xref: /linux/arch/x86/kvm/vmx/vmx.c (revision 7cc9196675234d4de0e1e19b9da1a8b86ecfeedd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/objtool.h>
26 #include <linux/sched.h>
27 #include <linux/sched/smt.h>
28 #include <linux/slab.h>
29 #include <linux/tboot.h>
30 #include <linux/trace_events.h>
31 #include <linux/entry-kvm.h>
32 
33 #include <asm/apic.h>
34 #include <asm/asm.h>
35 #include <asm/cpu.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/debugreg.h>
38 #include <asm/desc.h>
39 #include <asm/fpu/api.h>
40 #include <asm/fpu/xstate.h>
41 #include <asm/idtentry.h>
42 #include <asm/io.h>
43 #include <asm/irq_remapping.h>
44 #include <asm/reboot.h>
45 #include <asm/perf_event.h>
46 #include <asm/mmu_context.h>
47 #include <asm/mshyperv.h>
48 #include <asm/mwait.h>
49 #include <asm/spec-ctrl.h>
50 #include <asm/vmx.h>
51 
52 #include "capabilities.h"
53 #include "cpuid.h"
54 #include "hyperv.h"
55 #include "kvm_onhyperv.h"
56 #include "irq.h"
57 #include "kvm_cache_regs.h"
58 #include "lapic.h"
59 #include "mmu.h"
60 #include "nested.h"
61 #include "pmu.h"
62 #include "sgx.h"
63 #include "trace.h"
64 #include "vmcs.h"
65 #include "vmcs12.h"
66 #include "vmx.h"
67 #include "x86.h"
68 #include "smm.h"
69 #include "vmx_onhyperv.h"
70 
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73 
74 #ifdef MODULE
75 static const struct x86_cpu_id vmx_cpu_id[] = {
76 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
77 	{}
78 };
79 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
80 #endif
81 
82 bool __read_mostly enable_vpid = 1;
83 module_param_named(vpid, enable_vpid, bool, 0444);
84 
85 static bool __read_mostly enable_vnmi = 1;
86 module_param_named(vnmi, enable_vnmi, bool, 0444);
87 
88 bool __read_mostly flexpriority_enabled = 1;
89 module_param_named(flexpriority, flexpriority_enabled, bool, 0444);
90 
91 bool __read_mostly enable_ept = 1;
92 module_param_named(ept, enable_ept, bool, 0444);
93 
94 bool __read_mostly enable_unrestricted_guest = 1;
95 module_param_named(unrestricted_guest,
96 			enable_unrestricted_guest, bool, 0444);
97 
98 bool __read_mostly enable_ept_ad_bits = 1;
99 module_param_named(eptad, enable_ept_ad_bits, bool, 0444);
100 
101 static bool __read_mostly emulate_invalid_guest_state = true;
102 module_param(emulate_invalid_guest_state, bool, 0444);
103 
104 static bool __read_mostly fasteoi = 1;
105 module_param(fasteoi, bool, 0444);
106 
107 module_param(enable_apicv, bool, 0444);
108 
109 bool __read_mostly enable_ipiv = true;
110 module_param(enable_ipiv, bool, 0444);
111 
112 /*
113  * If nested=1, nested virtualization is supported, i.e., guests may use
114  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
115  * use VMX instructions.
116  */
117 static bool __read_mostly nested = 1;
118 module_param(nested, bool, 0444);
119 
120 bool __read_mostly enable_pml = 1;
121 module_param_named(pml, enable_pml, bool, 0444);
122 
123 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
124 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
125 
126 static bool __read_mostly dump_invalid_vmcs = 0;
127 module_param(dump_invalid_vmcs, bool, 0644);
128 
129 #define MSR_BITMAP_MODE_X2APIC		1
130 #define MSR_BITMAP_MODE_X2APIC_APICV	2
131 
132 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
133 
134 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
135 static int __read_mostly cpu_preemption_timer_multi;
136 static bool __read_mostly enable_preemption_timer = 1;
137 #ifdef CONFIG_X86_64
138 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
139 #endif
140 
141 extern bool __read_mostly allow_smaller_maxphyaddr;
142 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
143 
144 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
145 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
146 #define KVM_VM_CR0_ALWAYS_ON				\
147 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
148 
149 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
150 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
151 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
152 
153 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
154 
155 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
156 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
157 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
158 	RTIT_STATUS_BYTECNT))
159 
160 /*
161  * List of MSRs that can be directly passed to the guest.
162  * In addition to these x2apic and PT MSRs are handled specially.
163  */
164 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
165 	MSR_IA32_SPEC_CTRL,
166 	MSR_IA32_PRED_CMD,
167 	MSR_IA32_FLUSH_CMD,
168 	MSR_IA32_TSC,
169 #ifdef CONFIG_X86_64
170 	MSR_FS_BASE,
171 	MSR_GS_BASE,
172 	MSR_KERNEL_GS_BASE,
173 	MSR_IA32_XFD,
174 	MSR_IA32_XFD_ERR,
175 #endif
176 	MSR_IA32_SYSENTER_CS,
177 	MSR_IA32_SYSENTER_ESP,
178 	MSR_IA32_SYSENTER_EIP,
179 	MSR_CORE_C1_RES,
180 	MSR_CORE_C3_RESIDENCY,
181 	MSR_CORE_C6_RESIDENCY,
182 	MSR_CORE_C7_RESIDENCY,
183 };
184 
185 /*
186  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
187  * ple_gap:    upper bound on the amount of time between two successive
188  *             executions of PAUSE in a loop. Also indicate if ple enabled.
189  *             According to test, this time is usually smaller than 128 cycles.
190  * ple_window: upper bound on the amount of time a guest is allowed to execute
191  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
192  *             less than 2^12 cycles
193  * Time is measured based on a counter that runs at the same rate as the TSC,
194  * refer SDM volume 3b section 21.6.13 & 22.1.3.
195  */
196 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
197 module_param(ple_gap, uint, 0444);
198 
199 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
200 module_param(ple_window, uint, 0444);
201 
202 /* Default doubles per-vcpu window every exit. */
203 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
204 module_param(ple_window_grow, uint, 0444);
205 
206 /* Default resets per-vcpu window every exit to ple_window. */
207 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
208 module_param(ple_window_shrink, uint, 0444);
209 
210 /* Default is to compute the maximum so we can never overflow. */
211 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
212 module_param(ple_window_max, uint, 0444);
213 
214 /* Default is SYSTEM mode, 1 for host-guest mode */
215 int __read_mostly pt_mode = PT_MODE_SYSTEM;
216 module_param(pt_mode, int, S_IRUGO);
217 
218 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
219 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
220 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
221 
222 /* Storage for pre module init parameter parsing */
223 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
224 
225 static const struct {
226 	const char *option;
227 	bool for_parse;
228 } vmentry_l1d_param[] = {
229 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
230 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
231 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
232 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
233 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
234 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
235 };
236 
237 #define L1D_CACHE_ORDER 4
238 static void *vmx_l1d_flush_pages;
239 
240 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
241 {
242 	struct page *page;
243 	unsigned int i;
244 
245 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
246 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
247 		return 0;
248 	}
249 
250 	if (!enable_ept) {
251 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
252 		return 0;
253 	}
254 
255 	if (host_arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
256 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
257 		return 0;
258 	}
259 
260 	/* If set to auto use the default l1tf mitigation method */
261 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
262 		switch (l1tf_mitigation) {
263 		case L1TF_MITIGATION_OFF:
264 			l1tf = VMENTER_L1D_FLUSH_NEVER;
265 			break;
266 		case L1TF_MITIGATION_FLUSH_NOWARN:
267 		case L1TF_MITIGATION_FLUSH:
268 		case L1TF_MITIGATION_FLUSH_NOSMT:
269 			l1tf = VMENTER_L1D_FLUSH_COND;
270 			break;
271 		case L1TF_MITIGATION_FULL:
272 		case L1TF_MITIGATION_FULL_FORCE:
273 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
274 			break;
275 		}
276 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
277 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
278 	}
279 
280 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
281 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
282 		/*
283 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
284 		 * lifetime and so should not be charged to a memcg.
285 		 */
286 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
287 		if (!page)
288 			return -ENOMEM;
289 		vmx_l1d_flush_pages = page_address(page);
290 
291 		/*
292 		 * Initialize each page with a different pattern in
293 		 * order to protect against KSM in the nested
294 		 * virtualization case.
295 		 */
296 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
297 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
298 			       PAGE_SIZE);
299 		}
300 	}
301 
302 	l1tf_vmx_mitigation = l1tf;
303 
304 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
305 		static_branch_enable(&vmx_l1d_should_flush);
306 	else
307 		static_branch_disable(&vmx_l1d_should_flush);
308 
309 	if (l1tf == VMENTER_L1D_FLUSH_COND)
310 		static_branch_enable(&vmx_l1d_flush_cond);
311 	else
312 		static_branch_disable(&vmx_l1d_flush_cond);
313 	return 0;
314 }
315 
316 static int vmentry_l1d_flush_parse(const char *s)
317 {
318 	unsigned int i;
319 
320 	if (s) {
321 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
322 			if (vmentry_l1d_param[i].for_parse &&
323 			    sysfs_streq(s, vmentry_l1d_param[i].option))
324 				return i;
325 		}
326 	}
327 	return -EINVAL;
328 }
329 
330 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
331 {
332 	int l1tf, ret;
333 
334 	l1tf = vmentry_l1d_flush_parse(s);
335 	if (l1tf < 0)
336 		return l1tf;
337 
338 	if (!boot_cpu_has(X86_BUG_L1TF))
339 		return 0;
340 
341 	/*
342 	 * Has vmx_init() run already? If not then this is the pre init
343 	 * parameter parsing. In that case just store the value and let
344 	 * vmx_init() do the proper setup after enable_ept has been
345 	 * established.
346 	 */
347 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
348 		vmentry_l1d_flush_param = l1tf;
349 		return 0;
350 	}
351 
352 	mutex_lock(&vmx_l1d_flush_mutex);
353 	ret = vmx_setup_l1d_flush(l1tf);
354 	mutex_unlock(&vmx_l1d_flush_mutex);
355 	return ret;
356 }
357 
358 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
359 {
360 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
361 		return sysfs_emit(s, "???\n");
362 
363 	return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
364 }
365 
366 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
367 {
368 	u64 msr;
369 
370 	if (!vmx->disable_fb_clear)
371 		return;
372 
373 	msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
374 	msr |= FB_CLEAR_DIS;
375 	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
376 	/* Cache the MSR value to avoid reading it later */
377 	vmx->msr_ia32_mcu_opt_ctrl = msr;
378 }
379 
380 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
381 {
382 	if (!vmx->disable_fb_clear)
383 		return;
384 
385 	vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
386 	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
387 }
388 
389 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
390 {
391 	/*
392 	 * Disable VERW's behavior of clearing CPU buffers for the guest if the
393 	 * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled
394 	 * the mitigation. Disabling the clearing behavior provides a
395 	 * performance boost for guests that aren't aware that manually clearing
396 	 * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry
397 	 * and VM-Exit.
398 	 */
399 	vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) &&
400 				(host_arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) &&
401 				!boot_cpu_has_bug(X86_BUG_MDS) &&
402 				!boot_cpu_has_bug(X86_BUG_TAA);
403 
404 	/*
405 	 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
406 	 * at VMEntry. Skip the MSR read/write when a guest has no use case to
407 	 * execute VERW.
408 	 */
409 	if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
410 	   ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
411 	    (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
412 	    (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
413 	    (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
414 	    (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
415 		vmx->disable_fb_clear = false;
416 }
417 
418 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
419 	.set = vmentry_l1d_flush_set,
420 	.get = vmentry_l1d_flush_get,
421 };
422 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
423 
424 static u32 vmx_segment_access_rights(struct kvm_segment *var);
425 
426 void vmx_vmexit(void);
427 
428 #define vmx_insn_failed(fmt...)		\
429 do {					\
430 	WARN_ONCE(1, fmt);		\
431 	pr_warn_ratelimited(fmt);	\
432 } while (0)
433 
434 noinline void vmread_error(unsigned long field)
435 {
436 	vmx_insn_failed("vmread failed: field=%lx\n", field);
437 }
438 
439 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT
440 noinstr void vmread_error_trampoline2(unsigned long field, bool fault)
441 {
442 	if (fault) {
443 		kvm_spurious_fault();
444 	} else {
445 		instrumentation_begin();
446 		vmread_error(field);
447 		instrumentation_end();
448 	}
449 }
450 #endif
451 
452 noinline void vmwrite_error(unsigned long field, unsigned long value)
453 {
454 	vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
455 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
456 }
457 
458 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
459 {
460 	vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
461 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
462 }
463 
464 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
465 {
466 	vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
467 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
468 }
469 
470 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
471 {
472 	vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
473 			ext, vpid, gva);
474 }
475 
476 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
477 {
478 	vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
479 			ext, eptp, gpa);
480 }
481 
482 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
483 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
484 /*
485  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
486  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
487  */
488 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
489 
490 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
491 static DEFINE_SPINLOCK(vmx_vpid_lock);
492 
493 struct vmcs_config vmcs_config __ro_after_init;
494 struct vmx_capability vmx_capability __ro_after_init;
495 
496 #define VMX_SEGMENT_FIELD(seg)					\
497 	[VCPU_SREG_##seg] = {                                   \
498 		.selector = GUEST_##seg##_SELECTOR,		\
499 		.base = GUEST_##seg##_BASE,		   	\
500 		.limit = GUEST_##seg##_LIMIT,		   	\
501 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
502 	}
503 
504 static const struct kvm_vmx_segment_field {
505 	unsigned selector;
506 	unsigned base;
507 	unsigned limit;
508 	unsigned ar_bytes;
509 } kvm_vmx_segment_fields[] = {
510 	VMX_SEGMENT_FIELD(CS),
511 	VMX_SEGMENT_FIELD(DS),
512 	VMX_SEGMENT_FIELD(ES),
513 	VMX_SEGMENT_FIELD(FS),
514 	VMX_SEGMENT_FIELD(GS),
515 	VMX_SEGMENT_FIELD(SS),
516 	VMX_SEGMENT_FIELD(TR),
517 	VMX_SEGMENT_FIELD(LDTR),
518 };
519 
520 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
521 {
522 	vmx->segment_cache.bitmask = 0;
523 }
524 
525 static unsigned long host_idt_base;
526 
527 #if IS_ENABLED(CONFIG_HYPERV)
528 static struct kvm_x86_ops vmx_x86_ops __initdata;
529 
530 static bool __read_mostly enlightened_vmcs = true;
531 module_param(enlightened_vmcs, bool, 0444);
532 
533 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
534 {
535 	struct hv_enlightened_vmcs *evmcs;
536 	hpa_t partition_assist_page = hv_get_partition_assist_page(vcpu);
537 
538 	if (partition_assist_page == INVALID_PAGE)
539 		return -ENOMEM;
540 
541 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
542 
543 	evmcs->partition_assist_page = partition_assist_page;
544 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
545 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
546 
547 	return 0;
548 }
549 
550 static __init void hv_init_evmcs(void)
551 {
552 	int cpu;
553 
554 	if (!enlightened_vmcs)
555 		return;
556 
557 	/*
558 	 * Enlightened VMCS usage should be recommended and the host needs
559 	 * to support eVMCS v1 or above.
560 	 */
561 	if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
562 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
563 	     KVM_EVMCS_VERSION) {
564 
565 		/* Check that we have assist pages on all online CPUs */
566 		for_each_online_cpu(cpu) {
567 			if (!hv_get_vp_assist_page(cpu)) {
568 				enlightened_vmcs = false;
569 				break;
570 			}
571 		}
572 
573 		if (enlightened_vmcs) {
574 			pr_info("Using Hyper-V Enlightened VMCS\n");
575 			static_branch_enable(&__kvm_is_using_evmcs);
576 		}
577 
578 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
579 			vmx_x86_ops.enable_l2_tlb_flush
580 				= hv_enable_l2_tlb_flush;
581 
582 	} else {
583 		enlightened_vmcs = false;
584 	}
585 }
586 
587 static void hv_reset_evmcs(void)
588 {
589 	struct hv_vp_assist_page *vp_ap;
590 
591 	if (!kvm_is_using_evmcs())
592 		return;
593 
594 	/*
595 	 * KVM should enable eVMCS if and only if all CPUs have a VP assist
596 	 * page, and should reject CPU onlining if eVMCS is enabled the CPU
597 	 * doesn't have a VP assist page allocated.
598 	 */
599 	vp_ap = hv_get_vp_assist_page(smp_processor_id());
600 	if (WARN_ON_ONCE(!vp_ap))
601 		return;
602 
603 	/*
604 	 * Reset everything to support using non-enlightened VMCS access later
605 	 * (e.g. when we reload the module with enlightened_vmcs=0)
606 	 */
607 	vp_ap->nested_control.features.directhypercall = 0;
608 	vp_ap->current_nested_vmcs = 0;
609 	vp_ap->enlighten_vmentry = 0;
610 }
611 
612 #else /* IS_ENABLED(CONFIG_HYPERV) */
613 static void hv_init_evmcs(void) {}
614 static void hv_reset_evmcs(void) {}
615 #endif /* IS_ENABLED(CONFIG_HYPERV) */
616 
617 /*
618  * Comment's format: document - errata name - stepping - processor name.
619  * Refer from
620  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
621  */
622 static u32 vmx_preemption_cpu_tfms[] = {
623 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
624 0x000206E6,
625 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
626 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
627 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
628 0x00020652,
629 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
630 0x00020655,
631 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
632 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
633 /*
634  * 320767.pdf - AAP86  - B1 -
635  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
636  */
637 0x000106E5,
638 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
639 0x000106A0,
640 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
641 0x000106A1,
642 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
643 0x000106A4,
644  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
645  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
646  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
647 0x000106A5,
648  /* Xeon E3-1220 V2 */
649 0x000306A8,
650 };
651 
652 static inline bool cpu_has_broken_vmx_preemption_timer(void)
653 {
654 	u32 eax = cpuid_eax(0x00000001), i;
655 
656 	/* Clear the reserved bits */
657 	eax &= ~(0x3U << 14 | 0xfU << 28);
658 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
659 		if (eax == vmx_preemption_cpu_tfms[i])
660 			return true;
661 
662 	return false;
663 }
664 
665 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
666 {
667 	return flexpriority_enabled && lapic_in_kernel(vcpu);
668 }
669 
670 static int possible_passthrough_msr_slot(u32 msr)
671 {
672 	u32 i;
673 
674 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
675 		if (vmx_possible_passthrough_msrs[i] == msr)
676 			return i;
677 
678 	return -ENOENT;
679 }
680 
681 static bool is_valid_passthrough_msr(u32 msr)
682 {
683 	bool r;
684 
685 	switch (msr) {
686 	case 0x800 ... 0x8ff:
687 		/* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
688 		return true;
689 	case MSR_IA32_RTIT_STATUS:
690 	case MSR_IA32_RTIT_OUTPUT_BASE:
691 	case MSR_IA32_RTIT_OUTPUT_MASK:
692 	case MSR_IA32_RTIT_CR3_MATCH:
693 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
694 		/* PT MSRs. These are handled in pt_update_intercept_for_msr() */
695 	case MSR_LBR_SELECT:
696 	case MSR_LBR_TOS:
697 	case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
698 	case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
699 	case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
700 	case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
701 	case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
702 		/* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
703 		return true;
704 	}
705 
706 	r = possible_passthrough_msr_slot(msr) != -ENOENT;
707 
708 	WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
709 
710 	return r;
711 }
712 
713 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
714 {
715 	int i;
716 
717 	i = kvm_find_user_return_msr(msr);
718 	if (i >= 0)
719 		return &vmx->guest_uret_msrs[i];
720 	return NULL;
721 }
722 
723 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
724 				  struct vmx_uret_msr *msr, u64 data)
725 {
726 	unsigned int slot = msr - vmx->guest_uret_msrs;
727 	int ret = 0;
728 
729 	if (msr->load_into_hardware) {
730 		preempt_disable();
731 		ret = kvm_set_user_return_msr(slot, data, msr->mask);
732 		preempt_enable();
733 	}
734 	if (!ret)
735 		msr->data = data;
736 	return ret;
737 }
738 
739 /*
740  * Disable VMX and clear CR4.VMXE (even if VMXOFF faults)
741  *
742  * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to
743  * atomically track post-VMXON state, e.g. this may be called in NMI context.
744  * Eat all faults as all other faults on VMXOFF faults are mode related, i.e.
745  * faults are guaranteed to be due to the !post-VMXON check unless the CPU is
746  * magically in RM, VM86, compat mode, or at CPL>0.
747  */
748 static int kvm_cpu_vmxoff(void)
749 {
750 	asm goto("1: vmxoff\n\t"
751 			  _ASM_EXTABLE(1b, %l[fault])
752 			  ::: "cc", "memory" : fault);
753 
754 	cr4_clear_bits(X86_CR4_VMXE);
755 	return 0;
756 
757 fault:
758 	cr4_clear_bits(X86_CR4_VMXE);
759 	return -EIO;
760 }
761 
762 static void vmx_emergency_disable(void)
763 {
764 	int cpu = raw_smp_processor_id();
765 	struct loaded_vmcs *v;
766 
767 	kvm_rebooting = true;
768 
769 	/*
770 	 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be
771 	 * set in task context.  If this races with VMX is disabled by an NMI,
772 	 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to
773 	 * kvm_rebooting set.
774 	 */
775 	if (!(__read_cr4() & X86_CR4_VMXE))
776 		return;
777 
778 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
779 			    loaded_vmcss_on_cpu_link)
780 		vmcs_clear(v->vmcs);
781 
782 	kvm_cpu_vmxoff();
783 }
784 
785 static void __loaded_vmcs_clear(void *arg)
786 {
787 	struct loaded_vmcs *loaded_vmcs = arg;
788 	int cpu = raw_smp_processor_id();
789 
790 	if (loaded_vmcs->cpu != cpu)
791 		return; /* vcpu migration can race with cpu offline */
792 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
793 		per_cpu(current_vmcs, cpu) = NULL;
794 
795 	vmcs_clear(loaded_vmcs->vmcs);
796 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
797 		vmcs_clear(loaded_vmcs->shadow_vmcs);
798 
799 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
800 
801 	/*
802 	 * Ensure all writes to loaded_vmcs, including deleting it from its
803 	 * current percpu list, complete before setting loaded_vmcs->cpu to
804 	 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
805 	 * and add loaded_vmcs to its percpu list before it's deleted from this
806 	 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
807 	 */
808 	smp_wmb();
809 
810 	loaded_vmcs->cpu = -1;
811 	loaded_vmcs->launched = 0;
812 }
813 
814 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
815 {
816 	int cpu = loaded_vmcs->cpu;
817 
818 	if (cpu != -1)
819 		smp_call_function_single(cpu,
820 			 __loaded_vmcs_clear, loaded_vmcs, 1);
821 }
822 
823 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
824 				       unsigned field)
825 {
826 	bool ret;
827 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
828 
829 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
830 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
831 		vmx->segment_cache.bitmask = 0;
832 	}
833 	ret = vmx->segment_cache.bitmask & mask;
834 	vmx->segment_cache.bitmask |= mask;
835 	return ret;
836 }
837 
838 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
839 {
840 	u16 *p = &vmx->segment_cache.seg[seg].selector;
841 
842 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
843 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
844 	return *p;
845 }
846 
847 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
848 {
849 	ulong *p = &vmx->segment_cache.seg[seg].base;
850 
851 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
852 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
853 	return *p;
854 }
855 
856 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
857 {
858 	u32 *p = &vmx->segment_cache.seg[seg].limit;
859 
860 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
861 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
862 	return *p;
863 }
864 
865 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
866 {
867 	u32 *p = &vmx->segment_cache.seg[seg].ar;
868 
869 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
870 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
871 	return *p;
872 }
873 
874 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
875 {
876 	u32 eb;
877 
878 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
879 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
880 	/*
881 	 * Guest access to VMware backdoor ports could legitimately
882 	 * trigger #GP because of TSS I/O permission bitmap.
883 	 * We intercept those #GP and allow access to them anyway
884 	 * as VMware does.
885 	 */
886 	if (enable_vmware_backdoor)
887 		eb |= (1u << GP_VECTOR);
888 	if ((vcpu->guest_debug &
889 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
890 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
891 		eb |= 1u << BP_VECTOR;
892 	if (to_vmx(vcpu)->rmode.vm86_active)
893 		eb = ~0;
894 	if (!vmx_need_pf_intercept(vcpu))
895 		eb &= ~(1u << PF_VECTOR);
896 
897 	/* When we are running a nested L2 guest and L1 specified for it a
898 	 * certain exception bitmap, we must trap the same exceptions and pass
899 	 * them to L1. When running L2, we will only handle the exceptions
900 	 * specified above if L1 did not want them.
901 	 */
902 	if (is_guest_mode(vcpu))
903 		eb |= get_vmcs12(vcpu)->exception_bitmap;
904 	else {
905 		int mask = 0, match = 0;
906 
907 		if (enable_ept && (eb & (1u << PF_VECTOR))) {
908 			/*
909 			 * If EPT is enabled, #PF is currently only intercepted
910 			 * if MAXPHYADDR is smaller on the guest than on the
911 			 * host.  In that case we only care about present,
912 			 * non-reserved faults.  For vmcs02, however, PFEC_MASK
913 			 * and PFEC_MATCH are set in prepare_vmcs02_rare.
914 			 */
915 			mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
916 			match = PFERR_PRESENT_MASK;
917 		}
918 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
919 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
920 	}
921 
922 	/*
923 	 * Disabling xfd interception indicates that dynamic xfeatures
924 	 * might be used in the guest. Always trap #NM in this case
925 	 * to save guest xfd_err timely.
926 	 */
927 	if (vcpu->arch.xfd_no_write_intercept)
928 		eb |= (1u << NM_VECTOR);
929 
930 	vmcs_write32(EXCEPTION_BITMAP, eb);
931 }
932 
933 /*
934  * Check if MSR is intercepted for currently loaded MSR bitmap.
935  */
936 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
937 {
938 	if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
939 		return true;
940 
941 	return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
942 }
943 
944 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
945 {
946 	unsigned int flags = 0;
947 
948 	if (vmx->loaded_vmcs->launched)
949 		flags |= VMX_RUN_VMRESUME;
950 
951 	/*
952 	 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
953 	 * to change it directly without causing a vmexit.  In that case read
954 	 * it after vmexit and store it in vmx->spec_ctrl.
955 	 */
956 	if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
957 		flags |= VMX_RUN_SAVE_SPEC_CTRL;
958 
959 	return flags;
960 }
961 
962 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
963 		unsigned long entry, unsigned long exit)
964 {
965 	vm_entry_controls_clearbit(vmx, entry);
966 	vm_exit_controls_clearbit(vmx, exit);
967 }
968 
969 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
970 {
971 	unsigned int i;
972 
973 	for (i = 0; i < m->nr; ++i) {
974 		if (m->val[i].index == msr)
975 			return i;
976 	}
977 	return -ENOENT;
978 }
979 
980 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
981 {
982 	int i;
983 	struct msr_autoload *m = &vmx->msr_autoload;
984 
985 	switch (msr) {
986 	case MSR_EFER:
987 		if (cpu_has_load_ia32_efer()) {
988 			clear_atomic_switch_msr_special(vmx,
989 					VM_ENTRY_LOAD_IA32_EFER,
990 					VM_EXIT_LOAD_IA32_EFER);
991 			return;
992 		}
993 		break;
994 	case MSR_CORE_PERF_GLOBAL_CTRL:
995 		if (cpu_has_load_perf_global_ctrl()) {
996 			clear_atomic_switch_msr_special(vmx,
997 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
998 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
999 			return;
1000 		}
1001 		break;
1002 	}
1003 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1004 	if (i < 0)
1005 		goto skip_guest;
1006 	--m->guest.nr;
1007 	m->guest.val[i] = m->guest.val[m->guest.nr];
1008 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1009 
1010 skip_guest:
1011 	i = vmx_find_loadstore_msr_slot(&m->host, msr);
1012 	if (i < 0)
1013 		return;
1014 
1015 	--m->host.nr;
1016 	m->host.val[i] = m->host.val[m->host.nr];
1017 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1018 }
1019 
1020 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1021 		unsigned long entry, unsigned long exit,
1022 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1023 		u64 guest_val, u64 host_val)
1024 {
1025 	vmcs_write64(guest_val_vmcs, guest_val);
1026 	if (host_val_vmcs != HOST_IA32_EFER)
1027 		vmcs_write64(host_val_vmcs, host_val);
1028 	vm_entry_controls_setbit(vmx, entry);
1029 	vm_exit_controls_setbit(vmx, exit);
1030 }
1031 
1032 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1033 				  u64 guest_val, u64 host_val, bool entry_only)
1034 {
1035 	int i, j = 0;
1036 	struct msr_autoload *m = &vmx->msr_autoload;
1037 
1038 	switch (msr) {
1039 	case MSR_EFER:
1040 		if (cpu_has_load_ia32_efer()) {
1041 			add_atomic_switch_msr_special(vmx,
1042 					VM_ENTRY_LOAD_IA32_EFER,
1043 					VM_EXIT_LOAD_IA32_EFER,
1044 					GUEST_IA32_EFER,
1045 					HOST_IA32_EFER,
1046 					guest_val, host_val);
1047 			return;
1048 		}
1049 		break;
1050 	case MSR_CORE_PERF_GLOBAL_CTRL:
1051 		if (cpu_has_load_perf_global_ctrl()) {
1052 			add_atomic_switch_msr_special(vmx,
1053 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1054 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1055 					GUEST_IA32_PERF_GLOBAL_CTRL,
1056 					HOST_IA32_PERF_GLOBAL_CTRL,
1057 					guest_val, host_val);
1058 			return;
1059 		}
1060 		break;
1061 	case MSR_IA32_PEBS_ENABLE:
1062 		/* PEBS needs a quiescent period after being disabled (to write
1063 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
1064 		 * provide that period, so a CPU could write host's record into
1065 		 * guest's memory.
1066 		 */
1067 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1068 	}
1069 
1070 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1071 	if (!entry_only)
1072 		j = vmx_find_loadstore_msr_slot(&m->host, msr);
1073 
1074 	if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1075 	    (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1076 		printk_once(KERN_WARNING "Not enough msr switch entries. "
1077 				"Can't add msr %x\n", msr);
1078 		return;
1079 	}
1080 	if (i < 0) {
1081 		i = m->guest.nr++;
1082 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1083 	}
1084 	m->guest.val[i].index = msr;
1085 	m->guest.val[i].value = guest_val;
1086 
1087 	if (entry_only)
1088 		return;
1089 
1090 	if (j < 0) {
1091 		j = m->host.nr++;
1092 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1093 	}
1094 	m->host.val[j].index = msr;
1095 	m->host.val[j].value = host_val;
1096 }
1097 
1098 static bool update_transition_efer(struct vcpu_vmx *vmx)
1099 {
1100 	u64 guest_efer = vmx->vcpu.arch.efer;
1101 	u64 ignore_bits = 0;
1102 	int i;
1103 
1104 	/* Shadow paging assumes NX to be available.  */
1105 	if (!enable_ept)
1106 		guest_efer |= EFER_NX;
1107 
1108 	/*
1109 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1110 	 */
1111 	ignore_bits |= EFER_SCE;
1112 #ifdef CONFIG_X86_64
1113 	ignore_bits |= EFER_LMA | EFER_LME;
1114 	/* SCE is meaningful only in long mode on Intel */
1115 	if (guest_efer & EFER_LMA)
1116 		ignore_bits &= ~(u64)EFER_SCE;
1117 #endif
1118 
1119 	/*
1120 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1121 	 * On CPUs that support "load IA32_EFER", always switch EFER
1122 	 * atomically, since it's faster than switching it manually.
