xref: /linux/arch/x86/kvm/vmx/vmx.c (revision ae22a94997b8a03dcb3c922857c203246711f9d4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/objtool.h>
26 #include <linux/sched.h>
27 #include <linux/sched/smt.h>
28 #include <linux/slab.h>
29 #include <linux/tboot.h>
30 #include <linux/trace_events.h>
31 #include <linux/entry-kvm.h>
32 
33 #include <asm/apic.h>
34 #include <asm/asm.h>
35 #include <asm/cpu.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/debugreg.h>
38 #include <asm/desc.h>
39 #include <asm/fpu/api.h>
40 #include <asm/fpu/xstate.h>
41 #include <asm/fred.h>
42 #include <asm/idtentry.h>
43 #include <asm/io.h>
44 #include <asm/irq_remapping.h>
45 #include <asm/reboot.h>
46 #include <asm/perf_event.h>
47 #include <asm/mmu_context.h>
48 #include <asm/mshyperv.h>
49 #include <asm/mwait.h>
50 #include <asm/spec-ctrl.h>
51 #include <asm/vmx.h>
52 
53 #include <trace/events/ipi.h>
54 
55 #include "capabilities.h"
56 #include "cpuid.h"
57 #include "hyperv.h"
58 #include "kvm_onhyperv.h"
59 #include "irq.h"
60 #include "kvm_cache_regs.h"
61 #include "lapic.h"
62 #include "mmu.h"
63 #include "nested.h"
64 #include "pmu.h"
65 #include "sgx.h"
66 #include "trace.h"
67 #include "vmcs.h"
68 #include "vmcs12.h"
69 #include "vmx.h"
70 #include "x86.h"
71 #include "smm.h"
72 #include "vmx_onhyperv.h"
73 
74 MODULE_AUTHOR("Qumranet");
75 MODULE_LICENSE("GPL");
76 
77 #ifdef MODULE
78 static const struct x86_cpu_id vmx_cpu_id[] = {
79 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
80 	{}
81 };
82 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
83 #endif
84 
85 bool __read_mostly enable_vpid = 1;
86 module_param_named(vpid, enable_vpid, bool, 0444);
87 
88 static bool __read_mostly enable_vnmi = 1;
89 module_param_named(vnmi, enable_vnmi, bool, 0444);
90 
91 bool __read_mostly flexpriority_enabled = 1;
92 module_param_named(flexpriority, flexpriority_enabled, bool, 0444);
93 
94 bool __read_mostly enable_ept = 1;
95 module_param_named(ept, enable_ept, bool, 0444);
96 
97 bool __read_mostly enable_unrestricted_guest = 1;
98 module_param_named(unrestricted_guest,
99 			enable_unrestricted_guest, bool, 0444);
100 
101 bool __read_mostly enable_ept_ad_bits = 1;
102 module_param_named(eptad, enable_ept_ad_bits, bool, 0444);
103 
104 static bool __read_mostly emulate_invalid_guest_state = true;
105 module_param(emulate_invalid_guest_state, bool, 0444);
106 
107 static bool __read_mostly fasteoi = 1;
108 module_param(fasteoi, bool, 0444);
109 
110 module_param(enable_apicv, bool, 0444);
111 
112 bool __read_mostly enable_ipiv = true;
113 module_param(enable_ipiv, bool, 0444);
114 
115 /*
116  * If nested=1, nested virtualization is supported, i.e., guests may use
117  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
118  * use VMX instructions.
119  */
120 static bool __read_mostly nested = 1;
121 module_param(nested, bool, 0444);
122 
123 bool __read_mostly enable_pml = 1;
124 module_param_named(pml, enable_pml, bool, 0444);
125 
126 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
127 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
128 
129 static bool __read_mostly dump_invalid_vmcs = 0;
130 module_param(dump_invalid_vmcs, bool, 0644);
131 
132 #define MSR_BITMAP_MODE_X2APIC		1
133 #define MSR_BITMAP_MODE_X2APIC_APICV	2
134 
135 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
136 
137 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
138 static int __read_mostly cpu_preemption_timer_multi;
139 static bool __read_mostly enable_preemption_timer = 1;
140 #ifdef CONFIG_X86_64
141 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
142 #endif
143 
144 extern bool __read_mostly allow_smaller_maxphyaddr;
145 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
146 
147 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
148 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
149 #define KVM_VM_CR0_ALWAYS_ON				\
150 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
151 
152 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
153 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
154 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
155 
156 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
157 
158 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
159 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
160 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
161 	RTIT_STATUS_BYTECNT))
162 
163 /*
164  * List of MSRs that can be directly passed to the guest.
165  * In addition to these x2apic, PT and LBR MSRs are handled specially.
166  */
167 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
168 	MSR_IA32_SPEC_CTRL,
169 	MSR_IA32_PRED_CMD,
170 	MSR_IA32_FLUSH_CMD,
171 	MSR_IA32_TSC,
172 #ifdef CONFIG_X86_64
173 	MSR_FS_BASE,
174 	MSR_GS_BASE,
175 	MSR_KERNEL_GS_BASE,
176 	MSR_IA32_XFD,
177 	MSR_IA32_XFD_ERR,
178 #endif
179 	MSR_IA32_SYSENTER_CS,
180 	MSR_IA32_SYSENTER_ESP,
181 	MSR_IA32_SYSENTER_EIP,
182 	MSR_CORE_C1_RES,
183 	MSR_CORE_C3_RESIDENCY,
184 	MSR_CORE_C6_RESIDENCY,
185 	MSR_CORE_C7_RESIDENCY,
186 };
187 
188 /*
189  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
190  * ple_gap:    upper bound on the amount of time between two successive
191  *             executions of PAUSE in a loop. Also indicate if ple enabled.
192  *             According to test, this time is usually smaller than 128 cycles.
193  * ple_window: upper bound on the amount of time a guest is allowed to execute
194  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
195  *             less than 2^12 cycles
196  * Time is measured based on a counter that runs at the same rate as the TSC,
197  * refer SDM volume 3b section 21.6.13 & 22.1.3.
198  */
199 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
200 module_param(ple_gap, uint, 0444);
201 
202 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
203 module_param(ple_window, uint, 0444);
204 
205 /* Default doubles per-vcpu window every exit. */
206 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
207 module_param(ple_window_grow, uint, 0444);
208 
209 /* Default resets per-vcpu window every exit to ple_window. */
210 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
211 module_param(ple_window_shrink, uint, 0444);
212 
213 /* Default is to compute the maximum so we can never overflow. */
214 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
215 module_param(ple_window_max, uint, 0444);
216 
217 /* Default is SYSTEM mode, 1 for host-guest mode */
218 int __read_mostly pt_mode = PT_MODE_SYSTEM;
219 module_param(pt_mode, int, S_IRUGO);
220 
221 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
222 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
223 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
224 
225 /* Storage for pre module init parameter parsing */
226 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
227 
228 static const struct {
229 	const char *option;
230 	bool for_parse;
231 } vmentry_l1d_param[] = {
232 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
233 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
234 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
235 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
236 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
237 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
238 };
239 
240 #define L1D_CACHE_ORDER 4
241 static void *vmx_l1d_flush_pages;
242 
243 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
244 {
245 	struct page *page;
246 	unsigned int i;
247 
248 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
249 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
250 		return 0;
251 	}
252 
253 	if (!enable_ept) {
254 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
255 		return 0;
256 	}
257 
258 	if (host_arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
259 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
260 		return 0;
261 	}
262 
263 	/* If set to auto use the default l1tf mitigation method */
264 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
265 		switch (l1tf_mitigation) {
266 		case L1TF_MITIGATION_OFF:
267 			l1tf = VMENTER_L1D_FLUSH_NEVER;
268 			break;
269 		case L1TF_MITIGATION_FLUSH_NOWARN:
270 		case L1TF_MITIGATION_FLUSH:
271 		case L1TF_MITIGATION_FLUSH_NOSMT:
272 			l1tf = VMENTER_L1D_FLUSH_COND;
273 			break;
274 		case L1TF_MITIGATION_FULL:
275 		case L1TF_MITIGATION_FULL_FORCE:
276 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
277 			break;
278 		}
279 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
280 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
281 	}
282 
283 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
284 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
285 		/*
286 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
287 		 * lifetime and so should not be charged to a memcg.
288 		 */
289 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
290 		if (!page)
291 			return -ENOMEM;
292 		vmx_l1d_flush_pages = page_address(page);
293 
294 		/*
295 		 * Initialize each page with a different pattern in
296 		 * order to protect against KSM in the nested
297 		 * virtualization case.
298 		 */
299 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
300 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
301 			       PAGE_SIZE);
302 		}
303 	}
304 
305 	l1tf_vmx_mitigation = l1tf;
306 
307 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
308 		static_branch_enable(&vmx_l1d_should_flush);
309 	else
310 		static_branch_disable(&vmx_l1d_should_flush);
311 
312 	if (l1tf == VMENTER_L1D_FLUSH_COND)
313 		static_branch_enable(&vmx_l1d_flush_cond);
314 	else
315 		static_branch_disable(&vmx_l1d_flush_cond);
316 	return 0;
317 }
318 
319 static int vmentry_l1d_flush_parse(const char *s)
320 {
321 	unsigned int i;
322 
323 	if (s) {
324 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
325 			if (vmentry_l1d_param[i].for_parse &&
326 			    sysfs_streq(s, vmentry_l1d_param[i].option))
327 				return i;
328 		}
329 	}
330 	return -EINVAL;
331 }
332 
333 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
334 {
335 	int l1tf, ret;
336 
337 	l1tf = vmentry_l1d_flush_parse(s);
338 	if (l1tf < 0)
339 		return l1tf;
340 
341 	if (!boot_cpu_has(X86_BUG_L1TF))
342 		return 0;
343 
344 	/*
345 	 * Has vmx_init() run already? If not then this is the pre init
346 	 * parameter parsing. In that case just store the value and let
347 	 * vmx_init() do the proper setup after enable_ept has been
348 	 * established.
349 	 */
350 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
351 		vmentry_l1d_flush_param = l1tf;
352 		return 0;
353 	}
354 
355 	mutex_lock(&vmx_l1d_flush_mutex);
356 	ret = vmx_setup_l1d_flush(l1tf);
357 	mutex_unlock(&vmx_l1d_flush_mutex);
358 	return ret;
359 }
360 
361 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
362 {
363 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
364 		return sysfs_emit(s, "???\n");
365 
366 	return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
367 }
368 
369 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
370 {
371 	u64 msr;
372 
373 	if (!vmx->disable_fb_clear)
374 		return;
375 
376 	msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
377 	msr |= FB_CLEAR_DIS;
378 	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
379 	/* Cache the MSR value to avoid reading it later */
380 	vmx->msr_ia32_mcu_opt_ctrl = msr;
381 }
382 
383 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
384 {
385 	if (!vmx->disable_fb_clear)
386 		return;
387 
388 	vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
389 	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
390 }
391 
392 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
393 {
394 	/*
395 	 * Disable VERW's behavior of clearing CPU buffers for the guest if the
396 	 * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled
397 	 * the mitigation. Disabling the clearing behavior provides a
398 	 * performance boost for guests that aren't aware that manually clearing
399 	 * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry
400 	 * and VM-Exit.
401 	 */
402 	vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) &&
403 				(host_arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) &&
404 				!boot_cpu_has_bug(X86_BUG_MDS) &&
405 				!boot_cpu_has_bug(X86_BUG_TAA);
406 
407 	/*
408 	 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
409 	 * at VMEntry. Skip the MSR read/write when a guest has no use case to
410 	 * execute VERW.
411 	 */
412 	if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
413 	   ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
414 	    (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
415 	    (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
416 	    (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
417 	    (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
418 		vmx->disable_fb_clear = false;
419 }
420 
421 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
422 	.set = vmentry_l1d_flush_set,
423 	.get = vmentry_l1d_flush_get,
424 };
425 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
426 
427 static u32 vmx_segment_access_rights(struct kvm_segment *var);
428 
429 void vmx_vmexit(void);
430 
431 #define vmx_insn_failed(fmt...)		\
432 do {					\
433 	WARN_ONCE(1, fmt);		\
434 	pr_warn_ratelimited(fmt);	\
435 } while (0)
436 
437 noinline void vmread_error(unsigned long field)
438 {
439 	vmx_insn_failed("vmread failed: field=%lx\n", field);
440 }
441 
442 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT
443 noinstr void vmread_error_trampoline2(unsigned long field, bool fault)
444 {
445 	if (fault) {
446 		kvm_spurious_fault();
447 	} else {
448 		instrumentation_begin();
449 		vmread_error(field);
450 		instrumentation_end();
451 	}
452 }
453 #endif
454 
455 noinline void vmwrite_error(unsigned long field, unsigned long value)
456 {
457 	vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
458 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
459 }
460 
461 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
462 {
463 	vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
464 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
465 }
466 
467 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
468 {
469 	vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
470 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
471 }
472 
473 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
474 {
475 	vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
476 			ext, vpid, gva);
477 }
478 
479 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
480 {
481 	vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
482 			ext, eptp, gpa);
483 }
484 
485 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
486 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
487 /*
488  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
489  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
490  */
491 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
492 
493 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
494 static DEFINE_SPINLOCK(vmx_vpid_lock);
495 
496 struct vmcs_config vmcs_config __ro_after_init;
497 struct vmx_capability vmx_capability __ro_after_init;
498 
499 #define VMX_SEGMENT_FIELD(seg)					\
500 	[VCPU_SREG_##seg] = {                                   \
501 		.selector = GUEST_##seg##_SELECTOR,		\
502 		.base = GUEST_##seg##_BASE,		   	\
503 		.limit = GUEST_##seg##_LIMIT,		   	\
504 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
505 	}
506 
507 static const struct kvm_vmx_segment_field {
508 	unsigned selector;
509 	unsigned base;
510 	unsigned limit;
511 	unsigned ar_bytes;
512 } kvm_vmx_segment_fields[] = {
513 	VMX_SEGMENT_FIELD(CS),
514 	VMX_SEGMENT_FIELD(DS),
515 	VMX_SEGMENT_FIELD(ES),
516 	VMX_SEGMENT_FIELD(FS),
517 	VMX_SEGMENT_FIELD(GS),
518 	VMX_SEGMENT_FIELD(SS),
519 	VMX_SEGMENT_FIELD(TR),
520 	VMX_SEGMENT_FIELD(LDTR),
521 };
522 
523 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
524 {
525 	vmx->segment_cache.bitmask = 0;
526 }
527 
528 static unsigned long host_idt_base;
529 
530 #if IS_ENABLED(CONFIG_HYPERV)
531 static struct kvm_x86_ops vmx_x86_ops __initdata;
532 
533 static bool __read_mostly enlightened_vmcs = true;
534 module_param(enlightened_vmcs, bool, 0444);
535 
536 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
537 {
538 	struct hv_enlightened_vmcs *evmcs;
539 	hpa_t partition_assist_page = hv_get_partition_assist_page(vcpu);
540 
541 	if (partition_assist_page == INVALID_PAGE)
542 		return -ENOMEM;
543 
544 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
545 
546 	evmcs->partition_assist_page = partition_assist_page;
547 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
548 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
549 
550 	return 0;
551 }
552 
553 static __init void hv_init_evmcs(void)
554 {
555 	int cpu;
556 
557 	if (!enlightened_vmcs)
558 		return;
559 
560 	/*
561 	 * Enlightened VMCS usage should be recommended and the host needs
562 	 * to support eVMCS v1 or above.
563 	 */
564 	if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
565 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
566 	     KVM_EVMCS_VERSION) {
567 
568 		/* Check that we have assist pages on all online CPUs */
569 		for_each_online_cpu(cpu) {
570 			if (!hv_get_vp_assist_page(cpu)) {
571 				enlightened_vmcs = false;
572 				break;
573 			}
574 		}
575 
576 		if (enlightened_vmcs) {
577 			pr_info("Using Hyper-V Enlightened VMCS\n");
578 			static_branch_enable(&__kvm_is_using_evmcs);
579 		}
580 
581 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
582 			vmx_x86_ops.enable_l2_tlb_flush
583 				= hv_enable_l2_tlb_flush;
584 
585 	} else {
586 		enlightened_vmcs = false;
587 	}
588 }
589 
590 static void hv_reset_evmcs(void)
591 {
592 	struct hv_vp_assist_page *vp_ap;
593 
594 	if (!kvm_is_using_evmcs())
595 		return;
596 
597 	/*
598 	 * KVM should enable eVMCS if and only if all CPUs have a VP assist
599 	 * page, and should reject CPU onlining if eVMCS is enabled the CPU
600 	 * doesn't have a VP assist page allocated.
601 	 */
602 	vp_ap = hv_get_vp_assist_page(smp_processor_id());
603 	if (WARN_ON_ONCE(!vp_ap))
604 		return;
605 
606 	/*
607 	 * Reset everything to support using non-enlightened VMCS access later
608 	 * (e.g. when we reload the module with enlightened_vmcs=0)
609 	 */
610 	vp_ap->nested_control.features.directhypercall = 0;
611 	vp_ap->current_nested_vmcs = 0;
612 	vp_ap->enlighten_vmentry = 0;
613 }
614 
615 #else /* IS_ENABLED(CONFIG_HYPERV) */
616 static void hv_init_evmcs(void) {}
617 static void hv_reset_evmcs(void) {}
618 #endif /* IS_ENABLED(CONFIG_HYPERV) */
619 
620 /*
621  * Comment's format: document - errata name - stepping - processor name.
622  * Refer from
623  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
624  */
625 static u32 vmx_preemption_cpu_tfms[] = {
626 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
627 0x000206E6,
628 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
629 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
630 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
631 0x00020652,
632 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
633 0x00020655,
634 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
635 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
636 /*
637  * 320767.pdf - AAP86  - B1 -
638  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
639  */
640 0x000106E5,
641 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
642 0x000106A0,
643 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
644 0x000106A1,
645 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
646 0x000106A4,
647  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
648  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
649  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
650 0x000106A5,
651  /* Xeon E3-1220 V2 */
652 0x000306A8,
653 };
654 
655 static inline bool cpu_has_broken_vmx_preemption_timer(void)
656 {
657 	u32 eax = cpuid_eax(0x00000001), i;
658 
659 	/* Clear the reserved bits */
660 	eax &= ~(0x3U << 14 | 0xfU << 28);
661 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
662 		if (eax == vmx_preemption_cpu_tfms[i])
663 			return true;
664 
665 	return false;
666 }
667 
668 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
669 {
670 	return flexpriority_enabled && lapic_in_kernel(vcpu);
671 }
672 
673 static int vmx_get_passthrough_msr_slot(u32 msr)
674 {
675 	int i;
676 
677 	switch (msr) {
678 	case 0x800 ... 0x8ff:
679 		/* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
680 		return -ENOENT;
681 	case MSR_IA32_RTIT_STATUS:
682 	case MSR_IA32_RTIT_OUTPUT_BASE:
683 	case MSR_IA32_RTIT_OUTPUT_MASK:
684 	case MSR_IA32_RTIT_CR3_MATCH:
685 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
686 		/* PT MSRs. These are handled in pt_update_intercept_for_msr() */
687 	case MSR_LBR_SELECT:
688 	case MSR_LBR_TOS:
689 	case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
690 	case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
691 	case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
692 	case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
693 	case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
694 		/* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
695 		return -ENOENT;
696 	}
697 
698 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
699 		if (vmx_possible_passthrough_msrs[i] == msr)
700 			return i;
701 	}
702 
703 	WARN(1, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
704 	return -ENOENT;
705 }
706 
707 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
708 {
709 	int i;
710 
711 	i = kvm_find_user_return_msr(msr);
712 	if (i >= 0)
713 		return &vmx->guest_uret_msrs[i];
714 	return NULL;
715 }
716 
717 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
718 				  struct vmx_uret_msr *msr, u64 data)
719 {
720 	unsigned int slot = msr - vmx->guest_uret_msrs;
721 	int ret = 0;
722 
723 	if (msr->load_into_hardware) {
724 		preempt_disable();
725 		ret = kvm_set_user_return_msr(slot, data, msr->mask);
726 		preempt_enable();
727 	}
728 	if (!ret)
729 		msr->data = data;
730 	return ret;
731 }
732 
733 /*
734  * Disable VMX and clear CR4.VMXE (even if VMXOFF faults)
735  *
736  * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to
737  * atomically track post-VMXON state, e.g. this may be called in NMI context.
738  * Eat all faults as all other faults on VMXOFF faults are mode related, i.e.
739  * faults are guaranteed to be due to the !post-VMXON check unless the CPU is
740  * magically in RM, VM86, compat mode, or at CPL>0.
741  */
742 static int kvm_cpu_vmxoff(void)
743 {
744 	asm goto("1: vmxoff\n\t"
745 			  _ASM_EXTABLE(1b, %l[fault])
746 			  ::: "cc", "memory" : fault);
747 
748 	cr4_clear_bits(X86_CR4_VMXE);
749 	return 0;
750 
751 fault:
752 	cr4_clear_bits(X86_CR4_VMXE);
753 	return -EIO;
754 }
755 
756 static void vmx_emergency_disable(void)
757 {
758 	int cpu = raw_smp_processor_id();
759 	struct loaded_vmcs *v;
760 
761 	kvm_rebooting = true;
762 
763 	/*
764 	 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be
765 	 * set in task context.  If this races with VMX is disabled by an NMI,
766 	 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to
767 	 * kvm_rebooting set.
768 	 */
769 	if (!(__read_cr4() & X86_CR4_VMXE))
770 		return;
771 
772 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
773 			    loaded_vmcss_on_cpu_link)
774 		vmcs_clear(v->vmcs);
775 
776 	kvm_cpu_vmxoff();
777 }
778 
779 static void __loaded_vmcs_clear(void *arg)
780 {
781 	struct loaded_vmcs *loaded_vmcs = arg;
782 	int cpu = raw_smp_processor_id();
783 
784 	if (loaded_vmcs->cpu != cpu)
785 		return; /* vcpu migration can race with cpu offline */
786 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
787 		per_cpu(current_vmcs, cpu) = NULL;
788 
789 	vmcs_clear(loaded_vmcs->vmcs);
790 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
791 		vmcs_clear(loaded_vmcs->shadow_vmcs);
792 
793 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
794 
795 	/*
796 	 * Ensure all writes to loaded_vmcs, including deleting it from its
797 	 * current percpu list, complete before setting loaded_vmcs->cpu to
798 	 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
799 	 * and add loaded_vmcs to its percpu list before it's deleted from this
800 	 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
801 	 */
802 	smp_wmb();
803 
804 	loaded_vmcs->cpu = -1;
805 	loaded_vmcs->launched = 0;
806 }
807 
808 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
809 {
810 	int cpu = loaded_vmcs->cpu;
811 
812 	if (cpu != -1)
813 		smp_call_function_single(cpu,
814 			 __loaded_vmcs_clear, loaded_vmcs, 1);
815 }
816 
817 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
818 				       unsigned field)
819 {
820 	bool ret;
821 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
822 
823 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
824 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
825 		vmx->segment_cache.bitmask = 0;
826 	}
827 	ret = vmx->segment_cache.bitmask & mask;
828 	vmx->segment_cache.bitmask |= mask;
829 	return ret;
830 }
831 
832 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
833 {
834 	u16 *p = &vmx->segment_cache.seg[seg].selector;
835 
836 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
837 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
838 	return *p;
839 }
840 
841 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
842 {
843 	ulong *p = &vmx->segment_cache.seg[seg].base;
844 
845 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
846 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
847 	return *p;
848 }
849 
850 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
851 {
852 	u32 *p = &vmx->segment_cache.seg[seg].limit;
853 
854 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
855 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
856 	return *p;
857 }
858 
859 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
860 {
861 	u32 *p = &vmx->segment_cache.seg[seg].ar;
862 
863 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
864 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
865 	return *p;
866 }
867 
868 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
869 {
870 	u32 eb;
871 
872 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
873 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
874 	/*
875 	 * Guest access to VMware backdoor ports could legitimately
876 	 * trigger #GP because of TSS I/O permission bitmap.
877 	 * We intercept those #GP and allow access to them anyway
878 	 * as VMware does.
879 	 */
880 	if (enable_vmware_backdoor)
881 		eb |= (1u << GP_VECTOR);
882 	if ((vcpu->guest_debug &
883 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
884 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
885 		eb |= 1u << BP_VECTOR;
886 	if (to_vmx(vcpu)->rmode.vm86_active)
887 		eb = ~0;
888 	if (!vmx_need_pf_intercept(vcpu))
889 		eb &= ~(1u << PF_VECTOR);
890 
891 	/* When we are running a nested L2 guest and L1 specified for it a
892 	 * certain exception bitmap, we must trap the same exceptions and pass
893 	 * them to L1. When running L2, we will only handle the exceptions
894 	 * specified above if L1 did not want them.
895 	 */
896 	if (is_guest_mode(vcpu))
897 		eb |= get_vmcs12(vcpu)->exception_bitmap;
898 	else {
899 		int mask = 0, match = 0;
900 
901 		if (enable_ept && (eb & (1u << PF_VECTOR))) {
902 			/*
903 			 * If EPT is enabled, #PF is currently only intercepted
904 			 * if MAXPHYADDR is smaller on the guest than on the
905 			 * host.  In that case we only care about present,
906 			 * non-reserved faults.  For vmcs02, however, PFEC_MASK
907 			 * and PFEC_MATCH are set in prepare_vmcs02_rare.
908 			 */
909 			mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
910 			match = PFERR_PRESENT_MASK;
911 		}
912 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
913 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
914 	}
915 
916 	/*
917 	 * Disabling xfd interception indicates that dynamic xfeatures
918 	 * might be used in the guest. Always trap #NM in this case
919 	 * to save guest xfd_err timely.
920 	 */
921 	if (vcpu->arch.xfd_no_write_intercept)
922 		eb |= (1u << NM_VECTOR);
923 
924 	vmcs_write32(EXCEPTION_BITMAP, eb);
925 }
926 
927 /*
928  * Check if MSR is intercepted for currently loaded MSR bitmap.
929  */
930 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
931 {
932 	if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
933 		return true;
934 
935 	return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
936 }
937 
938 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
939 {
940 	unsigned int flags = 0;
941 
942 	if (vmx->loaded_vmcs->launched)
943 		flags |= VMX_RUN_VMRESUME;
944 
945 	/*
946 	 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
947 	 * to change it directly without causing a vmexit.  In that case read
948 	 * it after vmexit and store it in vmx->spec_ctrl.
949 	 */
950 	if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
951 		flags |= VMX_RUN_SAVE_SPEC_CTRL;
952 
953 	return flags;
954 }
955 
956 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
957 		unsigned long entry, unsigned long exit)
958 {
959 	vm_entry_controls_clearbit(vmx, entry);
960 	vm_exit_controls_clearbit(vmx, exit);
961 }
962 
963 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
964 {
965 	unsigned int i;
966 
967 	for (i = 0; i < m->nr; ++i) {
968 		if (m->val[i].index == msr)
969 			return i;
970 	}
971 	return -ENOENT;
972 }
973 
974 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
975 {
976 	int i;
977 	struct msr_autoload *m = &vmx->msr_autoload;
978 
979 	switch (msr) {
980 	case MSR_EFER:
981 		if (cpu_has_load_ia32_efer()) {
982 			clear_atomic_switch_msr_special(vmx,
983 					VM_ENTRY_LOAD_IA32_EFER,
984 					VM_EXIT_LOAD_IA32_EFER);
985 			return;
986 		}
987 		break;
988 	case MSR_CORE_PERF_GLOBAL_CTRL:
989 		if (cpu_has_load_perf_global_ctrl()) {
990 			clear_atomic_switch_msr_special(vmx,
991 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
992 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
993 			return;
994 		}
995 		break;
996 	}
997 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
998 	if (i < 0)
999 		goto skip_guest;
1000 	--m->guest.nr;
1001 	m->guest.val[i] = m->guest.val[m->guest.nr];
1002 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1003 
1004 skip_guest:
1005 	i = vmx_find_loadstore_msr_slot(&m->host, msr);
1006 	if (i < 0)
1007 		return;
1008 
1009 	--m->host.nr;
1010 	m->host.val[i] = m->host.val[m->host.nr];
1011 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1012 }
1013 
1014 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1015 		unsigned long entry, unsigned long exit,
1016 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1017 		u64 guest_val, u64 host_val)
1018 {
1019 	vmcs_write64(guest_val_vmcs, guest_val);
1020 	if (host_val_vmcs != HOST_IA32_EFER)
1021 		vmcs_write64(host_val_vmcs, host_val);
1022 	vm_entry_controls_setbit(vmx, entry);
1023 	vm_exit_controls_setbit(vmx, exit);
1024 }
1025 
1026 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1027 				  u64 guest_val, u64 host_val, bool entry_only)
1028 {
1029 	int i, j = 0;
1030 	struct msr_autoload *m = &vmx->msr_autoload;
1031 
1032 	switch (msr) {
1033 	case MSR_EFER:
1034 		if (cpu_has_load_ia32_efer()) {
1035 			add_atomic_switch_msr_special(vmx,
1036 					VM_ENTRY_LOAD_IA32_EFER,
1037 					VM_EXIT_LOAD_IA32_EFER,
1038 					GUEST_IA32_EFER,
1039 					HOST_IA32_EFER,
1040 					guest_val, host_val);
1041 			return;
1042 		}
1043 		break;
1044 	case MSR_CORE_PERF_GLOBAL_CTRL:
1045 		if (cpu_has_load_perf_global_ctrl()) {
1046 			add_atomic_switch_msr_special(vmx,
1047 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1048 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1049 					GUEST_IA32_PERF_GLOBAL_CTRL,
1050 					HOST_IA32_PERF_GLOBAL_CTRL,
1051 					guest_val, host_val);
1052 			return;
1053 		}
1054 		break;
1055 	case MSR_IA32_PEBS_ENABLE:
1056 		/* PEBS needs a quiescent period after being disabled (to write
1057 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
1058 		 * provide that period, so a CPU could write host's record into
1059 		 * guest's memory.
1060 		 */
1061 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1062 	}
1063 
1064 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1065 	if (!entry_only)
1066 		j = vmx_find_loadstore_msr_slot(&m->host, msr);
1067 
1068 	if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1069 	    (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1070 		printk_once(KERN_WARNING "Not enough msr switch entries. "
1071 				"Can't add msr %x\n", msr);
1072 		return;
1073 	}
1074 	if (i < 0) {
1075 		i = m->guest.nr++;
1076 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1077 	}
1078 	m->guest.val[i].index = msr;
1079 	m->guest.val[i].value = guest_val;
1080 
1081 	if (entry_only)
1082 		return;
1083 
1084 	if (j < 0) {
1085 		j = m->host.nr++;
1086 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1087 	}
1088 	m->host.val[j].index = msr;
1089 	m->host.val[j].value = host_val;
1090 }
1091 
1092 static bool update_transition_efer(struct vcpu_vmx *vmx)
1093 {
1094 	u64 guest_efer = vmx->vcpu.arch.efer;
1095 	u64 ignore_bits = 0;
1096 	int i;
1097 
1098 	/* Shadow paging assumes NX to be available.  */
1099 	if (!enable_ept)
1100 		guest_efer |= EFER_NX;
1101 
1102 	/*
1103 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1104 	 */
1105 	ignore_bits |= EFER_SCE;
1106 #ifdef CONFIG_X86_64
1107 	ignore_bits |= EFER_LMA | EFER_LME;
1108 	/* SCE is meaningful only in long mode on Intel */
1109 	if (guest_efer & EFER_LMA)
1110 		ignore_bits &= ~(u64)EFER_SCE;
1111 #endif
1112 
1113 	/*
1114 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1115 	 * On CPUs that support "load IA32_EFER", always switch EFER
1116 	 * atomically, since it's faster than switching it manually.
