1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/highmem.h> 18 #include <linux/hrtimer.h> 19 #include <linux/kernel.h> 20 #include <linux/kvm_host.h> 21 #include <linux/module.h> 22 #include <linux/moduleparam.h> 23 #include <linux/mod_devicetable.h> 24 #include <linux/mm.h> 25 #include <linux/objtool.h> 26 #include <linux/sched.h> 27 #include <linux/sched/smt.h> 28 #include <linux/slab.h> 29 #include <linux/tboot.h> 30 #include <linux/trace_events.h> 31 #include <linux/entry-kvm.h> 32 33 #include <asm/apic.h> 34 #include <asm/asm.h> 35 #include <asm/cpu.h> 36 #include <asm/cpu_device_id.h> 37 #include <asm/debugreg.h> 38 #include <asm/desc.h> 39 #include <asm/fpu/api.h> 40 #include <asm/fpu/xstate.h> 41 #include <asm/fred.h> 42 #include <asm/idtentry.h> 43 #include <asm/io.h> 44 #include <asm/irq_remapping.h> 45 #include <asm/reboot.h> 46 #include <asm/perf_event.h> 47 #include <asm/mmu_context.h> 48 #include <asm/mshyperv.h> 49 #include <asm/mwait.h> 50 #include <asm/spec-ctrl.h> 51 #include <asm/vmx.h> 52 53 #include <trace/events/ipi.h> 54 55 #include "capabilities.h" 56 #include "cpuid.h" 57 #include "hyperv.h" 58 #include "kvm_onhyperv.h" 59 #include "irq.h" 60 #include "kvm_cache_regs.h" 61 #include "lapic.h" 62 #include "mmu.h" 63 #include "nested.h" 64 #include "pmu.h" 65 #include "sgx.h" 66 #include "trace.h" 67 #include "vmcs.h" 68 #include "vmcs12.h" 69 #include "vmx.h" 70 #include "x86.h" 71 #include "smm.h" 72 #include "vmx_onhyperv.h" 73 74 MODULE_AUTHOR("Qumranet"); 75 MODULE_LICENSE("GPL"); 76 77 #ifdef MODULE 78 static const struct x86_cpu_id vmx_cpu_id[] = { 79 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL), 80 {} 81 }; 82 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); 83 #endif 84 85 bool __read_mostly enable_vpid = 1; 86 module_param_named(vpid, enable_vpid, bool, 0444); 87 88 static bool __read_mostly enable_vnmi = 1; 89 module_param_named(vnmi, enable_vnmi, bool, 0444); 90 91 bool __read_mostly flexpriority_enabled = 1; 92 module_param_named(flexpriority, flexpriority_enabled, bool, 0444); 93 94 bool __read_mostly enable_ept = 1; 95 module_param_named(ept, enable_ept, bool, 0444); 96 97 bool __read_mostly enable_unrestricted_guest = 1; 98 module_param_named(unrestricted_guest, 99 enable_unrestricted_guest, bool, 0444); 100 101 bool __read_mostly enable_ept_ad_bits = 1; 102 module_param_named(eptad, enable_ept_ad_bits, bool, 0444); 103 104 static bool __read_mostly emulate_invalid_guest_state = true; 105 module_param(emulate_invalid_guest_state, bool, 0444); 106 107 static bool __read_mostly fasteoi = 1; 108 module_param(fasteoi, bool, 0444); 109 110 module_param(enable_apicv, bool, 0444); 111 112 bool __read_mostly enable_ipiv = true; 113 module_param(enable_ipiv, bool, 0444); 114 115 /* 116 * If nested=1, nested virtualization is supported, i.e., guests may use 117 * VMX and be a hypervisor for its own guests. If nested=0, guests may not 118 * use VMX instructions. 119 */ 120 static bool __read_mostly nested = 1; 121 module_param(nested, bool, 0444); 122 123 bool __read_mostly enable_pml = 1; 124 module_param_named(pml, enable_pml, bool, 0444); 125 126 static bool __read_mostly error_on_inconsistent_vmcs_config = true; 127 module_param(error_on_inconsistent_vmcs_config, bool, 0444); 128 129 static bool __read_mostly dump_invalid_vmcs = 0; 130 module_param(dump_invalid_vmcs, bool, 0644); 131 132 #define MSR_BITMAP_MODE_X2APIC 1 133 #define MSR_BITMAP_MODE_X2APIC_APICV 2 134 135 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL 136 137 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ 138 static int __read_mostly cpu_preemption_timer_multi; 139 static bool __read_mostly enable_preemption_timer = 1; 140 #ifdef CONFIG_X86_64 141 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); 142 #endif 143 144 extern bool __read_mostly allow_smaller_maxphyaddr; 145 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO); 146 147 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) 148 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE 149 #define KVM_VM_CR0_ALWAYS_ON \ 150 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE) 151 152 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE 153 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) 154 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) 155 156 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) 157 158 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ 159 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ 160 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ 161 RTIT_STATUS_BYTECNT)) 162 163 /* 164 * List of MSRs that can be directly passed to the guest. 165 * In addition to these x2apic, PT and LBR MSRs are handled specially. 166 */ 167 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = { 168 MSR_IA32_SPEC_CTRL, 169 MSR_IA32_PRED_CMD, 170 MSR_IA32_FLUSH_CMD, 171 MSR_IA32_TSC, 172 #ifdef CONFIG_X86_64 173 MSR_FS_BASE, 174 MSR_GS_BASE, 175 MSR_KERNEL_GS_BASE, 176 MSR_IA32_XFD, 177 MSR_IA32_XFD_ERR, 178 #endif 179 MSR_IA32_SYSENTER_CS, 180 MSR_IA32_SYSENTER_ESP, 181 MSR_IA32_SYSENTER_EIP, 182 MSR_CORE_C1_RES, 183 MSR_CORE_C3_RESIDENCY, 184 MSR_CORE_C6_RESIDENCY, 185 MSR_CORE_C7_RESIDENCY, 186 }; 187 188 /* 189 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 190 * ple_gap: upper bound on the amount of time between two successive 191 * executions of PAUSE in a loop. Also indicate if ple enabled. 192 * According to test, this time is usually smaller than 128 cycles. 193 * ple_window: upper bound on the amount of time a guest is allowed to execute 194 * in a PAUSE loop. Tests indicate that most spinlocks are held for 195 * less than 2^12 cycles 196 * Time is measured based on a counter that runs at the same rate as the TSC, 197 * refer SDM volume 3b section 21.6.13 & 22.1.3. 198 */ 199 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; 200 module_param(ple_gap, uint, 0444); 201 202 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; 203 module_param(ple_window, uint, 0444); 204 205 /* Default doubles per-vcpu window every exit. */ 206 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 207 module_param(ple_window_grow, uint, 0444); 208 209 /* Default resets per-vcpu window every exit to ple_window. */ 210 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 211 module_param(ple_window_shrink, uint, 0444); 212 213 /* Default is to compute the maximum so we can never overflow. */ 214 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; 215 module_param(ple_window_max, uint, 0444); 216 217 /* Default is SYSTEM mode, 1 for host-guest mode */ 218 int __read_mostly pt_mode = PT_MODE_SYSTEM; 219 module_param(pt_mode, int, S_IRUGO); 220 221 struct x86_pmu_lbr __ro_after_init vmx_lbr_caps; 222 223 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); 224 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); 225 static DEFINE_MUTEX(vmx_l1d_flush_mutex); 226 227 /* Storage for pre module init parameter parsing */ 228 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; 229 230 static const struct { 231 const char *option; 232 bool for_parse; 233 } vmentry_l1d_param[] = { 234 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, 235 [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, 236 [VMENTER_L1D_FLUSH_COND] = {"cond", true}, 237 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, 238 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, 239 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, 240 }; 241 242 #define L1D_CACHE_ORDER 4 243 static void *vmx_l1d_flush_pages; 244 245 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) 246 { 247 struct page *page; 248 unsigned int i; 249 250 if (!boot_cpu_has_bug(X86_BUG_L1TF)) { 251 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 252 return 0; 253 } 254 255 if (!enable_ept) { 256 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; 257 return 0; 258 } 259 260 if (host_arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { 261 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 262 return 0; 263 } 264 265 /* If set to auto use the default l1tf mitigation method */ 266 if (l1tf == VMENTER_L1D_FLUSH_AUTO) { 267 switch (l1tf_mitigation) { 268 case L1TF_MITIGATION_OFF: 269 l1tf = VMENTER_L1D_FLUSH_NEVER; 270 break; 271 case L1TF_MITIGATION_FLUSH_NOWARN: 272 case L1TF_MITIGATION_FLUSH: 273 case L1TF_MITIGATION_FLUSH_NOSMT: 274 l1tf = VMENTER_L1D_FLUSH_COND; 275 break; 276 case L1TF_MITIGATION_FULL: 277 case L1TF_MITIGATION_FULL_FORCE: 278 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 279 break; 280 } 281 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { 282 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 283 } 284 285 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && 286 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { 287 /* 288 * This allocation for vmx_l1d_flush_pages is not tied to a VM 289 * lifetime and so should not be charged to a memcg. 290 */ 291 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); 292 if (!page) 293 return -ENOMEM; 294 vmx_l1d_flush_pages = page_address(page); 295 296 /* 297 * Initialize each page with a different pattern in 298 * order to protect against KSM in the nested 299 * virtualization case. 300 */ 301 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { 302 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, 303 PAGE_SIZE); 304 } 305 } 306 307 l1tf_vmx_mitigation = l1tf; 308 309 if (l1tf != VMENTER_L1D_FLUSH_NEVER) 310 static_branch_enable(&vmx_l1d_should_flush); 311 else 312 static_branch_disable(&vmx_l1d_should_flush); 313 314 if (l1tf == VMENTER_L1D_FLUSH_COND) 315 static_branch_enable(&vmx_l1d_flush_cond); 316 else 317 static_branch_disable(&vmx_l1d_flush_cond); 318 return 0; 319 } 320 321 static int vmentry_l1d_flush_parse(const char *s) 322 { 323 unsigned int i; 324 325 if (s) { 326 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { 327 if (vmentry_l1d_param[i].for_parse && 328 sysfs_streq(s, vmentry_l1d_param[i].option)) 329 return i; 330 } 331 } 332 return -EINVAL; 333 } 334 335 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) 336 { 337 int l1tf, ret; 338 339 l1tf = vmentry_l1d_flush_parse(s); 340 if (l1tf < 0) 341 return l1tf; 342 343 if (!boot_cpu_has(X86_BUG_L1TF)) 344 return 0; 345 346 /* 347 * Has vmx_init() run already? If not then this is the pre init 348 * parameter parsing. In that case just store the value and let 349 * vmx_init() do the proper setup after enable_ept has been 350 * established. 351 */ 352 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { 353 vmentry_l1d_flush_param = l1tf; 354 return 0; 355 } 356 357 mutex_lock(&vmx_l1d_flush_mutex); 358 ret = vmx_setup_l1d_flush(l1tf); 359 mutex_unlock(&vmx_l1d_flush_mutex); 360 return ret; 361 } 362 363 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) 364 { 365 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) 366 return sysfs_emit(s, "???\n"); 367 368 return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); 369 } 370 371 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx) 372 { 373 u64 msr; 374 375 if (!vmx->disable_fb_clear) 376 return; 377 378 msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL); 379 msr |= FB_CLEAR_DIS; 380 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr); 381 /* Cache the MSR value to avoid reading it later */ 382 vmx->msr_ia32_mcu_opt_ctrl = msr; 383 } 384 385 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx) 386 { 387 if (!vmx->disable_fb_clear) 388 return; 389 390 vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS; 391 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl); 392 } 393 394 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx) 395 { 396 /* 397 * Disable VERW's behavior of clearing CPU buffers for the guest if the 398 * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled 399 * the mitigation. Disabling the clearing behavior provides a 400 * performance boost for guests that aren't aware that manually clearing 401 * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry 402 * and VM-Exit. 403 */ 404 vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) && 405 (host_arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) && 406 !boot_cpu_has_bug(X86_BUG_MDS) && 407 !boot_cpu_has_bug(X86_BUG_TAA); 408 409 /* 410 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS 411 * at VMEntry. Skip the MSR read/write when a guest has no use case to 412 * execute VERW. 413 */ 414 if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) || 415 ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) && 416 (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) && 417 (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) && 418 (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) && 419 (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO))) 420 vmx->disable_fb_clear = false; 421 } 422 423 static const struct kernel_param_ops vmentry_l1d_flush_ops = { 424 .set = vmentry_l1d_flush_set, 425 .get = vmentry_l1d_flush_get, 426 }; 427 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); 428 429 static u32 vmx_segment_access_rights(struct kvm_segment *var); 430 431 void vmx_vmexit(void); 432 433 #define vmx_insn_failed(fmt...) \ 434 do { \ 435 WARN_ONCE(1, fmt); \ 436 pr_warn_ratelimited(fmt); \ 437 } while (0) 438 439 noinline void vmread_error(unsigned long field) 440 { 441 vmx_insn_failed("vmread failed: field=%lx\n", field); 442 } 443 444 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT 445 noinstr void vmread_error_trampoline2(unsigned long field, bool fault) 446 { 447 if (fault) { 448 kvm_spurious_fault(); 449 } else { 450 instrumentation_begin(); 451 vmread_error(field); 452 instrumentation_end(); 453 } 454 } 455 #endif 456 457 noinline void vmwrite_error(unsigned long field, unsigned long value) 458 { 459 vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n", 460 field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); 461 } 462 463 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr) 464 { 465 vmx_insn_failed("vmclear failed: %p/%llx err=%u\n", 466 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR)); 467 } 468 469 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr) 470 { 471 vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n", 472 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR)); 473 } 474 475 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva) 476 { 477 vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n", 478 ext, vpid, gva); 479 } 480 481 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa) 482 { 483 vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n", 484 ext, eptp, gpa); 485 } 486 487 static DEFINE_PER_CPU(struct vmcs *, vmxarea); 488 DEFINE_PER_CPU(struct vmcs *, current_vmcs); 489 /* 490 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed 491 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. 492 */ 493 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); 494 495 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); 496 static DEFINE_SPINLOCK(vmx_vpid_lock); 497 498 struct vmcs_config vmcs_config __ro_after_init; 499 struct vmx_capability vmx_capability __ro_after_init; 500 501 #define VMX_SEGMENT_FIELD(seg) \ 502 [VCPU_SREG_##seg] = { \ 503 .selector = GUEST_##seg##_SELECTOR, \ 504 .base = GUEST_##seg##_BASE, \ 505 .limit = GUEST_##seg##_LIMIT, \ 506 .ar_bytes = GUEST_##seg##_AR_BYTES, \ 507 } 508 509 static const struct kvm_vmx_segment_field { 510 unsigned selector; 511 unsigned base; 512 unsigned limit; 513 unsigned ar_bytes; 514 } kvm_vmx_segment_fields[] = { 515 VMX_SEGMENT_FIELD(CS), 516 VMX_SEGMENT_FIELD(DS), 517 VMX_SEGMENT_FIELD(ES), 518 VMX_SEGMENT_FIELD(FS), 519 VMX_SEGMENT_FIELD(GS), 520 VMX_SEGMENT_FIELD(SS), 521 VMX_SEGMENT_FIELD(TR), 522 VMX_SEGMENT_FIELD(LDTR), 523 }; 524 525 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx) 526 { 527 vmx->segment_cache.bitmask = 0; 528 } 529 530 static unsigned long host_idt_base; 531 532 #if IS_ENABLED(CONFIG_HYPERV) 533 static struct kvm_x86_ops vmx_x86_ops __initdata; 534 535 static bool __read_mostly enlightened_vmcs = true; 536 module_param(enlightened_vmcs, bool, 0444); 537 538 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu) 539 { 540 struct hv_enlightened_vmcs *evmcs; 541 hpa_t partition_assist_page = hv_get_partition_assist_page(vcpu); 542 543 if (partition_assist_page == INVALID_PAGE) 544 return -ENOMEM; 545 546 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs; 547 548 evmcs->partition_assist_page = partition_assist_page; 549 evmcs->hv_vm_id = (unsigned long)vcpu->kvm; 550 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1; 551 552 return 0; 553 } 554 555 static __init void hv_init_evmcs(void) 556 { 557 int cpu; 558 559 if (!enlightened_vmcs) 560 return; 561 562 /* 563 * Enlightened VMCS usage should be recommended and the host needs 564 * to support eVMCS v1 or above. 565 */ 566 if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && 567 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= 568 KVM_EVMCS_VERSION) { 569 570 /* Check that we have assist pages on all online CPUs */ 571 for_each_online_cpu(cpu) { 572 if (!hv_get_vp_assist_page(cpu)) { 573 enlightened_vmcs = false; 574 break; 575 } 576 } 577 578 if (enlightened_vmcs) { 579 pr_info("Using Hyper-V Enlightened VMCS\n"); 580 static_branch_enable(&__kvm_is_using_evmcs); 581 } 582 583 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH) 584 vmx_x86_ops.enable_l2_tlb_flush 585 = hv_enable_l2_tlb_flush; 586 587 } else { 588 enlightened_vmcs = false; 589 } 590 } 591 592 static void hv_reset_evmcs(void) 593 { 594 struct hv_vp_assist_page *vp_ap; 595 596 if (!kvm_is_using_evmcs()) 597 return; 598 599 /* 600 * KVM should enable eVMCS if and only if all CPUs have a VP assist 601 * page, and should reject CPU onlining if eVMCS is enabled the CPU 602 * doesn't have a VP assist page allocated. 603 */ 604 vp_ap = hv_get_vp_assist_page(smp_processor_id()); 605 if (WARN_ON_ONCE(!vp_ap)) 606 return; 607 608 /* 609 * Reset everything to support using non-enlightened VMCS access later 610 * (e.g. when we reload the module with enlightened_vmcs=0) 611 */ 612 vp_ap->nested_control.features.directhypercall = 0; 613 vp_ap->current_nested_vmcs = 0; 614 vp_ap->enlighten_vmentry = 0; 615 } 616 617 #else /* IS_ENABLED(CONFIG_HYPERV) */ 618 static void hv_init_evmcs(void) {} 619 static void hv_reset_evmcs(void) {} 620 #endif /* IS_ENABLED(CONFIG_HYPERV) */ 621 622 /* 623 * Comment's format: document - errata name - stepping - processor name. 624 * Refer from 625 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp 626 */ 627 static u32 vmx_preemption_cpu_tfms[] = { 628 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ 629 0x000206E6, 630 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ 631 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ 632 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ 633 0x00020652, 634 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ 635 0x00020655, 636 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ 637 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ 638 /* 639 * 320767.pdf - AAP86 - B1 - 640 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile 641 */ 642 0x000106E5, 643 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ 644 0x000106A0, 645 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ 646 0x000106A1, 647 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ 648 0x000106A4, 649 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ 650 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ 651 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ 652 0x000106A5, 653 /* Xeon E3-1220 V2 */ 654 0x000306A8, 655 }; 656 657 static inline bool cpu_has_broken_vmx_preemption_timer(void) 658 { 659 u32 eax = cpuid_eax(0x00000001), i; 660 661 /* Clear the reserved bits */ 662 eax &= ~(0x3U << 14 | 0xfU << 28); 663 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) 664 if (eax == vmx_preemption_cpu_tfms[i]) 665 return true; 666 667 return false; 668 } 669 670 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) 671 { 672 return flexpriority_enabled && lapic_in_kernel(vcpu); 673 } 674 675 static int vmx_get_passthrough_msr_slot(u32 msr) 676 { 677 int i; 678 679 switch (msr) { 680 case 0x800 ... 0x8ff: 681 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */ 682 return -ENOENT; 683 case MSR_IA32_RTIT_STATUS: 684 case MSR_IA32_RTIT_OUTPUT_BASE: 685 case MSR_IA32_RTIT_OUTPUT_MASK: 686 case MSR_IA32_RTIT_CR3_MATCH: 687 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 688 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */ 689 case MSR_LBR_SELECT: 690 case MSR_LBR_TOS: 691 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31: 692 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31: 693 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31: 694 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8: 695 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8: 696 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */ 697 return -ENOENT; 698 } 699 700 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) { 701 if (vmx_possible_passthrough_msrs[i] == msr) 702 return i; 703 } 704 705 WARN(1, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr); 706 return -ENOENT; 707 } 708 709 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr) 710 { 711 int i; 712 713 i = kvm_find_user_return_msr(msr); 714 if (i >= 0) 715 return &vmx->guest_uret_msrs[i]; 716 return NULL; 717 } 718 719 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx, 720 struct vmx_uret_msr *msr, u64 data) 721 { 722 unsigned int slot = msr - vmx->guest_uret_msrs; 723 int ret = 0; 724 725 if (msr->load_into_hardware) { 726 preempt_disable(); 727 ret = kvm_set_user_return_msr(slot, data, msr->mask); 728 preempt_enable(); 729 } 730 if (!ret) 731 msr->data = data; 732 return ret; 733 } 734 735 /* 736 * Disable VMX and clear CR4.VMXE (even if VMXOFF faults) 737 * 738 * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to 739 * atomically track post-VMXON state, e.g. this may be called in NMI context. 740 * Eat all faults as all other faults on VMXOFF faults are mode related, i.e. 741 * faults are guaranteed to be due to the !post-VMXON check unless the CPU is 742 * magically in RM, VM86, compat mode, or at CPL>0. 743 */ 744 static int kvm_cpu_vmxoff(void) 745 { 746 asm goto("1: vmxoff\n\t" 747 _ASM_EXTABLE(1b, %l[fault]) 748 ::: "cc", "memory" : fault); 749 750 cr4_clear_bits(X86_CR4_VMXE); 751 return 0; 752 753 fault: 754 cr4_clear_bits(X86_CR4_VMXE); 755 return -EIO; 756 } 757 758 static void vmx_emergency_disable(void) 759 { 760 int cpu = raw_smp_processor_id(); 761 struct loaded_vmcs *v; 762 763 kvm_rebooting = true; 764 765 /* 766 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be 767 * set in task context. If this races with VMX is disabled by an NMI, 768 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to 769 * kvm_rebooting set. 770 */ 771 if (!(__read_cr4() & X86_CR4_VMXE)) 772 return; 773 774 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), 775 loaded_vmcss_on_cpu_link) 776 vmcs_clear(v->vmcs); 777 778 kvm_cpu_vmxoff(); 779 } 780 781 static void __loaded_vmcs_clear(void *arg) 782 { 783 struct loaded_vmcs *loaded_vmcs = arg; 784 int cpu = raw_smp_processor_id(); 785 786 if (loaded_vmcs->cpu != cpu) 787 return; /* vcpu migration can race with cpu offline */ 788 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) 789 per_cpu(current_vmcs, cpu) = NULL; 790 791 vmcs_clear(loaded_vmcs->vmcs); 792 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) 793 vmcs_clear(loaded_vmcs->shadow_vmcs); 794 795 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); 796 797 /* 798 * Ensure all writes to loaded_vmcs, including deleting it from its 799 * current percpu list, complete before setting loaded_vmcs->cpu to 800 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first 801 * and add loaded_vmcs to its percpu list before it's deleted from this 802 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs(). 803 */ 804 smp_wmb(); 805 806 loaded_vmcs->cpu = -1; 807 loaded_vmcs->launched = 0; 808 } 809 810 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) 811 { 812 int cpu = loaded_vmcs->cpu; 813 814 if (cpu != -1) 815 smp_call_function_single(cpu, 816 __loaded_vmcs_clear, loaded_vmcs, 1); 817 } 818 819 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, 820 unsigned field) 821 { 822 bool ret; 823 u32 mask = 1 << (seg * SEG_FIELD_NR + field); 824 825 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) { 826 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS); 827 vmx->segment_cache.bitmask = 0; 828 } 829 ret = vmx->segment_cache.bitmask & mask; 830 vmx->segment_cache.bitmask |= mask; 831 return ret; 832 } 833 834 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) 835 { 836 u16 *p = &vmx->segment_cache.seg[seg].selector; 837 838 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) 839 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); 840 return *p; 841 } 842 843 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) 844 { 845 ulong *p = &vmx->segment_cache.seg[seg].base; 846 847 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) 848 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); 849 return *p; 850 } 851 852 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) 853 { 854 u32 *p = &vmx->segment_cache.seg[seg].limit; 855 856 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) 857 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); 858 return *p; 859 } 860 861 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) 862 { 863 u32 *p = &vmx->segment_cache.seg[seg].ar; 864 865 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) 866 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); 867 return *p; 868 } 869 870 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu) 871 { 872 u32 eb; 873 874 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | 875 (1u << DB_VECTOR) | (1u << AC_VECTOR); 876 /* 877 * Guest access to VMware backdoor ports could legitimately 878 * trigger #GP because of TSS I/O permission bitmap. 879 * We intercept those #GP and allow access to them anyway 880 * as VMware does. 881 */ 882 if (enable_vmware_backdoor) 883 eb |= (1u << GP_VECTOR); 884 if ((vcpu->guest_debug & 885 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == 886 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) 887 eb |= 1u << BP_VECTOR; 888 if (to_vmx(vcpu)->rmode.vm86_active) 889 eb = ~0; 890 if (!vmx_need_pf_intercept(vcpu)) 891 eb &= ~(1u << PF_VECTOR); 892 893 /* When we are running a nested L2 guest and L1 specified for it a 894 * certain exception bitmap, we must trap the same exceptions and pass 895 * them to L1. When running L2, we will only handle the exceptions 896 * specified above if L1 did not want them. 897 */ 898 if (is_guest_mode(vcpu)) 899 eb |= get_vmcs12(vcpu)->exception_bitmap; 900 else { 901 int mask = 0, match = 0; 902 903 if (enable_ept && (eb & (1u << PF_VECTOR))) { 904 /* 905 * If EPT is enabled, #PF is currently only intercepted 906 * if MAXPHYADDR is smaller on the guest than on the 907 * host. In that case we only care about present, 908 * non-reserved faults. For vmcs02, however, PFEC_MASK 909 * and PFEC_MATCH are set in prepare_vmcs02_rare. 910 */ 911 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK; 912 match = PFERR_PRESENT_MASK; 913 } 914 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask); 915 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match); 916 } 917 918 /* 919 * Disabling xfd interception indicates that dynamic xfeatures 920 * might be used in the guest. Always trap #NM in this case 921 * to save guest xfd_err timely. 922 */ 923 if (vcpu->arch.xfd_no_write_intercept) 924 eb |= (1u << NM_VECTOR); 925 926 vmcs_write32(EXCEPTION_BITMAP, eb); 927 } 928 929 /* 930 * Check if MSR is intercepted for currently loaded MSR bitmap. 931 */ 932 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr) 933 { 934 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS)) 935 return true; 936 937 return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr); 938 } 939 940 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx) 941 { 942 unsigned int flags = 0; 943 944 if (vmx->loaded_vmcs->launched) 945 flags |= VMX_RUN_VMRESUME; 946 947 /* 948 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free 949 * to change it directly without causing a vmexit. In that case read 950 * it after vmexit and store it in vmx->spec_ctrl. 951 */ 952 if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL)) 953 flags |= VMX_RUN_SAVE_SPEC_CTRL; 954 955 return flags; 956 } 957 958 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, 959 unsigned long entry, unsigned long exit) 960 { 961 vm_entry_controls_clearbit(vmx, entry); 962 vm_exit_controls_clearbit(vmx, exit); 963 } 964 965 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr) 966 { 967 unsigned int i; 968 969 for (i = 0; i < m->nr; ++i) { 970 if (m->val[i].index == msr) 971 return i; 972 } 973 return -ENOENT; 974 } 975 976 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) 977 { 978 int i; 979 struct msr_autoload *m = &vmx->msr_autoload; 980 981 switch (msr) { 982 case MSR_EFER: 983 if (cpu_has_load_ia32_efer()) { 984 clear_atomic_switch_msr_special(vmx, 985 VM_ENTRY_LOAD_IA32_EFER, 986 VM_EXIT_LOAD_IA32_EFER); 987 return; 988 } 989 break; 990 case MSR_CORE_PERF_GLOBAL_CTRL: 991 if (cpu_has_load_perf_global_ctrl()) { 992 clear_atomic_switch_msr_special(vmx, 993 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 994 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); 995 return; 996 } 997 break; 998 } 999 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 1000 if (i < 0) 1001 goto skip_guest; 1002 --m->guest.nr; 1003 m->guest.val[i] = m->guest.val[m->guest.nr]; 1004 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 1005 1006 skip_guest: 1007 i = vmx_find_loadstore_msr_slot(&m->host, msr); 1008 if (i < 0) 1009 return; 1010 1011 --m->host.nr; 1012 m->host.val[i] = m->host.val[m->host.nr]; 1013 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 1014 } 1015 1016 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, 1017 unsigned long entry, unsigned long exit, 1018 unsigned long guest_val_vmcs, unsigned long host_val_vmcs, 1019 u64 guest_val, u64 host_val) 1020 { 1021 vmcs_write64(guest_val_vmcs, guest_val); 1022 if (host_val_vmcs != HOST_IA32_EFER) 1023 vmcs_write64(host_val_vmcs, host_val); 1024 vm_entry_controls_setbit(vmx, entry); 1025 vm_exit_controls_setbit(vmx, exit); 1026 } 1027 1028 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, 1029 u64 guest_val, u64 host_val, bool entry_only) 1030 { 1031 int i, j = 0; 1032 struct msr_autoload *m = &vmx->msr_autoload; 1033 1034 switch (msr) { 1035 case MSR_EFER: 1036 if (cpu_has_load_ia32_efer()) { 1037 add_atomic_switch_msr_special(vmx, 1038 VM_ENTRY_LOAD_IA32_EFER, 1039 VM_EXIT_LOAD_IA32_EFER, 1040 GUEST_IA32_EFER, 1041 HOST_IA32_EFER, 1042 guest_val, host_val); 1043 return; 1044 } 1045 break; 1046 case MSR_CORE_PERF_GLOBAL_CTRL: 1047 if (cpu_has_load_perf_global_ctrl()) { 1048 add_atomic_switch_msr_special(vmx, 1049 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 1050 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, 1051 GUEST_IA32_PERF_GLOBAL_CTRL, 1052 HOST_IA32_PERF_GLOBAL_CTRL, 1053 guest_val, host_val); 1054 return; 1055 } 1056 break; 1057 case MSR_IA32_PEBS_ENABLE: 1058 /* PEBS needs a quiescent period after being disabled (to write 1059 * a record). Disabling PEBS through VMX MSR swapping doesn't 1060 * provide that period, so a CPU could write host's record into 1061 * guest's memory. 1062 */ 1063 wrmsrl(MSR_IA32_PEBS_ENABLE, 0); 1064 } 1065 1066 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 1067 if (!entry_only) 1068 j = vmx_find_loadstore_msr_slot(&m->host, msr); 1069 1070 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) || 1071 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) { 1072 printk_once(KERN_WARNING "Not enough msr switch entries. " 1073 "Can't add msr %x\n", msr); 1074 return; 1075 } 1076 if (i < 0) { 1077 i = m->guest.nr++; 1078 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 1079 } 1080 m->guest.val[i].index = msr; 1081 m->guest.val[i].value = guest_val; 1082 1083 if (entry_only) 1084 return; 1085 1086 if (j < 0) { 1087 j = m->host.nr++; 1088 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 1089 } 1090 m->host.val[j].index = msr; 1091 m->host.val[j].value = host_val; 1092 } 1093 1094 static bool update_transition_efer(struct vcpu_vmx *vmx) 1095 { 1096 u64 guest_efer = vmx->vcpu.arch.efer; 1097 u64 ignore_bits = 0; 1098 int i; 1099 1100 /* Shadow paging assumes NX to be available. */ 1101 if (!enable_ept) 1102 guest_efer |= EFER_NX; 1103 1104 /* 1105 * LMA and LME handled by hardware; SCE meaningless outside long mode. 1106 */ 1107 ignore_bits |= EFER_SCE; 1108 #ifdef CONFIG_X86_64 1109 ignore_bits |= EFER_LMA | EFER_LME; 1110 /* SCE is meaningful only in long mode on Intel */ 1111 if (guest_efer & EFER_LMA) 1112 ignore_bits &= ~(u64)EFER_SCE; 1113 #endif 1114 1115 /* 1116 * On EPT, we can't emulate NX, so we must switch EFER atomically. 1117 * On CPUs that support "load IA32_EFER", always switch EFER 1118 * atomically, since it's faster than switching it manually. 1119 */ 1120 if (cpu_has_load_ia32_efer() || 1121 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { 1122 if (!(guest_efer & EFER_LMA)) 1123 guest_efer &= ~EFER_LME; 1124 if (guest_efer != host_efer) 1125 add_atomic_switch_msr(vmx, MSR_EFER, 1126 guest_efer, host_efer, false); 1127 else 1128 clear_atomic_switch_msr(vmx, MSR_EFER); 1129 return false; 1130 } 1131 1132 i = kvm_find_user_return_msr(MSR_EFER); 1133 if (i < 0) 1134 return false; 1135 1136 clear_atomic_switch_msr(vmx, MSR_EFER); 1137 1138 guest_efer &= ~ignore_bits; 1139 guest_efer |= host_efer & ignore_bits; 1140 1141 vmx->guest_uret_msrs[i].data = guest_efer; 1142 vmx->guest_uret_msrs[i].mask = ~ignore_bits; 1143 1144 return true; 1145 } 1146 1147 #ifdef CONFIG_X86_32 1148 /* 1149 * On 32-bit kernels, VM exits still load the FS and GS bases from the 1150 * VMCS rather than the segment table. KVM uses this helper to figure 1151 * out the current bases to poke them into the VMCS before entry. 1152 */ 1153 static unsigned long segment_base(u16 selector) 1154 { 1155 struct desc_struct *table; 1156 unsigned long v; 1157 1158 if (!(selector & ~SEGMENT_RPL_MASK)) 1159 return 0; 1160 1161 table = get_current_gdt_ro(); 1162 1163 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { 1164 u16 ldt_selector = kvm_read_ldt(); 1165 1166 if (!