1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/highmem.h> 18 #include <linux/hrtimer.h> 19 #include <linux/kernel.h> 20 #include <linux/kvm_host.h> 21 #include <linux/module.h> 22 #include <linux/moduleparam.h> 23 #include <linux/mod_devicetable.h> 24 #include <linux/mm.h> 25 #include <linux/objtool.h> 26 #include <linux/sched.h> 27 #include <linux/sched/smt.h> 28 #include <linux/slab.h> 29 #include <linux/tboot.h> 30 #include <linux/trace_events.h> 31 #include <linux/entry-kvm.h> 32 33 #include <asm/apic.h> 34 #include <asm/asm.h> 35 #include <asm/cpu.h> 36 #include <asm/cpu_device_id.h> 37 #include <asm/debugreg.h> 38 #include <asm/desc.h> 39 #include <asm/fpu/api.h> 40 #include <asm/fpu/xstate.h> 41 #include <asm/fred.h> 42 #include <asm/idtentry.h> 43 #include <asm/io.h> 44 #include <asm/irq_remapping.h> 45 #include <asm/reboot.h> 46 #include <asm/perf_event.h> 47 #include <asm/mmu_context.h> 48 #include <asm/mshyperv.h> 49 #include <asm/mwait.h> 50 #include <asm/spec-ctrl.h> 51 #include <asm/vmx.h> 52 53 #include <trace/events/ipi.h> 54 55 #include "capabilities.h" 56 #include "cpuid.h" 57 #include "hyperv.h" 58 #include "kvm_onhyperv.h" 59 #include "irq.h" 60 #include "kvm_cache_regs.h" 61 #include "lapic.h" 62 #include "mmu.h" 63 #include "nested.h" 64 #include "pmu.h" 65 #include "sgx.h" 66 #include "trace.h" 67 #include "vmcs.h" 68 #include "vmcs12.h" 69 #include "vmx.h" 70 #include "x86.h" 71 #include "x86_ops.h" 72 #include "smm.h" 73 #include "vmx_onhyperv.h" 74 #include "posted_intr.h" 75 76 MODULE_AUTHOR("Qumranet"); 77 MODULE_DESCRIPTION("KVM support for VMX (Intel VT-x) extensions"); 78 MODULE_LICENSE("GPL"); 79 80 #ifdef MODULE 81 static const struct x86_cpu_id vmx_cpu_id[] = { 82 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL), 83 {} 84 }; 85 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); 86 #endif 87 88 bool __read_mostly enable_vpid = 1; 89 module_param_named(vpid, enable_vpid, bool, 0444); 90 91 static bool __read_mostly enable_vnmi = 1; 92 module_param_named(vnmi, enable_vnmi, bool, 0444); 93 94 bool __read_mostly flexpriority_enabled = 1; 95 module_param_named(flexpriority, flexpriority_enabled, bool, 0444); 96 97 bool __read_mostly enable_ept = 1; 98 module_param_named(ept, enable_ept, bool, 0444); 99 100 bool __read_mostly enable_unrestricted_guest = 1; 101 module_param_named(unrestricted_guest, 102 enable_unrestricted_guest, bool, 0444); 103 104 bool __read_mostly enable_ept_ad_bits = 1; 105 module_param_named(eptad, enable_ept_ad_bits, bool, 0444); 106 107 static bool __read_mostly emulate_invalid_guest_state = true; 108 module_param(emulate_invalid_guest_state, bool, 0444); 109 110 static bool __read_mostly fasteoi = 1; 111 module_param(fasteoi, bool, 0444); 112 113 module_param(enable_apicv, bool, 0444); 114 115 bool __read_mostly enable_ipiv = true; 116 module_param(enable_ipiv, bool, 0444); 117 118 /* 119 * If nested=1, nested virtualization is supported, i.e., guests may use 120 * VMX and be a hypervisor for its own guests. If nested=0, guests may not 121 * use VMX instructions. 122 */ 123 static bool __read_mostly nested = 1; 124 module_param(nested, bool, 0444); 125 126 bool __read_mostly enable_pml = 1; 127 module_param_named(pml, enable_pml, bool, 0444); 128 129 static bool __read_mostly error_on_inconsistent_vmcs_config = true; 130 module_param(error_on_inconsistent_vmcs_config, bool, 0444); 131 132 static bool __read_mostly dump_invalid_vmcs = 0; 133 module_param(dump_invalid_vmcs, bool, 0644); 134 135 #define MSR_BITMAP_MODE_X2APIC 1 136 #define MSR_BITMAP_MODE_X2APIC_APICV 2 137 138 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL 139 140 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ 141 static int __read_mostly cpu_preemption_timer_multi; 142 static bool __read_mostly enable_preemption_timer = 1; 143 #ifdef CONFIG_X86_64 144 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); 145 #endif 146 147 extern bool __read_mostly allow_smaller_maxphyaddr; 148 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO); 149 150 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) 151 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE 152 #define KVM_VM_CR0_ALWAYS_ON \ 153 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE) 154 155 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE 156 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) 157 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) 158 159 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) 160 161 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ 162 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ 163 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ 164 RTIT_STATUS_BYTECNT)) 165 166 /* 167 * List of MSRs that can be directly passed to the guest. 168 * In addition to these x2apic, PT and LBR MSRs are handled specially. 169 */ 170 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = { 171 MSR_IA32_SPEC_CTRL, 172 MSR_IA32_PRED_CMD, 173 MSR_IA32_FLUSH_CMD, 174 MSR_IA32_TSC, 175 #ifdef CONFIG_X86_64 176 MSR_FS_BASE, 177 MSR_GS_BASE, 178 MSR_KERNEL_GS_BASE, 179 MSR_IA32_XFD, 180 MSR_IA32_XFD_ERR, 181 #endif 182 MSR_IA32_SYSENTER_CS, 183 MSR_IA32_SYSENTER_ESP, 184 MSR_IA32_SYSENTER_EIP, 185 MSR_CORE_C1_RES, 186 MSR_CORE_C3_RESIDENCY, 187 MSR_CORE_C6_RESIDENCY, 188 MSR_CORE_C7_RESIDENCY, 189 }; 190 191 /* 192 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 193 * ple_gap: upper bound on the amount of time between two successive 194 * executions of PAUSE in a loop. Also indicate if ple enabled. 195 * According to test, this time is usually smaller than 128 cycles. 196 * ple_window: upper bound on the amount of time a guest is allowed to execute 197 * in a PAUSE loop. Tests indicate that most spinlocks are held for 198 * less than 2^12 cycles 199 * Time is measured based on a counter that runs at the same rate as the TSC, 200 * refer SDM volume 3b section 21.6.13 & 22.1.3. 201 */ 202 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; 203 module_param(ple_gap, uint, 0444); 204 205 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; 206 module_param(ple_window, uint, 0444); 207 208 /* Default doubles per-vcpu window every exit. */ 209 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 210 module_param(ple_window_grow, uint, 0444); 211 212 /* Default resets per-vcpu window every exit to ple_window. */ 213 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 214 module_param(ple_window_shrink, uint, 0444); 215 216 /* Default is to compute the maximum so we can never overflow. */ 217 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; 218 module_param(ple_window_max, uint, 0444); 219 220 /* Default is SYSTEM mode, 1 for host-guest mode */ 221 int __read_mostly pt_mode = PT_MODE_SYSTEM; 222 module_param(pt_mode, int, S_IRUGO); 223 224 struct x86_pmu_lbr __ro_after_init vmx_lbr_caps; 225 226 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); 227 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); 228 static DEFINE_MUTEX(vmx_l1d_flush_mutex); 229 230 /* Storage for pre module init parameter parsing */ 231 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; 232 233 static const struct { 234 const char *option; 235 bool for_parse; 236 } vmentry_l1d_param[] = { 237 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, 238 [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, 239 [VMENTER_L1D_FLUSH_COND] = {"cond", true}, 240 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, 241 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, 242 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, 243 }; 244 245 #define L1D_CACHE_ORDER 4 246 static void *vmx_l1d_flush_pages; 247 248 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) 249 { 250 struct page *page; 251 unsigned int i; 252 253 if (!boot_cpu_has_bug(X86_BUG_L1TF)) { 254 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 255 return 0; 256 } 257 258 if (!enable_ept) { 259 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; 260 return 0; 261 } 262 263 if (kvm_host.arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { 264 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 265 return 0; 266 } 267 268 /* If set to auto use the default l1tf mitigation method */ 269 if (l1tf == VMENTER_L1D_FLUSH_AUTO) { 270 switch (l1tf_mitigation) { 271 case L1TF_MITIGATION_OFF: 272 l1tf = VMENTER_L1D_FLUSH_NEVER; 273 break; 274 case L1TF_MITIGATION_FLUSH_NOWARN: 275 case L1TF_MITIGATION_FLUSH: 276 case L1TF_MITIGATION_FLUSH_NOSMT: 277 l1tf = VMENTER_L1D_FLUSH_COND; 278 break; 279 case L1TF_MITIGATION_FULL: 280 case L1TF_MITIGATION_FULL_FORCE: 281 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 282 break; 283 } 284 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { 285 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 286 } 287 288 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && 289 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { 290 /* 291 * This allocation for vmx_l1d_flush_pages is not tied to a VM 292 * lifetime and so should not be charged to a memcg. 293 */ 294 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); 295 if (!page) 296 return -ENOMEM; 297 vmx_l1d_flush_pages = page_address(page); 298 299 /* 300 * Initialize each page with a different pattern in 301 * order to protect against KSM in the nested 302 * virtualization case. 303 */ 304 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { 305 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, 306 PAGE_SIZE); 307 } 308 } 309 310 l1tf_vmx_mitigation = l1tf; 311 312 if (l1tf != VMENTER_L1D_FLUSH_NEVER) 313 static_branch_enable(&vmx_l1d_should_flush); 314 else 315 static_branch_disable(&vmx_l1d_should_flush); 316 317 if (l1tf == VMENTER_L1D_FLUSH_COND) 318 static_branch_enable(&vmx_l1d_flush_cond); 319 else 320 static_branch_disable(&vmx_l1d_flush_cond); 321 return 0; 322 } 323 324 static int vmentry_l1d_flush_parse(const char *s) 325 { 326 unsigned int i; 327 328 if (s) { 329 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { 330 if (vmentry_l1d_param[i].for_parse && 331 sysfs_streq(s, vmentry_l1d_param[i].option)) 332 return i; 333 } 334 } 335 return -EINVAL; 336 } 337 338 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) 339 { 340 int l1tf, ret; 341 342 l1tf = vmentry_l1d_flush_parse(s); 343 if (l1tf < 0) 344 return l1tf; 345 346 if (!boot_cpu_has(X86_BUG_L1TF)) 347 return 0; 348 349 /* 350 * Has vmx_init() run already? If not then this is the pre init 351 * parameter parsing. In that case just store the value and let 352 * vmx_init() do the proper setup after enable_ept has been 353 * established. 354 */ 355 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { 356 vmentry_l1d_flush_param = l1tf; 357 return 0; 358 } 359 360 mutex_lock(&vmx_l1d_flush_mutex); 361 ret = vmx_setup_l1d_flush(l1tf); 362 mutex_unlock(&vmx_l1d_flush_mutex); 363 return ret; 364 } 365 366 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) 367 { 368 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) 369 return sysfs_emit(s, "???\n"); 370 371 return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); 372 } 373 374 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx) 375 { 376 u64 msr; 377 378 if (!vmx->disable_fb_clear) 379 return; 380 381 msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL); 382 msr |= FB_CLEAR_DIS; 383 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr); 384 /* Cache the MSR value to avoid reading it later */ 385 vmx->msr_ia32_mcu_opt_ctrl = msr; 386 } 387 388 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx) 389 { 390 if (!vmx->disable_fb_clear) 391 return; 392 393 vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS; 394 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl); 395 } 396 397 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx) 398 { 399 /* 400 * Disable VERW's behavior of clearing CPU buffers for the guest if the 401 * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled 402 * the mitigation. Disabling the clearing behavior provides a 403 * performance boost for guests that aren't aware that manually clearing 404 * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry 405 * and VM-Exit. 406 */ 407 vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) && 408 (kvm_host.arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) && 409 !boot_cpu_has_bug(X86_BUG_MDS) && 410 !boot_cpu_has_bug(X86_BUG_TAA); 411 412 /* 413 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS 414 * at VMEntry. Skip the MSR read/write when a guest has no use case to 415 * execute VERW. 416 */ 417 if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) || 418 ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) && 419 (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) && 420 (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) && 421 (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) && 422 (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO))) 423 vmx->disable_fb_clear = false; 424 } 425 426 static const struct kernel_param_ops vmentry_l1d_flush_ops = { 427 .set = vmentry_l1d_flush_set, 428 .get = vmentry_l1d_flush_get, 429 }; 430 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); 431 432 static u32 vmx_segment_access_rights(struct kvm_segment *var); 433 434 void vmx_vmexit(void); 435 436 #define vmx_insn_failed(fmt...) \ 437 do { \ 438 WARN_ONCE(1, fmt); \ 439 pr_warn_ratelimited(fmt); \ 440 } while (0) 441 442 noinline void vmread_error(unsigned long field) 443 { 444 vmx_insn_failed("vmread failed: field=%lx\n", field); 445 } 446 447 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT 448 noinstr void vmread_error_trampoline2(unsigned long field, bool fault) 449 { 450 if (fault) { 451 kvm_spurious_fault(); 452 } else { 453 instrumentation_begin(); 454 vmread_error(field); 455 instrumentation_end(); 456 } 457 } 458 #endif 459 460 noinline void vmwrite_error(unsigned long field, unsigned long value) 461 { 462 vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n", 463 field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); 464 } 465 466 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr) 467 { 468 vmx_insn_failed("vmclear failed: %p/%llx err=%u\n", 469 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR)); 470 } 471 472 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr) 473 { 474 vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n", 475 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR)); 476 } 477 478 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva) 479 { 480 vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n", 481 ext, vpid, gva); 482 } 483 484 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa) 485 { 486 vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n", 487 ext, eptp, gpa); 488 } 489 490 static DEFINE_PER_CPU(struct vmcs *, vmxarea); 491 DEFINE_PER_CPU(struct vmcs *, current_vmcs); 492 /* 493 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed 494 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. 495 */ 496 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); 497 498 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); 499 static DEFINE_SPINLOCK(vmx_vpid_lock); 500 501 struct vmcs_config vmcs_config __ro_after_init; 502 struct vmx_capability vmx_capability __ro_after_init; 503 504 #define VMX_SEGMENT_FIELD(seg) \ 505 [VCPU_SREG_##seg] = { \ 506 .selector = GUEST_##seg##_SELECTOR, \ 507 .base = GUEST_##seg##_BASE, \ 508 .limit = GUEST_##seg##_LIMIT, \ 509 .ar_bytes = GUEST_##seg##_AR_BYTES, \ 510 } 511 512 static const struct kvm_vmx_segment_field { 513 unsigned selector; 514 unsigned base; 515 unsigned limit; 516 unsigned ar_bytes; 517 } kvm_vmx_segment_fields[] = { 518 VMX_SEGMENT_FIELD(CS), 519 VMX_SEGMENT_FIELD(DS), 520 VMX_SEGMENT_FIELD(ES), 521 VMX_SEGMENT_FIELD(FS), 522 VMX_SEGMENT_FIELD(GS), 523 VMX_SEGMENT_FIELD(SS), 524 VMX_SEGMENT_FIELD(TR), 525 VMX_SEGMENT_FIELD(LDTR), 526 }; 527 528 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx) 529 { 530 vmx->segment_cache.bitmask = 0; 531 } 532 533 static unsigned long host_idt_base; 534 535 #if IS_ENABLED(CONFIG_HYPERV) 536 static bool __read_mostly enlightened_vmcs = true; 537 module_param(enlightened_vmcs, bool, 0444); 538 539 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu) 540 { 541 struct hv_enlightened_vmcs *evmcs; 542 hpa_t partition_assist_page = hv_get_partition_assist_page(vcpu); 543 544 if (partition_assist_page == INVALID_PAGE) 545 return -ENOMEM; 546 547 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs; 548 549 evmcs->partition_assist_page = partition_assist_page; 550 evmcs->hv_vm_id = (unsigned long)vcpu->kvm; 551 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1; 552 553 return 0; 554 } 555 556 static __init void hv_init_evmcs(void) 557 { 558 int cpu; 559 560 if (!enlightened_vmcs) 561 return; 562 563 /* 564 * Enlightened VMCS usage should be recommended and the host needs 565 * to support eVMCS v1 or above. 566 */ 567 if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && 568 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= 569 KVM_EVMCS_VERSION) { 570 571 /* Check that we have assist pages on all online CPUs */ 572 for_each_online_cpu(cpu) { 573 if (!hv_get_vp_assist_page(cpu)) { 574 enlightened_vmcs = false; 575 break; 576 } 577 } 578 579 if (enlightened_vmcs) { 580 pr_info("Using Hyper-V Enlightened VMCS\n"); 581 static_branch_enable(&__kvm_is_using_evmcs); 582 } 583 584 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH) 585 vt_x86_ops.enable_l2_tlb_flush 586 = hv_enable_l2_tlb_flush; 587 } else { 588 enlightened_vmcs = false; 589 } 590 } 591 592 static void hv_reset_evmcs(void) 593 { 594 struct hv_vp_assist_page *vp_ap; 595 596 if (!kvm_is_using_evmcs()) 597 return; 598 599 /* 600 * KVM should enable eVMCS if and only if all CPUs have a VP assist 601 * page, and should reject CPU onlining if eVMCS is enabled the CPU 602 * doesn't have a VP assist page allocated. 603 */ 604 vp_ap = hv_get_vp_assist_page(smp_processor_id()); 605 if (WARN_ON_ONCE(!vp_ap)) 606 return; 607 608 /* 609 * Reset everything to support using non-enlightened VMCS access later 610 * (e.g. when we reload the module with enlightened_vmcs=0) 611 */ 612 vp_ap->nested_control.features.directhypercall = 0; 613 vp_ap->current_nested_vmcs = 0; 614 vp_ap->enlighten_vmentry = 0; 615 } 616 617 #else /* IS_ENABLED(CONFIG_HYPERV) */ 618 static void hv_init_evmcs(void) {} 619 static void hv_reset_evmcs(void) {} 620 #endif /* IS_ENABLED(CONFIG_HYPERV) */ 621 622 /* 623 * Comment's format: document - errata name - stepping - processor name. 624 * Refer from 625 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp 626 */ 627 static u32 vmx_preemption_cpu_tfms[] = { 628 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ 629 0x000206E6, 630 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ 631 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ 632 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ 633 0x00020652, 634 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ 635 0x00020655, 636 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ 637 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ 638 /* 639 * 320767.pdf - AAP86 - B1 - 640 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile 641 */ 642 0x000106E5, 643 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ 644 0x000106A0, 645 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ 646 0x000106A1, 647 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ 648 0x000106A4, 649 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ 650 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ 651 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ 652 0x000106A5, 653 /* Xeon E3-1220 V2 */ 654 0x000306A8, 655 }; 656 657 static inline bool cpu_has_broken_vmx_preemption_timer(void) 658 { 659 u32 eax = cpuid_eax(0x00000001), i; 660 661 /* Clear the reserved bits */ 662 eax &= ~(0x3U << 14 | 0xfU << 28); 663 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) 664 if (eax == vmx_preemption_cpu_tfms[i]) 665 return true; 666 667 return false; 668 } 669 670 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) 671 { 672 return flexpriority_enabled && lapic_in_kernel(vcpu); 673 } 674 675 static int vmx_get_passthrough_msr_slot(u32 msr) 676 { 677 int i; 678 679 switch (msr) { 680 case 0x800 ... 0x8ff: 681 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */ 682 return -ENOENT; 683 case MSR_IA32_RTIT_STATUS: 684 case MSR_IA32_RTIT_OUTPUT_BASE: 685 case MSR_IA32_RTIT_OUTPUT_MASK: 686 case MSR_IA32_RTIT_CR3_MATCH: 687 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 688 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */ 689 case MSR_LBR_SELECT: 690 case MSR_LBR_TOS: 691 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31: 692 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31: 693 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31: 694 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8: 695 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8: 696 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */ 697 return -ENOENT; 698 } 699 700 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) { 701 if (vmx_possible_passthrough_msrs[i] == msr) 702 return i; 703 } 704 705 WARN(1, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr); 706 return -ENOENT; 707 } 708 709 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr) 710 { 711 int i; 712 713 i = kvm_find_user_return_msr(msr); 714 if (i >= 0) 715 return &vmx->guest_uret_msrs[i]; 716 return NULL; 717 } 718 719 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx, 720 struct vmx_uret_msr *msr, u64 data) 721 { 722 unsigned int slot = msr - vmx->guest_uret_msrs; 723 int ret = 0; 724 725 if (msr->load_into_hardware) { 726 preempt_disable(); 727 ret = kvm_set_user_return_msr(slot, data, msr->mask); 728 preempt_enable(); 729 } 730 if (!ret) 731 msr->data = data; 732 return ret; 733 } 734 735 /* 736 * Disable VMX and clear CR4.VMXE (even if VMXOFF faults) 737 * 738 * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to 739 * atomically track post-VMXON state, e.g. this may be called in NMI context. 740 * Eat all faults as all other faults on VMXOFF faults are mode related, i.e. 741 * faults are guaranteed to be due to the !post-VMXON check unless the CPU is 742 * magically in RM, VM86, compat mode, or at CPL>0. 743 */ 744 static int kvm_cpu_vmxoff(void) 745 { 746 asm goto("1: vmxoff\n\t" 747 _ASM_EXTABLE(1b, %l[fault]) 748 ::: "cc", "memory" : fault); 749 750 cr4_clear_bits(X86_CR4_VMXE); 751 return 0; 752 753 fault: 754 cr4_clear_bits(X86_CR4_VMXE); 755 return -EIO; 756 } 757 758 static void vmx_emergency_disable(void) 759 { 760 int cpu = raw_smp_processor_id(); 761 struct loaded_vmcs *v; 762 763 kvm_rebooting = true; 764 765 /* 766 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be 767 * set in task context. If this races with VMX is disabled by an NMI, 768 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to 769 * kvm_rebooting set. 770 */ 771 if (!(__read_cr4() & X86_CR4_VMXE)) 772 return; 773 774 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), 775 loaded_vmcss_on_cpu_link) 776 vmcs_clear(v->vmcs); 777 778 kvm_cpu_vmxoff(); 779 } 780 781 static void __loaded_vmcs_clear(void *arg) 782 { 783 struct loaded_vmcs *loaded_vmcs = arg; 784 int cpu = raw_smp_processor_id(); 785 786 if (loaded_vmcs->cpu != cpu) 787 return; /* vcpu migration can race with cpu offline */ 788 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) 789 per_cpu(current_vmcs, cpu) = NULL; 790 791 vmcs_clear(loaded_vmcs->vmcs); 792 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) 793 vmcs_clear(loaded_vmcs->shadow_vmcs); 794 795 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); 796 797 /* 798 * Ensure all writes to loaded_vmcs, including deleting it from its 799 * current percpu list, complete before setting loaded_vmcs->cpu to 800 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first 801 * and add loaded_vmcs to its percpu list before it's deleted from this 802 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs(). 803 */ 804 smp_wmb(); 805 806 loaded_vmcs->cpu = -1; 807 loaded_vmcs->launched = 0; 808 } 809 810 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) 811 { 812 int cpu = loaded_vmcs->cpu; 813 814 if (cpu != -1) 815 smp_call_function_single(cpu, 816 __loaded_vmcs_clear, loaded_vmcs, 1); 817 } 818 819 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, 820 unsigned field) 821 { 822 bool ret; 823 u32 mask = 1 << (seg * SEG_FIELD_NR + field); 824 825 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) { 826 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS); 827 vmx->segment_cache.bitmask = 0; 828 } 829 ret = vmx->segment_cache.bitmask & mask; 830 vmx->segment_cache.bitmask |= mask; 831 return ret; 832 } 833 834 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) 835 { 836 u16 *p = &vmx->segment_cache.seg[seg].selector; 837 838 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) 839 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); 840 return *p; 841 } 842 843 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) 844 { 845 ulong *p = &vmx->segment_cache.seg[seg].base; 846 847 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) 848 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); 849 return *p; 850 } 851 852 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) 853 { 854 u32 *p = &vmx->segment_cache.seg[seg].limit; 855 856 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) 857 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); 858 return *p; 859 } 860 861 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) 862 { 863 u32 *p = &vmx->segment_cache.seg[seg].ar; 864 865 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) 866 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); 867 return *p; 868 } 869 870 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu) 871 { 872 u32 eb; 873 874 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | 875 (1u << DB_VECTOR) | (1u << AC_VECTOR); 876 /* 877 * #VE isn't used for VMX. To test against unexpected changes 878 * related to #VE for VMX, intercept unexpected #VE and warn on it. 879 */ 880 if (IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE)) 881 eb |= 1u << VE_VECTOR; 882 /* 883 * Guest access to VMware backdoor ports could legitimately 884 * trigger #GP because of TSS I/O permission bitmap. 885 * We intercept those #GP and allow access to them anyway 886 * as VMware does. 887 */ 888 if (enable_vmware_backdoor) 889 eb |= (1u << GP_VECTOR); 890 if ((vcpu->guest_debug & 891 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == 892 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) 893 eb |= 1u << BP_VECTOR; 894 if (to_vmx(vcpu)->rmode.vm86_active) 895 eb = ~0; 896 if (!vmx_need_pf_intercept(vcpu)) 897 eb &= ~(1u << PF_VECTOR); 898 899 /* When we are running a nested L2 guest and L1 specified for it a 900 * certain exception bitmap, we must trap the same exceptions and pass 901 * them to L1. When running L2, we will only handle the exceptions 902 * specified above if L1 did not want them. 903 */ 904 if (is_guest_mode(vcpu)) 905 eb |= get_vmcs12(vcpu)->exception_bitmap; 906 else { 907 int mask = 0, match = 0; 908 909 if (enable_ept && (eb & (1u << PF_VECTOR))) { 910 /* 911 * If EPT is enabled, #PF is currently only intercepted 912 * if MAXPHYADDR is smaller on the guest than on the 913 * host. In that case we only care about present, 914 * non-reserved faults. For vmcs02, however, PFEC_MASK 915 * and PFEC_MATCH are set in prepare_vmcs02_rare. 916 */ 917 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK; 918 match = PFERR_PRESENT_MASK; 919 } 920 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask); 921 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match); 922 } 923 924 /* 925 * Disabling xfd interception indicates that dynamic xfeatures 926 * might be used in the guest. Always trap #NM in this case 927 * to save guest xfd_err timely. 928 */ 929 if (vcpu->arch.xfd_no_write_intercept) 930 eb |= (1u << NM_VECTOR); 931 932 vmcs_write32(EXCEPTION_BITMAP, eb); 933 } 934 935 /* 936 * Check if MSR is intercepted for currently loaded MSR bitmap. 937 */ 938 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr) 939 { 940 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS)) 941 return true; 942 943 return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr); 944 } 945 946 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx) 947 { 948 unsigned int flags = 0; 949 950 if (vmx->loaded_vmcs->launched) 951 flags |= VMX_RUN_VMRESUME; 952 953 /* 954 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free 955 * to change it directly without causing a vmexit. In that case read 956 * it after vmexit and store it in vmx->spec_ctrl. 957 */ 958 if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL)) 959 flags |= VMX_RUN_SAVE_SPEC_CTRL; 960 961 return flags; 962 } 963 964 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, 965 unsigned long entry, unsigned long exit) 966 { 967 vm_entry_controls_clearbit(vmx, entry); 968 vm_exit_controls_clearbit(vmx, exit); 969 } 970 971 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr) 972 { 973 unsigned int i; 974 975 for (i = 0; i < m->nr; ++i) { 976 if (m->val[i].index == msr) 977 return i; 978 } 979 return -ENOENT; 980 } 981 982 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) 983 { 984 int i; 985 struct msr_autoload *m = &vmx->msr_autoload; 986 987 switch (msr) { 988 case MSR_EFER: 989 if (cpu_has_load_ia32_efer()) { 990 clear_atomic_switch_msr_special(vmx, 991 VM_ENTRY_LOAD_IA32_EFER, 992 VM_EXIT_LOAD_IA32_EFER); 993 return; 994 } 995 break; 996 case MSR_CORE_PERF_GLOBAL_CTRL: 997 if (cpu_has_load_perf_global_ctrl()) { 998 clear_atomic_switch_msr_special(vmx, 999 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 1000 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); 1001 return; 1002 } 1003 break; 1004 } 1005 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 1006 if (i < 0) 1007 goto skip_guest; 1008 --m->guest.nr; 1009 m->guest.val[i] = m->guest.val[m->guest.nr]; 1010 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 1011 1012 skip_guest: 1013 i = vmx_find_loadstore_msr_slot(&m->host, msr); 1014 if (i < 0) 1015 return; 1016 1017 --m->host.nr; 1018 m->host.val[i] = m->host.val[m->host.nr]; 1019 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 1020 } 1021 1022 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, 1023 unsigned long entry, unsigned long exit, 1024 unsigned long guest_val_vmcs, unsigned long host_val_vmcs, 1025 u64 guest_val, u64 host_val) 1026 { 1027 vmcs_write64(guest_val_vmcs, guest_val); 1028 if (host_val_vmcs != HOST_IA32_EFER) 1029 vmcs_write64(host_val_vmcs, host_val); 1030 vm_entry_controls_setbit(vmx, entry); 1031 vm_exit_controls_setbit(vmx, exit); 1032 } 1033 1034 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, 1035 u64 guest_val, u64 host_val, bool entry_only) 1036 { 1037 int i, j = 0; 1038 struct msr_autoload *m = &vmx->msr_autoload; 1039 1040 switch (msr) { 1041 case MSR_EFER: 1042 if (cpu_has_load_ia32_efer()) { 1043 add_atomic_switch_msr_special(vmx, 1044 VM_ENTRY_LOAD_IA32_EFER, 1045 VM_EXIT_LOAD_IA32_EFER, 1046 GUEST_IA32_EFER, 1047 HOST_IA32_EFER, 1048 guest_val, host_val); 1049 return; 1050 } 1051 break; 1052 case MSR_CORE_PERF_GLOBAL_CTRL: 1053 if (cpu_has_load_perf_global_ctrl()) { 1054 add_atomic_switch_msr_special(vmx, 1055 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 1056 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, 1057 GUEST_IA32_PERF_GLOBAL_CTRL, 1058 HOST_IA32_PERF_GLOBAL_CTRL, 1059 guest_val, host_val); 1060 return; 1061 } 1062 break; 1063 case MSR_IA32_PEBS_ENABLE: 1064 /* PEBS needs a quiescent period after being disabled (to write 1065 * a record). Disabling PEBS through VMX MSR swapping doesn't 1066 * provide that period, so a CPU could write host's record into 1067 * guest's memory. 1068 */ 1069 wrmsrl(MSR_IA32_PEBS_ENABLE, 0); 1070 } 1071 1072 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 1073 if (!entry_only) 1074 j = vmx_find_loadstore_msr_slot(&m->host, msr); 1075 1076 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) || 1077 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) { 1078 printk_once(KERN_WARNING "Not enough msr switch entries. " 1079 "Can't add msr %x\n", msr); 1080 return; 1081 } 1082 if (i < 0) { 1083 i = m->guest.nr++; 1084 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 1085 } 1086 m->guest.val[i].index = msr; 1087 m->guest.val[i].value = guest_val; 1088 1089 if (entry_only) 1090 return; 1091 1092 if (j < 0) { 1093 j = m->host.nr++; 1094 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 1095 } 1096 m->host.val[j].index = msr; 1097 m->host.val[j].value = host_val; 1098 } 1099 1100 static bool update_transition_efer(struct vcpu_vmx *vmx) 1101 { 1102 u64 guest_efer = vmx->vcpu.arch.efer; 1103 u64 ignore_bits = 0; 1104 int i; 1105 1106 /* Shadow paging assumes NX to be available. */ 1107 if (!enable_ept) 1108 guest_efer |= EFER_NX; 1109 1110 /* 1111 * LMA and LME handled by hardware; SCE meaningless outside long mode. 1112 */ 1113 ignore_bits |= EFER_SCE; 1114 #ifdef CONFIG_X86_64 1115 ignore_bits |= EFER_LMA | EFER_LME; 1116 /* SCE is meaningful only in long mode on Intel */ 1117 if (guest_efer & EFER_LMA) 1118 ignore_bits &= ~(u64)EFER_SCE; 1119 #endif 1120 1121 /* 1122 * On EPT, we can't emulate NX, so we must switch EFER atomically. 1123 * On CPUs that support "load IA32_EFER", always switch EFER 1124 * atomically, since it's faster than switching it manually. 1125 */ 1126 if (cpu_has_load_ia32_efer() || 1127 (enable_ept && ((vmx->vcpu.arch.efer ^ kvm_host.efer) & EFER_NX))) { 1128 if (!(guest_efer & EFER_LMA)) 1129 guest_efer &= ~EFER_LME; 1130 if (guest_efer != kvm_host.efer) 1131 add_atomic_switch_msr(vmx, MSR_EFER, 1132 guest_efer, kvm_host.efer, false); 1133 else 1134 clear_atomic_switch_msr(vmx, MSR_EFER); 1135 return false; 1136 } 1137 1138 i = kvm_find_user_return_msr(MSR_EFER); 1139 if (i < 0) 1140 return false; 1141 1142 clear_atomic_switch_msr(vmx, MSR_EFER); 1143 1144 guest_efer &= ~ignore_bits; 1145 guest_efer |= kvm_host.efer & ignore_bits; 1146 1147 vmx->guest_uret_msrs[i].data = guest_efer; 1148 vmx->guest_uret_msrs[i].mask = ~ignore_bits; 1149 1150 return true; 1151 } 1152 1153 #ifdef CONFIG_X86_32 1154 /* 1155 * On 32-bit kernels, VM exits still load the FS and GS bases from the 1156 * VMCS rather than the segment table. KVM uses this helper to figure 1157 * out the current bases to poke them into the VMCS before entry. 1158 */ 1159 static unsigned long segment_base(u16 selector) 1160 { 1161 struct desc_struct *table; 1162 unsigned long v; 1163 1164 if (!