xref: /linux/arch/x86/kvm/vmx/vmx.c (revision 8a8d6bbe1d3bc7137c777ba06246d7e9c08dde4d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <linux/highmem.h>
17 #include <linux/hrtimer.h>
18 #include <linux/kernel.h>
19 #include <linux/kvm_host.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mm.h>
24 #include <linux/objtool.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
31 
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/api.h>
39 #include <asm/idtentry.h>
40 #include <asm/io.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/kexec.h>
43 #include <asm/perf_event.h>
44 #include <asm/mmu_context.h>
45 #include <asm/mshyperv.h>
46 #include <asm/mwait.h>
47 #include <asm/spec-ctrl.h>
48 #include <asm/virtext.h>
49 #include <asm/vmx.h>
50 
51 #include "capabilities.h"
52 #include "cpuid.h"
53 #include "evmcs.h"
54 #include "hyperv.h"
55 #include "kvm_onhyperv.h"
56 #include "irq.h"
57 #include "kvm_cache_regs.h"
58 #include "lapic.h"
59 #include "mmu.h"
60 #include "nested.h"
61 #include "pmu.h"
62 #include "sgx.h"
63 #include "trace.h"
64 #include "vmcs.h"
65 #include "vmcs12.h"
66 #include "vmx.h"
67 #include "x86.h"
68 
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71 
72 #ifdef MODULE
73 static const struct x86_cpu_id vmx_cpu_id[] = {
74 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
75 	{}
76 };
77 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
78 #endif
79 
80 bool __read_mostly enable_vpid = 1;
81 module_param_named(vpid, enable_vpid, bool, 0444);
82 
83 static bool __read_mostly enable_vnmi = 1;
84 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
85 
86 bool __read_mostly flexpriority_enabled = 1;
87 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
88 
89 bool __read_mostly enable_ept = 1;
90 module_param_named(ept, enable_ept, bool, S_IRUGO);
91 
92 bool __read_mostly enable_unrestricted_guest = 1;
93 module_param_named(unrestricted_guest,
94 			enable_unrestricted_guest, bool, S_IRUGO);
95 
96 bool __read_mostly enable_ept_ad_bits = 1;
97 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
98 
99 static bool __read_mostly emulate_invalid_guest_state = true;
100 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
101 
102 static bool __read_mostly fasteoi = 1;
103 module_param(fasteoi, bool, S_IRUGO);
104 
105 module_param(enable_apicv, bool, S_IRUGO);
106 
107 /*
108  * If nested=1, nested virtualization is supported, i.e., guests may use
109  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
110  * use VMX instructions.
111  */
112 static bool __read_mostly nested = 1;
113 module_param(nested, bool, S_IRUGO);
114 
115 bool __read_mostly enable_pml = 1;
116 module_param_named(pml, enable_pml, bool, S_IRUGO);
117 
118 static bool __read_mostly dump_invalid_vmcs = 0;
119 module_param(dump_invalid_vmcs, bool, 0644);
120 
121 #define MSR_BITMAP_MODE_X2APIC		1
122 #define MSR_BITMAP_MODE_X2APIC_APICV	2
123 
124 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
125 
126 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
127 static int __read_mostly cpu_preemption_timer_multi;
128 static bool __read_mostly enable_preemption_timer = 1;
129 #ifdef CONFIG_X86_64
130 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
131 #endif
132 
133 extern bool __read_mostly allow_smaller_maxphyaddr;
134 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
135 
136 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
137 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
138 #define KVM_VM_CR0_ALWAYS_ON				\
139 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
140 
141 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
142 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
143 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
144 
145 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
146 
147 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
148 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
149 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
150 	RTIT_STATUS_BYTECNT))
151 
152 /*
153  * List of MSRs that can be directly passed to the guest.
154  * In addition to these x2apic and PT MSRs are handled specially.
155  */
156 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
157 	MSR_IA32_SPEC_CTRL,
158 	MSR_IA32_PRED_CMD,
159 	MSR_IA32_TSC,
160 #ifdef CONFIG_X86_64
161 	MSR_FS_BASE,
162 	MSR_GS_BASE,
163 	MSR_KERNEL_GS_BASE,
164 #endif
165 	MSR_IA32_SYSENTER_CS,
166 	MSR_IA32_SYSENTER_ESP,
167 	MSR_IA32_SYSENTER_EIP,
168 	MSR_CORE_C1_RES,
169 	MSR_CORE_C3_RESIDENCY,
170 	MSR_CORE_C6_RESIDENCY,
171 	MSR_CORE_C7_RESIDENCY,
172 };
173 
174 /*
175  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
176  * ple_gap:    upper bound on the amount of time between two successive
177  *             executions of PAUSE in a loop. Also indicate if ple enabled.
178  *             According to test, this time is usually smaller than 128 cycles.
179  * ple_window: upper bound on the amount of time a guest is allowed to execute
180  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
181  *             less than 2^12 cycles
182  * Time is measured based on a counter that runs at the same rate as the TSC,
183  * refer SDM volume 3b section 21.6.13 & 22.1.3.
184  */
185 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
186 module_param(ple_gap, uint, 0444);
187 
188 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
189 module_param(ple_window, uint, 0444);
190 
191 /* Default doubles per-vcpu window every exit. */
192 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
193 module_param(ple_window_grow, uint, 0444);
194 
195 /* Default resets per-vcpu window every exit to ple_window. */
196 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
197 module_param(ple_window_shrink, uint, 0444);
198 
199 /* Default is to compute the maximum so we can never overflow. */
200 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
201 module_param(ple_window_max, uint, 0444);
202 
203 /* Default is SYSTEM mode, 1 for host-guest mode */
204 int __read_mostly pt_mode = PT_MODE_SYSTEM;
205 module_param(pt_mode, int, S_IRUGO);
206 
207 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
208 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
209 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
210 
211 /* Storage for pre module init parameter parsing */
212 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
213 
214 static const struct {
215 	const char *option;
216 	bool for_parse;
217 } vmentry_l1d_param[] = {
218 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
219 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
220 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
221 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
222 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
223 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
224 };
225 
226 #define L1D_CACHE_ORDER 4
227 static void *vmx_l1d_flush_pages;
228 
229 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
230 {
231 	struct page *page;
232 	unsigned int i;
233 
234 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
235 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
236 		return 0;
237 	}
238 
239 	if (!enable_ept) {
240 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
241 		return 0;
242 	}
243 
244 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
245 		u64 msr;
246 
247 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
248 		if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
249 			l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
250 			return 0;
251 		}
252 	}
253 
254 	/* If set to auto use the default l1tf mitigation method */
255 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
256 		switch (l1tf_mitigation) {
257 		case L1TF_MITIGATION_OFF:
258 			l1tf = VMENTER_L1D_FLUSH_NEVER;
259 			break;
260 		case L1TF_MITIGATION_FLUSH_NOWARN:
261 		case L1TF_MITIGATION_FLUSH:
262 		case L1TF_MITIGATION_FLUSH_NOSMT:
263 			l1tf = VMENTER_L1D_FLUSH_COND;
264 			break;
265 		case L1TF_MITIGATION_FULL:
266 		case L1TF_MITIGATION_FULL_FORCE:
267 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
268 			break;
269 		}
270 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
271 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
272 	}
273 
274 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
275 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
276 		/*
277 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
278 		 * lifetime and so should not be charged to a memcg.
279 		 */
280 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
281 		if (!page)
282 			return -ENOMEM;
283 		vmx_l1d_flush_pages = page_address(page);
284 
285 		/*
286 		 * Initialize each page with a different pattern in
287 		 * order to protect against KSM in the nested
288 		 * virtualization case.
289 		 */
290 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
291 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
292 			       PAGE_SIZE);
293 		}
294 	}
295 
296 	l1tf_vmx_mitigation = l1tf;
297 
298 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
299 		static_branch_enable(&vmx_l1d_should_flush);
300 	else
301 		static_branch_disable(&vmx_l1d_should_flush);
302 
303 	if (l1tf == VMENTER_L1D_FLUSH_COND)
304 		static_branch_enable(&vmx_l1d_flush_cond);
305 	else
306 		static_branch_disable(&vmx_l1d_flush_cond);
307 	return 0;
308 }
309 
310 static int vmentry_l1d_flush_parse(const char *s)
311 {
312 	unsigned int i;
313 
314 	if (s) {
315 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
316 			if (vmentry_l1d_param[i].for_parse &&
317 			    sysfs_streq(s, vmentry_l1d_param[i].option))
318 				return i;
319 		}
320 	}
321 	return -EINVAL;
322 }
323 
324 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
325 {
326 	int l1tf, ret;
327 
328 	l1tf = vmentry_l1d_flush_parse(s);
329 	if (l1tf < 0)
330 		return l1tf;
331 
332 	if (!boot_cpu_has(X86_BUG_L1TF))
333 		return 0;
334 
335 	/*
336 	 * Has vmx_init() run already? If not then this is the pre init
337 	 * parameter parsing. In that case just store the value and let
338 	 * vmx_init() do the proper setup after enable_ept has been
339 	 * established.
340 	 */
341 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
342 		vmentry_l1d_flush_param = l1tf;
343 		return 0;
344 	}
345 
346 	mutex_lock(&vmx_l1d_flush_mutex);
347 	ret = vmx_setup_l1d_flush(l1tf);
348 	mutex_unlock(&vmx_l1d_flush_mutex);
349 	return ret;
350 }
351 
352 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
353 {
354 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
355 		return sprintf(s, "???\n");
356 
357 	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
358 }
359 
360 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
361 	.set = vmentry_l1d_flush_set,
362 	.get = vmentry_l1d_flush_get,
363 };
364 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
365 
366 static u32 vmx_segment_access_rights(struct kvm_segment *var);
367 
368 void vmx_vmexit(void);
369 
370 #define vmx_insn_failed(fmt...)		\
371 do {					\
372 	WARN_ONCE(1, fmt);		\
373 	pr_warn_ratelimited(fmt);	\
374 } while (0)
375 
376 asmlinkage void vmread_error(unsigned long field, bool fault)
377 {
378 	if (fault)
379 		kvm_spurious_fault();
380 	else
381 		vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
382 }
383 
384 noinline void vmwrite_error(unsigned long field, unsigned long value)
385 {
386 	vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
387 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
388 }
389 
390 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
391 {
392 	vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
393 }
394 
395 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
396 {
397 	vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
398 }
399 
400 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
401 {
402 	vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
403 			ext, vpid, gva);
404 }
405 
406 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
407 {
408 	vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
409 			ext, eptp, gpa);
410 }
411 
412 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
413 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
414 /*
415  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
416  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
417  */
418 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
419 
420 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
421 static DEFINE_SPINLOCK(vmx_vpid_lock);
422 
423 struct vmcs_config vmcs_config;
424 struct vmx_capability vmx_capability;
425 
426 #define VMX_SEGMENT_FIELD(seg)					\
427 	[VCPU_SREG_##seg] = {                                   \
428 		.selector = GUEST_##seg##_SELECTOR,		\
429 		.base = GUEST_##seg##_BASE,		   	\
430 		.limit = GUEST_##seg##_LIMIT,		   	\
431 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
432 	}
433 
434 static const struct kvm_vmx_segment_field {
435 	unsigned selector;
436 	unsigned base;
437 	unsigned limit;
438 	unsigned ar_bytes;
439 } kvm_vmx_segment_fields[] = {
440 	VMX_SEGMENT_FIELD(CS),
441 	VMX_SEGMENT_FIELD(DS),
442 	VMX_SEGMENT_FIELD(ES),
443 	VMX_SEGMENT_FIELD(FS),
444 	VMX_SEGMENT_FIELD(GS),
445 	VMX_SEGMENT_FIELD(SS),
446 	VMX_SEGMENT_FIELD(TR),
447 	VMX_SEGMENT_FIELD(LDTR),
448 };
449 
450 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
451 {
452 	vmx->segment_cache.bitmask = 0;
453 }
454 
455 static unsigned long host_idt_base;
456 
457 #if IS_ENABLED(CONFIG_HYPERV)
458 static bool __read_mostly enlightened_vmcs = true;
459 module_param(enlightened_vmcs, bool, 0444);
460 
461 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
462 {
463 	struct hv_enlightened_vmcs *evmcs;
464 	struct hv_partition_assist_pg **p_hv_pa_pg =
465 			&to_kvm_hv(vcpu->kvm)->hv_pa_pg;
466 	/*
467 	 * Synthetic VM-Exit is not enabled in current code and so All
468 	 * evmcs in singe VM shares same assist page.
469 	 */
470 	if (!*p_hv_pa_pg)
471 		*p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
472 
473 	if (!*p_hv_pa_pg)
474 		return -ENOMEM;
475 
476 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
477 
478 	evmcs->partition_assist_page =
479 		__pa(*p_hv_pa_pg);
480 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
481 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
482 
483 	return 0;
484 }
485 
486 #endif /* IS_ENABLED(CONFIG_HYPERV) */
487 
488 /*
489  * Comment's format: document - errata name - stepping - processor name.
490  * Refer from
491  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
492  */
493 static u32 vmx_preemption_cpu_tfms[] = {
494 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
495 0x000206E6,
496 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
497 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
498 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
499 0x00020652,
500 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
501 0x00020655,
502 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
503 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
504 /*
505  * 320767.pdf - AAP86  - B1 -
506  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
507  */
508 0x000106E5,
509 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
510 0x000106A0,
511 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
512 0x000106A1,
513 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
514 0x000106A4,
515  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
516  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
517  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
518 0x000106A5,
519  /* Xeon E3-1220 V2 */
520 0x000306A8,
521 };
522 
523 static inline bool cpu_has_broken_vmx_preemption_timer(void)
524 {
525 	u32 eax = cpuid_eax(0x00000001), i;
526 
527 	/* Clear the reserved bits */
528 	eax &= ~(0x3U << 14 | 0xfU << 28);
529 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
530 		if (eax == vmx_preemption_cpu_tfms[i])
531 			return true;
532 
533 	return false;
534 }
535 
536 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
537 {
538 	return flexpriority_enabled && lapic_in_kernel(vcpu);
539 }
540 
541 static inline bool report_flexpriority(void)
542 {
543 	return flexpriority_enabled;
544 }
545 
546 static int possible_passthrough_msr_slot(u32 msr)
547 {
548 	u32 i;
549 
550 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
551 		if (vmx_possible_passthrough_msrs[i] == msr)
552 			return i;
553 
554 	return -ENOENT;
555 }
556 
557 static bool is_valid_passthrough_msr(u32 msr)
558 {
559 	bool r;
560 
561 	switch (msr) {
562 	case 0x800 ... 0x8ff:
563 		/* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
564 		return true;
565 	case MSR_IA32_RTIT_STATUS:
566 	case MSR_IA32_RTIT_OUTPUT_BASE:
567 	case MSR_IA32_RTIT_OUTPUT_MASK:
568 	case MSR_IA32_RTIT_CR3_MATCH:
569 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
570 		/* PT MSRs. These are handled in pt_update_intercept_for_msr() */
571 	case MSR_LBR_SELECT:
572 	case MSR_LBR_TOS:
573 	case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
574 	case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
575 	case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
576 	case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
577 	case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
578 		/* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
579 		return true;
580 	}
581 
582 	r = possible_passthrough_msr_slot(msr) != -ENOENT;
583 
584 	WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
585 
586 	return r;
587 }
588 
589 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
590 {
591 	int i;
592 
593 	i = kvm_find_user_return_msr(msr);
594 	if (i >= 0)
595 		return &vmx->guest_uret_msrs[i];
596 	return NULL;
597 }
598 
599 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
600 				  struct vmx_uret_msr *msr, u64 data)
601 {
602 	unsigned int slot = msr - vmx->guest_uret_msrs;
603 	int ret = 0;
604 
605 	u64 old_msr_data = msr->data;
606 	msr->data = data;
607 	if (msr->load_into_hardware) {
608 		preempt_disable();
609 		ret = kvm_set_user_return_msr(slot, msr->data, msr->mask);
610 		preempt_enable();
611 		if (ret)
612 			msr->data = old_msr_data;
613 	}
614 	return ret;
615 }
616 
617 #ifdef CONFIG_KEXEC_CORE
618 static void crash_vmclear_local_loaded_vmcss(void)
619 {
620 	int cpu = raw_smp_processor_id();
621 	struct loaded_vmcs *v;
622 
623 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
624 			    loaded_vmcss_on_cpu_link)
625 		vmcs_clear(v->vmcs);
626 }
627 #endif /* CONFIG_KEXEC_CORE */
628 
629 static void __loaded_vmcs_clear(void *arg)
630 {
631 	struct loaded_vmcs *loaded_vmcs = arg;
632 	int cpu = raw_smp_processor_id();
633 
634 	if (loaded_vmcs->cpu != cpu)
635 		return; /* vcpu migration can race with cpu offline */
636 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
637 		per_cpu(current_vmcs, cpu) = NULL;
638 
639 	vmcs_clear(loaded_vmcs->vmcs);
640 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
641 		vmcs_clear(loaded_vmcs->shadow_vmcs);
642 
643 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
644 
645 	/*
646 	 * Ensure all writes to loaded_vmcs, including deleting it from its
647 	 * current percpu list, complete before setting loaded_vmcs->vcpu to
648 	 * -1, otherwise a different cpu can see vcpu == -1 first and add
649 	 * loaded_vmcs to its percpu list before it's deleted from this cpu's
650 	 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
651 	 */
652 	smp_wmb();
653 
654 	loaded_vmcs->cpu = -1;
655 	loaded_vmcs->launched = 0;
656 }
657 
658 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
659 {
660 	int cpu = loaded_vmcs->cpu;
661 
662 	if (cpu != -1)
663 		smp_call_function_single(cpu,
664 			 __loaded_vmcs_clear, loaded_vmcs, 1);
665 }
666 
667 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
668 				       unsigned field)
669 {
670 	bool ret;
671 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
672 
673 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
674 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
675 		vmx->segment_cache.bitmask = 0;
676 	}
677 	ret = vmx->segment_cache.bitmask & mask;
678 	vmx->segment_cache.bitmask |= mask;
679 	return ret;
680 }
681 
682 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
683 {
684 	u16 *p = &vmx->segment_cache.seg[seg].selector;
685 
686 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
687 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
688 	return *p;
689 }
690 
691 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
692 {
693 	ulong *p = &vmx->segment_cache.seg[seg].base;
694 
695 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
696 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
697 	return *p;
698 }
699 
700 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
701 {
702 	u32 *p = &vmx->segment_cache.seg[seg].limit;
703 
704 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
705 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
706 	return *p;
707 }
708 
709 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
710 {
711 	u32 *p = &vmx->segment_cache.seg[seg].ar;
712 
713 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
714 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
715 	return *p;
716 }
717 
718 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
719 {
720 	u32 eb;
721 
722 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
723 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
724 	/*
725 	 * Guest access to VMware backdoor ports could legitimately
726 	 * trigger #GP because of TSS I/O permission bitmap.
727 	 * We intercept those #GP and allow access to them anyway
728 	 * as VMware does.
729 	 */
730 	if (enable_vmware_backdoor)
731 		eb |= (1u << GP_VECTOR);
732 	if ((vcpu->guest_debug &
733 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
734 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
735 		eb |= 1u << BP_VECTOR;
736 	if (to_vmx(vcpu)->rmode.vm86_active)
737 		eb = ~0;
738 	if (!vmx_need_pf_intercept(vcpu))
739 		eb &= ~(1u << PF_VECTOR);
740 
741 	/* When we are running a nested L2 guest and L1 specified for it a
742 	 * certain exception bitmap, we must trap the same exceptions and pass
743 	 * them to L1. When running L2, we will only handle the exceptions
744 	 * specified above if L1 did not want them.
745 	 */
746 	if (is_guest_mode(vcpu))
747 		eb |= get_vmcs12(vcpu)->exception_bitmap;
748         else {
749 		int mask = 0, match = 0;
750 
751 		if (enable_ept && (eb & (1u << PF_VECTOR))) {
752 			/*
753 			 * If EPT is enabled, #PF is currently only intercepted
754 			 * if MAXPHYADDR is smaller on the guest than on the
755 			 * host.  In that case we only care about present,
756 			 * non-reserved faults.  For vmcs02, however, PFEC_MASK
757 			 * and PFEC_MATCH are set in prepare_vmcs02_rare.
758 			 */
759 			mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
760 			match = PFERR_PRESENT_MASK;
761 		}
762 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
763 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
764 	}
765 
766 	vmcs_write32(EXCEPTION_BITMAP, eb);
767 }
768 
769 /*
770  * Check if MSR is intercepted for currently loaded MSR bitmap.
771  */
772 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
773 {
774 	if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
775 		return true;
776 
777 	return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap,
778 					 MSR_IA32_SPEC_CTRL);
779 }
780 
781 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
782 		unsigned long entry, unsigned long exit)
783 {
784 	vm_entry_controls_clearbit(vmx, entry);
785 	vm_exit_controls_clearbit(vmx, exit);
786 }
787 
788 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
789 {
790 	unsigned int i;
791 
792 	for (i = 0; i < m->nr; ++i) {
793 		if (m->val[i].index == msr)
794 			return i;
795 	}
796 	return -ENOENT;
797 }
798 
799 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
800 {
801 	int i;
802 	struct msr_autoload *m = &vmx->msr_autoload;
803 
804 	switch (msr) {
805 	case MSR_EFER:
806 		if (cpu_has_load_ia32_efer()) {
807 			clear_atomic_switch_msr_special(vmx,
808 					VM_ENTRY_LOAD_IA32_EFER,
809 					VM_EXIT_LOAD_IA32_EFER);
810 			return;
811 		}
812 		break;
813 	case MSR_CORE_PERF_GLOBAL_CTRL:
814 		if (cpu_has_load_perf_global_ctrl()) {
815 			clear_atomic_switch_msr_special(vmx,
816 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
817 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
818 			return;
819 		}
820 		break;
821 	}
822 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
823 	if (i < 0)
824 		goto skip_guest;
825 	--m->guest.nr;
826 	m->guest.val[i] = m->guest.val[m->guest.nr];
827 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
828 
829 skip_guest:
830 	i = vmx_find_loadstore_msr_slot(&m->host, msr);
831 	if (i < 0)
832 		return;
833 
834 	--m->host.nr;
835 	m->host.val[i] = m->host.val[m->host.nr];
836 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
837 }
838 
839 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
840 		unsigned long entry, unsigned long exit,
841 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
842 		u64 guest_val, u64 host_val)
843 {
844 	vmcs_write64(guest_val_vmcs, guest_val);
845 	if (host_val_vmcs != HOST_IA32_EFER)
846 		vmcs_write64(host_val_vmcs, host_val);
847 	vm_entry_controls_setbit(vmx, entry);
848 	vm_exit_controls_setbit(vmx, exit);
849 }
850 
851 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
852 				  u64 guest_val, u64 host_val, bool entry_only)
853 {
854 	int i, j = 0;
855 	struct msr_autoload *m = &vmx->msr_autoload;
856 
857 	switch (msr) {
858 	case MSR_EFER:
859 		if (cpu_has_load_ia32_efer()) {
860 			add_atomic_switch_msr_special(vmx,
861 					VM_ENTRY_LOAD_IA32_EFER,
862 					VM_EXIT_LOAD_IA32_EFER,
863 					GUEST_IA32_EFER,
864 					HOST_IA32_EFER,
865 					guest_val, host_val);
866 			return;
867 		}
868 		break;
869 	case MSR_CORE_PERF_GLOBAL_CTRL:
870 		if (cpu_has_load_perf_global_ctrl()) {
871 			add_atomic_switch_msr_special(vmx,
872 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
873 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
874 					GUEST_IA32_PERF_GLOBAL_CTRL,
875 					HOST_IA32_PERF_GLOBAL_CTRL,
876 					guest_val, host_val);
877 			return;
878 		}
879 		break;
880 	case MSR_IA32_PEBS_ENABLE:
881 		/* PEBS needs a quiescent period after being disabled (to write
882 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
883 		 * provide that period, so a CPU could write host's record into
884 		 * guest's memory.
885 		 */
886 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
887 	}
888 
889 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
890 	if (!entry_only)
891 		j = vmx_find_loadstore_msr_slot(&m->host, msr);
892 
893 	if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
894 	    (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
895 		printk_once(KERN_WARNING "Not enough msr switch entries. "
896 				"Can't add msr %x\n", msr);
897 		return;
898 	}
899 	if (i < 0) {
900 		i = m->guest.nr++;
901 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
902 	}
903 	m->guest.val[i].index = msr;
904 	m->guest.val[i].value = guest_val;
905 
906 	if (entry_only)
907 		return;
908 
909 	if (j < 0) {
910 		j = m->host.nr++;
911 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
912 	}
913 	m->host.val[j].index = msr;
914 	m->host.val[j].value = host_val;
915 }
916 
917 static bool update_transition_efer(struct vcpu_vmx *vmx)
918 {
919 	u64 guest_efer = vmx->vcpu.arch.efer;
920 	u64 ignore_bits = 0;
921 	int i;
922 
923 	/* Shadow paging assumes NX to be available.  */
924 	if (!enable_ept)
925 		guest_efer |= EFER_NX;
926 
927 	/*
928 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
929 	 */
930 	ignore_bits |= EFER_SCE;
931 #ifdef CONFIG_X86_64
932 	ignore_bits |= EFER_LMA | EFER_LME;
933 	/* SCE is meaningful only in long mode on Intel */
934 	if (guest_efer & EFER_LMA)
935 		ignore_bits &= ~(u64)EFER_SCE;
936 #endif
937 
938 	/*
939 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
940 	 * On CPUs that support "load IA32_EFER", always switch EFER
941 	 * atomically, since it's faster than switching it manually.
942 	 */
943 	if (cpu_has_load_ia32_efer() ||
944 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
945 		if (!(guest_efer & EFER_LMA))
946 			guest_efer &= ~EFER_LME;
947 		if (guest_efer != host_efer)
948 			add_atomic_switch_msr(vmx, MSR_EFER,
949 					      guest_efer, host_efer, false);
950 		else
951 			clear_atomic_switch_msr(vmx, MSR_EFER);
952 		return false;
953 	}
954 
955 	i = kvm_find_user_return_msr(MSR_EFER);
956 	if (i < 0)
957 		return false;
958 
959 	clear_atomic_switch_msr(vmx, MSR_EFER);
960 
961 	guest_efer &= ~ignore_bits;
962 	guest_efer |= host_efer & ignore_bits;
963 
964 	vmx->guest_uret_msrs[i].data = guest_efer;
965 	vmx->guest_uret_msrs[i].mask = ~ignore_bits;
966 
967 	return true;
968 }
969 
970 #ifdef CONFIG_X86_32
971 /*
972  * On 32-bit kernels, VM exits still load the FS and GS bases from the
973  * VMCS rather than the segment table.  KVM uses this helper to figure
974  * out the current bases to poke them into the VMCS before entry.
975  */
976 static unsigned long segment_base(u16 selector)
977 {
978 	struct desc_struct *table;
979 	unsigned long v;
980 
981 	if (!(selector & ~SEGMENT_RPL_MASK))
982 		return 0;
983 
984 	table = get_current_gdt_ro();
985 
986 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
987 		u16 ldt_selector = kvm_read_ldt();
988 
989 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
990 			return 0;
991 
992 		table = (struct desc_struct *)segment_base(ldt_selector);
993 	}
994 	v = get_desc_base(&table[selector >> 3]);
995 	return v;
996 }
997 #endif
998 
999 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1000 {
1001 	return vmx_pt_mode_is_host_guest() &&
1002 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1003 }
1004 
1005 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1006 {
1007 	/* The base must be 128-byte aligned and a legal physical address. */
1008 	return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1009 }
1010 
1011 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1012 {
1013 	u32 i;
1014 
1015 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1016 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1017 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1018 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1019 	for (i = 0; i < addr_range; i++) {
1020 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1021 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1022 	}
1023 }
1024 
1025 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1026 {
1027 	u32 i;
1028 
1029 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1030 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1031 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1032 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1033 	for (i = 0; i < addr_range; i++) {
1034 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1035 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1036 	}
1037 }
1038 
1039 static void pt_guest_enter(struct vcpu_vmx *vmx)
1040 {
1041 	if (vmx_pt_mode_is_system())
1042 		return;
1043 
1044 	/*
1045 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1046 	 * Save host state before VM entry.
1047 	 */
1048 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1049 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1050 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1051 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1052 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1053 	}
1054 }
1055 
1056 static void pt_guest_exit(struct vcpu_vmx *vmx)
1057 {
1058 	if (vmx_pt_mode_is_system())
1059 		return;
1060 
1061 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1062 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1063 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1064 	}
1065 
1066 	/*
1067 	 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1068 	 * i.e. RTIT_CTL is always cleared on VM-Exit.  Restore it if necessary.
