 */
2382 		case 30: /* AAP115 */
2383 		case 37: /* AAT100 */
2384 		case 44: /* BC86,AAY89,BD102 */
2385 		case 46: /* BA97 */
2386 			_vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2387 			_vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2388 			pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2389 					"does not work properly. Using workaround\n");
2390 			break;
2391 		default:
2392 			break;
2393 		}
2394 	}
2395 
2396 
2397 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2398 
2399 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2400 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2401 		return -EIO;
2402 
2403 #ifdef CONFIG_X86_64
2404 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2405 	if (vmx_msr_high & (1u<<16))
2406 		return -EIO;
2407 #endif
2408 
2409 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2410 	if (((vmx_msr_high >> 18) & 15) != 6)
2411 		return -EIO;
2412 
2413 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2414 	vmcs_conf->order = get_order(vmcs_conf->size);
2415 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2416 
2417 	vmcs_conf->revision_id = vmx_msr_low;
2418 
2419 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2420 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2421 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2422 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2423 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2424 
2425 	if (static_branch_unlikely(&enable_evmcs))
2426 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2427 
2428 	return 0;
2429 }
2430 
2431 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2432 {
2433 	int node = cpu_to_node(cpu);
2434 	struct page *pages;
2435 	struct vmcs *vmcs;
2436 
2437 	pages = __alloc_pages_node(node, flags, vmcs_config.order);
2438 	if (!pages)
2439 		return NULL;
2440 	vmcs = page_address(pages);
2441 	memset(vmcs, 0, vmcs_config.size);
2442 
2443 	/* KVM supports Enlightened VMCS v1 only */
2444 	if (static_branch_unlikely(&enable_evmcs))
2445 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2446 	else
2447 		vmcs->hdr.revision_id = vmcs_config.revision_id;
2448 
2449 	if (shadow)
2450 		vmcs->hdr.shadow_vmcs = 1;
2451 	return vmcs;
2452 }
2453 
2454 void free_vmcs(struct vmcs *vmcs)
2455 {
2456 	free_pages((unsigned long)vmcs, vmcs_config.order);
2457 }
2458 
2459 /*
2460  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2461  */
2462 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2463 {
2464 	if (!loaded_vmcs->vmcs)
2465 		return;
2466 	loaded_vmcs_clear(loaded_vmcs);
2467 	free_vmcs(loaded_vmcs->vmcs);
2468 	loaded_vmcs->vmcs = NULL;
2469 	if (loaded_vmcs->msr_bitmap)
2470 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2471 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2472 }
2473 
2474 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2475 {
2476 	loaded_vmcs->vmcs = alloc_vmcs(false);
2477 	if (!loaded_vmcs->vmcs)
2478 		return -ENOMEM;
2479 
2480 	loaded_vmcs->shadow_vmcs = NULL;
2481 	loaded_vmcs->hv_timer_soft_disabled = false;
2482 	loaded_vmcs_init(loaded_vmcs);
2483 
2484 	if (cpu_has_vmx_msr_bitmap()) {
2485 		loaded_vmcs->msr_bitmap = (unsigned long *)
2486 				__get_free_page(GFP_KERNEL_ACCOUNT);
2487 		if (!loaded_vmcs->msr_bitmap)
2488 			goto out_vmcs;
2489 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2490 
2491 		if (IS_ENABLED(CONFIG_HYPERV) &&
2492 		    static_branch_unlikely(&enable_evmcs) &&
2493 		    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2494 			struct hv_enlightened_vmcs *evmcs =
2495 				(struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2496 
2497 			evmcs->hv_enlightenments_control.msr_bitmap = 1;
2498 		}
2499 	}
2500 
2501 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2502 	memset(&loaded_vmcs->controls_shadow, 0,
2503 		sizeof(struct vmcs_controls_shadow));
2504 
2505 	return 0;
2506 
2507 out_vmcs:
2508 	free_loaded_vmcs(loaded_vmcs);
2509 	return -ENOMEM;
2510 }
2511 
2512 static void free_kvm_area(void)
2513 {
2514 	int cpu;
2515 
2516 	for_each_possible_cpu(cpu) {
2517 		free_vmcs(per_cpu(vmxarea, cpu));
2518 		per_cpu(vmxarea, cpu) = NULL;
2519 	}
2520 }
2521 
2522 static __init int alloc_kvm_area(void)
2523 {
2524 	int cpu;
2525 
2526 	for_each_possible_cpu(cpu) {
2527 		struct vmcs *vmcs;
2528 
2529 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2530 		if (!vmcs) {
2531 			free_kvm_area();
2532 			return -ENOMEM;
2533 		}
2534 
2535 		/*
2536 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2537 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2538 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2539 		 *
2540 		 * However, even though not explicitly documented by
2541 		 * TLFS, VMXArea passed as VMXON argument should
2542 		 * still be marked with revision_id reported by
2543 		 * physical CPU.
2544 		 */
2545 		if (static_branch_unlikely(&enable_evmcs))
2546 			vmcs->hdr.revision_id = vmcs_config.revision_id;
2547 
2548 		per_cpu(vmxarea, cpu) = vmcs;
2549 	}
2550 	return 0;
2551 }
2552 
2553 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2554 		struct kvm_segment *save)
2555 {
2556 	if (!emulate_invalid_guest_state) {
2557 		/*
2558 		 * CS and SS RPL should be equal during guest entry according
2559 		 * to VMX spec, but in reality it is not always so. Since vcpu
2560 		 * is in the middle of the transition from real mode to
2561 		 * protected mode it is safe to assume that RPL 0 is a good
2562 		 * default value.
2563 		 */
2564 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2565 			save->selector &= ~SEGMENT_RPL_MASK;
2566 		save->dpl = save->selector & SEGMENT_RPL_MASK;
2567 		save->s = 1;
2568 	}
2569 	vmx_set_segment(vcpu, save, seg);
2570 }
2571 
2572 static void enter_pmode(struct kvm_vcpu *vcpu)
2573 {
2574 	unsigned long flags;
2575 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2576 
2577 	/*
2578 	 * Update real mode segment cache. It may be not up-to-date if sement
2579 	 * register was written while vcpu was in a guest mode.
2580 	 */
2581 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2582 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2583 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2584 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2585 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2586 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2587 
2588 	vmx->rmode.vm86_active = 0;
2589 
2590 	vmx_segment_cache_clear(vmx);
2591 
2592 	vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2593 
2594 	flags = vmcs_readl(GUEST_RFLAGS);
2595 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2596 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2597 	vmcs_writel(GUEST_RFLAGS, flags);
2598 
2599 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2600 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2601 
2602 	update_exception_bitmap(vcpu);
2603 
2604 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2605 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2606 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2607 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2608 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2609 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2610 }
2611 
2612 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2613 {
2614 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2615 	struct kvm_segment var = *save;
2616 
2617 	var.dpl = 0x3;
2618 	if (seg == VCPU_SREG_CS)
2619 		var.type = 0x3;
2620 
2621 	if (!emulate_invalid_guest_state) {
2622 		var.selector = var.base >> 4;
2623 		var.base = var.base & 0xffff0;
2624 		var.limit = 0xffff;
2625 		var.g = 0;
2626 		var.db = 0;
2627 		var.present = 1;
2628 		var.s = 1;
2629 		var.l = 0;
2630 		var.unusable = 0;
2631 		var.type = 0x3;
2632 		var.avl = 0;
2633 		if (save->base & 0xf)
2634 			printk_once(KERN_WARNING "kvm: segment base is not "
2635 					"paragraph aligned when entering "
2636 					"protected mode (seg=%d)", seg);
2637 	}
2638 
2639 	vmcs_write16(sf->selector, var.selector);
2640 	vmcs_writel(sf->base, var.base);
2641 	vmcs_write32(sf->limit, var.limit);
2642 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2643 }
2644 
2645 static void enter_rmode(struct kvm_vcpu *vcpu)
2646 {
2647 	unsigned long flags;
2648 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2649 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2650 
2651 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2652 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2653 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2654 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2655 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2656 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2657 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2658 
2659 	vmx->rmode.vm86_active = 1;
2660 
2661 	/*
2662 	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2663 	 * vcpu. Warn the user that an update is overdue.
2664 	 */
2665 	if (!kvm_vmx->tss_addr)
2666 		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2667 			     "called before entering vcpu\n");
2668 
2669 	vmx_segment_cache_clear(vmx);
2670 
2671 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2672 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2673 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2674 
2675 	flags = vmcs_readl(GUEST_RFLAGS);
2676 	vmx->rmode.save_rflags = flags;
2677 
2678 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2679 
2680 	vmcs_writel(GUEST_RFLAGS, flags);
2681 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2682 	update_exception_bitmap(vcpu);
2683 
2684 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2685 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2686 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2687 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2688 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2689 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2690 
2691 	kvm_mmu_reset_context(vcpu);
2692 }
2693 
2694 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2695 {
2696 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2697 	struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2698 
2699 	if (!msr)
2700 		return;
2701 
2702 	vcpu->arch.efer = efer;
2703 	if (efer & EFER_LMA) {
2704 		vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2705 		msr->data = efer;
2706 	} else {
2707 		vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2708 
2709 		msr->data = efer & ~EFER_LME;
2710 	}
2711 	setup_msrs(vmx);
2712 }
2713 
2714 #ifdef CONFIG_X86_64
2715 
2716 static void enter_lmode(struct kvm_vcpu *vcpu)
2717 {
2718 	u32 guest_tr_ar;
2719 
2720 	vmx_segment_cache_clear(to_vmx(vcpu));
2721 
2722 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2723 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2724 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2725 				     __func__);
2726 		vmcs_write32(GUEST_TR_AR_BYTES,
2727 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2728 			     | VMX_AR_TYPE_BUSY_64_TSS);
2729 	}
2730 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2731 }
2732 
2733 static void exit_lmode(struct kvm_vcpu *vcpu)
2734 {
2735 	vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2736 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2737 }
2738 
2739 #endif
2740 
2741 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2742 {
2743 	int vpid = to_vmx(vcpu)->vpid;
2744 
2745 	if (!vpid_sync_vcpu_addr(vpid, addr))
2746 		vpid_sync_context(vpid);
2747 
2748 	/*
2749 	 * If VPIDs are not supported or enabled, then the above is a no-op.
2750 	 * But we don't really need a TLB flush in that case anyway, because
2751 	 * each VM entry/exit includes an implicit flush when VPID is 0.
2752 	 */
2753 }
2754 
2755 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2756 {
2757 	ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2758 
2759 	vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2760 	vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2761 }
2762 
2763 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2764 {
2765 	if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
2766 		vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2767 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2768 }
2769 
2770 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2771 {
2772 	ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2773 
2774 	vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2775 	vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2776 }
2777 
2778 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2779 {
2780 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2781 
2782 	if (!test_bit(VCPU_EXREG_PDPTR,
2783 		      (unsigned long *)&vcpu->arch.regs_dirty))
2784 		return;
2785 
2786 	if (is_pae_paging(vcpu)) {
2787 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2788 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2789 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2790 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2791 	}
2792 }
2793 
2794 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2795 {
2796 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2797 
2798 	if (is_pae_paging(vcpu)) {
2799 		mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2800 		mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2801 		mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2802 		mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2803 	}
2804 
2805 	__set_bit(VCPU_EXREG_PDPTR,
2806 		  (unsigned long *)&vcpu->arch.regs_avail);
2807 	__set_bit(VCPU_EXREG_PDPTR,
2808 		  (unsigned long *)&vcpu->arch.regs_dirty);
2809 }
2810 
2811 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2812 					unsigned long cr0,
2813 					struct kvm_vcpu *vcpu)
2814 {
2815 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2816 
2817 	if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2818 		vmx_decache_cr3(vcpu);
2819 	if (!(cr0 & X86_CR0_PG)) {
2820 		/* From paging/starting to nonpaging */
2821 		exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2822 					  CPU_BASED_CR3_STORE_EXITING);
2823 		vcpu->arch.cr0 = cr0;
2824 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2825 	} else if (!is_paging(vcpu)) {
2826 		/* From nonpaging to paging */
2827 		exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2828 					    CPU_BASED_CR3_STORE_EXITING);
2829 		vcpu->arch.cr0 = cr0;
2830 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2831 	}
2832 
2833 	if (!(cr0 & X86_CR0_WP))
2834 		*hw_cr0 &= ~X86_CR0_WP;
2835 }
2836 
2837 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2838 {
2839 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2840 	unsigned long hw_cr0;
2841 
2842 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
2843 	if (enable_unrestricted_guest)
2844 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2845 	else {
2846 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
2847 
2848 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2849 			enter_pmode(vcpu);
2850 
2851 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2852 			enter_rmode(vcpu);
2853 	}
2854 
2855 #ifdef CONFIG_X86_64
2856 	if (vcpu->arch.efer & EFER_LME) {
2857 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2858 			enter_lmode(vcpu);
2859 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2860 			exit_lmode(vcpu);
2861 	}
2862 #endif
2863 
2864 	if (enable_ept && !enable_unrestricted_guest)
2865 		ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2866 
2867 	vmcs_writel(CR0_READ_SHADOW, cr0);
2868 	vmcs_writel(GUEST_CR0, hw_cr0);
2869 	vcpu->arch.cr0 = cr0;
2870 
2871 	/* depends on vcpu->arch.cr0 to be set to a new value */
2872 	vmx->emulation_required = emulation_required(vcpu);
2873 }
2874 
2875 static int get_ept_level(struct kvm_vcpu *vcpu)
2876 {
2877 	if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
2878 		return 5;
2879 	return 4;
2880 }
2881 
2882 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
2883 {
2884 	u64 eptp = VMX_EPTP_MT_WB;
2885 
2886 	eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
2887 
2888 	if (enable_ept_ad_bits &&
2889 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
2890 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
2891 	eptp |= (root_hpa & PAGE_MASK);
2892 
2893 	return eptp;
2894 }
2895 
2896 void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2897 {
2898 	struct kvm *kvm = vcpu->kvm;
2899 	unsigned long guest_cr3;
2900 	u64 eptp;
2901 
2902 	guest_cr3 = cr3;
2903 	if (enable_ept) {
2904 		eptp = construct_eptp(vcpu, cr3);
2905 		vmcs_write64(EPT_POINTER, eptp);
2906 
2907 		if (kvm_x86_ops->tlb_remote_flush) {
2908 			spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
2909 			to_vmx(vcpu)->ept_pointer = eptp;
2910 			to_kvm_vmx(kvm)->ept_pointers_match
2911 				= EPT_POINTERS_CHECK;
2912 			spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
2913 		}
2914 
2915 		if (enable_unrestricted_guest || is_paging(vcpu) ||
2916 		    is_guest_mode(vcpu))
2917 			guest_cr3 = kvm_read_cr3(vcpu);
2918 		else
2919 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
2920 		ept_load_pdptrs(vcpu);
2921 	}
2922 
2923 	vmcs_writel(GUEST_CR3, guest_cr3);
2924 }
2925 
2926 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2927 {
2928 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2929 	/*
2930 	 * Pass through host's Machine Check Enable value to hw_cr4, which
2931 	 * is in force while we are in guest mode.  Do not let guests control
2932 	 * this bit, even if host CR4.MCE == 0.
2933 	 */
2934 	unsigned long hw_cr4;
2935 
2936 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
2937 	if (enable_unrestricted_guest)
2938 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
2939 	else if (vmx->rmode.vm86_active)
2940 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
2941 	else
2942 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
2943 
2944 	if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
2945 		if (cr4 & X86_CR4_UMIP) {
2946 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
2947 			hw_cr4 &= ~X86_CR4_UMIP;
2948 		} else if (!is_guest_mode(vcpu) ||
2949 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
2950 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
2951 		}
2952 	}
2953 
2954 	if (cr4 & X86_CR4_VMXE) {
2955 		/*
2956 		 * To use VMXON (and later other VMX instructions), a guest
2957 		 * must first be able to turn on cr4.VMXE (see handle_vmon()).
2958 		 * So basically the check on whether to allow nested VMX
2959 		 * is here.  We operate under the default treatment of SMM,
2960 		 * so VMX cannot be enabled under SMM.
2961 		 */
2962 		if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
2963 			return 1;
2964 	}
2965 
2966 	if (vmx->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
2967 		return 1;
2968 
2969 	vcpu->arch.cr4 = cr4;
2970 
2971 	if (!enable_unrestricted_guest) {
2972 		if (enable_ept) {
2973 			if (!is_paging(vcpu)) {
2974 				hw_cr4 &= ~X86_CR4_PAE;
2975 				hw_cr4 |= X86_CR4_PSE;
2976 			} else if (!(cr4 & X86_CR4_PAE)) {
2977 				hw_cr4 &= ~X86_CR4_PAE;
2978 			}
2979 		}
2980 
2981 		/*
2982 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
2983 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
2984 		 * to be manually disabled when guest switches to non-paging
2985 		 * mode.
2986 		 *
2987 		 * If !enable_unrestricted_guest, the CPU is always running
2988 		 * with CR0.PG=1 and CR4 needs to be modified.
2989 		 * If enable_unrestricted_guest, the CPU automatically
2990 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
2991 		 */
2992 		if (!is_paging(vcpu))
2993 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
2994 	}
2995 
2996 	vmcs_writel(CR4_READ_SHADOW, cr4);
2997 	vmcs_writel(GUEST_CR4, hw_cr4);
2998 	return 0;
2999 }
3000 
3001 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3002 {
3003 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3004 	u32 ar;
3005 
3006 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3007 		*var = vmx->rmode.segs[seg];
3008 		if (seg == VCPU_SREG_TR
3009 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3010 			return;
3011 		var->base = vmx_read_guest_seg_base(vmx, seg);
3012 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3013 		return;
3014 	}
3015 	var->base = vmx_read_guest_seg_base(vmx, seg);
3016 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3017 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3018 	ar = vmx_read_guest_seg_ar(vmx, seg);
3019 	var->unusable = (ar >> 16) & 1;
3020 	var->type = ar & 15;
3021 	var->s = (ar >> 4) & 1;
3022 	var->dpl = (ar >> 5) & 3;
3023 	/*
3024 	 * Some userspaces do not preserve unusable property. Since usable
3025 	 * segment has to be present according to VMX spec we can use present
3026 	 * property to amend userspace bug by making unusable segment always
3027 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3028 	 * segment as unusable.
3029 	 */
3030 	var->present = !var->unusable;
3031 	var->avl = (ar >> 12) & 1;
3032 	var->l = (ar >> 13) & 1;
3033 	var->db = (ar >> 14) & 1;
3034 	var->g = (ar >> 15) & 1;
3035 }
3036 
3037 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3038 {
3039 	struct kvm_segment s;
3040 
3041 	if (to_vmx(vcpu)->rmode.vm86_active) {
3042 		vmx_get_segment(vcpu, &s, seg);
3043 		return s.base;
3044 	}
3045 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3046 }
3047 
3048 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3049 {
3050 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3051 
3052 	if (unlikely(vmx->rmode.vm86_active))
3053 		return 0;
3054 	else {
3055 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3056 		return VMX_AR_DPL(ar);
3057 	}
3058 }
3059 
3060 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3061 {
3062 	u32 ar;
3063 
3064 	if (var->unusable || !var->present)
3065 		ar = 1 << 16;
3066 	else {
3067 		ar = var->type & 15;
3068 		ar |= (var->s & 1) << 4;
3069 		ar |= (var->dpl & 3) << 5;
3070 		ar |= (var->present & 1) << 7;
3071 		ar |= (var->avl & 1) << 12;
3072 		ar |= (var->l & 1) << 13;
3073 		ar |= (var->db & 1) << 14;
3074 		ar |= (var->g & 1) << 15;
3075 	}
3076 
3077 	return ar;
3078 }
3079 
3080 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3081 {
3082 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3083 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3084 
3085 	vmx_segment_cache_clear(vmx);
3086 
3087 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3088 		vmx->rmode.segs[seg] = *var;
3089 		if (seg == VCPU_SREG_TR)
3090 			vmcs_write16(sf->selector, var->selector);
3091 		else if (var->s)
3092 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3093 		goto out;
3094 	}
3095 
3096 	vmcs_writel(sf->base, var->base);
3097 	vmcs_write32(sf->limit, var->limit);
3098 	vmcs_write16(sf->selector, var->selector);
3099 
3100 	/*
3101 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3102 	 * qemu binaries.
3103 	 *   IA32 arch specifies that at the time of processor reset the
3104 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3105 	 * is setting it to 0 in the userland code. This causes invalid guest
3106 	 * state vmexit when "unrestricted guest" mode is turned on.
3107 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3108 	 * tree. Newer qemu binaries with that qemu fix would not need this
3109 	 * kvm hack.
