1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <linux/frame.h> 17 #include <linux/highmem.h> 18 #include <linux/hrtimer.h> 19 #include <linux/kernel.h> 20 #include <linux/kvm_host.h> 21 #include <linux/module.h> 22 #include <linux/moduleparam.h> 23 #include <linux/mod_devicetable.h> 24 #include <linux/mm.h> 25 #include <linux/sched.h> 26 #include <linux/sched/smt.h> 27 #include <linux/slab.h> 28 #include <linux/tboot.h> 29 #include <linux/trace_events.h> 30 31 #include <asm/apic.h> 32 #include <asm/asm.h> 33 #include <asm/cpu.h> 34 #include <asm/debugreg.h> 35 #include <asm/desc.h> 36 #include <asm/fpu/internal.h> 37 #include <asm/io.h> 38 #include <asm/irq_remapping.h> 39 #include <asm/kexec.h> 40 #include <asm/perf_event.h> 41 #include <asm/mce.h> 42 #include <asm/mmu_context.h> 43 #include <asm/mshyperv.h> 44 #include <asm/spec-ctrl.h> 45 #include <asm/virtext.h> 46 #include <asm/vmx.h> 47 48 #include "capabilities.h" 49 #include "cpuid.h" 50 #include "evmcs.h" 51 #include "irq.h" 52 #include "kvm_cache_regs.h" 53 #include "lapic.h" 54 #include "mmu.h" 55 #include "nested.h" 56 #include "ops.h" 57 #include "pmu.h" 58 #include "trace.h" 59 #include "vmcs.h" 60 #include "vmcs12.h" 61 #include "vmx.h" 62 #include "x86.h" 63 64 MODULE_AUTHOR("Qumranet"); 65 MODULE_LICENSE("GPL"); 66 67 static const struct x86_cpu_id vmx_cpu_id[] = { 68 X86_FEATURE_MATCH(X86_FEATURE_VMX), 69 {} 70 }; 71 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); 72 73 bool __read_mostly enable_vpid = 1; 74 module_param_named(vpid, enable_vpid, bool, 0444); 75 76 static bool __read_mostly enable_vnmi = 1; 77 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO); 78 79 bool __read_mostly flexpriority_enabled = 1; 80 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); 81 82 bool __read_mostly enable_ept = 1; 83 module_param_named(ept, enable_ept, bool, S_IRUGO); 84 85 bool __read_mostly enable_unrestricted_guest = 1; 86 module_param_named(unrestricted_guest, 87 enable_unrestricted_guest, bool, S_IRUGO); 88 89 bool __read_mostly enable_ept_ad_bits = 1; 90 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO); 91 92 static bool __read_mostly emulate_invalid_guest_state = true; 93 module_param(emulate_invalid_guest_state, bool, S_IRUGO); 94 95 static bool __read_mostly fasteoi = 1; 96 module_param(fasteoi, bool, S_IRUGO); 97 98 static bool __read_mostly enable_apicv = 1; 99 module_param(enable_apicv, bool, S_IRUGO); 100 101 /* 102 * If nested=1, nested virtualization is supported, i.e., guests may use 103 * VMX and be a hypervisor for its own guests. If nested=0, guests may not 104 * use VMX instructions. 105 */ 106 static bool __read_mostly nested = 1; 107 module_param(nested, bool, S_IRUGO); 108 109 static u64 __read_mostly host_xss; 110 111 bool __read_mostly enable_pml = 1; 112 module_param_named(pml, enable_pml, bool, S_IRUGO); 113 114 static bool __read_mostly dump_invalid_vmcs = 0; 115 module_param(dump_invalid_vmcs, bool, 0644); 116 117 #define MSR_BITMAP_MODE_X2APIC 1 118 #define MSR_BITMAP_MODE_X2APIC_APICV 2 119 120 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL 121 122 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ 123 static int __read_mostly cpu_preemption_timer_multi; 124 static bool __read_mostly enable_preemption_timer = 1; 125 #ifdef CONFIG_X86_64 126 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); 127 #endif 128 129 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) 130 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE 131 #define KVM_VM_CR0_ALWAYS_ON \ 132 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | \ 133 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE) 134 #define KVM_CR4_GUEST_OWNED_BITS \ 135 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \ 136 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD) 137 138 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE 139 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) 140 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) 141 142 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) 143 144 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ 145 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ 146 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ 147 RTIT_STATUS_BYTECNT)) 148 149 #define MSR_IA32_RTIT_OUTPUT_BASE_MASK \ 150 (~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f) 151 152 /* 153 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 154 * ple_gap: upper bound on the amount of time between two successive 155 * executions of PAUSE in a loop. Also indicate if ple enabled. 156 * According to test, this time is usually smaller than 128 cycles. 157 * ple_window: upper bound on the amount of time a guest is allowed to execute 158 * in a PAUSE loop. Tests indicate that most spinlocks are held for 159 * less than 2^12 cycles 160 * Time is measured based on a counter that runs at the same rate as the TSC, 161 * refer SDM volume 3b section 21.6.13 & 22.1.3. 162 */ 163 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; 164 module_param(ple_gap, uint, 0444); 165 166 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; 167 module_param(ple_window, uint, 0444); 168 169 /* Default doubles per-vcpu window every exit. */ 170 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 171 module_param(ple_window_grow, uint, 0444); 172 173 /* Default resets per-vcpu window every exit to ple_window. */ 174 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 175 module_param(ple_window_shrink, uint, 0444); 176 177 /* Default is to compute the maximum so we can never overflow. */ 178 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; 179 module_param(ple_window_max, uint, 0444); 180 181 /* Default is SYSTEM mode, 1 for host-guest mode */ 182 int __read_mostly pt_mode = PT_MODE_SYSTEM; 183 module_param(pt_mode, int, S_IRUGO); 184 185 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); 186 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); 187 static DEFINE_MUTEX(vmx_l1d_flush_mutex); 188 189 /* Storage for pre module init parameter parsing */ 190 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; 191 192 static const struct { 193 const char *option; 194 bool for_parse; 195 } vmentry_l1d_param[] = { 196 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, 197 [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, 198 [VMENTER_L1D_FLUSH_COND] = {"cond", true}, 199 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, 200 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, 201 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, 202 }; 203 204 #define L1D_CACHE_ORDER 4 205 static void *vmx_l1d_flush_pages; 206 207 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) 208 { 209 struct page *page; 210 unsigned int i; 211 212 if (!enable_ept) { 213 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; 214 return 0; 215 } 216 217 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 218 u64 msr; 219 220 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr); 221 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { 222 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 223 return 0; 224 } 225 } 226 227 /* If set to auto use the default l1tf mitigation method */ 228 if (l1tf == VMENTER_L1D_FLUSH_AUTO) { 229 switch (l1tf_mitigation) { 230 case L1TF_MITIGATION_OFF: 231 l1tf = VMENTER_L1D_FLUSH_NEVER; 232 break; 233 case L1TF_MITIGATION_FLUSH_NOWARN: 234 case L1TF_MITIGATION_FLUSH: 235 case L1TF_MITIGATION_FLUSH_NOSMT: 236 l1tf = VMENTER_L1D_FLUSH_COND; 237 break; 238 case L1TF_MITIGATION_FULL: 239 case L1TF_MITIGATION_FULL_FORCE: 240 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 241 break; 242 } 243 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { 244 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 245 } 246 247 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && 248 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { 249 /* 250 * This allocation for vmx_l1d_flush_pages is not tied to a VM 251 * lifetime and so should not be charged to a memcg. 252 */ 253 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); 254 if (!page) 255 return -ENOMEM; 256 vmx_l1d_flush_pages = page_address(page); 257 258 /* 259 * Initialize each page with a different pattern in 260 * order to protect against KSM in the nested 261 * virtualization case. 262 */ 263 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { 264 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, 265 PAGE_SIZE); 266 } 267 } 268 269 l1tf_vmx_mitigation = l1tf; 270 271 if (l1tf != VMENTER_L1D_FLUSH_NEVER) 272 static_branch_enable(&vmx_l1d_should_flush); 273 else 274 static_branch_disable(&vmx_l1d_should_flush); 275 276 if (l1tf == VMENTER_L1D_FLUSH_COND) 277 static_branch_enable(&vmx_l1d_flush_cond); 278 else 279 static_branch_disable(&vmx_l1d_flush_cond); 280 return 0; 281 } 282 283 static int vmentry_l1d_flush_parse(const char *s) 284 { 285 unsigned int i; 286 287 if (s) { 288 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { 289 if (vmentry_l1d_param[i].for_parse && 290 sysfs_streq(s, vmentry_l1d_param[i].option)) 291 return i; 292 } 293 } 294 return -EINVAL; 295 } 296 297 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) 298 { 299 int l1tf, ret; 300 301 l1tf = vmentry_l1d_flush_parse(s); 302 if (l1tf < 0) 303 return l1tf; 304 305 if (!boot_cpu_has(X86_BUG_L1TF)) 306 return 0; 307 308 /* 309 * Has vmx_init() run already? If not then this is the pre init 310 * parameter parsing. In that case just store the value and let 311 * vmx_init() do the proper setup after enable_ept has been 312 * established. 313 */ 314 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { 315 vmentry_l1d_flush_param = l1tf; 316 return 0; 317 } 318 319 mutex_lock(&vmx_l1d_flush_mutex); 320 ret = vmx_setup_l1d_flush(l1tf); 321 mutex_unlock(&vmx_l1d_flush_mutex); 322 return ret; 323 } 324 325 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) 326 { 327 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) 328 return sprintf(s, "???\n"); 329 330 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); 331 } 332 333 static const struct kernel_param_ops vmentry_l1d_flush_ops = { 334 .set = vmentry_l1d_flush_set, 335 .get = vmentry_l1d_flush_get, 336 }; 337 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); 338 339 static bool guest_state_valid(struct kvm_vcpu *vcpu); 340 static u32 vmx_segment_access_rights(struct kvm_segment *var); 341 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, 342 u32 msr, int type); 343 344 void vmx_vmexit(void); 345 346 static DEFINE_PER_CPU(struct vmcs *, vmxarea); 347 DEFINE_PER_CPU(struct vmcs *, current_vmcs); 348 /* 349 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed 350 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. 351 */ 352 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); 353 354 /* 355 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we 356 * can find which vCPU should be waken up. 357 */ 358 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu); 359 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock); 360 361 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); 362 static DEFINE_SPINLOCK(vmx_vpid_lock); 363 364 struct vmcs_config vmcs_config; 365 struct vmx_capability vmx_capability; 366 367 #define VMX_SEGMENT_FIELD(seg) \ 368 [VCPU_SREG_##seg] = { \ 369 .selector = GUEST_##seg##_SELECTOR, \ 370 .base = GUEST_##seg##_BASE, \ 371 .limit = GUEST_##seg##_LIMIT, \ 372 .ar_bytes = GUEST_##seg##_AR_BYTES, \ 373 } 374 375 static const struct kvm_vmx_segment_field { 376 unsigned selector; 377 unsigned base; 378 unsigned limit; 379 unsigned ar_bytes; 380 } kvm_vmx_segment_fields[] = { 381 VMX_SEGMENT_FIELD(CS), 382 VMX_SEGMENT_FIELD(DS), 383 VMX_SEGMENT_FIELD(ES), 384 VMX_SEGMENT_FIELD(FS), 385 VMX_SEGMENT_FIELD(GS), 386 VMX_SEGMENT_FIELD(SS), 387 VMX_SEGMENT_FIELD(TR), 388 VMX_SEGMENT_FIELD(LDTR), 389 }; 390 391 u64 host_efer; 392 static unsigned long host_idt_base; 393 394 /* 395 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm 396 * will emulate SYSCALL in legacy mode if the vendor string in guest 397 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To 398 * support this emulation, IA32_STAR must always be included in 399 * vmx_msr_index[], even in i386 builds. 400 */ 401 const u32 vmx_msr_index[] = { 402 #ifdef CONFIG_X86_64 403 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, 404 #endif 405 MSR_EFER, MSR_TSC_AUX, MSR_STAR, 406 }; 407 408 #if IS_ENABLED(CONFIG_HYPERV) 409 static bool __read_mostly enlightened_vmcs = true; 410 module_param(enlightened_vmcs, bool, 0444); 411 412 /* check_ept_pointer() should be under protection of ept_pointer_lock. */ 413 static void check_ept_pointer_match(struct kvm *kvm) 414 { 415 struct kvm_vcpu *vcpu; 416 u64 tmp_eptp = INVALID_PAGE; 417 int i; 418 419 kvm_for_each_vcpu(i, vcpu, kvm) { 420 if (!VALID_PAGE(tmp_eptp)) { 421 tmp_eptp = to_vmx(vcpu)->ept_pointer; 422 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) { 423 to_kvm_vmx(kvm)->ept_pointers_match 424 = EPT_POINTERS_MISMATCH; 425 return; 426 } 427 } 428 429 to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH; 430 } 431 432 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush, 433 void *data) 434 { 435 struct kvm_tlb_range *range = data; 436 437 return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn, 438 range->pages); 439 } 440 441 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm, 442 struct kvm_vcpu *vcpu, struct kvm_tlb_range *range) 443 { 444 u64 ept_pointer = to_vmx(vcpu)->ept_pointer; 445 446 /* 447 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address 448 * of the base of EPT PML4 table, strip off EPT configuration 449 * information. 450 */ 451 if (range) 452 return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK, 453 kvm_fill_hv_flush_list_func, (void *)range); 454 else 455 return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK); 456 } 457 458 static int hv_remote_flush_tlb_with_range(struct kvm *kvm, 459 struct kvm_tlb_range *range) 460 { 461 struct kvm_vcpu *vcpu; 462 int ret = 0, i; 463 464 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock); 465 466 if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK) 467 check_ept_pointer_match(kvm); 468 469 if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) { 470 kvm_for_each_vcpu(i, vcpu, kvm) { 471 /* If ept_pointer is invalid pointer, bypass flush request. */ 472 if (VALID_PAGE(to_vmx(vcpu)->ept_pointer)) 473 ret |= __hv_remote_flush_tlb_with_range( 474 kvm, vcpu, range); 475 } 476 } else { 477 ret = __hv_remote_flush_tlb_with_range(kvm, 478 kvm_get_vcpu(kvm, 0), range); 479 } 480 481 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock); 482 return ret; 483 } 484 static int hv_remote_flush_tlb(struct kvm *kvm) 485 { 486 return hv_remote_flush_tlb_with_range(kvm, NULL); 487 } 488 489 #endif /* IS_ENABLED(CONFIG_HYPERV) */ 490 491 /* 492 * Comment's format: document - errata name - stepping - processor name. 493 * Refer from 494 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp 495 */ 496 static u32 vmx_preemption_cpu_tfms[] = { 497 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ 498 0x000206E6, 499 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ 500 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ 501 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ 502 0x00020652, 503 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ 504 0x00020655, 505 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ 506 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ 507 /* 508 * 320767.pdf - AAP86 - B1 - 509 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile 510 */ 511 0x000106E5, 512 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ 513 0x000106A0, 514 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ 515 0x000106A1, 516 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ 517 0x000106A4, 518 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ 519 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ 520 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ 521 0x000106A5, 522 /* Xeon E3-1220 V2 */ 523 0x000306A8, 524 }; 525 526 static inline bool cpu_has_broken_vmx_preemption_timer(void) 527 { 528 u32 eax = cpuid_eax(0x00000001), i; 529 530 /* Clear the reserved bits */ 531 eax &= ~(0x3U << 14 | 0xfU << 28); 532 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) 533 if (eax == vmx_preemption_cpu_tfms[i]) 534 return true; 535 536 return false; 537 } 538 539 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) 540 { 541 return flexpriority_enabled && lapic_in_kernel(vcpu); 542 } 543 544 static inline bool report_flexpriority(void) 545 { 546 return flexpriority_enabled; 547 } 548 549 static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr) 550 { 551 int i; 552 553 for (i = 0; i < vmx->nmsrs; ++i) 554 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr) 555 return i; 556 return -1; 557 } 558 559 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr) 560 { 561 int i; 562 563 i = __find_msr_index(vmx, msr); 564 if (i >= 0) 565 return &vmx->guest_msrs[i]; 566 return NULL; 567 } 568 569 void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs) 570 { 571 vmcs_clear(loaded_vmcs->vmcs); 572 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) 573 vmcs_clear(loaded_vmcs->shadow_vmcs); 574 loaded_vmcs->cpu = -1; 575 loaded_vmcs->launched = 0; 576 } 577 578 #ifdef CONFIG_KEXEC_CORE 579 /* 580 * This bitmap is used to indicate whether the vmclear 581 * operation is enabled on all cpus. All disabled by 582 * default. 583 */ 584 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE; 585 586 static inline void crash_enable_local_vmclear(int cpu) 587 { 588 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap); 589 } 590 591 static inline void crash_disable_local_vmclear(int cpu) 592 { 593 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap); 594 } 595 596 static inline int crash_local_vmclear_enabled(int cpu) 597 { 598 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap); 599 } 600 601 static void crash_vmclear_local_loaded_vmcss(void) 602 { 603 int cpu = raw_smp_processor_id(); 604 struct loaded_vmcs *v; 605 606 if (!crash_local_vmclear_enabled(cpu)) 607 return; 608 609 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), 610 loaded_vmcss_on_cpu_link) 611 vmcs_clear(v->vmcs); 612 } 613 #else 614 static inline void crash_enable_local_vmclear(int cpu) { } 615 static inline void crash_disable_local_vmclear(int cpu) { } 616 #endif /* CONFIG_KEXEC_CORE */ 617 618 static void __loaded_vmcs_clear(void *arg) 619 { 620 struct loaded_vmcs *loaded_vmcs = arg; 621 int cpu = raw_smp_processor_id(); 622 623 if (loaded_vmcs->cpu != cpu) 624 return; /* vcpu migration can race with cpu offline */ 625 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) 626 per_cpu(current_vmcs, cpu) = NULL; 627 crash_disable_local_vmclear(cpu); 628 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); 629 630 /* 631 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link 632 * is before setting loaded_vmcs->vcpu to -1 which is done in 633 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist 634 * then adds the vmcs into percpu list before it is deleted. 635 */ 636 smp_wmb(); 637 638 loaded_vmcs_init(loaded_vmcs); 639 crash_enable_local_vmclear(cpu); 640 } 641 642 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) 643 { 644 int cpu = loaded_vmcs->cpu; 645 646 if (cpu != -1) 647 smp_call_function_single(cpu, 648 __loaded_vmcs_clear, loaded_vmcs, 1); 649 } 650 651 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, 652 unsigned field) 653 { 654 bool ret; 655 u32 mask = 1 << (seg * SEG_FIELD_NR + field); 656 657 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) { 658 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS); 659 vmx->segment_cache.bitmask = 0; 660 } 661 ret = vmx->segment_cache.bitmask & mask; 662 vmx->segment_cache.bitmask |= mask; 663 return ret; 664 } 665 666 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) 667 { 668 u16 *p = &vmx->segment_cache.seg[seg].selector; 669 670 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) 671 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); 672 return *p; 673 } 674 675 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) 676 { 677 ulong *p = &vmx->segment_cache.seg[seg].base; 678 679 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) 680 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); 681 return *p; 682 } 683 684 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) 685 { 686 u32 *p = &vmx->segment_cache.seg[seg].limit; 687 688 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) 689 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); 690 return *p; 691 } 692 693 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) 694 { 695 u32 *p = &vmx->segment_cache.seg[seg].ar; 696 697 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) 698 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); 699 return *p; 700 } 701 702 void update_exception_bitmap(struct kvm_vcpu *vcpu) 703 { 704 u32 eb; 705 706 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | 707 (1u << DB_VECTOR) | (1u << AC_VECTOR); 708 /* 709 * Guest access to VMware backdoor ports could legitimately 710 * trigger #GP because of TSS I/O permission bitmap. 711 * We intercept those #GP and allow access to them anyway 712 * as VMware does. 713 */ 714 if (enable_vmware_backdoor) 715 eb |= (1u << GP_VECTOR); 716 if ((vcpu->guest_debug & 717 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == 718 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) 719 eb |= 1u << BP_VECTOR; 720 if (to_vmx(vcpu)->rmode.vm86_active) 721 eb = ~0; 722 if (enable_ept) 723 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */ 724 725 /* When we are running a nested L2 guest and L1 specified for it a 726 * certain exception bitmap, we must trap the same exceptions and pass 727 * them to L1. When running L2, we will only handle the exceptions 728 * specified above if L1 did not want them. 729 */ 730 if (is_guest_mode(vcpu)) 731 eb |= get_vmcs12(vcpu)->exception_bitmap; 732 733 vmcs_write32(EXCEPTION_BITMAP, eb); 734 } 735 736 /* 737 * Check if MSR is intercepted for currently loaded MSR bitmap. 738 */ 739 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 740 { 741 unsigned long *msr_bitmap; 742 int f = sizeof(unsigned long); 743 744 if (!cpu_has_vmx_msr_bitmap()) 745 return true; 746 747 msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap; 748 749 if (msr <= 0x1fff) { 750 return !!test_bit(msr, msr_bitmap + 0x800 / f); 751 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { 752 msr &= 0x1fff; 753 return !!test_bit(msr, msr_bitmap + 0xc00 / f); 754 } 755 756 return true; 757 } 758 759 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, 760 unsigned long entry, unsigned long exit) 761 { 762 vm_entry_controls_clearbit(vmx, entry); 763 vm_exit_controls_clearbit(vmx, exit); 764 } 765 766 static int find_msr(struct vmx_msrs *m, unsigned int msr) 767 { 768 unsigned int i; 769 770 for (i = 0; i < m->nr; ++i) { 771 if (m->val[i].index == msr) 772 return i; 773 } 774 return -ENOENT; 775 } 776 777 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) 778 { 779 int i; 780 struct msr_autoload *m = &vmx->msr_autoload; 781 782 switch (msr) { 783 case MSR_EFER: 784 if (cpu_has_load_ia32_efer()) { 785 clear_atomic_switch_msr_special(vmx, 786 VM_ENTRY_LOAD_IA32_EFER, 787 VM_EXIT_LOAD_IA32_EFER); 788 return; 789 } 790 break; 791 case MSR_CORE_PERF_GLOBAL_CTRL: 792 if (cpu_has_load_perf_global_ctrl()) { 793 clear_atomic_switch_msr_special(vmx, 794 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 795 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); 796 return; 797 } 798 break; 799 } 800 i = find_msr(&m->guest, msr); 801 if (i < 0) 802 goto skip_guest; 803 --m->guest.nr; 804 m->guest.val[i] = m->guest.val[m->guest.nr]; 805 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 806 807 skip_guest: 808 i = find_msr(&m->host, msr); 809 if (i < 0) 810 return; 811 812 --m->host.nr; 813 m->host.val[i] = m->host.val[m->host.nr]; 814 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 815 } 816 817 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, 818 unsigned long entry, unsigned long exit, 819 unsigned long guest_val_vmcs, unsigned long host_val_vmcs, 820 u64 guest_val, u64 host_val) 821 { 822 vmcs_write64(guest_val_vmcs, guest_val); 823 if (host_val_vmcs != HOST_IA32_EFER) 824 vmcs_write64(host_val_vmcs, host_val); 825 vm_entry_controls_setbit(vmx, entry); 826 vm_exit_controls_setbit(vmx, exit); 827 } 828 829 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, 830 u64 guest_val, u64 host_val, bool entry_only) 831 { 832 int i, j = 0; 833 struct msr_autoload *m = &vmx->msr_autoload; 834 835 switch (msr) { 836 case MSR_EFER: 837 if (cpu_has_load_ia32_efer()) { 838 add_atomic_switch_msr_special(vmx, 839 VM_ENTRY_LOAD_IA32_EFER, 840 VM_EXIT_LOAD_IA32_EFER, 841 GUEST_IA32_EFER, 842 HOST_IA32_EFER, 843 guest_val, host_val); 844 return; 845 } 846 break; 847 case MSR_CORE_PERF_GLOBAL_CTRL: 848 if (cpu_has_load_perf_global_ctrl()) { 849 add_atomic_switch_msr_special(vmx, 850 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 851 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, 852 GUEST_IA32_PERF_GLOBAL_CTRL, 853 HOST_IA32_PERF_GLOBAL_CTRL, 854 guest_val, host_val); 855 return; 856 } 857 break; 858 case MSR_IA32_PEBS_ENABLE: 859 /* PEBS needs a quiescent period after being disabled (to write 860 * a record). Disabling PEBS through VMX MSR swapping doesn't 861 * provide that period, so a CPU could write host's record into 862 * guest's memory. 863 */ 864 wrmsrl(MSR_IA32_PEBS_ENABLE, 0); 865 } 866 867 i = find_msr(&m->guest, msr); 868 if (!entry_only) 869 j = find_msr(&m->host, msr); 870 871 if ((i < 0 && m->guest.nr == NR_AUTOLOAD_MSRS) || 872 (j < 0 && m->host.nr == NR_AUTOLOAD_MSRS)) { 873 printk_once(KERN_WARNING "Not enough msr switch entries. " 874 "Can't add msr %x\n", msr); 875 return; 876 } 877 if (i < 0) { 878 i = m->guest.nr++; 879 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 880 } 881 m->guest.val[i].index = msr; 882 m->guest.val[i].value = guest_val; 883 884 if (entry_only) 885 return; 886 887 if (j < 0) { 888 j = m->host.nr++; 889 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 890 } 891 m->host.val[j].index = msr; 892 m->host.val[j].value = host_val; 893 } 894 895 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset) 896 { 897 u64 guest_efer = vmx->vcpu.arch.efer; 898 u64 ignore_bits = 0; 899 900 if (!enable_ept) { 901 /* 902 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing 903 * host CPUID is more efficient than testing guest CPUID 904 * or CR4. Host SMEP is anyway a requirement for guest SMEP. 905 */ 906 if (boot_cpu_has(X86_FEATURE_SMEP)) 907 guest_efer |= EFER_NX; 908 else if (!(guest_efer & EFER_NX)) 909 ignore_bits |= EFER_NX; 910 } 911 912 /* 913 * LMA and LME handled by hardware; SCE meaningless outside long mode. 914 */ 915 ignore_bits |= EFER_SCE; 916 #ifdef CONFIG_X86_64 917 ignore_bits |= EFER_LMA | EFER_LME; 918 /* SCE is meaningful only in long mode on Intel */ 919 if (guest_efer & EFER_LMA) 920 ignore_bits &= ~(u64)EFER_SCE; 921 #endif 922 923 /* 924 * On EPT, we can't emulate NX, so we must switch EFER atomically. 925 * On CPUs that support "load IA32_EFER", always switch EFER 926 * atomically, since it's faster than switching it manually. 927 */ 928 if (cpu_has_load_ia32_efer() || 929 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { 930 if (!(guest_efer & EFER_LMA)) 931 guest_efer &= ~EFER_LME; 932 if (guest_efer != host_efer) 933 add_atomic_switch_msr(vmx, MSR_EFER, 934 guest_efer, host_efer, false); 935 else 936 clear_atomic_switch_msr(vmx, MSR_EFER); 937 return false; 938 } else { 939 clear_atomic_switch_msr(vmx, MSR_EFER); 940 941 guest_efer &= ~ignore_bits; 942 guest_efer |= host_efer & ignore_bits; 943 944 vmx->guest_msrs[efer_offset].data = guest_efer; 945 vmx->guest_msrs[efer_offset].mask = ~ignore_bits; 946 947 return true; 948 } 949 } 950 951 #ifdef CONFIG_X86_32 952 /* 953 * On 32-bit kernels, VM exits still load the FS and GS bases from the 954 * VMCS rather than the segment table. KVM uses this helper to figure 955 * out the current bases to poke them into the VMCS before entry. 956 */ 957 static unsigned long segment_base(u16 selector) 958 { 959 struct desc_struct *table; 960 unsigned long v; 961 962 if (!(selector & ~SEGMENT_RPL_MASK)) 963 return 0; 964 965 table = get_current_gdt_ro(); 966 967 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { 968 u16 ldt_selector = kvm_read_ldt(); 969 970 if (!(ldt_selector & ~SEGMENT_RPL_MASK)) 971 return 0; 972 973 table = (struct desc_struct *)segment_base(ldt_selector); 974 } 975 v = get_desc_base(&table[selector >> 3]); 976 return v; 977 } 978 #endif 979 980 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) 981 { 982 u32 i; 983 984 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 985 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 986 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 987 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 988 for (i = 0; i < addr_range; i++) { 989 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 990 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 991 } 992 } 993 994 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) 995 { 996 u32 i; 997 998 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 999 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1000 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1001 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1002 for (i = 0; i < addr_range; i++) { 1003 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1004 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1005 } 1006 } 1007 1008 static void pt_guest_enter(struct vcpu_vmx *vmx) 1009 { 1010 if (pt_mode == PT_MODE_SYSTEM) 1011 return; 1012 1013 /* 1014 * GUEST_IA32_RTIT_CTL is already set in the VMCS. 1015 * Save host state before VM entry. 1016 */ 1017 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1018 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1019 wrmsrl(MSR_IA32_RTIT_CTL, 0); 1020 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range); 1021 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range); 1022 } 1023 } 1024 1025 static void pt_guest_exit(struct vcpu_vmx *vmx) 1026 { 1027 if (pt_mode == PT_MODE_SYSTEM) 1028 return; 1029 1030 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1031 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range); 1032 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range); 1033 } 1034 1035 /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */ 1036 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1037 } 1038 1039 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, 1040 unsigned long fs_base, unsigned long gs_base) 1041 { 1042 if (unlikely(fs_sel != host->fs_sel)) { 1043 if (!