1069 	 */
1070 	if (vmx->pt_desc.host.ctl)
1071 		wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1072 }
1073 
1074 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1075 			unsigned long fs_base, unsigned long gs_base)
1076 {
1077 	if (unlikely(fs_sel != host->fs_sel)) {
1078 		if (!(fs_sel & 7))
1079 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1080 		else
1081 			vmcs_write16(HOST_FS_SELECTOR, 0);
1082 		host->fs_sel = fs_sel;
1083 	}
1084 	if (unlikely(gs_sel != host->gs_sel)) {
1085 		if (!(gs_sel & 7))
1086 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1087 		else
1088 			vmcs_write16(HOST_GS_SELECTOR, 0);
1089 		host->gs_sel = gs_sel;
1090 	}
1091 	if (unlikely(fs_base != host->fs_base)) {
1092 		vmcs_writel(HOST_FS_BASE, fs_base);
1093 		host->fs_base = fs_base;
1094 	}
1095 	if (unlikely(gs_base != host->gs_base)) {
1096 		vmcs_writel(HOST_GS_BASE, gs_base);
1097 		host->gs_base = gs_base;
1098 	}
1099 }
1100 
1101 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1102 {
1103 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1104 	struct vmcs_host_state *host_state;
1105 #ifdef CONFIG_X86_64
1106 	int cpu = raw_smp_processor_id();
1107 #endif
1108 	unsigned long fs_base, gs_base;
1109 	u16 fs_sel, gs_sel;
1110 	int i;
1111 
1112 	vmx->req_immediate_exit = false;
1113 
1114 	/*
1115 	 * Note that guest MSRs to be saved/restored can also be changed
1116 	 * when guest state is loaded. This happens when guest transitions
1117 	 * to/from long-mode by setting MSR_EFER.LMA.
1118 	 */
1119 	if (!vmx->guest_uret_msrs_loaded) {
1120 		vmx->guest_uret_msrs_loaded = true;
1121 		for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1122 			if (!vmx->guest_uret_msrs[i].load_into_hardware)
1123 				continue;
1124 
1125 			kvm_set_user_return_msr(i,
1126 						vmx->guest_uret_msrs[i].data,
1127 						vmx->guest_uret_msrs[i].mask);
1128 		}
1129 	}
1130 
1131     	if (vmx->nested.need_vmcs12_to_shadow_sync)
1132 		nested_sync_vmcs12_to_shadow(vcpu);
1133 
1134 	if (vmx->guest_state_loaded)
1135 		return;
1136 
1137 	host_state = &vmx->loaded_vmcs->host_state;
1138 
1139 	/*
1140 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1141 	 * allow segment selectors with cpl > 0 or ti == 1.
1142 	 */
1143 	host_state->ldt_sel = kvm_read_ldt();
1144 
1145 #ifdef CONFIG_X86_64
1146 	savesegment(ds, host_state->ds_sel);
1147 	savesegment(es, host_state->es_sel);
1148 
1149 	gs_base = cpu_kernelmode_gs_base(cpu);
1150 	if (likely(is_64bit_mm(current->mm))) {
1151 		current_save_fsgs();
1152 		fs_sel = current->thread.fsindex;
1153 		gs_sel = current->thread.gsindex;
1154 		fs_base = current->thread.fsbase;
1155 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1156 	} else {
1157 		savesegment(fs, fs_sel);
1158 		savesegment(gs, gs_sel);
1159 		fs_base = read_msr(MSR_FS_BASE);
1160 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1161 	}
1162 
1163 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1164 #else
1165 	savesegment(fs, fs_sel);
1166 	savesegment(gs, gs_sel);
1167 	fs_base = segment_base(fs_sel);
1168 	gs_base = segment_base(gs_sel);
1169 #endif
1170 
1171 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1172 	vmx->guest_state_loaded = true;
1173 }
1174 
1175 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1176 {
1177 	struct vmcs_host_state *host_state;
1178 
1179 	if (!vmx->guest_state_loaded)
1180 		return;
1181 
1182 	host_state = &vmx->loaded_vmcs->host_state;
1183 
1184 	++vmx->vcpu.stat.host_state_reload;
1185 
1186 #ifdef CONFIG_X86_64
1187 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1188 #endif
1189 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1190 		kvm_load_ldt(host_state->ldt_sel);
1191 #ifdef CONFIG_X86_64
1192 		load_gs_index(host_state->gs_sel);
1193 #else
1194 		loadsegment(gs, host_state->gs_sel);
1195 #endif
1196 	}
1197 	if (host_state->fs_sel & 7)
1198 		loadsegment(fs, host_state->fs_sel);
1199 #ifdef CONFIG_X86_64
1200 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1201 		loadsegment(ds, host_state->ds_sel);
1202 		loadsegment(es, host_state->es_sel);
1203 	}
1204 #endif
1205 	invalidate_tss_limit();
1206 #ifdef CONFIG_X86_64
1207 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1208 #endif
1209 	load_fixmap_gdt(raw_smp_processor_id());
1210 	vmx->guest_state_loaded = false;
1211 	vmx->guest_uret_msrs_loaded = false;
1212 }
1213 
1214 #ifdef CONFIG_X86_64
1215 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1216 {
1217 	preempt_disable();
1218 	if (vmx->guest_state_loaded)
1219 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1220 	preempt_enable();
1221 	return vmx->msr_guest_kernel_gs_base;
1222 }
1223 
1224 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1225 {
1226 	preempt_disable();
1227 	if (vmx->guest_state_loaded)
1228 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1229 	preempt_enable();
1230 	vmx->msr_guest_kernel_gs_base = data;
1231 }
1232 #endif
1233 
1234 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1235 			struct loaded_vmcs *buddy)
1236 {
1237 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1238 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1239 	struct vmcs *prev;
1240 
1241 	if (!already_loaded) {
1242 		loaded_vmcs_clear(vmx->loaded_vmcs);
1243 		local_irq_disable();
1244 
1245 		/*
1246 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1247 		 * this cpu's percpu list, otherwise it may not yet be deleted
1248 		 * from its previous cpu's percpu list.  Pairs with the
1249 		 * smb_wmb() in __loaded_vmcs_clear().
1250 		 */
1251 		smp_rmb();
1252 
1253 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1254 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1255 		local_irq_enable();
1256 	}
1257 
1258 	prev = per_cpu(current_vmcs, cpu);
1259 	if (prev != vmx->loaded_vmcs->vmcs) {
1260 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1261 		vmcs_load(vmx->loaded_vmcs->vmcs);
1262 
1263 		/*
1264 		 * No indirect branch prediction barrier needed when switching
1265 		 * the active VMCS within a guest, e.g. on nested VM-Enter.
1266 		 * The L1 VMM can protect itself with retpolines, IBPB or IBRS.
1267 		 */
1268 		if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1269 			indirect_branch_prediction_barrier();
1270 	}
1271 
1272 	if (!already_loaded) {
1273 		void *gdt = get_current_gdt_ro();
1274 		unsigned long sysenter_esp;
1275 
1276 		/*
1277 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1278 		 * TLB entries from its previous association with the vCPU.
1279 		 */
1280 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1281 
1282 		/*
1283 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1284 		 * processors.  See 22.2.4.
1285 		 */
1286 		vmcs_writel(HOST_TR_BASE,
1287 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1288 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1289 
1290 		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1291 		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1292 
1293 		vmx->loaded_vmcs->cpu = cpu;
1294 	}
1295 }
1296 
1297 /*
1298  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1299  * vcpu mutex is already taken.
1300  */
1301 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1302 {
1303 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1304 
1305 	vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1306 
1307 	vmx_vcpu_pi_load(vcpu, cpu);
1308 
1309 	vmx->host_debugctlmsr = get_debugctlmsr();
1310 }
1311 
1312 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1313 {
1314 	vmx_vcpu_pi_put(vcpu);
1315 
1316 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1317 }
1318 
1319 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1320 {
1321 	return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1322 }
1323 
1324 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1325 {
1326 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1327 	unsigned long rflags, save_rflags;
1328 
1329 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1330 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1331 		rflags = vmcs_readl(GUEST_RFLAGS);
1332 		if (vmx->rmode.vm86_active) {
1333 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1334 			save_rflags = vmx->rmode.save_rflags;
1335 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1336 		}
1337 		vmx->rflags = rflags;
1338 	}
1339 	return vmx->rflags;
1340 }
1341 
1342 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1343 {
1344 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1345 	unsigned long old_rflags;
1346 
1347 	if (is_unrestricted_guest(vcpu)) {
1348 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1349 		vmx->rflags = rflags;
1350 		vmcs_writel(GUEST_RFLAGS, rflags);
1351 		return;
1352 	}
1353 
1354 	old_rflags = vmx_get_rflags(vcpu);
1355 	vmx->rflags = rflags;
1356 	if (vmx->rmode.vm86_active) {
1357 		vmx->rmode.save_rflags = rflags;
1358 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1359 	}
1360 	vmcs_writel(GUEST_RFLAGS, rflags);
1361 
1362 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1363 		vmx->emulation_required = vmx_emulation_required(vcpu);
1364 }
1365 
1366 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1367 {
1368 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1369 	int ret = 0;
1370 
1371 	if (interruptibility & GUEST_INTR_STATE_STI)
1372 		ret |= KVM_X86_SHADOW_INT_STI;
1373 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1374 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1375 
1376 	return ret;
1377 }
1378 
1379 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1380 {
1381 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1382 	u32 interruptibility = interruptibility_old;
1383 
1384 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1385 
1386 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1387 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1388 	else if (mask & KVM_X86_SHADOW_INT_STI)
1389 		interruptibility |= GUEST_INTR_STATE_STI;
1390 
1391 	if ((interruptibility != interruptibility_old))
1392 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1393 }
1394 
1395 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1396 {
1397 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1398 	unsigned long value;
1399 
1400 	/*
1401 	 * Any MSR write that attempts to change bits marked reserved will
1402 	 * case a #GP fault.
1403 	 */
1404 	if (data & vmx->pt_desc.ctl_bitmask)
1405 		return 1;
1406 
1407 	/*
1408 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1409 	 * result in a #GP unless the same write also clears TraceEn.
1410 	 */
1411 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1412 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1413 		return 1;
1414 
1415 	/*
1416 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1417 	 * and FabricEn would cause #GP, if
1418 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1419 	 */
1420 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1421 		!(data & RTIT_CTL_FABRIC_EN) &&
1422 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1423 					PT_CAP_single_range_output))
1424 		return 1;
1425 
1426 	/*
1427 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1428 	 * utilize encodings marked reserved will cause a #GP fault.
1429 	 */
1430 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1431 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1432 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1433 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1434 		return 1;
1435 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1436 						PT_CAP_cycle_thresholds);
1437 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1438 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1439 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1440 		return 1;
1441 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1442 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1443 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1444 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1445 		return 1;
1446 
1447 	/*
1448 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1449 	 * cause a #GP fault.
1450 	 */
1451 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1452 	if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1453 		return 1;
1454 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1455 	if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1456 		return 1;
1457 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1458 	if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1459 		return 1;
1460 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1461 	if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1462 		return 1;
1463 
1464 	return 0;
1465 }
1466 
1467 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
1468 {
1469 	/*
1470 	 * Emulation of instructions in SGX enclaves is impossible as RIP does
1471 	 * not point  tthe failing instruction, and even if it did, the code
1472 	 * stream is inaccessible.  Inject #UD instead of exiting to userspace
1473 	 * so that guest userspace can't DoS the guest simply by triggering
1474 	 * emulation (enclaves are CPL3 only).
1475 	 */
1476 	if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1477 		kvm_queue_exception(vcpu, UD_VECTOR);
1478 		return false;
1479 	}
1480 	return true;
1481 }
1482 
1483 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1484 {
1485 	union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1486 	unsigned long rip, orig_rip;
1487 	u32 instr_len;
1488 
1489 	/*
1490 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1491 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1492 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1493 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1494 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1495 	 * i.e. we end up advancing IP with some random value.
1496 	 */
1497 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1498 	    exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1499 		instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1500 
1501 		/*
1502 		 * Emulating an enclave's instructions isn't supported as KVM
1503 		 * cannot access the enclave's memory or its true RIP, e.g. the
1504 		 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1505 		 * the RIP that actually triggered the VM-Exit.  But, because
1506 		 * most instructions that cause VM-Exit will #UD in an enclave,
1507 		 * most instruction-based VM-Exits simply do not occur.
1508 		 *
1509 		 * There are a few exceptions, notably the debug instructions
1510 		 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1511 		 * and generate #DB/#BP as expected, which KVM might intercept.
1512 		 * But again, the CPU does the dirty work and saves an instr
1513 		 * length of zero so VMMs don't shoot themselves in the foot.
1514 		 * WARN if KVM tries to skip a non-zero length instruction on
1515 		 * a VM-Exit from an enclave.
1516 		 */
1517 		if (!instr_len)
1518 			goto rip_updated;
1519 
1520 		WARN(exit_reason.enclave_mode,
1521 		     "KVM: skipping instruction after SGX enclave VM-Exit");
1522 
1523 		orig_rip = kvm_rip_read(vcpu);
1524 		rip = orig_rip + instr_len;
1525 #ifdef CONFIG_X86_64
1526 		/*
1527 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1528 		 * mode, but just finding out that we are in 64-bit mode is
1529 		 * quite expensive.  Only do it if there was a carry.
1530 		 */
1531 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1532 			rip = (u32)rip;
1533 #endif
1534 		kvm_rip_write(vcpu, rip);
1535 	} else {
1536 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1537 			return 0;
1538 	}
1539 
1540 rip_updated:
1541 	/* skipping an emulated instruction also counts */
1542 	vmx_set_interrupt_shadow(vcpu, 0);
1543 
1544 	return 1;
1545 }
1546 
1547 /*
1548  * Recognizes a pending MTF VM-exit and records the nested state for later
1549  * delivery.
1550  */
1551 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1552 {
1553 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1554 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1555 
1556 	if (!is_guest_mode(vcpu))
1557 		return;
1558 
1559 	/*
1560 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1561 	 * T-bit traps. As instruction emulation is completed (i.e. at the
1562 	 * instruction boundary), any #DB exception pending delivery must be a
1563 	 * debug-trap. Record the pending MTF state to be delivered in
1564 	 * vmx_check_nested_events().
1565 	 */
1566 	if (nested_cpu_has_mtf(vmcs12) &&
1567 	    (!vcpu->arch.exception.pending ||
1568 	     vcpu->arch.exception.nr == DB_VECTOR))
1569 		vmx->nested.mtf_pending = true;
1570 	else
1571 		vmx->nested.mtf_pending = false;
1572 }
1573 
1574 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1575 {
1576 	vmx_update_emulated_instruction(vcpu);
1577 	return skip_emulated_instruction(vcpu);
1578 }
1579 
1580 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1581 {
1582 	/*
1583 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1584 	 * explicitly skip the instruction because if the HLT state is set,
1585 	 * then the instruction is already executing and RIP has already been
1586 	 * advanced.
1587 	 */
1588 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1589 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1590 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1591 }
1592 
1593 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1594 {
1595 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1596 	unsigned nr = vcpu->arch.exception.nr;
1597 	bool has_error_code = vcpu->arch.exception.has_error_code;
1598 	u32 error_code = vcpu->arch.exception.error_code;
1599 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
1600 
1601 	kvm_deliver_exception_payload(vcpu);
1602 
1603 	if (has_error_code) {
1604 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1605 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1606 	}
1607 
1608 	if (vmx->rmode.vm86_active) {
1609 		int inc_eip = 0;
1610 		if (kvm_exception_is_soft(nr))
1611 			inc_eip = vcpu->arch.event_exit_inst_len;
1612 		kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1613 		return;
1614 	}
1615 
1616 	WARN_ON_ONCE(vmx->emulation_required);
1617 
1618 	if (kvm_exception_is_soft(nr)) {
1619 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1620 			     vmx->vcpu.arch.event_exit_inst_len);
1621 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1622 	} else
1623 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1624 
1625 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1626 
1627 	vmx_clear_hlt(vcpu);
1628 }
1629 
1630 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1631 			       bool load_into_hardware)
1632 {
1633 	struct vmx_uret_msr *uret_msr;
1634 
1635 	uret_msr = vmx_find_uret_msr(vmx, msr);
1636 	if (!uret_msr)
1637 		return;
1638 
1639 	uret_msr->load_into_hardware = load_into_hardware;
1640 }
1641 
1642 /*
1643  * Configuring user return MSRs to automatically save, load, and restore MSRs
1644  * that need to be shoved into hardware when running the guest.  Note, omitting
1645  * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1646  * loaded into hardware when running the guest.
1647  */
1648 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1649 {
1650 #ifdef CONFIG_X86_64
1651 	bool load_syscall_msrs;
1652 
1653 	/*
1654 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1655 	 * when EFER.SCE is set.
1656 	 */
1657 	load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1658 			    (vmx->vcpu.arch.efer & EFER_SCE);
1659 
1660 	vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1661 	vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1662 	vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1663 #endif
1664 	vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1665 
1666 	vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1667 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1668 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1669 
1670 	/*
1671 	 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1672 	 * kernel and old userspace.  If those guests run on a tsx=off host, do
1673 	 * allow guests to use TSX_CTRL, but don't change the value in hardware
1674 	 * so that TSX remains always disabled.
1675 	 */
1676 	vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1677 
1678 	/*
1679 	 * The set of MSRs to load may have changed, reload MSRs before the
1680 	 * next VM-Enter.
1681 	 */
1682 	vmx->guest_uret_msrs_loaded = false;
1683 }
1684 
1685 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1686 {
1687 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1688 
1689 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1690 		return vmcs12->tsc_offset;
1691 
1692 	return 0;
1693 }
1694 
1695 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1696 {
1697 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1698 
1699 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1700 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1701 		return vmcs12->tsc_multiplier;
1702 
1703 	return kvm_default_tsc_scaling_ratio;
1704 }
1705 
1706 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1707 {
1708 	vmcs_write64(TSC_OFFSET, offset);
1709 }
1710 
1711 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1712 {
1713 	vmcs_write64(TSC_MULTIPLIER, multiplier);
1714 }
1715 
1716 /*
1717  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1718  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1719  * all guests if the "nested" module option is off, and can also be disabled
1720  * for a single guest by disabling its VMX cpuid bit.
1721  */
1722 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1723 {
1724 	return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1725 }
1726 
1727 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1728 						 uint64_t val)
1729 {
1730 	uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1731 
1732 	return !(val & ~valid_bits);
1733 }
1734 
1735 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1736 {
1737 	switch (msr->index) {
1738 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1739 		if (!nested)
1740 			return 1;
1741 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1742 	case MSR_IA32_PERF_CAPABILITIES:
1743 		msr->data = vmx_get_perf_capabilities();
1744 		return 0;
1745 	default:
1746 		return KVM_MSR_RET_INVALID;
1747 	}
1748 }
1749 
1750 /*
1751  * Reads an msr value (of 'msr_index') into 'pdata'.
1752  * Returns 0 on success, non-0 otherwise.
1753  * Assumes vcpu_load() was already called.
1754  */
1755 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1756 {
1757 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1758 	struct vmx_uret_msr *msr;
1759 	u32 index;
1760 
1761 	switch (msr_info->index) {
1762 #ifdef CONFIG_X86_64
1763 	case MSR_FS_BASE:
1764 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1765 		break;
1766 	case MSR_GS_BASE:
1767 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1768 		break;
1769 	case MSR_KERNEL_GS_BASE:
1770 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1771 		break;
1772 #endif
1773 	case MSR_EFER:
1774 		return kvm_get_msr_common(vcpu, msr_info);
1775 	case MSR_IA32_TSX_CTRL:
1776 		if (!msr_info->host_initiated &&
1777 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1778 			return 1;
1779 		goto find_uret_msr;
1780 	case MSR_IA32_UMWAIT_CONTROL:
1781 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1782 			return 1;
1783 
1784 		msr_info->data = vmx->msr_ia32_umwait_control;
1785 		break;
1786 	case MSR_IA32_SPEC_CTRL:
1787 		if (!msr_info->host_initiated &&
1788 		    !guest_has_spec_ctrl_msr(vcpu))
1789 			return 1;
1790 
1791 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
1792 		break;
1793 	case MSR_IA32_SYSENTER_CS:
1794 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1795 		break;
1796 	case MSR_IA32_SYSENTER_EIP:
1797 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1798 		break;
1799 	case MSR_IA32_SYSENTER_ESP:
1800 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1801 		break;
1802 	case MSR_IA32_BNDCFGS:
1803 		if (!kvm_mpx_supported() ||
1804 		    (!msr_info->host_initiated &&
1805 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1806 			return 1;
1807 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1808 		break;
1809 	case MSR_IA32_MCG_EXT_CTL:
1810 		if (!msr_info->host_initiated &&
1811 		    !(vmx->msr_ia32_feature_control &
1812 		      FEAT_CTL_LMCE_ENABLED))
1813 			return 1;
1814 		msr_info->data = vcpu->arch.mcg_ext_ctl;
1815 		break;
1816 	case MSR_IA32_FEAT_CTL:
1817 		msr_info->data = vmx->msr_ia32_feature_control;
1818 		break;
1819 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
1820 		if (!msr_info->host_initiated &&
1821 		    !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
1822 			return 1;
1823 		msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
1824 			[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
1825 		break;
1826 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1827 		if (!nested_vmx_allowed(vcpu))
1828 			return 1;
1829 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1830 				    &msr_info->data))
1831 			return 1;
1832 		/*
1833 		 * Enlightened VMCS v1 doesn't have certain VMCS fields but
1834 		 * instead of just ignoring the features, different Hyper-V
1835 		 * versions are either trying to use them and fail or do some
1836 		 * sanity checking and refuse to boot. Filter all unsupported
1837 		 * features out.
1838 		 */
1839 		if (!msr_info->host_initiated &&
1840 		    vmx->nested.enlightened_vmcs_enabled)
1841 			nested_evmcs_filter_control_msr(msr_info->index,
1842 							&msr_info->data);
1843 		break;
1844 	case MSR_IA32_RTIT_CTL:
1845 		if (!vmx_pt_mode_is_host_guest())
1846 			return 1;
1847 		msr_info->data = vmx->pt_desc.guest.ctl;
1848 		break;
1849 	case MSR_IA32_RTIT_STATUS:
1850 		if (!vmx_pt_mode_is_host_guest())
1851 			return 1;
1852 		msr_info->data = vmx->pt_desc.guest.status;
1853 		break;
1854 	case MSR_IA32_RTIT_CR3_MATCH:
1855 		if (!vmx_pt_mode_is_host_guest() ||
1856 			!intel_pt_validate_cap(vmx->pt_desc.caps,
1857 						PT_CAP_cr3_filtering))
1858 			return 1;
1859 		msr_info->data = vmx->pt_desc.guest.cr3_match;
1860 		break;
1861 	case MSR_IA32_RTIT_OUTPUT_BASE:
1862 		if (!vmx_pt_mode_is_host_guest() ||
1863 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1864 					PT_CAP_topa_output) &&
1865 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1866 					PT_CAP_single_range_output)))
1867 			return 1;
1868 		msr_info->data = vmx->pt_desc.guest.output_base;
1869 		break;
1870 	case MSR_IA32_RTIT_OUTPUT_MASK:
1871 		if (!vmx_pt_mode_is_host_guest() ||
1872 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1873 					PT_CAP_topa_output) &&
1874 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1875 					PT_CAP_single_range_output)))
1876 			return 1;
1877 		msr_info->data = vmx->pt_desc.guest.output_mask;
1878 		break;
1879 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1880 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1881 		if (!vmx_pt_mode_is_host_guest() ||
1882 		    (index >= 2 * vmx->pt_desc.num_address_ranges))
1883 			return 1;
1884 		if (index % 2)
1885 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1886 		else
1887 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1888 		break;
1889 	case MSR_IA32_DEBUGCTLMSR:
1890 		msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
1891 		break;
1892 	default:
1893 	find_uret_msr:
1894 		msr = vmx_find_uret_msr(vmx, msr_info->index);
1895 		if (msr) {
1896 			msr_info->data = msr->data;
1897 			break;
1898 		}
1899 		return kvm_get_msr_common(vcpu, msr_info);
1900 	}
1901 
1902 	return 0;
1903 }
1904 
1905 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
1906 						    u64 data)
1907 {
1908 #ifdef CONFIG_X86_64
1909 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
1910 		return (u32)data;
1911 #endif
1912 	return (unsigned long)data;
1913 }
1914 
1915 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu)
1916 {
1917 	u64 debugctl = vmx_supported_debugctl();
1918 
1919 	if (!intel_pmu_lbr_is_enabled(vcpu))
1920 		debugctl &= ~DEBUGCTLMSR_LBR_MASK;
1921 
1922 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1923 		debugctl &= ~DEBUGCTLMSR_BUS_LOCK_DETECT;
1924 
1925 	return debugctl;
1926 }
1927 
1928 /*
1929  * Writes msr value into the appropriate "register".
1930  * Returns 0 on success, non-0 otherwise.
1931  * Assumes vcpu_load() was already called.
1932  */
1933 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1934 {
1935 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1936 	struct vmx_uret_msr *msr;
1937 	int ret = 0;
1938 	u32 msr_index = msr_info->index;
1939 	u64 data = msr_info->data;
1940 	u32 index;
1941 
1942 	switch (msr_index) {
1943 	case MSR_EFER:
1944 		ret = kvm_set_msr_common(vcpu, msr_info);
1945 		break;
1946 #ifdef CONFIG_X86_64
1947 	case MSR_FS_BASE:
1948 		vmx_segment_cache_clear(vmx);
1949 		vmcs_writel(GUEST_FS_BASE, data);
1950 		break;
1951 	case MSR_GS_BASE:
1952 		vmx_segment_cache_clear(vmx);
1953 		vmcs_writel(GUEST_GS_BASE, data);
1954 		break;
1955 	case MSR_KERNEL_GS_BASE:
1956 		vmx_write_guest_kernel_gs_base(vmx, data);
1957 		break;
1958 #endif
1959 	case MSR_IA32_SYSENTER_CS:
1960 		if (is_guest_mode(vcpu))
1961 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
1962 		vmcs_write32(GUEST_SYSENTER_CS, data);
1963 		break;
1964 	case MSR_IA32_SYSENTER_EIP:
1965 		if (is_guest_mode(vcpu)) {
1966 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
1967 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
1968 		}
1969 		vmcs_writel(GUEST_SYSENTER_EIP, data);
1970 		break;
1971 	case MSR_IA32_SYSENTER_ESP:
1972 		if (is_guest_mode(vcpu)) {
1973 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
1974 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
1975 		}
1976 		vmcs_writel(GUEST_SYSENTER_ESP, data);
1977 		break;
1978 	case MSR_IA32_DEBUGCTLMSR: {
1979 		u64 invalid = data & ~vcpu_supported_debugctl(vcpu);
1980 		if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
1981 			if (report_ignored_msrs)
1982 				vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n",
1983 					    __func__, data);
1984 			data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
1985 			invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
1986 		}
1987 
1988 		if (invalid)
1989 			return 1;
1990 
1991 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
1992 						VM_EXIT_SAVE_DEBUG_CONTROLS)
1993 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
1994 
1995 		vmcs_write64(GUEST_IA32_DEBUGCTL, data);
1996 		if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
1997 		    (data & DEBUGCTLMSR_LBR))
1998 			intel_pmu_create_guest_lbr_event(vcpu);
1999 		return 0;
2000 	}
2001 	case MSR_IA32_BNDCFGS:
2002 		if (!kvm_mpx_supported() ||
2003 		    (!msr_info->host_initiated &&
2004 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2005 			return 1;
2006 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2007 		    (data & MSR_IA32_BNDCFGS_RSVD))
2008 			return 1;
2009 		vmcs_write64(GUEST_BNDCFGS, data);
2010 		break;
2011 	case MSR_IA32_UMWAIT_CONTROL:
2012 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2013 			return 1;
2014 
2015 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2016 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2017 			return 1;
2018 
2019 		vmx->msr_ia32_umwait_control = data;
2020 		break;
2021 	case MSR_IA32_SPEC_CTRL:
2022 		if (!msr_info->host_initiated &&
2023 		    !guest_has_spec_ctrl_msr(vcpu))
2024 			return 1;
2025 
2026 		if (kvm_spec_ctrl_test_value(data))
2027 			return 1;
2028 
2029 		vmx->spec_ctrl = data;
2030 		if (!data)
2031 			break;
2032 
2033 		/*
2034 		 * For non-nested:
2035 		 * When it's written (to non-zero) for the first time, pass
2036 		 * it through.