1117 	 */
1118 	if (cpu_has_load_ia32_efer() ||
1119 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1120 		if (!(guest_efer & EFER_LMA))
1121 			guest_efer &= ~EFER_LME;
1122 		if (guest_efer != host_efer)
1123 			add_atomic_switch_msr(vmx, MSR_EFER,
1124 					      guest_efer, host_efer, false);
1125 		else
1126 			clear_atomic_switch_msr(vmx, MSR_EFER);
1127 		return false;
1128 	}
1129 
1130 	i = kvm_find_user_return_msr(MSR_EFER);
1131 	if (i < 0)
1132 		return false;
1133 
1134 	clear_atomic_switch_msr(vmx, MSR_EFER);
1135 
1136 	guest_efer &= ~ignore_bits;
1137 	guest_efer |= host_efer & ignore_bits;
1138 
1139 	vmx->guest_uret_msrs[i].data = guest_efer;
1140 	vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1141 
1142 	return true;
1143 }
1144 
1145 #ifdef CONFIG_X86_32
1146 /*
1147  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1148  * VMCS rather than the segment table.  KVM uses this helper to figure
1149  * out the current bases to poke them into the VMCS before entry.
1150  */
1151 static unsigned long segment_base(u16 selector)
1152 {
1153 	struct desc_struct *table;
1154 	unsigned long v;
1155 
1156 	if (!(selector & ~SEGMENT_RPL_MASK))
1157 		return 0;
1158 
1159 	table = get_current_gdt_ro();
1160 
1161 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1162 		u16 ldt_selector = kvm_read_ldt();
1163 
1164 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1165 			return 0;
1166 
1167 		table = (struct desc_struct *)segment_base(ldt_selector);
1168 	}
1169 	v = get_desc_base(&table[selector >> 3]);
1170 	return v;
1171 }
1172 #endif
1173 
1174 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1175 {
1176 	return vmx_pt_mode_is_host_guest() &&
1177 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1178 }
1179 
1180 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1181 {
1182 	/* The base must be 128-byte aligned and a legal physical address. */
1183 	return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1184 }
1185 
1186 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1187 {
1188 	u32 i;
1189 
1190 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1191 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1192 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1193 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1194 	for (i = 0; i < addr_range; i++) {
1195 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1196 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1197 	}
1198 }
1199 
1200 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1201 {
1202 	u32 i;
1203 
1204 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1205 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1206 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1207 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1208 	for (i = 0; i < addr_range; i++) {
1209 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1210 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1211 	}
1212 }
1213 
1214 static void pt_guest_enter(struct vcpu_vmx *vmx)
1215 {
1216 	if (vmx_pt_mode_is_system())
1217 		return;
1218 
1219 	/*
1220 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1221 	 * Save host state before VM entry.
1222 	 */
1223 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1224 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1225 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1226 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1227 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1228 	}
1229 }
1230 
1231 static void pt_guest_exit(struct vcpu_vmx *vmx)
1232 {
1233 	if (vmx_pt_mode_is_system())
1234 		return;
1235 
1236 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1237 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1238 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1239 	}
1240 
1241 	/*
1242 	 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1243 	 * i.e. RTIT_CTL is always cleared on VM-Exit.  Restore it if necessary.
1244 	 */
1245 	if (vmx->pt_desc.host.ctl)
1246 		wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1247 }
1248 
1249 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1250 			unsigned long fs_base, unsigned long gs_base)
1251 {
1252 	if (unlikely(fs_sel != host->fs_sel)) {
1253 		if (!(fs_sel & 7))
1254 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1255 		else
1256 			vmcs_write16(HOST_FS_SELECTOR, 0);
1257 		host->fs_sel = fs_sel;
1258 	}
1259 	if (unlikely(gs_sel != host->gs_sel)) {
1260 		if (!(gs_sel & 7))
1261 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1262 		else
1263 			vmcs_write16(HOST_GS_SELECTOR, 0);
1264 		host->gs_sel = gs_sel;
1265 	}
1266 	if (unlikely(fs_base != host->fs_base)) {
1267 		vmcs_writel(HOST_FS_BASE, fs_base);
1268 		host->fs_base = fs_base;
1269 	}
1270 	if (unlikely(gs_base != host->gs_base)) {
1271 		vmcs_writel(HOST_GS_BASE, gs_base);
1272 		host->gs_base = gs_base;
1273 	}
1274 }
1275 
1276 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1277 {
1278 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1279 	struct vmcs_host_state *host_state;
1280 #ifdef CONFIG_X86_64
1281 	int cpu = raw_smp_processor_id();
1282 #endif
1283 	unsigned long fs_base, gs_base;
1284 	u16 fs_sel, gs_sel;
1285 	int i;
1286 
1287 	/*
1288 	 * Note that guest MSRs to be saved/restored can also be changed
1289 	 * when guest state is loaded. This happens when guest transitions
1290 	 * to/from long-mode by setting MSR_EFER.LMA.
1291 	 */
1292 	if (!vmx->guest_uret_msrs_loaded) {
1293 		vmx->guest_uret_msrs_loaded = true;
1294 		for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1295 			if (!vmx->guest_uret_msrs[i].load_into_hardware)
1296 				continue;
1297 
1298 			kvm_set_user_return_msr(i,
1299 						vmx->guest_uret_msrs[i].data,
1300 						vmx->guest_uret_msrs[i].mask);
1301 		}
1302 	}
1303 
1304 	if (vmx->nested.need_vmcs12_to_shadow_sync)
1305 		nested_sync_vmcs12_to_shadow(vcpu);
1306 
1307 	if (vmx->guest_state_loaded)
1308 		return;
1309 
1310 	host_state = &vmx->loaded_vmcs->host_state;
1311 
1312 	/*
1313 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1314 	 * allow segment selectors with cpl > 0 or ti == 1.
1315 	 */
1316 	host_state->ldt_sel = kvm_read_ldt();
1317 
1318 #ifdef CONFIG_X86_64
1319 	savesegment(ds, host_state->ds_sel);
1320 	savesegment(es, host_state->es_sel);
1321 
1322 	gs_base = cpu_kernelmode_gs_base(cpu);
1323 	if (likely(is_64bit_mm(current->mm))) {
1324 		current_save_fsgs();
1325 		fs_sel = current->thread.fsindex;
1326 		gs_sel = current->thread.gsindex;
1327 		fs_base = current->thread.fsbase;
1328 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1329 	} else {
1330 		savesegment(fs, fs_sel);
1331 		savesegment(gs, gs_sel);
1332 		fs_base = read_msr(MSR_FS_BASE);
1333 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1334 	}
1335 
1336 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1337 #else
1338 	savesegment(fs, fs_sel);
1339 	savesegment(gs, gs_sel);
1340 	fs_base = segment_base(fs_sel);
1341 	gs_base = segment_base(gs_sel);
1342 #endif
1343 
1344 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1345 	vmx->guest_state_loaded = true;
1346 }
1347 
1348 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1349 {
1350 	struct vmcs_host_state *host_state;
1351 
1352 	if (!vmx->guest_state_loaded)
1353 		return;
1354 
1355 	host_state = &vmx->loaded_vmcs->host_state;
1356 
1357 	++vmx->vcpu.stat.host_state_reload;
1358 
1359 #ifdef CONFIG_X86_64
1360 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1361 #endif
1362 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1363 		kvm_load_ldt(host_state->ldt_sel);
1364 #ifdef CONFIG_X86_64
1365 		load_gs_index(host_state->gs_sel);
1366 #else
1367 		loadsegment(gs, host_state->gs_sel);
1368 #endif
1369 	}
1370 	if (host_state->fs_sel & 7)
1371 		loadsegment(fs, host_state->fs_sel);
1372 #ifdef CONFIG_X86_64
1373 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1374 		loadsegment(ds, host_state->ds_sel);
1375 		loadsegment(es, host_state->es_sel);
1376 	}
1377 #endif
1378 	invalidate_tss_limit();
1379 #ifdef CONFIG_X86_64
1380 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1381 #endif
1382 	load_fixmap_gdt(raw_smp_processor_id());
1383 	vmx->guest_state_loaded = false;
1384 	vmx->guest_uret_msrs_loaded = false;
1385 }
1386 
1387 #ifdef CONFIG_X86_64
1388 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1389 {
1390 	preempt_disable();
1391 	if (vmx->guest_state_loaded)
1392 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1393 	preempt_enable();
1394 	return vmx->msr_guest_kernel_gs_base;
1395 }
1396 
1397 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1398 {
1399 	preempt_disable();
1400 	if (vmx->guest_state_loaded)
1401 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1402 	preempt_enable();
1403 	vmx->msr_guest_kernel_gs_base = data;
1404 }
1405 #endif
1406 
1407 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1408 			struct loaded_vmcs *buddy)
1409 {
1410 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1411 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1412 	struct vmcs *prev;
1413 
1414 	if (!already_loaded) {
1415 		loaded_vmcs_clear(vmx->loaded_vmcs);
1416 		local_irq_disable();
1417 
1418 		/*
1419 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1420 		 * this cpu's percpu list, otherwise it may not yet be deleted
1421 		 * from its previous cpu's percpu list.  Pairs with the
1422 		 * smb_wmb() in __loaded_vmcs_clear().
1423 		 */
1424 		smp_rmb();
1425 
1426 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1427 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1428 		local_irq_enable();
1429 	}
1430 
1431 	prev = per_cpu(current_vmcs, cpu);
1432 	if (prev != vmx->loaded_vmcs->vmcs) {
1433 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1434 		vmcs_load(vmx->loaded_vmcs->vmcs);
1435 
1436 		/*
1437 		 * No indirect branch prediction barrier needed when switching
1438 		 * the active VMCS within a vCPU, unless IBRS is advertised to
1439 		 * the vCPU.  To minimize the number of IBPBs executed, KVM
1440 		 * performs IBPB on nested VM-Exit (a single nested transition
1441 		 * may switch the active VMCS multiple times).
1442 		 */
1443 		if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1444 			indirect_branch_prediction_barrier();
1445 	}
1446 
1447 	if (!already_loaded) {
1448 		void *gdt = get_current_gdt_ro();
1449 
1450 		/*
1451 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1452 		 * TLB entries from its previous association with the vCPU.
1453 		 */
1454 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1455 
1456 		/*
1457 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1458 		 * processors.  See 22.2.4.
1459 		 */
1460 		vmcs_writel(HOST_TR_BASE,
1461 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1462 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1463 
1464 		if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1465 			/* 22.2.3 */
1466 			vmcs_writel(HOST_IA32_SYSENTER_ESP,
1467 				    (unsigned long)(cpu_entry_stack(cpu) + 1));
1468 		}
1469 
1470 		vmx->loaded_vmcs->cpu = cpu;
1471 	}
1472 }
1473 
1474 /*
1475  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1476  * vcpu mutex is already taken.
1477  */
1478 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1479 {
1480 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1481 
1482 	vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1483 
1484 	vmx_vcpu_pi_load(vcpu, cpu);
1485 
1486 	vmx->host_debugctlmsr = get_debugctlmsr();
1487 }
1488 
1489 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1490 {
1491 	vmx_vcpu_pi_put(vcpu);
1492 
1493 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1494 }
1495 
1496 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1497 {
1498 	return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1499 }
1500 
1501 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1502 {
1503 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1504 	unsigned long rflags, save_rflags;
1505 
1506 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1507 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1508 		rflags = vmcs_readl(GUEST_RFLAGS);
1509 		if (vmx->rmode.vm86_active) {
1510 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1511 			save_rflags = vmx->rmode.save_rflags;
1512 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1513 		}
1514 		vmx->rflags = rflags;
1515 	}
1516 	return vmx->rflags;
1517 }
1518 
1519 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1520 {
1521 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1522 	unsigned long old_rflags;
1523 
1524 	/*
1525 	 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU
1526 	 * is an unrestricted guest in order to mark L2 as needing emulation
1527 	 * if L1 runs L2 as a restricted guest.
1528 	 */
1529 	if (is_unrestricted_guest(vcpu)) {
1530 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1531 		vmx->rflags = rflags;
1532 		vmcs_writel(GUEST_RFLAGS, rflags);
1533 		return;
1534 	}
1535 
1536 	old_rflags = vmx_get_rflags(vcpu);
1537 	vmx->rflags = rflags;
1538 	if (vmx->rmode.vm86_active) {
1539 		vmx->rmode.save_rflags = rflags;
1540 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1541 	}
1542 	vmcs_writel(GUEST_RFLAGS, rflags);
1543 
1544 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1545 		vmx->emulation_required = vmx_emulation_required(vcpu);
1546 }
1547 
1548 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1549 {
1550 	return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1551 }
1552 
1553 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1554 {
1555 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1556 	int ret = 0;
1557 
1558 	if (interruptibility & GUEST_INTR_STATE_STI)
1559 		ret |= KVM_X86_SHADOW_INT_STI;
1560 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1561 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1562 
1563 	return ret;
1564 }
1565 
1566 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1567 {
1568 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1569 	u32 interruptibility = interruptibility_old;
1570 
1571 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1572 
1573 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1574 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1575 	else if (mask & KVM_X86_SHADOW_INT_STI)
1576 		interruptibility |= GUEST_INTR_STATE_STI;
1577 
1578 	if ((interruptibility != interruptibility_old))
1579 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1580 }
1581 
1582 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1583 {
1584 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1585 	unsigned long value;
1586 
1587 	/*
1588 	 * Any MSR write that attempts to change bits marked reserved will
1589 	 * case a #GP fault.
1590 	 */
1591 	if (data & vmx->pt_desc.ctl_bitmask)
1592 		return 1;
1593 
1594 	/*
1595 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1596 	 * result in a #GP unless the same write also clears TraceEn.
1597 	 */
1598 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1599 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1600 		return 1;
1601 
1602 	/*
1603 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1604 	 * and FabricEn would cause #GP, if
1605 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1606 	 */
1607 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1608 		!(data & RTIT_CTL_FABRIC_EN) &&
1609 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1610 					PT_CAP_single_range_output))
1611 		return 1;
1612 
1613 	/*
1614 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1615 	 * utilize encodings marked reserved will cause a #GP fault.
1616 	 */
1617 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1618 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1619 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1620 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1621 		return 1;
1622 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1623 						PT_CAP_cycle_thresholds);
1624 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1625 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1626 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1627 		return 1;
1628 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1629 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1630 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1631 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1632 		return 1;
1633 
1634 	/*
1635 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1636 	 * cause a #GP fault.
1637 	 */
1638 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1639 	if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1640 		return 1;
1641 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1642 	if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1643 		return 1;
1644 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1645 	if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1646 		return 1;
1647 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1648 	if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1649 		return 1;
1650 
1651 	return 0;
1652 }
1653 
1654 static int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1655 					 void *insn, int insn_len)
1656 {
1657 	/*
1658 	 * Emulation of instructions in SGX enclaves is impossible as RIP does
1659 	 * not point at the failing instruction, and even if it did, the code
1660 	 * stream is inaccessible.  Inject #UD instead of exiting to userspace
1661 	 * so that guest userspace can't DoS the guest simply by triggering
1662 	 * emulation (enclaves are CPL3 only).
1663 	 */
1664 	if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1665 		kvm_queue_exception(vcpu, UD_VECTOR);
1666 		return X86EMUL_PROPAGATE_FAULT;
1667 	}
1668 	return X86EMUL_CONTINUE;
1669 }
1670 
1671 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1672 {
1673 	union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1674 	unsigned long rip, orig_rip;
1675 	u32 instr_len;
1676 
1677 	/*
1678 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1679 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1680 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1681 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1682 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1683 	 * i.e. we end up advancing IP with some random value.
1684 	 */
1685 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1686 	    exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1687 		instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1688 
1689 		/*
1690 		 * Emulating an enclave's instructions isn't supported as KVM
1691 		 * cannot access the enclave's memory or its true RIP, e.g. the
1692 		 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1693 		 * the RIP that actually triggered the VM-Exit.  But, because
1694 		 * most instructions that cause VM-Exit will #UD in an enclave,
1695 		 * most instruction-based VM-Exits simply do not occur.
1696 		 *
1697 		 * There are a few exceptions, notably the debug instructions
1698 		 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1699 		 * and generate #DB/#BP as expected, which KVM might intercept.
1700 		 * But again, the CPU does the dirty work and saves an instr
1701 		 * length of zero so VMMs don't shoot themselves in the foot.
1702 		 * WARN if KVM tries to skip a non-zero length instruction on
1703 		 * a VM-Exit from an enclave.
1704 		 */
1705 		if (!instr_len)
1706 			goto rip_updated;
1707 
1708 		WARN_ONCE(exit_reason.enclave_mode,
1709 			  "skipping instruction after SGX enclave VM-Exit");
1710 
1711 		orig_rip = kvm_rip_read(vcpu);
1712 		rip = orig_rip + instr_len;
1713 #ifdef CONFIG_X86_64
1714 		/*
1715 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1716 		 * mode, but just finding out that we are in 64-bit mode is
1717 		 * quite expensive.  Only do it if there was a carry.
1718 		 */
1719 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1720 			rip = (u32)rip;
1721 #endif
1722 		kvm_rip_write(vcpu, rip);
1723 	} else {
1724 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1725 			return 0;
1726 	}
1727 
1728 rip_updated:
1729 	/* skipping an emulated instruction also counts */
1730 	vmx_set_interrupt_shadow(vcpu, 0);
1731 
1732 	return 1;
1733 }
1734 
1735 /*
1736  * Recognizes a pending MTF VM-exit and records the nested state for later
1737  * delivery.
1738  */
1739 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1740 {
1741 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1742 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1743 
1744 	if (!is_guest_mode(vcpu))
1745 		return;
1746 
1747 	/*
1748 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1749 	 * TSS T-bit traps and ICEBP (INT1).  KVM doesn't emulate T-bit traps
1750 	 * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1751 	 * intercepted #DB deliberately avoids single-step #DB and MTF updates
1752 	 * as ICEBP is higher priority than both.  As instruction emulation is
1753 	 * completed at this point (i.e. KVM is at the instruction boundary),
1754 	 * any #DB exception pending delivery must be a debug-trap of lower
1755 	 * priority than MTF.  Record the pending MTF state to be delivered in
1756 	 * vmx_check_nested_events().
1757 	 */
1758 	if (nested_cpu_has_mtf(vmcs12) &&
1759 	    (!vcpu->arch.exception.pending ||
1760 	     vcpu->arch.exception.vector == DB_VECTOR) &&
1761 	    (!vcpu->arch.exception_vmexit.pending ||
1762 	     vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1763 		vmx->nested.mtf_pending = true;
1764 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1765 	} else {
1766 		vmx->nested.mtf_pending = false;
1767 	}
1768 }
1769 
1770 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1771 {
1772 	vmx_update_emulated_instruction(vcpu);
1773 	return skip_emulated_instruction(vcpu);
1774 }
1775 
1776 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1777 {
1778 	/*
1779 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1780 	 * explicitly skip the instruction because if the HLT state is set,
1781 	 * then the instruction is already executing and RIP has already been
1782 	 * advanced.
1783 	 */
1784 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1785 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1786 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1787 }
1788 
1789 static void vmx_inject_exception(struct kvm_vcpu *vcpu)
1790 {
1791 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
1792 	u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1793 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1794 
1795 	kvm_deliver_exception_payload(vcpu, ex);
1796 
1797 	if (ex->has_error_code) {
1798 		/*
1799 		 * Despite the error code being architecturally defined as 32
1800 		 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1801 		 * VMX don't actually supporting setting bits 31:16.  Hardware
1802 		 * will (should) never provide a bogus error code, but AMD CPUs
1803 		 * do generate error codes with bits 31:16 set, and so KVM's
1804 		 * ABI lets userspace shove in arbitrary 32-bit values.  Drop
1805 		 * the upper bits to avoid VM-Fail, losing information that
1806 		 * doesn't really exist is preferable to killing the VM.
1807 		 */
1808 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1809 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1810 	}
1811 
1812 	if (vmx->rmode.vm86_active) {
1813 		int inc_eip = 0;
1814 		if (kvm_exception_is_soft(ex->vector))
1815 			inc_eip = vcpu->arch.event_exit_inst_len;
1816 		kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1817 		return;
1818 	}
1819 
1820 	WARN_ON_ONCE(vmx->emulation_required);
1821 
1822 	if (kvm_exception_is_soft(ex->vector)) {
1823 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1824 			     vmx->vcpu.arch.event_exit_inst_len);
1825 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1826 	} else
1827 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1828 
1829 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1830 
1831 	vmx_clear_hlt(vcpu);
1832 }
1833 
1834 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1835 			       bool load_into_hardware)
1836 {
1837 	struct vmx_uret_msr *uret_msr;
1838 
1839 	uret_msr = vmx_find_uret_msr(vmx, msr);
1840 	if (!uret_msr)
1841 		return;
1842 
1843 	uret_msr->load_into_hardware = load_into_hardware;
1844 }
1845 
1846 /*
1847  * Configuring user return MSRs to automatically save, load, and restore MSRs
1848  * that need to be shoved into hardware when running the guest.  Note, omitting
1849  * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1850  * loaded into hardware when running the guest.
1851  */
1852 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1853 {
1854 #ifdef CONFIG_X86_64
1855 	bool load_syscall_msrs;
1856 
1857 	/*
1858 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1859 	 * when EFER.SCE is set.
1860 	 */
1861 	load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1862 			    (vmx->vcpu.arch.efer & EFER_SCE);
1863 
1864 	vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1865 	vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1866 	vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1867 #endif
1868 	vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1869 
1870 	vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1871 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1872 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1873 
1874 	/*
1875 	 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1876 	 * kernel and old userspace.  If those guests run on a tsx=off host, do
1877 	 * allow guests to use TSX_CTRL, but don't change the value in hardware
1878 	 * so that TSX remains always disabled.
1879 	 */
1880 	vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1881 
1882 	/*
1883 	 * The set of MSRs to load may have changed, reload MSRs before the
1884 	 * next VM-Enter.
1885 	 */
1886 	vmx->guest_uret_msrs_loaded = false;
1887 }
1888 
1889 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1890 {
1891 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1892 
1893 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1894 		return vmcs12->tsc_offset;
1895 
1896 	return 0;
1897 }
1898 
1899 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1900 {
1901 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1902 
1903 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1904 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1905 		return vmcs12->tsc_multiplier;
1906 
1907 	return kvm_caps.default_tsc_scaling_ratio;
1908 }
1909 
1910 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu)
1911 {
1912 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
1913 }
1914 
1915 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1916 {
1917 	vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
1918 }
1919 
1920 /*
1921  * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
1922  * guest CPUID.  Note, KVM allows userspace to set "VMX in SMX" to maintain
1923  * backwards compatibility even though KVM doesn't support emulating SMX.  And
1924  * because userspace set "VMX in SMX", the guest must also be allowed to set it,
1925  * e.g. if the MSR is left unlocked and the guest does a RMW operation.
1926  */
1927 #define KVM_SUPPORTED_FEATURE_CONTROL  (FEAT_CTL_LOCKED			 | \
1928 					FEAT_CTL_VMX_ENABLED_INSIDE_SMX	 | \
1929 					FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
1930 					FEAT_CTL_SGX_LC_ENABLED		 | \
1931 					FEAT_CTL_SGX_ENABLED		 | \
1932 					FEAT_CTL_LMCE_ENABLED)
1933 
1934 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
1935 						    struct msr_data *msr)
1936 {
1937 	uint64_t valid_bits;
1938 
1939 	/*
1940 	 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
1941 	 * exposed to the guest.
1942 	 */
1943 	WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
1944 		     ~KVM_SUPPORTED_FEATURE_CONTROL);
1945 
1946 	if (!msr->host_initiated &&
1947 	    (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
1948 		return false;
1949 
1950 	if (msr->host_initiated)
1951 		valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
1952 	else
1953 		valid_bits = vmx->msr_ia32_feature_control_valid_bits;
1954 
1955 	return !(msr->data & ~valid_bits);
1956 }
1957 
1958 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1959 {
1960 	switch (msr->index) {
1961 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
1962 		if (!nested)
1963 			return 1;
1964 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1965 	default:
1966 		return KVM_MSR_RET_INVALID;
1967 	}
1968 }
1969 
1970 /*
1971  * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
1972  * Returns 0 on success, non-0 otherwise.
1973  * Assumes vcpu_load() was already called.
1974  */
1975 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1976 {
1977 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1978 	struct vmx_uret_msr *msr;
1979 	u32 index;
1980 
1981 	switch (msr_info->index) {
1982 #ifdef CONFIG_X86_64
1983 	case MSR_FS_BASE:
1984 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1985 		break;
1986 	case MSR_GS_BASE:
1987 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1988 		break;
1989 	case MSR_KERNEL_GS_BASE:
1990 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1991 		break;
1992 #endif
1993 	case MSR_EFER:
1994 		return kvm_get_msr_common(vcpu, msr_info);
1995 	case MSR_IA32_TSX_CTRL:
1996 		if (!msr_info->host_initiated &&
1997 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1998 			return 1;
1999 		goto find_uret_msr;
2000 	case MSR_IA32_UMWAIT_CONTROL:
2001 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2002 			return 1;
2003 
2004 		msr_info->data = vmx->msr_ia32_umwait_control;
2005 		break;
2006 	case MSR_IA32_SPEC_CTRL:
2007 		if (!msr_info->host_initiated &&
2008 		    !guest_has_spec_ctrl_msr(vcpu))
2009 			return 1;
2010 
2011 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
2012 		break;
2013 	case MSR_IA32_SYSENTER_CS:
2014 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2015 		break;
2016 	case MSR_IA32_SYSENTER_EIP:
2017 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2018 		break;
2019 	case MSR_IA32_SYSENTER_ESP:
2020 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2021 		break;
2022 	case MSR_IA32_BNDCFGS:
2023 		if (!kvm_mpx_supported() ||
2024 		    (!msr_info->host_initiated &&
2025 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2026 			return 1;
2027 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2028 		break;
2029 	case MSR_IA32_MCG_EXT_CTL:
2030 		if (!msr_info->host_initiated &&
2031 		    !(vmx->msr_ia32_feature_control &
2032 		      FEAT_CTL_LMCE_ENABLED))
2033 			return 1;
2034 		msr_info->data = vcpu->arch.mcg_ext_ctl;
2035 		break;
2036 	case MSR_IA32_FEAT_CTL:
2037 		msr_info->data = vmx->msr_ia32_feature_control;
2038 		break;
2039 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2040 		if (!msr_info->host_initiated &&
2041 		    !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
2042 			return 1;
2043 		msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
2044 			[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
2045 		break;
2046 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2047 		if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2048 			return 1;
2049 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
2050 				    &msr_info->data))
2051 			return 1;
2052 #ifdef CONFIG_KVM_HYPERV
2053 		/*
2054 		 * Enlightened VMCS v1 doesn't have certain VMCS fields but
2055 		 * instead of just ignoring the features, different Hyper-V
2056 		 * versions are either trying to use them and fail or do some
2057 		 * sanity checking and refuse to boot. Filter all unsupported
2058 		 * features out.
2059 		 */
2060 		if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu))
2061 			nested_evmcs_filter_control_msr(vcpu, msr_info->index,
2062 							&msr_info->data);
2063 #endif
2064 		break;
2065 	case MSR_IA32_RTIT_CTL:
2066 		if (!vmx_pt_mode_is_host_guest())
2067 			return 1;
2068 		msr_info->data = vmx->pt_desc.guest.ctl;
2069 		break;
2070 	case MSR_IA32_RTIT_STATUS:
2071 		if (!vmx_pt_mode_is_host_guest())
2072 			return 1;
2073 		msr_info->data = vmx->pt_desc.guest.status;
2074 		break;
2075 	case MSR_IA32_RTIT_CR3_MATCH:
2076 		if (!vmx_pt_mode_is_host_guest() ||
2077 			!intel_pt_validate_cap(vmx->pt_desc.caps,
2078 						PT_CAP_cr3_filtering))
2079 			return 1;
2080 		msr_info->data = vmx->pt_desc.guest.cr3_match;
2081 		break;
2082 	case MSR_IA32_RTIT_OUTPUT_BASE:
2083 		if (!vmx_pt_mode_is_host_guest() ||
2084 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2085 					PT_CAP_topa_output) &&
2086 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2087 					PT_CAP_single_range_output)))
2088 			return 1;
2089 		msr_info->data = vmx->pt_desc.guest.output_base;
2090 		break;
2091 	case MSR_IA32_RTIT_OUTPUT_MASK:
2092 		if (!vmx_pt_mode_is_host_guest() ||
2093 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2094 					PT_CAP_topa_output) &&
2095 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2096 					PT_CAP_single_range_output)))
2097 			return 1;
2098 		msr_info->data = vmx->pt_desc.guest.output_mask;
2099 		break;
2100 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2101 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2102 		if (!vmx_pt_mode_is_host_guest() ||
2103 		    (index >= 2 * vmx->pt_desc.num_address_ranges))
2104 			return 1;
2105 		if (index % 2)
2106 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2107 		else
2108 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2109 		break;
2110 	case MSR_IA32_DEBUGCTLMSR:
2111 		msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
2112 		break;
2113 	default:
2114 	find_uret_msr:
2115 		msr = vmx_find_uret_msr(vmx, msr_info->index);
2116 		if (msr) {
2117 			msr_info->data = msr->data;
2118 			break;
2119 		}
2120 		return kvm_get_msr_common(vcpu, msr_info);
2121 	}
2122 
2123 	return 0;
2124 }
2125 
2126 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2127 						    u64 data)
2128 {
2129 #ifdef CONFIG_X86_64
2130 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2131 		return (u32)data;
2132 #endif
2133 	return (unsigned long)data;
2134 }
2135 
2136 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2137 {
2138 	u64 debugctl = 0;
2139 
2140 	if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2141 	    (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2142 		debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2143 
2144 	if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) &&
2145 	    (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2146 		debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2147 
2148 	return debugctl;
2149 }
2150 
2151 /*
2152  * Writes msr value into the appropriate "register".
2153  * Returns 0 on success, non-0 otherwise.
2154  * Assumes vcpu_load() was already called.
2155  */
2156 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2157 {
2158 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2159 	struct vmx_uret_msr *msr;
2160 	int ret = 0;
2161 	u32 msr_index = msr_info->index;
2162 	u64 data = msr_info->data;
2163 	u32 index;
2164 
2165 	switch (msr_index) {
2166 	case MSR_EFER:
2167 		ret = kvm_set_msr_common(vcpu, msr_info);
2168 		break;
2169 #ifdef CONFIG_X86_64
2170 	case MSR_FS_BASE:
2171 		vmx_segment_cache_clear(vmx);
2172 		vmcs_writel(GUEST_FS_BASE, data);
2173 		break;
2174 	case MSR_GS_BASE:
2175 		vmx_segment_cache_clear(vmx);
2176 		vmcs_writel(GUEST_GS_BASE, data);
2177 		break;
2178 	case MSR_KERNEL_GS_BASE:
2179 		vmx_write_guest_kernel_gs_base(vmx, data);
2180 		break;
2181 	case MSR_IA32_XFD:
2182 		ret = kvm_set_msr_common(vcpu, msr_info);
2183 		/*
2184 		 * Always intercepting WRMSR could incur non-negligible
2185 		 * overhead given xfd might be changed frequently in
2186 		 * guest context switch. Disable write interception
2187 		 * upon the first write with a non-zero value (indicating
2188 		 * potential usage on dynamic xfeatures). Also update
2189 		 * exception bitmap to trap #NM for proper virtualization
2190 		 * of guest xfd_err.