1123 	 */
1124 	if (cpu_has_load_ia32_efer() ||
1125 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1126 		if (!(guest_efer & EFER_LMA))
1127 			guest_efer &= ~EFER_LME;
1128 		if (guest_efer != host_efer)
1129 			add_atomic_switch_msr(vmx, MSR_EFER,
1130 					      guest_efer, host_efer, false);
1131 		else
1132 			clear_atomic_switch_msr(vmx, MSR_EFER);
1133 		return false;
1134 	}
1135 
1136 	i = kvm_find_user_return_msr(MSR_EFER);
1137 	if (i < 0)
1138 		return false;
1139 
1140 	clear_atomic_switch_msr(vmx, MSR_EFER);
1141 
1142 	guest_efer &= ~ignore_bits;
1143 	guest_efer |= host_efer & ignore_bits;
1144 
1145 	vmx->guest_uret_msrs[i].data = guest_efer;
1146 	vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1147 
1148 	return true;
1149 }
1150 
1151 #ifdef CONFIG_X86_32
1152 /*
1153  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1154  * VMCS rather than the segment table.  KVM uses this helper to figure
1155  * out the current bases to poke them into the VMCS before entry.
1156  */
1157 static unsigned long segment_base(u16 selector)
1158 {
1159 	struct desc_struct *table;
1160 	unsigned long v;
1161 
1162 	if (!(selector & ~SEGMENT_RPL_MASK))
1163 		return 0;
1164 
1165 	table = get_current_gdt_ro();
1166 
1167 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1168 		u16 ldt_selector = kvm_read_ldt();
1169 
1170 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1171 			return 0;
1172 
1173 		table = (struct desc_struct *)segment_base(ldt_selector);
1174 	}
1175 	v = get_desc_base(&table[selector >> 3]);
1176 	return v;
1177 }
1178 #endif
1179 
1180 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1181 {
1182 	return vmx_pt_mode_is_host_guest() &&
1183 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1184 }
1185 
1186 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1187 {
1188 	/* The base must be 128-byte aligned and a legal physical address. */
1189 	return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1190 }
1191 
1192 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1193 {
1194 	u32 i;
1195 
1196 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1197 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1198 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1199 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1200 	for (i = 0; i < addr_range; i++) {
1201 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1202 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1203 	}
1204 }
1205 
1206 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1207 {
1208 	u32 i;
1209 
1210 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1211 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1212 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1213 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1214 	for (i = 0; i < addr_range; i++) {
1215 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1216 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1217 	}
1218 }
1219 
1220 static void pt_guest_enter(struct vcpu_vmx *vmx)
1221 {
1222 	if (vmx_pt_mode_is_system())
1223 		return;
1224 
1225 	/*
1226 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1227 	 * Save host state before VM entry.
1228 	 */
1229 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1230 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1231 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1232 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1233 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1234 	}
1235 }
1236 
1237 static void pt_guest_exit(struct vcpu_vmx *vmx)
1238 {
1239 	if (vmx_pt_mode_is_system())
1240 		return;
1241 
1242 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1243 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1244 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1245 	}
1246 
1247 	/*
1248 	 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1249 	 * i.e. RTIT_CTL is always cleared on VM-Exit.  Restore it if necessary.
1250 	 */
1251 	if (vmx->pt_desc.host.ctl)
1252 		wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1253 }
1254 
1255 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1256 			unsigned long fs_base, unsigned long gs_base)
1257 {
1258 	if (unlikely(fs_sel != host->fs_sel)) {
1259 		if (!(fs_sel & 7))
1260 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1261 		else
1262 			vmcs_write16(HOST_FS_SELECTOR, 0);
1263 		host->fs_sel = fs_sel;
1264 	}
1265 	if (unlikely(gs_sel != host->gs_sel)) {
1266 		if (!(gs_sel & 7))
1267 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1268 		else
1269 			vmcs_write16(HOST_GS_SELECTOR, 0);
1270 		host->gs_sel = gs_sel;
1271 	}
1272 	if (unlikely(fs_base != host->fs_base)) {
1273 		vmcs_writel(HOST_FS_BASE, fs_base);
1274 		host->fs_base = fs_base;
1275 	}
1276 	if (unlikely(gs_base != host->gs_base)) {
1277 		vmcs_writel(HOST_GS_BASE, gs_base);
1278 		host->gs_base = gs_base;
1279 	}
1280 }
1281 
1282 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1283 {
1284 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1285 	struct vmcs_host_state *host_state;
1286 #ifdef CONFIG_X86_64
1287 	int cpu = raw_smp_processor_id();
1288 #endif
1289 	unsigned long fs_base, gs_base;
1290 	u16 fs_sel, gs_sel;
1291 	int i;
1292 
1293 	vmx->req_immediate_exit = false;
1294 
1295 	/*
1296 	 * Note that guest MSRs to be saved/restored can also be changed
1297 	 * when guest state is loaded. This happens when guest transitions
1298 	 * to/from long-mode by setting MSR_EFER.LMA.
1299 	 */
1300 	if (!vmx->guest_uret_msrs_loaded) {
1301 		vmx->guest_uret_msrs_loaded = true;
1302 		for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1303 			if (!vmx->guest_uret_msrs[i].load_into_hardware)
1304 				continue;
1305 
1306 			kvm_set_user_return_msr(i,
1307 						vmx->guest_uret_msrs[i].data,
1308 						vmx->guest_uret_msrs[i].mask);
1309 		}
1310 	}
1311 
1312 	if (vmx->nested.need_vmcs12_to_shadow_sync)
1313 		nested_sync_vmcs12_to_shadow(vcpu);
1314 
1315 	if (vmx->guest_state_loaded)
1316 		return;
1317 
1318 	host_state = &vmx->loaded_vmcs->host_state;
1319 
1320 	/*
1321 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1322 	 * allow segment selectors with cpl > 0 or ti == 1.
1323 	 */
1324 	host_state->ldt_sel = kvm_read_ldt();
1325 
1326 #ifdef CONFIG_X86_64
1327 	savesegment(ds, host_state->ds_sel);
1328 	savesegment(es, host_state->es_sel);
1329 
1330 	gs_base = cpu_kernelmode_gs_base(cpu);
1331 	if (likely(is_64bit_mm(current->mm))) {
1332 		current_save_fsgs();
1333 		fs_sel = current->thread.fsindex;
1334 		gs_sel = current->thread.gsindex;
1335 		fs_base = current->thread.fsbase;
1336 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1337 	} else {
1338 		savesegment(fs, fs_sel);
1339 		savesegment(gs, gs_sel);
1340 		fs_base = read_msr(MSR_FS_BASE);
1341 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1342 	}
1343 
1344 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1345 #else
1346 	savesegment(fs, fs_sel);
1347 	savesegment(gs, gs_sel);
1348 	fs_base = segment_base(fs_sel);
1349 	gs_base = segment_base(gs_sel);
1350 #endif
1351 
1352 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1353 	vmx->guest_state_loaded = true;
1354 }
1355 
1356 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1357 {
1358 	struct vmcs_host_state *host_state;
1359 
1360 	if (!vmx->guest_state_loaded)
1361 		return;
1362 
1363 	host_state = &vmx->loaded_vmcs->host_state;
1364 
1365 	++vmx->vcpu.stat.host_state_reload;
1366 
1367 #ifdef CONFIG_X86_64
1368 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1369 #endif
1370 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1371 		kvm_load_ldt(host_state->ldt_sel);
1372 #ifdef CONFIG_X86_64
1373 		load_gs_index(host_state->gs_sel);
1374 #else
1375 		loadsegment(gs, host_state->gs_sel);
1376 #endif
1377 	}
1378 	if (host_state->fs_sel & 7)
1379 		loadsegment(fs, host_state->fs_sel);
1380 #ifdef CONFIG_X86_64
1381 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1382 		loadsegment(ds, host_state->ds_sel);
1383 		loadsegment(es, host_state->es_sel);
1384 	}
1385 #endif
1386 	invalidate_tss_limit();
1387 #ifdef CONFIG_X86_64
1388 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1389 #endif
1390 	load_fixmap_gdt(raw_smp_processor_id());
1391 	vmx->guest_state_loaded = false;
1392 	vmx->guest_uret_msrs_loaded = false;
1393 }
1394 
1395 #ifdef CONFIG_X86_64
1396 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1397 {
1398 	preempt_disable();
1399 	if (vmx->guest_state_loaded)
1400 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1401 	preempt_enable();
1402 	return vmx->msr_guest_kernel_gs_base;
1403 }
1404 
1405 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1406 {
1407 	preempt_disable();
1408 	if (vmx->guest_state_loaded)
1409 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1410 	preempt_enable();
1411 	vmx->msr_guest_kernel_gs_base = data;
1412 }
1413 #endif
1414 
1415 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1416 			struct loaded_vmcs *buddy)
1417 {
1418 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1419 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1420 	struct vmcs *prev;
1421 
1422 	if (!already_loaded) {
1423 		loaded_vmcs_clear(vmx->loaded_vmcs);
1424 		local_irq_disable();
1425 
1426 		/*
1427 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1428 		 * this cpu's percpu list, otherwise it may not yet be deleted
1429 		 * from its previous cpu's percpu list.  Pairs with the
1430 		 * smb_wmb() in __loaded_vmcs_clear().
1431 		 */
1432 		smp_rmb();
1433 
1434 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1435 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1436 		local_irq_enable();
1437 	}
1438 
1439 	prev = per_cpu(current_vmcs, cpu);
1440 	if (prev != vmx->loaded_vmcs->vmcs) {
1441 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1442 		vmcs_load(vmx->loaded_vmcs->vmcs);
1443 
1444 		/*
1445 		 * No indirect branch prediction barrier needed when switching
1446 		 * the active VMCS within a vCPU, unless IBRS is advertised to
1447 		 * the vCPU.  To minimize the number of IBPBs executed, KVM
1448 		 * performs IBPB on nested VM-Exit (a single nested transition
1449 		 * may switch the active VMCS multiple times).
1450 		 */
1451 		if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1452 			indirect_branch_prediction_barrier();
1453 	}
1454 
1455 	if (!already_loaded) {
1456 		void *gdt = get_current_gdt_ro();
1457 
1458 		/*
1459 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1460 		 * TLB entries from its previous association with the vCPU.
1461 		 */
1462 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1463 
1464 		/*
1465 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1466 		 * processors.  See 22.2.4.
1467 		 */
1468 		vmcs_writel(HOST_TR_BASE,
1469 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1470 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1471 
1472 		if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1473 			/* 22.2.3 */
1474 			vmcs_writel(HOST_IA32_SYSENTER_ESP,
1475 				    (unsigned long)(cpu_entry_stack(cpu) + 1));
1476 		}
1477 
1478 		vmx->loaded_vmcs->cpu = cpu;
1479 	}
1480 }
1481 
1482 /*
1483  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1484  * vcpu mutex is already taken.
1485  */
1486 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1487 {
1488 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1489 
1490 	vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1491 
1492 	vmx_vcpu_pi_load(vcpu, cpu);
1493 
1494 	vmx->host_debugctlmsr = get_debugctlmsr();
1495 }
1496 
1497 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1498 {
1499 	vmx_vcpu_pi_put(vcpu);
1500 
1501 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1502 }
1503 
1504 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1505 {
1506 	return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1507 }
1508 
1509 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1510 {
1511 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1512 	unsigned long rflags, save_rflags;
1513 
1514 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1515 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1516 		rflags = vmcs_readl(GUEST_RFLAGS);
1517 		if (vmx->rmode.vm86_active) {
1518 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1519 			save_rflags = vmx->rmode.save_rflags;
1520 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1521 		}
1522 		vmx->rflags = rflags;
1523 	}
1524 	return vmx->rflags;
1525 }
1526 
1527 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1528 {
1529 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1530 	unsigned long old_rflags;
1531 
1532 	/*
1533 	 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU
1534 	 * is an unrestricted guest in order to mark L2 as needing emulation
1535 	 * if L1 runs L2 as a restricted guest.
1536 	 */
1537 	if (is_unrestricted_guest(vcpu)) {
1538 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1539 		vmx->rflags = rflags;
1540 		vmcs_writel(GUEST_RFLAGS, rflags);
1541 		return;
1542 	}
1543 
1544 	old_rflags = vmx_get_rflags(vcpu);
1545 	vmx->rflags = rflags;
1546 	if (vmx->rmode.vm86_active) {
1547 		vmx->rmode.save_rflags = rflags;
1548 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1549 	}
1550 	vmcs_writel(GUEST_RFLAGS, rflags);
1551 
1552 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1553 		vmx->emulation_required = vmx_emulation_required(vcpu);
1554 }
1555 
1556 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1557 {
1558 	return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1559 }
1560 
1561 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1562 {
1563 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1564 	int ret = 0;
1565 
1566 	if (interruptibility & GUEST_INTR_STATE_STI)
1567 		ret |= KVM_X86_SHADOW_INT_STI;
1568 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1569 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1570 
1571 	return ret;
1572 }
1573 
1574 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1575 {
1576 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1577 	u32 interruptibility = interruptibility_old;
1578 
1579 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1580 
1581 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1582 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1583 	else if (mask & KVM_X86_SHADOW_INT_STI)
1584 		interruptibility |= GUEST_INTR_STATE_STI;
1585 
1586 	if ((interruptibility != interruptibility_old))
1587 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1588 }
1589 
1590 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1591 {
1592 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1593 	unsigned long value;
1594 
1595 	/*
1596 	 * Any MSR write that attempts to change bits marked reserved will
1597 	 * case a #GP fault.
1598 	 */
1599 	if (data & vmx->pt_desc.ctl_bitmask)
1600 		return 1;
1601 
1602 	/*
1603 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1604 	 * result in a #GP unless the same write also clears TraceEn.
1605 	 */
1606 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1607 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1608 		return 1;
1609 
1610 	/*
1611 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1612 	 * and FabricEn would cause #GP, if
1613 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1614 	 */
1615 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1616 		!(data & RTIT_CTL_FABRIC_EN) &&
1617 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1618 					PT_CAP_single_range_output))
1619 		return 1;
1620 
1621 	/*
1622 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1623 	 * utilize encodings marked reserved will cause a #GP fault.
1624 	 */
1625 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1626 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1627 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1628 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1629 		return 1;
1630 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1631 						PT_CAP_cycle_thresholds);
1632 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1633 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1634 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1635 		return 1;
1636 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1637 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1638 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1639 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1640 		return 1;
1641 
1642 	/*
1643 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1644 	 * cause a #GP fault.
1645 	 */
1646 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1647 	if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1648 		return 1;
1649 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1650 	if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1651 		return 1;
1652 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1653 	if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1654 		return 1;
1655 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1656 	if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1657 		return 1;
1658 
1659 	return 0;
1660 }
1661 
1662 static int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1663 					 void *insn, int insn_len)
1664 {
1665 	/*
1666 	 * Emulation of instructions in SGX enclaves is impossible as RIP does
1667 	 * not point at the failing instruction, and even if it did, the code
1668 	 * stream is inaccessible.  Inject #UD instead of exiting to userspace
1669 	 * so that guest userspace can't DoS the guest simply by triggering
1670 	 * emulation (enclaves are CPL3 only).
1671 	 */
1672 	if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1673 		kvm_queue_exception(vcpu, UD_VECTOR);
1674 		return X86EMUL_PROPAGATE_FAULT;
1675 	}
1676 	return X86EMUL_CONTINUE;
1677 }
1678 
1679 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1680 {
1681 	union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1682 	unsigned long rip, orig_rip;
1683 	u32 instr_len;
1684 
1685 	/*
1686 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1687 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1688 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1689 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1690 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1691 	 * i.e. we end up advancing IP with some random value.
1692 	 */
1693 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1694 	    exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1695 		instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1696 
1697 		/*
1698 		 * Emulating an enclave's instructions isn't supported as KVM
1699 		 * cannot access the enclave's memory or its true RIP, e.g. the
1700 		 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1701 		 * the RIP that actually triggered the VM-Exit.  But, because
1702 		 * most instructions that cause VM-Exit will #UD in an enclave,
1703 		 * most instruction-based VM-Exits simply do not occur.
1704 		 *
1705 		 * There are a few exceptions, notably the debug instructions
1706 		 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1707 		 * and generate #DB/#BP as expected, which KVM might intercept.
1708 		 * But again, the CPU does the dirty work and saves an instr
1709 		 * length of zero so VMMs don't shoot themselves in the foot.
1710 		 * WARN if KVM tries to skip a non-zero length instruction on
1711 		 * a VM-Exit from an enclave.
1712 		 */
1713 		if (!instr_len)
1714 			goto rip_updated;
1715 
1716 		WARN_ONCE(exit_reason.enclave_mode,
1717 			  "skipping instruction after SGX enclave VM-Exit");
1718 
1719 		orig_rip = kvm_rip_read(vcpu);
1720 		rip = orig_rip + instr_len;
1721 #ifdef CONFIG_X86_64
1722 		/*
1723 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1724 		 * mode, but just finding out that we are in 64-bit mode is
1725 		 * quite expensive.  Only do it if there was a carry.
1726 		 */
1727 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1728 			rip = (u32)rip;
1729 #endif
1730 		kvm_rip_write(vcpu, rip);
1731 	} else {
1732 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1733 			return 0;
1734 	}
1735 
1736 rip_updated:
1737 	/* skipping an emulated instruction also counts */
1738 	vmx_set_interrupt_shadow(vcpu, 0);
1739 
1740 	return 1;
1741 }
1742 
1743 /*
1744  * Recognizes a pending MTF VM-exit and records the nested state for later
1745  * delivery.
1746  */
1747 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1748 {
1749 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1750 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1751 
1752 	if (!is_guest_mode(vcpu))
1753 		return;
1754 
1755 	/*
1756 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1757 	 * TSS T-bit traps and ICEBP (INT1).  KVM doesn't emulate T-bit traps
1758 	 * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1759 	 * intercepted #DB deliberately avoids single-step #DB and MTF updates
1760 	 * as ICEBP is higher priority than both.  As instruction emulation is
1761 	 * completed at this point (i.e. KVM is at the instruction boundary),
1762 	 * any #DB exception pending delivery must be a debug-trap of lower
1763 	 * priority than MTF.  Record the pending MTF state to be delivered in
1764 	 * vmx_check_nested_events().
1765 	 */
1766 	if (nested_cpu_has_mtf(vmcs12) &&
1767 	    (!vcpu->arch.exception.pending ||
1768 	     vcpu->arch.exception.vector == DB_VECTOR) &&
1769 	    (!vcpu->arch.exception_vmexit.pending ||
1770 	     vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1771 		vmx->nested.mtf_pending = true;
1772 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1773 	} else {
1774 		vmx->nested.mtf_pending = false;
1775 	}
1776 }
1777 
1778 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1779 {
1780 	vmx_update_emulated_instruction(vcpu);
1781 	return skip_emulated_instruction(vcpu);
1782 }
1783 
1784 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1785 {
1786 	/*
1787 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1788 	 * explicitly skip the instruction because if the HLT state is set,
1789 	 * then the instruction is already executing and RIP has already been
1790 	 * advanced.
1791 	 */
1792 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1793 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1794 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1795 }
1796 
1797 static void vmx_inject_exception(struct kvm_vcpu *vcpu)
1798 {
1799 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
1800 	u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1801 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1802 
1803 	kvm_deliver_exception_payload(vcpu, ex);
1804 
1805 	if (ex->has_error_code) {
1806 		/*
1807 		 * Despite the error code being architecturally defined as 32
1808 		 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1809 		 * VMX don't actually supporting setting bits 31:16.  Hardware
1810 		 * will (should) never provide a bogus error code, but AMD CPUs
1811 		 * do generate error codes with bits 31:16 set, and so KVM's
1812 		 * ABI lets userspace shove in arbitrary 32-bit values.  Drop
1813 		 * the upper bits to avoid VM-Fail, losing information that
1814 		 * doesn't really exist is preferable to killing the VM.
1815 		 */
1816 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1817 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1818 	}
1819 
1820 	if (vmx->rmode.vm86_active) {
1821 		int inc_eip = 0;
1822 		if (kvm_exception_is_soft(ex->vector))
1823 			inc_eip = vcpu->arch.event_exit_inst_len;
1824 		kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1825 		return;
1826 	}
1827 
1828 	WARN_ON_ONCE(vmx->emulation_required);
1829 
1830 	if (kvm_exception_is_soft(ex->vector)) {
1831 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1832 			     vmx->vcpu.arch.event_exit_inst_len);
1833 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1834 	} else
1835 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1836 
1837 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1838 
1839 	vmx_clear_hlt(vcpu);
1840 }
1841 
1842 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1843 			       bool load_into_hardware)
1844 {
1845 	struct vmx_uret_msr *uret_msr;
1846 
1847 	uret_msr = vmx_find_uret_msr(vmx, msr);
1848 	if (!uret_msr)
1849 		return;
1850 
1851 	uret_msr->load_into_hardware = load_into_hardware;
1852 }
1853 
1854 /*
1855  * Configuring user return MSRs to automatically save, load, and restore MSRs
1856  * that need to be shoved into hardware when running the guest.  Note, omitting
1857  * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1858  * loaded into hardware when running the guest.
1859  */
1860 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1861 {
1862 #ifdef CONFIG_X86_64
1863 	bool load_syscall_msrs;
1864 
1865 	/*
1866 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1867 	 * when EFER.SCE is set.
1868 	 */
1869 	load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1870 			    (vmx->vcpu.arch.efer & EFER_SCE);
1871 
1872 	vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1873 	vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1874 	vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1875 #endif
1876 	vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1877 
1878 	vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1879 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1880 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1881 
1882 	/*
1883 	 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1884 	 * kernel and old userspace.  If those guests run on a tsx=off host, do
1885 	 * allow guests to use TSX_CTRL, but don't change the value in hardware
1886 	 * so that TSX remains always disabled.
1887 	 */
1888 	vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1889 
1890 	/*
1891 	 * The set of MSRs to load may have changed, reload MSRs before the
1892 	 * next VM-Enter.
1893 	 */
1894 	vmx->guest_uret_msrs_loaded = false;
1895 }
1896 
1897 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1898 {
1899 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1900 
1901 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1902 		return vmcs12->tsc_offset;
1903 
1904 	return 0;
1905 }
1906 
1907 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1908 {
1909 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1910 
1911 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1912 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1913 		return vmcs12->tsc_multiplier;
1914 
1915 	return kvm_caps.default_tsc_scaling_ratio;
1916 }
1917 
1918 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu)
1919 {
1920 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
1921 }
1922 
1923 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1924 {
1925 	vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
1926 }
1927 
1928 /*
1929  * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
1930  * guest CPUID.  Note, KVM allows userspace to set "VMX in SMX" to maintain
1931  * backwards compatibility even though KVM doesn't support emulating SMX.  And
1932  * because userspace set "VMX in SMX", the guest must also be allowed to set it,
1933  * e.g. if the MSR is left unlocked and the guest does a RMW operation.
1934  */
1935 #define KVM_SUPPORTED_FEATURE_CONTROL  (FEAT_CTL_LOCKED			 | \
1936 					FEAT_CTL_VMX_ENABLED_INSIDE_SMX	 | \
1937 					FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
1938 					FEAT_CTL_SGX_LC_ENABLED		 | \
1939 					FEAT_CTL_SGX_ENABLED		 | \
1940 					FEAT_CTL_LMCE_ENABLED)
1941 
1942 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
1943 						    struct msr_data *msr)
1944 {
1945 	uint64_t valid_bits;
1946 
1947 	/*
1948 	 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
1949 	 * exposed to the guest.
1950 	 */
1951 	WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
1952 		     ~KVM_SUPPORTED_FEATURE_CONTROL);
1953 
1954 	if (!msr->host_initiated &&
1955 	    (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
1956 		return false;
1957 
1958 	if (msr->host_initiated)
1959 		valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
1960 	else
1961 		valid_bits = vmx->msr_ia32_feature_control_valid_bits;
1962 
1963 	return !(msr->data & ~valid_bits);
1964 }
1965 
1966 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1967 {
1968 	switch (msr->index) {
1969 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
1970 		if (!nested)
1971 			return 1;
1972 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1973 	default:
1974 		return KVM_MSR_RET_INVALID;
1975 	}
1976 }
1977 
1978 /*
1979  * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
1980  * Returns 0 on success, non-0 otherwise.
1981  * Assumes vcpu_load() was already called.
1982  */
1983 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1984 {
1985 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1986 	struct vmx_uret_msr *msr;
1987 	u32 index;
1988 
1989 	switch (msr_info->index) {
1990 #ifdef CONFIG_X86_64
1991 	case MSR_FS_BASE:
1992 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1993 		break;
1994 	case MSR_GS_BASE:
1995 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1996 		break;
1997 	case MSR_KERNEL_GS_BASE:
1998 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1999 		break;
2000 #endif
2001 	case MSR_EFER:
2002 		return kvm_get_msr_common(vcpu, msr_info);
2003 	case MSR_IA32_TSX_CTRL:
2004 		if (!msr_info->host_initiated &&
2005 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2006 			return 1;
2007 		goto find_uret_msr;
2008 	case MSR_IA32_UMWAIT_CONTROL:
2009 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2010 			return 1;
2011 
2012 		msr_info->data = vmx->msr_ia32_umwait_control;
2013 		break;
2014 	case MSR_IA32_SPEC_CTRL:
2015 		if (!msr_info->host_initiated &&
2016 		    !guest_has_spec_ctrl_msr(vcpu))
2017 			return 1;
2018 
2019 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
2020 		break;
2021 	case MSR_IA32_SYSENTER_CS:
2022 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2023 		break;
2024 	case MSR_IA32_SYSENTER_EIP:
2025 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2026 		break;
2027 	case MSR_IA32_SYSENTER_ESP:
2028 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2029 		break;
2030 	case MSR_IA32_BNDCFGS:
2031 		if (!kvm_mpx_supported() ||
2032 		    (!msr_info->host_initiated &&
2033 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2034 			return 1;
2035 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2036 		break;
2037 	case MSR_IA32_MCG_EXT_CTL:
2038 		if (!msr_info->host_initiated &&
2039 		    !(vmx->msr_ia32_feature_control &
2040 		      FEAT_CTL_LMCE_ENABLED))
2041 			return 1;
2042 		msr_info->data = vcpu->arch.mcg_ext_ctl;
2043 		break;
2044 	case MSR_IA32_FEAT_CTL:
2045 		msr_info->data = vmx->msr_ia32_feature_control;
2046 		break;
2047 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2048 		if (!msr_info->host_initiated &&
2049 		    !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
2050 			return 1;
2051 		msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
2052 			[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
2053 		break;
2054 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2055 		if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2056 			return 1;
2057 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
2058 				    &msr_info->data))
2059 			return 1;
2060 #ifdef CONFIG_KVM_HYPERV
2061 		/*
2062 		 * Enlightened VMCS v1 doesn't have certain VMCS fields but
2063 		 * instead of just ignoring the features, different Hyper-V
2064 		 * versions are either trying to use them and fail or do some
2065 		 * sanity checking and refuse to boot. Filter all unsupported
2066 		 * features out.
2067 		 */
2068 		if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu))
2069 			nested_evmcs_filter_control_msr(vcpu, msr_info->index,
2070 							&msr_info->data);
2071 #endif
2072 		break;
2073 	case MSR_IA32_RTIT_CTL:
2074 		if (!vmx_pt_mode_is_host_guest())
2075 			return 1;
2076 		msr_info->data = vmx->pt_desc.guest.ctl;
2077 		break;
2078 	case MSR_IA32_RTIT_STATUS:
2079 		if (!vmx_pt_mode_is_host_guest())
2080 			return 1;
2081 		msr_info->data = vmx->pt_desc.guest.status;
2082 		break;
2083 	case MSR_IA32_RTIT_CR3_MATCH:
2084 		if (!vmx_pt_mode_is_host_guest() ||
2085 			!intel_pt_validate_cap(vmx->pt_desc.caps,
2086 						PT_CAP_cr3_filtering))
2087 			return 1;
2088 		msr_info->data = vmx->pt_desc.guest.cr3_match;
2089 		break;
2090 	case MSR_IA32_RTIT_OUTPUT_BASE:
2091 		if (!vmx_pt_mode_is_host_guest() ||
2092 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2093 					PT_CAP_topa_output) &&
2094 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2095 					PT_CAP_single_range_output)))
2096 			return 1;
2097 		msr_info->data = vmx->pt_desc.guest.output_base;
2098 		break;
2099 	case MSR_IA32_RTIT_OUTPUT_MASK:
2100 		if (!vmx_pt_mode_is_host_guest() ||
2101 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2102 					PT_CAP_topa_output) &&
2103 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2104 					PT_CAP_single_range_output)))
2105 			return 1;
2106 		msr_info->data = vmx->pt_desc.guest.output_mask;
2107 		break;
2108 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2109 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2110 		if (!vmx_pt_mode_is_host_guest() ||
2111 		    (index >= 2 * vmx->pt_desc.num_address_ranges))
2112 			return 1;
2113 		if (index % 2)
2114 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2115 		else
2116 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2117 		break;
2118 	case MSR_IA32_DEBUGCTLMSR:
2119 		msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
2120 		break;
2121 	default:
2122 	find_uret_msr:
2123 		msr = vmx_find_uret_msr(vmx, msr_info->index);
2124 		if (msr) {
2125 			msr_info->data = msr->data;
2126 			break;
2127 		}
2128 		return kvm_get_msr_common(vcpu, msr_info);
2129 	}
2130 
2131 	return 0;
2132 }
2133 
2134 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2135 						    u64 data)
2136 {
2137 #ifdef CONFIG_X86_64
2138 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2139 		return (u32)data;
2140 #endif
2141 	return (unsigned long)data;
2142 }
2143 
2144 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2145 {
2146 	u64 debugctl = 0;
2147 
2148 	if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2149 	    (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2150 		debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2151 
2152 	if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) &&
2153 	    (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2154 		debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2155 
2156 	return debugctl;
2157 }
2158 
2159 /*
2160  * Writes msr value into the appropriate "register".
2161  * Returns 0 on success, non-0 otherwise.
2162  * Assumes vcpu_load() was already called.
2163  */
2164 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2165 {
2166 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2167 	struct vmx_uret_msr *msr;
2168 	int ret = 0;
2169 	u32 msr_index = msr_info->index;
2170 	u64 data = msr_info->data;
2171 	u32 index;
2172 
2173 	switch (msr_index) {
2174 	case MSR_EFER:
2175 		ret = kvm_set_msr_common(vcpu, msr_info);
2176 		break;
2177 #ifdef CONFIG_X86_64
2178 	case MSR_FS_BASE:
2179 		vmx_segment_cache_clear(vmx);
2180 		vmcs_writel(GUEST_FS_BASE, data);
2181 		break;
2182 	case MSR_GS_BASE:
2183 		vmx_segment_cache_clear(vmx);
2184 		vmcs_writel(GUEST_GS_BASE, data);
2185 		break;
2186 	case MSR_KERNEL_GS_BASE:
2187 		vmx_write_guest_kernel_gs_base(vmx, data);
2188 		break;
2189 	case MSR_IA32_XFD:
2190 		ret = kvm_set_msr_common(vcpu, msr_info);
2191 		/*
2192 		 * Always intercepting WRMSR could incur non-negligible
2193 		 * overhead given xfd might be changed frequently in
2194 		 * guest context switch. Disable write interception
2195 		 * upon the first write with a non-zero value (indicating
2196 		 * potential usage on dynamic xfeatures). Also update
2197 		 * exception bitmap to trap #NM for proper virtualization
2198 		 * of guest xfd_err.