(selector & ~SEGMENT_RPL_MASK)) 1165 return 0; 1166 1167 table = get_current_gdt_ro(); 1168 1169 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { 1170 u16 ldt_selector = kvm_read_ldt(); 1171 1172 if (!(ldt_selector & ~SEGMENT_RPL_MASK)) 1173 return 0; 1174 1175 table = (struct desc_struct *)segment_base(ldt_selector); 1176 } 1177 v = get_desc_base(&table[selector >> 3]); 1178 return v; 1179 } 1180 #endif 1181 1182 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx) 1183 { 1184 return vmx_pt_mode_is_host_guest() && 1185 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 1186 } 1187 1188 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base) 1189 { 1190 /* The base must be 128-byte aligned and a legal physical address. */ 1191 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128); 1192 } 1193 1194 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) 1195 { 1196 u32 i; 1197 1198 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1199 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1200 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1201 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1202 for (i = 0; i < addr_range; i++) { 1203 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1204 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1205 } 1206 } 1207 1208 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) 1209 { 1210 u32 i; 1211 1212 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1213 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1214 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1215 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1216 for (i = 0; i < addr_range; i++) { 1217 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1218 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1219 } 1220 } 1221 1222 static void pt_guest_enter(struct vcpu_vmx *vmx) 1223 { 1224 if (vmx_pt_mode_is_system()) 1225 return; 1226 1227 /* 1228 * GUEST_IA32_RTIT_CTL is already set in the VMCS. 1229 * Save host state before VM entry. 1230 */ 1231 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1232 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1233 wrmsrl(MSR_IA32_RTIT_CTL, 0); 1234 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1235 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1236 } 1237 } 1238 1239 static void pt_guest_exit(struct vcpu_vmx *vmx) 1240 { 1241 if (vmx_pt_mode_is_system()) 1242 return; 1243 1244 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1245 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1246 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1247 } 1248 1249 /* 1250 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest, 1251 * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary. 1252 */ 1253 if (vmx->pt_desc.host.ctl) 1254 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1255 } 1256 1257 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, 1258 unsigned long fs_base, unsigned long gs_base) 1259 { 1260 if (unlikely(fs_sel != host->fs_sel)) { 1261 if (!(fs_sel & 7)) 1262 vmcs_write16(HOST_FS_SELECTOR, fs_sel); 1263 else 1264 vmcs_write16(HOST_FS_SELECTOR, 0); 1265 host->fs_sel = fs_sel; 1266 } 1267 if (unlikely(gs_sel != host->gs_sel)) { 1268 if (!(gs_sel & 7)) 1269 vmcs_write16(HOST_GS_SELECTOR, gs_sel); 1270 else 1271 vmcs_write16(HOST_GS_SELECTOR, 0); 1272 host->gs_sel = gs_sel; 1273 } 1274 if (unlikely(fs_base != host->fs_base)) { 1275 vmcs_writel(HOST_FS_BASE, fs_base); 1276 host->fs_base = fs_base; 1277 } 1278 if (unlikely(gs_base != host->gs_base)) { 1279 vmcs_writel(HOST_GS_BASE, gs_base); 1280 host->gs_base = gs_base; 1281 } 1282 } 1283 1284 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1285 { 1286 struct vcpu_vmx *vmx = to_vmx(vcpu); 1287 struct vmcs_host_state *host_state; 1288 #ifdef CONFIG_X86_64 1289 int cpu = raw_smp_processor_id(); 1290 #endif 1291 unsigned long fs_base, gs_base; 1292 u16 fs_sel, gs_sel; 1293 int i; 1294 1295 /* 1296 * Note that guest MSRs to be saved/restored can also be changed 1297 * when guest state is loaded. This happens when guest transitions 1298 * to/from long-mode by setting MSR_EFER.LMA. 1299 */ 1300 if (!vmx->guest_uret_msrs_loaded) { 1301 vmx->guest_uret_msrs_loaded = true; 1302 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 1303 if (!vmx->guest_uret_msrs[i].load_into_hardware) 1304 continue; 1305 1306 kvm_set_user_return_msr(i, 1307 vmx->guest_uret_msrs[i].data, 1308 vmx->guest_uret_msrs[i].mask); 1309 } 1310 } 1311 1312 if (vmx->nested.need_vmcs12_to_shadow_sync) 1313 nested_sync_vmcs12_to_shadow(vcpu); 1314 1315 if (vmx->guest_state_loaded) 1316 return; 1317 1318 host_state = &vmx->loaded_vmcs->host_state; 1319 1320 /* 1321 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not 1322 * allow segment selectors with cpl > 0 or ti == 1. 1323 */ 1324 host_state->ldt_sel = kvm_read_ldt(); 1325 1326 #ifdef CONFIG_X86_64 1327 savesegment(ds, host_state->ds_sel); 1328 savesegment(es, host_state->es_sel); 1329 1330 gs_base = cpu_kernelmode_gs_base(cpu); 1331 if (likely(is_64bit_mm(current->mm))) { 1332 current_save_fsgs(); 1333 fs_sel = current->thread.fsindex; 1334 gs_sel = current->thread.gsindex; 1335 fs_base = current->thread.fsbase; 1336 vmx->msr_host_kernel_gs_base = current->thread.gsbase; 1337 } else { 1338 savesegment(fs, fs_sel); 1339 savesegment(gs, gs_sel); 1340 fs_base = read_msr(MSR_FS_BASE); 1341 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); 1342 } 1343 1344 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1345 #else 1346 savesegment(fs, fs_sel); 1347 savesegment(gs, gs_sel); 1348 fs_base = segment_base(fs_sel); 1349 gs_base = segment_base(gs_sel); 1350 #endif 1351 1352 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base); 1353 vmx->guest_state_loaded = true; 1354 } 1355 1356 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) 1357 { 1358 struct vmcs_host_state *host_state; 1359 1360 if (!vmx->guest_state_loaded) 1361 return; 1362 1363 host_state = &vmx->loaded_vmcs->host_state; 1364 1365 ++vmx->vcpu.stat.host_state_reload; 1366 1367 #ifdef CONFIG_X86_64 1368 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1369 #endif 1370 if (host_state->ldt_sel || (host_state->gs_sel & 7)) { 1371 kvm_load_ldt(host_state->ldt_sel); 1372 #ifdef CONFIG_X86_64 1373 load_gs_index(host_state->gs_sel); 1374 #else 1375 loadsegment(gs, host_state->gs_sel); 1376 #endif 1377 } 1378 if (host_state->fs_sel & 7) 1379 loadsegment(fs, host_state->fs_sel); 1380 #ifdef CONFIG_X86_64 1381 if (unlikely(host_state->ds_sel | host_state->es_sel)) { 1382 loadsegment(ds, host_state->ds_sel); 1383 loadsegment(es, host_state->es_sel); 1384 } 1385 #endif 1386 invalidate_tss_limit(); 1387 #ifdef CONFIG_X86_64 1388 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); 1389 #endif 1390 load_fixmap_gdt(raw_smp_processor_id()); 1391 vmx->guest_state_loaded = false; 1392 vmx->guest_uret_msrs_loaded = false; 1393 } 1394 1395 #ifdef CONFIG_X86_64 1396 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) 1397 { 1398 preempt_disable(); 1399 if (vmx->guest_state_loaded) 1400 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1401 preempt_enable(); 1402 return vmx->msr_guest_kernel_gs_base; 1403 } 1404 1405 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) 1406 { 1407 preempt_disable(); 1408 if (vmx->guest_state_loaded) 1409 wrmsrl(MSR_KERNEL_GS_BASE, data); 1410 preempt_enable(); 1411 vmx->msr_guest_kernel_gs_base = data; 1412 } 1413 #endif 1414 1415 static void grow_ple_window(struct kvm_vcpu *vcpu) 1416 { 1417 struct vcpu_vmx *vmx = to_vmx(vcpu); 1418 unsigned int old = vmx->ple_window; 1419 1420 vmx->ple_window = __grow_ple_window(old, ple_window, 1421 ple_window_grow, 1422 ple_window_max); 1423 1424 if (vmx->ple_window != old) { 1425 vmx->ple_window_dirty = true; 1426 trace_kvm_ple_window_update(vcpu->vcpu_id, 1427 vmx->ple_window, old); 1428 } 1429 } 1430 1431 static void shrink_ple_window(struct kvm_vcpu *vcpu) 1432 { 1433 struct vcpu_vmx *vmx = to_vmx(vcpu); 1434 unsigned int old = vmx->ple_window; 1435 1436 vmx->ple_window = __shrink_ple_window(old, ple_window, 1437 ple_window_shrink, 1438 ple_window); 1439 1440 if (vmx->ple_window != old) { 1441 vmx->ple_window_dirty = true; 1442 trace_kvm_ple_window_update(vcpu->vcpu_id, 1443 vmx->ple_window, old); 1444 } 1445 } 1446 1447 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu, 1448 struct loaded_vmcs *buddy) 1449 { 1450 struct vcpu_vmx *vmx = to_vmx(vcpu); 1451 bool already_loaded = vmx->loaded_vmcs->cpu == cpu; 1452 struct vmcs *prev; 1453 1454 if (!already_loaded) { 1455 loaded_vmcs_clear(vmx->loaded_vmcs); 1456 local_irq_disable(); 1457 1458 /* 1459 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to 1460 * this cpu's percpu list, otherwise it may not yet be deleted 1461 * from its previous cpu's percpu list. Pairs with the 1462 * smb_wmb() in __loaded_vmcs_clear(). 1463 */ 1464 smp_rmb(); 1465 1466 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, 1467 &per_cpu(loaded_vmcss_on_cpu, cpu)); 1468 local_irq_enable(); 1469 } 1470 1471 prev = per_cpu(current_vmcs, cpu); 1472 if (prev != vmx->loaded_vmcs->vmcs) { 1473 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; 1474 vmcs_load(vmx->loaded_vmcs->vmcs); 1475 1476 /* 1477 * No indirect branch prediction barrier needed when switching 1478 * the active VMCS within a vCPU, unless IBRS is advertised to 1479 * the vCPU. To minimize the number of IBPBs executed, KVM 1480 * performs IBPB on nested VM-Exit (a single nested transition 1481 * may switch the active VMCS multiple times). 1482 */ 1483 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev)) 1484 indirect_branch_prediction_barrier(); 1485 } 1486 1487 if (!already_loaded) { 1488 void *gdt = get_current_gdt_ro(); 1489 1490 /* 1491 * Flush all EPTP/VPID contexts, the new pCPU may have stale 1492 * TLB entries from its previous association with the vCPU. 1493 */ 1494 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 1495 1496 /* 1497 * Linux uses per-cpu TSS and GDT, so set these when switching 1498 * processors. See 22.2.4. 1499 */ 1500 vmcs_writel(HOST_TR_BASE, 1501 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); 1502 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ 1503 1504 if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) { 1505 /* 22.2.3 */ 1506 vmcs_writel(HOST_IA32_SYSENTER_ESP, 1507 (unsigned long)(cpu_entry_stack(cpu) + 1)); 1508 } 1509 1510 vmx->loaded_vmcs->cpu = cpu; 1511 } 1512 } 1513 1514 /* 1515 * Switches to specified vcpu, until a matching vcpu_put(), but assumes 1516 * vcpu mutex is already taken. 1517 */ 1518 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1519 { 1520 struct vcpu_vmx *vmx = to_vmx(vcpu); 1521 1522 if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm)) 1523 shrink_ple_window(vcpu); 1524 1525 vmx_vcpu_load_vmcs(vcpu, cpu, NULL); 1526 1527 vmx_vcpu_pi_load(vcpu, cpu); 1528 1529 vmx->host_debugctlmsr = get_debugctlmsr(); 1530 } 1531 1532 void vmx_vcpu_put(struct kvm_vcpu *vcpu) 1533 { 1534 vmx_vcpu_pi_put(vcpu); 1535 1536 vmx_prepare_switch_to_host(to_vmx(vcpu)); 1537 } 1538 1539 bool vmx_emulation_required(struct kvm_vcpu *vcpu) 1540 { 1541 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu); 1542 } 1543 1544 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) 1545 { 1546 struct vcpu_vmx *vmx = to_vmx(vcpu); 1547 unsigned long rflags, save_rflags; 1548 1549 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) { 1550 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1551 rflags = vmcs_readl(GUEST_RFLAGS); 1552 if (vmx->rmode.vm86_active) { 1553 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 1554 save_rflags = vmx->rmode.save_rflags; 1555 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 1556 } 1557 vmx->rflags = rflags; 1558 } 1559 return vmx->rflags; 1560 } 1561 1562 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1563 { 1564 struct vcpu_vmx *vmx = to_vmx(vcpu); 1565 unsigned long old_rflags; 1566 1567 /* 1568 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU 1569 * is an unrestricted guest in order to mark L2 as needing emulation 1570 * if L1 runs L2 as a restricted guest. 1571 */ 1572 if (is_unrestricted_guest(vcpu)) { 1573 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1574 vmx->rflags = rflags; 1575 vmcs_writel(GUEST_RFLAGS, rflags); 1576 return; 1577 } 1578 1579 old_rflags = vmx_get_rflags(vcpu); 1580 vmx->rflags = rflags; 1581 if (vmx->rmode.vm86_active) { 1582 vmx->rmode.save_rflags = rflags; 1583 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 1584 } 1585 vmcs_writel(GUEST_RFLAGS, rflags); 1586 1587 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM) 1588 vmx->emulation_required = vmx_emulation_required(vcpu); 1589 } 1590 1591 bool vmx_get_if_flag(struct kvm_vcpu *vcpu) 1592 { 1593 return vmx_get_rflags(vcpu) & X86_EFLAGS_IF; 1594 } 1595 1596 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) 1597 { 1598 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1599 int ret = 0; 1600 1601 if (interruptibility & GUEST_INTR_STATE_STI) 1602 ret |= KVM_X86_SHADOW_INT_STI; 1603 if (interruptibility & GUEST_INTR_STATE_MOV_SS) 1604 ret |= KVM_X86_SHADOW_INT_MOV_SS; 1605 1606 return ret; 1607 } 1608 1609 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 1610 { 1611 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1612 u32 interruptibility = interruptibility_old; 1613 1614 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); 1615 1616 if (mask & KVM_X86_SHADOW_INT_MOV_SS) 1617 interruptibility |= GUEST_INTR_STATE_MOV_SS; 1618 else if (mask & KVM_X86_SHADOW_INT_STI) 1619 interruptibility |= GUEST_INTR_STATE_STI; 1620 1621 if ((interruptibility != interruptibility_old)) 1622 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); 1623 } 1624 1625 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) 1626 { 1627 struct vcpu_vmx *vmx = to_vmx(vcpu); 1628 unsigned long value; 1629 1630 /* 1631 * Any MSR write that attempts to change bits marked reserved will 1632 * case a #GP fault. 1633 */ 1634 if (data & vmx->pt_desc.ctl_bitmask) 1635 return 1; 1636 1637 /* 1638 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will 1639 * result in a #GP unless the same write also clears TraceEn. 1640 */ 1641 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && 1642 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN)) 1643 return 1; 1644 1645 /* 1646 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit 1647 * and FabricEn would cause #GP, if 1648 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 1649 */ 1650 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && 1651 !(data & RTIT_CTL_FABRIC_EN) && 1652 !intel_pt_validate_cap(vmx->pt_desc.caps, 1653 PT_CAP_single_range_output)) 1654 return 1; 1655 1656 /* 1657 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that 1658 * utilize encodings marked reserved will cause a #GP fault. 1659 */ 1660 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); 1661 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && 1662 !test_bit((data & RTIT_CTL_MTC_RANGE) >> 1663 RTIT_CTL_MTC_RANGE_OFFSET, &value)) 1664 return 1; 1665 value = intel_pt_validate_cap(vmx->pt_desc.caps, 1666 PT_CAP_cycle_thresholds); 1667 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1668 !test_bit((data & RTIT_CTL_CYC_THRESH) >> 1669 RTIT_CTL_CYC_THRESH_OFFSET, &value)) 1670 return 1; 1671 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); 1672 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1673 !test_bit((data & RTIT_CTL_PSB_FREQ) >> 1674 RTIT_CTL_PSB_FREQ_OFFSET, &value)) 1675 return 1; 1676 1677 /* 1678 * If ADDRx_CFG is reserved or the encodings is >2 will 1679 * cause a #GP fault. 1680 */ 1681 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; 1682 if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2)) 1683 return 1; 1684 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; 1685 if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2)) 1686 return 1; 1687 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; 1688 if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2)) 1689 return 1; 1690 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; 1691 if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2)) 1692 return 1; 1693 1694 return 0; 1695 } 1696 1697 int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 1698 void *insn, int insn_len) 1699 { 1700 /* 1701 * Emulation of instructions in SGX enclaves is impossible as RIP does 1702 * not point at the failing instruction, and even if it did, the code 1703 * stream is inaccessible. Inject #UD instead of exiting to userspace 1704 * so that guest userspace can't DoS the guest simply by triggering 1705 * emulation (enclaves are CPL3 only). 1706 */ 1707 if (to_vmx(vcpu)->exit_reason.enclave_mode) { 1708 kvm_queue_exception(vcpu, UD_VECTOR); 1709 return X86EMUL_PROPAGATE_FAULT; 1710 } 1711 return X86EMUL_CONTINUE; 1712 } 1713 1714 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 1715 { 1716 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason; 1717 unsigned long rip, orig_rip; 1718 u32 instr_len; 1719 1720 /* 1721 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on 1722 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be 1723 * set when EPT misconfig occurs. In practice, real hardware updates 1724 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors 1725 * (namely Hyper-V) don't set it due to it being undefined behavior, 1726 * i.e. we end up advancing IP with some random value. 1727 */ 1728 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) || 1729 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) { 1730 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 1731 1732 /* 1733 * Emulating an enclave's instructions isn't supported as KVM 1734 * cannot access the enclave's memory or its true RIP, e.g. the 1735 * vmcs.GUEST_RIP points at the exit point of the enclave, not 1736 * the RIP that actually triggered the VM-Exit. But, because 1737 * most instructions that cause VM-Exit will #UD in an enclave, 1738 * most instruction-based VM-Exits simply do not occur. 1739 * 1740 * There are a few exceptions, notably the debug instructions 1741 * INT1ICEBRK and INT3, as they are allowed in debug enclaves 1742 * and generate #DB/#BP as expected, which KVM might intercept. 1743 * But again, the CPU does the dirty work and saves an instr 1744 * length of zero so VMMs don't shoot themselves in the foot. 1745 * WARN if KVM tries to skip a non-zero length instruction on 1746 * a VM-Exit from an enclave. 1747 */ 1748 if (!instr_len) 1749 goto rip_updated; 1750 1751 WARN_ONCE(exit_reason.enclave_mode, 1752 "skipping instruction after SGX enclave VM-Exit"); 1753 1754 orig_rip = kvm_rip_read(vcpu); 1755 rip = orig_rip + instr_len; 1756 #ifdef CONFIG_X86_64 1757 /* 1758 * We need to mask out the high 32 bits of RIP if not in 64-bit 1759 * mode, but just finding out that we are in 64-bit mode is 1760 * quite expensive. Only do it if there was a carry. 1761 */ 1762 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu)) 1763 rip = (u32)rip; 1764 #endif 1765 kvm_rip_write(vcpu, rip); 1766 } else { 1767 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 1768 return 0; 1769 } 1770 1771 rip_updated: 1772 /* skipping an emulated instruction also counts */ 1773 vmx_set_interrupt_shadow(vcpu, 0); 1774 1775 return 1; 1776 } 1777 1778 /* 1779 * Recognizes a pending MTF VM-exit and records the nested state for later 1780 * delivery. 1781 */ 1782 void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu) 1783 { 1784 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1785 struct vcpu_vmx *vmx = to_vmx(vcpu); 1786 1787 if (!is_guest_mode(vcpu)) 1788 return; 1789 1790 /* 1791 * Per the SDM, MTF takes priority over debug-trap exceptions besides 1792 * TSS T-bit traps and ICEBP (INT1). KVM doesn't emulate T-bit traps 1793 * or ICEBP (in the emulator proper), and skipping of ICEBP after an 1794 * intercepted #DB deliberately avoids single-step #DB and MTF updates 1795 * as ICEBP is higher priority than both. As instruction emulation is 1796 * completed at this point (i.e. KVM is at the instruction boundary), 1797 * any #DB exception pending delivery must be a debug-trap of lower 1798 * priority than MTF. Record the pending MTF state to be delivered in 1799 * vmx_check_nested_events(). 1800 */ 1801 if (nested_cpu_has_mtf(vmcs12) && 1802 (!vcpu->arch.exception.pending || 1803 vcpu->arch.exception.vector == DB_VECTOR) && 1804 (!vcpu->arch.exception_vmexit.pending || 1805 vcpu->arch.exception_vmexit.vector == DB_VECTOR)) { 1806 vmx->nested.mtf_pending = true; 1807 kvm_make_request(KVM_REQ_EVENT, vcpu); 1808 } else { 1809 vmx->nested.mtf_pending = false; 1810 } 1811 } 1812 1813 int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu) 1814 { 1815 vmx_update_emulated_instruction(vcpu); 1816 return skip_emulated_instruction(vcpu); 1817 } 1818 1819 static void vmx_clear_hlt(struct kvm_vcpu *vcpu) 1820 { 1821 /* 1822 * Ensure that we clear the HLT state in the VMCS. We don't need to 1823 * explicitly skip the instruction because if the HLT state is set, 1824 * then the instruction is already executing and RIP has already been 1825 * advanced. 1826 */ 1827 if (kvm_hlt_in_guest(vcpu->kvm) && 1828 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) 1829 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 1830 } 1831 1832 void vmx_inject_exception(struct kvm_vcpu *vcpu) 1833 { 1834 struct kvm_queued_exception *ex = &vcpu->arch.exception; 1835 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK; 1836 struct vcpu_vmx *vmx = to_vmx(vcpu); 1837 1838 kvm_deliver_exception_payload(vcpu, ex); 1839 1840 if (ex->has_error_code) { 1841 /* 1842 * Despite the error code being architecturally defined as 32 1843 * bits, and the VMCS field being 32 bits, Intel CPUs and thus 1844 * VMX don't actually supporting setting bits 31:16. Hardware 1845 * will (should) never provide a bogus error code, but AMD CPUs 1846 * do generate error codes with bits 31:16 set, and so KVM's 1847 * ABI lets userspace shove in arbitrary 32-bit values. Drop 1848 * the upper bits to avoid VM-Fail, losing information that 1849 * doesn't really exist is preferable to killing the VM. 1850 */ 1851 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code); 1852 intr_info |= INTR_INFO_DELIVER_CODE_MASK; 1853 } 1854 1855 if (vmx->rmode.vm86_active) { 1856 int inc_eip = 0; 1857 if (kvm_exception_is_soft(ex->vector)) 1858 inc_eip = vcpu->arch.event_exit_inst_len; 1859 kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip); 1860 return; 1861 } 1862 1863 WARN_ON_ONCE(vmx->emulation_required); 1864 1865 if (kvm_exception_is_soft(ex->vector)) { 1866 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1867 vmx->vcpu.arch.event_exit_inst_len); 1868 intr_info |= INTR_TYPE_SOFT_EXCEPTION; 1869 } else 1870 intr_info |= INTR_TYPE_HARD_EXCEPTION; 1871 1872 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); 1873 1874 vmx_clear_hlt(vcpu); 1875 } 1876 1877 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr, 1878 bool load_into_hardware) 1879 { 1880 struct vmx_uret_msr *uret_msr; 1881 1882 uret_msr = vmx_find_uret_msr(vmx, msr); 1883 if (!uret_msr) 1884 return; 1885 1886 uret_msr->load_into_hardware = load_into_hardware; 1887 } 1888 1889 /* 1890 * Configuring user return MSRs to automatically save, load, and restore MSRs 1891 * that need to be shoved into hardware when running the guest. Note, omitting 1892 * an MSR here does _NOT_ mean it's not emulated, only that it will not be 1893 * loaded into hardware when running the guest. 1894 */ 1895 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx) 1896 { 1897 #ifdef CONFIG_X86_64 1898 bool load_syscall_msrs; 1899 1900 /* 1901 * The SYSCALL MSRs are only needed on long mode guests, and only 1902 * when EFER.SCE is set. 1903 */ 1904 load_syscall_msrs = is_long_mode(&vmx->vcpu) && 1905 (vmx->vcpu.arch.efer & EFER_SCE); 1906 1907 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs); 1908 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs); 1909 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs); 1910 #endif 1911 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx)); 1912 1913 vmx_setup_uret_msr(vmx, MSR_TSC_AUX, 1914 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) || 1915 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID)); 1916 1917 /* 1918 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new 1919 * kernel and old userspace. If those guests run on a tsx=off host, do 1920 * allow guests to use TSX_CTRL, but don't change the value in hardware 1921 * so that TSX remains always disabled. 1922 */ 1923 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM)); 1924 1925 /* 1926 * The set of MSRs to load may have changed, reload MSRs before the 1927 * next VM-Enter. 1928 */ 1929 vmx->guest_uret_msrs_loaded = false; 1930 } 1931 1932 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1933 { 1934 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1935 1936 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) 1937 return vmcs12->tsc_offset; 1938 1939 return 0; 1940 } 1941 1942 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1943 { 1944 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1945 1946 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) && 1947 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING)) 1948 return vmcs12->tsc_multiplier; 1949 1950 return kvm_caps.default_tsc_scaling_ratio; 1951 } 1952 1953 void vmx_write_tsc_offset(struct kvm_vcpu *vcpu) 1954 { 1955 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset); 1956 } 1957 1958 void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu) 1959 { 1960 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio); 1961 } 1962 1963 /* 1964 * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of 1965 * guest CPUID. Note, KVM allows userspace to set "VMX in SMX" to maintain 1966 * backwards compatibility even though KVM doesn't support emulating SMX. And 1967 * because userspace set "VMX in SMX", the guest must also be allowed to set it, 1968 * e.g. if the MSR is left unlocked and the guest does a RMW operation. 1969 */ 1970 #define KVM_SUPPORTED_FEATURE_CONTROL (FEAT_CTL_LOCKED | \ 1971 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | \ 1972 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \ 1973 FEAT_CTL_SGX_LC_ENABLED | \ 1974 FEAT_CTL_SGX_ENABLED | \ 1975 FEAT_CTL_LMCE_ENABLED) 1976 1977 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx, 1978 struct msr_data *msr) 1979 { 1980 uint64_t valid_bits; 1981 1982 /* 1983 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are 1984 * exposed to the guest. 1985 */ 1986 WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits & 1987 ~KVM_SUPPORTED_FEATURE_CONTROL); 1988 1989 if (!msr->host_initiated && 1990 (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED)) 1991 return false; 1992 1993 if (msr->host_initiated) 1994 valid_bits = KVM_SUPPORTED_FEATURE_CONTROL; 1995 else 1996 valid_bits = vmx->msr_ia32_feature_control_valid_bits; 1997 1998 return !(msr->data & ~valid_bits); 1999 } 2000 2001 int vmx_get_msr_feature(struct kvm_msr_entry *msr) 2002 { 2003 switch (msr->index) { 2004 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 2005 if (!nested) 2006 return 1; 2007 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); 2008 default: 2009 return KVM_MSR_RET_INVALID; 2010 } 2011 } 2012 2013 /* 2014 * Reads an msr value (of 'msr_info->index') into 'msr_info->data'. 2015 * Returns 0 on success, non-0 otherwise. 2016 * Assumes vcpu_load() was already called. 2017 */ 2018 int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2019 { 2020 struct vcpu_vmx *vmx = to_vmx(vcpu); 2021 struct vmx_uret_msr *msr; 2022 u32 index; 2023 2024 switch (msr_info->index) { 2025 #ifdef CONFIG_X86_64 2026 case MSR_FS_BASE: 2027 msr_info->data = vmcs_readl(GUEST_FS_BASE); 2028 break; 2029 case MSR_GS_BASE: 2030 msr_info->data = vmcs_readl(GUEST_GS_BASE); 2031 break; 2032 case MSR_KERNEL_GS_BASE: 2033 msr_info->data = vmx_read_guest_kernel_gs_base(vmx); 2034 break; 2035 #endif 2036 case MSR_EFER: 2037 return kvm_get_msr_common(vcpu, msr_info); 2038 case MSR_IA32_TSX_CTRL: 2039 if (!msr_info->host_initiated && 2040 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2041 return 1; 2042 goto find_uret_msr; 2043 case MSR_IA32_UMWAIT_CONTROL: 2044 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2045 return 1; 2046 2047 msr_info->data = vmx->msr_ia32_umwait_control; 2048 break; 2049 case MSR_IA32_SPEC_CTRL: 2050 if (!msr_info->host_initiated && 2051 !guest_has_spec_ctrl_msr(vcpu)) 2052 return 1; 2053 2054 msr_info->data = to_vmx(vcpu)->spec_ctrl; 2055 break; 2056 case MSR_IA32_SYSENTER_CS: 2057 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); 2058 break; 2059 case MSR_IA32_SYSENTER_EIP: 2060 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); 2061 break; 2062 case MSR_IA32_SYSENTER_ESP: 2063 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); 2064 break; 2065 case MSR_IA32_BNDCFGS: 2066 if (!kvm_mpx_supported() || 2067 (!msr_info->host_initiated && 2068 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 2069 return 1; 2070 msr_info->data = vmcs_read64(GUEST_BNDCFGS); 2071 break; 2072 case MSR_IA32_MCG_EXT_CTL: 2073 if (!msr_info->host_initiated && 2074 !(vmx->msr_ia32_feature_control & 2075 FEAT_CTL_LMCE_ENABLED)) 2076 return 1; 2077 msr_info->data = vcpu->arch.mcg_ext_ctl; 2078 break; 2079 case MSR_IA32_FEAT_CTL: 2080 msr_info->data = vmx->msr_ia32_feature_control; 2081 break; 2082 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2083 if (!msr_info->host_initiated && 2084 !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 2085 return 1; 2086 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash 2087 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0]; 2088 break; 2089 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 2090 if (!guest_can_use(vcpu, X86_FEATURE_VMX)) 2091 return 1; 2092 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, 2093 &msr_info->data)) 2094 return 1; 2095 #ifdef CONFIG_KVM_HYPERV 2096 /* 2097 * Enlightened VMCS v1 doesn't have certain VMCS fields but 2098 * instead of just ignoring the features, different Hyper-V 2099 * versions are either trying to use them and fail or do some 2100 * sanity checking and refuse to boot. Filter all unsupported 2101 * features out. 2102 */ 2103 if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu)) 2104 nested_evmcs_filter_control_msr(vcpu, msr_info->index, 2105 &msr_info->data); 2106 #endif 2107 break; 2108 case MSR_IA32_RTIT_CTL: 2109 if (!vmx_pt_mode_is_host_guest()) 2110 return 1; 2111 msr_info->data = vmx->pt_desc.guest.ctl; 2112 break; 2113 case MSR_IA32_RTIT_STATUS: 2114 if (!vmx_pt_mode_is_host_guest()) 2115 return 1; 2116 msr_info->data = vmx->pt_desc.guest.status; 2117 break; 2118 case MSR_IA32_RTIT_CR3_MATCH: 2119 if (!vmx_pt_mode_is_host_guest() || 2120 !intel_pt_validate_cap(vmx->pt_desc.caps, 2121 PT_CAP_cr3_filtering)) 2122 return 1; 2123 msr_info->data = vmx->pt_desc.guest.cr3_match; 2124 break; 2125 case MSR_IA32_RTIT_OUTPUT_BASE: 2126 if (!vmx_pt_mode_is_host_guest() || 2127 (!intel_pt_validate_cap(vmx->pt_desc.caps, 2128 PT_CAP_topa_output) && 2129 !intel_pt_validate_cap(vmx->pt_desc.caps, 2130 PT_CAP_single_range_output))) 2131 return 1; 2132 msr_info->data = vmx->pt_desc.guest.output_base; 2133 break; 2134 case MSR_IA32_RTIT_OUTPUT_MASK: 2135 if (!vmx_pt_mode_is_host_guest() || 2136 (!intel_pt_validate_cap(vmx->pt_desc.caps, 2137 PT_CAP_topa_output) && 2138 !intel_pt_validate_cap(vmx->pt_desc.caps, 2139 PT_CAP_single_range_output))) 2140 return 1; 2141 msr_info->data = vmx->pt_desc.guest.output_mask; 2142 break; 2143 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2144 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2145 if (!vmx_pt_mode_is_host_guest() || 2146 (index >= 2 * vmx->pt_desc.num_address_ranges)) 2147 return 1; 2148 if (index % 2) 2149 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; 2150 else 2151 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; 2152 break; 2153 case MSR_IA32_DEBUGCTLMSR: 2154 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL); 2155 break; 2156 default: 2157 find_uret_msr: 2158 msr = vmx_find_uret_msr(vmx, msr_info->index); 2159 if (msr) { 2160 msr_info->data = msr->data; 2161 break; 2162 } 2163 return kvm_get_msr_common(vcpu, msr_info); 2164 } 2165 2166 return 0; 2167 } 2168 2169 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu, 2170 u64 data) 2171 { 2172 #ifdef CONFIG_X86_64 2173 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 2174 return (u32)data; 2175 #endif 2176 return (unsigned long)data; 2177 } 2178 2179 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated) 2180 { 2181 u64 debugctl = 0; 2182 2183 if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) && 2184 (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))) 2185 debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT; 2186 2187 if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) && 2188 (host_initiated || intel_pmu_lbr_is_enabled(vcpu))) 2189 debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI; 2190 2191 return debugctl; 2192 } 2193 2194 /* 2195 * Writes msr value into the appropriate "register". 2196 * Returns 0 on success, non-0 otherwise. 2197 * Assumes vcpu_load() was already called. 