xref: /linux/arch/x86/kvm/vmx/vmx.c (revision 6beeaf48db6c548fcfc2ad32739d33af2fef3a5b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <linux/highmem.h>
17 #include <linux/hrtimer.h>
18 #include <linux/kernel.h>
19 #include <linux/kvm_host.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mm.h>
24 #include <linux/objtool.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
31 
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/idtentry.h>
40 #include <asm/io.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/kexec.h>
43 #include <asm/perf_event.h>
44 #include <asm/mmu_context.h>
45 #include <asm/mshyperv.h>
46 #include <asm/mwait.h>
47 #include <asm/spec-ctrl.h>
48 #include <asm/virtext.h>
49 #include <asm/vmx.h>
50 
51 #include "capabilities.h"
52 #include "cpuid.h"
53 #include "evmcs.h"
54 #include "hyperv.h"
55 #include "kvm_onhyperv.h"
56 #include "irq.h"
57 #include "kvm_cache_regs.h"
58 #include "lapic.h"
59 #include "mmu.h"
60 #include "nested.h"
61 #include "pmu.h"
62 #include "sgx.h"
63 #include "trace.h"
64 #include "vmcs.h"
65 #include "vmcs12.h"
66 #include "vmx.h"
67 #include "x86.h"
68 
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71 
72 #ifdef MODULE
73 static const struct x86_cpu_id vmx_cpu_id[] = {
74 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
75 	{}
76 };
77 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
78 #endif
79 
80 bool __read_mostly enable_vpid = 1;
81 module_param_named(vpid, enable_vpid, bool, 0444);
82 
83 static bool __read_mostly enable_vnmi = 1;
84 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
85 
86 bool __read_mostly flexpriority_enabled = 1;
87 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
88 
89 bool __read_mostly enable_ept = 1;
90 module_param_named(ept, enable_ept, bool, S_IRUGO);
91 
92 bool __read_mostly enable_unrestricted_guest = 1;
93 module_param_named(unrestricted_guest,
94 			enable_unrestricted_guest, bool, S_IRUGO);
95 
96 bool __read_mostly enable_ept_ad_bits = 1;
97 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
98 
99 static bool __read_mostly emulate_invalid_guest_state = true;
100 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
101 
102 static bool __read_mostly fasteoi = 1;
103 module_param(fasteoi, bool, S_IRUGO);
104 
105 module_param(enable_apicv, bool, S_IRUGO);
106 
107 /*
108  * If nested=1, nested virtualization is supported, i.e., guests may use
109  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
110  * use VMX instructions.
111  */
112 static bool __read_mostly nested = 1;
113 module_param(nested, bool, S_IRUGO);
114 
115 bool __read_mostly enable_pml = 1;
116 module_param_named(pml, enable_pml, bool, S_IRUGO);
117 
118 static bool __read_mostly dump_invalid_vmcs = 0;
119 module_param(dump_invalid_vmcs, bool, 0644);
120 
121 #define MSR_BITMAP_MODE_X2APIC		1
122 #define MSR_BITMAP_MODE_X2APIC_APICV	2
123 
124 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
125 
126 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
127 static int __read_mostly cpu_preemption_timer_multi;
128 static bool __read_mostly enable_preemption_timer = 1;
129 #ifdef CONFIG_X86_64
130 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
131 #endif
132 
133 extern bool __read_mostly allow_smaller_maxphyaddr;
134 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
135 
136 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
137 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
138 #define KVM_VM_CR0_ALWAYS_ON				\
139 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
140 
141 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
142 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
143 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
144 
145 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
146 
147 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
148 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
149 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
150 	RTIT_STATUS_BYTECNT))
151 
152 /*
153  * List of MSRs that can be directly passed to the guest.
154  * In addition to these x2apic and PT MSRs are handled specially.
155  */
156 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
157 	MSR_IA32_SPEC_CTRL,
158 	MSR_IA32_PRED_CMD,
159 	MSR_IA32_TSC,
160 #ifdef CONFIG_X86_64
161 	MSR_FS_BASE,
162 	MSR_GS_BASE,
163 	MSR_KERNEL_GS_BASE,
164 #endif
165 	MSR_IA32_SYSENTER_CS,
166 	MSR_IA32_SYSENTER_ESP,
167 	MSR_IA32_SYSENTER_EIP,
168 	MSR_CORE_C1_RES,
169 	MSR_CORE_C3_RESIDENCY,
170 	MSR_CORE_C6_RESIDENCY,
171 	MSR_CORE_C7_RESIDENCY,
172 };
173 
174 /*
175  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
176  * ple_gap:    upper bound on the amount of time between two successive
177  *             executions of PAUSE in a loop. Also indicate if ple enabled.
178  *             According to test, this time is usually smaller than 128 cycles.
179  * ple_window: upper bound on the amount of time a guest is allowed to execute
180  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
181  *             less than 2^12 cycles
182  * Time is measured based on a counter that runs at the same rate as the TSC,
183  * refer SDM volume 3b section 21.6.13 & 22.1.3.
184  */
185 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
186 module_param(ple_gap, uint, 0444);
187 
188 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
189 module_param(ple_window, uint, 0444);
190 
191 /* Default doubles per-vcpu window every exit. */
192 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
193 module_param(ple_window_grow, uint, 0444);
194 
195 /* Default resets per-vcpu window every exit to ple_window. */
196 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
197 module_param(ple_window_shrink, uint, 0444);
198 
199 /* Default is to compute the maximum so we can never overflow. */
200 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
201 module_param(ple_window_max, uint, 0444);
202 
203 /* Default is SYSTEM mode, 1 for host-guest mode */
204 int __read_mostly pt_mode = PT_MODE_SYSTEM;
205 module_param(pt_mode, int, S_IRUGO);
206 
207 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
208 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
209 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
210 
211 /* Storage for pre module init parameter parsing */
212 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
213 
214 static const struct {
215 	const char *option;
216 	bool for_parse;
217 } vmentry_l1d_param[] = {
218 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
219 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
220 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
221 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
222 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
223 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
224 };
225 
226 #define L1D_CACHE_ORDER 4
227 static void *vmx_l1d_flush_pages;
228 
229 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
230 {
231 	struct page *page;
232 	unsigned int i;
233 
234 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
235 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
236 		return 0;
237 	}
238 
239 	if (!enable_ept) {
240 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
241 		return 0;
242 	}
243 
244 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
245 		u64 msr;
246 
247 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
248 		if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
249 			l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
250 			return 0;
251 		}
252 	}
253 
254 	/* If set to auto use the default l1tf mitigation method */
255 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
256 		switch (l1tf_mitigation) {
257 		case L1TF_MITIGATION_OFF:
258 			l1tf = VMENTER_L1D_FLUSH_NEVER;
259 			break;
260 		case L1TF_MITIGATION_FLUSH_NOWARN:
261 		case L1TF_MITIGATION_FLUSH:
262 		case L1TF_MITIGATION_FLUSH_NOSMT:
263 			l1tf = VMENTER_L1D_FLUSH_COND;
264 			break;
265 		case L1TF_MITIGATION_FULL:
266 		case L1TF_MITIGATION_FULL_FORCE:
267 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
268 			break;
269 		}
270 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
271 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
272 	}
273 
274 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
275 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
276 		/*
277 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
278 		 * lifetime and so should not be charged to a memcg.
279 		 */
280 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
281 		if (!page)
282 			return -ENOMEM;
283 		vmx_l1d_flush_pages = page_address(page);
284 
285 		/*
286 		 * Initialize each page with a different pattern in
287 		 * order to protect against KSM in the nested
288 		 * virtualization case.
289 		 */
290 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
291 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
292 			       PAGE_SIZE);
293 		}
294 	}
295 
296 	l1tf_vmx_mitigation = l1tf;
297 
298 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
299 		static_branch_enable(&vmx_l1d_should_flush);
300 	else
301 		static_branch_disable(&vmx_l1d_should_flush);
302 
303 	if (l1tf == VMENTER_L1D_FLUSH_COND)
304 		static_branch_enable(&vmx_l1d_flush_cond);
305 	else
306 		static_branch_disable(&vmx_l1d_flush_cond);
307 	return 0;
308 }
309 
310 static int vmentry_l1d_flush_parse(const char *s)
311 {
312 	unsigned int i;
313 
314 	if (s) {
315 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
316 			if (vmentry_l1d_param[i].for_parse &&
317 			    sysfs_streq(s, vmentry_l1d_param[i].option))
318 				return i;
319 		}
320 	}
321 	return -EINVAL;
322 }
323 
324 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
325 {
326 	int l1tf, ret;
327 
328 	l1tf = vmentry_l1d_flush_parse(s);
329 	if (l1tf < 0)
330 		return l1tf;
331 
332 	if (!boot_cpu_has(X86_BUG_L1TF))
333 		return 0;
334 
335 	/*
336 	 * Has vmx_init() run already? If not then this is the pre init
337 	 * parameter parsing. In that case just store the value and let
338 	 * vmx_init() do the proper setup after enable_ept has been
339 	 * established.
340 	 */
341 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
342 		vmentry_l1d_flush_param = l1tf;
343 		return 0;
344 	}
345 
346 	mutex_lock(&vmx_l1d_flush_mutex);
347 	ret = vmx_setup_l1d_flush(l1tf);
348 	mutex_unlock(&vmx_l1d_flush_mutex);
349 	return ret;
350 }
351 
352 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
353 {
354 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
355 		return sprintf(s, "???\n");
356 
357 	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
358 }
359 
360 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
361 	.set = vmentry_l1d_flush_set,
362 	.get = vmentry_l1d_flush_get,
363 };
364 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
365 
366 static u32 vmx_segment_access_rights(struct kvm_segment *var);
367 
368 void vmx_vmexit(void);
369 
370 #define vmx_insn_failed(fmt...)		\
371 do {					\
372 	WARN_ONCE(1, fmt);		\
373 	pr_warn_ratelimited(fmt);	\
374 } while (0)
375 
376 asmlinkage void vmread_error(unsigned long field, bool fault)
377 {
378 	if (fault)
379 		kvm_spurious_fault();
380 	else
381 		vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
382 }
383 
384 noinline void vmwrite_error(unsigned long field, unsigned long value)
385 {
386 	vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
387 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
388 }
389 
390 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
391 {
392 	vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
393 }
394 
395 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
396 {
397 	vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
398 }
399 
400 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
401 {
402 	vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
403 			ext, vpid, gva);
404 }
405 
406 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
407 {
408 	vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
409 			ext, eptp, gpa);
410 }
411 
412 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
413 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
414 /*
415  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
416  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
417  */
418 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
419 
420 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
421 static DEFINE_SPINLOCK(vmx_vpid_lock);
422 
423 struct vmcs_config vmcs_config;
424 struct vmx_capability vmx_capability;
425 
426 #define VMX_SEGMENT_FIELD(seg)					\
427 	[VCPU_SREG_##seg] = {                                   \
428 		.selector = GUEST_##seg##_SELECTOR,		\
429 		.base = GUEST_##seg##_BASE,		   	\
430 		.limit = GUEST_##seg##_LIMIT,		   	\
431 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
432 	}
433 
434 static const struct kvm_vmx_segment_field {
435 	unsigned selector;
436 	unsigned base;
437 	unsigned limit;
438 	unsigned ar_bytes;
439 } kvm_vmx_segment_fields[] = {
440 	VMX_SEGMENT_FIELD(CS),
441 	VMX_SEGMENT_FIELD(DS),
442 	VMX_SEGMENT_FIELD(ES),
443 	VMX_SEGMENT_FIELD(FS),
444 	VMX_SEGMENT_FIELD(GS),
445 	VMX_SEGMENT_FIELD(SS),
446 	VMX_SEGMENT_FIELD(TR),
447 	VMX_SEGMENT_FIELD(LDTR),
448 };
449 
450 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
451 {
452 	vmx->segment_cache.bitmask = 0;
453 }
454 
455 static unsigned long host_idt_base;
456 
457 #if IS_ENABLED(CONFIG_HYPERV)
458 static bool __read_mostly enlightened_vmcs = true;
459 module_param(enlightened_vmcs, bool, 0444);
460 
461 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
462 {
463 	struct hv_enlightened_vmcs *evmcs;
464 	struct hv_partition_assist_pg **p_hv_pa_pg =
465 			&to_kvm_hv(vcpu->kvm)->hv_pa_pg;
466 	/*
467 	 * Synthetic VM-Exit is not enabled in current code and so All
468 	 * evmcs in singe VM shares same assist page.
469 	 */
470 	if (!*p_hv_pa_pg)
471 		*p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
472 
473 	if (!*p_hv_pa_pg)
474 		return -ENOMEM;
475 
476 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
477 
478 	evmcs->partition_assist_page =
479 		__pa(*p_hv_pa_pg);
480 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
481 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
482 
483 	return 0;
484 }
485 
486 #endif /* IS_ENABLED(CONFIG_HYPERV) */
487 
488 /*
489  * Comment's format: document - errata name - stepping - processor name.
490  * Refer from
491  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
492  */
493 static u32 vmx_preemption_cpu_tfms[] = {
494 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
495 0x000206E6,
496 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
497 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
498 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
499 0x00020652,
500 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
501 0x00020655,
502 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
503 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
504 /*
505  * 320767.pdf - AAP86  - B1 -
506  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
507  */
508 0x000106E5,
509 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
510 0x000106A0,
511 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
512 0x000106A1,
513 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
514 0x000106A4,
515  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
516  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
517  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
518 0x000106A5,
519  /* Xeon E3-1220 V2 */
520 0x000306A8,
521 };
522 
523 static inline bool cpu_has_broken_vmx_preemption_timer(void)
524 {
525 	u32 eax = cpuid_eax(0x00000001), i;
526 
527 	/* Clear the reserved bits */
528 	eax &= ~(0x3U << 14 | 0xfU << 28);
529 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
530 		if (eax == vmx_preemption_cpu_tfms[i])
531 			return true;
532 
533 	return false;
534 }
535 
536 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
537 {
538 	return flexpriority_enabled && lapic_in_kernel(vcpu);
539 }
540 
541 static inline bool report_flexpriority(void)
542 {
543 	return flexpriority_enabled;
544 }
545 
546 static int possible_passthrough_msr_slot(u32 msr)
547 {
548 	u32 i;
549 
550 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
551 		if (vmx_possible_passthrough_msrs[i] == msr)
552 			return i;
553 
554 	return -ENOENT;
555 }
556 
557 static bool is_valid_passthrough_msr(u32 msr)
558 {
559 	bool r;
560 
561 	switch (msr) {
562 	case 0x800 ... 0x8ff:
563 		/* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
564 		return true;
565 	case MSR_IA32_RTIT_STATUS:
566 	case MSR_IA32_RTIT_OUTPUT_BASE:
567 	case MSR_IA32_RTIT_OUTPUT_MASK:
568 	case MSR_IA32_RTIT_CR3_MATCH:
569 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
570 		/* PT MSRs. These are handled in pt_update_intercept_for_msr() */
571 	case MSR_LBR_SELECT:
572 	case MSR_LBR_TOS:
573 	case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
574 	case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
575 	case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
576 	case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
577 	case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
578 		/* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
579 		return true;
580 	}
581 
582 	r = possible_passthrough_msr_slot(msr) != -ENOENT;
583 
584 	WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
585 
586 	return r;
587 }
588 
589 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
590 {
591 	int i;
592 
593 	i = kvm_find_user_return_msr(msr);
594 	if (i >= 0)
595 		return &vmx->guest_uret_msrs[i];
596 	return NULL;
597 }
598 
599 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
600 				  struct vmx_uret_msr *msr, u64 data)
601 {
602 	unsigned int slot = msr - vmx->guest_uret_msrs;
603 	int ret = 0;
604 
605 	u64 old_msr_data = msr->data;
606 	msr->data = data;
607 	if (msr->load_into_hardware) {
608 		preempt_disable();
609 		ret = kvm_set_user_return_msr(slot, msr->data, msr->mask);
610 		preempt_enable();
611 		if (ret)
612 			msr->data = old_msr_data;
613 	}
614 	return ret;
615 }
616 
617 #ifdef CONFIG_KEXEC_CORE
618 static void crash_vmclear_local_loaded_vmcss(void)
619 {
620 	int cpu = raw_smp_processor_id();
621 	struct loaded_vmcs *v;
622 
623 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
624 			    loaded_vmcss_on_cpu_link)
625 		vmcs_clear(v->vmcs);
626 }
627 #endif /* CONFIG_KEXEC_CORE */
628 
629 static void __loaded_vmcs_clear(void *arg)
630 {
631 	struct loaded_vmcs *loaded_vmcs = arg;
632 	int cpu = raw_smp_processor_id();
633 
634 	if (loaded_vmcs->cpu != cpu)
635 		return; /* vcpu migration can race with cpu offline */
636 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
637 		per_cpu(current_vmcs, cpu) = NULL;
638 
639 	vmcs_clear(loaded_vmcs->vmcs);
640 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
641 		vmcs_clear(loaded_vmcs->shadow_vmcs);
642 
643 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
644 
645 	/*
646 	 * Ensure all writes to loaded_vmcs, including deleting it from its
647 	 * current percpu list, complete before setting loaded_vmcs->vcpu to
648 	 * -1, otherwise a different cpu can see vcpu == -1 first and add
649 	 * loaded_vmcs to its percpu list before it's deleted from this cpu's
650 	 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
651 	 */
652 	smp_wmb();
653 
654 	loaded_vmcs->cpu = -1;
655 	loaded_vmcs->launched = 0;
656 }
657 
658 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
659 {
660 	int cpu = loaded_vmcs->cpu;
661 
662 	if (cpu != -1)
663 		smp_call_function_single(cpu,
664 			 __loaded_vmcs_clear, loaded_vmcs, 1);
665 }
666 
667 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
668 				       unsigned field)
669 {
670 	bool ret;
671 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
672 
673 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
674 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
675 		vmx->segment_cache.bitmask = 0;
676 	}
677 	ret = vmx->segment_cache.bitmask & mask;
678 	vmx->segment_cache.bitmask |= mask;
679 	return ret;
680 }
681 
682 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
683 {
684 	u16 *p = &vmx->segment_cache.seg[seg].selector;
685 
686 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
687 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
688 	return *p;
689 }
690 
691 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
692 {
693 	ulong *p = &vmx->segment_cache.seg[seg].base;
694 
695 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
696 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
697 	return *p;
698 }
699 
700 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
701 {
702 	u32 *p = &vmx->segment_cache.seg[seg].limit;
703 
704 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
705 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
706 	return *p;
707 }
708 
709 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
710 {
711 	u32 *p = &vmx->segment_cache.seg[seg].ar;
712 
713 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
714 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
715 	return *p;
716 }
717 
718 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
719 {
720 	u32 eb;
721 
722 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
723 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
724 	/*
725 	 * Guest access to VMware backdoor ports could legitimately
726 	 * trigger #GP because of TSS I/O permission bitmap.
727 	 * We intercept those #GP and allow access to them anyway
728 	 * as VMware does.
729 	 */
730 	if (enable_vmware_backdoor)
731 		eb |= (1u << GP_VECTOR);
732 	if ((vcpu->guest_debug &
733 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
734 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
735 		eb |= 1u << BP_VECTOR;
736 	if (to_vmx(vcpu)->rmode.vm86_active)
737 		eb = ~0;
738 	if (!vmx_need_pf_intercept(vcpu))
739 		eb &= ~(1u << PF_VECTOR);
740 
741 	/* When we are running a nested L2 guest and L1 specified for it a
742 	 * certain exception bitmap, we must trap the same exceptions and pass
743 	 * them to L1. When running L2, we will only handle the exceptions
744 	 * specified above if L1 did not want them.
745 	 */
746 	if (is_guest_mode(vcpu))
747 		eb |= get_vmcs12(vcpu)->exception_bitmap;
748         else {
749 		int mask = 0, match = 0;
750 
751 		if (enable_ept && (eb & (1u << PF_VECTOR))) {
752 			/*
753 			 * If EPT is enabled, #PF is currently only intercepted
754 			 * if MAXPHYADDR is smaller on the guest than on the
755 			 * host.  In that case we only care about present,
756 			 * non-reserved faults.  For vmcs02, however, PFEC_MASK
757 			 * and PFEC_MATCH are set in prepare_vmcs02_rare.
758 			 */
759 			mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
760 			match = PFERR_PRESENT_MASK;
761 		}
762 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
763 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
764 	}
765 
766 	vmcs_write32(EXCEPTION_BITMAP, eb);
767 }
768 
769 /*
770  * Check if MSR is intercepted for currently loaded MSR bitmap.
771  */
772 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
773 {
774 	unsigned long *msr_bitmap;
775 	int f = sizeof(unsigned long);
776 
777 	if (!cpu_has_vmx_msr_bitmap())
778 		return true;
779 
780 	msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
781 
782 	if (msr <= 0x1fff) {
783 		return !!test_bit(msr, msr_bitmap + 0x800 / f);
784 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
785 		msr &= 0x1fff;
786 		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
787 	}
788 
789 	return true;
790 }
791 
792 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
793 		unsigned long entry, unsigned long exit)
794 {
795 	vm_entry_controls_clearbit(vmx, entry);
796 	vm_exit_controls_clearbit(vmx, exit);
797 }
798 
799 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
800 {
801 	unsigned int i;
802 
803 	for (i = 0; i < m->nr; ++i) {
804 		if (m->val[i].index == msr)
805 			return i;
806 	}
807 	return -ENOENT;
808 }
809 
810 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
811 {
812 	int i;
813 	struct msr_autoload *m = &vmx->msr_autoload;
814 
815 	switch (msr) {
816 	case MSR_EFER:
817 		if (cpu_has_load_ia32_efer()) {
818 			clear_atomic_switch_msr_special(vmx,
819 					VM_ENTRY_LOAD_IA32_EFER,
820 					VM_EXIT_LOAD_IA32_EFER);
821 			return;
822 		}
823 		break;
824 	case MSR_CORE_PERF_GLOBAL_CTRL:
825 		if (cpu_has_load_perf_global_ctrl()) {
826 			clear_atomic_switch_msr_special(vmx,
827 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
828 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
829 			return;
830 		}
831 		break;
832 	}
833 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
834 	if (i < 0)
835 		goto skip_guest;
836 	--m->guest.nr;
837 	m->guest.val[i] = m->guest.val[m->guest.nr];
838 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
839 
840 skip_guest:
841 	i = vmx_find_loadstore_msr_slot(&m->host, msr);
842 	if (i < 0)
843 		return;
844 
845 	--m->host.nr;
846 	m->host.val[i] = m->host.val[m->host.nr];
847 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
848 }
849 
850 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
851 		unsigned long entry, unsigned long exit,
852 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
853 		u64 guest_val, u64 host_val)
854 {
855 	vmcs_write64(guest_val_vmcs, guest_val);
856 	if (host_val_vmcs != HOST_IA32_EFER)
857 		vmcs_write64(host_val_vmcs, host_val);
858 	vm_entry_controls_setbit(vmx, entry);
859 	vm_exit_controls_setbit(vmx, exit);
860 }
861 
862 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
863 				  u64 guest_val, u64 host_val, bool entry_only)
864 {
865 	int i, j = 0;
866 	struct msr_autoload *m = &vmx->msr_autoload;
867 
868 	switch (msr) {
869 	case MSR_EFER:
870 		if (cpu_has_load_ia32_efer()) {
871 			add_atomic_switch_msr_special(vmx,
872 					VM_ENTRY_LOAD_IA32_EFER,
873 					VM_EXIT_LOAD_IA32_EFER,
874 					GUEST_IA32_EFER,
875 					HOST_IA32_EFER,
876 					guest_val, host_val);
877 			return;
878 		}
879 		break;
880 	case MSR_CORE_PERF_GLOBAL_CTRL:
881 		if (cpu_has_load_perf_global_ctrl()) {
882 			add_atomic_switch_msr_special(vmx,
883 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
884 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
885 					GUEST_IA32_PERF_GLOBAL_CTRL,
886 					HOST_IA32_PERF_GLOBAL_CTRL,
887 					guest_val, host_val);
888 			return;
889 		}
890 		break;
891 	case MSR_IA32_PEBS_ENABLE:
892 		/* PEBS needs a quiescent period after being disabled (to write
893 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
894 		 * provide that period, so a CPU could write host's record into
895 		 * guest's memory.
896 		 */
897 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
898 	}
899 
900 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
901 	if (!entry_only)
902 		j = vmx_find_loadstore_msr_slot(&m->host, msr);
903 
904 	if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
905 	    (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
906 		printk_once(KERN_WARNING "Not enough msr switch entries. "
907 				"Can't add msr %x\n", msr);
908 		return;
909 	}
910 	if (i < 0) {
911 		i = m->guest.nr++;
912 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
913 	}
914 	m->guest.val[i].index = msr;
915 	m->guest.val[i].value = guest_val;
916 
917 	if (entry_only)
918 		return;
919 
920 	if (j < 0) {
921 		j = m->host.nr++;
922 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
923 	}
924 	m->host.val[j].index = msr;
925 	m->host.val[j].value = host_val;
926 }
927 
928 static bool update_transition_efer(struct vcpu_vmx *vmx)
929 {
930 	u64 guest_efer = vmx->vcpu.arch.efer;
931 	u64 ignore_bits = 0;
932 	int i;
933 
934 	/* Shadow paging assumes NX to be available.  */
935 	if (!enable_ept)
936 		guest_efer |= EFER_NX;
937 
938 	/*
939 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
940 	 */
941 	ignore_bits |= EFER_SCE;
942 #ifdef CONFIG_X86_64
943 	ignore_bits |= EFER_LMA | EFER_LME;
944 	/* SCE is meaningful only in long mode on Intel */
945 	if (guest_efer & EFER_LMA)
946 		ignore_bits &= ~(u64)EFER_SCE;
947 #endif
948 
949 	/*
950 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
951 	 * On CPUs that support "load IA32_EFER", always switch EFER
952 	 * atomically, since it's faster than switching it manually.
953 	 */
954 	if (cpu_has_load_ia32_efer() ||
955 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
956 		if (!(guest_efer & EFER_LMA))
957 			guest_efer &= ~EFER_LME;
958 		if (guest_efer != host_efer)
959 			add_atomic_switch_msr(vmx, MSR_EFER,
960 					      guest_efer, host_efer, false);
961 		else
962 			clear_atomic_switch_msr(vmx, MSR_EFER);
963 		return false;
964 	}
965 
966 	i = kvm_find_user_return_msr(MSR_EFER);
967 	if (i < 0)
968 		return false;
969 
970 	clear_atomic_switch_msr(vmx, MSR_EFER);
971 
972 	guest_efer &= ~ignore_bits;
973 	guest_efer |= host_efer & ignore_bits;
974 
975 	vmx->guest_uret_msrs[i].data = guest_efer;
976 	vmx->guest_uret_msrs[i].mask = ~ignore_bits;
977 
978 	return true;
979 }
980 
981 #ifdef CONFIG_X86_32
982 /*
983  * On 32-bit kernels, VM exits still load the FS and GS bases from the
984  * VMCS rather than the segment table.  KVM uses this helper to figure
985  * out the current bases to poke them into the VMCS before entry.
986  */
987 static unsigned long segment_base(u16 selector)
988 {
989 	struct desc_struct *table;
990 	unsigned long v;
991 
992 	if (!(selector & ~SEGMENT_RPL_MASK))
993 		return 0;
994 
995 	table = get_current_gdt_ro();
996 
997 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
998 		u16 ldt_selector = kvm_read_ldt();
999 
1000 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1001 			return 0;
1002 
1003 		table = (struct desc_struct *)segment_base(ldt_selector);
1004 	}
1005 	v = get_desc_base(&table[selector >> 3]);
1006 	return v;
1007 }
1008 #endif
1009 
1010 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1011 {
1012 	return vmx_pt_mode_is_host_guest() &&
1013 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1014 }
1015 
1016 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1017 {
1018 	/* The base must be 128-byte aligned and a legal physical address. */
1019 	return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1020 }
1021 
1022 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1023 {
1024 	u32 i;
1025 
1026 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1027 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1028 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1029 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1030 	for (i = 0; i < addr_range; i++) {
1031 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1032 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1033 	}
1034 }
1035 
1036 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1037 {
1038 	u32 i;
1039 
1040 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1041 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1042 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1043 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1044 	for (i = 0; i < addr_range; i++) {
1045 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1046 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1047 	}
1048 }
1049 
1050 static void pt_guest_enter(struct vcpu_vmx *vmx)
1051 {
1052 	if (vmx_pt_mode_is_system())
1053 		return;
1054 
1055 	/*
1056 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1057 	 * Save host state before VM entry.