3110 	 */
3111 	if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3112 		var->type |= 0x1; /* Accessed */
3113 
3114 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3115 
3116 out:
3117 	vmx->emulation_required = emulation_required(vcpu);
3118 }
3119 
3120 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3121 {
3122 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3123 
3124 	*db = (ar >> 14) & 1;
3125 	*l = (ar >> 13) & 1;
3126 }
3127 
3128 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3129 {
3130 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3131 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3132 }
3133 
3134 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3135 {
3136 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3137 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3138 }
3139 
3140 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3141 {
3142 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3143 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3144 }
3145 
3146 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3147 {
3148 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3149 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3150 }
3151 
3152 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3153 {
3154 	struct kvm_segment var;
3155 	u32 ar;
3156 
3157 	vmx_get_segment(vcpu, &var, seg);
3158 	var.dpl = 0x3;
3159 	if (seg == VCPU_SREG_CS)
3160 		var.type = 0x3;
3161 	ar = vmx_segment_access_rights(&var);
3162 
3163 	if (var.base != (var.selector << 4))
3164 		return false;
3165 	if (var.limit != 0xffff)
3166 		return false;
3167 	if (ar != 0xf3)
3168 		return false;
3169 
3170 	return true;
3171 }
3172 
3173 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3174 {
3175 	struct kvm_segment cs;
3176 	unsigned int cs_rpl;
3177 
3178 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3179 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3180 
3181 	if (cs.unusable)
3182 		return false;
3183 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3184 		return false;
3185 	if (!cs.s)
3186 		return false;
3187 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3188 		if (cs.dpl > cs_rpl)
3189 			return false;
3190 	} else {
3191 		if (cs.dpl != cs_rpl)
3192 			return false;
3193 	}
3194 	if (!cs.present)
3195 		return false;
3196 
3197 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3198 	return true;
3199 }
3200 
3201 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3202 {
3203 	struct kvm_segment ss;
3204 	unsigned int ss_rpl;
3205 
3206 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3207 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3208 
3209 	if (ss.unusable)
3210 		return true;
3211 	if (ss.type != 3 && ss.type != 7)
3212 		return false;
3213 	if (!ss.s)
3214 		return false;
3215 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3216 		return false;
3217 	if (!ss.present)
3218 		return false;
3219 
3220 	return true;
3221 }
3222 
3223 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3224 {
3225 	struct kvm_segment var;
3226 	unsigned int rpl;
3227 
3228 	vmx_get_segment(vcpu, &var, seg);
3229 	rpl = var.selector & SEGMENT_RPL_MASK;
3230 
3231 	if (var.unusable)
3232 		return true;
3233 	if (!var.s)
3234 		return false;
3235 	if (!var.present)
3236 		return false;
3237 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3238 		if (var.dpl < rpl) /* DPL < RPL */
3239 			return false;
3240 	}
3241 
3242 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3243 	 * rights flags
3244 	 */
3245 	return true;
3246 }
3247 
3248 static bool tr_valid(struct kvm_vcpu *vcpu)
3249 {
3250 	struct kvm_segment tr;
3251 
3252 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3253 
3254 	if (tr.unusable)
3255 		return false;
3256 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3257 		return false;
3258 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3259 		return false;
3260 	if (!tr.present)
3261 		return false;
3262 
3263 	return true;
3264 }
3265 
3266 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3267 {
3268 	struct kvm_segment ldtr;
3269 
3270 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3271 
3272 	if (ldtr.unusable)
3273 		return true;
3274 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3275 		return false;
3276 	if (ldtr.type != 2)
3277 		return false;
3278 	if (!ldtr.present)
3279 		return false;
3280 
3281 	return true;
3282 }
3283 
3284 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3285 {
3286 	struct kvm_segment cs, ss;
3287 
3288 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3289 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3290 
3291 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3292 		 (ss.selector & SEGMENT_RPL_MASK));
3293 }
3294 
3295 /*
3296  * Check if guest state is valid. Returns true if valid, false if
3297  * not.
3298  * We assume that registers are always usable
3299  */
3300 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3301 {
3302 	if (enable_unrestricted_guest)
3303 		return true;
3304 
3305 	/* real mode guest state checks */
3306 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3307 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3308 			return false;
3309 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3310 			return false;
3311 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3312 			return false;
3313 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3314 			return false;
3315 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3316 			return false;
3317 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3318 			return false;
3319 	} else {
3320 	/* protected mode guest state checks */
3321 		if (!cs_ss_rpl_check(vcpu))
3322 			return false;
3323 		if (!code_segment_valid(vcpu))
3324 			return false;
3325 		if (!stack_segment_valid(vcpu))
3326 			return false;
3327 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3328 			return false;
3329 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3330 			return false;
3331 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3332 			return false;
3333 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3334 			return false;
3335 		if (!tr_valid(vcpu))
3336 			return false;
3337 		if (!ldtr_valid(vcpu))
3338 			return false;
3339 	}
3340 	/* TODO:
3341 	 * - Add checks on RIP
3342 	 * - Add checks on RFLAGS
3343 	 */
3344 
3345 	return true;
3346 }
3347 
3348 static int init_rmode_tss(struct kvm *kvm)
3349 {
3350 	gfn_t fn;
3351 	u16 data = 0;
3352 	int idx, r;
3353 
3354 	idx = srcu_read_lock(&kvm->srcu);
3355 	fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3356 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3357 	if (r < 0)
3358 		goto out;
3359 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3360 	r = kvm_write_guest_page(kvm, fn++, &data,
3361 			TSS_IOPB_BASE_OFFSET, sizeof(u16));
3362 	if (r < 0)
3363 		goto out;
3364 	r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3365 	if (r < 0)
3366 		goto out;
3367 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3368 	if (r < 0)
3369 		goto out;
3370 	data = ~0;
3371 	r = kvm_write_guest_page(kvm, fn, &data,
3372 				 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3373 				 sizeof(u8));
3374 out:
3375 	srcu_read_unlock(&kvm->srcu, idx);
3376 	return r;
3377 }
3378 
3379 static int init_rmode_identity_map(struct kvm *kvm)
3380 {
3381 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3382 	int i, idx, r = 0;
3383 	kvm_pfn_t identity_map_pfn;
3384 	u32 tmp;
3385 
3386 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3387 	mutex_lock(&kvm->slots_lock);
3388 
3389 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3390 		goto out2;
3391 
3392 	if (!kvm_vmx->ept_identity_map_addr)
3393 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3394 	identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3395 
3396 	r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3397 				    kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3398 	if (r < 0)
3399 		goto out2;
3400 
3401 	idx = srcu_read_lock(&kvm->srcu);
3402 	r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3403 	if (r < 0)
3404 		goto out;
3405 	/* Set up identity-mapping pagetable for EPT in real mode */
3406 	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3407 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3408 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3409 		r = kvm_write_guest_page(kvm, identity_map_pfn,
3410 				&tmp, i * sizeof(tmp), sizeof(tmp));
3411 		if (r < 0)
3412 			goto out;
3413 	}
3414 	kvm_vmx->ept_identity_pagetable_done = true;
3415 
3416 out:
3417 	srcu_read_unlock(&kvm->srcu, idx);
3418 
3419 out2:
3420 	mutex_unlock(&kvm->slots_lock);
3421 	return r;
3422 }
3423 
3424 static void seg_setup(int seg)
3425 {
3426 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3427 	unsigned int ar;
3428 
3429 	vmcs_write16(sf->selector, 0);
3430 	vmcs_writel(sf->base, 0);
3431 	vmcs_write32(sf->limit, 0xffff);
3432 	ar = 0x93;
3433 	if (seg == VCPU_SREG_CS)
3434 		ar |= 0x08; /* code segment */
3435 
3436 	vmcs_write32(sf->ar_bytes, ar);
3437 }
3438 
3439 static int alloc_apic_access_page(struct kvm *kvm)
3440 {
3441 	struct page *page;
3442 	int r = 0;
3443 
3444 	mutex_lock(&kvm->slots_lock);
3445 	if (kvm->arch.apic_access_page_done)
3446 		goto out;
3447 	r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3448 				    APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3449 	if (r)
3450 		goto out;
3451 
3452 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3453 	if (is_error_page(page)) {
3454 		r = -EFAULT;
3455 		goto out;
3456 	}
3457 
3458 	/*
3459 	 * Do not pin the page in memory, so that memory hot-unplug
3460 	 * is able to migrate it.
3461 	 */
3462 	put_page(page);
3463 	kvm->arch.apic_access_page_done = true;
3464 out:
3465 	mutex_unlock(&kvm->slots_lock);
3466 	return r;
3467 }
3468 
3469 int allocate_vpid(void)
3470 {
3471 	int vpid;
3472 
3473 	if (!enable_vpid)
3474 		return 0;
3475 	spin_lock(&vmx_vpid_lock);
3476 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3477 	if (vpid < VMX_NR_VPIDS)
3478 		__set_bit(vpid, vmx_vpid_bitmap);
3479 	else
3480 		vpid = 0;
3481 	spin_unlock(&vmx_vpid_lock);
3482 	return vpid;
3483 }
3484 
3485 void free_vpid(int vpid)
3486 {
3487 	if (!enable_vpid || vpid == 0)
3488 		return;
3489 	spin_lock(&vmx_vpid_lock);
3490 	__clear_bit(vpid, vmx_vpid_bitmap);
3491 	spin_unlock(&vmx_vpid_lock);
3492 }
3493 
3494 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3495 							  u32 msr, int type)
3496 {
3497 	int f = sizeof(unsigned long);
3498 
3499 	if (!cpu_has_vmx_msr_bitmap())
3500 		return;
3501 
3502 	if (static_branch_unlikely(&enable_evmcs))
3503 		evmcs_touch_msr_bitmap();
3504 
3505 	/*
3506 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3507 	 * have the write-low and read-high bitmap offsets the wrong way round.
3508 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3509 	 */
3510 	if (msr <= 0x1fff) {
3511 		if (type & MSR_TYPE_R)
3512 			/* read-low */
3513 			__clear_bit(msr, msr_bitmap + 0x000 / f);
3514 
3515 		if (type & MSR_TYPE_W)
3516 			/* write-low */
3517 			__clear_bit(msr, msr_bitmap + 0x800 / f);
3518 
3519 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3520 		msr &= 0x1fff;
3521 		if (type & MSR_TYPE_R)
3522 			/* read-high */
3523 			__clear_bit(msr, msr_bitmap + 0x400 / f);
3524 
3525 		if (type & MSR_TYPE_W)
3526 			/* write-high */
3527 			__clear_bit(msr, msr_bitmap + 0xc00 / f);
3528 
3529 	}
3530 }
3531 
3532 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3533 							 u32 msr, int type)
3534 {
3535 	int f = sizeof(unsigned long);
3536 
3537 	if (!cpu_has_vmx_msr_bitmap())
3538 		return;
3539 
3540 	if (static_branch_unlikely(&enable_evmcs))
3541 		evmcs_touch_msr_bitmap();
3542 
3543 	/*
3544 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3545 	 * have the write-low and read-high bitmap offsets the wrong way round.
3546 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3547 	 */
3548 	if (msr <= 0x1fff) {
3549 		if (type & MSR_TYPE_R)
3550 			/* read-low */
3551 			__set_bit(msr, msr_bitmap + 0x000 / f);
3552 
3553 		if (type & MSR_TYPE_W)
3554 			/* write-low */
3555 			__set_bit(msr, msr_bitmap + 0x800 / f);
3556 
3557 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3558 		msr &= 0x1fff;
3559 		if (type & MSR_TYPE_R)
3560 			/* read-high */
3561 			__set_bit(msr, msr_bitmap + 0x400 / f);
3562 
3563 		if (type & MSR_TYPE_W)
3564 			/* write-high */
3565 			__set_bit(msr, msr_bitmap + 0xc00 / f);
3566 
3567 	}
3568 }
3569 
3570 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
3571 			     			      u32 msr, int type, bool value)
3572 {
3573 	if (value)
3574 		vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
3575 	else
3576 		vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
3577 }
3578 
3579 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3580 {
3581 	u8 mode = 0;
3582 
3583 	if (cpu_has_secondary_exec_ctrls() &&
3584 	    (secondary_exec_controls_get(to_vmx(vcpu)) &
3585 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3586 		mode |= MSR_BITMAP_MODE_X2APIC;
3587 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3588 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3589 	}
3590 
3591 	return mode;
3592 }
3593 
3594 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
3595 					 u8 mode)
3596 {
3597 	int msr;
3598 
3599 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3600 		unsigned word = msr / BITS_PER_LONG;
3601 		msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3602 		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
3603 	}
3604 
3605 	if (mode & MSR_BITMAP_MODE_X2APIC) {
3606 		/*
3607 		 * TPR reads and writes can be virtualized even if virtual interrupt
3608 		 * delivery is not in use.
3609 		 */
3610 		vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
3611 		if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3612 			vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
3613 			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3614 			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3615 		}
3616 	}
3617 }
3618 
3619 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3620 {
3621 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3622 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3623 	u8 mode = vmx_msr_bitmap_mode(vcpu);
3624 	u8 changed = mode ^ vmx->msr_bitmap_mode;
3625 
3626 	if (!changed)
3627 		return;
3628 
3629 	if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3630 		vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
3631 
3632 	vmx->msr_bitmap_mode = mode;
3633 }
3634 
3635 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
3636 {
3637 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3638 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3639 	u32 i;
3640 
3641 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
3642 							MSR_TYPE_RW, flag);
3643 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
3644 							MSR_TYPE_RW, flag);
3645 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
3646 							MSR_TYPE_RW, flag);
3647 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
3648 							MSR_TYPE_RW, flag);
3649 	for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3650 		vmx_set_intercept_for_msr(msr_bitmap,
3651 			MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3652 		vmx_set_intercept_for_msr(msr_bitmap,
3653 			MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3654 	}
3655 }
3656 
3657 static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
3658 {
3659 	return enable_apicv;
3660 }
3661 
3662 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3663 {
3664 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3665 	void *vapic_page;
3666 	u32 vppr;
3667 	int rvi;
3668 
3669 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3670 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3671 		WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3672 		return false;
3673 
3674 	rvi = vmx_get_rvi();
3675 
3676 	vapic_page = vmx->nested.virtual_apic_map.hva;
3677 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3678 
3679 	return ((rvi & 0xf0) > (vppr & 0xf0));
3680 }
3681 
3682 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3683 						     bool nested)
3684 {
3685 #ifdef CONFIG_SMP
3686 	int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3687 
3688 	if (vcpu->mode == IN_GUEST_MODE) {
3689 		/*
3690 		 * The vector of interrupt to be delivered to vcpu had
3691 		 * been set in PIR before this function.
3692 		 *
3693 		 * Following cases will be reached in this block, and
3694 		 * we always send a notification event in all cases as
3695 		 * explained below.
3696 		 *
3697 		 * Case 1: vcpu keeps in non-root mode. Sending a
3698 		 * notification event posts the interrupt to vcpu.
3699 		 *
3700 		 * Case 2: vcpu exits to root mode and is still
3701 		 * runnable. PIR will be synced to vIRR before the
3702 		 * next vcpu entry. Sending a notification event in
3703 		 * this case has no effect, as vcpu is not in root
3704 		 * mode.
3705 		 *
3706 		 * Case 3: vcpu exits to root mode and is blocked.
3707 		 * vcpu_block() has already synced PIR to vIRR and
3708 		 * never blocks vcpu if vIRR is not cleared. Therefore,
3709 		 * a blocked vcpu here does not wait for any requested
3710 		 * interrupts in PIR, and sending a notification event
3711 		 * which has no effect is safe here.
3712 		 */
3713 
3714 		apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3715 		return true;
3716 	}
3717 #endif
3718 	return false;
3719 }
3720 
3721 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3722 						int vector)
3723 {
3724 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3725 
3726 	if (is_guest_mode(vcpu) &&
3727 	    vector == vmx->nested.posted_intr_nv) {
3728 		/*
3729 		 * If a posted intr is not recognized by hardware,
3730 		 * we will accomplish it in the next vmentry.
3731 		 */
3732 		vmx->nested.pi_pending = true;
3733 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3734 		/* the PIR and ON have been set by L1. */
3735 		if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3736 			kvm_vcpu_kick(vcpu);
3737 		return 0;
3738 	}
3739 	return -1;
3740 }
3741 /*
3742  * Send interrupt to vcpu via posted interrupt way.
3743  * 1. If target vcpu is running(non-root mode), send posted interrupt
3744  * notification to vcpu and hardware will sync PIR to vIRR atomically.
3745  * 2. If target vcpu isn't running(root mode), kick it to pick up the
3746  * interrupt from PIR in next vmentry.
3747  */
3748 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3749 {
3750 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3751 	int r;
3752 
3753 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3754 	if (!r)
3755 		return;
3756 
3757 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3758 		return;
3759 
3760 	/* If a previous notification has sent the IPI, nothing to do.  */
3761 	if (pi_test_and_set_on(&vmx->pi_desc))
3762 		return;
3763 
3764 	if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3765 		kvm_vcpu_kick(vcpu);
3766 }
3767 
3768 /*
3769  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3770  * will not change in the lifetime of the guest.
3771  * Note that host-state that does change is set elsewhere. E.g., host-state
3772  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3773  */
3774 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3775 {
3776 	u32 low32, high32;
3777 	unsigned long tmpl;
3778 	unsigned long cr0, cr3, cr4;
3779 
3780 	cr0 = read_cr0();
3781 	WARN_ON(cr0 & X86_CR0_TS);
3782 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
3783 
3784 	/*
3785 	 * Save the most likely value for this task's CR3 in the VMCS.
3786 	 * We can't use __get_current_cr3_fast() because we're not atomic.
3787 	 */
3788 	cr3 = __read_cr3();
3789 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
3790 	vmx->loaded_vmcs->host_state.cr3 = cr3;
3791 
3792 	/* Save the most likely value for this task's CR4 in the VMCS. */
3793 	cr4 = cr4_read_shadow();
3794 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
3795 	vmx->loaded_vmcs->host_state.cr4 = cr4;
3796 
3797 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
3798 #ifdef CONFIG_X86_64
3799 	/*
3800 	 * Load null selectors, so we can avoid reloading them in
3801 	 * vmx_prepare_switch_to_host(), in case userspace uses
3802 	 * the null selectors too (the expected case).
3803 	 */
3804 	vmcs_write16(HOST_DS_SELECTOR, 0);
3805 	vmcs_write16(HOST_ES_SELECTOR, 0);
3806 #else
3807 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3808 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3809 #endif
3810 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3811 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
3812 
3813 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
3814 
3815 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
3816 
3817 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3818 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3819 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3820 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
3821 
3822 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3823 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
3824 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3825 	}
3826 
3827 	if (cpu_has_load_ia32_efer())
3828 		vmcs_write64(HOST_IA32_EFER, host_efer);
3829 }
3830 
3831 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3832 {
3833 	vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3834 	if (enable_ept)
3835 		vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3836 	if (is_guest_mode(&vmx->vcpu))
3837 		vmx->vcpu.arch.cr4_guest_owned_bits &=
3838 			~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3839 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3840 }
3841 
3842 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
3843 {
3844 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
3845 
3846 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
3847 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
3848 
3849 	if (!enable_vnmi)
3850 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
3851 
3852 	if (!enable_preemption_timer)
3853 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3854 
3855 	return pin_based_exec_ctrl;
3856 }
3857 
3858 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
3859 {
3860 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3861 
3862 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
3863 	if (cpu_has_secondary_exec_ctrls()) {
3864 		if (kvm_vcpu_apicv_active(vcpu))
3865 			secondary_exec_controls_setbit(vmx,
3866 				      SECONDARY_EXEC_APIC_REGISTER_VIRT |
3867 				      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3868 		else
3869 			secondary_exec_controls_clearbit(vmx,
3870 					SECONDARY_EXEC_APIC_REGISTER_VIRT |
3871 					SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3872 	}
3873 
3874 	if (cpu_has_vmx_msr_bitmap())
3875 		vmx_update_msr_bitmap(vcpu);
3876 }
3877 
3878 u32 vmx_exec_control(struct vcpu_vmx *vmx)
3879 {
3880 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3881 
3882 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
3883 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
3884 
3885 	if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
3886 		exec_control &= ~CPU_BASED_TPR_SHADOW;
3887 #ifdef CONFIG_X86_64
3888 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
3889 				CPU_BASED_CR8_LOAD_EXITING;
3890 #endif
3891 	}
3892 	if (!enable_ept)
3893 		exec_control |= CPU_BASED_CR3_STORE_EXITING |
3894 				CPU_BASED_CR3_LOAD_EXITING  |
3895 				CPU_BASED_INVLPG_EXITING;
3896 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
3897 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
3898 				CPU_BASED_MONITOR_EXITING);
3899 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
3900 		exec_control &= ~CPU_BASED_HLT_EXITING;
3901 	return exec_control;
3902 }
3903 
3904 
3905 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
3906 {
3907 	struct kvm_vcpu *vcpu = &vmx->vcpu;
3908 
3909 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3910 
3911 	if (pt_mode == PT_MODE_SYSTEM)
3912 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
3913 	if (!cpu_need_virtualize_apic_accesses(vcpu))
3914 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3915 	if (vmx->vpid == 0)
3916 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3917 	if (!enable_ept) {
3918 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3919 		enable_unrestricted_guest = 0;
3920 	}
3921 	if (!enable_unrestricted_guest)
3922 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3923 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
3924 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3925 	if (!kvm_vcpu_apicv_active(vcpu))
3926 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
3927 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3928 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
3929 
3930 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
3931 	 * in vmx_set_cr4.  */
3932 	exec_control &= ~SECONDARY_EXEC_DESC;
3933 
3934 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
3935 	   (handle_vmptrld).
