1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <linux/highmem.h> 17 #include <linux/hrtimer.h> 18 #include <linux/kernel.h> 19 #include <linux/kvm_host.h> 20 #include <linux/module.h> 21 #include <linux/moduleparam.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/mm.h> 24 #include <linux/objtool.h> 25 #include <linux/sched.h> 26 #include <linux/sched/smt.h> 27 #include <linux/slab.h> 28 #include <linux/tboot.h> 29 #include <linux/trace_events.h> 30 #include <linux/entry-kvm.h> 31 32 #include <asm/apic.h> 33 #include <asm/asm.h> 34 #include <asm/cpu.h> 35 #include <asm/cpu_device_id.h> 36 #include <asm/debugreg.h> 37 #include <asm/desc.h> 38 #include <asm/fpu/internal.h> 39 #include <asm/io.h> 40 #include <asm/irq_remapping.h> 41 #include <asm/kexec.h> 42 #include <asm/perf_event.h> 43 #include <asm/mmu_context.h> 44 #include <asm/mshyperv.h> 45 #include <asm/mwait.h> 46 #include <asm/spec-ctrl.h> 47 #include <asm/virtext.h> 48 #include <asm/vmx.h> 49 50 #include "capabilities.h" 51 #include "cpuid.h" 52 #include "evmcs.h" 53 #include "hyperv.h" 54 #include "irq.h" 55 #include "kvm_cache_regs.h" 56 #include "lapic.h" 57 #include "mmu.h" 58 #include "nested.h" 59 #include "pmu.h" 60 #include "sgx.h" 61 #include "trace.h" 62 #include "vmcs.h" 63 #include "vmcs12.h" 64 #include "vmx.h" 65 #include "x86.h" 66 67 MODULE_AUTHOR("Qumranet"); 68 MODULE_LICENSE("GPL"); 69 70 #ifdef MODULE 71 static const struct x86_cpu_id vmx_cpu_id[] = { 72 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL), 73 {} 74 }; 75 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); 76 #endif 77 78 bool __read_mostly enable_vpid = 1; 79 module_param_named(vpid, enable_vpid, bool, 0444); 80 81 static bool __read_mostly enable_vnmi = 1; 82 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO); 83 84 bool __read_mostly flexpriority_enabled = 1; 85 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); 86 87 bool __read_mostly enable_ept = 1; 88 module_param_named(ept, enable_ept, bool, S_IRUGO); 89 90 bool __read_mostly enable_unrestricted_guest = 1; 91 module_param_named(unrestricted_guest, 92 enable_unrestricted_guest, bool, S_IRUGO); 93 94 bool __read_mostly enable_ept_ad_bits = 1; 95 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO); 96 97 static bool __read_mostly emulate_invalid_guest_state = true; 98 module_param(emulate_invalid_guest_state, bool, S_IRUGO); 99 100 static bool __read_mostly fasteoi = 1; 101 module_param(fasteoi, bool, S_IRUGO); 102 103 bool __read_mostly enable_apicv = 1; 104 module_param(enable_apicv, bool, S_IRUGO); 105 106 /* 107 * If nested=1, nested virtualization is supported, i.e., guests may use 108 * VMX and be a hypervisor for its own guests. If nested=0, guests may not 109 * use VMX instructions. 110 */ 111 static bool __read_mostly nested = 1; 112 module_param(nested, bool, S_IRUGO); 113 114 bool __read_mostly enable_pml = 1; 115 module_param_named(pml, enable_pml, bool, S_IRUGO); 116 117 static bool __read_mostly dump_invalid_vmcs = 0; 118 module_param(dump_invalid_vmcs, bool, 0644); 119 120 #define MSR_BITMAP_MODE_X2APIC 1 121 #define MSR_BITMAP_MODE_X2APIC_APICV 2 122 123 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL 124 125 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ 126 static int __read_mostly cpu_preemption_timer_multi; 127 static bool __read_mostly enable_preemption_timer = 1; 128 #ifdef CONFIG_X86_64 129 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); 130 #endif 131 132 extern bool __read_mostly allow_smaller_maxphyaddr; 133 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO); 134 135 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) 136 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE 137 #define KVM_VM_CR0_ALWAYS_ON \ 138 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | \ 139 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE) 140 141 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE 142 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) 143 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) 144 145 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) 146 147 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ 148 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ 149 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ 150 RTIT_STATUS_BYTECNT)) 151 152 /* 153 * List of MSRs that can be directly passed to the guest. 154 * In addition to these x2apic and PT MSRs are handled specially. 155 */ 156 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = { 157 MSR_IA32_SPEC_CTRL, 158 MSR_IA32_PRED_CMD, 159 MSR_IA32_TSC, 160 #ifdef CONFIG_X86_64 161 MSR_FS_BASE, 162 MSR_GS_BASE, 163 MSR_KERNEL_GS_BASE, 164 #endif 165 MSR_IA32_SYSENTER_CS, 166 MSR_IA32_SYSENTER_ESP, 167 MSR_IA32_SYSENTER_EIP, 168 MSR_CORE_C1_RES, 169 MSR_CORE_C3_RESIDENCY, 170 MSR_CORE_C6_RESIDENCY, 171 MSR_CORE_C7_RESIDENCY, 172 }; 173 174 /* 175 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 176 * ple_gap: upper bound on the amount of time between two successive 177 * executions of PAUSE in a loop. Also indicate if ple enabled. 178 * According to test, this time is usually smaller than 128 cycles. 179 * ple_window: upper bound on the amount of time a guest is allowed to execute 180 * in a PAUSE loop. Tests indicate that most spinlocks are held for 181 * less than 2^12 cycles 182 * Time is measured based on a counter that runs at the same rate as the TSC, 183 * refer SDM volume 3b section 21.6.13 & 22.1.3. 184 */ 185 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; 186 module_param(ple_gap, uint, 0444); 187 188 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; 189 module_param(ple_window, uint, 0444); 190 191 /* Default doubles per-vcpu window every exit. */ 192 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 193 module_param(ple_window_grow, uint, 0444); 194 195 /* Default resets per-vcpu window every exit to ple_window. */ 196 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 197 module_param(ple_window_shrink, uint, 0444); 198 199 /* Default is to compute the maximum so we can never overflow. */ 200 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; 201 module_param(ple_window_max, uint, 0444); 202 203 /* Default is SYSTEM mode, 1 for host-guest mode */ 204 int __read_mostly pt_mode = PT_MODE_SYSTEM; 205 module_param(pt_mode, int, S_IRUGO); 206 207 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); 208 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); 209 static DEFINE_MUTEX(vmx_l1d_flush_mutex); 210 211 /* Storage for pre module init parameter parsing */ 212 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; 213 214 static const struct { 215 const char *option; 216 bool for_parse; 217 } vmentry_l1d_param[] = { 218 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, 219 [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, 220 [VMENTER_L1D_FLUSH_COND] = {"cond", true}, 221 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, 222 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, 223 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, 224 }; 225 226 #define L1D_CACHE_ORDER 4 227 static void *vmx_l1d_flush_pages; 228 229 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) 230 { 231 struct page *page; 232 unsigned int i; 233 234 if (!boot_cpu_has_bug(X86_BUG_L1TF)) { 235 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 236 return 0; 237 } 238 239 if (!enable_ept) { 240 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; 241 return 0; 242 } 243 244 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 245 u64 msr; 246 247 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr); 248 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { 249 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 250 return 0; 251 } 252 } 253 254 /* If set to auto use the default l1tf mitigation method */ 255 if (l1tf == VMENTER_L1D_FLUSH_AUTO) { 256 switch (l1tf_mitigation) { 257 case L1TF_MITIGATION_OFF: 258 l1tf = VMENTER_L1D_FLUSH_NEVER; 259 break; 260 case L1TF_MITIGATION_FLUSH_NOWARN: 261 case L1TF_MITIGATION_FLUSH: 262 case L1TF_MITIGATION_FLUSH_NOSMT: 263 l1tf = VMENTER_L1D_FLUSH_COND; 264 break; 265 case L1TF_MITIGATION_FULL: 266 case L1TF_MITIGATION_FULL_FORCE: 267 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 268 break; 269 } 270 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { 271 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 272 } 273 274 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && 275 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { 276 /* 277 * This allocation for vmx_l1d_flush_pages is not tied to a VM 278 * lifetime and so should not be charged to a memcg. 279 */ 280 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); 281 if (!page) 282 return -ENOMEM; 283 vmx_l1d_flush_pages = page_address(page); 284 285 /* 286 * Initialize each page with a different pattern in 287 * order to protect against KSM in the nested 288 * virtualization case. 289 */ 290 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { 291 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, 292 PAGE_SIZE); 293 } 294 } 295 296 l1tf_vmx_mitigation = l1tf; 297 298 if (l1tf != VMENTER_L1D_FLUSH_NEVER) 299 static_branch_enable(&vmx_l1d_should_flush); 300 else 301 static_branch_disable(&vmx_l1d_should_flush); 302 303 if (l1tf == VMENTER_L1D_FLUSH_COND) 304 static_branch_enable(&vmx_l1d_flush_cond); 305 else 306 static_branch_disable(&vmx_l1d_flush_cond); 307 return 0; 308 } 309 310 static int vmentry_l1d_flush_parse(const char *s) 311 { 312 unsigned int i; 313 314 if (s) { 315 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { 316 if (vmentry_l1d_param[i].for_parse && 317 sysfs_streq(s, vmentry_l1d_param[i].option)) 318 return i; 319 } 320 } 321 return -EINVAL; 322 } 323 324 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) 325 { 326 int l1tf, ret; 327 328 l1tf = vmentry_l1d_flush_parse(s); 329 if (l1tf < 0) 330 return l1tf; 331 332 if (!boot_cpu_has(X86_BUG_L1TF)) 333 return 0; 334 335 /* 336 * Has vmx_init() run already? If not then this is the pre init 337 * parameter parsing. In that case just store the value and let 338 * vmx_init() do the proper setup after enable_ept has been 339 * established. 340 */ 341 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { 342 vmentry_l1d_flush_param = l1tf; 343 return 0; 344 } 345 346 mutex_lock(&vmx_l1d_flush_mutex); 347 ret = vmx_setup_l1d_flush(l1tf); 348 mutex_unlock(&vmx_l1d_flush_mutex); 349 return ret; 350 } 351 352 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) 353 { 354 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) 355 return sprintf(s, "???\n"); 356 357 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); 358 } 359 360 static const struct kernel_param_ops vmentry_l1d_flush_ops = { 361 .set = vmentry_l1d_flush_set, 362 .get = vmentry_l1d_flush_get, 363 }; 364 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); 365 366 static u32 vmx_segment_access_rights(struct kvm_segment *var); 367 368 void vmx_vmexit(void); 369 370 #define vmx_insn_failed(fmt...) \ 371 do { \ 372 WARN_ONCE(1, fmt); \ 373 pr_warn_ratelimited(fmt); \ 374 } while (0) 375 376 asmlinkage void vmread_error(unsigned long field, bool fault) 377 { 378 if (fault) 379 kvm_spurious_fault(); 380 else 381 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field); 382 } 383 384 noinline void vmwrite_error(unsigned long field, unsigned long value) 385 { 386 vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n", 387 field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); 388 } 389 390 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr) 391 { 392 vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr); 393 } 394 395 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr) 396 { 397 vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr); 398 } 399 400 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva) 401 { 402 vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n", 403 ext, vpid, gva); 404 } 405 406 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa) 407 { 408 vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n", 409 ext, eptp, gpa); 410 } 411 412 static DEFINE_PER_CPU(struct vmcs *, vmxarea); 413 DEFINE_PER_CPU(struct vmcs *, current_vmcs); 414 /* 415 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed 416 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. 417 */ 418 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); 419 420 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); 421 static DEFINE_SPINLOCK(vmx_vpid_lock); 422 423 struct vmcs_config vmcs_config; 424 struct vmx_capability vmx_capability; 425 426 #define VMX_SEGMENT_FIELD(seg) \ 427 [VCPU_SREG_##seg] = { \ 428 .selector = GUEST_##seg##_SELECTOR, \ 429 .base = GUEST_##seg##_BASE, \ 430 .limit = GUEST_##seg##_LIMIT, \ 431 .ar_bytes = GUEST_##seg##_AR_BYTES, \ 432 } 433 434 static const struct kvm_vmx_segment_field { 435 unsigned selector; 436 unsigned base; 437 unsigned limit; 438 unsigned ar_bytes; 439 } kvm_vmx_segment_fields[] = { 440 VMX_SEGMENT_FIELD(CS), 441 VMX_SEGMENT_FIELD(DS), 442 VMX_SEGMENT_FIELD(ES), 443 VMX_SEGMENT_FIELD(FS), 444 VMX_SEGMENT_FIELD(GS), 445 VMX_SEGMENT_FIELD(SS), 446 VMX_SEGMENT_FIELD(TR), 447 VMX_SEGMENT_FIELD(LDTR), 448 }; 449 450 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx) 451 { 452 vmx->segment_cache.bitmask = 0; 453 } 454 455 static unsigned long host_idt_base; 456 457 /* 458 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm 459 * will emulate SYSCALL in legacy mode if the vendor string in guest 460 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To 461 * support this emulation, IA32_STAR must always be included in 462 * vmx_uret_msrs_list[], even in i386 builds. 463 */ 464 static const u32 vmx_uret_msrs_list[] = { 465 #ifdef CONFIG_X86_64 466 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, 467 #endif 468 MSR_EFER, MSR_TSC_AUX, MSR_STAR, 469 MSR_IA32_TSX_CTRL, 470 }; 471 472 #if IS_ENABLED(CONFIG_HYPERV) 473 static bool __read_mostly enlightened_vmcs = true; 474 module_param(enlightened_vmcs, bool, 0444); 475 476 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush, 477 void *data) 478 { 479 struct kvm_tlb_range *range = data; 480 481 return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn, 482 range->pages); 483 } 484 485 static inline int hv_remote_flush_root_ept(hpa_t root_ept, 486 struct kvm_tlb_range *range) 487 { 488 if (range) 489 return hyperv_flush_guest_mapping_range(root_ept, 490 kvm_fill_hv_flush_list_func, (void *)range); 491 else 492 return hyperv_flush_guest_mapping(root_ept); 493 } 494 495 static int hv_remote_flush_tlb_with_range(struct kvm *kvm, 496 struct kvm_tlb_range *range) 497 { 498 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 499 struct kvm_vcpu *vcpu; 500 int ret = 0, i, nr_unique_valid_roots; 501 hpa_t root; 502 503 spin_lock(&kvm_vmx->hv_root_ept_lock); 504 505 if (!VALID_PAGE(kvm_vmx->hv_root_ept)) { 506 nr_unique_valid_roots = 0; 507 508 /* 509 * Flush all valid roots, and see if all vCPUs have converged 510 * on a common root, in which case future flushes can skip the 511 * loop and flush the common root. 512 */ 513 kvm_for_each_vcpu(i, vcpu, kvm) { 514 root = to_vmx(vcpu)->hv_root_ept; 515 if (!VALID_PAGE(root) || root == kvm_vmx->hv_root_ept) 516 continue; 517 518 /* 519 * Set the tracked root to the first valid root. Keep 520 * this root for the entirety of the loop even if more 521 * roots are encountered as a low effort optimization 522 * to avoid flushing the same (first) root again. 523 */ 524 if (++nr_unique_valid_roots == 1) 525 kvm_vmx->hv_root_ept = root; 526 527 if (!ret) 528 ret = hv_remote_flush_root_ept(root, range); 529 530 /* 531 * Stop processing roots if a failure occurred and 532 * multiple valid roots have already been detected. 533 */ 534 if (ret && nr_unique_valid_roots > 1) 535 break; 536 } 537 538 /* 539 * The optimized flush of a single root can't be used if there 540 * are multiple valid roots (obviously). 541 */ 542 if (nr_unique_valid_roots > 1) 543 kvm_vmx->hv_root_ept = INVALID_PAGE; 544 } else { 545 ret = hv_remote_flush_root_ept(kvm_vmx->hv_root_ept, range); 546 } 547 548 spin_unlock(&kvm_vmx->hv_root_ept_lock); 549 return ret; 550 } 551 static int hv_remote_flush_tlb(struct kvm *kvm) 552 { 553 return hv_remote_flush_tlb_with_range(kvm, NULL); 554 } 555 556 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu) 557 { 558 struct hv_enlightened_vmcs *evmcs; 559 struct hv_partition_assist_pg **p_hv_pa_pg = 560 &to_kvm_hv(vcpu->kvm)->hv_pa_pg; 561 /* 562 * Synthetic VM-Exit is not enabled in current code and so All 563 * evmcs in singe VM shares same assist page. 564 */ 565 if (!*p_hv_pa_pg) 566 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT); 567 568 if (!*p_hv_pa_pg) 569 return -ENOMEM; 570 571 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs; 572 573 evmcs->partition_assist_page = 574 __pa(*p_hv_pa_pg); 575 evmcs->hv_vm_id = (unsigned long)vcpu->kvm; 576 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1; 577 578 return 0; 579 } 580 581 #endif /* IS_ENABLED(CONFIG_HYPERV) */ 582 583 static void hv_track_root_ept(struct kvm_vcpu *vcpu, hpa_t root_ept) 584 { 585 #if IS_ENABLED(CONFIG_HYPERV) 586 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); 587 588 if (kvm_x86_ops.tlb_remote_flush == hv_remote_flush_tlb) { 589 spin_lock(&kvm_vmx->hv_root_ept_lock); 590 to_vmx(vcpu)->hv_root_ept = root_ept; 591 if (root_ept != kvm_vmx->hv_root_ept) 592 kvm_vmx->hv_root_ept = INVALID_PAGE; 593 spin_unlock(&kvm_vmx->hv_root_ept_lock); 594 } 595 #endif 596 } 597 598 /* 599 * Comment's format: document - errata name - stepping - processor name. 600 * Refer from 601 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp 602 */ 603 static u32 vmx_preemption_cpu_tfms[] = { 604 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ 605 0x000206E6, 606 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ 607 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ 608 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ 609 0x00020652, 610 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ 611 0x00020655, 612 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ 613 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ 614 /* 615 * 320767.pdf - AAP86 - B1 - 616 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile 617 */ 618 0x000106E5, 619 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ 620 0x000106A0, 621 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ 622 0x000106A1, 623 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ 624 0x000106A4, 625 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ 626 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ 627 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ 628 0x000106A5, 629 /* Xeon E3-1220 V2 */ 630 0x000306A8, 631 }; 632 633 static inline bool cpu_has_broken_vmx_preemption_timer(void) 634 { 635 u32 eax = cpuid_eax(0x00000001), i; 636 637 /* Clear the reserved bits */ 638 eax &= ~(0x3U << 14 | 0xfU << 28); 639 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) 640 if (eax == vmx_preemption_cpu_tfms[i]) 641 return true; 642 643 return false; 644 } 645 646 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) 647 { 648 return flexpriority_enabled && lapic_in_kernel(vcpu); 649 } 650 651 static inline bool report_flexpriority(void) 652 { 653 return flexpriority_enabled; 654 } 655 656 static int possible_passthrough_msr_slot(u32 msr) 657 { 658 u32 i; 659 660 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) 661 if (vmx_possible_passthrough_msrs[i] == msr) 662 return i; 663 664 return -ENOENT; 665 } 666 667 static bool is_valid_passthrough_msr(u32 msr) 668 { 669 bool r; 670 671 switch (msr) { 672 case 0x800 ... 0x8ff: 673 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */ 674 return true; 675 case MSR_IA32_RTIT_STATUS: 676 case MSR_IA32_RTIT_OUTPUT_BASE: 677 case MSR_IA32_RTIT_OUTPUT_MASK: 678 case MSR_IA32_RTIT_CR3_MATCH: 679 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 680 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */ 681 case MSR_LBR_SELECT: 682 case MSR_LBR_TOS: 683 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31: 684 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31: 685 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31: 686 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8: 687 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8: 688 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */ 689 return true; 690 } 691 692 r = possible_passthrough_msr_slot(msr) != -ENOENT; 693 694 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr); 695 696 return r; 697 } 698 699 static inline int __vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr) 700 { 701 int i; 702 703 for (i = 0; i < vmx->nr_uret_msrs; ++i) 704 if (vmx_uret_msrs_list[vmx->guest_uret_msrs[i].slot] == msr) 705 return i; 706 return -1; 707 } 708 709 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr) 710 { 711 int i; 712 713 i = __vmx_find_uret_msr(vmx, msr); 714 if (i >= 0) 715 return &vmx->guest_uret_msrs[i]; 716 return NULL; 717 } 718 719 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx, 720 struct vmx_uret_msr *msr, u64 data) 721 { 722 int ret = 0; 723 724 u64 old_msr_data = msr->data; 725 msr->data = data; 726 if (msr - vmx->guest_uret_msrs < vmx->nr_active_uret_msrs) { 727 preempt_disable(); 728 ret = kvm_set_user_return_msr(msr->slot, msr->data, msr->mask); 729 preempt_enable(); 730 if (ret) 731 msr->data = old_msr_data; 732 } 733 return ret; 734 } 735 736 #ifdef CONFIG_KEXEC_CORE 737 static void crash_vmclear_local_loaded_vmcss(void) 738 { 739 int cpu = raw_smp_processor_id(); 740 struct loaded_vmcs *v; 741 742 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), 743 loaded_vmcss_on_cpu_link) 744 vmcs_clear(v->vmcs); 745 } 746 #endif /* CONFIG_KEXEC_CORE */ 747 748 static void __loaded_vmcs_clear(void *arg) 749 { 750 struct loaded_vmcs *loaded_vmcs = arg; 751 int cpu = raw_smp_processor_id(); 752 753 if (loaded_vmcs->cpu != cpu) 754 return; /* vcpu migration can race with cpu offline */ 755 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) 756 per_cpu(current_vmcs, cpu) = NULL; 757 758 vmcs_clear(loaded_vmcs->vmcs); 759 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) 760 vmcs_clear(loaded_vmcs->shadow_vmcs); 761 762 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); 763 764 /* 765 * Ensure all writes to loaded_vmcs, including deleting it from its 766 * current percpu list, complete before setting loaded_vmcs->vcpu to 767 * -1, otherwise a different cpu can see vcpu == -1 first and add 768 * loaded_vmcs to its percpu list before it's deleted from this cpu's 769 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs(). 770 */ 771 smp_wmb(); 772 773 loaded_vmcs->cpu = -1; 774 loaded_vmcs->launched = 0; 775 } 776 777 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) 778 { 779 int cpu = loaded_vmcs->cpu; 780 781 if (cpu != -1) 782 smp_call_function_single(cpu, 783 __loaded_vmcs_clear, loaded_vmcs, 1); 784 } 785 786 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, 787 unsigned field) 788 { 789 bool ret; 790 u32 mask = 1 << (seg * SEG_FIELD_NR + field); 791 792 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) { 793 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS); 794 vmx->segment_cache.bitmask = 0; 795 } 796 ret = vmx->segment_cache.bitmask & mask; 797 vmx->segment_cache.bitmask |= mask; 798 return ret; 799 } 800 801 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) 802 { 803 u16 *p = &vmx->segment_cache.seg[seg].selector; 804 805 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) 806 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); 807 return *p; 808 } 809 810 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) 811 { 812 ulong *p = &vmx->segment_cache.seg[seg].base; 813 814 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) 815 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); 816 return *p; 817 } 818 819 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) 820 { 821 u32 *p = &vmx->segment_cache.seg[seg].limit; 822 823 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) 824 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); 825 return *p; 826 } 827 828 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) 829 { 830 u32 *p = &vmx->segment_cache.seg[seg].ar; 831 832 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) 833 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); 834 return *p; 835 } 836 837 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu) 838 { 839 u32 eb; 840 841 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | 842 (1u << DB_VECTOR) | (1u << AC_VECTOR); 843 /* 844 * Guest access to VMware backdoor ports could legitimately 845 * trigger #GP because of TSS I/O permission bitmap. 846 * We intercept those #GP and allow access to them anyway 847 * as VMware does. 848 */ 849 if (enable_vmware_backdoor) 850 eb |= (1u << GP_VECTOR); 851 if ((vcpu->guest_debug & 852 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == 853 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) 854 eb |= 1u << BP_VECTOR; 855 if (to_vmx(vcpu)->rmode.vm86_active) 856 eb = ~0; 857 if (!vmx_need_pf_intercept(vcpu)) 858 eb &= ~(1u << PF_VECTOR); 859 860 /* When we are running a nested L2 guest and L1 specified for it a 861 * certain exception bitmap, we must trap the same exceptions and pass 862 * them to L1. When running L2, we will only handle the exceptions 863 * specified above if L1 did not want them. 864 */ 865 if (is_guest_mode(vcpu)) 866 eb |= get_vmcs12(vcpu)->exception_bitmap; 867 else { 868 /* 869 * If EPT is enabled, #PF is only trapped if MAXPHYADDR is mismatched 870 * between guest and host. In that case we only care about present 871 * faults. For vmcs02, however, PFEC_MASK and PFEC_MATCH are set in 872 * prepare_vmcs02_rare. 873 */ 874 bool selective_pf_trap = enable_ept && (eb & (1u << PF_VECTOR)); 875 int mask = selective_pf_trap ? PFERR_PRESENT_MASK : 0; 876 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask); 877 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, mask); 878 } 879 880 vmcs_write32(EXCEPTION_BITMAP, eb); 881 } 882 883 /* 884 * Check if MSR is intercepted for currently loaded MSR bitmap. 885 */ 886 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 887 { 888 unsigned long *msr_bitmap; 889 int f = sizeof(unsigned long); 890 891 if (!cpu_has_vmx_msr_bitmap()) 892 return true; 893 894 msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap; 895 896 if (msr <= 0x1fff) { 897 return !!test_bit(msr, msr_bitmap + 0x800 / f); 898 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { 899 msr &= 0x1fff; 900 return !!test_bit(msr, msr_bitmap + 0xc00 / f); 901 } 902 903 return true; 904 } 905 906 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, 907 unsigned long entry, unsigned long exit) 908 { 909 vm_entry_controls_clearbit(vmx, entry); 910 vm_exit_controls_clearbit(vmx, exit); 911 } 912 913 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr) 914 { 915 unsigned int i; 916 917 for (i = 0; i < m->nr; ++i) { 918 if (m->val[i].index == msr) 919 return i; 920 } 921 return -ENOENT; 922 } 923 924 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) 925 { 926 int i; 927 struct msr_autoload *m = &vmx->msr_autoload; 928 929 switch (msr) { 930 case MSR_EFER: 931 if (cpu_has_load_ia32_efer()) { 932 clear_atomic_switch_msr_special(vmx, 933 VM_ENTRY_LOAD_IA32_EFER, 934 VM_EXIT_LOAD_IA32_EFER); 935 return; 936 } 937 break; 938 case MSR_CORE_PERF_GLOBAL_CTRL: 939 if (cpu_has_load_perf_global_ctrl()) { 940 clear_atomic_switch_msr_special(vmx, 941 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 942 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); 943 return; 944 } 945 break; 946 } 947 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 948 if (i < 0) 949 goto skip_guest; 950 --m->guest.nr; 951 m->guest.val[i] = m->guest.val[m->guest.nr]; 952 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 953 954 skip_guest: 955 i = vmx_find_loadstore_msr_slot(&m->host, msr); 956 if (i < 0) 957 return; 958 959 --m->host.nr; 960 m->host.val[i] = m->host.val[m->host.nr]; 961 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 962 } 963 964 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, 965 unsigned long entry, unsigned long exit, 966 unsigned long guest_val_vmcs, unsigned long host_val_vmcs, 967 u64 guest_val, u64 host_val) 968 { 969 vmcs_write64(guest_val_vmcs, guest_val); 970 if (host_val_vmcs != HOST_IA32_EFER) 971 vmcs_write64(host_val_vmcs, host_val); 972 vm_entry_controls_setbit(vmx, entry); 973 vm_exit_controls_setbit(vmx, exit); 974 } 975 976 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, 977 u64 guest_val, u64 host_val, bool entry_only) 978 { 979 int i, j = 0; 980 struct msr_autoload *m = &vmx->msr_autoload; 981 982 switch (msr) { 983 case MSR_EFER: 984 if (cpu_has_load_ia32_efer()) { 985 add_atomic_switch_msr_special(vmx, 986 VM_ENTRY_LOAD_IA32_EFER, 987 VM_EXIT_LOAD_IA32_EFER, 988 GUEST_IA32_EFER, 989 HOST_IA32_EFER, 990 guest_val, host_val); 991 return; 992 } 993 break; 994 case MSR_CORE_PERF_GLOBAL_CTRL: 995 if (cpu_has_load_perf_global_ctrl()) { 996 add_atomic_switch_msr_special(vmx, 997 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 998 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, 999 GUEST_IA32_PERF_GLOBAL_CTRL, 1000 HOST_IA32_PERF_GLOBAL_CTRL, 1001 guest_val, host_val); 1002 return; 1003 } 1004 break; 1005 case MSR_IA32_PEBS_ENABLE: 1006 /* PEBS needs a quiescent period after being disabled (to write 1007 * a record). Disabling PEBS through VMX MSR swapping doesn't 1008 * provide that period, so a CPU could write host's record into 1009 * guest's memory. 1010 */ 1011 wrmsrl(MSR_IA32_PEBS_ENABLE, 0); 1012 } 1013 1014 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 1015 if (!entry_only) 1016 j = vmx_find_loadstore_msr_slot(&m->host, msr); 1017 1018 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) || 1019 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) { 1020 printk_once(KERN_WARNING "Not enough msr switch entries. " 1021 "Can't add msr %x\n", msr); 1022 return; 1023 } 1024 if (i < 0) { 1025 i = m->guest.nr++; 1026 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 1027 } 1028 m->guest.val[i].index = msr; 1029 m->guest.val[i].value = guest_val; 1030 1031 if (entry_only) 1032 return; 1033 1034 if (j < 0) { 1035 j = m->host.nr++; 1036 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 1037 } 1038 m->host.val[j].index = msr; 1039 m->host.val[j].value = host_val; 1040 } 1041 1042 static bool update_transition_efer(struct vcpu_vmx *vmx) 1043 { 1044 u64 guest_efer = vmx->vcpu.arch.efer; 1045 u64 ignore_bits = 0; 1046 int i; 1047 1048 /* Shadow paging assumes NX to be available. */ 1049 if (!enable_ept) 1050 guest_efer |= EFER_NX; 1051 1052 /* 1053 * LMA and LME handled by hardware; SCE meaningless outside long mode. 1054 */ 1055 ignore_bits |= EFER_SCE; 1056 #ifdef CONFIG_X86_64 1057 ignore_bits |= EFER_LMA | EFER_LME; 1058 /* SCE is meaningful only in long mode on Intel */ 1059 if (guest_efer & EFER_LMA) 1060 ignore_bits &= ~(u64)EFER_SCE; 1061 #endif 1062 1063 /* 1064 * On EPT, we can't emulate NX, so we must switch EFER atomically. 1065 * On CPUs that support "load IA32_EFER", always switch EFER 1066 * atomically, since it's faster than switching it manually. 1067 */ 1068 if (cpu_has_load_ia32_efer() || 1069 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { 1070 if (!