1058 	 */
1059 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1060 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1061 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1062 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1063 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1064 	}
1065 }
1066 
1067 static void pt_guest_exit(struct vcpu_vmx *vmx)
1068 {
1069 	if (vmx_pt_mode_is_system())
1070 		return;
1071 
1072 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1073 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1074 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1075 	}
1076 
1077 	/* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1078 	wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1079 }
1080 
1081 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1082 			unsigned long fs_base, unsigned long gs_base)
1083 {
1084 	if (unlikely(fs_sel != host->fs_sel)) {
1085 		if (!(fs_sel & 7))
1086 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1087 		else
1088 			vmcs_write16(HOST_FS_SELECTOR, 0);
1089 		host->fs_sel = fs_sel;
1090 	}
1091 	if (unlikely(gs_sel != host->gs_sel)) {
1092 		if (!(gs_sel & 7))
1093 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1094 		else
1095 			vmcs_write16(HOST_GS_SELECTOR, 0);
1096 		host->gs_sel = gs_sel;
1097 	}
1098 	if (unlikely(fs_base != host->fs_base)) {
1099 		vmcs_writel(HOST_FS_BASE, fs_base);
1100 		host->fs_base = fs_base;
1101 	}
1102 	if (unlikely(gs_base != host->gs_base)) {
1103 		vmcs_writel(HOST_GS_BASE, gs_base);
1104 		host->gs_base = gs_base;
1105 	}
1106 }
1107 
1108 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1109 {
1110 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1111 	struct vmcs_host_state *host_state;
1112 #ifdef CONFIG_X86_64
1113 	int cpu = raw_smp_processor_id();
1114 #endif
1115 	unsigned long fs_base, gs_base;
1116 	u16 fs_sel, gs_sel;
1117 	int i;
1118 
1119 	vmx->req_immediate_exit = false;
1120 
1121 	/*
1122 	 * Note that guest MSRs to be saved/restored can also be changed
1123 	 * when guest state is loaded. This happens when guest transitions
1124 	 * to/from long-mode by setting MSR_EFER.LMA.
1125 	 */
1126 	if (!vmx->guest_uret_msrs_loaded) {
1127 		vmx->guest_uret_msrs_loaded = true;
1128 		for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1129 			if (!vmx->guest_uret_msrs[i].load_into_hardware)
1130 				continue;
1131 
1132 			kvm_set_user_return_msr(i,
1133 						vmx->guest_uret_msrs[i].data,
1134 						vmx->guest_uret_msrs[i].mask);
1135 		}
1136 	}
1137 
1138     	if (vmx->nested.need_vmcs12_to_shadow_sync)
1139 		nested_sync_vmcs12_to_shadow(vcpu);
1140 
1141 	if (vmx->guest_state_loaded)
1142 		return;
1143 
1144 	host_state = &vmx->loaded_vmcs->host_state;
1145 
1146 	/*
1147 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1148 	 * allow segment selectors with cpl > 0 or ti == 1.
1149 	 */
1150 	host_state->ldt_sel = kvm_read_ldt();
1151 
1152 #ifdef CONFIG_X86_64
1153 	savesegment(ds, host_state->ds_sel);
1154 	savesegment(es, host_state->es_sel);
1155 
1156 	gs_base = cpu_kernelmode_gs_base(cpu);
1157 	if (likely(is_64bit_mm(current->mm))) {
1158 		current_save_fsgs();
1159 		fs_sel = current->thread.fsindex;
1160 		gs_sel = current->thread.gsindex;
1161 		fs_base = current->thread.fsbase;
1162 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1163 	} else {
1164 		savesegment(fs, fs_sel);
1165 		savesegment(gs, gs_sel);
1166 		fs_base = read_msr(MSR_FS_BASE);
1167 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1168 	}
1169 
1170 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1171 #else
1172 	savesegment(fs, fs_sel);
1173 	savesegment(gs, gs_sel);
1174 	fs_base = segment_base(fs_sel);
1175 	gs_base = segment_base(gs_sel);
1176 #endif
1177 
1178 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1179 	vmx->guest_state_loaded = true;
1180 }
1181 
1182 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1183 {
1184 	struct vmcs_host_state *host_state;
1185 
1186 	if (!vmx->guest_state_loaded)
1187 		return;
1188 
1189 	host_state = &vmx->loaded_vmcs->host_state;
1190 
1191 	++vmx->vcpu.stat.host_state_reload;
1192 
1193 #ifdef CONFIG_X86_64
1194 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1195 #endif
1196 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1197 		kvm_load_ldt(host_state->ldt_sel);
1198 #ifdef CONFIG_X86_64
1199 		load_gs_index(host_state->gs_sel);
1200 #else
1201 		loadsegment(gs, host_state->gs_sel);
1202 #endif
1203 	}
1204 	if (host_state->fs_sel & 7)
1205 		loadsegment(fs, host_state->fs_sel);
1206 #ifdef CONFIG_X86_64
1207 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1208 		loadsegment(ds, host_state->ds_sel);
1209 		loadsegment(es, host_state->es_sel);
1210 	}
1211 #endif
1212 	invalidate_tss_limit();
1213 #ifdef CONFIG_X86_64
1214 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1215 #endif
1216 	load_fixmap_gdt(raw_smp_processor_id());
1217 	vmx->guest_state_loaded = false;
1218 	vmx->guest_uret_msrs_loaded = false;
1219 }
1220 
1221 #ifdef CONFIG_X86_64
1222 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1223 {
1224 	preempt_disable();
1225 	if (vmx->guest_state_loaded)
1226 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1227 	preempt_enable();
1228 	return vmx->msr_guest_kernel_gs_base;
1229 }
1230 
1231 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1232 {
1233 	preempt_disable();
1234 	if (vmx->guest_state_loaded)
1235 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1236 	preempt_enable();
1237 	vmx->msr_guest_kernel_gs_base = data;
1238 }
1239 #endif
1240 
1241 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1242 			struct loaded_vmcs *buddy)
1243 {
1244 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1245 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1246 	struct vmcs *prev;
1247 
1248 	if (!already_loaded) {
1249 		loaded_vmcs_clear(vmx->loaded_vmcs);
1250 		local_irq_disable();
1251 
1252 		/*
1253 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1254 		 * this cpu's percpu list, otherwise it may not yet be deleted
1255 		 * from its previous cpu's percpu list.  Pairs with the
1256 		 * smb_wmb() in __loaded_vmcs_clear().
1257 		 */
1258 		smp_rmb();
1259 
1260 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1261 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1262 		local_irq_enable();
1263 	}
1264 
1265 	prev = per_cpu(current_vmcs, cpu);
1266 	if (prev != vmx->loaded_vmcs->vmcs) {
1267 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1268 		vmcs_load(vmx->loaded_vmcs->vmcs);
1269 
1270 		/*
1271 		 * No indirect branch prediction barrier needed when switching
1272 		 * the active VMCS within a guest, e.g. on nested VM-Enter.
1273 		 * The L1 VMM can protect itself with retpolines, IBPB or IBRS.
1274 		 */
1275 		if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1276 			indirect_branch_prediction_barrier();
1277 	}
1278 
1279 	if (!already_loaded) {
1280 		void *gdt = get_current_gdt_ro();
1281 		unsigned long sysenter_esp;
1282 
1283 		/*
1284 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1285 		 * TLB entries from its previous association with the vCPU.
1286 		 */
1287 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1288 
1289 		/*
1290 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1291 		 * processors.  See 22.2.4.
1292 		 */
1293 		vmcs_writel(HOST_TR_BASE,
1294 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1295 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1296 
1297 		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1298 		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1299 
1300 		vmx->loaded_vmcs->cpu = cpu;
1301 	}
1302 }
1303 
1304 /*
1305  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1306  * vcpu mutex is already taken.
1307  */
1308 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1309 {
1310 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1311 
1312 	vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1313 
1314 	vmx_vcpu_pi_load(vcpu, cpu);
1315 
1316 	vmx->host_debugctlmsr = get_debugctlmsr();
1317 }
1318 
1319 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1320 {
1321 	vmx_vcpu_pi_put(vcpu);
1322 
1323 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1324 }
1325 
1326 static bool emulation_required(struct kvm_vcpu *vcpu)
1327 {
1328 	return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1329 }
1330 
1331 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1332 {
1333 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1334 	unsigned long rflags, save_rflags;
1335 
1336 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1337 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1338 		rflags = vmcs_readl(GUEST_RFLAGS);
1339 		if (vmx->rmode.vm86_active) {
1340 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1341 			save_rflags = vmx->rmode.save_rflags;
1342 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1343 		}
1344 		vmx->rflags = rflags;
1345 	}
1346 	return vmx->rflags;
1347 }
1348 
1349 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1350 {
1351 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1352 	unsigned long old_rflags;
1353 
1354 	if (is_unrestricted_guest(vcpu)) {
1355 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1356 		vmx->rflags = rflags;
1357 		vmcs_writel(GUEST_RFLAGS, rflags);
1358 		return;
1359 	}
1360 
1361 	old_rflags = vmx_get_rflags(vcpu);
1362 	vmx->rflags = rflags;
1363 	if (vmx->rmode.vm86_active) {
1364 		vmx->rmode.save_rflags = rflags;
1365 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1366 	}
1367 	vmcs_writel(GUEST_RFLAGS, rflags);
1368 
1369 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1370 		vmx->emulation_required = emulation_required(vcpu);
1371 }
1372 
1373 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1374 {
1375 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1376 	int ret = 0;
1377 
1378 	if (interruptibility & GUEST_INTR_STATE_STI)
1379 		ret |= KVM_X86_SHADOW_INT_STI;
1380 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1381 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1382 
1383 	return ret;
1384 }
1385 
1386 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1387 {
1388 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1389 	u32 interruptibility = interruptibility_old;
1390 
1391 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1392 
1393 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1394 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1395 	else if (mask & KVM_X86_SHADOW_INT_STI)
1396 		interruptibility |= GUEST_INTR_STATE_STI;
1397 
1398 	if ((interruptibility != interruptibility_old))
1399 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1400 }
1401 
1402 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1403 {
1404 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1405 	unsigned long value;
1406 
1407 	/*
1408 	 * Any MSR write that attempts to change bits marked reserved will
1409 	 * case a #GP fault.
1410 	 */
1411 	if (data & vmx->pt_desc.ctl_bitmask)
1412 		return 1;
1413 
1414 	/*
1415 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1416 	 * result in a #GP unless the same write also clears TraceEn.
1417 	 */
1418 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1419 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1420 		return 1;
1421 
1422 	/*
1423 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1424 	 * and FabricEn would cause #GP, if
1425 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1426 	 */
1427 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1428 		!(data & RTIT_CTL_FABRIC_EN) &&
1429 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1430 					PT_CAP_single_range_output))
1431 		return 1;
1432 
1433 	/*
1434 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1435 	 * utilize encodings marked reserved will cause a #GP fault.
1436 	 */
1437 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1438 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1439 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1440 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1441 		return 1;
1442 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1443 						PT_CAP_cycle_thresholds);
1444 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1445 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1446 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1447 		return 1;
1448 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1449 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1450 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1451 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1452 		return 1;
1453 
1454 	/*
1455 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1456 	 * cause a #GP fault.
1457 	 */
1458 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1459 	if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1460 		return 1;
1461 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1462 	if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1463 		return 1;
1464 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1465 	if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1466 		return 1;
1467 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1468 	if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1469 		return 1;
1470 
1471 	return 0;
1472 }
1473 
1474 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
1475 {
1476 	/*
1477 	 * Emulation of instructions in SGX enclaves is impossible as RIP does
1478 	 * not point  tthe failing instruction, and even if it did, the code
1479 	 * stream is inaccessible.  Inject #UD instead of exiting to userspace
1480 	 * so that guest userspace can't DoS the guest simply by triggering
1481 	 * emulation (enclaves are CPL3 only).
1482 	 */
1483 	if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1484 		kvm_queue_exception(vcpu, UD_VECTOR);
1485 		return false;
1486 	}
1487 	return true;
1488 }
1489 
1490 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1491 {
1492 	union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1493 	unsigned long rip, orig_rip;
1494 	u32 instr_len;
1495 
1496 	/*
1497 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1498 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1499 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1500 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1501 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1502 	 * i.e. we end up advancing IP with some random value.
1503 	 */
1504 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1505 	    exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1506 		instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1507 
1508 		/*
1509 		 * Emulating an enclave's instructions isn't supported as KVM
1510 		 * cannot access the enclave's memory or its true RIP, e.g. the
1511 		 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1512 		 * the RIP that actually triggered the VM-Exit.  But, because
1513 		 * most instructions that cause VM-Exit will #UD in an enclave,
1514 		 * most instruction-based VM-Exits simply do not occur.
1515 		 *
1516 		 * There are a few exceptions, notably the debug instructions
1517 		 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1518 		 * and generate #DB/#BP as expected, which KVM might intercept.
1519 		 * But again, the CPU does the dirty work and saves an instr
1520 		 * length of zero so VMMs don't shoot themselves in the foot.
1521 		 * WARN if KVM tries to skip a non-zero length instruction on
1522 		 * a VM-Exit from an enclave.
1523 		 */
1524 		if (!instr_len)
1525 			goto rip_updated;
1526 
1527 		WARN(exit_reason.enclave_mode,
1528 		     "KVM: skipping instruction after SGX enclave VM-Exit");
1529 
1530 		orig_rip = kvm_rip_read(vcpu);
1531 		rip = orig_rip + instr_len;
1532 #ifdef CONFIG_X86_64
1533 		/*
1534 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1535 		 * mode, but just finding out that we are in 64-bit mode is
1536 		 * quite expensive.  Only do it if there was a carry.
1537 		 */
1538 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1539 			rip = (u32)rip;
1540 #endif
1541 		kvm_rip_write(vcpu, rip);
1542 	} else {
1543 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1544 			return 0;
1545 	}
1546 
1547 rip_updated:
1548 	/* skipping an emulated instruction also counts */
1549 	vmx_set_interrupt_shadow(vcpu, 0);
1550 
1551 	return 1;
1552 }
1553 
1554 /*
1555  * Recognizes a pending MTF VM-exit and records the nested state for later
1556  * delivery.
1557  */
1558 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1559 {
1560 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1561 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1562 
1563 	if (!is_guest_mode(vcpu))
1564 		return;
1565 
1566 	/*
1567 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1568 	 * T-bit traps. As instruction emulation is completed (i.e. at the
1569 	 * instruction boundary), any #DB exception pending delivery must be a
1570 	 * debug-trap. Record the pending MTF state to be delivered in
1571 	 * vmx_check_nested_events().
1572 	 */
1573 	if (nested_cpu_has_mtf(vmcs12) &&
1574 	    (!vcpu->arch.exception.pending ||
1575 	     vcpu->arch.exception.nr == DB_VECTOR))
1576 		vmx->nested.mtf_pending = true;
1577 	else
1578 		vmx->nested.mtf_pending = false;
1579 }
1580 
1581 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1582 {
1583 	vmx_update_emulated_instruction(vcpu);
1584 	return skip_emulated_instruction(vcpu);
1585 }
1586 
1587 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1588 {
1589 	/*
1590 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1591 	 * explicitly skip the instruction because if the HLT state is set,
1592 	 * then the instruction is already executing and RIP has already been
1593 	 * advanced.
1594 	 */
1595 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1596 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1597 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1598 }
1599 
1600 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1601 {
1602 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1603 	unsigned nr = vcpu->arch.exception.nr;
1604 	bool has_error_code = vcpu->arch.exception.has_error_code;
1605 	u32 error_code = vcpu->arch.exception.error_code;
1606 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
1607 
1608 	kvm_deliver_exception_payload(vcpu);
1609 
1610 	if (has_error_code) {
1611 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1612 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1613 	}
1614 
1615 	if (vmx->rmode.vm86_active) {
1616 		int inc_eip = 0;
1617 		if (kvm_exception_is_soft(nr))
1618 			inc_eip = vcpu->arch.event_exit_inst_len;
1619 		kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1620 		return;
1621 	}
1622 
1623 	WARN_ON_ONCE(vmx->emulation_required);
1624 
1625 	if (kvm_exception_is_soft(nr)) {
1626 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1627 			     vmx->vcpu.arch.event_exit_inst_len);
1628 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1629 	} else
1630 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1631 
1632 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1633 
1634 	vmx_clear_hlt(vcpu);
1635 }
1636 
1637 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1638 			       bool load_into_hardware)
1639 {
1640 	struct vmx_uret_msr *uret_msr;
1641 
1642 	uret_msr = vmx_find_uret_msr(vmx, msr);
1643 	if (!uret_msr)
1644 		return;
1645 
1646 	uret_msr->load_into_hardware = load_into_hardware;
1647 }
1648 
1649 /*
1650  * Configuring user return MSRs to automatically save, load, and restore MSRs
1651  * that need to be shoved into hardware when running the guest.  Note, omitting
1652  * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1653  * loaded into hardware when running the guest.
1654  */
1655 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1656 {
1657 #ifdef CONFIG_X86_64
1658 	bool load_syscall_msrs;
1659 
1660 	/*
1661 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1662 	 * when EFER.SCE is set.
1663 	 */
1664 	load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1665 			    (vmx->vcpu.arch.efer & EFER_SCE);
1666 
1667 	vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1668 	vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1669 	vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1670 #endif
1671 	vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1672 
1673 	vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1674 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1675 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1676 
1677 	/*
1678 	 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1679 	 * kernel and old userspace.  If those guests run on a tsx=off host, do
1680 	 * allow guests to use TSX_CTRL, but don't change the value in hardware
1681 	 * so that TSX remains always disabled.
1682 	 */
1683 	vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1684 
1685 	/*
1686 	 * The set of MSRs to load may have changed, reload MSRs before the
1687 	 * next VM-Enter.
1688 	 */
1689 	vmx->guest_uret_msrs_loaded = false;
1690 }
1691 
1692 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1693 {
1694 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1695 
1696 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1697 		return vmcs12->tsc_offset;
1698 
1699 	return 0;
1700 }
1701 
1702 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1703 {
1704 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1705 
1706 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1707 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1708 		return vmcs12->tsc_multiplier;
1709 
1710 	return kvm_default_tsc_scaling_ratio;
1711 }
1712 
1713 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1714 {
1715 	vmcs_write64(TSC_OFFSET, offset);
1716 }
1717 
1718 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1719 {
1720 	vmcs_write64(TSC_MULTIPLIER, multiplier);
1721 }
1722 
1723 /*
1724  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1725  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1726  * all guests if the "nested" module option is off, and can also be disabled
1727  * for a single guest by disabling its VMX cpuid bit.
1728  */
1729 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1730 {
1731 	return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1732 }
1733 
1734 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1735 						 uint64_t val)
1736 {
1737 	uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1738 
1739 	return !(val & ~valid_bits);
1740 }
1741 
1742 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1743 {
1744 	switch (msr->index) {
1745 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1746 		if (!nested)
1747 			return 1;
1748 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1749 	case MSR_IA32_PERF_CAPABILITIES:
1750 		msr->data = vmx_get_perf_capabilities();
1751 		return 0;
1752 	default:
1753 		return KVM_MSR_RET_INVALID;
1754 	}
1755 }
1756 
1757 /*
1758  * Reads an msr value (of 'msr_index') into 'pdata'.
1759  * Returns 0 on success, non-0 otherwise.
1760  * Assumes vcpu_load() was already called.
1761  */
1762 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1763 {
1764 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1765 	struct vmx_uret_msr *msr;
1766 	u32 index;
1767 
1768 	switch (msr_info->index) {
1769 #ifdef CONFIG_X86_64
1770 	case MSR_FS_BASE:
1771 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1772 		break;
1773 	case MSR_GS_BASE:
1774 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1775 		break;
1776 	case MSR_KERNEL_GS_BASE:
1777 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1778 		break;
1779 #endif
1780 	case MSR_EFER:
1781 		return kvm_get_msr_common(vcpu, msr_info);
1782 	case MSR_IA32_TSX_CTRL:
1783 		if (!msr_info->host_initiated &&
1784 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1785 			return 1;
1786 		goto find_uret_msr;
1787 	case MSR_IA32_UMWAIT_CONTROL:
1788 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1789 			return 1;
1790 
1791 		msr_info->data = vmx->msr_ia32_umwait_control;
1792 		break;
1793 	case MSR_IA32_SPEC_CTRL:
1794 		if (!msr_info->host_initiated &&
1795 		    !guest_has_spec_ctrl_msr(vcpu))
1796 			return 1;
1797 
1798 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
1799 		break;
1800 	case MSR_IA32_SYSENTER_CS:
1801 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1802 		break;
1803 	case MSR_IA32_SYSENTER_EIP:
1804 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1805 		break;
1806 	case MSR_IA32_SYSENTER_ESP:
1807 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1808 		break;
1809 	case MSR_IA32_BNDCFGS:
1810 		if (!kvm_mpx_supported() ||
1811 		    (!msr_info->host_initiated &&
1812 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1813 			return 1;
1814 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1815 		break;
1816 	case MSR_IA32_MCG_EXT_CTL:
1817 		if (!msr_info->host_initiated &&
1818 		    !(vmx->msr_ia32_feature_control &
1819 		      FEAT_CTL_LMCE_ENABLED))
1820 			return 1;
1821 		msr_info->data = vcpu->arch.mcg_ext_ctl;
1822 		break;
1823 	case MSR_IA32_FEAT_CTL:
1824 		msr_info->data = vmx->msr_ia32_feature_control;
1825 		break;
1826 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
1827 		if (!msr_info->host_initiated &&
1828 		    !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
1829 			return 1;
1830 		msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
1831 			[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
1832 		break;
1833 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1834 		if (!nested_vmx_allowed(vcpu))
1835 			return 1;
1836 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1837 				    &msr_info->data))
1838 			return 1;
1839 		/*
1840 		 * Enlightened VMCS v1 doesn't have certain fields, but buggy
1841 		 * Hyper-V versions are still trying to use corresponding
1842 		 * features when they are exposed. Filter out the essential
1843 		 * minimum.
1844 		 */
1845 		if (!msr_info->host_initiated &&
1846 		    vmx->nested.enlightened_vmcs_enabled)
1847 			nested_evmcs_filter_control_msr(msr_info->index,
1848 							&msr_info->data);
1849 		break;
1850 	case MSR_IA32_RTIT_CTL:
1851 		if (!vmx_pt_mode_is_host_guest())
1852 			return 1;
1853 		msr_info->data = vmx->pt_desc.guest.ctl;
1854 		break;
1855 	case MSR_IA32_RTIT_STATUS:
1856 		if (!vmx_pt_mode_is_host_guest())
1857 			return 1;
1858 		msr_info->data = vmx->pt_desc.guest.status;
1859 		break;
1860 	case MSR_IA32_RTIT_CR3_MATCH:
1861 		if (!vmx_pt_mode_is_host_guest() ||
1862 			!intel_pt_validate_cap(vmx->pt_desc.caps,
1863 						PT_CAP_cr3_filtering))
1864 			return 1;
1865 		msr_info->data = vmx->pt_desc.guest.cr3_match;
1866 		break;
1867 	case MSR_IA32_RTIT_OUTPUT_BASE:
1868 		if (!vmx_pt_mode_is_host_guest() ||
1869 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1870 					PT_CAP_topa_output) &&
1871 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1872 					PT_CAP_single_range_output)))
1873 			return 1;
1874 		msr_info->data = vmx->pt_desc.guest.output_base;
1875 		break;
1876 	case MSR_IA32_RTIT_OUTPUT_MASK:
1877 		if (!vmx_pt_mode_is_host_guest() ||
1878 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1879 					PT_CAP_topa_output) &&
1880 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1881 					PT_CAP_single_range_output)))
1882 			return 1;
1883 		msr_info->data = vmx->pt_desc.guest.output_mask;
1884 		break;
1885 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1886 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1887 		if (!vmx_pt_mode_is_host_guest() ||
1888 			(index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1889 					PT_CAP_num_address_ranges)))
1890 			return 1;
1891 		if (index % 2)
1892 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1893 		else
1894 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1895 		break;
1896 	case MSR_IA32_DEBUGCTLMSR:
1897 		msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
1898 		break;
1899 	default:
1900 	find_uret_msr:
1901 		msr = vmx_find_uret_msr(vmx, msr_info->index);
1902 		if (msr) {
1903 			msr_info->data = msr->data;
1904 			break;
1905 		}
1906 		return kvm_get_msr_common(vcpu, msr_info);
1907 	}
1908 
1909 	return 0;
1910 }
1911 
1912 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
1913 						    u64 data)
1914 {
1915 #ifdef CONFIG_X86_64
1916 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
1917 		return (u32)data;
1918 #endif
1919 	return (unsigned long)data;
1920 }
1921 
1922 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu)
1923 {
1924 	u64 debugctl = vmx_supported_debugctl();
1925 
1926 	if (!intel_pmu_lbr_is_enabled(vcpu))
1927 		debugctl &= ~DEBUGCTLMSR_LBR_MASK;
1928 
1929 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1930 		debugctl &= ~DEBUGCTLMSR_BUS_LOCK_DETECT;
1931 
1932 	return debugctl;
1933 }
1934 
1935 /*
1936  * Writes msr value into the appropriate "register".
1937  * Returns 0 on success, non-0 otherwise.
1938  * Assumes vcpu_load() was already called.
1939  */
1940 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1941 {
1942 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1943 	struct vmx_uret_msr *msr;
1944 	int ret = 0;
1945 	u32 msr_index = msr_info->index;
1946 	u64 data = msr_info->data;
1947 	u32 index;
1948 
1949 	switch (msr_index) {
1950 	case MSR_EFER:
1951 		ret = kvm_set_msr_common(vcpu, msr_info);
1952 		break;
1953 #ifdef CONFIG_X86_64
1954 	case MSR_FS_BASE:
1955 		vmx_segment_cache_clear(vmx);
1956 		vmcs_writel(GUEST_FS_BASE, data);
1957 		break;
1958 	case MSR_GS_BASE:
1959 		vmx_segment_cache_clear(vmx);
1960 		vmcs_writel(GUEST_GS_BASE, data);
1961 		break;
1962 	case MSR_KERNEL_GS_BASE:
1963 		vmx_write_guest_kernel_gs_base(vmx, data);
1964 		break;
1965 #endif
1966 	case MSR_IA32_SYSENTER_CS:
1967 		if (is_guest_mode(vcpu))
1968 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
1969 		vmcs_write32(GUEST_SYSENTER_CS, data);
1970 		break;
1971 	case MSR_IA32_SYSENTER_EIP:
1972 		if (is_guest_mode(vcpu)) {
1973 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
1974 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
1975 		}
1976 		vmcs_writel(GUEST_SYSENTER_EIP, data);
1977 		break;
1978 	case MSR_IA32_SYSENTER_ESP:
1979 		if (is_guest_mode(vcpu)) {
1980 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
1981 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
1982 		}
1983 		vmcs_writel(GUEST_SYSENTER_ESP, data);
1984 		break;
1985 	case MSR_IA32_DEBUGCTLMSR: {
1986 		u64 invalid = data & ~vcpu_supported_debugctl(vcpu);
1987 		if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
1988 			if (report_ignored_msrs)
1989 				vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n",
1990 					    __func__, data);
1991 			data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
1992 			invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
1993 		}
1994 
1995 		if (invalid)
1996 			return 1;
1997 
1998 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
1999 						VM_EXIT_SAVE_DEBUG_CONTROLS)
2000 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2001 
2002 		vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2003 		if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2004 		    (data & DEBUGCTLMSR_LBR))
2005 			intel_pmu_create_guest_lbr_event(vcpu);
2006 		return 0;
2007 	}
2008 	case MSR_IA32_BNDCFGS:
2009 		if (!kvm_mpx_supported() ||
2010 		    (!msr_info->host_initiated &&
2011 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2012 			return 1;
2013 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2014 		    (data & MSR_IA32_BNDCFGS_RSVD))
2015 			return 1;
2016 		vmcs_write64(GUEST_BNDCFGS, data);
2017 		break;
2018 	case MSR_IA32_UMWAIT_CONTROL:
2019 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2020 			return 1;
2021 
2022 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2023 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2024 			return 1;
2025 
2026 		vmx->msr_ia32_umwait_control = data;
2027 		break;
2028 	case MSR_IA32_SPEC_CTRL:
2029 		if (!msr_info->host_initiated &&
2030 		    !guest_has_spec_ctrl_msr(vcpu))
2031 			return 1;
2032 
2033 		if (kvm_spec_ctrl_test_value(data))
2034 			return 1;
2035 
2036 		vmx->spec_ctrl = data;
2037 		if (!data)
2038 			break;
2039 
2040 		/*
2041 		 * For non-nested:
2042 		 * When it's written (to non-zero) for the first time, pass
2043 		 * it through.
2044 		 *
2045 		 * For nested:
2046 		 * The handling of the MSR bitmap for L2 guests is done in
2047 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2048 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2049 		 * in the merging. We update the vmcs01 here for L1 as well
2050 		 * since it will end up touching the MSR anyway now.