2199 		 */
2200 		if (!ret && data) {
2201 			vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2202 						      MSR_TYPE_RW);
2203 			vcpu->arch.xfd_no_write_intercept = true;
2204 			vmx_update_exception_bitmap(vcpu);
2205 		}
2206 		break;
2207 #endif
2208 	case MSR_IA32_SYSENTER_CS:
2209 		if (is_guest_mode(vcpu))
2210 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
2211 		vmcs_write32(GUEST_SYSENTER_CS, data);
2212 		break;
2213 	case MSR_IA32_SYSENTER_EIP:
2214 		if (is_guest_mode(vcpu)) {
2215 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2216 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
2217 		}
2218 		vmcs_writel(GUEST_SYSENTER_EIP, data);
2219 		break;
2220 	case MSR_IA32_SYSENTER_ESP:
2221 		if (is_guest_mode(vcpu)) {
2222 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2223 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
2224 		}
2225 		vmcs_writel(GUEST_SYSENTER_ESP, data);
2226 		break;
2227 	case MSR_IA32_DEBUGCTLMSR: {
2228 		u64 invalid;
2229 
2230 		invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2231 		if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2232 			kvm_pr_unimpl_wrmsr(vcpu, msr_index, data);
2233 			data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2234 			invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2235 		}
2236 
2237 		if (invalid)
2238 			return 1;
2239 
2240 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2241 						VM_EXIT_SAVE_DEBUG_CONTROLS)
2242 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2243 
2244 		vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2245 		if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2246 		    (data & DEBUGCTLMSR_LBR))
2247 			intel_pmu_create_guest_lbr_event(vcpu);
2248 		return 0;
2249 	}
2250 	case MSR_IA32_BNDCFGS:
2251 		if (!kvm_mpx_supported() ||
2252 		    (!msr_info->host_initiated &&
2253 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2254 			return 1;
2255 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2256 		    (data & MSR_IA32_BNDCFGS_RSVD))
2257 			return 1;
2258 
2259 		if (is_guest_mode(vcpu) &&
2260 		    ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2261 		     (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2262 			get_vmcs12(vcpu)->guest_bndcfgs = data;
2263 
2264 		vmcs_write64(GUEST_BNDCFGS, data);
2265 		break;
2266 	case MSR_IA32_UMWAIT_CONTROL:
2267 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2268 			return 1;
2269 
2270 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2271 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2272 			return 1;
2273 
2274 		vmx->msr_ia32_umwait_control = data;
2275 		break;
2276 	case MSR_IA32_SPEC_CTRL:
2277 		if (!msr_info->host_initiated &&
2278 		    !guest_has_spec_ctrl_msr(vcpu))
2279 			return 1;
2280 
2281 		if (kvm_spec_ctrl_test_value(data))
2282 			return 1;
2283 
2284 		vmx->spec_ctrl = data;
2285 		if (!data)
2286 			break;
2287 
2288 		/*
2289 		 * For non-nested:
2290 		 * When it's written (to non-zero) for the first time, pass
2291 		 * it through.
2292 		 *
2293 		 * For nested:
2294 		 * The handling of the MSR bitmap for L2 guests is done in
2295 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2296 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2297 		 * in the merging. We update the vmcs01 here for L1 as well
2298 		 * since it will end up touching the MSR anyway now.
2299 		 */
2300 		vmx_disable_intercept_for_msr(vcpu,
2301 					      MSR_IA32_SPEC_CTRL,
2302 					      MSR_TYPE_RW);
2303 		break;
2304 	case MSR_IA32_TSX_CTRL:
2305 		if (!msr_info->host_initiated &&
2306 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2307 			return 1;
2308 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2309 			return 1;
2310 		goto find_uret_msr;
2311 	case MSR_IA32_CR_PAT:
2312 		ret = kvm_set_msr_common(vcpu, msr_info);
2313 		if (ret)
2314 			break;
2315 
2316 		if (is_guest_mode(vcpu) &&
2317 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2318 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2319 
2320 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
2321 			vmcs_write64(GUEST_IA32_PAT, data);
2322 		break;
2323 	case MSR_IA32_MCG_EXT_CTL:
2324 		if ((!msr_info->host_initiated &&
2325 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2326 		       FEAT_CTL_LMCE_ENABLED)) ||
2327 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2328 			return 1;
2329 		vcpu->arch.mcg_ext_ctl = data;
2330 		break;
2331 	case MSR_IA32_FEAT_CTL:
2332 		if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2333 			return 1;
2334 
2335 		vmx->msr_ia32_feature_control = data;
2336 		if (msr_info->host_initiated && data == 0)
2337 			vmx_leave_nested(vcpu);
2338 
2339 		/* SGX may be enabled/disabled by guest's firmware */
2340 		vmx_write_encls_bitmap(vcpu, NULL);
2341 		break;
2342 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2343 		/*
2344 		 * On real hardware, the LE hash MSRs are writable before
2345 		 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2346 		 * at which point SGX related bits in IA32_FEATURE_CONTROL
2347 		 * become writable.
2348 		 *
2349 		 * KVM does not emulate SGX activation for simplicity, so
2350 		 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2351 		 * is unlocked.  This is technically not architectural
2352 		 * behavior, but it's close enough.
2353 		 */
2354 		if (!msr_info->host_initiated &&
2355 		    (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2356 		    ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2357 		    !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2358 			return 1;
2359 		vmx->msr_ia32_sgxlepubkeyhash
2360 			[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2361 		break;
2362 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2363 		if (!msr_info->host_initiated)
2364 			return 1; /* they are read-only */
2365 		if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2366 			return 1;
2367 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2368 	case MSR_IA32_RTIT_CTL:
2369 		if (!vmx_pt_mode_is_host_guest() ||
2370 			vmx_rtit_ctl_check(vcpu, data) ||
2371 			vmx->nested.vmxon)
2372 			return 1;
2373 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2374 		vmx->pt_desc.guest.ctl = data;
2375 		pt_update_intercept_for_msr(vcpu);
2376 		break;
2377 	case MSR_IA32_RTIT_STATUS:
2378 		if (!pt_can_write_msr(vmx))
2379 			return 1;
2380 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2381 			return 1;
2382 		vmx->pt_desc.guest.status = data;
2383 		break;
2384 	case MSR_IA32_RTIT_CR3_MATCH:
2385 		if (!pt_can_write_msr(vmx))
2386 			return 1;
2387 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2388 					   PT_CAP_cr3_filtering))
2389 			return 1;
2390 		vmx->pt_desc.guest.cr3_match = data;
2391 		break;
2392 	case MSR_IA32_RTIT_OUTPUT_BASE:
2393 		if (!pt_can_write_msr(vmx))
2394 			return 1;
2395 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2396 					   PT_CAP_topa_output) &&
2397 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2398 					   PT_CAP_single_range_output))
2399 			return 1;
2400 		if (!pt_output_base_valid(vcpu, data))
2401 			return 1;
2402 		vmx->pt_desc.guest.output_base = data;
2403 		break;
2404 	case MSR_IA32_RTIT_OUTPUT_MASK:
2405 		if (!pt_can_write_msr(vmx))
2406 			return 1;
2407 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2408 					   PT_CAP_topa_output) &&
2409 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2410 					   PT_CAP_single_range_output))
2411 			return 1;
2412 		vmx->pt_desc.guest.output_mask = data;
2413 		break;
2414 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2415 		if (!pt_can_write_msr(vmx))
2416 			return 1;
2417 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2418 		if (index >= 2 * vmx->pt_desc.num_address_ranges)
2419 			return 1;
2420 		if (is_noncanonical_address(data, vcpu))
2421 			return 1;
2422 		if (index % 2)
2423 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2424 		else
2425 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2426 		break;
2427 	case MSR_IA32_PERF_CAPABILITIES:
2428 		if (data && !vcpu_to_pmu(vcpu)->version)
2429 			return 1;
2430 		if (data & PMU_CAP_LBR_FMT) {
2431 			if ((data & PMU_CAP_LBR_FMT) !=
2432 			    (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT))
2433 				return 1;
2434 			if (!cpuid_model_is_consistent(vcpu))
2435 				return 1;
2436 		}
2437 		if (data & PERF_CAP_PEBS_FORMAT) {
2438 			if ((data & PERF_CAP_PEBS_MASK) !=
2439 			    (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2440 				return 1;
2441 			if (!guest_cpuid_has(vcpu, X86_FEATURE_DS))
2442 				return 1;
2443 			if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64))
2444 				return 1;
2445 			if (!cpuid_model_is_consistent(vcpu))
2446 				return 1;
2447 		}
2448 		ret = kvm_set_msr_common(vcpu, msr_info);
2449 		break;
2450 
2451 	default:
2452 	find_uret_msr:
2453 		msr = vmx_find_uret_msr(vmx, msr_index);
2454 		if (msr)
2455 			ret = vmx_set_guest_uret_msr(vmx, msr, data);
2456 		else
2457 			ret = kvm_set_msr_common(vcpu, msr_info);
2458 	}
2459 
2460 	/* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2461 	if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2462 		vmx_update_fb_clear_dis(vcpu, vmx);
2463 
2464 	return ret;
2465 }
2466 
2467 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2468 {
2469 	unsigned long guest_owned_bits;
2470 
2471 	kvm_register_mark_available(vcpu, reg);
2472 
2473 	switch (reg) {
2474 	case VCPU_REGS_RSP:
2475 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2476 		break;
2477 	case VCPU_REGS_RIP:
2478 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2479 		break;
2480 	case VCPU_EXREG_PDPTR:
2481 		if (enable_ept)
2482 			ept_save_pdptrs(vcpu);
2483 		break;
2484 	case VCPU_EXREG_CR0:
2485 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2486 
2487 		vcpu->arch.cr0 &= ~guest_owned_bits;
2488 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2489 		break;
2490 	case VCPU_EXREG_CR3:
2491 		/*
2492 		 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2493 		 * CR3 is loaded into hardware, not the guest's CR3.
2494 		 */
2495 		if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2496 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2497 		break;
2498 	case VCPU_EXREG_CR4:
2499 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2500 
2501 		vcpu->arch.cr4 &= ~guest_owned_bits;
2502 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2503 		break;
2504 	default:
2505 		KVM_BUG_ON(1, vcpu->kvm);
2506 		break;
2507 	}
2508 }
2509 
2510 /*
2511  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2512  * directly instead of going through cpu_has(), to ensure KVM is trapping
2513  * ENCLS whenever it's supported in hardware.  It does not matter whether
2514  * the host OS supports or has enabled SGX.
2515  */
2516 static bool cpu_has_sgx(void)
2517 {
2518 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2519 }
2520 
2521 /*
2522  * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2523  * can't be used due to errata where VM Exit may incorrectly clear
2524  * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the
2525  * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2526  */
2527 static bool cpu_has_perf_global_ctrl_bug(void)
2528 {
2529 	if (boot_cpu_data.x86 == 0x6) {
2530 		switch (boot_cpu_data.x86_model) {
2531 		case INTEL_FAM6_NEHALEM_EP:	/* AAK155 */
2532 		case INTEL_FAM6_NEHALEM:	/* AAP115 */
2533 		case INTEL_FAM6_WESTMERE:	/* AAT100 */
2534 		case INTEL_FAM6_WESTMERE_EP:	/* BC86,AAY89,BD102 */
2535 		case INTEL_FAM6_NEHALEM_EX:	/* BA97 */
2536 			return true;
2537 		default:
2538 			break;
2539 		}
2540 	}
2541 
2542 	return false;
2543 }
2544 
2545 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
2546 {
2547 	u32 vmx_msr_low, vmx_msr_high;
2548 	u32 ctl = ctl_min | ctl_opt;
2549 
2550 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2551 
2552 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2553 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2554 
2555 	/* Ensure minimum (required) set of control bits are supported. */
2556 	if (ctl_min & ~ctl)
2557 		return -EIO;
2558 
2559 	*result = ctl;
2560 	return 0;
2561 }
2562 
2563 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2564 {
2565 	u64 allowed;
2566 
2567 	rdmsrl(msr, allowed);
2568 
2569 	return  ctl_opt & allowed;
2570 }
2571 
2572 static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2573 			     struct vmx_capability *vmx_cap)
2574 {
2575 	u32 vmx_msr_low, vmx_msr_high;
2576 	u32 _pin_based_exec_control = 0;
2577 	u32 _cpu_based_exec_control = 0;
2578 	u32 _cpu_based_2nd_exec_control = 0;
2579 	u64 _cpu_based_3rd_exec_control = 0;
2580 	u32 _vmexit_control = 0;
2581 	u32 _vmentry_control = 0;
2582 	u64 misc_msr;
2583 	int i;
2584 
2585 	/*
2586 	 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2587 	 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2588 	 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2589 	 */
2590 	struct {
2591 		u32 entry_control;
2592 		u32 exit_control;
2593 	} const vmcs_entry_exit_pairs[] = {
2594 		{ VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,	VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2595 		{ VM_ENTRY_LOAD_IA32_PAT,		VM_EXIT_LOAD_IA32_PAT },
2596 		{ VM_ENTRY_LOAD_IA32_EFER,		VM_EXIT_LOAD_IA32_EFER },
2597 		{ VM_ENTRY_LOAD_BNDCFGS,		VM_EXIT_CLEAR_BNDCFGS },
2598 		{ VM_ENTRY_LOAD_IA32_RTIT_CTL,		VM_EXIT_CLEAR_IA32_RTIT_CTL },
2599 	};
2600 
2601 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2602 
2603 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2604 				KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2605 				MSR_IA32_VMX_PROCBASED_CTLS,
2606 				&_cpu_based_exec_control))
2607 		return -EIO;
2608 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2609 		if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2610 					KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2611 					MSR_IA32_VMX_PROCBASED_CTLS2,
2612 					&_cpu_based_2nd_exec_control))
2613 			return -EIO;
2614 	}
2615 #ifndef CONFIG_X86_64
2616 	if (!(_cpu_based_2nd_exec_control &
2617 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2618 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2619 #endif
2620 
2621 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2622 		_cpu_based_2nd_exec_control &= ~(
2623 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2624 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2625 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2626 
2627 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2628 		&vmx_cap->ept, &vmx_cap->vpid);
2629 
2630 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2631 	    vmx_cap->ept) {
2632 		pr_warn_once("EPT CAP should not exist if not support "
2633 				"1-setting enable EPT VM-execution control\n");
2634 
2635 		if (error_on_inconsistent_vmcs_config)
2636 			return -EIO;
2637 
2638 		vmx_cap->ept = 0;
2639 	}
2640 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2641 	    vmx_cap->vpid) {
2642 		pr_warn_once("VPID CAP should not exist if not support "
2643 				"1-setting enable VPID VM-execution control\n");
2644 
2645 		if (error_on_inconsistent_vmcs_config)
2646 			return -EIO;
2647 
2648 		vmx_cap->vpid = 0;
2649 	}
2650 
2651 	if (!cpu_has_sgx())
2652 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2653 
2654 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2655 		_cpu_based_3rd_exec_control =
2656 			adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2657 					      MSR_IA32_VMX_PROCBASED_CTLS3);
2658 
2659 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2660 				KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2661 				MSR_IA32_VMX_EXIT_CTLS,
2662 				&_vmexit_control))
2663 		return -EIO;
2664 
2665 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2666 				KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2667 				MSR_IA32_VMX_PINBASED_CTLS,
2668 				&_pin_based_exec_control))
2669 		return -EIO;
2670 
2671 	if (cpu_has_broken_vmx_preemption_timer())
2672 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2673 	if (!(_cpu_based_2nd_exec_control &
2674 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2675 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2676 
2677 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2678 				KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2679 				MSR_IA32_VMX_ENTRY_CTLS,
2680 				&_vmentry_control))
2681 		return -EIO;
2682 
2683 	for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) {
2684 		u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control;
2685 		u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control;
2686 
2687 		if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl))
2688 			continue;
2689 
2690 		pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n",
2691 			     _vmentry_control & n_ctrl, _vmexit_control & x_ctrl);
2692 
2693 		if (error_on_inconsistent_vmcs_config)
2694 			return -EIO;
2695 
2696 		_vmentry_control &= ~n_ctrl;
2697 		_vmexit_control &= ~x_ctrl;
2698 	}
2699 
2700 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2701 
2702 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2703 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2704 		return -EIO;
2705 
2706 #ifdef CONFIG_X86_64
2707 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2708 	if (vmx_msr_high & (1u<<16))
2709 		return -EIO;
2710 #endif
2711 
2712 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2713 	if (((vmx_msr_high >> 18) & 15) != 6)
2714 		return -EIO;
2715 
2716 	rdmsrl(MSR_IA32_VMX_MISC, misc_msr);
2717 
2718 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2719 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2720 
2721 	vmcs_conf->revision_id = vmx_msr_low;
2722 
2723 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2724 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2725 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2726 	vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2727 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2728 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2729 	vmcs_conf->misc	= misc_msr;
2730 
2731 #if IS_ENABLED(CONFIG_HYPERV)
2732 	if (enlightened_vmcs)
2733 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2734 #endif
2735 
2736 	return 0;
2737 }
2738 
2739 static bool __kvm_is_vmx_supported(void)
2740 {
2741 	int cpu = smp_processor_id();
2742 
2743 	if (!(cpuid_ecx(1) & feature_bit(VMX))) {
2744 		pr_err("VMX not supported by CPU %d\n", cpu);
2745 		return false;
2746 	}
2747 
2748 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2749 	    !this_cpu_has(X86_FEATURE_VMX)) {
2750 		pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
2751 		return false;
2752 	}
2753 
2754 	return true;
2755 }
2756 
2757 static bool kvm_is_vmx_supported(void)
2758 {
2759 	bool supported;
2760 
2761 	migrate_disable();
2762 	supported = __kvm_is_vmx_supported();
2763 	migrate_enable();
2764 
2765 	return supported;
2766 }
2767 
2768 static int vmx_check_processor_compat(void)
2769 {
2770 	int cpu = raw_smp_processor_id();
2771 	struct vmcs_config vmcs_conf;
2772 	struct vmx_capability vmx_cap;
2773 
2774 	if (!__kvm_is_vmx_supported())
2775 		return -EIO;
2776 
2777 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
2778 		pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
2779 		return -EIO;
2780 	}
2781 	if (nested)
2782 		nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
2783 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
2784 		pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
2785 		return -EIO;
2786 	}
2787 	return 0;
2788 }
2789 
2790 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2791 {
2792 	u64 msr;
2793 
2794 	cr4_set_bits(X86_CR4_VMXE);
2795 
2796 	asm goto("1: vmxon %[vmxon_pointer]\n\t"
2797 			  _ASM_EXTABLE(1b, %l[fault])
2798 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2799 			  : : fault);
2800 	return 0;
2801 
2802 fault:
2803 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2804 		  rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2805 	cr4_clear_bits(X86_CR4_VMXE);
2806 
2807 	return -EFAULT;
2808 }
2809 
2810 static int vmx_hardware_enable(void)
2811 {
2812 	int cpu = raw_smp_processor_id();
2813 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2814 	int r;
2815 
2816 	if (cr4_read_shadow() & X86_CR4_VMXE)
2817 		return -EBUSY;
2818 
2819 	/*
2820 	 * This can happen if we hot-added a CPU but failed to allocate
2821 	 * VP assist page for it.
2822 	 */
2823 	if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
2824 		return -EFAULT;
2825 
2826 	intel_pt_handle_vmx(1);
2827 
2828 	r = kvm_cpu_vmxon(phys_addr);
2829 	if (r) {
2830 		intel_pt_handle_vmx(0);
2831 		return r;
2832 	}
2833 
2834 	if (enable_ept)
2835 		ept_sync_global();
2836 
2837 	return 0;
2838 }
2839 
2840 static void vmclear_local_loaded_vmcss(void)
2841 {
2842 	int cpu = raw_smp_processor_id();
2843 	struct loaded_vmcs *v, *n;
2844 
2845 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2846 				 loaded_vmcss_on_cpu_link)
2847 		__loaded_vmcs_clear(v);
2848 }
2849 
2850 static void vmx_hardware_disable(void)
2851 {
2852 	vmclear_local_loaded_vmcss();
2853 
2854 	if (kvm_cpu_vmxoff())
2855 		kvm_spurious_fault();
2856 
2857 	hv_reset_evmcs();
2858 
2859 	intel_pt_handle_vmx(0);
2860 }
2861 
2862 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2863 {
2864 	int node = cpu_to_node(cpu);
2865 	struct page *pages;
2866 	struct vmcs *vmcs;
2867 
2868 	pages = __alloc_pages_node(node, flags, 0);
2869 	if (!pages)
2870 		return NULL;
2871 	vmcs = page_address(pages);
2872 	memset(vmcs, 0, vmcs_config.size);
2873 
2874 	/* KVM supports Enlightened VMCS v1 only */
2875 	if (kvm_is_using_evmcs())
2876 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2877 	else
2878 		vmcs->hdr.revision_id = vmcs_config.revision_id;
2879 
2880 	if (shadow)
2881 		vmcs->hdr.shadow_vmcs = 1;
2882 	return vmcs;
2883 }
2884 
2885 void free_vmcs(struct vmcs *vmcs)
2886 {
2887 	free_page((unsigned long)vmcs);
2888 }
2889 
2890 /*
2891  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2892  */
2893 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2894 {
2895 	if (!loaded_vmcs->vmcs)
2896 		return;
2897 	loaded_vmcs_clear(loaded_vmcs);
2898 	free_vmcs(loaded_vmcs->vmcs);
2899 	loaded_vmcs->vmcs = NULL;
2900 	if (loaded_vmcs->msr_bitmap)
2901 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2902 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2903 }
2904 
2905 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2906 {
2907 	loaded_vmcs->vmcs = alloc_vmcs(false);
2908 	if (!loaded_vmcs->vmcs)
2909 		return -ENOMEM;
2910 
2911 	vmcs_clear(loaded_vmcs->vmcs);
2912 
2913 	loaded_vmcs->shadow_vmcs = NULL;
2914 	loaded_vmcs->hv_timer_soft_disabled = false;
2915 	loaded_vmcs->cpu = -1;
2916 	loaded_vmcs->launched = 0;
2917 
2918 	if (cpu_has_vmx_msr_bitmap()) {
2919 		loaded_vmcs->msr_bitmap = (unsigned long *)
2920 				__get_free_page(GFP_KERNEL_ACCOUNT);
2921 		if (!loaded_vmcs->msr_bitmap)
2922 			goto out_vmcs;
2923 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2924 	}
2925 
2926 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2927 	memset(&loaded_vmcs->controls_shadow, 0,
2928 		sizeof(struct vmcs_controls_shadow));
2929 
2930 	return 0;
2931 
2932 out_vmcs:
2933 	free_loaded_vmcs(loaded_vmcs);
2934 	return -ENOMEM;
2935 }
2936 
2937 static void free_kvm_area(void)
2938 {
2939 	int cpu;
2940 
2941 	for_each_possible_cpu(cpu) {
2942 		free_vmcs(per_cpu(vmxarea, cpu));
2943 		per_cpu(vmxarea, cpu) = NULL;
2944 	}
2945 }
2946 
2947 static __init int alloc_kvm_area(void)
2948 {
2949 	int cpu;
2950 
2951 	for_each_possible_cpu(cpu) {
2952 		struct vmcs *vmcs;
2953 
2954 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2955 		if (!vmcs) {
2956 			free_kvm_area();
2957 			return -ENOMEM;
2958 		}
2959 
2960 		/*
2961 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2962 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2963 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2964 		 *
2965 		 * However, even though not explicitly documented by
2966 		 * TLFS, VMXArea passed as VMXON argument should
2967 		 * still be marked with revision_id reported by
2968 		 * physical CPU.
2969 		 */
2970 		if (kvm_is_using_evmcs())
2971 			vmcs->hdr.revision_id = vmcs_config.revision_id;
2972 
2973 		per_cpu(vmxarea, cpu) = vmcs;
2974 	}
2975 	return 0;
2976 }
2977 
2978 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2979 		struct kvm_segment *save)
2980 {
2981 	if (!emulate_invalid_guest_state) {
2982 		/*
2983 		 * CS and SS RPL should be equal during guest entry according
2984 		 * to VMX spec, but in reality it is not always so. Since vcpu
2985 		 * is in the middle of the transition from real mode to
2986 		 * protected mode it is safe to assume that RPL 0 is a good
2987 		 * default value.
2988 		 */
2989 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2990 			save->selector &= ~SEGMENT_RPL_MASK;
2991 		save->dpl = save->selector & SEGMENT_RPL_MASK;
2992 		save->s = 1;
2993 	}
2994 	__vmx_set_segment(vcpu, save, seg);
2995 }
2996 
2997 static void enter_pmode(struct kvm_vcpu *vcpu)
2998 {
2999 	unsigned long flags;
3000 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3001 
3002 	/*
3003 	 * Update real mode segment cache. It may be not up-to-date if segment
3004 	 * register was written while vcpu was in a guest mode.
3005 	 */
3006 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3007 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3008 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3009 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3010 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3011 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3012 
3013 	vmx->rmode.vm86_active = 0;
3014 
3015 	__vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3016 
3017 	flags = vmcs_readl(GUEST_RFLAGS);
3018 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3019 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3020 	vmcs_writel(GUEST_RFLAGS, flags);
3021 
3022 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3023 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3024 
3025 	vmx_update_exception_bitmap(vcpu);
3026 
3027 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3028 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3029 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3030 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3031 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3032 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3033 }
3034 
3035 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3036 {
3037 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3038 	struct kvm_segment var = *save;
3039 
3040 	var.dpl = 0x3;
3041 	if (seg == VCPU_SREG_CS)
3042 		var.type = 0x3;
3043 
3044 	if (!emulate_invalid_guest_state) {
3045 		var.selector = var.base >> 4;
3046 		var.base = var.base & 0xffff0;
3047 		var.limit = 0xffff;
3048 		var.g = 0;
3049 		var.db = 0;
3050 		var.present = 1;
3051 		var.s = 1;
3052 		var.l = 0;
3053 		var.unusable = 0;
3054 		var.type = 0x3;
3055 		var.avl = 0;
3056 		if (save->base & 0xf)
3057 			pr_warn_once("segment base is not paragraph aligned "
3058 				     "when entering protected mode (seg=%d)", seg);
3059 	}
3060 
3061 	vmcs_write16(sf->selector, var.selector);
3062 	vmcs_writel(sf->base, var.base);
3063 	vmcs_write32(sf->limit, var.limit);
3064 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3065 }
3066 
3067 static void enter_rmode(struct kvm_vcpu *vcpu)
3068 {
3069 	unsigned long flags;
3070 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3071 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
3072 
3073 	/*
3074 	 * KVM should never use VM86 to virtualize Real Mode when L2 is active,
3075 	 * as using VM86 is unnecessary if unrestricted guest is enabled, and
3076 	 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0
3077 	 * should VM-Fail and KVM should reject userspace attempts to stuff
3078 	 * CR0.PG=0 when L2 is active.
3079 	 */
3080 	WARN_ON_ONCE(is_guest_mode(vcpu));
3081 
3082 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3083 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3084 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3085 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3086 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3087 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3088 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3089 
3090 	vmx->rmode.vm86_active = 1;
3091 
3092 	vmx_segment_cache_clear(vmx);
3093 
3094 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3095 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3096 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3097 
3098 	flags = vmcs_readl(GUEST_RFLAGS);
3099 	vmx->rmode.save_rflags = flags;
3100 
3101 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3102 
3103 	vmcs_writel(GUEST_RFLAGS, flags);
3104 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3105 	vmx_update_exception_bitmap(vcpu);
3106 
3107 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3108 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3109 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3110 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3111 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3112 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3113 }
3114 
3115 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3116 {
3117 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3118 
3119 	/* Nothing to do if hardware doesn't support EFER. */
3120 	if (!vmx_find_uret_msr(vmx, MSR_EFER))
3121 		return 0;
3122 
3123 	vcpu->arch.efer = efer;
3124 #ifdef CONFIG_X86_64
3125 	if (efer & EFER_LMA)
3126 		vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3127 	else
3128 		vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3129 #else
3130 	if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3131 		return 1;
3132 #endif
3133 
3134 	vmx_setup_uret_msrs(vmx);
3135 	return 0;
3136 }
3137 
3138 #ifdef CONFIG_X86_64
3139 
3140 static void enter_lmode(struct kvm_vcpu *vcpu)
3141 {
3142 	u32 guest_tr_ar;
3143 
3144 	vmx_segment_cache_clear(to_vmx(vcpu));
3145 
3146 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3147 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3148 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3149 				     __func__);
3150 		vmcs_write32(GUEST_TR_AR_BYTES,
3151 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3152 			     | VMX_AR_TYPE_BUSY_64_TSS);
3153 	}
3154 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3155 }
3156 
3157 static void exit_lmode(struct kvm_vcpu *vcpu)
3158 {
3159 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3160 }
3161 
3162 #endif
3163 
3164 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3165 {
3166 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3167 
3168 	/*
3169 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3170 	 * the CPU is not required to invalidate guest-physical mappings on
3171 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
3172 	 * associated with the root EPT structure and not any particular VPID
3173 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
3174 	 */
3175 	if (enable_ept) {
3176 		ept_sync_global();
3177 	} else if (enable_vpid) {
3178 		if (cpu_has_vmx_invvpid_global()) {
3179 			vpid_sync_vcpu_global();
3180 		} else {
3181 			vpid_sync_vcpu_single(vmx->vpid);
3182 			vpid_sync_vcpu_single(vmx->nested.vpid02);
3183 		}
3184 	}
3185 }
3186 
3187 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3188 {
3189 	if (is_guest_mode(vcpu))
3190 		return nested_get_vpid02(vcpu);
3191 	return to_vmx(vcpu)->vpid;
3192 }
3193 
3194 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3195 {
3196 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3197 	u64 root_hpa = mmu->root.hpa;
3198 
3199 	/* No flush required if the current context is invalid. */
3200 	if (!VALID_PAGE(root_hpa))
3201 		return;
3202 
3203 	if (enable_ept)
3204 		ept_sync_context(construct_eptp(vcpu, root_hpa,
3205 						mmu->root_role.level));
3206 	else
3207 		vpid_sync_context(vmx_get_current_vpid(vcpu));
3208 }
3209 
3210 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3211 {
3212 	/*
3213 	 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3214 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3215 	 */
3216 	vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3217 }
3218 
3219 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3220 {
3221 	/*
3222 	 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3223 	 * vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit are
3224 	 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3225 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3226 	 * i.e. no explicit INVVPID is necessary.
3227 	 */
3228 	vpid_sync_context(vmx_get_current_vpid(vcpu));
3229 }
3230 
3231 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3232 {
3233 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3234 
3235 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3236 		return;
3237 
3238 	if (is_pae_paging(vcpu)) {
3239 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3240 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3241 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3242 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3243 	}
3244 }
3245 
3246 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3247 {
3248 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3249 
3250 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3251 		return;
3252 
3253 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3254 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3255 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3256 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3257 
3258 	kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3259 }
3260 
3261 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3262 			  CPU_BASED_CR3_STORE_EXITING)
3263 
3264 static bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3265 {
3266 	if (is_guest_mode(vcpu))
3267 		return nested_guest_cr0_valid(vcpu, cr0);
3268 
3269 	if (to_vmx(vcpu)->nested.vmxon)
3270 		return nested_host_cr0_valid(vcpu, cr0);
3271 
3272 	return true;
3273 }
3274 
3275 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3276 {
3277 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3278 	unsigned long hw_cr0, old_cr0_pg;
3279 	u32 tmp;
3280 
3281 	old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3282 
3283 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3284 	if (enable_unrestricted_guest)
3285 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3286 	else {
3287 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3288 		if (!enable_ept)
3289 			hw_cr0 |= X86_CR0_WP;
3290 
3291 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3292 			enter_pmode(vcpu);
3293 
3294 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3295 			enter_rmode(vcpu);
3296 	}
3297 
3298 	vmcs_writel(CR0_READ_SHADOW, cr0);
3299 	vmcs_writel(GUEST_CR0, hw_cr0);
3300 	vcpu->arch.cr0 = cr0;
3301 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3302 
3303 #ifdef CONFIG_X86_64
3304 	if (vcpu->arch.efer & EFER_LME) {
3305 		if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3306 			enter_lmode(vcpu);
3307 		else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3308 			exit_lmode(vcpu);
3309 	}
3310 #endif
3311 
3312 	if (enable_ept && !enable_unrestricted_guest) {
3313 		/*
3314 		 * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3315 		 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3316 		 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3317 		 * KVM's CR3 is installed.