(guest_efer & EFER_LMA)) 1071 guest_efer &= ~EFER_LME; 1072 if (guest_efer != host_efer) 1073 add_atomic_switch_msr(vmx, MSR_EFER, 1074 guest_efer, host_efer, false); 1075 else 1076 clear_atomic_switch_msr(vmx, MSR_EFER); 1077 return false; 1078 } 1079 1080 i = __vmx_find_uret_msr(vmx, MSR_EFER); 1081 if (i < 0) 1082 return false; 1083 1084 clear_atomic_switch_msr(vmx, MSR_EFER); 1085 1086 guest_efer &= ~ignore_bits; 1087 guest_efer |= host_efer & ignore_bits; 1088 1089 vmx->guest_uret_msrs[i].data = guest_efer; 1090 vmx->guest_uret_msrs[i].mask = ~ignore_bits; 1091 1092 return true; 1093 } 1094 1095 #ifdef CONFIG_X86_32 1096 /* 1097 * On 32-bit kernels, VM exits still load the FS and GS bases from the 1098 * VMCS rather than the segment table. KVM uses this helper to figure 1099 * out the current bases to poke them into the VMCS before entry. 1100 */ 1101 static unsigned long segment_base(u16 selector) 1102 { 1103 struct desc_struct *table; 1104 unsigned long v; 1105 1106 if (!(selector & ~SEGMENT_RPL_MASK)) 1107 return 0; 1108 1109 table = get_current_gdt_ro(); 1110 1111 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { 1112 u16 ldt_selector = kvm_read_ldt(); 1113 1114 if (!(ldt_selector & ~SEGMENT_RPL_MASK)) 1115 return 0; 1116 1117 table = (struct desc_struct *)segment_base(ldt_selector); 1118 } 1119 v = get_desc_base(&table[selector >> 3]); 1120 return v; 1121 } 1122 #endif 1123 1124 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx) 1125 { 1126 return vmx_pt_mode_is_host_guest() && 1127 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 1128 } 1129 1130 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base) 1131 { 1132 /* The base must be 128-byte aligned and a legal physical address. */ 1133 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128); 1134 } 1135 1136 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) 1137 { 1138 u32 i; 1139 1140 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1141 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1142 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1143 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1144 for (i = 0; i < addr_range; i++) { 1145 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1146 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1147 } 1148 } 1149 1150 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) 1151 { 1152 u32 i; 1153 1154 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1155 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1156 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1157 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1158 for (i = 0; i < addr_range; i++) { 1159 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1160 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1161 } 1162 } 1163 1164 static void pt_guest_enter(struct vcpu_vmx *vmx) 1165 { 1166 if (vmx_pt_mode_is_system()) 1167 return; 1168 1169 /* 1170 * GUEST_IA32_RTIT_CTL is already set in the VMCS. 1171 * Save host state before VM entry. 1172 */ 1173 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1174 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1175 wrmsrl(MSR_IA32_RTIT_CTL, 0); 1176 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range); 1177 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range); 1178 } 1179 } 1180 1181 static void pt_guest_exit(struct vcpu_vmx *vmx) 1182 { 1183 if (vmx_pt_mode_is_system()) 1184 return; 1185 1186 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1187 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range); 1188 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range); 1189 } 1190 1191 /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */ 1192 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1193 } 1194 1195 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, 1196 unsigned long fs_base, unsigned long gs_base) 1197 { 1198 if (unlikely(fs_sel != host->fs_sel)) { 1199 if (!(fs_sel & 7)) 1200 vmcs_write16(HOST_FS_SELECTOR, fs_sel); 1201 else 1202 vmcs_write16(HOST_FS_SELECTOR, 0); 1203 host->fs_sel = fs_sel; 1204 } 1205 if (unlikely(gs_sel != host->gs_sel)) { 1206 if (!(gs_sel & 7)) 1207 vmcs_write16(HOST_GS_SELECTOR, gs_sel); 1208 else 1209 vmcs_write16(HOST_GS_SELECTOR, 0); 1210 host->gs_sel = gs_sel; 1211 } 1212 if (unlikely(fs_base != host->fs_base)) { 1213 vmcs_writel(HOST_FS_BASE, fs_base); 1214 host->fs_base = fs_base; 1215 } 1216 if (unlikely(gs_base != host->gs_base)) { 1217 vmcs_writel(HOST_GS_BASE, gs_base); 1218 host->gs_base = gs_base; 1219 } 1220 } 1221 1222 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1223 { 1224 struct vcpu_vmx *vmx = to_vmx(vcpu); 1225 struct vmcs_host_state *host_state; 1226 #ifdef CONFIG_X86_64 1227 int cpu = raw_smp_processor_id(); 1228 #endif 1229 unsigned long fs_base, gs_base; 1230 u16 fs_sel, gs_sel; 1231 int i; 1232 1233 vmx->req_immediate_exit = false; 1234 1235 /* 1236 * Note that guest MSRs to be saved/restored can also be changed 1237 * when guest state is loaded. This happens when guest transitions 1238 * to/from long-mode by setting MSR_EFER.LMA. 1239 */ 1240 if (!vmx->guest_uret_msrs_loaded) { 1241 vmx->guest_uret_msrs_loaded = true; 1242 for (i = 0; i < vmx->nr_active_uret_msrs; ++i) 1243 kvm_set_user_return_msr(vmx->guest_uret_msrs[i].slot, 1244 vmx->guest_uret_msrs[i].data, 1245 vmx->guest_uret_msrs[i].mask); 1246 1247 } 1248 1249 if (vmx->nested.need_vmcs12_to_shadow_sync) 1250 nested_sync_vmcs12_to_shadow(vcpu); 1251 1252 if (vmx->guest_state_loaded) 1253 return; 1254 1255 host_state = &vmx->loaded_vmcs->host_state; 1256 1257 /* 1258 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not 1259 * allow segment selectors with cpl > 0 or ti == 1. 1260 */ 1261 host_state->ldt_sel = kvm_read_ldt(); 1262 1263 #ifdef CONFIG_X86_64 1264 savesegment(ds, host_state->ds_sel); 1265 savesegment(es, host_state->es_sel); 1266 1267 gs_base = cpu_kernelmode_gs_base(cpu); 1268 if (likely(is_64bit_mm(current->mm))) { 1269 current_save_fsgs(); 1270 fs_sel = current->thread.fsindex; 1271 gs_sel = current->thread.gsindex; 1272 fs_base = current->thread.fsbase; 1273 vmx->msr_host_kernel_gs_base = current->thread.gsbase; 1274 } else { 1275 savesegment(fs, fs_sel); 1276 savesegment(gs, gs_sel); 1277 fs_base = read_msr(MSR_FS_BASE); 1278 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); 1279 } 1280 1281 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1282 #else 1283 savesegment(fs, fs_sel); 1284 savesegment(gs, gs_sel); 1285 fs_base = segment_base(fs_sel); 1286 gs_base = segment_base(gs_sel); 1287 #endif 1288 1289 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base); 1290 vmx->guest_state_loaded = true; 1291 } 1292 1293 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) 1294 { 1295 struct vmcs_host_state *host_state; 1296 1297 if (!vmx->guest_state_loaded) 1298 return; 1299 1300 host_state = &vmx->loaded_vmcs->host_state; 1301 1302 ++vmx->vcpu.stat.host_state_reload; 1303 1304 #ifdef CONFIG_X86_64 1305 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1306 #endif 1307 if (host_state->ldt_sel || (host_state->gs_sel & 7)) { 1308 kvm_load_ldt(host_state->ldt_sel); 1309 #ifdef CONFIG_X86_64 1310 load_gs_index(host_state->gs_sel); 1311 #else 1312 loadsegment(gs, host_state->gs_sel); 1313 #endif 1314 } 1315 if (host_state->fs_sel & 7) 1316 loadsegment(fs, host_state->fs_sel); 1317 #ifdef CONFIG_X86_64 1318 if (unlikely(host_state->ds_sel | host_state->es_sel)) { 1319 loadsegment(ds, host_state->ds_sel); 1320 loadsegment(es, host_state->es_sel); 1321 } 1322 #endif 1323 invalidate_tss_limit(); 1324 #ifdef CONFIG_X86_64 1325 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); 1326 #endif 1327 load_fixmap_gdt(raw_smp_processor_id()); 1328 vmx->guest_state_loaded = false; 1329 vmx->guest_uret_msrs_loaded = false; 1330 } 1331 1332 #ifdef CONFIG_X86_64 1333 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) 1334 { 1335 preempt_disable(); 1336 if (vmx->guest_state_loaded) 1337 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1338 preempt_enable(); 1339 return vmx->msr_guest_kernel_gs_base; 1340 } 1341 1342 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) 1343 { 1344 preempt_disable(); 1345 if (vmx->guest_state_loaded) 1346 wrmsrl(MSR_KERNEL_GS_BASE, data); 1347 preempt_enable(); 1348 vmx->msr_guest_kernel_gs_base = data; 1349 } 1350 #endif 1351 1352 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu, 1353 struct loaded_vmcs *buddy) 1354 { 1355 struct vcpu_vmx *vmx = to_vmx(vcpu); 1356 bool already_loaded = vmx->loaded_vmcs->cpu == cpu; 1357 struct vmcs *prev; 1358 1359 if (!already_loaded) { 1360 loaded_vmcs_clear(vmx->loaded_vmcs); 1361 local_irq_disable(); 1362 1363 /* 1364 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to 1365 * this cpu's percpu list, otherwise it may not yet be deleted 1366 * from its previous cpu's percpu list. Pairs with the 1367 * smb_wmb() in __loaded_vmcs_clear(). 1368 */ 1369 smp_rmb(); 1370 1371 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, 1372 &per_cpu(loaded_vmcss_on_cpu, cpu)); 1373 local_irq_enable(); 1374 } 1375 1376 prev = per_cpu(current_vmcs, cpu); 1377 if (prev != vmx->loaded_vmcs->vmcs) { 1378 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; 1379 vmcs_load(vmx->loaded_vmcs->vmcs); 1380 1381 /* 1382 * No indirect branch prediction barrier needed when switching 1383 * the active VMCS within a guest, e.g. on nested VM-Enter. 1384 * The L1 VMM can protect itself with retpolines, IBPB or IBRS. 1385 */ 1386 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev)) 1387 indirect_branch_prediction_barrier(); 1388 } 1389 1390 if (!already_loaded) { 1391 void *gdt = get_current_gdt_ro(); 1392 unsigned long sysenter_esp; 1393 1394 /* 1395 * Flush all EPTP/VPID contexts, the new pCPU may have stale 1396 * TLB entries from its previous association with the vCPU. 1397 */ 1398 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 1399 1400 /* 1401 * Linux uses per-cpu TSS and GDT, so set these when switching 1402 * processors. See 22.2.4. 1403 */ 1404 vmcs_writel(HOST_TR_BASE, 1405 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); 1406 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ 1407 1408 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp); 1409 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */ 1410 1411 vmx->loaded_vmcs->cpu = cpu; 1412 } 1413 1414 /* Setup TSC multiplier */ 1415 if (kvm_has_tsc_control && 1416 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio) 1417 decache_tsc_multiplier(vmx); 1418 } 1419 1420 /* 1421 * Switches to specified vcpu, until a matching vcpu_put(), but assumes 1422 * vcpu mutex is already taken. 1423 */ 1424 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1425 { 1426 struct vcpu_vmx *vmx = to_vmx(vcpu); 1427 1428 vmx_vcpu_load_vmcs(vcpu, cpu, NULL); 1429 1430 vmx_vcpu_pi_load(vcpu, cpu); 1431 1432 vmx->host_debugctlmsr = get_debugctlmsr(); 1433 } 1434 1435 static void vmx_vcpu_put(struct kvm_vcpu *vcpu) 1436 { 1437 vmx_vcpu_pi_put(vcpu); 1438 1439 vmx_prepare_switch_to_host(to_vmx(vcpu)); 1440 } 1441 1442 static bool emulation_required(struct kvm_vcpu *vcpu) 1443 { 1444 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu); 1445 } 1446 1447 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) 1448 { 1449 struct vcpu_vmx *vmx = to_vmx(vcpu); 1450 unsigned long rflags, save_rflags; 1451 1452 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) { 1453 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1454 rflags = vmcs_readl(GUEST_RFLAGS); 1455 if (vmx->rmode.vm86_active) { 1456 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 1457 save_rflags = vmx->rmode.save_rflags; 1458 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 1459 } 1460 vmx->rflags = rflags; 1461 } 1462 return vmx->rflags; 1463 } 1464 1465 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1466 { 1467 struct vcpu_vmx *vmx = to_vmx(vcpu); 1468 unsigned long old_rflags; 1469 1470 if (is_unrestricted_guest(vcpu)) { 1471 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1472 vmx->rflags = rflags; 1473 vmcs_writel(GUEST_RFLAGS, rflags); 1474 return; 1475 } 1476 1477 old_rflags = vmx_get_rflags(vcpu); 1478 vmx->rflags = rflags; 1479 if (vmx->rmode.vm86_active) { 1480 vmx->rmode.save_rflags = rflags; 1481 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 1482 } 1483 vmcs_writel(GUEST_RFLAGS, rflags); 1484 1485 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM) 1486 vmx->emulation_required = emulation_required(vcpu); 1487 } 1488 1489 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) 1490 { 1491 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1492 int ret = 0; 1493 1494 if (interruptibility & GUEST_INTR_STATE_STI) 1495 ret |= KVM_X86_SHADOW_INT_STI; 1496 if (interruptibility & GUEST_INTR_STATE_MOV_SS) 1497 ret |= KVM_X86_SHADOW_INT_MOV_SS; 1498 1499 return ret; 1500 } 1501 1502 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 1503 { 1504 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1505 u32 interruptibility = interruptibility_old; 1506 1507 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); 1508 1509 if (mask & KVM_X86_SHADOW_INT_MOV_SS) 1510 interruptibility |= GUEST_INTR_STATE_MOV_SS; 1511 else if (mask & KVM_X86_SHADOW_INT_STI) 1512 interruptibility |= GUEST_INTR_STATE_STI; 1513 1514 if ((interruptibility != interruptibility_old)) 1515 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); 1516 } 1517 1518 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) 1519 { 1520 struct vcpu_vmx *vmx = to_vmx(vcpu); 1521 unsigned long value; 1522 1523 /* 1524 * Any MSR write that attempts to change bits marked reserved will 1525 * case a #GP fault. 1526 */ 1527 if (data & vmx->pt_desc.ctl_bitmask) 1528 return 1; 1529 1530 /* 1531 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will 1532 * result in a #GP unless the same write also clears TraceEn. 1533 */ 1534 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && 1535 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN)) 1536 return 1; 1537 1538 /* 1539 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit 1540 * and FabricEn would cause #GP, if 1541 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 1542 */ 1543 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && 1544 !(data & RTIT_CTL_FABRIC_EN) && 1545 !intel_pt_validate_cap(vmx->pt_desc.caps, 1546 PT_CAP_single_range_output)) 1547 return 1; 1548 1549 /* 1550 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that 1551 * utilize encodings marked reserved will cause a #GP fault. 1552 */ 1553 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); 1554 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && 1555 !test_bit((data & RTIT_CTL_MTC_RANGE) >> 1556 RTIT_CTL_MTC_RANGE_OFFSET, &value)) 1557 return 1; 1558 value = intel_pt_validate_cap(vmx->pt_desc.caps, 1559 PT_CAP_cycle_thresholds); 1560 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1561 !test_bit((data & RTIT_CTL_CYC_THRESH) >> 1562 RTIT_CTL_CYC_THRESH_OFFSET, &value)) 1563 return 1; 1564 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); 1565 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1566 !test_bit((data & RTIT_CTL_PSB_FREQ) >> 1567 RTIT_CTL_PSB_FREQ_OFFSET, &value)) 1568 return 1; 1569 1570 /* 1571 * If ADDRx_CFG is reserved or the encodings is >2 will 1572 * cause a #GP fault. 1573 */ 1574 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; 1575 if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2)) 1576 return 1; 1577 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; 1578 if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2)) 1579 return 1; 1580 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; 1581 if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2)) 1582 return 1; 1583 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; 1584 if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2)) 1585 return 1; 1586 1587 return 0; 1588 } 1589 1590 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len) 1591 { 1592 /* 1593 * Emulation of instructions in SGX enclaves is impossible as RIP does 1594 * not point tthe failing instruction, and even if it did, the code 1595 * stream is inaccessible. Inject #UD instead of exiting to userspace 1596 * so that guest userspace can't DoS the guest simply by triggering 1597 * emulation (enclaves are CPL3 only). 1598 */ 1599 if (to_vmx(vcpu)->exit_reason.enclave_mode) { 1600 kvm_queue_exception(vcpu, UD_VECTOR); 1601 return false; 1602 } 1603 return true; 1604 } 1605 1606 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 1607 { 1608 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason; 1609 unsigned long rip, orig_rip; 1610 u32 instr_len; 1611 1612 /* 1613 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on 1614 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be 1615 * set when EPT misconfig occurs. In practice, real hardware updates 1616 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors 1617 * (namely Hyper-V) don't set it due to it being undefined behavior, 1618 * i.e. we end up advancing IP with some random value. 1619 */ 1620 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) || 1621 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) { 1622 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 1623 1624 /* 1625 * Emulating an enclave's instructions isn't supported as KVM 1626 * cannot access the enclave's memory or its true RIP, e.g. the 1627 * vmcs.GUEST_RIP points at the exit point of the enclave, not 1628 * the RIP that actually triggered the VM-Exit. But, because 1629 * most instructions that cause VM-Exit will #UD in an enclave, 1630 * most instruction-based VM-Exits simply do not occur. 1631 * 1632 * There are a few exceptions, notably the debug instructions 1633 * INT1ICEBRK and INT3, as they are allowed in debug enclaves 1634 * and generate #DB/#BP as expected, which KVM might intercept. 1635 * But again, the CPU does the dirty work and saves an instr 1636 * length of zero so VMMs don't shoot themselves in the foot. 1637 * WARN if KVM tries to skip a non-zero length instruction on 1638 * a VM-Exit from an enclave. 1639 */ 1640 if (!instr_len) 1641 goto rip_updated; 1642 1643 WARN(exit_reason.enclave_mode, 1644 "KVM: skipping instruction after SGX enclave VM-Exit"); 1645 1646 orig_rip = kvm_rip_read(vcpu); 1647 rip = orig_rip + instr_len; 1648 #ifdef CONFIG_X86_64 1649 /* 1650 * We need to mask out the high 32 bits of RIP if not in 64-bit 1651 * mode, but just finding out that we are in 64-bit mode is 1652 * quite expensive. Only do it if there was a carry. 1653 */ 1654 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu)) 1655 rip = (u32)rip; 1656 #endif 1657 kvm_rip_write(vcpu, rip); 1658 } else { 1659 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 1660 return 0; 1661 } 1662 1663 rip_updated: 1664 /* skipping an emulated instruction also counts */ 1665 vmx_set_interrupt_shadow(vcpu, 0); 1666 1667 return 1; 1668 } 1669 1670 /* 1671 * Recognizes a pending MTF VM-exit and records the nested state for later 1672 * delivery. 1673 */ 1674 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu) 1675 { 1676 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1677 struct vcpu_vmx *vmx = to_vmx(vcpu); 1678 1679 if (!is_guest_mode(vcpu)) 1680 return; 1681 1682 /* 1683 * Per the SDM, MTF takes priority over debug-trap exceptions besides 1684 * T-bit traps. As instruction emulation is completed (i.e. at the 1685 * instruction boundary), any #DB exception pending delivery must be a 1686 * debug-trap. Record the pending MTF state to be delivered in 1687 * vmx_check_nested_events(). 1688 */ 1689 if (nested_cpu_has_mtf(vmcs12) && 1690 (!vcpu->arch.exception.pending || 1691 vcpu->arch.exception.nr == DB_VECTOR)) 1692 vmx->nested.mtf_pending = true; 1693 else 1694 vmx->nested.mtf_pending = false; 1695 } 1696 1697 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu) 1698 { 1699 vmx_update_emulated_instruction(vcpu); 1700 return skip_emulated_instruction(vcpu); 1701 } 1702 1703 static void vmx_clear_hlt(struct kvm_vcpu *vcpu) 1704 { 1705 /* 1706 * Ensure that we clear the HLT state in the VMCS. We don't need to 1707 * explicitly skip the instruction because if the HLT state is set, 1708 * then the instruction is already executing and RIP has already been 1709 * advanced. 1710 */ 1711 if (kvm_hlt_in_guest(vcpu->kvm) && 1712 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) 1713 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 1714 } 1715 1716 static void vmx_queue_exception(struct kvm_vcpu *vcpu) 1717 { 1718 struct vcpu_vmx *vmx = to_vmx(vcpu); 1719 unsigned nr = vcpu->arch.exception.nr; 1720 bool has_error_code = vcpu->arch.exception.has_error_code; 1721 u32 error_code = vcpu->arch.exception.error_code; 1722 u32 intr_info = nr | INTR_INFO_VALID_MASK; 1723 1724 kvm_deliver_exception_payload(vcpu); 1725 1726 if (has_error_code) { 1727 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code); 1728 intr_info |= INTR_INFO_DELIVER_CODE_MASK; 1729 } 1730 1731 if (vmx->rmode.vm86_active) { 1732 int inc_eip = 0; 1733 if (kvm_exception_is_soft(nr)) 1734 inc_eip = vcpu->arch.event_exit_inst_len; 1735 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip); 1736 return; 1737 } 1738 1739 WARN_ON_ONCE(vmx->emulation_required); 1740 1741 if (kvm_exception_is_soft(nr)) { 1742 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1743 vmx->vcpu.arch.event_exit_inst_len); 1744 intr_info |= INTR_TYPE_SOFT_EXCEPTION; 1745 } else 1746 intr_info |= INTR_TYPE_HARD_EXCEPTION; 1747 1748 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); 1749 1750 vmx_clear_hlt(vcpu); 1751 } 1752 1753 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr) 1754 { 1755 struct vmx_uret_msr tmp; 1756 int from, to; 1757 1758 from = __vmx_find_uret_msr(vmx, msr); 1759 if (from < 0) 1760 return; 1761 to = vmx->nr_active_uret_msrs++; 1762 1763 tmp = vmx->guest_uret_msrs[to]; 1764 vmx->guest_uret_msrs[to] = vmx->guest_uret_msrs[from]; 1765 vmx->guest_uret_msrs[from] = tmp; 1766 } 1767 1768 /* 1769 * Set up the vmcs to automatically save and restore system 1770 * msrs. Don't touch the 64-bit msrs if the guest is in legacy 1771 * mode, as fiddling with msrs is very expensive. 1772 */ 1773 static void setup_msrs(struct vcpu_vmx *vmx) 1774 { 1775 vmx->guest_uret_msrs_loaded = false; 1776 vmx->nr_active_uret_msrs = 0; 1777 #ifdef CONFIG_X86_64 1778 /* 1779 * The SYSCALL MSRs are only needed on long mode guests, and only 1780 * when EFER.SCE is set. 1781 */ 1782 if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) { 1783 vmx_setup_uret_msr(vmx, MSR_STAR); 1784 vmx_setup_uret_msr(vmx, MSR_LSTAR); 1785 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK); 1786 } 1787 #endif 1788 if (update_transition_efer(vmx)) 1789 vmx_setup_uret_msr(vmx, MSR_EFER); 1790 1791 if (guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP)) 1792 vmx_setup_uret_msr(vmx, MSR_TSC_AUX); 1793 1794 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL); 1795 1796 if (cpu_has_vmx_msr_bitmap()) 1797 vmx_update_msr_bitmap(&vmx->vcpu); 1798 } 1799 1800 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1801 { 1802 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1803 u64 g_tsc_offset = 0; 1804 1805 /* 1806 * We're here if L1 chose not to trap WRMSR to TSC. According 1807 * to the spec, this should set L1's TSC; The offset that L1 1808 * set for L2 remains unchanged, and still needs to be added 1809 * to the newly set TSC to get L2's TSC. 1810 */ 1811 if (is_guest_mode(vcpu) && 1812 (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)) 1813 g_tsc_offset = vmcs12->tsc_offset; 1814 1815 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 1816 vcpu->arch.tsc_offset - g_tsc_offset, 1817 offset); 1818 vmcs_write64(TSC_OFFSET, offset + g_tsc_offset); 1819 return offset + g_tsc_offset; 1820 } 1821 1822 /* 1823 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX 1824 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for 1825 * all guests if the "nested" module option is off, and can also be disabled 1826 * for a single guest by disabling its VMX cpuid bit. 1827 */ 1828 bool nested_vmx_allowed(struct kvm_vcpu *vcpu) 1829 { 1830 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX); 1831 } 1832 1833 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu, 1834 uint64_t val) 1835 { 1836 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits; 1837 1838 return !(val & ~valid_bits); 1839 } 1840 1841 static int vmx_get_msr_feature(struct kvm_msr_entry *msr) 1842 { 1843 switch (msr->index) { 1844 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1845 if (!nested) 1846 return 1; 1847 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); 1848 case MSR_IA32_PERF_CAPABILITIES: 1849 msr->data = vmx_get_perf_capabilities(); 1850 return 0; 1851 default: 1852 return KVM_MSR_RET_INVALID; 1853 } 1854 } 1855 1856 /* 1857 * Reads an msr value (of 'msr_index') into 'pdata'. 1858 * Returns 0 on success, non-0 otherwise. 1859 * Assumes vcpu_load() was already called. 1860 */ 1861 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1862 { 1863 struct vcpu_vmx *vmx = to_vmx(vcpu); 1864 struct vmx_uret_msr *msr; 1865 u32 index; 1866 1867 switch (msr_info->index) { 1868 #ifdef CONFIG_X86_64 1869 case MSR_FS_BASE: 1870 msr_info->data = vmcs_readl(GUEST_FS_BASE); 1871 break; 1872 case MSR_GS_BASE: 1873 msr_info->data = vmcs_readl(GUEST_GS_BASE); 1874 break; 1875 case MSR_KERNEL_GS_BASE: 1876 msr_info->data = vmx_read_guest_kernel_gs_base(vmx); 1877 break; 1878 #endif 1879 case MSR_EFER: 1880 return kvm_get_msr_common(vcpu, msr_info); 1881 case MSR_IA32_TSX_CTRL: 1882 if (!msr_info->host_initiated && 1883 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 1884 return 1; 1885 goto find_uret_msr; 1886 case MSR_IA32_UMWAIT_CONTROL: 1887 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 1888 return 1; 1889 1890 msr_info->data = vmx->msr_ia32_umwait_control; 1891 break; 1892 case MSR_IA32_SPEC_CTRL: 1893 if (!msr_info->host_initiated && 1894 !guest_has_spec_ctrl_msr(vcpu)) 1895 return 1; 1896 1897 msr_info->data = to_vmx(vcpu)->spec_ctrl; 1898 break; 1899 case MSR_IA32_SYSENTER_CS: 1900 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); 1901 break; 1902 case MSR_IA32_SYSENTER_EIP: 1903 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); 1904 break; 1905 case MSR_IA32_SYSENTER_ESP: 1906 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); 1907 break; 1908 case MSR_IA32_BNDCFGS: 1909 if (!kvm_mpx_supported() || 1910 (!msr_info->host_initiated && 1911 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 1912 return 1; 1913 msr_info->data = vmcs_read64(GUEST_BNDCFGS); 1914 break; 1915 case MSR_IA32_MCG_EXT_CTL: 1916 if (!msr_info->host_initiated && 1917 !(vmx->msr_ia32_feature_control & 1918 FEAT_CTL_LMCE_ENABLED)) 1919 return 1; 1920 msr_info->data = vcpu->arch.mcg_ext_ctl; 1921 break; 1922 case MSR_IA32_FEAT_CTL: 1923 msr_info->data = vmx->msr_ia32_feature_control; 1924 break; 1925 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 1926 if (!msr_info->host_initiated && 1927 !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 1928 return 1; 1929 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash 1930 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0]; 1931 break; 1932 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1933 if (!nested_vmx_allowed(vcpu)) 1934 return 1; 1935 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, 1936 &msr_info->data)) 1937 return 1; 1938 /* 1939 * Enlightened VMCS v1 doesn't have certain fields, but buggy 1940 * Hyper-V versions are still trying to use corresponding 1941 * features when they are exposed. Filter out the essential 1942 * minimum. 1943 */ 1944 if (!msr_info->host_initiated && 1945 vmx->nested.enlightened_vmcs_enabled) 1946 nested_evmcs_filter_control_msr(msr_info->index, 1947 &msr_info->data); 1948 break; 1949 case MSR_IA32_RTIT_CTL: 1950 if (!vmx_pt_mode_is_host_guest()) 1951 return 1; 1952 msr_info->data = vmx->pt_desc.guest.ctl; 1953 break; 1954 case MSR_IA32_RTIT_STATUS: 1955 if (!vmx_pt_mode_is_host_guest()) 1956 return 1; 1957 msr_info->data = vmx->pt_desc.guest.status; 1958 break; 1959 case MSR_IA32_RTIT_CR3_MATCH: 1960 if (!vmx_pt_mode_is_host_guest() || 1961 !intel_pt_validate_cap(vmx->pt_desc.caps, 1962 PT_CAP_cr3_filtering)) 1963 return 1; 1964 msr_info->data = vmx->pt_desc.guest.cr3_match; 1965 break; 1966 case MSR_IA32_RTIT_OUTPUT_BASE: 1967 if (!vmx_pt_mode_is_host_guest() || 1968 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1969 PT_CAP_topa_output) && 1970 !intel_pt_validate_cap(vmx->pt_desc.caps, 1971 PT_CAP_single_range_output))) 1972 return 1; 1973 msr_info->data = vmx->pt_desc.guest.output_base; 1974 break; 1975 case MSR_IA32_RTIT_OUTPUT_MASK: 1976 if (!vmx_pt_mode_is_host_guest() || 1977 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1978 PT_CAP_topa_output) && 1979 !intel_pt_validate_cap(vmx->pt_desc.caps, 1980 PT_CAP_single_range_output))) 1981 return 1; 1982 msr_info->data = vmx->pt_desc.guest.output_mask; 1983 break; 1984 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 1985 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 1986 if (!vmx_pt_mode_is_host_guest() || 1987 (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps, 1988 PT_CAP_num_address_ranges))) 1989 return 1; 1990 if (index % 2) 1991 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; 1992 else 1993 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; 1994 break; 1995 case MSR_TSC_AUX: 1996 if (!msr_info->host_initiated && 1997 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) 1998 return 1; 1999 goto find_uret_msr; 2000 case MSR_IA32_DEBUGCTLMSR: 2001 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL); 2002 break; 2003 default: 2004 find_uret_msr: 2005 msr = vmx_find_uret_msr(vmx, msr_info->index); 2006 if (msr) { 2007 msr_info->data = msr->data; 2008 break; 2009 } 2010 return kvm_get_msr_common(vcpu, msr_info); 2011 } 2012 2013 return 0; 2014 } 2015 2016 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu, 2017 u64 data) 2018 { 2019 #ifdef CONFIG_X86_64 2020 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 2021 return (u32)data; 2022 #endif 2023 return (unsigned long)data; 2024 } 2025 2026 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu) 2027 { 2028 u64 debugctl = vmx_supported_debugctl(); 2029 2030 if (!intel_pmu_lbr_is_enabled(vcpu)) 2031 debugctl &= ~DEBUGCTLMSR_LBR_MASK; 2032 2033 return debugctl; 2034 } 2035 2036 /* 2037 * Writes msr value into the appropriate "register". 2038 * Returns 0 on success, non-0 otherwise. 2039 * Assumes vcpu_load() was already called. 