xref: /linux/arch/x86/kvm/vmx/vmx.c (revision 8f5b5f78113e881cb8570c961b0dc42b218a1b9e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/objtool.h>
26 #include <linux/sched.h>
27 #include <linux/sched/smt.h>
28 #include <linux/slab.h>
29 #include <linux/tboot.h>
30 #include <linux/trace_events.h>
31 #include <linux/entry-kvm.h>
32 
33 #include <asm/apic.h>
34 #include <asm/asm.h>
35 #include <asm/cpu.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/debugreg.h>
38 #include <asm/desc.h>
39 #include <asm/fpu/api.h>
40 #include <asm/fpu/xstate.h>
41 #include <asm/fred.h>
42 #include <asm/idtentry.h>
43 #include <asm/io.h>
44 #include <asm/irq_remapping.h>
45 #include <asm/reboot.h>
46 #include <asm/perf_event.h>
47 #include <asm/mmu_context.h>
48 #include <asm/mshyperv.h>
49 #include <asm/mwait.h>
50 #include <asm/spec-ctrl.h>
51 #include <asm/vmx.h>
52 
53 #include <trace/events/ipi.h>
54 
55 #include "capabilities.h"
56 #include "cpuid.h"
57 #include "hyperv.h"
58 #include "kvm_onhyperv.h"
59 #include "irq.h"
60 #include "kvm_cache_regs.h"
61 #include "lapic.h"
62 #include "mmu.h"
63 #include "nested.h"
64 #include "pmu.h"
65 #include "sgx.h"
66 #include "trace.h"
67 #include "vmcs.h"
68 #include "vmcs12.h"
69 #include "vmx.h"
70 #include "x86.h"
71 #include "smm.h"
72 #include "vmx_onhyperv.h"
73 
74 MODULE_AUTHOR("Qumranet");
75 MODULE_LICENSE("GPL");
76 
77 #ifdef MODULE
78 static const struct x86_cpu_id vmx_cpu_id[] = {
79 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
80 	{}
81 };
82 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
83 #endif
84 
85 bool __read_mostly enable_vpid = 1;
86 module_param_named(vpid, enable_vpid, bool, 0444);
87 
88 static bool __read_mostly enable_vnmi = 1;
89 module_param_named(vnmi, enable_vnmi, bool, 0444);
90 
91 bool __read_mostly flexpriority_enabled = 1;
92 module_param_named(flexpriority, flexpriority_enabled, bool, 0444);
93 
94 bool __read_mostly enable_ept = 1;
95 module_param_named(ept, enable_ept, bool, 0444);
96 
97 bool __read_mostly enable_unrestricted_guest = 1;
98 module_param_named(unrestricted_guest,
99 			enable_unrestricted_guest, bool, 0444);
100 
101 bool __read_mostly enable_ept_ad_bits = 1;
102 module_param_named(eptad, enable_ept_ad_bits, bool, 0444);
103 
104 static bool __read_mostly emulate_invalid_guest_state = true;
105 module_param(emulate_invalid_guest_state, bool, 0444);
106 
107 static bool __read_mostly fasteoi = 1;
108 module_param(fasteoi, bool, 0444);
109 
110 module_param(enable_apicv, bool, 0444);
111 
112 bool __read_mostly enable_ipiv = true;
113 module_param(enable_ipiv, bool, 0444);
114 
115 /*
116  * If nested=1, nested virtualization is supported, i.e., guests may use
117  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
118  * use VMX instructions.
119  */
120 static bool __read_mostly nested = 1;
121 module_param(nested, bool, 0444);
122 
123 bool __read_mostly enable_pml = 1;
124 module_param_named(pml, enable_pml, bool, 0444);
125 
126 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
127 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
128 
129 static bool __read_mostly dump_invalid_vmcs = 0;
130 module_param(dump_invalid_vmcs, bool, 0644);
131 
132 #define MSR_BITMAP_MODE_X2APIC		1
133 #define MSR_BITMAP_MODE_X2APIC_APICV	2
134 
135 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
136 
137 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
138 static int __read_mostly cpu_preemption_timer_multi;
139 static bool __read_mostly enable_preemption_timer = 1;
140 #ifdef CONFIG_X86_64
141 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
142 #endif
143 
144 extern bool __read_mostly allow_smaller_maxphyaddr;
145 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
146 
147 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
148 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
149 #define KVM_VM_CR0_ALWAYS_ON				\
150 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
151 
152 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
153 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
154 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
155 
156 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
157 
158 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
159 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
160 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
161 	RTIT_STATUS_BYTECNT))
162 
163 /*
164  * List of MSRs that can be directly passed to the guest.
165  * In addition to these x2apic, PT and LBR MSRs are handled specially.
166  */
167 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
168 	MSR_IA32_SPEC_CTRL,
169 	MSR_IA32_PRED_CMD,
170 	MSR_IA32_FLUSH_CMD,
171 	MSR_IA32_TSC,
172 #ifdef CONFIG_X86_64
173 	MSR_FS_BASE,
174 	MSR_GS_BASE,
175 	MSR_KERNEL_GS_BASE,
176 	MSR_IA32_XFD,
177 	MSR_IA32_XFD_ERR,
178 #endif
179 	MSR_IA32_SYSENTER_CS,
180 	MSR_IA32_SYSENTER_ESP,
181 	MSR_IA32_SYSENTER_EIP,
182 	MSR_CORE_C1_RES,
183 	MSR_CORE_C3_RESIDENCY,
184 	MSR_CORE_C6_RESIDENCY,
185 	MSR_CORE_C7_RESIDENCY,
186 };
187 
188 /*
189  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
190  * ple_gap:    upper bound on the amount of time between two successive
191  *             executions of PAUSE in a loop. Also indicate if ple enabled.
192  *             According to test, this time is usually smaller than 128 cycles.
193  * ple_window: upper bound on the amount of time a guest is allowed to execute
194  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
195  *             less than 2^12 cycles
196  * Time is measured based on a counter that runs at the same rate as the TSC,
197  * refer SDM volume 3b section 21.6.13 & 22.1.3.
198  */
199 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
200 module_param(ple_gap, uint, 0444);
201 
202 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
203 module_param(ple_window, uint, 0444);
204 
205 /* Default doubles per-vcpu window every exit. */
206 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
207 module_param(ple_window_grow, uint, 0444);
208 
209 /* Default resets per-vcpu window every exit to ple_window. */
210 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
211 module_param(ple_window_shrink, uint, 0444);
212 
213 /* Default is to compute the maximum so we can never overflow. */
214 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
215 module_param(ple_window_max, uint, 0444);
216 
217 /* Default is SYSTEM mode, 1 for host-guest mode */
218 int __read_mostly pt_mode = PT_MODE_SYSTEM;
219 module_param(pt_mode, int, S_IRUGO);
220 
221 struct x86_pmu_lbr __ro_after_init vmx_lbr_caps;
222 
223 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
224 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
225 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
226 
227 /* Storage for pre module init parameter parsing */
228 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
229 
230 static const struct {
231 	const char *option;
232 	bool for_parse;
233 } vmentry_l1d_param[] = {
234 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
235 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
236 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
237 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
238 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
239 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
240 };
241 
242 #define L1D_CACHE_ORDER 4
243 static void *vmx_l1d_flush_pages;
244 
245 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
246 {
247 	struct page *page;
248 	unsigned int i;
249 
250 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
251 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
252 		return 0;
253 	}
254 
255 	if (!enable_ept) {
256 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
257 		return 0;
258 	}
259 
260 	if (host_arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
261 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
262 		return 0;
263 	}
264 
265 	/* If set to auto use the default l1tf mitigation method */
266 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
267 		switch (l1tf_mitigation) {
268 		case L1TF_MITIGATION_OFF:
269 			l1tf = VMENTER_L1D_FLUSH_NEVER;
270 			break;
271 		case L1TF_MITIGATION_FLUSH_NOWARN:
272 		case L1TF_MITIGATION_FLUSH:
273 		case L1TF_MITIGATION_FLUSH_NOSMT:
274 			l1tf = VMENTER_L1D_FLUSH_COND;
275 			break;
276 		case L1TF_MITIGATION_FULL:
277 		case L1TF_MITIGATION_FULL_FORCE:
278 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
279 			break;
280 		}
281 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
282 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
283 	}
284 
285 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
286 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
287 		/*
288 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
289 		 * lifetime and so should not be charged to a memcg.
290 		 */
291 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
292 		if (!page)
293 			return -ENOMEM;
294 		vmx_l1d_flush_pages = page_address(page);
295 
296 		/*
297 		 * Initialize each page with a different pattern in
298 		 * order to protect against KSM in the nested
299 		 * virtualization case.
300 		 */
301 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
302 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
303 			       PAGE_SIZE);
304 		}
305 	}
306 
307 	l1tf_vmx_mitigation = l1tf;
308 
309 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
310 		static_branch_enable(&vmx_l1d_should_flush);
311 	else
312 		static_branch_disable(&vmx_l1d_should_flush);
313 
314 	if (l1tf == VMENTER_L1D_FLUSH_COND)
315 		static_branch_enable(&vmx_l1d_flush_cond);
316 	else
317 		static_branch_disable(&vmx_l1d_flush_cond);
318 	return 0;
319 }
320 
321 static int vmentry_l1d_flush_parse(const char *s)
322 {
323 	unsigned int i;
324 
325 	if (s) {
326 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
327 			if (vmentry_l1d_param[i].for_parse &&
328 			    sysfs_streq(s, vmentry_l1d_param[i].option))
329 				return i;
330 		}
331 	}
332 	return -EINVAL;
333 }
334 
335 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
336 {
337 	int l1tf, ret;
338 
339 	l1tf = vmentry_l1d_flush_parse(s);
340 	if (l1tf < 0)
341 		return l1tf;
342 
343 	if (!boot_cpu_has(X86_BUG_L1TF))
344 		return 0;
345 
346 	/*
347 	 * Has vmx_init() run already? If not then this is the pre init
348 	 * parameter parsing. In that case just store the value and let
349 	 * vmx_init() do the proper setup after enable_ept has been
350 	 * established.
351 	 */
352 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
353 		vmentry_l1d_flush_param = l1tf;
354 		return 0;
355 	}
356 
357 	mutex_lock(&vmx_l1d_flush_mutex);
358 	ret = vmx_setup_l1d_flush(l1tf);
359 	mutex_unlock(&vmx_l1d_flush_mutex);
360 	return ret;
361 }
362 
363 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
364 {
365 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
366 		return sysfs_emit(s, "???\n");
367 
368 	return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
369 }
370 
371 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
372 {
373 	u64 msr;
374 
375 	if (!vmx->disable_fb_clear)
376 		return;
377 
378 	msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
379 	msr |= FB_CLEAR_DIS;
380 	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
381 	/* Cache the MSR value to avoid reading it later */
382 	vmx->msr_ia32_mcu_opt_ctrl = msr;
383 }
384 
385 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
386 {
387 	if (!vmx->disable_fb_clear)
388 		return;
389 
390 	vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
391 	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
392 }
393 
394 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
395 {
396 	/*
397 	 * Disable VERW's behavior of clearing CPU buffers for the guest if the
398 	 * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled
399 	 * the mitigation. Disabling the clearing behavior provides a
400 	 * performance boost for guests that aren't aware that manually clearing
401 	 * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry
402 	 * and VM-Exit.
403 	 */
404 	vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) &&
405 				(host_arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) &&
406 				!boot_cpu_has_bug(X86_BUG_MDS) &&
407 				!boot_cpu_has_bug(X86_BUG_TAA);
408 
409 	/*
410 	 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
411 	 * at VMEntry. Skip the MSR read/write when a guest has no use case to
412 	 * execute VERW.
413 	 */
414 	if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
415 	   ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
416 	    (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
417 	    (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
418 	    (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
419 	    (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
420 		vmx->disable_fb_clear = false;
421 }
422 
423 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
424 	.set = vmentry_l1d_flush_set,
425 	.get = vmentry_l1d_flush_get,
426 };
427 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
428 
429 static u32 vmx_segment_access_rights(struct kvm_segment *var);
430 
431 void vmx_vmexit(void);
432 
433 #define vmx_insn_failed(fmt...)		\
434 do {					\
435 	WARN_ONCE(1, fmt);		\
436 	pr_warn_ratelimited(fmt);	\
437 } while (0)
438 
439 noinline void vmread_error(unsigned long field)
440 {
441 	vmx_insn_failed("vmread failed: field=%lx\n", field);
442 }
443 
444 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT
445 noinstr void vmread_error_trampoline2(unsigned long field, bool fault)
446 {
447 	if (fault) {
448 		kvm_spurious_fault();
449 	} else {
450 		instrumentation_begin();
451 		vmread_error(field);
452 		instrumentation_end();
453 	}
454 }
455 #endif
456 
457 noinline void vmwrite_error(unsigned long field, unsigned long value)
458 {
459 	vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
460 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
461 }
462 
463 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
464 {
465 	vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
466 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
467 }
468 
469 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
470 {
471 	vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
472 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
473 }
474 
475 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
476 {
477 	vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
478 			ext, vpid, gva);
479 }
480 
481 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
482 {
483 	vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
484 			ext, eptp, gpa);
485 }
486 
487 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
488 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
489 /*
490  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
491  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
492  */
493 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
494 
495 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
496 static DEFINE_SPINLOCK(vmx_vpid_lock);
497 
498 struct vmcs_config vmcs_config __ro_after_init;
499 struct vmx_capability vmx_capability __ro_after_init;
500 
501 #define VMX_SEGMENT_FIELD(seg)					\
502 	[VCPU_SREG_##seg] = {                                   \
503 		.selector = GUEST_##seg##_SELECTOR,		\
504 		.base = GUEST_##seg##_BASE,		   	\
505 		.limit = GUEST_##seg##_LIMIT,		   	\
506 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
507 	}
508 
509 static const struct kvm_vmx_segment_field {
510 	unsigned selector;
511 	unsigned base;
512 	unsigned limit;
513 	unsigned ar_bytes;
514 } kvm_vmx_segment_fields[] = {
515 	VMX_SEGMENT_FIELD(CS),
516 	VMX_SEGMENT_FIELD(DS),
517 	VMX_SEGMENT_FIELD(ES),
518 	VMX_SEGMENT_FIELD(FS),
519 	VMX_SEGMENT_FIELD(GS),
520 	VMX_SEGMENT_FIELD(SS),
521 	VMX_SEGMENT_FIELD(TR),
522 	VMX_SEGMENT_FIELD(LDTR),
523 };
524 
525 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
526 {
527 	vmx->segment_cache.bitmask = 0;
528 }
529 
530 static unsigned long host_idt_base;
531 
532 #if IS_ENABLED(CONFIG_HYPERV)
533 static struct kvm_x86_ops vmx_x86_ops __initdata;
534 
535 static bool __read_mostly enlightened_vmcs = true;
536 module_param(enlightened_vmcs, bool, 0444);
537 
538 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
539 {
540 	struct hv_enlightened_vmcs *evmcs;
541 	hpa_t partition_assist_page = hv_get_partition_assist_page(vcpu);
542 
543 	if (partition_assist_page == INVALID_PAGE)
544 		return -ENOMEM;
545 
546 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
547 
548 	evmcs->partition_assist_page = partition_assist_page;
549 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
550 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
551 
552 	return 0;
553 }
554 
555 static __init void hv_init_evmcs(void)
556 {
557 	int cpu;
558 
559 	if (!enlightened_vmcs)
560 		return;
561 
562 	/*
563 	 * Enlightened VMCS usage should be recommended and the host needs
564 	 * to support eVMCS v1 or above.
565 	 */
566 	if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
567 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
568 	     KVM_EVMCS_VERSION) {
569 
570 		/* Check that we have assist pages on all online CPUs */
571 		for_each_online_cpu(cpu) {
572 			if (!hv_get_vp_assist_page(cpu)) {
573 				enlightened_vmcs = false;
574 				break;
575 			}
576 		}
577 
578 		if (enlightened_vmcs) {
579 			pr_info("Using Hyper-V Enlightened VMCS\n");
580 			static_branch_enable(&__kvm_is_using_evmcs);
581 		}
582 
583 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
584 			vmx_x86_ops.enable_l2_tlb_flush
585 				= hv_enable_l2_tlb_flush;
586 
587 	} else {
588 		enlightened_vmcs = false;
589 	}
590 }
591 
592 static void hv_reset_evmcs(void)
593 {
594 	struct hv_vp_assist_page *vp_ap;
595 
596 	if (!kvm_is_using_evmcs())
597 		return;
598 
599 	/*
600 	 * KVM should enable eVMCS if and only if all CPUs have a VP assist
601 	 * page, and should reject CPU onlining if eVMCS is enabled the CPU
602 	 * doesn't have a VP assist page allocated.
603 	 */
604 	vp_ap = hv_get_vp_assist_page(smp_processor_id());
605 	if (WARN_ON_ONCE(!vp_ap))
606 		return;
607 
608 	/*
609 	 * Reset everything to support using non-enlightened VMCS access later
610 	 * (e.g. when we reload the module with enlightened_vmcs=0)
611 	 */
612 	vp_ap->nested_control.features.directhypercall = 0;
613 	vp_ap->current_nested_vmcs = 0;
614 	vp_ap->enlighten_vmentry = 0;
615 }
616 
617 #else /* IS_ENABLED(CONFIG_HYPERV) */
618 static void hv_init_evmcs(void) {}
619 static void hv_reset_evmcs(void) {}
620 #endif /* IS_ENABLED(CONFIG_HYPERV) */
621 
622 /*
623  * Comment's format: document - errata name - stepping - processor name.
624  * Refer from
625  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
626  */
627 static u32 vmx_preemption_cpu_tfms[] = {
628 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
629 0x000206E6,
630 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
631 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
632 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
633 0x00020652,
634 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
635 0x00020655,
636 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
637 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
638 /*
639  * 320767.pdf - AAP86  - B1 -
640  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
641  */
642 0x000106E5,
643 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
644 0x000106A0,
645 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
646 0x000106A1,
647 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
648 0x000106A4,
649  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
650  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
651  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
652 0x000106A5,
653  /* Xeon E3-1220 V2 */
654 0x000306A8,
655 };
656 
657 static inline bool cpu_has_broken_vmx_preemption_timer(void)
658 {
659 	u32 eax = cpuid_eax(0x00000001), i;
660 
661 	/* Clear the reserved bits */
662 	eax &= ~(0x3U << 14 | 0xfU << 28);
663 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
664 		if (eax == vmx_preemption_cpu_tfms[i])
665 			return true;
666 
667 	return false;
668 }
669 
670 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
671 {
672 	return flexpriority_enabled && lapic_in_kernel(vcpu);
673 }
674 
675 static int vmx_get_passthrough_msr_slot(u32 msr)
676 {
677 	int i;
678 
679 	switch (msr) {
680 	case 0x800 ... 0x8ff:
681 		/* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
682 		return -ENOENT;
683 	case MSR_IA32_RTIT_STATUS:
684 	case MSR_IA32_RTIT_OUTPUT_BASE:
685 	case MSR_IA32_RTIT_OUTPUT_MASK:
686 	case MSR_IA32_RTIT_CR3_MATCH:
687 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
688 		/* PT MSRs. These are handled in pt_update_intercept_for_msr() */
689 	case MSR_LBR_SELECT:
690 	case MSR_LBR_TOS:
691 	case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
692 	case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
693 	case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
694 	case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
695 	case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
696 		/* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
697 		return -ENOENT;
698 	}
699 
700 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
701 		if (vmx_possible_passthrough_msrs[i] == msr)
702 			return i;
703 	}
704 
705 	WARN(1, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
706 	return -ENOENT;
707 }
708 
709 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
710 {
711 	int i;
712 
713 	i = kvm_find_user_return_msr(msr);
714 	if (i >= 0)
715 		return &vmx->guest_uret_msrs[i];
716 	return NULL;
717 }
718 
719 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
720 				  struct vmx_uret_msr *msr, u64 data)
721 {
722 	unsigned int slot = msr - vmx->guest_uret_msrs;
723 	int ret = 0;
724 
725 	if (msr->load_into_hardware) {
726 		preempt_disable();
727 		ret = kvm_set_user_return_msr(slot, data, msr->mask);
728 		preempt_enable();
729 	}
730 	if (!ret)
731 		msr->data = data;
732 	return ret;
733 }
734 
735 /*
736  * Disable VMX and clear CR4.VMXE (even if VMXOFF faults)
737  *
738  * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to
739  * atomically track post-VMXON state, e.g. this may be called in NMI context.
740  * Eat all faults as all other faults on VMXOFF faults are mode related, i.e.
741  * faults are guaranteed to be due to the !post-VMXON check unless the CPU is
742  * magically in RM, VM86, compat mode, or at CPL>0.
743  */
744 static int kvm_cpu_vmxoff(void)
745 {
746 	asm goto("1: vmxoff\n\t"
747 			  _ASM_EXTABLE(1b, %l[fault])
748 			  ::: "cc", "memory" : fault);
749 
750 	cr4_clear_bits(X86_CR4_VMXE);
751 	return 0;
752 
753 fault:
754 	cr4_clear_bits(X86_CR4_VMXE);
755 	return -EIO;
756 }
757 
758 static void vmx_emergency_disable(void)
759 {
760 	int cpu = raw_smp_processor_id();
761 	struct loaded_vmcs *v;
762 
763 	kvm_rebooting = true;
764 
765 	/*
766 	 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be
767 	 * set in task context.  If this races with VMX is disabled by an NMI,
768 	 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to
769 	 * kvm_rebooting set.
770 	 */
771 	if (!(__read_cr4() & X86_CR4_VMXE))
772 		return;
773 
774 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
775 			    loaded_vmcss_on_cpu_link)
776 		vmcs_clear(v->vmcs);
777 
778 	kvm_cpu_vmxoff();
779 }
780 
781 static void __loaded_vmcs_clear(void *arg)
782 {
783 	struct loaded_vmcs *loaded_vmcs = arg;
784 	int cpu = raw_smp_processor_id();
785 
786 	if (loaded_vmcs->cpu != cpu)
787 		return; /* vcpu migration can race with cpu offline */
788 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
789 		per_cpu(current_vmcs, cpu) = NULL;
790 
791 	vmcs_clear(loaded_vmcs->vmcs);
792 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
793 		vmcs_clear(loaded_vmcs->shadow_vmcs);
794 
795 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
796 
797 	/*
798 	 * Ensure all writes to loaded_vmcs, including deleting it from its
799 	 * current percpu list, complete before setting loaded_vmcs->cpu to
800 	 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
801 	 * and add loaded_vmcs to its percpu list before it's deleted from this
802 	 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
803 	 */
804 	smp_wmb();
805 
806 	loaded_vmcs->cpu = -1;
807 	loaded_vmcs->launched = 0;
808 }
809 
810 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
811 {
812 	int cpu = loaded_vmcs->cpu;
813 
814 	if (cpu != -1)
815 		smp_call_function_single(cpu,
816 			 __loaded_vmcs_clear, loaded_vmcs, 1);
817 }
818 
819 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
820 				       unsigned field)
821 {
822 	bool ret;
823 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
824 
825 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
826 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
827 		vmx->segment_cache.bitmask = 0;
828 	}
829 	ret = vmx->segment_cache.bitmask & mask;
830 	vmx->segment_cache.bitmask |= mask;
831 	return ret;
832 }
833 
834 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
835 {
836 	u16 *p = &vmx->segment_cache.seg[seg].selector;
837 
838 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
839 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
840 	return *p;
841 }
842 
843 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
844 {
845 	ulong *p = &vmx->segment_cache.seg[seg].base;
846 
847 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
848 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
849 	return *p;
850 }
851 
852 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
853 {
854 	u32 *p = &vmx->segment_cache.seg[seg].limit;
855 
856 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
857 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
858 	return *p;
859 }
860 
861 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
862 {
863 	u32 *p = &vmx->segment_cache.seg[seg].ar;
864 
865 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
866 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
867 	return *p;
868 }
869 
870 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
871 {
872 	u32 eb;
873 
874 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
875 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
876 	/*
877 	 * Guest access to VMware backdoor ports could legitimately
878 	 * trigger #GP because of TSS I/O permission bitmap.
879 	 * We intercept those #GP and allow access to them anyway
880 	 * as VMware does.
881 	 */
882 	if (enable_vmware_backdoor)
883 		eb |= (1u << GP_VECTOR);
884 	if ((vcpu->guest_debug &
885 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
886 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
887 		eb |= 1u << BP_VECTOR;
888 	if (to_vmx(vcpu)->rmode.vm86_active)
889 		eb = ~0;
890 	if (!vmx_need_pf_intercept(vcpu))
891 		eb &= ~(1u << PF_VECTOR);
892 
893 	/* When we are running a nested L2 guest and L1 specified for it a
894 	 * certain exception bitmap, we must trap the same exceptions and pass
895 	 * them to L1. When running L2, we will only handle the exceptions
896 	 * specified above if L1 did not want them.
897 	 */
898 	if (is_guest_mode(vcpu))
899 		eb |= get_vmcs12(vcpu)->exception_bitmap;
900 	else {
901 		int mask = 0, match = 0;
902 
903 		if (enable_ept && (eb & (1u << PF_VECTOR))) {
904 			/*
905 			 * If EPT is enabled, #PF is currently only intercepted
906 			 * if MAXPHYADDR is smaller on the guest than on the
907 			 * host.  In that case we only care about present,
908 			 * non-reserved faults.  For vmcs02, however, PFEC_MASK
909 			 * and PFEC_MATCH are set in prepare_vmcs02_rare.
910 			 */
911 			mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
912 			match = PFERR_PRESENT_MASK;
913 		}
914 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
915 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
916 	}
917 
918 	/*
919 	 * Disabling xfd interception indicates that dynamic xfeatures
920 	 * might be used in the guest. Always trap #NM in this case
921 	 * to save guest xfd_err timely.
922 	 */
923 	if (vcpu->arch.xfd_no_write_intercept)
924 		eb |= (1u << NM_VECTOR);
925 
926 	vmcs_write32(EXCEPTION_BITMAP, eb);
927 }
928 
929 /*
930  * Check if MSR is intercepted for currently loaded MSR bitmap.
931  */
932 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
933 {
934 	if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
935 		return true;
936 
937 	return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
938 }
939 
940 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
941 {
942 	unsigned int flags = 0;
943 
944 	if (vmx->loaded_vmcs->launched)
945 		flags |= VMX_RUN_VMRESUME;
946 
947 	/*
948 	 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
949 	 * to change it directly without causing a vmexit.  In that case read
950 	 * it after vmexit and store it in vmx->spec_ctrl.
951 	 */
952 	if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
953 		flags |= VMX_RUN_SAVE_SPEC_CTRL;
954 
955 	return flags;
956 }
957 
958 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
959 		unsigned long entry, unsigned long exit)
960 {
961 	vm_entry_controls_clearbit(vmx, entry);
962 	vm_exit_controls_clearbit(vmx, exit);
963 }
964 
965 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
966 {
967 	unsigned int i;
968 
969 	for (i = 0; i < m->nr; ++i) {
970 		if (m->val[i].index == msr)
971 			return i;
972 	}
973 	return -ENOENT;
974 }
975 
976 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
977 {
978 	int i;
979 	struct msr_autoload *m = &vmx->msr_autoload;
980 
981 	switch (msr) {
982 	case MSR_EFER:
983 		if (cpu_has_load_ia32_efer()) {
984 			clear_atomic_switch_msr_special(vmx,
985 					VM_ENTRY_LOAD_IA32_EFER,
986 					VM_EXIT_LOAD_IA32_EFER);
987 			return;
988 		}
989 		break;
990 	case MSR_CORE_PERF_GLOBAL_CTRL:
991 		if (cpu_has_load_perf_global_ctrl()) {
992 			clear_atomic_switch_msr_special(vmx,
993 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
994 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
995 			return;
996 		}
997 		break;
998 	}
999 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1000 	if (i < 0)
1001 		goto skip_guest;
1002 	--m->guest.nr;
1003 	m->guest.val[i] = m->guest.val[m->guest.nr];
1004 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1005 
1006 skip_guest:
1007 	i = vmx_find_loadstore_msr_slot(&m->host, msr);
1008 	if (i < 0)
1009 		return;
1010 
1011 	--m->host.nr;
1012 	m->host.val[i] = m->host.val[m->host.nr];
1013 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1014 }
1015 
1016 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1017 		unsigned long entry, unsigned long exit,
1018 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1019 		u64 guest_val, u64 host_val)
1020 {
1021 	vmcs_write64(guest_val_vmcs, guest_val);
1022 	if (host_val_vmcs != HOST_IA32_EFER)
1023 		vmcs_write64(host_val_vmcs, host_val);
1024 	vm_entry_controls_setbit(vmx, entry);
1025 	vm_exit_controls_setbit(vmx, exit);
1026 }
1027 
1028 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1029 				  u64 guest_val, u64 host_val, bool entry_only)
1030 {
1031 	int i, j = 0;
1032 	struct msr_autoload *m = &vmx->msr_autoload;
1033 
1034 	switch (msr) {
1035 	case MSR_EFER:
1036 		if (cpu_has_load_ia32_efer()) {
1037 			add_atomic_switch_msr_special(vmx,
1038 					VM_ENTRY_LOAD_IA32_EFER,
1039 					VM_EXIT_LOAD_IA32_EFER,
1040 					GUEST_IA32_EFER,
1041 					HOST_IA32_EFER,
1042 					guest_val, host_val);
1043 			return;
1044 		}
1045 		break;
1046 	case MSR_CORE_PERF_GLOBAL_CTRL:
1047 		if (cpu_has_load_perf_global_ctrl()) {
1048 			add_atomic_switch_msr_special(vmx,
1049 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1050 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1051 					GUEST_IA32_PERF_GLOBAL_CTRL,
1052 					HOST_IA32_PERF_GLOBAL_CTRL,
1053 					guest_val, host_val);
1054 			return;
1055 		}
1056 		break;
1057 	case MSR_IA32_PEBS_ENABLE:
1058 		/* PEBS needs a quiescent period after being disabled (to write
1059 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
1060 		 * provide that period, so a CPU could write host's record into
1061 		 * guest's memory.
1062 		 */
1063 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1064 	}
1065 
1066 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1067 	if (!entry_only)
1068 		j = vmx_find_loadstore_msr_slot(&m->host, msr);
1069 
1070 	if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1071 	    (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1072 		printk_once(KERN_WARNING "Not enough msr switch entries. "
1073 				"Can't add msr %x\n", msr);
1074 		return;
1075 	}
1076 	if (i < 0) {
1077 		i = m->guest.nr++;
1078 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1079 	}
1080 	m->guest.val[i].index = msr;
1081 	m->guest.val[i].value = guest_val;
1082 
1083 	if (entry_only)
1084 		return;
1085 
1086 	if (j < 0) {
1087 		j = m->host.nr++;
1088 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1089 	}
1090 	m->host.val[j].index = msr;
1091 	m->host.val[j].value = host_val;
1092 }
1093 
1094 static bool update_transition_efer(struct vcpu_vmx *vmx)
1095 {
1096 	u64 guest_efer = vmx->vcpu.arch.efer;
1097 	u64 ignore_bits = 0;
1098 	int i;
1099 
1100 	/* Shadow paging assumes NX to be available.  */
1101 	if (!enable_ept)
1102 		guest_efer |= EFER_NX;
1103 
1104 	/*
1105 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1106 	 */
1107 	ignore_bits |= EFER_SCE;
1108 #ifdef CONFIG_X86_64
1109 	ignore_bits |= EFER_LMA | EFER_LME;
1110 	/* SCE is meaningful only in long mode on Intel */
1111 	if (guest_efer & EFER_LMA)
1112 		ignore_bits &= ~(u64)EFER_SCE;
1113 #endif
1114 
1115 	/*
1116 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1117 	 * On CPUs that support "load IA32_EFER", always switch EFER
1118 	 * atomically, since it's faster than switching it manually.
