xref: /linux/arch/x86/kvm/vmx/vmx.c (revision aead78125a987f48944bff2001f61df72b95afc4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/objtool.h>
26 #include <linux/sched.h>
27 #include <linux/sched/smt.h>
28 #include <linux/slab.h>
29 #include <linux/tboot.h>
30 #include <linux/trace_events.h>
31 #include <linux/entry-kvm.h>
32 
33 #include <asm/apic.h>
34 #include <asm/asm.h>
35 #include <asm/cpu.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/debugreg.h>
38 #include <asm/desc.h>
39 #include <asm/fpu/api.h>
40 #include <asm/fpu/xstate.h>
41 #include <asm/idtentry.h>
42 #include <asm/io.h>
43 #include <asm/irq_remapping.h>
44 #include <asm/kexec.h>
45 #include <asm/perf_event.h>
46 #include <asm/mmu_context.h>
47 #include <asm/mshyperv.h>
48 #include <asm/mwait.h>
49 #include <asm/spec-ctrl.h>
50 #include <asm/virtext.h>
51 #include <asm/vmx.h>
52 
53 #include "capabilities.h"
54 #include "cpuid.h"
55 #include "hyperv.h"
56 #include "kvm_onhyperv.h"
57 #include "irq.h"
58 #include "kvm_cache_regs.h"
59 #include "lapic.h"
60 #include "mmu.h"
61 #include "nested.h"
62 #include "pmu.h"
63 #include "sgx.h"
64 #include "trace.h"
65 #include "vmcs.h"
66 #include "vmcs12.h"
67 #include "vmx.h"
68 #include "x86.h"
69 #include "smm.h"
70 
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73 
74 #ifdef MODULE
75 static const struct x86_cpu_id vmx_cpu_id[] = {
76 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
77 	{}
78 };
79 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
80 #endif
81 
82 bool __read_mostly enable_vpid = 1;
83 module_param_named(vpid, enable_vpid, bool, 0444);
84 
85 static bool __read_mostly enable_vnmi = 1;
86 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
87 
88 bool __read_mostly flexpriority_enabled = 1;
89 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
90 
91 bool __read_mostly enable_ept = 1;
92 module_param_named(ept, enable_ept, bool, S_IRUGO);
93 
94 bool __read_mostly enable_unrestricted_guest = 1;
95 module_param_named(unrestricted_guest,
96 			enable_unrestricted_guest, bool, S_IRUGO);
97 
98 bool __read_mostly enable_ept_ad_bits = 1;
99 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
100 
101 static bool __read_mostly emulate_invalid_guest_state = true;
102 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
103 
104 static bool __read_mostly fasteoi = 1;
105 module_param(fasteoi, bool, S_IRUGO);
106 
107 module_param(enable_apicv, bool, S_IRUGO);
108 
109 bool __read_mostly enable_ipiv = true;
110 module_param(enable_ipiv, bool, 0444);
111 
112 /*
113  * If nested=1, nested virtualization is supported, i.e., guests may use
114  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
115  * use VMX instructions.
116  */
117 static bool __read_mostly nested = 1;
118 module_param(nested, bool, S_IRUGO);
119 
120 bool __read_mostly enable_pml = 1;
121 module_param_named(pml, enable_pml, bool, S_IRUGO);
122 
123 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
124 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
125 
126 static bool __read_mostly dump_invalid_vmcs = 0;
127 module_param(dump_invalid_vmcs, bool, 0644);
128 
129 #define MSR_BITMAP_MODE_X2APIC		1
130 #define MSR_BITMAP_MODE_X2APIC_APICV	2
131 
132 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
133 
134 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
135 static int __read_mostly cpu_preemption_timer_multi;
136 static bool __read_mostly enable_preemption_timer = 1;
137 #ifdef CONFIG_X86_64
138 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
139 #endif
140 
141 extern bool __read_mostly allow_smaller_maxphyaddr;
142 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
143 
144 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
145 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
146 #define KVM_VM_CR0_ALWAYS_ON				\
147 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
148 
149 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
150 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
151 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
152 
153 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
154 
155 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
156 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
157 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
158 	RTIT_STATUS_BYTECNT))
159 
160 /*
161  * List of MSRs that can be directly passed to the guest.
162  * In addition to these x2apic and PT MSRs are handled specially.
163  */
164 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
165 	MSR_IA32_SPEC_CTRL,
166 	MSR_IA32_PRED_CMD,
167 	MSR_IA32_FLUSH_CMD,
168 	MSR_IA32_TSC,
169 #ifdef CONFIG_X86_64
170 	MSR_FS_BASE,
171 	MSR_GS_BASE,
172 	MSR_KERNEL_GS_BASE,
173 	MSR_IA32_XFD,
174 	MSR_IA32_XFD_ERR,
175 #endif
176 	MSR_IA32_SYSENTER_CS,
177 	MSR_IA32_SYSENTER_ESP,
178 	MSR_IA32_SYSENTER_EIP,
179 	MSR_CORE_C1_RES,
180 	MSR_CORE_C3_RESIDENCY,
181 	MSR_CORE_C6_RESIDENCY,
182 	MSR_CORE_C7_RESIDENCY,
183 };
184 
185 /*
186  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
187  * ple_gap:    upper bound on the amount of time between two successive
188  *             executions of PAUSE in a loop. Also indicate if ple enabled.
189  *             According to test, this time is usually smaller than 128 cycles.
190  * ple_window: upper bound on the amount of time a guest is allowed to execute
191  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
192  *             less than 2^12 cycles
193  * Time is measured based on a counter that runs at the same rate as the TSC,
194  * refer SDM volume 3b section 21.6.13 & 22.1.3.
195  */
196 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
197 module_param(ple_gap, uint, 0444);
198 
199 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
200 module_param(ple_window, uint, 0444);
201 
202 /* Default doubles per-vcpu window every exit. */
203 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
204 module_param(ple_window_grow, uint, 0444);
205 
206 /* Default resets per-vcpu window every exit to ple_window. */
207 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
208 module_param(ple_window_shrink, uint, 0444);
209 
210 /* Default is to compute the maximum so we can never overflow. */
211 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
212 module_param(ple_window_max, uint, 0444);
213 
214 /* Default is SYSTEM mode, 1 for host-guest mode */
215 int __read_mostly pt_mode = PT_MODE_SYSTEM;
216 module_param(pt_mode, int, S_IRUGO);
217 
218 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
219 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
220 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
221 
222 /* Storage for pre module init parameter parsing */
223 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
224 
225 static const struct {
226 	const char *option;
227 	bool for_parse;
228 } vmentry_l1d_param[] = {
229 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
230 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
231 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
232 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
233 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
234 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
235 };
236 
237 #define L1D_CACHE_ORDER 4
238 static void *vmx_l1d_flush_pages;
239 
240 /* Control for disabling CPU Fill buffer clear */
241 static bool __read_mostly vmx_fb_clear_ctrl_available;
242 
243 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
244 {
245 	struct page *page;
246 	unsigned int i;
247 
248 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
249 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
250 		return 0;
251 	}
252 
253 	if (!enable_ept) {
254 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
255 		return 0;
256 	}
257 
258 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
259 		u64 msr;
260 
261 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
262 		if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
263 			l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
264 			return 0;
265 		}
266 	}
267 
268 	/* If set to auto use the default l1tf mitigation method */
269 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
270 		switch (l1tf_mitigation) {
271 		case L1TF_MITIGATION_OFF:
272 			l1tf = VMENTER_L1D_FLUSH_NEVER;
273 			break;
274 		case L1TF_MITIGATION_FLUSH_NOWARN:
275 		case L1TF_MITIGATION_FLUSH:
276 		case L1TF_MITIGATION_FLUSH_NOSMT:
277 			l1tf = VMENTER_L1D_FLUSH_COND;
278 			break;
279 		case L1TF_MITIGATION_FULL:
280 		case L1TF_MITIGATION_FULL_FORCE:
281 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
282 			break;
283 		}
284 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
285 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
286 	}
287 
288 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
289 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
290 		/*
291 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
292 		 * lifetime and so should not be charged to a memcg.
293 		 */
294 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
295 		if (!page)
296 			return -ENOMEM;
297 		vmx_l1d_flush_pages = page_address(page);
298 
299 		/*
300 		 * Initialize each page with a different pattern in
301 		 * order to protect against KSM in the nested
302 		 * virtualization case.
303 		 */
304 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
305 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
306 			       PAGE_SIZE);
307 		}
308 	}
309 
310 	l1tf_vmx_mitigation = l1tf;
311 
312 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
313 		static_branch_enable(&vmx_l1d_should_flush);
314 	else
315 		static_branch_disable(&vmx_l1d_should_flush);
316 
317 	if (l1tf == VMENTER_L1D_FLUSH_COND)
318 		static_branch_enable(&vmx_l1d_flush_cond);
319 	else
320 		static_branch_disable(&vmx_l1d_flush_cond);
321 	return 0;
322 }
323 
324 static int vmentry_l1d_flush_parse(const char *s)
325 {
326 	unsigned int i;
327 
328 	if (s) {
329 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
330 			if (vmentry_l1d_param[i].for_parse &&
331 			    sysfs_streq(s, vmentry_l1d_param[i].option))
332 				return i;
333 		}
334 	}
335 	return -EINVAL;
336 }
337 
338 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
339 {
340 	int l1tf, ret;
341 
342 	l1tf = vmentry_l1d_flush_parse(s);
343 	if (l1tf < 0)
344 		return l1tf;
345 
346 	if (!boot_cpu_has(X86_BUG_L1TF))
347 		return 0;
348 
349 	/*
350 	 * Has vmx_init() run already? If not then this is the pre init
351 	 * parameter parsing. In that case just store the value and let
352 	 * vmx_init() do the proper setup after enable_ept has been
353 	 * established.
354 	 */
355 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
356 		vmentry_l1d_flush_param = l1tf;
357 		return 0;
358 	}
359 
360 	mutex_lock(&vmx_l1d_flush_mutex);
361 	ret = vmx_setup_l1d_flush(l1tf);
362 	mutex_unlock(&vmx_l1d_flush_mutex);
363 	return ret;
364 }
365 
366 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
367 {
368 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
369 		return sprintf(s, "???\n");
370 
371 	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
372 }
373 
374 static void vmx_setup_fb_clear_ctrl(void)
375 {
376 	u64 msr;
377 
378 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES) &&
379 	    !boot_cpu_has_bug(X86_BUG_MDS) &&
380 	    !boot_cpu_has_bug(X86_BUG_TAA)) {
381 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
382 		if (msr & ARCH_CAP_FB_CLEAR_CTRL)
383 			vmx_fb_clear_ctrl_available = true;
384 	}
385 }
386 
387 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
388 {
389 	u64 msr;
390 
391 	if (!vmx->disable_fb_clear)
392 		return;
393 
394 	msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
395 	msr |= FB_CLEAR_DIS;
396 	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
397 	/* Cache the MSR value to avoid reading it later */
398 	vmx->msr_ia32_mcu_opt_ctrl = msr;
399 }
400 
401 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
402 {
403 	if (!vmx->disable_fb_clear)
404 		return;
405 
406 	vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
407 	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
408 }
409 
410 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
411 {
412 	vmx->disable_fb_clear = vmx_fb_clear_ctrl_available;
413 
414 	/*
415 	 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
416 	 * at VMEntry. Skip the MSR read/write when a guest has no use case to
417 	 * execute VERW.
418 	 */
419 	if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
420 	   ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
421 	    (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
422 	    (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
423 	    (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
424 	    (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
425 		vmx->disable_fb_clear = false;
426 }
427 
428 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
429 	.set = vmentry_l1d_flush_set,
430 	.get = vmentry_l1d_flush_get,
431 };
432 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
433 
434 static u32 vmx_segment_access_rights(struct kvm_segment *var);
435 
436 void vmx_vmexit(void);
437 
438 #define vmx_insn_failed(fmt...)		\
439 do {					\
440 	WARN_ONCE(1, fmt);		\
441 	pr_warn_ratelimited(fmt);	\
442 } while (0)
443 
444 void vmread_error(unsigned long field, bool fault)
445 {
446 	if (fault)
447 		kvm_spurious_fault();
448 	else
449 		vmx_insn_failed("vmread failed: field=%lx\n", field);
450 }
451 
452 noinline void vmwrite_error(unsigned long field, unsigned long value)
453 {
454 	vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
455 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
456 }
457 
458 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
459 {
460 	vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
461 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
462 }
463 
464 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
465 {
466 	vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
467 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
468 }
469 
470 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
471 {
472 	vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
473 			ext, vpid, gva);
474 }
475 
476 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
477 {
478 	vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
479 			ext, eptp, gpa);
480 }
481 
482 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
483 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
484 /*
485  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
486  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
487  */
488 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
489 
490 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
491 static DEFINE_SPINLOCK(vmx_vpid_lock);
492 
493 struct vmcs_config vmcs_config __ro_after_init;
494 struct vmx_capability vmx_capability __ro_after_init;
495 
496 #define VMX_SEGMENT_FIELD(seg)					\
497 	[VCPU_SREG_##seg] = {                                   \
498 		.selector = GUEST_##seg##_SELECTOR,		\
499 		.base = GUEST_##seg##_BASE,		   	\
500 		.limit = GUEST_##seg##_LIMIT,		   	\
501 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
502 	}
503 
504 static const struct kvm_vmx_segment_field {
505 	unsigned selector;
506 	unsigned base;
507 	unsigned limit;
508 	unsigned ar_bytes;
509 } kvm_vmx_segment_fields[] = {
510 	VMX_SEGMENT_FIELD(CS),
511 	VMX_SEGMENT_FIELD(DS),
512 	VMX_SEGMENT_FIELD(ES),
513 	VMX_SEGMENT_FIELD(FS),
514 	VMX_SEGMENT_FIELD(GS),
515 	VMX_SEGMENT_FIELD(SS),
516 	VMX_SEGMENT_FIELD(TR),
517 	VMX_SEGMENT_FIELD(LDTR),
518 };
519 
520 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
521 {
522 	vmx->segment_cache.bitmask = 0;
523 }
524 
525 static unsigned long host_idt_base;
526 
527 #if IS_ENABLED(CONFIG_HYPERV)
528 static struct kvm_x86_ops vmx_x86_ops __initdata;
529 
530 static bool __read_mostly enlightened_vmcs = true;
531 module_param(enlightened_vmcs, bool, 0444);
532 
533 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
534 {
535 	struct hv_enlightened_vmcs *evmcs;
536 	struct hv_partition_assist_pg **p_hv_pa_pg =
537 			&to_kvm_hv(vcpu->kvm)->hv_pa_pg;
538 	/*
539 	 * Synthetic VM-Exit is not enabled in current code and so All
540 	 * evmcs in singe VM shares same assist page.
541 	 */
542 	if (!*p_hv_pa_pg)
543 		*p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
544 
545 	if (!*p_hv_pa_pg)
546 		return -ENOMEM;
547 
548 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
549 
550 	evmcs->partition_assist_page =
551 		__pa(*p_hv_pa_pg);
552 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
553 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
554 
555 	return 0;
556 }
557 
558 static __init void hv_init_evmcs(void)
559 {
560 	int cpu;
561 
562 	if (!enlightened_vmcs)
563 		return;
564 
565 	/*
566 	 * Enlightened VMCS usage should be recommended and the host needs
567 	 * to support eVMCS v1 or above.
568 	 */
569 	if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
570 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
571 	     KVM_EVMCS_VERSION) {
572 
573 		/* Check that we have assist pages on all online CPUs */
574 		for_each_online_cpu(cpu) {
575 			if (!hv_get_vp_assist_page(cpu)) {
576 				enlightened_vmcs = false;
577 				break;
578 			}
579 		}
580 
581 		if (enlightened_vmcs) {
582 			pr_info("Using Hyper-V Enlightened VMCS\n");
583 			static_branch_enable(&__kvm_is_using_evmcs);
584 		}
585 
586 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
587 			vmx_x86_ops.enable_l2_tlb_flush
588 				= hv_enable_l2_tlb_flush;
589 
590 	} else {
591 		enlightened_vmcs = false;
592 	}
593 }
594 
595 static void hv_reset_evmcs(void)
596 {
597 	struct hv_vp_assist_page *vp_ap;
598 
599 	if (!kvm_is_using_evmcs())
600 		return;
601 
602 	/*
603 	 * KVM should enable eVMCS if and only if all CPUs have a VP assist
604 	 * page, and should reject CPU onlining if eVMCS is enabled the CPU
605 	 * doesn't have a VP assist page allocated.
606 	 */
607 	vp_ap = hv_get_vp_assist_page(smp_processor_id());
608 	if (WARN_ON_ONCE(!vp_ap))
609 		return;
610 
611 	/*
612 	 * Reset everything to support using non-enlightened VMCS access later
613 	 * (e.g. when we reload the module with enlightened_vmcs=0)
614 	 */
615 	vp_ap->nested_control.features.directhypercall = 0;
616 	vp_ap->current_nested_vmcs = 0;
617 	vp_ap->enlighten_vmentry = 0;
618 }
619 
620 #else /* IS_ENABLED(CONFIG_HYPERV) */
621 static void hv_init_evmcs(void) {}
622 static void hv_reset_evmcs(void) {}
623 #endif /* IS_ENABLED(CONFIG_HYPERV) */
624 
625 /*
626  * Comment's format: document - errata name - stepping - processor name.
627  * Refer from
628  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
629  */
630 static u32 vmx_preemption_cpu_tfms[] = {
631 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
632 0x000206E6,
633 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
634 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
635 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
636 0x00020652,
637 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
638 0x00020655,
639 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
640 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
641 /*
642  * 320767.pdf - AAP86  - B1 -
643  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
644  */
645 0x000106E5,
646 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
647 0x000106A0,
648 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
649 0x000106A1,
650 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
651 0x000106A4,
652  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
653  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
654  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
655 0x000106A5,
656  /* Xeon E3-1220 V2 */
657 0x000306A8,
658 };
659 
660 static inline bool cpu_has_broken_vmx_preemption_timer(void)
661 {
662 	u32 eax = cpuid_eax(0x00000001), i;
663 
664 	/* Clear the reserved bits */
665 	eax &= ~(0x3U << 14 | 0xfU << 28);
666 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
667 		if (eax == vmx_preemption_cpu_tfms[i])
668 			return true;
669 
670 	return false;
671 }
672 
673 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
674 {
675 	return flexpriority_enabled && lapic_in_kernel(vcpu);
676 }
677 
678 static int possible_passthrough_msr_slot(u32 msr)
679 {
680 	u32 i;
681 
682 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
683 		if (vmx_possible_passthrough_msrs[i] == msr)
684 			return i;
685 
686 	return -ENOENT;
687 }
688 
689 static bool is_valid_passthrough_msr(u32 msr)
690 {
691 	bool r;
692 
693 	switch (msr) {
694 	case 0x800 ... 0x8ff:
695 		/* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
696 		return true;
697 	case MSR_IA32_RTIT_STATUS:
698 	case MSR_IA32_RTIT_OUTPUT_BASE:
699 	case MSR_IA32_RTIT_OUTPUT_MASK:
700 	case MSR_IA32_RTIT_CR3_MATCH:
701 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
702 		/* PT MSRs. These are handled in pt_update_intercept_for_msr() */
703 	case MSR_LBR_SELECT:
704 	case MSR_LBR_TOS:
705 	case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
706 	case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
707 	case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
708 	case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
709 	case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
710 		/* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
711 		return true;
712 	}
713 
714 	r = possible_passthrough_msr_slot(msr) != -ENOENT;
715 
716 	WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
717 
718 	return r;
719 }
720 
721 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
722 {
723 	int i;
724 
725 	i = kvm_find_user_return_msr(msr);
726 	if (i >= 0)
727 		return &vmx->guest_uret_msrs[i];
728 	return NULL;
729 }
730 
731 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
732 				  struct vmx_uret_msr *msr, u64 data)
733 {
734 	unsigned int slot = msr - vmx->guest_uret_msrs;
735 	int ret = 0;
736 
737 	if (msr->load_into_hardware) {
738 		preempt_disable();
739 		ret = kvm_set_user_return_msr(slot, data, msr->mask);
740 		preempt_enable();
741 	}
742 	if (!ret)
743 		msr->data = data;
744 	return ret;
745 }
746 
747 #ifdef CONFIG_KEXEC_CORE
748 static void crash_vmclear_local_loaded_vmcss(void)
749 {
750 	int cpu = raw_smp_processor_id();
751 	struct loaded_vmcs *v;
752 
753 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
754 			    loaded_vmcss_on_cpu_link)
755 		vmcs_clear(v->vmcs);
756 }
757 #endif /* CONFIG_KEXEC_CORE */
758 
759 static void __loaded_vmcs_clear(void *arg)
760 {
761 	struct loaded_vmcs *loaded_vmcs = arg;
762 	int cpu = raw_smp_processor_id();
763 
764 	if (loaded_vmcs->cpu != cpu)
765 		return; /* vcpu migration can race with cpu offline */
766 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
767 		per_cpu(current_vmcs, cpu) = NULL;
768 
769 	vmcs_clear(loaded_vmcs->vmcs);
770 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
771 		vmcs_clear(loaded_vmcs->shadow_vmcs);
772 
773 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
774 
775 	/*
776 	 * Ensure all writes to loaded_vmcs, including deleting it from its
777 	 * current percpu list, complete before setting loaded_vmcs->cpu to
778 	 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
779 	 * and add loaded_vmcs to its percpu list before it's deleted from this
780 	 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
781 	 */
782 	smp_wmb();
783 
784 	loaded_vmcs->cpu = -1;
785 	loaded_vmcs->launched = 0;
786 }
787 
788 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
789 {
790 	int cpu = loaded_vmcs->cpu;
791 
792 	if (cpu != -1)
793 		smp_call_function_single(cpu,
794 			 __loaded_vmcs_clear, loaded_vmcs, 1);
795 }
796 
797 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
798 				       unsigned field)
799 {
800 	bool ret;
801 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
802 
803 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
804 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
805 		vmx->segment_cache.bitmask = 0;
806 	}
807 	ret = vmx->segment_cache.bitmask & mask;
808 	vmx->segment_cache.bitmask |= mask;
809 	return ret;
810 }
811 
812 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
813 {
814 	u16 *p = &vmx->segment_cache.seg[seg].selector;
815 
816 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
817 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
818 	return *p;
819 }
820 
821 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
822 {
823 	ulong *p = &vmx->segment_cache.seg[seg].base;
824 
825 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
826 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
827 	return *p;
828 }
829 
830 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
831 {
832 	u32 *p = &vmx->segment_cache.seg[seg].limit;
833 
834 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
835 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
836 	return *p;
837 }
838 
839 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
840 {
841 	u32 *p = &vmx->segment_cache.seg[seg].ar;
842 
843 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
844 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
845 	return *p;
846 }
847 
848 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
849 {
850 	u32 eb;
851 
852 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
853 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
854 	/*
855 	 * Guest access to VMware backdoor ports could legitimately
856 	 * trigger #GP because of TSS I/O permission bitmap.
857 	 * We intercept those #GP and allow access to them anyway
858 	 * as VMware does.
859 	 */
860 	if (enable_vmware_backdoor)
861 		eb |= (1u << GP_VECTOR);
862 	if ((vcpu->guest_debug &
863 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
864 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
865 		eb |= 1u << BP_VECTOR;
866 	if (to_vmx(vcpu)->rmode.vm86_active)
867 		eb = ~0;
868 	if (!vmx_need_pf_intercept(vcpu))
869 		eb &= ~(1u << PF_VECTOR);
870 
871 	/* When we are running a nested L2 guest and L1 specified for it a
872 	 * certain exception bitmap, we must trap the same exceptions and pass
873 	 * them to L1. When running L2, we will only handle the exceptions
874 	 * specified above if L1 did not want them.
875 	 */
876 	if (is_guest_mode(vcpu))
877 		eb |= get_vmcs12(vcpu)->exception_bitmap;
878 	else {
879 		int mask = 0, match = 0;
880 
881 		if (enable_ept && (eb & (1u << PF_VECTOR))) {
882 			/*
883 			 * If EPT is enabled, #PF is currently only intercepted
884 			 * if MAXPHYADDR is smaller on the guest than on the
885 			 * host.  In that case we only care about present,
886 			 * non-reserved faults.  For vmcs02, however, PFEC_MASK
887 			 * and PFEC_MATCH are set in prepare_vmcs02_rare.
888 			 */
889 			mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
890 			match = PFERR_PRESENT_MASK;
891 		}
892 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
893 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
894 	}
895 
896 	/*
897 	 * Disabling xfd interception indicates that dynamic xfeatures
898 	 * might be used in the guest. Always trap #NM in this case
899 	 * to save guest xfd_err timely.
900 	 */
901 	if (vcpu->arch.xfd_no_write_intercept)
902 		eb |= (1u << NM_VECTOR);
903 
904 	vmcs_write32(EXCEPTION_BITMAP, eb);
905 }
906 
907 /*
908  * Check if MSR is intercepted for currently loaded MSR bitmap.
909  */
910 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
911 {
912 	if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
913 		return true;
914 
915 	return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
916 }
917 
918 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
919 {
920 	unsigned int flags = 0;
921 
922 	if (vmx->loaded_vmcs->launched)
923 		flags |= VMX_RUN_VMRESUME;
924 
925 	/*
926 	 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
927 	 * to change it directly without causing a vmexit.  In that case read
928 	 * it after vmexit and store it in vmx->spec_ctrl.
929 	 */
930 	if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
931 		flags |= VMX_RUN_SAVE_SPEC_CTRL;
932 
933 	return flags;
934 }
935 
936 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
937 		unsigned long entry, unsigned long exit)
938 {
939 	vm_entry_controls_clearbit(vmx, entry);
940 	vm_exit_controls_clearbit(vmx, exit);
941 }
942 
943 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
944 {
945 	unsigned int i;
946 
947 	for (i = 0; i < m->nr; ++i) {
948 		if (m->val[i].index == msr)
949 			return i;
950 	}
951 	return -ENOENT;
952 }
953 
954 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
955 {
956 	int i;
957 	struct msr_autoload *m = &vmx->msr_autoload;
958 
959 	switch (msr) {
960 	case MSR_EFER:
961 		if (cpu_has_load_ia32_efer()) {
962 			clear_atomic_switch_msr_special(vmx,
963 					VM_ENTRY_LOAD_IA32_EFER,
964 					VM_EXIT_LOAD_IA32_EFER);
965 			return;
966 		}
967 		break;
968 	case MSR_CORE_PERF_GLOBAL_CTRL:
969 		if (cpu_has_load_perf_global_ctrl()) {
970 			clear_atomic_switch_msr_special(vmx,
971 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
972 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
973 			return;
974 		}
975 		break;
976 	}
977 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
978 	if (i < 0)
979 		goto skip_guest;
980 	--m->guest.nr;
981 	m->guest.val[i] = m->guest.val[m->guest.nr];
982 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
983 
984 skip_guest:
985 	i = vmx_find_loadstore_msr_slot(&m->host, msr);
986 	if (i < 0)
987 		return;
988 
989 	--m->host.nr;
990 	m->host.val[i] = m->host.val[m->host.nr];
991 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
992 }
993 
994 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
995 		unsigned long entry, unsigned long exit,
996 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
997 		u64 guest_val, u64 host_val)
998 {
999 	vmcs_write64(guest_val_vmcs, guest_val);
1000 	if (host_val_vmcs != HOST_IA32_EFER)
1001 		vmcs_write64(host_val_vmcs, host_val);
1002 	vm_entry_controls_setbit(vmx, entry);
1003 	vm_exit_controls_setbit(vmx, exit);
1004 }
1005 
1006 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1007 				  u64 guest_val, u64 host_val, bool entry_only)
1008 {
1009 	int i, j = 0;
1010 	struct msr_autoload *m = &vmx->msr_autoload;
1011 
1012 	switch (msr) {
1013 	case MSR_EFER:
1014 		if (cpu_has_load_ia32_efer()) {
1015 			add_atomic_switch_msr_special(vmx,
1016 					VM_ENTRY_LOAD_IA32_EFER,
1017 					VM_EXIT_LOAD_IA32_EFER,
1018 					GUEST_IA32_EFER,
1019 					HOST_IA32_EFER,
1020 					guest_val, host_val);
1021 			return;
1022 		}
1023 		break;
1024 	case MSR_CORE_PERF_GLOBAL_CTRL:
1025 		if (cpu_has_load_perf_global_ctrl()) {
1026 			add_atomic_switch_msr_special(vmx,
1027 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1028 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1029 					GUEST_IA32_PERF_GLOBAL_CTRL,
1030 					HOST_IA32_PERF_GLOBAL_CTRL,
1031 					guest_val, host_val);
1032 			return;
1033 		}
1034 		break;
1035 	case MSR_IA32_PEBS_ENABLE:
1036 		/* PEBS needs a quiescent period after being disabled (to write
1037 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
1038 		 * provide that period, so a CPU could write host's record into
1039 		 * guest's memory.
1040 		 */
1041 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1042 	}
1043 
1044 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1045 	if (!entry_only)
1046 		j = vmx_find_loadstore_msr_slot(&m->host, msr);
1047 
1048 	if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1049 	    (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1050 		printk_once(KERN_WARNING "Not enough msr switch entries. "
1051 				"Can't add msr %x\n", msr);
1052 		return;
1053 	}
1054 	if (i < 0) {
1055 		i = m->guest.nr++;
1056 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1057 	}
1058 	m->guest.val[i].index = msr;
1059 	m->guest.val[i].value = guest_val;
1060 
1061 	if (entry_only)
1062 		return;
1063 
1064 	if (j < 0) {
1065 		j = m->host.nr++;
1066 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1067 	}
1068 	m->host.val[j].index = msr;
1069 	m->host.val[j].value = host_val;
1070 }
1071 
1072 static bool update_transition_efer(struct vcpu_vmx *vmx)
1073 {
1074 	u64 guest_efer = vmx->vcpu.arch.efer;
1075 	u64 ignore_bits = 0;
1076 	int i;
1077 
1078 	/* Shadow paging assumes NX to be available.  */
1079 	if (!enable_ept)
1080 		guest_efer |= EFER_NX;
1081 
1082 	/*
1083 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1084 	 */
1085 	ignore_bits |= EFER_SCE;
1086 #ifdef CONFIG_X86_64
1087 	ignore_bits |= EFER_LMA | EFER_LME;
1088 	/* SCE is meaningful only in long mode on Intel */
1089 	if (guest_efer & EFER_LMA)
1090 		ignore_bits &= ~(u64)EFER_SCE;
1091 #endif
1092 
1093 	/*
1094 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1095 	 * On CPUs that support "load IA32_EFER", always switch EFER
1096 	 * atomically, since it's faster than switching it manually.
1097 	 */
1098 	if (cpu_has_load_ia32_efer() ||
1099 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1100 		if (!(guest_efer & EFER_LMA))
1101 			guest_efer &= ~EFER_LME;
1102 		if (guest_efer != host_efer)
1103 			add_atomic_switch_msr(vmx, MSR_EFER,
1104 					      guest_efer, host_efer, false);
1105 		else
1106 			clear_atomic_switch_msr(vmx, MSR_EFER);
1107 		return false;
1108 	}
1109 
1110 	i = kvm_find_user_return_msr(MSR_EFER);
1111 	if (i < 0)
1112 		return false;
1113 
1114 	clear_atomic_switch_msr(vmx, MSR_EFER);
1115 
1116 	guest_efer &= ~ignore_bits;
1117 	guest_efer |= host_efer & ignore_bits;
1118 
1119 	vmx->guest_uret_msrs[i].data = guest_efer;
1120 	vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1121 
1122 	return true;
1123 }
1124 
1125 #ifdef CONFIG_X86_32
1126 /*
1127  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1128  * VMCS rather than the segment table.  KVM uses this helper to figure
1129  * out the current bases to poke them into the VMCS before entry.