3936 	   We can NOT enable shadow_vmcs here because we don't have yet
3937 	   a current VMCS12
3938 	*/
3939 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
3940 
3941 	if (!enable_pml)
3942 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
3943 
3944 	if (vmx_xsaves_supported()) {
3945 		/* Exposing XSAVES only when XSAVE is exposed */
3946 		bool xsaves_enabled =
3947 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
3948 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
3949 
3950 		if (!xsaves_enabled)
3951 			exec_control &= ~SECONDARY_EXEC_XSAVES;
3952 
3953 		if (nested) {
3954 			if (xsaves_enabled)
3955 				vmx->nested.msrs.secondary_ctls_high |=
3956 					SECONDARY_EXEC_XSAVES;
3957 			else
3958 				vmx->nested.msrs.secondary_ctls_high &=
3959 					~SECONDARY_EXEC_XSAVES;
3960 		}
3961 	}
3962 
3963 	if (vmx_rdtscp_supported()) {
3964 		bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
3965 		if (!rdtscp_enabled)
3966 			exec_control &= ~SECONDARY_EXEC_RDTSCP;
3967 
3968 		if (nested) {
3969 			if (rdtscp_enabled)
3970 				vmx->nested.msrs.secondary_ctls_high |=
3971 					SECONDARY_EXEC_RDTSCP;
3972 			else
3973 				vmx->nested.msrs.secondary_ctls_high &=
3974 					~SECONDARY_EXEC_RDTSCP;
3975 		}
3976 	}
3977 
3978 	if (vmx_invpcid_supported()) {
3979 		/* Exposing INVPCID only when PCID is exposed */
3980 		bool invpcid_enabled =
3981 			guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
3982 			guest_cpuid_has(vcpu, X86_FEATURE_PCID);
3983 
3984 		if (!invpcid_enabled) {
3985 			exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
3986 			guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
3987 		}
3988 
3989 		if (nested) {
3990 			if (invpcid_enabled)
3991 				vmx->nested.msrs.secondary_ctls_high |=
3992 					SECONDARY_EXEC_ENABLE_INVPCID;
3993 			else
3994 				vmx->nested.msrs.secondary_ctls_high &=
3995 					~SECONDARY_EXEC_ENABLE_INVPCID;
3996 		}
3997 	}
3998 
3999 	if (vmx_rdrand_supported()) {
4000 		bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
4001 		if (rdrand_enabled)
4002 			exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
4003 
4004 		if (nested) {
4005 			if (rdrand_enabled)
4006 				vmx->nested.msrs.secondary_ctls_high |=
4007 					SECONDARY_EXEC_RDRAND_EXITING;
4008 			else
4009 				vmx->nested.msrs.secondary_ctls_high &=
4010 					~SECONDARY_EXEC_RDRAND_EXITING;
4011 		}
4012 	}
4013 
4014 	if (vmx_rdseed_supported()) {
4015 		bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
4016 		if (rdseed_enabled)
4017 			exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
4018 
4019 		if (nested) {
4020 			if (rdseed_enabled)
4021 				vmx->nested.msrs.secondary_ctls_high |=
4022 					SECONDARY_EXEC_RDSEED_EXITING;
4023 			else
4024 				vmx->nested.msrs.secondary_ctls_high &=
4025 					~SECONDARY_EXEC_RDSEED_EXITING;
4026 		}
4027 	}
4028 
4029 	vmx->secondary_exec_control = exec_control;
4030 }
4031 
4032 static void ept_set_mmio_spte_mask(void)
4033 {
4034 	/*
4035 	 * EPT Misconfigurations can be generated if the value of bits 2:0
4036 	 * of an EPT paging-structure entry is 110b (write/execute).
4037 	 */
4038 	kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
4039 				   VMX_EPT_MISCONFIG_WX_VALUE, 0);
4040 }
4041 
4042 #define VMX_XSS_EXIT_BITMAP 0
4043 
4044 /*
4045  * Sets up the vmcs for emulated real mode.
4046  */
4047 static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
4048 {
4049 	int i;
4050 
4051 	if (nested)
4052 		nested_vmx_vcpu_setup();
4053 
4054 	if (cpu_has_vmx_msr_bitmap())
4055 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4056 
4057 	vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4058 
4059 	/* Control */
4060 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4061 	vmx->hv_deadline_tsc = -1;
4062 
4063 	exec_controls_set(vmx, vmx_exec_control(vmx));
4064 
4065 	if (cpu_has_secondary_exec_ctrls()) {
4066 		vmx_compute_secondary_exec_control(vmx);
4067 		secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4068 	}
4069 
4070 	if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4071 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4072 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4073 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4074 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4075 
4076 		vmcs_write16(GUEST_INTR_STATUS, 0);
4077 
4078 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4079 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4080 	}
4081 
4082 	if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4083 		vmcs_write32(PLE_GAP, ple_gap);
4084 		vmx->ple_window = ple_window;
4085 		vmx->ple_window_dirty = true;
4086 	}
4087 
4088 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4089 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4090 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4091 
4092 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4093 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4094 	vmx_set_constant_host_state(vmx);
4095 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4096 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4097 
4098 	if (cpu_has_vmx_vmfunc())
4099 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4100 
4101 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4102 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4103 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4104 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4105 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4106 
4107 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4108 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4109 
4110 	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4111 		u32 index = vmx_msr_index[i];
4112 		u32 data_low, data_high;
4113 		int j = vmx->nmsrs;
4114 
4115 		if (rdmsr_safe(index, &data_low, &data_high) < 0)
4116 			continue;
4117 		if (wrmsr_safe(index, data_low, data_high) < 0)
4118 			continue;
4119 		vmx->guest_msrs[j].index = i;
4120 		vmx->guest_msrs[j].data = 0;
4121 		vmx->guest_msrs[j].mask = -1ull;
4122 		++vmx->nmsrs;
4123 	}
4124 
4125 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4126 
4127 	/* 22.2.1, 20.8.1 */
4128 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4129 
4130 	vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
4131 	vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
4132 
4133 	set_cr4_guest_host_mask(vmx);
4134 
4135 	if (vmx_xsaves_supported())
4136 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4137 
4138 	if (enable_pml) {
4139 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4140 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4141 	}
4142 
4143 	if (cpu_has_vmx_encls_vmexit())
4144 		vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4145 
4146 	if (pt_mode == PT_MODE_HOST_GUEST) {
4147 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4148 		/* Bit[6~0] are forced to 1, writes are ignored. */
4149 		vmx->pt_desc.guest.output_mask = 0x7F;
4150 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4151 	}
4152 }
4153 
4154 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4155 {
4156 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4157 	struct msr_data apic_base_msr;
4158 	u64 cr0;
4159 
4160 	vmx->rmode.vm86_active = 0;
4161 	vmx->spec_ctrl = 0;
4162 
4163 	vcpu->arch.microcode_version = 0x100000000ULL;
4164 	vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4165 	vmx->hv_deadline_tsc = -1;
4166 	kvm_set_cr8(vcpu, 0);
4167 
4168 	if (!init_event) {
4169 		apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4170 				     MSR_IA32_APICBASE_ENABLE;
4171 		if (kvm_vcpu_is_reset_bsp(vcpu))
4172 			apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4173 		apic_base_msr.host_initiated = true;
4174 		kvm_set_apic_base(vcpu, &apic_base_msr);
4175 	}
4176 
4177 	vmx_segment_cache_clear(vmx);
4178 
4179 	seg_setup(VCPU_SREG_CS);
4180 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4181 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4182 
4183 	seg_setup(VCPU_SREG_DS);
4184 	seg_setup(VCPU_SREG_ES);
4185 	seg_setup(VCPU_SREG_FS);
4186 	seg_setup(VCPU_SREG_GS);
4187 	seg_setup(VCPU_SREG_SS);
4188 
4189 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4190 	vmcs_writel(GUEST_TR_BASE, 0);
4191 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4192 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4193 
4194 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4195 	vmcs_writel(GUEST_LDTR_BASE, 0);
4196 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4197 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4198 
4199 	if (!init_event) {
4200 		vmcs_write32(GUEST_SYSENTER_CS, 0);
4201 		vmcs_writel(GUEST_SYSENTER_ESP, 0);
4202 		vmcs_writel(GUEST_SYSENTER_EIP, 0);
4203 		vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4204 	}
4205 
4206 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4207 	kvm_rip_write(vcpu, 0xfff0);
4208 
4209 	vmcs_writel(GUEST_GDTR_BASE, 0);
4210 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4211 
4212 	vmcs_writel(GUEST_IDTR_BASE, 0);
4213 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4214 
4215 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4216 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4217 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4218 	if (kvm_mpx_supported())
4219 		vmcs_write64(GUEST_BNDCFGS, 0);
4220 
4221 	setup_msrs(vmx);
4222 
4223 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4224 
4225 	if (cpu_has_vmx_tpr_shadow() && !init_event) {
4226 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4227 		if (cpu_need_tpr_shadow(vcpu))
4228 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4229 				     __pa(vcpu->arch.apic->regs));
4230 		vmcs_write32(TPR_THRESHOLD, 0);
4231 	}
4232 
4233 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4234 
4235 	if (vmx->vpid != 0)
4236 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4237 
4238 	cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4239 	vmx->vcpu.arch.cr0 = cr0;
4240 	vmx_set_cr0(vcpu, cr0); /* enter rmode */
4241 	vmx_set_cr4(vcpu, 0);
4242 	vmx_set_efer(vcpu, 0);
4243 
4244 	update_exception_bitmap(vcpu);
4245 
4246 	vpid_sync_context(vmx->vpid);
4247 	if (init_event)
4248 		vmx_clear_hlt(vcpu);
4249 }
4250 
4251 static void enable_irq_window(struct kvm_vcpu *vcpu)
4252 {
4253 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_INTR_PENDING);
4254 }
4255 
4256 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4257 {
4258 	if (!enable_vnmi ||
4259 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4260 		enable_irq_window(vcpu);
4261 		return;
4262 	}
4263 
4264 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_NMI_PENDING);
4265 }
4266 
4267 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4268 {
4269 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4270 	uint32_t intr;
4271 	int irq = vcpu->arch.interrupt.nr;
4272 
4273 	trace_kvm_inj_virq(irq);
4274 
4275 	++vcpu->stat.irq_injections;
4276 	if (vmx->rmode.vm86_active) {
4277 		int inc_eip = 0;
4278 		if (vcpu->arch.interrupt.soft)
4279 			inc_eip = vcpu->arch.event_exit_inst_len;
4280 		if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4281 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4282 		return;
4283 	}
4284 	intr = irq | INTR_INFO_VALID_MASK;
4285 	if (vcpu->arch.interrupt.soft) {
4286 		intr |= INTR_TYPE_SOFT_INTR;
4287 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4288 			     vmx->vcpu.arch.event_exit_inst_len);
4289 	} else
4290 		intr |= INTR_TYPE_EXT_INTR;
4291 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4292 
4293 	vmx_clear_hlt(vcpu);
4294 }
4295 
4296 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4297 {
4298 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4299 
4300 	if (!enable_vnmi) {
4301 		/*
4302 		 * Tracking the NMI-blocked state in software is built upon
4303 		 * finding the next open IRQ window. This, in turn, depends on
4304 		 * well-behaving guests: They have to keep IRQs disabled at
4305 		 * least as long as the NMI handler runs. Otherwise we may
4306 		 * cause NMI nesting, maybe breaking the guest. But as this is
4307 		 * highly unlikely, we can live with the residual risk.
4308 		 */
4309 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4310 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4311 	}
4312 
4313 	++vcpu->stat.nmi_injections;
4314 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4315 
4316 	if (vmx->rmode.vm86_active) {
4317 		if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4318 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4319 		return;
4320 	}
4321 
4322 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4323 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4324 
4325 	vmx_clear_hlt(vcpu);
4326 }
4327 
4328 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4329 {
4330 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4331 	bool masked;
4332 
4333 	if (!enable_vnmi)
4334 		return vmx->loaded_vmcs->soft_vnmi_blocked;
4335 	if (vmx->loaded_vmcs->nmi_known_unmasked)
4336 		return false;
4337 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4338 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4339 	return masked;
4340 }
4341 
4342 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4343 {
4344 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4345 
4346 	if (!enable_vnmi) {
4347 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4348 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4349 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
4350 		}
4351 	} else {
4352 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4353 		if (masked)
4354 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4355 				      GUEST_INTR_STATE_NMI);
4356 		else
4357 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4358 					GUEST_INTR_STATE_NMI);
4359 	}
4360 }
4361 
4362 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4363 {
4364 	if (to_vmx(vcpu)->nested.nested_run_pending)
4365 		return 0;
4366 
4367 	if (!enable_vnmi &&
4368 	    to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4369 		return 0;
4370 
4371 	return	!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4372 		  (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4373 		   | GUEST_INTR_STATE_NMI));
4374 }
4375 
4376 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4377 {
4378 	return (!to_vmx(vcpu)->nested.nested_run_pending &&
4379 		vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4380 		!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4381 			(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4382 }
4383 
4384 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4385 {
4386 	int ret;
4387 
4388 	if (enable_unrestricted_guest)
4389 		return 0;
4390 
4391 	ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4392 				    PAGE_SIZE * 3);
4393 	if (ret)
4394 		return ret;
4395 	to_kvm_vmx(kvm)->tss_addr = addr;
4396 	return init_rmode_tss(kvm);
4397 }
4398 
4399 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4400 {
4401 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4402 	return 0;
4403 }
4404 
4405 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4406 {
4407 	switch (vec) {
4408 	case BP_VECTOR:
4409 		/*
4410 		 * Update instruction length as we may reinject the exception
4411 		 * from user space while in guest debugging mode.
4412 		 */
4413 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4414 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4415 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4416 			return false;
4417 		/* fall through */
4418 	case DB_VECTOR:
4419 		if (vcpu->guest_debug &
4420 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4421 			return false;
4422 		/* fall through */
4423 	case DE_VECTOR:
4424 	case OF_VECTOR:
4425 	case BR_VECTOR:
4426 	case UD_VECTOR:
4427 	case DF_VECTOR:
4428 	case SS_VECTOR:
4429 	case GP_VECTOR:
4430 	case MF_VECTOR:
4431 		return true;
4432 	break;
4433 	}
4434 	return false;
4435 }
4436 
4437 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4438 				  int vec, u32 err_code)
4439 {
4440 	/*
4441 	 * Instruction with address size override prefix opcode 0x67
4442 	 * Cause the #SS fault with 0 error code in VM86 mode.
4443 	 */
4444 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4445 		if (kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4446 			if (vcpu->arch.halt_request) {
4447 				vcpu->arch.halt_request = 0;
4448 				return kvm_vcpu_halt(vcpu);
4449 			}
4450 			return 1;
4451 		}
4452 		return 0;
4453 	}
4454 
4455 	/*
4456 	 * Forward all other exceptions that are valid in real mode.
4457 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4458 	 *        the required debugging infrastructure rework.
4459 	 */
4460 	kvm_queue_exception(vcpu, vec);
4461 	return 1;
4462 }
4463 
4464 /*
4465  * Trigger machine check on the host. We assume all the MSRs are already set up
4466  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4467  * We pass a fake environment to the machine check handler because we want
4468  * the guest to be always treated like user space, no matter what context
4469  * it used internally.
4470  */
4471 static void kvm_machine_check(void)
4472 {
4473 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4474 	struct pt_regs regs = {
4475 		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
4476 		.flags = X86_EFLAGS_IF,
4477 	};
4478 
4479 	do_machine_check(&regs, 0);
4480 #endif
4481 }
4482 
4483 static int handle_machine_check(struct kvm_vcpu *vcpu)
4484 {
4485 	/* handled by vmx_vcpu_run() */
4486 	return 1;
4487 }
4488 
4489 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4490 {
4491 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4492 	struct kvm_run *kvm_run = vcpu->run;
4493 	u32 intr_info, ex_no, error_code;
4494 	unsigned long cr2, rip, dr6;
4495 	u32 vect_info;
4496 	enum emulation_result er;
4497 
4498 	vect_info = vmx->idt_vectoring_info;
4499 	intr_info = vmx->exit_intr_info;
4500 
4501 	if (is_machine_check(intr_info) || is_nmi(intr_info))
4502 		return 1; /* handled by handle_exception_nmi_irqoff() */
4503 
4504 	if (is_invalid_opcode(intr_info))
4505 		return handle_ud(vcpu);
4506 
4507 	error_code = 0;
4508 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4509 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4510 
4511 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4512 		WARN_ON_ONCE(!enable_vmware_backdoor);
4513 		er = kvm_emulate_instruction(vcpu,
4514 			EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
4515 		if (er == EMULATE_USER_EXIT)
4516 			return 0;
4517 		else if (er != EMULATE_DONE)
4518 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4519 		return 1;
4520 	}
4521 
4522 	/*
4523 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4524 	 * MMIO, it is better to report an internal error.
4525 	 * See the comments in vmx_handle_exit.
4526 	 */
4527 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4528 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4529 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4530 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4531 		vcpu->run->internal.ndata = 3;
4532 		vcpu->run->internal.data[0] = vect_info;
4533 		vcpu->run->internal.data[1] = intr_info;
4534 		vcpu->run->internal.data[2] = error_code;
4535 		return 0;
4536 	}
4537 
4538 	if (is_page_fault(intr_info)) {
4539 		cr2 = vmcs_readl(EXIT_QUALIFICATION);
4540 		/* EPT won't cause page fault directly */
4541 		WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
4542 		return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4543 	}
4544 
4545 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4546 
4547 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4548 		return handle_rmode_exception(vcpu, ex_no, error_code);
4549 
4550 	switch (ex_no) {
4551 	case AC_VECTOR:
4552 		kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4553 		return 1;
4554 	case DB_VECTOR:
4555 		dr6 = vmcs_readl(EXIT_QUALIFICATION);
4556 		if (!(vcpu->guest_debug &
4557 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4558 			vcpu->arch.dr6 &= ~DR_TRAP_BITS;
4559 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
4560 			if (is_icebp(intr_info))
4561 				skip_emulated_instruction(vcpu);
4562 
4563 			kvm_queue_exception(vcpu, DB_VECTOR);
4564 			return 1;
4565 		}
4566 		kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4567 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4568 		/* fall through */
4569 	case BP_VECTOR:
4570 		/*
4571 		 * Update instruction length as we may reinject #BP from
4572 		 * user space while in guest debugging mode. Reading it for
4573 		 * #DB as well causes no harm, it is not used in that case.
4574 		 */
4575 		vmx->vcpu.arch.event_exit_inst_len =
4576 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4577 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
4578 		rip = kvm_rip_read(vcpu);
4579 		kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4580 		kvm_run->debug.arch.exception = ex_no;
4581 		break;
4582 	default:
4583 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4584 		kvm_run->ex.exception = ex_no;
4585 		kvm_run->ex.error_code = error_code;
4586 		break;
4587 	}
4588 	return 0;
4589 }
4590 
4591 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4592 {
4593 	++vcpu->stat.irq_exits;
4594 	return 1;
4595 }
4596 
4597 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4598 {
4599 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4600 	vcpu->mmio_needed = 0;
4601 	return 0;
4602 }
4603 
4604 static int handle_io(struct kvm_vcpu *vcpu)
4605 {
4606 	unsigned long exit_qualification;
4607 	int size, in, string;
4608 	unsigned port;
4609 
4610 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4611 	string = (exit_qualification & 16) != 0;
4612 
4613 	++vcpu->stat.io_exits;
4614 
4615 	if (string)
4616 		return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4617 
4618 	port = exit_qualification >> 16;
4619 	size = (exit_qualification & 7) + 1;
4620 	in = (exit_qualification & 8) != 0;
4621 
4622 	return kvm_fast_pio(vcpu, size, port, in);
4623 }
4624 
4625 static void
4626 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4627 {
4628 	/*
4629 	 * Patch in the VMCALL instruction:
4630 	 */
4631 	hypercall[0] = 0x0f;
4632 	hypercall[1] = 0x01;
4633 	hypercall[2] = 0xc1;
4634 }
4635 
4636 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4637 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4638 {
4639 	if (is_guest_mode(vcpu)) {
4640 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4641 		unsigned long orig_val = val;
4642 
4643 		/*
4644 		 * We get here when L2 changed cr0 in a way that did not change
4645 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4646 		 * but did change L0 shadowed bits. So we first calculate the
4647 		 * effective cr0 value that L1 would like to write into the
4648 		 * hardware. It consists of the L2-owned bits from the new
4649 		 * value combined with the L1-owned bits from L1's guest_cr0.
