xref: /linux/arch/x86/kvm/vmx/vmx.c (revision 6af91e3d2cfc8bb579b1aa2d22cd91f8c34acdf6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/objtool.h>
26 #include <linux/sched.h>
27 #include <linux/sched/smt.h>
28 #include <linux/slab.h>
29 #include <linux/tboot.h>
30 #include <linux/trace_events.h>
31 #include <linux/entry-kvm.h>
32 
33 #include <asm/apic.h>
34 #include <asm/asm.h>
35 #include <asm/cpu.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/debugreg.h>
38 #include <asm/desc.h>
39 #include <asm/fpu/api.h>
40 #include <asm/fpu/xstate.h>
41 #include <asm/fred.h>
42 #include <asm/idtentry.h>
43 #include <asm/io.h>
44 #include <asm/irq_remapping.h>
45 #include <asm/reboot.h>
46 #include <asm/perf_event.h>
47 #include <asm/mmu_context.h>
48 #include <asm/mshyperv.h>
49 #include <asm/mwait.h>
50 #include <asm/spec-ctrl.h>
51 #include <asm/vmx.h>
52 
53 #include <trace/events/ipi.h>
54 
55 #include "capabilities.h"
56 #include "cpuid.h"
57 #include "hyperv.h"
58 #include "kvm_onhyperv.h"
59 #include "irq.h"
60 #include "kvm_cache_regs.h"
61 #include "lapic.h"
62 #include "mmu.h"
63 #include "nested.h"
64 #include "pmu.h"
65 #include "sgx.h"
66 #include "trace.h"
67 #include "vmcs.h"
68 #include "vmcs12.h"
69 #include "vmx.h"
70 #include "x86.h"
71 #include "x86_ops.h"
72 #include "smm.h"
73 #include "vmx_onhyperv.h"
74 #include "posted_intr.h"
75 
76 MODULE_AUTHOR("Qumranet");
77 MODULE_DESCRIPTION("KVM support for VMX (Intel VT-x) extensions");
78 MODULE_LICENSE("GPL");
79 
80 #ifdef MODULE
81 static const struct x86_cpu_id vmx_cpu_id[] = {
82 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
83 	{}
84 };
85 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
86 #endif
87 
88 bool __read_mostly enable_vpid = 1;
89 module_param_named(vpid, enable_vpid, bool, 0444);
90 
91 static bool __read_mostly enable_vnmi = 1;
92 module_param_named(vnmi, enable_vnmi, bool, 0444);
93 
94 bool __read_mostly flexpriority_enabled = 1;
95 module_param_named(flexpriority, flexpriority_enabled, bool, 0444);
96 
97 bool __read_mostly enable_ept = 1;
98 module_param_named(ept, enable_ept, bool, 0444);
99 
100 bool __read_mostly enable_unrestricted_guest = 1;
101 module_param_named(unrestricted_guest,
102 			enable_unrestricted_guest, bool, 0444);
103 
104 bool __read_mostly enable_ept_ad_bits = 1;
105 module_param_named(eptad, enable_ept_ad_bits, bool, 0444);
106 
107 static bool __read_mostly emulate_invalid_guest_state = true;
108 module_param(emulate_invalid_guest_state, bool, 0444);
109 
110 static bool __read_mostly fasteoi = 1;
111 module_param(fasteoi, bool, 0444);
112 
113 module_param(enable_apicv, bool, 0444);
114 
115 bool __read_mostly enable_ipiv = true;
116 module_param(enable_ipiv, bool, 0444);
117 
118 /*
119  * If nested=1, nested virtualization is supported, i.e., guests may use
120  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
121  * use VMX instructions.
122  */
123 static bool __read_mostly nested = 1;
124 module_param(nested, bool, 0444);
125 
126 bool __read_mostly enable_pml = 1;
127 module_param_named(pml, enable_pml, bool, 0444);
128 
129 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
130 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
131 
132 static bool __read_mostly dump_invalid_vmcs = 0;
133 module_param(dump_invalid_vmcs, bool, 0644);
134 
135 #define MSR_BITMAP_MODE_X2APIC		1
136 #define MSR_BITMAP_MODE_X2APIC_APICV	2
137 
138 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
139 
140 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
141 static int __read_mostly cpu_preemption_timer_multi;
142 static bool __read_mostly enable_preemption_timer = 1;
143 #ifdef CONFIG_X86_64
144 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
145 #endif
146 
147 extern bool __read_mostly allow_smaller_maxphyaddr;
148 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
149 
150 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
151 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
152 #define KVM_VM_CR0_ALWAYS_ON				\
153 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
154 
155 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
156 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
157 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
158 
159 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
160 
161 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
162 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
163 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
164 	RTIT_STATUS_BYTECNT))
165 
166 /*
167  * List of MSRs that can be directly passed to the guest.
168  * In addition to these x2apic, PT and LBR MSRs are handled specially.
169  */
170 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
171 	MSR_IA32_SPEC_CTRL,
172 	MSR_IA32_PRED_CMD,
173 	MSR_IA32_FLUSH_CMD,
174 	MSR_IA32_TSC,
175 #ifdef CONFIG_X86_64
176 	MSR_FS_BASE,
177 	MSR_GS_BASE,
178 	MSR_KERNEL_GS_BASE,
179 	MSR_IA32_XFD,
180 	MSR_IA32_XFD_ERR,
181 #endif
182 	MSR_IA32_SYSENTER_CS,
183 	MSR_IA32_SYSENTER_ESP,
184 	MSR_IA32_SYSENTER_EIP,
185 	MSR_CORE_C1_RES,
186 	MSR_CORE_C3_RESIDENCY,
187 	MSR_CORE_C6_RESIDENCY,
188 	MSR_CORE_C7_RESIDENCY,
189 };
190 
191 /*
192  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
193  * ple_gap:    upper bound on the amount of time between two successive
194  *             executions of PAUSE in a loop. Also indicate if ple enabled.
195  *             According to test, this time is usually smaller than 128 cycles.
196  * ple_window: upper bound on the amount of time a guest is allowed to execute
197  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
198  *             less than 2^12 cycles
199  * Time is measured based on a counter that runs at the same rate as the TSC,
200  * refer SDM volume 3b section 21.6.13 & 22.1.3.
201  */
202 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
203 module_param(ple_gap, uint, 0444);
204 
205 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
206 module_param(ple_window, uint, 0444);
207 
208 /* Default doubles per-vcpu window every exit. */
209 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
210 module_param(ple_window_grow, uint, 0444);
211 
212 /* Default resets per-vcpu window every exit to ple_window. */
213 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
214 module_param(ple_window_shrink, uint, 0444);
215 
216 /* Default is to compute the maximum so we can never overflow. */
217 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
218 module_param(ple_window_max, uint, 0444);
219 
220 /* Default is SYSTEM mode, 1 for host-guest mode */
221 int __read_mostly pt_mode = PT_MODE_SYSTEM;
222 module_param(pt_mode, int, S_IRUGO);
223 
224 struct x86_pmu_lbr __ro_after_init vmx_lbr_caps;
225 
226 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
227 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
228 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
229 
230 /* Storage for pre module init parameter parsing */
231 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
232 
233 static const struct {
234 	const char *option;
235 	bool for_parse;
236 } vmentry_l1d_param[] = {
237 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
238 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
239 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
240 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
241 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
242 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
243 };
244 
245 #define L1D_CACHE_ORDER 4
246 static void *vmx_l1d_flush_pages;
247 
248 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
249 {
250 	struct page *page;
251 	unsigned int i;
252 
253 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
254 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
255 		return 0;
256 	}
257 
258 	if (!enable_ept) {
259 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
260 		return 0;
261 	}
262 
263 	if (kvm_host.arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
264 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
265 		return 0;
266 	}
267 
268 	/* If set to auto use the default l1tf mitigation method */
269 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
270 		switch (l1tf_mitigation) {
271 		case L1TF_MITIGATION_OFF:
272 			l1tf = VMENTER_L1D_FLUSH_NEVER;
273 			break;
274 		case L1TF_MITIGATION_FLUSH_NOWARN:
275 		case L1TF_MITIGATION_FLUSH:
276 		case L1TF_MITIGATION_FLUSH_NOSMT:
277 			l1tf = VMENTER_L1D_FLUSH_COND;
278 			break;
279 		case L1TF_MITIGATION_FULL:
280 		case L1TF_MITIGATION_FULL_FORCE:
281 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
282 			break;
283 		}
284 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
285 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
286 	}
287 
288 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
289 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
290 		/*
291 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
292 		 * lifetime and so should not be charged to a memcg.
293 		 */
294 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
295 		if (!page)
296 			return -ENOMEM;
297 		vmx_l1d_flush_pages = page_address(page);
298 
299 		/*
300 		 * Initialize each page with a different pattern in
301 		 * order to protect against KSM in the nested
302 		 * virtualization case.
303 		 */
304 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
305 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
306 			       PAGE_SIZE);
307 		}
308 	}
309 
310 	l1tf_vmx_mitigation = l1tf;
311 
312 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
313 		static_branch_enable(&vmx_l1d_should_flush);
314 	else
315 		static_branch_disable(&vmx_l1d_should_flush);
316 
317 	if (l1tf == VMENTER_L1D_FLUSH_COND)
318 		static_branch_enable(&vmx_l1d_flush_cond);
319 	else
320 		static_branch_disable(&vmx_l1d_flush_cond);
321 	return 0;
322 }
323 
324 static int vmentry_l1d_flush_parse(const char *s)
325 {
326 	unsigned int i;
327 
328 	if (s) {
329 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
330 			if (vmentry_l1d_param[i].for_parse &&
331 			    sysfs_streq(s, vmentry_l1d_param[i].option))
332 				return i;
333 		}
334 	}
335 	return -EINVAL;
336 }
337 
338 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
339 {
340 	int l1tf, ret;
341 
342 	l1tf = vmentry_l1d_flush_parse(s);
343 	if (l1tf < 0)
344 		return l1tf;
345 
346 	if (!boot_cpu_has(X86_BUG_L1TF))
347 		return 0;
348 
349 	/*
350 	 * Has vmx_init() run already? If not then this is the pre init
351 	 * parameter parsing. In that case just store the value and let
352 	 * vmx_init() do the proper setup after enable_ept has been
353 	 * established.
354 	 */
355 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
356 		vmentry_l1d_flush_param = l1tf;
357 		return 0;
358 	}
359 
360 	mutex_lock(&vmx_l1d_flush_mutex);
361 	ret = vmx_setup_l1d_flush(l1tf);
362 	mutex_unlock(&vmx_l1d_flush_mutex);
363 	return ret;
364 }
365 
366 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
367 {
368 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
369 		return sysfs_emit(s, "???\n");
370 
371 	return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
372 }
373 
374 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
375 {
376 	u64 msr;
377 
378 	if (!vmx->disable_fb_clear)
379 		return;
380 
381 	msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
382 	msr |= FB_CLEAR_DIS;
383 	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
384 	/* Cache the MSR value to avoid reading it later */
385 	vmx->msr_ia32_mcu_opt_ctrl = msr;
386 }
387 
388 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
389 {
390 	if (!vmx->disable_fb_clear)
391 		return;
392 
393 	vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
394 	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
395 }
396 
397 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
398 {
399 	/*
400 	 * Disable VERW's behavior of clearing CPU buffers for the guest if the
401 	 * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled
402 	 * the mitigation. Disabling the clearing behavior provides a
403 	 * performance boost for guests that aren't aware that manually clearing
404 	 * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry
405 	 * and VM-Exit.
406 	 */
407 	vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) &&
408 				(kvm_host.arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) &&
409 				!boot_cpu_has_bug(X86_BUG_MDS) &&
410 				!boot_cpu_has_bug(X86_BUG_TAA);
411 
412 	/*
413 	 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
414 	 * at VMEntry. Skip the MSR read/write when a guest has no use case to
415 	 * execute VERW.
416 	 */
417 	if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
418 	   ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
419 	    (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
420 	    (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
421 	    (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
422 	    (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
423 		vmx->disable_fb_clear = false;
424 }
425 
426 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
427 	.set = vmentry_l1d_flush_set,
428 	.get = vmentry_l1d_flush_get,
429 };
430 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
431 
432 static u32 vmx_segment_access_rights(struct kvm_segment *var);
433 
434 void vmx_vmexit(void);
435 
436 #define vmx_insn_failed(fmt...)		\
437 do {					\
438 	WARN_ONCE(1, fmt);		\
439 	pr_warn_ratelimited(fmt);	\
440 } while (0)
441 
442 noinline void vmread_error(unsigned long field)
443 {
444 	vmx_insn_failed("vmread failed: field=%lx\n", field);
445 }
446 
447 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT
448 noinstr void vmread_error_trampoline2(unsigned long field, bool fault)
449 {
450 	if (fault) {
451 		kvm_spurious_fault();
452 	} else {
453 		instrumentation_begin();
454 		vmread_error(field);
455 		instrumentation_end();
456 	}
457 }
458 #endif
459 
460 noinline void vmwrite_error(unsigned long field, unsigned long value)
461 {
462 	vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
463 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
464 }
465 
466 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
467 {
468 	vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
469 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
470 }
471 
472 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
473 {
474 	vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
475 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
476 }
477 
478 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
479 {
480 	vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
481 			ext, vpid, gva);
482 }
483 
484 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
485 {
486 	vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
487 			ext, eptp, gpa);
488 }
489 
490 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
491 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
492 /*
493  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
494  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
495  */
496 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
497 
498 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
499 static DEFINE_SPINLOCK(vmx_vpid_lock);
500 
501 struct vmcs_config vmcs_config __ro_after_init;
502 struct vmx_capability vmx_capability __ro_after_init;
503 
504 #define VMX_SEGMENT_FIELD(seg)					\
505 	[VCPU_SREG_##seg] = {                                   \
506 		.selector = GUEST_##seg##_SELECTOR,		\
507 		.base = GUEST_##seg##_BASE,		   	\
508 		.limit = GUEST_##seg##_LIMIT,		   	\
509 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
510 	}
511 
512 static const struct kvm_vmx_segment_field {
513 	unsigned selector;
514 	unsigned base;
515 	unsigned limit;
516 	unsigned ar_bytes;
517 } kvm_vmx_segment_fields[] = {
518 	VMX_SEGMENT_FIELD(CS),
519 	VMX_SEGMENT_FIELD(DS),
520 	VMX_SEGMENT_FIELD(ES),
521 	VMX_SEGMENT_FIELD(FS),
522 	VMX_SEGMENT_FIELD(GS),
523 	VMX_SEGMENT_FIELD(SS),
524 	VMX_SEGMENT_FIELD(TR),
525 	VMX_SEGMENT_FIELD(LDTR),
526 };
527 
528 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
529 {
530 	vmx->segment_cache.bitmask = 0;
531 }
532 
533 static unsigned long host_idt_base;
534 
535 #if IS_ENABLED(CONFIG_HYPERV)
536 static bool __read_mostly enlightened_vmcs = true;
537 module_param(enlightened_vmcs, bool, 0444);
538 
539 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
540 {
541 	struct hv_enlightened_vmcs *evmcs;
542 	hpa_t partition_assist_page = hv_get_partition_assist_page(vcpu);
543 
544 	if (partition_assist_page == INVALID_PAGE)
545 		return -ENOMEM;
546 
547 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
548 
549 	evmcs->partition_assist_page = partition_assist_page;
550 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
551 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
552 
553 	return 0;
554 }
555 
556 static __init void hv_init_evmcs(void)
557 {
558 	int cpu;
559 
560 	if (!enlightened_vmcs)
561 		return;
562 
563 	/*
564 	 * Enlightened VMCS usage should be recommended and the host needs
565 	 * to support eVMCS v1 or above.