2191 		 */
2192 		if (!ret && data) {
2193 			vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2194 						      MSR_TYPE_RW);
2195 			vcpu->arch.xfd_no_write_intercept = true;
2196 			vmx_update_exception_bitmap(vcpu);
2197 		}
2198 		break;
2199 #endif
2200 	case MSR_IA32_SYSENTER_CS:
2201 		if (is_guest_mode(vcpu))
2202 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
2203 		vmcs_write32(GUEST_SYSENTER_CS, data);
2204 		break;
2205 	case MSR_IA32_SYSENTER_EIP:
2206 		if (is_guest_mode(vcpu)) {
2207 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2208 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
2209 		}
2210 		vmcs_writel(GUEST_SYSENTER_EIP, data);
2211 		break;
2212 	case MSR_IA32_SYSENTER_ESP:
2213 		if (is_guest_mode(vcpu)) {
2214 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2215 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
2216 		}
2217 		vmcs_writel(GUEST_SYSENTER_ESP, data);
2218 		break;
2219 	case MSR_IA32_DEBUGCTLMSR: {
2220 		u64 invalid;
2221 
2222 		invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2223 		if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2224 			kvm_pr_unimpl_wrmsr(vcpu, msr_index, data);
2225 			data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2226 			invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2227 		}
2228 
2229 		if (invalid)
2230 			return 1;
2231 
2232 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2233 						VM_EXIT_SAVE_DEBUG_CONTROLS)
2234 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2235 
2236 		vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2237 		if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2238 		    (data & DEBUGCTLMSR_LBR))
2239 			intel_pmu_create_guest_lbr_event(vcpu);
2240 		return 0;
2241 	}
2242 	case MSR_IA32_BNDCFGS:
2243 		if (!kvm_mpx_supported() ||
2244 		    (!msr_info->host_initiated &&
2245 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2246 			return 1;
2247 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2248 		    (data & MSR_IA32_BNDCFGS_RSVD))
2249 			return 1;
2250 
2251 		if (is_guest_mode(vcpu) &&
2252 		    ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2253 		     (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2254 			get_vmcs12(vcpu)->guest_bndcfgs = data;
2255 
2256 		vmcs_write64(GUEST_BNDCFGS, data);
2257 		break;
2258 	case MSR_IA32_UMWAIT_CONTROL:
2259 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2260 			return 1;
2261 
2262 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2263 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2264 			return 1;
2265 
2266 		vmx->msr_ia32_umwait_control = data;
2267 		break;
2268 	case MSR_IA32_SPEC_CTRL:
2269 		if (!msr_info->host_initiated &&
2270 		    !guest_has_spec_ctrl_msr(vcpu))
2271 			return 1;
2272 
2273 		if (kvm_spec_ctrl_test_value(data))
2274 			return 1;
2275 
2276 		vmx->spec_ctrl = data;
2277 		if (!data)
2278 			break;
2279 
2280 		/*
2281 		 * For non-nested:
2282 		 * When it's written (to non-zero) for the first time, pass
2283 		 * it through.
2284 		 *
2285 		 * For nested:
2286 		 * The handling of the MSR bitmap for L2 guests is done in
2287 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2288 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2289 		 * in the merging. We update the vmcs01 here for L1 as well
2290 		 * since it will end up touching the MSR anyway now.
2291 		 */
2292 		vmx_disable_intercept_for_msr(vcpu,
2293 					      MSR_IA32_SPEC_CTRL,
2294 					      MSR_TYPE_RW);
2295 		break;
2296 	case MSR_IA32_TSX_CTRL:
2297 		if (!msr_info->host_initiated &&
2298 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2299 			return 1;
2300 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2301 			return 1;
2302 		goto find_uret_msr;
2303 	case MSR_IA32_CR_PAT:
2304 		ret = kvm_set_msr_common(vcpu, msr_info);
2305 		if (ret)
2306 			break;
2307 
2308 		if (is_guest_mode(vcpu) &&
2309 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2310 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2311 
2312 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
2313 			vmcs_write64(GUEST_IA32_PAT, data);
2314 		break;
2315 	case MSR_IA32_MCG_EXT_CTL:
2316 		if ((!msr_info->host_initiated &&
2317 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2318 		       FEAT_CTL_LMCE_ENABLED)) ||
2319 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2320 			return 1;
2321 		vcpu->arch.mcg_ext_ctl = data;
2322 		break;
2323 	case MSR_IA32_FEAT_CTL:
2324 		if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2325 			return 1;
2326 
2327 		vmx->msr_ia32_feature_control = data;
2328 		if (msr_info->host_initiated && data == 0)
2329 			vmx_leave_nested(vcpu);
2330 
2331 		/* SGX may be enabled/disabled by guest's firmware */
2332 		vmx_write_encls_bitmap(vcpu, NULL);
2333 		break;
2334 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2335 		/*
2336 		 * On real hardware, the LE hash MSRs are writable before
2337 		 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2338 		 * at which point SGX related bits in IA32_FEATURE_CONTROL
2339 		 * become writable.
2340 		 *
2341 		 * KVM does not emulate SGX activation for simplicity, so
2342 		 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2343 		 * is unlocked.  This is technically not architectural
2344 		 * behavior, but it's close enough.
2345 		 */
2346 		if (!msr_info->host_initiated &&
2347 		    (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2348 		    ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2349 		    !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2350 			return 1;
2351 		vmx->msr_ia32_sgxlepubkeyhash
2352 			[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2353 		break;
2354 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2355 		if (!msr_info->host_initiated)
2356 			return 1; /* they are read-only */
2357 		if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2358 			return 1;
2359 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2360 	case MSR_IA32_RTIT_CTL:
2361 		if (!vmx_pt_mode_is_host_guest() ||
2362 			vmx_rtit_ctl_check(vcpu, data) ||
2363 			vmx->nested.vmxon)
2364 			return 1;
2365 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2366 		vmx->pt_desc.guest.ctl = data;
2367 		pt_update_intercept_for_msr(vcpu);
2368 		break;
2369 	case MSR_IA32_RTIT_STATUS:
2370 		if (!pt_can_write_msr(vmx))
2371 			return 1;
2372 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2373 			return 1;
2374 		vmx->pt_desc.guest.status = data;
2375 		break;
2376 	case MSR_IA32_RTIT_CR3_MATCH:
2377 		if (!pt_can_write_msr(vmx))
2378 			return 1;
2379 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2380 					   PT_CAP_cr3_filtering))
2381 			return 1;
2382 		vmx->pt_desc.guest.cr3_match = data;
2383 		break;
2384 	case MSR_IA32_RTIT_OUTPUT_BASE:
2385 		if (!pt_can_write_msr(vmx))
2386 			return 1;
2387 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2388 					   PT_CAP_topa_output) &&
2389 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2390 					   PT_CAP_single_range_output))
2391 			return 1;
2392 		if (!pt_output_base_valid(vcpu, data))
2393 			return 1;
2394 		vmx->pt_desc.guest.output_base = data;
2395 		break;
2396 	case MSR_IA32_RTIT_OUTPUT_MASK:
2397 		if (!pt_can_write_msr(vmx))
2398 			return 1;
2399 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2400 					   PT_CAP_topa_output) &&
2401 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2402 					   PT_CAP_single_range_output))
2403 			return 1;
2404 		vmx->pt_desc.guest.output_mask = data;
2405 		break;
2406 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2407 		if (!pt_can_write_msr(vmx))
2408 			return 1;
2409 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2410 		if (index >= 2 * vmx->pt_desc.num_address_ranges)
2411 			return 1;
2412 		if (is_noncanonical_address(data, vcpu))
2413 			return 1;
2414 		if (index % 2)
2415 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2416 		else
2417 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2418 		break;
2419 	case MSR_IA32_PERF_CAPABILITIES:
2420 		if (data && !vcpu_to_pmu(vcpu)->version)
2421 			return 1;
2422 		if (data & PMU_CAP_LBR_FMT) {
2423 			if ((data & PMU_CAP_LBR_FMT) !=
2424 			    (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT))
2425 				return 1;
2426 			if (!cpuid_model_is_consistent(vcpu))
2427 				return 1;
2428 		}
2429 		if (data & PERF_CAP_PEBS_FORMAT) {
2430 			if ((data & PERF_CAP_PEBS_MASK) !=
2431 			    (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2432 				return 1;
2433 			if (!guest_cpuid_has(vcpu, X86_FEATURE_DS))
2434 				return 1;
2435 			if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64))
2436 				return 1;
2437 			if (!cpuid_model_is_consistent(vcpu))
2438 				return 1;
2439 		}
2440 		ret = kvm_set_msr_common(vcpu, msr_info);
2441 		break;
2442 
2443 	default:
2444 	find_uret_msr:
2445 		msr = vmx_find_uret_msr(vmx, msr_index);
2446 		if (msr)
2447 			ret = vmx_set_guest_uret_msr(vmx, msr, data);
2448 		else
2449 			ret = kvm_set_msr_common(vcpu, msr_info);
2450 	}
2451 
2452 	/* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2453 	if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2454 		vmx_update_fb_clear_dis(vcpu, vmx);
2455 
2456 	return ret;
2457 }
2458 
2459 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2460 {
2461 	unsigned long guest_owned_bits;
2462 
2463 	kvm_register_mark_available(vcpu, reg);
2464 
2465 	switch (reg) {
2466 	case VCPU_REGS_RSP:
2467 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2468 		break;
2469 	case VCPU_REGS_RIP:
2470 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2471 		break;
2472 	case VCPU_EXREG_PDPTR:
2473 		if (enable_ept)
2474 			ept_save_pdptrs(vcpu);
2475 		break;
2476 	case VCPU_EXREG_CR0:
2477 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2478 
2479 		vcpu->arch.cr0 &= ~guest_owned_bits;
2480 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2481 		break;
2482 	case VCPU_EXREG_CR3:
2483 		/*
2484 		 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2485 		 * CR3 is loaded into hardware, not the guest's CR3.
2486 		 */
2487 		if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2488 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2489 		break;
2490 	case VCPU_EXREG_CR4:
2491 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2492 
2493 		vcpu->arch.cr4 &= ~guest_owned_bits;
2494 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2495 		break;
2496 	default:
2497 		KVM_BUG_ON(1, vcpu->kvm);
2498 		break;
2499 	}
2500 }
2501 
2502 /*
2503  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2504  * directly instead of going through cpu_has(), to ensure KVM is trapping
2505  * ENCLS whenever it's supported in hardware.  It does not matter whether
2506  * the host OS supports or has enabled SGX.
2507  */
2508 static bool cpu_has_sgx(void)
2509 {
2510 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2511 }
2512 
2513 /*
2514  * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2515  * can't be used due to errata where VM Exit may incorrectly clear
2516  * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the
2517  * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2518  */
2519 static bool cpu_has_perf_global_ctrl_bug(void)
2520 {
2521 	if (boot_cpu_data.x86 == 0x6) {
2522 		switch (boot_cpu_data.x86_model) {
2523 		case INTEL_FAM6_NEHALEM_EP:	/* AAK155 */
2524 		case INTEL_FAM6_NEHALEM:	/* AAP115 */
2525 		case INTEL_FAM6_WESTMERE:	/* AAT100 */
2526 		case INTEL_FAM6_WESTMERE_EP:	/* BC86,AAY89,BD102 */
2527 		case INTEL_FAM6_NEHALEM_EX:	/* BA97 */
2528 			return true;
2529 		default:
2530 			break;
2531 		}
2532 	}
2533 
2534 	return false;
2535 }
2536 
2537 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
2538 {
2539 	u32 vmx_msr_low, vmx_msr_high;
2540 	u32 ctl = ctl_min | ctl_opt;
2541 
2542 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2543 
2544 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2545 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2546 
2547 	/* Ensure minimum (required) set of control bits are supported. */
2548 	if (ctl_min & ~ctl)
2549 		return -EIO;
2550 
2551 	*result = ctl;
2552 	return 0;
2553 }
2554 
2555 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2556 {
2557 	u64 allowed;
2558 
2559 	rdmsrl(msr, allowed);
2560 
2561 	return  ctl_opt & allowed;
2562 }
2563 
2564 static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2565 			     struct vmx_capability *vmx_cap)
2566 {
2567 	u32 vmx_msr_low, vmx_msr_high;
2568 	u32 _pin_based_exec_control = 0;
2569 	u32 _cpu_based_exec_control = 0;
2570 	u32 _cpu_based_2nd_exec_control = 0;
2571 	u64 _cpu_based_3rd_exec_control = 0;
2572 	u32 _vmexit_control = 0;
2573 	u32 _vmentry_control = 0;
2574 	u64 misc_msr;
2575 	int i;
2576 
2577 	/*
2578 	 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2579 	 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2580 	 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2581 	 */
2582 	struct {
2583 		u32 entry_control;
2584 		u32 exit_control;
2585 	} const vmcs_entry_exit_pairs[] = {
2586 		{ VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,	VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2587 		{ VM_ENTRY_LOAD_IA32_PAT,		VM_EXIT_LOAD_IA32_PAT },
2588 		{ VM_ENTRY_LOAD_IA32_EFER,		VM_EXIT_LOAD_IA32_EFER },
2589 		{ VM_ENTRY_LOAD_BNDCFGS,		VM_EXIT_CLEAR_BNDCFGS },
2590 		{ VM_ENTRY_LOAD_IA32_RTIT_CTL,		VM_EXIT_CLEAR_IA32_RTIT_CTL },
2591 	};
2592 
2593 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2594 
2595 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2596 				KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2597 				MSR_IA32_VMX_PROCBASED_CTLS,
2598 				&_cpu_based_exec_control))
2599 		return -EIO;
2600 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2601 		if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2602 					KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2603 					MSR_IA32_VMX_PROCBASED_CTLS2,
2604 					&_cpu_based_2nd_exec_control))
2605 			return -EIO;
2606 	}
2607 #ifndef CONFIG_X86_64
2608 	if (!(_cpu_based_2nd_exec_control &
2609 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2610 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2611 #endif
2612 
2613 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2614 		_cpu_based_2nd_exec_control &= ~(
2615 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2616 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2617 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2618 
2619 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2620 		&vmx_cap->ept, &vmx_cap->vpid);
2621 
2622 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2623 	    vmx_cap->ept) {
2624 		pr_warn_once("EPT CAP should not exist if not support "
2625 				"1-setting enable EPT VM-execution control\n");
2626 
2627 		if (error_on_inconsistent_vmcs_config)
2628 			return -EIO;
2629 
2630 		vmx_cap->ept = 0;
2631 	}
2632 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2633 	    vmx_cap->vpid) {
2634 		pr_warn_once("VPID CAP should not exist if not support "
2635 				"1-setting enable VPID VM-execution control\n");
2636 
2637 		if (error_on_inconsistent_vmcs_config)
2638 			return -EIO;
2639 
2640 		vmx_cap->vpid = 0;
2641 	}
2642 
2643 	if (!cpu_has_sgx())
2644 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2645 
2646 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2647 		_cpu_based_3rd_exec_control =
2648 			adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2649 					      MSR_IA32_VMX_PROCBASED_CTLS3);
2650 
2651 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2652 				KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2653 				MSR_IA32_VMX_EXIT_CTLS,
2654 				&_vmexit_control))
2655 		return -EIO;
2656 
2657 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2658 				KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2659 				MSR_IA32_VMX_PINBASED_CTLS,
2660 				&_pin_based_exec_control))
2661 		return -EIO;
2662 
2663 	if (cpu_has_broken_vmx_preemption_timer())
2664 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2665 	if (!(_cpu_based_2nd_exec_control &
2666 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2667 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2668 
2669 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2670 				KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2671 				MSR_IA32_VMX_ENTRY_CTLS,
2672 				&_vmentry_control))
2673 		return -EIO;
2674 
2675 	for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) {
2676 		u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control;
2677 		u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control;
2678 
2679 		if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl))
2680 			continue;
2681 
2682 		pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n",
2683 			     _vmentry_control & n_ctrl, _vmexit_control & x_ctrl);
2684 
2685 		if (error_on_inconsistent_vmcs_config)
2686 			return -EIO;
2687 
2688 		_vmentry_control &= ~n_ctrl;
2689 		_vmexit_control &= ~x_ctrl;
2690 	}
2691 
2692 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2693 
2694 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2695 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2696 		return -EIO;
2697 
2698 #ifdef CONFIG_X86_64
2699 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2700 	if (vmx_msr_high & (1u<<16))
2701 		return -EIO;
2702 #endif
2703 
2704 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2705 	if (((vmx_msr_high >> 18) & 15) != 6)
2706 		return -EIO;
2707 
2708 	rdmsrl(MSR_IA32_VMX_MISC, misc_msr);
2709 
2710 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2711 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2712 
2713 	vmcs_conf->revision_id = vmx_msr_low;
2714 
2715 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2716 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2717 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2718 	vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2719 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2720 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2721 	vmcs_conf->misc	= misc_msr;
2722 
2723 #if IS_ENABLED(CONFIG_HYPERV)
2724 	if (enlightened_vmcs)
2725 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2726 #endif
2727 
2728 	return 0;
2729 }
2730 
2731 static bool __kvm_is_vmx_supported(void)
2732 {
2733 	int cpu = smp_processor_id();
2734 
2735 	if (!(cpuid_ecx(1) & feature_bit(VMX))) {
2736 		pr_err("VMX not supported by CPU %d\n", cpu);
2737 		return false;
2738 	}
2739 
2740 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2741 	    !this_cpu_has(X86_FEATURE_VMX)) {
2742 		pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
2743 		return false;
2744 	}
2745 
2746 	return true;
2747 }
2748 
2749 static bool kvm_is_vmx_supported(void)
2750 {
2751 	bool supported;
2752 
2753 	migrate_disable();
2754 	supported = __kvm_is_vmx_supported();
2755 	migrate_enable();
2756 
2757 	return supported;
2758 }
2759 
2760 static int vmx_check_processor_compat(void)
2761 {
2762 	int cpu = raw_smp_processor_id();
2763 	struct vmcs_config vmcs_conf;
2764 	struct vmx_capability vmx_cap;
2765 
2766 	if (!__kvm_is_vmx_supported())
2767 		return -EIO;
2768 
2769 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
2770 		pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
2771 		return -EIO;
2772 	}
2773 	if (nested)
2774 		nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
2775 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
2776 		pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
2777 		return -EIO;
2778 	}
2779 	return 0;
2780 }
2781 
2782 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2783 {
2784 	u64 msr;
2785 
2786 	cr4_set_bits(X86_CR4_VMXE);
2787 
2788 	asm goto("1: vmxon %[vmxon_pointer]\n\t"
2789 			  _ASM_EXTABLE(1b, %l[fault])
2790 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2791 			  : : fault);
2792 	return 0;
2793 
2794 fault:
2795 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2796 		  rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2797 	cr4_clear_bits(X86_CR4_VMXE);
2798 
2799 	return -EFAULT;
2800 }
2801 
2802 static int vmx_hardware_enable(void)
2803 {
2804 	int cpu = raw_smp_processor_id();
2805 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2806 	int r;
2807 
2808 	if (cr4_read_shadow() & X86_CR4_VMXE)
2809 		return -EBUSY;
2810 
2811 	/*
2812 	 * This can happen if we hot-added a CPU but failed to allocate
2813 	 * VP assist page for it.
2814 	 */
2815 	if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
2816 		return -EFAULT;
2817 
2818 	intel_pt_handle_vmx(1);
2819 
2820 	r = kvm_cpu_vmxon(phys_addr);
2821 	if (r) {
2822 		intel_pt_handle_vmx(0);
2823 		return r;
2824 	}
2825 
2826 	if (enable_ept)
2827 		ept_sync_global();
2828 
2829 	return 0;
2830 }
2831 
2832 static void vmclear_local_loaded_vmcss(void)
2833 {
2834 	int cpu = raw_smp_processor_id();
2835 	struct loaded_vmcs *v, *n;
2836 
2837 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2838 				 loaded_vmcss_on_cpu_link)
2839 		__loaded_vmcs_clear(v);
2840 }
2841 
2842 static void vmx_hardware_disable(void)
2843 {
2844 	vmclear_local_loaded_vmcss();
2845 
2846 	if (kvm_cpu_vmxoff())
2847 		kvm_spurious_fault();
2848 
2849 	hv_reset_evmcs();
2850 
2851 	intel_pt_handle_vmx(0);
2852 }
2853 
2854 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2855 {
2856 	int node = cpu_to_node(cpu);
2857 	struct page *pages;
2858 	struct vmcs *vmcs;
2859 
2860 	pages = __alloc_pages_node(node, flags, 0);
2861 	if (!pages)
2862 		return NULL;
2863 	vmcs = page_address(pages);
2864 	memset(vmcs, 0, vmcs_config.size);
2865 
2866 	/* KVM supports Enlightened VMCS v1 only */
2867 	if (kvm_is_using_evmcs())
2868 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2869 	else
2870 		vmcs->hdr.revision_id = vmcs_config.revision_id;
2871 
2872 	if (shadow)
2873 		vmcs->hdr.shadow_vmcs = 1;
2874 	return vmcs;
2875 }
2876 
2877 void free_vmcs(struct vmcs *vmcs)
2878 {
2879 	free_page((unsigned long)vmcs);
2880 }
2881 
2882 /*
2883  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2884  */
2885 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2886 {
2887 	if (!loaded_vmcs->vmcs)
2888 		return;
2889 	loaded_vmcs_clear(loaded_vmcs);
2890 	free_vmcs(loaded_vmcs->vmcs);
2891 	loaded_vmcs->vmcs = NULL;
2892 	if (loaded_vmcs->msr_bitmap)
2893 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2894 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2895 }
2896 
2897 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2898 {
2899 	loaded_vmcs->vmcs = alloc_vmcs(false);
2900 	if (!loaded_vmcs->vmcs)
2901 		return -ENOMEM;
2902 
2903 	vmcs_clear(loaded_vmcs->vmcs);
2904 
2905 	loaded_vmcs->shadow_vmcs = NULL;
2906 	loaded_vmcs->hv_timer_soft_disabled = false;
2907 	loaded_vmcs->cpu = -1;
2908 	loaded_vmcs->launched = 0;
2909 
2910 	if (cpu_has_vmx_msr_bitmap()) {
2911 		loaded_vmcs->msr_bitmap = (unsigned long *)
2912 				__get_free_page(GFP_KERNEL_ACCOUNT);
2913 		if (!loaded_vmcs->msr_bitmap)
2914 			goto out_vmcs;
2915 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2916 	}
2917 
2918 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2919 	memset(&loaded_vmcs->controls_shadow, 0,
2920 		sizeof(struct vmcs_controls_shadow));
2921 
2922 	return 0;
2923 
2924 out_vmcs:
2925 	free_loaded_vmcs(loaded_vmcs);
2926 	return -ENOMEM;
2927 }
2928 
2929 static void free_kvm_area(void)
2930 {
2931 	int cpu;
2932 
2933 	for_each_possible_cpu(cpu) {
2934 		free_vmcs(per_cpu(vmxarea, cpu));
2935 		per_cpu(vmxarea, cpu) = NULL;
2936 	}
2937 }
2938 
2939 static __init int alloc_kvm_area(void)
2940 {
2941 	int cpu;
2942 
2943 	for_each_possible_cpu(cpu) {
2944 		struct vmcs *vmcs;
2945 
2946 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2947 		if (!vmcs) {
2948 			free_kvm_area();
2949 			return -ENOMEM;
2950 		}
2951 
2952 		/*
2953 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2954 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2955 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2956 		 *
2957 		 * However, even though not explicitly documented by
2958 		 * TLFS, VMXArea passed as VMXON argument should
2959 		 * still be marked with revision_id reported by
2960 		 * physical CPU.
2961 		 */
2962 		if (kvm_is_using_evmcs())
2963 			vmcs->hdr.revision_id = vmcs_config.revision_id;
2964 
2965 		per_cpu(vmxarea, cpu) = vmcs;
2966 	}
2967 	return 0;
2968 }
2969 
2970 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2971 		struct kvm_segment *save)
2972 {
2973 	if (!emulate_invalid_guest_state) {
2974 		/*
2975 		 * CS and SS RPL should be equal during guest entry according
2976 		 * to VMX spec, but in reality it is not always so. Since vcpu
2977 		 * is in the middle of the transition from real mode to
2978 		 * protected mode it is safe to assume that RPL 0 is a good
2979 		 * default value.
2980 		 */
2981 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2982 			save->selector &= ~SEGMENT_RPL_MASK;
2983 		save->dpl = save->selector & SEGMENT_RPL_MASK;
2984 		save->s = 1;
2985 	}
2986 	__vmx_set_segment(vcpu, save, seg);
2987 }
2988 
2989 static void enter_pmode(struct kvm_vcpu *vcpu)
2990 {
2991 	unsigned long flags;
2992 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2993 
2994 	/*
2995 	 * Update real mode segment cache. It may be not up-to-date if segment
2996 	 * register was written while vcpu was in a guest mode.
2997 	 */
2998 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2999 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3000 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3001 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3002 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3003 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3004 
3005 	vmx->rmode.vm86_active = 0;
3006 
3007 	__vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3008 
3009 	flags = vmcs_readl(GUEST_RFLAGS);
3010 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3011 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3012 	vmcs_writel(GUEST_RFLAGS, flags);
3013 
3014 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3015 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3016 
3017 	vmx_update_exception_bitmap(vcpu);
3018 
3019 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3020 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3021 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3022 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3023 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3024 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3025 }
3026 
3027 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3028 {
3029 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3030 	struct kvm_segment var = *save;
3031 
3032 	var.dpl = 0x3;
3033 	if (seg == VCPU_SREG_CS)
3034 		var.type = 0x3;
3035 
3036 	if (!emulate_invalid_guest_state) {
3037 		var.selector = var.base >> 4;
3038 		var.base = var.base & 0xffff0;
3039 		var.limit = 0xffff;
3040 		var.g = 0;
3041 		var.db = 0;
3042 		var.present = 1;
3043 		var.s = 1;
3044 		var.l = 0;
3045 		var.unusable = 0;
3046 		var.type = 0x3;
3047 		var.avl = 0;
3048 		if (save->base & 0xf)
3049 			pr_warn_once("segment base is not paragraph aligned "
3050 				     "when entering protected mode (seg=%d)", seg);
3051 	}
3052 
3053 	vmcs_write16(sf->selector, var.selector);
3054 	vmcs_writel(sf->base, var.base);
3055 	vmcs_write32(sf->limit, var.limit);
3056 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3057 }
3058 
3059 static void enter_rmode(struct kvm_vcpu *vcpu)
3060 {
3061 	unsigned long flags;
3062 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3063 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
3064 
3065 	/*
3066 	 * KVM should never use VM86 to virtualize Real Mode when L2 is active,
3067 	 * as using VM86 is unnecessary if unrestricted guest is enabled, and
3068 	 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0
3069 	 * should VM-Fail and KVM should reject userspace attempts to stuff
3070 	 * CR0.PG=0 when L2 is active.
3071 	 */
3072 	WARN_ON_ONCE(is_guest_mode(vcpu));
3073 
3074 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3075 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3076 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3077 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3078 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3079 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3080 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3081 
3082 	vmx->rmode.vm86_active = 1;
3083 
3084 	vmx_segment_cache_clear(vmx);
3085 
3086 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3087 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3088 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3089 
3090 	flags = vmcs_readl(GUEST_RFLAGS);
3091 	vmx->rmode.save_rflags = flags;
3092 
3093 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3094 
3095 	vmcs_writel(GUEST_RFLAGS, flags);
3096 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3097 	vmx_update_exception_bitmap(vcpu);
3098 
3099 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3100 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3101 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3102 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3103 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3104 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3105 }
3106 
3107 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3108 {
3109 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3110 
3111 	/* Nothing to do if hardware doesn't support EFER. */
3112 	if (!vmx_find_uret_msr(vmx, MSR_EFER))
3113 		return 0;
3114 
3115 	vcpu->arch.efer = efer;
3116 #ifdef CONFIG_X86_64
3117 	if (efer & EFER_LMA)
3118 		vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3119 	else
3120 		vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3121 #else
3122 	if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3123 		return 1;
3124 #endif
3125 
3126 	vmx_setup_uret_msrs(vmx);
3127 	return 0;
3128 }
3129 
3130 #ifdef CONFIG_X86_64
3131 
3132 static void enter_lmode(struct kvm_vcpu *vcpu)
3133 {
3134 	u32 guest_tr_ar;
3135 
3136 	vmx_segment_cache_clear(to_vmx(vcpu));
3137 
3138 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3139 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3140 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3141 				     __func__);
3142 		vmcs_write32(GUEST_TR_AR_BYTES,
3143 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3144 			     | VMX_AR_TYPE_BUSY_64_TSS);
3145 	}
3146 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3147 }
3148 
3149 static void exit_lmode(struct kvm_vcpu *vcpu)
3150 {
3151 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3152 }
3153 
3154 #endif
3155 
3156 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3157 {
3158 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3159 
3160 	/*
3161 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3162 	 * the CPU is not required to invalidate guest-physical mappings on
3163 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
3164 	 * associated with the root EPT structure and not any particular VPID
3165 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
3166 	 */
3167 	if (enable_ept) {
3168 		ept_sync_global();
3169 	} else if (enable_vpid) {
3170 		if (cpu_has_vmx_invvpid_global()) {
3171 			vpid_sync_vcpu_global();
3172 		} else {
3173 			vpid_sync_vcpu_single(vmx->vpid);
3174 			vpid_sync_vcpu_single(vmx->nested.vpid02);
3175 		}
3176 	}
3177 }
3178 
3179 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3180 {
3181 	if (is_guest_mode(vcpu))
3182 		return nested_get_vpid02(vcpu);
3183 	return to_vmx(vcpu)->vpid;
3184 }
3185 
3186 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3187 {
3188 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3189 	u64 root_hpa = mmu->root.hpa;
3190 
3191 	/* No flush required if the current context is invalid. */
3192 	if (!VALID_PAGE(root_hpa))
3193 		return;
3194 
3195 	if (enable_ept)
3196 		ept_sync_context(construct_eptp(vcpu, root_hpa,
3197 						mmu->root_role.level));
3198 	else
3199 		vpid_sync_context(vmx_get_current_vpid(vcpu));
3200 }
3201 
3202 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3203 {
3204 	/*
3205 	 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3206 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3207 	 */
3208 	vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3209 }
3210 
3211 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3212 {
3213 	/*
3214 	 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3215 	 * vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit are
3216 	 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3217 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3218 	 * i.e. no explicit INVVPID is necessary.
3219 	 */
3220 	vpid_sync_context(vmx_get_current_vpid(vcpu));
3221 }
3222 
3223 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3224 {
3225 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3226 
3227 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3228 		return;
3229 
3230 	if (is_pae_paging(vcpu)) {
3231 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3232 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3233 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3234 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3235 	}
3236 }
3237 
3238 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3239 {
3240 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3241 
3242 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3243 		return;
3244 
3245 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3246 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3247 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3248 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3249 
3250 	kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3251 }
3252 
3253 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3254 			  CPU_BASED_CR3_STORE_EXITING)
3255 
3256 static bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3257 {
3258 	if (is_guest_mode(vcpu))
3259 		return nested_guest_cr0_valid(vcpu, cr0);
3260 
3261 	if (to_vmx(vcpu)->nested.vmxon)
3262 		return nested_host_cr0_valid(vcpu, cr0);
3263 
3264 	return true;
3265 }
3266 
3267 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3268 {
3269 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3270 	unsigned long hw_cr0, old_cr0_pg;
3271 	u32 tmp;
3272 
3273 	old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3274 
3275 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3276 	if (enable_unrestricted_guest)
3277 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3278 	else {
3279 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3280 		if (!enable_ept)
3281 			hw_cr0 |= X86_CR0_WP;
3282 
3283 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3284 			enter_pmode(vcpu);
3285 
3286 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3287 			enter_rmode(vcpu);
3288 	}
3289 
3290 	vmcs_writel(CR0_READ_SHADOW, cr0);
3291 	vmcs_writel(GUEST_CR0, hw_cr0);
3292 	vcpu->arch.cr0 = cr0;
3293 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3294 
3295 #ifdef CONFIG_X86_64
3296 	if (vcpu->arch.efer & EFER_LME) {
3297 		if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3298 			enter_lmode(vcpu);
3299 		else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3300 			exit_lmode(vcpu);
3301 	}
3302 #endif
3303 
3304 	if (enable_ept && !enable_unrestricted_guest) {
3305 		/*
3306 		 * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3307 		 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3308 		 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3309 		 * KVM's CR3 is installed.
3310 		 */
3311 		if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3312 			vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3313 
3314 		/*
3315 		 * When running with EPT but not unrestricted guest, KVM must
3316 		 * intercept CR3 accesses when paging is _disabled_.  This is
3317 		 * necessary because restricted guests can't actually run with
3318 		 * paging disabled, and so KVM stuffs its own CR3 in order to
3319 		 * run the guest when identity mapped page tables.