4650 		 */
4651 		val = (val & ~vmcs12->cr0_guest_host_mask) |
4652 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4653 
4654 		if (!nested_guest_cr0_valid(vcpu, val))
4655 			return 1;
4656 
4657 		if (kvm_set_cr0(vcpu, val))
4658 			return 1;
4659 		vmcs_writel(CR0_READ_SHADOW, orig_val);
4660 		return 0;
4661 	} else {
4662 		if (to_vmx(vcpu)->nested.vmxon &&
4663 		    !nested_host_cr0_valid(vcpu, val))
4664 			return 1;
4665 
4666 		return kvm_set_cr0(vcpu, val);
4667 	}
4668 }
4669 
4670 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4671 {
4672 	if (is_guest_mode(vcpu)) {
4673 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4674 		unsigned long orig_val = val;
4675 
4676 		/* analogously to handle_set_cr0 */
4677 		val = (val & ~vmcs12->cr4_guest_host_mask) |
4678 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4679 		if (kvm_set_cr4(vcpu, val))
4680 			return 1;
4681 		vmcs_writel(CR4_READ_SHADOW, orig_val);
4682 		return 0;
4683 	} else
4684 		return kvm_set_cr4(vcpu, val);
4685 }
4686 
4687 static int handle_desc(struct kvm_vcpu *vcpu)
4688 {
4689 	WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4690 	return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4691 }
4692 
4693 static int handle_cr(struct kvm_vcpu *vcpu)
4694 {
4695 	unsigned long exit_qualification, val;
4696 	int cr;
4697 	int reg;
4698 	int err;
4699 	int ret;
4700 
4701 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4702 	cr = exit_qualification & 15;
4703 	reg = (exit_qualification >> 8) & 15;
4704 	switch ((exit_qualification >> 4) & 3) {
4705 	case 0: /* mov to cr */
4706 		val = kvm_register_readl(vcpu, reg);
4707 		trace_kvm_cr_write(cr, val);
4708 		switch (cr) {
4709 		case 0:
4710 			err = handle_set_cr0(vcpu, val);
4711 			return kvm_complete_insn_gp(vcpu, err);
4712 		case 3:
4713 			WARN_ON_ONCE(enable_unrestricted_guest);
4714 			err = kvm_set_cr3(vcpu, val);
4715 			return kvm_complete_insn_gp(vcpu, err);
4716 		case 4:
4717 			err = handle_set_cr4(vcpu, val);
4718 			return kvm_complete_insn_gp(vcpu, err);
4719 		case 8: {
4720 				u8 cr8_prev = kvm_get_cr8(vcpu);
4721 				u8 cr8 = (u8)val;
4722 				err = kvm_set_cr8(vcpu, cr8);
4723 				ret = kvm_complete_insn_gp(vcpu, err);
4724 				if (lapic_in_kernel(vcpu))
4725 					return ret;
4726 				if (cr8_prev <= cr8)
4727 					return ret;
4728 				/*
4729 				 * TODO: we might be squashing a
4730 				 * KVM_GUESTDBG_SINGLESTEP-triggered
4731 				 * KVM_EXIT_DEBUG here.
4732 				 */
4733 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4734 				return 0;
4735 			}
4736 		}
4737 		break;
4738 	case 2: /* clts */
4739 		WARN_ONCE(1, "Guest should always own CR0.TS");
4740 		vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4741 		trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4742 		return kvm_skip_emulated_instruction(vcpu);
4743 	case 1: /*mov from cr*/
4744 		switch (cr) {
4745 		case 3:
4746 			WARN_ON_ONCE(enable_unrestricted_guest);
4747 			val = kvm_read_cr3(vcpu);
4748 			kvm_register_write(vcpu, reg, val);
4749 			trace_kvm_cr_read(cr, val);
4750 			return kvm_skip_emulated_instruction(vcpu);
4751 		case 8:
4752 			val = kvm_get_cr8(vcpu);
4753 			kvm_register_write(vcpu, reg, val);
4754 			trace_kvm_cr_read(cr, val);
4755 			return kvm_skip_emulated_instruction(vcpu);
4756 		}
4757 		break;
4758 	case 3: /* lmsw */
4759 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4760 		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4761 		kvm_lmsw(vcpu, val);
4762 
4763 		return kvm_skip_emulated_instruction(vcpu);
4764 	default:
4765 		break;
4766 	}
4767 	vcpu->run->exit_reason = 0;
4768 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4769 	       (int)(exit_qualification >> 4) & 3, cr);
4770 	return 0;
4771 }
4772 
4773 static int handle_dr(struct kvm_vcpu *vcpu)
4774 {
4775 	unsigned long exit_qualification;
4776 	int dr, dr7, reg;
4777 
4778 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4779 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4780 
4781 	/* First, if DR does not exist, trigger UD */
4782 	if (!kvm_require_dr(vcpu, dr))
4783 		return 1;
4784 
4785 	/* Do not handle if the CPL > 0, will trigger GP on re-entry */
4786 	if (!kvm_require_cpl(vcpu, 0))
4787 		return 1;
4788 	dr7 = vmcs_readl(GUEST_DR7);
4789 	if (dr7 & DR7_GD) {
4790 		/*
4791 		 * As the vm-exit takes precedence over the debug trap, we
4792 		 * need to emulate the latter, either for the host or the
4793 		 * guest debugging itself.
4794 		 */
4795 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4796 			vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4797 			vcpu->run->debug.arch.dr7 = dr7;
4798 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4799 			vcpu->run->debug.arch.exception = DB_VECTOR;
4800 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4801 			return 0;
4802 		} else {
4803 			vcpu->arch.dr6 &= ~DR_TRAP_BITS;
4804 			vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
4805 			kvm_queue_exception(vcpu, DB_VECTOR);
4806 			return 1;
4807 		}
4808 	}
4809 
4810 	if (vcpu->guest_debug == 0) {
4811 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4812 
4813 		/*
4814 		 * No more DR vmexits; force a reload of the debug registers
4815 		 * and reenter on this instruction.  The next vmexit will
4816 		 * retrieve the full state of the debug registers.
4817 		 */
4818 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4819 		return 1;
4820 	}
4821 
4822 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4823 	if (exit_qualification & TYPE_MOV_FROM_DR) {
4824 		unsigned long val;
4825 
4826 		if (kvm_get_dr(vcpu, dr, &val))
4827 			return 1;
4828 		kvm_register_write(vcpu, reg, val);
4829 	} else
4830 		if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4831 			return 1;
4832 
4833 	return kvm_skip_emulated_instruction(vcpu);
4834 }
4835 
4836 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
4837 {
4838 	return vcpu->arch.dr6;
4839 }
4840 
4841 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
4842 {
4843 }
4844 
4845 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
4846 {
4847 	get_debugreg(vcpu->arch.db[0], 0);
4848 	get_debugreg(vcpu->arch.db[1], 1);
4849 	get_debugreg(vcpu->arch.db[2], 2);
4850 	get_debugreg(vcpu->arch.db[3], 3);
4851 	get_debugreg(vcpu->arch.dr6, 6);
4852 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
4853 
4854 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
4855 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4856 }
4857 
4858 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4859 {
4860 	vmcs_writel(GUEST_DR7, val);
4861 }
4862 
4863 static int handle_cpuid(struct kvm_vcpu *vcpu)
4864 {
4865 	return kvm_emulate_cpuid(vcpu);
4866 }
4867 
4868 static int handle_rdmsr(struct kvm_vcpu *vcpu)
4869 {
4870 	return kvm_emulate_rdmsr(vcpu);
4871 }
4872 
4873 static int handle_wrmsr(struct kvm_vcpu *vcpu)
4874 {
4875 	return kvm_emulate_wrmsr(vcpu);
4876 }
4877 
4878 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4879 {
4880 	kvm_apic_update_ppr(vcpu);
4881 	return 1;
4882 }
4883 
4884 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
4885 {
4886 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_INTR_PENDING);
4887 
4888 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4889 
4890 	++vcpu->stat.irq_window_exits;
4891 	return 1;
4892 }
4893 
4894 static int handle_halt(struct kvm_vcpu *vcpu)
4895 {
4896 	return kvm_emulate_halt(vcpu);
4897 }
4898 
4899 static int handle_vmcall(struct kvm_vcpu *vcpu)
4900 {
4901 	return kvm_emulate_hypercall(vcpu);
4902 }
4903 
4904 static int handle_invd(struct kvm_vcpu *vcpu)
4905 {
4906 	return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4907 }
4908 
4909 static int handle_invlpg(struct kvm_vcpu *vcpu)
4910 {
4911 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4912 
4913 	kvm_mmu_invlpg(vcpu, exit_qualification);
4914 	return kvm_skip_emulated_instruction(vcpu);
4915 }
4916 
4917 static int handle_rdpmc(struct kvm_vcpu *vcpu)
4918 {
4919 	int err;
4920 
4921 	err = kvm_rdpmc(vcpu);
4922 	return kvm_complete_insn_gp(vcpu, err);
4923 }
4924 
4925 static int handle_wbinvd(struct kvm_vcpu *vcpu)
4926 {
4927 	return kvm_emulate_wbinvd(vcpu);
4928 }
4929 
4930 static int handle_xsetbv(struct kvm_vcpu *vcpu)
4931 {
4932 	u64 new_bv = kvm_read_edx_eax(vcpu);
4933 	u32 index = kvm_rcx_read(vcpu);
4934 
4935 	if (kvm_set_xcr(vcpu, index, new_bv) == 0)
4936 		return kvm_skip_emulated_instruction(vcpu);
4937 	return 1;
4938 }
4939 
4940 static int handle_xsaves(struct kvm_vcpu *vcpu)
4941 {
4942 	kvm_skip_emulated_instruction(vcpu);
4943 	WARN(1, "this should never happen\n");
4944 	return 1;
4945 }
4946 
4947 static int handle_xrstors(struct kvm_vcpu *vcpu)
4948 {
4949 	kvm_skip_emulated_instruction(vcpu);
4950 	WARN(1, "this should never happen\n");
4951 	return 1;
4952 }
4953 
4954 static int handle_apic_access(struct kvm_vcpu *vcpu)
4955 {
4956 	if (likely(fasteoi)) {
4957 		unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4958 		int access_type, offset;
4959 
4960 		access_type = exit_qualification & APIC_ACCESS_TYPE;
4961 		offset = exit_qualification & APIC_ACCESS_OFFSET;
4962 		/*
4963 		 * Sane guest uses MOV to write EOI, with written value
4964 		 * not cared. So make a short-circuit here by avoiding
4965 		 * heavy instruction emulation.
4966 		 */
4967 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
4968 		    (offset == APIC_EOI)) {
4969 			kvm_lapic_set_eoi(vcpu);
4970 			return kvm_skip_emulated_instruction(vcpu);
4971 		}
4972 	}
4973 	return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4974 }
4975 
4976 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
4977 {
4978 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4979 	int vector = exit_qualification & 0xff;
4980 
4981 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
4982 	kvm_apic_set_eoi_accelerated(vcpu, vector);
4983 	return 1;
4984 }
4985 
4986 static int handle_apic_write(struct kvm_vcpu *vcpu)
4987 {
4988 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4989 	u32 offset = exit_qualification & 0xfff;
4990 
4991 	/* APIC-write VM exit is trap-like and thus no need to adjust IP */
4992 	kvm_apic_write_nodecode(vcpu, offset);
4993 	return 1;
4994 }
4995 
4996 static int handle_task_switch(struct kvm_vcpu *vcpu)
4997 {
4998 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4999 	unsigned long exit_qualification;
5000 	bool has_error_code = false;
5001 	u32 error_code = 0;
5002 	u16 tss_selector;
5003 	int reason, type, idt_v, idt_index;
5004 
5005 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5006 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5007 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5008 
5009 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5010 
5011 	reason = (u32)exit_qualification >> 30;
5012 	if (reason == TASK_SWITCH_GATE && idt_v) {
5013 		switch (type) {
5014 		case INTR_TYPE_NMI_INTR:
5015 			vcpu->arch.nmi_injected = false;
5016 			vmx_set_nmi_mask(vcpu, true);
5017 			break;
5018 		case INTR_TYPE_EXT_INTR:
5019 		case INTR_TYPE_SOFT_INTR:
5020 			kvm_clear_interrupt_queue(vcpu);
5021 			break;
5022 		case INTR_TYPE_HARD_EXCEPTION:
5023 			if (vmx->idt_vectoring_info &
5024 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5025 				has_error_code = true;
5026 				error_code =
5027 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5028 			}
5029 			/* fall through */
5030 		case INTR_TYPE_SOFT_EXCEPTION:
5031 			kvm_clear_exception_queue(vcpu);
5032 			break;
5033 		default:
5034 			break;
5035 		}
5036 	}
5037 	tss_selector = exit_qualification;
5038 
5039 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5040 		       type != INTR_TYPE_EXT_INTR &&
5041 		       type != INTR_TYPE_NMI_INTR))
5042 		skip_emulated_instruction(vcpu);
5043 
5044 	if (kvm_task_switch(vcpu, tss_selector,
5045 			    type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5046 			    has_error_code, error_code) == EMULATE_FAIL) {
5047 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5048 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5049 		vcpu->run->internal.ndata = 0;
5050 		return 0;
5051 	}
5052 
5053 	/*
5054 	 * TODO: What about debug traps on tss switch?
5055 	 *       Are we supposed to inject them and update dr6?
5056 	 */
5057 
5058 	return 1;
5059 }
5060 
5061 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5062 {
5063 	unsigned long exit_qualification;
5064 	gpa_t gpa;
5065 	u64 error_code;
5066 
5067 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5068 
5069 	/*
5070 	 * EPT violation happened while executing iret from NMI,
5071 	 * "blocked by NMI" bit has to be set before next VM entry.
5072 	 * There are errata that may cause this bit to not be set:
5073 	 * AAK134, BY25.
5074 	 */
5075 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5076 			enable_vnmi &&
5077 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5078 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5079 
5080 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5081 	trace_kvm_page_fault(gpa, exit_qualification);
5082 
5083 	/* Is it a read fault? */
5084 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5085 		     ? PFERR_USER_MASK : 0;
5086 	/* Is it a write fault? */
5087 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5088 		      ? PFERR_WRITE_MASK : 0;
5089 	/* Is it a fetch fault? */
5090 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5091 		      ? PFERR_FETCH_MASK : 0;
5092 	/* ept page table entry is present? */
5093 	error_code |= (exit_qualification &
5094 		       (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5095 			EPT_VIOLATION_EXECUTABLE))
5096 		      ? PFERR_PRESENT_MASK : 0;
5097 
5098 	error_code |= (exit_qualification & 0x100) != 0 ?
5099 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5100 
5101 	vcpu->arch.exit_qualification = exit_qualification;
5102 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5103 }
5104 
5105 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5106 {
5107 	gpa_t gpa;
5108 
5109 	/*
5110 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5111 	 * nGPA here instead of the required GPA.
5112 	 */
5113 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5114 	if (!is_guest_mode(vcpu) &&
5115 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5116 		trace_kvm_fast_mmio(gpa);
5117 		/*
5118 		 * Doing kvm_skip_emulated_instruction() depends on undefined
5119 		 * behavior: Intel's manual doesn't mandate
5120 		 * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG
5121 		 * occurs and while on real hardware it was observed to be set,
5122 		 * other hypervisors (namely Hyper-V) don't set it, we end up
5123 		 * advancing IP with some random value. Disable fast mmio when
5124 		 * running nested and keep it for real hardware in hope that
5125 		 * VM_EXIT_INSTRUCTION_LEN will always be set correctly.
5126 		 */
5127 		if (!static_cpu_has(X86_FEATURE_HYPERVISOR))
5128 			return kvm_skip_emulated_instruction(vcpu);
5129 		else
5130 			return kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) ==
5131 								EMULATE_DONE;
5132 	}
5133 
5134 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5135 }
5136 
5137 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5138 {
5139 	WARN_ON_ONCE(!enable_vnmi);
5140 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_NMI_PENDING);
5141 	++vcpu->stat.nmi_window_exits;
5142 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5143 
5144 	return 1;
5145 }
5146 
5147 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5148 {
5149 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5150 	enum emulation_result err = EMULATE_DONE;
5151 	int ret = 1;
5152 	bool intr_window_requested;
5153 	unsigned count = 130;
5154 
5155 	/*
5156 	 * We should never reach the point where we are emulating L2
5157 	 * due to invalid guest state as that means we incorrectly
5158 	 * allowed a nested VMEntry with an invalid vmcs12.