(ldt_selector & ~SEGMENT_RPL_MASK)) 1167 return 0; 1168 1169 table = (struct desc_struct *)segment_base(ldt_selector); 1170 } 1171 v = get_desc_base(&table[selector >> 3]); 1172 return v; 1173 } 1174 #endif 1175 1176 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx) 1177 { 1178 return vmx_pt_mode_is_host_guest() && 1179 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 1180 } 1181 1182 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base) 1183 { 1184 /* The base must be 128-byte aligned and a legal physical address. */ 1185 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128); 1186 } 1187 1188 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) 1189 { 1190 u32 i; 1191 1192 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1193 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1194 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1195 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1196 for (i = 0; i < addr_range; i++) { 1197 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1198 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1199 } 1200 } 1201 1202 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) 1203 { 1204 u32 i; 1205 1206 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1207 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1208 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1209 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1210 for (i = 0; i < addr_range; i++) { 1211 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1212 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1213 } 1214 } 1215 1216 static void pt_guest_enter(struct vcpu_vmx *vmx) 1217 { 1218 if (vmx_pt_mode_is_system()) 1219 return; 1220 1221 /* 1222 * GUEST_IA32_RTIT_CTL is already set in the VMCS. 1223 * Save host state before VM entry. 1224 */ 1225 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1226 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1227 wrmsrl(MSR_IA32_RTIT_CTL, 0); 1228 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1229 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1230 } 1231 } 1232 1233 static void pt_guest_exit(struct vcpu_vmx *vmx) 1234 { 1235 if (vmx_pt_mode_is_system()) 1236 return; 1237 1238 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1239 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1240 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1241 } 1242 1243 /* 1244 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest, 1245 * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary. 1246 */ 1247 if (vmx->pt_desc.host.ctl) 1248 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1249 } 1250 1251 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, 1252 unsigned long fs_base, unsigned long gs_base) 1253 { 1254 if (unlikely(fs_sel != host->fs_sel)) { 1255 if (!(fs_sel & 7)) 1256 vmcs_write16(HOST_FS_SELECTOR, fs_sel); 1257 else 1258 vmcs_write16(HOST_FS_SELECTOR, 0); 1259 host->fs_sel = fs_sel; 1260 } 1261 if (unlikely(gs_sel != host->gs_sel)) { 1262 if (!(gs_sel & 7)) 1263 vmcs_write16(HOST_GS_SELECTOR, gs_sel); 1264 else 1265 vmcs_write16(HOST_GS_SELECTOR, 0); 1266 host->gs_sel = gs_sel; 1267 } 1268 if (unlikely(fs_base != host->fs_base)) { 1269 vmcs_writel(HOST_FS_BASE, fs_base); 1270 host->fs_base = fs_base; 1271 } 1272 if (unlikely(gs_base != host->gs_base)) { 1273 vmcs_writel(HOST_GS_BASE, gs_base); 1274 host->gs_base = gs_base; 1275 } 1276 } 1277 1278 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1279 { 1280 struct vcpu_vmx *vmx = to_vmx(vcpu); 1281 struct vmcs_host_state *host_state; 1282 #ifdef CONFIG_X86_64 1283 int cpu = raw_smp_processor_id(); 1284 #endif 1285 unsigned long fs_base, gs_base; 1286 u16 fs_sel, gs_sel; 1287 int i; 1288 1289 /* 1290 * Note that guest MSRs to be saved/restored can also be changed 1291 * when guest state is loaded. This happens when guest transitions 1292 * to/from long-mode by setting MSR_EFER.LMA. 1293 */ 1294 if (!vmx->guest_uret_msrs_loaded) { 1295 vmx->guest_uret_msrs_loaded = true; 1296 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 1297 if (!vmx->guest_uret_msrs[i].load_into_hardware) 1298 continue; 1299 1300 kvm_set_user_return_msr(i, 1301 vmx->guest_uret_msrs[i].data, 1302 vmx->guest_uret_msrs[i].mask); 1303 } 1304 } 1305 1306 if (vmx->nested.need_vmcs12_to_shadow_sync) 1307 nested_sync_vmcs12_to_shadow(vcpu); 1308 1309 if (vmx->guest_state_loaded) 1310 return; 1311 1312 host_state = &vmx->loaded_vmcs->host_state; 1313 1314 /* 1315 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not 1316 * allow segment selectors with cpl > 0 or ti == 1. 1317 */ 1318 host_state->ldt_sel = kvm_read_ldt(); 1319 1320 #ifdef CONFIG_X86_64 1321 savesegment(ds, host_state->ds_sel); 1322 savesegment(es, host_state->es_sel); 1323 1324 gs_base = cpu_kernelmode_gs_base(cpu); 1325 if (likely(is_64bit_mm(current->mm))) { 1326 current_save_fsgs(); 1327 fs_sel = current->thread.fsindex; 1328 gs_sel = current->thread.gsindex; 1329 fs_base = current->thread.fsbase; 1330 vmx->msr_host_kernel_gs_base = current->thread.gsbase; 1331 } else { 1332 savesegment(fs, fs_sel); 1333 savesegment(gs, gs_sel); 1334 fs_base = read_msr(MSR_FS_BASE); 1335 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); 1336 } 1337 1338 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1339 #else 1340 savesegment(fs, fs_sel); 1341 savesegment(gs, gs_sel); 1342 fs_base = segment_base(fs_sel); 1343 gs_base = segment_base(gs_sel); 1344 #endif 1345 1346 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base); 1347 vmx->guest_state_loaded = true; 1348 } 1349 1350 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) 1351 { 1352 struct vmcs_host_state *host_state; 1353 1354 if (!vmx->guest_state_loaded) 1355 return; 1356 1357 host_state = &vmx->loaded_vmcs->host_state; 1358 1359 ++vmx->vcpu.stat.host_state_reload; 1360 1361 #ifdef CONFIG_X86_64 1362 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1363 #endif 1364 if (host_state->ldt_sel || (host_state->gs_sel & 7)) { 1365 kvm_load_ldt(host_state->ldt_sel); 1366 #ifdef CONFIG_X86_64 1367 load_gs_index(host_state->gs_sel); 1368 #else 1369 loadsegment(gs, host_state->gs_sel); 1370 #endif 1371 } 1372 if (host_state->fs_sel & 7) 1373 loadsegment(fs, host_state->fs_sel); 1374 #ifdef CONFIG_X86_64 1375 if (unlikely(host_state->ds_sel | host_state->es_sel)) { 1376 loadsegment(ds, host_state->ds_sel); 1377 loadsegment(es, host_state->es_sel); 1378 } 1379 #endif 1380 invalidate_tss_limit(); 1381 #ifdef CONFIG_X86_64 1382 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); 1383 #endif 1384 load_fixmap_gdt(raw_smp_processor_id()); 1385 vmx->guest_state_loaded = false; 1386 vmx->guest_uret_msrs_loaded = false; 1387 } 1388 1389 #ifdef CONFIG_X86_64 1390 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) 1391 { 1392 preempt_disable(); 1393 if (vmx->guest_state_loaded) 1394 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1395 preempt_enable(); 1396 return vmx->msr_guest_kernel_gs_base; 1397 } 1398 1399 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) 1400 { 1401 preempt_disable(); 1402 if (vmx->guest_state_loaded) 1403 wrmsrl(MSR_KERNEL_GS_BASE, data); 1404 preempt_enable(); 1405 vmx->msr_guest_kernel_gs_base = data; 1406 } 1407 #endif 1408 1409 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu, 1410 struct loaded_vmcs *buddy) 1411 { 1412 struct vcpu_vmx *vmx = to_vmx(vcpu); 1413 bool already_loaded = vmx->loaded_vmcs->cpu == cpu; 1414 struct vmcs *prev; 1415 1416 if (!already_loaded) { 1417 loaded_vmcs_clear(vmx->loaded_vmcs); 1418 local_irq_disable(); 1419 1420 /* 1421 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to 1422 * this cpu's percpu list, otherwise it may not yet be deleted 1423 * from its previous cpu's percpu list. Pairs with the 1424 * smb_wmb() in __loaded_vmcs_clear(). 1425 */ 1426 smp_rmb(); 1427 1428 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, 1429 &per_cpu(loaded_vmcss_on_cpu, cpu)); 1430 local_irq_enable(); 1431 } 1432 1433 prev = per_cpu(current_vmcs, cpu); 1434 if (prev != vmx->loaded_vmcs->vmcs) { 1435 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; 1436 vmcs_load(vmx->loaded_vmcs->vmcs); 1437 1438 /* 1439 * No indirect branch prediction barrier needed when switching 1440 * the active VMCS within a vCPU, unless IBRS is advertised to 1441 * the vCPU. To minimize the number of IBPBs executed, KVM 1442 * performs IBPB on nested VM-Exit (a single nested transition 1443 * may switch the active VMCS multiple times). 1444 */ 1445 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev)) 1446 indirect_branch_prediction_barrier(); 1447 } 1448 1449 if (!already_loaded) { 1450 void *gdt = get_current_gdt_ro(); 1451 1452 /* 1453 * Flush all EPTP/VPID contexts, the new pCPU may have stale 1454 * TLB entries from its previous association with the vCPU. 1455 */ 1456 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 1457 1458 /* 1459 * Linux uses per-cpu TSS and GDT, so set these when switching 1460 * processors. See 22.2.4. 1461 */ 1462 vmcs_writel(HOST_TR_BASE, 1463 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); 1464 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ 1465 1466 if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) { 1467 /* 22.2.3 */ 1468 vmcs_writel(HOST_IA32_SYSENTER_ESP, 1469 (unsigned long)(cpu_entry_stack(cpu) + 1)); 1470 } 1471 1472 vmx->loaded_vmcs->cpu = cpu; 1473 } 1474 } 1475 1476 /* 1477 * Switches to specified vcpu, until a matching vcpu_put(), but assumes 1478 * vcpu mutex is already taken. 1479 */ 1480 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1481 { 1482 struct vcpu_vmx *vmx = to_vmx(vcpu); 1483 1484 vmx_vcpu_load_vmcs(vcpu, cpu, NULL); 1485 1486 vmx_vcpu_pi_load(vcpu, cpu); 1487 1488 vmx->host_debugctlmsr = get_debugctlmsr(); 1489 } 1490 1491 static void vmx_vcpu_put(struct kvm_vcpu *vcpu) 1492 { 1493 vmx_vcpu_pi_put(vcpu); 1494 1495 vmx_prepare_switch_to_host(to_vmx(vcpu)); 1496 } 1497 1498 bool vmx_emulation_required(struct kvm_vcpu *vcpu) 1499 { 1500 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu); 1501 } 1502 1503 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) 1504 { 1505 struct vcpu_vmx *vmx = to_vmx(vcpu); 1506 unsigned long rflags, save_rflags; 1507 1508 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) { 1509 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1510 rflags = vmcs_readl(GUEST_RFLAGS); 1511 if (vmx->rmode.vm86_active) { 1512 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 1513 save_rflags = vmx->rmode.save_rflags; 1514 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 1515 } 1516 vmx->rflags = rflags; 1517 } 1518 return vmx->rflags; 1519 } 1520 1521 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1522 { 1523 struct vcpu_vmx *vmx = to_vmx(vcpu); 1524 unsigned long old_rflags; 1525 1526 /* 1527 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU 1528 * is an unrestricted guest in order to mark L2 as needing emulation 1529 * if L1 runs L2 as a restricted guest. 1530 */ 1531 if (is_unrestricted_guest(vcpu)) { 1532 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1533 vmx->rflags = rflags; 1534 vmcs_writel(GUEST_RFLAGS, rflags); 1535 return; 1536 } 1537 1538 old_rflags = vmx_get_rflags(vcpu); 1539 vmx->rflags = rflags; 1540 if (vmx->rmode.vm86_active) { 1541 vmx->rmode.save_rflags = rflags; 1542 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 1543 } 1544 vmcs_writel(GUEST_RFLAGS, rflags); 1545 1546 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM) 1547 vmx->emulation_required = vmx_emulation_required(vcpu); 1548 } 1549 1550 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu) 1551 { 1552 return vmx_get_rflags(vcpu) & X86_EFLAGS_IF; 1553 } 1554 1555 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) 1556 { 1557 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1558 int ret = 0; 1559 1560 if (interruptibility & GUEST_INTR_STATE_STI) 1561 ret |= KVM_X86_SHADOW_INT_STI; 1562 if (interruptibility & GUEST_INTR_STATE_MOV_SS) 1563 ret |= KVM_X86_SHADOW_INT_MOV_SS; 1564 1565 return ret; 1566 } 1567 1568 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 1569 { 1570 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1571 u32 interruptibility = interruptibility_old; 1572 1573 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); 1574 1575 if (mask & KVM_X86_SHADOW_INT_MOV_SS) 1576 interruptibility |= GUEST_INTR_STATE_MOV_SS; 1577 else if (mask & KVM_X86_SHADOW_INT_STI) 1578 interruptibility |= GUEST_INTR_STATE_STI; 1579 1580 if ((interruptibility != interruptibility_old)) 1581 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); 1582 } 1583 1584 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) 1585 { 1586 struct vcpu_vmx *vmx = to_vmx(vcpu); 1587 unsigned long value; 1588 1589 /* 1590 * Any MSR write that attempts to change bits marked reserved will 1591 * case a #GP fault. 1592 */ 1593 if (data & vmx->pt_desc.ctl_bitmask) 1594 return 1; 1595 1596 /* 1597 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will 1598 * result in a #GP unless the same write also clears TraceEn. 1599 */ 1600 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && 1601 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN)) 1602 return 1; 1603 1604 /* 1605 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit 1606 * and FabricEn would cause #GP, if 1607 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 1608 */ 1609 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && 1610 !(data & RTIT_CTL_FABRIC_EN) && 1611 !intel_pt_validate_cap(vmx->pt_desc.caps, 1612 PT_CAP_single_range_output)) 1613 return 1; 1614 1615 /* 1616 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that 1617 * utilize encodings marked reserved will cause a #GP fault. 1618 */ 1619 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); 1620 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && 1621 !test_bit((data & RTIT_CTL_MTC_RANGE) >> 1622 RTIT_CTL_MTC_RANGE_OFFSET, &value)) 1623 return 1; 1624 value = intel_pt_validate_cap(vmx->pt_desc.caps, 1625 PT_CAP_cycle_thresholds); 1626 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1627 !test_bit((data & RTIT_CTL_CYC_THRESH) >> 1628 RTIT_CTL_CYC_THRESH_OFFSET, &value)) 1629 return 1; 1630 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); 1631 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1632 !test_bit((data & RTIT_CTL_PSB_FREQ) >> 1633 RTIT_CTL_PSB_FREQ_OFFSET, &value)) 1634 return 1; 1635 1636 /* 1637 * If ADDRx_CFG is reserved or the encodings is >2 will 1638 * cause a #GP fault. 1639 */ 1640 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; 1641 if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2)) 1642 return 1; 1643 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; 1644 if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2)) 1645 return 1; 1646 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; 1647 if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2)) 1648 return 1; 1649 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; 1650 if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2)) 1651 return 1; 1652 1653 return 0; 1654 } 1655 1656 static int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 1657 void *insn, int insn_len) 1658 { 1659 /* 1660 * Emulation of instructions in SGX enclaves is impossible as RIP does 1661 * not point at the failing instruction, and even if it did, the code 1662 * stream is inaccessible. Inject #UD instead of exiting to userspace 1663 * so that guest userspace can't DoS the guest simply by triggering 1664 * emulation (enclaves are CPL3 only). 1665 */ 1666 if (to_vmx(vcpu)->exit_reason.enclave_mode) { 1667 kvm_queue_exception(vcpu, UD_VECTOR); 1668 return X86EMUL_PROPAGATE_FAULT; 1669 } 1670 return X86EMUL_CONTINUE; 1671 } 1672 1673 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 1674 { 1675 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason; 1676 unsigned long rip, orig_rip; 1677 u32 instr_len; 1678 1679 /* 1680 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on 1681 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be 1682 * set when EPT misconfig occurs. In practice, real hardware updates 1683 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors 1684 * (namely Hyper-V) don't set it due to it being undefined behavior, 1685 * i.e. we end up advancing IP with some random value. 1686 */ 1687 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) || 1688 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) { 1689 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 1690 1691 /* 1692 * Emulating an enclave's instructions isn't supported as KVM 1693 * cannot access the enclave's memory or its true RIP, e.g. the 1694 * vmcs.GUEST_RIP points at the exit point of the enclave, not 1695 * the RIP that actually triggered the VM-Exit. But, because 1696 * most instructions that cause VM-Exit will #UD in an enclave, 1697 * most instruction-based VM-Exits simply do not occur. 1698 * 1699 * There are a few exceptions, notably the debug instructions 1700 * INT1ICEBRK and INT3, as they are allowed in debug enclaves 1701 * and generate #DB/#BP as expected, which KVM might intercept. 1702 * But again, the CPU does the dirty work and saves an instr 1703 * length of zero so VMMs don't shoot themselves in the foot. 1704 * WARN if KVM tries to skip a non-zero length instruction on 1705 * a VM-Exit from an enclave. 1706 */ 1707 if (!instr_len) 1708 goto rip_updated; 1709 1710 WARN_ONCE(exit_reason.enclave_mode, 1711 "skipping instruction after SGX enclave VM-Exit"); 1712 1713 orig_rip = kvm_rip_read(vcpu); 1714 rip = orig_rip + instr_len; 1715 #ifdef CONFIG_X86_64 1716 /* 1717 * We need to mask out the high 32 bits of RIP if not in 64-bit 1718 * mode, but just finding out that we are in 64-bit mode is 1719 * quite expensive. Only do it if there was a carry. 1720 */ 1721 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu)) 1722 rip = (u32)rip; 1723 #endif 1724 kvm_rip_write(vcpu, rip); 1725 } else { 1726 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 1727 return 0; 1728 } 1729 1730 rip_updated: 1731 /* skipping an emulated instruction also counts */ 1732 vmx_set_interrupt_shadow(vcpu, 0); 1733 1734 return 1; 1735 } 1736 1737 /* 1738 * Recognizes a pending MTF VM-exit and records the nested state for later 1739 * delivery. 1740 */ 1741 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu) 1742 { 1743 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1744 struct vcpu_vmx *vmx = to_vmx(vcpu); 1745 1746 if (!is_guest_mode(vcpu)) 1747 return; 1748 1749 /* 1750 * Per the SDM, MTF takes priority over debug-trap exceptions besides 1751 * TSS T-bit traps and ICEBP (INT1). KVM doesn't emulate T-bit traps 1752 * or ICEBP (in the emulator proper), and skipping of ICEBP after an 1753 * intercepted #DB deliberately avoids single-step #DB and MTF updates 1754 * as ICEBP is higher priority than both. As instruction emulation is 1755 * completed at this point (i.e. KVM is at the instruction boundary), 1756 * any #DB exception pending delivery must be a debug-trap of lower 1757 * priority than MTF. Record the pending MTF state to be delivered in 1758 * vmx_check_nested_events(). 1759 */ 1760 if (nested_cpu_has_mtf(vmcs12) && 1761 (!vcpu->arch.exception.pending || 1762 vcpu->arch.exception.vector == DB_VECTOR) && 1763 (!vcpu->arch.exception_vmexit.pending || 1764 vcpu->arch.exception_vmexit.vector == DB_VECTOR)) { 1765 vmx->nested.mtf_pending = true; 1766 kvm_make_request(KVM_REQ_EVENT, vcpu); 1767 } else { 1768 vmx->nested.mtf_pending = false; 1769 } 1770 } 1771 1772 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu) 1773 { 1774 vmx_update_emulated_instruction(vcpu); 1775 return skip_emulated_instruction(vcpu); 1776 } 1777 1778 static void vmx_clear_hlt(struct kvm_vcpu *vcpu) 1779 { 1780 /* 1781 * Ensure that we clear the HLT state in the VMCS. We don't need to 1782 * explicitly skip the instruction because if the HLT state is set, 1783 * then the instruction is already executing and RIP has already been 1784 * advanced. 1785 */ 1786 if (kvm_hlt_in_guest(vcpu->kvm) && 1787 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) 1788 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 1789 } 1790 1791 static void vmx_inject_exception(struct kvm_vcpu *vcpu) 1792 { 1793 struct kvm_queued_exception *ex = &vcpu->arch.exception; 1794 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK; 1795 struct vcpu_vmx *vmx = to_vmx(vcpu); 1796 1797 kvm_deliver_exception_payload(vcpu, ex); 1798 1799 if (ex->has_error_code) { 1800 /* 1801 * Despite the error code being architecturally defined as 32 1802 * bits, and the VMCS field being 32 bits, Intel CPUs and thus 1803 * VMX don't actually supporting setting bits 31:16. Hardware 1804 * will (should) never provide a bogus error code, but AMD CPUs 1805 * do generate error codes with bits 31:16 set, and so KVM's 1806 * ABI lets userspace shove in arbitrary 32-bit values. Drop 1807 * the upper bits to avoid VM-Fail, losing information that 1808 * doesn't really exist is preferable to killing the VM. 1809 */ 1810 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code); 1811 intr_info |= INTR_INFO_DELIVER_CODE_MASK; 1812 } 1813 1814 if (vmx->rmode.vm86_active) { 1815 int inc_eip = 0; 1816 if (kvm_exception_is_soft(ex->vector)) 1817 inc_eip = vcpu->arch.event_exit_inst_len; 1818 kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip); 1819 return; 1820 } 1821 1822 WARN_ON_ONCE(vmx->emulation_required); 1823 1824 if (kvm_exception_is_soft(ex->vector)) { 1825 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1826 vmx->vcpu.arch.event_exit_inst_len); 1827 intr_info |= INTR_TYPE_SOFT_EXCEPTION; 1828 } else 1829 intr_info |= INTR_TYPE_HARD_EXCEPTION; 1830 1831 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); 1832 1833 vmx_clear_hlt(vcpu); 1834 } 1835 1836 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr, 1837 bool load_into_hardware) 1838 { 1839 struct vmx_uret_msr *uret_msr; 1840 1841 uret_msr = vmx_find_uret_msr(vmx, msr); 1842 if (!uret_msr) 1843 return; 1844 1845 uret_msr->load_into_hardware = load_into_hardware; 1846 } 1847 1848 /* 1849 * Configuring user return MSRs to automatically save, load, and restore MSRs 1850 * that need to be shoved into hardware when running the guest. Note, omitting 1851 * an MSR here does _NOT_ mean it's not emulated, only that it will not be 1852 * loaded into hardware when running the guest. 1853 */ 1854 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx) 1855 { 1856 #ifdef CONFIG_X86_64 1857 bool load_syscall_msrs; 1858 1859 /* 1860 * The SYSCALL MSRs are only needed on long mode guests, and only 1861 * when EFER.SCE is set. 1862 */ 1863 load_syscall_msrs = is_long_mode(&vmx->vcpu) && 1864 (vmx->vcpu.arch.efer & EFER_SCE); 1865 1866 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs); 1867 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs); 1868 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs); 1869 #endif 1870 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx)); 1871 1872 vmx_setup_uret_msr(vmx, MSR_TSC_AUX, 1873 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) || 1874 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID)); 1875 1876 /* 1877 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new 1878 * kernel and old userspace. If those guests run on a tsx=off host, do 1879 * allow guests to use TSX_CTRL, but don't change the value in hardware 1880 * so that TSX remains always disabled. 1881 */ 1882 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM)); 1883 1884 /* 1885 * The set of MSRs to load may have changed, reload MSRs before the 1886 * next VM-Enter. 1887 */ 1888 vmx->guest_uret_msrs_loaded = false; 1889 } 1890 1891 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1892 { 1893 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1894 1895 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) 1896 return vmcs12->tsc_offset; 1897 1898 return 0; 1899 } 1900 1901 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1902 { 1903 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1904 1905 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) && 1906 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING)) 1907 return vmcs12->tsc_multiplier; 1908 1909 return kvm_caps.default_tsc_scaling_ratio; 1910 } 1911 1912 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu) 1913 { 1914 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset); 1915 } 1916 1917 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu) 1918 { 1919 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio); 1920 } 1921 1922 /* 1923 * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of 1924 * guest CPUID. Note, KVM allows userspace to set "VMX in SMX" to maintain 1925 * backwards compatibility even though KVM doesn't support emulating SMX. And 1926 * because userspace set "VMX in SMX", the guest must also be allowed to set it, 1927 * e.g. if the MSR is left unlocked and the guest does a RMW operation. 1928 */ 1929 #define KVM_SUPPORTED_FEATURE_CONTROL (FEAT_CTL_LOCKED | \ 1930 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | \ 1931 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \ 1932 FEAT_CTL_SGX_LC_ENABLED | \ 1933 FEAT_CTL_SGX_ENABLED | \ 1934 FEAT_CTL_LMCE_ENABLED) 1935 1936 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx, 1937 struct msr_data *msr) 1938 { 1939 uint64_t valid_bits; 1940 1941 /* 1942 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are 1943 * exposed to the guest. 1944 */ 1945 WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits & 1946 ~KVM_SUPPORTED_FEATURE_CONTROL); 1947 1948 if (!msr->host_initiated && 1949 (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED)) 1950 return false; 1951 1952 if (msr->host_initiated) 1953 valid_bits = KVM_SUPPORTED_FEATURE_CONTROL; 1954 else 1955 valid_bits = vmx->msr_ia32_feature_control_valid_bits; 1956 1957 return !(msr->data & ~valid_bits); 1958 } 1959 1960 static int vmx_get_msr_feature(struct kvm_msr_entry *msr) 1961 { 1962 switch (msr->index) { 1963 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 1964 if (!nested) 1965 return 1; 1966 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); 1967 default: 1968 return KVM_MSR_RET_INVALID; 1969 } 1970 } 1971 1972 /* 1973 * Reads an msr value (of 'msr_info->index') into 'msr_info->data'. 1974 * Returns 0 on success, non-0 otherwise. 1975 * Assumes vcpu_load() was already called. 1976 */ 1977 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1978 { 1979 struct vcpu_vmx *vmx = to_vmx(vcpu); 1980 struct vmx_uret_msr *msr; 1981 u32 index; 1982 1983 switch (msr_info->index) { 1984 #ifdef CONFIG_X86_64 1985 case MSR_FS_BASE: 1986 msr_info->data = vmcs_readl(GUEST_FS_BASE); 1987 break; 1988 case MSR_GS_BASE: 1989 msr_info->data = vmcs_readl(GUEST_GS_BASE); 1990 break; 1991 case MSR_KERNEL_GS_BASE: 1992 msr_info->data = vmx_read_guest_kernel_gs_base(vmx); 1993 break; 1994 #endif 1995 case MSR_EFER: 1996 return kvm_get_msr_common(vcpu, msr_info); 1997 case MSR_IA32_TSX_CTRL: 1998 if (!msr_info->host_initiated && 1999 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2000 return 1; 2001 goto find_uret_msr; 2002 case MSR_IA32_UMWAIT_CONTROL: 2003 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2004 return 1; 2005 2006 msr_info->data = vmx->msr_ia32_umwait_control; 2007 break; 2008 case MSR_IA32_SPEC_CTRL: 2009 if (!msr_info->host_initiated && 2010 !guest_has_spec_ctrl_msr(vcpu)) 2011 return 1; 2012 2013 msr_info->data = to_vmx(vcpu)->spec_ctrl; 2014 break; 2015 case MSR_IA32_SYSENTER_CS: 2016 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); 2017 break; 2018 case MSR_IA32_SYSENTER_EIP: 2019 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); 2020 break; 2021 case MSR_IA32_SYSENTER_ESP: 2022 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); 2023 break; 2024 case MSR_IA32_BNDCFGS: 2025 if (!kvm_mpx_supported() || 2026 (!msr_info->host_initiated && 2027 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 2028 return 1; 2029 msr_info->data = vmcs_read64(GUEST_BNDCFGS); 2030 break; 2031 case MSR_IA32_MCG_EXT_CTL: 2032 if (!msr_info->host_initiated && 2033 !(vmx->msr_ia32_feature_control & 2034 FEAT_CTL_LMCE_ENABLED)) 2035 return 1; 2036 msr_info->data = vcpu->arch.mcg_ext_ctl; 2037 break; 2038 case MSR_IA32_FEAT_CTL: 2039 msr_info->data = vmx->msr_ia32_feature_control; 2040 break; 2041 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2042 if (!msr_info->host_initiated && 2043 !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 2044 return 1; 2045 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash 2046 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0]; 2047 break; 2048 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 2049 if (!guest_can_use(vcpu, X86_FEATURE_VMX)) 2050 return 1; 2051 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, 2052 &msr_info->data)) 2053 return 1; 2054 #ifdef CONFIG_KVM_HYPERV 2055 /* 2056 * Enlightened VMCS v1 doesn't have certain VMCS fields but 2057 * instead of just ignoring the features, different Hyper-V 2058 * versions are either trying to use them and fail or do some 2059 * sanity checking and refuse to boot. Filter all unsupported 2060 * features out. 2061 */ 2062 if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu)) 2063 nested_evmcs_filter_control_msr(vcpu, msr_info->index, 2064 &msr_info->data); 2065 #endif 2066 break; 2067 case MSR_IA32_RTIT_CTL: 2068 if (!vmx_pt_mode_is_host_guest()) 2069 return 1; 2070 msr_info->data = vmx->pt_desc.guest.ctl; 2071 break; 2072 case MSR_IA32_RTIT_STATUS: 2073 if (!vmx_pt_mode_is_host_guest()) 2074 return 1; 2075 msr_info->data = vmx->pt_desc.guest.status; 2076 break; 2077 case MSR_IA32_RTIT_CR3_MATCH: 2078 if (!vmx_pt_mode_is_host_guest() || 2079 !intel_pt_validate_cap(vmx->pt_desc.caps, 2080 PT_CAP_cr3_filtering)) 2081 return 1; 2082 msr_info->data = vmx->pt_desc.guest.cr3_match; 2083 break; 2084 case MSR_IA32_RTIT_OUTPUT_BASE: 2085 if (!vmx_pt_mode_is_host_guest() || 2086 (!intel_pt_validate_cap(vmx->pt_desc.caps, 2087 PT_CAP_topa_output) && 2088 !intel_pt_validate_cap(vmx->pt_desc.caps, 2089 PT_CAP_single_range_output))) 2090 return 1; 2091 msr_info->data = vmx->pt_desc.guest.output_base; 2092 break; 2093 case MSR_IA32_RTIT_OUTPUT_MASK: 2094 if (!vmx_pt_mode_is_host_guest() || 2095 (!intel_pt_validate_cap(vmx->pt_desc.caps, 2096 PT_CAP_topa_output) && 2097 !intel_pt_validate_cap(vmx->pt_desc.caps, 2098 PT_CAP_single_range_output))) 2099 return 1; 2100 msr_info->data = vmx->pt_desc.guest.output_mask; 2101 break; 2102 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2103 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2104 if (!vmx_pt_mode_is_host_guest() || 2105 (index >= 2 * vmx->pt_desc.num_address_ranges)) 2106 return 1; 2107 if (index % 2) 2108 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; 2109 else 2110 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; 2111 break; 2112 case MSR_IA32_DEBUGCTLMSR: 2113 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL); 2114 break; 2115 default: 2116 find_uret_msr: 2117 msr = vmx_find_uret_msr(vmx, msr_info->index); 2118 if (msr) { 2119 msr_info->data = msr->data; 2120 break; 2121 } 2122 return kvm_get_msr_common(vcpu, msr_info); 2123 } 2124 2125 return 0; 2126 } 2127 2128 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu, 2129 u64 data) 2130 { 2131 #ifdef CONFIG_X86_64 2132 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 2133 return (u32)data; 2134 #endif 2135 return (unsigned long)data; 2136 } 2137 2138 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated) 2139 { 2140 u64 debugctl = 0; 2141 2142 if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) && 2143 (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))) 2144 debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT; 2145 2146 if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) && 2147 (host_initiated || intel_pmu_lbr_is_enabled(vcpu))) 2148 debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI; 2149 2150 return debugctl; 2151 } 2152 2153 /* 2154 * Writes msr value into the appropriate "register". 2155 * Returns 0 on success, non-0 otherwise. 2156 * Assumes vcpu_load() was already called. 2157 */ 2158 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2159 { 2160 struct vcpu_vmx *vmx = to_vmx(vcpu); 2161 struct vmx_uret_msr *msr; 2162 int ret = 0; 2163 u32 msr_index = msr_info->index; 2164 u64 data = msr_info->data; 2165 u32 index; 2166 2167 switch (msr_index) { 2168 case MSR_EFER: 2169 ret = kvm_set_msr_common(vcpu, msr_info); 2170 break; 2171 #ifdef CONFIG_X86_64 2172 case MSR_FS_BASE: 2173 vmx_segment_cache_clear(vmx); 2174 vmcs_writel(GUEST_FS_BASE, data); 2175 break; 2176 case MSR_GS_BASE: 2177 vmx_segment_cache_clear(vmx); 2178 vmcs_writel(GUEST_GS_BASE, data); 2179 break; 2180 case MSR_KERNEL_GS_BASE: 2181 vmx_write_guest_kernel_gs_base(vmx, data); 2182 break; 2183 case MSR_IA32_XFD: 2184 ret = kvm_set_msr_common(vcpu, msr_info); 2185 /* 2186 * Always intercepting WRMSR could incur non-negligible 2187 * overhead given xfd might be changed frequently in 2188 * guest context switch. Disable write interception 2189 * upon the first write with a non-zero value (indicating 2190 * potential usage on dynamic xfeatures). Also update 2191 * exception bitmap to trap #NM for proper virtualization 2192 * of guest xfd_err. 2193 */ 2194 if (!ret && data) { 2195 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD, 2196 MSR_TYPE_RW); 2197 vcpu->arch.xfd_no_write_intercept = true; 2198 vmx_update_exception_bitmap(vcpu); 2199 } 2200 break; 2201 #endif 2202 case MSR_IA32_SYSENTER_CS: 2203 if (is_guest_mode(vcpu)) 2204 get_vmcs12(vcpu)->guest_sysenter_cs = data; 2205 vmcs_write32(GUEST_SYSENTER_CS, data); 2206 break; 2207 case MSR_IA32_SYSENTER_EIP: 2208 if (is_guest_mode(vcpu)) { 2209 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2210 get_vmcs12(vcpu)->guest_sysenter_eip = data; 2211 } 2212 vmcs_writel(GUEST_SYSENTER_EIP, data); 2213 break; 2214 case MSR_IA32_SYSENTER_ESP: 2215 if (is_guest_mode(vcpu)) { 2216 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2217 get_vmcs12(vcpu)->guest_sysenter_esp = data; 2218 } 2219 vmcs_writel(GUEST_SYSENTER_ESP, data); 2220 break; 2221 case MSR_IA32_DEBUGCTLMSR: { 2222 u64 invalid; 2223 2224 invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated); 2225 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) { 2226 kvm_pr_unimpl_wrmsr(vcpu, msr_index, data); 2227 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2228 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2229 } 2230 2231 if (invalid) 2232 return 1; 2233 2234 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls & 2235 VM_EXIT_SAVE_DEBUG_CONTROLS) 2236 get_vmcs12(vcpu)->guest_ia32_debugctl = data; 2237 2238 vmcs_write64(GUEST_IA32_DEBUGCTL, data); 2239 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event && 2240 (data & DEBUGCTLMSR_LBR)) 2241 intel_pmu_create_guest_lbr_event(vcpu); 2242 return 0; 2243 } 2244 case MSR_IA32_BNDCFGS: 2245 if (!kvm_mpx_supported() || 2246 (!msr_info->host_initiated && 2247 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 2248 return 1; 2249 if (is_noncanonical_address(data & PAGE_MASK, vcpu) || 2250 (data & MSR_IA32_BNDCFGS_RSVD)) 2251 return 1; 2252 2253 if (is_guest_mode(vcpu) && 2254 ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) || 2255 (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS))) 2256 get_vmcs12(vcpu)->guest_bndcfgs = data; 2257 2258 vmcs_write64(GUEST_BNDCFGS, data); 2259 break; 2260 case MSR_IA32_UMWAIT_CONTROL: 2261 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2262 return 1; 2263 2264 /* The reserved bit 1 and non-32 bit [63:32] should be zero */ 2265 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32))) 2266 return 1; 2267 2268 vmx->msr_ia32_umwait_control = data; 2269 break; 2270 case MSR_IA32_SPEC_CTRL: 2271 if (!msr_info->host_initiated && 2272 !guest_has_spec_ctrl_msr(vcpu)) 2273 return 1; 2274 2275 if (kvm_spec_ctrl_test_value(data)) 2276 return 1; 2277 2278 vmx->spec_ctrl = data; 2279 if (!data) 2280 break; 2281 2282 /* 2283 * For non-nested: 2284 * When it's written (to non-zero) for the first time, pass 2285 * it through. 