3320 		 *
3321 		 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3322 		 * update, it may be stale with respect to CR3 interception,
3323 		 * e.g. after nested VM-Enter.
3324 		 *
3325 		 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3326 		 * stores to forward them to L1, even if KVM does not need to
3327 		 * intercept them to preserve its identity mapped page tables.
3328 		 */
3329 		if (!(cr0 & X86_CR0_PG)) {
3330 			exec_controls_setbit(vmx, CR3_EXITING_BITS);
3331 		} else if (!is_guest_mode(vcpu)) {
3332 			exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3333 		} else {
3334 			tmp = exec_controls_get(vmx);
3335 			tmp &= ~CR3_EXITING_BITS;
3336 			tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3337 			exec_controls_set(vmx, tmp);
3338 		}
3339 
3340 		/* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3341 		if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3342 			vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3343 
3344 		/*
3345 		 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3346 		 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3347 		 */
3348 		if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3349 			kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3350 	}
3351 
3352 	/* depends on vcpu->arch.cr0 to be set to a new value */
3353 	vmx->emulation_required = vmx_emulation_required(vcpu);
3354 }
3355 
3356 static int vmx_get_max_ept_level(void)
3357 {
3358 	if (cpu_has_vmx_ept_5levels())
3359 		return 5;
3360 	return 4;
3361 }
3362 
3363 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3364 {
3365 	u64 eptp = VMX_EPTP_MT_WB;
3366 
3367 	eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3368 
3369 	if (enable_ept_ad_bits &&
3370 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3371 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3372 	eptp |= root_hpa;
3373 
3374 	return eptp;
3375 }
3376 
3377 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3378 			     int root_level)
3379 {
3380 	struct kvm *kvm = vcpu->kvm;
3381 	bool update_guest_cr3 = true;
3382 	unsigned long guest_cr3;
3383 	u64 eptp;
3384 
3385 	if (enable_ept) {
3386 		eptp = construct_eptp(vcpu, root_hpa, root_level);
3387 		vmcs_write64(EPT_POINTER, eptp);
3388 
3389 		hv_track_root_tdp(vcpu, root_hpa);
3390 
3391 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3392 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3393 		else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3394 			guest_cr3 = vcpu->arch.cr3;
3395 		else /* vmcs.GUEST_CR3 is already up-to-date. */
3396 			update_guest_cr3 = false;
3397 		vmx_ept_load_pdptrs(vcpu);
3398 	} else {
3399 		guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu) |
3400 			    kvm_get_active_cr3_lam_bits(vcpu);
3401 	}
3402 
3403 	if (update_guest_cr3)
3404 		vmcs_writel(GUEST_CR3, guest_cr3);
3405 }
3406 
3407 
3408 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3409 {
3410 	/*
3411 	 * We operate under the default treatment of SMM, so VMX cannot be
3412 	 * enabled under SMM.  Note, whether or not VMXE is allowed at all,
3413 	 * i.e. is a reserved bit, is handled by common x86 code.
3414 	 */
3415 	if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3416 		return false;
3417 
3418 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3419 		return false;
3420 
3421 	return true;
3422 }
3423 
3424 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3425 {
3426 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
3427 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3428 	unsigned long hw_cr4;
3429 
3430 	/*
3431 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3432 	 * is in force while we are in guest mode.  Do not let guests control
3433 	 * this bit, even if host CR4.MCE == 0.
3434 	 */
3435 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3436 	if (enable_unrestricted_guest)
3437 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3438 	else if (vmx->rmode.vm86_active)
3439 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3440 	else
3441 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3442 
3443 	if (vmx_umip_emulated()) {
3444 		if (cr4 & X86_CR4_UMIP) {
3445 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3446 			hw_cr4 &= ~X86_CR4_UMIP;
3447 		} else if (!is_guest_mode(vcpu) ||
3448 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3449 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3450 		}
3451 	}
3452 
3453 	vcpu->arch.cr4 = cr4;
3454 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3455 
3456 	if (!enable_unrestricted_guest) {
3457 		if (enable_ept) {
3458 			if (!is_paging(vcpu)) {
3459 				hw_cr4 &= ~X86_CR4_PAE;
3460 				hw_cr4 |= X86_CR4_PSE;
3461 			} else if (!(cr4 & X86_CR4_PAE)) {
3462 				hw_cr4 &= ~X86_CR4_PAE;
3463 			}
3464 		}
3465 
3466 		/*
3467 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3468 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3469 		 * to be manually disabled when guest switches to non-paging
3470 		 * mode.
3471 		 *
3472 		 * If !enable_unrestricted_guest, the CPU is always running
3473 		 * with CR0.PG=1 and CR4 needs to be modified.
3474 		 * If enable_unrestricted_guest, the CPU automatically
3475 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3476 		 */
3477 		if (!is_paging(vcpu))
3478 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3479 	}
3480 
3481 	vmcs_writel(CR4_READ_SHADOW, cr4);
3482 	vmcs_writel(GUEST_CR4, hw_cr4);
3483 
3484 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3485 		kvm_update_cpuid_runtime(vcpu);
3486 }
3487 
3488 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3489 {
3490 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3491 	u32 ar;
3492 
3493 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3494 		*var = vmx->rmode.segs[seg];
3495 		if (seg == VCPU_SREG_TR
3496 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3497 			return;
3498 		var->base = vmx_read_guest_seg_base(vmx, seg);
3499 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3500 		return;
3501 	}
3502 	var->base = vmx_read_guest_seg_base(vmx, seg);
3503 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3504 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3505 	ar = vmx_read_guest_seg_ar(vmx, seg);
3506 	var->unusable = (ar >> 16) & 1;
3507 	var->type = ar & 15;
3508 	var->s = (ar >> 4) & 1;
3509 	var->dpl = (ar >> 5) & 3;
3510 	/*
3511 	 * Some userspaces do not preserve unusable property. Since usable
3512 	 * segment has to be present according to VMX spec we can use present
3513 	 * property to amend userspace bug by making unusable segment always
3514 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3515 	 * segment as unusable.
3516 	 */
3517 	var->present = !var->unusable;
3518 	var->avl = (ar >> 12) & 1;
3519 	var->l = (ar >> 13) & 1;
3520 	var->db = (ar >> 14) & 1;
3521 	var->g = (ar >> 15) & 1;
3522 }
3523 
3524 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3525 {
3526 	struct kvm_segment s;
3527 
3528 	if (to_vmx(vcpu)->rmode.vm86_active) {
3529 		vmx_get_segment(vcpu, &s, seg);
3530 		return s.base;
3531 	}
3532 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3533 }
3534 
3535 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3536 {
3537 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3538 
3539 	if (unlikely(vmx->rmode.vm86_active))
3540 		return 0;
3541 	else {
3542 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3543 		return VMX_AR_DPL(ar);
3544 	}
3545 }
3546 
3547 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3548 {
3549 	u32 ar;
3550 
3551 	ar = var->type & 15;
3552 	ar |= (var->s & 1) << 4;
3553 	ar |= (var->dpl & 3) << 5;
3554 	ar |= (var->present & 1) << 7;
3555 	ar |= (var->avl & 1) << 12;
3556 	ar |= (var->l & 1) << 13;
3557 	ar |= (var->db & 1) << 14;
3558 	ar |= (var->g & 1) << 15;
3559 	ar |= (var->unusable || !var->present) << 16;
3560 
3561 	return ar;
3562 }
3563 
3564 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3565 {
3566 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3567 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3568 
3569 	vmx_segment_cache_clear(vmx);
3570 
3571 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3572 		vmx->rmode.segs[seg] = *var;
3573 		if (seg == VCPU_SREG_TR)
3574 			vmcs_write16(sf->selector, var->selector);
3575 		else if (var->s)
3576 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3577 		return;
3578 	}
3579 
3580 	vmcs_writel(sf->base, var->base);
3581 	vmcs_write32(sf->limit, var->limit);
3582 	vmcs_write16(sf->selector, var->selector);
3583 
3584 	/*
3585 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3586 	 * qemu binaries.
3587 	 *   IA32 arch specifies that at the time of processor reset the
3588 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3589 	 * is setting it to 0 in the userland code. This causes invalid guest
3590 	 * state vmexit when "unrestricted guest" mode is turned on.
3591 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3592 	 * tree. Newer qemu binaries with that qemu fix would not need this
3593 	 * kvm hack.
3594 	 */
3595 	if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3596 		var->type |= 0x1; /* Accessed */
3597 
3598 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3599 }
3600 
3601 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3602 {
3603 	__vmx_set_segment(vcpu, var, seg);
3604 
3605 	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3606 }
3607 
3608 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3609 {
3610 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3611 
3612 	*db = (ar >> 14) & 1;
3613 	*l = (ar >> 13) & 1;
3614 }
3615 
3616 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3617 {
3618 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3619 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3620 }
3621 
3622 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3623 {
3624 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3625 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3626 }
3627 
3628 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3629 {
3630 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3631 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3632 }
3633 
3634 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3635 {
3636 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3637 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3638 }
3639 
3640 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3641 {
3642 	struct kvm_segment var;
3643 	u32 ar;
3644 
3645 	vmx_get_segment(vcpu, &var, seg);
3646 	var.dpl = 0x3;
3647 	if (seg == VCPU_SREG_CS)
3648 		var.type = 0x3;
3649 	ar = vmx_segment_access_rights(&var);
3650 
3651 	if (var.base != (var.selector << 4))
3652 		return false;
3653 	if (var.limit != 0xffff)
3654 		return false;
3655 	if (ar != 0xf3)
3656 		return false;
3657 
3658 	return true;
3659 }
3660 
3661 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3662 {
3663 	struct kvm_segment cs;
3664 	unsigned int cs_rpl;
3665 
3666 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3667 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3668 
3669 	if (cs.unusable)
3670 		return false;
3671 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3672 		return false;
3673 	if (!cs.s)
3674 		return false;
3675 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3676 		if (cs.dpl > cs_rpl)
3677 			return false;
3678 	} else {
3679 		if (cs.dpl != cs_rpl)
3680 			return false;
3681 	}
3682 	if (!cs.present)
3683 		return false;
3684 
3685 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3686 	return true;
3687 }
3688 
3689 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3690 {
3691 	struct kvm_segment ss;
3692 	unsigned int ss_rpl;
3693 
3694 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3695 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3696 
3697 	if (ss.unusable)
3698 		return true;
3699 	if (ss.type != 3 && ss.type != 7)
3700 		return false;
3701 	if (!ss.s)
3702 		return false;
3703 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3704 		return false;
3705 	if (!ss.present)
3706 		return false;
3707 
3708 	return true;
3709 }
3710 
3711 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3712 {
3713 	struct kvm_segment var;
3714 	unsigned int rpl;
3715 
3716 	vmx_get_segment(vcpu, &var, seg);
3717 	rpl = var.selector & SEGMENT_RPL_MASK;
3718 
3719 	if (var.unusable)
3720 		return true;
3721 	if (!var.s)
3722 		return false;
3723 	if (!var.present)
3724 		return false;
3725 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3726 		if (var.dpl < rpl) /* DPL < RPL */
3727 			return false;
3728 	}
3729 
3730 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3731 	 * rights flags
3732 	 */
3733 	return true;
3734 }
3735 
3736 static bool tr_valid(struct kvm_vcpu *vcpu)
3737 {
3738 	struct kvm_segment tr;
3739 
3740 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3741 
3742 	if (tr.unusable)
3743 		return false;
3744 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3745 		return false;
3746 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3747 		return false;
3748 	if (!tr.present)
3749 		return false;
3750 
3751 	return true;
3752 }
3753 
3754 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3755 {
3756 	struct kvm_segment ldtr;
3757 
3758 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3759 
3760 	if (ldtr.unusable)
3761 		return true;
3762 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3763 		return false;
3764 	if (ldtr.type != 2)
3765 		return false;
3766 	if (!ldtr.present)
3767 		return false;
3768 
3769 	return true;
3770 }
3771 
3772 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3773 {
3774 	struct kvm_segment cs, ss;
3775 
3776 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3777 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3778 
3779 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3780 		 (ss.selector & SEGMENT_RPL_MASK));
3781 }
3782 
3783 /*
3784  * Check if guest state is valid. Returns true if valid, false if
3785  * not.
3786  * We assume that registers are always usable
3787  */
3788 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3789 {
3790 	/* real mode guest state checks */
3791 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3792 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3793 			return false;
3794 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3795 			return false;
3796 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3797 			return false;
3798 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3799 			return false;
3800 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3801 			return false;
3802 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3803 			return false;
3804 	} else {
3805 	/* protected mode guest state checks */
3806 		if (!cs_ss_rpl_check(vcpu))
3807 			return false;
3808 		if (!code_segment_valid(vcpu))
3809 			return false;
3810 		if (!stack_segment_valid(vcpu))
3811 			return false;
3812 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3813 			return false;
3814 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3815 			return false;
3816 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3817 			return false;
3818 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3819 			return false;
3820 		if (!tr_valid(vcpu))
3821 			return false;
3822 		if (!ldtr_valid(vcpu))
3823 			return false;
3824 	}
3825 	/* TODO:
3826 	 * - Add checks on RIP
3827 	 * - Add checks on RFLAGS
3828 	 */
3829 
3830 	return true;
3831 }
3832 
3833 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3834 {
3835 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3836 	u16 data;
3837 	int i;
3838 
3839 	for (i = 0; i < 3; i++) {
3840 		if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3841 			return -EFAULT;
3842 	}
3843 
3844 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3845 	if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3846 		return -EFAULT;
3847 
3848 	data = ~0;
3849 	if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3850 		return -EFAULT;
3851 
3852 	return 0;
3853 }
3854 
3855 static int init_rmode_identity_map(struct kvm *kvm)
3856 {
3857 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3858 	int i, r = 0;
3859 	void __user *uaddr;
3860 	u32 tmp;
3861 
3862 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3863 	mutex_lock(&kvm->slots_lock);
3864 
3865 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3866 		goto out;
3867 
3868 	if (!kvm_vmx->ept_identity_map_addr)
3869 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3870 
3871 	uaddr = __x86_set_memory_region(kvm,
3872 					IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3873 					kvm_vmx->ept_identity_map_addr,
3874 					PAGE_SIZE);
3875 	if (IS_ERR(uaddr)) {
3876 		r = PTR_ERR(uaddr);
3877 		goto out;
3878 	}
3879 
3880 	/* Set up identity-mapping pagetable for EPT in real mode */
3881 	for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3882 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3883 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3884 		if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3885 			r = -EFAULT;
3886 			goto out;
3887 		}
3888 	}
3889 	kvm_vmx->ept_identity_pagetable_done = true;
3890 
3891 out:
3892 	mutex_unlock(&kvm->slots_lock);
3893 	return r;
3894 }
3895 
3896 static void seg_setup(int seg)
3897 {
3898 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3899 	unsigned int ar;
3900 
3901 	vmcs_write16(sf->selector, 0);
3902 	vmcs_writel(sf->base, 0);
3903 	vmcs_write32(sf->limit, 0xffff);
3904 	ar = 0x93;
3905 	if (seg == VCPU_SREG_CS)
3906 		ar |= 0x08; /* code segment */
3907 
3908 	vmcs_write32(sf->ar_bytes, ar);
3909 }
3910 
3911 int allocate_vpid(void)
3912 {
3913 	int vpid;
3914 
3915 	if (!enable_vpid)
3916 		return 0;
3917 	spin_lock(&vmx_vpid_lock);
3918 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3919 	if (vpid < VMX_NR_VPIDS)
3920 		__set_bit(vpid, vmx_vpid_bitmap);
3921 	else
3922 		vpid = 0;
3923 	spin_unlock(&vmx_vpid_lock);
3924 	return vpid;
3925 }
3926 
3927 void free_vpid(int vpid)
3928 {
3929 	if (!enable_vpid || vpid == 0)
3930 		return;
3931 	spin_lock(&vmx_vpid_lock);
3932 	__clear_bit(vpid, vmx_vpid_bitmap);
3933 	spin_unlock(&vmx_vpid_lock);
3934 }
3935 
3936 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3937 {
3938 	/*
3939 	 * When KVM is a nested hypervisor on top of Hyper-V and uses
3940 	 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3941 	 * bitmap has changed.
3942 	 */
3943 	if (kvm_is_using_evmcs()) {
3944 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
3945 
3946 		if (evmcs->hv_enlightenments_control.msr_bitmap)
3947 			evmcs->hv_clean_fields &=
3948 				~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
3949 	}
3950 
3951 	vmx->nested.force_msr_bitmap_recalc = true;
3952 }
3953 
3954 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3955 {
3956 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3957 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3958 	int idx;
3959 
3960 	if (!cpu_has_vmx_msr_bitmap())
3961 		return;
3962 
3963 	vmx_msr_bitmap_l01_changed(vmx);
3964 
3965 	/*
3966 	 * Mark the desired intercept state in shadow bitmap, this is needed
3967 	 * for resync when the MSR filters change.
3968 	 */
3969 	idx = vmx_get_passthrough_msr_slot(msr);
3970 	if (idx >= 0) {
3971 		if (type & MSR_TYPE_R)
3972 			clear_bit(idx, vmx->shadow_msr_intercept.read);
3973 		if (type & MSR_TYPE_W)
3974 			clear_bit(idx, vmx->shadow_msr_intercept.write);
3975 	}
3976 
3977 	if ((type & MSR_TYPE_R) &&
3978 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3979 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3980 		type &= ~MSR_TYPE_R;
3981 	}
3982 
3983 	if ((type & MSR_TYPE_W) &&
3984 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3985 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3986 		type &= ~MSR_TYPE_W;
3987 	}
3988 
3989 	if (type & MSR_TYPE_R)
3990 		vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3991 
3992 	if (type & MSR_TYPE_W)
3993 		vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3994 }
3995 
3996 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3997 {
3998 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3999 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
4000 	int idx;
4001 
4002 	if (!cpu_has_vmx_msr_bitmap())
4003 		return;
4004 
4005 	vmx_msr_bitmap_l01_changed(vmx);
4006 
4007 	/*
4008 	 * Mark the desired intercept state in shadow bitmap, this is needed
4009 	 * for resync when the MSR filter changes.
4010 	 */
4011 	idx = vmx_get_passthrough_msr_slot(msr);
4012 	if (idx >= 0) {
4013 		if (type & MSR_TYPE_R)
4014 			set_bit(idx, vmx->shadow_msr_intercept.read);
4015 		if (type & MSR_TYPE_W)
4016 			set_bit(idx, vmx->shadow_msr_intercept.write);
4017 	}
4018 
4019 	if (type & MSR_TYPE_R)
4020 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
4021 
4022 	if (type & MSR_TYPE_W)
4023 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
4024 }
4025 
4026 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
4027 {
4028 	/*
4029 	 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
4030 	 * of the MSR bitmap.  KVM emulates APIC registers up through 0x3f0,
4031 	 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
4032 	 */
4033 	const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
4034 	const int write_idx = read_idx + (0x800 / sizeof(u64));
4035 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4036 	u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
4037 	u8 mode;
4038 
4039 	if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
4040 		return;
4041 
4042 	if (cpu_has_secondary_exec_ctrls() &&
4043 	    (secondary_exec_controls_get(vmx) &
4044 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4045 		mode = MSR_BITMAP_MODE_X2APIC;
4046 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4047 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4048 	} else {
4049 		mode = 0;
4050 	}
4051 
4052 	if (mode == vmx->x2apic_msr_bitmap_mode)
4053 		return;
4054 
4055 	vmx->x2apic_msr_bitmap_mode = mode;
4056 
4057 	/*
4058 	 * Reset the bitmap for MSRs 0x800 - 0x83f.  Leave AMD's uber-extended
4059 	 * registers (0x840 and above) intercepted, KVM doesn't support them.
4060 	 * Intercept all writes by default and poke holes as needed.  Pass
4061 	 * through reads for all valid registers by default in x2APIC+APICv
4062 	 * mode, only the current timer count needs on-demand emulation by KVM.
4063 	 */
4064 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
4065 		msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
4066 	else
4067 		msr_bitmap[read_idx] = ~0ull;
4068 	msr_bitmap[write_idx] = ~0ull;
4069 
4070 	/*
4071 	 * TPR reads and writes can be virtualized even if virtual interrupt
4072 	 * delivery is not in use.
4073 	 */
4074 	vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4075 				  !(mode & MSR_BITMAP_MODE_X2APIC));
4076 
4077 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4078 		vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4079 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4080 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4081 		if (enable_ipiv)
4082 			vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4083 	}
4084 }
4085 
4086 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4087 {
4088 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4089 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4090 	u32 i;
4091 
4092 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4093 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4094 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4095 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4096 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4097 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4098 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4099 	}
4100 }
4101 
4102 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
4103 {
4104 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4105 	void *vapic_page;
4106 	u32 vppr;
4107 	int rvi;
4108 
4109 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
4110 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4111 		WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
4112 		return false;
4113 
4114 	rvi = vmx_get_rvi();
4115 
4116 	vapic_page = vmx->nested.virtual_apic_map.hva;
4117 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
4118 
4119 	return ((rvi & 0xf0) > (vppr & 0xf0));
4120 }
4121 
4122 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
4123 {
4124 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4125 	u32 i;
4126 
4127 	if (!cpu_has_vmx_msr_bitmap())
4128 		return;
4129 
4130 	/*
4131 	 * Redo intercept permissions for MSRs that KVM is passing through to
4132 	 * the guest.  Disabling interception will check the new MSR filter and
4133 	 * ensure that KVM enables interception if usersepace wants to filter
4134 	 * the MSR.  MSRs that KVM is already intercepting don't need to be
4135 	 * refreshed since KVM is going to intercept them regardless of what
4136 	 * userspace wants.
4137 	 */
4138 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4139 		u32 msr = vmx_possible_passthrough_msrs[i];
4140 
4141 		if (!test_bit(i, vmx->shadow_msr_intercept.read))
4142 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R);
4143 
4144 		if (!test_bit(i, vmx->shadow_msr_intercept.write))
4145 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W);
4146 	}
4147 
4148 	/* PT MSRs can be passed through iff PT is exposed to the guest. */
4149 	if (vmx_pt_mode_is_host_guest())
4150 		pt_update_intercept_for_msr(vcpu);
4151 }
4152 
4153 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4154 						     int pi_vec)
4155 {
4156 #ifdef CONFIG_SMP
4157 	if (vcpu->mode == IN_GUEST_MODE) {
4158 		/*
4159 		 * The vector of the virtual has already been set in the PIR.
4160 		 * Send a notification event to deliver the virtual interrupt
4161 		 * unless the vCPU is the currently running vCPU, i.e. the
4162 		 * event is being sent from a fastpath VM-Exit handler, in
4163 		 * which case the PIR will be synced to the vIRR before
4164 		 * re-entering the guest.
4165 		 *
4166 		 * When the target is not the running vCPU, the following
4167 		 * possibilities emerge:
4168 		 *
4169 		 * Case 1: vCPU stays in non-root mode. Sending a notification
4170 		 * event posts the interrupt to the vCPU.
4171 		 *
4172 		 * Case 2: vCPU exits to root mode and is still runnable. The
4173 		 * PIR will be synced to the vIRR before re-entering the guest.
4174 		 * Sending a notification event is ok as the host IRQ handler
4175 		 * will ignore the spurious event.
4176 		 *
4177 		 * Case 3: vCPU exits to root mode and is blocked. vcpu_block()
4178 		 * has already synced PIR to vIRR and never blocks the vCPU if
4179 		 * the vIRR is not empty. Therefore, a blocked vCPU here does
4180 		 * not wait for any requested interrupts in PIR, and sending a
4181 		 * notification event also results in a benign, spurious event.
4182 		 */
4183 
4184 		if (vcpu != kvm_get_running_vcpu())
4185 			__apic_send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4186 		return;
4187 	}
4188 #endif
4189 	/*
4190 	 * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
4191 	 * otherwise do nothing as KVM will grab the highest priority pending
4192 	 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
4193 	 */
4194 	kvm_vcpu_wake_up(vcpu);
4195 }
4196 
4197 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4198 						int vector)
4199 {
4200 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4201 
4202 	if (is_guest_mode(vcpu) &&
4203 	    vector == vmx->nested.posted_intr_nv) {
4204 		/*
4205 		 * If a posted intr is not recognized by hardware,
4206 		 * we will accomplish it in the next vmentry.
4207 		 */
4208 		vmx->nested.pi_pending = true;
4209 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4210 
4211 		/*
4212 		 * This pairs with the smp_mb_*() after setting vcpu->mode in
4213 		 * vcpu_enter_guest() to guarantee the vCPU sees the event
4214 		 * request if triggering a posted interrupt "fails" because
4215 		 * vcpu->mode != IN_GUEST_MODE.  The extra barrier is needed as
4216 		 * the smb_wmb() in kvm_make_request() only ensures everything
4217 		 * done before making the request is visible when the request
4218 		 * is visible, it doesn't ensure ordering between the store to
4219 		 * vcpu->requests and the load from vcpu->mode.
4220 		 */
4221 		smp_mb__after_atomic();
4222 
4223 		/* the PIR and ON have been set by L1. */
4224 		kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4225 		return 0;
4226 	}
4227 	return -1;
4228 }
4229 /*
4230  * Send interrupt to vcpu via posted interrupt way.
4231  * 1. If target vcpu is running(non-root mode), send posted interrupt
4232  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4233  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4234  * interrupt from PIR in next vmentry.
4235  */
4236 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4237 {
4238 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4239 	int r;
4240 
4241 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4242 	if (!r)
4243 		return 0;
4244 
4245 	/* Note, this is called iff the local APIC is in-kernel. */
4246 	if (!vcpu->arch.apic->apicv_active)
4247 		return -1;
4248 
4249 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4250 		return 0;
4251 
4252 	/* If a previous notification has sent the IPI, nothing to do.  */
4253 	if (pi_test_and_set_on(&vmx->pi_desc))
4254 		return 0;
4255 
4256 	/*
4257 	 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4258 	 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4259 	 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4260 	 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4261 	 */
4262 	kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4263 	return 0;
4264 }
4265 
4266 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4267 				  int trig_mode, int vector)
4268 {
4269 	struct kvm_vcpu *vcpu = apic->vcpu;
4270 
4271 	if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4272 		kvm_lapic_set_irr(vector, apic);
4273 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4274 		kvm_vcpu_kick(vcpu);
4275 	} else {
4276 		trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4277 					   trig_mode, vector);
4278 	}
4279 }
4280 
4281 /*
4282  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4283  * will not change in the lifetime of the guest.
4284  * Note that host-state that does change is set elsewhere. E.g., host-state
4285  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4286  */
4287 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4288 {
4289 	u32 low32, high32;
4290 	unsigned long tmpl;
4291 	unsigned long cr0, cr3, cr4;
4292 
4293 	cr0 = read_cr0();
4294 	WARN_ON(cr0 & X86_CR0_TS);
4295 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4296 
4297 	/*
4298 	 * Save the most likely value for this task's CR3 in the VMCS.
4299 	 * We can't use __get_current_cr3_fast() because we're not atomic.
4300 	 */
4301 	cr3 = __read_cr3();
4302 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
4303 	vmx->loaded_vmcs->host_state.cr3 = cr3;
4304 
4305 	/* Save the most likely value for this task's CR4 in the VMCS. */
4306 	cr4 = cr4_read_shadow();
4307 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4308 	vmx->loaded_vmcs->host_state.cr4 = cr4;
4309 
4310 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4311 #ifdef CONFIG_X86_64
4312 	/*
4313 	 * Load null selectors, so we can avoid reloading them in
4314 	 * vmx_prepare_switch_to_host(), in case userspace uses
4315 	 * the null selectors too (the expected case).
4316 	 */
4317 	vmcs_write16(HOST_DS_SELECTOR, 0);
4318 	vmcs_write16(HOST_ES_SELECTOR, 0);
4319 #else
4320 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4321 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4322 #endif
4323 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4324 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4325 
4326 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4327 
4328 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4329 
4330 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4331 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4332 
4333 	/*
4334 	 * SYSENTER is used for 32-bit system calls on either 32-bit or
4335 	 * 64-bit kernels.  It is always zero If neither is allowed, otherwise
4336 	 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4337 	 * have already done so!).
4338 	 */
4339 	if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4340 		vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4341 
4342 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4343 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4344 
4345 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4346 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4347 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4348 	}
4349 
4350 	if (cpu_has_load_ia32_efer())
4351 		vmcs_write64(HOST_IA32_EFER, host_efer);
4352 }
4353 
4354 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4355 {
4356 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4357 
4358 	vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4359 					  ~vcpu->arch.cr4_guest_rsvd_bits;
4360 	if (!enable_ept) {
4361 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4362 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4363 	}
4364 	if (is_guest_mode(&vmx->vcpu))
4365 		vcpu->arch.cr4_guest_owned_bits &=
4366 			~get_vmcs12(vcpu)->cr4_guest_host_mask;
4367 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4368 }
4369 
4370 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4371 {
4372 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4373 
4374 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4375 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4376 
4377 	if (!enable_vnmi)
4378 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4379 
4380 	if (!enable_preemption_timer)
4381 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4382 
4383 	return pin_based_exec_ctrl;
4384 }
4385 
4386 static u32 vmx_vmentry_ctrl(void)
4387 {
4388 	u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4389 
4390 	if (vmx_pt_mode_is_system())
4391 		vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4392 				  VM_ENTRY_LOAD_IA32_RTIT_CTL);
4393 	/*
4394 	 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4395 	 */
4396 	vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4397 			  VM_ENTRY_LOAD_IA32_EFER |
4398 			  VM_ENTRY_IA32E_MODE);
4399 
4400 	if (cpu_has_perf_global_ctrl_bug())
4401 		vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4402 
4403 	return vmentry_ctrl;
4404 }
4405 
4406 static u32 vmx_vmexit_ctrl(void)
4407 {
4408 	u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4409 
4410 	/*
4411 	 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4412 	 * nested virtualization and thus allowed to be set in vmcs12.
4413 	 */
4414 	vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4415 			 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4416 
4417 	if (vmx_pt_mode_is_system())
4418 		vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4419 				 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4420 
4421 	if (cpu_has_perf_global_ctrl_bug())
4422 		vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4423 
4424 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4425 	return vmexit_ctrl &
4426 		~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4427 }
4428 
4429 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4430 {
4431 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4432 
4433 	if (is_guest_mode(vcpu)) {
4434 		vmx->nested.update_vmcs01_apicv_status = true;
4435 		return;
4436 	}
4437 
4438 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4439 
4440 	if (kvm_vcpu_apicv_active(vcpu)) {
4441 		secondary_exec_controls_setbit(vmx,
4442 					       SECONDARY_EXEC_APIC_REGISTER_VIRT |
4443 					       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4444 		if (enable_ipiv)
4445 			tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4446 	} else {
4447 		secondary_exec_controls_clearbit(vmx,
4448 						 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4449 						 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4450 		if (enable_ipiv)
4451 			tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4452 	}
4453 
4454 	vmx_update_msr_bitmap_x2apic(vcpu);
4455 }
4456 
4457 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4458 {
4459 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4460 
4461 	/*
4462 	 * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4463 	 * vmcs12 and propagated to vmcs02 when set in vmcs12.
4464 	 */
4465 	exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4466 			  CPU_BASED_USE_IO_BITMAPS |
4467 			  CPU_BASED_MONITOR_TRAP_FLAG |
4468 			  CPU_BASED_PAUSE_EXITING);
4469 
4470 	/* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4471 	exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4472 			  CPU_BASED_NMI_WINDOW_EXITING);
4473 
4474 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4475 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4476 
4477 	if (!cpu_need_tpr_shadow(&vmx->vcpu))
4478 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4479 
4480 #ifdef CONFIG_X86_64
4481 	if (exec_control & CPU_BASED_TPR_SHADOW)
4482 		exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4483 				  CPU_BASED_CR8_STORE_EXITING);
4484 	else
4485 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4486 				CPU_BASED_CR8_LOAD_EXITING;
4487 #endif
4488 	/* No need to intercept CR3 access or INVPLG when using EPT. */
4489 	if (enable_ept)
4490 		exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4491 				  CPU_BASED_CR3_STORE_EXITING |
4492 				  CPU_BASED_INVLPG_EXITING);
4493 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4494 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4495 				CPU_BASED_MONITOR_EXITING);
4496 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4497 		exec_control &= ~CPU_BASED_HLT_EXITING;
4498 	return exec_control;
4499 }
4500 
4501 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4502 {
4503 	u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4504 
4505 	/*
4506 	 * IPI virtualization relies on APICv. Disable IPI virtualization if
4507 	 * APICv is inhibited.