5159 	 */
5160 	WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
5161 
5162 	intr_window_requested = exec_controls_get(vmx) &
5163 				CPU_BASED_VIRTUAL_INTR_PENDING;
5164 
5165 	while (vmx->emulation_required && count-- != 0) {
5166 		if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5167 			return handle_interrupt_window(&vmx->vcpu);
5168 
5169 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5170 			return 1;
5171 
5172 		err = kvm_emulate_instruction(vcpu, 0);
5173 
5174 		if (err == EMULATE_USER_EXIT) {
5175 			++vcpu->stat.mmio_exits;
5176 			ret = 0;
5177 			goto out;
5178 		}
5179 
5180 		if (err != EMULATE_DONE)
5181 			goto emulation_error;
5182 
5183 		if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5184 		    vcpu->arch.exception.pending)
5185 			goto emulation_error;
5186 
5187 		if (vcpu->arch.halt_request) {
5188 			vcpu->arch.halt_request = 0;
5189 			ret = kvm_vcpu_halt(vcpu);
5190 			goto out;
5191 		}
5192 
5193 		if (signal_pending(current))
5194 			goto out;
5195 		if (need_resched())
5196 			schedule();
5197 	}
5198 
5199 out:
5200 	return ret;
5201 
5202 emulation_error:
5203 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5204 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5205 	vcpu->run->internal.ndata = 0;
5206 	return 0;
5207 }
5208 
5209 static void grow_ple_window(struct kvm_vcpu *vcpu)
5210 {
5211 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5212 	unsigned int old = vmx->ple_window;
5213 
5214 	vmx->ple_window = __grow_ple_window(old, ple_window,
5215 					    ple_window_grow,
5216 					    ple_window_max);
5217 
5218 	if (vmx->ple_window != old) {
5219 		vmx->ple_window_dirty = true;
5220 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5221 					    vmx->ple_window, old);
5222 	}
5223 }
5224 
5225 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5226 {
5227 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5228 	unsigned int old = vmx->ple_window;
5229 
5230 	vmx->ple_window = __shrink_ple_window(old, ple_window,
5231 					      ple_window_shrink,
5232 					      ple_window);
5233 
5234 	if (vmx->ple_window != old) {
5235 		vmx->ple_window_dirty = true;
5236 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5237 					    vmx->ple_window, old);
5238 	}
5239 }
5240 
5241 /*
5242  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
5243  */
5244 static void wakeup_handler(void)
5245 {
5246 	struct kvm_vcpu *vcpu;
5247 	int cpu = smp_processor_id();
5248 
5249 	spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5250 	list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
5251 			blocked_vcpu_list) {
5252 		struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
5253 
5254 		if (pi_test_on(pi_desc) == 1)
5255 			kvm_vcpu_kick(vcpu);
5256 	}
5257 	spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5258 }
5259 
5260 static void vmx_enable_tdp(void)
5261 {
5262 	kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5263 		enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5264 		enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5265 		0ull, VMX_EPT_EXECUTABLE_MASK,
5266 		cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5267 		VMX_EPT_RWX_MASK, 0ull);
5268 
5269 	ept_set_mmio_spte_mask();
5270 	kvm_enable_tdp();
5271 }
5272 
5273 /*
5274  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5275  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5276  */
5277 static int handle_pause(struct kvm_vcpu *vcpu)
5278 {
5279 	if (!kvm_pause_in_guest(vcpu->kvm))
5280 		grow_ple_window(vcpu);
5281 
5282 	/*
5283 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5284 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5285 	 * never set PAUSE_EXITING and just set PLE if supported,
5286 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5287 	 */
5288 	kvm_vcpu_on_spin(vcpu, true);
5289 	return kvm_skip_emulated_instruction(vcpu);
5290 }
5291 
5292 static int handle_nop(struct kvm_vcpu *vcpu)
5293 {
5294 	return kvm_skip_emulated_instruction(vcpu);
5295 }
5296 
5297 static int handle_mwait(struct kvm_vcpu *vcpu)
5298 {
5299 	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5300 	return handle_nop(vcpu);
5301 }
5302 
5303 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5304 {
5305 	kvm_queue_exception(vcpu, UD_VECTOR);
5306 	return 1;
5307 }
5308 
5309 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5310 {
5311 	return 1;
5312 }
5313 
5314 static int handle_monitor(struct kvm_vcpu *vcpu)
5315 {
5316 	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5317 	return handle_nop(vcpu);
5318 }
5319 
5320 static int handle_invpcid(struct kvm_vcpu *vcpu)
5321 {
5322 	u32 vmx_instruction_info;
5323 	unsigned long type;
5324 	bool pcid_enabled;
5325 	gva_t gva;
5326 	struct x86_exception e;
5327 	unsigned i;
5328 	unsigned long roots_to_free = 0;
5329 	struct {
5330 		u64 pcid;
5331 		u64 gla;
5332 	} operand;
5333 
5334 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5335 		kvm_queue_exception(vcpu, UD_VECTOR);
5336 		return 1;
5337 	}
5338 
5339 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5340 	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5341 
5342 	if (type > 3) {
5343 		kvm_inject_gp(vcpu, 0);
5344 		return 1;
5345 	}
5346 
5347 	/* According to the Intel instruction reference, the memory operand
5348 	 * is read even if it isn't needed (e.g., for type==all)
5349 	 */
5350 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5351 				vmx_instruction_info, false,
5352 				sizeof(operand), &gva))
5353 		return 1;
5354 
5355 	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5356 		kvm_inject_page_fault(vcpu, &e);
5357 		return 1;
5358 	}
5359 
5360 	if (operand.pcid >> 12 != 0) {
5361 		kvm_inject_gp(vcpu, 0);
5362 		return 1;
5363 	}
5364 
5365 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
5366 
5367 	switch (type) {
5368 	case INVPCID_TYPE_INDIV_ADDR:
5369 		if ((!pcid_enabled && (operand.pcid != 0)) ||
5370 		    is_noncanonical_address(operand.gla, vcpu)) {
5371 			kvm_inject_gp(vcpu, 0);
5372 			return 1;
5373 		}
5374 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
5375 		return kvm_skip_emulated_instruction(vcpu);
5376 
5377 	case INVPCID_TYPE_SINGLE_CTXT:
5378 		if (!pcid_enabled && (operand.pcid != 0)) {
5379 			kvm_inject_gp(vcpu, 0);
5380 			return 1;
5381 		}
5382 
5383 		if (kvm_get_active_pcid(vcpu) == operand.pcid) {
5384 			kvm_mmu_sync_roots(vcpu);
5385 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5386 		}
5387 
5388 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5389 			if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3)
5390 			    == operand.pcid)
5391 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5392 
5393 		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
5394 		/*
5395 		 * If neither the current cr3 nor any of the prev_roots use the
5396 		 * given PCID, then nothing needs to be done here because a
5397 		 * resync will happen anyway before switching to any other CR3.
5398 		 */
5399 
5400 		return kvm_skip_emulated_instruction(vcpu);
5401 
5402 	case INVPCID_TYPE_ALL_NON_GLOBAL:
5403 		/*
5404 		 * Currently, KVM doesn't mark global entries in the shadow
5405 		 * page tables, so a non-global flush just degenerates to a
5406 		 * global flush. If needed, we could optimize this later by
5407 		 * keeping track of global entries in shadow page tables.
5408 		 */
5409 
5410 		/* fall-through */
5411 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
5412 		kvm_mmu_unload(vcpu);
5413 		return kvm_skip_emulated_instruction(vcpu);
5414 
5415 	default:
5416 		BUG(); /* We have already checked above that type <= 3 */
5417 	}
5418 }
5419 
5420 static int handle_pml_full(struct kvm_vcpu *vcpu)
5421 {
5422 	unsigned long exit_qualification;
5423 
5424 	trace_kvm_pml_full(vcpu->vcpu_id);
5425 
5426 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5427 
5428 	/*
5429 	 * PML buffer FULL happened while executing iret from NMI,
5430 	 * "blocked by NMI" bit has to be set before next VM entry.
5431 	 */
5432 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5433 			enable_vnmi &&
5434 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5435 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5436 				GUEST_INTR_STATE_NMI);
5437 
5438 	/*
5439 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5440 	 * here.., and there's no userspace involvement needed for PML.
5441 	 */
5442 	return 1;
5443 }
5444 
5445 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5446 {
5447 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5448 
5449 	if (!vmx->req_immediate_exit &&
5450 	    !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
5451 		kvm_lapic_expired_hv_timer(vcpu);
5452 
5453 	return 1;
5454 }
5455 
5456 /*
5457  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5458  * are overwritten by nested_vmx_setup() when nested=1.
5459  */
5460 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5461 {
5462 	kvm_queue_exception(vcpu, UD_VECTOR);
5463 	return 1;
5464 }
5465 
5466 static int handle_encls(struct kvm_vcpu *vcpu)
5467 {
5468 	/*
5469 	 * SGX virtualization is not yet supported.  There is no software
5470 	 * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5471 	 * to prevent the guest from executing ENCLS.
5472 	 */
5473 	kvm_queue_exception(vcpu, UD_VECTOR);
5474 	return 1;
5475 }
5476 
5477 /*
5478  * The exit handlers return 1 if the exit was handled fully and guest execution
5479  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5480  * to be done to userspace and return 0.
5481  */
5482 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5483 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5484 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5485 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5486 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
5487 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5488 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
5489 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
5490 	[EXIT_REASON_CPUID]                   = handle_cpuid,
5491 	[EXIT_REASON_MSR_READ]                = handle_rdmsr,
5492 	[EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
5493 	[EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
5494 	[EXIT_REASON_HLT]                     = handle_halt,
5495 	[EXIT_REASON_INVD]		      = handle_invd,
5496 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
5497 	[EXIT_REASON_RDPMC]                   = handle_rdpmc,
5498 	[EXIT_REASON_VMCALL]                  = handle_vmcall,
5499 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
5500 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
5501 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
5502 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
5503 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
5504 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
5505 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
5506 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
5507 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
5508 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5509 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5510 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5511 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5512 	[EXIT_REASON_WBINVD]                  = handle_wbinvd,
5513 	[EXIT_REASON_XSETBV]                  = handle_xsetbv,
5514 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5515 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5516 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
5517 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
5518 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
5519 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5520 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5521 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = handle_mwait,
5522 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5523 	[EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
5524 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5525 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5526 	[EXIT_REASON_RDRAND]                  = handle_invalid_op,
5527 	[EXIT_REASON_RDSEED]                  = handle_invalid_op,
5528 	[EXIT_REASON_XSAVES]                  = handle_xsaves,
5529 	[EXIT_REASON_XRSTORS]                 = handle_xrstors,
5530 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
5531 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
5532 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
5533 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
5534 	[EXIT_REASON_ENCLS]		      = handle_encls,
5535 };
5536 
5537 static const int kvm_vmx_max_exit_handlers =
5538 	ARRAY_SIZE(kvm_vmx_exit_handlers);
5539 
5540 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5541 {
5542 	*info1 = vmcs_readl(EXIT_QUALIFICATION);
5543 	*info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5544 }
5545 
5546 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5547 {
5548 	if (vmx->pml_pg) {
5549 		__free_page(vmx->pml_pg);
5550 		vmx->pml_pg = NULL;
5551 	}
5552 }
5553 
5554 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5555 {
5556 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5557 	u64 *pml_buf;
5558 	u16 pml_idx;
5559 
5560 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
5561 
5562 	/* Do nothing if PML buffer is empty */
5563 	if (pml_idx == (PML_ENTITY_NUM - 1))
5564 		return;
5565 
5566 	/* PML index always points to next available PML buffer entity */
5567 	if (pml_idx >= PML_ENTITY_NUM)
5568 		pml_idx = 0;
5569 	else
5570 		pml_idx++;
5571 
5572 	pml_buf = page_address(vmx->pml_pg);
5573 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5574 		u64 gpa;
5575 
5576 		gpa = pml_buf[pml_idx];
5577 		WARN_ON(gpa & (PAGE_SIZE - 1));
5578 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5579 	}
5580 
5581 	/* reset PML index */
5582 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5583 }
5584 
5585 /*
5586  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5587  * Called before reporting dirty_bitmap to userspace.
5588  */
5589 static void kvm_flush_pml_buffers(struct kvm *kvm)
5590 {
5591 	int i;
5592 	struct kvm_vcpu *vcpu;
5593 	/*
5594 	 * We only need to kick vcpu out of guest mode here, as PML buffer
5595 	 * is flushed at beginning of all VMEXITs, and it's obvious that only
5596 	 * vcpus running in guest are possible to have unflushed GPAs in PML
5597 	 * buffer.
5598 	 */
5599 	kvm_for_each_vcpu(i, vcpu, kvm)
5600 		kvm_vcpu_kick(vcpu);
5601 }
5602 
5603 static void vmx_dump_sel(char *name, uint32_t sel)
5604 {
5605 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5606 	       name, vmcs_read16(sel),
5607 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5608 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5609 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5610 }
5611 
5612 static void vmx_dump_dtsel(char *name, uint32_t limit)
5613 {
5614 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5615 	       name, vmcs_read32(limit),
5616 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5617 }
5618 
5619 void dump_vmcs(void)
5620 {
5621 	u32 vmentry_ctl, vmexit_ctl;
5622 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5623 	unsigned long cr4;
5624 	u64 efer;
5625 	int i, n;
5626 
5627 	if (!dump_invalid_vmcs) {
5628 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5629 		return;
5630 	}
5631 
5632 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5633 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5634 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5635 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5636 	cr4 = vmcs_readl(GUEST_CR4);
5637 	efer = vmcs_read64(GUEST_IA32_EFER);
5638 	secondary_exec_control = 0;
5639 	if (cpu_has_secondary_exec_ctrls())
5640 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5641 
5642 	pr_err("*** Guest State ***\n");
5643 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5644 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5645 	       vmcs_readl(CR0_GUEST_HOST_MASK));
5646 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5647 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5648 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5649 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5650 	    (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5651 	{
5652 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5653 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5654 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5655 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5656 	}
5657 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5658 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5659 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5660 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5661 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5662 	       vmcs_readl(GUEST_SYSENTER_ESP),
5663 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5664 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5665 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5666 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5667 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5668 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5669 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5670 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5671 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5672 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5673 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5674 	if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5675 	    (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5676 		pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
5677 		       efer, vmcs_read64(GUEST_IA32_PAT));
5678 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5679 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
5680 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5681 	if (cpu_has_load_perf_global_ctrl() &&
5682 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5683 		pr_err("PerfGlobCtl = 0x%016llx\n",
5684 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5685 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5686 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5687 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5688 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5689 	       vmcs_read32(GUEST_ACTIVITY_STATE));
5690 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5691 		pr_err("InterruptStatus = %04x\n",
5692 		       vmcs_read16(GUEST_INTR_STATUS));
5693 
5694 	pr_err("*** Host State ***\n");
5695 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5696 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5697 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5698 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5699 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5700 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5701 	       vmcs_read16(HOST_TR_SELECTOR));
5702 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5703 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5704 	       vmcs_readl(HOST_TR_BASE));
5705 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5706 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5707 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5708 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5709 	       vmcs_readl(HOST_CR4));
5710 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5711 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
5712 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
5713 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
5714 	if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5715 		pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
5716 		       vmcs_read64(HOST_IA32_EFER),
5717 		       vmcs_read64(HOST_IA32_PAT));
5718 	if (cpu_has_load_perf_global_ctrl() &&
5719 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5720 		pr_err("PerfGlobCtl = 0x%016llx\n",
5721 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5722 
5723 	pr_err("*** Control State ***\n");
5724 	pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5725 	       pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5726 	pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5727 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5728 	       vmcs_read32(EXCEPTION_BITMAP),
5729 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5730 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5731 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5732 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5733 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5734 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5735 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5736 	       vmcs_read32(VM_EXIT_INTR_INFO),
5737 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5738 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5739 	pr_err("        reason=%08x qualification=%016lx\n",
5740 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5741 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5742 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
5743 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
5744 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5745 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5746 		pr_err("TSC Multiplier = 0x%016llx\n",
5747 		       vmcs_read64(TSC_MULTIPLIER));
5748 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5749 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5750 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
5751 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5752 		}
5753 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5754 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5755 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5756 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5757 	}
5758 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5759 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5760 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5761 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5762 	n = vmcs_read32(CR3_TARGET_COUNT);
5763 	for (i = 0; i + 1 < n; i += 4)
5764 		pr_err("CR3 target%u=%016lx target%u=%016lx\n",
5765 		       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
5766 		       i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
5767 	if (i < n)
5768 		pr_err("CR3 target%u=%016lx\n",
5769 		       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
5770 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5771 		pr_err("PLE Gap=%08x Window=%08x\n",
5772 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5773 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5774 		pr_err("Virtual processor ID = 0x%04x\n",
5775 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
5776 }
5777 
5778 /*
5779  * The guest has exited.  See if we can fix it or if we need userspace
5780  * assistance.
5781  */
5782 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
5783 {
5784 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5785 	u32 exit_reason = vmx->exit_reason;
5786 	u32 vectoring_info = vmx->idt_vectoring_info;
5787 
5788 	trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
5789 
5790 	/*
5791 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5792 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5793 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
5794 	 * mode as if vcpus is in root mode, the PML buffer must has been
5795 	 * flushed already.
5796 	 */
5797 	if (enable_pml)
5798 		vmx_flush_pml_buffer(vcpu);
5799 
5800 	/* If guest state is invalid, start emulating */
5801 	if (vmx->emulation_required)
5802 		return handle_invalid_guest_state(vcpu);
5803 
5804 	if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
5805 		return nested_vmx_reflect_vmexit(vcpu, exit_reason);
5806 
5807 	if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5808 		dump_vmcs();
5809 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5810 		vcpu->run->fail_entry.hardware_entry_failure_reason
5811 			= exit_reason;
5812 		return 0;
5813 	}
5814 
5815 	if (unlikely(vmx->fail)) {
5816 		dump_vmcs();
5817 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5818 		vcpu->run->fail_entry.hardware_entry_failure_reason
5819 			= vmcs_read32(VM_INSTRUCTION_ERROR);
5820 		return 0;
5821 	}
5822 
5823 	/*
5824 	 * Note:
5825 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5826 	 * delivery event since it indicates guest is accessing MMIO.
5827 	 * The vm-exit can be triggered again after return to guest that
5828 	 * will cause infinite loop.
5829 	 */
5830 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5831 			(exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5832 			exit_reason != EXIT_REASON_EPT_VIOLATION &&
5833 			exit_reason != EXIT_REASON_PML_FULL &&
5834 			exit_reason != EXIT_REASON_TASK_SWITCH)) {
5835 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5836 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5837 		vcpu->run->internal.ndata = 3;
5838 		vcpu->run->internal.data[0] = vectoring_info;
5839 		vcpu->run->internal.data[1] = exit_reason;
5840 		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5841 		if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
5842 			vcpu->run->internal.ndata++;
5843 			vcpu->run->internal.data[3] =
5844 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5845 		}
5846 		return 0;
5847 	}
5848 
5849 	if (unlikely(!enable_vnmi &&
5850 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
5851 		if (vmx_interrupt_allowed(vcpu)) {
5852 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5853 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5854 			   vcpu->arch.nmi_pending) {
5855 			/*
5856 			 * This CPU don't support us in finding the end of an
5857 			 * NMI-blocked window if the guest runs with IRQs
5858 			 * disabled. So we pull the trigger after 1 s of
5859 			 * futile waiting, but inform the user about this.
5860 			 */
5861 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5862 			       "state on VCPU %d after 1 s timeout\n",
5863 			       __func__, vcpu->vcpu_id);
5864 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5865 		}
5866 	}
5867 
5868 	if (exit_reason < kvm_vmx_max_exit_handlers
5869 	    && kvm_vmx_exit_handlers[exit_reason])
5870 		return kvm_vmx_exit_handlers[exit_reason](vcpu);
5871 	else {
5872 		vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
5873 				exit_reason);
5874 		dump_vmcs();
5875 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5876 		vcpu->run->internal.suberror =
5877 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
5878 		vcpu->run->internal.ndata = 1;
5879 		vcpu->run->internal.data[0] = exit_reason;
5880 		return 0;
5881 	}
5882 }
5883 
5884 /*
5885  * Software based L1D cache flush which is used when microcode providing
5886  * the cache control MSR is not loaded.
5887  *
5888  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
5889  * flush it is required to read in 64 KiB because the replacement algorithm
5890  * is not exactly LRU. This could be sized at runtime via topology
5891  * information but as all relevant affected CPUs have 32KiB L1D cache size
5892  * there is no point in doing so.
5893  */
5894 static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
5895 {
5896 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
5897 
5898 	/*
5899 	 * This code is only executed when the the flush mode is 'cond' or
5900 	 * 'always'
5901 	 */
5902 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
5903 		bool flush_l1d;
5904 
5905 		/*
5906 		 * Clear the per-vcpu flush bit, it gets set again
5907 		 * either from vcpu_run() or from one of the unsafe
5908 		 * VMEXIT handlers.
5909 		 */
5910 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
5911 		vcpu->arch.l1tf_flush_l1d = false;
5912 
5913 		/*
5914 		 * Clear the per-cpu flush bit, it gets set again from
5915 		 * the interrupt handlers.
5916 		 */
5917 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
5918 		kvm_clear_cpu_l1tf_flush_l1d();
5919 
5920 		if (!flush_l1d)
5921 			return;
5922 	}
5923 
5924 	vcpu->stat.l1d_flush++;
5925 
5926 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
5927 		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
5928 		return;
5929 	}
5930 
5931 	asm volatile(
5932 		/* First ensure the pages are in the TLB */
5933 		"xorl	%%eax, %%eax\n"
5934 		".Lpopulate_tlb:\n\t"
5935 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
5936 		"addl	$4096, %%eax\n\t"
5937 		"cmpl	%%eax, %[size]\n\t"
5938 		"jne	.Lpopulate_tlb\n\t"
5939 		"xorl	%%eax, %%eax\n\t"
5940 		"cpuid\n\t"
5941 		/* Now fill the cache */
5942 		"xorl	%%eax, %%eax\n"
5943 		".Lfill_cache:\n"
5944 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
5945 		"addl	$64, %%eax\n\t"
5946 		"cmpl	%%eax, %[size]\n\t"
5947 		"jne	.Lfill_cache\n\t"
5948 		"lfence\n"
5949 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
5950 		    [size] "r" (size)
5951 		: "eax", "ebx", "ecx", "edx");
5952 }
5953 
5954 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5955 {
5956 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5957 
5958 	if (is_guest_mode(vcpu) &&
5959 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
5960 		return;
5961 
5962 	if (irr == -1 || tpr < irr) {
5963 		vmcs_write32(TPR_THRESHOLD, 0);
5964 		return;
5965 	}
5966 
5967 	vmcs_write32(TPR_THRESHOLD, irr);
5968 }
5969 
5970 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
5971 {
5972 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5973 	u32 sec_exec_control;
5974 
5975 	if (!lapic_in_kernel(vcpu))
5976 		return;
5977 
5978 	if (!flexpriority_enabled &&
5979 	    !cpu_has_vmx_virtualize_x2apic_mode())
5980 		return;
5981 
5982 	/* Postpone execution until vmcs01 is the current VMCS. */
5983 	if (is_guest_mode(vcpu)) {
5984 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
5985 		return;
5986 	}
5987 
5988 	sec_exec_control = secondary_exec_controls_get(vmx);
5989 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
5990 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
5991 
5992 	switch (kvm_get_apic_mode(vcpu)) {
5993 	case LAPIC_MODE_INVALID:
5994 		WARN_ONCE(true, "Invalid local APIC state");
5995 	case LAPIC_MODE_DISABLED:
5996 		break;
5997 	case LAPIC_MODE_XAPIC:
5998 		if (flexpriority_enabled) {
5999 			sec_exec_control |=
6000 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6001 			vmx_flush_tlb(vcpu, true);
6002 		}
6003 		break;
6004 	case LAPIC_MODE_X2APIC:
6005 		if (cpu_has_vmx_virtualize_x2apic_mode())
6006 			sec_exec_control |=
6007 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6008 		break;
6009 	}
6010 	secondary_exec_controls_set(vmx, sec_exec_control);
6011 
6012 	vmx_update_msr_bitmap(vcpu);
6013 }
6014 
6015 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
6016 {
6017 	if (!is_guest_mode(vcpu)) {
6018 		vmcs_write64(APIC_ACCESS_ADDR, hpa);
6019 		vmx_flush_tlb(vcpu, true);
6020 	}
6021 }
6022 
6023 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6024 {
6025 	u16 status;
6026 	u8 old;
6027 
6028 	if (max_isr == -1)
6029 		max_isr = 0;
6030 
6031 	status = vmcs_read16(GUEST_INTR_STATUS);
6032 	old = status >> 8;
6033 	if (max_isr != old) {
6034 		status &= 0xff;
6035 		status |= max_isr << 8;
6036 		vmcs_write16(GUEST_INTR_STATUS, status);
6037 	}
6038 }
6039 
6040 static void vmx_set_rvi(int vector)
6041 {
6042 	u16 status;
6043 	u8 old;
6044 
6045 	if (vector == -1)
6046 		vector = 0;
6047 
6048 	status = vmcs_read16(GUEST_INTR_STATUS);
6049 	old = (u8)status & 0xff;
6050 	if ((u8)vector != old) {
6051 		status &= ~0xff;
6052 		status |= (u8)vector;
6053 		vmcs_write16(GUEST_INTR_STATUS, status);
6054 	}
6055 }
6056 
6057 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6058 {
6059 	/*
6060 	 * When running L2, updating RVI is only relevant when
6061 	 * vmcs12 virtual-interrupt-delivery enabled.