2286 * 2287 * For nested: 2288 * The handling of the MSR bitmap for L2 guests is done in 2289 * nested_vmx_prepare_msr_bitmap. We should not touch the 2290 * vmcs02.msr_bitmap here since it gets completely overwritten 2291 * in the merging. We update the vmcs01 here for L1 as well 2292 * since it will end up touching the MSR anyway now. 2293 */ 2294 vmx_disable_intercept_for_msr(vcpu, 2295 MSR_IA32_SPEC_CTRL, 2296 MSR_TYPE_RW); 2297 break; 2298 case MSR_IA32_TSX_CTRL: 2299 if (!msr_info->host_initiated && 2300 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2301 return 1; 2302 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR)) 2303 return 1; 2304 goto find_uret_msr; 2305 case MSR_IA32_CR_PAT: 2306 ret = kvm_set_msr_common(vcpu, msr_info); 2307 if (ret) 2308 break; 2309 2310 if (is_guest_mode(vcpu) && 2311 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) 2312 get_vmcs12(vcpu)->guest_ia32_pat = data; 2313 2314 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 2315 vmcs_write64(GUEST_IA32_PAT, data); 2316 break; 2317 case MSR_IA32_MCG_EXT_CTL: 2318 if ((!msr_info->host_initiated && 2319 !(to_vmx(vcpu)->msr_ia32_feature_control & 2320 FEAT_CTL_LMCE_ENABLED)) || 2321 (data & ~MCG_EXT_CTL_LMCE_EN)) 2322 return 1; 2323 vcpu->arch.mcg_ext_ctl = data; 2324 break; 2325 case MSR_IA32_FEAT_CTL: 2326 if (!is_vmx_feature_control_msr_valid(vmx, msr_info)) 2327 return 1; 2328 2329 vmx->msr_ia32_feature_control = data; 2330 if (msr_info->host_initiated && data == 0) 2331 vmx_leave_nested(vcpu); 2332 2333 /* SGX may be enabled/disabled by guest's firmware */ 2334 vmx_write_encls_bitmap(vcpu, NULL); 2335 break; 2336 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2337 /* 2338 * On real hardware, the LE hash MSRs are writable before 2339 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX), 2340 * at which point SGX related bits in IA32_FEATURE_CONTROL 2341 * become writable. 2342 * 2343 * KVM does not emulate SGX activation for simplicity, so 2344 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL 2345 * is unlocked. This is technically not architectural 2346 * behavior, but it's close enough. 2347 */ 2348 if (!msr_info->host_initiated && 2349 (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) || 2350 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) && 2351 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED)))) 2352 return 1; 2353 vmx->msr_ia32_sgxlepubkeyhash 2354 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data; 2355 break; 2356 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 2357 if (!msr_info->host_initiated) 2358 return 1; /* they are read-only */ 2359 if (!guest_can_use(vcpu, X86_FEATURE_VMX)) 2360 return 1; 2361 return vmx_set_vmx_msr(vcpu, msr_index, data); 2362 case MSR_IA32_RTIT_CTL: 2363 if (!vmx_pt_mode_is_host_guest() || 2364 vmx_rtit_ctl_check(vcpu, data) || 2365 vmx->nested.vmxon) 2366 return 1; 2367 vmcs_write64(GUEST_IA32_RTIT_CTL, data); 2368 vmx->pt_desc.guest.ctl = data; 2369 pt_update_intercept_for_msr(vcpu); 2370 break; 2371 case MSR_IA32_RTIT_STATUS: 2372 if (!pt_can_write_msr(vmx)) 2373 return 1; 2374 if (data & MSR_IA32_RTIT_STATUS_MASK) 2375 return 1; 2376 vmx->pt_desc.guest.status = data; 2377 break; 2378 case MSR_IA32_RTIT_CR3_MATCH: 2379 if (!pt_can_write_msr(vmx)) 2380 return 1; 2381 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2382 PT_CAP_cr3_filtering)) 2383 return 1; 2384 vmx->pt_desc.guest.cr3_match = data; 2385 break; 2386 case MSR_IA32_RTIT_OUTPUT_BASE: 2387 if (!pt_can_write_msr(vmx)) 2388 return 1; 2389 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2390 PT_CAP_topa_output) && 2391 !intel_pt_validate_cap(vmx->pt_desc.caps, 2392 PT_CAP_single_range_output)) 2393 return 1; 2394 if (!pt_output_base_valid(vcpu, data)) 2395 return 1; 2396 vmx->pt_desc.guest.output_base = data; 2397 break; 2398 case MSR_IA32_RTIT_OUTPUT_MASK: 2399 if (!pt_can_write_msr(vmx)) 2400 return 1; 2401 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2402 PT_CAP_topa_output) && 2403 !intel_pt_validate_cap(vmx->pt_desc.caps, 2404 PT_CAP_single_range_output)) 2405 return 1; 2406 vmx->pt_desc.guest.output_mask = data; 2407 break; 2408 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2409 if (!pt_can_write_msr(vmx)) 2410 return 1; 2411 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2412 if (index >= 2 * vmx->pt_desc.num_address_ranges) 2413 return 1; 2414 if (is_noncanonical_address(data, vcpu)) 2415 return 1; 2416 if (index % 2) 2417 vmx->pt_desc.guest.addr_b[index / 2] = data; 2418 else 2419 vmx->pt_desc.guest.addr_a[index / 2] = data; 2420 break; 2421 case MSR_IA32_PERF_CAPABILITIES: 2422 if (data && !vcpu_to_pmu(vcpu)->version) 2423 return 1; 2424 if (data & PMU_CAP_LBR_FMT) { 2425 if ((data & PMU_CAP_LBR_FMT) != 2426 (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT)) 2427 return 1; 2428 if (!cpuid_model_is_consistent(vcpu)) 2429 return 1; 2430 } 2431 if (data & PERF_CAP_PEBS_FORMAT) { 2432 if ((data & PERF_CAP_PEBS_MASK) != 2433 (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK)) 2434 return 1; 2435 if (!guest_cpuid_has(vcpu, X86_FEATURE_DS)) 2436 return 1; 2437 if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64)) 2438 return 1; 2439 if (!cpuid_model_is_consistent(vcpu)) 2440 return 1; 2441 } 2442 ret = kvm_set_msr_common(vcpu, msr_info); 2443 break; 2444 2445 default: 2446 find_uret_msr: 2447 msr = vmx_find_uret_msr(vmx, msr_index); 2448 if (msr) 2449 ret = vmx_set_guest_uret_msr(vmx, msr, data); 2450 else 2451 ret = kvm_set_msr_common(vcpu, msr_info); 2452 } 2453 2454 /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */ 2455 if (msr_index == MSR_IA32_ARCH_CAPABILITIES) 2456 vmx_update_fb_clear_dis(vcpu, vmx); 2457 2458 return ret; 2459 } 2460 2461 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 2462 { 2463 unsigned long guest_owned_bits; 2464 2465 kvm_register_mark_available(vcpu, reg); 2466 2467 switch (reg) { 2468 case VCPU_REGS_RSP: 2469 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); 2470 break; 2471 case VCPU_REGS_RIP: 2472 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); 2473 break; 2474 case VCPU_EXREG_PDPTR: 2475 if (enable_ept) 2476 ept_save_pdptrs(vcpu); 2477 break; 2478 case VCPU_EXREG_CR0: 2479 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; 2480 2481 vcpu->arch.cr0 &= ~guest_owned_bits; 2482 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits; 2483 break; 2484 case VCPU_EXREG_CR3: 2485 /* 2486 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's 2487 * CR3 is loaded into hardware, not the guest's CR3. 2488 */ 2489 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING)) 2490 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); 2491 break; 2492 case VCPU_EXREG_CR4: 2493 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; 2494 2495 vcpu->arch.cr4 &= ~guest_owned_bits; 2496 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits; 2497 break; 2498 default: 2499 KVM_BUG_ON(1, vcpu->kvm); 2500 break; 2501 } 2502 } 2503 2504 /* 2505 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID 2506 * directly instead of going through cpu_has(), to ensure KVM is trapping 2507 * ENCLS whenever it's supported in hardware. It does not matter whether 2508 * the host OS supports or has enabled SGX. 2509 */ 2510 static bool cpu_has_sgx(void) 2511 { 2512 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0)); 2513 } 2514 2515 /* 2516 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they 2517 * can't be used due to errata where VM Exit may incorrectly clear 2518 * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the 2519 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. 2520 */ 2521 static bool cpu_has_perf_global_ctrl_bug(void) 2522 { 2523 if (boot_cpu_data.x86 == 0x6) { 2524 switch (boot_cpu_data.x86_model) { 2525 case INTEL_FAM6_NEHALEM_EP: /* AAK155 */ 2526 case INTEL_FAM6_NEHALEM: /* AAP115 */ 2527 case INTEL_FAM6_WESTMERE: /* AAT100 */ 2528 case INTEL_FAM6_WESTMERE_EP: /* BC86,AAY89,BD102 */ 2529 case INTEL_FAM6_NEHALEM_EX: /* BA97 */ 2530 return true; 2531 default: 2532 break; 2533 } 2534 } 2535 2536 return false; 2537 } 2538 2539 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result) 2540 { 2541 u32 vmx_msr_low, vmx_msr_high; 2542 u32 ctl = ctl_min | ctl_opt; 2543 2544 rdmsr(msr, vmx_msr_low, vmx_msr_high); 2545 2546 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ 2547 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ 2548 2549 /* Ensure minimum (required) set of control bits are supported. */ 2550 if (ctl_min & ~ctl) 2551 return -EIO; 2552 2553 *result = ctl; 2554 return 0; 2555 } 2556 2557 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr) 2558 { 2559 u64 allowed; 2560 2561 rdmsrl(msr, allowed); 2562 2563 return ctl_opt & allowed; 2564 } 2565 2566 static int setup_vmcs_config(struct vmcs_config *vmcs_conf, 2567 struct vmx_capability *vmx_cap) 2568 { 2569 u32 vmx_msr_low, vmx_msr_high; 2570 u32 _pin_based_exec_control = 0; 2571 u32 _cpu_based_exec_control = 0; 2572 u32 _cpu_based_2nd_exec_control = 0; 2573 u64 _cpu_based_3rd_exec_control = 0; 2574 u32 _vmexit_control = 0; 2575 u32 _vmentry_control = 0; 2576 u64 misc_msr; 2577 int i; 2578 2579 /* 2580 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory. 2581 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always 2582 * intercepts writes to PAT and EFER, i.e. never enables those controls. 2583 */ 2584 struct { 2585 u32 entry_control; 2586 u32 exit_control; 2587 } const vmcs_entry_exit_pairs[] = { 2588 { VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL }, 2589 { VM_ENTRY_LOAD_IA32_PAT, VM_EXIT_LOAD_IA32_PAT }, 2590 { VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER }, 2591 { VM_ENTRY_LOAD_BNDCFGS, VM_EXIT_CLEAR_BNDCFGS }, 2592 { VM_ENTRY_LOAD_IA32_RTIT_CTL, VM_EXIT_CLEAR_IA32_RTIT_CTL }, 2593 }; 2594 2595 memset(vmcs_conf, 0, sizeof(*vmcs_conf)); 2596 2597 if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL, 2598 KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL, 2599 MSR_IA32_VMX_PROCBASED_CTLS, 2600 &_cpu_based_exec_control)) 2601 return -EIO; 2602 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { 2603 if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL, 2604 KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL, 2605 MSR_IA32_VMX_PROCBASED_CTLS2, 2606 &_cpu_based_2nd_exec_control)) 2607 return -EIO; 2608 } 2609 #ifndef CONFIG_X86_64 2610 if (!(_cpu_based_2nd_exec_control & 2611 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 2612 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; 2613 #endif 2614 2615 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2616 _cpu_based_2nd_exec_control &= ~( 2617 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2618 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2619 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 2620 2621 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, 2622 &vmx_cap->ept, &vmx_cap->vpid); 2623 2624 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) && 2625 vmx_cap->ept) { 2626 pr_warn_once("EPT CAP should not exist if not support " 2627 "1-setting enable EPT VM-execution control\n"); 2628 2629 if (error_on_inconsistent_vmcs_config) 2630 return -EIO; 2631 2632 vmx_cap->ept = 0; 2633 } 2634 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && 2635 vmx_cap->vpid) { 2636 pr_warn_once("VPID CAP should not exist if not support " 2637 "1-setting enable VPID VM-execution control\n"); 2638 2639 if (error_on_inconsistent_vmcs_config) 2640 return -EIO; 2641 2642 vmx_cap->vpid = 0; 2643 } 2644 2645 if (!cpu_has_sgx()) 2646 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING; 2647 2648 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS) 2649 _cpu_based_3rd_exec_control = 2650 adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL, 2651 MSR_IA32_VMX_PROCBASED_CTLS3); 2652 2653 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS, 2654 KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS, 2655 MSR_IA32_VMX_EXIT_CTLS, 2656 &_vmexit_control)) 2657 return -EIO; 2658 2659 if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL, 2660 KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL, 2661 MSR_IA32_VMX_PINBASED_CTLS, 2662 &_pin_based_exec_control)) 2663 return -EIO; 2664 2665 if (cpu_has_broken_vmx_preemption_timer()) 2666 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 2667 if (!(_cpu_based_2nd_exec_control & 2668 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) 2669 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; 2670 2671 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS, 2672 KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS, 2673 MSR_IA32_VMX_ENTRY_CTLS, 2674 &_vmentry_control)) 2675 return -EIO; 2676 2677 for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) { 2678 u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control; 2679 u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control; 2680 2681 if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl)) 2682 continue; 2683 2684 pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n", 2685 _vmentry_control & n_ctrl, _vmexit_control & x_ctrl); 2686 2687 if (error_on_inconsistent_vmcs_config) 2688 return -EIO; 2689 2690 _vmentry_control &= ~n_ctrl; 2691 _vmexit_control &= ~x_ctrl; 2692 } 2693 2694 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); 2695 2696 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ 2697 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) 2698 return -EIO; 2699 2700 #ifdef CONFIG_X86_64 2701 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ 2702 if (vmx_msr_high & (1u<<16)) 2703 return -EIO; 2704 #endif 2705 2706 /* Require Write-Back (WB) memory type for VMCS accesses. */ 2707 if (((vmx_msr_high >> 18) & 15) != 6) 2708 return -EIO; 2709 2710 rdmsrl(MSR_IA32_VMX_MISC, misc_msr); 2711 2712 vmcs_conf->size = vmx_msr_high & 0x1fff; 2713 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; 2714 2715 vmcs_conf->revision_id = vmx_msr_low; 2716 2717 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; 2718 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; 2719 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; 2720 vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control; 2721 vmcs_conf->vmexit_ctrl = _vmexit_control; 2722 vmcs_conf->vmentry_ctrl = _vmentry_control; 2723 vmcs_conf->misc = misc_msr; 2724 2725 #if IS_ENABLED(CONFIG_HYPERV) 2726 if (enlightened_vmcs) 2727 evmcs_sanitize_exec_ctrls(vmcs_conf); 2728 #endif 2729 2730 return 0; 2731 } 2732 2733 static bool __kvm_is_vmx_supported(void) 2734 { 2735 int cpu = smp_processor_id(); 2736 2737 if (!(cpuid_ecx(1) & feature_bit(VMX))) { 2738 pr_err("VMX not supported by CPU %d\n", cpu); 2739 return false; 2740 } 2741 2742 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 2743 !this_cpu_has(X86_FEATURE_VMX)) { 2744 pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu); 2745 return false; 2746 } 2747 2748 return true; 2749 } 2750 2751 static bool kvm_is_vmx_supported(void) 2752 { 2753 bool supported; 2754 2755 migrate_disable(); 2756 supported = __kvm_is_vmx_supported(); 2757 migrate_enable(); 2758 2759 return supported; 2760 } 2761 2762 static int vmx_check_processor_compat(void) 2763 { 2764 int cpu = raw_smp_processor_id(); 2765 struct vmcs_config vmcs_conf; 2766 struct vmx_capability vmx_cap; 2767 2768 if (!__kvm_is_vmx_supported()) 2769 return -EIO; 2770 2771 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) { 2772 pr_err("Failed to setup VMCS config on CPU %d\n", cpu); 2773 return -EIO; 2774 } 2775 if (nested) 2776 nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept); 2777 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) { 2778 pr_err("Inconsistent VMCS config on CPU %d\n", cpu); 2779 return -EIO; 2780 } 2781 return 0; 2782 } 2783 2784 static int kvm_cpu_vmxon(u64 vmxon_pointer) 2785 { 2786 u64 msr; 2787 2788 cr4_set_bits(X86_CR4_VMXE); 2789 2790 asm goto("1: vmxon %[vmxon_pointer]\n\t" 2791 _ASM_EXTABLE(1b, %l[fault]) 2792 : : [vmxon_pointer] "m"(vmxon_pointer) 2793 : : fault); 2794 return 0; 2795 2796 fault: 2797 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n", 2798 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr); 2799 cr4_clear_bits(X86_CR4_VMXE); 2800 2801 return -EFAULT; 2802 } 2803 2804 static int vmx_hardware_enable(void) 2805 { 2806 int cpu = raw_smp_processor_id(); 2807 u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); 2808 int r; 2809 2810 if (cr4_read_shadow() & X86_CR4_VMXE) 2811 return -EBUSY; 2812 2813 /* 2814 * This can happen if we hot-added a CPU but failed to allocate 2815 * VP assist page for it. 2816 */ 2817 if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu)) 2818 return -EFAULT; 2819 2820 intel_pt_handle_vmx(1); 2821 2822 r = kvm_cpu_vmxon(phys_addr); 2823 if (r) { 2824 intel_pt_handle_vmx(0); 2825 return r; 2826 } 2827 2828 if (enable_ept) 2829 ept_sync_global(); 2830 2831 return 0; 2832 } 2833 2834 static void vmclear_local_loaded_vmcss(void) 2835 { 2836 int cpu = raw_smp_processor_id(); 2837 struct loaded_vmcs *v, *n; 2838 2839 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), 2840 loaded_vmcss_on_cpu_link) 2841 __loaded_vmcs_clear(v); 2842 } 2843 2844 static void vmx_hardware_disable(void) 2845 { 2846 vmclear_local_loaded_vmcss(); 2847 2848 if (kvm_cpu_vmxoff()) 2849 kvm_spurious_fault(); 2850 2851 hv_reset_evmcs(); 2852 2853 intel_pt_handle_vmx(0); 2854 } 2855 2856 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags) 2857 { 2858 int node = cpu_to_node(cpu); 2859 struct page *pages; 2860 struct vmcs *vmcs; 2861 2862 pages = __alloc_pages_node(node, flags, 0); 2863 if (!pages) 2864 return NULL; 2865 vmcs = page_address(pages); 2866 memset(vmcs, 0, vmcs_config.size); 2867 2868 /* KVM supports Enlightened VMCS v1 only */ 2869 if (kvm_is_using_evmcs()) 2870 vmcs->hdr.revision_id = KVM_EVMCS_VERSION; 2871 else 2872 vmcs->hdr.revision_id = vmcs_config.revision_id; 2873 2874 if (shadow) 2875 vmcs->hdr.shadow_vmcs = 1; 2876 return vmcs; 2877 } 2878 2879 void free_vmcs(struct vmcs *vmcs) 2880 { 2881 free_page((unsigned long)vmcs); 2882 } 2883 2884 /* 2885 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded 2886 */ 2887 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2888 { 2889 if (!loaded_vmcs->vmcs) 2890 return; 2891 loaded_vmcs_clear(loaded_vmcs); 2892 free_vmcs(loaded_vmcs->vmcs); 2893 loaded_vmcs->vmcs = NULL; 2894 if (loaded_vmcs->msr_bitmap) 2895 free_page((unsigned long)loaded_vmcs->msr_bitmap); 2896 WARN_ON(loaded_vmcs->shadow_vmcs != NULL); 2897 } 2898 2899 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2900 { 2901 loaded_vmcs->vmcs = alloc_vmcs(false); 2902 if (!loaded_vmcs->vmcs) 2903 return -ENOMEM; 2904 2905 vmcs_clear(loaded_vmcs->vmcs); 2906 2907 loaded_vmcs->shadow_vmcs = NULL; 2908 loaded_vmcs->hv_timer_soft_disabled = false; 2909 loaded_vmcs->cpu = -1; 2910 loaded_vmcs->launched = 0; 2911 2912 if (cpu_has_vmx_msr_bitmap()) { 2913 loaded_vmcs->msr_bitmap = (unsigned long *) 2914 __get_free_page(GFP_KERNEL_ACCOUNT); 2915 if (!loaded_vmcs->msr_bitmap) 2916 goto out_vmcs; 2917 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); 2918 } 2919 2920 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); 2921 memset(&loaded_vmcs->controls_shadow, 0, 2922 sizeof(struct vmcs_controls_shadow)); 2923 2924 return 0; 2925 2926 out_vmcs: 2927 free_loaded_vmcs(loaded_vmcs); 2928 return -ENOMEM; 2929 } 2930 2931 static void free_kvm_area(void) 2932 { 2933 int cpu; 2934 2935 for_each_possible_cpu(cpu) { 2936 free_vmcs(per_cpu(vmxarea, cpu)); 2937 per_cpu(vmxarea, cpu) = NULL; 2938 } 2939 } 2940 2941 static __init int alloc_kvm_area(void) 2942 { 2943 int cpu; 2944 2945 for_each_possible_cpu(cpu) { 2946 struct vmcs *vmcs; 2947 2948 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL); 2949 if (!vmcs) { 2950 free_kvm_area(); 2951 return -ENOMEM; 2952 } 2953 2954 /* 2955 * When eVMCS is enabled, alloc_vmcs_cpu() sets 2956 * vmcs->revision_id to KVM_EVMCS_VERSION instead of 2957 * revision_id reported by MSR_IA32_VMX_BASIC. 2958 * 2959 * However, even though not explicitly documented by 2960 * TLFS, VMXArea passed as VMXON argument should 2961 * still be marked with revision_id reported by 2962 * physical CPU. 2963 */ 2964 if (kvm_is_using_evmcs()) 2965 vmcs->hdr.revision_id = vmcs_config.revision_id; 2966 2967 per_cpu(vmxarea, cpu) = vmcs; 2968 } 2969 return 0; 2970 } 2971 2972 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, 2973 struct kvm_segment *save) 2974 { 2975 if (!emulate_invalid_guest_state) { 2976 /* 2977 * CS and SS RPL should be equal during guest entry according 2978 * to VMX spec, but in reality it is not always so. Since vcpu 2979 * is in the middle of the transition from real mode to 2980 * protected mode it is safe to assume that RPL 0 is a good 2981 * default value. 2982 */ 2983 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) 2984 save->selector &= ~SEGMENT_RPL_MASK; 2985 save->dpl = save->selector & SEGMENT_RPL_MASK; 2986 save->s = 1; 2987 } 2988 __vmx_set_segment(vcpu, save, seg); 2989 } 2990 2991 static void enter_pmode(struct kvm_vcpu *vcpu) 2992 { 2993 unsigned long flags; 2994 struct vcpu_vmx *vmx = to_vmx(vcpu); 2995 2996 /* 2997 * Update real mode segment cache. It may be not up-to-date if segment 2998 * register was written while vcpu was in a guest mode. 2999 */ 3000 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 3001 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 3002 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 3003 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 3004 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 3005 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 3006 3007 vmx->rmode.vm86_active = 0; 3008 3009 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 3010 3011 flags = vmcs_readl(GUEST_RFLAGS); 3012 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 3013 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 3014 vmcs_writel(GUEST_RFLAGS, flags); 3015 3016 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | 3017 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); 3018 3019 vmx_update_exception_bitmap(vcpu); 3020 3021 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 3022 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 3023 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 3024 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 3025 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 3026 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 3027 } 3028 3029 static void fix_rmode_seg(int seg, struct kvm_segment *save) 3030 { 3031 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3032 struct kvm_segment var = *save; 3033 3034 var.dpl = 0x3; 3035 if (seg == VCPU_SREG_CS) 3036 var.type = 0x3; 3037 3038 if (!emulate_invalid_guest_state) { 3039 var.selector = var.base >> 4; 3040 var.base = var.base & 0xffff0; 3041 var.limit = 0xffff; 3042 var.g = 0; 3043 var.db = 0; 3044 var.present = 1; 3045 var.s = 1; 3046 var.l = 0; 3047 var.unusable = 0; 3048 var.type = 0x3; 3049 var.avl = 0; 3050 if (save->base & 0xf) 3051 pr_warn_once("segment base is not paragraph aligned " 3052 "when entering protected mode (seg=%d)", seg); 3053 } 3054 3055 vmcs_write16(sf->selector, var.selector); 3056 vmcs_writel(sf->base, var.base); 3057 vmcs_write32(sf->limit, var.limit); 3058 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); 3059 } 3060 3061 static void enter_rmode(struct kvm_vcpu *vcpu) 3062 { 3063 unsigned long flags; 3064 struct vcpu_vmx *vmx = to_vmx(vcpu); 3065 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); 3066 3067 /* 3068 * KVM should never use VM86 to virtualize Real Mode when L2 is active, 3069 * as using VM86 is unnecessary if unrestricted guest is enabled, and 3070 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0 3071 * should VM-Fail and KVM should reject userspace attempts to stuff 3072 * CR0.PG=0 when L2 is active. 3073 */ 3074 WARN_ON_ONCE(is_guest_mode(vcpu)); 3075 3076 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 3077 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 3078 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 3079 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 3080 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 3081 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 3082 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 3083 3084 vmx->rmode.vm86_active = 1; 3085 3086 vmx_segment_cache_clear(vmx); 3087 3088 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); 3089 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); 3090 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 3091 3092 flags = vmcs_readl(GUEST_RFLAGS); 3093 vmx->rmode.save_rflags = flags; 3094 3095 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 3096 3097 vmcs_writel(GUEST_RFLAGS, flags); 3098 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); 3099 vmx_update_exception_bitmap(vcpu); 3100 3101 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 3102 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 3103 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 3104 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 3105 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 3106 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 3107 } 3108 3109 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) 3110 { 3111 struct vcpu_vmx *vmx = to_vmx(vcpu); 3112 3113 /* Nothing to do if hardware doesn't support EFER. */ 3114 if (!vmx_find_uret_msr(vmx, MSR_EFER)) 3115 return 0; 3116 3117 vcpu->arch.efer = efer; 3118 #ifdef CONFIG_X86_64 3119 if (efer & EFER_LMA) 3120 vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE); 3121 else 3122 vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE); 3123 #else 3124 if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm)) 3125 return 1; 3126 #endif 3127 3128 vmx_setup_uret_msrs(vmx); 3129 return 0; 3130 } 3131 3132 #ifdef CONFIG_X86_64 3133 3134 static void enter_lmode(struct kvm_vcpu *vcpu) 3135 { 3136 u32 guest_tr_ar; 3137 3138 vmx_segment_cache_clear(to_vmx(vcpu)); 3139 3140 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); 3141 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { 3142 pr_debug_ratelimited("%s: tss fixup for long mode. \n", 3143 __func__); 3144 vmcs_write32(GUEST_TR_AR_BYTES, 3145 (guest_tr_ar & ~VMX_AR_TYPE_MASK) 3146 | VMX_AR_TYPE_BUSY_64_TSS); 3147 } 3148 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); 3149 } 3150 3151 static void exit_lmode(struct kvm_vcpu *vcpu) 3152 { 3153 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); 3154 } 3155 3156 #endif 3157 3158 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu) 3159 { 3160 struct vcpu_vmx *vmx = to_vmx(vcpu); 3161 3162 /* 3163 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as 3164 * the CPU is not required to invalidate guest-physical mappings on 3165 * VM-Entry, even if VPID is disabled. Guest-physical mappings are 3166 * associated with the root EPT structure and not any particular VPID 3167 * (INVVPID also isn't required to invalidate guest-physical mappings). 3168 */ 3169 if (enable_ept) { 3170 ept_sync_global(); 3171 } else if (enable_vpid) { 3172 if (cpu_has_vmx_invvpid_global()) { 3173 vpid_sync_vcpu_global(); 3174 } else { 3175 vpid_sync_vcpu_single(vmx->vpid); 3176 vpid_sync_vcpu_single(vmx->nested.vpid02); 3177 } 3178 } 3179 } 3180 3181 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu) 3182 { 3183 if (is_guest_mode(vcpu)) 3184 return nested_get_vpid02(vcpu); 3185 return to_vmx(vcpu)->vpid; 3186 } 3187 3188 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu) 3189 { 3190 struct kvm_mmu *mmu = vcpu->arch.mmu; 3191 u64 root_hpa = mmu->root.hpa; 3192 3193 /* No flush required if the current context is invalid. */ 3194 if (!VALID_PAGE(root_hpa)) 3195 return; 3196 3197 if (enable_ept) 3198 ept_sync_context(construct_eptp(vcpu, root_hpa, 3199 mmu->root_role.level)); 3200 else 3201 vpid_sync_context(vmx_get_current_vpid(vcpu)); 3202 } 3203 3204 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) 3205 { 3206 /* 3207 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in 3208 * vmx_flush_tlb_guest() for an explanation of why this is ok. 3209 */ 3210 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr); 3211 } 3212 3213 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu) 3214 { 3215 /* 3216 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a 3217 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are 3218 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is 3219 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed), 3220 * i.e. no explicit INVVPID is necessary. 3221 */ 3222 vpid_sync_context(vmx_get_current_vpid(vcpu)); 3223 } 3224 3225 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu) 3226 { 3227 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 3228 3229 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR)) 3230 return; 3231 3232 if (is_pae_paging(vcpu)) { 3233 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); 3234 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); 3235 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); 3236 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); 3237 } 3238 } 3239 3240 void ept_save_pdptrs(struct kvm_vcpu *vcpu) 3241 { 3242 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 3243 3244 if (WARN_ON_ONCE(!is_pae_paging(vcpu))) 3245 return; 3246 3247 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); 3248 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); 3249 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); 3250 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); 3251 3252 kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR); 3253 } 3254 3255 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \ 3256 CPU_BASED_CR3_STORE_EXITING) 3257 3258 static bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 3259 { 3260 if (is_guest_mode(vcpu)) 3261 return nested_guest_cr0_valid(vcpu, cr0); 3262 3263 if (to_vmx(vcpu)->nested.vmxon) 3264 return nested_host_cr0_valid(vcpu, cr0); 3265 3266 return true; 3267 } 3268 3269 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 3270 { 3271 struct vcpu_vmx *vmx = to_vmx(vcpu); 3272 unsigned long hw_cr0, old_cr0_pg; 3273 u32 tmp; 3274 3275 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG); 3276 3277 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); 3278 if (enable_unrestricted_guest) 3279 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; 3280 else { 3281 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; 3282 if (!enable_ept) 3283 hw_cr0 |= X86_CR0_WP; 3284 3285 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) 3286 enter_pmode(vcpu); 3287 3288 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) 3289 enter_rmode(vcpu); 3290 } 3291 3292 vmcs_writel(CR0_READ_SHADOW, cr0); 3293 vmcs_writel(GUEST_CR0, hw_cr0); 3294 vcpu->arch.cr0 = cr0; 3295 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0); 3296 3297 #ifdef CONFIG_X86_64 3298 if (vcpu->arch.efer & EFER_LME) { 3299 if (!old_cr0_pg && (cr0 & X86_CR0_PG)) 3300 enter_lmode(vcpu); 3301 else if (old_cr0_pg && !(cr0 & X86_CR0_PG)) 3302 exit_lmode(vcpu); 3303 } 3304 #endif 3305 3306 if (enable_ept && !enable_unrestricted_guest) { 3307 /* 3308 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If 3309 * the below code _enables_ CR3 exiting, vmx_cache_reg() will 3310 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks 3311 * KVM's CR3 is installed. 3312 */ 3313 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3)) 3314 vmx_cache_reg(vcpu, VCPU_EXREG_CR3); 3315 3316 /* 3317 * When running with EPT but not unrestricted guest, KVM must 3318 * intercept CR3 accesses when paging is _disabled_. This is 3319 * necessary because restricted guests can't actually run with 3320 * paging disabled, and so KVM stuffs its own CR3 in order to 3321 * run the guest when identity mapped page tables. 3322 * 3323 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the 3324 * update, it may be stale with respect to CR3 interception, 3325 * e.g. after nested VM-Enter. 3326 * 3327 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or 3328 * stores to forward them to L1, even if KVM does not need to 3329 * intercept them to preserve its identity mapped page tables. 3330 */ 3331 if (!(cr0 & X86_CR0_PG)) { 3332 exec_controls_setbit(vmx, CR3_EXITING_BITS); 3333 } else if (!is_guest_mode(vcpu)) { 3334 exec_controls_clearbit(vmx, CR3_EXITING_BITS); 3335 } else { 3336 tmp = exec_controls_get(vmx); 3337 tmp &= ~CR3_EXITING_BITS; 3338 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS; 3339 exec_controls_set(vmx, tmp); 3340 } 3341 3342 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */ 3343 if ((old_cr0_pg ^ cr0) & X86_CR0_PG) 3344 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 3345 3346 /* 3347 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but 3348 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG. 3349 */ 3350 if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG)) 3351 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 3352 } 3353 3354 /* depends on vcpu->arch.cr0 to be set to a new value */ 3355 vmx->emulation_required = vmx_emulation_required(vcpu); 3356 } 3357 3358 static int vmx_get_max_ept_level(void) 3359 { 3360 if (cpu_has_vmx_ept_5levels()) 3361 return 5; 3362 return 4; 3363 } 3364 3365 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level) 3366 { 3367 u64 eptp = VMX_EPTP_MT_WB; 3368 3369 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; 3370 3371 if (enable_ept_ad_bits && 3372 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) 3373 eptp |= VMX_EPTP_AD_ENABLE_BIT; 3374 eptp |= root_hpa; 3375 3376 return eptp; 3377 } 3378 3379 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 3380 int root_level) 3381 { 3382 struct kvm *kvm = vcpu->kvm; 3383 bool update_guest_cr3 = true; 3384 unsigned long guest_cr3; 3385 u64 eptp; 3386 3387 if (enable_ept) { 3388 eptp = construct_eptp(vcpu, root_hpa, root_level); 3389 vmcs_write64(EPT_POINTER, eptp); 3390 3391 hv_track_root_tdp(vcpu, root_hpa); 3392 3393 if (!enable_unrestricted_guest && !is_paging(vcpu)) 3394 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; 3395 else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3)) 3396 guest_cr3 = vcpu->arch.cr3; 3397 else /* vmcs.GUEST_CR3 is already up-to-date. */ 3398 update_guest_cr3 = false; 3399 vmx_ept_load_pdptrs(vcpu); 3400 } else { 3401 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu) | 3402 kvm_get_active_cr3_lam_bits(vcpu); 3403 } 3404 3405 if (update_guest_cr3) 3406 vmcs_writel(GUEST_CR3, guest_cr3); 3407 } 3408 3409 3410 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3411 { 3412 /* 3413 * We operate under the default treatment of SMM, so VMX cannot be 3414 * enabled under SMM. Note, whether or not VMXE is allowed at all, 3415 * i.e. is a reserved bit, is handled by common x86 code. 3416 */ 3417 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu)) 3418 return false; 3419 3420 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) 3421 return false; 3422 3423 return true; 3424 } 3425 3426 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3427 { 3428 unsigned long old_cr4 = kvm_read_cr4(vcpu); 3429 struct vcpu_vmx *vmx = to_vmx(vcpu); 3430 unsigned long hw_cr4; 3431 3432 /* 3433 * Pass through host's Machine Check Enable value to hw_cr4, which 3434 * is in force while we are in guest mode. Do not let guests control 3435 * this bit, even if host CR4.MCE == 0. 