566 	 */
567 	if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
568 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
569 	     KVM_EVMCS_VERSION) {
570 
571 		/* Check that we have assist pages on all online CPUs */
572 		for_each_online_cpu(cpu) {
573 			if (!hv_get_vp_assist_page(cpu)) {
574 				enlightened_vmcs = false;
575 				break;
576 			}
577 		}
578 
579 		if (enlightened_vmcs) {
580 			pr_info("Using Hyper-V Enlightened VMCS\n");
581 			static_branch_enable(&__kvm_is_using_evmcs);
582 		}
583 
584 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
585 			vt_x86_ops.enable_l2_tlb_flush
586 				= hv_enable_l2_tlb_flush;
587 	} else {
588 		enlightened_vmcs = false;
589 	}
590 }
591 
592 static void hv_reset_evmcs(void)
593 {
594 	struct hv_vp_assist_page *vp_ap;
595 
596 	if (!kvm_is_using_evmcs())
597 		return;
598 
599 	/*
600 	 * KVM should enable eVMCS if and only if all CPUs have a VP assist
601 	 * page, and should reject CPU onlining if eVMCS is enabled the CPU
602 	 * doesn't have a VP assist page allocated.
603 	 */
604 	vp_ap = hv_get_vp_assist_page(smp_processor_id());
605 	if (WARN_ON_ONCE(!vp_ap))
606 		return;
607 
608 	/*
609 	 * Reset everything to support using non-enlightened VMCS access later
610 	 * (e.g. when we reload the module with enlightened_vmcs=0)
611 	 */
612 	vp_ap->nested_control.features.directhypercall = 0;
613 	vp_ap->current_nested_vmcs = 0;
614 	vp_ap->enlighten_vmentry = 0;
615 }
616 
617 #else /* IS_ENABLED(CONFIG_HYPERV) */
618 static void hv_init_evmcs(void) {}
619 static void hv_reset_evmcs(void) {}
620 #endif /* IS_ENABLED(CONFIG_HYPERV) */
621 
622 /*
623  * Comment's format: document - errata name - stepping - processor name.
624  * Refer from
625  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
626  */
627 static u32 vmx_preemption_cpu_tfms[] = {
628 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
629 0x000206E6,
630 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
631 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
632 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
633 0x00020652,
634 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
635 0x00020655,
636 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
637 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
638 /*
639  * 320767.pdf - AAP86  - B1 -
640  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
641  */
642 0x000106E5,
643 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
644 0x000106A0,
645 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
646 0x000106A1,
647 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
648 0x000106A4,
649  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
650  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
651  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
652 0x000106A5,
653  /* Xeon E3-1220 V2 */
654 0x000306A8,
655 };
656 
657 static inline bool cpu_has_broken_vmx_preemption_timer(void)
658 {
659 	u32 eax = cpuid_eax(0x00000001), i;
660 
661 	/* Clear the reserved bits */
662 	eax &= ~(0x3U << 14 | 0xfU << 28);
663 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
664 		if (eax == vmx_preemption_cpu_tfms[i])
665 			return true;
666 
667 	return false;
668 }
669 
670 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
671 {
672 	return flexpriority_enabled && lapic_in_kernel(vcpu);
673 }
674 
675 static int vmx_get_passthrough_msr_slot(u32 msr)
676 {
677 	int i;
678 
679 	switch (msr) {
680 	case 0x800 ... 0x8ff:
681 		/* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
682 		return -ENOENT;
683 	case MSR_IA32_RTIT_STATUS:
684 	case MSR_IA32_RTIT_OUTPUT_BASE:
685 	case MSR_IA32_RTIT_OUTPUT_MASK:
686 	case MSR_IA32_RTIT_CR3_MATCH:
687 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
688 		/* PT MSRs. These are handled in pt_update_intercept_for_msr() */
689 	case MSR_LBR_SELECT:
690 	case MSR_LBR_TOS:
691 	case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
692 	case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
693 	case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
694 	case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
695 	case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
696 		/* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
697 		return -ENOENT;
698 	}
699 
700 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
701 		if (vmx_possible_passthrough_msrs[i] == msr)
702 			return i;
703 	}
704 
705 	WARN(1, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
706 	return -ENOENT;
707 }
708 
709 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
710 {
711 	int i;
712 
713 	i = kvm_find_user_return_msr(msr);
714 	if (i >= 0)
715 		return &vmx->guest_uret_msrs[i];
716 	return NULL;
717 }
718 
719 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
720 				  struct vmx_uret_msr *msr, u64 data)
721 {
722 	unsigned int slot = msr - vmx->guest_uret_msrs;
723 	int ret = 0;
724 
725 	if (msr->load_into_hardware) {
726 		preempt_disable();
727 		ret = kvm_set_user_return_msr(slot, data, msr->mask);
728 		preempt_enable();
729 	}
730 	if (!ret)
731 		msr->data = data;
732 	return ret;
733 }
734 
735 /*
736  * Disable VMX and clear CR4.VMXE (even if VMXOFF faults)
737  *
738  * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to
739  * atomically track post-VMXON state, e.g. this may be called in NMI context.
740  * Eat all faults as all other faults on VMXOFF faults are mode related, i.e.
741  * faults are guaranteed to be due to the !post-VMXON check unless the CPU is
742  * magically in RM, VM86, compat mode, or at CPL>0.
743  */
744 static int kvm_cpu_vmxoff(void)
745 {
746 	asm goto("1: vmxoff\n\t"
747 			  _ASM_EXTABLE(1b, %l[fault])
748 			  ::: "cc", "memory" : fault);
749 
750 	cr4_clear_bits(X86_CR4_VMXE);
751 	return 0;
752 
753 fault:
754 	cr4_clear_bits(X86_CR4_VMXE);
755 	return -EIO;
756 }
757 
758 static void vmx_emergency_disable(void)
759 {
760 	int cpu = raw_smp_processor_id();
761 	struct loaded_vmcs *v;
762 
763 	kvm_rebooting = true;
764 
765 	/*
766 	 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be
767 	 * set in task context.  If this races with VMX is disabled by an NMI,
768 	 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to
769 	 * kvm_rebooting set.
770 	 */
771 	if (!(__read_cr4() & X86_CR4_VMXE))
772 		return;
773 
774 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
775 			    loaded_vmcss_on_cpu_link)
776 		vmcs_clear(v->vmcs);
777 
778 	kvm_cpu_vmxoff();
779 }
780 
781 static void __loaded_vmcs_clear(void *arg)
782 {
783 	struct loaded_vmcs *loaded_vmcs = arg;
784 	int cpu = raw_smp_processor_id();
785 
786 	if (loaded_vmcs->cpu != cpu)
787 		return; /* vcpu migration can race with cpu offline */
788 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
789 		per_cpu(current_vmcs, cpu) = NULL;
790 
791 	vmcs_clear(loaded_vmcs->vmcs);
792 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
793 		vmcs_clear(loaded_vmcs->shadow_vmcs);
794 
795 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
796 
797 	/*
798 	 * Ensure all writes to loaded_vmcs, including deleting it from its
799 	 * current percpu list, complete before setting loaded_vmcs->cpu to
800 	 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
801 	 * and add loaded_vmcs to its percpu list before it's deleted from this
802 	 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
803 	 */
804 	smp_wmb();
805 
806 	loaded_vmcs->cpu = -1;
807 	loaded_vmcs->launched = 0;
808 }
809 
810 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
811 {
812 	int cpu = loaded_vmcs->cpu;
813 
814 	if (cpu != -1)
815 		smp_call_function_single(cpu,
816 			 __loaded_vmcs_clear, loaded_vmcs, 1);
817 }
818 
819 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
820 				       unsigned field)
821 {
822 	bool ret;
823 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
824 
825 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
826 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
827 		vmx->segment_cache.bitmask = 0;
828 	}
829 	ret = vmx->segment_cache.bitmask & mask;
830 	vmx->segment_cache.bitmask |= mask;
831 	return ret;
832 }
833 
834 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
835 {
836 	u16 *p = &vmx->segment_cache.seg[seg].selector;
837 
838 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
839 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
840 	return *p;
841 }
842 
843 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
844 {
845 	ulong *p = &vmx->segment_cache.seg[seg].base;
846 
847 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
848 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
849 	return *p;
850 }
851 
852 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
853 {
854 	u32 *p = &vmx->segment_cache.seg[seg].limit;
855 
856 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
857 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
858 	return *p;
859 }
860 
861 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
862 {
863 	u32 *p = &vmx->segment_cache.seg[seg].ar;
864 
865 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
866 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
867 	return *p;
868 }
869 
870 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
871 {
872 	u32 eb;
873 
874 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
875 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
876 	/*
877 	 * #VE isn't used for VMX.  To test against unexpected changes
878 	 * related to #VE for VMX, intercept unexpected #VE and warn on it.
879 	 */
880 	if (IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
881 		eb |= 1u << VE_VECTOR;
882 	/*
883 	 * Guest access to VMware backdoor ports could legitimately
884 	 * trigger #GP because of TSS I/O permission bitmap.
885 	 * We intercept those #GP and allow access to them anyway
886 	 * as VMware does.
887 	 */
888 	if (enable_vmware_backdoor)
889 		eb |= (1u << GP_VECTOR);
890 	if ((vcpu->guest_debug &
891 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
892 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
893 		eb |= 1u << BP_VECTOR;
894 	if (to_vmx(vcpu)->rmode.vm86_active)
895 		eb = ~0;
896 	if (!vmx_need_pf_intercept(vcpu))
897 		eb &= ~(1u << PF_VECTOR);
898 
899 	/* When we are running a nested L2 guest and L1 specified for it a
900 	 * certain exception bitmap, we must trap the same exceptions and pass
901 	 * them to L1. When running L2, we will only handle the exceptions
902 	 * specified above if L1 did not want them.
903 	 */
904 	if (is_guest_mode(vcpu))
905 		eb |= get_vmcs12(vcpu)->exception_bitmap;
906 	else {
907 		int mask = 0, match = 0;
908 
909 		if (enable_ept && (eb & (1u << PF_VECTOR))) {
910 			/*
911 			 * If EPT is enabled, #PF is currently only intercepted
912 			 * if MAXPHYADDR is smaller on the guest than on the
913 			 * host.  In that case we only care about present,
914 			 * non-reserved faults.  For vmcs02, however, PFEC_MASK
915 			 * and PFEC_MATCH are set in prepare_vmcs02_rare.
916 			 */
917 			mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
918 			match = PFERR_PRESENT_MASK;
919 		}
920 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
921 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
922 	}
923 
924 	/*
925 	 * Disabling xfd interception indicates that dynamic xfeatures
926 	 * might be used in the guest. Always trap #NM in this case
927 	 * to save guest xfd_err timely.
928 	 */
929 	if (vcpu->arch.xfd_no_write_intercept)
930 		eb |= (1u << NM_VECTOR);
931 
932 	vmcs_write32(EXCEPTION_BITMAP, eb);
933 }
934 
935 /*
936  * Check if MSR is intercepted for currently loaded MSR bitmap.
937  */
938 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
939 {
940 	if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
941 		return true;
942 
943 	return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
944 }
945 
946 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
947 {
948 	unsigned int flags = 0;
949 
950 	if (vmx->loaded_vmcs->launched)
951 		flags |= VMX_RUN_VMRESUME;
952 
953 	/*
954 	 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
955 	 * to change it directly without causing a vmexit.  In that case read
956 	 * it after vmexit and store it in vmx->spec_ctrl.
957 	 */
958 	if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
959 		flags |= VMX_RUN_SAVE_SPEC_CTRL;
960 
961 	return flags;
962 }
963 
964 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
965 		unsigned long entry, unsigned long exit)
966 {
967 	vm_entry_controls_clearbit(vmx, entry);
968 	vm_exit_controls_clearbit(vmx, exit);
969 }
970 
971 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
972 {
973 	unsigned int i;
974 
975 	for (i = 0; i < m->nr; ++i) {
976 		if (m->val[i].index == msr)
977 			return i;
978 	}
979 	return -ENOENT;
980 }
981 
982 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
983 {
984 	int i;
985 	struct msr_autoload *m = &vmx->msr_autoload;
986 
987 	switch (msr) {
988 	case MSR_EFER:
989 		if (cpu_has_load_ia32_efer()) {
990 			clear_atomic_switch_msr_special(vmx,
991 					VM_ENTRY_LOAD_IA32_EFER,
992 					VM_EXIT_LOAD_IA32_EFER);
993 			return;
994 		}
995 		break;
996 	case MSR_CORE_PERF_GLOBAL_CTRL:
997 		if (cpu_has_load_perf_global_ctrl()) {
998 			clear_atomic_switch_msr_special(vmx,
999 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1000 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1001 			return;
1002 		}
1003 		break;
1004 	}
1005 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1006 	if (i < 0)
1007 		goto skip_guest;
1008 	--m->guest.nr;
1009 	m->guest.val[i] = m->guest.val[m->guest.nr];
1010 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1011 
1012 skip_guest:
1013 	i = vmx_find_loadstore_msr_slot(&m->host, msr);
1014 	if (i < 0)
1015 		return;
1016 
1017 	--m->host.nr;
1018 	m->host.val[i] = m->host.val[m->host.nr];
1019 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1020 }
1021 
1022 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1023 		unsigned long entry, unsigned long exit,
1024 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1025 		u64 guest_val, u64 host_val)
1026 {
1027 	vmcs_write64(guest_val_vmcs, guest_val);
1028 	if (host_val_vmcs != HOST_IA32_EFER)
1029 		vmcs_write64(host_val_vmcs, host_val);
1030 	vm_entry_controls_setbit(vmx, entry);
1031 	vm_exit_controls_setbit(vmx, exit);
1032 }
1033 
1034 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1035 				  u64 guest_val, u64 host_val, bool entry_only)
1036 {
1037 	int i, j = 0;
1038 	struct msr_autoload *m = &vmx->msr_autoload;
1039 
1040 	switch (msr) {
1041 	case MSR_EFER:
1042 		if (cpu_has_load_ia32_efer()) {
1043 			add_atomic_switch_msr_special(vmx,
1044 					VM_ENTRY_LOAD_IA32_EFER,
1045 					VM_EXIT_LOAD_IA32_EFER,
1046 					GUEST_IA32_EFER,
1047 					HOST_IA32_EFER,
1048 					guest_val, host_val);
1049 			return;
1050 		}
1051 		break;
1052 	case MSR_CORE_PERF_GLOBAL_CTRL:
1053 		if (cpu_has_load_perf_global_ctrl()) {
1054 			add_atomic_switch_msr_special(vmx,
1055 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1056 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1057 					GUEST_IA32_PERF_GLOBAL_CTRL,
1058 					HOST_IA32_PERF_GLOBAL_CTRL,
1059 					guest_val, host_val);
1060 			return;
1061 		}
1062 		break;
1063 	case MSR_IA32_PEBS_ENABLE:
1064 		/* PEBS needs a quiescent period after being disabled (to write
1065 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
1066 		 * provide that period, so a CPU could write host's record into
1067 		 * guest's memory.