6062 	 * However, it can be enabled only when L1 also
6063 	 * intercepts external-interrupts and in that case
6064 	 * we should not update vmcs02 RVI but instead intercept
6065 	 * interrupt. Therefore, do nothing when running L2.
6066 	 */
6067 	if (!is_guest_mode(vcpu))
6068 		vmx_set_rvi(max_irr);
6069 }
6070 
6071 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6072 {
6073 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6074 	int max_irr;
6075 	bool max_irr_updated;
6076 
6077 	WARN_ON(!vcpu->arch.apicv_active);
6078 	if (pi_test_on(&vmx->pi_desc)) {
6079 		pi_clear_on(&vmx->pi_desc);
6080 		/*
6081 		 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
6082 		 * But on x86 this is just a compiler barrier anyway.
6083 		 */
6084 		smp_mb__after_atomic();
6085 		max_irr_updated =
6086 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6087 
6088 		/*
6089 		 * If we are running L2 and L1 has a new pending interrupt
6090 		 * which can be injected, we should re-evaluate
6091 		 * what should be done with this new L1 interrupt.
6092 		 * If L1 intercepts external-interrupts, we should
6093 		 * exit from L2 to L1. Otherwise, interrupt should be
6094 		 * delivered directly to L2.
6095 		 */
6096 		if (is_guest_mode(vcpu) && max_irr_updated) {
6097 			if (nested_exit_on_intr(vcpu))
6098 				kvm_vcpu_exiting_guest_mode(vcpu);
6099 			else
6100 				kvm_make_request(KVM_REQ_EVENT, vcpu);
6101 		}
6102 	} else {
6103 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6104 	}
6105 	vmx_hwapic_irr_update(vcpu, max_irr);
6106 	return max_irr;
6107 }
6108 
6109 static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
6110 {
6111 	return pi_test_on(vcpu_to_pi_desc(vcpu));
6112 }
6113 
6114 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6115 {
6116 	if (!kvm_vcpu_apicv_active(vcpu))
6117 		return;
6118 
6119 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6120 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6121 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6122 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6123 }
6124 
6125 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6126 {
6127 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6128 
6129 	pi_clear_on(&vmx->pi_desc);
6130 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6131 }
6132 
6133 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6134 {
6135 	vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6136 
6137 	/* if exit due to PF check for async PF */
6138 	if (is_page_fault(vmx->exit_intr_info))
6139 		vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
6140 
6141 	/* Handle machine checks before interrupts are enabled */
6142 	if (is_machine_check(vmx->exit_intr_info))
6143 		kvm_machine_check();
6144 
6145 	/* We need to handle NMIs before interrupts are enabled */
6146 	if (is_nmi(vmx->exit_intr_info)) {
6147 		kvm_before_interrupt(&vmx->vcpu);
6148 		asm("int $2");
6149 		kvm_after_interrupt(&vmx->vcpu);
6150 	}
6151 }
6152 
6153 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6154 {
6155 	unsigned int vector;
6156 	unsigned long entry;
6157 #ifdef CONFIG_X86_64
6158 	unsigned long tmp;
6159 #endif
6160 	gate_desc *desc;
6161 	u32 intr_info;
6162 
6163 	intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6164 	if (WARN_ONCE(!is_external_intr(intr_info),
6165 	    "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6166 		return;
6167 
6168 	vector = intr_info & INTR_INFO_VECTOR_MASK;
6169 	desc = (gate_desc *)host_idt_base + vector;
6170 	entry = gate_offset(desc);
6171 
6172 	kvm_before_interrupt(vcpu);
6173 
6174 	asm volatile(
6175 #ifdef CONFIG_X86_64
6176 		"mov %%" _ASM_SP ", %[sp]\n\t"
6177 		"and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6178 		"push $%c[ss]\n\t"
6179 		"push %[sp]\n\t"
6180 #endif
6181 		"pushf\n\t"
6182 		__ASM_SIZE(push) " $%c[cs]\n\t"
6183 		CALL_NOSPEC
6184 		:
6185 #ifdef CONFIG_X86_64
6186 		[sp]"=&r"(tmp),
6187 #endif
6188 		ASM_CALL_CONSTRAINT
6189 		:
6190 		THUNK_TARGET(entry),
6191 		[ss]"i"(__KERNEL_DS),
6192 		[cs]"i"(__KERNEL_CS)
6193 	);
6194 
6195 	kvm_after_interrupt(vcpu);
6196 }
6197 STACK_FRAME_NON_STANDARD(handle_external_interrupt_irqoff);
6198 
6199 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6200 {
6201 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6202 
6203 	if (vmx->exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6204 		handle_external_interrupt_irqoff(vcpu);
6205 	else if (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI)
6206 		handle_exception_nmi_irqoff(vmx);
6207 }
6208 
6209 static bool vmx_has_emulated_msr(int index)
6210 {
6211 	switch (index) {
6212 	case MSR_IA32_SMBASE:
6213 		/*
6214 		 * We cannot do SMM unless we can run the guest in big
6215 		 * real mode.
6216 		 */
6217 		return enable_unrestricted_guest || emulate_invalid_guest_state;
6218 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6219 		return nested;
6220 	case MSR_AMD64_VIRT_SPEC_CTRL:
6221 		/* This is AMD only.  */
6222 		return false;
6223 	default:
6224 		return true;
6225 	}
6226 }
6227 
6228 static bool vmx_pt_supported(void)
6229 {
6230 	return pt_mode == PT_MODE_HOST_GUEST;
6231 }
6232 
6233 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6234 {
6235 	u32 exit_intr_info;
6236 	bool unblock_nmi;
6237 	u8 vector;
6238 	bool idtv_info_valid;
6239 
6240 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6241 
6242 	if (enable_vnmi) {
6243 		if (vmx->loaded_vmcs->nmi_known_unmasked)
6244 			return;
6245 		/*
6246 		 * Can't use vmx->exit_intr_info since we're not sure what
6247 		 * the exit reason is.
6248 		 */
6249 		exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6250 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6251 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6252 		/*
6253 		 * SDM 3: 27.7.1.2 (September 2008)
6254 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6255 		 * a guest IRET fault.
6256 		 * SDM 3: 23.2.2 (September 2008)
6257 		 * Bit 12 is undefined in any of the following cases:
6258 		 *  If the VM exit sets the valid bit in the IDT-vectoring
6259 		 *   information field.
6260 		 *  If the VM exit is due to a double fault.
6261 		 */
6262 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6263 		    vector != DF_VECTOR && !idtv_info_valid)
6264 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6265 				      GUEST_INTR_STATE_NMI);
6266 		else
6267 			vmx->loaded_vmcs->nmi_known_unmasked =
6268 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6269 				  & GUEST_INTR_STATE_NMI);
6270 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6271 		vmx->loaded_vmcs->vnmi_blocked_time +=
6272 			ktime_to_ns(ktime_sub(ktime_get(),
6273 					      vmx->loaded_vmcs->entry_time));
6274 }
6275 
6276 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6277 				      u32 idt_vectoring_info,
6278 				      int instr_len_field,
6279 				      int error_code_field)
6280 {
6281 	u8 vector;
6282 	int type;
6283 	bool idtv_info_valid;
6284 
6285 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6286 
6287 	vcpu->arch.nmi_injected = false;
6288 	kvm_clear_exception_queue(vcpu);
6289 	kvm_clear_interrupt_queue(vcpu);
6290 
6291 	if (!idtv_info_valid)
6292 		return;
6293 
6294 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6295 
6296 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6297 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6298 
6299 	switch (type) {
6300 	case INTR_TYPE_NMI_INTR:
6301 		vcpu->arch.nmi_injected = true;
6302 		/*
6303 		 * SDM 3: 27.7.1.2 (September 2008)
6304 		 * Clear bit "block by NMI" before VM entry if a NMI
6305 		 * delivery faulted.
6306 		 */
6307 		vmx_set_nmi_mask(vcpu, false);
6308 		break;
6309 	case INTR_TYPE_SOFT_EXCEPTION:
6310 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6311 		/* fall through */
6312 	case INTR_TYPE_HARD_EXCEPTION:
6313 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6314 			u32 err = vmcs_read32(error_code_field);
6315 			kvm_requeue_exception_e(vcpu, vector, err);
6316 		} else
6317 			kvm_requeue_exception(vcpu, vector);
6318 		break;
6319 	case INTR_TYPE_SOFT_INTR:
6320 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6321 		/* fall through */
6322 	case INTR_TYPE_EXT_INTR:
6323 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6324 		break;
6325 	default:
6326 		break;
6327 	}
6328 }
6329 
6330 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6331 {
6332 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6333 				  VM_EXIT_INSTRUCTION_LEN,
6334 				  IDT_VECTORING_ERROR_CODE);
6335 }
6336 
6337 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6338 {
6339 	__vmx_complete_interrupts(vcpu,
6340 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6341 				  VM_ENTRY_INSTRUCTION_LEN,
6342 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
6343 
6344 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6345 }
6346 
6347 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6348 {
6349 	int i, nr_msrs;
6350 	struct perf_guest_switch_msr *msrs;
6351 
6352 	msrs = perf_guest_get_msrs(&nr_msrs);
6353 
6354 	if (!msrs)
6355 		return;
6356 
6357 	for (i = 0; i < nr_msrs; i++)
6358 		if (msrs[i].host == msrs[i].guest)
6359 			clear_atomic_switch_msr(vmx, msrs[i].msr);
6360 		else
6361 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6362 					msrs[i].host, false);
6363 }
6364 
6365 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6366 {
6367 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6368 	u64 tscl;
6369 	u32 delta_tsc;
6370 
6371 	if (vmx->req_immediate_exit) {
6372 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6373 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6374 	} else if (vmx->hv_deadline_tsc != -1) {
6375 		tscl = rdtsc();
6376 		if (vmx->hv_deadline_tsc > tscl)
6377 			/* set_hv_timer ensures the delta fits in 32-bits */
6378 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6379 				cpu_preemption_timer_multi);
6380 		else
6381 			delta_tsc = 0;
6382 
6383 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6384 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6385 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6386 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6387 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6388 	}
6389 }
6390 
6391 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6392 {
6393 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6394 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
6395 		vmcs_writel(HOST_RSP, host_rsp);
6396 	}
6397 }
6398 
6399 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
6400 
6401 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
6402 {
6403 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6404 	unsigned long cr3, cr4;
6405 
6406 	/* Record the guest's net vcpu time for enforced NMI injections. */
6407 	if (unlikely(!enable_vnmi &&
6408 		     vmx->loaded_vmcs->soft_vnmi_blocked))
6409 		vmx->loaded_vmcs->entry_time = ktime_get();
6410 
6411 	/* Don't enter VMX if guest state is invalid, let the exit handler
6412 	   start emulation until we arrive back to a valid state */
6413 	if (vmx->emulation_required)
6414 		return;
6415 
6416 	if (vmx->ple_window_dirty) {
6417 		vmx->ple_window_dirty = false;
6418 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
6419 	}
6420 
6421 	if (vmx->nested.need_vmcs12_to_shadow_sync)
6422 		nested_sync_vmcs12_to_shadow(vcpu);
6423 
6424 	if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6425 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6426 	if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6427 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6428 
6429 	cr3 = __get_current_cr3_fast();
6430 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6431 		vmcs_writel(HOST_CR3, cr3);
6432 		vmx->loaded_vmcs->host_state.cr3 = cr3;
6433 	}
6434 
6435 	cr4 = cr4_read_shadow();
6436 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6437 		vmcs_writel(HOST_CR4, cr4);
6438 		vmx->loaded_vmcs->host_state.cr4 = cr4;
6439 	}
6440 
6441 	/* When single-stepping over STI and MOV SS, we must clear the
6442 	 * corresponding interruptibility bits in the guest state. Otherwise
6443 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
6444 	 * exceptions being set, but that's not correct for the guest debugging
6445 	 * case. */
6446 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6447 		vmx_set_interrupt_shadow(vcpu, 0);
6448 
6449 	kvm_load_guest_xcr0(vcpu);
6450 
6451 	if (static_cpu_has(X86_FEATURE_PKU) &&
6452 	    kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
6453 	    vcpu->arch.pkru != vmx->host_pkru)
6454 		__write_pkru(vcpu->arch.pkru);
6455 
6456 	pt_guest_enter(vmx);
6457 
6458 	atomic_switch_perf_msrs(vmx);
6459 
6460 	if (enable_preemption_timer)
6461 		vmx_update_hv_timer(vcpu);
6462 
6463 	if (lapic_in_kernel(vcpu) &&
6464 		vcpu->arch.apic->lapic_timer.timer_advance_ns)
6465 		kvm_wait_lapic_expire(vcpu);
6466 
6467 	/*
6468 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6469 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6470 	 * is no need to worry about the conditional branch over the wrmsr
6471 	 * being speculatively taken.
6472 	 */
6473 	x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6474 
6475 	/* L1D Flush includes CPU buffer clear to mitigate MDS */
6476 	if (static_branch_unlikely(&vmx_l1d_should_flush))
6477 		vmx_l1d_flush(vcpu);
6478 	else if (static_branch_unlikely(&mds_user_clear))
6479 		mds_clear_cpu_buffers();
6480 
6481 	if (vcpu->arch.cr2 != read_cr2())
6482 		write_cr2(vcpu->arch.cr2);
6483 
6484 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6485 				   vmx->loaded_vmcs->launched);
6486 
6487 	vcpu->arch.cr2 = read_cr2();
6488 
6489 	/*
6490 	 * We do not use IBRS in the kernel. If this vCPU has used the
6491 	 * SPEC_CTRL MSR it may have left it on; save the value and
6492 	 * turn it off. This is much more efficient than blindly adding
6493 	 * it to the atomic save/restore list. Especially as the former
6494 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6495 	 *
6496 	 * For non-nested case:
6497 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
6498 	 * save it.
6499 	 *
6500 	 * For nested case:
6501 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
6502 	 * save it.
6503 	 */
6504 	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6505 		vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6506 
6507 	x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6508 
6509 	/* All fields are clean at this point */
6510 	if (static_branch_unlikely(&enable_evmcs))
6511 		current_evmcs->hv_clean_fields |=
6512 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6513 
6514 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6515 	if (vmx->host_debugctlmsr)
6516 		update_debugctlmsr(vmx->host_debugctlmsr);
6517 
6518 #ifndef CONFIG_X86_64
6519 	/*
6520 	 * The sysexit path does not restore ds/es, so we must set them to
6521 	 * a reasonable value ourselves.
6522 	 *
6523 	 * We can't defer this to vmx_prepare_switch_to_host() since that
6524 	 * function may be executed in interrupt context, which saves and
6525 	 * restore segments around it, nullifying its effect.
6526 	 */
6527 	loadsegment(ds, __USER_DS);
6528 	loadsegment(es, __USER_DS);
6529 #endif
6530 
6531 	vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6532 				  | (1 << VCPU_EXREG_RFLAGS)
6533 				  | (1 << VCPU_EXREG_PDPTR)
6534 				  | (1 << VCPU_EXREG_SEGMENTS)
6535 				  | (1 << VCPU_EXREG_CR3));
6536 	vcpu->arch.regs_dirty = 0;
6537 
6538 	pt_guest_exit(vmx);
6539 
6540 	/*
6541 	 * eager fpu is enabled if PKEY is supported and CR4 is switched
6542 	 * back on host, so it is safe to read guest PKRU from current
6543 	 * XSAVE.
6544 	 */
6545 	if (static_cpu_has(X86_FEATURE_PKU) &&
6546 	    kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
6547 		vcpu->arch.pkru = rdpkru();
6548 		if (vcpu->arch.pkru != vmx->host_pkru)
6549 			__write_pkru(vmx->host_pkru);
6550 	}
6551 
6552 	kvm_put_guest_xcr0(vcpu);
6553 
6554 	vmx->nested.nested_run_pending = 0;
6555 	vmx->idt_vectoring_info = 0;
6556 
6557 	vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
6558 	if ((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
6559 		kvm_machine_check();
6560 
6561 	if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6562 		return;
6563 
6564 	vmx->loaded_vmcs->launched = 1;
6565 	vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6566 
6567 	vmx_recover_nmi_blocking(vmx);
6568 	vmx_complete_interrupts(vmx);
6569 }
6570 
6571 static struct kvm *vmx_vm_alloc(void)
6572 {
6573 	struct kvm_vmx *kvm_vmx = __vmalloc(sizeof(struct kvm_vmx),
6574 					    GFP_KERNEL_ACCOUNT | __GFP_ZERO,
6575 					    PAGE_KERNEL);
6576 	return &kvm_vmx->kvm;
6577 }
6578 
6579 static void vmx_vm_free(struct kvm *kvm)
6580 {
6581 	vfree(to_kvm_vmx(kvm));
6582 }
6583 
6584 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6585 {
6586 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6587 
6588 	if (enable_pml)
6589 		vmx_destroy_pml_buffer(vmx);
6590 	free_vpid(vmx->vpid);
6591 	nested_vmx_free_vcpu(vcpu);
6592 	free_loaded_vmcs(vmx->loaded_vmcs);
6593 	kfree(vmx->guest_msrs);
6594 	kvm_vcpu_uninit(vcpu);
6595 	kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu);
6596 	kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6597 	kmem_cache_free(kvm_vcpu_cache, vmx);
6598 }
6599 
6600 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6601 {
6602 	int err;
6603 	struct vcpu_vmx *vmx;
6604 	unsigned long *msr_bitmap;
6605 	int cpu;
6606 
6607 	BUILD_BUG_ON_MSG(offsetof(struct vcpu_vmx, vcpu) != 0,
6608 		"struct kvm_vcpu must be at offset 0 for arch usercopy region");
6609 
6610 	vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
6611 	if (!vmx)
6612 		return ERR_PTR(-ENOMEM);
6613 
6614 	vmx->vcpu.arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
6615 			GFP_KERNEL_ACCOUNT);
6616 	if (!vmx->vcpu.arch.user_fpu) {
6617 		printk(KERN_ERR "kvm: failed to allocate kvm userspace's fpu\n");
6618 		err = -ENOMEM;
6619 		goto free_partial_vcpu;
6620 	}
6621 
6622 	vmx->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
6623 			GFP_KERNEL_ACCOUNT);
6624 	if (!vmx->vcpu.arch.guest_fpu) {
6625 		printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
6626 		err = -ENOMEM;
6627 		goto free_user_fpu;
6628 	}
6629 
6630 	vmx->vpid = allocate_vpid();
6631 
6632 	err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6633 	if (err)
6634 		goto free_vcpu;
6635 
6636 	err = -ENOMEM;
6637 
6638 	/*
6639 	 * If PML is turned on, failure on enabling PML just results in failure
6640 	 * of creating the vcpu, therefore we can simplify PML logic (by
6641 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
6642 	 * for the guest, etc.