3436 */ 3437 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); 3438 if (enable_unrestricted_guest) 3439 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; 3440 else if (vmx->rmode.vm86_active) 3441 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; 3442 else 3443 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; 3444 3445 if (vmx_umip_emulated()) { 3446 if (cr4 & X86_CR4_UMIP) { 3447 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC); 3448 hw_cr4 &= ~X86_CR4_UMIP; 3449 } else if (!is_guest_mode(vcpu) || 3450 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) { 3451 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC); 3452 } 3453 } 3454 3455 vcpu->arch.cr4 = cr4; 3456 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4); 3457 3458 if (!enable_unrestricted_guest) { 3459 if (enable_ept) { 3460 if (!is_paging(vcpu)) { 3461 hw_cr4 &= ~X86_CR4_PAE; 3462 hw_cr4 |= X86_CR4_PSE; 3463 } else if (!(cr4 & X86_CR4_PAE)) { 3464 hw_cr4 &= ~X86_CR4_PAE; 3465 } 3466 } 3467 3468 /* 3469 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in 3470 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs 3471 * to be manually disabled when guest switches to non-paging 3472 * mode. 3473 * 3474 * If !enable_unrestricted_guest, the CPU is always running 3475 * with CR0.PG=1 and CR4 needs to be modified. 3476 * If enable_unrestricted_guest, the CPU automatically 3477 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. 3478 */ 3479 if (!is_paging(vcpu)) 3480 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 3481 } 3482 3483 vmcs_writel(CR4_READ_SHADOW, cr4); 3484 vmcs_writel(GUEST_CR4, hw_cr4); 3485 3486 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 3487 kvm_update_cpuid_runtime(vcpu); 3488 } 3489 3490 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3491 { 3492 struct vcpu_vmx *vmx = to_vmx(vcpu); 3493 u32 ar; 3494 3495 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3496 *var = vmx->rmode.segs[seg]; 3497 if (seg == VCPU_SREG_TR 3498 || var->selector == vmx_read_guest_seg_selector(vmx, seg)) 3499 return; 3500 var->base = vmx_read_guest_seg_base(vmx, seg); 3501 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3502 return; 3503 } 3504 var->base = vmx_read_guest_seg_base(vmx, seg); 3505 var->limit = vmx_read_guest_seg_limit(vmx, seg); 3506 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3507 ar = vmx_read_guest_seg_ar(vmx, seg); 3508 var->unusable = (ar >> 16) & 1; 3509 var->type = ar & 15; 3510 var->s = (ar >> 4) & 1; 3511 var->dpl = (ar >> 5) & 3; 3512 /* 3513 * Some userspaces do not preserve unusable property. Since usable 3514 * segment has to be present according to VMX spec we can use present 3515 * property to amend userspace bug by making unusable segment always 3516 * nonpresent. vmx_segment_access_rights() already marks nonpresent 3517 * segment as unusable. 3518 */ 3519 var->present = !var->unusable; 3520 var->avl = (ar >> 12) & 1; 3521 var->l = (ar >> 13) & 1; 3522 var->db = (ar >> 14) & 1; 3523 var->g = (ar >> 15) & 1; 3524 } 3525 3526 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) 3527 { 3528 struct kvm_segment s; 3529 3530 if (to_vmx(vcpu)->rmode.vm86_active) { 3531 vmx_get_segment(vcpu, &s, seg); 3532 return s.base; 3533 } 3534 return vmx_read_guest_seg_base(to_vmx(vcpu), seg); 3535 } 3536 3537 int vmx_get_cpl(struct kvm_vcpu *vcpu) 3538 { 3539 struct vcpu_vmx *vmx = to_vmx(vcpu); 3540 3541 if (unlikely(vmx->rmode.vm86_active)) 3542 return 0; 3543 else { 3544 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); 3545 return VMX_AR_DPL(ar); 3546 } 3547 } 3548 3549 static u32 vmx_segment_access_rights(struct kvm_segment *var) 3550 { 3551 u32 ar; 3552 3553 ar = var->type & 15; 3554 ar |= (var->s & 1) << 4; 3555 ar |= (var->dpl & 3) << 5; 3556 ar |= (var->present & 1) << 7; 3557 ar |= (var->avl & 1) << 12; 3558 ar |= (var->l & 1) << 13; 3559 ar |= (var->db & 1) << 14; 3560 ar |= (var->g & 1) << 15; 3561 ar |= (var->unusable || !var->present) << 16; 3562 3563 return ar; 3564 } 3565 3566 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3567 { 3568 struct vcpu_vmx *vmx = to_vmx(vcpu); 3569 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3570 3571 vmx_segment_cache_clear(vmx); 3572 3573 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3574 vmx->rmode.segs[seg] = *var; 3575 if (seg == VCPU_SREG_TR) 3576 vmcs_write16(sf->selector, var->selector); 3577 else if (var->s) 3578 fix_rmode_seg(seg, &vmx->rmode.segs[seg]); 3579 return; 3580 } 3581 3582 vmcs_writel(sf->base, var->base); 3583 vmcs_write32(sf->limit, var->limit); 3584 vmcs_write16(sf->selector, var->selector); 3585 3586 /* 3587 * Fix the "Accessed" bit in AR field of segment registers for older 3588 * qemu binaries. 3589 * IA32 arch specifies that at the time of processor reset the 3590 * "Accessed" bit in the AR field of segment registers is 1. And qemu 3591 * is setting it to 0 in the userland code. This causes invalid guest 3592 * state vmexit when "unrestricted guest" mode is turned on. 3593 * Fix for this setup issue in cpu_reset is being pushed in the qemu 3594 * tree. Newer qemu binaries with that qemu fix would not need this 3595 * kvm hack. 3596 */ 3597 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR)) 3598 var->type |= 0x1; /* Accessed */ 3599 3600 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); 3601 } 3602 3603 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3604 { 3605 __vmx_set_segment(vcpu, var, seg); 3606 3607 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu); 3608 } 3609 3610 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 3611 { 3612 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); 3613 3614 *db = (ar >> 14) & 1; 3615 *l = (ar >> 13) & 1; 3616 } 3617 3618 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3619 { 3620 dt->size = vmcs_read32(GUEST_IDTR_LIMIT); 3621 dt->address = vmcs_readl(GUEST_IDTR_BASE); 3622 } 3623 3624 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3625 { 3626 vmcs_write32(GUEST_IDTR_LIMIT, dt->size); 3627 vmcs_writel(GUEST_IDTR_BASE, dt->address); 3628 } 3629 3630 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3631 { 3632 dt->size = vmcs_read32(GUEST_GDTR_LIMIT); 3633 dt->address = vmcs_readl(GUEST_GDTR_BASE); 3634 } 3635 3636 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3637 { 3638 vmcs_write32(GUEST_GDTR_LIMIT, dt->size); 3639 vmcs_writel(GUEST_GDTR_BASE, dt->address); 3640 } 3641 3642 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) 3643 { 3644 struct kvm_segment var; 3645 u32 ar; 3646 3647 vmx_get_segment(vcpu, &var, seg); 3648 var.dpl = 0x3; 3649 if (seg == VCPU_SREG_CS) 3650 var.type = 0x3; 3651 ar = vmx_segment_access_rights(&var); 3652 3653 if (var.base != (var.selector << 4)) 3654 return false; 3655 if (var.limit != 0xffff) 3656 return false; 3657 if (ar != 0xf3) 3658 return false; 3659 3660 return true; 3661 } 3662 3663 static bool code_segment_valid(struct kvm_vcpu *vcpu) 3664 { 3665 struct kvm_segment cs; 3666 unsigned int cs_rpl; 3667 3668 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3669 cs_rpl = cs.selector & SEGMENT_RPL_MASK; 3670 3671 if (cs.unusable) 3672 return false; 3673 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) 3674 return false; 3675 if (!cs.s) 3676 return false; 3677 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { 3678 if (cs.dpl > cs_rpl) 3679 return false; 3680 } else { 3681 if (cs.dpl != cs_rpl) 3682 return false; 3683 } 3684 if (!cs.present) 3685 return false; 3686 3687 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ 3688 return true; 3689 } 3690 3691 static bool stack_segment_valid(struct kvm_vcpu *vcpu) 3692 { 3693 struct kvm_segment ss; 3694 unsigned int ss_rpl; 3695 3696 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3697 ss_rpl = ss.selector & SEGMENT_RPL_MASK; 3698 3699 if (ss.unusable) 3700 return true; 3701 if (ss.type != 3 && ss.type != 7) 3702 return false; 3703 if (!ss.s) 3704 return false; 3705 if (ss.dpl != ss_rpl) /* DPL != RPL */ 3706 return false; 3707 if (!ss.present) 3708 return false; 3709 3710 return true; 3711 } 3712 3713 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) 3714 { 3715 struct kvm_segment var; 3716 unsigned int rpl; 3717 3718 vmx_get_segment(vcpu, &var, seg); 3719 rpl = var.selector & SEGMENT_RPL_MASK; 3720 3721 if (var.unusable) 3722 return true; 3723 if (!var.s) 3724 return false; 3725 if (!var.present) 3726 return false; 3727 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { 3728 if (var.dpl < rpl) /* DPL < RPL */ 3729 return false; 3730 } 3731 3732 /* TODO: Add other members to kvm_segment_field to allow checking for other access 3733 * rights flags 3734 */ 3735 return true; 3736 } 3737 3738 static bool tr_valid(struct kvm_vcpu *vcpu) 3739 { 3740 struct kvm_segment tr; 3741 3742 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); 3743 3744 if (tr.unusable) 3745 return false; 3746 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3747 return false; 3748 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ 3749 return false; 3750 if (!tr.present) 3751 return false; 3752 3753 return true; 3754 } 3755 3756 static bool ldtr_valid(struct kvm_vcpu *vcpu) 3757 { 3758 struct kvm_segment ldtr; 3759 3760 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); 3761 3762 if (ldtr.unusable) 3763 return true; 3764 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3765 return false; 3766 if (ldtr.type != 2) 3767 return false; 3768 if (!ldtr.present) 3769 return false; 3770 3771 return true; 3772 } 3773 3774 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) 3775 { 3776 struct kvm_segment cs, ss; 3777 3778 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3779 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3780 3781 return ((cs.selector & SEGMENT_RPL_MASK) == 3782 (ss.selector & SEGMENT_RPL_MASK)); 3783 } 3784 3785 /* 3786 * Check if guest state is valid. Returns true if valid, false if 3787 * not. 3788 * We assume that registers are always usable 3789 */ 3790 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu) 3791 { 3792 /* real mode guest state checks */ 3793 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { 3794 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) 3795 return false; 3796 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) 3797 return false; 3798 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) 3799 return false; 3800 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) 3801 return false; 3802 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) 3803 return false; 3804 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) 3805 return false; 3806 } else { 3807 /* protected mode guest state checks */ 3808 if (!cs_ss_rpl_check(vcpu)) 3809 return false; 3810 if (!code_segment_valid(vcpu)) 3811 return false; 3812 if (!stack_segment_valid(vcpu)) 3813 return false; 3814 if (!data_segment_valid(vcpu, VCPU_SREG_DS)) 3815 return false; 3816 if (!data_segment_valid(vcpu, VCPU_SREG_ES)) 3817 return false; 3818 if (!data_segment_valid(vcpu, VCPU_SREG_FS)) 3819 return false; 3820 if (!data_segment_valid(vcpu, VCPU_SREG_GS)) 3821 return false; 3822 if (!tr_valid(vcpu)) 3823 return false; 3824 if (!ldtr_valid(vcpu)) 3825 return false; 3826 } 3827 /* TODO: 3828 * - Add checks on RIP 3829 * - Add checks on RFLAGS 3830 */ 3831 3832 return true; 3833 } 3834 3835 static int init_rmode_tss(struct kvm *kvm, void __user *ua) 3836 { 3837 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3838 u16 data; 3839 int i; 3840 3841 for (i = 0; i < 3; i++) { 3842 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE)) 3843 return -EFAULT; 3844 } 3845 3846 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; 3847 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16))) 3848 return -EFAULT; 3849 3850 data = ~0; 3851 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8))) 3852 return -EFAULT; 3853 3854 return 0; 3855 } 3856 3857 static int init_rmode_identity_map(struct kvm *kvm) 3858 { 3859 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 3860 int i, r = 0; 3861 void __user *uaddr; 3862 u32 tmp; 3863 3864 /* Protect kvm_vmx->ept_identity_pagetable_done. */ 3865 mutex_lock(&kvm->slots_lock); 3866 3867 if (likely(kvm_vmx->ept_identity_pagetable_done)) 3868 goto out; 3869 3870 if (!kvm_vmx->ept_identity_map_addr) 3871 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; 3872 3873 uaddr = __x86_set_memory_region(kvm, 3874 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 3875 kvm_vmx->ept_identity_map_addr, 3876 PAGE_SIZE); 3877 if (IS_ERR(uaddr)) { 3878 r = PTR_ERR(uaddr); 3879 goto out; 3880 } 3881 3882 /* Set up identity-mapping pagetable for EPT in real mode */ 3883 for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) { 3884 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | 3885 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); 3886 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) { 3887 r = -EFAULT; 3888 goto out; 3889 } 3890 } 3891 kvm_vmx->ept_identity_pagetable_done = true; 3892 3893 out: 3894 mutex_unlock(&kvm->slots_lock); 3895 return r; 3896 } 3897 3898 static void seg_setup(int seg) 3899 { 3900 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3901 unsigned int ar; 3902 3903 vmcs_write16(sf->selector, 0); 3904 vmcs_writel(sf->base, 0); 3905 vmcs_write32(sf->limit, 0xffff); 3906 ar = 0x93; 3907 if (seg == VCPU_SREG_CS) 3908 ar |= 0x08; /* code segment */ 3909 3910 vmcs_write32(sf->ar_bytes, ar); 3911 } 3912 3913 int allocate_vpid(void) 3914 { 3915 int vpid; 3916 3917 if (!enable_vpid) 3918 return 0; 3919 spin_lock(&vmx_vpid_lock); 3920 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); 3921 if (vpid < VMX_NR_VPIDS) 3922 __set_bit(vpid, vmx_vpid_bitmap); 3923 else 3924 vpid = 0; 3925 spin_unlock(&vmx_vpid_lock); 3926 return vpid; 3927 } 3928 3929 void free_vpid(int vpid) 3930 { 3931 if (!enable_vpid || vpid == 0) 3932 return; 3933 spin_lock(&vmx_vpid_lock); 3934 __clear_bit(vpid, vmx_vpid_bitmap); 3935 spin_unlock(&vmx_vpid_lock); 3936 } 3937 3938 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx) 3939 { 3940 /* 3941 * When KVM is a nested hypervisor on top of Hyper-V and uses 3942 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR 3943 * bitmap has changed. 3944 */ 3945 if (kvm_is_using_evmcs()) { 3946 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; 3947 3948 if (evmcs->hv_enlightenments_control.msr_bitmap) 3949 evmcs->hv_clean_fields &= 3950 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP; 3951 } 3952 3953 vmx->nested.force_msr_bitmap_recalc = true; 3954 } 3955 3956 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3957 { 3958 struct vcpu_vmx *vmx = to_vmx(vcpu); 3959 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3960 int idx; 3961 3962 if (!cpu_has_vmx_msr_bitmap()) 3963 return; 3964 3965 vmx_msr_bitmap_l01_changed(vmx); 3966 3967 /* 3968 * Mark the desired intercept state in shadow bitmap, this is needed 3969 * for resync when the MSR filters change. 3970 */ 3971 idx = vmx_get_passthrough_msr_slot(msr); 3972 if (idx >= 0) { 3973 if (type & MSR_TYPE_R) 3974 clear_bit(idx, vmx->shadow_msr_intercept.read); 3975 if (type & MSR_TYPE_W) 3976 clear_bit(idx, vmx->shadow_msr_intercept.write); 3977 } 3978 3979 if ((type & MSR_TYPE_R) && 3980 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) { 3981 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3982 type &= ~MSR_TYPE_R; 3983 } 3984 3985 if ((type & MSR_TYPE_W) && 3986 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) { 3987 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3988 type &= ~MSR_TYPE_W; 3989 } 3990 3991 if (type & MSR_TYPE_R) 3992 vmx_clear_msr_bitmap_read(msr_bitmap, msr); 3993 3994 if (type & MSR_TYPE_W) 3995 vmx_clear_msr_bitmap_write(msr_bitmap, msr); 3996 } 3997 3998 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3999 { 4000 struct vcpu_vmx *vmx = to_vmx(vcpu); 4001 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 4002 int idx; 4003 4004 if (!cpu_has_vmx_msr_bitmap()) 4005 return; 4006 4007 vmx_msr_bitmap_l01_changed(vmx); 4008 4009 /* 4010 * Mark the desired intercept state in shadow bitmap, this is needed 4011 * for resync when the MSR filter changes. 4012 */ 4013 idx = vmx_get_passthrough_msr_slot(msr); 4014 if (idx >= 0) { 4015 if (type & MSR_TYPE_R) 4016 set_bit(idx, vmx->shadow_msr_intercept.read); 4017 if (type & MSR_TYPE_W) 4018 set_bit(idx, vmx->shadow_msr_intercept.write); 4019 } 4020 4021 if (type & MSR_TYPE_R) 4022 vmx_set_msr_bitmap_read(msr_bitmap, msr); 4023 4024 if (type & MSR_TYPE_W) 4025 vmx_set_msr_bitmap_write(msr_bitmap, msr); 4026 } 4027 4028 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu) 4029 { 4030 /* 4031 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves 4032 * of the MSR bitmap. KVM emulates APIC registers up through 0x3f0, 4033 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits. 4034 */ 4035 const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG; 4036 const int write_idx = read_idx + (0x800 / sizeof(u64)); 4037 struct vcpu_vmx *vmx = to_vmx(vcpu); 4038 u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap; 4039 u8 mode; 4040 4041 if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu))) 4042 return; 4043 4044 if (cpu_has_secondary_exec_ctrls() && 4045 (secondary_exec_controls_get(vmx) & 4046 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { 4047 mode = MSR_BITMAP_MODE_X2APIC; 4048 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) 4049 mode |= MSR_BITMAP_MODE_X2APIC_APICV; 4050 } else { 4051 mode = 0; 4052 } 4053 4054 if (mode == vmx->x2apic_msr_bitmap_mode) 4055 return; 4056 4057 vmx->x2apic_msr_bitmap_mode = mode; 4058 4059 /* 4060 * Reset the bitmap for MSRs 0x800 - 0x83f. Leave AMD's uber-extended 4061 * registers (0x840 and above) intercepted, KVM doesn't support them. 4062 * Intercept all writes by default and poke holes as needed. Pass 4063 * through reads for all valid registers by default in x2APIC+APICv 4064 * mode, only the current timer count needs on-demand emulation by KVM. 4065 */ 4066 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) 4067 msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic); 4068 else 4069 msr_bitmap[read_idx] = ~0ull; 4070 msr_bitmap[write_idx] = ~0ull; 4071 4072 /* 4073 * TPR reads and writes can be virtualized even if virtual interrupt 4074 * delivery is not in use. 4075 */ 4076 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW, 4077 !(mode & MSR_BITMAP_MODE_X2APIC)); 4078 4079 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { 4080 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW); 4081 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); 4082 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); 4083 if (enable_ipiv) 4084 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW); 4085 } 4086 } 4087 4088 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu) 4089 { 4090 struct vcpu_vmx *vmx = to_vmx(vcpu); 4091 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 4092 u32 i; 4093 4094 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag); 4095 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag); 4096 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag); 4097 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag); 4098 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) { 4099 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); 4100 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); 4101 } 4102 } 4103 4104 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 4105 { 4106 struct vcpu_vmx *vmx = to_vmx(vcpu); 4107 void *vapic_page; 4108 u32 vppr; 4109 int rvi; 4110 4111 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) || 4112 !nested_cpu_has_vid(get_vmcs12(vcpu)) || 4113 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn)) 4114 return false; 4115 4116 rvi = vmx_get_rvi(); 4117 4118 vapic_page = vmx->nested.virtual_apic_map.hva; 4119 vppr = *((u32 *)(vapic_page + APIC_PROCPRI)); 4120 4121 return ((rvi & 0xf0) > (vppr & 0xf0)); 4122 } 4123 4124 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu) 4125 { 4126 struct vcpu_vmx *vmx = to_vmx(vcpu); 4127 u32 i; 4128 4129 if (!cpu_has_vmx_msr_bitmap()) 4130 return; 4131 4132 /* 4133 * Redo intercept permissions for MSRs that KVM is passing through to 4134 * the guest. Disabling interception will check the new MSR filter and 4135 * ensure that KVM enables interception if usersepace wants to filter 4136 * the MSR. MSRs that KVM is already intercepting don't need to be 4137 * refreshed since KVM is going to intercept them regardless of what 4138 * userspace wants. 4139 */ 4140 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) { 4141 u32 msr = vmx_possible_passthrough_msrs[i]; 4142 4143 if (!test_bit(i, vmx->shadow_msr_intercept.read)) 4144 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R); 4145 4146 if (!test_bit(i, vmx->shadow_msr_intercept.write)) 4147 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W); 4148 } 4149 4150 /* PT MSRs can be passed through iff PT is exposed to the guest. */ 4151 if (vmx_pt_mode_is_host_guest()) 4152 pt_update_intercept_for_msr(vcpu); 4153 } 4154 4155 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, 4156 int pi_vec) 4157 { 4158 #ifdef CONFIG_SMP 4159 if (vcpu->mode == IN_GUEST_MODE) { 4160 /* 4161 * The vector of the virtual has already been set in the PIR. 4162 * Send a notification event to deliver the virtual interrupt 4163 * unless the vCPU is the currently running vCPU, i.e. the 4164 * event is being sent from a fastpath VM-Exit handler, in 4165 * which case the PIR will be synced to the vIRR before 4166 * re-entering the guest. 4167 * 4168 * When the target is not the running vCPU, the following 4169 * possibilities emerge: 4170 * 4171 * Case 1: vCPU stays in non-root mode. Sending a notification 4172 * event posts the interrupt to the vCPU. 4173 * 4174 * Case 2: vCPU exits to root mode and is still runnable. The 4175 * PIR will be synced to the vIRR before re-entering the guest. 4176 * Sending a notification event is ok as the host IRQ handler 4177 * will ignore the spurious event. 4178 * 4179 * Case 3: vCPU exits to root mode and is blocked. vcpu_block() 4180 * has already synced PIR to vIRR and never blocks the vCPU if 4181 * the vIRR is not empty. Therefore, a blocked vCPU here does 4182 * not wait for any requested interrupts in PIR, and sending a 4183 * notification event also results in a benign, spurious event. 4184 */ 4185 4186 if (vcpu != kvm_get_running_vcpu()) 4187 __apic_send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); 4188 return; 4189 } 4190 #endif 4191 /* 4192 * The vCPU isn't in the guest; wake the vCPU in case it is blocking, 4193 * otherwise do nothing as KVM will grab the highest priority pending 4194 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest(). 4195 */ 4196 kvm_vcpu_wake_up(vcpu); 4197 } 4198 4199 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, 4200 int vector) 4201 { 4202 struct vcpu_vmx *vmx = to_vmx(vcpu); 4203 4204 if (is_guest_mode(vcpu) && 4205 vector == vmx->nested.posted_intr_nv) { 4206 /* 4207 * If a posted intr is not recognized by hardware, 4208 * we will accomplish it in the next vmentry. 4209 */ 4210 vmx->nested.pi_pending = true; 4211 kvm_make_request(KVM_REQ_EVENT, vcpu); 4212 4213 /* 4214 * This pairs with the smp_mb_*() after setting vcpu->mode in 4215 * vcpu_enter_guest() to guarantee the vCPU sees the event 4216 * request if triggering a posted interrupt "fails" because 4217 * vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as 4218 * the smb_wmb() in kvm_make_request() only ensures everything 4219 * done before making the request is visible when the request 4220 * is visible, it doesn't ensure ordering between the store to 4221 * vcpu->requests and the load from vcpu->mode. 4222 */ 4223 smp_mb__after_atomic(); 4224 4225 /* the PIR and ON have been set by L1. */ 4226 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR); 4227 return 0; 4228 } 4229 return -1; 4230 } 4231 /* 4232 * Send interrupt to vcpu via posted interrupt way. 4233 * 1. If target vcpu is running(non-root mode), send posted interrupt 4234 * notification to vcpu and hardware will sync PIR to vIRR atomically. 4235 * 2. If target vcpu isn't running(root mode), kick it to pick up the 4236 * interrupt from PIR in next vmentry. 4237 */ 4238 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) 4239 { 4240 struct vcpu_vmx *vmx = to_vmx(vcpu); 4241 int r; 4242 4243 r = vmx_deliver_nested_posted_interrupt(vcpu, vector); 4244 if (!r) 4245 return 0; 4246 4247 /* Note, this is called iff the local APIC is in-kernel. */ 4248 if (!vcpu->arch.apic->apicv_active) 4249 return -1; 4250 4251 if (pi_test_and_set_pir(vector, &vmx->pi_desc)) 4252 return 0; 4253 4254 /* If a previous notification has sent the IPI, nothing to do. */ 4255 if (pi_test_and_set_on(&vmx->pi_desc)) 4256 return 0; 4257 4258 /* 4259 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*() 4260 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is 4261 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a 4262 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE. 4263 */ 4264 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR); 4265 return 0; 4266 } 4267 4268 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 4269 int trig_mode, int vector) 4270 { 4271 struct kvm_vcpu *vcpu = apic->vcpu; 4272 4273 if (vmx_deliver_posted_interrupt(vcpu, vector)) { 4274 kvm_lapic_set_irr(vector, apic); 4275 kvm_make_request(KVM_REQ_EVENT, vcpu); 4276 kvm_vcpu_kick(vcpu); 4277 } else { 4278 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, 4279 trig_mode, vector); 4280 } 4281 } 4282 4283 /* 4284 * Set up the vmcs's constant host-state fields, i.e., host-state fields that 4285 * will not change in the lifetime of the guest. 4286 * Note that host-state that does change is set elsewhere. E.g., host-state 4287 * that is set differently for each CPU is set in vmx_vcpu_load(), not here. 4288 */ 4289 void vmx_set_constant_host_state(struct vcpu_vmx *vmx) 4290 { 4291 u32 low32, high32; 4292 unsigned long tmpl; 4293 unsigned long cr0, cr3, cr4; 4294 4295 cr0 = read_cr0(); 4296 WARN_ON(cr0 & X86_CR0_TS); 4297 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ 4298 4299 /* 4300 * Save the most likely value for this task's CR3 in the VMCS. 4301 * We can't use __get_current_cr3_fast() because we're not atomic. 4302 */ 4303 cr3 = __read_cr3(); 4304 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ 4305 vmx->loaded_vmcs->host_state.cr3 = cr3; 4306 4307 /* Save the most likely value for this task's CR4 in the VMCS. */ 4308 cr4 = cr4_read_shadow(); 4309 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ 4310 vmx->loaded_vmcs->host_state.cr4 = cr4; 4311 4312 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ 4313 #ifdef CONFIG_X86_64 4314 /* 4315 * Load null selectors, so we can avoid reloading them in 4316 * vmx_prepare_switch_to_host(), in case userspace uses 4317 * the null selectors too (the expected case). 4318 */ 4319 vmcs_write16(HOST_DS_SELECTOR, 0); 4320 vmcs_write16(HOST_ES_SELECTOR, 0); 4321 #else 4322 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4323 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4324 #endif 4325 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4326 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ 4327 4328 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */ 4329 4330 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ 4331 4332 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); 4333 vmcs_write32(HOST_IA32_SYSENTER_CS, low32); 4334 4335 /* 4336 * SYSENTER is used for 32-bit system calls on either 32-bit or 4337 * 64-bit kernels. It is always zero If neither is allowed, otherwise 4338 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may 4339 * have already done so!). 4340 */ 4341 if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32)) 4342 vmcs_writel(HOST_IA32_SYSENTER_ESP, 0); 4343 4344 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); 4345 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ 4346 4347 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { 4348 rdmsr(MSR_IA32_CR_PAT, low32, high32); 4349 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); 4350 } 4351 4352 if (cpu_has_load_ia32_efer()) 4353 vmcs_write64(HOST_IA32_EFER, host_efer); 4354 } 4355 4356 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) 4357 { 4358 struct kvm_vcpu *vcpu = &vmx->vcpu; 4359 4360 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS & 4361 ~vcpu->arch.cr4_guest_rsvd_bits; 4362 if (!enable_ept) { 4363 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS; 4364 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS; 4365 } 4366 if (is_guest_mode(&vmx->vcpu)) 4367 vcpu->arch.cr4_guest_owned_bits &= 4368 ~get_vmcs12(vcpu)->cr4_guest_host_mask; 4369 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits); 4370 } 4371 4372 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) 4373 { 4374 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; 4375 4376 if (!kvm_vcpu_apicv_active(&vmx->vcpu)) 4377 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; 4378 4379 if (!enable_vnmi) 4380 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; 4381 4382 if (!enable_preemption_timer) 4383 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 4384 4385 return pin_based_exec_ctrl; 4386 } 4387 4388 static u32 vmx_vmentry_ctrl(void) 4389 { 4390 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl; 4391 4392 if (vmx_pt_mode_is_system()) 4393 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP | 4394 VM_ENTRY_LOAD_IA32_RTIT_CTL); 4395 /* 4396 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically. 4397 */ 4398 vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | 4399 VM_ENTRY_LOAD_IA32_EFER | 4400 VM_ENTRY_IA32E_MODE); 4401 4402 if (cpu_has_perf_global_ctrl_bug()) 4403 vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; 4404 4405 return vmentry_ctrl; 4406 } 4407 4408 static u32 vmx_vmexit_ctrl(void) 4409 { 4410 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl; 4411 4412 /* 4413 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for 4414 * nested virtualization and thus allowed to be set in vmcs12. 4415 */ 4416 vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER | 4417 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER); 4418 4419 if (vmx_pt_mode_is_system()) 4420 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP | 4421 VM_EXIT_CLEAR_IA32_RTIT_CTL); 4422 4423 if (cpu_has_perf_global_ctrl_bug()) 4424 vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; 4425 4426 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ 4427 return vmexit_ctrl & 4428 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER); 4429 } 4430 4431 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) 4432 { 4433 struct vcpu_vmx *vmx = to_vmx(vcpu); 4434 4435 if (is_guest_mode(vcpu)) { 4436 vmx->nested.update_vmcs01_apicv_status = true; 4437 return; 4438 } 4439 4440 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4441 4442 if (kvm_vcpu_apicv_active(vcpu)) { 4443 secondary_exec_controls_setbit(vmx, 4444 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4445 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4446 if (enable_ipiv) 4447 tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT); 4448 } else { 4449 secondary_exec_controls_clearbit(vmx, 4450 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4451 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4452 if (enable_ipiv) 4453 tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT); 4454 } 4455 4456 vmx_update_msr_bitmap_x2apic(vcpu); 4457 } 4458 4459 static u32 vmx_exec_control(struct vcpu_vmx *vmx) 4460 { 4461 u32 exec_control = vmcs_config.cpu_based_exec_ctrl; 4462 4463 /* 4464 * Not used by KVM, but fully supported for nesting, i.e. are allowed in 4465 * vmcs12 and propagated to vmcs02 when set in vmcs12. 4466 */ 4467 exec_control &= ~(CPU_BASED_RDTSC_EXITING | 4468 CPU_BASED_USE_IO_BITMAPS | 4469 CPU_BASED_MONITOR_TRAP_FLAG | 4470 CPU_BASED_PAUSE_EXITING); 4471 4472 /* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */ 4473 exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING | 4474 CPU_BASED_NMI_WINDOW_EXITING); 4475 4476 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) 4477 exec_control &= ~CPU_BASED_MOV_DR_EXITING; 4478 4479 if (!cpu_need_tpr_shadow(&vmx->vcpu)) 4480 exec_control &= ~CPU_BASED_TPR_SHADOW; 4481 4482 #ifdef CONFIG_X86_64 4483 if (exec_control & CPU_BASED_TPR_SHADOW) 4484 exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING | 4485 CPU_BASED_CR8_STORE_EXITING); 4486 else 4487 exec_control |= CPU_BASED_CR8_STORE_EXITING | 4488 CPU_BASED_CR8_LOAD_EXITING; 4489 #endif 4490 /* No need to intercept CR3 access or INVPLG when using EPT. */ 4491 if (enable_ept) 4492 exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | 4493 CPU_BASED_CR3_STORE_EXITING | 4494 CPU_BASED_INVLPG_EXITING); 4495 if (kvm_mwait_in_guest(vmx->vcpu.kvm)) 4496 exec_control &= ~(CPU_BASED_MWAIT_EXITING | 4497 CPU_BASED_MONITOR_EXITING); 4498 if (kvm_hlt_in_guest(vmx->vcpu.kvm)) 4499 exec_control &= ~CPU_BASED_HLT_EXITING; 4500 return exec_control; 4501 } 4502 4503 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx) 4504 { 4505 u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl; 4506 4507 /* 4508 * IPI virtualization relies on APICv. Disable IPI virtualization if 4509 * APICv is inhibited. 4510 */ 4511 if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu)) 4512 exec_control &= ~TERTIARY_EXEC_IPI_VIRT; 4513 4514 return exec_control; 4515 } 4516 4517 /* 4518 * Adjust a single secondary execution control bit to intercept/allow an 4519 * instruction in the guest. This is usually done based on whether or not a 4520 * feature has been exposed to the guest in order to correctly emulate faults. 4521 */ 4522 static inline void 4523 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control, 4524 u32 control, bool enabled, bool exiting) 4525 { 4526 /* 4527 * If the control is for an opt-in feature, clear the control if the 4528 * feature is not exposed to the guest, i.e. not enabled. If the 4529 * control is opt-out, i.e. an exiting control, clear the control if 4530 * the feature _is_ exposed to the guest, i.e. exiting/interception is 4531 * disabled for the associated instruction. Note, the caller is 4532 * responsible presetting exec_control to set all supported bits. 4533 */ 4534 if (enabled == exiting) 4535 *exec_control &= ~control; 4536 4537 /* 4538 * Update the nested MSR settings so that a nested VMM can/can't set 4539 * controls for features that are/aren't exposed to the guest. 4540 */ 4541 if (nested) { 4542 /* 4543 * All features that can be added or removed to VMX MSRs must 4544 * be supported in the first place for nested virtualization. 