2040 */ 2041 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2042 { 2043 struct vcpu_vmx *vmx = to_vmx(vcpu); 2044 struct vmx_uret_msr *msr; 2045 int ret = 0; 2046 u32 msr_index = msr_info->index; 2047 u64 data = msr_info->data; 2048 u32 index; 2049 2050 switch (msr_index) { 2051 case MSR_EFER: 2052 ret = kvm_set_msr_common(vcpu, msr_info); 2053 break; 2054 #ifdef CONFIG_X86_64 2055 case MSR_FS_BASE: 2056 vmx_segment_cache_clear(vmx); 2057 vmcs_writel(GUEST_FS_BASE, data); 2058 break; 2059 case MSR_GS_BASE: 2060 vmx_segment_cache_clear(vmx); 2061 vmcs_writel(GUEST_GS_BASE, data); 2062 break; 2063 case MSR_KERNEL_GS_BASE: 2064 vmx_write_guest_kernel_gs_base(vmx, data); 2065 break; 2066 #endif 2067 case MSR_IA32_SYSENTER_CS: 2068 if (is_guest_mode(vcpu)) 2069 get_vmcs12(vcpu)->guest_sysenter_cs = data; 2070 vmcs_write32(GUEST_SYSENTER_CS, data); 2071 break; 2072 case MSR_IA32_SYSENTER_EIP: 2073 if (is_guest_mode(vcpu)) { 2074 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2075 get_vmcs12(vcpu)->guest_sysenter_eip = data; 2076 } 2077 vmcs_writel(GUEST_SYSENTER_EIP, data); 2078 break; 2079 case MSR_IA32_SYSENTER_ESP: 2080 if (is_guest_mode(vcpu)) { 2081 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2082 get_vmcs12(vcpu)->guest_sysenter_esp = data; 2083 } 2084 vmcs_writel(GUEST_SYSENTER_ESP, data); 2085 break; 2086 case MSR_IA32_DEBUGCTLMSR: { 2087 u64 invalid = data & ~vcpu_supported_debugctl(vcpu); 2088 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) { 2089 if (report_ignored_msrs) 2090 vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n", 2091 __func__, data); 2092 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2093 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2094 } 2095 2096 if (invalid) 2097 return 1; 2098 2099 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls & 2100 VM_EXIT_SAVE_DEBUG_CONTROLS) 2101 get_vmcs12(vcpu)->guest_ia32_debugctl = data; 2102 2103 vmcs_write64(GUEST_IA32_DEBUGCTL, data); 2104 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event && 2105 (data & DEBUGCTLMSR_LBR)) 2106 intel_pmu_create_guest_lbr_event(vcpu); 2107 return 0; 2108 } 2109 case MSR_IA32_BNDCFGS: 2110 if (!kvm_mpx_supported() || 2111 (!msr_info->host_initiated && 2112 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 2113 return 1; 2114 if (is_noncanonical_address(data & PAGE_MASK, vcpu) || 2115 (data & MSR_IA32_BNDCFGS_RSVD)) 2116 return 1; 2117 vmcs_write64(GUEST_BNDCFGS, data); 2118 break; 2119 case MSR_IA32_UMWAIT_CONTROL: 2120 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2121 return 1; 2122 2123 /* The reserved bit 1 and non-32 bit [63:32] should be zero */ 2124 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32))) 2125 return 1; 2126 2127 vmx->msr_ia32_umwait_control = data; 2128 break; 2129 case MSR_IA32_SPEC_CTRL: 2130 if (!msr_info->host_initiated && 2131 !guest_has_spec_ctrl_msr(vcpu)) 2132 return 1; 2133 2134 if (kvm_spec_ctrl_test_value(data)) 2135 return 1; 2136 2137 vmx->spec_ctrl = data; 2138 if (!data) 2139 break; 2140 2141 /* 2142 * For non-nested: 2143 * When it's written (to non-zero) for the first time, pass 2144 * it through. 2145 * 2146 * For nested: 2147 * The handling of the MSR bitmap for L2 guests is done in 2148 * nested_vmx_prepare_msr_bitmap. We should not touch the 2149 * vmcs02.msr_bitmap here since it gets completely overwritten 2150 * in the merging. We update the vmcs01 here for L1 as well 2151 * since it will end up touching the MSR anyway now. 2152 */ 2153 vmx_disable_intercept_for_msr(vcpu, 2154 MSR_IA32_SPEC_CTRL, 2155 MSR_TYPE_RW); 2156 break; 2157 case MSR_IA32_TSX_CTRL: 2158 if (!msr_info->host_initiated && 2159 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2160 return 1; 2161 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR)) 2162 return 1; 2163 goto find_uret_msr; 2164 case MSR_IA32_PRED_CMD: 2165 if (!msr_info->host_initiated && 2166 !guest_has_pred_cmd_msr(vcpu)) 2167 return 1; 2168 2169 if (data & ~PRED_CMD_IBPB) 2170 return 1; 2171 if (!boot_cpu_has(X86_FEATURE_IBPB)) 2172 return 1; 2173 if (!data) 2174 break; 2175 2176 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 2177 2178 /* 2179 * For non-nested: 2180 * When it's written (to non-zero) for the first time, pass 2181 * it through. 2182 * 2183 * For nested: 2184 * The handling of the MSR bitmap for L2 guests is done in 2185 * nested_vmx_prepare_msr_bitmap. We should not touch the 2186 * vmcs02.msr_bitmap here since it gets completely overwritten 2187 * in the merging. 2188 */ 2189 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W); 2190 break; 2191 case MSR_IA32_CR_PAT: 2192 if (!kvm_pat_valid(data)) 2193 return 1; 2194 2195 if (is_guest_mode(vcpu) && 2196 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) 2197 get_vmcs12(vcpu)->guest_ia32_pat = data; 2198 2199 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { 2200 vmcs_write64(GUEST_IA32_PAT, data); 2201 vcpu->arch.pat = data; 2202 break; 2203 } 2204 ret = kvm_set_msr_common(vcpu, msr_info); 2205 break; 2206 case MSR_IA32_TSC_ADJUST: 2207 ret = kvm_set_msr_common(vcpu, msr_info); 2208 break; 2209 case MSR_IA32_MCG_EXT_CTL: 2210 if ((!msr_info->host_initiated && 2211 !(to_vmx(vcpu)->msr_ia32_feature_control & 2212 FEAT_CTL_LMCE_ENABLED)) || 2213 (data & ~MCG_EXT_CTL_LMCE_EN)) 2214 return 1; 2215 vcpu->arch.mcg_ext_ctl = data; 2216 break; 2217 case MSR_IA32_FEAT_CTL: 2218 if (!vmx_feature_control_msr_valid(vcpu, data) || 2219 (to_vmx(vcpu)->msr_ia32_feature_control & 2220 FEAT_CTL_LOCKED && !msr_info->host_initiated)) 2221 return 1; 2222 vmx->msr_ia32_feature_control = data; 2223 if (msr_info->host_initiated && data == 0) 2224 vmx_leave_nested(vcpu); 2225 2226 /* SGX may be enabled/disabled by guest's firmware */ 2227 vmx_write_encls_bitmap(vcpu, NULL); 2228 break; 2229 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2230 /* 2231 * On real hardware, the LE hash MSRs are writable before 2232 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX), 2233 * at which point SGX related bits in IA32_FEATURE_CONTROL 2234 * become writable. 2235 * 2236 * KVM does not emulate SGX activation for simplicity, so 2237 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL 2238 * is unlocked. This is technically not architectural 2239 * behavior, but it's close enough. 2240 */ 2241 if (!msr_info->host_initiated && 2242 (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) || 2243 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) && 2244 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED)))) 2245 return 1; 2246 vmx->msr_ia32_sgxlepubkeyhash 2247 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data; 2248 break; 2249 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 2250 if (!msr_info->host_initiated) 2251 return 1; /* they are read-only */ 2252 if (!nested_vmx_allowed(vcpu)) 2253 return 1; 2254 return vmx_set_vmx_msr(vcpu, msr_index, data); 2255 case MSR_IA32_RTIT_CTL: 2256 if (!vmx_pt_mode_is_host_guest() || 2257 vmx_rtit_ctl_check(vcpu, data) || 2258 vmx->nested.vmxon) 2259 return 1; 2260 vmcs_write64(GUEST_IA32_RTIT_CTL, data); 2261 vmx->pt_desc.guest.ctl = data; 2262 pt_update_intercept_for_msr(vcpu); 2263 break; 2264 case MSR_IA32_RTIT_STATUS: 2265 if (!pt_can_write_msr(vmx)) 2266 return 1; 2267 if (data & MSR_IA32_RTIT_STATUS_MASK) 2268 return 1; 2269 vmx->pt_desc.guest.status = data; 2270 break; 2271 case MSR_IA32_RTIT_CR3_MATCH: 2272 if (!pt_can_write_msr(vmx)) 2273 return 1; 2274 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2275 PT_CAP_cr3_filtering)) 2276 return 1; 2277 vmx->pt_desc.guest.cr3_match = data; 2278 break; 2279 case MSR_IA32_RTIT_OUTPUT_BASE: 2280 if (!pt_can_write_msr(vmx)) 2281 return 1; 2282 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2283 PT_CAP_topa_output) && 2284 !intel_pt_validate_cap(vmx->pt_desc.caps, 2285 PT_CAP_single_range_output)) 2286 return 1; 2287 if (!pt_output_base_valid(vcpu, data)) 2288 return 1; 2289 vmx->pt_desc.guest.output_base = data; 2290 break; 2291 case MSR_IA32_RTIT_OUTPUT_MASK: 2292 if (!pt_can_write_msr(vmx)) 2293 return 1; 2294 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2295 PT_CAP_topa_output) && 2296 !intel_pt_validate_cap(vmx->pt_desc.caps, 2297 PT_CAP_single_range_output)) 2298 return 1; 2299 vmx->pt_desc.guest.output_mask = data; 2300 break; 2301 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2302 if (!pt_can_write_msr(vmx)) 2303 return 1; 2304 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2305 if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps, 2306 PT_CAP_num_address_ranges)) 2307 return 1; 2308 if (is_noncanonical_address(data, vcpu)) 2309 return 1; 2310 if (index % 2) 2311 vmx->pt_desc.guest.addr_b[index / 2] = data; 2312 else 2313 vmx->pt_desc.guest.addr_a[index / 2] = data; 2314 break; 2315 case MSR_TSC_AUX: 2316 if (!msr_info->host_initiated && 2317 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) 2318 return 1; 2319 /* Check reserved bit, higher 32 bits should be zero */ 2320 if ((data >> 32) != 0) 2321 return 1; 2322 goto find_uret_msr; 2323 case MSR_IA32_PERF_CAPABILITIES: 2324 if (data && !vcpu_to_pmu(vcpu)->version) 2325 return 1; 2326 if (data & PMU_CAP_LBR_FMT) { 2327 if ((data & PMU_CAP_LBR_FMT) != 2328 (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT)) 2329 return 1; 2330 if (!intel_pmu_lbr_is_compatible(vcpu)) 2331 return 1; 2332 } 2333 ret = kvm_set_msr_common(vcpu, msr_info); 2334 break; 2335 2336 default: 2337 find_uret_msr: 2338 msr = vmx_find_uret_msr(vmx, msr_index); 2339 if (msr) 2340 ret = vmx_set_guest_uret_msr(vmx, msr, data); 2341 else 2342 ret = kvm_set_msr_common(vcpu, msr_info); 2343 } 2344 2345 return ret; 2346 } 2347 2348 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 2349 { 2350 unsigned long guest_owned_bits; 2351 2352 kvm_register_mark_available(vcpu, reg); 2353 2354 switch (reg) { 2355 case VCPU_REGS_RSP: 2356 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); 2357 break; 2358 case VCPU_REGS_RIP: 2359 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); 2360 break; 2361 case VCPU_EXREG_PDPTR: 2362 if (enable_ept) 2363 ept_save_pdptrs(vcpu); 2364 break; 2365 case VCPU_EXREG_CR0: 2366 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; 2367 2368 vcpu->arch.cr0 &= ~guest_owned_bits; 2369 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits; 2370 break; 2371 case VCPU_EXREG_CR3: 2372 if (is_unrestricted_guest(vcpu) || 2373 (enable_ept && is_paging(vcpu))) 2374 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); 2375 break; 2376 case VCPU_EXREG_CR4: 2377 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; 2378 2379 vcpu->arch.cr4 &= ~guest_owned_bits; 2380 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits; 2381 break; 2382 default: 2383 WARN_ON_ONCE(1); 2384 break; 2385 } 2386 } 2387 2388 static __init int cpu_has_kvm_support(void) 2389 { 2390 return cpu_has_vmx(); 2391 } 2392 2393 static __init int vmx_disabled_by_bios(void) 2394 { 2395 return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 2396 !boot_cpu_has(X86_FEATURE_VMX); 2397 } 2398 2399 static int kvm_cpu_vmxon(u64 vmxon_pointer) 2400 { 2401 u64 msr; 2402 2403 cr4_set_bits(X86_CR4_VMXE); 2404 2405 asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t" 2406 _ASM_EXTABLE(1b, %l[fault]) 2407 : : [vmxon_pointer] "m"(vmxon_pointer) 2408 : : fault); 2409 return 0; 2410 2411 fault: 2412 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n", 2413 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr); 2414 cr4_clear_bits(X86_CR4_VMXE); 2415 2416 return -EFAULT; 2417 } 2418 2419 static int hardware_enable(void) 2420 { 2421 int cpu = raw_smp_processor_id(); 2422 u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); 2423 int r; 2424 2425 if (cr4_read_shadow() & X86_CR4_VMXE) 2426 return -EBUSY; 2427 2428 /* 2429 * This can happen if we hot-added a CPU but failed to allocate 2430 * VP assist page for it. 2431 */ 2432 if (static_branch_unlikely(&enable_evmcs) && 2433 !hv_get_vp_assist_page(cpu)) 2434 return -EFAULT; 2435 2436 intel_pt_handle_vmx(1); 2437 2438 r = kvm_cpu_vmxon(phys_addr); 2439 if (r) { 2440 intel_pt_handle_vmx(0); 2441 return r; 2442 } 2443 2444 if (enable_ept) 2445 ept_sync_global(); 2446 2447 return 0; 2448 } 2449 2450 static void vmclear_local_loaded_vmcss(void) 2451 { 2452 int cpu = raw_smp_processor_id(); 2453 struct loaded_vmcs *v, *n; 2454 2455 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), 2456 loaded_vmcss_on_cpu_link) 2457 __loaded_vmcs_clear(v); 2458 } 2459 2460 static void hardware_disable(void) 2461 { 2462 vmclear_local_loaded_vmcss(); 2463 2464 if (cpu_vmxoff()) 2465 kvm_spurious_fault(); 2466 2467 intel_pt_handle_vmx(0); 2468 } 2469 2470 /* 2471 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID 2472 * directly instead of going through cpu_has(), to ensure KVM is trapping 2473 * ENCLS whenever it's supported in hardware. It does not matter whether 2474 * the host OS supports or has enabled SGX. 2475 */ 2476 static bool cpu_has_sgx(void) 2477 { 2478 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0)); 2479 } 2480 2481 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, 2482 u32 msr, u32 *result) 2483 { 2484 u32 vmx_msr_low, vmx_msr_high; 2485 u32 ctl = ctl_min | ctl_opt; 2486 2487 rdmsr(msr, vmx_msr_low, vmx_msr_high); 2488 2489 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ 2490 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ 2491 2492 /* Ensure minimum (required) set of control bits are supported. */ 2493 if (ctl_min & ~ctl) 2494 return -EIO; 2495 2496 *result = ctl; 2497 return 0; 2498 } 2499 2500 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf, 2501 struct vmx_capability *vmx_cap) 2502 { 2503 u32 vmx_msr_low, vmx_msr_high; 2504 u32 min, opt, min2, opt2; 2505 u32 _pin_based_exec_control = 0; 2506 u32 _cpu_based_exec_control = 0; 2507 u32 _cpu_based_2nd_exec_control = 0; 2508 u32 _vmexit_control = 0; 2509 u32 _vmentry_control = 0; 2510 2511 memset(vmcs_conf, 0, sizeof(*vmcs_conf)); 2512 min = CPU_BASED_HLT_EXITING | 2513 #ifdef CONFIG_X86_64 2514 CPU_BASED_CR8_LOAD_EXITING | 2515 CPU_BASED_CR8_STORE_EXITING | 2516 #endif 2517 CPU_BASED_CR3_LOAD_EXITING | 2518 CPU_BASED_CR3_STORE_EXITING | 2519 CPU_BASED_UNCOND_IO_EXITING | 2520 CPU_BASED_MOV_DR_EXITING | 2521 CPU_BASED_USE_TSC_OFFSETTING | 2522 CPU_BASED_MWAIT_EXITING | 2523 CPU_BASED_MONITOR_EXITING | 2524 CPU_BASED_INVLPG_EXITING | 2525 CPU_BASED_RDPMC_EXITING; 2526 2527 opt = CPU_BASED_TPR_SHADOW | 2528 CPU_BASED_USE_MSR_BITMAPS | 2529 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; 2530 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS, 2531 &_cpu_based_exec_control) < 0) 2532 return -EIO; 2533 #ifdef CONFIG_X86_64 2534 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2535 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING & 2536 ~CPU_BASED_CR8_STORE_EXITING; 2537 #endif 2538 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { 2539 min2 = 0; 2540 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 2541 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2542 SECONDARY_EXEC_WBINVD_EXITING | 2543 SECONDARY_EXEC_ENABLE_VPID | 2544 SECONDARY_EXEC_ENABLE_EPT | 2545 SECONDARY_EXEC_UNRESTRICTED_GUEST | 2546 SECONDARY_EXEC_PAUSE_LOOP_EXITING | 2547 SECONDARY_EXEC_DESC | 2548 SECONDARY_EXEC_ENABLE_RDTSCP | 2549 SECONDARY_EXEC_ENABLE_INVPCID | 2550 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2551 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | 2552 SECONDARY_EXEC_SHADOW_VMCS | 2553 SECONDARY_EXEC_XSAVES | 2554 SECONDARY_EXEC_RDSEED_EXITING | 2555 SECONDARY_EXEC_RDRAND_EXITING | 2556 SECONDARY_EXEC_ENABLE_PML | 2557 SECONDARY_EXEC_TSC_SCALING | 2558 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE | 2559 SECONDARY_EXEC_PT_USE_GPA | 2560 SECONDARY_EXEC_PT_CONCEAL_VMX | 2561 SECONDARY_EXEC_ENABLE_VMFUNC | 2562 SECONDARY_EXEC_BUS_LOCK_DETECTION; 2563 if (cpu_has_sgx()) 2564 opt2 |= SECONDARY_EXEC_ENCLS_EXITING; 2565 if (adjust_vmx_controls(min2, opt2, 2566 MSR_IA32_VMX_PROCBASED_CTLS2, 2567 &_cpu_based_2nd_exec_control) < 0) 2568 return -EIO; 2569 } 2570 #ifndef CONFIG_X86_64 2571 if (!(_cpu_based_2nd_exec_control & 2572 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 2573 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; 2574 #endif 2575 2576 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2577 _cpu_based_2nd_exec_control &= ~( 2578 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2579 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2580 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 2581 2582 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, 2583 &vmx_cap->ept, &vmx_cap->vpid); 2584 2585 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) { 2586 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT 2587 enabled */ 2588 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | 2589 CPU_BASED_CR3_STORE_EXITING | 2590 CPU_BASED_INVLPG_EXITING); 2591 } else if (vmx_cap->ept) { 2592 vmx_cap->ept = 0; 2593 pr_warn_once("EPT CAP should not exist if not support " 2594 "1-setting enable EPT VM-execution control\n"); 2595 } 2596 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && 2597 vmx_cap->vpid) { 2598 vmx_cap->vpid = 0; 2599 pr_warn_once("VPID CAP should not exist if not support " 2600 "1-setting enable VPID VM-execution control\n"); 2601 } 2602 2603 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT; 2604 #ifdef CONFIG_X86_64 2605 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE; 2606 #endif 2607 opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | 2608 VM_EXIT_LOAD_IA32_PAT | 2609 VM_EXIT_LOAD_IA32_EFER | 2610 VM_EXIT_CLEAR_BNDCFGS | 2611 VM_EXIT_PT_CONCEAL_PIP | 2612 VM_EXIT_CLEAR_IA32_RTIT_CTL; 2613 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS, 2614 &_vmexit_control) < 0) 2615 return -EIO; 2616 2617 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING; 2618 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR | 2619 PIN_BASED_VMX_PREEMPTION_TIMER; 2620 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS, 2621 &_pin_based_exec_control) < 0) 2622 return -EIO; 2623 2624 if (cpu_has_broken_vmx_preemption_timer()) 2625 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 2626 if (!(_cpu_based_2nd_exec_control & 2627 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) 2628 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; 2629 2630 min = VM_ENTRY_LOAD_DEBUG_CONTROLS; 2631 opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | 2632 VM_ENTRY_LOAD_IA32_PAT | 2633 VM_ENTRY_LOAD_IA32_EFER | 2634 VM_ENTRY_LOAD_BNDCFGS | 2635 VM_ENTRY_PT_CONCEAL_PIP | 2636 VM_ENTRY_LOAD_IA32_RTIT_CTL; 2637 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS, 2638 &_vmentry_control) < 0) 2639 return -EIO; 2640 2641 /* 2642 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they 2643 * can't be used due to an errata where VM Exit may incorrectly clear 2644 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the 2645 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. 2646 */ 2647 if (boot_cpu_data.x86 == 0x6) { 2648 switch (boot_cpu_data.x86_model) { 2649 case 26: /* AAK155 */ 2650 case 30: /* AAP115 */ 2651 case 37: /* AAT100 */ 2652 case 44: /* BC86,AAY89,BD102 */ 2653 case 46: /* BA97 */ 2654 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; 2655 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; 2656 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " 2657 "does not work properly. Using workaround\n"); 2658 break; 2659 default: 2660 break; 2661 } 2662 } 2663 2664 2665 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); 2666 2667 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ 2668 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) 2669 return -EIO; 2670 2671 #ifdef CONFIG_X86_64 2672 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ 2673 if (vmx_msr_high & (1u<<16)) 2674 return -EIO; 2675 #endif 2676 2677 /* Require Write-Back (WB) memory type for VMCS accesses. */ 2678 if (((vmx_msr_high >> 18) & 15) != 6) 2679 return -EIO; 2680 2681 vmcs_conf->size = vmx_msr_high & 0x1fff; 2682 vmcs_conf->order = get_order(vmcs_conf->size); 2683 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; 2684 2685 vmcs_conf->revision_id = vmx_msr_low; 2686 2687 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; 2688 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; 2689 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; 2690 vmcs_conf->vmexit_ctrl = _vmexit_control; 2691 vmcs_conf->vmentry_ctrl = _vmentry_control; 2692 2693 #if IS_ENABLED(CONFIG_HYPERV) 2694 if (enlightened_vmcs) 2695 evmcs_sanitize_exec_ctrls(vmcs_conf); 2696 #endif 2697 2698 return 0; 2699 } 2700 2701 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags) 2702 { 2703 int node = cpu_to_node(cpu); 2704 struct page *pages; 2705 struct vmcs *vmcs; 2706 2707 pages = __alloc_pages_node(node, flags, vmcs_config.order); 2708 if (!pages) 2709 return NULL; 2710 vmcs = page_address(pages); 2711 memset(vmcs, 0, vmcs_config.size); 2712 2713 /* KVM supports Enlightened VMCS v1 only */ 2714 if (static_branch_unlikely(&enable_evmcs)) 2715 vmcs->hdr.revision_id = KVM_EVMCS_VERSION; 2716 else 2717 vmcs->hdr.revision_id = vmcs_config.revision_id; 2718 2719 if (shadow) 2720 vmcs->hdr.shadow_vmcs = 1; 2721 return vmcs; 2722 } 2723 2724 void free_vmcs(struct vmcs *vmcs) 2725 { 2726 free_pages((unsigned long)vmcs, vmcs_config.order); 2727 } 2728 2729 /* 2730 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded 2731 */ 2732 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2733 { 2734 if (!loaded_vmcs->vmcs) 2735 return; 2736 loaded_vmcs_clear(loaded_vmcs); 2737 free_vmcs(loaded_vmcs->vmcs); 2738 loaded_vmcs->vmcs = NULL; 2739 if (loaded_vmcs->msr_bitmap) 2740 free_page((unsigned long)loaded_vmcs->msr_bitmap); 2741 WARN_ON(loaded_vmcs->shadow_vmcs != NULL); 2742 } 2743 2744 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2745 { 2746 loaded_vmcs->vmcs = alloc_vmcs(false); 2747 if (!loaded_vmcs->vmcs) 2748 return -ENOMEM; 2749 2750 vmcs_clear(loaded_vmcs->vmcs); 2751 2752 loaded_vmcs->shadow_vmcs = NULL; 2753 loaded_vmcs->hv_timer_soft_disabled = false; 2754 loaded_vmcs->cpu = -1; 2755 loaded_vmcs->launched = 0; 2756 2757 if (cpu_has_vmx_msr_bitmap()) { 2758 loaded_vmcs->msr_bitmap = (unsigned long *) 2759 __get_free_page(GFP_KERNEL_ACCOUNT); 2760 if (!loaded_vmcs->msr_bitmap) 2761 goto out_vmcs; 2762 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); 2763 2764 if (IS_ENABLED(CONFIG_HYPERV) && 2765 static_branch_unlikely(&enable_evmcs) && 2766 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { 2767 struct hv_enlightened_vmcs *evmcs = 2768 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs; 2769 2770 evmcs->hv_enlightenments_control.msr_bitmap = 1; 2771 } 2772 } 2773 2774 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); 2775 memset(&loaded_vmcs->controls_shadow, 0, 2776 sizeof(struct vmcs_controls_shadow)); 2777 2778 return 0; 2779 2780 out_vmcs: 2781 free_loaded_vmcs(loaded_vmcs); 2782 return -ENOMEM; 2783 } 2784 2785 static void free_kvm_area(void) 2786 { 2787 int cpu; 2788 2789 for_each_possible_cpu(cpu) { 2790 free_vmcs(per_cpu(vmxarea, cpu)); 2791 per_cpu(vmxarea, cpu) = NULL; 2792 } 2793 } 2794 2795 static __init int alloc_kvm_area(void) 2796 { 2797 int cpu; 2798 2799 for_each_possible_cpu(cpu) { 2800 struct vmcs *vmcs; 2801 2802 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL); 2803 if (!vmcs) { 2804 free_kvm_area(); 2805 return -ENOMEM; 2806 } 2807 2808 /* 2809 * When eVMCS is enabled, alloc_vmcs_cpu() sets 2810 * vmcs->revision_id to KVM_EVMCS_VERSION instead of 2811 * revision_id reported by MSR_IA32_VMX_BASIC. 2812 * 2813 * However, even though not explicitly documented by 2814 * TLFS, VMXArea passed as VMXON argument should 2815 * still be marked with revision_id reported by 2816 * physical CPU. 2817 */ 2818 if (static_branch_unlikely(&enable_evmcs)) 2819 vmcs->hdr.revision_id = vmcs_config.revision_id; 2820 2821 per_cpu(vmxarea, cpu) = vmcs; 2822 } 2823 return 0; 2824 } 2825 2826 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, 2827 struct kvm_segment *save) 2828 { 2829 if (!emulate_invalid_guest_state) { 2830 /* 2831 * CS and SS RPL should be equal during guest entry according 2832 * to VMX spec, but in reality it is not always so. Since vcpu 2833 * is in the middle of the transition from real mode to 2834 * protected mode it is safe to assume that RPL 0 is a good 2835 * default value. 2836 */ 2837 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) 2838 save->selector &= ~SEGMENT_RPL_MASK; 2839 save->dpl = save->selector & SEGMENT_RPL_MASK; 2840 save->s = 1; 2841 } 2842 vmx_set_segment(vcpu, save, seg); 2843 } 2844 2845 static void enter_pmode(struct kvm_vcpu *vcpu) 2846 { 2847 unsigned long flags; 2848 struct vcpu_vmx *vmx = to_vmx(vcpu); 2849 2850 /* 2851 * Update real mode segment cache. It may be not up-to-date if segment 2852 * register was written while vcpu was in a guest mode. 2853 */ 2854 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2855 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2856 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2857 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2858 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2859 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2860 2861 vmx->rmode.vm86_active = 0; 2862 2863 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2864 2865 flags = vmcs_readl(GUEST_RFLAGS); 2866 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 2867 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 2868 vmcs_writel(GUEST_RFLAGS, flags); 2869 2870 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | 2871 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); 2872 2873 vmx_update_exception_bitmap(vcpu); 2874 2875 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2876 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2877 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2878 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2879 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2880 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2881 } 2882 2883 static void fix_rmode_seg(int seg, struct kvm_segment *save) 2884 { 2885 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 2886 struct kvm_segment var = *save; 2887 2888 var.dpl = 0x3; 2889 if (seg == VCPU_SREG_CS) 2890 var.type = 0x3; 2891 2892 if (!emulate_invalid_guest_state) { 2893 var.selector = var.base >> 4; 2894 var.base = var.base & 0xffff0; 2895 var.limit = 0xffff; 2896 var.g = 0; 2897 var.db = 0; 2898 var.present = 1; 2899 var.s = 1; 2900 var.l = 0; 2901 var.unusable = 0; 2902 var.type = 0x3; 2903 var.avl = 0; 2904 if (save->base & 0xf) 2905 printk_once(KERN_WARNING "kvm: segment base is not " 2906 "paragraph aligned when entering " 2907 "protected mode (seg=%d)", seg); 2908 } 2909 2910 vmcs_write16(sf->selector, var.selector); 2911 vmcs_writel(sf->base, var.base); 2912 vmcs_write32(sf->limit, var.limit); 2913 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); 2914 } 2915 2916 static void enter_rmode(struct kvm_vcpu *vcpu) 2917 { 2918 unsigned long flags; 2919 struct vcpu_vmx *vmx = to_vmx(vcpu); 2920 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); 2921 2922 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2923 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2924 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2925 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2926 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2927 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2928 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2929 2930 vmx->rmode.vm86_active = 1; 2931 2932 /* 2933 * Very old userspace does not call KVM_SET_TSS_ADDR before entering 2934 * vcpu. Warn the user that an update is overdue. 2935 */ 2936 if (!kvm_vmx->tss_addr) 2937 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be " 2938 "called before entering vcpu\n"); 2939 2940 vmx_segment_cache_clear(vmx); 2941 2942 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); 2943 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); 2944 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 2945 2946 flags = vmcs_readl(GUEST_RFLAGS); 2947 vmx->rmode.save_rflags = flags; 2948 2949 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 2950 2951 vmcs_writel(GUEST_RFLAGS, flags); 2952 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); 2953 vmx_update_exception_bitmap(vcpu); 2954 2955 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2956 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2957 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2958 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2959 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2960 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2961 2962 kvm_mmu_reset_context(vcpu); 2963 } 2964 2965 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) 2966 { 2967 struct vcpu_vmx *vmx = to_vmx(vcpu); 2968 struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER); 2969 2970 /* Nothing to do if hardware doesn't support EFER. */ 2971 if (!msr) 2972 return 0; 2973 2974 vcpu->arch.efer = efer; 2975 if (efer & EFER_LMA) { 2976 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2977 msr->data = efer; 2978 } else { 2979 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2980 2981 msr->data = efer & ~EFER_LME; 2982 } 2983 setup_msrs(vmx); 2984 return 0; 2985 } 2986 2987 #ifdef CONFIG_X86_64 2988 2989 static void enter_lmode(struct kvm_vcpu *vcpu) 2990 { 2991 u32 guest_tr_ar; 2992 2993 vmx_segment_cache_clear(to_vmx(vcpu)); 2994 2995 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); 2996 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { 2997 pr_debug_ratelimited("%s: tss fixup for long mode. \n", 2998 __func__); 2999 vmcs_write32(GUEST_TR_AR_BYTES, 3000 (guest_tr_ar & ~VMX_AR_TYPE_MASK) 3001 | VMX_AR_TYPE_BUSY_64_TSS); 3002 } 3003 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); 3004 } 3005 3006 static void exit_lmode(struct kvm_vcpu *vcpu) 3007 { 3008 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 3009 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); 3010 } 3011 3012 #endif 3013 3014 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu) 3015 { 3016 struct vcpu_vmx *vmx = to_vmx(vcpu); 3017 3018 /* 3019 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as 3020 * the CPU is not required to invalidate guest-physical mappings on 3021 * VM-Entry, even if VPID is disabled. Guest-physical mappings are 3022 * associated with the root EPT structure and not any particular VPID 3023 * (INVVPID also isn't required to invalidate guest-physical mappings). 3024 */ 3025 if (enable_ept) { 3026 ept_sync_global(); 3027 } else if (enable_vpid) { 3028 if (cpu_has_vmx_invvpid_global()) { 3029 vpid_sync_vcpu_global(); 3030 } else { 3031 vpid_sync_vcpu_single(vmx->vpid); 3032 vpid_sync_vcpu_single(vmx->nested.vpid02); 3033 } 3034 } 3035 } 3036 3037 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu) 3038 { 3039 struct kvm_mmu *mmu = vcpu->arch.mmu; 3040 u64 root_hpa = mmu->root_hpa; 3041 3042 /* No flush required if the current context is invalid. */ 3043 if (!VALID_PAGE(root_hpa)) 3044 return; 3045 3046 if (enable_ept) 3047 ept_sync_context(construct_eptp(vcpu, root_hpa, 3048 mmu->shadow_root_level)); 3049 else if (!is_guest_mode(vcpu)) 3050 vpid_sync_context(to_vmx(vcpu)->vpid); 3051 else 3052 vpid_sync_context(nested_get_vpid02(vcpu)); 3053 } 3054 3055 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) 3056 { 3057 /* 3058 * vpid_sync_vcpu_addr() is a nop if vmx->vpid==0, see the comment in 3059 * vmx_flush_tlb_guest() for an explanation of why this is ok. 3060 */ 3061 vpid_sync_vcpu_addr(to_vmx(vcpu)->vpid, addr); 3062 } 3063 3064 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu) 3065 { 3066 /* 3067 * vpid_sync_context() is a nop if vmx->vpid==0, e.g. if enable_vpid==0 3068 * or a vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit 3069 * are required to flush GVA->{G,H}PA mappings from the TLB if vpid is 3070 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed), 3071 * i.e. no explicit INVVPID is necessary. 3072 */ 3073 vpid_sync_context(to_vmx(vcpu)->vpid); 3074 } 3075 3076 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu) 3077 { 3078 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 3079 3080 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR)) 3081 return; 3082 3083 if (is_pae_paging(vcpu)) { 3084 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); 3085 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); 3086 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); 3087 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); 3088 } 3089 } 3090 3091 void ept_save_pdptrs(struct kvm_vcpu *vcpu) 3092 { 3093 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 3094 3095 if (WARN_ON_ONCE(!is_pae_paging(vcpu))) 3096 return; 3097 3098 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); 3099 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); 3100 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); 3101 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); 3102 3103 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 3104 } 3105 3106 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0, 3107 unsigned long cr0, 3108 struct kvm_vcpu *vcpu) 3109 { 3110 struct vcpu_vmx *vmx = to_vmx(vcpu); 3111 3112 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3)) 3113 vmx_cache_reg(vcpu, VCPU_EXREG_CR3); 3114 if (!