2198 */ 2199 int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2200 { 2201 struct vcpu_vmx *vmx = to_vmx(vcpu); 2202 struct vmx_uret_msr *msr; 2203 int ret = 0; 2204 u32 msr_index = msr_info->index; 2205 u64 data = msr_info->data; 2206 u32 index; 2207 2208 switch (msr_index) { 2209 case MSR_EFER: 2210 ret = kvm_set_msr_common(vcpu, msr_info); 2211 break; 2212 #ifdef CONFIG_X86_64 2213 case MSR_FS_BASE: 2214 vmx_segment_cache_clear(vmx); 2215 vmcs_writel(GUEST_FS_BASE, data); 2216 break; 2217 case MSR_GS_BASE: 2218 vmx_segment_cache_clear(vmx); 2219 vmcs_writel(GUEST_GS_BASE, data); 2220 break; 2221 case MSR_KERNEL_GS_BASE: 2222 vmx_write_guest_kernel_gs_base(vmx, data); 2223 break; 2224 case MSR_IA32_XFD: 2225 ret = kvm_set_msr_common(vcpu, msr_info); 2226 /* 2227 * Always intercepting WRMSR could incur non-negligible 2228 * overhead given xfd might be changed frequently in 2229 * guest context switch. Disable write interception 2230 * upon the first write with a non-zero value (indicating 2231 * potential usage on dynamic xfeatures). Also update 2232 * exception bitmap to trap #NM for proper virtualization 2233 * of guest xfd_err. 2234 */ 2235 if (!ret && data) { 2236 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD, 2237 MSR_TYPE_RW); 2238 vcpu->arch.xfd_no_write_intercept = true; 2239 vmx_update_exception_bitmap(vcpu); 2240 } 2241 break; 2242 #endif 2243 case MSR_IA32_SYSENTER_CS: 2244 if (is_guest_mode(vcpu)) 2245 get_vmcs12(vcpu)->guest_sysenter_cs = data; 2246 vmcs_write32(GUEST_SYSENTER_CS, data); 2247 break; 2248 case MSR_IA32_SYSENTER_EIP: 2249 if (is_guest_mode(vcpu)) { 2250 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2251 get_vmcs12(vcpu)->guest_sysenter_eip = data; 2252 } 2253 vmcs_writel(GUEST_SYSENTER_EIP, data); 2254 break; 2255 case MSR_IA32_SYSENTER_ESP: 2256 if (is_guest_mode(vcpu)) { 2257 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2258 get_vmcs12(vcpu)->guest_sysenter_esp = data; 2259 } 2260 vmcs_writel(GUEST_SYSENTER_ESP, data); 2261 break; 2262 case MSR_IA32_DEBUGCTLMSR: { 2263 u64 invalid; 2264 2265 invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated); 2266 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) { 2267 kvm_pr_unimpl_wrmsr(vcpu, msr_index, data); 2268 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2269 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2270 } 2271 2272 if (invalid) 2273 return 1; 2274 2275 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls & 2276 VM_EXIT_SAVE_DEBUG_CONTROLS) 2277 get_vmcs12(vcpu)->guest_ia32_debugctl = data; 2278 2279 vmcs_write64(GUEST_IA32_DEBUGCTL, data); 2280 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event && 2281 (data & DEBUGCTLMSR_LBR)) 2282 intel_pmu_create_guest_lbr_event(vcpu); 2283 return 0; 2284 } 2285 case MSR_IA32_BNDCFGS: 2286 if (!kvm_mpx_supported() || 2287 (!msr_info->host_initiated && 2288 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 2289 return 1; 2290 if (is_noncanonical_address(data & PAGE_MASK, vcpu) || 2291 (data & MSR_IA32_BNDCFGS_RSVD)) 2292 return 1; 2293 2294 if (is_guest_mode(vcpu) && 2295 ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) || 2296 (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS))) 2297 get_vmcs12(vcpu)->guest_bndcfgs = data; 2298 2299 vmcs_write64(GUEST_BNDCFGS, data); 2300 break; 2301 case MSR_IA32_UMWAIT_CONTROL: 2302 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2303 return 1; 2304 2305 /* The reserved bit 1 and non-32 bit [63:32] should be zero */ 2306 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32))) 2307 return 1; 2308 2309 vmx->msr_ia32_umwait_control = data; 2310 break; 2311 case MSR_IA32_SPEC_CTRL: 2312 if (!msr_info->host_initiated && 2313 !guest_has_spec_ctrl_msr(vcpu)) 2314 return 1; 2315 2316 if (kvm_spec_ctrl_test_value(data)) 2317 return 1; 2318 2319 vmx->spec_ctrl = data; 2320 if (!data) 2321 break; 2322 2323 /* 2324 * For non-nested: 2325 * When it's written (to non-zero) for the first time, pass 2326 * it through. 2327 * 2328 * For nested: 2329 * The handling of the MSR bitmap for L2 guests is done in 2330 * nested_vmx_prepare_msr_bitmap. We should not touch the 2331 * vmcs02.msr_bitmap here since it gets completely overwritten 2332 * in the merging. We update the vmcs01 here for L1 as well 2333 * since it will end up touching the MSR anyway now. 2334 */ 2335 vmx_disable_intercept_for_msr(vcpu, 2336 MSR_IA32_SPEC_CTRL, 2337 MSR_TYPE_RW); 2338 break; 2339 case MSR_IA32_TSX_CTRL: 2340 if (!msr_info->host_initiated && 2341 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2342 return 1; 2343 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR)) 2344 return 1; 2345 goto find_uret_msr; 2346 case MSR_IA32_CR_PAT: 2347 ret = kvm_set_msr_common(vcpu, msr_info); 2348 if (ret) 2349 break; 2350 2351 if (is_guest_mode(vcpu) && 2352 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) 2353 get_vmcs12(vcpu)->guest_ia32_pat = data; 2354 2355 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 2356 vmcs_write64(GUEST_IA32_PAT, data); 2357 break; 2358 case MSR_IA32_MCG_EXT_CTL: 2359 if ((!msr_info->host_initiated && 2360 !(to_vmx(vcpu)->msr_ia32_feature_control & 2361 FEAT_CTL_LMCE_ENABLED)) || 2362 (data & ~MCG_EXT_CTL_LMCE_EN)) 2363 return 1; 2364 vcpu->arch.mcg_ext_ctl = data; 2365 break; 2366 case MSR_IA32_FEAT_CTL: 2367 if (!is_vmx_feature_control_msr_valid(vmx, msr_info)) 2368 return 1; 2369 2370 vmx->msr_ia32_feature_control = data; 2371 if (msr_info->host_initiated && data == 0) 2372 vmx_leave_nested(vcpu); 2373 2374 /* SGX may be enabled/disabled by guest's firmware */ 2375 vmx_write_encls_bitmap(vcpu, NULL); 2376 break; 2377 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2378 /* 2379 * On real hardware, the LE hash MSRs are writable before 2380 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX), 2381 * at which point SGX related bits in IA32_FEATURE_CONTROL 2382 * become writable. 2383 * 2384 * KVM does not emulate SGX activation for simplicity, so 2385 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL 2386 * is unlocked. This is technically not architectural 2387 * behavior, but it's close enough. 2388 */ 2389 if (!msr_info->host_initiated && 2390 (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) || 2391 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) && 2392 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED)))) 2393 return 1; 2394 vmx->msr_ia32_sgxlepubkeyhash 2395 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data; 2396 break; 2397 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 2398 if (!msr_info->host_initiated) 2399 return 1; /* they are read-only */ 2400 if (!guest_can_use(vcpu, X86_FEATURE_VMX)) 2401 return 1; 2402 return vmx_set_vmx_msr(vcpu, msr_index, data); 2403 case MSR_IA32_RTIT_CTL: 2404 if (!vmx_pt_mode_is_host_guest() || 2405 vmx_rtit_ctl_check(vcpu, data) || 2406 vmx->nested.vmxon) 2407 return 1; 2408 vmcs_write64(GUEST_IA32_RTIT_CTL, data); 2409 vmx->pt_desc.guest.ctl = data; 2410 pt_update_intercept_for_msr(vcpu); 2411 break; 2412 case MSR_IA32_RTIT_STATUS: 2413 if (!pt_can_write_msr(vmx)) 2414 return 1; 2415 if (data & MSR_IA32_RTIT_STATUS_MASK) 2416 return 1; 2417 vmx->pt_desc.guest.status = data; 2418 break; 2419 case MSR_IA32_RTIT_CR3_MATCH: 2420 if (!pt_can_write_msr(vmx)) 2421 return 1; 2422 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2423 PT_CAP_cr3_filtering)) 2424 return 1; 2425 vmx->pt_desc.guest.cr3_match = data; 2426 break; 2427 case MSR_IA32_RTIT_OUTPUT_BASE: 2428 if (!pt_can_write_msr(vmx)) 2429 return 1; 2430 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2431 PT_CAP_topa_output) && 2432 !intel_pt_validate_cap(vmx->pt_desc.caps, 2433 PT_CAP_single_range_output)) 2434 return 1; 2435 if (!pt_output_base_valid(vcpu, data)) 2436 return 1; 2437 vmx->pt_desc.guest.output_base = data; 2438 break; 2439 case MSR_IA32_RTIT_OUTPUT_MASK: 2440 if (!pt_can_write_msr(vmx)) 2441 return 1; 2442 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2443 PT_CAP_topa_output) && 2444 !intel_pt_validate_cap(vmx->pt_desc.caps, 2445 PT_CAP_single_range_output)) 2446 return 1; 2447 vmx->pt_desc.guest.output_mask = data; 2448 break; 2449 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2450 if (!pt_can_write_msr(vmx)) 2451 return 1; 2452 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2453 if (index >= 2 * vmx->pt_desc.num_address_ranges) 2454 return 1; 2455 if (is_noncanonical_address(data, vcpu)) 2456 return 1; 2457 if (index % 2) 2458 vmx->pt_desc.guest.addr_b[index / 2] = data; 2459 else 2460 vmx->pt_desc.guest.addr_a[index / 2] = data; 2461 break; 2462 case MSR_IA32_PERF_CAPABILITIES: 2463 if (data && !vcpu_to_pmu(vcpu)->version) 2464 return 1; 2465 if (data & PMU_CAP_LBR_FMT) { 2466 if ((data & PMU_CAP_LBR_FMT) != 2467 (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT)) 2468 return 1; 2469 if (!cpuid_model_is_consistent(vcpu)) 2470 return 1; 2471 } 2472 if (data & PERF_CAP_PEBS_FORMAT) { 2473 if ((data & PERF_CAP_PEBS_MASK) != 2474 (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK)) 2475 return 1; 2476 if (!guest_cpuid_has(vcpu, X86_FEATURE_DS)) 2477 return 1; 2478 if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64)) 2479 return 1; 2480 if (!cpuid_model_is_consistent(vcpu)) 2481 return 1; 2482 } 2483 ret = kvm_set_msr_common(vcpu, msr_info); 2484 break; 2485 2486 default: 2487 find_uret_msr: 2488 msr = vmx_find_uret_msr(vmx, msr_index); 2489 if (msr) 2490 ret = vmx_set_guest_uret_msr(vmx, msr, data); 2491 else 2492 ret = kvm_set_msr_common(vcpu, msr_info); 2493 } 2494 2495 /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */ 2496 if (msr_index == MSR_IA32_ARCH_CAPABILITIES) 2497 vmx_update_fb_clear_dis(vcpu, vmx); 2498 2499 return ret; 2500 } 2501 2502 void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 2503 { 2504 unsigned long guest_owned_bits; 2505 2506 kvm_register_mark_available(vcpu, reg); 2507 2508 switch (reg) { 2509 case VCPU_REGS_RSP: 2510 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); 2511 break; 2512 case VCPU_REGS_RIP: 2513 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); 2514 break; 2515 case VCPU_EXREG_PDPTR: 2516 if (enable_ept) 2517 ept_save_pdptrs(vcpu); 2518 break; 2519 case VCPU_EXREG_CR0: 2520 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; 2521 2522 vcpu->arch.cr0 &= ~guest_owned_bits; 2523 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits; 2524 break; 2525 case VCPU_EXREG_CR3: 2526 /* 2527 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's 2528 * CR3 is loaded into hardware, not the guest's CR3. 2529 */ 2530 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING)) 2531 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); 2532 break; 2533 case VCPU_EXREG_CR4: 2534 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; 2535 2536 vcpu->arch.cr4 &= ~guest_owned_bits; 2537 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits; 2538 break; 2539 default: 2540 KVM_BUG_ON(1, vcpu->kvm); 2541 break; 2542 } 2543 } 2544 2545 /* 2546 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID 2547 * directly instead of going through cpu_has(), to ensure KVM is trapping 2548 * ENCLS whenever it's supported in hardware. It does not matter whether 2549 * the host OS supports or has enabled SGX. 2550 */ 2551 static bool cpu_has_sgx(void) 2552 { 2553 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0)); 2554 } 2555 2556 /* 2557 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they 2558 * can't be used due to errata where VM Exit may incorrectly clear 2559 * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the 2560 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. 2561 */ 2562 static bool cpu_has_perf_global_ctrl_bug(void) 2563 { 2564 switch (boot_cpu_data.x86_vfm) { 2565 case INTEL_NEHALEM_EP: /* AAK155 */ 2566 case INTEL_NEHALEM: /* AAP115 */ 2567 case INTEL_WESTMERE: /* AAT100 */ 2568 case INTEL_WESTMERE_EP: /* BC86,AAY89,BD102 */ 2569 case INTEL_NEHALEM_EX: /* BA97 */ 2570 return true; 2571 default: 2572 break; 2573 } 2574 2575 return false; 2576 } 2577 2578 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result) 2579 { 2580 u32 vmx_msr_low, vmx_msr_high; 2581 u32 ctl = ctl_min | ctl_opt; 2582 2583 rdmsr(msr, vmx_msr_low, vmx_msr_high); 2584 2585 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ 2586 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ 2587 2588 /* Ensure minimum (required) set of control bits are supported. */ 2589 if (ctl_min & ~ctl) 2590 return -EIO; 2591 2592 *result = ctl; 2593 return 0; 2594 } 2595 2596 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr) 2597 { 2598 u64 allowed; 2599 2600 rdmsrl(msr, allowed); 2601 2602 return ctl_opt & allowed; 2603 } 2604 2605 static int setup_vmcs_config(struct vmcs_config *vmcs_conf, 2606 struct vmx_capability *vmx_cap) 2607 { 2608 u32 vmx_msr_low, vmx_msr_high; 2609 u32 _pin_based_exec_control = 0; 2610 u32 _cpu_based_exec_control = 0; 2611 u32 _cpu_based_2nd_exec_control = 0; 2612 u64 _cpu_based_3rd_exec_control = 0; 2613 u32 _vmexit_control = 0; 2614 u32 _vmentry_control = 0; 2615 u64 misc_msr; 2616 int i; 2617 2618 /* 2619 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory. 2620 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always 2621 * intercepts writes to PAT and EFER, i.e. never enables those controls. 2622 */ 2623 struct { 2624 u32 entry_control; 2625 u32 exit_control; 2626 } const vmcs_entry_exit_pairs[] = { 2627 { VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL }, 2628 { VM_ENTRY_LOAD_IA32_PAT, VM_EXIT_LOAD_IA32_PAT }, 2629 { VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER }, 2630 { VM_ENTRY_LOAD_BNDCFGS, VM_EXIT_CLEAR_BNDCFGS }, 2631 { VM_ENTRY_LOAD_IA32_RTIT_CTL, VM_EXIT_CLEAR_IA32_RTIT_CTL }, 2632 }; 2633 2634 memset(vmcs_conf, 0, sizeof(*vmcs_conf)); 2635 2636 if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL, 2637 KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL, 2638 MSR_IA32_VMX_PROCBASED_CTLS, 2639 &_cpu_based_exec_control)) 2640 return -EIO; 2641 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { 2642 if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL, 2643 KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL, 2644 MSR_IA32_VMX_PROCBASED_CTLS2, 2645 &_cpu_based_2nd_exec_control)) 2646 return -EIO; 2647 } 2648 if (!IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE)) 2649 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE; 2650 2651 #ifndef CONFIG_X86_64 2652 if (!(_cpu_based_2nd_exec_control & 2653 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 2654 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; 2655 #endif 2656 2657 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2658 _cpu_based_2nd_exec_control &= ~( 2659 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2660 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2661 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 2662 2663 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, 2664 &vmx_cap->ept, &vmx_cap->vpid); 2665 2666 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) && 2667 vmx_cap->ept) { 2668 pr_warn_once("EPT CAP should not exist if not support " 2669 "1-setting enable EPT VM-execution control\n"); 2670 2671 if (error_on_inconsistent_vmcs_config) 2672 return -EIO; 2673 2674 vmx_cap->ept = 0; 2675 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE; 2676 } 2677 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && 2678 vmx_cap->vpid) { 2679 pr_warn_once("VPID CAP should not exist if not support " 2680 "1-setting enable VPID VM-execution control\n"); 2681 2682 if (error_on_inconsistent_vmcs_config) 2683 return -EIO; 2684 2685 vmx_cap->vpid = 0; 2686 } 2687 2688 if (!cpu_has_sgx()) 2689 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING; 2690 2691 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS) 2692 _cpu_based_3rd_exec_control = 2693 adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL, 2694 MSR_IA32_VMX_PROCBASED_CTLS3); 2695 2696 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS, 2697 KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS, 2698 MSR_IA32_VMX_EXIT_CTLS, 2699 &_vmexit_control)) 2700 return -EIO; 2701 2702 if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL, 2703 KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL, 2704 MSR_IA32_VMX_PINBASED_CTLS, 2705 &_pin_based_exec_control)) 2706 return -EIO; 2707 2708 if (cpu_has_broken_vmx_preemption_timer()) 2709 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 2710 if (!(_cpu_based_2nd_exec_control & 2711 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) 2712 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; 2713 2714 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS, 2715 KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS, 2716 MSR_IA32_VMX_ENTRY_CTLS, 2717 &_vmentry_control)) 2718 return -EIO; 2719 2720 for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) { 2721 u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control; 2722 u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control; 2723 2724 if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl)) 2725 continue; 2726 2727 pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n", 2728 _vmentry_control & n_ctrl, _vmexit_control & x_ctrl); 2729 2730 if (error_on_inconsistent_vmcs_config) 2731 return -EIO; 2732 2733 _vmentry_control &= ~n_ctrl; 2734 _vmexit_control &= ~x_ctrl; 2735 } 2736 2737 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); 2738 2739 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ 2740 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) 2741 return -EIO; 2742 2743 #ifdef CONFIG_X86_64 2744 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ 2745 if (vmx_msr_high & (1u<<16)) 2746 return -EIO; 2747 #endif 2748 2749 /* Require Write-Back (WB) memory type for VMCS accesses. */ 2750 if (((vmx_msr_high >> 18) & 15) != 6) 2751 return -EIO; 2752 2753 rdmsrl(MSR_IA32_VMX_MISC, misc_msr); 2754 2755 vmcs_conf->size = vmx_msr_high & 0x1fff; 2756 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; 2757 2758 vmcs_conf->revision_id = vmx_msr_low; 2759 2760 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; 2761 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; 2762 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; 2763 vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control; 2764 vmcs_conf->vmexit_ctrl = _vmexit_control; 2765 vmcs_conf->vmentry_ctrl = _vmentry_control; 2766 vmcs_conf->misc = misc_msr; 2767 2768 #if IS_ENABLED(CONFIG_HYPERV) 2769 if (enlightened_vmcs) 2770 evmcs_sanitize_exec_ctrls(vmcs_conf); 2771 #endif 2772 2773 return 0; 2774 } 2775 2776 static bool __kvm_is_vmx_supported(void) 2777 { 2778 int cpu = smp_processor_id(); 2779 2780 if (!(cpuid_ecx(1) & feature_bit(VMX))) { 2781 pr_err("VMX not supported by CPU %d\n", cpu); 2782 return false; 2783 } 2784 2785 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 2786 !this_cpu_has(X86_FEATURE_VMX)) { 2787 pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu); 2788 return false; 2789 } 2790 2791 return true; 2792 } 2793 2794 static bool kvm_is_vmx_supported(void) 2795 { 2796 bool supported; 2797 2798 migrate_disable(); 2799 supported = __kvm_is_vmx_supported(); 2800 migrate_enable(); 2801 2802 return supported; 2803 } 2804 2805 int vmx_check_processor_compat(void) 2806 { 2807 int cpu = raw_smp_processor_id(); 2808 struct vmcs_config vmcs_conf; 2809 struct vmx_capability vmx_cap; 2810 2811 if (!__kvm_is_vmx_supported()) 2812 return -EIO; 2813 2814 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) { 2815 pr_err("Failed to setup VMCS config on CPU %d\n", cpu); 2816 return -EIO; 2817 } 2818 if (nested) 2819 nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept); 2820 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) { 2821 pr_err("Inconsistent VMCS config on CPU %d\n", cpu); 2822 return -EIO; 2823 } 2824 return 0; 2825 } 2826 2827 static int kvm_cpu_vmxon(u64 vmxon_pointer) 2828 { 2829 u64 msr; 2830 2831 cr4_set_bits(X86_CR4_VMXE); 2832 2833 asm goto("1: vmxon %[vmxon_pointer]\n\t" 2834 _ASM_EXTABLE(1b, %l[fault]) 2835 : : [vmxon_pointer] "m"(vmxon_pointer) 2836 : : fault); 2837 return 0; 2838 2839 fault: 2840 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n", 2841 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr); 2842 cr4_clear_bits(X86_CR4_VMXE); 2843 2844 return -EFAULT; 2845 } 2846 2847 int vmx_hardware_enable(void) 2848 { 2849 int cpu = raw_smp_processor_id(); 2850 u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); 2851 int r; 2852 2853 if (cr4_read_shadow() & X86_CR4_VMXE) 2854 return -EBUSY; 2855 2856 /* 2857 * This can happen if we hot-added a CPU but failed to allocate 2858 * VP assist page for it. 2859 */ 2860 if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu)) 2861 return -EFAULT; 2862 2863 intel_pt_handle_vmx(1); 2864 2865 r = kvm_cpu_vmxon(phys_addr); 2866 if (r) { 2867 intel_pt_handle_vmx(0); 2868 return r; 2869 } 2870 2871 return 0; 2872 } 2873 2874 static void vmclear_local_loaded_vmcss(void) 2875 { 2876 int cpu = raw_smp_processor_id(); 2877 struct loaded_vmcs *v, *n; 2878 2879 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), 2880 loaded_vmcss_on_cpu_link) 2881 __loaded_vmcs_clear(v); 2882 } 2883 2884 void vmx_hardware_disable(void) 2885 { 2886 vmclear_local_loaded_vmcss(); 2887 2888 if (kvm_cpu_vmxoff()) 2889 kvm_spurious_fault(); 2890 2891 hv_reset_evmcs(); 2892 2893 intel_pt_handle_vmx(0); 2894 } 2895 2896 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags) 2897 { 2898 int node = cpu_to_node(cpu); 2899 struct page *pages; 2900 struct vmcs *vmcs; 2901 2902 pages = __alloc_pages_node(node, flags, 0); 2903 if (!pages) 2904 return NULL; 2905 vmcs = page_address(pages); 2906 memset(vmcs, 0, vmcs_config.size); 2907 2908 /* KVM supports Enlightened VMCS v1 only */ 2909 if (kvm_is_using_evmcs()) 2910 vmcs->hdr.revision_id = KVM_EVMCS_VERSION; 2911 else 2912 vmcs->hdr.revision_id = vmcs_config.revision_id; 2913 2914 if (shadow) 2915 vmcs->hdr.shadow_vmcs = 1; 2916 return vmcs; 2917 } 2918 2919 void free_vmcs(struct vmcs *vmcs) 2920 { 2921 free_page((unsigned long)vmcs); 2922 } 2923 2924 /* 2925 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded 2926 */ 2927 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2928 { 2929 if (!loaded_vmcs->vmcs) 2930 return; 2931 loaded_vmcs_clear(loaded_vmcs); 2932 free_vmcs(loaded_vmcs->vmcs); 2933 loaded_vmcs->vmcs = NULL; 2934 if (loaded_vmcs->msr_bitmap) 2935 free_page((unsigned long)loaded_vmcs->msr_bitmap); 2936 WARN_ON(loaded_vmcs->shadow_vmcs != NULL); 2937 } 2938 2939 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2940 { 2941 loaded_vmcs->vmcs = alloc_vmcs(false); 2942 if (!loaded_vmcs->vmcs) 2943 return -ENOMEM; 2944 2945 vmcs_clear(loaded_vmcs->vmcs); 2946 2947 loaded_vmcs->shadow_vmcs = NULL; 2948 loaded_vmcs->hv_timer_soft_disabled = false; 2949 loaded_vmcs->cpu = -1; 2950 loaded_vmcs->launched = 0; 2951 2952 if (cpu_has_vmx_msr_bitmap()) { 2953 loaded_vmcs->msr_bitmap = (unsigned long *) 2954 __get_free_page(GFP_KERNEL_ACCOUNT); 2955 if (!loaded_vmcs->msr_bitmap) 2956 goto out_vmcs; 2957 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); 2958 } 2959 2960 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); 2961 memset(&loaded_vmcs->controls_shadow, 0, 2962 sizeof(struct vmcs_controls_shadow)); 2963 2964 return 0; 2965 2966 out_vmcs: 2967 free_loaded_vmcs(loaded_vmcs); 2968 return -ENOMEM; 2969 } 2970 2971 static void free_kvm_area(void) 2972 { 2973 int cpu; 2974 2975 for_each_possible_cpu(cpu) { 2976 free_vmcs(per_cpu(vmxarea, cpu)); 2977 per_cpu(vmxarea, cpu) = NULL; 2978 } 2979 } 2980 2981 static __init int alloc_kvm_area(void) 2982 { 2983 int cpu; 2984 2985 for_each_possible_cpu(cpu) { 2986 struct vmcs *vmcs; 2987 2988 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL); 2989 if (!vmcs) { 2990 free_kvm_area(); 2991 return -ENOMEM; 2992 } 2993 2994 /* 2995 * When eVMCS is enabled, alloc_vmcs_cpu() sets 2996 * vmcs->revision_id to KVM_EVMCS_VERSION instead of 2997 * revision_id reported by MSR_IA32_VMX_BASIC. 2998 * 2999 * However, even though not explicitly documented by 3000 * TLFS, VMXArea passed as VMXON argument should 3001 * still be marked with revision_id reported by 3002 * physical CPU. 3003 */ 3004 if (kvm_is_using_evmcs()) 3005 vmcs->hdr.revision_id = vmcs_config.revision_id; 3006 3007 per_cpu(vmxarea, cpu) = vmcs; 3008 } 3009 return 0; 3010 } 3011 3012 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, 3013 struct kvm_segment *save) 3014 { 3015 if (!emulate_invalid_guest_state) { 3016 /* 3017 * CS and SS RPL should be equal during guest entry according 3018 * to VMX spec, but in reality it is not always so. Since vcpu 3019 * is in the middle of the transition from real mode to 3020 * protected mode it is safe to assume that RPL 0 is a good 3021 * default value. 3022 */ 3023 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) 3024 save->selector &= ~SEGMENT_RPL_MASK; 3025 save->dpl = save->selector & SEGMENT_RPL_MASK; 3026 save->s = 1; 3027 } 3028 __vmx_set_segment(vcpu, save, seg); 3029 } 3030 3031 static void enter_pmode(struct kvm_vcpu *vcpu) 3032 { 3033 unsigned long flags; 3034 struct vcpu_vmx *vmx = to_vmx(vcpu); 3035 3036 /* 3037 * Update real mode segment cache. It may be not up-to-date if segment 3038 * register was written while vcpu was in a guest mode. 3039 */ 3040 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 3041 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 3042 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 3043 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 3044 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 3045 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 3046 3047 vmx->rmode.vm86_active = 0; 3048 3049 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 3050 3051 flags = vmcs_readl(GUEST_RFLAGS); 3052 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 3053 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 3054 vmcs_writel(GUEST_RFLAGS, flags); 3055 3056 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | 3057 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); 3058 3059 vmx_update_exception_bitmap(vcpu); 3060 3061 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 3062 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 3063 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 3064 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 3065 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 3066 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 3067 } 3068 3069 static void fix_rmode_seg(int seg, struct kvm_segment *save) 3070 { 3071 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3072 struct kvm_segment var = *save; 3073 3074 var.dpl = 0x3; 3075 if (seg == VCPU_SREG_CS) 3076 var.type = 0x3; 3077 3078 if (!emulate_invalid_guest_state) { 3079 var.selector = var.base >> 4; 3080 var.base = var.base & 0xffff0; 3081 var.limit = 0xffff; 3082 var.g = 0; 3083 var.db = 0; 3084 var.present = 1; 3085 var.s = 1; 3086 var.l = 0; 3087 var.unusable = 0; 3088 var.type = 0x3; 3089 var.avl = 0; 3090 if (save->base & 0xf) 3091 pr_warn_once("segment base is not paragraph aligned " 3092 "when entering protected mode (seg=%d)", seg); 3093 } 3094 3095 vmcs_write16(sf->selector, var.selector); 3096 vmcs_writel(sf->base, var.base); 3097 vmcs_write32(sf->limit, var.limit); 3098 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); 3099 } 3100 3101 static void enter_rmode(struct kvm_vcpu *vcpu) 3102 { 3103 unsigned long flags; 3104 struct vcpu_vmx *vmx = to_vmx(vcpu); 3105 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); 3106 3107 /* 3108 * KVM should never use VM86 to virtualize Real Mode when L2 is active, 3109 * as using VM86 is unnecessary if unrestricted guest is enabled, and 3110 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0 3111 * should VM-Fail and KVM should reject userspace attempts to stuff 3112 * CR0.PG=0 when L2 is active. 3113 */ 3114 WARN_ON_ONCE(is_guest_mode(vcpu)); 3115 3116 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 3117 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 3118 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 3119 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 3120 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 3121 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 3122 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 3123 3124 vmx->rmode.vm86_active = 1; 3125 3126 vmx_segment_cache_clear(vmx); 3127 3128 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); 3129 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); 3130 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 3131 3132 flags = vmcs_readl(GUEST_RFLAGS); 3133 vmx->rmode.save_rflags = flags; 3134 3135 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 3136 3137 vmcs_writel(GUEST_RFLAGS, flags); 3138 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); 3139 vmx_update_exception_bitmap(vcpu); 3140 3141 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 3142 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 3143 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 3144 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 3145 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 3146 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 3147 } 3148 3149 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) 3150 { 3151 struct vcpu_vmx *vmx = to_vmx(vcpu); 3152 3153 /* Nothing to do if hardware doesn't support EFER. */ 3154 if (!vmx_find_uret_msr(vmx, MSR_EFER)) 3155 return 0; 3156 3157 vcpu->arch.efer = efer; 3158 #ifdef CONFIG_X86_64 3159 if (efer & EFER_LMA) 3160 vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE); 3161 else 3162 vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE); 3163 #else 3164 if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm)) 3165 return 1; 3166 #endif 3167 3168 vmx_setup_uret_msrs(vmx); 3169 return 0; 3170 } 3171 3172 #ifdef CONFIG_X86_64 3173 3174 static void enter_lmode(struct kvm_vcpu *vcpu) 3175 { 3176 u32 guest_tr_ar; 3177 3178 vmx_segment_cache_clear(to_vmx(vcpu)); 3179 3180 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); 3181 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { 3182 pr_debug_ratelimited("%s: tss fixup for long mode. \n", 3183 __func__); 3184 vmcs_write32(GUEST_TR_AR_BYTES, 3185 (guest_tr_ar & ~VMX_AR_TYPE_MASK) 3186 | VMX_AR_TYPE_BUSY_64_TSS); 3187 } 3188 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); 3189 } 3190 3191 static void exit_lmode(struct kvm_vcpu *vcpu) 3192 { 3193 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); 3194 } 3195 3196 #endif 3197 3198 void vmx_flush_tlb_all(struct kvm_vcpu *vcpu) 3199 { 3200 struct vcpu_vmx *vmx = to_vmx(vcpu); 3201 3202 /* 3203 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as 3204 * the CPU is not required to invalidate guest-physical mappings on 3205 * VM-Entry, even if VPID is disabled. Guest-physical mappings are 3206 * associated with the root EPT structure and not any particular VPID 3207 * (INVVPID also isn't required to invalidate guest-physical mappings). 3208 */ 3209 if (enable_ept) { 3210 ept_sync_global(); 3211 } else if (enable_vpid) { 3212 if (cpu_has_vmx_invvpid_global()) { 3213 vpid_sync_vcpu_global(); 3214 } else { 3215 vpid_sync_vcpu_single(vmx->vpid); 3216 vpid_sync_vcpu_single(vmx->nested.vpid02); 3217 } 3218 } 3219 } 3220 3221 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu) 3222 { 3223 if (is_guest_mode(vcpu)) 3224 return nested_get_vpid02(vcpu); 3225 return to_vmx(vcpu)->vpid; 3226 } 3227 3228 void vmx_flush_tlb_current(struct kvm_vcpu *vcpu) 3229 { 3230 struct kvm_mmu *mmu = vcpu->arch.mmu; 3231 u64 root_hpa = mmu->root.hpa; 3232 3233 /* No flush required if the current context is invalid. */ 3234 if (!VALID_PAGE(root_hpa)) 3235 return; 3236 3237 if (enable_ept) 3238 ept_sync_context(construct_eptp(vcpu, root_hpa, 3239 mmu->root_role.level)); 3240 else 3241 vpid_sync_context(vmx_get_current_vpid(vcpu)); 3242 } 3243 3244 void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) 3245 { 3246 /* 3247 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in 3248 * vmx_flush_tlb_guest() for an explanation of why this is ok. 3249 */ 3250 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr); 3251 } 3252 3253 void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu) 3254 { 3255 /* 3256 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a 3257 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are 3258 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is 3259 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed), 3260 * i.e. no explicit INVVPID is necessary. 3261 */ 3262 vpid_sync_context(vmx_get_current_vpid(vcpu)); 3263 } 3264 3265 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu) 3266 { 3267 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 3268 3269 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR)) 3270 return; 3271 3272 if (is_pae_paging(vcpu)) { 3273 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); 3274 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); 3275 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); 3276 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); 3277 } 3278 } 3279 3280 void ept_save_pdptrs(struct kvm_vcpu *vcpu) 3281 { 3282 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 3283 3284 if (WARN_ON_ONCE(!is_pae_paging(vcpu))) 3285 return; 3286 3287 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); 3288 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); 3289 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); 3290 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); 3291 3292 kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR); 3293 } 3294 3295 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \ 3296 CPU_BASED_CR3_STORE_EXITING) 3297 3298 bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 3299 { 3300 if (is_guest_mode(vcpu)) 3301 return nested_guest_cr0_valid(vcpu, cr0); 3302 3303 if (to_vmx(vcpu)->nested.vmxon) 3304 return nested_host_cr0_valid(vcpu, cr0); 3305 3306 return true; 3307 } 3308 3309 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 3310 { 3311 struct vcpu_vmx *vmx = to_vmx(vcpu); 3312 unsigned long hw_cr0, old_cr0_pg; 3313 u32 tmp; 3314 3315 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG); 3316 3317 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); 3318 if (enable_unrestricted_guest) 3319 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; 3320 else { 3321 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; 3322 if (!enable_ept) 3323 hw_cr0 |= X86_CR0_WP; 3324 3325 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) 3326 enter_pmode(vcpu); 3327 3328 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) 3329 enter_rmode(vcpu); 3330 } 3331 3332 vmcs_writel(CR0_READ_SHADOW, cr0); 3333 vmcs_writel(GUEST_CR0, hw_cr0); 3334 vcpu->arch.cr0 = cr0; 3335 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0); 3336 3337 #ifdef CONFIG_X86_64 3338 if (vcpu->arch.efer & EFER_LME) { 3339 if (!old_cr0_pg && (cr0 & X86_CR0_PG)) 3340 enter_lmode(vcpu); 3341 else if (old_cr0_pg && !(cr0 & X86_CR0_PG)) 3342 exit_lmode(vcpu); 3343 } 3344 #endif 3345 3346 if (enable_ept && !enable_unrestricted_guest) { 3347 /* 3348 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If 3349 * the below code _enables_ CR3 exiting, vmx_cache_reg() will 3350 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks 3351 * KVM's CR3 is installed. 3352 */ 3353 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3)) 3354 vmx_cache_reg(vcpu, VCPU_EXREG_CR3); 3355 3356 /* 3357 * When running with EPT but not unrestricted guest, KVM must 3358 * intercept CR3 accesses when paging is _disabled_. This is 3359 * necessary because restricted guests can't actually run with 3360 * paging disabled, and so KVM stuffs its own CR3 in order to 3361 * run the guest when identity mapped page tables. 