3318 		 */
3319 		if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3320 			vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3321 
3322 		/*
3323 		 * When running with EPT but not unrestricted guest, KVM must
3324 		 * intercept CR3 accesses when paging is _disabled_.  This is
3325 		 * necessary because restricted guests can't actually run with
3326 		 * paging disabled, and so KVM stuffs its own CR3 in order to
3327 		 * run the guest when identity mapped page tables.
3328 		 *
3329 		 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3330 		 * update, it may be stale with respect to CR3 interception,
3331 		 * e.g. after nested VM-Enter.
3332 		 *
3333 		 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3334 		 * stores to forward them to L1, even if KVM does not need to
3335 		 * intercept them to preserve its identity mapped page tables.
3336 		 */
3337 		if (!(cr0 & X86_CR0_PG)) {
3338 			exec_controls_setbit(vmx, CR3_EXITING_BITS);
3339 		} else if (!is_guest_mode(vcpu)) {
3340 			exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3341 		} else {
3342 			tmp = exec_controls_get(vmx);
3343 			tmp &= ~CR3_EXITING_BITS;
3344 			tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3345 			exec_controls_set(vmx, tmp);
3346 		}
3347 
3348 		/* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3349 		if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3350 			vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3351 
3352 		/*
3353 		 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3354 		 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3355 		 */
3356 		if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3357 			kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3358 	}
3359 
3360 	/* depends on vcpu->arch.cr0 to be set to a new value */
3361 	vmx->emulation_required = vmx_emulation_required(vcpu);
3362 }
3363 
3364 static int vmx_get_max_ept_level(void)
3365 {
3366 	if (cpu_has_vmx_ept_5levels())
3367 		return 5;
3368 	return 4;
3369 }
3370 
3371 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3372 {
3373 	u64 eptp = VMX_EPTP_MT_WB;
3374 
3375 	eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3376 
3377 	if (enable_ept_ad_bits &&
3378 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3379 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3380 	eptp |= root_hpa;
3381 
3382 	return eptp;
3383 }
3384 
3385 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3386 			     int root_level)
3387 {
3388 	struct kvm *kvm = vcpu->kvm;
3389 	bool update_guest_cr3 = true;
3390 	unsigned long guest_cr3;
3391 	u64 eptp;
3392 
3393 	if (enable_ept) {
3394 		eptp = construct_eptp(vcpu, root_hpa, root_level);
3395 		vmcs_write64(EPT_POINTER, eptp);
3396 
3397 		hv_track_root_tdp(vcpu, root_hpa);
3398 
3399 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3400 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3401 		else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3402 			guest_cr3 = vcpu->arch.cr3;
3403 		else /* vmcs.GUEST_CR3 is already up-to-date. */
3404 			update_guest_cr3 = false;
3405 		vmx_ept_load_pdptrs(vcpu);
3406 	} else {
3407 		guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu) |
3408 			    kvm_get_active_cr3_lam_bits(vcpu);
3409 	}
3410 
3411 	if (update_guest_cr3)
3412 		vmcs_writel(GUEST_CR3, guest_cr3);
3413 }
3414 
3415 
3416 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3417 {
3418 	/*
3419 	 * We operate under the default treatment of SMM, so VMX cannot be
3420 	 * enabled under SMM.  Note, whether or not VMXE is allowed at all,
3421 	 * i.e. is a reserved bit, is handled by common x86 code.
3422 	 */
3423 	if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3424 		return false;
3425 
3426 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3427 		return false;
3428 
3429 	return true;
3430 }
3431 
3432 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3433 {
3434 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
3435 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3436 	unsigned long hw_cr4;
3437 
3438 	/*
3439 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3440 	 * is in force while we are in guest mode.  Do not let guests control
3441 	 * this bit, even if host CR4.MCE == 0.
3442 	 */
3443 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3444 	if (enable_unrestricted_guest)
3445 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3446 	else if (vmx->rmode.vm86_active)
3447 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3448 	else
3449 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3450 
3451 	if (vmx_umip_emulated()) {
3452 		if (cr4 & X86_CR4_UMIP) {
3453 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3454 			hw_cr4 &= ~X86_CR4_UMIP;
3455 		} else if (!is_guest_mode(vcpu) ||
3456 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3457 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3458 		}
3459 	}
3460 
3461 	vcpu->arch.cr4 = cr4;
3462 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3463 
3464 	if (!enable_unrestricted_guest) {
3465 		if (enable_ept) {
3466 			if (!is_paging(vcpu)) {
3467 				hw_cr4 &= ~X86_CR4_PAE;
3468 				hw_cr4 |= X86_CR4_PSE;
3469 			} else if (!(cr4 & X86_CR4_PAE)) {
3470 				hw_cr4 &= ~X86_CR4_PAE;
3471 			}
3472 		}
3473 
3474 		/*
3475 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3476 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3477 		 * to be manually disabled when guest switches to non-paging
3478 		 * mode.
3479 		 *
3480 		 * If !enable_unrestricted_guest, the CPU is always running
3481 		 * with CR0.PG=1 and CR4 needs to be modified.
3482 		 * If enable_unrestricted_guest, the CPU automatically
3483 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3484 		 */
3485 		if (!is_paging(vcpu))
3486 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3487 	}
3488 
3489 	vmcs_writel(CR4_READ_SHADOW, cr4);
3490 	vmcs_writel(GUEST_CR4, hw_cr4);
3491 
3492 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3493 		kvm_update_cpuid_runtime(vcpu);
3494 }
3495 
3496 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3497 {
3498 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3499 	u32 ar;
3500 
3501 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3502 		*var = vmx->rmode.segs[seg];
3503 		if (seg == VCPU_SREG_TR
3504 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3505 			return;
3506 		var->base = vmx_read_guest_seg_base(vmx, seg);
3507 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3508 		return;
3509 	}
3510 	var->base = vmx_read_guest_seg_base(vmx, seg);
3511 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3512 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3513 	ar = vmx_read_guest_seg_ar(vmx, seg);
3514 	var->unusable = (ar >> 16) & 1;
3515 	var->type = ar & 15;
3516 	var->s = (ar >> 4) & 1;
3517 	var->dpl = (ar >> 5) & 3;
3518 	/*
3519 	 * Some userspaces do not preserve unusable property. Since usable
3520 	 * segment has to be present according to VMX spec we can use present
3521 	 * property to amend userspace bug by making unusable segment always
3522 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3523 	 * segment as unusable.
3524 	 */
3525 	var->present = !var->unusable;
3526 	var->avl = (ar >> 12) & 1;
3527 	var->l = (ar >> 13) & 1;
3528 	var->db = (ar >> 14) & 1;
3529 	var->g = (ar >> 15) & 1;
3530 }
3531 
3532 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3533 {
3534 	struct kvm_segment s;
3535 
3536 	if (to_vmx(vcpu)->rmode.vm86_active) {
3537 		vmx_get_segment(vcpu, &s, seg);
3538 		return s.base;
3539 	}
3540 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3541 }
3542 
3543 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3544 {
3545 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3546 
3547 	if (unlikely(vmx->rmode.vm86_active))
3548 		return 0;
3549 	else {
3550 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3551 		return VMX_AR_DPL(ar);
3552 	}
3553 }
3554 
3555 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3556 {
3557 	u32 ar;
3558 
3559 	ar = var->type & 15;
3560 	ar |= (var->s & 1) << 4;
3561 	ar |= (var->dpl & 3) << 5;
3562 	ar |= (var->present & 1) << 7;
3563 	ar |= (var->avl & 1) << 12;
3564 	ar |= (var->l & 1) << 13;
3565 	ar |= (var->db & 1) << 14;
3566 	ar |= (var->g & 1) << 15;
3567 	ar |= (var->unusable || !var->present) << 16;
3568 
3569 	return ar;
3570 }
3571 
3572 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3573 {
3574 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3575 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3576 
3577 	vmx_segment_cache_clear(vmx);
3578 
3579 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3580 		vmx->rmode.segs[seg] = *var;
3581 		if (seg == VCPU_SREG_TR)
3582 			vmcs_write16(sf->selector, var->selector);
3583 		else if (var->s)
3584 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3585 		return;
3586 	}
3587 
3588 	vmcs_writel(sf->base, var->base);
3589 	vmcs_write32(sf->limit, var->limit);
3590 	vmcs_write16(sf->selector, var->selector);
3591 
3592 	/*
3593 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3594 	 * qemu binaries.
3595 	 *   IA32 arch specifies that at the time of processor reset the
3596 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3597 	 * is setting it to 0 in the userland code. This causes invalid guest
3598 	 * state vmexit when "unrestricted guest" mode is turned on.
3599 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3600 	 * tree. Newer qemu binaries with that qemu fix would not need this
3601 	 * kvm hack.
3602 	 */
3603 	if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3604 		var->type |= 0x1; /* Accessed */
3605 
3606 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3607 }
3608 
3609 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3610 {
3611 	__vmx_set_segment(vcpu, var, seg);
3612 
3613 	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3614 }
3615 
3616 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3617 {
3618 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3619 
3620 	*db = (ar >> 14) & 1;
3621 	*l = (ar >> 13) & 1;
3622 }
3623 
3624 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3625 {
3626 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3627 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3628 }
3629 
3630 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3631 {
3632 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3633 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3634 }
3635 
3636 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3637 {
3638 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3639 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3640 }
3641 
3642 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3643 {
3644 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3645 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3646 }
3647 
3648 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3649 {
3650 	struct kvm_segment var;
3651 	u32 ar;
3652 
3653 	vmx_get_segment(vcpu, &var, seg);
3654 	var.dpl = 0x3;
3655 	if (seg == VCPU_SREG_CS)
3656 		var.type = 0x3;
3657 	ar = vmx_segment_access_rights(&var);
3658 
3659 	if (var.base != (var.selector << 4))
3660 		return false;
3661 	if (var.limit != 0xffff)
3662 		return false;
3663 	if (ar != 0xf3)
3664 		return false;
3665 
3666 	return true;
3667 }
3668 
3669 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3670 {
3671 	struct kvm_segment cs;
3672 	unsigned int cs_rpl;
3673 
3674 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3675 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3676 
3677 	if (cs.unusable)
3678 		return false;
3679 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3680 		return false;
3681 	if (!cs.s)
3682 		return false;
3683 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3684 		if (cs.dpl > cs_rpl)
3685 			return false;
3686 	} else {
3687 		if (cs.dpl != cs_rpl)
3688 			return false;
3689 	}
3690 	if (!cs.present)
3691 		return false;
3692 
3693 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3694 	return true;
3695 }
3696 
3697 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3698 {
3699 	struct kvm_segment ss;
3700 	unsigned int ss_rpl;
3701 
3702 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3703 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3704 
3705 	if (ss.unusable)
3706 		return true;
3707 	if (ss.type != 3 && ss.type != 7)
3708 		return false;
3709 	if (!ss.s)
3710 		return false;
3711 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3712 		return false;
3713 	if (!ss.present)
3714 		return false;
3715 
3716 	return true;
3717 }
3718 
3719 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3720 {
3721 	struct kvm_segment var;
3722 	unsigned int rpl;
3723 
3724 	vmx_get_segment(vcpu, &var, seg);
3725 	rpl = var.selector & SEGMENT_RPL_MASK;
3726 
3727 	if (var.unusable)
3728 		return true;
3729 	if (!var.s)
3730 		return false;
3731 	if (!var.present)
3732 		return false;
3733 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3734 		if (var.dpl < rpl) /* DPL < RPL */
3735 			return false;
3736 	}
3737 
3738 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3739 	 * rights flags
3740 	 */
3741 	return true;
3742 }
3743 
3744 static bool tr_valid(struct kvm_vcpu *vcpu)
3745 {
3746 	struct kvm_segment tr;
3747 
3748 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3749 
3750 	if (tr.unusable)
3751 		return false;
3752 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3753 		return false;
3754 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3755 		return false;
3756 	if (!tr.present)
3757 		return false;
3758 
3759 	return true;
3760 }
3761 
3762 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3763 {
3764 	struct kvm_segment ldtr;
3765 
3766 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3767 
3768 	if (ldtr.unusable)
3769 		return true;
3770 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3771 		return false;
3772 	if (ldtr.type != 2)
3773 		return false;
3774 	if (!ldtr.present)
3775 		return false;
3776 
3777 	return true;
3778 }
3779 
3780 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3781 {
3782 	struct kvm_segment cs, ss;
3783 
3784 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3785 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3786 
3787 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3788 		 (ss.selector & SEGMENT_RPL_MASK));
3789 }
3790 
3791 /*
3792  * Check if guest state is valid. Returns true if valid, false if
3793  * not.
3794  * We assume that registers are always usable
3795  */
3796 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3797 {
3798 	/* real mode guest state checks */
3799 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3800 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3801 			return false;
3802 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3803 			return false;
3804 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3805 			return false;
3806 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3807 			return false;
3808 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3809 			return false;
3810 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3811 			return false;
3812 	} else {
3813 	/* protected mode guest state checks */
3814 		if (!cs_ss_rpl_check(vcpu))
3815 			return false;
3816 		if (!code_segment_valid(vcpu))
3817 			return false;
3818 		if (!stack_segment_valid(vcpu))
3819 			return false;
3820 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3821 			return false;
3822 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3823 			return false;
3824 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3825 			return false;
3826 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3827 			return false;
3828 		if (!tr_valid(vcpu))
3829 			return false;
3830 		if (!ldtr_valid(vcpu))
3831 			return false;
3832 	}
3833 	/* TODO:
3834 	 * - Add checks on RIP
3835 	 * - Add checks on RFLAGS
3836 	 */
3837 
3838 	return true;
3839 }
3840 
3841 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3842 {
3843 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3844 	u16 data;
3845 	int i;
3846 
3847 	for (i = 0; i < 3; i++) {
3848 		if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3849 			return -EFAULT;
3850 	}
3851 
3852 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3853 	if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3854 		return -EFAULT;
3855 
3856 	data = ~0;
3857 	if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3858 		return -EFAULT;
3859 
3860 	return 0;
3861 }
3862 
3863 static int init_rmode_identity_map(struct kvm *kvm)
3864 {
3865 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3866 	int i, r = 0;
3867 	void __user *uaddr;
3868 	u32 tmp;
3869 
3870 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3871 	mutex_lock(&kvm->slots_lock);
3872 
3873 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3874 		goto out;
3875 
3876 	if (!kvm_vmx->ept_identity_map_addr)
3877 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3878 
3879 	uaddr = __x86_set_memory_region(kvm,
3880 					IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3881 					kvm_vmx->ept_identity_map_addr,
3882 					PAGE_SIZE);
3883 	if (IS_ERR(uaddr)) {
3884 		r = PTR_ERR(uaddr);
3885 		goto out;
3886 	}
3887 
3888 	/* Set up identity-mapping pagetable for EPT in real mode */
3889 	for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3890 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3891 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3892 		if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3893 			r = -EFAULT;
3894 			goto out;
3895 		}
3896 	}
3897 	kvm_vmx->ept_identity_pagetable_done = true;
3898 
3899 out:
3900 	mutex_unlock(&kvm->slots_lock);
3901 	return r;
3902 }
3903 
3904 static void seg_setup(int seg)
3905 {
3906 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3907 	unsigned int ar;
3908 
3909 	vmcs_write16(sf->selector, 0);
3910 	vmcs_writel(sf->base, 0);
3911 	vmcs_write32(sf->limit, 0xffff);
3912 	ar = 0x93;
3913 	if (seg == VCPU_SREG_CS)
3914 		ar |= 0x08; /* code segment */
3915 
3916 	vmcs_write32(sf->ar_bytes, ar);
3917 }
3918 
3919 int allocate_vpid(void)
3920 {
3921 	int vpid;
3922 
3923 	if (!enable_vpid)
3924 		return 0;
3925 	spin_lock(&vmx_vpid_lock);
3926 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3927 	if (vpid < VMX_NR_VPIDS)
3928 		__set_bit(vpid, vmx_vpid_bitmap);
3929 	else
3930 		vpid = 0;
3931 	spin_unlock(&vmx_vpid_lock);
3932 	return vpid;
3933 }
3934 
3935 void free_vpid(int vpid)
3936 {
3937 	if (!enable_vpid || vpid == 0)
3938 		return;
3939 	spin_lock(&vmx_vpid_lock);
3940 	__clear_bit(vpid, vmx_vpid_bitmap);
3941 	spin_unlock(&vmx_vpid_lock);
3942 }
3943 
3944 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3945 {
3946 	/*
3947 	 * When KVM is a nested hypervisor on top of Hyper-V and uses
3948 	 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3949 	 * bitmap has changed.
3950 	 */
3951 	if (kvm_is_using_evmcs()) {
3952 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
3953 
3954 		if (evmcs->hv_enlightenments_control.msr_bitmap)
3955 			evmcs->hv_clean_fields &=
3956 				~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
3957 	}
3958 
3959 	vmx->nested.force_msr_bitmap_recalc = true;
3960 }
3961 
3962 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3963 {
3964 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3965 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3966 
3967 	if (!cpu_has_vmx_msr_bitmap())
3968 		return;
3969 
3970 	vmx_msr_bitmap_l01_changed(vmx);
3971 
3972 	/*
3973 	 * Mark the desired intercept state in shadow bitmap, this is needed
3974 	 * for resync when the MSR filters change.
3975 	*/
3976 	if (is_valid_passthrough_msr(msr)) {
3977 		int idx = possible_passthrough_msr_slot(msr);
3978 
3979 		if (idx != -ENOENT) {
3980 			if (type & MSR_TYPE_R)
3981 				clear_bit(idx, vmx->shadow_msr_intercept.read);
3982 			if (type & MSR_TYPE_W)
3983 				clear_bit(idx, vmx->shadow_msr_intercept.write);
3984 		}
3985 	}
3986 
3987 	if ((type & MSR_TYPE_R) &&
3988 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3989 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3990 		type &= ~MSR_TYPE_R;
3991 	}
3992 
3993 	if ((type & MSR_TYPE_W) &&
3994 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3995 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3996 		type &= ~MSR_TYPE_W;
3997 	}
3998 
3999 	if (type & MSR_TYPE_R)
4000 		vmx_clear_msr_bitmap_read(msr_bitmap, msr);
4001 
4002 	if (type & MSR_TYPE_W)
4003 		vmx_clear_msr_bitmap_write(msr_bitmap, msr);
4004 }
4005 
4006 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
4007 {
4008 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4009 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
4010 
4011 	if (!cpu_has_vmx_msr_bitmap())
4012 		return;
4013 
4014 	vmx_msr_bitmap_l01_changed(vmx);
4015 
4016 	/*
4017 	 * Mark the desired intercept state in shadow bitmap, this is needed
4018 	 * for resync when the MSR filter changes.
4019 	*/
4020 	if (is_valid_passthrough_msr(msr)) {
4021 		int idx = possible_passthrough_msr_slot(msr);
4022 
4023 		if (idx != -ENOENT) {
4024 			if (type & MSR_TYPE_R)
4025 				set_bit(idx, vmx->shadow_msr_intercept.read);
4026 			if (type & MSR_TYPE_W)
4027 				set_bit(idx, vmx->shadow_msr_intercept.write);
4028 		}
4029 	}
4030 
4031 	if (type & MSR_TYPE_R)
4032 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
4033 
4034 	if (type & MSR_TYPE_W)
4035 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
4036 }
4037 
4038 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
4039 {
4040 	/*
4041 	 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
4042 	 * of the MSR bitmap.  KVM emulates APIC registers up through 0x3f0,
4043 	 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
4044 	 */
4045 	const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
4046 	const int write_idx = read_idx + (0x800 / sizeof(u64));
4047 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4048 	u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
4049 	u8 mode;
4050 
4051 	if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
4052 		return;
4053 
4054 	if (cpu_has_secondary_exec_ctrls() &&
4055 	    (secondary_exec_controls_get(vmx) &
4056 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4057 		mode = MSR_BITMAP_MODE_X2APIC;
4058 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4059 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4060 	} else {
4061 		mode = 0;
4062 	}
4063 
4064 	if (mode == vmx->x2apic_msr_bitmap_mode)
4065 		return;
4066 
4067 	vmx->x2apic_msr_bitmap_mode = mode;
4068 
4069 	/*
4070 	 * Reset the bitmap for MSRs 0x800 - 0x83f.  Leave AMD's uber-extended
4071 	 * registers (0x840 and above) intercepted, KVM doesn't support them.
4072 	 * Intercept all writes by default and poke holes as needed.  Pass
4073 	 * through reads for all valid registers by default in x2APIC+APICv
4074 	 * mode, only the current timer count needs on-demand emulation by KVM.
4075 	 */
4076 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
4077 		msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
4078 	else
4079 		msr_bitmap[read_idx] = ~0ull;
4080 	msr_bitmap[write_idx] = ~0ull;
4081 
4082 	/*
4083 	 * TPR reads and writes can be virtualized even if virtual interrupt
4084 	 * delivery is not in use.
4085 	 */
4086 	vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4087 				  !(mode & MSR_BITMAP_MODE_X2APIC));
4088 
4089 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4090 		vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4091 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4092 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4093 		if (enable_ipiv)
4094 			vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4095 	}
4096 }
4097 
4098 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4099 {
4100 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4101 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4102 	u32 i;
4103 
4104 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4105 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4106 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4107 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4108 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4109 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4110 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4111 	}
4112 }
4113 
4114 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
4115 {
4116 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4117 	void *vapic_page;
4118 	u32 vppr;
4119 	int rvi;
4120 
4121 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
4122 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4123 		WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
4124 		return false;
4125 
4126 	rvi = vmx_get_rvi();
4127 
4128 	vapic_page = vmx->nested.virtual_apic_map.hva;
4129 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
4130 
4131 	return ((rvi & 0xf0) > (vppr & 0xf0));
4132 }
4133 
4134 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
4135 {
4136 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4137 	u32 i;
4138 
4139 	/*
4140 	 * Redo intercept permissions for MSRs that KVM is passing through to
4141 	 * the guest.  Disabling interception will check the new MSR filter and
4142 	 * ensure that KVM enables interception if usersepace wants to filter
4143 	 * the MSR.  MSRs that KVM is already intercepting don't need to be
4144 	 * refreshed since KVM is going to intercept them regardless of what
4145 	 * userspace wants.
4146 	 */
4147 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4148 		u32 msr = vmx_possible_passthrough_msrs[i];
4149 
4150 		if (!test_bit(i, vmx->shadow_msr_intercept.read))
4151 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R);
4152 
4153 		if (!test_bit(i, vmx->shadow_msr_intercept.write))
4154 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W);
4155 	}
4156 
4157 	/* PT MSRs can be passed through iff PT is exposed to the guest. */
4158 	if (vmx_pt_mode_is_host_guest())
4159 		pt_update_intercept_for_msr(vcpu);
4160 }
4161 
4162 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4163 						     int pi_vec)
4164 {
4165 #ifdef CONFIG_SMP
4166 	if (vcpu->mode == IN_GUEST_MODE) {
4167 		/*
4168 		 * The vector of the virtual has already been set in the PIR.
4169 		 * Send a notification event to deliver the virtual interrupt
4170 		 * unless the vCPU is the currently running vCPU, i.e. the
4171 		 * event is being sent from a fastpath VM-Exit handler, in
4172 		 * which case the PIR will be synced to the vIRR before
4173 		 * re-entering the guest.
4174 		 *
4175 		 * When the target is not the running vCPU, the following
4176 		 * possibilities emerge:
4177 		 *
4178 		 * Case 1: vCPU stays in non-root mode. Sending a notification
4179 		 * event posts the interrupt to the vCPU.
4180 		 *
4181 		 * Case 2: vCPU exits to root mode and is still runnable. The
4182 		 * PIR will be synced to the vIRR before re-entering the guest.
4183 		 * Sending a notification event is ok as the host IRQ handler
4184 		 * will ignore the spurious event.
4185 		 *
4186 		 * Case 3: vCPU exits to root mode and is blocked. vcpu_block()
4187 		 * has already synced PIR to vIRR and never blocks the vCPU if
4188 		 * the vIRR is not empty. Therefore, a blocked vCPU here does
4189 		 * not wait for any requested interrupts in PIR, and sending a
4190 		 * notification event also results in a benign, spurious event.
4191 		 */
4192 
4193 		if (vcpu != kvm_get_running_vcpu())
4194 			__apic_send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4195 		return;
4196 	}
4197 #endif
4198 	/*
4199 	 * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
4200 	 * otherwise do nothing as KVM will grab the highest priority pending
4201 	 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
4202 	 */
4203 	kvm_vcpu_wake_up(vcpu);
4204 }
4205 
4206 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4207 						int vector)
4208 {
4209 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4210 
4211 	if (is_guest_mode(vcpu) &&
4212 	    vector == vmx->nested.posted_intr_nv) {
4213 		/*
4214 		 * If a posted intr is not recognized by hardware,
4215 		 * we will accomplish it in the next vmentry.
4216 		 */
4217 		vmx->nested.pi_pending = true;
4218 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4219 
4220 		/*
4221 		 * This pairs with the smp_mb_*() after setting vcpu->mode in
4222 		 * vcpu_enter_guest() to guarantee the vCPU sees the event
4223 		 * request if triggering a posted interrupt "fails" because
4224 		 * vcpu->mode != IN_GUEST_MODE.  The extra barrier is needed as
4225 		 * the smb_wmb() in kvm_make_request() only ensures everything
4226 		 * done before making the request is visible when the request
4227 		 * is visible, it doesn't ensure ordering between the store to
4228 		 * vcpu->requests and the load from vcpu->mode.
4229 		 */
4230 		smp_mb__after_atomic();
4231 
4232 		/* the PIR and ON have been set by L1. */
4233 		kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4234 		return 0;
4235 	}
4236 	return -1;
4237 }
4238 /*
4239  * Send interrupt to vcpu via posted interrupt way.
4240  * 1. If target vcpu is running(non-root mode), send posted interrupt
4241  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4242  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4243  * interrupt from PIR in next vmentry.
4244  */
4245 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4246 {
4247 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4248 	int r;
4249 
4250 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4251 	if (!r)
4252 		return 0;
4253 
4254 	/* Note, this is called iff the local APIC is in-kernel. */
4255 	if (!vcpu->arch.apic->apicv_active)
4256 		return -1;
4257 
4258 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4259 		return 0;
4260 
4261 	/* If a previous notification has sent the IPI, nothing to do.  */
4262 	if (pi_test_and_set_on(&vmx->pi_desc))
4263 		return 0;
4264 
4265 	/*
4266 	 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4267 	 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4268 	 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4269 	 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4270 	 */
4271 	kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4272 	return 0;
4273 }
4274 
4275 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4276 				  int trig_mode, int vector)
4277 {
4278 	struct kvm_vcpu *vcpu = apic->vcpu;
4279 
4280 	if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4281 		kvm_lapic_set_irr(vector, apic);
4282 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4283 		kvm_vcpu_kick(vcpu);
4284 	} else {
4285 		trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4286 					   trig_mode, vector);
4287 	}
4288 }
4289 
4290 /*
4291  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4292  * will not change in the lifetime of the guest.
4293  * Note that host-state that does change is set elsewhere. E.g., host-state
4294  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4295  */
4296 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4297 {
4298 	u32 low32, high32;
4299 	unsigned long tmpl;
4300 	unsigned long cr0, cr3, cr4;
4301 
4302 	cr0 = read_cr0();
4303 	WARN_ON(cr0 & X86_CR0_TS);
4304 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4305 
4306 	/*
4307 	 * Save the most likely value for this task's CR3 in the VMCS.
4308 	 * We can't use __get_current_cr3_fast() because we're not atomic.
4309 	 */
4310 	cr3 = __read_cr3();
4311 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
4312 	vmx->loaded_vmcs->host_state.cr3 = cr3;
4313 
4314 	/* Save the most likely value for this task's CR4 in the VMCS. */
4315 	cr4 = cr4_read_shadow();
4316 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4317 	vmx->loaded_vmcs->host_state.cr4 = cr4;
4318 
4319 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4320 #ifdef CONFIG_X86_64
4321 	/*
4322 	 * Load null selectors, so we can avoid reloading them in
4323 	 * vmx_prepare_switch_to_host(), in case userspace uses
4324 	 * the null selectors too (the expected case).
4325 	 */
4326 	vmcs_write16(HOST_DS_SELECTOR, 0);
4327 	vmcs_write16(HOST_ES_SELECTOR, 0);
4328 #else
4329 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4330 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4331 #endif
4332 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4333 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4334 
4335 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4336 
4337 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4338 
4339 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4340 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4341 
4342 	/*
4343 	 * SYSENTER is used for 32-bit system calls on either 32-bit or
4344 	 * 64-bit kernels.  It is always zero If neither is allowed, otherwise
4345 	 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4346 	 * have already done so!).
4347 	 */
4348 	if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4349 		vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4350 
4351 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4352 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4353 
4354 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4355 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4356 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4357 	}
4358 
4359 	if (cpu_has_load_ia32_efer())
4360 		vmcs_write64(HOST_IA32_EFER, host_efer);
4361 }
4362 
4363 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4364 {
4365 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4366 
4367 	vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4368 					  ~vcpu->arch.cr4_guest_rsvd_bits;
4369 	if (!enable_ept) {
4370 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4371 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4372 	}
4373 	if (is_guest_mode(&vmx->vcpu))
4374 		vcpu->arch.cr4_guest_owned_bits &=
4375 			~get_vmcs12(vcpu)->cr4_guest_host_mask;
4376 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4377 }
4378 
4379 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4380 {
4381 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4382 
4383 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4384 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4385 
4386 	if (!enable_vnmi)
4387 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4388 
4389 	if (!enable_preemption_timer)
4390 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4391 
4392 	return pin_based_exec_ctrl;
4393 }
4394 
4395 static u32 vmx_vmentry_ctrl(void)
4396 {
4397 	u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4398 
4399 	if (vmx_pt_mode_is_system())
4400 		vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4401 				  VM_ENTRY_LOAD_IA32_RTIT_CTL);
4402 	/*
4403 	 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4404 	 */
4405 	vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4406 			  VM_ENTRY_LOAD_IA32_EFER |
4407 			  VM_ENTRY_IA32E_MODE);
4408 
4409 	if (cpu_has_perf_global_ctrl_bug())
4410 		vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4411 
4412 	return vmentry_ctrl;
4413 }
4414 
4415 static u32 vmx_vmexit_ctrl(void)
4416 {
4417 	u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4418 
4419 	/*
4420 	 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4421 	 * nested virtualization and thus allowed to be set in vmcs12.
4422 	 */
4423 	vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4424 			 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4425 
4426 	if (vmx_pt_mode_is_system())
4427 		vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4428 				 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4429 
4430 	if (cpu_has_perf_global_ctrl_bug())
4431 		vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4432 
4433 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4434 	return vmexit_ctrl &
4435 		~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4436 }
4437 
4438 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4439 {
4440 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4441 
4442 	if (is_guest_mode(vcpu)) {
4443 		vmx->nested.update_vmcs01_apicv_status = true;
4444 		return;
4445 	}
4446 
4447 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4448 
4449 	if (kvm_vcpu_apicv_active(vcpu)) {
4450 		secondary_exec_controls_setbit(vmx,
4451 					       SECONDARY_EXEC_APIC_REGISTER_VIRT |
4452 					       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4453 		if (enable_ipiv)
4454 			tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4455 	} else {
4456 		secondary_exec_controls_clearbit(vmx,
4457 						 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4458 						 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4459 		if (enable_ipiv)
4460 			tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4461 	}
4462 
4463 	vmx_update_msr_bitmap_x2apic(vcpu);
4464 }
4465 
4466 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4467 {
4468 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4469 
4470 	/*
4471 	 * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4472 	 * vmcs12 and propagated to vmcs02 when set in vmcs12.