1130  */
1131 static unsigned long segment_base(u16 selector)
1132 {
1133 	struct desc_struct *table;
1134 	unsigned long v;
1135 
1136 	if (!(selector & ~SEGMENT_RPL_MASK))
1137 		return 0;
1138 
1139 	table = get_current_gdt_ro();
1140 
1141 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1142 		u16 ldt_selector = kvm_read_ldt();
1143 
1144 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1145 			return 0;
1146 
1147 		table = (struct desc_struct *)segment_base(ldt_selector);
1148 	}
1149 	v = get_desc_base(&table[selector >> 3]);
1150 	return v;
1151 }
1152 #endif
1153 
1154 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1155 {
1156 	return vmx_pt_mode_is_host_guest() &&
1157 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1158 }
1159 
1160 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1161 {
1162 	/* The base must be 128-byte aligned and a legal physical address. */
1163 	return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1164 }
1165 
1166 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1167 {
1168 	u32 i;
1169 
1170 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1171 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1172 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1173 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1174 	for (i = 0; i < addr_range; i++) {
1175 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1176 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1177 	}
1178 }
1179 
1180 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1181 {
1182 	u32 i;
1183 
1184 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1185 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1186 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1187 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1188 	for (i = 0; i < addr_range; i++) {
1189 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1190 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1191 	}
1192 }
1193 
1194 static void pt_guest_enter(struct vcpu_vmx *vmx)
1195 {
1196 	if (vmx_pt_mode_is_system())
1197 		return;
1198 
1199 	/*
1200 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1201 	 * Save host state before VM entry.
1202 	 */
1203 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1204 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1205 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1206 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1207 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1208 	}
1209 }
1210 
1211 static void pt_guest_exit(struct vcpu_vmx *vmx)
1212 {
1213 	if (vmx_pt_mode_is_system())
1214 		return;
1215 
1216 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1217 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1218 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1219 	}
1220 
1221 	/*
1222 	 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1223 	 * i.e. RTIT_CTL is always cleared on VM-Exit.  Restore it if necessary.
1224 	 */
1225 	if (vmx->pt_desc.host.ctl)
1226 		wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1227 }
1228 
1229 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1230 			unsigned long fs_base, unsigned long gs_base)
1231 {
1232 	if (unlikely(fs_sel != host->fs_sel)) {
1233 		if (!(fs_sel & 7))
1234 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1235 		else
1236 			vmcs_write16(HOST_FS_SELECTOR, 0);
1237 		host->fs_sel = fs_sel;
1238 	}
1239 	if (unlikely(gs_sel != host->gs_sel)) {
1240 		if (!(gs_sel & 7))
1241 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1242 		else
1243 			vmcs_write16(HOST_GS_SELECTOR, 0);
1244 		host->gs_sel = gs_sel;
1245 	}
1246 	if (unlikely(fs_base != host->fs_base)) {
1247 		vmcs_writel(HOST_FS_BASE, fs_base);
1248 		host->fs_base = fs_base;
1249 	}
1250 	if (unlikely(gs_base != host->gs_base)) {
1251 		vmcs_writel(HOST_GS_BASE, gs_base);
1252 		host->gs_base = gs_base;
1253 	}
1254 }
1255 
1256 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1257 {
1258 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1259 	struct vmcs_host_state *host_state;
1260 #ifdef CONFIG_X86_64
1261 	int cpu = raw_smp_processor_id();
1262 #endif
1263 	unsigned long fs_base, gs_base;
1264 	u16 fs_sel, gs_sel;
1265 	int i;
1266 
1267 	vmx->req_immediate_exit = false;
1268 
1269 	/*
1270 	 * Note that guest MSRs to be saved/restored can also be changed
1271 	 * when guest state is loaded. This happens when guest transitions
1272 	 * to/from long-mode by setting MSR_EFER.LMA.
1273 	 */
1274 	if (!vmx->guest_uret_msrs_loaded) {
1275 		vmx->guest_uret_msrs_loaded = true;
1276 		for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1277 			if (!vmx->guest_uret_msrs[i].load_into_hardware)
1278 				continue;
1279 
1280 			kvm_set_user_return_msr(i,
1281 						vmx->guest_uret_msrs[i].data,
1282 						vmx->guest_uret_msrs[i].mask);
1283 		}
1284 	}
1285 
1286 	if (vmx->nested.need_vmcs12_to_shadow_sync)
1287 		nested_sync_vmcs12_to_shadow(vcpu);
1288 
1289 	if (vmx->guest_state_loaded)
1290 		return;
1291 
1292 	host_state = &vmx->loaded_vmcs->host_state;
1293 
1294 	/*
1295 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1296 	 * allow segment selectors with cpl > 0 or ti == 1.
1297 	 */
1298 	host_state->ldt_sel = kvm_read_ldt();
1299 
1300 #ifdef CONFIG_X86_64
1301 	savesegment(ds, host_state->ds_sel);
1302 	savesegment(es, host_state->es_sel);
1303 
1304 	gs_base = cpu_kernelmode_gs_base(cpu);
1305 	if (likely(is_64bit_mm(current->mm))) {
1306 		current_save_fsgs();
1307 		fs_sel = current->thread.fsindex;
1308 		gs_sel = current->thread.gsindex;
1309 		fs_base = current->thread.fsbase;
1310 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1311 	} else {
1312 		savesegment(fs, fs_sel);
1313 		savesegment(gs, gs_sel);
1314 		fs_base = read_msr(MSR_FS_BASE);
1315 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1316 	}
1317 
1318 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1319 #else
1320 	savesegment(fs, fs_sel);
1321 	savesegment(gs, gs_sel);
1322 	fs_base = segment_base(fs_sel);
1323 	gs_base = segment_base(gs_sel);
1324 #endif
1325 
1326 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1327 	vmx->guest_state_loaded = true;
1328 }
1329 
1330 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1331 {
1332 	struct vmcs_host_state *host_state;
1333 
1334 	if (!vmx->guest_state_loaded)
1335 		return;
1336 
1337 	host_state = &vmx->loaded_vmcs->host_state;
1338 
1339 	++vmx->vcpu.stat.host_state_reload;
1340 
1341 #ifdef CONFIG_X86_64
1342 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1343 #endif
1344 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1345 		kvm_load_ldt(host_state->ldt_sel);
1346 #ifdef CONFIG_X86_64
1347 		load_gs_index(host_state->gs_sel);
1348 #else
1349 		loadsegment(gs, host_state->gs_sel);
1350 #endif
1351 	}
1352 	if (host_state->fs_sel & 7)
1353 		loadsegment(fs, host_state->fs_sel);
1354 #ifdef CONFIG_X86_64
1355 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1356 		loadsegment(ds, host_state->ds_sel);
1357 		loadsegment(es, host_state->es_sel);
1358 	}
1359 #endif
1360 	invalidate_tss_limit();
1361 #ifdef CONFIG_X86_64
1362 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1363 #endif
1364 	load_fixmap_gdt(raw_smp_processor_id());
1365 	vmx->guest_state_loaded = false;
1366 	vmx->guest_uret_msrs_loaded = false;
1367 }
1368 
1369 #ifdef CONFIG_X86_64
1370 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1371 {
1372 	preempt_disable();
1373 	if (vmx->guest_state_loaded)
1374 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1375 	preempt_enable();
1376 	return vmx->msr_guest_kernel_gs_base;
1377 }
1378 
1379 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1380 {
1381 	preempt_disable();
1382 	if (vmx->guest_state_loaded)
1383 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1384 	preempt_enable();
1385 	vmx->msr_guest_kernel_gs_base = data;
1386 }
1387 #endif
1388 
1389 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1390 			struct loaded_vmcs *buddy)
1391 {
1392 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1393 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1394 	struct vmcs *prev;
1395 
1396 	if (!already_loaded) {
1397 		loaded_vmcs_clear(vmx->loaded_vmcs);
1398 		local_irq_disable();
1399 
1400 		/*
1401 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1402 		 * this cpu's percpu list, otherwise it may not yet be deleted
1403 		 * from its previous cpu's percpu list.  Pairs with the
1404 		 * smb_wmb() in __loaded_vmcs_clear().
1405 		 */
1406 		smp_rmb();
1407 
1408 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1409 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1410 		local_irq_enable();
1411 	}
1412 
1413 	prev = per_cpu(current_vmcs, cpu);
1414 	if (prev != vmx->loaded_vmcs->vmcs) {
1415 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1416 		vmcs_load(vmx->loaded_vmcs->vmcs);
1417 
1418 		/*
1419 		 * No indirect branch prediction barrier needed when switching
1420 		 * the active VMCS within a vCPU, unless IBRS is advertised to
1421 		 * the vCPU.  To minimize the number of IBPBs executed, KVM
1422 		 * performs IBPB on nested VM-Exit (a single nested transition
1423 		 * may switch the active VMCS multiple times).
1424 		 */
1425 		if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1426 			indirect_branch_prediction_barrier();
1427 	}
1428 
1429 	if (!already_loaded) {
1430 		void *gdt = get_current_gdt_ro();
1431 
1432 		/*
1433 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1434 		 * TLB entries from its previous association with the vCPU.
1435 		 */
1436 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1437 
1438 		/*
1439 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1440 		 * processors.  See 22.2.4.
1441 		 */
1442 		vmcs_writel(HOST_TR_BASE,
1443 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1444 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1445 
1446 		if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1447 			/* 22.2.3 */
1448 			vmcs_writel(HOST_IA32_SYSENTER_ESP,
1449 				    (unsigned long)(cpu_entry_stack(cpu) + 1));
1450 		}
1451 
1452 		vmx->loaded_vmcs->cpu = cpu;
1453 	}
1454 }
1455 
1456 /*
1457  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1458  * vcpu mutex is already taken.
1459  */
1460 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1461 {
1462 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1463 
1464 	vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1465 
1466 	vmx_vcpu_pi_load(vcpu, cpu);
1467 
1468 	vmx->host_debugctlmsr = get_debugctlmsr();
1469 }
1470 
1471 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1472 {
1473 	vmx_vcpu_pi_put(vcpu);
1474 
1475 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1476 }
1477 
1478 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1479 {
1480 	return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1481 }
1482 
1483 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1484 {
1485 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1486 	unsigned long rflags, save_rflags;
1487 
1488 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1489 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1490 		rflags = vmcs_readl(GUEST_RFLAGS);
1491 		if (vmx->rmode.vm86_active) {
1492 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1493 			save_rflags = vmx->rmode.save_rflags;
1494 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1495 		}
1496 		vmx->rflags = rflags;
1497 	}
1498 	return vmx->rflags;
1499 }
1500 
1501 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1502 {
1503 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1504 	unsigned long old_rflags;
1505 
1506 	if (is_unrestricted_guest(vcpu)) {
1507 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1508 		vmx->rflags = rflags;
1509 		vmcs_writel(GUEST_RFLAGS, rflags);
1510 		return;
1511 	}
1512 
1513 	old_rflags = vmx_get_rflags(vcpu);
1514 	vmx->rflags = rflags;
1515 	if (vmx->rmode.vm86_active) {
1516 		vmx->rmode.save_rflags = rflags;
1517 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1518 	}
1519 	vmcs_writel(GUEST_RFLAGS, rflags);
1520 
1521 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1522 		vmx->emulation_required = vmx_emulation_required(vcpu);
1523 }
1524 
1525 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1526 {
1527 	return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1528 }
1529 
1530 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1531 {
1532 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1533 	int ret = 0;
1534 
1535 	if (interruptibility & GUEST_INTR_STATE_STI)
1536 		ret |= KVM_X86_SHADOW_INT_STI;
1537 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1538 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1539 
1540 	return ret;
1541 }
1542 
1543 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1544 {
1545 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1546 	u32 interruptibility = interruptibility_old;
1547 
1548 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1549 
1550 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1551 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1552 	else if (mask & KVM_X86_SHADOW_INT_STI)
1553 		interruptibility |= GUEST_INTR_STATE_STI;
1554 
1555 	if ((interruptibility != interruptibility_old))
1556 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1557 }
1558 
1559 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1560 {
1561 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1562 	unsigned long value;
1563 
1564 	/*
1565 	 * Any MSR write that attempts to change bits marked reserved will
1566 	 * case a #GP fault.
1567 	 */
1568 	if (data & vmx->pt_desc.ctl_bitmask)
1569 		return 1;
1570 
1571 	/*
1572 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1573 	 * result in a #GP unless the same write also clears TraceEn.
1574 	 */
1575 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1576 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1577 		return 1;
1578 
1579 	/*
1580 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1581 	 * and FabricEn would cause #GP, if
1582 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1583 	 */
1584 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1585 		!(data & RTIT_CTL_FABRIC_EN) &&
1586 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1587 					PT_CAP_single_range_output))
1588 		return 1;
1589 
1590 	/*
1591 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1592 	 * utilize encodings marked reserved will cause a #GP fault.
1593 	 */
1594 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1595 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1596 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1597 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1598 		return 1;
1599 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1600 						PT_CAP_cycle_thresholds);
1601 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1602 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1603 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1604 		return 1;
1605 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1606 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1607 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1608 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1609 		return 1;
1610 
1611 	/*
1612 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1613 	 * cause a #GP fault.
1614 	 */
1615 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1616 	if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1617 		return 1;
1618 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1619 	if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1620 		return 1;
1621 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1622 	if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1623 		return 1;
1624 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1625 	if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1626 		return 1;
1627 
1628 	return 0;
1629 }
1630 
1631 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1632 					void *insn, int insn_len)
1633 {
1634 	/*
1635 	 * Emulation of instructions in SGX enclaves is impossible as RIP does
1636 	 * not point at the failing instruction, and even if it did, the code
1637 	 * stream is inaccessible.  Inject #UD instead of exiting to userspace
1638 	 * so that guest userspace can't DoS the guest simply by triggering
1639 	 * emulation (enclaves are CPL3 only).
1640 	 */
1641 	if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1642 		kvm_queue_exception(vcpu, UD_VECTOR);
1643 		return false;
1644 	}
1645 	return true;
1646 }
1647 
1648 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1649 {
1650 	union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1651 	unsigned long rip, orig_rip;
1652 	u32 instr_len;
1653 
1654 	/*
1655 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1656 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1657 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1658 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1659 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1660 	 * i.e. we end up advancing IP with some random value.
1661 	 */
1662 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1663 	    exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1664 		instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1665 
1666 		/*
1667 		 * Emulating an enclave's instructions isn't supported as KVM
1668 		 * cannot access the enclave's memory or its true RIP, e.g. the
1669 		 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1670 		 * the RIP that actually triggered the VM-Exit.  But, because
1671 		 * most instructions that cause VM-Exit will #UD in an enclave,
1672 		 * most instruction-based VM-Exits simply do not occur.
1673 		 *
1674 		 * There are a few exceptions, notably the debug instructions
1675 		 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1676 		 * and generate #DB/#BP as expected, which KVM might intercept.
1677 		 * But again, the CPU does the dirty work and saves an instr
1678 		 * length of zero so VMMs don't shoot themselves in the foot.
1679 		 * WARN if KVM tries to skip a non-zero length instruction on
1680 		 * a VM-Exit from an enclave.
1681 		 */
1682 		if (!instr_len)
1683 			goto rip_updated;
1684 
1685 		WARN_ONCE(exit_reason.enclave_mode,
1686 			  "skipping instruction after SGX enclave VM-Exit");
1687 
1688 		orig_rip = kvm_rip_read(vcpu);
1689 		rip = orig_rip + instr_len;
1690 #ifdef CONFIG_X86_64
1691 		/*
1692 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1693 		 * mode, but just finding out that we are in 64-bit mode is
1694 		 * quite expensive.  Only do it if there was a carry.
1695 		 */
1696 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1697 			rip = (u32)rip;
1698 #endif
1699 		kvm_rip_write(vcpu, rip);
1700 	} else {
1701 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1702 			return 0;
1703 	}
1704 
1705 rip_updated:
1706 	/* skipping an emulated instruction also counts */
1707 	vmx_set_interrupt_shadow(vcpu, 0);
1708 
1709 	return 1;
1710 }
1711 
1712 /*
1713  * Recognizes a pending MTF VM-exit and records the nested state for later
1714  * delivery.
1715  */
1716 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1717 {
1718 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1719 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1720 
1721 	if (!is_guest_mode(vcpu))
1722 		return;
1723 
1724 	/*
1725 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1726 	 * TSS T-bit traps and ICEBP (INT1).  KVM doesn't emulate T-bit traps
1727 	 * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1728 	 * intercepted #DB deliberately avoids single-step #DB and MTF updates
1729 	 * as ICEBP is higher priority than both.  As instruction emulation is
1730 	 * completed at this point (i.e. KVM is at the instruction boundary),
1731 	 * any #DB exception pending delivery must be a debug-trap of lower
1732 	 * priority than MTF.  Record the pending MTF state to be delivered in
1733 	 * vmx_check_nested_events().
1734 	 */
1735 	if (nested_cpu_has_mtf(vmcs12) &&
1736 	    (!vcpu->arch.exception.pending ||
1737 	     vcpu->arch.exception.vector == DB_VECTOR) &&
1738 	    (!vcpu->arch.exception_vmexit.pending ||
1739 	     vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1740 		vmx->nested.mtf_pending = true;
1741 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1742 	} else {
1743 		vmx->nested.mtf_pending = false;
1744 	}
1745 }
1746 
1747 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1748 {
1749 	vmx_update_emulated_instruction(vcpu);
1750 	return skip_emulated_instruction(vcpu);
1751 }
1752 
1753 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1754 {
1755 	/*
1756 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1757 	 * explicitly skip the instruction because if the HLT state is set,
1758 	 * then the instruction is already executing and RIP has already been
1759 	 * advanced.
1760 	 */
1761 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1762 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1763 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1764 }
1765 
1766 static void vmx_inject_exception(struct kvm_vcpu *vcpu)
1767 {
1768 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
1769 	u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1770 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1771 
1772 	kvm_deliver_exception_payload(vcpu, ex);
1773 
1774 	if (ex->has_error_code) {
1775 		/*
1776 		 * Despite the error code being architecturally defined as 32
1777 		 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1778 		 * VMX don't actually supporting setting bits 31:16.  Hardware
1779 		 * will (should) never provide a bogus error code, but AMD CPUs
1780 		 * do generate error codes with bits 31:16 set, and so KVM's
1781 		 * ABI lets userspace shove in arbitrary 32-bit values.  Drop
1782 		 * the upper bits to avoid VM-Fail, losing information that
1783 		 * does't really exist is preferable to killing the VM.
1784 		 */
1785 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1786 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1787 	}
1788 
1789 	if (vmx->rmode.vm86_active) {
1790 		int inc_eip = 0;
1791 		if (kvm_exception_is_soft(ex->vector))
1792 			inc_eip = vcpu->arch.event_exit_inst_len;
1793 		kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1794 		return;
1795 	}
1796 
1797 	WARN_ON_ONCE(vmx->emulation_required);
1798 
1799 	if (kvm_exception_is_soft(ex->vector)) {
1800 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1801 			     vmx->vcpu.arch.event_exit_inst_len);
1802 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1803 	} else
1804 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1805 
1806 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1807 
1808 	vmx_clear_hlt(vcpu);
1809 }
1810 
1811 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1812 			       bool load_into_hardware)
1813 {
1814 	struct vmx_uret_msr *uret_msr;
1815 
1816 	uret_msr = vmx_find_uret_msr(vmx, msr);
1817 	if (!uret_msr)
1818 		return;
1819 
1820 	uret_msr->load_into_hardware = load_into_hardware;
1821 }
1822 
1823 /*
1824  * Configuring user return MSRs to automatically save, load, and restore MSRs
1825  * that need to be shoved into hardware when running the guest.  Note, omitting
1826  * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1827  * loaded into hardware when running the guest.
1828  */
1829 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1830 {
1831 #ifdef CONFIG_X86_64
1832 	bool load_syscall_msrs;
1833 
1834 	/*
1835 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1836 	 * when EFER.SCE is set.
1837 	 */
1838 	load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1839 			    (vmx->vcpu.arch.efer & EFER_SCE);
1840 
1841 	vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1842 	vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1843 	vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1844 #endif
1845 	vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1846 
1847 	vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1848 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1849 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1850 
1851 	/*
1852 	 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1853 	 * kernel and old userspace.  If those guests run on a tsx=off host, do
1854 	 * allow guests to use TSX_CTRL, but don't change the value in hardware
1855 	 * so that TSX remains always disabled.
1856 	 */
1857 	vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1858 
1859 	/*
1860 	 * The set of MSRs to load may have changed, reload MSRs before the
1861 	 * next VM-Enter.
1862 	 */
1863 	vmx->guest_uret_msrs_loaded = false;
1864 }
1865 
1866 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1867 {
1868 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1869 
1870 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1871 		return vmcs12->tsc_offset;
1872 
1873 	return 0;
1874 }
1875 
1876 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1877 {
1878 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1879 
1880 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1881 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1882 		return vmcs12->tsc_multiplier;
1883 
1884 	return kvm_caps.default_tsc_scaling_ratio;
1885 }
1886 
1887 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1888 {
1889 	vmcs_write64(TSC_OFFSET, offset);
1890 }
1891 
1892 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1893 {
1894 	vmcs_write64(TSC_MULTIPLIER, multiplier);
1895 }
1896 
1897 /*
1898  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1899  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1900  * all guests if the "nested" module option is off, and can also be disabled
1901  * for a single guest by disabling its VMX cpuid bit.
1902  */
1903 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1904 {
1905 	return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1906 }
1907 
1908 /*
1909  * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
1910  * guest CPUID.  Note, KVM allows userspace to set "VMX in SMX" to maintain
1911  * backwards compatibility even though KVM doesn't support emulating SMX.  And
1912  * because userspace set "VMX in SMX", the guest must also be allowed to set it,
1913  * e.g. if the MSR is left unlocked and the guest does a RMW operation.
1914  */
1915 #define KVM_SUPPORTED_FEATURE_CONTROL  (FEAT_CTL_LOCKED			 | \
1916 					FEAT_CTL_VMX_ENABLED_INSIDE_SMX	 | \
1917 					FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
1918 					FEAT_CTL_SGX_LC_ENABLED		 | \
1919 					FEAT_CTL_SGX_ENABLED		 | \
1920 					FEAT_CTL_LMCE_ENABLED)
1921 
1922 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
1923 						    struct msr_data *msr)
1924 {
1925 	uint64_t valid_bits;
1926 
1927 	/*
1928 	 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
1929 	 * exposed to the guest.
1930 	 */
1931 	WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
1932 		     ~KVM_SUPPORTED_FEATURE_CONTROL);
1933 
1934 	if (!msr->host_initiated &&
1935 	    (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
1936 		return false;
1937 
1938 	if (msr->host_initiated)
1939 		valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
1940 	else
1941 		valid_bits = vmx->msr_ia32_feature_control_valid_bits;
1942 
1943 	return !(msr->data & ~valid_bits);
1944 }
1945 
1946 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1947 {
1948 	switch (msr->index) {
1949 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
1950 		if (!nested)
1951 			return 1;
1952 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1953 	default:
1954 		return KVM_MSR_RET_INVALID;
1955 	}
1956 }
1957 
1958 /*
1959  * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
1960  * Returns 0 on success, non-0 otherwise.
1961  * Assumes vcpu_load() was already called.
1962  */
1963 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1964 {
1965 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1966 	struct vmx_uret_msr *msr;
1967 	u32 index;
1968 
1969 	switch (msr_info->index) {
1970 #ifdef CONFIG_X86_64
1971 	case MSR_FS_BASE:
1972 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1973 		break;
1974 	case MSR_GS_BASE:
1975 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1976 		break;
1977 	case MSR_KERNEL_GS_BASE:
1978 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1979 		break;
1980 #endif
1981 	case MSR_EFER:
1982 		return kvm_get_msr_common(vcpu, msr_info);
1983 	case MSR_IA32_TSX_CTRL:
1984 		if (!msr_info->host_initiated &&
1985 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1986 			return 1;
1987 		goto find_uret_msr;
1988 	case MSR_IA32_UMWAIT_CONTROL:
1989 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1990 			return 1;
1991 
1992 		msr_info->data = vmx->msr_ia32_umwait_control;
1993 		break;
1994 	case MSR_IA32_SPEC_CTRL:
1995 		if (!msr_info->host_initiated &&
1996 		    !guest_has_spec_ctrl_msr(vcpu))
1997 			return 1;
1998 
1999 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
2000 		break;
2001 	case MSR_IA32_SYSENTER_CS:
2002 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2003 		break;
2004 	case MSR_IA32_SYSENTER_EIP:
2005 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2006 		break;
2007 	case MSR_IA32_SYSENTER_ESP:
2008 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2009 		break;
2010 	case MSR_IA32_BNDCFGS:
2011 		if (!kvm_mpx_supported() ||
2012 		    (!msr_info->host_initiated &&
2013 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2014 			return 1;
2015 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2016 		break;
2017 	case MSR_IA32_MCG_EXT_CTL:
2018 		if (!msr_info->host_initiated &&
2019 		    !(vmx->msr_ia32_feature_control &
2020 		      FEAT_CTL_LMCE_ENABLED))
2021 			return 1;
2022 		msr_info->data = vcpu->arch.mcg_ext_ctl;
2023 		break;
2024 	case MSR_IA32_FEAT_CTL:
2025 		msr_info->data = vmx->msr_ia32_feature_control;
2026 		break;
2027 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2028 		if (!msr_info->host_initiated &&
2029 		    !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
2030 			return 1;
2031 		msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
2032 			[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
2033 		break;
2034 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2035 		if (!nested_vmx_allowed(vcpu))
2036 			return 1;
2037 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
2038 				    &msr_info->data))
2039 			return 1;
2040 		/*
2041 		 * Enlightened VMCS v1 doesn't have certain VMCS fields but
2042 		 * instead of just ignoring the features, different Hyper-V
2043 		 * versions are either trying to use them and fail or do some
2044 		 * sanity checking and refuse to boot. Filter all unsupported
2045 		 * features out.
2046 		 */
2047 		if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu))
2048 			nested_evmcs_filter_control_msr(vcpu, msr_info->index,
2049 							&msr_info->data);
2050 		break;
2051 	case MSR_IA32_RTIT_CTL:
2052 		if (!vmx_pt_mode_is_host_guest())
2053 			return 1;
2054 		msr_info->data = vmx->pt_desc.guest.ctl;
2055 		break;
2056 	case MSR_IA32_RTIT_STATUS:
2057 		if (!vmx_pt_mode_is_host_guest())
2058 			return 1;
2059 		msr_info->data = vmx->pt_desc.guest.status;
2060 		break;
2061 	case MSR_IA32_RTIT_CR3_MATCH:
2062 		if (!vmx_pt_mode_is_host_guest() ||
2063 			!intel_pt_validate_cap(vmx->pt_desc.caps,
2064 						PT_CAP_cr3_filtering))
2065 			return 1;
2066 		msr_info->data = vmx->pt_desc.guest.cr3_match;
2067 		break;
2068 	case MSR_IA32_RTIT_OUTPUT_BASE:
2069 		if (!vmx_pt_mode_is_host_guest() ||
2070 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2071 					PT_CAP_topa_output) &&
2072 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2073 					PT_CAP_single_range_output)))
2074 			return 1;
2075 		msr_info->data = vmx->pt_desc.guest.output_base;
2076 		break;
2077 	case MSR_IA32_RTIT_OUTPUT_MASK:
2078 		if (!vmx_pt_mode_is_host_guest() ||
2079 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2080 					PT_CAP_topa_output) &&
2081 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2082 					PT_CAP_single_range_output)))
2083 			return 1;
2084 		msr_info->data = vmx->pt_desc.guest.output_mask;
2085 		break;
2086 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2087 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2088 		if (!vmx_pt_mode_is_host_guest() ||
2089 		    (index >= 2 * vmx->pt_desc.num_address_ranges))
2090 			return 1;
2091 		if (index % 2)
2092 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2093 		else
2094 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2095 		break;
2096 	case MSR_IA32_DEBUGCTLMSR:
2097 		msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
2098 		break;
2099 	default:
2100 	find_uret_msr:
2101 		msr = vmx_find_uret_msr(vmx, msr_info->index);
2102 		if (msr) {
2103 			msr_info->data = msr->data;
2104 			break;
2105 		}
2106 		return kvm_get_msr_common(vcpu, msr_info);
2107 	}
2108 
2109 	return 0;
2110 }
2111 
2112 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2113 						    u64 data)
2114 {
2115 #ifdef CONFIG_X86_64
2116 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2117 		return (u32)data;
2118 #endif
2119 	return (unsigned long)data;
2120 }
2121 
2122 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2123 {
2124 	u64 debugctl = 0;
2125 
2126 	if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2127 	    (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2128 		debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2129 
2130 	if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) &&
2131 	    (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2132 		debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2133 
2134 	return debugctl;
2135 }
2136 
2137 /*
2138  * Writes msr value into the appropriate "register".
2139  * Returns 0 on success, non-0 otherwise.
2140  * Assumes vcpu_load() was already called.
2141  */
2142 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2143 {
2144 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2145 	struct vmx_uret_msr *msr;
2146 	int ret = 0;
2147 	u32 msr_index = msr_info->index;
2148 	u64 data = msr_info->data;
2149 	u32 index;
2150 
2151 	switch (msr_index) {
2152 	case MSR_EFER:
2153 		ret = kvm_set_msr_common(vcpu, msr_info);
2154 		break;
2155 #ifdef CONFIG_X86_64
2156 	case MSR_FS_BASE:
2157 		vmx_segment_cache_clear(vmx);
2158 		vmcs_writel(GUEST_FS_BASE, data);
2159 		break;
2160 	case MSR_GS_BASE:
2161 		vmx_segment_cache_clear(vmx);
2162 		vmcs_writel(GUEST_GS_BASE, data);
2163 		break;
2164 	case MSR_KERNEL_GS_BASE:
2165 		vmx_write_guest_kernel_gs_base(vmx, data);
2166 		break;
2167 	case MSR_IA32_XFD:
2168 		ret = kvm_set_msr_common(vcpu, msr_info);
2169 		/*
2170 		 * Always intercepting WRMSR could incur non-negligible
2171 		 * overhead given xfd might be changed frequently in
2172 		 * guest context switch. Disable write interception
2173 		 * upon the first write with a non-zero value (indicating
2174 		 * potential usage on dynamic xfeatures). Also update
2175 		 * exception bitmap to trap #NM for proper virtualization
2176 		 * of guest xfd_err.