1068 		 */
1069 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1070 	}
1071 
1072 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1073 	if (!entry_only)
1074 		j = vmx_find_loadstore_msr_slot(&m->host, msr);
1075 
1076 	if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1077 	    (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1078 		printk_once(KERN_WARNING "Not enough msr switch entries. "
1079 				"Can't add msr %x\n", msr);
1080 		return;
1081 	}
1082 	if (i < 0) {
1083 		i = m->guest.nr++;
1084 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1085 	}
1086 	m->guest.val[i].index = msr;
1087 	m->guest.val[i].value = guest_val;
1088 
1089 	if (entry_only)
1090 		return;
1091 
1092 	if (j < 0) {
1093 		j = m->host.nr++;
1094 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1095 	}
1096 	m->host.val[j].index = msr;
1097 	m->host.val[j].value = host_val;
1098 }
1099 
1100 static bool update_transition_efer(struct vcpu_vmx *vmx)
1101 {
1102 	u64 guest_efer = vmx->vcpu.arch.efer;
1103 	u64 ignore_bits = 0;
1104 	int i;
1105 
1106 	/* Shadow paging assumes NX to be available.  */
1107 	if (!enable_ept)
1108 		guest_efer |= EFER_NX;
1109 
1110 	/*
1111 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1112 	 */
1113 	ignore_bits |= EFER_SCE;
1114 #ifdef CONFIG_X86_64
1115 	ignore_bits |= EFER_LMA | EFER_LME;
1116 	/* SCE is meaningful only in long mode on Intel */
1117 	if (guest_efer & EFER_LMA)
1118 		ignore_bits &= ~(u64)EFER_SCE;
1119 #endif
1120 
1121 	/*
1122 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1123 	 * On CPUs that support "load IA32_EFER", always switch EFER
1124 	 * atomically, since it's faster than switching it manually.
1125 	 */
1126 	if (cpu_has_load_ia32_efer() ||
1127 	    (enable_ept && ((vmx->vcpu.arch.efer ^ kvm_host.efer) & EFER_NX))) {
1128 		if (!(guest_efer & EFER_LMA))
1129 			guest_efer &= ~EFER_LME;
1130 		if (guest_efer != kvm_host.efer)
1131 			add_atomic_switch_msr(vmx, MSR_EFER,
1132 					      guest_efer, kvm_host.efer, false);
1133 		else
1134 			clear_atomic_switch_msr(vmx, MSR_EFER);
1135 		return false;
1136 	}
1137 
1138 	i = kvm_find_user_return_msr(MSR_EFER);
1139 	if (i < 0)
1140 		return false;
1141 
1142 	clear_atomic_switch_msr(vmx, MSR_EFER);
1143 
1144 	guest_efer &= ~ignore_bits;
1145 	guest_efer |= kvm_host.efer & ignore_bits;
1146 
1147 	vmx->guest_uret_msrs[i].data = guest_efer;
1148 	vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1149 
1150 	return true;
1151 }
1152 
1153 #ifdef CONFIG_X86_32
1154 /*
1155  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1156  * VMCS rather than the segment table.  KVM uses this helper to figure
1157  * out the current bases to poke them into the VMCS before entry.
1158  */
1159 static unsigned long segment_base(u16 selector)
1160 {
1161 	struct desc_struct *table;
1162 	unsigned long v;
1163 
1164 	if (!(selector & ~SEGMENT_RPL_MASK))
1165 		return 0;
1166 
1167 	table = get_current_gdt_ro();
1168 
1169 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1170 		u16 ldt_selector = kvm_read_ldt();
1171 
1172 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1173 			return 0;
1174 
1175 		table = (struct desc_struct *)segment_base(ldt_selector);
1176 	}
1177 	v = get_desc_base(&table[selector >> 3]);
1178 	return v;
1179 }
1180 #endif
1181 
1182 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1183 {
1184 	return vmx_pt_mode_is_host_guest() &&
1185 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1186 }
1187 
1188 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1189 {
1190 	/* The base must be 128-byte aligned and a legal physical address. */
1191 	return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1192 }
1193 
1194 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1195 {
1196 	u32 i;
1197 
1198 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1199 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1200 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1201 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1202 	for (i = 0; i < addr_range; i++) {
1203 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1204 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1205 	}
1206 }
1207 
1208 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1209 {
1210 	u32 i;
1211 
1212 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1213 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1214 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1215 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1216 	for (i = 0; i < addr_range; i++) {
1217 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1218 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1219 	}
1220 }
1221 
1222 static void pt_guest_enter(struct vcpu_vmx *vmx)
1223 {
1224 	if (vmx_pt_mode_is_system())
1225 		return;
1226 
1227 	/*
1228 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1229 	 * Save host state before VM entry.
1230 	 */
1231 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1232 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1233 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1234 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1235 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1236 	}
1237 }
1238 
1239 static void pt_guest_exit(struct vcpu_vmx *vmx)
1240 {
1241 	if (vmx_pt_mode_is_system())
1242 		return;
1243 
1244 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1245 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1246 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1247 	}
1248 
1249 	/*
1250 	 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1251 	 * i.e. RTIT_CTL is always cleared on VM-Exit.  Restore it if necessary.
1252 	 */
1253 	if (vmx->pt_desc.host.ctl)
1254 		wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1255 }
1256 
1257 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1258 			unsigned long fs_base, unsigned long gs_base)
1259 {
1260 	if (unlikely(fs_sel != host->fs_sel)) {
1261 		if (!(fs_sel & 7))
1262 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1263 		else
1264 			vmcs_write16(HOST_FS_SELECTOR, 0);
1265 		host->fs_sel = fs_sel;
1266 	}
1267 	if (unlikely(gs_sel != host->gs_sel)) {
1268 		if (!(gs_sel & 7))
1269 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1270 		else
1271 			vmcs_write16(HOST_GS_SELECTOR, 0);
1272 		host->gs_sel = gs_sel;
1273 	}
1274 	if (unlikely(fs_base != host->fs_base)) {
1275 		vmcs_writel(HOST_FS_BASE, fs_base);
1276 		host->fs_base = fs_base;
1277 	}
1278 	if (unlikely(gs_base != host->gs_base)) {
1279 		vmcs_writel(HOST_GS_BASE, gs_base);
1280 		host->gs_base = gs_base;
1281 	}
1282 }
1283 
1284 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1285 {
1286 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1287 	struct vmcs_host_state *host_state;
1288 #ifdef CONFIG_X86_64
1289 	int cpu = raw_smp_processor_id();
1290 #endif
1291 	unsigned long fs_base, gs_base;
1292 	u16 fs_sel, gs_sel;
1293 	int i;
1294 
1295 	/*
1296 	 * Note that guest MSRs to be saved/restored can also be changed
1297 	 * when guest state is loaded. This happens when guest transitions
1298 	 * to/from long-mode by setting MSR_EFER.LMA.
1299 	 */
1300 	if (!vmx->guest_uret_msrs_loaded) {
1301 		vmx->guest_uret_msrs_loaded = true;
1302 		for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1303 			if (!vmx->guest_uret_msrs[i].load_into_hardware)
1304 				continue;
1305 
1306 			kvm_set_user_return_msr(i,
1307 						vmx->guest_uret_msrs[i].data,
1308 						vmx->guest_uret_msrs[i].mask);
1309 		}
1310 	}
1311 
1312 	if (vmx->nested.need_vmcs12_to_shadow_sync)
1313 		nested_sync_vmcs12_to_shadow(vcpu);
1314 
1315 	if (vmx->guest_state_loaded)
1316 		return;
1317 
1318 	host_state = &vmx->loaded_vmcs->host_state;
1319 
1320 	/*
1321 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1322 	 * allow segment selectors with cpl > 0 or ti == 1.
1323 	 */
1324 	host_state->ldt_sel = kvm_read_ldt();
1325 
1326 #ifdef CONFIG_X86_64
1327 	savesegment(ds, host_state->ds_sel);
1328 	savesegment(es, host_state->es_sel);
1329 
1330 	gs_base = cpu_kernelmode_gs_base(cpu);
1331 	if (likely(is_64bit_mm(current->mm))) {
1332 		current_save_fsgs();
1333 		fs_sel = current->thread.fsindex;
1334 		gs_sel = current->thread.gsindex;
1335 		fs_base = current->thread.fsbase;
1336 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1337 	} else {
1338 		savesegment(fs, fs_sel);
1339 		savesegment(gs, gs_sel);
1340 		fs_base = read_msr(MSR_FS_BASE);
1341 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1342 	}
1343 
1344 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1345 #else
1346 	savesegment(fs, fs_sel);
1347 	savesegment(gs, gs_sel);
1348 	fs_base = segment_base(fs_sel);
1349 	gs_base = segment_base(gs_sel);
1350 #endif
1351 
1352 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1353 	vmx->guest_state_loaded = true;
1354 }
1355 
1356 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1357 {
1358 	struct vmcs_host_state *host_state;
1359 
1360 	if (!vmx->guest_state_loaded)
1361 		return;
1362 
1363 	host_state = &vmx->loaded_vmcs->host_state;
1364 
1365 	++vmx->vcpu.stat.host_state_reload;
1366 
1367 #ifdef CONFIG_X86_64
1368 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1369 #endif
1370 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1371 		kvm_load_ldt(host_state->ldt_sel);
1372 #ifdef CONFIG_X86_64
1373 		load_gs_index(host_state->gs_sel);
1374 #else
1375 		loadsegment(gs, host_state->gs_sel);
1376 #endif
1377 	}
1378 	if (host_state->fs_sel & 7)
1379 		loadsegment(fs, host_state->fs_sel);
1380 #ifdef CONFIG_X86_64
1381 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1382 		loadsegment(ds, host_state->ds_sel);
1383 		loadsegment(es, host_state->es_sel);
1384 	}
1385 #endif
1386 	invalidate_tss_limit();
1387 #ifdef CONFIG_X86_64
1388 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1389 #endif
1390 	load_fixmap_gdt(raw_smp_processor_id());
1391 	vmx->guest_state_loaded = false;
1392 	vmx->guest_uret_msrs_loaded = false;
1393 }
1394 
1395 #ifdef CONFIG_X86_64
1396 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1397 {
1398 	preempt_disable();
1399 	if (vmx->guest_state_loaded)
1400 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1401 	preempt_enable();
1402 	return vmx->msr_guest_kernel_gs_base;
1403 }
1404 
1405 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1406 {
1407 	preempt_disable();
1408 	if (vmx->guest_state_loaded)
1409 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1410 	preempt_enable();
1411 	vmx->msr_guest_kernel_gs_base = data;
1412 }
1413 #endif
1414 
1415 static void grow_ple_window(struct kvm_vcpu *vcpu)
1416 {
1417 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1418 	unsigned int old = vmx->ple_window;
1419 
1420 	vmx->ple_window = __grow_ple_window(old, ple_window,
1421 					    ple_window_grow,
1422 					    ple_window_max);
1423 
1424 	if (vmx->ple_window != old) {
1425 		vmx->ple_window_dirty = true;
1426 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1427 					    vmx->ple_window, old);
1428 	}
1429 }
1430 
1431 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1432 {
1433 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1434 	unsigned int old = vmx->ple_window;
1435 
1436 	vmx->ple_window = __shrink_ple_window(old, ple_window,
1437 					      ple_window_shrink,
1438 					      ple_window);
1439 
1440 	if (vmx->ple_window != old) {
1441 		vmx->ple_window_dirty = true;
1442 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1443 					    vmx->ple_window, old);
1444 	}
1445 }
1446 
1447 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1448 			struct loaded_vmcs *buddy)
1449 {
1450 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1451 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1452 	struct vmcs *prev;
1453 
1454 	if (!already_loaded) {
1455 		loaded_vmcs_clear(vmx->loaded_vmcs);
1456 		local_irq_disable();
1457 
1458 		/*
1459 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1460 		 * this cpu's percpu list, otherwise it may not yet be deleted
1461 		 * from its previous cpu's percpu list.  Pairs with the
1462 		 * smb_wmb() in __loaded_vmcs_clear().
1463 		 */
1464 		smp_rmb();
1465 
1466 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1467 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1468 		local_irq_enable();
1469 	}
1470 
1471 	prev = per_cpu(current_vmcs, cpu);
1472 	if (prev != vmx->loaded_vmcs->vmcs) {
1473 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1474 		vmcs_load(vmx->loaded_vmcs->vmcs);
1475 
1476 		/*
1477 		 * No indirect branch prediction barrier needed when switching
1478 		 * the active VMCS within a vCPU, unless IBRS is advertised to
1479 		 * the vCPU.  To minimize the number of IBPBs executed, KVM
1480 		 * performs IBPB on nested VM-Exit (a single nested transition
1481 		 * may switch the active VMCS multiple times).
1482 		 */
1483 		if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1484 			indirect_branch_prediction_barrier();
1485 	}
1486 
1487 	if (!already_loaded) {
1488 		void *gdt = get_current_gdt_ro();
1489 
1490 		/*
1491 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1492 		 * TLB entries from its previous association with the vCPU.
1493 		 */
1494 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1495 
1496 		/*
1497 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1498 		 * processors.  See 22.2.4.
1499 		 */
1500 		vmcs_writel(HOST_TR_BASE,
1501 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1502 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1503 
1504 		if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1505 			/* 22.2.3 */
1506 			vmcs_writel(HOST_IA32_SYSENTER_ESP,
1507 				    (unsigned long)(cpu_entry_stack(cpu) + 1));
1508 		}
1509 
1510 		vmx->loaded_vmcs->cpu = cpu;
1511 	}
1512 }
1513 
1514 /*
1515  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1516  * vcpu mutex is already taken.