4473 	 */
4474 	exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4475 			  CPU_BASED_USE_IO_BITMAPS |
4476 			  CPU_BASED_MONITOR_TRAP_FLAG |
4477 			  CPU_BASED_PAUSE_EXITING);
4478 
4479 	/* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4480 	exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4481 			  CPU_BASED_NMI_WINDOW_EXITING);
4482 
4483 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4484 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4485 
4486 	if (!cpu_need_tpr_shadow(&vmx->vcpu))
4487 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4488 
4489 #ifdef CONFIG_X86_64
4490 	if (exec_control & CPU_BASED_TPR_SHADOW)
4491 		exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4492 				  CPU_BASED_CR8_STORE_EXITING);
4493 	else
4494 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4495 				CPU_BASED_CR8_LOAD_EXITING;
4496 #endif
4497 	/* No need to intercept CR3 access or INVPLG when using EPT. */
4498 	if (enable_ept)
4499 		exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4500 				  CPU_BASED_CR3_STORE_EXITING |
4501 				  CPU_BASED_INVLPG_EXITING);
4502 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4503 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4504 				CPU_BASED_MONITOR_EXITING);
4505 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4506 		exec_control &= ~CPU_BASED_HLT_EXITING;
4507 	return exec_control;
4508 }
4509 
4510 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4511 {
4512 	u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4513 
4514 	/*
4515 	 * IPI virtualization relies on APICv. Disable IPI virtualization if
4516 	 * APICv is inhibited.
4517 	 */
4518 	if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4519 		exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4520 
4521 	return exec_control;
4522 }
4523 
4524 /*
4525  * Adjust a single secondary execution control bit to intercept/allow an
4526  * instruction in the guest.  This is usually done based on whether or not a
4527  * feature has been exposed to the guest in order to correctly emulate faults.
4528  */
4529 static inline void
4530 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4531 				  u32 control, bool enabled, bool exiting)
4532 {
4533 	/*
4534 	 * If the control is for an opt-in feature, clear the control if the
4535 	 * feature is not exposed to the guest, i.e. not enabled.  If the
4536 	 * control is opt-out, i.e. an exiting control, clear the control if
4537 	 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4538 	 * disabled for the associated instruction.  Note, the caller is
4539 	 * responsible presetting exec_control to set all supported bits.
4540 	 */
4541 	if (enabled == exiting)
4542 		*exec_control &= ~control;
4543 
4544 	/*
4545 	 * Update the nested MSR settings so that a nested VMM can/can't set
4546 	 * controls for features that are/aren't exposed to the guest.
4547 	 */
4548 	if (nested) {
4549 		/*
4550 		 * All features that can be added or removed to VMX MSRs must
4551 		 * be supported in the first place for nested virtualization.
4552 		 */
4553 		if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4554 			enabled = false;
4555 
4556 		if (enabled)
4557 			vmx->nested.msrs.secondary_ctls_high |= control;
4558 		else
4559 			vmx->nested.msrs.secondary_ctls_high &= ~control;
4560 	}
4561 }
4562 
4563 /*
4564  * Wrapper macro for the common case of adjusting a secondary execution control
4565  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4566  * verifies that the control is actually supported by KVM and hardware.
4567  */
4568 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting)	\
4569 ({												\
4570 	struct kvm_vcpu *__vcpu = &(vmx)->vcpu;							\
4571 	bool __enabled;										\
4572 												\
4573 	if (cpu_has_vmx_##name()) {								\
4574 		if (kvm_is_governed_feature(X86_FEATURE_##feat_name))				\
4575 			__enabled = guest_can_use(__vcpu, X86_FEATURE_##feat_name);		\
4576 		else										\
4577 			__enabled = guest_cpuid_has(__vcpu, X86_FEATURE_##feat_name);		\
4578 		vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\
4579 						  __enabled, exiting);				\
4580 	}											\
4581 })
4582 
4583 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4584 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4585 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4586 
4587 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4588 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4589 
4590 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4591 {
4592 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4593 
4594 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4595 
4596 	if (vmx_pt_mode_is_system())
4597 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4598 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4599 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4600 	if (vmx->vpid == 0)
4601 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4602 	if (!enable_ept) {
4603 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4604 		enable_unrestricted_guest = 0;
4605 	}
4606 	if (!enable_unrestricted_guest)
4607 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4608 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4609 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4610 	if (!kvm_vcpu_apicv_active(vcpu))
4611 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4612 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4613 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4614 
4615 	/*
4616 	 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4617 	 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4618 	 */
4619 	exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
4620 
4621 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4622 	 * in vmx_set_cr4.  */
4623 	exec_control &= ~SECONDARY_EXEC_DESC;
4624 
4625 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4626 	   (handle_vmptrld).
4627 	   We can NOT enable shadow_vmcs here because we don't have yet
4628 	   a current VMCS12
4629 	*/
4630 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4631 
4632 	/*
4633 	 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4634 	 * it needs to be set here when dirty logging is already active, e.g.
4635 	 * if this vCPU was created after dirty logging was enabled.
4636 	 */
4637 	if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
4638 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4639 
4640 	vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES);
4641 
4642 	/*
4643 	 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4644 	 * feature is exposed to the guest.  This creates a virtualization hole
4645 	 * if both are supported in hardware but only one is exposed to the
4646 	 * guest, but letting the guest execute RDTSCP or RDPID when either one
4647 	 * is advertised is preferable to emulating the advertised instruction
4648 	 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4649 	 */
4650 	if (cpu_has_vmx_rdtscp()) {
4651 		bool rdpid_or_rdtscp_enabled =
4652 			guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4653 			guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4654 
4655 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4656 						  SECONDARY_EXEC_ENABLE_RDTSCP,
4657 						  rdpid_or_rdtscp_enabled, false);
4658 	}
4659 
4660 	vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4661 
4662 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4663 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4664 
4665 	vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4666 				    ENABLE_USR_WAIT_PAUSE, false);
4667 
4668 	if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4669 		exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4670 
4671 	if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4672 		exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4673 
4674 	return exec_control;
4675 }
4676 
4677 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4678 {
4679 	return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4680 }
4681 
4682 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4683 {
4684 	struct page *pages;
4685 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4686 
4687 	if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4688 		return 0;
4689 
4690 	if (kvm_vmx->pid_table)
4691 		return 0;
4692 
4693 	pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO,
4694 			    vmx_get_pid_table_order(kvm));
4695 	if (!pages)
4696 		return -ENOMEM;
4697 
4698 	kvm_vmx->pid_table = (void *)page_address(pages);
4699 	return 0;
4700 }
4701 
4702 static int vmx_vcpu_precreate(struct kvm *kvm)
4703 {
4704 	return vmx_alloc_ipiv_pid_table(kvm);
4705 }
4706 
4707 #define VMX_XSS_EXIT_BITMAP 0
4708 
4709 static void init_vmcs(struct vcpu_vmx *vmx)
4710 {
4711 	struct kvm *kvm = vmx->vcpu.kvm;
4712 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4713 
4714 	if (nested)
4715 		nested_vmx_set_vmcs_shadowing_bitmap();
4716 
4717 	if (cpu_has_vmx_msr_bitmap())
4718 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4719 
4720 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4721 
4722 	/* Control */
4723 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4724 
4725 	exec_controls_set(vmx, vmx_exec_control(vmx));
4726 
4727 	if (cpu_has_secondary_exec_ctrls())
4728 		secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4729 
4730 	if (cpu_has_tertiary_exec_ctrls())
4731 		tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4732 
4733 	if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4734 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4735 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4736 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4737 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4738 
4739 		vmcs_write16(GUEST_INTR_STATUS, 0);
4740 
4741 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4742 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4743 	}
4744 
4745 	if (vmx_can_use_ipiv(&vmx->vcpu)) {
4746 		vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4747 		vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4748 	}
4749 
4750 	if (!kvm_pause_in_guest(kvm)) {
4751 		vmcs_write32(PLE_GAP, ple_gap);
4752 		vmx->ple_window = ple_window;
4753 		vmx->ple_window_dirty = true;
4754 	}
4755 
4756 	if (kvm_notify_vmexit_enabled(kvm))
4757 		vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4758 
4759 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4760 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4761 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4762 
4763 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4764 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4765 	vmx_set_constant_host_state(vmx);
4766 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4767 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4768 
4769 	if (cpu_has_vmx_vmfunc())
4770 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4771 
4772 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4773 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4774 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4775 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4776 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4777 
4778 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4779 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4780 
4781 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4782 
4783 	/* 22.2.1, 20.8.1 */
4784 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4785 
4786 	vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4787 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4788 
4789 	set_cr4_guest_host_mask(vmx);
4790 
4791 	if (vmx->vpid != 0)
4792 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4793 
4794 	if (cpu_has_vmx_xsaves())
4795 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4796 
4797 	if (enable_pml) {
4798 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4799 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4800 	}
4801 
4802 	vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4803 
4804 	if (vmx_pt_mode_is_host_guest()) {
4805 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4806 		/* Bit[6~0] are forced to 1, writes are ignored. */
4807 		vmx->pt_desc.guest.output_mask = 0x7F;
4808 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4809 	}
4810 
4811 	vmcs_write32(GUEST_SYSENTER_CS, 0);
4812 	vmcs_writel(GUEST_SYSENTER_ESP, 0);
4813 	vmcs_writel(GUEST_SYSENTER_EIP, 0);
4814 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4815 
4816 	if (cpu_has_vmx_tpr_shadow()) {
4817 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4818 		if (cpu_need_tpr_shadow(&vmx->vcpu))
4819 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4820 				     __pa(vmx->vcpu.arch.apic->regs));
4821 		vmcs_write32(TPR_THRESHOLD, 0);
4822 	}
4823 
4824 	vmx_setup_uret_msrs(vmx);
4825 }
4826 
4827 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4828 {
4829 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4830 
4831 	init_vmcs(vmx);
4832 
4833 	if (nested)
4834 		memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4835 
4836 	vcpu_setup_sgx_lepubkeyhash(vcpu);
4837 
4838 	vmx->nested.posted_intr_nv = -1;
4839 	vmx->nested.vmxon_ptr = INVALID_GPA;
4840 	vmx->nested.current_vmptr = INVALID_GPA;
4841 
4842 #ifdef CONFIG_KVM_HYPERV
4843 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4844 #endif
4845 
4846 	vcpu->arch.microcode_version = 0x100000000ULL;
4847 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4848 
4849 	/*
4850 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4851 	 * or POSTED_INTR_WAKEUP_VECTOR.
4852 	 */
4853 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4854 	vmx->pi_desc.sn = 1;
4855 }
4856 
4857 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4858 {
4859 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4860 
4861 	if (!init_event)
4862 		__vmx_vcpu_reset(vcpu);
4863 
4864 	vmx->rmode.vm86_active = 0;
4865 	vmx->spec_ctrl = 0;
4866 
4867 	vmx->msr_ia32_umwait_control = 0;
4868 
4869 	vmx->hv_deadline_tsc = -1;
4870 	kvm_set_cr8(vcpu, 0);
4871 
4872 	vmx_segment_cache_clear(vmx);
4873 	kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4874 
4875 	seg_setup(VCPU_SREG_CS);
4876 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4877 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4878 
4879 	seg_setup(VCPU_SREG_DS);
4880 	seg_setup(VCPU_SREG_ES);
4881 	seg_setup(VCPU_SREG_FS);
4882 	seg_setup(VCPU_SREG_GS);
4883 	seg_setup(VCPU_SREG_SS);
4884 
4885 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4886 	vmcs_writel(GUEST_TR_BASE, 0);
4887 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4888 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4889 
4890 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4891 	vmcs_writel(GUEST_LDTR_BASE, 0);
4892 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4893 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4894 
4895 	vmcs_writel(GUEST_GDTR_BASE, 0);
4896 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4897 
4898 	vmcs_writel(GUEST_IDTR_BASE, 0);
4899 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4900 
4901 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4902 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4903 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4904 	if (kvm_mpx_supported())
4905 		vmcs_write64(GUEST_BNDCFGS, 0);
4906 
4907 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4908 
4909 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4910 
4911 	vpid_sync_context(vmx->vpid);
4912 
4913 	vmx_update_fb_clear_dis(vcpu, vmx);
4914 }
4915 
4916 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4917 {
4918 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4919 }
4920 
4921 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4922 {
4923 	if (!enable_vnmi ||
4924 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4925 		vmx_enable_irq_window(vcpu);
4926 		return;
4927 	}
4928 
4929 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4930 }
4931 
4932 static void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4933 {
4934 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4935 	uint32_t intr;
4936 	int irq = vcpu->arch.interrupt.nr;
4937 
4938 	trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4939 
4940 	++vcpu->stat.irq_injections;
4941 	if (vmx->rmode.vm86_active) {
4942 		int inc_eip = 0;
4943 		if (vcpu->arch.interrupt.soft)
4944 			inc_eip = vcpu->arch.event_exit_inst_len;
4945 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4946 		return;
4947 	}
4948 	intr = irq | INTR_INFO_VALID_MASK;
4949 	if (vcpu->arch.interrupt.soft) {
4950 		intr |= INTR_TYPE_SOFT_INTR;
4951 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4952 			     vmx->vcpu.arch.event_exit_inst_len);
4953 	} else
4954 		intr |= INTR_TYPE_EXT_INTR;
4955 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4956 
4957 	vmx_clear_hlt(vcpu);
4958 }
4959 
4960 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4961 {
4962 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4963 
4964 	if (!enable_vnmi) {
4965 		/*
4966 		 * Tracking the NMI-blocked state in software is built upon
4967 		 * finding the next open IRQ window. This, in turn, depends on
4968 		 * well-behaving guests: They have to keep IRQs disabled at
4969 		 * least as long as the NMI handler runs. Otherwise we may
4970 		 * cause NMI nesting, maybe breaking the guest. But as this is
4971 		 * highly unlikely, we can live with the residual risk.
4972 		 */
4973 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4974 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4975 	}
4976 
4977 	++vcpu->stat.nmi_injections;
4978 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4979 
4980 	if (vmx->rmode.vm86_active) {
4981 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4982 		return;
4983 	}
4984 
4985 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4986 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4987 
4988 	vmx_clear_hlt(vcpu);
4989 }
4990 
4991 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4992 {
4993 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4994 	bool masked;
4995 
4996 	if (!enable_vnmi)
4997 		return vmx->loaded_vmcs->soft_vnmi_blocked;
4998 	if (vmx->loaded_vmcs->nmi_known_unmasked)
4999 		return false;
5000 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5001 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5002 	return masked;
5003 }
5004 
5005 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5006 {
5007 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5008 
5009 	if (!enable_vnmi) {
5010 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
5011 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
5012 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
5013 		}
5014 	} else {
5015 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5016 		if (masked)
5017 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5018 				      GUEST_INTR_STATE_NMI);
5019 		else
5020 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5021 					GUEST_INTR_STATE_NMI);
5022 	}
5023 }
5024 
5025 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
5026 {
5027 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5028 		return false;
5029 
5030 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
5031 		return true;
5032 
5033 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5034 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
5035 		 GUEST_INTR_STATE_NMI));
5036 }
5037 
5038 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5039 {
5040 	if (to_vmx(vcpu)->nested.nested_run_pending)
5041 		return -EBUSY;
5042 
5043 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
5044 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5045 		return -EBUSY;
5046 
5047 	return !vmx_nmi_blocked(vcpu);
5048 }
5049 
5050 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5051 {
5052 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5053 		return false;
5054 
5055 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
5056 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5057 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5058 }
5059 
5060 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5061 {
5062 	if (to_vmx(vcpu)->nested.nested_run_pending)
5063 		return -EBUSY;
5064 
5065 	/*
5066 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
5067 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
5068 	 */
5069 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5070 		return -EBUSY;
5071 
5072 	return !vmx_interrupt_blocked(vcpu);
5073 }
5074 
5075 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5076 {
5077 	void __user *ret;
5078 
5079 	if (enable_unrestricted_guest)
5080 		return 0;
5081 
5082 	mutex_lock(&kvm->slots_lock);
5083 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5084 				      PAGE_SIZE * 3);
5085 	mutex_unlock(&kvm->slots_lock);
5086 
5087 	if (IS_ERR(ret))
5088 		return PTR_ERR(ret);
5089 
5090 	to_kvm_vmx(kvm)->tss_addr = addr;
5091 
5092 	return init_rmode_tss(kvm, ret);
5093 }
5094 
5095 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5096 {
5097 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5098 	return 0;
5099 }
5100 
5101 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5102 {
5103 	switch (vec) {
5104 	case BP_VECTOR:
5105 		/*
5106 		 * Update instruction length as we may reinject the exception
5107 		 * from user space while in guest debugging mode.
5108 		 */
5109 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5110 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5111 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5112 			return false;
5113 		fallthrough;
5114 	case DB_VECTOR:
5115 		return !(vcpu->guest_debug &
5116 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5117 	case DE_VECTOR:
5118 	case OF_VECTOR:
5119 	case BR_VECTOR:
5120 	case UD_VECTOR:
5121 	case DF_VECTOR:
5122 	case SS_VECTOR:
5123 	case GP_VECTOR:
5124 	case MF_VECTOR:
5125 		return true;
5126 	}
5127 	return false;
5128 }
5129 
5130 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5131 				  int vec, u32 err_code)
5132 {
5133 	/*
5134 	 * Instruction with address size override prefix opcode 0x67
5135 	 * Cause the #SS fault with 0 error code in VM86 mode.
5136 	 */
5137 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5138 		if (kvm_emulate_instruction(vcpu, 0)) {
5139 			if (vcpu->arch.halt_request) {
5140 				vcpu->arch.halt_request = 0;
5141 				return kvm_emulate_halt_noskip(vcpu);
5142 			}
5143 			return 1;
5144 		}
5145 		return 0;
5146 	}
5147 
5148 	/*
5149 	 * Forward all other exceptions that are valid in real mode.
5150 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5151 	 *        the required debugging infrastructure rework.
5152 	 */
5153 	kvm_queue_exception(vcpu, vec);
5154 	return 1;
5155 }
5156 
5157 static int handle_machine_check(struct kvm_vcpu *vcpu)
5158 {
5159 	/* handled by vmx_vcpu_run() */
5160 	return 1;
5161 }
5162 
5163 /*
5164  * If the host has split lock detection disabled, then #AC is
5165  * unconditionally injected into the guest, which is the pre split lock
5166  * detection behaviour.
5167  *
5168  * If the host has split lock detection enabled then #AC is
5169  * only injected into the guest when:
5170  *  - Guest CPL == 3 (user mode)
5171  *  - Guest has #AC detection enabled in CR0
5172  *  - Guest EFLAGS has AC bit set
5173  */
5174 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5175 {
5176 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5177 		return true;
5178 
5179 	return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
5180 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5181 }
5182 
5183 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5184 {
5185 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5186 	struct kvm_run *kvm_run = vcpu->run;
5187 	u32 intr_info, ex_no, error_code;
5188 	unsigned long cr2, dr6;
5189 	u32 vect_info;
5190 
5191 	vect_info = vmx->idt_vectoring_info;
5192 	intr_info = vmx_get_intr_info(vcpu);
5193 
5194 	/*
5195 	 * Machine checks are handled by handle_exception_irqoff(), or by
5196 	 * vmx_vcpu_run() if a #MC occurs on VM-Entry.  NMIs are handled by
5197 	 * vmx_vcpu_enter_exit().
5198 	 */
5199 	if (is_machine_check(intr_info) || is_nmi(intr_info))
5200 		return 1;
5201 
5202 	/*
5203 	 * Queue the exception here instead of in handle_nm_fault_irqoff().
5204 	 * This ensures the nested_vmx check is not skipped so vmexit can
5205 	 * be reflected to L1 (when it intercepts #NM) before reaching this
5206 	 * point.
5207 	 */
5208 	if (is_nm_fault(intr_info)) {
5209 		kvm_queue_exception(vcpu, NM_VECTOR);
5210 		return 1;
5211 	}
5212 
5213 	if (is_invalid_opcode(intr_info))
5214 		return handle_ud(vcpu);
5215 
5216 	error_code = 0;
5217 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5218 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5219 
5220 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5221 		WARN_ON_ONCE(!enable_vmware_backdoor);
5222 
5223 		/*
5224 		 * VMware backdoor emulation on #GP interception only handles
5225 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5226 		 * error code on #GP.
5227 		 */
5228 		if (error_code) {
5229 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5230 			return 1;
5231 		}
5232 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5233 	}
5234 
5235 	/*
5236 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5237 	 * MMIO, it is better to report an internal error.
5238 	 * See the comments in vmx_handle_exit.
5239 	 */
5240 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5241 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5242 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5243 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5244 		vcpu->run->internal.ndata = 4;
5245 		vcpu->run->internal.data[0] = vect_info;
5246 		vcpu->run->internal.data[1] = intr_info;
5247 		vcpu->run->internal.data[2] = error_code;
5248 		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5249 		return 0;
5250 	}
5251 
5252 	if (is_page_fault(intr_info)) {
5253 		cr2 = vmx_get_exit_qual(vcpu);
5254 		if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5255 			/*
5256 			 * EPT will cause page fault only if we need to
5257 			 * detect illegal GPAs.
5258 			 */
5259 			WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5260 			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5261 			return 1;
5262 		} else
5263 			return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5264 	}
5265 
5266 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5267 
5268 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5269 		return handle_rmode_exception(vcpu, ex_no, error_code);
5270 
5271 	switch (ex_no) {
5272 	case DB_VECTOR:
5273 		dr6 = vmx_get_exit_qual(vcpu);
5274 		if (!(vcpu->guest_debug &
5275 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5276 			/*
5277 			 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5278 			 * instruction.  ICEBP generates a trap-like #DB, but
5279 			 * despite its interception control being tied to #DB,
5280 			 * is an instruction intercept, i.e. the VM-Exit occurs
5281 			 * on the ICEBP itself.  Use the inner "skip" helper to
5282 			 * avoid single-step #DB and MTF updates, as ICEBP is
5283 			 * higher priority.  Note, skipping ICEBP still clears
5284 			 * STI and MOVSS blocking.
5285 			 *
5286 			 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5287 			 * if single-step is enabled in RFLAGS and STI or MOVSS
5288 			 * blocking is active, as the CPU doesn't set the bit
5289 			 * on VM-Exit due to #DB interception.  VM-Entry has a
5290 			 * consistency check that a single-step #DB is pending
5291 			 * in this scenario as the previous instruction cannot
5292 			 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5293 			 * don't modify RFLAGS), therefore the one instruction
5294 			 * delay when activating single-step breakpoints must
5295 			 * have already expired.  Note, the CPU sets/clears BS
5296 			 * as appropriate for all other VM-Exits types.
5297 			 */
5298 			if (is_icebp(intr_info))
5299 				WARN_ON(!skip_emulated_instruction(vcpu));
5300 			else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5301 				 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5302 				  (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5303 				vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5304 					    vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5305 
5306 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5307 			return 1;
5308 		}
5309 		kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5310 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5311 		fallthrough;
5312 	case BP_VECTOR:
5313 		/*
5314 		 * Update instruction length as we may reinject #BP from
5315 		 * user space while in guest debugging mode. Reading it for
5316 		 * #DB as well causes no harm, it is not used in that case.
5317 		 */
5318 		vmx->vcpu.arch.event_exit_inst_len =
5319 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5320 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5321 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5322 		kvm_run->debug.arch.exception = ex_no;
5323 		break;
5324 	case AC_VECTOR:
5325 		if (vmx_guest_inject_ac(vcpu)) {
5326 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5327 			return 1;
5328 		}
5329 
5330 		/*
5331 		 * Handle split lock. Depending on detection mode this will
5332 		 * either warn and disable split lock detection for this
5333 		 * task or force SIGBUS on it.
5334 		 */
5335 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5336 			return 1;
5337 		fallthrough;
5338 	default:
5339 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5340 		kvm_run->ex.exception = ex_no;
5341 		kvm_run->ex.error_code = error_code;
5342 		break;
5343 	}
5344 	return 0;
5345 }
5346 
5347 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5348 {
5349 	++vcpu->stat.irq_exits;
5350 	return 1;
5351 }
5352 
5353 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5354 {
5355 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5356 	vcpu->mmio_needed = 0;
5357 	return 0;
5358 }
5359 
5360 static int handle_io(struct kvm_vcpu *vcpu)
5361 {
5362 	unsigned long exit_qualification;
5363 	int size, in, string;
5364 	unsigned port;
5365 
5366 	exit_qualification = vmx_get_exit_qual(vcpu);
5367 	string = (exit_qualification & 16) != 0;
5368 
5369 	++vcpu->stat.io_exits;
5370 
5371 	if (string)
5372 		return kvm_emulate_instruction(vcpu, 0);
5373 
5374 	port = exit_qualification >> 16;
5375 	size = (exit_qualification & 7) + 1;
5376 	in = (exit_qualification & 8) != 0;
5377 
5378 	return kvm_fast_pio(vcpu, size, port, in);
5379 }
5380 
5381 static void
5382 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5383 {
5384 	/*
5385 	 * Patch in the VMCALL instruction:
5386 	 */
5387 	hypercall[0] = 0x0f;
5388 	hypercall[1] = 0x01;
5389 	hypercall[2] = 0xc1;
5390 }
5391 
5392 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5393 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5394 {
5395 	if (is_guest_mode(vcpu)) {
5396 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5397 		unsigned long orig_val = val;
5398 
5399 		/*
5400 		 * We get here when L2 changed cr0 in a way that did not change
5401 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5402 		 * but did change L0 shadowed bits. So we first calculate the
5403 		 * effective cr0 value that L1 would like to write into the
5404 		 * hardware. It consists of the L2-owned bits from the new
5405 		 * value combined with the L1-owned bits from L1's guest_cr0.
5406 		 */
5407 		val = (val & ~vmcs12->cr0_guest_host_mask) |
5408 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5409 
5410 		if (kvm_set_cr0(vcpu, val))
5411 			return 1;
5412 		vmcs_writel(CR0_READ_SHADOW, orig_val);
5413 		return 0;
5414 	} else {
5415 		return kvm_set_cr0(vcpu, val);
5416 	}
5417 }
5418 
5419 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5420 {
5421 	if (is_guest_mode(vcpu)) {
5422 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5423 		unsigned long orig_val = val;
5424 
5425 		/* analogously to handle_set_cr0 */
5426 		val = (val & ~vmcs12->cr4_guest_host_mask) |
5427 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5428 		if (kvm_set_cr4(vcpu, val))
5429 			return 1;
5430 		vmcs_writel(CR4_READ_SHADOW, orig_val);
5431 		return 0;
5432 	} else
5433 		return kvm_set_cr4(vcpu, val);
5434 }
5435 
5436 static int handle_desc(struct kvm_vcpu *vcpu)
5437 {
5438 	/*
5439 	 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this
5440 	 * and other code needs to be updated if UMIP can be guest owned.
5441 	 */
5442 	BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP);
5443 
5444 	WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP));
5445 	return kvm_emulate_instruction(vcpu, 0);
5446 }
5447 
5448 static int handle_cr(struct kvm_vcpu *vcpu)
5449 {
5450 	unsigned long exit_qualification, val;
5451 	int cr;
5452 	int reg;
5453 	int err;
5454 	int ret;
5455 
5456 	exit_qualification = vmx_get_exit_qual(vcpu);
5457 	cr = exit_qualification & 15;
5458 	reg = (exit_qualification >> 8) & 15;
5459 	switch ((exit_qualification >> 4) & 3) {
5460 	case 0: /* mov to cr */
5461 		val = kvm_register_read(vcpu, reg);
5462 		trace_kvm_cr_write(cr, val);
5463 		switch (cr) {
5464 		case 0:
5465 			err = handle_set_cr0(vcpu, val);
5466 			return kvm_complete_insn_gp(vcpu, err);
5467 		case 3:
5468 			WARN_ON_ONCE(enable_unrestricted_guest);
5469 
5470 			err = kvm_set_cr3(vcpu, val);
5471 			return kvm_complete_insn_gp(vcpu, err);
5472 		case 4:
5473 			err = handle_set_cr4(vcpu, val);
5474 			return kvm_complete_insn_gp(vcpu, err);
5475 		case 8: {
5476 				u8 cr8_prev = kvm_get_cr8(vcpu);
5477 				u8 cr8 = (u8)val;
5478 				err = kvm_set_cr8(vcpu, cr8);
5479 				ret = kvm_complete_insn_gp(vcpu, err);
5480 				if (lapic_in_kernel(vcpu))
5481 					return ret;
5482 				if (cr8_prev <= cr8)
5483 					return ret;
5484 				/*
5485 				 * TODO: we might be squashing a
5486 				 * KVM_GUESTDBG_SINGLESTEP-triggered
5487 				 * KVM_EXIT_DEBUG here.
5488 				 */
5489 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5490 				return 0;
5491 			}
5492 		}
5493 		break;
5494 	case 2: /* clts */
5495 		KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5496 		return -EIO;
5497 	case 1: /*mov from cr*/
5498 		switch (cr) {
5499 		case 3:
5500 			WARN_ON_ONCE(enable_unrestricted_guest);
5501 
5502 			val = kvm_read_cr3(vcpu);
5503 			kvm_register_write(vcpu, reg, val);
5504 			trace_kvm_cr_read(cr, val);
5505 			return kvm_skip_emulated_instruction(vcpu);
5506 		case 8:
5507 			val = kvm_get_cr8(vcpu);
5508 			kvm_register_write(vcpu, reg, val);
5509 			trace_kvm_cr_read(cr, val);
5510 			return kvm_skip_emulated_instruction(vcpu);
5511 		}
5512 		break;
5513 	case 3: /* lmsw */
5514 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5515 		trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
5516 		kvm_lmsw(vcpu, val);
5517 
5518 		return kvm_skip_emulated_instruction(vcpu);
5519 	default:
5520 		break;
5521 	}
5522 	vcpu->run->exit_reason = 0;
5523 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5524 	       (int)(exit_qualification >> 4) & 3, cr);
5525 	return 0;
5526 }
5527 
5528 static int handle_dr(struct kvm_vcpu *vcpu)
5529 {
5530 	unsigned long exit_qualification;
5531 	int dr, dr7, reg;
5532 	int err = 1;
5533 
5534 	exit_qualification = vmx_get_exit_qual(vcpu);
5535 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5536 
5537 	/* First, if DR does not exist, trigger UD */
5538 	if (!kvm_require_dr(vcpu, dr))
5539 		return 1;
5540 
5541 	if (vmx_get_cpl(vcpu) > 0)
5542 		goto out;
5543 
5544 	dr7 = vmcs_readl(GUEST_DR7);
5545 	if (dr7 & DR7_GD) {
5546 		/*
5547 		 * As the vm-exit takes precedence over the debug trap, we
5548 		 * need to emulate the latter, either for the host or the
5549 		 * guest debugging itself.
5550 		 */
5551 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5552 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5553 			vcpu->run->debug.arch.dr7 = dr7;
5554 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5555 			vcpu->run->debug.arch.exception = DB_VECTOR;
5556 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5557 			return 0;
5558 		} else {
5559 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5560 			return 1;
5561 		}
5562 	}
5563 
5564 	if (vcpu->guest_debug == 0) {
5565 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5566 
5567 		/*
5568 		 * No more DR vmexits; force a reload of the debug registers
5569 		 * and reenter on this instruction.  The next vmexit will
5570 		 * retrieve the full state of the debug registers.