1119 	 */
1120 	if (cpu_has_load_ia32_efer() ||
1121 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1122 		if (!(guest_efer & EFER_LMA))
1123 			guest_efer &= ~EFER_LME;
1124 		if (guest_efer != host_efer)
1125 			add_atomic_switch_msr(vmx, MSR_EFER,
1126 					      guest_efer, host_efer, false);
1127 		else
1128 			clear_atomic_switch_msr(vmx, MSR_EFER);
1129 		return false;
1130 	}
1131 
1132 	i = kvm_find_user_return_msr(MSR_EFER);
1133 	if (i < 0)
1134 		return false;
1135 
1136 	clear_atomic_switch_msr(vmx, MSR_EFER);
1137 
1138 	guest_efer &= ~ignore_bits;
1139 	guest_efer |= host_efer & ignore_bits;
1140 
1141 	vmx->guest_uret_msrs[i].data = guest_efer;
1142 	vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1143 
1144 	return true;
1145 }
1146 
1147 #ifdef CONFIG_X86_32
1148 /*
1149  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1150  * VMCS rather than the segment table.  KVM uses this helper to figure
1151  * out the current bases to poke them into the VMCS before entry.
1152  */
1153 static unsigned long segment_base(u16 selector)
1154 {
1155 	struct desc_struct *table;
1156 	unsigned long v;
1157 
1158 	if (!(selector & ~SEGMENT_RPL_MASK))
1159 		return 0;
1160 
1161 	table = get_current_gdt_ro();
1162 
1163 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1164 		u16 ldt_selector = kvm_read_ldt();
1165 
1166 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1167 			return 0;
1168 
1169 		table = (struct desc_struct *)segment_base(ldt_selector);
1170 	}
1171 	v = get_desc_base(&table[selector >> 3]);
1172 	return v;
1173 }
1174 #endif
1175 
1176 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1177 {
1178 	return vmx_pt_mode_is_host_guest() &&
1179 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1180 }
1181 
1182 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1183 {
1184 	/* The base must be 128-byte aligned and a legal physical address. */
1185 	return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1186 }
1187 
1188 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1189 {
1190 	u32 i;
1191 
1192 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1193 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1194 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1195 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1196 	for (i = 0; i < addr_range; i++) {
1197 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1198 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1199 	}
1200 }
1201 
1202 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1203 {
1204 	u32 i;
1205 
1206 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1207 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1208 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1209 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1210 	for (i = 0; i < addr_range; i++) {
1211 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1212 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1213 	}
1214 }
1215 
1216 static void pt_guest_enter(struct vcpu_vmx *vmx)
1217 {
1218 	if (vmx_pt_mode_is_system())
1219 		return;
1220 
1221 	/*
1222 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1223 	 * Save host state before VM entry.
1224 	 */
1225 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1226 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1227 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1228 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1229 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1230 	}
1231 }
1232 
1233 static void pt_guest_exit(struct vcpu_vmx *vmx)
1234 {
1235 	if (vmx_pt_mode_is_system())
1236 		return;
1237 
1238 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1239 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1240 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1241 	}
1242 
1243 	/*
1244 	 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1245 	 * i.e. RTIT_CTL is always cleared on VM-Exit.  Restore it if necessary.
1246 	 */
1247 	if (vmx->pt_desc.host.ctl)
1248 		wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1249 }
1250 
1251 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1252 			unsigned long fs_base, unsigned long gs_base)
1253 {
1254 	if (unlikely(fs_sel != host->fs_sel)) {
1255 		if (!(fs_sel & 7))
1256 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1257 		else
1258 			vmcs_write16(HOST_FS_SELECTOR, 0);
1259 		host->fs_sel = fs_sel;
1260 	}
1261 	if (unlikely(gs_sel != host->gs_sel)) {
1262 		if (!(gs_sel & 7))
1263 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1264 		else
1265 			vmcs_write16(HOST_GS_SELECTOR, 0);
1266 		host->gs_sel = gs_sel;
1267 	}
1268 	if (unlikely(fs_base != host->fs_base)) {
1269 		vmcs_writel(HOST_FS_BASE, fs_base);
1270 		host->fs_base = fs_base;
1271 	}
1272 	if (unlikely(gs_base != host->gs_base)) {
1273 		vmcs_writel(HOST_GS_BASE, gs_base);
1274 		host->gs_base = gs_base;
1275 	}
1276 }
1277 
1278 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1279 {
1280 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1281 	struct vmcs_host_state *host_state;
1282 #ifdef CONFIG_X86_64
1283 	int cpu = raw_smp_processor_id();
1284 #endif
1285 	unsigned long fs_base, gs_base;
1286 	u16 fs_sel, gs_sel;
1287 	int i;
1288 
1289 	/*
1290 	 * Note that guest MSRs to be saved/restored can also be changed
1291 	 * when guest state is loaded. This happens when guest transitions
1292 	 * to/from long-mode by setting MSR_EFER.LMA.
1293 	 */
1294 	if (!vmx->guest_uret_msrs_loaded) {
1295 		vmx->guest_uret_msrs_loaded = true;
1296 		for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1297 			if (!vmx->guest_uret_msrs[i].load_into_hardware)
1298 				continue;
1299 
1300 			kvm_set_user_return_msr(i,
1301 						vmx->guest_uret_msrs[i].data,
1302 						vmx->guest_uret_msrs[i].mask);
1303 		}
1304 	}
1305 
1306 	if (vmx->nested.need_vmcs12_to_shadow_sync)
1307 		nested_sync_vmcs12_to_shadow(vcpu);
1308 
1309 	if (vmx->guest_state_loaded)
1310 		return;
1311 
1312 	host_state = &vmx->loaded_vmcs->host_state;
1313 
1314 	/*
1315 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1316 	 * allow segment selectors with cpl > 0 or ti == 1.
1317 	 */
1318 	host_state->ldt_sel = kvm_read_ldt();
1319 
1320 #ifdef CONFIG_X86_64
1321 	savesegment(ds, host_state->ds_sel);
1322 	savesegment(es, host_state->es_sel);
1323 
1324 	gs_base = cpu_kernelmode_gs_base(cpu);
1325 	if (likely(is_64bit_mm(current->mm))) {
1326 		current_save_fsgs();
1327 		fs_sel = current->thread.fsindex;
1328 		gs_sel = current->thread.gsindex;
1329 		fs_base = current->thread.fsbase;
1330 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1331 	} else {
1332 		savesegment(fs, fs_sel);
1333 		savesegment(gs, gs_sel);
1334 		fs_base = read_msr(MSR_FS_BASE);
1335 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1336 	}
1337 
1338 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1339 #else
1340 	savesegment(fs, fs_sel);
1341 	savesegment(gs, gs_sel);
1342 	fs_base = segment_base(fs_sel);
1343 	gs_base = segment_base(gs_sel);
1344 #endif
1345 
1346 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1347 	vmx->guest_state_loaded = true;
1348 }
1349 
1350 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1351 {
1352 	struct vmcs_host_state *host_state;
1353 
1354 	if (!vmx->guest_state_loaded)
1355 		return;
1356 
1357 	host_state = &vmx->loaded_vmcs->host_state;
1358 
1359 	++vmx->vcpu.stat.host_state_reload;
1360 
1361 #ifdef CONFIG_X86_64
1362 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1363 #endif
1364 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1365 		kvm_load_ldt(host_state->ldt_sel);
1366 #ifdef CONFIG_X86_64
1367 		load_gs_index(host_state->gs_sel);
1368 #else
1369 		loadsegment(gs, host_state->gs_sel);
1370 #endif
1371 	}
1372 	if (host_state->fs_sel & 7)
1373 		loadsegment(fs, host_state->fs_sel);
1374 #ifdef CONFIG_X86_64
1375 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1376 		loadsegment(ds, host_state->ds_sel);
1377 		loadsegment(es, host_state->es_sel);
1378 	}
1379 #endif
1380 	invalidate_tss_limit();
1381 #ifdef CONFIG_X86_64
1382 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1383 #endif
1384 	load_fixmap_gdt(raw_smp_processor_id());
1385 	vmx->guest_state_loaded = false;
1386 	vmx->guest_uret_msrs_loaded = false;
1387 }
1388 
1389 #ifdef CONFIG_X86_64
1390 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1391 {
1392 	preempt_disable();
1393 	if (vmx->guest_state_loaded)
1394 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1395 	preempt_enable();
1396 	return vmx->msr_guest_kernel_gs_base;
1397 }
1398 
1399 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1400 {
1401 	preempt_disable();
1402 	if (vmx->guest_state_loaded)
1403 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1404 	preempt_enable();
1405 	vmx->msr_guest_kernel_gs_base = data;
1406 }
1407 #endif
1408 
1409 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1410 			struct loaded_vmcs *buddy)
1411 {
1412 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1413 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1414 	struct vmcs *prev;
1415 
1416 	if (!already_loaded) {
1417 		loaded_vmcs_clear(vmx->loaded_vmcs);
1418 		local_irq_disable();
1419 
1420 		/*
1421 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1422 		 * this cpu's percpu list, otherwise it may not yet be deleted
1423 		 * from its previous cpu's percpu list.  Pairs with the
1424 		 * smb_wmb() in __loaded_vmcs_clear().
1425 		 */
1426 		smp_rmb();
1427 
1428 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1429 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1430 		local_irq_enable();
1431 	}
1432 
1433 	prev = per_cpu(current_vmcs, cpu);
1434 	if (prev != vmx->loaded_vmcs->vmcs) {
1435 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1436 		vmcs_load(vmx->loaded_vmcs->vmcs);
1437 
1438 		/*
1439 		 * No indirect branch prediction barrier needed when switching
1440 		 * the active VMCS within a vCPU, unless IBRS is advertised to
1441 		 * the vCPU.  To minimize the number of IBPBs executed, KVM
1442 		 * performs IBPB on nested VM-Exit (a single nested transition
1443 		 * may switch the active VMCS multiple times).
1444 		 */
1445 		if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1446 			indirect_branch_prediction_barrier();
1447 	}
1448 
1449 	if (!already_loaded) {
1450 		void *gdt = get_current_gdt_ro();
1451 
1452 		/*
1453 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1454 		 * TLB entries from its previous association with the vCPU.
1455 		 */
1456 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1457 
1458 		/*
1459 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1460 		 * processors.  See 22.2.4.
1461 		 */
1462 		vmcs_writel(HOST_TR_BASE,
1463 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1464 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1465 
1466 		if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1467 			/* 22.2.3 */
1468 			vmcs_writel(HOST_IA32_SYSENTER_ESP,
1469 				    (unsigned long)(cpu_entry_stack(cpu) + 1));
1470 		}
1471 
1472 		vmx->loaded_vmcs->cpu = cpu;
1473 	}
1474 }
1475 
1476 /*
1477  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1478  * vcpu mutex is already taken.
1479  */
1480 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1481 {
1482 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1483 
1484 	vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1485 
1486 	vmx_vcpu_pi_load(vcpu, cpu);
1487 
1488 	vmx->host_debugctlmsr = get_debugctlmsr();
1489 }
1490 
1491 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1492 {
1493 	vmx_vcpu_pi_put(vcpu);
1494 
1495 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1496 }
1497 
1498 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1499 {
1500 	return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1501 }
1502 
1503 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1504 {
1505 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1506 	unsigned long rflags, save_rflags;
1507 
1508 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1509 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1510 		rflags = vmcs_readl(GUEST_RFLAGS);
1511 		if (vmx->rmode.vm86_active) {
1512 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1513 			save_rflags = vmx->rmode.save_rflags;
1514 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1515 		}
1516 		vmx->rflags = rflags;
1517 	}
1518 	return vmx->rflags;
1519 }
1520 
1521 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1522 {
1523 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1524 	unsigned long old_rflags;
1525 
1526 	/*
1527 	 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU
1528 	 * is an unrestricted guest in order to mark L2 as needing emulation
1529 	 * if L1 runs L2 as a restricted guest.
1530 	 */
1531 	if (is_unrestricted_guest(vcpu)) {
1532 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1533 		vmx->rflags = rflags;
1534 		vmcs_writel(GUEST_RFLAGS, rflags);
1535 		return;
1536 	}
1537 
1538 	old_rflags = vmx_get_rflags(vcpu);
1539 	vmx->rflags = rflags;
1540 	if (vmx->rmode.vm86_active) {
1541 		vmx->rmode.save_rflags = rflags;
1542 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1543 	}
1544 	vmcs_writel(GUEST_RFLAGS, rflags);
1545 
1546 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1547 		vmx->emulation_required = vmx_emulation_required(vcpu);
1548 }
1549 
1550 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1551 {
1552 	return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1553 }
1554 
1555 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1556 {
1557 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1558 	int ret = 0;
1559 
1560 	if (interruptibility & GUEST_INTR_STATE_STI)
1561 		ret |= KVM_X86_SHADOW_INT_STI;
1562 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1563 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1564 
1565 	return ret;
1566 }
1567 
1568 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1569 {
1570 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1571 	u32 interruptibility = interruptibility_old;
1572 
1573 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1574 
1575 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1576 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1577 	else if (mask & KVM_X86_SHADOW_INT_STI)
1578 		interruptibility |= GUEST_INTR_STATE_STI;
1579 
1580 	if ((interruptibility != interruptibility_old))
1581 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1582 }
1583 
1584 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1585 {
1586 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1587 	unsigned long value;
1588 
1589 	/*
1590 	 * Any MSR write that attempts to change bits marked reserved will
1591 	 * case a #GP fault.
1592 	 */
1593 	if (data & vmx->pt_desc.ctl_bitmask)
1594 		return 1;
1595 
1596 	/*
1597 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1598 	 * result in a #GP unless the same write also clears TraceEn.
1599 	 */
1600 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1601 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1602 		return 1;
1603 
1604 	/*
1605 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1606 	 * and FabricEn would cause #GP, if
1607 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1608 	 */
1609 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1610 		!(data & RTIT_CTL_FABRIC_EN) &&
1611 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1612 					PT_CAP_single_range_output))
1613 		return 1;
1614 
1615 	/*
1616 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1617 	 * utilize encodings marked reserved will cause a #GP fault.
1618 	 */
1619 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1620 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1621 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1622 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1623 		return 1;
1624 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1625 						PT_CAP_cycle_thresholds);
1626 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1627 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1628 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1629 		return 1;
1630 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1631 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1632 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1633 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1634 		return 1;
1635 
1636 	/*
1637 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1638 	 * cause a #GP fault.
1639 	 */
1640 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1641 	if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1642 		return 1;
1643 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1644 	if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1645 		return 1;
1646 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1647 	if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1648 		return 1;
1649 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1650 	if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1651 		return 1;
1652 
1653 	return 0;
1654 }
1655 
1656 static int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1657 					 void *insn, int insn_len)
1658 {
1659 	/*
1660 	 * Emulation of instructions in SGX enclaves is impossible as RIP does
1661 	 * not point at the failing instruction, and even if it did, the code
1662 	 * stream is inaccessible.  Inject #UD instead of exiting to userspace
1663 	 * so that guest userspace can't DoS the guest simply by triggering
1664 	 * emulation (enclaves are CPL3 only).
1665 	 */
1666 	if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1667 		kvm_queue_exception(vcpu, UD_VECTOR);
1668 		return X86EMUL_PROPAGATE_FAULT;
1669 	}
1670 	return X86EMUL_CONTINUE;
1671 }
1672 
1673 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1674 {
1675 	union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1676 	unsigned long rip, orig_rip;
1677 	u32 instr_len;
1678 
1679 	/*
1680 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1681 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1682 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1683 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1684 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1685 	 * i.e. we end up advancing IP with some random value.
1686 	 */
1687 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1688 	    exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1689 		instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1690 
1691 		/*
1692 		 * Emulating an enclave's instructions isn't supported as KVM
1693 		 * cannot access the enclave's memory or its true RIP, e.g. the
1694 		 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1695 		 * the RIP that actually triggered the VM-Exit.  But, because
1696 		 * most instructions that cause VM-Exit will #UD in an enclave,
1697 		 * most instruction-based VM-Exits simply do not occur.
1698 		 *
1699 		 * There are a few exceptions, notably the debug instructions
1700 		 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1701 		 * and generate #DB/#BP as expected, which KVM might intercept.
1702 		 * But again, the CPU does the dirty work and saves an instr
1703 		 * length of zero so VMMs don't shoot themselves in the foot.
1704 		 * WARN if KVM tries to skip a non-zero length instruction on
1705 		 * a VM-Exit from an enclave.
1706 		 */
1707 		if (!instr_len)
1708 			goto rip_updated;
1709 
1710 		WARN_ONCE(exit_reason.enclave_mode,
1711 			  "skipping instruction after SGX enclave VM-Exit");
1712 
1713 		orig_rip = kvm_rip_read(vcpu);
1714 		rip = orig_rip + instr_len;
1715 #ifdef CONFIG_X86_64
1716 		/*
1717 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1718 		 * mode, but just finding out that we are in 64-bit mode is
1719 		 * quite expensive.  Only do it if there was a carry.
1720 		 */
1721 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1722 			rip = (u32)rip;
1723 #endif
1724 		kvm_rip_write(vcpu, rip);
1725 	} else {
1726 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1727 			return 0;
1728 	}
1729 
1730 rip_updated:
1731 	/* skipping an emulated instruction also counts */
1732 	vmx_set_interrupt_shadow(vcpu, 0);
1733 
1734 	return 1;
1735 }
1736 
1737 /*
1738  * Recognizes a pending MTF VM-exit and records the nested state for later
1739  * delivery.
1740  */
1741 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1742 {
1743 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1744 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1745 
1746 	if (!is_guest_mode(vcpu))
1747 		return;
1748 
1749 	/*
1750 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1751 	 * TSS T-bit traps and ICEBP (INT1).  KVM doesn't emulate T-bit traps
1752 	 * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1753 	 * intercepted #DB deliberately avoids single-step #DB and MTF updates
1754 	 * as ICEBP is higher priority than both.  As instruction emulation is
1755 	 * completed at this point (i.e. KVM is at the instruction boundary),
1756 	 * any #DB exception pending delivery must be a debug-trap of lower
1757 	 * priority than MTF.  Record the pending MTF state to be delivered in
1758 	 * vmx_check_nested_events().
1759 	 */
1760 	if (nested_cpu_has_mtf(vmcs12) &&
1761 	    (!vcpu->arch.exception.pending ||
1762 	     vcpu->arch.exception.vector == DB_VECTOR) &&
1763 	    (!vcpu->arch.exception_vmexit.pending ||
1764 	     vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1765 		vmx->nested.mtf_pending = true;
1766 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1767 	} else {
1768 		vmx->nested.mtf_pending = false;
1769 	}
1770 }
1771 
1772 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1773 {
1774 	vmx_update_emulated_instruction(vcpu);
1775 	return skip_emulated_instruction(vcpu);
1776 }
1777 
1778 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1779 {
1780 	/*
1781 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1782 	 * explicitly skip the instruction because if the HLT state is set,
1783 	 * then the instruction is already executing and RIP has already been
1784 	 * advanced.
1785 	 */
1786 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1787 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1788 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1789 }
1790 
1791 static void vmx_inject_exception(struct kvm_vcpu *vcpu)
1792 {
1793 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
1794 	u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1795 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1796 
1797 	kvm_deliver_exception_payload(vcpu, ex);
1798 
1799 	if (ex->has_error_code) {
1800 		/*
1801 		 * Despite the error code being architecturally defined as 32
1802 		 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1803 		 * VMX don't actually supporting setting bits 31:16.  Hardware
1804 		 * will (should) never provide a bogus error code, but AMD CPUs
1805 		 * do generate error codes with bits 31:16 set, and so KVM's
1806 		 * ABI lets userspace shove in arbitrary 32-bit values.  Drop
1807 		 * the upper bits to avoid VM-Fail, losing information that
1808 		 * doesn't really exist is preferable to killing the VM.
1809 		 */
1810 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1811 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1812 	}
1813 
1814 	if (vmx->rmode.vm86_active) {
1815 		int inc_eip = 0;
1816 		if (kvm_exception_is_soft(ex->vector))
1817 			inc_eip = vcpu->arch.event_exit_inst_len;
1818 		kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1819 		return;
1820 	}
1821 
1822 	WARN_ON_ONCE(vmx->emulation_required);
1823 
1824 	if (kvm_exception_is_soft(ex->vector)) {
1825 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1826 			     vmx->vcpu.arch.event_exit_inst_len);
1827 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1828 	} else
1829 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1830 
1831 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1832 
1833 	vmx_clear_hlt(vcpu);
1834 }
1835 
1836 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1837 			       bool load_into_hardware)
1838 {
1839 	struct vmx_uret_msr *uret_msr;
1840 
1841 	uret_msr = vmx_find_uret_msr(vmx, msr);
1842 	if (!uret_msr)
1843 		return;
1844 
1845 	uret_msr->load_into_hardware = load_into_hardware;
1846 }
1847 
1848 /*
1849  * Configuring user return MSRs to automatically save, load, and restore MSRs
1850  * that need to be shoved into hardware when running the guest.  Note, omitting
1851  * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1852  * loaded into hardware when running the guest.
1853  */
1854 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1855 {
1856 #ifdef CONFIG_X86_64
1857 	bool load_syscall_msrs;
1858 
1859 	/*
1860 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1861 	 * when EFER.SCE is set.
1862 	 */
1863 	load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1864 			    (vmx->vcpu.arch.efer & EFER_SCE);
1865 
1866 	vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1867 	vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1868 	vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1869 #endif
1870 	vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1871 
1872 	vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1873 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1874 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1875 
1876 	/*
1877 	 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1878 	 * kernel and old userspace.  If those guests run on a tsx=off host, do
1879 	 * allow guests to use TSX_CTRL, but don't change the value in hardware
1880 	 * so that TSX remains always disabled.
1881 	 */
1882 	vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1883 
1884 	/*
1885 	 * The set of MSRs to load may have changed, reload MSRs before the
1886 	 * next VM-Enter.
1887 	 */
1888 	vmx->guest_uret_msrs_loaded = false;
1889 }
1890 
1891 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1892 {
1893 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1894 
1895 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1896 		return vmcs12->tsc_offset;
1897 
1898 	return 0;
1899 }
1900 
1901 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1902 {
1903 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1904 
1905 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1906 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1907 		return vmcs12->tsc_multiplier;
1908 
1909 	return kvm_caps.default_tsc_scaling_ratio;
1910 }
1911 
1912 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu)
1913 {
1914 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
1915 }
1916 
1917 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1918 {
1919 	vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
1920 }
1921 
1922 /*
1923  * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
1924  * guest CPUID.  Note, KVM allows userspace to set "VMX in SMX" to maintain
1925  * backwards compatibility even though KVM doesn't support emulating SMX.  And
1926  * because userspace set "VMX in SMX", the guest must also be allowed to set it,
1927  * e.g. if the MSR is left unlocked and the guest does a RMW operation.
1928  */
1929 #define KVM_SUPPORTED_FEATURE_CONTROL  (FEAT_CTL_LOCKED			 | \
1930 					FEAT_CTL_VMX_ENABLED_INSIDE_SMX	 | \
1931 					FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
1932 					FEAT_CTL_SGX_LC_ENABLED		 | \
1933 					FEAT_CTL_SGX_ENABLED		 | \
1934 					FEAT_CTL_LMCE_ENABLED)
1935 
1936 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
1937 						    struct msr_data *msr)
1938 {
1939 	uint64_t valid_bits;
1940 
1941 	/*
1942 	 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
1943 	 * exposed to the guest.
1944 	 */
1945 	WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
1946 		     ~KVM_SUPPORTED_FEATURE_CONTROL);
1947 
1948 	if (!msr->host_initiated &&
1949 	    (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
1950 		return false;
1951 
1952 	if (msr->host_initiated)
1953 		valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
1954 	else
1955 		valid_bits = vmx->msr_ia32_feature_control_valid_bits;
1956 
1957 	return !(msr->data & ~valid_bits);
1958 }
1959 
1960 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1961 {
1962 	switch (msr->index) {
1963 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
1964 		if (!nested)
1965 			return 1;
1966 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1967 	default:
1968 		return KVM_MSR_RET_INVALID;
1969 	}
1970 }
1971 
1972 /*
1973  * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
1974  * Returns 0 on success, non-0 otherwise.
1975  * Assumes vcpu_load() was already called.
1976  */
1977 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1978 {
1979 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1980 	struct vmx_uret_msr *msr;
1981 	u32 index;
1982 
1983 	switch (msr_info->index) {
1984 #ifdef CONFIG_X86_64
1985 	case MSR_FS_BASE:
1986 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1987 		break;
1988 	case MSR_GS_BASE:
1989 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1990 		break;
1991 	case MSR_KERNEL_GS_BASE:
1992 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1993 		break;
1994 #endif
1995 	case MSR_EFER:
1996 		return kvm_get_msr_common(vcpu, msr_info);
1997 	case MSR_IA32_TSX_CTRL:
1998 		if (!msr_info->host_initiated &&
1999 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2000 			return 1;
2001 		goto find_uret_msr;
2002 	case MSR_IA32_UMWAIT_CONTROL:
2003 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2004 			return 1;
2005 
2006 		msr_info->data = vmx->msr_ia32_umwait_control;
2007 		break;
2008 	case MSR_IA32_SPEC_CTRL:
2009 		if (!msr_info->host_initiated &&
2010 		    !guest_has_spec_ctrl_msr(vcpu))
2011 			return 1;
2012 
2013 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
2014 		break;
2015 	case MSR_IA32_SYSENTER_CS:
2016 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2017 		break;
2018 	case MSR_IA32_SYSENTER_EIP:
2019 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2020 		break;
2021 	case MSR_IA32_SYSENTER_ESP:
2022 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2023 		break;
2024 	case MSR_IA32_BNDCFGS:
2025 		if (!kvm_mpx_supported() ||
2026 		    (!msr_info->host_initiated &&
2027 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2028 			return 1;
2029 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2030 		break;
2031 	case MSR_IA32_MCG_EXT_CTL:
2032 		if (!msr_info->host_initiated &&
2033 		    !(vmx->msr_ia32_feature_control &
2034 		      FEAT_CTL_LMCE_ENABLED))
2035 			return 1;
2036 		msr_info->data = vcpu->arch.mcg_ext_ctl;
2037 		break;
2038 	case MSR_IA32_FEAT_CTL:
2039 		msr_info->data = vmx->msr_ia32_feature_control;
2040 		break;
2041 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2042 		if (!msr_info->host_initiated &&
2043 		    !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
2044 			return 1;
2045 		msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
2046 			[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
2047 		break;
2048 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2049 		if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2050 			return 1;
2051 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
2052 				    &msr_info->data))
2053 			return 1;
2054 #ifdef CONFIG_KVM_HYPERV
2055 		/*
2056 		 * Enlightened VMCS v1 doesn't have certain VMCS fields but
2057 		 * instead of just ignoring the features, different Hyper-V
2058 		 * versions are either trying to use them and fail or do some
2059 		 * sanity checking and refuse to boot. Filter all unsupported
2060 		 * features out.
2061 		 */
2062 		if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu))
2063 			nested_evmcs_filter_control_msr(vcpu, msr_info->index,
2064 							&msr_info->data);
2065 #endif
2066 		break;
2067 	case MSR_IA32_RTIT_CTL:
2068 		if (!vmx_pt_mode_is_host_guest())
2069 			return 1;
2070 		msr_info->data = vmx->pt_desc.guest.ctl;
2071 		break;
2072 	case MSR_IA32_RTIT_STATUS:
2073 		if (!vmx_pt_mode_is_host_guest())
2074 			return 1;
2075 		msr_info->data = vmx->pt_desc.guest.status;
2076 		break;
2077 	case MSR_IA32_RTIT_CR3_MATCH:
2078 		if (!vmx_pt_mode_is_host_guest() ||
2079 			!intel_pt_validate_cap(vmx->pt_desc.caps,
2080 						PT_CAP_cr3_filtering))
2081 			return 1;
2082 		msr_info->data = vmx->pt_desc.guest.cr3_match;
2083 		break;
2084 	case MSR_IA32_RTIT_OUTPUT_BASE:
2085 		if (!vmx_pt_mode_is_host_guest() ||
2086 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2087 					PT_CAP_topa_output) &&
2088 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2089 					PT_CAP_single_range_output)))
2090 			return 1;
2091 		msr_info->data = vmx->pt_desc.guest.output_base;
2092 		break;
2093 	case MSR_IA32_RTIT_OUTPUT_MASK:
2094 		if (!vmx_pt_mode_is_host_guest() ||
2095 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2096 					PT_CAP_topa_output) &&
2097 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2098 					PT_CAP_single_range_output)))
2099 			return 1;
2100 		msr_info->data = vmx->pt_desc.guest.output_mask;
2101 		break;
2102 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2103 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2104 		if (!vmx_pt_mode_is_host_guest() ||
2105 		    (index >= 2 * vmx->pt_desc.num_address_ranges))
2106 			return 1;
2107 		if (index % 2)
2108 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2109 		else
2110 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2111 		break;
2112 	case MSR_IA32_DEBUGCTLMSR:
2113 		msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
2114 		break;
2115 	default:
2116 	find_uret_msr:
2117 		msr = vmx_find_uret_msr(vmx, msr_info->index);
2118 		if (msr) {
2119 			msr_info->data = msr->data;
2120 			break;
2121 		}
2122 		return kvm_get_msr_common(vcpu, msr_info);
2123 	}
2124 
2125 	return 0;
2126 }
2127 
2128 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2129 						    u64 data)
2130 {
2131 #ifdef CONFIG_X86_64
2132 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2133 		return (u32)data;
2134 #endif
2135 	return (unsigned long)data;
2136 }
2137 
2138 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2139 {
2140 	u64 debugctl = 0;
2141 
2142 	if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2143 	    (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2144 		debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2145 
2146 	if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) &&
2147 	    (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2148 		debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2149 
2150 	return debugctl;
2151 }
2152 
2153 /*
2154  * Writes msr value into the appropriate "register".
2155  * Returns 0 on success, non-0 otherwise.
2156  * Assumes vcpu_load() was already called.
2157  */
2158 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2159 {
2160 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2161 	struct vmx_uret_msr *msr;
2162 	int ret = 0;
2163 	u32 msr_index = msr_info->index;
2164 	u64 data = msr_info->data;
2165 	u32 index;
2166 
2167 	switch (msr_index) {
2168 	case MSR_EFER:
2169 		ret = kvm_set_msr_common(vcpu, msr_info);
2170 		break;
2171 #ifdef CONFIG_X86_64
2172 	case MSR_FS_BASE:
2173 		vmx_segment_cache_clear(vmx);
2174 		vmcs_writel(GUEST_FS_BASE, data);
2175 		break;
2176 	case MSR_GS_BASE:
2177 		vmx_segment_cache_clear(vmx);
2178 		vmcs_writel(GUEST_GS_BASE, data);
2179 		break;
2180 	case MSR_KERNEL_GS_BASE:
2181 		vmx_write_guest_kernel_gs_base(vmx, data);
2182 		break;
2183 	case MSR_IA32_XFD:
2184 		ret = kvm_set_msr_common(vcpu, msr_info);
2185 		/*
2186 		 * Always intercepting WRMSR could incur non-negligible
2187 		 * overhead given xfd might be changed frequently in
2188 		 * guest context switch. Disable write interception
2189 		 * upon the first write with a non-zero value (indicating
2190 		 * potential usage on dynamic xfeatures). Also update
2191 		 * exception bitmap to trap #NM for proper virtualization
2192 		 * of guest xfd_err.