4508 	 */
4509 	if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4510 		exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4511 
4512 	return exec_control;
4513 }
4514 
4515 /*
4516  * Adjust a single secondary execution control bit to intercept/allow an
4517  * instruction in the guest.  This is usually done based on whether or not a
4518  * feature has been exposed to the guest in order to correctly emulate faults.
4519  */
4520 static inline void
4521 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4522 				  u32 control, bool enabled, bool exiting)
4523 {
4524 	/*
4525 	 * If the control is for an opt-in feature, clear the control if the
4526 	 * feature is not exposed to the guest, i.e. not enabled.  If the
4527 	 * control is opt-out, i.e. an exiting control, clear the control if
4528 	 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4529 	 * disabled for the associated instruction.  Note, the caller is
4530 	 * responsible presetting exec_control to set all supported bits.
4531 	 */
4532 	if (enabled == exiting)
4533 		*exec_control &= ~control;
4534 
4535 	/*
4536 	 * Update the nested MSR settings so that a nested VMM can/can't set
4537 	 * controls for features that are/aren't exposed to the guest.
4538 	 */
4539 	if (nested) {
4540 		/*
4541 		 * All features that can be added or removed to VMX MSRs must
4542 		 * be supported in the first place for nested virtualization.
4543 		 */
4544 		if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4545 			enabled = false;
4546 
4547 		if (enabled)
4548 			vmx->nested.msrs.secondary_ctls_high |= control;
4549 		else
4550 			vmx->nested.msrs.secondary_ctls_high &= ~control;
4551 	}
4552 }
4553 
4554 /*
4555  * Wrapper macro for the common case of adjusting a secondary execution control
4556  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4557  * verifies that the control is actually supported by KVM and hardware.
4558  */
4559 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting)	\
4560 ({												\
4561 	struct kvm_vcpu *__vcpu = &(vmx)->vcpu;							\
4562 	bool __enabled;										\
4563 												\
4564 	if (cpu_has_vmx_##name()) {								\
4565 		if (kvm_is_governed_feature(X86_FEATURE_##feat_name))				\
4566 			__enabled = guest_can_use(__vcpu, X86_FEATURE_##feat_name);		\
4567 		else										\
4568 			__enabled = guest_cpuid_has(__vcpu, X86_FEATURE_##feat_name);		\
4569 		vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\
4570 						  __enabled, exiting);				\
4571 	}											\
4572 })
4573 
4574 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4575 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4576 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4577 
4578 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4579 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4580 
4581 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4582 {
4583 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4584 
4585 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4586 
4587 	if (vmx_pt_mode_is_system())
4588 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4589 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4590 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4591 	if (vmx->vpid == 0)
4592 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4593 	if (!enable_ept) {
4594 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4595 		enable_unrestricted_guest = 0;
4596 	}
4597 	if (!enable_unrestricted_guest)
4598 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4599 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4600 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4601 	if (!kvm_vcpu_apicv_active(vcpu))
4602 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4603 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4604 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4605 
4606 	/*
4607 	 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4608 	 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4609 	 */
4610 	exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
4611 
4612 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4613 	 * in vmx_set_cr4.  */
4614 	exec_control &= ~SECONDARY_EXEC_DESC;
4615 
4616 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4617 	   (handle_vmptrld).
4618 	   We can NOT enable shadow_vmcs here because we don't have yet
4619 	   a current VMCS12
4620 	*/
4621 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4622 
4623 	/*
4624 	 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4625 	 * it needs to be set here when dirty logging is already active, e.g.
4626 	 * if this vCPU was created after dirty logging was enabled.
4627 	 */
4628 	if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
4629 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4630 
4631 	vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES);
4632 
4633 	/*
4634 	 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4635 	 * feature is exposed to the guest.  This creates a virtualization hole
4636 	 * if both are supported in hardware but only one is exposed to the
4637 	 * guest, but letting the guest execute RDTSCP or RDPID when either one
4638 	 * is advertised is preferable to emulating the advertised instruction
4639 	 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4640 	 */
4641 	if (cpu_has_vmx_rdtscp()) {
4642 		bool rdpid_or_rdtscp_enabled =
4643 			guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4644 			guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4645 
4646 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4647 						  SECONDARY_EXEC_ENABLE_RDTSCP,
4648 						  rdpid_or_rdtscp_enabled, false);
4649 	}
4650 
4651 	vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4652 
4653 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4654 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4655 
4656 	vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4657 				    ENABLE_USR_WAIT_PAUSE, false);
4658 
4659 	if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4660 		exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4661 
4662 	if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4663 		exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4664 
4665 	return exec_control;
4666 }
4667 
4668 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4669 {
4670 	return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4671 }
4672 
4673 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4674 {
4675 	struct page *pages;
4676 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4677 
4678 	if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4679 		return 0;
4680 
4681 	if (kvm_vmx->pid_table)
4682 		return 0;
4683 
4684 	pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO,
4685 			    vmx_get_pid_table_order(kvm));
4686 	if (!pages)
4687 		return -ENOMEM;
4688 
4689 	kvm_vmx->pid_table = (void *)page_address(pages);
4690 	return 0;
4691 }
4692 
4693 static int vmx_vcpu_precreate(struct kvm *kvm)
4694 {
4695 	return vmx_alloc_ipiv_pid_table(kvm);
4696 }
4697 
4698 #define VMX_XSS_EXIT_BITMAP 0
4699 
4700 static void init_vmcs(struct vcpu_vmx *vmx)
4701 {
4702 	struct kvm *kvm = vmx->vcpu.kvm;
4703 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4704 
4705 	if (nested)
4706 		nested_vmx_set_vmcs_shadowing_bitmap();
4707 
4708 	if (cpu_has_vmx_msr_bitmap())
4709 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4710 
4711 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4712 
4713 	/* Control */
4714 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4715 
4716 	exec_controls_set(vmx, vmx_exec_control(vmx));
4717 
4718 	if (cpu_has_secondary_exec_ctrls())
4719 		secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4720 
4721 	if (cpu_has_tertiary_exec_ctrls())
4722 		tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4723 
4724 	if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4725 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4726 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4727 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4728 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4729 
4730 		vmcs_write16(GUEST_INTR_STATUS, 0);
4731 
4732 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4733 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4734 	}
4735 
4736 	if (vmx_can_use_ipiv(&vmx->vcpu)) {
4737 		vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4738 		vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4739 	}
4740 
4741 	if (!kvm_pause_in_guest(kvm)) {
4742 		vmcs_write32(PLE_GAP, ple_gap);
4743 		vmx->ple_window = ple_window;
4744 		vmx->ple_window_dirty = true;
4745 	}
4746 
4747 	if (kvm_notify_vmexit_enabled(kvm))
4748 		vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4749 
4750 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4751 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4752 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4753 
4754 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4755 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4756 	vmx_set_constant_host_state(vmx);
4757 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4758 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4759 
4760 	if (cpu_has_vmx_vmfunc())
4761 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4762 
4763 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4764 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4765 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4766 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4767 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4768 
4769 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4770 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4771 
4772 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4773 
4774 	/* 22.2.1, 20.8.1 */
4775 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4776 
4777 	vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4778 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4779 
4780 	set_cr4_guest_host_mask(vmx);
4781 
4782 	if (vmx->vpid != 0)
4783 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4784 
4785 	if (cpu_has_vmx_xsaves())
4786 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4787 
4788 	if (enable_pml) {
4789 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4790 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4791 	}
4792 
4793 	vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4794 
4795 	if (vmx_pt_mode_is_host_guest()) {
4796 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4797 		/* Bit[6~0] are forced to 1, writes are ignored. */
4798 		vmx->pt_desc.guest.output_mask = 0x7F;
4799 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4800 	}
4801 
4802 	vmcs_write32(GUEST_SYSENTER_CS, 0);
4803 	vmcs_writel(GUEST_SYSENTER_ESP, 0);
4804 	vmcs_writel(GUEST_SYSENTER_EIP, 0);
4805 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4806 
4807 	if (cpu_has_vmx_tpr_shadow()) {
4808 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4809 		if (cpu_need_tpr_shadow(&vmx->vcpu))
4810 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4811 				     __pa(vmx->vcpu.arch.apic->regs));
4812 		vmcs_write32(TPR_THRESHOLD, 0);
4813 	}
4814 
4815 	vmx_setup_uret_msrs(vmx);
4816 }
4817 
4818 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4819 {
4820 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4821 
4822 	init_vmcs(vmx);
4823 
4824 	if (nested)
4825 		memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4826 
4827 	vcpu_setup_sgx_lepubkeyhash(vcpu);
4828 
4829 	vmx->nested.posted_intr_nv = -1;
4830 	vmx->nested.vmxon_ptr = INVALID_GPA;
4831 	vmx->nested.current_vmptr = INVALID_GPA;
4832 
4833 #ifdef CONFIG_KVM_HYPERV
4834 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4835 #endif
4836 
4837 	vcpu->arch.microcode_version = 0x100000000ULL;
4838 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4839 
4840 	/*
4841 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4842 	 * or POSTED_INTR_WAKEUP_VECTOR.
4843 	 */
4844 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4845 	vmx->pi_desc.sn = 1;
4846 }
4847 
4848 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4849 {
4850 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4851 
4852 	if (!init_event)
4853 		__vmx_vcpu_reset(vcpu);
4854 
4855 	vmx->rmode.vm86_active = 0;
4856 	vmx->spec_ctrl = 0;
4857 
4858 	vmx->msr_ia32_umwait_control = 0;
4859 
4860 	vmx->hv_deadline_tsc = -1;
4861 	kvm_set_cr8(vcpu, 0);
4862 
4863 	vmx_segment_cache_clear(vmx);
4864 	kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4865 
4866 	seg_setup(VCPU_SREG_CS);
4867 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4868 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4869 
4870 	seg_setup(VCPU_SREG_DS);
4871 	seg_setup(VCPU_SREG_ES);
4872 	seg_setup(VCPU_SREG_FS);
4873 	seg_setup(VCPU_SREG_GS);
4874 	seg_setup(VCPU_SREG_SS);
4875 
4876 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4877 	vmcs_writel(GUEST_TR_BASE, 0);
4878 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4879 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4880 
4881 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4882 	vmcs_writel(GUEST_LDTR_BASE, 0);
4883 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4884 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4885 
4886 	vmcs_writel(GUEST_GDTR_BASE, 0);
4887 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4888 
4889 	vmcs_writel(GUEST_IDTR_BASE, 0);
4890 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4891 
4892 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4893 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4894 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4895 	if (kvm_mpx_supported())
4896 		vmcs_write64(GUEST_BNDCFGS, 0);
4897 
4898 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4899 
4900 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4901 
4902 	vpid_sync_context(vmx->vpid);
4903 
4904 	vmx_update_fb_clear_dis(vcpu, vmx);
4905 }
4906 
4907 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4908 {
4909 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4910 }
4911 
4912 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4913 {
4914 	if (!enable_vnmi ||
4915 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4916 		vmx_enable_irq_window(vcpu);
4917 		return;
4918 	}
4919 
4920 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4921 }
4922 
4923 static void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4924 {
4925 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4926 	uint32_t intr;
4927 	int irq = vcpu->arch.interrupt.nr;
4928 
4929 	trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4930 
4931 	++vcpu->stat.irq_injections;
4932 	if (vmx->rmode.vm86_active) {
4933 		int inc_eip = 0;
4934 		if (vcpu->arch.interrupt.soft)
4935 			inc_eip = vcpu->arch.event_exit_inst_len;
4936 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4937 		return;
4938 	}
4939 	intr = irq | INTR_INFO_VALID_MASK;
4940 	if (vcpu->arch.interrupt.soft) {
4941 		intr |= INTR_TYPE_SOFT_INTR;
4942 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4943 			     vmx->vcpu.arch.event_exit_inst_len);
4944 	} else
4945 		intr |= INTR_TYPE_EXT_INTR;
4946 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4947 
4948 	vmx_clear_hlt(vcpu);
4949 }
4950 
4951 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4952 {
4953 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4954 
4955 	if (!enable_vnmi) {
4956 		/*
4957 		 * Tracking the NMI-blocked state in software is built upon
4958 		 * finding the next open IRQ window. This, in turn, depends on
4959 		 * well-behaving guests: They have to keep IRQs disabled at
4960 		 * least as long as the NMI handler runs. Otherwise we may
4961 		 * cause NMI nesting, maybe breaking the guest. But as this is
4962 		 * highly unlikely, we can live with the residual risk.
4963 		 */
4964 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4965 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4966 	}
4967 
4968 	++vcpu->stat.nmi_injections;
4969 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4970 
4971 	if (vmx->rmode.vm86_active) {
4972 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4973 		return;
4974 	}
4975 
4976 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4977 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4978 
4979 	vmx_clear_hlt(vcpu);
4980 }
4981 
4982 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4983 {
4984 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4985 	bool masked;
4986 
4987 	if (!enable_vnmi)
4988 		return vmx->loaded_vmcs->soft_vnmi_blocked;
4989 	if (vmx->loaded_vmcs->nmi_known_unmasked)
4990 		return false;
4991 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4992 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4993 	return masked;
4994 }
4995 
4996 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4997 {
4998 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4999 
5000 	if (!enable_vnmi) {
5001 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
5002 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
5003 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
5004 		}
5005 	} else {
5006 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5007 		if (masked)
5008 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5009 				      GUEST_INTR_STATE_NMI);
5010 		else
5011 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5012 					GUEST_INTR_STATE_NMI);
5013 	}
5014 }
5015 
5016 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
5017 {
5018 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5019 		return false;
5020 
5021 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
5022 		return true;
5023 
5024 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5025 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
5026 		 GUEST_INTR_STATE_NMI));
5027 }
5028 
5029 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5030 {
5031 	if (to_vmx(vcpu)->nested.nested_run_pending)
5032 		return -EBUSY;
5033 
5034 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
5035 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5036 		return -EBUSY;
5037 
5038 	return !vmx_nmi_blocked(vcpu);
5039 }
5040 
5041 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5042 {
5043 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5044 		return false;
5045 
5046 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
5047 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5048 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5049 }
5050 
5051 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5052 {
5053 	if (to_vmx(vcpu)->nested.nested_run_pending)
5054 		return -EBUSY;
5055 
5056 	/*
5057 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
5058 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
5059 	 */
5060 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5061 		return -EBUSY;
5062 
5063 	return !vmx_interrupt_blocked(vcpu);
5064 }
5065 
5066 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5067 {
5068 	void __user *ret;
5069 
5070 	if (enable_unrestricted_guest)
5071 		return 0;
5072 
5073 	mutex_lock(&kvm->slots_lock);
5074 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5075 				      PAGE_SIZE * 3);
5076 	mutex_unlock(&kvm->slots_lock);
5077 
5078 	if (IS_ERR(ret))
5079 		return PTR_ERR(ret);
5080 
5081 	to_kvm_vmx(kvm)->tss_addr = addr;
5082 
5083 	return init_rmode_tss(kvm, ret);
5084 }
5085 
5086 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5087 {
5088 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5089 	return 0;
5090 }
5091 
5092 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5093 {
5094 	switch (vec) {
5095 	case BP_VECTOR:
5096 		/*
5097 		 * Update instruction length as we may reinject the exception
5098 		 * from user space while in guest debugging mode.
5099 		 */
5100 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5101 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5102 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5103 			return false;
5104 		fallthrough;
5105 	case DB_VECTOR:
5106 		return !(vcpu->guest_debug &
5107 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5108 	case DE_VECTOR:
5109 	case OF_VECTOR:
5110 	case BR_VECTOR:
5111 	case UD_VECTOR:
5112 	case DF_VECTOR:
5113 	case SS_VECTOR:
5114 	case GP_VECTOR:
5115 	case MF_VECTOR:
5116 		return true;
5117 	}
5118 	return false;
5119 }
5120 
5121 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5122 				  int vec, u32 err_code)
5123 {
5124 	/*
5125 	 * Instruction with address size override prefix opcode 0x67
5126 	 * Cause the #SS fault with 0 error code in VM86 mode.
5127 	 */
5128 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5129 		if (kvm_emulate_instruction(vcpu, 0)) {
5130 			if (vcpu->arch.halt_request) {
5131 				vcpu->arch.halt_request = 0;
5132 				return kvm_emulate_halt_noskip(vcpu);
5133 			}
5134 			return 1;
5135 		}
5136 		return 0;
5137 	}
5138 
5139 	/*
5140 	 * Forward all other exceptions that are valid in real mode.
5141 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5142 	 *        the required debugging infrastructure rework.
5143 	 */
5144 	kvm_queue_exception(vcpu, vec);
5145 	return 1;
5146 }
5147 
5148 static int handle_machine_check(struct kvm_vcpu *vcpu)
5149 {
5150 	/* handled by vmx_vcpu_run() */
5151 	return 1;
5152 }
5153 
5154 /*
5155  * If the host has split lock detection disabled, then #AC is
5156  * unconditionally injected into the guest, which is the pre split lock
5157  * detection behaviour.
5158  *
5159  * If the host has split lock detection enabled then #AC is
5160  * only injected into the guest when:
5161  *  - Guest CPL == 3 (user mode)
5162  *  - Guest has #AC detection enabled in CR0
5163  *  - Guest EFLAGS has AC bit set
5164  */
5165 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5166 {
5167 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5168 		return true;
5169 
5170 	return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
5171 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5172 }
5173 
5174 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5175 {
5176 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5177 	struct kvm_run *kvm_run = vcpu->run;
5178 	u32 intr_info, ex_no, error_code;
5179 	unsigned long cr2, dr6;
5180 	u32 vect_info;
5181 
5182 	vect_info = vmx->idt_vectoring_info;
5183 	intr_info = vmx_get_intr_info(vcpu);
5184 
5185 	/*
5186 	 * Machine checks are handled by handle_exception_irqoff(), or by
5187 	 * vmx_vcpu_run() if a #MC occurs on VM-Entry.  NMIs are handled by
5188 	 * vmx_vcpu_enter_exit().
5189 	 */
5190 	if (is_machine_check(intr_info) || is_nmi(intr_info))
5191 		return 1;
5192 
5193 	/*
5194 	 * Queue the exception here instead of in handle_nm_fault_irqoff().
5195 	 * This ensures the nested_vmx check is not skipped so vmexit can
5196 	 * be reflected to L1 (when it intercepts #NM) before reaching this
5197 	 * point.
5198 	 */
5199 	if (is_nm_fault(intr_info)) {
5200 		kvm_queue_exception(vcpu, NM_VECTOR);
5201 		return 1;
5202 	}
5203 
5204 	if (is_invalid_opcode(intr_info))
5205 		return handle_ud(vcpu);
5206 
5207 	error_code = 0;
5208 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5209 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5210 
5211 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5212 		WARN_ON_ONCE(!enable_vmware_backdoor);
5213 
5214 		/*
5215 		 * VMware backdoor emulation on #GP interception only handles
5216 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5217 		 * error code on #GP.
5218 		 */
5219 		if (error_code) {
5220 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5221 			return 1;
5222 		}
5223 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5224 	}
5225 
5226 	/*
5227 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5228 	 * MMIO, it is better to report an internal error.
5229 	 * See the comments in vmx_handle_exit.
5230 	 */
5231 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5232 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5233 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5234 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5235 		vcpu->run->internal.ndata = 4;
5236 		vcpu->run->internal.data[0] = vect_info;
5237 		vcpu->run->internal.data[1] = intr_info;
5238 		vcpu->run->internal.data[2] = error_code;
5239 		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5240 		return 0;
5241 	}
5242 
5243 	if (is_page_fault(intr_info)) {
5244 		cr2 = vmx_get_exit_qual(vcpu);
5245 		if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5246 			/*
5247 			 * EPT will cause page fault only if we need to
5248 			 * detect illegal GPAs.
5249 			 */
5250 			WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5251 			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5252 			return 1;
5253 		} else
5254 			return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5255 	}
5256 
5257 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5258 
5259 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5260 		return handle_rmode_exception(vcpu, ex_no, error_code);
5261 
5262 	switch (ex_no) {
5263 	case DB_VECTOR:
5264 		dr6 = vmx_get_exit_qual(vcpu);
5265 		if (!(vcpu->guest_debug &
5266 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5267 			/*
5268 			 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5269 			 * instruction.  ICEBP generates a trap-like #DB, but
5270 			 * despite its interception control being tied to #DB,
5271 			 * is an instruction intercept, i.e. the VM-Exit occurs
5272 			 * on the ICEBP itself.  Use the inner "skip" helper to
5273 			 * avoid single-step #DB and MTF updates, as ICEBP is
5274 			 * higher priority.  Note, skipping ICEBP still clears
5275 			 * STI and MOVSS blocking.
5276 			 *
5277 			 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5278 			 * if single-step is enabled in RFLAGS and STI or MOVSS
5279 			 * blocking is active, as the CPU doesn't set the bit
5280 			 * on VM-Exit due to #DB interception.  VM-Entry has a
5281 			 * consistency check that a single-step #DB is pending
5282 			 * in this scenario as the previous instruction cannot
5283 			 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5284 			 * don't modify RFLAGS), therefore the one instruction
5285 			 * delay when activating single-step breakpoints must
5286 			 * have already expired.  Note, the CPU sets/clears BS
5287 			 * as appropriate for all other VM-Exits types.
5288 			 */
5289 			if (is_icebp(intr_info))
5290 				WARN_ON(!skip_emulated_instruction(vcpu));
5291 			else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5292 				 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5293 				  (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5294 				vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5295 					    vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5296 
5297 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5298 			return 1;
5299 		}
5300 		kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5301 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5302 		fallthrough;
5303 	case BP_VECTOR:
5304 		/*
5305 		 * Update instruction length as we may reinject #BP from
5306 		 * user space while in guest debugging mode. Reading it for
5307 		 * #DB as well causes no harm, it is not used in that case.
5308 		 */
5309 		vmx->vcpu.arch.event_exit_inst_len =
5310 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5311 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5312 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5313 		kvm_run->debug.arch.exception = ex_no;
5314 		break;
5315 	case AC_VECTOR:
5316 		if (vmx_guest_inject_ac(vcpu)) {
5317 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5318 			return 1;
5319 		}
5320 
5321 		/*
5322 		 * Handle split lock. Depending on detection mode this will
5323 		 * either warn and disable split lock detection for this
5324 		 * task or force SIGBUS on it.
5325 		 */
5326 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5327 			return 1;
5328 		fallthrough;
5329 	default:
5330 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5331 		kvm_run->ex.exception = ex_no;
5332 		kvm_run->ex.error_code = error_code;
5333 		break;
5334 	}
5335 	return 0;
5336 }
5337 
5338 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5339 {
5340 	++vcpu->stat.irq_exits;
5341 	return 1;
5342 }
5343 
5344 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5345 {
5346 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5347 	vcpu->mmio_needed = 0;
5348 	return 0;
5349 }
5350 
5351 static int handle_io(struct kvm_vcpu *vcpu)
5352 {
5353 	unsigned long exit_qualification;
5354 	int size, in, string;
5355 	unsigned port;
5356 
5357 	exit_qualification = vmx_get_exit_qual(vcpu);
5358 	string = (exit_qualification & 16) != 0;
5359 
5360 	++vcpu->stat.io_exits;
5361 
5362 	if (string)
5363 		return kvm_emulate_instruction(vcpu, 0);
5364 
5365 	port = exit_qualification >> 16;
5366 	size = (exit_qualification & 7) + 1;
5367 	in = (exit_qualification & 8) != 0;
5368 
5369 	return kvm_fast_pio(vcpu, size, port, in);
5370 }
5371 
5372 static void
5373 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5374 {
5375 	/*
5376 	 * Patch in the VMCALL instruction:
5377 	 */
5378 	hypercall[0] = 0x0f;
5379 	hypercall[1] = 0x01;
5380 	hypercall[2] = 0xc1;
5381 }
5382 
5383 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5384 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5385 {
5386 	if (is_guest_mode(vcpu)) {
5387 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5388 		unsigned long orig_val = val;
5389 
5390 		/*
5391 		 * We get here when L2 changed cr0 in a way that did not change
5392 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5393 		 * but did change L0 shadowed bits. So we first calculate the
5394 		 * effective cr0 value that L1 would like to write into the
5395 		 * hardware. It consists of the L2-owned bits from the new
5396 		 * value combined with the L1-owned bits from L1's guest_cr0.
5397 		 */
5398 		val = (val & ~vmcs12->cr0_guest_host_mask) |
5399 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5400 
5401 		if (kvm_set_cr0(vcpu, val))
5402 			return 1;
5403 		vmcs_writel(CR0_READ_SHADOW, orig_val);
5404 		return 0;
5405 	} else {
5406 		return kvm_set_cr0(vcpu, val);
5407 	}
5408 }
5409 
5410 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5411 {
5412 	if (is_guest_mode(vcpu)) {
5413 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5414 		unsigned long orig_val = val;
5415 
5416 		/* analogously to handle_set_cr0 */
5417 		val = (val & ~vmcs12->cr4_guest_host_mask) |
5418 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5419 		if (kvm_set_cr4(vcpu, val))
5420 			return 1;
5421 		vmcs_writel(CR4_READ_SHADOW, orig_val);
5422 		return 0;
5423 	} else
5424 		return kvm_set_cr4(vcpu, val);
5425 }
5426 
5427 static int handle_desc(struct kvm_vcpu *vcpu)
5428 {
5429 	/*
5430 	 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this
5431 	 * and other code needs to be updated if UMIP can be guest owned.
5432 	 */
5433 	BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP);
5434 
5435 	WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP));
5436 	return kvm_emulate_instruction(vcpu, 0);
5437 }
5438 
5439 static int handle_cr(struct kvm_vcpu *vcpu)
5440 {
5441 	unsigned long exit_qualification, val;
5442 	int cr;
5443 	int reg;
5444 	int err;
5445 	int ret;
5446 
5447 	exit_qualification = vmx_get_exit_qual(vcpu);
5448 	cr = exit_qualification & 15;
5449 	reg = (exit_qualification >> 8) & 15;
5450 	switch ((exit_qualification >> 4) & 3) {
5451 	case 0: /* mov to cr */
5452 		val = kvm_register_read(vcpu, reg);
5453 		trace_kvm_cr_write(cr, val);
5454 		switch (cr) {
5455 		case 0:
5456 			err = handle_set_cr0(vcpu, val);
5457 			return kvm_complete_insn_gp(vcpu, err);
5458 		case 3:
5459 			WARN_ON_ONCE(enable_unrestricted_guest);
5460 
5461 			err = kvm_set_cr3(vcpu, val);
5462 			return kvm_complete_insn_gp(vcpu, err);
5463 		case 4:
5464 			err = handle_set_cr4(vcpu, val);
5465 			return kvm_complete_insn_gp(vcpu, err);
5466 		case 8: {
5467 				u8 cr8_prev = kvm_get_cr8(vcpu);
5468 				u8 cr8 = (u8)val;
5469 				err = kvm_set_cr8(vcpu, cr8);
5470 				ret = kvm_complete_insn_gp(vcpu, err);
5471 				if (lapic_in_kernel(vcpu))
5472 					return ret;
5473 				if (cr8_prev <= cr8)
5474 					return ret;
5475 				/*
5476 				 * TODO: we might be squashing a
5477 				 * KVM_GUESTDBG_SINGLESTEP-triggered
5478 				 * KVM_EXIT_DEBUG here.
5479 				 */
5480 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5481 				return 0;
5482 			}
5483 		}
5484 		break;
5485 	case 2: /* clts */
5486 		KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5487 		return -EIO;
5488 	case 1: /*mov from cr*/
5489 		switch (cr) {
5490 		case 3:
5491 			WARN_ON_ONCE(enable_unrestricted_guest);
5492 
5493 			val = kvm_read_cr3(vcpu);
5494 			kvm_register_write(vcpu, reg, val);
5495 			trace_kvm_cr_read(cr, val);
5496 			return kvm_skip_emulated_instruction(vcpu);
5497 		case 8:
5498 			val = kvm_get_cr8(vcpu);
5499 			kvm_register_write(vcpu, reg, val);
5500 			trace_kvm_cr_read(cr, val);
5501 			return kvm_skip_emulated_instruction(vcpu);
5502 		}
5503 		break;
5504 	case 3: /* lmsw */
5505 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5506 		trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
5507 		kvm_lmsw(vcpu, val);
5508 
5509 		return kvm_skip_emulated_instruction(vcpu);
5510 	default:
5511 		break;
5512 	}
5513 	vcpu->run->exit_reason = 0;
5514 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5515 	       (int)(exit_qualification >> 4) & 3, cr);
5516 	return 0;
5517 }
5518 
5519 static int handle_dr(struct kvm_vcpu *vcpu)
5520 {
5521 	unsigned long exit_qualification;
5522 	int dr, dr7, reg;
5523 	int err = 1;
5524 
5525 	exit_qualification = vmx_get_exit_qual(vcpu);
5526 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5527 
5528 	/* First, if DR does not exist, trigger UD */
5529 	if (!kvm_require_dr(vcpu, dr))
5530 		return 1;
5531 
5532 	if (vmx_get_cpl(vcpu) > 0)
5533 		goto out;
5534 
5535 	dr7 = vmcs_readl(GUEST_DR7);
5536 	if (dr7 & DR7_GD) {
5537 		/*
5538 		 * As the vm-exit takes precedence over the debug trap, we
5539 		 * need to emulate the latter, either for the host or the
5540 		 * guest debugging itself.
5541 		 */
5542 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5543 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5544 			vcpu->run->debug.arch.dr7 = dr7;
5545 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5546 			vcpu->run->debug.arch.exception = DB_VECTOR;
5547 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5548 			return 0;
5549 		} else {
5550 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5551 			return 1;
5552 		}
5553 	}
5554 
5555 	if (vcpu->guest_debug == 0) {
5556 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5557 
5558 		/*
5559 		 * No more DR vmexits; force a reload of the debug registers
5560 		 * and reenter on this instruction.  The next vmexit will
5561 		 * retrieve the full state of the debug registers.
5562 		 */
5563 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5564 		return 1;
5565 	}
5566 
5567 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5568 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5569 		kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
5570 		err = 0;
5571 	} else {
5572 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5573 	}
5574 
5575 out:
5576 	return kvm_complete_insn_gp(vcpu, err);
5577 }
5578 
5579 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5580 {
5581 	get_debugreg(vcpu->arch.db[0], 0);
5582 	get_debugreg(vcpu->arch.db[1], 1);
5583 	get_debugreg(vcpu->arch.db[2], 2);
5584 	get_debugreg(vcpu->arch.db[3], 3);
5585 	get_debugreg(vcpu->arch.dr6, 6);
5586 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5587 
5588 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5589 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5590 
5591 	/*
5592 	 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5593 	 * a stale dr6 from the guest.
5594 	 */
5595 	set_debugreg(DR6_RESERVED, 6);
5596 }
5597 
5598 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5599 {
5600 	vmcs_writel(GUEST_DR7, val);
5601 }
5602 
5603 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5604 {
5605 	kvm_apic_update_ppr(vcpu);
5606 	return 1;
5607 }
5608 
5609 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5610 {
5611 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5612 
5613 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5614 
5615 	++vcpu->stat.irq_window_exits;
5616 	return 1;
5617 }
5618 
5619 static int handle_invlpg(struct kvm_vcpu *vcpu)
5620 {
5621 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5622 
5623 	kvm_mmu_invlpg(vcpu, exit_qualification);
5624 	return kvm_skip_emulated_instruction(vcpu);
5625 }
5626 
5627 static int handle_apic_access(struct kvm_vcpu *vcpu)
5628 {
5629 	if (likely(fasteoi)) {
5630 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5631 		int access_type, offset;
5632 
5633 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5634 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5635 		/*
5636 		 * Sane guest uses MOV to write EOI, with written value
5637 		 * not cared. So make a short-circuit here by avoiding
5638 		 * heavy instruction emulation.