5571 		 */
5572 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5573 		return 1;
5574 	}
5575 
5576 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5577 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5578 		unsigned long val;
5579 
5580 		kvm_get_dr(vcpu, dr, &val);
5581 		kvm_register_write(vcpu, reg, val);
5582 		err = 0;
5583 	} else {
5584 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5585 	}
5586 
5587 out:
5588 	return kvm_complete_insn_gp(vcpu, err);
5589 }
5590 
5591 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5592 {
5593 	get_debugreg(vcpu->arch.db[0], 0);
5594 	get_debugreg(vcpu->arch.db[1], 1);
5595 	get_debugreg(vcpu->arch.db[2], 2);
5596 	get_debugreg(vcpu->arch.db[3], 3);
5597 	get_debugreg(vcpu->arch.dr6, 6);
5598 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5599 
5600 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5601 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5602 
5603 	/*
5604 	 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5605 	 * a stale dr6 from the guest.
5606 	 */
5607 	set_debugreg(DR6_RESERVED, 6);
5608 }
5609 
5610 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5611 {
5612 	vmcs_writel(GUEST_DR7, val);
5613 }
5614 
5615 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5616 {
5617 	kvm_apic_update_ppr(vcpu);
5618 	return 1;
5619 }
5620 
5621 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5622 {
5623 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5624 
5625 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5626 
5627 	++vcpu->stat.irq_window_exits;
5628 	return 1;
5629 }
5630 
5631 static int handle_invlpg(struct kvm_vcpu *vcpu)
5632 {
5633 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5634 
5635 	kvm_mmu_invlpg(vcpu, exit_qualification);
5636 	return kvm_skip_emulated_instruction(vcpu);
5637 }
5638 
5639 static int handle_apic_access(struct kvm_vcpu *vcpu)
5640 {
5641 	if (likely(fasteoi)) {
5642 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5643 		int access_type, offset;
5644 
5645 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5646 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5647 		/*
5648 		 * Sane guest uses MOV to write EOI, with written value
5649 		 * not cared. So make a short-circuit here by avoiding
5650 		 * heavy instruction emulation.
5651 		 */
5652 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5653 		    (offset == APIC_EOI)) {
5654 			kvm_lapic_set_eoi(vcpu);
5655 			return kvm_skip_emulated_instruction(vcpu);
5656 		}
5657 	}
5658 	return kvm_emulate_instruction(vcpu, 0);
5659 }
5660 
5661 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5662 {
5663 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5664 	int vector = exit_qualification & 0xff;
5665 
5666 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5667 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5668 	return 1;
5669 }
5670 
5671 static int handle_apic_write(struct kvm_vcpu *vcpu)
5672 {
5673 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5674 
5675 	/*
5676 	 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5677 	 * hardware has done any necessary aliasing, offset adjustments, etc...
5678 	 * for the access.  I.e. the correct value has already been  written to
5679 	 * the vAPIC page for the correct 16-byte chunk.  KVM needs only to
5680 	 * retrieve the register value and emulate the access.
5681 	 */
5682 	u32 offset = exit_qualification & 0xff0;
5683 
5684 	kvm_apic_write_nodecode(vcpu, offset);
5685 	return 1;
5686 }
5687 
5688 static int handle_task_switch(struct kvm_vcpu *vcpu)
5689 {
5690 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5691 	unsigned long exit_qualification;
5692 	bool has_error_code = false;
5693 	u32 error_code = 0;
5694 	u16 tss_selector;
5695 	int reason, type, idt_v, idt_index;
5696 
5697 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5698 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5699 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5700 
5701 	exit_qualification = vmx_get_exit_qual(vcpu);
5702 
5703 	reason = (u32)exit_qualification >> 30;
5704 	if (reason == TASK_SWITCH_GATE && idt_v) {
5705 		switch (type) {
5706 		case INTR_TYPE_NMI_INTR:
5707 			vcpu->arch.nmi_injected = false;
5708 			vmx_set_nmi_mask(vcpu, true);
5709 			break;
5710 		case INTR_TYPE_EXT_INTR:
5711 		case INTR_TYPE_SOFT_INTR:
5712 			kvm_clear_interrupt_queue(vcpu);
5713 			break;
5714 		case INTR_TYPE_HARD_EXCEPTION:
5715 			if (vmx->idt_vectoring_info &
5716 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5717 				has_error_code = true;
5718 				error_code =
5719 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5720 			}
5721 			fallthrough;
5722 		case INTR_TYPE_SOFT_EXCEPTION:
5723 			kvm_clear_exception_queue(vcpu);
5724 			break;
5725 		default:
5726 			break;
5727 		}
5728 	}
5729 	tss_selector = exit_qualification;
5730 
5731 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5732 		       type != INTR_TYPE_EXT_INTR &&
5733 		       type != INTR_TYPE_NMI_INTR))
5734 		WARN_ON(!skip_emulated_instruction(vcpu));
5735 
5736 	/*
5737 	 * TODO: What about debug traps on tss switch?
5738 	 *       Are we supposed to inject them and update dr6?
5739 	 */
5740 	return kvm_task_switch(vcpu, tss_selector,
5741 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5742 			       reason, has_error_code, error_code);
5743 }
5744 
5745 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5746 {
5747 	unsigned long exit_qualification;
5748 	gpa_t gpa;
5749 	u64 error_code;
5750 
5751 	exit_qualification = vmx_get_exit_qual(vcpu);
5752 
5753 	/*
5754 	 * EPT violation happened while executing iret from NMI,
5755 	 * "blocked by NMI" bit has to be set before next VM entry.
5756 	 * There are errata that may cause this bit to not be set:
5757 	 * AAK134, BY25.
5758 	 */
5759 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5760 			enable_vnmi &&
5761 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5762 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5763 
5764 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5765 	trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5766 
5767 	/* Is it a read fault? */
5768 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5769 		     ? PFERR_USER_MASK : 0;
5770 	/* Is it a write fault? */
5771 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5772 		      ? PFERR_WRITE_MASK : 0;
5773 	/* Is it a fetch fault? */
5774 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5775 		      ? PFERR_FETCH_MASK : 0;
5776 	/* ept page table entry is present? */
5777 	error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK)
5778 		      ? PFERR_PRESENT_MASK : 0;
5779 
5780 	error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5781 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5782 
5783 	vcpu->arch.exit_qualification = exit_qualification;
5784 
5785 	/*
5786 	 * Check that the GPA doesn't exceed physical memory limits, as that is
5787 	 * a guest page fault.  We have to emulate the instruction here, because
5788 	 * if the illegal address is that of a paging structure, then
5789 	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5790 	 * would also use advanced VM-exit information for EPT violations to
5791 	 * reconstruct the page fault error code.
5792 	 */
5793 	if (unlikely(allow_smaller_maxphyaddr && !kvm_vcpu_is_legal_gpa(vcpu, gpa)))
5794 		return kvm_emulate_instruction(vcpu, 0);
5795 
5796 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5797 }
5798 
5799 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5800 {
5801 	gpa_t gpa;
5802 
5803 	if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5804 		return 1;
5805 
5806 	/*
5807 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5808 	 * nGPA here instead of the required GPA.
5809 	 */
5810 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5811 	if (!is_guest_mode(vcpu) &&
5812 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5813 		trace_kvm_fast_mmio(gpa);
5814 		return kvm_skip_emulated_instruction(vcpu);
5815 	}
5816 
5817 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5818 }
5819 
5820 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5821 {
5822 	if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5823 		return -EIO;
5824 
5825 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5826 	++vcpu->stat.nmi_window_exits;
5827 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5828 
5829 	return 1;
5830 }
5831 
5832 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
5833 {
5834 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5835 
5836 	return vmx->emulation_required && !vmx->rmode.vm86_active &&
5837 	       (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5838 }
5839 
5840 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5841 {
5842 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5843 	bool intr_window_requested;
5844 	unsigned count = 130;
5845 
5846 	intr_window_requested = exec_controls_get(vmx) &
5847 				CPU_BASED_INTR_WINDOW_EXITING;
5848 
5849 	while (vmx->emulation_required && count-- != 0) {
5850 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5851 			return handle_interrupt_window(&vmx->vcpu);
5852 
5853 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5854 			return 1;
5855 
5856 		if (!kvm_emulate_instruction(vcpu, 0))
5857 			return 0;
5858 
5859 		if (vmx_emulation_required_with_pending_exception(vcpu)) {
5860 			kvm_prepare_emulation_failure_exit(vcpu);
5861 			return 0;
5862 		}
5863 
5864 		if (vcpu->arch.halt_request) {
5865 			vcpu->arch.halt_request = 0;
5866 			return kvm_emulate_halt_noskip(vcpu);
5867 		}
5868 
5869 		/*
5870 		 * Note, return 1 and not 0, vcpu_run() will invoke
5871 		 * xfer_to_guest_mode() which will create a proper return
5872 		 * code.
5873 		 */
5874 		if (__xfer_to_guest_mode_work_pending())
5875 			return 1;
5876 	}
5877 
5878 	return 1;
5879 }
5880 
5881 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5882 {
5883 	if (vmx_emulation_required_with_pending_exception(vcpu)) {
5884 		kvm_prepare_emulation_failure_exit(vcpu);
5885 		return 0;
5886 	}
5887 
5888 	return 1;
5889 }
5890 
5891 static void grow_ple_window(struct kvm_vcpu *vcpu)
5892 {
5893 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5894 	unsigned int old = vmx->ple_window;
5895 
5896 	vmx->ple_window = __grow_ple_window(old, ple_window,
5897 					    ple_window_grow,
5898 					    ple_window_max);
5899 
5900 	if (vmx->ple_window != old) {
5901 		vmx->ple_window_dirty = true;
5902 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5903 					    vmx->ple_window, old);
5904 	}
5905 }
5906 
5907 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5908 {
5909 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5910 	unsigned int old = vmx->ple_window;
5911 
5912 	vmx->ple_window = __shrink_ple_window(old, ple_window,
5913 					      ple_window_shrink,
5914 					      ple_window);
5915 
5916 	if (vmx->ple_window != old) {
5917 		vmx->ple_window_dirty = true;
5918 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5919 					    vmx->ple_window, old);
5920 	}
5921 }
5922 
5923 /*
5924  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5925  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5926  */
5927 static int handle_pause(struct kvm_vcpu *vcpu)
5928 {
5929 	if (!kvm_pause_in_guest(vcpu->kvm))
5930 		grow_ple_window(vcpu);
5931 
5932 	/*
5933 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5934 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5935 	 * never set PAUSE_EXITING and just set PLE if supported,
5936 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5937 	 */
5938 	kvm_vcpu_on_spin(vcpu, true);
5939 	return kvm_skip_emulated_instruction(vcpu);
5940 }
5941 
5942 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5943 {
5944 	return 1;
5945 }
5946 
5947 static int handle_invpcid(struct kvm_vcpu *vcpu)
5948 {
5949 	u32 vmx_instruction_info;
5950 	unsigned long type;
5951 	gva_t gva;
5952 	struct {
5953 		u64 pcid;
5954 		u64 gla;
5955 	} operand;
5956 	int gpr_index;
5957 
5958 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5959 		kvm_queue_exception(vcpu, UD_VECTOR);
5960 		return 1;
5961 	}
5962 
5963 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5964 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5965 	type = kvm_register_read(vcpu, gpr_index);
5966 
5967 	/* According to the Intel instruction reference, the memory operand
5968 	 * is read even if it isn't needed (e.g., for type==all)
5969 	 */
5970 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5971 				vmx_instruction_info, false,
5972 				sizeof(operand), &gva))
5973 		return 1;
5974 
5975 	return kvm_handle_invpcid(vcpu, type, gva);
5976 }
5977 
5978 static int handle_pml_full(struct kvm_vcpu *vcpu)
5979 {
5980 	unsigned long exit_qualification;
5981 
5982 	trace_kvm_pml_full(vcpu->vcpu_id);
5983 
5984 	exit_qualification = vmx_get_exit_qual(vcpu);
5985 
5986 	/*
5987 	 * PML buffer FULL happened while executing iret from NMI,
5988 	 * "blocked by NMI" bit has to be set before next VM entry.
5989 	 */
5990 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5991 			enable_vnmi &&
5992 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5993 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5994 				GUEST_INTR_STATE_NMI);
5995 
5996 	/*
5997 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5998 	 * here.., and there's no userspace involvement needed for PML.
5999 	 */
6000 	return 1;
6001 }
6002 
6003 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
6004 {
6005 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6006 
6007 	if (!vmx->req_immediate_exit &&
6008 	    !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
6009 		kvm_lapic_expired_hv_timer(vcpu);
6010 		return EXIT_FASTPATH_REENTER_GUEST;
6011 	}
6012 
6013 	return EXIT_FASTPATH_NONE;
6014 }
6015 
6016 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
6017 {
6018 	handle_fastpath_preemption_timer(vcpu);
6019 	return 1;
6020 }
6021 
6022 /*
6023  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
6024  * are overwritten by nested_vmx_setup() when nested=1.
6025  */
6026 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
6027 {
6028 	kvm_queue_exception(vcpu, UD_VECTOR);
6029 	return 1;
6030 }
6031 
6032 #ifndef CONFIG_X86_SGX_KVM
6033 static int handle_encls(struct kvm_vcpu *vcpu)
6034 {
6035 	/*
6036 	 * SGX virtualization is disabled.  There is no software enable bit for
6037 	 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
6038 	 * the guest from executing ENCLS (when SGX is supported by hardware).
6039 	 */
6040 	kvm_queue_exception(vcpu, UD_VECTOR);
6041 	return 1;
6042 }
6043 #endif /* CONFIG_X86_SGX_KVM */
6044 
6045 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
6046 {
6047 	/*
6048 	 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
6049 	 * VM-Exits. Unconditionally set the flag here and leave the handling to
6050 	 * vmx_handle_exit().
6051 	 */
6052 	to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
6053 	return 1;
6054 }
6055 
6056 static int handle_notify(struct kvm_vcpu *vcpu)
6057 {
6058 	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
6059 	bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
6060 
6061 	++vcpu->stat.notify_window_exits;
6062 
6063 	/*
6064 	 * Notify VM exit happened while executing iret from NMI,
6065 	 * "blocked by NMI" bit has to be set before next VM entry.
6066 	 */
6067 	if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
6068 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6069 			      GUEST_INTR_STATE_NMI);
6070 
6071 	if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
6072 	    context_invalid) {
6073 		vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
6074 		vcpu->run->notify.flags = context_invalid ?
6075 					  KVM_NOTIFY_CONTEXT_INVALID : 0;
6076 		return 0;
6077 	}
6078 
6079 	return 1;
6080 }
6081 
6082 /*
6083  * The exit handlers return 1 if the exit was handled fully and guest execution
6084  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6085  * to be done to userspace and return 0.
6086  */
6087 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6088 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
6089 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6090 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6091 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
6092 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6093 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
6094 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
6095 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
6096 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
6097 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
6098 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
6099 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
6100 	[EXIT_REASON_INVD]		      = kvm_emulate_invd,
6101 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
6102 	[EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
6103 	[EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
6104 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
6105 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
6106 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
6107 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
6108 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
6109 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
6110 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
6111 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
6112 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
6113 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6114 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6115 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6116 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6117 	[EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
6118 	[EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
6119 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6120 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6121 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
6122 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
6123 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
6124 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6125 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6126 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = kvm_emulate_mwait,
6127 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
6128 	[EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
6129 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
6130 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
6131 	[EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
6132 	[EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
6133 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
6134 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
6135 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
6136 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
6137 	[EXIT_REASON_ENCLS]		      = handle_encls,
6138 	[EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
6139 	[EXIT_REASON_NOTIFY]		      = handle_notify,
6140 };
6141 
6142 static const int kvm_vmx_max_exit_handlers =
6143 	ARRAY_SIZE(kvm_vmx_exit_handlers);
6144 
6145 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6146 			      u64 *info1, u64 *info2,
6147 			      u32 *intr_info, u32 *error_code)
6148 {
6149 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6150 
6151 	*reason = vmx->exit_reason.full;
6152 	*info1 = vmx_get_exit_qual(vcpu);
6153 	if (!(vmx->exit_reason.failed_vmentry)) {
6154 		*info2 = vmx->idt_vectoring_info;
6155 		*intr_info = vmx_get_intr_info(vcpu);
6156 		if (is_exception_with_error_code(*intr_info))
6157 			*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6158 		else
6159 			*error_code = 0;
6160 	} else {
6161 		*info2 = 0;
6162 		*intr_info = 0;
6163 		*error_code = 0;
6164 	}
6165 }
6166 
6167 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6168 {
6169 	if (vmx->pml_pg) {
6170 		__free_page(vmx->pml_pg);
6171 		vmx->pml_pg = NULL;
6172 	}
6173 }
6174 
6175 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6176 {
6177 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6178 	u64 *pml_buf;
6179 	u16 pml_idx;
6180 
6181 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
6182 
6183 	/* Do nothing if PML buffer is empty */
6184 	if (pml_idx == (PML_ENTITY_NUM - 1))
6185 		return;
6186 
6187 	/* PML index always points to next available PML buffer entity */
6188 	if (pml_idx >= PML_ENTITY_NUM)
6189 		pml_idx = 0;
6190 	else
6191 		pml_idx++;
6192 
6193 	pml_buf = page_address(vmx->pml_pg);
6194 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
6195 		u64 gpa;
6196 
6197 		gpa = pml_buf[pml_idx];
6198 		WARN_ON(gpa & (PAGE_SIZE - 1));
6199 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6200 	}
6201 
6202 	/* reset PML index */
6203 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
6204 }
6205 
6206 static void vmx_dump_sel(char *name, uint32_t sel)
6207 {
6208 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6209 	       name, vmcs_read16(sel),
6210 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6211 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6212 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6213 }
6214 
6215 static void vmx_dump_dtsel(char *name, uint32_t limit)
6216 {
6217 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
6218 	       name, vmcs_read32(limit),
6219 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6220 }
6221 
6222 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6223 {
6224 	unsigned int i;
6225 	struct vmx_msr_entry *e;
6226 
6227 	pr_err("MSR %s:\n", name);
6228 	for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6229 		pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6230 }
6231 
6232 void dump_vmcs(struct kvm_vcpu *vcpu)
6233 {
6234 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6235 	u32 vmentry_ctl, vmexit_ctl;
6236 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6237 	u64 tertiary_exec_control;
6238 	unsigned long cr4;
6239 	int efer_slot;
6240 
6241 	if (!dump_invalid_vmcs) {
6242 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6243 		return;
6244 	}
6245 
6246 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6247 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6248 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6249 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6250 	cr4 = vmcs_readl(GUEST_CR4);
6251 
6252 	if (cpu_has_secondary_exec_ctrls())
6253 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6254 	else
6255 		secondary_exec_control = 0;
6256 
6257 	if (cpu_has_tertiary_exec_ctrls())
6258 		tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6259 	else
6260 		tertiary_exec_control = 0;
6261 
6262 	pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6263 	       vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6264 	pr_err("*** Guest State ***\n");
6265 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6266 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6267 	       vmcs_readl(CR0_GUEST_HOST_MASK));
6268 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6269 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6270 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6271 	if (cpu_has_vmx_ept()) {
6272 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
6273 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6274 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
6275 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6276 	}
6277 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
6278 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6279 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
6280 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6281 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6282 	       vmcs_readl(GUEST_SYSENTER_ESP),
6283 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6284 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
6285 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
6286 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
6287 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
6288 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
6289 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
6290 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6291 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6292 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6293 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
6294 	efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6295 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6296 		pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6297 	else if (efer_slot >= 0)
6298 		pr_err("EFER= 0x%016llx (autoload)\n",
6299 		       vmx->msr_autoload.guest.val[efer_slot].value);
6300 	else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6301 		pr_err("EFER= 0x%016llx (effective)\n",
6302 		       vcpu->arch.efer | (EFER_LMA | EFER_LME));
6303 	else
6304 		pr_err("EFER= 0x%016llx (effective)\n",
6305 		       vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6306 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6307 		pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6308 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
6309 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
6310 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6311 	if (cpu_has_load_perf_global_ctrl() &&
6312 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6313 		pr_err("PerfGlobCtl = 0x%016llx\n",
6314 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6315 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6316 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6317 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
6318 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6319 	       vmcs_read32(GUEST_ACTIVITY_STATE));
6320 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6321 		pr_err("InterruptStatus = %04x\n",
6322 		       vmcs_read16(GUEST_INTR_STATUS));
6323 	if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6324 		vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6325 	if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6326 		vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6327 
6328 	pr_err("*** Host State ***\n");
6329 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
6330 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6331 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6332 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6333 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6334 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6335 	       vmcs_read16(HOST_TR_SELECTOR));
6336 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6337 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6338 	       vmcs_readl(HOST_TR_BASE));
6339 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6340 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6341 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6342 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6343 	       vmcs_readl(HOST_CR4));
6344 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6345 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
6346 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
6347 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
6348 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6349 		pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6350 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6351 		pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6352 	if (cpu_has_load_perf_global_ctrl() &&
6353 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6354 		pr_err("PerfGlobCtl = 0x%016llx\n",
6355 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6356 	if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6357 		vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6358 
6359 	pr_err("*** Control State ***\n");
6360 	pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6361 	       cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6362 	pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6363 	       pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6364 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6365 	       vmcs_read32(EXCEPTION_BITMAP),
6366 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6367 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6368 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6369 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6370 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6371 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6372 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6373 	       vmcs_read32(VM_EXIT_INTR_INFO),
6374 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6375 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6376 	pr_err("        reason=%08x qualification=%016lx\n",
6377 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6378 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6379 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
6380 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
6381 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6382 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6383 		pr_err("TSC Multiplier = 0x%016llx\n",
6384 		       vmcs_read64(TSC_MULTIPLIER));
6385 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6386 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6387 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
6388 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6389 		}
6390 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6391 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6392 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6393 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6394 	}
6395 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6396 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6397 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6398 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6399 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6400 		pr_err("PLE Gap=%08x Window=%08x\n",
6401 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6402 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6403 		pr_err("Virtual processor ID = 0x%04x\n",
6404 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
6405 }
6406 
6407 /*
6408  * The guest has exited.  See if we can fix it or if we need userspace
6409  * assistance.
6410  */
6411 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6412 {
6413 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6414 	union vmx_exit_reason exit_reason = vmx->exit_reason;
6415 	u32 vectoring_info = vmx->idt_vectoring_info;
6416 	u16 exit_handler_index;
6417 
6418 	/*
6419 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6420 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6421 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6422 	 * mode as if vcpus is in root mode, the PML buffer must has been
6423 	 * flushed already.  Note, PML is never enabled in hardware while
6424 	 * running L2.
6425 	 */
6426 	if (enable_pml && !is_guest_mode(vcpu))
6427 		vmx_flush_pml_buffer(vcpu);
6428 
6429 	/*
6430 	 * KVM should never reach this point with a pending nested VM-Enter.
6431 	 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6432 	 * invalid guest state should never happen as that means KVM knowingly
6433 	 * allowed a nested VM-Enter with an invalid vmcs12.  More below.
6434 	 */
6435 	if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6436 		return -EIO;
6437 
6438 	if (is_guest_mode(vcpu)) {
6439 		/*
6440 		 * PML is never enabled when running L2, bail immediately if a
6441 		 * PML full exit occurs as something is horribly wrong.
6442 		 */
6443 		if (exit_reason.basic == EXIT_REASON_PML_FULL)
6444 			goto unexpected_vmexit;
6445 
6446 		/*
6447 		 * The host physical addresses of some pages of guest memory
6448 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6449 		 * Page). The CPU may write to these pages via their host
6450 		 * physical address while L2 is running, bypassing any
6451 		 * address-translation-based dirty tracking (e.g. EPT write
6452 		 * protection).
6453 		 *
6454 		 * Mark them dirty on every exit from L2 to prevent them from
6455 		 * getting out of sync with dirty tracking.
6456 		 */
6457 		nested_mark_vmcs12_pages_dirty(vcpu);
6458 
6459 		/*
6460 		 * Synthesize a triple fault if L2 state is invalid.  In normal
6461 		 * operation, nested VM-Enter rejects any attempt to enter L2
6462 		 * with invalid state.  However, those checks are skipped if
6463 		 * state is being stuffed via RSM or KVM_SET_NESTED_STATE.  If
6464 		 * L2 state is invalid, it means either L1 modified SMRAM state
6465 		 * or userspace provided bad state.  Synthesize TRIPLE_FAULT as
6466 		 * doing so is architecturally allowed in the RSM case, and is
6467 		 * the least awful solution for the userspace case without
6468 		 * risking false positives.
6469 		 */
6470 		if (vmx->emulation_required) {
6471 			nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6472 			return 1;
6473 		}
6474 
6475 		if (nested_vmx_reflect_vmexit(vcpu))
6476 			return 1;
6477 	}
6478 
6479 	/* If guest state is invalid, start emulating.  L2 is handled above. */
6480 	if (vmx->emulation_required)
6481 		return handle_invalid_guest_state(vcpu);
6482 
6483 	if (exit_reason.failed_vmentry) {
6484 		dump_vmcs(vcpu);
6485 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6486 		vcpu->run->fail_entry.hardware_entry_failure_reason
6487 			= exit_reason.full;
6488 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6489 		return 0;
6490 	}
6491 
6492 	if (unlikely(vmx->fail)) {
6493 		dump_vmcs(vcpu);
6494 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6495 		vcpu->run->fail_entry.hardware_entry_failure_reason
6496 			= vmcs_read32(VM_INSTRUCTION_ERROR);
6497 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6498 		return 0;
6499 	}
6500 
6501 	/*
6502 	 * Note:
6503 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6504 	 * delivery event since it indicates guest is accessing MMIO.
6505 	 * The vm-exit can be triggered again after return to guest that
6506 	 * will cause infinite loop.
6507 	 */
6508 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6509 	    (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6510 	     exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6511 	     exit_reason.basic != EXIT_REASON_PML_FULL &&
6512 	     exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6513 	     exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6514 	     exit_reason.basic != EXIT_REASON_NOTIFY)) {
6515 		int ndata = 3;
6516 
6517 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6518 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6519 		vcpu->run->internal.data[0] = vectoring_info;
6520 		vcpu->run->internal.data[1] = exit_reason.full;
6521 		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6522 		if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6523 			vcpu->run->internal.data[ndata++] =
6524 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6525 		}
6526 		vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6527 		vcpu->run->internal.ndata = ndata;
6528 		return 0;
6529 	}
6530 
6531 	if (unlikely(!enable_vnmi &&
6532 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
6533 		if (!vmx_interrupt_blocked(vcpu)) {
6534 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6535 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6536 			   vcpu->arch.nmi_pending) {
6537 			/*
6538 			 * This CPU don't support us in finding the end of an
6539 			 * NMI-blocked window if the guest runs with IRQs
6540 			 * disabled. So we pull the trigger after 1 s of
6541 			 * futile waiting, but inform the user about this.
6542 			 */
6543 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6544 			       "state on VCPU %d after 1 s timeout\n",
6545 			       __func__, vcpu->vcpu_id);
6546 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6547 		}
6548 	}
6549 
6550 	if (exit_fastpath != EXIT_FASTPATH_NONE)
6551 		return 1;
6552 
6553 	if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6554 		goto unexpected_vmexit;
6555 #ifdef CONFIG_RETPOLINE
6556 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6557 		return kvm_emulate_wrmsr(vcpu);
6558 	else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6559 		return handle_preemption_timer(vcpu);
6560 	else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6561 		return handle_interrupt_window(vcpu);
6562 	else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6563 		return handle_external_interrupt(vcpu);
6564 	else if (exit_reason.basic == EXIT_REASON_HLT)
6565 		return kvm_emulate_halt(vcpu);
6566 	else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6567 		return handle_ept_misconfig(vcpu);
6568 #endif
6569 
6570 	exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6571 						kvm_vmx_max_exit_handlers);
6572 	if (!kvm_vmx_exit_handlers[exit_handler_index])
6573 		goto unexpected_vmexit;
6574 
6575 	return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6576 
6577 unexpected_vmexit:
6578 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6579 		    exit_reason.full);
6580 	dump_vmcs(vcpu);
6581 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6582 	vcpu->run->internal.suberror =
6583 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6584 	vcpu->run->internal.ndata = 2;
6585 	vcpu->run->internal.data[0] = exit_reason.full;
6586 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6587 	return 0;
6588 }
6589 
6590 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6591 {
6592 	int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6593 
6594 	/*
6595 	 * Exit to user space when bus lock detected to inform that there is
6596 	 * a bus lock in guest.
6597 	 */
6598 	if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6599 		if (ret > 0)
6600 			vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6601 
6602 		vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6603 		return 0;
6604 	}
6605 	return ret;
6606 }
6607 
6608 /*
6609  * Software based L1D cache flush which is used when microcode providing
6610  * the cache control MSR is not loaded.
6611  *
6612  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6613  * flush it is required to read in 64 KiB because the replacement algorithm
6614  * is not exactly LRU. This could be sized at runtime via topology
6615  * information but as all relevant affected CPUs have 32KiB L1D cache size
6616  * there is no point in doing so.
6617  */
6618 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6619 {
6620 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6621 
6622 	/*
6623 	 * This code is only executed when the flush mode is 'cond' or
6624 	 * 'always'
6625 	 */
6626 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6627 		bool flush_l1d;
6628 
6629 		/*
6630 		 * Clear the per-vcpu flush bit, it gets set again
6631 		 * either from vcpu_run() or from one of the unsafe
6632 		 * VMEXIT handlers.
6633 		 */
6634 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6635 		vcpu->arch.l1tf_flush_l1d = false;
6636 
6637 		/*
6638 		 * Clear the per-cpu flush bit, it gets set again from
6639 		 * the interrupt handlers.
6640 		 */
6641 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6642 		kvm_clear_cpu_l1tf_flush_l1d();
6643 
6644 		if (!flush_l1d)
6645 			return;
6646 	}
6647 
6648 	vcpu->stat.l1d_flush++;
6649 
6650 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6651 		native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6652 		return;
6653 	}
6654 
6655 	asm volatile(
6656 		/* First ensure the pages are in the TLB */
6657 		"xorl	%%eax, %%eax\n"
6658 		".Lpopulate_tlb:\n\t"
6659 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6660 		"addl	$4096, %%eax\n\t"
6661 		"cmpl	%%eax, %[size]\n\t"
6662 		"jne	.Lpopulate_tlb\n\t"
6663 		"xorl	%%eax, %%eax\n\t"
6664 		"cpuid\n\t"
6665 		/* Now fill the cache */
6666 		"xorl	%%eax, %%eax\n"
6667 		".Lfill_cache:\n"
6668 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6669 		"addl	$64, %%eax\n\t"
6670 		"cmpl	%%eax, %[size]\n\t"
6671 		"jne	.Lfill_cache\n\t"
6672 		"lfence\n"
6673 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6674 		    [size] "r" (size)
6675 		: "eax", "ebx", "ecx", "edx");
6676 }
6677 
6678 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6679 {
6680 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6681 	int tpr_threshold;
6682 
6683 	if (is_guest_mode(vcpu) &&
6684 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6685 		return;
6686 
6687 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6688 	if (is_guest_mode(vcpu))
6689 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6690 	else
6691 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6692 }
6693 
6694 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6695 {
6696 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6697 	u32 sec_exec_control;
6698 
6699 	if (!lapic_in_kernel(vcpu))
6700 		return;
6701 
6702 	if (!flexpriority_enabled &&
6703 	    !cpu_has_vmx_virtualize_x2apic_mode())
6704 		return;
6705 
6706 	/* Postpone execution until vmcs01 is the current VMCS. */
6707 	if (is_guest_mode(vcpu)) {
6708 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6709 		return;
6710 	}
6711 
6712 	sec_exec_control = secondary_exec_controls_get(vmx);
6713 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6714 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6715 
6716 	switch (kvm_get_apic_mode(vcpu)) {
6717 	case LAPIC_MODE_INVALID:
6718 		WARN_ONCE(true, "Invalid local APIC state");
6719 		break;
6720 	case LAPIC_MODE_DISABLED:
6721 		break;
6722 	case LAPIC_MODE_XAPIC:
6723 		if (flexpriority_enabled) {
6724 			sec_exec_control |=
6725 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6726 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6727 
6728 			/*
6729 			 * Flush the TLB, reloading the APIC access page will
6730 			 * only do so if its physical address has changed, but
6731 			 * the guest may have inserted a non-APIC mapping into
6732 			 * the TLB while the APIC access page was disabled.