2051 		 */
2052 		vmx_disable_intercept_for_msr(vcpu,
2053 					      MSR_IA32_SPEC_CTRL,
2054 					      MSR_TYPE_RW);
2055 		break;
2056 	case MSR_IA32_TSX_CTRL:
2057 		if (!msr_info->host_initiated &&
2058 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2059 			return 1;
2060 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2061 			return 1;
2062 		goto find_uret_msr;
2063 	case MSR_IA32_PRED_CMD:
2064 		if (!msr_info->host_initiated &&
2065 		    !guest_has_pred_cmd_msr(vcpu))
2066 			return 1;
2067 
2068 		if (data & ~PRED_CMD_IBPB)
2069 			return 1;
2070 		if (!boot_cpu_has(X86_FEATURE_IBPB))
2071 			return 1;
2072 		if (!data)
2073 			break;
2074 
2075 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2076 
2077 		/*
2078 		 * For non-nested:
2079 		 * When it's written (to non-zero) for the first time, pass
2080 		 * it through.
2081 		 *
2082 		 * For nested:
2083 		 * The handling of the MSR bitmap for L2 guests is done in
2084 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2085 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2086 		 * in the merging.
2087 		 */
2088 		vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2089 		break;
2090 	case MSR_IA32_CR_PAT:
2091 		if (!kvm_pat_valid(data))
2092 			return 1;
2093 
2094 		if (is_guest_mode(vcpu) &&
2095 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2096 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2097 
2098 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2099 			vmcs_write64(GUEST_IA32_PAT, data);
2100 			vcpu->arch.pat = data;
2101 			break;
2102 		}
2103 		ret = kvm_set_msr_common(vcpu, msr_info);
2104 		break;
2105 	case MSR_IA32_TSC_ADJUST:
2106 		ret = kvm_set_msr_common(vcpu, msr_info);
2107 		break;
2108 	case MSR_IA32_MCG_EXT_CTL:
2109 		if ((!msr_info->host_initiated &&
2110 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2111 		       FEAT_CTL_LMCE_ENABLED)) ||
2112 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2113 			return 1;
2114 		vcpu->arch.mcg_ext_ctl = data;
2115 		break;
2116 	case MSR_IA32_FEAT_CTL:
2117 		if (!vmx_feature_control_msr_valid(vcpu, data) ||
2118 		    (to_vmx(vcpu)->msr_ia32_feature_control &
2119 		     FEAT_CTL_LOCKED && !msr_info->host_initiated))
2120 			return 1;
2121 		vmx->msr_ia32_feature_control = data;
2122 		if (msr_info->host_initiated && data == 0)
2123 			vmx_leave_nested(vcpu);
2124 
2125 		/* SGX may be enabled/disabled by guest's firmware */
2126 		vmx_write_encls_bitmap(vcpu, NULL);
2127 		break;
2128 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2129 		/*
2130 		 * On real hardware, the LE hash MSRs are writable before
2131 		 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2132 		 * at which point SGX related bits in IA32_FEATURE_CONTROL
2133 		 * become writable.
2134 		 *
2135 		 * KVM does not emulate SGX activation for simplicity, so
2136 		 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2137 		 * is unlocked.  This is technically not architectural
2138 		 * behavior, but it's close enough.
2139 		 */
2140 		if (!msr_info->host_initiated &&
2141 		    (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2142 		    ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2143 		    !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2144 			return 1;
2145 		vmx->msr_ia32_sgxlepubkeyhash
2146 			[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2147 		break;
2148 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2149 		if (!msr_info->host_initiated)
2150 			return 1; /* they are read-only */
2151 		if (!nested_vmx_allowed(vcpu))
2152 			return 1;
2153 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2154 	case MSR_IA32_RTIT_CTL:
2155 		if (!vmx_pt_mode_is_host_guest() ||
2156 			vmx_rtit_ctl_check(vcpu, data) ||
2157 			vmx->nested.vmxon)
2158 			return 1;
2159 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2160 		vmx->pt_desc.guest.ctl = data;
2161 		pt_update_intercept_for_msr(vcpu);
2162 		break;
2163 	case MSR_IA32_RTIT_STATUS:
2164 		if (!pt_can_write_msr(vmx))
2165 			return 1;
2166 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2167 			return 1;
2168 		vmx->pt_desc.guest.status = data;
2169 		break;
2170 	case MSR_IA32_RTIT_CR3_MATCH:
2171 		if (!pt_can_write_msr(vmx))
2172 			return 1;
2173 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2174 					   PT_CAP_cr3_filtering))
2175 			return 1;
2176 		vmx->pt_desc.guest.cr3_match = data;
2177 		break;
2178 	case MSR_IA32_RTIT_OUTPUT_BASE:
2179 		if (!pt_can_write_msr(vmx))
2180 			return 1;
2181 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2182 					   PT_CAP_topa_output) &&
2183 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2184 					   PT_CAP_single_range_output))
2185 			return 1;
2186 		if (!pt_output_base_valid(vcpu, data))
2187 			return 1;
2188 		vmx->pt_desc.guest.output_base = data;
2189 		break;
2190 	case MSR_IA32_RTIT_OUTPUT_MASK:
2191 		if (!pt_can_write_msr(vmx))
2192 			return 1;
2193 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2194 					   PT_CAP_topa_output) &&
2195 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2196 					   PT_CAP_single_range_output))
2197 			return 1;
2198 		vmx->pt_desc.guest.output_mask = data;
2199 		break;
2200 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2201 		if (!pt_can_write_msr(vmx))
2202 			return 1;
2203 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2204 		if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2205 						       PT_CAP_num_address_ranges))
2206 			return 1;
2207 		if (is_noncanonical_address(data, vcpu))
2208 			return 1;
2209 		if (index % 2)
2210 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2211 		else
2212 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2213 		break;
2214 	case MSR_IA32_PERF_CAPABILITIES:
2215 		if (data && !vcpu_to_pmu(vcpu)->version)
2216 			return 1;
2217 		if (data & PMU_CAP_LBR_FMT) {
2218 			if ((data & PMU_CAP_LBR_FMT) !=
2219 			    (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT))
2220 				return 1;
2221 			if (!intel_pmu_lbr_is_compatible(vcpu))
2222 				return 1;
2223 		}
2224 		ret = kvm_set_msr_common(vcpu, msr_info);
2225 		break;
2226 
2227 	default:
2228 	find_uret_msr:
2229 		msr = vmx_find_uret_msr(vmx, msr_index);
2230 		if (msr)
2231 			ret = vmx_set_guest_uret_msr(vmx, msr, data);
2232 		else
2233 			ret = kvm_set_msr_common(vcpu, msr_info);
2234 	}
2235 
2236 	return ret;
2237 }
2238 
2239 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2240 {
2241 	unsigned long guest_owned_bits;
2242 
2243 	kvm_register_mark_available(vcpu, reg);
2244 
2245 	switch (reg) {
2246 	case VCPU_REGS_RSP:
2247 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2248 		break;
2249 	case VCPU_REGS_RIP:
2250 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2251 		break;
2252 	case VCPU_EXREG_PDPTR:
2253 		if (enable_ept)
2254 			ept_save_pdptrs(vcpu);
2255 		break;
2256 	case VCPU_EXREG_CR0:
2257 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2258 
2259 		vcpu->arch.cr0 &= ~guest_owned_bits;
2260 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2261 		break;
2262 	case VCPU_EXREG_CR3:
2263 		/*
2264 		 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2265 		 * CR3 is loaded into hardware, not the guest's CR3.
2266 		 */
2267 		if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2268 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2269 		break;
2270 	case VCPU_EXREG_CR4:
2271 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2272 
2273 		vcpu->arch.cr4 &= ~guest_owned_bits;
2274 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2275 		break;
2276 	default:
2277 		KVM_BUG_ON(1, vcpu->kvm);
2278 		break;
2279 	}
2280 }
2281 
2282 static __init int cpu_has_kvm_support(void)
2283 {
2284 	return cpu_has_vmx();
2285 }
2286 
2287 static __init int vmx_disabled_by_bios(void)
2288 {
2289 	return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2290 	       !boot_cpu_has(X86_FEATURE_VMX);
2291 }
2292 
2293 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2294 {
2295 	u64 msr;
2296 
2297 	cr4_set_bits(X86_CR4_VMXE);
2298 
2299 	asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2300 			  _ASM_EXTABLE(1b, %l[fault])
2301 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2302 			  : : fault);
2303 	return 0;
2304 
2305 fault:
2306 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2307 		  rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2308 	cr4_clear_bits(X86_CR4_VMXE);
2309 
2310 	return -EFAULT;
2311 }
2312 
2313 static int hardware_enable(void)
2314 {
2315 	int cpu = raw_smp_processor_id();
2316 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2317 	int r;
2318 
2319 	if (cr4_read_shadow() & X86_CR4_VMXE)
2320 		return -EBUSY;
2321 
2322 	/*
2323 	 * This can happen if we hot-added a CPU but failed to allocate
2324 	 * VP assist page for it.
2325 	 */
2326 	if (static_branch_unlikely(&enable_evmcs) &&
2327 	    !hv_get_vp_assist_page(cpu))
2328 		return -EFAULT;
2329 
2330 	intel_pt_handle_vmx(1);
2331 
2332 	r = kvm_cpu_vmxon(phys_addr);
2333 	if (r) {
2334 		intel_pt_handle_vmx(0);
2335 		return r;
2336 	}
2337 
2338 	if (enable_ept)
2339 		ept_sync_global();
2340 
2341 	return 0;
2342 }
2343 
2344 static void vmclear_local_loaded_vmcss(void)
2345 {
2346 	int cpu = raw_smp_processor_id();
2347 	struct loaded_vmcs *v, *n;
2348 
2349 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2350 				 loaded_vmcss_on_cpu_link)
2351 		__loaded_vmcs_clear(v);
2352 }
2353 
2354 static void hardware_disable(void)
2355 {
2356 	vmclear_local_loaded_vmcss();
2357 
2358 	if (cpu_vmxoff())
2359 		kvm_spurious_fault();
2360 
2361 	intel_pt_handle_vmx(0);
2362 }
2363 
2364 /*
2365  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2366  * directly instead of going through cpu_has(), to ensure KVM is trapping
2367  * ENCLS whenever it's supported in hardware.  It does not matter whether
2368  * the host OS supports or has enabled SGX.
2369  */
2370 static bool cpu_has_sgx(void)
2371 {
2372 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2373 }
2374 
2375 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2376 				      u32 msr, u32 *result)
2377 {
2378 	u32 vmx_msr_low, vmx_msr_high;
2379 	u32 ctl = ctl_min | ctl_opt;
2380 
2381 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2382 
2383 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2384 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2385 
2386 	/* Ensure minimum (required) set of control bits are supported. */
2387 	if (ctl_min & ~ctl)
2388 		return -EIO;
2389 
2390 	*result = ctl;
2391 	return 0;
2392 }
2393 
2394 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2395 				    struct vmx_capability *vmx_cap)
2396 {
2397 	u32 vmx_msr_low, vmx_msr_high;
2398 	u32 min, opt, min2, opt2;
2399 	u32 _pin_based_exec_control = 0;
2400 	u32 _cpu_based_exec_control = 0;
2401 	u32 _cpu_based_2nd_exec_control = 0;
2402 	u32 _vmexit_control = 0;
2403 	u32 _vmentry_control = 0;
2404 
2405 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2406 	min = CPU_BASED_HLT_EXITING |
2407 #ifdef CONFIG_X86_64
2408 	      CPU_BASED_CR8_LOAD_EXITING |
2409 	      CPU_BASED_CR8_STORE_EXITING |
2410 #endif
2411 	      CPU_BASED_CR3_LOAD_EXITING |
2412 	      CPU_BASED_CR3_STORE_EXITING |
2413 	      CPU_BASED_UNCOND_IO_EXITING |
2414 	      CPU_BASED_MOV_DR_EXITING |
2415 	      CPU_BASED_USE_TSC_OFFSETTING |
2416 	      CPU_BASED_MWAIT_EXITING |
2417 	      CPU_BASED_MONITOR_EXITING |
2418 	      CPU_BASED_INVLPG_EXITING |
2419 	      CPU_BASED_RDPMC_EXITING;
2420 
2421 	opt = CPU_BASED_TPR_SHADOW |
2422 	      CPU_BASED_USE_MSR_BITMAPS |
2423 	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2424 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2425 				&_cpu_based_exec_control) < 0)
2426 		return -EIO;
2427 #ifdef CONFIG_X86_64
2428 	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2429 		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2430 					   ~CPU_BASED_CR8_STORE_EXITING;
2431 #endif
2432 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2433 		min2 = 0;
2434 		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2435 			SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2436 			SECONDARY_EXEC_WBINVD_EXITING |
2437 			SECONDARY_EXEC_ENABLE_VPID |
2438 			SECONDARY_EXEC_ENABLE_EPT |
2439 			SECONDARY_EXEC_UNRESTRICTED_GUEST |
2440 			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2441 			SECONDARY_EXEC_DESC |
2442 			SECONDARY_EXEC_ENABLE_RDTSCP |
2443 			SECONDARY_EXEC_ENABLE_INVPCID |
2444 			SECONDARY_EXEC_APIC_REGISTER_VIRT |
2445 			SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2446 			SECONDARY_EXEC_SHADOW_VMCS |
2447 			SECONDARY_EXEC_XSAVES |
2448 			SECONDARY_EXEC_RDSEED_EXITING |
2449 			SECONDARY_EXEC_RDRAND_EXITING |
2450 			SECONDARY_EXEC_ENABLE_PML |
2451 			SECONDARY_EXEC_TSC_SCALING |
2452 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2453 			SECONDARY_EXEC_PT_USE_GPA |
2454 			SECONDARY_EXEC_PT_CONCEAL_VMX |
2455 			SECONDARY_EXEC_ENABLE_VMFUNC |
2456 			SECONDARY_EXEC_BUS_LOCK_DETECTION;
2457 		if (cpu_has_sgx())
2458 			opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2459 		if (adjust_vmx_controls(min2, opt2,
2460 					MSR_IA32_VMX_PROCBASED_CTLS2,
2461 					&_cpu_based_2nd_exec_control) < 0)
2462 			return -EIO;
2463 	}
2464 #ifndef CONFIG_X86_64
2465 	if (!(_cpu_based_2nd_exec_control &
2466 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2467 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2468 #endif
2469 
2470 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2471 		_cpu_based_2nd_exec_control &= ~(
2472 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2473 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2474 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2475 
2476 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2477 		&vmx_cap->ept, &vmx_cap->vpid);
2478 
2479 	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2480 		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2481 		   enabled */
2482 		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2483 					     CPU_BASED_CR3_STORE_EXITING |
2484 					     CPU_BASED_INVLPG_EXITING);
2485 	} else if (vmx_cap->ept) {
2486 		vmx_cap->ept = 0;
2487 		pr_warn_once("EPT CAP should not exist if not support "
2488 				"1-setting enable EPT VM-execution control\n");
2489 	}
2490 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2491 		vmx_cap->vpid) {
2492 		vmx_cap->vpid = 0;
2493 		pr_warn_once("VPID CAP should not exist if not support "
2494 				"1-setting enable VPID VM-execution control\n");
2495 	}
2496 
2497 	min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2498 #ifdef CONFIG_X86_64
2499 	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2500 #endif
2501 	opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2502 	      VM_EXIT_LOAD_IA32_PAT |
2503 	      VM_EXIT_LOAD_IA32_EFER |
2504 	      VM_EXIT_CLEAR_BNDCFGS |
2505 	      VM_EXIT_PT_CONCEAL_PIP |
2506 	      VM_EXIT_CLEAR_IA32_RTIT_CTL;
2507 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2508 				&_vmexit_control) < 0)
2509 		return -EIO;
2510 
2511 	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2512 	opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2513 		 PIN_BASED_VMX_PREEMPTION_TIMER;
2514 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2515 				&_pin_based_exec_control) < 0)
2516 		return -EIO;
2517 
2518 	if (cpu_has_broken_vmx_preemption_timer())
2519 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2520 	if (!(_cpu_based_2nd_exec_control &
2521 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2522 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2523 
2524 	min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2525 	opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2526 	      VM_ENTRY_LOAD_IA32_PAT |
2527 	      VM_ENTRY_LOAD_IA32_EFER |
2528 	      VM_ENTRY_LOAD_BNDCFGS |
2529 	      VM_ENTRY_PT_CONCEAL_PIP |
2530 	      VM_ENTRY_LOAD_IA32_RTIT_CTL;
2531 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2532 				&_vmentry_control) < 0)
2533 		return -EIO;
2534 
2535 	/*
2536 	 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2537 	 * can't be used due to an errata where VM Exit may incorrectly clear
2538 	 * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2539 	 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2540 	 */
2541 	if (boot_cpu_data.x86 == 0x6) {
2542 		switch (boot_cpu_data.x86_model) {
2543 		case 26: /* AAK155 */
2544 		case 30: /* AAP115 */
2545 		case 37: /* AAT100 */
2546 		case 44: /* BC86,AAY89,BD102 */
2547 		case 46: /* BA97 */
2548 			_vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2549 			_vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2550 			pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2551 					"does not work properly. Using workaround\n");
2552 			break;
2553 		default:
2554 			break;
2555 		}
2556 	}
2557 
2558 
2559 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2560 
2561 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2562 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2563 		return -EIO;
2564 
2565 #ifdef CONFIG_X86_64
2566 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2567 	if (vmx_msr_high & (1u<<16))
2568 		return -EIO;
2569 #endif
2570 
2571 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2572 	if (((vmx_msr_high >> 18) & 15) != 6)
2573 		return -EIO;
2574 
2575 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2576 	vmcs_conf->order = get_order(vmcs_conf->size);
2577 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2578 
2579 	vmcs_conf->revision_id = vmx_msr_low;
2580 
2581 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2582 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2583 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2584 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2585 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2586 
2587 #if IS_ENABLED(CONFIG_HYPERV)
2588 	if (enlightened_vmcs)
2589 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2590 #endif
2591 
2592 	return 0;
2593 }
2594 
2595 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2596 {
2597 	int node = cpu_to_node(cpu);
2598 	struct page *pages;
2599 	struct vmcs *vmcs;
2600 
2601 	pages = __alloc_pages_node(node, flags, vmcs_config.order);
2602 	if (!pages)
2603 		return NULL;
2604 	vmcs = page_address(pages);
2605 	memset(vmcs, 0, vmcs_config.size);
2606 
2607 	/* KVM supports Enlightened VMCS v1 only */
2608 	if (static_branch_unlikely(&enable_evmcs))
2609 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2610 	else
2611 		vmcs->hdr.revision_id = vmcs_config.revision_id;
2612 
2613 	if (shadow)
2614 		vmcs->hdr.shadow_vmcs = 1;
2615 	return vmcs;
2616 }
2617 
2618 void free_vmcs(struct vmcs *vmcs)
2619 {
2620 	free_pages((unsigned long)vmcs, vmcs_config.order);
2621 }
2622 
2623 /*
2624  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2625  */
2626 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2627 {
2628 	if (!loaded_vmcs->vmcs)
2629 		return;
2630 	loaded_vmcs_clear(loaded_vmcs);
2631 	free_vmcs(loaded_vmcs->vmcs);
2632 	loaded_vmcs->vmcs = NULL;
2633 	if (loaded_vmcs->msr_bitmap)
2634 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2635 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2636 }
2637 
2638 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2639 {
2640 	loaded_vmcs->vmcs = alloc_vmcs(false);
2641 	if (!loaded_vmcs->vmcs)
2642 		return -ENOMEM;
2643 
2644 	vmcs_clear(loaded_vmcs->vmcs);
2645 
2646 	loaded_vmcs->shadow_vmcs = NULL;
2647 	loaded_vmcs->hv_timer_soft_disabled = false;
2648 	loaded_vmcs->cpu = -1;
2649 	loaded_vmcs->launched = 0;
2650 
2651 	if (cpu_has_vmx_msr_bitmap()) {
2652 		loaded_vmcs->msr_bitmap = (unsigned long *)
2653 				__get_free_page(GFP_KERNEL_ACCOUNT);
2654 		if (!loaded_vmcs->msr_bitmap)
2655 			goto out_vmcs;
2656 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2657 
2658 		if (IS_ENABLED(CONFIG_HYPERV) &&
2659 		    static_branch_unlikely(&enable_evmcs) &&
2660 		    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2661 			struct hv_enlightened_vmcs *evmcs =
2662 				(struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2663 
2664 			evmcs->hv_enlightenments_control.msr_bitmap = 1;
2665 		}
2666 	}
2667 
2668 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2669 	memset(&loaded_vmcs->controls_shadow, 0,
2670 		sizeof(struct vmcs_controls_shadow));
2671 
2672 	return 0;
2673 
2674 out_vmcs:
2675 	free_loaded_vmcs(loaded_vmcs);
2676 	return -ENOMEM;
2677 }
2678 
2679 static void free_kvm_area(void)
2680 {
2681 	int cpu;
2682 
2683 	for_each_possible_cpu(cpu) {
2684 		free_vmcs(per_cpu(vmxarea, cpu));
2685 		per_cpu(vmxarea, cpu) = NULL;
2686 	}
2687 }
2688 
2689 static __init int alloc_kvm_area(void)
2690 {
2691 	int cpu;
2692 
2693 	for_each_possible_cpu(cpu) {
2694 		struct vmcs *vmcs;
2695 
2696 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2697 		if (!vmcs) {
2698 			free_kvm_area();
2699 			return -ENOMEM;
2700 		}
2701 
2702 		/*
2703 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2704 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2705 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2706 		 *
2707 		 * However, even though not explicitly documented by
2708 		 * TLFS, VMXArea passed as VMXON argument should
2709 		 * still be marked with revision_id reported by
2710 		 * physical CPU.
2711 		 */
2712 		if (static_branch_unlikely(&enable_evmcs))
2713 			vmcs->hdr.revision_id = vmcs_config.revision_id;
2714 
2715 		per_cpu(vmxarea, cpu) = vmcs;
2716 	}
2717 	return 0;
2718 }
2719 
2720 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2721 		struct kvm_segment *save)
2722 {
2723 	if (!emulate_invalid_guest_state) {
2724 		/*
2725 		 * CS and SS RPL should be equal during guest entry according
2726 		 * to VMX spec, but in reality it is not always so. Since vcpu
2727 		 * is in the middle of the transition from real mode to
2728 		 * protected mode it is safe to assume that RPL 0 is a good
2729 		 * default value.
2730 		 */
2731 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2732 			save->selector &= ~SEGMENT_RPL_MASK;
2733 		save->dpl = save->selector & SEGMENT_RPL_MASK;
2734 		save->s = 1;
2735 	}
2736 	__vmx_set_segment(vcpu, save, seg);
2737 }
2738 
2739 static void enter_pmode(struct kvm_vcpu *vcpu)
2740 {
2741 	unsigned long flags;
2742 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2743 
2744 	/*
2745 	 * Update real mode segment cache. It may be not up-to-date if segment
2746 	 * register was written while vcpu was in a guest mode.
2747 	 */
2748 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2749 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2750 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2751 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2752 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2753 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2754 
2755 	vmx->rmode.vm86_active = 0;
2756 
2757 	__vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2758 
2759 	flags = vmcs_readl(GUEST_RFLAGS);
2760 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2761 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2762 	vmcs_writel(GUEST_RFLAGS, flags);
2763 
2764 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2765 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2766 
2767 	vmx_update_exception_bitmap(vcpu);
2768 
2769 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2770 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2771 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2772 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2773 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2774 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2775 }
2776 
2777 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2778 {
2779 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2780 	struct kvm_segment var = *save;
2781 
2782 	var.dpl = 0x3;
2783 	if (seg == VCPU_SREG_CS)
2784 		var.type = 0x3;
2785 
2786 	if (!emulate_invalid_guest_state) {
2787 		var.selector = var.base >> 4;
2788 		var.base = var.base & 0xffff0;
2789 		var.limit = 0xffff;
2790 		var.g = 0;
2791 		var.db = 0;
2792 		var.present = 1;
2793 		var.s = 1;
2794 		var.l = 0;
2795 		var.unusable = 0;
2796 		var.type = 0x3;
2797 		var.avl = 0;
2798 		if (save->base & 0xf)
2799 			printk_once(KERN_WARNING "kvm: segment base is not "
2800 					"paragraph aligned when entering "
2801 					"protected mode (seg=%d)", seg);
2802 	}
2803 
2804 	vmcs_write16(sf->selector, var.selector);
2805 	vmcs_writel(sf->base, var.base);
2806 	vmcs_write32(sf->limit, var.limit);
2807 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2808 }
2809 
2810 static void enter_rmode(struct kvm_vcpu *vcpu)
2811 {
2812 	unsigned long flags;
2813 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2814 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2815 
2816 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2817 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2818 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2819 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2820 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2821 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2822 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2823 
2824 	vmx->rmode.vm86_active = 1;
2825 
2826 	/*
2827 	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2828 	 * vcpu. Warn the user that an update is overdue.
2829 	 */
2830 	if (!kvm_vmx->tss_addr)
2831 		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2832 			     "called before entering vcpu\n");
2833 
2834 	vmx_segment_cache_clear(vmx);
2835 
2836 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2837 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2838 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2839 
2840 	flags = vmcs_readl(GUEST_RFLAGS);
2841 	vmx->rmode.save_rflags = flags;
2842 
2843 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2844 
2845 	vmcs_writel(GUEST_RFLAGS, flags);
2846 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2847 	vmx_update_exception_bitmap(vcpu);
2848 
2849 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2850 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2851 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2852 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2853 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2854 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2855 }
2856 
2857 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2858 {
2859 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2860 	struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER);
2861 
2862 	/* Nothing to do if hardware doesn't support EFER. */
2863 	if (!msr)
2864 		return 0;
2865 
2866 	vcpu->arch.efer = efer;
2867 	if (efer & EFER_LMA) {
2868 		vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2869 		msr->data = efer;
2870 	} else {
2871 		vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2872 
2873 		msr->data = efer & ~EFER_LME;
2874 	}
2875 	vmx_setup_uret_msrs(vmx);
2876 	return 0;
2877 }
2878 
2879 #ifdef CONFIG_X86_64
2880 
2881 static void enter_lmode(struct kvm_vcpu *vcpu)
2882 {
2883 	u32 guest_tr_ar;
2884 
2885 	vmx_segment_cache_clear(to_vmx(vcpu));
2886 
2887 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2888 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2889 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2890 				     __func__);
2891 		vmcs_write32(GUEST_TR_AR_BYTES,
2892 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2893 			     | VMX_AR_TYPE_BUSY_64_TSS);
2894 	}
2895 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2896 }
2897 
2898 static void exit_lmode(struct kvm_vcpu *vcpu)
2899 {
2900 	vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2901 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2902 }
2903 
2904 #endif
2905 
2906 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
2907 {
2908 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2909 
2910 	/*
2911 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
2912 	 * the CPU is not required to invalidate guest-physical mappings on
2913 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
2914 	 * associated with the root EPT structure and not any particular VPID
2915 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
2916 	 */
2917 	if (enable_ept) {
2918 		ept_sync_global();
2919 	} else if (enable_vpid) {
2920 		if (cpu_has_vmx_invvpid_global()) {
2921 			vpid_sync_vcpu_global();
2922 		} else {
2923 			vpid_sync_vcpu_single(vmx->vpid);
2924 			vpid_sync_vcpu_single(vmx->nested.vpid02);
2925 		}
2926 	}
2927 }
2928 
2929 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
2930 {
2931 	struct kvm_mmu *mmu = vcpu->arch.mmu;
2932 	u64 root_hpa = mmu->root_hpa;
2933 
2934 	/* No flush required if the current context is invalid. */
2935 	if (!VALID_PAGE(root_hpa))
2936 		return;
2937 
2938 	if (enable_ept)
2939 		ept_sync_context(construct_eptp(vcpu, root_hpa,
2940 						mmu->shadow_root_level));
2941 	else if (!is_guest_mode(vcpu))
2942 		vpid_sync_context(to_vmx(vcpu)->vpid);
2943 	else
2944 		vpid_sync_context(nested_get_vpid02(vcpu));
2945 }
2946 
2947 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2948 {
2949 	/*
2950 	 * vpid_sync_vcpu_addr() is a nop if vmx->vpid==0, see the comment in
2951 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
2952 	 */
2953 	vpid_sync_vcpu_addr(to_vmx(vcpu)->vpid, addr);
2954 }
2955 
2956 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
2957 {
2958 	/*
2959 	 * vpid_sync_context() is a nop if vmx->vpid==0, e.g. if enable_vpid==0
2960 	 * or a vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit
2961 	 * are required to flush GVA->{G,H}PA mappings from the TLB if vpid is
2962 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
2963 	 * i.e. no explicit INVVPID is necessary.