2193 		 */
2194 		if (!ret && data) {
2195 			vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2196 						      MSR_TYPE_RW);
2197 			vcpu->arch.xfd_no_write_intercept = true;
2198 			vmx_update_exception_bitmap(vcpu);
2199 		}
2200 		break;
2201 #endif
2202 	case MSR_IA32_SYSENTER_CS:
2203 		if (is_guest_mode(vcpu))
2204 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
2205 		vmcs_write32(GUEST_SYSENTER_CS, data);
2206 		break;
2207 	case MSR_IA32_SYSENTER_EIP:
2208 		if (is_guest_mode(vcpu)) {
2209 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2210 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
2211 		}
2212 		vmcs_writel(GUEST_SYSENTER_EIP, data);
2213 		break;
2214 	case MSR_IA32_SYSENTER_ESP:
2215 		if (is_guest_mode(vcpu)) {
2216 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2217 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
2218 		}
2219 		vmcs_writel(GUEST_SYSENTER_ESP, data);
2220 		break;
2221 	case MSR_IA32_DEBUGCTLMSR: {
2222 		u64 invalid;
2223 
2224 		invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2225 		if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2226 			kvm_pr_unimpl_wrmsr(vcpu, msr_index, data);
2227 			data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2228 			invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2229 		}
2230 
2231 		if (invalid)
2232 			return 1;
2233 
2234 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2235 						VM_EXIT_SAVE_DEBUG_CONTROLS)
2236 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2237 
2238 		vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2239 		if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2240 		    (data & DEBUGCTLMSR_LBR))
2241 			intel_pmu_create_guest_lbr_event(vcpu);
2242 		return 0;
2243 	}
2244 	case MSR_IA32_BNDCFGS:
2245 		if (!kvm_mpx_supported() ||
2246 		    (!msr_info->host_initiated &&
2247 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2248 			return 1;
2249 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2250 		    (data & MSR_IA32_BNDCFGS_RSVD))
2251 			return 1;
2252 
2253 		if (is_guest_mode(vcpu) &&
2254 		    ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2255 		     (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2256 			get_vmcs12(vcpu)->guest_bndcfgs = data;
2257 
2258 		vmcs_write64(GUEST_BNDCFGS, data);
2259 		break;
2260 	case MSR_IA32_UMWAIT_CONTROL:
2261 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2262 			return 1;
2263 
2264 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2265 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2266 			return 1;
2267 
2268 		vmx->msr_ia32_umwait_control = data;
2269 		break;
2270 	case MSR_IA32_SPEC_CTRL:
2271 		if (!msr_info->host_initiated &&
2272 		    !guest_has_spec_ctrl_msr(vcpu))
2273 			return 1;
2274 
2275 		if (kvm_spec_ctrl_test_value(data))
2276 			return 1;
2277 
2278 		vmx->spec_ctrl = data;
2279 		if (!data)
2280 			break;
2281 
2282 		/*
2283 		 * For non-nested:
2284 		 * When it's written (to non-zero) for the first time, pass
2285 		 * it through.
2286 		 *
2287 		 * For nested:
2288 		 * The handling of the MSR bitmap for L2 guests is done in
2289 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2290 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2291 		 * in the merging. We update the vmcs01 here for L1 as well
2292 		 * since it will end up touching the MSR anyway now.
2293 		 */
2294 		vmx_disable_intercept_for_msr(vcpu,
2295 					      MSR_IA32_SPEC_CTRL,
2296 					      MSR_TYPE_RW);
2297 		break;
2298 	case MSR_IA32_TSX_CTRL:
2299 		if (!msr_info->host_initiated &&
2300 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2301 			return 1;
2302 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2303 			return 1;
2304 		goto find_uret_msr;
2305 	case MSR_IA32_CR_PAT:
2306 		ret = kvm_set_msr_common(vcpu, msr_info);
2307 		if (ret)
2308 			break;
2309 
2310 		if (is_guest_mode(vcpu) &&
2311 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2312 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2313 
2314 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
2315 			vmcs_write64(GUEST_IA32_PAT, data);
2316 		break;
2317 	case MSR_IA32_MCG_EXT_CTL:
2318 		if ((!msr_info->host_initiated &&
2319 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2320 		       FEAT_CTL_LMCE_ENABLED)) ||
2321 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2322 			return 1;
2323 		vcpu->arch.mcg_ext_ctl = data;
2324 		break;
2325 	case MSR_IA32_FEAT_CTL:
2326 		if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2327 			return 1;
2328 
2329 		vmx->msr_ia32_feature_control = data;
2330 		if (msr_info->host_initiated && data == 0)
2331 			vmx_leave_nested(vcpu);
2332 
2333 		/* SGX may be enabled/disabled by guest's firmware */
2334 		vmx_write_encls_bitmap(vcpu, NULL);
2335 		break;
2336 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2337 		/*
2338 		 * On real hardware, the LE hash MSRs are writable before
2339 		 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2340 		 * at which point SGX related bits in IA32_FEATURE_CONTROL
2341 		 * become writable.
2342 		 *
2343 		 * KVM does not emulate SGX activation for simplicity, so
2344 		 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2345 		 * is unlocked.  This is technically not architectural
2346 		 * behavior, but it's close enough.
2347 		 */
2348 		if (!msr_info->host_initiated &&
2349 		    (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2350 		    ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2351 		    !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2352 			return 1;
2353 		vmx->msr_ia32_sgxlepubkeyhash
2354 			[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2355 		break;
2356 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2357 		if (!msr_info->host_initiated)
2358 			return 1; /* they are read-only */
2359 		if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2360 			return 1;
2361 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2362 	case MSR_IA32_RTIT_CTL:
2363 		if (!vmx_pt_mode_is_host_guest() ||
2364 			vmx_rtit_ctl_check(vcpu, data) ||
2365 			vmx->nested.vmxon)
2366 			return 1;
2367 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2368 		vmx->pt_desc.guest.ctl = data;
2369 		pt_update_intercept_for_msr(vcpu);
2370 		break;
2371 	case MSR_IA32_RTIT_STATUS:
2372 		if (!pt_can_write_msr(vmx))
2373 			return 1;
2374 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2375 			return 1;
2376 		vmx->pt_desc.guest.status = data;
2377 		break;
2378 	case MSR_IA32_RTIT_CR3_MATCH:
2379 		if (!pt_can_write_msr(vmx))
2380 			return 1;
2381 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2382 					   PT_CAP_cr3_filtering))
2383 			return 1;
2384 		vmx->pt_desc.guest.cr3_match = data;
2385 		break;
2386 	case MSR_IA32_RTIT_OUTPUT_BASE:
2387 		if (!pt_can_write_msr(vmx))
2388 			return 1;
2389 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2390 					   PT_CAP_topa_output) &&
2391 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2392 					   PT_CAP_single_range_output))
2393 			return 1;
2394 		if (!pt_output_base_valid(vcpu, data))
2395 			return 1;
2396 		vmx->pt_desc.guest.output_base = data;
2397 		break;
2398 	case MSR_IA32_RTIT_OUTPUT_MASK:
2399 		if (!pt_can_write_msr(vmx))
2400 			return 1;
2401 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2402 					   PT_CAP_topa_output) &&
2403 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2404 					   PT_CAP_single_range_output))
2405 			return 1;
2406 		vmx->pt_desc.guest.output_mask = data;
2407 		break;
2408 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2409 		if (!pt_can_write_msr(vmx))
2410 			return 1;
2411 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2412 		if (index >= 2 * vmx->pt_desc.num_address_ranges)
2413 			return 1;
2414 		if (is_noncanonical_address(data, vcpu))
2415 			return 1;
2416 		if (index % 2)
2417 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2418 		else
2419 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2420 		break;
2421 	case MSR_IA32_PERF_CAPABILITIES:
2422 		if (data && !vcpu_to_pmu(vcpu)->version)
2423 			return 1;
2424 		if (data & PMU_CAP_LBR_FMT) {
2425 			if ((data & PMU_CAP_LBR_FMT) !=
2426 			    (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT))
2427 				return 1;
2428 			if (!cpuid_model_is_consistent(vcpu))
2429 				return 1;
2430 		}
2431 		if (data & PERF_CAP_PEBS_FORMAT) {
2432 			if ((data & PERF_CAP_PEBS_MASK) !=
2433 			    (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2434 				return 1;
2435 			if (!guest_cpuid_has(vcpu, X86_FEATURE_DS))
2436 				return 1;
2437 			if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64))
2438 				return 1;
2439 			if (!cpuid_model_is_consistent(vcpu))
2440 				return 1;
2441 		}
2442 		ret = kvm_set_msr_common(vcpu, msr_info);
2443 		break;
2444 
2445 	default:
2446 	find_uret_msr:
2447 		msr = vmx_find_uret_msr(vmx, msr_index);
2448 		if (msr)
2449 			ret = vmx_set_guest_uret_msr(vmx, msr, data);
2450 		else
2451 			ret = kvm_set_msr_common(vcpu, msr_info);
2452 	}
2453 
2454 	/* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2455 	if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2456 		vmx_update_fb_clear_dis(vcpu, vmx);
2457 
2458 	return ret;
2459 }
2460 
2461 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2462 {
2463 	unsigned long guest_owned_bits;
2464 
2465 	kvm_register_mark_available(vcpu, reg);
2466 
2467 	switch (reg) {
2468 	case VCPU_REGS_RSP:
2469 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2470 		break;
2471 	case VCPU_REGS_RIP:
2472 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2473 		break;
2474 	case VCPU_EXREG_PDPTR:
2475 		if (enable_ept)
2476 			ept_save_pdptrs(vcpu);
2477 		break;
2478 	case VCPU_EXREG_CR0:
2479 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2480 
2481 		vcpu->arch.cr0 &= ~guest_owned_bits;
2482 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2483 		break;
2484 	case VCPU_EXREG_CR3:
2485 		/*
2486 		 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2487 		 * CR3 is loaded into hardware, not the guest's CR3.
2488 		 */
2489 		if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2490 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2491 		break;
2492 	case VCPU_EXREG_CR4:
2493 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2494 
2495 		vcpu->arch.cr4 &= ~guest_owned_bits;
2496 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2497 		break;
2498 	default:
2499 		KVM_BUG_ON(1, vcpu->kvm);
2500 		break;
2501 	}
2502 }
2503 
2504 /*
2505  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2506  * directly instead of going through cpu_has(), to ensure KVM is trapping
2507  * ENCLS whenever it's supported in hardware.  It does not matter whether
2508  * the host OS supports or has enabled SGX.
2509  */
2510 static bool cpu_has_sgx(void)
2511 {
2512 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2513 }
2514 
2515 /*
2516  * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2517  * can't be used due to errata where VM Exit may incorrectly clear
2518  * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the
2519  * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2520  */
2521 static bool cpu_has_perf_global_ctrl_bug(void)
2522 {
2523 	if (boot_cpu_data.x86 == 0x6) {
2524 		switch (boot_cpu_data.x86_model) {
2525 		case INTEL_FAM6_NEHALEM_EP:	/* AAK155 */
2526 		case INTEL_FAM6_NEHALEM:	/* AAP115 */
2527 		case INTEL_FAM6_WESTMERE:	/* AAT100 */
2528 		case INTEL_FAM6_WESTMERE_EP:	/* BC86,AAY89,BD102 */
2529 		case INTEL_FAM6_NEHALEM_EX:	/* BA97 */
2530 			return true;
2531 		default:
2532 			break;
2533 		}
2534 	}
2535 
2536 	return false;
2537 }
2538 
2539 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
2540 {
2541 	u32 vmx_msr_low, vmx_msr_high;
2542 	u32 ctl = ctl_min | ctl_opt;
2543 
2544 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2545 
2546 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2547 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2548 
2549 	/* Ensure minimum (required) set of control bits are supported. */
2550 	if (ctl_min & ~ctl)
2551 		return -EIO;
2552 
2553 	*result = ctl;
2554 	return 0;
2555 }
2556 
2557 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2558 {
2559 	u64 allowed;
2560 
2561 	rdmsrl(msr, allowed);
2562 
2563 	return  ctl_opt & allowed;
2564 }
2565 
2566 static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2567 			     struct vmx_capability *vmx_cap)
2568 {
2569 	u32 vmx_msr_low, vmx_msr_high;
2570 	u32 _pin_based_exec_control = 0;
2571 	u32 _cpu_based_exec_control = 0;
2572 	u32 _cpu_based_2nd_exec_control = 0;
2573 	u64 _cpu_based_3rd_exec_control = 0;
2574 	u32 _vmexit_control = 0;
2575 	u32 _vmentry_control = 0;
2576 	u64 misc_msr;
2577 	int i;
2578 
2579 	/*
2580 	 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2581 	 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2582 	 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2583 	 */
2584 	struct {
2585 		u32 entry_control;
2586 		u32 exit_control;
2587 	} const vmcs_entry_exit_pairs[] = {
2588 		{ VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,	VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2589 		{ VM_ENTRY_LOAD_IA32_PAT,		VM_EXIT_LOAD_IA32_PAT },
2590 		{ VM_ENTRY_LOAD_IA32_EFER,		VM_EXIT_LOAD_IA32_EFER },
2591 		{ VM_ENTRY_LOAD_BNDCFGS,		VM_EXIT_CLEAR_BNDCFGS },
2592 		{ VM_ENTRY_LOAD_IA32_RTIT_CTL,		VM_EXIT_CLEAR_IA32_RTIT_CTL },
2593 	};
2594 
2595 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2596 
2597 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2598 				KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2599 				MSR_IA32_VMX_PROCBASED_CTLS,
2600 				&_cpu_based_exec_control))
2601 		return -EIO;
2602 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2603 		if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2604 					KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2605 					MSR_IA32_VMX_PROCBASED_CTLS2,
2606 					&_cpu_based_2nd_exec_control))
2607 			return -EIO;
2608 	}
2609 #ifndef CONFIG_X86_64
2610 	if (!(_cpu_based_2nd_exec_control &
2611 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2612 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2613 #endif
2614 
2615 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2616 		_cpu_based_2nd_exec_control &= ~(
2617 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2618 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2619 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2620 
2621 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2622 		&vmx_cap->ept, &vmx_cap->vpid);
2623 
2624 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2625 	    vmx_cap->ept) {
2626 		pr_warn_once("EPT CAP should not exist if not support "
2627 				"1-setting enable EPT VM-execution control\n");
2628 
2629 		if (error_on_inconsistent_vmcs_config)
2630 			return -EIO;
2631 
2632 		vmx_cap->ept = 0;
2633 	}
2634 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2635 	    vmx_cap->vpid) {
2636 		pr_warn_once("VPID CAP should not exist if not support "
2637 				"1-setting enable VPID VM-execution control\n");
2638 
2639 		if (error_on_inconsistent_vmcs_config)
2640 			return -EIO;
2641 
2642 		vmx_cap->vpid = 0;
2643 	}
2644 
2645 	if (!cpu_has_sgx())
2646 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2647 
2648 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2649 		_cpu_based_3rd_exec_control =
2650 			adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2651 					      MSR_IA32_VMX_PROCBASED_CTLS3);
2652 
2653 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2654 				KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2655 				MSR_IA32_VMX_EXIT_CTLS,
2656 				&_vmexit_control))
2657 		return -EIO;
2658 
2659 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2660 				KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2661 				MSR_IA32_VMX_PINBASED_CTLS,
2662 				&_pin_based_exec_control))
2663 		return -EIO;
2664 
2665 	if (cpu_has_broken_vmx_preemption_timer())
2666 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2667 	if (!(_cpu_based_2nd_exec_control &
2668 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2669 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2670 
2671 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2672 				KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2673 				MSR_IA32_VMX_ENTRY_CTLS,
2674 				&_vmentry_control))
2675 		return -EIO;
2676 
2677 	for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) {
2678 		u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control;
2679 		u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control;
2680 
2681 		if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl))
2682 			continue;
2683 
2684 		pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n",
2685 			     _vmentry_control & n_ctrl, _vmexit_control & x_ctrl);
2686 
2687 		if (error_on_inconsistent_vmcs_config)
2688 			return -EIO;
2689 
2690 		_vmentry_control &= ~n_ctrl;
2691 		_vmexit_control &= ~x_ctrl;
2692 	}
2693 
2694 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2695 
2696 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2697 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2698 		return -EIO;
2699 
2700 #ifdef CONFIG_X86_64
2701 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2702 	if (vmx_msr_high & (1u<<16))
2703 		return -EIO;
2704 #endif
2705 
2706 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2707 	if (((vmx_msr_high >> 18) & 15) != 6)
2708 		return -EIO;
2709 
2710 	rdmsrl(MSR_IA32_VMX_MISC, misc_msr);
2711 
2712 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2713 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2714 
2715 	vmcs_conf->revision_id = vmx_msr_low;
2716 
2717 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2718 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2719 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2720 	vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2721 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2722 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2723 	vmcs_conf->misc	= misc_msr;
2724 
2725 #if IS_ENABLED(CONFIG_HYPERV)
2726 	if (enlightened_vmcs)
2727 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2728 #endif
2729 
2730 	return 0;
2731 }
2732 
2733 static bool __kvm_is_vmx_supported(void)
2734 {
2735 	int cpu = smp_processor_id();
2736 
2737 	if (!(cpuid_ecx(1) & feature_bit(VMX))) {
2738 		pr_err("VMX not supported by CPU %d\n", cpu);
2739 		return false;
2740 	}
2741 
2742 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2743 	    !this_cpu_has(X86_FEATURE_VMX)) {
2744 		pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
2745 		return false;
2746 	}
2747 
2748 	return true;
2749 }
2750 
2751 static bool kvm_is_vmx_supported(void)
2752 {
2753 	bool supported;
2754 
2755 	migrate_disable();
2756 	supported = __kvm_is_vmx_supported();
2757 	migrate_enable();
2758 
2759 	return supported;
2760 }
2761 
2762 static int vmx_check_processor_compat(void)
2763 {
2764 	int cpu = raw_smp_processor_id();
2765 	struct vmcs_config vmcs_conf;
2766 	struct vmx_capability vmx_cap;
2767 
2768 	if (!__kvm_is_vmx_supported())
2769 		return -EIO;
2770 
2771 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
2772 		pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
2773 		return -EIO;
2774 	}
2775 	if (nested)
2776 		nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
2777 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
2778 		pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
2779 		return -EIO;
2780 	}
2781 	return 0;
2782 }
2783 
2784 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2785 {
2786 	u64 msr;
2787 
2788 	cr4_set_bits(X86_CR4_VMXE);
2789 
2790 	asm goto("1: vmxon %[vmxon_pointer]\n\t"
2791 			  _ASM_EXTABLE(1b, %l[fault])
2792 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2793 			  : : fault);
2794 	return 0;
2795 
2796 fault:
2797 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2798 		  rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2799 	cr4_clear_bits(X86_CR4_VMXE);
2800 
2801 	return -EFAULT;
2802 }
2803 
2804 static int vmx_hardware_enable(void)
2805 {
2806 	int cpu = raw_smp_processor_id();
2807 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2808 	int r;
2809 
2810 	if (cr4_read_shadow() & X86_CR4_VMXE)
2811 		return -EBUSY;
2812 
2813 	/*
2814 	 * This can happen if we hot-added a CPU but failed to allocate
2815 	 * VP assist page for it.
2816 	 */
2817 	if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
2818 		return -EFAULT;
2819 
2820 	intel_pt_handle_vmx(1);
2821 
2822 	r = kvm_cpu_vmxon(phys_addr);
2823 	if (r) {
2824 		intel_pt_handle_vmx(0);
2825 		return r;
2826 	}
2827 
2828 	if (enable_ept)
2829 		ept_sync_global();
2830 
2831 	return 0;
2832 }
2833 
2834 static void vmclear_local_loaded_vmcss(void)
2835 {
2836 	int cpu = raw_smp_processor_id();
2837 	struct loaded_vmcs *v, *n;
2838 
2839 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2840 				 loaded_vmcss_on_cpu_link)
2841 		__loaded_vmcs_clear(v);
2842 }
2843 
2844 static void vmx_hardware_disable(void)
2845 {
2846 	vmclear_local_loaded_vmcss();
2847 
2848 	if (kvm_cpu_vmxoff())
2849 		kvm_spurious_fault();
2850 
2851 	hv_reset_evmcs();
2852 
2853 	intel_pt_handle_vmx(0);
2854 }
2855 
2856 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2857 {
2858 	int node = cpu_to_node(cpu);
2859 	struct page *pages;
2860 	struct vmcs *vmcs;
2861 
2862 	pages = __alloc_pages_node(node, flags, 0);
2863 	if (!pages)
2864 		return NULL;
2865 	vmcs = page_address(pages);
2866 	memset(vmcs, 0, vmcs_config.size);
2867 
2868 	/* KVM supports Enlightened VMCS v1 only */
2869 	if (kvm_is_using_evmcs())
2870 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2871 	else
2872 		vmcs->hdr.revision_id = vmcs_config.revision_id;
2873 
2874 	if (shadow)
2875 		vmcs->hdr.shadow_vmcs = 1;
2876 	return vmcs;
2877 }
2878 
2879 void free_vmcs(struct vmcs *vmcs)
2880 {
2881 	free_page((unsigned long)vmcs);
2882 }
2883 
2884 /*
2885  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2886  */
2887 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2888 {
2889 	if (!loaded_vmcs->vmcs)
2890 		return;
2891 	loaded_vmcs_clear(loaded_vmcs);
2892 	free_vmcs(loaded_vmcs->vmcs);
2893 	loaded_vmcs->vmcs = NULL;
2894 	if (loaded_vmcs->msr_bitmap)
2895 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2896 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2897 }
2898 
2899 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2900 {
2901 	loaded_vmcs->vmcs = alloc_vmcs(false);
2902 	if (!loaded_vmcs->vmcs)
2903 		return -ENOMEM;
2904 
2905 	vmcs_clear(loaded_vmcs->vmcs);
2906 
2907 	loaded_vmcs->shadow_vmcs = NULL;
2908 	loaded_vmcs->hv_timer_soft_disabled = false;
2909 	loaded_vmcs->cpu = -1;
2910 	loaded_vmcs->launched = 0;
2911 
2912 	if (cpu_has_vmx_msr_bitmap()) {
2913 		loaded_vmcs->msr_bitmap = (unsigned long *)
2914 				__get_free_page(GFP_KERNEL_ACCOUNT);
2915 		if (!loaded_vmcs->msr_bitmap)
2916 			goto out_vmcs;
2917 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2918 	}
2919 
2920 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2921 	memset(&loaded_vmcs->controls_shadow, 0,
2922 		sizeof(struct vmcs_controls_shadow));
2923 
2924 	return 0;
2925 
2926 out_vmcs:
2927 	free_loaded_vmcs(loaded_vmcs);
2928 	return -ENOMEM;
2929 }
2930 
2931 static void free_kvm_area(void)
2932 {
2933 	int cpu;
2934 
2935 	for_each_possible_cpu(cpu) {
2936 		free_vmcs(per_cpu(vmxarea, cpu));
2937 		per_cpu(vmxarea, cpu) = NULL;
2938 	}
2939 }
2940 
2941 static __init int alloc_kvm_area(void)
2942 {
2943 	int cpu;
2944 
2945 	for_each_possible_cpu(cpu) {
2946 		struct vmcs *vmcs;
2947 
2948 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2949 		if (!vmcs) {
2950 			free_kvm_area();
2951 			return -ENOMEM;
2952 		}
2953 
2954 		/*
2955 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2956 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2957 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2958 		 *
2959 		 * However, even though not explicitly documented by
2960 		 * TLFS, VMXArea passed as VMXON argument should
2961 		 * still be marked with revision_id reported by
2962 		 * physical CPU.
2963 		 */
2964 		if (kvm_is_using_evmcs())
2965 			vmcs->hdr.revision_id = vmcs_config.revision_id;
2966 
2967 		per_cpu(vmxarea, cpu) = vmcs;
2968 	}
2969 	return 0;
2970 }
2971 
2972 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2973 		struct kvm_segment *save)
2974 {
2975 	if (!emulate_invalid_guest_state) {
2976 		/*
2977 		 * CS and SS RPL should be equal during guest entry according
2978 		 * to VMX spec, but in reality it is not always so. Since vcpu
2979 		 * is in the middle of the transition from real mode to
2980 		 * protected mode it is safe to assume that RPL 0 is a good
2981 		 * default value.
2982 		 */
2983 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2984 			save->selector &= ~SEGMENT_RPL_MASK;
2985 		save->dpl = save->selector & SEGMENT_RPL_MASK;
2986 		save->s = 1;
2987 	}
2988 	__vmx_set_segment(vcpu, save, seg);
2989 }
2990 
2991 static void enter_pmode(struct kvm_vcpu *vcpu)
2992 {
2993 	unsigned long flags;
2994 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2995 
2996 	/*
2997 	 * Update real mode segment cache. It may be not up-to-date if segment
2998 	 * register was written while vcpu was in a guest mode.
2999 	 */
3000 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3001 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3002 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3003 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3004 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3005 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3006 
3007 	vmx->rmode.vm86_active = 0;
3008 
3009 	__vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3010 
3011 	flags = vmcs_readl(GUEST_RFLAGS);
3012 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3013 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3014 	vmcs_writel(GUEST_RFLAGS, flags);
3015 
3016 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3017 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3018 
3019 	vmx_update_exception_bitmap(vcpu);
3020 
3021 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3022 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3023 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3024 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3025 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3026 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3027 }
3028 
3029 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3030 {
3031 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3032 	struct kvm_segment var = *save;
3033 
3034 	var.dpl = 0x3;
3035 	if (seg == VCPU_SREG_CS)
3036 		var.type = 0x3;
3037 
3038 	if (!emulate_invalid_guest_state) {
3039 		var.selector = var.base >> 4;
3040 		var.base = var.base & 0xffff0;
3041 		var.limit = 0xffff;
3042 		var.g = 0;
3043 		var.db = 0;
3044 		var.present = 1;
3045 		var.s = 1;
3046 		var.l = 0;
3047 		var.unusable = 0;
3048 		var.type = 0x3;
3049 		var.avl = 0;
3050 		if (save->base & 0xf)
3051 			pr_warn_once("segment base is not paragraph aligned "
3052 				     "when entering protected mode (seg=%d)", seg);
3053 	}
3054 
3055 	vmcs_write16(sf->selector, var.selector);
3056 	vmcs_writel(sf->base, var.base);
3057 	vmcs_write32(sf->limit, var.limit);
3058 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3059 }
3060 
3061 static void enter_rmode(struct kvm_vcpu *vcpu)
3062 {
3063 	unsigned long flags;
3064 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3065 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
3066 
3067 	/*
3068 	 * KVM should never use VM86 to virtualize Real Mode when L2 is active,
3069 	 * as using VM86 is unnecessary if unrestricted guest is enabled, and
3070 	 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0
3071 	 * should VM-Fail and KVM should reject userspace attempts to stuff
3072 	 * CR0.PG=0 when L2 is active.
3073 	 */
3074 	WARN_ON_ONCE(is_guest_mode(vcpu));
3075 
3076 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3077 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3078 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3079 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3080 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3081 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3082 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3083 
3084 	vmx->rmode.vm86_active = 1;
3085 
3086 	vmx_segment_cache_clear(vmx);
3087 
3088 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3089 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3090 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3091 
3092 	flags = vmcs_readl(GUEST_RFLAGS);
3093 	vmx->rmode.save_rflags = flags;
3094 
3095 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3096 
3097 	vmcs_writel(GUEST_RFLAGS, flags);
3098 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3099 	vmx_update_exception_bitmap(vcpu);
3100 
3101 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3102 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3103 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3104 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3105 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3106 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3107 }
3108 
3109 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3110 {
3111 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3112 
3113 	/* Nothing to do if hardware doesn't support EFER. */
3114 	if (!vmx_find_uret_msr(vmx, MSR_EFER))
3115 		return 0;
3116 
3117 	vcpu->arch.efer = efer;
3118 #ifdef CONFIG_X86_64
3119 	if (efer & EFER_LMA)
3120 		vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3121 	else
3122 		vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3123 #else
3124 	if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3125 		return 1;
3126 #endif
3127 
3128 	vmx_setup_uret_msrs(vmx);
3129 	return 0;
3130 }
3131 
3132 #ifdef CONFIG_X86_64
3133 
3134 static void enter_lmode(struct kvm_vcpu *vcpu)
3135 {
3136 	u32 guest_tr_ar;
3137 
3138 	vmx_segment_cache_clear(to_vmx(vcpu));
3139 
3140 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3141 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3142 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3143 				     __func__);
3144 		vmcs_write32(GUEST_TR_AR_BYTES,
3145 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3146 			     | VMX_AR_TYPE_BUSY_64_TSS);
3147 	}
3148 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3149 }
3150 
3151 static void exit_lmode(struct kvm_vcpu *vcpu)
3152 {
3153 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3154 }
3155 
3156 #endif
3157 
3158 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3159 {
3160 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3161 
3162 	/*
3163 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3164 	 * the CPU is not required to invalidate guest-physical mappings on
3165 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
3166 	 * associated with the root EPT structure and not any particular VPID
3167 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
3168 	 */
3169 	if (enable_ept) {
3170 		ept_sync_global();
3171 	} else if (enable_vpid) {
3172 		if (cpu_has_vmx_invvpid_global()) {
3173 			vpid_sync_vcpu_global();
3174 		} else {
3175 			vpid_sync_vcpu_single(vmx->vpid);
3176 			vpid_sync_vcpu_single(vmx->nested.vpid02);
3177 		}
3178 	}
3179 }
3180 
3181 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3182 {
3183 	if (is_guest_mode(vcpu))
3184 		return nested_get_vpid02(vcpu);
3185 	return to_vmx(vcpu)->vpid;
3186 }
3187 
3188 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3189 {
3190 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3191 	u64 root_hpa = mmu->root.hpa;
3192 
3193 	/* No flush required if the current context is invalid. */
3194 	if (!VALID_PAGE(root_hpa))
3195 		return;
3196 
3197 	if (enable_ept)
3198 		ept_sync_context(construct_eptp(vcpu, root_hpa,
3199 						mmu->root_role.level));
3200 	else
3201 		vpid_sync_context(vmx_get_current_vpid(vcpu));
3202 }
3203 
3204 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3205 {
3206 	/*
3207 	 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3208 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3209 	 */
3210 	vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3211 }
3212 
3213 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3214 {
3215 	/*
3216 	 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3217 	 * vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit are
3218 	 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3219 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3220 	 * i.e. no explicit INVVPID is necessary.
3221 	 */
3222 	vpid_sync_context(vmx_get_current_vpid(vcpu));
3223 }
3224 
3225 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3226 {
3227 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3228 
3229 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3230 		return;
3231 
3232 	if (is_pae_paging(vcpu)) {
3233 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3234 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3235 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3236 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3237 	}
3238 }
3239 
3240 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3241 {
3242 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3243 
3244 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3245 		return;
3246 
3247 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3248 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3249 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3250 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3251 
3252 	kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3253 }
3254 
3255 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3256 			  CPU_BASED_CR3_STORE_EXITING)
3257 
3258 static bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3259 {
3260 	if (is_guest_mode(vcpu))
3261 		return nested_guest_cr0_valid(vcpu, cr0);
3262 
3263 	if (to_vmx(vcpu)->nested.vmxon)
3264 		return nested_host_cr0_valid(vcpu, cr0);
3265 
3266 	return true;
3267 }
3268 
3269 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3270 {
3271 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3272 	unsigned long hw_cr0, old_cr0_pg;
3273 	u32 tmp;
3274 
3275 	old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3276 
3277 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3278 	if (enable_unrestricted_guest)
3279 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3280 	else {
3281 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3282 		if (!enable_ept)
3283 			hw_cr0 |= X86_CR0_WP;
3284 
3285 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3286 			enter_pmode(vcpu);
3287 
3288 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3289 			enter_rmode(vcpu);
3290 	}
3291 
3292 	vmcs_writel(CR0_READ_SHADOW, cr0);
3293 	vmcs_writel(GUEST_CR0, hw_cr0);
3294 	vcpu->arch.cr0 = cr0;
3295 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3296 
3297 #ifdef CONFIG_X86_64
3298 	if (vcpu->arch.efer & EFER_LME) {
3299 		if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3300 			enter_lmode(vcpu);
3301 		else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3302 			exit_lmode(vcpu);
3303 	}
3304 #endif
3305 
3306 	if (enable_ept && !enable_unrestricted_guest) {
3307 		/*
3308 		 * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3309 		 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3310 		 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3311 		 * KVM's CR3 is installed.
3312 		 */
3313 		if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3314 			vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3315 
3316 		/*
3317 		 * When running with EPT but not unrestricted guest, KVM must
3318 		 * intercept CR3 accesses when paging is _disabled_.  This is
3319 		 * necessary because restricted guests can't actually run with
3320 		 * paging disabled, and so KVM stuffs its own CR3 in order to
3321 		 * run the guest when identity mapped page tables.
3322 		 *
3323 		 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3324 		 * update, it may be stale with respect to CR3 interception,
3325 		 * e.g. after nested VM-Enter.
3326 		 *
3327 		 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3328 		 * stores to forward them to L1, even if KVM does not need to
3329 		 * intercept them to preserve its identity mapped page tables.