6733 			 */
6734 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6735 		}
6736 		break;
6737 	case LAPIC_MODE_X2APIC:
6738 		if (cpu_has_vmx_virtualize_x2apic_mode())
6739 			sec_exec_control |=
6740 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6741 		break;
6742 	}
6743 	secondary_exec_controls_set(vmx, sec_exec_control);
6744 
6745 	vmx_update_msr_bitmap_x2apic(vcpu);
6746 }
6747 
6748 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6749 {
6750 	const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT;
6751 	struct kvm *kvm = vcpu->kvm;
6752 	struct kvm_memslots *slots = kvm_memslots(kvm);
6753 	struct kvm_memory_slot *slot;
6754 	unsigned long mmu_seq;
6755 	kvm_pfn_t pfn;
6756 
6757 	/* Defer reload until vmcs01 is the current VMCS. */
6758 	if (is_guest_mode(vcpu)) {
6759 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6760 		return;
6761 	}
6762 
6763 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6764 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6765 		return;
6766 
6767 	/*
6768 	 * Explicitly grab the memslot using KVM's internal slot ID to ensure
6769 	 * KVM doesn't unintentionally grab a userspace memslot.  It _should_
6770 	 * be impossible for userspace to create a memslot for the APIC when
6771 	 * APICv is enabled, but paranoia won't hurt in this case.
6772 	 */
6773 	slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT);
6774 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
6775 		return;
6776 
6777 	/*
6778 	 * Ensure that the mmu_notifier sequence count is read before KVM
6779 	 * retrieves the pfn from the primary MMU.  Note, the memslot is
6780 	 * protected by SRCU, not the mmu_notifier.  Pairs with the smp_wmb()
6781 	 * in kvm_mmu_invalidate_end().
6782 	 */
6783 	mmu_seq = kvm->mmu_invalidate_seq;
6784 	smp_rmb();
6785 
6786 	/*
6787 	 * No need to retry if the memslot does not exist or is invalid.  KVM
6788 	 * controls the APIC-access page memslot, and only deletes the memslot
6789 	 * if APICv is permanently inhibited, i.e. the memslot won't reappear.
6790 	 */
6791 	pfn = gfn_to_pfn_memslot(slot, gfn);
6792 	if (is_error_noslot_pfn(pfn))
6793 		return;
6794 
6795 	read_lock(&vcpu->kvm->mmu_lock);
6796 	if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn)) {
6797 		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6798 		read_unlock(&vcpu->kvm->mmu_lock);
6799 		goto out;
6800 	}
6801 
6802 	vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn));
6803 	read_unlock(&vcpu->kvm->mmu_lock);
6804 
6805 	/*
6806 	 * No need for a manual TLB flush at this point, KVM has already done a
6807 	 * flush if there were SPTEs pointing at the previous page.
6808 	 */
6809 out:
6810 	/*
6811 	 * Do not pin apic access page in memory, the MMU notifier
6812 	 * will call us again if it is migrated or swapped out.
6813 	 */
6814 	kvm_release_pfn_clean(pfn);
6815 }
6816 
6817 static void vmx_hwapic_isr_update(int max_isr)
6818 {
6819 	u16 status;
6820 	u8 old;
6821 
6822 	if (max_isr == -1)
6823 		max_isr = 0;
6824 
6825 	status = vmcs_read16(GUEST_INTR_STATUS);
6826 	old = status >> 8;
6827 	if (max_isr != old) {
6828 		status &= 0xff;
6829 		status |= max_isr << 8;
6830 		vmcs_write16(GUEST_INTR_STATUS, status);
6831 	}
6832 }
6833 
6834 static void vmx_set_rvi(int vector)
6835 {
6836 	u16 status;
6837 	u8 old;
6838 
6839 	if (vector == -1)
6840 		vector = 0;
6841 
6842 	status = vmcs_read16(GUEST_INTR_STATUS);
6843 	old = (u8)status & 0xff;
6844 	if ((u8)vector != old) {
6845 		status &= ~0xff;
6846 		status |= (u8)vector;
6847 		vmcs_write16(GUEST_INTR_STATUS, status);
6848 	}
6849 }
6850 
6851 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6852 {
6853 	/*
6854 	 * When running L2, updating RVI is only relevant when
6855 	 * vmcs12 virtual-interrupt-delivery enabled.
6856 	 * However, it can be enabled only when L1 also
6857 	 * intercepts external-interrupts and in that case
6858 	 * we should not update vmcs02 RVI but instead intercept
6859 	 * interrupt. Therefore, do nothing when running L2.
6860 	 */
6861 	if (!is_guest_mode(vcpu))
6862 		vmx_set_rvi(max_irr);
6863 }
6864 
6865 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6866 {
6867 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6868 	int max_irr;
6869 	bool got_posted_interrupt;
6870 
6871 	if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6872 		return -EIO;
6873 
6874 	if (pi_test_on(&vmx->pi_desc)) {
6875 		pi_clear_on(&vmx->pi_desc);
6876 		/*
6877 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6878 		 * But on x86 this is just a compiler barrier anyway.
6879 		 */
6880 		smp_mb__after_atomic();
6881 		got_posted_interrupt =
6882 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6883 	} else {
6884 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6885 		got_posted_interrupt = false;
6886 	}
6887 
6888 	/*
6889 	 * Newly recognized interrupts are injected via either virtual interrupt
6890 	 * delivery (RVI) or KVM_REQ_EVENT.  Virtual interrupt delivery is
6891 	 * disabled in two cases:
6892 	 *
6893 	 * 1) If L2 is running and the vCPU has a new pending interrupt.  If L1
6894 	 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6895 	 * VM-Exit to L1.  If L1 doesn't want to exit, the interrupt is injected
6896 	 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6897 	 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6898 	 *
6899 	 * 2) If APICv is disabled for this vCPU, assigned devices may still
6900 	 * attempt to post interrupts.  The posted interrupt vector will cause
6901 	 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6902 	 */
6903 	if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6904 		vmx_set_rvi(max_irr);
6905 	else if (got_posted_interrupt)
6906 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6907 
6908 	return max_irr;
6909 }
6910 
6911 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6912 {
6913 	if (!kvm_vcpu_apicv_active(vcpu))
6914 		return;
6915 
6916 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6917 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6918 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6919 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6920 }
6921 
6922 static void vmx_apicv_pre_state_restore(struct kvm_vcpu *vcpu)
6923 {
6924 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6925 
6926 	pi_clear_on(&vmx->pi_desc);
6927 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6928 }
6929 
6930 void vmx_do_interrupt_irqoff(unsigned long entry);
6931 void vmx_do_nmi_irqoff(void);
6932 
6933 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6934 {
6935 	/*
6936 	 * Save xfd_err to guest_fpu before interrupt is enabled, so the
6937 	 * MSR value is not clobbered by the host activity before the guest
6938 	 * has chance to consume it.
6939 	 *
6940 	 * Do not blindly read xfd_err here, since this exception might
6941 	 * be caused by L1 interception on a platform which doesn't
6942 	 * support xfd at all.
6943 	 *
6944 	 * Do it conditionally upon guest_fpu::xfd. xfd_err matters
6945 	 * only when xfd contains a non-zero value.
6946 	 *
6947 	 * Queuing exception is done in vmx_handle_exit. See comment there.
6948 	 */
6949 	if (vcpu->arch.guest_fpu.fpstate->xfd)
6950 		rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6951 }
6952 
6953 static void handle_exception_irqoff(struct vcpu_vmx *vmx)
6954 {
6955 	u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6956 
6957 	/* if exit due to PF check for async PF */
6958 	if (is_page_fault(intr_info))
6959 		vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6960 	/* if exit due to NM, handle before interrupts are enabled */
6961 	else if (is_nm_fault(intr_info))
6962 		handle_nm_fault_irqoff(&vmx->vcpu);
6963 	/* Handle machine checks before interrupts are enabled */
6964 	else if (is_machine_check(intr_info))
6965 		kvm_machine_check();
6966 }
6967 
6968 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6969 {
6970 	u32 intr_info = vmx_get_intr_info(vcpu);
6971 	unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6972 	gate_desc *desc = (gate_desc *)host_idt_base + vector;
6973 
6974 	if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6975 	    "unexpected VM-Exit interrupt info: 0x%x", intr_info))
6976 		return;
6977 
6978 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
6979 	vmx_do_interrupt_irqoff(gate_offset(desc));
6980 	kvm_after_interrupt(vcpu);
6981 
6982 	vcpu->arch.at_instruction_boundary = true;
6983 }
6984 
6985 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6986 {
6987 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6988 
6989 	if (vmx->emulation_required)
6990 		return;
6991 
6992 	if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6993 		handle_external_interrupt_irqoff(vcpu);
6994 	else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6995 		handle_exception_irqoff(vmx);
6996 }
6997 
6998 /*
6999  * The kvm parameter can be NULL (module initialization, or invocation before
7000  * VM creation). Be sure to check the kvm parameter before using it.
7001  */
7002 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
7003 {
7004 	switch (index) {
7005 	case MSR_IA32_SMBASE:
7006 		if (!IS_ENABLED(CONFIG_KVM_SMM))
7007 			return false;
7008 		/*
7009 		 * We cannot do SMM unless we can run the guest in big
7010 		 * real mode.
7011 		 */
7012 		return enable_unrestricted_guest || emulate_invalid_guest_state;
7013 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
7014 		return nested;
7015 	case MSR_AMD64_VIRT_SPEC_CTRL:
7016 	case MSR_AMD64_TSC_RATIO:
7017 		/* This is AMD only.  */
7018 		return false;
7019 	default:
7020 		return true;
7021 	}
7022 }
7023 
7024 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7025 {
7026 	u32 exit_intr_info;
7027 	bool unblock_nmi;
7028 	u8 vector;
7029 	bool idtv_info_valid;
7030 
7031 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7032 
7033 	if (enable_vnmi) {
7034 		if (vmx->loaded_vmcs->nmi_known_unmasked)
7035 			return;
7036 
7037 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
7038 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7039 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7040 		/*
7041 		 * SDM 3: 27.7.1.2 (September 2008)
7042 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7043 		 * a guest IRET fault.
7044 		 * SDM 3: 23.2.2 (September 2008)
7045 		 * Bit 12 is undefined in any of the following cases:
7046 		 *  If the VM exit sets the valid bit in the IDT-vectoring
7047 		 *   information field.
7048 		 *  If the VM exit is due to a double fault.
7049 		 */
7050 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7051 		    vector != DF_VECTOR && !idtv_info_valid)
7052 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7053 				      GUEST_INTR_STATE_NMI);
7054 		else
7055 			vmx->loaded_vmcs->nmi_known_unmasked =
7056 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7057 				  & GUEST_INTR_STATE_NMI);
7058 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
7059 		vmx->loaded_vmcs->vnmi_blocked_time +=
7060 			ktime_to_ns(ktime_sub(ktime_get(),
7061 					      vmx->loaded_vmcs->entry_time));
7062 }
7063 
7064 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7065 				      u32 idt_vectoring_info,
7066 				      int instr_len_field,
7067 				      int error_code_field)
7068 {
7069 	u8 vector;
7070 	int type;
7071 	bool idtv_info_valid;
7072 
7073 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7074 
7075 	vcpu->arch.nmi_injected = false;
7076 	kvm_clear_exception_queue(vcpu);
7077 	kvm_clear_interrupt_queue(vcpu);
7078 
7079 	if (!idtv_info_valid)
7080 		return;
7081 
7082 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7083 
7084 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7085 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7086 
7087 	switch (type) {
7088 	case INTR_TYPE_NMI_INTR:
7089 		vcpu->arch.nmi_injected = true;
7090 		/*
7091 		 * SDM 3: 27.7.1.2 (September 2008)
7092 		 * Clear bit "block by NMI" before VM entry if a NMI
7093 		 * delivery faulted.
7094 		 */
7095 		vmx_set_nmi_mask(vcpu, false);
7096 		break;
7097 	case INTR_TYPE_SOFT_EXCEPTION:
7098 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7099 		fallthrough;
7100 	case INTR_TYPE_HARD_EXCEPTION:
7101 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7102 			u32 err = vmcs_read32(error_code_field);
7103 			kvm_requeue_exception_e(vcpu, vector, err);
7104 		} else
7105 			kvm_requeue_exception(vcpu, vector);
7106 		break;
7107 	case INTR_TYPE_SOFT_INTR:
7108 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7109 		fallthrough;
7110 	case INTR_TYPE_EXT_INTR:
7111 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7112 		break;
7113 	default:
7114 		break;
7115 	}
7116 }
7117 
7118 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7119 {
7120 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7121 				  VM_EXIT_INSTRUCTION_LEN,
7122 				  IDT_VECTORING_ERROR_CODE);
7123 }
7124 
7125 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7126 {
7127 	__vmx_complete_interrupts(vcpu,
7128 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7129 				  VM_ENTRY_INSTRUCTION_LEN,
7130 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
7131 
7132 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7133 }
7134 
7135 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7136 {
7137 	int i, nr_msrs;
7138 	struct perf_guest_switch_msr *msrs;
7139 	struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7140 
7141 	pmu->host_cross_mapped_mask = 0;
7142 	if (pmu->pebs_enable & pmu->global_ctrl)
7143 		intel_pmu_cross_mapped_check(pmu);
7144 
7145 	/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7146 	msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7147 	if (!msrs)
7148 		return;
7149 
7150 	for (i = 0; i < nr_msrs; i++)
7151 		if (msrs[i].host == msrs[i].guest)
7152 			clear_atomic_switch_msr(vmx, msrs[i].msr);
7153 		else
7154 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7155 					msrs[i].host, false);
7156 }
7157 
7158 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
7159 {
7160 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7161 	u64 tscl;
7162 	u32 delta_tsc;
7163 
7164 	if (vmx->req_immediate_exit) {
7165 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7166 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7167 	} else if (vmx->hv_deadline_tsc != -1) {
7168 		tscl = rdtsc();
7169 		if (vmx->hv_deadline_tsc > tscl)
7170 			/* set_hv_timer ensures the delta fits in 32-bits */
7171 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7172 				cpu_preemption_timer_multi);
7173 		else
7174 			delta_tsc = 0;
7175 
7176 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7177 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7178 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7179 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7180 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7181 	}
7182 }
7183 
7184 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7185 {
7186 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7187 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
7188 		vmcs_writel(HOST_RSP, host_rsp);
7189 	}
7190 }
7191 
7192 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7193 					unsigned int flags)
7194 {
7195 	u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7196 
7197 	if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7198 		return;
7199 
7200 	if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7201 		vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
7202 
7203 	/*
7204 	 * If the guest/host SPEC_CTRL values differ, restore the host value.
7205 	 *
7206 	 * For legacy IBRS, the IBRS bit always needs to be written after
7207 	 * transitioning from a less privileged predictor mode, regardless of
7208 	 * whether the guest/host values differ.
7209 	 */
7210 	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7211 	    vmx->spec_ctrl != hostval)
7212 		native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
7213 
7214 	barrier_nospec();
7215 }
7216 
7217 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
7218 {
7219 	switch (to_vmx(vcpu)->exit_reason.basic) {
7220 	case EXIT_REASON_MSR_WRITE:
7221 		return handle_fastpath_set_msr_irqoff(vcpu);
7222 	case EXIT_REASON_PREEMPTION_TIMER:
7223 		return handle_fastpath_preemption_timer(vcpu);
7224 	default:
7225 		return EXIT_FASTPATH_NONE;
7226 	}
7227 }
7228 
7229 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7230 					unsigned int flags)
7231 {
7232 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7233 
7234 	guest_state_enter_irqoff();
7235 
7236 	/*
7237 	 * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW
7238 	 * mitigation for MDS is done late in VMentry and is still
7239 	 * executed in spite of L1D Flush. This is because an extra VERW
7240 	 * should not matter much after the big hammer L1D Flush.
7241 	 */
7242 	if (static_branch_unlikely(&vmx_l1d_should_flush))
7243 		vmx_l1d_flush(vcpu);
7244 	else if (static_branch_unlikely(&mmio_stale_data_clear) &&
7245 		 kvm_arch_has_assigned_device(vcpu->kvm))
7246 		mds_clear_cpu_buffers();
7247 
7248 	vmx_disable_fb_clear(vmx);
7249 
7250 	if (vcpu->arch.cr2 != native_read_cr2())
7251 		native_write_cr2(vcpu->arch.cr2);
7252 
7253 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7254 				   flags);
7255 
7256 	vcpu->arch.cr2 = native_read_cr2();
7257 	vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7258 
7259 	vmx->idt_vectoring_info = 0;
7260 
7261 	vmx_enable_fb_clear(vmx);
7262 
7263 	if (unlikely(vmx->fail)) {
7264 		vmx->exit_reason.full = 0xdead;
7265 		goto out;
7266 	}
7267 
7268 	vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7269 	if (likely(!vmx->exit_reason.failed_vmentry))
7270 		vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7271 
7272 	if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI &&
7273 	    is_nmi(vmx_get_intr_info(vcpu))) {
7274 		kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
7275 		vmx_do_nmi_irqoff();
7276 		kvm_after_interrupt(vcpu);
7277 	}
7278 
7279 out:
7280 	guest_state_exit_irqoff();
7281 }
7282 
7283 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
7284 {
7285 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7286 	unsigned long cr3, cr4;
7287 
7288 	/* Record the guest's net vcpu time for enforced NMI injections. */
7289 	if (unlikely(!enable_vnmi &&
7290 		     vmx->loaded_vmcs->soft_vnmi_blocked))
7291 		vmx->loaded_vmcs->entry_time = ktime_get();
7292 
7293 	/*
7294 	 * Don't enter VMX if guest state is invalid, let the exit handler
7295 	 * start emulation until we arrive back to a valid state.  Synthesize a
7296 	 * consistency check VM-Exit due to invalid guest state and bail.
7297 	 */
7298 	if (unlikely(vmx->emulation_required)) {
7299 		vmx->fail = 0;
7300 
7301 		vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
7302 		vmx->exit_reason.failed_vmentry = 1;
7303 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7304 		vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
7305 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7306 		vmx->exit_intr_info = 0;
7307 		return EXIT_FASTPATH_NONE;
7308 	}
7309 
7310 	trace_kvm_entry(vcpu);
7311 
7312 	if (vmx->ple_window_dirty) {
7313 		vmx->ple_window_dirty = false;
7314 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
7315 	}
7316 
7317 	/*
7318 	 * We did this in prepare_switch_to_guest, because it needs to
7319 	 * be within srcu_read_lock.
7320 	 */
7321 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7322 
7323 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7324 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7325 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7326 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7327 	vcpu->arch.regs_dirty = 0;
7328 
7329 	/*
7330 	 * Refresh vmcs.HOST_CR3 if necessary.  This must be done immediately
7331 	 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7332 	 * it switches back to the current->mm, which can occur in KVM context
7333 	 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7334 	 * toggles a static key while handling a VM-Exit.
7335 	 */
7336 	cr3 = __get_current_cr3_fast();
7337 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7338 		vmcs_writel(HOST_CR3, cr3);
7339 		vmx->loaded_vmcs->host_state.cr3 = cr3;
7340 	}
7341 
7342 	cr4 = cr4_read_shadow();
7343 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7344 		vmcs_writel(HOST_CR4, cr4);
7345 		vmx->loaded_vmcs->host_state.cr4 = cr4;
7346 	}
7347 
7348 	/* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
7349 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
7350 		set_debugreg(vcpu->arch.dr6, 6);
7351 
7352 	/* When single-stepping over STI and MOV SS, we must clear the
7353 	 * corresponding interruptibility bits in the guest state. Otherwise
7354 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
7355 	 * exceptions being set, but that's not correct for the guest debugging
7356 	 * case. */
7357 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7358 		vmx_set_interrupt_shadow(vcpu, 0);
7359 
7360 	kvm_load_guest_xsave_state(vcpu);
7361 
7362 	pt_guest_enter(vmx);
7363 
7364 	atomic_switch_perf_msrs(vmx);
7365 	if (intel_pmu_lbr_is_enabled(vcpu))
7366 		vmx_passthrough_lbr_msrs(vcpu);
7367 
7368 	if (enable_preemption_timer)
7369 		vmx_update_hv_timer(vcpu);
7370 
7371 	kvm_wait_lapic_expire(vcpu);
7372 
7373 	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
7374 	vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
7375 
7376 	/* All fields are clean at this point */
7377 	if (kvm_is_using_evmcs()) {
7378 		current_evmcs->hv_clean_fields |=
7379 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7380 
7381 		current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7382 	}
7383 
7384 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7385 	if (vmx->host_debugctlmsr)
7386 		update_debugctlmsr(vmx->host_debugctlmsr);
7387 
7388 #ifndef CONFIG_X86_64
7389 	/*
7390 	 * The sysexit path does not restore ds/es, so we must set them to
7391 	 * a reasonable value ourselves.
7392 	 *
7393 	 * We can't defer this to vmx_prepare_switch_to_host() since that
7394 	 * function may be executed in interrupt context, which saves and
7395 	 * restore segments around it, nullifying its effect.
7396 	 */
7397 	loadsegment(ds, __USER_DS);
7398 	loadsegment(es, __USER_DS);
7399 #endif
7400 
7401 	pt_guest_exit(vmx);
7402 
7403 	kvm_load_host_xsave_state(vcpu);
7404 
7405 	if (is_guest_mode(vcpu)) {
7406 		/*
7407 		 * Track VMLAUNCH/VMRESUME that have made past guest state
7408 		 * checking.
7409 		 */
7410 		if (vmx->nested.nested_run_pending &&
7411 		    !vmx->exit_reason.failed_vmentry)
7412 			++vcpu->stat.nested_run;
7413 
7414 		vmx->nested.nested_run_pending = 0;
7415 	}
7416 
7417 	if (unlikely(vmx->fail))
7418 		return EXIT_FASTPATH_NONE;
7419 
7420 	if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
7421 		kvm_machine_check();
7422 
7423 	trace_kvm_exit(vcpu, KVM_ISA_VMX);
7424 
7425 	if (unlikely(vmx->exit_reason.failed_vmentry))
7426 		return EXIT_FASTPATH_NONE;
7427 
7428 	vmx->loaded_vmcs->launched = 1;
7429 
7430 	vmx_recover_nmi_blocking(vmx);
7431 	vmx_complete_interrupts(vmx);
7432 
7433 	if (is_guest_mode(vcpu))
7434 		return EXIT_FASTPATH_NONE;
7435 
7436 	return vmx_exit_handlers_fastpath(vcpu);
7437 }
7438 
7439 static void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7440 {
7441 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7442 
7443 	if (enable_pml)
7444 		vmx_destroy_pml_buffer(vmx);
7445 	free_vpid(vmx->vpid);
7446 	nested_vmx_free_vcpu(vcpu);
7447 	free_loaded_vmcs(vmx->loaded_vmcs);
7448 }
7449 
7450 static int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7451 {
7452 	struct vmx_uret_msr *tsx_ctrl;
7453 	struct vcpu_vmx *vmx;
7454 	int i, err;
7455 
7456 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7457 	vmx = to_vmx(vcpu);
7458 
7459 	INIT_LIST_HEAD(&vmx->pi_wakeup_list);
7460 
7461 	err = -ENOMEM;
7462 
7463 	vmx->vpid = allocate_vpid();
7464 
7465 	/*
7466 	 * If PML is turned on, failure on enabling PML just results in failure
7467 	 * of creating the vcpu, therefore we can simplify PML logic (by
7468 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
7469 	 * for the guest), etc.
7470 	 */
7471 	if (enable_pml) {
7472 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7473 		if (!vmx->pml_pg)
7474 			goto free_vpid;
7475 	}
7476 
7477 	for (i = 0; i < kvm_nr_uret_msrs; ++i)
7478 		vmx->guest_uret_msrs[i].mask = -1ull;
7479 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7480 		/*
7481 		 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7482 		 * Keep the host value unchanged to avoid changing CPUID bits
7483 		 * under the host kernel's feet.
7484 		 */
7485 		tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7486 		if (tsx_ctrl)
7487 			tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7488 	}
7489 
7490 	err = alloc_loaded_vmcs(&vmx->vmcs01);
7491 	if (err < 0)
7492 		goto free_pml;
7493 
7494 	/*
7495 	 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7496 	 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7497 	 * feature only for vmcs01, KVM currently isn't equipped to realize any
7498 	 * performance benefits from enabling it for vmcs02.
7499 	 */
7500 	if (kvm_is_using_evmcs() &&
7501 	    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7502 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7503 
7504 		evmcs->hv_enlightenments_control.msr_bitmap = 1;
7505 	}
7506 
7507 	/* The MSR bitmap starts with all ones */
7508 	bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7509 	bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7510 
7511 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7512 #ifdef CONFIG_X86_64
7513 	vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7514 	vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7515 	vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7516 #endif
7517 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7518 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7519 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7520 	if (kvm_cstate_in_guest(vcpu->kvm)) {
7521 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7522 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7523 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7524 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7525 	}
7526 
7527 	vmx->loaded_vmcs = &vmx->vmcs01;
7528 
7529 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
7530 		err = kvm_alloc_apic_access_page(vcpu->kvm);
7531 		if (err)
7532 			goto free_vmcs;
7533 	}
7534 
7535 	if (enable_ept && !enable_unrestricted_guest) {
7536 		err = init_rmode_identity_map(vcpu->kvm);
7537 		if (err)
7538 			goto free_vmcs;
7539 	}
7540 
7541 	if (vmx_can_use_ipiv(vcpu))
7542 		WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7543 			   __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID);
7544 
7545 	return 0;
7546 
7547 free_vmcs:
7548 	free_loaded_vmcs(vmx->loaded_vmcs);
7549 free_pml:
7550 	vmx_destroy_pml_buffer(vmx);
7551 free_vpid:
7552 	free_vpid(vmx->vpid);
7553 	return err;
7554 }
7555 
7556 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7557 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7558 
7559 static int vmx_vm_init(struct kvm *kvm)
7560 {
7561 	if (!ple_gap)
7562 		kvm->arch.pause_in_guest = true;
7563 
7564 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7565 		switch (l1tf_mitigation) {
7566 		case L1TF_MITIGATION_OFF:
7567 		case L1TF_MITIGATION_FLUSH_NOWARN:
7568 			/* 'I explicitly don't care' is set */
7569 			break;
7570 		case L1TF_MITIGATION_FLUSH:
7571 		case L1TF_MITIGATION_FLUSH_NOSMT:
7572 		case L1TF_MITIGATION_FULL:
7573 			/*
7574 			 * Warn upon starting the first VM in a potentially
7575 			 * insecure environment.
7576 			 */
7577 			if (sched_smt_active())
7578 				pr_warn_once(L1TF_MSG_SMT);
7579 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7580 				pr_warn_once(L1TF_MSG_L1D);
7581 			break;
7582 		case L1TF_MITIGATION_FULL_FORCE:
7583 			/* Flush is enforced */
7584 			break;
7585 		}
7586 	}
7587 	return 0;
7588 }
7589 
7590 static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7591 {
7592 	/* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7593 	 * memory aliases with conflicting memory types and sometimes MCEs.
7594 	 * We have to be careful as to what are honored and when.
7595 	 *
7596 	 * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
7597 	 * UC.  The effective memory type is UC or WC depending on guest PAT.
7598 	 * This was historically the source of MCEs and we want to be
7599 	 * conservative.
7600 	 *
7601 	 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7602 	 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
7603 	 * EPT memory type is set to WB.  The effective memory type is forced
7604 	 * WB.
7605 	 *
7606 	 * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
7607 	 * EPT memory type is used to emulate guest CD/MTRR.
7608 	 */
7609 
7610 	if (is_mmio)
7611 		return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7612 
7613 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
7614 		return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7615 
7616 	if (kvm_read_cr0_bits(vcpu, X86_CR0_CD)) {
7617 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7618 			return MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT;
7619 		else
7620 			return (MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT) |
7621 				VMX_EPT_IPAT_BIT;
7622 	}
7623 
7624 	return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT;
7625 }
7626 
7627 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7628 {
7629 	/*
7630 	 * These bits in the secondary execution controls field
7631 	 * are dynamic, the others are mostly based on the hypervisor
7632 	 * architecture and the guest's CPUID.  Do not touch the
7633 	 * dynamic bits.
7634 	 */
7635 	u32 mask =
7636 		SECONDARY_EXEC_SHADOW_VMCS |
7637 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7638 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7639 		SECONDARY_EXEC_DESC;
7640 
7641 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7642 
7643 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7644 }
7645 
7646 /*
7647  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7648  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7649  */
7650 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7651 {
7652 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7653 	struct kvm_cpuid_entry2 *entry;
7654 
7655 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7656 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7657 
7658 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7659 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7660 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7661 } while (0)
7662 
7663 	entry = kvm_find_cpuid_entry(vcpu, 0x1);
7664 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7665 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7666 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7667 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7668 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7669 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7670 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7671 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7672 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7673 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7674 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7675 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7676 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7677 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7678 
7679 	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7680 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7681 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7682 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7683 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7684 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7685 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7686 
7687 	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 1);
7688 	cr4_fixed1_update(X86_CR4_LAM_SUP,    eax, feature_bit(LAM));
7689 
7690 #undef cr4_fixed1_update
7691 }
7692 
7693 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7694 {
7695 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7696 	struct kvm_cpuid_entry2 *best = NULL;
7697 	int i;
7698 
7699 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7700 		best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7701 		if (!best)
7702 			return;
7703 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7704 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7705 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7706 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7707 	}
7708 
7709 	/* Get the number of configurable Address Ranges for filtering */
7710 	vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7711 						PT_CAP_num_address_ranges);
7712 
7713 	/* Initialize and clear the no dependency bits */
7714 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7715 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7716 			RTIT_CTL_BRANCH_EN);
7717 
7718 	/*
7719 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7720 	 * will inject an #GP
7721 	 */
7722 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7723 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7724 
7725 	/*
7726 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7727 	 * PSBFreq can be set
7728 	 */
7729 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7730 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7731 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7732 
7733 	/*
7734 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7735 	 */
7736 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7737 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7738 					      RTIT_CTL_MTC_RANGE);
7739 
7740 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7741 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7742 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7743 							RTIT_CTL_PTW_EN);
7744 
7745 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7746 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7747 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7748 
7749 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7750 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7751 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7752 
7753 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7754 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7755 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7756 
7757 	/* unmask address range configure area */
7758 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7759 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7760 }
7761 
7762 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7763 {
7764 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7765 
7766 	/*
7767 	 * XSAVES is effectively enabled if and only if XSAVE is also exposed
7768 	 * to the guest.  XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be
7769 	 * set if and only if XSAVE is supported.