5639 		 */
5640 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5641 		    (offset == APIC_EOI)) {
5642 			kvm_lapic_set_eoi(vcpu);
5643 			return kvm_skip_emulated_instruction(vcpu);
5644 		}
5645 	}
5646 	return kvm_emulate_instruction(vcpu, 0);
5647 }
5648 
5649 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5650 {
5651 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5652 	int vector = exit_qualification & 0xff;
5653 
5654 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5655 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5656 	return 1;
5657 }
5658 
5659 static int handle_apic_write(struct kvm_vcpu *vcpu)
5660 {
5661 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5662 
5663 	/*
5664 	 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5665 	 * hardware has done any necessary aliasing, offset adjustments, etc...
5666 	 * for the access.  I.e. the correct value has already been  written to
5667 	 * the vAPIC page for the correct 16-byte chunk.  KVM needs only to
5668 	 * retrieve the register value and emulate the access.
5669 	 */
5670 	u32 offset = exit_qualification & 0xff0;
5671 
5672 	kvm_apic_write_nodecode(vcpu, offset);
5673 	return 1;
5674 }
5675 
5676 static int handle_task_switch(struct kvm_vcpu *vcpu)
5677 {
5678 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5679 	unsigned long exit_qualification;
5680 	bool has_error_code = false;
5681 	u32 error_code = 0;
5682 	u16 tss_selector;
5683 	int reason, type, idt_v, idt_index;
5684 
5685 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5686 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5687 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5688 
5689 	exit_qualification = vmx_get_exit_qual(vcpu);
5690 
5691 	reason = (u32)exit_qualification >> 30;
5692 	if (reason == TASK_SWITCH_GATE && idt_v) {
5693 		switch (type) {
5694 		case INTR_TYPE_NMI_INTR:
5695 			vcpu->arch.nmi_injected = false;
5696 			vmx_set_nmi_mask(vcpu, true);
5697 			break;
5698 		case INTR_TYPE_EXT_INTR:
5699 		case INTR_TYPE_SOFT_INTR:
5700 			kvm_clear_interrupt_queue(vcpu);
5701 			break;
5702 		case INTR_TYPE_HARD_EXCEPTION:
5703 			if (vmx->idt_vectoring_info &
5704 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5705 				has_error_code = true;
5706 				error_code =
5707 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5708 			}
5709 			fallthrough;
5710 		case INTR_TYPE_SOFT_EXCEPTION:
5711 			kvm_clear_exception_queue(vcpu);
5712 			break;
5713 		default:
5714 			break;
5715 		}
5716 	}
5717 	tss_selector = exit_qualification;
5718 
5719 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5720 		       type != INTR_TYPE_EXT_INTR &&
5721 		       type != INTR_TYPE_NMI_INTR))
5722 		WARN_ON(!skip_emulated_instruction(vcpu));
5723 
5724 	/*
5725 	 * TODO: What about debug traps on tss switch?
5726 	 *       Are we supposed to inject them and update dr6?
5727 	 */
5728 	return kvm_task_switch(vcpu, tss_selector,
5729 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5730 			       reason, has_error_code, error_code);
5731 }
5732 
5733 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5734 {
5735 	unsigned long exit_qualification;
5736 	gpa_t gpa;
5737 	u64 error_code;
5738 
5739 	exit_qualification = vmx_get_exit_qual(vcpu);
5740 
5741 	/*
5742 	 * EPT violation happened while executing iret from NMI,
5743 	 * "blocked by NMI" bit has to be set before next VM entry.
5744 	 * There are errata that may cause this bit to not be set:
5745 	 * AAK134, BY25.
5746 	 */
5747 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5748 			enable_vnmi &&
5749 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5750 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5751 
5752 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5753 	trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5754 
5755 	/* Is it a read fault? */
5756 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5757 		     ? PFERR_USER_MASK : 0;
5758 	/* Is it a write fault? */
5759 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5760 		      ? PFERR_WRITE_MASK : 0;
5761 	/* Is it a fetch fault? */
5762 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5763 		      ? PFERR_FETCH_MASK : 0;
5764 	/* ept page table entry is present? */
5765 	error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK)
5766 		      ? PFERR_PRESENT_MASK : 0;
5767 
5768 	error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5769 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5770 
5771 	vcpu->arch.exit_qualification = exit_qualification;
5772 
5773 	/*
5774 	 * Check that the GPA doesn't exceed physical memory limits, as that is
5775 	 * a guest page fault.  We have to emulate the instruction here, because
5776 	 * if the illegal address is that of a paging structure, then
5777 	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5778 	 * would also use advanced VM-exit information for EPT violations to
5779 	 * reconstruct the page fault error code.
5780 	 */
5781 	if (unlikely(allow_smaller_maxphyaddr && !kvm_vcpu_is_legal_gpa(vcpu, gpa)))
5782 		return kvm_emulate_instruction(vcpu, 0);
5783 
5784 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5785 }
5786 
5787 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5788 {
5789 	gpa_t gpa;
5790 
5791 	if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5792 		return 1;
5793 
5794 	/*
5795 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5796 	 * nGPA here instead of the required GPA.
5797 	 */
5798 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5799 	if (!is_guest_mode(vcpu) &&
5800 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5801 		trace_kvm_fast_mmio(gpa);
5802 		return kvm_skip_emulated_instruction(vcpu);
5803 	}
5804 
5805 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5806 }
5807 
5808 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5809 {
5810 	if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5811 		return -EIO;
5812 
5813 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5814 	++vcpu->stat.nmi_window_exits;
5815 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5816 
5817 	return 1;
5818 }
5819 
5820 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
5821 {
5822 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5823 
5824 	return vmx->emulation_required && !vmx->rmode.vm86_active &&
5825 	       (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5826 }
5827 
5828 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5829 {
5830 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5831 	bool intr_window_requested;
5832 	unsigned count = 130;
5833 
5834 	intr_window_requested = exec_controls_get(vmx) &
5835 				CPU_BASED_INTR_WINDOW_EXITING;
5836 
5837 	while (vmx->emulation_required && count-- != 0) {
5838 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5839 			return handle_interrupt_window(&vmx->vcpu);
5840 
5841 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5842 			return 1;
5843 
5844 		if (!kvm_emulate_instruction(vcpu, 0))
5845 			return 0;
5846 
5847 		if (vmx_emulation_required_with_pending_exception(vcpu)) {
5848 			kvm_prepare_emulation_failure_exit(vcpu);
5849 			return 0;
5850 		}
5851 
5852 		if (vcpu->arch.halt_request) {
5853 			vcpu->arch.halt_request = 0;
5854 			return kvm_emulate_halt_noskip(vcpu);
5855 		}
5856 
5857 		/*
5858 		 * Note, return 1 and not 0, vcpu_run() will invoke
5859 		 * xfer_to_guest_mode() which will create a proper return
5860 		 * code.
5861 		 */
5862 		if (__xfer_to_guest_mode_work_pending())
5863 			return 1;
5864 	}
5865 
5866 	return 1;
5867 }
5868 
5869 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5870 {
5871 	if (vmx_emulation_required_with_pending_exception(vcpu)) {
5872 		kvm_prepare_emulation_failure_exit(vcpu);
5873 		return 0;
5874 	}
5875 
5876 	return 1;
5877 }
5878 
5879 static void grow_ple_window(struct kvm_vcpu *vcpu)
5880 {
5881 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5882 	unsigned int old = vmx->ple_window;
5883 
5884 	vmx->ple_window = __grow_ple_window(old, ple_window,
5885 					    ple_window_grow,
5886 					    ple_window_max);
5887 
5888 	if (vmx->ple_window != old) {
5889 		vmx->ple_window_dirty = true;
5890 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5891 					    vmx->ple_window, old);
5892 	}
5893 }
5894 
5895 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5896 {
5897 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5898 	unsigned int old = vmx->ple_window;
5899 
5900 	vmx->ple_window = __shrink_ple_window(old, ple_window,
5901 					      ple_window_shrink,
5902 					      ple_window);
5903 
5904 	if (vmx->ple_window != old) {
5905 		vmx->ple_window_dirty = true;
5906 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5907 					    vmx->ple_window, old);
5908 	}
5909 }
5910 
5911 /*
5912  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5913  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5914  */
5915 static int handle_pause(struct kvm_vcpu *vcpu)
5916 {
5917 	if (!kvm_pause_in_guest(vcpu->kvm))
5918 		grow_ple_window(vcpu);
5919 
5920 	/*
5921 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5922 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5923 	 * never set PAUSE_EXITING and just set PLE if supported,
5924 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5925 	 */
5926 	kvm_vcpu_on_spin(vcpu, true);
5927 	return kvm_skip_emulated_instruction(vcpu);
5928 }
5929 
5930 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5931 {
5932 	return 1;
5933 }
5934 
5935 static int handle_invpcid(struct kvm_vcpu *vcpu)
5936 {
5937 	u32 vmx_instruction_info;
5938 	unsigned long type;
5939 	gva_t gva;
5940 	struct {
5941 		u64 pcid;
5942 		u64 gla;
5943 	} operand;
5944 	int gpr_index;
5945 
5946 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5947 		kvm_queue_exception(vcpu, UD_VECTOR);
5948 		return 1;
5949 	}
5950 
5951 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5952 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5953 	type = kvm_register_read(vcpu, gpr_index);
5954 
5955 	/* According to the Intel instruction reference, the memory operand
5956 	 * is read even if it isn't needed (e.g., for type==all)
5957 	 */
5958 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5959 				vmx_instruction_info, false,
5960 				sizeof(operand), &gva))
5961 		return 1;
5962 
5963 	return kvm_handle_invpcid(vcpu, type, gva);
5964 }
5965 
5966 static int handle_pml_full(struct kvm_vcpu *vcpu)
5967 {
5968 	unsigned long exit_qualification;
5969 
5970 	trace_kvm_pml_full(vcpu->vcpu_id);
5971 
5972 	exit_qualification = vmx_get_exit_qual(vcpu);
5973 
5974 	/*
5975 	 * PML buffer FULL happened while executing iret from NMI,
5976 	 * "blocked by NMI" bit has to be set before next VM entry.
5977 	 */
5978 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5979 			enable_vnmi &&
5980 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5981 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5982 				GUEST_INTR_STATE_NMI);
5983 
5984 	/*
5985 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5986 	 * here.., and there's no userspace involvement needed for PML.
5987 	 */
5988 	return 1;
5989 }
5990 
5991 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu,
5992 						   bool force_immediate_exit)
5993 {
5994 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5995 
5996 	/*
5997 	 * In the *extremely* unlikely scenario that this is a spurious VM-Exit
5998 	 * due to the timer expiring while it was "soft" disabled, just eat the
5999 	 * exit and re-enter the guest.
6000 	 */
6001 	if (unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
6002 		return EXIT_FASTPATH_REENTER_GUEST;
6003 
6004 	/*
6005 	 * If the timer expired because KVM used it to force an immediate exit,
6006 	 * then mission accomplished.
6007 	 */
6008 	if (force_immediate_exit)
6009 		return EXIT_FASTPATH_EXIT_HANDLED;
6010 
6011 	/*
6012 	 * If L2 is active, go down the slow path as emulating the guest timer
6013 	 * expiration likely requires synthesizing a nested VM-Exit.
6014 	 */
6015 	if (is_guest_mode(vcpu))
6016 		return EXIT_FASTPATH_NONE;
6017 
6018 	kvm_lapic_expired_hv_timer(vcpu);
6019 	return EXIT_FASTPATH_REENTER_GUEST;
6020 }
6021 
6022 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
6023 {
6024 	/*
6025 	 * This non-fastpath handler is reached if and only if the preemption
6026 	 * timer was being used to emulate a guest timer while L2 is active.
6027 	 * All other scenarios are supposed to be handled in the fastpath.
6028 	 */
6029 	WARN_ON_ONCE(!is_guest_mode(vcpu));
6030 	kvm_lapic_expired_hv_timer(vcpu);
6031 	return 1;
6032 }
6033 
6034 /*
6035  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
6036  * are overwritten by nested_vmx_setup() when nested=1.
6037  */
6038 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
6039 {
6040 	kvm_queue_exception(vcpu, UD_VECTOR);
6041 	return 1;
6042 }
6043 
6044 #ifndef CONFIG_X86_SGX_KVM
6045 static int handle_encls(struct kvm_vcpu *vcpu)
6046 {
6047 	/*
6048 	 * SGX virtualization is disabled.  There is no software enable bit for
6049 	 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
6050 	 * the guest from executing ENCLS (when SGX is supported by hardware).
6051 	 */
6052 	kvm_queue_exception(vcpu, UD_VECTOR);
6053 	return 1;
6054 }
6055 #endif /* CONFIG_X86_SGX_KVM */
6056 
6057 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
6058 {
6059 	/*
6060 	 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
6061 	 * VM-Exits. Unconditionally set the flag here and leave the handling to
6062 	 * vmx_handle_exit().
6063 	 */
6064 	to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
6065 	return 1;
6066 }
6067 
6068 static int handle_notify(struct kvm_vcpu *vcpu)
6069 {
6070 	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
6071 	bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
6072 
6073 	++vcpu->stat.notify_window_exits;
6074 
6075 	/*
6076 	 * Notify VM exit happened while executing iret from NMI,
6077 	 * "blocked by NMI" bit has to be set before next VM entry.
6078 	 */
6079 	if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
6080 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6081 			      GUEST_INTR_STATE_NMI);
6082 
6083 	if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
6084 	    context_invalid) {
6085 		vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
6086 		vcpu->run->notify.flags = context_invalid ?
6087 					  KVM_NOTIFY_CONTEXT_INVALID : 0;
6088 		return 0;
6089 	}
6090 
6091 	return 1;
6092 }
6093 
6094 /*
6095  * The exit handlers return 1 if the exit was handled fully and guest execution
6096  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6097  * to be done to userspace and return 0.
6098  */
6099 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6100 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
6101 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6102 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6103 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
6104 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6105 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
6106 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
6107 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
6108 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
6109 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
6110 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
6111 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
6112 	[EXIT_REASON_INVD]		      = kvm_emulate_invd,
6113 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
6114 	[EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
6115 	[EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
6116 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
6117 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
6118 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
6119 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
6120 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
6121 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
6122 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
6123 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
6124 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
6125 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6126 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6127 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6128 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6129 	[EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
6130 	[EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
6131 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6132 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6133 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
6134 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
6135 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
6136 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6137 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6138 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = kvm_emulate_mwait,
6139 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
6140 	[EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
6141 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
6142 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
6143 	[EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
6144 	[EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
6145 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
6146 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
6147 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
6148 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
6149 	[EXIT_REASON_ENCLS]		      = handle_encls,
6150 	[EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
6151 	[EXIT_REASON_NOTIFY]		      = handle_notify,
6152 };
6153 
6154 static const int kvm_vmx_max_exit_handlers =
6155 	ARRAY_SIZE(kvm_vmx_exit_handlers);
6156 
6157 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6158 			      u64 *info1, u64 *info2,
6159 			      u32 *intr_info, u32 *error_code)
6160 {
6161 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6162 
6163 	*reason = vmx->exit_reason.full;
6164 	*info1 = vmx_get_exit_qual(vcpu);
6165 	if (!(vmx->exit_reason.failed_vmentry)) {
6166 		*info2 = vmx->idt_vectoring_info;
6167 		*intr_info = vmx_get_intr_info(vcpu);
6168 		if (is_exception_with_error_code(*intr_info))
6169 			*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6170 		else
6171 			*error_code = 0;
6172 	} else {
6173 		*info2 = 0;
6174 		*intr_info = 0;
6175 		*error_code = 0;
6176 	}
6177 }
6178 
6179 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6180 {
6181 	if (vmx->pml_pg) {
6182 		__free_page(vmx->pml_pg);
6183 		vmx->pml_pg = NULL;
6184 	}
6185 }
6186 
6187 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6188 {
6189 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6190 	u64 *pml_buf;
6191 	u16 pml_idx;
6192 
6193 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
6194 
6195 	/* Do nothing if PML buffer is empty */
6196 	if (pml_idx == (PML_ENTITY_NUM - 1))
6197 		return;
6198 
6199 	/* PML index always points to next available PML buffer entity */
6200 	if (pml_idx >= PML_ENTITY_NUM)
6201 		pml_idx = 0;
6202 	else
6203 		pml_idx++;
6204 
6205 	pml_buf = page_address(vmx->pml_pg);
6206 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
6207 		u64 gpa;
6208 
6209 		gpa = pml_buf[pml_idx];
6210 		WARN_ON(gpa & (PAGE_SIZE - 1));
6211 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6212 	}
6213 
6214 	/* reset PML index */
6215 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
6216 }
6217 
6218 static void vmx_dump_sel(char *name, uint32_t sel)
6219 {
6220 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6221 	       name, vmcs_read16(sel),
6222 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6223 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6224 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6225 }
6226 
6227 static void vmx_dump_dtsel(char *name, uint32_t limit)
6228 {
6229 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
6230 	       name, vmcs_read32(limit),
6231 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6232 }
6233 
6234 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6235 {
6236 	unsigned int i;
6237 	struct vmx_msr_entry *e;
6238 
6239 	pr_err("MSR %s:\n", name);
6240 	for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6241 		pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6242 }
6243 
6244 void dump_vmcs(struct kvm_vcpu *vcpu)
6245 {
6246 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6247 	u32 vmentry_ctl, vmexit_ctl;
6248 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6249 	u64 tertiary_exec_control;
6250 	unsigned long cr4;
6251 	int efer_slot;
6252 
6253 	if (!dump_invalid_vmcs) {
6254 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6255 		return;
6256 	}
6257 
6258 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6259 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6260 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6261 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6262 	cr4 = vmcs_readl(GUEST_CR4);
6263 
6264 	if (cpu_has_secondary_exec_ctrls())
6265 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6266 	else
6267 		secondary_exec_control = 0;
6268 
6269 	if (cpu_has_tertiary_exec_ctrls())
6270 		tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6271 	else
6272 		tertiary_exec_control = 0;
6273 
6274 	pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6275 	       vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6276 	pr_err("*** Guest State ***\n");
6277 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6278 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6279 	       vmcs_readl(CR0_GUEST_HOST_MASK));
6280 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6281 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6282 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6283 	if (cpu_has_vmx_ept()) {
6284 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
6285 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6286 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
6287 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6288 	}
6289 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
6290 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6291 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
6292 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6293 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6294 	       vmcs_readl(GUEST_SYSENTER_ESP),
6295 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6296 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
6297 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
6298 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
6299 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
6300 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
6301 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
6302 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6303 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6304 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6305 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
6306 	efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6307 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6308 		pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6309 	else if (efer_slot >= 0)
6310 		pr_err("EFER= 0x%016llx (autoload)\n",
6311 		       vmx->msr_autoload.guest.val[efer_slot].value);
6312 	else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6313 		pr_err("EFER= 0x%016llx (effective)\n",
6314 		       vcpu->arch.efer | (EFER_LMA | EFER_LME));
6315 	else
6316 		pr_err("EFER= 0x%016llx (effective)\n",
6317 		       vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6318 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6319 		pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6320 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
6321 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
6322 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6323 	if (cpu_has_load_perf_global_ctrl() &&
6324 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6325 		pr_err("PerfGlobCtl = 0x%016llx\n",
6326 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6327 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6328 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6329 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
6330 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6331 	       vmcs_read32(GUEST_ACTIVITY_STATE));
6332 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6333 		pr_err("InterruptStatus = %04x\n",
6334 		       vmcs_read16(GUEST_INTR_STATUS));
6335 	if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6336 		vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6337 	if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6338 		vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6339 
6340 	pr_err("*** Host State ***\n");
6341 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
6342 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6343 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6344 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6345 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6346 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6347 	       vmcs_read16(HOST_TR_SELECTOR));
6348 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6349 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6350 	       vmcs_readl(HOST_TR_BASE));
6351 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6352 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6353 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6354 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6355 	       vmcs_readl(HOST_CR4));
6356 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6357 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
6358 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
6359 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
6360 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6361 		pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6362 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6363 		pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6364 	if (cpu_has_load_perf_global_ctrl() &&
6365 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6366 		pr_err("PerfGlobCtl = 0x%016llx\n",
6367 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6368 	if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6369 		vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6370 
6371 	pr_err("*** Control State ***\n");
6372 	pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6373 	       cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6374 	pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6375 	       pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6376 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6377 	       vmcs_read32(EXCEPTION_BITMAP),
6378 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6379 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6380 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6381 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6382 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6383 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6384 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6385 	       vmcs_read32(VM_EXIT_INTR_INFO),
6386 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6387 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6388 	pr_err("        reason=%08x qualification=%016lx\n",
6389 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6390 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6391 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
6392 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
6393 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6394 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6395 		pr_err("TSC Multiplier = 0x%016llx\n",
6396 		       vmcs_read64(TSC_MULTIPLIER));
6397 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6398 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6399 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
6400 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6401 		}
6402 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6403 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6404 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6405 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6406 	}
6407 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6408 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6409 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6410 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6411 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6412 		pr_err("PLE Gap=%08x Window=%08x\n",
6413 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6414 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6415 		pr_err("Virtual processor ID = 0x%04x\n",
6416 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
6417 }
6418 
6419 /*
6420  * The guest has exited.  See if we can fix it or if we need userspace
6421  * assistance.
6422  */
6423 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6424 {
6425 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6426 	union vmx_exit_reason exit_reason = vmx->exit_reason;
6427 	u32 vectoring_info = vmx->idt_vectoring_info;
6428 	u16 exit_handler_index;
6429 
6430 	/*
6431 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6432 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6433 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6434 	 * mode as if vcpus is in root mode, the PML buffer must has been
6435 	 * flushed already.  Note, PML is never enabled in hardware while
6436 	 * running L2.
6437 	 */
6438 	if (enable_pml && !is_guest_mode(vcpu))
6439 		vmx_flush_pml_buffer(vcpu);
6440 
6441 	/*
6442 	 * KVM should never reach this point with a pending nested VM-Enter.
6443 	 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6444 	 * invalid guest state should never happen as that means KVM knowingly
6445 	 * allowed a nested VM-Enter with an invalid vmcs12.  More below.
6446 	 */
6447 	if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6448 		return -EIO;
6449 
6450 	if (is_guest_mode(vcpu)) {
6451 		/*
6452 		 * PML is never enabled when running L2, bail immediately if a
6453 		 * PML full exit occurs as something is horribly wrong.
6454 		 */
6455 		if (exit_reason.basic == EXIT_REASON_PML_FULL)
6456 			goto unexpected_vmexit;
6457 
6458 		/*
6459 		 * The host physical addresses of some pages of guest memory
6460 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6461 		 * Page). The CPU may write to these pages via their host
6462 		 * physical address while L2 is running, bypassing any
6463 		 * address-translation-based dirty tracking (e.g. EPT write
6464 		 * protection).
6465 		 *
6466 		 * Mark them dirty on every exit from L2 to prevent them from
6467 		 * getting out of sync with dirty tracking.
6468 		 */
6469 		nested_mark_vmcs12_pages_dirty(vcpu);
6470 
6471 		/*
6472 		 * Synthesize a triple fault if L2 state is invalid.  In normal
6473 		 * operation, nested VM-Enter rejects any attempt to enter L2
6474 		 * with invalid state.  However, those checks are skipped if
6475 		 * state is being stuffed via RSM or KVM_SET_NESTED_STATE.  If
6476 		 * L2 state is invalid, it means either L1 modified SMRAM state
6477 		 * or userspace provided bad state.  Synthesize TRIPLE_FAULT as
6478 		 * doing so is architecturally allowed in the RSM case, and is
6479 		 * the least awful solution for the userspace case without
6480 		 * risking false positives.
6481 		 */
6482 		if (vmx->emulation_required) {
6483 			nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6484 			return 1;
6485 		}
6486 
6487 		if (nested_vmx_reflect_vmexit(vcpu))
6488 			return 1;
6489 	}
6490 
6491 	/* If guest state is invalid, start emulating.  L2 is handled above. */
6492 	if (vmx->emulation_required)
6493 		return handle_invalid_guest_state(vcpu);
6494 
6495 	if (exit_reason.failed_vmentry) {
6496 		dump_vmcs(vcpu);
6497 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6498 		vcpu->run->fail_entry.hardware_entry_failure_reason
6499 			= exit_reason.full;
6500 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6501 		return 0;
6502 	}
6503 
6504 	if (unlikely(vmx->fail)) {
6505 		dump_vmcs(vcpu);
6506 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6507 		vcpu->run->fail_entry.hardware_entry_failure_reason
6508 			= vmcs_read32(VM_INSTRUCTION_ERROR);
6509 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6510 		return 0;
6511 	}
6512 
6513 	/*
6514 	 * Note:
6515 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6516 	 * delivery event since it indicates guest is accessing MMIO.
6517 	 * The vm-exit can be triggered again after return to guest that
6518 	 * will cause infinite loop.
6519 	 */
6520 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6521 	    (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6522 	     exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6523 	     exit_reason.basic != EXIT_REASON_PML_FULL &&
6524 	     exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6525 	     exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6526 	     exit_reason.basic != EXIT_REASON_NOTIFY)) {
6527 		int ndata = 3;
6528 
6529 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6530 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6531 		vcpu->run->internal.data[0] = vectoring_info;
6532 		vcpu->run->internal.data[1] = exit_reason.full;
6533 		vcpu->run->internal.data[2] = vmx_get_exit_qual(vcpu);
6534 		if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6535 			vcpu->run->internal.data[ndata++] =
6536 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6537 		}
6538 		vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6539 		vcpu->run->internal.ndata = ndata;
6540 		return 0;
6541 	}
6542 
6543 	if (unlikely(!enable_vnmi &&
6544 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
6545 		if (!vmx_interrupt_blocked(vcpu)) {
6546 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6547 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6548 			   vcpu->arch.nmi_pending) {
6549 			/*
6550 			 * This CPU don't support us in finding the end of an
6551 			 * NMI-blocked window if the guest runs with IRQs
6552 			 * disabled. So we pull the trigger after 1 s of
6553 			 * futile waiting, but inform the user about this.
6554 			 */
6555 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6556 			       "state on VCPU %d after 1 s timeout\n",
6557 			       __func__, vcpu->vcpu_id);
6558 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6559 		}
6560 	}
6561 
6562 	if (exit_fastpath != EXIT_FASTPATH_NONE)
6563 		return 1;
6564 
6565 	if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6566 		goto unexpected_vmexit;
6567 #ifdef CONFIG_MITIGATION_RETPOLINE
6568 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6569 		return kvm_emulate_wrmsr(vcpu);
6570 	else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6571 		return handle_preemption_timer(vcpu);
6572 	else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6573 		return handle_interrupt_window(vcpu);
6574 	else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6575 		return handle_external_interrupt(vcpu);
6576 	else if (exit_reason.basic == EXIT_REASON_HLT)
6577 		return kvm_emulate_halt(vcpu);
6578 	else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6579 		return handle_ept_misconfig(vcpu);
6580 #endif
6581 
6582 	exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6583 						kvm_vmx_max_exit_handlers);
6584 	if (!kvm_vmx_exit_handlers[exit_handler_index])
6585 		goto unexpected_vmexit;
6586 
6587 	return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6588 
6589 unexpected_vmexit:
6590 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6591 		    exit_reason.full);
6592 	dump_vmcs(vcpu);
6593 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6594 	vcpu->run->internal.suberror =
6595 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6596 	vcpu->run->internal.ndata = 2;
6597 	vcpu->run->internal.data[0] = exit_reason.full;
6598 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6599 	return 0;
6600 }
6601 
6602 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6603 {
6604 	int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6605 
6606 	/*
6607 	 * Exit to user space when bus lock detected to inform that there is
6608 	 * a bus lock in guest.
6609 	 */
6610 	if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6611 		if (ret > 0)
6612 			vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6613 
6614 		vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6615 		return 0;
6616 	}
6617 	return ret;
6618 }
6619 
6620 /*
6621  * Software based L1D cache flush which is used when microcode providing
6622  * the cache control MSR is not loaded.
6623  *
6624  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6625  * flush it is required to read in 64 KiB because the replacement algorithm
6626  * is not exactly LRU. This could be sized at runtime via topology
6627  * information but as all relevant affected CPUs have 32KiB L1D cache size
6628  * there is no point in doing so.
6629  */
6630 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6631 {
6632 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6633 
6634 	/*
6635 	 * This code is only executed when the flush mode is 'cond' or
6636 	 * 'always'
6637 	 */
6638 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6639 		bool flush_l1d;
6640 
6641 		/*
6642 		 * Clear the per-vcpu flush bit, it gets set again
6643 		 * either from vcpu_run() or from one of the unsafe
6644 		 * VMEXIT handlers.
6645 		 */
6646 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6647 		vcpu->arch.l1tf_flush_l1d = false;
6648 
6649 		/*
6650 		 * Clear the per-cpu flush bit, it gets set again from
6651 		 * the interrupt handlers.
6652 		 */
6653 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6654 		kvm_clear_cpu_l1tf_flush_l1d();
6655 
6656 		if (!flush_l1d)
6657 			return;
6658 	}
6659 
6660 	vcpu->stat.l1d_flush++;
6661 
6662 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6663 		native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6664 		return;
6665 	}
6666 
6667 	asm volatile(
6668 		/* First ensure the pages are in the TLB */
6669 		"xorl	%%eax, %%eax\n"
6670 		".Lpopulate_tlb:\n\t"
6671 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6672 		"addl	$4096, %%eax\n\t"
6673 		"cmpl	%%eax, %[size]\n\t"
6674 		"jne	.Lpopulate_tlb\n\t"
6675 		"xorl	%%eax, %%eax\n\t"
6676 		"cpuid\n\t"
6677 		/* Now fill the cache */
6678 		"xorl	%%eax, %%eax\n"
6679 		".Lfill_cache:\n"
6680 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6681 		"addl	$64, %%eax\n\t"
6682 		"cmpl	%%eax, %[size]\n\t"
6683 		"jne	.Lfill_cache\n\t"
6684 		"lfence\n"
6685 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6686 		    [size] "r" (size)
6687 		: "eax", "ebx", "ecx", "edx");
6688 }
6689 
6690 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6691 {
6692 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6693 	int tpr_threshold;
6694 
6695 	if (is_guest_mode(vcpu) &&
6696 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6697 		return;
6698 
6699 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6700 	if (is_guest_mode(vcpu))
6701 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6702 	else
6703 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6704 }
6705 
6706 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6707 {
6708 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6709 	u32 sec_exec_control;
6710 
6711 	if (!lapic_in_kernel(vcpu))
6712 		return;
6713 
6714 	if (!flexpriority_enabled &&
6715 	    !cpu_has_vmx_virtualize_x2apic_mode())
6716 		return;
6717 
6718 	/* Postpone execution until vmcs01 is the current VMCS. */
6719 	if (is_guest_mode(vcpu)) {
6720 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6721 		return;
6722 	}
6723 
6724 	sec_exec_control = secondary_exec_controls_get(vmx);
6725 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6726 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6727 
6728 	switch (kvm_get_apic_mode(vcpu)) {
6729 	case LAPIC_MODE_INVALID:
6730 		WARN_ONCE(true, "Invalid local APIC state");
6731 		break;
6732 	case LAPIC_MODE_DISABLED:
6733 		break;
6734 	case LAPIC_MODE_XAPIC:
6735 		if (flexpriority_enabled) {
6736 			sec_exec_control |=
6737 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6738 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6739 
6740 			/*
6741 			 * Flush the TLB, reloading the APIC access page will
6742 			 * only do so if its physical address has changed, but
6743 			 * the guest may have inserted a non-APIC mapping into
6744 			 * the TLB while the APIC access page was disabled.