1517  */
1518 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1519 {
1520 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1521 
1522 	if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm))
1523 		shrink_ple_window(vcpu);
1524 
1525 	vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1526 
1527 	vmx_vcpu_pi_load(vcpu, cpu);
1528 
1529 	vmx->host_debugctlmsr = get_debugctlmsr();
1530 }
1531 
1532 void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1533 {
1534 	vmx_vcpu_pi_put(vcpu);
1535 
1536 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1537 }
1538 
1539 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1540 {
1541 	return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1542 }
1543 
1544 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1545 {
1546 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1547 	unsigned long rflags, save_rflags;
1548 
1549 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1550 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1551 		rflags = vmcs_readl(GUEST_RFLAGS);
1552 		if (vmx->rmode.vm86_active) {
1553 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1554 			save_rflags = vmx->rmode.save_rflags;
1555 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1556 		}
1557 		vmx->rflags = rflags;
1558 	}
1559 	return vmx->rflags;
1560 }
1561 
1562 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1563 {
1564 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1565 	unsigned long old_rflags;
1566 
1567 	/*
1568 	 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU
1569 	 * is an unrestricted guest in order to mark L2 as needing emulation
1570 	 * if L1 runs L2 as a restricted guest.
1571 	 */
1572 	if (is_unrestricted_guest(vcpu)) {
1573 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1574 		vmx->rflags = rflags;
1575 		vmcs_writel(GUEST_RFLAGS, rflags);
1576 		return;
1577 	}
1578 
1579 	old_rflags = vmx_get_rflags(vcpu);
1580 	vmx->rflags = rflags;
1581 	if (vmx->rmode.vm86_active) {
1582 		vmx->rmode.save_rflags = rflags;
1583 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1584 	}
1585 	vmcs_writel(GUEST_RFLAGS, rflags);
1586 
1587 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1588 		vmx->emulation_required = vmx_emulation_required(vcpu);
1589 }
1590 
1591 bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1592 {
1593 	return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1594 }
1595 
1596 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1597 {
1598 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1599 	int ret = 0;
1600 
1601 	if (interruptibility & GUEST_INTR_STATE_STI)
1602 		ret |= KVM_X86_SHADOW_INT_STI;
1603 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1604 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1605 
1606 	return ret;
1607 }
1608 
1609 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1610 {
1611 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1612 	u32 interruptibility = interruptibility_old;
1613 
1614 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1615 
1616 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1617 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1618 	else if (mask & KVM_X86_SHADOW_INT_STI)
1619 		interruptibility |= GUEST_INTR_STATE_STI;
1620 
1621 	if ((interruptibility != interruptibility_old))
1622 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1623 }
1624 
1625 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1626 {
1627 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1628 	unsigned long value;
1629 
1630 	/*
1631 	 * Any MSR write that attempts to change bits marked reserved will
1632 	 * case a #GP fault.
1633 	 */
1634 	if (data & vmx->pt_desc.ctl_bitmask)
1635 		return 1;
1636 
1637 	/*
1638 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1639 	 * result in a #GP unless the same write also clears TraceEn.
1640 	 */
1641 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1642 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1643 		return 1;
1644 
1645 	/*
1646 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1647 	 * and FabricEn would cause #GP, if
1648 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1649 	 */
1650 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1651 		!(data & RTIT_CTL_FABRIC_EN) &&
1652 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1653 					PT_CAP_single_range_output))
1654 		return 1;
1655 
1656 	/*
1657 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1658 	 * utilize encodings marked reserved will cause a #GP fault.
1659 	 */
1660 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1661 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1662 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1663 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1664 		return 1;
1665 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1666 						PT_CAP_cycle_thresholds);
1667 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1668 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1669 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1670 		return 1;
1671 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1672 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1673 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1674 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1675 		return 1;
1676 
1677 	/*
1678 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1679 	 * cause a #GP fault.
1680 	 */
1681 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1682 	if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1683 		return 1;
1684 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1685 	if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1686 		return 1;
1687 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1688 	if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1689 		return 1;
1690 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1691 	if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1692 		return 1;
1693 
1694 	return 0;
1695 }
1696 
1697 int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1698 				  void *insn, int insn_len)
1699 {
1700 	/*
1701 	 * Emulation of instructions in SGX enclaves is impossible as RIP does
1702 	 * not point at the failing instruction, and even if it did, the code
1703 	 * stream is inaccessible.  Inject #UD instead of exiting to userspace
1704 	 * so that guest userspace can't DoS the guest simply by triggering
1705 	 * emulation (enclaves are CPL3 only).
1706 	 */
1707 	if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1708 		kvm_queue_exception(vcpu, UD_VECTOR);
1709 		return X86EMUL_PROPAGATE_FAULT;
1710 	}
1711 	return X86EMUL_CONTINUE;
1712 }
1713 
1714 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1715 {
1716 	union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1717 	unsigned long rip, orig_rip;
1718 	u32 instr_len;
1719 
1720 	/*
1721 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1722 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1723 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1724 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1725 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1726 	 * i.e. we end up advancing IP with some random value.
1727 	 */
1728 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1729 	    exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1730 		instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1731 
1732 		/*
1733 		 * Emulating an enclave's instructions isn't supported as KVM
1734 		 * cannot access the enclave's memory or its true RIP, e.g. the
1735 		 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1736 		 * the RIP that actually triggered the VM-Exit.  But, because
1737 		 * most instructions that cause VM-Exit will #UD in an enclave,
1738 		 * most instruction-based VM-Exits simply do not occur.
1739 		 *
1740 		 * There are a few exceptions, notably the debug instructions
1741 		 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1742 		 * and generate #DB/#BP as expected, which KVM might intercept.
1743 		 * But again, the CPU does the dirty work and saves an instr
1744 		 * length of zero so VMMs don't shoot themselves in the foot.
1745 		 * WARN if KVM tries to skip a non-zero length instruction on
1746 		 * a VM-Exit from an enclave.
1747 		 */
1748 		if (!instr_len)
1749 			goto rip_updated;
1750 
1751 		WARN_ONCE(exit_reason.enclave_mode,
1752 			  "skipping instruction after SGX enclave VM-Exit");
1753 
1754 		orig_rip = kvm_rip_read(vcpu);
1755 		rip = orig_rip + instr_len;
1756 #ifdef CONFIG_X86_64
1757 		/*
1758 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1759 		 * mode, but just finding out that we are in 64-bit mode is
1760 		 * quite expensive.  Only do it if there was a carry.
1761 		 */
1762 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1763 			rip = (u32)rip;
1764 #endif
1765 		kvm_rip_write(vcpu, rip);
1766 	} else {
1767 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1768 			return 0;
1769 	}
1770 
1771 rip_updated:
1772 	/* skipping an emulated instruction also counts */
1773 	vmx_set_interrupt_shadow(vcpu, 0);
1774 
1775 	return 1;
1776 }
1777 
1778 /*
1779  * Recognizes a pending MTF VM-exit and records the nested state for later
1780  * delivery.
1781  */
1782 void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1783 {
1784 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1785 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1786 
1787 	if (!is_guest_mode(vcpu))
1788 		return;
1789 
1790 	/*
1791 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1792 	 * TSS T-bit traps and ICEBP (INT1).  KVM doesn't emulate T-bit traps
1793 	 * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1794 	 * intercepted #DB deliberately avoids single-step #DB and MTF updates
1795 	 * as ICEBP is higher priority than both.  As instruction emulation is
1796 	 * completed at this point (i.e. KVM is at the instruction boundary),
1797 	 * any #DB exception pending delivery must be a debug-trap of lower
1798 	 * priority than MTF.  Record the pending MTF state to be delivered in
1799 	 * vmx_check_nested_events().
1800 	 */
1801 	if (nested_cpu_has_mtf(vmcs12) &&
1802 	    (!vcpu->arch.exception.pending ||
1803 	     vcpu->arch.exception.vector == DB_VECTOR) &&
1804 	    (!vcpu->arch.exception_vmexit.pending ||
1805 	     vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1806 		vmx->nested.mtf_pending = true;
1807 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1808 	} else {
1809 		vmx->nested.mtf_pending = false;
1810 	}
1811 }
1812 
1813 int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1814 {
1815 	vmx_update_emulated_instruction(vcpu);
1816 	return skip_emulated_instruction(vcpu);
1817 }
1818 
1819 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1820 {
1821 	/*
1822 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1823 	 * explicitly skip the instruction because if the HLT state is set,
1824 	 * then the instruction is already executing and RIP has already been
1825 	 * advanced.
1826 	 */
1827 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1828 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1829 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1830 }
1831 
1832 void vmx_inject_exception(struct kvm_vcpu *vcpu)
1833 {
1834 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
1835 	u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1836 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1837 
1838 	kvm_deliver_exception_payload(vcpu, ex);
1839 
1840 	if (ex->has_error_code) {
1841 		/*
1842 		 * Despite the error code being architecturally defined as 32
1843 		 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1844 		 * VMX don't actually supporting setting bits 31:16.  Hardware
1845 		 * will (should) never provide a bogus error code, but AMD CPUs
1846 		 * do generate error codes with bits 31:16 set, and so KVM's
1847 		 * ABI lets userspace shove in arbitrary 32-bit values.  Drop
1848 		 * the upper bits to avoid VM-Fail, losing information that
1849 		 * doesn't really exist is preferable to killing the VM.
1850 		 */
1851 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1852 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1853 	}
1854 
1855 	if (vmx->rmode.vm86_active) {
1856 		int inc_eip = 0;
1857 		if (kvm_exception_is_soft(ex->vector))
1858 			inc_eip = vcpu->arch.event_exit_inst_len;
1859 		kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1860 		return;
1861 	}
1862 
1863 	WARN_ON_ONCE(vmx->emulation_required);
1864 
1865 	if (kvm_exception_is_soft(ex->vector)) {
1866 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1867 			     vmx->vcpu.arch.event_exit_inst_len);
1868 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1869 	} else
1870 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1871 
1872 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1873 
1874 	vmx_clear_hlt(vcpu);
1875 }
1876 
1877 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1878 			       bool load_into_hardware)
1879 {
1880 	struct vmx_uret_msr *uret_msr;
1881 
1882 	uret_msr = vmx_find_uret_msr(vmx, msr);
1883 	if (!uret_msr)
1884 		return;
1885 
1886 	uret_msr->load_into_hardware = load_into_hardware;
1887 }
1888 
1889 /*
1890  * Configuring user return MSRs to automatically save, load, and restore MSRs
1891  * that need to be shoved into hardware when running the guest.  Note, omitting
1892  * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1893  * loaded into hardware when running the guest.
1894  */
1895 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1896 {
1897 #ifdef CONFIG_X86_64
1898 	bool load_syscall_msrs;
1899 
1900 	/*
1901 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1902 	 * when EFER.SCE is set.
1903 	 */
1904 	load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1905 			    (vmx->vcpu.arch.efer & EFER_SCE);
1906 
1907 	vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1908 	vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1909 	vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1910 #endif
1911 	vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1912 
1913 	vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1914 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1915 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1916 
1917 	/*
1918 	 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1919 	 * kernel and old userspace.  If those guests run on a tsx=off host, do
1920 	 * allow guests to use TSX_CTRL, but don't change the value in hardware
1921 	 * so that TSX remains always disabled.
1922 	 */
1923 	vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1924 
1925 	/*
1926 	 * The set of MSRs to load may have changed, reload MSRs before the
1927 	 * next VM-Enter.
1928 	 */
1929 	vmx->guest_uret_msrs_loaded = false;
1930 }
1931 
1932 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1933 {
1934 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1935 
1936 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1937 		return vmcs12->tsc_offset;
1938 
1939 	return 0;
1940 }
1941 
1942 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1943 {
1944 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1945 
1946 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1947 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1948 		return vmcs12->tsc_multiplier;
1949 
1950 	return kvm_caps.default_tsc_scaling_ratio;
1951 }
1952 
1953 void vmx_write_tsc_offset(struct kvm_vcpu *vcpu)
1954 {
1955 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
1956 }
1957 
1958 void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1959 {
1960 	vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
1961 }
1962 
1963 /*
1964  * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
1965  * guest CPUID.  Note, KVM allows userspace to set "VMX in SMX" to maintain
1966  * backwards compatibility even though KVM doesn't support emulating SMX.  And
1967  * because userspace set "VMX in SMX", the guest must also be allowed to set it,
1968  * e.g. if the MSR is left unlocked and the guest does a RMW operation.
1969  */
1970 #define KVM_SUPPORTED_FEATURE_CONTROL  (FEAT_CTL_LOCKED			 | \
1971 					FEAT_CTL_VMX_ENABLED_INSIDE_SMX	 | \
1972 					FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
1973 					FEAT_CTL_SGX_LC_ENABLED		 | \
1974 					FEAT_CTL_SGX_ENABLED		 | \
1975 					FEAT_CTL_LMCE_ENABLED)
1976 
1977 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
1978 						    struct msr_data *msr)
1979 {
1980 	uint64_t valid_bits;
1981 
1982 	/*
1983 	 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
1984 	 * exposed to the guest.
1985 	 */
1986 	WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
1987 		     ~KVM_SUPPORTED_FEATURE_CONTROL);
1988 
1989 	if (!msr->host_initiated &&
1990 	    (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
1991 		return false;
1992 
1993 	if (msr->host_initiated)
1994 		valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
1995 	else
1996 		valid_bits = vmx->msr_ia32_feature_control_valid_bits;
1997 
1998 	return !(msr->data & ~valid_bits);
1999 }
2000 
2001 int vmx_get_msr_feature(struct kvm_msr_entry *msr)
2002 {
2003 	switch (msr->index) {
2004 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2005 		if (!nested)
2006 			return 1;
2007 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
2008 	default:
2009 		return KVM_MSR_RET_INVALID;
2010 	}
2011 }
2012 
2013 /*
2014  * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
2015  * Returns 0 on success, non-0 otherwise.
2016  * Assumes vcpu_load() was already called.