2037 		 *
2038 		 * For nested:
2039 		 * The handling of the MSR bitmap for L2 guests is done in
2040 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2041 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2042 		 * in the merging. We update the vmcs01 here for L1 as well
2043 		 * since it will end up touching the MSR anyway now.
2044 		 */
2045 		vmx_disable_intercept_for_msr(vcpu,
2046 					      MSR_IA32_SPEC_CTRL,
2047 					      MSR_TYPE_RW);
2048 		break;
2049 	case MSR_IA32_TSX_CTRL:
2050 		if (!msr_info->host_initiated &&
2051 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2052 			return 1;
2053 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2054 			return 1;
2055 		goto find_uret_msr;
2056 	case MSR_IA32_PRED_CMD:
2057 		if (!msr_info->host_initiated &&
2058 		    !guest_has_pred_cmd_msr(vcpu))
2059 			return 1;
2060 
2061 		if (data & ~PRED_CMD_IBPB)
2062 			return 1;
2063 		if (!boot_cpu_has(X86_FEATURE_IBPB))
2064 			return 1;
2065 		if (!data)
2066 			break;
2067 
2068 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2069 
2070 		/*
2071 		 * For non-nested:
2072 		 * When it's written (to non-zero) for the first time, pass
2073 		 * it through.
2074 		 *
2075 		 * For nested:
2076 		 * The handling of the MSR bitmap for L2 guests is done in
2077 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2078 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2079 		 * in the merging.
2080 		 */
2081 		vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2082 		break;
2083 	case MSR_IA32_CR_PAT:
2084 		if (!kvm_pat_valid(data))
2085 			return 1;
2086 
2087 		if (is_guest_mode(vcpu) &&
2088 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2089 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2090 
2091 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2092 			vmcs_write64(GUEST_IA32_PAT, data);
2093 			vcpu->arch.pat = data;
2094 			break;
2095 		}
2096 		ret = kvm_set_msr_common(vcpu, msr_info);
2097 		break;
2098 	case MSR_IA32_TSC_ADJUST:
2099 		ret = kvm_set_msr_common(vcpu, msr_info);
2100 		break;
2101 	case MSR_IA32_MCG_EXT_CTL:
2102 		if ((!msr_info->host_initiated &&
2103 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2104 		       FEAT_CTL_LMCE_ENABLED)) ||
2105 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2106 			return 1;
2107 		vcpu->arch.mcg_ext_ctl = data;
2108 		break;
2109 	case MSR_IA32_FEAT_CTL:
2110 		if (!vmx_feature_control_msr_valid(vcpu, data) ||
2111 		    (to_vmx(vcpu)->msr_ia32_feature_control &
2112 		     FEAT_CTL_LOCKED && !msr_info->host_initiated))
2113 			return 1;
2114 		vmx->msr_ia32_feature_control = data;
2115 		if (msr_info->host_initiated && data == 0)
2116 			vmx_leave_nested(vcpu);
2117 
2118 		/* SGX may be enabled/disabled by guest's firmware */
2119 		vmx_write_encls_bitmap(vcpu, NULL);
2120 		break;
2121 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2122 		/*
2123 		 * On real hardware, the LE hash MSRs are writable before
2124 		 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2125 		 * at which point SGX related bits in IA32_FEATURE_CONTROL
2126 		 * become writable.
2127 		 *
2128 		 * KVM does not emulate SGX activation for simplicity, so
2129 		 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2130 		 * is unlocked.  This is technically not architectural
2131 		 * behavior, but it's close enough.
2132 		 */
2133 		if (!msr_info->host_initiated &&
2134 		    (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2135 		    ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2136 		    !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2137 			return 1;
2138 		vmx->msr_ia32_sgxlepubkeyhash
2139 			[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2140 		break;
2141 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2142 		if (!msr_info->host_initiated)
2143 			return 1; /* they are read-only */
2144 		if (!nested_vmx_allowed(vcpu))
2145 			return 1;
2146 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2147 	case MSR_IA32_RTIT_CTL:
2148 		if (!vmx_pt_mode_is_host_guest() ||
2149 			vmx_rtit_ctl_check(vcpu, data) ||
2150 			vmx->nested.vmxon)
2151 			return 1;
2152 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2153 		vmx->pt_desc.guest.ctl = data;
2154 		pt_update_intercept_for_msr(vcpu);
2155 		break;
2156 	case MSR_IA32_RTIT_STATUS:
2157 		if (!pt_can_write_msr(vmx))
2158 			return 1;
2159 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2160 			return 1;
2161 		vmx->pt_desc.guest.status = data;
2162 		break;
2163 	case MSR_IA32_RTIT_CR3_MATCH:
2164 		if (!pt_can_write_msr(vmx))
2165 			return 1;
2166 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2167 					   PT_CAP_cr3_filtering))
2168 			return 1;
2169 		vmx->pt_desc.guest.cr3_match = data;
2170 		break;
2171 	case MSR_IA32_RTIT_OUTPUT_BASE:
2172 		if (!pt_can_write_msr(vmx))
2173 			return 1;
2174 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2175 					   PT_CAP_topa_output) &&
2176 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2177 					   PT_CAP_single_range_output))
2178 			return 1;
2179 		if (!pt_output_base_valid(vcpu, data))
2180 			return 1;
2181 		vmx->pt_desc.guest.output_base = data;
2182 		break;
2183 	case MSR_IA32_RTIT_OUTPUT_MASK:
2184 		if (!pt_can_write_msr(vmx))
2185 			return 1;
2186 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2187 					   PT_CAP_topa_output) &&
2188 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2189 					   PT_CAP_single_range_output))
2190 			return 1;
2191 		vmx->pt_desc.guest.output_mask = data;
2192 		break;
2193 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2194 		if (!pt_can_write_msr(vmx))
2195 			return 1;
2196 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2197 		if (index >= 2 * vmx->pt_desc.num_address_ranges)
2198 			return 1;
2199 		if (is_noncanonical_address(data, vcpu))
2200 			return 1;
2201 		if (index % 2)
2202 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2203 		else
2204 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2205 		break;
2206 	case MSR_IA32_PERF_CAPABILITIES:
2207 		if (data && !vcpu_to_pmu(vcpu)->version)
2208 			return 1;
2209 		if (data & PMU_CAP_LBR_FMT) {
2210 			if ((data & PMU_CAP_LBR_FMT) !=
2211 			    (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT))
2212 				return 1;
2213 			if (!intel_pmu_lbr_is_compatible(vcpu))
2214 				return 1;
2215 		}
2216 		ret = kvm_set_msr_common(vcpu, msr_info);
2217 		break;
2218 
2219 	default:
2220 	find_uret_msr:
2221 		msr = vmx_find_uret_msr(vmx, msr_index);
2222 		if (msr)
2223 			ret = vmx_set_guest_uret_msr(vmx, msr, data);
2224 		else
2225 			ret = kvm_set_msr_common(vcpu, msr_info);
2226 	}
2227 
2228 	return ret;
2229 }
2230 
2231 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2232 {
2233 	unsigned long guest_owned_bits;
2234 
2235 	kvm_register_mark_available(vcpu, reg);
2236 
2237 	switch (reg) {
2238 	case VCPU_REGS_RSP:
2239 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2240 		break;
2241 	case VCPU_REGS_RIP:
2242 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2243 		break;
2244 	case VCPU_EXREG_PDPTR:
2245 		if (enable_ept)
2246 			ept_save_pdptrs(vcpu);
2247 		break;
2248 	case VCPU_EXREG_CR0:
2249 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2250 
2251 		vcpu->arch.cr0 &= ~guest_owned_bits;
2252 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2253 		break;
2254 	case VCPU_EXREG_CR3:
2255 		/*
2256 		 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2257 		 * CR3 is loaded into hardware, not the guest's CR3.
2258 		 */
2259 		if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2260 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2261 		break;
2262 	case VCPU_EXREG_CR4:
2263 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2264 
2265 		vcpu->arch.cr4 &= ~guest_owned_bits;
2266 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2267 		break;
2268 	default:
2269 		KVM_BUG_ON(1, vcpu->kvm);
2270 		break;
2271 	}
2272 }
2273 
2274 static __init int cpu_has_kvm_support(void)
2275 {
2276 	return cpu_has_vmx();
2277 }
2278 
2279 static __init int vmx_disabled_by_bios(void)
2280 {
2281 	return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2282 	       !boot_cpu_has(X86_FEATURE_VMX);
2283 }
2284 
2285 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2286 {
2287 	u64 msr;
2288 
2289 	cr4_set_bits(X86_CR4_VMXE);
2290 
2291 	asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2292 			  _ASM_EXTABLE(1b, %l[fault])
2293 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2294 			  : : fault);
2295 	return 0;
2296 
2297 fault:
2298 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2299 		  rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2300 	cr4_clear_bits(X86_CR4_VMXE);
2301 
2302 	return -EFAULT;
2303 }
2304 
2305 static int hardware_enable(void)
2306 {
2307 	int cpu = raw_smp_processor_id();
2308 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2309 	int r;
2310 
2311 	if (cr4_read_shadow() & X86_CR4_VMXE)
2312 		return -EBUSY;
2313 
2314 	/*
2315 	 * This can happen if we hot-added a CPU but failed to allocate
2316 	 * VP assist page for it.
2317 	 */
2318 	if (static_branch_unlikely(&enable_evmcs) &&
2319 	    !hv_get_vp_assist_page(cpu))
2320 		return -EFAULT;
2321 
2322 	intel_pt_handle_vmx(1);
2323 
2324 	r = kvm_cpu_vmxon(phys_addr);
2325 	if (r) {
2326 		intel_pt_handle_vmx(0);
2327 		return r;
2328 	}
2329 
2330 	if (enable_ept)
2331 		ept_sync_global();
2332 
2333 	return 0;
2334 }
2335 
2336 static void vmclear_local_loaded_vmcss(void)
2337 {
2338 	int cpu = raw_smp_processor_id();
2339 	struct loaded_vmcs *v, *n;
2340 
2341 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2342 				 loaded_vmcss_on_cpu_link)
2343 		__loaded_vmcs_clear(v);
2344 }
2345 
2346 static void hardware_disable(void)
2347 {
2348 	vmclear_local_loaded_vmcss();
2349 
2350 	if (cpu_vmxoff())
2351 		kvm_spurious_fault();
2352 
2353 	intel_pt_handle_vmx(0);
2354 }
2355 
2356 /*
2357  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2358  * directly instead of going through cpu_has(), to ensure KVM is trapping
2359  * ENCLS whenever it's supported in hardware.  It does not matter whether
2360  * the host OS supports or has enabled SGX.
2361  */
2362 static bool cpu_has_sgx(void)
2363 {
2364 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2365 }
2366 
2367 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2368 				      u32 msr, u32 *result)
2369 {
2370 	u32 vmx_msr_low, vmx_msr_high;
2371 	u32 ctl = ctl_min | ctl_opt;
2372 
2373 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2374 
2375 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2376 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2377 
2378 	/* Ensure minimum (required) set of control bits are supported. */
2379 	if (ctl_min & ~ctl)
2380 		return -EIO;
2381 
2382 	*result = ctl;
2383 	return 0;
2384 }
2385 
2386 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2387 				    struct vmx_capability *vmx_cap)
2388 {
2389 	u32 vmx_msr_low, vmx_msr_high;
2390 	u32 min, opt, min2, opt2;
2391 	u32 _pin_based_exec_control = 0;
2392 	u32 _cpu_based_exec_control = 0;
2393 	u32 _cpu_based_2nd_exec_control = 0;
2394 	u32 _vmexit_control = 0;
2395 	u32 _vmentry_control = 0;
2396 
2397 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2398 	min = CPU_BASED_HLT_EXITING |
2399 #ifdef CONFIG_X86_64
2400 	      CPU_BASED_CR8_LOAD_EXITING |
2401 	      CPU_BASED_CR8_STORE_EXITING |
2402 #endif
2403 	      CPU_BASED_CR3_LOAD_EXITING |
2404 	      CPU_BASED_CR3_STORE_EXITING |
2405 	      CPU_BASED_UNCOND_IO_EXITING |
2406 	      CPU_BASED_MOV_DR_EXITING |
2407 	      CPU_BASED_USE_TSC_OFFSETTING |
2408 	      CPU_BASED_MWAIT_EXITING |
2409 	      CPU_BASED_MONITOR_EXITING |
2410 	      CPU_BASED_INVLPG_EXITING |
2411 	      CPU_BASED_RDPMC_EXITING;
2412 
2413 	opt = CPU_BASED_TPR_SHADOW |
2414 	      CPU_BASED_USE_MSR_BITMAPS |
2415 	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2416 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2417 				&_cpu_based_exec_control) < 0)
2418 		return -EIO;
2419 #ifdef CONFIG_X86_64
2420 	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2421 		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2422 					   ~CPU_BASED_CR8_STORE_EXITING;
2423 #endif
2424 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2425 		min2 = 0;
2426 		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2427 			SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2428 			SECONDARY_EXEC_WBINVD_EXITING |
2429 			SECONDARY_EXEC_ENABLE_VPID |
2430 			SECONDARY_EXEC_ENABLE_EPT |
2431 			SECONDARY_EXEC_UNRESTRICTED_GUEST |
2432 			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2433 			SECONDARY_EXEC_DESC |
2434 			SECONDARY_EXEC_ENABLE_RDTSCP |
2435 			SECONDARY_EXEC_ENABLE_INVPCID |
2436 			SECONDARY_EXEC_APIC_REGISTER_VIRT |
2437 			SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2438 			SECONDARY_EXEC_SHADOW_VMCS |
2439 			SECONDARY_EXEC_XSAVES |
2440 			SECONDARY_EXEC_RDSEED_EXITING |
2441 			SECONDARY_EXEC_RDRAND_EXITING |
2442 			SECONDARY_EXEC_ENABLE_PML |
2443 			SECONDARY_EXEC_TSC_SCALING |
2444 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2445 			SECONDARY_EXEC_PT_USE_GPA |
2446 			SECONDARY_EXEC_PT_CONCEAL_VMX |
2447 			SECONDARY_EXEC_ENABLE_VMFUNC |
2448 			SECONDARY_EXEC_BUS_LOCK_DETECTION;
2449 		if (cpu_has_sgx())
2450 			opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2451 		if (adjust_vmx_controls(min2, opt2,
2452 					MSR_IA32_VMX_PROCBASED_CTLS2,
2453 					&_cpu_based_2nd_exec_control) < 0)
2454 			return -EIO;
2455 	}
2456 #ifndef CONFIG_X86_64
2457 	if (!(_cpu_based_2nd_exec_control &
2458 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2459 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2460 #endif
2461 
2462 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2463 		_cpu_based_2nd_exec_control &= ~(
2464 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2465 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2466 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2467 
2468 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2469 		&vmx_cap->ept, &vmx_cap->vpid);
2470 
2471 	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2472 		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2473 		   enabled */
2474 		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2475 					     CPU_BASED_CR3_STORE_EXITING |
2476 					     CPU_BASED_INVLPG_EXITING);
2477 	} else if (vmx_cap->ept) {
2478 		vmx_cap->ept = 0;
2479 		pr_warn_once("EPT CAP should not exist if not support "
2480 				"1-setting enable EPT VM-execution control\n");
2481 	}
2482 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2483 		vmx_cap->vpid) {
2484 		vmx_cap->vpid = 0;
2485 		pr_warn_once("VPID CAP should not exist if not support "
2486 				"1-setting enable VPID VM-execution control\n");
2487 	}
2488 
2489 	min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2490 #ifdef CONFIG_X86_64
2491 	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2492 #endif
2493 	opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2494 	      VM_EXIT_LOAD_IA32_PAT |
2495 	      VM_EXIT_LOAD_IA32_EFER |
2496 	      VM_EXIT_CLEAR_BNDCFGS |
2497 	      VM_EXIT_PT_CONCEAL_PIP |
2498 	      VM_EXIT_CLEAR_IA32_RTIT_CTL;
2499 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2500 				&_vmexit_control) < 0)
2501 		return -EIO;
2502 
2503 	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2504 	opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2505 		 PIN_BASED_VMX_PREEMPTION_TIMER;
2506 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2507 				&_pin_based_exec_control) < 0)
2508 		return -EIO;
2509 
2510 	if (cpu_has_broken_vmx_preemption_timer())
2511 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2512 	if (!(_cpu_based_2nd_exec_control &
2513 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2514 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2515 
2516 	min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2517 	opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2518 	      VM_ENTRY_LOAD_IA32_PAT |
2519 	      VM_ENTRY_LOAD_IA32_EFER |
2520 	      VM_ENTRY_LOAD_BNDCFGS |
2521 	      VM_ENTRY_PT_CONCEAL_PIP |
2522 	      VM_ENTRY_LOAD_IA32_RTIT_CTL;
2523 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2524 				&_vmentry_control) < 0)
2525 		return -EIO;
2526 
2527 	/*
2528 	 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2529 	 * can't be used due to an errata where VM Exit may incorrectly clear
2530 	 * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2531 	 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2532 	 */
2533 	if (boot_cpu_data.x86 == 0x6) {
2534 		switch (boot_cpu_data.x86_model) {
2535 		case 26: /* AAK155 */
2536 		case 30: /* AAP115 */
2537 		case 37: /* AAT100 */
2538 		case 44: /* BC86,AAY89,BD102 */
2539 		case 46: /* BA97 */
2540 			_vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2541 			_vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2542 			pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2543 					"does not work properly. Using workaround\n");
2544 			break;
2545 		default:
2546 			break;
2547 		}
2548 	}
2549 
2550 
2551 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2552 
2553 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2554 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2555 		return -EIO;
2556 
2557 #ifdef CONFIG_X86_64
2558 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2559 	if (vmx_msr_high & (1u<<16))
2560 		return -EIO;
2561 #endif
2562 
2563 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2564 	if (((vmx_msr_high >> 18) & 15) != 6)
2565 		return -EIO;
2566 
2567 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2568 	vmcs_conf->order = get_order(vmcs_conf->size);
2569 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2570 
2571 	vmcs_conf->revision_id = vmx_msr_low;
2572 
2573 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2574 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2575 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2576 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2577 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2578 
2579 #if IS_ENABLED(CONFIG_HYPERV)
2580 	if (enlightened_vmcs)
2581 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2582 #endif
2583 
2584 	return 0;
2585 }
2586 
2587 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2588 {
2589 	int node = cpu_to_node(cpu);
2590 	struct page *pages;
2591 	struct vmcs *vmcs;
2592 
2593 	pages = __alloc_pages_node(node, flags, vmcs_config.order);
2594 	if (!pages)
2595 		return NULL;
2596 	vmcs = page_address(pages);
2597 	memset(vmcs, 0, vmcs_config.size);
2598 
2599 	/* KVM supports Enlightened VMCS v1 only */
2600 	if (static_branch_unlikely(&enable_evmcs))
2601 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2602 	else
2603 		vmcs->hdr.revision_id = vmcs_config.revision_id;
2604 
2605 	if (shadow)
2606 		vmcs->hdr.shadow_vmcs = 1;
2607 	return vmcs;
2608 }
2609 
2610 void free_vmcs(struct vmcs *vmcs)
2611 {
2612 	free_pages((unsigned long)vmcs, vmcs_config.order);
2613 }
2614 
2615 /*
2616  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2617  */
2618 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2619 {
2620 	if (!loaded_vmcs->vmcs)
2621 		return;
2622 	loaded_vmcs_clear(loaded_vmcs);
2623 	free_vmcs(loaded_vmcs->vmcs);
2624 	loaded_vmcs->vmcs = NULL;
2625 	if (loaded_vmcs->msr_bitmap)
2626 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2627 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2628 }
2629 
2630 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2631 {
2632 	loaded_vmcs->vmcs = alloc_vmcs(false);
2633 	if (!loaded_vmcs->vmcs)
2634 		return -ENOMEM;
2635 
2636 	vmcs_clear(loaded_vmcs->vmcs);
2637 
2638 	loaded_vmcs->shadow_vmcs = NULL;
2639 	loaded_vmcs->hv_timer_soft_disabled = false;
2640 	loaded_vmcs->cpu = -1;
2641 	loaded_vmcs->launched = 0;
2642 
2643 	if (cpu_has_vmx_msr_bitmap()) {
2644 		loaded_vmcs->msr_bitmap = (unsigned long *)
2645 				__get_free_page(GFP_KERNEL_ACCOUNT);
2646 		if (!loaded_vmcs->msr_bitmap)
2647 			goto out_vmcs;
2648 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2649 
2650 		if (IS_ENABLED(CONFIG_HYPERV) &&
2651 		    static_branch_unlikely(&enable_evmcs) &&
2652 		    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2653 			struct hv_enlightened_vmcs *evmcs =
2654 				(struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2655 
2656 			evmcs->hv_enlightenments_control.msr_bitmap = 1;
2657 		}
2658 	}
2659 
2660 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2661 	memset(&loaded_vmcs->controls_shadow, 0,
2662 		sizeof(struct vmcs_controls_shadow));
2663 
2664 	return 0;
2665 
2666 out_vmcs:
2667 	free_loaded_vmcs(loaded_vmcs);
2668 	return -ENOMEM;
2669 }
2670 
2671 static void free_kvm_area(void)
2672 {
2673 	int cpu;
2674 
2675 	for_each_possible_cpu(cpu) {
2676 		free_vmcs(per_cpu(vmxarea, cpu));
2677 		per_cpu(vmxarea, cpu) = NULL;
2678 	}
2679 }
2680 
2681 static __init int alloc_kvm_area(void)
2682 {
2683 	int cpu;
2684 
2685 	for_each_possible_cpu(cpu) {
2686 		struct vmcs *vmcs;
2687 
2688 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2689 		if (!vmcs) {
2690 			free_kvm_area();
2691 			return -ENOMEM;
2692 		}
2693 
2694 		/*
2695 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2696 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2697 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2698 		 *
2699 		 * However, even though not explicitly documented by
2700 		 * TLFS, VMXArea passed as VMXON argument should
2701 		 * still be marked with revision_id reported by
2702 		 * physical CPU.
2703 		 */
2704 		if (static_branch_unlikely(&enable_evmcs))
2705 			vmcs->hdr.revision_id = vmcs_config.revision_id;
2706 
2707 		per_cpu(vmxarea, cpu) = vmcs;
2708 	}
2709 	return 0;
2710 }
2711 
2712 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2713 		struct kvm_segment *save)
2714 {
2715 	if (!emulate_invalid_guest_state) {
2716 		/*
2717 		 * CS and SS RPL should be equal during guest entry according
2718 		 * to VMX spec, but in reality it is not always so. Since vcpu
2719 		 * is in the middle of the transition from real mode to
2720 		 * protected mode it is safe to assume that RPL 0 is a good
2721 		 * default value.
2722 		 */
2723 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2724 			save->selector &= ~SEGMENT_RPL_MASK;
2725 		save->dpl = save->selector & SEGMENT_RPL_MASK;
2726 		save->s = 1;
2727 	}
2728 	__vmx_set_segment(vcpu, save, seg);
2729 }
2730 
2731 static void enter_pmode(struct kvm_vcpu *vcpu)
2732 {
2733 	unsigned long flags;
2734 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2735 
2736 	/*
2737 	 * Update real mode segment cache. It may be not up-to-date if segment
2738 	 * register was written while vcpu was in a guest mode.
2739 	 */
2740 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2741 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2742 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2743 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2744 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2745 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2746 
2747 	vmx->rmode.vm86_active = 0;
2748 
2749 	__vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2750 
2751 	flags = vmcs_readl(GUEST_RFLAGS);
2752 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2753 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2754 	vmcs_writel(GUEST_RFLAGS, flags);
2755 
2756 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2757 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2758 
2759 	vmx_update_exception_bitmap(vcpu);
2760 
2761 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2762 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2763 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2764 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2765 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2766 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2767 }
2768 
2769 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2770 {
2771 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2772 	struct kvm_segment var = *save;
2773 
2774 	var.dpl = 0x3;
2775 	if (seg == VCPU_SREG_CS)
2776 		var.type = 0x3;
2777 
2778 	if (!emulate_invalid_guest_state) {
2779 		var.selector = var.base >> 4;
2780 		var.base = var.base & 0xffff0;
2781 		var.limit = 0xffff;
2782 		var.g = 0;
2783 		var.db = 0;
2784 		var.present = 1;
2785 		var.s = 1;
2786 		var.l = 0;
2787 		var.unusable = 0;
2788 		var.type = 0x3;
2789 		var.avl = 0;
2790 		if (save->base & 0xf)
2791 			printk_once(KERN_WARNING "kvm: segment base is not "
2792 					"paragraph aligned when entering "
2793 					"protected mode (seg=%d)", seg);
2794 	}
2795 
2796 	vmcs_write16(sf->selector, var.selector);
2797 	vmcs_writel(sf->base, var.base);
2798 	vmcs_write32(sf->limit, var.limit);
2799 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2800 }
2801 
2802 static void enter_rmode(struct kvm_vcpu *vcpu)
2803 {
2804 	unsigned long flags;
2805 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2806 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2807 
2808 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2809 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2810 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2811 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2812 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2813 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2814 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2815 
2816 	vmx->rmode.vm86_active = 1;
2817 
2818 	/*
2819 	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2820 	 * vcpu. Warn the user that an update is overdue.
2821 	 */
2822 	if (!kvm_vmx->tss_addr)
2823 		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2824 			     "called before entering vcpu\n");
2825 
2826 	vmx_segment_cache_clear(vmx);
2827 
2828 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2829 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2830 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2831 
2832 	flags = vmcs_readl(GUEST_RFLAGS);
2833 	vmx->rmode.save_rflags = flags;
2834 
2835 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2836 
2837 	vmcs_writel(GUEST_RFLAGS, flags);
2838 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2839 	vmx_update_exception_bitmap(vcpu);
2840 
2841 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2842 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2843 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2844 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2845 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2846 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2847 }
2848 
2849 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2850 {
2851 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2852 	struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER);
2853 
2854 	/* Nothing to do if hardware doesn't support EFER. */
2855 	if (!msr)
2856 		return 0;
2857 
2858 	vcpu->arch.efer = efer;
2859 	if (efer & EFER_LMA) {
2860 		vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2861 		msr->data = efer;
2862 	} else {
2863 		vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2864 
2865 		msr->data = efer & ~EFER_LME;
2866 	}
2867 	vmx_setup_uret_msrs(vmx);
2868 	return 0;
2869 }
2870 
2871 #ifdef CONFIG_X86_64
2872 
2873 static void enter_lmode(struct kvm_vcpu *vcpu)
2874 {
2875 	u32 guest_tr_ar;
2876 
2877 	vmx_segment_cache_clear(to_vmx(vcpu));
2878 
2879 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2880 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2881 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2882 				     __func__);
2883 		vmcs_write32(GUEST_TR_AR_BYTES,
2884 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2885 			     | VMX_AR_TYPE_BUSY_64_TSS);
2886 	}
2887 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2888 }
2889 
2890 static void exit_lmode(struct kvm_vcpu *vcpu)
2891 {
2892 	vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2893 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2894 }
2895 
2896 #endif
2897 
2898 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
2899 {
2900 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2901 
2902 	/*
2903 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
2904 	 * the CPU is not required to invalidate guest-physical mappings on
2905 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
2906 	 * associated with the root EPT structure and not any particular VPID
2907 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
2908 	 */
2909 	if (enable_ept) {
2910 		ept_sync_global();
2911 	} else if (enable_vpid) {
2912 		if (cpu_has_vmx_invvpid_global()) {
2913 			vpid_sync_vcpu_global();
2914 		} else {
2915 			vpid_sync_vcpu_single(vmx->vpid);
2916 			vpid_sync_vcpu_single(vmx->nested.vpid02);
2917 		}
2918 	}
2919 }
2920 
2921 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
2922 {
2923 	struct kvm_mmu *mmu = vcpu->arch.mmu;
2924 	u64 root_hpa = mmu->root_hpa;
2925 
2926 	/* No flush required if the current context is invalid. */
2927 	if (!VALID_PAGE(root_hpa))
2928 		return;
2929 
2930 	if (enable_ept)
2931 		ept_sync_context(construct_eptp(vcpu, root_hpa,
2932 						mmu->shadow_root_level));
2933 	else if (!is_guest_mode(vcpu))
2934 		vpid_sync_context(to_vmx(vcpu)->vpid);
2935 	else
2936 		vpid_sync_context(nested_get_vpid02(vcpu));
2937 }
2938 
2939 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2940 {
2941 	/*
2942 	 * vpid_sync_vcpu_addr() is a nop if vmx->vpid==0, see the comment in
2943 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
2944 	 */
2945 	vpid_sync_vcpu_addr(to_vmx(vcpu)->vpid, addr);
2946 }
2947 
2948 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
2949 {
2950 	/*
2951 	 * vpid_sync_context() is a nop if vmx->vpid==0, e.g. if enable_vpid==0
2952 	 * or a vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit
2953 	 * are required to flush GVA->{G,H}PA mappings from the TLB if vpid is
2954 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
2955 	 * i.e. no explicit INVVPID is necessary.