6745 			 */
6746 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6747 		}
6748 		break;
6749 	case LAPIC_MODE_X2APIC:
6750 		if (cpu_has_vmx_virtualize_x2apic_mode())
6751 			sec_exec_control |=
6752 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6753 		break;
6754 	}
6755 	secondary_exec_controls_set(vmx, sec_exec_control);
6756 
6757 	vmx_update_msr_bitmap_x2apic(vcpu);
6758 }
6759 
6760 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6761 {
6762 	const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT;
6763 	struct kvm *kvm = vcpu->kvm;
6764 	struct kvm_memslots *slots = kvm_memslots(kvm);
6765 	struct kvm_memory_slot *slot;
6766 	unsigned long mmu_seq;
6767 	kvm_pfn_t pfn;
6768 
6769 	/* Defer reload until vmcs01 is the current VMCS. */
6770 	if (is_guest_mode(vcpu)) {
6771 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6772 		return;
6773 	}
6774 
6775 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6776 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6777 		return;
6778 
6779 	/*
6780 	 * Explicitly grab the memslot using KVM's internal slot ID to ensure
6781 	 * KVM doesn't unintentionally grab a userspace memslot.  It _should_
6782 	 * be impossible for userspace to create a memslot for the APIC when
6783 	 * APICv is enabled, but paranoia won't hurt in this case.
6784 	 */
6785 	slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT);
6786 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
6787 		return;
6788 
6789 	/*
6790 	 * Ensure that the mmu_notifier sequence count is read before KVM
6791 	 * retrieves the pfn from the primary MMU.  Note, the memslot is
6792 	 * protected by SRCU, not the mmu_notifier.  Pairs with the smp_wmb()
6793 	 * in kvm_mmu_invalidate_end().
6794 	 */
6795 	mmu_seq = kvm->mmu_invalidate_seq;
6796 	smp_rmb();
6797 
6798 	/*
6799 	 * No need to retry if the memslot does not exist or is invalid.  KVM
6800 	 * controls the APIC-access page memslot, and only deletes the memslot
6801 	 * if APICv is permanently inhibited, i.e. the memslot won't reappear.
6802 	 */
6803 	pfn = gfn_to_pfn_memslot(slot, gfn);
6804 	if (is_error_noslot_pfn(pfn))
6805 		return;
6806 
6807 	read_lock(&vcpu->kvm->mmu_lock);
6808 	if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn)) {
6809 		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6810 		read_unlock(&vcpu->kvm->mmu_lock);
6811 		goto out;
6812 	}
6813 
6814 	vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn));
6815 	read_unlock(&vcpu->kvm->mmu_lock);
6816 
6817 	/*
6818 	 * No need for a manual TLB flush at this point, KVM has already done a
6819 	 * flush if there were SPTEs pointing at the previous page.
6820 	 */
6821 out:
6822 	/*
6823 	 * Do not pin apic access page in memory, the MMU notifier
6824 	 * will call us again if it is migrated or swapped out.
6825 	 */
6826 	kvm_release_pfn_clean(pfn);
6827 }
6828 
6829 static void vmx_hwapic_isr_update(int max_isr)
6830 {
6831 	u16 status;
6832 	u8 old;
6833 
6834 	if (max_isr == -1)
6835 		max_isr = 0;
6836 
6837 	status = vmcs_read16(GUEST_INTR_STATUS);
6838 	old = status >> 8;
6839 	if (max_isr != old) {
6840 		status &= 0xff;
6841 		status |= max_isr << 8;
6842 		vmcs_write16(GUEST_INTR_STATUS, status);
6843 	}
6844 }
6845 
6846 static void vmx_set_rvi(int vector)
6847 {
6848 	u16 status;
6849 	u8 old;
6850 
6851 	if (vector == -1)
6852 		vector = 0;
6853 
6854 	status = vmcs_read16(GUEST_INTR_STATUS);
6855 	old = (u8)status & 0xff;
6856 	if ((u8)vector != old) {
6857 		status &= ~0xff;
6858 		status |= (u8)vector;
6859 		vmcs_write16(GUEST_INTR_STATUS, status);
6860 	}
6861 }
6862 
6863 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6864 {
6865 	/*
6866 	 * When running L2, updating RVI is only relevant when
6867 	 * vmcs12 virtual-interrupt-delivery enabled.
6868 	 * However, it can be enabled only when L1 also
6869 	 * intercepts external-interrupts and in that case
6870 	 * we should not update vmcs02 RVI but instead intercept
6871 	 * interrupt. Therefore, do nothing when running L2.
6872 	 */
6873 	if (!is_guest_mode(vcpu))
6874 		vmx_set_rvi(max_irr);
6875 }
6876 
6877 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6878 {
6879 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6880 	int max_irr;
6881 	bool got_posted_interrupt;
6882 
6883 	if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6884 		return -EIO;
6885 
6886 	if (pi_test_on(&vmx->pi_desc)) {
6887 		pi_clear_on(&vmx->pi_desc);
6888 		/*
6889 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6890 		 * But on x86 this is just a compiler barrier anyway.
6891 		 */
6892 		smp_mb__after_atomic();
6893 		got_posted_interrupt =
6894 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6895 	} else {
6896 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6897 		got_posted_interrupt = false;
6898 	}
6899 
6900 	/*
6901 	 * Newly recognized interrupts are injected via either virtual interrupt
6902 	 * delivery (RVI) or KVM_REQ_EVENT.  Virtual interrupt delivery is
6903 	 * disabled in two cases:
6904 	 *
6905 	 * 1) If L2 is running and the vCPU has a new pending interrupt.  If L1
6906 	 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6907 	 * VM-Exit to L1.  If L1 doesn't want to exit, the interrupt is injected
6908 	 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6909 	 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6910 	 *
6911 	 * 2) If APICv is disabled for this vCPU, assigned devices may still
6912 	 * attempt to post interrupts.  The posted interrupt vector will cause
6913 	 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6914 	 */
6915 	if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6916 		vmx_set_rvi(max_irr);
6917 	else if (got_posted_interrupt)
6918 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6919 
6920 	return max_irr;
6921 }
6922 
6923 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6924 {
6925 	if (!kvm_vcpu_apicv_active(vcpu))
6926 		return;
6927 
6928 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6929 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6930 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6931 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6932 }
6933 
6934 static void vmx_apicv_pre_state_restore(struct kvm_vcpu *vcpu)
6935 {
6936 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6937 
6938 	pi_clear_on(&vmx->pi_desc);
6939 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6940 }
6941 
6942 void vmx_do_interrupt_irqoff(unsigned long entry);
6943 void vmx_do_nmi_irqoff(void);
6944 
6945 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6946 {
6947 	/*
6948 	 * Save xfd_err to guest_fpu before interrupt is enabled, so the
6949 	 * MSR value is not clobbered by the host activity before the guest
6950 	 * has chance to consume it.
6951 	 *
6952 	 * Do not blindly read xfd_err here, since this exception might
6953 	 * be caused by L1 interception on a platform which doesn't
6954 	 * support xfd at all.
6955 	 *
6956 	 * Do it conditionally upon guest_fpu::xfd. xfd_err matters
6957 	 * only when xfd contains a non-zero value.
6958 	 *
6959 	 * Queuing exception is done in vmx_handle_exit. See comment there.
6960 	 */
6961 	if (vcpu->arch.guest_fpu.fpstate->xfd)
6962 		rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6963 }
6964 
6965 static void handle_exception_irqoff(struct vcpu_vmx *vmx)
6966 {
6967 	u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6968 
6969 	/* if exit due to PF check for async PF */
6970 	if (is_page_fault(intr_info))
6971 		vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6972 	/* if exit due to NM, handle before interrupts are enabled */
6973 	else if (is_nm_fault(intr_info))
6974 		handle_nm_fault_irqoff(&vmx->vcpu);
6975 	/* Handle machine checks before interrupts are enabled */
6976 	else if (is_machine_check(intr_info))
6977 		kvm_machine_check();
6978 }
6979 
6980 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6981 {
6982 	u32 intr_info = vmx_get_intr_info(vcpu);
6983 	unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6984 
6985 	if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6986 	    "unexpected VM-Exit interrupt info: 0x%x", intr_info))
6987 		return;
6988 
6989 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
6990 	if (cpu_feature_enabled(X86_FEATURE_FRED))
6991 		fred_entry_from_kvm(EVENT_TYPE_EXTINT, vector);
6992 	else
6993 		vmx_do_interrupt_irqoff(gate_offset((gate_desc *)host_idt_base + vector));
6994 	kvm_after_interrupt(vcpu);
6995 
6996 	vcpu->arch.at_instruction_boundary = true;
6997 }
6998 
6999 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
7000 {
7001 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7002 
7003 	if (vmx->emulation_required)
7004 		return;
7005 
7006 	if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
7007 		handle_external_interrupt_irqoff(vcpu);
7008 	else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
7009 		handle_exception_irqoff(vmx);
7010 }
7011 
7012 /*
7013  * The kvm parameter can be NULL (module initialization, or invocation before
7014  * VM creation). Be sure to check the kvm parameter before using it.
7015  */
7016 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
7017 {
7018 	switch (index) {
7019 	case MSR_IA32_SMBASE:
7020 		if (!IS_ENABLED(CONFIG_KVM_SMM))
7021 			return false;
7022 		/*
7023 		 * We cannot do SMM unless we can run the guest in big
7024 		 * real mode.
7025 		 */
7026 		return enable_unrestricted_guest || emulate_invalid_guest_state;
7027 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
7028 		return nested;
7029 	case MSR_AMD64_VIRT_SPEC_CTRL:
7030 	case MSR_AMD64_TSC_RATIO:
7031 		/* This is AMD only.  */
7032 		return false;
7033 	default:
7034 		return true;
7035 	}
7036 }
7037 
7038 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7039 {
7040 	u32 exit_intr_info;
7041 	bool unblock_nmi;
7042 	u8 vector;
7043 	bool idtv_info_valid;
7044 
7045 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7046 
7047 	if (enable_vnmi) {
7048 		if (vmx->loaded_vmcs->nmi_known_unmasked)
7049 			return;
7050 
7051 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
7052 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7053 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7054 		/*
7055 		 * SDM 3: 27.7.1.2 (September 2008)
7056 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7057 		 * a guest IRET fault.
7058 		 * SDM 3: 23.2.2 (September 2008)
7059 		 * Bit 12 is undefined in any of the following cases:
7060 		 *  If the VM exit sets the valid bit in the IDT-vectoring
7061 		 *   information field.
7062 		 *  If the VM exit is due to a double fault.
7063 		 */
7064 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7065 		    vector != DF_VECTOR && !idtv_info_valid)
7066 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7067 				      GUEST_INTR_STATE_NMI);
7068 		else
7069 			vmx->loaded_vmcs->nmi_known_unmasked =
7070 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7071 				  & GUEST_INTR_STATE_NMI);
7072 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
7073 		vmx->loaded_vmcs->vnmi_blocked_time +=
7074 			ktime_to_ns(ktime_sub(ktime_get(),
7075 					      vmx->loaded_vmcs->entry_time));
7076 }
7077 
7078 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7079 				      u32 idt_vectoring_info,
7080 				      int instr_len_field,
7081 				      int error_code_field)
7082 {
7083 	u8 vector;
7084 	int type;
7085 	bool idtv_info_valid;
7086 
7087 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7088 
7089 	vcpu->arch.nmi_injected = false;
7090 	kvm_clear_exception_queue(vcpu);
7091 	kvm_clear_interrupt_queue(vcpu);
7092 
7093 	if (!idtv_info_valid)
7094 		return;
7095 
7096 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7097 
7098 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7099 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7100 
7101 	switch (type) {
7102 	case INTR_TYPE_NMI_INTR:
7103 		vcpu->arch.nmi_injected = true;
7104 		/*
7105 		 * SDM 3: 27.7.1.2 (September 2008)
7106 		 * Clear bit "block by NMI" before VM entry if a NMI
7107 		 * delivery faulted.
7108 		 */
7109 		vmx_set_nmi_mask(vcpu, false);
7110 		break;
7111 	case INTR_TYPE_SOFT_EXCEPTION:
7112 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7113 		fallthrough;
7114 	case INTR_TYPE_HARD_EXCEPTION:
7115 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7116 			u32 err = vmcs_read32(error_code_field);
7117 			kvm_requeue_exception_e(vcpu, vector, err);
7118 		} else
7119 			kvm_requeue_exception(vcpu, vector);
7120 		break;
7121 	case INTR_TYPE_SOFT_INTR:
7122 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7123 		fallthrough;
7124 	case INTR_TYPE_EXT_INTR:
7125 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7126 		break;
7127 	default:
7128 		break;
7129 	}
7130 }
7131 
7132 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7133 {
7134 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7135 				  VM_EXIT_INSTRUCTION_LEN,
7136 				  IDT_VECTORING_ERROR_CODE);
7137 }
7138 
7139 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7140 {
7141 	__vmx_complete_interrupts(vcpu,
7142 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7143 				  VM_ENTRY_INSTRUCTION_LEN,
7144 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
7145 
7146 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7147 }
7148 
7149 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7150 {
7151 	int i, nr_msrs;
7152 	struct perf_guest_switch_msr *msrs;
7153 	struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7154 
7155 	pmu->host_cross_mapped_mask = 0;
7156 	if (pmu->pebs_enable & pmu->global_ctrl)
7157 		intel_pmu_cross_mapped_check(pmu);
7158 
7159 	/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7160 	msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7161 	if (!msrs)
7162 		return;
7163 
7164 	for (i = 0; i < nr_msrs; i++)
7165 		if (msrs[i].host == msrs[i].guest)
7166 			clear_atomic_switch_msr(vmx, msrs[i].msr);
7167 		else
7168 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7169 					msrs[i].host, false);
7170 }
7171 
7172 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu, bool force_immediate_exit)
7173 {
7174 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7175 	u64 tscl;
7176 	u32 delta_tsc;
7177 
7178 	if (force_immediate_exit) {
7179 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7180 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7181 	} else if (vmx->hv_deadline_tsc != -1) {
7182 		tscl = rdtsc();
7183 		if (vmx->hv_deadline_tsc > tscl)
7184 			/* set_hv_timer ensures the delta fits in 32-bits */
7185 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7186 				cpu_preemption_timer_multi);
7187 		else
7188 			delta_tsc = 0;
7189 
7190 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7191 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7192 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7193 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7194 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7195 	}
7196 }
7197 
7198 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7199 {
7200 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7201 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
7202 		vmcs_writel(HOST_RSP, host_rsp);
7203 	}
7204 }
7205 
7206 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7207 					unsigned int flags)
7208 {
7209 	u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7210 
7211 	if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7212 		return;
7213 
7214 	if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7215 		vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
7216 
7217 	/*
7218 	 * If the guest/host SPEC_CTRL values differ, restore the host value.
7219 	 *
7220 	 * For legacy IBRS, the IBRS bit always needs to be written after
7221 	 * transitioning from a less privileged predictor mode, regardless of
7222 	 * whether the guest/host values differ.
7223 	 */
7224 	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7225 	    vmx->spec_ctrl != hostval)
7226 		native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
7227 
7228 	barrier_nospec();
7229 }
7230 
7231 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu,
7232 					     bool force_immediate_exit)
7233 {
7234 	/*
7235 	 * If L2 is active, some VMX preemption timer exits can be handled in
7236 	 * the fastpath even, all other exits must use the slow path.
7237 	 */
7238 	if (is_guest_mode(vcpu) &&
7239 	    to_vmx(vcpu)->exit_reason.basic != EXIT_REASON_PREEMPTION_TIMER)
7240 		return EXIT_FASTPATH_NONE;
7241 
7242 	switch (to_vmx(vcpu)->exit_reason.basic) {
7243 	case EXIT_REASON_MSR_WRITE:
7244 		return handle_fastpath_set_msr_irqoff(vcpu);
7245 	case EXIT_REASON_PREEMPTION_TIMER:
7246 		return handle_fastpath_preemption_timer(vcpu, force_immediate_exit);
7247 	default:
7248 		return EXIT_FASTPATH_NONE;
7249 	}
7250 }
7251 
7252 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7253 					unsigned int flags)
7254 {
7255 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7256 
7257 	guest_state_enter_irqoff();
7258 
7259 	/*
7260 	 * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW
7261 	 * mitigation for MDS is done late in VMentry and is still
7262 	 * executed in spite of L1D Flush. This is because an extra VERW
7263 	 * should not matter much after the big hammer L1D Flush.
7264 	 */
7265 	if (static_branch_unlikely(&vmx_l1d_should_flush))
7266 		vmx_l1d_flush(vcpu);
7267 	else if (static_branch_unlikely(&mmio_stale_data_clear) &&
7268 		 kvm_arch_has_assigned_device(vcpu->kvm))
7269 		mds_clear_cpu_buffers();
7270 
7271 	vmx_disable_fb_clear(vmx);
7272 
7273 	if (vcpu->arch.cr2 != native_read_cr2())
7274 		native_write_cr2(vcpu->arch.cr2);
7275 
7276 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7277 				   flags);
7278 
7279 	vcpu->arch.cr2 = native_read_cr2();
7280 	vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7281 
7282 	vmx->idt_vectoring_info = 0;
7283 
7284 	vmx_enable_fb_clear(vmx);
7285 
7286 	if (unlikely(vmx->fail)) {
7287 		vmx->exit_reason.full = 0xdead;
7288 		goto out;
7289 	}
7290 
7291 	vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7292 	if (likely(!vmx->exit_reason.failed_vmentry))
7293 		vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7294 
7295 	if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI &&
7296 	    is_nmi(vmx_get_intr_info(vcpu))) {
7297 		kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
7298 		if (cpu_feature_enabled(X86_FEATURE_FRED))
7299 			fred_entry_from_kvm(EVENT_TYPE_NMI, NMI_VECTOR);
7300 		else
7301 			vmx_do_nmi_irqoff();
7302 		kvm_after_interrupt(vcpu);
7303 	}
7304 
7305 out:
7306 	guest_state_exit_irqoff();
7307 }
7308 
7309 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu, bool force_immediate_exit)
7310 {
7311 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7312 	unsigned long cr3, cr4;
7313 
7314 	/* Record the guest's net vcpu time for enforced NMI injections. */
7315 	if (unlikely(!enable_vnmi &&
7316 		     vmx->loaded_vmcs->soft_vnmi_blocked))
7317 		vmx->loaded_vmcs->entry_time = ktime_get();
7318 
7319 	/*
7320 	 * Don't enter VMX if guest state is invalid, let the exit handler
7321 	 * start emulation until we arrive back to a valid state.  Synthesize a
7322 	 * consistency check VM-Exit due to invalid guest state and bail.
7323 	 */
7324 	if (unlikely(vmx->emulation_required)) {
7325 		vmx->fail = 0;
7326 
7327 		vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
7328 		vmx->exit_reason.failed_vmentry = 1;
7329 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7330 		vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
7331 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7332 		vmx->exit_intr_info = 0;
7333 		return EXIT_FASTPATH_NONE;
7334 	}
7335 
7336 	trace_kvm_entry(vcpu, force_immediate_exit);
7337 
7338 	if (vmx->ple_window_dirty) {
7339 		vmx->ple_window_dirty = false;
7340 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
7341 	}
7342 
7343 	/*
7344 	 * We did this in prepare_switch_to_guest, because it needs to
7345 	 * be within srcu_read_lock.
7346 	 */
7347 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7348 
7349 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7350 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7351 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7352 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7353 	vcpu->arch.regs_dirty = 0;
7354 
7355 	/*
7356 	 * Refresh vmcs.HOST_CR3 if necessary.  This must be done immediately
7357 	 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7358 	 * it switches back to the current->mm, which can occur in KVM context
7359 	 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7360 	 * toggles a static key while handling a VM-Exit.
7361 	 */
7362 	cr3 = __get_current_cr3_fast();
7363 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7364 		vmcs_writel(HOST_CR3, cr3);
7365 		vmx->loaded_vmcs->host_state.cr3 = cr3;
7366 	}
7367 
7368 	cr4 = cr4_read_shadow();
7369 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7370 		vmcs_writel(HOST_CR4, cr4);
7371 		vmx->loaded_vmcs->host_state.cr4 = cr4;
7372 	}
7373 
7374 	/* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
7375 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
7376 		set_debugreg(vcpu->arch.dr6, 6);
7377 
7378 	/* When single-stepping over STI and MOV SS, we must clear the
7379 	 * corresponding interruptibility bits in the guest state. Otherwise
7380 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
7381 	 * exceptions being set, but that's not correct for the guest debugging
7382 	 * case. */
7383 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7384 		vmx_set_interrupt_shadow(vcpu, 0);
7385 
7386 	kvm_load_guest_xsave_state(vcpu);
7387 
7388 	pt_guest_enter(vmx);
7389 
7390 	atomic_switch_perf_msrs(vmx);
7391 	if (intel_pmu_lbr_is_enabled(vcpu))
7392 		vmx_passthrough_lbr_msrs(vcpu);
7393 
7394 	if (enable_preemption_timer)
7395 		vmx_update_hv_timer(vcpu, force_immediate_exit);
7396 	else if (force_immediate_exit)
7397 		smp_send_reschedule(vcpu->cpu);
7398 
7399 	kvm_wait_lapic_expire(vcpu);
7400 
7401 	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
7402 	vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
7403 
7404 	/* All fields are clean at this point */
7405 	if (kvm_is_using_evmcs()) {
7406 		current_evmcs->hv_clean_fields |=
7407 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7408 
7409 		current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7410 	}
7411 
7412 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7413 	if (vmx->host_debugctlmsr)
7414 		update_debugctlmsr(vmx->host_debugctlmsr);
7415 
7416 #ifndef CONFIG_X86_64
7417 	/*
7418 	 * The sysexit path does not restore ds/es, so we must set them to
7419 	 * a reasonable value ourselves.
7420 	 *
7421 	 * We can't defer this to vmx_prepare_switch_to_host() since that
7422 	 * function may be executed in interrupt context, which saves and
7423 	 * restore segments around it, nullifying its effect.
7424 	 */
7425 	loadsegment(ds, __USER_DS);
7426 	loadsegment(es, __USER_DS);
7427 #endif
7428 
7429 	pt_guest_exit(vmx);
7430 
7431 	kvm_load_host_xsave_state(vcpu);
7432 
7433 	if (is_guest_mode(vcpu)) {
7434 		/*
7435 		 * Track VMLAUNCH/VMRESUME that have made past guest state
7436 		 * checking.
7437 		 */
7438 		if (vmx->nested.nested_run_pending &&
7439 		    !vmx->exit_reason.failed_vmentry)
7440 			++vcpu->stat.nested_run;
7441 
7442 		vmx->nested.nested_run_pending = 0;
7443 	}
7444 
7445 	if (unlikely(vmx->fail))
7446 		return EXIT_FASTPATH_NONE;
7447 
7448 	if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
7449 		kvm_machine_check();
7450 
7451 	trace_kvm_exit(vcpu, KVM_ISA_VMX);
7452 
7453 	if (unlikely(vmx->exit_reason.failed_vmentry))
7454 		return EXIT_FASTPATH_NONE;
7455 
7456 	vmx->loaded_vmcs->launched = 1;
7457 
7458 	vmx_recover_nmi_blocking(vmx);
7459 	vmx_complete_interrupts(vmx);
7460 
7461 	return vmx_exit_handlers_fastpath(vcpu, force_immediate_exit);
7462 }
7463 
7464 static void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7465 {
7466 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7467 
7468 	if (enable_pml)
7469 		vmx_destroy_pml_buffer(vmx);
7470 	free_vpid(vmx->vpid);
7471 	nested_vmx_free_vcpu(vcpu);
7472 	free_loaded_vmcs(vmx->loaded_vmcs);
7473 }
7474 
7475 static int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7476 {
7477 	struct vmx_uret_msr *tsx_ctrl;
7478 	struct vcpu_vmx *vmx;
7479 	int i, err;
7480 
7481 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7482 	vmx = to_vmx(vcpu);
7483 
7484 	INIT_LIST_HEAD(&vmx->pi_wakeup_list);
7485 
7486 	err = -ENOMEM;
7487 
7488 	vmx->vpid = allocate_vpid();
7489 
7490 	/*
7491 	 * If PML is turned on, failure on enabling PML just results in failure
7492 	 * of creating the vcpu, therefore we can simplify PML logic (by
7493 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
7494 	 * for the guest), etc.
7495 	 */
7496 	if (enable_pml) {
7497 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7498 		if (!vmx->pml_pg)
7499 			goto free_vpid;
7500 	}
7501 
7502 	for (i = 0; i < kvm_nr_uret_msrs; ++i)
7503 		vmx->guest_uret_msrs[i].mask = -1ull;
7504 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7505 		/*
7506 		 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7507 		 * Keep the host value unchanged to avoid changing CPUID bits
7508 		 * under the host kernel's feet.
7509 		 */
7510 		tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7511 		if (tsx_ctrl)
7512 			tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7513 	}
7514 
7515 	err = alloc_loaded_vmcs(&vmx->vmcs01);
7516 	if (err < 0)
7517 		goto free_pml;
7518 
7519 	/*
7520 	 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7521 	 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7522 	 * feature only for vmcs01, KVM currently isn't equipped to realize any
7523 	 * performance benefits from enabling it for vmcs02.
7524 	 */
7525 	if (kvm_is_using_evmcs() &&
7526 	    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7527 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7528 
7529 		evmcs->hv_enlightenments_control.msr_bitmap = 1;
7530 	}
7531 
7532 	/* The MSR bitmap starts with all ones */
7533 	bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7534 	bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7535 
7536 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7537 #ifdef CONFIG_X86_64
7538 	vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7539 	vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7540 	vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7541 #endif
7542 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7543 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7544 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7545 	if (kvm_cstate_in_guest(vcpu->kvm)) {
7546 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7547 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7548 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7549 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7550 	}
7551 
7552 	vmx->loaded_vmcs = &vmx->vmcs01;
7553 
7554 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
7555 		err = kvm_alloc_apic_access_page(vcpu->kvm);
7556 		if (err)
7557 			goto free_vmcs;
7558 	}
7559 
7560 	if (enable_ept && !enable_unrestricted_guest) {
7561 		err = init_rmode_identity_map(vcpu->kvm);
7562 		if (err)
7563 			goto free_vmcs;
7564 	}
7565 
7566 	if (vmx_can_use_ipiv(vcpu))
7567 		WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7568 			   __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID);
7569 
7570 	return 0;
7571 
7572 free_vmcs:
7573 	free_loaded_vmcs(vmx->loaded_vmcs);
7574 free_pml:
7575 	vmx_destroy_pml_buffer(vmx);
7576 free_vpid:
7577 	free_vpid(vmx->vpid);
7578 	return err;
7579 }
7580 
7581 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7582 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7583 
7584 static int vmx_vm_init(struct kvm *kvm)
7585 {
7586 	if (!ple_gap)
7587 		kvm->arch.pause_in_guest = true;
7588 
7589 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7590 		switch (l1tf_mitigation) {
7591 		case L1TF_MITIGATION_OFF:
7592 		case L1TF_MITIGATION_FLUSH_NOWARN:
7593 			/* 'I explicitly don't care' is set */
7594 			break;
7595 		case L1TF_MITIGATION_FLUSH:
7596 		case L1TF_MITIGATION_FLUSH_NOSMT:
7597 		case L1TF_MITIGATION_FULL:
7598 			/*
7599 			 * Warn upon starting the first VM in a potentially
7600 			 * insecure environment.
7601 			 */
7602 			if (sched_smt_active())
7603 				pr_warn_once(L1TF_MSG_SMT);
7604 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7605 				pr_warn_once(L1TF_MSG_L1D);
7606 			break;
7607 		case L1TF_MITIGATION_FULL_FORCE:
7608 			/* Flush is enforced */
7609 			break;
7610 		}
7611 	}
7612 	return 0;
7613 }
7614 
7615 static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7616 {
7617 	/* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7618 	 * memory aliases with conflicting memory types and sometimes MCEs.
7619 	 * We have to be careful as to what are honored and when.
7620 	 *
7621 	 * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
7622 	 * UC.  The effective memory type is UC or WC depending on guest PAT.
7623 	 * This was historically the source of MCEs and we want to be
7624 	 * conservative.
7625 	 *
7626 	 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7627 	 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
7628 	 * EPT memory type is set to WB.  The effective memory type is forced
7629 	 * WB.
7630 	 *
7631 	 * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
7632 	 * EPT memory type is used to emulate guest CD/MTRR.
7633 	 */
7634 
7635 	if (is_mmio)
7636 		return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7637 
7638 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
7639 		return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7640 
7641 	if (kvm_read_cr0_bits(vcpu, X86_CR0_CD)) {
7642 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7643 			return MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT;
7644 		else
7645 			return (MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT) |
7646 				VMX_EPT_IPAT_BIT;
7647 	}
7648 
7649 	return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT;
7650 }
7651 
7652 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7653 {
7654 	/*
7655 	 * These bits in the secondary execution controls field
7656 	 * are dynamic, the others are mostly based on the hypervisor
7657 	 * architecture and the guest's CPUID.  Do not touch the
7658 	 * dynamic bits.
7659 	 */
7660 	u32 mask =
7661 		SECONDARY_EXEC_SHADOW_VMCS |
7662 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7663 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7664 		SECONDARY_EXEC_DESC;
7665 
7666 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7667 
7668 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7669 }
7670 
7671 /*
7672  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7673  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7674  */
7675 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7676 {
7677 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7678 	struct kvm_cpuid_entry2 *entry;
7679 
7680 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7681 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7682 
7683 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7684 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7685 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7686 } while (0)
7687 
7688 	entry = kvm_find_cpuid_entry(vcpu, 0x1);
7689 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7690 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7691 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7692 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7693 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7694 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7695 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7696 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7697 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7698 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7699 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7700 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7701 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7702 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7703 
7704 	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7705 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7706 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7707 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7708 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7709 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7710 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7711 
7712 	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 1);
7713 	cr4_fixed1_update(X86_CR4_LAM_SUP,    eax, feature_bit(LAM));
7714 
7715 #undef cr4_fixed1_update
7716 }
7717 
7718 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7719 {
7720 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7721 	struct kvm_cpuid_entry2 *best = NULL;
7722 	int i;
7723 
7724 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7725 		best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7726 		if (!best)
7727 			return;
7728 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7729 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7730 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7731 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7732 	}
7733 
7734 	/* Get the number of configurable Address Ranges for filtering */
7735 	vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7736 						PT_CAP_num_address_ranges);
7737 
7738 	/* Initialize and clear the no dependency bits */
7739 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7740 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7741 			RTIT_CTL_BRANCH_EN);
7742 
7743 	/*
7744 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7745 	 * will inject an #GP
7746 	 */
7747 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7748 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7749 
7750 	/*
7751 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7752 	 * PSBFreq can be set
7753 	 */
7754 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7755 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7756 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7757 
7758 	/*
7759 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7760 	 */
7761 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7762 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7763 					      RTIT_CTL_MTC_RANGE);
7764 
7765 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7766 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7767 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7768 							RTIT_CTL_PTW_EN);
7769 
7770 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7771 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7772 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7773 
7774 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7775 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7776 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7777 
7778 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7779 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7780 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7781 
7782 	/* unmask address range configure area */
7783 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7784 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7785 }
7786 
7787 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7788 {
7789 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7790 
7791 	/*
7792 	 * XSAVES is effectively enabled if and only if XSAVE is also exposed
7793 	 * to the guest.  XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be
7794 	 * set if and only if XSAVE is supported.