(fs_sel & 7)) 1044 vmcs_write16(HOST_FS_SELECTOR, fs_sel); 1045 else 1046 vmcs_write16(HOST_FS_SELECTOR, 0); 1047 host->fs_sel = fs_sel; 1048 } 1049 if (unlikely(gs_sel != host->gs_sel)) { 1050 if (!(gs_sel & 7)) 1051 vmcs_write16(HOST_GS_SELECTOR, gs_sel); 1052 else 1053 vmcs_write16(HOST_GS_SELECTOR, 0); 1054 host->gs_sel = gs_sel; 1055 } 1056 if (unlikely(fs_base != host->fs_base)) { 1057 vmcs_writel(HOST_FS_BASE, fs_base); 1058 host->fs_base = fs_base; 1059 } 1060 if (unlikely(gs_base != host->gs_base)) { 1061 vmcs_writel(HOST_GS_BASE, gs_base); 1062 host->gs_base = gs_base; 1063 } 1064 } 1065 1066 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1067 { 1068 struct vcpu_vmx *vmx = to_vmx(vcpu); 1069 struct vmcs_host_state *host_state; 1070 #ifdef CONFIG_X86_64 1071 int cpu = raw_smp_processor_id(); 1072 #endif 1073 unsigned long fs_base, gs_base; 1074 u16 fs_sel, gs_sel; 1075 int i; 1076 1077 vmx->req_immediate_exit = false; 1078 1079 /* 1080 * Note that guest MSRs to be saved/restored can also be changed 1081 * when guest state is loaded. This happens when guest transitions 1082 * to/from long-mode by setting MSR_EFER.LMA. 1083 */ 1084 if (!vmx->guest_msrs_ready) { 1085 vmx->guest_msrs_ready = true; 1086 for (i = 0; i < vmx->save_nmsrs; ++i) 1087 kvm_set_shared_msr(vmx->guest_msrs[i].index, 1088 vmx->guest_msrs[i].data, 1089 vmx->guest_msrs[i].mask); 1090 1091 } 1092 if (vmx->guest_state_loaded) 1093 return; 1094 1095 host_state = &vmx->loaded_vmcs->host_state; 1096 1097 /* 1098 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not 1099 * allow segment selectors with cpl > 0 or ti == 1. 1100 */ 1101 host_state->ldt_sel = kvm_read_ldt(); 1102 1103 #ifdef CONFIG_X86_64 1104 savesegment(ds, host_state->ds_sel); 1105 savesegment(es, host_state->es_sel); 1106 1107 gs_base = cpu_kernelmode_gs_base(cpu); 1108 if (likely(is_64bit_mm(current->mm))) { 1109 save_fsgs_for_kvm(); 1110 fs_sel = current->thread.fsindex; 1111 gs_sel = current->thread.gsindex; 1112 fs_base = current->thread.fsbase; 1113 vmx->msr_host_kernel_gs_base = current->thread.gsbase; 1114 } else { 1115 savesegment(fs, fs_sel); 1116 savesegment(gs, gs_sel); 1117 fs_base = read_msr(MSR_FS_BASE); 1118 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); 1119 } 1120 1121 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1122 #else 1123 savesegment(fs, fs_sel); 1124 savesegment(gs, gs_sel); 1125 fs_base = segment_base(fs_sel); 1126 gs_base = segment_base(gs_sel); 1127 #endif 1128 1129 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base); 1130 vmx->guest_state_loaded = true; 1131 } 1132 1133 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) 1134 { 1135 struct vmcs_host_state *host_state; 1136 1137 if (!vmx->guest_state_loaded) 1138 return; 1139 1140 host_state = &vmx->loaded_vmcs->host_state; 1141 1142 ++vmx->vcpu.stat.host_state_reload; 1143 1144 #ifdef CONFIG_X86_64 1145 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1146 #endif 1147 if (host_state->ldt_sel || (host_state->gs_sel & 7)) { 1148 kvm_load_ldt(host_state->ldt_sel); 1149 #ifdef CONFIG_X86_64 1150 load_gs_index(host_state->gs_sel); 1151 #else 1152 loadsegment(gs, host_state->gs_sel); 1153 #endif 1154 } 1155 if (host_state->fs_sel & 7) 1156 loadsegment(fs, host_state->fs_sel); 1157 #ifdef CONFIG_X86_64 1158 if (unlikely(host_state->ds_sel | host_state->es_sel)) { 1159 loadsegment(ds, host_state->ds_sel); 1160 loadsegment(es, host_state->es_sel); 1161 } 1162 #endif 1163 invalidate_tss_limit(); 1164 #ifdef CONFIG_X86_64 1165 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); 1166 #endif 1167 load_fixmap_gdt(raw_smp_processor_id()); 1168 vmx->guest_state_loaded = false; 1169 vmx->guest_msrs_ready = false; 1170 } 1171 1172 #ifdef CONFIG_X86_64 1173 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) 1174 { 1175 preempt_disable(); 1176 if (vmx->guest_state_loaded) 1177 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1178 preempt_enable(); 1179 return vmx->msr_guest_kernel_gs_base; 1180 } 1181 1182 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) 1183 { 1184 preempt_disable(); 1185 if (vmx->guest_state_loaded) 1186 wrmsrl(MSR_KERNEL_GS_BASE, data); 1187 preempt_enable(); 1188 vmx->msr_guest_kernel_gs_base = data; 1189 } 1190 #endif 1191 1192 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu) 1193 { 1194 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); 1195 struct pi_desc old, new; 1196 unsigned int dest; 1197 1198 /* 1199 * In case of hot-plug or hot-unplug, we may have to undo 1200 * vmx_vcpu_pi_put even if there is no assigned device. And we 1201 * always keep PI.NDST up to date for simplicity: it makes the 1202 * code easier, and CPU migration is not a fast path. 1203 */ 1204 if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu) 1205 return; 1206 1207 /* The full case. */ 1208 do { 1209 old.control = new.control = pi_desc->control; 1210 1211 dest = cpu_physical_id(cpu); 1212 1213 if (x2apic_enabled()) 1214 new.ndst = dest; 1215 else 1216 new.ndst = (dest << 8) & 0xFF00; 1217 1218 new.sn = 0; 1219 } while (cmpxchg64(&pi_desc->control, old.control, 1220 new.control) != old.control); 1221 1222 /* 1223 * Clear SN before reading the bitmap. The VT-d firmware 1224 * writes the bitmap and reads SN atomically (5.2.3 in the 1225 * spec), so it doesn't really have a memory barrier that 1226 * pairs with this, but we cannot do that and we need one. 1227 */ 1228 smp_mb__after_atomic(); 1229 1230 if (!bitmap_empty((unsigned long *)pi_desc->pir, NR_VECTORS)) 1231 pi_set_on(pi_desc); 1232 } 1233 1234 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu) 1235 { 1236 struct vcpu_vmx *vmx = to_vmx(vcpu); 1237 bool already_loaded = vmx->loaded_vmcs->cpu == cpu; 1238 1239 if (!already_loaded) { 1240 loaded_vmcs_clear(vmx->loaded_vmcs); 1241 local_irq_disable(); 1242 crash_disable_local_vmclear(cpu); 1243 1244 /* 1245 * Read loaded_vmcs->cpu should be before fetching 1246 * loaded_vmcs->loaded_vmcss_on_cpu_link. 1247 * See the comments in __loaded_vmcs_clear(). 1248 */ 1249 smp_rmb(); 1250 1251 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, 1252 &per_cpu(loaded_vmcss_on_cpu, cpu)); 1253 crash_enable_local_vmclear(cpu); 1254 local_irq_enable(); 1255 } 1256 1257 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) { 1258 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; 1259 vmcs_load(vmx->loaded_vmcs->vmcs); 1260 indirect_branch_prediction_barrier(); 1261 } 1262 1263 if (!already_loaded) { 1264 void *gdt = get_current_gdt_ro(); 1265 unsigned long sysenter_esp; 1266 1267 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 1268 1269 /* 1270 * Linux uses per-cpu TSS and GDT, so set these when switching 1271 * processors. See 22.2.4. 1272 */ 1273 vmcs_writel(HOST_TR_BASE, 1274 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); 1275 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ 1276 1277 /* 1278 * VM exits change the host TR limit to 0x67 after a VM 1279 * exit. This is okay, since 0x67 covers everything except 1280 * the IO bitmap and have have code to handle the IO bitmap 1281 * being lost after a VM exit. 1282 */ 1283 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67); 1284 1285 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp); 1286 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */ 1287 1288 vmx->loaded_vmcs->cpu = cpu; 1289 } 1290 1291 /* Setup TSC multiplier */ 1292 if (kvm_has_tsc_control && 1293 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio) 1294 decache_tsc_multiplier(vmx); 1295 } 1296 1297 /* 1298 * Switches to specified vcpu, until a matching vcpu_put(), but assumes 1299 * vcpu mutex is already taken. 1300 */ 1301 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1302 { 1303 struct vcpu_vmx *vmx = to_vmx(vcpu); 1304 1305 vmx_vcpu_load_vmcs(vcpu, cpu); 1306 1307 vmx_vcpu_pi_load(vcpu, cpu); 1308 1309 vmx->host_pkru = read_pkru(); 1310 vmx->host_debugctlmsr = get_debugctlmsr(); 1311 } 1312 1313 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu) 1314 { 1315 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); 1316 1317 if (!kvm_arch_has_assigned_device(vcpu->kvm) || 1318 !irq_remapping_cap(IRQ_POSTING_CAP) || 1319 !kvm_vcpu_apicv_active(vcpu)) 1320 return; 1321 1322 /* Set SN when the vCPU is preempted */ 1323 if (vcpu->preempted) 1324 pi_set_sn(pi_desc); 1325 } 1326 1327 static void vmx_vcpu_put(struct kvm_vcpu *vcpu) 1328 { 1329 vmx_vcpu_pi_put(vcpu); 1330 1331 vmx_prepare_switch_to_host(to_vmx(vcpu)); 1332 } 1333 1334 static bool emulation_required(struct kvm_vcpu *vcpu) 1335 { 1336 return emulate_invalid_guest_state && !guest_state_valid(vcpu); 1337 } 1338 1339 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu); 1340 1341 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) 1342 { 1343 unsigned long rflags, save_rflags; 1344 1345 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) { 1346 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail); 1347 rflags = vmcs_readl(GUEST_RFLAGS); 1348 if (to_vmx(vcpu)->rmode.vm86_active) { 1349 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 1350 save_rflags = to_vmx(vcpu)->rmode.save_rflags; 1351 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 1352 } 1353 to_vmx(vcpu)->rflags = rflags; 1354 } 1355 return to_vmx(vcpu)->rflags; 1356 } 1357 1358 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1359 { 1360 unsigned long old_rflags = vmx_get_rflags(vcpu); 1361 1362 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail); 1363 to_vmx(vcpu)->rflags = rflags; 1364 if (to_vmx(vcpu)->rmode.vm86_active) { 1365 to_vmx(vcpu)->rmode.save_rflags = rflags; 1366 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 1367 } 1368 vmcs_writel(GUEST_RFLAGS, rflags); 1369 1370 if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM) 1371 to_vmx(vcpu)->emulation_required = emulation_required(vcpu); 1372 } 1373 1374 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) 1375 { 1376 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1377 int ret = 0; 1378 1379 if (interruptibility & GUEST_INTR_STATE_STI) 1380 ret |= KVM_X86_SHADOW_INT_STI; 1381 if (interruptibility & GUEST_INTR_STATE_MOV_SS) 1382 ret |= KVM_X86_SHADOW_INT_MOV_SS; 1383 1384 return ret; 1385 } 1386 1387 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 1388 { 1389 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1390 u32 interruptibility = interruptibility_old; 1391 1392 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); 1393 1394 if (mask & KVM_X86_SHADOW_INT_MOV_SS) 1395 interruptibility |= GUEST_INTR_STATE_MOV_SS; 1396 else if (mask & KVM_X86_SHADOW_INT_STI) 1397 interruptibility |= GUEST_INTR_STATE_STI; 1398 1399 if ((interruptibility != interruptibility_old)) 1400 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); 1401 } 1402 1403 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) 1404 { 1405 struct vcpu_vmx *vmx = to_vmx(vcpu); 1406 unsigned long value; 1407 1408 /* 1409 * Any MSR write that attempts to change bits marked reserved will 1410 * case a #GP fault. 1411 */ 1412 if (data & vmx->pt_desc.ctl_bitmask) 1413 return 1; 1414 1415 /* 1416 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will 1417 * result in a #GP unless the same write also clears TraceEn. 1418 */ 1419 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && 1420 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN)) 1421 return 1; 1422 1423 /* 1424 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit 1425 * and FabricEn would cause #GP, if 1426 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 1427 */ 1428 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && 1429 !(data & RTIT_CTL_FABRIC_EN) && 1430 !intel_pt_validate_cap(vmx->pt_desc.caps, 1431 PT_CAP_single_range_output)) 1432 return 1; 1433 1434 /* 1435 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that 1436 * utilize encodings marked reserved will casue a #GP fault. 1437 */ 1438 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); 1439 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && 1440 !test_bit((data & RTIT_CTL_MTC_RANGE) >> 1441 RTIT_CTL_MTC_RANGE_OFFSET, &value)) 1442 return 1; 1443 value = intel_pt_validate_cap(vmx->pt_desc.caps, 1444 PT_CAP_cycle_thresholds); 1445 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1446 !test_bit((data & RTIT_CTL_CYC_THRESH) >> 1447 RTIT_CTL_CYC_THRESH_OFFSET, &value)) 1448 return 1; 1449 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); 1450 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1451 !test_bit((data & RTIT_CTL_PSB_FREQ) >> 1452 RTIT_CTL_PSB_FREQ_OFFSET, &value)) 1453 return 1; 1454 1455 /* 1456 * If ADDRx_CFG is reserved or the encodings is >2 will 1457 * cause a #GP fault. 1458 */ 1459 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; 1460 if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2)) 1461 return 1; 1462 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; 1463 if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2)) 1464 return 1; 1465 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; 1466 if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2)) 1467 return 1; 1468 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; 1469 if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2)) 1470 return 1; 1471 1472 return 0; 1473 } 1474 1475 /* 1476 * Returns an int to be compatible with SVM implementation (which can fail). 1477 * Do not use directly, use skip_emulated_instruction() instead. 1478 */ 1479 static int __skip_emulated_instruction(struct kvm_vcpu *vcpu) 1480 { 1481 unsigned long rip; 1482 1483 rip = kvm_rip_read(vcpu); 1484 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 1485 kvm_rip_write(vcpu, rip); 1486 1487 /* skipping an emulated instruction also counts */ 1488 vmx_set_interrupt_shadow(vcpu, 0); 1489 1490 return EMULATE_DONE; 1491 } 1492 1493 static inline void skip_emulated_instruction(struct kvm_vcpu *vcpu) 1494 { 1495 (void)__skip_emulated_instruction(vcpu); 1496 } 1497 1498 static void vmx_clear_hlt(struct kvm_vcpu *vcpu) 1499 { 1500 /* 1501 * Ensure that we clear the HLT state in the VMCS. We don't need to 1502 * explicitly skip the instruction because if the HLT state is set, 1503 * then the instruction is already executing and RIP has already been 1504 * advanced. 1505 */ 1506 if (kvm_hlt_in_guest(vcpu->kvm) && 1507 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) 1508 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 1509 } 1510 1511 static void vmx_queue_exception(struct kvm_vcpu *vcpu) 1512 { 1513 struct vcpu_vmx *vmx = to_vmx(vcpu); 1514 unsigned nr = vcpu->arch.exception.nr; 1515 bool has_error_code = vcpu->arch.exception.has_error_code; 1516 u32 error_code = vcpu->arch.exception.error_code; 1517 u32 intr_info = nr | INTR_INFO_VALID_MASK; 1518 1519 kvm_deliver_exception_payload(vcpu); 1520 1521 if (has_error_code) { 1522 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code); 1523 intr_info |= INTR_INFO_DELIVER_CODE_MASK; 1524 } 1525 1526 if (vmx->rmode.vm86_active) { 1527 int inc_eip = 0; 1528 if (kvm_exception_is_soft(nr)) 1529 inc_eip = vcpu->arch.event_exit_inst_len; 1530 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE) 1531 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 1532 return; 1533 } 1534 1535 WARN_ON_ONCE(vmx->emulation_required); 1536 1537 if (kvm_exception_is_soft(nr)) { 1538 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1539 vmx->vcpu.arch.event_exit_inst_len); 1540 intr_info |= INTR_TYPE_SOFT_EXCEPTION; 1541 } else 1542 intr_info |= INTR_TYPE_HARD_EXCEPTION; 1543 1544 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); 1545 1546 vmx_clear_hlt(vcpu); 1547 } 1548 1549 static bool vmx_rdtscp_supported(void) 1550 { 1551 return cpu_has_vmx_rdtscp(); 1552 } 1553 1554 static bool vmx_invpcid_supported(void) 1555 { 1556 return cpu_has_vmx_invpcid(); 1557 } 1558 1559 /* 1560 * Swap MSR entry in host/guest MSR entry array. 1561 */ 1562 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to) 1563 { 1564 struct shared_msr_entry tmp; 1565 1566 tmp = vmx->guest_msrs[to]; 1567 vmx->guest_msrs[to] = vmx->guest_msrs[from]; 1568 vmx->guest_msrs[from] = tmp; 1569 } 1570 1571 /* 1572 * Set up the vmcs to automatically save and restore system 1573 * msrs. Don't touch the 64-bit msrs if the guest is in legacy 1574 * mode, as fiddling with msrs is very expensive. 1575 */ 1576 static void setup_msrs(struct vcpu_vmx *vmx) 1577 { 1578 int save_nmsrs, index; 1579 1580 save_nmsrs = 0; 1581 #ifdef CONFIG_X86_64 1582 /* 1583 * The SYSCALL MSRs are only needed on long mode guests, and only 1584 * when EFER.SCE is set. 1585 */ 1586 if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) { 1587 index = __find_msr_index(vmx, MSR_STAR); 1588 if (index >= 0) 1589 move_msr_up(vmx, index, save_nmsrs++); 1590 index = __find_msr_index(vmx, MSR_LSTAR); 1591 if (index >= 0) 1592 move_msr_up(vmx, index, save_nmsrs++); 1593 index = __find_msr_index(vmx, MSR_SYSCALL_MASK); 1594 if (index >= 0) 1595 move_msr_up(vmx, index, save_nmsrs++); 1596 } 1597 #endif 1598 index = __find_msr_index(vmx, MSR_EFER); 1599 if (index >= 0 && update_transition_efer(vmx, index)) 1600 move_msr_up(vmx, index, save_nmsrs++); 1601 index = __find_msr_index(vmx, MSR_TSC_AUX); 1602 if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP)) 1603 move_msr_up(vmx, index, save_nmsrs++); 1604 1605 vmx->save_nmsrs = save_nmsrs; 1606 vmx->guest_msrs_ready = false; 1607 1608 if (cpu_has_vmx_msr_bitmap()) 1609 vmx_update_msr_bitmap(&vmx->vcpu); 1610 } 1611 1612 static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu) 1613 { 1614 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1615 1616 if (is_guest_mode(vcpu) && 1617 (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)) 1618 return vcpu->arch.tsc_offset - vmcs12->tsc_offset; 1619 1620 return vcpu->arch.tsc_offset; 1621 } 1622 1623 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1624 { 1625 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1626 u64 g_tsc_offset = 0; 1627 1628 /* 1629 * We're here if L1 chose not to trap WRMSR to TSC. According 1630 * to the spec, this should set L1's TSC; The offset that L1 1631 * set for L2 remains unchanged, and still needs to be added 1632 * to the newly set TSC to get L2's TSC. 1633 */ 1634 if (is_guest_mode(vcpu) && 1635 (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)) 1636 g_tsc_offset = vmcs12->tsc_offset; 1637 1638 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 1639 vcpu->arch.tsc_offset - g_tsc_offset, 1640 offset); 1641 vmcs_write64(TSC_OFFSET, offset + g_tsc_offset); 1642 return offset + g_tsc_offset; 1643 } 1644 1645 /* 1646 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX 1647 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for 1648 * all guests if the "nested" module option is off, and can also be disabled 1649 * for a single guest by disabling its VMX cpuid bit. 1650 */ 1651 bool nested_vmx_allowed(struct kvm_vcpu *vcpu) 1652 { 1653 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX); 1654 } 1655 1656 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu, 1657 uint64_t val) 1658 { 1659 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits; 1660 1661 return !(val & ~valid_bits); 1662 } 1663 1664 static int vmx_get_msr_feature(struct kvm_msr_entry *msr) 1665 { 1666 switch (msr->index) { 1667 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1668 if (!nested) 1669 return 1; 1670 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); 1671 default: 1672 return 1; 1673 } 1674 1675 return 0; 1676 } 1677 1678 /* 1679 * Reads an msr value (of 'msr_index') into 'pdata'. 1680 * Returns 0 on success, non-0 otherwise. 1681 * Assumes vcpu_load() was already called. 1682 */ 1683 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1684 { 1685 struct vcpu_vmx *vmx = to_vmx(vcpu); 1686 struct shared_msr_entry *msr; 1687 u32 index; 1688 1689 switch (msr_info->index) { 1690 #ifdef CONFIG_X86_64 1691 case MSR_FS_BASE: 1692 msr_info->data = vmcs_readl(GUEST_FS_BASE); 1693 break; 1694 case MSR_GS_BASE: 1695 msr_info->data = vmcs_readl(GUEST_GS_BASE); 1696 break; 1697 case MSR_KERNEL_GS_BASE: 1698 msr_info->data = vmx_read_guest_kernel_gs_base(vmx); 1699 break; 1700 #endif 1701 case MSR_EFER: 1702 return kvm_get_msr_common(vcpu, msr_info); 1703 case MSR_IA32_SPEC_CTRL: 1704 if (!msr_info->host_initiated && 1705 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL)) 1706 return 1; 1707 1708 msr_info->data = to_vmx(vcpu)->spec_ctrl; 1709 break; 1710 case MSR_IA32_SYSENTER_CS: 1711 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); 1712 break; 1713 case MSR_IA32_SYSENTER_EIP: 1714 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); 1715 break; 1716 case MSR_IA32_SYSENTER_ESP: 1717 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); 1718 break; 1719 case MSR_IA32_BNDCFGS: 1720 if (!kvm_mpx_supported() || 1721 (!msr_info->host_initiated && 1722 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 1723 return 1; 1724 msr_info->data = vmcs_read64(GUEST_BNDCFGS); 1725 break; 1726 case MSR_IA32_MCG_EXT_CTL: 1727 if (!msr_info->host_initiated && 1728 !(vmx->msr_ia32_feature_control & 1729 FEATURE_CONTROL_LMCE)) 1730 return 1; 1731 msr_info->data = vcpu->arch.mcg_ext_ctl; 1732 break; 1733 case MSR_IA32_FEATURE_CONTROL: 1734 msr_info->data = vmx->msr_ia32_feature_control; 1735 break; 1736 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1737 if (!nested_vmx_allowed(vcpu)) 1738 return 1; 1739 return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, 1740 &msr_info->data); 1741 case MSR_IA32_XSS: 1742 if (!vmx_xsaves_supported() || 1743 (!msr_info->host_initiated && 1744 !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 1745 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)))) 1746 return 1; 1747 msr_info->data = vcpu->arch.ia32_xss; 1748 break; 1749 case MSR_IA32_RTIT_CTL: 1750 if (pt_mode != PT_MODE_HOST_GUEST) 1751 return 1; 1752 msr_info->data = vmx->pt_desc.guest.ctl; 1753 break; 1754 case MSR_IA32_RTIT_STATUS: 1755 if (pt_mode != PT_MODE_HOST_GUEST) 1756 return 1; 1757 msr_info->data = vmx->pt_desc.guest.status; 1758 break; 1759 case MSR_IA32_RTIT_CR3_MATCH: 1760 if ((pt_mode != PT_MODE_HOST_GUEST) || 1761 !intel_pt_validate_cap(vmx->pt_desc.caps, 1762 PT_CAP_cr3_filtering)) 1763 return 1; 1764 msr_info->data = vmx->pt_desc.guest.cr3_match; 1765 break; 1766 case MSR_IA32_RTIT_OUTPUT_BASE: 1767 if ((pt_mode != PT_MODE_HOST_GUEST) || 1768 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1769 PT_CAP_topa_output) && 1770 !intel_pt_validate_cap(vmx->pt_desc.caps, 1771 PT_CAP_single_range_output))) 1772 return 1; 1773 msr_info->data = vmx->pt_desc.guest.output_base; 1774 break; 1775 case MSR_IA32_RTIT_OUTPUT_MASK: 1776 if ((pt_mode != PT_MODE_HOST_GUEST) || 1777 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1778 PT_CAP_topa_output) && 1779 !intel_pt_validate_cap(vmx->pt_desc.caps, 1780 PT_CAP_single_range_output))) 1781 return 1; 1782 msr_info->data = vmx->pt_desc.guest.output_mask; 1783 break; 1784 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 1785 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 1786 if ((pt_mode != PT_MODE_HOST_GUEST) || 1787 (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps, 1788 PT_CAP_num_address_ranges))) 1789 return 1; 1790 if (index % 2) 1791 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; 1792 else 1793 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; 1794 break; 1795 case MSR_TSC_AUX: 1796 if (!msr_info->host_initiated && 1797 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) 1798 return 1; 1799 /* Else, falls through */ 1800 default: 1801 msr = find_msr_entry(vmx, msr_info->index); 1802 if (msr) { 1803 msr_info->data = msr->data; 1804 break; 1805 } 1806 return kvm_get_msr_common(vcpu, msr_info); 1807 } 1808 1809 return 0; 1810 } 1811 1812 /* 1813 * Writes msr value into into the appropriate "register". 1814 * Returns 0 on success, non-0 otherwise. 1815 * Assumes vcpu_load() was already called. 1816 */ 1817 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1818 { 1819 struct vcpu_vmx *vmx = to_vmx(vcpu); 1820 struct shared_msr_entry *msr; 1821 int ret = 0; 1822 u32 msr_index = msr_info->index; 1823 u64 data = msr_info->data; 1824 u32 index; 1825 1826 switch (msr_index) { 1827 case MSR_EFER: 1828 ret = kvm_set_msr_common(vcpu, msr_info); 1829 break; 1830 #ifdef CONFIG_X86_64 1831 case MSR_FS_BASE: 1832 vmx_segment_cache_clear(vmx); 1833 vmcs_writel(GUEST_FS_BASE, data); 1834 break; 1835 case MSR_GS_BASE: 1836 vmx_segment_cache_clear(vmx); 1837 vmcs_writel(GUEST_GS_BASE, data); 1838 break; 1839 case MSR_KERNEL_GS_BASE: 1840 vmx_write_guest_kernel_gs_base(vmx, data); 1841 break; 1842 #endif 1843 case MSR_IA32_SYSENTER_CS: 1844 if (is_guest_mode(vcpu)) 1845 get_vmcs12(vcpu)->guest_sysenter_cs = data; 1846 vmcs_write32(GUEST_SYSENTER_CS, data); 1847 break; 1848 case MSR_IA32_SYSENTER_EIP: 1849 if (is_guest_mode(vcpu)) 1850 get_vmcs12(vcpu)->guest_sysenter_eip = data; 1851 vmcs_writel(GUEST_SYSENTER_EIP, data); 1852 break; 1853 case MSR_IA32_SYSENTER_ESP: 1854 if (is_guest_mode(vcpu)) 1855 get_vmcs12(vcpu)->guest_sysenter_esp = data; 1856 vmcs_writel(GUEST_SYSENTER_ESP, data); 1857 break; 1858 case MSR_IA32_DEBUGCTLMSR: 1859 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls & 1860 VM_EXIT_SAVE_DEBUG_CONTROLS) 1861 get_vmcs12(vcpu)->guest_ia32_debugctl = data; 1862 1863 ret = kvm_set_msr_common(vcpu, msr_info); 1864 break; 1865 1866 case MSR_IA32_BNDCFGS: 1867 if (!kvm_mpx_supported() || 1868 (!msr_info->host_initiated && 1869 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 1870 return 1; 1871 if (is_noncanonical_address(data & PAGE_MASK, vcpu) || 1872 (data & MSR_IA32_BNDCFGS_RSVD)) 1873 return 1; 1874 vmcs_write64(GUEST_BNDCFGS, data); 1875 break; 1876 case MSR_IA32_SPEC_CTRL: 1877 if (!msr_info->host_initiated && 1878 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL)) 1879 return 1; 1880 1881 /* The STIBP bit doesn't fault even if it's not advertised */ 1882 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD)) 1883 return 1; 1884 1885 vmx->spec_ctrl = data; 1886 1887 if (!data) 1888 break; 1889 1890 /* 1891 * For non-nested: 1892 * When it's written (to non-zero) for the first time, pass 1893 * it through. 1894 * 1895 * For nested: 1896 * The handling of the MSR bitmap for L2 guests is done in 1897 * nested_vmx_merge_msr_bitmap. We should not touch the 1898 * vmcs02.msr_bitmap here since it gets completely overwritten 1899 * in the merging. We update the vmcs01 here for L1 as well 1900 * since it will end up touching the MSR anyway now. 1901 */ 1902 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, 1903 MSR_IA32_SPEC_CTRL, 1904 MSR_TYPE_RW); 1905 break; 1906 case MSR_IA32_PRED_CMD: 1907 if (!msr_info->host_initiated && 1908 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL)) 1909 return 1; 1910 1911 if (data & ~PRED_CMD_IBPB) 1912 return 1; 1913 1914 if (!data) 1915 break; 1916 1917 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 1918 1919 /* 1920 * For non-nested: 1921 * When it's written (to non-zero) for the first time, pass 1922 * it through. 1923 * 1924 * For nested: 1925 * The handling of the MSR bitmap for L2 guests is done in 1926 * nested_vmx_merge_msr_bitmap. We should not touch the 1927 * vmcs02.msr_bitmap here since it gets completely overwritten 1928 * in the merging. 1929 */ 1930 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD, 1931 MSR_TYPE_W); 1932 break; 1933 case MSR_IA32_CR_PAT: 1934 if (!kvm_pat_valid(data)) 1935 return 1; 1936 1937 if (is_guest_mode(vcpu) && 1938 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) 1939 get_vmcs12(vcpu)->guest_ia32_pat = data; 1940 1941 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { 1942 vmcs_write64(GUEST_IA32_PAT, data); 1943 vcpu->arch.pat = data; 1944 break; 1945 } 1946 ret = kvm_set_msr_common(vcpu, msr_info); 1947 break; 1948 case MSR_IA32_TSC_ADJUST: 1949 ret = kvm_set_msr_common(vcpu, msr_info); 1950 break; 1951 case MSR_IA32_MCG_EXT_CTL: 1952 if ((!msr_info->host_initiated && 1953 !(to_vmx(vcpu)->msr_ia32_feature_control & 1954 FEATURE_CONTROL_LMCE)) || 1955 (data & ~MCG_EXT_CTL_LMCE_EN)) 1956 return 1; 1957 vcpu->arch.mcg_ext_ctl = data; 1958 break; 1959 case MSR_IA32_FEATURE_CONTROL: 1960 if (!vmx_feature_control_msr_valid(vcpu, data) || 1961 (to_vmx(vcpu)->msr_ia32_feature_control & 1962 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated)) 1963 return 1; 1964 vmx->msr_ia32_feature_control = data; 1965 if (msr_info->host_initiated && data == 0) 1966 vmx_leave_nested(vcpu); 1967 break; 1968 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1969 if (!msr_info->host_initiated) 1970 return 1; /* they are read-only */ 1971 if (!nested_vmx_allowed(vcpu)) 1972 return 1; 1973 return vmx_set_vmx_msr(vcpu, msr_index, data); 1974 case MSR_IA32_XSS: 1975 if (!vmx_xsaves_supported() || 1976 (!msr_info->host_initiated && 1977 !