3362 * 3363 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the 3364 * update, it may be stale with respect to CR3 interception, 3365 * e.g. after nested VM-Enter. 3366 * 3367 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or 3368 * stores to forward them to L1, even if KVM does not need to 3369 * intercept them to preserve its identity mapped page tables. 3370 */ 3371 if (!(cr0 & X86_CR0_PG)) { 3372 exec_controls_setbit(vmx, CR3_EXITING_BITS); 3373 } else if (!is_guest_mode(vcpu)) { 3374 exec_controls_clearbit(vmx, CR3_EXITING_BITS); 3375 } else { 3376 tmp = exec_controls_get(vmx); 3377 tmp &= ~CR3_EXITING_BITS; 3378 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS; 3379 exec_controls_set(vmx, tmp); 3380 } 3381 3382 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */ 3383 if ((old_cr0_pg ^ cr0) & X86_CR0_PG) 3384 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 3385 3386 /* 3387 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but 3388 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG. 3389 */ 3390 if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG)) 3391 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 3392 } 3393 3394 /* depends on vcpu->arch.cr0 to be set to a new value */ 3395 vmx->emulation_required = vmx_emulation_required(vcpu); 3396 } 3397 3398 static int vmx_get_max_ept_level(void) 3399 { 3400 if (cpu_has_vmx_ept_5levels()) 3401 return 5; 3402 return 4; 3403 } 3404 3405 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level) 3406 { 3407 u64 eptp = VMX_EPTP_MT_WB; 3408 3409 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; 3410 3411 if (enable_ept_ad_bits && 3412 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) 3413 eptp |= VMX_EPTP_AD_ENABLE_BIT; 3414 eptp |= root_hpa; 3415 3416 return eptp; 3417 } 3418 3419 void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level) 3420 { 3421 struct kvm *kvm = vcpu->kvm; 3422 bool update_guest_cr3 = true; 3423 unsigned long guest_cr3; 3424 u64 eptp; 3425 3426 if (enable_ept) { 3427 eptp = construct_eptp(vcpu, root_hpa, root_level); 3428 vmcs_write64(EPT_POINTER, eptp); 3429 3430 hv_track_root_tdp(vcpu, root_hpa); 3431 3432 if (!enable_unrestricted_guest && !is_paging(vcpu)) 3433 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; 3434 else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3)) 3435 guest_cr3 = vcpu->arch.cr3; 3436 else /* vmcs.GUEST_CR3 is already up-to-date. */ 3437 update_guest_cr3 = false; 3438 vmx_ept_load_pdptrs(vcpu); 3439 } else { 3440 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu) | 3441 kvm_get_active_cr3_lam_bits(vcpu); 3442 } 3443 3444 if (update_guest_cr3) 3445 vmcs_writel(GUEST_CR3, guest_cr3); 3446 } 3447 3448 bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3449 { 3450 /* 3451 * We operate under the default treatment of SMM, so VMX cannot be 3452 * enabled under SMM. Note, whether or not VMXE is allowed at all, 3453 * i.e. is a reserved bit, is handled by common x86 code. 3454 */ 3455 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu)) 3456 return false; 3457 3458 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) 3459 return false; 3460 3461 return true; 3462 } 3463 3464 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3465 { 3466 unsigned long old_cr4 = kvm_read_cr4(vcpu); 3467 struct vcpu_vmx *vmx = to_vmx(vcpu); 3468 unsigned long hw_cr4; 3469 3470 /* 3471 * Pass through host's Machine Check Enable value to hw_cr4, which 3472 * is in force while we are in guest mode. Do not let guests control 3473 * this bit, even if host CR4.MCE == 0. 3474 */ 3475 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); 3476 if (enable_unrestricted_guest) 3477 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; 3478 else if (vmx->rmode.vm86_active) 3479 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; 3480 else 3481 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; 3482 3483 if (vmx_umip_emulated()) { 3484 if (cr4 & X86_CR4_UMIP) { 3485 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC); 3486 hw_cr4 &= ~X86_CR4_UMIP; 3487 } else if (!is_guest_mode(vcpu) || 3488 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) { 3489 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC); 3490 } 3491 } 3492 3493 vcpu->arch.cr4 = cr4; 3494 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4); 3495 3496 if (!enable_unrestricted_guest) { 3497 if (enable_ept) { 3498 if (!is_paging(vcpu)) { 3499 hw_cr4 &= ~X86_CR4_PAE; 3500 hw_cr4 |= X86_CR4_PSE; 3501 } else if (!(cr4 & X86_CR4_PAE)) { 3502 hw_cr4 &= ~X86_CR4_PAE; 3503 } 3504 } 3505 3506 /* 3507 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in 3508 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs 3509 * to be manually disabled when guest switches to non-paging 3510 * mode. 3511 * 3512 * If !enable_unrestricted_guest, the CPU is always running 3513 * with CR0.PG=1 and CR4 needs to be modified. 3514 * If enable_unrestricted_guest, the CPU automatically 3515 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. 3516 */ 3517 if (!is_paging(vcpu)) 3518 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 3519 } 3520 3521 vmcs_writel(CR4_READ_SHADOW, cr4); 3522 vmcs_writel(GUEST_CR4, hw_cr4); 3523 3524 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 3525 kvm_update_cpuid_runtime(vcpu); 3526 } 3527 3528 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3529 { 3530 struct vcpu_vmx *vmx = to_vmx(vcpu); 3531 u32 ar; 3532 3533 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3534 *var = vmx->rmode.segs[seg]; 3535 if (seg == VCPU_SREG_TR 3536 || var->selector == vmx_read_guest_seg_selector(vmx, seg)) 3537 return; 3538 var->base = vmx_read_guest_seg_base(vmx, seg); 3539 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3540 return; 3541 } 3542 var->base = vmx_read_guest_seg_base(vmx, seg); 3543 var->limit = vmx_read_guest_seg_limit(vmx, seg); 3544 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3545 ar = vmx_read_guest_seg_ar(vmx, seg); 3546 var->unusable = (ar >> 16) & 1; 3547 var->type = ar & 15; 3548 var->s = (ar >> 4) & 1; 3549 var->dpl = (ar >> 5) & 3; 3550 /* 3551 * Some userspaces do not preserve unusable property. Since usable 3552 * segment has to be present according to VMX spec we can use present 3553 * property to amend userspace bug by making unusable segment always 3554 * nonpresent. vmx_segment_access_rights() already marks nonpresent 3555 * segment as unusable. 3556 */ 3557 var->present = !var->unusable; 3558 var->avl = (ar >> 12) & 1; 3559 var->l = (ar >> 13) & 1; 3560 var->db = (ar >> 14) & 1; 3561 var->g = (ar >> 15) & 1; 3562 } 3563 3564 u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) 3565 { 3566 struct kvm_segment s; 3567 3568 if (to_vmx(vcpu)->rmode.vm86_active) { 3569 vmx_get_segment(vcpu, &s, seg); 3570 return s.base; 3571 } 3572 return vmx_read_guest_seg_base(to_vmx(vcpu), seg); 3573 } 3574 3575 int vmx_get_cpl(struct kvm_vcpu *vcpu) 3576 { 3577 struct vcpu_vmx *vmx = to_vmx(vcpu); 3578 3579 if (unlikely(vmx->rmode.vm86_active)) 3580 return 0; 3581 else { 3582 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); 3583 return VMX_AR_DPL(ar); 3584 } 3585 } 3586 3587 static u32 vmx_segment_access_rights(struct kvm_segment *var) 3588 { 3589 u32 ar; 3590 3591 ar = var->type & 15; 3592 ar |= (var->s & 1) << 4; 3593 ar |= (var->dpl & 3) << 5; 3594 ar |= (var->present & 1) << 7; 3595 ar |= (var->avl & 1) << 12; 3596 ar |= (var->l & 1) << 13; 3597 ar |= (var->db & 1) << 14; 3598 ar |= (var->g & 1) << 15; 3599 ar |= (var->unusable || !var->present) << 16; 3600 3601 return ar; 3602 } 3603 3604 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3605 { 3606 struct vcpu_vmx *vmx = to_vmx(vcpu); 3607 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3608 3609 vmx_segment_cache_clear(vmx); 3610 3611 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3612 vmx->rmode.segs[seg] = *var; 3613 if (seg == VCPU_SREG_TR) 3614 vmcs_write16(sf->selector, var->selector); 3615 else if (var->s) 3616 fix_rmode_seg(seg, &vmx->rmode.segs[seg]); 3617 return; 3618 } 3619 3620 vmcs_writel(sf->base, var->base); 3621 vmcs_write32(sf->limit, var->limit); 3622 vmcs_write16(sf->selector, var->selector); 3623 3624 /* 3625 * Fix the "Accessed" bit in AR field of segment registers for older 3626 * qemu binaries. 3627 * IA32 arch specifies that at the time of processor reset the 3628 * "Accessed" bit in the AR field of segment registers is 1. And qemu 3629 * is setting it to 0 in the userland code. This causes invalid guest 3630 * state vmexit when "unrestricted guest" mode is turned on. 3631 * Fix for this setup issue in cpu_reset is being pushed in the qemu 3632 * tree. Newer qemu binaries with that qemu fix would not need this 3633 * kvm hack. 3634 */ 3635 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR)) 3636 var->type |= 0x1; /* Accessed */ 3637 3638 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); 3639 } 3640 3641 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3642 { 3643 __vmx_set_segment(vcpu, var, seg); 3644 3645 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu); 3646 } 3647 3648 void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 3649 { 3650 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); 3651 3652 *db = (ar >> 14) & 1; 3653 *l = (ar >> 13) & 1; 3654 } 3655 3656 void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3657 { 3658 dt->size = vmcs_read32(GUEST_IDTR_LIMIT); 3659 dt->address = vmcs_readl(GUEST_IDTR_BASE); 3660 } 3661 3662 void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3663 { 3664 vmcs_write32(GUEST_IDTR_LIMIT, dt->size); 3665 vmcs_writel(GUEST_IDTR_BASE, dt->address); 3666 } 3667 3668 void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3669 { 3670 dt->size = vmcs_read32(GUEST_GDTR_LIMIT); 3671 dt->address = vmcs_readl(GUEST_GDTR_BASE); 3672 } 3673 3674 void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3675 { 3676 vmcs_write32(GUEST_GDTR_LIMIT, dt->size); 3677 vmcs_writel(GUEST_GDTR_BASE, dt->address); 3678 } 3679 3680 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) 3681 { 3682 struct kvm_segment var; 3683 u32 ar; 3684 3685 vmx_get_segment(vcpu, &var, seg); 3686 var.dpl = 0x3; 3687 if (seg == VCPU_SREG_CS) 3688 var.type = 0x3; 3689 ar = vmx_segment_access_rights(&var); 3690 3691 if (var.base != (var.selector << 4)) 3692 return false; 3693 if (var.limit != 0xffff) 3694 return false; 3695 if (ar != 0xf3) 3696 return false; 3697 3698 return true; 3699 } 3700 3701 static bool code_segment_valid(struct kvm_vcpu *vcpu) 3702 { 3703 struct kvm_segment cs; 3704 unsigned int cs_rpl; 3705 3706 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3707 cs_rpl = cs.selector & SEGMENT_RPL_MASK; 3708 3709 if (cs.unusable) 3710 return false; 3711 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) 3712 return false; 3713 if (!cs.s) 3714 return false; 3715 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { 3716 if (cs.dpl > cs_rpl) 3717 return false; 3718 } else { 3719 if (cs.dpl != cs_rpl) 3720 return false; 3721 } 3722 if (!cs.present) 3723 return false; 3724 3725 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ 3726 return true; 3727 } 3728 3729 static bool stack_segment_valid(struct kvm_vcpu *vcpu) 3730 { 3731 struct kvm_segment ss; 3732 unsigned int ss_rpl; 3733 3734 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3735 ss_rpl = ss.selector & SEGMENT_RPL_MASK; 3736 3737 if (ss.unusable) 3738 return true; 3739 if (ss.type != 3 && ss.type != 7) 3740 return false; 3741 if (!ss.s) 3742 return false; 3743 if (ss.dpl != ss_rpl) /* DPL != RPL */ 3744 return false; 3745 if (!ss.present) 3746 return false; 3747 3748 return true; 3749 } 3750 3751 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) 3752 { 3753 struct kvm_segment var; 3754 unsigned int rpl; 3755 3756 vmx_get_segment(vcpu, &var, seg); 3757 rpl = var.selector & SEGMENT_RPL_MASK; 3758 3759 if (var.unusable) 3760 return true; 3761 if (!var.s) 3762 return false; 3763 if (!var.present) 3764 return false; 3765 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { 3766 if (var.dpl < rpl) /* DPL < RPL */ 3767 return false; 3768 } 3769 3770 /* TODO: Add other members to kvm_segment_field to allow checking for other access 3771 * rights flags 3772 */ 3773 return true; 3774 } 3775 3776 static bool tr_valid(struct kvm_vcpu *vcpu) 3777 { 3778 struct kvm_segment tr; 3779 3780 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); 3781 3782 if (tr.unusable) 3783 return false; 3784 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3785 return false; 3786 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ 3787 return false; 3788 if (!tr.present) 3789 return false; 3790 3791 return true; 3792 } 3793 3794 static bool ldtr_valid(struct kvm_vcpu *vcpu) 3795 { 3796 struct kvm_segment ldtr; 3797 3798 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); 3799 3800 if (ldtr.unusable) 3801 return true; 3802 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3803 return false; 3804 if (ldtr.type != 2) 3805 return false; 3806 if (!ldtr.present) 3807 return false; 3808 3809 return true; 3810 } 3811 3812 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) 3813 { 3814 struct kvm_segment cs, ss; 3815 3816 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3817 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3818 3819 return ((cs.selector & SEGMENT_RPL_MASK) == 3820 (ss.selector & SEGMENT_RPL_MASK)); 3821 } 3822 3823 /* 3824 * Check if guest state is valid. Returns true if valid, false if 3825 * not. 3826 * We assume that registers are always usable 3827 */ 3828 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu) 3829 { 3830 /* real mode guest state checks */ 3831 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { 3832 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) 3833 return false; 3834 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) 3835 return false; 3836 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) 3837 return false; 3838 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) 3839 return false; 3840 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) 3841 return false; 3842 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) 3843 return false; 3844 } else { 3845 /* protected mode guest state checks */ 3846 if (!cs_ss_rpl_check(vcpu)) 3847 return false; 3848 if (!code_segment_valid(vcpu)) 3849 return false; 3850 if (!stack_segment_valid(vcpu)) 3851 return false; 3852 if (!data_segment_valid(vcpu, VCPU_SREG_DS)) 3853 return false; 3854 if (!data_segment_valid(vcpu, VCPU_SREG_ES)) 3855 return false; 3856 if (!data_segment_valid(vcpu, VCPU_SREG_FS)) 3857 return false; 3858 if (!data_segment_valid(vcpu, VCPU_SREG_GS)) 3859 return false; 3860 if (!tr_valid(vcpu)) 3861 return false; 3862 if (!ldtr_valid(vcpu)) 3863 return false; 3864 } 3865 /* TODO: 3866 * - Add checks on RIP 3867 * - Add checks on RFLAGS 3868 */ 3869 3870 return true; 3871 } 3872 3873 static int init_rmode_tss(struct kvm *kvm, void __user *ua) 3874 { 3875 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3876 u16 data; 3877 int i; 3878 3879 for (i = 0; i < 3; i++) { 3880 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE)) 3881 return -EFAULT; 3882 } 3883 3884 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; 3885 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16))) 3886 return -EFAULT; 3887 3888 data = ~0; 3889 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8))) 3890 return -EFAULT; 3891 3892 return 0; 3893 } 3894 3895 static int init_rmode_identity_map(struct kvm *kvm) 3896 { 3897 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 3898 int i, r = 0; 3899 void __user *uaddr; 3900 u32 tmp; 3901 3902 /* Protect kvm_vmx->ept_identity_pagetable_done. */ 3903 mutex_lock(&kvm->slots_lock); 3904 3905 if (likely(kvm_vmx->ept_identity_pagetable_done)) 3906 goto out; 3907 3908 if (!kvm_vmx->ept_identity_map_addr) 3909 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; 3910 3911 uaddr = __x86_set_memory_region(kvm, 3912 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 3913 kvm_vmx->ept_identity_map_addr, 3914 PAGE_SIZE); 3915 if (IS_ERR(uaddr)) { 3916 r = PTR_ERR(uaddr); 3917 goto out; 3918 } 3919 3920 /* Set up identity-mapping pagetable for EPT in real mode */ 3921 for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) { 3922 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | 3923 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); 3924 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) { 3925 r = -EFAULT; 3926 goto out; 3927 } 3928 } 3929 kvm_vmx->ept_identity_pagetable_done = true; 3930 3931 out: 3932 mutex_unlock(&kvm->slots_lock); 3933 return r; 3934 } 3935 3936 static void seg_setup(int seg) 3937 { 3938 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3939 unsigned int ar; 3940 3941 vmcs_write16(sf->selector, 0); 3942 vmcs_writel(sf->base, 0); 3943 vmcs_write32(sf->limit, 0xffff); 3944 ar = 0x93; 3945 if (seg == VCPU_SREG_CS) 3946 ar |= 0x08; /* code segment */ 3947 3948 vmcs_write32(sf->ar_bytes, ar); 3949 } 3950 3951 int allocate_vpid(void) 3952 { 3953 int vpid; 3954 3955 if (!enable_vpid) 3956 return 0; 3957 spin_lock(&vmx_vpid_lock); 3958 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); 3959 if (vpid < VMX_NR_VPIDS) 3960 __set_bit(vpid, vmx_vpid_bitmap); 3961 else 3962 vpid = 0; 3963 spin_unlock(&vmx_vpid_lock); 3964 return vpid; 3965 } 3966 3967 void free_vpid(int vpid) 3968 { 3969 if (!enable_vpid || vpid == 0) 3970 return; 3971 spin_lock(&vmx_vpid_lock); 3972 __clear_bit(vpid, vmx_vpid_bitmap); 3973 spin_unlock(&vmx_vpid_lock); 3974 } 3975 3976 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx) 3977 { 3978 /* 3979 * When KVM is a nested hypervisor on top of Hyper-V and uses 3980 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR 3981 * bitmap has changed. 3982 */ 3983 if (kvm_is_using_evmcs()) { 3984 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; 3985 3986 if (evmcs->hv_enlightenments_control.msr_bitmap) 3987 evmcs->hv_clean_fields &= 3988 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP; 3989 } 3990 3991 vmx->nested.force_msr_bitmap_recalc = true; 3992 } 3993 3994 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3995 { 3996 struct vcpu_vmx *vmx = to_vmx(vcpu); 3997 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3998 int idx; 3999 4000 if (!cpu_has_vmx_msr_bitmap()) 4001 return; 4002 4003 vmx_msr_bitmap_l01_changed(vmx); 4004 4005 /* 4006 * Mark the desired intercept state in shadow bitmap, this is needed 4007 * for resync when the MSR filters change. 4008 */ 4009 idx = vmx_get_passthrough_msr_slot(msr); 4010 if (idx >= 0) { 4011 if (type & MSR_TYPE_R) 4012 clear_bit(idx, vmx->shadow_msr_intercept.read); 4013 if (type & MSR_TYPE_W) 4014 clear_bit(idx, vmx->shadow_msr_intercept.write); 4015 } 4016 4017 if ((type & MSR_TYPE_R) && 4018 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) { 4019 vmx_set_msr_bitmap_read(msr_bitmap, msr); 4020 type &= ~MSR_TYPE_R; 4021 } 4022 4023 if ((type & MSR_TYPE_W) && 4024 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) { 4025 vmx_set_msr_bitmap_write(msr_bitmap, msr); 4026 type &= ~MSR_TYPE_W; 4027 } 4028 4029 if (type & MSR_TYPE_R) 4030 vmx_clear_msr_bitmap_read(msr_bitmap, msr); 4031 4032 if (type & MSR_TYPE_W) 4033 vmx_clear_msr_bitmap_write(msr_bitmap, msr); 4034 } 4035 4036 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 4037 { 4038 struct vcpu_vmx *vmx = to_vmx(vcpu); 4039 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 4040 int idx; 4041 4042 if (!cpu_has_vmx_msr_bitmap()) 4043 return; 4044 4045 vmx_msr_bitmap_l01_changed(vmx); 4046 4047 /* 4048 * Mark the desired intercept state in shadow bitmap, this is needed 4049 * for resync when the MSR filter changes. 4050 */ 4051 idx = vmx_get_passthrough_msr_slot(msr); 4052 if (idx >= 0) { 4053 if (type & MSR_TYPE_R) 4054 set_bit(idx, vmx->shadow_msr_intercept.read); 4055 if (type & MSR_TYPE_W) 4056 set_bit(idx, vmx->shadow_msr_intercept.write); 4057 } 4058 4059 if (type & MSR_TYPE_R) 4060 vmx_set_msr_bitmap_read(msr_bitmap, msr); 4061 4062 if (type & MSR_TYPE_W) 4063 vmx_set_msr_bitmap_write(msr_bitmap, msr); 4064 } 4065 4066 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu) 4067 { 4068 /* 4069 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves 4070 * of the MSR bitmap. KVM emulates APIC registers up through 0x3f0, 4071 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits. 4072 */ 4073 const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG; 4074 const int write_idx = read_idx + (0x800 / sizeof(u64)); 4075 struct vcpu_vmx *vmx = to_vmx(vcpu); 4076 u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap; 4077 u8 mode; 4078 4079 if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu))) 4080 return; 4081 4082 if (cpu_has_secondary_exec_ctrls() && 4083 (secondary_exec_controls_get(vmx) & 4084 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { 4085 mode = MSR_BITMAP_MODE_X2APIC; 4086 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) 4087 mode |= MSR_BITMAP_MODE_X2APIC_APICV; 4088 } else { 4089 mode = 0; 4090 } 4091 4092 if (mode == vmx->x2apic_msr_bitmap_mode) 4093 return; 4094 4095 vmx->x2apic_msr_bitmap_mode = mode; 4096 4097 /* 4098 * Reset the bitmap for MSRs 0x800 - 0x83f. Leave AMD's uber-extended 4099 * registers (0x840 and above) intercepted, KVM doesn't support them. 4100 * Intercept all writes by default and poke holes as needed. Pass 4101 * through reads for all valid registers by default in x2APIC+APICv 4102 * mode, only the current timer count needs on-demand emulation by KVM. 4103 */ 4104 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) 4105 msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic); 4106 else 4107 msr_bitmap[read_idx] = ~0ull; 4108 msr_bitmap[write_idx] = ~0ull; 4109 4110 /* 4111 * TPR reads and writes can be virtualized even if virtual interrupt 4112 * delivery is not in use. 4113 */ 4114 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW, 4115 !(mode & MSR_BITMAP_MODE_X2APIC)); 4116 4117 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { 4118 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW); 4119 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); 4120 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); 4121 if (enable_ipiv) 4122 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW); 4123 } 4124 } 4125 4126 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu) 4127 { 4128 struct vcpu_vmx *vmx = to_vmx(vcpu); 4129 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 4130 u32 i; 4131 4132 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag); 4133 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag); 4134 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag); 4135 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag); 4136 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) { 4137 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); 4138 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); 4139 } 4140 } 4141 4142 void vmx_msr_filter_changed(struct kvm_vcpu *vcpu) 4143 { 4144 struct vcpu_vmx *vmx = to_vmx(vcpu); 4145 u32 i; 4146 4147 if (!cpu_has_vmx_msr_bitmap()) 4148 return; 4149 4150 /* 4151 * Redo intercept permissions for MSRs that KVM is passing through to 4152 * the guest. Disabling interception will check the new MSR filter and 4153 * ensure that KVM enables interception if usersepace wants to filter 4154 * the MSR. MSRs that KVM is already intercepting don't need to be 4155 * refreshed since KVM is going to intercept them regardless of what 4156 * userspace wants. 4157 */ 4158 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) { 4159 u32 msr = vmx_possible_passthrough_msrs[i]; 4160 4161 if (!test_bit(i, vmx->shadow_msr_intercept.read)) 4162 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R); 4163 4164 if (!test_bit(i, vmx->shadow_msr_intercept.write)) 4165 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W); 4166 } 4167 4168 /* PT MSRs can be passed through iff PT is exposed to the guest. */ 4169 if (vmx_pt_mode_is_host_guest()) 4170 pt_update_intercept_for_msr(vcpu); 4171 } 4172 4173 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, 4174 int pi_vec) 4175 { 4176 #ifdef CONFIG_SMP 4177 if (vcpu->mode == IN_GUEST_MODE) { 4178 /* 4179 * The vector of the virtual has already been set in the PIR. 4180 * Send a notification event to deliver the virtual interrupt 4181 * unless the vCPU is the currently running vCPU, i.e. the 4182 * event is being sent from a fastpath VM-Exit handler, in 4183 * which case the PIR will be synced to the vIRR before 4184 * re-entering the guest. 4185 * 4186 * When the target is not the running vCPU, the following 4187 * possibilities emerge: 4188 * 4189 * Case 1: vCPU stays in non-root mode. Sending a notification 4190 * event posts the interrupt to the vCPU. 4191 * 4192 * Case 2: vCPU exits to root mode and is still runnable. The 4193 * PIR will be synced to the vIRR before re-entering the guest. 4194 * Sending a notification event is ok as the host IRQ handler 4195 * will ignore the spurious event. 4196 * 4197 * Case 3: vCPU exits to root mode and is blocked. vcpu_block() 4198 * has already synced PIR to vIRR and never blocks the vCPU if 4199 * the vIRR is not empty. Therefore, a blocked vCPU here does 4200 * not wait for any requested interrupts in PIR, and sending a 4201 * notification event also results in a benign, spurious event. 4202 */ 4203 4204 if (vcpu != kvm_get_running_vcpu()) 4205 __apic_send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); 4206 return; 4207 } 4208 #endif 4209 /* 4210 * The vCPU isn't in the guest; wake the vCPU in case it is blocking, 4211 * otherwise do nothing as KVM will grab the highest priority pending 4212 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest(). 4213 */ 4214 kvm_vcpu_wake_up(vcpu); 4215 } 4216 4217 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, 4218 int vector) 4219 { 4220 struct vcpu_vmx *vmx = to_vmx(vcpu); 4221 4222 if (is_guest_mode(vcpu) && 4223 vector == vmx->nested.posted_intr_nv) { 4224 /* 4225 * If a posted intr is not recognized by hardware, 4226 * we will accomplish it in the next vmentry. 4227 */ 4228 vmx->nested.pi_pending = true; 4229 kvm_make_request(KVM_REQ_EVENT, vcpu); 4230 4231 /* 4232 * This pairs with the smp_mb_*() after setting vcpu->mode in 4233 * vcpu_enter_guest() to guarantee the vCPU sees the event 4234 * request if triggering a posted interrupt "fails" because 4235 * vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as 4236 * the smb_wmb() in kvm_make_request() only ensures everything 4237 * done before making the request is visible when the request 4238 * is visible, it doesn't ensure ordering between the store to 4239 * vcpu->requests and the load from vcpu->mode. 4240 */ 4241 smp_mb__after_atomic(); 4242 4243 /* the PIR and ON have been set by L1. */ 4244 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR); 4245 return 0; 4246 } 4247 return -1; 4248 } 4249 /* 4250 * Send interrupt to vcpu via posted interrupt way. 4251 * 1. If target vcpu is running(non-root mode), send posted interrupt 4252 * notification to vcpu and hardware will sync PIR to vIRR atomically. 4253 * 2. If target vcpu isn't running(root mode), kick it to pick up the 4254 * interrupt from PIR in next vmentry. 4255 */ 4256 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) 4257 { 4258 struct vcpu_vmx *vmx = to_vmx(vcpu); 4259 int r; 4260 4261 r = vmx_deliver_nested_posted_interrupt(vcpu, vector); 4262 if (!r) 4263 return 0; 4264 4265 /* Note, this is called iff the local APIC is in-kernel. */ 4266 if (!vcpu->arch.apic->apicv_active) 4267 return -1; 4268 4269 if (pi_test_and_set_pir(vector, &vmx->pi_desc)) 4270 return 0; 4271 4272 /* If a previous notification has sent the IPI, nothing to do. */ 4273 if (pi_test_and_set_on(&vmx->pi_desc)) 4274 return 0; 4275 4276 /* 4277 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*() 4278 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is 4279 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a 4280 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE. 4281 */ 4282 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR); 4283 return 0; 4284 } 4285 4286 void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 4287 int trig_mode, int vector) 4288 { 4289 struct kvm_vcpu *vcpu = apic->vcpu; 4290 4291 if (vmx_deliver_posted_interrupt(vcpu, vector)) { 4292 kvm_lapic_set_irr(vector, apic); 4293 kvm_make_request(KVM_REQ_EVENT, vcpu); 4294 kvm_vcpu_kick(vcpu); 4295 } else { 4296 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, 4297 trig_mode, vector); 4298 } 4299 } 4300 4301 /* 4302 * Set up the vmcs's constant host-state fields, i.e., host-state fields that 4303 * will not change in the lifetime of the guest. 4304 * Note that host-state that does change is set elsewhere. E.g., host-state 4305 * that is set differently for each CPU is set in vmx_vcpu_load(), not here. 4306 */ 4307 void vmx_set_constant_host_state(struct vcpu_vmx *vmx) 4308 { 4309 u32 low32, high32; 4310 unsigned long tmpl; 4311 unsigned long cr0, cr3, cr4; 4312 4313 cr0 = read_cr0(); 4314 WARN_ON(cr0 & X86_CR0_TS); 4315 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ 4316 4317 /* 4318 * Save the most likely value for this task's CR3 in the VMCS. 4319 * We can't use __get_current_cr3_fast() because we're not atomic. 4320 */ 4321 cr3 = __read_cr3(); 4322 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ 4323 vmx->loaded_vmcs->host_state.cr3 = cr3; 4324 4325 /* Save the most likely value for this task's CR4 in the VMCS. */ 4326 cr4 = cr4_read_shadow(); 4327 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ 4328 vmx->loaded_vmcs->host_state.cr4 = cr4; 4329 4330 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ 4331 #ifdef CONFIG_X86_64 4332 /* 4333 * Load null selectors, so we can avoid reloading them in 4334 * vmx_prepare_switch_to_host(), in case userspace uses 4335 * the null selectors too (the expected case). 4336 */ 4337 vmcs_write16(HOST_DS_SELECTOR, 0); 4338 vmcs_write16(HOST_ES_SELECTOR, 0); 4339 #else 4340 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4341 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4342 #endif 4343 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4344 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ 4345 4346 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */ 4347 4348 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ 4349 4350 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); 4351 vmcs_write32(HOST_IA32_SYSENTER_CS, low32); 4352 4353 /* 4354 * SYSENTER is used for 32-bit system calls on either 32-bit or 4355 * 64-bit kernels. It is always zero If neither is allowed, otherwise 4356 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may 4357 * have already done so!). 4358 */ 4359 if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32)) 4360 vmcs_writel(HOST_IA32_SYSENTER_ESP, 0); 4361 4362 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); 4363 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ 4364 4365 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { 4366 rdmsr(MSR_IA32_CR_PAT, low32, high32); 4367 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); 4368 } 4369 4370 if (cpu_has_load_ia32_efer()) 4371 vmcs_write64(HOST_IA32_EFER, kvm_host.efer); 4372 } 4373 4374 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) 4375 { 4376 struct kvm_vcpu *vcpu = &vmx->vcpu; 4377 4378 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS & 4379 ~vcpu->arch.cr4_guest_rsvd_bits; 4380 if (!enable_ept) { 4381 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS; 4382 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS; 4383 } 4384 if (is_guest_mode(&vmx->vcpu)) 4385 vcpu->arch.cr4_guest_owned_bits &= 4386 ~get_vmcs12(vcpu)->cr4_guest_host_mask; 4387 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits); 4388 } 4389 4390 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) 4391 { 4392 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; 4393 4394 if (!kvm_vcpu_apicv_active(&vmx->vcpu)) 4395 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; 4396 4397 if (!enable_vnmi) 4398 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; 4399 4400 if (!enable_preemption_timer) 4401 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 4402 4403 return pin_based_exec_ctrl; 4404 } 4405 4406 static u32 vmx_vmentry_ctrl(void) 4407 { 4408 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl; 4409 4410 if (vmx_pt_mode_is_system()) 4411 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP | 4412 VM_ENTRY_LOAD_IA32_RTIT_CTL); 4413 /* 4414 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically. 4415 */ 4416 vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | 4417 VM_ENTRY_LOAD_IA32_EFER | 4418 VM_ENTRY_IA32E_MODE); 4419 4420 if (cpu_has_perf_global_ctrl_bug()) 4421 vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; 4422 4423 return vmentry_ctrl; 4424 } 4425 4426 static u32 vmx_vmexit_ctrl(void) 4427 { 4428 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl; 4429 4430 /* 4431 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for 4432 * nested virtualization and thus allowed to be set in vmcs12. 4433 */ 4434 vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER | 4435 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER); 4436 4437 if (vmx_pt_mode_is_system()) 4438 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP | 4439 VM_EXIT_CLEAR_IA32_RTIT_CTL); 4440 4441 if (cpu_has_perf_global_ctrl_bug()) 4442 vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; 4443 4444 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ 4445 return vmexit_ctrl & 4446 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER); 4447 } 4448 4449 void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) 4450 { 4451 struct vcpu_vmx *vmx = to_vmx(vcpu); 4452 4453 if (is_guest_mode(vcpu)) { 4454 vmx->nested.update_vmcs01_apicv_status = true; 4455 return; 4456 } 4457 4458 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4459 4460 if (kvm_vcpu_apicv_active(vcpu)) { 4461 secondary_exec_controls_setbit(vmx, 4462 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4463 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4464 if (enable_ipiv) 4465 tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT); 4466 } else { 4467 secondary_exec_controls_clearbit(vmx, 4468 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4469 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4470 if (enable_ipiv) 4471 tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT); 4472 } 4473 4474 vmx_update_msr_bitmap_x2apic(vcpu); 4475 } 4476 4477 static u32 vmx_exec_control(struct vcpu_vmx *vmx) 4478 { 4479 u32 exec_control = vmcs_config.cpu_based_exec_ctrl; 4480 4481 /* 4482 * Not used by KVM, but fully supported for nesting, i.e. are allowed in 4483 * vmcs12 and propagated to vmcs02 when set in vmcs12. 