2964 	 */
2965 	vpid_sync_context(to_vmx(vcpu)->vpid);
2966 }
2967 
2968 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
2969 {
2970 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2971 
2972 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
2973 		return;
2974 
2975 	if (is_pae_paging(vcpu)) {
2976 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2977 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2978 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2979 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2980 	}
2981 }
2982 
2983 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2984 {
2985 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2986 
2987 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
2988 		return;
2989 
2990 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2991 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2992 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2993 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2994 
2995 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
2996 }
2997 
2998 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
2999 			  CPU_BASED_CR3_STORE_EXITING)
3000 
3001 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3002 {
3003 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3004 	unsigned long hw_cr0, old_cr0_pg;
3005 	u32 tmp;
3006 
3007 	old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3008 
3009 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3010 	if (is_unrestricted_guest(vcpu))
3011 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3012 	else {
3013 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3014 		if (!enable_ept)
3015 			hw_cr0 |= X86_CR0_WP;
3016 
3017 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3018 			enter_pmode(vcpu);
3019 
3020 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3021 			enter_rmode(vcpu);
3022 	}
3023 
3024 	vmcs_writel(CR0_READ_SHADOW, cr0);
3025 	vmcs_writel(GUEST_CR0, hw_cr0);
3026 	vcpu->arch.cr0 = cr0;
3027 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3028 
3029 #ifdef CONFIG_X86_64
3030 	if (vcpu->arch.efer & EFER_LME) {
3031 		if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3032 			enter_lmode(vcpu);
3033 		else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3034 			exit_lmode(vcpu);
3035 	}
3036 #endif
3037 
3038 	if (enable_ept && !is_unrestricted_guest(vcpu)) {
3039 		/*
3040 		 * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3041 		 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3042 		 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3043 		 * KVM's CR3 is installed.
3044 		 */
3045 		if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3046 			vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3047 
3048 		/*
3049 		 * When running with EPT but not unrestricted guest, KVM must
3050 		 * intercept CR3 accesses when paging is _disabled_.  This is
3051 		 * necessary because restricted guests can't actually run with
3052 		 * paging disabled, and so KVM stuffs its own CR3 in order to
3053 		 * run the guest when identity mapped page tables.
3054 		 *
3055 		 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3056 		 * update, it may be stale with respect to CR3 interception,
3057 		 * e.g. after nested VM-Enter.
3058 		 *
3059 		 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3060 		 * stores to forward them to L1, even if KVM does not need to
3061 		 * intercept them to preserve its identity mapped page tables.
3062 		 */
3063 		if (!(cr0 & X86_CR0_PG)) {
3064 			exec_controls_setbit(vmx, CR3_EXITING_BITS);
3065 		} else if (!is_guest_mode(vcpu)) {
3066 			exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3067 		} else {
3068 			tmp = exec_controls_get(vmx);
3069 			tmp &= ~CR3_EXITING_BITS;
3070 			tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3071 			exec_controls_set(vmx, tmp);
3072 		}
3073 
3074 		/* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3075 		if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3076 			vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3077 	}
3078 
3079 	/* depends on vcpu->arch.cr0 to be set to a new value */
3080 	vmx->emulation_required = emulation_required(vcpu);
3081 }
3082 
3083 static int vmx_get_max_tdp_level(void)
3084 {
3085 	if (cpu_has_vmx_ept_5levels())
3086 		return 5;
3087 	return 4;
3088 }
3089 
3090 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3091 {
3092 	u64 eptp = VMX_EPTP_MT_WB;
3093 
3094 	eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3095 
3096 	if (enable_ept_ad_bits &&
3097 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3098 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3099 	eptp |= root_hpa;
3100 
3101 	return eptp;
3102 }
3103 
3104 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3105 			     int root_level)
3106 {
3107 	struct kvm *kvm = vcpu->kvm;
3108 	bool update_guest_cr3 = true;
3109 	unsigned long guest_cr3;
3110 	u64 eptp;
3111 
3112 	if (enable_ept) {
3113 		eptp = construct_eptp(vcpu, root_hpa, root_level);
3114 		vmcs_write64(EPT_POINTER, eptp);
3115 
3116 		hv_track_root_tdp(vcpu, root_hpa);
3117 
3118 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3119 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3120 		else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3121 			guest_cr3 = vcpu->arch.cr3;
3122 		else /* vmcs01.GUEST_CR3 is already up-to-date. */
3123 			update_guest_cr3 = false;
3124 		vmx_ept_load_pdptrs(vcpu);
3125 	} else {
3126 		guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
3127 	}
3128 
3129 	if (update_guest_cr3)
3130 		vmcs_writel(GUEST_CR3, guest_cr3);
3131 }
3132 
3133 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3134 {
3135 	/*
3136 	 * We operate under the default treatment of SMM, so VMX cannot be
3137 	 * enabled under SMM.  Note, whether or not VMXE is allowed at all is
3138 	 * handled by kvm_is_valid_cr4().
3139 	 */
3140 	if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3141 		return false;
3142 
3143 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3144 		return false;
3145 
3146 	return true;
3147 }
3148 
3149 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3150 {
3151 	unsigned long old_cr4 = vcpu->arch.cr4;
3152 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3153 	/*
3154 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3155 	 * is in force while we are in guest mode.  Do not let guests control
3156 	 * this bit, even if host CR4.MCE == 0.
3157 	 */
3158 	unsigned long hw_cr4;
3159 
3160 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3161 	if (is_unrestricted_guest(vcpu))
3162 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3163 	else if (vmx->rmode.vm86_active)
3164 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3165 	else
3166 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3167 
3168 	if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3169 		if (cr4 & X86_CR4_UMIP) {
3170 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3171 			hw_cr4 &= ~X86_CR4_UMIP;
3172 		} else if (!is_guest_mode(vcpu) ||
3173 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3174 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3175 		}
3176 	}
3177 
3178 	vcpu->arch.cr4 = cr4;
3179 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3180 
3181 	if (!is_unrestricted_guest(vcpu)) {
3182 		if (enable_ept) {
3183 			if (!is_paging(vcpu)) {
3184 				hw_cr4 &= ~X86_CR4_PAE;
3185 				hw_cr4 |= X86_CR4_PSE;
3186 			} else if (!(cr4 & X86_CR4_PAE)) {
3187 				hw_cr4 &= ~X86_CR4_PAE;
3188 			}
3189 		}
3190 
3191 		/*
3192 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3193 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3194 		 * to be manually disabled when guest switches to non-paging
3195 		 * mode.
3196 		 *
3197 		 * If !enable_unrestricted_guest, the CPU is always running
3198 		 * with CR0.PG=1 and CR4 needs to be modified.
3199 		 * If enable_unrestricted_guest, the CPU automatically
3200 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3201 		 */
3202 		if (!is_paging(vcpu))
3203 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3204 	}
3205 
3206 	vmcs_writel(CR4_READ_SHADOW, cr4);
3207 	vmcs_writel(GUEST_CR4, hw_cr4);
3208 
3209 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3210 		kvm_update_cpuid_runtime(vcpu);
3211 }
3212 
3213 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3214 {
3215 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3216 	u32 ar;
3217 
3218 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3219 		*var = vmx->rmode.segs[seg];
3220 		if (seg == VCPU_SREG_TR
3221 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3222 			return;
3223 		var->base = vmx_read_guest_seg_base(vmx, seg);
3224 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3225 		return;
3226 	}
3227 	var->base = vmx_read_guest_seg_base(vmx, seg);
3228 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3229 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3230 	ar = vmx_read_guest_seg_ar(vmx, seg);
3231 	var->unusable = (ar >> 16) & 1;
3232 	var->type = ar & 15;
3233 	var->s = (ar >> 4) & 1;
3234 	var->dpl = (ar >> 5) & 3;
3235 	/*
3236 	 * Some userspaces do not preserve unusable property. Since usable
3237 	 * segment has to be present according to VMX spec we can use present
3238 	 * property to amend userspace bug by making unusable segment always
3239 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3240 	 * segment as unusable.
3241 	 */
3242 	var->present = !var->unusable;
3243 	var->avl = (ar >> 12) & 1;
3244 	var->l = (ar >> 13) & 1;
3245 	var->db = (ar >> 14) & 1;
3246 	var->g = (ar >> 15) & 1;
3247 }
3248 
3249 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3250 {
3251 	struct kvm_segment s;
3252 
3253 	if (to_vmx(vcpu)->rmode.vm86_active) {
3254 		vmx_get_segment(vcpu, &s, seg);
3255 		return s.base;
3256 	}
3257 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3258 }
3259 
3260 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3261 {
3262 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3263 
3264 	if (unlikely(vmx->rmode.vm86_active))
3265 		return 0;
3266 	else {
3267 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3268 		return VMX_AR_DPL(ar);
3269 	}
3270 }
3271 
3272 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3273 {
3274 	u32 ar;
3275 
3276 	if (var->unusable || !var->present)
3277 		ar = 1 << 16;
3278 	else {
3279 		ar = var->type & 15;
3280 		ar |= (var->s & 1) << 4;
3281 		ar |= (var->dpl & 3) << 5;
3282 		ar |= (var->present & 1) << 7;
3283 		ar |= (var->avl & 1) << 12;
3284 		ar |= (var->l & 1) << 13;
3285 		ar |= (var->db & 1) << 14;
3286 		ar |= (var->g & 1) << 15;
3287 	}
3288 
3289 	return ar;
3290 }
3291 
3292 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3293 {
3294 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3295 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3296 
3297 	vmx_segment_cache_clear(vmx);
3298 
3299 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3300 		vmx->rmode.segs[seg] = *var;
3301 		if (seg == VCPU_SREG_TR)
3302 			vmcs_write16(sf->selector, var->selector);
3303 		else if (var->s)
3304 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3305 		return;
3306 	}
3307 
3308 	vmcs_writel(sf->base, var->base);
3309 	vmcs_write32(sf->limit, var->limit);
3310 	vmcs_write16(sf->selector, var->selector);
3311 
3312 	/*
3313 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3314 	 * qemu binaries.
3315 	 *   IA32 arch specifies that at the time of processor reset the
3316 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3317 	 * is setting it to 0 in the userland code. This causes invalid guest
3318 	 * state vmexit when "unrestricted guest" mode is turned on.
3319 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3320 	 * tree. Newer qemu binaries with that qemu fix would not need this
3321 	 * kvm hack.
3322 	 */
3323 	if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3324 		var->type |= 0x1; /* Accessed */
3325 
3326 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3327 }
3328 
3329 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3330 {
3331 	__vmx_set_segment(vcpu, var, seg);
3332 
3333 	to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
3334 }
3335 
3336 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3337 {
3338 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3339 
3340 	*db = (ar >> 14) & 1;
3341 	*l = (ar >> 13) & 1;
3342 }
3343 
3344 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3345 {
3346 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3347 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3348 }
3349 
3350 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3351 {
3352 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3353 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3354 }
3355 
3356 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3357 {
3358 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3359 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3360 }
3361 
3362 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3363 {
3364 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3365 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3366 }
3367 
3368 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3369 {
3370 	struct kvm_segment var;
3371 	u32 ar;
3372 
3373 	vmx_get_segment(vcpu, &var, seg);
3374 	var.dpl = 0x3;
3375 	if (seg == VCPU_SREG_CS)
3376 		var.type = 0x3;
3377 	ar = vmx_segment_access_rights(&var);
3378 
3379 	if (var.base != (var.selector << 4))
3380 		return false;
3381 	if (var.limit != 0xffff)
3382 		return false;
3383 	if (ar != 0xf3)
3384 		return false;
3385 
3386 	return true;
3387 }
3388 
3389 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3390 {
3391 	struct kvm_segment cs;
3392 	unsigned int cs_rpl;
3393 
3394 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3395 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3396 
3397 	if (cs.unusable)
3398 		return false;
3399 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3400 		return false;
3401 	if (!cs.s)
3402 		return false;
3403 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3404 		if (cs.dpl > cs_rpl)
3405 			return false;
3406 	} else {
3407 		if (cs.dpl != cs_rpl)
3408 			return false;
3409 	}
3410 	if (!cs.present)
3411 		return false;
3412 
3413 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3414 	return true;
3415 }
3416 
3417 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3418 {
3419 	struct kvm_segment ss;
3420 	unsigned int ss_rpl;
3421 
3422 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3423 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3424 
3425 	if (ss.unusable)
3426 		return true;
3427 	if (ss.type != 3 && ss.type != 7)
3428 		return false;
3429 	if (!ss.s)
3430 		return false;
3431 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3432 		return false;
3433 	if (!ss.present)
3434 		return false;
3435 
3436 	return true;
3437 }
3438 
3439 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3440 {
3441 	struct kvm_segment var;
3442 	unsigned int rpl;
3443 
3444 	vmx_get_segment(vcpu, &var, seg);
3445 	rpl = var.selector & SEGMENT_RPL_MASK;
3446 
3447 	if (var.unusable)
3448 		return true;
3449 	if (!var.s)
3450 		return false;
3451 	if (!var.present)
3452 		return false;
3453 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3454 		if (var.dpl < rpl) /* DPL < RPL */
3455 			return false;
3456 	}
3457 
3458 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3459 	 * rights flags
3460 	 */
3461 	return true;
3462 }
3463 
3464 static bool tr_valid(struct kvm_vcpu *vcpu)
3465 {
3466 	struct kvm_segment tr;
3467 
3468 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3469 
3470 	if (tr.unusable)
3471 		return false;
3472 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3473 		return false;
3474 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3475 		return false;
3476 	if (!tr.present)
3477 		return false;
3478 
3479 	return true;
3480 }
3481 
3482 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3483 {
3484 	struct kvm_segment ldtr;
3485 
3486 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3487 
3488 	if (ldtr.unusable)
3489 		return true;
3490 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3491 		return false;
3492 	if (ldtr.type != 2)
3493 		return false;
3494 	if (!ldtr.present)
3495 		return false;
3496 
3497 	return true;
3498 }
3499 
3500 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3501 {
3502 	struct kvm_segment cs, ss;
3503 
3504 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3505 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3506 
3507 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3508 		 (ss.selector & SEGMENT_RPL_MASK));
3509 }
3510 
3511 /*
3512  * Check if guest state is valid. Returns true if valid, false if
3513  * not.
3514  * We assume that registers are always usable
3515  */
3516 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3517 {
3518 	/* real mode guest state checks */
3519 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3520 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3521 			return false;
3522 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3523 			return false;
3524 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3525 			return false;
3526 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3527 			return false;
3528 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3529 			return false;
3530 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3531 			return false;
3532 	} else {
3533 	/* protected mode guest state checks */
3534 		if (!cs_ss_rpl_check(vcpu))
3535 			return false;
3536 		if (!code_segment_valid(vcpu))
3537 			return false;
3538 		if (!stack_segment_valid(vcpu))
3539 			return false;
3540 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3541 			return false;
3542 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3543 			return false;
3544 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3545 			return false;
3546 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3547 			return false;
3548 		if (!tr_valid(vcpu))
3549 			return false;
3550 		if (!ldtr_valid(vcpu))
3551 			return false;
3552 	}
3553 	/* TODO:
3554 	 * - Add checks on RIP
3555 	 * - Add checks on RFLAGS
3556 	 */
3557 
3558 	return true;
3559 }
3560 
3561 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3562 {
3563 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3564 	u16 data;
3565 	int i;
3566 
3567 	for (i = 0; i < 3; i++) {
3568 		if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3569 			return -EFAULT;
3570 	}
3571 
3572 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3573 	if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3574 		return -EFAULT;
3575 
3576 	data = ~0;
3577 	if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3578 		return -EFAULT;
3579 
3580 	return 0;
3581 }
3582 
3583 static int init_rmode_identity_map(struct kvm *kvm)
3584 {
3585 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3586 	int i, r = 0;
3587 	void __user *uaddr;
3588 	u32 tmp;
3589 
3590 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3591 	mutex_lock(&kvm->slots_lock);
3592 
3593 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3594 		goto out;
3595 
3596 	if (!kvm_vmx->ept_identity_map_addr)
3597 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3598 
3599 	uaddr = __x86_set_memory_region(kvm,
3600 					IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3601 					kvm_vmx->ept_identity_map_addr,
3602 					PAGE_SIZE);
3603 	if (IS_ERR(uaddr)) {
3604 		r = PTR_ERR(uaddr);
3605 		goto out;
3606 	}
3607 
3608 	/* Set up identity-mapping pagetable for EPT in real mode */
3609 	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3610 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3611 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3612 		if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3613 			r = -EFAULT;
3614 			goto out;
3615 		}
3616 	}
3617 	kvm_vmx->ept_identity_pagetable_done = true;
3618 
3619 out:
3620 	mutex_unlock(&kvm->slots_lock);
3621 	return r;
3622 }
3623 
3624 static void seg_setup(int seg)
3625 {
3626 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3627 	unsigned int ar;
3628 
3629 	vmcs_write16(sf->selector, 0);
3630 	vmcs_writel(sf->base, 0);
3631 	vmcs_write32(sf->limit, 0xffff);
3632 	ar = 0x93;
3633 	if (seg == VCPU_SREG_CS)
3634 		ar |= 0x08; /* code segment */
3635 
3636 	vmcs_write32(sf->ar_bytes, ar);
3637 }
3638 
3639 static int alloc_apic_access_page(struct kvm *kvm)
3640 {
3641 	struct page *page;
3642 	void __user *hva;
3643 	int ret = 0;
3644 
3645 	mutex_lock(&kvm->slots_lock);
3646 	if (kvm->arch.apic_access_memslot_enabled)
3647 		goto out;
3648 	hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3649 				      APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3650 	if (IS_ERR(hva)) {
3651 		ret = PTR_ERR(hva);
3652 		goto out;
3653 	}
3654 
3655 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3656 	if (is_error_page(page)) {
3657 		ret = -EFAULT;
3658 		goto out;
3659 	}
3660 
3661 	/*
3662 	 * Do not pin the page in memory, so that memory hot-unplug
3663 	 * is able to migrate it.
3664 	 */
3665 	put_page(page);
3666 	kvm->arch.apic_access_memslot_enabled = true;
3667 out:
3668 	mutex_unlock(&kvm->slots_lock);
3669 	return ret;
3670 }
3671 
3672 int allocate_vpid(void)
3673 {
3674 	int vpid;
3675 
3676 	if (!enable_vpid)
3677 		return 0;
3678 	spin_lock(&vmx_vpid_lock);
3679 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3680 	if (vpid < VMX_NR_VPIDS)
3681 		__set_bit(vpid, vmx_vpid_bitmap);
3682 	else
3683 		vpid = 0;
3684 	spin_unlock(&vmx_vpid_lock);
3685 	return vpid;
3686 }
3687 
3688 void free_vpid(int vpid)
3689 {
3690 	if (!enable_vpid || vpid == 0)
3691 		return;
3692 	spin_lock(&vmx_vpid_lock);
3693 	__clear_bit(vpid, vmx_vpid_bitmap);
3694 	spin_unlock(&vmx_vpid_lock);
3695 }
3696 
3697 static void vmx_clear_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3698 {
3699 	int f = sizeof(unsigned long);
3700 
3701 	if (msr <= 0x1fff)
3702 		__clear_bit(msr, msr_bitmap + 0x000 / f);
3703 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3704 		__clear_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3705 }
3706 
3707 static void vmx_clear_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3708 {
3709 	int f = sizeof(unsigned long);
3710 
3711 	if (msr <= 0x1fff)
3712 		__clear_bit(msr, msr_bitmap + 0x800 / f);
3713 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3714 		__clear_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3715 }
3716 
3717 static void vmx_set_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3718 {
3719 	int f = sizeof(unsigned long);
3720 
3721 	if (msr <= 0x1fff)
3722 		__set_bit(msr, msr_bitmap + 0x000 / f);
3723 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3724 		__set_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3725 }
3726 
3727 static void vmx_set_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3728 {
3729 	int f = sizeof(unsigned long);
3730 
3731 	if (msr <= 0x1fff)
3732 		__set_bit(msr, msr_bitmap + 0x800 / f);
3733 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3734 		__set_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3735 }
3736 
3737 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3738 {
3739 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3740 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3741 
3742 	if (!cpu_has_vmx_msr_bitmap())
3743 		return;
3744 
3745 	if (static_branch_unlikely(&enable_evmcs))
3746 		evmcs_touch_msr_bitmap();
3747 
3748 	/*
3749 	 * Mark the desired intercept state in shadow bitmap, this is needed
3750 	 * for resync when the MSR filters change.
3751 	*/
3752 	if (is_valid_passthrough_msr(msr)) {
3753 		int idx = possible_passthrough_msr_slot(msr);
3754 
3755 		if (idx != -ENOENT) {
3756 			if (type & MSR_TYPE_R)
3757 				clear_bit(idx, vmx->shadow_msr_intercept.read);
3758 			if (type & MSR_TYPE_W)
3759 				clear_bit(idx, vmx->shadow_msr_intercept.write);
3760 		}
3761 	}
3762 
3763 	if ((type & MSR_TYPE_R) &&
3764 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3765 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3766 		type &= ~MSR_TYPE_R;
3767 	}
3768 
3769 	if ((type & MSR_TYPE_W) &&
3770 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3771 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3772 		type &= ~MSR_TYPE_W;
3773 	}
3774 
3775 	if (type & MSR_TYPE_R)
3776 		vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3777 
3778 	if (type & MSR_TYPE_W)
3779 		vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3780 }
3781 
3782 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3783 {
3784 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3785 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3786 
3787 	if (!cpu_has_vmx_msr_bitmap())
3788 		return;
3789 
3790 	if (static_branch_unlikely(&enable_evmcs))
3791 		evmcs_touch_msr_bitmap();
3792 
3793 	/*
3794 	 * Mark the desired intercept state in shadow bitmap, this is needed
3795 	 * for resync when the MSR filter changes.
3796 	*/
3797 	if (is_valid_passthrough_msr(msr)) {
3798 		int idx = possible_passthrough_msr_slot(msr);
3799 
3800 		if (idx != -ENOENT) {
3801 			if (type & MSR_TYPE_R)
3802 				set_bit(idx, vmx->shadow_msr_intercept.read);
3803 			if (type & MSR_TYPE_W)
3804 				set_bit(idx, vmx->shadow_msr_intercept.write);
3805 		}
3806 	}
3807 
3808 	if (type & MSR_TYPE_R)
3809 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3810 
3811 	if (type & MSR_TYPE_W)
3812 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3813 }
3814 
3815 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
3816 {
3817 	unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
3818 	unsigned long read_intercept;
3819 	int msr;
3820 
3821 	read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3822 
3823 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3824 		unsigned int read_idx = msr / BITS_PER_LONG;
3825 		unsigned int write_idx = read_idx + (0x800 / sizeof(long));
3826 
3827 		msr_bitmap[read_idx] = read_intercept;
3828 		msr_bitmap[write_idx] = ~0ul;
3829 	}
3830 }
3831 
3832 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
3833 {
3834 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3835 	u8 mode;
3836 
3837 	if (!cpu_has_vmx_msr_bitmap())
3838 		return;
3839 
3840 	if (cpu_has_secondary_exec_ctrls() &&
3841 	    (secondary_exec_controls_get(vmx) &
3842 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3843 		mode = MSR_BITMAP_MODE_X2APIC;
3844 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3845 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3846 	} else {
3847 		mode = 0;
3848 	}
3849 
3850 	if (mode == vmx->x2apic_msr_bitmap_mode)
3851 		return;
3852 
3853 	vmx->x2apic_msr_bitmap_mode = mode;
3854 
3855 	vmx_reset_x2apic_msrs(vcpu, mode);
3856 
3857 	/*
3858 	 * TPR reads and writes can be virtualized even if virtual interrupt
3859 	 * delivery is not in use.
3860 	 */
3861 	vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
3862 				  !(mode & MSR_BITMAP_MODE_X2APIC));
3863 
3864 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3865 		vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
3866 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3867 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3868 	}
3869 }
3870 
3871 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
3872 {
3873 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3874 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3875 	u32 i;
3876 
3877 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
3878 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
3879 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
3880 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
3881 	for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3882 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3883 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3884 	}
3885 }
3886 
3887 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3888 {
3889 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3890 	void *vapic_page;
3891 	u32 vppr;
3892 	int rvi;
3893 
3894 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3895 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3896 		WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3897 		return false;
3898 
3899 	rvi = vmx_get_rvi();
3900 
3901 	vapic_page = vmx->nested.virtual_apic_map.hva;
3902 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3903 
3904 	return ((rvi & 0xf0) > (vppr & 0xf0));
3905 }
3906 
3907 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
3908 {
3909 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3910 	u32 i;
3911 
3912 	/*
3913 	 * Set intercept permissions for all potentially passed through MSRs
3914 	 * again. They will automatically get filtered through the MSR filter,
3915 	 * so we are back in sync after this.
3916 	 */
3917 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
3918 		u32 msr = vmx_possible_passthrough_msrs[i];
3919 		bool read = test_bit(i, vmx->shadow_msr_intercept.read);
3920 		bool write = test_bit(i, vmx->shadow_msr_intercept.write);
3921 
3922 		vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read);
3923 		vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write);
3924 	}
3925 
3926 	pt_update_intercept_for_msr(vcpu);
3927 }
3928 
3929 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3930 						     bool nested)
3931 {
3932 #ifdef CONFIG_SMP
3933 	int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3934 
3935 	if (vcpu->mode == IN_GUEST_MODE) {
3936 		/*
3937 		 * The vector of interrupt to be delivered to vcpu had
3938 		 * been set in PIR before this function.
3939 		 *
3940 		 * Following cases will be reached in this block, and
3941 		 * we always send a notification event in all cases as
3942 		 * explained below.
3943 		 *
3944 		 * Case 1: vcpu keeps in non-root mode. Sending a
3945 		 * notification event posts the interrupt to vcpu.
3946 		 *
3947 		 * Case 2: vcpu exits to root mode and is still
3948 		 * runnable. PIR will be synced to vIRR before the
3949 		 * next vcpu entry. Sending a notification event in
3950 		 * this case has no effect, as vcpu is not in root
3951 		 * mode.
3952 		 *
3953 		 * Case 3: vcpu exits to root mode and is blocked.
3954 		 * vcpu_block() has already synced PIR to vIRR and
3955 		 * never blocks vcpu if vIRR is not cleared. Therefore,
3956 		 * a blocked vcpu here does not wait for any requested
3957 		 * interrupts in PIR, and sending a notification event
3958 		 * which has no effect is safe here.
3959 		 */
3960 
3961 		apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3962 		return true;
3963 	}
3964 #endif
3965 	return false;
3966 }
3967 
3968 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3969 						int vector)
3970 {
3971 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3972 
3973 	if (is_guest_mode(vcpu) &&
3974 	    vector == vmx->nested.posted_intr_nv) {
3975 		/*
3976 		 * If a posted intr is not recognized by hardware,
3977 		 * we will accomplish it in the next vmentry.
3978 		 */
3979 		vmx->nested.pi_pending = true;
3980 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3981 		/* the PIR and ON have been set by L1. */
3982 		if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3983 			kvm_vcpu_kick(vcpu);
3984 		return 0;
3985 	}
3986 	return -1;
3987 }
3988 /*
3989  * Send interrupt to vcpu via posted interrupt way.
3990  * 1. If target vcpu is running(non-root mode), send posted interrupt
3991  * notification to vcpu and hardware will sync PIR to vIRR atomically.
3992  * 2. If target vcpu isn't running(root mode), kick it to pick up the
3993  * interrupt from PIR in next vmentry.
3994  */
3995 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3996 {
3997 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3998 	int r;
3999 
4000 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4001 	if (!r)
4002 		return 0;
4003 
4004 	if (!vcpu->arch.apicv_active)
4005 		return -1;
4006 
4007 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4008 		return 0;
4009 
4010 	/* If a previous notification has sent the IPI, nothing to do.  */
4011 	if (pi_test_and_set_on(&vmx->pi_desc))
4012 		return 0;
4013 
4014 	if (vcpu != kvm_get_running_vcpu() &&
4015 	    !kvm_vcpu_trigger_posted_interrupt(vcpu, false))
4016 		kvm_vcpu_kick(vcpu);
4017 
4018 	return 0;
4019 }
4020 
4021 /*
4022  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4023  * will not change in the lifetime of the guest.
4024  * Note that host-state that does change is set elsewhere. E.g., host-state
4025  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4026  */
4027 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4028 {
4029 	u32 low32, high32;
4030 	unsigned long tmpl;
4031 	unsigned long cr0, cr3, cr4;
4032 
4033 	cr0 = read_cr0();
4034 	WARN_ON(cr0 & X86_CR0_TS);
4035 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4036 
4037 	/*
4038 	 * Save the most likely value for this task's CR3 in the VMCS.