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 1978 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)))) 1979 return 1; 1980 /* 1981 * The only supported bit as of Skylake is bit 8, but 1982 * it is not supported on KVM. 1983 */ 1984 if (data != 0) 1985 return 1; 1986 vcpu->arch.ia32_xss = data; 1987 if (vcpu->arch.ia32_xss != host_xss) 1988 add_atomic_switch_msr(vmx, MSR_IA32_XSS, 1989 vcpu->arch.ia32_xss, host_xss, false); 1990 else 1991 clear_atomic_switch_msr(vmx, MSR_IA32_XSS); 1992 break; 1993 case MSR_IA32_RTIT_CTL: 1994 if ((pt_mode != PT_MODE_HOST_GUEST) || 1995 vmx_rtit_ctl_check(vcpu, data) || 1996 vmx->nested.vmxon) 1997 return 1; 1998 vmcs_write64(GUEST_IA32_RTIT_CTL, data); 1999 vmx->pt_desc.guest.ctl = data; 2000 pt_update_intercept_for_msr(vmx); 2001 break; 2002 case MSR_IA32_RTIT_STATUS: 2003 if ((pt_mode != PT_MODE_HOST_GUEST) || 2004 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) || 2005 (data & MSR_IA32_RTIT_STATUS_MASK)) 2006 return 1; 2007 vmx->pt_desc.guest.status = data; 2008 break; 2009 case MSR_IA32_RTIT_CR3_MATCH: 2010 if ((pt_mode != PT_MODE_HOST_GUEST) || 2011 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) || 2012 !intel_pt_validate_cap(vmx->pt_desc.caps, 2013 PT_CAP_cr3_filtering)) 2014 return 1; 2015 vmx->pt_desc.guest.cr3_match = data; 2016 break; 2017 case MSR_IA32_RTIT_OUTPUT_BASE: 2018 if ((pt_mode != PT_MODE_HOST_GUEST) || 2019 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) || 2020 (!intel_pt_validate_cap(vmx->pt_desc.caps, 2021 PT_CAP_topa_output) && 2022 !intel_pt_validate_cap(vmx->pt_desc.caps, 2023 PT_CAP_single_range_output)) || 2024 (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK)) 2025 return 1; 2026 vmx->pt_desc.guest.output_base = data; 2027 break; 2028 case MSR_IA32_RTIT_OUTPUT_MASK: 2029 if ((pt_mode != PT_MODE_HOST_GUEST) || 2030 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) || 2031 (!intel_pt_validate_cap(vmx->pt_desc.caps, 2032 PT_CAP_topa_output) && 2033 !intel_pt_validate_cap(vmx->pt_desc.caps, 2034 PT_CAP_single_range_output))) 2035 return 1; 2036 vmx->pt_desc.guest.output_mask = data; 2037 break; 2038 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2039 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2040 if ((pt_mode != PT_MODE_HOST_GUEST) || 2041 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) || 2042 (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps, 2043 PT_CAP_num_address_ranges))) 2044 return 1; 2045 if (index % 2) 2046 vmx->pt_desc.guest.addr_b[index / 2] = data; 2047 else 2048 vmx->pt_desc.guest.addr_a[index / 2] = data; 2049 break; 2050 case MSR_TSC_AUX: 2051 if (!msr_info->host_initiated && 2052 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) 2053 return 1; 2054 /* Check reserved bit, higher 32 bits should be zero */ 2055 if ((data >> 32) != 0) 2056 return 1; 2057 /* Else, falls through */ 2058 default: 2059 msr = find_msr_entry(vmx, msr_index); 2060 if (msr) { 2061 u64 old_msr_data = msr->data; 2062 msr->data = data; 2063 if (msr - vmx->guest_msrs < vmx->save_nmsrs) { 2064 preempt_disable(); 2065 ret = kvm_set_shared_msr(msr->index, msr->data, 2066 msr->mask); 2067 preempt_enable(); 2068 if (ret) 2069 msr->data = old_msr_data; 2070 } 2071 break; 2072 } 2073 ret = kvm_set_msr_common(vcpu, msr_info); 2074 } 2075 2076 return ret; 2077 } 2078 2079 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 2080 { 2081 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail); 2082 switch (reg) { 2083 case VCPU_REGS_RSP: 2084 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); 2085 break; 2086 case VCPU_REGS_RIP: 2087 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); 2088 break; 2089 case VCPU_EXREG_PDPTR: 2090 if (enable_ept) 2091 ept_save_pdptrs(vcpu); 2092 break; 2093 default: 2094 break; 2095 } 2096 } 2097 2098 static __init int cpu_has_kvm_support(void) 2099 { 2100 return cpu_has_vmx(); 2101 } 2102 2103 static __init int vmx_disabled_by_bios(void) 2104 { 2105 u64 msr; 2106 2107 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr); 2108 if (msr & FEATURE_CONTROL_LOCKED) { 2109 /* launched w/ TXT and VMX disabled */ 2110 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX) 2111 && tboot_enabled()) 2112 return 1; 2113 /* launched w/o TXT and VMX only enabled w/ TXT */ 2114 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX) 2115 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX) 2116 && !tboot_enabled()) { 2117 printk(KERN_WARNING "kvm: disable TXT in the BIOS or " 2118 "activate TXT before enabling KVM\n"); 2119 return 1; 2120 } 2121 /* launched w/o TXT and VMX disabled */ 2122 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX) 2123 && !tboot_enabled()) 2124 return 1; 2125 } 2126 2127 return 0; 2128 } 2129 2130 static void kvm_cpu_vmxon(u64 addr) 2131 { 2132 cr4_set_bits(X86_CR4_VMXE); 2133 intel_pt_handle_vmx(1); 2134 2135 asm volatile ("vmxon %0" : : "m"(addr)); 2136 } 2137 2138 static int hardware_enable(void) 2139 { 2140 int cpu = raw_smp_processor_id(); 2141 u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); 2142 u64 old, test_bits; 2143 2144 if (cr4_read_shadow() & X86_CR4_VMXE) 2145 return -EBUSY; 2146 2147 /* 2148 * This can happen if we hot-added a CPU but failed to allocate 2149 * VP assist page for it. 2150 */ 2151 if (static_branch_unlikely(&enable_evmcs) && 2152 !hv_get_vp_assist_page(cpu)) 2153 return -EFAULT; 2154 2155 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); 2156 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu)); 2157 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); 2158 2159 /* 2160 * Now we can enable the vmclear operation in kdump 2161 * since the loaded_vmcss_on_cpu list on this cpu 2162 * has been initialized. 2163 * 2164 * Though the cpu is not in VMX operation now, there 2165 * is no problem to enable the vmclear operation 2166 * for the loaded_vmcss_on_cpu list is empty! 2167 */ 2168 crash_enable_local_vmclear(cpu); 2169 2170 rdmsrl(MSR_IA32_FEATURE_CONTROL, old); 2171 2172 test_bits = FEATURE_CONTROL_LOCKED; 2173 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; 2174 if (tboot_enabled()) 2175 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX; 2176 2177 if ((old & test_bits) != test_bits) { 2178 /* enable and lock */ 2179 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits); 2180 } 2181 kvm_cpu_vmxon(phys_addr); 2182 if (enable_ept) 2183 ept_sync_global(); 2184 2185 return 0; 2186 } 2187 2188 static void vmclear_local_loaded_vmcss(void) 2189 { 2190 int cpu = raw_smp_processor_id(); 2191 struct loaded_vmcs *v, *n; 2192 2193 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), 2194 loaded_vmcss_on_cpu_link) 2195 __loaded_vmcs_clear(v); 2196 } 2197 2198 2199 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot() 2200 * tricks. 2201 */ 2202 static void kvm_cpu_vmxoff(void) 2203 { 2204 asm volatile (__ex("vmxoff")); 2205 2206 intel_pt_handle_vmx(0); 2207 cr4_clear_bits(X86_CR4_VMXE); 2208 } 2209 2210 static void hardware_disable(void) 2211 { 2212 vmclear_local_loaded_vmcss(); 2213 kvm_cpu_vmxoff(); 2214 } 2215 2216 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, 2217 u32 msr, u32 *result) 2218 { 2219 u32 vmx_msr_low, vmx_msr_high; 2220 u32 ctl = ctl_min | ctl_opt; 2221 2222 rdmsr(msr, vmx_msr_low, vmx_msr_high); 2223 2224 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ 2225 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ 2226 2227 /* Ensure minimum (required) set of control bits are supported. */ 2228 if (ctl_min & ~ctl) 2229 return -EIO; 2230 2231 *result = ctl; 2232 return 0; 2233 } 2234 2235 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf, 2236 struct vmx_capability *vmx_cap) 2237 { 2238 u32 vmx_msr_low, vmx_msr_high; 2239 u32 min, opt, min2, opt2; 2240 u32 _pin_based_exec_control = 0; 2241 u32 _cpu_based_exec_control = 0; 2242 u32 _cpu_based_2nd_exec_control = 0; 2243 u32 _vmexit_control = 0; 2244 u32 _vmentry_control = 0; 2245 2246 memset(vmcs_conf, 0, sizeof(*vmcs_conf)); 2247 min = CPU_BASED_HLT_EXITING | 2248 #ifdef CONFIG_X86_64 2249 CPU_BASED_CR8_LOAD_EXITING | 2250 CPU_BASED_CR8_STORE_EXITING | 2251 #endif 2252 CPU_BASED_CR3_LOAD_EXITING | 2253 CPU_BASED_CR3_STORE_EXITING | 2254 CPU_BASED_UNCOND_IO_EXITING | 2255 CPU_BASED_MOV_DR_EXITING | 2256 CPU_BASED_USE_TSC_OFFSETING | 2257 CPU_BASED_MWAIT_EXITING | 2258 CPU_BASED_MONITOR_EXITING | 2259 CPU_BASED_INVLPG_EXITING | 2260 CPU_BASED_RDPMC_EXITING; 2261 2262 opt = CPU_BASED_TPR_SHADOW | 2263 CPU_BASED_USE_MSR_BITMAPS | 2264 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; 2265 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS, 2266 &_cpu_based_exec_control) < 0) 2267 return -EIO; 2268 #ifdef CONFIG_X86_64 2269 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2270 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING & 2271 ~CPU_BASED_CR8_STORE_EXITING; 2272 #endif 2273 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { 2274 min2 = 0; 2275 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 2276 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2277 SECONDARY_EXEC_WBINVD_EXITING | 2278 SECONDARY_EXEC_ENABLE_VPID | 2279 SECONDARY_EXEC_ENABLE_EPT | 2280 SECONDARY_EXEC_UNRESTRICTED_GUEST | 2281 SECONDARY_EXEC_PAUSE_LOOP_EXITING | 2282 SECONDARY_EXEC_DESC | 2283 SECONDARY_EXEC_RDTSCP | 2284 SECONDARY_EXEC_ENABLE_INVPCID | 2285 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2286 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | 2287 SECONDARY_EXEC_SHADOW_VMCS | 2288 SECONDARY_EXEC_XSAVES | 2289 SECONDARY_EXEC_RDSEED_EXITING | 2290 SECONDARY_EXEC_RDRAND_EXITING | 2291 SECONDARY_EXEC_ENABLE_PML | 2292 SECONDARY_EXEC_TSC_SCALING | 2293 SECONDARY_EXEC_PT_USE_GPA | 2294 SECONDARY_EXEC_PT_CONCEAL_VMX | 2295 SECONDARY_EXEC_ENABLE_VMFUNC | 2296 SECONDARY_EXEC_ENCLS_EXITING; 2297 if (adjust_vmx_controls(min2, opt2, 2298 MSR_IA32_VMX_PROCBASED_CTLS2, 2299 &_cpu_based_2nd_exec_control) < 0) 2300 return -EIO; 2301 } 2302 #ifndef CONFIG_X86_64 2303 if (!(_cpu_based_2nd_exec_control & 2304 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 2305 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; 2306 #endif 2307 2308 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2309 _cpu_based_2nd_exec_control &= ~( 2310 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2311 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2312 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 2313 2314 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, 2315 &vmx_cap->ept, &vmx_cap->vpid); 2316 2317 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) { 2318 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT 2319 enabled */ 2320 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | 2321 CPU_BASED_CR3_STORE_EXITING | 2322 CPU_BASED_INVLPG_EXITING); 2323 } else if (vmx_cap->ept) { 2324 vmx_cap->ept = 0; 2325 pr_warn_once("EPT CAP should not exist if not support " 2326 "1-setting enable EPT VM-execution control\n"); 2327 } 2328 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && 2329 vmx_cap->vpid) { 2330 vmx_cap->vpid = 0; 2331 pr_warn_once("VPID CAP should not exist if not support " 2332 "1-setting enable VPID VM-execution control\n"); 2333 } 2334 2335 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT; 2336 #ifdef CONFIG_X86_64 2337 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE; 2338 #endif 2339 opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | 2340 VM_EXIT_LOAD_IA32_PAT | 2341 VM_EXIT_LOAD_IA32_EFER | 2342 VM_EXIT_CLEAR_BNDCFGS | 2343 VM_EXIT_PT_CONCEAL_PIP | 2344 VM_EXIT_CLEAR_IA32_RTIT_CTL; 2345 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS, 2346 &_vmexit_control) < 0) 2347 return -EIO; 2348 2349 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING; 2350 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR | 2351 PIN_BASED_VMX_PREEMPTION_TIMER; 2352 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS, 2353 &_pin_based_exec_control) < 0) 2354 return -EIO; 2355 2356 if (cpu_has_broken_vmx_preemption_timer()) 2357 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 2358 if (!(_cpu_based_2nd_exec_control & 2359 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) 2360 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; 2361 2362 min = VM_ENTRY_LOAD_DEBUG_CONTROLS; 2363 opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | 2364 VM_ENTRY_LOAD_IA32_PAT | 2365 VM_ENTRY_LOAD_IA32_EFER | 2366 VM_ENTRY_LOAD_BNDCFGS | 2367 VM_ENTRY_PT_CONCEAL_PIP | 2368 VM_ENTRY_LOAD_IA32_RTIT_CTL; 2369 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS, 2370 &_vmentry_control) < 0) 2371 return -EIO; 2372 2373 /* 2374 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they 2375 * can't be used due to an errata where VM Exit may incorrectly clear 2376 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the 2377 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. 2378 */ 2379 if (boot_cpu_data.x86 == 0x6) { 2380 switch (boot_cpu_data.x86_model) { 2381 case 26: /* AAK155 */ 2382 case 30: /* AAP115 */ 2383 case 37: /* AAT100 */ 2384 case 44: /* BC86,AAY89,BD102 */ 2385 case 46: /* BA97 */ 2386 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; 2387 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; 2388 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " 2389 "does not work properly. Using workaround\n"); 2390 break; 2391 default: 2392 break; 2393 } 2394 } 2395 2396 2397 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); 2398 2399 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ 2400 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) 2401 return -EIO; 2402 2403 #ifdef CONFIG_X86_64 2404 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ 2405 if (vmx_msr_high & (1u<<16)) 2406 return -EIO; 2407 #endif 2408 2409 /* Require Write-Back (WB) memory type for VMCS accesses. */ 2410 if (((vmx_msr_high >> 18) & 15) != 6) 2411 return -EIO; 2412 2413 vmcs_conf->size = vmx_msr_high & 0x1fff; 2414 vmcs_conf->order = get_order(vmcs_conf->size); 2415 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; 2416 2417 vmcs_conf->revision_id = vmx_msr_low; 2418 2419 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; 2420 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; 2421 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; 2422 vmcs_conf->vmexit_ctrl = _vmexit_control; 2423 vmcs_conf->vmentry_ctrl = _vmentry_control; 2424 2425 if (static_branch_unlikely(&enable_evmcs)) 2426 evmcs_sanitize_exec_ctrls(vmcs_conf); 2427 2428 return 0; 2429 } 2430 2431 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags) 2432 { 2433 int node = cpu_to_node(cpu); 2434 struct page *pages; 2435 struct vmcs *vmcs; 2436 2437 pages = __alloc_pages_node(node, flags, vmcs_config.order); 2438 if (!pages) 2439 return NULL; 2440 vmcs = page_address(pages); 2441 memset(vmcs, 0, vmcs_config.size); 2442 2443 /* KVM supports Enlightened VMCS v1 only */ 2444 if (static_branch_unlikely(&enable_evmcs)) 2445 vmcs->hdr.revision_id = KVM_EVMCS_VERSION; 2446 else 2447 vmcs->hdr.revision_id = vmcs_config.revision_id; 2448 2449 if (shadow) 2450 vmcs->hdr.shadow_vmcs = 1; 2451 return vmcs; 2452 } 2453 2454 void free_vmcs(struct vmcs *vmcs) 2455 { 2456 free_pages((unsigned long)vmcs, vmcs_config.order); 2457 } 2458 2459 /* 2460 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded 2461 */ 2462 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2463 { 2464 if (!loaded_vmcs->vmcs) 2465 return; 2466 loaded_vmcs_clear(loaded_vmcs); 2467 free_vmcs(loaded_vmcs->vmcs); 2468 loaded_vmcs->vmcs = NULL; 2469 if (loaded_vmcs->msr_bitmap) 2470 free_page((unsigned long)loaded_vmcs->msr_bitmap); 2471 WARN_ON(loaded_vmcs->shadow_vmcs != NULL); 2472 } 2473 2474 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2475 { 2476 loaded_vmcs->vmcs = alloc_vmcs(false); 2477 if (!loaded_vmcs->vmcs) 2478 return -ENOMEM; 2479 2480 loaded_vmcs->shadow_vmcs = NULL; 2481 loaded_vmcs->hv_timer_soft_disabled = false; 2482 loaded_vmcs_init(loaded_vmcs); 2483 2484 if (cpu_has_vmx_msr_bitmap()) { 2485 loaded_vmcs->msr_bitmap = (unsigned long *) 2486 __get_free_page(GFP_KERNEL_ACCOUNT); 2487 if (!loaded_vmcs->msr_bitmap) 2488 goto out_vmcs; 2489 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); 2490 2491 if (IS_ENABLED(CONFIG_HYPERV) && 2492 static_branch_unlikely(&enable_evmcs) && 2493 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { 2494 struct hv_enlightened_vmcs *evmcs = 2495 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs; 2496 2497 evmcs->hv_enlightenments_control.msr_bitmap = 1; 2498 } 2499 } 2500 2501 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); 2502 memset(&loaded_vmcs->controls_shadow, 0, 2503 sizeof(struct vmcs_controls_shadow)); 2504 2505 return 0; 2506 2507 out_vmcs: 2508 free_loaded_vmcs(loaded_vmcs); 2509 return -ENOMEM; 2510 } 2511 2512 static void free_kvm_area(void) 2513 { 2514 int cpu; 2515 2516 for_each_possible_cpu(cpu) { 2517 free_vmcs(per_cpu(vmxarea, cpu)); 2518 per_cpu(vmxarea, cpu) = NULL; 2519 } 2520 } 2521 2522 static __init int alloc_kvm_area(void) 2523 { 2524 int cpu; 2525 2526 for_each_possible_cpu(cpu) { 2527 struct vmcs *vmcs; 2528 2529 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL); 2530 if (!vmcs) { 2531 free_kvm_area(); 2532 return -ENOMEM; 2533 } 2534 2535 /* 2536 * When eVMCS is enabled, alloc_vmcs_cpu() sets 2537 * vmcs->revision_id to KVM_EVMCS_VERSION instead of 2538 * revision_id reported by MSR_IA32_VMX_BASIC. 2539 * 2540 * However, even though not explicitly documented by 2541 * TLFS, VMXArea passed as VMXON argument should 2542 * still be marked with revision_id reported by 2543 * physical CPU. 2544 */ 2545 if (static_branch_unlikely(&enable_evmcs)) 2546 vmcs->hdr.revision_id = vmcs_config.revision_id; 2547 2548 per_cpu(vmxarea, cpu) = vmcs; 2549 } 2550 return 0; 2551 } 2552 2553 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, 2554 struct kvm_segment *save) 2555 { 2556 if (!emulate_invalid_guest_state) { 2557 /* 2558 * CS and SS RPL should be equal during guest entry according 2559 * to VMX spec, but in reality it is not always so. Since vcpu 2560 * is in the middle of the transition from real mode to 2561 * protected mode it is safe to assume that RPL 0 is a good 2562 * default value. 2563 */ 2564 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) 2565 save->selector &= ~SEGMENT_RPL_MASK; 2566 save->dpl = save->selector & SEGMENT_RPL_MASK; 2567 save->s = 1; 2568 } 2569 vmx_set_segment(vcpu, save, seg); 2570 } 2571 2572 static void enter_pmode(struct kvm_vcpu *vcpu) 2573 { 2574 unsigned long flags; 2575 struct vcpu_vmx *vmx = to_vmx(vcpu); 2576 2577 /* 2578 * Update real mode segment cache. It may be not up-to-date if sement 2579 * register was written while vcpu was in a guest mode. 2580 */ 2581 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2582 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2583 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2584 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2585 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2586 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2587 2588 vmx->rmode.vm86_active = 0; 2589 2590 vmx_segment_cache_clear(vmx); 2591 2592 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2593 2594 flags = vmcs_readl(GUEST_RFLAGS); 2595 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 2596 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 2597 vmcs_writel(GUEST_RFLAGS, flags); 2598 2599 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | 2600 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); 2601 2602 update_exception_bitmap(vcpu); 2603 2604 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2605 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2606 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2607 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2608 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2609 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2610 } 2611 2612 static void fix_rmode_seg(int seg, struct kvm_segment *save) 2613 { 2614 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 2615 struct kvm_segment var = *save; 2616 2617 var.dpl = 0x3; 2618 if (seg == VCPU_SREG_CS) 2619 var.type = 0x3; 2620 2621 if (!emulate_invalid_guest_state) { 2622 var.selector = var.base >> 4; 2623 var.base = var.base & 0xffff0; 2624 var.limit = 0xffff; 2625 var.g = 0; 2626 var.db = 0; 2627 var.present = 1; 2628 var.s = 1; 2629 var.l = 0; 2630 var.unusable = 0; 2631 var.type = 0x3; 2632 var.avl = 0; 2633 if (save->base & 0xf) 2634 printk_once(KERN_WARNING "kvm: segment base is not " 2635 "paragraph aligned when entering " 2636 "protected mode (seg=%d)", seg); 2637 } 2638 2639 vmcs_write16(sf->selector, var.selector); 2640 vmcs_writel(sf->base, var.base); 2641 vmcs_write32(sf->limit, var.limit); 2642 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); 2643 } 2644 2645 static void enter_rmode(struct kvm_vcpu *vcpu) 2646 { 2647 unsigned long flags; 2648 struct vcpu_vmx *vmx = to_vmx(vcpu); 2649 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); 2650 2651 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2652 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2653 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2654 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2655 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2656 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2657 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2658 2659 vmx->rmode.vm86_active = 1; 2660 2661 /* 2662 * Very old userspace does not call KVM_SET_TSS_ADDR before entering 2663 * vcpu. Warn the user that an update is overdue. 2664 */ 2665 if (!kvm_vmx->tss_addr) 2666 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be " 2667 "called before entering vcpu\n"); 2668 2669 vmx_segment_cache_clear(vmx); 2670 2671 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); 2672 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); 2673 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 2674 2675 flags = vmcs_readl(GUEST_RFLAGS); 2676 vmx->rmode.save_rflags = flags; 2677 2678 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 2679 2680 vmcs_writel(GUEST_RFLAGS, flags); 2681 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); 2682 update_exception_bitmap(vcpu); 2683 2684 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2685 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2686 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2687 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2688 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2689 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2690 2691 kvm_mmu_reset_context(vcpu); 2692 } 2693 2694 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) 2695 { 2696 struct vcpu_vmx *vmx = to_vmx(vcpu); 2697 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER); 2698 2699 if (!msr) 2700 return; 2701 2702 vcpu->arch.efer = efer; 2703 if (efer & EFER_LMA) { 2704 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2705 msr->data = efer; 2706 } else { 2707 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2708 2709 msr->data = efer & ~EFER_LME; 2710 } 2711 setup_msrs(vmx); 2712 } 2713 2714 #ifdef CONFIG_X86_64 2715 2716 static void enter_lmode(struct kvm_vcpu *vcpu) 2717 { 2718 u32 guest_tr_ar; 2719 2720 vmx_segment_cache_clear(to_vmx(vcpu)); 2721 2722 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); 2723 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { 2724 pr_debug_ratelimited("%s: tss fixup for long mode. \n", 2725 __func__); 2726 vmcs_write32(GUEST_TR_AR_BYTES, 2727 (guest_tr_ar & ~VMX_AR_TYPE_MASK) 2728 | VMX_AR_TYPE_BUSY_64_TSS); 2729 } 2730 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); 2731 } 2732 2733 static void exit_lmode(struct kvm_vcpu *vcpu) 2734 { 2735 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2736 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); 2737 } 2738 2739 #endif 2740 2741 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) 2742 { 2743 int vpid = to_vmx(vcpu)->vpid; 2744 2745 if (!vpid_sync_vcpu_addr(vpid, addr)) 2746 vpid_sync_context(vpid); 2747 2748 /* 2749 * If VPIDs are not supported or enabled, then the above is a no-op. 2750 * But we don't really need a TLB flush in that case anyway, because 2751 * each VM entry/exit includes an implicit flush when VPID is 0. 2752 */ 2753 } 2754 2755 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu) 2756 { 2757 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; 2758 2759 vcpu->arch.cr0 &= ~cr0_guest_owned_bits; 2760 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits; 2761 } 2762 2763 static void vmx_decache_cr3(struct kvm_vcpu *vcpu) 2764 { 2765 if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu))) 2766 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); 2767 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 2768 } 2769 2770 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu) 2771 { 2772 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; 2773 2774 vcpu->arch.cr4 &= ~cr4_guest_owned_bits; 2775 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits; 2776 } 2777 2778 static void ept_load_pdptrs(struct kvm_vcpu *vcpu) 2779 { 2780 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 2781 2782 if (!test_bit(VCPU_EXREG_PDPTR, 2783 (unsigned long *)&vcpu->arch.regs_dirty)) 2784 return; 2785 2786 if (is_pae_paging(vcpu)) { 2787 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); 2788 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); 2789 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); 2790 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); 2791 } 2792 } 2793 2794 void ept_save_pdptrs(struct kvm_vcpu *vcpu) 2795 { 2796 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 2797 2798 if (is_pae_paging(vcpu)) { 2799 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); 2800 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); 2801 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); 2802 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); 2803 } 2804 2805 __set_bit(VCPU_EXREG_PDPTR, 2806 (unsigned long *)&vcpu->arch.regs_avail); 2807 __set_bit(VCPU_EXREG_PDPTR, 2808 (unsigned long *)&vcpu->arch.regs_dirty); 2809 } 2810 2811 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0, 2812 unsigned long cr0, 2813 struct kvm_vcpu *vcpu) 2814 { 2815 struct vcpu_vmx *vmx = to_vmx(vcpu); 2816 2817 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) 2818 vmx_decache_cr3(vcpu); 2819 if (!(cr0 & X86_CR0_PG)) { 2820 /* From paging/starting to nonpaging */ 2821 exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING | 2822 CPU_BASED_CR3_STORE_EXITING); 2823 vcpu->arch.cr0 = cr0; 2824 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 2825 } else if (!is_paging(vcpu)) { 2826 /* From nonpaging to paging */ 2827 exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING | 2828 CPU_BASED_CR3_STORE_EXITING); 2829 vcpu->arch.cr0 = cr0; 2830 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 2831 } 2832 2833 if (!(cr0 & X86_CR0_WP)) 2834 *hw_cr0 &= ~X86_CR0_WP; 2835 } 2836 2837 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 2838 { 2839 struct vcpu_vmx *vmx = to_vmx(vcpu); 2840 unsigned long hw_cr0; 2841 2842 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); 2843 if (enable_unrestricted_guest) 2844 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; 2845 else { 2846 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; 2847 2848 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) 2849 enter_pmode(vcpu); 2850 2851 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) 2852 enter_rmode(vcpu); 2853 } 2854 2855 #ifdef CONFIG_X86_64 2856 if (vcpu->arch.efer & EFER_LME) { 2857 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) 2858 enter_lmode(vcpu); 2859 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) 2860 exit_lmode(vcpu); 2861 } 2862 #endif 2863 2864 if (enable_ept && !enable_unrestricted_guest) 2865 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu); 2866 2867 vmcs_writel(CR0_READ_SHADOW, cr0); 2868 vmcs_writel(GUEST_CR0, hw_cr0); 2869 vcpu->arch.cr0 = cr0; 2870 2871 /* depends on vcpu->arch.cr0 to be set to a new value */ 2872 vmx->emulation_required = emulation_required(vcpu); 2873 } 2874 2875 static int get_ept_level(struct kvm_vcpu *vcpu) 2876 { 2877 if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48)) 2878 return 5; 2879 return 4; 2880 } 2881 2882 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa) 2883 { 2884 u64 eptp = VMX_EPTP_MT_WB; 2885 2886 eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; 2887 2888 if (enable_ept_ad_bits && 2889 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) 2890 eptp |= VMX_EPTP_AD_ENABLE_BIT; 2891 eptp |= (root_hpa & PAGE_MASK); 2892 2893 return eptp; 2894 } 2895 2896 void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 2897 { 2898 struct kvm *kvm = vcpu->kvm; 2899 unsigned long guest_cr3; 2900 u64 eptp; 2901 2902 guest_cr3 = cr3; 2903 if (enable_ept) { 2904 eptp = construct_eptp(vcpu, cr3); 2905 vmcs_write64(EPT_POINTER, eptp); 2906 2907 if (kvm_x86_ops->tlb_remote_flush) { 2908 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock); 2909 to_vmx(vcpu)->ept_pointer = eptp; 2910 to_kvm_vmx(kvm)->ept_pointers_match 2911 = EPT_POINTERS_CHECK; 2912 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock); 2913 } 2914 2915 if (enable_unrestricted_guest || is_paging(vcpu) || 2916 is_guest_mode(vcpu)) 2917 guest_cr3 = kvm_read_cr3(vcpu); 2918 else 2919 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; 2920 ept_load_pdptrs(vcpu); 2921 } 2922 2923 vmcs_writel(GUEST_CR3, guest_cr3); 2924 } 2925 2926 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 2927 { 2928 struct vcpu_vmx *vmx = to_vmx(vcpu); 2929 /* 2930 * Pass through host's Machine Check Enable value to hw_cr4, which 2931 * is in force while we are in guest mode. Do not let guests control 2932 * this bit, even if host CR4.MCE == 0. 2933 */ 2934 unsigned long hw_cr4; 2935 2936 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); 2937 if (enable_unrestricted_guest) 2938 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; 2939 else if (vmx->rmode.vm86_active) 2940 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; 2941 else 2942 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; 2943 2944 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) { 2945 if (cr4 & X86_CR4_UMIP) { 2946 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC); 2947 hw_cr4 &= ~X86_CR4_UMIP; 2948 } else if (!is_guest_mode(vcpu) || 2949 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) { 2950 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC); 2951 } 2952 } 2953 2954 if (cr4 & X86_CR4_VMXE) { 2955 /* 2956 * To use VMXON (and later other VMX instructions), a guest 2957 * must first be able to turn on cr4.VMXE (see handle_vmon()). 2958 * So basically the check on whether to allow nested VMX 2959 * is here. We operate under the default treatment of SMM, 2960 * so VMX cannot be enabled under SMM. 2961 */ 2962 if (!nested_vmx_allowed(vcpu) || is_smm(vcpu)) 2963 return 1; 2964 } 2965 2966 if (vmx->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) 2967 return 1; 2968 2969 vcpu->arch.cr4 = cr4; 2970 2971 if (!enable_unrestricted_guest) { 2972 if (enable_ept) { 2973 if (!is_paging(vcpu)) { 2974 hw_cr4 &= ~X86_CR4_PAE; 2975 hw_cr4 |= X86_CR4_PSE; 2976 } else if (!(cr4 & X86_CR4_PAE)) { 2977 hw_cr4 &= ~X86_CR4_PAE; 2978 } 2979 } 2980 2981 /* 2982 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in 2983 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs 2984 * to be manually disabled when guest switches to non-paging 2985 * mode. 2986 * 2987 * If !enable_unrestricted_guest, the CPU is always running 2988 * with CR0.PG=1 and CR4 needs to be modified. 2989 * If enable_unrestricted_guest, the CPU automatically 2990 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. 