2017  */
2018 int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2019 {
2020 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2021 	struct vmx_uret_msr *msr;
2022 	u32 index;
2023 
2024 	switch (msr_info->index) {
2025 #ifdef CONFIG_X86_64
2026 	case MSR_FS_BASE:
2027 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
2028 		break;
2029 	case MSR_GS_BASE:
2030 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
2031 		break;
2032 	case MSR_KERNEL_GS_BASE:
2033 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
2034 		break;
2035 #endif
2036 	case MSR_EFER:
2037 		return kvm_get_msr_common(vcpu, msr_info);
2038 	case MSR_IA32_TSX_CTRL:
2039 		if (!msr_info->host_initiated &&
2040 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2041 			return 1;
2042 		goto find_uret_msr;
2043 	case MSR_IA32_UMWAIT_CONTROL:
2044 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2045 			return 1;
2046 
2047 		msr_info->data = vmx->msr_ia32_umwait_control;
2048 		break;
2049 	case MSR_IA32_SPEC_CTRL:
2050 		if (!msr_info->host_initiated &&
2051 		    !guest_has_spec_ctrl_msr(vcpu))
2052 			return 1;
2053 
2054 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
2055 		break;
2056 	case MSR_IA32_SYSENTER_CS:
2057 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2058 		break;
2059 	case MSR_IA32_SYSENTER_EIP:
2060 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2061 		break;
2062 	case MSR_IA32_SYSENTER_ESP:
2063 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2064 		break;
2065 	case MSR_IA32_BNDCFGS:
2066 		if (!kvm_mpx_supported() ||
2067 		    (!msr_info->host_initiated &&
2068 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2069 			return 1;
2070 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2071 		break;
2072 	case MSR_IA32_MCG_EXT_CTL:
2073 		if (!msr_info->host_initiated &&
2074 		    !(vmx->msr_ia32_feature_control &
2075 		      FEAT_CTL_LMCE_ENABLED))
2076 			return 1;
2077 		msr_info->data = vcpu->arch.mcg_ext_ctl;
2078 		break;
2079 	case MSR_IA32_FEAT_CTL:
2080 		msr_info->data = vmx->msr_ia32_feature_control;
2081 		break;
2082 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2083 		if (!msr_info->host_initiated &&
2084 		    !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
2085 			return 1;
2086 		msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
2087 			[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
2088 		break;
2089 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2090 		if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2091 			return 1;
2092 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
2093 				    &msr_info->data))
2094 			return 1;
2095 #ifdef CONFIG_KVM_HYPERV
2096 		/*
2097 		 * Enlightened VMCS v1 doesn't have certain VMCS fields but
2098 		 * instead of just ignoring the features, different Hyper-V
2099 		 * versions are either trying to use them and fail or do some
2100 		 * sanity checking and refuse to boot. Filter all unsupported
2101 		 * features out.
2102 		 */
2103 		if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu))
2104 			nested_evmcs_filter_control_msr(vcpu, msr_info->index,
2105 							&msr_info->data);
2106 #endif
2107 		break;
2108 	case MSR_IA32_RTIT_CTL:
2109 		if (!vmx_pt_mode_is_host_guest())
2110 			return 1;
2111 		msr_info->data = vmx->pt_desc.guest.ctl;
2112 		break;
2113 	case MSR_IA32_RTIT_STATUS:
2114 		if (!vmx_pt_mode_is_host_guest())
2115 			return 1;
2116 		msr_info->data = vmx->pt_desc.guest.status;
2117 		break;
2118 	case MSR_IA32_RTIT_CR3_MATCH:
2119 		if (!vmx_pt_mode_is_host_guest() ||
2120 			!intel_pt_validate_cap(vmx->pt_desc.caps,
2121 						PT_CAP_cr3_filtering))
2122 			return 1;
2123 		msr_info->data = vmx->pt_desc.guest.cr3_match;
2124 		break;
2125 	case MSR_IA32_RTIT_OUTPUT_BASE:
2126 		if (!vmx_pt_mode_is_host_guest() ||
2127 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2128 					PT_CAP_topa_output) &&
2129 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2130 					PT_CAP_single_range_output)))
2131 			return 1;
2132 		msr_info->data = vmx->pt_desc.guest.output_base;
2133 		break;
2134 	case MSR_IA32_RTIT_OUTPUT_MASK:
2135 		if (!vmx_pt_mode_is_host_guest() ||
2136 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2137 					PT_CAP_topa_output) &&
2138 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2139 					PT_CAP_single_range_output)))
2140 			return 1;
2141 		msr_info->data = vmx->pt_desc.guest.output_mask;
2142 		break;
2143 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2144 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2145 		if (!vmx_pt_mode_is_host_guest() ||
2146 		    (index >= 2 * vmx->pt_desc.num_address_ranges))
2147 			return 1;
2148 		if (index % 2)
2149 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2150 		else
2151 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2152 		break;
2153 	case MSR_IA32_DEBUGCTLMSR:
2154 		msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
2155 		break;
2156 	default:
2157 	find_uret_msr:
2158 		msr = vmx_find_uret_msr(vmx, msr_info->index);
2159 		if (msr) {
2160 			msr_info->data = msr->data;
2161 			break;
2162 		}
2163 		return kvm_get_msr_common(vcpu, msr_info);
2164 	}
2165 
2166 	return 0;
2167 }
2168 
2169 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2170 						    u64 data)
2171 {
2172 #ifdef CONFIG_X86_64
2173 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2174 		return (u32)data;
2175 #endif
2176 	return (unsigned long)data;
2177 }
2178 
2179 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2180 {
2181 	u64 debugctl = 0;
2182 
2183 	if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2184 	    (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2185 		debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2186 
2187 	if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) &&
2188 	    (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2189 		debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2190 
2191 	return debugctl;
2192 }
2193 
2194 /*
2195  * Writes msr value into the appropriate "register".
2196  * Returns 0 on success, non-0 otherwise.
2197  * Assumes vcpu_load() was already called.
2198  */
2199 int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2200 {
2201 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2202 	struct vmx_uret_msr *msr;
2203 	int ret = 0;
2204 	u32 msr_index = msr_info->index;
2205 	u64 data = msr_info->data;
2206 	u32 index;
2207 
2208 	switch (msr_index) {
2209 	case MSR_EFER:
2210 		ret = kvm_set_msr_common(vcpu, msr_info);
2211 		break;
2212 #ifdef CONFIG_X86_64
2213 	case MSR_FS_BASE:
2214 		vmx_segment_cache_clear(vmx);
2215 		vmcs_writel(GUEST_FS_BASE, data);
2216 		break;
2217 	case MSR_GS_BASE:
2218 		vmx_segment_cache_clear(vmx);
2219 		vmcs_writel(GUEST_GS_BASE, data);
2220 		break;
2221 	case MSR_KERNEL_GS_BASE:
2222 		vmx_write_guest_kernel_gs_base(vmx, data);
2223 		break;
2224 	case MSR_IA32_XFD:
2225 		ret = kvm_set_msr_common(vcpu, msr_info);
2226 		/*
2227 		 * Always intercepting WRMSR could incur non-negligible
2228 		 * overhead given xfd might be changed frequently in
2229 		 * guest context switch. Disable write interception
2230 		 * upon the first write with a non-zero value (indicating
2231 		 * potential usage on dynamic xfeatures). Also update
2232 		 * exception bitmap to trap #NM for proper virtualization
2233 		 * of guest xfd_err.
2234 		 */
2235 		if (!ret && data) {
2236 			vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2237 						      MSR_TYPE_RW);
2238 			vcpu->arch.xfd_no_write_intercept = true;
2239 			vmx_update_exception_bitmap(vcpu);
2240 		}
2241 		break;
2242 #endif
2243 	case MSR_IA32_SYSENTER_CS:
2244 		if (is_guest_mode(vcpu))
2245 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
2246 		vmcs_write32(GUEST_SYSENTER_CS, data);
2247 		break;
2248 	case MSR_IA32_SYSENTER_EIP:
2249 		if (is_guest_mode(vcpu)) {
2250 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2251 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
2252 		}
2253 		vmcs_writel(GUEST_SYSENTER_EIP, data);
2254 		break;
2255 	case MSR_IA32_SYSENTER_ESP:
2256 		if (is_guest_mode(vcpu)) {
2257 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2258 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
2259 		}
2260 		vmcs_writel(GUEST_SYSENTER_ESP, data);
2261 		break;
2262 	case MSR_IA32_DEBUGCTLMSR: {
2263 		u64 invalid;
2264 
2265 		invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2266 		if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2267 			kvm_pr_unimpl_wrmsr(vcpu, msr_index, data);
2268 			data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2269 			invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2270 		}
2271 
2272 		if (invalid)
2273 			return 1;
2274 
2275 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2276 						VM_EXIT_SAVE_DEBUG_CONTROLS)
2277 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2278 
2279 		vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2280 		if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2281 		    (data & DEBUGCTLMSR_LBR))
2282 			intel_pmu_create_guest_lbr_event(vcpu);
2283 		return 0;
2284 	}
2285 	case MSR_IA32_BNDCFGS:
2286 		if (!kvm_mpx_supported() ||
2287 		    (!msr_info->host_initiated &&
2288 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2289 			return 1;
2290 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2291 		    (data & MSR_IA32_BNDCFGS_RSVD))
2292 			return 1;
2293 
2294 		if (is_guest_mode(vcpu) &&
2295 		    ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2296 		     (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2297 			get_vmcs12(vcpu)->guest_bndcfgs = data;
2298 
2299 		vmcs_write64(GUEST_BNDCFGS, data);
2300 		break;
2301 	case MSR_IA32_UMWAIT_CONTROL:
2302 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2303 			return 1;
2304 
2305 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2306 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2307 			return 1;
2308 
2309 		vmx->msr_ia32_umwait_control = data;
2310 		break;
2311 	case MSR_IA32_SPEC_CTRL:
2312 		if (!msr_info->host_initiated &&
2313 		    !guest_has_spec_ctrl_msr(vcpu))
2314 			return 1;
2315 
2316 		if (kvm_spec_ctrl_test_value(data))
2317 			return 1;
2318 
2319 		vmx->spec_ctrl = data;
2320 		if (!data)
2321 			break;
2322 
2323 		/*
2324 		 * For non-nested:
2325 		 * When it's written (to non-zero) for the first time, pass
2326 		 * it through.
2327 		 *
2328 		 * For nested:
2329 		 * The handling of the MSR bitmap for L2 guests is done in
2330 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2331 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2332 		 * in the merging. We update the vmcs01 here for L1 as well
2333 		 * since it will end up touching the MSR anyway now.
2334 		 */
2335 		vmx_disable_intercept_for_msr(vcpu,
2336 					      MSR_IA32_SPEC_CTRL,
2337 					      MSR_TYPE_RW);
2338 		break;
2339 	case MSR_IA32_TSX_CTRL:
2340 		if (!msr_info->host_initiated &&
2341 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2342 			return 1;
2343 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2344 			return 1;
2345 		goto find_uret_msr;
2346 	case MSR_IA32_CR_PAT:
2347 		ret = kvm_set_msr_common(vcpu, msr_info);
2348 		if (ret)
2349 			break;
2350 
2351 		if (is_guest_mode(vcpu) &&
2352 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2353 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2354 
2355 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
2356 			vmcs_write64(GUEST_IA32_PAT, data);
2357 		break;
2358 	case MSR_IA32_MCG_EXT_CTL:
2359 		if ((!msr_info->host_initiated &&
2360 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2361 		       FEAT_CTL_LMCE_ENABLED)) ||
2362 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2363 			return 1;
2364 		vcpu->arch.mcg_ext_ctl = data;
2365 		break;
2366 	case MSR_IA32_FEAT_CTL:
2367 		if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2368 			return 1;
2369 
2370 		vmx->msr_ia32_feature_control = data;
2371 		if (msr_info->host_initiated && data == 0)
2372 			vmx_leave_nested(vcpu);
2373 
2374 		/* SGX may be enabled/disabled by guest's firmware */
2375 		vmx_write_encls_bitmap(vcpu, NULL);
2376 		break;
2377 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2378 		/*
2379 		 * On real hardware, the LE hash MSRs are writable before
2380 		 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2381 		 * at which point SGX related bits in IA32_FEATURE_CONTROL
2382 		 * become writable.
2383 		 *
2384 		 * KVM does not emulate SGX activation for simplicity, so
2385 		 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2386 		 * is unlocked.  This is technically not architectural
2387 		 * behavior, but it's close enough.
2388 		 */
2389 		if (!msr_info->host_initiated &&
2390 		    (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2391 		    ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2392 		    !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2393 			return 1;
2394 		vmx->msr_ia32_sgxlepubkeyhash
2395 			[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2396 		break;
2397 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2398 		if (!msr_info->host_initiated)
2399 			return 1; /* they are read-only */
2400 		if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2401 			return 1;
2402 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2403 	case MSR_IA32_RTIT_CTL:
2404 		if (!vmx_pt_mode_is_host_guest() ||
2405 			vmx_rtit_ctl_check(vcpu, data) ||
2406 			vmx->nested.vmxon)
2407 			return 1;
2408 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2409 		vmx->pt_desc.guest.ctl = data;
2410 		pt_update_intercept_for_msr(vcpu);
2411 		break;
2412 	case MSR_IA32_RTIT_STATUS:
2413 		if (!pt_can_write_msr(vmx))
2414 			return 1;
2415 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2416 			return 1;
2417 		vmx->pt_desc.guest.status = data;
2418 		break;
2419 	case MSR_IA32_RTIT_CR3_MATCH:
2420 		if (!pt_can_write_msr(vmx))
2421 			return 1;
2422 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2423 					   PT_CAP_cr3_filtering))
2424 			return 1;
2425 		vmx->pt_desc.guest.cr3_match = data;
2426 		break;
2427 	case MSR_IA32_RTIT_OUTPUT_BASE:
2428 		if (!pt_can_write_msr(vmx))
2429 			return 1;
2430 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2431 					   PT_CAP_topa_output) &&
2432 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2433 					   PT_CAP_single_range_output))
2434 			return 1;
2435 		if (!pt_output_base_valid(vcpu, data))
2436 			return 1;
2437 		vmx->pt_desc.guest.output_base = data;
2438 		break;
2439 	case MSR_IA32_RTIT_OUTPUT_MASK:
2440 		if (!pt_can_write_msr(vmx))
2441 			return 1;
2442 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2443 					   PT_CAP_topa_output) &&
2444 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2445 					   PT_CAP_single_range_output))
2446 			return 1;
2447 		vmx->pt_desc.guest.output_mask = data;
2448 		break;
2449 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2450 		if (!pt_can_write_msr(vmx))
2451 			return 1;
2452 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2453 		if (index >= 2 * vmx->pt_desc.num_address_ranges)
2454 			return 1;
2455 		if (is_noncanonical_address(data, vcpu))
2456 			return 1;
2457 		if (index % 2)
2458 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2459 		else
2460 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2461 		break;
2462 	case MSR_IA32_PERF_CAPABILITIES:
2463 		if (data && !vcpu_to_pmu(vcpu)->version)
2464 			return 1;
2465 		if (data & PMU_CAP_LBR_FMT) {
2466 			if ((data & PMU_CAP_LBR_FMT) !=
2467 			    (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT))
2468 				return 1;
2469 			if (!cpuid_model_is_consistent(vcpu))
2470 				return 1;
2471 		}
2472 		if (data & PERF_CAP_PEBS_FORMAT) {
2473 			if ((data & PERF_CAP_PEBS_MASK) !=
2474 			    (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2475 				return 1;
2476 			if (!guest_cpuid_has(vcpu, X86_FEATURE_DS))
2477 				return 1;
2478 			if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64))
2479 				return 1;
2480 			if (!cpuid_model_is_consistent(vcpu))
2481 				return 1;
2482 		}
2483 		ret = kvm_set_msr_common(vcpu, msr_info);
2484 		break;
2485 
2486 	default:
2487 	find_uret_msr:
2488 		msr = vmx_find_uret_msr(vmx, msr_index);
2489 		if (msr)
2490 			ret = vmx_set_guest_uret_msr(vmx, msr, data);
2491 		else
2492 			ret = kvm_set_msr_common(vcpu, msr_info);
2493 	}
2494 
2495 	/* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2496 	if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2497 		vmx_update_fb_clear_dis(vcpu, vmx);
2498 
2499 	return ret;
2500 }
2501 
2502 void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2503 {
2504 	unsigned long guest_owned_bits;
2505 
2506 	kvm_register_mark_available(vcpu, reg);
2507 
2508 	switch (reg) {
2509 	case VCPU_REGS_RSP:
2510 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2511 		break;
2512 	case VCPU_REGS_RIP:
2513 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2514 		break;
2515 	case VCPU_EXREG_PDPTR:
2516 		if (enable_ept)
2517 			ept_save_pdptrs(vcpu);
2518 		break;
2519 	case VCPU_EXREG_CR0:
2520 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2521 
2522 		vcpu->arch.cr0 &= ~guest_owned_bits;
2523 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2524 		break;
2525 	case VCPU_EXREG_CR3:
2526 		/*
2527 		 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2528 		 * CR3 is loaded into hardware, not the guest's CR3.