4545 */ 4546 if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control))) 4547 enabled = false; 4548 4549 if (enabled) 4550 vmx->nested.msrs.secondary_ctls_high |= control; 4551 else 4552 vmx->nested.msrs.secondary_ctls_high &= ~control; 4553 } 4554 } 4555 4556 /* 4557 * Wrapper macro for the common case of adjusting a secondary execution control 4558 * based on a single guest CPUID bit, with a dedicated feature bit. This also 4559 * verifies that the control is actually supported by KVM and hardware. 4560 */ 4561 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \ 4562 ({ \ 4563 struct kvm_vcpu *__vcpu = &(vmx)->vcpu; \ 4564 bool __enabled; \ 4565 \ 4566 if (cpu_has_vmx_##name()) { \ 4567 if (kvm_is_governed_feature(X86_FEATURE_##feat_name)) \ 4568 __enabled = guest_can_use(__vcpu, X86_FEATURE_##feat_name); \ 4569 else \ 4570 __enabled = guest_cpuid_has(__vcpu, X86_FEATURE_##feat_name); \ 4571 vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\ 4572 __enabled, exiting); \ 4573 } \ 4574 }) 4575 4576 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */ 4577 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \ 4578 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false) 4579 4580 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \ 4581 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true) 4582 4583 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx) 4584 { 4585 struct kvm_vcpu *vcpu = &vmx->vcpu; 4586 4587 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; 4588 4589 if (vmx_pt_mode_is_system()) 4590 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); 4591 if (!cpu_need_virtualize_apic_accesses(vcpu)) 4592 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 4593 if (vmx->vpid == 0) 4594 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; 4595 if (!enable_ept) { 4596 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; 4597 enable_unrestricted_guest = 0; 4598 } 4599 if (!enable_unrestricted_guest) 4600 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; 4601 if (kvm_pause_in_guest(vmx->vcpu.kvm)) 4602 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; 4603 if (!kvm_vcpu_apicv_active(vcpu)) 4604 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | 4605 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4606 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 4607 4608 /* 4609 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's 4610 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2. 4611 */ 4612 exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC; 4613 4614 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, 4615 * in vmx_set_cr4. */ 4616 exec_control &= ~SECONDARY_EXEC_DESC; 4617 4618 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD 4619 (handle_vmptrld). 4620 We can NOT enable shadow_vmcs here because we don't have yet 4621 a current VMCS12 4622 */ 4623 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; 4624 4625 /* 4626 * PML is enabled/disabled when dirty logging of memsmlots changes, but 4627 * it needs to be set here when dirty logging is already active, e.g. 4628 * if this vCPU was created after dirty logging was enabled. 4629 */ 4630 if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging)) 4631 exec_control &= ~SECONDARY_EXEC_ENABLE_PML; 4632 4633 vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES); 4634 4635 /* 4636 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either 4637 * feature is exposed to the guest. This creates a virtualization hole 4638 * if both are supported in hardware but only one is exposed to the 4639 * guest, but letting the guest execute RDTSCP or RDPID when either one 4640 * is advertised is preferable to emulating the advertised instruction 4641 * in KVM on #UD, and obviously better than incorrectly injecting #UD. 4642 */ 4643 if (cpu_has_vmx_rdtscp()) { 4644 bool rdpid_or_rdtscp_enabled = 4645 guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) || 4646 guest_cpuid_has(vcpu, X86_FEATURE_RDPID); 4647 4648 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4649 SECONDARY_EXEC_ENABLE_RDTSCP, 4650 rdpid_or_rdtscp_enabled, false); 4651 } 4652 4653 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID); 4654 4655 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND); 4656 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED); 4657 4658 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG, 4659 ENABLE_USR_WAIT_PAUSE, false); 4660 4661 if (!vcpu->kvm->arch.bus_lock_detection_enabled) 4662 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION; 4663 4664 if (!kvm_notify_vmexit_enabled(vcpu->kvm)) 4665 exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING; 4666 4667 return exec_control; 4668 } 4669 4670 static inline int vmx_get_pid_table_order(struct kvm *kvm) 4671 { 4672 return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table)); 4673 } 4674 4675 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm) 4676 { 4677 struct page *pages; 4678 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 4679 4680 if (!irqchip_in_kernel(kvm) || !enable_ipiv) 4681 return 0; 4682 4683 if (kvm_vmx->pid_table) 4684 return 0; 4685 4686 pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO, 4687 vmx_get_pid_table_order(kvm)); 4688 if (!pages) 4689 return -ENOMEM; 4690 4691 kvm_vmx->pid_table = (void *)page_address(pages); 4692 return 0; 4693 } 4694 4695 static int vmx_vcpu_precreate(struct kvm *kvm) 4696 { 4697 return vmx_alloc_ipiv_pid_table(kvm); 4698 } 4699 4700 #define VMX_XSS_EXIT_BITMAP 0 4701 4702 static void init_vmcs(struct vcpu_vmx *vmx) 4703 { 4704 struct kvm *kvm = vmx->vcpu.kvm; 4705 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 4706 4707 if (nested) 4708 nested_vmx_set_vmcs_shadowing_bitmap(); 4709 4710 if (cpu_has_vmx_msr_bitmap()) 4711 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); 4712 4713 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */ 4714 4715 /* Control */ 4716 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4717 4718 exec_controls_set(vmx, vmx_exec_control(vmx)); 4719 4720 if (cpu_has_secondary_exec_ctrls()) 4721 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx)); 4722 4723 if (cpu_has_tertiary_exec_ctrls()) 4724 tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx)); 4725 4726 if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) { 4727 vmcs_write64(EOI_EXIT_BITMAP0, 0); 4728 vmcs_write64(EOI_EXIT_BITMAP1, 0); 4729 vmcs_write64(EOI_EXIT_BITMAP2, 0); 4730 vmcs_write64(EOI_EXIT_BITMAP3, 0); 4731 4732 vmcs_write16(GUEST_INTR_STATUS, 0); 4733 4734 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); 4735 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); 4736 } 4737 4738 if (vmx_can_use_ipiv(&vmx->vcpu)) { 4739 vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table)); 4740 vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1); 4741 } 4742 4743 if (!kvm_pause_in_guest(kvm)) { 4744 vmcs_write32(PLE_GAP, ple_gap); 4745 vmx->ple_window = ple_window; 4746 vmx->ple_window_dirty = true; 4747 } 4748 4749 if (kvm_notify_vmexit_enabled(kvm)) 4750 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window); 4751 4752 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); 4753 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); 4754 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ 4755 4756 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ 4757 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ 4758 vmx_set_constant_host_state(vmx); 4759 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ 4760 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ 4761 4762 if (cpu_has_vmx_vmfunc()) 4763 vmcs_write64(VM_FUNCTION_CONTROL, 0); 4764 4765 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); 4766 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); 4767 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); 4768 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); 4769 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); 4770 4771 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 4772 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); 4773 4774 vm_exit_controls_set(vmx, vmx_vmexit_ctrl()); 4775 4776 /* 22.2.1, 20.8.1 */ 4777 vm_entry_controls_set(vmx, vmx_vmentry_ctrl()); 4778 4779 vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits(); 4780 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits); 4781 4782 set_cr4_guest_host_mask(vmx); 4783 4784 if (vmx->vpid != 0) 4785 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); 4786 4787 if (cpu_has_vmx_xsaves()) 4788 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); 4789 4790 if (enable_pml) { 4791 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); 4792 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 4793 } 4794 4795 vmx_write_encls_bitmap(&vmx->vcpu, NULL); 4796 4797 if (vmx_pt_mode_is_host_guest()) { 4798 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); 4799 /* Bit[6~0] are forced to 1, writes are ignored. */ 4800 vmx->pt_desc.guest.output_mask = 0x7F; 4801 vmcs_write64(GUEST_IA32_RTIT_CTL, 0); 4802 } 4803 4804 vmcs_write32(GUEST_SYSENTER_CS, 0); 4805 vmcs_writel(GUEST_SYSENTER_ESP, 0); 4806 vmcs_writel(GUEST_SYSENTER_EIP, 0); 4807 vmcs_write64(GUEST_IA32_DEBUGCTL, 0); 4808 4809 if (cpu_has_vmx_tpr_shadow()) { 4810 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); 4811 if (cpu_need_tpr_shadow(&vmx->vcpu)) 4812 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 4813 __pa(vmx->vcpu.arch.apic->regs)); 4814 vmcs_write32(TPR_THRESHOLD, 0); 4815 } 4816 4817 vmx_setup_uret_msrs(vmx); 4818 } 4819 4820 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu) 4821 { 4822 struct vcpu_vmx *vmx = to_vmx(vcpu); 4823 4824 init_vmcs(vmx); 4825 4826 if (nested) 4827 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs)); 4828 4829 vcpu_setup_sgx_lepubkeyhash(vcpu); 4830 4831 vmx->nested.posted_intr_nv = -1; 4832 vmx->nested.vmxon_ptr = INVALID_GPA; 4833 vmx->nested.current_vmptr = INVALID_GPA; 4834 4835 #ifdef CONFIG_KVM_HYPERV 4836 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID; 4837 #endif 4838 4839 vcpu->arch.microcode_version = 0x100000000ULL; 4840 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED; 4841 4842 /* 4843 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR 4844 * or POSTED_INTR_WAKEUP_VECTOR. 4845 */ 4846 vmx->pi_desc.nv = POSTED_INTR_VECTOR; 4847 vmx->pi_desc.sn = 1; 4848 } 4849 4850 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 4851 { 4852 struct vcpu_vmx *vmx = to_vmx(vcpu); 4853 4854 if (!init_event) 4855 __vmx_vcpu_reset(vcpu); 4856 4857 vmx->rmode.vm86_active = 0; 4858 vmx->spec_ctrl = 0; 4859 4860 vmx->msr_ia32_umwait_control = 0; 4861 4862 vmx->hv_deadline_tsc = -1; 4863 kvm_set_cr8(vcpu, 0); 4864 4865 vmx_segment_cache_clear(vmx); 4866 kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS); 4867 4868 seg_setup(VCPU_SREG_CS); 4869 vmcs_write16(GUEST_CS_SELECTOR, 0xf000); 4870 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); 4871 4872 seg_setup(VCPU_SREG_DS); 4873 seg_setup(VCPU_SREG_ES); 4874 seg_setup(VCPU_SREG_FS); 4875 seg_setup(VCPU_SREG_GS); 4876 seg_setup(VCPU_SREG_SS); 4877 4878 vmcs_write16(GUEST_TR_SELECTOR, 0); 4879 vmcs_writel(GUEST_TR_BASE, 0); 4880 vmcs_write32(GUEST_TR_LIMIT, 0xffff); 4881 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 4882 4883 vmcs_write16(GUEST_LDTR_SELECTOR, 0); 4884 vmcs_writel(GUEST_LDTR_BASE, 0); 4885 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); 4886 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); 4887 4888 vmcs_writel(GUEST_GDTR_BASE, 0); 4889 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); 4890 4891 vmcs_writel(GUEST_IDTR_BASE, 0); 4892 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); 4893 4894 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 4895 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); 4896 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); 4897 if (kvm_mpx_supported()) 4898 vmcs_write64(GUEST_BNDCFGS, 0); 4899 4900 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ 4901 4902 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 4903 4904 vpid_sync_context(vmx->vpid); 4905 4906 vmx_update_fb_clear_dis(vcpu, vmx); 4907 } 4908 4909 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu) 4910 { 4911 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 4912 } 4913 4914 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu) 4915 { 4916 if (!enable_vnmi || 4917 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { 4918 vmx_enable_irq_window(vcpu); 4919 return; 4920 } 4921 4922 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 4923 } 4924 4925 static void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) 4926 { 4927 struct vcpu_vmx *vmx = to_vmx(vcpu); 4928 uint32_t intr; 4929 int irq = vcpu->arch.interrupt.nr; 4930 4931 trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected); 4932 4933 ++vcpu->stat.irq_injections; 4934 if (vmx->rmode.vm86_active) { 4935 int inc_eip = 0; 4936 if (vcpu->arch.interrupt.soft) 4937 inc_eip = vcpu->arch.event_exit_inst_len; 4938 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip); 4939 return; 4940 } 4941 intr = irq | INTR_INFO_VALID_MASK; 4942 if (vcpu->arch.interrupt.soft) { 4943 intr |= INTR_TYPE_SOFT_INTR; 4944 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 4945 vmx->vcpu.arch.event_exit_inst_len); 4946 } else 4947 intr |= INTR_TYPE_EXT_INTR; 4948 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); 4949 4950 vmx_clear_hlt(vcpu); 4951 } 4952 4953 static void vmx_inject_nmi(struct kvm_vcpu *vcpu) 4954 { 4955 struct vcpu_vmx *vmx = to_vmx(vcpu); 4956 4957 if (!enable_vnmi) { 4958 /* 4959 * Tracking the NMI-blocked state in software is built upon 4960 * finding the next open IRQ window. This, in turn, depends on 4961 * well-behaving guests: They have to keep IRQs disabled at 4962 * least as long as the NMI handler runs. Otherwise we may 4963 * cause NMI nesting, maybe breaking the guest. But as this is 4964 * highly unlikely, we can live with the residual risk. 4965 */ 4966 vmx->loaded_vmcs->soft_vnmi_blocked = 1; 4967 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4968 } 4969 4970 ++vcpu->stat.nmi_injections; 4971 vmx->loaded_vmcs->nmi_known_unmasked = false; 4972 4973 if (vmx->rmode.vm86_active) { 4974 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0); 4975 return; 4976 } 4977 4978 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 4979 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); 4980 4981 vmx_clear_hlt(vcpu); 4982 } 4983 4984 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) 4985 { 4986 struct vcpu_vmx *vmx = to_vmx(vcpu); 4987 bool masked; 4988 4989 if (!enable_vnmi) 4990 return vmx->loaded_vmcs->soft_vnmi_blocked; 4991 if (vmx->loaded_vmcs->nmi_known_unmasked) 4992 return false; 4993 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; 4994 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4995 return masked; 4996 } 4997 4998 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 4999 { 5000 struct vcpu_vmx *vmx = to_vmx(vcpu); 5001 5002 if (!enable_vnmi) { 5003 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { 5004 vmx->loaded_vmcs->soft_vnmi_blocked = masked; 5005 vmx->loaded_vmcs->vnmi_blocked_time = 0; 5006 } 5007 } else { 5008 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 5009 if (masked) 5010 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5011 GUEST_INTR_STATE_NMI); 5012 else 5013 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, 5014 GUEST_INTR_STATE_NMI); 5015 } 5016 } 5017 5018 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu) 5019 { 5020 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 5021 return false; 5022 5023 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) 5024 return true; 5025 5026 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5027 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI | 5028 GUEST_INTR_STATE_NMI)); 5029 } 5030 5031 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 5032 { 5033 if (to_vmx(vcpu)->nested.nested_run_pending) 5034 return -EBUSY; 5035 5036 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 5037 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 5038 return -EBUSY; 5039 5040 return !vmx_nmi_blocked(vcpu); 5041 } 5042 5043 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu) 5044 { 5045 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 5046 return false; 5047 5048 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) || 5049 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5050 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); 5051 } 5052 5053 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 5054 { 5055 if (to_vmx(vcpu)->nested.nested_run_pending) 5056 return -EBUSY; 5057 5058 /* 5059 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 5060 * e.g. if the IRQ arrived asynchronously after checking nested events. 5061 */ 5062 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 5063 return -EBUSY; 5064 5065 return !vmx_interrupt_blocked(vcpu); 5066 } 5067 5068 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) 5069 { 5070 void __user *ret; 5071 5072 if (enable_unrestricted_guest) 5073 return 0; 5074 5075 mutex_lock(&kvm->slots_lock); 5076 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, 5077 PAGE_SIZE * 3); 5078 mutex_unlock(&kvm->slots_lock); 5079 5080 if (IS_ERR(ret)) 5081 return PTR_ERR(ret); 5082 5083 to_kvm_vmx(kvm)->tss_addr = addr; 5084 5085 return init_rmode_tss(kvm, ret); 5086 } 5087 5088 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 5089 { 5090 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; 5091 return 0; 5092 } 5093 5094 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) 5095 { 5096 switch (vec) { 5097 case BP_VECTOR: 5098 /* 5099 * Update instruction length as we may reinject the exception 5100 * from user space while in guest debugging mode. 5101 */ 5102 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = 5103 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 5104 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 5105 return false; 5106 fallthrough; 5107 case DB_VECTOR: 5108 return !(vcpu->guest_debug & 5109 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)); 5110 case DE_VECTOR: 5111 case OF_VECTOR: 5112 case BR_VECTOR: 5113 case UD_VECTOR: 5114 case DF_VECTOR: 5115 case SS_VECTOR: 5116 case GP_VECTOR: 5117 case MF_VECTOR: 5118 return true; 5119 } 5120 return false; 5121 } 5122 5123 static int handle_rmode_exception(struct kvm_vcpu *vcpu, 5124 int vec, u32 err_code) 5125 { 5126 /* 5127 * Instruction with address size override prefix opcode 0x67 5128 * Cause the #SS fault with 0 error code in VM86 mode. 5129 */ 5130 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { 5131 if (kvm_emulate_instruction(vcpu, 0)) { 5132 if (vcpu->arch.halt_request) { 5133 vcpu->arch.halt_request = 0; 5134 return kvm_emulate_halt_noskip(vcpu); 5135 } 5136 return 1; 5137 } 5138 return 0; 5139 } 5140 5141 /* 5142 * Forward all other exceptions that are valid in real mode. 5143 * FIXME: Breaks guest debugging in real mode, needs to be fixed with 5144 * the required debugging infrastructure rework. 5145 */ 5146 kvm_queue_exception(vcpu, vec); 5147 return 1; 5148 } 5149 5150 static int handle_machine_check(struct kvm_vcpu *vcpu) 5151 { 5152 /* handled by vmx_vcpu_run() */ 5153 return 1; 5154 } 5155 5156 /* 5157 * If the host has split lock detection disabled, then #AC is 5158 * unconditionally injected into the guest, which is the pre split lock 5159 * detection behaviour. 5160 * 5161 * If the host has split lock detection enabled then #AC is 5162 * only injected into the guest when: 5163 * - Guest CPL == 3 (user mode) 5164 * - Guest has #AC detection enabled in CR0 5165 * - Guest EFLAGS has AC bit set 5166 */ 5167 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu) 5168 { 5169 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 5170 return true; 5171 5172 return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) && 5173 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC); 5174 } 5175 5176 static int handle_exception_nmi(struct kvm_vcpu *vcpu) 5177 { 5178 struct vcpu_vmx *vmx = to_vmx(vcpu); 5179 struct kvm_run *kvm_run = vcpu->run; 5180 u32 intr_info, ex_no, error_code; 5181 unsigned long cr2, dr6; 5182 u32 vect_info; 5183 5184 vect_info = vmx->idt_vectoring_info; 5185 intr_info = vmx_get_intr_info(vcpu); 5186 5187 /* 5188 * Machine checks are handled by handle_exception_irqoff(), or by 5189 * vmx_vcpu_run() if a #MC occurs on VM-Entry. NMIs are handled by 5190 * vmx_vcpu_enter_exit(). 5191 */ 5192 if (is_machine_check(intr_info) || is_nmi(intr_info)) 5193 return 1; 5194 5195 /* 5196 * Queue the exception here instead of in handle_nm_fault_irqoff(). 5197 * This ensures the nested_vmx check is not skipped so vmexit can 5198 * be reflected to L1 (when it intercepts #NM) before reaching this 5199 * point. 5200 */ 5201 if (is_nm_fault(intr_info)) { 5202 kvm_queue_exception(vcpu, NM_VECTOR); 5203 return 1; 5204 } 5205 5206 if (is_invalid_opcode(intr_info)) 5207 return handle_ud(vcpu); 5208 5209 error_code = 0; 5210 if (intr_info & INTR_INFO_DELIVER_CODE_MASK) 5211 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 5212 5213 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { 5214 WARN_ON_ONCE(!enable_vmware_backdoor); 5215 5216 /* 5217 * VMware backdoor emulation on #GP interception only handles 5218 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero 5219 * error code on #GP. 5220 */ 5221 if (error_code) { 5222 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 5223 return 1; 5224 } 5225 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); 5226 } 5227 5228 /* 5229 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing 5230 * MMIO, it is better to report an internal error. 5231 * See the comments in vmx_handle_exit. 5232 */ 5233 if ((vect_info & VECTORING_INFO_VALID_MASK) && 5234 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { 5235 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5236 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; 5237 vcpu->run->internal.ndata = 4; 5238 vcpu->run->internal.data[0] = vect_info; 5239 vcpu->run->internal.data[1] = intr_info; 5240 vcpu->run->internal.data[2] = error_code; 5241 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu; 5242 return 0; 5243 } 5244 5245 if (is_page_fault(intr_info)) { 5246 cr2 = vmx_get_exit_qual(vcpu); 5247 if (enable_ept && !vcpu->arch.apf.host_apf_flags) { 5248 /* 5249 * EPT will cause page fault only if we need to 5250 * detect illegal GPAs. 5251 */ 5252 WARN_ON_ONCE(!allow_smaller_maxphyaddr); 5253 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code); 5254 return 1; 5255 } else 5256 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); 5257 } 5258 5259 ex_no = intr_info & INTR_INFO_VECTOR_MASK; 5260 5261 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) 5262 return handle_rmode_exception(vcpu, ex_no, error_code); 5263 5264 switch (ex_no) { 5265 case DB_VECTOR: 5266 dr6 = vmx_get_exit_qual(vcpu); 5267 if (!(vcpu->guest_debug & 5268 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { 5269 /* 5270 * If the #DB was due to ICEBP, a.k.a. INT1, skip the 5271 * instruction. ICEBP generates a trap-like #DB, but 5272 * despite its interception control being tied to #DB, 5273 * is an instruction intercept, i.e. the VM-Exit occurs 5274 * on the ICEBP itself. Use the inner "skip" helper to 5275 * avoid single-step #DB and MTF updates, as ICEBP is 5276 * higher priority. Note, skipping ICEBP still clears 5277 * STI and MOVSS blocking. 5278 * 5279 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS 5280 * if single-step is enabled in RFLAGS and STI or MOVSS 5281 * blocking is active, as the CPU doesn't set the bit 5282 * on VM-Exit due to #DB interception. VM-Entry has a 5283 * consistency check that a single-step #DB is pending 5284 * in this scenario as the previous instruction cannot 5285 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV 5286 * don't modify RFLAGS), therefore the one instruction 5287 * delay when activating single-step breakpoints must 5288 * have already expired. Note, the CPU sets/clears BS 5289 * as appropriate for all other VM-Exits types. 5290 */ 5291 if (is_icebp(intr_info)) 5292 WARN_ON(!skip_emulated_instruction(vcpu)); 5293 else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) && 5294 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5295 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS))) 5296 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 5297 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS); 5298 5299 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 5300 return 1; 5301 } 5302 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 5303 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); 5304 fallthrough; 5305 case BP_VECTOR: 5306 /* 5307 * Update instruction length as we may reinject #BP from 5308 * user space while in guest debugging mode. Reading it for 5309 * #DB as well causes no harm, it is not used in that case. 5310 */ 5311 vmx->vcpu.arch.event_exit_inst_len = 5312 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 5313 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5314 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5315 kvm_run->debug.arch.exception = ex_no; 5316 break; 5317 case AC_VECTOR: 5318 if (vmx_guest_inject_ac(vcpu)) { 5319 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); 5320 return 1; 5321 } 5322 5323 /* 5324 * Handle split lock. Depending on detection mode this will 5325 * either warn and disable split lock detection for this 5326 * task or force SIGBUS on it. 5327 */ 5328 if (handle_guest_split_lock(kvm_rip_read(vcpu))) 5329 return 1; 5330 fallthrough; 5331 default: 5332 kvm_run->exit_reason = KVM_EXIT_EXCEPTION; 5333 kvm_run->ex.exception = ex_no; 5334 kvm_run->ex.error_code = error_code; 5335 break; 5336 } 5337 return 0; 5338 } 5339 5340 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu) 5341 { 5342 ++vcpu->stat.irq_exits; 5343 return 1; 5344 } 5345 5346 static int handle_triple_fault(struct kvm_vcpu *vcpu) 5347 { 5348 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 5349 vcpu->mmio_needed = 0; 5350 return 0; 5351 } 5352 5353 static int handle_io(struct kvm_vcpu *vcpu) 5354 { 5355 unsigned long exit_qualification; 5356 int size, in, string; 5357 unsigned port; 5358 5359 exit_qualification = vmx_get_exit_qual(vcpu); 5360 string = (exit_qualification & 16) != 0; 5361 5362 ++vcpu->stat.io_exits; 5363 5364 if (string) 5365 return kvm_emulate_instruction(vcpu, 0); 5366 5367 port = exit_qualification >> 16; 5368 size = (exit_qualification & 7) + 1; 5369 in = (exit_qualification & 8) != 0; 5370 5371 return kvm_fast_pio(vcpu, size, port, in); 5372 } 5373 5374 static void 5375 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 5376 { 5377 /* 5378 * Patch in the VMCALL instruction: 5379 */ 5380 hypercall[0] = 0x0f; 5381 hypercall[1] = 0x01; 5382 hypercall[2] = 0xc1; 5383 } 5384 5385 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ 5386 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) 5387 { 5388 if (is_guest_mode(vcpu)) { 5389 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5390 unsigned long orig_val = val; 5391 5392 /* 5393 * We get here when L2 changed cr0 in a way that did not change 5394 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), 5395 * but did change L0 shadowed bits. So we first calculate the 5396 * effective cr0 value that L1 would like to write into the 5397 * hardware. It consists of the L2-owned bits from the new 5398 * value combined with the L1-owned bits from L1's guest_cr0. 5399 */ 5400 val = (val & ~vmcs12->cr0_guest_host_mask) | 5401 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); 5402 5403 if (kvm_set_cr0(vcpu, val)) 5404 return 1; 5405 vmcs_writel(CR0_READ_SHADOW, orig_val); 5406 return 0; 5407 } else { 5408 return kvm_set_cr0(vcpu, val); 5409 } 5410 } 5411 5412 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) 5413 { 5414 if (is_guest_mode(vcpu)) { 5415 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5416 unsigned long orig_val = val; 5417 5418 /* analogously to handle_set_cr0 */ 5419 val = (val & ~vmcs12->cr4_guest_host_mask) | 5420 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); 5421 if (kvm_set_cr4(vcpu, val)) 5422 return 1; 5423 vmcs_writel(CR4_READ_SHADOW, orig_val); 5424 return 0; 5425 } else 5426 return kvm_set_cr4(vcpu, val); 5427 } 5428 5429 static int handle_desc(struct kvm_vcpu *vcpu) 5430 { 5431 /* 5432 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this 5433 * and other code needs to be updated if UMIP can be guest owned. 5434 */ 5435 BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP); 5436 5437 WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP)); 5438 return kvm_emulate_instruction(vcpu, 0); 5439 } 5440 5441 static int handle_cr(struct kvm_vcpu *vcpu) 5442 { 5443 unsigned long exit_qualification, val; 5444 int cr; 5445 int reg; 5446 int err; 5447 int ret; 5448 5449 exit_qualification = vmx_get_exit_qual(vcpu); 5450 cr = exit_qualification & 15; 5451 reg = (exit_qualification >> 8) & 15; 5452 switch ((exit_qualification >> 4) & 3) { 5453 case 0: /* mov to cr */ 5454 val = kvm_register_read(vcpu, reg); 5455 trace_kvm_cr_write(cr, val); 5456 switch (cr) { 5457 case 0: 5458 err = handle_set_cr0(vcpu, val); 5459 return kvm_complete_insn_gp(vcpu, err); 5460 case 3: 5461 WARN_ON_ONCE(enable_unrestricted_guest); 5462 5463 err = kvm_set_cr3(vcpu, val); 5464 return kvm_complete_insn_gp(vcpu, err); 5465 case 4: 5466 err = handle_set_cr4(vcpu, val); 5467 return kvm_complete_insn_gp(vcpu, err); 5468 case 8: { 5469 u8 cr8_prev = kvm_get_cr8(vcpu); 5470 u8 cr8 = (u8)val; 5471 err = kvm_set_cr8(vcpu, cr8); 5472 ret = kvm_complete_insn_gp(vcpu, err); 5473 if (lapic_in_kernel(vcpu)) 5474 return ret; 5475 if (cr8_prev <= cr8) 5476 return ret; 5477 /* 5478 * TODO: we might be squashing a 5479 * KVM_GUESTDBG_SINGLESTEP-triggered 5480 * KVM_EXIT_DEBUG here. 5481 */ 5482 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 5483 return 0; 5484 } 5485 } 5486 break; 5487 case 2: /* clts */ 5488 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS"); 5489 return -EIO; 5490 case 1: /*mov from cr*/ 5491 switch (cr) { 5492 case 3: 5493 WARN_ON_ONCE(enable_unrestricted_guest); 5494 5495 val = kvm_read_cr3(vcpu); 5496 kvm_register_write(vcpu, reg, val); 5497 trace_kvm_cr_read(cr, val); 5498 return kvm_skip_emulated_instruction(vcpu); 5499 case 8: 5500 val = kvm_get_cr8(vcpu); 5501 kvm_register_write(vcpu, reg, val); 5502 trace_kvm_cr_read(cr, val); 5503 return kvm_skip_emulated_instruction(vcpu); 5504 } 5505 break; 5506 case 3: /* lmsw */ 5507 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; 5508 trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val)); 5509 kvm_lmsw(vcpu, val); 5510 5511 return kvm_skip_emulated_instruction(vcpu); 5512 default: 5513 break; 5514 } 5515 vcpu->run->exit_reason = 0; 5516 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", 5517 (int)(exit_qualification >> 4) & 3, cr); 5518 return 0; 5519 } 5520 5521 static int handle_dr(struct kvm_vcpu *vcpu) 5522 { 5523 unsigned long exit_qualification; 5524 int dr, dr7, reg; 5525 int err = 1; 5526 5527 exit_qualification = vmx_get_exit_qual(vcpu); 5528 dr = exit_qualification & DEBUG_REG_ACCESS_NUM; 5529 5530 /* First, if DR does not exist, trigger UD */ 5531 if (!kvm_require_dr(vcpu, dr)) 5532 return 1; 5533 5534 if (vmx_get_cpl(vcpu) > 0) 5535 goto out; 5536 5537 dr7 = vmcs_readl(GUEST_DR7); 5538 if (dr7 & DR7_GD) { 5539 /* 5540 * As the vm-exit takes precedence over the debug trap, we 5541 * need to emulate the latter, either for the host or the 5542 * guest debugging itself. 5543 */ 5544 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 5545 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW; 5546 vcpu->run->debug.arch.dr7 = dr7; 5547 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5548 vcpu->run->debug.arch.exception = DB_VECTOR; 5549 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 5550 return 0; 5551 } else { 5552 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD); 5553 return 1; 5554 } 5555 } 5556 5557 if (vcpu->guest_debug == 0) { 5558 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5559 5560 /* 5561 * No more DR vmexits; force a reload of the debug registers 5562 * and reenter on this instruction. The next vmexit will 5563 * retrieve the full state of the debug registers. 5564 */ 5565 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 5566 return 1; 5567 } 5568 5569 reg = DEBUG_REG_ACCESS_REG(exit_qualification); 5570 if (exit_qualification & TYPE_MOV_FROM_DR) { 5571 kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr)); 5572 err = 0; 5573 } else { 5574 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); 5575 } 5576 5577 out: 5578 return kvm_complete_insn_gp(vcpu, err); 5579 } 5580 5581 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 5582 { 5583 get_debugreg(vcpu->arch.db[0], 0); 5584 get_debugreg(vcpu->arch.db[1], 1); 5585 get_debugreg(vcpu->arch.db[2], 2); 5586 get_debugreg(vcpu->arch.db[3], 3); 5587 get_debugreg(vcpu->arch.dr6, 6); 5588 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); 5589 5590 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 5591 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5592 5593 /* 5594 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees 5595 * a stale dr6 from the guest. 5596 */ 5597 set_debugreg(DR6_RESERVED, 6); 5598 } 5599 5600 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) 5601 { 5602 vmcs_writel(GUEST_DR7, val); 5603 } 5604 5605 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) 5606 { 5607 kvm_apic_update_ppr(vcpu); 5608 return 1; 5609 } 5610 5611 static int handle_interrupt_window(struct kvm_vcpu *vcpu) 5612 { 5613 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 5614 5615 kvm_make_request(KVM_REQ_EVENT, vcpu); 5616 5617 ++vcpu->stat.irq_window_exits; 5618 return 1; 5619 } 5620 5621 static int handle_invlpg(struct kvm_vcpu *vcpu) 5622 { 5623 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5624 5625 kvm_mmu_invlpg(vcpu, exit_qualification); 5626 return kvm_skip_emulated_instruction(vcpu); 5627 } 5628 5629 static int handle_apic_access(struct kvm_vcpu *vcpu) 5630 { 5631 if (likely(fasteoi)) { 5632 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5633 int access_type, offset; 5634 5635 access_type = exit_qualification & APIC_ACCESS_TYPE; 5636 offset = exit_qualification & APIC_ACCESS_OFFSET; 5637 /* 5638 * Sane guest uses MOV to write EOI, with written value 5639 * not cared. So make a short-circuit here by avoiding 5640 * heavy instruction emulation. 5641 */ 5642 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && 5643 (offset == APIC_EOI)) { 5644 kvm_lapic_set_eoi(vcpu); 5645 return kvm_skip_emulated_instruction(vcpu); 5646 } 5647 } 5648 return kvm_emulate_instruction(vcpu, 0); 5649 } 5650 5651 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) 5652 { 5653 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5654 int vector = exit_qualification & 0xff; 5655 5656 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ 5657 kvm_apic_set_eoi_accelerated(vcpu, vector); 5658 return 1; 5659 } 5660 5661 static int handle_apic_write(struct kvm_vcpu *vcpu) 5662 { 5663 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5664 5665 /* 5666 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and 5667 * hardware has done any necessary aliasing, offset adjustments, etc... 5668 * for the access. I.e. the correct value has already been written to 5669 * the vAPIC page for the correct 16-byte chunk. KVM needs only to 5670 * retrieve the register value and emulate the access. 