2956 	 */
2957 	vpid_sync_context(to_vmx(vcpu)->vpid);
2958 }
2959 
2960 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
2961 {
2962 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2963 
2964 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
2965 		return;
2966 
2967 	if (is_pae_paging(vcpu)) {
2968 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2969 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2970 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2971 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2972 	}
2973 }
2974 
2975 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2976 {
2977 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2978 
2979 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
2980 		return;
2981 
2982 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2983 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2984 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2985 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2986 
2987 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
2988 }
2989 
2990 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
2991 			  CPU_BASED_CR3_STORE_EXITING)
2992 
2993 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2994 {
2995 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2996 	unsigned long hw_cr0, old_cr0_pg;
2997 	u32 tmp;
2998 
2999 	old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3000 
3001 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3002 	if (is_unrestricted_guest(vcpu))
3003 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3004 	else {
3005 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3006 		if (!enable_ept)
3007 			hw_cr0 |= X86_CR0_WP;
3008 
3009 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3010 			enter_pmode(vcpu);
3011 
3012 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3013 			enter_rmode(vcpu);
3014 	}
3015 
3016 	vmcs_writel(CR0_READ_SHADOW, cr0);
3017 	vmcs_writel(GUEST_CR0, hw_cr0);
3018 	vcpu->arch.cr0 = cr0;
3019 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3020 
3021 #ifdef CONFIG_X86_64
3022 	if (vcpu->arch.efer & EFER_LME) {
3023 		if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3024 			enter_lmode(vcpu);
3025 		else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3026 			exit_lmode(vcpu);
3027 	}
3028 #endif
3029 
3030 	if (enable_ept && !is_unrestricted_guest(vcpu)) {
3031 		/*
3032 		 * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3033 		 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3034 		 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3035 		 * KVM's CR3 is installed.
3036 		 */
3037 		if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3038 			vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3039 
3040 		/*
3041 		 * When running with EPT but not unrestricted guest, KVM must
3042 		 * intercept CR3 accesses when paging is _disabled_.  This is
3043 		 * necessary because restricted guests can't actually run with
3044 		 * paging disabled, and so KVM stuffs its own CR3 in order to
3045 		 * run the guest when identity mapped page tables.
3046 		 *
3047 		 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3048 		 * update, it may be stale with respect to CR3 interception,
3049 		 * e.g. after nested VM-Enter.
3050 		 *
3051 		 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3052 		 * stores to forward them to L1, even if KVM does not need to
3053 		 * intercept them to preserve its identity mapped page tables.
3054 		 */
3055 		if (!(cr0 & X86_CR0_PG)) {
3056 			exec_controls_setbit(vmx, CR3_EXITING_BITS);
3057 		} else if (!is_guest_mode(vcpu)) {
3058 			exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3059 		} else {
3060 			tmp = exec_controls_get(vmx);
3061 			tmp &= ~CR3_EXITING_BITS;
3062 			tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3063 			exec_controls_set(vmx, tmp);
3064 		}
3065 
3066 		/* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3067 		if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3068 			vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3069 	}
3070 
3071 	/* depends on vcpu->arch.cr0 to be set to a new value */
3072 	vmx->emulation_required = vmx_emulation_required(vcpu);
3073 }
3074 
3075 static int vmx_get_max_tdp_level(void)
3076 {
3077 	if (cpu_has_vmx_ept_5levels())
3078 		return 5;
3079 	return 4;
3080 }
3081 
3082 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3083 {
3084 	u64 eptp = VMX_EPTP_MT_WB;
3085 
3086 	eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3087 
3088 	if (enable_ept_ad_bits &&
3089 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3090 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3091 	eptp |= root_hpa;
3092 
3093 	return eptp;
3094 }
3095 
3096 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3097 			     int root_level)
3098 {
3099 	struct kvm *kvm = vcpu->kvm;
3100 	bool update_guest_cr3 = true;
3101 	unsigned long guest_cr3;
3102 	u64 eptp;
3103 
3104 	if (enable_ept) {
3105 		eptp = construct_eptp(vcpu, root_hpa, root_level);
3106 		vmcs_write64(EPT_POINTER, eptp);
3107 
3108 		hv_track_root_tdp(vcpu, root_hpa);
3109 
3110 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3111 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3112 		else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3113 			guest_cr3 = vcpu->arch.cr3;
3114 		else /* vmcs01.GUEST_CR3 is already up-to-date. */
3115 			update_guest_cr3 = false;
3116 		vmx_ept_load_pdptrs(vcpu);
3117 	} else {
3118 		guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
3119 	}
3120 
3121 	if (update_guest_cr3)
3122 		vmcs_writel(GUEST_CR3, guest_cr3);
3123 }
3124 
3125 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3126 {
3127 	/*
3128 	 * We operate under the default treatment of SMM, so VMX cannot be
3129 	 * enabled under SMM.  Note, whether or not VMXE is allowed at all is
3130 	 * handled by kvm_is_valid_cr4().
3131 	 */
3132 	if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3133 		return false;
3134 
3135 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3136 		return false;
3137 
3138 	return true;
3139 }
3140 
3141 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3142 {
3143 	unsigned long old_cr4 = vcpu->arch.cr4;
3144 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3145 	/*
3146 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3147 	 * is in force while we are in guest mode.  Do not let guests control
3148 	 * this bit, even if host CR4.MCE == 0.
3149 	 */
3150 	unsigned long hw_cr4;
3151 
3152 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3153 	if (is_unrestricted_guest(vcpu))
3154 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3155 	else if (vmx->rmode.vm86_active)
3156 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3157 	else
3158 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3159 
3160 	if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3161 		if (cr4 & X86_CR4_UMIP) {
3162 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3163 			hw_cr4 &= ~X86_CR4_UMIP;
3164 		} else if (!is_guest_mode(vcpu) ||
3165 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3166 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3167 		}
3168 	}
3169 
3170 	vcpu->arch.cr4 = cr4;
3171 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3172 
3173 	if (!is_unrestricted_guest(vcpu)) {
3174 		if (enable_ept) {
3175 			if (!is_paging(vcpu)) {
3176 				hw_cr4 &= ~X86_CR4_PAE;
3177 				hw_cr4 |= X86_CR4_PSE;
3178 			} else if (!(cr4 & X86_CR4_PAE)) {
3179 				hw_cr4 &= ~X86_CR4_PAE;
3180 			}
3181 		}
3182 
3183 		/*
3184 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3185 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3186 		 * to be manually disabled when guest switches to non-paging
3187 		 * mode.
3188 		 *
3189 		 * If !enable_unrestricted_guest, the CPU is always running
3190 		 * with CR0.PG=1 and CR4 needs to be modified.
3191 		 * If enable_unrestricted_guest, the CPU automatically
3192 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3193 		 */
3194 		if (!is_paging(vcpu))
3195 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3196 	}
3197 
3198 	vmcs_writel(CR4_READ_SHADOW, cr4);
3199 	vmcs_writel(GUEST_CR4, hw_cr4);
3200 
3201 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3202 		kvm_update_cpuid_runtime(vcpu);
3203 }
3204 
3205 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3206 {
3207 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3208 	u32 ar;
3209 
3210 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3211 		*var = vmx->rmode.segs[seg];
3212 		if (seg == VCPU_SREG_TR
3213 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3214 			return;
3215 		var->base = vmx_read_guest_seg_base(vmx, seg);
3216 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3217 		return;
3218 	}
3219 	var->base = vmx_read_guest_seg_base(vmx, seg);
3220 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3221 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3222 	ar = vmx_read_guest_seg_ar(vmx, seg);
3223 	var->unusable = (ar >> 16) & 1;
3224 	var->type = ar & 15;
3225 	var->s = (ar >> 4) & 1;
3226 	var->dpl = (ar >> 5) & 3;
3227 	/*
3228 	 * Some userspaces do not preserve unusable property. Since usable
3229 	 * segment has to be present according to VMX spec we can use present
3230 	 * property to amend userspace bug by making unusable segment always
3231 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3232 	 * segment as unusable.
3233 	 */
3234 	var->present = !var->unusable;
3235 	var->avl = (ar >> 12) & 1;
3236 	var->l = (ar >> 13) & 1;
3237 	var->db = (ar >> 14) & 1;
3238 	var->g = (ar >> 15) & 1;
3239 }
3240 
3241 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3242 {
3243 	struct kvm_segment s;
3244 
3245 	if (to_vmx(vcpu)->rmode.vm86_active) {
3246 		vmx_get_segment(vcpu, &s, seg);
3247 		return s.base;
3248 	}
3249 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3250 }
3251 
3252 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3253 {
3254 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3255 
3256 	if (unlikely(vmx->rmode.vm86_active))
3257 		return 0;
3258 	else {
3259 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3260 		return VMX_AR_DPL(ar);
3261 	}
3262 }
3263 
3264 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3265 {
3266 	u32 ar;
3267 
3268 	if (var->unusable || !var->present)
3269 		ar = 1 << 16;
3270 	else {
3271 		ar = var->type & 15;
3272 		ar |= (var->s & 1) << 4;
3273 		ar |= (var->dpl & 3) << 5;
3274 		ar |= (var->present & 1) << 7;
3275 		ar |= (var->avl & 1) << 12;
3276 		ar |= (var->l & 1) << 13;
3277 		ar |= (var->db & 1) << 14;
3278 		ar |= (var->g & 1) << 15;
3279 	}
3280 
3281 	return ar;
3282 }
3283 
3284 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3285 {
3286 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3287 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3288 
3289 	vmx_segment_cache_clear(vmx);
3290 
3291 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3292 		vmx->rmode.segs[seg] = *var;
3293 		if (seg == VCPU_SREG_TR)
3294 			vmcs_write16(sf->selector, var->selector);
3295 		else if (var->s)
3296 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3297 		return;
3298 	}
3299 
3300 	vmcs_writel(sf->base, var->base);
3301 	vmcs_write32(sf->limit, var->limit);
3302 	vmcs_write16(sf->selector, var->selector);
3303 
3304 	/*
3305 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3306 	 * qemu binaries.
3307 	 *   IA32 arch specifies that at the time of processor reset the
3308 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3309 	 * is setting it to 0 in the userland code. This causes invalid guest
3310 	 * state vmexit when "unrestricted guest" mode is turned on.
3311 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3312 	 * tree. Newer qemu binaries with that qemu fix would not need this
3313 	 * kvm hack.
3314 	 */
3315 	if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3316 		var->type |= 0x1; /* Accessed */
3317 
3318 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3319 }
3320 
3321 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3322 {
3323 	__vmx_set_segment(vcpu, var, seg);
3324 
3325 	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3326 }
3327 
3328 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3329 {
3330 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3331 
3332 	*db = (ar >> 14) & 1;
3333 	*l = (ar >> 13) & 1;
3334 }
3335 
3336 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3337 {
3338 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3339 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3340 }
3341 
3342 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3343 {
3344 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3345 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3346 }
3347 
3348 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3349 {
3350 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3351 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3352 }
3353 
3354 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3355 {
3356 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3357 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3358 }
3359 
3360 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3361 {
3362 	struct kvm_segment var;
3363 	u32 ar;
3364 
3365 	vmx_get_segment(vcpu, &var, seg);
3366 	var.dpl = 0x3;
3367 	if (seg == VCPU_SREG_CS)
3368 		var.type = 0x3;
3369 	ar = vmx_segment_access_rights(&var);
3370 
3371 	if (var.base != (var.selector << 4))
3372 		return false;
3373 	if (var.limit != 0xffff)
3374 		return false;
3375 	if (ar != 0xf3)
3376 		return false;
3377 
3378 	return true;
3379 }
3380 
3381 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3382 {
3383 	struct kvm_segment cs;
3384 	unsigned int cs_rpl;
3385 
3386 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3387 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3388 
3389 	if (cs.unusable)
3390 		return false;
3391 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3392 		return false;
3393 	if (!cs.s)
3394 		return false;
3395 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3396 		if (cs.dpl > cs_rpl)
3397 			return false;
3398 	} else {
3399 		if (cs.dpl != cs_rpl)
3400 			return false;
3401 	}
3402 	if (!cs.present)
3403 		return false;
3404 
3405 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3406 	return true;
3407 }
3408 
3409 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3410 {
3411 	struct kvm_segment ss;
3412 	unsigned int ss_rpl;
3413 
3414 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3415 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3416 
3417 	if (ss.unusable)
3418 		return true;
3419 	if (ss.type != 3 && ss.type != 7)
3420 		return false;
3421 	if (!ss.s)
3422 		return false;
3423 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3424 		return false;
3425 	if (!ss.present)
3426 		return false;
3427 
3428 	return true;
3429 }
3430 
3431 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3432 {
3433 	struct kvm_segment var;
3434 	unsigned int rpl;
3435 
3436 	vmx_get_segment(vcpu, &var, seg);
3437 	rpl = var.selector & SEGMENT_RPL_MASK;
3438 
3439 	if (var.unusable)
3440 		return true;
3441 	if (!var.s)
3442 		return false;
3443 	if (!var.present)
3444 		return false;
3445 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3446 		if (var.dpl < rpl) /* DPL < RPL */
3447 			return false;
3448 	}
3449 
3450 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3451 	 * rights flags
3452 	 */
3453 	return true;
3454 }
3455 
3456 static bool tr_valid(struct kvm_vcpu *vcpu)
3457 {
3458 	struct kvm_segment tr;
3459 
3460 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3461 
3462 	if (tr.unusable)
3463 		return false;
3464 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3465 		return false;
3466 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3467 		return false;
3468 	if (!tr.present)
3469 		return false;
3470 
3471 	return true;
3472 }
3473 
3474 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3475 {
3476 	struct kvm_segment ldtr;
3477 
3478 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3479 
3480 	if (ldtr.unusable)
3481 		return true;
3482 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3483 		return false;
3484 	if (ldtr.type != 2)
3485 		return false;
3486 	if (!ldtr.present)
3487 		return false;
3488 
3489 	return true;
3490 }
3491 
3492 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3493 {
3494 	struct kvm_segment cs, ss;
3495 
3496 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3497 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3498 
3499 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3500 		 (ss.selector & SEGMENT_RPL_MASK));
3501 }
3502 
3503 /*
3504  * Check if guest state is valid. Returns true if valid, false if
3505  * not.
3506  * We assume that registers are always usable
3507  */
3508 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3509 {
3510 	/* real mode guest state checks */
3511 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3512 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3513 			return false;
3514 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3515 			return false;
3516 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3517 			return false;
3518 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3519 			return false;
3520 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3521 			return false;
3522 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3523 			return false;
3524 	} else {
3525 	/* protected mode guest state checks */
3526 		if (!cs_ss_rpl_check(vcpu))
3527 			return false;
3528 		if (!code_segment_valid(vcpu))
3529 			return false;
3530 		if (!stack_segment_valid(vcpu))
3531 			return false;
3532 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3533 			return false;
3534 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3535 			return false;
3536 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3537 			return false;
3538 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3539 			return false;
3540 		if (!tr_valid(vcpu))
3541 			return false;
3542 		if (!ldtr_valid(vcpu))
3543 			return false;
3544 	}
3545 	/* TODO:
3546 	 * - Add checks on RIP
3547 	 * - Add checks on RFLAGS
3548 	 */
3549 
3550 	return true;
3551 }
3552 
3553 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3554 {
3555 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3556 	u16 data;
3557 	int i;
3558 
3559 	for (i = 0; i < 3; i++) {
3560 		if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3561 			return -EFAULT;
3562 	}
3563 
3564 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3565 	if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3566 		return -EFAULT;
3567 
3568 	data = ~0;
3569 	if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3570 		return -EFAULT;
3571 
3572 	return 0;
3573 }
3574 
3575 static int init_rmode_identity_map(struct kvm *kvm)
3576 {
3577 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3578 	int i, r = 0;
3579 	void __user *uaddr;
3580 	u32 tmp;
3581 
3582 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3583 	mutex_lock(&kvm->slots_lock);
3584 
3585 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3586 		goto out;
3587 
3588 	if (!kvm_vmx->ept_identity_map_addr)
3589 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3590 
3591 	uaddr = __x86_set_memory_region(kvm,
3592 					IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3593 					kvm_vmx->ept_identity_map_addr,
3594 					PAGE_SIZE);
3595 	if (IS_ERR(uaddr)) {
3596 		r = PTR_ERR(uaddr);
3597 		goto out;
3598 	}
3599 
3600 	/* Set up identity-mapping pagetable for EPT in real mode */
3601 	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3602 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3603 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3604 		if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3605 			r = -EFAULT;
3606 			goto out;
3607 		}
3608 	}
3609 	kvm_vmx->ept_identity_pagetable_done = true;
3610 
3611 out:
3612 	mutex_unlock(&kvm->slots_lock);
3613 	return r;
3614 }
3615 
3616 static void seg_setup(int seg)
3617 {
3618 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3619 	unsigned int ar;
3620 
3621 	vmcs_write16(sf->selector, 0);
3622 	vmcs_writel(sf->base, 0);
3623 	vmcs_write32(sf->limit, 0xffff);
3624 	ar = 0x93;
3625 	if (seg == VCPU_SREG_CS)
3626 		ar |= 0x08; /* code segment */
3627 
3628 	vmcs_write32(sf->ar_bytes, ar);
3629 }
3630 
3631 static int alloc_apic_access_page(struct kvm *kvm)
3632 {
3633 	struct page *page;
3634 	void __user *hva;
3635 	int ret = 0;
3636 
3637 	mutex_lock(&kvm->slots_lock);
3638 	if (kvm->arch.apic_access_memslot_enabled)
3639 		goto out;
3640 	hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3641 				      APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3642 	if (IS_ERR(hva)) {
3643 		ret = PTR_ERR(hva);
3644 		goto out;
3645 	}
3646 
3647 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3648 	if (is_error_page(page)) {
3649 		ret = -EFAULT;
3650 		goto out;
3651 	}
3652 
3653 	/*
3654 	 * Do not pin the page in memory, so that memory hot-unplug
3655 	 * is able to migrate it.
3656 	 */
3657 	put_page(page);
3658 	kvm->arch.apic_access_memslot_enabled = true;
3659 out:
3660 	mutex_unlock(&kvm->slots_lock);
3661 	return ret;
3662 }
3663 
3664 int allocate_vpid(void)
3665 {
3666 	int vpid;
3667 
3668 	if (!enable_vpid)
3669 		return 0;
3670 	spin_lock(&vmx_vpid_lock);
3671 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3672 	if (vpid < VMX_NR_VPIDS)
3673 		__set_bit(vpid, vmx_vpid_bitmap);
3674 	else
3675 		vpid = 0;
3676 	spin_unlock(&vmx_vpid_lock);
3677 	return vpid;
3678 }
3679 
3680 void free_vpid(int vpid)
3681 {
3682 	if (!enable_vpid || vpid == 0)
3683 		return;
3684 	spin_lock(&vmx_vpid_lock);
3685 	__clear_bit(vpid, vmx_vpid_bitmap);
3686 	spin_unlock(&vmx_vpid_lock);
3687 }
3688 
3689 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3690 {
3691 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3692 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3693 
3694 	if (!cpu_has_vmx_msr_bitmap())
3695 		return;
3696 
3697 	if (static_branch_unlikely(&enable_evmcs))
3698 		evmcs_touch_msr_bitmap();
3699 
3700 	/*
3701 	 * Mark the desired intercept state in shadow bitmap, this is needed
3702 	 * for resync when the MSR filters change.
3703 	*/
3704 	if (is_valid_passthrough_msr(msr)) {
3705 		int idx = possible_passthrough_msr_slot(msr);
3706 
3707 		if (idx != -ENOENT) {
3708 			if (type & MSR_TYPE_R)
3709 				clear_bit(idx, vmx->shadow_msr_intercept.read);
3710 			if (type & MSR_TYPE_W)
3711 				clear_bit(idx, vmx->shadow_msr_intercept.write);
3712 		}
3713 	}
3714 
3715 	if ((type & MSR_TYPE_R) &&
3716 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3717 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3718 		type &= ~MSR_TYPE_R;
3719 	}
3720 
3721 	if ((type & MSR_TYPE_W) &&
3722 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3723 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3724 		type &= ~MSR_TYPE_W;
3725 	}
3726 
3727 	if (type & MSR_TYPE_R)
3728 		vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3729 
3730 	if (type & MSR_TYPE_W)
3731 		vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3732 }
3733 
3734 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3735 {
3736 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3737 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3738 
3739 	if (!cpu_has_vmx_msr_bitmap())
3740 		return;
3741 
3742 	if (static_branch_unlikely(&enable_evmcs))
3743 		evmcs_touch_msr_bitmap();
3744 
3745 	/*
3746 	 * Mark the desired intercept state in shadow bitmap, this is needed
3747 	 * for resync when the MSR filter changes.
3748 	*/
3749 	if (is_valid_passthrough_msr(msr)) {
3750 		int idx = possible_passthrough_msr_slot(msr);
3751 
3752 		if (idx != -ENOENT) {
3753 			if (type & MSR_TYPE_R)
3754 				set_bit(idx, vmx->shadow_msr_intercept.read);
3755 			if (type & MSR_TYPE_W)
3756 				set_bit(idx, vmx->shadow_msr_intercept.write);
3757 		}
3758 	}
3759 
3760 	if (type & MSR_TYPE_R)
3761 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3762 
3763 	if (type & MSR_TYPE_W)
3764 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3765 }
3766 
3767 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
3768 {
3769 	unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
3770 	unsigned long read_intercept;
3771 	int msr;
3772 
3773 	read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3774 
3775 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3776 		unsigned int read_idx = msr / BITS_PER_LONG;
3777 		unsigned int write_idx = read_idx + (0x800 / sizeof(long));
3778 
3779 		msr_bitmap[read_idx] = read_intercept;
3780 		msr_bitmap[write_idx] = ~0ul;
3781 	}
3782 }
3783 
3784 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
3785 {
3786 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3787 	u8 mode;
3788 
3789 	if (!cpu_has_vmx_msr_bitmap())
3790 		return;
3791 
3792 	if (cpu_has_secondary_exec_ctrls() &&
3793 	    (secondary_exec_controls_get(vmx) &
3794 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3795 		mode = MSR_BITMAP_MODE_X2APIC;
3796 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3797 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3798 	} else {
3799 		mode = 0;
3800 	}
3801 
3802 	if (mode == vmx->x2apic_msr_bitmap_mode)
3803 		return;
3804 
3805 	vmx->x2apic_msr_bitmap_mode = mode;
3806 
3807 	vmx_reset_x2apic_msrs(vcpu, mode);
3808 
3809 	/*
3810 	 * TPR reads and writes can be virtualized even if virtual interrupt
3811 	 * delivery is not in use.
3812 	 */
3813 	vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
3814 				  !(mode & MSR_BITMAP_MODE_X2APIC));
3815 
3816 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3817 		vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
3818 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3819 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3820 	}
3821 }
3822 
3823 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
3824 {
3825 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3826 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3827 	u32 i;
3828 
3829 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
3830 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
3831 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
3832 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
3833 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
3834 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3835 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3836 	}
3837 }
3838 
3839 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3840 {
3841 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3842 	void *vapic_page;
3843 	u32 vppr;
3844 	int rvi;
3845 
3846 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3847 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3848 		WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3849 		return false;
3850 
3851 	rvi = vmx_get_rvi();
3852 
3853 	vapic_page = vmx->nested.virtual_apic_map.hva;
3854 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3855 
3856 	return ((rvi & 0xf0) > (vppr & 0xf0));
3857 }
3858 
3859 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
3860 {
3861 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3862 	u32 i;
3863 
3864 	/*
3865 	 * Set intercept permissions for all potentially passed through MSRs
3866 	 * again. They will automatically get filtered through the MSR filter,
3867 	 * so we are back in sync after this.
3868 	 */
3869 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
3870 		u32 msr = vmx_possible_passthrough_msrs[i];
3871 		bool read = test_bit(i, vmx->shadow_msr_intercept.read);
3872 		bool write = test_bit(i, vmx->shadow_msr_intercept.write);
3873 
3874 		vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read);
3875 		vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write);
3876 	}
3877 
3878 	pt_update_intercept_for_msr(vcpu);
3879 }
3880 
3881 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3882 						     bool nested)
3883 {
3884 #ifdef CONFIG_SMP
3885 	int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3886 
3887 	if (vcpu->mode == IN_GUEST_MODE) {
3888 		/*
3889 		 * The vector of interrupt to be delivered to vcpu had
3890 		 * been set in PIR before this function.
3891 		 *
3892 		 * Following cases will be reached in this block, and
3893 		 * we always send a notification event in all cases as
3894 		 * explained below.
3895 		 *
3896 		 * Case 1: vcpu keeps in non-root mode. Sending a
3897 		 * notification event posts the interrupt to vcpu.
3898 		 *
3899 		 * Case 2: vcpu exits to root mode and is still
3900 		 * runnable. PIR will be synced to vIRR before the
3901 		 * next vcpu entry. Sending a notification event in
3902 		 * this case has no effect, as vcpu is not in root
3903 		 * mode.
3904 		 *
3905 		 * Case 3: vcpu exits to root mode and is blocked.
3906 		 * vcpu_block() has already synced PIR to vIRR and
3907 		 * never blocks vcpu if vIRR is not cleared. Therefore,
3908 		 * a blocked vcpu here does not wait for any requested
3909 		 * interrupts in PIR, and sending a notification event
3910 		 * which has no effect is safe here.
3911 		 */
3912 
3913 		apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3914 		return true;
3915 	}
3916 #endif
3917 	return false;
3918 }
3919 
3920 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3921 						int vector)
3922 {
3923 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3924 
3925 	if (is_guest_mode(vcpu) &&
3926 	    vector == vmx->nested.posted_intr_nv) {
3927 		/*
3928 		 * If a posted intr is not recognized by hardware,
3929 		 * we will accomplish it in the next vmentry.
3930 		 */
3931 		vmx->nested.pi_pending = true;
3932 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3933 		/* the PIR and ON have been set by L1. */
3934 		if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3935 			kvm_vcpu_kick(vcpu);
3936 		return 0;
3937 	}
3938 	return -1;
3939 }
3940 /*
3941  * Send interrupt to vcpu via posted interrupt way.
3942  * 1. If target vcpu is running(non-root mode), send posted interrupt
3943  * notification to vcpu and hardware will sync PIR to vIRR atomically.
3944  * 2. If target vcpu isn't running(root mode), kick it to pick up the
3945  * interrupt from PIR in next vmentry.
3946  */
3947 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3948 {
3949 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3950 	int r;
3951 
3952 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3953 	if (!r)
3954 		return 0;
3955 
3956 	if (!vcpu->arch.apicv_active)
3957 		return -1;
3958 
3959 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3960 		return 0;
3961 
3962 	/* If a previous notification has sent the IPI, nothing to do.  */
3963 	if (pi_test_and_set_on(&vmx->pi_desc))
3964 		return 0;
3965 
3966 	if (vcpu != kvm_get_running_vcpu() &&
3967 	    !kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3968 		kvm_vcpu_kick(vcpu);
3969 
3970 	return 0;
3971 }
3972 
3973 /*
3974  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3975  * will not change in the lifetime of the guest.
3976  * Note that host-state that does change is set elsewhere. E.g., host-state
3977  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3978  */
3979 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3980 {
3981 	u32 low32, high32;
3982 	unsigned long tmpl;
3983 	unsigned long cr0, cr3, cr4;
3984 
3985 	cr0 = read_cr0();
3986 	WARN_ON(cr0 & X86_CR0_TS);
3987 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
3988 
3989 	/*
3990 	 * Save the most likely value for this task's CR3 in the VMCS.
3991 	 * We can't use __get_current_cr3_fast() because we're not atomic.
3992 	 */
3993 	cr3 = __read_cr3();
3994 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
3995 	vmx->loaded_vmcs->host_state.cr3 = cr3;
3996 
3997 	/* Save the most likely value for this task's CR4 in the VMCS. */
3998 	cr4 = cr4_read_shadow();
3999 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4000 	vmx->loaded_vmcs->host_state.cr4 = cr4;
4001 
4002 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4003 #ifdef CONFIG_X86_64
4004 	/*
4005 	 * Load null selectors, so we can avoid reloading them in
4006 	 * vmx_prepare_switch_to_host(), in case userspace uses
4007 	 * the null selectors too (the expected case).