3330 		 */
3331 		if (!(cr0 & X86_CR0_PG)) {
3332 			exec_controls_setbit(vmx, CR3_EXITING_BITS);
3333 		} else if (!is_guest_mode(vcpu)) {
3334 			exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3335 		} else {
3336 			tmp = exec_controls_get(vmx);
3337 			tmp &= ~CR3_EXITING_BITS;
3338 			tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3339 			exec_controls_set(vmx, tmp);
3340 		}
3341 
3342 		/* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3343 		if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3344 			vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3345 
3346 		/*
3347 		 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3348 		 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3349 		 */
3350 		if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3351 			kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3352 	}
3353 
3354 	/* depends on vcpu->arch.cr0 to be set to a new value */
3355 	vmx->emulation_required = vmx_emulation_required(vcpu);
3356 }
3357 
3358 static int vmx_get_max_ept_level(void)
3359 {
3360 	if (cpu_has_vmx_ept_5levels())
3361 		return 5;
3362 	return 4;
3363 }
3364 
3365 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3366 {
3367 	u64 eptp = VMX_EPTP_MT_WB;
3368 
3369 	eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3370 
3371 	if (enable_ept_ad_bits &&
3372 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3373 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3374 	eptp |= root_hpa;
3375 
3376 	return eptp;
3377 }
3378 
3379 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3380 			     int root_level)
3381 {
3382 	struct kvm *kvm = vcpu->kvm;
3383 	bool update_guest_cr3 = true;
3384 	unsigned long guest_cr3;
3385 	u64 eptp;
3386 
3387 	if (enable_ept) {
3388 		eptp = construct_eptp(vcpu, root_hpa, root_level);
3389 		vmcs_write64(EPT_POINTER, eptp);
3390 
3391 		hv_track_root_tdp(vcpu, root_hpa);
3392 
3393 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3394 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3395 		else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3396 			guest_cr3 = vcpu->arch.cr3;
3397 		else /* vmcs.GUEST_CR3 is already up-to-date. */
3398 			update_guest_cr3 = false;
3399 		vmx_ept_load_pdptrs(vcpu);
3400 	} else {
3401 		guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu) |
3402 			    kvm_get_active_cr3_lam_bits(vcpu);
3403 	}
3404 
3405 	if (update_guest_cr3)
3406 		vmcs_writel(GUEST_CR3, guest_cr3);
3407 }
3408 
3409 
3410 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3411 {
3412 	/*
3413 	 * We operate under the default treatment of SMM, so VMX cannot be
3414 	 * enabled under SMM.  Note, whether or not VMXE is allowed at all,
3415 	 * i.e. is a reserved bit, is handled by common x86 code.
3416 	 */
3417 	if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3418 		return false;
3419 
3420 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3421 		return false;
3422 
3423 	return true;
3424 }
3425 
3426 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3427 {
3428 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
3429 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3430 	unsigned long hw_cr4;
3431 
3432 	/*
3433 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3434 	 * is in force while we are in guest mode.  Do not let guests control
3435 	 * this bit, even if host CR4.MCE == 0.
3436 	 */
3437 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3438 	if (enable_unrestricted_guest)
3439 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3440 	else if (vmx->rmode.vm86_active)
3441 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3442 	else
3443 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3444 
3445 	if (vmx_umip_emulated()) {
3446 		if (cr4 & X86_CR4_UMIP) {
3447 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3448 			hw_cr4 &= ~X86_CR4_UMIP;
3449 		} else if (!is_guest_mode(vcpu) ||
3450 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3451 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3452 		}
3453 	}
3454 
3455 	vcpu->arch.cr4 = cr4;
3456 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3457 
3458 	if (!enable_unrestricted_guest) {
3459 		if (enable_ept) {
3460 			if (!is_paging(vcpu)) {
3461 				hw_cr4 &= ~X86_CR4_PAE;
3462 				hw_cr4 |= X86_CR4_PSE;
3463 			} else if (!(cr4 & X86_CR4_PAE)) {
3464 				hw_cr4 &= ~X86_CR4_PAE;
3465 			}
3466 		}
3467 
3468 		/*
3469 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3470 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3471 		 * to be manually disabled when guest switches to non-paging
3472 		 * mode.
3473 		 *
3474 		 * If !enable_unrestricted_guest, the CPU is always running
3475 		 * with CR0.PG=1 and CR4 needs to be modified.
3476 		 * If enable_unrestricted_guest, the CPU automatically
3477 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3478 		 */
3479 		if (!is_paging(vcpu))
3480 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3481 	}
3482 
3483 	vmcs_writel(CR4_READ_SHADOW, cr4);
3484 	vmcs_writel(GUEST_CR4, hw_cr4);
3485 
3486 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3487 		kvm_update_cpuid_runtime(vcpu);
3488 }
3489 
3490 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3491 {
3492 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3493 	u32 ar;
3494 
3495 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3496 		*var = vmx->rmode.segs[seg];
3497 		if (seg == VCPU_SREG_TR
3498 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3499 			return;
3500 		var->base = vmx_read_guest_seg_base(vmx, seg);
3501 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3502 		return;
3503 	}
3504 	var->base = vmx_read_guest_seg_base(vmx, seg);
3505 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3506 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3507 	ar = vmx_read_guest_seg_ar(vmx, seg);
3508 	var->unusable = (ar >> 16) & 1;
3509 	var->type = ar & 15;
3510 	var->s = (ar >> 4) & 1;
3511 	var->dpl = (ar >> 5) & 3;
3512 	/*
3513 	 * Some userspaces do not preserve unusable property. Since usable
3514 	 * segment has to be present according to VMX spec we can use present
3515 	 * property to amend userspace bug by making unusable segment always
3516 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3517 	 * segment as unusable.
3518 	 */
3519 	var->present = !var->unusable;
3520 	var->avl = (ar >> 12) & 1;
3521 	var->l = (ar >> 13) & 1;
3522 	var->db = (ar >> 14) & 1;
3523 	var->g = (ar >> 15) & 1;
3524 }
3525 
3526 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3527 {
3528 	struct kvm_segment s;
3529 
3530 	if (to_vmx(vcpu)->rmode.vm86_active) {
3531 		vmx_get_segment(vcpu, &s, seg);
3532 		return s.base;
3533 	}
3534 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3535 }
3536 
3537 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3538 {
3539 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3540 
3541 	if (unlikely(vmx->rmode.vm86_active))
3542 		return 0;
3543 	else {
3544 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3545 		return VMX_AR_DPL(ar);
3546 	}
3547 }
3548 
3549 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3550 {
3551 	u32 ar;
3552 
3553 	ar = var->type & 15;
3554 	ar |= (var->s & 1) << 4;
3555 	ar |= (var->dpl & 3) << 5;
3556 	ar |= (var->present & 1) << 7;
3557 	ar |= (var->avl & 1) << 12;
3558 	ar |= (var->l & 1) << 13;
3559 	ar |= (var->db & 1) << 14;
3560 	ar |= (var->g & 1) << 15;
3561 	ar |= (var->unusable || !var->present) << 16;
3562 
3563 	return ar;
3564 }
3565 
3566 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3567 {
3568 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3569 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3570 
3571 	vmx_segment_cache_clear(vmx);
3572 
3573 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3574 		vmx->rmode.segs[seg] = *var;
3575 		if (seg == VCPU_SREG_TR)
3576 			vmcs_write16(sf->selector, var->selector);
3577 		else if (var->s)
3578 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3579 		return;
3580 	}
3581 
3582 	vmcs_writel(sf->base, var->base);
3583 	vmcs_write32(sf->limit, var->limit);
3584 	vmcs_write16(sf->selector, var->selector);
3585 
3586 	/*
3587 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3588 	 * qemu binaries.
3589 	 *   IA32 arch specifies that at the time of processor reset the
3590 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3591 	 * is setting it to 0 in the userland code. This causes invalid guest
3592 	 * state vmexit when "unrestricted guest" mode is turned on.
3593 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3594 	 * tree. Newer qemu binaries with that qemu fix would not need this
3595 	 * kvm hack.
3596 	 */
3597 	if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3598 		var->type |= 0x1; /* Accessed */
3599 
3600 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3601 }
3602 
3603 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3604 {
3605 	__vmx_set_segment(vcpu, var, seg);
3606 
3607 	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3608 }
3609 
3610 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3611 {
3612 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3613 
3614 	*db = (ar >> 14) & 1;
3615 	*l = (ar >> 13) & 1;
3616 }
3617 
3618 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3619 {
3620 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3621 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3622 }
3623 
3624 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3625 {
3626 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3627 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3628 }
3629 
3630 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3631 {
3632 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3633 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3634 }
3635 
3636 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3637 {
3638 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3639 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3640 }
3641 
3642 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3643 {
3644 	struct kvm_segment var;
3645 	u32 ar;
3646 
3647 	vmx_get_segment(vcpu, &var, seg);
3648 	var.dpl = 0x3;
3649 	if (seg == VCPU_SREG_CS)
3650 		var.type = 0x3;
3651 	ar = vmx_segment_access_rights(&var);
3652 
3653 	if (var.base != (var.selector << 4))
3654 		return false;
3655 	if (var.limit != 0xffff)
3656 		return false;
3657 	if (ar != 0xf3)
3658 		return false;
3659 
3660 	return true;
3661 }
3662 
3663 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3664 {
3665 	struct kvm_segment cs;
3666 	unsigned int cs_rpl;
3667 
3668 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3669 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3670 
3671 	if (cs.unusable)
3672 		return false;
3673 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3674 		return false;
3675 	if (!cs.s)
3676 		return false;
3677 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3678 		if (cs.dpl > cs_rpl)
3679 			return false;
3680 	} else {
3681 		if (cs.dpl != cs_rpl)
3682 			return false;
3683 	}
3684 	if (!cs.present)
3685 		return false;
3686 
3687 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3688 	return true;
3689 }
3690 
3691 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3692 {
3693 	struct kvm_segment ss;
3694 	unsigned int ss_rpl;
3695 
3696 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3697 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3698 
3699 	if (ss.unusable)
3700 		return true;
3701 	if (ss.type != 3 && ss.type != 7)
3702 		return false;
3703 	if (!ss.s)
3704 		return false;
3705 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3706 		return false;
3707 	if (!ss.present)
3708 		return false;
3709 
3710 	return true;
3711 }
3712 
3713 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3714 {
3715 	struct kvm_segment var;
3716 	unsigned int rpl;
3717 
3718 	vmx_get_segment(vcpu, &var, seg);
3719 	rpl = var.selector & SEGMENT_RPL_MASK;
3720 
3721 	if (var.unusable)
3722 		return true;
3723 	if (!var.s)
3724 		return false;
3725 	if (!var.present)
3726 		return false;
3727 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3728 		if (var.dpl < rpl) /* DPL < RPL */
3729 			return false;
3730 	}
3731 
3732 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3733 	 * rights flags
3734 	 */
3735 	return true;
3736 }
3737 
3738 static bool tr_valid(struct kvm_vcpu *vcpu)
3739 {
3740 	struct kvm_segment tr;
3741 
3742 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3743 
3744 	if (tr.unusable)
3745 		return false;
3746 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3747 		return false;
3748 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3749 		return false;
3750 	if (!tr.present)
3751 		return false;
3752 
3753 	return true;
3754 }
3755 
3756 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3757 {
3758 	struct kvm_segment ldtr;
3759 
3760 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3761 
3762 	if (ldtr.unusable)
3763 		return true;
3764 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3765 		return false;
3766 	if (ldtr.type != 2)
3767 		return false;
3768 	if (!ldtr.present)
3769 		return false;
3770 
3771 	return true;
3772 }
3773 
3774 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3775 {
3776 	struct kvm_segment cs, ss;
3777 
3778 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3779 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3780 
3781 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3782 		 (ss.selector & SEGMENT_RPL_MASK));
3783 }
3784 
3785 /*
3786  * Check if guest state is valid. Returns true if valid, false if
3787  * not.
3788  * We assume that registers are always usable
3789  */
3790 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3791 {
3792 	/* real mode guest state checks */
3793 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3794 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3795 			return false;
3796 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3797 			return false;
3798 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3799 			return false;
3800 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3801 			return false;
3802 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3803 			return false;
3804 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3805 			return false;
3806 	} else {
3807 	/* protected mode guest state checks */
3808 		if (!cs_ss_rpl_check(vcpu))
3809 			return false;
3810 		if (!code_segment_valid(vcpu))
3811 			return false;
3812 		if (!stack_segment_valid(vcpu))
3813 			return false;
3814 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3815 			return false;
3816 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3817 			return false;
3818 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3819 			return false;
3820 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3821 			return false;
3822 		if (!tr_valid(vcpu))
3823 			return false;
3824 		if (!ldtr_valid(vcpu))
3825 			return false;
3826 	}
3827 	/* TODO:
3828 	 * - Add checks on RIP
3829 	 * - Add checks on RFLAGS
3830 	 */
3831 
3832 	return true;
3833 }
3834 
3835 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3836 {
3837 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3838 	u16 data;
3839 	int i;
3840 
3841 	for (i = 0; i < 3; i++) {
3842 		if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3843 			return -EFAULT;
3844 	}
3845 
3846 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3847 	if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3848 		return -EFAULT;
3849 
3850 	data = ~0;
3851 	if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3852 		return -EFAULT;
3853 
3854 	return 0;
3855 }
3856 
3857 static int init_rmode_identity_map(struct kvm *kvm)
3858 {
3859 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3860 	int i, r = 0;
3861 	void __user *uaddr;
3862 	u32 tmp;
3863 
3864 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3865 	mutex_lock(&kvm->slots_lock);
3866 
3867 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3868 		goto out;
3869 
3870 	if (!kvm_vmx->ept_identity_map_addr)
3871 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3872 
3873 	uaddr = __x86_set_memory_region(kvm,
3874 					IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3875 					kvm_vmx->ept_identity_map_addr,
3876 					PAGE_SIZE);
3877 	if (IS_ERR(uaddr)) {
3878 		r = PTR_ERR(uaddr);
3879 		goto out;
3880 	}
3881 
3882 	/* Set up identity-mapping pagetable for EPT in real mode */
3883 	for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3884 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3885 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3886 		if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3887 			r = -EFAULT;
3888 			goto out;
3889 		}
3890 	}
3891 	kvm_vmx->ept_identity_pagetable_done = true;
3892 
3893 out:
3894 	mutex_unlock(&kvm->slots_lock);
3895 	return r;
3896 }
3897 
3898 static void seg_setup(int seg)
3899 {
3900 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3901 	unsigned int ar;
3902 
3903 	vmcs_write16(sf->selector, 0);
3904 	vmcs_writel(sf->base, 0);
3905 	vmcs_write32(sf->limit, 0xffff);
3906 	ar = 0x93;
3907 	if (seg == VCPU_SREG_CS)
3908 		ar |= 0x08; /* code segment */
3909 
3910 	vmcs_write32(sf->ar_bytes, ar);
3911 }
3912 
3913 int allocate_vpid(void)
3914 {
3915 	int vpid;
3916 
3917 	if (!enable_vpid)
3918 		return 0;
3919 	spin_lock(&vmx_vpid_lock);
3920 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3921 	if (vpid < VMX_NR_VPIDS)
3922 		__set_bit(vpid, vmx_vpid_bitmap);
3923 	else
3924 		vpid = 0;
3925 	spin_unlock(&vmx_vpid_lock);
3926 	return vpid;
3927 }
3928 
3929 void free_vpid(int vpid)
3930 {
3931 	if (!enable_vpid || vpid == 0)
3932 		return;
3933 	spin_lock(&vmx_vpid_lock);
3934 	__clear_bit(vpid, vmx_vpid_bitmap);
3935 	spin_unlock(&vmx_vpid_lock);
3936 }
3937 
3938 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3939 {
3940 	/*
3941 	 * When KVM is a nested hypervisor on top of Hyper-V and uses
3942 	 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3943 	 * bitmap has changed.
3944 	 */
3945 	if (kvm_is_using_evmcs()) {
3946 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
3947 
3948 		if (evmcs->hv_enlightenments_control.msr_bitmap)
3949 			evmcs->hv_clean_fields &=
3950 				~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
3951 	}
3952 
3953 	vmx->nested.force_msr_bitmap_recalc = true;
3954 }
3955 
3956 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3957 {
3958 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3959 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3960 	int idx;
3961 
3962 	if (!cpu_has_vmx_msr_bitmap())
3963 		return;
3964 
3965 	vmx_msr_bitmap_l01_changed(vmx);
3966 
3967 	/*
3968 	 * Mark the desired intercept state in shadow bitmap, this is needed
3969 	 * for resync when the MSR filters change.
3970 	 */
3971 	idx = vmx_get_passthrough_msr_slot(msr);
3972 	if (idx >= 0) {
3973 		if (type & MSR_TYPE_R)
3974 			clear_bit(idx, vmx->shadow_msr_intercept.read);
3975 		if (type & MSR_TYPE_W)
3976 			clear_bit(idx, vmx->shadow_msr_intercept.write);
3977 	}
3978 
3979 	if ((type & MSR_TYPE_R) &&
3980 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3981 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3982 		type &= ~MSR_TYPE_R;
3983 	}
3984 
3985 	if ((type & MSR_TYPE_W) &&
3986 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3987 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3988 		type &= ~MSR_TYPE_W;
3989 	}
3990 
3991 	if (type & MSR_TYPE_R)
3992 		vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3993 
3994 	if (type & MSR_TYPE_W)
3995 		vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3996 }
3997 
3998 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3999 {
4000 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4001 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
4002 	int idx;
4003 
4004 	if (!cpu_has_vmx_msr_bitmap())
4005 		return;
4006 
4007 	vmx_msr_bitmap_l01_changed(vmx);
4008 
4009 	/*
4010 	 * Mark the desired intercept state in shadow bitmap, this is needed
4011 	 * for resync when the MSR filter changes.
4012 	 */
4013 	idx = vmx_get_passthrough_msr_slot(msr);
4014 	if (idx >= 0) {
4015 		if (type & MSR_TYPE_R)
4016 			set_bit(idx, vmx->shadow_msr_intercept.read);
4017 		if (type & MSR_TYPE_W)
4018 			set_bit(idx, vmx->shadow_msr_intercept.write);
4019 	}
4020 
4021 	if (type & MSR_TYPE_R)
4022 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
4023 
4024 	if (type & MSR_TYPE_W)
4025 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
4026 }
4027 
4028 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
4029 {
4030 	/*
4031 	 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
4032 	 * of the MSR bitmap.  KVM emulates APIC registers up through 0x3f0,
4033 	 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
4034 	 */
4035 	const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
4036 	const int write_idx = read_idx + (0x800 / sizeof(u64));
4037 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4038 	u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
4039 	u8 mode;
4040 
4041 	if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
4042 		return;
4043 
4044 	if (cpu_has_secondary_exec_ctrls() &&
4045 	    (secondary_exec_controls_get(vmx) &
4046 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4047 		mode = MSR_BITMAP_MODE_X2APIC;
4048 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4049 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4050 	} else {
4051 		mode = 0;
4052 	}
4053 
4054 	if (mode == vmx->x2apic_msr_bitmap_mode)
4055 		return;
4056 
4057 	vmx->x2apic_msr_bitmap_mode = mode;
4058 
4059 	/*
4060 	 * Reset the bitmap for MSRs 0x800 - 0x83f.  Leave AMD's uber-extended
4061 	 * registers (0x840 and above) intercepted, KVM doesn't support them.
4062 	 * Intercept all writes by default and poke holes as needed.  Pass
4063 	 * through reads for all valid registers by default in x2APIC+APICv
4064 	 * mode, only the current timer count needs on-demand emulation by KVM.
4065 	 */
4066 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
4067 		msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
4068 	else
4069 		msr_bitmap[read_idx] = ~0ull;
4070 	msr_bitmap[write_idx] = ~0ull;
4071 
4072 	/*
4073 	 * TPR reads and writes can be virtualized even if virtual interrupt
4074 	 * delivery is not in use.
4075 	 */
4076 	vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4077 				  !(mode & MSR_BITMAP_MODE_X2APIC));
4078 
4079 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4080 		vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4081 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4082 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4083 		if (enable_ipiv)
4084 			vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4085 	}
4086 }
4087 
4088 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4089 {
4090 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4091 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4092 	u32 i;
4093 
4094 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4095 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4096 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4097 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4098 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4099 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4100 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4101 	}
4102 }
4103 
4104 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
4105 {
4106 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4107 	void *vapic_page;
4108 	u32 vppr;
4109 	int rvi;
4110 
4111 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
4112 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4113 		WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
4114 		return false;
4115 
4116 	rvi = vmx_get_rvi();
4117 
4118 	vapic_page = vmx->nested.virtual_apic_map.hva;
4119 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
4120 
4121 	return ((rvi & 0xf0) > (vppr & 0xf0));
4122 }
4123 
4124 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
4125 {
4126 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4127 	u32 i;
4128 
4129 	if (!cpu_has_vmx_msr_bitmap())
4130 		return;
4131 
4132 	/*
4133 	 * Redo intercept permissions for MSRs that KVM is passing through to
4134 	 * the guest.  Disabling interception will check the new MSR filter and
4135 	 * ensure that KVM enables interception if usersepace wants to filter
4136 	 * the MSR.  MSRs that KVM is already intercepting don't need to be
4137 	 * refreshed since KVM is going to intercept them regardless of what
4138 	 * userspace wants.
4139 	 */
4140 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4141 		u32 msr = vmx_possible_passthrough_msrs[i];
4142 
4143 		if (!test_bit(i, vmx->shadow_msr_intercept.read))
4144 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R);
4145 
4146 		if (!test_bit(i, vmx->shadow_msr_intercept.write))
4147 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W);
4148 	}
4149 
4150 	/* PT MSRs can be passed through iff PT is exposed to the guest. */
4151 	if (vmx_pt_mode_is_host_guest())
4152 		pt_update_intercept_for_msr(vcpu);
4153 }
4154 
4155 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4156 						     int pi_vec)
4157 {
4158 #ifdef CONFIG_SMP
4159 	if (vcpu->mode == IN_GUEST_MODE) {
4160 		/*
4161 		 * The vector of the virtual has already been set in the PIR.
4162 		 * Send a notification event to deliver the virtual interrupt
4163 		 * unless the vCPU is the currently running vCPU, i.e. the
4164 		 * event is being sent from a fastpath VM-Exit handler, in
4165 		 * which case the PIR will be synced to the vIRR before
4166 		 * re-entering the guest.
4167 		 *
4168 		 * When the target is not the running vCPU, the following
4169 		 * possibilities emerge:
4170 		 *
4171 		 * Case 1: vCPU stays in non-root mode. Sending a notification
4172 		 * event posts the interrupt to the vCPU.
4173 		 *
4174 		 * Case 2: vCPU exits to root mode and is still runnable. The
4175 		 * PIR will be synced to the vIRR before re-entering the guest.
4176 		 * Sending a notification event is ok as the host IRQ handler
4177 		 * will ignore the spurious event.
4178 		 *
4179 		 * Case 3: vCPU exits to root mode and is blocked. vcpu_block()
4180 		 * has already synced PIR to vIRR and never blocks the vCPU if
4181 		 * the vIRR is not empty. Therefore, a blocked vCPU here does
4182 		 * not wait for any requested interrupts in PIR, and sending a
4183 		 * notification event also results in a benign, spurious event.
4184 		 */
4185 
4186 		if (vcpu != kvm_get_running_vcpu())
4187 			__apic_send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4188 		return;
4189 	}
4190 #endif
4191 	/*
4192 	 * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
4193 	 * otherwise do nothing as KVM will grab the highest priority pending
4194 	 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
4195 	 */
4196 	kvm_vcpu_wake_up(vcpu);
4197 }
4198 
4199 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4200 						int vector)
4201 {
4202 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4203 
4204 	if (is_guest_mode(vcpu) &&
4205 	    vector == vmx->nested.posted_intr_nv) {
4206 		/*
4207 		 * If a posted intr is not recognized by hardware,
4208 		 * we will accomplish it in the next vmentry.
4209 		 */
4210 		vmx->nested.pi_pending = true;
4211 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4212 
4213 		/*
4214 		 * This pairs with the smp_mb_*() after setting vcpu->mode in
4215 		 * vcpu_enter_guest() to guarantee the vCPU sees the event
4216 		 * request if triggering a posted interrupt "fails" because
4217 		 * vcpu->mode != IN_GUEST_MODE.  The extra barrier is needed as
4218 		 * the smb_wmb() in kvm_make_request() only ensures everything
4219 		 * done before making the request is visible when the request
4220 		 * is visible, it doesn't ensure ordering between the store to
4221 		 * vcpu->requests and the load from vcpu->mode.
4222 		 */
4223 		smp_mb__after_atomic();
4224 
4225 		/* the PIR and ON have been set by L1. */
4226 		kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4227 		return 0;
4228 	}
4229 	return -1;
4230 }
4231 /*
4232  * Send interrupt to vcpu via posted interrupt way.
4233  * 1. If target vcpu is running(non-root mode), send posted interrupt
4234  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4235  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4236  * interrupt from PIR in next vmentry.
4237  */
4238 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4239 {
4240 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4241 	int r;
4242 
4243 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4244 	if (!r)
4245 		return 0;
4246 
4247 	/* Note, this is called iff the local APIC is in-kernel. */
4248 	if (!vcpu->arch.apic->apicv_active)
4249 		return -1;
4250 
4251 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4252 		return 0;
4253 
4254 	/* If a previous notification has sent the IPI, nothing to do.  */
4255 	if (pi_test_and_set_on(&vmx->pi_desc))
4256 		return 0;
4257 
4258 	/*
4259 	 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4260 	 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4261 	 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4262 	 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4263 	 */
4264 	kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4265 	return 0;
4266 }
4267 
4268 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4269 				  int trig_mode, int vector)
4270 {
4271 	struct kvm_vcpu *vcpu = apic->vcpu;
4272 
4273 	if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4274 		kvm_lapic_set_irr(vector, apic);
4275 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4276 		kvm_vcpu_kick(vcpu);
4277 	} else {
4278 		trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4279 					   trig_mode, vector);
4280 	}
4281 }
4282 
4283 /*
4284  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4285  * will not change in the lifetime of the guest.
4286  * Note that host-state that does change is set elsewhere. E.g., host-state
4287  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4288  */
4289 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4290 {
4291 	u32 low32, high32;
4292 	unsigned long tmpl;
4293 	unsigned long cr0, cr3, cr4;
4294 
4295 	cr0 = read_cr0();
4296 	WARN_ON(cr0 & X86_CR0_TS);
4297 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4298 
4299 	/*
4300 	 * Save the most likely value for this task's CR3 in the VMCS.
4301 	 * We can't use __get_current_cr3_fast() because we're not atomic.
4302 	 */
4303 	cr3 = __read_cr3();
4304 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
4305 	vmx->loaded_vmcs->host_state.cr3 = cr3;
4306 
4307 	/* Save the most likely value for this task's CR4 in the VMCS. */
4308 	cr4 = cr4_read_shadow();
4309 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4310 	vmx->loaded_vmcs->host_state.cr4 = cr4;
4311 
4312 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4313 #ifdef CONFIG_X86_64
4314 	/*
4315 	 * Load null selectors, so we can avoid reloading them in
4316 	 * vmx_prepare_switch_to_host(), in case userspace uses
4317 	 * the null selectors too (the expected case).
4318 	 */
4319 	vmcs_write16(HOST_DS_SELECTOR, 0);
4320 	vmcs_write16(HOST_ES_SELECTOR, 0);
4321 #else
4322 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4323 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4324 #endif
4325 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4326 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4327 
4328 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4329 
4330 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4331 
4332 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4333 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4334 
4335 	/*
4336 	 * SYSENTER is used for 32-bit system calls on either 32-bit or
4337 	 * 64-bit kernels.  It is always zero If neither is allowed, otherwise
4338 	 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4339 	 * have already done so!).
4340 	 */
4341 	if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4342 		vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4343 
4344 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4345 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4346 
4347 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4348 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4349 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4350 	}
4351 
4352 	if (cpu_has_load_ia32_efer())
4353 		vmcs_write64(HOST_IA32_EFER, host_efer);
4354 }
4355 
4356 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4357 {
4358 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4359 
4360 	vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4361 					  ~vcpu->arch.cr4_guest_rsvd_bits;
4362 	if (!enable_ept) {
4363 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4364 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4365 	}
4366 	if (is_guest_mode(&vmx->vcpu))
4367 		vcpu->arch.cr4_guest_owned_bits &=
4368 			~get_vmcs12(vcpu)->cr4_guest_host_mask;
4369 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4370 }
4371 
4372 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4373 {
4374 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4375 
4376 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4377 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4378 
4379 	if (!enable_vnmi)
4380 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4381 
4382 	if (!enable_preemption_timer)
4383 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4384 
4385 	return pin_based_exec_ctrl;
4386 }
4387 
4388 static u32 vmx_vmentry_ctrl(void)
4389 {
4390 	u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4391 
4392 	if (vmx_pt_mode_is_system())
4393 		vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4394 				  VM_ENTRY_LOAD_IA32_RTIT_CTL);
4395 	/*
4396 	 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4397 	 */
4398 	vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4399 			  VM_ENTRY_LOAD_IA32_EFER |
4400 			  VM_ENTRY_IA32E_MODE);
4401 
4402 	if (cpu_has_perf_global_ctrl_bug())
4403 		vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4404 
4405 	return vmentry_ctrl;
4406 }
4407 
4408 static u32 vmx_vmexit_ctrl(void)
4409 {
4410 	u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4411 
4412 	/*
4413 	 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4414 	 * nested virtualization and thus allowed to be set in vmcs12.
4415 	 */
4416 	vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4417 			 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4418 
4419 	if (vmx_pt_mode_is_system())
4420 		vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4421 				 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4422 
4423 	if (cpu_has_perf_global_ctrl_bug())
4424 		vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4425 
4426 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4427 	return vmexit_ctrl &
4428 		~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4429 }
4430 
4431 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4432 {
4433 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4434 
4435 	if (is_guest_mode(vcpu)) {
4436 		vmx->nested.update_vmcs01_apicv_status = true;
4437 		return;
4438 	}
4439 
4440 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4441 
4442 	if (kvm_vcpu_apicv_active(vcpu)) {
4443 		secondary_exec_controls_setbit(vmx,
4444 					       SECONDARY_EXEC_APIC_REGISTER_VIRT |
4445 					       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4446 		if (enable_ipiv)
4447 			tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4448 	} else {
4449 		secondary_exec_controls_clearbit(vmx,
4450 						 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4451 						 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4452 		if (enable_ipiv)
4453 			tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4454 	}
4455 
4456 	vmx_update_msr_bitmap_x2apic(vcpu);
4457 }
4458 
4459 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4460 {
4461 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4462 
4463 	/*
4464 	 * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4465 	 * vmcs12 and propagated to vmcs02 when set in vmcs12.
4466 	 */
4467 	exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4468 			  CPU_BASED_USE_IO_BITMAPS |
4469 			  CPU_BASED_MONITOR_TRAP_FLAG |
4470 			  CPU_BASED_PAUSE_EXITING);
4471 
4472 	/* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4473 	exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4474 			  CPU_BASED_NMI_WINDOW_EXITING);
4475 
4476 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4477 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4478 
4479 	if (!cpu_need_tpr_shadow(&vmx->vcpu))
4480 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4481 
4482 #ifdef CONFIG_X86_64
4483 	if (exec_control & CPU_BASED_TPR_SHADOW)
4484 		exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4485 				  CPU_BASED_CR8_STORE_EXITING);
4486 	else
4487 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4488 				CPU_BASED_CR8_LOAD_EXITING;
4489 #endif
4490 	/* No need to intercept CR3 access or INVPLG when using EPT. */
4491 	if (enable_ept)
4492 		exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4493 				  CPU_BASED_CR3_STORE_EXITING |
4494 				  CPU_BASED_INVLPG_EXITING);
4495 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4496 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4497 				CPU_BASED_MONITOR_EXITING);
4498 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4499 		exec_control &= ~CPU_BASED_HLT_EXITING;
4500 	return exec_control;
4501 }
4502 
4503 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4504 {
4505 	u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4506 
4507 	/*
4508 	 * IPI virtualization relies on APICv. Disable IPI virtualization if
4509 	 * APICv is inhibited.