2991 */ 2992 if (!is_paging(vcpu)) 2993 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 2994 } 2995 2996 vmcs_writel(CR4_READ_SHADOW, cr4); 2997 vmcs_writel(GUEST_CR4, hw_cr4); 2998 return 0; 2999 } 3000 3001 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3002 { 3003 struct vcpu_vmx *vmx = to_vmx(vcpu); 3004 u32 ar; 3005 3006 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3007 *var = vmx->rmode.segs[seg]; 3008 if (seg == VCPU_SREG_TR 3009 || var->selector == vmx_read_guest_seg_selector(vmx, seg)) 3010 return; 3011 var->base = vmx_read_guest_seg_base(vmx, seg); 3012 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3013 return; 3014 } 3015 var->base = vmx_read_guest_seg_base(vmx, seg); 3016 var->limit = vmx_read_guest_seg_limit(vmx, seg); 3017 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3018 ar = vmx_read_guest_seg_ar(vmx, seg); 3019 var->unusable = (ar >> 16) & 1; 3020 var->type = ar & 15; 3021 var->s = (ar >> 4) & 1; 3022 var->dpl = (ar >> 5) & 3; 3023 /* 3024 * Some userspaces do not preserve unusable property. Since usable 3025 * segment has to be present according to VMX spec we can use present 3026 * property to amend userspace bug by making unusable segment always 3027 * nonpresent. vmx_segment_access_rights() already marks nonpresent 3028 * segment as unusable. 3029 */ 3030 var->present = !var->unusable; 3031 var->avl = (ar >> 12) & 1; 3032 var->l = (ar >> 13) & 1; 3033 var->db = (ar >> 14) & 1; 3034 var->g = (ar >> 15) & 1; 3035 } 3036 3037 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) 3038 { 3039 struct kvm_segment s; 3040 3041 if (to_vmx(vcpu)->rmode.vm86_active) { 3042 vmx_get_segment(vcpu, &s, seg); 3043 return s.base; 3044 } 3045 return vmx_read_guest_seg_base(to_vmx(vcpu), seg); 3046 } 3047 3048 int vmx_get_cpl(struct kvm_vcpu *vcpu) 3049 { 3050 struct vcpu_vmx *vmx = to_vmx(vcpu); 3051 3052 if (unlikely(vmx->rmode.vm86_active)) 3053 return 0; 3054 else { 3055 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); 3056 return VMX_AR_DPL(ar); 3057 } 3058 } 3059 3060 static u32 vmx_segment_access_rights(struct kvm_segment *var) 3061 { 3062 u32 ar; 3063 3064 if (var->unusable || !var->present) 3065 ar = 1 << 16; 3066 else { 3067 ar = var->type & 15; 3068 ar |= (var->s & 1) << 4; 3069 ar |= (var->dpl & 3) << 5; 3070 ar |= (var->present & 1) << 7; 3071 ar |= (var->avl & 1) << 12; 3072 ar |= (var->l & 1) << 13; 3073 ar |= (var->db & 1) << 14; 3074 ar |= (var->g & 1) << 15; 3075 } 3076 3077 return ar; 3078 } 3079 3080 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3081 { 3082 struct vcpu_vmx *vmx = to_vmx(vcpu); 3083 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3084 3085 vmx_segment_cache_clear(vmx); 3086 3087 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3088 vmx->rmode.segs[seg] = *var; 3089 if (seg == VCPU_SREG_TR) 3090 vmcs_write16(sf->selector, var->selector); 3091 else if (var->s) 3092 fix_rmode_seg(seg, &vmx->rmode.segs[seg]); 3093 goto out; 3094 } 3095 3096 vmcs_writel(sf->base, var->base); 3097 vmcs_write32(sf->limit, var->limit); 3098 vmcs_write16(sf->selector, var->selector); 3099 3100 /* 3101 * Fix the "Accessed" bit in AR field of segment registers for older 3102 * qemu binaries. 3103 * IA32 arch specifies that at the time of processor reset the 3104 * "Accessed" bit in the AR field of segment registers is 1. And qemu 3105 * is setting it to 0 in the userland code. This causes invalid guest 3106 * state vmexit when "unrestricted guest" mode is turned on. 3107 * Fix for this setup issue in cpu_reset is being pushed in the qemu 3108 * tree. Newer qemu binaries with that qemu fix would not need this 3109 * kvm hack. 3110 */ 3111 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR)) 3112 var->type |= 0x1; /* Accessed */ 3113 3114 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); 3115 3116 out: 3117 vmx->emulation_required = emulation_required(vcpu); 3118 } 3119 3120 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 3121 { 3122 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); 3123 3124 *db = (ar >> 14) & 1; 3125 *l = (ar >> 13) & 1; 3126 } 3127 3128 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3129 { 3130 dt->size = vmcs_read32(GUEST_IDTR_LIMIT); 3131 dt->address = vmcs_readl(GUEST_IDTR_BASE); 3132 } 3133 3134 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3135 { 3136 vmcs_write32(GUEST_IDTR_LIMIT, dt->size); 3137 vmcs_writel(GUEST_IDTR_BASE, dt->address); 3138 } 3139 3140 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3141 { 3142 dt->size = vmcs_read32(GUEST_GDTR_LIMIT); 3143 dt->address = vmcs_readl(GUEST_GDTR_BASE); 3144 } 3145 3146 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3147 { 3148 vmcs_write32(GUEST_GDTR_LIMIT, dt->size); 3149 vmcs_writel(GUEST_GDTR_BASE, dt->address); 3150 } 3151 3152 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) 3153 { 3154 struct kvm_segment var; 3155 u32 ar; 3156 3157 vmx_get_segment(vcpu, &var, seg); 3158 var.dpl = 0x3; 3159 if (seg == VCPU_SREG_CS) 3160 var.type = 0x3; 3161 ar = vmx_segment_access_rights(&var); 3162 3163 if (var.base != (var.selector << 4)) 3164 return false; 3165 if (var.limit != 0xffff) 3166 return false; 3167 if (ar != 0xf3) 3168 return false; 3169 3170 return true; 3171 } 3172 3173 static bool code_segment_valid(struct kvm_vcpu *vcpu) 3174 { 3175 struct kvm_segment cs; 3176 unsigned int cs_rpl; 3177 3178 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3179 cs_rpl = cs.selector & SEGMENT_RPL_MASK; 3180 3181 if (cs.unusable) 3182 return false; 3183 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) 3184 return false; 3185 if (!cs.s) 3186 return false; 3187 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { 3188 if (cs.dpl > cs_rpl) 3189 return false; 3190 } else { 3191 if (cs.dpl != cs_rpl) 3192 return false; 3193 } 3194 if (!cs.present) 3195 return false; 3196 3197 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ 3198 return true; 3199 } 3200 3201 static bool stack_segment_valid(struct kvm_vcpu *vcpu) 3202 { 3203 struct kvm_segment ss; 3204 unsigned int ss_rpl; 3205 3206 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3207 ss_rpl = ss.selector & SEGMENT_RPL_MASK; 3208 3209 if (ss.unusable) 3210 return true; 3211 if (ss.type != 3 && ss.type != 7) 3212 return false; 3213 if (!ss.s) 3214 return false; 3215 if (ss.dpl != ss_rpl) /* DPL != RPL */ 3216 return false; 3217 if (!ss.present) 3218 return false; 3219 3220 return true; 3221 } 3222 3223 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) 3224 { 3225 struct kvm_segment var; 3226 unsigned int rpl; 3227 3228 vmx_get_segment(vcpu, &var, seg); 3229 rpl = var.selector & SEGMENT_RPL_MASK; 3230 3231 if (var.unusable) 3232 return true; 3233 if (!var.s) 3234 return false; 3235 if (!var.present) 3236 return false; 3237 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { 3238 if (var.dpl < rpl) /* DPL < RPL */ 3239 return false; 3240 } 3241 3242 /* TODO: Add other members to kvm_segment_field to allow checking for other access 3243 * rights flags 3244 */ 3245 return true; 3246 } 3247 3248 static bool tr_valid(struct kvm_vcpu *vcpu) 3249 { 3250 struct kvm_segment tr; 3251 3252 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); 3253 3254 if (tr.unusable) 3255 return false; 3256 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3257 return false; 3258 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ 3259 return false; 3260 if (!tr.present) 3261 return false; 3262 3263 return true; 3264 } 3265 3266 static bool ldtr_valid(struct kvm_vcpu *vcpu) 3267 { 3268 struct kvm_segment ldtr; 3269 3270 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); 3271 3272 if (ldtr.unusable) 3273 return true; 3274 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3275 return false; 3276 if (ldtr.type != 2) 3277 return false; 3278 if (!ldtr.present) 3279 return false; 3280 3281 return true; 3282 } 3283 3284 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) 3285 { 3286 struct kvm_segment cs, ss; 3287 3288 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3289 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3290 3291 return ((cs.selector & SEGMENT_RPL_MASK) == 3292 (ss.selector & SEGMENT_RPL_MASK)); 3293 } 3294 3295 /* 3296 * Check if guest state is valid. Returns true if valid, false if 3297 * not. 3298 * We assume that registers are always usable 3299 */ 3300 static bool guest_state_valid(struct kvm_vcpu *vcpu) 3301 { 3302 if (enable_unrestricted_guest) 3303 return true; 3304 3305 /* real mode guest state checks */ 3306 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { 3307 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) 3308 return false; 3309 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) 3310 return false; 3311 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) 3312 return false; 3313 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) 3314 return false; 3315 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) 3316 return false; 3317 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) 3318 return false; 3319 } else { 3320 /* protected mode guest state checks */ 3321 if (!cs_ss_rpl_check(vcpu)) 3322 return false; 3323 if (!code_segment_valid(vcpu)) 3324 return false; 3325 if (!stack_segment_valid(vcpu)) 3326 return false; 3327 if (!data_segment_valid(vcpu, VCPU_SREG_DS)) 3328 return false; 3329 if (!data_segment_valid(vcpu, VCPU_SREG_ES)) 3330 return false; 3331 if (!data_segment_valid(vcpu, VCPU_SREG_FS)) 3332 return false; 3333 if (!data_segment_valid(vcpu, VCPU_SREG_GS)) 3334 return false; 3335 if (!tr_valid(vcpu)) 3336 return false; 3337 if (!ldtr_valid(vcpu)) 3338 return false; 3339 } 3340 /* TODO: 3341 * - Add checks on RIP 3342 * - Add checks on RFLAGS 3343 */ 3344 3345 return true; 3346 } 3347 3348 static int init_rmode_tss(struct kvm *kvm) 3349 { 3350 gfn_t fn; 3351 u16 data = 0; 3352 int idx, r; 3353 3354 idx = srcu_read_lock(&kvm->srcu); 3355 fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT; 3356 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); 3357 if (r < 0) 3358 goto out; 3359 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; 3360 r = kvm_write_guest_page(kvm, fn++, &data, 3361 TSS_IOPB_BASE_OFFSET, sizeof(u16)); 3362 if (r < 0) 3363 goto out; 3364 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE); 3365 if (r < 0) 3366 goto out; 3367 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); 3368 if (r < 0) 3369 goto out; 3370 data = ~0; 3371 r = kvm_write_guest_page(kvm, fn, &data, 3372 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1, 3373 sizeof(u8)); 3374 out: 3375 srcu_read_unlock(&kvm->srcu, idx); 3376 return r; 3377 } 3378 3379 static int init_rmode_identity_map(struct kvm *kvm) 3380 { 3381 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 3382 int i, idx, r = 0; 3383 kvm_pfn_t identity_map_pfn; 3384 u32 tmp; 3385 3386 /* Protect kvm_vmx->ept_identity_pagetable_done. */ 3387 mutex_lock(&kvm->slots_lock); 3388 3389 if (likely(kvm_vmx->ept_identity_pagetable_done)) 3390 goto out2; 3391 3392 if (!kvm_vmx->ept_identity_map_addr) 3393 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; 3394 identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT; 3395 3396 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 3397 kvm_vmx->ept_identity_map_addr, PAGE_SIZE); 3398 if (r < 0) 3399 goto out2; 3400 3401 idx = srcu_read_lock(&kvm->srcu); 3402 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE); 3403 if (r < 0) 3404 goto out; 3405 /* Set up identity-mapping pagetable for EPT in real mode */ 3406 for (i = 0; i < PT32_ENT_PER_PAGE; i++) { 3407 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | 3408 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); 3409 r = kvm_write_guest_page(kvm, identity_map_pfn, 3410 &tmp, i * sizeof(tmp), sizeof(tmp)); 3411 if (r < 0) 3412 goto out; 3413 } 3414 kvm_vmx->ept_identity_pagetable_done = true; 3415 3416 out: 3417 srcu_read_unlock(&kvm->srcu, idx); 3418 3419 out2: 3420 mutex_unlock(&kvm->slots_lock); 3421 return r; 3422 } 3423 3424 static void seg_setup(int seg) 3425 { 3426 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3427 unsigned int ar; 3428 3429 vmcs_write16(sf->selector, 0); 3430 vmcs_writel(sf->base, 0); 3431 vmcs_write32(sf->limit, 0xffff); 3432 ar = 0x93; 3433 if (seg == VCPU_SREG_CS) 3434 ar |= 0x08; /* code segment */ 3435 3436 vmcs_write32(sf->ar_bytes, ar); 3437 } 3438 3439 static int alloc_apic_access_page(struct kvm *kvm) 3440 { 3441 struct page *page; 3442 int r = 0; 3443 3444 mutex_lock(&kvm->slots_lock); 3445 if (kvm->arch.apic_access_page_done) 3446 goto out; 3447 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 3448 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); 3449 if (r) 3450 goto out; 3451 3452 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 3453 if (is_error_page(page)) { 3454 r = -EFAULT; 3455 goto out; 3456 } 3457 3458 /* 3459 * Do not pin the page in memory, so that memory hot-unplug 3460 * is able to migrate it. 3461 */ 3462 put_page(page); 3463 kvm->arch.apic_access_page_done = true; 3464 out: 3465 mutex_unlock(&kvm->slots_lock); 3466 return r; 3467 } 3468 3469 int allocate_vpid(void) 3470 { 3471 int vpid; 3472 3473 if (!enable_vpid) 3474 return 0; 3475 spin_lock(&vmx_vpid_lock); 3476 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); 3477 if (vpid < VMX_NR_VPIDS) 3478 __set_bit(vpid, vmx_vpid_bitmap); 3479 else 3480 vpid = 0; 3481 spin_unlock(&vmx_vpid_lock); 3482 return vpid; 3483 } 3484 3485 void free_vpid(int vpid) 3486 { 3487 if (!enable_vpid || vpid == 0) 3488 return; 3489 spin_lock(&vmx_vpid_lock); 3490 __clear_bit(vpid, vmx_vpid_bitmap); 3491 spin_unlock(&vmx_vpid_lock); 3492 } 3493 3494 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, 3495 u32 msr, int type) 3496 { 3497 int f = sizeof(unsigned long); 3498 3499 if (!cpu_has_vmx_msr_bitmap()) 3500 return; 3501 3502 if (static_branch_unlikely(&enable_evmcs)) 3503 evmcs_touch_msr_bitmap(); 3504 3505 /* 3506 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals 3507 * have the write-low and read-high bitmap offsets the wrong way round. 3508 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. 3509 */ 3510 if (msr <= 0x1fff) { 3511 if (type & MSR_TYPE_R) 3512 /* read-low */ 3513 __clear_bit(msr, msr_bitmap + 0x000 / f); 3514 3515 if (type & MSR_TYPE_W) 3516 /* write-low */ 3517 __clear_bit(msr, msr_bitmap + 0x800 / f); 3518 3519 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { 3520 msr &= 0x1fff; 3521 if (type & MSR_TYPE_R) 3522 /* read-high */ 3523 __clear_bit(msr, msr_bitmap + 0x400 / f); 3524 3525 if (type & MSR_TYPE_W) 3526 /* write-high */ 3527 __clear_bit(msr, msr_bitmap + 0xc00 / f); 3528 3529 } 3530 } 3531 3532 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap, 3533 u32 msr, int type) 3534 { 3535 int f = sizeof(unsigned long); 3536 3537 if (!cpu_has_vmx_msr_bitmap()) 3538 return; 3539 3540 if (static_branch_unlikely(&enable_evmcs)) 3541 evmcs_touch_msr_bitmap(); 3542 3543 /* 3544 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals 3545 * have the write-low and read-high bitmap offsets the wrong way round. 3546 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. 3547 */ 3548 if (msr <= 0x1fff) { 3549 if (type & MSR_TYPE_R) 3550 /* read-low */ 3551 __set_bit(msr, msr_bitmap + 0x000 / f); 3552 3553 if (type & MSR_TYPE_W) 3554 /* write-low */ 3555 __set_bit(msr, msr_bitmap + 0x800 / f); 3556 3557 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { 3558 msr &= 0x1fff; 3559 if (type & MSR_TYPE_R) 3560 /* read-high */ 3561 __set_bit(msr, msr_bitmap + 0x400 / f); 3562 3563 if (type & MSR_TYPE_W) 3564 /* write-high */ 3565 __set_bit(msr, msr_bitmap + 0xc00 / f); 3566 3567 } 3568 } 3569 3570 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap, 3571 u32 msr, int type, bool value) 3572 { 3573 if (value) 3574 vmx_enable_intercept_for_msr(msr_bitmap, msr, type); 3575 else 3576 vmx_disable_intercept_for_msr(msr_bitmap, msr, type); 3577 } 3578 3579 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu) 3580 { 3581 u8 mode = 0; 3582 3583 if (cpu_has_secondary_exec_ctrls() && 3584 (secondary_exec_controls_get(to_vmx(vcpu)) & 3585 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { 3586 mode |= MSR_BITMAP_MODE_X2APIC; 3587 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) 3588 mode |= MSR_BITMAP_MODE_X2APIC_APICV; 3589 } 3590 3591 return mode; 3592 } 3593 3594 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap, 3595 u8 mode) 3596 { 3597 int msr; 3598 3599 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { 3600 unsigned word = msr / BITS_PER_LONG; 3601 msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0; 3602 msr_bitmap[word + (0x800 / sizeof(long))] = ~0; 3603 } 3604 3605 if (mode & MSR_BITMAP_MODE_X2APIC) { 3606 /* 3607 * TPR reads and writes can be virtualized even if virtual interrupt 3608 * delivery is not in use. 3609 */ 3610 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW); 3611 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { 3612 vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R); 3613 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); 3614 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); 3615 } 3616 } 3617 } 3618 3619 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu) 3620 { 3621 struct vcpu_vmx *vmx = to_vmx(vcpu); 3622 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3623 u8 mode = vmx_msr_bitmap_mode(vcpu); 3624 u8 changed = mode ^ vmx->msr_bitmap_mode; 3625 3626 if (!changed) 3627 return; 3628 3629 if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV)) 3630 vmx_update_msr_bitmap_x2apic(msr_bitmap, mode); 3631 3632 vmx->msr_bitmap_mode = mode; 3633 } 3634 3635 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx) 3636 { 3637 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3638 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 3639 u32 i; 3640 3641 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS, 3642 MSR_TYPE_RW, flag); 3643 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE, 3644 MSR_TYPE_RW, flag); 3645 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK, 3646 MSR_TYPE_RW, flag); 3647 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH, 3648 MSR_TYPE_RW, flag); 3649 for (i = 0; i < vmx->pt_desc.addr_range; i++) { 3650 vmx_set_intercept_for_msr(msr_bitmap, 3651 MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); 3652 vmx_set_intercept_for_msr(msr_bitmap, 3653 MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); 3654 } 3655 } 3656 3657 static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu) 3658 { 3659 return enable_apicv; 3660 } 3661 3662 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 3663 { 3664 struct vcpu_vmx *vmx = to_vmx(vcpu); 3665 void *vapic_page; 3666 u32 vppr; 3667 int rvi; 3668 3669 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) || 3670 !nested_cpu_has_vid(get_vmcs12(vcpu)) || 3671 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn)) 3672 return false; 3673 3674 rvi = vmx_get_rvi(); 3675 3676 vapic_page = vmx->nested.virtual_apic_map.hva; 3677 vppr = *((u32 *)(vapic_page + APIC_PROCPRI)); 3678 3679 return ((rvi & 0xf0) > (vppr & 0xf0)); 3680 } 3681 3682 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, 3683 bool nested) 3684 { 3685 #ifdef CONFIG_SMP 3686 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR; 3687 3688 if (vcpu->mode == IN_GUEST_MODE) { 3689 /* 3690 * The vector of interrupt to be delivered to vcpu had 3691 * been set in PIR before this function. 3692 * 3693 * Following cases will be reached in this block, and 3694 * we always send a notification event in all cases as 3695 * explained below. 3696 * 3697 * Case 1: vcpu keeps in non-root mode. Sending a 3698 * notification event posts the interrupt to vcpu. 3699 * 3700 * Case 2: vcpu exits to root mode and is still 3701 * runnable. PIR will be synced to vIRR before the 3702 * next vcpu entry. Sending a notification event in 3703 * this case has no effect, as vcpu is not in root 3704 * mode. 3705 * 3706 * Case 3: vcpu exits to root mode and is blocked. 3707 * vcpu_block() has already synced PIR to vIRR and 3708 * never blocks vcpu if vIRR is not cleared. Therefore, 3709 * a blocked vcpu here does not wait for any requested 3710 * interrupts in PIR, and sending a notification event 3711 * which has no effect is safe here. 3712 */ 3713 3714 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); 3715 return true; 3716 } 3717 #endif 3718 return false; 3719 } 3720 3721 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, 3722 int vector) 3723 { 3724 struct vcpu_vmx *vmx = to_vmx(vcpu); 3725 3726 if (is_guest_mode(vcpu) && 3727 vector == vmx->nested.posted_intr_nv) { 3728 /* 3729 * If a posted intr is not recognized by hardware, 3730 * we will accomplish it in the next vmentry. 3731 */ 3732 vmx->nested.pi_pending = true; 3733 kvm_make_request(KVM_REQ_EVENT, vcpu); 3734 /* the PIR and ON have been set by L1. */ 3735 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true)) 3736 kvm_vcpu_kick(vcpu); 3737 return 0; 3738 } 3739 return -1; 3740 } 3741 /* 3742 * Send interrupt to vcpu via posted interrupt way. 3743 * 1. If target vcpu is running(non-root mode), send posted interrupt 3744 * notification to vcpu and hardware will sync PIR to vIRR atomically. 3745 * 2. If target vcpu isn't running(root mode), kick it to pick up the 3746 * interrupt from PIR in next vmentry. 3747 */ 3748 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) 3749 { 3750 struct vcpu_vmx *vmx = to_vmx(vcpu); 3751 int r; 3752 3753 r = vmx_deliver_nested_posted_interrupt(vcpu, vector); 3754 if (!r) 3755 return; 3756 3757 if (pi_test_and_set_pir(vector, &vmx->pi_desc)) 3758 return; 3759 3760 /* If a previous notification has sent the IPI, nothing to do. */ 3761 if (pi_test_and_set_on(&vmx->pi_desc)) 3762 return; 3763 3764 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false)) 3765 kvm_vcpu_kick(vcpu); 3766 } 3767 3768 /* 3769 * Set up the vmcs's constant host-state fields, i.e., host-state fields that 3770 * will not change in the lifetime of the guest. 3771 * Note that host-state that does change is set elsewhere. E.g., host-state 3772 * that is set differently for each CPU is set in vmx_vcpu_load(), not here. 3773 */ 3774 void vmx_set_constant_host_state(struct vcpu_vmx *vmx) 3775 { 3776 u32 low32, high32; 3777 unsigned long tmpl; 3778 unsigned long cr0, cr3, cr4; 3779 3780 cr0 = read_cr0(); 3781 WARN_ON(cr0 & X86_CR0_TS); 3782 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ 3783 3784 /* 3785 * Save the most likely value for this task's CR3 in the VMCS. 3786 * We can't use __get_current_cr3_fast() because we're not atomic. 3787 */ 3788 cr3 = __read_cr3(); 3789 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ 3790 vmx->loaded_vmcs->host_state.cr3 = cr3; 3791 3792 /* Save the most likely value for this task's CR4 in the VMCS. */ 3793 cr4 = cr4_read_shadow(); 3794 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ 3795 vmx->loaded_vmcs->host_state.cr4 = cr4; 3796 3797 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ 3798 #ifdef CONFIG_X86_64 3799 /* 3800 * Load null selectors, so we can avoid reloading them in 3801 * vmx_prepare_switch_to_host(), in case userspace uses 3802 * the null selectors too (the expected case). 3803 */ 3804 vmcs_write16(HOST_DS_SELECTOR, 0); 3805 vmcs_write16(HOST_ES_SELECTOR, 0); 3806 #else 3807 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 3808 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 3809 #endif 3810 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 3811 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ 3812 3813 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */ 3814 3815 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ 3816 3817 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); 3818 vmcs_write32(HOST_IA32_SYSENTER_CS, low32); 3819 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); 3820 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ 3821 3822 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { 3823 rdmsr(MSR_IA32_CR_PAT, low32, high32); 3824 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); 3825 } 3826 3827 if (cpu_has_load_ia32_efer()) 3828 vmcs_write64(HOST_IA32_EFER, host_efer); 3829 } 3830 3831 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) 3832 { 3833 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS; 3834 if (enable_ept) 3835 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE; 3836 if (is_guest_mode(&vmx->vcpu)) 3837 vmx->vcpu.arch.cr4_guest_owned_bits &= 3838 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask; 3839 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits); 3840 } 3841 3842 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) 3843 { 3844 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; 3845 3846 if (!kvm_vcpu_apicv_active(&vmx->vcpu)) 3847 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; 3848 3849 if (!enable_vnmi) 3850 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; 3851 3852 if (!enable_preemption_timer) 3853 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 3854 3855 return pin_based_exec_ctrl; 3856 } 3857 3858 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) 3859 { 3860 struct vcpu_vmx *vmx = to_vmx(vcpu); 3861 3862 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 3863 if (cpu_has_secondary_exec_ctrls()) { 3864 if (kvm_vcpu_apicv_active(vcpu)) 3865 secondary_exec_controls_setbit(vmx, 3866 SECONDARY_EXEC_APIC_REGISTER_VIRT | 3867 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 3868 else 3869 secondary_exec_controls_clearbit(vmx, 3870 SECONDARY_EXEC_APIC_REGISTER_VIRT | 3871 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 3872 } 3873 3874 if (cpu_has_vmx_msr_bitmap()) 3875 vmx_update_msr_bitmap(vcpu); 3876 } 3877 3878 u32 vmx_exec_control(struct vcpu_vmx *vmx) 3879 { 3880 u32 exec_control = vmcs_config.cpu_based_exec_ctrl; 3881 3882 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) 3883 exec_control &= ~CPU_BASED_MOV_DR_EXITING; 3884 3885 if (!cpu_need_tpr_shadow(&vmx->vcpu)) { 3886 exec_control &= ~CPU_BASED_TPR_SHADOW; 3887 #ifdef CONFIG_X86_64 3888 exec_control |= CPU_BASED_CR8_STORE_EXITING | 3889 CPU_BASED_CR8_LOAD_EXITING; 3890 #endif 3891 } 3892 if (!enable_ept) 3893 exec_control |= CPU_BASED_CR3_STORE_EXITING | 3894 CPU_BASED_CR3_LOAD_EXITING | 3895 CPU_BASED_INVLPG_EXITING; 3896 if (kvm_mwait_in_guest(vmx->vcpu.kvm)) 3897 exec_control &= ~(CPU_BASED_MWAIT_EXITING | 3898 CPU_BASED_MONITOR_EXITING); 3899 if (kvm_hlt_in_guest(vmx->vcpu.kvm)) 3900 exec_control &= ~CPU_BASED_HLT_EXITING; 3901 return exec_control; 3902 } 3903 3904 3905 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx) 3906 { 3907 struct kvm_vcpu *vcpu = &vmx->vcpu; 3908 3909 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; 3910 3911 if (pt_mode == PT_MODE_SYSTEM) 3912 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); 3913 if (!cpu_need_virtualize_apic_accesses(vcpu)) 3914 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 3915 if (vmx->vpid == 0) 3916 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; 3917 if (!enable_ept) { 3918 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; 3919 enable_unrestricted_guest = 0; 3920 } 3921 if (!enable_unrestricted_guest) 3922 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; 3923 if (kvm_pause_in_guest(vmx->vcpu.kvm)) 3924 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; 3925 if (!kvm_vcpu_apicv_active(vcpu)) 3926 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | 3927 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 3928 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 3929 3930 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, 3931 * in vmx_set_cr4. */ 3932 exec_control &= ~SECONDARY_EXEC_DESC; 3933 3934 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD 3935 (handle_vmptrld). 3936 We can NOT enable shadow_vmcs here because we don't have yet 3937 a current VMCS12 3938 */ 3939 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; 3940 3941 if (!enable_pml) 3942 exec_control &= ~SECONDARY_EXEC_ENABLE_PML; 3943 3944 if (vmx_xsaves_supported()) { 3945 /* Exposing XSAVES only when XSAVE is exposed */ 3946 bool xsaves_enabled = 3947 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 3948 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES); 3949 3950 if (!xsaves_enabled) 3951 exec_control &= ~SECONDARY_EXEC_XSAVES; 3952 3953 if (nested) { 3954 if (xsaves_enabled) 3955 vmx->nested.msrs.secondary_ctls_high |= 3956 SECONDARY_EXEC_XSAVES; 3957 else 3958 vmx->nested.msrs.secondary_ctls_high &= 3959 ~SECONDARY_EXEC_XSAVES; 3960 } 3961 } 3962 3963 if (vmx_rdtscp_supported()) { 3964 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP); 3965 if (!rdtscp_enabled) 3966 exec_control &= ~SECONDARY_EXEC_RDTSCP; 3967 3968 if (nested) { 3969 if (rdtscp_enabled) 3970 vmx->nested.msrs.secondary_ctls_high |= 3971 SECONDARY_EXEC_RDTSCP; 3972 else 3973 vmx->nested.msrs.secondary_ctls_high &= 3974 ~SECONDARY_EXEC_RDTSCP; 3975 } 3976 } 3977 3978 if (vmx_invpcid_supported()) { 3979 /* Exposing INVPCID only when PCID is exposed */ 3980 bool invpcid_enabled = 3981 guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) && 3982 guest_cpuid_has(vcpu, X86_FEATURE_PCID); 3983 3984 if (!invpcid_enabled) { 3985 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID; 3986 guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID); 3987 } 3988 3989 if (nested) { 3990 if (invpcid_enabled) 3991 vmx->nested.msrs.secondary_ctls_high |= 3992 SECONDARY_EXEC_ENABLE_INVPCID; 3993 else 3994 vmx->nested.msrs.secondary_ctls_high &= 3995 ~SECONDARY_EXEC_ENABLE_INVPCID; 3996 } 3997 } 3998 3999 if (vmx_rdrand_supported()) { 4000 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND); 4001 if (rdrand_enabled) 4002 exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING; 4003 4004 if (nested) { 4005 if (rdrand_enabled) 4006 vmx->nested.msrs.secondary_ctls_high |= 4007 SECONDARY_EXEC_RDRAND_EXITING; 4008 else 4009 vmx->nested.msrs.secondary_ctls_high &= 4010 ~SECONDARY_EXEC_RDRAND_EXITING; 4011 } 4012 } 4013 4014 if (vmx_rdseed_supported()) { 4015 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED); 4016 if (rdseed_enabled) 4017 exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING; 4018 4019 if (nested) { 4020 if (rdseed_enabled) 4021 vmx->nested.msrs.secondary_ctls_high |= 4022 SECONDARY_EXEC_RDSEED_EXITING; 4023 else 4024 vmx->nested.msrs.secondary_ctls_high &= 4025 ~SECONDARY_EXEC_RDSEED_EXITING; 4026 } 4027 } 4028 4029 vmx->secondary_exec_control = exec_control; 4030 } 4031 4032 static void ept_set_mmio_spte_mask(void) 4033 { 4034 /* 4035 * EPT Misconfigurations can be generated if the value of bits 2:0 4036 * of an EPT paging-structure entry is 110b (write/execute). 