5671 */ 5672 u32 offset = exit_qualification & 0xff0; 5673 5674 kvm_apic_write_nodecode(vcpu, offset); 5675 return 1; 5676 } 5677 5678 static int handle_task_switch(struct kvm_vcpu *vcpu) 5679 { 5680 struct vcpu_vmx *vmx = to_vmx(vcpu); 5681 unsigned long exit_qualification; 5682 bool has_error_code = false; 5683 u32 error_code = 0; 5684 u16 tss_selector; 5685 int reason, type, idt_v, idt_index; 5686 5687 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); 5688 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); 5689 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); 5690 5691 exit_qualification = vmx_get_exit_qual(vcpu); 5692 5693 reason = (u32)exit_qualification >> 30; 5694 if (reason == TASK_SWITCH_GATE && idt_v) { 5695 switch (type) { 5696 case INTR_TYPE_NMI_INTR: 5697 vcpu->arch.nmi_injected = false; 5698 vmx_set_nmi_mask(vcpu, true); 5699 break; 5700 case INTR_TYPE_EXT_INTR: 5701 case INTR_TYPE_SOFT_INTR: 5702 kvm_clear_interrupt_queue(vcpu); 5703 break; 5704 case INTR_TYPE_HARD_EXCEPTION: 5705 if (vmx->idt_vectoring_info & 5706 VECTORING_INFO_DELIVER_CODE_MASK) { 5707 has_error_code = true; 5708 error_code = 5709 vmcs_read32(IDT_VECTORING_ERROR_CODE); 5710 } 5711 fallthrough; 5712 case INTR_TYPE_SOFT_EXCEPTION: 5713 kvm_clear_exception_queue(vcpu); 5714 break; 5715 default: 5716 break; 5717 } 5718 } 5719 tss_selector = exit_qualification; 5720 5721 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && 5722 type != INTR_TYPE_EXT_INTR && 5723 type != INTR_TYPE_NMI_INTR)) 5724 WARN_ON(!skip_emulated_instruction(vcpu)); 5725 5726 /* 5727 * TODO: What about debug traps on tss switch? 5728 * Are we supposed to inject them and update dr6? 5729 */ 5730 return kvm_task_switch(vcpu, tss_selector, 5731 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, 5732 reason, has_error_code, error_code); 5733 } 5734 5735 static int handle_ept_violation(struct kvm_vcpu *vcpu) 5736 { 5737 unsigned long exit_qualification; 5738 gpa_t gpa; 5739 u64 error_code; 5740 5741 exit_qualification = vmx_get_exit_qual(vcpu); 5742 5743 /* 5744 * EPT violation happened while executing iret from NMI, 5745 * "blocked by NMI" bit has to be set before next VM entry. 5746 * There are errata that may cause this bit to not be set: 5747 * AAK134, BY25. 5748 */ 5749 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5750 enable_vnmi && 5751 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5752 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); 5753 5754 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5755 trace_kvm_page_fault(vcpu, gpa, exit_qualification); 5756 5757 /* Is it a read fault? */ 5758 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) 5759 ? PFERR_USER_MASK : 0; 5760 /* Is it a write fault? */ 5761 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) 5762 ? PFERR_WRITE_MASK : 0; 5763 /* Is it a fetch fault? */ 5764 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) 5765 ? PFERR_FETCH_MASK : 0; 5766 /* ept page table entry is present? */ 5767 error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK) 5768 ? PFERR_PRESENT_MASK : 0; 5769 5770 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ? 5771 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; 5772 5773 vcpu->arch.exit_qualification = exit_qualification; 5774 5775 /* 5776 * Check that the GPA doesn't exceed physical memory limits, as that is 5777 * a guest page fault. We have to emulate the instruction here, because 5778 * if the illegal address is that of a paging structure, then 5779 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we 5780 * would also use advanced VM-exit information for EPT violations to 5781 * reconstruct the page fault error code. 5782 */ 5783 if (unlikely(allow_smaller_maxphyaddr && !kvm_vcpu_is_legal_gpa(vcpu, gpa))) 5784 return kvm_emulate_instruction(vcpu, 0); 5785 5786 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); 5787 } 5788 5789 static int handle_ept_misconfig(struct kvm_vcpu *vcpu) 5790 { 5791 gpa_t gpa; 5792 5793 if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0)) 5794 return 1; 5795 5796 /* 5797 * A nested guest cannot optimize MMIO vmexits, because we have an 5798 * nGPA here instead of the required GPA. 5799 */ 5800 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5801 if (!is_guest_mode(vcpu) && 5802 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { 5803 trace_kvm_fast_mmio(gpa); 5804 return kvm_skip_emulated_instruction(vcpu); 5805 } 5806 5807 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); 5808 } 5809 5810 static int handle_nmi_window(struct kvm_vcpu *vcpu) 5811 { 5812 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm)) 5813 return -EIO; 5814 5815 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 5816 ++vcpu->stat.nmi_window_exits; 5817 kvm_make_request(KVM_REQ_EVENT, vcpu); 5818 5819 return 1; 5820 } 5821 5822 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu) 5823 { 5824 struct vcpu_vmx *vmx = to_vmx(vcpu); 5825 5826 return vmx->emulation_required && !vmx->rmode.vm86_active && 5827 (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected); 5828 } 5829 5830 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) 5831 { 5832 struct vcpu_vmx *vmx = to_vmx(vcpu); 5833 bool intr_window_requested; 5834 unsigned count = 130; 5835 5836 intr_window_requested = exec_controls_get(vmx) & 5837 CPU_BASED_INTR_WINDOW_EXITING; 5838 5839 while (vmx->emulation_required && count-- != 0) { 5840 if (intr_window_requested && !vmx_interrupt_blocked(vcpu)) 5841 return handle_interrupt_window(&vmx->vcpu); 5842 5843 if (kvm_test_request(KVM_REQ_EVENT, vcpu)) 5844 return 1; 5845 5846 if (!kvm_emulate_instruction(vcpu, 0)) 5847 return 0; 5848 5849 if (vmx_emulation_required_with_pending_exception(vcpu)) { 5850 kvm_prepare_emulation_failure_exit(vcpu); 5851 return 0; 5852 } 5853 5854 if (vcpu->arch.halt_request) { 5855 vcpu->arch.halt_request = 0; 5856 return kvm_emulate_halt_noskip(vcpu); 5857 } 5858 5859 /* 5860 * Note, return 1 and not 0, vcpu_run() will invoke 5861 * xfer_to_guest_mode() which will create a proper return 5862 * code. 5863 */ 5864 if (__xfer_to_guest_mode_work_pending()) 5865 return 1; 5866 } 5867 5868 return 1; 5869 } 5870 5871 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu) 5872 { 5873 if (vmx_emulation_required_with_pending_exception(vcpu)) { 5874 kvm_prepare_emulation_failure_exit(vcpu); 5875 return 0; 5876 } 5877 5878 return 1; 5879 } 5880 5881 static void grow_ple_window(struct kvm_vcpu *vcpu) 5882 { 5883 struct vcpu_vmx *vmx = to_vmx(vcpu); 5884 unsigned int old = vmx->ple_window; 5885 5886 vmx->ple_window = __grow_ple_window(old, ple_window, 5887 ple_window_grow, 5888 ple_window_max); 5889 5890 if (vmx->ple_window != old) { 5891 vmx->ple_window_dirty = true; 5892 trace_kvm_ple_window_update(vcpu->vcpu_id, 5893 vmx->ple_window, old); 5894 } 5895 } 5896 5897 static void shrink_ple_window(struct kvm_vcpu *vcpu) 5898 { 5899 struct vcpu_vmx *vmx = to_vmx(vcpu); 5900 unsigned int old = vmx->ple_window; 5901 5902 vmx->ple_window = __shrink_ple_window(old, ple_window, 5903 ple_window_shrink, 5904 ple_window); 5905 5906 if (vmx->ple_window != old) { 5907 vmx->ple_window_dirty = true; 5908 trace_kvm_ple_window_update(vcpu->vcpu_id, 5909 vmx->ple_window, old); 5910 } 5911 } 5912 5913 /* 5914 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE 5915 * exiting, so only get here on cpu with PAUSE-Loop-Exiting. 5916 */ 5917 static int handle_pause(struct kvm_vcpu *vcpu) 5918 { 5919 if (!kvm_pause_in_guest(vcpu->kvm)) 5920 grow_ple_window(vcpu); 5921 5922 /* 5923 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" 5924 * VM-execution control is ignored if CPL > 0. OTOH, KVM 5925 * never set PAUSE_EXITING and just set PLE if supported, 5926 * so the vcpu must be CPL=0 if it gets a PAUSE exit. 5927 */ 5928 kvm_vcpu_on_spin(vcpu, true); 5929 return kvm_skip_emulated_instruction(vcpu); 5930 } 5931 5932 static int handle_monitor_trap(struct kvm_vcpu *vcpu) 5933 { 5934 return 1; 5935 } 5936 5937 static int handle_invpcid(struct kvm_vcpu *vcpu) 5938 { 5939 u32 vmx_instruction_info; 5940 unsigned long type; 5941 gva_t gva; 5942 struct { 5943 u64 pcid; 5944 u64 gla; 5945 } operand; 5946 int gpr_index; 5947 5948 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 5949 kvm_queue_exception(vcpu, UD_VECTOR); 5950 return 1; 5951 } 5952 5953 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5954 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info); 5955 type = kvm_register_read(vcpu, gpr_index); 5956 5957 /* According to the Intel instruction reference, the memory operand 5958 * is read even if it isn't needed (e.g., for type==all) 5959 */ 5960 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), 5961 vmx_instruction_info, false, 5962 sizeof(operand), &gva)) 5963 return 1; 5964 5965 return kvm_handle_invpcid(vcpu, type, gva); 5966 } 5967 5968 static int handle_pml_full(struct kvm_vcpu *vcpu) 5969 { 5970 unsigned long exit_qualification; 5971 5972 trace_kvm_pml_full(vcpu->vcpu_id); 5973 5974 exit_qualification = vmx_get_exit_qual(vcpu); 5975 5976 /* 5977 * PML buffer FULL happened while executing iret from NMI, 5978 * "blocked by NMI" bit has to be set before next VM entry. 5979 */ 5980 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5981 enable_vnmi && 5982 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5983 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5984 GUEST_INTR_STATE_NMI); 5985 5986 /* 5987 * PML buffer already flushed at beginning of VMEXIT. Nothing to do 5988 * here.., and there's no userspace involvement needed for PML. 5989 */ 5990 return 1; 5991 } 5992 5993 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu, 5994 bool force_immediate_exit) 5995 { 5996 struct vcpu_vmx *vmx = to_vmx(vcpu); 5997 5998 /* 5999 * In the *extremely* unlikely scenario that this is a spurious VM-Exit 6000 * due to the timer expiring while it was "soft" disabled, just eat the 6001 * exit and re-enter the guest. 6002 */ 6003 if (unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) 6004 return EXIT_FASTPATH_REENTER_GUEST; 6005 6006 /* 6007 * If the timer expired because KVM used it to force an immediate exit, 6008 * then mission accomplished. 6009 */ 6010 if (force_immediate_exit) 6011 return EXIT_FASTPATH_EXIT_HANDLED; 6012 6013 /* 6014 * If L2 is active, go down the slow path as emulating the guest timer 6015 * expiration likely requires synthesizing a nested VM-Exit. 6016 */ 6017 if (is_guest_mode(vcpu)) 6018 return EXIT_FASTPATH_NONE; 6019 6020 kvm_lapic_expired_hv_timer(vcpu); 6021 return EXIT_FASTPATH_REENTER_GUEST; 6022 } 6023 6024 static int handle_preemption_timer(struct kvm_vcpu *vcpu) 6025 { 6026 /* 6027 * This non-fastpath handler is reached if and only if the preemption 6028 * timer was being used to emulate a guest timer while L2 is active. 6029 * All other scenarios are supposed to be handled in the fastpath. 6030 */ 6031 WARN_ON_ONCE(!is_guest_mode(vcpu)); 6032 kvm_lapic_expired_hv_timer(vcpu); 6033 return 1; 6034 } 6035 6036 /* 6037 * When nested=0, all VMX instruction VM Exits filter here. The handlers 6038 * are overwritten by nested_vmx_setup() when nested=1. 6039 */ 6040 static int handle_vmx_instruction(struct kvm_vcpu *vcpu) 6041 { 6042 kvm_queue_exception(vcpu, UD_VECTOR); 6043 return 1; 6044 } 6045 6046 #ifndef CONFIG_X86_SGX_KVM 6047 static int handle_encls(struct kvm_vcpu *vcpu) 6048 { 6049 /* 6050 * SGX virtualization is disabled. There is no software enable bit for 6051 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent 6052 * the guest from executing ENCLS (when SGX is supported by hardware). 6053 */ 6054 kvm_queue_exception(vcpu, UD_VECTOR); 6055 return 1; 6056 } 6057 #endif /* CONFIG_X86_SGX_KVM */ 6058 6059 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu) 6060 { 6061 /* 6062 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK 6063 * VM-Exits. Unconditionally set the flag here and leave the handling to 6064 * vmx_handle_exit(). 6065 */ 6066 to_vmx(vcpu)->exit_reason.bus_lock_detected = true; 6067 return 1; 6068 } 6069 6070 static int handle_notify(struct kvm_vcpu *vcpu) 6071 { 6072 unsigned long exit_qual = vmx_get_exit_qual(vcpu); 6073 bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID; 6074 6075 ++vcpu->stat.notify_window_exits; 6076 6077 /* 6078 * Notify VM exit happened while executing iret from NMI, 6079 * "blocked by NMI" bit has to be set before next VM entry. 6080 */ 6081 if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI)) 6082 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 6083 GUEST_INTR_STATE_NMI); 6084 6085 if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER || 6086 context_invalid) { 6087 vcpu->run->exit_reason = KVM_EXIT_NOTIFY; 6088 vcpu->run->notify.flags = context_invalid ? 6089 KVM_NOTIFY_CONTEXT_INVALID : 0; 6090 return 0; 6091 } 6092 6093 return 1; 6094 } 6095 6096 /* 6097 * The exit handlers return 1 if the exit was handled fully and guest execution 6098 * may resume. Otherwise they set the kvm_run parameter to indicate what needs 6099 * to be done to userspace and return 0. 6100 */ 6101 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { 6102 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi, 6103 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, 6104 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, 6105 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, 6106 [EXIT_REASON_IO_INSTRUCTION] = handle_io, 6107 [EXIT_REASON_CR_ACCESS] = handle_cr, 6108 [EXIT_REASON_DR_ACCESS] = handle_dr, 6109 [EXIT_REASON_CPUID] = kvm_emulate_cpuid, 6110 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr, 6111 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr, 6112 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window, 6113 [EXIT_REASON_HLT] = kvm_emulate_halt, 6114 [EXIT_REASON_INVD] = kvm_emulate_invd, 6115 [EXIT_REASON_INVLPG] = handle_invlpg, 6116 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc, 6117 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall, 6118 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, 6119 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, 6120 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, 6121 [EXIT_REASON_VMPTRST] = handle_vmx_instruction, 6122 [EXIT_REASON_VMREAD] = handle_vmx_instruction, 6123 [EXIT_REASON_VMRESUME] = handle_vmx_instruction, 6124 [EXIT_REASON_VMWRITE] = handle_vmx_instruction, 6125 [EXIT_REASON_VMOFF] = handle_vmx_instruction, 6126 [EXIT_REASON_VMON] = handle_vmx_instruction, 6127 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, 6128 [EXIT_REASON_APIC_ACCESS] = handle_apic_access, 6129 [EXIT_REASON_APIC_WRITE] = handle_apic_write, 6130 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, 6131 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd, 6132 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv, 6133 [EXIT_REASON_TASK_SWITCH] = handle_task_switch, 6134 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, 6135 [EXIT_REASON_GDTR_IDTR] = handle_desc, 6136 [EXIT_REASON_LDTR_TR] = handle_desc, 6137 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, 6138 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, 6139 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, 6140 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait, 6141 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, 6142 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor, 6143 [EXIT_REASON_INVEPT] = handle_vmx_instruction, 6144 [EXIT_REASON_INVVPID] = handle_vmx_instruction, 6145 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op, 6146 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op, 6147 [EXIT_REASON_PML_FULL] = handle_pml_full, 6148 [EXIT_REASON_INVPCID] = handle_invpcid, 6149 [EXIT_REASON_VMFUNC] = handle_vmx_instruction, 6150 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, 6151 [EXIT_REASON_ENCLS] = handle_encls, 6152 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit, 6153 [EXIT_REASON_NOTIFY] = handle_notify, 6154 }; 6155 6156 static const int kvm_vmx_max_exit_handlers = 6157 ARRAY_SIZE(kvm_vmx_exit_handlers); 6158 6159 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 6160 u64 *info1, u64 *info2, 6161 u32 *intr_info, u32 *error_code) 6162 { 6163 struct vcpu_vmx *vmx = to_vmx(vcpu); 6164 6165 *reason = vmx->exit_reason.full; 6166 *info1 = vmx_get_exit_qual(vcpu); 6167 if (!(vmx->exit_reason.failed_vmentry)) { 6168 *info2 = vmx->idt_vectoring_info; 6169 *intr_info = vmx_get_intr_info(vcpu); 6170 if (is_exception_with_error_code(*intr_info)) 6171 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 6172 else 6173 *error_code = 0; 6174 } else { 6175 *info2 = 0; 6176 *intr_info = 0; 6177 *error_code = 0; 6178 } 6179 } 6180 6181 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) 6182 { 6183 if (vmx->pml_pg) { 6184 __free_page(vmx->pml_pg); 6185 vmx->pml_pg = NULL; 6186 } 6187 } 6188 6189 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) 6190 { 6191 struct vcpu_vmx *vmx = to_vmx(vcpu); 6192 u64 *pml_buf; 6193 u16 pml_idx; 6194 6195 pml_idx = vmcs_read16(GUEST_PML_INDEX); 6196 6197 /* Do nothing if PML buffer is empty */ 6198 if (pml_idx == (PML_ENTITY_NUM - 1)) 6199 return; 6200 6201 /* PML index always points to next available PML buffer entity */ 6202 if (pml_idx >= PML_ENTITY_NUM) 6203 pml_idx = 0; 6204 else 6205 pml_idx++; 6206 6207 pml_buf = page_address(vmx->pml_pg); 6208 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { 6209 u64 gpa; 6210 6211 gpa = pml_buf[pml_idx]; 6212 WARN_ON(gpa & (PAGE_SIZE - 1)); 6213 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 6214 } 6215 6216 /* reset PML index */ 6217 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 6218 } 6219 6220 static void vmx_dump_sel(char *name, uint32_t sel) 6221 { 6222 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", 6223 name, vmcs_read16(sel), 6224 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), 6225 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), 6226 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); 6227 } 6228 6229 static void vmx_dump_dtsel(char *name, uint32_t limit) 6230 { 6231 pr_err("%s limit=0x%08x, base=0x%016lx\n", 6232 name, vmcs_read32(limit), 6233 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); 6234 } 6235 6236 static void vmx_dump_msrs(char *name, struct vmx_msrs *m) 6237 { 6238 unsigned int i; 6239 struct vmx_msr_entry *e; 6240 6241 pr_err("MSR %s:\n", name); 6242 for (i = 0, e = m->val; i < m->nr; ++i, ++e) 6243 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value); 6244 } 6245 6246 void dump_vmcs(struct kvm_vcpu *vcpu) 6247 { 6248 struct vcpu_vmx *vmx = to_vmx(vcpu); 6249 u32 vmentry_ctl, vmexit_ctl; 6250 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control; 6251 u64 tertiary_exec_control; 6252 unsigned long cr4; 6253 int efer_slot; 6254 6255 if (!dump_invalid_vmcs) { 6256 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n"); 6257 return; 6258 } 6259 6260 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); 6261 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); 6262 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); 6263 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); 6264 cr4 = vmcs_readl(GUEST_CR4); 6265 6266 if (cpu_has_secondary_exec_ctrls()) 6267 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); 6268 else 6269 secondary_exec_control = 0; 6270 6271 if (cpu_has_tertiary_exec_ctrls()) 6272 tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL); 6273 else 6274 tertiary_exec_control = 0; 6275 6276 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n", 6277 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu); 6278 pr_err("*** Guest State ***\n"); 6279 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 6280 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), 6281 vmcs_readl(CR0_GUEST_HOST_MASK)); 6282 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 6283 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); 6284 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); 6285 if (cpu_has_vmx_ept()) { 6286 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", 6287 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); 6288 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", 6289 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); 6290 } 6291 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", 6292 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); 6293 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", 6294 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); 6295 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 6296 vmcs_readl(GUEST_SYSENTER_ESP), 6297 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); 6298 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); 6299 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); 6300 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); 6301 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); 6302 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); 6303 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); 6304 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); 6305 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); 6306 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); 6307 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); 6308 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER); 6309 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER) 6310 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER)); 6311 else if (efer_slot >= 0) 6312 pr_err("EFER= 0x%016llx (autoload)\n", 6313 vmx->msr_autoload.guest.val[efer_slot].value); 6314 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE) 6315 pr_err("EFER= 0x%016llx (effective)\n", 6316 vcpu->arch.efer | (EFER_LMA | EFER_LME)); 6317 else 6318 pr_err("EFER= 0x%016llx (effective)\n", 6319 vcpu->arch.efer & ~(EFER_LMA | EFER_LME)); 6320 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT) 6321 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT)); 6322 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", 6323 vmcs_read64(GUEST_IA32_DEBUGCTL), 6324 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); 6325 if (cpu_has_load_perf_global_ctrl() && 6326 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) 6327 pr_err("PerfGlobCtl = 0x%016llx\n", 6328 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); 6329 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) 6330 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); 6331 pr_err("Interruptibility = %08x ActivityState = %08x\n", 6332 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), 6333 vmcs_read32(GUEST_ACTIVITY_STATE)); 6334 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) 6335 pr_err("InterruptStatus = %04x\n", 6336 vmcs_read16(GUEST_INTR_STATUS)); 6337 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0) 6338 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest); 6339 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0) 6340 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest); 6341 6342 pr_err("*** Host State ***\n"); 6343 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", 6344 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); 6345 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", 6346 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), 6347 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), 6348 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), 6349 vmcs_read16(HOST_TR_SELECTOR)); 6350 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", 6351 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), 6352 vmcs_readl(HOST_TR_BASE)); 6353 pr_err("GDTBase=%016lx IDTBase=%016lx\n", 6354 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); 6355 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", 6356 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), 6357 vmcs_readl(HOST_CR4)); 6358 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 6359 vmcs_readl(HOST_IA32_SYSENTER_ESP), 6360 vmcs_read32(HOST_IA32_SYSENTER_CS), 6361 vmcs_readl(HOST_IA32_SYSENTER_EIP)); 6362 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER) 6363 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER)); 6364 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT) 6365 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT)); 6366 if (cpu_has_load_perf_global_ctrl() && 6367 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) 6368 pr_err("PerfGlobCtl = 0x%016llx\n", 6369 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); 6370 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0) 6371 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host); 6372 6373 pr_err("*** Control State ***\n"); 6374 pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n", 6375 cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control); 6376 pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n", 6377 pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl); 6378 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", 6379 vmcs_read32(EXCEPTION_BITMAP), 6380 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), 6381 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); 6382 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", 6383 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 6384 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), 6385 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); 6386 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", 6387 vmcs_read32(VM_EXIT_INTR_INFO), 6388 vmcs_read32(VM_EXIT_INTR_ERROR_CODE), 6389 vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); 6390 pr_err(" reason=%08x qualification=%016lx\n", 6391 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); 6392 pr_err("IDTVectoring: info=%08x errcode=%08x\n", 6393 vmcs_read32(IDT_VECTORING_INFO_FIELD), 6394 vmcs_read32(IDT_VECTORING_ERROR_CODE)); 6395 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); 6396 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) 6397 pr_err("TSC Multiplier = 0x%016llx\n", 6398 vmcs_read64(TSC_MULTIPLIER)); 6399 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) { 6400 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { 6401 u16 status = vmcs_read16(GUEST_INTR_STATUS); 6402 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff); 6403 } 6404 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); 6405 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) 6406 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR)); 6407 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR)); 6408 } 6409 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) 6410 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); 6411 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) 6412 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); 6413 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) 6414 pr_err("PLE Gap=%08x Window=%08x\n", 6415 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); 6416 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) 6417 pr_err("Virtual processor ID = 0x%04x\n", 6418 vmcs_read16(VIRTUAL_PROCESSOR_ID)); 6419 } 6420 6421 /* 6422 * The guest has exited. See if we can fix it or if we need userspace 6423 * assistance. 6424 */ 6425 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6426 { 6427 struct vcpu_vmx *vmx = to_vmx(vcpu); 6428 union vmx_exit_reason exit_reason = vmx->exit_reason; 6429 u32 vectoring_info = vmx->idt_vectoring_info; 6430 u16 exit_handler_index; 6431 6432 /* 6433 * Flush logged GPAs PML buffer, this will make dirty_bitmap more 6434 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before 6435 * querying dirty_bitmap, we only need to kick all vcpus out of guest 6436 * mode as if vcpus is in root mode, the PML buffer must has been 6437 * flushed already. Note, PML is never enabled in hardware while 6438 * running L2. 6439 */ 6440 if (enable_pml && !is_guest_mode(vcpu)) 6441 vmx_flush_pml_buffer(vcpu); 6442 6443 /* 6444 * KVM should never reach this point with a pending nested VM-Enter. 6445 * More specifically, short-circuiting VM-Entry to emulate L2 due to 6446 * invalid guest state should never happen as that means KVM knowingly 6447 * allowed a nested VM-Enter with an invalid vmcs12. More below. 6448 */ 6449 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm)) 6450 return -EIO; 6451 6452 if (is_guest_mode(vcpu)) { 6453 /* 6454 * PML is never enabled when running L2, bail immediately if a 6455 * PML full exit occurs as something is horribly wrong. 6456 */ 6457 if (exit_reason.basic == EXIT_REASON_PML_FULL) 6458 goto unexpected_vmexit; 6459 6460 /* 6461 * The host physical addresses of some pages of guest memory 6462 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC 6463 * Page). The CPU may write to these pages via their host 6464 * physical address while L2 is running, bypassing any 6465 * address-translation-based dirty tracking (e.g. EPT write 6466 * protection). 6467 * 6468 * Mark them dirty on every exit from L2 to prevent them from 6469 * getting out of sync with dirty tracking. 6470 */ 6471 nested_mark_vmcs12_pages_dirty(vcpu); 6472 6473 /* 6474 * Synthesize a triple fault if L2 state is invalid. In normal 6475 * operation, nested VM-Enter rejects any attempt to enter L2 6476 * with invalid state. However, those checks are skipped if 6477 * state is being stuffed via RSM or KVM_SET_NESTED_STATE. If 6478 * L2 state is invalid, it means either L1 modified SMRAM state 6479 * or userspace provided bad state. Synthesize TRIPLE_FAULT as 6480 * doing so is architecturally allowed in the RSM case, and is 6481 * the least awful solution for the userspace case without 6482 * risking false positives. 6483 */ 6484 if (vmx->emulation_required) { 6485 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0); 6486 return 1; 6487 } 6488 6489 if (nested_vmx_reflect_vmexit(vcpu)) 6490 return 1; 6491 } 6492 6493 /* If guest state is invalid, start emulating. L2 is handled above. */ 6494 if (vmx->emulation_required) 6495 return handle_invalid_guest_state(vcpu); 6496 6497 if (exit_reason.failed_vmentry) { 6498 dump_vmcs(vcpu); 6499 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6500 vcpu->run->fail_entry.hardware_entry_failure_reason 6501 = exit_reason.full; 6502 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6503 return 0; 6504 } 6505 6506 if (unlikely(vmx->fail)) { 6507 dump_vmcs(vcpu); 6508 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6509 vcpu->run->fail_entry.hardware_entry_failure_reason 6510 = vmcs_read32(VM_INSTRUCTION_ERROR); 6511 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6512 return 0; 6513 } 6514 6515 /* 6516 * Note: 6517 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by 6518 * delivery event since it indicates guest is accessing MMIO. 6519 * The vm-exit can be triggered again after return to guest that 6520 * will cause infinite loop. 6521 */ 6522 if ((vectoring_info & VECTORING_INFO_VALID_MASK) && 6523 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI && 6524 exit_reason.basic != EXIT_REASON_EPT_VIOLATION && 6525 exit_reason.basic != EXIT_REASON_PML_FULL && 6526 exit_reason.basic != EXIT_REASON_APIC_ACCESS && 6527 exit_reason.basic != EXIT_REASON_TASK_SWITCH && 6528 exit_reason.basic != EXIT_REASON_NOTIFY)) { 6529 int ndata = 3; 6530 6531 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6532 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; 6533 vcpu->run->internal.data[0] = vectoring_info; 6534 vcpu->run->internal.data[1] = exit_reason.full; 6535 vcpu->run->internal.data[2] = vmx_get_exit_qual(vcpu); 6536 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) { 6537 vcpu->run->internal.data[ndata++] = 6538 vmcs_read64(GUEST_PHYSICAL_ADDRESS); 6539 } 6540 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu; 6541 vcpu->run->internal.ndata = ndata; 6542 return 0; 6543 } 6544 6545 if (unlikely(!enable_vnmi && 6546 vmx->loaded_vmcs->soft_vnmi_blocked)) { 6547 if (!vmx_interrupt_blocked(vcpu)) { 6548 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6549 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && 6550 vcpu->arch.nmi_pending) { 6551 /* 6552 * This CPU don't support us in finding the end of an 6553 * NMI-blocked window if the guest runs with IRQs 6554 * disabled. So we pull the trigger after 1 s of 6555 * futile waiting, but inform the user about this. 6556 */ 6557 printk(KERN_WARNING "%s: Breaking out of NMI-blocked " 6558 "state on VCPU %d after 1 s timeout\n", 6559 __func__, vcpu->vcpu_id); 6560 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6561 } 6562 } 6563 6564 if (exit_fastpath != EXIT_FASTPATH_NONE) 6565 return 1; 6566 6567 if (exit_reason.basic >= kvm_vmx_max_exit_handlers) 6568 goto unexpected_vmexit; 6569 #ifdef CONFIG_MITIGATION_RETPOLINE 6570 if (exit_reason.basic == EXIT_REASON_MSR_WRITE) 6571 return kvm_emulate_wrmsr(vcpu); 6572 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER) 6573 return handle_preemption_timer(vcpu); 6574 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW) 6575 return handle_interrupt_window(vcpu); 6576 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6577 return handle_external_interrupt(vcpu); 6578 else if (exit_reason.basic == EXIT_REASON_HLT) 6579 return kvm_emulate_halt(vcpu); 6580 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) 6581 return handle_ept_misconfig(vcpu); 6582 #endif 6583 6584 exit_handler_index = array_index_nospec((u16)exit_reason.basic, 6585 kvm_vmx_max_exit_handlers); 6586 if (!kvm_vmx_exit_handlers[exit_handler_index]) 6587 goto unexpected_vmexit; 6588 6589 return kvm_vmx_exit_handlers[exit_handler_index](vcpu); 6590 6591 unexpected_vmexit: 6592 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", 6593 exit_reason.full); 6594 dump_vmcs(vcpu); 6595 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6596 vcpu->run->internal.suberror = 6597 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 6598 vcpu->run->internal.ndata = 2; 6599 vcpu->run->internal.data[0] = exit_reason.full; 6600 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 6601 return 0; 6602 } 6603 6604 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6605 { 6606 int ret = __vmx_handle_exit(vcpu, exit_fastpath); 6607 6608 /* 6609 * Exit to user space when bus lock detected to inform that there is 6610 * a bus lock in guest. 6611 */ 6612 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) { 6613 if (ret > 0) 6614 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; 6615 6616 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; 6617 return 0; 6618 } 6619 return ret; 6620 } 6621 6622 /* 6623 * Software based L1D cache flush which is used when microcode providing 6624 * the cache control MSR is not loaded. 