2177 		 */
2178 		if (!ret && data) {
2179 			vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2180 						      MSR_TYPE_RW);
2181 			vcpu->arch.xfd_no_write_intercept = true;
2182 			vmx_update_exception_bitmap(vcpu);
2183 		}
2184 		break;
2185 #endif
2186 	case MSR_IA32_SYSENTER_CS:
2187 		if (is_guest_mode(vcpu))
2188 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
2189 		vmcs_write32(GUEST_SYSENTER_CS, data);
2190 		break;
2191 	case MSR_IA32_SYSENTER_EIP:
2192 		if (is_guest_mode(vcpu)) {
2193 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2194 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
2195 		}
2196 		vmcs_writel(GUEST_SYSENTER_EIP, data);
2197 		break;
2198 	case MSR_IA32_SYSENTER_ESP:
2199 		if (is_guest_mode(vcpu)) {
2200 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2201 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
2202 		}
2203 		vmcs_writel(GUEST_SYSENTER_ESP, data);
2204 		break;
2205 	case MSR_IA32_DEBUGCTLMSR: {
2206 		u64 invalid;
2207 
2208 		invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2209 		if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2210 			kvm_pr_unimpl_wrmsr(vcpu, msr_index, data);
2211 			data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2212 			invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2213 		}
2214 
2215 		if (invalid)
2216 			return 1;
2217 
2218 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2219 						VM_EXIT_SAVE_DEBUG_CONTROLS)
2220 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2221 
2222 		vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2223 		if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2224 		    (data & DEBUGCTLMSR_LBR))
2225 			intel_pmu_create_guest_lbr_event(vcpu);
2226 		return 0;
2227 	}
2228 	case MSR_IA32_BNDCFGS:
2229 		if (!kvm_mpx_supported() ||
2230 		    (!msr_info->host_initiated &&
2231 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2232 			return 1;
2233 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2234 		    (data & MSR_IA32_BNDCFGS_RSVD))
2235 			return 1;
2236 
2237 		if (is_guest_mode(vcpu) &&
2238 		    ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2239 		     (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2240 			get_vmcs12(vcpu)->guest_bndcfgs = data;
2241 
2242 		vmcs_write64(GUEST_BNDCFGS, data);
2243 		break;
2244 	case MSR_IA32_UMWAIT_CONTROL:
2245 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2246 			return 1;
2247 
2248 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2249 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2250 			return 1;
2251 
2252 		vmx->msr_ia32_umwait_control = data;
2253 		break;
2254 	case MSR_IA32_SPEC_CTRL:
2255 		if (!msr_info->host_initiated &&
2256 		    !guest_has_spec_ctrl_msr(vcpu))
2257 			return 1;
2258 
2259 		if (kvm_spec_ctrl_test_value(data))
2260 			return 1;
2261 
2262 		vmx->spec_ctrl = data;
2263 		if (!data)
2264 			break;
2265 
2266 		/*
2267 		 * For non-nested:
2268 		 * When it's written (to non-zero) for the first time, pass
2269 		 * it through.
2270 		 *
2271 		 * For nested:
2272 		 * The handling of the MSR bitmap for L2 guests is done in
2273 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2274 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2275 		 * in the merging. We update the vmcs01 here for L1 as well
2276 		 * since it will end up touching the MSR anyway now.
2277 		 */
2278 		vmx_disable_intercept_for_msr(vcpu,
2279 					      MSR_IA32_SPEC_CTRL,
2280 					      MSR_TYPE_RW);
2281 		break;
2282 	case MSR_IA32_TSX_CTRL:
2283 		if (!msr_info->host_initiated &&
2284 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2285 			return 1;
2286 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2287 			return 1;
2288 		goto find_uret_msr;
2289 	case MSR_IA32_CR_PAT:
2290 		ret = kvm_set_msr_common(vcpu, msr_info);
2291 		if (ret)
2292 			break;
2293 
2294 		if (is_guest_mode(vcpu) &&
2295 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2296 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2297 
2298 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
2299 			vmcs_write64(GUEST_IA32_PAT, data);
2300 		break;
2301 	case MSR_IA32_MCG_EXT_CTL:
2302 		if ((!msr_info->host_initiated &&
2303 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2304 		       FEAT_CTL_LMCE_ENABLED)) ||
2305 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2306 			return 1;
2307 		vcpu->arch.mcg_ext_ctl = data;
2308 		break;
2309 	case MSR_IA32_FEAT_CTL:
2310 		if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2311 			return 1;
2312 
2313 		vmx->msr_ia32_feature_control = data;
2314 		if (msr_info->host_initiated && data == 0)
2315 			vmx_leave_nested(vcpu);
2316 
2317 		/* SGX may be enabled/disabled by guest's firmware */
2318 		vmx_write_encls_bitmap(vcpu, NULL);
2319 		break;
2320 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2321 		/*
2322 		 * On real hardware, the LE hash MSRs are writable before
2323 		 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2324 		 * at which point SGX related bits in IA32_FEATURE_CONTROL
2325 		 * become writable.
2326 		 *
2327 		 * KVM does not emulate SGX activation for simplicity, so
2328 		 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2329 		 * is unlocked.  This is technically not architectural
2330 		 * behavior, but it's close enough.
2331 		 */
2332 		if (!msr_info->host_initiated &&
2333 		    (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2334 		    ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2335 		    !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2336 			return 1;
2337 		vmx->msr_ia32_sgxlepubkeyhash
2338 			[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2339 		break;
2340 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2341 		if (!msr_info->host_initiated)
2342 			return 1; /* they are read-only */
2343 		if (!nested_vmx_allowed(vcpu))
2344 			return 1;
2345 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2346 	case MSR_IA32_RTIT_CTL:
2347 		if (!vmx_pt_mode_is_host_guest() ||
2348 			vmx_rtit_ctl_check(vcpu, data) ||
2349 			vmx->nested.vmxon)
2350 			return 1;
2351 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2352 		vmx->pt_desc.guest.ctl = data;
2353 		pt_update_intercept_for_msr(vcpu);
2354 		break;
2355 	case MSR_IA32_RTIT_STATUS:
2356 		if (!pt_can_write_msr(vmx))
2357 			return 1;
2358 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2359 			return 1;
2360 		vmx->pt_desc.guest.status = data;
2361 		break;
2362 	case MSR_IA32_RTIT_CR3_MATCH:
2363 		if (!pt_can_write_msr(vmx))
2364 			return 1;
2365 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2366 					   PT_CAP_cr3_filtering))
2367 			return 1;
2368 		vmx->pt_desc.guest.cr3_match = data;
2369 		break;
2370 	case MSR_IA32_RTIT_OUTPUT_BASE:
2371 		if (!pt_can_write_msr(vmx))
2372 			return 1;
2373 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2374 					   PT_CAP_topa_output) &&
2375 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2376 					   PT_CAP_single_range_output))
2377 			return 1;
2378 		if (!pt_output_base_valid(vcpu, data))
2379 			return 1;
2380 		vmx->pt_desc.guest.output_base = data;
2381 		break;
2382 	case MSR_IA32_RTIT_OUTPUT_MASK:
2383 		if (!pt_can_write_msr(vmx))
2384 			return 1;
2385 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2386 					   PT_CAP_topa_output) &&
2387 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2388 					   PT_CAP_single_range_output))
2389 			return 1;
2390 		vmx->pt_desc.guest.output_mask = data;
2391 		break;
2392 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2393 		if (!pt_can_write_msr(vmx))
2394 			return 1;
2395 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2396 		if (index >= 2 * vmx->pt_desc.num_address_ranges)
2397 			return 1;
2398 		if (is_noncanonical_address(data, vcpu))
2399 			return 1;
2400 		if (index % 2)
2401 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2402 		else
2403 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2404 		break;
2405 	case MSR_IA32_PERF_CAPABILITIES:
2406 		if (data && !vcpu_to_pmu(vcpu)->version)
2407 			return 1;
2408 		if (data & PMU_CAP_LBR_FMT) {
2409 			if ((data & PMU_CAP_LBR_FMT) !=
2410 			    (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT))
2411 				return 1;
2412 			if (!cpuid_model_is_consistent(vcpu))
2413 				return 1;
2414 		}
2415 		if (data & PERF_CAP_PEBS_FORMAT) {
2416 			if ((data & PERF_CAP_PEBS_MASK) !=
2417 			    (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2418 				return 1;
2419 			if (!guest_cpuid_has(vcpu, X86_FEATURE_DS))
2420 				return 1;
2421 			if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64))
2422 				return 1;
2423 			if (!cpuid_model_is_consistent(vcpu))
2424 				return 1;
2425 		}
2426 		ret = kvm_set_msr_common(vcpu, msr_info);
2427 		break;
2428 
2429 	default:
2430 	find_uret_msr:
2431 		msr = vmx_find_uret_msr(vmx, msr_index);
2432 		if (msr)
2433 			ret = vmx_set_guest_uret_msr(vmx, msr, data);
2434 		else
2435 			ret = kvm_set_msr_common(vcpu, msr_info);
2436 	}
2437 
2438 	/* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2439 	if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2440 		vmx_update_fb_clear_dis(vcpu, vmx);
2441 
2442 	return ret;
2443 }
2444 
2445 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2446 {
2447 	unsigned long guest_owned_bits;
2448 
2449 	kvm_register_mark_available(vcpu, reg);
2450 
2451 	switch (reg) {
2452 	case VCPU_REGS_RSP:
2453 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2454 		break;
2455 	case VCPU_REGS_RIP:
2456 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2457 		break;
2458 	case VCPU_EXREG_PDPTR:
2459 		if (enable_ept)
2460 			ept_save_pdptrs(vcpu);
2461 		break;
2462 	case VCPU_EXREG_CR0:
2463 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2464 
2465 		vcpu->arch.cr0 &= ~guest_owned_bits;
2466 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2467 		break;
2468 	case VCPU_EXREG_CR3:
2469 		/*
2470 		 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2471 		 * CR3 is loaded into hardware, not the guest's CR3.
2472 		 */
2473 		if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2474 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2475 		break;
2476 	case VCPU_EXREG_CR4:
2477 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2478 
2479 		vcpu->arch.cr4 &= ~guest_owned_bits;
2480 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2481 		break;
2482 	default:
2483 		KVM_BUG_ON(1, vcpu->kvm);
2484 		break;
2485 	}
2486 }
2487 
2488 /*
2489  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2490  * directly instead of going through cpu_has(), to ensure KVM is trapping
2491  * ENCLS whenever it's supported in hardware.  It does not matter whether
2492  * the host OS supports or has enabled SGX.
2493  */
2494 static bool cpu_has_sgx(void)
2495 {
2496 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2497 }
2498 
2499 /*
2500  * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2501  * can't be used due to errata where VM Exit may incorrectly clear
2502  * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the
2503  * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2504  */
2505 static bool cpu_has_perf_global_ctrl_bug(void)
2506 {
2507 	if (boot_cpu_data.x86 == 0x6) {
2508 		switch (boot_cpu_data.x86_model) {
2509 		case INTEL_FAM6_NEHALEM_EP:	/* AAK155 */
2510 		case INTEL_FAM6_NEHALEM:	/* AAP115 */
2511 		case INTEL_FAM6_WESTMERE:	/* AAT100 */
2512 		case INTEL_FAM6_WESTMERE_EP:	/* BC86,AAY89,BD102 */
2513 		case INTEL_FAM6_NEHALEM_EX:	/* BA97 */
2514 			return true;
2515 		default:
2516 			break;
2517 		}
2518 	}
2519 
2520 	return false;
2521 }
2522 
2523 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
2524 {
2525 	u32 vmx_msr_low, vmx_msr_high;
2526 	u32 ctl = ctl_min | ctl_opt;
2527 
2528 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2529 
2530 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2531 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2532 
2533 	/* Ensure minimum (required) set of control bits are supported. */
2534 	if (ctl_min & ~ctl)
2535 		return -EIO;
2536 
2537 	*result = ctl;
2538 	return 0;
2539 }
2540 
2541 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2542 {
2543 	u64 allowed;
2544 
2545 	rdmsrl(msr, allowed);
2546 
2547 	return  ctl_opt & allowed;
2548 }
2549 
2550 static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2551 			     struct vmx_capability *vmx_cap)
2552 {
2553 	u32 vmx_msr_low, vmx_msr_high;
2554 	u32 _pin_based_exec_control = 0;
2555 	u32 _cpu_based_exec_control = 0;
2556 	u32 _cpu_based_2nd_exec_control = 0;
2557 	u64 _cpu_based_3rd_exec_control = 0;
2558 	u32 _vmexit_control = 0;
2559 	u32 _vmentry_control = 0;
2560 	u64 misc_msr;
2561 	int i;
2562 
2563 	/*
2564 	 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2565 	 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2566 	 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2567 	 */
2568 	struct {
2569 		u32 entry_control;
2570 		u32 exit_control;
2571 	} const vmcs_entry_exit_pairs[] = {
2572 		{ VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,	VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2573 		{ VM_ENTRY_LOAD_IA32_PAT,		VM_EXIT_LOAD_IA32_PAT },
2574 		{ VM_ENTRY_LOAD_IA32_EFER,		VM_EXIT_LOAD_IA32_EFER },
2575 		{ VM_ENTRY_LOAD_BNDCFGS,		VM_EXIT_CLEAR_BNDCFGS },
2576 		{ VM_ENTRY_LOAD_IA32_RTIT_CTL,		VM_EXIT_CLEAR_IA32_RTIT_CTL },
2577 	};
2578 
2579 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2580 
2581 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2582 				KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2583 				MSR_IA32_VMX_PROCBASED_CTLS,
2584 				&_cpu_based_exec_control))
2585 		return -EIO;
2586 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2587 		if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2588 					KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2589 					MSR_IA32_VMX_PROCBASED_CTLS2,
2590 					&_cpu_based_2nd_exec_control))
2591 			return -EIO;
2592 	}
2593 #ifndef CONFIG_X86_64
2594 	if (!(_cpu_based_2nd_exec_control &
2595 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2596 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2597 #endif
2598 
2599 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2600 		_cpu_based_2nd_exec_control &= ~(
2601 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2602 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2603 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2604 
2605 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2606 		&vmx_cap->ept, &vmx_cap->vpid);
2607 
2608 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2609 	    vmx_cap->ept) {
2610 		pr_warn_once("EPT CAP should not exist if not support "
2611 				"1-setting enable EPT VM-execution control\n");
2612 
2613 		if (error_on_inconsistent_vmcs_config)
2614 			return -EIO;
2615 
2616 		vmx_cap->ept = 0;
2617 	}
2618 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2619 	    vmx_cap->vpid) {
2620 		pr_warn_once("VPID CAP should not exist if not support "
2621 				"1-setting enable VPID VM-execution control\n");
2622 
2623 		if (error_on_inconsistent_vmcs_config)
2624 			return -EIO;
2625 
2626 		vmx_cap->vpid = 0;
2627 	}
2628 
2629 	if (!cpu_has_sgx())
2630 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2631 
2632 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2633 		_cpu_based_3rd_exec_control =
2634 			adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2635 					      MSR_IA32_VMX_PROCBASED_CTLS3);
2636 
2637 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2638 				KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2639 				MSR_IA32_VMX_EXIT_CTLS,
2640 				&_vmexit_control))
2641 		return -EIO;
2642 
2643 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2644 				KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2645 				MSR_IA32_VMX_PINBASED_CTLS,
2646 				&_pin_based_exec_control))
2647 		return -EIO;
2648 
2649 	if (cpu_has_broken_vmx_preemption_timer())
2650 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2651 	if (!(_cpu_based_2nd_exec_control &
2652 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2653 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2654 
2655 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2656 				KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2657 				MSR_IA32_VMX_ENTRY_CTLS,
2658 				&_vmentry_control))
2659 		return -EIO;
2660 
2661 	for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) {
2662 		u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control;
2663 		u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control;
2664 
2665 		if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl))
2666 			continue;
2667 
2668 		pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n",
2669 			     _vmentry_control & n_ctrl, _vmexit_control & x_ctrl);
2670 
2671 		if (error_on_inconsistent_vmcs_config)
2672 			return -EIO;
2673 
2674 		_vmentry_control &= ~n_ctrl;
2675 		_vmexit_control &= ~x_ctrl;
2676 	}
2677 
2678 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2679 
2680 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2681 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2682 		return -EIO;
2683 
2684 #ifdef CONFIG_X86_64
2685 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2686 	if (vmx_msr_high & (1u<<16))
2687 		return -EIO;
2688 #endif
2689 
2690 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2691 	if (((vmx_msr_high >> 18) & 15) != 6)
2692 		return -EIO;
2693 
2694 	rdmsrl(MSR_IA32_VMX_MISC, misc_msr);
2695 
2696 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2697 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2698 
2699 	vmcs_conf->revision_id = vmx_msr_low;
2700 
2701 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2702 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2703 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2704 	vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2705 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2706 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2707 	vmcs_conf->misc	= misc_msr;
2708 
2709 #if IS_ENABLED(CONFIG_HYPERV)
2710 	if (enlightened_vmcs)
2711 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2712 #endif
2713 
2714 	return 0;
2715 }
2716 
2717 static bool kvm_is_vmx_supported(void)
2718 {
2719 	int cpu = raw_smp_processor_id();
2720 
2721 	if (!cpu_has_vmx()) {
2722 		pr_err("VMX not supported by CPU %d\n", cpu);
2723 		return false;
2724 	}
2725 
2726 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2727 	    !this_cpu_has(X86_FEATURE_VMX)) {
2728 		pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
2729 		return false;
2730 	}
2731 
2732 	return true;
2733 }
2734 
2735 static int vmx_check_processor_compat(void)
2736 {
2737 	int cpu = raw_smp_processor_id();
2738 	struct vmcs_config vmcs_conf;
2739 	struct vmx_capability vmx_cap;
2740 
2741 	if (!kvm_is_vmx_supported())
2742 		return -EIO;
2743 
2744 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
2745 		pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
2746 		return -EIO;
2747 	}
2748 	if (nested)
2749 		nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
2750 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
2751 		pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
2752 		return -EIO;
2753 	}
2754 	return 0;
2755 }
2756 
2757 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2758 {
2759 	u64 msr;
2760 
2761 	cr4_set_bits(X86_CR4_VMXE);
2762 
2763 	asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2764 			  _ASM_EXTABLE(1b, %l[fault])
2765 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2766 			  : : fault);
2767 	return 0;
2768 
2769 fault:
2770 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2771 		  rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2772 	cr4_clear_bits(X86_CR4_VMXE);
2773 
2774 	return -EFAULT;
2775 }
2776 
2777 static int vmx_hardware_enable(void)
2778 {
2779 	int cpu = raw_smp_processor_id();
2780 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2781 	int r;
2782 
2783 	if (cr4_read_shadow() & X86_CR4_VMXE)
2784 		return -EBUSY;
2785 
2786 	/*
2787 	 * This can happen if we hot-added a CPU but failed to allocate
2788 	 * VP assist page for it.
2789 	 */
2790 	if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
2791 		return -EFAULT;
2792 
2793 	intel_pt_handle_vmx(1);
2794 
2795 	r = kvm_cpu_vmxon(phys_addr);
2796 	if (r) {
2797 		intel_pt_handle_vmx(0);
2798 		return r;
2799 	}
2800 
2801 	if (enable_ept)
2802 		ept_sync_global();
2803 
2804 	return 0;
2805 }
2806 
2807 static void vmclear_local_loaded_vmcss(void)
2808 {
2809 	int cpu = raw_smp_processor_id();
2810 	struct loaded_vmcs *v, *n;
2811 
2812 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2813 				 loaded_vmcss_on_cpu_link)
2814 		__loaded_vmcs_clear(v);
2815 }
2816 
2817 static void vmx_hardware_disable(void)
2818 {
2819 	vmclear_local_loaded_vmcss();
2820 
2821 	if (cpu_vmxoff())
2822 		kvm_spurious_fault();
2823 
2824 	hv_reset_evmcs();
2825 
2826 	intel_pt_handle_vmx(0);
2827 }
2828 
2829 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2830 {
2831 	int node = cpu_to_node(cpu);
2832 	struct page *pages;
2833 	struct vmcs *vmcs;
2834 
2835 	pages = __alloc_pages_node(node, flags, 0);
2836 	if (!pages)
2837 		return NULL;
2838 	vmcs = page_address(pages);
2839 	memset(vmcs, 0, vmcs_config.size);
2840 
2841 	/* KVM supports Enlightened VMCS v1 only */
2842 	if (kvm_is_using_evmcs())
2843 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2844 	else
2845 		vmcs->hdr.revision_id = vmcs_config.revision_id;
2846 
2847 	if (shadow)
2848 		vmcs->hdr.shadow_vmcs = 1;
2849 	return vmcs;
2850 }
2851 
2852 void free_vmcs(struct vmcs *vmcs)
2853 {
2854 	free_page((unsigned long)vmcs);
2855 }
2856 
2857 /*
2858  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2859  */
2860 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2861 {
2862 	if (!loaded_vmcs->vmcs)
2863 		return;
2864 	loaded_vmcs_clear(loaded_vmcs);
2865 	free_vmcs(loaded_vmcs->vmcs);
2866 	loaded_vmcs->vmcs = NULL;
2867 	if (loaded_vmcs->msr_bitmap)
2868 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2869 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2870 }
2871 
2872 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2873 {
2874 	loaded_vmcs->vmcs = alloc_vmcs(false);
2875 	if (!loaded_vmcs->vmcs)
2876 		return -ENOMEM;
2877 
2878 	vmcs_clear(loaded_vmcs->vmcs);
2879 
2880 	loaded_vmcs->shadow_vmcs = NULL;
2881 	loaded_vmcs->hv_timer_soft_disabled = false;
2882 	loaded_vmcs->cpu = -1;
2883 	loaded_vmcs->launched = 0;
2884 
2885 	if (cpu_has_vmx_msr_bitmap()) {
2886 		loaded_vmcs->msr_bitmap = (unsigned long *)
2887 				__get_free_page(GFP_KERNEL_ACCOUNT);
2888 		if (!loaded_vmcs->msr_bitmap)
2889 			goto out_vmcs;
2890 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2891 	}
2892 
2893 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2894 	memset(&loaded_vmcs->controls_shadow, 0,
2895 		sizeof(struct vmcs_controls_shadow));
2896 
2897 	return 0;
2898 
2899 out_vmcs:
2900 	free_loaded_vmcs(loaded_vmcs);
2901 	return -ENOMEM;
2902 }
2903 
2904 static void free_kvm_area(void)
2905 {
2906 	int cpu;
2907 
2908 	for_each_possible_cpu(cpu) {
2909 		free_vmcs(per_cpu(vmxarea, cpu));
2910 		per_cpu(vmxarea, cpu) = NULL;
2911 	}
2912 }
2913 
2914 static __init int alloc_kvm_area(void)
2915 {
2916 	int cpu;
2917 
2918 	for_each_possible_cpu(cpu) {
2919 		struct vmcs *vmcs;
2920 
2921 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2922 		if (!vmcs) {
2923 			free_kvm_area();
2924 			return -ENOMEM;
2925 		}
2926 
2927 		/*
2928 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2929 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2930 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2931 		 *
2932 		 * However, even though not explicitly documented by
2933 		 * TLFS, VMXArea passed as VMXON argument should
2934 		 * still be marked with revision_id reported by
2935 		 * physical CPU.
2936 		 */
2937 		if (kvm_is_using_evmcs())
2938 			vmcs->hdr.revision_id = vmcs_config.revision_id;
2939 
2940 		per_cpu(vmxarea, cpu) = vmcs;
2941 	}
2942 	return 0;
2943 }
2944 
2945 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2946 		struct kvm_segment *save)
2947 {
2948 	if (!emulate_invalid_guest_state) {
2949 		/*
2950 		 * CS and SS RPL should be equal during guest entry according
2951 		 * to VMX spec, but in reality it is not always so. Since vcpu
2952 		 * is in the middle of the transition from real mode to
2953 		 * protected mode it is safe to assume that RPL 0 is a good
2954 		 * default value.
2955 		 */
2956 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2957 			save->selector &= ~SEGMENT_RPL_MASK;
2958 		save->dpl = save->selector & SEGMENT_RPL_MASK;
2959 		save->s = 1;
2960 	}
2961 	__vmx_set_segment(vcpu, save, seg);
2962 }
2963 
2964 static void enter_pmode(struct kvm_vcpu *vcpu)
2965 {
2966 	unsigned long flags;
2967 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2968 
2969 	/*
2970 	 * Update real mode segment cache. It may be not up-to-date if segment
2971 	 * register was written while vcpu was in a guest mode.
2972 	 */
2973 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2974 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2975 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2976 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2977 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2978 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2979 
2980 	vmx->rmode.vm86_active = 0;
2981 
2982 	__vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2983 
2984 	flags = vmcs_readl(GUEST_RFLAGS);
2985 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2986 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2987 	vmcs_writel(GUEST_RFLAGS, flags);
2988 
2989 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2990 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2991 
2992 	vmx_update_exception_bitmap(vcpu);
2993 
2994 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2995 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2996 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2997 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2998 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2999 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3000 }
3001 
3002 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3003 {
3004 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3005 	struct kvm_segment var = *save;
3006 
3007 	var.dpl = 0x3;
3008 	if (seg == VCPU_SREG_CS)
3009 		var.type = 0x3;
3010 
3011 	if (!emulate_invalid_guest_state) {
3012 		var.selector = var.base >> 4;
3013 		var.base = var.base & 0xffff0;
3014 		var.limit = 0xffff;
3015 		var.g = 0;
3016 		var.db = 0;
3017 		var.present = 1;
3018 		var.s = 1;
3019 		var.l = 0;
3020 		var.unusable = 0;
3021 		var.type = 0x3;
3022 		var.avl = 0;
3023 		if (save->base & 0xf)
3024 			pr_warn_once("segment base is not paragraph aligned "
3025 				     "when entering protected mode (seg=%d)", seg);
3026 	}
3027 
3028 	vmcs_write16(sf->selector, var.selector);
3029 	vmcs_writel(sf->base, var.base);
3030 	vmcs_write32(sf->limit, var.limit);
3031 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3032 }
3033 
3034 static void enter_rmode(struct kvm_vcpu *vcpu)
3035 {
3036 	unsigned long flags;
3037 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3038 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
3039 
3040 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3041 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3042 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3043 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3044 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3045 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3046 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3047 
3048 	vmx->rmode.vm86_active = 1;
3049 
3050 	/*
3051 	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3052 	 * vcpu. Warn the user that an update is overdue.
3053 	 */
3054 	if (!kvm_vmx->tss_addr)
3055 		pr_warn_once("KVM_SET_TSS_ADDR needs to be called before running vCPU\n");
3056 
3057 	vmx_segment_cache_clear(vmx);
3058 
3059 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3060 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3061 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3062 
3063 	flags = vmcs_readl(GUEST_RFLAGS);
3064 	vmx->rmode.save_rflags = flags;
3065 
3066 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3067 
3068 	vmcs_writel(GUEST_RFLAGS, flags);
3069 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3070 	vmx_update_exception_bitmap(vcpu);
3071 
3072 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3073 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3074 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3075 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3076 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3077 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3078 }
3079 
3080 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3081 {
3082 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3083 
3084 	/* Nothing to do if hardware doesn't support EFER. */
3085 	if (!vmx_find_uret_msr(vmx, MSR_EFER))
3086 		return 0;
3087 
3088 	vcpu->arch.efer = efer;
3089 #ifdef CONFIG_X86_64
3090 	if (efer & EFER_LMA)
3091 		vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3092 	else
3093 		vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3094 #else
3095 	if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3096 		return 1;
3097 #endif
3098 
3099 	vmx_setup_uret_msrs(vmx);
3100 	return 0;
3101 }
3102 
3103 #ifdef CONFIG_X86_64
3104 
3105 static void enter_lmode(struct kvm_vcpu *vcpu)
3106 {
3107 	u32 guest_tr_ar;
3108 
3109 	vmx_segment_cache_clear(to_vmx(vcpu));
3110 
3111 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3112 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3113 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3114 				     __func__);
3115 		vmcs_write32(GUEST_TR_AR_BYTES,
3116 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3117 			     | VMX_AR_TYPE_BUSY_64_TSS);
3118 	}
3119 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3120 }
3121 
3122 static void exit_lmode(struct kvm_vcpu *vcpu)
3123 {
3124 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3125 }
3126 
3127 #endif
3128 
3129 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3130 {
3131 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3132 
3133 	/*
3134 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3135 	 * the CPU is not required to invalidate guest-physical mappings on
3136 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
3137 	 * associated with the root EPT structure and not any particular VPID
3138 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
3139 	 */
3140 	if (enable_ept) {
3141 		ept_sync_global();
3142 	} else if (enable_vpid) {
3143 		if (cpu_has_vmx_invvpid_global()) {
3144 			vpid_sync_vcpu_global();
3145 		} else {
3146 			vpid_sync_vcpu_single(vmx->vpid);
3147 			vpid_sync_vcpu_single(vmx->nested.vpid02);
3148 		}
3149 	}
3150 }
3151 
3152 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3153 {
3154 	if (is_guest_mode(vcpu))
3155 		return nested_get_vpid02(vcpu);
3156 	return to_vmx(vcpu)->vpid;
3157 }
3158 
3159 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3160 {
3161 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3162 	u64 root_hpa = mmu->root.hpa;
3163 
3164 	/* No flush required if the current context is invalid. */
3165 	if (!VALID_PAGE(root_hpa))
3166 		return;
3167 
3168 	if (enable_ept)
3169 		ept_sync_context(construct_eptp(vcpu, root_hpa,
3170 						mmu->root_role.level));
3171 	else
3172 		vpid_sync_context(vmx_get_current_vpid(vcpu));
3173 }
3174 
3175 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3176 {
3177 	/*
3178 	 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3179 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3180 	 */
3181 	vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3182 }
3183 
3184 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3185 {
3186 	/*
3187 	 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3188 	 * vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit are
3189 	 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3190 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3191 	 * i.e. no explicit INVVPID is necessary.
3192 	 */
3193 	vpid_sync_context(vmx_get_current_vpid(vcpu));
3194 }
3195 
3196 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3197 {
3198 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3199 
3200 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3201 		return;
3202 
3203 	if (is_pae_paging(vcpu)) {
3204 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3205 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3206 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3207 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3208 	}
3209 }
3210 
3211 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3212 {
3213 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3214 
3215 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3216 		return;
3217 
3218 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3219 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3220 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3221 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3222 
3223 	kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3224 }
3225 
3226 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3227 			  CPU_BASED_CR3_STORE_EXITING)
3228 
3229 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3230 {
3231 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3232 	unsigned long hw_cr0, old_cr0_pg;
3233 	u32 tmp;
3234 
3235 	old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3236 
3237 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3238 	if (is_unrestricted_guest(vcpu))
3239 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3240 	else {
3241 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3242 		if (!enable_ept)
3243 			hw_cr0 |= X86_CR0_WP;
3244 
3245 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3246 			enter_pmode(vcpu);
3247 
3248 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3249 			enter_rmode(vcpu);
3250 	}
3251 
3252 	vmcs_writel(CR0_READ_SHADOW, cr0);
3253 	vmcs_writel(GUEST_CR0, hw_cr0);
3254 	vcpu->arch.cr0 = cr0;
3255 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3256 
3257 #ifdef CONFIG_X86_64
3258 	if (vcpu->arch.efer & EFER_LME) {
3259 		if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3260 			enter_lmode(vcpu);
3261 		else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3262 			exit_lmode(vcpu);
3263 	}
3264 #endif
3265 
3266 	if (enable_ept && !is_unrestricted_guest(vcpu)) {
3267 		/*
3268 		 * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3269 		 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3270 		 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3271 		 * KVM's CR3 is installed.