4037 */ 4038 kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK, 4039 VMX_EPT_MISCONFIG_WX_VALUE, 0); 4040 } 4041 4042 #define VMX_XSS_EXIT_BITMAP 0 4043 4044 /* 4045 * Sets up the vmcs for emulated real mode. 4046 */ 4047 static void vmx_vcpu_setup(struct vcpu_vmx *vmx) 4048 { 4049 int i; 4050 4051 if (nested) 4052 nested_vmx_vcpu_setup(); 4053 4054 if (cpu_has_vmx_msr_bitmap()) 4055 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); 4056 4057 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */ 4058 4059 /* Control */ 4060 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4061 vmx->hv_deadline_tsc = -1; 4062 4063 exec_controls_set(vmx, vmx_exec_control(vmx)); 4064 4065 if (cpu_has_secondary_exec_ctrls()) { 4066 vmx_compute_secondary_exec_control(vmx); 4067 secondary_exec_controls_set(vmx, vmx->secondary_exec_control); 4068 } 4069 4070 if (kvm_vcpu_apicv_active(&vmx->vcpu)) { 4071 vmcs_write64(EOI_EXIT_BITMAP0, 0); 4072 vmcs_write64(EOI_EXIT_BITMAP1, 0); 4073 vmcs_write64(EOI_EXIT_BITMAP2, 0); 4074 vmcs_write64(EOI_EXIT_BITMAP3, 0); 4075 4076 vmcs_write16(GUEST_INTR_STATUS, 0); 4077 4078 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); 4079 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); 4080 } 4081 4082 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) { 4083 vmcs_write32(PLE_GAP, ple_gap); 4084 vmx->ple_window = ple_window; 4085 vmx->ple_window_dirty = true; 4086 } 4087 4088 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); 4089 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); 4090 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ 4091 4092 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ 4093 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ 4094 vmx_set_constant_host_state(vmx); 4095 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ 4096 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ 4097 4098 if (cpu_has_vmx_vmfunc()) 4099 vmcs_write64(VM_FUNCTION_CONTROL, 0); 4100 4101 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); 4102 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); 4103 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); 4104 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); 4105 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); 4106 4107 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 4108 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); 4109 4110 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) { 4111 u32 index = vmx_msr_index[i]; 4112 u32 data_low, data_high; 4113 int j = vmx->nmsrs; 4114 4115 if (rdmsr_safe(index, &data_low, &data_high) < 0) 4116 continue; 4117 if (wrmsr_safe(index, data_low, data_high) < 0) 4118 continue; 4119 vmx->guest_msrs[j].index = i; 4120 vmx->guest_msrs[j].data = 0; 4121 vmx->guest_msrs[j].mask = -1ull; 4122 ++vmx->nmsrs; 4123 } 4124 4125 vm_exit_controls_set(vmx, vmx_vmexit_ctrl()); 4126 4127 /* 22.2.1, 20.8.1 */ 4128 vm_entry_controls_set(vmx, vmx_vmentry_ctrl()); 4129 4130 vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS; 4131 vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS); 4132 4133 set_cr4_guest_host_mask(vmx); 4134 4135 if (vmx_xsaves_supported()) 4136 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); 4137 4138 if (enable_pml) { 4139 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); 4140 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 4141 } 4142 4143 if (cpu_has_vmx_encls_vmexit()) 4144 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull); 4145 4146 if (pt_mode == PT_MODE_HOST_GUEST) { 4147 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); 4148 /* Bit[6~0] are forced to 1, writes are ignored. */ 4149 vmx->pt_desc.guest.output_mask = 0x7F; 4150 vmcs_write64(GUEST_IA32_RTIT_CTL, 0); 4151 } 4152 } 4153 4154 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 4155 { 4156 struct vcpu_vmx *vmx = to_vmx(vcpu); 4157 struct msr_data apic_base_msr; 4158 u64 cr0; 4159 4160 vmx->rmode.vm86_active = 0; 4161 vmx->spec_ctrl = 0; 4162 4163 vcpu->arch.microcode_version = 0x100000000ULL; 4164 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val(); 4165 vmx->hv_deadline_tsc = -1; 4166 kvm_set_cr8(vcpu, 0); 4167 4168 if (!init_event) { 4169 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE | 4170 MSR_IA32_APICBASE_ENABLE; 4171 if (kvm_vcpu_is_reset_bsp(vcpu)) 4172 apic_base_msr.data |= MSR_IA32_APICBASE_BSP; 4173 apic_base_msr.host_initiated = true; 4174 kvm_set_apic_base(vcpu, &apic_base_msr); 4175 } 4176 4177 vmx_segment_cache_clear(vmx); 4178 4179 seg_setup(VCPU_SREG_CS); 4180 vmcs_write16(GUEST_CS_SELECTOR, 0xf000); 4181 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); 4182 4183 seg_setup(VCPU_SREG_DS); 4184 seg_setup(VCPU_SREG_ES); 4185 seg_setup(VCPU_SREG_FS); 4186 seg_setup(VCPU_SREG_GS); 4187 seg_setup(VCPU_SREG_SS); 4188 4189 vmcs_write16(GUEST_TR_SELECTOR, 0); 4190 vmcs_writel(GUEST_TR_BASE, 0); 4191 vmcs_write32(GUEST_TR_LIMIT, 0xffff); 4192 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 4193 4194 vmcs_write16(GUEST_LDTR_SELECTOR, 0); 4195 vmcs_writel(GUEST_LDTR_BASE, 0); 4196 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); 4197 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); 4198 4199 if (!init_event) { 4200 vmcs_write32(GUEST_SYSENTER_CS, 0); 4201 vmcs_writel(GUEST_SYSENTER_ESP, 0); 4202 vmcs_writel(GUEST_SYSENTER_EIP, 0); 4203 vmcs_write64(GUEST_IA32_DEBUGCTL, 0); 4204 } 4205 4206 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 4207 kvm_rip_write(vcpu, 0xfff0); 4208 4209 vmcs_writel(GUEST_GDTR_BASE, 0); 4210 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); 4211 4212 vmcs_writel(GUEST_IDTR_BASE, 0); 4213 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); 4214 4215 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 4216 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); 4217 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); 4218 if (kvm_mpx_supported()) 4219 vmcs_write64(GUEST_BNDCFGS, 0); 4220 4221 setup_msrs(vmx); 4222 4223 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ 4224 4225 if (cpu_has_vmx_tpr_shadow() && !init_event) { 4226 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); 4227 if (cpu_need_tpr_shadow(vcpu)) 4228 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 4229 __pa(vcpu->arch.apic->regs)); 4230 vmcs_write32(TPR_THRESHOLD, 0); 4231 } 4232 4233 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 4234 4235 if (vmx->vpid != 0) 4236 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); 4237 4238 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET; 4239 vmx->vcpu.arch.cr0 = cr0; 4240 vmx_set_cr0(vcpu, cr0); /* enter rmode */ 4241 vmx_set_cr4(vcpu, 0); 4242 vmx_set_efer(vcpu, 0); 4243 4244 update_exception_bitmap(vcpu); 4245 4246 vpid_sync_context(vmx->vpid); 4247 if (init_event) 4248 vmx_clear_hlt(vcpu); 4249 } 4250 4251 static void enable_irq_window(struct kvm_vcpu *vcpu) 4252 { 4253 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_INTR_PENDING); 4254 } 4255 4256 static void enable_nmi_window(struct kvm_vcpu *vcpu) 4257 { 4258 if (!enable_vnmi || 4259 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { 4260 enable_irq_window(vcpu); 4261 return; 4262 } 4263 4264 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_NMI_PENDING); 4265 } 4266 4267 static void vmx_inject_irq(struct kvm_vcpu *vcpu) 4268 { 4269 struct vcpu_vmx *vmx = to_vmx(vcpu); 4270 uint32_t intr; 4271 int irq = vcpu->arch.interrupt.nr; 4272 4273 trace_kvm_inj_virq(irq); 4274 4275 ++vcpu->stat.irq_injections; 4276 if (vmx->rmode.vm86_active) { 4277 int inc_eip = 0; 4278 if (vcpu->arch.interrupt.soft) 4279 inc_eip = vcpu->arch.event_exit_inst_len; 4280 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE) 4281 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4282 return; 4283 } 4284 intr = irq | INTR_INFO_VALID_MASK; 4285 if (vcpu->arch.interrupt.soft) { 4286 intr |= INTR_TYPE_SOFT_INTR; 4287 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 4288 vmx->vcpu.arch.event_exit_inst_len); 4289 } else 4290 intr |= INTR_TYPE_EXT_INTR; 4291 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); 4292 4293 vmx_clear_hlt(vcpu); 4294 } 4295 4296 static void vmx_inject_nmi(struct kvm_vcpu *vcpu) 4297 { 4298 struct vcpu_vmx *vmx = to_vmx(vcpu); 4299 4300 if (!enable_vnmi) { 4301 /* 4302 * Tracking the NMI-blocked state in software is built upon 4303 * finding the next open IRQ window. This, in turn, depends on 4304 * well-behaving guests: They have to keep IRQs disabled at 4305 * least as long as the NMI handler runs. Otherwise we may 4306 * cause NMI nesting, maybe breaking the guest. But as this is 4307 * highly unlikely, we can live with the residual risk. 4308 */ 4309 vmx->loaded_vmcs->soft_vnmi_blocked = 1; 4310 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4311 } 4312 4313 ++vcpu->stat.nmi_injections; 4314 vmx->loaded_vmcs->nmi_known_unmasked = false; 4315 4316 if (vmx->rmode.vm86_active) { 4317 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE) 4318 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4319 return; 4320 } 4321 4322 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 4323 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); 4324 4325 vmx_clear_hlt(vcpu); 4326 } 4327 4328 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) 4329 { 4330 struct vcpu_vmx *vmx = to_vmx(vcpu); 4331 bool masked; 4332 4333 if (!enable_vnmi) 4334 return vmx->loaded_vmcs->soft_vnmi_blocked; 4335 if (vmx->loaded_vmcs->nmi_known_unmasked) 4336 return false; 4337 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; 4338 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4339 return masked; 4340 } 4341 4342 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 4343 { 4344 struct vcpu_vmx *vmx = to_vmx(vcpu); 4345 4346 if (!enable_vnmi) { 4347 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { 4348 vmx->loaded_vmcs->soft_vnmi_blocked = masked; 4349 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4350 } 4351 } else { 4352 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4353 if (masked) 4354 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 4355 GUEST_INTR_STATE_NMI); 4356 else 4357 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, 4358 GUEST_INTR_STATE_NMI); 4359 } 4360 } 4361 4362 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu) 4363 { 4364 if (to_vmx(vcpu)->nested.nested_run_pending) 4365 return 0; 4366 4367 if (!enable_vnmi && 4368 to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) 4369 return 0; 4370 4371 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4372 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI 4373 | GUEST_INTR_STATE_NMI)); 4374 } 4375 4376 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu) 4377 { 4378 return (!to_vmx(vcpu)->nested.nested_run_pending && 4379 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) && 4380 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4381 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); 4382 } 4383 4384 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) 4385 { 4386 int ret; 4387 4388 if (enable_unrestricted_guest) 4389 return 0; 4390 4391 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, 4392 PAGE_SIZE * 3); 4393 if (ret) 4394 return ret; 4395 to_kvm_vmx(kvm)->tss_addr = addr; 4396 return init_rmode_tss(kvm); 4397 } 4398 4399 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 4400 { 4401 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; 4402 return 0; 4403 } 4404 4405 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) 4406 { 4407 switch (vec) { 4408 case BP_VECTOR: 4409 /* 4410 * Update instruction length as we may reinject the exception 4411 * from user space while in guest debugging mode. 4412 */ 4413 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = 4414 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4415 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 4416 return false; 4417 /* fall through */ 4418 case DB_VECTOR: 4419 if (vcpu->guest_debug & 4420 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) 4421 return false; 4422 /* fall through */ 4423 case DE_VECTOR: 4424 case OF_VECTOR: 4425 case BR_VECTOR: 4426 case UD_VECTOR: 4427 case DF_VECTOR: 4428 case SS_VECTOR: 4429 case GP_VECTOR: 4430 case MF_VECTOR: 4431 return true; 4432 break; 4433 } 4434 return false; 4435 } 4436 4437 static int handle_rmode_exception(struct kvm_vcpu *vcpu, 4438 int vec, u32 err_code) 4439 { 4440 /* 4441 * Instruction with address size override prefix opcode 0x67 4442 * Cause the #SS fault with 0 error code in VM86 mode. 4443 */ 4444 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { 4445 if (kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE) { 4446 if (vcpu->arch.halt_request) { 4447 vcpu->arch.halt_request = 0; 4448 return kvm_vcpu_halt(vcpu); 4449 } 4450 return 1; 4451 } 4452 return 0; 4453 } 4454 4455 /* 4456 * Forward all other exceptions that are valid in real mode. 4457 * FIXME: Breaks guest debugging in real mode, needs to be fixed with 4458 * the required debugging infrastructure rework. 4459 */ 4460 kvm_queue_exception(vcpu, vec); 4461 return 1; 4462 } 4463 4464 /* 4465 * Trigger machine check on the host. We assume all the MSRs are already set up 4466 * by the CPU and that we still run on the same CPU as the MCE occurred on. 4467 * We pass a fake environment to the machine check handler because we want 4468 * the guest to be always treated like user space, no matter what context 4469 * it used internally. 4470 */ 4471 static void kvm_machine_check(void) 4472 { 4473 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64) 4474 struct pt_regs regs = { 4475 .cs = 3, /* Fake ring 3 no matter what the guest ran on */ 4476 .flags = X86_EFLAGS_IF, 4477 }; 4478 4479 do_machine_check(®s, 0); 4480 #endif 4481 } 4482 4483 static int handle_machine_check(struct kvm_vcpu *vcpu) 4484 { 4485 /* handled by vmx_vcpu_run() */ 4486 return 1; 4487 } 4488 4489 static int handle_exception_nmi(struct kvm_vcpu *vcpu) 4490 { 4491 struct vcpu_vmx *vmx = to_vmx(vcpu); 4492 struct kvm_run *kvm_run = vcpu->run; 4493 u32 intr_info, ex_no, error_code; 4494 unsigned long cr2, rip, dr6; 4495 u32 vect_info; 4496 enum emulation_result er; 4497 4498 vect_info = vmx->idt_vectoring_info; 4499 intr_info = vmx->exit_intr_info; 4500 4501 if (is_machine_check(intr_info) || is_nmi(intr_info)) 4502 return 1; /* handled by handle_exception_nmi_irqoff() */ 4503 4504 if (is_invalid_opcode(intr_info)) 4505 return handle_ud(vcpu); 4506 4507 error_code = 0; 4508 if (intr_info & INTR_INFO_DELIVER_CODE_MASK) 4509 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 4510 4511 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { 4512 WARN_ON_ONCE(!enable_vmware_backdoor); 4513 er = kvm_emulate_instruction(vcpu, 4514 EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL); 4515 if (er == EMULATE_USER_EXIT) 4516 return 0; 4517 else if (er != EMULATE_DONE) 4518 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 4519 return 1; 4520 } 4521 4522 /* 4523 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing 4524 * MMIO, it is better to report an internal error. 4525 * See the comments in vmx_handle_exit. 4526 */ 4527 if ((vect_info & VECTORING_INFO_VALID_MASK) && 4528 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { 4529 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4530 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; 4531 vcpu->run->internal.ndata = 3; 4532 vcpu->run->internal.data[0] = vect_info; 4533 vcpu->run->internal.data[1] = intr_info; 4534 vcpu->run->internal.data[2] = error_code; 4535 return 0; 4536 } 4537 4538 if (is_page_fault(intr_info)) { 4539 cr2 = vmcs_readl(EXIT_QUALIFICATION); 4540 /* EPT won't cause page fault directly */ 4541 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept); 4542 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); 4543 } 4544 4545 ex_no = intr_info & INTR_INFO_VECTOR_MASK; 4546 4547 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) 4548 return handle_rmode_exception(vcpu, ex_no, error_code); 4549 4550 switch (ex_no) { 4551 case AC_VECTOR: 4552 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); 4553 return 1; 4554 case DB_VECTOR: 4555 dr6 = vmcs_readl(EXIT_QUALIFICATION); 4556 if (!(vcpu->guest_debug & 4557 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { 4558 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 4559 vcpu->arch.dr6 |= dr6 | DR6_RTM; 4560 if (is_icebp(intr_info)) 4561 skip_emulated_instruction(vcpu); 4562 4563 kvm_queue_exception(vcpu, DB_VECTOR); 4564 return 1; 4565 } 4566 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1; 4567 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); 4568 /* fall through */ 4569 case BP_VECTOR: 4570 /* 4571 * Update instruction length as we may reinject #BP from 4572 * user space while in guest debugging mode. Reading it for 4573 * #DB as well causes no harm, it is not used in that case. 4574 */ 4575 vmx->vcpu.arch.event_exit_inst_len = 4576 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4577 kvm_run->exit_reason = KVM_EXIT_DEBUG; 4578 rip = kvm_rip_read(vcpu); 4579 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip; 4580 kvm_run->debug.arch.exception = ex_no; 4581 break; 4582 default: 4583 kvm_run->exit_reason = KVM_EXIT_EXCEPTION; 4584 kvm_run->ex.exception = ex_no; 4585 kvm_run->ex.error_code = error_code; 4586 break; 4587 } 4588 return 0; 4589 } 4590 4591 static int handle_external_interrupt(struct kvm_vcpu *vcpu) 4592 { 4593 ++vcpu->stat.irq_exits; 4594 return 1; 4595 } 4596 4597 static int handle_triple_fault(struct kvm_vcpu *vcpu) 4598 { 4599 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 4600 vcpu->mmio_needed = 0; 4601 return 0; 4602 } 4603 4604 static int handle_io(struct kvm_vcpu *vcpu) 4605 { 4606 unsigned long exit_qualification; 4607 int size, in, string; 4608 unsigned port; 4609 4610 exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 4611 string = (exit_qualification & 16) != 0; 4612 4613 ++vcpu->stat.io_exits; 4614 4615 if (string) 4616 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; 4617 4618 port = exit_qualification >> 16; 4619 size = (exit_qualification & 7) + 1; 4620 in = (exit_qualification & 8) != 0; 4621 4622 return kvm_fast_pio(vcpu, size, port, in); 4623 } 4624 4625 static void 4626 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 4627 { 4628 /* 4629 * Patch in the VMCALL instruction: 4630 */ 4631 hypercall[0] = 0x0f; 4632 hypercall[1] = 0x01; 4633 hypercall[2] = 0xc1; 4634 } 4635 4636 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ 4637 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) 4638 { 4639 if (is_guest_mode(vcpu)) { 4640 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 4641 unsigned long orig_val = val; 4642 4643 /* 4644 * We get here when L2 changed cr0 in a way that did not change 4645 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), 4646 * but did change L0 shadowed bits. So we first calculate the 4647 * effective cr0 value that L1 would like to write into the 4648 * hardware. It consists of the L2-owned bits from the new 4649 * value combined with the L1-owned bits from L1's guest_cr0. 4650 */ 4651 val = (val & ~vmcs12->cr0_guest_host_mask) | 4652 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); 4653 4654 if (!nested_guest_cr0_valid(vcpu, val)) 4655 return 1; 4656 4657 if (kvm_set_cr0(vcpu, val)) 4658 return 1; 4659 vmcs_writel(CR0_READ_SHADOW, orig_val); 4660 return 0; 4661 } else { 4662 if (to_vmx(vcpu)->nested.vmxon && 4663 !nested_host_cr0_valid(vcpu, val)) 4664 return 1; 4665 4666 return kvm_set_cr0(vcpu, val); 4667 } 4668 } 4669 4670 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) 4671 { 4672 if (is_guest_mode(vcpu)) { 4673 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 4674 unsigned long orig_val = val; 4675 4676 /* analogously to handle_set_cr0 */ 4677 val = (val & ~vmcs12->cr4_guest_host_mask) | 4678 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); 4679 if (kvm_set_cr4(vcpu, val)) 4680 return 1; 4681 vmcs_writel(CR4_READ_SHADOW, orig_val); 4682 return 0; 4683 } else 4684 return kvm_set_cr4(vcpu, val); 4685 } 4686 4687 static int handle_desc(struct kvm_vcpu *vcpu) 4688 { 4689 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP)); 4690 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; 4691 } 4692 4693 static int handle_cr(struct kvm_vcpu *vcpu) 4694 { 4695 unsigned long exit_qualification, val; 4696 int cr; 4697 int reg; 4698 int err; 4699 int ret; 4700 4701 exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 4702 cr = exit_qualification & 15; 4703 reg = (exit_qualification >> 8) & 15; 4704 switch ((exit_qualification >> 4) & 3) { 4705 case 0: /* mov to cr */ 4706 val = kvm_register_readl(vcpu, reg); 4707 trace_kvm_cr_write(cr, val); 4708 switch (cr) { 4709 case 0: 4710 err = handle_set_cr0(vcpu, val); 4711 return kvm_complete_insn_gp(vcpu, err); 4712 case 3: 4713 WARN_ON_ONCE(enable_unrestricted_guest); 4714 err = kvm_set_cr3(vcpu, val); 4715 return kvm_complete_insn_gp(vcpu, err); 4716 case 4: 4717 err = handle_set_cr4(vcpu, val); 4718 return kvm_complete_insn_gp(vcpu, err); 4719 case 8: { 4720 u8 cr8_prev = kvm_get_cr8(vcpu); 4721 u8 cr8 = (u8)val; 4722 err = kvm_set_cr8(vcpu, cr8); 4723 ret = kvm_complete_insn_gp(vcpu, err); 4724 if (lapic_in_kernel(vcpu)) 4725 return ret; 4726 if (cr8_prev <= cr8) 4727 return ret; 4728 /* 4729 * TODO: we might be squashing a 4730 * KVM_GUESTDBG_SINGLESTEP-triggered 4731 * KVM_EXIT_DEBUG here. 4732 */ 4733 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 4734 return 0; 4735 } 4736 } 4737 break; 4738 case 2: /* clts */ 4739 WARN_ONCE(1, "Guest should always own CR0.TS"); 4740 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS)); 4741 trace_kvm_cr_write(0, kvm_read_cr0(vcpu)); 4742 return kvm_skip_emulated_instruction(vcpu); 4743 case 1: /*mov from cr*/ 4744 switch (cr) { 4745 case 3: 4746 WARN_ON_ONCE(enable_unrestricted_guest); 4747 val = kvm_read_cr3(vcpu); 4748 kvm_register_write(vcpu, reg, val); 4749 trace_kvm_cr_read(cr, val); 4750 return kvm_skip_emulated_instruction(vcpu); 4751 case 8: 4752 val = kvm_get_cr8(vcpu); 4753 kvm_register_write(vcpu, reg, val); 4754 trace_kvm_cr_read(cr, val); 4755 return kvm_skip_emulated_instruction(vcpu); 4756 } 4757 break; 4758 case 3: /* lmsw */ 4759 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; 4760 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val); 4761 kvm_lmsw(vcpu, val); 4762 4763 return kvm_skip_emulated_instruction(vcpu); 4764 default: 4765 break; 4766 } 4767 vcpu->run->exit_reason = 0; 4768 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", 4769 (int)(exit_qualification >> 4) & 3, cr); 4770 return 0; 4771 } 4772 4773 static int handle_dr(struct kvm_vcpu *vcpu) 4774 { 4775 unsigned long exit_qualification; 4776 int dr, dr7, reg; 4777 4778 exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 4779 dr = exit_qualification & DEBUG_REG_ACCESS_NUM; 4780 4781 /* First, if DR does not exist, trigger UD */ 4782 if (!kvm_require_dr(vcpu, dr)) 4783 return 1; 4784 4785 /* Do not handle if the CPL > 0, will trigger GP on re-entry */ 4786 if (!kvm_require_cpl(vcpu, 0)) 4787 return 1; 4788 dr7 = vmcs_readl(GUEST_DR7); 4789 if (dr7 & DR7_GD) { 4790 /* 4791 * As the vm-exit takes precedence over the debug trap, we 4792 * need to emulate the latter, either for the host or the 4793 * guest debugging itself. 4794 */ 4795 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 4796 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6; 4797 vcpu->run->debug.arch.dr7 = dr7; 4798 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); 4799 vcpu->run->debug.arch.exception = DB_VECTOR; 4800 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 4801 return 0; 4802 } else { 4803 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 4804 vcpu->arch.dr6 |= DR6_BD | DR6_RTM; 4805 kvm_queue_exception(vcpu, DB_VECTOR); 4806 return 1; 4807 } 4808 } 4809 4810 if (vcpu->guest_debug == 0) { 4811 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 4812 4813 /* 4814 * No more DR vmexits; force a reload of the debug registers 4815 * and reenter on this instruction. The next vmexit will 4816 * retrieve the full state of the debug registers. 4817 */ 4818 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 4819 return 1; 4820 } 4821 4822 reg = DEBUG_REG_ACCESS_REG(exit_qualification); 4823 if (exit_qualification & TYPE_MOV_FROM_DR) { 4824 unsigned long val; 4825 4826 if (kvm_get_dr(vcpu, dr, &val)) 4827 return 1; 4828 kvm_register_write(vcpu, reg, val); 4829 } else 4830 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg))) 4831 return 1; 4832 4833 return kvm_skip_emulated_instruction(vcpu); 4834 } 4835 4836 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu) 4837 { 4838 return vcpu->arch.dr6; 4839 } 4840 4841 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val) 4842 { 4843 } 4844 4845 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 4846 { 4847 get_debugreg(vcpu->arch.db[0], 0); 4848 get_debugreg(vcpu->arch.db[1], 1); 4849 get_debugreg(vcpu->arch.db[2], 2); 4850 get_debugreg(vcpu->arch.db[3], 3); 4851 get_debugreg(vcpu->arch.dr6, 6); 4852 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); 4853 4854 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 4855 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 4856 } 4857 4858 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) 4859 { 4860 vmcs_writel(GUEST_DR7, val); 4861 } 4862 4863 static int handle_cpuid(struct kvm_vcpu *vcpu) 4864 { 4865 return kvm_emulate_cpuid(vcpu); 4866 } 4867 4868 static int handle_rdmsr(struct kvm_vcpu *vcpu) 4869 { 4870 return kvm_emulate_rdmsr(vcpu); 4871 } 4872 4873 static int handle_wrmsr(struct kvm_vcpu *vcpu) 4874 { 4875 return kvm_emulate_wrmsr(vcpu); 4876 } 4877 4878 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) 4879 { 4880 kvm_apic_update_ppr(vcpu); 4881 return 1; 4882 } 4883 4884 static int handle_interrupt_window(struct kvm_vcpu *vcpu) 4885 { 4886 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_INTR_PENDING); 4887 4888 kvm_make_request(KVM_REQ_EVENT, vcpu); 4889 4890 ++vcpu->stat.irq_window_exits; 4891 return 1; 4892 } 4893 4894 static int handle_halt(struct kvm_vcpu *vcpu) 4895 { 4896 return kvm_emulate_halt(vcpu); 4897 } 4898 4899 static int handle_vmcall(struct kvm_vcpu *vcpu) 4900 { 4901 return kvm_emulate_hypercall(vcpu); 4902 } 4903 4904 static int handle_invd(struct kvm_vcpu *vcpu) 4905 { 4906 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; 4907 } 4908 4909 static int handle_invlpg(struct kvm_vcpu *vcpu) 4910 { 4911 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 4912 4913 kvm_mmu_invlpg(vcpu, exit_qualification); 4914 return kvm_skip_emulated_instruction(vcpu); 4915 } 4916 4917 static int handle_rdpmc(struct kvm_vcpu *vcpu) 4918 { 4919 int err; 4920 4921 err = kvm_rdpmc(vcpu); 4922 return kvm_complete_insn_gp(vcpu, err); 4923 } 4924 4925 static int handle_wbinvd(struct kvm_vcpu *vcpu) 4926 { 4927 return kvm_emulate_wbinvd(vcpu); 4928 } 4929 4930 static int handle_xsetbv(struct kvm_vcpu *vcpu) 4931 { 4932 u64 new_bv = kvm_read_edx_eax(vcpu); 4933 u32 index = kvm_rcx_read(vcpu); 4934 4935 if (kvm_set_xcr(vcpu, index, new_bv) == 0) 4936 return kvm_skip_emulated_instruction(vcpu); 4937 return 1; 4938 } 4939 4940 static int handle_xsaves(struct kvm_vcpu *vcpu) 4941 { 4942 kvm_skip_emulated_instruction(vcpu); 4943 WARN(1, "this should never happen\n"); 4944 return 1; 4945 } 4946 4947 static int handle_xrstors(struct kvm_vcpu *vcpu) 4948 { 4949 kvm_skip_emulated_instruction(vcpu); 4950 WARN(1, "this should never happen\n"); 4951 return 1; 4952 } 4953 4954 static int handle_apic_access(struct kvm_vcpu *vcpu) 4955 { 4956 if (likely(fasteoi)) { 4957 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 4958 int access_type, offset; 4959 4960 access_type = exit_qualification & APIC_ACCESS_TYPE; 4961 offset = exit_qualification & APIC_ACCESS_OFFSET; 4962 /* 4963 * Sane guest uses MOV to write EOI, with written value 4964 * not cared. So make a short-circuit here by avoiding 4965 * heavy instruction emulation. 4966 */ 4967 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && 4968 (offset == APIC_EOI)) { 4969 kvm_lapic_set_eoi(vcpu); 4970 return kvm_skip_emulated_instruction(vcpu); 4971 } 4972 } 4973 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; 4974 } 4975 4976 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) 4977 { 4978 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 4979 int vector = exit_qualification & 0xff; 4980 4981 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ 4982 kvm_apic_set_eoi_accelerated(vcpu, vector); 4983 return 1; 4984 } 4985 4986 static int handle_apic_write(struct kvm_vcpu *vcpu) 4987 { 4988 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 4989 u32 offset = exit_qualification & 0xfff; 4990 4991 /* APIC-write VM exit is trap-like and thus no need to adjust IP */ 4992 kvm_apic_write_nodecode(vcpu, offset); 4993 return 1; 4994 } 4995 4996 static int handle_task_switch(struct kvm_vcpu *vcpu) 4997 { 4998 struct vcpu_vmx *vmx = to_vmx(vcpu); 4999 unsigned long exit_qualification; 5000 bool has_error_code = false; 5001 u32 error_code = 0; 5002 u16 tss_selector; 5003 int reason, type, idt_v, idt_index; 5004 5005 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); 5006 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); 5007 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); 5008 5009 exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 5010 5011 reason = (u32)exit_qualification >> 30; 5012 if (reason == TASK_SWITCH_GATE && idt_v) { 5013 switch (type) { 5014 case INTR_TYPE_NMI_INTR: 5015 vcpu->arch.nmi_injected = false; 5016 vmx_set_nmi_mask(vcpu, true); 5017 break; 5018 case INTR_TYPE_EXT_INTR: 5019 case INTR_TYPE_SOFT_INTR: 5020 kvm_clear_interrupt_queue(vcpu); 5021 break; 5022 case INTR_TYPE_HARD_EXCEPTION: 5023 if (vmx->idt_vectoring_info & 5024 VECTORING_INFO_DELIVER_CODE_MASK) { 5025 has_error_code = true; 5026 error_code = 5027 vmcs_read32(IDT_VECTORING_ERROR_CODE); 5028 } 5029 /* fall through */ 5030 case INTR_TYPE_SOFT_EXCEPTION: 5031 kvm_clear_exception_queue(vcpu); 5032 break; 5033 default: 5034 break; 5035 } 5036 } 5037 tss_selector = exit_qualification; 5038 5039 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && 5040 type != INTR_TYPE_EXT_INTR && 5041 type != INTR_TYPE_NMI_INTR)) 5042 skip_emulated_instruction(vcpu); 5043 5044 if (kvm_task_switch(vcpu, tss_selector, 5045 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason, 5046 has_error_code, error_code) == EMULATE_FAIL) { 5047 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5048 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 5049 vcpu->run->internal.ndata = 0; 5050 return 0; 5051 } 5052 5053 /* 5054 * TODO: What about debug traps on tss switch? 