(cr0 & X86_CR0_PG)) { 3115 /* From paging/starting to nonpaging */ 3116 exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING | 3117 CPU_BASED_CR3_STORE_EXITING); 3118 vcpu->arch.cr0 = cr0; 3119 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 3120 } else if (!is_paging(vcpu)) { 3121 /* From nonpaging to paging */ 3122 exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING | 3123 CPU_BASED_CR3_STORE_EXITING); 3124 vcpu->arch.cr0 = cr0; 3125 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 3126 } 3127 3128 if (!(cr0 & X86_CR0_WP)) 3129 *hw_cr0 &= ~X86_CR0_WP; 3130 } 3131 3132 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 3133 { 3134 struct vcpu_vmx *vmx = to_vmx(vcpu); 3135 unsigned long hw_cr0; 3136 3137 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); 3138 if (is_unrestricted_guest(vcpu)) 3139 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; 3140 else { 3141 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; 3142 3143 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) 3144 enter_pmode(vcpu); 3145 3146 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) 3147 enter_rmode(vcpu); 3148 } 3149 3150 #ifdef CONFIG_X86_64 3151 if (vcpu->arch.efer & EFER_LME) { 3152 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) 3153 enter_lmode(vcpu); 3154 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) 3155 exit_lmode(vcpu); 3156 } 3157 #endif 3158 3159 if (enable_ept && !is_unrestricted_guest(vcpu)) 3160 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu); 3161 3162 vmcs_writel(CR0_READ_SHADOW, cr0); 3163 vmcs_writel(GUEST_CR0, hw_cr0); 3164 vcpu->arch.cr0 = cr0; 3165 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0); 3166 3167 /* depends on vcpu->arch.cr0 to be set to a new value */ 3168 vmx->emulation_required = emulation_required(vcpu); 3169 } 3170 3171 static int vmx_get_max_tdp_level(void) 3172 { 3173 if (cpu_has_vmx_ept_5levels()) 3174 return 5; 3175 return 4; 3176 } 3177 3178 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level) 3179 { 3180 u64 eptp = VMX_EPTP_MT_WB; 3181 3182 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; 3183 3184 if (enable_ept_ad_bits && 3185 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) 3186 eptp |= VMX_EPTP_AD_ENABLE_BIT; 3187 eptp |= root_hpa; 3188 3189 return eptp; 3190 } 3191 3192 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 3193 int root_level) 3194 { 3195 struct kvm *kvm = vcpu->kvm; 3196 bool update_guest_cr3 = true; 3197 unsigned long guest_cr3; 3198 u64 eptp; 3199 3200 if (enable_ept) { 3201 eptp = construct_eptp(vcpu, root_hpa, root_level); 3202 vmcs_write64(EPT_POINTER, eptp); 3203 3204 hv_track_root_ept(vcpu, root_hpa); 3205 3206 if (!enable_unrestricted_guest && !is_paging(vcpu)) 3207 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; 3208 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) 3209 guest_cr3 = vcpu->arch.cr3; 3210 else /* vmcs01.GUEST_CR3 is already up-to-date. */ 3211 update_guest_cr3 = false; 3212 vmx_ept_load_pdptrs(vcpu); 3213 } else { 3214 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu); 3215 } 3216 3217 if (update_guest_cr3) 3218 vmcs_writel(GUEST_CR3, guest_cr3); 3219 } 3220 3221 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3222 { 3223 /* 3224 * We operate under the default treatment of SMM, so VMX cannot be 3225 * enabled under SMM. Note, whether or not VMXE is allowed at all is 3226 * handled by kvm_is_valid_cr4(). 3227 */ 3228 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu)) 3229 return false; 3230 3231 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) 3232 return false; 3233 3234 return true; 3235 } 3236 3237 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3238 { 3239 unsigned long old_cr4 = vcpu->arch.cr4; 3240 struct vcpu_vmx *vmx = to_vmx(vcpu); 3241 /* 3242 * Pass through host's Machine Check Enable value to hw_cr4, which 3243 * is in force while we are in guest mode. Do not let guests control 3244 * this bit, even if host CR4.MCE == 0. 3245 */ 3246 unsigned long hw_cr4; 3247 3248 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); 3249 if (is_unrestricted_guest(vcpu)) 3250 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; 3251 else if (vmx->rmode.vm86_active) 3252 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; 3253 else 3254 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; 3255 3256 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) { 3257 if (cr4 & X86_CR4_UMIP) { 3258 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC); 3259 hw_cr4 &= ~X86_CR4_UMIP; 3260 } else if (!is_guest_mode(vcpu) || 3261 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) { 3262 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC); 3263 } 3264 } 3265 3266 vcpu->arch.cr4 = cr4; 3267 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4); 3268 3269 if (!is_unrestricted_guest(vcpu)) { 3270 if (enable_ept) { 3271 if (!is_paging(vcpu)) { 3272 hw_cr4 &= ~X86_CR4_PAE; 3273 hw_cr4 |= X86_CR4_PSE; 3274 } else if (!(cr4 & X86_CR4_PAE)) { 3275 hw_cr4 &= ~X86_CR4_PAE; 3276 } 3277 } 3278 3279 /* 3280 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in 3281 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs 3282 * to be manually disabled when guest switches to non-paging 3283 * mode. 3284 * 3285 * If !enable_unrestricted_guest, the CPU is always running 3286 * with CR0.PG=1 and CR4 needs to be modified. 3287 * If enable_unrestricted_guest, the CPU automatically 3288 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. 3289 */ 3290 if (!is_paging(vcpu)) 3291 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 3292 } 3293 3294 vmcs_writel(CR4_READ_SHADOW, cr4); 3295 vmcs_writel(GUEST_CR4, hw_cr4); 3296 3297 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 3298 kvm_update_cpuid_runtime(vcpu); 3299 } 3300 3301 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3302 { 3303 struct vcpu_vmx *vmx = to_vmx(vcpu); 3304 u32 ar; 3305 3306 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3307 *var = vmx->rmode.segs[seg]; 3308 if (seg == VCPU_SREG_TR 3309 || var->selector == vmx_read_guest_seg_selector(vmx, seg)) 3310 return; 3311 var->base = vmx_read_guest_seg_base(vmx, seg); 3312 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3313 return; 3314 } 3315 var->base = vmx_read_guest_seg_base(vmx, seg); 3316 var->limit = vmx_read_guest_seg_limit(vmx, seg); 3317 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3318 ar = vmx_read_guest_seg_ar(vmx, seg); 3319 var->unusable = (ar >> 16) & 1; 3320 var->type = ar & 15; 3321 var->s = (ar >> 4) & 1; 3322 var->dpl = (ar >> 5) & 3; 3323 /* 3324 * Some userspaces do not preserve unusable property. Since usable 3325 * segment has to be present according to VMX spec we can use present 3326 * property to amend userspace bug by making unusable segment always 3327 * nonpresent. vmx_segment_access_rights() already marks nonpresent 3328 * segment as unusable. 3329 */ 3330 var->present = !var->unusable; 3331 var->avl = (ar >> 12) & 1; 3332 var->l = (ar >> 13) & 1; 3333 var->db = (ar >> 14) & 1; 3334 var->g = (ar >> 15) & 1; 3335 } 3336 3337 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) 3338 { 3339 struct kvm_segment s; 3340 3341 if (to_vmx(vcpu)->rmode.vm86_active) { 3342 vmx_get_segment(vcpu, &s, seg); 3343 return s.base; 3344 } 3345 return vmx_read_guest_seg_base(to_vmx(vcpu), seg); 3346 } 3347 3348 int vmx_get_cpl(struct kvm_vcpu *vcpu) 3349 { 3350 struct vcpu_vmx *vmx = to_vmx(vcpu); 3351 3352 if (unlikely(vmx->rmode.vm86_active)) 3353 return 0; 3354 else { 3355 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); 3356 return VMX_AR_DPL(ar); 3357 } 3358 } 3359 3360 static u32 vmx_segment_access_rights(struct kvm_segment *var) 3361 { 3362 u32 ar; 3363 3364 if (var->unusable || !var->present) 3365 ar = 1 << 16; 3366 else { 3367 ar = var->type & 15; 3368 ar |= (var->s & 1) << 4; 3369 ar |= (var->dpl & 3) << 5; 3370 ar |= (var->present & 1) << 7; 3371 ar |= (var->avl & 1) << 12; 3372 ar |= (var->l & 1) << 13; 3373 ar |= (var->db & 1) << 14; 3374 ar |= (var->g & 1) << 15; 3375 } 3376 3377 return ar; 3378 } 3379 3380 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3381 { 3382 struct vcpu_vmx *vmx = to_vmx(vcpu); 3383 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3384 3385 vmx_segment_cache_clear(vmx); 3386 3387 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3388 vmx->rmode.segs[seg] = *var; 3389 if (seg == VCPU_SREG_TR) 3390 vmcs_write16(sf->selector, var->selector); 3391 else if (var->s) 3392 fix_rmode_seg(seg, &vmx->rmode.segs[seg]); 3393 goto out; 3394 } 3395 3396 vmcs_writel(sf->base, var->base); 3397 vmcs_write32(sf->limit, var->limit); 3398 vmcs_write16(sf->selector, var->selector); 3399 3400 /* 3401 * Fix the "Accessed" bit in AR field of segment registers for older 3402 * qemu binaries. 3403 * IA32 arch specifies that at the time of processor reset the 3404 * "Accessed" bit in the AR field of segment registers is 1. And qemu 3405 * is setting it to 0 in the userland code. This causes invalid guest 3406 * state vmexit when "unrestricted guest" mode is turned on. 3407 * Fix for this setup issue in cpu_reset is being pushed in the qemu 3408 * tree. Newer qemu binaries with that qemu fix would not need this 3409 * kvm hack. 3410 */ 3411 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR)) 3412 var->type |= 0x1; /* Accessed */ 3413 3414 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); 3415 3416 out: 3417 vmx->emulation_required = emulation_required(vcpu); 3418 } 3419 3420 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 3421 { 3422 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); 3423 3424 *db = (ar >> 14) & 1; 3425 *l = (ar >> 13) & 1; 3426 } 3427 3428 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3429 { 3430 dt->size = vmcs_read32(GUEST_IDTR_LIMIT); 3431 dt->address = vmcs_readl(GUEST_IDTR_BASE); 3432 } 3433 3434 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3435 { 3436 vmcs_write32(GUEST_IDTR_LIMIT, dt->size); 3437 vmcs_writel(GUEST_IDTR_BASE, dt->address); 3438 } 3439 3440 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3441 { 3442 dt->size = vmcs_read32(GUEST_GDTR_LIMIT); 3443 dt->address = vmcs_readl(GUEST_GDTR_BASE); 3444 } 3445 3446 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3447 { 3448 vmcs_write32(GUEST_GDTR_LIMIT, dt->size); 3449 vmcs_writel(GUEST_GDTR_BASE, dt->address); 3450 } 3451 3452 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) 3453 { 3454 struct kvm_segment var; 3455 u32 ar; 3456 3457 vmx_get_segment(vcpu, &var, seg); 3458 var.dpl = 0x3; 3459 if (seg == VCPU_SREG_CS) 3460 var.type = 0x3; 3461 ar = vmx_segment_access_rights(&var); 3462 3463 if (var.base != (var.selector << 4)) 3464 return false; 3465 if (var.limit != 0xffff) 3466 return false; 3467 if (ar != 0xf3) 3468 return false; 3469 3470 return true; 3471 } 3472 3473 static bool code_segment_valid(struct kvm_vcpu *vcpu) 3474 { 3475 struct kvm_segment cs; 3476 unsigned int cs_rpl; 3477 3478 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3479 cs_rpl = cs.selector & SEGMENT_RPL_MASK; 3480 3481 if (cs.unusable) 3482 return false; 3483 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) 3484 return false; 3485 if (!cs.s) 3486 return false; 3487 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { 3488 if (cs.dpl > cs_rpl) 3489 return false; 3490 } else { 3491 if (cs.dpl != cs_rpl) 3492 return false; 3493 } 3494 if (!cs.present) 3495 return false; 3496 3497 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ 3498 return true; 3499 } 3500 3501 static bool stack_segment_valid(struct kvm_vcpu *vcpu) 3502 { 3503 struct kvm_segment ss; 3504 unsigned int ss_rpl; 3505 3506 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3507 ss_rpl = ss.selector & SEGMENT_RPL_MASK; 3508 3509 if (ss.unusable) 3510 return true; 3511 if (ss.type != 3 && ss.type != 7) 3512 return false; 3513 if (!ss.s) 3514 return false; 3515 if (ss.dpl != ss_rpl) /* DPL != RPL */ 3516 return false; 3517 if (!ss.present) 3518 return false; 3519 3520 return true; 3521 } 3522 3523 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) 3524 { 3525 struct kvm_segment var; 3526 unsigned int rpl; 3527 3528 vmx_get_segment(vcpu, &var, seg); 3529 rpl = var.selector & SEGMENT_RPL_MASK; 3530 3531 if (var.unusable) 3532 return true; 3533 if (!var.s) 3534 return false; 3535 if (!var.present) 3536 return false; 3537 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { 3538 if (var.dpl < rpl) /* DPL < RPL */ 3539 return false; 3540 } 3541 3542 /* TODO: Add other members to kvm_segment_field to allow checking for other access 3543 * rights flags 3544 */ 3545 return true; 3546 } 3547 3548 static bool tr_valid(struct kvm_vcpu *vcpu) 3549 { 3550 struct kvm_segment tr; 3551 3552 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); 3553 3554 if (tr.unusable) 3555 return false; 3556 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3557 return false; 3558 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ 3559 return false; 3560 if (!tr.present) 3561 return false; 3562 3563 return true; 3564 } 3565 3566 static bool ldtr_valid(struct kvm_vcpu *vcpu) 3567 { 3568 struct kvm_segment ldtr; 3569 3570 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); 3571 3572 if (ldtr.unusable) 3573 return true; 3574 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3575 return false; 3576 if (ldtr.type != 2) 3577 return false; 3578 if (!ldtr.present) 3579 return false; 3580 3581 return true; 3582 } 3583 3584 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) 3585 { 3586 struct kvm_segment cs, ss; 3587 3588 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3589 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3590 3591 return ((cs.selector & SEGMENT_RPL_MASK) == 3592 (ss.selector & SEGMENT_RPL_MASK)); 3593 } 3594 3595 /* 3596 * Check if guest state is valid. Returns true if valid, false if 3597 * not. 3598 * We assume that registers are always usable 3599 */ 3600 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu) 3601 { 3602 /* real mode guest state checks */ 3603 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { 3604 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) 3605 return false; 3606 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) 3607 return false; 3608 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) 3609 return false; 3610 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) 3611 return false; 3612 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) 3613 return false; 3614 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) 3615 return false; 3616 } else { 3617 /* protected mode guest state checks */ 3618 if (!cs_ss_rpl_check(vcpu)) 3619 return false; 3620 if (!code_segment_valid(vcpu)) 3621 return false; 3622 if (!stack_segment_valid(vcpu)) 3623 return false; 3624 if (!data_segment_valid(vcpu, VCPU_SREG_DS)) 3625 return false; 3626 if (!data_segment_valid(vcpu, VCPU_SREG_ES)) 3627 return false; 3628 if (!data_segment_valid(vcpu, VCPU_SREG_FS)) 3629 return false; 3630 if (!data_segment_valid(vcpu, VCPU_SREG_GS)) 3631 return false; 3632 if (!tr_valid(vcpu)) 3633 return false; 3634 if (!ldtr_valid(vcpu)) 3635 return false; 3636 } 3637 /* TODO: 3638 * - Add checks on RIP 3639 * - Add checks on RFLAGS 3640 */ 3641 3642 return true; 3643 } 3644 3645 static int init_rmode_tss(struct kvm *kvm, void __user *ua) 3646 { 3647 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3648 u16 data; 3649 int i; 3650 3651 for (i = 0; i < 3; i++) { 3652 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE)) 3653 return -EFAULT; 3654 } 3655 3656 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; 3657 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16))) 3658 return -EFAULT; 3659 3660 data = ~0; 3661 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8))) 3662 return -EFAULT; 3663 3664 return 0; 3665 } 3666 3667 static int init_rmode_identity_map(struct kvm *kvm) 3668 { 3669 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 3670 int i, r = 0; 3671 void __user *uaddr; 3672 u32 tmp; 3673 3674 /* Protect kvm_vmx->ept_identity_pagetable_done. */ 3675 mutex_lock(&kvm->slots_lock); 3676 3677 if (likely(kvm_vmx->ept_identity_pagetable_done)) 3678 goto out; 3679 3680 if (!kvm_vmx->ept_identity_map_addr) 3681 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; 3682 3683 uaddr = __x86_set_memory_region(kvm, 3684 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 3685 kvm_vmx->ept_identity_map_addr, 3686 PAGE_SIZE); 3687 if (IS_ERR(uaddr)) { 3688 r = PTR_ERR(uaddr); 3689 goto out; 3690 } 3691 3692 /* Set up identity-mapping pagetable for EPT in real mode */ 3693 for (i = 0; i < PT32_ENT_PER_PAGE; i++) { 3694 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | 3695 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); 3696 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) { 3697 r = -EFAULT; 3698 goto out; 3699 } 3700 } 3701 kvm_vmx->ept_identity_pagetable_done = true; 3702 3703 out: 3704 mutex_unlock(&kvm->slots_lock); 3705 return r; 3706 } 3707 3708 static void seg_setup(int seg) 3709 { 3710 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3711 unsigned int ar; 3712 3713 vmcs_write16(sf->selector, 0); 3714 vmcs_writel(sf->base, 0); 3715 vmcs_write32(sf->limit, 0xffff); 3716 ar = 0x93; 3717 if (seg == VCPU_SREG_CS) 3718 ar |= 0x08; /* code segment */ 3719 3720 vmcs_write32(sf->ar_bytes, ar); 3721 } 3722 3723 static int alloc_apic_access_page(struct kvm *kvm) 3724 { 3725 struct page *page; 3726 void __user *hva; 3727 int ret = 0; 3728 3729 mutex_lock(&kvm->slots_lock); 3730 if (kvm->arch.apic_access_page_done) 3731 goto out; 3732 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 3733 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); 3734 if (IS_ERR(hva)) { 3735 ret = PTR_ERR(hva); 3736 goto out; 3737 } 3738 3739 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 3740 if (is_error_page(page)) { 3741 ret = -EFAULT; 3742 goto out; 3743 } 3744 3745 /* 3746 * Do not pin the page in memory, so that memory hot-unplug 3747 * is able to migrate it. 3748 */ 3749 put_page(page); 3750 kvm->arch.apic_access_page_done = true; 3751 out: 3752 mutex_unlock(&kvm->slots_lock); 3753 return ret; 3754 } 3755 3756 int allocate_vpid(void) 3757 { 3758 int vpid; 3759 3760 if (!enable_vpid) 3761 return 0; 3762 spin_lock(&vmx_vpid_lock); 3763 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); 3764 if (vpid < VMX_NR_VPIDS) 3765 __set_bit(vpid, vmx_vpid_bitmap); 3766 else 3767 vpid = 0; 3768 spin_unlock(&vmx_vpid_lock); 3769 return vpid; 3770 } 3771 3772 void free_vpid(int vpid) 3773 { 3774 if (!enable_vpid || vpid == 0) 3775 return; 3776 spin_lock(&vmx_vpid_lock); 3777 __clear_bit(vpid, vmx_vpid_bitmap); 3778 spin_unlock(&vmx_vpid_lock); 3779 } 3780 3781 static void vmx_clear_msr_bitmap_read(ulong *msr_bitmap, u32 msr) 3782 { 3783 int f = sizeof(unsigned long); 3784 3785 if (msr <= 0x1fff) 3786 __clear_bit(msr, msr_bitmap + 0x000 / f); 3787 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) 3788 __clear_bit(msr & 0x1fff, msr_bitmap + 0x400 / f); 3789 } 3790 3791 static void vmx_clear_msr_bitmap_write(ulong *msr_bitmap, u32 msr) 3792 { 3793 int f = sizeof(unsigned long); 3794 3795 if (msr <= 0x1fff) 3796 __clear_bit(msr, msr_bitmap + 0x800 / f); 3797 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) 3798 __clear_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f); 3799 } 3800 3801 static void vmx_set_msr_bitmap_read(ulong *msr_bitmap, u32 msr) 3802 { 3803 int f = sizeof(unsigned long); 3804 3805 if (msr <= 0x1fff) 3806 __set_bit(msr, msr_bitmap + 0x000 / f); 3807 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) 3808 __set_bit(msr & 0x1fff, msr_bitmap + 0x400 / f); 3809 } 3810 3811 static void vmx_set_msr_bitmap_write(ulong *msr_bitmap, u32 msr) 3812 { 3813 int f = sizeof(unsigned long); 3814 3815 if (msr <= 0x1fff) 3816 __set_bit(msr, msr_bitmap + 0x800 / f); 3817 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) 3818 __set_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f); 3819 } 3820 3821 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3822 { 3823 struct vcpu_vmx *vmx = to_vmx(vcpu); 3824 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3825 3826 if (!cpu_has_vmx_msr_bitmap()) 3827 return; 3828 3829 if (static_branch_unlikely(&enable_evmcs)) 3830 evmcs_touch_msr_bitmap(); 3831 3832 /* 3833 * Mark the desired intercept state in shadow bitmap, this is needed 3834 * for resync when the MSR filters change. 3835 */ 3836 if (is_valid_passthrough_msr(msr)) { 3837 int idx = possible_passthrough_msr_slot(msr); 3838 3839 if (idx != -ENOENT) { 3840 if (type & MSR_TYPE_R) 3841 clear_bit(idx, vmx->shadow_msr_intercept.read); 3842 if (type & MSR_TYPE_W) 3843 clear_bit(idx, vmx->shadow_msr_intercept.write); 3844 } 3845 } 3846 3847 if ((type & MSR_TYPE_R) && 3848 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) { 3849 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3850 type &= ~MSR_TYPE_R; 3851 } 3852 3853 if ((type & MSR_TYPE_W) && 3854 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) { 3855 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3856 type &= ~MSR_TYPE_W; 3857 } 3858 3859 if (type & MSR_TYPE_R) 3860 vmx_clear_msr_bitmap_read(msr_bitmap, msr); 3861 3862 if (type & MSR_TYPE_W) 3863 vmx_clear_msr_bitmap_write(msr_bitmap, msr); 3864 } 3865 3866 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3867 { 3868 struct vcpu_vmx *vmx = to_vmx(vcpu); 3869 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3870 3871 if (!cpu_has_vmx_msr_bitmap()) 3872 return; 3873 3874 if (static_branch_unlikely(&enable_evmcs)) 3875 evmcs_touch_msr_bitmap(); 3876 3877 /* 3878 * Mark the desired intercept state in shadow bitmap, this is needed 3879 * for resync when the MSR filter changes. 3880 */ 3881 if (is_valid_passthrough_msr(msr)) { 3882 int idx = possible_passthrough_msr_slot(msr); 3883 3884 if (idx != -ENOENT) { 3885 if (type & MSR_TYPE_R) 3886 set_bit(idx, vmx->shadow_msr_intercept.read); 3887 if (type & MSR_TYPE_W) 3888 set_bit(idx, vmx->shadow_msr_intercept.write); 3889 } 3890 } 3891 3892 if (type & MSR_TYPE_R) 3893 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3894 3895 if (type & MSR_TYPE_W) 3896 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3897 } 3898 3899 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu) 3900 { 3901 u8 mode = 0; 3902 3903 if (cpu_has_secondary_exec_ctrls() && 3904 (secondary_exec_controls_get(to_vmx(vcpu)) & 3905 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { 3906 mode |= MSR_BITMAP_MODE_X2APIC; 3907 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) 3908 mode |= MSR_BITMAP_MODE_X2APIC_APICV; 3909 } 3910 3911 return mode; 3912 } 3913 3914 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode) 3915 { 3916 unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap; 3917 unsigned long read_intercept; 3918 int msr; 3919 3920 read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0; 3921 3922 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { 3923 unsigned int read_idx = msr / BITS_PER_LONG; 3924 unsigned int write_idx = read_idx + (0x800 / sizeof(long)); 3925 3926 msr_bitmap[read_idx] = read_intercept; 3927 msr_bitmap[write_idx] = ~0ul; 3928 } 3929 } 3930 3931 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu, u8 mode) 3932 { 3933 if (!cpu_has_vmx_msr_bitmap()) 3934 return; 3935 3936 vmx_reset_x2apic_msrs(vcpu, mode); 3937 3938 /* 3939 * TPR reads and writes can be virtualized even if virtual interrupt 3940 * delivery is not in use. 3941 */ 3942 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW, 3943 !(mode & MSR_BITMAP_MODE_X2APIC)); 3944 3945 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { 3946 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW); 3947 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); 3948 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); 3949 } 3950 } 3951 3952 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu) 3953 { 3954 struct vcpu_vmx *vmx = to_vmx(vcpu); 3955 u8 mode = vmx_msr_bitmap_mode(vcpu); 3956 u8 changed = mode ^ vmx->msr_bitmap_mode; 3957 3958 if (!changed) 3959 return; 3960 3961 if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV)) 3962 vmx_update_msr_bitmap_x2apic(vcpu, mode); 3963 3964 vmx->msr_bitmap_mode = mode; 3965 } 3966 3967 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu) 3968 { 3969 struct vcpu_vmx *vmx = to_vmx(vcpu); 3970 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 3971 u32 i; 3972 3973 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag); 3974 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag); 3975 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag); 3976 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag); 3977 for (i = 0; i < vmx->pt_desc.addr_range; i++) { 3978 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); 3979 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); 3980 } 3981 } 3982 3983 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 3984 { 3985 struct vcpu_vmx *vmx = to_vmx(vcpu); 3986 void *vapic_page; 3987 u32 vppr; 3988 int rvi; 3989 3990 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) || 3991 !nested_cpu_has_vid(get_vmcs12(vcpu)) || 3992 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn)) 3993 return false; 3994 3995 rvi = vmx_get_rvi(); 3996 3997 vapic_page = vmx->nested.virtual_apic_map.hva; 3998 vppr = *((u32 *)(vapic_page + APIC_PROCPRI)); 3999 4000 return ((rvi & 0xf0) > (vppr & 0xf0)); 4001 } 4002 4003 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu) 4004 { 4005 struct vcpu_vmx *vmx = to_vmx(vcpu); 4006 u32 i; 4007 4008 /* 4009 * Set intercept permissions for all potentially passed through MSRs 4010 * again. They will automatically get filtered through the MSR filter, 4011 * so we are back in sync after this. 4012 */ 4013 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) { 4014 u32 msr = vmx_possible_passthrough_msrs[i]; 4015 bool read = test_bit(i, vmx->shadow_msr_intercept.read); 4016 bool write = test_bit(i, vmx->shadow_msr_intercept.write); 4017 4018 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read); 4019 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write); 4020 } 4021 4022 pt_update_intercept_for_msr(vcpu); 4023 vmx_update_msr_bitmap_x2apic(vcpu, vmx_msr_bitmap_mode(vcpu)); 4024 } 4025 4026 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, 4027 bool nested) 4028 { 4029 #ifdef CONFIG_SMP 4030 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR; 4031 4032 if (vcpu->mode == IN_GUEST_MODE) { 4033 /* 4034 * The vector of interrupt to be delivered to vcpu had 4035 * been set in PIR before this function. 4036 * 4037 * Following cases will be reached in this block, and 4038 * we always send a notification event in all cases as 4039 * explained below. 4040 * 4041 * Case 1: vcpu keeps in non-root mode. Sending a 4042 * notification event posts the interrupt to vcpu. 4043 * 4044 * Case 2: vcpu exits to root mode and is still 4045 * runnable. PIR will be synced to vIRR before the 4046 * next vcpu entry. Sending a notification event in 4047 * this case has no effect, as vcpu is not in root 4048 * mode. 4049 * 4050 * Case 3: vcpu exits to root mode and is blocked. 4051 * vcpu_block() has already synced PIR to vIRR and 4052 * never blocks vcpu if vIRR is not cleared. Therefore, 4053 * a blocked vcpu here does not wait for any requested 4054 * interrupts in PIR, and sending a notification event 4055 * which has no effect is safe here. 4056 */ 4057 4058 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); 4059 return true; 4060 } 4061 #endif 4062 return false; 4063 } 4064 4065 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, 4066 int vector) 4067 { 4068 struct vcpu_vmx *vmx = to_vmx(vcpu); 4069 4070 if (is_guest_mode(vcpu) && 4071 vector == vmx->nested.posted_intr_nv) { 4072 /* 4073 * If a posted intr is not recognized by hardware, 4074 * we will accomplish it in the next vmentry. 4075 */ 4076 vmx->nested.pi_pending = true; 4077 kvm_make_request(KVM_REQ_EVENT, vcpu); 4078 /* the PIR and ON have been set by L1. */ 4079 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true)) 4080 kvm_vcpu_kick(vcpu); 4081 return 0; 4082 } 4083 return -1; 4084 } 4085 /* 4086 * Send interrupt to vcpu via posted interrupt way. 4087 * 1. If target vcpu is running(non-root mode), send posted interrupt 4088 * notification to vcpu and hardware will sync PIR to vIRR atomically. 4089 * 2. If target vcpu isn't running(root mode), kick it to pick up the 4090 * interrupt from PIR in next vmentry. 4091 */ 4092 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) 4093 { 4094 struct vcpu_vmx *vmx = to_vmx(vcpu); 4095 int r; 4096 4097 r = vmx_deliver_nested_posted_interrupt(vcpu, vector); 4098 if (!r) 4099 return 0; 4100 4101 if (!vcpu->arch.apicv_active) 4102 return -1; 4103 4104 if (pi_test_and_set_pir(vector, &vmx->pi_desc)) 4105 return 0; 4106 4107 /* If a previous notification has sent the IPI, nothing to do. */ 4108 if (pi_test_and_set_on(&vmx->pi_desc)) 4109 return 0; 4110 4111 if (vcpu != kvm_get_running_vcpu() && 4112 !kvm_vcpu_trigger_posted_interrupt(vcpu, false)) 4113 kvm_vcpu_kick(vcpu); 4114 4115 return 0; 4116 } 4117 4118 /* 4119 * Set up the vmcs's constant host-state fields, i.e., host-state fields that 4120 * will not change in the lifetime of the guest. 4121 * Note that host-state that does change is set elsewhere. E.g., host-state 4122 * that is set differently for each CPU is set in vmx_vcpu_load(), not here. 4123 */ 4124 void vmx_set_constant_host_state(struct vcpu_vmx *vmx) 4125 { 4126 u32 low32, high32; 4127 unsigned long tmpl; 4128 unsigned long cr0, cr3, cr4; 4129 4130 cr0 = read_cr0(); 4131 WARN_ON(cr0 & X86_CR0_TS); 4132 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ 4133 4134 /* 4135 * Save the most likely value for this task's CR3 in the VMCS. 4136 * We can't use __get_current_cr3_fast() because we're not atomic. 4137 */ 4138 cr3 = __read_cr3(); 4139 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ 4140 vmx->loaded_vmcs->host_state.cr3 = cr3; 4141 4142 /* Save the most likely value for this task's CR4 in the VMCS. */ 4143 cr4 = cr4_read_shadow(); 4144 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ 4145 vmx->loaded_vmcs->host_state.cr4 = cr4; 4146 4147 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ 4148 #ifdef CONFIG_X86_64 4149 /* 4150 * Load null selectors, so we can avoid reloading them in 4151 * vmx_prepare_switch_to_host(), in case userspace uses 4152 * the null selectors too (the expected case). 