3272 		 */
3273 		if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3274 			vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3275 
3276 		/*
3277 		 * When running with EPT but not unrestricted guest, KVM must
3278 		 * intercept CR3 accesses when paging is _disabled_.  This is
3279 		 * necessary because restricted guests can't actually run with
3280 		 * paging disabled, and so KVM stuffs its own CR3 in order to
3281 		 * run the guest when identity mapped page tables.
3282 		 *
3283 		 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3284 		 * update, it may be stale with respect to CR3 interception,
3285 		 * e.g. after nested VM-Enter.
3286 		 *
3287 		 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3288 		 * stores to forward them to L1, even if KVM does not need to
3289 		 * intercept them to preserve its identity mapped page tables.
3290 		 */
3291 		if (!(cr0 & X86_CR0_PG)) {
3292 			exec_controls_setbit(vmx, CR3_EXITING_BITS);
3293 		} else if (!is_guest_mode(vcpu)) {
3294 			exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3295 		} else {
3296 			tmp = exec_controls_get(vmx);
3297 			tmp &= ~CR3_EXITING_BITS;
3298 			tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3299 			exec_controls_set(vmx, tmp);
3300 		}
3301 
3302 		/* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3303 		if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3304 			vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3305 
3306 		/*
3307 		 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3308 		 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3309 		 */
3310 		if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3311 			kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3312 	}
3313 
3314 	/* depends on vcpu->arch.cr0 to be set to a new value */
3315 	vmx->emulation_required = vmx_emulation_required(vcpu);
3316 }
3317 
3318 static int vmx_get_max_tdp_level(void)
3319 {
3320 	if (cpu_has_vmx_ept_5levels())
3321 		return 5;
3322 	return 4;
3323 }
3324 
3325 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3326 {
3327 	u64 eptp = VMX_EPTP_MT_WB;
3328 
3329 	eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3330 
3331 	if (enable_ept_ad_bits &&
3332 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3333 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3334 	eptp |= root_hpa;
3335 
3336 	return eptp;
3337 }
3338 
3339 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3340 			     int root_level)
3341 {
3342 	struct kvm *kvm = vcpu->kvm;
3343 	bool update_guest_cr3 = true;
3344 	unsigned long guest_cr3;
3345 	u64 eptp;
3346 
3347 	if (enable_ept) {
3348 		eptp = construct_eptp(vcpu, root_hpa, root_level);
3349 		vmcs_write64(EPT_POINTER, eptp);
3350 
3351 		hv_track_root_tdp(vcpu, root_hpa);
3352 
3353 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3354 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3355 		else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3356 			guest_cr3 = vcpu->arch.cr3;
3357 		else /* vmcs.GUEST_CR3 is already up-to-date. */
3358 			update_guest_cr3 = false;
3359 		vmx_ept_load_pdptrs(vcpu);
3360 	} else {
3361 		guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
3362 	}
3363 
3364 	if (update_guest_cr3)
3365 		vmcs_writel(GUEST_CR3, guest_cr3);
3366 }
3367 
3368 
3369 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3370 {
3371 	/*
3372 	 * We operate under the default treatment of SMM, so VMX cannot be
3373 	 * enabled under SMM.  Note, whether or not VMXE is allowed at all,
3374 	 * i.e. is a reserved bit, is handled by common x86 code.
3375 	 */
3376 	if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3377 		return false;
3378 
3379 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3380 		return false;
3381 
3382 	return true;
3383 }
3384 
3385 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3386 {
3387 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
3388 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3389 	unsigned long hw_cr4;
3390 
3391 	/*
3392 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3393 	 * is in force while we are in guest mode.  Do not let guests control
3394 	 * this bit, even if host CR4.MCE == 0.
3395 	 */
3396 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3397 	if (is_unrestricted_guest(vcpu))
3398 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3399 	else if (vmx->rmode.vm86_active)
3400 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3401 	else
3402 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3403 
3404 	if (vmx_umip_emulated()) {
3405 		if (cr4 & X86_CR4_UMIP) {
3406 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3407 			hw_cr4 &= ~X86_CR4_UMIP;
3408 		} else if (!is_guest_mode(vcpu) ||
3409 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3410 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3411 		}
3412 	}
3413 
3414 	vcpu->arch.cr4 = cr4;
3415 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3416 
3417 	if (!is_unrestricted_guest(vcpu)) {
3418 		if (enable_ept) {
3419 			if (!is_paging(vcpu)) {
3420 				hw_cr4 &= ~X86_CR4_PAE;
3421 				hw_cr4 |= X86_CR4_PSE;
3422 			} else if (!(cr4 & X86_CR4_PAE)) {
3423 				hw_cr4 &= ~X86_CR4_PAE;
3424 			}
3425 		}
3426 
3427 		/*
3428 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3429 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3430 		 * to be manually disabled when guest switches to non-paging
3431 		 * mode.
3432 		 *
3433 		 * If !enable_unrestricted_guest, the CPU is always running
3434 		 * with CR0.PG=1 and CR4 needs to be modified.
3435 		 * If enable_unrestricted_guest, the CPU automatically
3436 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3437 		 */
3438 		if (!is_paging(vcpu))
3439 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3440 	}
3441 
3442 	vmcs_writel(CR4_READ_SHADOW, cr4);
3443 	vmcs_writel(GUEST_CR4, hw_cr4);
3444 
3445 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3446 		kvm_update_cpuid_runtime(vcpu);
3447 }
3448 
3449 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3450 {
3451 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3452 	u32 ar;
3453 
3454 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3455 		*var = vmx->rmode.segs[seg];
3456 		if (seg == VCPU_SREG_TR
3457 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3458 			return;
3459 		var->base = vmx_read_guest_seg_base(vmx, seg);
3460 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3461 		return;
3462 	}
3463 	var->base = vmx_read_guest_seg_base(vmx, seg);
3464 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3465 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3466 	ar = vmx_read_guest_seg_ar(vmx, seg);
3467 	var->unusable = (ar >> 16) & 1;
3468 	var->type = ar & 15;
3469 	var->s = (ar >> 4) & 1;
3470 	var->dpl = (ar >> 5) & 3;
3471 	/*
3472 	 * Some userspaces do not preserve unusable property. Since usable
3473 	 * segment has to be present according to VMX spec we can use present
3474 	 * property to amend userspace bug by making unusable segment always
3475 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3476 	 * segment as unusable.
3477 	 */
3478 	var->present = !var->unusable;
3479 	var->avl = (ar >> 12) & 1;
3480 	var->l = (ar >> 13) & 1;
3481 	var->db = (ar >> 14) & 1;
3482 	var->g = (ar >> 15) & 1;
3483 }
3484 
3485 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3486 {
3487 	struct kvm_segment s;
3488 
3489 	if (to_vmx(vcpu)->rmode.vm86_active) {
3490 		vmx_get_segment(vcpu, &s, seg);
3491 		return s.base;
3492 	}
3493 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3494 }
3495 
3496 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3497 {
3498 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3499 
3500 	if (unlikely(vmx->rmode.vm86_active))
3501 		return 0;
3502 	else {
3503 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3504 		return VMX_AR_DPL(ar);
3505 	}
3506 }
3507 
3508 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3509 {
3510 	u32 ar;
3511 
3512 	ar = var->type & 15;
3513 	ar |= (var->s & 1) << 4;
3514 	ar |= (var->dpl & 3) << 5;
3515 	ar |= (var->present & 1) << 7;
3516 	ar |= (var->avl & 1) << 12;
3517 	ar |= (var->l & 1) << 13;
3518 	ar |= (var->db & 1) << 14;
3519 	ar |= (var->g & 1) << 15;
3520 	ar |= (var->unusable || !var->present) << 16;
3521 
3522 	return ar;
3523 }
3524 
3525 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3526 {
3527 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3528 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3529 
3530 	vmx_segment_cache_clear(vmx);
3531 
3532 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3533 		vmx->rmode.segs[seg] = *var;
3534 		if (seg == VCPU_SREG_TR)
3535 			vmcs_write16(sf->selector, var->selector);
3536 		else if (var->s)
3537 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3538 		return;
3539 	}
3540 
3541 	vmcs_writel(sf->base, var->base);
3542 	vmcs_write32(sf->limit, var->limit);
3543 	vmcs_write16(sf->selector, var->selector);
3544 
3545 	/*
3546 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3547 	 * qemu binaries.
3548 	 *   IA32 arch specifies that at the time of processor reset the
3549 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3550 	 * is setting it to 0 in the userland code. This causes invalid guest
3551 	 * state vmexit when "unrestricted guest" mode is turned on.
3552 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3553 	 * tree. Newer qemu binaries with that qemu fix would not need this
3554 	 * kvm hack.
3555 	 */
3556 	if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3557 		var->type |= 0x1; /* Accessed */
3558 
3559 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3560 }
3561 
3562 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3563 {
3564 	__vmx_set_segment(vcpu, var, seg);
3565 
3566 	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3567 }
3568 
3569 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3570 {
3571 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3572 
3573 	*db = (ar >> 14) & 1;
3574 	*l = (ar >> 13) & 1;
3575 }
3576 
3577 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3578 {
3579 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3580 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3581 }
3582 
3583 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3584 {
3585 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3586 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3587 }
3588 
3589 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3590 {
3591 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3592 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3593 }
3594 
3595 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3596 {
3597 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3598 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3599 }
3600 
3601 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3602 {
3603 	struct kvm_segment var;
3604 	u32 ar;
3605 
3606 	vmx_get_segment(vcpu, &var, seg);
3607 	var.dpl = 0x3;
3608 	if (seg == VCPU_SREG_CS)
3609 		var.type = 0x3;
3610 	ar = vmx_segment_access_rights(&var);
3611 
3612 	if (var.base != (var.selector << 4))
3613 		return false;
3614 	if (var.limit != 0xffff)
3615 		return false;
3616 	if (ar != 0xf3)
3617 		return false;
3618 
3619 	return true;
3620 }
3621 
3622 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3623 {
3624 	struct kvm_segment cs;
3625 	unsigned int cs_rpl;
3626 
3627 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3628 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3629 
3630 	if (cs.unusable)
3631 		return false;
3632 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3633 		return false;
3634 	if (!cs.s)
3635 		return false;
3636 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3637 		if (cs.dpl > cs_rpl)
3638 			return false;
3639 	} else {
3640 		if (cs.dpl != cs_rpl)
3641 			return false;
3642 	}
3643 	if (!cs.present)
3644 		return false;
3645 
3646 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3647 	return true;
3648 }
3649 
3650 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3651 {
3652 	struct kvm_segment ss;
3653 	unsigned int ss_rpl;
3654 
3655 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3656 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3657 
3658 	if (ss.unusable)
3659 		return true;
3660 	if (ss.type != 3 && ss.type != 7)
3661 		return false;
3662 	if (!ss.s)
3663 		return false;
3664 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3665 		return false;
3666 	if (!ss.present)
3667 		return false;
3668 
3669 	return true;
3670 }
3671 
3672 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3673 {
3674 	struct kvm_segment var;
3675 	unsigned int rpl;
3676 
3677 	vmx_get_segment(vcpu, &var, seg);
3678 	rpl = var.selector & SEGMENT_RPL_MASK;
3679 
3680 	if (var.unusable)
3681 		return true;
3682 	if (!var.s)
3683 		return false;
3684 	if (!var.present)
3685 		return false;
3686 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3687 		if (var.dpl < rpl) /* DPL < RPL */
3688 			return false;
3689 	}
3690 
3691 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3692 	 * rights flags
3693 	 */
3694 	return true;
3695 }
3696 
3697 static bool tr_valid(struct kvm_vcpu *vcpu)
3698 {
3699 	struct kvm_segment tr;
3700 
3701 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3702 
3703 	if (tr.unusable)
3704 		return false;
3705 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3706 		return false;
3707 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3708 		return false;
3709 	if (!tr.present)
3710 		return false;
3711 
3712 	return true;
3713 }
3714 
3715 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3716 {
3717 	struct kvm_segment ldtr;
3718 
3719 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3720 
3721 	if (ldtr.unusable)
3722 		return true;
3723 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3724 		return false;
3725 	if (ldtr.type != 2)
3726 		return false;
3727 	if (!ldtr.present)
3728 		return false;
3729 
3730 	return true;
3731 }
3732 
3733 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3734 {
3735 	struct kvm_segment cs, ss;
3736 
3737 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3738 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3739 
3740 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3741 		 (ss.selector & SEGMENT_RPL_MASK));
3742 }
3743 
3744 /*
3745  * Check if guest state is valid. Returns true if valid, false if
3746  * not.
3747  * We assume that registers are always usable
3748  */
3749 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3750 {
3751 	/* real mode guest state checks */
3752 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3753 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3754 			return false;
3755 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3756 			return false;
3757 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3758 			return false;
3759 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3760 			return false;
3761 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3762 			return false;
3763 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3764 			return false;
3765 	} else {
3766 	/* protected mode guest state checks */
3767 		if (!cs_ss_rpl_check(vcpu))
3768 			return false;
3769 		if (!code_segment_valid(vcpu))
3770 			return false;
3771 		if (!stack_segment_valid(vcpu))
3772 			return false;
3773 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3774 			return false;
3775 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3776 			return false;
3777 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3778 			return false;
3779 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3780 			return false;
3781 		if (!tr_valid(vcpu))
3782 			return false;
3783 		if (!ldtr_valid(vcpu))
3784 			return false;
3785 	}
3786 	/* TODO:
3787 	 * - Add checks on RIP
3788 	 * - Add checks on RFLAGS
3789 	 */
3790 
3791 	return true;
3792 }
3793 
3794 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3795 {
3796 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3797 	u16 data;
3798 	int i;
3799 
3800 	for (i = 0; i < 3; i++) {
3801 		if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3802 			return -EFAULT;
3803 	}
3804 
3805 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3806 	if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3807 		return -EFAULT;
3808 
3809 	data = ~0;
3810 	if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3811 		return -EFAULT;
3812 
3813 	return 0;
3814 }
3815 
3816 static int init_rmode_identity_map(struct kvm *kvm)
3817 {
3818 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3819 	int i, r = 0;
3820 	void __user *uaddr;
3821 	u32 tmp;
3822 
3823 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3824 	mutex_lock(&kvm->slots_lock);
3825 
3826 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3827 		goto out;
3828 
3829 	if (!kvm_vmx->ept_identity_map_addr)
3830 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3831 
3832 	uaddr = __x86_set_memory_region(kvm,
3833 					IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3834 					kvm_vmx->ept_identity_map_addr,
3835 					PAGE_SIZE);
3836 	if (IS_ERR(uaddr)) {
3837 		r = PTR_ERR(uaddr);
3838 		goto out;
3839 	}
3840 
3841 	/* Set up identity-mapping pagetable for EPT in real mode */
3842 	for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3843 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3844 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3845 		if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3846 			r = -EFAULT;
3847 			goto out;
3848 		}
3849 	}
3850 	kvm_vmx->ept_identity_pagetable_done = true;
3851 
3852 out:
3853 	mutex_unlock(&kvm->slots_lock);
3854 	return r;
3855 }
3856 
3857 static void seg_setup(int seg)
3858 {
3859 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3860 	unsigned int ar;
3861 
3862 	vmcs_write16(sf->selector, 0);
3863 	vmcs_writel(sf->base, 0);
3864 	vmcs_write32(sf->limit, 0xffff);
3865 	ar = 0x93;
3866 	if (seg == VCPU_SREG_CS)
3867 		ar |= 0x08; /* code segment */
3868 
3869 	vmcs_write32(sf->ar_bytes, ar);
3870 }
3871 
3872 int allocate_vpid(void)
3873 {
3874 	int vpid;
3875 
3876 	if (!enable_vpid)
3877 		return 0;
3878 	spin_lock(&vmx_vpid_lock);
3879 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3880 	if (vpid < VMX_NR_VPIDS)
3881 		__set_bit(vpid, vmx_vpid_bitmap);
3882 	else
3883 		vpid = 0;
3884 	spin_unlock(&vmx_vpid_lock);
3885 	return vpid;
3886 }
3887 
3888 void free_vpid(int vpid)
3889 {
3890 	if (!enable_vpid || vpid == 0)
3891 		return;
3892 	spin_lock(&vmx_vpid_lock);
3893 	__clear_bit(vpid, vmx_vpid_bitmap);
3894 	spin_unlock(&vmx_vpid_lock);
3895 }
3896 
3897 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3898 {
3899 	/*
3900 	 * When KVM is a nested hypervisor on top of Hyper-V and uses
3901 	 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3902 	 * bitmap has changed.
3903 	 */
3904 	if (kvm_is_using_evmcs()) {
3905 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
3906 
3907 		if (evmcs->hv_enlightenments_control.msr_bitmap)
3908 			evmcs->hv_clean_fields &=
3909 				~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
3910 	}
3911 
3912 	vmx->nested.force_msr_bitmap_recalc = true;
3913 }
3914 
3915 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3916 {
3917 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3918 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3919 
3920 	if (!cpu_has_vmx_msr_bitmap())
3921 		return;
3922 
3923 	vmx_msr_bitmap_l01_changed(vmx);
3924 
3925 	/*
3926 	 * Mark the desired intercept state in shadow bitmap, this is needed
3927 	 * for resync when the MSR filters change.
3928 	*/
3929 	if (is_valid_passthrough_msr(msr)) {
3930 		int idx = possible_passthrough_msr_slot(msr);
3931 
3932 		if (idx != -ENOENT) {
3933 			if (type & MSR_TYPE_R)
3934 				clear_bit(idx, vmx->shadow_msr_intercept.read);
3935 			if (type & MSR_TYPE_W)
3936 				clear_bit(idx, vmx->shadow_msr_intercept.write);
3937 		}
3938 	}
3939 
3940 	if ((type & MSR_TYPE_R) &&
3941 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3942 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3943 		type &= ~MSR_TYPE_R;
3944 	}
3945 
3946 	if ((type & MSR_TYPE_W) &&
3947 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3948 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3949 		type &= ~MSR_TYPE_W;
3950 	}
3951 
3952 	if (type & MSR_TYPE_R)
3953 		vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3954 
3955 	if (type & MSR_TYPE_W)
3956 		vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3957 }
3958 
3959 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3960 {
3961 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3962 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3963 
3964 	if (!cpu_has_vmx_msr_bitmap())
3965 		return;
3966 
3967 	vmx_msr_bitmap_l01_changed(vmx);
3968 
3969 	/*
3970 	 * Mark the desired intercept state in shadow bitmap, this is needed
3971 	 * for resync when the MSR filter changes.
3972 	*/
3973 	if (is_valid_passthrough_msr(msr)) {
3974 		int idx = possible_passthrough_msr_slot(msr);
3975 
3976 		if (idx != -ENOENT) {
3977 			if (type & MSR_TYPE_R)
3978 				set_bit(idx, vmx->shadow_msr_intercept.read);
3979 			if (type & MSR_TYPE_W)
3980 				set_bit(idx, vmx->shadow_msr_intercept.write);
3981 		}
3982 	}
3983 
3984 	if (type & MSR_TYPE_R)
3985 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3986 
3987 	if (type & MSR_TYPE_W)
3988 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3989 }
3990 
3991 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
3992 {
3993 	/*
3994 	 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
3995 	 * of the MSR bitmap.  KVM emulates APIC registers up through 0x3f0,
3996 	 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
3997 	 */
3998 	const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
3999 	const int write_idx = read_idx + (0x800 / sizeof(u64));
4000 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4001 	u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
4002 	u8 mode;
4003 
4004 	if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
4005 		return;
4006 
4007 	if (cpu_has_secondary_exec_ctrls() &&
4008 	    (secondary_exec_controls_get(vmx) &
4009 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4010 		mode = MSR_BITMAP_MODE_X2APIC;
4011 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4012 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4013 	} else {
4014 		mode = 0;
4015 	}
4016 
4017 	if (mode == vmx->x2apic_msr_bitmap_mode)
4018 		return;
4019 
4020 	vmx->x2apic_msr_bitmap_mode = mode;
4021 
4022 	/*
4023 	 * Reset the bitmap for MSRs 0x800 - 0x83f.  Leave AMD's uber-extended
4024 	 * registers (0x840 and above) intercepted, KVM doesn't support them.
4025 	 * Intercept all writes by default and poke holes as needed.  Pass
4026 	 * through reads for all valid registers by default in x2APIC+APICv
4027 	 * mode, only the current timer count needs on-demand emulation by KVM.
4028 	 */
4029 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
4030 		msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
4031 	else
4032 		msr_bitmap[read_idx] = ~0ull;
4033 	msr_bitmap[write_idx] = ~0ull;
4034 
4035 	/*
4036 	 * TPR reads and writes can be virtualized even if virtual interrupt
4037 	 * delivery is not in use.
4038 	 */
4039 	vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4040 				  !(mode & MSR_BITMAP_MODE_X2APIC));
4041 
4042 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4043 		vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4044 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4045 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4046 		if (enable_ipiv)
4047 			vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4048 	}
4049 }
4050 
4051 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4052 {
4053 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4054 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4055 	u32 i;
4056 
4057 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4058 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4059 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4060 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4061 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4062 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4063 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4064 	}
4065 }
4066 
4067 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
4068 {
4069 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4070 	void *vapic_page;
4071 	u32 vppr;
4072 	int rvi;
4073 
4074 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
4075 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4076 		WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
4077 		return false;
4078 
4079 	rvi = vmx_get_rvi();
4080 
4081 	vapic_page = vmx->nested.virtual_apic_map.hva;
4082 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
4083 
4084 	return ((rvi & 0xf0) > (vppr & 0xf0));
4085 }
4086 
4087 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
4088 {
4089 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4090 	u32 i;
4091 
4092 	/*
4093 	 * Redo intercept permissions for MSRs that KVM is passing through to
4094 	 * the guest.  Disabling interception will check the new MSR filter and
4095 	 * ensure that KVM enables interception if usersepace wants to filter
4096 	 * the MSR.  MSRs that KVM is already intercepting don't need to be
4097 	 * refreshed since KVM is going to intercept them regardless of what
4098 	 * userspace wants.
4099 	 */
4100 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4101 		u32 msr = vmx_possible_passthrough_msrs[i];
4102 
4103 		if (!test_bit(i, vmx->shadow_msr_intercept.read))
4104 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R);
4105 
4106 		if (!test_bit(i, vmx->shadow_msr_intercept.write))
4107 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W);
4108 	}
4109 
4110 	/* PT MSRs can be passed through iff PT is exposed to the guest. */
4111 	if (vmx_pt_mode_is_host_guest())
4112 		pt_update_intercept_for_msr(vcpu);
4113 }
4114 
4115 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4116 						     int pi_vec)
4117 {
4118 #ifdef CONFIG_SMP
4119 	if (vcpu->mode == IN_GUEST_MODE) {
4120 		/*
4121 		 * The vector of the virtual has already been set in the PIR.
4122 		 * Send a notification event to deliver the virtual interrupt
4123 		 * unless the vCPU is the currently running vCPU, i.e. the
4124 		 * event is being sent from a fastpath VM-Exit handler, in
4125 		 * which case the PIR will be synced to the vIRR before
4126 		 * re-entering the guest.
4127 		 *
4128 		 * When the target is not the running vCPU, the following
4129 		 * possibilities emerge:
4130 		 *
4131 		 * Case 1: vCPU stays in non-root mode. Sending a notification
4132 		 * event posts the interrupt to the vCPU.
4133 		 *
4134 		 * Case 2: vCPU exits to root mode and is still runnable. The
4135 		 * PIR will be synced to the vIRR before re-entering the guest.
4136 		 * Sending a notification event is ok as the host IRQ handler
4137 		 * will ignore the spurious event.
4138 		 *
4139 		 * Case 3: vCPU exits to root mode and is blocked. vcpu_block()
4140 		 * has already synced PIR to vIRR and never blocks the vCPU if
4141 		 * the vIRR is not empty. Therefore, a blocked vCPU here does
4142 		 * not wait for any requested interrupts in PIR, and sending a
4143 		 * notification event also results in a benign, spurious event.
4144 		 */
4145 
4146 		if (vcpu != kvm_get_running_vcpu())
4147 			apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4148 		return;
4149 	}
4150 #endif
4151 	/*
4152 	 * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
4153 	 * otherwise do nothing as KVM will grab the highest priority pending
4154 	 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
4155 	 */
4156 	kvm_vcpu_wake_up(vcpu);
4157 }
4158 
4159 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4160 						int vector)
4161 {
4162 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4163 
4164 	if (is_guest_mode(vcpu) &&
4165 	    vector == vmx->nested.posted_intr_nv) {
4166 		/*
4167 		 * If a posted intr is not recognized by hardware,
4168 		 * we will accomplish it in the next vmentry.
4169 		 */
4170 		vmx->nested.pi_pending = true;
4171 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4172 
4173 		/*
4174 		 * This pairs with the smp_mb_*() after setting vcpu->mode in
4175 		 * vcpu_enter_guest() to guarantee the vCPU sees the event
4176 		 * request if triggering a posted interrupt "fails" because
4177 		 * vcpu->mode != IN_GUEST_MODE.  The extra barrier is needed as
4178 		 * the smb_wmb() in kvm_make_request() only ensures everything
4179 		 * done before making the request is visible when the request
4180 		 * is visible, it doesn't ensure ordering between the store to
4181 		 * vcpu->requests and the load from vcpu->mode.
4182 		 */
4183 		smp_mb__after_atomic();
4184 
4185 		/* the PIR and ON have been set by L1. */
4186 		kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4187 		return 0;
4188 	}
4189 	return -1;
4190 }
4191 /*
4192  * Send interrupt to vcpu via posted interrupt way.
4193  * 1. If target vcpu is running(non-root mode), send posted interrupt
4194  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4195  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4196  * interrupt from PIR in next vmentry.
4197  */
4198 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4199 {
4200 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4201 	int r;
4202 
4203 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4204 	if (!r)
4205 		return 0;
4206 
4207 	/* Note, this is called iff the local APIC is in-kernel. */
4208 	if (!vcpu->arch.apic->apicv_active)
4209 		return -1;
4210 
4211 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4212 		return 0;
4213 
4214 	/* If a previous notification has sent the IPI, nothing to do.  */
4215 	if (pi_test_and_set_on(&vmx->pi_desc))
4216 		return 0;
4217 
4218 	/*
4219 	 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4220 	 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4221 	 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4222 	 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4223 	 */
4224 	kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4225 	return 0;
4226 }
4227 
4228 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4229 				  int trig_mode, int vector)
4230 {
4231 	struct kvm_vcpu *vcpu = apic->vcpu;
4232 
4233 	if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4234 		kvm_lapic_set_irr(vector, apic);
4235 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4236 		kvm_vcpu_kick(vcpu);
4237 	} else {
4238 		trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4239 					   trig_mode, vector);
4240 	}
4241 }
4242 
4243 /*
4244  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4245  * will not change in the lifetime of the guest.
4246  * Note that host-state that does change is set elsewhere. E.g., host-state
4247  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4248  */
4249 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4250 {
4251 	u32 low32, high32;
4252 	unsigned long tmpl;
4253 	unsigned long cr0, cr3, cr4;
4254 
4255 	cr0 = read_cr0();
4256 	WARN_ON(cr0 & X86_CR0_TS);
4257 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4258 
4259 	/*
4260 	 * Save the most likely value for this task's CR3 in the VMCS.
4261 	 * We can't use __get_current_cr3_fast() because we're not atomic.
4262 	 */
4263 	cr3 = __read_cr3();
4264 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
4265 	vmx->loaded_vmcs->host_state.cr3 = cr3;
4266 
4267 	/* Save the most likely value for this task's CR4 in the VMCS. */
4268 	cr4 = cr4_read_shadow();
4269 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4270 	vmx->loaded_vmcs->host_state.cr4 = cr4;
4271 
4272 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4273 #ifdef CONFIG_X86_64
4274 	/*
4275 	 * Load null selectors, so we can avoid reloading them in
4276 	 * vmx_prepare_switch_to_host(), in case userspace uses
4277 	 * the null selectors too (the expected case).
4278 	 */
4279 	vmcs_write16(HOST_DS_SELECTOR, 0);
4280 	vmcs_write16(HOST_ES_SELECTOR, 0);
4281 #else
4282 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4283 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4284 #endif
4285 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4286 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4287 
4288 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4289 
4290 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4291 
4292 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4293 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4294 
4295 	/*
4296 	 * SYSENTER is used for 32-bit system calls on either 32-bit or
4297 	 * 64-bit kernels.  It is always zero If neither is allowed, otherwise
4298 	 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4299 	 * have already done so!).
4300 	 */
4301 	if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4302 		vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4303 
4304 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4305 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4306 
4307 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4308 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4309 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4310 	}
4311 
4312 	if (cpu_has_load_ia32_efer())
4313 		vmcs_write64(HOST_IA32_EFER, host_efer);
4314 }
4315 
4316 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4317 {
4318 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4319 
4320 	vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4321 					  ~vcpu->arch.cr4_guest_rsvd_bits;
4322 	if (!enable_ept) {
4323 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4324 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4325 	}
4326 	if (is_guest_mode(&vmx->vcpu))
4327 		vcpu->arch.cr4_guest_owned_bits &=
4328 			~get_vmcs12(vcpu)->cr4_guest_host_mask;
4329 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4330 }
4331 
4332 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4333 {
4334 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4335 
4336 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4337 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4338 
4339 	if (!enable_vnmi)
4340 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4341 
4342 	if (!enable_preemption_timer)
4343 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4344 
4345 	return pin_based_exec_ctrl;
4346 }
4347 
4348 static u32 vmx_vmentry_ctrl(void)
4349 {
4350 	u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4351 
4352 	if (vmx_pt_mode_is_system())
4353 		vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4354 				  VM_ENTRY_LOAD_IA32_RTIT_CTL);
4355 	/*
4356 	 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4357 	 */
4358 	vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4359 			  VM_ENTRY_LOAD_IA32_EFER |
4360 			  VM_ENTRY_IA32E_MODE);
4361 
4362 	if (cpu_has_perf_global_ctrl_bug())
4363 		vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4364 
4365 	return vmentry_ctrl;
4366 }
4367 
4368 static u32 vmx_vmexit_ctrl(void)
4369 {
4370 	u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4371 
4372 	/*
4373 	 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4374 	 * nested virtualization and thus allowed to be set in vmcs12.
4375 	 */
4376 	vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4377 			 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4378 
4379 	if (vmx_pt_mode_is_system())
4380 		vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4381 				 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4382 
4383 	if (cpu_has_perf_global_ctrl_bug())
4384 		vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4385 
4386 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4387 	return vmexit_ctrl &
4388 		~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4389 }
4390 
4391 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4392 {
4393 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4394 
4395 	if (is_guest_mode(vcpu)) {
4396 		vmx->nested.update_vmcs01_apicv_status = true;
4397 		return;
4398 	}
4399 
4400 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4401 
4402 	if (kvm_vcpu_apicv_active(vcpu)) {
4403 		secondary_exec_controls_setbit(vmx,
4404 					       SECONDARY_EXEC_APIC_REGISTER_VIRT |
4405 					       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4406 		if (enable_ipiv)
4407 			tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4408 	} else {
4409 		secondary_exec_controls_clearbit(vmx,
4410 						 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4411 						 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4412 		if (enable_ipiv)
4413 			tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4414 	}
4415 
4416 	vmx_update_msr_bitmap_x2apic(vcpu);
4417 }
4418 
4419 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4420 {
4421 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4422 
4423 	/*
4424 	 * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4425 	 * vmcs12 and propagated to vmcs02 when set in vmcs12.