6643 	 */
6644 	if (enable_pml) {
6645 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6646 		if (!vmx->pml_pg)
6647 			goto uninit_vcpu;
6648 	}
6649 
6650 	vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
6651 	BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
6652 		     > PAGE_SIZE);
6653 
6654 	if (!vmx->guest_msrs)
6655 		goto free_pml;
6656 
6657 	err = alloc_loaded_vmcs(&vmx->vmcs01);
6658 	if (err < 0)
6659 		goto free_msrs;
6660 
6661 	msr_bitmap = vmx->vmcs01.msr_bitmap;
6662 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
6663 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
6664 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
6665 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6666 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6667 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6668 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6669 	if (kvm_cstate_in_guest(kvm)) {
6670 		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C1_RES, MSR_TYPE_R);
6671 		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6672 		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6673 		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6674 	}
6675 	vmx->msr_bitmap_mode = 0;
6676 
6677 	vmx->loaded_vmcs = &vmx->vmcs01;
6678 	cpu = get_cpu();
6679 	vmx_vcpu_load(&vmx->vcpu, cpu);
6680 	vmx->vcpu.cpu = cpu;
6681 	vmx_vcpu_setup(vmx);
6682 	vmx_vcpu_put(&vmx->vcpu);
6683 	put_cpu();
6684 	if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
6685 		err = alloc_apic_access_page(kvm);
6686 		if (err)
6687 			goto free_vmcs;
6688 	}
6689 
6690 	if (enable_ept && !enable_unrestricted_guest) {
6691 		err = init_rmode_identity_map(kvm);
6692 		if (err)
6693 			goto free_vmcs;
6694 	}
6695 
6696 	if (nested)
6697 		nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
6698 					   vmx_capability.ept,
6699 					   kvm_vcpu_apicv_active(&vmx->vcpu));
6700 	else
6701 		memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6702 
6703 	vmx->nested.posted_intr_nv = -1;
6704 	vmx->nested.current_vmptr = -1ull;
6705 
6706 	vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
6707 
6708 	/*
6709 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6710 	 * or POSTED_INTR_WAKEUP_VECTOR.
6711 	 */
6712 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6713 	vmx->pi_desc.sn = 1;
6714 
6715 	vmx->ept_pointer = INVALID_PAGE;
6716 
6717 	return &vmx->vcpu;
6718 
6719 free_vmcs:
6720 	free_loaded_vmcs(vmx->loaded_vmcs);
6721 free_msrs:
6722 	kfree(vmx->guest_msrs);
6723 free_pml:
6724 	vmx_destroy_pml_buffer(vmx);
6725 uninit_vcpu:
6726 	kvm_vcpu_uninit(&vmx->vcpu);
6727 free_vcpu:
6728 	free_vpid(vmx->vpid);
6729 	kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6730 free_user_fpu:
6731 	kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu);
6732 free_partial_vcpu:
6733 	kmem_cache_free(kvm_vcpu_cache, vmx);
6734 	return ERR_PTR(err);
6735 }
6736 
6737 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6738 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6739 
6740 static int vmx_vm_init(struct kvm *kvm)
6741 {
6742 	spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
6743 
6744 	if (!ple_gap)
6745 		kvm->arch.pause_in_guest = true;
6746 
6747 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6748 		switch (l1tf_mitigation) {
6749 		case L1TF_MITIGATION_OFF:
6750 		case L1TF_MITIGATION_FLUSH_NOWARN:
6751 			/* 'I explicitly don't care' is set */
6752 			break;
6753 		case L1TF_MITIGATION_FLUSH:
6754 		case L1TF_MITIGATION_FLUSH_NOSMT:
6755 		case L1TF_MITIGATION_FULL:
6756 			/*
6757 			 * Warn upon starting the first VM in a potentially
6758 			 * insecure environment.
6759 			 */
6760 			if (sched_smt_active())
6761 				pr_warn_once(L1TF_MSG_SMT);
6762 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6763 				pr_warn_once(L1TF_MSG_L1D);
6764 			break;
6765 		case L1TF_MITIGATION_FULL_FORCE:
6766 			/* Flush is enforced */
6767 			break;
6768 		}
6769 	}
6770 	return 0;
6771 }
6772 
6773 static int __init vmx_check_processor_compat(void)
6774 {
6775 	struct vmcs_config vmcs_conf;
6776 	struct vmx_capability vmx_cap;
6777 
6778 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6779 		return -EIO;
6780 	if (nested)
6781 		nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept,
6782 					   enable_apicv);
6783 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6784 		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6785 				smp_processor_id());
6786 		return -EIO;
6787 	}
6788 	return 0;
6789 }
6790 
6791 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6792 {
6793 	u8 cache;
6794 	u64 ipat = 0;
6795 
6796 	/* For VT-d and EPT combination
6797 	 * 1. MMIO: always map as UC
6798 	 * 2. EPT with VT-d:
6799 	 *   a. VT-d without snooping control feature: can't guarantee the
6800 	 *	result, try to trust guest.
6801 	 *   b. VT-d with snooping control feature: snooping control feature of
6802 	 *	VT-d engine can guarantee the cache correctness. Just set it
6803 	 *	to WB to keep consistent with host. So the same as item 3.
6804 	 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6805 	 *    consistent with host MTRR
6806 	 */
6807 	if (is_mmio) {
6808 		cache = MTRR_TYPE_UNCACHABLE;
6809 		goto exit;
6810 	}
6811 
6812 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
6813 		ipat = VMX_EPT_IPAT_BIT;
6814 		cache = MTRR_TYPE_WRBACK;
6815 		goto exit;
6816 	}
6817 
6818 	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
6819 		ipat = VMX_EPT_IPAT_BIT;
6820 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
6821 			cache = MTRR_TYPE_WRBACK;
6822 		else
6823 			cache = MTRR_TYPE_UNCACHABLE;
6824 		goto exit;
6825 	}
6826 
6827 	cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
6828 
6829 exit:
6830 	return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
6831 }
6832 
6833 static int vmx_get_lpage_level(void)
6834 {
6835 	if (enable_ept && !cpu_has_vmx_ept_1g_page())
6836 		return PT_DIRECTORY_LEVEL;
6837 	else
6838 		/* For shadow and EPT supported 1GB page */
6839 		return PT_PDPE_LEVEL;
6840 }
6841 
6842 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
6843 {
6844 	/*
6845 	 * These bits in the secondary execution controls field
6846 	 * are dynamic, the others are mostly based on the hypervisor
6847 	 * architecture and the guest's CPUID.  Do not touch the
6848 	 * dynamic bits.
6849 	 */
6850 	u32 mask =
6851 		SECONDARY_EXEC_SHADOW_VMCS |
6852 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6853 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6854 		SECONDARY_EXEC_DESC;
6855 
6856 	u32 new_ctl = vmx->secondary_exec_control;
6857 	u32 cur_ctl = secondary_exec_controls_get(vmx);
6858 
6859 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
6860 }
6861 
6862 /*
6863  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
6864  * (indicating "allowed-1") if they are supported in the guest's CPUID.
6865  */
6866 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
6867 {
6868 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6869 	struct kvm_cpuid_entry2 *entry;
6870 
6871 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
6872 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
6873 
6874 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
6875 	if (entry && (entry->_reg & (_cpuid_mask)))			\
6876 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
6877 } while (0)
6878 
6879 	entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
6880 	cr4_fixed1_update(X86_CR4_VME,        edx, bit(X86_FEATURE_VME));
6881 	cr4_fixed1_update(X86_CR4_PVI,        edx, bit(X86_FEATURE_VME));
6882 	cr4_fixed1_update(X86_CR4_TSD,        edx, bit(X86_FEATURE_TSC));
6883 	cr4_fixed1_update(X86_CR4_DE,         edx, bit(X86_FEATURE_DE));
6884 	cr4_fixed1_update(X86_CR4_PSE,        edx, bit(X86_FEATURE_PSE));
6885 	cr4_fixed1_update(X86_CR4_PAE,        edx, bit(X86_FEATURE_PAE));
6886 	cr4_fixed1_update(X86_CR4_MCE,        edx, bit(X86_FEATURE_MCE));
6887 	cr4_fixed1_update(X86_CR4_PGE,        edx, bit(X86_FEATURE_PGE));
6888 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, bit(X86_FEATURE_FXSR));
6889 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
6890 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, bit(X86_FEATURE_VMX));
6891 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, bit(X86_FEATURE_SMX));
6892 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, bit(X86_FEATURE_PCID));
6893 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, bit(X86_FEATURE_XSAVE));
6894 
6895 	entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
6896 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, bit(X86_FEATURE_FSGSBASE));
6897 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, bit(X86_FEATURE_SMEP));
6898 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, bit(X86_FEATURE_SMAP));
6899 	cr4_fixed1_update(X86_CR4_PKE,        ecx, bit(X86_FEATURE_PKU));
6900 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, bit(X86_FEATURE_UMIP));
6901 
6902 #undef cr4_fixed1_update
6903 }
6904 
6905 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
6906 {
6907 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6908 
6909 	if (kvm_mpx_supported()) {
6910 		bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
6911 
6912 		if (mpx_enabled) {
6913 			vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
6914 			vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
6915 		} else {
6916 			vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
6917 			vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
6918 		}
6919 	}
6920 }
6921 
6922 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
6923 {
6924 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6925 	struct kvm_cpuid_entry2 *best = NULL;
6926 	int i;
6927 
6928 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
6929 		best = kvm_find_cpuid_entry(vcpu, 0x14, i);
6930 		if (!best)
6931 			return;
6932 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
6933 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
6934 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
6935 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
6936 	}
6937 
6938 	/* Get the number of configurable Address Ranges for filtering */
6939 	vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
6940 						PT_CAP_num_address_ranges);
6941 
6942 	/* Initialize and clear the no dependency bits */
6943 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
6944 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
6945 
6946 	/*
6947 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
6948 	 * will inject an #GP
6949 	 */
6950 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
6951 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
6952 
6953 	/*
6954 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
6955 	 * PSBFreq can be set
6956 	 */
6957 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
6958 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
6959 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
6960 
6961 	/*
6962 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
6963 	 * MTCFreq can be set
6964 	 */
6965 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
6966 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
6967 				RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
6968 
6969 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
6970 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
6971 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
6972 							RTIT_CTL_PTW_EN);
6973 
6974 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
6975 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
6976 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
6977 
6978 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
6979 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
6980 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
6981 
6982 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
6983 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
6984 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
6985 
6986 	/* unmask address range configure area */
6987 	for (i = 0; i < vmx->pt_desc.addr_range; i++)
6988 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
6989 }
6990 
6991 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
6992 {
6993 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6994 
6995 	if (cpu_has_secondary_exec_ctrls()) {
6996 		vmx_compute_secondary_exec_control(vmx);
6997 		vmcs_set_secondary_exec_control(vmx);
6998 	}
6999 
7000 	if (nested_vmx_allowed(vcpu))
7001 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7002 			FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7003 	else
7004 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7005 			~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7006 
7007 	if (nested_vmx_allowed(vcpu)) {
7008 		nested_vmx_cr_fixed1_bits_update(vcpu);
7009 		nested_vmx_entry_exit_ctls_update(vcpu);
7010 	}
7011 
7012 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7013 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7014 		update_intel_pt_cfg(vcpu);
7015 }
7016 
7017 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7018 {
7019 	if (func == 1 && nested)
7020 		entry->ecx |= bit(X86_FEATURE_VMX);
7021 }
7022 
7023 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7024 {
7025 	to_vmx(vcpu)->req_immediate_exit = true;
7026 }
7027 
7028 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7029 			       struct x86_instruction_info *info,
7030 			       enum x86_intercept_stage stage)
7031 {
7032 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7033 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7034 
7035 	/*
7036 	 * RDPID causes #UD if disabled through secondary execution controls.
7037 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
7038 	 */
7039 	if (info->intercept == x86_intercept_rdtscp &&
7040 	    !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
7041 		ctxt->exception.vector = UD_VECTOR;
7042 		ctxt->exception.error_code_valid = false;
7043 		return X86EMUL_PROPAGATE_FAULT;
7044 	}
7045 
7046 	/* TODO: check more intercepts... */
7047 	return X86EMUL_CONTINUE;
7048 }
7049 
7050 #ifdef CONFIG_X86_64
7051 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7052 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7053 				  u64 divisor, u64 *result)
7054 {
7055 	u64 low = a << shift, high = a >> (64 - shift);
7056 
7057 	/* To avoid the overflow on divq */
7058 	if (high >= divisor)
7059 		return 1;
7060 
7061 	/* Low hold the result, high hold rem which is discarded */
7062 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7063 	    "rm" (divisor), "0" (low), "1" (high));
7064 	*result = low;
7065 
7066 	return 0;
7067 }
7068 
7069 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7070 			    bool *expired)
7071 {
7072 	struct vcpu_vmx *vmx;
7073 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7074 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7075 
7076 	if (kvm_mwait_in_guest(vcpu->kvm) ||
7077 		kvm_can_post_timer_interrupt(vcpu))
7078 		return -EOPNOTSUPP;
7079 
7080 	vmx = to_vmx(vcpu);
7081 	tscl = rdtsc();
7082 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7083 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7084 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7085 						    ktimer->timer_advance_ns);
7086 
7087 	if (delta_tsc > lapic_timer_advance_cycles)
7088 		delta_tsc -= lapic_timer_advance_cycles;
7089 	else
7090 		delta_tsc = 0;
7091 
7092 	/* Convert to host delta tsc if tsc scaling is enabled */
7093 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7094 	    delta_tsc && u64_shl_div_u64(delta_tsc,
7095 				kvm_tsc_scaling_ratio_frac_bits,
7096 				vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7097 		return -ERANGE;
7098 
7099 	/*
7100 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
7101 	 * we can't use the preemption timer.
7102 	 * It's possible that it fits on later vmentries, but checking
7103 	 * on every vmentry is costly so we just use an hrtimer.
7104 	 */
7105 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7106 		return -ERANGE;
7107 
7108 	vmx->hv_deadline_tsc = tscl + delta_tsc;
7109 	*expired = !delta_tsc;
7110 	return 0;
7111 }
7112 
7113 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7114 {
7115 	to_vmx(vcpu)->hv_deadline_tsc = -1;
7116 }
7117 #endif
7118 
7119 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7120 {
7121 	if (!kvm_pause_in_guest(vcpu->kvm))
7122 		shrink_ple_window(vcpu);
7123 }
7124 
7125 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7126 				     struct kvm_memory_slot *slot)
7127 {
7128 	kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7129 	kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7130 }
7131 
7132 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7133 				       struct kvm_memory_slot *slot)
7134 {
7135 	kvm_mmu_slot_set_dirty(kvm, slot);
7136 }
7137 
7138 static void vmx_flush_log_dirty(struct kvm *kvm)
7139 {
7140 	kvm_flush_pml_buffers(kvm);
7141 }
7142 
7143 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
7144 {
7145 	struct vmcs12 *vmcs12;
7146 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7147 	gpa_t gpa, dst;
7148 
7149 	if (is_guest_mode(vcpu)) {
7150 		WARN_ON_ONCE(vmx->nested.pml_full);
7151 
7152 		/*
7153 		 * Check if PML is enabled for the nested guest.
7154 		 * Whether eptp bit 6 is set is already checked
7155 		 * as part of A/D emulation.
7156 		 */
7157 		vmcs12 = get_vmcs12(vcpu);
7158 		if (!nested_cpu_has_pml(vmcs12))
7159 			return 0;
7160 
7161 		if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
7162 			vmx->nested.pml_full = true;
7163 			return 1;
7164 		}
7165 
7166 		gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
7167 		dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
7168 
7169 		if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
7170 					 offset_in_page(dst), sizeof(gpa)))
7171 			return 0;
7172 
7173 		vmcs12->guest_pml_index--;
7174 	}
7175 
7176 	return 0;
7177 }
7178 
7179 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7180 					   struct kvm_memory_slot *memslot,
7181 					   gfn_t offset, unsigned long mask)
7182 {
7183 	kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7184 }
7185 
7186 static void __pi_post_block(struct kvm_vcpu *vcpu)
7187 {
7188 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7189 	struct pi_desc old, new;
7190 	unsigned int dest;
7191 
7192 	do {
7193 		old.control = new.control = pi_desc->control;
7194 		WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
7195 		     "Wakeup handler not enabled while the VCPU is blocked\n");
7196 
7197 		dest = cpu_physical_id(vcpu->cpu);
7198 
7199 		if (x2apic_enabled())
7200 			new.ndst = dest;
7201 		else
7202 			new.ndst = (dest << 8) & 0xFF00;
7203 
7204 		/* set 'NV' to 'notification vector' */
7205 		new.nv = POSTED_INTR_VECTOR;
7206 	} while (cmpxchg64(&pi_desc->control, old.control,
7207 			   new.control) != old.control);
7208 
7209 	if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
7210 		spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7211 		list_del(&vcpu->blocked_vcpu_list);
7212 		spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7213 		vcpu->pre_pcpu = -1;
7214 	}
7215 }
7216 
7217 /*
7218  * This routine does the following things for vCPU which is going
7219  * to be blocked if VT-d PI is enabled.
7220  * - Store the vCPU to the wakeup list, so when interrupts happen
7221  *   we can find the right vCPU to wake up.
7222  * - Change the Posted-interrupt descriptor as below:
7223  *      'NDST' <-- vcpu->pre_pcpu
7224  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
7225  * - If 'ON' is set during this process, which means at least one
7226  *   interrupt is posted for this vCPU, we cannot block it, in
7227  *   this case, return 1, otherwise, return 0.
7228  *
7229  */
7230 static int pi_pre_block(struct kvm_vcpu *vcpu)
7231 {
7232 	unsigned int dest;
7233 	struct pi_desc old, new;
7234 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7235 
7236 	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
7237 		!irq_remapping_cap(IRQ_POSTING_CAP)  ||
7238 		!kvm_vcpu_apicv_active(vcpu))
7239 		return 0;
7240 
7241 	WARN_ON(irqs_disabled());
7242 	local_irq_disable();
7243 	if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
7244 		vcpu->pre_pcpu = vcpu->cpu;
7245 		spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7246 		list_add_tail(&vcpu->blocked_vcpu_list,
7247 			      &per_cpu(blocked_vcpu_on_cpu,
7248 				       vcpu->pre_pcpu));
7249 		spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7250 	}
7251 
7252 	do {
7253 		old.control = new.control = pi_desc->control;
7254 
7255 		WARN((pi_desc->sn == 1),
7256 		     "Warning: SN field of posted-interrupts "
7257 		     "is set before blocking\n");
7258 
7259 		/*
7260 		 * Since vCPU can be preempted during this process,
7261 		 * vcpu->cpu could be different with pre_pcpu, we
7262 		 * need to set pre_pcpu as the destination of wakeup
7263 		 * notification event, then we can find the right vCPU
7264 		 * to wakeup in wakeup handler if interrupts happen
7265 		 * when the vCPU is in blocked state.
7266 		 */
7267 		dest = cpu_physical_id(vcpu->pre_pcpu);
7268 
7269 		if (x2apic_enabled())
7270 			new.ndst = dest;
7271 		else
7272 			new.ndst = (dest << 8) & 0xFF00;
7273 
7274 		/* set 'NV' to 'wakeup vector' */
7275 		new.nv = POSTED_INTR_WAKEUP_VECTOR;
7276 	} while (cmpxchg64(&pi_desc->control, old.control,
7277 			   new.control) != old.control);
7278 
7279 	/* We should not block the vCPU if an interrupt is posted for it.  */
7280 	if (pi_test_on(pi_desc) == 1)
7281 		__pi_post_block(vcpu);
7282 
7283 	local_irq_enable();
7284 	return (vcpu->pre_pcpu == -1);
7285 }
7286 
7287 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7288 {
7289 	if (pi_pre_block(vcpu))
7290 		return 1;
7291 
7292 	if (kvm_lapic_hv_timer_in_use(vcpu))
7293 		kvm_lapic_switch_to_sw_timer(vcpu);
7294 
7295 	return 0;
7296 }
7297 
7298 static void pi_post_block(struct kvm_vcpu *vcpu)
7299 {
7300 	if (vcpu->pre_pcpu == -1)
7301 		return;
7302 
7303 	WARN_ON(irqs_disabled());
7304 	local_irq_disable();
7305 	__pi_post_block(vcpu);
7306 	local_irq_enable();
7307 }
7308 
7309 static void vmx_post_block(struct kvm_vcpu *vcpu)
7310 {
7311 	if (kvm_x86_ops->set_hv_timer)
7312 		kvm_lapic_switch_to_hv_timer(vcpu);
7313 
7314 	pi_post_block(vcpu);
7315 }
7316 
7317 /*
7318  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
7319  *
7320  * @kvm: kvm
7321  * @host_irq: host irq of the interrupt
7322  * @guest_irq: gsi of the interrupt
7323  * @set: set or unset PI
7324  * returns 0 on success, < 0 on failure
7325  */
7326 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
7327 			      uint32_t guest_irq, bool set)
7328 {
7329 	struct kvm_kernel_irq_routing_entry *e;
7330 	struct kvm_irq_routing_table *irq_rt;
7331 	struct kvm_lapic_irq irq;
7332 	struct kvm_vcpu *vcpu;
7333 	struct vcpu_data vcpu_info;
7334 	int idx, ret = 0;
7335 
7336 	if (!kvm_arch_has_assigned_device(kvm) ||
7337 		!irq_remapping_cap(IRQ_POSTING_CAP) ||
7338 		!kvm_vcpu_apicv_active(kvm->vcpus[0]))
7339 		return 0;
7340 
7341 	idx = srcu_read_lock(&kvm->irq_srcu);
7342 	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
7343 	if (guest_irq >= irq_rt->nr_rt_entries ||
7344 	    hlist_empty(&irq_rt->map[guest_irq])) {
7345 		pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
7346 			     guest_irq, irq_rt->nr_rt_entries);
7347 		goto out;
7348 	}
7349 
7350 	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
7351 		if (e->type != KVM_IRQ_ROUTING_MSI)
7352 			continue;
7353 		/*
7354 		 * VT-d PI cannot support posting multicast/broadcast
7355 		 * interrupts to a vCPU, we still use interrupt remapping
7356 		 * for these kind of interrupts.