6625 * 6626 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to 6627 * flush it is required to read in 64 KiB because the replacement algorithm 6628 * is not exactly LRU. This could be sized at runtime via topology 6629 * information but as all relevant affected CPUs have 32KiB L1D cache size 6630 * there is no point in doing so. 6631 */ 6632 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu) 6633 { 6634 int size = PAGE_SIZE << L1D_CACHE_ORDER; 6635 6636 /* 6637 * This code is only executed when the flush mode is 'cond' or 6638 * 'always' 6639 */ 6640 if (static_branch_likely(&vmx_l1d_flush_cond)) { 6641 bool flush_l1d; 6642 6643 /* 6644 * Clear the per-vcpu flush bit, it gets set again 6645 * either from vcpu_run() or from one of the unsafe 6646 * VMEXIT handlers. 6647 */ 6648 flush_l1d = vcpu->arch.l1tf_flush_l1d; 6649 vcpu->arch.l1tf_flush_l1d = false; 6650 6651 /* 6652 * Clear the per-cpu flush bit, it gets set again from 6653 * the interrupt handlers. 6654 */ 6655 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); 6656 kvm_clear_cpu_l1tf_flush_l1d(); 6657 6658 if (!flush_l1d) 6659 return; 6660 } 6661 6662 vcpu->stat.l1d_flush++; 6663 6664 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { 6665 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 6666 return; 6667 } 6668 6669 asm volatile( 6670 /* First ensure the pages are in the TLB */ 6671 "xorl %%eax, %%eax\n" 6672 ".Lpopulate_tlb:\n\t" 6673 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6674 "addl $4096, %%eax\n\t" 6675 "cmpl %%eax, %[size]\n\t" 6676 "jne .Lpopulate_tlb\n\t" 6677 "xorl %%eax, %%eax\n\t" 6678 "cpuid\n\t" 6679 /* Now fill the cache */ 6680 "xorl %%eax, %%eax\n" 6681 ".Lfill_cache:\n" 6682 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6683 "addl $64, %%eax\n\t" 6684 "cmpl %%eax, %[size]\n\t" 6685 "jne .Lfill_cache\n\t" 6686 "lfence\n" 6687 :: [flush_pages] "r" (vmx_l1d_flush_pages), 6688 [size] "r" (size) 6689 : "eax", "ebx", "ecx", "edx"); 6690 } 6691 6692 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 6693 { 6694 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 6695 int tpr_threshold; 6696 6697 if (is_guest_mode(vcpu) && 6698 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) 6699 return; 6700 6701 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr; 6702 if (is_guest_mode(vcpu)) 6703 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold; 6704 else 6705 vmcs_write32(TPR_THRESHOLD, tpr_threshold); 6706 } 6707 6708 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) 6709 { 6710 struct vcpu_vmx *vmx = to_vmx(vcpu); 6711 u32 sec_exec_control; 6712 6713 if (!lapic_in_kernel(vcpu)) 6714 return; 6715 6716 if (!flexpriority_enabled && 6717 !cpu_has_vmx_virtualize_x2apic_mode()) 6718 return; 6719 6720 /* Postpone execution until vmcs01 is the current VMCS. */ 6721 if (is_guest_mode(vcpu)) { 6722 vmx->nested.change_vmcs01_virtual_apic_mode = true; 6723 return; 6724 } 6725 6726 sec_exec_control = secondary_exec_controls_get(vmx); 6727 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 6728 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); 6729 6730 switch (kvm_get_apic_mode(vcpu)) { 6731 case LAPIC_MODE_INVALID: 6732 WARN_ONCE(true, "Invalid local APIC state"); 6733 break; 6734 case LAPIC_MODE_DISABLED: 6735 break; 6736 case LAPIC_MODE_XAPIC: 6737 if (flexpriority_enabled) { 6738 sec_exec_control |= 6739 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 6740 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6741 6742 /* 6743 * Flush the TLB, reloading the APIC access page will 6744 * only do so if its physical address has changed, but 6745 * the guest may have inserted a non-APIC mapping into 6746 * the TLB while the APIC access page was disabled. 6747 */ 6748 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 6749 } 6750 break; 6751 case LAPIC_MODE_X2APIC: 6752 if (cpu_has_vmx_virtualize_x2apic_mode()) 6753 sec_exec_control |= 6754 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 6755 break; 6756 } 6757 secondary_exec_controls_set(vmx, sec_exec_control); 6758 6759 vmx_update_msr_bitmap_x2apic(vcpu); 6760 } 6761 6762 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu) 6763 { 6764 const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT; 6765 struct kvm *kvm = vcpu->kvm; 6766 struct kvm_memslots *slots = kvm_memslots(kvm); 6767 struct kvm_memory_slot *slot; 6768 unsigned long mmu_seq; 6769 kvm_pfn_t pfn; 6770 6771 /* Defer reload until vmcs01 is the current VMCS. */ 6772 if (is_guest_mode(vcpu)) { 6773 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true; 6774 return; 6775 } 6776 6777 if (!(secondary_exec_controls_get(to_vmx(vcpu)) & 6778 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 6779 return; 6780 6781 /* 6782 * Explicitly grab the memslot using KVM's internal slot ID to ensure 6783 * KVM doesn't unintentionally grab a userspace memslot. It _should_ 6784 * be impossible for userspace to create a memslot for the APIC when 6785 * APICv is enabled, but paranoia won't hurt in this case. 6786 */ 6787 slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT); 6788 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 6789 return; 6790 6791 /* 6792 * Ensure that the mmu_notifier sequence count is read before KVM 6793 * retrieves the pfn from the primary MMU. Note, the memslot is 6794 * protected by SRCU, not the mmu_notifier. Pairs with the smp_wmb() 6795 * in kvm_mmu_invalidate_end(). 6796 */ 6797 mmu_seq = kvm->mmu_invalidate_seq; 6798 smp_rmb(); 6799 6800 /* 6801 * No need to retry if the memslot does not exist or is invalid. KVM 6802 * controls the APIC-access page memslot, and only deletes the memslot 6803 * if APICv is permanently inhibited, i.e. the memslot won't reappear. 6804 */ 6805 pfn = gfn_to_pfn_memslot(slot, gfn); 6806 if (is_error_noslot_pfn(pfn)) 6807 return; 6808 6809 read_lock(&vcpu->kvm->mmu_lock); 6810 if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn)) { 6811 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6812 read_unlock(&vcpu->kvm->mmu_lock); 6813 goto out; 6814 } 6815 6816 vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn)); 6817 read_unlock(&vcpu->kvm->mmu_lock); 6818 6819 /* 6820 * No need for a manual TLB flush at this point, KVM has already done a 6821 * flush if there were SPTEs pointing at the previous page. 6822 */ 6823 out: 6824 /* 6825 * Do not pin apic access page in memory, the MMU notifier 6826 * will call us again if it is migrated or swapped out. 6827 */ 6828 kvm_release_pfn_clean(pfn); 6829 } 6830 6831 static void vmx_hwapic_isr_update(int max_isr) 6832 { 6833 u16 status; 6834 u8 old; 6835 6836 if (max_isr == -1) 6837 max_isr = 0; 6838 6839 status = vmcs_read16(GUEST_INTR_STATUS); 6840 old = status >> 8; 6841 if (max_isr != old) { 6842 status &= 0xff; 6843 status |= max_isr << 8; 6844 vmcs_write16(GUEST_INTR_STATUS, status); 6845 } 6846 } 6847 6848 static void vmx_set_rvi(int vector) 6849 { 6850 u16 status; 6851 u8 old; 6852 6853 if (vector == -1) 6854 vector = 0; 6855 6856 status = vmcs_read16(GUEST_INTR_STATUS); 6857 old = (u8)status & 0xff; 6858 if ((u8)vector != old) { 6859 status &= ~0xff; 6860 status |= (u8)vector; 6861 vmcs_write16(GUEST_INTR_STATUS, status); 6862 } 6863 } 6864 6865 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) 6866 { 6867 /* 6868 * When running L2, updating RVI is only relevant when 6869 * vmcs12 virtual-interrupt-delivery enabled. 6870 * However, it can be enabled only when L1 also 6871 * intercepts external-interrupts and in that case 6872 * we should not update vmcs02 RVI but instead intercept 6873 * interrupt. Therefore, do nothing when running L2. 6874 */ 6875 if (!is_guest_mode(vcpu)) 6876 vmx_set_rvi(max_irr); 6877 } 6878 6879 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) 6880 { 6881 struct vcpu_vmx *vmx = to_vmx(vcpu); 6882 int max_irr; 6883 bool got_posted_interrupt; 6884 6885 if (KVM_BUG_ON(!enable_apicv, vcpu->kvm)) 6886 return -EIO; 6887 6888 if (pi_test_on(&vmx->pi_desc)) { 6889 pi_clear_on(&vmx->pi_desc); 6890 /* 6891 * IOMMU can write to PID.ON, so the barrier matters even on UP. 6892 * But on x86 this is just a compiler barrier anyway. 6893 */ 6894 smp_mb__after_atomic(); 6895 got_posted_interrupt = 6896 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); 6897 } else { 6898 max_irr = kvm_lapic_find_highest_irr(vcpu); 6899 got_posted_interrupt = false; 6900 } 6901 6902 /* 6903 * Newly recognized interrupts are injected via either virtual interrupt 6904 * delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is 6905 * disabled in two cases: 6906 * 6907 * 1) If L2 is running and the vCPU has a new pending interrupt. If L1 6908 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a 6909 * VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected 6910 * into L2, but KVM doesn't use virtual interrupt delivery to inject 6911 * interrupts into L2, and so KVM_REQ_EVENT is again needed. 6912 * 6913 * 2) If APICv is disabled for this vCPU, assigned devices may still 6914 * attempt to post interrupts. The posted interrupt vector will cause 6915 * a VM-Exit and the subsequent entry will call sync_pir_to_irr. 6916 */ 6917 if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu)) 6918 vmx_set_rvi(max_irr); 6919 else if (got_posted_interrupt) 6920 kvm_make_request(KVM_REQ_EVENT, vcpu); 6921 6922 return max_irr; 6923 } 6924 6925 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) 6926 { 6927 if (!kvm_vcpu_apicv_active(vcpu)) 6928 return; 6929 6930 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); 6931 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); 6932 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); 6933 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); 6934 } 6935 6936 static void vmx_apicv_pre_state_restore(struct kvm_vcpu *vcpu) 6937 { 6938 struct vcpu_vmx *vmx = to_vmx(vcpu); 6939 6940 pi_clear_on(&vmx->pi_desc); 6941 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); 6942 } 6943 6944 void vmx_do_interrupt_irqoff(unsigned long entry); 6945 void vmx_do_nmi_irqoff(void); 6946 6947 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu) 6948 { 6949 /* 6950 * Save xfd_err to guest_fpu before interrupt is enabled, so the 6951 * MSR value is not clobbered by the host activity before the guest 6952 * has chance to consume it. 6953 * 6954 * Do not blindly read xfd_err here, since this exception might 6955 * be caused by L1 interception on a platform which doesn't 6956 * support xfd at all. 6957 * 6958 * Do it conditionally upon guest_fpu::xfd. xfd_err matters 6959 * only when xfd contains a non-zero value. 6960 * 6961 * Queuing exception is done in vmx_handle_exit. See comment there. 6962 */ 6963 if (vcpu->arch.guest_fpu.fpstate->xfd) 6964 rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 6965 } 6966 6967 static void handle_exception_irqoff(struct vcpu_vmx *vmx) 6968 { 6969 u32 intr_info = vmx_get_intr_info(&vmx->vcpu); 6970 6971 /* if exit due to PF check for async PF */ 6972 if (is_page_fault(intr_info)) 6973 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags(); 6974 /* if exit due to NM, handle before interrupts are enabled */ 6975 else if (is_nm_fault(intr_info)) 6976 handle_nm_fault_irqoff(&vmx->vcpu); 6977 /* Handle machine checks before interrupts are enabled */ 6978 else if (is_machine_check(intr_info)) 6979 kvm_machine_check(); 6980 } 6981 6982 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu) 6983 { 6984 u32 intr_info = vmx_get_intr_info(vcpu); 6985 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK; 6986 6987 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm, 6988 "unexpected VM-Exit interrupt info: 0x%x", intr_info)) 6989 return; 6990 6991 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 6992 if (cpu_feature_enabled(X86_FEATURE_FRED)) 6993 fred_entry_from_kvm(EVENT_TYPE_EXTINT, vector); 6994 else 6995 vmx_do_interrupt_irqoff(gate_offset((gate_desc *)host_idt_base + vector)); 6996 kvm_after_interrupt(vcpu); 6997 6998 vcpu->arch.at_instruction_boundary = true; 6999 } 7000 7001 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu) 7002 { 7003 struct vcpu_vmx *vmx = to_vmx(vcpu); 7004 7005 if (vmx->emulation_required) 7006 return; 7007 7008 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 7009 handle_external_interrupt_irqoff(vcpu); 7010 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI) 7011 handle_exception_irqoff(vmx); 7012 } 7013 7014 /* 7015 * The kvm parameter can be NULL (module initialization, or invocation before 7016 * VM creation). Be sure to check the kvm parameter before using it. 7017 */ 7018 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index) 7019 { 7020 switch (index) { 7021 case MSR_IA32_SMBASE: 7022 if (!IS_ENABLED(CONFIG_KVM_SMM)) 7023 return false; 7024 /* 7025 * We cannot do SMM unless we can run the guest in big 7026 * real mode. 7027 */ 7028 return enable_unrestricted_guest || emulate_invalid_guest_state; 7029 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 7030 return nested; 7031 case MSR_AMD64_VIRT_SPEC_CTRL: 7032 case MSR_AMD64_TSC_RATIO: 7033 /* This is AMD only. */ 7034 return false; 7035 default: 7036 return true; 7037 } 7038 } 7039 7040 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) 7041 { 7042 u32 exit_intr_info; 7043 bool unblock_nmi; 7044 u8 vector; 7045 bool idtv_info_valid; 7046 7047 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; 7048 7049 if (enable_vnmi) { 7050 if (vmx->loaded_vmcs->nmi_known_unmasked) 7051 return; 7052 7053 exit_intr_info = vmx_get_intr_info(&vmx->vcpu); 7054 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; 7055 vector = exit_intr_info & INTR_INFO_VECTOR_MASK; 7056 /* 7057 * SDM 3: 27.7.1.2 (September 2008) 7058 * Re-set bit "block by NMI" before VM entry if vmexit caused by 7059 * a guest IRET fault. 7060 * SDM 3: 23.2.2 (September 2008) 7061 * Bit 12 is undefined in any of the following cases: 7062 * If the VM exit sets the valid bit in the IDT-vectoring 7063 * information field. 7064 * If the VM exit is due to a double fault. 7065 */ 7066 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && 7067 vector != DF_VECTOR && !idtv_info_valid) 7068 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 7069 GUEST_INTR_STATE_NMI); 7070 else 7071 vmx->loaded_vmcs->nmi_known_unmasked = 7072 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) 7073 & GUEST_INTR_STATE_NMI); 7074 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) 7075 vmx->loaded_vmcs->vnmi_blocked_time += 7076 ktime_to_ns(ktime_sub(ktime_get(), 7077 vmx->loaded_vmcs->entry_time)); 7078 } 7079 7080 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, 7081 u32 idt_vectoring_info, 7082 int instr_len_field, 7083 int error_code_field) 7084 { 7085 u8 vector; 7086 int type; 7087 bool idtv_info_valid; 7088 7089 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; 7090 7091 vcpu->arch.nmi_injected = false; 7092 kvm_clear_exception_queue(vcpu); 7093 kvm_clear_interrupt_queue(vcpu); 7094 7095 if (!idtv_info_valid) 7096 return; 7097 7098 kvm_make_request(KVM_REQ_EVENT, vcpu); 7099 7100 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; 7101 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; 7102 7103 switch (type) { 7104 case INTR_TYPE_NMI_INTR: 7105 vcpu->arch.nmi_injected = true; 7106 /* 7107 * SDM 3: 27.7.1.2 (September 2008) 7108 * Clear bit "block by NMI" before VM entry if a NMI 7109 * delivery faulted. 7110 */ 7111 vmx_set_nmi_mask(vcpu, false); 7112 break; 7113 case INTR_TYPE_SOFT_EXCEPTION: 7114 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 7115 fallthrough; 7116 case INTR_TYPE_HARD_EXCEPTION: 7117 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { 7118 u32 err = vmcs_read32(error_code_field); 7119 kvm_requeue_exception_e(vcpu, vector, err); 7120 } else 7121 kvm_requeue_exception(vcpu, vector); 7122 break; 7123 case INTR_TYPE_SOFT_INTR: 7124 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 7125 fallthrough; 7126 case INTR_TYPE_EXT_INTR: 7127 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); 7128 break; 7129 default: 7130 break; 7131 } 7132 } 7133 7134 static void vmx_complete_interrupts(struct vcpu_vmx *vmx) 7135 { 7136 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, 7137 VM_EXIT_INSTRUCTION_LEN, 7138 IDT_VECTORING_ERROR_CODE); 7139 } 7140 7141 static void vmx_cancel_injection(struct kvm_vcpu *vcpu) 7142 { 7143 __vmx_complete_interrupts(vcpu, 7144 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 7145 VM_ENTRY_INSTRUCTION_LEN, 7146 VM_ENTRY_EXCEPTION_ERROR_CODE); 7147 7148 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); 7149 } 7150 7151 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) 7152 { 7153 int i, nr_msrs; 7154 struct perf_guest_switch_msr *msrs; 7155 struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu); 7156 7157 pmu->host_cross_mapped_mask = 0; 7158 if (pmu->pebs_enable & pmu->global_ctrl) 7159 intel_pmu_cross_mapped_check(pmu); 7160 7161 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */ 7162 msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu); 7163 if (!msrs) 7164 return; 7165 7166 for (i = 0; i < nr_msrs; i++) 7167 if (msrs[i].host == msrs[i].guest) 7168 clear_atomic_switch_msr(vmx, msrs[i].msr); 7169 else 7170 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, 7171 msrs[i].host, false); 7172 } 7173 7174 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu, bool force_immediate_exit) 7175 { 7176 struct vcpu_vmx *vmx = to_vmx(vcpu); 7177 u64 tscl; 7178 u32 delta_tsc; 7179 7180 if (force_immediate_exit) { 7181 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0); 7182 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 7183 } else if (vmx->hv_deadline_tsc != -1) { 7184 tscl = rdtsc(); 7185 if (vmx->hv_deadline_tsc > tscl) 7186 /* set_hv_timer ensures the delta fits in 32-bits */ 7187 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> 7188 cpu_preemption_timer_multi); 7189 else 7190 delta_tsc = 0; 7191 7192 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc); 7193 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 7194 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) { 7195 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1); 7196 vmx->loaded_vmcs->hv_timer_soft_disabled = true; 7197 } 7198 } 7199 7200 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp) 7201 { 7202 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) { 7203 vmx->loaded_vmcs->host_state.rsp = host_rsp; 7204 vmcs_writel(HOST_RSP, host_rsp); 7205 } 7206 } 7207 7208 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, 7209 unsigned int flags) 7210 { 7211 u64 hostval = this_cpu_read(x86_spec_ctrl_current); 7212 7213 if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) 7214 return; 7215 7216 if (flags & VMX_RUN_SAVE_SPEC_CTRL) 7217 vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL); 7218 7219 /* 7220 * If the guest/host SPEC_CTRL values differ, restore the host value. 7221 * 7222 * For legacy IBRS, the IBRS bit always needs to be written after 7223 * transitioning from a less privileged predictor mode, regardless of 7224 * whether the guest/host values differ. 7225 */ 7226 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) || 7227 vmx->spec_ctrl != hostval) 7228 native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval); 7229 7230 barrier_nospec(); 7231 } 7232 7233 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu, 7234 bool force_immediate_exit) 7235 { 7236 /* 7237 * If L2 is active, some VMX preemption timer exits can be handled in 7238 * the fastpath even, all other exits must use the slow path. 7239 */ 7240 if (is_guest_mode(vcpu) && 7241 to_vmx(vcpu)->exit_reason.basic != EXIT_REASON_PREEMPTION_TIMER) 7242 return EXIT_FASTPATH_NONE; 7243 7244 switch (to_vmx(vcpu)->exit_reason.basic) { 7245 case EXIT_REASON_MSR_WRITE: 7246 return handle_fastpath_set_msr_irqoff(vcpu); 7247 case EXIT_REASON_PREEMPTION_TIMER: 7248 return handle_fastpath_preemption_timer(vcpu, force_immediate_exit); 7249 default: 7250 return EXIT_FASTPATH_NONE; 7251 } 7252 } 7253 7254 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu, 7255 unsigned int flags) 7256 { 7257 struct vcpu_vmx *vmx = to_vmx(vcpu); 7258 7259 guest_state_enter_irqoff(); 7260 7261 /* 7262 * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW 7263 * mitigation for MDS is done late in VMentry and is still 7264 * executed in spite of L1D Flush. This is because an extra VERW 7265 * should not matter much after the big hammer L1D Flush. 7266 */ 7267 if (static_branch_unlikely(&vmx_l1d_should_flush)) 7268 vmx_l1d_flush(vcpu); 7269 else if (static_branch_unlikely(&mmio_stale_data_clear) && 7270 kvm_arch_has_assigned_device(vcpu->kvm)) 7271 mds_clear_cpu_buffers(); 7272 7273 vmx_disable_fb_clear(vmx); 7274 7275 if (vcpu->arch.cr2 != native_read_cr2()) 7276 native_write_cr2(vcpu->arch.cr2); 7277 7278 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, 7279 flags); 7280 7281 vcpu->arch.cr2 = native_read_cr2(); 7282 vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET; 7283 7284 vmx->idt_vectoring_info = 0; 7285 7286 vmx_enable_fb_clear(vmx); 7287 7288 if (unlikely(vmx->fail)) { 7289 vmx->exit_reason.full = 0xdead; 7290 goto out; 7291 } 7292 7293 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON); 7294 if (likely(!vmx->exit_reason.failed_vmentry)) 7295 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); 7296 7297 if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI && 7298 is_nmi(vmx_get_intr_info(vcpu))) { 7299 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); 7300 if (cpu_feature_enabled(X86_FEATURE_FRED)) 7301 fred_entry_from_kvm(EVENT_TYPE_NMI, NMI_VECTOR); 7302 else 7303 vmx_do_nmi_irqoff(); 7304 kvm_after_interrupt(vcpu); 7305 } 7306 7307 out: 7308 guest_state_exit_irqoff(); 7309 } 7310 7311 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu, bool force_immediate_exit) 7312 { 7313 struct vcpu_vmx *vmx = to_vmx(vcpu); 7314 unsigned long cr3, cr4; 7315 7316 /* Record the guest's net vcpu time for enforced NMI injections. */ 7317 if (unlikely(!enable_vnmi && 7318 vmx->loaded_vmcs->soft_vnmi_blocked)) 7319 vmx->loaded_vmcs->entry_time = ktime_get(); 7320 7321 /* 7322 * Don't enter VMX if guest state is invalid, let the exit handler 7323 * start emulation until we arrive back to a valid state. Synthesize a 7324 * consistency check VM-Exit due to invalid guest state and bail. 7325 */ 7326 if (unlikely(vmx->emulation_required)) { 7327 vmx->fail = 0; 7328 7329 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE; 7330 vmx->exit_reason.failed_vmentry = 1; 7331 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1); 7332 vmx->exit_qualification = ENTRY_FAIL_DEFAULT; 7333 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2); 7334 vmx->exit_intr_info = 0; 7335 return EXIT_FASTPATH_NONE; 7336 } 7337 7338 trace_kvm_entry(vcpu, force_immediate_exit); 7339 7340 if (vmx->ple_window_dirty) { 7341 vmx->ple_window_dirty = false; 7342 vmcs_write32(PLE_WINDOW, vmx->ple_window); 7343 } 7344 7345 /* 7346 * We did this in prepare_switch_to_guest, because it needs to 7347 * be within srcu_read_lock. 7348 */ 7349 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync); 7350 7351 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP)) 7352 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); 7353 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP)) 7354 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); 7355 vcpu->arch.regs_dirty = 0; 7356 7357 /* 7358 * Refresh vmcs.HOST_CR3 if necessary. This must be done immediately 7359 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time 7360 * it switches back to the current->mm, which can occur in KVM context 7361 * when switching to a temporary mm to patch kernel code, e.g. if KVM 7362 * toggles a static key while handling a VM-Exit. 7363 */ 7364 cr3 = __get_current_cr3_fast(); 7365 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { 7366 vmcs_writel(HOST_CR3, cr3); 7367 vmx->loaded_vmcs->host_state.cr3 = cr3; 7368 } 7369 7370 cr4 = cr4_read_shadow(); 7371 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { 7372 vmcs_writel(HOST_CR4, cr4); 7373 vmx->loaded_vmcs->host_state.cr4 = cr4; 7374 } 7375 7376 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */ 7377 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 7378 set_debugreg(vcpu->arch.dr6, 6); 7379 7380 /* When single-stepping over STI and MOV SS, we must clear the 7381 * corresponding interruptibility bits in the guest state. Otherwise 7382 * vmentry fails as it then expects bit 14 (BS) in pending debug 7383 * exceptions being set, but that's not correct for the guest debugging 7384 * case. */ 7385 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 7386 vmx_set_interrupt_shadow(vcpu, 0); 7387 7388 kvm_load_guest_xsave_state(vcpu); 7389 7390 pt_guest_enter(vmx); 7391 7392 atomic_switch_perf_msrs(vmx); 7393 if (intel_pmu_lbr_is_enabled(vcpu)) 7394 vmx_passthrough_lbr_msrs(vcpu); 7395 7396 if (enable_preemption_timer) 7397 vmx_update_hv_timer(vcpu, force_immediate_exit); 7398 else if (force_immediate_exit) 7399 smp_send_reschedule(vcpu->cpu); 7400 7401 kvm_wait_lapic_expire(vcpu); 7402 7403 /* The actual VMENTER/EXIT is in the .noinstr.text section. */ 7404 vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx)); 7405 7406 /* All fields are clean at this point */ 7407 if (kvm_is_using_evmcs()) { 7408 current_evmcs->hv_clean_fields |= 7409 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; 7410 7411 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu); 7412 } 7413 7414 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ 7415 if (vmx->host_debugctlmsr) 7416 update_debugctlmsr(vmx->host_debugctlmsr); 7417 7418 #ifndef CONFIG_X86_64 7419 /* 7420 * The sysexit path does not restore ds/es, so we must set them to 7421 * a reasonable value ourselves. 7422 * 7423 * We can't defer this to vmx_prepare_switch_to_host() since that 7424 * function may be executed in interrupt context, which saves and 7425 * restore segments around it, nullifying its effect. 7426 */ 7427 loadsegment(ds, __USER_DS); 7428 loadsegment(es, __USER_DS); 7429 #endif 7430 7431 pt_guest_exit(vmx); 7432 7433 kvm_load_host_xsave_state(vcpu); 7434 7435 if (is_guest_mode(vcpu)) { 7436 /* 7437 * Track VMLAUNCH/VMRESUME that have made past guest state 7438 * checking. 7439 */ 7440 if (vmx->nested.nested_run_pending && 7441 !vmx->exit_reason.failed_vmentry) 7442 ++vcpu->stat.nested_run; 7443 7444 vmx->nested.nested_run_pending = 0; 7445 } 7446 7447 if (unlikely(vmx->fail)) 7448 return EXIT_FASTPATH_NONE; 7449 7450 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY)) 7451 kvm_machine_check(); 7452 7453 trace_kvm_exit(vcpu, KVM_ISA_VMX); 7454 7455 if (unlikely(vmx->exit_reason.failed_vmentry)) 7456 return EXIT_FASTPATH_NONE; 7457 7458 vmx->loaded_vmcs->launched = 1; 7459 7460 vmx_recover_nmi_blocking(vmx); 7461 vmx_complete_interrupts(vmx); 7462 7463 return vmx_exit_handlers_fastpath(vcpu, force_immediate_exit); 7464 } 7465 7466 static void vmx_vcpu_free(struct kvm_vcpu *vcpu) 7467 { 7468 struct vcpu_vmx *vmx = to_vmx(vcpu); 7469 7470 if (enable_pml) 7471 vmx_destroy_pml_buffer(vmx); 7472 free_vpid(vmx->vpid); 7473 nested_vmx_free_vcpu(vcpu); 7474 free_loaded_vmcs(vmx->loaded_vmcs); 7475 } 7476 7477 static int vmx_vcpu_create(struct kvm_vcpu *vcpu) 7478 { 7479 struct vmx_uret_msr *tsx_ctrl; 7480 struct vcpu_vmx *vmx; 7481 int i, err; 7482 7483 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0); 7484 vmx = to_vmx(vcpu); 7485 7486 INIT_LIST_HEAD(&vmx->pi_wakeup_list); 7487 7488 err = -ENOMEM; 7489 7490 vmx->vpid = allocate_vpid(); 7491 7492 /* 7493 * If PML is turned on, failure on enabling PML just results in failure 7494 * of creating the vcpu, therefore we can simplify PML logic (by 7495 * avoiding dealing with cases, such as enabling PML partially on vcpus 7496 * for the guest), etc. 7497 */ 7498 if (enable_pml) { 7499 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 7500 if (!vmx->pml_pg) 7501 goto free_vpid; 7502 } 7503 7504 for (i = 0; i < kvm_nr_uret_msrs; ++i) 7505 vmx->guest_uret_msrs[i].mask = -1ull; 7506 if (boot_cpu_has(X86_FEATURE_RTM)) { 7507 /* 7508 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception. 7509 * Keep the host value unchanged to avoid changing CPUID bits 7510 * under the host kernel's feet. 7511 */ 7512 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7513 if (tsx_ctrl) 7514 tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR; 7515 } 7516 7517 err = alloc_loaded_vmcs(&vmx->vmcs01); 7518 if (err < 0) 7519 goto free_pml; 7520 7521 /* 7522 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a 7523 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the 7524 * feature only for vmcs01, KVM currently isn't equipped to realize any 7525 * performance benefits from enabling it for vmcs02. 7526 */ 7527 if (kvm_is_using_evmcs() && 7528 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { 7529 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; 7530 7531 evmcs->hv_enlightenments_control.msr_bitmap = 1; 7532 } 7533 7534 /* The MSR bitmap starts with all ones */ 7535 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS); 7536 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS); 7537 7538 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R); 7539 #ifdef CONFIG_X86_64 7540 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW); 7541 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW); 7542 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); 7543 #endif 7544 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); 7545 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); 7546 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); 7547 if (kvm_cstate_in_guest(vcpu->kvm)) { 7548 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R); 7549 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R); 7550 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R); 7551 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R); 7552 } 7553 7554 vmx->loaded_vmcs = &vmx->vmcs01; 7555 7556 if (cpu_need_virtualize_apic_accesses(vcpu)) { 7557 err = kvm_alloc_apic_access_page(vcpu->kvm); 7558 if (err) 7559 goto free_vmcs; 7560 } 7561 7562 if (enable_ept && !enable_unrestricted_guest) { 7563 err = init_rmode_identity_map(vcpu->kvm); 7564 if (err) 7565 goto free_vmcs; 7566 } 7567 7568 if (vmx_can_use_ipiv(vcpu)) 7569 WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id], 7570 __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID); 7571 7572 return 0; 7573 7574 free_vmcs: 7575 free_loaded_vmcs(vmx->loaded_vmcs); 7576 free_pml: 7577 vmx_destroy_pml_buffer(vmx); 7578 free_vpid: 7579 free_vpid(vmx->vpid); 7580 return err; 7581 } 7582 7583 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7584 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7585 7586 static int vmx_vm_init(struct kvm *kvm) 7587 { 7588 if (!ple_gap) 7589 kvm->arch.pause_in_guest = true; 7590 7591 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { 7592 switch (l1tf_mitigation) { 7593 case L1TF_MITIGATION_OFF: 7594 case L1TF_MITIGATION_FLUSH_NOWARN: 7595 /* 'I explicitly don't care' is set */ 7596 break; 7597 case L1TF_MITIGATION_FLUSH: 7598 case L1TF_MITIGATION_FLUSH_NOSMT: 7599 case L1TF_MITIGATION_FULL: 7600 /* 7601 * Warn upon starting the first VM in a potentially 7602 * insecure environment. 7603 */ 7604 if (sched_smt_active()) 7605 pr_warn_once(L1TF_MSG_SMT); 7606 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) 7607 pr_warn_once(L1TF_MSG_L1D); 7608 break; 7609 case L1TF_MITIGATION_FULL_FORCE: 7610 /* Flush is enforced */ 7611 break; 7612 } 7613 } 7614 return 0; 7615 } 7616 7617 static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 7618 { 7619 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in 7620 * memory aliases with conflicting memory types and sometimes MCEs. 7621 * We have to be careful as to what are honored and when. 7622 * 7623 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to 7624 * UC. The effective memory type is UC or WC depending on guest PAT. 7625 * This was historically the source of MCEs and we want to be 7626 * conservative. 7627 * 7628 * When there is no need to deal with noncoherent DMA (e.g., no VT-d 7629 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The 7630 * EPT memory type is set to WB. The effective memory type is forced 7631 * WB. 7632 * 7633 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The 7634 * EPT memory type is used to emulate guest CD/MTRR. 7635 */ 7636 7637 if (is_mmio) 7638 return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT; 7639 7640 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) 7641 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT; 7642 7643 if (kvm_read_cr0_bits(vcpu, X86_CR0_CD)) { 7644 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 7645 return MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT; 7646 else 7647 return (MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT) | 7648 VMX_EPT_IPAT_BIT; 7649 } 7650 7651 return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT; 7652 } 7653 7654 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl) 7655 { 7656 /* 7657 * These bits in the secondary execution controls field 7658 * are dynamic, the others are mostly based on the hypervisor 7659 * architecture and the guest's CPUID. Do not touch the 7660 * dynamic bits. 7661 */ 7662 u32 mask = 7663 SECONDARY_EXEC_SHADOW_VMCS | 7664 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 7665 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 7666 SECONDARY_EXEC_DESC; 7667 7668 u32 cur_ctl = secondary_exec_controls_get(vmx); 7669 7670 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask)); 7671 } 7672 7673 /* 7674 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits 7675 * (indicating "allowed-1") if they are supported in the guest's CPUID. 