2529 		 */
2530 		if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2531 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2532 		break;
2533 	case VCPU_EXREG_CR4:
2534 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2535 
2536 		vcpu->arch.cr4 &= ~guest_owned_bits;
2537 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2538 		break;
2539 	default:
2540 		KVM_BUG_ON(1, vcpu->kvm);
2541 		break;
2542 	}
2543 }
2544 
2545 /*
2546  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2547  * directly instead of going through cpu_has(), to ensure KVM is trapping
2548  * ENCLS whenever it's supported in hardware.  It does not matter whether
2549  * the host OS supports or has enabled SGX.
2550  */
2551 static bool cpu_has_sgx(void)
2552 {
2553 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2554 }
2555 
2556 /*
2557  * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2558  * can't be used due to errata where VM Exit may incorrectly clear
2559  * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the
2560  * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2561  */
2562 static bool cpu_has_perf_global_ctrl_bug(void)
2563 {
2564 	switch (boot_cpu_data.x86_vfm) {
2565 	case INTEL_NEHALEM_EP:	/* AAK155 */
2566 	case INTEL_NEHALEM:	/* AAP115 */
2567 	case INTEL_WESTMERE:	/* AAT100 */
2568 	case INTEL_WESTMERE_EP:	/* BC86,AAY89,BD102 */
2569 	case INTEL_NEHALEM_EX:	/* BA97 */
2570 		return true;
2571 	default:
2572 		break;
2573 	}
2574 
2575 	return false;
2576 }
2577 
2578 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
2579 {
2580 	u32 vmx_msr_low, vmx_msr_high;
2581 	u32 ctl = ctl_min | ctl_opt;
2582 
2583 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2584 
2585 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2586 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2587 
2588 	/* Ensure minimum (required) set of control bits are supported. */
2589 	if (ctl_min & ~ctl)
2590 		return -EIO;
2591 
2592 	*result = ctl;
2593 	return 0;
2594 }
2595 
2596 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2597 {
2598 	u64 allowed;
2599 
2600 	rdmsrl(msr, allowed);
2601 
2602 	return  ctl_opt & allowed;
2603 }
2604 
2605 static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2606 			     struct vmx_capability *vmx_cap)
2607 {
2608 	u32 vmx_msr_low, vmx_msr_high;
2609 	u32 _pin_based_exec_control = 0;
2610 	u32 _cpu_based_exec_control = 0;
2611 	u32 _cpu_based_2nd_exec_control = 0;
2612 	u64 _cpu_based_3rd_exec_control = 0;
2613 	u32 _vmexit_control = 0;
2614 	u32 _vmentry_control = 0;
2615 	u64 misc_msr;
2616 	int i;
2617 
2618 	/*
2619 	 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2620 	 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2621 	 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2622 	 */
2623 	struct {
2624 		u32 entry_control;
2625 		u32 exit_control;
2626 	} const vmcs_entry_exit_pairs[] = {
2627 		{ VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,	VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2628 		{ VM_ENTRY_LOAD_IA32_PAT,		VM_EXIT_LOAD_IA32_PAT },
2629 		{ VM_ENTRY_LOAD_IA32_EFER,		VM_EXIT_LOAD_IA32_EFER },
2630 		{ VM_ENTRY_LOAD_BNDCFGS,		VM_EXIT_CLEAR_BNDCFGS },
2631 		{ VM_ENTRY_LOAD_IA32_RTIT_CTL,		VM_EXIT_CLEAR_IA32_RTIT_CTL },
2632 	};
2633 
2634 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2635 
2636 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2637 				KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2638 				MSR_IA32_VMX_PROCBASED_CTLS,
2639 				&_cpu_based_exec_control))
2640 		return -EIO;
2641 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2642 		if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2643 					KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2644 					MSR_IA32_VMX_PROCBASED_CTLS2,
2645 					&_cpu_based_2nd_exec_control))
2646 			return -EIO;
2647 	}
2648 	if (!IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
2649 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2650 
2651 #ifndef CONFIG_X86_64
2652 	if (!(_cpu_based_2nd_exec_control &
2653 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2654 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2655 #endif
2656 
2657 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2658 		_cpu_based_2nd_exec_control &= ~(
2659 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2660 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2661 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2662 
2663 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2664 		&vmx_cap->ept, &vmx_cap->vpid);
2665 
2666 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2667 	    vmx_cap->ept) {
2668 		pr_warn_once("EPT CAP should not exist if not support "
2669 				"1-setting enable EPT VM-execution control\n");
2670 
2671 		if (error_on_inconsistent_vmcs_config)
2672 			return -EIO;
2673 
2674 		vmx_cap->ept = 0;
2675 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2676 	}
2677 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2678 	    vmx_cap->vpid) {
2679 		pr_warn_once("VPID CAP should not exist if not support "
2680 				"1-setting enable VPID VM-execution control\n");
2681 
2682 		if (error_on_inconsistent_vmcs_config)
2683 			return -EIO;
2684 
2685 		vmx_cap->vpid = 0;
2686 	}
2687 
2688 	if (!cpu_has_sgx())
2689 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2690 
2691 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2692 		_cpu_based_3rd_exec_control =
2693 			adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2694 					      MSR_IA32_VMX_PROCBASED_CTLS3);
2695 
2696 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2697 				KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2698 				MSR_IA32_VMX_EXIT_CTLS,
2699 				&_vmexit_control))
2700 		return -EIO;
2701 
2702 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2703 				KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2704 				MSR_IA32_VMX_PINBASED_CTLS,
2705 				&_pin_based_exec_control))
2706 		return -EIO;
2707 
2708 	if (cpu_has_broken_vmx_preemption_timer())
2709 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2710 	if (!(_cpu_based_2nd_exec_control &
2711 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2712 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2713 
2714 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2715 				KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2716 				MSR_IA32_VMX_ENTRY_CTLS,
2717 				&_vmentry_control))
2718 		return -EIO;
2719 
2720 	for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) {
2721 		u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control;
2722 		u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control;
2723 
2724 		if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl))
2725 			continue;
2726 
2727 		pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n",
2728 			     _vmentry_control & n_ctrl, _vmexit_control & x_ctrl);
2729 
2730 		if (error_on_inconsistent_vmcs_config)
2731 			return -EIO;
2732 
2733 		_vmentry_control &= ~n_ctrl;
2734 		_vmexit_control &= ~x_ctrl;
2735 	}
2736 
2737 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2738 
2739 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2740 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2741 		return -EIO;
2742 
2743 #ifdef CONFIG_X86_64
2744 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2745 	if (vmx_msr_high & (1u<<16))
2746 		return -EIO;
2747 #endif
2748 
2749 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2750 	if (((vmx_msr_high >> 18) & 15) != 6)
2751 		return -EIO;
2752 
2753 	rdmsrl(MSR_IA32_VMX_MISC, misc_msr);
2754 
2755 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2756 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2757 
2758 	vmcs_conf->revision_id = vmx_msr_low;
2759 
2760 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2761 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2762 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2763 	vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2764 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2765 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2766 	vmcs_conf->misc	= misc_msr;
2767 
2768 #if IS_ENABLED(CONFIG_HYPERV)
2769 	if (enlightened_vmcs)
2770 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2771 #endif
2772 
2773 	return 0;
2774 }
2775 
2776 static bool __kvm_is_vmx_supported(void)
2777 {
2778 	int cpu = smp_processor_id();
2779 
2780 	if (!(cpuid_ecx(1) & feature_bit(VMX))) {
2781 		pr_err("VMX not supported by CPU %d\n", cpu);
2782 		return false;
2783 	}
2784 
2785 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2786 	    !this_cpu_has(X86_FEATURE_VMX)) {
2787 		pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
2788 		return false;
2789 	}
2790 
2791 	return true;
2792 }
2793 
2794 static bool kvm_is_vmx_supported(void)
2795 {
2796 	bool supported;
2797 
2798 	migrate_disable();
2799 	supported = __kvm_is_vmx_supported();
2800 	migrate_enable();
2801 
2802 	return supported;
2803 }
2804 
2805 int vmx_check_processor_compat(void)
2806 {
2807 	int cpu = raw_smp_processor_id();
2808 	struct vmcs_config vmcs_conf;
2809 	struct vmx_capability vmx_cap;
2810 
2811 	if (!__kvm_is_vmx_supported())
2812 		return -EIO;
2813 
2814 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
2815 		pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
2816 		return -EIO;
2817 	}
2818 	if (nested)
2819 		nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
2820 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
2821 		pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
2822 		return -EIO;
2823 	}
2824 	return 0;
2825 }
2826 
2827 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2828 {
2829 	u64 msr;
2830 
2831 	cr4_set_bits(X86_CR4_VMXE);
2832 
2833 	asm goto("1: vmxon %[vmxon_pointer]\n\t"
2834 			  _ASM_EXTABLE(1b, %l[fault])
2835 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2836 			  : : fault);
2837 	return 0;
2838 
2839 fault:
2840 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2841 		  rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2842 	cr4_clear_bits(X86_CR4_VMXE);
2843 
2844 	return -EFAULT;
2845 }
2846 
2847 int vmx_hardware_enable(void)
2848 {
2849 	int cpu = raw_smp_processor_id();
2850 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2851 	int r;
2852 
2853 	if (cr4_read_shadow() & X86_CR4_VMXE)
2854 		return -EBUSY;
2855 
2856 	/*
2857 	 * This can happen if we hot-added a CPU but failed to allocate
2858 	 * VP assist page for it.
2859 	 */
2860 	if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
2861 		return -EFAULT;
2862 
2863 	intel_pt_handle_vmx(1);
2864 
2865 	r = kvm_cpu_vmxon(phys_addr);
2866 	if (r) {
2867 		intel_pt_handle_vmx(0);
2868 		return r;
2869 	}
2870 
2871 	return 0;
2872 }
2873 
2874 static void vmclear_local_loaded_vmcss(void)
2875 {
2876 	int cpu = raw_smp_processor_id();
2877 	struct loaded_vmcs *v, *n;
2878 
2879 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2880 				 loaded_vmcss_on_cpu_link)
2881 		__loaded_vmcs_clear(v);
2882 }
2883 
2884 void vmx_hardware_disable(void)
2885 {
2886 	vmclear_local_loaded_vmcss();
2887 
2888 	if (kvm_cpu_vmxoff())
2889 		kvm_spurious_fault();
2890 
2891 	hv_reset_evmcs();
2892 
2893 	intel_pt_handle_vmx(0);
2894 }
2895 
2896 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2897 {
2898 	int node = cpu_to_node(cpu);
2899 	struct page *pages;
2900 	struct vmcs *vmcs;
2901 
2902 	pages = __alloc_pages_node(node, flags, 0);
2903 	if (!pages)
2904 		return NULL;
2905 	vmcs = page_address(pages);
2906 	memset(vmcs, 0, vmcs_config.size);
2907 
2908 	/* KVM supports Enlightened VMCS v1 only */
2909 	if (kvm_is_using_evmcs())
2910 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2911 	else
2912 		vmcs->hdr.revision_id = vmcs_config.revision_id;
2913 
2914 	if (shadow)
2915 		vmcs->hdr.shadow_vmcs = 1;
2916 	return vmcs;
2917 }
2918 
2919 void free_vmcs(struct vmcs *vmcs)
2920 {
2921 	free_page((unsigned long)vmcs);
2922 }
2923 
2924 /*
2925  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2926  */
2927 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2928 {
2929 	if (!loaded_vmcs->vmcs)
2930 		return;
2931 	loaded_vmcs_clear(loaded_vmcs);
2932 	free_vmcs(loaded_vmcs->vmcs);
2933 	loaded_vmcs->vmcs = NULL;
2934 	if (loaded_vmcs->msr_bitmap)
2935 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2936 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2937 }
2938 
2939 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2940 {
2941 	loaded_vmcs->vmcs = alloc_vmcs(false);
2942 	if (!loaded_vmcs->vmcs)
2943 		return -ENOMEM;
2944 
2945 	vmcs_clear(loaded_vmcs->vmcs);
2946 
2947 	loaded_vmcs->shadow_vmcs = NULL;
2948 	loaded_vmcs->hv_timer_soft_disabled = false;
2949 	loaded_vmcs->cpu = -1;
2950 	loaded_vmcs->launched = 0;
2951 
2952 	if (cpu_has_vmx_msr_bitmap()) {
2953 		loaded_vmcs->msr_bitmap = (unsigned long *)
2954 				__get_free_page(GFP_KERNEL_ACCOUNT);
2955 		if (!loaded_vmcs->msr_bitmap)
2956 			goto out_vmcs;
2957 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2958 	}
2959 
2960 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2961 	memset(&loaded_vmcs->controls_shadow, 0,
2962 		sizeof(struct vmcs_controls_shadow));
2963 
2964 	return 0;
2965 
2966 out_vmcs:
2967 	free_loaded_vmcs(loaded_vmcs);
2968 	return -ENOMEM;
2969 }
2970 
2971 static void free_kvm_area(void)
2972 {
2973 	int cpu;
2974 
2975 	for_each_possible_cpu(cpu) {
2976 		free_vmcs(per_cpu(vmxarea, cpu));
2977 		per_cpu(vmxarea, cpu) = NULL;
2978 	}
2979 }
2980 
2981 static __init int alloc_kvm_area(void)
2982 {
2983 	int cpu;
2984 
2985 	for_each_possible_cpu(cpu) {
2986 		struct vmcs *vmcs;
2987 
2988 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2989 		if (!vmcs) {
2990 			free_kvm_area();
2991 			return -ENOMEM;
2992 		}
2993 
2994 		/*
2995 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2996 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2997 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2998 		 *
2999 		 * However, even though not explicitly documented by
3000 		 * TLFS, VMXArea passed as VMXON argument should
3001 		 * still be marked with revision_id reported by
3002 		 * physical CPU.