4039 	 * We can't use __get_current_cr3_fast() because we're not atomic.
4040 	 */
4041 	cr3 = __read_cr3();
4042 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
4043 	vmx->loaded_vmcs->host_state.cr3 = cr3;
4044 
4045 	/* Save the most likely value for this task's CR4 in the VMCS. */
4046 	cr4 = cr4_read_shadow();
4047 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4048 	vmx->loaded_vmcs->host_state.cr4 = cr4;
4049 
4050 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4051 #ifdef CONFIG_X86_64
4052 	/*
4053 	 * Load null selectors, so we can avoid reloading them in
4054 	 * vmx_prepare_switch_to_host(), in case userspace uses
4055 	 * the null selectors too (the expected case).
4056 	 */
4057 	vmcs_write16(HOST_DS_SELECTOR, 0);
4058 	vmcs_write16(HOST_ES_SELECTOR, 0);
4059 #else
4060 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4061 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4062 #endif
4063 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4064 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4065 
4066 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4067 
4068 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4069 
4070 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4071 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4072 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4073 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4074 
4075 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4076 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4077 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4078 	}
4079 
4080 	if (cpu_has_load_ia32_efer())
4081 		vmcs_write64(HOST_IA32_EFER, host_efer);
4082 }
4083 
4084 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4085 {
4086 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4087 
4088 	vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4089 					  ~vcpu->arch.cr4_guest_rsvd_bits;
4090 	if (!enable_ept)
4091 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE;
4092 	if (is_guest_mode(&vmx->vcpu))
4093 		vcpu->arch.cr4_guest_owned_bits &=
4094 			~get_vmcs12(vcpu)->cr4_guest_host_mask;
4095 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4096 }
4097 
4098 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4099 {
4100 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4101 
4102 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4103 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4104 
4105 	if (!enable_vnmi)
4106 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4107 
4108 	if (!enable_preemption_timer)
4109 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4110 
4111 	return pin_based_exec_ctrl;
4112 }
4113 
4114 static u32 vmx_vmentry_ctrl(void)
4115 {
4116 	u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4117 
4118 	if (vmx_pt_mode_is_system())
4119 		vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4120 				  VM_ENTRY_LOAD_IA32_RTIT_CTL);
4121 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4122 	return vmentry_ctrl &
4123 		~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER);
4124 }
4125 
4126 static u32 vmx_vmexit_ctrl(void)
4127 {
4128 	u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4129 
4130 	if (vmx_pt_mode_is_system())
4131 		vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4132 				 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4133 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4134 	return vmexit_ctrl &
4135 		~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4136 }
4137 
4138 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4139 {
4140 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4141 
4142 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4143 	if (cpu_has_secondary_exec_ctrls()) {
4144 		if (kvm_vcpu_apicv_active(vcpu))
4145 			secondary_exec_controls_setbit(vmx,
4146 				      SECONDARY_EXEC_APIC_REGISTER_VIRT |
4147 				      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4148 		else
4149 			secondary_exec_controls_clearbit(vmx,
4150 					SECONDARY_EXEC_APIC_REGISTER_VIRT |
4151 					SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4152 	}
4153 
4154 	vmx_update_msr_bitmap_x2apic(vcpu);
4155 }
4156 
4157 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4158 {
4159 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4160 
4161 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4162 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4163 
4164 	if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4165 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4166 #ifdef CONFIG_X86_64
4167 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4168 				CPU_BASED_CR8_LOAD_EXITING;
4169 #endif
4170 	}
4171 	if (!enable_ept)
4172 		exec_control |= CPU_BASED_CR3_STORE_EXITING |
4173 				CPU_BASED_CR3_LOAD_EXITING  |
4174 				CPU_BASED_INVLPG_EXITING;
4175 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4176 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4177 				CPU_BASED_MONITOR_EXITING);
4178 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4179 		exec_control &= ~CPU_BASED_HLT_EXITING;
4180 	return exec_control;
4181 }
4182 
4183 /*
4184  * Adjust a single secondary execution control bit to intercept/allow an
4185  * instruction in the guest.  This is usually done based on whether or not a
4186  * feature has been exposed to the guest in order to correctly emulate faults.
4187  */
4188 static inline void
4189 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4190 				  u32 control, bool enabled, bool exiting)
4191 {
4192 	/*
4193 	 * If the control is for an opt-in feature, clear the control if the
4194 	 * feature is not exposed to the guest, i.e. not enabled.  If the
4195 	 * control is opt-out, i.e. an exiting control, clear the control if
4196 	 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4197 	 * disabled for the associated instruction.  Note, the caller is
4198 	 * responsible presetting exec_control to set all supported bits.
4199 	 */
4200 	if (enabled == exiting)
4201 		*exec_control &= ~control;
4202 
4203 	/*
4204 	 * Update the nested MSR settings so that a nested VMM can/can't set
4205 	 * controls for features that are/aren't exposed to the guest.
4206 	 */
4207 	if (nested) {
4208 		if (enabled)
4209 			vmx->nested.msrs.secondary_ctls_high |= control;
4210 		else
4211 			vmx->nested.msrs.secondary_ctls_high &= ~control;
4212 	}
4213 }
4214 
4215 /*
4216  * Wrapper macro for the common case of adjusting a secondary execution control
4217  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4218  * verifies that the control is actually supported by KVM and hardware.
4219  */
4220 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4221 ({									 \
4222 	bool __enabled;							 \
4223 									 \
4224 	if (cpu_has_vmx_##name()) {					 \
4225 		__enabled = guest_cpuid_has(&(vmx)->vcpu,		 \
4226 					    X86_FEATURE_##feat_name);	 \
4227 		vmx_adjust_secondary_exec_control(vmx, exec_control,	 \
4228 			SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4229 	}								 \
4230 })
4231 
4232 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4233 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4234 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4235 
4236 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4237 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4238 
4239 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4240 {
4241 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4242 
4243 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4244 
4245 	if (vmx_pt_mode_is_system())
4246 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4247 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4248 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4249 	if (vmx->vpid == 0)
4250 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4251 	if (!enable_ept) {
4252 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4253 		enable_unrestricted_guest = 0;
4254 	}
4255 	if (!enable_unrestricted_guest)
4256 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4257 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4258 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4259 	if (!kvm_vcpu_apicv_active(vcpu))
4260 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4261 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4262 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4263 
4264 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4265 	 * in vmx_set_cr4.  */
4266 	exec_control &= ~SECONDARY_EXEC_DESC;
4267 
4268 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4269 	   (handle_vmptrld).
4270 	   We can NOT enable shadow_vmcs here because we don't have yet
4271 	   a current VMCS12
4272 	*/
4273 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4274 
4275 	/*
4276 	 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4277 	 * it needs to be set here when dirty logging is already active, e.g.
4278 	 * if this vCPU was created after dirty logging was enabled.
4279 	 */
4280 	if (!vcpu->kvm->arch.cpu_dirty_logging_count)
4281 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4282 
4283 	if (cpu_has_vmx_xsaves()) {
4284 		/* Exposing XSAVES only when XSAVE is exposed */
4285 		bool xsaves_enabled =
4286 			boot_cpu_has(X86_FEATURE_XSAVE) &&
4287 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4288 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4289 
4290 		vcpu->arch.xsaves_enabled = xsaves_enabled;
4291 
4292 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4293 						  SECONDARY_EXEC_XSAVES,
4294 						  xsaves_enabled, false);
4295 	}
4296 
4297 	/*
4298 	 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4299 	 * feature is exposed to the guest.  This creates a virtualization hole
4300 	 * if both are supported in hardware but only one is exposed to the
4301 	 * guest, but letting the guest execute RDTSCP or RDPID when either one
4302 	 * is advertised is preferable to emulating the advertised instruction
4303 	 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4304 	 */
4305 	if (cpu_has_vmx_rdtscp()) {
4306 		bool rdpid_or_rdtscp_enabled =
4307 			guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4308 			guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4309 
4310 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4311 						  SECONDARY_EXEC_ENABLE_RDTSCP,
4312 						  rdpid_or_rdtscp_enabled, false);
4313 	}
4314 	vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4315 
4316 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4317 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4318 
4319 	vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4320 				    ENABLE_USR_WAIT_PAUSE, false);
4321 
4322 	if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4323 		exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4324 
4325 	return exec_control;
4326 }
4327 
4328 #define VMX_XSS_EXIT_BITMAP 0
4329 
4330 /*
4331  * Noting that the initialization of Guest-state Area of VMCS is in
4332  * vmx_vcpu_reset().
4333  */
4334 static void init_vmcs(struct vcpu_vmx *vmx)
4335 {
4336 	if (nested)
4337 		nested_vmx_set_vmcs_shadowing_bitmap();
4338 
4339 	if (cpu_has_vmx_msr_bitmap())
4340 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4341 
4342 	vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4343 
4344 	/* Control */
4345 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4346 
4347 	exec_controls_set(vmx, vmx_exec_control(vmx));
4348 
4349 	if (cpu_has_secondary_exec_ctrls())
4350 		secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4351 
4352 	if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4353 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4354 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4355 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4356 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4357 
4358 		vmcs_write16(GUEST_INTR_STATUS, 0);
4359 
4360 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4361 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4362 	}
4363 
4364 	if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4365 		vmcs_write32(PLE_GAP, ple_gap);
4366 		vmx->ple_window = ple_window;
4367 		vmx->ple_window_dirty = true;
4368 	}
4369 
4370 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4371 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4372 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4373 
4374 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4375 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4376 	vmx_set_constant_host_state(vmx);
4377 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4378 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4379 
4380 	if (cpu_has_vmx_vmfunc())
4381 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4382 
4383 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4384 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4385 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4386 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4387 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4388 
4389 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4390 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4391 
4392 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4393 
4394 	/* 22.2.1, 20.8.1 */
4395 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4396 
4397 	vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4398 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4399 
4400 	set_cr4_guest_host_mask(vmx);
4401 
4402 	if (vmx->vpid != 0)
4403 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4404 
4405 	if (cpu_has_vmx_xsaves())
4406 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4407 
4408 	if (enable_pml) {
4409 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4410 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4411 	}
4412 
4413 	vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4414 
4415 	if (vmx_pt_mode_is_host_guest()) {
4416 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4417 		/* Bit[6~0] are forced to 1, writes are ignored. */
4418 		vmx->pt_desc.guest.output_mask = 0x7F;
4419 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4420 	}
4421 
4422 	vmcs_write32(GUEST_SYSENTER_CS, 0);
4423 	vmcs_writel(GUEST_SYSENTER_ESP, 0);
4424 	vmcs_writel(GUEST_SYSENTER_EIP, 0);
4425 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4426 
4427 	if (cpu_has_vmx_tpr_shadow()) {
4428 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4429 		if (cpu_need_tpr_shadow(&vmx->vcpu))
4430 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4431 				     __pa(vmx->vcpu.arch.apic->regs));
4432 		vmcs_write32(TPR_THRESHOLD, 0);
4433 	}
4434 
4435 	vmx_setup_uret_msrs(vmx);
4436 }
4437 
4438 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4439 {
4440 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4441 
4442 	vmx->rmode.vm86_active = 0;
4443 	vmx->spec_ctrl = 0;
4444 
4445 	vmx->msr_ia32_umwait_control = 0;
4446 
4447 	vmx->hv_deadline_tsc = -1;
4448 	kvm_set_cr8(vcpu, 0);
4449 
4450 	vmx_segment_cache_clear(vmx);
4451 
4452 	seg_setup(VCPU_SREG_CS);
4453 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4454 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4455 
4456 	seg_setup(VCPU_SREG_DS);
4457 	seg_setup(VCPU_SREG_ES);
4458 	seg_setup(VCPU_SREG_FS);
4459 	seg_setup(VCPU_SREG_GS);
4460 	seg_setup(VCPU_SREG_SS);
4461 
4462 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4463 	vmcs_writel(GUEST_TR_BASE, 0);
4464 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4465 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4466 
4467 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4468 	vmcs_writel(GUEST_LDTR_BASE, 0);
4469 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4470 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4471 
4472 	vmcs_writel(GUEST_GDTR_BASE, 0);
4473 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4474 
4475 	vmcs_writel(GUEST_IDTR_BASE, 0);
4476 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4477 
4478 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4479 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4480 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4481 	if (kvm_mpx_supported())
4482 		vmcs_write64(GUEST_BNDCFGS, 0);
4483 
4484 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4485 
4486 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4487 
4488 	vpid_sync_context(vmx->vpid);
4489 }
4490 
4491 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4492 {
4493 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4494 }
4495 
4496 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4497 {
4498 	if (!enable_vnmi ||
4499 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4500 		vmx_enable_irq_window(vcpu);
4501 		return;
4502 	}
4503 
4504 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4505 }
4506 
4507 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4508 {
4509 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4510 	uint32_t intr;
4511 	int irq = vcpu->arch.interrupt.nr;
4512 
4513 	trace_kvm_inj_virq(irq);
4514 
4515 	++vcpu->stat.irq_injections;
4516 	if (vmx->rmode.vm86_active) {
4517 		int inc_eip = 0;
4518 		if (vcpu->arch.interrupt.soft)
4519 			inc_eip = vcpu->arch.event_exit_inst_len;
4520 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4521 		return;
4522 	}
4523 	intr = irq | INTR_INFO_VALID_MASK;
4524 	if (vcpu->arch.interrupt.soft) {
4525 		intr |= INTR_TYPE_SOFT_INTR;
4526 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4527 			     vmx->vcpu.arch.event_exit_inst_len);
4528 	} else
4529 		intr |= INTR_TYPE_EXT_INTR;
4530 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4531 
4532 	vmx_clear_hlt(vcpu);
4533 }
4534 
4535 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4536 {
4537 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4538 
4539 	if (!enable_vnmi) {
4540 		/*
4541 		 * Tracking the NMI-blocked state in software is built upon
4542 		 * finding the next open IRQ window. This, in turn, depends on
4543 		 * well-behaving guests: They have to keep IRQs disabled at
4544 		 * least as long as the NMI handler runs. Otherwise we may
4545 		 * cause NMI nesting, maybe breaking the guest. But as this is
4546 		 * highly unlikely, we can live with the residual risk.
4547 		 */
4548 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4549 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4550 	}
4551 
4552 	++vcpu->stat.nmi_injections;
4553 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4554 
4555 	if (vmx->rmode.vm86_active) {
4556 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4557 		return;
4558 	}
4559 
4560 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4561 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4562 
4563 	vmx_clear_hlt(vcpu);
4564 }
4565 
4566 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4567 {
4568 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4569 	bool masked;
4570 
4571 	if (!enable_vnmi)
4572 		return vmx->loaded_vmcs->soft_vnmi_blocked;
4573 	if (vmx->loaded_vmcs->nmi_known_unmasked)
4574 		return false;
4575 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4576 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4577 	return masked;
4578 }
4579 
4580 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4581 {
4582 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4583 
4584 	if (!enable_vnmi) {
4585 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4586 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4587 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
4588 		}
4589 	} else {
4590 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4591 		if (masked)
4592 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4593 				      GUEST_INTR_STATE_NMI);
4594 		else
4595 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4596 					GUEST_INTR_STATE_NMI);
4597 	}
4598 }
4599 
4600 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4601 {
4602 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4603 		return false;
4604 
4605 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4606 		return true;
4607 
4608 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4609 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4610 		 GUEST_INTR_STATE_NMI));
4611 }
4612 
4613 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4614 {
4615 	if (to_vmx(vcpu)->nested.nested_run_pending)
4616 		return -EBUSY;
4617 
4618 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
4619 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4620 		return -EBUSY;
4621 
4622 	return !vmx_nmi_blocked(vcpu);
4623 }
4624 
4625 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4626 {
4627 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4628 		return false;
4629 
4630 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4631 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4632 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4633 }
4634 
4635 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4636 {
4637 	if (to_vmx(vcpu)->nested.nested_run_pending)
4638 		return -EBUSY;
4639 
4640        /*
4641         * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4642         * e.g. if the IRQ arrived asynchronously after checking nested events.
4643         */
4644 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4645 		return -EBUSY;
4646 
4647 	return !vmx_interrupt_blocked(vcpu);
4648 }
4649 
4650 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4651 {
4652 	void __user *ret;
4653 
4654 	if (enable_unrestricted_guest)
4655 		return 0;
4656 
4657 	mutex_lock(&kvm->slots_lock);
4658 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4659 				      PAGE_SIZE * 3);
4660 	mutex_unlock(&kvm->slots_lock);
4661 
4662 	if (IS_ERR(ret))
4663 		return PTR_ERR(ret);
4664 
4665 	to_kvm_vmx(kvm)->tss_addr = addr;
4666 
4667 	return init_rmode_tss(kvm, ret);
4668 }
4669 
4670 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4671 {
4672 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4673 	return 0;
4674 }
4675 
4676 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4677 {
4678 	switch (vec) {
4679 	case BP_VECTOR:
4680 		/*
4681 		 * Update instruction length as we may reinject the exception
4682 		 * from user space while in guest debugging mode.
4683 		 */
4684 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4685 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4686 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4687 			return false;
4688 		fallthrough;
4689 	case DB_VECTOR:
4690 		return !(vcpu->guest_debug &
4691 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4692 	case DE_VECTOR:
4693 	case OF_VECTOR:
4694 	case BR_VECTOR:
4695 	case UD_VECTOR:
4696 	case DF_VECTOR:
4697 	case SS_VECTOR:
4698 	case GP_VECTOR:
4699 	case MF_VECTOR:
4700 		return true;
4701 	}
4702 	return false;
4703 }
4704 
4705 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4706 				  int vec, u32 err_code)
4707 {
4708 	/*
4709 	 * Instruction with address size override prefix opcode 0x67
4710 	 * Cause the #SS fault with 0 error code in VM86 mode.
4711 	 */
4712 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4713 		if (kvm_emulate_instruction(vcpu, 0)) {
4714 			if (vcpu->arch.halt_request) {
4715 				vcpu->arch.halt_request = 0;
4716 				return kvm_vcpu_halt(vcpu);
4717 			}
4718 			return 1;
4719 		}
4720 		return 0;
4721 	}
4722 
4723 	/*
4724 	 * Forward all other exceptions that are valid in real mode.
4725 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4726 	 *        the required debugging infrastructure rework.
4727 	 */
4728 	kvm_queue_exception(vcpu, vec);
4729 	return 1;
4730 }
4731 
4732 static int handle_machine_check(struct kvm_vcpu *vcpu)
4733 {
4734 	/* handled by vmx_vcpu_run() */
4735 	return 1;
4736 }
4737 
4738 /*
4739  * If the host has split lock detection disabled, then #AC is
4740  * unconditionally injected into the guest, which is the pre split lock
4741  * detection behaviour.
4742  *
4743  * If the host has split lock detection enabled then #AC is
4744  * only injected into the guest when:
4745  *  - Guest CPL == 3 (user mode)
4746  *  - Guest has #AC detection enabled in CR0
4747  *  - Guest EFLAGS has AC bit set
4748  */
4749 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
4750 {
4751 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4752 		return true;
4753 
4754 	return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4755 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4756 }
4757 
4758 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4759 {
4760 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4761 	struct kvm_run *kvm_run = vcpu->run;
4762 	u32 intr_info, ex_no, error_code;
4763 	unsigned long cr2, dr6;
4764 	u32 vect_info;
4765 
4766 	vect_info = vmx->idt_vectoring_info;
4767 	intr_info = vmx_get_intr_info(vcpu);
4768 
4769 	if (is_machine_check(intr_info) || is_nmi(intr_info))
4770 		return 1; /* handled by handle_exception_nmi_irqoff() */
4771 
4772 	if (is_invalid_opcode(intr_info))
4773 		return handle_ud(vcpu);
4774 
4775 	error_code = 0;
4776 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4777 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4778 
4779 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4780 		WARN_ON_ONCE(!enable_vmware_backdoor);
4781 
4782 		/*
4783 		 * VMware backdoor emulation on #GP interception only handles
4784 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4785 		 * error code on #GP.
4786 		 */
4787 		if (error_code) {
4788 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4789 			return 1;
4790 		}
4791 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4792 	}
4793 
4794 	/*
4795 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4796 	 * MMIO, it is better to report an internal error.
4797 	 * See the comments in vmx_handle_exit.
4798 	 */
4799 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4800 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4801 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4802 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4803 		vcpu->run->internal.ndata = 4;
4804 		vcpu->run->internal.data[0] = vect_info;
4805 		vcpu->run->internal.data[1] = intr_info;
4806 		vcpu->run->internal.data[2] = error_code;
4807 		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
4808 		return 0;
4809 	}
4810 
4811 	if (is_page_fault(intr_info)) {
4812 		cr2 = vmx_get_exit_qual(vcpu);
4813 		if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
4814 			/*
4815 			 * EPT will cause page fault only if we need to
4816 			 * detect illegal GPAs.
4817 			 */
4818 			WARN_ON_ONCE(!allow_smaller_maxphyaddr);
4819 			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
4820 			return 1;
4821 		} else
4822 			return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4823 	}
4824 
4825 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4826 
4827 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4828 		return handle_rmode_exception(vcpu, ex_no, error_code);
4829 
4830 	switch (ex_no) {
4831 	case DB_VECTOR:
4832 		dr6 = vmx_get_exit_qual(vcpu);
4833 		if (!(vcpu->guest_debug &
4834 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4835 			if (is_icebp(intr_info))
4836 				WARN_ON(!skip_emulated_instruction(vcpu));
4837 
4838 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4839 			return 1;
4840 		}
4841 		kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
4842 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4843 		fallthrough;
4844 	case BP_VECTOR:
4845 		/*
4846 		 * Update instruction length as we may reinject #BP from
4847 		 * user space while in guest debugging mode. Reading it for
4848 		 * #DB as well causes no harm, it is not used in that case.
4849 		 */
4850 		vmx->vcpu.arch.event_exit_inst_len =
4851 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4852 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
4853 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4854 		kvm_run->debug.arch.exception = ex_no;
4855 		break;
4856 	case AC_VECTOR:
4857 		if (vmx_guest_inject_ac(vcpu)) {
4858 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4859 			return 1;
4860 		}
4861 
4862 		/*
4863 		 * Handle split lock. Depending on detection mode this will
4864 		 * either warn and disable split lock detection for this
4865 		 * task or force SIGBUS on it.
4866 		 */
4867 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
4868 			return 1;
4869 		fallthrough;
4870 	default:
4871 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4872 		kvm_run->ex.exception = ex_no;
4873 		kvm_run->ex.error_code = error_code;
4874 		break;
4875 	}
4876 	return 0;
4877 }
4878 
4879 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4880 {
4881 	++vcpu->stat.irq_exits;
4882 	return 1;
4883 }
4884 
4885 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4886 {
4887 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4888 	vcpu->mmio_needed = 0;
4889 	return 0;
4890 }
4891 
4892 static int handle_io(struct kvm_vcpu *vcpu)
4893 {
4894 	unsigned long exit_qualification;
4895 	int size, in, string;
4896 	unsigned port;
4897 
4898 	exit_qualification = vmx_get_exit_qual(vcpu);
4899 	string = (exit_qualification & 16) != 0;
4900 
4901 	++vcpu->stat.io_exits;
4902 
4903 	if (string)
4904 		return kvm_emulate_instruction(vcpu, 0);
4905 
4906 	port = exit_qualification >> 16;
4907 	size = (exit_qualification & 7) + 1;
4908 	in = (exit_qualification & 8) != 0;
4909 
4910 	return kvm_fast_pio(vcpu, size, port, in);
4911 }
4912 
4913 static void
4914 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4915 {
4916 	/*
4917 	 * Patch in the VMCALL instruction:
4918 	 */
4919 	hypercall[0] = 0x0f;
4920 	hypercall[1] = 0x01;
4921 	hypercall[2] = 0xc1;
4922 }
4923 
4924 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4925 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4926 {
4927 	if (is_guest_mode(vcpu)) {
4928 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4929 		unsigned long orig_val = val;
4930 
4931 		/*
4932 		 * We get here when L2 changed cr0 in a way that did not change
4933 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4934 		 * but did change L0 shadowed bits. So we first calculate the
4935 		 * effective cr0 value that L1 would like to write into the
4936 		 * hardware. It consists of the L2-owned bits from the new
4937 		 * value combined with the L1-owned bits from L1's guest_cr0.
4938 		 */
4939 		val = (val & ~vmcs12->cr0_guest_host_mask) |
4940 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4941 
4942 		if (!nested_guest_cr0_valid(vcpu, val))
4943 			return 1;
4944 
4945 		if (kvm_set_cr0(vcpu, val))
4946 			return 1;
4947 		vmcs_writel(CR0_READ_SHADOW, orig_val);
4948 		return 0;
4949 	} else {
4950 		if (to_vmx(vcpu)->nested.vmxon &&
4951 		    !nested_host_cr0_valid(vcpu, val))
4952 			return 1;
4953 
4954 		return kvm_set_cr0(vcpu, val);
4955 	}
4956 }
4957 
4958 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4959 {
4960 	if (is_guest_mode(vcpu)) {
4961 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4962 		unsigned long orig_val = val;
4963 
4964 		/* analogously to handle_set_cr0 */
4965 		val = (val & ~vmcs12->cr4_guest_host_mask) |
4966 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4967 		if (kvm_set_cr4(vcpu, val))
4968 			return 1;
4969 		vmcs_writel(CR4_READ_SHADOW, orig_val);
4970 		return 0;
4971 	} else
4972 		return kvm_set_cr4(vcpu, val);
4973 }
4974 
4975 static int handle_desc(struct kvm_vcpu *vcpu)
4976 {
4977 	WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4978 	return kvm_emulate_instruction(vcpu, 0);
4979 }
4980 
4981 static int handle_cr(struct kvm_vcpu *vcpu)
4982 {
4983 	unsigned long exit_qualification, val;
4984 	int cr;
4985 	int reg;
4986 	int err;
4987 	int ret;
4988 
4989 	exit_qualification = vmx_get_exit_qual(vcpu);
4990 	cr = exit_qualification & 15;
4991 	reg = (exit_qualification >> 8) & 15;
4992 	switch ((exit_qualification >> 4) & 3) {
4993 	case 0: /* mov to cr */
4994 		val = kvm_register_read(vcpu, reg);
4995 		trace_kvm_cr_write(cr, val);
4996 		switch (cr) {
4997 		case 0:
4998 			err = handle_set_cr0(vcpu, val);
4999 			return kvm_complete_insn_gp(vcpu, err);
5000 		case 3:
5001 			WARN_ON_ONCE(enable_unrestricted_guest);
5002 
5003 			err = kvm_set_cr3(vcpu, val);
5004 			return kvm_complete_insn_gp(vcpu, err);
5005 		case 4:
5006 			err = handle_set_cr4(vcpu, val);
5007 			return kvm_complete_insn_gp(vcpu, err);
5008 		case 8: {
5009 				u8 cr8_prev = kvm_get_cr8(vcpu);
5010 				u8 cr8 = (u8)val;
5011 				err = kvm_set_cr8(vcpu, cr8);
5012 				ret = kvm_complete_insn_gp(vcpu, err);
5013 				if (lapic_in_kernel(vcpu))
5014 					return ret;
5015 				if (cr8_prev <= cr8)
5016 					return ret;
5017 				/*
5018 				 * TODO: we might be squashing a
5019 				 * KVM_GUESTDBG_SINGLESTEP-triggered
5020 				 * KVM_EXIT_DEBUG here.
5021 				 */
5022 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5023 				return 0;
5024 			}
5025 		}
5026 		break;
5027 	case 2: /* clts */
5028 		KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5029 		return -EIO;
5030 	case 1: /*mov from cr*/
5031 		switch (cr) {
5032 		case 3:
5033 			WARN_ON_ONCE(enable_unrestricted_guest);
5034 
5035 			val = kvm_read_cr3(vcpu);
5036 			kvm_register_write(vcpu, reg, val);
5037 			trace_kvm_cr_read(cr, val);
5038 			return kvm_skip_emulated_instruction(vcpu);
5039 		case 8:
5040 			val = kvm_get_cr8(vcpu);
5041 			kvm_register_write(vcpu, reg, val);
5042 			trace_kvm_cr_read(cr, val);
5043 			return kvm_skip_emulated_instruction(vcpu);
5044 		}
5045 		break;
5046 	case 3: /* lmsw */
5047 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5048 		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5049 		kvm_lmsw(vcpu, val);
5050 
5051 		return kvm_skip_emulated_instruction(vcpu);
5052 	default:
5053 		break;
5054 	}
5055 	vcpu->run->exit_reason = 0;
5056 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5057 	       (int)(exit_qualification >> 4) & 3, cr);
5058 	return 0;
5059 }
5060 
5061 static int handle_dr(struct kvm_vcpu *vcpu)
5062 {
5063 	unsigned long exit_qualification;
5064 	int dr, dr7, reg;
5065 	int err = 1;
5066 
5067 	exit_qualification = vmx_get_exit_qual(vcpu);
5068 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5069 
5070 	/* First, if DR does not exist, trigger UD */
5071 	if (!kvm_require_dr(vcpu, dr))
5072 		return 1;
5073 
5074 	if (kvm_x86_ops.get_cpl(vcpu) > 0)
5075 		goto out;
5076 
5077 	dr7 = vmcs_readl(GUEST_DR7);
5078 	if (dr7 & DR7_GD) {
5079 		/*
5080 		 * As the vm-exit takes precedence over the debug trap, we
5081 		 * need to emulate the latter, either for the host or the
5082 		 * guest debugging itself.