5055 * Are we supposed to inject them and update dr6? 5056 */ 5057 5058 return 1; 5059 } 5060 5061 static int handle_ept_violation(struct kvm_vcpu *vcpu) 5062 { 5063 unsigned long exit_qualification; 5064 gpa_t gpa; 5065 u64 error_code; 5066 5067 exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 5068 5069 /* 5070 * EPT violation happened while executing iret from NMI, 5071 * "blocked by NMI" bit has to be set before next VM entry. 5072 * There are errata that may cause this bit to not be set: 5073 * AAK134, BY25. 5074 */ 5075 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5076 enable_vnmi && 5077 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5078 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); 5079 5080 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5081 trace_kvm_page_fault(gpa, exit_qualification); 5082 5083 /* Is it a read fault? */ 5084 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) 5085 ? PFERR_USER_MASK : 0; 5086 /* Is it a write fault? */ 5087 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) 5088 ? PFERR_WRITE_MASK : 0; 5089 /* Is it a fetch fault? */ 5090 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) 5091 ? PFERR_FETCH_MASK : 0; 5092 /* ept page table entry is present? */ 5093 error_code |= (exit_qualification & 5094 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE | 5095 EPT_VIOLATION_EXECUTABLE)) 5096 ? PFERR_PRESENT_MASK : 0; 5097 5098 error_code |= (exit_qualification & 0x100) != 0 ? 5099 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; 5100 5101 vcpu->arch.exit_qualification = exit_qualification; 5102 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); 5103 } 5104 5105 static int handle_ept_misconfig(struct kvm_vcpu *vcpu) 5106 { 5107 gpa_t gpa; 5108 5109 /* 5110 * A nested guest cannot optimize MMIO vmexits, because we have an 5111 * nGPA here instead of the required GPA. 5112 */ 5113 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5114 if (!is_guest_mode(vcpu) && 5115 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { 5116 trace_kvm_fast_mmio(gpa); 5117 /* 5118 * Doing kvm_skip_emulated_instruction() depends on undefined 5119 * behavior: Intel's manual doesn't mandate 5120 * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG 5121 * occurs and while on real hardware it was observed to be set, 5122 * other hypervisors (namely Hyper-V) don't set it, we end up 5123 * advancing IP with some random value. Disable fast mmio when 5124 * running nested and keep it for real hardware in hope that 5125 * VM_EXIT_INSTRUCTION_LEN will always be set correctly. 5126 */ 5127 if (!static_cpu_has(X86_FEATURE_HYPERVISOR)) 5128 return kvm_skip_emulated_instruction(vcpu); 5129 else 5130 return kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) == 5131 EMULATE_DONE; 5132 } 5133 5134 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); 5135 } 5136 5137 static int handle_nmi_window(struct kvm_vcpu *vcpu) 5138 { 5139 WARN_ON_ONCE(!enable_vnmi); 5140 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_NMI_PENDING); 5141 ++vcpu->stat.nmi_window_exits; 5142 kvm_make_request(KVM_REQ_EVENT, vcpu); 5143 5144 return 1; 5145 } 5146 5147 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) 5148 { 5149 struct vcpu_vmx *vmx = to_vmx(vcpu); 5150 enum emulation_result err = EMULATE_DONE; 5151 int ret = 1; 5152 bool intr_window_requested; 5153 unsigned count = 130; 5154 5155 /* 5156 * We should never reach the point where we are emulating L2 5157 * due to invalid guest state as that means we incorrectly 5158 * allowed a nested VMEntry with an invalid vmcs12. 5159 */ 5160 WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending); 5161 5162 intr_window_requested = exec_controls_get(vmx) & 5163 CPU_BASED_VIRTUAL_INTR_PENDING; 5164 5165 while (vmx->emulation_required && count-- != 0) { 5166 if (intr_window_requested && vmx_interrupt_allowed(vcpu)) 5167 return handle_interrupt_window(&vmx->vcpu); 5168 5169 if (kvm_test_request(KVM_REQ_EVENT, vcpu)) 5170 return 1; 5171 5172 err = kvm_emulate_instruction(vcpu, 0); 5173 5174 if (err == EMULATE_USER_EXIT) { 5175 ++vcpu->stat.mmio_exits; 5176 ret = 0; 5177 goto out; 5178 } 5179 5180 if (err != EMULATE_DONE) 5181 goto emulation_error; 5182 5183 if (vmx->emulation_required && !vmx->rmode.vm86_active && 5184 vcpu->arch.exception.pending) 5185 goto emulation_error; 5186 5187 if (vcpu->arch.halt_request) { 5188 vcpu->arch.halt_request = 0; 5189 ret = kvm_vcpu_halt(vcpu); 5190 goto out; 5191 } 5192 5193 if (signal_pending(current)) 5194 goto out; 5195 if (need_resched()) 5196 schedule(); 5197 } 5198 5199 out: 5200 return ret; 5201 5202 emulation_error: 5203 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5204 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 5205 vcpu->run->internal.ndata = 0; 5206 return 0; 5207 } 5208 5209 static void grow_ple_window(struct kvm_vcpu *vcpu) 5210 { 5211 struct vcpu_vmx *vmx = to_vmx(vcpu); 5212 unsigned int old = vmx->ple_window; 5213 5214 vmx->ple_window = __grow_ple_window(old, ple_window, 5215 ple_window_grow, 5216 ple_window_max); 5217 5218 if (vmx->ple_window != old) { 5219 vmx->ple_window_dirty = true; 5220 trace_kvm_ple_window_update(vcpu->vcpu_id, 5221 vmx->ple_window, old); 5222 } 5223 } 5224 5225 static void shrink_ple_window(struct kvm_vcpu *vcpu) 5226 { 5227 struct vcpu_vmx *vmx = to_vmx(vcpu); 5228 unsigned int old = vmx->ple_window; 5229 5230 vmx->ple_window = __shrink_ple_window(old, ple_window, 5231 ple_window_shrink, 5232 ple_window); 5233 5234 if (vmx->ple_window != old) { 5235 vmx->ple_window_dirty = true; 5236 trace_kvm_ple_window_update(vcpu->vcpu_id, 5237 vmx->ple_window, old); 5238 } 5239 } 5240 5241 /* 5242 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR. 5243 */ 5244 static void wakeup_handler(void) 5245 { 5246 struct kvm_vcpu *vcpu; 5247 int cpu = smp_processor_id(); 5248 5249 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); 5250 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu), 5251 blocked_vcpu_list) { 5252 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); 5253 5254 if (pi_test_on(pi_desc) == 1) 5255 kvm_vcpu_kick(vcpu); 5256 } 5257 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); 5258 } 5259 5260 static void vmx_enable_tdp(void) 5261 { 5262 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK, 5263 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull, 5264 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull, 5265 0ull, VMX_EPT_EXECUTABLE_MASK, 5266 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK, 5267 VMX_EPT_RWX_MASK, 0ull); 5268 5269 ept_set_mmio_spte_mask(); 5270 kvm_enable_tdp(); 5271 } 5272 5273 /* 5274 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE 5275 * exiting, so only get here on cpu with PAUSE-Loop-Exiting. 5276 */ 5277 static int handle_pause(struct kvm_vcpu *vcpu) 5278 { 5279 if (!kvm_pause_in_guest(vcpu->kvm)) 5280 grow_ple_window(vcpu); 5281 5282 /* 5283 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" 5284 * VM-execution control is ignored if CPL > 0. OTOH, KVM 5285 * never set PAUSE_EXITING and just set PLE if supported, 5286 * so the vcpu must be CPL=0 if it gets a PAUSE exit. 5287 */ 5288 kvm_vcpu_on_spin(vcpu, true); 5289 return kvm_skip_emulated_instruction(vcpu); 5290 } 5291 5292 static int handle_nop(struct kvm_vcpu *vcpu) 5293 { 5294 return kvm_skip_emulated_instruction(vcpu); 5295 } 5296 5297 static int handle_mwait(struct kvm_vcpu *vcpu) 5298 { 5299 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n"); 5300 return handle_nop(vcpu); 5301 } 5302 5303 static int handle_invalid_op(struct kvm_vcpu *vcpu) 5304 { 5305 kvm_queue_exception(vcpu, UD_VECTOR); 5306 return 1; 5307 } 5308 5309 static int handle_monitor_trap(struct kvm_vcpu *vcpu) 5310 { 5311 return 1; 5312 } 5313 5314 static int handle_monitor(struct kvm_vcpu *vcpu) 5315 { 5316 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n"); 5317 return handle_nop(vcpu); 5318 } 5319 5320 static int handle_invpcid(struct kvm_vcpu *vcpu) 5321 { 5322 u32 vmx_instruction_info; 5323 unsigned long type; 5324 bool pcid_enabled; 5325 gva_t gva; 5326 struct x86_exception e; 5327 unsigned i; 5328 unsigned long roots_to_free = 0; 5329 struct { 5330 u64 pcid; 5331 u64 gla; 5332 } operand; 5333 5334 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 5335 kvm_queue_exception(vcpu, UD_VECTOR); 5336 return 1; 5337 } 5338 5339 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5340 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf); 5341 5342 if (type > 3) { 5343 kvm_inject_gp(vcpu, 0); 5344 return 1; 5345 } 5346 5347 /* According to the Intel instruction reference, the memory operand 5348 * is read even if it isn't needed (e.g., for type==all) 5349 */ 5350 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), 5351 vmx_instruction_info, false, 5352 sizeof(operand), &gva)) 5353 return 1; 5354 5355 if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) { 5356 kvm_inject_page_fault(vcpu, &e); 5357 return 1; 5358 } 5359 5360 if (operand.pcid >> 12 != 0) { 5361 kvm_inject_gp(vcpu, 0); 5362 return 1; 5363 } 5364 5365 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 5366 5367 switch (type) { 5368 case INVPCID_TYPE_INDIV_ADDR: 5369 if ((!pcid_enabled && (operand.pcid != 0)) || 5370 is_noncanonical_address(operand.gla, vcpu)) { 5371 kvm_inject_gp(vcpu, 0); 5372 return 1; 5373 } 5374 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 5375 return kvm_skip_emulated_instruction(vcpu); 5376 5377 case INVPCID_TYPE_SINGLE_CTXT: 5378 if (!pcid_enabled && (operand.pcid != 0)) { 5379 kvm_inject_gp(vcpu, 0); 5380 return 1; 5381 } 5382 5383 if (kvm_get_active_pcid(vcpu) == operand.pcid) { 5384 kvm_mmu_sync_roots(vcpu); 5385 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 5386 } 5387 5388 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5389 if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3) 5390 == operand.pcid) 5391 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 5392 5393 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free); 5394 /* 5395 * If neither the current cr3 nor any of the prev_roots use the 5396 * given PCID, then nothing needs to be done here because a 5397 * resync will happen anyway before switching to any other CR3. 5398 */ 5399 5400 return kvm_skip_emulated_instruction(vcpu); 5401 5402 case INVPCID_TYPE_ALL_NON_GLOBAL: 5403 /* 5404 * Currently, KVM doesn't mark global entries in the shadow 5405 * page tables, so a non-global flush just degenerates to a 5406 * global flush. If needed, we could optimize this later by 5407 * keeping track of global entries in shadow page tables. 5408 */ 5409 5410 /* fall-through */ 5411 case INVPCID_TYPE_ALL_INCL_GLOBAL: 5412 kvm_mmu_unload(vcpu); 5413 return kvm_skip_emulated_instruction(vcpu); 5414 5415 default: 5416 BUG(); /* We have already checked above that type <= 3 */ 5417 } 5418 } 5419 5420 static int handle_pml_full(struct kvm_vcpu *vcpu) 5421 { 5422 unsigned long exit_qualification; 5423 5424 trace_kvm_pml_full(vcpu->vcpu_id); 5425 5426 exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 5427 5428 /* 5429 * PML buffer FULL happened while executing iret from NMI, 5430 * "blocked by NMI" bit has to be set before next VM entry. 5431 */ 5432 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5433 enable_vnmi && 5434 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5435 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5436 GUEST_INTR_STATE_NMI); 5437 5438 /* 5439 * PML buffer already flushed at beginning of VMEXIT. Nothing to do 5440 * here.., and there's no userspace involvement needed for PML. 5441 */ 5442 return 1; 5443 } 5444 5445 static int handle_preemption_timer(struct kvm_vcpu *vcpu) 5446 { 5447 struct vcpu_vmx *vmx = to_vmx(vcpu); 5448 5449 if (!vmx->req_immediate_exit && 5450 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) 5451 kvm_lapic_expired_hv_timer(vcpu); 5452 5453 return 1; 5454 } 5455 5456 /* 5457 * When nested=0, all VMX instruction VM Exits filter here. The handlers 5458 * are overwritten by nested_vmx_setup() when nested=1. 5459 */ 5460 static int handle_vmx_instruction(struct kvm_vcpu *vcpu) 5461 { 5462 kvm_queue_exception(vcpu, UD_VECTOR); 5463 return 1; 5464 } 5465 5466 static int handle_encls(struct kvm_vcpu *vcpu) 5467 { 5468 /* 5469 * SGX virtualization is not yet supported. There is no software 5470 * enable bit for SGX, so we have to trap ENCLS and inject a #UD 5471 * to prevent the guest from executing ENCLS. 5472 */ 5473 kvm_queue_exception(vcpu, UD_VECTOR); 5474 return 1; 5475 } 5476 5477 /* 5478 * The exit handlers return 1 if the exit was handled fully and guest execution 5479 * may resume. Otherwise they set the kvm_run parameter to indicate what needs 5480 * to be done to userspace and return 0. 5481 */ 5482 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { 5483 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi, 5484 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, 5485 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, 5486 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, 5487 [EXIT_REASON_IO_INSTRUCTION] = handle_io, 5488 [EXIT_REASON_CR_ACCESS] = handle_cr, 5489 [EXIT_REASON_DR_ACCESS] = handle_dr, 5490 [EXIT_REASON_CPUID] = handle_cpuid, 5491 [EXIT_REASON_MSR_READ] = handle_rdmsr, 5492 [EXIT_REASON_MSR_WRITE] = handle_wrmsr, 5493 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window, 5494 [EXIT_REASON_HLT] = handle_halt, 5495 [EXIT_REASON_INVD] = handle_invd, 5496 [EXIT_REASON_INVLPG] = handle_invlpg, 5497 [EXIT_REASON_RDPMC] = handle_rdpmc, 5498 [EXIT_REASON_VMCALL] = handle_vmcall, 5499 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, 5500 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, 5501 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, 5502 [EXIT_REASON_VMPTRST] = handle_vmx_instruction, 5503 [EXIT_REASON_VMREAD] = handle_vmx_instruction, 5504 [EXIT_REASON_VMRESUME] = handle_vmx_instruction, 5505 [EXIT_REASON_VMWRITE] = handle_vmx_instruction, 5506 [EXIT_REASON_VMOFF] = handle_vmx_instruction, 5507 [EXIT_REASON_VMON] = handle_vmx_instruction, 5508 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, 5509 [EXIT_REASON_APIC_ACCESS] = handle_apic_access, 5510 [EXIT_REASON_APIC_WRITE] = handle_apic_write, 5511 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, 5512 [EXIT_REASON_WBINVD] = handle_wbinvd, 5513 [EXIT_REASON_XSETBV] = handle_xsetbv, 5514 [EXIT_REASON_TASK_SWITCH] = handle_task_switch, 5515 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, 5516 [EXIT_REASON_GDTR_IDTR] = handle_desc, 5517 [EXIT_REASON_LDTR_TR] = handle_desc, 5518 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, 5519 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, 5520 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, 5521 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait, 5522 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, 5523 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor, 5524 [EXIT_REASON_INVEPT] = handle_vmx_instruction, 5525 [EXIT_REASON_INVVPID] = handle_vmx_instruction, 5526 [EXIT_REASON_RDRAND] = handle_invalid_op, 5527 [EXIT_REASON_RDSEED] = handle_invalid_op, 5528 [EXIT_REASON_XSAVES] = handle_xsaves, 5529 [EXIT_REASON_XRSTORS] = handle_xrstors, 5530 [EXIT_REASON_PML_FULL] = handle_pml_full, 5531 [EXIT_REASON_INVPCID] = handle_invpcid, 5532 [EXIT_REASON_VMFUNC] = handle_vmx_instruction, 5533 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, 5534 [EXIT_REASON_ENCLS] = handle_encls, 5535 }; 5536 5537 static const int kvm_vmx_max_exit_handlers = 5538 ARRAY_SIZE(kvm_vmx_exit_handlers); 5539 5540 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2) 5541 { 5542 *info1 = vmcs_readl(EXIT_QUALIFICATION); 5543 *info2 = vmcs_read32(VM_EXIT_INTR_INFO); 5544 } 5545 5546 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) 5547 { 5548 if (vmx->pml_pg) { 5549 __free_page(vmx->pml_pg); 5550 vmx->pml_pg = NULL; 5551 } 5552 } 5553 5554 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) 5555 { 5556 struct vcpu_vmx *vmx = to_vmx(vcpu); 5557 u64 *pml_buf; 5558 u16 pml_idx; 5559 5560 pml_idx = vmcs_read16(GUEST_PML_INDEX); 5561 5562 /* Do nothing if PML buffer is empty */ 5563 if (pml_idx == (PML_ENTITY_NUM - 1)) 5564 return; 5565 5566 /* PML index always points to next available PML buffer entity */ 5567 if (pml_idx >= PML_ENTITY_NUM) 5568 pml_idx = 0; 5569 else 5570 pml_idx++; 5571 5572 pml_buf = page_address(vmx->pml_pg); 5573 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { 5574 u64 gpa; 5575 5576 gpa = pml_buf[pml_idx]; 5577 WARN_ON(gpa & (PAGE_SIZE - 1)); 5578 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 5579 } 5580 5581 /* reset PML index */ 5582 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 5583 } 5584 5585 /* 5586 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap. 5587 * Called before reporting dirty_bitmap to userspace. 5588 */ 5589 static void kvm_flush_pml_buffers(struct kvm *kvm) 5590 { 5591 int i; 5592 struct kvm_vcpu *vcpu; 5593 /* 5594 * We only need to kick vcpu out of guest mode here, as PML buffer 5595 * is flushed at beginning of all VMEXITs, and it's obvious that only 5596 * vcpus running in guest are possible to have unflushed GPAs in PML 5597 * buffer. 5598 */ 5599 kvm_for_each_vcpu(i, vcpu, kvm) 5600 kvm_vcpu_kick(vcpu); 5601 } 5602 5603 static void vmx_dump_sel(char *name, uint32_t sel) 5604 { 5605 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", 5606 name, vmcs_read16(sel), 5607 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), 5608 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), 5609 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); 5610 } 5611 5612 static void vmx_dump_dtsel(char *name, uint32_t limit) 5613 { 5614 pr_err("%s limit=0x%08x, base=0x%016lx\n", 5615 name, vmcs_read32(limit), 5616 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); 5617 } 5618 5619 void dump_vmcs(void) 5620 { 5621 u32 vmentry_ctl, vmexit_ctl; 5622 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control; 5623 unsigned long cr4; 5624 u64 efer; 5625 int i, n; 5626 5627 if (!dump_invalid_vmcs) { 5628 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n"); 5629 return; 5630 } 5631 5632 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); 5633 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); 5634 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); 5635 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); 5636 cr4 = vmcs_readl(GUEST_CR4); 5637 efer = vmcs_read64(GUEST_IA32_EFER); 5638 secondary_exec_control = 0; 5639 if (cpu_has_secondary_exec_ctrls()) 5640 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); 5641 5642 pr_err("*** Guest State ***\n"); 5643 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 5644 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), 5645 vmcs_readl(CR0_GUEST_HOST_MASK)); 5646 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 5647 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); 5648 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); 5649 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) && 5650 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA)) 5651 { 5652 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", 5653 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); 5654 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", 5655 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); 5656 } 5657 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", 5658 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); 5659 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", 5660 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); 5661 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 5662 vmcs_readl(GUEST_SYSENTER_ESP), 5663 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); 5664 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); 5665 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); 5666 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); 5667 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); 5668 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); 5669 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); 5670 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); 5671 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); 5672 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); 5673 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); 5674 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) || 5675 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER))) 5676 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n", 5677 efer, vmcs_read64(GUEST_IA32_PAT)); 5678 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", 5679 vmcs_read64(GUEST_IA32_DEBUGCTL), 5680 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); 5681 if (cpu_has_load_perf_global_ctrl() && 5682 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) 5683 pr_err("PerfGlobCtl = 0x%016llx\n", 5684 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); 5685 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) 5686 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); 5687 pr_err("Interruptibility = %08x ActivityState = %08x\n", 5688 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), 5689 vmcs_read32(GUEST_ACTIVITY_STATE)); 5690 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) 5691 pr_err("InterruptStatus = %04x\n", 5692 vmcs_read16(GUEST_INTR_STATUS)); 5693 5694 pr_err("*** Host State ***\n"); 5695 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", 5696 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); 5697 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", 5698 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), 5699 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), 5700 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), 5701 vmcs_read16(HOST_TR_SELECTOR)); 5702 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", 5703 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), 5704 vmcs_readl(HOST_TR_BASE)); 5705 pr_err("GDTBase=%016lx IDTBase=%016lx\n", 5706 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); 5707 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", 5708 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), 5709 vmcs_readl(HOST_CR4)); 5710 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 5711 vmcs_readl(HOST_IA32_SYSENTER_ESP), 5712 vmcs_read32(HOST_IA32_SYSENTER_CS), 5713 vmcs_readl(HOST_IA32_SYSENTER_EIP)); 5714 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER)) 5715 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n", 5716 vmcs_read64(HOST_IA32_EFER), 5717 vmcs_read64(HOST_IA32_PAT)); 5718 if (cpu_has_load_perf_global_ctrl() && 5719 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) 5720 pr_err("PerfGlobCtl = 0x%016llx\n", 5721 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); 5722 5723 pr_err("*** Control State ***\n"); 5724 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n", 5725 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control); 5726 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl); 5727 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", 5728 vmcs_read32(EXCEPTION_BITMAP), 5729 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), 5730 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); 5731 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", 5732 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 5733 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), 5734 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); 5735 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", 5736 vmcs_read32(VM_EXIT_INTR_INFO), 5737 vmcs_read32(VM_EXIT_INTR_ERROR_CODE), 5738 vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); 5739 pr_err(" reason=%08x qualification=%016lx\n", 5740 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); 5741 pr_err("IDTVectoring: info=%08x errcode=%08x\n", 5742 vmcs_read32(IDT_VECTORING_INFO_FIELD), 5743 vmcs_read32(IDT_VECTORING_ERROR_CODE)); 5744 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); 5745 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) 5746 pr_err("TSC Multiplier = 0x%016llx\n", 5747 vmcs_read64(TSC_MULTIPLIER)); 5748 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) { 5749 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { 5750 u16 status = vmcs_read16(GUEST_INTR_STATUS); 5751 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff); 5752 } 5753 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); 5754 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) 5755 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR)); 5756 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR)); 5757 } 5758 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) 5759 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); 5760 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) 5761 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); 5762 n = vmcs_read32(CR3_TARGET_COUNT); 5763 for (i = 0; i + 1 < n; i += 4) 5764 pr_err("CR3 target%u=%016lx target%u=%016lx\n", 5765 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2), 5766 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2)); 5767 if (i < n) 5768 pr_err("CR3 target%u=%016lx\n", 5769 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2)); 5770 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) 5771 pr_err("PLE Gap=%08x Window=%08x\n", 5772 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); 5773 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) 5774 pr_err("Virtual processor ID = 0x%04x\n", 5775 vmcs_read16(VIRTUAL_PROCESSOR_ID)); 5776 } 5777 5778 /* 5779 * The guest has exited. See if we can fix it or if we need userspace 5780 * assistance. 5781 */ 5782 static int vmx_handle_exit(struct kvm_vcpu *vcpu) 5783 { 5784 struct vcpu_vmx *vmx = to_vmx(vcpu); 5785 u32 exit_reason = vmx->exit_reason; 5786 u32 vectoring_info = vmx->idt_vectoring_info; 5787 5788 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX); 5789 5790 /* 5791 * Flush logged GPAs PML buffer, this will make dirty_bitmap more 5792 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before 5793 * querying dirty_bitmap, we only need to kick all vcpus out of guest 5794 * mode as if vcpus is in root mode, the PML buffer must has been 5795 * flushed already. 5796 */ 5797 if (enable_pml) 5798 vmx_flush_pml_buffer(vcpu); 5799 5800 /* If guest state is invalid, start emulating */ 5801 if (vmx->emulation_required) 5802 return handle_invalid_guest_state(vcpu); 5803 5804 if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason)) 5805 return nested_vmx_reflect_vmexit(vcpu, exit_reason); 5806 5807 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) { 5808 dump_vmcs(); 5809 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 5810 vcpu->run->fail_entry.hardware_entry_failure_reason 5811 = exit_reason; 5812 return 0; 5813 } 5814 5815 if (unlikely(vmx->fail)) { 5816 dump_vmcs(); 5817 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 5818 vcpu->run->fail_entry.hardware_entry_failure_reason 5819 = vmcs_read32(VM_INSTRUCTION_ERROR); 5820 return 0; 5821 } 5822 5823 /* 5824 * Note: 5825 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by 5826 * delivery event since it indicates guest is accessing MMIO. 5827 * The vm-exit can be triggered again after return to guest that 5828 * will cause infinite loop. 5829 */ 5830 if ((vectoring_info & VECTORING_INFO_VALID_MASK) && 5831 (exit_reason != EXIT_REASON_EXCEPTION_NMI && 5832 exit_reason != EXIT_REASON_EPT_VIOLATION && 5833 exit_reason != EXIT_REASON_PML_FULL && 5834 exit_reason != EXIT_REASON_TASK_SWITCH)) { 5835 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5836 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; 5837 vcpu->run->internal.ndata = 3; 5838 vcpu->run->internal.data[0] = vectoring_info; 5839 vcpu->run->internal.data[1] = exit_reason; 5840 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification; 5841 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) { 5842 vcpu->run->internal.ndata++; 5843 vcpu->run->internal.data[3] = 5844 vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5845 } 5846 return 0; 5847 } 5848 5849 if (unlikely(!enable_vnmi && 5850 vmx->loaded_vmcs->soft_vnmi_blocked)) { 5851 if (vmx_interrupt_allowed(vcpu)) { 5852 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 5853 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && 5854 vcpu->arch.nmi_pending) { 5855 /* 5856 * This CPU don't support us in finding the end of an 5857 * NMI-blocked window if the guest runs with IRQs 5858 * disabled. So we pull the trigger after 1 s of 5859 * futile waiting, but inform the user about this. 5860 */ 5861 printk(KERN_WARNING "%s: Breaking out of NMI-blocked " 5862 "state on VCPU %d after 1 s timeout\n", 5863 __func__, vcpu->vcpu_id); 5864 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 5865 } 5866 } 5867 5868 if (exit_reason < kvm_vmx_max_exit_handlers 5869 && kvm_vmx_exit_handlers[exit_reason]) 5870 return kvm_vmx_exit_handlers[exit_reason](vcpu); 5871 else { 5872 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", 5873 exit_reason); 5874 dump_vmcs(); 5875 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5876 vcpu->run->internal.suberror = 5877 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 5878 vcpu->run->internal.ndata = 1; 5879 vcpu->run->internal.data[0] = exit_reason; 5880 return 0; 5881 } 5882 } 5883 5884 /* 5885 * Software based L1D cache flush which is used when microcode providing 5886 * the cache control MSR is not loaded. 5887 * 5888 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to 5889 * flush it is required to read in 64 KiB because the replacement algorithm 5890 * is not exactly LRU. This could be sized at runtime via topology 5891 * information but as all relevant affected CPUs have 32KiB L1D cache size 5892 * there is no point in doing so. 5893 */ 5894 static void vmx_l1d_flush(struct kvm_vcpu *vcpu) 5895 { 5896 int size = PAGE_SIZE << L1D_CACHE_ORDER; 5897 5898 /* 5899 * This code is only executed when the the flush mode is 'cond' or 5900 * 'always' 5901 */ 5902 if (static_branch_likely(&vmx_l1d_flush_cond)) { 5903 bool flush_l1d; 5904 5905 /* 5906 * Clear the per-vcpu flush bit, it gets set again 5907 * either from vcpu_run() or from one of the unsafe 5908 * VMEXIT handlers. 