4153 */ 4154 vmcs_write16(HOST_DS_SELECTOR, 0); 4155 vmcs_write16(HOST_ES_SELECTOR, 0); 4156 #else 4157 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4158 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4159 #endif 4160 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4161 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ 4162 4163 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */ 4164 4165 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ 4166 4167 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); 4168 vmcs_write32(HOST_IA32_SYSENTER_CS, low32); 4169 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); 4170 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ 4171 4172 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { 4173 rdmsr(MSR_IA32_CR_PAT, low32, high32); 4174 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); 4175 } 4176 4177 if (cpu_has_load_ia32_efer()) 4178 vmcs_write64(HOST_IA32_EFER, host_efer); 4179 } 4180 4181 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) 4182 { 4183 struct kvm_vcpu *vcpu = &vmx->vcpu; 4184 4185 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS & 4186 ~vcpu->arch.cr4_guest_rsvd_bits; 4187 if (!enable_ept) 4188 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE; 4189 if (is_guest_mode(&vmx->vcpu)) 4190 vcpu->arch.cr4_guest_owned_bits &= 4191 ~get_vmcs12(vcpu)->cr4_guest_host_mask; 4192 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits); 4193 } 4194 4195 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) 4196 { 4197 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; 4198 4199 if (!kvm_vcpu_apicv_active(&vmx->vcpu)) 4200 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; 4201 4202 if (!enable_vnmi) 4203 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; 4204 4205 if (!enable_preemption_timer) 4206 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 4207 4208 return pin_based_exec_ctrl; 4209 } 4210 4211 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) 4212 { 4213 struct vcpu_vmx *vmx = to_vmx(vcpu); 4214 4215 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4216 if (cpu_has_secondary_exec_ctrls()) { 4217 if (kvm_vcpu_apicv_active(vcpu)) 4218 secondary_exec_controls_setbit(vmx, 4219 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4220 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4221 else 4222 secondary_exec_controls_clearbit(vmx, 4223 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4224 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4225 } 4226 4227 if (cpu_has_vmx_msr_bitmap()) 4228 vmx_update_msr_bitmap(vcpu); 4229 } 4230 4231 u32 vmx_exec_control(struct vcpu_vmx *vmx) 4232 { 4233 u32 exec_control = vmcs_config.cpu_based_exec_ctrl; 4234 4235 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) 4236 exec_control &= ~CPU_BASED_MOV_DR_EXITING; 4237 4238 if (!cpu_need_tpr_shadow(&vmx->vcpu)) { 4239 exec_control &= ~CPU_BASED_TPR_SHADOW; 4240 #ifdef CONFIG_X86_64 4241 exec_control |= CPU_BASED_CR8_STORE_EXITING | 4242 CPU_BASED_CR8_LOAD_EXITING; 4243 #endif 4244 } 4245 if (!enable_ept) 4246 exec_control |= CPU_BASED_CR3_STORE_EXITING | 4247 CPU_BASED_CR3_LOAD_EXITING | 4248 CPU_BASED_INVLPG_EXITING; 4249 if (kvm_mwait_in_guest(vmx->vcpu.kvm)) 4250 exec_control &= ~(CPU_BASED_MWAIT_EXITING | 4251 CPU_BASED_MONITOR_EXITING); 4252 if (kvm_hlt_in_guest(vmx->vcpu.kvm)) 4253 exec_control &= ~CPU_BASED_HLT_EXITING; 4254 return exec_control; 4255 } 4256 4257 /* 4258 * Adjust a single secondary execution control bit to intercept/allow an 4259 * instruction in the guest. This is usually done based on whether or not a 4260 * feature has been exposed to the guest in order to correctly emulate faults. 4261 */ 4262 static inline void 4263 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control, 4264 u32 control, bool enabled, bool exiting) 4265 { 4266 /* 4267 * If the control is for an opt-in feature, clear the control if the 4268 * feature is not exposed to the guest, i.e. not enabled. If the 4269 * control is opt-out, i.e. an exiting control, clear the control if 4270 * the feature _is_ exposed to the guest, i.e. exiting/interception is 4271 * disabled for the associated instruction. Note, the caller is 4272 * responsible presetting exec_control to set all supported bits. 4273 */ 4274 if (enabled == exiting) 4275 *exec_control &= ~control; 4276 4277 /* 4278 * Update the nested MSR settings so that a nested VMM can/can't set 4279 * controls for features that are/aren't exposed to the guest. 4280 */ 4281 if (nested) { 4282 if (enabled) 4283 vmx->nested.msrs.secondary_ctls_high |= control; 4284 else 4285 vmx->nested.msrs.secondary_ctls_high &= ~control; 4286 } 4287 } 4288 4289 /* 4290 * Wrapper macro for the common case of adjusting a secondary execution control 4291 * based on a single guest CPUID bit, with a dedicated feature bit. This also 4292 * verifies that the control is actually supported by KVM and hardware. 4293 */ 4294 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \ 4295 ({ \ 4296 bool __enabled; \ 4297 \ 4298 if (cpu_has_vmx_##name()) { \ 4299 __enabled = guest_cpuid_has(&(vmx)->vcpu, \ 4300 X86_FEATURE_##feat_name); \ 4301 vmx_adjust_secondary_exec_control(vmx, exec_control, \ 4302 SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \ 4303 } \ 4304 }) 4305 4306 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */ 4307 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \ 4308 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false) 4309 4310 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \ 4311 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true) 4312 4313 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx) 4314 { 4315 struct kvm_vcpu *vcpu = &vmx->vcpu; 4316 4317 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; 4318 4319 if (vmx_pt_mode_is_system()) 4320 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); 4321 if (!cpu_need_virtualize_apic_accesses(vcpu)) 4322 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 4323 if (vmx->vpid == 0) 4324 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; 4325 if (!enable_ept) { 4326 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; 4327 enable_unrestricted_guest = 0; 4328 } 4329 if (!enable_unrestricted_guest) 4330 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; 4331 if (kvm_pause_in_guest(vmx->vcpu.kvm)) 4332 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; 4333 if (!kvm_vcpu_apicv_active(vcpu)) 4334 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | 4335 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4336 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 4337 4338 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, 4339 * in vmx_set_cr4. */ 4340 exec_control &= ~SECONDARY_EXEC_DESC; 4341 4342 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD 4343 (handle_vmptrld). 4344 We can NOT enable shadow_vmcs here because we don't have yet 4345 a current VMCS12 4346 */ 4347 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; 4348 4349 /* 4350 * PML is enabled/disabled when dirty logging of memsmlots changes, but 4351 * it needs to be set here when dirty logging is already active, e.g. 4352 * if this vCPU was created after dirty logging was enabled. 4353 */ 4354 if (!vcpu->kvm->arch.cpu_dirty_logging_count) 4355 exec_control &= ~SECONDARY_EXEC_ENABLE_PML; 4356 4357 if (cpu_has_vmx_xsaves()) { 4358 /* Exposing XSAVES only when XSAVE is exposed */ 4359 bool xsaves_enabled = 4360 boot_cpu_has(X86_FEATURE_XSAVE) && 4361 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 4362 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES); 4363 4364 vcpu->arch.xsaves_enabled = xsaves_enabled; 4365 4366 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4367 SECONDARY_EXEC_XSAVES, 4368 xsaves_enabled, false); 4369 } 4370 4371 vmx_adjust_sec_exec_feature(vmx, &exec_control, rdtscp, RDTSCP); 4372 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID); 4373 4374 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND); 4375 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED); 4376 4377 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG, 4378 ENABLE_USR_WAIT_PAUSE, false); 4379 4380 if (!vcpu->kvm->arch.bus_lock_detection_enabled) 4381 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION; 4382 4383 vmx->secondary_exec_control = exec_control; 4384 } 4385 4386 #define VMX_XSS_EXIT_BITMAP 0 4387 4388 /* 4389 * Noting that the initialization of Guest-state Area of VMCS is in 4390 * vmx_vcpu_reset(). 4391 */ 4392 static void init_vmcs(struct vcpu_vmx *vmx) 4393 { 4394 if (nested) 4395 nested_vmx_set_vmcs_shadowing_bitmap(); 4396 4397 if (cpu_has_vmx_msr_bitmap()) 4398 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); 4399 4400 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */ 4401 4402 /* Control */ 4403 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4404 4405 exec_controls_set(vmx, vmx_exec_control(vmx)); 4406 4407 if (cpu_has_secondary_exec_ctrls()) { 4408 vmx_compute_secondary_exec_control(vmx); 4409 secondary_exec_controls_set(vmx, vmx->secondary_exec_control); 4410 } 4411 4412 if (kvm_vcpu_apicv_active(&vmx->vcpu)) { 4413 vmcs_write64(EOI_EXIT_BITMAP0, 0); 4414 vmcs_write64(EOI_EXIT_BITMAP1, 0); 4415 vmcs_write64(EOI_EXIT_BITMAP2, 0); 4416 vmcs_write64(EOI_EXIT_BITMAP3, 0); 4417 4418 vmcs_write16(GUEST_INTR_STATUS, 0); 4419 4420 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); 4421 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); 4422 } 4423 4424 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) { 4425 vmcs_write32(PLE_GAP, ple_gap); 4426 vmx->ple_window = ple_window; 4427 vmx->ple_window_dirty = true; 4428 } 4429 4430 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); 4431 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); 4432 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ 4433 4434 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ 4435 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ 4436 vmx_set_constant_host_state(vmx); 4437 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ 4438 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ 4439 4440 if (cpu_has_vmx_vmfunc()) 4441 vmcs_write64(VM_FUNCTION_CONTROL, 0); 4442 4443 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); 4444 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); 4445 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); 4446 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); 4447 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); 4448 4449 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 4450 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); 4451 4452 vm_exit_controls_set(vmx, vmx_vmexit_ctrl()); 4453 4454 /* 22.2.1, 20.8.1 */ 4455 vm_entry_controls_set(vmx, vmx_vmentry_ctrl()); 4456 4457 vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS; 4458 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits); 4459 4460 set_cr4_guest_host_mask(vmx); 4461 4462 if (vmx->vpid != 0) 4463 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); 4464 4465 if (cpu_has_vmx_xsaves()) 4466 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); 4467 4468 if (enable_pml) { 4469 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); 4470 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 4471 } 4472 4473 vmx_write_encls_bitmap(&vmx->vcpu, NULL); 4474 4475 if (vmx_pt_mode_is_host_guest()) { 4476 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); 4477 /* Bit[6~0] are forced to 1, writes are ignored. */ 4478 vmx->pt_desc.guest.output_mask = 0x7F; 4479 vmcs_write64(GUEST_IA32_RTIT_CTL, 0); 4480 } 4481 } 4482 4483 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 4484 { 4485 struct vcpu_vmx *vmx = to_vmx(vcpu); 4486 struct msr_data apic_base_msr; 4487 u64 cr0; 4488 4489 vmx->rmode.vm86_active = 0; 4490 vmx->spec_ctrl = 0; 4491 4492 vmx->msr_ia32_umwait_control = 0; 4493 4494 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val(); 4495 vmx->hv_deadline_tsc = -1; 4496 kvm_set_cr8(vcpu, 0); 4497 4498 if (!init_event) { 4499 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE | 4500 MSR_IA32_APICBASE_ENABLE; 4501 if (kvm_vcpu_is_reset_bsp(vcpu)) 4502 apic_base_msr.data |= MSR_IA32_APICBASE_BSP; 4503 apic_base_msr.host_initiated = true; 4504 kvm_set_apic_base(vcpu, &apic_base_msr); 4505 } 4506 4507 vmx_segment_cache_clear(vmx); 4508 4509 seg_setup(VCPU_SREG_CS); 4510 vmcs_write16(GUEST_CS_SELECTOR, 0xf000); 4511 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); 4512 4513 seg_setup(VCPU_SREG_DS); 4514 seg_setup(VCPU_SREG_ES); 4515 seg_setup(VCPU_SREG_FS); 4516 seg_setup(VCPU_SREG_GS); 4517 seg_setup(VCPU_SREG_SS); 4518 4519 vmcs_write16(GUEST_TR_SELECTOR, 0); 4520 vmcs_writel(GUEST_TR_BASE, 0); 4521 vmcs_write32(GUEST_TR_LIMIT, 0xffff); 4522 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 4523 4524 vmcs_write16(GUEST_LDTR_SELECTOR, 0); 4525 vmcs_writel(GUEST_LDTR_BASE, 0); 4526 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); 4527 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); 4528 4529 if (!init_event) { 4530 vmcs_write32(GUEST_SYSENTER_CS, 0); 4531 vmcs_writel(GUEST_SYSENTER_ESP, 0); 4532 vmcs_writel(GUEST_SYSENTER_EIP, 0); 4533 vmcs_write64(GUEST_IA32_DEBUGCTL, 0); 4534 } 4535 4536 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 4537 kvm_rip_write(vcpu, 0xfff0); 4538 4539 vmcs_writel(GUEST_GDTR_BASE, 0); 4540 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); 4541 4542 vmcs_writel(GUEST_IDTR_BASE, 0); 4543 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); 4544 4545 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 4546 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); 4547 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); 4548 if (kvm_mpx_supported()) 4549 vmcs_write64(GUEST_BNDCFGS, 0); 4550 4551 setup_msrs(vmx); 4552 4553 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ 4554 4555 if (cpu_has_vmx_tpr_shadow() && !init_event) { 4556 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); 4557 if (cpu_need_tpr_shadow(vcpu)) 4558 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 4559 __pa(vcpu->arch.apic->regs)); 4560 vmcs_write32(TPR_THRESHOLD, 0); 4561 } 4562 4563 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 4564 4565 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET; 4566 vmx->vcpu.arch.cr0 = cr0; 4567 vmx_set_cr0(vcpu, cr0); /* enter rmode */ 4568 vmx_set_cr4(vcpu, 0); 4569 vmx_set_efer(vcpu, 0); 4570 4571 vmx_update_exception_bitmap(vcpu); 4572 4573 vpid_sync_context(vmx->vpid); 4574 if (init_event) 4575 vmx_clear_hlt(vcpu); 4576 } 4577 4578 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu) 4579 { 4580 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 4581 } 4582 4583 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu) 4584 { 4585 if (!enable_vnmi || 4586 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { 4587 vmx_enable_irq_window(vcpu); 4588 return; 4589 } 4590 4591 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 4592 } 4593 4594 static void vmx_inject_irq(struct kvm_vcpu *vcpu) 4595 { 4596 struct vcpu_vmx *vmx = to_vmx(vcpu); 4597 uint32_t intr; 4598 int irq = vcpu->arch.interrupt.nr; 4599 4600 trace_kvm_inj_virq(irq); 4601 4602 ++vcpu->stat.irq_injections; 4603 if (vmx->rmode.vm86_active) { 4604 int inc_eip = 0; 4605 if (vcpu->arch.interrupt.soft) 4606 inc_eip = vcpu->arch.event_exit_inst_len; 4607 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip); 4608 return; 4609 } 4610 intr = irq | INTR_INFO_VALID_MASK; 4611 if (vcpu->arch.interrupt.soft) { 4612 intr |= INTR_TYPE_SOFT_INTR; 4613 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 4614 vmx->vcpu.arch.event_exit_inst_len); 4615 } else 4616 intr |= INTR_TYPE_EXT_INTR; 4617 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); 4618 4619 vmx_clear_hlt(vcpu); 4620 } 4621 4622 static void vmx_inject_nmi(struct kvm_vcpu *vcpu) 4623 { 4624 struct vcpu_vmx *vmx = to_vmx(vcpu); 4625 4626 if (!enable_vnmi) { 4627 /* 4628 * Tracking the NMI-blocked state in software is built upon 4629 * finding the next open IRQ window. This, in turn, depends on 4630 * well-behaving guests: They have to keep IRQs disabled at 4631 * least as long as the NMI handler runs. Otherwise we may 4632 * cause NMI nesting, maybe breaking the guest. But as this is 4633 * highly unlikely, we can live with the residual risk. 4634 */ 4635 vmx->loaded_vmcs->soft_vnmi_blocked = 1; 4636 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4637 } 4638 4639 ++vcpu->stat.nmi_injections; 4640 vmx->loaded_vmcs->nmi_known_unmasked = false; 4641 4642 if (vmx->rmode.vm86_active) { 4643 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0); 4644 return; 4645 } 4646 4647 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 4648 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); 4649 4650 vmx_clear_hlt(vcpu); 4651 } 4652 4653 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) 4654 { 4655 struct vcpu_vmx *vmx = to_vmx(vcpu); 4656 bool masked; 4657 4658 if (!enable_vnmi) 4659 return vmx->loaded_vmcs->soft_vnmi_blocked; 4660 if (vmx->loaded_vmcs->nmi_known_unmasked) 4661 return false; 4662 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; 4663 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4664 return masked; 4665 } 4666 4667 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 4668 { 4669 struct vcpu_vmx *vmx = to_vmx(vcpu); 4670 4671 if (!enable_vnmi) { 4672 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { 4673 vmx->loaded_vmcs->soft_vnmi_blocked = masked; 4674 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4675 } 4676 } else { 4677 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4678 if (masked) 4679 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 4680 GUEST_INTR_STATE_NMI); 4681 else 4682 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, 4683 GUEST_INTR_STATE_NMI); 4684 } 4685 } 4686 4687 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu) 4688 { 4689 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 4690 return false; 4691 4692 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) 4693 return true; 4694 4695 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4696 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI | 4697 GUEST_INTR_STATE_NMI)); 4698 } 4699 4700 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4701 { 4702 if (to_vmx(vcpu)->nested.nested_run_pending) 4703 return -EBUSY; 4704 4705 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 4706 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 4707 return -EBUSY; 4708 4709 return !vmx_nmi_blocked(vcpu); 4710 } 4711 4712 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu) 4713 { 4714 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 4715 return false; 4716 4717 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) || 4718 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4719 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); 4720 } 4721 4722 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4723 { 4724 if (to_vmx(vcpu)->nested.nested_run_pending) 4725 return -EBUSY; 4726 4727 /* 4728 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 4729 * e.g. if the IRQ arrived asynchronously after checking nested events. 4730 */ 4731 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 4732 return -EBUSY; 4733 4734 return !vmx_interrupt_blocked(vcpu); 4735 } 4736 4737 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) 4738 { 4739 void __user *ret; 4740 4741 if (enable_unrestricted_guest) 4742 return 0; 4743 4744 mutex_lock(&kvm->slots_lock); 4745 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, 4746 PAGE_SIZE * 3); 4747 mutex_unlock(&kvm->slots_lock); 4748 4749 if (IS_ERR(ret)) 4750 return PTR_ERR(ret); 4751 4752 to_kvm_vmx(kvm)->tss_addr = addr; 4753 4754 return init_rmode_tss(kvm, ret); 4755 } 4756 4757 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 4758 { 4759 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; 4760 return 0; 4761 } 4762 4763 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) 4764 { 4765 switch (vec) { 4766 case BP_VECTOR: 4767 /* 4768 * Update instruction length as we may reinject the exception 4769 * from user space while in guest debugging mode. 4770 */ 4771 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = 4772 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4773 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 4774 return false; 4775 fallthrough; 4776 case DB_VECTOR: 4777 return !(vcpu->guest_debug & 4778 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)); 4779 case DE_VECTOR: 4780 case OF_VECTOR: 4781 case BR_VECTOR: 4782 case UD_VECTOR: 4783 case DF_VECTOR: 4784 case SS_VECTOR: 4785 case GP_VECTOR: 4786 case MF_VECTOR: 4787 return true; 4788 } 4789 return false; 4790 } 4791 4792 static int handle_rmode_exception(struct kvm_vcpu *vcpu, 4793 int vec, u32 err_code) 4794 { 4795 /* 4796 * Instruction with address size override prefix opcode 0x67 4797 * Cause the #SS fault with 0 error code in VM86 mode. 4798 */ 4799 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { 4800 if (kvm_emulate_instruction(vcpu, 0)) { 4801 if (vcpu->arch.halt_request) { 4802 vcpu->arch.halt_request = 0; 4803 return kvm_vcpu_halt(vcpu); 4804 } 4805 return 1; 4806 } 4807 return 0; 4808 } 4809 4810 /* 4811 * Forward all other exceptions that are valid in real mode. 4812 * FIXME: Breaks guest debugging in real mode, needs to be fixed with 4813 * the required debugging infrastructure rework. 4814 */ 4815 kvm_queue_exception(vcpu, vec); 4816 return 1; 4817 } 4818 4819 static int handle_machine_check(struct kvm_vcpu *vcpu) 4820 { 4821 /* handled by vmx_vcpu_run() */ 4822 return 1; 4823 } 4824 4825 /* 4826 * If the host has split lock detection disabled, then #AC is 4827 * unconditionally injected into the guest, which is the pre split lock 4828 * detection behaviour. 4829 * 4830 * If the host has split lock detection enabled then #AC is 4831 * only injected into the guest when: 4832 * - Guest CPL == 3 (user mode) 4833 * - Guest has #AC detection enabled in CR0 4834 * - Guest EFLAGS has AC bit set 4835 */ 4836 static inline bool guest_inject_ac(struct kvm_vcpu *vcpu) 4837 { 4838 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 4839 return true; 4840 4841 return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) && 4842 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC); 4843 } 4844 4845 static int handle_exception_nmi(struct kvm_vcpu *vcpu) 4846 { 4847 struct vcpu_vmx *vmx = to_vmx(vcpu); 4848 struct kvm_run *kvm_run = vcpu->run; 4849 u32 intr_info, ex_no, error_code; 4850 unsigned long cr2, rip, dr6; 4851 u32 vect_info; 4852 4853 vect_info = vmx->idt_vectoring_info; 4854 intr_info = vmx_get_intr_info(vcpu); 4855 4856 if (is_machine_check(intr_info) || is_nmi(intr_info)) 4857 return 1; /* handled by handle_exception_nmi_irqoff() */ 4858 4859 if (is_invalid_opcode(intr_info)) 4860 return handle_ud(vcpu); 4861 4862 error_code = 0; 4863 if (intr_info & INTR_INFO_DELIVER_CODE_MASK) 4864 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 4865 4866 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { 4867 WARN_ON_ONCE(!enable_vmware_backdoor); 4868 4869 /* 4870 * VMware backdoor emulation on #GP interception only handles 4871 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero 4872 * error code on #GP. 4873 */ 4874 if (error_code) { 4875 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 4876 return 1; 4877 } 4878 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); 4879 } 4880 4881 /* 4882 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing 4883 * MMIO, it is better to report an internal error. 4884 * See the comments in vmx_handle_exit. 4885 */ 4886 if ((vect_info & VECTORING_INFO_VALID_MASK) && 4887 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { 4888 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4889 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; 4890 vcpu->run->internal.ndata = 4; 4891 vcpu->run->internal.data[0] = vect_info; 4892 vcpu->run->internal.data[1] = intr_info; 4893 vcpu->run->internal.data[2] = error_code; 4894 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu; 4895 return 0; 4896 } 4897 4898 if (is_page_fault(intr_info)) { 4899 cr2 = vmx_get_exit_qual(vcpu); 4900 if (enable_ept && !vcpu->arch.apf.host_apf_flags) { 4901 /* 4902 * EPT will cause page fault only if we need to 4903 * detect illegal GPAs. 4904 */ 4905 WARN_ON_ONCE(!allow_smaller_maxphyaddr); 4906 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code); 4907 return 1; 4908 } else 4909 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); 4910 } 4911 4912 ex_no = intr_info & INTR_INFO_VECTOR_MASK; 4913 4914 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) 4915 return handle_rmode_exception(vcpu, ex_no, error_code); 4916 4917 switch (ex_no) { 4918 case DB_VECTOR: 4919 dr6 = vmx_get_exit_qual(vcpu); 4920 if (!(vcpu->guest_debug & 4921 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { 4922 if (is_icebp(intr_info)) 4923 WARN_ON(!skip_emulated_instruction(vcpu)); 4924 4925 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 4926 return 1; 4927 } 4928 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 4929 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); 4930 fallthrough; 4931 case BP_VECTOR: 4932 /* 4933 * Update instruction length as we may reinject #BP from 4934 * user space while in guest debugging mode. Reading it for 4935 * #DB as well causes no harm, it is not used in that case. 4936 */ 4937 vmx->vcpu.arch.event_exit_inst_len = 4938 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4939 kvm_run->exit_reason = KVM_EXIT_DEBUG; 4940 rip = kvm_rip_read(vcpu); 4941 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip; 4942 kvm_run->debug.arch.exception = ex_no; 4943 break; 4944 case AC_VECTOR: 4945 if (guest_inject_ac(vcpu)) { 4946 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); 4947 return 1; 4948 } 4949 4950 /* 4951 * Handle split lock. Depending on detection mode this will 4952 * either warn and disable split lock detection for this 4953 * task or force SIGBUS on it. 4954 */ 4955 if (handle_guest_split_lock(kvm_rip_read(vcpu))) 4956 return 1; 4957 fallthrough; 4958 default: 4959 kvm_run->exit_reason = KVM_EXIT_EXCEPTION; 4960 kvm_run->ex.exception = ex_no; 4961 kvm_run->ex.error_code = error_code; 4962 break; 4963 } 4964 return 0; 4965 } 4966 4967 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu) 4968 { 4969 ++vcpu->stat.irq_exits; 4970 return 1; 4971 } 4972 4973 static int handle_triple_fault(struct kvm_vcpu *vcpu) 4974 { 4975 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 4976 vcpu->mmio_needed = 0; 4977 return 0; 4978 } 4979 4980 static int handle_io(struct kvm_vcpu *vcpu) 4981 { 4982 unsigned long exit_qualification; 4983 int size, in, string; 4984 unsigned port; 4985 4986 exit_qualification = vmx_get_exit_qual(vcpu); 4987 string = (exit_qualification & 16) != 0; 4988 4989 ++vcpu->stat.io_exits; 4990 4991 if (string) 4992 return kvm_emulate_instruction(vcpu, 0); 4993 4994 port = exit_qualification >> 16; 4995 size = (exit_qualification & 7) + 1; 4996 in = (exit_qualification & 8) != 0; 4997 4998 return kvm_fast_pio(vcpu, size, port, in); 4999 } 5000 5001 static void 5002 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 5003 { 5004 /* 5005 * Patch in the VMCALL instruction: 5006 */ 5007 hypercall[0] = 0x0f; 5008 hypercall[1] = 0x01; 5009 hypercall[2] = 0xc1; 5010 } 5011 5012 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ 5013 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) 5014 { 5015 if (is_guest_mode(vcpu)) { 5016 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5017 unsigned long orig_val = val; 5018 5019 /* 5020 * We get here when L2 changed cr0 in a way that did not change 5021 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), 5022 * but did change L0 shadowed bits. So we first calculate the 5023 * effective cr0 value that L1 would like to write into the 5024 * hardware. It consists of the L2-owned bits from the new 5025 * value combined with the L1-owned bits from L1's guest_cr0. 5026 */ 5027 val = (val & ~vmcs12->cr0_guest_host_mask) | 5028 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); 5029 5030 if (!nested_guest_cr0_valid(vcpu, val)) 5031 return 1; 5032 5033 if (kvm_set_cr0(vcpu, val)) 5034 return 1; 5035 vmcs_writel(CR0_READ_SHADOW, orig_val); 5036 return 0; 5037 } else { 5038 if (to_vmx(vcpu)->nested.vmxon && 5039 !nested_host_cr0_valid(vcpu, val)) 5040 return 1; 5041 5042 return kvm_set_cr0(vcpu, val); 5043 } 5044 } 5045 5046 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) 5047 { 5048 if (is_guest_mode(vcpu)) { 5049 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5050 unsigned long orig_val = val; 5051 5052 /* analogously to handle_set_cr0 */ 5053 val = (val & ~vmcs12->cr4_guest_host_mask) | 5054 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); 5055 if (kvm_set_cr4(vcpu, val)) 5056 return 1; 5057 vmcs_writel(CR4_READ_SHADOW, orig_val); 5058 return 0; 5059 } else 5060 return kvm_set_cr4(vcpu, val); 5061 } 5062 5063 static int handle_desc(struct kvm_vcpu *vcpu) 5064 { 5065 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP)); 5066 return kvm_emulate_instruction(vcpu, 0); 5067 } 5068 5069 static int handle_cr(struct kvm_vcpu *vcpu) 5070 { 5071 unsigned long exit_qualification, val; 5072 int cr; 5073 int reg; 5074 int err; 5075 int ret; 5076 5077 exit_qualification = vmx_get_exit_qual(vcpu); 5078 cr = exit_qualification & 15; 5079 reg = (exit_qualification >> 8) & 15; 5080 switch ((exit_qualification >> 4) & 3) { 5081 case 0: /* mov to cr */ 5082 val = kvm_register_read(vcpu, reg); 5083 trace_kvm_cr_write(cr, val); 5084 switch (cr) { 5085 case 0: 5086 err = handle_set_cr0(vcpu, val); 5087 return kvm_complete_insn_gp(vcpu, err); 5088 case 3: 5089 WARN_ON_ONCE(enable_unrestricted_guest); 5090 err = kvm_set_cr3(vcpu, val); 5091 return kvm_complete_insn_gp(vcpu, err); 5092 case 4: 5093 err = handle_set_cr4(vcpu, val); 5094 return kvm_complete_insn_gp(vcpu, err); 5095 case 8: { 5096 u8 cr8_prev = kvm_get_cr8(vcpu); 5097 u8 cr8 = (u8)val; 5098 err = kvm_set_cr8(vcpu, cr8); 5099 ret = kvm_complete_insn_gp(vcpu, err); 5100 if (lapic_in_kernel(vcpu)) 5101 return ret; 5102 if (cr8_prev <= cr8) 5103 return ret; 5104 /* 5105 * TODO: we might be squashing a 5106 * KVM_GUESTDBG_SINGLESTEP-triggered 5107 * KVM_EXIT_DEBUG here. 5108 */ 5109 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 5110 return 0; 5111 } 5112 } 5113 break; 5114 case 2: /* clts */ 5115 WARN_ONCE(1, "Guest should always own CR0.TS"); 5116 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS)); 5117 trace_kvm_cr_write(0, kvm_read_cr0(vcpu)); 5118 return kvm_skip_emulated_instruction(vcpu); 5119 case 1: /*mov from cr*/ 5120 switch (cr) { 5121 case 3: 5122 WARN_ON_ONCE(enable_unrestricted_guest); 5123 val = kvm_read_cr3(vcpu); 5124 kvm_register_write(vcpu, reg, val); 5125 trace_kvm_cr_read(cr, val); 5126 return kvm_skip_emulated_instruction(vcpu); 5127 case 8: 5128 val = kvm_get_cr8(vcpu); 5129 kvm_register_write(vcpu, reg, val); 5130 trace_kvm_cr_read(cr, val); 5131 return kvm_skip_emulated_instruction(vcpu); 5132 } 5133 break; 5134 case 3: /* lmsw */ 5135 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; 5136 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val); 5137 kvm_lmsw(vcpu, val); 5138 5139 return kvm_skip_emulated_instruction(vcpu); 5140 default: 5141 break; 5142 } 5143 vcpu->run->exit_reason = 0; 5144 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", 5145 (int)(exit_qualification >> 4) & 3, cr); 5146 return 0; 5147 } 5148 5149 static int handle_dr(struct kvm_vcpu *vcpu) 5150 { 5151 unsigned long exit_qualification; 5152 int dr, dr7, reg; 5153 int err = 1; 5154 5155 exit_qualification = vmx_get_exit_qual(vcpu); 5156 dr = exit_qualification & DEBUG_REG_ACCESS_NUM; 5157 5158 /* First, if DR does not exist, trigger UD */ 5159 if (!kvm_require_dr(vcpu, dr)) 5160 return 1; 5161 5162 if (kvm_x86_ops.get_cpl(vcpu) > 0) 5163 goto out; 5164 5165 dr7 = vmcs_readl(GUEST_DR7); 5166 if (dr7 & DR7_GD) { 5167 /* 5168 * As the vm-exit takes precedence over the debug trap, we 5169 * need to emulate the latter, either for the host or the 5170 * guest debugging itself. 5171 */ 5172 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 5173 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW; 5174 vcpu->run->debug.arch.dr7 = dr7; 5175 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5176 vcpu->run->debug.arch.exception = DB_VECTOR; 5177 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 5178 return 0; 5179 } else { 5180 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD); 5181 return 1; 5182 } 5183 } 5184 5185 if (vcpu->guest_debug == 0) { 5186 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5187 5188 /* 5189 * No more DR vmexits; force a reload of the debug registers 5190 * and reenter on this instruction. The next vmexit will 5191 * retrieve the full state of the debug registers. 