4484 */ 4485 exec_control &= ~(CPU_BASED_RDTSC_EXITING | 4486 CPU_BASED_USE_IO_BITMAPS | 4487 CPU_BASED_MONITOR_TRAP_FLAG | 4488 CPU_BASED_PAUSE_EXITING); 4489 4490 /* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */ 4491 exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING | 4492 CPU_BASED_NMI_WINDOW_EXITING); 4493 4494 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) 4495 exec_control &= ~CPU_BASED_MOV_DR_EXITING; 4496 4497 if (!cpu_need_tpr_shadow(&vmx->vcpu)) 4498 exec_control &= ~CPU_BASED_TPR_SHADOW; 4499 4500 #ifdef CONFIG_X86_64 4501 if (exec_control & CPU_BASED_TPR_SHADOW) 4502 exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING | 4503 CPU_BASED_CR8_STORE_EXITING); 4504 else 4505 exec_control |= CPU_BASED_CR8_STORE_EXITING | 4506 CPU_BASED_CR8_LOAD_EXITING; 4507 #endif 4508 /* No need to intercept CR3 access or INVPLG when using EPT. */ 4509 if (enable_ept) 4510 exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | 4511 CPU_BASED_CR3_STORE_EXITING | 4512 CPU_BASED_INVLPG_EXITING); 4513 if (kvm_mwait_in_guest(vmx->vcpu.kvm)) 4514 exec_control &= ~(CPU_BASED_MWAIT_EXITING | 4515 CPU_BASED_MONITOR_EXITING); 4516 if (kvm_hlt_in_guest(vmx->vcpu.kvm)) 4517 exec_control &= ~CPU_BASED_HLT_EXITING; 4518 return exec_control; 4519 } 4520 4521 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx) 4522 { 4523 u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl; 4524 4525 /* 4526 * IPI virtualization relies on APICv. Disable IPI virtualization if 4527 * APICv is inhibited. 4528 */ 4529 if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu)) 4530 exec_control &= ~TERTIARY_EXEC_IPI_VIRT; 4531 4532 return exec_control; 4533 } 4534 4535 /* 4536 * Adjust a single secondary execution control bit to intercept/allow an 4537 * instruction in the guest. This is usually done based on whether or not a 4538 * feature has been exposed to the guest in order to correctly emulate faults. 4539 */ 4540 static inline void 4541 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control, 4542 u32 control, bool enabled, bool exiting) 4543 { 4544 /* 4545 * If the control is for an opt-in feature, clear the control if the 4546 * feature is not exposed to the guest, i.e. not enabled. If the 4547 * control is opt-out, i.e. an exiting control, clear the control if 4548 * the feature _is_ exposed to the guest, i.e. exiting/interception is 4549 * disabled for the associated instruction. Note, the caller is 4550 * responsible presetting exec_control to set all supported bits. 4551 */ 4552 if (enabled == exiting) 4553 *exec_control &= ~control; 4554 4555 /* 4556 * Update the nested MSR settings so that a nested VMM can/can't set 4557 * controls for features that are/aren't exposed to the guest. 4558 */ 4559 if (nested) { 4560 /* 4561 * All features that can be added or removed to VMX MSRs must 4562 * be supported in the first place for nested virtualization. 4563 */ 4564 if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control))) 4565 enabled = false; 4566 4567 if (enabled) 4568 vmx->nested.msrs.secondary_ctls_high |= control; 4569 else 4570 vmx->nested.msrs.secondary_ctls_high &= ~control; 4571 } 4572 } 4573 4574 /* 4575 * Wrapper macro for the common case of adjusting a secondary execution control 4576 * based on a single guest CPUID bit, with a dedicated feature bit. This also 4577 * verifies that the control is actually supported by KVM and hardware. 4578 */ 4579 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \ 4580 ({ \ 4581 struct kvm_vcpu *__vcpu = &(vmx)->vcpu; \ 4582 bool __enabled; \ 4583 \ 4584 if (cpu_has_vmx_##name()) { \ 4585 if (kvm_is_governed_feature(X86_FEATURE_##feat_name)) \ 4586 __enabled = guest_can_use(__vcpu, X86_FEATURE_##feat_name); \ 4587 else \ 4588 __enabled = guest_cpuid_has(__vcpu, X86_FEATURE_##feat_name); \ 4589 vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\ 4590 __enabled, exiting); \ 4591 } \ 4592 }) 4593 4594 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */ 4595 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \ 4596 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false) 4597 4598 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \ 4599 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true) 4600 4601 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx) 4602 { 4603 struct kvm_vcpu *vcpu = &vmx->vcpu; 4604 4605 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; 4606 4607 if (vmx_pt_mode_is_system()) 4608 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); 4609 if (!cpu_need_virtualize_apic_accesses(vcpu)) 4610 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 4611 if (vmx->vpid == 0) 4612 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; 4613 if (!enable_ept) { 4614 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; 4615 exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE; 4616 enable_unrestricted_guest = 0; 4617 } 4618 if (!enable_unrestricted_guest) 4619 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; 4620 if (kvm_pause_in_guest(vmx->vcpu.kvm)) 4621 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; 4622 if (!kvm_vcpu_apicv_active(vcpu)) 4623 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | 4624 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4625 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 4626 4627 /* 4628 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's 4629 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2. 4630 */ 4631 exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC; 4632 4633 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, 4634 * in vmx_set_cr4. */ 4635 exec_control &= ~SECONDARY_EXEC_DESC; 4636 4637 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD 4638 (handle_vmptrld). 4639 We can NOT enable shadow_vmcs here because we don't have yet 4640 a current VMCS12 4641 */ 4642 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; 4643 4644 /* 4645 * PML is enabled/disabled when dirty logging of memsmlots changes, but 4646 * it needs to be set here when dirty logging is already active, e.g. 4647 * if this vCPU was created after dirty logging was enabled. 4648 */ 4649 if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging)) 4650 exec_control &= ~SECONDARY_EXEC_ENABLE_PML; 4651 4652 vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES); 4653 4654 /* 4655 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either 4656 * feature is exposed to the guest. This creates a virtualization hole 4657 * if both are supported in hardware but only one is exposed to the 4658 * guest, but letting the guest execute RDTSCP or RDPID when either one 4659 * is advertised is preferable to emulating the advertised instruction 4660 * in KVM on #UD, and obviously better than incorrectly injecting #UD. 4661 */ 4662 if (cpu_has_vmx_rdtscp()) { 4663 bool rdpid_or_rdtscp_enabled = 4664 guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) || 4665 guest_cpuid_has(vcpu, X86_FEATURE_RDPID); 4666 4667 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4668 SECONDARY_EXEC_ENABLE_RDTSCP, 4669 rdpid_or_rdtscp_enabled, false); 4670 } 4671 4672 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID); 4673 4674 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND); 4675 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED); 4676 4677 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG, 4678 ENABLE_USR_WAIT_PAUSE, false); 4679 4680 if (!vcpu->kvm->arch.bus_lock_detection_enabled) 4681 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION; 4682 4683 if (!kvm_notify_vmexit_enabled(vcpu->kvm)) 4684 exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING; 4685 4686 return exec_control; 4687 } 4688 4689 static inline int vmx_get_pid_table_order(struct kvm *kvm) 4690 { 4691 return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table)); 4692 } 4693 4694 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm) 4695 { 4696 struct page *pages; 4697 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 4698 4699 if (!irqchip_in_kernel(kvm) || !enable_ipiv) 4700 return 0; 4701 4702 if (kvm_vmx->pid_table) 4703 return 0; 4704 4705 pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO, 4706 vmx_get_pid_table_order(kvm)); 4707 if (!pages) 4708 return -ENOMEM; 4709 4710 kvm_vmx->pid_table = (void *)page_address(pages); 4711 return 0; 4712 } 4713 4714 int vmx_vcpu_precreate(struct kvm *kvm) 4715 { 4716 return vmx_alloc_ipiv_pid_table(kvm); 4717 } 4718 4719 #define VMX_XSS_EXIT_BITMAP 0 4720 4721 static void init_vmcs(struct vcpu_vmx *vmx) 4722 { 4723 struct kvm *kvm = vmx->vcpu.kvm; 4724 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 4725 4726 if (nested) 4727 nested_vmx_set_vmcs_shadowing_bitmap(); 4728 4729 if (cpu_has_vmx_msr_bitmap()) 4730 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); 4731 4732 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */ 4733 4734 /* Control */ 4735 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4736 4737 exec_controls_set(vmx, vmx_exec_control(vmx)); 4738 4739 if (cpu_has_secondary_exec_ctrls()) { 4740 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx)); 4741 if (vmx->ve_info) 4742 vmcs_write64(VE_INFORMATION_ADDRESS, 4743 __pa(vmx->ve_info)); 4744 } 4745 4746 if (cpu_has_tertiary_exec_ctrls()) 4747 tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx)); 4748 4749 if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) { 4750 vmcs_write64(EOI_EXIT_BITMAP0, 0); 4751 vmcs_write64(EOI_EXIT_BITMAP1, 0); 4752 vmcs_write64(EOI_EXIT_BITMAP2, 0); 4753 vmcs_write64(EOI_EXIT_BITMAP3, 0); 4754 4755 vmcs_write16(GUEST_INTR_STATUS, 0); 4756 4757 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); 4758 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); 4759 } 4760 4761 if (vmx_can_use_ipiv(&vmx->vcpu)) { 4762 vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table)); 4763 vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1); 4764 } 4765 4766 if (!kvm_pause_in_guest(kvm)) { 4767 vmcs_write32(PLE_GAP, ple_gap); 4768 vmx->ple_window = ple_window; 4769 vmx->ple_window_dirty = true; 4770 } 4771 4772 if (kvm_notify_vmexit_enabled(kvm)) 4773 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window); 4774 4775 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); 4776 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); 4777 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ 4778 4779 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ 4780 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ 4781 vmx_set_constant_host_state(vmx); 4782 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ 4783 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ 4784 4785 if (cpu_has_vmx_vmfunc()) 4786 vmcs_write64(VM_FUNCTION_CONTROL, 0); 4787 4788 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); 4789 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); 4790 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); 4791 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); 4792 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); 4793 4794 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 4795 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); 4796 4797 vm_exit_controls_set(vmx, vmx_vmexit_ctrl()); 4798 4799 /* 22.2.1, 20.8.1 */ 4800 vm_entry_controls_set(vmx, vmx_vmentry_ctrl()); 4801 4802 vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits(); 4803 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits); 4804 4805 set_cr4_guest_host_mask(vmx); 4806 4807 if (vmx->vpid != 0) 4808 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); 4809 4810 if (cpu_has_vmx_xsaves()) 4811 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); 4812 4813 if (enable_pml) { 4814 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); 4815 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 4816 } 4817 4818 vmx_write_encls_bitmap(&vmx->vcpu, NULL); 4819 4820 if (vmx_pt_mode_is_host_guest()) { 4821 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); 4822 /* Bit[6~0] are forced to 1, writes are ignored. */ 4823 vmx->pt_desc.guest.output_mask = 0x7F; 4824 vmcs_write64(GUEST_IA32_RTIT_CTL, 0); 4825 } 4826 4827 vmcs_write32(GUEST_SYSENTER_CS, 0); 4828 vmcs_writel(GUEST_SYSENTER_ESP, 0); 4829 vmcs_writel(GUEST_SYSENTER_EIP, 0); 4830 vmcs_write64(GUEST_IA32_DEBUGCTL, 0); 4831 4832 if (cpu_has_vmx_tpr_shadow()) { 4833 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); 4834 if (cpu_need_tpr_shadow(&vmx->vcpu)) 4835 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 4836 __pa(vmx->vcpu.arch.apic->regs)); 4837 vmcs_write32(TPR_THRESHOLD, 0); 4838 } 4839 4840 vmx_setup_uret_msrs(vmx); 4841 } 4842 4843 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu) 4844 { 4845 struct vcpu_vmx *vmx = to_vmx(vcpu); 4846 4847 init_vmcs(vmx); 4848 4849 if (nested) 4850 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs)); 4851 4852 vcpu_setup_sgx_lepubkeyhash(vcpu); 4853 4854 vmx->nested.posted_intr_nv = -1; 4855 vmx->nested.vmxon_ptr = INVALID_GPA; 4856 vmx->nested.current_vmptr = INVALID_GPA; 4857 4858 #ifdef CONFIG_KVM_HYPERV 4859 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID; 4860 #endif 4861 4862 vcpu->arch.microcode_version = 0x100000000ULL; 4863 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED; 4864 4865 /* 4866 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR 4867 * or POSTED_INTR_WAKEUP_VECTOR. 4868 */ 4869 vmx->pi_desc.nv = POSTED_INTR_VECTOR; 4870 __pi_set_sn(&vmx->pi_desc); 4871 } 4872 4873 void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 4874 { 4875 struct vcpu_vmx *vmx = to_vmx(vcpu); 4876 4877 if (!init_event) 4878 __vmx_vcpu_reset(vcpu); 4879 4880 vmx->rmode.vm86_active = 0; 4881 vmx->spec_ctrl = 0; 4882 4883 vmx->msr_ia32_umwait_control = 0; 4884 4885 vmx->hv_deadline_tsc = -1; 4886 kvm_set_cr8(vcpu, 0); 4887 4888 vmx_segment_cache_clear(vmx); 4889 kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS); 4890 4891 seg_setup(VCPU_SREG_CS); 4892 vmcs_write16(GUEST_CS_SELECTOR, 0xf000); 4893 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); 4894 4895 seg_setup(VCPU_SREG_DS); 4896 seg_setup(VCPU_SREG_ES); 4897 seg_setup(VCPU_SREG_FS); 4898 seg_setup(VCPU_SREG_GS); 4899 seg_setup(VCPU_SREG_SS); 4900 4901 vmcs_write16(GUEST_TR_SELECTOR, 0); 4902 vmcs_writel(GUEST_TR_BASE, 0); 4903 vmcs_write32(GUEST_TR_LIMIT, 0xffff); 4904 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 4905 4906 vmcs_write16(GUEST_LDTR_SELECTOR, 0); 4907 vmcs_writel(GUEST_LDTR_BASE, 0); 4908 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); 4909 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); 4910 4911 vmcs_writel(GUEST_GDTR_BASE, 0); 4912 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); 4913 4914 vmcs_writel(GUEST_IDTR_BASE, 0); 4915 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); 4916 4917 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 4918 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); 4919 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); 4920 if (kvm_mpx_supported()) 4921 vmcs_write64(GUEST_BNDCFGS, 0); 4922 4923 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ 4924 4925 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 4926 4927 vpid_sync_context(vmx->vpid); 4928 4929 vmx_update_fb_clear_dis(vcpu, vmx); 4930 } 4931 4932 void vmx_enable_irq_window(struct kvm_vcpu *vcpu) 4933 { 4934 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 4935 } 4936 4937 void vmx_enable_nmi_window(struct kvm_vcpu *vcpu) 4938 { 4939 if (!enable_vnmi || 4940 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { 4941 vmx_enable_irq_window(vcpu); 4942 return; 4943 } 4944 4945 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 4946 } 4947 4948 void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) 4949 { 4950 struct vcpu_vmx *vmx = to_vmx(vcpu); 4951 uint32_t intr; 4952 int irq = vcpu->arch.interrupt.nr; 4953 4954 trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected); 4955 4956 ++vcpu->stat.irq_injections; 4957 if (vmx->rmode.vm86_active) { 4958 int inc_eip = 0; 4959 if (vcpu->arch.interrupt.soft) 4960 inc_eip = vcpu->arch.event_exit_inst_len; 4961 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip); 4962 return; 4963 } 4964 intr = irq | INTR_INFO_VALID_MASK; 4965 if (vcpu->arch.interrupt.soft) { 4966 intr |= INTR_TYPE_SOFT_INTR; 4967 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 4968 vmx->vcpu.arch.event_exit_inst_len); 4969 } else 4970 intr |= INTR_TYPE_EXT_INTR; 4971 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); 4972 4973 vmx_clear_hlt(vcpu); 4974 } 4975 4976 void vmx_inject_nmi(struct kvm_vcpu *vcpu) 4977 { 4978 struct vcpu_vmx *vmx = to_vmx(vcpu); 4979 4980 if (!enable_vnmi) { 4981 /* 4982 * Tracking the NMI-blocked state in software is built upon 4983 * finding the next open IRQ window. This, in turn, depends on 4984 * well-behaving guests: They have to keep IRQs disabled at 4985 * least as long as the NMI handler runs. Otherwise we may 4986 * cause NMI nesting, maybe breaking the guest. But as this is 4987 * highly unlikely, we can live with the residual risk. 4988 */ 4989 vmx->loaded_vmcs->soft_vnmi_blocked = 1; 4990 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4991 } 4992 4993 ++vcpu->stat.nmi_injections; 4994 vmx->loaded_vmcs->nmi_known_unmasked = false; 4995 4996 if (vmx->rmode.vm86_active) { 4997 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0); 4998 return; 4999 } 5000 5001 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 5002 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); 5003 5004 vmx_clear_hlt(vcpu); 5005 } 5006 5007 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) 5008 { 5009 struct vcpu_vmx *vmx = to_vmx(vcpu); 5010 bool masked; 5011 5012 if (!enable_vnmi) 5013 return vmx->loaded_vmcs->soft_vnmi_blocked; 5014 if (vmx->loaded_vmcs->nmi_known_unmasked) 5015 return false; 5016 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; 5017 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 5018 return masked; 5019 } 5020 5021 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 5022 { 5023 struct vcpu_vmx *vmx = to_vmx(vcpu); 5024 5025 if (!enable_vnmi) { 5026 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { 5027 vmx->loaded_vmcs->soft_vnmi_blocked = masked; 5028 vmx->loaded_vmcs->vnmi_blocked_time = 0; 5029 } 5030 } else { 5031 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 5032 if (masked) 5033 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5034 GUEST_INTR_STATE_NMI); 5035 else 5036 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, 5037 GUEST_INTR_STATE_NMI); 5038 } 5039 } 5040 5041 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu) 5042 { 5043 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 5044 return false; 5045 5046 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) 5047 return true; 5048 5049 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5050 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI | 5051 GUEST_INTR_STATE_NMI)); 5052 } 5053 5054 int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 5055 { 5056 if (to_vmx(vcpu)->nested.nested_run_pending) 5057 return -EBUSY; 5058 5059 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 5060 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 5061 return -EBUSY; 5062 5063 return !vmx_nmi_blocked(vcpu); 5064 } 5065 5066 bool __vmx_interrupt_blocked(struct kvm_vcpu *vcpu) 5067 { 5068 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) || 5069 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5070 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); 5071 } 5072 5073 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu) 5074 { 5075 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 5076 return false; 5077 5078 return __vmx_interrupt_blocked(vcpu); 5079 } 5080 5081 int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 5082 { 5083 if (to_vmx(vcpu)->nested.nested_run_pending) 5084 return -EBUSY; 5085 5086 /* 5087 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 5088 * e.g. if the IRQ arrived asynchronously after checking nested events. 5089 */ 5090 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 5091 return -EBUSY; 5092 5093 return !vmx_interrupt_blocked(vcpu); 5094 } 5095 5096 int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) 5097 { 5098 void __user *ret; 5099 5100 if (enable_unrestricted_guest) 5101 return 0; 5102 5103 mutex_lock(&kvm->slots_lock); 5104 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, 5105 PAGE_SIZE * 3); 5106 mutex_unlock(&kvm->slots_lock); 5107 5108 if (IS_ERR(ret)) 5109 return PTR_ERR(ret); 5110 5111 to_kvm_vmx(kvm)->tss_addr = addr; 5112 5113 return init_rmode_tss(kvm, ret); 5114 } 5115 5116 int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 5117 { 5118 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; 5119 return 0; 5120 } 5121 5122 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) 5123 { 5124 switch (vec) { 5125 case BP_VECTOR: 5126 /* 5127 * Update instruction length as we may reinject the exception 5128 * from user space while in guest debugging mode. 5129 */ 5130 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = 5131 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 5132 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 5133 return false; 5134 fallthrough; 5135 case DB_VECTOR: 5136 return !(vcpu->guest_debug & 5137 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)); 5138 case DE_VECTOR: 5139 case OF_VECTOR: 5140 case BR_VECTOR: 5141 case UD_VECTOR: 5142 case DF_VECTOR: 5143 case SS_VECTOR: 5144 case GP_VECTOR: 5145 case MF_VECTOR: 5146 return true; 5147 } 5148 return false; 5149 } 5150 5151 static int handle_rmode_exception(struct kvm_vcpu *vcpu, 5152 int vec, u32 err_code) 5153 { 5154 /* 5155 * Instruction with address size override prefix opcode 0x67 5156 * Cause the #SS fault with 0 error code in VM86 mode. 5157 */ 5158 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { 5159 if (kvm_emulate_instruction(vcpu, 0)) { 5160 if (vcpu->arch.halt_request) { 5161 vcpu->arch.halt_request = 0; 5162 return kvm_emulate_halt_noskip(vcpu); 5163 } 5164 return 1; 5165 } 5166 return 0; 5167 } 5168 5169 /* 5170 * Forward all other exceptions that are valid in real mode. 5171 * FIXME: Breaks guest debugging in real mode, needs to be fixed with 5172 * the required debugging infrastructure rework. 5173 */ 5174 kvm_queue_exception(vcpu, vec); 5175 return 1; 5176 } 5177 5178 static int handle_machine_check(struct kvm_vcpu *vcpu) 5179 { 5180 /* handled by vmx_vcpu_run() */ 5181 return 1; 5182 } 5183 5184 /* 5185 * If the host has split lock detection disabled, then #AC is 5186 * unconditionally injected into the guest, which is the pre split lock 5187 * detection behaviour. 5188 * 5189 * If the host has split lock detection enabled then #AC is 5190 * only injected into the guest when: 5191 * - Guest CPL == 3 (user mode) 5192 * - Guest has #AC detection enabled in CR0 5193 * - Guest EFLAGS has AC bit set 5194 */ 5195 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu) 5196 { 5197 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 5198 return true; 5199 5200 return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) && 5201 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC); 5202 } 5203 5204 static int handle_exception_nmi(struct kvm_vcpu *vcpu) 5205 { 5206 struct vcpu_vmx *vmx = to_vmx(vcpu); 5207 struct kvm_run *kvm_run = vcpu->run; 5208 u32 intr_info, ex_no, error_code; 5209 unsigned long cr2, dr6; 5210 u32 vect_info; 5211 5212 vect_info = vmx->idt_vectoring_info; 5213 intr_info = vmx_get_intr_info(vcpu); 5214 5215 /* 5216 * Machine checks are handled by handle_exception_irqoff(), or by 5217 * vmx_vcpu_run() if a #MC occurs on VM-Entry. NMIs are handled by 5218 * vmx_vcpu_enter_exit(). 5219 */ 5220 if (is_machine_check(intr_info) || is_nmi(intr_info)) 5221 return 1; 5222 5223 /* 5224 * Queue the exception here instead of in handle_nm_fault_irqoff(). 5225 * This ensures the nested_vmx check is not skipped so vmexit can 5226 * be reflected to L1 (when it intercepts #NM) before reaching this 5227 * point. 5228 */ 5229 if (is_nm_fault(intr_info)) { 5230 kvm_queue_exception(vcpu, NM_VECTOR); 5231 return 1; 5232 } 5233 5234 if (is_invalid_opcode(intr_info)) 5235 return handle_ud(vcpu); 5236 5237 if (WARN_ON_ONCE(is_ve_fault(intr_info))) { 5238 struct vmx_ve_information *ve_info = vmx->ve_info; 5239 5240 WARN_ONCE(ve_info->exit_reason != EXIT_REASON_EPT_VIOLATION, 5241 "Unexpected #VE on VM-Exit reason 0x%x", ve_info->exit_reason); 5242 dump_vmcs(vcpu); 5243 kvm_mmu_print_sptes(vcpu, ve_info->guest_physical_address, "#VE"); 5244 return 1; 5245 } 5246 5247 error_code = 0; 5248 if (intr_info & INTR_INFO_DELIVER_CODE_MASK) 5249 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 5250 5251 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { 5252 WARN_ON_ONCE(!enable_vmware_backdoor); 5253 5254 /* 5255 * VMware backdoor emulation on #GP interception only handles 5256 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero 5257 * error code on #GP. 5258 */ 5259 if (error_code) { 5260 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 5261 return 1; 5262 } 5263 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); 5264 } 5265 5266 /* 5267 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing 5268 * MMIO, it is better to report an internal error. 5269 * See the comments in vmx_handle_exit. 5270 */ 5271 if ((vect_info & VECTORING_INFO_VALID_MASK) && 5272 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { 5273 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5274 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; 5275 vcpu->run->internal.ndata = 4; 5276 vcpu->run->internal.data[0] = vect_info; 5277 vcpu->run->internal.data[1] = intr_info; 5278 vcpu->run->internal.data[2] = error_code; 5279 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu; 5280 return 0; 5281 } 5282 5283 if (is_page_fault(intr_info)) { 5284 cr2 = vmx_get_exit_qual(vcpu); 5285 if (enable_ept && !vcpu->arch.apf.host_apf_flags) { 5286 /* 5287 * EPT will cause page fault only if we need to 5288 * detect illegal GPAs. 5289 */ 5290 WARN_ON_ONCE(!allow_smaller_maxphyaddr); 5291 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code); 5292 return 1; 5293 } else 5294 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); 5295 } 5296 5297 ex_no = intr_info & INTR_INFO_VECTOR_MASK; 5298 5299 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) 5300 return handle_rmode_exception(vcpu, ex_no, error_code); 5301 5302 switch (ex_no) { 5303 case DB_VECTOR: 5304 dr6 = vmx_get_exit_qual(vcpu); 5305 if (!(vcpu->guest_debug & 5306 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { 5307 /* 5308 * If the #DB was due to ICEBP, a.k.a. INT1, skip the 5309 * instruction. ICEBP generates a trap-like #DB, but 5310 * despite its interception control being tied to #DB, 5311 * is an instruction intercept, i.e. the VM-Exit occurs 5312 * on the ICEBP itself. Use the inner "skip" helper to 5313 * avoid single-step #DB and MTF updates, as ICEBP is 5314 * higher priority. Note, skipping ICEBP still clears 5315 * STI and MOVSS blocking. 5316 * 5317 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS 5318 * if single-step is enabled in RFLAGS and STI or MOVSS 5319 * blocking is active, as the CPU doesn't set the bit 5320 * on VM-Exit due to #DB interception. VM-Entry has a 5321 * consistency check that a single-step #DB is pending 5322 * in this scenario as the previous instruction cannot 5323 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV 5324 * don't modify RFLAGS), therefore the one instruction 5325 * delay when activating single-step breakpoints must 5326 * have already expired. Note, the CPU sets/clears BS 5327 * as appropriate for all other VM-Exits types. 5328 */ 5329 if (is_icebp(intr_info)) 5330 WARN_ON(!skip_emulated_instruction(vcpu)); 5331 else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) && 5332 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5333 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS))) 5334 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 5335 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS); 5336 5337 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 5338 return 1; 5339 } 5340 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 5341 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); 5342 fallthrough; 5343 case BP_VECTOR: 5344 /* 5345 * Update instruction length as we may reinject #BP from 5346 * user space while in guest debugging mode. Reading it for 5347 * #DB as well causes no harm, it is not used in that case. 5348 */ 5349 vmx->vcpu.arch.event_exit_inst_len = 5350 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 5351 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5352 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5353 kvm_run->debug.arch.exception = ex_no; 5354 break; 5355 case AC_VECTOR: 5356 if (vmx_guest_inject_ac(vcpu)) { 5357 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); 5358 return 1; 5359 } 5360 5361 /* 5362 * Handle split lock. Depending on detection mode this will 5363 * either warn and disable split lock detection for this 5364 * task or force SIGBUS on it. 5365 */ 5366 if (handle_guest_split_lock(kvm_rip_read(vcpu))) 5367 return 1; 5368 fallthrough; 5369 default: 5370 kvm_run->exit_reason = KVM_EXIT_EXCEPTION; 5371 kvm_run->ex.exception = ex_no; 5372 kvm_run->ex.error_code = error_code; 5373 break; 5374 } 5375 return 0; 5376 } 5377 5378 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu) 5379 { 5380 ++vcpu->stat.irq_exits; 5381 return 1; 5382 } 5383 5384 static int handle_triple_fault(struct kvm_vcpu *vcpu) 5385 { 5386 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 5387 vcpu->mmio_needed = 0; 5388 return 0; 5389 } 5390 5391 static int handle_io(struct kvm_vcpu *vcpu) 5392 { 5393 unsigned long exit_qualification; 5394 int size, in, string; 5395 unsigned port; 5396 5397 exit_qualification = vmx_get_exit_qual(vcpu); 5398 string = (exit_qualification & 16) != 0; 5399 5400 ++vcpu->stat.io_exits; 5401 5402 if (string) 5403 return kvm_emulate_instruction(vcpu, 0); 5404 5405 port = exit_qualification >> 16; 5406 size = (exit_qualification & 7) + 1; 5407 in = (exit_qualification & 8) != 0; 5408 5409 return kvm_fast_pio(vcpu, size, port, in); 5410 } 5411 5412 void vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 5413 { 5414 /* 5415 * Patch in the VMCALL instruction: 5416 */ 5417 hypercall[0] = 0x0f; 5418 hypercall[1] = 0x01; 5419 hypercall[2] = 0xc1; 5420 } 5421 5422 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ 5423 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) 5424 { 5425 if (is_guest_mode(vcpu)) { 5426 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5427 unsigned long orig_val = val; 5428 5429 /* 5430 * We get here when L2 changed cr0 in a way that did not change 5431 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), 5432 * but did change L0 shadowed bits. So we first calculate the 5433 * effective cr0 value that L1 would like to write into the 5434 * hardware. It consists of the L2-owned bits from the new 5435 * value combined with the L1-owned bits from L1's guest_cr0. 5436 */ 5437 val = (val & ~vmcs12->cr0_guest_host_mask) | 5438 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); 5439 5440 if (kvm_set_cr0(vcpu, val)) 5441 return 1; 5442 vmcs_writel(CR0_READ_SHADOW, orig_val); 5443 return 0; 5444 } else { 5445 return kvm_set_cr0(vcpu, val); 5446 } 5447 } 5448 5449 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) 5450 { 5451 if (is_guest_mode(vcpu)) { 5452 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5453 unsigned long orig_val = val; 5454 5455 /* analogously to handle_set_cr0 */ 5456 val = (val & ~vmcs12->cr4_guest_host_mask) | 5457 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); 5458 if (kvm_set_cr4(vcpu, val)) 5459 return 1; 5460 vmcs_writel(CR4_READ_SHADOW, orig_val); 5461 return 0; 5462 } else 5463 return kvm_set_cr4(vcpu, val); 5464 } 5465 5466 static int handle_desc(struct kvm_vcpu *vcpu) 5467 { 5468 /* 5469 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this 5470 * and other code needs to be updated if UMIP can be guest owned. 5471 */ 5472 BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP); 5473 5474 WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP)); 5475 return kvm_emulate_instruction(vcpu, 0); 5476 } 5477 5478 static int handle_cr(struct kvm_vcpu *vcpu) 5479 { 5480 unsigned long exit_qualification, val; 5481 int cr; 5482 int reg; 5483 int err; 5484 int ret; 5485 5486 exit_qualification = vmx_get_exit_qual(vcpu); 5487 cr = exit_qualification & 15; 5488 reg = (exit_qualification >> 8) & 15; 5489 switch ((exit_qualification >> 4) & 3) { 5490 case 0: /* mov to cr */ 5491 val = kvm_register_read(vcpu, reg); 5492 trace_kvm_cr_write(cr, val); 5493 switch (cr) { 5494 case 0: 5495 err = handle_set_cr0(vcpu, val); 5496 return kvm_complete_insn_gp(vcpu, err); 5497 case 3: 5498 WARN_ON_ONCE(enable_unrestricted_guest); 5499 5500 err = kvm_set_cr3(vcpu, val); 5501 return kvm_complete_insn_gp(vcpu, err); 5502 case 4: 5503 err = handle_set_cr4(vcpu, val); 5504 return kvm_complete_insn_gp(vcpu, err); 5505 case 8: { 5506 u8 cr8_prev = kvm_get_cr8(vcpu); 5507 u8 cr8 = (u8)val; 5508 err = kvm_set_cr8(vcpu, cr8); 5509 ret = kvm_complete_insn_gp(vcpu, err); 5510 if (lapic_in_kernel(vcpu)) 5511 return ret; 5512 if (cr8_prev <= cr8) 5513 return ret; 5514 /* 5515 * TODO: we might be squashing a 5516 * KVM_GUESTDBG_SINGLESTEP-triggered 5517 * KVM_EXIT_DEBUG here. 5518 */ 5519 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 5520 return 0; 5521 } 5522 } 5523 break; 5524 case 2: /* clts */ 5525 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS"); 5526 return -EIO; 5527 case 1: /*mov from cr*/ 5528 switch (cr) { 5529 case 3: 5530 WARN_ON_ONCE(enable_unrestricted_guest); 5531 5532 val = kvm_read_cr3(vcpu); 5533 kvm_register_write(vcpu, reg, val); 5534 trace_kvm_cr_read(cr, val); 5535 return kvm_skip_emulated_instruction(vcpu); 5536 case 8: 5537 val = kvm_get_cr8(vcpu); 5538 kvm_register_write(vcpu, reg, val); 5539 trace_kvm_cr_read(cr, val); 5540 return kvm_skip_emulated_instruction(vcpu); 5541 } 5542 break; 5543 case 3: /* lmsw */ 5544 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; 5545 trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val)); 5546 kvm_lmsw(vcpu, val); 5547 5548 return kvm_skip_emulated_instruction(vcpu); 5549 default: 5550 break; 5551 } 5552 vcpu->run->exit_reason = 0; 5553 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", 5554 (int)(exit_qualification >> 4) & 3, cr); 5555 return 0; 5556 } 5557 5558 static int handle_dr(struct kvm_vcpu *vcpu) 5559 { 5560 unsigned long exit_qualification; 5561 int dr, dr7, reg; 5562 int err = 1; 5563 5564 exit_qualification = vmx_get_exit_qual(vcpu); 5565 dr = exit_qualification & DEBUG_REG_ACCESS_NUM; 5566 5567 /* First, if DR does not exist, trigger UD */ 5568 if (!kvm_require_dr(vcpu, dr)) 5569 return 1; 5570 5571 if (vmx_get_cpl(vcpu) > 0) 5572 goto out; 5573 5574 dr7 = vmcs_readl(GUEST_DR7); 5575 if (dr7 & DR7_GD) { 5576 /* 5577 * As the vm-exit takes precedence over the debug trap, we 5578 * need to emulate the latter, either for the host or the 5579 * guest debugging itself. 