5083 		 */
5084 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5085 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5086 			vcpu->run->debug.arch.dr7 = dr7;
5087 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5088 			vcpu->run->debug.arch.exception = DB_VECTOR;
5089 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5090 			return 0;
5091 		} else {
5092 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5093 			return 1;
5094 		}
5095 	}
5096 
5097 	if (vcpu->guest_debug == 0) {
5098 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5099 
5100 		/*
5101 		 * No more DR vmexits; force a reload of the debug registers
5102 		 * and reenter on this instruction.  The next vmexit will
5103 		 * retrieve the full state of the debug registers.
5104 		 */
5105 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5106 		return 1;
5107 	}
5108 
5109 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5110 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5111 		unsigned long val;
5112 
5113 		kvm_get_dr(vcpu, dr, &val);
5114 		kvm_register_write(vcpu, reg, val);
5115 		err = 0;
5116 	} else {
5117 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5118 	}
5119 
5120 out:
5121 	return kvm_complete_insn_gp(vcpu, err);
5122 }
5123 
5124 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5125 {
5126 	get_debugreg(vcpu->arch.db[0], 0);
5127 	get_debugreg(vcpu->arch.db[1], 1);
5128 	get_debugreg(vcpu->arch.db[2], 2);
5129 	get_debugreg(vcpu->arch.db[3], 3);
5130 	get_debugreg(vcpu->arch.dr6, 6);
5131 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5132 
5133 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5134 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5135 
5136 	/*
5137 	 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5138 	 * a stale dr6 from the guest.
5139 	 */
5140 	set_debugreg(DR6_RESERVED, 6);
5141 }
5142 
5143 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5144 {
5145 	vmcs_writel(GUEST_DR7, val);
5146 }
5147 
5148 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5149 {
5150 	kvm_apic_update_ppr(vcpu);
5151 	return 1;
5152 }
5153 
5154 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5155 {
5156 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5157 
5158 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5159 
5160 	++vcpu->stat.irq_window_exits;
5161 	return 1;
5162 }
5163 
5164 static int handle_invlpg(struct kvm_vcpu *vcpu)
5165 {
5166 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5167 
5168 	kvm_mmu_invlpg(vcpu, exit_qualification);
5169 	return kvm_skip_emulated_instruction(vcpu);
5170 }
5171 
5172 static int handle_apic_access(struct kvm_vcpu *vcpu)
5173 {
5174 	if (likely(fasteoi)) {
5175 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5176 		int access_type, offset;
5177 
5178 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5179 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5180 		/*
5181 		 * Sane guest uses MOV to write EOI, with written value
5182 		 * not cared. So make a short-circuit here by avoiding
5183 		 * heavy instruction emulation.
5184 		 */
5185 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5186 		    (offset == APIC_EOI)) {
5187 			kvm_lapic_set_eoi(vcpu);
5188 			return kvm_skip_emulated_instruction(vcpu);
5189 		}
5190 	}
5191 	return kvm_emulate_instruction(vcpu, 0);
5192 }
5193 
5194 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5195 {
5196 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5197 	int vector = exit_qualification & 0xff;
5198 
5199 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5200 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5201 	return 1;
5202 }
5203 
5204 static int handle_apic_write(struct kvm_vcpu *vcpu)
5205 {
5206 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5207 	u32 offset = exit_qualification & 0xfff;
5208 
5209 	/* APIC-write VM exit is trap-like and thus no need to adjust IP */
5210 	kvm_apic_write_nodecode(vcpu, offset);
5211 	return 1;
5212 }
5213 
5214 static int handle_task_switch(struct kvm_vcpu *vcpu)
5215 {
5216 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5217 	unsigned long exit_qualification;
5218 	bool has_error_code = false;
5219 	u32 error_code = 0;
5220 	u16 tss_selector;
5221 	int reason, type, idt_v, idt_index;
5222 
5223 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5224 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5225 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5226 
5227 	exit_qualification = vmx_get_exit_qual(vcpu);
5228 
5229 	reason = (u32)exit_qualification >> 30;
5230 	if (reason == TASK_SWITCH_GATE && idt_v) {
5231 		switch (type) {
5232 		case INTR_TYPE_NMI_INTR:
5233 			vcpu->arch.nmi_injected = false;
5234 			vmx_set_nmi_mask(vcpu, true);
5235 			break;
5236 		case INTR_TYPE_EXT_INTR:
5237 		case INTR_TYPE_SOFT_INTR:
5238 			kvm_clear_interrupt_queue(vcpu);
5239 			break;
5240 		case INTR_TYPE_HARD_EXCEPTION:
5241 			if (vmx->idt_vectoring_info &
5242 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5243 				has_error_code = true;
5244 				error_code =
5245 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5246 			}
5247 			fallthrough;
5248 		case INTR_TYPE_SOFT_EXCEPTION:
5249 			kvm_clear_exception_queue(vcpu);
5250 			break;
5251 		default:
5252 			break;
5253 		}
5254 	}
5255 	tss_selector = exit_qualification;
5256 
5257 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5258 		       type != INTR_TYPE_EXT_INTR &&
5259 		       type != INTR_TYPE_NMI_INTR))
5260 		WARN_ON(!skip_emulated_instruction(vcpu));
5261 
5262 	/*
5263 	 * TODO: What about debug traps on tss switch?
5264 	 *       Are we supposed to inject them and update dr6?
5265 	 */
5266 	return kvm_task_switch(vcpu, tss_selector,
5267 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5268 			       reason, has_error_code, error_code);
5269 }
5270 
5271 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5272 {
5273 	unsigned long exit_qualification;
5274 	gpa_t gpa;
5275 	u64 error_code;
5276 
5277 	exit_qualification = vmx_get_exit_qual(vcpu);
5278 
5279 	/*
5280 	 * EPT violation happened while executing iret from NMI,
5281 	 * "blocked by NMI" bit has to be set before next VM entry.
5282 	 * There are errata that may cause this bit to not be set:
5283 	 * AAK134, BY25.
5284 	 */
5285 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5286 			enable_vnmi &&
5287 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5288 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5289 
5290 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5291 	trace_kvm_page_fault(gpa, exit_qualification);
5292 
5293 	/* Is it a read fault? */
5294 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5295 		     ? PFERR_USER_MASK : 0;
5296 	/* Is it a write fault? */
5297 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5298 		      ? PFERR_WRITE_MASK : 0;
5299 	/* Is it a fetch fault? */
5300 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5301 		      ? PFERR_FETCH_MASK : 0;
5302 	/* ept page table entry is present? */
5303 	error_code |= (exit_qualification &
5304 		       (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5305 			EPT_VIOLATION_EXECUTABLE))
5306 		      ? PFERR_PRESENT_MASK : 0;
5307 
5308 	error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5309 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5310 
5311 	vcpu->arch.exit_qualification = exit_qualification;
5312 
5313 	/*
5314 	 * Check that the GPA doesn't exceed physical memory limits, as that is
5315 	 * a guest page fault.  We have to emulate the instruction here, because
5316 	 * if the illegal address is that of a paging structure, then
5317 	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5318 	 * would also use advanced VM-exit information for EPT violations to
5319 	 * reconstruct the page fault error code.
5320 	 */
5321 	if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5322 		return kvm_emulate_instruction(vcpu, 0);
5323 
5324 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5325 }
5326 
5327 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5328 {
5329 	gpa_t gpa;
5330 
5331 	if (!vmx_can_emulate_instruction(vcpu, NULL, 0))
5332 		return 1;
5333 
5334 	/*
5335 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5336 	 * nGPA here instead of the required GPA.
5337 	 */
5338 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5339 	if (!is_guest_mode(vcpu) &&
5340 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5341 		trace_kvm_fast_mmio(gpa);
5342 		return kvm_skip_emulated_instruction(vcpu);
5343 	}
5344 
5345 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5346 }
5347 
5348 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5349 {
5350 	if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5351 		return -EIO;
5352 
5353 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5354 	++vcpu->stat.nmi_window_exits;
5355 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5356 
5357 	return 1;
5358 }
5359 
5360 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5361 {
5362 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5363 	bool intr_window_requested;
5364 	unsigned count = 130;
5365 
5366 	intr_window_requested = exec_controls_get(vmx) &
5367 				CPU_BASED_INTR_WINDOW_EXITING;
5368 
5369 	while (vmx->emulation_required && count-- != 0) {
5370 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5371 			return handle_interrupt_window(&vmx->vcpu);
5372 
5373 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5374 			return 1;
5375 
5376 		if (!kvm_emulate_instruction(vcpu, 0))
5377 			return 0;
5378 
5379 		if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5380 		    vcpu->arch.exception.pending) {
5381 			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5382 			vcpu->run->internal.suberror =
5383 						KVM_INTERNAL_ERROR_EMULATION;
5384 			vcpu->run->internal.ndata = 0;
5385 			return 0;
5386 		}
5387 
5388 		if (vcpu->arch.halt_request) {
5389 			vcpu->arch.halt_request = 0;
5390 			return kvm_vcpu_halt(vcpu);
5391 		}
5392 
5393 		/*
5394 		 * Note, return 1 and not 0, vcpu_run() will invoke
5395 		 * xfer_to_guest_mode() which will create a proper return
5396 		 * code.
5397 		 */
5398 		if (__xfer_to_guest_mode_work_pending())
5399 			return 1;
5400 	}
5401 
5402 	return 1;
5403 }
5404 
5405 static void grow_ple_window(struct kvm_vcpu *vcpu)
5406 {
5407 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5408 	unsigned int old = vmx->ple_window;
5409 
5410 	vmx->ple_window = __grow_ple_window(old, ple_window,
5411 					    ple_window_grow,
5412 					    ple_window_max);
5413 
5414 	if (vmx->ple_window != old) {
5415 		vmx->ple_window_dirty = true;
5416 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5417 					    vmx->ple_window, old);
5418 	}
5419 }
5420 
5421 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5422 {
5423 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5424 	unsigned int old = vmx->ple_window;
5425 
5426 	vmx->ple_window = __shrink_ple_window(old, ple_window,
5427 					      ple_window_shrink,
5428 					      ple_window);
5429 
5430 	if (vmx->ple_window != old) {
5431 		vmx->ple_window_dirty = true;
5432 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5433 					    vmx->ple_window, old);
5434 	}
5435 }
5436 
5437 /*
5438  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5439  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5440  */
5441 static int handle_pause(struct kvm_vcpu *vcpu)
5442 {
5443 	if (!kvm_pause_in_guest(vcpu->kvm))
5444 		grow_ple_window(vcpu);
5445 
5446 	/*
5447 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5448 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5449 	 * never set PAUSE_EXITING and just set PLE if supported,
5450 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5451 	 */
5452 	kvm_vcpu_on_spin(vcpu, true);
5453 	return kvm_skip_emulated_instruction(vcpu);
5454 }
5455 
5456 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5457 {
5458 	return 1;
5459 }
5460 
5461 static int handle_invpcid(struct kvm_vcpu *vcpu)
5462 {
5463 	u32 vmx_instruction_info;
5464 	unsigned long type;
5465 	gva_t gva;
5466 	struct {
5467 		u64 pcid;
5468 		u64 gla;
5469 	} operand;
5470 
5471 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5472 		kvm_queue_exception(vcpu, UD_VECTOR);
5473 		return 1;
5474 	}
5475 
5476 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5477 	type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
5478 
5479 	if (type > 3) {
5480 		kvm_inject_gp(vcpu, 0);
5481 		return 1;
5482 	}
5483 
5484 	/* According to the Intel instruction reference, the memory operand
5485 	 * is read even if it isn't needed (e.g., for type==all)
5486 	 */
5487 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5488 				vmx_instruction_info, false,
5489 				sizeof(operand), &gva))
5490 		return 1;
5491 
5492 	return kvm_handle_invpcid(vcpu, type, gva);
5493 }
5494 
5495 static int handle_pml_full(struct kvm_vcpu *vcpu)
5496 {
5497 	unsigned long exit_qualification;
5498 
5499 	trace_kvm_pml_full(vcpu->vcpu_id);
5500 
5501 	exit_qualification = vmx_get_exit_qual(vcpu);
5502 
5503 	/*
5504 	 * PML buffer FULL happened while executing iret from NMI,
5505 	 * "blocked by NMI" bit has to be set before next VM entry.
5506 	 */
5507 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5508 			enable_vnmi &&
5509 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5510 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5511 				GUEST_INTR_STATE_NMI);
5512 
5513 	/*
5514 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5515 	 * here.., and there's no userspace involvement needed for PML.
5516 	 */
5517 	return 1;
5518 }
5519 
5520 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5521 {
5522 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5523 
5524 	if (!vmx->req_immediate_exit &&
5525 	    !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5526 		kvm_lapic_expired_hv_timer(vcpu);
5527 		return EXIT_FASTPATH_REENTER_GUEST;
5528 	}
5529 
5530 	return EXIT_FASTPATH_NONE;
5531 }
5532 
5533 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5534 {
5535 	handle_fastpath_preemption_timer(vcpu);
5536 	return 1;
5537 }
5538 
5539 /*
5540  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5541  * are overwritten by nested_vmx_setup() when nested=1.
5542  */
5543 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5544 {
5545 	kvm_queue_exception(vcpu, UD_VECTOR);
5546 	return 1;
5547 }
5548 
5549 #ifndef CONFIG_X86_SGX_KVM
5550 static int handle_encls(struct kvm_vcpu *vcpu)
5551 {
5552 	/*
5553 	 * SGX virtualization is disabled.  There is no software enable bit for
5554 	 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
5555 	 * the guest from executing ENCLS (when SGX is supported by hardware).
5556 	 */
5557 	kvm_queue_exception(vcpu, UD_VECTOR);
5558 	return 1;
5559 }
5560 #endif /* CONFIG_X86_SGX_KVM */
5561 
5562 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
5563 {
5564 	vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
5565 	vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
5566 	return 0;
5567 }
5568 
5569 /*
5570  * The exit handlers return 1 if the exit was handled fully and guest execution
5571  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5572  * to be done to userspace and return 0.
5573  */
5574 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5575 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5576 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5577 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5578 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
5579 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5580 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
5581 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
5582 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5583 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5584 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5585 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
5586 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
5587 	[EXIT_REASON_INVD]		      = kvm_emulate_invd,
5588 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
5589 	[EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
5590 	[EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
5591 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
5592 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
5593 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
5594 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
5595 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
5596 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
5597 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
5598 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
5599 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
5600 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5601 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5602 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5603 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5604 	[EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
5605 	[EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
5606 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5607 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5608 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
5609 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
5610 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
5611 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5612 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5613 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = kvm_emulate_mwait,
5614 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5615 	[EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
5616 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5617 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5618 	[EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
5619 	[EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
5620 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
5621 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
5622 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
5623 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
5624 	[EXIT_REASON_ENCLS]		      = handle_encls,
5625 	[EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
5626 };
5627 
5628 static const int kvm_vmx_max_exit_handlers =
5629 	ARRAY_SIZE(kvm_vmx_exit_handlers);
5630 
5631 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
5632 			      u32 *intr_info, u32 *error_code)
5633 {
5634 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5635 
5636 	*info1 = vmx_get_exit_qual(vcpu);
5637 	if (!(vmx->exit_reason.failed_vmentry)) {
5638 		*info2 = vmx->idt_vectoring_info;
5639 		*intr_info = vmx_get_intr_info(vcpu);
5640 		if (is_exception_with_error_code(*intr_info))
5641 			*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5642 		else
5643 			*error_code = 0;
5644 	} else {
5645 		*info2 = 0;
5646 		*intr_info = 0;
5647 		*error_code = 0;
5648 	}
5649 }
5650 
5651 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5652 {
5653 	if (vmx->pml_pg) {
5654 		__free_page(vmx->pml_pg);
5655 		vmx->pml_pg = NULL;
5656 	}
5657 }
5658 
5659 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5660 {
5661 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5662 	u64 *pml_buf;
5663 	u16 pml_idx;
5664 
5665 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
5666 
5667 	/* Do nothing if PML buffer is empty */
5668 	if (pml_idx == (PML_ENTITY_NUM - 1))
5669 		return;
5670 
5671 	/* PML index always points to next available PML buffer entity */
5672 	if (pml_idx >= PML_ENTITY_NUM)
5673 		pml_idx = 0;
5674 	else
5675 		pml_idx++;
5676 
5677 	pml_buf = page_address(vmx->pml_pg);
5678 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5679 		u64 gpa;
5680 
5681 		gpa = pml_buf[pml_idx];
5682 		WARN_ON(gpa & (PAGE_SIZE - 1));
5683 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5684 	}
5685 
5686 	/* reset PML index */
5687 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5688 }
5689 
5690 static void vmx_dump_sel(char *name, uint32_t sel)
5691 {
5692 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5693 	       name, vmcs_read16(sel),
5694 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5695 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5696 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5697 }
5698 
5699 static void vmx_dump_dtsel(char *name, uint32_t limit)
5700 {
5701 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5702 	       name, vmcs_read32(limit),
5703 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5704 }
5705 
5706 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
5707 {
5708 	unsigned int i;
5709 	struct vmx_msr_entry *e;
5710 
5711 	pr_err("MSR %s:\n", name);
5712 	for (i = 0, e = m->val; i < m->nr; ++i, ++e)
5713 		pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
5714 }
5715 
5716 void dump_vmcs(struct kvm_vcpu *vcpu)
5717 {
5718 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5719 	u32 vmentry_ctl, vmexit_ctl;
5720 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5721 	unsigned long cr4;
5722 	int efer_slot;
5723 
5724 	if (!dump_invalid_vmcs) {
5725 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5726 		return;
5727 	}
5728 
5729 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5730 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5731 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5732 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5733 	cr4 = vmcs_readl(GUEST_CR4);
5734 	secondary_exec_control = 0;
5735 	if (cpu_has_secondary_exec_ctrls())
5736 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5737 
5738 	pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
5739 	       vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
5740 	pr_err("*** Guest State ***\n");
5741 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5742 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5743 	       vmcs_readl(CR0_GUEST_HOST_MASK));
5744 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5745 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5746 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5747 	if (cpu_has_vmx_ept()) {
5748 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5749 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5750 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5751 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5752 	}
5753 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5754 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5755 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5756 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5757 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5758 	       vmcs_readl(GUEST_SYSENTER_ESP),
5759 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5760 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5761 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5762 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5763 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5764 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5765 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5766 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5767 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5768 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5769 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5770 	efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
5771 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
5772 		pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
5773 	else if (efer_slot >= 0)
5774 		pr_err("EFER= 0x%016llx (autoload)\n",
5775 		       vmx->msr_autoload.guest.val[efer_slot].value);
5776 	else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
5777 		pr_err("EFER= 0x%016llx (effective)\n",
5778 		       vcpu->arch.efer | (EFER_LMA | EFER_LME));
5779 	else
5780 		pr_err("EFER= 0x%016llx (effective)\n",
5781 		       vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
5782 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
5783 		pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
5784 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5785 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
5786 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5787 	if (cpu_has_load_perf_global_ctrl() &&
5788 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5789 		pr_err("PerfGlobCtl = 0x%016llx\n",
5790 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5791 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5792 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5793 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5794 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5795 	       vmcs_read32(GUEST_ACTIVITY_STATE));
5796 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5797 		pr_err("InterruptStatus = %04x\n",
5798 		       vmcs_read16(GUEST_INTR_STATUS));
5799 	if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
5800 		vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
5801 	if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
5802 		vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
5803 
5804 	pr_err("*** Host State ***\n");
5805 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5806 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5807 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5808 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5809 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5810 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5811 	       vmcs_read16(HOST_TR_SELECTOR));
5812 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5813 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5814 	       vmcs_readl(HOST_TR_BASE));
5815 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5816 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5817 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5818 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5819 	       vmcs_readl(HOST_CR4));
5820 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5821 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
5822 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
5823 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
5824 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
5825 		pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
5826 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
5827 		pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
5828 	if (cpu_has_load_perf_global_ctrl() &&
5829 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5830 		pr_err("PerfGlobCtl = 0x%016llx\n",
5831 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5832 	if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
5833 		vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
5834 
5835 	pr_err("*** Control State ***\n");
5836 	pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5837 	       pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5838 	pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5839 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5840 	       vmcs_read32(EXCEPTION_BITMAP),
5841 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5842 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5843 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5844 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5845 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5846 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5847 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5848 	       vmcs_read32(VM_EXIT_INTR_INFO),
5849 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5850 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5851 	pr_err("        reason=%08x qualification=%016lx\n",
5852 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5853 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5854 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
5855 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
5856 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5857 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5858 		pr_err("TSC Multiplier = 0x%016llx\n",
5859 		       vmcs_read64(TSC_MULTIPLIER));
5860 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5861 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5862 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
5863 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5864 		}
5865 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5866 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5867 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5868 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5869 	}
5870 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5871 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5872 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5873 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5874 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5875 		pr_err("PLE Gap=%08x Window=%08x\n",
5876 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5877 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5878 		pr_err("Virtual processor ID = 0x%04x\n",
5879 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
5880 }
5881 
5882 /*
5883  * The guest has exited.  See if we can fix it or if we need userspace
5884  * assistance.
5885  */
5886 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
5887 {
5888 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5889 	union vmx_exit_reason exit_reason = vmx->exit_reason;
5890 	u32 vectoring_info = vmx->idt_vectoring_info;
5891 	u16 exit_handler_index;
5892 
5893 	/*
5894 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5895 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5896 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
5897 	 * mode as if vcpus is in root mode, the PML buffer must has been
5898 	 * flushed already.  Note, PML is never enabled in hardware while
5899 	 * running L2.
5900 	 */
5901 	if (enable_pml && !is_guest_mode(vcpu))
5902 		vmx_flush_pml_buffer(vcpu);
5903 
5904 	/*
5905 	 * We should never reach this point with a pending nested VM-Enter, and
5906 	 * more specifically emulation of L2 due to invalid guest state (see
5907 	 * below) should never happen as that means we incorrectly allowed a
5908 	 * nested VM-Enter with an invalid vmcs12.
5909 	 */
5910 	if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
5911 		return -EIO;
5912 
5913 	/* If guest state is invalid, start emulating */
5914 	if (vmx->emulation_required)
5915 		return handle_invalid_guest_state(vcpu);
5916 
5917 	if (is_guest_mode(vcpu)) {
5918 		/*
5919 		 * PML is never enabled when running L2, bail immediately if a
5920 		 * PML full exit occurs as something is horribly wrong.
5921 		 */
5922 		if (exit_reason.basic == EXIT_REASON_PML_FULL)
5923 			goto unexpected_vmexit;
5924 
5925 		/*
5926 		 * The host physical addresses of some pages of guest memory
5927 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5928 		 * Page). The CPU may write to these pages via their host
5929 		 * physical address while L2 is running, bypassing any
5930 		 * address-translation-based dirty tracking (e.g. EPT write
5931 		 * protection).
5932 		 *
5933 		 * Mark them dirty on every exit from L2 to prevent them from
5934 		 * getting out of sync with dirty tracking.
5935 		 */
5936 		nested_mark_vmcs12_pages_dirty(vcpu);
5937 
5938 		if (nested_vmx_reflect_vmexit(vcpu))
5939 			return 1;
5940 	}
5941 
5942 	if (exit_reason.failed_vmentry) {
5943 		dump_vmcs(vcpu);
5944 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5945 		vcpu->run->fail_entry.hardware_entry_failure_reason
5946 			= exit_reason.full;
5947 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
5948 		return 0;
5949 	}
5950 
5951 	if (unlikely(vmx->fail)) {
5952 		dump_vmcs(vcpu);
5953 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5954 		vcpu->run->fail_entry.hardware_entry_failure_reason
5955 			= vmcs_read32(VM_INSTRUCTION_ERROR);
5956 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
5957 		return 0;
5958 	}
5959 
5960 	/*
5961 	 * Note:
5962 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5963 	 * delivery event since it indicates guest is accessing MMIO.
5964 	 * The vm-exit can be triggered again after return to guest that
5965 	 * will cause infinite loop.
5966 	 */
5967 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5968 	    (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
5969 	     exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
5970 	     exit_reason.basic != EXIT_REASON_PML_FULL &&
5971 	     exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
5972 	     exit_reason.basic != EXIT_REASON_TASK_SWITCH)) {
5973 		int ndata = 3;
5974 
5975 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5976 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5977 		vcpu->run->internal.data[0] = vectoring_info;
5978 		vcpu->run->internal.data[1] = exit_reason.full;
5979 		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5980 		if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
5981 			vcpu->run->internal.data[ndata++] =
5982 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5983 		}
5984 		vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
5985 		vcpu->run->internal.ndata = ndata;
5986 		return 0;
5987 	}
5988 
5989 	if (unlikely(!enable_vnmi &&
5990 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
5991 		if (!vmx_interrupt_blocked(vcpu)) {
5992 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5993 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5994 			   vcpu->arch.nmi_pending) {
5995 			/*
5996 			 * This CPU don't support us in finding the end of an
5997 			 * NMI-blocked window if the guest runs with IRQs
5998 			 * disabled. So we pull the trigger after 1 s of
5999 			 * futile waiting, but inform the user about this.
6000 			 */
6001 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6002 			       "state on VCPU %d after 1 s timeout\n",
6003 			       __func__, vcpu->vcpu_id);
6004 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6005 		}
6006 	}
6007 
6008 	if (exit_fastpath != EXIT_FASTPATH_NONE)
6009 		return 1;
6010 
6011 	if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6012 		goto unexpected_vmexit;
6013 #ifdef CONFIG_RETPOLINE
6014 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6015 		return kvm_emulate_wrmsr(vcpu);
6016 	else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6017 		return handle_preemption_timer(vcpu);
6018 	else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6019 		return handle_interrupt_window(vcpu);
6020 	else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6021 		return handle_external_interrupt(vcpu);
6022 	else if (exit_reason.basic == EXIT_REASON_HLT)
6023 		return kvm_emulate_halt(vcpu);
6024 	else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6025 		return handle_ept_misconfig(vcpu);
6026 #endif
6027 
6028 	exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6029 						kvm_vmx_max_exit_handlers);
6030 	if (!kvm_vmx_exit_handlers[exit_handler_index])
6031 		goto unexpected_vmexit;
6032 
6033 	return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6034 
6035 unexpected_vmexit:
6036 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6037 		    exit_reason.full);
6038 	dump_vmcs(vcpu);
6039 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6040 	vcpu->run->internal.suberror =
6041 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6042 	vcpu->run->internal.ndata = 2;
6043 	vcpu->run->internal.data[0] = exit_reason.full;
6044 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6045 	return 0;
6046 }
6047 
6048 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6049 {
6050 	int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6051 
6052 	/*
6053 	 * Even when current exit reason is handled by KVM internally, we
6054 	 * still need to exit to user space when bus lock detected to inform
6055 	 * that there is a bus lock in guest.
6056 	 */
6057 	if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6058 		if (ret > 0)
6059 			vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6060 
6061 		vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6062 		return 0;
6063 	}
6064 	return ret;
6065 }
6066 
6067 /*
6068  * Software based L1D cache flush which is used when microcode providing
6069  * the cache control MSR is not loaded.
6070  *
6071  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6072  * flush it is required to read in 64 KiB because the replacement algorithm
6073  * is not exactly LRU. This could be sized at runtime via topology
6074  * information but as all relevant affected CPUs have 32KiB L1D cache size
6075  * there is no point in doing so.
6076  */
6077 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6078 {
6079 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6080 
6081 	/*
6082 	 * This code is only executed when the the flush mode is 'cond' or
6083 	 * 'always'
6084 	 */
6085 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6086 		bool flush_l1d;
6087 
6088 		/*
6089 		 * Clear the per-vcpu flush bit, it gets set again
6090 		 * either from vcpu_run() or from one of the unsafe
6091 		 * VMEXIT handlers.
6092 		 */
6093 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6094 		vcpu->arch.l1tf_flush_l1d = false;
6095 
6096 		/*
6097 		 * Clear the per-cpu flush bit, it gets set again from
6098 		 * the interrupt handlers.