4426 	 */
4427 	exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4428 			  CPU_BASED_USE_IO_BITMAPS |
4429 			  CPU_BASED_MONITOR_TRAP_FLAG |
4430 			  CPU_BASED_PAUSE_EXITING);
4431 
4432 	/* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4433 	exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4434 			  CPU_BASED_NMI_WINDOW_EXITING);
4435 
4436 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4437 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4438 
4439 	if (!cpu_need_tpr_shadow(&vmx->vcpu))
4440 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4441 
4442 #ifdef CONFIG_X86_64
4443 	if (exec_control & CPU_BASED_TPR_SHADOW)
4444 		exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4445 				  CPU_BASED_CR8_STORE_EXITING);
4446 	else
4447 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4448 				CPU_BASED_CR8_LOAD_EXITING;
4449 #endif
4450 	/* No need to intercept CR3 access or INVPLG when using EPT. */
4451 	if (enable_ept)
4452 		exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4453 				  CPU_BASED_CR3_STORE_EXITING |
4454 				  CPU_BASED_INVLPG_EXITING);
4455 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4456 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4457 				CPU_BASED_MONITOR_EXITING);
4458 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4459 		exec_control &= ~CPU_BASED_HLT_EXITING;
4460 	return exec_control;
4461 }
4462 
4463 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4464 {
4465 	u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4466 
4467 	/*
4468 	 * IPI virtualization relies on APICv. Disable IPI virtualization if
4469 	 * APICv is inhibited.
4470 	 */
4471 	if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4472 		exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4473 
4474 	return exec_control;
4475 }
4476 
4477 /*
4478  * Adjust a single secondary execution control bit to intercept/allow an
4479  * instruction in the guest.  This is usually done based on whether or not a
4480  * feature has been exposed to the guest in order to correctly emulate faults.
4481  */
4482 static inline void
4483 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4484 				  u32 control, bool enabled, bool exiting)
4485 {
4486 	/*
4487 	 * If the control is for an opt-in feature, clear the control if the
4488 	 * feature is not exposed to the guest, i.e. not enabled.  If the
4489 	 * control is opt-out, i.e. an exiting control, clear the control if
4490 	 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4491 	 * disabled for the associated instruction.  Note, the caller is
4492 	 * responsible presetting exec_control to set all supported bits.
4493 	 */
4494 	if (enabled == exiting)
4495 		*exec_control &= ~control;
4496 
4497 	/*
4498 	 * Update the nested MSR settings so that a nested VMM can/can't set
4499 	 * controls for features that are/aren't exposed to the guest.
4500 	 */
4501 	if (nested) {
4502 		/*
4503 		 * All features that can be added or removed to VMX MSRs must
4504 		 * be supported in the first place for nested virtualization.
4505 		 */
4506 		if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4507 			enabled = false;
4508 
4509 		if (enabled)
4510 			vmx->nested.msrs.secondary_ctls_high |= control;
4511 		else
4512 			vmx->nested.msrs.secondary_ctls_high &= ~control;
4513 	}
4514 }
4515 
4516 /*
4517  * Wrapper macro for the common case of adjusting a secondary execution control
4518  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4519  * verifies that the control is actually supported by KVM and hardware.
4520  */
4521 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4522 ({									 \
4523 	bool __enabled;							 \
4524 									 \
4525 	if (cpu_has_vmx_##name()) {					 \
4526 		__enabled = guest_cpuid_has(&(vmx)->vcpu,		 \
4527 					    X86_FEATURE_##feat_name);	 \
4528 		vmx_adjust_secondary_exec_control(vmx, exec_control,	 \
4529 			SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4530 	}								 \
4531 })
4532 
4533 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4534 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4535 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4536 
4537 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4538 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4539 
4540 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4541 {
4542 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4543 
4544 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4545 
4546 	if (vmx_pt_mode_is_system())
4547 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4548 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4549 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4550 	if (vmx->vpid == 0)
4551 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4552 	if (!enable_ept) {
4553 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4554 		enable_unrestricted_guest = 0;
4555 	}
4556 	if (!enable_unrestricted_guest)
4557 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4558 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4559 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4560 	if (!kvm_vcpu_apicv_active(vcpu))
4561 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4562 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4563 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4564 
4565 	/*
4566 	 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4567 	 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4568 	 */
4569 	exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
4570 
4571 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4572 	 * in vmx_set_cr4.  */
4573 	exec_control &= ~SECONDARY_EXEC_DESC;
4574 
4575 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4576 	   (handle_vmptrld).
4577 	   We can NOT enable shadow_vmcs here because we don't have yet
4578 	   a current VMCS12
4579 	*/
4580 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4581 
4582 	/*
4583 	 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4584 	 * it needs to be set here when dirty logging is already active, e.g.
4585 	 * if this vCPU was created after dirty logging was enabled.
4586 	 */
4587 	if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
4588 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4589 
4590 	if (cpu_has_vmx_xsaves()) {
4591 		/* Exposing XSAVES only when XSAVE is exposed */
4592 		bool xsaves_enabled =
4593 			boot_cpu_has(X86_FEATURE_XSAVE) &&
4594 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4595 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4596 
4597 		vcpu->arch.xsaves_enabled = xsaves_enabled;
4598 
4599 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4600 						  SECONDARY_EXEC_XSAVES,
4601 						  xsaves_enabled, false);
4602 	}
4603 
4604 	/*
4605 	 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4606 	 * feature is exposed to the guest.  This creates a virtualization hole
4607 	 * if both are supported in hardware but only one is exposed to the
4608 	 * guest, but letting the guest execute RDTSCP or RDPID when either one
4609 	 * is advertised is preferable to emulating the advertised instruction
4610 	 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4611 	 */
4612 	if (cpu_has_vmx_rdtscp()) {
4613 		bool rdpid_or_rdtscp_enabled =
4614 			guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4615 			guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4616 
4617 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4618 						  SECONDARY_EXEC_ENABLE_RDTSCP,
4619 						  rdpid_or_rdtscp_enabled, false);
4620 	}
4621 	vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4622 
4623 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4624 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4625 
4626 	vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4627 				    ENABLE_USR_WAIT_PAUSE, false);
4628 
4629 	if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4630 		exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4631 
4632 	if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4633 		exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4634 
4635 	return exec_control;
4636 }
4637 
4638 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4639 {
4640 	return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4641 }
4642 
4643 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4644 {
4645 	struct page *pages;
4646 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4647 
4648 	if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4649 		return 0;
4650 
4651 	if (kvm_vmx->pid_table)
4652 		return 0;
4653 
4654 	pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, vmx_get_pid_table_order(kvm));
4655 	if (!pages)
4656 		return -ENOMEM;
4657 
4658 	kvm_vmx->pid_table = (void *)page_address(pages);
4659 	return 0;
4660 }
4661 
4662 static int vmx_vcpu_precreate(struct kvm *kvm)
4663 {
4664 	return vmx_alloc_ipiv_pid_table(kvm);
4665 }
4666 
4667 #define VMX_XSS_EXIT_BITMAP 0
4668 
4669 static void init_vmcs(struct vcpu_vmx *vmx)
4670 {
4671 	struct kvm *kvm = vmx->vcpu.kvm;
4672 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4673 
4674 	if (nested)
4675 		nested_vmx_set_vmcs_shadowing_bitmap();
4676 
4677 	if (cpu_has_vmx_msr_bitmap())
4678 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4679 
4680 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4681 
4682 	/* Control */
4683 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4684 
4685 	exec_controls_set(vmx, vmx_exec_control(vmx));
4686 
4687 	if (cpu_has_secondary_exec_ctrls())
4688 		secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4689 
4690 	if (cpu_has_tertiary_exec_ctrls())
4691 		tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4692 
4693 	if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4694 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4695 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4696 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4697 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4698 
4699 		vmcs_write16(GUEST_INTR_STATUS, 0);
4700 
4701 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4702 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4703 	}
4704 
4705 	if (vmx_can_use_ipiv(&vmx->vcpu)) {
4706 		vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4707 		vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4708 	}
4709 
4710 	if (!kvm_pause_in_guest(kvm)) {
4711 		vmcs_write32(PLE_GAP, ple_gap);
4712 		vmx->ple_window = ple_window;
4713 		vmx->ple_window_dirty = true;
4714 	}
4715 
4716 	if (kvm_notify_vmexit_enabled(kvm))
4717 		vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4718 
4719 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4720 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4721 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4722 
4723 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4724 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4725 	vmx_set_constant_host_state(vmx);
4726 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4727 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4728 
4729 	if (cpu_has_vmx_vmfunc())
4730 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4731 
4732 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4733 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4734 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4735 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4736 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4737 
4738 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4739 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4740 
4741 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4742 
4743 	/* 22.2.1, 20.8.1 */
4744 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4745 
4746 	vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4747 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4748 
4749 	set_cr4_guest_host_mask(vmx);
4750 
4751 	if (vmx->vpid != 0)
4752 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4753 
4754 	if (cpu_has_vmx_xsaves())
4755 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4756 
4757 	if (enable_pml) {
4758 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4759 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4760 	}
4761 
4762 	vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4763 
4764 	if (vmx_pt_mode_is_host_guest()) {
4765 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4766 		/* Bit[6~0] are forced to 1, writes are ignored. */
4767 		vmx->pt_desc.guest.output_mask = 0x7F;
4768 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4769 	}
4770 
4771 	vmcs_write32(GUEST_SYSENTER_CS, 0);
4772 	vmcs_writel(GUEST_SYSENTER_ESP, 0);
4773 	vmcs_writel(GUEST_SYSENTER_EIP, 0);
4774 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4775 
4776 	if (cpu_has_vmx_tpr_shadow()) {
4777 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4778 		if (cpu_need_tpr_shadow(&vmx->vcpu))
4779 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4780 				     __pa(vmx->vcpu.arch.apic->regs));
4781 		vmcs_write32(TPR_THRESHOLD, 0);
4782 	}
4783 
4784 	vmx_setup_uret_msrs(vmx);
4785 }
4786 
4787 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4788 {
4789 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4790 
4791 	init_vmcs(vmx);
4792 
4793 	if (nested)
4794 		memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4795 
4796 	vcpu_setup_sgx_lepubkeyhash(vcpu);
4797 
4798 	vmx->nested.posted_intr_nv = -1;
4799 	vmx->nested.vmxon_ptr = INVALID_GPA;
4800 	vmx->nested.current_vmptr = INVALID_GPA;
4801 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4802 
4803 	vcpu->arch.microcode_version = 0x100000000ULL;
4804 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4805 
4806 	/*
4807 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4808 	 * or POSTED_INTR_WAKEUP_VECTOR.
4809 	 */
4810 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4811 	vmx->pi_desc.sn = 1;
4812 }
4813 
4814 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4815 {
4816 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4817 
4818 	if (!init_event)
4819 		__vmx_vcpu_reset(vcpu);
4820 
4821 	vmx->rmode.vm86_active = 0;
4822 	vmx->spec_ctrl = 0;
4823 
4824 	vmx->msr_ia32_umwait_control = 0;
4825 
4826 	vmx->hv_deadline_tsc = -1;
4827 	kvm_set_cr8(vcpu, 0);
4828 
4829 	vmx_segment_cache_clear(vmx);
4830 	kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4831 
4832 	seg_setup(VCPU_SREG_CS);
4833 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4834 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4835 
4836 	seg_setup(VCPU_SREG_DS);
4837 	seg_setup(VCPU_SREG_ES);
4838 	seg_setup(VCPU_SREG_FS);
4839 	seg_setup(VCPU_SREG_GS);
4840 	seg_setup(VCPU_SREG_SS);
4841 
4842 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4843 	vmcs_writel(GUEST_TR_BASE, 0);
4844 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4845 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4846 
4847 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4848 	vmcs_writel(GUEST_LDTR_BASE, 0);
4849 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4850 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4851 
4852 	vmcs_writel(GUEST_GDTR_BASE, 0);
4853 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4854 
4855 	vmcs_writel(GUEST_IDTR_BASE, 0);
4856 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4857 
4858 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4859 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4860 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4861 	if (kvm_mpx_supported())
4862 		vmcs_write64(GUEST_BNDCFGS, 0);
4863 
4864 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4865 
4866 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4867 
4868 	vpid_sync_context(vmx->vpid);
4869 
4870 	vmx_update_fb_clear_dis(vcpu, vmx);
4871 }
4872 
4873 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4874 {
4875 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4876 }
4877 
4878 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4879 {
4880 	if (!enable_vnmi ||
4881 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4882 		vmx_enable_irq_window(vcpu);
4883 		return;
4884 	}
4885 
4886 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4887 }
4888 
4889 static void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4890 {
4891 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4892 	uint32_t intr;
4893 	int irq = vcpu->arch.interrupt.nr;
4894 
4895 	trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4896 
4897 	++vcpu->stat.irq_injections;
4898 	if (vmx->rmode.vm86_active) {
4899 		int inc_eip = 0;
4900 		if (vcpu->arch.interrupt.soft)
4901 			inc_eip = vcpu->arch.event_exit_inst_len;
4902 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4903 		return;
4904 	}
4905 	intr = irq | INTR_INFO_VALID_MASK;
4906 	if (vcpu->arch.interrupt.soft) {
4907 		intr |= INTR_TYPE_SOFT_INTR;
4908 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4909 			     vmx->vcpu.arch.event_exit_inst_len);
4910 	} else
4911 		intr |= INTR_TYPE_EXT_INTR;
4912 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4913 
4914 	vmx_clear_hlt(vcpu);
4915 }
4916 
4917 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4918 {
4919 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4920 
4921 	if (!enable_vnmi) {
4922 		/*
4923 		 * Tracking the NMI-blocked state in software is built upon
4924 		 * finding the next open IRQ window. This, in turn, depends on
4925 		 * well-behaving guests: They have to keep IRQs disabled at
4926 		 * least as long as the NMI handler runs. Otherwise we may
4927 		 * cause NMI nesting, maybe breaking the guest. But as this is
4928 		 * highly unlikely, we can live with the residual risk.
4929 		 */
4930 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4931 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4932 	}
4933 
4934 	++vcpu->stat.nmi_injections;
4935 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4936 
4937 	if (vmx->rmode.vm86_active) {
4938 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4939 		return;
4940 	}
4941 
4942 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4943 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4944 
4945 	vmx_clear_hlt(vcpu);
4946 }
4947 
4948 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4949 {
4950 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4951 	bool masked;
4952 
4953 	if (!enable_vnmi)
4954 		return vmx->loaded_vmcs->soft_vnmi_blocked;
4955 	if (vmx->loaded_vmcs->nmi_known_unmasked)
4956 		return false;
4957 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4958 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4959 	return masked;
4960 }
4961 
4962 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4963 {
4964 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4965 
4966 	if (!enable_vnmi) {
4967 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4968 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4969 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
4970 		}
4971 	} else {
4972 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4973 		if (masked)
4974 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4975 				      GUEST_INTR_STATE_NMI);
4976 		else
4977 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4978 					GUEST_INTR_STATE_NMI);
4979 	}
4980 }
4981 
4982 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4983 {
4984 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4985 		return false;
4986 
4987 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4988 		return true;
4989 
4990 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4991 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4992 		 GUEST_INTR_STATE_NMI));
4993 }
4994 
4995 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4996 {
4997 	if (to_vmx(vcpu)->nested.nested_run_pending)
4998 		return -EBUSY;
4999 
5000 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
5001 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5002 		return -EBUSY;
5003 
5004 	return !vmx_nmi_blocked(vcpu);
5005 }
5006 
5007 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5008 {
5009 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5010 		return false;
5011 
5012 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
5013 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5014 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5015 }
5016 
5017 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5018 {
5019 	if (to_vmx(vcpu)->nested.nested_run_pending)
5020 		return -EBUSY;
5021 
5022 	/*
5023 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
5024 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
5025 	 */
5026 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5027 		return -EBUSY;
5028 
5029 	return !vmx_interrupt_blocked(vcpu);
5030 }
5031 
5032 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5033 {
5034 	void __user *ret;
5035 
5036 	if (enable_unrestricted_guest)
5037 		return 0;
5038 
5039 	mutex_lock(&kvm->slots_lock);
5040 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5041 				      PAGE_SIZE * 3);
5042 	mutex_unlock(&kvm->slots_lock);
5043 
5044 	if (IS_ERR(ret))
5045 		return PTR_ERR(ret);
5046 
5047 	to_kvm_vmx(kvm)->tss_addr = addr;
5048 
5049 	return init_rmode_tss(kvm, ret);
5050 }
5051 
5052 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5053 {
5054 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5055 	return 0;
5056 }
5057 
5058 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5059 {
5060 	switch (vec) {
5061 	case BP_VECTOR:
5062 		/*
5063 		 * Update instruction length as we may reinject the exception
5064 		 * from user space while in guest debugging mode.
5065 		 */
5066 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5067 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5068 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5069 			return false;
5070 		fallthrough;
5071 	case DB_VECTOR:
5072 		return !(vcpu->guest_debug &
5073 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5074 	case DE_VECTOR:
5075 	case OF_VECTOR:
5076 	case BR_VECTOR:
5077 	case UD_VECTOR:
5078 	case DF_VECTOR:
5079 	case SS_VECTOR:
5080 	case GP_VECTOR:
5081 	case MF_VECTOR:
5082 		return true;
5083 	}
5084 	return false;
5085 }
5086 
5087 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5088 				  int vec, u32 err_code)
5089 {
5090 	/*
5091 	 * Instruction with address size override prefix opcode 0x67
5092 	 * Cause the #SS fault with 0 error code in VM86 mode.
5093 	 */
5094 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5095 		if (kvm_emulate_instruction(vcpu, 0)) {
5096 			if (vcpu->arch.halt_request) {
5097 				vcpu->arch.halt_request = 0;
5098 				return kvm_emulate_halt_noskip(vcpu);
5099 			}
5100 			return 1;
5101 		}
5102 		return 0;
5103 	}
5104 
5105 	/*
5106 	 * Forward all other exceptions that are valid in real mode.
5107 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5108 	 *        the required debugging infrastructure rework.
5109 	 */
5110 	kvm_queue_exception(vcpu, vec);
5111 	return 1;
5112 }
5113 
5114 static int handle_machine_check(struct kvm_vcpu *vcpu)
5115 {
5116 	/* handled by vmx_vcpu_run() */
5117 	return 1;
5118 }
5119 
5120 /*
5121  * If the host has split lock detection disabled, then #AC is
5122  * unconditionally injected into the guest, which is the pre split lock
5123  * detection behaviour.
5124  *
5125  * If the host has split lock detection enabled then #AC is
5126  * only injected into the guest when:
5127  *  - Guest CPL == 3 (user mode)
5128  *  - Guest has #AC detection enabled in CR0
5129  *  - Guest EFLAGS has AC bit set
5130  */
5131 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5132 {
5133 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5134 		return true;
5135 
5136 	return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
5137 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5138 }
5139 
5140 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5141 {
5142 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5143 	struct kvm_run *kvm_run = vcpu->run;
5144 	u32 intr_info, ex_no, error_code;
5145 	unsigned long cr2, dr6;
5146 	u32 vect_info;
5147 
5148 	vect_info = vmx->idt_vectoring_info;
5149 	intr_info = vmx_get_intr_info(vcpu);
5150 
5151 	/*
5152 	 * Machine checks are handled by handle_exception_irqoff(), or by
5153 	 * vmx_vcpu_run() if a #MC occurs on VM-Entry.  NMIs are handled by
5154 	 * vmx_vcpu_enter_exit().
5155 	 */
5156 	if (is_machine_check(intr_info) || is_nmi(intr_info))
5157 		return 1;
5158 
5159 	/*
5160 	 * Queue the exception here instead of in handle_nm_fault_irqoff().
5161 	 * This ensures the nested_vmx check is not skipped so vmexit can
5162 	 * be reflected to L1 (when it intercepts #NM) before reaching this
5163 	 * point.
5164 	 */
5165 	if (is_nm_fault(intr_info)) {
5166 		kvm_queue_exception(vcpu, NM_VECTOR);
5167 		return 1;
5168 	}
5169 
5170 	if (is_invalid_opcode(intr_info))
5171 		return handle_ud(vcpu);
5172 
5173 	error_code = 0;
5174 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5175 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5176 
5177 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5178 		WARN_ON_ONCE(!enable_vmware_backdoor);
5179 
5180 		/*
5181 		 * VMware backdoor emulation on #GP interception only handles
5182 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5183 		 * error code on #GP.
5184 		 */
5185 		if (error_code) {
5186 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5187 			return 1;
5188 		}
5189 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5190 	}
5191 
5192 	/*
5193 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5194 	 * MMIO, it is better to report an internal error.
5195 	 * See the comments in vmx_handle_exit.
5196 	 */
5197 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5198 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5199 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5200 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5201 		vcpu->run->internal.ndata = 4;
5202 		vcpu->run->internal.data[0] = vect_info;
5203 		vcpu->run->internal.data[1] = intr_info;
5204 		vcpu->run->internal.data[2] = error_code;
5205 		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5206 		return 0;
5207 	}
5208 
5209 	if (is_page_fault(intr_info)) {
5210 		cr2 = vmx_get_exit_qual(vcpu);
5211 		if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5212 			/*
5213 			 * EPT will cause page fault only if we need to
5214 			 * detect illegal GPAs.
5215 			 */
5216 			WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5217 			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5218 			return 1;
5219 		} else
5220 			return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5221 	}
5222 
5223 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5224 
5225 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5226 		return handle_rmode_exception(vcpu, ex_no, error_code);
5227 
5228 	switch (ex_no) {
5229 	case DB_VECTOR:
5230 		dr6 = vmx_get_exit_qual(vcpu);
5231 		if (!(vcpu->guest_debug &
5232 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5233 			/*
5234 			 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5235 			 * instruction.  ICEBP generates a trap-like #DB, but
5236 			 * despite its interception control being tied to #DB,
5237 			 * is an instruction intercept, i.e. the VM-Exit occurs
5238 			 * on the ICEBP itself.  Use the inner "skip" helper to
5239 			 * avoid single-step #DB and MTF updates, as ICEBP is
5240 			 * higher priority.  Note, skipping ICEBP still clears
5241 			 * STI and MOVSS blocking.
5242 			 *
5243 			 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5244 			 * if single-step is enabled in RFLAGS and STI or MOVSS
5245 			 * blocking is active, as the CPU doesn't set the bit
5246 			 * on VM-Exit due to #DB interception.  VM-Entry has a
5247 			 * consistency check that a single-step #DB is pending
5248 			 * in this scenario as the previous instruction cannot
5249 			 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5250 			 * don't modify RFLAGS), therefore the one instruction
5251 			 * delay when activating single-step breakpoints must
5252 			 * have already expired.  Note, the CPU sets/clears BS
5253 			 * as appropriate for all other VM-Exits types.
5254 			 */
5255 			if (is_icebp(intr_info))
5256 				WARN_ON(!skip_emulated_instruction(vcpu));
5257 			else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5258 				 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5259 				  (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5260 				vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5261 					    vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5262 
5263 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5264 			return 1;
5265 		}
5266 		kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5267 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5268 		fallthrough;
5269 	case BP_VECTOR:
5270 		/*
5271 		 * Update instruction length as we may reinject #BP from
5272 		 * user space while in guest debugging mode. Reading it for
5273 		 * #DB as well causes no harm, it is not used in that case.
5274 		 */
5275 		vmx->vcpu.arch.event_exit_inst_len =
5276 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5277 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5278 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5279 		kvm_run->debug.arch.exception = ex_no;
5280 		break;
5281 	case AC_VECTOR:
5282 		if (vmx_guest_inject_ac(vcpu)) {
5283 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5284 			return 1;
5285 		}
5286 
5287 		/*
5288 		 * Handle split lock. Depending on detection mode this will
5289 		 * either warn and disable split lock detection for this
5290 		 * task or force SIGBUS on it.
5291 		 */
5292 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5293 			return 1;
5294 		fallthrough;
5295 	default:
5296 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5297 		kvm_run->ex.exception = ex_no;
5298 		kvm_run->ex.error_code = error_code;
5299 		break;
5300 	}
5301 	return 0;
5302 }
5303 
5304 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5305 {
5306 	++vcpu->stat.irq_exits;
5307 	return 1;
5308 }
5309 
5310 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5311 {
5312 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5313 	vcpu->mmio_needed = 0;
5314 	return 0;
5315 }
5316 
5317 static int handle_io(struct kvm_vcpu *vcpu)
5318 {
5319 	unsigned long exit_qualification;
5320 	int size, in, string;
5321 	unsigned port;
5322 
5323 	exit_qualification = vmx_get_exit_qual(vcpu);
5324 	string = (exit_qualification & 16) != 0;
5325 
5326 	++vcpu->stat.io_exits;
5327 
5328 	if (string)
5329 		return kvm_emulate_instruction(vcpu, 0);
5330 
5331 	port = exit_qualification >> 16;
5332 	size = (exit_qualification & 7) + 1;
5333 	in = (exit_qualification & 8) != 0;
5334 
5335 	return kvm_fast_pio(vcpu, size, port, in);
5336 }
5337 
5338 static void
5339 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5340 {
5341 	/*
5342 	 * Patch in the VMCALL instruction:
5343 	 */
5344 	hypercall[0] = 0x0f;
5345 	hypercall[1] = 0x01;
5346 	hypercall[2] = 0xc1;
5347 }
5348 
5349 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5350 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5351 {
5352 	if (is_guest_mode(vcpu)) {
5353 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5354 		unsigned long orig_val = val;
5355 
5356 		/*
5357 		 * We get here when L2 changed cr0 in a way that did not change
5358 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5359 		 * but did change L0 shadowed bits. So we first calculate the
5360 		 * effective cr0 value that L1 would like to write into the
5361 		 * hardware. It consists of the L2-owned bits from the new
5362 		 * value combined with the L1-owned bits from L1's guest_cr0.
5363 		 */
5364 		val = (val & ~vmcs12->cr0_guest_host_mask) |
5365 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5366 
5367 		if (!nested_guest_cr0_valid(vcpu, val))
5368 			return 1;
5369 
5370 		if (kvm_set_cr0(vcpu, val))
5371 			return 1;
5372 		vmcs_writel(CR0_READ_SHADOW, orig_val);
5373 		return 0;
5374 	} else {
5375 		if (to_vmx(vcpu)->nested.vmxon &&
5376 		    !nested_host_cr0_valid(vcpu, val))
5377 			return 1;
5378 
5379 		return kvm_set_cr0(vcpu, val);
5380 	}
5381 }
5382 
5383 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5384 {
5385 	if (is_guest_mode(vcpu)) {
5386 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5387 		unsigned long orig_val = val;
5388 
5389 		/* analogously to handle_set_cr0 */
5390 		val = (val & ~vmcs12->cr4_guest_host_mask) |
5391 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5392 		if (kvm_set_cr4(vcpu, val))
5393 			return 1;
5394 		vmcs_writel(CR4_READ_SHADOW, orig_val);
5395 		return 0;
5396 	} else
5397 		return kvm_set_cr4(vcpu, val);
5398 }
5399 
5400 static int handle_desc(struct kvm_vcpu *vcpu)
5401 {
5402 	/*
5403 	 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this
5404 	 * and other code needs to be updated if UMIP can be guest owned.
5405 	 */
5406 	BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP);
5407 
5408 	WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP));
5409 	return kvm_emulate_instruction(vcpu, 0);
5410 }
5411 
5412 static int handle_cr(struct kvm_vcpu *vcpu)
5413 {
5414 	unsigned long exit_qualification, val;
5415 	int cr;
5416 	int reg;
5417 	int err;
5418 	int ret;
5419 
5420 	exit_qualification = vmx_get_exit_qual(vcpu);
5421 	cr = exit_qualification & 15;
5422 	reg = (exit_qualification >> 8) & 15;
5423 	switch ((exit_qualification >> 4) & 3) {
5424 	case 0: /* mov to cr */
5425 		val = kvm_register_read(vcpu, reg);
5426 		trace_kvm_cr_write(cr, val);
5427 		switch (cr) {
5428 		case 0:
5429 			err = handle_set_cr0(vcpu, val);
5430 			return kvm_complete_insn_gp(vcpu, err);
5431 		case 3:
5432 			WARN_ON_ONCE(enable_unrestricted_guest);
5433 
5434 			err = kvm_set_cr3(vcpu, val);
5435 			return kvm_complete_insn_gp(vcpu, err);
5436 		case 4:
5437 			err = handle_set_cr4(vcpu, val);
5438 			return kvm_complete_insn_gp(vcpu, err);
5439 		case 8: {
5440 				u8 cr8_prev = kvm_get_cr8(vcpu);
5441 				u8 cr8 = (u8)val;
5442 				err = kvm_set_cr8(vcpu, cr8);
5443 				ret = kvm_complete_insn_gp(vcpu, err);
5444 				if (lapic_in_kernel(vcpu))
5445 					return ret;
5446 				if (cr8_prev <= cr8)
5447 					return ret;
5448 				/*
5449 				 * TODO: we might be squashing a
5450 				 * KVM_GUESTDBG_SINGLESTEP-triggered
5451 				 * KVM_EXIT_DEBUG here.
5452 				 */
5453 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5454 				return 0;
5455 			}
5456 		}
5457 		break;
5458 	case 2: /* clts */
5459 		KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5460 		return -EIO;
5461 	case 1: /*mov from cr*/
5462 		switch (cr) {
5463 		case 3:
5464 			WARN_ON_ONCE(enable_unrestricted_guest);
5465 
5466 			val = kvm_read_cr3(vcpu);
5467 			kvm_register_write(vcpu, reg, val);
5468 			trace_kvm_cr_read(cr, val);
5469 			return kvm_skip_emulated_instruction(vcpu);
5470 		case 8:
5471 			val = kvm_get_cr8(vcpu);
5472 			kvm_register_write(vcpu, reg, val);
5473 			trace_kvm_cr_read(cr, val);
5474 			return kvm_skip_emulated_instruction(vcpu);
5475 		}
5476 		break;
5477 	case 3: /* lmsw */
5478 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5479 		trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
5480 		kvm_lmsw(vcpu, val);
5481 
5482 		return kvm_skip_emulated_instruction(vcpu);
5483 	default:
5484 		break;
5485 	}
5486 	vcpu->run->exit_reason = 0;
5487 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5488 	       (int)(exit_qualification >> 4) & 3, cr);
5489 	return 0;
5490 }
5491 
5492 static int handle_dr(struct kvm_vcpu *vcpu)
5493 {
5494 	unsigned long exit_qualification;
5495 	int dr, dr7, reg;
5496 	int err = 1;
5497 
5498 	exit_qualification = vmx_get_exit_qual(vcpu);
5499 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5500 
5501 	/* First, if DR does not exist, trigger UD */
5502 	if (!kvm_require_dr(vcpu, dr))
5503 		return 1;
5504 
5505 	if (vmx_get_cpl(vcpu) > 0)
5506 		goto out;
5507 
5508 	dr7 = vmcs_readl(GUEST_DR7);
5509 	if (dr7 & DR7_GD) {
5510 		/*
5511 		 * As the vm-exit takes precedence over the debug trap, we
5512 		 * need to emulate the latter, either for the host or the
5513 		 * guest debugging itself.