5580 */ 5581 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 5582 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW; 5583 vcpu->run->debug.arch.dr7 = dr7; 5584 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5585 vcpu->run->debug.arch.exception = DB_VECTOR; 5586 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 5587 return 0; 5588 } else { 5589 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD); 5590 return 1; 5591 } 5592 } 5593 5594 if (vcpu->guest_debug == 0) { 5595 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5596 5597 /* 5598 * No more DR vmexits; force a reload of the debug registers 5599 * and reenter on this instruction. The next vmexit will 5600 * retrieve the full state of the debug registers. 5601 */ 5602 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 5603 return 1; 5604 } 5605 5606 reg = DEBUG_REG_ACCESS_REG(exit_qualification); 5607 if (exit_qualification & TYPE_MOV_FROM_DR) { 5608 kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr)); 5609 err = 0; 5610 } else { 5611 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); 5612 } 5613 5614 out: 5615 return kvm_complete_insn_gp(vcpu, err); 5616 } 5617 5618 void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 5619 { 5620 get_debugreg(vcpu->arch.db[0], 0); 5621 get_debugreg(vcpu->arch.db[1], 1); 5622 get_debugreg(vcpu->arch.db[2], 2); 5623 get_debugreg(vcpu->arch.db[3], 3); 5624 get_debugreg(vcpu->arch.dr6, 6); 5625 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); 5626 5627 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 5628 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5629 5630 /* 5631 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees 5632 * a stale dr6 from the guest. 5633 */ 5634 set_debugreg(DR6_RESERVED, 6); 5635 } 5636 5637 void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) 5638 { 5639 vmcs_writel(GUEST_DR7, val); 5640 } 5641 5642 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) 5643 { 5644 kvm_apic_update_ppr(vcpu); 5645 return 1; 5646 } 5647 5648 static int handle_interrupt_window(struct kvm_vcpu *vcpu) 5649 { 5650 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 5651 5652 kvm_make_request(KVM_REQ_EVENT, vcpu); 5653 5654 ++vcpu->stat.irq_window_exits; 5655 return 1; 5656 } 5657 5658 static int handle_invlpg(struct kvm_vcpu *vcpu) 5659 { 5660 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5661 5662 kvm_mmu_invlpg(vcpu, exit_qualification); 5663 return kvm_skip_emulated_instruction(vcpu); 5664 } 5665 5666 static int handle_apic_access(struct kvm_vcpu *vcpu) 5667 { 5668 if (likely(fasteoi)) { 5669 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5670 int access_type, offset; 5671 5672 access_type = exit_qualification & APIC_ACCESS_TYPE; 5673 offset = exit_qualification & APIC_ACCESS_OFFSET; 5674 /* 5675 * Sane guest uses MOV to write EOI, with written value 5676 * not cared. So make a short-circuit here by avoiding 5677 * heavy instruction emulation. 5678 */ 5679 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && 5680 (offset == APIC_EOI)) { 5681 kvm_lapic_set_eoi(vcpu); 5682 return kvm_skip_emulated_instruction(vcpu); 5683 } 5684 } 5685 return kvm_emulate_instruction(vcpu, 0); 5686 } 5687 5688 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) 5689 { 5690 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5691 int vector = exit_qualification & 0xff; 5692 5693 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ 5694 kvm_apic_set_eoi_accelerated(vcpu, vector); 5695 return 1; 5696 } 5697 5698 static int handle_apic_write(struct kvm_vcpu *vcpu) 5699 { 5700 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5701 5702 /* 5703 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and 5704 * hardware has done any necessary aliasing, offset adjustments, etc... 5705 * for the access. I.e. the correct value has already been written to 5706 * the vAPIC page for the correct 16-byte chunk. KVM needs only to 5707 * retrieve the register value and emulate the access. 5708 */ 5709 u32 offset = exit_qualification & 0xff0; 5710 5711 kvm_apic_write_nodecode(vcpu, offset); 5712 return 1; 5713 } 5714 5715 static int handle_task_switch(struct kvm_vcpu *vcpu) 5716 { 5717 struct vcpu_vmx *vmx = to_vmx(vcpu); 5718 unsigned long exit_qualification; 5719 bool has_error_code = false; 5720 u32 error_code = 0; 5721 u16 tss_selector; 5722 int reason, type, idt_v, idt_index; 5723 5724 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); 5725 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); 5726 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); 5727 5728 exit_qualification = vmx_get_exit_qual(vcpu); 5729 5730 reason = (u32)exit_qualification >> 30; 5731 if (reason == TASK_SWITCH_GATE && idt_v) { 5732 switch (type) { 5733 case INTR_TYPE_NMI_INTR: 5734 vcpu->arch.nmi_injected = false; 5735 vmx_set_nmi_mask(vcpu, true); 5736 break; 5737 case INTR_TYPE_EXT_INTR: 5738 case INTR_TYPE_SOFT_INTR: 5739 kvm_clear_interrupt_queue(vcpu); 5740 break; 5741 case INTR_TYPE_HARD_EXCEPTION: 5742 if (vmx->idt_vectoring_info & 5743 VECTORING_INFO_DELIVER_CODE_MASK) { 5744 has_error_code = true; 5745 error_code = 5746 vmcs_read32(IDT_VECTORING_ERROR_CODE); 5747 } 5748 fallthrough; 5749 case INTR_TYPE_SOFT_EXCEPTION: 5750 kvm_clear_exception_queue(vcpu); 5751 break; 5752 default: 5753 break; 5754 } 5755 } 5756 tss_selector = exit_qualification; 5757 5758 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && 5759 type != INTR_TYPE_EXT_INTR && 5760 type != INTR_TYPE_NMI_INTR)) 5761 WARN_ON(!skip_emulated_instruction(vcpu)); 5762 5763 /* 5764 * TODO: What about debug traps on tss switch? 5765 * Are we supposed to inject them and update dr6? 5766 */ 5767 return kvm_task_switch(vcpu, tss_selector, 5768 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, 5769 reason, has_error_code, error_code); 5770 } 5771 5772 static int handle_ept_violation(struct kvm_vcpu *vcpu) 5773 { 5774 unsigned long exit_qualification; 5775 gpa_t gpa; 5776 u64 error_code; 5777 5778 exit_qualification = vmx_get_exit_qual(vcpu); 5779 5780 /* 5781 * EPT violation happened while executing iret from NMI, 5782 * "blocked by NMI" bit has to be set before next VM entry. 5783 * There are errata that may cause this bit to not be set: 5784 * AAK134, BY25. 5785 */ 5786 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5787 enable_vnmi && 5788 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5789 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); 5790 5791 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5792 trace_kvm_page_fault(vcpu, gpa, exit_qualification); 5793 5794 /* Is it a read fault? */ 5795 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) 5796 ? PFERR_USER_MASK : 0; 5797 /* Is it a write fault? */ 5798 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) 5799 ? PFERR_WRITE_MASK : 0; 5800 /* Is it a fetch fault? */ 5801 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) 5802 ? PFERR_FETCH_MASK : 0; 5803 /* ept page table entry is present? */ 5804 error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK) 5805 ? PFERR_PRESENT_MASK : 0; 5806 5807 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ? 5808 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; 5809 5810 /* 5811 * Check that the GPA doesn't exceed physical memory limits, as that is 5812 * a guest page fault. We have to emulate the instruction here, because 5813 * if the illegal address is that of a paging structure, then 5814 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we 5815 * would also use advanced VM-exit information for EPT violations to 5816 * reconstruct the page fault error code. 5817 */ 5818 if (unlikely(allow_smaller_maxphyaddr && !kvm_vcpu_is_legal_gpa(vcpu, gpa))) 5819 return kvm_emulate_instruction(vcpu, 0); 5820 5821 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); 5822 } 5823 5824 static int handle_ept_misconfig(struct kvm_vcpu *vcpu) 5825 { 5826 gpa_t gpa; 5827 5828 if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0)) 5829 return 1; 5830 5831 /* 5832 * A nested guest cannot optimize MMIO vmexits, because we have an 5833 * nGPA here instead of the required GPA. 5834 */ 5835 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5836 if (!is_guest_mode(vcpu) && 5837 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { 5838 trace_kvm_fast_mmio(gpa); 5839 return kvm_skip_emulated_instruction(vcpu); 5840 } 5841 5842 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); 5843 } 5844 5845 static int handle_nmi_window(struct kvm_vcpu *vcpu) 5846 { 5847 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm)) 5848 return -EIO; 5849 5850 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 5851 ++vcpu->stat.nmi_window_exits; 5852 kvm_make_request(KVM_REQ_EVENT, vcpu); 5853 5854 return 1; 5855 } 5856 5857 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu) 5858 { 5859 struct vcpu_vmx *vmx = to_vmx(vcpu); 5860 5861 return vmx->emulation_required && !vmx->rmode.vm86_active && 5862 (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected); 5863 } 5864 5865 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) 5866 { 5867 struct vcpu_vmx *vmx = to_vmx(vcpu); 5868 bool intr_window_requested; 5869 unsigned count = 130; 5870 5871 intr_window_requested = exec_controls_get(vmx) & 5872 CPU_BASED_INTR_WINDOW_EXITING; 5873 5874 while (vmx->emulation_required && count-- != 0) { 5875 if (intr_window_requested && !vmx_interrupt_blocked(vcpu)) 5876 return handle_interrupt_window(&vmx->vcpu); 5877 5878 if (kvm_test_request(KVM_REQ_EVENT, vcpu)) 5879 return 1; 5880 5881 if (!kvm_emulate_instruction(vcpu, 0)) 5882 return 0; 5883 5884 if (vmx_emulation_required_with_pending_exception(vcpu)) { 5885 kvm_prepare_emulation_failure_exit(vcpu); 5886 return 0; 5887 } 5888 5889 if (vcpu->arch.halt_request) { 5890 vcpu->arch.halt_request = 0; 5891 return kvm_emulate_halt_noskip(vcpu); 5892 } 5893 5894 /* 5895 * Note, return 1 and not 0, vcpu_run() will invoke 5896 * xfer_to_guest_mode() which will create a proper return 5897 * code. 5898 */ 5899 if (__xfer_to_guest_mode_work_pending()) 5900 return 1; 5901 } 5902 5903 return 1; 5904 } 5905 5906 int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu) 5907 { 5908 if (vmx_emulation_required_with_pending_exception(vcpu)) { 5909 kvm_prepare_emulation_failure_exit(vcpu); 5910 return 0; 5911 } 5912 5913 return 1; 5914 } 5915 5916 /* 5917 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE 5918 * exiting, so only get here on cpu with PAUSE-Loop-Exiting. 5919 */ 5920 static int handle_pause(struct kvm_vcpu *vcpu) 5921 { 5922 if (!kvm_pause_in_guest(vcpu->kvm)) 5923 grow_ple_window(vcpu); 5924 5925 /* 5926 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" 5927 * VM-execution control is ignored if CPL > 0. OTOH, KVM 5928 * never set PAUSE_EXITING and just set PLE if supported, 5929 * so the vcpu must be CPL=0 if it gets a PAUSE exit. 5930 */ 5931 kvm_vcpu_on_spin(vcpu, true); 5932 return kvm_skip_emulated_instruction(vcpu); 5933 } 5934 5935 static int handle_monitor_trap(struct kvm_vcpu *vcpu) 5936 { 5937 return 1; 5938 } 5939 5940 static int handle_invpcid(struct kvm_vcpu *vcpu) 5941 { 5942 u32 vmx_instruction_info; 5943 unsigned long type; 5944 gva_t gva; 5945 struct { 5946 u64 pcid; 5947 u64 gla; 5948 } operand; 5949 int gpr_index; 5950 5951 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 5952 kvm_queue_exception(vcpu, UD_VECTOR); 5953 return 1; 5954 } 5955 5956 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5957 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info); 5958 type = kvm_register_read(vcpu, gpr_index); 5959 5960 /* According to the Intel instruction reference, the memory operand 5961 * is read even if it isn't needed (e.g., for type==all) 5962 */ 5963 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), 5964 vmx_instruction_info, false, 5965 sizeof(operand), &gva)) 5966 return 1; 5967 5968 return kvm_handle_invpcid(vcpu, type, gva); 5969 } 5970 5971 static int handle_pml_full(struct kvm_vcpu *vcpu) 5972 { 5973 unsigned long exit_qualification; 5974 5975 trace_kvm_pml_full(vcpu->vcpu_id); 5976 5977 exit_qualification = vmx_get_exit_qual(vcpu); 5978 5979 /* 5980 * PML buffer FULL happened while executing iret from NMI, 5981 * "blocked by NMI" bit has to be set before next VM entry. 5982 */ 5983 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5984 enable_vnmi && 5985 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5986 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5987 GUEST_INTR_STATE_NMI); 5988 5989 /* 5990 * PML buffer already flushed at beginning of VMEXIT. Nothing to do 5991 * here.., and there's no userspace involvement needed for PML. 5992 */ 5993 return 1; 5994 } 5995 5996 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu, 5997 bool force_immediate_exit) 5998 { 5999 struct vcpu_vmx *vmx = to_vmx(vcpu); 6000 6001 /* 6002 * In the *extremely* unlikely scenario that this is a spurious VM-Exit 6003 * due to the timer expiring while it was "soft" disabled, just eat the 6004 * exit and re-enter the guest. 6005 */ 6006 if (unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) 6007 return EXIT_FASTPATH_REENTER_GUEST; 6008 6009 /* 6010 * If the timer expired because KVM used it to force an immediate exit, 6011 * then mission accomplished. 6012 */ 6013 if (force_immediate_exit) 6014 return EXIT_FASTPATH_EXIT_HANDLED; 6015 6016 /* 6017 * If L2 is active, go down the slow path as emulating the guest timer 6018 * expiration likely requires synthesizing a nested VM-Exit. 6019 */ 6020 if (is_guest_mode(vcpu)) 6021 return EXIT_FASTPATH_NONE; 6022 6023 kvm_lapic_expired_hv_timer(vcpu); 6024 return EXIT_FASTPATH_REENTER_GUEST; 6025 } 6026 6027 static int handle_preemption_timer(struct kvm_vcpu *vcpu) 6028 { 6029 /* 6030 * This non-fastpath handler is reached if and only if the preemption 6031 * timer was being used to emulate a guest timer while L2 is active. 6032 * All other scenarios are supposed to be handled in the fastpath. 6033 */ 6034 WARN_ON_ONCE(!is_guest_mode(vcpu)); 6035 kvm_lapic_expired_hv_timer(vcpu); 6036 return 1; 6037 } 6038 6039 /* 6040 * When nested=0, all VMX instruction VM Exits filter here. The handlers 6041 * are overwritten by nested_vmx_setup() when nested=1. 6042 */ 6043 static int handle_vmx_instruction(struct kvm_vcpu *vcpu) 6044 { 6045 kvm_queue_exception(vcpu, UD_VECTOR); 6046 return 1; 6047 } 6048 6049 #ifndef CONFIG_X86_SGX_KVM 6050 static int handle_encls(struct kvm_vcpu *vcpu) 6051 { 6052 /* 6053 * SGX virtualization is disabled. There is no software enable bit for 6054 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent 6055 * the guest from executing ENCLS (when SGX is supported by hardware). 6056 */ 6057 kvm_queue_exception(vcpu, UD_VECTOR); 6058 return 1; 6059 } 6060 #endif /* CONFIG_X86_SGX_KVM */ 6061 6062 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu) 6063 { 6064 /* 6065 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK 6066 * VM-Exits. Unconditionally set the flag here and leave the handling to 6067 * vmx_handle_exit(). 6068 */ 6069 to_vmx(vcpu)->exit_reason.bus_lock_detected = true; 6070 return 1; 6071 } 6072 6073 static int handle_notify(struct kvm_vcpu *vcpu) 6074 { 6075 unsigned long exit_qual = vmx_get_exit_qual(vcpu); 6076 bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID; 6077 6078 ++vcpu->stat.notify_window_exits; 6079 6080 /* 6081 * Notify VM exit happened while executing iret from NMI, 6082 * "blocked by NMI" bit has to be set before next VM entry. 6083 */ 6084 if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI)) 6085 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 6086 GUEST_INTR_STATE_NMI); 6087 6088 if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER || 6089 context_invalid) { 6090 vcpu->run->exit_reason = KVM_EXIT_NOTIFY; 6091 vcpu->run->notify.flags = context_invalid ? 6092 KVM_NOTIFY_CONTEXT_INVALID : 0; 6093 return 0; 6094 } 6095 6096 return 1; 6097 } 6098 6099 /* 6100 * The exit handlers return 1 if the exit was handled fully and guest execution 6101 * may resume. Otherwise they set the kvm_run parameter to indicate what needs 6102 * to be done to userspace and return 0. 6103 */ 6104 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { 6105 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi, 6106 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, 6107 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, 6108 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, 6109 [EXIT_REASON_IO_INSTRUCTION] = handle_io, 6110 [EXIT_REASON_CR_ACCESS] = handle_cr, 6111 [EXIT_REASON_DR_ACCESS] = handle_dr, 6112 [EXIT_REASON_CPUID] = kvm_emulate_cpuid, 6113 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr, 6114 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr, 6115 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window, 6116 [EXIT_REASON_HLT] = kvm_emulate_halt, 6117 [EXIT_REASON_INVD] = kvm_emulate_invd, 6118 [EXIT_REASON_INVLPG] = handle_invlpg, 6119 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc, 6120 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall, 6121 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, 6122 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, 6123 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, 6124 [EXIT_REASON_VMPTRST] = handle_vmx_instruction, 6125 [EXIT_REASON_VMREAD] = handle_vmx_instruction, 6126 [EXIT_REASON_VMRESUME] = handle_vmx_instruction, 6127 [EXIT_REASON_VMWRITE] = handle_vmx_instruction, 6128 [EXIT_REASON_VMOFF] = handle_vmx_instruction, 6129 [EXIT_REASON_VMON] = handle_vmx_instruction, 6130 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, 6131 [EXIT_REASON_APIC_ACCESS] = handle_apic_access, 6132 [EXIT_REASON_APIC_WRITE] = handle_apic_write, 6133 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, 6134 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd, 6135 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv, 6136 [EXIT_REASON_TASK_SWITCH] = handle_task_switch, 6137 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, 6138 [EXIT_REASON_GDTR_IDTR] = handle_desc, 6139 [EXIT_REASON_LDTR_TR] = handle_desc, 6140 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, 6141 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, 6142 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, 6143 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait, 6144 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, 6145 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor, 6146 [EXIT_REASON_INVEPT] = handle_vmx_instruction, 6147 [EXIT_REASON_INVVPID] = handle_vmx_instruction, 6148 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op, 6149 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op, 6150 [EXIT_REASON_PML_FULL] = handle_pml_full, 6151 [EXIT_REASON_INVPCID] = handle_invpcid, 6152 [EXIT_REASON_VMFUNC] = handle_vmx_instruction, 6153 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, 6154 [EXIT_REASON_ENCLS] = handle_encls, 6155 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit, 6156 [EXIT_REASON_NOTIFY] = handle_notify, 6157 }; 6158 6159 static const int kvm_vmx_max_exit_handlers = 6160 ARRAY_SIZE(kvm_vmx_exit_handlers); 6161 6162 void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 6163 u64 *info1, u64 *info2, u32 *intr_info, u32 *error_code) 6164 { 6165 struct vcpu_vmx *vmx = to_vmx(vcpu); 6166 6167 *reason = vmx->exit_reason.full; 6168 *info1 = vmx_get_exit_qual(vcpu); 6169 if (!(vmx->exit_reason.failed_vmentry)) { 6170 *info2 = vmx->idt_vectoring_info; 6171 *intr_info = vmx_get_intr_info(vcpu); 6172 if (is_exception_with_error_code(*intr_info)) 6173 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 6174 else 6175 *error_code = 0; 6176 } else { 6177 *info2 = 0; 6178 *intr_info = 0; 6179 *error_code = 0; 6180 } 6181 } 6182 6183 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) 6184 { 6185 if (vmx->pml_pg) { 6186 __free_page(vmx->pml_pg); 6187 vmx->pml_pg = NULL; 6188 } 6189 } 6190 6191 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) 6192 { 6193 struct vcpu_vmx *vmx = to_vmx(vcpu); 6194 u64 *pml_buf; 6195 u16 pml_idx; 6196 6197 pml_idx = vmcs_read16(GUEST_PML_INDEX); 6198 6199 /* Do nothing if PML buffer is empty */ 6200 if (pml_idx == (PML_ENTITY_NUM - 1)) 6201 return; 6202 6203 /* PML index always points to next available PML buffer entity */ 6204 if (pml_idx >= PML_ENTITY_NUM) 6205 pml_idx = 0; 6206 else 6207 pml_idx++; 6208 6209 pml_buf = page_address(vmx->pml_pg); 6210 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { 6211 u64 gpa; 6212 6213 gpa = pml_buf[pml_idx]; 6214 WARN_ON(gpa & (PAGE_SIZE - 1)); 6215 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 6216 } 6217 6218 /* reset PML index */ 6219 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 6220 } 6221 6222 static void vmx_dump_sel(char *name, uint32_t sel) 6223 { 6224 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", 6225 name, vmcs_read16(sel), 6226 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), 6227 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), 6228 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); 6229 } 6230 6231 static void vmx_dump_dtsel(char *name, uint32_t limit) 6232 { 6233 pr_err("%s limit=0x%08x, base=0x%016lx\n", 6234 name, vmcs_read32(limit), 6235 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); 6236 } 6237 6238 static void vmx_dump_msrs(char *name, struct vmx_msrs *m) 6239 { 6240 unsigned int i; 6241 struct vmx_msr_entry *e; 6242 6243 pr_err("MSR %s:\n", name); 6244 for (i = 0, e = m->val; i < m->nr; ++i, ++e) 6245 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value); 6246 } 6247 6248 void dump_vmcs(struct kvm_vcpu *vcpu) 6249 { 6250 struct vcpu_vmx *vmx = to_vmx(vcpu); 6251 u32 vmentry_ctl, vmexit_ctl; 6252 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control; 6253 u64 tertiary_exec_control; 6254 unsigned long cr4; 6255 int efer_slot; 6256 6257 if (!dump_invalid_vmcs) { 6258 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n"); 6259 return; 6260 } 6261 6262 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); 6263 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); 6264 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); 6265 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); 6266 cr4 = vmcs_readl(GUEST_CR4); 6267 6268 if (cpu_has_secondary_exec_ctrls()) 6269 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); 6270 else 6271 secondary_exec_control = 0; 6272 6273 if (cpu_has_tertiary_exec_ctrls()) 6274 tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL); 6275 else 6276 tertiary_exec_control = 0; 6277 6278 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n", 6279 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu); 6280 pr_err("*** Guest State ***\n"); 6281 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 6282 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), 6283 vmcs_readl(CR0_GUEST_HOST_MASK)); 6284 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 6285 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); 6286 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); 6287 if (cpu_has_vmx_ept()) { 6288 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", 6289 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); 6290 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", 6291 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); 6292 } 6293 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", 6294 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); 6295 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", 6296 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); 6297 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 6298 vmcs_readl(GUEST_SYSENTER_ESP), 6299 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); 6300 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); 6301 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); 6302 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); 6303 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); 6304 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); 6305 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); 6306 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); 6307 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); 6308 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); 6309 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); 6310 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER); 6311 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER) 6312 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER)); 6313 else if (efer_slot >= 0) 6314 pr_err("EFER= 0x%016llx (autoload)\n", 6315 vmx->msr_autoload.guest.val[efer_slot].value); 6316 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE) 6317 pr_err("EFER= 0x%016llx (effective)\n", 6318 vcpu->arch.efer | (EFER_LMA | EFER_LME)); 6319 else 6320 pr_err("EFER= 0x%016llx (effective)\n", 6321 vcpu->arch.efer & ~(EFER_LMA | EFER_LME)); 6322 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT) 6323 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT)); 6324 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", 6325 vmcs_read64(GUEST_IA32_DEBUGCTL), 6326 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); 6327 if (cpu_has_load_perf_global_ctrl() && 6328 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) 6329 pr_err("PerfGlobCtl = 0x%016llx\n", 6330 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); 6331 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) 6332 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); 6333 pr_err("Interruptibility = %08x ActivityState = %08x\n", 6334 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), 6335 vmcs_read32(GUEST_ACTIVITY_STATE)); 6336 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) 6337 pr_err("InterruptStatus = %04x\n", 6338 vmcs_read16(GUEST_INTR_STATUS)); 6339 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0) 6340 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest); 6341 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0) 6342 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest); 6343 6344 pr_err("*** Host State ***\n"); 6345 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", 6346 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); 6347 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", 6348 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), 6349 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), 6350 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), 6351 vmcs_read16(HOST_TR_SELECTOR)); 6352 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", 6353 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), 6354 vmcs_readl(HOST_TR_BASE)); 6355 pr_err("GDTBase=%016lx IDTBase=%016lx\n", 6356 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); 6357 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", 6358 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), 6359 vmcs_readl(HOST_CR4)); 6360 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 6361 vmcs_readl(HOST_IA32_SYSENTER_ESP), 6362 vmcs_read32(HOST_IA32_SYSENTER_CS), 6363 vmcs_readl(HOST_IA32_SYSENTER_EIP)); 6364 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER) 6365 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER)); 6366 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT) 6367 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT)); 6368 if (cpu_has_load_perf_global_ctrl() && 6369 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) 6370 pr_err("PerfGlobCtl = 0x%016llx\n", 6371 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); 6372 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0) 6373 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host); 6374 6375 pr_err("*** Control State ***\n"); 6376 pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n", 6377 cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control); 6378 pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n", 6379 pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl); 6380 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", 6381 vmcs_read32(EXCEPTION_BITMAP), 6382 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), 6383 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); 6384 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", 6385 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 6386 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), 6387 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); 6388 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", 6389 vmcs_read32(VM_EXIT_INTR_INFO), 6390 vmcs_read32(VM_EXIT_INTR_ERROR_CODE), 6391 vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); 6392 pr_err(" reason=%08x qualification=%016lx\n", 6393 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); 6394 pr_err("IDTVectoring: info=%08x errcode=%08x\n", 6395 vmcs_read32(IDT_VECTORING_INFO_FIELD), 6396 vmcs_read32(IDT_VECTORING_ERROR_CODE)); 6397 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); 6398 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) 6399 pr_err("TSC Multiplier = 0x%016llx\n", 6400 vmcs_read64(TSC_MULTIPLIER)); 6401 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) { 6402 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { 6403 u16 status = vmcs_read16(GUEST_INTR_STATUS); 6404 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff); 6405 } 6406 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); 6407 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) 6408 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR)); 6409 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR)); 6410 } 6411 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) 6412 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); 6413 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) 6414 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); 6415 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) 6416 pr_err("PLE Gap=%08x Window=%08x\n", 6417 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); 6418 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) 6419 pr_err("Virtual processor ID = 0x%04x\n", 6420 vmcs_read16(VIRTUAL_PROCESSOR_ID)); 6421 if (secondary_exec_control & SECONDARY_EXEC_EPT_VIOLATION_VE) { 6422 struct vmx_ve_information *ve_info = vmx->ve_info; 6423 u64 ve_info_pa = vmcs_read64(VE_INFORMATION_ADDRESS); 6424 6425 /* 6426 * If KVM is dumping the VMCS, then something has gone wrong 6427 * already. Derefencing an address from the VMCS, which could 6428 * very well be corrupted, is a terrible idea. The virtual 6429 * address is known so use it. 6430 */ 6431 pr_err("VE info address = 0x%016llx%s\n", ve_info_pa, 6432 ve_info_pa == __pa(ve_info) ? "" : "(corrupted!)"); 6433 pr_err("ve_info: 0x%08x 0x%08x 0x%016llx 0x%016llx 0x%016llx 0x%04x\n", 6434 ve_info->exit_reason, ve_info->delivery, 6435 ve_info->exit_qualification, 6436 ve_info->guest_linear_address, 6437 ve_info->guest_physical_address, ve_info->eptp_index); 6438 } 6439 } 6440 6441 /* 6442 * The guest has exited. See if we can fix it or if we need userspace 6443 * assistance. 6444 */ 6445 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6446 { 6447 struct vcpu_vmx *vmx = to_vmx(vcpu); 6448 union vmx_exit_reason exit_reason = vmx->exit_reason; 6449 u32 vectoring_info = vmx->idt_vectoring_info; 6450 u16 exit_handler_index; 6451 6452 /* 6453 * Flush logged GPAs PML buffer, this will make dirty_bitmap more 6454 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before 6455 * querying dirty_bitmap, we only need to kick all vcpus out of guest 6456 * mode as if vcpus is in root mode, the PML buffer must has been 6457 * flushed already. Note, PML is never enabled in hardware while 6458 * running L2. 6459 */ 6460 if (enable_pml && !is_guest_mode(vcpu)) 6461 vmx_flush_pml_buffer(vcpu); 6462 6463 /* 6464 * KVM should never reach this point with a pending nested VM-Enter. 6465 * More specifically, short-circuiting VM-Entry to emulate L2 due to 6466 * invalid guest state should never happen as that means KVM knowingly 6467 * allowed a nested VM-Enter with an invalid vmcs12. More below. 6468 */ 6469 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm)) 6470 return -EIO; 6471 6472 if (is_guest_mode(vcpu)) { 6473 /* 6474 * PML is never enabled when running L2, bail immediately if a 6475 * PML full exit occurs as something is horribly wrong. 6476 */ 6477 if (exit_reason.basic == EXIT_REASON_PML_FULL) 6478 goto unexpected_vmexit; 6479 6480 /* 6481 * The host physical addresses of some pages of guest memory 6482 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC 6483 * Page). The CPU may write to these pages via their host 6484 * physical address while L2 is running, bypassing any 6485 * address-translation-based dirty tracking (e.g. EPT write 6486 * protection). 6487 * 6488 * Mark them dirty on every exit from L2 to prevent them from 6489 * getting out of sync with dirty tracking. 6490 */ 6491 nested_mark_vmcs12_pages_dirty(vcpu); 6492 6493 /* 6494 * Synthesize a triple fault if L2 state is invalid. In normal 6495 * operation, nested VM-Enter rejects any attempt to enter L2 6496 * with invalid state. However, those checks are skipped if 6497 * state is being stuffed via RSM or KVM_SET_NESTED_STATE. If 6498 * L2 state is invalid, it means either L1 modified SMRAM state 6499 * or userspace provided bad state. Synthesize TRIPLE_FAULT as 6500 * doing so is architecturally allowed in the RSM case, and is 6501 * the least awful solution for the userspace case without 6502 * risking false positives. 