7770 	 */
7771 	if (boot_cpu_has(X86_FEATURE_XSAVE) &&
7772 	    guest_cpuid_has(vcpu, X86_FEATURE_XSAVE))
7773 		kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_XSAVES);
7774 
7775 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VMX);
7776 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LAM);
7777 
7778 	vmx_setup_uret_msrs(vmx);
7779 
7780 	if (cpu_has_secondary_exec_ctrls())
7781 		vmcs_set_secondary_exec_control(vmx,
7782 						vmx_secondary_exec_control(vmx));
7783 
7784 	if (guest_can_use(vcpu, X86_FEATURE_VMX))
7785 		vmx->msr_ia32_feature_control_valid_bits |=
7786 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7787 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7788 	else
7789 		vmx->msr_ia32_feature_control_valid_bits &=
7790 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7791 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7792 
7793 	if (guest_can_use(vcpu, X86_FEATURE_VMX))
7794 		nested_vmx_cr_fixed1_bits_update(vcpu);
7795 
7796 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7797 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7798 		update_intel_pt_cfg(vcpu);
7799 
7800 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7801 		struct vmx_uret_msr *msr;
7802 		msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7803 		if (msr) {
7804 			bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7805 			vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7806 		}
7807 	}
7808 
7809 	if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7810 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7811 					  !guest_cpuid_has(vcpu, X86_FEATURE_XFD));
7812 
7813 	if (boot_cpu_has(X86_FEATURE_IBPB))
7814 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
7815 					  !guest_has_pred_cmd_msr(vcpu));
7816 
7817 	if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
7818 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
7819 					  !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
7820 
7821 	set_cr4_guest_host_mask(vmx);
7822 
7823 	vmx_write_encls_bitmap(vcpu, NULL);
7824 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7825 		vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7826 	else
7827 		vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7828 
7829 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7830 		vmx->msr_ia32_feature_control_valid_bits |=
7831 			FEAT_CTL_SGX_LC_ENABLED;
7832 	else
7833 		vmx->msr_ia32_feature_control_valid_bits &=
7834 			~FEAT_CTL_SGX_LC_ENABLED;
7835 
7836 	/* Refresh #PF interception to account for MAXPHYADDR changes. */
7837 	vmx_update_exception_bitmap(vcpu);
7838 }
7839 
7840 static u64 vmx_get_perf_capabilities(void)
7841 {
7842 	u64 perf_cap = PMU_CAP_FW_WRITES;
7843 	struct x86_pmu_lbr lbr;
7844 	u64 host_perf_cap = 0;
7845 
7846 	if (!enable_pmu)
7847 		return 0;
7848 
7849 	if (boot_cpu_has(X86_FEATURE_PDCM))
7850 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
7851 
7852 	if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) {
7853 		x86_perf_get_lbr(&lbr);
7854 		if (lbr.nr)
7855 			perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT;
7856 	}
7857 
7858 	if (vmx_pebs_supported()) {
7859 		perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
7860 		if ((perf_cap & PERF_CAP_PEBS_FORMAT) < 4)
7861 			perf_cap &= ~PERF_CAP_PEBS_BASELINE;
7862 	}
7863 
7864 	return perf_cap;
7865 }
7866 
7867 static __init void vmx_set_cpu_caps(void)
7868 {
7869 	kvm_set_cpu_caps();
7870 
7871 	/* CPUID 0x1 */
7872 	if (nested)
7873 		kvm_cpu_cap_set(X86_FEATURE_VMX);
7874 
7875 	/* CPUID 0x7 */
7876 	if (kvm_mpx_supported())
7877 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7878 	if (!cpu_has_vmx_invpcid())
7879 		kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7880 	if (vmx_pt_mode_is_host_guest())
7881 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7882 	if (vmx_pebs_supported()) {
7883 		kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7884 		kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7885 	}
7886 
7887 	if (!enable_pmu)
7888 		kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7889 	kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
7890 
7891 	if (!enable_sgx) {
7892 		kvm_cpu_cap_clear(X86_FEATURE_SGX);
7893 		kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7894 		kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7895 		kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7896 	}
7897 
7898 	if (vmx_umip_emulated())
7899 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7900 
7901 	/* CPUID 0xD.1 */
7902 	kvm_caps.supported_xss = 0;
7903 	if (!cpu_has_vmx_xsaves())
7904 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7905 
7906 	/* CPUID 0x80000001 and 0x7 (RDPID) */
7907 	if (!cpu_has_vmx_rdtscp()) {
7908 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7909 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7910 	}
7911 
7912 	if (cpu_has_vmx_waitpkg())
7913 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7914 }
7915 
7916 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7917 {
7918 	to_vmx(vcpu)->req_immediate_exit = true;
7919 }
7920 
7921 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7922 				  struct x86_instruction_info *info)
7923 {
7924 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7925 	unsigned short port;
7926 	bool intercept;
7927 	int size;
7928 
7929 	if (info->intercept == x86_intercept_in ||
7930 	    info->intercept == x86_intercept_ins) {
7931 		port = info->src_val;
7932 		size = info->dst_bytes;
7933 	} else {
7934 		port = info->dst_val;
7935 		size = info->src_bytes;
7936 	}
7937 
7938 	/*
7939 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7940 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7941 	 * control.
7942 	 *
7943 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7944 	 */
7945 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7946 		intercept = nested_cpu_has(vmcs12,
7947 					   CPU_BASED_UNCOND_IO_EXITING);
7948 	else
7949 		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7950 
7951 	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7952 	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7953 }
7954 
7955 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7956 			       struct x86_instruction_info *info,
7957 			       enum x86_intercept_stage stage,
7958 			       struct x86_exception *exception)
7959 {
7960 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7961 
7962 	switch (info->intercept) {
7963 	/*
7964 	 * RDPID causes #UD if disabled through secondary execution controls.
7965 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
7966 	 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7967 	 */
7968 	case x86_intercept_rdpid:
7969 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7970 			exception->vector = UD_VECTOR;
7971 			exception->error_code_valid = false;
7972 			return X86EMUL_PROPAGATE_FAULT;
7973 		}
7974 		break;
7975 
7976 	case x86_intercept_in:
7977 	case x86_intercept_ins:
7978 	case x86_intercept_out:
7979 	case x86_intercept_outs:
7980 		return vmx_check_intercept_io(vcpu, info);
7981 
7982 	case x86_intercept_lgdt:
7983 	case x86_intercept_lidt:
7984 	case x86_intercept_lldt:
7985 	case x86_intercept_ltr:
7986 	case x86_intercept_sgdt:
7987 	case x86_intercept_sidt:
7988 	case x86_intercept_sldt:
7989 	case x86_intercept_str:
7990 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7991 			return X86EMUL_CONTINUE;
7992 
7993 		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7994 		break;
7995 
7996 	case x86_intercept_pause:
7997 		/*
7998 		 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
7999 		 * with vanilla NOPs in the emulator.  Apply the interception
8000 		 * check only to actual PAUSE instructions.  Don't check
8001 		 * PAUSE-loop-exiting, software can't expect a given PAUSE to
8002 		 * exit, i.e. KVM is within its rights to allow L2 to execute
8003 		 * the PAUSE.
8004 		 */
8005 		if ((info->rep_prefix != REPE_PREFIX) ||
8006 		    !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING))
8007 			return X86EMUL_CONTINUE;
8008 
8009 		break;
8010 
8011 	/* TODO: check more intercepts... */
8012 	default:
8013 		break;
8014 	}
8015 
8016 	return X86EMUL_UNHANDLEABLE;
8017 }
8018 
8019 #ifdef CONFIG_X86_64
8020 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
8021 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
8022 				  u64 divisor, u64 *result)
8023 {
8024 	u64 low = a << shift, high = a >> (64 - shift);
8025 
8026 	/* To avoid the overflow on divq */
8027 	if (high >= divisor)
8028 		return 1;
8029 
8030 	/* Low hold the result, high hold rem which is discarded */
8031 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
8032 	    "rm" (divisor), "0" (low), "1" (high));
8033 	*result = low;
8034 
8035 	return 0;
8036 }
8037 
8038 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
8039 			    bool *expired)
8040 {
8041 	struct vcpu_vmx *vmx;
8042 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
8043 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
8044 
8045 	vmx = to_vmx(vcpu);
8046 	tscl = rdtsc();
8047 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
8048 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
8049 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
8050 						    ktimer->timer_advance_ns);
8051 
8052 	if (delta_tsc > lapic_timer_advance_cycles)
8053 		delta_tsc -= lapic_timer_advance_cycles;
8054 	else
8055 		delta_tsc = 0;
8056 
8057 	/* Convert to host delta tsc if tsc scaling is enabled */
8058 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
8059 	    delta_tsc && u64_shl_div_u64(delta_tsc,
8060 				kvm_caps.tsc_scaling_ratio_frac_bits,
8061 				vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
8062 		return -ERANGE;
8063 
8064 	/*
8065 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
8066 	 * we can't use the preemption timer.
8067 	 * It's possible that it fits on later vmentries, but checking
8068 	 * on every vmentry is costly so we just use an hrtimer.
8069 	 */
8070 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
8071 		return -ERANGE;
8072 
8073 	vmx->hv_deadline_tsc = tscl + delta_tsc;
8074 	*expired = !delta_tsc;
8075 	return 0;
8076 }
8077 
8078 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
8079 {
8080 	to_vmx(vcpu)->hv_deadline_tsc = -1;
8081 }
8082 #endif
8083 
8084 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
8085 {
8086 	if (!kvm_pause_in_guest(vcpu->kvm))
8087 		shrink_ple_window(vcpu);
8088 }
8089 
8090 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
8091 {
8092 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8093 
8094 	if (WARN_ON_ONCE(!enable_pml))
8095 		return;
8096 
8097 	if (is_guest_mode(vcpu)) {
8098 		vmx->nested.update_vmcs01_cpu_dirty_logging = true;
8099 		return;
8100 	}
8101 
8102 	/*
8103 	 * Note, nr_memslots_dirty_logging can be changed concurrent with this
8104 	 * code, but in that case another update request will be made and so
8105 	 * the guest will never run with a stale PML value.
8106 	 */
8107 	if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
8108 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8109 	else
8110 		secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8111 }
8112 
8113 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
8114 {
8115 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
8116 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
8117 			FEAT_CTL_LMCE_ENABLED;
8118 	else
8119 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
8120 			~FEAT_CTL_LMCE_ENABLED;
8121 }
8122 
8123 #ifdef CONFIG_KVM_SMM
8124 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
8125 {
8126 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
8127 	if (to_vmx(vcpu)->nested.nested_run_pending)
8128 		return -EBUSY;
8129 	return !is_smm(vcpu);
8130 }
8131 
8132 static int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
8133 {
8134 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8135 
8136 	/*
8137 	 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8138 	 * SMI and RSM.  Using the common VM-Exit + VM-Enter routines is wrong
8139 	 * SMI and RSM only modify state that is saved and restored via SMRAM.
8140 	 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
8141 	 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8142 	 */
8143 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
8144 	if (vmx->nested.smm.guest_mode)
8145 		nested_vmx_vmexit(vcpu, -1, 0, 0);
8146 
8147 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
8148 	vmx->nested.vmxon = false;
8149 	vmx_clear_hlt(vcpu);
8150 	return 0;
8151 }
8152 
8153 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8154 {
8155 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8156 	int ret;
8157 
8158 	if (vmx->nested.smm.vmxon) {
8159 		vmx->nested.vmxon = true;
8160 		vmx->nested.smm.vmxon = false;
8161 	}
8162 
8163 	if (vmx->nested.smm.guest_mode) {
8164 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
8165 		if (ret)
8166 			return ret;
8167 
8168 		vmx->nested.nested_run_pending = 1;
8169 		vmx->nested.smm.guest_mode = false;
8170 	}
8171 	return 0;
8172 }
8173 
8174 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8175 {
8176 	/* RSM will cause a vmexit anyway.  */
8177 }
8178 #endif
8179 
8180 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8181 {
8182 	return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8183 }
8184 
8185 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8186 {
8187 	if (is_guest_mode(vcpu)) {
8188 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8189 
8190 		if (hrtimer_try_to_cancel(timer) == 1)
8191 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8192 	}
8193 }
8194 
8195 static void vmx_hardware_unsetup(void)
8196 {
8197 	kvm_set_posted_intr_wakeup_handler(NULL);
8198 
8199 	if (nested)
8200 		nested_vmx_hardware_unsetup();
8201 
8202 	free_kvm_area();
8203 }
8204 
8205 #define VMX_REQUIRED_APICV_INHIBITS			\
8206 (							\
8207 	BIT(APICV_INHIBIT_REASON_DISABLE)|		\
8208 	BIT(APICV_INHIBIT_REASON_ABSENT) |		\
8209 	BIT(APICV_INHIBIT_REASON_HYPERV) |		\
8210 	BIT(APICV_INHIBIT_REASON_BLOCKIRQ) |		\
8211 	BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) |	\
8212 	BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) |	\
8213 	BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED)	\
8214 )
8215 
8216 static void vmx_vm_destroy(struct kvm *kvm)
8217 {
8218 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8219 
8220 	free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8221 }
8222 
8223 /*
8224  * Note, the SDM states that the linear address is masked *after* the modified
8225  * canonicality check, whereas KVM masks (untags) the address and then performs
8226  * a "normal" canonicality check.  Functionally, the two methods are identical,
8227  * and when the masking occurs relative to the canonicality check isn't visible
8228  * to software, i.e. KVM's behavior doesn't violate the SDM.
8229  */
8230 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags)
8231 {
8232 	int lam_bit;
8233 	unsigned long cr3_bits;
8234 
8235 	if (flags & (X86EMUL_F_FETCH | X86EMUL_F_IMPLICIT | X86EMUL_F_INVLPG))
8236 		return gva;
8237 
8238 	if (!is_64_bit_mode(vcpu))
8239 		return gva;
8240 
8241 	/*
8242 	 * Bit 63 determines if the address should be treated as user address
8243 	 * or a supervisor address.
8244 	 */
8245 	if (!(gva & BIT_ULL(63))) {
8246 		cr3_bits = kvm_get_active_cr3_lam_bits(vcpu);
8247 		if (!(cr3_bits & (X86_CR3_LAM_U57 | X86_CR3_LAM_U48)))
8248 			return gva;
8249 
8250 		/* LAM_U48 is ignored if LAM_U57 is set. */
8251 		lam_bit = cr3_bits & X86_CR3_LAM_U57 ? 56 : 47;
8252 	} else {
8253 		if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_LAM_SUP))
8254 			return gva;
8255 
8256 		lam_bit = kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 56 : 47;
8257 	}
8258 
8259 	/*
8260 	 * Untag the address by sign-extending the lam_bit, but NOT to bit 63.
8261 	 * Bit 63 is retained from the raw virtual address so that untagging
8262 	 * doesn't change a user access to a supervisor access, and vice versa.
8263 	 */
8264 	return (sign_extend64(gva, lam_bit) & ~BIT_ULL(63)) | (gva & BIT_ULL(63));
8265 }
8266 
8267 static struct kvm_x86_ops vmx_x86_ops __initdata = {
8268 	.name = KBUILD_MODNAME,
8269 
8270 	.check_processor_compatibility = vmx_check_processor_compat,
8271 
8272 	.hardware_unsetup = vmx_hardware_unsetup,
8273 
8274 	.hardware_enable = vmx_hardware_enable,
8275 	.hardware_disable = vmx_hardware_disable,
8276 	.has_emulated_msr = vmx_has_emulated_msr,
8277 
8278 	.vm_size = sizeof(struct kvm_vmx),
8279 	.vm_init = vmx_vm_init,
8280 	.vm_destroy = vmx_vm_destroy,
8281 
8282 	.vcpu_precreate = vmx_vcpu_precreate,
8283 	.vcpu_create = vmx_vcpu_create,
8284 	.vcpu_free = vmx_vcpu_free,
8285 	.vcpu_reset = vmx_vcpu_reset,
8286 
8287 	.prepare_switch_to_guest = vmx_prepare_switch_to_guest,
8288 	.vcpu_load = vmx_vcpu_load,
8289 	.vcpu_put = vmx_vcpu_put,
8290 
8291 	.update_exception_bitmap = vmx_update_exception_bitmap,
8292 	.get_msr_feature = vmx_get_msr_feature,
8293 	.get_msr = vmx_get_msr,
8294 	.set_msr = vmx_set_msr,
8295 	.get_segment_base = vmx_get_segment_base,
8296 	.get_segment = vmx_get_segment,
8297 	.set_segment = vmx_set_segment,
8298 	.get_cpl = vmx_get_cpl,
8299 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8300 	.is_valid_cr0 = vmx_is_valid_cr0,
8301 	.set_cr0 = vmx_set_cr0,
8302 	.is_valid_cr4 = vmx_is_valid_cr4,
8303 	.set_cr4 = vmx_set_cr4,
8304 	.set_efer = vmx_set_efer,
8305 	.get_idt = vmx_get_idt,
8306 	.set_idt = vmx_set_idt,
8307 	.get_gdt = vmx_get_gdt,
8308 	.set_gdt = vmx_set_gdt,
8309 	.set_dr7 = vmx_set_dr7,
8310 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
8311 	.cache_reg = vmx_cache_reg,
8312 	.get_rflags = vmx_get_rflags,
8313 	.set_rflags = vmx_set_rflags,
8314 	.get_if_flag = vmx_get_if_flag,
8315 
8316 	.flush_tlb_all = vmx_flush_tlb_all,
8317 	.flush_tlb_current = vmx_flush_tlb_current,
8318 	.flush_tlb_gva = vmx_flush_tlb_gva,
8319 	.flush_tlb_guest = vmx_flush_tlb_guest,
8320 
8321 	.vcpu_pre_run = vmx_vcpu_pre_run,
8322 	.vcpu_run = vmx_vcpu_run,
8323 	.handle_exit = vmx_handle_exit,
8324 	.skip_emulated_instruction = vmx_skip_emulated_instruction,
8325 	.update_emulated_instruction = vmx_update_emulated_instruction,
8326 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
8327 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
8328 	.patch_hypercall = vmx_patch_hypercall,
8329 	.inject_irq = vmx_inject_irq,
8330 	.inject_nmi = vmx_inject_nmi,
8331 	.inject_exception = vmx_inject_exception,
8332 	.cancel_injection = vmx_cancel_injection,
8333 	.interrupt_allowed = vmx_interrupt_allowed,
8334 	.nmi_allowed = vmx_nmi_allowed,
8335 	.get_nmi_mask = vmx_get_nmi_mask,
8336 	.set_nmi_mask = vmx_set_nmi_mask,
8337 	.enable_nmi_window = vmx_enable_nmi_window,
8338 	.enable_irq_window = vmx_enable_irq_window,
8339 	.update_cr8_intercept = vmx_update_cr8_intercept,
8340 	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
8341 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
8342 	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
8343 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
8344 	.apicv_pre_state_restore = vmx_apicv_pre_state_restore,
8345 	.required_apicv_inhibits = VMX_REQUIRED_APICV_INHIBITS,
8346 	.hwapic_irr_update = vmx_hwapic_irr_update,
8347 	.hwapic_isr_update = vmx_hwapic_isr_update,
8348 	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
8349 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
8350 	.deliver_interrupt = vmx_deliver_interrupt,
8351 	.dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
8352 
8353 	.set_tss_addr = vmx_set_tss_addr,
8354 	.set_identity_map_addr = vmx_set_identity_map_addr,
8355 	.get_mt_mask = vmx_get_mt_mask,
8356 
8357 	.get_exit_info = vmx_get_exit_info,
8358 
8359 	.vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
8360 
8361 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8362 
8363 	.get_l2_tsc_offset = vmx_get_l2_tsc_offset,
8364 	.get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
8365 	.write_tsc_offset = vmx_write_tsc_offset,
8366 	.write_tsc_multiplier = vmx_write_tsc_multiplier,
8367 
8368 	.load_mmu_pgd = vmx_load_mmu_pgd,
8369 
8370 	.check_intercept = vmx_check_intercept,
8371 	.handle_exit_irqoff = vmx_handle_exit_irqoff,
8372 
8373 	.request_immediate_exit = vmx_request_immediate_exit,
8374 
8375 	.sched_in = vmx_sched_in,
8376 
8377 	.cpu_dirty_log_size = PML_ENTITY_NUM,
8378 	.update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
8379 
8380 	.nested_ops = &vmx_nested_ops,
8381 
8382 	.pi_update_irte = vmx_pi_update_irte,
8383 	.pi_start_assignment = vmx_pi_start_assignment,
8384 
8385 #ifdef CONFIG_X86_64
8386 	.set_hv_timer = vmx_set_hv_timer,
8387 	.cancel_hv_timer = vmx_cancel_hv_timer,
8388 #endif
8389 
8390 	.setup_mce = vmx_setup_mce,
8391 
8392 #ifdef CONFIG_KVM_SMM
8393 	.smi_allowed = vmx_smi_allowed,
8394 	.enter_smm = vmx_enter_smm,
8395 	.leave_smm = vmx_leave_smm,
8396 	.enable_smi_window = vmx_enable_smi_window,
8397 #endif
8398 
8399 	.check_emulate_instruction = vmx_check_emulate_instruction,
8400 	.apic_init_signal_blocked = vmx_apic_init_signal_blocked,
8401 	.migrate_timers = vmx_migrate_timers,
8402 
8403 	.msr_filter_changed = vmx_msr_filter_changed,
8404 	.complete_emulated_msr = kvm_complete_insn_gp,
8405 
8406 	.vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
8407 
8408 	.get_untagged_addr = vmx_get_untagged_addr,
8409 };
8410 
8411 static unsigned int vmx_handle_intel_pt_intr(void)
8412 {
8413 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8414 
8415 	/* '0' on failure so that the !PT case can use a RET0 static call. */
8416 	if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8417 		return 0;
8418 
8419 	kvm_make_request(KVM_REQ_PMI, vcpu);
8420 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8421 		  (unsigned long *)&vcpu->arch.pmu.global_status);
8422 	return 1;
8423 }
8424 
8425 static __init void vmx_setup_user_return_msrs(void)
8426 {
8427 
8428 	/*
8429 	 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8430 	 * will emulate SYSCALL in legacy mode if the vendor string in guest
8431 	 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8432 	 * support this emulation, MSR_STAR is included in the list for i386,
8433 	 * but is never loaded into hardware.  MSR_CSTAR is also never loaded
8434 	 * into hardware and is here purely for emulation purposes.
8435 	 */
8436 	const u32 vmx_uret_msrs_list[] = {
8437 	#ifdef CONFIG_X86_64
8438 		MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8439 	#endif
8440 		MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8441 		MSR_IA32_TSX_CTRL,
8442 	};
8443 	int i;
8444 
8445 	BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8446 
8447 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8448 		kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8449 }
8450 
8451 static void __init vmx_setup_me_spte_mask(void)
8452 {
8453 	u64 me_mask = 0;
8454 
8455 	/*
8456 	 * kvm_get_shadow_phys_bits() returns shadow_phys_bits.  Use
8457 	 * the former to avoid exposing shadow_phys_bits.
8458 	 *
8459 	 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8460 	 * shadow_phys_bits.  On MKTME and/or TDX capable systems,
8461 	 * boot_cpu_data.x86_phys_bits holds the actual physical address
8462 	 * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR
8463 	 * reported by CPUID.  Those bits between are KeyID bits.
8464 	 */
8465 	if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits())
8466 		me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8467 			kvm_get_shadow_phys_bits() - 1);
8468 	/*
8469 	 * Unlike SME, host kernel doesn't support setting up any
8470 	 * MKTME KeyID on Intel platforms.  No memory encryption
8471 	 * bits should be included into the SPTE.
8472 	 */
8473 	kvm_mmu_set_me_spte_mask(0, me_mask);
8474 }
8475 
8476 static struct kvm_x86_init_ops vmx_init_ops __initdata;
8477 
8478 static __init int hardware_setup(void)
8479 {
8480 	unsigned long host_bndcfgs;
8481 	struct desc_ptr dt;
8482 	int r;
8483 
8484 	store_idt(&dt);
8485 	host_idt_base = dt.address;
8486 
8487 	vmx_setup_user_return_msrs();
8488 
8489 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8490 		return -EIO;
8491 
8492 	if (cpu_has_perf_global_ctrl_bug())
8493 		pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
8494 			     "does not work properly. Using workaround\n");
8495 
8496 	if (boot_cpu_has(X86_FEATURE_NX))
8497 		kvm_enable_efer_bits(EFER_NX);
8498 
8499 	if (boot_cpu_has(X86_FEATURE_MPX)) {
8500 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
8501 		WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
8502 	}
8503 
8504 	if (!cpu_has_vmx_mpx())
8505 		kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8506 					     XFEATURE_MASK_BNDCSR);
8507 
8508 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8509 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8510 		enable_vpid = 0;
8511 
8512 	if (!cpu_has_vmx_ept() ||
8513 	    !cpu_has_vmx_ept_4levels() ||
8514 	    !cpu_has_vmx_ept_mt_wb() ||
8515 	    !cpu_has_vmx_invept_global())
8516 		enable_ept = 0;
8517 
8518 	/* NX support is required for shadow paging. */
8519 	if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8520 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
8521 		return -EOPNOTSUPP;
8522 	}
8523 
8524 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8525 		enable_ept_ad_bits = 0;
8526 
8527 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8528 		enable_unrestricted_guest = 0;
8529 
8530 	if (!cpu_has_vmx_flexpriority())
8531 		flexpriority_enabled = 0;
8532 
8533 	if (!cpu_has_virtual_nmis())
8534 		enable_vnmi = 0;
8535 
8536 #ifdef CONFIG_X86_SGX_KVM
8537 	if (!cpu_has_vmx_encls_vmexit())
8538 		enable_sgx = false;
8539 #endif
8540 
8541 	/*
8542 	 * set_apic_access_page_addr() is used to reload apic access
8543 	 * page upon invalidation.  No need to do anything if not
8544 	 * using the APIC_ACCESS_ADDR VMCS field.
8545 	 */
8546 	if (!flexpriority_enabled)
8547 		vmx_x86_ops.set_apic_access_page_addr = NULL;
8548 
8549 	if (!cpu_has_vmx_tpr_shadow())
8550 		vmx_x86_ops.update_cr8_intercept = NULL;
8551 
8552 #if IS_ENABLED(CONFIG_HYPERV)
8553 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8554 	    && enable_ept) {
8555 		vmx_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
8556 		vmx_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
8557 	}
8558 #endif
8559 
8560 	if (!cpu_has_vmx_ple()) {
8561 		ple_gap = 0;
8562 		ple_window = 0;
8563 		ple_window_grow = 0;
8564 		ple_window_max = 0;
8565 		ple_window_shrink = 0;
8566 	}
8567 
8568 	if (!cpu_has_vmx_apicv())
8569 		enable_apicv = 0;
8570 	if (!enable_apicv)
8571 		vmx_x86_ops.sync_pir_to_irr = NULL;
8572 
8573 	if (!enable_apicv || !cpu_has_vmx_ipiv())
8574 		enable_ipiv = false;
8575 
8576 	if (cpu_has_vmx_tsc_scaling())
8577 		kvm_caps.has_tsc_control = true;
8578 
8579 	kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8580 	kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8581 	kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8582 	kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8583 
8584 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8585 
8586 	if (enable_ept)
8587 		kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8588 				      cpu_has_vmx_ept_execute_only());
8589 
8590 	/*
8591 	 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8592 	 * bits to shadow_zero_check.
8593 	 */
8594 	vmx_setup_me_spte_mask();
8595 
8596 	kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(),
8597 			  ept_caps_to_lpage_level(vmx_capability.ept));
8598 
8599 	/*
8600 	 * Only enable PML when hardware supports PML feature, and both EPT
8601 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
8602 	 */
8603 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8604 		enable_pml = 0;
8605 
8606 	if (!enable_pml)
8607 		vmx_x86_ops.cpu_dirty_log_size = 0;
8608 
8609 	if (!cpu_has_vmx_preemption_timer())
8610 		enable_preemption_timer = false;
8611 
8612 	if (enable_preemption_timer) {
8613 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
8614 
8615 		cpu_preemption_timer_multi =
8616 			vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8617 
8618 		if (tsc_khz)
8619 			use_timer_freq = (u64)tsc_khz * 1000;
8620 		use_timer_freq >>= cpu_preemption_timer_multi;
8621 
8622 		/*
8623 		 * KVM "disables" the preemption timer by setting it to its max
8624 		 * value.  Don't use the timer if it might cause spurious exits
8625 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8626 		 */
8627 		if (use_timer_freq > 0xffffffffu / 10)
8628 			enable_preemption_timer = false;
8629 	}
8630 
8631 	if (!enable_preemption_timer) {
8632 		vmx_x86_ops.set_hv_timer = NULL;
8633 		vmx_x86_ops.cancel_hv_timer = NULL;
8634 		vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
8635 	}
8636 
8637 	kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8638 	kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8639 
8640 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8641 		return -EINVAL;
8642 	if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8643 		pt_mode = PT_MODE_SYSTEM;
8644 	if (pt_mode == PT_MODE_HOST_GUEST)
8645 		vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8646 	else
8647 		vmx_init_ops.handle_intel_pt_intr = NULL;
8648 
8649 	setup_default_sgx_lepubkeyhash();
8650 
8651 	if (nested) {
8652 		nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8653 
8654 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8655 		if (r)
8656 			return r;
8657 	}
8658 
8659 	vmx_set_cpu_caps();
8660 
8661 	r = alloc_kvm_area();
8662 	if (r && nested)
8663 		nested_vmx_hardware_unsetup();
8664 
8665 	kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8666 
8667 	return r;
8668 }
8669 
8670 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8671 	.hardware_setup = hardware_setup,
8672 	.handle_intel_pt_intr = NULL,
8673 
8674 	.runtime_ops = &vmx_x86_ops,
8675 	.pmu_ops = &intel_pmu_ops,
8676 };
8677 
8678 static void vmx_cleanup_l1d_flush(void)
8679 {
8680 	if (vmx_l1d_flush_pages) {
8681 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8682 		vmx_l1d_flush_pages = NULL;
8683 	}
8684 	/* Restore state so sysfs ignores VMX */
8685 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8686 }
8687 
8688 static void __vmx_exit(void)
8689 {
8690 	allow_smaller_maxphyaddr = false;
8691 
8692 	cpu_emergency_unregister_virt_callback(vmx_emergency_disable);
8693 
8694 	vmx_cleanup_l1d_flush();
8695 }
8696 
8697 static void vmx_exit(void)
8698 {
8699 	kvm_exit();
8700 	kvm_x86_vendor_exit();
8701 
8702 	__vmx_exit();
8703 }
8704 module_exit(vmx_exit);
8705 
8706 static int __init vmx_init(void)
8707 {
8708 	int r, cpu;
8709 
8710 	if (!kvm_is_vmx_supported())
8711 		return -EOPNOTSUPP;
8712 
8713 	/*
8714 	 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing
8715 	 * to unwind if a later step fails.
8716 	 */
8717 	hv_init_evmcs();
8718 
8719 	r = kvm_x86_vendor_init(&vmx_init_ops);
8720 	if (r)
8721 		return r;
8722 
8723 	/*
8724 	 * Must be called after common x86 init so enable_ept is properly set
8725 	 * up. Hand the parameter mitigation value in which was stored in
8726 	 * the pre module init parser. If no parameter was given, it will
8727 	 * contain 'auto' which will be turned into the default 'cond'
8728 	 * mitigation mode.
8729 	 */
8730 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8731 	if (r)
8732 		goto err_l1d_flush;
8733 
8734 	for_each_possible_cpu(cpu) {
8735 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8736 
8737 		pi_init_cpu(cpu);
8738 	}
8739 
8740 	cpu_emergency_register_virt_callback(vmx_emergency_disable);
8741 
8742 	vmx_check_vmcs12_offsets();
8743 
8744 	/*
8745 	 * Shadow paging doesn't have a (further) performance penalty
8746 	 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8747 	 * by default
8748 	 */
8749 	if (!enable_ept)
8750 		allow_smaller_maxphyaddr = true;
8751 
8752 	/*
8753 	 * Common KVM initialization _must_ come last, after this, /dev/kvm is
8754 	 * exposed to userspace!
8755 	 */
8756 	r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx),
8757 		     THIS_MODULE);
8758 	if (r)
8759 		goto err_kvm_init;
8760 
8761 	return 0;
8762 
8763 err_kvm_init:
8764 	__vmx_exit();
8765 err_l1d_flush:
8766 	kvm_x86_vendor_exit();
8767 	return r;
8768 }
8769 module_init(vmx_init);
8770