4510 	 */
4511 	if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4512 		exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4513 
4514 	return exec_control;
4515 }
4516 
4517 /*
4518  * Adjust a single secondary execution control bit to intercept/allow an
4519  * instruction in the guest.  This is usually done based on whether or not a
4520  * feature has been exposed to the guest in order to correctly emulate faults.
4521  */
4522 static inline void
4523 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4524 				  u32 control, bool enabled, bool exiting)
4525 {
4526 	/*
4527 	 * If the control is for an opt-in feature, clear the control if the
4528 	 * feature is not exposed to the guest, i.e. not enabled.  If the
4529 	 * control is opt-out, i.e. an exiting control, clear the control if
4530 	 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4531 	 * disabled for the associated instruction.  Note, the caller is
4532 	 * responsible presetting exec_control to set all supported bits.
4533 	 */
4534 	if (enabled == exiting)
4535 		*exec_control &= ~control;
4536 
4537 	/*
4538 	 * Update the nested MSR settings so that a nested VMM can/can't set
4539 	 * controls for features that are/aren't exposed to the guest.
4540 	 */
4541 	if (nested) {
4542 		/*
4543 		 * All features that can be added or removed to VMX MSRs must
4544 		 * be supported in the first place for nested virtualization.
4545 		 */
4546 		if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4547 			enabled = false;
4548 
4549 		if (enabled)
4550 			vmx->nested.msrs.secondary_ctls_high |= control;
4551 		else
4552 			vmx->nested.msrs.secondary_ctls_high &= ~control;
4553 	}
4554 }
4555 
4556 /*
4557  * Wrapper macro for the common case of adjusting a secondary execution control
4558  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4559  * verifies that the control is actually supported by KVM and hardware.
4560  */
4561 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting)	\
4562 ({												\
4563 	struct kvm_vcpu *__vcpu = &(vmx)->vcpu;							\
4564 	bool __enabled;										\
4565 												\
4566 	if (cpu_has_vmx_##name()) {								\
4567 		if (kvm_is_governed_feature(X86_FEATURE_##feat_name))				\
4568 			__enabled = guest_can_use(__vcpu, X86_FEATURE_##feat_name);		\
4569 		else										\
4570 			__enabled = guest_cpuid_has(__vcpu, X86_FEATURE_##feat_name);		\
4571 		vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\
4572 						  __enabled, exiting);				\
4573 	}											\
4574 })
4575 
4576 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4577 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4578 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4579 
4580 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4581 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4582 
4583 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4584 {
4585 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4586 
4587 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4588 
4589 	if (vmx_pt_mode_is_system())
4590 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4591 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4592 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4593 	if (vmx->vpid == 0)
4594 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4595 	if (!enable_ept) {
4596 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4597 		enable_unrestricted_guest = 0;
4598 	}
4599 	if (!enable_unrestricted_guest)
4600 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4601 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4602 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4603 	if (!kvm_vcpu_apicv_active(vcpu))
4604 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4605 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4606 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4607 
4608 	/*
4609 	 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4610 	 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4611 	 */
4612 	exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
4613 
4614 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4615 	 * in vmx_set_cr4.  */
4616 	exec_control &= ~SECONDARY_EXEC_DESC;
4617 
4618 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4619 	   (handle_vmptrld).
4620 	   We can NOT enable shadow_vmcs here because we don't have yet
4621 	   a current VMCS12
4622 	*/
4623 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4624 
4625 	/*
4626 	 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4627 	 * it needs to be set here when dirty logging is already active, e.g.
4628 	 * if this vCPU was created after dirty logging was enabled.
4629 	 */
4630 	if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
4631 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4632 
4633 	vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES);
4634 
4635 	/*
4636 	 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4637 	 * feature is exposed to the guest.  This creates a virtualization hole
4638 	 * if both are supported in hardware but only one is exposed to the
4639 	 * guest, but letting the guest execute RDTSCP or RDPID when either one
4640 	 * is advertised is preferable to emulating the advertised instruction
4641 	 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4642 	 */
4643 	if (cpu_has_vmx_rdtscp()) {
4644 		bool rdpid_or_rdtscp_enabled =
4645 			guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4646 			guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4647 
4648 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4649 						  SECONDARY_EXEC_ENABLE_RDTSCP,
4650 						  rdpid_or_rdtscp_enabled, false);
4651 	}
4652 
4653 	vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4654 
4655 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4656 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4657 
4658 	vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4659 				    ENABLE_USR_WAIT_PAUSE, false);
4660 
4661 	if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4662 		exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4663 
4664 	if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4665 		exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4666 
4667 	return exec_control;
4668 }
4669 
4670 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4671 {
4672 	return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4673 }
4674 
4675 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4676 {
4677 	struct page *pages;
4678 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4679 
4680 	if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4681 		return 0;
4682 
4683 	if (kvm_vmx->pid_table)
4684 		return 0;
4685 
4686 	pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO,
4687 			    vmx_get_pid_table_order(kvm));
4688 	if (!pages)
4689 		return -ENOMEM;
4690 
4691 	kvm_vmx->pid_table = (void *)page_address(pages);
4692 	return 0;
4693 }
4694 
4695 static int vmx_vcpu_precreate(struct kvm *kvm)
4696 {
4697 	return vmx_alloc_ipiv_pid_table(kvm);
4698 }
4699 
4700 #define VMX_XSS_EXIT_BITMAP 0
4701 
4702 static void init_vmcs(struct vcpu_vmx *vmx)
4703 {
4704 	struct kvm *kvm = vmx->vcpu.kvm;
4705 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4706 
4707 	if (nested)
4708 		nested_vmx_set_vmcs_shadowing_bitmap();
4709 
4710 	if (cpu_has_vmx_msr_bitmap())
4711 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4712 
4713 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4714 
4715 	/* Control */
4716 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4717 
4718 	exec_controls_set(vmx, vmx_exec_control(vmx));
4719 
4720 	if (cpu_has_secondary_exec_ctrls())
4721 		secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4722 
4723 	if (cpu_has_tertiary_exec_ctrls())
4724 		tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4725 
4726 	if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4727 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4728 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4729 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4730 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4731 
4732 		vmcs_write16(GUEST_INTR_STATUS, 0);
4733 
4734 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4735 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4736 	}
4737 
4738 	if (vmx_can_use_ipiv(&vmx->vcpu)) {
4739 		vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4740 		vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4741 	}
4742 
4743 	if (!kvm_pause_in_guest(kvm)) {
4744 		vmcs_write32(PLE_GAP, ple_gap);
4745 		vmx->ple_window = ple_window;
4746 		vmx->ple_window_dirty = true;
4747 	}
4748 
4749 	if (kvm_notify_vmexit_enabled(kvm))
4750 		vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4751 
4752 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4753 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4754 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4755 
4756 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4757 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4758 	vmx_set_constant_host_state(vmx);
4759 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4760 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4761 
4762 	if (cpu_has_vmx_vmfunc())
4763 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4764 
4765 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4766 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4767 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4768 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4769 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4770 
4771 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4772 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4773 
4774 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4775 
4776 	/* 22.2.1, 20.8.1 */
4777 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4778 
4779 	vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4780 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4781 
4782 	set_cr4_guest_host_mask(vmx);
4783 
4784 	if (vmx->vpid != 0)
4785 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4786 
4787 	if (cpu_has_vmx_xsaves())
4788 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4789 
4790 	if (enable_pml) {
4791 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4792 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4793 	}
4794 
4795 	vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4796 
4797 	if (vmx_pt_mode_is_host_guest()) {
4798 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4799 		/* Bit[6~0] are forced to 1, writes are ignored. */
4800 		vmx->pt_desc.guest.output_mask = 0x7F;
4801 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4802 	}
4803 
4804 	vmcs_write32(GUEST_SYSENTER_CS, 0);
4805 	vmcs_writel(GUEST_SYSENTER_ESP, 0);
4806 	vmcs_writel(GUEST_SYSENTER_EIP, 0);
4807 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4808 
4809 	if (cpu_has_vmx_tpr_shadow()) {
4810 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4811 		if (cpu_need_tpr_shadow(&vmx->vcpu))
4812 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4813 				     __pa(vmx->vcpu.arch.apic->regs));
4814 		vmcs_write32(TPR_THRESHOLD, 0);
4815 	}
4816 
4817 	vmx_setup_uret_msrs(vmx);
4818 }
4819 
4820 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4821 {
4822 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4823 
4824 	init_vmcs(vmx);
4825 
4826 	if (nested)
4827 		memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4828 
4829 	vcpu_setup_sgx_lepubkeyhash(vcpu);
4830 
4831 	vmx->nested.posted_intr_nv = -1;
4832 	vmx->nested.vmxon_ptr = INVALID_GPA;
4833 	vmx->nested.current_vmptr = INVALID_GPA;
4834 
4835 #ifdef CONFIG_KVM_HYPERV
4836 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4837 #endif
4838 
4839 	vcpu->arch.microcode_version = 0x100000000ULL;
4840 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4841 
4842 	/*
4843 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4844 	 * or POSTED_INTR_WAKEUP_VECTOR.
4845 	 */
4846 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4847 	vmx->pi_desc.sn = 1;
4848 }
4849 
4850 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4851 {
4852 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4853 
4854 	if (!init_event)
4855 		__vmx_vcpu_reset(vcpu);
4856 
4857 	vmx->rmode.vm86_active = 0;
4858 	vmx->spec_ctrl = 0;
4859 
4860 	vmx->msr_ia32_umwait_control = 0;
4861 
4862 	vmx->hv_deadline_tsc = -1;
4863 	kvm_set_cr8(vcpu, 0);
4864 
4865 	vmx_segment_cache_clear(vmx);
4866 	kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4867 
4868 	seg_setup(VCPU_SREG_CS);
4869 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4870 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4871 
4872 	seg_setup(VCPU_SREG_DS);
4873 	seg_setup(VCPU_SREG_ES);
4874 	seg_setup(VCPU_SREG_FS);
4875 	seg_setup(VCPU_SREG_GS);
4876 	seg_setup(VCPU_SREG_SS);
4877 
4878 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4879 	vmcs_writel(GUEST_TR_BASE, 0);
4880 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4881 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4882 
4883 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4884 	vmcs_writel(GUEST_LDTR_BASE, 0);
4885 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4886 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4887 
4888 	vmcs_writel(GUEST_GDTR_BASE, 0);
4889 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4890 
4891 	vmcs_writel(GUEST_IDTR_BASE, 0);
4892 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4893 
4894 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4895 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4896 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4897 	if (kvm_mpx_supported())
4898 		vmcs_write64(GUEST_BNDCFGS, 0);
4899 
4900 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4901 
4902 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4903 
4904 	vpid_sync_context(vmx->vpid);
4905 
4906 	vmx_update_fb_clear_dis(vcpu, vmx);
4907 }
4908 
4909 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4910 {
4911 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4912 }
4913 
4914 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4915 {
4916 	if (!enable_vnmi ||
4917 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4918 		vmx_enable_irq_window(vcpu);
4919 		return;
4920 	}
4921 
4922 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4923 }
4924 
4925 static void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4926 {
4927 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4928 	uint32_t intr;
4929 	int irq = vcpu->arch.interrupt.nr;
4930 
4931 	trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4932 
4933 	++vcpu->stat.irq_injections;
4934 	if (vmx->rmode.vm86_active) {
4935 		int inc_eip = 0;
4936 		if (vcpu->arch.interrupt.soft)
4937 			inc_eip = vcpu->arch.event_exit_inst_len;
4938 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4939 		return;
4940 	}
4941 	intr = irq | INTR_INFO_VALID_MASK;
4942 	if (vcpu->arch.interrupt.soft) {
4943 		intr |= INTR_TYPE_SOFT_INTR;
4944 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4945 			     vmx->vcpu.arch.event_exit_inst_len);
4946 	} else
4947 		intr |= INTR_TYPE_EXT_INTR;
4948 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4949 
4950 	vmx_clear_hlt(vcpu);
4951 }
4952 
4953 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4954 {
4955 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4956 
4957 	if (!enable_vnmi) {
4958 		/*
4959 		 * Tracking the NMI-blocked state in software is built upon
4960 		 * finding the next open IRQ window. This, in turn, depends on
4961 		 * well-behaving guests: They have to keep IRQs disabled at
4962 		 * least as long as the NMI handler runs. Otherwise we may
4963 		 * cause NMI nesting, maybe breaking the guest. But as this is
4964 		 * highly unlikely, we can live with the residual risk.
4965 		 */
4966 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4967 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4968 	}
4969 
4970 	++vcpu->stat.nmi_injections;
4971 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4972 
4973 	if (vmx->rmode.vm86_active) {
4974 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4975 		return;
4976 	}
4977 
4978 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4979 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4980 
4981 	vmx_clear_hlt(vcpu);
4982 }
4983 
4984 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4985 {
4986 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4987 	bool masked;
4988 
4989 	if (!enable_vnmi)
4990 		return vmx->loaded_vmcs->soft_vnmi_blocked;
4991 	if (vmx->loaded_vmcs->nmi_known_unmasked)
4992 		return false;
4993 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4994 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4995 	return masked;
4996 }
4997 
4998 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4999 {
5000 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5001 
5002 	if (!enable_vnmi) {
5003 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
5004 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
5005 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
5006 		}
5007 	} else {
5008 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5009 		if (masked)
5010 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5011 				      GUEST_INTR_STATE_NMI);
5012 		else
5013 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5014 					GUEST_INTR_STATE_NMI);
5015 	}
5016 }
5017 
5018 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
5019 {
5020 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5021 		return false;
5022 
5023 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
5024 		return true;
5025 
5026 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5027 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
5028 		 GUEST_INTR_STATE_NMI));
5029 }
5030 
5031 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5032 {
5033 	if (to_vmx(vcpu)->nested.nested_run_pending)
5034 		return -EBUSY;
5035 
5036 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
5037 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5038 		return -EBUSY;
5039 
5040 	return !vmx_nmi_blocked(vcpu);
5041 }
5042 
5043 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5044 {
5045 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5046 		return false;
5047 
5048 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
5049 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5050 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5051 }
5052 
5053 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5054 {
5055 	if (to_vmx(vcpu)->nested.nested_run_pending)
5056 		return -EBUSY;
5057 
5058 	/*
5059 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
5060 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
5061 	 */
5062 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5063 		return -EBUSY;
5064 
5065 	return !vmx_interrupt_blocked(vcpu);
5066 }
5067 
5068 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5069 {
5070 	void __user *ret;
5071 
5072 	if (enable_unrestricted_guest)
5073 		return 0;
5074 
5075 	mutex_lock(&kvm->slots_lock);
5076 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5077 				      PAGE_SIZE * 3);
5078 	mutex_unlock(&kvm->slots_lock);
5079 
5080 	if (IS_ERR(ret))
5081 		return PTR_ERR(ret);
5082 
5083 	to_kvm_vmx(kvm)->tss_addr = addr;
5084 
5085 	return init_rmode_tss(kvm, ret);
5086 }
5087 
5088 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5089 {
5090 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5091 	return 0;
5092 }
5093 
5094 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5095 {
5096 	switch (vec) {
5097 	case BP_VECTOR:
5098 		/*
5099 		 * Update instruction length as we may reinject the exception
5100 		 * from user space while in guest debugging mode.
5101 		 */
5102 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5103 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5104 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5105 			return false;
5106 		fallthrough;
5107 	case DB_VECTOR:
5108 		return !(vcpu->guest_debug &
5109 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5110 	case DE_VECTOR:
5111 	case OF_VECTOR:
5112 	case BR_VECTOR:
5113 	case UD_VECTOR:
5114 	case DF_VECTOR:
5115 	case SS_VECTOR:
5116 	case GP_VECTOR:
5117 	case MF_VECTOR:
5118 		return true;
5119 	}
5120 	return false;
5121 }
5122 
5123 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5124 				  int vec, u32 err_code)
5125 {
5126 	/*
5127 	 * Instruction with address size override prefix opcode 0x67
5128 	 * Cause the #SS fault with 0 error code in VM86 mode.
5129 	 */
5130 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5131 		if (kvm_emulate_instruction(vcpu, 0)) {
5132 			if (vcpu->arch.halt_request) {
5133 				vcpu->arch.halt_request = 0;
5134 				return kvm_emulate_halt_noskip(vcpu);
5135 			}
5136 			return 1;
5137 		}
5138 		return 0;
5139 	}
5140 
5141 	/*
5142 	 * Forward all other exceptions that are valid in real mode.
5143 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5144 	 *        the required debugging infrastructure rework.
5145 	 */
5146 	kvm_queue_exception(vcpu, vec);
5147 	return 1;
5148 }
5149 
5150 static int handle_machine_check(struct kvm_vcpu *vcpu)
5151 {
5152 	/* handled by vmx_vcpu_run() */
5153 	return 1;
5154 }
5155 
5156 /*
5157  * If the host has split lock detection disabled, then #AC is
5158  * unconditionally injected into the guest, which is the pre split lock
5159  * detection behaviour.
5160  *
5161  * If the host has split lock detection enabled then #AC is
5162  * only injected into the guest when:
5163  *  - Guest CPL == 3 (user mode)
5164  *  - Guest has #AC detection enabled in CR0
5165  *  - Guest EFLAGS has AC bit set
5166  */
5167 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5168 {
5169 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5170 		return true;
5171 
5172 	return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
5173 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5174 }
5175 
5176 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5177 {
5178 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5179 	struct kvm_run *kvm_run = vcpu->run;
5180 	u32 intr_info, ex_no, error_code;
5181 	unsigned long cr2, dr6;
5182 	u32 vect_info;
5183 
5184 	vect_info = vmx->idt_vectoring_info;
5185 	intr_info = vmx_get_intr_info(vcpu);
5186 
5187 	/*
5188 	 * Machine checks are handled by handle_exception_irqoff(), or by
5189 	 * vmx_vcpu_run() if a #MC occurs on VM-Entry.  NMIs are handled by
5190 	 * vmx_vcpu_enter_exit().
5191 	 */
5192 	if (is_machine_check(intr_info) || is_nmi(intr_info))
5193 		return 1;
5194 
5195 	/*
5196 	 * Queue the exception here instead of in handle_nm_fault_irqoff().
5197 	 * This ensures the nested_vmx check is not skipped so vmexit can
5198 	 * be reflected to L1 (when it intercepts #NM) before reaching this
5199 	 * point.
5200 	 */
5201 	if (is_nm_fault(intr_info)) {
5202 		kvm_queue_exception(vcpu, NM_VECTOR);
5203 		return 1;
5204 	}
5205 
5206 	if (is_invalid_opcode(intr_info))
5207 		return handle_ud(vcpu);
5208 
5209 	error_code = 0;
5210 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5211 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5212 
5213 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5214 		WARN_ON_ONCE(!enable_vmware_backdoor);
5215 
5216 		/*
5217 		 * VMware backdoor emulation on #GP interception only handles
5218 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5219 		 * error code on #GP.
5220 		 */
5221 		if (error_code) {
5222 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5223 			return 1;
5224 		}
5225 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5226 	}
5227 
5228 	/*
5229 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5230 	 * MMIO, it is better to report an internal error.
5231 	 * See the comments in vmx_handle_exit.
5232 	 */
5233 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5234 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5235 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5236 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5237 		vcpu->run->internal.ndata = 4;
5238 		vcpu->run->internal.data[0] = vect_info;
5239 		vcpu->run->internal.data[1] = intr_info;
5240 		vcpu->run->internal.data[2] = error_code;
5241 		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5242 		return 0;
5243 	}
5244 
5245 	if (is_page_fault(intr_info)) {
5246 		cr2 = vmx_get_exit_qual(vcpu);
5247 		if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5248 			/*
5249 			 * EPT will cause page fault only if we need to
5250 			 * detect illegal GPAs.
5251 			 */
5252 			WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5253 			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5254 			return 1;
5255 		} else
5256 			return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5257 	}
5258 
5259 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5260 
5261 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5262 		return handle_rmode_exception(vcpu, ex_no, error_code);
5263 
5264 	switch (ex_no) {
5265 	case DB_VECTOR:
5266 		dr6 = vmx_get_exit_qual(vcpu);
5267 		if (!(vcpu->guest_debug &
5268 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5269 			/*
5270 			 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5271 			 * instruction.  ICEBP generates a trap-like #DB, but
5272 			 * despite its interception control being tied to #DB,
5273 			 * is an instruction intercept, i.e. the VM-Exit occurs
5274 			 * on the ICEBP itself.  Use the inner "skip" helper to
5275 			 * avoid single-step #DB and MTF updates, as ICEBP is
5276 			 * higher priority.  Note, skipping ICEBP still clears
5277 			 * STI and MOVSS blocking.
5278 			 *
5279 			 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5280 			 * if single-step is enabled in RFLAGS and STI or MOVSS
5281 			 * blocking is active, as the CPU doesn't set the bit
5282 			 * on VM-Exit due to #DB interception.  VM-Entry has a
5283 			 * consistency check that a single-step #DB is pending
5284 			 * in this scenario as the previous instruction cannot
5285 			 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5286 			 * don't modify RFLAGS), therefore the one instruction
5287 			 * delay when activating single-step breakpoints must
5288 			 * have already expired.  Note, the CPU sets/clears BS
5289 			 * as appropriate for all other VM-Exits types.
5290 			 */
5291 			if (is_icebp(intr_info))
5292 				WARN_ON(!skip_emulated_instruction(vcpu));
5293 			else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5294 				 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5295 				  (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5296 				vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5297 					    vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5298 
5299 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5300 			return 1;
5301 		}
5302 		kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5303 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5304 		fallthrough;
5305 	case BP_VECTOR:
5306 		/*
5307 		 * Update instruction length as we may reinject #BP from
5308 		 * user space while in guest debugging mode. Reading it for
5309 		 * #DB as well causes no harm, it is not used in that case.
5310 		 */
5311 		vmx->vcpu.arch.event_exit_inst_len =
5312 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5313 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5314 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5315 		kvm_run->debug.arch.exception = ex_no;
5316 		break;
5317 	case AC_VECTOR:
5318 		if (vmx_guest_inject_ac(vcpu)) {
5319 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5320 			return 1;
5321 		}
5322 
5323 		/*
5324 		 * Handle split lock. Depending on detection mode this will
5325 		 * either warn and disable split lock detection for this
5326 		 * task or force SIGBUS on it.
5327 		 */
5328 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5329 			return 1;
5330 		fallthrough;
5331 	default:
5332 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5333 		kvm_run->ex.exception = ex_no;
5334 		kvm_run->ex.error_code = error_code;
5335 		break;
5336 	}
5337 	return 0;
5338 }
5339 
5340 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5341 {
5342 	++vcpu->stat.irq_exits;
5343 	return 1;
5344 }
5345 
5346 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5347 {
5348 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5349 	vcpu->mmio_needed = 0;
5350 	return 0;
5351 }
5352 
5353 static int handle_io(struct kvm_vcpu *vcpu)
5354 {
5355 	unsigned long exit_qualification;
5356 	int size, in, string;
5357 	unsigned port;
5358 
5359 	exit_qualification = vmx_get_exit_qual(vcpu);
5360 	string = (exit_qualification & 16) != 0;
5361 
5362 	++vcpu->stat.io_exits;
5363 
5364 	if (string)
5365 		return kvm_emulate_instruction(vcpu, 0);
5366 
5367 	port = exit_qualification >> 16;
5368 	size = (exit_qualification & 7) + 1;
5369 	in = (exit_qualification & 8) != 0;
5370 
5371 	return kvm_fast_pio(vcpu, size, port, in);
5372 }
5373 
5374 static void
5375 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5376 {
5377 	/*
5378 	 * Patch in the VMCALL instruction:
5379 	 */
5380 	hypercall[0] = 0x0f;
5381 	hypercall[1] = 0x01;
5382 	hypercall[2] = 0xc1;
5383 }
5384 
5385 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5386 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5387 {
5388 	if (is_guest_mode(vcpu)) {
5389 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5390 		unsigned long orig_val = val;
5391 
5392 		/*
5393 		 * We get here when L2 changed cr0 in a way that did not change
5394 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5395 		 * but did change L0 shadowed bits. So we first calculate the
5396 		 * effective cr0 value that L1 would like to write into the
5397 		 * hardware. It consists of the L2-owned bits from the new
5398 		 * value combined with the L1-owned bits from L1's guest_cr0.
5399 		 */
5400 		val = (val & ~vmcs12->cr0_guest_host_mask) |
5401 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5402 
5403 		if (kvm_set_cr0(vcpu, val))
5404 			return 1;
5405 		vmcs_writel(CR0_READ_SHADOW, orig_val);
5406 		return 0;
5407 	} else {
5408 		return kvm_set_cr0(vcpu, val);
5409 	}
5410 }
5411 
5412 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5413 {
5414 	if (is_guest_mode(vcpu)) {
5415 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5416 		unsigned long orig_val = val;
5417 
5418 		/* analogously to handle_set_cr0 */
5419 		val = (val & ~vmcs12->cr4_guest_host_mask) |
5420 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5421 		if (kvm_set_cr4(vcpu, val))
5422 			return 1;
5423 		vmcs_writel(CR4_READ_SHADOW, orig_val);
5424 		return 0;
5425 	} else
5426 		return kvm_set_cr4(vcpu, val);
5427 }
5428 
5429 static int handle_desc(struct kvm_vcpu *vcpu)
5430 {
5431 	/*
5432 	 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this
5433 	 * and other code needs to be updated if UMIP can be guest owned.
5434 	 */
5435 	BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP);
5436 
5437 	WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP));
5438 	return kvm_emulate_instruction(vcpu, 0);
5439 }
5440 
5441 static int handle_cr(struct kvm_vcpu *vcpu)
5442 {
5443 	unsigned long exit_qualification, val;
5444 	int cr;
5445 	int reg;
5446 	int err;
5447 	int ret;
5448 
5449 	exit_qualification = vmx_get_exit_qual(vcpu);
5450 	cr = exit_qualification & 15;
5451 	reg = (exit_qualification >> 8) & 15;
5452 	switch ((exit_qualification >> 4) & 3) {
5453 	case 0: /* mov to cr */
5454 		val = kvm_register_read(vcpu, reg);
5455 		trace_kvm_cr_write(cr, val);
5456 		switch (cr) {
5457 		case 0:
5458 			err = handle_set_cr0(vcpu, val);
5459 			return kvm_complete_insn_gp(vcpu, err);
5460 		case 3:
5461 			WARN_ON_ONCE(enable_unrestricted_guest);
5462 
5463 			err = kvm_set_cr3(vcpu, val);
5464 			return kvm_complete_insn_gp(vcpu, err);
5465 		case 4:
5466 			err = handle_set_cr4(vcpu, val);
5467 			return kvm_complete_insn_gp(vcpu, err);
5468 		case 8: {
5469 				u8 cr8_prev = kvm_get_cr8(vcpu);
5470 				u8 cr8 = (u8)val;
5471 				err = kvm_set_cr8(vcpu, cr8);
5472 				ret = kvm_complete_insn_gp(vcpu, err);
5473 				if (lapic_in_kernel(vcpu))
5474 					return ret;
5475 				if (cr8_prev <= cr8)
5476 					return ret;
5477 				/*
5478 				 * TODO: we might be squashing a
5479 				 * KVM_GUESTDBG_SINGLESTEP-triggered
5480 				 * KVM_EXIT_DEBUG here.
5481 				 */
5482 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5483 				return 0;
5484 			}
5485 		}
5486 		break;
5487 	case 2: /* clts */
5488 		KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5489 		return -EIO;
5490 	case 1: /*mov from cr*/
5491 		switch (cr) {
5492 		case 3:
5493 			WARN_ON_ONCE(enable_unrestricted_guest);
5494 
5495 			val = kvm_read_cr3(vcpu);
5496 			kvm_register_write(vcpu, reg, val);
5497 			trace_kvm_cr_read(cr, val);
5498 			return kvm_skip_emulated_instruction(vcpu);
5499 		case 8:
5500 			val = kvm_get_cr8(vcpu);
5501 			kvm_register_write(vcpu, reg, val);
5502 			trace_kvm_cr_read(cr, val);
5503 			return kvm_skip_emulated_instruction(vcpu);
5504 		}
5505 		break;
5506 	case 3: /* lmsw */
5507 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5508 		trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
5509 		kvm_lmsw(vcpu, val);
5510 
5511 		return kvm_skip_emulated_instruction(vcpu);
5512 	default:
5513 		break;
5514 	}
5515 	vcpu->run->exit_reason = 0;
5516 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5517 	       (int)(exit_qualification >> 4) & 3, cr);
5518 	return 0;
5519 }
5520 
5521 static int handle_dr(struct kvm_vcpu *vcpu)
5522 {
5523 	unsigned long exit_qualification;
5524 	int dr, dr7, reg;
5525 	int err = 1;
5526 
5527 	exit_qualification = vmx_get_exit_qual(vcpu);
5528 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5529 
5530 	/* First, if DR does not exist, trigger UD */
5531 	if (!kvm_require_dr(vcpu, dr))
5532 		return 1;
5533 
5534 	if (vmx_get_cpl(vcpu) > 0)
5535 		goto out;
5536 
5537 	dr7 = vmcs_readl(GUEST_DR7);
5538 	if (dr7 & DR7_GD) {
5539 		/*
5540 		 * As the vm-exit takes precedence over the debug trap, we
5541 		 * need to emulate the latter, either for the host or the
5542 		 * guest debugging itself.
5543 		 */
5544 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5545 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5546 			vcpu->run->debug.arch.dr7 = dr7;
5547 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5548 			vcpu->run->debug.arch.exception = DB_VECTOR;
5549 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5550 			return 0;
5551 		} else {
5552 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5553 			return 1;
5554 		}
5555 	}
5556 
5557 	if (vcpu->guest_debug == 0) {
5558 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5559 
5560 		/*
5561 		 * No more DR vmexits; force a reload of the debug registers
5562 		 * and reenter on this instruction.  The next vmexit will
5563 		 * retrieve the full state of the debug registers.
5564 		 */
5565 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5566 		return 1;
5567 	}
5568 
5569 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5570 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5571 		kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
5572 		err = 0;
5573 	} else {
5574 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5575 	}
5576 
5577 out:
5578 	return kvm_complete_insn_gp(vcpu, err);
5579 }
5580 
5581 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5582 {
5583 	get_debugreg(vcpu->arch.db[0], 0);
5584 	get_debugreg(vcpu->arch.db[1], 1);
5585 	get_debugreg(vcpu->arch.db[2], 2);
5586 	get_debugreg(vcpu->arch.db[3], 3);
5587 	get_debugreg(vcpu->arch.dr6, 6);
5588 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5589 
5590 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5591 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5592 
5593 	/*
5594 	 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5595 	 * a stale dr6 from the guest.
5596 	 */
5597 	set_debugreg(DR6_RESERVED, 6);
5598 }
5599 
5600 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5601 {
5602 	vmcs_writel(GUEST_DR7, val);
5603 }
5604 
5605 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5606 {
5607 	kvm_apic_update_ppr(vcpu);
5608 	return 1;
5609 }
5610 
5611 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5612 {
5613 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5614 
5615 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5616 
5617 	++vcpu->stat.irq_window_exits;
5618 	return 1;
5619 }
5620 
5621 static int handle_invlpg(struct kvm_vcpu *vcpu)
5622 {
5623 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5624 
5625 	kvm_mmu_invlpg(vcpu, exit_qualification);
5626 	return kvm_skip_emulated_instruction(vcpu);
5627 }
5628 
5629 static int handle_apic_access(struct kvm_vcpu *vcpu)
5630 {
5631 	if (likely(fasteoi)) {
5632 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5633 		int access_type, offset;
5634 
5635 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5636 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5637 		/*
5638 		 * Sane guest uses MOV to write EOI, with written value
5639 		 * not cared. So make a short-circuit here by avoiding
5640 		 * heavy instruction emulation.