5514 		 */
5515 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5516 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5517 			vcpu->run->debug.arch.dr7 = dr7;
5518 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5519 			vcpu->run->debug.arch.exception = DB_VECTOR;
5520 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5521 			return 0;
5522 		} else {
5523 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5524 			return 1;
5525 		}
5526 	}
5527 
5528 	if (vcpu->guest_debug == 0) {
5529 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5530 
5531 		/*
5532 		 * No more DR vmexits; force a reload of the debug registers
5533 		 * and reenter on this instruction.  The next vmexit will
5534 		 * retrieve the full state of the debug registers.
5535 		 */
5536 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5537 		return 1;
5538 	}
5539 
5540 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5541 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5542 		unsigned long val;
5543 
5544 		kvm_get_dr(vcpu, dr, &val);
5545 		kvm_register_write(vcpu, reg, val);
5546 		err = 0;
5547 	} else {
5548 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5549 	}
5550 
5551 out:
5552 	return kvm_complete_insn_gp(vcpu, err);
5553 }
5554 
5555 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5556 {
5557 	get_debugreg(vcpu->arch.db[0], 0);
5558 	get_debugreg(vcpu->arch.db[1], 1);
5559 	get_debugreg(vcpu->arch.db[2], 2);
5560 	get_debugreg(vcpu->arch.db[3], 3);
5561 	get_debugreg(vcpu->arch.dr6, 6);
5562 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5563 
5564 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5565 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5566 
5567 	/*
5568 	 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5569 	 * a stale dr6 from the guest.
5570 	 */
5571 	set_debugreg(DR6_RESERVED, 6);
5572 }
5573 
5574 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5575 {
5576 	vmcs_writel(GUEST_DR7, val);
5577 }
5578 
5579 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5580 {
5581 	kvm_apic_update_ppr(vcpu);
5582 	return 1;
5583 }
5584 
5585 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5586 {
5587 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5588 
5589 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5590 
5591 	++vcpu->stat.irq_window_exits;
5592 	return 1;
5593 }
5594 
5595 static int handle_invlpg(struct kvm_vcpu *vcpu)
5596 {
5597 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5598 
5599 	kvm_mmu_invlpg(vcpu, exit_qualification);
5600 	return kvm_skip_emulated_instruction(vcpu);
5601 }
5602 
5603 static int handle_apic_access(struct kvm_vcpu *vcpu)
5604 {
5605 	if (likely(fasteoi)) {
5606 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5607 		int access_type, offset;
5608 
5609 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5610 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5611 		/*
5612 		 * Sane guest uses MOV to write EOI, with written value
5613 		 * not cared. So make a short-circuit here by avoiding
5614 		 * heavy instruction emulation.
5615 		 */
5616 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5617 		    (offset == APIC_EOI)) {
5618 			kvm_lapic_set_eoi(vcpu);
5619 			return kvm_skip_emulated_instruction(vcpu);
5620 		}
5621 	}
5622 	return kvm_emulate_instruction(vcpu, 0);
5623 }
5624 
5625 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5626 {
5627 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5628 	int vector = exit_qualification & 0xff;
5629 
5630 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5631 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5632 	return 1;
5633 }
5634 
5635 static int handle_apic_write(struct kvm_vcpu *vcpu)
5636 {
5637 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5638 
5639 	/*
5640 	 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5641 	 * hardware has done any necessary aliasing, offset adjustments, etc...
5642 	 * for the access.  I.e. the correct value has already been  written to
5643 	 * the vAPIC page for the correct 16-byte chunk.  KVM needs only to
5644 	 * retrieve the register value and emulate the access.
5645 	 */
5646 	u32 offset = exit_qualification & 0xff0;
5647 
5648 	kvm_apic_write_nodecode(vcpu, offset);
5649 	return 1;
5650 }
5651 
5652 static int handle_task_switch(struct kvm_vcpu *vcpu)
5653 {
5654 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5655 	unsigned long exit_qualification;
5656 	bool has_error_code = false;
5657 	u32 error_code = 0;
5658 	u16 tss_selector;
5659 	int reason, type, idt_v, idt_index;
5660 
5661 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5662 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5663 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5664 
5665 	exit_qualification = vmx_get_exit_qual(vcpu);
5666 
5667 	reason = (u32)exit_qualification >> 30;
5668 	if (reason == TASK_SWITCH_GATE && idt_v) {
5669 		switch (type) {
5670 		case INTR_TYPE_NMI_INTR:
5671 			vcpu->arch.nmi_injected = false;
5672 			vmx_set_nmi_mask(vcpu, true);
5673 			break;
5674 		case INTR_TYPE_EXT_INTR:
5675 		case INTR_TYPE_SOFT_INTR:
5676 			kvm_clear_interrupt_queue(vcpu);
5677 			break;
5678 		case INTR_TYPE_HARD_EXCEPTION:
5679 			if (vmx->idt_vectoring_info &
5680 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5681 				has_error_code = true;
5682 				error_code =
5683 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5684 			}
5685 			fallthrough;
5686 		case INTR_TYPE_SOFT_EXCEPTION:
5687 			kvm_clear_exception_queue(vcpu);
5688 			break;
5689 		default:
5690 			break;
5691 		}
5692 	}
5693 	tss_selector = exit_qualification;
5694 
5695 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5696 		       type != INTR_TYPE_EXT_INTR &&
5697 		       type != INTR_TYPE_NMI_INTR))
5698 		WARN_ON(!skip_emulated_instruction(vcpu));
5699 
5700 	/*
5701 	 * TODO: What about debug traps on tss switch?
5702 	 *       Are we supposed to inject them and update dr6?
5703 	 */
5704 	return kvm_task_switch(vcpu, tss_selector,
5705 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5706 			       reason, has_error_code, error_code);
5707 }
5708 
5709 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5710 {
5711 	unsigned long exit_qualification;
5712 	gpa_t gpa;
5713 	u64 error_code;
5714 
5715 	exit_qualification = vmx_get_exit_qual(vcpu);
5716 
5717 	/*
5718 	 * EPT violation happened while executing iret from NMI,
5719 	 * "blocked by NMI" bit has to be set before next VM entry.
5720 	 * There are errata that may cause this bit to not be set:
5721 	 * AAK134, BY25.
5722 	 */
5723 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5724 			enable_vnmi &&
5725 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5726 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5727 
5728 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5729 	trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5730 
5731 	/* Is it a read fault? */
5732 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5733 		     ? PFERR_USER_MASK : 0;
5734 	/* Is it a write fault? */
5735 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5736 		      ? PFERR_WRITE_MASK : 0;
5737 	/* Is it a fetch fault? */
5738 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5739 		      ? PFERR_FETCH_MASK : 0;
5740 	/* ept page table entry is present? */
5741 	error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK)
5742 		      ? PFERR_PRESENT_MASK : 0;
5743 
5744 	error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5745 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5746 
5747 	vcpu->arch.exit_qualification = exit_qualification;
5748 
5749 	/*
5750 	 * Check that the GPA doesn't exceed physical memory limits, as that is
5751 	 * a guest page fault.  We have to emulate the instruction here, because
5752 	 * if the illegal address is that of a paging structure, then
5753 	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5754 	 * would also use advanced VM-exit information for EPT violations to
5755 	 * reconstruct the page fault error code.
5756 	 */
5757 	if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5758 		return kvm_emulate_instruction(vcpu, 0);
5759 
5760 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5761 }
5762 
5763 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5764 {
5765 	gpa_t gpa;
5766 
5767 	if (!vmx_can_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5768 		return 1;
5769 
5770 	/*
5771 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5772 	 * nGPA here instead of the required GPA.
5773 	 */
5774 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5775 	if (!is_guest_mode(vcpu) &&
5776 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5777 		trace_kvm_fast_mmio(gpa);
5778 		return kvm_skip_emulated_instruction(vcpu);
5779 	}
5780 
5781 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5782 }
5783 
5784 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5785 {
5786 	if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5787 		return -EIO;
5788 
5789 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5790 	++vcpu->stat.nmi_window_exits;
5791 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5792 
5793 	return 1;
5794 }
5795 
5796 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
5797 {
5798 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5799 
5800 	return vmx->emulation_required && !vmx->rmode.vm86_active &&
5801 	       (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5802 }
5803 
5804 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5805 {
5806 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5807 	bool intr_window_requested;
5808 	unsigned count = 130;
5809 
5810 	intr_window_requested = exec_controls_get(vmx) &
5811 				CPU_BASED_INTR_WINDOW_EXITING;
5812 
5813 	while (vmx->emulation_required && count-- != 0) {
5814 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5815 			return handle_interrupt_window(&vmx->vcpu);
5816 
5817 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5818 			return 1;
5819 
5820 		if (!kvm_emulate_instruction(vcpu, 0))
5821 			return 0;
5822 
5823 		if (vmx_emulation_required_with_pending_exception(vcpu)) {
5824 			kvm_prepare_emulation_failure_exit(vcpu);
5825 			return 0;
5826 		}
5827 
5828 		if (vcpu->arch.halt_request) {
5829 			vcpu->arch.halt_request = 0;
5830 			return kvm_emulate_halt_noskip(vcpu);
5831 		}
5832 
5833 		/*
5834 		 * Note, return 1 and not 0, vcpu_run() will invoke
5835 		 * xfer_to_guest_mode() which will create a proper return
5836 		 * code.
5837 		 */
5838 		if (__xfer_to_guest_mode_work_pending())
5839 			return 1;
5840 	}
5841 
5842 	return 1;
5843 }
5844 
5845 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5846 {
5847 	if (vmx_emulation_required_with_pending_exception(vcpu)) {
5848 		kvm_prepare_emulation_failure_exit(vcpu);
5849 		return 0;
5850 	}
5851 
5852 	return 1;
5853 }
5854 
5855 static void grow_ple_window(struct kvm_vcpu *vcpu)
5856 {
5857 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5858 	unsigned int old = vmx->ple_window;
5859 
5860 	vmx->ple_window = __grow_ple_window(old, ple_window,
5861 					    ple_window_grow,
5862 					    ple_window_max);
5863 
5864 	if (vmx->ple_window != old) {
5865 		vmx->ple_window_dirty = true;
5866 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5867 					    vmx->ple_window, old);
5868 	}
5869 }
5870 
5871 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5872 {
5873 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5874 	unsigned int old = vmx->ple_window;
5875 
5876 	vmx->ple_window = __shrink_ple_window(old, ple_window,
5877 					      ple_window_shrink,
5878 					      ple_window);
5879 
5880 	if (vmx->ple_window != old) {
5881 		vmx->ple_window_dirty = true;
5882 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5883 					    vmx->ple_window, old);
5884 	}
5885 }
5886 
5887 /*
5888  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5889  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5890  */
5891 static int handle_pause(struct kvm_vcpu *vcpu)
5892 {
5893 	if (!kvm_pause_in_guest(vcpu->kvm))
5894 		grow_ple_window(vcpu);
5895 
5896 	/*
5897 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5898 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5899 	 * never set PAUSE_EXITING and just set PLE if supported,
5900 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5901 	 */
5902 	kvm_vcpu_on_spin(vcpu, true);
5903 	return kvm_skip_emulated_instruction(vcpu);
5904 }
5905 
5906 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5907 {
5908 	return 1;
5909 }
5910 
5911 static int handle_invpcid(struct kvm_vcpu *vcpu)
5912 {
5913 	u32 vmx_instruction_info;
5914 	unsigned long type;
5915 	gva_t gva;
5916 	struct {
5917 		u64 pcid;
5918 		u64 gla;
5919 	} operand;
5920 	int gpr_index;
5921 
5922 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5923 		kvm_queue_exception(vcpu, UD_VECTOR);
5924 		return 1;
5925 	}
5926 
5927 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5928 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5929 	type = kvm_register_read(vcpu, gpr_index);
5930 
5931 	/* According to the Intel instruction reference, the memory operand
5932 	 * is read even if it isn't needed (e.g., for type==all)
5933 	 */
5934 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5935 				vmx_instruction_info, false,
5936 				sizeof(operand), &gva))
5937 		return 1;
5938 
5939 	return kvm_handle_invpcid(vcpu, type, gva);
5940 }
5941 
5942 static int handle_pml_full(struct kvm_vcpu *vcpu)
5943 {
5944 	unsigned long exit_qualification;
5945 
5946 	trace_kvm_pml_full(vcpu->vcpu_id);
5947 
5948 	exit_qualification = vmx_get_exit_qual(vcpu);
5949 
5950 	/*
5951 	 * PML buffer FULL happened while executing iret from NMI,
5952 	 * "blocked by NMI" bit has to be set before next VM entry.
5953 	 */
5954 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5955 			enable_vnmi &&
5956 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5957 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5958 				GUEST_INTR_STATE_NMI);
5959 
5960 	/*
5961 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5962 	 * here.., and there's no userspace involvement needed for PML.
5963 	 */
5964 	return 1;
5965 }
5966 
5967 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5968 {
5969 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5970 
5971 	if (!vmx->req_immediate_exit &&
5972 	    !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5973 		kvm_lapic_expired_hv_timer(vcpu);
5974 		return EXIT_FASTPATH_REENTER_GUEST;
5975 	}
5976 
5977 	return EXIT_FASTPATH_NONE;
5978 }
5979 
5980 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5981 {
5982 	handle_fastpath_preemption_timer(vcpu);
5983 	return 1;
5984 }
5985 
5986 /*
5987  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5988  * are overwritten by nested_vmx_setup() when nested=1.
5989  */
5990 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5991 {
5992 	kvm_queue_exception(vcpu, UD_VECTOR);
5993 	return 1;
5994 }
5995 
5996 #ifndef CONFIG_X86_SGX_KVM
5997 static int handle_encls(struct kvm_vcpu *vcpu)
5998 {
5999 	/*
6000 	 * SGX virtualization is disabled.  There is no software enable bit for
6001 	 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
6002 	 * the guest from executing ENCLS (when SGX is supported by hardware).
6003 	 */
6004 	kvm_queue_exception(vcpu, UD_VECTOR);
6005 	return 1;
6006 }
6007 #endif /* CONFIG_X86_SGX_KVM */
6008 
6009 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
6010 {
6011 	/*
6012 	 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
6013 	 * VM-Exits. Unconditionally set the flag here and leave the handling to
6014 	 * vmx_handle_exit().
6015 	 */
6016 	to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
6017 	return 1;
6018 }
6019 
6020 static int handle_notify(struct kvm_vcpu *vcpu)
6021 {
6022 	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
6023 	bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
6024 
6025 	++vcpu->stat.notify_window_exits;
6026 
6027 	/*
6028 	 * Notify VM exit happened while executing iret from NMI,
6029 	 * "blocked by NMI" bit has to be set before next VM entry.
6030 	 */
6031 	if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
6032 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6033 			      GUEST_INTR_STATE_NMI);
6034 
6035 	if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
6036 	    context_invalid) {
6037 		vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
6038 		vcpu->run->notify.flags = context_invalid ?
6039 					  KVM_NOTIFY_CONTEXT_INVALID : 0;
6040 		return 0;
6041 	}
6042 
6043 	return 1;
6044 }
6045 
6046 /*
6047  * The exit handlers return 1 if the exit was handled fully and guest execution
6048  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6049  * to be done to userspace and return 0.
6050  */
6051 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6052 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
6053 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6054 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6055 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
6056 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6057 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
6058 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
6059 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
6060 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
6061 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
6062 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
6063 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
6064 	[EXIT_REASON_INVD]		      = kvm_emulate_invd,
6065 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
6066 	[EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
6067 	[EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
6068 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
6069 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
6070 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
6071 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
6072 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
6073 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
6074 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
6075 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
6076 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
6077 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6078 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6079 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6080 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6081 	[EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
6082 	[EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
6083 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6084 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6085 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
6086 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
6087 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
6088 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6089 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6090 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = kvm_emulate_mwait,
6091 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
6092 	[EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
6093 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
6094 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
6095 	[EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
6096 	[EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
6097 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
6098 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
6099 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
6100 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
6101 	[EXIT_REASON_ENCLS]		      = handle_encls,
6102 	[EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
6103 	[EXIT_REASON_NOTIFY]		      = handle_notify,
6104 };
6105 
6106 static const int kvm_vmx_max_exit_handlers =
6107 	ARRAY_SIZE(kvm_vmx_exit_handlers);
6108 
6109 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6110 			      u64 *info1, u64 *info2,
6111 			      u32 *intr_info, u32 *error_code)
6112 {
6113 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6114 
6115 	*reason = vmx->exit_reason.full;
6116 	*info1 = vmx_get_exit_qual(vcpu);
6117 	if (!(vmx->exit_reason.failed_vmentry)) {
6118 		*info2 = vmx->idt_vectoring_info;
6119 		*intr_info = vmx_get_intr_info(vcpu);
6120 		if (is_exception_with_error_code(*intr_info))
6121 			*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6122 		else
6123 			*error_code = 0;
6124 	} else {
6125 		*info2 = 0;
6126 		*intr_info = 0;
6127 		*error_code = 0;
6128 	}
6129 }
6130 
6131 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6132 {
6133 	if (vmx->pml_pg) {
6134 		__free_page(vmx->pml_pg);
6135 		vmx->pml_pg = NULL;
6136 	}
6137 }
6138 
6139 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6140 {
6141 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6142 	u64 *pml_buf;
6143 	u16 pml_idx;
6144 
6145 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
6146 
6147 	/* Do nothing if PML buffer is empty */
6148 	if (pml_idx == (PML_ENTITY_NUM - 1))
6149 		return;
6150 
6151 	/* PML index always points to next available PML buffer entity */
6152 	if (pml_idx >= PML_ENTITY_NUM)
6153 		pml_idx = 0;
6154 	else
6155 		pml_idx++;
6156 
6157 	pml_buf = page_address(vmx->pml_pg);
6158 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
6159 		u64 gpa;
6160 
6161 		gpa = pml_buf[pml_idx];
6162 		WARN_ON(gpa & (PAGE_SIZE - 1));
6163 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6164 	}
6165 
6166 	/* reset PML index */
6167 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
6168 }
6169 
6170 static void vmx_dump_sel(char *name, uint32_t sel)
6171 {
6172 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6173 	       name, vmcs_read16(sel),
6174 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6175 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6176 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6177 }
6178 
6179 static void vmx_dump_dtsel(char *name, uint32_t limit)
6180 {
6181 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
6182 	       name, vmcs_read32(limit),
6183 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6184 }
6185 
6186 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6187 {
6188 	unsigned int i;
6189 	struct vmx_msr_entry *e;
6190 
6191 	pr_err("MSR %s:\n", name);
6192 	for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6193 		pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6194 }
6195 
6196 void dump_vmcs(struct kvm_vcpu *vcpu)
6197 {
6198 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6199 	u32 vmentry_ctl, vmexit_ctl;
6200 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6201 	u64 tertiary_exec_control;
6202 	unsigned long cr4;
6203 	int efer_slot;
6204 
6205 	if (!dump_invalid_vmcs) {
6206 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6207 		return;
6208 	}
6209 
6210 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6211 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6212 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6213 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6214 	cr4 = vmcs_readl(GUEST_CR4);
6215 
6216 	if (cpu_has_secondary_exec_ctrls())
6217 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6218 	else
6219 		secondary_exec_control = 0;
6220 
6221 	if (cpu_has_tertiary_exec_ctrls())
6222 		tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6223 	else
6224 		tertiary_exec_control = 0;
6225 
6226 	pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6227 	       vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6228 	pr_err("*** Guest State ***\n");
6229 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6230 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6231 	       vmcs_readl(CR0_GUEST_HOST_MASK));
6232 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6233 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6234 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6235 	if (cpu_has_vmx_ept()) {
6236 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
6237 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6238 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
6239 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6240 	}
6241 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
6242 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6243 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
6244 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6245 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6246 	       vmcs_readl(GUEST_SYSENTER_ESP),
6247 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6248 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
6249 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
6250 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
6251 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
6252 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
6253 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
6254 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6255 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6256 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6257 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
6258 	efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6259 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6260 		pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6261 	else if (efer_slot >= 0)
6262 		pr_err("EFER= 0x%016llx (autoload)\n",
6263 		       vmx->msr_autoload.guest.val[efer_slot].value);
6264 	else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6265 		pr_err("EFER= 0x%016llx (effective)\n",
6266 		       vcpu->arch.efer | (EFER_LMA | EFER_LME));
6267 	else
6268 		pr_err("EFER= 0x%016llx (effective)\n",
6269 		       vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6270 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6271 		pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6272 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
6273 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
6274 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6275 	if (cpu_has_load_perf_global_ctrl() &&
6276 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6277 		pr_err("PerfGlobCtl = 0x%016llx\n",
6278 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6279 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6280 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6281 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
6282 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6283 	       vmcs_read32(GUEST_ACTIVITY_STATE));
6284 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6285 		pr_err("InterruptStatus = %04x\n",
6286 		       vmcs_read16(GUEST_INTR_STATUS));
6287 	if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6288 		vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6289 	if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6290 		vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6291 
6292 	pr_err("*** Host State ***\n");
6293 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
6294 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6295 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6296 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6297 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6298 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6299 	       vmcs_read16(HOST_TR_SELECTOR));
6300 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6301 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6302 	       vmcs_readl(HOST_TR_BASE));
6303 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6304 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6305 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6306 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6307 	       vmcs_readl(HOST_CR4));
6308 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6309 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
6310 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
6311 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
6312 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6313 		pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6314 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6315 		pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6316 	if (cpu_has_load_perf_global_ctrl() &&
6317 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6318 		pr_err("PerfGlobCtl = 0x%016llx\n",
6319 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6320 	if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6321 		vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6322 
6323 	pr_err("*** Control State ***\n");
6324 	pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6325 	       cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6326 	pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6327 	       pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6328 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6329 	       vmcs_read32(EXCEPTION_BITMAP),
6330 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6331 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6332 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6333 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6334 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6335 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6336 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6337 	       vmcs_read32(VM_EXIT_INTR_INFO),
6338 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6339 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6340 	pr_err("        reason=%08x qualification=%016lx\n",
6341 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6342 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6343 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
6344 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
6345 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6346 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6347 		pr_err("TSC Multiplier = 0x%016llx\n",
6348 		       vmcs_read64(TSC_MULTIPLIER));
6349 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6350 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6351 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
6352 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6353 		}
6354 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6355 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6356 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6357 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6358 	}
6359 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6360 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6361 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6362 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6363 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6364 		pr_err("PLE Gap=%08x Window=%08x\n",
6365 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6366 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6367 		pr_err("Virtual processor ID = 0x%04x\n",
6368 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
6369 }
6370 
6371 /*
6372  * The guest has exited.  See if we can fix it or if we need userspace
6373  * assistance.
6374  */
6375 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6376 {
6377 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6378 	union vmx_exit_reason exit_reason = vmx->exit_reason;
6379 	u32 vectoring_info = vmx->idt_vectoring_info;
6380 	u16 exit_handler_index;
6381 
6382 	/*
6383 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6384 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6385 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6386 	 * mode as if vcpus is in root mode, the PML buffer must has been
6387 	 * flushed already.  Note, PML is never enabled in hardware while
6388 	 * running L2.
6389 	 */
6390 	if (enable_pml && !is_guest_mode(vcpu))
6391 		vmx_flush_pml_buffer(vcpu);
6392 
6393 	/*
6394 	 * KVM should never reach this point with a pending nested VM-Enter.
6395 	 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6396 	 * invalid guest state should never happen as that means KVM knowingly
6397 	 * allowed a nested VM-Enter with an invalid vmcs12.  More below.
6398 	 */
6399 	if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6400 		return -EIO;
6401 
6402 	if (is_guest_mode(vcpu)) {
6403 		/*
6404 		 * PML is never enabled when running L2, bail immediately if a
6405 		 * PML full exit occurs as something is horribly wrong.
6406 		 */
6407 		if (exit_reason.basic == EXIT_REASON_PML_FULL)
6408 			goto unexpected_vmexit;
6409 
6410 		/*
6411 		 * The host physical addresses of some pages of guest memory
6412 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6413 		 * Page). The CPU may write to these pages via their host
6414 		 * physical address while L2 is running, bypassing any
6415 		 * address-translation-based dirty tracking (e.g. EPT write
6416 		 * protection).
6417 		 *
6418 		 * Mark them dirty on every exit from L2 to prevent them from
6419 		 * getting out of sync with dirty tracking.
6420 		 */
6421 		nested_mark_vmcs12_pages_dirty(vcpu);
6422 
6423 		/*
6424 		 * Synthesize a triple fault if L2 state is invalid.  In normal
6425 		 * operation, nested VM-Enter rejects any attempt to enter L2
6426 		 * with invalid state.  However, those checks are skipped if
6427 		 * state is being stuffed via RSM or KVM_SET_NESTED_STATE.  If
6428 		 * L2 state is invalid, it means either L1 modified SMRAM state
6429 		 * or userspace provided bad state.  Synthesize TRIPLE_FAULT as
6430 		 * doing so is architecturally allowed in the RSM case, and is
6431 		 * the least awful solution for the userspace case without
6432 		 * risking false positives.
6433 		 */
6434 		if (vmx->emulation_required) {
6435 			nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6436 			return 1;
6437 		}
6438 
6439 		if (nested_vmx_reflect_vmexit(vcpu))
6440 			return 1;
6441 	}
6442 
6443 	/* If guest state is invalid, start emulating.  L2 is handled above. */
6444 	if (vmx->emulation_required)
6445 		return handle_invalid_guest_state(vcpu);
6446 
6447 	if (exit_reason.failed_vmentry) {
6448 		dump_vmcs(vcpu);
6449 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6450 		vcpu->run->fail_entry.hardware_entry_failure_reason
6451 			= exit_reason.full;
6452 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6453 		return 0;
6454 	}
6455 
6456 	if (unlikely(vmx->fail)) {
6457 		dump_vmcs(vcpu);
6458 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6459 		vcpu->run->fail_entry.hardware_entry_failure_reason
6460 			= vmcs_read32(VM_INSTRUCTION_ERROR);
6461 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6462 		return 0;
6463 	}
6464 
6465 	/*
6466 	 * Note:
6467 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6468 	 * delivery event since it indicates guest is accessing MMIO.
6469 	 * The vm-exit can be triggered again after return to guest that
6470 	 * will cause infinite loop.
6471 	 */
6472 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6473 	    (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6474 	     exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6475 	     exit_reason.basic != EXIT_REASON_PML_FULL &&
6476 	     exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6477 	     exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6478 	     exit_reason.basic != EXIT_REASON_NOTIFY)) {
6479 		int ndata = 3;
6480 
6481 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6482 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6483 		vcpu->run->internal.data[0] = vectoring_info;
6484 		vcpu->run->internal.data[1] = exit_reason.full;
6485 		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6486 		if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6487 			vcpu->run->internal.data[ndata++] =
6488 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6489 		}
6490 		vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6491 		vcpu->run->internal.ndata = ndata;
6492 		return 0;
6493 	}
6494 
6495 	if (unlikely(!enable_vnmi &&
6496 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
6497 		if (!vmx_interrupt_blocked(vcpu)) {
6498 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6499 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6500 			   vcpu->arch.nmi_pending) {
6501 			/*
6502 			 * This CPU don't support us in finding the end of an
6503 			 * NMI-blocked window if the guest runs with IRQs
6504 			 * disabled. So we pull the trigger after 1 s of
6505 			 * futile waiting, but inform the user about this.
6506 			 */
6507 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6508 			       "state on VCPU %d after 1 s timeout\n",
6509 			       __func__, vcpu->vcpu_id);
6510 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6511 		}
6512 	}
6513 
6514 	if (exit_fastpath != EXIT_FASTPATH_NONE)
6515 		return 1;
6516 
6517 	if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6518 		goto unexpected_vmexit;
6519 #ifdef CONFIG_RETPOLINE
6520 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6521 		return kvm_emulate_wrmsr(vcpu);
6522 	else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6523 		return handle_preemption_timer(vcpu);
6524 	else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6525 		return handle_interrupt_window(vcpu);
6526 	else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6527 		return handle_external_interrupt(vcpu);
6528 	else if (exit_reason.basic == EXIT_REASON_HLT)
6529 		return kvm_emulate_halt(vcpu);
6530 	else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6531 		return handle_ept_misconfig(vcpu);
6532 #endif
6533 
6534 	exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6535 						kvm_vmx_max_exit_handlers);
6536 	if (!kvm_vmx_exit_handlers[exit_handler_index])
6537 		goto unexpected_vmexit;
6538 
6539 	return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6540 
6541 unexpected_vmexit:
6542 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6543 		    exit_reason.full);
6544 	dump_vmcs(vcpu);
6545 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6546 	vcpu->run->internal.suberror =
6547 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6548 	vcpu->run->internal.ndata = 2;
6549 	vcpu->run->internal.data[0] = exit_reason.full;
6550 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6551 	return 0;
6552 }
6553 
6554 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6555 {
6556 	int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6557 
6558 	/*
6559 	 * Exit to user space when bus lock detected to inform that there is
6560 	 * a bus lock in guest.
6561 	 */
6562 	if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6563 		if (ret > 0)
6564 			vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6565 
6566 		vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6567 		return 0;
6568 	}
6569 	return ret;
6570 }
6571 
6572 /*
6573  * Software based L1D cache flush which is used when microcode providing
6574  * the cache control MSR is not loaded.
6575  *
6576  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6577  * flush it is required to read in 64 KiB because the replacement algorithm
6578  * is not exactly LRU. This could be sized at runtime via topology
6579  * information but as all relevant affected CPUs have 32KiB L1D cache size
6580  * there is no point in doing so.
6581  */
6582 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6583 {
6584 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6585 
6586 	/*
6587 	 * This code is only executed when the flush mode is 'cond' or
6588 	 * 'always'
6589 	 */
6590 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6591 		bool flush_l1d;
6592 
6593 		/*
6594 		 * Clear the per-vcpu flush bit, it gets set again
6595 		 * either from vcpu_run() or from one of the unsafe
6596 		 * VMEXIT handlers.
6597 		 */
6598 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6599 		vcpu->arch.l1tf_flush_l1d = false;
6600 
6601 		/*
6602 		 * Clear the per-cpu flush bit, it gets set again from
6603 		 * the interrupt handlers.