5909 */ 5910 flush_l1d = vcpu->arch.l1tf_flush_l1d; 5911 vcpu->arch.l1tf_flush_l1d = false; 5912 5913 /* 5914 * Clear the per-cpu flush bit, it gets set again from 5915 * the interrupt handlers. 5916 */ 5917 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); 5918 kvm_clear_cpu_l1tf_flush_l1d(); 5919 5920 if (!flush_l1d) 5921 return; 5922 } 5923 5924 vcpu->stat.l1d_flush++; 5925 5926 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { 5927 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 5928 return; 5929 } 5930 5931 asm volatile( 5932 /* First ensure the pages are in the TLB */ 5933 "xorl %%eax, %%eax\n" 5934 ".Lpopulate_tlb:\n\t" 5935 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 5936 "addl $4096, %%eax\n\t" 5937 "cmpl %%eax, %[size]\n\t" 5938 "jne .Lpopulate_tlb\n\t" 5939 "xorl %%eax, %%eax\n\t" 5940 "cpuid\n\t" 5941 /* Now fill the cache */ 5942 "xorl %%eax, %%eax\n" 5943 ".Lfill_cache:\n" 5944 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 5945 "addl $64, %%eax\n\t" 5946 "cmpl %%eax, %[size]\n\t" 5947 "jne .Lfill_cache\n\t" 5948 "lfence\n" 5949 :: [flush_pages] "r" (vmx_l1d_flush_pages), 5950 [size] "r" (size) 5951 : "eax", "ebx", "ecx", "edx"); 5952 } 5953 5954 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 5955 { 5956 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5957 5958 if (is_guest_mode(vcpu) && 5959 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) 5960 return; 5961 5962 if (irr == -1 || tpr < irr) { 5963 vmcs_write32(TPR_THRESHOLD, 0); 5964 return; 5965 } 5966 5967 vmcs_write32(TPR_THRESHOLD, irr); 5968 } 5969 5970 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) 5971 { 5972 struct vcpu_vmx *vmx = to_vmx(vcpu); 5973 u32 sec_exec_control; 5974 5975 if (!lapic_in_kernel(vcpu)) 5976 return; 5977 5978 if (!flexpriority_enabled && 5979 !cpu_has_vmx_virtualize_x2apic_mode()) 5980 return; 5981 5982 /* Postpone execution until vmcs01 is the current VMCS. */ 5983 if (is_guest_mode(vcpu)) { 5984 vmx->nested.change_vmcs01_virtual_apic_mode = true; 5985 return; 5986 } 5987 5988 sec_exec_control = secondary_exec_controls_get(vmx); 5989 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 5990 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); 5991 5992 switch (kvm_get_apic_mode(vcpu)) { 5993 case LAPIC_MODE_INVALID: 5994 WARN_ONCE(true, "Invalid local APIC state"); 5995 case LAPIC_MODE_DISABLED: 5996 break; 5997 case LAPIC_MODE_XAPIC: 5998 if (flexpriority_enabled) { 5999 sec_exec_control |= 6000 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 6001 vmx_flush_tlb(vcpu, true); 6002 } 6003 break; 6004 case LAPIC_MODE_X2APIC: 6005 if (cpu_has_vmx_virtualize_x2apic_mode()) 6006 sec_exec_control |= 6007 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 6008 break; 6009 } 6010 secondary_exec_controls_set(vmx, sec_exec_control); 6011 6012 vmx_update_msr_bitmap(vcpu); 6013 } 6014 6015 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa) 6016 { 6017 if (!is_guest_mode(vcpu)) { 6018 vmcs_write64(APIC_ACCESS_ADDR, hpa); 6019 vmx_flush_tlb(vcpu, true); 6020 } 6021 } 6022 6023 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr) 6024 { 6025 u16 status; 6026 u8 old; 6027 6028 if (max_isr == -1) 6029 max_isr = 0; 6030 6031 status = vmcs_read16(GUEST_INTR_STATUS); 6032 old = status >> 8; 6033 if (max_isr != old) { 6034 status &= 0xff; 6035 status |= max_isr << 8; 6036 vmcs_write16(GUEST_INTR_STATUS, status); 6037 } 6038 } 6039 6040 static void vmx_set_rvi(int vector) 6041 { 6042 u16 status; 6043 u8 old; 6044 6045 if (vector == -1) 6046 vector = 0; 6047 6048 status = vmcs_read16(GUEST_INTR_STATUS); 6049 old = (u8)status & 0xff; 6050 if ((u8)vector != old) { 6051 status &= ~0xff; 6052 status |= (u8)vector; 6053 vmcs_write16(GUEST_INTR_STATUS, status); 6054 } 6055 } 6056 6057 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) 6058 { 6059 /* 6060 * When running L2, updating RVI is only relevant when 6061 * vmcs12 virtual-interrupt-delivery enabled. 6062 * However, it can be enabled only when L1 also 6063 * intercepts external-interrupts and in that case 6064 * we should not update vmcs02 RVI but instead intercept 6065 * interrupt. Therefore, do nothing when running L2. 6066 */ 6067 if (!is_guest_mode(vcpu)) 6068 vmx_set_rvi(max_irr); 6069 } 6070 6071 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) 6072 { 6073 struct vcpu_vmx *vmx = to_vmx(vcpu); 6074 int max_irr; 6075 bool max_irr_updated; 6076 6077 WARN_ON(!vcpu->arch.apicv_active); 6078 if (pi_test_on(&vmx->pi_desc)) { 6079 pi_clear_on(&vmx->pi_desc); 6080 /* 6081 * IOMMU can write to PIR.ON, so the barrier matters even on UP. 6082 * But on x86 this is just a compiler barrier anyway. 6083 */ 6084 smp_mb__after_atomic(); 6085 max_irr_updated = 6086 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); 6087 6088 /* 6089 * If we are running L2 and L1 has a new pending interrupt 6090 * which can be injected, we should re-evaluate 6091 * what should be done with this new L1 interrupt. 6092 * If L1 intercepts external-interrupts, we should 6093 * exit from L2 to L1. Otherwise, interrupt should be 6094 * delivered directly to L2. 6095 */ 6096 if (is_guest_mode(vcpu) && max_irr_updated) { 6097 if (nested_exit_on_intr(vcpu)) 6098 kvm_vcpu_exiting_guest_mode(vcpu); 6099 else 6100 kvm_make_request(KVM_REQ_EVENT, vcpu); 6101 } 6102 } else { 6103 max_irr = kvm_lapic_find_highest_irr(vcpu); 6104 } 6105 vmx_hwapic_irr_update(vcpu, max_irr); 6106 return max_irr; 6107 } 6108 6109 static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu) 6110 { 6111 return pi_test_on(vcpu_to_pi_desc(vcpu)); 6112 } 6113 6114 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) 6115 { 6116 if (!kvm_vcpu_apicv_active(vcpu)) 6117 return; 6118 6119 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); 6120 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); 6121 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); 6122 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); 6123 } 6124 6125 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu) 6126 { 6127 struct vcpu_vmx *vmx = to_vmx(vcpu); 6128 6129 pi_clear_on(&vmx->pi_desc); 6130 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); 6131 } 6132 6133 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx) 6134 { 6135 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); 6136 6137 /* if exit due to PF check for async PF */ 6138 if (is_page_fault(vmx->exit_intr_info)) 6139 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason(); 6140 6141 /* Handle machine checks before interrupts are enabled */ 6142 if (is_machine_check(vmx->exit_intr_info)) 6143 kvm_machine_check(); 6144 6145 /* We need to handle NMIs before interrupts are enabled */ 6146 if (is_nmi(vmx->exit_intr_info)) { 6147 kvm_before_interrupt(&vmx->vcpu); 6148 asm("int $2"); 6149 kvm_after_interrupt(&vmx->vcpu); 6150 } 6151 } 6152 6153 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu) 6154 { 6155 unsigned int vector; 6156 unsigned long entry; 6157 #ifdef CONFIG_X86_64 6158 unsigned long tmp; 6159 #endif 6160 gate_desc *desc; 6161 u32 intr_info; 6162 6163 intr_info = vmcs_read32(VM_EXIT_INTR_INFO); 6164 if (WARN_ONCE(!is_external_intr(intr_info), 6165 "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info)) 6166 return; 6167 6168 vector = intr_info & INTR_INFO_VECTOR_MASK; 6169 desc = (gate_desc *)host_idt_base + vector; 6170 entry = gate_offset(desc); 6171 6172 kvm_before_interrupt(vcpu); 6173 6174 asm volatile( 6175 #ifdef CONFIG_X86_64 6176 "mov %%" _ASM_SP ", %[sp]\n\t" 6177 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t" 6178 "push $%c[ss]\n\t" 6179 "push %[sp]\n\t" 6180 #endif 6181 "pushf\n\t" 6182 __ASM_SIZE(push) " $%c[cs]\n\t" 6183 CALL_NOSPEC 6184 : 6185 #ifdef CONFIG_X86_64 6186 [sp]"=&r"(tmp), 6187 #endif 6188 ASM_CALL_CONSTRAINT 6189 : 6190 THUNK_TARGET(entry), 6191 [ss]"i"(__KERNEL_DS), 6192 [cs]"i"(__KERNEL_CS) 6193 ); 6194 6195 kvm_after_interrupt(vcpu); 6196 } 6197 STACK_FRAME_NON_STANDARD(handle_external_interrupt_irqoff); 6198 6199 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu) 6200 { 6201 struct vcpu_vmx *vmx = to_vmx(vcpu); 6202 6203 if (vmx->exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT) 6204 handle_external_interrupt_irqoff(vcpu); 6205 else if (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI) 6206 handle_exception_nmi_irqoff(vmx); 6207 } 6208 6209 static bool vmx_has_emulated_msr(int index) 6210 { 6211 switch (index) { 6212 case MSR_IA32_SMBASE: 6213 /* 6214 * We cannot do SMM unless we can run the guest in big 6215 * real mode. 6216 */ 6217 return enable_unrestricted_guest || emulate_invalid_guest_state; 6218 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 6219 return nested; 6220 case MSR_AMD64_VIRT_SPEC_CTRL: 6221 /* This is AMD only. */ 6222 return false; 6223 default: 6224 return true; 6225 } 6226 } 6227 6228 static bool vmx_pt_supported(void) 6229 { 6230 return pt_mode == PT_MODE_HOST_GUEST; 6231 } 6232 6233 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) 6234 { 6235 u32 exit_intr_info; 6236 bool unblock_nmi; 6237 u8 vector; 6238 bool idtv_info_valid; 6239 6240 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6241 6242 if (enable_vnmi) { 6243 if (vmx->loaded_vmcs->nmi_known_unmasked) 6244 return; 6245 /* 6246 * Can't use vmx->exit_intr_info since we're not sure what 6247 * the exit reason is. 6248 */ 6249 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); 6250 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; 6251 vector = exit_intr_info & INTR_INFO_VECTOR_MASK; 6252 /* 6253 * SDM 3: 27.7.1.2 (September 2008) 6254 * Re-set bit "block by NMI" before VM entry if vmexit caused by 6255 * a guest IRET fault. 6256 * SDM 3: 23.2.2 (September 2008) 6257 * Bit 12 is undefined in any of the following cases: 6258 * If the VM exit sets the valid bit in the IDT-vectoring 6259 * information field. 6260 * If the VM exit is due to a double fault. 6261 */ 6262 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && 6263 vector != DF_VECTOR && !idtv_info_valid) 6264 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 6265 GUEST_INTR_STATE_NMI); 6266 else 6267 vmx->loaded_vmcs->nmi_known_unmasked = 6268 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) 6269 & GUEST_INTR_STATE_NMI); 6270 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) 6271 vmx->loaded_vmcs->vnmi_blocked_time += 6272 ktime_to_ns(ktime_sub(ktime_get(), 6273 vmx->loaded_vmcs->entry_time)); 6274 } 6275 6276 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, 6277 u32 idt_vectoring_info, 6278 int instr_len_field, 6279 int error_code_field) 6280 { 6281 u8 vector; 6282 int type; 6283 bool idtv_info_valid; 6284 6285 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6286 6287 vcpu->arch.nmi_injected = false; 6288 kvm_clear_exception_queue(vcpu); 6289 kvm_clear_interrupt_queue(vcpu); 6290 6291 if (!idtv_info_valid) 6292 return; 6293 6294 kvm_make_request(KVM_REQ_EVENT, vcpu); 6295 6296 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; 6297 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; 6298 6299 switch (type) { 6300 case INTR_TYPE_NMI_INTR: 6301 vcpu->arch.nmi_injected = true; 6302 /* 6303 * SDM 3: 27.7.1.2 (September 2008) 6304 * Clear bit "block by NMI" before VM entry if a NMI 6305 * delivery faulted. 6306 */ 6307 vmx_set_nmi_mask(vcpu, false); 6308 break; 6309 case INTR_TYPE_SOFT_EXCEPTION: 6310 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6311 /* fall through */ 6312 case INTR_TYPE_HARD_EXCEPTION: 6313 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { 6314 u32 err = vmcs_read32(error_code_field); 6315 kvm_requeue_exception_e(vcpu, vector, err); 6316 } else 6317 kvm_requeue_exception(vcpu, vector); 6318 break; 6319 case INTR_TYPE_SOFT_INTR: 6320 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6321 /* fall through */ 6322 case INTR_TYPE_EXT_INTR: 6323 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); 6324 break; 6325 default: 6326 break; 6327 } 6328 } 6329 6330 static void vmx_complete_interrupts(struct vcpu_vmx *vmx) 6331 { 6332 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, 6333 VM_EXIT_INSTRUCTION_LEN, 6334 IDT_VECTORING_ERROR_CODE); 6335 } 6336 6337 static void vmx_cancel_injection(struct kvm_vcpu *vcpu) 6338 { 6339 __vmx_complete_interrupts(vcpu, 6340 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 6341 VM_ENTRY_INSTRUCTION_LEN, 6342 VM_ENTRY_EXCEPTION_ERROR_CODE); 6343 6344 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); 6345 } 6346 6347 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) 6348 { 6349 int i, nr_msrs; 6350 struct perf_guest_switch_msr *msrs; 6351 6352 msrs = perf_guest_get_msrs(&nr_msrs); 6353 6354 if (!msrs) 6355 return; 6356 6357 for (i = 0; i < nr_msrs; i++) 6358 if (msrs[i].host == msrs[i].guest) 6359 clear_atomic_switch_msr(vmx, msrs[i].msr); 6360 else 6361 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, 6362 msrs[i].host, false); 6363 } 6364 6365 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu) 6366 { 6367 struct vcpu_vmx *vmx = to_vmx(vcpu); 6368 u64 tscl; 6369 u32 delta_tsc; 6370 6371 if (vmx->req_immediate_exit) { 6372 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0); 6373 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 6374 } else if (vmx->hv_deadline_tsc != -1) { 6375 tscl = rdtsc(); 6376 if (vmx->hv_deadline_tsc > tscl) 6377 /* set_hv_timer ensures the delta fits in 32-bits */ 6378 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> 6379 cpu_preemption_timer_multi); 6380 else 6381 delta_tsc = 0; 6382 6383 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc); 6384 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 6385 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) { 6386 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1); 6387 vmx->loaded_vmcs->hv_timer_soft_disabled = true; 6388 } 6389 } 6390 6391 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp) 6392 { 6393 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) { 6394 vmx->loaded_vmcs->host_state.rsp = host_rsp; 6395 vmcs_writel(HOST_RSP, host_rsp); 6396 } 6397 } 6398 6399 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched); 6400 6401 static void vmx_vcpu_run(struct kvm_vcpu *vcpu) 6402 { 6403 struct vcpu_vmx *vmx = to_vmx(vcpu); 6404 unsigned long cr3, cr4; 6405 6406 /* Record the guest's net vcpu time for enforced NMI injections. */ 6407 if (unlikely(!enable_vnmi && 6408 vmx->loaded_vmcs->soft_vnmi_blocked)) 6409 vmx->loaded_vmcs->entry_time = ktime_get(); 6410 6411 /* Don't enter VMX if guest state is invalid, let the exit handler 6412 start emulation until we arrive back to a valid state */ 6413 if (vmx->emulation_required) 6414 return; 6415 6416 if (vmx->ple_window_dirty) { 6417 vmx->ple_window_dirty = false; 6418 vmcs_write32(PLE_WINDOW, vmx->ple_window); 6419 } 6420 6421 if (vmx->nested.need_vmcs12_to_shadow_sync) 6422 nested_sync_vmcs12_to_shadow(vcpu); 6423 6424 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty)) 6425 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); 6426 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty)) 6427 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); 6428 6429 cr3 = __get_current_cr3_fast(); 6430 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { 6431 vmcs_writel(HOST_CR3, cr3); 6432 vmx->loaded_vmcs->host_state.cr3 = cr3; 6433 } 6434 6435 cr4 = cr4_read_shadow(); 6436 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { 6437 vmcs_writel(HOST_CR4, cr4); 6438 vmx->loaded_vmcs->host_state.cr4 = cr4; 6439 } 6440 6441 /* When single-stepping over STI and MOV SS, we must clear the 6442 * corresponding interruptibility bits in the guest state. Otherwise 6443 * vmentry fails as it then expects bit 14 (BS) in pending debug 6444 * exceptions being set, but that's not correct for the guest debugging 6445 * case. */ 6446 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 6447 vmx_set_interrupt_shadow(vcpu, 0); 6448 6449 kvm_load_guest_xcr0(vcpu); 6450 6451 if (static_cpu_has(X86_FEATURE_PKU) && 6452 kvm_read_cr4_bits(vcpu, X86_CR4_PKE) && 6453 vcpu->arch.pkru != vmx->host_pkru) 6454 __write_pkru(vcpu->arch.pkru); 6455 6456 pt_guest_enter(vmx); 6457 6458 atomic_switch_perf_msrs(vmx); 6459 6460 if (enable_preemption_timer) 6461 vmx_update_hv_timer(vcpu); 6462 6463 if (lapic_in_kernel(vcpu) && 6464 vcpu->arch.apic->lapic_timer.timer_advance_ns) 6465 kvm_wait_lapic_expire(vcpu); 6466 6467 /* 6468 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 6469 * it's non-zero. Since vmentry is serialising on affected CPUs, there 6470 * is no need to worry about the conditional branch over the wrmsr 6471 * being speculatively taken. 6472 */ 6473 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0); 6474 6475 /* L1D Flush includes CPU buffer clear to mitigate MDS */ 6476 if (static_branch_unlikely(&vmx_l1d_should_flush)) 6477 vmx_l1d_flush(vcpu); 6478 else if (static_branch_unlikely(&mds_user_clear)) 6479 mds_clear_cpu_buffers(); 6480 6481 if (vcpu->arch.cr2 != read_cr2()) 6482 write_cr2(vcpu->arch.cr2); 6483 6484 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, 6485 vmx->loaded_vmcs->launched); 6486 6487 vcpu->arch.cr2 = read_cr2(); 6488 6489 /* 6490 * We do not use IBRS in the kernel. If this vCPU has used the 6491 * SPEC_CTRL MSR it may have left it on; save the value and 6492 * turn it off. This is much more efficient than blindly adding 6493 * it to the atomic save/restore list. Especially as the former 6494 * (Saving guest MSRs on vmexit) doesn't even exist in KVM. 6495 * 6496 * For non-nested case: 6497 * If the L01 MSR bitmap does not intercept the MSR, then we need to 6498 * save it. 6499 * 6500 * For nested case: 6501 * If the L02 MSR bitmap does not intercept the MSR, then we need to 6502 * save it. 6503 */ 6504 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) 6505 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); 6506 6507 x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0); 6508 6509 /* All fields are clean at this point */ 6510 if (static_branch_unlikely(&enable_evmcs)) 6511 current_evmcs->hv_clean_fields |= 6512 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; 6513 6514 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ 6515 if (vmx->host_debugctlmsr) 6516 update_debugctlmsr(vmx->host_debugctlmsr); 6517 6518 #ifndef CONFIG_X86_64 6519 /* 6520 * The sysexit path does not restore ds/es, so we must set them to 6521 * a reasonable value ourselves. 6522 * 6523 * We can't defer this to vmx_prepare_switch_to_host() since that 6524 * function may be executed in interrupt context, which saves and 6525 * restore segments around it, nullifying its effect. 6526 */ 6527 loadsegment(ds, __USER_DS); 6528 loadsegment(es, __USER_DS); 6529 #endif 6530 6531 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP) 6532 | (1 << VCPU_EXREG_RFLAGS) 6533 | (1 << VCPU_EXREG_PDPTR) 6534 | (1 << VCPU_EXREG_SEGMENTS) 6535 | (1 << VCPU_EXREG_CR3)); 6536 vcpu->arch.regs_dirty = 0; 6537 6538 pt_guest_exit(vmx); 6539 6540 /* 6541 * eager fpu is enabled if PKEY is supported and CR4 is switched 6542 * back on host, so it is safe to read guest PKRU from current 6543 * XSAVE. 6544 */ 6545 if (static_cpu_has(X86_FEATURE_PKU) && 6546 kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) { 6547 vcpu->arch.pkru = rdpkru(); 6548 if (vcpu->arch.pkru != vmx->host_pkru) 6549 __write_pkru(vmx->host_pkru); 6550 } 6551 6552 kvm_put_guest_xcr0(vcpu); 6553 6554 vmx->nested.nested_run_pending = 0; 6555 vmx->idt_vectoring_info = 0; 6556 6557 vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON); 6558 if ((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY) 6559 kvm_machine_check(); 6560 6561 if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) 6562 return; 6563 6564 vmx->loaded_vmcs->launched = 1; 6565 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); 6566 6567 vmx_recover_nmi_blocking(vmx); 6568 vmx_complete_interrupts(vmx); 6569 } 6570 6571 static struct kvm *vmx_vm_alloc(void) 6572 { 6573 struct kvm_vmx *kvm_vmx = __vmalloc(sizeof(struct kvm_vmx), 6574 GFP_KERNEL_ACCOUNT | __GFP_ZERO, 6575 PAGE_KERNEL); 6576 return &kvm_vmx->kvm; 6577 } 6578 6579 static void vmx_vm_free(struct kvm *kvm) 6580 { 6581 vfree(to_kvm_vmx(kvm)); 6582 } 6583 6584 static void vmx_free_vcpu(struct kvm_vcpu *vcpu) 6585 { 6586 struct vcpu_vmx *vmx = to_vmx(vcpu); 6587 6588 if (enable_pml) 6589 vmx_destroy_pml_buffer(vmx); 6590 free_vpid(vmx->vpid); 6591 nested_vmx_free_vcpu(vcpu); 6592 free_loaded_vmcs(vmx->loaded_vmcs); 6593 kfree(vmx->guest_msrs); 6594 kvm_vcpu_uninit(vcpu); 6595 kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu); 6596 kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu); 6597 kmem_cache_free(kvm_vcpu_cache, vmx); 6598 } 6599 6600 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id) 6601 { 6602 int err; 6603 struct vcpu_vmx *vmx; 6604 unsigned long *msr_bitmap; 6605 int cpu; 6606 6607 BUILD_BUG_ON_MSG(offsetof(struct vcpu_vmx, vcpu) != 0, 6608 "struct kvm_vcpu must be at offset 0 for arch usercopy region"); 6609 6610 vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 6611 if (!vmx) 6612 return ERR_PTR(-ENOMEM); 6613 6614 vmx->vcpu.arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache, 6615 GFP_KERNEL_ACCOUNT); 6616 if (!vmx->vcpu.arch.user_fpu) { 6617 printk(KERN_ERR "kvm: failed to allocate kvm userspace's fpu\n"); 6618 err = -ENOMEM; 6619 goto free_partial_vcpu; 6620 } 6621 6622 vmx->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache, 6623 GFP_KERNEL_ACCOUNT); 6624 if (!vmx->vcpu.arch.guest_fpu) { 6625 printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n"); 6626 err = -ENOMEM; 6627 goto free_user_fpu; 6628 } 6629 6630 vmx->vpid = allocate_vpid(); 6631 6632 err = kvm_vcpu_init(&vmx->vcpu, kvm, id); 6633 if (err) 6634 goto free_vcpu; 6635 6636 err = -ENOMEM; 6637 6638 /* 6639 * If PML is turned on, failure on enabling PML just results in failure 6640 * of creating the vcpu, therefore we can simplify PML logic (by 6641 * avoiding dealing with cases, such as enabling PML partially on vcpus 6642 * for the guest, etc. 6643 */ 6644 if (enable_pml) { 6645 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 6646 if (!vmx->pml_pg) 6647 goto uninit_vcpu; 6648 } 6649 6650 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT); 6651 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0]) 6652 > PAGE_SIZE); 6653 6654 if (!vmx->guest_msrs) 6655 goto free_pml; 6656 6657 err = alloc_loaded_vmcs(&vmx->vmcs01); 6658 if (err < 0) 6659 goto free_msrs; 6660 6661 msr_bitmap = vmx->vmcs01.msr_bitmap; 6662 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R); 6663 vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW); 6664 vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW); 6665 vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); 6666 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); 6667 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); 6668 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); 6669 if (kvm_cstate_in_guest(kvm)) { 6670 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C1_RES, MSR_TYPE_R); 6671 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R); 6672 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R); 6673 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R); 6674 } 6675 vmx->msr_bitmap_mode = 0; 6676 6677 vmx->loaded_vmcs = &vmx->vmcs01; 6678 cpu = get_cpu(); 6679 vmx_vcpu_load(&vmx->vcpu, cpu); 6680 vmx->vcpu.cpu = cpu; 6681 vmx_vcpu_setup(vmx); 6682 vmx_vcpu_put(&vmx->vcpu); 6683 put_cpu(); 6684 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) { 6685 err = alloc_apic_access_page(kvm); 6686 if (err) 6687 goto free_vmcs; 6688 } 6689 6690 if (enable_ept && !enable_unrestricted_guest) { 6691 err = init_rmode_identity_map(kvm); 6692 if (err) 6693 goto free_vmcs; 6694 } 6695 6696 if (nested) 6697 nested_vmx_setup_ctls_msrs(&vmx->nested.msrs, 6698 vmx_capability.ept, 6699 kvm_vcpu_apicv_active(&vmx->vcpu)); 6700 else 6701 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs)); 6702 6703 vmx->nested.posted_intr_nv = -1; 6704 vmx->nested.current_vmptr = -1ull; 6705 6706 vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED; 6707 6708 /* 6709 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR 6710 * or POSTED_INTR_WAKEUP_VECTOR. 6711 */ 6712 vmx->pi_desc.nv = POSTED_INTR_VECTOR; 6713 vmx->pi_desc.sn = 1; 6714 6715 vmx->ept_pointer = INVALID_PAGE; 6716 6717 return &vmx->vcpu; 6718 6719 free_vmcs: 6720 free_loaded_vmcs(vmx->loaded_vmcs); 6721 free_msrs: 6722 kfree(vmx->guest_msrs); 6723 free_pml: 6724 vmx_destroy_pml_buffer(vmx); 6725 uninit_vcpu: 6726 kvm_vcpu_uninit(&vmx->vcpu); 6727 free_vcpu: 6728 free_vpid(vmx->vpid); 6729 kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu); 6730 free_user_fpu: 6731 kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu); 6732 free_partial_vcpu: 6733 kmem_cache_free(kvm_vcpu_cache, vmx); 6734 return ERR_PTR(err); 6735 } 6736 6737 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 6738 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 6739 6740 static int vmx_vm_init(struct kvm *kvm) 6741 { 6742 spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock); 6743 6744 if (!ple_gap) 6745 kvm->arch.pause_in_guest = true; 6746 6747 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { 6748 switch (l1tf_mitigation) { 6749 case L1TF_MITIGATION_OFF: 6750 case L1TF_MITIGATION_FLUSH_NOWARN: 6751 /* 'I explicitly don't care' is set */ 6752 break; 6753 case L1TF_MITIGATION_FLUSH: 6754 case L1TF_MITIGATION_FLUSH_NOSMT: 6755 case L1TF_MITIGATION_FULL: 6756 /* 6757 * Warn upon starting the first VM in a potentially 6758 * insecure environment. 6759 */ 6760 if (sched_smt_active()) 6761 pr_warn_once(L1TF_MSG_SMT); 6762 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) 6763 pr_warn_once(L1TF_MSG_L1D); 6764 break; 6765 case L1TF_MITIGATION_FULL_FORCE: 6766 /* Flush is enforced */ 6767 break; 6768 } 6769 } 6770 return 0; 6771 } 6772 6773 static int __init vmx_check_processor_compat(void) 6774 { 6775 struct vmcs_config vmcs_conf; 6776 struct vmx_capability vmx_cap; 6777 6778 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) 6779 return -EIO; 6780 if (nested) 6781 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept, 6782 enable_apicv); 6783 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) { 6784 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n", 6785 smp_processor_id()); 6786 return -EIO; 6787 } 6788 return 0; 6789 } 6790 6791 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 6792 { 6793 u8 cache; 6794 u64 ipat = 0; 6795 6796 /* For VT-d and EPT combination 6797 * 1. MMIO: always map as UC 6798 * 2. EPT with VT-d: 6799 * a. VT-d without snooping control feature: can't guarantee the 6800 * result, try to trust guest. 6801 * b. VT-d with snooping control feature: snooping control feature of 6802 * VT-d engine can guarantee the cache correctness. Just set it 6803 * to WB to keep consistent with host. So the same as item 3. 6804 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep 6805 * consistent with host MTRR 6806 */ 6807 if (is_mmio) { 6808 cache = MTRR_TYPE_UNCACHABLE; 6809 goto exit; 6810 } 6811 6812 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) { 6813 ipat = VMX_EPT_IPAT_BIT; 6814 cache = MTRR_TYPE_WRBACK; 6815 goto exit; 6816 } 6817 6818 if (kvm_read_cr0(vcpu) & X86_CR0_CD) { 6819 ipat = VMX_EPT_IPAT_BIT; 6820 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 6821 cache = MTRR_TYPE_WRBACK; 6822 else 6823 cache = MTRR_TYPE_UNCACHABLE; 6824 goto exit; 6825 } 6826 6827 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn); 6828 6829 exit: 6830 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat; 6831 } 6832 6833 static int vmx_get_lpage_level(void) 6834 { 6835 if (enable_ept && !cpu_has_vmx_ept_1g_page()) 6836 return PT_DIRECTORY_LEVEL; 6837 else 6838 /* For shadow and EPT supported 1GB page */ 6839 return PT_PDPE_LEVEL; 6840 } 6841 6842 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx) 6843 { 6844 /* 6845 * These bits in the secondary execution controls field 6846 * are dynamic, the others are mostly based on the hypervisor 6847 * architecture and the guest's CPUID. Do not touch the 6848 * dynamic bits. 6849 */ 6850 u32 mask = 6851 SECONDARY_EXEC_SHADOW_VMCS | 6852 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 6853 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 6854 SECONDARY_EXEC_DESC; 6855 6856 u32 new_ctl = vmx->secondary_exec_control; 6857 u32 cur_ctl = secondary_exec_controls_get(vmx); 6858 6859 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask)); 6860 } 6861 6862 /* 6863 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits 6864 * (indicating "allowed-1") if they are supported in the guest's CPUID. 