5192 */ 5193 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 5194 return 1; 5195 } 5196 5197 reg = DEBUG_REG_ACCESS_REG(exit_qualification); 5198 if (exit_qualification & TYPE_MOV_FROM_DR) { 5199 unsigned long val; 5200 5201 kvm_get_dr(vcpu, dr, &val); 5202 kvm_register_write(vcpu, reg, val); 5203 err = 0; 5204 } else { 5205 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); 5206 } 5207 5208 out: 5209 return kvm_complete_insn_gp(vcpu, err); 5210 } 5211 5212 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 5213 { 5214 get_debugreg(vcpu->arch.db[0], 0); 5215 get_debugreg(vcpu->arch.db[1], 1); 5216 get_debugreg(vcpu->arch.db[2], 2); 5217 get_debugreg(vcpu->arch.db[3], 3); 5218 get_debugreg(vcpu->arch.dr6, 6); 5219 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); 5220 5221 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 5222 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5223 } 5224 5225 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) 5226 { 5227 vmcs_writel(GUEST_DR7, val); 5228 } 5229 5230 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) 5231 { 5232 kvm_apic_update_ppr(vcpu); 5233 return 1; 5234 } 5235 5236 static int handle_interrupt_window(struct kvm_vcpu *vcpu) 5237 { 5238 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 5239 5240 kvm_make_request(KVM_REQ_EVENT, vcpu); 5241 5242 ++vcpu->stat.irq_window_exits; 5243 return 1; 5244 } 5245 5246 static int handle_invlpg(struct kvm_vcpu *vcpu) 5247 { 5248 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5249 5250 kvm_mmu_invlpg(vcpu, exit_qualification); 5251 return kvm_skip_emulated_instruction(vcpu); 5252 } 5253 5254 static int handle_apic_access(struct kvm_vcpu *vcpu) 5255 { 5256 if (likely(fasteoi)) { 5257 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5258 int access_type, offset; 5259 5260 access_type = exit_qualification & APIC_ACCESS_TYPE; 5261 offset = exit_qualification & APIC_ACCESS_OFFSET; 5262 /* 5263 * Sane guest uses MOV to write EOI, with written value 5264 * not cared. So make a short-circuit here by avoiding 5265 * heavy instruction emulation. 5266 */ 5267 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && 5268 (offset == APIC_EOI)) { 5269 kvm_lapic_set_eoi(vcpu); 5270 return kvm_skip_emulated_instruction(vcpu); 5271 } 5272 } 5273 return kvm_emulate_instruction(vcpu, 0); 5274 } 5275 5276 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) 5277 { 5278 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5279 int vector = exit_qualification & 0xff; 5280 5281 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ 5282 kvm_apic_set_eoi_accelerated(vcpu, vector); 5283 return 1; 5284 } 5285 5286 static int handle_apic_write(struct kvm_vcpu *vcpu) 5287 { 5288 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5289 u32 offset = exit_qualification & 0xfff; 5290 5291 /* APIC-write VM exit is trap-like and thus no need to adjust IP */ 5292 kvm_apic_write_nodecode(vcpu, offset); 5293 return 1; 5294 } 5295 5296 static int handle_task_switch(struct kvm_vcpu *vcpu) 5297 { 5298 struct vcpu_vmx *vmx = to_vmx(vcpu); 5299 unsigned long exit_qualification; 5300 bool has_error_code = false; 5301 u32 error_code = 0; 5302 u16 tss_selector; 5303 int reason, type, idt_v, idt_index; 5304 5305 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); 5306 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); 5307 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); 5308 5309 exit_qualification = vmx_get_exit_qual(vcpu); 5310 5311 reason = (u32)exit_qualification >> 30; 5312 if (reason == TASK_SWITCH_GATE && idt_v) { 5313 switch (type) { 5314 case INTR_TYPE_NMI_INTR: 5315 vcpu->arch.nmi_injected = false; 5316 vmx_set_nmi_mask(vcpu, true); 5317 break; 5318 case INTR_TYPE_EXT_INTR: 5319 case INTR_TYPE_SOFT_INTR: 5320 kvm_clear_interrupt_queue(vcpu); 5321 break; 5322 case INTR_TYPE_HARD_EXCEPTION: 5323 if (vmx->idt_vectoring_info & 5324 VECTORING_INFO_DELIVER_CODE_MASK) { 5325 has_error_code = true; 5326 error_code = 5327 vmcs_read32(IDT_VECTORING_ERROR_CODE); 5328 } 5329 fallthrough; 5330 case INTR_TYPE_SOFT_EXCEPTION: 5331 kvm_clear_exception_queue(vcpu); 5332 break; 5333 default: 5334 break; 5335 } 5336 } 5337 tss_selector = exit_qualification; 5338 5339 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && 5340 type != INTR_TYPE_EXT_INTR && 5341 type != INTR_TYPE_NMI_INTR)) 5342 WARN_ON(!skip_emulated_instruction(vcpu)); 5343 5344 /* 5345 * TODO: What about debug traps on tss switch? 5346 * Are we supposed to inject them and update dr6? 5347 */ 5348 return kvm_task_switch(vcpu, tss_selector, 5349 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, 5350 reason, has_error_code, error_code); 5351 } 5352 5353 static int handle_ept_violation(struct kvm_vcpu *vcpu) 5354 { 5355 unsigned long exit_qualification; 5356 gpa_t gpa; 5357 u64 error_code; 5358 5359 exit_qualification = vmx_get_exit_qual(vcpu); 5360 5361 /* 5362 * EPT violation happened while executing iret from NMI, 5363 * "blocked by NMI" bit has to be set before next VM entry. 5364 * There are errata that may cause this bit to not be set: 5365 * AAK134, BY25. 5366 */ 5367 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5368 enable_vnmi && 5369 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5370 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); 5371 5372 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5373 trace_kvm_page_fault(gpa, exit_qualification); 5374 5375 /* Is it a read fault? */ 5376 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) 5377 ? PFERR_USER_MASK : 0; 5378 /* Is it a write fault? */ 5379 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) 5380 ? PFERR_WRITE_MASK : 0; 5381 /* Is it a fetch fault? */ 5382 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) 5383 ? PFERR_FETCH_MASK : 0; 5384 /* ept page table entry is present? */ 5385 error_code |= (exit_qualification & 5386 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE | 5387 EPT_VIOLATION_EXECUTABLE)) 5388 ? PFERR_PRESENT_MASK : 0; 5389 5390 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ? 5391 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; 5392 5393 vcpu->arch.exit_qualification = exit_qualification; 5394 5395 /* 5396 * Check that the GPA doesn't exceed physical memory limits, as that is 5397 * a guest page fault. We have to emulate the instruction here, because 5398 * if the illegal address is that of a paging structure, then 5399 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we 5400 * would also use advanced VM-exit information for EPT violations to 5401 * reconstruct the page fault error code. 5402 */ 5403 if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa))) 5404 return kvm_emulate_instruction(vcpu, 0); 5405 5406 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); 5407 } 5408 5409 static int handle_ept_misconfig(struct kvm_vcpu *vcpu) 5410 { 5411 gpa_t gpa; 5412 5413 if (!vmx_can_emulate_instruction(vcpu, NULL, 0)) 5414 return 1; 5415 5416 /* 5417 * A nested guest cannot optimize MMIO vmexits, because we have an 5418 * nGPA here instead of the required GPA. 5419 */ 5420 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5421 if (!is_guest_mode(vcpu) && 5422 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { 5423 trace_kvm_fast_mmio(gpa); 5424 return kvm_skip_emulated_instruction(vcpu); 5425 } 5426 5427 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); 5428 } 5429 5430 static int handle_nmi_window(struct kvm_vcpu *vcpu) 5431 { 5432 WARN_ON_ONCE(!enable_vnmi); 5433 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 5434 ++vcpu->stat.nmi_window_exits; 5435 kvm_make_request(KVM_REQ_EVENT, vcpu); 5436 5437 return 1; 5438 } 5439 5440 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) 5441 { 5442 struct vcpu_vmx *vmx = to_vmx(vcpu); 5443 bool intr_window_requested; 5444 unsigned count = 130; 5445 5446 intr_window_requested = exec_controls_get(vmx) & 5447 CPU_BASED_INTR_WINDOW_EXITING; 5448 5449 while (vmx->emulation_required && count-- != 0) { 5450 if (intr_window_requested && !vmx_interrupt_blocked(vcpu)) 5451 return handle_interrupt_window(&vmx->vcpu); 5452 5453 if (kvm_test_request(KVM_REQ_EVENT, vcpu)) 5454 return 1; 5455 5456 if (!kvm_emulate_instruction(vcpu, 0)) 5457 return 0; 5458 5459 if (vmx->emulation_required && !vmx->rmode.vm86_active && 5460 vcpu->arch.exception.pending) { 5461 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5462 vcpu->run->internal.suberror = 5463 KVM_INTERNAL_ERROR_EMULATION; 5464 vcpu->run->internal.ndata = 0; 5465 return 0; 5466 } 5467 5468 if (vcpu->arch.halt_request) { 5469 vcpu->arch.halt_request = 0; 5470 return kvm_vcpu_halt(vcpu); 5471 } 5472 5473 /* 5474 * Note, return 1 and not 0, vcpu_run() will invoke 5475 * xfer_to_guest_mode() which will create a proper return 5476 * code. 5477 */ 5478 if (__xfer_to_guest_mode_work_pending()) 5479 return 1; 5480 } 5481 5482 return 1; 5483 } 5484 5485 static void grow_ple_window(struct kvm_vcpu *vcpu) 5486 { 5487 struct vcpu_vmx *vmx = to_vmx(vcpu); 5488 unsigned int old = vmx->ple_window; 5489 5490 vmx->ple_window = __grow_ple_window(old, ple_window, 5491 ple_window_grow, 5492 ple_window_max); 5493 5494 if (vmx->ple_window != old) { 5495 vmx->ple_window_dirty = true; 5496 trace_kvm_ple_window_update(vcpu->vcpu_id, 5497 vmx->ple_window, old); 5498 } 5499 } 5500 5501 static void shrink_ple_window(struct kvm_vcpu *vcpu) 5502 { 5503 struct vcpu_vmx *vmx = to_vmx(vcpu); 5504 unsigned int old = vmx->ple_window; 5505 5506 vmx->ple_window = __shrink_ple_window(old, ple_window, 5507 ple_window_shrink, 5508 ple_window); 5509 5510 if (vmx->ple_window != old) { 5511 vmx->ple_window_dirty = true; 5512 trace_kvm_ple_window_update(vcpu->vcpu_id, 5513 vmx->ple_window, old); 5514 } 5515 } 5516 5517 /* 5518 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE 5519 * exiting, so only get here on cpu with PAUSE-Loop-Exiting. 5520 */ 5521 static int handle_pause(struct kvm_vcpu *vcpu) 5522 { 5523 if (!kvm_pause_in_guest(vcpu->kvm)) 5524 grow_ple_window(vcpu); 5525 5526 /* 5527 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" 5528 * VM-execution control is ignored if CPL > 0. OTOH, KVM 5529 * never set PAUSE_EXITING and just set PLE if supported, 5530 * so the vcpu must be CPL=0 if it gets a PAUSE exit. 5531 */ 5532 kvm_vcpu_on_spin(vcpu, true); 5533 return kvm_skip_emulated_instruction(vcpu); 5534 } 5535 5536 static int handle_monitor_trap(struct kvm_vcpu *vcpu) 5537 { 5538 return 1; 5539 } 5540 5541 static int handle_invpcid(struct kvm_vcpu *vcpu) 5542 { 5543 u32 vmx_instruction_info; 5544 unsigned long type; 5545 gva_t gva; 5546 struct { 5547 u64 pcid; 5548 u64 gla; 5549 } operand; 5550 5551 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 5552 kvm_queue_exception(vcpu, UD_VECTOR); 5553 return 1; 5554 } 5555 5556 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5557 type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf); 5558 5559 if (type > 3) { 5560 kvm_inject_gp(vcpu, 0); 5561 return 1; 5562 } 5563 5564 /* According to the Intel instruction reference, the memory operand 5565 * is read even if it isn't needed (e.g., for type==all) 5566 */ 5567 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), 5568 vmx_instruction_info, false, 5569 sizeof(operand), &gva)) 5570 return 1; 5571 5572 return kvm_handle_invpcid(vcpu, type, gva); 5573 } 5574 5575 static int handle_pml_full(struct kvm_vcpu *vcpu) 5576 { 5577 unsigned long exit_qualification; 5578 5579 trace_kvm_pml_full(vcpu->vcpu_id); 5580 5581 exit_qualification = vmx_get_exit_qual(vcpu); 5582 5583 /* 5584 * PML buffer FULL happened while executing iret from NMI, 5585 * "blocked by NMI" bit has to be set before next VM entry. 5586 */ 5587 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5588 enable_vnmi && 5589 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5590 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5591 GUEST_INTR_STATE_NMI); 5592 5593 /* 5594 * PML buffer already flushed at beginning of VMEXIT. Nothing to do 5595 * here.., and there's no userspace involvement needed for PML. 5596 */ 5597 return 1; 5598 } 5599 5600 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu) 5601 { 5602 struct vcpu_vmx *vmx = to_vmx(vcpu); 5603 5604 if (!vmx->req_immediate_exit && 5605 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) { 5606 kvm_lapic_expired_hv_timer(vcpu); 5607 return EXIT_FASTPATH_REENTER_GUEST; 5608 } 5609 5610 return EXIT_FASTPATH_NONE; 5611 } 5612 5613 static int handle_preemption_timer(struct kvm_vcpu *vcpu) 5614 { 5615 handle_fastpath_preemption_timer(vcpu); 5616 return 1; 5617 } 5618 5619 /* 5620 * When nested=0, all VMX instruction VM Exits filter here. The handlers 5621 * are overwritten by nested_vmx_setup() when nested=1. 5622 */ 5623 static int handle_vmx_instruction(struct kvm_vcpu *vcpu) 5624 { 5625 kvm_queue_exception(vcpu, UD_VECTOR); 5626 return 1; 5627 } 5628 5629 #ifndef CONFIG_X86_SGX_KVM 5630 static int handle_encls(struct kvm_vcpu *vcpu) 5631 { 5632 /* 5633 * SGX virtualization is disabled. There is no software enable bit for 5634 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent 5635 * the guest from executing ENCLS (when SGX is supported by hardware). 5636 */ 5637 kvm_queue_exception(vcpu, UD_VECTOR); 5638 return 1; 5639 } 5640 #endif /* CONFIG_X86_SGX_KVM */ 5641 5642 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu) 5643 { 5644 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; 5645 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; 5646 return 0; 5647 } 5648 5649 /* 5650 * The exit handlers return 1 if the exit was handled fully and guest execution 5651 * may resume. Otherwise they set the kvm_run parameter to indicate what needs 5652 * to be done to userspace and return 0. 5653 */ 5654 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { 5655 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi, 5656 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, 5657 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, 5658 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, 5659 [EXIT_REASON_IO_INSTRUCTION] = handle_io, 5660 [EXIT_REASON_CR_ACCESS] = handle_cr, 5661 [EXIT_REASON_DR_ACCESS] = handle_dr, 5662 [EXIT_REASON_CPUID] = kvm_emulate_cpuid, 5663 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr, 5664 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr, 5665 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window, 5666 [EXIT_REASON_HLT] = kvm_emulate_halt, 5667 [EXIT_REASON_INVD] = kvm_emulate_invd, 5668 [EXIT_REASON_INVLPG] = handle_invlpg, 5669 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc, 5670 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall, 5671 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, 5672 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, 5673 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, 5674 [EXIT_REASON_VMPTRST] = handle_vmx_instruction, 5675 [EXIT_REASON_VMREAD] = handle_vmx_instruction, 5676 [EXIT_REASON_VMRESUME] = handle_vmx_instruction, 5677 [EXIT_REASON_VMWRITE] = handle_vmx_instruction, 5678 [EXIT_REASON_VMOFF] = handle_vmx_instruction, 5679 [EXIT_REASON_VMON] = handle_vmx_instruction, 5680 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, 5681 [EXIT_REASON_APIC_ACCESS] = handle_apic_access, 5682 [EXIT_REASON_APIC_WRITE] = handle_apic_write, 5683 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, 5684 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd, 5685 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv, 5686 [EXIT_REASON_TASK_SWITCH] = handle_task_switch, 5687 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, 5688 [EXIT_REASON_GDTR_IDTR] = handle_desc, 5689 [EXIT_REASON_LDTR_TR] = handle_desc, 5690 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, 5691 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, 5692 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, 5693 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait, 5694 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, 5695 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor, 5696 [EXIT_REASON_INVEPT] = handle_vmx_instruction, 5697 [EXIT_REASON_INVVPID] = handle_vmx_instruction, 5698 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op, 5699 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op, 5700 [EXIT_REASON_PML_FULL] = handle_pml_full, 5701 [EXIT_REASON_INVPCID] = handle_invpcid, 5702 [EXIT_REASON_VMFUNC] = handle_vmx_instruction, 5703 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, 5704 [EXIT_REASON_ENCLS] = handle_encls, 5705 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit, 5706 }; 5707 5708 static const int kvm_vmx_max_exit_handlers = 5709 ARRAY_SIZE(kvm_vmx_exit_handlers); 5710 5711 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2, 5712 u32 *intr_info, u32 *error_code) 5713 { 5714 struct vcpu_vmx *vmx = to_vmx(vcpu); 5715 5716 *info1 = vmx_get_exit_qual(vcpu); 5717 if (!(vmx->exit_reason.failed_vmentry)) { 5718 *info2 = vmx->idt_vectoring_info; 5719 *intr_info = vmx_get_intr_info(vcpu); 5720 if (is_exception_with_error_code(*intr_info)) 5721 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 5722 else 5723 *error_code = 0; 5724 } else { 5725 *info2 = 0; 5726 *intr_info = 0; 5727 *error_code = 0; 5728 } 5729 } 5730 5731 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) 5732 { 5733 if (vmx->pml_pg) { 5734 __free_page(vmx->pml_pg); 5735 vmx->pml_pg = NULL; 5736 } 5737 } 5738 5739 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) 5740 { 5741 struct vcpu_vmx *vmx = to_vmx(vcpu); 5742 u64 *pml_buf; 5743 u16 pml_idx; 5744 5745 pml_idx = vmcs_read16(GUEST_PML_INDEX); 5746 5747 /* Do nothing if PML buffer is empty */ 5748 if (pml_idx == (PML_ENTITY_NUM - 1)) 5749 return; 5750 5751 /* PML index always points to next available PML buffer entity */ 5752 if (pml_idx >= PML_ENTITY_NUM) 5753 pml_idx = 0; 5754 else 5755 pml_idx++; 5756 5757 pml_buf = page_address(vmx->pml_pg); 5758 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { 5759 u64 gpa; 5760 5761 gpa = pml_buf[pml_idx]; 5762 WARN_ON(gpa & (PAGE_SIZE - 1)); 5763 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 5764 } 5765 5766 /* reset PML index */ 5767 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 5768 } 5769 5770 static void vmx_dump_sel(char *name, uint32_t sel) 5771 { 5772 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", 5773 name, vmcs_read16(sel), 5774 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), 5775 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), 5776 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); 5777 } 5778 5779 static void vmx_dump_dtsel(char *name, uint32_t limit) 5780 { 5781 pr_err("%s limit=0x%08x, base=0x%016lx\n", 5782 name, vmcs_read32(limit), 5783 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); 5784 } 5785 5786 static void vmx_dump_msrs(char *name, struct vmx_msrs *m) 5787 { 5788 unsigned int i; 5789 struct vmx_msr_entry *e; 5790 5791 pr_err("MSR %s:\n", name); 5792 for (i = 0, e = m->val; i < m->nr; ++i, ++e) 5793 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value); 5794 } 5795 5796 void dump_vmcs(struct kvm_vcpu *vcpu) 5797 { 5798 struct vcpu_vmx *vmx = to_vmx(vcpu); 5799 u32 vmentry_ctl, vmexit_ctl; 5800 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control; 5801 unsigned long cr4; 5802 int efer_slot; 5803 5804 if (!dump_invalid_vmcs) { 5805 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n"); 5806 return; 5807 } 5808 5809 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); 5810 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); 5811 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); 5812 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); 5813 cr4 = vmcs_readl(GUEST_CR4); 5814 secondary_exec_control = 0; 5815 if (cpu_has_secondary_exec_ctrls()) 5816 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); 5817 5818 pr_err("*** Guest State ***\n"); 5819 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 5820 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), 5821 vmcs_readl(CR0_GUEST_HOST_MASK)); 5822 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 5823 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); 5824 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); 5825 if (cpu_has_vmx_ept()) { 5826 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", 5827 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); 5828 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", 5829 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); 5830 } 5831 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", 5832 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); 5833 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", 5834 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); 5835 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 5836 vmcs_readl(GUEST_SYSENTER_ESP), 5837 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); 5838 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); 5839 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); 5840 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); 5841 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); 5842 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); 5843 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); 5844 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); 5845 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); 5846 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); 5847 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); 5848 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER); 5849 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER) 5850 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER)); 5851 else if (efer_slot >= 0) 5852 pr_err("EFER= 0x%016llx (autoload)\n", 5853 vmx->msr_autoload.guest.val[efer_slot].value); 5854 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE) 5855 pr_err("EFER= 0x%016llx (effective)\n", 5856 vcpu->arch.efer | (EFER_LMA | EFER_LME)); 5857 else 5858 pr_err("EFER= 0x%016llx (effective)\n", 5859 vcpu->arch.efer & ~(EFER_LMA | EFER_LME)); 5860 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT) 5861 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT)); 5862 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", 5863 vmcs_read64(GUEST_IA32_DEBUGCTL), 5864 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); 5865 if (cpu_has_load_perf_global_ctrl() && 5866 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) 5867 pr_err("PerfGlobCtl = 0x%016llx\n", 5868 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); 5869 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) 5870 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); 5871 pr_err("Interruptibility = %08x ActivityState = %08x\n", 5872 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), 5873 vmcs_read32(GUEST_ACTIVITY_STATE)); 5874 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) 5875 pr_err("InterruptStatus = %04x\n", 5876 vmcs_read16(GUEST_INTR_STATUS)); 5877 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0) 5878 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest); 5879 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0) 5880 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest); 5881 5882 pr_err("*** Host State ***\n"); 5883 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", 5884 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); 5885 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", 5886 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), 5887 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), 5888 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), 5889 vmcs_read16(HOST_TR_SELECTOR)); 5890 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", 5891 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), 5892 vmcs_readl(HOST_TR_BASE)); 5893 pr_err("GDTBase=%016lx IDTBase=%016lx\n", 5894 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); 5895 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", 5896 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), 5897 vmcs_readl(HOST_CR4)); 5898 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 5899 vmcs_readl(HOST_IA32_SYSENTER_ESP), 5900 vmcs_read32(HOST_IA32_SYSENTER_CS), 5901 vmcs_readl(HOST_IA32_SYSENTER_EIP)); 5902 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER) 5903 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER)); 5904 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT) 5905 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT)); 5906 if (cpu_has_load_perf_global_ctrl() && 5907 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) 5908 pr_err("PerfGlobCtl = 0x%016llx\n", 5909 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); 5910 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0) 5911 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host); 5912 5913 pr_err("*** Control State ***\n"); 5914 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n", 5915 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control); 5916 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl); 5917 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", 5918 vmcs_read32(EXCEPTION_BITMAP), 5919 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), 5920 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); 5921 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", 5922 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 5923 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), 5924 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); 5925 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", 5926 vmcs_read32(VM_EXIT_INTR_INFO), 5927 vmcs_read32(VM_EXIT_INTR_ERROR_CODE), 5928 vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); 5929 pr_err(" reason=%08x qualification=%016lx\n", 5930 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); 5931 pr_err("IDTVectoring: info=%08x errcode=%08x\n", 5932 vmcs_read32(IDT_VECTORING_INFO_FIELD), 5933 vmcs_read32(IDT_VECTORING_ERROR_CODE)); 5934 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); 5935 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) 5936 pr_err("TSC Multiplier = 0x%016llx\n", 5937 vmcs_read64(TSC_MULTIPLIER)); 5938 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) { 5939 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { 5940 u16 status = vmcs_read16(GUEST_INTR_STATUS); 5941 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff); 5942 } 5943 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); 5944 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) 5945 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR)); 5946 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR)); 5947 } 5948 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) 5949 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); 5950 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) 5951 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); 5952 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) 5953 pr_err("PLE Gap=%08x Window=%08x\n", 5954 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); 5955 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) 5956 pr_err("Virtual processor ID = 0x%04x\n", 5957 vmcs_read16(VIRTUAL_PROCESSOR_ID)); 5958 } 5959 5960 /* 5961 * The guest has exited. See if we can fix it or if we need userspace 5962 * assistance. 5963 */ 5964 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 5965 { 5966 struct vcpu_vmx *vmx = to_vmx(vcpu); 5967 union vmx_exit_reason exit_reason = vmx->exit_reason; 5968 u32 vectoring_info = vmx->idt_vectoring_info; 5969 u16 exit_handler_index; 5970 5971 /* 5972 * Flush logged GPAs PML buffer, this will make dirty_bitmap more 5973 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before 5974 * querying dirty_bitmap, we only need to kick all vcpus out of guest 5975 * mode as if vcpus is in root mode, the PML buffer must has been 5976 * flushed already. Note, PML is never enabled in hardware while 5977 * running L2. 5978 */ 5979 if (enable_pml && !is_guest_mode(vcpu)) 5980 vmx_flush_pml_buffer(vcpu); 5981 5982 /* 5983 * We should never reach this point with a pending nested VM-Enter, and 5984 * more specifically emulation of L2 due to invalid guest state (see 5985 * below) should never happen as that means we incorrectly allowed a 5986 * nested VM-Enter with an invalid vmcs12. 5987 */ 5988 WARN_ON_ONCE(vmx->nested.nested_run_pending); 5989 5990 /* If guest state is invalid, start emulating */ 5991 if (vmx->emulation_required) 5992 return handle_invalid_guest_state(vcpu); 5993 5994 if (is_guest_mode(vcpu)) { 5995 /* 5996 * PML is never enabled when running L2, bail immediately if a 5997 * PML full exit occurs as something is horribly wrong. 5998 */ 5999 if (exit_reason.basic == EXIT_REASON_PML_FULL) 6000 goto unexpected_vmexit; 6001 6002 /* 6003 * The host physical addresses of some pages of guest memory 6004 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC 6005 * Page). The CPU may write to these pages via their host 6006 * physical address while L2 is running, bypassing any 6007 * address-translation-based dirty tracking (e.g. EPT write 6008 * protection). 6009 * 6010 * Mark them dirty on every exit from L2 to prevent them from 6011 * getting out of sync with dirty tracking. 6012 */ 6013 nested_mark_vmcs12_pages_dirty(vcpu); 6014 6015 if (nested_vmx_reflect_vmexit(vcpu)) 6016 return 1; 6017 } 6018 6019 if (exit_reason.failed_vmentry) { 6020 dump_vmcs(vcpu); 6021 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6022 vcpu->run->fail_entry.hardware_entry_failure_reason 6023 = exit_reason.full; 6024 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6025 return 0; 6026 } 6027 6028 if (unlikely(vmx->fail)) { 6029 dump_vmcs(vcpu); 6030 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6031 vcpu->run->fail_entry.hardware_entry_failure_reason 6032 = vmcs_read32(VM_INSTRUCTION_ERROR); 6033 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6034 return 0; 6035 } 6036 6037 /* 6038 * Note: 6039 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by 6040 * delivery event since it indicates guest is accessing MMIO. 6041 * The vm-exit can be triggered again after return to guest that 6042 * will cause infinite loop. 6043 */ 6044 if ((vectoring_info & VECTORING_INFO_VALID_MASK) && 6045 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI && 6046 exit_reason.basic != EXIT_REASON_EPT_VIOLATION && 6047 exit_reason.basic != EXIT_REASON_PML_FULL && 6048 exit_reason.basic != EXIT_REASON_APIC_ACCESS && 6049 exit_reason.basic != EXIT_REASON_TASK_SWITCH)) { 6050 int ndata = 3; 6051 6052 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6053 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; 6054 vcpu->run->internal.data[0] = vectoring_info; 6055 vcpu->run->internal.data[1] = exit_reason.full; 6056 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification; 6057 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) { 6058 vcpu->run->internal.data[ndata++] = 6059 vmcs_read64(GUEST_PHYSICAL_ADDRESS); 6060 } 6061 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu; 6062 vcpu->run->internal.ndata = ndata; 6063 return 0; 6064 } 6065 6066 if (unlikely(!enable_vnmi && 6067 vmx->loaded_vmcs->soft_vnmi_blocked)) { 6068 if (!vmx_interrupt_blocked(vcpu)) { 6069 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6070 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && 6071 vcpu->arch.nmi_pending) { 6072 /* 6073 * This CPU don't support us in finding the end of an 6074 * NMI-blocked window if the guest runs with IRQs 6075 * disabled. So we pull the trigger after 1 s of 6076 * futile waiting, but inform the user about this. 6077 */ 6078 printk(KERN_WARNING "%s: Breaking out of NMI-blocked " 6079 "state on VCPU %d after 1 s timeout\n", 6080 __func__, vcpu->vcpu_id); 6081 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6082 } 6083 } 6084 6085 if (exit_fastpath != EXIT_FASTPATH_NONE) 6086 return 1; 6087 6088 if (exit_reason.basic >= kvm_vmx_max_exit_handlers) 6089 goto unexpected_vmexit; 6090 #ifdef CONFIG_RETPOLINE 6091 if (exit_reason.basic == EXIT_REASON_MSR_WRITE) 6092 return kvm_emulate_wrmsr(vcpu); 6093 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER) 6094 return handle_preemption_timer(vcpu); 6095 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW) 6096 return handle_interrupt_window(vcpu); 6097 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6098 return handle_external_interrupt(vcpu); 6099 else if (exit_reason.basic == EXIT_REASON_HLT) 6100 return kvm_emulate_halt(vcpu); 6101 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) 6102 return handle_ept_misconfig(vcpu); 6103 #endif 6104 6105 exit_handler_index = array_index_nospec((u16)exit_reason.basic, 6106 kvm_vmx_max_exit_handlers); 6107 if (!kvm_vmx_exit_handlers[exit_handler_index]) 6108 goto unexpected_vmexit; 6109 6110 return kvm_vmx_exit_handlers[exit_handler_index](vcpu); 6111 6112 unexpected_vmexit: 6113 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", 6114 exit_reason.full); 6115 dump_vmcs(vcpu); 6116 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6117 vcpu->run->internal.suberror = 6118 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 6119 vcpu->run->internal.ndata = 2; 6120 vcpu->run->internal.data[0] = exit_reason.full; 6121 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 6122 return 0; 6123 } 6124 6125 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6126 { 6127 int ret = __vmx_handle_exit(vcpu, exit_fastpath); 6128 6129 /* 6130 * Even when current exit reason is handled by KVM internally, we 6131 * still need to exit to user space when bus lock detected to inform 6132 * that there is a bus lock in guest. 