4008 	 */
4009 	vmcs_write16(HOST_DS_SELECTOR, 0);
4010 	vmcs_write16(HOST_ES_SELECTOR, 0);
4011 #else
4012 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4013 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4014 #endif
4015 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4016 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4017 
4018 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4019 
4020 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4021 
4022 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4023 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4024 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4025 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4026 
4027 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4028 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4029 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4030 	}
4031 
4032 	if (cpu_has_load_ia32_efer())
4033 		vmcs_write64(HOST_IA32_EFER, host_efer);
4034 }
4035 
4036 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4037 {
4038 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4039 
4040 	vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4041 					  ~vcpu->arch.cr4_guest_rsvd_bits;
4042 	if (!enable_ept)
4043 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE;
4044 	if (is_guest_mode(&vmx->vcpu))
4045 		vcpu->arch.cr4_guest_owned_bits &=
4046 			~get_vmcs12(vcpu)->cr4_guest_host_mask;
4047 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4048 }
4049 
4050 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4051 {
4052 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4053 
4054 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4055 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4056 
4057 	if (!enable_vnmi)
4058 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4059 
4060 	if (!enable_preemption_timer)
4061 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4062 
4063 	return pin_based_exec_ctrl;
4064 }
4065 
4066 static u32 vmx_vmentry_ctrl(void)
4067 {
4068 	u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4069 
4070 	if (vmx_pt_mode_is_system())
4071 		vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4072 				  VM_ENTRY_LOAD_IA32_RTIT_CTL);
4073 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4074 	return vmentry_ctrl &
4075 		~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER);
4076 }
4077 
4078 static u32 vmx_vmexit_ctrl(void)
4079 {
4080 	u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4081 
4082 	if (vmx_pt_mode_is_system())
4083 		vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4084 				 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4085 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4086 	return vmexit_ctrl &
4087 		~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4088 }
4089 
4090 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4091 {
4092 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4093 
4094 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4095 	if (cpu_has_secondary_exec_ctrls()) {
4096 		if (kvm_vcpu_apicv_active(vcpu))
4097 			secondary_exec_controls_setbit(vmx,
4098 				      SECONDARY_EXEC_APIC_REGISTER_VIRT |
4099 				      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4100 		else
4101 			secondary_exec_controls_clearbit(vmx,
4102 					SECONDARY_EXEC_APIC_REGISTER_VIRT |
4103 					SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4104 	}
4105 
4106 	vmx_update_msr_bitmap_x2apic(vcpu);
4107 }
4108 
4109 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4110 {
4111 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4112 
4113 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4114 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4115 
4116 	if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4117 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4118 #ifdef CONFIG_X86_64
4119 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4120 				CPU_BASED_CR8_LOAD_EXITING;
4121 #endif
4122 	}
4123 	if (!enable_ept)
4124 		exec_control |= CPU_BASED_CR3_STORE_EXITING |
4125 				CPU_BASED_CR3_LOAD_EXITING  |
4126 				CPU_BASED_INVLPG_EXITING;
4127 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4128 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4129 				CPU_BASED_MONITOR_EXITING);
4130 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4131 		exec_control &= ~CPU_BASED_HLT_EXITING;
4132 	return exec_control;
4133 }
4134 
4135 /*
4136  * Adjust a single secondary execution control bit to intercept/allow an
4137  * instruction in the guest.  This is usually done based on whether or not a
4138  * feature has been exposed to the guest in order to correctly emulate faults.
4139  */
4140 static inline void
4141 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4142 				  u32 control, bool enabled, bool exiting)
4143 {
4144 	/*
4145 	 * If the control is for an opt-in feature, clear the control if the
4146 	 * feature is not exposed to the guest, i.e. not enabled.  If the
4147 	 * control is opt-out, i.e. an exiting control, clear the control if
4148 	 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4149 	 * disabled for the associated instruction.  Note, the caller is
4150 	 * responsible presetting exec_control to set all supported bits.
4151 	 */
4152 	if (enabled == exiting)
4153 		*exec_control &= ~control;
4154 
4155 	/*
4156 	 * Update the nested MSR settings so that a nested VMM can/can't set
4157 	 * controls for features that are/aren't exposed to the guest.
4158 	 */
4159 	if (nested) {
4160 		if (enabled)
4161 			vmx->nested.msrs.secondary_ctls_high |= control;
4162 		else
4163 			vmx->nested.msrs.secondary_ctls_high &= ~control;
4164 	}
4165 }
4166 
4167 /*
4168  * Wrapper macro for the common case of adjusting a secondary execution control
4169  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4170  * verifies that the control is actually supported by KVM and hardware.
4171  */
4172 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4173 ({									 \
4174 	bool __enabled;							 \
4175 									 \
4176 	if (cpu_has_vmx_##name()) {					 \
4177 		__enabled = guest_cpuid_has(&(vmx)->vcpu,		 \
4178 					    X86_FEATURE_##feat_name);	 \
4179 		vmx_adjust_secondary_exec_control(vmx, exec_control,	 \
4180 			SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4181 	}								 \
4182 })
4183 
4184 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4185 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4186 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4187 
4188 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4189 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4190 
4191 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4192 {
4193 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4194 
4195 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4196 
4197 	if (vmx_pt_mode_is_system())
4198 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4199 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4200 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4201 	if (vmx->vpid == 0)
4202 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4203 	if (!enable_ept) {
4204 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4205 		enable_unrestricted_guest = 0;
4206 	}
4207 	if (!enable_unrestricted_guest)
4208 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4209 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4210 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4211 	if (!kvm_vcpu_apicv_active(vcpu))
4212 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4213 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4214 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4215 
4216 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4217 	 * in vmx_set_cr4.  */
4218 	exec_control &= ~SECONDARY_EXEC_DESC;
4219 
4220 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4221 	   (handle_vmptrld).
4222 	   We can NOT enable shadow_vmcs here because we don't have yet
4223 	   a current VMCS12
4224 	*/
4225 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4226 
4227 	/*
4228 	 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4229 	 * it needs to be set here when dirty logging is already active, e.g.
4230 	 * if this vCPU was created after dirty logging was enabled.
4231 	 */
4232 	if (!vcpu->kvm->arch.cpu_dirty_logging_count)
4233 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4234 
4235 	if (cpu_has_vmx_xsaves()) {
4236 		/* Exposing XSAVES only when XSAVE is exposed */
4237 		bool xsaves_enabled =
4238 			boot_cpu_has(X86_FEATURE_XSAVE) &&
4239 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4240 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4241 
4242 		vcpu->arch.xsaves_enabled = xsaves_enabled;
4243 
4244 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4245 						  SECONDARY_EXEC_XSAVES,
4246 						  xsaves_enabled, false);
4247 	}
4248 
4249 	/*
4250 	 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4251 	 * feature is exposed to the guest.  This creates a virtualization hole
4252 	 * if both are supported in hardware but only one is exposed to the
4253 	 * guest, but letting the guest execute RDTSCP or RDPID when either one
4254 	 * is advertised is preferable to emulating the advertised instruction
4255 	 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4256 	 */
4257 	if (cpu_has_vmx_rdtscp()) {
4258 		bool rdpid_or_rdtscp_enabled =
4259 			guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4260 			guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4261 
4262 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4263 						  SECONDARY_EXEC_ENABLE_RDTSCP,
4264 						  rdpid_or_rdtscp_enabled, false);
4265 	}
4266 	vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4267 
4268 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4269 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4270 
4271 	vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4272 				    ENABLE_USR_WAIT_PAUSE, false);
4273 
4274 	if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4275 		exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4276 
4277 	return exec_control;
4278 }
4279 
4280 #define VMX_XSS_EXIT_BITMAP 0
4281 
4282 static void init_vmcs(struct vcpu_vmx *vmx)
4283 {
4284 	if (nested)
4285 		nested_vmx_set_vmcs_shadowing_bitmap();
4286 
4287 	if (cpu_has_vmx_msr_bitmap())
4288 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4289 
4290 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4291 
4292 	/* Control */
4293 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4294 
4295 	exec_controls_set(vmx, vmx_exec_control(vmx));
4296 
4297 	if (cpu_has_secondary_exec_ctrls())
4298 		secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4299 
4300 	if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4301 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4302 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4303 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4304 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4305 
4306 		vmcs_write16(GUEST_INTR_STATUS, 0);
4307 
4308 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4309 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4310 	}
4311 
4312 	if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4313 		vmcs_write32(PLE_GAP, ple_gap);
4314 		vmx->ple_window = ple_window;
4315 		vmx->ple_window_dirty = true;
4316 	}
4317 
4318 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4319 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4320 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4321 
4322 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4323 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4324 	vmx_set_constant_host_state(vmx);
4325 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4326 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4327 
4328 	if (cpu_has_vmx_vmfunc())
4329 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4330 
4331 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4332 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4333 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4334 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4335 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4336 
4337 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4338 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4339 
4340 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4341 
4342 	/* 22.2.1, 20.8.1 */
4343 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4344 
4345 	vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4346 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4347 
4348 	set_cr4_guest_host_mask(vmx);
4349 
4350 	if (vmx->vpid != 0)
4351 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4352 
4353 	if (cpu_has_vmx_xsaves())
4354 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4355 
4356 	if (enable_pml) {
4357 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4358 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4359 	}
4360 
4361 	vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4362 
4363 	if (vmx_pt_mode_is_host_guest()) {
4364 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4365 		/* Bit[6~0] are forced to 1, writes are ignored. */
4366 		vmx->pt_desc.guest.output_mask = 0x7F;
4367 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4368 	}
4369 
4370 	vmcs_write32(GUEST_SYSENTER_CS, 0);
4371 	vmcs_writel(GUEST_SYSENTER_ESP, 0);
4372 	vmcs_writel(GUEST_SYSENTER_EIP, 0);
4373 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4374 
4375 	if (cpu_has_vmx_tpr_shadow()) {
4376 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4377 		if (cpu_need_tpr_shadow(&vmx->vcpu))
4378 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4379 				     __pa(vmx->vcpu.arch.apic->regs));
4380 		vmcs_write32(TPR_THRESHOLD, 0);
4381 	}
4382 
4383 	vmx_setup_uret_msrs(vmx);
4384 }
4385 
4386 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4387 {
4388 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4389 
4390 	init_vmcs(vmx);
4391 
4392 	if (nested)
4393 		memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4394 
4395 	vcpu_setup_sgx_lepubkeyhash(vcpu);
4396 
4397 	vmx->nested.posted_intr_nv = -1;
4398 	vmx->nested.vmxon_ptr = INVALID_GPA;
4399 	vmx->nested.current_vmptr = INVALID_GPA;
4400 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4401 
4402 	vcpu->arch.microcode_version = 0x100000000ULL;
4403 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4404 
4405 	/*
4406 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4407 	 * or POSTED_INTR_WAKEUP_VECTOR.
4408 	 */
4409 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4410 	vmx->pi_desc.sn = 1;
4411 }
4412 
4413 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4414 {
4415 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4416 
4417 	if (!init_event)
4418 		__vmx_vcpu_reset(vcpu);
4419 
4420 	vmx->rmode.vm86_active = 0;
4421 	vmx->spec_ctrl = 0;
4422 
4423 	vmx->msr_ia32_umwait_control = 0;
4424 
4425 	vmx->hv_deadline_tsc = -1;
4426 	kvm_set_cr8(vcpu, 0);
4427 
4428 	vmx_segment_cache_clear(vmx);
4429 	kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4430 
4431 	seg_setup(VCPU_SREG_CS);
4432 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4433 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4434 
4435 	seg_setup(VCPU_SREG_DS);
4436 	seg_setup(VCPU_SREG_ES);
4437 	seg_setup(VCPU_SREG_FS);
4438 	seg_setup(VCPU_SREG_GS);
4439 	seg_setup(VCPU_SREG_SS);
4440 
4441 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4442 	vmcs_writel(GUEST_TR_BASE, 0);
4443 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4444 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4445 
4446 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4447 	vmcs_writel(GUEST_LDTR_BASE, 0);
4448 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4449 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4450 
4451 	vmcs_writel(GUEST_GDTR_BASE, 0);
4452 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4453 
4454 	vmcs_writel(GUEST_IDTR_BASE, 0);
4455 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4456 
4457 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4458 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4459 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4460 	if (kvm_mpx_supported())
4461 		vmcs_write64(GUEST_BNDCFGS, 0);
4462 
4463 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4464 
4465 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4466 
4467 	vpid_sync_context(vmx->vpid);
4468 }
4469 
4470 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4471 {
4472 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4473 }
4474 
4475 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4476 {
4477 	if (!enable_vnmi ||
4478 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4479 		vmx_enable_irq_window(vcpu);
4480 		return;
4481 	}
4482 
4483 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4484 }
4485 
4486 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4487 {
4488 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4489 	uint32_t intr;
4490 	int irq = vcpu->arch.interrupt.nr;
4491 
4492 	trace_kvm_inj_virq(irq);
4493 
4494 	++vcpu->stat.irq_injections;
4495 	if (vmx->rmode.vm86_active) {
4496 		int inc_eip = 0;
4497 		if (vcpu->arch.interrupt.soft)
4498 			inc_eip = vcpu->arch.event_exit_inst_len;
4499 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4500 		return;
4501 	}
4502 	intr = irq | INTR_INFO_VALID_MASK;
4503 	if (vcpu->arch.interrupt.soft) {
4504 		intr |= INTR_TYPE_SOFT_INTR;
4505 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4506 			     vmx->vcpu.arch.event_exit_inst_len);
4507 	} else
4508 		intr |= INTR_TYPE_EXT_INTR;
4509 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4510 
4511 	vmx_clear_hlt(vcpu);
4512 }
4513 
4514 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4515 {
4516 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4517 
4518 	if (!enable_vnmi) {
4519 		/*
4520 		 * Tracking the NMI-blocked state in software is built upon
4521 		 * finding the next open IRQ window. This, in turn, depends on
4522 		 * well-behaving guests: They have to keep IRQs disabled at
4523 		 * least as long as the NMI handler runs. Otherwise we may
4524 		 * cause NMI nesting, maybe breaking the guest. But as this is
4525 		 * highly unlikely, we can live with the residual risk.
4526 		 */
4527 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4528 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4529 	}
4530 
4531 	++vcpu->stat.nmi_injections;
4532 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4533 
4534 	if (vmx->rmode.vm86_active) {
4535 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4536 		return;
4537 	}
4538 
4539 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4540 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4541 
4542 	vmx_clear_hlt(vcpu);
4543 }
4544 
4545 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4546 {
4547 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4548 	bool masked;
4549 
4550 	if (!enable_vnmi)
4551 		return vmx->loaded_vmcs->soft_vnmi_blocked;
4552 	if (vmx->loaded_vmcs->nmi_known_unmasked)
4553 		return false;
4554 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4555 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4556 	return masked;
4557 }
4558 
4559 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4560 {
4561 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4562 
4563 	if (!enable_vnmi) {
4564 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4565 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4566 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
4567 		}
4568 	} else {
4569 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4570 		if (masked)
4571 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4572 				      GUEST_INTR_STATE_NMI);
4573 		else
4574 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4575 					GUEST_INTR_STATE_NMI);
4576 	}
4577 }
4578 
4579 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4580 {
4581 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4582 		return false;
4583 
4584 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4585 		return true;
4586 
4587 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4588 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4589 		 GUEST_INTR_STATE_NMI));
4590 }
4591 
4592 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4593 {
4594 	if (to_vmx(vcpu)->nested.nested_run_pending)
4595 		return -EBUSY;
4596 
4597 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
4598 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4599 		return -EBUSY;
4600 
4601 	return !vmx_nmi_blocked(vcpu);
4602 }
4603 
4604 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4605 {
4606 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4607 		return false;
4608 
4609 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4610 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4611 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4612 }
4613 
4614 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4615 {
4616 	if (to_vmx(vcpu)->nested.nested_run_pending)
4617 		return -EBUSY;
4618 
4619        /*
4620         * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4621         * e.g. if the IRQ arrived asynchronously after checking nested events.
4622         */
4623 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4624 		return -EBUSY;
4625 
4626 	return !vmx_interrupt_blocked(vcpu);
4627 }
4628 
4629 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4630 {
4631 	void __user *ret;
4632 
4633 	if (enable_unrestricted_guest)
4634 		return 0;
4635 
4636 	mutex_lock(&kvm->slots_lock);
4637 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4638 				      PAGE_SIZE * 3);
4639 	mutex_unlock(&kvm->slots_lock);
4640 
4641 	if (IS_ERR(ret))
4642 		return PTR_ERR(ret);
4643 
4644 	to_kvm_vmx(kvm)->tss_addr = addr;
4645 
4646 	return init_rmode_tss(kvm, ret);
4647 }
4648 
4649 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4650 {
4651 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4652 	return 0;
4653 }
4654 
4655 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4656 {
4657 	switch (vec) {
4658 	case BP_VECTOR:
4659 		/*
4660 		 * Update instruction length as we may reinject the exception
4661 		 * from user space while in guest debugging mode.
4662 		 */
4663 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4664 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4665 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4666 			return false;
4667 		fallthrough;
4668 	case DB_VECTOR:
4669 		return !(vcpu->guest_debug &
4670 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4671 	case DE_VECTOR:
4672 	case OF_VECTOR:
4673 	case BR_VECTOR:
4674 	case UD_VECTOR:
4675 	case DF_VECTOR:
4676 	case SS_VECTOR:
4677 	case GP_VECTOR:
4678 	case MF_VECTOR:
4679 		return true;
4680 	}
4681 	return false;
4682 }
4683 
4684 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4685 				  int vec, u32 err_code)
4686 {
4687 	/*
4688 	 * Instruction with address size override prefix opcode 0x67
4689 	 * Cause the #SS fault with 0 error code in VM86 mode.
4690 	 */
4691 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4692 		if (kvm_emulate_instruction(vcpu, 0)) {
4693 			if (vcpu->arch.halt_request) {
4694 				vcpu->arch.halt_request = 0;
4695 				return kvm_vcpu_halt(vcpu);
4696 			}
4697 			return 1;
4698 		}
4699 		return 0;
4700 	}
4701 
4702 	/*
4703 	 * Forward all other exceptions that are valid in real mode.
4704 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4705 	 *        the required debugging infrastructure rework.
4706 	 */
4707 	kvm_queue_exception(vcpu, vec);
4708 	return 1;
4709 }
4710 
4711 static int handle_machine_check(struct kvm_vcpu *vcpu)
4712 {
4713 	/* handled by vmx_vcpu_run() */
4714 	return 1;
4715 }
4716 
4717 /*
4718  * If the host has split lock detection disabled, then #AC is
4719  * unconditionally injected into the guest, which is the pre split lock
4720  * detection behaviour.
4721  *
4722  * If the host has split lock detection enabled then #AC is
4723  * only injected into the guest when:
4724  *  - Guest CPL == 3 (user mode)
4725  *  - Guest has #AC detection enabled in CR0
4726  *  - Guest EFLAGS has AC bit set
4727  */
4728 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
4729 {
4730 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4731 		return true;
4732 
4733 	return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4734 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4735 }
4736 
4737 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4738 {
4739 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4740 	struct kvm_run *kvm_run = vcpu->run;
4741 	u32 intr_info, ex_no, error_code;
4742 	unsigned long cr2, dr6;
4743 	u32 vect_info;
4744 
4745 	vect_info = vmx->idt_vectoring_info;
4746 	intr_info = vmx_get_intr_info(vcpu);
4747 
4748 	if (is_machine_check(intr_info) || is_nmi(intr_info))
4749 		return 1; /* handled by handle_exception_nmi_irqoff() */
4750 
4751 	if (is_invalid_opcode(intr_info))
4752 		return handle_ud(vcpu);
4753 
4754 	error_code = 0;
4755 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4756 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4757 
4758 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4759 		WARN_ON_ONCE(!enable_vmware_backdoor);
4760 
4761 		/*
4762 		 * VMware backdoor emulation on #GP interception only handles
4763 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4764 		 * error code on #GP.
4765 		 */
4766 		if (error_code) {
4767 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4768 			return 1;
4769 		}
4770 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4771 	}
4772 
4773 	/*
4774 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4775 	 * MMIO, it is better to report an internal error.
4776 	 * See the comments in vmx_handle_exit.
4777 	 */
4778 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4779 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4780 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4781 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4782 		vcpu->run->internal.ndata = 4;
4783 		vcpu->run->internal.data[0] = vect_info;
4784 		vcpu->run->internal.data[1] = intr_info;
4785 		vcpu->run->internal.data[2] = error_code;
4786 		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
4787 		return 0;
4788 	}
4789 
4790 	if (is_page_fault(intr_info)) {
4791 		cr2 = vmx_get_exit_qual(vcpu);
4792 		if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
4793 			/*
4794 			 * EPT will cause page fault only if we need to
4795 			 * detect illegal GPAs.
4796 			 */
4797 			WARN_ON_ONCE(!allow_smaller_maxphyaddr);
4798 			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
4799 			return 1;
4800 		} else
4801 			return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4802 	}
4803 
4804 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4805 
4806 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4807 		return handle_rmode_exception(vcpu, ex_no, error_code);
4808 
4809 	switch (ex_no) {
4810 	case DB_VECTOR:
4811 		dr6 = vmx_get_exit_qual(vcpu);
4812 		if (!(vcpu->guest_debug &
4813 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4814 			if (is_icebp(intr_info))
4815 				WARN_ON(!skip_emulated_instruction(vcpu));
4816 
4817 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4818 			return 1;
4819 		}
4820 		kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
4821 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4822 		fallthrough;
4823 	case BP_VECTOR:
4824 		/*
4825 		 * Update instruction length as we may reinject #BP from
4826 		 * user space while in guest debugging mode. Reading it for
4827 		 * #DB as well causes no harm, it is not used in that case.
4828 		 */
4829 		vmx->vcpu.arch.event_exit_inst_len =
4830 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4831 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
4832 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4833 		kvm_run->debug.arch.exception = ex_no;
4834 		break;
4835 	case AC_VECTOR:
4836 		if (vmx_guest_inject_ac(vcpu)) {
4837 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4838 			return 1;
4839 		}
4840 
4841 		/*
4842 		 * Handle split lock. Depending on detection mode this will
4843 		 * either warn and disable split lock detection for this
4844 		 * task or force SIGBUS on it.
4845 		 */
4846 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
4847 			return 1;
4848 		fallthrough;
4849 	default:
4850 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4851 		kvm_run->ex.exception = ex_no;
4852 		kvm_run->ex.error_code = error_code;
4853 		break;
4854 	}
4855 	return 0;
4856 }
4857 
4858 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4859 {
4860 	++vcpu->stat.irq_exits;
4861 	return 1;
4862 }
4863 
4864 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4865 {
4866 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4867 	vcpu->mmio_needed = 0;
4868 	return 0;
4869 }
4870 
4871 static int handle_io(struct kvm_vcpu *vcpu)
4872 {
4873 	unsigned long exit_qualification;
4874 	int size, in, string;
4875 	unsigned port;
4876 
4877 	exit_qualification = vmx_get_exit_qual(vcpu);
4878 	string = (exit_qualification & 16) != 0;
4879 
4880 	++vcpu->stat.io_exits;
4881 
4882 	if (string)
4883 		return kvm_emulate_instruction(vcpu, 0);
4884 
4885 	port = exit_qualification >> 16;
4886 	size = (exit_qualification & 7) + 1;
4887 	in = (exit_qualification & 8) != 0;
4888 
4889 	return kvm_fast_pio(vcpu, size, port, in);
4890 }
4891 
4892 static void
4893 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4894 {
4895 	/*
4896 	 * Patch in the VMCALL instruction:
4897 	 */
4898 	hypercall[0] = 0x0f;
4899 	hypercall[1] = 0x01;
4900 	hypercall[2] = 0xc1;
4901 }
4902 
4903 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4904 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4905 {
4906 	if (is_guest_mode(vcpu)) {
4907 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4908 		unsigned long orig_val = val;
4909 
4910 		/*
4911 		 * We get here when L2 changed cr0 in a way that did not change
4912 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4913 		 * but did change L0 shadowed bits. So we first calculate the
4914 		 * effective cr0 value that L1 would like to write into the
4915 		 * hardware. It consists of the L2-owned bits from the new
4916 		 * value combined with the L1-owned bits from L1's guest_cr0.
4917 		 */
4918 		val = (val & ~vmcs12->cr0_guest_host_mask) |
4919 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4920 
4921 		if (!nested_guest_cr0_valid(vcpu, val))
4922 			return 1;
4923 
4924 		if (kvm_set_cr0(vcpu, val))
4925 			return 1;
4926 		vmcs_writel(CR0_READ_SHADOW, orig_val);
4927 		return 0;
4928 	} else {
4929 		if (to_vmx(vcpu)->nested.vmxon &&
4930 		    !nested_host_cr0_valid(vcpu, val))
4931 			return 1;
4932 
4933 		return kvm_set_cr0(vcpu, val);
4934 	}
4935 }
4936 
4937 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4938 {
4939 	if (is_guest_mode(vcpu)) {
4940 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4941 		unsigned long orig_val = val;
4942 
4943 		/* analogously to handle_set_cr0 */
4944 		val = (val & ~vmcs12->cr4_guest_host_mask) |
4945 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4946 		if (kvm_set_cr4(vcpu, val))
4947 			return 1;
4948 		vmcs_writel(CR4_READ_SHADOW, orig_val);
4949 		return 0;
4950 	} else
4951 		return kvm_set_cr4(vcpu, val);
4952 }
4953 
4954 static int handle_desc(struct kvm_vcpu *vcpu)
4955 {
4956 	WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4957 	return kvm_emulate_instruction(vcpu, 0);
4958 }
4959 
4960 static int handle_cr(struct kvm_vcpu *vcpu)
4961 {
4962 	unsigned long exit_qualification, val;
4963 	int cr;
4964 	int reg;
4965 	int err;
4966 	int ret;
4967 
4968 	exit_qualification = vmx_get_exit_qual(vcpu);
4969 	cr = exit_qualification & 15;
4970 	reg = (exit_qualification >> 8) & 15;
4971 	switch ((exit_qualification >> 4) & 3) {
4972 	case 0: /* mov to cr */
4973 		val = kvm_register_read(vcpu, reg);
4974 		trace_kvm_cr_write(cr, val);
4975 		switch (cr) {
4976 		case 0:
4977 			err = handle_set_cr0(vcpu, val);
4978 			return kvm_complete_insn_gp(vcpu, err);
4979 		case 3:
4980 			WARN_ON_ONCE(enable_unrestricted_guest);
4981 
4982 			err = kvm_set_cr3(vcpu, val);
4983 			return kvm_complete_insn_gp(vcpu, err);
4984 		case 4:
4985 			err = handle_set_cr4(vcpu, val);
4986 			return kvm_complete_insn_gp(vcpu, err);
4987 		case 8: {
4988 				u8 cr8_prev = kvm_get_cr8(vcpu);
4989 				u8 cr8 = (u8)val;
4990 				err = kvm_set_cr8(vcpu, cr8);
4991 				ret = kvm_complete_insn_gp(vcpu, err);
4992 				if (lapic_in_kernel(vcpu))
4993 					return ret;
4994 				if (cr8_prev <= cr8)
4995 					return ret;
4996 				/*
4997 				 * TODO: we might be squashing a
4998 				 * KVM_GUESTDBG_SINGLESTEP-triggered
4999 				 * KVM_EXIT_DEBUG here.
5000 				 */
5001 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5002 				return 0;
5003 			}
5004 		}
5005 		break;
5006 	case 2: /* clts */
5007 		KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5008 		return -EIO;
5009 	case 1: /*mov from cr*/
5010 		switch (cr) {
5011 		case 3:
5012 			WARN_ON_ONCE(enable_unrestricted_guest);
5013 
5014 			val = kvm_read_cr3(vcpu);
5015 			kvm_register_write(vcpu, reg, val);
5016 			trace_kvm_cr_read(cr, val);
5017 			return kvm_skip_emulated_instruction(vcpu);
5018 		case 8:
5019 			val = kvm_get_cr8(vcpu);
5020 			kvm_register_write(vcpu, reg, val);
5021 			trace_kvm_cr_read(cr, val);
5022 			return kvm_skip_emulated_instruction(vcpu);
5023 		}
5024 		break;
5025 	case 3: /* lmsw */
5026 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5027 		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5028 		kvm_lmsw(vcpu, val);
5029 
5030 		return kvm_skip_emulated_instruction(vcpu);
5031 	default:
5032 		break;
5033 	}
5034 	vcpu->run->exit_reason = 0;
5035 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5036 	       (int)(exit_qualification >> 4) & 3, cr);
5037 	return 0;
5038 }
5039 
5040 static int handle_dr(struct kvm_vcpu *vcpu)
5041 {
5042 	unsigned long exit_qualification;
5043 	int dr, dr7, reg;
5044 	int err = 1;
5045 
5046 	exit_qualification = vmx_get_exit_qual(vcpu);
5047 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5048 
5049 	/* First, if DR does not exist, trigger UD */
5050 	if (!kvm_require_dr(vcpu, dr))
5051 		return 1;
5052 
5053 	if (kvm_x86_ops.get_cpl(vcpu) > 0)
5054 		goto out;
5055 
5056 	dr7 = vmcs_readl(GUEST_DR7);
5057 	if (dr7 & DR7_GD) {
5058 		/*
5059 		 * As the vm-exit takes precedence over the debug trap, we
5060 		 * need to emulate the latter, either for the host or the
5061 		 * guest debugging itself.