5641 		 */
5642 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5643 		    (offset == APIC_EOI)) {
5644 			kvm_lapic_set_eoi(vcpu);
5645 			return kvm_skip_emulated_instruction(vcpu);
5646 		}
5647 	}
5648 	return kvm_emulate_instruction(vcpu, 0);
5649 }
5650 
5651 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5652 {
5653 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5654 	int vector = exit_qualification & 0xff;
5655 
5656 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5657 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5658 	return 1;
5659 }
5660 
5661 static int handle_apic_write(struct kvm_vcpu *vcpu)
5662 {
5663 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5664 
5665 	/*
5666 	 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5667 	 * hardware has done any necessary aliasing, offset adjustments, etc...
5668 	 * for the access.  I.e. the correct value has already been  written to
5669 	 * the vAPIC page for the correct 16-byte chunk.  KVM needs only to
5670 	 * retrieve the register value and emulate the access.
5671 	 */
5672 	u32 offset = exit_qualification & 0xff0;
5673 
5674 	kvm_apic_write_nodecode(vcpu, offset);
5675 	return 1;
5676 }
5677 
5678 static int handle_task_switch(struct kvm_vcpu *vcpu)
5679 {
5680 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5681 	unsigned long exit_qualification;
5682 	bool has_error_code = false;
5683 	u32 error_code = 0;
5684 	u16 tss_selector;
5685 	int reason, type, idt_v, idt_index;
5686 
5687 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5688 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5689 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5690 
5691 	exit_qualification = vmx_get_exit_qual(vcpu);
5692 
5693 	reason = (u32)exit_qualification >> 30;
5694 	if (reason == TASK_SWITCH_GATE && idt_v) {
5695 		switch (type) {
5696 		case INTR_TYPE_NMI_INTR:
5697 			vcpu->arch.nmi_injected = false;
5698 			vmx_set_nmi_mask(vcpu, true);
5699 			break;
5700 		case INTR_TYPE_EXT_INTR:
5701 		case INTR_TYPE_SOFT_INTR:
5702 			kvm_clear_interrupt_queue(vcpu);
5703 			break;
5704 		case INTR_TYPE_HARD_EXCEPTION:
5705 			if (vmx->idt_vectoring_info &
5706 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5707 				has_error_code = true;
5708 				error_code =
5709 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5710 			}
5711 			fallthrough;
5712 		case INTR_TYPE_SOFT_EXCEPTION:
5713 			kvm_clear_exception_queue(vcpu);
5714 			break;
5715 		default:
5716 			break;
5717 		}
5718 	}
5719 	tss_selector = exit_qualification;
5720 
5721 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5722 		       type != INTR_TYPE_EXT_INTR &&
5723 		       type != INTR_TYPE_NMI_INTR))
5724 		WARN_ON(!skip_emulated_instruction(vcpu));
5725 
5726 	/*
5727 	 * TODO: What about debug traps on tss switch?
5728 	 *       Are we supposed to inject them and update dr6?
5729 	 */
5730 	return kvm_task_switch(vcpu, tss_selector,
5731 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5732 			       reason, has_error_code, error_code);
5733 }
5734 
5735 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5736 {
5737 	unsigned long exit_qualification;
5738 	gpa_t gpa;
5739 	u64 error_code;
5740 
5741 	exit_qualification = vmx_get_exit_qual(vcpu);
5742 
5743 	/*
5744 	 * EPT violation happened while executing iret from NMI,
5745 	 * "blocked by NMI" bit has to be set before next VM entry.
5746 	 * There are errata that may cause this bit to not be set:
5747 	 * AAK134, BY25.
5748 	 */
5749 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5750 			enable_vnmi &&
5751 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5752 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5753 
5754 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5755 	trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5756 
5757 	/* Is it a read fault? */
5758 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5759 		     ? PFERR_USER_MASK : 0;
5760 	/* Is it a write fault? */
5761 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5762 		      ? PFERR_WRITE_MASK : 0;
5763 	/* Is it a fetch fault? */
5764 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5765 		      ? PFERR_FETCH_MASK : 0;
5766 	/* ept page table entry is present? */
5767 	error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK)
5768 		      ? PFERR_PRESENT_MASK : 0;
5769 
5770 	error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5771 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5772 
5773 	vcpu->arch.exit_qualification = exit_qualification;
5774 
5775 	/*
5776 	 * Check that the GPA doesn't exceed physical memory limits, as that is
5777 	 * a guest page fault.  We have to emulate the instruction here, because
5778 	 * if the illegal address is that of a paging structure, then
5779 	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5780 	 * would also use advanced VM-exit information for EPT violations to
5781 	 * reconstruct the page fault error code.
5782 	 */
5783 	if (unlikely(allow_smaller_maxphyaddr && !kvm_vcpu_is_legal_gpa(vcpu, gpa)))
5784 		return kvm_emulate_instruction(vcpu, 0);
5785 
5786 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5787 }
5788 
5789 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5790 {
5791 	gpa_t gpa;
5792 
5793 	if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5794 		return 1;
5795 
5796 	/*
5797 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5798 	 * nGPA here instead of the required GPA.
5799 	 */
5800 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5801 	if (!is_guest_mode(vcpu) &&
5802 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5803 		trace_kvm_fast_mmio(gpa);
5804 		return kvm_skip_emulated_instruction(vcpu);
5805 	}
5806 
5807 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5808 }
5809 
5810 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5811 {
5812 	if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5813 		return -EIO;
5814 
5815 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5816 	++vcpu->stat.nmi_window_exits;
5817 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5818 
5819 	return 1;
5820 }
5821 
5822 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
5823 {
5824 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5825 
5826 	return vmx->emulation_required && !vmx->rmode.vm86_active &&
5827 	       (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5828 }
5829 
5830 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5831 {
5832 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5833 	bool intr_window_requested;
5834 	unsigned count = 130;
5835 
5836 	intr_window_requested = exec_controls_get(vmx) &
5837 				CPU_BASED_INTR_WINDOW_EXITING;
5838 
5839 	while (vmx->emulation_required && count-- != 0) {
5840 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5841 			return handle_interrupt_window(&vmx->vcpu);
5842 
5843 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5844 			return 1;
5845 
5846 		if (!kvm_emulate_instruction(vcpu, 0))
5847 			return 0;
5848 
5849 		if (vmx_emulation_required_with_pending_exception(vcpu)) {
5850 			kvm_prepare_emulation_failure_exit(vcpu);
5851 			return 0;
5852 		}
5853 
5854 		if (vcpu->arch.halt_request) {
5855 			vcpu->arch.halt_request = 0;
5856 			return kvm_emulate_halt_noskip(vcpu);
5857 		}
5858 
5859 		/*
5860 		 * Note, return 1 and not 0, vcpu_run() will invoke
5861 		 * xfer_to_guest_mode() which will create a proper return
5862 		 * code.
5863 		 */
5864 		if (__xfer_to_guest_mode_work_pending())
5865 			return 1;
5866 	}
5867 
5868 	return 1;
5869 }
5870 
5871 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5872 {
5873 	if (vmx_emulation_required_with_pending_exception(vcpu)) {
5874 		kvm_prepare_emulation_failure_exit(vcpu);
5875 		return 0;
5876 	}
5877 
5878 	return 1;
5879 }
5880 
5881 static void grow_ple_window(struct kvm_vcpu *vcpu)
5882 {
5883 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5884 	unsigned int old = vmx->ple_window;
5885 
5886 	vmx->ple_window = __grow_ple_window(old, ple_window,
5887 					    ple_window_grow,
5888 					    ple_window_max);
5889 
5890 	if (vmx->ple_window != old) {
5891 		vmx->ple_window_dirty = true;
5892 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5893 					    vmx->ple_window, old);
5894 	}
5895 }
5896 
5897 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5898 {
5899 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5900 	unsigned int old = vmx->ple_window;
5901 
5902 	vmx->ple_window = __shrink_ple_window(old, ple_window,
5903 					      ple_window_shrink,
5904 					      ple_window);
5905 
5906 	if (vmx->ple_window != old) {
5907 		vmx->ple_window_dirty = true;
5908 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5909 					    vmx->ple_window, old);
5910 	}
5911 }
5912 
5913 /*
5914  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5915  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5916  */
5917 static int handle_pause(struct kvm_vcpu *vcpu)
5918 {
5919 	if (!kvm_pause_in_guest(vcpu->kvm))
5920 		grow_ple_window(vcpu);
5921 
5922 	/*
5923 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5924 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5925 	 * never set PAUSE_EXITING and just set PLE if supported,
5926 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5927 	 */
5928 	kvm_vcpu_on_spin(vcpu, true);
5929 	return kvm_skip_emulated_instruction(vcpu);
5930 }
5931 
5932 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5933 {
5934 	return 1;
5935 }
5936 
5937 static int handle_invpcid(struct kvm_vcpu *vcpu)
5938 {
5939 	u32 vmx_instruction_info;
5940 	unsigned long type;
5941 	gva_t gva;
5942 	struct {
5943 		u64 pcid;
5944 		u64 gla;
5945 	} operand;
5946 	int gpr_index;
5947 
5948 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5949 		kvm_queue_exception(vcpu, UD_VECTOR);
5950 		return 1;
5951 	}
5952 
5953 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5954 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5955 	type = kvm_register_read(vcpu, gpr_index);
5956 
5957 	/* According to the Intel instruction reference, the memory operand
5958 	 * is read even if it isn't needed (e.g., for type==all)
5959 	 */
5960 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5961 				vmx_instruction_info, false,
5962 				sizeof(operand), &gva))
5963 		return 1;
5964 
5965 	return kvm_handle_invpcid(vcpu, type, gva);
5966 }
5967 
5968 static int handle_pml_full(struct kvm_vcpu *vcpu)
5969 {
5970 	unsigned long exit_qualification;
5971 
5972 	trace_kvm_pml_full(vcpu->vcpu_id);
5973 
5974 	exit_qualification = vmx_get_exit_qual(vcpu);
5975 
5976 	/*
5977 	 * PML buffer FULL happened while executing iret from NMI,
5978 	 * "blocked by NMI" bit has to be set before next VM entry.
5979 	 */
5980 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5981 			enable_vnmi &&
5982 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5983 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5984 				GUEST_INTR_STATE_NMI);
5985 
5986 	/*
5987 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5988 	 * here.., and there's no userspace involvement needed for PML.
5989 	 */
5990 	return 1;
5991 }
5992 
5993 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu,
5994 						   bool force_immediate_exit)
5995 {
5996 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5997 
5998 	/*
5999 	 * In the *extremely* unlikely scenario that this is a spurious VM-Exit
6000 	 * due to the timer expiring while it was "soft" disabled, just eat the
6001 	 * exit and re-enter the guest.
6002 	 */
6003 	if (unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
6004 		return EXIT_FASTPATH_REENTER_GUEST;
6005 
6006 	/*
6007 	 * If the timer expired because KVM used it to force an immediate exit,
6008 	 * then mission accomplished.
6009 	 */
6010 	if (force_immediate_exit)
6011 		return EXIT_FASTPATH_EXIT_HANDLED;
6012 
6013 	/*
6014 	 * If L2 is active, go down the slow path as emulating the guest timer
6015 	 * expiration likely requires synthesizing a nested VM-Exit.
6016 	 */
6017 	if (is_guest_mode(vcpu))
6018 		return EXIT_FASTPATH_NONE;
6019 
6020 	kvm_lapic_expired_hv_timer(vcpu);
6021 	return EXIT_FASTPATH_REENTER_GUEST;
6022 }
6023 
6024 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
6025 {
6026 	/*
6027 	 * This non-fastpath handler is reached if and only if the preemption
6028 	 * timer was being used to emulate a guest timer while L2 is active.
6029 	 * All other scenarios are supposed to be handled in the fastpath.
6030 	 */
6031 	WARN_ON_ONCE(!is_guest_mode(vcpu));
6032 	kvm_lapic_expired_hv_timer(vcpu);
6033 	return 1;
6034 }
6035 
6036 /*
6037  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
6038  * are overwritten by nested_vmx_setup() when nested=1.
6039  */
6040 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
6041 {
6042 	kvm_queue_exception(vcpu, UD_VECTOR);
6043 	return 1;
6044 }
6045 
6046 #ifndef CONFIG_X86_SGX_KVM
6047 static int handle_encls(struct kvm_vcpu *vcpu)
6048 {
6049 	/*
6050 	 * SGX virtualization is disabled.  There is no software enable bit for
6051 	 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
6052 	 * the guest from executing ENCLS (when SGX is supported by hardware).
6053 	 */
6054 	kvm_queue_exception(vcpu, UD_VECTOR);
6055 	return 1;
6056 }
6057 #endif /* CONFIG_X86_SGX_KVM */
6058 
6059 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
6060 {
6061 	/*
6062 	 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
6063 	 * VM-Exits. Unconditionally set the flag here and leave the handling to
6064 	 * vmx_handle_exit().
6065 	 */
6066 	to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
6067 	return 1;
6068 }
6069 
6070 static int handle_notify(struct kvm_vcpu *vcpu)
6071 {
6072 	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
6073 	bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
6074 
6075 	++vcpu->stat.notify_window_exits;
6076 
6077 	/*
6078 	 * Notify VM exit happened while executing iret from NMI,
6079 	 * "blocked by NMI" bit has to be set before next VM entry.
6080 	 */
6081 	if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
6082 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6083 			      GUEST_INTR_STATE_NMI);
6084 
6085 	if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
6086 	    context_invalid) {
6087 		vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
6088 		vcpu->run->notify.flags = context_invalid ?
6089 					  KVM_NOTIFY_CONTEXT_INVALID : 0;
6090 		return 0;
6091 	}
6092 
6093 	return 1;
6094 }
6095 
6096 /*
6097  * The exit handlers return 1 if the exit was handled fully and guest execution
6098  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6099  * to be done to userspace and return 0.
6100  */
6101 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6102 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
6103 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6104 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6105 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
6106 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6107 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
6108 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
6109 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
6110 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
6111 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
6112 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
6113 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
6114 	[EXIT_REASON_INVD]		      = kvm_emulate_invd,
6115 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
6116 	[EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
6117 	[EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
6118 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
6119 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
6120 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
6121 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
6122 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
6123 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
6124 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
6125 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
6126 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
6127 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6128 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6129 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6130 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6131 	[EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
6132 	[EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
6133 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6134 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6135 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
6136 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
6137 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
6138 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6139 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6140 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = kvm_emulate_mwait,
6141 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
6142 	[EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
6143 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
6144 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
6145 	[EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
6146 	[EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
6147 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
6148 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
6149 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
6150 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
6151 	[EXIT_REASON_ENCLS]		      = handle_encls,
6152 	[EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
6153 	[EXIT_REASON_NOTIFY]		      = handle_notify,
6154 };
6155 
6156 static const int kvm_vmx_max_exit_handlers =
6157 	ARRAY_SIZE(kvm_vmx_exit_handlers);
6158 
6159 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6160 			      u64 *info1, u64 *info2,
6161 			      u32 *intr_info, u32 *error_code)
6162 {
6163 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6164 
6165 	*reason = vmx->exit_reason.full;
6166 	*info1 = vmx_get_exit_qual(vcpu);
6167 	if (!(vmx->exit_reason.failed_vmentry)) {
6168 		*info2 = vmx->idt_vectoring_info;
6169 		*intr_info = vmx_get_intr_info(vcpu);
6170 		if (is_exception_with_error_code(*intr_info))
6171 			*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6172 		else
6173 			*error_code = 0;
6174 	} else {
6175 		*info2 = 0;
6176 		*intr_info = 0;
6177 		*error_code = 0;
6178 	}
6179 }
6180 
6181 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6182 {
6183 	if (vmx->pml_pg) {
6184 		__free_page(vmx->pml_pg);
6185 		vmx->pml_pg = NULL;
6186 	}
6187 }
6188 
6189 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6190 {
6191 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6192 	u64 *pml_buf;
6193 	u16 pml_idx;
6194 
6195 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
6196 
6197 	/* Do nothing if PML buffer is empty */
6198 	if (pml_idx == (PML_ENTITY_NUM - 1))
6199 		return;
6200 
6201 	/* PML index always points to next available PML buffer entity */
6202 	if (pml_idx >= PML_ENTITY_NUM)
6203 		pml_idx = 0;
6204 	else
6205 		pml_idx++;
6206 
6207 	pml_buf = page_address(vmx->pml_pg);
6208 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
6209 		u64 gpa;
6210 
6211 		gpa = pml_buf[pml_idx];
6212 		WARN_ON(gpa & (PAGE_SIZE - 1));
6213 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6214 	}
6215 
6216 	/* reset PML index */
6217 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
6218 }
6219 
6220 static void vmx_dump_sel(char *name, uint32_t sel)
6221 {
6222 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6223 	       name, vmcs_read16(sel),
6224 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6225 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6226 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6227 }
6228 
6229 static void vmx_dump_dtsel(char *name, uint32_t limit)
6230 {
6231 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
6232 	       name, vmcs_read32(limit),
6233 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6234 }
6235 
6236 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6237 {
6238 	unsigned int i;
6239 	struct vmx_msr_entry *e;
6240 
6241 	pr_err("MSR %s:\n", name);
6242 	for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6243 		pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6244 }
6245 
6246 void dump_vmcs(struct kvm_vcpu *vcpu)
6247 {
6248 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6249 	u32 vmentry_ctl, vmexit_ctl;
6250 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6251 	u64 tertiary_exec_control;
6252 	unsigned long cr4;
6253 	int efer_slot;
6254 
6255 	if (!dump_invalid_vmcs) {
6256 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6257 		return;
6258 	}
6259 
6260 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6261 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6262 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6263 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6264 	cr4 = vmcs_readl(GUEST_CR4);
6265 
6266 	if (cpu_has_secondary_exec_ctrls())
6267 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6268 	else
6269 		secondary_exec_control = 0;
6270 
6271 	if (cpu_has_tertiary_exec_ctrls())
6272 		tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6273 	else
6274 		tertiary_exec_control = 0;
6275 
6276 	pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6277 	       vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6278 	pr_err("*** Guest State ***\n");
6279 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6280 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6281 	       vmcs_readl(CR0_GUEST_HOST_MASK));
6282 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6283 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6284 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6285 	if (cpu_has_vmx_ept()) {
6286 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
6287 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6288 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
6289 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6290 	}
6291 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
6292 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6293 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
6294 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6295 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6296 	       vmcs_readl(GUEST_SYSENTER_ESP),
6297 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6298 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
6299 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
6300 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
6301 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
6302 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
6303 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
6304 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6305 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6306 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6307 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
6308 	efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6309 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6310 		pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6311 	else if (efer_slot >= 0)
6312 		pr_err("EFER= 0x%016llx (autoload)\n",
6313 		       vmx->msr_autoload.guest.val[efer_slot].value);
6314 	else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6315 		pr_err("EFER= 0x%016llx (effective)\n",
6316 		       vcpu->arch.efer | (EFER_LMA | EFER_LME));
6317 	else
6318 		pr_err("EFER= 0x%016llx (effective)\n",
6319 		       vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6320 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6321 		pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6322 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
6323 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
6324 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6325 	if (cpu_has_load_perf_global_ctrl() &&
6326 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6327 		pr_err("PerfGlobCtl = 0x%016llx\n",
6328 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6329 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6330 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6331 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
6332 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6333 	       vmcs_read32(GUEST_ACTIVITY_STATE));
6334 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6335 		pr_err("InterruptStatus = %04x\n",
6336 		       vmcs_read16(GUEST_INTR_STATUS));
6337 	if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6338 		vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6339 	if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6340 		vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6341 
6342 	pr_err("*** Host State ***\n");
6343 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
6344 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6345 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6346 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6347 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6348 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6349 	       vmcs_read16(HOST_TR_SELECTOR));
6350 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6351 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6352 	       vmcs_readl(HOST_TR_BASE));
6353 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6354 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6355 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6356 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6357 	       vmcs_readl(HOST_CR4));
6358 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6359 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
6360 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
6361 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
6362 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6363 		pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6364 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6365 		pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6366 	if (cpu_has_load_perf_global_ctrl() &&
6367 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6368 		pr_err("PerfGlobCtl = 0x%016llx\n",
6369 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6370 	if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6371 		vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6372 
6373 	pr_err("*** Control State ***\n");
6374 	pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6375 	       cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6376 	pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6377 	       pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6378 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6379 	       vmcs_read32(EXCEPTION_BITMAP),
6380 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6381 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6382 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6383 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6384 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6385 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6386 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6387 	       vmcs_read32(VM_EXIT_INTR_INFO),
6388 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6389 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6390 	pr_err("        reason=%08x qualification=%016lx\n",
6391 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6392 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6393 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
6394 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
6395 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6396 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6397 		pr_err("TSC Multiplier = 0x%016llx\n",
6398 		       vmcs_read64(TSC_MULTIPLIER));
6399 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6400 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6401 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
6402 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6403 		}
6404 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6405 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6406 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6407 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6408 	}
6409 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6410 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6411 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6412 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6413 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6414 		pr_err("PLE Gap=%08x Window=%08x\n",
6415 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6416 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6417 		pr_err("Virtual processor ID = 0x%04x\n",
6418 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
6419 }
6420 
6421 /*
6422  * The guest has exited.  See if we can fix it or if we need userspace
6423  * assistance.
6424  */
6425 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6426 {
6427 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6428 	union vmx_exit_reason exit_reason = vmx->exit_reason;
6429 	u32 vectoring_info = vmx->idt_vectoring_info;
6430 	u16 exit_handler_index;
6431 
6432 	/*
6433 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6434 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6435 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6436 	 * mode as if vcpus is in root mode, the PML buffer must has been
6437 	 * flushed already.  Note, PML is never enabled in hardware while
6438 	 * running L2.
6439 	 */
6440 	if (enable_pml && !is_guest_mode(vcpu))
6441 		vmx_flush_pml_buffer(vcpu);
6442 
6443 	/*
6444 	 * KVM should never reach this point with a pending nested VM-Enter.
6445 	 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6446 	 * invalid guest state should never happen as that means KVM knowingly
6447 	 * allowed a nested VM-Enter with an invalid vmcs12.  More below.
6448 	 */
6449 	if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6450 		return -EIO;
6451 
6452 	if (is_guest_mode(vcpu)) {
6453 		/*
6454 		 * PML is never enabled when running L2, bail immediately if a
6455 		 * PML full exit occurs as something is horribly wrong.
6456 		 */
6457 		if (exit_reason.basic == EXIT_REASON_PML_FULL)
6458 			goto unexpected_vmexit;
6459 
6460 		/*
6461 		 * The host physical addresses of some pages of guest memory
6462 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6463 		 * Page). The CPU may write to these pages via their host
6464 		 * physical address while L2 is running, bypassing any
6465 		 * address-translation-based dirty tracking (e.g. EPT write
6466 		 * protection).
6467 		 *
6468 		 * Mark them dirty on every exit from L2 to prevent them from
6469 		 * getting out of sync with dirty tracking.
6470 		 */
6471 		nested_mark_vmcs12_pages_dirty(vcpu);
6472 
6473 		/*
6474 		 * Synthesize a triple fault if L2 state is invalid.  In normal
6475 		 * operation, nested VM-Enter rejects any attempt to enter L2
6476 		 * with invalid state.  However, those checks are skipped if
6477 		 * state is being stuffed via RSM or KVM_SET_NESTED_STATE.  If
6478 		 * L2 state is invalid, it means either L1 modified SMRAM state
6479 		 * or userspace provided bad state.  Synthesize TRIPLE_FAULT as
6480 		 * doing so is architecturally allowed in the RSM case, and is
6481 		 * the least awful solution for the userspace case without
6482 		 * risking false positives.
6483 		 */
6484 		if (vmx->emulation_required) {
6485 			nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6486 			return 1;
6487 		}
6488 
6489 		if (nested_vmx_reflect_vmexit(vcpu))
6490 			return 1;
6491 	}
6492 
6493 	/* If guest state is invalid, start emulating.  L2 is handled above. */
6494 	if (vmx->emulation_required)
6495 		return handle_invalid_guest_state(vcpu);
6496 
6497 	if (exit_reason.failed_vmentry) {
6498 		dump_vmcs(vcpu);
6499 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6500 		vcpu->run->fail_entry.hardware_entry_failure_reason
6501 			= exit_reason.full;
6502 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6503 		return 0;
6504 	}
6505 
6506 	if (unlikely(vmx->fail)) {
6507 		dump_vmcs(vcpu);
6508 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6509 		vcpu->run->fail_entry.hardware_entry_failure_reason
6510 			= vmcs_read32(VM_INSTRUCTION_ERROR);
6511 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6512 		return 0;
6513 	}
6514 
6515 	/*
6516 	 * Note:
6517 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6518 	 * delivery event since it indicates guest is accessing MMIO.
6519 	 * The vm-exit can be triggered again after return to guest that
6520 	 * will cause infinite loop.
6521 	 */
6522 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6523 	    (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6524 	     exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6525 	     exit_reason.basic != EXIT_REASON_PML_FULL &&
6526 	     exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6527 	     exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6528 	     exit_reason.basic != EXIT_REASON_NOTIFY)) {
6529 		int ndata = 3;
6530 
6531 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6532 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6533 		vcpu->run->internal.data[0] = vectoring_info;
6534 		vcpu->run->internal.data[1] = exit_reason.full;
6535 		vcpu->run->internal.data[2] = vmx_get_exit_qual(vcpu);
6536 		if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6537 			vcpu->run->internal.data[ndata++] =
6538 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6539 		}
6540 		vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6541 		vcpu->run->internal.ndata = ndata;
6542 		return 0;
6543 	}
6544 
6545 	if (unlikely(!enable_vnmi &&
6546 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
6547 		if (!vmx_interrupt_blocked(vcpu)) {
6548 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6549 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6550 			   vcpu->arch.nmi_pending) {
6551 			/*
6552 			 * This CPU don't support us in finding the end of an
6553 			 * NMI-blocked window if the guest runs with IRQs
6554 			 * disabled. So we pull the trigger after 1 s of
6555 			 * futile waiting, but inform the user about this.
6556 			 */
6557 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6558 			       "state on VCPU %d after 1 s timeout\n",
6559 			       __func__, vcpu->vcpu_id);
6560 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6561 		}
6562 	}
6563 
6564 	if (exit_fastpath != EXIT_FASTPATH_NONE)
6565 		return 1;
6566 
6567 	if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6568 		goto unexpected_vmexit;
6569 #ifdef CONFIG_MITIGATION_RETPOLINE
6570 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6571 		return kvm_emulate_wrmsr(vcpu);
6572 	else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6573 		return handle_preemption_timer(vcpu);
6574 	else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6575 		return handle_interrupt_window(vcpu);
6576 	else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6577 		return handle_external_interrupt(vcpu);
6578 	else if (exit_reason.basic == EXIT_REASON_HLT)
6579 		return kvm_emulate_halt(vcpu);
6580 	else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6581 		return handle_ept_misconfig(vcpu);
6582 #endif
6583 
6584 	exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6585 						kvm_vmx_max_exit_handlers);
6586 	if (!kvm_vmx_exit_handlers[exit_handler_index])
6587 		goto unexpected_vmexit;
6588 
6589 	return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6590 
6591 unexpected_vmexit:
6592 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6593 		    exit_reason.full);
6594 	dump_vmcs(vcpu);
6595 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6596 	vcpu->run->internal.suberror =
6597 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6598 	vcpu->run->internal.ndata = 2;
6599 	vcpu->run->internal.data[0] = exit_reason.full;
6600 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6601 	return 0;
6602 }
6603 
6604 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6605 {
6606 	int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6607 
6608 	/*
6609 	 * Exit to user space when bus lock detected to inform that there is
6610 	 * a bus lock in guest.
6611 	 */
6612 	if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6613 		if (ret > 0)
6614 			vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6615 
6616 		vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6617 		return 0;
6618 	}
6619 	return ret;
6620 }
6621 
6622 /*
6623  * Software based L1D cache flush which is used when microcode providing
6624  * the cache control MSR is not loaded.
6625  *
6626  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6627  * flush it is required to read in 64 KiB because the replacement algorithm
6628  * is not exactly LRU. This could be sized at runtime via topology
6629  * information but as all relevant affected CPUs have 32KiB L1D cache size
6630  * there is no point in doing so.
6631  */
6632 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6633 {
6634 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6635 
6636 	/*
6637 	 * This code is only executed when the flush mode is 'cond' or
6638 	 * 'always'
6639 	 */
6640 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6641 		bool flush_l1d;
6642 
6643 		/*
6644 		 * Clear the per-vcpu flush bit, it gets set again
6645 		 * either from vcpu_run() or from one of the unsafe
6646 		 * VMEXIT handlers.
6647 		 */
6648 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6649 		vcpu->arch.l1tf_flush_l1d = false;
6650 
6651 		/*
6652 		 * Clear the per-cpu flush bit, it gets set again from
6653 		 * the interrupt handlers.
6654 		 */
6655 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6656 		kvm_clear_cpu_l1tf_flush_l1d();
6657 
6658 		if (!flush_l1d)
6659 			return;
6660 	}
6661 
6662 	vcpu->stat.l1d_flush++;
6663 
6664 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6665 		native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6666 		return;
6667 	}
6668 
6669 	asm volatile(
6670 		/* First ensure the pages are in the TLB */
6671 		"xorl	%%eax, %%eax\n"
6672 		".Lpopulate_tlb:\n\t"
6673 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6674 		"addl	$4096, %%eax\n\t"
6675 		"cmpl	%%eax, %[size]\n\t"
6676 		"jne	.Lpopulate_tlb\n\t"
6677 		"xorl	%%eax, %%eax\n\t"
6678 		"cpuid\n\t"
6679 		/* Now fill the cache */
6680 		"xorl	%%eax, %%eax\n"
6681 		".Lfill_cache:\n"
6682 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6683 		"addl	$64, %%eax\n\t"
6684 		"cmpl	%%eax, %[size]\n\t"
6685 		"jne	.Lfill_cache\n\t"
6686 		"lfence\n"
6687 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6688 		    [size] "r" (size)
6689 		: "eax", "ebx", "ecx", "edx");
6690 }
6691 
6692 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6693 {
6694 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6695 	int tpr_threshold;
6696 
6697 	if (is_guest_mode(vcpu) &&
6698 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6699 		return;
6700 
6701 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6702 	if (is_guest_mode(vcpu))
6703 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6704 	else
6705 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6706 }
6707 
6708 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6709 {
6710 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6711 	u32 sec_exec_control;
6712 
6713 	if (!lapic_in_kernel(vcpu))
6714 		return;
6715 
6716 	if (!flexpriority_enabled &&
6717 	    !cpu_has_vmx_virtualize_x2apic_mode())
6718 		return;
6719 
6720 	/* Postpone execution until vmcs01 is the current VMCS. */
6721 	if (is_guest_mode(vcpu)) {
6722 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6723 		return;
6724 	}
6725 
6726 	sec_exec_control = secondary_exec_controls_get(vmx);
6727 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6728 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6729 
6730 	switch (kvm_get_apic_mode(vcpu)) {
6731 	case LAPIC_MODE_INVALID:
6732 		WARN_ONCE(true, "Invalid local APIC state");
6733 		break;
6734 	case LAPIC_MODE_DISABLED:
6735 		break;
6736 	case LAPIC_MODE_XAPIC:
6737 		if (flexpriority_enabled) {
6738 			sec_exec_control |=
6739 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6740 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6741 
6742 			/*
6743 			 * Flush the TLB, reloading the APIC access page will
6744 			 * only do so if its physical address has changed, but
6745 			 * the guest may have inserted a non-APIC mapping into
6746 			 * the TLB while the APIC access page was disabled.
6747 			 */
6748 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6749 		}
6750 		break;
6751 	case LAPIC_MODE_X2APIC:
6752 		if (cpu_has_vmx_virtualize_x2apic_mode())
6753 			sec_exec_control |=
6754 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6755 		break;
6756 	}
6757 	secondary_exec_controls_set(vmx, sec_exec_control);
6758 
6759 	vmx_update_msr_bitmap_x2apic(vcpu);
6760 }
6761 
6762 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6763 {
6764 	const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT;
6765 	struct kvm *kvm = vcpu->kvm;
6766 	struct kvm_memslots *slots = kvm_memslots(kvm);
6767 	struct kvm_memory_slot *slot;
6768 	unsigned long mmu_seq;
6769 	kvm_pfn_t pfn;
6770 
6771 	/* Defer reload until vmcs01 is the current VMCS. */
6772 	if (is_guest_mode(vcpu)) {
6773 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6774 		return;
6775 	}
6776 
6777 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6778 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6779 		return;
6780 
6781 	/*
6782 	 * Explicitly grab the memslot using KVM's internal slot ID to ensure
6783 	 * KVM doesn't unintentionally grab a userspace memslot.  It _should_
6784 	 * be impossible for userspace to create a memslot for the APIC when
6785 	 * APICv is enabled, but paranoia won't hurt in this case.