7676 */ 7677 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) 7678 { 7679 struct vcpu_vmx *vmx = to_vmx(vcpu); 7680 struct kvm_cpuid_entry2 *entry; 7681 7682 vmx->nested.msrs.cr0_fixed1 = 0xffffffff; 7683 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; 7684 7685 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ 7686 if (entry && (entry->_reg & (_cpuid_mask))) \ 7687 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ 7688 } while (0) 7689 7690 entry = kvm_find_cpuid_entry(vcpu, 0x1); 7691 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME)); 7692 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME)); 7693 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC)); 7694 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE)); 7695 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE)); 7696 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE)); 7697 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE)); 7698 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE)); 7699 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR)); 7700 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM)); 7701 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX)); 7702 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX)); 7703 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID)); 7704 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE)); 7705 7706 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0); 7707 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE)); 7708 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP)); 7709 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP)); 7710 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU)); 7711 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP)); 7712 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57)); 7713 7714 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 1); 7715 cr4_fixed1_update(X86_CR4_LAM_SUP, eax, feature_bit(LAM)); 7716 7717 #undef cr4_fixed1_update 7718 } 7719 7720 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) 7721 { 7722 struct vcpu_vmx *vmx = to_vmx(vcpu); 7723 struct kvm_cpuid_entry2 *best = NULL; 7724 int i; 7725 7726 for (i = 0; i < PT_CPUID_LEAVES; i++) { 7727 best = kvm_find_cpuid_entry_index(vcpu, 0x14, i); 7728 if (!best) 7729 return; 7730 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; 7731 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; 7732 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; 7733 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; 7734 } 7735 7736 /* Get the number of configurable Address Ranges for filtering */ 7737 vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps, 7738 PT_CAP_num_address_ranges); 7739 7740 /* Initialize and clear the no dependency bits */ 7741 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | 7742 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC | 7743 RTIT_CTL_BRANCH_EN); 7744 7745 /* 7746 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise 7747 * will inject an #GP 7748 */ 7749 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) 7750 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; 7751 7752 /* 7753 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and 7754 * PSBFreq can be set 7755 */ 7756 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) 7757 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | 7758 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); 7759 7760 /* 7761 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set 7762 */ 7763 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) 7764 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | 7765 RTIT_CTL_MTC_RANGE); 7766 7767 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ 7768 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) 7769 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | 7770 RTIT_CTL_PTW_EN); 7771 7772 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ 7773 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) 7774 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; 7775 7776 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ 7777 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) 7778 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; 7779 7780 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */ 7781 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) 7782 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; 7783 7784 /* unmask address range configure area */ 7785 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) 7786 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4)); 7787 } 7788 7789 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 7790 { 7791 struct vcpu_vmx *vmx = to_vmx(vcpu); 7792 7793 /* 7794 * XSAVES is effectively enabled if and only if XSAVE is also exposed 7795 * to the guest. XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be 7796 * set if and only if XSAVE is supported. 7797 */ 7798 if (boot_cpu_has(X86_FEATURE_XSAVE) && 7799 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE)) 7800 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_XSAVES); 7801 7802 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VMX); 7803 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LAM); 7804 7805 vmx_setup_uret_msrs(vmx); 7806 7807 if (cpu_has_secondary_exec_ctrls()) 7808 vmcs_set_secondary_exec_control(vmx, 7809 vmx_secondary_exec_control(vmx)); 7810 7811 if (guest_can_use(vcpu, X86_FEATURE_VMX)) 7812 vmx->msr_ia32_feature_control_valid_bits |= 7813 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7814 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; 7815 else 7816 vmx->msr_ia32_feature_control_valid_bits &= 7817 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7818 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX); 7819 7820 if (guest_can_use(vcpu, X86_FEATURE_VMX)) 7821 nested_vmx_cr_fixed1_bits_update(vcpu); 7822 7823 if (boot_cpu_has(X86_FEATURE_INTEL_PT) && 7824 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT)) 7825 update_intel_pt_cfg(vcpu); 7826 7827 if (boot_cpu_has(X86_FEATURE_RTM)) { 7828 struct vmx_uret_msr *msr; 7829 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7830 if (msr) { 7831 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM); 7832 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE); 7833 } 7834 } 7835 7836 if (kvm_cpu_cap_has(X86_FEATURE_XFD)) 7837 vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R, 7838 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)); 7839 7840 if (boot_cpu_has(X86_FEATURE_IBPB)) 7841 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W, 7842 !guest_has_pred_cmd_msr(vcpu)); 7843 7844 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D)) 7845 vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W, 7846 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)); 7847 7848 set_cr4_guest_host_mask(vmx); 7849 7850 vmx_write_encls_bitmap(vcpu, NULL); 7851 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX)) 7852 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED; 7853 else 7854 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED; 7855 7856 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 7857 vmx->msr_ia32_feature_control_valid_bits |= 7858 FEAT_CTL_SGX_LC_ENABLED; 7859 else 7860 vmx->msr_ia32_feature_control_valid_bits &= 7861 ~FEAT_CTL_SGX_LC_ENABLED; 7862 7863 /* Refresh #PF interception to account for MAXPHYADDR changes. */ 7864 vmx_update_exception_bitmap(vcpu); 7865 } 7866 7867 static __init u64 vmx_get_perf_capabilities(void) 7868 { 7869 u64 perf_cap = PMU_CAP_FW_WRITES; 7870 u64 host_perf_cap = 0; 7871 7872 if (!enable_pmu) 7873 return 0; 7874 7875 if (boot_cpu_has(X86_FEATURE_PDCM)) 7876 rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap); 7877 7878 if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) { 7879 x86_perf_get_lbr(&vmx_lbr_caps); 7880 7881 /* 7882 * KVM requires LBR callstack support, as the overhead due to 7883 * context switching LBRs without said support is too high. 7884 * See intel_pmu_create_guest_lbr_event() for more info. 7885 */ 7886 if (!vmx_lbr_caps.has_callstack) 7887 memset(&vmx_lbr_caps, 0, sizeof(vmx_lbr_caps)); 7888 else if (vmx_lbr_caps.nr) 7889 perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT; 7890 } 7891 7892 if (vmx_pebs_supported()) { 7893 perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK; 7894 7895 /* 7896 * Disallow adaptive PEBS as it is functionally broken, can be 7897 * used by the guest to read *host* LBRs, and can be used to 7898 * bypass userspace event filters. To correctly and safely 7899 * support adaptive PEBS, KVM needs to: 7900 * 7901 * 1. Account for the ADAPTIVE flag when (re)programming fixed 7902 * counters. 7903 * 7904 * 2. Gain support from perf (or take direct control of counter 7905 * programming) to support events without adaptive PEBS 7906 * enabled for the hardware counter. 7907 * 7908 * 3. Ensure LBR MSRs cannot hold host data on VM-Entry with 7909 * adaptive PEBS enabled and MSR_PEBS_DATA_CFG.LBRS=1. 7910 * 7911 * 4. Document which PMU events are effectively exposed to the 7912 * guest via adaptive PEBS, and make adaptive PEBS mutually 7913 * exclusive with KVM_SET_PMU_EVENT_FILTER if necessary. 7914 */ 7915 perf_cap &= ~PERF_CAP_PEBS_BASELINE; 7916 } 7917 7918 return perf_cap; 7919 } 7920 7921 static __init void vmx_set_cpu_caps(void) 7922 { 7923 kvm_set_cpu_caps(); 7924 7925 /* CPUID 0x1 */ 7926 if (nested) 7927 kvm_cpu_cap_set(X86_FEATURE_VMX); 7928 7929 /* CPUID 0x7 */ 7930 if (kvm_mpx_supported()) 7931 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX); 7932 if (!cpu_has_vmx_invpcid()) 7933 kvm_cpu_cap_clear(X86_FEATURE_INVPCID); 7934 if (vmx_pt_mode_is_host_guest()) 7935 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT); 7936 if (vmx_pebs_supported()) { 7937 kvm_cpu_cap_check_and_set(X86_FEATURE_DS); 7938 kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64); 7939 } 7940 7941 if (!enable_pmu) 7942 kvm_cpu_cap_clear(X86_FEATURE_PDCM); 7943 kvm_caps.supported_perf_cap = vmx_get_perf_capabilities(); 7944 7945 if (!enable_sgx) { 7946 kvm_cpu_cap_clear(X86_FEATURE_SGX); 7947 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC); 7948 kvm_cpu_cap_clear(X86_FEATURE_SGX1); 7949 kvm_cpu_cap_clear(X86_FEATURE_SGX2); 7950 } 7951 7952 if (vmx_umip_emulated()) 7953 kvm_cpu_cap_set(X86_FEATURE_UMIP); 7954 7955 /* CPUID 0xD.1 */ 7956 kvm_caps.supported_xss = 0; 7957 if (!cpu_has_vmx_xsaves()) 7958 kvm_cpu_cap_clear(X86_FEATURE_XSAVES); 7959 7960 /* CPUID 0x80000001 and 0x7 (RDPID) */ 7961 if (!cpu_has_vmx_rdtscp()) { 7962 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP); 7963 kvm_cpu_cap_clear(X86_FEATURE_RDPID); 7964 } 7965 7966 if (cpu_has_vmx_waitpkg()) 7967 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG); 7968 } 7969 7970 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu, 7971 struct x86_instruction_info *info) 7972 { 7973 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7974 unsigned short port; 7975 bool intercept; 7976 int size; 7977 7978 if (info->intercept == x86_intercept_in || 7979 info->intercept == x86_intercept_ins) { 7980 port = info->src_val; 7981 size = info->dst_bytes; 7982 } else { 7983 port = info->dst_val; 7984 size = info->src_bytes; 7985 } 7986 7987 /* 7988 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction 7989 * VM-exits depend on the 'unconditional IO exiting' VM-execution 7990 * control. 7991 * 7992 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps. 7993 */ 7994 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) 7995 intercept = nested_cpu_has(vmcs12, 7996 CPU_BASED_UNCOND_IO_EXITING); 7997 else 7998 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size); 7999 8000 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 8001 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; 8002 } 8003 8004 static int vmx_check_intercept(struct kvm_vcpu *vcpu, 8005 struct x86_instruction_info *info, 8006 enum x86_intercept_stage stage, 8007 struct x86_exception *exception) 8008 { 8009 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 8010 8011 switch (info->intercept) { 8012 /* 8013 * RDPID causes #UD if disabled through secondary execution controls. 8014 * Because it is marked as EmulateOnUD, we need to intercept it here. 8015 * Note, RDPID is hidden behind ENABLE_RDTSCP. 8016 */ 8017 case x86_intercept_rdpid: 8018 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) { 8019 exception->vector = UD_VECTOR; 8020 exception->error_code_valid = false; 8021 return X86EMUL_PROPAGATE_FAULT; 8022 } 8023 break; 8024 8025 case x86_intercept_in: 8026 case x86_intercept_ins: 8027 case x86_intercept_out: 8028 case x86_intercept_outs: 8029 return vmx_check_intercept_io(vcpu, info); 8030 8031 case x86_intercept_lgdt: 8032 case x86_intercept_lidt: 8033 case x86_intercept_lldt: 8034 case x86_intercept_ltr: 8035 case x86_intercept_sgdt: 8036 case x86_intercept_sidt: 8037 case x86_intercept_sldt: 8038 case x86_intercept_str: 8039 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC)) 8040 return X86EMUL_CONTINUE; 8041 8042 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 8043 break; 8044 8045 case x86_intercept_pause: 8046 /* 8047 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides 8048 * with vanilla NOPs in the emulator. Apply the interception 8049 * check only to actual PAUSE instructions. Don't check 8050 * PAUSE-loop-exiting, software can't expect a given PAUSE to 8051 * exit, i.e. KVM is within its rights to allow L2 to execute 8052 * the PAUSE. 8053 */ 8054 if ((info->rep_prefix != REPE_PREFIX) || 8055 !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING)) 8056 return X86EMUL_CONTINUE; 8057 8058 break; 8059 8060 /* TODO: check more intercepts... */ 8061 default: 8062 break; 8063 } 8064 8065 return X86EMUL_UNHANDLEABLE; 8066 } 8067 8068 #ifdef CONFIG_X86_64 8069 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ 8070 static inline int u64_shl_div_u64(u64 a, unsigned int shift, 8071 u64 divisor, u64 *result) 8072 { 8073 u64 low = a << shift, high = a >> (64 - shift); 8074 8075 /* To avoid the overflow on divq */ 8076 if (high >= divisor) 8077 return 1; 8078 8079 /* Low hold the result, high hold rem which is discarded */ 8080 asm("divq %2\n\t" : "=a" (low), "=d" (high) : 8081 "rm" (divisor), "0" (low), "1" (high)); 8082 *result = low; 8083 8084 return 0; 8085 } 8086 8087 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 8088 bool *expired) 8089 { 8090 struct vcpu_vmx *vmx; 8091 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; 8092 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer; 8093 8094 vmx = to_vmx(vcpu); 8095 tscl = rdtsc(); 8096 guest_tscl = kvm_read_l1_tsc(vcpu, tscl); 8097 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; 8098 lapic_timer_advance_cycles = nsec_to_cycles(vcpu, 8099 ktimer->timer_advance_ns); 8100 8101 if (delta_tsc > lapic_timer_advance_cycles) 8102 delta_tsc -= lapic_timer_advance_cycles; 8103 else 8104 delta_tsc = 0; 8105 8106 /* Convert to host delta tsc if tsc scaling is enabled */ 8107 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio && 8108 delta_tsc && u64_shl_div_u64(delta_tsc, 8109 kvm_caps.tsc_scaling_ratio_frac_bits, 8110 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc)) 8111 return -ERANGE; 8112 8113 /* 8114 * If the delta tsc can't fit in the 32 bit after the multi shift, 8115 * we can't use the preemption timer. 8116 * It's possible that it fits on later vmentries, but checking 8117 * on every vmentry is costly so we just use an hrtimer. 8118 */ 8119 if (delta_tsc >> (cpu_preemption_timer_multi + 32)) 8120 return -ERANGE; 8121 8122 vmx->hv_deadline_tsc = tscl + delta_tsc; 8123 *expired = !delta_tsc; 8124 return 0; 8125 } 8126 8127 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) 8128 { 8129 to_vmx(vcpu)->hv_deadline_tsc = -1; 8130 } 8131 #endif 8132 8133 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) 8134 { 8135 if (!kvm_pause_in_guest(vcpu->kvm)) 8136 shrink_ple_window(vcpu); 8137 } 8138 8139 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu) 8140 { 8141 struct vcpu_vmx *vmx = to_vmx(vcpu); 8142 8143 if (WARN_ON_ONCE(!enable_pml)) 8144 return; 8145 8146 if (is_guest_mode(vcpu)) { 8147 vmx->nested.update_vmcs01_cpu_dirty_logging = true; 8148 return; 8149 } 8150 8151 /* 8152 * Note, nr_memslots_dirty_logging can be changed concurrent with this 8153 * code, but in that case another update request will be made and so 8154 * the guest will never run with a stale PML value. 8155 */ 8156 if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging)) 8157 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML); 8158 else 8159 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML); 8160 } 8161 8162 static void vmx_setup_mce(struct kvm_vcpu *vcpu) 8163 { 8164 if (vcpu->arch.mcg_cap & MCG_LMCE_P) 8165 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 8166 FEAT_CTL_LMCE_ENABLED; 8167 else 8168 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 8169 ~FEAT_CTL_LMCE_ENABLED; 8170 } 8171 8172 #ifdef CONFIG_KVM_SMM 8173 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 8174 { 8175 /* we need a nested vmexit to enter SMM, postpone if run is pending */ 8176 if (to_vmx(vcpu)->nested.nested_run_pending) 8177 return -EBUSY; 8178 return !is_smm(vcpu); 8179 } 8180 8181 static int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) 8182 { 8183 struct vcpu_vmx *vmx = to_vmx(vcpu); 8184 8185 /* 8186 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on 8187 * SMI and RSM. Using the common VM-Exit + VM-Enter routines is wrong 8188 * SMI and RSM only modify state that is saved and restored via SMRAM. 8189 * E.g. most MSRs are left untouched, but many are modified by VM-Exit 8190 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM. 8191 */ 8192 vmx->nested.smm.guest_mode = is_guest_mode(vcpu); 8193 if (vmx->nested.smm.guest_mode) 8194 nested_vmx_vmexit(vcpu, -1, 0, 0); 8195 8196 vmx->nested.smm.vmxon = vmx->nested.vmxon; 8197 vmx->nested.vmxon = false; 8198 vmx_clear_hlt(vcpu); 8199 return 0; 8200 } 8201 8202 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) 8203 { 8204 struct vcpu_vmx *vmx = to_vmx(vcpu); 8205 int ret; 8206 8207 if (vmx->nested.smm.vmxon) { 8208 vmx->nested.vmxon = true; 8209 vmx->nested.smm.vmxon = false; 8210 } 8211 8212 if (vmx->nested.smm.guest_mode) { 8213 ret = nested_vmx_enter_non_root_mode(vcpu, false); 8214 if (ret) 8215 return ret; 8216 8217 vmx->nested.nested_run_pending = 1; 8218 vmx->nested.smm.guest_mode = false; 8219 } 8220 return 0; 8221 } 8222 8223 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu) 8224 { 8225 /* RSM will cause a vmexit anyway. */ 8226 } 8227 #endif 8228 8229 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 8230 { 8231 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu); 8232 } 8233 8234 static void vmx_migrate_timers(struct kvm_vcpu *vcpu) 8235 { 8236 if (is_guest_mode(vcpu)) { 8237 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer; 8238 8239 if (hrtimer_try_to_cancel(timer) == 1) 8240 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 8241 } 8242 } 8243 8244 static void vmx_hardware_unsetup(void) 8245 { 8246 kvm_set_posted_intr_wakeup_handler(NULL); 8247 8248 if (nested) 8249 nested_vmx_hardware_unsetup(); 8250 8251 free_kvm_area(); 8252 } 8253 8254 #define VMX_REQUIRED_APICV_INHIBITS \ 8255 ( \ 8256 BIT(APICV_INHIBIT_REASON_DISABLE)| \ 8257 BIT(APICV_INHIBIT_REASON_ABSENT) | \ 8258 BIT(APICV_INHIBIT_REASON_HYPERV) | \ 8259 BIT(APICV_INHIBIT_REASON_BLOCKIRQ) | \ 8260 BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) | \ 8261 BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) | \ 8262 BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED) \ 8263 ) 8264 8265 static void vmx_vm_destroy(struct kvm *kvm) 8266 { 8267 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 8268 8269 free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm)); 8270 } 8271 8272 /* 8273 * Note, the SDM states that the linear address is masked *after* the modified 8274 * canonicality check, whereas KVM masks (untags) the address and then performs 8275 * a "normal" canonicality check. Functionally, the two methods are identical, 8276 * and when the masking occurs relative to the canonicality check isn't visible 8277 * to software, i.e. KVM's behavior doesn't violate the SDM. 8278 */ 8279 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags) 8280 { 8281 int lam_bit; 8282 unsigned long cr3_bits; 8283 8284 if (flags & (X86EMUL_F_FETCH | X86EMUL_F_IMPLICIT | X86EMUL_F_INVLPG)) 8285 return gva; 8286 8287 if (!is_64_bit_mode(vcpu)) 8288 return gva; 8289 8290 /* 8291 * Bit 63 determines if the address should be treated as user address 8292 * or a supervisor address. 8293 */ 8294 if (!(gva & BIT_ULL(63))) { 8295 cr3_bits = kvm_get_active_cr3_lam_bits(vcpu); 8296 if (!(cr3_bits & (X86_CR3_LAM_U57 | X86_CR3_LAM_U48))) 8297 return gva; 8298 8299 /* LAM_U48 is ignored if LAM_U57 is set. */ 8300 lam_bit = cr3_bits & X86_CR3_LAM_U57 ? 56 : 47; 8301 } else { 8302 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_LAM_SUP)) 8303 return gva; 8304 8305 lam_bit = kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 56 : 47; 8306 } 8307 8308 /* 8309 * Untag the address by sign-extending the lam_bit, but NOT to bit 63. 8310 * Bit 63 is retained from the raw virtual address so that untagging 8311 * doesn't change a user access to a supervisor access, and vice versa. 8312 */ 8313 return (sign_extend64(gva, lam_bit) & ~BIT_ULL(63)) | (gva & BIT_ULL(63)); 8314 } 8315 8316 static struct kvm_x86_ops vmx_x86_ops __initdata = { 8317 .name = KBUILD_MODNAME, 8318 8319 .check_processor_compatibility = vmx_check_processor_compat, 8320 8321 .hardware_unsetup = vmx_hardware_unsetup, 8322 8323 .hardware_enable = vmx_hardware_enable, 8324 .hardware_disable = vmx_hardware_disable, 8325 .has_emulated_msr = vmx_has_emulated_msr, 8326 8327 .vm_size = sizeof(struct kvm_vmx), 8328 .vm_init = vmx_vm_init, 8329 .vm_destroy = vmx_vm_destroy, 8330 8331 .vcpu_precreate = vmx_vcpu_precreate, 8332 .vcpu_create = vmx_vcpu_create, 8333 .vcpu_free = vmx_vcpu_free, 8334 .vcpu_reset = vmx_vcpu_reset, 8335 8336 .prepare_switch_to_guest = vmx_prepare_switch_to_guest, 8337 .vcpu_load = vmx_vcpu_load, 8338 .vcpu_put = vmx_vcpu_put, 8339 8340 .update_exception_bitmap = vmx_update_exception_bitmap, 8341 .get_msr_feature = vmx_get_msr_feature, 8342 .get_msr = vmx_get_msr, 8343 .set_msr = vmx_set_msr, 8344 .get_segment_base = vmx_get_segment_base, 8345 .get_segment = vmx_get_segment, 8346 .set_segment = vmx_set_segment, 8347 .get_cpl = vmx_get_cpl, 8348 .get_cs_db_l_bits = vmx_get_cs_db_l_bits, 8349 .is_valid_cr0 = vmx_is_valid_cr0, 8350 .set_cr0 = vmx_set_cr0, 8351 .is_valid_cr4 = vmx_is_valid_cr4, 8352 .set_cr4 = vmx_set_cr4, 8353 .set_efer = vmx_set_efer, 8354 .get_idt = vmx_get_idt, 8355 .set_idt = vmx_set_idt, 8356 .get_gdt = vmx_get_gdt, 8357 .set_gdt = vmx_set_gdt, 8358 .set_dr7 = vmx_set_dr7, 8359 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, 8360 .cache_reg = vmx_cache_reg, 8361 .get_rflags = vmx_get_rflags, 8362 .set_rflags = vmx_set_rflags, 8363 .get_if_flag = vmx_get_if_flag, 8364 8365 .flush_tlb_all = vmx_flush_tlb_all, 8366 .flush_tlb_current = vmx_flush_tlb_current, 8367 .flush_tlb_gva = vmx_flush_tlb_gva, 8368 .flush_tlb_guest = vmx_flush_tlb_guest, 8369 8370 .vcpu_pre_run = vmx_vcpu_pre_run, 8371 .vcpu_run = vmx_vcpu_run, 8372 .handle_exit = vmx_handle_exit, 8373 .skip_emulated_instruction = vmx_skip_emulated_instruction, 8374 .update_emulated_instruction = vmx_update_emulated_instruction, 8375 .set_interrupt_shadow = vmx_set_interrupt_shadow, 8376 .get_interrupt_shadow = vmx_get_interrupt_shadow, 8377 .patch_hypercall = vmx_patch_hypercall, 8378 .inject_irq = vmx_inject_irq, 8379 .inject_nmi = vmx_inject_nmi, 8380 .inject_exception = vmx_inject_exception, 8381 .cancel_injection = vmx_cancel_injection, 8382 .interrupt_allowed = vmx_interrupt_allowed, 8383 .nmi_allowed = vmx_nmi_allowed, 8384 .get_nmi_mask = vmx_get_nmi_mask, 8385 .set_nmi_mask = vmx_set_nmi_mask, 8386 .enable_nmi_window = vmx_enable_nmi_window, 8387 .enable_irq_window = vmx_enable_irq_window, 8388 .update_cr8_intercept = vmx_update_cr8_intercept, 8389 .set_virtual_apic_mode = vmx_set_virtual_apic_mode, 8390 .set_apic_access_page_addr = vmx_set_apic_access_page_addr, 8391 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, 8392 .load_eoi_exitmap = vmx_load_eoi_exitmap, 8393 .apicv_pre_state_restore = vmx_apicv_pre_state_restore, 8394 .required_apicv_inhibits = VMX_REQUIRED_APICV_INHIBITS, 8395 .hwapic_irr_update = vmx_hwapic_irr_update, 8396 .hwapic_isr_update = vmx_hwapic_isr_update, 8397 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt, 8398 .sync_pir_to_irr = vmx_sync_pir_to_irr, 8399 .deliver_interrupt = vmx_deliver_interrupt, 8400 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt, 8401 8402 .set_tss_addr = vmx_set_tss_addr, 8403 .set_identity_map_addr = vmx_set_identity_map_addr, 8404 .get_mt_mask = vmx_get_mt_mask, 8405 8406 .get_exit_info = vmx_get_exit_info, 8407 8408 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid, 8409 8410 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, 8411 8412 .get_l2_tsc_offset = vmx_get_l2_tsc_offset, 8413 .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier, 8414 .write_tsc_offset = vmx_write_tsc_offset, 8415 .write_tsc_multiplier = vmx_write_tsc_multiplier, 8416 8417 .load_mmu_pgd = vmx_load_mmu_pgd, 8418 8419 .check_intercept = vmx_check_intercept, 8420 .handle_exit_irqoff = vmx_handle_exit_irqoff, 8421 8422 .sched_in = vmx_sched_in, 8423 8424 .cpu_dirty_log_size = PML_ENTITY_NUM, 8425 .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging, 8426 8427 .nested_ops = &vmx_nested_ops, 8428 8429 .pi_update_irte = vmx_pi_update_irte, 8430 .pi_start_assignment = vmx_pi_start_assignment, 8431 8432 #ifdef CONFIG_X86_64 8433 .set_hv_timer = vmx_set_hv_timer, 8434 .cancel_hv_timer = vmx_cancel_hv_timer, 8435 #endif 8436 8437 .setup_mce = vmx_setup_mce, 8438 8439 #ifdef CONFIG_KVM_SMM 8440 .smi_allowed = vmx_smi_allowed, 8441 .enter_smm = vmx_enter_smm, 8442 .leave_smm = vmx_leave_smm, 8443 .enable_smi_window = vmx_enable_smi_window, 8444 #endif 8445 8446 .check_emulate_instruction = vmx_check_emulate_instruction, 8447 .apic_init_signal_blocked = vmx_apic_init_signal_blocked, 8448 .migrate_timers = vmx_migrate_timers, 8449 8450 .msr_filter_changed = vmx_msr_filter_changed, 8451 .complete_emulated_msr = kvm_complete_insn_gp, 8452 8453 .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector, 8454 8455 .get_untagged_addr = vmx_get_untagged_addr, 8456 }; 8457 8458 static unsigned int vmx_handle_intel_pt_intr(void) 8459 { 8460 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 8461 8462 /* '0' on failure so that the !PT case can use a RET0 static call. */ 8463 if (!vcpu || !kvm_handling_nmi_from_guest(vcpu)) 8464 return 0; 8465 8466 kvm_make_request(KVM_REQ_PMI, vcpu); 8467 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT, 8468 (unsigned long *)&vcpu->arch.pmu.global_status); 8469 return 1; 8470 } 8471 8472 static __init void vmx_setup_user_return_msrs(void) 8473 { 8474 8475 /* 8476 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm 8477 * will emulate SYSCALL in legacy mode if the vendor string in guest 8478 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To 8479 * support this emulation, MSR_STAR is included in the list for i386, 8480 * but is never loaded into hardware. MSR_CSTAR is also never loaded 8481 * into hardware and is here purely for emulation purposes. 8482 */ 8483 const u32 vmx_uret_msrs_list[] = { 8484 #ifdef CONFIG_X86_64 8485 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, 8486 #endif 8487 MSR_EFER, MSR_TSC_AUX, MSR_STAR, 8488 MSR_IA32_TSX_CTRL, 8489 }; 8490 int i; 8491 8492 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS); 8493 8494 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) 8495 kvm_add_user_return_msr(vmx_uret_msrs_list[i]); 8496 } 8497 8498 static void __init vmx_setup_me_spte_mask(void) 8499 { 8500 u64 me_mask = 0; 8501 8502 /* 8503 * kvm_get_shadow_phys_bits() returns shadow_phys_bits. Use 8504 * the former to avoid exposing shadow_phys_bits. 8505 * 8506 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to 8507 * shadow_phys_bits. On MKTME and/or TDX capable systems, 8508 * boot_cpu_data.x86_phys_bits holds the actual physical address 8509 * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR 8510 * reported by CPUID. Those bits between are KeyID bits. 8511 */ 8512 if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits()) 8513 me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits, 8514 kvm_get_shadow_phys_bits() - 1); 8515 /* 8516 * Unlike SME, host kernel doesn't support setting up any 8517 * MKTME KeyID on Intel platforms. No memory encryption 8518 * bits should be included into the SPTE. 8519 */ 8520 kvm_mmu_set_me_spte_mask(0, me_mask); 8521 } 8522 8523 static struct kvm_x86_init_ops vmx_init_ops __initdata; 8524 8525 static __init int hardware_setup(void) 8526 { 8527 unsigned long host_bndcfgs; 8528 struct desc_ptr dt; 8529 int r; 8530 8531 store_idt(&dt); 8532 host_idt_base = dt.address; 8533 8534 vmx_setup_user_return_msrs(); 8535 8536 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) 8537 return -EIO; 8538 8539 if (cpu_has_perf_global_ctrl_bug()) 8540 pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " 8541 "does not work properly. Using workaround\n"); 8542 8543 if (boot_cpu_has(X86_FEATURE_NX)) 8544 kvm_enable_efer_bits(EFER_NX); 8545 8546 if (boot_cpu_has(X86_FEATURE_MPX)) { 8547 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); 8548 WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost"); 8549 } 8550 8551 if (!cpu_has_vmx_mpx()) 8552 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 8553 XFEATURE_MASK_BNDCSR); 8554 8555 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || 8556 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) 8557 enable_vpid = 0; 8558 8559 if (!cpu_has_vmx_ept() || 8560 !cpu_has_vmx_ept_4levels() || 8561 !cpu_has_vmx_ept_mt_wb() || 8562 !cpu_has_vmx_invept_global()) 8563 enable_ept = 0; 8564 8565 /* NX support is required for shadow paging. */ 8566 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) { 8567 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 8568 return -EOPNOTSUPP; 8569 } 8570 8571 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) 8572 enable_ept_ad_bits = 0; 8573 8574 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) 8575 enable_unrestricted_guest = 0; 8576 8577 if (!cpu_has_vmx_flexpriority()) 8578 flexpriority_enabled = 0; 8579 8580 if (!cpu_has_virtual_nmis()) 8581 enable_vnmi = 0; 8582 8583 #ifdef CONFIG_X86_SGX_KVM 8584 if (!cpu_has_vmx_encls_vmexit()) 8585 enable_sgx = false; 8586 #endif 8587 8588 /* 8589 * set_apic_access_page_addr() is used to reload apic access 8590 * page upon invalidation. No need to do anything if not 8591 * using the APIC_ACCESS_ADDR VMCS field. 8592 */ 8593 if (!flexpriority_enabled) 8594 vmx_x86_ops.set_apic_access_page_addr = NULL; 8595 8596 if (!cpu_has_vmx_tpr_shadow()) 8597 vmx_x86_ops.update_cr8_intercept = NULL; 8598 8599 #if IS_ENABLED(CONFIG_HYPERV) 8600 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH 8601 && enable_ept) { 8602 vmx_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs; 8603 vmx_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range; 8604 } 8605 #endif 8606 8607 if (!cpu_has_vmx_ple()) { 8608 ple_gap = 0; 8609 ple_window = 0; 8610 ple_window_grow = 0; 8611 ple_window_max = 0; 8612 ple_window_shrink = 0; 8613 } 8614 8615 if (!cpu_has_vmx_apicv()) 8616 enable_apicv = 0; 8617 if (!enable_apicv) 8618 vmx_x86_ops.sync_pir_to_irr = NULL; 8619 8620 if (!enable_apicv || !cpu_has_vmx_ipiv()) 8621 enable_ipiv = false; 8622 8623 if (cpu_has_vmx_tsc_scaling()) 8624 kvm_caps.has_tsc_control = true; 8625 8626 kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; 8627 kvm_caps.tsc_scaling_ratio_frac_bits = 48; 8628 kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection(); 8629 kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit(); 8630 8631 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ 8632 8633 if (enable_ept) 8634 kvm_mmu_set_ept_masks(enable_ept_ad_bits, 8635 cpu_has_vmx_ept_execute_only()); 8636 8637 /* 8638 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID 8639 * bits to shadow_zero_check. 8640 */ 8641 vmx_setup_me_spte_mask(); 8642 8643 kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(), 8644 ept_caps_to_lpage_level(vmx_capability.ept)); 8645 8646 /* 8647 * Only enable PML when hardware supports PML feature, and both EPT 8648 * and EPT A/D bit features are enabled -- PML depends on them to work. 8649 */ 8650 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) 8651 enable_pml = 0; 8652 8653 if (!enable_pml) 8654 vmx_x86_ops.cpu_dirty_log_size = 0; 8655 8656 if (!cpu_has_vmx_preemption_timer()) 8657 enable_preemption_timer = false; 8658 8659 if (enable_preemption_timer) { 8660 u64 use_timer_freq = 5000ULL * 1000 * 1000; 8661 8662 cpu_preemption_timer_multi = 8663 vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; 8664 8665 if (tsc_khz) 8666 use_timer_freq = (u64)tsc_khz * 1000; 8667 use_timer_freq >>= cpu_preemption_timer_multi; 8668 8669 /* 8670 * KVM "disables" the preemption timer by setting it to its max 8671 * value. Don't use the timer if it might cause spurious exits 8672 * at a rate faster than 0.1 Hz (of uninterrupted guest time). 8673 */ 8674 if (use_timer_freq > 0xffffffffu / 10) 8675 enable_preemption_timer = false; 8676 } 8677 8678 if (!enable_preemption_timer) { 8679 vmx_x86_ops.set_hv_timer = NULL; 8680 vmx_x86_ops.cancel_hv_timer = NULL; 8681 } 8682 8683 kvm_caps.supported_mce_cap |= MCG_LMCE_P; 8684 kvm_caps.supported_mce_cap |= MCG_CMCI_P; 8685 8686 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) 8687 return -EINVAL; 8688 if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt()) 8689 pt_mode = PT_MODE_SYSTEM; 8690 if (pt_mode == PT_MODE_HOST_GUEST) 8691 vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr; 8692 else 8693 vmx_init_ops.handle_intel_pt_intr = NULL; 8694 8695 setup_default_sgx_lepubkeyhash(); 8696 8697 if (nested) { 8698 nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept); 8699 8700 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); 8701 if (r) 8702 return r; 8703 } 8704 8705 vmx_set_cpu_caps(); 8706 8707 r = alloc_kvm_area(); 8708 if (r && nested) 8709 nested_vmx_hardware_unsetup(); 8710 8711 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler); 8712 8713 return r; 8714 } 8715 8716 static struct kvm_x86_init_ops vmx_init_ops __initdata = { 8717 .hardware_setup = hardware_setup, 8718 .handle_intel_pt_intr = NULL, 8719 8720 .runtime_ops = &vmx_x86_ops, 8721 .pmu_ops = &intel_pmu_ops, 8722 }; 8723 8724 static void vmx_cleanup_l1d_flush(void) 8725 { 8726 if (vmx_l1d_flush_pages) { 8727 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); 8728 vmx_l1d_flush_pages = NULL; 8729 } 8730 /* Restore state so sysfs ignores VMX */ 8731 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 8732 } 8733 8734 static void __vmx_exit(void) 8735 { 8736 allow_smaller_maxphyaddr = false; 8737 8738 cpu_emergency_unregister_virt_callback(vmx_emergency_disable); 8739 8740 vmx_cleanup_l1d_flush(); 8741 } 8742 8743 static void vmx_exit(void) 8744 { 8745 kvm_exit(); 8746 kvm_x86_vendor_exit(); 8747 8748 __vmx_exit(); 8749 } 8750 module_exit(vmx_exit); 8751 8752 static int __init vmx_init(void) 8753 { 8754 int r, cpu; 8755 8756 if (!kvm_is_vmx_supported()) 8757 return -EOPNOTSUPP; 8758 8759 /* 8760 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing 8761 * to unwind if a later step fails. 8762 */ 8763 hv_init_evmcs(); 8764 8765 r = kvm_x86_vendor_init(&vmx_init_ops); 8766 if (r) 8767 return r; 8768 8769 /* 8770 * Must be called after common x86 init so enable_ept is properly set 8771 * up. Hand the parameter mitigation value in which was stored in 8772 * the pre module init parser. If no parameter was given, it will 8773 * contain 'auto' which will be turned into the default 'cond' 8774 * mitigation mode. 8775 */ 8776 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); 8777 if (r) 8778 goto err_l1d_flush; 8779 8780 for_each_possible_cpu(cpu) { 8781 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); 8782 8783 pi_init_cpu(cpu); 8784 } 8785 8786 cpu_emergency_register_virt_callback(vmx_emergency_disable); 8787 8788 vmx_check_vmcs12_offsets(); 8789 8790 /* 8791 * Shadow paging doesn't have a (further) performance penalty 8792 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it 8793 * by default 8794 */ 8795 if (!enable_ept) 8796 allow_smaller_maxphyaddr = true; 8797 8798 /* 8799 * Common KVM initialization _must_ come last, after this, /dev/kvm is 8800 * exposed to userspace! 8801 */ 8802 r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx), 8803 THIS_MODULE); 8804 if (r) 8805 goto err_kvm_init; 8806 8807 return 0; 8808 8809 err_kvm_init: 8810 __vmx_exit(); 8811 err_l1d_flush: 8812 kvm_x86_vendor_exit(); 8813 return r; 8814 } 8815 module_init(vmx_init); 8816