5062 		 */
5063 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5064 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5065 			vcpu->run->debug.arch.dr7 = dr7;
5066 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5067 			vcpu->run->debug.arch.exception = DB_VECTOR;
5068 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5069 			return 0;
5070 		} else {
5071 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5072 			return 1;
5073 		}
5074 	}
5075 
5076 	if (vcpu->guest_debug == 0) {
5077 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5078 
5079 		/*
5080 		 * No more DR vmexits; force a reload of the debug registers
5081 		 * and reenter on this instruction.  The next vmexit will
5082 		 * retrieve the full state of the debug registers.
5083 		 */
5084 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5085 		return 1;
5086 	}
5087 
5088 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5089 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5090 		unsigned long val;
5091 
5092 		kvm_get_dr(vcpu, dr, &val);
5093 		kvm_register_write(vcpu, reg, val);
5094 		err = 0;
5095 	} else {
5096 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5097 	}
5098 
5099 out:
5100 	return kvm_complete_insn_gp(vcpu, err);
5101 }
5102 
5103 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5104 {
5105 	get_debugreg(vcpu->arch.db[0], 0);
5106 	get_debugreg(vcpu->arch.db[1], 1);
5107 	get_debugreg(vcpu->arch.db[2], 2);
5108 	get_debugreg(vcpu->arch.db[3], 3);
5109 	get_debugreg(vcpu->arch.dr6, 6);
5110 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5111 
5112 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5113 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5114 
5115 	/*
5116 	 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5117 	 * a stale dr6 from the guest.
5118 	 */
5119 	set_debugreg(DR6_RESERVED, 6);
5120 }
5121 
5122 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5123 {
5124 	vmcs_writel(GUEST_DR7, val);
5125 }
5126 
5127 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5128 {
5129 	kvm_apic_update_ppr(vcpu);
5130 	return 1;
5131 }
5132 
5133 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5134 {
5135 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5136 
5137 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5138 
5139 	++vcpu->stat.irq_window_exits;
5140 	return 1;
5141 }
5142 
5143 static int handle_invlpg(struct kvm_vcpu *vcpu)
5144 {
5145 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5146 
5147 	kvm_mmu_invlpg(vcpu, exit_qualification);
5148 	return kvm_skip_emulated_instruction(vcpu);
5149 }
5150 
5151 static int handle_apic_access(struct kvm_vcpu *vcpu)
5152 {
5153 	if (likely(fasteoi)) {
5154 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5155 		int access_type, offset;
5156 
5157 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5158 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5159 		/*
5160 		 * Sane guest uses MOV to write EOI, with written value
5161 		 * not cared. So make a short-circuit here by avoiding
5162 		 * heavy instruction emulation.
5163 		 */
5164 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5165 		    (offset == APIC_EOI)) {
5166 			kvm_lapic_set_eoi(vcpu);
5167 			return kvm_skip_emulated_instruction(vcpu);
5168 		}
5169 	}
5170 	return kvm_emulate_instruction(vcpu, 0);
5171 }
5172 
5173 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5174 {
5175 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5176 	int vector = exit_qualification & 0xff;
5177 
5178 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5179 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5180 	return 1;
5181 }
5182 
5183 static int handle_apic_write(struct kvm_vcpu *vcpu)
5184 {
5185 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5186 	u32 offset = exit_qualification & 0xfff;
5187 
5188 	/* APIC-write VM exit is trap-like and thus no need to adjust IP */
5189 	kvm_apic_write_nodecode(vcpu, offset);
5190 	return 1;
5191 }
5192 
5193 static int handle_task_switch(struct kvm_vcpu *vcpu)
5194 {
5195 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5196 	unsigned long exit_qualification;
5197 	bool has_error_code = false;
5198 	u32 error_code = 0;
5199 	u16 tss_selector;
5200 	int reason, type, idt_v, idt_index;
5201 
5202 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5203 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5204 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5205 
5206 	exit_qualification = vmx_get_exit_qual(vcpu);
5207 
5208 	reason = (u32)exit_qualification >> 30;
5209 	if (reason == TASK_SWITCH_GATE && idt_v) {
5210 		switch (type) {
5211 		case INTR_TYPE_NMI_INTR:
5212 			vcpu->arch.nmi_injected = false;
5213 			vmx_set_nmi_mask(vcpu, true);
5214 			break;
5215 		case INTR_TYPE_EXT_INTR:
5216 		case INTR_TYPE_SOFT_INTR:
5217 			kvm_clear_interrupt_queue(vcpu);
5218 			break;
5219 		case INTR_TYPE_HARD_EXCEPTION:
5220 			if (vmx->idt_vectoring_info &
5221 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5222 				has_error_code = true;
5223 				error_code =
5224 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5225 			}
5226 			fallthrough;
5227 		case INTR_TYPE_SOFT_EXCEPTION:
5228 			kvm_clear_exception_queue(vcpu);
5229 			break;
5230 		default:
5231 			break;
5232 		}
5233 	}
5234 	tss_selector = exit_qualification;
5235 
5236 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5237 		       type != INTR_TYPE_EXT_INTR &&
5238 		       type != INTR_TYPE_NMI_INTR))
5239 		WARN_ON(!skip_emulated_instruction(vcpu));
5240 
5241 	/*
5242 	 * TODO: What about debug traps on tss switch?
5243 	 *       Are we supposed to inject them and update dr6?
5244 	 */
5245 	return kvm_task_switch(vcpu, tss_selector,
5246 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5247 			       reason, has_error_code, error_code);
5248 }
5249 
5250 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5251 {
5252 	unsigned long exit_qualification;
5253 	gpa_t gpa;
5254 	u64 error_code;
5255 
5256 	exit_qualification = vmx_get_exit_qual(vcpu);
5257 
5258 	/*
5259 	 * EPT violation happened while executing iret from NMI,
5260 	 * "blocked by NMI" bit has to be set before next VM entry.
5261 	 * There are errata that may cause this bit to not be set:
5262 	 * AAK134, BY25.
5263 	 */
5264 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5265 			enable_vnmi &&
5266 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5267 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5268 
5269 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5270 	trace_kvm_page_fault(gpa, exit_qualification);
5271 
5272 	/* Is it a read fault? */
5273 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5274 		     ? PFERR_USER_MASK : 0;
5275 	/* Is it a write fault? */
5276 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5277 		      ? PFERR_WRITE_MASK : 0;
5278 	/* Is it a fetch fault? */
5279 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5280 		      ? PFERR_FETCH_MASK : 0;
5281 	/* ept page table entry is present? */
5282 	error_code |= (exit_qualification &
5283 		       (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5284 			EPT_VIOLATION_EXECUTABLE))
5285 		      ? PFERR_PRESENT_MASK : 0;
5286 
5287 	error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5288 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5289 
5290 	vcpu->arch.exit_qualification = exit_qualification;
5291 
5292 	/*
5293 	 * Check that the GPA doesn't exceed physical memory limits, as that is
5294 	 * a guest page fault.  We have to emulate the instruction here, because
5295 	 * if the illegal address is that of a paging structure, then
5296 	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5297 	 * would also use advanced VM-exit information for EPT violations to
5298 	 * reconstruct the page fault error code.
5299 	 */
5300 	if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5301 		return kvm_emulate_instruction(vcpu, 0);
5302 
5303 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5304 }
5305 
5306 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5307 {
5308 	gpa_t gpa;
5309 
5310 	if (!vmx_can_emulate_instruction(vcpu, NULL, 0))
5311 		return 1;
5312 
5313 	/*
5314 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5315 	 * nGPA here instead of the required GPA.
5316 	 */
5317 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5318 	if (!is_guest_mode(vcpu) &&
5319 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5320 		trace_kvm_fast_mmio(gpa);
5321 		return kvm_skip_emulated_instruction(vcpu);
5322 	}
5323 
5324 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5325 }
5326 
5327 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5328 {
5329 	if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5330 		return -EIO;
5331 
5332 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5333 	++vcpu->stat.nmi_window_exits;
5334 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5335 
5336 	return 1;
5337 }
5338 
5339 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5340 {
5341 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5342 	bool intr_window_requested;
5343 	unsigned count = 130;
5344 
5345 	intr_window_requested = exec_controls_get(vmx) &
5346 				CPU_BASED_INTR_WINDOW_EXITING;
5347 
5348 	while (vmx->emulation_required && count-- != 0) {
5349 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5350 			return handle_interrupt_window(&vmx->vcpu);
5351 
5352 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5353 			return 1;
5354 
5355 		if (!kvm_emulate_instruction(vcpu, 0))
5356 			return 0;
5357 
5358 		if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5359 		    vcpu->arch.exception.pending) {
5360 			kvm_prepare_emulation_failure_exit(vcpu);
5361 			return 0;
5362 		}
5363 
5364 		if (vcpu->arch.halt_request) {
5365 			vcpu->arch.halt_request = 0;
5366 			return kvm_vcpu_halt(vcpu);
5367 		}
5368 
5369 		/*
5370 		 * Note, return 1 and not 0, vcpu_run() will invoke
5371 		 * xfer_to_guest_mode() which will create a proper return
5372 		 * code.
5373 		 */
5374 		if (__xfer_to_guest_mode_work_pending())
5375 			return 1;
5376 	}
5377 
5378 	return 1;
5379 }
5380 
5381 static void grow_ple_window(struct kvm_vcpu *vcpu)
5382 {
5383 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5384 	unsigned int old = vmx->ple_window;
5385 
5386 	vmx->ple_window = __grow_ple_window(old, ple_window,
5387 					    ple_window_grow,
5388 					    ple_window_max);
5389 
5390 	if (vmx->ple_window != old) {
5391 		vmx->ple_window_dirty = true;
5392 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5393 					    vmx->ple_window, old);
5394 	}
5395 }
5396 
5397 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5398 {
5399 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5400 	unsigned int old = vmx->ple_window;
5401 
5402 	vmx->ple_window = __shrink_ple_window(old, ple_window,
5403 					      ple_window_shrink,
5404 					      ple_window);
5405 
5406 	if (vmx->ple_window != old) {
5407 		vmx->ple_window_dirty = true;
5408 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5409 					    vmx->ple_window, old);
5410 	}
5411 }
5412 
5413 /*
5414  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5415  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5416  */
5417 static int handle_pause(struct kvm_vcpu *vcpu)
5418 {
5419 	if (!kvm_pause_in_guest(vcpu->kvm))
5420 		grow_ple_window(vcpu);
5421 
5422 	/*
5423 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5424 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5425 	 * never set PAUSE_EXITING and just set PLE if supported,
5426 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5427 	 */
5428 	kvm_vcpu_on_spin(vcpu, true);
5429 	return kvm_skip_emulated_instruction(vcpu);
5430 }
5431 
5432 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5433 {
5434 	return 1;
5435 }
5436 
5437 static int handle_invpcid(struct kvm_vcpu *vcpu)
5438 {
5439 	u32 vmx_instruction_info;
5440 	unsigned long type;
5441 	gva_t gva;
5442 	struct {
5443 		u64 pcid;
5444 		u64 gla;
5445 	} operand;
5446 	int gpr_index;
5447 
5448 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5449 		kvm_queue_exception(vcpu, UD_VECTOR);
5450 		return 1;
5451 	}
5452 
5453 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5454 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5455 	type = kvm_register_read(vcpu, gpr_index);
5456 
5457 	/* According to the Intel instruction reference, the memory operand
5458 	 * is read even if it isn't needed (e.g., for type==all)
5459 	 */
5460 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5461 				vmx_instruction_info, false,
5462 				sizeof(operand), &gva))
5463 		return 1;
5464 
5465 	return kvm_handle_invpcid(vcpu, type, gva);
5466 }
5467 
5468 static int handle_pml_full(struct kvm_vcpu *vcpu)
5469 {
5470 	unsigned long exit_qualification;
5471 
5472 	trace_kvm_pml_full(vcpu->vcpu_id);
5473 
5474 	exit_qualification = vmx_get_exit_qual(vcpu);
5475 
5476 	/*
5477 	 * PML buffer FULL happened while executing iret from NMI,
5478 	 * "blocked by NMI" bit has to be set before next VM entry.
5479 	 */
5480 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5481 			enable_vnmi &&
5482 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5483 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5484 				GUEST_INTR_STATE_NMI);
5485 
5486 	/*
5487 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5488 	 * here.., and there's no userspace involvement needed for PML.
5489 	 */
5490 	return 1;
5491 }
5492 
5493 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5494 {
5495 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5496 
5497 	if (!vmx->req_immediate_exit &&
5498 	    !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5499 		kvm_lapic_expired_hv_timer(vcpu);
5500 		return EXIT_FASTPATH_REENTER_GUEST;
5501 	}
5502 
5503 	return EXIT_FASTPATH_NONE;
5504 }
5505 
5506 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5507 {
5508 	handle_fastpath_preemption_timer(vcpu);
5509 	return 1;
5510 }
5511 
5512 /*
5513  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5514  * are overwritten by nested_vmx_setup() when nested=1.
5515  */
5516 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5517 {
5518 	kvm_queue_exception(vcpu, UD_VECTOR);
5519 	return 1;
5520 }
5521 
5522 #ifndef CONFIG_X86_SGX_KVM
5523 static int handle_encls(struct kvm_vcpu *vcpu)
5524 {
5525 	/*
5526 	 * SGX virtualization is disabled.  There is no software enable bit for
5527 	 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
5528 	 * the guest from executing ENCLS (when SGX is supported by hardware).
5529 	 */
5530 	kvm_queue_exception(vcpu, UD_VECTOR);
5531 	return 1;
5532 }
5533 #endif /* CONFIG_X86_SGX_KVM */
5534 
5535 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
5536 {
5537 	/*
5538 	 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
5539 	 * VM-Exits. Unconditionally set the flag here and leave the handling to
5540 	 * vmx_handle_exit().
5541 	 */
5542 	to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
5543 	return 1;
5544 }
5545 
5546 /*
5547  * The exit handlers return 1 if the exit was handled fully and guest execution
5548  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5549  * to be done to userspace and return 0.
5550  */
5551 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5552 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5553 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5554 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5555 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
5556 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5557 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
5558 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
5559 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5560 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5561 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5562 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
5563 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
5564 	[EXIT_REASON_INVD]		      = kvm_emulate_invd,
5565 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
5566 	[EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
5567 	[EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
5568 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
5569 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
5570 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
5571 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
5572 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
5573 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
5574 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
5575 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
5576 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
5577 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5578 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5579 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5580 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5581 	[EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
5582 	[EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
5583 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5584 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5585 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
5586 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
5587 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
5588 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5589 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5590 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = kvm_emulate_mwait,
5591 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5592 	[EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
5593 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5594 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5595 	[EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
5596 	[EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
5597 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
5598 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
5599 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
5600 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
5601 	[EXIT_REASON_ENCLS]		      = handle_encls,
5602 	[EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
5603 };
5604 
5605 static const int kvm_vmx_max_exit_handlers =
5606 	ARRAY_SIZE(kvm_vmx_exit_handlers);
5607 
5608 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
5609 			      u64 *info1, u64 *info2,
5610 			      u32 *intr_info, u32 *error_code)
5611 {
5612 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5613 
5614 	*reason = vmx->exit_reason.full;
5615 	*info1 = vmx_get_exit_qual(vcpu);
5616 	if (!(vmx->exit_reason.failed_vmentry)) {
5617 		*info2 = vmx->idt_vectoring_info;
5618 		*intr_info = vmx_get_intr_info(vcpu);
5619 		if (is_exception_with_error_code(*intr_info))
5620 			*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5621 		else
5622 			*error_code = 0;
5623 	} else {
5624 		*info2 = 0;
5625 		*intr_info = 0;
5626 		*error_code = 0;
5627 	}
5628 }
5629 
5630 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5631 {
5632 	if (vmx->pml_pg) {
5633 		__free_page(vmx->pml_pg);
5634 		vmx->pml_pg = NULL;
5635 	}
5636 }
5637 
5638 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5639 {
5640 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5641 	u64 *pml_buf;
5642 	u16 pml_idx;
5643 
5644 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
5645 
5646 	/* Do nothing if PML buffer is empty */
5647 	if (pml_idx == (PML_ENTITY_NUM - 1))
5648 		return;
5649 
5650 	/* PML index always points to next available PML buffer entity */
5651 	if (pml_idx >= PML_ENTITY_NUM)
5652 		pml_idx = 0;
5653 	else
5654 		pml_idx++;
5655 
5656 	pml_buf = page_address(vmx->pml_pg);
5657 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5658 		u64 gpa;
5659 
5660 		gpa = pml_buf[pml_idx];
5661 		WARN_ON(gpa & (PAGE_SIZE - 1));
5662 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5663 	}
5664 
5665 	/* reset PML index */
5666 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5667 }
5668 
5669 static void vmx_dump_sel(char *name, uint32_t sel)
5670 {
5671 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5672 	       name, vmcs_read16(sel),
5673 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5674 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5675 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5676 }
5677 
5678 static void vmx_dump_dtsel(char *name, uint32_t limit)
5679 {
5680 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5681 	       name, vmcs_read32(limit),
5682 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5683 }
5684 
5685 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
5686 {
5687 	unsigned int i;
5688 	struct vmx_msr_entry *e;
5689 
5690 	pr_err("MSR %s:\n", name);
5691 	for (i = 0, e = m->val; i < m->nr; ++i, ++e)
5692 		pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
5693 }
5694 
5695 void dump_vmcs(struct kvm_vcpu *vcpu)
5696 {
5697 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5698 	u32 vmentry_ctl, vmexit_ctl;
5699 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5700 	unsigned long cr4;
5701 	int efer_slot;
5702 
5703 	if (!dump_invalid_vmcs) {
5704 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5705 		return;
5706 	}
5707 
5708 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5709 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5710 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5711 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5712 	cr4 = vmcs_readl(GUEST_CR4);
5713 	secondary_exec_control = 0;
5714 	if (cpu_has_secondary_exec_ctrls())
5715 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5716 
5717 	pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
5718 	       vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
5719 	pr_err("*** Guest State ***\n");
5720 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5721 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5722 	       vmcs_readl(CR0_GUEST_HOST_MASK));
5723 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5724 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5725 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5726 	if (cpu_has_vmx_ept()) {
5727 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5728 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5729 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5730 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5731 	}
5732 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5733 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5734 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5735 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5736 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5737 	       vmcs_readl(GUEST_SYSENTER_ESP),
5738 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5739 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5740 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5741 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5742 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5743 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5744 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5745 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5746 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5747 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5748 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5749 	efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
5750 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
5751 		pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
5752 	else if (efer_slot >= 0)
5753 		pr_err("EFER= 0x%016llx (autoload)\n",
5754 		       vmx->msr_autoload.guest.val[efer_slot].value);
5755 	else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
5756 		pr_err("EFER= 0x%016llx (effective)\n",
5757 		       vcpu->arch.efer | (EFER_LMA | EFER_LME));
5758 	else
5759 		pr_err("EFER= 0x%016llx (effective)\n",
5760 		       vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
5761 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
5762 		pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
5763 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5764 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
5765 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5766 	if (cpu_has_load_perf_global_ctrl() &&
5767 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5768 		pr_err("PerfGlobCtl = 0x%016llx\n",
5769 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5770 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5771 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5772 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5773 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5774 	       vmcs_read32(GUEST_ACTIVITY_STATE));
5775 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5776 		pr_err("InterruptStatus = %04x\n",
5777 		       vmcs_read16(GUEST_INTR_STATUS));
5778 	if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
5779 		vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
5780 	if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
5781 		vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
5782 
5783 	pr_err("*** Host State ***\n");
5784 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5785 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5786 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5787 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5788 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5789 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5790 	       vmcs_read16(HOST_TR_SELECTOR));
5791 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5792 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5793 	       vmcs_readl(HOST_TR_BASE));
5794 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5795 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5796 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5797 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5798 	       vmcs_readl(HOST_CR4));
5799 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5800 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
5801 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
5802 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
5803 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
5804 		pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
5805 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
5806 		pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
5807 	if (cpu_has_load_perf_global_ctrl() &&
5808 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5809 		pr_err("PerfGlobCtl = 0x%016llx\n",
5810 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5811 	if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
5812 		vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
5813 
5814 	pr_err("*** Control State ***\n");
5815 	pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5816 	       pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5817 	pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5818 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5819 	       vmcs_read32(EXCEPTION_BITMAP),
5820 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5821 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5822 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5823 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5824 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5825 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5826 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5827 	       vmcs_read32(VM_EXIT_INTR_INFO),
5828 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5829 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5830 	pr_err("        reason=%08x qualification=%016lx\n",
5831 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5832 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5833 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
5834 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
5835 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5836 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5837 		pr_err("TSC Multiplier = 0x%016llx\n",
5838 		       vmcs_read64(TSC_MULTIPLIER));
5839 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5840 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5841 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
5842 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5843 		}
5844 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5845 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5846 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5847 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5848 	}
5849 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5850 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5851 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5852 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5853 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5854 		pr_err("PLE Gap=%08x Window=%08x\n",
5855 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5856 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5857 		pr_err("Virtual processor ID = 0x%04x\n",
5858 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
5859 }
5860 
5861 /*
5862  * The guest has exited.  See if we can fix it or if we need userspace
5863  * assistance.
5864  */
5865 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
5866 {
5867 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5868 	union vmx_exit_reason exit_reason = vmx->exit_reason;
5869 	u32 vectoring_info = vmx->idt_vectoring_info;
5870 	u16 exit_handler_index;
5871 
5872 	/*
5873 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5874 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5875 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
5876 	 * mode as if vcpus is in root mode, the PML buffer must has been
5877 	 * flushed already.  Note, PML is never enabled in hardware while
5878 	 * running L2.
5879 	 */
5880 	if (enable_pml && !is_guest_mode(vcpu))
5881 		vmx_flush_pml_buffer(vcpu);
5882 
5883 	/*
5884 	 * We should never reach this point with a pending nested VM-Enter, and
5885 	 * more specifically emulation of L2 due to invalid guest state (see
5886 	 * below) should never happen as that means we incorrectly allowed a
5887 	 * nested VM-Enter with an invalid vmcs12.
5888 	 */
5889 	if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
5890 		return -EIO;
5891 
5892 	/* If guest state is invalid, start emulating */
5893 	if (vmx->emulation_required)
5894 		return handle_invalid_guest_state(vcpu);
5895 
5896 	if (is_guest_mode(vcpu)) {
5897 		/*
5898 		 * PML is never enabled when running L2, bail immediately if a
5899 		 * PML full exit occurs as something is horribly wrong.
5900 		 */
5901 		if (exit_reason.basic == EXIT_REASON_PML_FULL)
5902 			goto unexpected_vmexit;
5903 
5904 		/*
5905 		 * The host physical addresses of some pages of guest memory
5906 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5907 		 * Page). The CPU may write to these pages via their host
5908 		 * physical address while L2 is running, bypassing any
5909 		 * address-translation-based dirty tracking (e.g. EPT write
5910 		 * protection).
5911 		 *
5912 		 * Mark them dirty on every exit from L2 to prevent them from
5913 		 * getting out of sync with dirty tracking.
5914 		 */
5915 		nested_mark_vmcs12_pages_dirty(vcpu);
5916 
5917 		if (nested_vmx_reflect_vmexit(vcpu))
5918 			return 1;
5919 	}
5920 
5921 	if (exit_reason.failed_vmentry) {
5922 		dump_vmcs(vcpu);
5923 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5924 		vcpu->run->fail_entry.hardware_entry_failure_reason
5925 			= exit_reason.full;
5926 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
5927 		return 0;
5928 	}
5929 
5930 	if (unlikely(vmx->fail)) {
5931 		dump_vmcs(vcpu);
5932 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5933 		vcpu->run->fail_entry.hardware_entry_failure_reason
5934 			= vmcs_read32(VM_INSTRUCTION_ERROR);
5935 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
5936 		return 0;
5937 	}
5938 
5939 	/*
5940 	 * Note:
5941 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5942 	 * delivery event since it indicates guest is accessing MMIO.
5943 	 * The vm-exit can be triggered again after return to guest that
5944 	 * will cause infinite loop.
5945 	 */
5946 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5947 	    (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
5948 	     exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
5949 	     exit_reason.basic != EXIT_REASON_PML_FULL &&
5950 	     exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
5951 	     exit_reason.basic != EXIT_REASON_TASK_SWITCH)) {
5952 		int ndata = 3;
5953 
5954 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5955 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5956 		vcpu->run->internal.data[0] = vectoring_info;
5957 		vcpu->run->internal.data[1] = exit_reason.full;
5958 		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5959 		if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
5960 			vcpu->run->internal.data[ndata++] =
5961 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5962 		}
5963 		vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
5964 		vcpu->run->internal.ndata = ndata;
5965 		return 0;
5966 	}
5967 
5968 	if (unlikely(!enable_vnmi &&
5969 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
5970 		if (!vmx_interrupt_blocked(vcpu)) {
5971 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5972 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5973 			   vcpu->arch.nmi_pending) {
5974 			/*
5975 			 * This CPU don't support us in finding the end of an
5976 			 * NMI-blocked window if the guest runs with IRQs
5977 			 * disabled. So we pull the trigger after 1 s of
5978 			 * futile waiting, but inform the user about this.
5979 			 */
5980 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5981 			       "state on VCPU %d after 1 s timeout\n",
5982 			       __func__, vcpu->vcpu_id);
5983 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5984 		}
5985 	}
5986 
5987 	if (exit_fastpath != EXIT_FASTPATH_NONE)
5988 		return 1;
5989 
5990 	if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
5991 		goto unexpected_vmexit;
5992 #ifdef CONFIG_RETPOLINE
5993 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
5994 		return kvm_emulate_wrmsr(vcpu);
5995 	else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
5996 		return handle_preemption_timer(vcpu);
5997 	else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
5998 		return handle_interrupt_window(vcpu);
5999 	else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6000 		return handle_external_interrupt(vcpu);
6001 	else if (exit_reason.basic == EXIT_REASON_HLT)
6002 		return kvm_emulate_halt(vcpu);
6003 	else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6004 		return handle_ept_misconfig(vcpu);
6005 #endif
6006 
6007 	exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6008 						kvm_vmx_max_exit_handlers);
6009 	if (!kvm_vmx_exit_handlers[exit_handler_index])
6010 		goto unexpected_vmexit;
6011 
6012 	return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6013 
6014 unexpected_vmexit:
6015 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6016 		    exit_reason.full);
6017 	dump_vmcs(vcpu);
6018 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6019 	vcpu->run->internal.suberror =
6020 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6021 	vcpu->run->internal.ndata = 2;
6022 	vcpu->run->internal.data[0] = exit_reason.full;
6023 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6024 	return 0;
6025 }
6026 
6027 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6028 {
6029 	int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6030 
6031 	/*
6032 	 * Exit to user space when bus lock detected to inform that there is
6033 	 * a bus lock in guest.
6034 	 */
6035 	if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6036 		if (ret > 0)
6037 			vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6038 
6039 		vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6040 		return 0;
6041 	}
6042 	return ret;
6043 }
6044 
6045 /*
6046  * Software based L1D cache flush which is used when microcode providing
6047  * the cache control MSR is not loaded.
6048  *
6049  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6050  * flush it is required to read in 64 KiB because the replacement algorithm
6051  * is not exactly LRU. This could be sized at runtime via topology
6052  * information but as all relevant affected CPUs have 32KiB L1D cache size
6053  * there is no point in doing so.
6054  */
6055 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6056 {
6057 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6058 
6059 	/*
6060 	 * This code is only executed when the the flush mode is 'cond' or
6061 	 * 'always'
6062 	 */
6063 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6064 		bool flush_l1d;
6065 
6066 		/*
6067 		 * Clear the per-vcpu flush bit, it gets set again
6068 		 * either from vcpu_run() or from one of the unsafe
6069 		 * VMEXIT handlers.