6786 	 */
6787 	slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT);
6788 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
6789 		return;
6790 
6791 	/*
6792 	 * Ensure that the mmu_notifier sequence count is read before KVM
6793 	 * retrieves the pfn from the primary MMU.  Note, the memslot is
6794 	 * protected by SRCU, not the mmu_notifier.  Pairs with the smp_wmb()
6795 	 * in kvm_mmu_invalidate_end().
6796 	 */
6797 	mmu_seq = kvm->mmu_invalidate_seq;
6798 	smp_rmb();
6799 
6800 	/*
6801 	 * No need to retry if the memslot does not exist or is invalid.  KVM
6802 	 * controls the APIC-access page memslot, and only deletes the memslot
6803 	 * if APICv is permanently inhibited, i.e. the memslot won't reappear.
6804 	 */
6805 	pfn = gfn_to_pfn_memslot(slot, gfn);
6806 	if (is_error_noslot_pfn(pfn))
6807 		return;
6808 
6809 	read_lock(&vcpu->kvm->mmu_lock);
6810 	if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn)) {
6811 		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6812 		read_unlock(&vcpu->kvm->mmu_lock);
6813 		goto out;
6814 	}
6815 
6816 	vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn));
6817 	read_unlock(&vcpu->kvm->mmu_lock);
6818 
6819 	/*
6820 	 * No need for a manual TLB flush at this point, KVM has already done a
6821 	 * flush if there were SPTEs pointing at the previous page.
6822 	 */
6823 out:
6824 	/*
6825 	 * Do not pin apic access page in memory, the MMU notifier
6826 	 * will call us again if it is migrated or swapped out.
6827 	 */
6828 	kvm_release_pfn_clean(pfn);
6829 }
6830 
6831 static void vmx_hwapic_isr_update(int max_isr)
6832 {
6833 	u16 status;
6834 	u8 old;
6835 
6836 	if (max_isr == -1)
6837 		max_isr = 0;
6838 
6839 	status = vmcs_read16(GUEST_INTR_STATUS);
6840 	old = status >> 8;
6841 	if (max_isr != old) {
6842 		status &= 0xff;
6843 		status |= max_isr << 8;
6844 		vmcs_write16(GUEST_INTR_STATUS, status);
6845 	}
6846 }
6847 
6848 static void vmx_set_rvi(int vector)
6849 {
6850 	u16 status;
6851 	u8 old;
6852 
6853 	if (vector == -1)
6854 		vector = 0;
6855 
6856 	status = vmcs_read16(GUEST_INTR_STATUS);
6857 	old = (u8)status & 0xff;
6858 	if ((u8)vector != old) {
6859 		status &= ~0xff;
6860 		status |= (u8)vector;
6861 		vmcs_write16(GUEST_INTR_STATUS, status);
6862 	}
6863 }
6864 
6865 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6866 {
6867 	/*
6868 	 * When running L2, updating RVI is only relevant when
6869 	 * vmcs12 virtual-interrupt-delivery enabled.
6870 	 * However, it can be enabled only when L1 also
6871 	 * intercepts external-interrupts and in that case
6872 	 * we should not update vmcs02 RVI but instead intercept
6873 	 * interrupt. Therefore, do nothing when running L2.
6874 	 */
6875 	if (!is_guest_mode(vcpu))
6876 		vmx_set_rvi(max_irr);
6877 }
6878 
6879 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6880 {
6881 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6882 	int max_irr;
6883 	bool got_posted_interrupt;
6884 
6885 	if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6886 		return -EIO;
6887 
6888 	if (pi_test_on(&vmx->pi_desc)) {
6889 		pi_clear_on(&vmx->pi_desc);
6890 		/*
6891 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6892 		 * But on x86 this is just a compiler barrier anyway.
6893 		 */
6894 		smp_mb__after_atomic();
6895 		got_posted_interrupt =
6896 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6897 	} else {
6898 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6899 		got_posted_interrupt = false;
6900 	}
6901 
6902 	/*
6903 	 * Newly recognized interrupts are injected via either virtual interrupt
6904 	 * delivery (RVI) or KVM_REQ_EVENT.  Virtual interrupt delivery is
6905 	 * disabled in two cases:
6906 	 *
6907 	 * 1) If L2 is running and the vCPU has a new pending interrupt.  If L1
6908 	 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6909 	 * VM-Exit to L1.  If L1 doesn't want to exit, the interrupt is injected
6910 	 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6911 	 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6912 	 *
6913 	 * 2) If APICv is disabled for this vCPU, assigned devices may still
6914 	 * attempt to post interrupts.  The posted interrupt vector will cause
6915 	 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6916 	 */
6917 	if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6918 		vmx_set_rvi(max_irr);
6919 	else if (got_posted_interrupt)
6920 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6921 
6922 	return max_irr;
6923 }
6924 
6925 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6926 {
6927 	if (!kvm_vcpu_apicv_active(vcpu))
6928 		return;
6929 
6930 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6931 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6932 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6933 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6934 }
6935 
6936 static void vmx_apicv_pre_state_restore(struct kvm_vcpu *vcpu)
6937 {
6938 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6939 
6940 	pi_clear_on(&vmx->pi_desc);
6941 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6942 }
6943 
6944 void vmx_do_interrupt_irqoff(unsigned long entry);
6945 void vmx_do_nmi_irqoff(void);
6946 
6947 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6948 {
6949 	/*
6950 	 * Save xfd_err to guest_fpu before interrupt is enabled, so the
6951 	 * MSR value is not clobbered by the host activity before the guest
6952 	 * has chance to consume it.
6953 	 *
6954 	 * Do not blindly read xfd_err here, since this exception might
6955 	 * be caused by L1 interception on a platform which doesn't
6956 	 * support xfd at all.
6957 	 *
6958 	 * Do it conditionally upon guest_fpu::xfd. xfd_err matters
6959 	 * only when xfd contains a non-zero value.
6960 	 *
6961 	 * Queuing exception is done in vmx_handle_exit. See comment there.
6962 	 */
6963 	if (vcpu->arch.guest_fpu.fpstate->xfd)
6964 		rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6965 }
6966 
6967 static void handle_exception_irqoff(struct vcpu_vmx *vmx)
6968 {
6969 	u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6970 
6971 	/* if exit due to PF check for async PF */
6972 	if (is_page_fault(intr_info))
6973 		vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6974 	/* if exit due to NM, handle before interrupts are enabled */
6975 	else if (is_nm_fault(intr_info))
6976 		handle_nm_fault_irqoff(&vmx->vcpu);
6977 	/* Handle machine checks before interrupts are enabled */
6978 	else if (is_machine_check(intr_info))
6979 		kvm_machine_check();
6980 }
6981 
6982 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6983 {
6984 	u32 intr_info = vmx_get_intr_info(vcpu);
6985 	unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6986 
6987 	if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6988 	    "unexpected VM-Exit interrupt info: 0x%x", intr_info))
6989 		return;
6990 
6991 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
6992 	if (cpu_feature_enabled(X86_FEATURE_FRED))
6993 		fred_entry_from_kvm(EVENT_TYPE_EXTINT, vector);
6994 	else
6995 		vmx_do_interrupt_irqoff(gate_offset((gate_desc *)host_idt_base + vector));
6996 	kvm_after_interrupt(vcpu);
6997 
6998 	vcpu->arch.at_instruction_boundary = true;
6999 }
7000 
7001 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
7002 {
7003 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7004 
7005 	if (vmx->emulation_required)
7006 		return;
7007 
7008 	if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
7009 		handle_external_interrupt_irqoff(vcpu);
7010 	else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
7011 		handle_exception_irqoff(vmx);
7012 }
7013 
7014 /*
7015  * The kvm parameter can be NULL (module initialization, or invocation before
7016  * VM creation). Be sure to check the kvm parameter before using it.
7017  */
7018 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
7019 {
7020 	switch (index) {
7021 	case MSR_IA32_SMBASE:
7022 		if (!IS_ENABLED(CONFIG_KVM_SMM))
7023 			return false;
7024 		/*
7025 		 * We cannot do SMM unless we can run the guest in big
7026 		 * real mode.
7027 		 */
7028 		return enable_unrestricted_guest || emulate_invalid_guest_state;
7029 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
7030 		return nested;
7031 	case MSR_AMD64_VIRT_SPEC_CTRL:
7032 	case MSR_AMD64_TSC_RATIO:
7033 		/* This is AMD only.  */
7034 		return false;
7035 	default:
7036 		return true;
7037 	}
7038 }
7039 
7040 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7041 {
7042 	u32 exit_intr_info;
7043 	bool unblock_nmi;
7044 	u8 vector;
7045 	bool idtv_info_valid;
7046 
7047 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7048 
7049 	if (enable_vnmi) {
7050 		if (vmx->loaded_vmcs->nmi_known_unmasked)
7051 			return;
7052 
7053 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
7054 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7055 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7056 		/*
7057 		 * SDM 3: 27.7.1.2 (September 2008)
7058 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7059 		 * a guest IRET fault.
7060 		 * SDM 3: 23.2.2 (September 2008)
7061 		 * Bit 12 is undefined in any of the following cases:
7062 		 *  If the VM exit sets the valid bit in the IDT-vectoring
7063 		 *   information field.
7064 		 *  If the VM exit is due to a double fault.
7065 		 */
7066 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7067 		    vector != DF_VECTOR && !idtv_info_valid)
7068 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7069 				      GUEST_INTR_STATE_NMI);
7070 		else
7071 			vmx->loaded_vmcs->nmi_known_unmasked =
7072 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7073 				  & GUEST_INTR_STATE_NMI);
7074 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
7075 		vmx->loaded_vmcs->vnmi_blocked_time +=
7076 			ktime_to_ns(ktime_sub(ktime_get(),
7077 					      vmx->loaded_vmcs->entry_time));
7078 }
7079 
7080 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7081 				      u32 idt_vectoring_info,
7082 				      int instr_len_field,
7083 				      int error_code_field)
7084 {
7085 	u8 vector;
7086 	int type;
7087 	bool idtv_info_valid;
7088 
7089 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7090 
7091 	vcpu->arch.nmi_injected = false;
7092 	kvm_clear_exception_queue(vcpu);
7093 	kvm_clear_interrupt_queue(vcpu);
7094 
7095 	if (!idtv_info_valid)
7096 		return;
7097 
7098 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7099 
7100 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7101 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7102 
7103 	switch (type) {
7104 	case INTR_TYPE_NMI_INTR:
7105 		vcpu->arch.nmi_injected = true;
7106 		/*
7107 		 * SDM 3: 27.7.1.2 (September 2008)
7108 		 * Clear bit "block by NMI" before VM entry if a NMI
7109 		 * delivery faulted.
7110 		 */
7111 		vmx_set_nmi_mask(vcpu, false);
7112 		break;
7113 	case INTR_TYPE_SOFT_EXCEPTION:
7114 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7115 		fallthrough;
7116 	case INTR_TYPE_HARD_EXCEPTION:
7117 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7118 			u32 err = vmcs_read32(error_code_field);
7119 			kvm_requeue_exception_e(vcpu, vector, err);
7120 		} else
7121 			kvm_requeue_exception(vcpu, vector);
7122 		break;
7123 	case INTR_TYPE_SOFT_INTR:
7124 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7125 		fallthrough;
7126 	case INTR_TYPE_EXT_INTR:
7127 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7128 		break;
7129 	default:
7130 		break;
7131 	}
7132 }
7133 
7134 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7135 {
7136 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7137 				  VM_EXIT_INSTRUCTION_LEN,
7138 				  IDT_VECTORING_ERROR_CODE);
7139 }
7140 
7141 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7142 {
7143 	__vmx_complete_interrupts(vcpu,
7144 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7145 				  VM_ENTRY_INSTRUCTION_LEN,
7146 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
7147 
7148 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7149 }
7150 
7151 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7152 {
7153 	int i, nr_msrs;
7154 	struct perf_guest_switch_msr *msrs;
7155 	struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7156 
7157 	pmu->host_cross_mapped_mask = 0;
7158 	if (pmu->pebs_enable & pmu->global_ctrl)
7159 		intel_pmu_cross_mapped_check(pmu);
7160 
7161 	/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7162 	msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7163 	if (!msrs)
7164 		return;
7165 
7166 	for (i = 0; i < nr_msrs; i++)
7167 		if (msrs[i].host == msrs[i].guest)
7168 			clear_atomic_switch_msr(vmx, msrs[i].msr);
7169 		else
7170 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7171 					msrs[i].host, false);
7172 }
7173 
7174 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu, bool force_immediate_exit)
7175 {
7176 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7177 	u64 tscl;
7178 	u32 delta_tsc;
7179 
7180 	if (force_immediate_exit) {
7181 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7182 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7183 	} else if (vmx->hv_deadline_tsc != -1) {
7184 		tscl = rdtsc();
7185 		if (vmx->hv_deadline_tsc > tscl)
7186 			/* set_hv_timer ensures the delta fits in 32-bits */
7187 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7188 				cpu_preemption_timer_multi);
7189 		else
7190 			delta_tsc = 0;
7191 
7192 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7193 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7194 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7195 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7196 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7197 	}
7198 }
7199 
7200 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7201 {
7202 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7203 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
7204 		vmcs_writel(HOST_RSP, host_rsp);
7205 	}
7206 }
7207 
7208 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7209 					unsigned int flags)
7210 {
7211 	u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7212 
7213 	if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7214 		return;
7215 
7216 	if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7217 		vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
7218 
7219 	/*
7220 	 * If the guest/host SPEC_CTRL values differ, restore the host value.
7221 	 *
7222 	 * For legacy IBRS, the IBRS bit always needs to be written after
7223 	 * transitioning from a less privileged predictor mode, regardless of
7224 	 * whether the guest/host values differ.
7225 	 */
7226 	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7227 	    vmx->spec_ctrl != hostval)
7228 		native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
7229 
7230 	barrier_nospec();
7231 }
7232 
7233 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu,
7234 					     bool force_immediate_exit)
7235 {
7236 	/*
7237 	 * If L2 is active, some VMX preemption timer exits can be handled in
7238 	 * the fastpath even, all other exits must use the slow path.
7239 	 */
7240 	if (is_guest_mode(vcpu) &&
7241 	    to_vmx(vcpu)->exit_reason.basic != EXIT_REASON_PREEMPTION_TIMER)
7242 		return EXIT_FASTPATH_NONE;
7243 
7244 	switch (to_vmx(vcpu)->exit_reason.basic) {
7245 	case EXIT_REASON_MSR_WRITE:
7246 		return handle_fastpath_set_msr_irqoff(vcpu);
7247 	case EXIT_REASON_PREEMPTION_TIMER:
7248 		return handle_fastpath_preemption_timer(vcpu, force_immediate_exit);
7249 	default:
7250 		return EXIT_FASTPATH_NONE;
7251 	}
7252 }
7253 
7254 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7255 					unsigned int flags)
7256 {
7257 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7258 
7259 	guest_state_enter_irqoff();
7260 
7261 	/*
7262 	 * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW
7263 	 * mitigation for MDS is done late in VMentry and is still
7264 	 * executed in spite of L1D Flush. This is because an extra VERW
7265 	 * should not matter much after the big hammer L1D Flush.
7266 	 */
7267 	if (static_branch_unlikely(&vmx_l1d_should_flush))
7268 		vmx_l1d_flush(vcpu);
7269 	else if (static_branch_unlikely(&mmio_stale_data_clear) &&
7270 		 kvm_arch_has_assigned_device(vcpu->kvm))
7271 		mds_clear_cpu_buffers();
7272 
7273 	vmx_disable_fb_clear(vmx);
7274 
7275 	if (vcpu->arch.cr2 != native_read_cr2())
7276 		native_write_cr2(vcpu->arch.cr2);
7277 
7278 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7279 				   flags);
7280 
7281 	vcpu->arch.cr2 = native_read_cr2();
7282 	vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7283 
7284 	vmx->idt_vectoring_info = 0;
7285 
7286 	vmx_enable_fb_clear(vmx);
7287 
7288 	if (unlikely(vmx->fail)) {
7289 		vmx->exit_reason.full = 0xdead;
7290 		goto out;
7291 	}
7292 
7293 	vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7294 	if (likely(!vmx->exit_reason.failed_vmentry))
7295 		vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7296 
7297 	if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI &&
7298 	    is_nmi(vmx_get_intr_info(vcpu))) {
7299 		kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
7300 		if (cpu_feature_enabled(X86_FEATURE_FRED))
7301 			fred_entry_from_kvm(EVENT_TYPE_NMI, NMI_VECTOR);
7302 		else
7303 			vmx_do_nmi_irqoff();
7304 		kvm_after_interrupt(vcpu);
7305 	}
7306 
7307 out:
7308 	guest_state_exit_irqoff();
7309 }
7310 
7311 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu, bool force_immediate_exit)
7312 {
7313 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7314 	unsigned long cr3, cr4;
7315 
7316 	/* Record the guest's net vcpu time for enforced NMI injections. */
7317 	if (unlikely(!enable_vnmi &&
7318 		     vmx->loaded_vmcs->soft_vnmi_blocked))
7319 		vmx->loaded_vmcs->entry_time = ktime_get();
7320 
7321 	/*
7322 	 * Don't enter VMX if guest state is invalid, let the exit handler
7323 	 * start emulation until we arrive back to a valid state.  Synthesize a
7324 	 * consistency check VM-Exit due to invalid guest state and bail.
7325 	 */
7326 	if (unlikely(vmx->emulation_required)) {
7327 		vmx->fail = 0;
7328 
7329 		vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
7330 		vmx->exit_reason.failed_vmentry = 1;
7331 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7332 		vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
7333 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7334 		vmx->exit_intr_info = 0;
7335 		return EXIT_FASTPATH_NONE;
7336 	}
7337 
7338 	trace_kvm_entry(vcpu, force_immediate_exit);
7339 
7340 	if (vmx->ple_window_dirty) {
7341 		vmx->ple_window_dirty = false;
7342 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
7343 	}
7344 
7345 	/*
7346 	 * We did this in prepare_switch_to_guest, because it needs to
7347 	 * be within srcu_read_lock.
7348 	 */
7349 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7350 
7351 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7352 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7353 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7354 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7355 	vcpu->arch.regs_dirty = 0;
7356 
7357 	/*
7358 	 * Refresh vmcs.HOST_CR3 if necessary.  This must be done immediately
7359 	 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7360 	 * it switches back to the current->mm, which can occur in KVM context
7361 	 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7362 	 * toggles a static key while handling a VM-Exit.
7363 	 */
7364 	cr3 = __get_current_cr3_fast();
7365 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7366 		vmcs_writel(HOST_CR3, cr3);
7367 		vmx->loaded_vmcs->host_state.cr3 = cr3;
7368 	}
7369 
7370 	cr4 = cr4_read_shadow();
7371 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7372 		vmcs_writel(HOST_CR4, cr4);
7373 		vmx->loaded_vmcs->host_state.cr4 = cr4;
7374 	}
7375 
7376 	/* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
7377 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
7378 		set_debugreg(vcpu->arch.dr6, 6);
7379 
7380 	/* When single-stepping over STI and MOV SS, we must clear the
7381 	 * corresponding interruptibility bits in the guest state. Otherwise
7382 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
7383 	 * exceptions being set, but that's not correct for the guest debugging
7384 	 * case. */
7385 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7386 		vmx_set_interrupt_shadow(vcpu, 0);
7387 
7388 	kvm_load_guest_xsave_state(vcpu);
7389 
7390 	pt_guest_enter(vmx);
7391 
7392 	atomic_switch_perf_msrs(vmx);
7393 	if (intel_pmu_lbr_is_enabled(vcpu))
7394 		vmx_passthrough_lbr_msrs(vcpu);
7395 
7396 	if (enable_preemption_timer)
7397 		vmx_update_hv_timer(vcpu, force_immediate_exit);
7398 	else if (force_immediate_exit)
7399 		smp_send_reschedule(vcpu->cpu);
7400 
7401 	kvm_wait_lapic_expire(vcpu);
7402 
7403 	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
7404 	vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
7405 
7406 	/* All fields are clean at this point */
7407 	if (kvm_is_using_evmcs()) {
7408 		current_evmcs->hv_clean_fields |=
7409 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7410 
7411 		current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7412 	}
7413 
7414 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7415 	if (vmx->host_debugctlmsr)
7416 		update_debugctlmsr(vmx->host_debugctlmsr);
7417 
7418 #ifndef CONFIG_X86_64
7419 	/*
7420 	 * The sysexit path does not restore ds/es, so we must set them to
7421 	 * a reasonable value ourselves.
7422 	 *
7423 	 * We can't defer this to vmx_prepare_switch_to_host() since that
7424 	 * function may be executed in interrupt context, which saves and
7425 	 * restore segments around it, nullifying its effect.
7426 	 */
7427 	loadsegment(ds, __USER_DS);
7428 	loadsegment(es, __USER_DS);
7429 #endif
7430 
7431 	pt_guest_exit(vmx);
7432 
7433 	kvm_load_host_xsave_state(vcpu);
7434 
7435 	if (is_guest_mode(vcpu)) {
7436 		/*
7437 		 * Track VMLAUNCH/VMRESUME that have made past guest state
7438 		 * checking.
7439 		 */
7440 		if (vmx->nested.nested_run_pending &&
7441 		    !vmx->exit_reason.failed_vmentry)
7442 			++vcpu->stat.nested_run;
7443 
7444 		vmx->nested.nested_run_pending = 0;
7445 	}
7446 
7447 	if (unlikely(vmx->fail))
7448 		return EXIT_FASTPATH_NONE;
7449 
7450 	if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
7451 		kvm_machine_check();
7452 
7453 	trace_kvm_exit(vcpu, KVM_ISA_VMX);
7454 
7455 	if (unlikely(vmx->exit_reason.failed_vmentry))
7456 		return EXIT_FASTPATH_NONE;
7457 
7458 	vmx->loaded_vmcs->launched = 1;
7459 
7460 	vmx_recover_nmi_blocking(vmx);
7461 	vmx_complete_interrupts(vmx);
7462 
7463 	return vmx_exit_handlers_fastpath(vcpu, force_immediate_exit);
7464 }
7465 
7466 static void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7467 {
7468 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7469 
7470 	if (enable_pml)
7471 		vmx_destroy_pml_buffer(vmx);
7472 	free_vpid(vmx->vpid);
7473 	nested_vmx_free_vcpu(vcpu);
7474 	free_loaded_vmcs(vmx->loaded_vmcs);
7475 }
7476 
7477 static int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7478 {
7479 	struct vmx_uret_msr *tsx_ctrl;
7480 	struct vcpu_vmx *vmx;
7481 	int i, err;
7482 
7483 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7484 	vmx = to_vmx(vcpu);
7485 
7486 	INIT_LIST_HEAD(&vmx->pi_wakeup_list);
7487 
7488 	err = -ENOMEM;
7489 
7490 	vmx->vpid = allocate_vpid();
7491 
7492 	/*
7493 	 * If PML is turned on, failure on enabling PML just results in failure
7494 	 * of creating the vcpu, therefore we can simplify PML logic (by
7495 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
7496 	 * for the guest), etc.
7497 	 */
7498 	if (enable_pml) {
7499 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7500 		if (!vmx->pml_pg)
7501 			goto free_vpid;
7502 	}
7503 
7504 	for (i = 0; i < kvm_nr_uret_msrs; ++i)
7505 		vmx->guest_uret_msrs[i].mask = -1ull;
7506 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7507 		/*
7508 		 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7509 		 * Keep the host value unchanged to avoid changing CPUID bits
7510 		 * under the host kernel's feet.
7511 		 */
7512 		tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7513 		if (tsx_ctrl)
7514 			tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7515 	}
7516 
7517 	err = alloc_loaded_vmcs(&vmx->vmcs01);
7518 	if (err < 0)
7519 		goto free_pml;
7520 
7521 	/*
7522 	 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7523 	 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7524 	 * feature only for vmcs01, KVM currently isn't equipped to realize any
7525 	 * performance benefits from enabling it for vmcs02.
7526 	 */
7527 	if (kvm_is_using_evmcs() &&
7528 	    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7529 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7530 
7531 		evmcs->hv_enlightenments_control.msr_bitmap = 1;
7532 	}
7533 
7534 	/* The MSR bitmap starts with all ones */
7535 	bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7536 	bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7537 
7538 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7539 #ifdef CONFIG_X86_64
7540 	vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7541 	vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7542 	vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7543 #endif
7544 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7545 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7546 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7547 	if (kvm_cstate_in_guest(vcpu->kvm)) {
7548 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7549 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7550 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7551 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7552 	}
7553 
7554 	vmx->loaded_vmcs = &vmx->vmcs01;
7555 
7556 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
7557 		err = kvm_alloc_apic_access_page(vcpu->kvm);
7558 		if (err)
7559 			goto free_vmcs;
7560 	}
7561 
7562 	if (enable_ept && !enable_unrestricted_guest) {
7563 		err = init_rmode_identity_map(vcpu->kvm);
7564 		if (err)
7565 			goto free_vmcs;
7566 	}
7567 
7568 	if (vmx_can_use_ipiv(vcpu))
7569 		WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7570 			   __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID);
7571 
7572 	return 0;
7573 
7574 free_vmcs:
7575 	free_loaded_vmcs(vmx->loaded_vmcs);
7576 free_pml:
7577 	vmx_destroy_pml_buffer(vmx);
7578 free_vpid:
7579 	free_vpid(vmx->vpid);
7580 	return err;
7581 }
7582 
7583 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7584 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7585 
7586 static int vmx_vm_init(struct kvm *kvm)
7587 {
7588 	if (!ple_gap)
7589 		kvm->arch.pause_in_guest = true;
7590 
7591 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7592 		switch (l1tf_mitigation) {
7593 		case L1TF_MITIGATION_OFF:
7594 		case L1TF_MITIGATION_FLUSH_NOWARN:
7595 			/* 'I explicitly don't care' is set */
7596 			break;
7597 		case L1TF_MITIGATION_FLUSH:
7598 		case L1TF_MITIGATION_FLUSH_NOSMT:
7599 		case L1TF_MITIGATION_FULL:
7600 			/*
7601 			 * Warn upon starting the first VM in a potentially
7602 			 * insecure environment.
7603 			 */
7604 			if (sched_smt_active())
7605 				pr_warn_once(L1TF_MSG_SMT);
7606 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7607 				pr_warn_once(L1TF_MSG_L1D);
7608 			break;
7609 		case L1TF_MITIGATION_FULL_FORCE:
7610 			/* Flush is enforced */
7611 			break;
7612 		}
7613 	}
7614 	return 0;
7615 }
7616 
7617 static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7618 {
7619 	/* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7620 	 * memory aliases with conflicting memory types and sometimes MCEs.
7621 	 * We have to be careful as to what are honored and when.
7622 	 *
7623 	 * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
7624 	 * UC.  The effective memory type is UC or WC depending on guest PAT.
7625 	 * This was historically the source of MCEs and we want to be
7626 	 * conservative.
7627 	 *
7628 	 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7629 	 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
7630 	 * EPT memory type is set to WB.  The effective memory type is forced
7631 	 * WB.
7632 	 *
7633 	 * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
7634 	 * EPT memory type is used to emulate guest CD/MTRR.
7635 	 */
7636 
7637 	if (is_mmio)
7638 		return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7639 
7640 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
7641 		return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7642 
7643 	if (kvm_read_cr0_bits(vcpu, X86_CR0_CD)) {
7644 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7645 			return MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT;
7646 		else
7647 			return (MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT) |
7648 				VMX_EPT_IPAT_BIT;
7649 	}
7650 
7651 	return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT;
7652 }
7653 
7654 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7655 {
7656 	/*
7657 	 * These bits in the secondary execution controls field
7658 	 * are dynamic, the others are mostly based on the hypervisor
7659 	 * architecture and the guest's CPUID.  Do not touch the
7660 	 * dynamic bits.
7661 	 */
7662 	u32 mask =
7663 		SECONDARY_EXEC_SHADOW_VMCS |
7664 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7665 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7666 		SECONDARY_EXEC_DESC;
7667 
7668 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7669 
7670 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7671 }
7672 
7673 /*
7674  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7675  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7676  */
7677 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7678 {
7679 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7680 	struct kvm_cpuid_entry2 *entry;
7681 
7682 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7683 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7684 
7685 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7686 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7687 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7688 } while (0)
7689 
7690 	entry = kvm_find_cpuid_entry(vcpu, 0x1);
7691 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7692 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7693 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7694 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7695 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7696 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7697 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7698 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7699 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7700 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7701 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7702 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7703 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7704 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7705 
7706 	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7707 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7708 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7709 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7710 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7711 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7712 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7713 
7714 	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 1);
7715 	cr4_fixed1_update(X86_CR4_LAM_SUP,    eax, feature_bit(LAM));
7716 
7717 #undef cr4_fixed1_update
7718 }
7719 
7720 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7721 {
7722 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7723 	struct kvm_cpuid_entry2 *best = NULL;
7724 	int i;
7725 
7726 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7727 		best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7728 		if (!best)
7729 			return;
7730 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7731 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7732 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7733 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7734 	}
7735 
7736 	/* Get the number of configurable Address Ranges for filtering */
7737 	vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7738 						PT_CAP_num_address_ranges);
7739 
7740 	/* Initialize and clear the no dependency bits */
7741 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7742 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7743 			RTIT_CTL_BRANCH_EN);
7744 
7745 	/*
7746 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7747 	 * will inject an #GP
7748 	 */
7749 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7750 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7751 
7752 	/*
7753 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7754 	 * PSBFreq can be set
7755 	 */
7756 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7757 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7758 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7759 
7760 	/*
7761 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7762 	 */
7763 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7764 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7765 					      RTIT_CTL_MTC_RANGE);
7766 
7767 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7768 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7769 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7770 							RTIT_CTL_PTW_EN);
7771 
7772 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7773 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7774 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7775 
7776 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7777 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7778 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7779 
7780 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7781 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7782 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7783 
7784 	/* unmask address range configure area */
7785 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7786 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7787 }
7788 
7789 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7790 {
7791 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7792 
7793 	/*
7794 	 * XSAVES is effectively enabled if and only if XSAVE is also exposed
7795 	 * to the guest.  XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be
7796 	 * set if and only if XSAVE is supported.
7797 	 */
7798 	if (boot_cpu_has(X86_FEATURE_XSAVE) &&
7799 	    guest_cpuid_has(vcpu, X86_FEATURE_XSAVE))
7800 		kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_XSAVES);
7801 
7802 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VMX);
7803 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LAM);
7804 
7805 	vmx_setup_uret_msrs(vmx);
7806 
7807 	if (cpu_has_secondary_exec_ctrls())
7808 		vmcs_set_secondary_exec_control(vmx,
7809 						vmx_secondary_exec_control(vmx));
7810 
7811 	if (guest_can_use(vcpu, X86_FEATURE_VMX))
7812 		vmx->msr_ia32_feature_control_valid_bits |=
7813 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7814 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7815 	else
7816 		vmx->msr_ia32_feature_control_valid_bits &=
7817 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7818 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7819 
7820 	if (guest_can_use(vcpu, X86_FEATURE_VMX))
7821 		nested_vmx_cr_fixed1_bits_update(vcpu);
7822 
7823 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7824 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7825 		update_intel_pt_cfg(vcpu);
7826 
7827 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7828 		struct vmx_uret_msr *msr;
7829 		msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7830 		if (msr) {
7831 			bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7832 			vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7833 		}
7834 	}
7835 
7836 	if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7837 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7838 					  !guest_cpuid_has(vcpu, X86_FEATURE_XFD));
7839 
7840 	if (boot_cpu_has(X86_FEATURE_IBPB))
7841 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
7842 					  !guest_has_pred_cmd_msr(vcpu));
7843 
7844 	if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
7845 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
7846 					  !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
7847 
7848 	set_cr4_guest_host_mask(vmx);
7849 
7850 	vmx_write_encls_bitmap(vcpu, NULL);
7851 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7852 		vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7853 	else
7854 		vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7855 
7856 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7857 		vmx->msr_ia32_feature_control_valid_bits |=
7858 			FEAT_CTL_SGX_LC_ENABLED;
7859 	else
7860 		vmx->msr_ia32_feature_control_valid_bits &=
7861 			~FEAT_CTL_SGX_LC_ENABLED;
7862 
7863 	/* Refresh #PF interception to account for MAXPHYADDR changes. */
7864 	vmx_update_exception_bitmap(vcpu);
7865 }
7866 
7867 static __init u64 vmx_get_perf_capabilities(void)
7868 {
7869 	u64 perf_cap = PMU_CAP_FW_WRITES;
7870 	u64 host_perf_cap = 0;
7871 
7872 	if (!enable_pmu)
7873 		return 0;
7874 
7875 	if (boot_cpu_has(X86_FEATURE_PDCM))
7876 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
7877 
7878 	if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) {
7879 		x86_perf_get_lbr(&vmx_lbr_caps);
7880 
7881 		/*
7882 		 * KVM requires LBR callstack support, as the overhead due to
7883 		 * context switching LBRs without said support is too high.