7795 	 */
7796 	if (boot_cpu_has(X86_FEATURE_XSAVE) &&
7797 	    guest_cpuid_has(vcpu, X86_FEATURE_XSAVE))
7798 		kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_XSAVES);
7799 
7800 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VMX);
7801 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LAM);
7802 
7803 	vmx_setup_uret_msrs(vmx);
7804 
7805 	if (cpu_has_secondary_exec_ctrls())
7806 		vmcs_set_secondary_exec_control(vmx,
7807 						vmx_secondary_exec_control(vmx));
7808 
7809 	if (guest_can_use(vcpu, X86_FEATURE_VMX))
7810 		vmx->msr_ia32_feature_control_valid_bits |=
7811 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7812 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7813 	else
7814 		vmx->msr_ia32_feature_control_valid_bits &=
7815 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7816 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7817 
7818 	if (guest_can_use(vcpu, X86_FEATURE_VMX))
7819 		nested_vmx_cr_fixed1_bits_update(vcpu);
7820 
7821 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7822 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7823 		update_intel_pt_cfg(vcpu);
7824 
7825 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7826 		struct vmx_uret_msr *msr;
7827 		msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7828 		if (msr) {
7829 			bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7830 			vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7831 		}
7832 	}
7833 
7834 	if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7835 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7836 					  !guest_cpuid_has(vcpu, X86_FEATURE_XFD));
7837 
7838 	if (boot_cpu_has(X86_FEATURE_IBPB))
7839 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
7840 					  !guest_has_pred_cmd_msr(vcpu));
7841 
7842 	if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
7843 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
7844 					  !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
7845 
7846 	set_cr4_guest_host_mask(vmx);
7847 
7848 	vmx_write_encls_bitmap(vcpu, NULL);
7849 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7850 		vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7851 	else
7852 		vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7853 
7854 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7855 		vmx->msr_ia32_feature_control_valid_bits |=
7856 			FEAT_CTL_SGX_LC_ENABLED;
7857 	else
7858 		vmx->msr_ia32_feature_control_valid_bits &=
7859 			~FEAT_CTL_SGX_LC_ENABLED;
7860 
7861 	/* Refresh #PF interception to account for MAXPHYADDR changes. */
7862 	vmx_update_exception_bitmap(vcpu);
7863 }
7864 
7865 static u64 vmx_get_perf_capabilities(void)
7866 {
7867 	u64 perf_cap = PMU_CAP_FW_WRITES;
7868 	struct x86_pmu_lbr lbr;
7869 	u64 host_perf_cap = 0;
7870 
7871 	if (!enable_pmu)
7872 		return 0;
7873 
7874 	if (boot_cpu_has(X86_FEATURE_PDCM))
7875 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
7876 
7877 	if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) {
7878 		x86_perf_get_lbr(&lbr);
7879 		if (lbr.nr)
7880 			perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT;
7881 	}
7882 
7883 	if (vmx_pebs_supported()) {
7884 		perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
7885 		if ((perf_cap & PERF_CAP_PEBS_FORMAT) < 4)
7886 			perf_cap &= ~PERF_CAP_PEBS_BASELINE;
7887 	}
7888 
7889 	return perf_cap;
7890 }
7891 
7892 static __init void vmx_set_cpu_caps(void)
7893 {
7894 	kvm_set_cpu_caps();
7895 
7896 	/* CPUID 0x1 */
7897 	if (nested)
7898 		kvm_cpu_cap_set(X86_FEATURE_VMX);
7899 
7900 	/* CPUID 0x7 */
7901 	if (kvm_mpx_supported())
7902 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7903 	if (!cpu_has_vmx_invpcid())
7904 		kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7905 	if (vmx_pt_mode_is_host_guest())
7906 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7907 	if (vmx_pebs_supported()) {
7908 		kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7909 		kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7910 	}
7911 
7912 	if (!enable_pmu)
7913 		kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7914 	kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
7915 
7916 	if (!enable_sgx) {
7917 		kvm_cpu_cap_clear(X86_FEATURE_SGX);
7918 		kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7919 		kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7920 		kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7921 	}
7922 
7923 	if (vmx_umip_emulated())
7924 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7925 
7926 	/* CPUID 0xD.1 */
7927 	kvm_caps.supported_xss = 0;
7928 	if (!cpu_has_vmx_xsaves())
7929 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7930 
7931 	/* CPUID 0x80000001 and 0x7 (RDPID) */
7932 	if (!cpu_has_vmx_rdtscp()) {
7933 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7934 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7935 	}
7936 
7937 	if (cpu_has_vmx_waitpkg())
7938 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7939 }
7940 
7941 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7942 				  struct x86_instruction_info *info)
7943 {
7944 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7945 	unsigned short port;
7946 	bool intercept;
7947 	int size;
7948 
7949 	if (info->intercept == x86_intercept_in ||
7950 	    info->intercept == x86_intercept_ins) {
7951 		port = info->src_val;
7952 		size = info->dst_bytes;
7953 	} else {
7954 		port = info->dst_val;
7955 		size = info->src_bytes;
7956 	}
7957 
7958 	/*
7959 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7960 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7961 	 * control.
7962 	 *
7963 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7964 	 */
7965 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7966 		intercept = nested_cpu_has(vmcs12,
7967 					   CPU_BASED_UNCOND_IO_EXITING);
7968 	else
7969 		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7970 
7971 	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7972 	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7973 }
7974 
7975 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7976 			       struct x86_instruction_info *info,
7977 			       enum x86_intercept_stage stage,
7978 			       struct x86_exception *exception)
7979 {
7980 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7981 
7982 	switch (info->intercept) {
7983 	/*
7984 	 * RDPID causes #UD if disabled through secondary execution controls.
7985 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
7986 	 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7987 	 */
7988 	case x86_intercept_rdpid:
7989 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7990 			exception->vector = UD_VECTOR;
7991 			exception->error_code_valid = false;
7992 			return X86EMUL_PROPAGATE_FAULT;
7993 		}
7994 		break;
7995 
7996 	case x86_intercept_in:
7997 	case x86_intercept_ins:
7998 	case x86_intercept_out:
7999 	case x86_intercept_outs:
8000 		return vmx_check_intercept_io(vcpu, info);
8001 
8002 	case x86_intercept_lgdt:
8003 	case x86_intercept_lidt:
8004 	case x86_intercept_lldt:
8005 	case x86_intercept_ltr:
8006 	case x86_intercept_sgdt:
8007 	case x86_intercept_sidt:
8008 	case x86_intercept_sldt:
8009 	case x86_intercept_str:
8010 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
8011 			return X86EMUL_CONTINUE;
8012 
8013 		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
8014 		break;
8015 
8016 	case x86_intercept_pause:
8017 		/*
8018 		 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
8019 		 * with vanilla NOPs in the emulator.  Apply the interception
8020 		 * check only to actual PAUSE instructions.  Don't check
8021 		 * PAUSE-loop-exiting, software can't expect a given PAUSE to
8022 		 * exit, i.e. KVM is within its rights to allow L2 to execute
8023 		 * the PAUSE.
8024 		 */
8025 		if ((info->rep_prefix != REPE_PREFIX) ||
8026 		    !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING))
8027 			return X86EMUL_CONTINUE;
8028 
8029 		break;
8030 
8031 	/* TODO: check more intercepts... */
8032 	default:
8033 		break;
8034 	}
8035 
8036 	return X86EMUL_UNHANDLEABLE;
8037 }
8038 
8039 #ifdef CONFIG_X86_64
8040 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
8041 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
8042 				  u64 divisor, u64 *result)
8043 {
8044 	u64 low = a << shift, high = a >> (64 - shift);
8045 
8046 	/* To avoid the overflow on divq */
8047 	if (high >= divisor)
8048 		return 1;
8049 
8050 	/* Low hold the result, high hold rem which is discarded */
8051 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
8052 	    "rm" (divisor), "0" (low), "1" (high));
8053 	*result = low;
8054 
8055 	return 0;
8056 }
8057 
8058 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
8059 			    bool *expired)
8060 {
8061 	struct vcpu_vmx *vmx;
8062 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
8063 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
8064 
8065 	vmx = to_vmx(vcpu);
8066 	tscl = rdtsc();
8067 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
8068 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
8069 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
8070 						    ktimer->timer_advance_ns);
8071 
8072 	if (delta_tsc > lapic_timer_advance_cycles)
8073 		delta_tsc -= lapic_timer_advance_cycles;
8074 	else
8075 		delta_tsc = 0;
8076 
8077 	/* Convert to host delta tsc if tsc scaling is enabled */
8078 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
8079 	    delta_tsc && u64_shl_div_u64(delta_tsc,
8080 				kvm_caps.tsc_scaling_ratio_frac_bits,
8081 				vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
8082 		return -ERANGE;
8083 
8084 	/*
8085 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
8086 	 * we can't use the preemption timer.
8087 	 * It's possible that it fits on later vmentries, but checking
8088 	 * on every vmentry is costly so we just use an hrtimer.
8089 	 */
8090 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
8091 		return -ERANGE;
8092 
8093 	vmx->hv_deadline_tsc = tscl + delta_tsc;
8094 	*expired = !delta_tsc;
8095 	return 0;
8096 }
8097 
8098 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
8099 {
8100 	to_vmx(vcpu)->hv_deadline_tsc = -1;
8101 }
8102 #endif
8103 
8104 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
8105 {
8106 	if (!kvm_pause_in_guest(vcpu->kvm))
8107 		shrink_ple_window(vcpu);
8108 }
8109 
8110 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
8111 {
8112 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8113 
8114 	if (WARN_ON_ONCE(!enable_pml))
8115 		return;
8116 
8117 	if (is_guest_mode(vcpu)) {
8118 		vmx->nested.update_vmcs01_cpu_dirty_logging = true;
8119 		return;
8120 	}
8121 
8122 	/*
8123 	 * Note, nr_memslots_dirty_logging can be changed concurrent with this
8124 	 * code, but in that case another update request will be made and so
8125 	 * the guest will never run with a stale PML value.
8126 	 */
8127 	if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
8128 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8129 	else
8130 		secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8131 }
8132 
8133 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
8134 {
8135 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
8136 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
8137 			FEAT_CTL_LMCE_ENABLED;
8138 	else
8139 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
8140 			~FEAT_CTL_LMCE_ENABLED;
8141 }
8142 
8143 #ifdef CONFIG_KVM_SMM
8144 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
8145 {
8146 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
8147 	if (to_vmx(vcpu)->nested.nested_run_pending)
8148 		return -EBUSY;
8149 	return !is_smm(vcpu);
8150 }
8151 
8152 static int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
8153 {
8154 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8155 
8156 	/*
8157 	 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8158 	 * SMI and RSM.  Using the common VM-Exit + VM-Enter routines is wrong
8159 	 * SMI and RSM only modify state that is saved and restored via SMRAM.
8160 	 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
8161 	 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8162 	 */
8163 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
8164 	if (vmx->nested.smm.guest_mode)
8165 		nested_vmx_vmexit(vcpu, -1, 0, 0);
8166 
8167 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
8168 	vmx->nested.vmxon = false;
8169 	vmx_clear_hlt(vcpu);
8170 	return 0;
8171 }
8172 
8173 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8174 {
8175 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8176 	int ret;
8177 
8178 	if (vmx->nested.smm.vmxon) {
8179 		vmx->nested.vmxon = true;
8180 		vmx->nested.smm.vmxon = false;
8181 	}
8182 
8183 	if (vmx->nested.smm.guest_mode) {
8184 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
8185 		if (ret)
8186 			return ret;
8187 
8188 		vmx->nested.nested_run_pending = 1;
8189 		vmx->nested.smm.guest_mode = false;
8190 	}
8191 	return 0;
8192 }
8193 
8194 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8195 {
8196 	/* RSM will cause a vmexit anyway.  */
8197 }
8198 #endif
8199 
8200 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8201 {
8202 	return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8203 }
8204 
8205 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8206 {
8207 	if (is_guest_mode(vcpu)) {
8208 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8209 
8210 		if (hrtimer_try_to_cancel(timer) == 1)
8211 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8212 	}
8213 }
8214 
8215 static void vmx_hardware_unsetup(void)
8216 {
8217 	kvm_set_posted_intr_wakeup_handler(NULL);
8218 
8219 	if (nested)
8220 		nested_vmx_hardware_unsetup();
8221 
8222 	free_kvm_area();
8223 }
8224 
8225 #define VMX_REQUIRED_APICV_INHIBITS			\
8226 (							\
8227 	BIT(APICV_INHIBIT_REASON_DISABLE)|		\
8228 	BIT(APICV_INHIBIT_REASON_ABSENT) |		\
8229 	BIT(APICV_INHIBIT_REASON_HYPERV) |		\
8230 	BIT(APICV_INHIBIT_REASON_BLOCKIRQ) |		\
8231 	BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) |	\
8232 	BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) |	\
8233 	BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED)	\
8234 )
8235 
8236 static void vmx_vm_destroy(struct kvm *kvm)
8237 {
8238 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8239 
8240 	free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8241 }
8242 
8243 /*
8244  * Note, the SDM states that the linear address is masked *after* the modified
8245  * canonicality check, whereas KVM masks (untags) the address and then performs
8246  * a "normal" canonicality check.  Functionally, the two methods are identical,
8247  * and when the masking occurs relative to the canonicality check isn't visible
8248  * to software, i.e. KVM's behavior doesn't violate the SDM.
8249  */
8250 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags)
8251 {
8252 	int lam_bit;
8253 	unsigned long cr3_bits;
8254 
8255 	if (flags & (X86EMUL_F_FETCH | X86EMUL_F_IMPLICIT | X86EMUL_F_INVLPG))
8256 		return gva;
8257 
8258 	if (!is_64_bit_mode(vcpu))
8259 		return gva;
8260 
8261 	/*
8262 	 * Bit 63 determines if the address should be treated as user address
8263 	 * or a supervisor address.
8264 	 */
8265 	if (!(gva & BIT_ULL(63))) {
8266 		cr3_bits = kvm_get_active_cr3_lam_bits(vcpu);
8267 		if (!(cr3_bits & (X86_CR3_LAM_U57 | X86_CR3_LAM_U48)))
8268 			return gva;
8269 
8270 		/* LAM_U48 is ignored if LAM_U57 is set. */
8271 		lam_bit = cr3_bits & X86_CR3_LAM_U57 ? 56 : 47;
8272 	} else {
8273 		if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_LAM_SUP))
8274 			return gva;
8275 
8276 		lam_bit = kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 56 : 47;
8277 	}
8278 
8279 	/*
8280 	 * Untag the address by sign-extending the lam_bit, but NOT to bit 63.
8281 	 * Bit 63 is retained from the raw virtual address so that untagging
8282 	 * doesn't change a user access to a supervisor access, and vice versa.
8283 	 */
8284 	return (sign_extend64(gva, lam_bit) & ~BIT_ULL(63)) | (gva & BIT_ULL(63));
8285 }
8286 
8287 static struct kvm_x86_ops vmx_x86_ops __initdata = {
8288 	.name = KBUILD_MODNAME,
8289 
8290 	.check_processor_compatibility = vmx_check_processor_compat,
8291 
8292 	.hardware_unsetup = vmx_hardware_unsetup,
8293 
8294 	.hardware_enable = vmx_hardware_enable,
8295 	.hardware_disable = vmx_hardware_disable,
8296 	.has_emulated_msr = vmx_has_emulated_msr,
8297 
8298 	.vm_size = sizeof(struct kvm_vmx),
8299 	.vm_init = vmx_vm_init,
8300 	.vm_destroy = vmx_vm_destroy,
8301 
8302 	.vcpu_precreate = vmx_vcpu_precreate,
8303 	.vcpu_create = vmx_vcpu_create,
8304 	.vcpu_free = vmx_vcpu_free,
8305 	.vcpu_reset = vmx_vcpu_reset,
8306 
8307 	.prepare_switch_to_guest = vmx_prepare_switch_to_guest,
8308 	.vcpu_load = vmx_vcpu_load,
8309 	.vcpu_put = vmx_vcpu_put,
8310 
8311 	.update_exception_bitmap = vmx_update_exception_bitmap,
8312 	.get_msr_feature = vmx_get_msr_feature,
8313 	.get_msr = vmx_get_msr,
8314 	.set_msr = vmx_set_msr,
8315 	.get_segment_base = vmx_get_segment_base,
8316 	.get_segment = vmx_get_segment,
8317 	.set_segment = vmx_set_segment,
8318 	.get_cpl = vmx_get_cpl,
8319 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8320 	.is_valid_cr0 = vmx_is_valid_cr0,
8321 	.set_cr0 = vmx_set_cr0,
8322 	.is_valid_cr4 = vmx_is_valid_cr4,
8323 	.set_cr4 = vmx_set_cr4,
8324 	.set_efer = vmx_set_efer,
8325 	.get_idt = vmx_get_idt,
8326 	.set_idt = vmx_set_idt,
8327 	.get_gdt = vmx_get_gdt,
8328 	.set_gdt = vmx_set_gdt,
8329 	.set_dr7 = vmx_set_dr7,
8330 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
8331 	.cache_reg = vmx_cache_reg,
8332 	.get_rflags = vmx_get_rflags,
8333 	.set_rflags = vmx_set_rflags,
8334 	.get_if_flag = vmx_get_if_flag,
8335 
8336 	.flush_tlb_all = vmx_flush_tlb_all,
8337 	.flush_tlb_current = vmx_flush_tlb_current,
8338 	.flush_tlb_gva = vmx_flush_tlb_gva,
8339 	.flush_tlb_guest = vmx_flush_tlb_guest,
8340 
8341 	.vcpu_pre_run = vmx_vcpu_pre_run,
8342 	.vcpu_run = vmx_vcpu_run,
8343 	.handle_exit = vmx_handle_exit,
8344 	.skip_emulated_instruction = vmx_skip_emulated_instruction,
8345 	.update_emulated_instruction = vmx_update_emulated_instruction,
8346 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
8347 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
8348 	.patch_hypercall = vmx_patch_hypercall,
8349 	.inject_irq = vmx_inject_irq,
8350 	.inject_nmi = vmx_inject_nmi,
8351 	.inject_exception = vmx_inject_exception,
8352 	.cancel_injection = vmx_cancel_injection,
8353 	.interrupt_allowed = vmx_interrupt_allowed,
8354 	.nmi_allowed = vmx_nmi_allowed,
8355 	.get_nmi_mask = vmx_get_nmi_mask,
8356 	.set_nmi_mask = vmx_set_nmi_mask,
8357 	.enable_nmi_window = vmx_enable_nmi_window,
8358 	.enable_irq_window = vmx_enable_irq_window,
8359 	.update_cr8_intercept = vmx_update_cr8_intercept,
8360 	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
8361 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
8362 	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
8363 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
8364 	.apicv_pre_state_restore = vmx_apicv_pre_state_restore,
8365 	.required_apicv_inhibits = VMX_REQUIRED_APICV_INHIBITS,
8366 	.hwapic_irr_update = vmx_hwapic_irr_update,
8367 	.hwapic_isr_update = vmx_hwapic_isr_update,
8368 	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
8369 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
8370 	.deliver_interrupt = vmx_deliver_interrupt,
8371 	.dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
8372 
8373 	.set_tss_addr = vmx_set_tss_addr,
8374 	.set_identity_map_addr = vmx_set_identity_map_addr,
8375 	.get_mt_mask = vmx_get_mt_mask,
8376 
8377 	.get_exit_info = vmx_get_exit_info,
8378 
8379 	.vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
8380 
8381 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8382 
8383 	.get_l2_tsc_offset = vmx_get_l2_tsc_offset,
8384 	.get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
8385 	.write_tsc_offset = vmx_write_tsc_offset,
8386 	.write_tsc_multiplier = vmx_write_tsc_multiplier,
8387 
8388 	.load_mmu_pgd = vmx_load_mmu_pgd,
8389 
8390 	.check_intercept = vmx_check_intercept,
8391 	.handle_exit_irqoff = vmx_handle_exit_irqoff,
8392 
8393 	.sched_in = vmx_sched_in,
8394 
8395 	.cpu_dirty_log_size = PML_ENTITY_NUM,
8396 	.update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
8397 
8398 	.nested_ops = &vmx_nested_ops,
8399 
8400 	.pi_update_irte = vmx_pi_update_irte,
8401 	.pi_start_assignment = vmx_pi_start_assignment,
8402 
8403 #ifdef CONFIG_X86_64
8404 	.set_hv_timer = vmx_set_hv_timer,
8405 	.cancel_hv_timer = vmx_cancel_hv_timer,
8406 #endif
8407 
8408 	.setup_mce = vmx_setup_mce,
8409 
8410 #ifdef CONFIG_KVM_SMM
8411 	.smi_allowed = vmx_smi_allowed,
8412 	.enter_smm = vmx_enter_smm,
8413 	.leave_smm = vmx_leave_smm,
8414 	.enable_smi_window = vmx_enable_smi_window,
8415 #endif
8416 
8417 	.check_emulate_instruction = vmx_check_emulate_instruction,
8418 	.apic_init_signal_blocked = vmx_apic_init_signal_blocked,
8419 	.migrate_timers = vmx_migrate_timers,
8420 
8421 	.msr_filter_changed = vmx_msr_filter_changed,
8422 	.complete_emulated_msr = kvm_complete_insn_gp,
8423 
8424 	.vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
8425 
8426 	.get_untagged_addr = vmx_get_untagged_addr,
8427 };
8428 
8429 static unsigned int vmx_handle_intel_pt_intr(void)
8430 {
8431 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8432 
8433 	/* '0' on failure so that the !PT case can use a RET0 static call. */
8434 	if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8435 		return 0;
8436 
8437 	kvm_make_request(KVM_REQ_PMI, vcpu);
8438 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8439 		  (unsigned long *)&vcpu->arch.pmu.global_status);
8440 	return 1;
8441 }
8442 
8443 static __init void vmx_setup_user_return_msrs(void)
8444 {
8445 
8446 	/*
8447 	 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8448 	 * will emulate SYSCALL in legacy mode if the vendor string in guest
8449 	 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8450 	 * support this emulation, MSR_STAR is included in the list for i386,
8451 	 * but is never loaded into hardware.  MSR_CSTAR is also never loaded
8452 	 * into hardware and is here purely for emulation purposes.
8453 	 */
8454 	const u32 vmx_uret_msrs_list[] = {
8455 	#ifdef CONFIG_X86_64
8456 		MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8457 	#endif
8458 		MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8459 		MSR_IA32_TSX_CTRL,
8460 	};
8461 	int i;
8462 
8463 	BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8464 
8465 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8466 		kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8467 }
8468 
8469 static void __init vmx_setup_me_spte_mask(void)
8470 {
8471 	u64 me_mask = 0;
8472 
8473 	/*
8474 	 * kvm_get_shadow_phys_bits() returns shadow_phys_bits.  Use
8475 	 * the former to avoid exposing shadow_phys_bits.
8476 	 *
8477 	 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8478 	 * shadow_phys_bits.  On MKTME and/or TDX capable systems,
8479 	 * boot_cpu_data.x86_phys_bits holds the actual physical address
8480 	 * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR
8481 	 * reported by CPUID.  Those bits between are KeyID bits.
8482 	 */
8483 	if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits())
8484 		me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8485 			kvm_get_shadow_phys_bits() - 1);
8486 	/*
8487 	 * Unlike SME, host kernel doesn't support setting up any
8488 	 * MKTME KeyID on Intel platforms.  No memory encryption
8489 	 * bits should be included into the SPTE.
8490 	 */
8491 	kvm_mmu_set_me_spte_mask(0, me_mask);
8492 }
8493 
8494 static struct kvm_x86_init_ops vmx_init_ops __initdata;
8495 
8496 static __init int hardware_setup(void)
8497 {
8498 	unsigned long host_bndcfgs;
8499 	struct desc_ptr dt;
8500 	int r;
8501 
8502 	store_idt(&dt);
8503 	host_idt_base = dt.address;
8504 
8505 	vmx_setup_user_return_msrs();
8506 
8507 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8508 		return -EIO;
8509 
8510 	if (cpu_has_perf_global_ctrl_bug())
8511 		pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
8512 			     "does not work properly. Using workaround\n");
8513 
8514 	if (boot_cpu_has(X86_FEATURE_NX))
8515 		kvm_enable_efer_bits(EFER_NX);
8516 
8517 	if (boot_cpu_has(X86_FEATURE_MPX)) {
8518 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
8519 		WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
8520 	}
8521 
8522 	if (!cpu_has_vmx_mpx())
8523 		kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8524 					     XFEATURE_MASK_BNDCSR);
8525 
8526 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8527 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8528 		enable_vpid = 0;
8529 
8530 	if (!cpu_has_vmx_ept() ||
8531 	    !cpu_has_vmx_ept_4levels() ||
8532 	    !cpu_has_vmx_ept_mt_wb() ||
8533 	    !cpu_has_vmx_invept_global())
8534 		enable_ept = 0;
8535 
8536 	/* NX support is required for shadow paging. */
8537 	if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8538 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
8539 		return -EOPNOTSUPP;
8540 	}
8541 
8542 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8543 		enable_ept_ad_bits = 0;
8544 
8545 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8546 		enable_unrestricted_guest = 0;
8547 
8548 	if (!cpu_has_vmx_flexpriority())
8549 		flexpriority_enabled = 0;
8550 
8551 	if (!cpu_has_virtual_nmis())
8552 		enable_vnmi = 0;
8553 
8554 #ifdef CONFIG_X86_SGX_KVM
8555 	if (!cpu_has_vmx_encls_vmexit())
8556 		enable_sgx = false;
8557 #endif
8558 
8559 	/*
8560 	 * set_apic_access_page_addr() is used to reload apic access
8561 	 * page upon invalidation.  No need to do anything if not
8562 	 * using the APIC_ACCESS_ADDR VMCS field.
8563 	 */
8564 	if (!flexpriority_enabled)
8565 		vmx_x86_ops.set_apic_access_page_addr = NULL;
8566 
8567 	if (!cpu_has_vmx_tpr_shadow())
8568 		vmx_x86_ops.update_cr8_intercept = NULL;
8569 
8570 #if IS_ENABLED(CONFIG_HYPERV)
8571 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8572 	    && enable_ept) {
8573 		vmx_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
8574 		vmx_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
8575 	}
8576 #endif
8577 
8578 	if (!cpu_has_vmx_ple()) {
8579 		ple_gap = 0;
8580 		ple_window = 0;
8581 		ple_window_grow = 0;
8582 		ple_window_max = 0;
8583 		ple_window_shrink = 0;
8584 	}
8585 
8586 	if (!cpu_has_vmx_apicv())
8587 		enable_apicv = 0;
8588 	if (!enable_apicv)
8589 		vmx_x86_ops.sync_pir_to_irr = NULL;
8590 
8591 	if (!enable_apicv || !cpu_has_vmx_ipiv())
8592 		enable_ipiv = false;
8593 
8594 	if (cpu_has_vmx_tsc_scaling())
8595 		kvm_caps.has_tsc_control = true;
8596 
8597 	kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8598 	kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8599 	kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8600 	kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8601 
8602 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8603 
8604 	if (enable_ept)
8605 		kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8606 				      cpu_has_vmx_ept_execute_only());
8607 
8608 	/*
8609 	 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8610 	 * bits to shadow_zero_check.
8611 	 */
8612 	vmx_setup_me_spte_mask();
8613 
8614 	kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(),
8615 			  ept_caps_to_lpage_level(vmx_capability.ept));
8616 
8617 	/*
8618 	 * Only enable PML when hardware supports PML feature, and both EPT
8619 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
8620 	 */
8621 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8622 		enable_pml = 0;
8623 
8624 	if (!enable_pml)
8625 		vmx_x86_ops.cpu_dirty_log_size = 0;
8626 
8627 	if (!cpu_has_vmx_preemption_timer())
8628 		enable_preemption_timer = false;
8629 
8630 	if (enable_preemption_timer) {
8631 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
8632 
8633 		cpu_preemption_timer_multi =
8634 			vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8635 
8636 		if (tsc_khz)
8637 			use_timer_freq = (u64)tsc_khz * 1000;
8638 		use_timer_freq >>= cpu_preemption_timer_multi;
8639 
8640 		/*
8641 		 * KVM "disables" the preemption timer by setting it to its max
8642 		 * value.  Don't use the timer if it might cause spurious exits
8643 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8644 		 */
8645 		if (use_timer_freq > 0xffffffffu / 10)
8646 			enable_preemption_timer = false;
8647 	}
8648 
8649 	if (!enable_preemption_timer) {
8650 		vmx_x86_ops.set_hv_timer = NULL;
8651 		vmx_x86_ops.cancel_hv_timer = NULL;
8652 	}
8653 
8654 	kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8655 	kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8656 
8657 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8658 		return -EINVAL;
8659 	if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8660 		pt_mode = PT_MODE_SYSTEM;
8661 	if (pt_mode == PT_MODE_HOST_GUEST)
8662 		vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8663 	else
8664 		vmx_init_ops.handle_intel_pt_intr = NULL;
8665 
8666 	setup_default_sgx_lepubkeyhash();
8667 
8668 	if (nested) {
8669 		nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8670 
8671 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8672 		if (r)
8673 			return r;
8674 	}
8675 
8676 	vmx_set_cpu_caps();
8677 
8678 	r = alloc_kvm_area();
8679 	if (r && nested)
8680 		nested_vmx_hardware_unsetup();
8681 
8682 	kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8683 
8684 	return r;
8685 }
8686 
8687 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8688 	.hardware_setup = hardware_setup,
8689 	.handle_intel_pt_intr = NULL,
8690 
8691 	.runtime_ops = &vmx_x86_ops,
8692 	.pmu_ops = &intel_pmu_ops,
8693 };
8694 
8695 static void vmx_cleanup_l1d_flush(void)
8696 {
8697 	if (vmx_l1d_flush_pages) {
8698 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8699 		vmx_l1d_flush_pages = NULL;
8700 	}
8701 	/* Restore state so sysfs ignores VMX */
8702 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8703 }
8704 
8705 static void __vmx_exit(void)
8706 {
8707 	allow_smaller_maxphyaddr = false;
8708 
8709 	cpu_emergency_unregister_virt_callback(vmx_emergency_disable);
8710 
8711 	vmx_cleanup_l1d_flush();
8712 }
8713 
8714 static void vmx_exit(void)
8715 {
8716 	kvm_exit();
8717 	kvm_x86_vendor_exit();
8718 
8719 	__vmx_exit();
8720 }
8721 module_exit(vmx_exit);
8722 
8723 static int __init vmx_init(void)
8724 {
8725 	int r, cpu;
8726 
8727 	if (!kvm_is_vmx_supported())
8728 		return -EOPNOTSUPP;
8729 
8730 	/*
8731 	 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing
8732 	 * to unwind if a later step fails.
8733 	 */
8734 	hv_init_evmcs();
8735 
8736 	r = kvm_x86_vendor_init(&vmx_init_ops);
8737 	if (r)
8738 		return r;
8739 
8740 	/*
8741 	 * Must be called after common x86 init so enable_ept is properly set
8742 	 * up. Hand the parameter mitigation value in which was stored in
8743 	 * the pre module init parser. If no parameter was given, it will
8744 	 * contain 'auto' which will be turned into the default 'cond'
8745 	 * mitigation mode.
8746 	 */
8747 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8748 	if (r)
8749 		goto err_l1d_flush;
8750 
8751 	for_each_possible_cpu(cpu) {
8752 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8753 
8754 		pi_init_cpu(cpu);
8755 	}
8756 
8757 	cpu_emergency_register_virt_callback(vmx_emergency_disable);
8758 
8759 	vmx_check_vmcs12_offsets();
8760 
8761 	/*
8762 	 * Shadow paging doesn't have a (further) performance penalty
8763 	 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8764 	 * by default
8765 	 */
8766 	if (!enable_ept)
8767 		allow_smaller_maxphyaddr = true;
8768 
8769 	/*
8770 	 * Common KVM initialization _must_ come last, after this, /dev/kvm is
8771 	 * exposed to userspace!
8772 	 */
8773 	r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx),
8774 		     THIS_MODULE);
8775 	if (r)
8776 		goto err_kvm_init;
8777 
8778 	return 0;
8779 
8780 err_kvm_init:
8781 	__vmx_exit();
8782 err_l1d_flush:
8783 	kvm_x86_vendor_exit();
8784 	return r;
8785 }
8786 module_init(vmx_init);
8787