6070 		 */
6071 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6072 		vcpu->arch.l1tf_flush_l1d = false;
6073 
6074 		/*
6075 		 * Clear the per-cpu flush bit, it gets set again from
6076 		 * the interrupt handlers.
6077 		 */
6078 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6079 		kvm_clear_cpu_l1tf_flush_l1d();
6080 
6081 		if (!flush_l1d)
6082 			return;
6083 	}
6084 
6085 	vcpu->stat.l1d_flush++;
6086 
6087 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6088 		native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6089 		return;
6090 	}
6091 
6092 	asm volatile(
6093 		/* First ensure the pages are in the TLB */
6094 		"xorl	%%eax, %%eax\n"
6095 		".Lpopulate_tlb:\n\t"
6096 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6097 		"addl	$4096, %%eax\n\t"
6098 		"cmpl	%%eax, %[size]\n\t"
6099 		"jne	.Lpopulate_tlb\n\t"
6100 		"xorl	%%eax, %%eax\n\t"
6101 		"cpuid\n\t"
6102 		/* Now fill the cache */
6103 		"xorl	%%eax, %%eax\n"
6104 		".Lfill_cache:\n"
6105 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6106 		"addl	$64, %%eax\n\t"
6107 		"cmpl	%%eax, %[size]\n\t"
6108 		"jne	.Lfill_cache\n\t"
6109 		"lfence\n"
6110 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6111 		    [size] "r" (size)
6112 		: "eax", "ebx", "ecx", "edx");
6113 }
6114 
6115 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6116 {
6117 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6118 	int tpr_threshold;
6119 
6120 	if (is_guest_mode(vcpu) &&
6121 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6122 		return;
6123 
6124 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6125 	if (is_guest_mode(vcpu))
6126 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6127 	else
6128 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6129 }
6130 
6131 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6132 {
6133 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6134 	u32 sec_exec_control;
6135 
6136 	if (!lapic_in_kernel(vcpu))
6137 		return;
6138 
6139 	if (!flexpriority_enabled &&
6140 	    !cpu_has_vmx_virtualize_x2apic_mode())
6141 		return;
6142 
6143 	/* Postpone execution until vmcs01 is the current VMCS. */
6144 	if (is_guest_mode(vcpu)) {
6145 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6146 		return;
6147 	}
6148 
6149 	sec_exec_control = secondary_exec_controls_get(vmx);
6150 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6151 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6152 
6153 	switch (kvm_get_apic_mode(vcpu)) {
6154 	case LAPIC_MODE_INVALID:
6155 		WARN_ONCE(true, "Invalid local APIC state");
6156 		break;
6157 	case LAPIC_MODE_DISABLED:
6158 		break;
6159 	case LAPIC_MODE_XAPIC:
6160 		if (flexpriority_enabled) {
6161 			sec_exec_control |=
6162 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6163 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6164 
6165 			/*
6166 			 * Flush the TLB, reloading the APIC access page will
6167 			 * only do so if its physical address has changed, but
6168 			 * the guest may have inserted a non-APIC mapping into
6169 			 * the TLB while the APIC access page was disabled.
6170 			 */
6171 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6172 		}
6173 		break;
6174 	case LAPIC_MODE_X2APIC:
6175 		if (cpu_has_vmx_virtualize_x2apic_mode())
6176 			sec_exec_control |=
6177 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6178 		break;
6179 	}
6180 	secondary_exec_controls_set(vmx, sec_exec_control);
6181 
6182 	vmx_update_msr_bitmap_x2apic(vcpu);
6183 }
6184 
6185 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6186 {
6187 	struct page *page;
6188 
6189 	/* Defer reload until vmcs01 is the current VMCS. */
6190 	if (is_guest_mode(vcpu)) {
6191 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6192 		return;
6193 	}
6194 
6195 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6196 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6197 		return;
6198 
6199 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6200 	if (is_error_page(page))
6201 		return;
6202 
6203 	vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6204 	vmx_flush_tlb_current(vcpu);
6205 
6206 	/*
6207 	 * Do not pin apic access page in memory, the MMU notifier
6208 	 * will call us again if it is migrated or swapped out.
6209 	 */
6210 	put_page(page);
6211 }
6212 
6213 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6214 {
6215 	u16 status;
6216 	u8 old;
6217 
6218 	if (max_isr == -1)
6219 		max_isr = 0;
6220 
6221 	status = vmcs_read16(GUEST_INTR_STATUS);
6222 	old = status >> 8;
6223 	if (max_isr != old) {
6224 		status &= 0xff;
6225 		status |= max_isr << 8;
6226 		vmcs_write16(GUEST_INTR_STATUS, status);
6227 	}
6228 }
6229 
6230 static void vmx_set_rvi(int vector)
6231 {
6232 	u16 status;
6233 	u8 old;
6234 
6235 	if (vector == -1)
6236 		vector = 0;
6237 
6238 	status = vmcs_read16(GUEST_INTR_STATUS);
6239 	old = (u8)status & 0xff;
6240 	if ((u8)vector != old) {
6241 		status &= ~0xff;
6242 		status |= (u8)vector;
6243 		vmcs_write16(GUEST_INTR_STATUS, status);
6244 	}
6245 }
6246 
6247 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6248 {
6249 	/*
6250 	 * When running L2, updating RVI is only relevant when
6251 	 * vmcs12 virtual-interrupt-delivery enabled.
6252 	 * However, it can be enabled only when L1 also
6253 	 * intercepts external-interrupts and in that case
6254 	 * we should not update vmcs02 RVI but instead intercept
6255 	 * interrupt. Therefore, do nothing when running L2.
6256 	 */
6257 	if (!is_guest_mode(vcpu))
6258 		vmx_set_rvi(max_irr);
6259 }
6260 
6261 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6262 {
6263 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6264 	int max_irr;
6265 	bool max_irr_updated;
6266 
6267 	if (KVM_BUG_ON(!vcpu->arch.apicv_active, vcpu->kvm))
6268 		return -EIO;
6269 
6270 	if (pi_test_on(&vmx->pi_desc)) {
6271 		pi_clear_on(&vmx->pi_desc);
6272 		/*
6273 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6274 		 * But on x86 this is just a compiler barrier anyway.
6275 		 */
6276 		smp_mb__after_atomic();
6277 		max_irr_updated =
6278 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6279 
6280 		/*
6281 		 * If we are running L2 and L1 has a new pending interrupt
6282 		 * which can be injected, this may cause a vmexit or it may
6283 		 * be injected into L2.  Either way, this interrupt will be
6284 		 * processed via KVM_REQ_EVENT, not RVI, because we do not use
6285 		 * virtual interrupt delivery to inject L1 interrupts into L2.
6286 		 */
6287 		if (is_guest_mode(vcpu) && max_irr_updated)
6288 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6289 	} else {
6290 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6291 	}
6292 	vmx_hwapic_irr_update(vcpu, max_irr);
6293 	return max_irr;
6294 }
6295 
6296 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6297 {
6298 	if (!kvm_vcpu_apicv_active(vcpu))
6299 		return;
6300 
6301 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6302 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6303 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6304 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6305 }
6306 
6307 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6308 {
6309 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6310 
6311 	pi_clear_on(&vmx->pi_desc);
6312 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6313 }
6314 
6315 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
6316 
6317 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu,
6318 					unsigned long entry)
6319 {
6320 	kvm_before_interrupt(vcpu);
6321 	vmx_do_interrupt_nmi_irqoff(entry);
6322 	kvm_after_interrupt(vcpu);
6323 }
6324 
6325 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6326 {
6327 	const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist;
6328 	u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6329 
6330 	/* if exit due to PF check for async PF */
6331 	if (is_page_fault(intr_info))
6332 		vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6333 	/* Handle machine checks before interrupts are enabled */
6334 	else if (is_machine_check(intr_info))
6335 		kvm_machine_check();
6336 	/* We need to handle NMIs before interrupts are enabled */
6337 	else if (is_nmi(intr_info))
6338 		handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry);
6339 }
6340 
6341 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6342 {
6343 	u32 intr_info = vmx_get_intr_info(vcpu);
6344 	unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6345 	gate_desc *desc = (gate_desc *)host_idt_base + vector;
6346 
6347 	if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6348 	    "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6349 		return;
6350 
6351 	handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc));
6352 }
6353 
6354 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6355 {
6356 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6357 
6358 	if (vmx->emulation_required)
6359 		return;
6360 
6361 	if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6362 		handle_external_interrupt_irqoff(vcpu);
6363 	else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6364 		handle_exception_nmi_irqoff(vmx);
6365 }
6366 
6367 /*
6368  * The kvm parameter can be NULL (module initialization, or invocation before
6369  * VM creation). Be sure to check the kvm parameter before using it.
6370  */
6371 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6372 {
6373 	switch (index) {
6374 	case MSR_IA32_SMBASE:
6375 		/*
6376 		 * We cannot do SMM unless we can run the guest in big
6377 		 * real mode.
6378 		 */
6379 		return enable_unrestricted_guest || emulate_invalid_guest_state;
6380 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6381 		return nested;
6382 	case MSR_AMD64_VIRT_SPEC_CTRL:
6383 	case MSR_AMD64_TSC_RATIO:
6384 		/* This is AMD only.  */
6385 		return false;
6386 	default:
6387 		return true;
6388 	}
6389 }
6390 
6391 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6392 {
6393 	u32 exit_intr_info;
6394 	bool unblock_nmi;
6395 	u8 vector;
6396 	bool idtv_info_valid;
6397 
6398 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6399 
6400 	if (enable_vnmi) {
6401 		if (vmx->loaded_vmcs->nmi_known_unmasked)
6402 			return;
6403 
6404 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6405 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6406 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6407 		/*
6408 		 * SDM 3: 27.7.1.2 (September 2008)
6409 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6410 		 * a guest IRET fault.
6411 		 * SDM 3: 23.2.2 (September 2008)
6412 		 * Bit 12 is undefined in any of the following cases:
6413 		 *  If the VM exit sets the valid bit in the IDT-vectoring
6414 		 *   information field.
6415 		 *  If the VM exit is due to a double fault.
6416 		 */
6417 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6418 		    vector != DF_VECTOR && !idtv_info_valid)
6419 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6420 				      GUEST_INTR_STATE_NMI);
6421 		else
6422 			vmx->loaded_vmcs->nmi_known_unmasked =
6423 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6424 				  & GUEST_INTR_STATE_NMI);
6425 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6426 		vmx->loaded_vmcs->vnmi_blocked_time +=
6427 			ktime_to_ns(ktime_sub(ktime_get(),
6428 					      vmx->loaded_vmcs->entry_time));
6429 }
6430 
6431 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6432 				      u32 idt_vectoring_info,
6433 				      int instr_len_field,
6434 				      int error_code_field)
6435 {
6436 	u8 vector;
6437 	int type;
6438 	bool idtv_info_valid;
6439 
6440 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6441 
6442 	vcpu->arch.nmi_injected = false;
6443 	kvm_clear_exception_queue(vcpu);
6444 	kvm_clear_interrupt_queue(vcpu);
6445 
6446 	if (!idtv_info_valid)
6447 		return;
6448 
6449 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6450 
6451 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6452 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6453 
6454 	switch (type) {
6455 	case INTR_TYPE_NMI_INTR:
6456 		vcpu->arch.nmi_injected = true;
6457 		/*
6458 		 * SDM 3: 27.7.1.2 (September 2008)
6459 		 * Clear bit "block by NMI" before VM entry if a NMI
6460 		 * delivery faulted.
6461 		 */
6462 		vmx_set_nmi_mask(vcpu, false);
6463 		break;
6464 	case INTR_TYPE_SOFT_EXCEPTION:
6465 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6466 		fallthrough;
6467 	case INTR_TYPE_HARD_EXCEPTION:
6468 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6469 			u32 err = vmcs_read32(error_code_field);
6470 			kvm_requeue_exception_e(vcpu, vector, err);
6471 		} else
6472 			kvm_requeue_exception(vcpu, vector);
6473 		break;
6474 	case INTR_TYPE_SOFT_INTR:
6475 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6476 		fallthrough;
6477 	case INTR_TYPE_EXT_INTR:
6478 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6479 		break;
6480 	default:
6481 		break;
6482 	}
6483 }
6484 
6485 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6486 {
6487 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6488 				  VM_EXIT_INSTRUCTION_LEN,
6489 				  IDT_VECTORING_ERROR_CODE);
6490 }
6491 
6492 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6493 {
6494 	__vmx_complete_interrupts(vcpu,
6495 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6496 				  VM_ENTRY_INSTRUCTION_LEN,
6497 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
6498 
6499 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6500 }
6501 
6502 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6503 {
6504 	int i, nr_msrs;
6505 	struct perf_guest_switch_msr *msrs;
6506 
6507 	/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
6508 	msrs = perf_guest_get_msrs(&nr_msrs);
6509 	if (!msrs)
6510 		return;
6511 
6512 	for (i = 0; i < nr_msrs; i++)
6513 		if (msrs[i].host == msrs[i].guest)
6514 			clear_atomic_switch_msr(vmx, msrs[i].msr);
6515 		else
6516 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6517 					msrs[i].host, false);
6518 }
6519 
6520 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6521 {
6522 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6523 	u64 tscl;
6524 	u32 delta_tsc;
6525 
6526 	if (vmx->req_immediate_exit) {
6527 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6528 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6529 	} else if (vmx->hv_deadline_tsc != -1) {
6530 		tscl = rdtsc();
6531 		if (vmx->hv_deadline_tsc > tscl)
6532 			/* set_hv_timer ensures the delta fits in 32-bits */
6533 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6534 				cpu_preemption_timer_multi);
6535 		else
6536 			delta_tsc = 0;
6537 
6538 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6539 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6540 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6541 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6542 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6543 	}
6544 }
6545 
6546 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6547 {
6548 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6549 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
6550 		vmcs_writel(HOST_RSP, host_rsp);
6551 	}
6552 }
6553 
6554 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
6555 {
6556 	switch (to_vmx(vcpu)->exit_reason.basic) {
6557 	case EXIT_REASON_MSR_WRITE:
6558 		return handle_fastpath_set_msr_irqoff(vcpu);
6559 	case EXIT_REASON_PREEMPTION_TIMER:
6560 		return handle_fastpath_preemption_timer(vcpu);
6561 	default:
6562 		return EXIT_FASTPATH_NONE;
6563 	}
6564 }
6565 
6566 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
6567 					struct vcpu_vmx *vmx)
6568 {
6569 	kvm_guest_enter_irqoff();
6570 
6571 	/* L1D Flush includes CPU buffer clear to mitigate MDS */
6572 	if (static_branch_unlikely(&vmx_l1d_should_flush))
6573 		vmx_l1d_flush(vcpu);
6574 	else if (static_branch_unlikely(&mds_user_clear))
6575 		mds_clear_cpu_buffers();
6576 
6577 	if (vcpu->arch.cr2 != native_read_cr2())
6578 		native_write_cr2(vcpu->arch.cr2);
6579 
6580 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6581 				   vmx->loaded_vmcs->launched);
6582 
6583 	vcpu->arch.cr2 = native_read_cr2();
6584 
6585 	kvm_guest_exit_irqoff();
6586 }
6587 
6588 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
6589 {
6590 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6591 	unsigned long cr3, cr4;
6592 
6593 	/* Record the guest's net vcpu time for enforced NMI injections. */
6594 	if (unlikely(!enable_vnmi &&
6595 		     vmx->loaded_vmcs->soft_vnmi_blocked))
6596 		vmx->loaded_vmcs->entry_time = ktime_get();
6597 
6598 	/*
6599 	 * Don't enter VMX if guest state is invalid, let the exit handler
6600 	 * start emulation until we arrive back to a valid state.  Synthesize a
6601 	 * consistency check VM-Exit due to invalid guest state and bail.
6602 	 */
6603 	if (unlikely(vmx->emulation_required)) {
6604 
6605 		/* We don't emulate invalid state of a nested guest */
6606 		vmx->fail = is_guest_mode(vcpu);
6607 
6608 		vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
6609 		vmx->exit_reason.failed_vmentry = 1;
6610 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
6611 		vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
6612 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
6613 		vmx->exit_intr_info = 0;
6614 		return EXIT_FASTPATH_NONE;
6615 	}
6616 
6617 	trace_kvm_entry(vcpu);
6618 
6619 	if (vmx->ple_window_dirty) {
6620 		vmx->ple_window_dirty = false;
6621 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
6622 	}
6623 
6624 	/*
6625 	 * We did this in prepare_switch_to_guest, because it needs to
6626 	 * be within srcu_read_lock.
6627 	 */
6628 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6629 
6630 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6631 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6632 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6633 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6634 
6635 	cr3 = __get_current_cr3_fast();
6636 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6637 		vmcs_writel(HOST_CR3, cr3);
6638 		vmx->loaded_vmcs->host_state.cr3 = cr3;
6639 	}
6640 
6641 	cr4 = cr4_read_shadow();
6642 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6643 		vmcs_writel(HOST_CR4, cr4);
6644 		vmx->loaded_vmcs->host_state.cr4 = cr4;
6645 	}
6646 
6647 	/* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
6648 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
6649 		set_debugreg(vcpu->arch.dr6, 6);
6650 
6651 	/* When single-stepping over STI and MOV SS, we must clear the
6652 	 * corresponding interruptibility bits in the guest state. Otherwise
6653 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
6654 	 * exceptions being set, but that's not correct for the guest debugging
6655 	 * case. */
6656 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6657 		vmx_set_interrupt_shadow(vcpu, 0);
6658 
6659 	kvm_load_guest_xsave_state(vcpu);
6660 
6661 	pt_guest_enter(vmx);
6662 
6663 	atomic_switch_perf_msrs(vmx);
6664 	if (intel_pmu_lbr_is_enabled(vcpu))
6665 		vmx_passthrough_lbr_msrs(vcpu);
6666 
6667 	if (enable_preemption_timer)
6668 		vmx_update_hv_timer(vcpu);
6669 
6670 	kvm_wait_lapic_expire(vcpu);
6671 
6672 	/*
6673 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6674 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6675 	 * is no need to worry about the conditional branch over the wrmsr
6676 	 * being speculatively taken.
6677 	 */
6678 	x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6679 
6680 	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
6681 	vmx_vcpu_enter_exit(vcpu, vmx);
6682 
6683 	/*
6684 	 * We do not use IBRS in the kernel. If this vCPU has used the
6685 	 * SPEC_CTRL MSR it may have left it on; save the value and
6686 	 * turn it off. This is much more efficient than blindly adding
6687 	 * it to the atomic save/restore list. Especially as the former
6688 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6689 	 *
6690 	 * For non-nested case:
6691 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
6692 	 * save it.
6693 	 *
6694 	 * For nested case:
6695 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
6696 	 * save it.
6697 	 */
6698 	if (unlikely(!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL)))
6699 		vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6700 
6701 	x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6702 
6703 	/* All fields are clean at this point */
6704 	if (static_branch_unlikely(&enable_evmcs)) {
6705 		current_evmcs->hv_clean_fields |=
6706 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6707 
6708 		current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
6709 	}
6710 
6711 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6712 	if (vmx->host_debugctlmsr)
6713 		update_debugctlmsr(vmx->host_debugctlmsr);
6714 
6715 #ifndef CONFIG_X86_64
6716 	/*
6717 	 * The sysexit path does not restore ds/es, so we must set them to
6718 	 * a reasonable value ourselves.
6719 	 *
6720 	 * We can't defer this to vmx_prepare_switch_to_host() since that
6721 	 * function may be executed in interrupt context, which saves and
6722 	 * restore segments around it, nullifying its effect.
6723 	 */
6724 	loadsegment(ds, __USER_DS);
6725 	loadsegment(es, __USER_DS);
6726 #endif
6727 
6728 	vmx_register_cache_reset(vcpu);
6729 
6730 	pt_guest_exit(vmx);
6731 
6732 	kvm_load_host_xsave_state(vcpu);
6733 
6734 	if (is_guest_mode(vcpu)) {
6735 		/*
6736 		 * Track VMLAUNCH/VMRESUME that have made past guest state
6737 		 * checking.
6738 		 */
6739 		if (vmx->nested.nested_run_pending &&
6740 		    !vmx->exit_reason.failed_vmentry)
6741 			++vcpu->stat.nested_run;
6742 
6743 		vmx->nested.nested_run_pending = 0;
6744 	}
6745 
6746 	vmx->idt_vectoring_info = 0;
6747 
6748 	if (unlikely(vmx->fail)) {
6749 		vmx->exit_reason.full = 0xdead;
6750 		return EXIT_FASTPATH_NONE;
6751 	}
6752 
6753 	vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
6754 	if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
6755 		kvm_machine_check();
6756 
6757 	if (likely(!vmx->exit_reason.failed_vmentry))
6758 		vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6759 
6760 	trace_kvm_exit(vcpu, KVM_ISA_VMX);
6761 
6762 	if (unlikely(vmx->exit_reason.failed_vmentry))
6763 		return EXIT_FASTPATH_NONE;
6764 
6765 	vmx->loaded_vmcs->launched = 1;
6766 
6767 	vmx_recover_nmi_blocking(vmx);
6768 	vmx_complete_interrupts(vmx);
6769 
6770 	if (is_guest_mode(vcpu))
6771 		return EXIT_FASTPATH_NONE;
6772 
6773 	return vmx_exit_handlers_fastpath(vcpu);
6774 }
6775 
6776 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6777 {
6778 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6779 
6780 	if (enable_pml)
6781 		vmx_destroy_pml_buffer(vmx);
6782 	free_vpid(vmx->vpid);
6783 	nested_vmx_free_vcpu(vcpu);
6784 	free_loaded_vmcs(vmx->loaded_vmcs);
6785 }
6786 
6787 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6788 {
6789 	struct vmx_uret_msr *tsx_ctrl;
6790 	struct vcpu_vmx *vmx;
6791 	int i, err;
6792 
6793 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6794 	vmx = to_vmx(vcpu);
6795 
6796 	err = -ENOMEM;
6797 
6798 	vmx->vpid = allocate_vpid();
6799 
6800 	/*
6801 	 * If PML is turned on, failure on enabling PML just results in failure
6802 	 * of creating the vcpu, therefore we can simplify PML logic (by
6803 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
6804 	 * for the guest), etc.
6805 	 */
6806 	if (enable_pml) {
6807 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6808 		if (!vmx->pml_pg)
6809 			goto free_vpid;
6810 	}
6811 
6812 	for (i = 0; i < kvm_nr_uret_msrs; ++i)
6813 		vmx->guest_uret_msrs[i].mask = -1ull;
6814 	if (boot_cpu_has(X86_FEATURE_RTM)) {
6815 		/*
6816 		 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
6817 		 * Keep the host value unchanged to avoid changing CPUID bits
6818 		 * under the host kernel's feet.
6819 		 */
6820 		tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
6821 		if (tsx_ctrl)
6822 			tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
6823 	}
6824 
6825 	err = alloc_loaded_vmcs(&vmx->vmcs01);
6826 	if (err < 0)
6827 		goto free_pml;
6828 
6829 	/* The MSR bitmap starts with all ones */
6830 	bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6831 	bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6832 
6833 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
6834 #ifdef CONFIG_X86_64
6835 	vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
6836 	vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
6837 	vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6838 #endif
6839 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6840 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6841 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6842 	if (kvm_cstate_in_guest(vcpu->kvm)) {
6843 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
6844 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6845 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6846 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6847 	}
6848 
6849 	vmx->loaded_vmcs = &vmx->vmcs01;
6850 
6851 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
6852 		err = alloc_apic_access_page(vcpu->kvm);
6853 		if (err)
6854 			goto free_vmcs;
6855 	}
6856 
6857 	if (enable_ept && !enable_unrestricted_guest) {
6858 		err = init_rmode_identity_map(vcpu->kvm);
6859 		if (err)
6860 			goto free_vmcs;
6861 	}
6862 
6863 	return 0;
6864 
6865 free_vmcs:
6866 	free_loaded_vmcs(vmx->loaded_vmcs);
6867 free_pml:
6868 	vmx_destroy_pml_buffer(vmx);
6869 free_vpid:
6870 	free_vpid(vmx->vpid);
6871 	return err;
6872 }
6873 
6874 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6875 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6876 
6877 static int vmx_vm_init(struct kvm *kvm)
6878 {
6879 	if (!ple_gap)
6880 		kvm->arch.pause_in_guest = true;
6881 
6882 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6883 		switch (l1tf_mitigation) {
6884 		case L1TF_MITIGATION_OFF:
6885 		case L1TF_MITIGATION_FLUSH_NOWARN:
6886 			/* 'I explicitly don't care' is set */
6887 			break;
6888 		case L1TF_MITIGATION_FLUSH:
6889 		case L1TF_MITIGATION_FLUSH_NOSMT:
6890 		case L1TF_MITIGATION_FULL:
6891 			/*
6892 			 * Warn upon starting the first VM in a potentially
6893 			 * insecure environment.
6894 			 */
6895 			if (sched_smt_active())
6896 				pr_warn_once(L1TF_MSG_SMT);
6897 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6898 				pr_warn_once(L1TF_MSG_L1D);
6899 			break;
6900 		case L1TF_MITIGATION_FULL_FORCE:
6901 			/* Flush is enforced */
6902 			break;
6903 		}
6904 	}
6905 	return 0;
6906 }
6907 
6908 static int __init vmx_check_processor_compat(void)
6909 {
6910 	struct vmcs_config vmcs_conf;
6911 	struct vmx_capability vmx_cap;
6912 
6913 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
6914 	    !this_cpu_has(X86_FEATURE_VMX)) {
6915 		pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
6916 		return -EIO;
6917 	}
6918 
6919 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6920 		return -EIO;
6921 	if (nested)
6922 		nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
6923 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6924 		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6925 				smp_processor_id());
6926 		return -EIO;
6927 	}
6928 	return 0;
6929 }
6930 
6931 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6932 {
6933 	u8 cache;
6934 	u64 ipat = 0;
6935 
6936 	/* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
6937 	 * memory aliases with conflicting memory types and sometimes MCEs.
6938 	 * We have to be careful as to what are honored and when.
6939 	 *
6940 	 * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
6941 	 * UC.  The effective memory type is UC or WC depending on guest PAT.
6942 	 * This was historically the source of MCEs and we want to be
6943 	 * conservative.
6944 	 *
6945 	 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
6946 	 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
6947 	 * EPT memory type is set to WB.  The effective memory type is forced
6948 	 * WB.
6949 	 *
6950 	 * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
6951 	 * EPT memory type is used to emulate guest CD/MTRR.
6952 	 */
6953 
6954 	if (is_mmio) {
6955 		cache = MTRR_TYPE_UNCACHABLE;
6956 		goto exit;
6957 	}
6958 
6959 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
6960 		ipat = VMX_EPT_IPAT_BIT;
6961 		cache = MTRR_TYPE_WRBACK;
6962 		goto exit;
6963 	}
6964 
6965 	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
6966 		ipat = VMX_EPT_IPAT_BIT;
6967 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
6968 			cache = MTRR_TYPE_WRBACK;
6969 		else
6970 			cache = MTRR_TYPE_UNCACHABLE;
6971 		goto exit;
6972 	}
6973 
6974 	cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
6975 
6976 exit:
6977 	return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
6978 }
6979 
6980 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
6981 {
6982 	/*
6983 	 * These bits in the secondary execution controls field
6984 	 * are dynamic, the others are mostly based on the hypervisor
6985 	 * architecture and the guest's CPUID.  Do not touch the
6986 	 * dynamic bits.