6503 */ 6504 if (vmx->emulation_required) { 6505 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0); 6506 return 1; 6507 } 6508 6509 if (nested_vmx_reflect_vmexit(vcpu)) 6510 return 1; 6511 } 6512 6513 /* If guest state is invalid, start emulating. L2 is handled above. */ 6514 if (vmx->emulation_required) 6515 return handle_invalid_guest_state(vcpu); 6516 6517 if (exit_reason.failed_vmentry) { 6518 dump_vmcs(vcpu); 6519 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6520 vcpu->run->fail_entry.hardware_entry_failure_reason 6521 = exit_reason.full; 6522 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6523 return 0; 6524 } 6525 6526 if (unlikely(vmx->fail)) { 6527 dump_vmcs(vcpu); 6528 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6529 vcpu->run->fail_entry.hardware_entry_failure_reason 6530 = vmcs_read32(VM_INSTRUCTION_ERROR); 6531 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6532 return 0; 6533 } 6534 6535 /* 6536 * Note: 6537 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by 6538 * delivery event since it indicates guest is accessing MMIO. 6539 * The vm-exit can be triggered again after return to guest that 6540 * will cause infinite loop. 6541 */ 6542 if ((vectoring_info & VECTORING_INFO_VALID_MASK) && 6543 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI && 6544 exit_reason.basic != EXIT_REASON_EPT_VIOLATION && 6545 exit_reason.basic != EXIT_REASON_PML_FULL && 6546 exit_reason.basic != EXIT_REASON_APIC_ACCESS && 6547 exit_reason.basic != EXIT_REASON_TASK_SWITCH && 6548 exit_reason.basic != EXIT_REASON_NOTIFY)) { 6549 int ndata = 3; 6550 6551 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6552 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; 6553 vcpu->run->internal.data[0] = vectoring_info; 6554 vcpu->run->internal.data[1] = exit_reason.full; 6555 vcpu->run->internal.data[2] = vmx_get_exit_qual(vcpu); 6556 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) { 6557 vcpu->run->internal.data[ndata++] = 6558 vmcs_read64(GUEST_PHYSICAL_ADDRESS); 6559 } 6560 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu; 6561 vcpu->run->internal.ndata = ndata; 6562 return 0; 6563 } 6564 6565 if (unlikely(!enable_vnmi && 6566 vmx->loaded_vmcs->soft_vnmi_blocked)) { 6567 if (!vmx_interrupt_blocked(vcpu)) { 6568 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6569 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && 6570 vcpu->arch.nmi_pending) { 6571 /* 6572 * This CPU don't support us in finding the end of an 6573 * NMI-blocked window if the guest runs with IRQs 6574 * disabled. So we pull the trigger after 1 s of 6575 * futile waiting, but inform the user about this. 6576 */ 6577 printk(KERN_WARNING "%s: Breaking out of NMI-blocked " 6578 "state on VCPU %d after 1 s timeout\n", 6579 __func__, vcpu->vcpu_id); 6580 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6581 } 6582 } 6583 6584 if (exit_fastpath != EXIT_FASTPATH_NONE) 6585 return 1; 6586 6587 if (exit_reason.basic >= kvm_vmx_max_exit_handlers) 6588 goto unexpected_vmexit; 6589 #ifdef CONFIG_MITIGATION_RETPOLINE 6590 if (exit_reason.basic == EXIT_REASON_MSR_WRITE) 6591 return kvm_emulate_wrmsr(vcpu); 6592 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER) 6593 return handle_preemption_timer(vcpu); 6594 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW) 6595 return handle_interrupt_window(vcpu); 6596 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6597 return handle_external_interrupt(vcpu); 6598 else if (exit_reason.basic == EXIT_REASON_HLT) 6599 return kvm_emulate_halt(vcpu); 6600 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) 6601 return handle_ept_misconfig(vcpu); 6602 #endif 6603 6604 exit_handler_index = array_index_nospec((u16)exit_reason.basic, 6605 kvm_vmx_max_exit_handlers); 6606 if (!kvm_vmx_exit_handlers[exit_handler_index]) 6607 goto unexpected_vmexit; 6608 6609 return kvm_vmx_exit_handlers[exit_handler_index](vcpu); 6610 6611 unexpected_vmexit: 6612 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", 6613 exit_reason.full); 6614 dump_vmcs(vcpu); 6615 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6616 vcpu->run->internal.suberror = 6617 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 6618 vcpu->run->internal.ndata = 2; 6619 vcpu->run->internal.data[0] = exit_reason.full; 6620 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 6621 return 0; 6622 } 6623 6624 int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6625 { 6626 int ret = __vmx_handle_exit(vcpu, exit_fastpath); 6627 6628 /* 6629 * Exit to user space when bus lock detected to inform that there is 6630 * a bus lock in guest. 6631 */ 6632 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) { 6633 if (ret > 0) 6634 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; 6635 6636 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; 6637 return 0; 6638 } 6639 return ret; 6640 } 6641 6642 /* 6643 * Software based L1D cache flush which is used when microcode providing 6644 * the cache control MSR is not loaded. 6645 * 6646 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to 6647 * flush it is required to read in 64 KiB because the replacement algorithm 6648 * is not exactly LRU. This could be sized at runtime via topology 6649 * information but as all relevant affected CPUs have 32KiB L1D cache size 6650 * there is no point in doing so. 6651 */ 6652 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu) 6653 { 6654 int size = PAGE_SIZE << L1D_CACHE_ORDER; 6655 6656 /* 6657 * This code is only executed when the flush mode is 'cond' or 6658 * 'always' 6659 */ 6660 if (static_branch_likely(&vmx_l1d_flush_cond)) { 6661 bool flush_l1d; 6662 6663 /* 6664 * Clear the per-vcpu flush bit, it gets set again if the vCPU 6665 * is reloaded, i.e. if the vCPU is scheduled out or if KVM 6666 * exits to userspace, or if KVM reaches one of the unsafe 6667 * VMEXIT handlers, e.g. if KVM calls into the emulator. 6668 */ 6669 flush_l1d = vcpu->arch.l1tf_flush_l1d; 6670 vcpu->arch.l1tf_flush_l1d = false; 6671 6672 /* 6673 * Clear the per-cpu flush bit, it gets set again from 6674 * the interrupt handlers. 6675 */ 6676 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); 6677 kvm_clear_cpu_l1tf_flush_l1d(); 6678 6679 if (!flush_l1d) 6680 return; 6681 } 6682 6683 vcpu->stat.l1d_flush++; 6684 6685 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { 6686 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 6687 return; 6688 } 6689 6690 asm volatile( 6691 /* First ensure the pages are in the TLB */ 6692 "xorl %%eax, %%eax\n" 6693 ".Lpopulate_tlb:\n\t" 6694 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6695 "addl $4096, %%eax\n\t" 6696 "cmpl %%eax, %[size]\n\t" 6697 "jne .Lpopulate_tlb\n\t" 6698 "xorl %%eax, %%eax\n\t" 6699 "cpuid\n\t" 6700 /* Now fill the cache */ 6701 "xorl %%eax, %%eax\n" 6702 ".Lfill_cache:\n" 6703 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6704 "addl $64, %%eax\n\t" 6705 "cmpl %%eax, %[size]\n\t" 6706 "jne .Lfill_cache\n\t" 6707 "lfence\n" 6708 :: [flush_pages] "r" (vmx_l1d_flush_pages), 6709 [size] "r" (size) 6710 : "eax", "ebx", "ecx", "edx"); 6711 } 6712 6713 void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 6714 { 6715 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 6716 int tpr_threshold; 6717 6718 if (is_guest_mode(vcpu) && 6719 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) 6720 return; 6721 6722 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr; 6723 if (is_guest_mode(vcpu)) 6724 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold; 6725 else 6726 vmcs_write32(TPR_THRESHOLD, tpr_threshold); 6727 } 6728 6729 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) 6730 { 6731 struct vcpu_vmx *vmx = to_vmx(vcpu); 6732 u32 sec_exec_control; 6733 6734 if (!lapic_in_kernel(vcpu)) 6735 return; 6736 6737 if (!flexpriority_enabled && 6738 !cpu_has_vmx_virtualize_x2apic_mode()) 6739 return; 6740 6741 /* Postpone execution until vmcs01 is the current VMCS. */ 6742 if (is_guest_mode(vcpu)) { 6743 vmx->nested.change_vmcs01_virtual_apic_mode = true; 6744 return; 6745 } 6746 6747 sec_exec_control = secondary_exec_controls_get(vmx); 6748 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 6749 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); 6750 6751 switch (kvm_get_apic_mode(vcpu)) { 6752 case LAPIC_MODE_INVALID: 6753 WARN_ONCE(true, "Invalid local APIC state"); 6754 break; 6755 case LAPIC_MODE_DISABLED: 6756 break; 6757 case LAPIC_MODE_XAPIC: 6758 if (flexpriority_enabled) { 6759 sec_exec_control |= 6760 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 6761 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6762 6763 /* 6764 * Flush the TLB, reloading the APIC access page will 6765 * only do so if its physical address has changed, but 6766 * the guest may have inserted a non-APIC mapping into 6767 * the TLB while the APIC access page was disabled. 6768 */ 6769 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 6770 } 6771 break; 6772 case LAPIC_MODE_X2APIC: 6773 if (cpu_has_vmx_virtualize_x2apic_mode()) 6774 sec_exec_control |= 6775 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 6776 break; 6777 } 6778 secondary_exec_controls_set(vmx, sec_exec_control); 6779 6780 vmx_update_msr_bitmap_x2apic(vcpu); 6781 } 6782 6783 void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu) 6784 { 6785 const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT; 6786 struct kvm *kvm = vcpu->kvm; 6787 struct kvm_memslots *slots = kvm_memslots(kvm); 6788 struct kvm_memory_slot *slot; 6789 unsigned long mmu_seq; 6790 kvm_pfn_t pfn; 6791 6792 /* Defer reload until vmcs01 is the current VMCS. */ 6793 if (is_guest_mode(vcpu)) { 6794 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true; 6795 return; 6796 } 6797 6798 if (!(secondary_exec_controls_get(to_vmx(vcpu)) & 6799 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 6800 return; 6801 6802 /* 6803 * Explicitly grab the memslot using KVM's internal slot ID to ensure 6804 * KVM doesn't unintentionally grab a userspace memslot. It _should_ 6805 * be impossible for userspace to create a memslot for the APIC when 6806 * APICv is enabled, but paranoia won't hurt in this case. 6807 */ 6808 slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT); 6809 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 6810 return; 6811 6812 /* 6813 * Ensure that the mmu_notifier sequence count is read before KVM 6814 * retrieves the pfn from the primary MMU. Note, the memslot is 6815 * protected by SRCU, not the mmu_notifier. Pairs with the smp_wmb() 6816 * in kvm_mmu_invalidate_end(). 6817 */ 6818 mmu_seq = kvm->mmu_invalidate_seq; 6819 smp_rmb(); 6820 6821 /* 6822 * No need to retry if the memslot does not exist or is invalid. KVM 6823 * controls the APIC-access page memslot, and only deletes the memslot 6824 * if APICv is permanently inhibited, i.e. the memslot won't reappear. 6825 */ 6826 pfn = gfn_to_pfn_memslot(slot, gfn); 6827 if (is_error_noslot_pfn(pfn)) 6828 return; 6829 6830 read_lock(&vcpu->kvm->mmu_lock); 6831 if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn)) { 6832 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6833 read_unlock(&vcpu->kvm->mmu_lock); 6834 goto out; 6835 } 6836 6837 vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn)); 6838 read_unlock(&vcpu->kvm->mmu_lock); 6839 6840 /* 6841 * No need for a manual TLB flush at this point, KVM has already done a 6842 * flush if there were SPTEs pointing at the previous page. 6843 */ 6844 out: 6845 /* 6846 * Do not pin apic access page in memory, the MMU notifier 6847 * will call us again if it is migrated or swapped out. 6848 */ 6849 kvm_release_pfn_clean(pfn); 6850 } 6851 6852 void vmx_hwapic_isr_update(int max_isr) 6853 { 6854 u16 status; 6855 u8 old; 6856 6857 if (max_isr == -1) 6858 max_isr = 0; 6859 6860 status = vmcs_read16(GUEST_INTR_STATUS); 6861 old = status >> 8; 6862 if (max_isr != old) { 6863 status &= 0xff; 6864 status |= max_isr << 8; 6865 vmcs_write16(GUEST_INTR_STATUS, status); 6866 } 6867 } 6868 6869 static void vmx_set_rvi(int vector) 6870 { 6871 u16 status; 6872 u8 old; 6873 6874 if (vector == -1) 6875 vector = 0; 6876 6877 status = vmcs_read16(GUEST_INTR_STATUS); 6878 old = (u8)status & 0xff; 6879 if ((u8)vector != old) { 6880 status &= ~0xff; 6881 status |= (u8)vector; 6882 vmcs_write16(GUEST_INTR_STATUS, status); 6883 } 6884 } 6885 6886 void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) 6887 { 6888 /* 6889 * When running L2, updating RVI is only relevant when 6890 * vmcs12 virtual-interrupt-delivery enabled. 6891 * However, it can be enabled only when L1 also 6892 * intercepts external-interrupts and in that case 6893 * we should not update vmcs02 RVI but instead intercept 6894 * interrupt. Therefore, do nothing when running L2. 6895 */ 6896 if (!is_guest_mode(vcpu)) 6897 vmx_set_rvi(max_irr); 6898 } 6899 6900 int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) 6901 { 6902 struct vcpu_vmx *vmx = to_vmx(vcpu); 6903 int max_irr; 6904 bool got_posted_interrupt; 6905 6906 if (KVM_BUG_ON(!enable_apicv, vcpu->kvm)) 6907 return -EIO; 6908 6909 if (pi_test_on(&vmx->pi_desc)) { 6910 pi_clear_on(&vmx->pi_desc); 6911 /* 6912 * IOMMU can write to PID.ON, so the barrier matters even on UP. 6913 * But on x86 this is just a compiler barrier anyway. 6914 */ 6915 smp_mb__after_atomic(); 6916 got_posted_interrupt = 6917 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); 6918 } else { 6919 max_irr = kvm_lapic_find_highest_irr(vcpu); 6920 got_posted_interrupt = false; 6921 } 6922 6923 /* 6924 * Newly recognized interrupts are injected via either virtual interrupt 6925 * delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is 6926 * disabled in two cases: 6927 * 6928 * 1) If L2 is running and the vCPU has a new pending interrupt. If L1 6929 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a 6930 * VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected 6931 * into L2, but KVM doesn't use virtual interrupt delivery to inject 6932 * interrupts into L2, and so KVM_REQ_EVENT is again needed. 6933 * 6934 * 2) If APICv is disabled for this vCPU, assigned devices may still 6935 * attempt to post interrupts. The posted interrupt vector will cause 6936 * a VM-Exit and the subsequent entry will call sync_pir_to_irr. 6937 */ 6938 if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu)) 6939 vmx_set_rvi(max_irr); 6940 else if (got_posted_interrupt) 6941 kvm_make_request(KVM_REQ_EVENT, vcpu); 6942 6943 return max_irr; 6944 } 6945 6946 void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) 6947 { 6948 if (!kvm_vcpu_apicv_active(vcpu)) 6949 return; 6950 6951 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); 6952 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); 6953 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); 6954 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); 6955 } 6956 6957 void vmx_apicv_pre_state_restore(struct kvm_vcpu *vcpu) 6958 { 6959 struct vcpu_vmx *vmx = to_vmx(vcpu); 6960 6961 pi_clear_on(&vmx->pi_desc); 6962 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); 6963 } 6964 6965 void vmx_do_interrupt_irqoff(unsigned long entry); 6966 void vmx_do_nmi_irqoff(void); 6967 6968 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu) 6969 { 6970 /* 6971 * Save xfd_err to guest_fpu before interrupt is enabled, so the 6972 * MSR value is not clobbered by the host activity before the guest 6973 * has chance to consume it. 6974 * 6975 * Do not blindly read xfd_err here, since this exception might 6976 * be caused by L1 interception on a platform which doesn't 6977 * support xfd at all. 6978 * 6979 * Do it conditionally upon guest_fpu::xfd. xfd_err matters 6980 * only when xfd contains a non-zero value. 6981 * 6982 * Queuing exception is done in vmx_handle_exit. See comment there. 6983 */ 6984 if (vcpu->arch.guest_fpu.fpstate->xfd) 6985 rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 6986 } 6987 6988 static void handle_exception_irqoff(struct kvm_vcpu *vcpu, u32 intr_info) 6989 { 6990 /* if exit due to PF check for async PF */ 6991 if (is_page_fault(intr_info)) 6992 vcpu->arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags(); 6993 /* if exit due to NM, handle before interrupts are enabled */ 6994 else if (is_nm_fault(intr_info)) 6995 handle_nm_fault_irqoff(vcpu); 6996 /* Handle machine checks before interrupts are enabled */ 6997 else if (is_machine_check(intr_info)) 6998 kvm_machine_check(); 6999 } 7000 7001 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu, 7002 u32 intr_info) 7003 { 7004 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK; 7005 7006 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm, 7007 "unexpected VM-Exit interrupt info: 0x%x", intr_info)) 7008 return; 7009 7010 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 7011 if (cpu_feature_enabled(X86_FEATURE_FRED)) 7012 fred_entry_from_kvm(EVENT_TYPE_EXTINT, vector); 7013 else 7014 vmx_do_interrupt_irqoff(gate_offset((gate_desc *)host_idt_base + vector)); 7015 kvm_after_interrupt(vcpu); 7016 7017 vcpu->arch.at_instruction_boundary = true; 7018 } 7019 7020 void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu) 7021 { 7022 struct vcpu_vmx *vmx = to_vmx(vcpu); 7023 7024 if (vmx->emulation_required) 7025 return; 7026 7027 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 7028 handle_external_interrupt_irqoff(vcpu, vmx_get_intr_info(vcpu)); 7029 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI) 7030 handle_exception_irqoff(vcpu, vmx_get_intr_info(vcpu)); 7031 } 7032 7033 /* 7034 * The kvm parameter can be NULL (module initialization, or invocation before 7035 * VM creation). Be sure to check the kvm parameter before using it. 7036 */ 7037 bool vmx_has_emulated_msr(struct kvm *kvm, u32 index) 7038 { 7039 switch (index) { 7040 case MSR_IA32_SMBASE: 7041 if (!IS_ENABLED(CONFIG_KVM_SMM)) 7042 return false; 7043 /* 7044 * We cannot do SMM unless we can run the guest in big 7045 * real mode. 7046 */ 7047 return enable_unrestricted_guest || emulate_invalid_guest_state; 7048 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 7049 return nested; 7050 case MSR_AMD64_VIRT_SPEC_CTRL: 7051 case MSR_AMD64_TSC_RATIO: 7052 /* This is AMD only. */ 7053 return false; 7054 default: 7055 return true; 7056 } 7057 } 7058 7059 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) 7060 { 7061 u32 exit_intr_info; 7062 bool unblock_nmi; 7063 u8 vector; 7064 bool idtv_info_valid; 7065 7066 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; 7067 7068 if (enable_vnmi) { 7069 if (vmx->loaded_vmcs->nmi_known_unmasked) 7070 return; 7071 7072 exit_intr_info = vmx_get_intr_info(&vmx->vcpu); 7073 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; 7074 vector = exit_intr_info & INTR_INFO_VECTOR_MASK; 7075 /* 7076 * SDM 3: 27.7.1.2 (September 2008) 7077 * Re-set bit "block by NMI" before VM entry if vmexit caused by 7078 * a guest IRET fault. 7079 * SDM 3: 23.2.2 (September 2008) 7080 * Bit 12 is undefined in any of the following cases: 7081 * If the VM exit sets the valid bit in the IDT-vectoring 7082 * information field. 7083 * If the VM exit is due to a double fault. 7084 */ 7085 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && 7086 vector != DF_VECTOR && !idtv_info_valid) 7087 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 7088 GUEST_INTR_STATE_NMI); 7089 else 7090 vmx->loaded_vmcs->nmi_known_unmasked = 7091 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) 7092 & GUEST_INTR_STATE_NMI); 7093 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) 7094 vmx->loaded_vmcs->vnmi_blocked_time += 7095 ktime_to_ns(ktime_sub(ktime_get(), 7096 vmx->loaded_vmcs->entry_time)); 7097 } 7098 7099 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, 7100 u32 idt_vectoring_info, 7101 int instr_len_field, 7102 int error_code_field) 7103 { 7104 u8 vector; 7105 int type; 7106 bool idtv_info_valid; 7107 7108 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; 7109 7110 vcpu->arch.nmi_injected = false; 7111 kvm_clear_exception_queue(vcpu); 7112 kvm_clear_interrupt_queue(vcpu); 7113 7114 if (!idtv_info_valid) 7115 return; 7116 7117 kvm_make_request(KVM_REQ_EVENT, vcpu); 7118 7119 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; 7120 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; 7121 7122 switch (type) { 7123 case INTR_TYPE_NMI_INTR: 7124 vcpu->arch.nmi_injected = true; 7125 /* 7126 * SDM 3: 27.7.1.2 (September 2008) 7127 * Clear bit "block by NMI" before VM entry if a NMI 7128 * delivery faulted. 7129 */ 7130 vmx_set_nmi_mask(vcpu, false); 7131 break; 7132 case INTR_TYPE_SOFT_EXCEPTION: 7133 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 7134 fallthrough; 7135 case INTR_TYPE_HARD_EXCEPTION: 7136 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { 7137 u32 err = vmcs_read32(error_code_field); 7138 kvm_requeue_exception_e(vcpu, vector, err); 7139 } else 7140 kvm_requeue_exception(vcpu, vector); 7141 break; 7142 case INTR_TYPE_SOFT_INTR: 7143 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 7144 fallthrough; 7145 case INTR_TYPE_EXT_INTR: 7146 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); 7147 break; 7148 default: 7149 break; 7150 } 7151 } 7152 7153 static void vmx_complete_interrupts(struct vcpu_vmx *vmx) 7154 { 7155 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, 7156 VM_EXIT_INSTRUCTION_LEN, 7157 IDT_VECTORING_ERROR_CODE); 7158 } 7159 7160 void vmx_cancel_injection(struct kvm_vcpu *vcpu) 7161 { 7162 __vmx_complete_interrupts(vcpu, 7163 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 7164 VM_ENTRY_INSTRUCTION_LEN, 7165 VM_ENTRY_EXCEPTION_ERROR_CODE); 7166 7167 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); 7168 } 7169 7170 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) 7171 { 7172 int i, nr_msrs; 7173 struct perf_guest_switch_msr *msrs; 7174 struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu); 7175 7176 pmu->host_cross_mapped_mask = 0; 7177 if (pmu->pebs_enable & pmu->global_ctrl) 7178 intel_pmu_cross_mapped_check(pmu); 7179 7180 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */ 7181 msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu); 7182 if (!msrs) 7183 return; 7184 7185 for (i = 0; i < nr_msrs; i++) 7186 if (msrs[i].host == msrs[i].guest) 7187 clear_atomic_switch_msr(vmx, msrs[i].msr); 7188 else 7189 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, 7190 msrs[i].host, false); 7191 } 7192 7193 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu, bool force_immediate_exit) 7194 { 7195 struct vcpu_vmx *vmx = to_vmx(vcpu); 7196 u64 tscl; 7197 u32 delta_tsc; 7198 7199 if (force_immediate_exit) { 7200 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0); 7201 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 7202 } else if (vmx->hv_deadline_tsc != -1) { 7203 tscl = rdtsc(); 7204 if (vmx->hv_deadline_tsc > tscl) 7205 /* set_hv_timer ensures the delta fits in 32-bits */ 7206 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> 7207 cpu_preemption_timer_multi); 7208 else 7209 delta_tsc = 0; 7210 7211 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc); 7212 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 7213 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) { 7214 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1); 7215 vmx->loaded_vmcs->hv_timer_soft_disabled = true; 7216 } 7217 } 7218 7219 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp) 7220 { 7221 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) { 7222 vmx->loaded_vmcs->host_state.rsp = host_rsp; 7223 vmcs_writel(HOST_RSP, host_rsp); 7224 } 7225 } 7226 7227 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, 7228 unsigned int flags) 7229 { 7230 u64 hostval = this_cpu_read(x86_spec_ctrl_current); 7231 7232 if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) 7233 return; 7234 7235 if (flags & VMX_RUN_SAVE_SPEC_CTRL) 7236 vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL); 7237 7238 /* 7239 * If the guest/host SPEC_CTRL values differ, restore the host value. 7240 * 7241 * For legacy IBRS, the IBRS bit always needs to be written after 7242 * transitioning from a less privileged predictor mode, regardless of 7243 * whether the guest/host values differ. 7244 */ 7245 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) || 7246 vmx->spec_ctrl != hostval) 7247 native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval); 7248 7249 barrier_nospec(); 7250 } 7251 7252 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu, 7253 bool force_immediate_exit) 7254 { 7255 /* 7256 * If L2 is active, some VMX preemption timer exits can be handled in 7257 * the fastpath even, all other exits must use the slow path. 7258 */ 7259 if (is_guest_mode(vcpu) && 7260 to_vmx(vcpu)->exit_reason.basic != EXIT_REASON_PREEMPTION_TIMER) 7261 return EXIT_FASTPATH_NONE; 7262 7263 switch (to_vmx(vcpu)->exit_reason.basic) { 7264 case EXIT_REASON_MSR_WRITE: 7265 return handle_fastpath_set_msr_irqoff(vcpu); 7266 case EXIT_REASON_PREEMPTION_TIMER: 7267 return handle_fastpath_preemption_timer(vcpu, force_immediate_exit); 7268 default: 7269 return EXIT_FASTPATH_NONE; 7270 } 7271 } 7272 7273 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu, 7274 unsigned int flags) 7275 { 7276 struct vcpu_vmx *vmx = to_vmx(vcpu); 7277 7278 guest_state_enter_irqoff(); 7279 7280 /* 7281 * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW 7282 * mitigation for MDS is done late in VMentry and is still 7283 * executed in spite of L1D Flush. This is because an extra VERW 7284 * should not matter much after the big hammer L1D Flush. 7285 */ 7286 if (static_branch_unlikely(&vmx_l1d_should_flush)) 7287 vmx_l1d_flush(vcpu); 7288 else if (static_branch_unlikely(&mmio_stale_data_clear) && 7289 kvm_arch_has_assigned_device(vcpu->kvm)) 7290 mds_clear_cpu_buffers(); 7291 7292 vmx_disable_fb_clear(vmx); 7293 7294 if (vcpu->arch.cr2 != native_read_cr2()) 7295 native_write_cr2(vcpu->arch.cr2); 7296 7297 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, 7298 flags); 7299 7300 vcpu->arch.cr2 = native_read_cr2(); 7301 vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET; 7302 7303 vmx->idt_vectoring_info = 0; 7304 7305 vmx_enable_fb_clear(vmx); 7306 7307 if (unlikely(vmx->fail)) { 7308 vmx->exit_reason.full = 0xdead; 7309 goto out; 7310 } 7311 7312 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON); 7313 if (likely(!vmx->exit_reason.failed_vmentry)) 7314 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); 7315 7316 if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI && 7317 is_nmi(vmx_get_intr_info(vcpu))) { 7318 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); 7319 if (cpu_feature_enabled(X86_FEATURE_FRED)) 7320 fred_entry_from_kvm(EVENT_TYPE_NMI, NMI_VECTOR); 7321 else 7322 vmx_do_nmi_irqoff(); 7323 kvm_after_interrupt(vcpu); 7324 } 7325 7326 out: 7327 guest_state_exit_irqoff(); 7328 } 7329 7330 fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu, bool force_immediate_exit) 7331 { 7332 struct vcpu_vmx *vmx = to_vmx(vcpu); 7333 unsigned long cr3, cr4; 7334 7335 /* Record the guest's net vcpu time for enforced NMI injections. */ 7336 if (unlikely(!enable_vnmi && 7337 vmx->loaded_vmcs->soft_vnmi_blocked)) 7338 vmx->loaded_vmcs->entry_time = ktime_get(); 7339 7340 /* 7341 * Don't enter VMX if guest state is invalid, let the exit handler 7342 * start emulation until we arrive back to a valid state. Synthesize a 7343 * consistency check VM-Exit due to invalid guest state and bail. 7344 */ 7345 if (unlikely(vmx->emulation_required)) { 7346 vmx->fail = 0; 7347 7348 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE; 7349 vmx->exit_reason.failed_vmentry = 1; 7350 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1); 7351 vmx->exit_qualification = ENTRY_FAIL_DEFAULT; 7352 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2); 7353 vmx->exit_intr_info = 0; 7354 return EXIT_FASTPATH_NONE; 7355 } 7356 7357 trace_kvm_entry(vcpu, force_immediate_exit); 7358 7359 if (vmx->ple_window_dirty) { 7360 vmx->ple_window_dirty = false; 7361 vmcs_write32(PLE_WINDOW, vmx->ple_window); 7362 } 7363 7364 /* 7365 * We did this in prepare_switch_to_guest, because it needs to 7366 * be within srcu_read_lock. 7367 */ 7368 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync); 7369 7370 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP)) 7371 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); 7372 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP)) 7373 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); 7374 vcpu->arch.regs_dirty = 0; 7375 7376 /* 7377 * Refresh vmcs.HOST_CR3 if necessary. This must be done immediately 7378 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time 7379 * it switches back to the current->mm, which can occur in KVM context 7380 * when switching to a temporary mm to patch kernel code, e.g. if KVM 7381 * toggles a static key while handling a VM-Exit. 7382 */ 7383 cr3 = __get_current_cr3_fast(); 7384 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { 7385 vmcs_writel(HOST_CR3, cr3); 7386 vmx->loaded_vmcs->host_state.cr3 = cr3; 7387 } 7388 7389 cr4 = cr4_read_shadow(); 7390 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { 7391 vmcs_writel(HOST_CR4, cr4); 7392 vmx->loaded_vmcs->host_state.cr4 = cr4; 7393 } 7394 7395 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */ 7396 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 7397 set_debugreg(vcpu->arch.dr6, 6); 7398 7399 /* When single-stepping over STI and MOV SS, we must clear the 7400 * corresponding interruptibility bits in the guest state. Otherwise 7401 * vmentry fails as it then expects bit 14 (BS) in pending debug 7402 * exceptions being set, but that's not correct for the guest debugging 7403 * case. */ 7404 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 7405 vmx_set_interrupt_shadow(vcpu, 0); 7406 7407 kvm_load_guest_xsave_state(vcpu); 7408 7409 pt_guest_enter(vmx); 7410 7411 atomic_switch_perf_msrs(vmx); 7412 if (intel_pmu_lbr_is_enabled(vcpu)) 7413 vmx_passthrough_lbr_msrs(vcpu); 7414 7415 if (enable_preemption_timer) 7416 vmx_update_hv_timer(vcpu, force_immediate_exit); 7417 else if (force_immediate_exit) 7418 smp_send_reschedule(vcpu->cpu); 7419 7420 kvm_wait_lapic_expire(vcpu); 7421 7422 /* The actual VMENTER/EXIT is in the .noinstr.text section. */ 7423 vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx)); 7424 7425 /* All fields are clean at this point */ 7426 if (kvm_is_using_evmcs()) { 7427 current_evmcs->hv_clean_fields |= 7428 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; 7429 7430 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu); 7431 } 7432 7433 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ 7434 if (vmx->host_debugctlmsr) 7435 update_debugctlmsr(vmx->host_debugctlmsr); 7436 7437 #ifndef CONFIG_X86_64 7438 /* 7439 * The sysexit path does not restore ds/es, so we must set them to 7440 * a reasonable value ourselves. 7441 * 7442 * We can't defer this to vmx_prepare_switch_to_host() since that 7443 * function may be executed in interrupt context, which saves and 7444 * restore segments around it, nullifying its effect. 7445 */ 7446 loadsegment(ds, __USER_DS); 7447 loadsegment(es, __USER_DS); 7448 #endif 7449 7450 pt_guest_exit(vmx); 7451 7452 kvm_load_host_xsave_state(vcpu); 7453 7454 if (is_guest_mode(vcpu)) { 7455 /* 7456 * Track VMLAUNCH/VMRESUME that have made past guest state 7457 * checking. 7458 */ 7459 if (vmx->nested.nested_run_pending && 7460 !vmx->exit_reason.failed_vmentry) 7461 ++vcpu->stat.nested_run; 7462 7463 vmx->nested.nested_run_pending = 0; 7464 } 7465 7466 if (unlikely(vmx->fail)) 7467 return EXIT_FASTPATH_NONE; 7468 7469 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY)) 7470 kvm_machine_check(); 7471 7472 trace_kvm_exit(vcpu, KVM_ISA_VMX); 7473 7474 if (unlikely(vmx->exit_reason.failed_vmentry)) 7475 return EXIT_FASTPATH_NONE; 7476 7477 vmx->loaded_vmcs->launched = 1; 7478 7479 vmx_recover_nmi_blocking(vmx); 7480 vmx_complete_interrupts(vmx); 7481 7482 return vmx_exit_handlers_fastpath(vcpu, force_immediate_exit); 7483 } 7484 7485 void vmx_vcpu_free(struct kvm_vcpu *vcpu) 7486 { 7487 struct vcpu_vmx *vmx = to_vmx(vcpu); 7488 7489 if (enable_pml) 7490 vmx_destroy_pml_buffer(vmx); 7491 free_vpid(vmx->vpid); 7492 nested_vmx_free_vcpu(vcpu); 7493 free_loaded_vmcs(vmx->loaded_vmcs); 7494 free_page((unsigned long)vmx->ve_info); 7495 } 7496 7497 int vmx_vcpu_create(struct kvm_vcpu *vcpu) 7498 { 7499 struct vmx_uret_msr *tsx_ctrl; 7500 struct vcpu_vmx *vmx; 7501 int i, err; 7502 7503 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0); 7504 vmx = to_vmx(vcpu); 7505 7506 INIT_LIST_HEAD(&vmx->pi_wakeup_list); 7507 7508 err = -ENOMEM; 7509 7510 vmx->vpid = allocate_vpid(); 7511 7512 /* 7513 * If PML is turned on, failure on enabling PML just results in failure 7514 * of creating the vcpu, therefore we can simplify PML logic (by 7515 * avoiding dealing with cases, such as enabling PML partially on vcpus 7516 * for the guest), etc. 7517 */ 7518 if (enable_pml) { 7519 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 7520 if (!vmx->pml_pg) 7521 goto free_vpid; 7522 } 7523 7524 for (i = 0; i < kvm_nr_uret_msrs; ++i) 7525 vmx->guest_uret_msrs[i].mask = -1ull; 7526 if (boot_cpu_has(X86_FEATURE_RTM)) { 7527 /* 7528 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception. 7529 * Keep the host value unchanged to avoid changing CPUID bits 7530 * under the host kernel's feet. 7531 */ 7532 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7533 if (tsx_ctrl) 7534 tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR; 7535 } 7536 7537 err = alloc_loaded_vmcs(&vmx->vmcs01); 7538 if (err < 0) 7539 goto free_pml; 7540 7541 /* 7542 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a 7543 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the 7544 * feature only for vmcs01, KVM currently isn't equipped to realize any 7545 * performance benefits from enabling it for vmcs02. 