7884 		 * See intel_pmu_create_guest_lbr_event() for more info.
7885 		 */
7886 		if (!vmx_lbr_caps.has_callstack)
7887 			memset(&vmx_lbr_caps, 0, sizeof(vmx_lbr_caps));
7888 		else if (vmx_lbr_caps.nr)
7889 			perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT;
7890 	}
7891 
7892 	if (vmx_pebs_supported()) {
7893 		perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
7894 
7895 		/*
7896 		 * Disallow adaptive PEBS as it is functionally broken, can be
7897 		 * used by the guest to read *host* LBRs, and can be used to
7898 		 * bypass userspace event filters.  To correctly and safely
7899 		 * support adaptive PEBS, KVM needs to:
7900 		 *
7901 		 * 1. Account for the ADAPTIVE flag when (re)programming fixed
7902 		 *    counters.
7903 		 *
7904 		 * 2. Gain support from perf (or take direct control of counter
7905 		 *    programming) to support events without adaptive PEBS
7906 		 *    enabled for the hardware counter.
7907 		 *
7908 		 * 3. Ensure LBR MSRs cannot hold host data on VM-Entry with
7909 		 *    adaptive PEBS enabled and MSR_PEBS_DATA_CFG.LBRS=1.
7910 		 *
7911 		 * 4. Document which PMU events are effectively exposed to the
7912 		 *    guest via adaptive PEBS, and make adaptive PEBS mutually
7913 		 *    exclusive with KVM_SET_PMU_EVENT_FILTER if necessary.
7914 		 */
7915 		perf_cap &= ~PERF_CAP_PEBS_BASELINE;
7916 	}
7917 
7918 	return perf_cap;
7919 }
7920 
7921 static __init void vmx_set_cpu_caps(void)
7922 {
7923 	kvm_set_cpu_caps();
7924 
7925 	/* CPUID 0x1 */
7926 	if (nested)
7927 		kvm_cpu_cap_set(X86_FEATURE_VMX);
7928 
7929 	/* CPUID 0x7 */
7930 	if (kvm_mpx_supported())
7931 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7932 	if (!cpu_has_vmx_invpcid())
7933 		kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7934 	if (vmx_pt_mode_is_host_guest())
7935 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7936 	if (vmx_pebs_supported()) {
7937 		kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7938 		kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7939 	}
7940 
7941 	if (!enable_pmu)
7942 		kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7943 	kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
7944 
7945 	if (!enable_sgx) {
7946 		kvm_cpu_cap_clear(X86_FEATURE_SGX);
7947 		kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7948 		kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7949 		kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7950 	}
7951 
7952 	if (vmx_umip_emulated())
7953 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7954 
7955 	/* CPUID 0xD.1 */
7956 	kvm_caps.supported_xss = 0;
7957 	if (!cpu_has_vmx_xsaves())
7958 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7959 
7960 	/* CPUID 0x80000001 and 0x7 (RDPID) */
7961 	if (!cpu_has_vmx_rdtscp()) {
7962 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7963 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7964 	}
7965 
7966 	if (cpu_has_vmx_waitpkg())
7967 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7968 }
7969 
7970 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7971 				  struct x86_instruction_info *info)
7972 {
7973 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7974 	unsigned short port;
7975 	bool intercept;
7976 	int size;
7977 
7978 	if (info->intercept == x86_intercept_in ||
7979 	    info->intercept == x86_intercept_ins) {
7980 		port = info->src_val;
7981 		size = info->dst_bytes;
7982 	} else {
7983 		port = info->dst_val;
7984 		size = info->src_bytes;
7985 	}
7986 
7987 	/*
7988 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7989 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7990 	 * control.
7991 	 *
7992 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7993 	 */
7994 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7995 		intercept = nested_cpu_has(vmcs12,
7996 					   CPU_BASED_UNCOND_IO_EXITING);
7997 	else
7998 		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7999 
8000 	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
8001 	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
8002 }
8003 
8004 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
8005 			       struct x86_instruction_info *info,
8006 			       enum x86_intercept_stage stage,
8007 			       struct x86_exception *exception)
8008 {
8009 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8010 
8011 	switch (info->intercept) {
8012 	/*
8013 	 * RDPID causes #UD if disabled through secondary execution controls.
8014 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
8015 	 * Note, RDPID is hidden behind ENABLE_RDTSCP.
8016 	 */
8017 	case x86_intercept_rdpid:
8018 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
8019 			exception->vector = UD_VECTOR;
8020 			exception->error_code_valid = false;
8021 			return X86EMUL_PROPAGATE_FAULT;
8022 		}
8023 		break;
8024 
8025 	case x86_intercept_in:
8026 	case x86_intercept_ins:
8027 	case x86_intercept_out:
8028 	case x86_intercept_outs:
8029 		return vmx_check_intercept_io(vcpu, info);
8030 
8031 	case x86_intercept_lgdt:
8032 	case x86_intercept_lidt:
8033 	case x86_intercept_lldt:
8034 	case x86_intercept_ltr:
8035 	case x86_intercept_sgdt:
8036 	case x86_intercept_sidt:
8037 	case x86_intercept_sldt:
8038 	case x86_intercept_str:
8039 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
8040 			return X86EMUL_CONTINUE;
8041 
8042 		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
8043 		break;
8044 
8045 	case x86_intercept_pause:
8046 		/*
8047 		 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
8048 		 * with vanilla NOPs in the emulator.  Apply the interception
8049 		 * check only to actual PAUSE instructions.  Don't check
8050 		 * PAUSE-loop-exiting, software can't expect a given PAUSE to
8051 		 * exit, i.e. KVM is within its rights to allow L2 to execute
8052 		 * the PAUSE.
8053 		 */
8054 		if ((info->rep_prefix != REPE_PREFIX) ||
8055 		    !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING))
8056 			return X86EMUL_CONTINUE;
8057 
8058 		break;
8059 
8060 	/* TODO: check more intercepts... */
8061 	default:
8062 		break;
8063 	}
8064 
8065 	return X86EMUL_UNHANDLEABLE;
8066 }
8067 
8068 #ifdef CONFIG_X86_64
8069 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
8070 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
8071 				  u64 divisor, u64 *result)
8072 {
8073 	u64 low = a << shift, high = a >> (64 - shift);
8074 
8075 	/* To avoid the overflow on divq */
8076 	if (high >= divisor)
8077 		return 1;
8078 
8079 	/* Low hold the result, high hold rem which is discarded */
8080 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
8081 	    "rm" (divisor), "0" (low), "1" (high));
8082 	*result = low;
8083 
8084 	return 0;
8085 }
8086 
8087 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
8088 			    bool *expired)
8089 {
8090 	struct vcpu_vmx *vmx;
8091 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
8092 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
8093 
8094 	vmx = to_vmx(vcpu);
8095 	tscl = rdtsc();
8096 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
8097 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
8098 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
8099 						    ktimer->timer_advance_ns);
8100 
8101 	if (delta_tsc > lapic_timer_advance_cycles)
8102 		delta_tsc -= lapic_timer_advance_cycles;
8103 	else
8104 		delta_tsc = 0;
8105 
8106 	/* Convert to host delta tsc if tsc scaling is enabled */
8107 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
8108 	    delta_tsc && u64_shl_div_u64(delta_tsc,
8109 				kvm_caps.tsc_scaling_ratio_frac_bits,
8110 				vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
8111 		return -ERANGE;
8112 
8113 	/*
8114 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
8115 	 * we can't use the preemption timer.
8116 	 * It's possible that it fits on later vmentries, but checking
8117 	 * on every vmentry is costly so we just use an hrtimer.
8118 	 */
8119 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
8120 		return -ERANGE;
8121 
8122 	vmx->hv_deadline_tsc = tscl + delta_tsc;
8123 	*expired = !delta_tsc;
8124 	return 0;
8125 }
8126 
8127 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
8128 {
8129 	to_vmx(vcpu)->hv_deadline_tsc = -1;
8130 }
8131 #endif
8132 
8133 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
8134 {
8135 	if (!kvm_pause_in_guest(vcpu->kvm))
8136 		shrink_ple_window(vcpu);
8137 }
8138 
8139 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
8140 {
8141 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8142 
8143 	if (WARN_ON_ONCE(!enable_pml))
8144 		return;
8145 
8146 	if (is_guest_mode(vcpu)) {
8147 		vmx->nested.update_vmcs01_cpu_dirty_logging = true;
8148 		return;
8149 	}
8150 
8151 	/*
8152 	 * Note, nr_memslots_dirty_logging can be changed concurrent with this
8153 	 * code, but in that case another update request will be made and so
8154 	 * the guest will never run with a stale PML value.
8155 	 */
8156 	if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
8157 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8158 	else
8159 		secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8160 }
8161 
8162 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
8163 {
8164 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
8165 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
8166 			FEAT_CTL_LMCE_ENABLED;
8167 	else
8168 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
8169 			~FEAT_CTL_LMCE_ENABLED;
8170 }
8171 
8172 #ifdef CONFIG_KVM_SMM
8173 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
8174 {
8175 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
8176 	if (to_vmx(vcpu)->nested.nested_run_pending)
8177 		return -EBUSY;
8178 	return !is_smm(vcpu);
8179 }
8180 
8181 static int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
8182 {
8183 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8184 
8185 	/*
8186 	 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8187 	 * SMI and RSM.  Using the common VM-Exit + VM-Enter routines is wrong
8188 	 * SMI and RSM only modify state that is saved and restored via SMRAM.
8189 	 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
8190 	 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8191 	 */
8192 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
8193 	if (vmx->nested.smm.guest_mode)
8194 		nested_vmx_vmexit(vcpu, -1, 0, 0);
8195 
8196 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
8197 	vmx->nested.vmxon = false;
8198 	vmx_clear_hlt(vcpu);
8199 	return 0;
8200 }
8201 
8202 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8203 {
8204 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8205 	int ret;
8206 
8207 	if (vmx->nested.smm.vmxon) {
8208 		vmx->nested.vmxon = true;
8209 		vmx->nested.smm.vmxon = false;
8210 	}
8211 
8212 	if (vmx->nested.smm.guest_mode) {
8213 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
8214 		if (ret)
8215 			return ret;
8216 
8217 		vmx->nested.nested_run_pending = 1;
8218 		vmx->nested.smm.guest_mode = false;
8219 	}
8220 	return 0;
8221 }
8222 
8223 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8224 {
8225 	/* RSM will cause a vmexit anyway.  */
8226 }
8227 #endif
8228 
8229 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8230 {
8231 	return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8232 }
8233 
8234 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8235 {
8236 	if (is_guest_mode(vcpu)) {
8237 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8238 
8239 		if (hrtimer_try_to_cancel(timer) == 1)
8240 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8241 	}
8242 }
8243 
8244 static void vmx_hardware_unsetup(void)
8245 {
8246 	kvm_set_posted_intr_wakeup_handler(NULL);
8247 
8248 	if (nested)
8249 		nested_vmx_hardware_unsetup();
8250 
8251 	free_kvm_area();
8252 }
8253 
8254 #define VMX_REQUIRED_APICV_INHIBITS			\
8255 (							\
8256 	BIT(APICV_INHIBIT_REASON_DISABLE)|		\
8257 	BIT(APICV_INHIBIT_REASON_ABSENT) |		\
8258 	BIT(APICV_INHIBIT_REASON_HYPERV) |		\
8259 	BIT(APICV_INHIBIT_REASON_BLOCKIRQ) |		\
8260 	BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) |	\
8261 	BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) |	\
8262 	BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED)	\
8263 )
8264 
8265 static void vmx_vm_destroy(struct kvm *kvm)
8266 {
8267 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8268 
8269 	free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8270 }
8271 
8272 /*
8273  * Note, the SDM states that the linear address is masked *after* the modified
8274  * canonicality check, whereas KVM masks (untags) the address and then performs
8275  * a "normal" canonicality check.  Functionally, the two methods are identical,
8276  * and when the masking occurs relative to the canonicality check isn't visible
8277  * to software, i.e. KVM's behavior doesn't violate the SDM.
8278  */
8279 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags)
8280 {
8281 	int lam_bit;
8282 	unsigned long cr3_bits;
8283 
8284 	if (flags & (X86EMUL_F_FETCH | X86EMUL_F_IMPLICIT | X86EMUL_F_INVLPG))
8285 		return gva;
8286 
8287 	if (!is_64_bit_mode(vcpu))
8288 		return gva;
8289 
8290 	/*
8291 	 * Bit 63 determines if the address should be treated as user address
8292 	 * or a supervisor address.
8293 	 */
8294 	if (!(gva & BIT_ULL(63))) {
8295 		cr3_bits = kvm_get_active_cr3_lam_bits(vcpu);
8296 		if (!(cr3_bits & (X86_CR3_LAM_U57 | X86_CR3_LAM_U48)))
8297 			return gva;
8298 
8299 		/* LAM_U48 is ignored if LAM_U57 is set. */
8300 		lam_bit = cr3_bits & X86_CR3_LAM_U57 ? 56 : 47;
8301 	} else {
8302 		if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_LAM_SUP))
8303 			return gva;
8304 
8305 		lam_bit = kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 56 : 47;
8306 	}
8307 
8308 	/*
8309 	 * Untag the address by sign-extending the lam_bit, but NOT to bit 63.
8310 	 * Bit 63 is retained from the raw virtual address so that untagging
8311 	 * doesn't change a user access to a supervisor access, and vice versa.
8312 	 */
8313 	return (sign_extend64(gva, lam_bit) & ~BIT_ULL(63)) | (gva & BIT_ULL(63));
8314 }
8315 
8316 static struct kvm_x86_ops vmx_x86_ops __initdata = {
8317 	.name = KBUILD_MODNAME,
8318 
8319 	.check_processor_compatibility = vmx_check_processor_compat,
8320 
8321 	.hardware_unsetup = vmx_hardware_unsetup,
8322 
8323 	.hardware_enable = vmx_hardware_enable,
8324 	.hardware_disable = vmx_hardware_disable,
8325 	.has_emulated_msr = vmx_has_emulated_msr,
8326 
8327 	.vm_size = sizeof(struct kvm_vmx),
8328 	.vm_init = vmx_vm_init,
8329 	.vm_destroy = vmx_vm_destroy,
8330 
8331 	.vcpu_precreate = vmx_vcpu_precreate,
8332 	.vcpu_create = vmx_vcpu_create,
8333 	.vcpu_free = vmx_vcpu_free,
8334 	.vcpu_reset = vmx_vcpu_reset,
8335 
8336 	.prepare_switch_to_guest = vmx_prepare_switch_to_guest,
8337 	.vcpu_load = vmx_vcpu_load,
8338 	.vcpu_put = vmx_vcpu_put,
8339 
8340 	.update_exception_bitmap = vmx_update_exception_bitmap,
8341 	.get_msr_feature = vmx_get_msr_feature,
8342 	.get_msr = vmx_get_msr,
8343 	.set_msr = vmx_set_msr,
8344 	.get_segment_base = vmx_get_segment_base,
8345 	.get_segment = vmx_get_segment,
8346 	.set_segment = vmx_set_segment,
8347 	.get_cpl = vmx_get_cpl,
8348 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8349 	.is_valid_cr0 = vmx_is_valid_cr0,
8350 	.set_cr0 = vmx_set_cr0,
8351 	.is_valid_cr4 = vmx_is_valid_cr4,
8352 	.set_cr4 = vmx_set_cr4,
8353 	.set_efer = vmx_set_efer,
8354 	.get_idt = vmx_get_idt,
8355 	.set_idt = vmx_set_idt,
8356 	.get_gdt = vmx_get_gdt,
8357 	.set_gdt = vmx_set_gdt,
8358 	.set_dr7 = vmx_set_dr7,
8359 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
8360 	.cache_reg = vmx_cache_reg,
8361 	.get_rflags = vmx_get_rflags,
8362 	.set_rflags = vmx_set_rflags,
8363 	.get_if_flag = vmx_get_if_flag,
8364 
8365 	.flush_tlb_all = vmx_flush_tlb_all,
8366 	.flush_tlb_current = vmx_flush_tlb_current,
8367 	.flush_tlb_gva = vmx_flush_tlb_gva,
8368 	.flush_tlb_guest = vmx_flush_tlb_guest,
8369 
8370 	.vcpu_pre_run = vmx_vcpu_pre_run,
8371 	.vcpu_run = vmx_vcpu_run,
8372 	.handle_exit = vmx_handle_exit,
8373 	.skip_emulated_instruction = vmx_skip_emulated_instruction,
8374 	.update_emulated_instruction = vmx_update_emulated_instruction,
8375 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
8376 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
8377 	.patch_hypercall = vmx_patch_hypercall,
8378 	.inject_irq = vmx_inject_irq,
8379 	.inject_nmi = vmx_inject_nmi,
8380 	.inject_exception = vmx_inject_exception,
8381 	.cancel_injection = vmx_cancel_injection,
8382 	.interrupt_allowed = vmx_interrupt_allowed,
8383 	.nmi_allowed = vmx_nmi_allowed,
8384 	.get_nmi_mask = vmx_get_nmi_mask,
8385 	.set_nmi_mask = vmx_set_nmi_mask,
8386 	.enable_nmi_window = vmx_enable_nmi_window,
8387 	.enable_irq_window = vmx_enable_irq_window,
8388 	.update_cr8_intercept = vmx_update_cr8_intercept,
8389 	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
8390 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
8391 	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
8392 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
8393 	.apicv_pre_state_restore = vmx_apicv_pre_state_restore,
8394 	.required_apicv_inhibits = VMX_REQUIRED_APICV_INHIBITS,
8395 	.hwapic_irr_update = vmx_hwapic_irr_update,
8396 	.hwapic_isr_update = vmx_hwapic_isr_update,
8397 	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
8398 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
8399 	.deliver_interrupt = vmx_deliver_interrupt,
8400 	.dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
8401 
8402 	.set_tss_addr = vmx_set_tss_addr,
8403 	.set_identity_map_addr = vmx_set_identity_map_addr,
8404 	.get_mt_mask = vmx_get_mt_mask,
8405 
8406 	.get_exit_info = vmx_get_exit_info,
8407 
8408 	.vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
8409 
8410 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8411 
8412 	.get_l2_tsc_offset = vmx_get_l2_tsc_offset,
8413 	.get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
8414 	.write_tsc_offset = vmx_write_tsc_offset,
8415 	.write_tsc_multiplier = vmx_write_tsc_multiplier,
8416 
8417 	.load_mmu_pgd = vmx_load_mmu_pgd,
8418 
8419 	.check_intercept = vmx_check_intercept,
8420 	.handle_exit_irqoff = vmx_handle_exit_irqoff,
8421 
8422 	.sched_in = vmx_sched_in,
8423 
8424 	.cpu_dirty_log_size = PML_ENTITY_NUM,
8425 	.update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
8426 
8427 	.nested_ops = &vmx_nested_ops,
8428 
8429 	.pi_update_irte = vmx_pi_update_irte,
8430 	.pi_start_assignment = vmx_pi_start_assignment,
8431 
8432 #ifdef CONFIG_X86_64
8433 	.set_hv_timer = vmx_set_hv_timer,
8434 	.cancel_hv_timer = vmx_cancel_hv_timer,
8435 #endif
8436 
8437 	.setup_mce = vmx_setup_mce,
8438 
8439 #ifdef CONFIG_KVM_SMM
8440 	.smi_allowed = vmx_smi_allowed,
8441 	.enter_smm = vmx_enter_smm,
8442 	.leave_smm = vmx_leave_smm,
8443 	.enable_smi_window = vmx_enable_smi_window,
8444 #endif
8445 
8446 	.check_emulate_instruction = vmx_check_emulate_instruction,
8447 	.apic_init_signal_blocked = vmx_apic_init_signal_blocked,
8448 	.migrate_timers = vmx_migrate_timers,
8449 
8450 	.msr_filter_changed = vmx_msr_filter_changed,
8451 	.complete_emulated_msr = kvm_complete_insn_gp,
8452 
8453 	.vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
8454 
8455 	.get_untagged_addr = vmx_get_untagged_addr,
8456 };
8457 
8458 static unsigned int vmx_handle_intel_pt_intr(void)
8459 {
8460 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8461 
8462 	/* '0' on failure so that the !PT case can use a RET0 static call. */
8463 	if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8464 		return 0;
8465 
8466 	kvm_make_request(KVM_REQ_PMI, vcpu);
8467 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8468 		  (unsigned long *)&vcpu->arch.pmu.global_status);
8469 	return 1;
8470 }
8471 
8472 static __init void vmx_setup_user_return_msrs(void)
8473 {
8474 
8475 	/*
8476 	 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8477 	 * will emulate SYSCALL in legacy mode if the vendor string in guest
8478 	 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8479 	 * support this emulation, MSR_STAR is included in the list for i386,
8480 	 * but is never loaded into hardware.  MSR_CSTAR is also never loaded
8481 	 * into hardware and is here purely for emulation purposes.
8482 	 */
8483 	const u32 vmx_uret_msrs_list[] = {
8484 	#ifdef CONFIG_X86_64
8485 		MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8486 	#endif
8487 		MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8488 		MSR_IA32_TSX_CTRL,
8489 	};
8490 	int i;
8491 
8492 	BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8493 
8494 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8495 		kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8496 }
8497 
8498 static void __init vmx_setup_me_spte_mask(void)
8499 {
8500 	u64 me_mask = 0;
8501 
8502 	/*
8503 	 * kvm_get_shadow_phys_bits() returns shadow_phys_bits.  Use
8504 	 * the former to avoid exposing shadow_phys_bits.
8505 	 *
8506 	 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8507 	 * shadow_phys_bits.  On MKTME and/or TDX capable systems,
8508 	 * boot_cpu_data.x86_phys_bits holds the actual physical address
8509 	 * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR
8510 	 * reported by CPUID.  Those bits between are KeyID bits.
8511 	 */
8512 	if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits())
8513 		me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8514 			kvm_get_shadow_phys_bits() - 1);
8515 	/*
8516 	 * Unlike SME, host kernel doesn't support setting up any
8517 	 * MKTME KeyID on Intel platforms.  No memory encryption
8518 	 * bits should be included into the SPTE.
8519 	 */
8520 	kvm_mmu_set_me_spte_mask(0, me_mask);
8521 }
8522 
8523 static struct kvm_x86_init_ops vmx_init_ops __initdata;
8524 
8525 static __init int hardware_setup(void)
8526 {
8527 	unsigned long host_bndcfgs;
8528 	struct desc_ptr dt;
8529 	int r;
8530 
8531 	store_idt(&dt);
8532 	host_idt_base = dt.address;
8533 
8534 	vmx_setup_user_return_msrs();
8535 
8536 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8537 		return -EIO;
8538 
8539 	if (cpu_has_perf_global_ctrl_bug())
8540 		pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
8541 			     "does not work properly. Using workaround\n");
8542 
8543 	if (boot_cpu_has(X86_FEATURE_NX))
8544 		kvm_enable_efer_bits(EFER_NX);
8545 
8546 	if (boot_cpu_has(X86_FEATURE_MPX)) {
8547 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
8548 		WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
8549 	}
8550 
8551 	if (!cpu_has_vmx_mpx())
8552 		kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8553 					     XFEATURE_MASK_BNDCSR);
8554 
8555 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8556 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8557 		enable_vpid = 0;
8558 
8559 	if (!cpu_has_vmx_ept() ||
8560 	    !cpu_has_vmx_ept_4levels() ||
8561 	    !cpu_has_vmx_ept_mt_wb() ||
8562 	    !cpu_has_vmx_invept_global())
8563 		enable_ept = 0;
8564 
8565 	/* NX support is required for shadow paging. */
8566 	if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8567 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
8568 		return -EOPNOTSUPP;
8569 	}
8570 
8571 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8572 		enable_ept_ad_bits = 0;
8573 
8574 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8575 		enable_unrestricted_guest = 0;
8576 
8577 	if (!cpu_has_vmx_flexpriority())
8578 		flexpriority_enabled = 0;
8579 
8580 	if (!cpu_has_virtual_nmis())
8581 		enable_vnmi = 0;
8582 
8583 #ifdef CONFIG_X86_SGX_KVM
8584 	if (!cpu_has_vmx_encls_vmexit())
8585 		enable_sgx = false;
8586 #endif
8587 
8588 	/*
8589 	 * set_apic_access_page_addr() is used to reload apic access
8590 	 * page upon invalidation.  No need to do anything if not
8591 	 * using the APIC_ACCESS_ADDR VMCS field.
8592 	 */
8593 	if (!flexpriority_enabled)
8594 		vmx_x86_ops.set_apic_access_page_addr = NULL;
8595 
8596 	if (!cpu_has_vmx_tpr_shadow())
8597 		vmx_x86_ops.update_cr8_intercept = NULL;
8598 
8599 #if IS_ENABLED(CONFIG_HYPERV)
8600 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8601 	    && enable_ept) {
8602 		vmx_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
8603 		vmx_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
8604 	}
8605 #endif
8606 
8607 	if (!cpu_has_vmx_ple()) {
8608 		ple_gap = 0;
8609 		ple_window = 0;
8610 		ple_window_grow = 0;
8611 		ple_window_max = 0;
8612 		ple_window_shrink = 0;
8613 	}
8614 
8615 	if (!cpu_has_vmx_apicv())
8616 		enable_apicv = 0;
8617 	if (!enable_apicv)
8618 		vmx_x86_ops.sync_pir_to_irr = NULL;
8619 
8620 	if (!enable_apicv || !cpu_has_vmx_ipiv())
8621 		enable_ipiv = false;
8622 
8623 	if (cpu_has_vmx_tsc_scaling())
8624 		kvm_caps.has_tsc_control = true;
8625 
8626 	kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8627 	kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8628 	kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8629 	kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8630 
8631 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8632 
8633 	if (enable_ept)
8634 		kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8635 				      cpu_has_vmx_ept_execute_only());
8636 
8637 	/*
8638 	 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8639 	 * bits to shadow_zero_check.
8640 	 */
8641 	vmx_setup_me_spte_mask();
8642 
8643 	kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(),
8644 			  ept_caps_to_lpage_level(vmx_capability.ept));
8645 
8646 	/*
8647 	 * Only enable PML when hardware supports PML feature, and both EPT
8648 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
8649 	 */
8650 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8651 		enable_pml = 0;
8652 
8653 	if (!enable_pml)
8654 		vmx_x86_ops.cpu_dirty_log_size = 0;
8655 
8656 	if (!cpu_has_vmx_preemption_timer())
8657 		enable_preemption_timer = false;
8658 
8659 	if (enable_preemption_timer) {
8660 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
8661 
8662 		cpu_preemption_timer_multi =
8663 			vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8664 
8665 		if (tsc_khz)
8666 			use_timer_freq = (u64)tsc_khz * 1000;
8667 		use_timer_freq >>= cpu_preemption_timer_multi;
8668 
8669 		/*
8670 		 * KVM "disables" the preemption timer by setting it to its max
8671 		 * value.  Don't use the timer if it might cause spurious exits
8672 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8673 		 */
8674 		if (use_timer_freq > 0xffffffffu / 10)
8675 			enable_preemption_timer = false;
8676 	}
8677 
8678 	if (!enable_preemption_timer) {
8679 		vmx_x86_ops.set_hv_timer = NULL;
8680 		vmx_x86_ops.cancel_hv_timer = NULL;
8681 	}
8682 
8683 	kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8684 	kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8685 
8686 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8687 		return -EINVAL;
8688 	if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8689 		pt_mode = PT_MODE_SYSTEM;
8690 	if (pt_mode == PT_MODE_HOST_GUEST)
8691 		vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8692 	else
8693 		vmx_init_ops.handle_intel_pt_intr = NULL;
8694 
8695 	setup_default_sgx_lepubkeyhash();
8696 
8697 	if (nested) {
8698 		nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8699 
8700 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8701 		if (r)
8702 			return r;
8703 	}
8704 
8705 	vmx_set_cpu_caps();
8706 
8707 	r = alloc_kvm_area();
8708 	if (r && nested)
8709 		nested_vmx_hardware_unsetup();
8710 
8711 	kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8712 
8713 	return r;
8714 }
8715 
8716 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8717 	.hardware_setup = hardware_setup,
8718 	.handle_intel_pt_intr = NULL,
8719 
8720 	.runtime_ops = &vmx_x86_ops,
8721 	.pmu_ops = &intel_pmu_ops,
8722 };
8723 
8724 static void vmx_cleanup_l1d_flush(void)
8725 {
8726 	if (vmx_l1d_flush_pages) {
8727 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8728 		vmx_l1d_flush_pages = NULL;
8729 	}
8730 	/* Restore state so sysfs ignores VMX */
8731 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8732 }
8733 
8734 static void __vmx_exit(void)
8735 {
8736 	allow_smaller_maxphyaddr = false;
8737 
8738 	cpu_emergency_unregister_virt_callback(vmx_emergency_disable);
8739 
8740 	vmx_cleanup_l1d_flush();
8741 }
8742 
8743 static void vmx_exit(void)
8744 {
8745 	kvm_exit();
8746 	kvm_x86_vendor_exit();
8747 
8748 	__vmx_exit();
8749 }
8750 module_exit(vmx_exit);
8751 
8752 static int __init vmx_init(void)
8753 {
8754 	int r, cpu;
8755 
8756 	if (!kvm_is_vmx_supported())
8757 		return -EOPNOTSUPP;
8758 
8759 	/*
8760 	 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing
8761 	 * to unwind if a later step fails.
8762 	 */
8763 	hv_init_evmcs();
8764 
8765 	r = kvm_x86_vendor_init(&vmx_init_ops);
8766 	if (r)
8767 		return r;
8768 
8769 	/*
8770 	 * Must be called after common x86 init so enable_ept is properly set
8771 	 * up. Hand the parameter mitigation value in which was stored in
8772 	 * the pre module init parser. If no parameter was given, it will
8773 	 * contain 'auto' which will be turned into the default 'cond'
8774 	 * mitigation mode.
8775 	 */
8776 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8777 	if (r)
8778 		goto err_l1d_flush;
8779 
8780 	for_each_possible_cpu(cpu) {
8781 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8782 
8783 		pi_init_cpu(cpu);
8784 	}
8785 
8786 	cpu_emergency_register_virt_callback(vmx_emergency_disable);
8787 
8788 	vmx_check_vmcs12_offsets();
8789 
8790 	/*
8791 	 * Shadow paging doesn't have a (further) performance penalty
8792 	 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8793 	 * by default
8794 	 */
8795 	if (!enable_ept)
8796 		allow_smaller_maxphyaddr = true;
8797 
8798 	/*
8799 	 * Common KVM initialization _must_ come last, after this, /dev/kvm is
8800 	 * exposed to userspace!
8801 	 */
8802 	r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx),
8803 		     THIS_MODULE);
8804 	if (r)
8805 		goto err_kvm_init;
8806 
8807 	return 0;
8808 
8809 err_kvm_init:
8810 	__vmx_exit();
8811 err_l1d_flush:
8812 	kvm_x86_vendor_exit();
8813 	return r;
8814 }
8815 module_init(vmx_init);
8816