3003 		 */
3004 		if (kvm_is_using_evmcs())
3005 			vmcs->hdr.revision_id = vmcs_config.revision_id;
3006 
3007 		per_cpu(vmxarea, cpu) = vmcs;
3008 	}
3009 	return 0;
3010 }
3011 
3012 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3013 		struct kvm_segment *save)
3014 {
3015 	if (!emulate_invalid_guest_state) {
3016 		/*
3017 		 * CS and SS RPL should be equal during guest entry according
3018 		 * to VMX spec, but in reality it is not always so. Since vcpu
3019 		 * is in the middle of the transition from real mode to
3020 		 * protected mode it is safe to assume that RPL 0 is a good
3021 		 * default value.
3022 		 */
3023 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3024 			save->selector &= ~SEGMENT_RPL_MASK;
3025 		save->dpl = save->selector & SEGMENT_RPL_MASK;
3026 		save->s = 1;
3027 	}
3028 	__vmx_set_segment(vcpu, save, seg);
3029 }
3030 
3031 static void enter_pmode(struct kvm_vcpu *vcpu)
3032 {
3033 	unsigned long flags;
3034 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3035 
3036 	/*
3037 	 * Update real mode segment cache. It may be not up-to-date if segment
3038 	 * register was written while vcpu was in a guest mode.
3039 	 */
3040 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3041 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3042 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3043 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3044 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3045 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3046 
3047 	vmx->rmode.vm86_active = 0;
3048 
3049 	__vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3050 
3051 	flags = vmcs_readl(GUEST_RFLAGS);
3052 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3053 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3054 	vmcs_writel(GUEST_RFLAGS, flags);
3055 
3056 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3057 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3058 
3059 	vmx_update_exception_bitmap(vcpu);
3060 
3061 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3062 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3063 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3064 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3065 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3066 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3067 }
3068 
3069 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3070 {
3071 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3072 	struct kvm_segment var = *save;
3073 
3074 	var.dpl = 0x3;
3075 	if (seg == VCPU_SREG_CS)
3076 		var.type = 0x3;
3077 
3078 	if (!emulate_invalid_guest_state) {
3079 		var.selector = var.base >> 4;
3080 		var.base = var.base & 0xffff0;
3081 		var.limit = 0xffff;
3082 		var.g = 0;
3083 		var.db = 0;
3084 		var.present = 1;
3085 		var.s = 1;
3086 		var.l = 0;
3087 		var.unusable = 0;
3088 		var.type = 0x3;
3089 		var.avl = 0;
3090 		if (save->base & 0xf)
3091 			pr_warn_once("segment base is not paragraph aligned "
3092 				     "when entering protected mode (seg=%d)", seg);
3093 	}
3094 
3095 	vmcs_write16(sf->selector, var.selector);
3096 	vmcs_writel(sf->base, var.base);
3097 	vmcs_write32(sf->limit, var.limit);
3098 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3099 }
3100 
3101 static void enter_rmode(struct kvm_vcpu *vcpu)
3102 {
3103 	unsigned long flags;
3104 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3105 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
3106 
3107 	/*
3108 	 * KVM should never use VM86 to virtualize Real Mode when L2 is active,
3109 	 * as using VM86 is unnecessary if unrestricted guest is enabled, and
3110 	 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0
3111 	 * should VM-Fail and KVM should reject userspace attempts to stuff
3112 	 * CR0.PG=0 when L2 is active.
3113 	 */
3114 	WARN_ON_ONCE(is_guest_mode(vcpu));
3115 
3116 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3117 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3118 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3119 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3120 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3121 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3122 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3123 
3124 	vmx->rmode.vm86_active = 1;
3125 
3126 	vmx_segment_cache_clear(vmx);
3127 
3128 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3129 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3130 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3131 
3132 	flags = vmcs_readl(GUEST_RFLAGS);
3133 	vmx->rmode.save_rflags = flags;
3134 
3135 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3136 
3137 	vmcs_writel(GUEST_RFLAGS, flags);
3138 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3139 	vmx_update_exception_bitmap(vcpu);
3140 
3141 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3142 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3143 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3144 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3145 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3146 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3147 }
3148 
3149 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3150 {
3151 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3152 
3153 	/* Nothing to do if hardware doesn't support EFER. */
3154 	if (!vmx_find_uret_msr(vmx, MSR_EFER))
3155 		return 0;
3156 
3157 	vcpu->arch.efer = efer;
3158 #ifdef CONFIG_X86_64
3159 	if (efer & EFER_LMA)
3160 		vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3161 	else
3162 		vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3163 #else
3164 	if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3165 		return 1;
3166 #endif
3167 
3168 	vmx_setup_uret_msrs(vmx);
3169 	return 0;
3170 }
3171 
3172 #ifdef CONFIG_X86_64
3173 
3174 static void enter_lmode(struct kvm_vcpu *vcpu)
3175 {
3176 	u32 guest_tr_ar;
3177 
3178 	vmx_segment_cache_clear(to_vmx(vcpu));
3179 
3180 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3181 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3182 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3183 				     __func__);
3184 		vmcs_write32(GUEST_TR_AR_BYTES,
3185 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3186 			     | VMX_AR_TYPE_BUSY_64_TSS);
3187 	}
3188 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3189 }
3190 
3191 static void exit_lmode(struct kvm_vcpu *vcpu)
3192 {
3193 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3194 }
3195 
3196 #endif
3197 
3198 void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3199 {
3200 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3201 
3202 	/*
3203 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3204 	 * the CPU is not required to invalidate guest-physical mappings on
3205 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
3206 	 * associated with the root EPT structure and not any particular VPID
3207 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
3208 	 */
3209 	if (enable_ept) {
3210 		ept_sync_global();
3211 	} else if (enable_vpid) {
3212 		if (cpu_has_vmx_invvpid_global()) {
3213 			vpid_sync_vcpu_global();
3214 		} else {
3215 			vpid_sync_vcpu_single(vmx->vpid);
3216 			vpid_sync_vcpu_single(vmx->nested.vpid02);
3217 		}
3218 	}
3219 }
3220 
3221 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3222 {
3223 	if (is_guest_mode(vcpu))
3224 		return nested_get_vpid02(vcpu);
3225 	return to_vmx(vcpu)->vpid;
3226 }
3227 
3228 void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3229 {
3230 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3231 	u64 root_hpa = mmu->root.hpa;
3232 
3233 	/* No flush required if the current context is invalid. */
3234 	if (!VALID_PAGE(root_hpa))
3235 		return;
3236 
3237 	if (enable_ept)
3238 		ept_sync_context(construct_eptp(vcpu, root_hpa,
3239 						mmu->root_role.level));
3240 	else
3241 		vpid_sync_context(vmx_get_current_vpid(vcpu));
3242 }
3243 
3244 void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3245 {
3246 	/*
3247 	 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3248 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3249 	 */
3250 	vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3251 }
3252 
3253 void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3254 {
3255 	/*
3256 	 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3257 	 * vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit are
3258 	 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3259 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3260 	 * i.e. no explicit INVVPID is necessary.
3261 	 */
3262 	vpid_sync_context(vmx_get_current_vpid(vcpu));
3263 }
3264 
3265 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3266 {
3267 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3268 
3269 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3270 		return;
3271 
3272 	if (is_pae_paging(vcpu)) {
3273 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3274 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3275 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3276 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3277 	}
3278 }
3279 
3280 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3281 {
3282 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3283 
3284 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3285 		return;
3286 
3287 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3288 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3289 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3290 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3291 
3292 	kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3293 }
3294 
3295 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3296 			  CPU_BASED_CR3_STORE_EXITING)
3297 
3298 bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3299 {
3300 	if (is_guest_mode(vcpu))
3301 		return nested_guest_cr0_valid(vcpu, cr0);
3302 
3303 	if (to_vmx(vcpu)->nested.vmxon)
3304 		return nested_host_cr0_valid(vcpu, cr0);
3305 
3306 	return true;
3307 }
3308 
3309 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3310 {
3311 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3312 	unsigned long hw_cr0, old_cr0_pg;
3313 	u32 tmp;
3314 
3315 	old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3316 
3317 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3318 	if (enable_unrestricted_guest)
3319 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3320 	else {
3321 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3322 		if (!enable_ept)
3323 			hw_cr0 |= X86_CR0_WP;
3324 
3325 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3326 			enter_pmode(vcpu);
3327 
3328 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3329 			enter_rmode(vcpu);
3330 	}
3331 
3332 	vmcs_writel(CR0_READ_SHADOW, cr0);
3333 	vmcs_writel(GUEST_CR0, hw_cr0);
3334 	vcpu->arch.cr0 = cr0;
3335 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3336 
3337 #ifdef CONFIG_X86_64
3338 	if (vcpu->arch.efer & EFER_LME) {
3339 		if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3340 			enter_lmode(vcpu);
3341 		else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3342 			exit_lmode(vcpu);
3343 	}
3344 #endif
3345 
3346 	if (enable_ept && !enable_unrestricted_guest) {
3347 		/*
3348 		 * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3349 		 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3350 		 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3351 		 * KVM's CR3 is installed.
3352 		 */
3353 		if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3354 			vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3355 
3356 		/*
3357 		 * When running with EPT but not unrestricted guest, KVM must
3358 		 * intercept CR3 accesses when paging is _disabled_.  This is
3359 		 * necessary because restricted guests can't actually run with
3360 		 * paging disabled, and so KVM stuffs its own CR3 in order to
3361 		 * run the guest when identity mapped page tables.
3362 		 *
3363 		 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3364 		 * update, it may be stale with respect to CR3 interception,
3365 		 * e.g. after nested VM-Enter.
3366 		 *
3367 		 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3368 		 * stores to forward them to L1, even if KVM does not need to
3369 		 * intercept them to preserve its identity mapped page tables.
3370 		 */
3371 		if (!(cr0 & X86_CR0_PG)) {
3372 			exec_controls_setbit(vmx, CR3_EXITING_BITS);
3373 		} else if (!is_guest_mode(vcpu)) {
3374 			exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3375 		} else {
3376 			tmp = exec_controls_get(vmx);
3377 			tmp &= ~CR3_EXITING_BITS;
3378 			tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3379 			exec_controls_set(vmx, tmp);
3380 		}
3381 
3382 		/* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3383 		if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3384 			vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3385 
3386 		/*
3387 		 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3388 		 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3389 		 */
3390 		if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3391 			kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3392 	}
3393 
3394 	/* depends on vcpu->arch.cr0 to be set to a new value */
3395 	vmx->emulation_required = vmx_emulation_required(vcpu);
3396 }
3397 
3398 static int vmx_get_max_ept_level(void)
3399 {
3400 	if (cpu_has_vmx_ept_5levels())
3401 		return 5;
3402 	return 4;
3403 }
3404 
3405 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3406 {
3407 	u64 eptp = VMX_EPTP_MT_WB;
3408 
3409 	eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3410 
3411 	if (enable_ept_ad_bits &&
3412 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3413 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3414 	eptp |= root_hpa;
3415 
3416 	return eptp;
3417 }
3418 
3419 void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3420 {
3421 	struct kvm *kvm = vcpu->kvm;
3422 	bool update_guest_cr3 = true;
3423 	unsigned long guest_cr3;
3424 	u64 eptp;
3425 
3426 	if (enable_ept) {
3427 		eptp = construct_eptp(vcpu, root_hpa, root_level);
3428 		vmcs_write64(EPT_POINTER, eptp);
3429 
3430 		hv_track_root_tdp(vcpu, root_hpa);
3431 
3432 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3433 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3434 		else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3435 			guest_cr3 = vcpu->arch.cr3;
3436 		else /* vmcs.GUEST_CR3 is already up-to-date. */
3437 			update_guest_cr3 = false;
3438 		vmx_ept_load_pdptrs(vcpu);
3439 	} else {
3440 		guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu) |
3441 			    kvm_get_active_cr3_lam_bits(vcpu);
3442 	}
3443 
3444 	if (update_guest_cr3)
3445 		vmcs_writel(GUEST_CR3, guest_cr3);
3446 }
3447 
3448 bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3449 {
3450 	/*
3451 	 * We operate under the default treatment of SMM, so VMX cannot be
3452 	 * enabled under SMM.  Note, whether or not VMXE is allowed at all,
3453 	 * i.e. is a reserved bit, is handled by common x86 code.
3454 	 */
3455 	if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3456 		return false;
3457 
3458 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3459 		return false;
3460 
3461 	return true;
3462 }
3463 
3464 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3465 {
3466 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
3467 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3468 	unsigned long hw_cr4;
3469 
3470 	/*
3471 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3472 	 * is in force while we are in guest mode.  Do not let guests control
3473 	 * this bit, even if host CR4.MCE == 0.
3474 	 */
3475 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3476 	if (enable_unrestricted_guest)
3477 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3478 	else if (vmx->rmode.vm86_active)
3479 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3480 	else
3481 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3482 
3483 	if (vmx_umip_emulated()) {
3484 		if (cr4 & X86_CR4_UMIP) {
3485 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3486 			hw_cr4 &= ~X86_CR4_UMIP;
3487 		} else if (!is_guest_mode(vcpu) ||
3488 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3489 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3490 		}
3491 	}
3492 
3493 	vcpu->arch.cr4 = cr4;
3494 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3495 
3496 	if (!enable_unrestricted_guest) {
3497 		if (enable_ept) {
3498 			if (!is_paging(vcpu)) {
3499 				hw_cr4 &= ~X86_CR4_PAE;
3500 				hw_cr4 |= X86_CR4_PSE;
3501 			} else if (!(cr4 & X86_CR4_PAE)) {
3502 				hw_cr4 &= ~X86_CR4_PAE;
3503 			}
3504 		}
3505 
3506 		/*
3507 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3508 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3509 		 * to be manually disabled when guest switches to non-paging
3510 		 * mode.
3511 		 *
3512 		 * If !enable_unrestricted_guest, the CPU is always running
3513 		 * with CR0.PG=1 and CR4 needs to be modified.