7546 */ 7547 if (kvm_is_using_evmcs() && 7548 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { 7549 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; 7550 7551 evmcs->hv_enlightenments_control.msr_bitmap = 1; 7552 } 7553 7554 /* The MSR bitmap starts with all ones */ 7555 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS); 7556 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS); 7557 7558 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R); 7559 #ifdef CONFIG_X86_64 7560 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW); 7561 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW); 7562 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); 7563 #endif 7564 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); 7565 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); 7566 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); 7567 if (kvm_cstate_in_guest(vcpu->kvm)) { 7568 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R); 7569 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R); 7570 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R); 7571 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R); 7572 } 7573 7574 vmx->loaded_vmcs = &vmx->vmcs01; 7575 7576 if (cpu_need_virtualize_apic_accesses(vcpu)) { 7577 err = kvm_alloc_apic_access_page(vcpu->kvm); 7578 if (err) 7579 goto free_vmcs; 7580 } 7581 7582 if (enable_ept && !enable_unrestricted_guest) { 7583 err = init_rmode_identity_map(vcpu->kvm); 7584 if (err) 7585 goto free_vmcs; 7586 } 7587 7588 err = -ENOMEM; 7589 if (vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_EPT_VIOLATION_VE) { 7590 struct page *page; 7591 7592 BUILD_BUG_ON(sizeof(*vmx->ve_info) > PAGE_SIZE); 7593 7594 /* ve_info must be page aligned. */ 7595 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 7596 if (!page) 7597 goto free_vmcs; 7598 7599 vmx->ve_info = page_to_virt(page); 7600 } 7601 7602 if (vmx_can_use_ipiv(vcpu)) 7603 WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id], 7604 __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID); 7605 7606 return 0; 7607 7608 free_vmcs: 7609 free_loaded_vmcs(vmx->loaded_vmcs); 7610 free_pml: 7611 vmx_destroy_pml_buffer(vmx); 7612 free_vpid: 7613 free_vpid(vmx->vpid); 7614 return err; 7615 } 7616 7617 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7618 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7619 7620 int vmx_vm_init(struct kvm *kvm) 7621 { 7622 if (!ple_gap) 7623 kvm->arch.pause_in_guest = true; 7624 7625 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { 7626 switch (l1tf_mitigation) { 7627 case L1TF_MITIGATION_OFF: 7628 case L1TF_MITIGATION_FLUSH_NOWARN: 7629 /* 'I explicitly don't care' is set */ 7630 break; 7631 case L1TF_MITIGATION_FLUSH: 7632 case L1TF_MITIGATION_FLUSH_NOSMT: 7633 case L1TF_MITIGATION_FULL: 7634 /* 7635 * Warn upon starting the first VM in a potentially 7636 * insecure environment. 7637 */ 7638 if (sched_smt_active()) 7639 pr_warn_once(L1TF_MSG_SMT); 7640 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) 7641 pr_warn_once(L1TF_MSG_L1D); 7642 break; 7643 case L1TF_MITIGATION_FULL_FORCE: 7644 /* Flush is enforced */ 7645 break; 7646 } 7647 } 7648 return 0; 7649 } 7650 7651 u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 7652 { 7653 /* 7654 * Force UC for host MMIO regions, as allowing the guest to access MMIO 7655 * with cacheable accesses will result in Machine Checks. 7656 */ 7657 if (is_mmio) 7658 return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT; 7659 7660 /* 7661 * Force WB and ignore guest PAT if the VM does NOT have a non-coherent 7662 * device attached and the CPU doesn't support self-snoop. Letting the 7663 * guest control memory types on Intel CPUs without self-snoop may 7664 * result in unexpected behavior, and so KVM's (historical) ABI is to 7665 * trust the guest to behave only as a last resort. 7666 */ 7667 if (!static_cpu_has(X86_FEATURE_SELFSNOOP) && 7668 !kvm_arch_has_noncoherent_dma(vcpu->kvm)) 7669 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT; 7670 7671 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT); 7672 } 7673 7674 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl) 7675 { 7676 /* 7677 * These bits in the secondary execution controls field 7678 * are dynamic, the others are mostly based on the hypervisor 7679 * architecture and the guest's CPUID. Do not touch the 7680 * dynamic bits. 7681 */ 7682 u32 mask = 7683 SECONDARY_EXEC_SHADOW_VMCS | 7684 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 7685 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 7686 SECONDARY_EXEC_DESC; 7687 7688 u32 cur_ctl = secondary_exec_controls_get(vmx); 7689 7690 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask)); 7691 } 7692 7693 /* 7694 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits 7695 * (indicating "allowed-1") if they are supported in the guest's CPUID. 7696 */ 7697 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) 7698 { 7699 struct vcpu_vmx *vmx = to_vmx(vcpu); 7700 struct kvm_cpuid_entry2 *entry; 7701 7702 vmx->nested.msrs.cr0_fixed1 = 0xffffffff; 7703 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; 7704 7705 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ 7706 if (entry && (entry->_reg & (_cpuid_mask))) \ 7707 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ 7708 } while (0) 7709 7710 entry = kvm_find_cpuid_entry(vcpu, 0x1); 7711 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME)); 7712 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME)); 7713 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC)); 7714 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE)); 7715 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE)); 7716 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE)); 7717 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE)); 7718 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE)); 7719 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR)); 7720 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM)); 7721 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX)); 7722 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX)); 7723 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID)); 7724 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE)); 7725 7726 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0); 7727 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE)); 7728 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP)); 7729 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP)); 7730 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU)); 7731 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP)); 7732 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57)); 7733 7734 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 1); 7735 cr4_fixed1_update(X86_CR4_LAM_SUP, eax, feature_bit(LAM)); 7736 7737 #undef cr4_fixed1_update 7738 } 7739 7740 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) 7741 { 7742 struct vcpu_vmx *vmx = to_vmx(vcpu); 7743 struct kvm_cpuid_entry2 *best = NULL; 7744 int i; 7745 7746 for (i = 0; i < PT_CPUID_LEAVES; i++) { 7747 best = kvm_find_cpuid_entry_index(vcpu, 0x14, i); 7748 if (!best) 7749 return; 7750 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; 7751 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; 7752 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; 7753 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; 7754 } 7755 7756 /* Get the number of configurable Address Ranges for filtering */ 7757 vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps, 7758 PT_CAP_num_address_ranges); 7759 7760 /* Initialize and clear the no dependency bits */ 7761 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | 7762 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC | 7763 RTIT_CTL_BRANCH_EN); 7764 7765 /* 7766 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise 7767 * will inject an #GP 7768 */ 7769 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) 7770 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; 7771 7772 /* 7773 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and 7774 * PSBFreq can be set 7775 */ 7776 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) 7777 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | 7778 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); 7779 7780 /* 7781 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set 7782 */ 7783 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) 7784 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | 7785 RTIT_CTL_MTC_RANGE); 7786 7787 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ 7788 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) 7789 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | 7790 RTIT_CTL_PTW_EN); 7791 7792 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ 7793 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) 7794 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; 7795 7796 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ 7797 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) 7798 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; 7799 7800 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */ 7801 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) 7802 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; 7803 7804 /* unmask address range configure area */ 7805 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) 7806 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4)); 7807 } 7808 7809 void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 7810 { 7811 struct vcpu_vmx *vmx = to_vmx(vcpu); 7812 7813 /* 7814 * XSAVES is effectively enabled if and only if XSAVE is also exposed 7815 * to the guest. XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be 7816 * set if and only if XSAVE is supported. 7817 */ 7818 if (boot_cpu_has(X86_FEATURE_XSAVE) && 7819 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE)) 7820 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_XSAVES); 7821 7822 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VMX); 7823 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LAM); 7824 7825 vmx_setup_uret_msrs(vmx); 7826 7827 if (cpu_has_secondary_exec_ctrls()) 7828 vmcs_set_secondary_exec_control(vmx, 7829 vmx_secondary_exec_control(vmx)); 7830 7831 if (guest_can_use(vcpu, X86_FEATURE_VMX)) 7832 vmx->msr_ia32_feature_control_valid_bits |= 7833 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7834 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; 7835 else 7836 vmx->msr_ia32_feature_control_valid_bits &= 7837 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7838 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX); 7839 7840 if (guest_can_use(vcpu, X86_FEATURE_VMX)) 7841 nested_vmx_cr_fixed1_bits_update(vcpu); 7842 7843 if (boot_cpu_has(X86_FEATURE_INTEL_PT) && 7844 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT)) 7845 update_intel_pt_cfg(vcpu); 7846 7847 if (boot_cpu_has(X86_FEATURE_RTM)) { 7848 struct vmx_uret_msr *msr; 7849 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7850 if (msr) { 7851 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM); 7852 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE); 7853 } 7854 } 7855 7856 if (kvm_cpu_cap_has(X86_FEATURE_XFD)) 7857 vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R, 7858 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)); 7859 7860 if (boot_cpu_has(X86_FEATURE_IBPB)) 7861 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W, 7862 !guest_has_pred_cmd_msr(vcpu)); 7863 7864 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D)) 7865 vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W, 7866 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)); 7867 7868 set_cr4_guest_host_mask(vmx); 7869 7870 vmx_write_encls_bitmap(vcpu, NULL); 7871 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX)) 7872 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED; 7873 else 7874 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED; 7875 7876 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 7877 vmx->msr_ia32_feature_control_valid_bits |= 7878 FEAT_CTL_SGX_LC_ENABLED; 7879 else 7880 vmx->msr_ia32_feature_control_valid_bits &= 7881 ~FEAT_CTL_SGX_LC_ENABLED; 7882 7883 /* Refresh #PF interception to account for MAXPHYADDR changes. */ 7884 vmx_update_exception_bitmap(vcpu); 7885 } 7886 7887 static __init u64 vmx_get_perf_capabilities(void) 7888 { 7889 u64 perf_cap = PMU_CAP_FW_WRITES; 7890 u64 host_perf_cap = 0; 7891 7892 if (!enable_pmu) 7893 return 0; 7894 7895 if (boot_cpu_has(X86_FEATURE_PDCM)) 7896 rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap); 7897 7898 if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) { 7899 x86_perf_get_lbr(&vmx_lbr_caps); 7900 7901 /* 7902 * KVM requires LBR callstack support, as the overhead due to 7903 * context switching LBRs without said support is too high. 7904 * See intel_pmu_create_guest_lbr_event() for more info. 7905 */ 7906 if (!vmx_lbr_caps.has_callstack) 7907 memset(&vmx_lbr_caps, 0, sizeof(vmx_lbr_caps)); 7908 else if (vmx_lbr_caps.nr) 7909 perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT; 7910 } 7911 7912 if (vmx_pebs_supported()) { 7913 perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK; 7914 7915 /* 7916 * Disallow adaptive PEBS as it is functionally broken, can be 7917 * used by the guest to read *host* LBRs, and can be used to 7918 * bypass userspace event filters. To correctly and safely 7919 * support adaptive PEBS, KVM needs to: 7920 * 7921 * 1. Account for the ADAPTIVE flag when (re)programming fixed 7922 * counters. 7923 * 7924 * 2. Gain support from perf (or take direct control of counter 7925 * programming) to support events without adaptive PEBS 7926 * enabled for the hardware counter. 7927 * 7928 * 3. Ensure LBR MSRs cannot hold host data on VM-Entry with 7929 * adaptive PEBS enabled and MSR_PEBS_DATA_CFG.LBRS=1. 7930 * 7931 * 4. Document which PMU events are effectively exposed to the 7932 * guest via adaptive PEBS, and make adaptive PEBS mutually 7933 * exclusive with KVM_SET_PMU_EVENT_FILTER if necessary. 7934 */ 7935 perf_cap &= ~PERF_CAP_PEBS_BASELINE; 7936 } 7937 7938 return perf_cap; 7939 } 7940 7941 static __init void vmx_set_cpu_caps(void) 7942 { 7943 kvm_set_cpu_caps(); 7944 7945 /* CPUID 0x1 */ 7946 if (nested) 7947 kvm_cpu_cap_set(X86_FEATURE_VMX); 7948 7949 /* CPUID 0x7 */ 7950 if (kvm_mpx_supported()) 7951 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX); 7952 if (!cpu_has_vmx_invpcid()) 7953 kvm_cpu_cap_clear(X86_FEATURE_INVPCID); 7954 if (vmx_pt_mode_is_host_guest()) 7955 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT); 7956 if (vmx_pebs_supported()) { 7957 kvm_cpu_cap_check_and_set(X86_FEATURE_DS); 7958 kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64); 7959 } 7960 7961 if (!enable_pmu) 7962 kvm_cpu_cap_clear(X86_FEATURE_PDCM); 7963 kvm_caps.supported_perf_cap = vmx_get_perf_capabilities(); 7964 7965 if (!enable_sgx) { 7966 kvm_cpu_cap_clear(X86_FEATURE_SGX); 7967 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC); 7968 kvm_cpu_cap_clear(X86_FEATURE_SGX1); 7969 kvm_cpu_cap_clear(X86_FEATURE_SGX2); 7970 } 7971 7972 if (vmx_umip_emulated()) 7973 kvm_cpu_cap_set(X86_FEATURE_UMIP); 7974 7975 /* CPUID 0xD.1 */ 7976 kvm_caps.supported_xss = 0; 7977 if (!cpu_has_vmx_xsaves()) 7978 kvm_cpu_cap_clear(X86_FEATURE_XSAVES); 7979 7980 /* CPUID 0x80000001 and 0x7 (RDPID) */ 7981 if (!cpu_has_vmx_rdtscp()) { 7982 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP); 7983 kvm_cpu_cap_clear(X86_FEATURE_RDPID); 7984 } 7985 7986 if (cpu_has_vmx_waitpkg()) 7987 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG); 7988 } 7989 7990 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu, 7991 struct x86_instruction_info *info) 7992 { 7993 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7994 unsigned short port; 7995 bool intercept; 7996 int size; 7997 7998 if (info->intercept == x86_intercept_in || 7999 info->intercept == x86_intercept_ins) { 8000 port = info->src_val; 8001 size = info->dst_bytes; 8002 } else { 8003 port = info->dst_val; 8004 size = info->src_bytes; 8005 } 8006 8007 /* 8008 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction 8009 * VM-exits depend on the 'unconditional IO exiting' VM-execution 8010 * control. 8011 * 8012 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps. 8013 */ 8014 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) 8015 intercept = nested_cpu_has(vmcs12, 8016 CPU_BASED_UNCOND_IO_EXITING); 8017 else 8018 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size); 8019 8020 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 8021 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; 8022 } 8023 8024 int vmx_check_intercept(struct kvm_vcpu *vcpu, 8025 struct x86_instruction_info *info, 8026 enum x86_intercept_stage stage, 8027 struct x86_exception *exception) 8028 { 8029 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 8030 8031 switch (info->intercept) { 8032 /* 8033 * RDPID causes #UD if disabled through secondary execution controls. 8034 * Because it is marked as EmulateOnUD, we need to intercept it here. 8035 * Note, RDPID is hidden behind ENABLE_RDTSCP. 8036 */ 8037 case x86_intercept_rdpid: 8038 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) { 8039 exception->vector = UD_VECTOR; 8040 exception->error_code_valid = false; 8041 return X86EMUL_PROPAGATE_FAULT; 8042 } 8043 break; 8044 8045 case x86_intercept_in: 8046 case x86_intercept_ins: 8047 case x86_intercept_out: 8048 case x86_intercept_outs: 8049 return vmx_check_intercept_io(vcpu, info); 8050 8051 case x86_intercept_lgdt: 8052 case x86_intercept_lidt: 8053 case x86_intercept_lldt: 8054 case x86_intercept_ltr: 8055 case x86_intercept_sgdt: 8056 case x86_intercept_sidt: 8057 case x86_intercept_sldt: 8058 case x86_intercept_str: 8059 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC)) 8060 return X86EMUL_CONTINUE; 8061 8062 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 8063 break; 8064 8065 case x86_intercept_pause: 8066 /* 8067 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides 8068 * with vanilla NOPs in the emulator. Apply the interception 8069 * check only to actual PAUSE instructions. Don't check 8070 * PAUSE-loop-exiting, software can't expect a given PAUSE to 8071 * exit, i.e. KVM is within its rights to allow L2 to execute 8072 * the PAUSE. 8073 */ 8074 if ((info->rep_prefix != REPE_PREFIX) || 8075 !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING)) 8076 return X86EMUL_CONTINUE; 8077 8078 break; 8079 8080 /* TODO: check more intercepts... */ 8081 default: 8082 break; 8083 } 8084 8085 return X86EMUL_UNHANDLEABLE; 8086 } 8087 8088 #ifdef CONFIG_X86_64 8089 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ 8090 static inline int u64_shl_div_u64(u64 a, unsigned int shift, 8091 u64 divisor, u64 *result) 8092 { 8093 u64 low = a << shift, high = a >> (64 - shift); 8094 8095 /* To avoid the overflow on divq */ 8096 if (high >= divisor) 8097 return 1; 8098 8099 /* Low hold the result, high hold rem which is discarded */ 8100 asm("divq %2\n\t" : "=a" (low), "=d" (high) : 8101 "rm" (divisor), "0" (low), "1" (high)); 8102 *result = low; 8103 8104 return 0; 8105 } 8106 8107 int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 8108 bool *expired) 8109 { 8110 struct vcpu_vmx *vmx; 8111 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; 8112 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer; 8113 8114 vmx = to_vmx(vcpu); 8115 tscl = rdtsc(); 8116 guest_tscl = kvm_read_l1_tsc(vcpu, tscl); 8117 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; 8118 lapic_timer_advance_cycles = nsec_to_cycles(vcpu, 8119 ktimer->timer_advance_ns); 8120 8121 if (delta_tsc > lapic_timer_advance_cycles) 8122 delta_tsc -= lapic_timer_advance_cycles; 8123 else 8124 delta_tsc = 0; 8125 8126 /* Convert to host delta tsc if tsc scaling is enabled */ 8127 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio && 8128 delta_tsc && u64_shl_div_u64(delta_tsc, 8129 kvm_caps.tsc_scaling_ratio_frac_bits, 8130 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc)) 8131 return -ERANGE; 8132 8133 /* 8134 * If the delta tsc can't fit in the 32 bit after the multi shift, 8135 * we can't use the preemption timer. 8136 * It's possible that it fits on later vmentries, but checking 8137 * on every vmentry is costly so we just use an hrtimer. 8138 */ 8139 if (delta_tsc >> (cpu_preemption_timer_multi + 32)) 8140 return -ERANGE; 8141 8142 vmx->hv_deadline_tsc = tscl + delta_tsc; 8143 *expired = !delta_tsc; 8144 return 0; 8145 } 8146 8147 void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) 8148 { 8149 to_vmx(vcpu)->hv_deadline_tsc = -1; 8150 } 8151 #endif 8152 8153 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu) 8154 { 8155 struct vcpu_vmx *vmx = to_vmx(vcpu); 8156 8157 if (WARN_ON_ONCE(!enable_pml)) 8158 return; 8159 8160 if (is_guest_mode(vcpu)) { 8161 vmx->nested.update_vmcs01_cpu_dirty_logging = true; 8162 return; 8163 } 8164 8165 /* 8166 * Note, nr_memslots_dirty_logging can be changed concurrent with this 8167 * code, but in that case another update request will be made and so 8168 * the guest will never run with a stale PML value. 8169 */ 8170 if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging)) 8171 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML); 8172 else 8173 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML); 8174 } 8175 8176 void vmx_setup_mce(struct kvm_vcpu *vcpu) 8177 { 8178 if (vcpu->arch.mcg_cap & MCG_LMCE_P) 8179 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 8180 FEAT_CTL_LMCE_ENABLED; 8181 else 8182 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 8183 ~FEAT_CTL_LMCE_ENABLED; 8184 } 8185 8186 #ifdef CONFIG_KVM_SMM 8187 int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 8188 { 8189 /* we need a nested vmexit to enter SMM, postpone if run is pending */ 8190 if (to_vmx(vcpu)->nested.nested_run_pending) 8191 return -EBUSY; 8192 return !is_smm(vcpu); 8193 } 8194 8195 int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) 8196 { 8197 struct vcpu_vmx *vmx = to_vmx(vcpu); 8198 8199 /* 8200 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on 8201 * SMI and RSM. Using the common VM-Exit + VM-Enter routines is wrong 8202 * SMI and RSM only modify state that is saved and restored via SMRAM. 8203 * E.g. most MSRs are left untouched, but many are modified by VM-Exit 8204 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM. 8205 */ 8206 vmx->nested.smm.guest_mode = is_guest_mode(vcpu); 8207 if (vmx->nested.smm.guest_mode) 8208 nested_vmx_vmexit(vcpu, -1, 0, 0); 8209 8210 vmx->nested.smm.vmxon = vmx->nested.vmxon; 8211 vmx->nested.vmxon = false; 8212 vmx_clear_hlt(vcpu); 8213 return 0; 8214 } 8215 8216 int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) 8217 { 8218 struct vcpu_vmx *vmx = to_vmx(vcpu); 8219 int ret; 8220 8221 if (vmx->nested.smm.vmxon) { 8222 vmx->nested.vmxon = true; 8223 vmx->nested.smm.vmxon = false; 8224 } 8225 8226 if (vmx->nested.smm.guest_mode) { 8227 ret = nested_vmx_enter_non_root_mode(vcpu, false); 8228 if (ret) 8229 return ret; 8230 8231 vmx->nested.nested_run_pending = 1; 8232 vmx->nested.smm.guest_mode = false; 8233 } 8234 return 0; 8235 } 8236 8237 void vmx_enable_smi_window(struct kvm_vcpu *vcpu) 8238 { 8239 /* RSM will cause a vmexit anyway. */ 8240 } 8241 #endif 8242 8243 bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 8244 { 8245 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu); 8246 } 8247 8248 void vmx_migrate_timers(struct kvm_vcpu *vcpu) 8249 { 8250 if (is_guest_mode(vcpu)) { 8251 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer; 8252 8253 if (hrtimer_try_to_cancel(timer) == 1) 8254 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 8255 } 8256 } 8257 8258 void vmx_hardware_unsetup(void) 8259 { 8260 kvm_set_posted_intr_wakeup_handler(NULL); 8261 8262 if (nested) 8263 nested_vmx_hardware_unsetup(); 8264 8265 free_kvm_area(); 8266 } 8267 8268 void vmx_vm_destroy(struct kvm *kvm) 8269 { 8270 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 8271 8272 free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm)); 8273 } 8274 8275 /* 8276 * Note, the SDM states that the linear address is masked *after* the modified 8277 * canonicality check, whereas KVM masks (untags) the address and then performs 8278 * a "normal" canonicality check. Functionally, the two methods are identical, 8279 * and when the masking occurs relative to the canonicality check isn't visible 8280 * to software, i.e. KVM's behavior doesn't violate the SDM. 8281 */ 8282 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags) 8283 { 8284 int lam_bit; 8285 unsigned long cr3_bits; 8286 8287 if (flags & (X86EMUL_F_FETCH | X86EMUL_F_IMPLICIT | X86EMUL_F_INVLPG)) 8288 return gva; 8289 8290 if (!is_64_bit_mode(vcpu)) 8291 return gva; 8292 8293 /* 8294 * Bit 63 determines if the address should be treated as user address 8295 * or a supervisor address. 8296 */ 8297 if (!(gva & BIT_ULL(63))) { 8298 cr3_bits = kvm_get_active_cr3_lam_bits(vcpu); 8299 if (!(cr3_bits & (X86_CR3_LAM_U57 | X86_CR3_LAM_U48))) 8300 return gva; 8301 8302 /* LAM_U48 is ignored if LAM_U57 is set. */ 8303 lam_bit = cr3_bits & X86_CR3_LAM_U57 ? 56 : 47; 8304 } else { 8305 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_LAM_SUP)) 8306 return gva; 8307 8308 lam_bit = kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 56 : 47; 8309 } 8310 8311 /* 8312 * Untag the address by sign-extending the lam_bit, but NOT to bit 63. 8313 * Bit 63 is retained from the raw virtual address so that untagging 8314 * doesn't change a user access to a supervisor access, and vice versa. 8315 */ 8316 return (sign_extend64(gva, lam_bit) & ~BIT_ULL(63)) | (gva & BIT_ULL(63)); 8317 } 8318 8319 static unsigned int vmx_handle_intel_pt_intr(void) 8320 { 8321 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 8322 8323 /* '0' on failure so that the !PT case can use a RET0 static call. */ 8324 if (!vcpu || !kvm_handling_nmi_from_guest(vcpu)) 8325 return 0; 8326 8327 kvm_make_request(KVM_REQ_PMI, vcpu); 8328 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT, 8329 (unsigned long *)&vcpu->arch.pmu.global_status); 8330 return 1; 8331 } 8332 8333 static __init void vmx_setup_user_return_msrs(void) 8334 { 8335 8336 /* 8337 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm 8338 * will emulate SYSCALL in legacy mode if the vendor string in guest 8339 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To 8340 * support this emulation, MSR_STAR is included in the list for i386, 8341 * but is never loaded into hardware. MSR_CSTAR is also never loaded 8342 * into hardware and is here purely for emulation purposes. 8343 */ 8344 const u32 vmx_uret_msrs_list[] = { 8345 #ifdef CONFIG_X86_64 8346 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, 8347 #endif 8348 MSR_EFER, MSR_TSC_AUX, MSR_STAR, 8349 MSR_IA32_TSX_CTRL, 8350 }; 8351 int i; 8352 8353 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS); 8354 8355 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) 8356 kvm_add_user_return_msr(vmx_uret_msrs_list[i]); 8357 } 8358 8359 static void __init vmx_setup_me_spte_mask(void) 8360 { 8361 u64 me_mask = 0; 8362 8363 /* 8364 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to 8365 * kvm_host.maxphyaddr. On MKTME and/or TDX capable systems, 8366 * boot_cpu_data.x86_phys_bits holds the actual physical address 8367 * w/o the KeyID bits, and kvm_host.maxphyaddr equals to 8368 * MAXPHYADDR reported by CPUID. Those bits between are KeyID bits. 8369 */ 8370 if (boot_cpu_data.x86_phys_bits != kvm_host.maxphyaddr) 8371 me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits, 8372 kvm_host.maxphyaddr - 1); 8373 8374 /* 8375 * Unlike SME, host kernel doesn't support setting up any 8376 * MKTME KeyID on Intel platforms. No memory encryption 8377 * bits should be included into the SPTE. 8378 */ 8379 kvm_mmu_set_me_spte_mask(0, me_mask); 8380 } 8381 8382 __init int vmx_hardware_setup(void) 8383 { 8384 unsigned long host_bndcfgs; 8385 struct desc_ptr dt; 8386 int r; 8387 8388 store_idt(&dt); 8389 host_idt_base = dt.address; 8390 8391 vmx_setup_user_return_msrs(); 8392 8393 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) 8394 return -EIO; 8395 8396 if (cpu_has_perf_global_ctrl_bug()) 8397 pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " 8398 "does not work properly. Using workaround\n"); 8399 8400 if (boot_cpu_has(X86_FEATURE_NX)) 8401 kvm_enable_efer_bits(EFER_NX); 8402 8403 if (boot_cpu_has(X86_FEATURE_MPX)) { 8404 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); 8405 WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost"); 8406 } 8407 8408 if (!cpu_has_vmx_mpx()) 8409 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 8410 XFEATURE_MASK_BNDCSR); 8411 8412 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || 8413 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) 8414 enable_vpid = 0; 8415 8416 if (!cpu_has_vmx_ept() || 8417 !cpu_has_vmx_ept_4levels() || 8418 !cpu_has_vmx_ept_mt_wb() || 8419 !cpu_has_vmx_invept_global()) 8420 enable_ept = 0; 8421 8422 /* NX support is required for shadow paging. */ 8423 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) { 8424 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 8425 return -EOPNOTSUPP; 8426 } 8427 8428 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) 8429 enable_ept_ad_bits = 0; 8430 8431 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) 8432 enable_unrestricted_guest = 0; 8433 8434 if (!cpu_has_vmx_flexpriority()) 8435 flexpriority_enabled = 0; 8436 8437 if (!cpu_has_virtual_nmis()) 8438 enable_vnmi = 0; 8439 8440 #ifdef CONFIG_X86_SGX_KVM 8441 if (!cpu_has_vmx_encls_vmexit()) 8442 enable_sgx = false; 8443 #endif 8444 8445 /* 8446 * set_apic_access_page_addr() is used to reload apic access 8447 * page upon invalidation. No need to do anything if not 8448 * using the APIC_ACCESS_ADDR VMCS field. 8449 */ 8450 if (!flexpriority_enabled) 8451 vt_x86_ops.set_apic_access_page_addr = NULL; 8452 8453 if (!cpu_has_vmx_tpr_shadow()) 8454 vt_x86_ops.update_cr8_intercept = NULL; 8455 8456 #if IS_ENABLED(CONFIG_HYPERV) 8457 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH 8458 && enable_ept) { 8459 vt_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs; 8460 vt_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range; 8461 } 8462 #endif 8463 8464 if (!cpu_has_vmx_ple()) { 8465 ple_gap = 0; 8466 ple_window = 0; 8467 ple_window_grow = 0; 8468 ple_window_max = 0; 8469 ple_window_shrink = 0; 8470 } 8471 8472 if (!cpu_has_vmx_apicv()) 8473 enable_apicv = 0; 8474 if (!enable_apicv) 8475 vt_x86_ops.sync_pir_to_irr = NULL; 8476 8477 if (!enable_apicv || !cpu_has_vmx_ipiv()) 8478 enable_ipiv = false; 8479 8480 if (cpu_has_vmx_tsc_scaling()) 8481 kvm_caps.has_tsc_control = true; 8482 8483 kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; 8484 kvm_caps.tsc_scaling_ratio_frac_bits = 48; 8485 kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection(); 8486 kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit(); 8487 8488 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ 8489 8490 if (enable_ept) 8491 kvm_mmu_set_ept_masks(enable_ept_ad_bits, 8492 cpu_has_vmx_ept_execute_only()); 8493 8494 /* 8495 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID 8496 * bits to shadow_zero_check. 8497 */ 8498 vmx_setup_me_spte_mask(); 8499 8500 kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(), 8501 ept_caps_to_lpage_level(vmx_capability.ept)); 8502 8503 /* 8504 * Only enable PML when hardware supports PML feature, and both EPT 8505 * and EPT A/D bit features are enabled -- PML depends on them to work. 8506 */ 8507 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) 8508 enable_pml = 0; 8509 8510 if (!enable_pml) 8511 vt_x86_ops.cpu_dirty_log_size = 0; 8512 8513 if (!cpu_has_vmx_preemption_timer()) 8514 enable_preemption_timer = false; 8515 8516 if (enable_preemption_timer) { 8517 u64 use_timer_freq = 5000ULL * 1000 * 1000; 8518 8519 cpu_preemption_timer_multi = 8520 vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; 8521 8522 if (tsc_khz) 8523 use_timer_freq = (u64)tsc_khz * 1000; 8524 use_timer_freq >>= cpu_preemption_timer_multi; 8525 8526 /* 8527 * KVM "disables" the preemption timer by setting it to its max 8528 * value. Don't use the timer if it might cause spurious exits 8529 * at a rate faster than 0.1 Hz (of uninterrupted guest time). 8530 */ 8531 if (use_timer_freq > 0xffffffffu / 10) 8532 enable_preemption_timer = false; 8533 } 8534 8535 if (!enable_preemption_timer) { 8536 vt_x86_ops.set_hv_timer = NULL; 8537 vt_x86_ops.cancel_hv_timer = NULL; 8538 } 8539 8540 kvm_caps.supported_mce_cap |= MCG_LMCE_P; 8541 kvm_caps.supported_mce_cap |= MCG_CMCI_P; 8542 8543 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) 8544 return -EINVAL; 8545 if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt()) 8546 pt_mode = PT_MODE_SYSTEM; 8547 if (pt_mode == PT_MODE_HOST_GUEST) 8548 vt_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr; 8549 else 8550 vt_init_ops.handle_intel_pt_intr = NULL; 8551 8552 setup_default_sgx_lepubkeyhash(); 8553 8554 if (nested) { 8555 nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept); 8556 8557 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); 8558 if (r) 8559 return r; 8560 } 8561 8562 vmx_set_cpu_caps(); 8563 8564 r = alloc_kvm_area(); 8565 if (r && nested) 8566 nested_vmx_hardware_unsetup(); 8567 8568 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler); 8569 8570 return r; 8571 } 8572 8573 static void vmx_cleanup_l1d_flush(void) 8574 { 8575 if (vmx_l1d_flush_pages) { 8576 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); 8577 vmx_l1d_flush_pages = NULL; 8578 } 8579 /* Restore state so sysfs ignores VMX */ 8580 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 8581 } 8582 8583 static void __vmx_exit(void) 8584 { 8585 allow_smaller_maxphyaddr = false; 8586 8587 cpu_emergency_unregister_virt_callback(vmx_emergency_disable); 8588 8589 vmx_cleanup_l1d_flush(); 8590 } 8591 8592 static void vmx_exit(void) 8593 { 8594 kvm_exit(); 8595 __vmx_exit(); 8596 kvm_x86_vendor_exit(); 8597 8598 } 8599 module_exit(vmx_exit); 8600 8601 static int __init vmx_init(void) 8602 { 8603 int r, cpu; 8604 8605 if (!kvm_is_vmx_supported()) 8606 return -EOPNOTSUPP; 8607 8608 /* 8609 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing 8610 * to unwind if a later step fails. 8611 */ 8612 hv_init_evmcs(); 8613 8614 r = kvm_x86_vendor_init(&vt_init_ops); 8615 if (r) 8616 return r; 8617 8618 /* 8619 * Must be called after common x86 init so enable_ept is properly set 8620 * up. Hand the parameter mitigation value in which was stored in 8621 * the pre module init parser. If no parameter was given, it will 8622 * contain 'auto' which will be turned into the default 'cond' 8623 * mitigation mode. 8624 */ 8625 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); 8626 if (r) 8627 goto err_l1d_flush; 8628 8629 for_each_possible_cpu(cpu) { 8630 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); 8631 8632 pi_init_cpu(cpu); 8633 } 8634 8635 cpu_emergency_register_virt_callback(vmx_emergency_disable); 8636 8637 vmx_check_vmcs12_offsets(); 8638 8639 /* 8640 * Shadow paging doesn't have a (further) performance penalty 8641 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it 8642 * by default 8643 */ 8644 if (!enable_ept) 8645 allow_smaller_maxphyaddr = true; 8646 8647 /* 8648 * Common KVM initialization _must_ come last, after this, /dev/kvm is 8649 * exposed to userspace! 8650 */ 8651 r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx), 8652 THIS_MODULE); 8653 if (r) 8654 goto err_kvm_init; 8655 8656 return 0; 8657 8658 err_kvm_init: 8659 __vmx_exit(); 8660 err_l1d_flush: 8661 kvm_x86_vendor_exit(); 8662 return r; 8663 } 8664 module_init(vmx_init); 8665