6099 		 */
6100 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6101 		kvm_clear_cpu_l1tf_flush_l1d();
6102 
6103 		if (!flush_l1d)
6104 			return;
6105 	}
6106 
6107 	vcpu->stat.l1d_flush++;
6108 
6109 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6110 		native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6111 		return;
6112 	}
6113 
6114 	asm volatile(
6115 		/* First ensure the pages are in the TLB */
6116 		"xorl	%%eax, %%eax\n"
6117 		".Lpopulate_tlb:\n\t"
6118 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6119 		"addl	$4096, %%eax\n\t"
6120 		"cmpl	%%eax, %[size]\n\t"
6121 		"jne	.Lpopulate_tlb\n\t"
6122 		"xorl	%%eax, %%eax\n\t"
6123 		"cpuid\n\t"
6124 		/* Now fill the cache */
6125 		"xorl	%%eax, %%eax\n"
6126 		".Lfill_cache:\n"
6127 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6128 		"addl	$64, %%eax\n\t"
6129 		"cmpl	%%eax, %[size]\n\t"
6130 		"jne	.Lfill_cache\n\t"
6131 		"lfence\n"
6132 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6133 		    [size] "r" (size)
6134 		: "eax", "ebx", "ecx", "edx");
6135 }
6136 
6137 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6138 {
6139 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6140 	int tpr_threshold;
6141 
6142 	if (is_guest_mode(vcpu) &&
6143 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6144 		return;
6145 
6146 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6147 	if (is_guest_mode(vcpu))
6148 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6149 	else
6150 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6151 }
6152 
6153 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6154 {
6155 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6156 	u32 sec_exec_control;
6157 
6158 	if (!lapic_in_kernel(vcpu))
6159 		return;
6160 
6161 	if (!flexpriority_enabled &&
6162 	    !cpu_has_vmx_virtualize_x2apic_mode())
6163 		return;
6164 
6165 	/* Postpone execution until vmcs01 is the current VMCS. */
6166 	if (is_guest_mode(vcpu)) {
6167 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6168 		return;
6169 	}
6170 
6171 	sec_exec_control = secondary_exec_controls_get(vmx);
6172 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6173 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6174 
6175 	switch (kvm_get_apic_mode(vcpu)) {
6176 	case LAPIC_MODE_INVALID:
6177 		WARN_ONCE(true, "Invalid local APIC state");
6178 		break;
6179 	case LAPIC_MODE_DISABLED:
6180 		break;
6181 	case LAPIC_MODE_XAPIC:
6182 		if (flexpriority_enabled) {
6183 			sec_exec_control |=
6184 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6185 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6186 
6187 			/*
6188 			 * Flush the TLB, reloading the APIC access page will
6189 			 * only do so if its physical address has changed, but
6190 			 * the guest may have inserted a non-APIC mapping into
6191 			 * the TLB while the APIC access page was disabled.
6192 			 */
6193 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6194 		}
6195 		break;
6196 	case LAPIC_MODE_X2APIC:
6197 		if (cpu_has_vmx_virtualize_x2apic_mode())
6198 			sec_exec_control |=
6199 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6200 		break;
6201 	}
6202 	secondary_exec_controls_set(vmx, sec_exec_control);
6203 
6204 	vmx_update_msr_bitmap_x2apic(vcpu);
6205 }
6206 
6207 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6208 {
6209 	struct page *page;
6210 
6211 	/* Defer reload until vmcs01 is the current VMCS. */
6212 	if (is_guest_mode(vcpu)) {
6213 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6214 		return;
6215 	}
6216 
6217 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6218 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6219 		return;
6220 
6221 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6222 	if (is_error_page(page))
6223 		return;
6224 
6225 	vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6226 	vmx_flush_tlb_current(vcpu);
6227 
6228 	/*
6229 	 * Do not pin apic access page in memory, the MMU notifier
6230 	 * will call us again if it is migrated or swapped out.
6231 	 */
6232 	put_page(page);
6233 }
6234 
6235 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6236 {
6237 	u16 status;
6238 	u8 old;
6239 
6240 	if (max_isr == -1)
6241 		max_isr = 0;
6242 
6243 	status = vmcs_read16(GUEST_INTR_STATUS);
6244 	old = status >> 8;
6245 	if (max_isr != old) {
6246 		status &= 0xff;
6247 		status |= max_isr << 8;
6248 		vmcs_write16(GUEST_INTR_STATUS, status);
6249 	}
6250 }
6251 
6252 static void vmx_set_rvi(int vector)
6253 {
6254 	u16 status;
6255 	u8 old;
6256 
6257 	if (vector == -1)
6258 		vector = 0;
6259 
6260 	status = vmcs_read16(GUEST_INTR_STATUS);
6261 	old = (u8)status & 0xff;
6262 	if ((u8)vector != old) {
6263 		status &= ~0xff;
6264 		status |= (u8)vector;
6265 		vmcs_write16(GUEST_INTR_STATUS, status);
6266 	}
6267 }
6268 
6269 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6270 {
6271 	/*
6272 	 * When running L2, updating RVI is only relevant when
6273 	 * vmcs12 virtual-interrupt-delivery enabled.
6274 	 * However, it can be enabled only when L1 also
6275 	 * intercepts external-interrupts and in that case
6276 	 * we should not update vmcs02 RVI but instead intercept
6277 	 * interrupt. Therefore, do nothing when running L2.
6278 	 */
6279 	if (!is_guest_mode(vcpu))
6280 		vmx_set_rvi(max_irr);
6281 }
6282 
6283 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6284 {
6285 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6286 	int max_irr;
6287 	bool max_irr_updated;
6288 
6289 	if (KVM_BUG_ON(!vcpu->arch.apicv_active, vcpu->kvm))
6290 		return -EIO;
6291 
6292 	if (pi_test_on(&vmx->pi_desc)) {
6293 		pi_clear_on(&vmx->pi_desc);
6294 		/*
6295 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6296 		 * But on x86 this is just a compiler barrier anyway.
6297 		 */
6298 		smp_mb__after_atomic();
6299 		max_irr_updated =
6300 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6301 
6302 		/*
6303 		 * If we are running L2 and L1 has a new pending interrupt
6304 		 * which can be injected, we should re-evaluate
6305 		 * what should be done with this new L1 interrupt.
6306 		 * If L1 intercepts external-interrupts, we should
6307 		 * exit from L2 to L1. Otherwise, interrupt should be
6308 		 * delivered directly to L2.
6309 		 */
6310 		if (is_guest_mode(vcpu) && max_irr_updated) {
6311 			if (nested_exit_on_intr(vcpu))
6312 				kvm_vcpu_exiting_guest_mode(vcpu);
6313 			else
6314 				kvm_make_request(KVM_REQ_EVENT, vcpu);
6315 		}
6316 	} else {
6317 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6318 	}
6319 	vmx_hwapic_irr_update(vcpu, max_irr);
6320 	return max_irr;
6321 }
6322 
6323 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6324 {
6325 	if (!kvm_vcpu_apicv_active(vcpu))
6326 		return;
6327 
6328 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6329 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6330 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6331 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6332 }
6333 
6334 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6335 {
6336 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6337 
6338 	pi_clear_on(&vmx->pi_desc);
6339 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6340 }
6341 
6342 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
6343 
6344 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu,
6345 					unsigned long entry)
6346 {
6347 	kvm_before_interrupt(vcpu);
6348 	vmx_do_interrupt_nmi_irqoff(entry);
6349 	kvm_after_interrupt(vcpu);
6350 }
6351 
6352 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6353 {
6354 	const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist;
6355 	u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6356 
6357 	/* if exit due to PF check for async PF */
6358 	if (is_page_fault(intr_info))
6359 		vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6360 	/* Handle machine checks before interrupts are enabled */
6361 	else if (is_machine_check(intr_info))
6362 		kvm_machine_check();
6363 	/* We need to handle NMIs before interrupts are enabled */
6364 	else if (is_nmi(intr_info))
6365 		handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry);
6366 }
6367 
6368 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6369 {
6370 	u32 intr_info = vmx_get_intr_info(vcpu);
6371 	unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6372 	gate_desc *desc = (gate_desc *)host_idt_base + vector;
6373 
6374 	if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6375 	    "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6376 		return;
6377 
6378 	handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc));
6379 }
6380 
6381 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6382 {
6383 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6384 
6385 	if (vmx->emulation_required)
6386 		return;
6387 
6388 	if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6389 		handle_external_interrupt_irqoff(vcpu);
6390 	else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6391 		handle_exception_nmi_irqoff(vmx);
6392 }
6393 
6394 /*
6395  * The kvm parameter can be NULL (module initialization, or invocation before
6396  * VM creation). Be sure to check the kvm parameter before using it.
6397  */
6398 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6399 {
6400 	switch (index) {
6401 	case MSR_IA32_SMBASE:
6402 		/*
6403 		 * We cannot do SMM unless we can run the guest in big
6404 		 * real mode.
6405 		 */
6406 		return enable_unrestricted_guest || emulate_invalid_guest_state;
6407 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6408 		return nested;
6409 	case MSR_AMD64_VIRT_SPEC_CTRL:
6410 		/* This is AMD only.  */
6411 		return false;
6412 	default:
6413 		return true;
6414 	}
6415 }
6416 
6417 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6418 {
6419 	u32 exit_intr_info;
6420 	bool unblock_nmi;
6421 	u8 vector;
6422 	bool idtv_info_valid;
6423 
6424 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6425 
6426 	if (enable_vnmi) {
6427 		if (vmx->loaded_vmcs->nmi_known_unmasked)
6428 			return;
6429 
6430 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6431 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6432 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6433 		/*
6434 		 * SDM 3: 27.7.1.2 (September 2008)
6435 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6436 		 * a guest IRET fault.
6437 		 * SDM 3: 23.2.2 (September 2008)
6438 		 * Bit 12 is undefined in any of the following cases:
6439 		 *  If the VM exit sets the valid bit in the IDT-vectoring
6440 		 *   information field.
6441 		 *  If the VM exit is due to a double fault.
6442 		 */
6443 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6444 		    vector != DF_VECTOR && !idtv_info_valid)
6445 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6446 				      GUEST_INTR_STATE_NMI);
6447 		else
6448 			vmx->loaded_vmcs->nmi_known_unmasked =
6449 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6450 				  & GUEST_INTR_STATE_NMI);
6451 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6452 		vmx->loaded_vmcs->vnmi_blocked_time +=
6453 			ktime_to_ns(ktime_sub(ktime_get(),
6454 					      vmx->loaded_vmcs->entry_time));
6455 }
6456 
6457 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6458 				      u32 idt_vectoring_info,
6459 				      int instr_len_field,
6460 				      int error_code_field)
6461 {
6462 	u8 vector;
6463 	int type;
6464 	bool idtv_info_valid;
6465 
6466 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6467 
6468 	vcpu->arch.nmi_injected = false;
6469 	kvm_clear_exception_queue(vcpu);
6470 	kvm_clear_interrupt_queue(vcpu);
6471 
6472 	if (!idtv_info_valid)
6473 		return;
6474 
6475 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6476 
6477 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6478 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6479 
6480 	switch (type) {
6481 	case INTR_TYPE_NMI_INTR:
6482 		vcpu->arch.nmi_injected = true;
6483 		/*
6484 		 * SDM 3: 27.7.1.2 (September 2008)
6485 		 * Clear bit "block by NMI" before VM entry if a NMI
6486 		 * delivery faulted.
6487 		 */
6488 		vmx_set_nmi_mask(vcpu, false);
6489 		break;
6490 	case INTR_TYPE_SOFT_EXCEPTION:
6491 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6492 		fallthrough;
6493 	case INTR_TYPE_HARD_EXCEPTION:
6494 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6495 			u32 err = vmcs_read32(error_code_field);
6496 			kvm_requeue_exception_e(vcpu, vector, err);
6497 		} else
6498 			kvm_requeue_exception(vcpu, vector);
6499 		break;
6500 	case INTR_TYPE_SOFT_INTR:
6501 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6502 		fallthrough;
6503 	case INTR_TYPE_EXT_INTR:
6504 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6505 		break;
6506 	default:
6507 		break;
6508 	}
6509 }
6510 
6511 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6512 {
6513 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6514 				  VM_EXIT_INSTRUCTION_LEN,
6515 				  IDT_VECTORING_ERROR_CODE);
6516 }
6517 
6518 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6519 {
6520 	__vmx_complete_interrupts(vcpu,
6521 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6522 				  VM_ENTRY_INSTRUCTION_LEN,
6523 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
6524 
6525 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6526 }
6527 
6528 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6529 {
6530 	int i, nr_msrs;
6531 	struct perf_guest_switch_msr *msrs;
6532 
6533 	/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
6534 	msrs = perf_guest_get_msrs(&nr_msrs);
6535 	if (!msrs)
6536 		return;
6537 
6538 	for (i = 0; i < nr_msrs; i++)
6539 		if (msrs[i].host == msrs[i].guest)
6540 			clear_atomic_switch_msr(vmx, msrs[i].msr);
6541 		else
6542 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6543 					msrs[i].host, false);
6544 }
6545 
6546 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6547 {
6548 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6549 	u64 tscl;
6550 	u32 delta_tsc;
6551 
6552 	if (vmx->req_immediate_exit) {
6553 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6554 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6555 	} else if (vmx->hv_deadline_tsc != -1) {
6556 		tscl = rdtsc();
6557 		if (vmx->hv_deadline_tsc > tscl)
6558 			/* set_hv_timer ensures the delta fits in 32-bits */
6559 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6560 				cpu_preemption_timer_multi);
6561 		else
6562 			delta_tsc = 0;
6563 
6564 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6565 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6566 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6567 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6568 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6569 	}
6570 }
6571 
6572 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6573 {
6574 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6575 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
6576 		vmcs_writel(HOST_RSP, host_rsp);
6577 	}
6578 }
6579 
6580 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
6581 {
6582 	switch (to_vmx(vcpu)->exit_reason.basic) {
6583 	case EXIT_REASON_MSR_WRITE:
6584 		return handle_fastpath_set_msr_irqoff(vcpu);
6585 	case EXIT_REASON_PREEMPTION_TIMER:
6586 		return handle_fastpath_preemption_timer(vcpu);
6587 	default:
6588 		return EXIT_FASTPATH_NONE;
6589 	}
6590 }
6591 
6592 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
6593 					struct vcpu_vmx *vmx)
6594 {
6595 	kvm_guest_enter_irqoff();
6596 
6597 	/* L1D Flush includes CPU buffer clear to mitigate MDS */
6598 	if (static_branch_unlikely(&vmx_l1d_should_flush))
6599 		vmx_l1d_flush(vcpu);
6600 	else if (static_branch_unlikely(&mds_user_clear))
6601 		mds_clear_cpu_buffers();
6602 
6603 	if (vcpu->arch.cr2 != native_read_cr2())
6604 		native_write_cr2(vcpu->arch.cr2);
6605 
6606 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6607 				   vmx->loaded_vmcs->launched);
6608 
6609 	vcpu->arch.cr2 = native_read_cr2();
6610 
6611 	kvm_guest_exit_irqoff();
6612 }
6613 
6614 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
6615 {
6616 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6617 	unsigned long cr3, cr4;
6618 
6619 	/* Record the guest's net vcpu time for enforced NMI injections. */
6620 	if (unlikely(!enable_vnmi &&
6621 		     vmx->loaded_vmcs->soft_vnmi_blocked))
6622 		vmx->loaded_vmcs->entry_time = ktime_get();
6623 
6624 	/* Don't enter VMX if guest state is invalid, let the exit handler
6625 	   start emulation until we arrive back to a valid state */
6626 	if (vmx->emulation_required)
6627 		return EXIT_FASTPATH_NONE;
6628 
6629 	trace_kvm_entry(vcpu);
6630 
6631 	if (vmx->ple_window_dirty) {
6632 		vmx->ple_window_dirty = false;
6633 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
6634 	}
6635 
6636 	/*
6637 	 * We did this in prepare_switch_to_guest, because it needs to
6638 	 * be within srcu_read_lock.
6639 	 */
6640 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6641 
6642 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6643 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6644 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6645 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6646 
6647 	cr3 = __get_current_cr3_fast();
6648 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6649 		vmcs_writel(HOST_CR3, cr3);
6650 		vmx->loaded_vmcs->host_state.cr3 = cr3;
6651 	}
6652 
6653 	cr4 = cr4_read_shadow();
6654 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6655 		vmcs_writel(HOST_CR4, cr4);
6656 		vmx->loaded_vmcs->host_state.cr4 = cr4;
6657 	}
6658 
6659 	/* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
6660 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
6661 		set_debugreg(vcpu->arch.dr6, 6);
6662 
6663 	/* When single-stepping over STI and MOV SS, we must clear the
6664 	 * corresponding interruptibility bits in the guest state. Otherwise
6665 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
6666 	 * exceptions being set, but that's not correct for the guest debugging
6667 	 * case. */
6668 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6669 		vmx_set_interrupt_shadow(vcpu, 0);
6670 
6671 	kvm_load_guest_xsave_state(vcpu);
6672 
6673 	pt_guest_enter(vmx);
6674 
6675 	atomic_switch_perf_msrs(vmx);
6676 	if (intel_pmu_lbr_is_enabled(vcpu))
6677 		vmx_passthrough_lbr_msrs(vcpu);
6678 
6679 	if (enable_preemption_timer)
6680 		vmx_update_hv_timer(vcpu);
6681 
6682 	kvm_wait_lapic_expire(vcpu);
6683 
6684 	/*
6685 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6686 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6687 	 * is no need to worry about the conditional branch over the wrmsr
6688 	 * being speculatively taken.
6689 	 */
6690 	x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6691 
6692 	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
6693 	vmx_vcpu_enter_exit(vcpu, vmx);
6694 
6695 	/*
6696 	 * We do not use IBRS in the kernel. If this vCPU has used the
6697 	 * SPEC_CTRL MSR it may have left it on; save the value and
6698 	 * turn it off. This is much more efficient than blindly adding
6699 	 * it to the atomic save/restore list. Especially as the former
6700 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6701 	 *
6702 	 * For non-nested case:
6703 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
6704 	 * save it.
6705 	 *
6706 	 * For nested case:
6707 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
6708 	 * save it.
6709 	 */
6710 	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6711 		vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6712 
6713 	x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6714 
6715 	/* All fields are clean at this point */
6716 	if (static_branch_unlikely(&enable_evmcs)) {
6717 		current_evmcs->hv_clean_fields |=
6718 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6719 
6720 		current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
6721 	}
6722 
6723 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6724 	if (vmx->host_debugctlmsr)
6725 		update_debugctlmsr(vmx->host_debugctlmsr);
6726 
6727 #ifndef CONFIG_X86_64
6728 	/*
6729 	 * The sysexit path does not restore ds/es, so we must set them to
6730 	 * a reasonable value ourselves.
6731 	 *
6732 	 * We can't defer this to vmx_prepare_switch_to_host() since that
6733 	 * function may be executed in interrupt context, which saves and
6734 	 * restore segments around it, nullifying its effect.
6735 	 */
6736 	loadsegment(ds, __USER_DS);
6737 	loadsegment(es, __USER_DS);
6738 #endif
6739 
6740 	vmx_register_cache_reset(vcpu);
6741 
6742 	pt_guest_exit(vmx);
6743 
6744 	kvm_load_host_xsave_state(vcpu);
6745 
6746 	if (is_guest_mode(vcpu)) {
6747 		/*
6748 		 * Track VMLAUNCH/VMRESUME that have made past guest state
6749 		 * checking.
6750 		 */
6751 		if (vmx->nested.nested_run_pending &&
6752 		    !vmx->exit_reason.failed_vmentry)
6753 			++vcpu->stat.nested_run;
6754 
6755 		vmx->nested.nested_run_pending = 0;
6756 	}
6757 
6758 	vmx->idt_vectoring_info = 0;
6759 
6760 	if (unlikely(vmx->fail)) {
6761 		vmx->exit_reason.full = 0xdead;
6762 		return EXIT_FASTPATH_NONE;
6763 	}
6764 
6765 	vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
6766 	if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
6767 		kvm_machine_check();
6768 
6769 	if (likely(!vmx->exit_reason.failed_vmentry))
6770 		vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6771 
6772 	trace_kvm_exit(vmx->exit_reason.full, vcpu, KVM_ISA_VMX);
6773 
6774 	if (unlikely(vmx->exit_reason.failed_vmentry))
6775 		return EXIT_FASTPATH_NONE;
6776 
6777 	vmx->loaded_vmcs->launched = 1;
6778 
6779 	vmx_recover_nmi_blocking(vmx);
6780 	vmx_complete_interrupts(vmx);
6781 
6782 	if (is_guest_mode(vcpu))
6783 		return EXIT_FASTPATH_NONE;
6784 
6785 	return vmx_exit_handlers_fastpath(vcpu);
6786 }
6787 
6788 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6789 {
6790 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6791 
6792 	if (enable_pml)
6793 		vmx_destroy_pml_buffer(vmx);
6794 	free_vpid(vmx->vpid);
6795 	nested_vmx_free_vcpu(vcpu);
6796 	free_loaded_vmcs(vmx->loaded_vmcs);
6797 }
6798 
6799 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6800 {
6801 	struct vmx_uret_msr *tsx_ctrl;
6802 	struct vcpu_vmx *vmx;
6803 	int i, cpu, err;
6804 
6805 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6806 	vmx = to_vmx(vcpu);
6807 
6808 	err = -ENOMEM;
6809 
6810 	vmx->vpid = allocate_vpid();
6811 
6812 	/*
6813 	 * If PML is turned on, failure on enabling PML just results in failure
6814 	 * of creating the vcpu, therefore we can simplify PML logic (by
6815 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
6816 	 * for the guest), etc.
6817 	 */
6818 	if (enable_pml) {
6819 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6820 		if (!vmx->pml_pg)
6821 			goto free_vpid;
6822 	}
6823 
6824 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
6825 		vmx->guest_uret_msrs[i].data = 0;
6826 		vmx->guest_uret_msrs[i].mask = -1ull;
6827 	}
6828 	if (boot_cpu_has(X86_FEATURE_RTM)) {
6829 		/*
6830 		 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
6831 		 * Keep the host value unchanged to avoid changing CPUID bits
6832 		 * under the host kernel's feet.
6833 		 */
6834 		tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
6835 		if (tsx_ctrl)
6836 			vmx->guest_uret_msrs[i].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
6837 	}
6838 
6839 	err = alloc_loaded_vmcs(&vmx->vmcs01);
6840 	if (err < 0)
6841 		goto free_pml;
6842 
6843 	/* The MSR bitmap starts with all ones */
6844 	bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6845 	bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6846 
6847 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
6848 #ifdef CONFIG_X86_64
6849 	vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
6850 	vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
6851 	vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6852 #endif
6853 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6854 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6855 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6856 	if (kvm_cstate_in_guest(vcpu->kvm)) {
6857 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
6858 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6859 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6860 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6861 	}
6862 
6863 	vmx->loaded_vmcs = &vmx->vmcs01;
6864 	cpu = get_cpu();
6865 	vmx_vcpu_load(vcpu, cpu);
6866 	vcpu->cpu = cpu;
6867 	init_vmcs(vmx);
6868 	vmx_vcpu_put(vcpu);
6869 	put_cpu();
6870 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
6871 		err = alloc_apic_access_page(vcpu->kvm);
6872 		if (err)
6873 			goto free_vmcs;
6874 	}
6875 
6876 	if (enable_ept && !enable_unrestricted_guest) {
6877 		err = init_rmode_identity_map(vcpu->kvm);
6878 		if (err)
6879 			goto free_vmcs;
6880 	}
6881 
6882 	if (nested)
6883 		memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
6884 	else
6885 		memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6886 
6887 	vcpu_setup_sgx_lepubkeyhash(vcpu);
6888 
6889 	vmx->nested.posted_intr_nv = -1;
6890 	vmx->nested.current_vmptr = -1ull;
6891 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
6892 
6893 	vcpu->arch.microcode_version = 0x100000000ULL;
6894 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
6895 
6896 	/*
6897 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6898 	 * or POSTED_INTR_WAKEUP_VECTOR.
6899 	 */
6900 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6901 	vmx->pi_desc.sn = 1;
6902 
6903 	return 0;
6904 
6905 free_vmcs:
6906 	free_loaded_vmcs(vmx->loaded_vmcs);
6907 free_pml:
6908 	vmx_destroy_pml_buffer(vmx);
6909 free_vpid:
6910 	free_vpid(vmx->vpid);
6911 	return err;
6912 }
6913 
6914 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6915 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6916 
6917 static int vmx_vm_init(struct kvm *kvm)
6918 {
6919 	if (!ple_gap)
6920 		kvm->arch.pause_in_guest = true;
6921 
6922 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6923 		switch (l1tf_mitigation) {
6924 		case L1TF_MITIGATION_OFF:
6925 		case L1TF_MITIGATION_FLUSH_NOWARN:
6926 			/* 'I explicitly don't care' is set */
6927 			break;
6928 		case L1TF_MITIGATION_FLUSH:
6929 		case L1TF_MITIGATION_FLUSH_NOSMT:
6930 		case L1TF_MITIGATION_FULL:
6931 			/*
6932 			 * Warn upon starting the first VM in a potentially
6933 			 * insecure environment.
6934 			 */
6935 			if (sched_smt_active())
6936 				pr_warn_once(L1TF_MSG_SMT);
6937 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6938 				pr_warn_once(L1TF_MSG_L1D);
6939 			break;
6940 		case L1TF_MITIGATION_FULL_FORCE:
6941 			/* Flush is enforced */
6942 			break;
6943 		}
6944 	}
6945 	return 0;
6946 }
6947 
6948 static int __init vmx_check_processor_compat(void)
6949 {
6950 	struct vmcs_config vmcs_conf;
6951 	struct vmx_capability vmx_cap;
6952 
6953 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
6954 	    !this_cpu_has(X86_FEATURE_VMX)) {
6955 		pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
6956 		return -EIO;
6957 	}
6958 
6959 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6960 		return -EIO;
6961 	if (nested)
6962 		nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
6963 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6964 		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6965 				smp_processor_id());
6966 		return -EIO;
6967 	}
6968 	return 0;
6969 }
6970 
6971 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6972 {
6973 	u8 cache;
6974 	u64 ipat = 0;
6975 
6976 	/* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
6977 	 * memory aliases with conflicting memory types and sometimes MCEs.
6978 	 * We have to be careful as to what are honored and when.
6979 	 *
6980 	 * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
6981 	 * UC.  The effective memory type is UC or WC depending on guest PAT.
6982 	 * This was historically the source of MCEs and we want to be
6983 	 * conservative.
6984 	 *
6985 	 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
6986 	 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
6987 	 * EPT memory type is set to WB.  The effective memory type is forced
6988 	 * WB.
6989 	 *
6990 	 * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
6991 	 * EPT memory type is used to emulate guest CD/MTRR.
6992 	 */
6993 
6994 	if (is_mmio) {
6995 		cache = MTRR_TYPE_UNCACHABLE;
6996 		goto exit;
6997 	}
6998 
6999 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
7000 		ipat = VMX_EPT_IPAT_BIT;
7001 		cache = MTRR_TYPE_WRBACK;
7002 		goto exit;
7003 	}
7004 
7005 	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7006 		ipat = VMX_EPT_IPAT_BIT;
7007 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7008 			cache = MTRR_TYPE_WRBACK;
7009 		else
7010 			cache = MTRR_TYPE_UNCACHABLE;
7011 		goto exit;
7012 	}
7013 
7014 	cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
7015 
7016 exit:
7017 	return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
7018 }
7019 
7020 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7021 {
7022 	/*
7023 	 * These bits in the secondary execution controls field
7024 	 * are dynamic, the others are mostly based on the hypervisor
7025 	 * architecture and the guest's CPUID.  Do not touch the
7026 	 * dynamic bits.