6987 	 */
6988 	u32 mask =
6989 		SECONDARY_EXEC_SHADOW_VMCS |
6990 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6991 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6992 		SECONDARY_EXEC_DESC;
6993 
6994 	u32 cur_ctl = secondary_exec_controls_get(vmx);
6995 
6996 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
6997 }
6998 
6999 /*
7000  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7001  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7002  */
7003 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7004 {
7005 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7006 	struct kvm_cpuid_entry2 *entry;
7007 
7008 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7009 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7010 
7011 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7012 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7013 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7014 } while (0)
7015 
7016 	entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7017 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7018 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7019 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7020 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7021 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7022 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7023 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7024 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7025 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7026 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7027 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7028 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7029 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7030 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7031 
7032 	entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7033 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7034 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7035 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7036 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7037 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7038 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7039 
7040 #undef cr4_fixed1_update
7041 }
7042 
7043 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7044 {
7045 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7046 
7047 	if (kvm_mpx_supported()) {
7048 		bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7049 
7050 		if (mpx_enabled) {
7051 			vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7052 			vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7053 		} else {
7054 			vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7055 			vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7056 		}
7057 	}
7058 }
7059 
7060 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7061 {
7062 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7063 	struct kvm_cpuid_entry2 *best = NULL;
7064 	int i;
7065 
7066 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7067 		best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7068 		if (!best)
7069 			return;
7070 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7071 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7072 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7073 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7074 	}
7075 
7076 	/* Get the number of configurable Address Ranges for filtering */
7077 	vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7078 						PT_CAP_num_address_ranges);
7079 
7080 	/* Initialize and clear the no dependency bits */
7081 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7082 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7083 			RTIT_CTL_BRANCH_EN);
7084 
7085 	/*
7086 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7087 	 * will inject an #GP
7088 	 */
7089 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7090 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7091 
7092 	/*
7093 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7094 	 * PSBFreq can be set
7095 	 */
7096 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7097 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7098 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7099 
7100 	/*
7101 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7102 	 */
7103 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7104 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7105 					      RTIT_CTL_MTC_RANGE);
7106 
7107 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7108 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7109 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7110 							RTIT_CTL_PTW_EN);
7111 
7112 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7113 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7114 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7115 
7116 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7117 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7118 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7119 
7120 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7121 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7122 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7123 
7124 	/* unmask address range configure area */
7125 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7126 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7127 }
7128 
7129 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7130 {
7131 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7132 
7133 	/* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7134 	vcpu->arch.xsaves_enabled = false;
7135 
7136 	vmx_setup_uret_msrs(vmx);
7137 
7138 	if (cpu_has_secondary_exec_ctrls())
7139 		vmcs_set_secondary_exec_control(vmx,
7140 						vmx_secondary_exec_control(vmx));
7141 
7142 	if (nested_vmx_allowed(vcpu))
7143 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7144 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7145 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7146 	else
7147 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7148 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7149 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7150 
7151 	if (nested_vmx_allowed(vcpu)) {
7152 		nested_vmx_cr_fixed1_bits_update(vcpu);
7153 		nested_vmx_entry_exit_ctls_update(vcpu);
7154 	}
7155 
7156 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7157 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7158 		update_intel_pt_cfg(vcpu);
7159 
7160 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7161 		struct vmx_uret_msr *msr;
7162 		msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7163 		if (msr) {
7164 			bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7165 			vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7166 		}
7167 	}
7168 
7169 	set_cr4_guest_host_mask(vmx);
7170 
7171 	vmx_write_encls_bitmap(vcpu, NULL);
7172 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7173 		vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7174 	else
7175 		vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7176 
7177 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7178 		vmx->msr_ia32_feature_control_valid_bits |=
7179 			FEAT_CTL_SGX_LC_ENABLED;
7180 	else
7181 		vmx->msr_ia32_feature_control_valid_bits &=
7182 			~FEAT_CTL_SGX_LC_ENABLED;
7183 
7184 	/* Refresh #PF interception to account for MAXPHYADDR changes. */
7185 	vmx_update_exception_bitmap(vcpu);
7186 }
7187 
7188 static __init void vmx_set_cpu_caps(void)
7189 {
7190 	kvm_set_cpu_caps();
7191 
7192 	/* CPUID 0x1 */
7193 	if (nested)
7194 		kvm_cpu_cap_set(X86_FEATURE_VMX);
7195 
7196 	/* CPUID 0x7 */
7197 	if (kvm_mpx_supported())
7198 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7199 	if (!cpu_has_vmx_invpcid())
7200 		kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7201 	if (vmx_pt_mode_is_host_guest())
7202 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7203 
7204 	if (!enable_sgx) {
7205 		kvm_cpu_cap_clear(X86_FEATURE_SGX);
7206 		kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7207 		kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7208 		kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7209 	}
7210 
7211 	if (vmx_umip_emulated())
7212 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7213 
7214 	/* CPUID 0xD.1 */
7215 	supported_xss = 0;
7216 	if (!cpu_has_vmx_xsaves())
7217 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7218 
7219 	/* CPUID 0x80000001 and 0x7 (RDPID) */
7220 	if (!cpu_has_vmx_rdtscp()) {
7221 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7222 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7223 	}
7224 
7225 	if (cpu_has_vmx_waitpkg())
7226 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7227 }
7228 
7229 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7230 {
7231 	to_vmx(vcpu)->req_immediate_exit = true;
7232 }
7233 
7234 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7235 				  struct x86_instruction_info *info)
7236 {
7237 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7238 	unsigned short port;
7239 	bool intercept;
7240 	int size;
7241 
7242 	if (info->intercept == x86_intercept_in ||
7243 	    info->intercept == x86_intercept_ins) {
7244 		port = info->src_val;
7245 		size = info->dst_bytes;
7246 	} else {
7247 		port = info->dst_val;
7248 		size = info->src_bytes;
7249 	}
7250 
7251 	/*
7252 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7253 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7254 	 * control.
7255 	 *
7256 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7257 	 */
7258 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7259 		intercept = nested_cpu_has(vmcs12,
7260 					   CPU_BASED_UNCOND_IO_EXITING);
7261 	else
7262 		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7263 
7264 	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7265 	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7266 }
7267 
7268 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7269 			       struct x86_instruction_info *info,
7270 			       enum x86_intercept_stage stage,
7271 			       struct x86_exception *exception)
7272 {
7273 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7274 
7275 	switch (info->intercept) {
7276 	/*
7277 	 * RDPID causes #UD if disabled through secondary execution controls.
7278 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
7279 	 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7280 	 */
7281 	case x86_intercept_rdpid:
7282 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7283 			exception->vector = UD_VECTOR;
7284 			exception->error_code_valid = false;
7285 			return X86EMUL_PROPAGATE_FAULT;
7286 		}
7287 		break;
7288 
7289 	case x86_intercept_in:
7290 	case x86_intercept_ins:
7291 	case x86_intercept_out:
7292 	case x86_intercept_outs:
7293 		return vmx_check_intercept_io(vcpu, info);
7294 
7295 	case x86_intercept_lgdt:
7296 	case x86_intercept_lidt:
7297 	case x86_intercept_lldt:
7298 	case x86_intercept_ltr:
7299 	case x86_intercept_sgdt:
7300 	case x86_intercept_sidt:
7301 	case x86_intercept_sldt:
7302 	case x86_intercept_str:
7303 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7304 			return X86EMUL_CONTINUE;
7305 
7306 		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7307 		break;
7308 
7309 	/* TODO: check more intercepts... */
7310 	default:
7311 		break;
7312 	}
7313 
7314 	return X86EMUL_UNHANDLEABLE;
7315 }
7316 
7317 #ifdef CONFIG_X86_64
7318 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7319 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7320 				  u64 divisor, u64 *result)
7321 {
7322 	u64 low = a << shift, high = a >> (64 - shift);
7323 
7324 	/* To avoid the overflow on divq */
7325 	if (high >= divisor)
7326 		return 1;
7327 
7328 	/* Low hold the result, high hold rem which is discarded */
7329 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7330 	    "rm" (divisor), "0" (low), "1" (high));
7331 	*result = low;
7332 
7333 	return 0;
7334 }
7335 
7336 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7337 			    bool *expired)
7338 {
7339 	struct vcpu_vmx *vmx;
7340 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7341 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7342 
7343 	vmx = to_vmx(vcpu);
7344 	tscl = rdtsc();
7345 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7346 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7347 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7348 						    ktimer->timer_advance_ns);
7349 
7350 	if (delta_tsc > lapic_timer_advance_cycles)
7351 		delta_tsc -= lapic_timer_advance_cycles;
7352 	else
7353 		delta_tsc = 0;
7354 
7355 	/* Convert to host delta tsc if tsc scaling is enabled */
7356 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7357 	    delta_tsc && u64_shl_div_u64(delta_tsc,
7358 				kvm_tsc_scaling_ratio_frac_bits,
7359 				vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
7360 		return -ERANGE;
7361 
7362 	/*
7363 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
7364 	 * we can't use the preemption timer.
7365 	 * It's possible that it fits on later vmentries, but checking
7366 	 * on every vmentry is costly so we just use an hrtimer.
7367 	 */
7368 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7369 		return -ERANGE;
7370 
7371 	vmx->hv_deadline_tsc = tscl + delta_tsc;
7372 	*expired = !delta_tsc;
7373 	return 0;
7374 }
7375 
7376 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7377 {
7378 	to_vmx(vcpu)->hv_deadline_tsc = -1;
7379 }
7380 #endif
7381 
7382 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7383 {
7384 	if (!kvm_pause_in_guest(vcpu->kvm))
7385 		shrink_ple_window(vcpu);
7386 }
7387 
7388 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
7389 {
7390 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7391 
7392 	if (is_guest_mode(vcpu)) {
7393 		vmx->nested.update_vmcs01_cpu_dirty_logging = true;
7394 		return;
7395 	}
7396 
7397 	/*
7398 	 * Note, cpu_dirty_logging_count can be changed concurrent with this
7399 	 * code, but in that case another update request will be made and so
7400 	 * the guest will never run with a stale PML value.
7401 	 */
7402 	if (vcpu->kvm->arch.cpu_dirty_logging_count)
7403 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7404 	else
7405 		secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7406 }
7407 
7408 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7409 {
7410 	if (pi_pre_block(vcpu))
7411 		return 1;
7412 
7413 	if (kvm_lapic_hv_timer_in_use(vcpu))
7414 		kvm_lapic_switch_to_sw_timer(vcpu);
7415 
7416 	return 0;
7417 }
7418 
7419 static void vmx_post_block(struct kvm_vcpu *vcpu)
7420 {
7421 	if (kvm_x86_ops.set_hv_timer)
7422 		kvm_lapic_switch_to_hv_timer(vcpu);
7423 
7424 	pi_post_block(vcpu);
7425 }
7426 
7427 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7428 {
7429 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7430 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7431 			FEAT_CTL_LMCE_ENABLED;
7432 	else
7433 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7434 			~FEAT_CTL_LMCE_ENABLED;
7435 }
7436 
7437 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7438 {
7439 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
7440 	if (to_vmx(vcpu)->nested.nested_run_pending)
7441 		return -EBUSY;
7442 	return !is_smm(vcpu);
7443 }
7444 
7445 static int vmx_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7446 {
7447 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7448 
7449 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7450 	if (vmx->nested.smm.guest_mode)
7451 		nested_vmx_vmexit(vcpu, -1, 0, 0);
7452 
7453 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
7454 	vmx->nested.vmxon = false;
7455 	vmx_clear_hlt(vcpu);
7456 	return 0;
7457 }
7458 
7459 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7460 {
7461 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7462 	int ret;
7463 
7464 	if (vmx->nested.smm.vmxon) {
7465 		vmx->nested.vmxon = true;
7466 		vmx->nested.smm.vmxon = false;
7467 	}
7468 
7469 	if (vmx->nested.smm.guest_mode) {
7470 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
7471 		if (ret)
7472 			return ret;
7473 
7474 		vmx->nested.smm.guest_mode = false;
7475 	}
7476 	return 0;
7477 }
7478 
7479 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
7480 {
7481 	/* RSM will cause a vmexit anyway.  */
7482 }
7483 
7484 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7485 {
7486 	return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
7487 }
7488 
7489 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7490 {
7491 	if (is_guest_mode(vcpu)) {
7492 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7493 
7494 		if (hrtimer_try_to_cancel(timer) == 1)
7495 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7496 	}
7497 }
7498 
7499 static void hardware_unsetup(void)
7500 {
7501 	kvm_set_posted_intr_wakeup_handler(NULL);
7502 
7503 	if (nested)
7504 		nested_vmx_hardware_unsetup();
7505 
7506 	free_kvm_area();
7507 }
7508 
7509 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7510 {
7511 	ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7512 			  BIT(APICV_INHIBIT_REASON_HYPERV) |
7513 			  BIT(APICV_INHIBIT_REASON_BLOCKIRQ);
7514 
7515 	return supported & BIT(bit);
7516 }
7517 
7518 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7519 	.name = "kvm_intel",
7520 
7521 	.hardware_unsetup = hardware_unsetup,
7522 
7523 	.hardware_enable = hardware_enable,
7524 	.hardware_disable = hardware_disable,
7525 	.cpu_has_accelerated_tpr = report_flexpriority,
7526 	.has_emulated_msr = vmx_has_emulated_msr,
7527 
7528 	.vm_size = sizeof(struct kvm_vmx),
7529 	.vm_init = vmx_vm_init,
7530 
7531 	.vcpu_create = vmx_create_vcpu,
7532 	.vcpu_free = vmx_free_vcpu,
7533 	.vcpu_reset = vmx_vcpu_reset,
7534 
7535 	.prepare_guest_switch = vmx_prepare_switch_to_guest,
7536 	.vcpu_load = vmx_vcpu_load,
7537 	.vcpu_put = vmx_vcpu_put,
7538 
7539 	.update_exception_bitmap = vmx_update_exception_bitmap,
7540 	.get_msr_feature = vmx_get_msr_feature,
7541 	.get_msr = vmx_get_msr,
7542 	.set_msr = vmx_set_msr,
7543 	.get_segment_base = vmx_get_segment_base,
7544 	.get_segment = vmx_get_segment,
7545 	.set_segment = vmx_set_segment,
7546 	.get_cpl = vmx_get_cpl,
7547 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7548 	.set_cr0 = vmx_set_cr0,
7549 	.is_valid_cr4 = vmx_is_valid_cr4,
7550 	.set_cr4 = vmx_set_cr4,
7551 	.set_efer = vmx_set_efer,
7552 	.get_idt = vmx_get_idt,
7553 	.set_idt = vmx_set_idt,
7554 	.get_gdt = vmx_get_gdt,
7555 	.set_gdt = vmx_set_gdt,
7556 	.set_dr7 = vmx_set_dr7,
7557 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7558 	.cache_reg = vmx_cache_reg,
7559 	.get_rflags = vmx_get_rflags,
7560 	.set_rflags = vmx_set_rflags,
7561 
7562 	.tlb_flush_all = vmx_flush_tlb_all,
7563 	.tlb_flush_current = vmx_flush_tlb_current,
7564 	.tlb_flush_gva = vmx_flush_tlb_gva,
7565 	.tlb_flush_guest = vmx_flush_tlb_guest,
7566 
7567 	.run = vmx_vcpu_run,
7568 	.handle_exit = vmx_handle_exit,
7569 	.skip_emulated_instruction = vmx_skip_emulated_instruction,
7570 	.update_emulated_instruction = vmx_update_emulated_instruction,
7571 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
7572 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
7573 	.patch_hypercall = vmx_patch_hypercall,
7574 	.set_irq = vmx_inject_irq,
7575 	.set_nmi = vmx_inject_nmi,
7576 	.queue_exception = vmx_queue_exception,
7577 	.cancel_injection = vmx_cancel_injection,
7578 	.interrupt_allowed = vmx_interrupt_allowed,
7579 	.nmi_allowed = vmx_nmi_allowed,
7580 	.get_nmi_mask = vmx_get_nmi_mask,
7581 	.set_nmi_mask = vmx_set_nmi_mask,
7582 	.enable_nmi_window = vmx_enable_nmi_window,
7583 	.enable_irq_window = vmx_enable_irq_window,
7584 	.update_cr8_intercept = vmx_update_cr8_intercept,
7585 	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7586 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7587 	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7588 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
7589 	.apicv_post_state_restore = vmx_apicv_post_state_restore,
7590 	.check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7591 	.hwapic_irr_update = vmx_hwapic_irr_update,
7592 	.hwapic_isr_update = vmx_hwapic_isr_update,
7593 	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7594 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
7595 	.deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7596 	.dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
7597 
7598 	.set_tss_addr = vmx_set_tss_addr,
7599 	.set_identity_map_addr = vmx_set_identity_map_addr,
7600 	.get_mt_mask = vmx_get_mt_mask,
7601 
7602 	.get_exit_info = vmx_get_exit_info,
7603 
7604 	.vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
7605 
7606 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7607 
7608 	.get_l2_tsc_offset = vmx_get_l2_tsc_offset,
7609 	.get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
7610 	.write_tsc_offset = vmx_write_tsc_offset,
7611 	.write_tsc_multiplier = vmx_write_tsc_multiplier,
7612 
7613 	.load_mmu_pgd = vmx_load_mmu_pgd,
7614 
7615 	.check_intercept = vmx_check_intercept,
7616 	.handle_exit_irqoff = vmx_handle_exit_irqoff,
7617 
7618 	.request_immediate_exit = vmx_request_immediate_exit,
7619 
7620 	.sched_in = vmx_sched_in,
7621 
7622 	.cpu_dirty_log_size = PML_ENTITY_NUM,
7623 	.update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
7624 
7625 	.pre_block = vmx_pre_block,
7626 	.post_block = vmx_post_block,
7627 
7628 	.pmu_ops = &intel_pmu_ops,
7629 	.nested_ops = &vmx_nested_ops,
7630 
7631 	.update_pi_irte = pi_update_irte,
7632 	.start_assignment = vmx_pi_start_assignment,
7633 
7634 #ifdef CONFIG_X86_64
7635 	.set_hv_timer = vmx_set_hv_timer,
7636 	.cancel_hv_timer = vmx_cancel_hv_timer,
7637 #endif
7638 
7639 	.setup_mce = vmx_setup_mce,
7640 
7641 	.smi_allowed = vmx_smi_allowed,
7642 	.enter_smm = vmx_enter_smm,
7643 	.leave_smm = vmx_leave_smm,
7644 	.enable_smi_window = vmx_enable_smi_window,
7645 
7646 	.can_emulate_instruction = vmx_can_emulate_instruction,
7647 	.apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7648 	.migrate_timers = vmx_migrate_timers,
7649 
7650 	.msr_filter_changed = vmx_msr_filter_changed,
7651 	.complete_emulated_msr = kvm_complete_insn_gp,
7652 
7653 	.vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
7654 };
7655 
7656 static __init void vmx_setup_user_return_msrs(void)
7657 {
7658 
7659 	/*
7660 	 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
7661 	 * will emulate SYSCALL in legacy mode if the vendor string in guest
7662 	 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
7663 	 * support this emulation, MSR_STAR is included in the list for i386,
7664 	 * but is never loaded into hardware.  MSR_CSTAR is also never loaded
7665 	 * into hardware and is here purely for emulation purposes.
7666 	 */
7667 	const u32 vmx_uret_msrs_list[] = {
7668 	#ifdef CONFIG_X86_64
7669 		MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
7670 	#endif
7671 		MSR_EFER, MSR_TSC_AUX, MSR_STAR,
7672 		MSR_IA32_TSX_CTRL,
7673 	};
7674 	int i;
7675 
7676 	BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
7677 
7678 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
7679 		kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
7680 }
7681 
7682 static __init int hardware_setup(void)
7683 {
7684 	unsigned long host_bndcfgs;
7685 	struct desc_ptr dt;
7686 	int r, ept_lpage_level;
7687 
7688 	store_idt(&dt);
7689 	host_idt_base = dt.address;
7690 
7691 	vmx_setup_user_return_msrs();
7692 
7693 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7694 		return -EIO;
7695 
7696 	if (boot_cpu_has(X86_FEATURE_NX))
7697 		kvm_enable_efer_bits(EFER_NX);
7698 
7699 	if (boot_cpu_has(X86_FEATURE_MPX)) {
7700 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7701 		WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7702 	}
7703 
7704 	if (!cpu_has_vmx_mpx())
7705 		supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7706 				    XFEATURE_MASK_BNDCSR);
7707 
7708 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7709 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7710 		enable_vpid = 0;
7711 
7712 	if (!cpu_has_vmx_ept() ||
7713 	    !cpu_has_vmx_ept_4levels() ||
7714 	    !cpu_has_vmx_ept_mt_wb() ||
7715 	    !cpu_has_vmx_invept_global())
7716 		enable_ept = 0;
7717 
7718 	/* NX support is required for shadow paging. */
7719 	if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
7720 		pr_err_ratelimited("kvm: NX (Execute Disable) not supported\n");
7721 		return -EOPNOTSUPP;
7722 	}
7723 
7724 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7725 		enable_ept_ad_bits = 0;
7726 
7727 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7728 		enable_unrestricted_guest = 0;
7729 
7730 	if (!cpu_has_vmx_flexpriority())
7731 		flexpriority_enabled = 0;
7732 
7733 	if (!cpu_has_virtual_nmis())
7734 		enable_vnmi = 0;
7735 
7736 	/*
7737 	 * set_apic_access_page_addr() is used to reload apic access
7738 	 * page upon invalidation.  No need to do anything if not
7739 	 * using the APIC_ACCESS_ADDR VMCS field.
7740 	 */
7741 	if (!flexpriority_enabled)
7742 		vmx_x86_ops.set_apic_access_page_addr = NULL;
7743 
7744 	if (!cpu_has_vmx_tpr_shadow())
7745 		vmx_x86_ops.update_cr8_intercept = NULL;
7746 
7747 #if IS_ENABLED(CONFIG_HYPERV)
7748 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7749 	    && enable_ept) {
7750 		vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
7751 		vmx_x86_ops.tlb_remote_flush_with_range =
7752 				hv_remote_flush_tlb_with_range;
7753 	}
7754 #endif
7755 
7756 	if (!cpu_has_vmx_ple()) {
7757 		ple_gap = 0;
7758 		ple_window = 0;
7759 		ple_window_grow = 0;
7760 		ple_window_max = 0;
7761 		ple_window_shrink = 0;
7762 	}
7763 
7764 	if (!cpu_has_vmx_apicv()) {
7765 		enable_apicv = 0;
7766 		vmx_x86_ops.sync_pir_to_irr = NULL;
7767 	}
7768 
7769 	if (cpu_has_vmx_tsc_scaling()) {
7770 		kvm_has_tsc_control = true;
7771 		kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7772 		kvm_tsc_scaling_ratio_frac_bits = 48;
7773 	}
7774 
7775 	kvm_has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
7776 
7777 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7778 
7779 	if (enable_ept)
7780 		kvm_mmu_set_ept_masks(enable_ept_ad_bits,
7781 				      cpu_has_vmx_ept_execute_only());
7782 
7783 	if (!enable_ept)
7784 		ept_lpage_level = 0;
7785 	else if (cpu_has_vmx_ept_1g_page())
7786 		ept_lpage_level = PG_LEVEL_1G;
7787 	else if (cpu_has_vmx_ept_2m_page())
7788 		ept_lpage_level = PG_LEVEL_2M;
7789 	else
7790 		ept_lpage_level = PG_LEVEL_4K;
7791 	kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(),
7792 			  ept_lpage_level);
7793 
7794 	/*
7795 	 * Only enable PML when hardware supports PML feature, and both EPT
7796 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
7797 	 */
7798 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7799 		enable_pml = 0;
7800 
7801 	if (!enable_pml)
7802 		vmx_x86_ops.cpu_dirty_log_size = 0;
7803 
7804 	if (!cpu_has_vmx_preemption_timer())
7805 		enable_preemption_timer = false;
7806 
7807 	if (enable_preemption_timer) {
7808 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
7809 		u64 vmx_msr;
7810 
7811 		rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7812 		cpu_preemption_timer_multi =
7813 			vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7814 
7815 		if (tsc_khz)
7816 			use_timer_freq = (u64)tsc_khz * 1000;
7817 		use_timer_freq >>= cpu_preemption_timer_multi;
7818 
7819 		/*
7820 		 * KVM "disables" the preemption timer by setting it to its max
7821 		 * value.  Don't use the timer if it might cause spurious exits
7822 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7823 		 */
7824 		if (use_timer_freq > 0xffffffffu / 10)
7825 			enable_preemption_timer = false;
7826 	}
7827 
7828 	if (!enable_preemption_timer) {
7829 		vmx_x86_ops.set_hv_timer = NULL;
7830 		vmx_x86_ops.cancel_hv_timer = NULL;
7831 		vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
7832 	}
7833 
7834 	kvm_mce_cap_supported |= MCG_LMCE_P;
7835 
7836 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7837 		return -EINVAL;
7838 	if (!enable_ept || !cpu_has_vmx_intel_pt())
7839 		pt_mode = PT_MODE_SYSTEM;
7840 
7841 	setup_default_sgx_lepubkeyhash();
7842 
7843 	if (nested) {
7844 		nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7845 					   vmx_capability.ept);
7846 
7847 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7848 		if (r)
7849 			return r;
7850 	}
7851 
7852 	vmx_set_cpu_caps();
7853 
7854 	r = alloc_kvm_area();
7855 	if (r)
7856 		nested_vmx_hardware_unsetup();
7857 
7858 	kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
7859 
7860 	return r;
7861 }
7862 
7863 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
7864 	.cpu_has_kvm_support = cpu_has_kvm_support,
7865 	.disabled_by_bios = vmx_disabled_by_bios,
7866 	.check_processor_compatibility = vmx_check_processor_compat,
7867 	.hardware_setup = hardware_setup,
7868 
7869 	.runtime_ops = &vmx_x86_ops,
7870 };
7871 
7872 static void vmx_cleanup_l1d_flush(void)
7873 {
7874 	if (vmx_l1d_flush_pages) {
7875 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7876 		vmx_l1d_flush_pages = NULL;
7877 	}
7878 	/* Restore state so sysfs ignores VMX */
7879 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7880 }
7881 
7882 static void vmx_exit(void)
7883 {
7884 #ifdef CONFIG_KEXEC_CORE
7885 	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7886 	synchronize_rcu();
7887 #endif
7888 
7889 	kvm_exit();
7890 
7891 #if IS_ENABLED(CONFIG_HYPERV)
7892 	if (static_branch_unlikely(&enable_evmcs)) {
7893 		int cpu;
7894 		struct hv_vp_assist_page *vp_ap;
7895 		/*
7896 		 * Reset everything to support using non-enlightened VMCS
7897 		 * access later (e.g. when we reload the module with
7898 		 * enlightened_vmcs=0)
7899 		 */
7900 		for_each_online_cpu(cpu) {
7901 			vp_ap =	hv_get_vp_assist_page(cpu);
7902 
7903 			if (!vp_ap)
7904 				continue;
7905 
7906 			vp_ap->nested_control.features.directhypercall = 0;
7907 			vp_ap->current_nested_vmcs = 0;
7908 			vp_ap->enlighten_vmentry = 0;
7909 		}
7910 
7911 		static_branch_disable(&enable_evmcs);
7912 	}
7913 #endif
7914 	vmx_cleanup_l1d_flush();
7915 
7916 	allow_smaller_maxphyaddr = false;
7917 }
7918 module_exit(vmx_exit);
7919 
7920 static int __init vmx_init(void)
7921 {
7922 	int r, cpu;
7923 
7924 #if IS_ENABLED(CONFIG_HYPERV)
7925 	/*
7926 	 * Enlightened VMCS usage should be recommended and the host needs
7927 	 * to support eVMCS v1 or above. We can also disable eVMCS support
7928 	 * with module parameter.
7929 	 */
7930 	if (enlightened_vmcs &&
7931 	    ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7932 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7933 	    KVM_EVMCS_VERSION) {
7934 		int cpu;
7935 
7936 		/* Check that we have assist pages on all online CPUs */
7937 		for_each_online_cpu(cpu) {
7938 			if (!hv_get_vp_assist_page(cpu)) {
7939 				enlightened_vmcs = false;
7940 				break;
7941 			}
7942 		}
7943 
7944 		if (enlightened_vmcs) {
7945 			pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
7946 			static_branch_enable(&enable_evmcs);
7947 		}
7948 
7949 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
7950 			vmx_x86_ops.enable_direct_tlbflush
7951 				= hv_enable_direct_tlbflush;
7952 
7953 	} else {
7954 		enlightened_vmcs = false;
7955 	}
7956 #endif
7957 
7958 	r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
7959 		     __alignof__(struct vcpu_vmx), THIS_MODULE);
7960 	if (r)
7961 		return r;
7962 
7963 	/*
7964 	 * Must be called after kvm_init() so enable_ept is properly set
7965 	 * up. Hand the parameter mitigation value in which was stored in
7966 	 * the pre module init parser. If no parameter was given, it will
7967 	 * contain 'auto' which will be turned into the default 'cond'
7968 	 * mitigation mode.
7969 	 */
7970 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
7971 	if (r) {
7972 		vmx_exit();
7973 		return r;
7974 	}
7975 
7976 	for_each_possible_cpu(cpu) {
7977 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
7978 
7979 		pi_init_cpu(cpu);
7980 	}
7981 
7982 #ifdef CONFIG_KEXEC_CORE
7983 	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
7984 			   crash_vmclear_local_loaded_vmcss);
7985 #endif
7986 	vmx_check_vmcs12_offsets();
7987 
7988 	/*
7989 	 * Shadow paging doesn't have a (further) performance penalty
7990 	 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
7991 	 * by default
7992 	 */
7993 	if (!enable_ept)
7994 		allow_smaller_maxphyaddr = true;
7995 
7996 	return 0;
7997 }
7998 module_init(vmx_init);
7999