6604 		 */
6605 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6606 		kvm_clear_cpu_l1tf_flush_l1d();
6607 
6608 		if (!flush_l1d)
6609 			return;
6610 	}
6611 
6612 	vcpu->stat.l1d_flush++;
6613 
6614 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6615 		native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6616 		return;
6617 	}
6618 
6619 	asm volatile(
6620 		/* First ensure the pages are in the TLB */
6621 		"xorl	%%eax, %%eax\n"
6622 		".Lpopulate_tlb:\n\t"
6623 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6624 		"addl	$4096, %%eax\n\t"
6625 		"cmpl	%%eax, %[size]\n\t"
6626 		"jne	.Lpopulate_tlb\n\t"
6627 		"xorl	%%eax, %%eax\n\t"
6628 		"cpuid\n\t"
6629 		/* Now fill the cache */
6630 		"xorl	%%eax, %%eax\n"
6631 		".Lfill_cache:\n"
6632 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6633 		"addl	$64, %%eax\n\t"
6634 		"cmpl	%%eax, %[size]\n\t"
6635 		"jne	.Lfill_cache\n\t"
6636 		"lfence\n"
6637 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6638 		    [size] "r" (size)
6639 		: "eax", "ebx", "ecx", "edx");
6640 }
6641 
6642 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6643 {
6644 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6645 	int tpr_threshold;
6646 
6647 	if (is_guest_mode(vcpu) &&
6648 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6649 		return;
6650 
6651 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6652 	if (is_guest_mode(vcpu))
6653 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6654 	else
6655 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6656 }
6657 
6658 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6659 {
6660 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6661 	u32 sec_exec_control;
6662 
6663 	if (!lapic_in_kernel(vcpu))
6664 		return;
6665 
6666 	if (!flexpriority_enabled &&
6667 	    !cpu_has_vmx_virtualize_x2apic_mode())
6668 		return;
6669 
6670 	/* Postpone execution until vmcs01 is the current VMCS. */
6671 	if (is_guest_mode(vcpu)) {
6672 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6673 		return;
6674 	}
6675 
6676 	sec_exec_control = secondary_exec_controls_get(vmx);
6677 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6678 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6679 
6680 	switch (kvm_get_apic_mode(vcpu)) {
6681 	case LAPIC_MODE_INVALID:
6682 		WARN_ONCE(true, "Invalid local APIC state");
6683 		break;
6684 	case LAPIC_MODE_DISABLED:
6685 		break;
6686 	case LAPIC_MODE_XAPIC:
6687 		if (flexpriority_enabled) {
6688 			sec_exec_control |=
6689 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6690 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6691 
6692 			/*
6693 			 * Flush the TLB, reloading the APIC access page will
6694 			 * only do so if its physical address has changed, but
6695 			 * the guest may have inserted a non-APIC mapping into
6696 			 * the TLB while the APIC access page was disabled.
6697 			 */
6698 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6699 		}
6700 		break;
6701 	case LAPIC_MODE_X2APIC:
6702 		if (cpu_has_vmx_virtualize_x2apic_mode())
6703 			sec_exec_control |=
6704 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6705 		break;
6706 	}
6707 	secondary_exec_controls_set(vmx, sec_exec_control);
6708 
6709 	vmx_update_msr_bitmap_x2apic(vcpu);
6710 }
6711 
6712 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6713 {
6714 	const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT;
6715 	struct kvm *kvm = vcpu->kvm;
6716 	struct kvm_memslots *slots = kvm_memslots(kvm);
6717 	struct kvm_memory_slot *slot;
6718 	unsigned long mmu_seq;
6719 	kvm_pfn_t pfn;
6720 
6721 	/* Defer reload until vmcs01 is the current VMCS. */
6722 	if (is_guest_mode(vcpu)) {
6723 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6724 		return;
6725 	}
6726 
6727 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6728 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6729 		return;
6730 
6731 	/*
6732 	 * Grab the memslot so that the hva lookup for the mmu_notifier retry
6733 	 * is guaranteed to use the same memslot as the pfn lookup, i.e. rely
6734 	 * on the pfn lookup's validation of the memslot to ensure a valid hva
6735 	 * is used for the retry check.
6736 	 */
6737 	slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT);
6738 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
6739 		return;
6740 
6741 	/*
6742 	 * Ensure that the mmu_notifier sequence count is read before KVM
6743 	 * retrieves the pfn from the primary MMU.  Note, the memslot is
6744 	 * protected by SRCU, not the mmu_notifier.  Pairs with the smp_wmb()
6745 	 * in kvm_mmu_invalidate_end().
6746 	 */
6747 	mmu_seq = kvm->mmu_invalidate_seq;
6748 	smp_rmb();
6749 
6750 	/*
6751 	 * No need to retry if the memslot does not exist or is invalid.  KVM
6752 	 * controls the APIC-access page memslot, and only deletes the memslot
6753 	 * if APICv is permanently inhibited, i.e. the memslot won't reappear.
6754 	 */
6755 	pfn = gfn_to_pfn_memslot(slot, gfn);
6756 	if (is_error_noslot_pfn(pfn))
6757 		return;
6758 
6759 	read_lock(&vcpu->kvm->mmu_lock);
6760 	if (mmu_invalidate_retry_hva(kvm, mmu_seq,
6761 				     gfn_to_hva_memslot(slot, gfn))) {
6762 		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6763 		read_unlock(&vcpu->kvm->mmu_lock);
6764 		goto out;
6765 	}
6766 
6767 	vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn));
6768 	read_unlock(&vcpu->kvm->mmu_lock);
6769 
6770 	vmx_flush_tlb_current(vcpu);
6771 
6772 out:
6773 	/*
6774 	 * Do not pin apic access page in memory, the MMU notifier
6775 	 * will call us again if it is migrated or swapped out.
6776 	 */
6777 	kvm_release_pfn_clean(pfn);
6778 }
6779 
6780 static void vmx_hwapic_isr_update(int max_isr)
6781 {
6782 	u16 status;
6783 	u8 old;
6784 
6785 	if (max_isr == -1)
6786 		max_isr = 0;
6787 
6788 	status = vmcs_read16(GUEST_INTR_STATUS);
6789 	old = status >> 8;
6790 	if (max_isr != old) {
6791 		status &= 0xff;
6792 		status |= max_isr << 8;
6793 		vmcs_write16(GUEST_INTR_STATUS, status);
6794 	}
6795 }
6796 
6797 static void vmx_set_rvi(int vector)
6798 {
6799 	u16 status;
6800 	u8 old;
6801 
6802 	if (vector == -1)
6803 		vector = 0;
6804 
6805 	status = vmcs_read16(GUEST_INTR_STATUS);
6806 	old = (u8)status & 0xff;
6807 	if ((u8)vector != old) {
6808 		status &= ~0xff;
6809 		status |= (u8)vector;
6810 		vmcs_write16(GUEST_INTR_STATUS, status);
6811 	}
6812 }
6813 
6814 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6815 {
6816 	/*
6817 	 * When running L2, updating RVI is only relevant when
6818 	 * vmcs12 virtual-interrupt-delivery enabled.
6819 	 * However, it can be enabled only when L1 also
6820 	 * intercepts external-interrupts and in that case
6821 	 * we should not update vmcs02 RVI but instead intercept
6822 	 * interrupt. Therefore, do nothing when running L2.
6823 	 */
6824 	if (!is_guest_mode(vcpu))
6825 		vmx_set_rvi(max_irr);
6826 }
6827 
6828 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6829 {
6830 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6831 	int max_irr;
6832 	bool got_posted_interrupt;
6833 
6834 	if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6835 		return -EIO;
6836 
6837 	if (pi_test_on(&vmx->pi_desc)) {
6838 		pi_clear_on(&vmx->pi_desc);
6839 		/*
6840 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6841 		 * But on x86 this is just a compiler barrier anyway.
6842 		 */
6843 		smp_mb__after_atomic();
6844 		got_posted_interrupt =
6845 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6846 	} else {
6847 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6848 		got_posted_interrupt = false;
6849 	}
6850 
6851 	/*
6852 	 * Newly recognized interrupts are injected via either virtual interrupt
6853 	 * delivery (RVI) or KVM_REQ_EVENT.  Virtual interrupt delivery is
6854 	 * disabled in two cases:
6855 	 *
6856 	 * 1) If L2 is running and the vCPU has a new pending interrupt.  If L1
6857 	 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6858 	 * VM-Exit to L1.  If L1 doesn't want to exit, the interrupt is injected
6859 	 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6860 	 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6861 	 *
6862 	 * 2) If APICv is disabled for this vCPU, assigned devices may still
6863 	 * attempt to post interrupts.  The posted interrupt vector will cause
6864 	 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6865 	 */
6866 	if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6867 		vmx_set_rvi(max_irr);
6868 	else if (got_posted_interrupt)
6869 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6870 
6871 	return max_irr;
6872 }
6873 
6874 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6875 {
6876 	if (!kvm_vcpu_apicv_active(vcpu))
6877 		return;
6878 
6879 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6880 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6881 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6882 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6883 }
6884 
6885 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6886 {
6887 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6888 
6889 	pi_clear_on(&vmx->pi_desc);
6890 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6891 }
6892 
6893 void vmx_do_interrupt_irqoff(unsigned long entry);
6894 void vmx_do_nmi_irqoff(void);
6895 
6896 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6897 {
6898 	/*
6899 	 * Save xfd_err to guest_fpu before interrupt is enabled, so the
6900 	 * MSR value is not clobbered by the host activity before the guest
6901 	 * has chance to consume it.
6902 	 *
6903 	 * Do not blindly read xfd_err here, since this exception might
6904 	 * be caused by L1 interception on a platform which doesn't
6905 	 * support xfd at all.
6906 	 *
6907 	 * Do it conditionally upon guest_fpu::xfd. xfd_err matters
6908 	 * only when xfd contains a non-zero value.
6909 	 *
6910 	 * Queuing exception is done in vmx_handle_exit. See comment there.
6911 	 */
6912 	if (vcpu->arch.guest_fpu.fpstate->xfd)
6913 		rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6914 }
6915 
6916 static void handle_exception_irqoff(struct vcpu_vmx *vmx)
6917 {
6918 	u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6919 
6920 	/* if exit due to PF check for async PF */
6921 	if (is_page_fault(intr_info))
6922 		vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6923 	/* if exit due to NM, handle before interrupts are enabled */
6924 	else if (is_nm_fault(intr_info))
6925 		handle_nm_fault_irqoff(&vmx->vcpu);
6926 	/* Handle machine checks before interrupts are enabled */
6927 	else if (is_machine_check(intr_info))
6928 		kvm_machine_check();
6929 }
6930 
6931 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6932 {
6933 	u32 intr_info = vmx_get_intr_info(vcpu);
6934 	unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6935 	gate_desc *desc = (gate_desc *)host_idt_base + vector;
6936 
6937 	if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6938 	    "unexpected VM-Exit interrupt info: 0x%x", intr_info))
6939 		return;
6940 
6941 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
6942 	vmx_do_interrupt_irqoff(gate_offset(desc));
6943 	kvm_after_interrupt(vcpu);
6944 
6945 	vcpu->arch.at_instruction_boundary = true;
6946 }
6947 
6948 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6949 {
6950 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6951 
6952 	if (vmx->emulation_required)
6953 		return;
6954 
6955 	if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6956 		handle_external_interrupt_irqoff(vcpu);
6957 	else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6958 		handle_exception_irqoff(vmx);
6959 }
6960 
6961 /*
6962  * The kvm parameter can be NULL (module initialization, or invocation before
6963  * VM creation). Be sure to check the kvm parameter before using it.
6964  */
6965 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6966 {
6967 	switch (index) {
6968 	case MSR_IA32_SMBASE:
6969 		if (!IS_ENABLED(CONFIG_KVM_SMM))
6970 			return false;
6971 		/*
6972 		 * We cannot do SMM unless we can run the guest in big
6973 		 * real mode.
6974 		 */
6975 		return enable_unrestricted_guest || emulate_invalid_guest_state;
6976 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
6977 		return nested;
6978 	case MSR_AMD64_VIRT_SPEC_CTRL:
6979 	case MSR_AMD64_TSC_RATIO:
6980 		/* This is AMD only.  */
6981 		return false;
6982 	default:
6983 		return true;
6984 	}
6985 }
6986 
6987 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6988 {
6989 	u32 exit_intr_info;
6990 	bool unblock_nmi;
6991 	u8 vector;
6992 	bool idtv_info_valid;
6993 
6994 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6995 
6996 	if (enable_vnmi) {
6997 		if (vmx->loaded_vmcs->nmi_known_unmasked)
6998 			return;
6999 
7000 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
7001 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7002 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7003 		/*
7004 		 * SDM 3: 27.7.1.2 (September 2008)
7005 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7006 		 * a guest IRET fault.
7007 		 * SDM 3: 23.2.2 (September 2008)
7008 		 * Bit 12 is undefined in any of the following cases:
7009 		 *  If the VM exit sets the valid bit in the IDT-vectoring
7010 		 *   information field.
7011 		 *  If the VM exit is due to a double fault.
7012 		 */
7013 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7014 		    vector != DF_VECTOR && !idtv_info_valid)
7015 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7016 				      GUEST_INTR_STATE_NMI);
7017 		else
7018 			vmx->loaded_vmcs->nmi_known_unmasked =
7019 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7020 				  & GUEST_INTR_STATE_NMI);
7021 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
7022 		vmx->loaded_vmcs->vnmi_blocked_time +=
7023 			ktime_to_ns(ktime_sub(ktime_get(),
7024 					      vmx->loaded_vmcs->entry_time));
7025 }
7026 
7027 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7028 				      u32 idt_vectoring_info,
7029 				      int instr_len_field,
7030 				      int error_code_field)
7031 {
7032 	u8 vector;
7033 	int type;
7034 	bool idtv_info_valid;
7035 
7036 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7037 
7038 	vcpu->arch.nmi_injected = false;
7039 	kvm_clear_exception_queue(vcpu);
7040 	kvm_clear_interrupt_queue(vcpu);
7041 
7042 	if (!idtv_info_valid)
7043 		return;
7044 
7045 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7046 
7047 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7048 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7049 
7050 	switch (type) {
7051 	case INTR_TYPE_NMI_INTR:
7052 		vcpu->arch.nmi_injected = true;
7053 		/*
7054 		 * SDM 3: 27.7.1.2 (September 2008)
7055 		 * Clear bit "block by NMI" before VM entry if a NMI
7056 		 * delivery faulted.
7057 		 */
7058 		vmx_set_nmi_mask(vcpu, false);
7059 		break;
7060 	case INTR_TYPE_SOFT_EXCEPTION:
7061 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7062 		fallthrough;
7063 	case INTR_TYPE_HARD_EXCEPTION:
7064 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7065 			u32 err = vmcs_read32(error_code_field);
7066 			kvm_requeue_exception_e(vcpu, vector, err);
7067 		} else
7068 			kvm_requeue_exception(vcpu, vector);
7069 		break;
7070 	case INTR_TYPE_SOFT_INTR:
7071 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7072 		fallthrough;
7073 	case INTR_TYPE_EXT_INTR:
7074 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7075 		break;
7076 	default:
7077 		break;
7078 	}
7079 }
7080 
7081 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7082 {
7083 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7084 				  VM_EXIT_INSTRUCTION_LEN,
7085 				  IDT_VECTORING_ERROR_CODE);
7086 }
7087 
7088 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7089 {
7090 	__vmx_complete_interrupts(vcpu,
7091 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7092 				  VM_ENTRY_INSTRUCTION_LEN,
7093 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
7094 
7095 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7096 }
7097 
7098 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7099 {
7100 	int i, nr_msrs;
7101 	struct perf_guest_switch_msr *msrs;
7102 	struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7103 
7104 	pmu->host_cross_mapped_mask = 0;
7105 	if (pmu->pebs_enable & pmu->global_ctrl)
7106 		intel_pmu_cross_mapped_check(pmu);
7107 
7108 	/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7109 	msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7110 	if (!msrs)
7111 		return;
7112 
7113 	for (i = 0; i < nr_msrs; i++)
7114 		if (msrs[i].host == msrs[i].guest)
7115 			clear_atomic_switch_msr(vmx, msrs[i].msr);
7116 		else
7117 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7118 					msrs[i].host, false);
7119 }
7120 
7121 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
7122 {
7123 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7124 	u64 tscl;
7125 	u32 delta_tsc;
7126 
7127 	if (vmx->req_immediate_exit) {
7128 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7129 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7130 	} else if (vmx->hv_deadline_tsc != -1) {
7131 		tscl = rdtsc();
7132 		if (vmx->hv_deadline_tsc > tscl)
7133 			/* set_hv_timer ensures the delta fits in 32-bits */
7134 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7135 				cpu_preemption_timer_multi);
7136 		else
7137 			delta_tsc = 0;
7138 
7139 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7140 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7141 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7142 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7143 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7144 	}
7145 }
7146 
7147 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7148 {
7149 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7150 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
7151 		vmcs_writel(HOST_RSP, host_rsp);
7152 	}
7153 }
7154 
7155 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7156 					unsigned int flags)
7157 {
7158 	u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7159 
7160 	if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7161 		return;
7162 
7163 	if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7164 		vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
7165 
7166 	/*
7167 	 * If the guest/host SPEC_CTRL values differ, restore the host value.
7168 	 *
7169 	 * For legacy IBRS, the IBRS bit always needs to be written after
7170 	 * transitioning from a less privileged predictor mode, regardless of
7171 	 * whether the guest/host values differ.
7172 	 */
7173 	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7174 	    vmx->spec_ctrl != hostval)
7175 		native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
7176 
7177 	barrier_nospec();
7178 }
7179 
7180 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
7181 {
7182 	switch (to_vmx(vcpu)->exit_reason.basic) {
7183 	case EXIT_REASON_MSR_WRITE:
7184 		return handle_fastpath_set_msr_irqoff(vcpu);
7185 	case EXIT_REASON_PREEMPTION_TIMER:
7186 		return handle_fastpath_preemption_timer(vcpu);
7187 	default:
7188 		return EXIT_FASTPATH_NONE;
7189 	}
7190 }
7191 
7192 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7193 					unsigned int flags)
7194 {
7195 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7196 
7197 	guest_state_enter_irqoff();
7198 
7199 	/* L1D Flush includes CPU buffer clear to mitigate MDS */
7200 	if (static_branch_unlikely(&vmx_l1d_should_flush))
7201 		vmx_l1d_flush(vcpu);
7202 	else if (static_branch_unlikely(&mds_user_clear))
7203 		mds_clear_cpu_buffers();
7204 	else if (static_branch_unlikely(&mmio_stale_data_clear) &&
7205 		 kvm_arch_has_assigned_device(vcpu->kvm))
7206 		mds_clear_cpu_buffers();
7207 
7208 	vmx_disable_fb_clear(vmx);
7209 
7210 	if (vcpu->arch.cr2 != native_read_cr2())
7211 		native_write_cr2(vcpu->arch.cr2);
7212 
7213 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7214 				   flags);
7215 
7216 	vcpu->arch.cr2 = native_read_cr2();
7217 
7218 	vmx_enable_fb_clear(vmx);
7219 
7220 	if (unlikely(vmx->fail))
7221 		vmx->exit_reason.full = 0xdead;
7222 	else
7223 		vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7224 
7225 	if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI &&
7226 	    is_nmi(vmx_get_intr_info(vcpu))) {
7227 		kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
7228 		vmx_do_nmi_irqoff();
7229 		kvm_after_interrupt(vcpu);
7230 	}
7231 
7232 	guest_state_exit_irqoff();
7233 }
7234 
7235 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
7236 {
7237 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7238 	unsigned long cr3, cr4;
7239 
7240 	/* Record the guest's net vcpu time for enforced NMI injections. */
7241 	if (unlikely(!enable_vnmi &&
7242 		     vmx->loaded_vmcs->soft_vnmi_blocked))
7243 		vmx->loaded_vmcs->entry_time = ktime_get();
7244 
7245 	/*
7246 	 * Don't enter VMX if guest state is invalid, let the exit handler
7247 	 * start emulation until we arrive back to a valid state.  Synthesize a
7248 	 * consistency check VM-Exit due to invalid guest state and bail.
7249 	 */
7250 	if (unlikely(vmx->emulation_required)) {
7251 		vmx->fail = 0;
7252 
7253 		vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
7254 		vmx->exit_reason.failed_vmentry = 1;
7255 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7256 		vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
7257 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7258 		vmx->exit_intr_info = 0;
7259 		return EXIT_FASTPATH_NONE;
7260 	}
7261 
7262 	trace_kvm_entry(vcpu);
7263 
7264 	if (vmx->ple_window_dirty) {
7265 		vmx->ple_window_dirty = false;
7266 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
7267 	}
7268 
7269 	/*
7270 	 * We did this in prepare_switch_to_guest, because it needs to
7271 	 * be within srcu_read_lock.
7272 	 */
7273 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7274 
7275 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7276 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7277 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7278 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7279 	vcpu->arch.regs_dirty = 0;
7280 
7281 	/*
7282 	 * Refresh vmcs.HOST_CR3 if necessary.  This must be done immediately
7283 	 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7284 	 * it switches back to the current->mm, which can occur in KVM context
7285 	 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7286 	 * toggles a static key while handling a VM-Exit.
7287 	 */
7288 	cr3 = __get_current_cr3_fast();
7289 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7290 		vmcs_writel(HOST_CR3, cr3);
7291 		vmx->loaded_vmcs->host_state.cr3 = cr3;
7292 	}
7293 
7294 	cr4 = cr4_read_shadow();
7295 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7296 		vmcs_writel(HOST_CR4, cr4);
7297 		vmx->loaded_vmcs->host_state.cr4 = cr4;
7298 	}
7299 
7300 	/* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
7301 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
7302 		set_debugreg(vcpu->arch.dr6, 6);
7303 
7304 	/* When single-stepping over STI and MOV SS, we must clear the
7305 	 * corresponding interruptibility bits in the guest state. Otherwise
7306 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
7307 	 * exceptions being set, but that's not correct for the guest debugging
7308 	 * case. */
7309 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7310 		vmx_set_interrupt_shadow(vcpu, 0);
7311 
7312 	kvm_load_guest_xsave_state(vcpu);
7313 
7314 	pt_guest_enter(vmx);
7315 
7316 	atomic_switch_perf_msrs(vmx);
7317 	if (intel_pmu_lbr_is_enabled(vcpu))
7318 		vmx_passthrough_lbr_msrs(vcpu);
7319 
7320 	if (enable_preemption_timer)
7321 		vmx_update_hv_timer(vcpu);
7322 
7323 	kvm_wait_lapic_expire(vcpu);
7324 
7325 	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
7326 	vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
7327 
7328 	/* All fields are clean at this point */
7329 	if (kvm_is_using_evmcs()) {
7330 		current_evmcs->hv_clean_fields |=
7331 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7332 
7333 		current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7334 	}
7335 
7336 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7337 	if (vmx->host_debugctlmsr)
7338 		update_debugctlmsr(vmx->host_debugctlmsr);
7339 
7340 #ifndef CONFIG_X86_64
7341 	/*
7342 	 * The sysexit path does not restore ds/es, so we must set them to
7343 	 * a reasonable value ourselves.
7344 	 *
7345 	 * We can't defer this to vmx_prepare_switch_to_host() since that
7346 	 * function may be executed in interrupt context, which saves and
7347 	 * restore segments around it, nullifying its effect.
7348 	 */
7349 	loadsegment(ds, __USER_DS);
7350 	loadsegment(es, __USER_DS);
7351 #endif
7352 
7353 	vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7354 
7355 	pt_guest_exit(vmx);
7356 
7357 	kvm_load_host_xsave_state(vcpu);
7358 
7359 	if (is_guest_mode(vcpu)) {
7360 		/*
7361 		 * Track VMLAUNCH/VMRESUME that have made past guest state
7362 		 * checking.
7363 		 */
7364 		if (vmx->nested.nested_run_pending &&
7365 		    !vmx->exit_reason.failed_vmentry)
7366 			++vcpu->stat.nested_run;
7367 
7368 		vmx->nested.nested_run_pending = 0;
7369 	}
7370 
7371 	vmx->idt_vectoring_info = 0;
7372 
7373 	if (unlikely(vmx->fail))
7374 		return EXIT_FASTPATH_NONE;
7375 
7376 	if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
7377 		kvm_machine_check();
7378 
7379 	if (likely(!vmx->exit_reason.failed_vmentry))
7380 		vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7381 
7382 	trace_kvm_exit(vcpu, KVM_ISA_VMX);
7383 
7384 	if (unlikely(vmx->exit_reason.failed_vmentry))
7385 		return EXIT_FASTPATH_NONE;
7386 
7387 	vmx->loaded_vmcs->launched = 1;
7388 
7389 	vmx_recover_nmi_blocking(vmx);
7390 	vmx_complete_interrupts(vmx);
7391 
7392 	if (is_guest_mode(vcpu))
7393 		return EXIT_FASTPATH_NONE;
7394 
7395 	return vmx_exit_handlers_fastpath(vcpu);
7396 }
7397 
7398 static void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7399 {
7400 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7401 
7402 	if (enable_pml)
7403 		vmx_destroy_pml_buffer(vmx);
7404 	free_vpid(vmx->vpid);
7405 	nested_vmx_free_vcpu(vcpu);
7406 	free_loaded_vmcs(vmx->loaded_vmcs);
7407 }
7408 
7409 static int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7410 {
7411 	struct vmx_uret_msr *tsx_ctrl;
7412 	struct vcpu_vmx *vmx;
7413 	int i, err;
7414 
7415 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7416 	vmx = to_vmx(vcpu);
7417 
7418 	INIT_LIST_HEAD(&vmx->pi_wakeup_list);
7419 
7420 	err = -ENOMEM;
7421 
7422 	vmx->vpid = allocate_vpid();
7423 
7424 	/*
7425 	 * If PML is turned on, failure on enabling PML just results in failure
7426 	 * of creating the vcpu, therefore we can simplify PML logic (by
7427 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
7428 	 * for the guest), etc.
7429 	 */
7430 	if (enable_pml) {
7431 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7432 		if (!vmx->pml_pg)
7433 			goto free_vpid;
7434 	}
7435 
7436 	for (i = 0; i < kvm_nr_uret_msrs; ++i)
7437 		vmx->guest_uret_msrs[i].mask = -1ull;
7438 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7439 		/*
7440 		 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7441 		 * Keep the host value unchanged to avoid changing CPUID bits
7442 		 * under the host kernel's feet.
7443 		 */
7444 		tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7445 		if (tsx_ctrl)
7446 			tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7447 	}
7448 
7449 	err = alloc_loaded_vmcs(&vmx->vmcs01);
7450 	if (err < 0)
7451 		goto free_pml;
7452 
7453 	/*
7454 	 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7455 	 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7456 	 * feature only for vmcs01, KVM currently isn't equipped to realize any
7457 	 * performance benefits from enabling it for vmcs02.
7458 	 */
7459 	if (kvm_is_using_evmcs() &&
7460 	    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7461 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7462 
7463 		evmcs->hv_enlightenments_control.msr_bitmap = 1;
7464 	}
7465 
7466 	/* The MSR bitmap starts with all ones */
7467 	bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7468 	bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7469 
7470 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7471 #ifdef CONFIG_X86_64
7472 	vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7473 	vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7474 	vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7475 #endif
7476 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7477 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7478 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7479 	if (kvm_cstate_in_guest(vcpu->kvm)) {
7480 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7481 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7482 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7483 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7484 	}
7485 
7486 	vmx->loaded_vmcs = &vmx->vmcs01;
7487 
7488 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
7489 		err = kvm_alloc_apic_access_page(vcpu->kvm);
7490 		if (err)
7491 			goto free_vmcs;
7492 	}
7493 
7494 	if (enable_ept && !enable_unrestricted_guest) {
7495 		err = init_rmode_identity_map(vcpu->kvm);
7496 		if (err)
7497 			goto free_vmcs;
7498 	}
7499 
7500 	if (vmx_can_use_ipiv(vcpu))
7501 		WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7502 			   __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID);
7503 
7504 	return 0;
7505 
7506 free_vmcs:
7507 	free_loaded_vmcs(vmx->loaded_vmcs);
7508 free_pml:
7509 	vmx_destroy_pml_buffer(vmx);
7510 free_vpid:
7511 	free_vpid(vmx->vpid);
7512 	return err;
7513 }
7514 
7515 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7516 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7517 
7518 static int vmx_vm_init(struct kvm *kvm)
7519 {
7520 	if (!ple_gap)
7521 		kvm->arch.pause_in_guest = true;
7522 
7523 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7524 		switch (l1tf_mitigation) {
7525 		case L1TF_MITIGATION_OFF:
7526 		case L1TF_MITIGATION_FLUSH_NOWARN:
7527 			/* 'I explicitly don't care' is set */
7528 			break;
7529 		case L1TF_MITIGATION_FLUSH:
7530 		case L1TF_MITIGATION_FLUSH_NOSMT:
7531 		case L1TF_MITIGATION_FULL:
7532 			/*
7533 			 * Warn upon starting the first VM in a potentially
7534 			 * insecure environment.
7535 			 */
7536 			if (sched_smt_active())
7537 				pr_warn_once(L1TF_MSG_SMT);
7538 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7539 				pr_warn_once(L1TF_MSG_L1D);
7540 			break;
7541 		case L1TF_MITIGATION_FULL_FORCE:
7542 			/* Flush is enforced */
7543 			break;
7544 		}
7545 	}
7546 	return 0;
7547 }
7548 
7549 static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7550 {
7551 	u8 cache;
7552 
7553 	/* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7554 	 * memory aliases with conflicting memory types and sometimes MCEs.
7555 	 * We have to be careful as to what are honored and when.
7556 	 *
7557 	 * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
7558 	 * UC.  The effective memory type is UC or WC depending on guest PAT.
7559 	 * This was historically the source of MCEs and we want to be
7560 	 * conservative.
7561 	 *
7562 	 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7563 	 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
7564 	 * EPT memory type is set to WB.  The effective memory type is forced
7565 	 * WB.
7566 	 *
7567 	 * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
7568 	 * EPT memory type is used to emulate guest CD/MTRR.
7569 	 */
7570 
7571 	if (is_mmio)
7572 		return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7573 
7574 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
7575 		return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7576 
7577 	if (kvm_read_cr0_bits(vcpu, X86_CR0_CD)) {
7578 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7579 			cache = MTRR_TYPE_WRBACK;
7580 		else
7581 			cache = MTRR_TYPE_UNCACHABLE;
7582 
7583 		return (cache << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7584 	}
7585 
7586 	return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT;
7587 }
7588 
7589 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7590 {
7591 	/*
7592 	 * These bits in the secondary execution controls field
7593 	 * are dynamic, the others are mostly based on the hypervisor
7594 	 * architecture and the guest's CPUID.  Do not touch the
7595 	 * dynamic bits.