7027 	 */
7028 	u32 mask =
7029 		SECONDARY_EXEC_SHADOW_VMCS |
7030 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7031 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7032 		SECONDARY_EXEC_DESC;
7033 
7034 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7035 
7036 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7037 }
7038 
7039 /*
7040  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7041  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7042  */
7043 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7044 {
7045 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7046 	struct kvm_cpuid_entry2 *entry;
7047 
7048 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7049 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7050 
7051 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7052 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7053 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7054 } while (0)
7055 
7056 	entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7057 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7058 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7059 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7060 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7061 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7062 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7063 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7064 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7065 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7066 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7067 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7068 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7069 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7070 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7071 
7072 	entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7073 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7074 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7075 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7076 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7077 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7078 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7079 
7080 #undef cr4_fixed1_update
7081 }
7082 
7083 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7084 {
7085 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7086 
7087 	if (kvm_mpx_supported()) {
7088 		bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7089 
7090 		if (mpx_enabled) {
7091 			vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7092 			vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7093 		} else {
7094 			vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7095 			vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7096 		}
7097 	}
7098 }
7099 
7100 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7101 {
7102 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7103 	struct kvm_cpuid_entry2 *best = NULL;
7104 	int i;
7105 
7106 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7107 		best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7108 		if (!best)
7109 			return;
7110 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7111 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7112 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7113 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7114 	}
7115 
7116 	/* Get the number of configurable Address Ranges for filtering */
7117 	vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7118 						PT_CAP_num_address_ranges);
7119 
7120 	/* Initialize and clear the no dependency bits */
7121 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7122 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7123 
7124 	/*
7125 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7126 	 * will inject an #GP
7127 	 */
7128 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7129 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7130 
7131 	/*
7132 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7133 	 * PSBFreq can be set
7134 	 */
7135 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7136 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7137 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7138 
7139 	/*
7140 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7141 	 * MTCFreq can be set
7142 	 */
7143 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7144 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7145 				RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7146 
7147 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7148 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7149 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7150 							RTIT_CTL_PTW_EN);
7151 
7152 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7153 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7154 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7155 
7156 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7157 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7158 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7159 
7160 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7161 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7162 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7163 
7164 	/* unmask address range configure area */
7165 	for (i = 0; i < vmx->pt_desc.addr_range; i++)
7166 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7167 }
7168 
7169 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7170 {
7171 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7172 
7173 	/* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7174 	vcpu->arch.xsaves_enabled = false;
7175 
7176 	vmx_setup_uret_msrs(vmx);
7177 
7178 	if (cpu_has_secondary_exec_ctrls())
7179 		vmcs_set_secondary_exec_control(vmx,
7180 						vmx_secondary_exec_control(vmx));
7181 
7182 	if (nested_vmx_allowed(vcpu))
7183 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7184 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7185 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7186 	else
7187 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7188 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7189 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7190 
7191 	if (nested_vmx_allowed(vcpu)) {
7192 		nested_vmx_cr_fixed1_bits_update(vcpu);
7193 		nested_vmx_entry_exit_ctls_update(vcpu);
7194 	}
7195 
7196 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7197 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7198 		update_intel_pt_cfg(vcpu);
7199 
7200 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7201 		struct vmx_uret_msr *msr;
7202 		msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7203 		if (msr) {
7204 			bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7205 			vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7206 		}
7207 	}
7208 
7209 	set_cr4_guest_host_mask(vmx);
7210 
7211 	vmx_write_encls_bitmap(vcpu, NULL);
7212 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7213 		vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7214 	else
7215 		vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7216 
7217 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7218 		vmx->msr_ia32_feature_control_valid_bits |=
7219 			FEAT_CTL_SGX_LC_ENABLED;
7220 	else
7221 		vmx->msr_ia32_feature_control_valid_bits &=
7222 			~FEAT_CTL_SGX_LC_ENABLED;
7223 
7224 	/* Refresh #PF interception to account for MAXPHYADDR changes. */
7225 	vmx_update_exception_bitmap(vcpu);
7226 }
7227 
7228 static __init void vmx_set_cpu_caps(void)
7229 {
7230 	kvm_set_cpu_caps();
7231 
7232 	/* CPUID 0x1 */
7233 	if (nested)
7234 		kvm_cpu_cap_set(X86_FEATURE_VMX);
7235 
7236 	/* CPUID 0x7 */
7237 	if (kvm_mpx_supported())
7238 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7239 	if (!cpu_has_vmx_invpcid())
7240 		kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7241 	if (vmx_pt_mode_is_host_guest())
7242 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7243 
7244 	if (!enable_sgx) {
7245 		kvm_cpu_cap_clear(X86_FEATURE_SGX);
7246 		kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7247 		kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7248 		kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7249 	}
7250 
7251 	if (vmx_umip_emulated())
7252 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7253 
7254 	/* CPUID 0xD.1 */
7255 	supported_xss = 0;
7256 	if (!cpu_has_vmx_xsaves())
7257 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7258 
7259 	/* CPUID 0x80000001 and 0x7 (RDPID) */
7260 	if (!cpu_has_vmx_rdtscp()) {
7261 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7262 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7263 	}
7264 
7265 	if (cpu_has_vmx_waitpkg())
7266 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7267 }
7268 
7269 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7270 {
7271 	to_vmx(vcpu)->req_immediate_exit = true;
7272 }
7273 
7274 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7275 				  struct x86_instruction_info *info)
7276 {
7277 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7278 	unsigned short port;
7279 	bool intercept;
7280 	int size;
7281 
7282 	if (info->intercept == x86_intercept_in ||
7283 	    info->intercept == x86_intercept_ins) {
7284 		port = info->src_val;
7285 		size = info->dst_bytes;
7286 	} else {
7287 		port = info->dst_val;
7288 		size = info->src_bytes;
7289 	}
7290 
7291 	/*
7292 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7293 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7294 	 * control.
7295 	 *
7296 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7297 	 */
7298 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7299 		intercept = nested_cpu_has(vmcs12,
7300 					   CPU_BASED_UNCOND_IO_EXITING);
7301 	else
7302 		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7303 
7304 	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7305 	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7306 }
7307 
7308 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7309 			       struct x86_instruction_info *info,
7310 			       enum x86_intercept_stage stage,
7311 			       struct x86_exception *exception)
7312 {
7313 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7314 
7315 	switch (info->intercept) {
7316 	/*
7317 	 * RDPID causes #UD if disabled through secondary execution controls.
7318 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
7319 	 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7320 	 */
7321 	case x86_intercept_rdpid:
7322 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7323 			exception->vector = UD_VECTOR;
7324 			exception->error_code_valid = false;
7325 			return X86EMUL_PROPAGATE_FAULT;
7326 		}
7327 		break;
7328 
7329 	case x86_intercept_in:
7330 	case x86_intercept_ins:
7331 	case x86_intercept_out:
7332 	case x86_intercept_outs:
7333 		return vmx_check_intercept_io(vcpu, info);
7334 
7335 	case x86_intercept_lgdt:
7336 	case x86_intercept_lidt:
7337 	case x86_intercept_lldt:
7338 	case x86_intercept_ltr:
7339 	case x86_intercept_sgdt:
7340 	case x86_intercept_sidt:
7341 	case x86_intercept_sldt:
7342 	case x86_intercept_str:
7343 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7344 			return X86EMUL_CONTINUE;
7345 
7346 		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7347 		break;
7348 
7349 	/* TODO: check more intercepts... */
7350 	default:
7351 		break;
7352 	}
7353 
7354 	return X86EMUL_UNHANDLEABLE;
7355 }
7356 
7357 #ifdef CONFIG_X86_64
7358 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7359 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7360 				  u64 divisor, u64 *result)
7361 {
7362 	u64 low = a << shift, high = a >> (64 - shift);
7363 
7364 	/* To avoid the overflow on divq */
7365 	if (high >= divisor)
7366 		return 1;
7367 
7368 	/* Low hold the result, high hold rem which is discarded */
7369 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7370 	    "rm" (divisor), "0" (low), "1" (high));
7371 	*result = low;
7372 
7373 	return 0;
7374 }
7375 
7376 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7377 			    bool *expired)
7378 {
7379 	struct vcpu_vmx *vmx;
7380 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7381 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7382 
7383 	vmx = to_vmx(vcpu);
7384 	tscl = rdtsc();
7385 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7386 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7387 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7388 						    ktimer->timer_advance_ns);
7389 
7390 	if (delta_tsc > lapic_timer_advance_cycles)
7391 		delta_tsc -= lapic_timer_advance_cycles;
7392 	else
7393 		delta_tsc = 0;
7394 
7395 	/* Convert to host delta tsc if tsc scaling is enabled */
7396 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7397 	    delta_tsc && u64_shl_div_u64(delta_tsc,
7398 				kvm_tsc_scaling_ratio_frac_bits,
7399 				vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
7400 		return -ERANGE;
7401 
7402 	/*
7403 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
7404 	 * we can't use the preemption timer.
7405 	 * It's possible that it fits on later vmentries, but checking
7406 	 * on every vmentry is costly so we just use an hrtimer.
7407 	 */
7408 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7409 		return -ERANGE;
7410 
7411 	vmx->hv_deadline_tsc = tscl + delta_tsc;
7412 	*expired = !delta_tsc;
7413 	return 0;
7414 }
7415 
7416 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7417 {
7418 	to_vmx(vcpu)->hv_deadline_tsc = -1;
7419 }
7420 #endif
7421 
7422 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7423 {
7424 	if (!kvm_pause_in_guest(vcpu->kvm))
7425 		shrink_ple_window(vcpu);
7426 }
7427 
7428 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
7429 {
7430 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7431 
7432 	if (is_guest_mode(vcpu)) {
7433 		vmx->nested.update_vmcs01_cpu_dirty_logging = true;
7434 		return;
7435 	}
7436 
7437 	/*
7438 	 * Note, cpu_dirty_logging_count can be changed concurrent with this
7439 	 * code, but in that case another update request will be made and so
7440 	 * the guest will never run with a stale PML value.
7441 	 */
7442 	if (vcpu->kvm->arch.cpu_dirty_logging_count)
7443 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7444 	else
7445 		secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7446 }
7447 
7448 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7449 {
7450 	if (pi_pre_block(vcpu))
7451 		return 1;
7452 
7453 	if (kvm_lapic_hv_timer_in_use(vcpu))
7454 		kvm_lapic_switch_to_sw_timer(vcpu);
7455 
7456 	return 0;
7457 }
7458 
7459 static void vmx_post_block(struct kvm_vcpu *vcpu)
7460 {
7461 	if (kvm_x86_ops.set_hv_timer)
7462 		kvm_lapic_switch_to_hv_timer(vcpu);
7463 
7464 	pi_post_block(vcpu);
7465 }
7466 
7467 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7468 {
7469 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7470 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7471 			FEAT_CTL_LMCE_ENABLED;
7472 	else
7473 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7474 			~FEAT_CTL_LMCE_ENABLED;
7475 }
7476 
7477 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7478 {
7479 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
7480 	if (to_vmx(vcpu)->nested.nested_run_pending)
7481 		return -EBUSY;
7482 	return !is_smm(vcpu);
7483 }
7484 
7485 static int vmx_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7486 {
7487 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7488 
7489 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7490 	if (vmx->nested.smm.guest_mode)
7491 		nested_vmx_vmexit(vcpu, -1, 0, 0);
7492 
7493 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
7494 	vmx->nested.vmxon = false;
7495 	vmx_clear_hlt(vcpu);
7496 	return 0;
7497 }
7498 
7499 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7500 {
7501 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7502 	int ret;
7503 
7504 	if (vmx->nested.smm.vmxon) {
7505 		vmx->nested.vmxon = true;
7506 		vmx->nested.smm.vmxon = false;
7507 	}
7508 
7509 	if (vmx->nested.smm.guest_mode) {
7510 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
7511 		if (ret)
7512 			return ret;
7513 
7514 		vmx->nested.smm.guest_mode = false;
7515 	}
7516 	return 0;
7517 }
7518 
7519 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
7520 {
7521 	/* RSM will cause a vmexit anyway.  */
7522 }
7523 
7524 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7525 {
7526 	return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
7527 }
7528 
7529 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7530 {
7531 	if (is_guest_mode(vcpu)) {
7532 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7533 
7534 		if (hrtimer_try_to_cancel(timer) == 1)
7535 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7536 	}
7537 }
7538 
7539 static void hardware_unsetup(void)
7540 {
7541 	if (nested)
7542 		nested_vmx_hardware_unsetup();
7543 
7544 	free_kvm_area();
7545 }
7546 
7547 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7548 {
7549 	ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7550 			  BIT(APICV_INHIBIT_REASON_HYPERV);
7551 
7552 	return supported & BIT(bit);
7553 }
7554 
7555 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7556 	.hardware_unsetup = hardware_unsetup,
7557 
7558 	.hardware_enable = hardware_enable,
7559 	.hardware_disable = hardware_disable,
7560 	.cpu_has_accelerated_tpr = report_flexpriority,
7561 	.has_emulated_msr = vmx_has_emulated_msr,
7562 
7563 	.vm_size = sizeof(struct kvm_vmx),
7564 	.vm_init = vmx_vm_init,
7565 
7566 	.vcpu_create = vmx_create_vcpu,
7567 	.vcpu_free = vmx_free_vcpu,
7568 	.vcpu_reset = vmx_vcpu_reset,
7569 
7570 	.prepare_guest_switch = vmx_prepare_switch_to_guest,
7571 	.vcpu_load = vmx_vcpu_load,
7572 	.vcpu_put = vmx_vcpu_put,
7573 
7574 	.update_exception_bitmap = vmx_update_exception_bitmap,
7575 	.get_msr_feature = vmx_get_msr_feature,
7576 	.get_msr = vmx_get_msr,
7577 	.set_msr = vmx_set_msr,
7578 	.get_segment_base = vmx_get_segment_base,
7579 	.get_segment = vmx_get_segment,
7580 	.set_segment = vmx_set_segment,
7581 	.get_cpl = vmx_get_cpl,
7582 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7583 	.set_cr0 = vmx_set_cr0,
7584 	.is_valid_cr4 = vmx_is_valid_cr4,
7585 	.set_cr4 = vmx_set_cr4,
7586 	.set_efer = vmx_set_efer,
7587 	.get_idt = vmx_get_idt,
7588 	.set_idt = vmx_set_idt,
7589 	.get_gdt = vmx_get_gdt,
7590 	.set_gdt = vmx_set_gdt,
7591 	.set_dr7 = vmx_set_dr7,
7592 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7593 	.cache_reg = vmx_cache_reg,
7594 	.get_rflags = vmx_get_rflags,
7595 	.set_rflags = vmx_set_rflags,
7596 
7597 	.tlb_flush_all = vmx_flush_tlb_all,
7598 	.tlb_flush_current = vmx_flush_tlb_current,
7599 	.tlb_flush_gva = vmx_flush_tlb_gva,
7600 	.tlb_flush_guest = vmx_flush_tlb_guest,
7601 
7602 	.run = vmx_vcpu_run,
7603 	.handle_exit = vmx_handle_exit,
7604 	.skip_emulated_instruction = vmx_skip_emulated_instruction,
7605 	.update_emulated_instruction = vmx_update_emulated_instruction,
7606 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
7607 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
7608 	.patch_hypercall = vmx_patch_hypercall,
7609 	.set_irq = vmx_inject_irq,
7610 	.set_nmi = vmx_inject_nmi,
7611 	.queue_exception = vmx_queue_exception,
7612 	.cancel_injection = vmx_cancel_injection,
7613 	.interrupt_allowed = vmx_interrupt_allowed,
7614 	.nmi_allowed = vmx_nmi_allowed,
7615 	.get_nmi_mask = vmx_get_nmi_mask,
7616 	.set_nmi_mask = vmx_set_nmi_mask,
7617 	.enable_nmi_window = vmx_enable_nmi_window,
7618 	.enable_irq_window = vmx_enable_irq_window,
7619 	.update_cr8_intercept = vmx_update_cr8_intercept,
7620 	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7621 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7622 	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7623 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
7624 	.apicv_post_state_restore = vmx_apicv_post_state_restore,
7625 	.check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7626 	.hwapic_irr_update = vmx_hwapic_irr_update,
7627 	.hwapic_isr_update = vmx_hwapic_isr_update,
7628 	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7629 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
7630 	.deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7631 	.dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
7632 
7633 	.set_tss_addr = vmx_set_tss_addr,
7634 	.set_identity_map_addr = vmx_set_identity_map_addr,
7635 	.get_mt_mask = vmx_get_mt_mask,
7636 
7637 	.get_exit_info = vmx_get_exit_info,
7638 
7639 	.vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
7640 
7641 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7642 
7643 	.get_l2_tsc_offset = vmx_get_l2_tsc_offset,
7644 	.get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
7645 	.write_tsc_offset = vmx_write_tsc_offset,
7646 	.write_tsc_multiplier = vmx_write_tsc_multiplier,
7647 
7648 	.load_mmu_pgd = vmx_load_mmu_pgd,
7649 
7650 	.check_intercept = vmx_check_intercept,
7651 	.handle_exit_irqoff = vmx_handle_exit_irqoff,
7652 
7653 	.request_immediate_exit = vmx_request_immediate_exit,
7654 
7655 	.sched_in = vmx_sched_in,
7656 
7657 	.cpu_dirty_log_size = PML_ENTITY_NUM,
7658 	.update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
7659 
7660 	.pre_block = vmx_pre_block,
7661 	.post_block = vmx_post_block,
7662 
7663 	.pmu_ops = &intel_pmu_ops,
7664 	.nested_ops = &vmx_nested_ops,
7665 
7666 	.update_pi_irte = pi_update_irte,
7667 	.start_assignment = vmx_pi_start_assignment,
7668 
7669 #ifdef CONFIG_X86_64
7670 	.set_hv_timer = vmx_set_hv_timer,
7671 	.cancel_hv_timer = vmx_cancel_hv_timer,
7672 #endif
7673 
7674 	.setup_mce = vmx_setup_mce,
7675 
7676 	.smi_allowed = vmx_smi_allowed,
7677 	.enter_smm = vmx_enter_smm,
7678 	.leave_smm = vmx_leave_smm,
7679 	.enable_smi_window = vmx_enable_smi_window,
7680 
7681 	.can_emulate_instruction = vmx_can_emulate_instruction,
7682 	.apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7683 	.migrate_timers = vmx_migrate_timers,
7684 
7685 	.msr_filter_changed = vmx_msr_filter_changed,
7686 	.complete_emulated_msr = kvm_complete_insn_gp,
7687 
7688 	.vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
7689 };
7690 
7691 static __init void vmx_setup_user_return_msrs(void)
7692 {
7693 
7694 	/*
7695 	 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
7696 	 * will emulate SYSCALL in legacy mode if the vendor string in guest
7697 	 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
7698 	 * support this emulation, MSR_STAR is included in the list for i386,
7699 	 * but is never loaded into hardware.  MSR_CSTAR is also never loaded
7700 	 * into hardware and is here purely for emulation purposes.
7701 	 */
7702 	const u32 vmx_uret_msrs_list[] = {
7703 	#ifdef CONFIG_X86_64
7704 		MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
7705 	#endif
7706 		MSR_EFER, MSR_TSC_AUX, MSR_STAR,
7707 		MSR_IA32_TSX_CTRL,
7708 	};
7709 	int i;
7710 
7711 	BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
7712 
7713 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
7714 		kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
7715 }
7716 
7717 static __init int hardware_setup(void)
7718 {
7719 	unsigned long host_bndcfgs;
7720 	struct desc_ptr dt;
7721 	int r, ept_lpage_level;
7722 
7723 	store_idt(&dt);
7724 	host_idt_base = dt.address;
7725 
7726 	vmx_setup_user_return_msrs();
7727 
7728 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7729 		return -EIO;
7730 
7731 	if (boot_cpu_has(X86_FEATURE_NX))
7732 		kvm_enable_efer_bits(EFER_NX);
7733 
7734 	if (boot_cpu_has(X86_FEATURE_MPX)) {
7735 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7736 		WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7737 	}
7738 
7739 	if (!cpu_has_vmx_mpx())
7740 		supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7741 				    XFEATURE_MASK_BNDCSR);
7742 
7743 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7744 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7745 		enable_vpid = 0;
7746 
7747 	if (!cpu_has_vmx_ept() ||
7748 	    !cpu_has_vmx_ept_4levels() ||
7749 	    !cpu_has_vmx_ept_mt_wb() ||
7750 	    !cpu_has_vmx_invept_global())
7751 		enable_ept = 0;
7752 
7753 	/* NX support is required for shadow paging. */
7754 	if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
7755 		pr_err_ratelimited("kvm: NX (Execute Disable) not supported\n");
7756 		return -EOPNOTSUPP;
7757 	}
7758 
7759 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7760 		enable_ept_ad_bits = 0;
7761 
7762 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7763 		enable_unrestricted_guest = 0;
7764 
7765 	if (!cpu_has_vmx_flexpriority())
7766 		flexpriority_enabled = 0;
7767 
7768 	if (!cpu_has_virtual_nmis())
7769 		enable_vnmi = 0;
7770 
7771 	/*
7772 	 * set_apic_access_page_addr() is used to reload apic access
7773 	 * page upon invalidation.  No need to do anything if not
7774 	 * using the APIC_ACCESS_ADDR VMCS field.
7775 	 */
7776 	if (!flexpriority_enabled)
7777 		vmx_x86_ops.set_apic_access_page_addr = NULL;
7778 
7779 	if (!cpu_has_vmx_tpr_shadow())
7780 		vmx_x86_ops.update_cr8_intercept = NULL;
7781 
7782 #if IS_ENABLED(CONFIG_HYPERV)
7783 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7784 	    && enable_ept) {
7785 		vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
7786 		vmx_x86_ops.tlb_remote_flush_with_range =
7787 				hv_remote_flush_tlb_with_range;
7788 	}
7789 #endif
7790 
7791 	if (!cpu_has_vmx_ple()) {
7792 		ple_gap = 0;
7793 		ple_window = 0;
7794 		ple_window_grow = 0;
7795 		ple_window_max = 0;
7796 		ple_window_shrink = 0;
7797 	}
7798 
7799 	if (!cpu_has_vmx_apicv()) {
7800 		enable_apicv = 0;
7801 		vmx_x86_ops.sync_pir_to_irr = NULL;
7802 	}
7803 
7804 	if (cpu_has_vmx_tsc_scaling()) {
7805 		kvm_has_tsc_control = true;
7806 		kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7807 		kvm_tsc_scaling_ratio_frac_bits = 48;
7808 	}
7809 
7810 	kvm_has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
7811 
7812 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7813 
7814 	if (enable_ept)
7815 		kvm_mmu_set_ept_masks(enable_ept_ad_bits,
7816 				      cpu_has_vmx_ept_execute_only());
7817 
7818 	if (!enable_ept)
7819 		ept_lpage_level = 0;
7820 	else if (cpu_has_vmx_ept_1g_page())
7821 		ept_lpage_level = PG_LEVEL_1G;
7822 	else if (cpu_has_vmx_ept_2m_page())
7823 		ept_lpage_level = PG_LEVEL_2M;
7824 	else
7825 		ept_lpage_level = PG_LEVEL_4K;
7826 	kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(),
7827 			  ept_lpage_level);
7828 
7829 	/*
7830 	 * Only enable PML when hardware supports PML feature, and both EPT
7831 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
7832 	 */
7833 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7834 		enable_pml = 0;
7835 
7836 	if (!enable_pml)
7837 		vmx_x86_ops.cpu_dirty_log_size = 0;
7838 
7839 	if (!cpu_has_vmx_preemption_timer())
7840 		enable_preemption_timer = false;
7841 
7842 	if (enable_preemption_timer) {
7843 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
7844 		u64 vmx_msr;
7845 
7846 		rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7847 		cpu_preemption_timer_multi =
7848 			vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7849 
7850 		if (tsc_khz)
7851 			use_timer_freq = (u64)tsc_khz * 1000;
7852 		use_timer_freq >>= cpu_preemption_timer_multi;
7853 
7854 		/*
7855 		 * KVM "disables" the preemption timer by setting it to its max
7856 		 * value.  Don't use the timer if it might cause spurious exits
7857 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7858 		 */
7859 		if (use_timer_freq > 0xffffffffu / 10)
7860 			enable_preemption_timer = false;
7861 	}
7862 
7863 	if (!enable_preemption_timer) {
7864 		vmx_x86_ops.set_hv_timer = NULL;
7865 		vmx_x86_ops.cancel_hv_timer = NULL;
7866 		vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
7867 	}
7868 
7869 	kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
7870 
7871 	kvm_mce_cap_supported |= MCG_LMCE_P;
7872 
7873 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7874 		return -EINVAL;
7875 	if (!enable_ept || !cpu_has_vmx_intel_pt())
7876 		pt_mode = PT_MODE_SYSTEM;
7877 
7878 	setup_default_sgx_lepubkeyhash();
7879 
7880 	if (nested) {
7881 		nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7882 					   vmx_capability.ept);
7883 
7884 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7885 		if (r)
7886 			return r;
7887 	}
7888 
7889 	vmx_set_cpu_caps();
7890 
7891 	r = alloc_kvm_area();
7892 	if (r)
7893 		nested_vmx_hardware_unsetup();
7894 	return r;
7895 }
7896 
7897 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
7898 	.cpu_has_kvm_support = cpu_has_kvm_support,
7899 	.disabled_by_bios = vmx_disabled_by_bios,
7900 	.check_processor_compatibility = vmx_check_processor_compat,
7901 	.hardware_setup = hardware_setup,
7902 
7903 	.runtime_ops = &vmx_x86_ops,
7904 };
7905 
7906 static void vmx_cleanup_l1d_flush(void)
7907 {
7908 	if (vmx_l1d_flush_pages) {
7909 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7910 		vmx_l1d_flush_pages = NULL;
7911 	}
7912 	/* Restore state so sysfs ignores VMX */
7913 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7914 }
7915 
7916 static void vmx_exit(void)
7917 {
7918 #ifdef CONFIG_KEXEC_CORE
7919 	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7920 	synchronize_rcu();
7921 #endif
7922 
7923 	kvm_exit();
7924 
7925 #if IS_ENABLED(CONFIG_HYPERV)
7926 	if (static_branch_unlikely(&enable_evmcs)) {
7927 		int cpu;
7928 		struct hv_vp_assist_page *vp_ap;
7929 		/*
7930 		 * Reset everything to support using non-enlightened VMCS
7931 		 * access later (e.g. when we reload the module with
7932 		 * enlightened_vmcs=0)
7933 		 */
7934 		for_each_online_cpu(cpu) {
7935 			vp_ap =	hv_get_vp_assist_page(cpu);
7936 
7937 			if (!vp_ap)
7938 				continue;
7939 
7940 			vp_ap->nested_control.features.directhypercall = 0;
7941 			vp_ap->current_nested_vmcs = 0;
7942 			vp_ap->enlighten_vmentry = 0;
7943 		}
7944 
7945 		static_branch_disable(&enable_evmcs);
7946 	}
7947 #endif
7948 	vmx_cleanup_l1d_flush();
7949 
7950 	allow_smaller_maxphyaddr = false;
7951 }
7952 module_exit(vmx_exit);
7953 
7954 static int __init vmx_init(void)
7955 {
7956 	int r, cpu;
7957 
7958 #if IS_ENABLED(CONFIG_HYPERV)
7959 	/*
7960 	 * Enlightened VMCS usage should be recommended and the host needs
7961 	 * to support eVMCS v1 or above. We can also disable eVMCS support
7962 	 * with module parameter.
7963 	 */
7964 	if (enlightened_vmcs &&
7965 	    ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7966 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7967 	    KVM_EVMCS_VERSION) {
7968 		int cpu;
7969 
7970 		/* Check that we have assist pages on all online CPUs */
7971 		for_each_online_cpu(cpu) {
7972 			if (!hv_get_vp_assist_page(cpu)) {
7973 				enlightened_vmcs = false;
7974 				break;
7975 			}
7976 		}
7977 
7978 		if (enlightened_vmcs) {
7979 			pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
7980 			static_branch_enable(&enable_evmcs);
7981 		}
7982 
7983 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
7984 			vmx_x86_ops.enable_direct_tlbflush
7985 				= hv_enable_direct_tlbflush;
7986 
7987 	} else {
7988 		enlightened_vmcs = false;
7989 	}
7990 #endif
7991 
7992 	r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
7993 		     __alignof__(struct vcpu_vmx), THIS_MODULE);
7994 	if (r)
7995 		return r;
7996 
7997 	/*
7998 	 * Must be called after kvm_init() so enable_ept is properly set
7999 	 * up. Hand the parameter mitigation value in which was stored in
8000 	 * the pre module init parser. If no parameter was given, it will
8001 	 * contain 'auto' which will be turned into the default 'cond'
8002 	 * mitigation mode.
8003 	 */
8004 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8005 	if (r) {
8006 		vmx_exit();
8007 		return r;
8008 	}
8009 
8010 	for_each_possible_cpu(cpu) {
8011 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8012 
8013 		pi_init_cpu(cpu);
8014 	}
8015 
8016 #ifdef CONFIG_KEXEC_CORE
8017 	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8018 			   crash_vmclear_local_loaded_vmcss);
8019 #endif
8020 	vmx_check_vmcs12_offsets();
8021 
8022 	/*
8023 	 * Shadow paging doesn't have a (further) performance penalty
8024 	 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8025 	 * by default
8026 	 */
8027 	if (!enable_ept)
8028 		allow_smaller_maxphyaddr = true;
8029 
8030 	return 0;
8031 }
8032 module_init(vmx_init);
8033