6133 */ 6134 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) { 6135 if (ret > 0) 6136 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; 6137 6138 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; 6139 return 0; 6140 } 6141 return ret; 6142 } 6143 6144 /* 6145 * Software based L1D cache flush which is used when microcode providing 6146 * the cache control MSR is not loaded. 6147 * 6148 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to 6149 * flush it is required to read in 64 KiB because the replacement algorithm 6150 * is not exactly LRU. This could be sized at runtime via topology 6151 * information but as all relevant affected CPUs have 32KiB L1D cache size 6152 * there is no point in doing so. 6153 */ 6154 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu) 6155 { 6156 int size = PAGE_SIZE << L1D_CACHE_ORDER; 6157 6158 /* 6159 * This code is only executed when the the flush mode is 'cond' or 6160 * 'always' 6161 */ 6162 if (static_branch_likely(&vmx_l1d_flush_cond)) { 6163 bool flush_l1d; 6164 6165 /* 6166 * Clear the per-vcpu flush bit, it gets set again 6167 * either from vcpu_run() or from one of the unsafe 6168 * VMEXIT handlers. 6169 */ 6170 flush_l1d = vcpu->arch.l1tf_flush_l1d; 6171 vcpu->arch.l1tf_flush_l1d = false; 6172 6173 /* 6174 * Clear the per-cpu flush bit, it gets set again from 6175 * the interrupt handlers. 6176 */ 6177 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); 6178 kvm_clear_cpu_l1tf_flush_l1d(); 6179 6180 if (!flush_l1d) 6181 return; 6182 } 6183 6184 vcpu->stat.l1d_flush++; 6185 6186 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { 6187 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 6188 return; 6189 } 6190 6191 asm volatile( 6192 /* First ensure the pages are in the TLB */ 6193 "xorl %%eax, %%eax\n" 6194 ".Lpopulate_tlb:\n\t" 6195 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6196 "addl $4096, %%eax\n\t" 6197 "cmpl %%eax, %[size]\n\t" 6198 "jne .Lpopulate_tlb\n\t" 6199 "xorl %%eax, %%eax\n\t" 6200 "cpuid\n\t" 6201 /* Now fill the cache */ 6202 "xorl %%eax, %%eax\n" 6203 ".Lfill_cache:\n" 6204 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6205 "addl $64, %%eax\n\t" 6206 "cmpl %%eax, %[size]\n\t" 6207 "jne .Lfill_cache\n\t" 6208 "lfence\n" 6209 :: [flush_pages] "r" (vmx_l1d_flush_pages), 6210 [size] "r" (size) 6211 : "eax", "ebx", "ecx", "edx"); 6212 } 6213 6214 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 6215 { 6216 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 6217 int tpr_threshold; 6218 6219 if (is_guest_mode(vcpu) && 6220 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) 6221 return; 6222 6223 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr; 6224 if (is_guest_mode(vcpu)) 6225 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold; 6226 else 6227 vmcs_write32(TPR_THRESHOLD, tpr_threshold); 6228 } 6229 6230 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) 6231 { 6232 struct vcpu_vmx *vmx = to_vmx(vcpu); 6233 u32 sec_exec_control; 6234 6235 if (!lapic_in_kernel(vcpu)) 6236 return; 6237 6238 if (!flexpriority_enabled && 6239 !cpu_has_vmx_virtualize_x2apic_mode()) 6240 return; 6241 6242 /* Postpone execution until vmcs01 is the current VMCS. */ 6243 if (is_guest_mode(vcpu)) { 6244 vmx->nested.change_vmcs01_virtual_apic_mode = true; 6245 return; 6246 } 6247 6248 sec_exec_control = secondary_exec_controls_get(vmx); 6249 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 6250 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); 6251 6252 switch (kvm_get_apic_mode(vcpu)) { 6253 case LAPIC_MODE_INVALID: 6254 WARN_ONCE(true, "Invalid local APIC state"); 6255 case LAPIC_MODE_DISABLED: 6256 break; 6257 case LAPIC_MODE_XAPIC: 6258 if (flexpriority_enabled) { 6259 sec_exec_control |= 6260 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 6261 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6262 6263 /* 6264 * Flush the TLB, reloading the APIC access page will 6265 * only do so if its physical address has changed, but 6266 * the guest may have inserted a non-APIC mapping into 6267 * the TLB while the APIC access page was disabled. 6268 */ 6269 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 6270 } 6271 break; 6272 case LAPIC_MODE_X2APIC: 6273 if (cpu_has_vmx_virtualize_x2apic_mode()) 6274 sec_exec_control |= 6275 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 6276 break; 6277 } 6278 secondary_exec_controls_set(vmx, sec_exec_control); 6279 6280 vmx_update_msr_bitmap(vcpu); 6281 } 6282 6283 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu) 6284 { 6285 struct page *page; 6286 6287 /* Defer reload until vmcs01 is the current VMCS. */ 6288 if (is_guest_mode(vcpu)) { 6289 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true; 6290 return; 6291 } 6292 6293 if (!(secondary_exec_controls_get(to_vmx(vcpu)) & 6294 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 6295 return; 6296 6297 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 6298 if (is_error_page(page)) 6299 return; 6300 6301 vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page)); 6302 vmx_flush_tlb_current(vcpu); 6303 6304 /* 6305 * Do not pin apic access page in memory, the MMU notifier 6306 * will call us again if it is migrated or swapped out. 6307 */ 6308 put_page(page); 6309 } 6310 6311 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr) 6312 { 6313 u16 status; 6314 u8 old; 6315 6316 if (max_isr == -1) 6317 max_isr = 0; 6318 6319 status = vmcs_read16(GUEST_INTR_STATUS); 6320 old = status >> 8; 6321 if (max_isr != old) { 6322 status &= 0xff; 6323 status |= max_isr << 8; 6324 vmcs_write16(GUEST_INTR_STATUS, status); 6325 } 6326 } 6327 6328 static void vmx_set_rvi(int vector) 6329 { 6330 u16 status; 6331 u8 old; 6332 6333 if (vector == -1) 6334 vector = 0; 6335 6336 status = vmcs_read16(GUEST_INTR_STATUS); 6337 old = (u8)status & 0xff; 6338 if ((u8)vector != old) { 6339 status &= ~0xff; 6340 status |= (u8)vector; 6341 vmcs_write16(GUEST_INTR_STATUS, status); 6342 } 6343 } 6344 6345 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) 6346 { 6347 /* 6348 * When running L2, updating RVI is only relevant when 6349 * vmcs12 virtual-interrupt-delivery enabled. 6350 * However, it can be enabled only when L1 also 6351 * intercepts external-interrupts and in that case 6352 * we should not update vmcs02 RVI but instead intercept 6353 * interrupt. Therefore, do nothing when running L2. 6354 */ 6355 if (!is_guest_mode(vcpu)) 6356 vmx_set_rvi(max_irr); 6357 } 6358 6359 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) 6360 { 6361 struct vcpu_vmx *vmx = to_vmx(vcpu); 6362 int max_irr; 6363 bool max_irr_updated; 6364 6365 WARN_ON(!vcpu->arch.apicv_active); 6366 if (pi_test_on(&vmx->pi_desc)) { 6367 pi_clear_on(&vmx->pi_desc); 6368 /* 6369 * IOMMU can write to PID.ON, so the barrier matters even on UP. 6370 * But on x86 this is just a compiler barrier anyway. 6371 */ 6372 smp_mb__after_atomic(); 6373 max_irr_updated = 6374 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); 6375 6376 /* 6377 * If we are running L2 and L1 has a new pending interrupt 6378 * which can be injected, we should re-evaluate 6379 * what should be done with this new L1 interrupt. 6380 * If L1 intercepts external-interrupts, we should 6381 * exit from L2 to L1. Otherwise, interrupt should be 6382 * delivered directly to L2. 6383 */ 6384 if (is_guest_mode(vcpu) && max_irr_updated) { 6385 if (nested_exit_on_intr(vcpu)) 6386 kvm_vcpu_exiting_guest_mode(vcpu); 6387 else 6388 kvm_make_request(KVM_REQ_EVENT, vcpu); 6389 } 6390 } else { 6391 max_irr = kvm_lapic_find_highest_irr(vcpu); 6392 } 6393 vmx_hwapic_irr_update(vcpu, max_irr); 6394 return max_irr; 6395 } 6396 6397 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) 6398 { 6399 if (!kvm_vcpu_apicv_active(vcpu)) 6400 return; 6401 6402 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); 6403 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); 6404 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); 6405 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); 6406 } 6407 6408 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu) 6409 { 6410 struct vcpu_vmx *vmx = to_vmx(vcpu); 6411 6412 pi_clear_on(&vmx->pi_desc); 6413 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); 6414 } 6415 6416 void vmx_do_interrupt_nmi_irqoff(unsigned long entry); 6417 6418 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu, u32 intr_info) 6419 { 6420 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK; 6421 gate_desc *desc = (gate_desc *)host_idt_base + vector; 6422 6423 kvm_before_interrupt(vcpu); 6424 vmx_do_interrupt_nmi_irqoff(gate_offset(desc)); 6425 kvm_after_interrupt(vcpu); 6426 } 6427 6428 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx) 6429 { 6430 u32 intr_info = vmx_get_intr_info(&vmx->vcpu); 6431 6432 /* if exit due to PF check for async PF */ 6433 if (is_page_fault(intr_info)) 6434 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags(); 6435 /* Handle machine checks before interrupts are enabled */ 6436 else if (is_machine_check(intr_info)) 6437 kvm_machine_check(); 6438 /* We need to handle NMIs before interrupts are enabled */ 6439 else if (is_nmi(intr_info)) 6440 handle_interrupt_nmi_irqoff(&vmx->vcpu, intr_info); 6441 } 6442 6443 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu) 6444 { 6445 u32 intr_info = vmx_get_intr_info(vcpu); 6446 6447 if (WARN_ONCE(!is_external_intr(intr_info), 6448 "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info)) 6449 return; 6450 6451 handle_interrupt_nmi_irqoff(vcpu, intr_info); 6452 } 6453 6454 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu) 6455 { 6456 struct vcpu_vmx *vmx = to_vmx(vcpu); 6457 6458 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6459 handle_external_interrupt_irqoff(vcpu); 6460 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI) 6461 handle_exception_nmi_irqoff(vmx); 6462 } 6463 6464 /* 6465 * The kvm parameter can be NULL (module initialization, or invocation before 6466 * VM creation). Be sure to check the kvm parameter before using it. 6467 */ 6468 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index) 6469 { 6470 switch (index) { 6471 case MSR_IA32_SMBASE: 6472 /* 6473 * We cannot do SMM unless we can run the guest in big 6474 * real mode. 6475 */ 6476 return enable_unrestricted_guest || emulate_invalid_guest_state; 6477 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 6478 return nested; 6479 case MSR_AMD64_VIRT_SPEC_CTRL: 6480 /* This is AMD only. */ 6481 return false; 6482 default: 6483 return true; 6484 } 6485 } 6486 6487 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) 6488 { 6489 u32 exit_intr_info; 6490 bool unblock_nmi; 6491 u8 vector; 6492 bool idtv_info_valid; 6493 6494 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6495 6496 if (enable_vnmi) { 6497 if (vmx->loaded_vmcs->nmi_known_unmasked) 6498 return; 6499 6500 exit_intr_info = vmx_get_intr_info(&vmx->vcpu); 6501 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; 6502 vector = exit_intr_info & INTR_INFO_VECTOR_MASK; 6503 /* 6504 * SDM 3: 27.7.1.2 (September 2008) 6505 * Re-set bit "block by NMI" before VM entry if vmexit caused by 6506 * a guest IRET fault. 6507 * SDM 3: 23.2.2 (September 2008) 6508 * Bit 12 is undefined in any of the following cases: 6509 * If the VM exit sets the valid bit in the IDT-vectoring 6510 * information field. 6511 * If the VM exit is due to a double fault. 6512 */ 6513 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && 6514 vector != DF_VECTOR && !idtv_info_valid) 6515 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 6516 GUEST_INTR_STATE_NMI); 6517 else 6518 vmx->loaded_vmcs->nmi_known_unmasked = 6519 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) 6520 & GUEST_INTR_STATE_NMI); 6521 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) 6522 vmx->loaded_vmcs->vnmi_blocked_time += 6523 ktime_to_ns(ktime_sub(ktime_get(), 6524 vmx->loaded_vmcs->entry_time)); 6525 } 6526 6527 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, 6528 u32 idt_vectoring_info, 6529 int instr_len_field, 6530 int error_code_field) 6531 { 6532 u8 vector; 6533 int type; 6534 bool idtv_info_valid; 6535 6536 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6537 6538 vcpu->arch.nmi_injected = false; 6539 kvm_clear_exception_queue(vcpu); 6540 kvm_clear_interrupt_queue(vcpu); 6541 6542 if (!idtv_info_valid) 6543 return; 6544 6545 kvm_make_request(KVM_REQ_EVENT, vcpu); 6546 6547 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; 6548 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; 6549 6550 switch (type) { 6551 case INTR_TYPE_NMI_INTR: 6552 vcpu->arch.nmi_injected = true; 6553 /* 6554 * SDM 3: 27.7.1.2 (September 2008) 6555 * Clear bit "block by NMI" before VM entry if a NMI 6556 * delivery faulted. 6557 */ 6558 vmx_set_nmi_mask(vcpu, false); 6559 break; 6560 case INTR_TYPE_SOFT_EXCEPTION: 6561 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6562 fallthrough; 6563 case INTR_TYPE_HARD_EXCEPTION: 6564 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { 6565 u32 err = vmcs_read32(error_code_field); 6566 kvm_requeue_exception_e(vcpu, vector, err); 6567 } else 6568 kvm_requeue_exception(vcpu, vector); 6569 break; 6570 case INTR_TYPE_SOFT_INTR: 6571 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6572 fallthrough; 6573 case INTR_TYPE_EXT_INTR: 6574 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); 6575 break; 6576 default: 6577 break; 6578 } 6579 } 6580 6581 static void vmx_complete_interrupts(struct vcpu_vmx *vmx) 6582 { 6583 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, 6584 VM_EXIT_INSTRUCTION_LEN, 6585 IDT_VECTORING_ERROR_CODE); 6586 } 6587 6588 static void vmx_cancel_injection(struct kvm_vcpu *vcpu) 6589 { 6590 __vmx_complete_interrupts(vcpu, 6591 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 6592 VM_ENTRY_INSTRUCTION_LEN, 6593 VM_ENTRY_EXCEPTION_ERROR_CODE); 6594 6595 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); 6596 } 6597 6598 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) 6599 { 6600 int i, nr_msrs; 6601 struct perf_guest_switch_msr *msrs; 6602 6603 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */ 6604 msrs = perf_guest_get_msrs(&nr_msrs); 6605 if (!msrs) 6606 return; 6607 6608 for (i = 0; i < nr_msrs; i++) 6609 if (msrs[i].host == msrs[i].guest) 6610 clear_atomic_switch_msr(vmx, msrs[i].msr); 6611 else 6612 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, 6613 msrs[i].host, false); 6614 } 6615 6616 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu) 6617 { 6618 struct vcpu_vmx *vmx = to_vmx(vcpu); 6619 u64 tscl; 6620 u32 delta_tsc; 6621 6622 if (vmx->req_immediate_exit) { 6623 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0); 6624 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 6625 } else if (vmx->hv_deadline_tsc != -1) { 6626 tscl = rdtsc(); 6627 if (vmx->hv_deadline_tsc > tscl) 6628 /* set_hv_timer ensures the delta fits in 32-bits */ 6629 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> 6630 cpu_preemption_timer_multi); 6631 else 6632 delta_tsc = 0; 6633 6634 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc); 6635 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 6636 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) { 6637 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1); 6638 vmx->loaded_vmcs->hv_timer_soft_disabled = true; 6639 } 6640 } 6641 6642 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp) 6643 { 6644 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) { 6645 vmx->loaded_vmcs->host_state.rsp = host_rsp; 6646 vmcs_writel(HOST_RSP, host_rsp); 6647 } 6648 } 6649 6650 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 6651 { 6652 switch (to_vmx(vcpu)->exit_reason.basic) { 6653 case EXIT_REASON_MSR_WRITE: 6654 return handle_fastpath_set_msr_irqoff(vcpu); 6655 case EXIT_REASON_PREEMPTION_TIMER: 6656 return handle_fastpath_preemption_timer(vcpu); 6657 default: 6658 return EXIT_FASTPATH_NONE; 6659 } 6660 } 6661 6662 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu, 6663 struct vcpu_vmx *vmx) 6664 { 6665 /* 6666 * VMENTER enables interrupts (host state), but the kernel state is 6667 * interrupts disabled when this is invoked. Also tell RCU about 6668 * it. This is the same logic as for exit_to_user_mode(). 6669 * 6670 * This ensures that e.g. latency analysis on the host observes 6671 * guest mode as interrupt enabled. 6672 * 6673 * guest_enter_irqoff() informs context tracking about the 6674 * transition to guest mode and if enabled adjusts RCU state 6675 * accordingly. 6676 */ 6677 instrumentation_begin(); 6678 trace_hardirqs_on_prepare(); 6679 lockdep_hardirqs_on_prepare(CALLER_ADDR0); 6680 instrumentation_end(); 6681 6682 guest_enter_irqoff(); 6683 lockdep_hardirqs_on(CALLER_ADDR0); 6684 6685 /* L1D Flush includes CPU buffer clear to mitigate MDS */ 6686 if (static_branch_unlikely(&vmx_l1d_should_flush)) 6687 vmx_l1d_flush(vcpu); 6688 else if (static_branch_unlikely(&mds_user_clear)) 6689 mds_clear_cpu_buffers(); 6690 6691 if (vcpu->arch.cr2 != native_read_cr2()) 6692 native_write_cr2(vcpu->arch.cr2); 6693 6694 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, 6695 vmx->loaded_vmcs->launched); 6696 6697 vcpu->arch.cr2 = native_read_cr2(); 6698 6699 /* 6700 * VMEXIT disables interrupts (host state), but tracing and lockdep 6701 * have them in state 'on' as recorded before entering guest mode. 6702 * Same as enter_from_user_mode(). 6703 * 6704 * guest_exit_irqoff() restores host context and reinstates RCU if 6705 * enabled and required. 6706 * 6707 * This needs to be done before the below as native_read_msr() 6708 * contains a tracepoint and x86_spec_ctrl_restore_host() calls 6709 * into world and some more. 6710 */ 6711 lockdep_hardirqs_off(CALLER_ADDR0); 6712 guest_exit_irqoff(); 6713 6714 instrumentation_begin(); 6715 trace_hardirqs_off_finish(); 6716 instrumentation_end(); 6717 } 6718 6719 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu) 6720 { 6721 struct vcpu_vmx *vmx = to_vmx(vcpu); 6722 unsigned long cr3, cr4; 6723 6724 /* Record the guest's net vcpu time for enforced NMI injections. */ 6725 if (unlikely(!enable_vnmi && 6726 vmx->loaded_vmcs->soft_vnmi_blocked)) 6727 vmx->loaded_vmcs->entry_time = ktime_get(); 6728 6729 /* Don't enter VMX if guest state is invalid, let the exit handler 6730 start emulation until we arrive back to a valid state */ 6731 if (vmx->emulation_required) 6732 return EXIT_FASTPATH_NONE; 6733 6734 trace_kvm_entry(vcpu); 6735 6736 if (vmx->ple_window_dirty) { 6737 vmx->ple_window_dirty = false; 6738 vmcs_write32(PLE_WINDOW, vmx->ple_window); 6739 } 6740 6741 /* 6742 * We did this in prepare_switch_to_guest, because it needs to 6743 * be within srcu_read_lock. 6744 */ 6745 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync); 6746 6747 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP)) 6748 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); 6749 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP)) 6750 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); 6751 6752 cr3 = __get_current_cr3_fast(); 6753 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { 6754 vmcs_writel(HOST_CR3, cr3); 6755 vmx->loaded_vmcs->host_state.cr3 = cr3; 6756 } 6757 6758 cr4 = cr4_read_shadow(); 6759 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { 6760 vmcs_writel(HOST_CR4, cr4); 6761 vmx->loaded_vmcs->host_state.cr4 = cr4; 6762 } 6763 6764 /* When single-stepping over STI and MOV SS, we must clear the 6765 * corresponding interruptibility bits in the guest state. Otherwise 6766 * vmentry fails as it then expects bit 14 (BS) in pending debug 6767 * exceptions being set, but that's not correct for the guest debugging 6768 * case. */ 6769 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 6770 vmx_set_interrupt_shadow(vcpu, 0); 6771 6772 kvm_load_guest_xsave_state(vcpu); 6773 6774 pt_guest_enter(vmx); 6775 6776 atomic_switch_perf_msrs(vmx); 6777 if (intel_pmu_lbr_is_enabled(vcpu)) 6778 vmx_passthrough_lbr_msrs(vcpu); 6779 6780 if (enable_preemption_timer) 6781 vmx_update_hv_timer(vcpu); 6782 6783 kvm_wait_lapic_expire(vcpu); 6784 6785 /* 6786 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 6787 * it's non-zero. Since vmentry is serialising on affected CPUs, there 6788 * is no need to worry about the conditional branch over the wrmsr 6789 * being speculatively taken. 6790 */ 6791 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0); 6792 6793 /* The actual VMENTER/EXIT is in the .noinstr.text section. */ 6794 vmx_vcpu_enter_exit(vcpu, vmx); 6795 6796 /* 6797 * We do not use IBRS in the kernel. If this vCPU has used the 6798 * SPEC_CTRL MSR it may have left it on; save the value and 6799 * turn it off. This is much more efficient than blindly adding 6800 * it to the atomic save/restore list. Especially as the former 6801 * (Saving guest MSRs on vmexit) doesn't even exist in KVM. 6802 * 6803 * For non-nested case: 6804 * If the L01 MSR bitmap does not intercept the MSR, then we need to 6805 * save it. 6806 * 6807 * For nested case: 6808 * If the L02 MSR bitmap does not intercept the MSR, then we need to 6809 * save it. 6810 */ 6811 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) 6812 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); 6813 6814 x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0); 6815 6816 /* All fields are clean at this point */ 6817 if (static_branch_unlikely(&enable_evmcs)) { 6818 current_evmcs->hv_clean_fields |= 6819 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; 6820 6821 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu); 6822 } 6823 6824 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ 6825 if (vmx->host_debugctlmsr) 6826 update_debugctlmsr(vmx->host_debugctlmsr); 6827 6828 #ifndef CONFIG_X86_64 6829 /* 6830 * The sysexit path does not restore ds/es, so we must set them to 6831 * a reasonable value ourselves. 6832 * 6833 * We can't defer this to vmx_prepare_switch_to_host() since that 6834 * function may be executed in interrupt context, which saves and 6835 * restore segments around it, nullifying its effect. 6836 */ 6837 loadsegment(ds, __USER_DS); 6838 loadsegment(es, __USER_DS); 6839 #endif 6840 6841 vmx_register_cache_reset(vcpu); 6842 6843 pt_guest_exit(vmx); 6844 6845 kvm_load_host_xsave_state(vcpu); 6846 6847 vmx->nested.nested_run_pending = 0; 6848 vmx->idt_vectoring_info = 0; 6849 6850 if (unlikely(vmx->fail)) { 6851 vmx->exit_reason.full = 0xdead; 6852 return EXIT_FASTPATH_NONE; 6853 } 6854 6855 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON); 6856 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY)) 6857 kvm_machine_check(); 6858 6859 if (likely(!vmx->exit_reason.failed_vmentry)) 6860 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); 6861 6862 trace_kvm_exit(vmx->exit_reason.full, vcpu, KVM_ISA_VMX); 6863 6864 if (unlikely(vmx->exit_reason.failed_vmentry)) 6865 return EXIT_FASTPATH_NONE; 6866 6867 vmx->loaded_vmcs->launched = 1; 6868 6869 vmx_recover_nmi_blocking(vmx); 6870 vmx_complete_interrupts(vmx); 6871 6872 if (is_guest_mode(vcpu)) 6873 return EXIT_FASTPATH_NONE; 6874 6875 return vmx_exit_handlers_fastpath(vcpu); 6876 } 6877 6878 static void vmx_free_vcpu(struct kvm_vcpu *vcpu) 6879 { 6880 struct vcpu_vmx *vmx = to_vmx(vcpu); 6881 6882 if (enable_pml) 6883 vmx_destroy_pml_buffer(vmx); 6884 free_vpid(vmx->vpid); 6885 nested_vmx_free_vcpu(vcpu); 6886 free_loaded_vmcs(vmx->loaded_vmcs); 6887 } 6888 6889 static int vmx_create_vcpu(struct kvm_vcpu *vcpu) 6890 { 6891 struct vcpu_vmx *vmx; 6892 int i, cpu, err; 6893 6894 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0); 6895 vmx = to_vmx(vcpu); 6896 6897 err = -ENOMEM; 6898 6899 vmx->vpid = allocate_vpid(); 6900 6901 /* 6902 * If PML is turned on, failure on enabling PML just results in failure 6903 * of creating the vcpu, therefore we can simplify PML logic (by 6904 * avoiding dealing with cases, such as enabling PML partially on vcpus 6905 * for the guest), etc. 6906 */ 6907 if (enable_pml) { 6908 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 6909 if (!vmx->pml_pg) 6910 goto free_vpid; 6911 } 6912 6913 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS); 6914 6915 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) { 6916 u32 index = vmx_uret_msrs_list[i]; 6917 u32 data_low, data_high; 6918 int j = vmx->nr_uret_msrs; 6919 6920 if (rdmsr_safe(index, &data_low, &data_high) < 0) 6921 continue; 6922 if (wrmsr_safe(index, data_low, data_high) < 0) 6923 continue; 6924 6925 vmx->guest_uret_msrs[j].slot = i; 6926 vmx->guest_uret_msrs[j].data = 0; 6927 switch (index) { 6928 case MSR_IA32_TSX_CTRL: 6929 /* 6930 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID 6931 * interception. Keep the host value unchanged to avoid 6932 * changing CPUID bits under the host kernel's feet. 6933 * 6934 * hle=0, rtm=0, tsx_ctrl=1 can be found with some 6935 * combinations of new kernel and old userspace. If 6936 * those guests run on a tsx=off host, do allow guests 6937 * to use TSX_CTRL, but do not change the value on the 6938 * host so that TSX remains always disabled. 6939 */ 6940 if (boot_cpu_has(X86_FEATURE_RTM)) 6941 vmx->guest_uret_msrs[j].mask = ~(u64)TSX_CTRL_CPUID_CLEAR; 6942 else 6943 vmx->guest_uret_msrs[j].mask = 0; 6944 break; 6945 default: 6946 vmx->guest_uret_msrs[j].mask = -1ull; 6947 break; 6948 } 6949 ++vmx->nr_uret_msrs; 6950 } 6951 6952 err = alloc_loaded_vmcs(&vmx->vmcs01); 6953 if (err < 0) 6954 goto free_pml; 6955 6956 /* The MSR bitmap starts with all ones */ 6957 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS); 6958 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS); 6959 6960 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R); 6961 #ifdef CONFIG_X86_64 6962 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW); 6963 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW); 6964 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); 6965 #endif 6966 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); 6967 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); 6968 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); 6969 if (kvm_cstate_in_guest(vcpu->kvm)) { 6970 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R); 6971 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R); 6972 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R); 6973 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R); 6974 } 6975 vmx->msr_bitmap_mode = 0; 6976 6977 vmx->loaded_vmcs = &vmx->vmcs01; 6978 cpu = get_cpu(); 6979 vmx_vcpu_load(vcpu, cpu); 6980 vcpu->cpu = cpu; 6981 init_vmcs(vmx); 6982 vmx_vcpu_put(vcpu); 6983 put_cpu(); 6984 if (cpu_need_virtualize_apic_accesses(vcpu)) { 6985 err = alloc_apic_access_page(vcpu->kvm); 6986 if (err) 6987 goto free_vmcs; 6988 } 6989 6990 if (enable_ept && !enable_unrestricted_guest) { 6991 err = init_rmode_identity_map(vcpu->kvm); 6992 if (err) 6993 goto free_vmcs; 6994 } 6995 6996 if (nested) 6997 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs)); 6998 else 6999 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs)); 7000 7001 vcpu_setup_sgx_lepubkeyhash(vcpu); 7002 7003 vmx->nested.posted_intr_nv = -1; 7004 vmx->nested.current_vmptr = -1ull; 7005 7006 vcpu->arch.microcode_version = 0x100000000ULL; 7007 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED; 7008 7009 /* 7010 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR 7011 * or POSTED_INTR_WAKEUP_VECTOR. 7012 */ 7013 vmx->pi_desc.nv = POSTED_INTR_VECTOR; 7014 vmx->pi_desc.sn = 1; 7015 7016 #if IS_ENABLED(CONFIG_HYPERV) 7017 vmx->hv_root_ept = INVALID_PAGE; 7018 #endif 7019 return 0; 7020 7021 free_vmcs: 7022 free_loaded_vmcs(vmx->loaded_vmcs); 7023 free_pml: 7024 vmx_destroy_pml_buffer(vmx); 7025 free_vpid: 7026 free_vpid(vmx->vpid); 7027 return err; 7028 } 7029 7030 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7031 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7032 7033 static int vmx_vm_init(struct kvm *kvm) 7034 { 7035 #if IS_ENABLED(CONFIG_HYPERV) 7036 spin_lock_init(&to_kvm_vmx(kvm)->hv_root_ept_lock); 7037 #endif 7038 7039 if (!ple_gap) 7040 kvm->arch.pause_in_guest = true; 7041 7042 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { 7043 switch (l1tf_mitigation) { 7044 case L1TF_MITIGATION_OFF: 7045 case L1TF_MITIGATION_FLUSH_NOWARN: 7046 /* 'I explicitly don't care' is set */ 7047 break; 7048 case L1TF_MITIGATION_FLUSH: 7049 case L1TF_MITIGATION_FLUSH_NOSMT: 7050 case L1TF_MITIGATION_FULL: 7051 /* 7052 * Warn upon starting the first VM in a potentially 7053 * insecure environment. 7054 */ 7055 if (sched_smt_active()) 7056 pr_warn_once(L1TF_MSG_SMT); 7057 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) 7058 pr_warn_once(L1TF_MSG_L1D); 7059 break; 7060 case L1TF_MITIGATION_FULL_FORCE: 7061 /* Flush is enforced */ 7062 break; 7063 } 7064 } 7065 kvm_apicv_init(kvm, enable_apicv); 7066 return 0; 7067 } 7068 7069 static int __init vmx_check_processor_compat(void) 7070 { 7071 struct vmcs_config vmcs_conf; 7072 struct vmx_capability vmx_cap; 7073 7074 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 7075 !this_cpu_has(X86_FEATURE_VMX)) { 7076 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id()); 7077 return -EIO; 7078 } 7079 7080 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) 7081 return -EIO; 7082 if (nested) 7083 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept); 7084 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) { 7085 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n", 7086 smp_processor_id()); 7087 return -EIO; 7088 } 7089 return 0; 7090 } 7091 7092 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 7093 { 7094 u8 cache; 7095 u64 ipat = 0; 7096 7097 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in 7098 * memory aliases with conflicting memory types and sometimes MCEs. 7099 * We have to be careful as to what are honored and when. 7100 * 7101 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to 7102 * UC. The effective memory type is UC or WC depending on guest PAT. 7103 * This was historically the source of MCEs and we want to be 7104 * conservative. 