7357 		 *
7358 		 * For lowest-priority interrupts, we only support
7359 		 * those with single CPU as the destination, e.g. user
7360 		 * configures the interrupts via /proc/irq or uses
7361 		 * irqbalance to make the interrupts single-CPU.
7362 		 *
7363 		 * We will support full lowest-priority interrupt later.
7364 		 *
7365 		 * In addition, we can only inject generic interrupts using
7366 		 * the PI mechanism, refuse to route others through it.
7367 		 */
7368 
7369 		kvm_set_msi_irq(kvm, e, &irq);
7370 		if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
7371 		    !kvm_irq_is_postable(&irq)) {
7372 			/*
7373 			 * Make sure the IRTE is in remapped mode if
7374 			 * we don't handle it in posted mode.
7375 			 */
7376 			ret = irq_set_vcpu_affinity(host_irq, NULL);
7377 			if (ret < 0) {
7378 				printk(KERN_INFO
7379 				   "failed to back to remapped mode, irq: %u\n",
7380 				   host_irq);
7381 				goto out;
7382 			}
7383 
7384 			continue;
7385 		}
7386 
7387 		vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
7388 		vcpu_info.vector = irq.vector;
7389 
7390 		trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
7391 				vcpu_info.vector, vcpu_info.pi_desc_addr, set);
7392 
7393 		if (set)
7394 			ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
7395 		else
7396 			ret = irq_set_vcpu_affinity(host_irq, NULL);
7397 
7398 		if (ret < 0) {
7399 			printk(KERN_INFO "%s: failed to update PI IRTE\n",
7400 					__func__);
7401 			goto out;
7402 		}
7403 	}
7404 
7405 	ret = 0;
7406 out:
7407 	srcu_read_unlock(&kvm->irq_srcu, idx);
7408 	return ret;
7409 }
7410 
7411 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7412 {
7413 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7414 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7415 			FEATURE_CONTROL_LMCE;
7416 	else
7417 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7418 			~FEATURE_CONTROL_LMCE;
7419 }
7420 
7421 static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
7422 {
7423 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
7424 	if (to_vmx(vcpu)->nested.nested_run_pending)
7425 		return 0;
7426 	return 1;
7427 }
7428 
7429 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7430 {
7431 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7432 
7433 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7434 	if (vmx->nested.smm.guest_mode)
7435 		nested_vmx_vmexit(vcpu, -1, 0, 0);
7436 
7437 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
7438 	vmx->nested.vmxon = false;
7439 	vmx_clear_hlt(vcpu);
7440 	return 0;
7441 }
7442 
7443 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7444 {
7445 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7446 	int ret;
7447 
7448 	if (vmx->nested.smm.vmxon) {
7449 		vmx->nested.vmxon = true;
7450 		vmx->nested.smm.vmxon = false;
7451 	}
7452 
7453 	if (vmx->nested.smm.guest_mode) {
7454 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
7455 		if (ret)
7456 			return ret;
7457 
7458 		vmx->nested.smm.guest_mode = false;
7459 	}
7460 	return 0;
7461 }
7462 
7463 static int enable_smi_window(struct kvm_vcpu *vcpu)
7464 {
7465 	return 0;
7466 }
7467 
7468 static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7469 {
7470 	return false;
7471 }
7472 
7473 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7474 {
7475 	return to_vmx(vcpu)->nested.vmxon;
7476 }
7477 
7478 static __init int hardware_setup(void)
7479 {
7480 	unsigned long host_bndcfgs;
7481 	struct desc_ptr dt;
7482 	int r, i;
7483 
7484 	rdmsrl_safe(MSR_EFER, &host_efer);
7485 
7486 	store_idt(&dt);
7487 	host_idt_base = dt.address;
7488 
7489 	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7490 		kvm_define_shared_msr(i, vmx_msr_index[i]);
7491 
7492 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7493 		return -EIO;
7494 
7495 	if (boot_cpu_has(X86_FEATURE_NX))
7496 		kvm_enable_efer_bits(EFER_NX);
7497 
7498 	if (boot_cpu_has(X86_FEATURE_MPX)) {
7499 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7500 		WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7501 	}
7502 
7503 	if (boot_cpu_has(X86_FEATURE_XSAVES))
7504 		rdmsrl(MSR_IA32_XSS, host_xss);
7505 
7506 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7507 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7508 		enable_vpid = 0;
7509 
7510 	if (!cpu_has_vmx_ept() ||
7511 	    !cpu_has_vmx_ept_4levels() ||
7512 	    !cpu_has_vmx_ept_mt_wb() ||
7513 	    !cpu_has_vmx_invept_global())
7514 		enable_ept = 0;
7515 
7516 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7517 		enable_ept_ad_bits = 0;
7518 
7519 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7520 		enable_unrestricted_guest = 0;
7521 
7522 	if (!cpu_has_vmx_flexpriority())
7523 		flexpriority_enabled = 0;
7524 
7525 	if (!cpu_has_virtual_nmis())
7526 		enable_vnmi = 0;
7527 
7528 	/*
7529 	 * set_apic_access_page_addr() is used to reload apic access
7530 	 * page upon invalidation.  No need to do anything if not
7531 	 * using the APIC_ACCESS_ADDR VMCS field.
7532 	 */
7533 	if (!flexpriority_enabled)
7534 		kvm_x86_ops->set_apic_access_page_addr = NULL;
7535 
7536 	if (!cpu_has_vmx_tpr_shadow())
7537 		kvm_x86_ops->update_cr8_intercept = NULL;
7538 
7539 	if (enable_ept && !cpu_has_vmx_ept_2m_page())
7540 		kvm_disable_largepages();
7541 
7542 #if IS_ENABLED(CONFIG_HYPERV)
7543 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7544 	    && enable_ept) {
7545 		kvm_x86_ops->tlb_remote_flush = hv_remote_flush_tlb;
7546 		kvm_x86_ops->tlb_remote_flush_with_range =
7547 				hv_remote_flush_tlb_with_range;
7548 	}
7549 #endif
7550 
7551 	if (!cpu_has_vmx_ple()) {
7552 		ple_gap = 0;
7553 		ple_window = 0;
7554 		ple_window_grow = 0;
7555 		ple_window_max = 0;
7556 		ple_window_shrink = 0;
7557 	}
7558 
7559 	if (!cpu_has_vmx_apicv()) {
7560 		enable_apicv = 0;
7561 		kvm_x86_ops->sync_pir_to_irr = NULL;
7562 	}
7563 
7564 	if (cpu_has_vmx_tsc_scaling()) {
7565 		kvm_has_tsc_control = true;
7566 		kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7567 		kvm_tsc_scaling_ratio_frac_bits = 48;
7568 	}
7569 
7570 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7571 
7572 	if (enable_ept)
7573 		vmx_enable_tdp();
7574 	else
7575 		kvm_disable_tdp();
7576 
7577 	/*
7578 	 * Only enable PML when hardware supports PML feature, and both EPT
7579 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
7580 	 */
7581 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7582 		enable_pml = 0;
7583 
7584 	if (!enable_pml) {
7585 		kvm_x86_ops->slot_enable_log_dirty = NULL;
7586 		kvm_x86_ops->slot_disable_log_dirty = NULL;
7587 		kvm_x86_ops->flush_log_dirty = NULL;
7588 		kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
7589 	}
7590 
7591 	if (!cpu_has_vmx_preemption_timer())
7592 		enable_preemption_timer = false;
7593 
7594 	if (enable_preemption_timer) {
7595 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
7596 		u64 vmx_msr;
7597 
7598 		rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7599 		cpu_preemption_timer_multi =
7600 			vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7601 
7602 		if (tsc_khz)
7603 			use_timer_freq = (u64)tsc_khz * 1000;
7604 		use_timer_freq >>= cpu_preemption_timer_multi;
7605 
7606 		/*
7607 		 * KVM "disables" the preemption timer by setting it to its max
7608 		 * value.  Don't use the timer if it might cause spurious exits
7609 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7610 		 */
7611 		if (use_timer_freq > 0xffffffffu / 10)
7612 			enable_preemption_timer = false;
7613 	}
7614 
7615 	if (!enable_preemption_timer) {
7616 		kvm_x86_ops->set_hv_timer = NULL;
7617 		kvm_x86_ops->cancel_hv_timer = NULL;
7618 		kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit;
7619 	}
7620 
7621 	kvm_set_posted_intr_wakeup_handler(wakeup_handler);
7622 
7623 	kvm_mce_cap_supported |= MCG_LMCE_P;
7624 
7625 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7626 		return -EINVAL;
7627 	if (!enable_ept || !cpu_has_vmx_intel_pt())
7628 		pt_mode = PT_MODE_SYSTEM;
7629 
7630 	if (nested) {
7631 		nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7632 					   vmx_capability.ept, enable_apicv);
7633 
7634 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7635 		if (r)
7636 			return r;
7637 	}
7638 
7639 	r = alloc_kvm_area();
7640 	if (r)
7641 		nested_vmx_hardware_unsetup();
7642 	return r;
7643 }
7644 
7645 static __exit void hardware_unsetup(void)
7646 {
7647 	if (nested)
7648 		nested_vmx_hardware_unsetup();
7649 
7650 	free_kvm_area();
7651 }
7652 
7653 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
7654 	.cpu_has_kvm_support = cpu_has_kvm_support,
7655 	.disabled_by_bios = vmx_disabled_by_bios,
7656 	.hardware_setup = hardware_setup,
7657 	.hardware_unsetup = hardware_unsetup,
7658 	.check_processor_compatibility = vmx_check_processor_compat,
7659 	.hardware_enable = hardware_enable,
7660 	.hardware_disable = hardware_disable,
7661 	.cpu_has_accelerated_tpr = report_flexpriority,
7662 	.has_emulated_msr = vmx_has_emulated_msr,
7663 
7664 	.vm_init = vmx_vm_init,
7665 	.vm_alloc = vmx_vm_alloc,
7666 	.vm_free = vmx_vm_free,
7667 
7668 	.vcpu_create = vmx_create_vcpu,
7669 	.vcpu_free = vmx_free_vcpu,
7670 	.vcpu_reset = vmx_vcpu_reset,
7671 
7672 	.prepare_guest_switch = vmx_prepare_switch_to_guest,
7673 	.vcpu_load = vmx_vcpu_load,
7674 	.vcpu_put = vmx_vcpu_put,
7675 
7676 	.update_bp_intercept = update_exception_bitmap,
7677 	.get_msr_feature = vmx_get_msr_feature,
7678 	.get_msr = vmx_get_msr,
7679 	.set_msr = vmx_set_msr,
7680 	.get_segment_base = vmx_get_segment_base,
7681 	.get_segment = vmx_get_segment,
7682 	.set_segment = vmx_set_segment,
7683 	.get_cpl = vmx_get_cpl,
7684 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7685 	.decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7686 	.decache_cr3 = vmx_decache_cr3,
7687 	.decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7688 	.set_cr0 = vmx_set_cr0,
7689 	.set_cr3 = vmx_set_cr3,
7690 	.set_cr4 = vmx_set_cr4,
7691 	.set_efer = vmx_set_efer,
7692 	.get_idt = vmx_get_idt,
7693 	.set_idt = vmx_set_idt,
7694 	.get_gdt = vmx_get_gdt,
7695 	.set_gdt = vmx_set_gdt,
7696 	.get_dr6 = vmx_get_dr6,
7697 	.set_dr6 = vmx_set_dr6,
7698 	.set_dr7 = vmx_set_dr7,
7699 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7700 	.cache_reg = vmx_cache_reg,
7701 	.get_rflags = vmx_get_rflags,
7702 	.set_rflags = vmx_set_rflags,
7703 
7704 	.tlb_flush = vmx_flush_tlb,
7705 	.tlb_flush_gva = vmx_flush_tlb_gva,
7706 
7707 	.run = vmx_vcpu_run,
7708 	.handle_exit = vmx_handle_exit,
7709 	.skip_emulated_instruction = __skip_emulated_instruction,
7710 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
7711 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
7712 	.patch_hypercall = vmx_patch_hypercall,
7713 	.set_irq = vmx_inject_irq,
7714 	.set_nmi = vmx_inject_nmi,
7715 	.queue_exception = vmx_queue_exception,
7716 	.cancel_injection = vmx_cancel_injection,
7717 	.interrupt_allowed = vmx_interrupt_allowed,
7718 	.nmi_allowed = vmx_nmi_allowed,
7719 	.get_nmi_mask = vmx_get_nmi_mask,
7720 	.set_nmi_mask = vmx_set_nmi_mask,
7721 	.enable_nmi_window = enable_nmi_window,
7722 	.enable_irq_window = enable_irq_window,
7723 	.update_cr8_intercept = update_cr8_intercept,
7724 	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7725 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7726 	.get_enable_apicv = vmx_get_enable_apicv,
7727 	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7728 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
7729 	.apicv_post_state_restore = vmx_apicv_post_state_restore,
7730 	.hwapic_irr_update = vmx_hwapic_irr_update,
7731 	.hwapic_isr_update = vmx_hwapic_isr_update,
7732 	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7733 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
7734 	.deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7735 	.dy_apicv_has_pending_interrupt = vmx_dy_apicv_has_pending_interrupt,
7736 
7737 	.set_tss_addr = vmx_set_tss_addr,
7738 	.set_identity_map_addr = vmx_set_identity_map_addr,
7739 	.get_tdp_level = get_ept_level,
7740 	.get_mt_mask = vmx_get_mt_mask,
7741 
7742 	.get_exit_info = vmx_get_exit_info,
7743 
7744 	.get_lpage_level = vmx_get_lpage_level,
7745 
7746 	.cpuid_update = vmx_cpuid_update,
7747 
7748 	.rdtscp_supported = vmx_rdtscp_supported,
7749 	.invpcid_supported = vmx_invpcid_supported,
7750 
7751 	.set_supported_cpuid = vmx_set_supported_cpuid,
7752 
7753 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7754 
7755 	.read_l1_tsc_offset = vmx_read_l1_tsc_offset,
7756 	.write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7757 
7758 	.set_tdp_cr3 = vmx_set_cr3,
7759 
7760 	.check_intercept = vmx_check_intercept,
7761 	.handle_exit_irqoff = vmx_handle_exit_irqoff,
7762 	.mpx_supported = vmx_mpx_supported,
7763 	.xsaves_supported = vmx_xsaves_supported,
7764 	.umip_emulated = vmx_umip_emulated,
7765 	.pt_supported = vmx_pt_supported,
7766 
7767 	.request_immediate_exit = vmx_request_immediate_exit,
7768 
7769 	.sched_in = vmx_sched_in,
7770 
7771 	.slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7772 	.slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7773 	.flush_log_dirty = vmx_flush_log_dirty,
7774 	.enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7775 	.write_log_dirty = vmx_write_pml_buffer,
7776 
7777 	.pre_block = vmx_pre_block,
7778 	.post_block = vmx_post_block,
7779 
7780 	.pmu_ops = &intel_pmu_ops,
7781 
7782 	.update_pi_irte = vmx_update_pi_irte,
7783 
7784 #ifdef CONFIG_X86_64
7785 	.set_hv_timer = vmx_set_hv_timer,
7786 	.cancel_hv_timer = vmx_cancel_hv_timer,
7787 #endif
7788 
7789 	.setup_mce = vmx_setup_mce,
7790 
7791 	.smi_allowed = vmx_smi_allowed,
7792 	.pre_enter_smm = vmx_pre_enter_smm,
7793 	.pre_leave_smm = vmx_pre_leave_smm,
7794 	.enable_smi_window = enable_smi_window,
7795 
7796 	.check_nested_events = NULL,
7797 	.get_nested_state = NULL,
7798 	.set_nested_state = NULL,
7799 	.get_vmcs12_pages = NULL,
7800 	.nested_enable_evmcs = NULL,
7801 	.nested_get_evmcs_version = NULL,
7802 	.need_emulation_on_page_fault = vmx_need_emulation_on_page_fault,
7803 	.apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7804 };
7805 
7806 static void vmx_cleanup_l1d_flush(void)
7807 {
7808 	if (vmx_l1d_flush_pages) {
7809 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7810 		vmx_l1d_flush_pages = NULL;
7811 	}
7812 	/* Restore state so sysfs ignores VMX */
7813 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7814 }
7815 
7816 static void vmx_exit(void)
7817 {
7818 #ifdef CONFIG_KEXEC_CORE
7819 	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7820 	synchronize_rcu();
7821 #endif
7822 
7823 	kvm_exit();
7824 
7825 #if IS_ENABLED(CONFIG_HYPERV)
7826 	if (static_branch_unlikely(&enable_evmcs)) {
7827 		int cpu;
7828 		struct hv_vp_assist_page *vp_ap;
7829 		/*
7830 		 * Reset everything to support using non-enlightened VMCS
7831 		 * access later (e.g. when we reload the module with
7832 		 * enlightened_vmcs=0)
7833 		 */
7834 		for_each_online_cpu(cpu) {
7835 			vp_ap =	hv_get_vp_assist_page(cpu);
7836 
7837 			if (!vp_ap)
7838 				continue;
7839 
7840 			vp_ap->current_nested_vmcs = 0;
7841 			vp_ap->enlighten_vmentry = 0;
7842 		}
7843 
7844 		static_branch_disable(&enable_evmcs);
7845 	}
7846 #endif
7847 	vmx_cleanup_l1d_flush();
7848 }
7849 module_exit(vmx_exit);
7850 
7851 static int __init vmx_init(void)
7852 {
7853 	int r;
7854 
7855 #if IS_ENABLED(CONFIG_HYPERV)
7856 	/*
7857 	 * Enlightened VMCS usage should be recommended and the host needs
7858 	 * to support eVMCS v1 or above. We can also disable eVMCS support
7859 	 * with module parameter.
7860 	 */
7861 	if (enlightened_vmcs &&
7862 	    ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7863 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7864 	    KVM_EVMCS_VERSION) {
7865 		int cpu;
7866 
7867 		/* Check that we have assist pages on all online CPUs */
7868 		for_each_online_cpu(cpu) {
7869 			if (!hv_get_vp_assist_page(cpu)) {
7870 				enlightened_vmcs = false;
7871 				break;
7872 			}
7873 		}
7874 
7875 		if (enlightened_vmcs) {
7876 			pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
7877 			static_branch_enable(&enable_evmcs);
7878 		}
7879 	} else {
7880 		enlightened_vmcs = false;
7881 	}
7882 #endif
7883 
7884 	r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7885 		     __alignof__(struct vcpu_vmx), THIS_MODULE);
7886 	if (r)
7887 		return r;
7888 
7889 	/*
7890 	 * Must be called after kvm_init() so enable_ept is properly set
7891 	 * up. Hand the parameter mitigation value in which was stored in
7892 	 * the pre module init parser. If no parameter was given, it will
7893 	 * contain 'auto' which will be turned into the default 'cond'
7894 	 * mitigation mode.
7895 	 */
7896 	if (boot_cpu_has(X86_BUG_L1TF)) {
7897 		r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
7898 		if (r) {
7899 			vmx_exit();
7900 			return r;
7901 		}
7902 	}
7903 
7904 #ifdef CONFIG_KEXEC_CORE
7905 	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
7906 			   crash_vmclear_local_loaded_vmcss);
7907 #endif
7908 	vmx_check_vmcs12_offsets();
7909 
7910 	return 0;
7911 }
7912 module_init(vmx_init);
7913