6865 */ 6866 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) 6867 { 6868 struct vcpu_vmx *vmx = to_vmx(vcpu); 6869 struct kvm_cpuid_entry2 *entry; 6870 6871 vmx->nested.msrs.cr0_fixed1 = 0xffffffff; 6872 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; 6873 6874 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ 6875 if (entry && (entry->_reg & (_cpuid_mask))) \ 6876 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ 6877 } while (0) 6878 6879 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0); 6880 cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME)); 6881 cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME)); 6882 cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC)); 6883 cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE)); 6884 cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE)); 6885 cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE)); 6886 cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE)); 6887 cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE)); 6888 cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR)); 6889 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM)); 6890 cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX)); 6891 cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX)); 6892 cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID)); 6893 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE)); 6894 6895 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0); 6896 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE)); 6897 cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP)); 6898 cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP)); 6899 cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU)); 6900 cr4_fixed1_update(X86_CR4_UMIP, ecx, bit(X86_FEATURE_UMIP)); 6901 6902 #undef cr4_fixed1_update 6903 } 6904 6905 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu) 6906 { 6907 struct vcpu_vmx *vmx = to_vmx(vcpu); 6908 6909 if (kvm_mpx_supported()) { 6910 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX); 6911 6912 if (mpx_enabled) { 6913 vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS; 6914 vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS; 6915 } else { 6916 vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS; 6917 vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS; 6918 } 6919 } 6920 } 6921 6922 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) 6923 { 6924 struct vcpu_vmx *vmx = to_vmx(vcpu); 6925 struct kvm_cpuid_entry2 *best = NULL; 6926 int i; 6927 6928 for (i = 0; i < PT_CPUID_LEAVES; i++) { 6929 best = kvm_find_cpuid_entry(vcpu, 0x14, i); 6930 if (!best) 6931 return; 6932 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; 6933 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; 6934 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; 6935 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; 6936 } 6937 6938 /* Get the number of configurable Address Ranges for filtering */ 6939 vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps, 6940 PT_CAP_num_address_ranges); 6941 6942 /* Initialize and clear the no dependency bits */ 6943 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | 6944 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC); 6945 6946 /* 6947 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise 6948 * will inject an #GP 6949 */ 6950 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) 6951 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; 6952 6953 /* 6954 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and 6955 * PSBFreq can be set 6956 */ 6957 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) 6958 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | 6959 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); 6960 6961 /* 6962 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and 6963 * MTCFreq can be set 6964 */ 6965 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) 6966 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | 6967 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE); 6968 6969 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ 6970 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) 6971 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | 6972 RTIT_CTL_PTW_EN); 6973 6974 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ 6975 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) 6976 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; 6977 6978 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ 6979 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) 6980 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; 6981 6982 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */ 6983 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) 6984 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; 6985 6986 /* unmask address range configure area */ 6987 for (i = 0; i < vmx->pt_desc.addr_range; i++) 6988 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4)); 6989 } 6990 6991 static void vmx_cpuid_update(struct kvm_vcpu *vcpu) 6992 { 6993 struct vcpu_vmx *vmx = to_vmx(vcpu); 6994 6995 if (cpu_has_secondary_exec_ctrls()) { 6996 vmx_compute_secondary_exec_control(vmx); 6997 vmcs_set_secondary_exec_control(vmx); 6998 } 6999 7000 if (nested_vmx_allowed(vcpu)) 7001 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 7002 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; 7003 else 7004 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 7005 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; 7006 7007 if (nested_vmx_allowed(vcpu)) { 7008 nested_vmx_cr_fixed1_bits_update(vcpu); 7009 nested_vmx_entry_exit_ctls_update(vcpu); 7010 } 7011 7012 if (boot_cpu_has(X86_FEATURE_INTEL_PT) && 7013 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT)) 7014 update_intel_pt_cfg(vcpu); 7015 } 7016 7017 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry) 7018 { 7019 if (func == 1 && nested) 7020 entry->ecx |= bit(X86_FEATURE_VMX); 7021 } 7022 7023 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu) 7024 { 7025 to_vmx(vcpu)->req_immediate_exit = true; 7026 } 7027 7028 static int vmx_check_intercept(struct kvm_vcpu *vcpu, 7029 struct x86_instruction_info *info, 7030 enum x86_intercept_stage stage) 7031 { 7032 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7033 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 7034 7035 /* 7036 * RDPID causes #UD if disabled through secondary execution controls. 7037 * Because it is marked as EmulateOnUD, we need to intercept it here. 7038 */ 7039 if (info->intercept == x86_intercept_rdtscp && 7040 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) { 7041 ctxt->exception.vector = UD_VECTOR; 7042 ctxt->exception.error_code_valid = false; 7043 return X86EMUL_PROPAGATE_FAULT; 7044 } 7045 7046 /* TODO: check more intercepts... */ 7047 return X86EMUL_CONTINUE; 7048 } 7049 7050 #ifdef CONFIG_X86_64 7051 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ 7052 static inline int u64_shl_div_u64(u64 a, unsigned int shift, 7053 u64 divisor, u64 *result) 7054 { 7055 u64 low = a << shift, high = a >> (64 - shift); 7056 7057 /* To avoid the overflow on divq */ 7058 if (high >= divisor) 7059 return 1; 7060 7061 /* Low hold the result, high hold rem which is discarded */ 7062 asm("divq %2\n\t" : "=a" (low), "=d" (high) : 7063 "rm" (divisor), "0" (low), "1" (high)); 7064 *result = low; 7065 7066 return 0; 7067 } 7068 7069 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 7070 bool *expired) 7071 { 7072 struct vcpu_vmx *vmx; 7073 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; 7074 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer; 7075 7076 if (kvm_mwait_in_guest(vcpu->kvm) || 7077 kvm_can_post_timer_interrupt(vcpu)) 7078 return -EOPNOTSUPP; 7079 7080 vmx = to_vmx(vcpu); 7081 tscl = rdtsc(); 7082 guest_tscl = kvm_read_l1_tsc(vcpu, tscl); 7083 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; 7084 lapic_timer_advance_cycles = nsec_to_cycles(vcpu, 7085 ktimer->timer_advance_ns); 7086 7087 if (delta_tsc > lapic_timer_advance_cycles) 7088 delta_tsc -= lapic_timer_advance_cycles; 7089 else 7090 delta_tsc = 0; 7091 7092 /* Convert to host delta tsc if tsc scaling is enabled */ 7093 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio && 7094 delta_tsc && u64_shl_div_u64(delta_tsc, 7095 kvm_tsc_scaling_ratio_frac_bits, 7096 vcpu->arch.tsc_scaling_ratio, &delta_tsc)) 7097 return -ERANGE; 7098 7099 /* 7100 * If the delta tsc can't fit in the 32 bit after the multi shift, 7101 * we can't use the preemption timer. 7102 * It's possible that it fits on later vmentries, but checking 7103 * on every vmentry is costly so we just use an hrtimer. 7104 */ 7105 if (delta_tsc >> (cpu_preemption_timer_multi + 32)) 7106 return -ERANGE; 7107 7108 vmx->hv_deadline_tsc = tscl + delta_tsc; 7109 *expired = !delta_tsc; 7110 return 0; 7111 } 7112 7113 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) 7114 { 7115 to_vmx(vcpu)->hv_deadline_tsc = -1; 7116 } 7117 #endif 7118 7119 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) 7120 { 7121 if (!kvm_pause_in_guest(vcpu->kvm)) 7122 shrink_ple_window(vcpu); 7123 } 7124 7125 static void vmx_slot_enable_log_dirty(struct kvm *kvm, 7126 struct kvm_memory_slot *slot) 7127 { 7128 kvm_mmu_slot_leaf_clear_dirty(kvm, slot); 7129 kvm_mmu_slot_largepage_remove_write_access(kvm, slot); 7130 } 7131 7132 static void vmx_slot_disable_log_dirty(struct kvm *kvm, 7133 struct kvm_memory_slot *slot) 7134 { 7135 kvm_mmu_slot_set_dirty(kvm, slot); 7136 } 7137 7138 static void vmx_flush_log_dirty(struct kvm *kvm) 7139 { 7140 kvm_flush_pml_buffers(kvm); 7141 } 7142 7143 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu) 7144 { 7145 struct vmcs12 *vmcs12; 7146 struct vcpu_vmx *vmx = to_vmx(vcpu); 7147 gpa_t gpa, dst; 7148 7149 if (is_guest_mode(vcpu)) { 7150 WARN_ON_ONCE(vmx->nested.pml_full); 7151 7152 /* 7153 * Check if PML is enabled for the nested guest. 7154 * Whether eptp bit 6 is set is already checked 7155 * as part of A/D emulation. 7156 */ 7157 vmcs12 = get_vmcs12(vcpu); 7158 if (!nested_cpu_has_pml(vmcs12)) 7159 return 0; 7160 7161 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) { 7162 vmx->nested.pml_full = true; 7163 return 1; 7164 } 7165 7166 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull; 7167 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index; 7168 7169 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa, 7170 offset_in_page(dst), sizeof(gpa))) 7171 return 0; 7172 7173 vmcs12->guest_pml_index--; 7174 } 7175 7176 return 0; 7177 } 7178 7179 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm, 7180 struct kvm_memory_slot *memslot, 7181 gfn_t offset, unsigned long mask) 7182 { 7183 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask); 7184 } 7185 7186 static void __pi_post_block(struct kvm_vcpu *vcpu) 7187 { 7188 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); 7189 struct pi_desc old, new; 7190 unsigned int dest; 7191 7192 do { 7193 old.control = new.control = pi_desc->control; 7194 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR, 7195 "Wakeup handler not enabled while the VCPU is blocked\n"); 7196 7197 dest = cpu_physical_id(vcpu->cpu); 7198 7199 if (x2apic_enabled()) 7200 new.ndst = dest; 7201 else 7202 new.ndst = (dest << 8) & 0xFF00; 7203 7204 /* set 'NV' to 'notification vector' */ 7205 new.nv = POSTED_INTR_VECTOR; 7206 } while (cmpxchg64(&pi_desc->control, old.control, 7207 new.control) != old.control); 7208 7209 if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) { 7210 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); 7211 list_del(&vcpu->blocked_vcpu_list); 7212 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); 7213 vcpu->pre_pcpu = -1; 7214 } 7215 } 7216 7217 /* 7218 * This routine does the following things for vCPU which is going 7219 * to be blocked if VT-d PI is enabled. 7220 * - Store the vCPU to the wakeup list, so when interrupts happen 7221 * we can find the right vCPU to wake up. 7222 * - Change the Posted-interrupt descriptor as below: 7223 * 'NDST' <-- vcpu->pre_pcpu 7224 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR 7225 * - If 'ON' is set during this process, which means at least one 7226 * interrupt is posted for this vCPU, we cannot block it, in 7227 * this case, return 1, otherwise, return 0. 7228 * 7229 */ 7230 static int pi_pre_block(struct kvm_vcpu *vcpu) 7231 { 7232 unsigned int dest; 7233 struct pi_desc old, new; 7234 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); 7235 7236 if (!kvm_arch_has_assigned_device(vcpu->kvm) || 7237 !irq_remapping_cap(IRQ_POSTING_CAP) || 7238 !kvm_vcpu_apicv_active(vcpu)) 7239 return 0; 7240 7241 WARN_ON(irqs_disabled()); 7242 local_irq_disable(); 7243 if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) { 7244 vcpu->pre_pcpu = vcpu->cpu; 7245 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); 7246 list_add_tail(&vcpu->blocked_vcpu_list, 7247 &per_cpu(blocked_vcpu_on_cpu, 7248 vcpu->pre_pcpu)); 7249 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); 7250 } 7251 7252 do { 7253 old.control = new.control = pi_desc->control; 7254 7255 WARN((pi_desc->sn == 1), 7256 "Warning: SN field of posted-interrupts " 7257 "is set before blocking\n"); 7258 7259 /* 7260 * Since vCPU can be preempted during this process, 7261 * vcpu->cpu could be different with pre_pcpu, we 7262 * need to set pre_pcpu as the destination of wakeup 7263 * notification event, then we can find the right vCPU 7264 * to wakeup in wakeup handler if interrupts happen 7265 * when the vCPU is in blocked state. 7266 */ 7267 dest = cpu_physical_id(vcpu->pre_pcpu); 7268 7269 if (x2apic_enabled()) 7270 new.ndst = dest; 7271 else 7272 new.ndst = (dest << 8) & 0xFF00; 7273 7274 /* set 'NV' to 'wakeup vector' */ 7275 new.nv = POSTED_INTR_WAKEUP_VECTOR; 7276 } while (cmpxchg64(&pi_desc->control, old.control, 7277 new.control) != old.control); 7278 7279 /* We should not block the vCPU if an interrupt is posted for it. */ 7280 if (pi_test_on(pi_desc) == 1) 7281 __pi_post_block(vcpu); 7282 7283 local_irq_enable(); 7284 return (vcpu->pre_pcpu == -1); 7285 } 7286 7287 static int vmx_pre_block(struct kvm_vcpu *vcpu) 7288 { 7289 if (pi_pre_block(vcpu)) 7290 return 1; 7291 7292 if (kvm_lapic_hv_timer_in_use(vcpu)) 7293 kvm_lapic_switch_to_sw_timer(vcpu); 7294 7295 return 0; 7296 } 7297 7298 static void pi_post_block(struct kvm_vcpu *vcpu) 7299 { 7300 if (vcpu->pre_pcpu == -1) 7301 return; 7302 7303 WARN_ON(irqs_disabled()); 7304 local_irq_disable(); 7305 __pi_post_block(vcpu); 7306 local_irq_enable(); 7307 } 7308 7309 static void vmx_post_block(struct kvm_vcpu *vcpu) 7310 { 7311 if (kvm_x86_ops->set_hv_timer) 7312 kvm_lapic_switch_to_hv_timer(vcpu); 7313 7314 pi_post_block(vcpu); 7315 } 7316 7317 /* 7318 * vmx_update_pi_irte - set IRTE for Posted-Interrupts 7319 * 7320 * @kvm: kvm 7321 * @host_irq: host irq of the interrupt 7322 * @guest_irq: gsi of the interrupt 7323 * @set: set or unset PI 7324 * returns 0 on success, < 0 on failure 7325 */ 7326 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq, 7327 uint32_t guest_irq, bool set) 7328 { 7329 struct kvm_kernel_irq_routing_entry *e; 7330 struct kvm_irq_routing_table *irq_rt; 7331 struct kvm_lapic_irq irq; 7332 struct kvm_vcpu *vcpu; 7333 struct vcpu_data vcpu_info; 7334 int idx, ret = 0; 7335 7336 if (!kvm_arch_has_assigned_device(kvm) || 7337 !irq_remapping_cap(IRQ_POSTING_CAP) || 7338 !kvm_vcpu_apicv_active(kvm->vcpus[0])) 7339 return 0; 7340 7341 idx = srcu_read_lock(&kvm->irq_srcu); 7342 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu); 7343 if (guest_irq >= irq_rt->nr_rt_entries || 7344 hlist_empty(&irq_rt->map[guest_irq])) { 7345 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n", 7346 guest_irq, irq_rt->nr_rt_entries); 7347 goto out; 7348 } 7349 7350 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) { 7351 if (e->type != KVM_IRQ_ROUTING_MSI) 7352 continue; 7353 /* 7354 * VT-d PI cannot support posting multicast/broadcast 7355 * interrupts to a vCPU, we still use interrupt remapping 7356 * for these kind of interrupts. 7357 * 7358 * For lowest-priority interrupts, we only support 7359 * those with single CPU as the destination, e.g. user 7360 * configures the interrupts via /proc/irq or uses 7361 * irqbalance to make the interrupts single-CPU. 7362 * 7363 * We will support full lowest-priority interrupt later. 7364 * 7365 * In addition, we can only inject generic interrupts using 7366 * the PI mechanism, refuse to route others through it. 7367 */ 7368 7369 kvm_set_msi_irq(kvm, e, &irq); 7370 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) || 7371 !kvm_irq_is_postable(&irq)) { 7372 /* 7373 * Make sure the IRTE is in remapped mode if 7374 * we don't handle it in posted mode. 7375 */ 7376 ret = irq_set_vcpu_affinity(host_irq, NULL); 7377 if (ret < 0) { 7378 printk(KERN_INFO 7379 "failed to back to remapped mode, irq: %u\n", 7380 host_irq); 7381 goto out; 7382 } 7383 7384 continue; 7385 } 7386 7387 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu)); 7388 vcpu_info.vector = irq.vector; 7389 7390 trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi, 7391 vcpu_info.vector, vcpu_info.pi_desc_addr, set); 7392 7393 if (set) 7394 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info); 7395 else 7396 ret = irq_set_vcpu_affinity(host_irq, NULL); 7397 7398 if (ret < 0) { 7399 printk(KERN_INFO "%s: failed to update PI IRTE\n", 7400 __func__); 7401 goto out; 7402 } 7403 } 7404 7405 ret = 0; 7406 out: 7407 srcu_read_unlock(&kvm->irq_srcu, idx); 7408 return ret; 7409 } 7410 7411 static void vmx_setup_mce(struct kvm_vcpu *vcpu) 7412 { 7413 if (vcpu->arch.mcg_cap & MCG_LMCE_P) 7414 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 7415 FEATURE_CONTROL_LMCE; 7416 else 7417 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 7418 ~FEATURE_CONTROL_LMCE; 7419 } 7420 7421 static int vmx_smi_allowed(struct kvm_vcpu *vcpu) 7422 { 7423 /* we need a nested vmexit to enter SMM, postpone if run is pending */ 7424 if (to_vmx(vcpu)->nested.nested_run_pending) 7425 return 0; 7426 return 1; 7427 } 7428 7429 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate) 7430 { 7431 struct vcpu_vmx *vmx = to_vmx(vcpu); 7432 7433 vmx->nested.smm.guest_mode = is_guest_mode(vcpu); 7434 if (vmx->nested.smm.guest_mode) 7435 nested_vmx_vmexit(vcpu, -1, 0, 0); 7436 7437 vmx->nested.smm.vmxon = vmx->nested.vmxon; 7438 vmx->nested.vmxon = false; 7439 vmx_clear_hlt(vcpu); 7440 return 0; 7441 } 7442 7443 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) 7444 { 7445 struct vcpu_vmx *vmx = to_vmx(vcpu); 7446 int ret; 7447 7448 if (vmx->nested.smm.vmxon) { 7449 vmx->nested.vmxon = true; 7450 vmx->nested.smm.vmxon = false; 7451 } 7452 7453 if (vmx->nested.smm.guest_mode) { 7454 ret = nested_vmx_enter_non_root_mode(vcpu, false); 7455 if (ret) 7456 return ret; 7457 7458 vmx->nested.smm.guest_mode = false; 7459 } 7460 return 0; 7461 } 7462 7463 static int enable_smi_window(struct kvm_vcpu *vcpu) 7464 { 7465 return 0; 7466 } 7467 7468 static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu) 7469 { 7470 return false; 7471 } 7472 7473 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 7474 { 7475 return to_vmx(vcpu)->nested.vmxon; 7476 } 7477 7478 static __init int hardware_setup(void) 7479 { 7480 unsigned long host_bndcfgs; 7481 struct desc_ptr dt; 7482 int r, i; 7483 7484 rdmsrl_safe(MSR_EFER, &host_efer); 7485 7486 store_idt(&dt); 7487 host_idt_base = dt.address; 7488 7489 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) 7490 kvm_define_shared_msr(i, vmx_msr_index[i]); 7491 7492 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) 7493 return -EIO; 7494 7495 if (boot_cpu_has(X86_FEATURE_NX)) 7496 kvm_enable_efer_bits(EFER_NX); 7497 7498 if (boot_cpu_has(X86_FEATURE_MPX)) { 7499 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); 7500 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost"); 7501 } 7502 7503 if (boot_cpu_has(X86_FEATURE_XSAVES)) 7504 rdmsrl(MSR_IA32_XSS, host_xss); 7505 7506 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || 7507 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) 7508 enable_vpid = 0; 7509 7510 if (!cpu_has_vmx_ept() || 7511 !cpu_has_vmx_ept_4levels() || 7512 !cpu_has_vmx_ept_mt_wb() || 7513 !cpu_has_vmx_invept_global()) 7514 enable_ept = 0; 7515 7516 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) 7517 enable_ept_ad_bits = 0; 7518 7519 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) 7520 enable_unrestricted_guest = 0; 7521 7522 if (!cpu_has_vmx_flexpriority()) 7523 flexpriority_enabled = 0; 7524 7525 if (!cpu_has_virtual_nmis()) 7526 enable_vnmi = 0; 7527 7528 /* 7529 * set_apic_access_page_addr() is used to reload apic access 7530 * page upon invalidation. No need to do anything if not 7531 * using the APIC_ACCESS_ADDR VMCS field. 7532 */ 7533 if (!flexpriority_enabled) 7534 kvm_x86_ops->set_apic_access_page_addr = NULL; 7535 7536 if (!cpu_has_vmx_tpr_shadow()) 7537 kvm_x86_ops->update_cr8_intercept = NULL; 7538 7539 if (enable_ept && !cpu_has_vmx_ept_2m_page()) 7540 kvm_disable_largepages(); 7541 7542 #if IS_ENABLED(CONFIG_HYPERV) 7543 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH 7544 && enable_ept) { 7545 kvm_x86_ops->tlb_remote_flush = hv_remote_flush_tlb; 7546 kvm_x86_ops->tlb_remote_flush_with_range = 7547 hv_remote_flush_tlb_with_range; 7548 } 7549 #endif 7550 7551 if (!cpu_has_vmx_ple()) { 7552 ple_gap = 0; 7553 ple_window = 0; 7554 ple_window_grow = 0; 7555 ple_window_max = 0; 7556 ple_window_shrink = 0; 7557 } 7558 7559 if (!cpu_has_vmx_apicv()) { 7560 enable_apicv = 0; 7561 kvm_x86_ops->sync_pir_to_irr = NULL; 7562 } 7563 7564 if (cpu_has_vmx_tsc_scaling()) { 7565 kvm_has_tsc_control = true; 7566 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; 7567 kvm_tsc_scaling_ratio_frac_bits = 48; 7568 } 7569 7570 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ 7571 7572 if (enable_ept) 7573 vmx_enable_tdp(); 7574 else 7575 kvm_disable_tdp(); 7576 7577 /* 7578 * Only enable PML when hardware supports PML feature, and both EPT 7579 * and EPT A/D bit features are enabled -- PML depends on them to work. 7580 */ 7581 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) 7582 enable_pml = 0; 7583 7584 if (!enable_pml) { 7585 kvm_x86_ops->slot_enable_log_dirty = NULL; 7586 kvm_x86_ops->slot_disable_log_dirty = NULL; 7587 kvm_x86_ops->flush_log_dirty = NULL; 7588 kvm_x86_ops->enable_log_dirty_pt_masked = NULL; 7589 } 7590 7591 if (!cpu_has_vmx_preemption_timer()) 7592 enable_preemption_timer = false; 7593 7594 if (enable_preemption_timer) { 7595 u64 use_timer_freq = 5000ULL * 1000 * 1000; 7596 u64 vmx_msr; 7597 7598 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr); 7599 cpu_preemption_timer_multi = 7600 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; 7601 7602 if (tsc_khz) 7603 use_timer_freq = (u64)tsc_khz * 1000; 7604 use_timer_freq >>= cpu_preemption_timer_multi; 7605 7606 /* 7607 * KVM "disables" the preemption timer by setting it to its max 7608 * value. Don't use the timer if it might cause spurious exits 7609 * at a rate faster than 0.1 Hz (of uninterrupted guest time). 7610 */ 7611 if (use_timer_freq > 0xffffffffu / 10) 7612 enable_preemption_timer = false; 7613 } 7614 7615 if (!enable_preemption_timer) { 7616 kvm_x86_ops->set_hv_timer = NULL; 7617 kvm_x86_ops->cancel_hv_timer = NULL; 7618 kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit; 7619 } 7620 7621 kvm_set_posted_intr_wakeup_handler(wakeup_handler); 7622 7623 kvm_mce_cap_supported |= MCG_LMCE_P; 7624 7625 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) 7626 return -EINVAL; 7627 if (!enable_ept || !cpu_has_vmx_intel_pt()) 7628 pt_mode = PT_MODE_SYSTEM; 7629 7630 if (nested) { 7631 nested_vmx_setup_ctls_msrs(&vmcs_config.nested, 7632 vmx_capability.ept, enable_apicv); 7633 7634 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); 7635 if (r) 7636 return r; 7637 } 7638 7639 r = alloc_kvm_area(); 7640 if (r) 7641 nested_vmx_hardware_unsetup(); 7642 return r; 7643 } 7644 7645 static __exit void hardware_unsetup(void) 7646 { 7647 if (nested) 7648 nested_vmx_hardware_unsetup(); 7649 7650 free_kvm_area(); 7651 } 7652 7653 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = { 7654 .cpu_has_kvm_support = cpu_has_kvm_support, 7655 .disabled_by_bios = vmx_disabled_by_bios, 7656 .hardware_setup = hardware_setup, 7657 .hardware_unsetup = hardware_unsetup, 7658 .check_processor_compatibility = vmx_check_processor_compat, 7659 .hardware_enable = hardware_enable, 7660 .hardware_disable = hardware_disable, 7661 .cpu_has_accelerated_tpr = report_flexpriority, 7662 .has_emulated_msr = vmx_has_emulated_msr, 7663 7664 .vm_init = vmx_vm_init, 7665 .vm_alloc = vmx_vm_alloc, 7666 .vm_free = vmx_vm_free, 7667 7668 .vcpu_create = vmx_create_vcpu, 7669 .vcpu_free = vmx_free_vcpu, 7670 .vcpu_reset = vmx_vcpu_reset, 7671 7672 .prepare_guest_switch = vmx_prepare_switch_to_guest, 7673 .vcpu_load = vmx_vcpu_load, 7674 .vcpu_put = vmx_vcpu_put, 7675 7676 .update_bp_intercept = update_exception_bitmap, 7677 .get_msr_feature = vmx_get_msr_feature, 7678 .get_msr = vmx_get_msr, 7679 .set_msr = vmx_set_msr, 7680 .get_segment_base = vmx_get_segment_base, 7681 .get_segment = vmx_get_segment, 7682 .set_segment = vmx_set_segment, 7683 .get_cpl = vmx_get_cpl, 7684 .get_cs_db_l_bits = vmx_get_cs_db_l_bits, 7685 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits, 7686 .decache_cr3 = vmx_decache_cr3, 7687 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits, 7688 .set_cr0 = vmx_set_cr0, 7689 .set_cr3 = vmx_set_cr3, 7690 .set_cr4 = vmx_set_cr4, 7691 .set_efer = vmx_set_efer, 7692 .get_idt = vmx_get_idt, 7693 .set_idt = vmx_set_idt, 7694 .get_gdt = vmx_get_gdt, 7695 .set_gdt = vmx_set_gdt, 7696 .get_dr6 = vmx_get_dr6, 7697 .set_dr6 = vmx_set_dr6, 7698 .set_dr7 = vmx_set_dr7, 7699 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, 7700 .cache_reg = vmx_cache_reg, 7701 .get_rflags = vmx_get_rflags, 7702 .set_rflags = vmx_set_rflags, 7703 7704 .tlb_flush = vmx_flush_tlb, 7705 .tlb_flush_gva = vmx_flush_tlb_gva, 7706 7707 .run = vmx_vcpu_run, 7708 .handle_exit = vmx_handle_exit, 7709 .skip_emulated_instruction = __skip_emulated_instruction, 7710 .set_interrupt_shadow = vmx_set_interrupt_shadow, 7711 .get_interrupt_shadow = vmx_get_interrupt_shadow, 7712 .patch_hypercall = vmx_patch_hypercall, 7713 .set_irq = vmx_inject_irq, 7714 .set_nmi = vmx_inject_nmi, 7715 .queue_exception = vmx_queue_exception, 7716 .cancel_injection = vmx_cancel_injection, 7717 .interrupt_allowed = vmx_interrupt_allowed, 7718 .nmi_allowed = vmx_nmi_allowed, 7719 .get_nmi_mask = vmx_get_nmi_mask, 7720 .set_nmi_mask = vmx_set_nmi_mask, 7721 .enable_nmi_window = enable_nmi_window, 7722 .enable_irq_window = enable_irq_window, 7723 .update_cr8_intercept = update_cr8_intercept, 7724 .set_virtual_apic_mode = vmx_set_virtual_apic_mode, 7725 .set_apic_access_page_addr = vmx_set_apic_access_page_addr, 7726 .get_enable_apicv = vmx_get_enable_apicv, 7727 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, 7728 .load_eoi_exitmap = vmx_load_eoi_exitmap, 7729 .apicv_post_state_restore = vmx_apicv_post_state_restore, 7730 .hwapic_irr_update = vmx_hwapic_irr_update, 7731 .hwapic_isr_update = vmx_hwapic_isr_update, 7732 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt, 7733 .sync_pir_to_irr = vmx_sync_pir_to_irr, 7734 .deliver_posted_interrupt = vmx_deliver_posted_interrupt, 7735 .dy_apicv_has_pending_interrupt = vmx_dy_apicv_has_pending_interrupt, 7736 7737 .set_tss_addr = vmx_set_tss_addr, 7738 .set_identity_map_addr = vmx_set_identity_map_addr, 7739 .get_tdp_level = get_ept_level, 7740 .get_mt_mask = vmx_get_mt_mask, 7741 7742 .get_exit_info = vmx_get_exit_info, 7743 7744 .get_lpage_level = vmx_get_lpage_level, 7745 7746 .cpuid_update = vmx_cpuid_update, 7747 7748 .rdtscp_supported = vmx_rdtscp_supported, 7749 .invpcid_supported = vmx_invpcid_supported, 7750 7751 .set_supported_cpuid = vmx_set_supported_cpuid, 7752 7753 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, 7754 7755 .read_l1_tsc_offset = vmx_read_l1_tsc_offset, 7756 .write_l1_tsc_offset = vmx_write_l1_tsc_offset, 7757 7758 .set_tdp_cr3 = vmx_set_cr3, 7759 7760 .check_intercept = vmx_check_intercept, 7761 .handle_exit_irqoff = vmx_handle_exit_irqoff, 7762 .mpx_supported = vmx_mpx_supported, 7763 .xsaves_supported = vmx_xsaves_supported, 7764 .umip_emulated = vmx_umip_emulated, 7765 .pt_supported = vmx_pt_supported, 7766 7767 .request_immediate_exit = vmx_request_immediate_exit, 7768 7769 .sched_in = vmx_sched_in, 7770 7771 .slot_enable_log_dirty = vmx_slot_enable_log_dirty, 7772 .slot_disable_log_dirty = vmx_slot_disable_log_dirty, 7773 .flush_log_dirty = vmx_flush_log_dirty, 7774 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked, 7775 .write_log_dirty = vmx_write_pml_buffer, 7776 7777 .pre_block = vmx_pre_block, 7778 .post_block = vmx_post_block, 7779 7780 .pmu_ops = &intel_pmu_ops, 7781 7782 .update_pi_irte = vmx_update_pi_irte, 7783 7784 #ifdef CONFIG_X86_64 7785 .set_hv_timer = vmx_set_hv_timer, 7786 .cancel_hv_timer = vmx_cancel_hv_timer, 7787 #endif 7788 7789 .setup_mce = vmx_setup_mce, 7790 7791 .smi_allowed = vmx_smi_allowed, 7792 .pre_enter_smm = vmx_pre_enter_smm, 7793 .pre_leave_smm = vmx_pre_leave_smm, 7794 .enable_smi_window = enable_smi_window, 7795 7796 .check_nested_events = NULL, 7797 .get_nested_state = NULL, 7798 .set_nested_state = NULL, 7799 .get_vmcs12_pages = NULL, 7800 .nested_enable_evmcs = NULL, 7801 .nested_get_evmcs_version = NULL, 7802 .need_emulation_on_page_fault = vmx_need_emulation_on_page_fault, 7803 .apic_init_signal_blocked = vmx_apic_init_signal_blocked, 7804 }; 7805 7806 static void vmx_cleanup_l1d_flush(void) 7807 { 7808 if (vmx_l1d_flush_pages) { 7809 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); 7810 vmx_l1d_flush_pages = NULL; 7811 } 7812 /* Restore state so sysfs ignores VMX */ 7813 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 7814 } 7815 7816 static void vmx_exit(void) 7817 { 7818 #ifdef CONFIG_KEXEC_CORE 7819 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL); 7820 synchronize_rcu(); 7821 #endif 7822 7823 kvm_exit(); 7824 7825 #if IS_ENABLED(CONFIG_HYPERV) 7826 if (static_branch_unlikely(&enable_evmcs)) { 7827 int cpu; 7828 struct hv_vp_assist_page *vp_ap; 7829 /* 7830 * Reset everything to support using non-enlightened VMCS 7831 * access later (e.g. when we reload the module with 7832 * enlightened_vmcs=0) 7833 */ 7834 for_each_online_cpu(cpu) { 7835 vp_ap = hv_get_vp_assist_page(cpu); 7836 7837 if (!vp_ap) 7838 continue; 7839 7840 vp_ap->current_nested_vmcs = 0; 7841 vp_ap->enlighten_vmentry = 0; 7842 } 7843 7844 static_branch_disable(&enable_evmcs); 7845 } 7846 #endif 7847 vmx_cleanup_l1d_flush(); 7848 } 7849 module_exit(vmx_exit); 7850 7851 static int __init vmx_init(void) 7852 { 7853 int r; 7854 7855 #if IS_ENABLED(CONFIG_HYPERV) 7856 /* 7857 * Enlightened VMCS usage should be recommended and the host needs 7858 * to support eVMCS v1 or above. We can also disable eVMCS support 7859 * with module parameter. 7860 */ 7861 if (enlightened_vmcs && 7862 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && 7863 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= 7864 KVM_EVMCS_VERSION) { 7865 int cpu; 7866 7867 /* Check that we have assist pages on all online CPUs */ 7868 for_each_online_cpu(cpu) { 7869 if (!hv_get_vp_assist_page(cpu)) { 7870 enlightened_vmcs = false; 7871 break; 7872 } 7873 } 7874 7875 if (enlightened_vmcs) { 7876 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n"); 7877 static_branch_enable(&enable_evmcs); 7878 } 7879 } else { 7880 enlightened_vmcs = false; 7881 } 7882 #endif 7883 7884 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), 7885 __alignof__(struct vcpu_vmx), THIS_MODULE); 7886 if (r) 7887 return r; 7888 7889 /* 7890 * Must be called after kvm_init() so enable_ept is properly set 7891 * up. Hand the parameter mitigation value in which was stored in 7892 * the pre module init parser. If no parameter was given, it will 7893 * contain 'auto' which will be turned into the default 'cond' 7894 * mitigation mode. 7895 */ 7896 if (boot_cpu_has(X86_BUG_L1TF)) { 7897 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); 7898 if (r) { 7899 vmx_exit(); 7900 return r; 7901 } 7902 } 7903 7904 #ifdef CONFIG_KEXEC_CORE 7905 rcu_assign_pointer(crash_vmclear_loaded_vmcss, 7906 crash_vmclear_local_loaded_vmcss); 7907 #endif 7908 vmx_check_vmcs12_offsets(); 7909 7910 return 0; 7911 } 7912 module_init(vmx_init); 7913