7105 * 7106 * When there is no need to deal with noncoherent DMA (e.g., no VT-d 7107 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The 7108 * EPT memory type is set to WB. The effective memory type is forced 7109 * WB. 7110 * 7111 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The 7112 * EPT memory type is used to emulate guest CD/MTRR. 7113 */ 7114 7115 if (is_mmio) { 7116 cache = MTRR_TYPE_UNCACHABLE; 7117 goto exit; 7118 } 7119 7120 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) { 7121 ipat = VMX_EPT_IPAT_BIT; 7122 cache = MTRR_TYPE_WRBACK; 7123 goto exit; 7124 } 7125 7126 if (kvm_read_cr0(vcpu) & X86_CR0_CD) { 7127 ipat = VMX_EPT_IPAT_BIT; 7128 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 7129 cache = MTRR_TYPE_WRBACK; 7130 else 7131 cache = MTRR_TYPE_UNCACHABLE; 7132 goto exit; 7133 } 7134 7135 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn); 7136 7137 exit: 7138 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat; 7139 } 7140 7141 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx) 7142 { 7143 /* 7144 * These bits in the secondary execution controls field 7145 * are dynamic, the others are mostly based on the hypervisor 7146 * architecture and the guest's CPUID. Do not touch the 7147 * dynamic bits. 7148 */ 7149 u32 mask = 7150 SECONDARY_EXEC_SHADOW_VMCS | 7151 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 7152 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 7153 SECONDARY_EXEC_DESC; 7154 7155 u32 new_ctl = vmx->secondary_exec_control; 7156 u32 cur_ctl = secondary_exec_controls_get(vmx); 7157 7158 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask)); 7159 } 7160 7161 /* 7162 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits 7163 * (indicating "allowed-1") if they are supported in the guest's CPUID. 7164 */ 7165 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) 7166 { 7167 struct vcpu_vmx *vmx = to_vmx(vcpu); 7168 struct kvm_cpuid_entry2 *entry; 7169 7170 vmx->nested.msrs.cr0_fixed1 = 0xffffffff; 7171 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; 7172 7173 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ 7174 if (entry && (entry->_reg & (_cpuid_mask))) \ 7175 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ 7176 } while (0) 7177 7178 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0); 7179 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME)); 7180 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME)); 7181 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC)); 7182 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE)); 7183 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE)); 7184 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE)); 7185 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE)); 7186 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE)); 7187 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR)); 7188 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM)); 7189 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX)); 7190 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX)); 7191 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID)); 7192 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE)); 7193 7194 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0); 7195 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE)); 7196 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP)); 7197 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP)); 7198 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU)); 7199 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP)); 7200 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57)); 7201 7202 #undef cr4_fixed1_update 7203 } 7204 7205 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu) 7206 { 7207 struct vcpu_vmx *vmx = to_vmx(vcpu); 7208 7209 if (kvm_mpx_supported()) { 7210 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX); 7211 7212 if (mpx_enabled) { 7213 vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS; 7214 vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS; 7215 } else { 7216 vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS; 7217 vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS; 7218 } 7219 } 7220 } 7221 7222 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) 7223 { 7224 struct vcpu_vmx *vmx = to_vmx(vcpu); 7225 struct kvm_cpuid_entry2 *best = NULL; 7226 int i; 7227 7228 for (i = 0; i < PT_CPUID_LEAVES; i++) { 7229 best = kvm_find_cpuid_entry(vcpu, 0x14, i); 7230 if (!best) 7231 return; 7232 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; 7233 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; 7234 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; 7235 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; 7236 } 7237 7238 /* Get the number of configurable Address Ranges for filtering */ 7239 vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps, 7240 PT_CAP_num_address_ranges); 7241 7242 /* Initialize and clear the no dependency bits */ 7243 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | 7244 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC); 7245 7246 /* 7247 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise 7248 * will inject an #GP 7249 */ 7250 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) 7251 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; 7252 7253 /* 7254 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and 7255 * PSBFreq can be set 7256 */ 7257 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) 7258 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | 7259 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); 7260 7261 /* 7262 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and 7263 * MTCFreq can be set 7264 */ 7265 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) 7266 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | 7267 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE); 7268 7269 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ 7270 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) 7271 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | 7272 RTIT_CTL_PTW_EN); 7273 7274 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ 7275 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) 7276 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; 7277 7278 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ 7279 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) 7280 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; 7281 7282 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */ 7283 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) 7284 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; 7285 7286 /* unmask address range configure area */ 7287 for (i = 0; i < vmx->pt_desc.addr_range; i++) 7288 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4)); 7289 } 7290 7291 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 7292 { 7293 struct vcpu_vmx *vmx = to_vmx(vcpu); 7294 7295 /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */ 7296 vcpu->arch.xsaves_enabled = false; 7297 7298 if (cpu_has_secondary_exec_ctrls()) { 7299 vmx_compute_secondary_exec_control(vmx); 7300 vmcs_set_secondary_exec_control(vmx); 7301 } 7302 7303 if (nested_vmx_allowed(vcpu)) 7304 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 7305 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7306 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; 7307 else 7308 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 7309 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7310 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX); 7311 7312 if (nested_vmx_allowed(vcpu)) { 7313 nested_vmx_cr_fixed1_bits_update(vcpu); 7314 nested_vmx_entry_exit_ctls_update(vcpu); 7315 } 7316 7317 if (boot_cpu_has(X86_FEATURE_INTEL_PT) && 7318 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT)) 7319 update_intel_pt_cfg(vcpu); 7320 7321 if (boot_cpu_has(X86_FEATURE_RTM)) { 7322 struct vmx_uret_msr *msr; 7323 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7324 if (msr) { 7325 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM); 7326 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE); 7327 } 7328 } 7329 7330 set_cr4_guest_host_mask(vmx); 7331 7332 vmx_write_encls_bitmap(vcpu, NULL); 7333 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX)) 7334 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED; 7335 else 7336 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED; 7337 7338 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 7339 vmx->msr_ia32_feature_control_valid_bits |= 7340 FEAT_CTL_SGX_LC_ENABLED; 7341 else 7342 vmx->msr_ia32_feature_control_valid_bits &= 7343 ~FEAT_CTL_SGX_LC_ENABLED; 7344 7345 /* Refresh #PF interception to account for MAXPHYADDR changes. */ 7346 vmx_update_exception_bitmap(vcpu); 7347 } 7348 7349 static __init void vmx_set_cpu_caps(void) 7350 { 7351 kvm_set_cpu_caps(); 7352 7353 /* CPUID 0x1 */ 7354 if (nested) 7355 kvm_cpu_cap_set(X86_FEATURE_VMX); 7356 7357 /* CPUID 0x7 */ 7358 if (kvm_mpx_supported()) 7359 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX); 7360 if (!cpu_has_vmx_invpcid()) 7361 kvm_cpu_cap_clear(X86_FEATURE_INVPCID); 7362 if (vmx_pt_mode_is_host_guest()) 7363 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT); 7364 7365 if (!enable_sgx) { 7366 kvm_cpu_cap_clear(X86_FEATURE_SGX); 7367 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC); 7368 kvm_cpu_cap_clear(X86_FEATURE_SGX1); 7369 kvm_cpu_cap_clear(X86_FEATURE_SGX2); 7370 } 7371 7372 if (vmx_umip_emulated()) 7373 kvm_cpu_cap_set(X86_FEATURE_UMIP); 7374 7375 /* CPUID 0xD.1 */ 7376 supported_xss = 0; 7377 if (!cpu_has_vmx_xsaves()) 7378 kvm_cpu_cap_clear(X86_FEATURE_XSAVES); 7379 7380 /* CPUID 0x80000001 */ 7381 if (!cpu_has_vmx_rdtscp()) 7382 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP); 7383 7384 if (cpu_has_vmx_waitpkg()) 7385 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG); 7386 } 7387 7388 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu) 7389 { 7390 to_vmx(vcpu)->req_immediate_exit = true; 7391 } 7392 7393 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu, 7394 struct x86_instruction_info *info) 7395 { 7396 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7397 unsigned short port; 7398 bool intercept; 7399 int size; 7400 7401 if (info->intercept == x86_intercept_in || 7402 info->intercept == x86_intercept_ins) { 7403 port = info->src_val; 7404 size = info->dst_bytes; 7405 } else { 7406 port = info->dst_val; 7407 size = info->src_bytes; 7408 } 7409 7410 /* 7411 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction 7412 * VM-exits depend on the 'unconditional IO exiting' VM-execution 7413 * control. 7414 * 7415 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps. 7416 */ 7417 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) 7418 intercept = nested_cpu_has(vmcs12, 7419 CPU_BASED_UNCOND_IO_EXITING); 7420 else 7421 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size); 7422 7423 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7424 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; 7425 } 7426 7427 static int vmx_check_intercept(struct kvm_vcpu *vcpu, 7428 struct x86_instruction_info *info, 7429 enum x86_intercept_stage stage, 7430 struct x86_exception *exception) 7431 { 7432 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7433 7434 switch (info->intercept) { 7435 /* 7436 * RDPID causes #UD if disabled through secondary execution controls. 7437 * Because it is marked as EmulateOnUD, we need to intercept it here. 7438 */ 7439 case x86_intercept_rdtscp: 7440 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) { 7441 exception->vector = UD_VECTOR; 7442 exception->error_code_valid = false; 7443 return X86EMUL_PROPAGATE_FAULT; 7444 } 7445 break; 7446 7447 case x86_intercept_in: 7448 case x86_intercept_ins: 7449 case x86_intercept_out: 7450 case x86_intercept_outs: 7451 return vmx_check_intercept_io(vcpu, info); 7452 7453 case x86_intercept_lgdt: 7454 case x86_intercept_lidt: 7455 case x86_intercept_lldt: 7456 case x86_intercept_ltr: 7457 case x86_intercept_sgdt: 7458 case x86_intercept_sidt: 7459 case x86_intercept_sldt: 7460 case x86_intercept_str: 7461 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC)) 7462 return X86EMUL_CONTINUE; 7463 7464 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7465 break; 7466 7467 /* TODO: check more intercepts... */ 7468 default: 7469 break; 7470 } 7471 7472 return X86EMUL_UNHANDLEABLE; 7473 } 7474 7475 #ifdef CONFIG_X86_64 7476 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ 7477 static inline int u64_shl_div_u64(u64 a, unsigned int shift, 7478 u64 divisor, u64 *result) 7479 { 7480 u64 low = a << shift, high = a >> (64 - shift); 7481 7482 /* To avoid the overflow on divq */ 7483 if (high >= divisor) 7484 return 1; 7485 7486 /* Low hold the result, high hold rem which is discarded */ 7487 asm("divq %2\n\t" : "=a" (low), "=d" (high) : 7488 "rm" (divisor), "0" (low), "1" (high)); 7489 *result = low; 7490 7491 return 0; 7492 } 7493 7494 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 7495 bool *expired) 7496 { 7497 struct vcpu_vmx *vmx; 7498 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; 7499 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer; 7500 7501 vmx = to_vmx(vcpu); 7502 tscl = rdtsc(); 7503 guest_tscl = kvm_read_l1_tsc(vcpu, tscl); 7504 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; 7505 lapic_timer_advance_cycles = nsec_to_cycles(vcpu, 7506 ktimer->timer_advance_ns); 7507 7508 if (delta_tsc > lapic_timer_advance_cycles) 7509 delta_tsc -= lapic_timer_advance_cycles; 7510 else 7511 delta_tsc = 0; 7512 7513 /* Convert to host delta tsc if tsc scaling is enabled */ 7514 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio && 7515 delta_tsc && u64_shl_div_u64(delta_tsc, 7516 kvm_tsc_scaling_ratio_frac_bits, 7517 vcpu->arch.tsc_scaling_ratio, &delta_tsc)) 7518 return -ERANGE; 7519 7520 /* 7521 * If the delta tsc can't fit in the 32 bit after the multi shift, 7522 * we can't use the preemption timer. 7523 * It's possible that it fits on later vmentries, but checking 7524 * on every vmentry is costly so we just use an hrtimer. 7525 */ 7526 if (delta_tsc >> (cpu_preemption_timer_multi + 32)) 7527 return -ERANGE; 7528 7529 vmx->hv_deadline_tsc = tscl + delta_tsc; 7530 *expired = !delta_tsc; 7531 return 0; 7532 } 7533 7534 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) 7535 { 7536 to_vmx(vcpu)->hv_deadline_tsc = -1; 7537 } 7538 #endif 7539 7540 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) 7541 { 7542 if (!kvm_pause_in_guest(vcpu->kvm)) 7543 shrink_ple_window(vcpu); 7544 } 7545 7546 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu) 7547 { 7548 struct vcpu_vmx *vmx = to_vmx(vcpu); 7549 7550 if (is_guest_mode(vcpu)) { 7551 vmx->nested.update_vmcs01_cpu_dirty_logging = true; 7552 return; 7553 } 7554 7555 /* 7556 * Note, cpu_dirty_logging_count can be changed concurrent with this 7557 * code, but in that case another update request will be made and so 7558 * the guest will never run with a stale PML value. 7559 */ 7560 if (vcpu->kvm->arch.cpu_dirty_logging_count) 7561 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML); 7562 else 7563 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML); 7564 } 7565 7566 static int vmx_pre_block(struct kvm_vcpu *vcpu) 7567 { 7568 if (pi_pre_block(vcpu)) 7569 return 1; 7570 7571 if (kvm_lapic_hv_timer_in_use(vcpu)) 7572 kvm_lapic_switch_to_sw_timer(vcpu); 7573 7574 return 0; 7575 } 7576 7577 static void vmx_post_block(struct kvm_vcpu *vcpu) 7578 { 7579 if (kvm_x86_ops.set_hv_timer) 7580 kvm_lapic_switch_to_hv_timer(vcpu); 7581 7582 pi_post_block(vcpu); 7583 } 7584 7585 static void vmx_setup_mce(struct kvm_vcpu *vcpu) 7586 { 7587 if (vcpu->arch.mcg_cap & MCG_LMCE_P) 7588 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 7589 FEAT_CTL_LMCE_ENABLED; 7590 else 7591 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 7592 ~FEAT_CTL_LMCE_ENABLED; 7593 } 7594 7595 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 7596 { 7597 /* we need a nested vmexit to enter SMM, postpone if run is pending */ 7598 if (to_vmx(vcpu)->nested.nested_run_pending) 7599 return -EBUSY; 7600 return !is_smm(vcpu); 7601 } 7602 7603 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate) 7604 { 7605 struct vcpu_vmx *vmx = to_vmx(vcpu); 7606 7607 vmx->nested.smm.guest_mode = is_guest_mode(vcpu); 7608 if (vmx->nested.smm.guest_mode) 7609 nested_vmx_vmexit(vcpu, -1, 0, 0); 7610 7611 vmx->nested.smm.vmxon = vmx->nested.vmxon; 7612 vmx->nested.vmxon = false; 7613 vmx_clear_hlt(vcpu); 7614 return 0; 7615 } 7616 7617 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) 7618 { 7619 struct vcpu_vmx *vmx = to_vmx(vcpu); 7620 int ret; 7621 7622 if (vmx->nested.smm.vmxon) { 7623 vmx->nested.vmxon = true; 7624 vmx->nested.smm.vmxon = false; 7625 } 7626 7627 if (vmx->nested.smm.guest_mode) { 7628 ret = nested_vmx_enter_non_root_mode(vcpu, false); 7629 if (ret) 7630 return ret; 7631 7632 vmx->nested.smm.guest_mode = false; 7633 } 7634 return 0; 7635 } 7636 7637 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu) 7638 { 7639 /* RSM will cause a vmexit anyway. */ 7640 } 7641 7642 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 7643 { 7644 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu); 7645 } 7646 7647 static void vmx_migrate_timers(struct kvm_vcpu *vcpu) 7648 { 7649 if (is_guest_mode(vcpu)) { 7650 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer; 7651 7652 if (hrtimer_try_to_cancel(timer) == 1) 7653 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 7654 } 7655 } 7656 7657 static void hardware_unsetup(void) 7658 { 7659 if (nested) 7660 nested_vmx_hardware_unsetup(); 7661 7662 free_kvm_area(); 7663 } 7664 7665 static bool vmx_check_apicv_inhibit_reasons(ulong bit) 7666 { 7667 ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) | 7668 BIT(APICV_INHIBIT_REASON_HYPERV); 7669 7670 return supported & BIT(bit); 7671 } 7672 7673 static struct kvm_x86_ops vmx_x86_ops __initdata = { 7674 .hardware_unsetup = hardware_unsetup, 7675 7676 .hardware_enable = hardware_enable, 7677 .hardware_disable = hardware_disable, 7678 .cpu_has_accelerated_tpr = report_flexpriority, 7679 .has_emulated_msr = vmx_has_emulated_msr, 7680 7681 .vm_size = sizeof(struct kvm_vmx), 7682 .vm_init = vmx_vm_init, 7683 7684 .vcpu_create = vmx_create_vcpu, 7685 .vcpu_free = vmx_free_vcpu, 7686 .vcpu_reset = vmx_vcpu_reset, 7687 7688 .prepare_guest_switch = vmx_prepare_switch_to_guest, 7689 .vcpu_load = vmx_vcpu_load, 7690 .vcpu_put = vmx_vcpu_put, 7691 7692 .update_exception_bitmap = vmx_update_exception_bitmap, 7693 .get_msr_feature = vmx_get_msr_feature, 7694 .get_msr = vmx_get_msr, 7695 .set_msr = vmx_set_msr, 7696 .get_segment_base = vmx_get_segment_base, 7697 .get_segment = vmx_get_segment, 7698 .set_segment = vmx_set_segment, 7699 .get_cpl = vmx_get_cpl, 7700 .get_cs_db_l_bits = vmx_get_cs_db_l_bits, 7701 .set_cr0 = vmx_set_cr0, 7702 .is_valid_cr4 = vmx_is_valid_cr4, 7703 .set_cr4 = vmx_set_cr4, 7704 .set_efer = vmx_set_efer, 7705 .get_idt = vmx_get_idt, 7706 .set_idt = vmx_set_idt, 7707 .get_gdt = vmx_get_gdt, 7708 .set_gdt = vmx_set_gdt, 7709 .set_dr7 = vmx_set_dr7, 7710 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, 7711 .cache_reg = vmx_cache_reg, 7712 .get_rflags = vmx_get_rflags, 7713 .set_rflags = vmx_set_rflags, 7714 7715 .tlb_flush_all = vmx_flush_tlb_all, 7716 .tlb_flush_current = vmx_flush_tlb_current, 7717 .tlb_flush_gva = vmx_flush_tlb_gva, 7718 .tlb_flush_guest = vmx_flush_tlb_guest, 7719 7720 .run = vmx_vcpu_run, 7721 .handle_exit = vmx_handle_exit, 7722 .skip_emulated_instruction = vmx_skip_emulated_instruction, 7723 .update_emulated_instruction = vmx_update_emulated_instruction, 7724 .set_interrupt_shadow = vmx_set_interrupt_shadow, 7725 .get_interrupt_shadow = vmx_get_interrupt_shadow, 7726 .patch_hypercall = vmx_patch_hypercall, 7727 .set_irq = vmx_inject_irq, 7728 .set_nmi = vmx_inject_nmi, 7729 .queue_exception = vmx_queue_exception, 7730 .cancel_injection = vmx_cancel_injection, 7731 .interrupt_allowed = vmx_interrupt_allowed, 7732 .nmi_allowed = vmx_nmi_allowed, 7733 .get_nmi_mask = vmx_get_nmi_mask, 7734 .set_nmi_mask = vmx_set_nmi_mask, 7735 .enable_nmi_window = vmx_enable_nmi_window, 7736 .enable_irq_window = vmx_enable_irq_window, 7737 .update_cr8_intercept = vmx_update_cr8_intercept, 7738 .set_virtual_apic_mode = vmx_set_virtual_apic_mode, 7739 .set_apic_access_page_addr = vmx_set_apic_access_page_addr, 7740 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, 7741 .load_eoi_exitmap = vmx_load_eoi_exitmap, 7742 .apicv_post_state_restore = vmx_apicv_post_state_restore, 7743 .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons, 7744 .hwapic_irr_update = vmx_hwapic_irr_update, 7745 .hwapic_isr_update = vmx_hwapic_isr_update, 7746 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt, 7747 .sync_pir_to_irr = vmx_sync_pir_to_irr, 7748 .deliver_posted_interrupt = vmx_deliver_posted_interrupt, 7749 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt, 7750 7751 .set_tss_addr = vmx_set_tss_addr, 7752 .set_identity_map_addr = vmx_set_identity_map_addr, 7753 .get_mt_mask = vmx_get_mt_mask, 7754 7755 .get_exit_info = vmx_get_exit_info, 7756 7757 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid, 7758 7759 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, 7760 7761 .write_l1_tsc_offset = vmx_write_l1_tsc_offset, 7762 7763 .load_mmu_pgd = vmx_load_mmu_pgd, 7764 7765 .check_intercept = vmx_check_intercept, 7766 .handle_exit_irqoff = vmx_handle_exit_irqoff, 7767 7768 .request_immediate_exit = vmx_request_immediate_exit, 7769 7770 .sched_in = vmx_sched_in, 7771 7772 .cpu_dirty_log_size = PML_ENTITY_NUM, 7773 .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging, 7774 7775 .pre_block = vmx_pre_block, 7776 .post_block = vmx_post_block, 7777 7778 .pmu_ops = &intel_pmu_ops, 7779 .nested_ops = &vmx_nested_ops, 7780 7781 .update_pi_irte = pi_update_irte, 7782 7783 #ifdef CONFIG_X86_64 7784 .set_hv_timer = vmx_set_hv_timer, 7785 .cancel_hv_timer = vmx_cancel_hv_timer, 7786 #endif 7787 7788 .setup_mce = vmx_setup_mce, 7789 7790 .smi_allowed = vmx_smi_allowed, 7791 .pre_enter_smm = vmx_pre_enter_smm, 7792 .pre_leave_smm = vmx_pre_leave_smm, 7793 .enable_smi_window = vmx_enable_smi_window, 7794 7795 .can_emulate_instruction = vmx_can_emulate_instruction, 7796 .apic_init_signal_blocked = vmx_apic_init_signal_blocked, 7797 .migrate_timers = vmx_migrate_timers, 7798 7799 .msr_filter_changed = vmx_msr_filter_changed, 7800 .complete_emulated_msr = kvm_complete_insn_gp, 7801 7802 .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector, 7803 }; 7804 7805 static __init int hardware_setup(void) 7806 { 7807 unsigned long host_bndcfgs; 7808 struct desc_ptr dt; 7809 int r, i, ept_lpage_level; 7810 7811 store_idt(&dt); 7812 host_idt_base = dt.address; 7813 7814 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) 7815 kvm_define_user_return_msr(i, vmx_uret_msrs_list[i]); 7816 7817 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) 7818 return -EIO; 7819 7820 if (boot_cpu_has(X86_FEATURE_NX)) 7821 kvm_enable_efer_bits(EFER_NX); 7822 7823 if (boot_cpu_has(X86_FEATURE_MPX)) { 7824 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); 7825 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost"); 7826 } 7827 7828 if (!cpu_has_vmx_mpx()) 7829 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 7830 XFEATURE_MASK_BNDCSR); 7831 7832 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || 7833 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) 7834 enable_vpid = 0; 7835 7836 if (!cpu_has_vmx_ept() || 7837 !cpu_has_vmx_ept_4levels() || 7838 !cpu_has_vmx_ept_mt_wb() || 7839 !cpu_has_vmx_invept_global()) 7840 enable_ept = 0; 7841 7842 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) 7843 enable_ept_ad_bits = 0; 7844 7845 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) 7846 enable_unrestricted_guest = 0; 7847 7848 if (!cpu_has_vmx_flexpriority()) 7849 flexpriority_enabled = 0; 7850 7851 if (!cpu_has_virtual_nmis()) 7852 enable_vnmi = 0; 7853 7854 /* 7855 * set_apic_access_page_addr() is used to reload apic access 7856 * page upon invalidation. No need to do anything if not 7857 * using the APIC_ACCESS_ADDR VMCS field. 7858 */ 7859 if (!flexpriority_enabled) 7860 vmx_x86_ops.set_apic_access_page_addr = NULL; 7861 7862 if (!cpu_has_vmx_tpr_shadow()) 7863 vmx_x86_ops.update_cr8_intercept = NULL; 7864 7865 #if IS_ENABLED(CONFIG_HYPERV) 7866 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH 7867 && enable_ept) { 7868 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb; 7869 vmx_x86_ops.tlb_remote_flush_with_range = 7870 hv_remote_flush_tlb_with_range; 7871 } 7872 #endif 7873 7874 if (!cpu_has_vmx_ple()) { 7875 ple_gap = 0; 7876 ple_window = 0; 7877 ple_window_grow = 0; 7878 ple_window_max = 0; 7879 ple_window_shrink = 0; 7880 } 7881 7882 if (!cpu_has_vmx_apicv()) { 7883 enable_apicv = 0; 7884 vmx_x86_ops.sync_pir_to_irr = NULL; 7885 } 7886 7887 if (cpu_has_vmx_tsc_scaling()) { 7888 kvm_has_tsc_control = true; 7889 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; 7890 kvm_tsc_scaling_ratio_frac_bits = 48; 7891 } 7892 7893 kvm_has_bus_lock_exit = cpu_has_vmx_bus_lock_detection(); 7894 7895 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ 7896 7897 if (enable_ept) 7898 kvm_mmu_set_ept_masks(enable_ept_ad_bits, 7899 cpu_has_vmx_ept_execute_only()); 7900 7901 if (!enable_ept) 7902 ept_lpage_level = 0; 7903 else if (cpu_has_vmx_ept_1g_page()) 7904 ept_lpage_level = PG_LEVEL_1G; 7905 else if (cpu_has_vmx_ept_2m_page()) 7906 ept_lpage_level = PG_LEVEL_2M; 7907 else 7908 ept_lpage_level = PG_LEVEL_4K; 7909 kvm_configure_mmu(enable_ept, vmx_get_max_tdp_level(), ept_lpage_level); 7910 7911 /* 7912 * Only enable PML when hardware supports PML feature, and both EPT 7913 * and EPT A/D bit features are enabled -- PML depends on them to work. 7914 */ 7915 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) 7916 enable_pml = 0; 7917 7918 if (!enable_pml) 7919 vmx_x86_ops.cpu_dirty_log_size = 0; 7920 7921 if (!cpu_has_vmx_preemption_timer()) 7922 enable_preemption_timer = false; 7923 7924 if (enable_preemption_timer) { 7925 u64 use_timer_freq = 5000ULL * 1000 * 1000; 7926 u64 vmx_msr; 7927 7928 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr); 7929 cpu_preemption_timer_multi = 7930 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; 7931 7932 if (tsc_khz) 7933 use_timer_freq = (u64)tsc_khz * 1000; 7934 use_timer_freq >>= cpu_preemption_timer_multi; 7935 7936 /* 7937 * KVM "disables" the preemption timer by setting it to its max 7938 * value. Don't use the timer if it might cause spurious exits 7939 * at a rate faster than 0.1 Hz (of uninterrupted guest time). 7940 */ 7941 if (use_timer_freq > 0xffffffffu / 10) 7942 enable_preemption_timer = false; 7943 } 7944 7945 if (!enable_preemption_timer) { 7946 vmx_x86_ops.set_hv_timer = NULL; 7947 vmx_x86_ops.cancel_hv_timer = NULL; 7948 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit; 7949 } 7950 7951 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler); 7952 7953 kvm_mce_cap_supported |= MCG_LMCE_P; 7954 7955 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) 7956 return -EINVAL; 7957 if (!enable_ept || !cpu_has_vmx_intel_pt()) 7958 pt_mode = PT_MODE_SYSTEM; 7959 7960 setup_default_sgx_lepubkeyhash(); 7961 7962 if (nested) { 7963 nested_vmx_setup_ctls_msrs(&vmcs_config.nested, 7964 vmx_capability.ept); 7965 7966 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); 7967 if (r) 7968 return r; 7969 } 7970 7971 vmx_set_cpu_caps(); 7972 7973 r = alloc_kvm_area(); 7974 if (r) 7975 nested_vmx_hardware_unsetup(); 7976 return r; 7977 } 7978 7979 static struct kvm_x86_init_ops vmx_init_ops __initdata = { 7980 .cpu_has_kvm_support = cpu_has_kvm_support, 7981 .disabled_by_bios = vmx_disabled_by_bios, 7982 .check_processor_compatibility = vmx_check_processor_compat, 7983 .hardware_setup = hardware_setup, 7984 7985 .runtime_ops = &vmx_x86_ops, 7986 }; 7987 7988 static void vmx_cleanup_l1d_flush(void) 7989 { 7990 if (vmx_l1d_flush_pages) { 7991 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); 7992 vmx_l1d_flush_pages = NULL; 7993 } 7994 /* Restore state so sysfs ignores VMX */ 7995 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 7996 } 7997 7998 static void vmx_exit(void) 7999 { 8000 #ifdef CONFIG_KEXEC_CORE 8001 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL); 8002 synchronize_rcu(); 8003 #endif 8004 8005 kvm_exit(); 8006 8007 #if IS_ENABLED(CONFIG_HYPERV) 8008 if (static_branch_unlikely(&enable_evmcs)) { 8009 int cpu; 8010 struct hv_vp_assist_page *vp_ap; 8011 /* 8012 * Reset everything to support using non-enlightened VMCS 8013 * access later (e.g. when we reload the module with 8014 * enlightened_vmcs=0) 8015 */ 8016 for_each_online_cpu(cpu) { 8017 vp_ap = hv_get_vp_assist_page(cpu); 8018 8019 if (!vp_ap) 8020 continue; 8021 8022 vp_ap->nested_control.features.directhypercall = 0; 8023 vp_ap->current_nested_vmcs = 0; 8024 vp_ap->enlighten_vmentry = 0; 8025 } 8026 8027 static_branch_disable(&enable_evmcs); 8028 } 8029 #endif 8030 vmx_cleanup_l1d_flush(); 8031 } 8032 module_exit(vmx_exit); 8033 8034 static int __init vmx_init(void) 8035 { 8036 int r, cpu; 8037 8038 #if IS_ENABLED(CONFIG_HYPERV) 8039 /* 8040 * Enlightened VMCS usage should be recommended and the host needs 8041 * to support eVMCS v1 or above. We can also disable eVMCS support 8042 * with module parameter. 8043 */ 8044 if (enlightened_vmcs && 8045 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && 8046 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= 8047 KVM_EVMCS_VERSION) { 8048 int cpu; 8049 8050 /* Check that we have assist pages on all online CPUs */ 8051 for_each_online_cpu(cpu) { 8052 if (!hv_get_vp_assist_page(cpu)) { 8053 enlightened_vmcs = false; 8054 break; 8055 } 8056 } 8057 8058 if (enlightened_vmcs) { 8059 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n"); 8060 static_branch_enable(&enable_evmcs); 8061 } 8062 8063 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH) 8064 vmx_x86_ops.enable_direct_tlbflush 8065 = hv_enable_direct_tlbflush; 8066 8067 } else { 8068 enlightened_vmcs = false; 8069 } 8070 #endif 8071 8072 r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx), 8073 __alignof__(struct vcpu_vmx), THIS_MODULE); 8074 if (r) 8075 return r; 8076 8077 /* 8078 * Must be called after kvm_init() so enable_ept is properly set 8079 * up. Hand the parameter mitigation value in which was stored in 8080 * the pre module init parser. If no parameter was given, it will 8081 * contain 'auto' which will be turned into the default 'cond' 8082 * mitigation mode. 8083 */ 8084 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); 8085 if (r) { 8086 vmx_exit(); 8087 return r; 8088 } 8089 8090 for_each_possible_cpu(cpu) { 8091 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); 8092 8093 pi_init_cpu(cpu); 8094 } 8095 8096 #ifdef CONFIG_KEXEC_CORE 8097 rcu_assign_pointer(crash_vmclear_loaded_vmcss, 8098 crash_vmclear_local_loaded_vmcss); 8099 #endif 8100 vmx_check_vmcs12_offsets(); 8101 8102 /* 8103 * Shadow paging doesn't have a (further) performance penalty 8104 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it 8105 * by default 8106 */ 8107 if (!enable_ept) 8108 allow_smaller_maxphyaddr = true; 8109 8110 return 0; 8111 } 8112 module_init(vmx_init); 8113