7596 	 */
7597 	u32 mask =
7598 		SECONDARY_EXEC_SHADOW_VMCS |
7599 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7600 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7601 		SECONDARY_EXEC_DESC;
7602 
7603 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7604 
7605 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7606 }
7607 
7608 /*
7609  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7610  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7611  */
7612 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7613 {
7614 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7615 	struct kvm_cpuid_entry2 *entry;
7616 
7617 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7618 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7619 
7620 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7621 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7622 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7623 } while (0)
7624 
7625 	entry = kvm_find_cpuid_entry(vcpu, 0x1);
7626 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7627 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7628 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7629 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7630 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7631 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7632 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7633 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7634 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7635 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7636 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7637 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7638 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7639 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7640 
7641 	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7642 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7643 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7644 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7645 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7646 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7647 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7648 
7649 #undef cr4_fixed1_update
7650 }
7651 
7652 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7653 {
7654 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7655 	struct kvm_cpuid_entry2 *best = NULL;
7656 	int i;
7657 
7658 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7659 		best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7660 		if (!best)
7661 			return;
7662 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7663 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7664 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7665 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7666 	}
7667 
7668 	/* Get the number of configurable Address Ranges for filtering */
7669 	vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7670 						PT_CAP_num_address_ranges);
7671 
7672 	/* Initialize and clear the no dependency bits */
7673 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7674 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7675 			RTIT_CTL_BRANCH_EN);
7676 
7677 	/*
7678 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7679 	 * will inject an #GP
7680 	 */
7681 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7682 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7683 
7684 	/*
7685 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7686 	 * PSBFreq can be set
7687 	 */
7688 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7689 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7690 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7691 
7692 	/*
7693 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7694 	 */
7695 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7696 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7697 					      RTIT_CTL_MTC_RANGE);
7698 
7699 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7700 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7701 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7702 							RTIT_CTL_PTW_EN);
7703 
7704 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7705 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7706 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7707 
7708 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7709 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7710 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7711 
7712 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7713 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7714 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7715 
7716 	/* unmask address range configure area */
7717 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7718 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7719 }
7720 
7721 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7722 {
7723 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7724 
7725 	/* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7726 	vcpu->arch.xsaves_enabled = false;
7727 
7728 	vmx_setup_uret_msrs(vmx);
7729 
7730 	if (cpu_has_secondary_exec_ctrls())
7731 		vmcs_set_secondary_exec_control(vmx,
7732 						vmx_secondary_exec_control(vmx));
7733 
7734 	if (nested_vmx_allowed(vcpu))
7735 		vmx->msr_ia32_feature_control_valid_bits |=
7736 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7737 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7738 	else
7739 		vmx->msr_ia32_feature_control_valid_bits &=
7740 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7741 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7742 
7743 	if (nested_vmx_allowed(vcpu))
7744 		nested_vmx_cr_fixed1_bits_update(vcpu);
7745 
7746 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7747 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7748 		update_intel_pt_cfg(vcpu);
7749 
7750 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7751 		struct vmx_uret_msr *msr;
7752 		msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7753 		if (msr) {
7754 			bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7755 			vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7756 		}
7757 	}
7758 
7759 	if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7760 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7761 					  !guest_cpuid_has(vcpu, X86_FEATURE_XFD));
7762 
7763 	if (boot_cpu_has(X86_FEATURE_IBPB))
7764 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
7765 					  !guest_has_pred_cmd_msr(vcpu));
7766 
7767 	if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
7768 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
7769 					  !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
7770 
7771 	set_cr4_guest_host_mask(vmx);
7772 
7773 	vmx_write_encls_bitmap(vcpu, NULL);
7774 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7775 		vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7776 	else
7777 		vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7778 
7779 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7780 		vmx->msr_ia32_feature_control_valid_bits |=
7781 			FEAT_CTL_SGX_LC_ENABLED;
7782 	else
7783 		vmx->msr_ia32_feature_control_valid_bits &=
7784 			~FEAT_CTL_SGX_LC_ENABLED;
7785 
7786 	/* Refresh #PF interception to account for MAXPHYADDR changes. */
7787 	vmx_update_exception_bitmap(vcpu);
7788 }
7789 
7790 static u64 vmx_get_perf_capabilities(void)
7791 {
7792 	u64 perf_cap = PMU_CAP_FW_WRITES;
7793 	struct x86_pmu_lbr lbr;
7794 	u64 host_perf_cap = 0;
7795 
7796 	if (!enable_pmu)
7797 		return 0;
7798 
7799 	if (boot_cpu_has(X86_FEATURE_PDCM))
7800 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
7801 
7802 	if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) {
7803 		x86_perf_get_lbr(&lbr);
7804 		if (lbr.nr)
7805 			perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT;
7806 	}
7807 
7808 	if (vmx_pebs_supported()) {
7809 		perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
7810 		if ((perf_cap & PERF_CAP_PEBS_FORMAT) < 4)
7811 			perf_cap &= ~PERF_CAP_PEBS_BASELINE;
7812 	}
7813 
7814 	return perf_cap;
7815 }
7816 
7817 static __init void vmx_set_cpu_caps(void)
7818 {
7819 	kvm_set_cpu_caps();
7820 
7821 	/* CPUID 0x1 */
7822 	if (nested)
7823 		kvm_cpu_cap_set(X86_FEATURE_VMX);
7824 
7825 	/* CPUID 0x7 */
7826 	if (kvm_mpx_supported())
7827 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7828 	if (!cpu_has_vmx_invpcid())
7829 		kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7830 	if (vmx_pt_mode_is_host_guest())
7831 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7832 	if (vmx_pebs_supported()) {
7833 		kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7834 		kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7835 	}
7836 
7837 	if (!enable_pmu)
7838 		kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7839 	kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
7840 
7841 	if (!enable_sgx) {
7842 		kvm_cpu_cap_clear(X86_FEATURE_SGX);
7843 		kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7844 		kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7845 		kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7846 	}
7847 
7848 	if (vmx_umip_emulated())
7849 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7850 
7851 	/* CPUID 0xD.1 */
7852 	kvm_caps.supported_xss = 0;
7853 	if (!cpu_has_vmx_xsaves())
7854 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7855 
7856 	/* CPUID 0x80000001 and 0x7 (RDPID) */
7857 	if (!cpu_has_vmx_rdtscp()) {
7858 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7859 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7860 	}
7861 
7862 	if (cpu_has_vmx_waitpkg())
7863 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7864 }
7865 
7866 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7867 {
7868 	to_vmx(vcpu)->req_immediate_exit = true;
7869 }
7870 
7871 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7872 				  struct x86_instruction_info *info)
7873 {
7874 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7875 	unsigned short port;
7876 	bool intercept;
7877 	int size;
7878 
7879 	if (info->intercept == x86_intercept_in ||
7880 	    info->intercept == x86_intercept_ins) {
7881 		port = info->src_val;
7882 		size = info->dst_bytes;
7883 	} else {
7884 		port = info->dst_val;
7885 		size = info->src_bytes;
7886 	}
7887 
7888 	/*
7889 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7890 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7891 	 * control.
7892 	 *
7893 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7894 	 */
7895 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7896 		intercept = nested_cpu_has(vmcs12,
7897 					   CPU_BASED_UNCOND_IO_EXITING);
7898 	else
7899 		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7900 
7901 	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7902 	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7903 }
7904 
7905 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7906 			       struct x86_instruction_info *info,
7907 			       enum x86_intercept_stage stage,
7908 			       struct x86_exception *exception)
7909 {
7910 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7911 
7912 	switch (info->intercept) {
7913 	/*
7914 	 * RDPID causes #UD if disabled through secondary execution controls.
7915 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
7916 	 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7917 	 */
7918 	case x86_intercept_rdpid:
7919 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7920 			exception->vector = UD_VECTOR;
7921 			exception->error_code_valid = false;
7922 			return X86EMUL_PROPAGATE_FAULT;
7923 		}
7924 		break;
7925 
7926 	case x86_intercept_in:
7927 	case x86_intercept_ins:
7928 	case x86_intercept_out:
7929 	case x86_intercept_outs:
7930 		return vmx_check_intercept_io(vcpu, info);
7931 
7932 	case x86_intercept_lgdt:
7933 	case x86_intercept_lidt:
7934 	case x86_intercept_lldt:
7935 	case x86_intercept_ltr:
7936 	case x86_intercept_sgdt:
7937 	case x86_intercept_sidt:
7938 	case x86_intercept_sldt:
7939 	case x86_intercept_str:
7940 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7941 			return X86EMUL_CONTINUE;
7942 
7943 		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7944 		break;
7945 
7946 	case x86_intercept_pause:
7947 		/*
7948 		 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
7949 		 * with vanilla NOPs in the emulator.  Apply the interception
7950 		 * check only to actual PAUSE instructions.  Don't check
7951 		 * PAUSE-loop-exiting, software can't expect a given PAUSE to
7952 		 * exit, i.e. KVM is within its rights to allow L2 to execute
7953 		 * the PAUSE.
7954 		 */
7955 		if ((info->rep_prefix != REPE_PREFIX) ||
7956 		    !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING))
7957 			return X86EMUL_CONTINUE;
7958 
7959 		break;
7960 
7961 	/* TODO: check more intercepts... */
7962 	default:
7963 		break;
7964 	}
7965 
7966 	return X86EMUL_UNHANDLEABLE;
7967 }
7968 
7969 #ifdef CONFIG_X86_64
7970 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7971 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7972 				  u64 divisor, u64 *result)
7973 {
7974 	u64 low = a << shift, high = a >> (64 - shift);
7975 
7976 	/* To avoid the overflow on divq */
7977 	if (high >= divisor)
7978 		return 1;
7979 
7980 	/* Low hold the result, high hold rem which is discarded */
7981 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7982 	    "rm" (divisor), "0" (low), "1" (high));
7983 	*result = low;
7984 
7985 	return 0;
7986 }
7987 
7988 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7989 			    bool *expired)
7990 {
7991 	struct vcpu_vmx *vmx;
7992 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7993 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7994 
7995 	vmx = to_vmx(vcpu);
7996 	tscl = rdtsc();
7997 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7998 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7999 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
8000 						    ktimer->timer_advance_ns);
8001 
8002 	if (delta_tsc > lapic_timer_advance_cycles)
8003 		delta_tsc -= lapic_timer_advance_cycles;
8004 	else
8005 		delta_tsc = 0;
8006 
8007 	/* Convert to host delta tsc if tsc scaling is enabled */
8008 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
8009 	    delta_tsc && u64_shl_div_u64(delta_tsc,
8010 				kvm_caps.tsc_scaling_ratio_frac_bits,
8011 				vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
8012 		return -ERANGE;
8013 
8014 	/*
8015 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
8016 	 * we can't use the preemption timer.
8017 	 * It's possible that it fits on later vmentries, but checking
8018 	 * on every vmentry is costly so we just use an hrtimer.
8019 	 */
8020 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
8021 		return -ERANGE;
8022 
8023 	vmx->hv_deadline_tsc = tscl + delta_tsc;
8024 	*expired = !delta_tsc;
8025 	return 0;
8026 }
8027 
8028 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
8029 {
8030 	to_vmx(vcpu)->hv_deadline_tsc = -1;
8031 }
8032 #endif
8033 
8034 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
8035 {
8036 	if (!kvm_pause_in_guest(vcpu->kvm))
8037 		shrink_ple_window(vcpu);
8038 }
8039 
8040 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
8041 {
8042 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8043 
8044 	if (WARN_ON_ONCE(!enable_pml))
8045 		return;
8046 
8047 	if (is_guest_mode(vcpu)) {
8048 		vmx->nested.update_vmcs01_cpu_dirty_logging = true;
8049 		return;
8050 	}
8051 
8052 	/*
8053 	 * Note, nr_memslots_dirty_logging can be changed concurrent with this
8054 	 * code, but in that case another update request will be made and so
8055 	 * the guest will never run with a stale PML value.
8056 	 */
8057 	if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
8058 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8059 	else
8060 		secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8061 }
8062 
8063 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
8064 {
8065 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
8066 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
8067 			FEAT_CTL_LMCE_ENABLED;
8068 	else
8069 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
8070 			~FEAT_CTL_LMCE_ENABLED;
8071 }
8072 
8073 #ifdef CONFIG_KVM_SMM
8074 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
8075 {
8076 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
8077 	if (to_vmx(vcpu)->nested.nested_run_pending)
8078 		return -EBUSY;
8079 	return !is_smm(vcpu);
8080 }
8081 
8082 static int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
8083 {
8084 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8085 
8086 	/*
8087 	 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8088 	 * SMI and RSM.  Using the common VM-Exit + VM-Enter routines is wrong
8089 	 * SMI and RSM only modify state that is saved and restored via SMRAM.
8090 	 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
8091 	 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8092 	 */
8093 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
8094 	if (vmx->nested.smm.guest_mode)
8095 		nested_vmx_vmexit(vcpu, -1, 0, 0);
8096 
8097 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
8098 	vmx->nested.vmxon = false;
8099 	vmx_clear_hlt(vcpu);
8100 	return 0;
8101 }
8102 
8103 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8104 {
8105 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8106 	int ret;
8107 
8108 	if (vmx->nested.smm.vmxon) {
8109 		vmx->nested.vmxon = true;
8110 		vmx->nested.smm.vmxon = false;
8111 	}
8112 
8113 	if (vmx->nested.smm.guest_mode) {
8114 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
8115 		if (ret)
8116 			return ret;
8117 
8118 		vmx->nested.nested_run_pending = 1;
8119 		vmx->nested.smm.guest_mode = false;
8120 	}
8121 	return 0;
8122 }
8123 
8124 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8125 {
8126 	/* RSM will cause a vmexit anyway.  */
8127 }
8128 #endif
8129 
8130 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8131 {
8132 	return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8133 }
8134 
8135 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8136 {
8137 	if (is_guest_mode(vcpu)) {
8138 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8139 
8140 		if (hrtimer_try_to_cancel(timer) == 1)
8141 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8142 	}
8143 }
8144 
8145 static void vmx_hardware_unsetup(void)
8146 {
8147 	kvm_set_posted_intr_wakeup_handler(NULL);
8148 
8149 	if (nested)
8150 		nested_vmx_hardware_unsetup();
8151 
8152 	free_kvm_area();
8153 }
8154 
8155 #define VMX_REQUIRED_APICV_INHIBITS			\
8156 (							\
8157 	BIT(APICV_INHIBIT_REASON_DISABLE)|		\
8158 	BIT(APICV_INHIBIT_REASON_ABSENT) |		\
8159 	BIT(APICV_INHIBIT_REASON_HYPERV) |		\
8160 	BIT(APICV_INHIBIT_REASON_BLOCKIRQ) |		\
8161 	BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) |	\
8162 	BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) |	\
8163 	BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED)	\
8164 )
8165 
8166 static void vmx_vm_destroy(struct kvm *kvm)
8167 {
8168 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8169 
8170 	free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8171 }
8172 
8173 static struct kvm_x86_ops vmx_x86_ops __initdata = {
8174 	.name = KBUILD_MODNAME,
8175 
8176 	.check_processor_compatibility = vmx_check_processor_compat,
8177 
8178 	.hardware_unsetup = vmx_hardware_unsetup,
8179 
8180 	.hardware_enable = vmx_hardware_enable,
8181 	.hardware_disable = vmx_hardware_disable,
8182 	.has_emulated_msr = vmx_has_emulated_msr,
8183 
8184 	.vm_size = sizeof(struct kvm_vmx),
8185 	.vm_init = vmx_vm_init,
8186 	.vm_destroy = vmx_vm_destroy,
8187 
8188 	.vcpu_precreate = vmx_vcpu_precreate,
8189 	.vcpu_create = vmx_vcpu_create,
8190 	.vcpu_free = vmx_vcpu_free,
8191 	.vcpu_reset = vmx_vcpu_reset,
8192 
8193 	.prepare_switch_to_guest = vmx_prepare_switch_to_guest,
8194 	.vcpu_load = vmx_vcpu_load,
8195 	.vcpu_put = vmx_vcpu_put,
8196 
8197 	.update_exception_bitmap = vmx_update_exception_bitmap,
8198 	.get_msr_feature = vmx_get_msr_feature,
8199 	.get_msr = vmx_get_msr,
8200 	.set_msr = vmx_set_msr,
8201 	.get_segment_base = vmx_get_segment_base,
8202 	.get_segment = vmx_get_segment,
8203 	.set_segment = vmx_set_segment,
8204 	.get_cpl = vmx_get_cpl,
8205 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8206 	.set_cr0 = vmx_set_cr0,
8207 	.is_valid_cr4 = vmx_is_valid_cr4,
8208 	.set_cr4 = vmx_set_cr4,
8209 	.set_efer = vmx_set_efer,
8210 	.get_idt = vmx_get_idt,
8211 	.set_idt = vmx_set_idt,
8212 	.get_gdt = vmx_get_gdt,
8213 	.set_gdt = vmx_set_gdt,
8214 	.set_dr7 = vmx_set_dr7,
8215 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
8216 	.cache_reg = vmx_cache_reg,
8217 	.get_rflags = vmx_get_rflags,
8218 	.set_rflags = vmx_set_rflags,
8219 	.get_if_flag = vmx_get_if_flag,
8220 
8221 	.flush_tlb_all = vmx_flush_tlb_all,
8222 	.flush_tlb_current = vmx_flush_tlb_current,
8223 	.flush_tlb_gva = vmx_flush_tlb_gva,
8224 	.flush_tlb_guest = vmx_flush_tlb_guest,
8225 
8226 	.vcpu_pre_run = vmx_vcpu_pre_run,
8227 	.vcpu_run = vmx_vcpu_run,
8228 	.handle_exit = vmx_handle_exit,
8229 	.skip_emulated_instruction = vmx_skip_emulated_instruction,
8230 	.update_emulated_instruction = vmx_update_emulated_instruction,
8231 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
8232 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
8233 	.patch_hypercall = vmx_patch_hypercall,
8234 	.inject_irq = vmx_inject_irq,
8235 	.inject_nmi = vmx_inject_nmi,
8236 	.inject_exception = vmx_inject_exception,
8237 	.cancel_injection = vmx_cancel_injection,
8238 	.interrupt_allowed = vmx_interrupt_allowed,
8239 	.nmi_allowed = vmx_nmi_allowed,
8240 	.get_nmi_mask = vmx_get_nmi_mask,
8241 	.set_nmi_mask = vmx_set_nmi_mask,
8242 	.enable_nmi_window = vmx_enable_nmi_window,
8243 	.enable_irq_window = vmx_enable_irq_window,
8244 	.update_cr8_intercept = vmx_update_cr8_intercept,
8245 	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
8246 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
8247 	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
8248 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
8249 	.apicv_post_state_restore = vmx_apicv_post_state_restore,
8250 	.required_apicv_inhibits = VMX_REQUIRED_APICV_INHIBITS,
8251 	.hwapic_irr_update = vmx_hwapic_irr_update,
8252 	.hwapic_isr_update = vmx_hwapic_isr_update,
8253 	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
8254 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
8255 	.deliver_interrupt = vmx_deliver_interrupt,
8256 	.dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
8257 
8258 	.set_tss_addr = vmx_set_tss_addr,
8259 	.set_identity_map_addr = vmx_set_identity_map_addr,
8260 	.get_mt_mask = vmx_get_mt_mask,
8261 
8262 	.get_exit_info = vmx_get_exit_info,
8263 
8264 	.vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
8265 
8266 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8267 
8268 	.get_l2_tsc_offset = vmx_get_l2_tsc_offset,
8269 	.get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
8270 	.write_tsc_offset = vmx_write_tsc_offset,
8271 	.write_tsc_multiplier = vmx_write_tsc_multiplier,
8272 
8273 	.load_mmu_pgd = vmx_load_mmu_pgd,
8274 
8275 	.check_intercept = vmx_check_intercept,
8276 	.handle_exit_irqoff = vmx_handle_exit_irqoff,
8277 
8278 	.request_immediate_exit = vmx_request_immediate_exit,
8279 
8280 	.sched_in = vmx_sched_in,
8281 
8282 	.cpu_dirty_log_size = PML_ENTITY_NUM,
8283 	.update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
8284 
8285 	.nested_ops = &vmx_nested_ops,
8286 
8287 	.pi_update_irte = vmx_pi_update_irte,
8288 	.pi_start_assignment = vmx_pi_start_assignment,
8289 
8290 #ifdef CONFIG_X86_64
8291 	.set_hv_timer = vmx_set_hv_timer,
8292 	.cancel_hv_timer = vmx_cancel_hv_timer,
8293 #endif
8294 
8295 	.setup_mce = vmx_setup_mce,
8296 
8297 #ifdef CONFIG_KVM_SMM
8298 	.smi_allowed = vmx_smi_allowed,
8299 	.enter_smm = vmx_enter_smm,
8300 	.leave_smm = vmx_leave_smm,
8301 	.enable_smi_window = vmx_enable_smi_window,
8302 #endif
8303 
8304 	.can_emulate_instruction = vmx_can_emulate_instruction,
8305 	.apic_init_signal_blocked = vmx_apic_init_signal_blocked,
8306 	.migrate_timers = vmx_migrate_timers,
8307 
8308 	.msr_filter_changed = vmx_msr_filter_changed,
8309 	.complete_emulated_msr = kvm_complete_insn_gp,
8310 
8311 	.vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
8312 };
8313 
8314 static unsigned int vmx_handle_intel_pt_intr(void)
8315 {
8316 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8317 
8318 	/* '0' on failure so that the !PT case can use a RET0 static call. */
8319 	if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8320 		return 0;
8321 
8322 	kvm_make_request(KVM_REQ_PMI, vcpu);
8323 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8324 		  (unsigned long *)&vcpu->arch.pmu.global_status);
8325 	return 1;
8326 }
8327 
8328 static __init void vmx_setup_user_return_msrs(void)
8329 {
8330 
8331 	/*
8332 	 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8333 	 * will emulate SYSCALL in legacy mode if the vendor string in guest
8334 	 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8335 	 * support this emulation, MSR_STAR is included in the list for i386,
8336 	 * but is never loaded into hardware.  MSR_CSTAR is also never loaded
8337 	 * into hardware and is here purely for emulation purposes.
8338 	 */
8339 	const u32 vmx_uret_msrs_list[] = {
8340 	#ifdef CONFIG_X86_64
8341 		MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8342 	#endif
8343 		MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8344 		MSR_IA32_TSX_CTRL,
8345 	};
8346 	int i;
8347 
8348 	BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8349 
8350 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8351 		kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8352 }
8353 
8354 static void __init vmx_setup_me_spte_mask(void)
8355 {
8356 	u64 me_mask = 0;
8357 
8358 	/*
8359 	 * kvm_get_shadow_phys_bits() returns shadow_phys_bits.  Use
8360 	 * the former to avoid exposing shadow_phys_bits.
8361 	 *
8362 	 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8363 	 * shadow_phys_bits.  On MKTME and/or TDX capable systems,
8364 	 * boot_cpu_data.x86_phys_bits holds the actual physical address
8365 	 * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR
8366 	 * reported by CPUID.  Those bits between are KeyID bits.
8367 	 */
8368 	if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits())
8369 		me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8370 			kvm_get_shadow_phys_bits() - 1);
8371 	/*
8372 	 * Unlike SME, host kernel doesn't support setting up any
8373 	 * MKTME KeyID on Intel platforms.  No memory encryption
8374 	 * bits should be included into the SPTE.
8375 	 */
8376 	kvm_mmu_set_me_spte_mask(0, me_mask);
8377 }
8378 
8379 static struct kvm_x86_init_ops vmx_init_ops __initdata;
8380 
8381 static __init int hardware_setup(void)
8382 {
8383 	unsigned long host_bndcfgs;
8384 	struct desc_ptr dt;
8385 	int r;
8386 
8387 	store_idt(&dt);
8388 	host_idt_base = dt.address;
8389 
8390 	vmx_setup_user_return_msrs();
8391 
8392 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8393 		return -EIO;
8394 
8395 	if (cpu_has_perf_global_ctrl_bug())
8396 		pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
8397 			     "does not work properly. Using workaround\n");
8398 
8399 	if (boot_cpu_has(X86_FEATURE_NX))
8400 		kvm_enable_efer_bits(EFER_NX);
8401 
8402 	if (boot_cpu_has(X86_FEATURE_MPX)) {
8403 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
8404 		WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
8405 	}
8406 
8407 	if (!cpu_has_vmx_mpx())
8408 		kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8409 					     XFEATURE_MASK_BNDCSR);
8410 
8411 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8412 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8413 		enable_vpid = 0;
8414 
8415 	if (!cpu_has_vmx_ept() ||
8416 	    !cpu_has_vmx_ept_4levels() ||
8417 	    !cpu_has_vmx_ept_mt_wb() ||
8418 	    !cpu_has_vmx_invept_global())
8419 		enable_ept = 0;
8420 
8421 	/* NX support is required for shadow paging. */
8422 	if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8423 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
8424 		return -EOPNOTSUPP;
8425 	}
8426 
8427 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8428 		enable_ept_ad_bits = 0;
8429 
8430 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8431 		enable_unrestricted_guest = 0;
8432 
8433 	if (!cpu_has_vmx_flexpriority())
8434 		flexpriority_enabled = 0;
8435 
8436 	if (!cpu_has_virtual_nmis())
8437 		enable_vnmi = 0;
8438 
8439 #ifdef CONFIG_X86_SGX_KVM
8440 	if (!cpu_has_vmx_encls_vmexit())
8441 		enable_sgx = false;
8442 #endif
8443 
8444 	/*
8445 	 * set_apic_access_page_addr() is used to reload apic access
8446 	 * page upon invalidation.  No need to do anything if not
8447 	 * using the APIC_ACCESS_ADDR VMCS field.
8448 	 */
8449 	if (!flexpriority_enabled)
8450 		vmx_x86_ops.set_apic_access_page_addr = NULL;
8451 
8452 	if (!cpu_has_vmx_tpr_shadow())
8453 		vmx_x86_ops.update_cr8_intercept = NULL;
8454 
8455 #if IS_ENABLED(CONFIG_HYPERV)
8456 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8457 	    && enable_ept) {
8458 		vmx_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
8459 		vmx_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
8460 	}
8461 #endif
8462 
8463 	if (!cpu_has_vmx_ple()) {
8464 		ple_gap = 0;
8465 		ple_window = 0;
8466 		ple_window_grow = 0;
8467 		ple_window_max = 0;
8468 		ple_window_shrink = 0;
8469 	}
8470 
8471 	if (!cpu_has_vmx_apicv())
8472 		enable_apicv = 0;
8473 	if (!enable_apicv)
8474 		vmx_x86_ops.sync_pir_to_irr = NULL;
8475 
8476 	if (!enable_apicv || !cpu_has_vmx_ipiv())
8477 		enable_ipiv = false;
8478 
8479 	if (cpu_has_vmx_tsc_scaling())
8480 		kvm_caps.has_tsc_control = true;
8481 
8482 	kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8483 	kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8484 	kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8485 	kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8486 
8487 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8488 
8489 	if (enable_ept)
8490 		kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8491 				      cpu_has_vmx_ept_execute_only());
8492 
8493 	/*
8494 	 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8495 	 * bits to shadow_zero_check.
8496 	 */
8497 	vmx_setup_me_spte_mask();
8498 
8499 	kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(),
8500 			  ept_caps_to_lpage_level(vmx_capability.ept));
8501 
8502 	/*
8503 	 * Only enable PML when hardware supports PML feature, and both EPT
8504 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
8505 	 */
8506 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8507 		enable_pml = 0;
8508 
8509 	if (!enable_pml)
8510 		vmx_x86_ops.cpu_dirty_log_size = 0;
8511 
8512 	if (!cpu_has_vmx_preemption_timer())
8513 		enable_preemption_timer = false;
8514 
8515 	if (enable_preemption_timer) {
8516 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
8517 
8518 		cpu_preemption_timer_multi =
8519 			vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8520 
8521 		if (tsc_khz)
8522 			use_timer_freq = (u64)tsc_khz * 1000;
8523 		use_timer_freq >>= cpu_preemption_timer_multi;
8524 
8525 		/*
8526 		 * KVM "disables" the preemption timer by setting it to its max
8527 		 * value.  Don't use the timer if it might cause spurious exits
8528 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8529 		 */
8530 		if (use_timer_freq > 0xffffffffu / 10)
8531 			enable_preemption_timer = false;
8532 	}
8533 
8534 	if (!enable_preemption_timer) {
8535 		vmx_x86_ops.set_hv_timer = NULL;
8536 		vmx_x86_ops.cancel_hv_timer = NULL;
8537 		vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
8538 	}
8539 
8540 	kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8541 	kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8542 
8543 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8544 		return -EINVAL;
8545 	if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8546 		pt_mode = PT_MODE_SYSTEM;
8547 	if (pt_mode == PT_MODE_HOST_GUEST)
8548 		vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8549 	else
8550 		vmx_init_ops.handle_intel_pt_intr = NULL;
8551 
8552 	setup_default_sgx_lepubkeyhash();
8553 
8554 	if (nested) {
8555 		nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8556 
8557 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8558 		if (r)
8559 			return r;
8560 	}
8561 
8562 	vmx_set_cpu_caps();
8563 
8564 	r = alloc_kvm_area();
8565 	if (r && nested)
8566 		nested_vmx_hardware_unsetup();
8567 
8568 	kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8569 
8570 	return r;
8571 }
8572 
8573 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8574 	.hardware_setup = hardware_setup,
8575 	.handle_intel_pt_intr = NULL,
8576 
8577 	.runtime_ops = &vmx_x86_ops,
8578 	.pmu_ops = &intel_pmu_ops,
8579 };
8580 
8581 static void vmx_cleanup_l1d_flush(void)
8582 {
8583 	if (vmx_l1d_flush_pages) {
8584 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8585 		vmx_l1d_flush_pages = NULL;
8586 	}
8587 	/* Restore state so sysfs ignores VMX */
8588 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8589 }
8590 
8591 static void __vmx_exit(void)
8592 {
8593 	allow_smaller_maxphyaddr = false;
8594 
8595 #ifdef CONFIG_KEXEC_CORE
8596 	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8597 	synchronize_rcu();
8598 #endif
8599 	vmx_cleanup_l1d_flush();
8600 }
8601 
8602 static void vmx_exit(void)
8603 {
8604 	kvm_exit();
8605 	kvm_x86_vendor_exit();
8606 
8607 	__vmx_exit();
8608 }
8609 module_exit(vmx_exit);
8610 
8611 static int __init vmx_init(void)
8612 {
8613 	int r, cpu;
8614 
8615 	if (!kvm_is_vmx_supported())
8616 		return -EOPNOTSUPP;
8617 
8618 	/*
8619 	 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing
8620 	 * to unwind if a later step fails.
8621 	 */
8622 	hv_init_evmcs();
8623 
8624 	r = kvm_x86_vendor_init(&vmx_init_ops);
8625 	if (r)
8626 		return r;
8627 
8628 	/*
8629 	 * Must be called after common x86 init so enable_ept is properly set
8630 	 * up. Hand the parameter mitigation value in which was stored in
8631 	 * the pre module init parser. If no parameter was given, it will
8632 	 * contain 'auto' which will be turned into the default 'cond'
8633 	 * mitigation mode.
8634 	 */
8635 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8636 	if (r)
8637 		goto err_l1d_flush;
8638 
8639 	vmx_setup_fb_clear_ctrl();
8640 
8641 	for_each_possible_cpu(cpu) {
8642 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8643 
8644 		pi_init_cpu(cpu);
8645 	}
8646 
8647 #ifdef CONFIG_KEXEC_CORE
8648 	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8649 			   crash_vmclear_local_loaded_vmcss);
8650 #endif
8651 	vmx_check_vmcs12_offsets();
8652 
8653 	/*
8654 	 * Shadow paging doesn't have a (further) performance penalty
8655 	 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8656 	 * by default
8657 	 */
8658 	if (!enable_ept)
8659 		allow_smaller_maxphyaddr = true;
8660 
8661 	/*
8662 	 * Common KVM initialization _must_ come last, after this, /dev/kvm is
8663 	 * exposed to userspace!
8664 	 */
8665 	r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx),
8666 		     THIS_MODULE);
8667 	if (r)
8668 		goto err_kvm_init;
8669 
8670 	return 0;
8671 
8672 err_kvm_init:
8673 	__vmx_exit();
8674 err_l1d_flush:
8675 	kvm_x86_vendor_exit();
8676 	return r;
8677 }
8678 module_init(vmx_init);
8679