3514 		 * If enable_unrestricted_guest, the CPU automatically
3515 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3516 		 */
3517 		if (!is_paging(vcpu))
3518 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3519 	}
3520 
3521 	vmcs_writel(CR4_READ_SHADOW, cr4);
3522 	vmcs_writel(GUEST_CR4, hw_cr4);
3523 
3524 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3525 		kvm_update_cpuid_runtime(vcpu);
3526 }
3527 
3528 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3529 {
3530 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3531 	u32 ar;
3532 
3533 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3534 		*var = vmx->rmode.segs[seg];
3535 		if (seg == VCPU_SREG_TR
3536 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3537 			return;
3538 		var->base = vmx_read_guest_seg_base(vmx, seg);
3539 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3540 		return;
3541 	}
3542 	var->base = vmx_read_guest_seg_base(vmx, seg);
3543 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3544 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3545 	ar = vmx_read_guest_seg_ar(vmx, seg);
3546 	var->unusable = (ar >> 16) & 1;
3547 	var->type = ar & 15;
3548 	var->s = (ar >> 4) & 1;
3549 	var->dpl = (ar >> 5) & 3;
3550 	/*
3551 	 * Some userspaces do not preserve unusable property. Since usable
3552 	 * segment has to be present according to VMX spec we can use present
3553 	 * property to amend userspace bug by making unusable segment always
3554 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3555 	 * segment as unusable.
3556 	 */
3557 	var->present = !var->unusable;
3558 	var->avl = (ar >> 12) & 1;
3559 	var->l = (ar >> 13) & 1;
3560 	var->db = (ar >> 14) & 1;
3561 	var->g = (ar >> 15) & 1;
3562 }
3563 
3564 u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3565 {
3566 	struct kvm_segment s;
3567 
3568 	if (to_vmx(vcpu)->rmode.vm86_active) {
3569 		vmx_get_segment(vcpu, &s, seg);
3570 		return s.base;
3571 	}
3572 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3573 }
3574 
3575 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3576 {
3577 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3578 
3579 	if (unlikely(vmx->rmode.vm86_active))
3580 		return 0;
3581 	else {
3582 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3583 		return VMX_AR_DPL(ar);
3584 	}
3585 }
3586 
3587 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3588 {
3589 	u32 ar;
3590 
3591 	ar = var->type & 15;
3592 	ar |= (var->s & 1) << 4;
3593 	ar |= (var->dpl & 3) << 5;
3594 	ar |= (var->present & 1) << 7;
3595 	ar |= (var->avl & 1) << 12;
3596 	ar |= (var->l & 1) << 13;
3597 	ar |= (var->db & 1) << 14;
3598 	ar |= (var->g & 1) << 15;
3599 	ar |= (var->unusable || !var->present) << 16;
3600 
3601 	return ar;
3602 }
3603 
3604 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3605 {
3606 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3607 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3608 
3609 	vmx_segment_cache_clear(vmx);
3610 
3611 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3612 		vmx->rmode.segs[seg] = *var;
3613 		if (seg == VCPU_SREG_TR)
3614 			vmcs_write16(sf->selector, var->selector);
3615 		else if (var->s)
3616 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3617 		return;
3618 	}
3619 
3620 	vmcs_writel(sf->base, var->base);
3621 	vmcs_write32(sf->limit, var->limit);
3622 	vmcs_write16(sf->selector, var->selector);
3623 
3624 	/*
3625 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3626 	 * qemu binaries.
3627 	 *   IA32 arch specifies that at the time of processor reset the
3628 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3629 	 * is setting it to 0 in the userland code. This causes invalid guest
3630 	 * state vmexit when "unrestricted guest" mode is turned on.
3631 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3632 	 * tree. Newer qemu binaries with that qemu fix would not need this
3633 	 * kvm hack.
3634 	 */
3635 	if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3636 		var->type |= 0x1; /* Accessed */
3637 
3638 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3639 }
3640 
3641 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3642 {
3643 	__vmx_set_segment(vcpu, var, seg);
3644 
3645 	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3646 }
3647 
3648 void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3649 {
3650 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3651 
3652 	*db = (ar >> 14) & 1;
3653 	*l = (ar >> 13) & 1;
3654 }
3655 
3656 void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3657 {
3658 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3659 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3660 }
3661 
3662 void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3663 {
3664 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3665 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3666 }
3667 
3668 void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3669 {
3670 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3671 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3672 }
3673 
3674 void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3675 {
3676 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3677 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3678 }
3679 
3680 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3681 {
3682 	struct kvm_segment var;
3683 	u32 ar;
3684 
3685 	vmx_get_segment(vcpu, &var, seg);
3686 	var.dpl = 0x3;
3687 	if (seg == VCPU_SREG_CS)
3688 		var.type = 0x3;
3689 	ar = vmx_segment_access_rights(&var);
3690 
3691 	if (var.base != (var.selector << 4))
3692 		return false;
3693 	if (var.limit != 0xffff)
3694 		return false;
3695 	if (ar != 0xf3)
3696 		return false;
3697 
3698 	return true;
3699 }
3700 
3701 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3702 {
3703 	struct kvm_segment cs;
3704 	unsigned int cs_rpl;
3705 
3706 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3707 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3708 
3709 	if (cs.unusable)
3710 		return false;
3711 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3712 		return false;
3713 	if (!cs.s)
3714 		return false;
3715 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3716 		if (cs.dpl > cs_rpl)
3717 			return false;
3718 	} else {
3719 		if (cs.dpl != cs_rpl)
3720 			return false;
3721 	}
3722 	if (!cs.present)
3723 		return false;
3724 
3725 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3726 	return true;
3727 }
3728 
3729 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3730 {
3731 	struct kvm_segment ss;
3732 	unsigned int ss_rpl;
3733 
3734 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3735 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3736 
3737 	if (ss.unusable)
3738 		return true;
3739 	if (ss.type != 3 && ss.type != 7)
3740 		return false;
3741 	if (!ss.s)
3742 		return false;
3743 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3744 		return false;
3745 	if (!ss.present)
3746 		return false;
3747 
3748 	return true;
3749 }
3750 
3751 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3752 {
3753 	struct kvm_segment var;
3754 	unsigned int rpl;
3755 
3756 	vmx_get_segment(vcpu, &var, seg);
3757 	rpl = var.selector & SEGMENT_RPL_MASK;
3758 
3759 	if (var.unusable)
3760 		return true;
3761 	if (!var.s)
3762 		return false;
3763 	if (!var.present)
3764 		return false;
3765 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3766 		if (var.dpl < rpl) /* DPL < RPL */
3767 			return false;
3768 	}
3769 
3770 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3771 	 * rights flags
3772 	 */
3773 	return true;
3774 }
3775 
3776 static bool tr_valid(struct kvm_vcpu *vcpu)
3777 {
3778 	struct kvm_segment tr;
3779 
3780 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3781 
3782 	if (tr.unusable)
3783 		return false;
3784 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3785 		return false;
3786 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3787 		return false;
3788 	if (!tr.present)
3789 		return false;
3790 
3791 	return true;
3792 }
3793 
3794 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3795 {
3796 	struct kvm_segment ldtr;
3797 
3798 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3799 
3800 	if (ldtr.unusable)
3801 		return true;
3802 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3803 		return false;
3804 	if (ldtr.type != 2)
3805 		return false;
3806 	if (!ldtr.present)
3807 		return false;
3808 
3809 	return true;
3810 }
3811 
3812 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3813 {
3814 	struct kvm_segment cs, ss;
3815 
3816 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3817 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3818 
3819 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3820 		 (ss.selector & SEGMENT_RPL_MASK));
3821 }
3822 
3823 /*
3824  * Check if guest state is valid. Returns true if valid, false if
3825  * not.
3826  * We assume that registers are always usable
3827  */
3828 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3829 {
3830 	/* real mode guest state checks */
3831 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3832 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3833 			return false;
3834 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3835 			return false;
3836 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3837 			return false;
3838 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3839 			return false;
3840 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3841 			return false;
3842 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3843 			return false;
3844 	} else {
3845 	/* protected mode guest state checks */
3846 		if (!cs_ss_rpl_check(vcpu))
3847 			return false;
3848 		if (!code_segment_valid(vcpu))
3849 			return false;
3850 		if (!stack_segment_valid(vcpu))
3851 			return false;
3852 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3853 			return false;
3854 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3855 			return false;
3856 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3857 			return false;
3858 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3859 			return false;
3860 		if (!tr_valid(vcpu))
3861 			return false;
3862 		if (!ldtr_valid(vcpu))
3863 			return false;
3864 	}
3865 	/* TODO:
3866 	 * - Add checks on RIP
3867 	 * - Add checks on RFLAGS
3868 	 */
3869 
3870 	return true;
3871 }
3872 
3873 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3874 {
3875 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3876 	u16 data;
3877 	int i;
3878 
3879 	for (i = 0; i < 3; i++) {
3880 		if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3881 			return -EFAULT;
3882 	}
3883 
3884 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3885 	if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3886 		return -EFAULT;
3887 
3888 	data = ~0;
3889 	if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3890 		return -EFAULT;
3891 
3892 	return 0;
3893 }
3894 
3895 static int init_rmode_identity_map(struct kvm *kvm)
3896 {
3897 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3898 	int i, r = 0;
3899 	void __user *uaddr;
3900 	u32 tmp;
3901 
3902 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3903 	mutex_lock(&kvm->slots_lock);
3904 
3905 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3906 		goto out;
3907 
3908 	if (!kvm_vmx->ept_identity_map_addr)
3909 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3910 
3911 	uaddr = __x86_set_memory_region(kvm,
3912 					IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3913 					kvm_vmx->ept_identity_map_addr,
3914 					PAGE_SIZE);
3915 	if (IS_ERR(uaddr)) {
3916 		r = PTR_ERR(uaddr);
3917 		goto out;
3918 	}
3919 
3920 	/* Set up identity-mapping pagetable for EPT in real mode */
3921 	for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3922 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3923 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3924 		if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3925 			r = -EFAULT;
3926 			goto out;
3927 		}
3928 	}
3929 	kvm_vmx->ept_identity_pagetable_done = true;
3930 
3931 out:
3932 	mutex_unlock(&kvm->slots_lock);
3933 	return r;
3934 }
3935 
3936 static void seg_setup(int seg)
3937 {
3938 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3939 	unsigned int ar;
3940 
3941 	vmcs_write16(sf->selector, 0);
3942 	vmcs_writel(sf->base, 0);
3943 	vmcs_write32(sf->limit, 0xffff);
3944 	ar = 0x93;
3945 	if (seg == VCPU_SREG_CS)
3946 		ar |= 0x08; /* code segment */
3947 
3948 	vmcs_write32(sf->ar_bytes, ar);
3949 }
3950 
3951 int allocate_vpid(void)
3952 {
3953 	int vpid;
3954 
3955 	if (!enable_vpid)
3956 		return 0;
3957 	spin_lock(&vmx_vpid_lock);
3958 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3959 	if (vpid < VMX_NR_VPIDS)
3960 		__set_bit(vpid, vmx_vpid_bitmap);
3961 	else
3962 		vpid = 0;
3963 	spin_unlock(&vmx_vpid_lock);
3964 	return vpid;
3965 }
3966 
3967 void free_vpid(int vpid)
3968 {
3969 	if (!enable_vpid || vpid == 0)
3970 		return;
3971 	spin_lock(&vmx_vpid_lock);
3972 	__clear_bit(vpid, vmx_vpid_bitmap);
3973 	spin_unlock(&vmx_vpid_lock);
3974 }
3975 
3976 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3977 {
3978 	/*
3979 	 * When KVM is a nested hypervisor on top of Hyper-V and uses
3980 	 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3981 	 * bitmap has changed.
3982 	 */
3983 	if (kvm_is_using_evmcs()) {
3984 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
3985 
3986 		if (evmcs->hv_enlightenments_control.msr_bitmap)
3987 			evmcs->hv_clean_fields &=
3988 				~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
3989 	}
3990 
3991 	vmx->nested.force_msr_bitmap_recalc = true;
3992 }
3993 
3994 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3995 {
3996 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3997 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3998 	int idx;
3999 
4000 	if (!cpu_has_vmx_msr_bitmap())
4001 		return;
4002 
4003 	vmx_msr_bitmap_l01_changed(vmx);
4004 
4005 	/*
4006 	 * Mark the desired intercept state in shadow bitmap, this is needed
4007 	 * for resync when the MSR filters change.
4008 	 */
4009 	idx = vmx_get_passthrough_msr_slot(msr);
4010 	if (idx >= 0) {
4011 		if (type & MSR_TYPE_R)
4012 			clear_bit(idx, vmx->shadow_msr_intercept.read);
4013 		if (type & MSR_TYPE_W)
4014 			clear_bit(idx, vmx->shadow_msr_intercept.write);
4015 	}
4016 
4017 	if ((type & MSR_TYPE_R) &&
4018 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
4019 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
4020 		type &= ~MSR_TYPE_R;
4021 	}
4022 
4023 	if ((type & MSR_TYPE_W) &&
4024 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
4025 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
4026 		type &= ~MSR_TYPE_W;
4027 	}
4028 
4029 	if (type & MSR_TYPE_R)
4030 		vmx_clear_msr_bitmap_read(msr_bitmap, msr);
4031 
4032 	if (type & MSR_TYPE_W)
4033 		vmx_clear_msr_bitmap_write(msr_bitmap, msr);
4034 }
4035 
4036 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
4037 {
4038 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4039 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
4040 	int idx;
4041 
4042 	if (!cpu_has_vmx_msr_bitmap())
4043 		return;
4044 
4045 	vmx_msr_bitmap_l01_changed(vmx);
4046 
4047 	/*
4048 	 * Mark the desired intercept state in shadow bitmap, this is needed
4049 	 * for resync when the MSR filter changes.
4050 	 */
4051 	idx = vmx_get_passthrough_msr_slot(msr);
4052 	if (idx >= 0) {
4053 		if (type & MSR_TYPE_R)
4054 			set_bit(idx, vmx->shadow_msr_intercept.read);
4055 		if (type & MSR_TYPE_W)
4056 			set_bit(idx, vmx->shadow_msr_intercept.write);
4057 	}
4058 
4059 	if (type & MSR_TYPE_R)
4060 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
4061 
4062 	if (type & MSR_TYPE_W)
4063 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
4064 }
4065 
4066 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
4067 {
4068 	/*
4069 	 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
4070 	 * of the MSR bitmap.  KVM emulates APIC registers up through 0x3f0,
4071 	 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
4072 	 */
4073 	const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
4074 	const int write_idx = read_idx + (0x800 / sizeof(u64));
4075 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4076 	u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
4077 	u8 mode;
4078 
4079 	if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
4080 		return;
4081 
4082 	if (cpu_has_secondary_exec_ctrls() &&
4083 	    (secondary_exec_controls_get(vmx) &
4084 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4085 		mode = MSR_BITMAP_MODE_X2APIC;
4086 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4087 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4088 	} else {
4089 		mode = 0;
4090 	}
4091 
4092 	if (mode == vmx->x2apic_msr_bitmap_mode)
4093 		return;
4094 
4095 	vmx->x2apic_msr_bitmap_mode = mode;
4096 
4097 	/*
4098 	 * Reset the bitmap for MSRs 0x800 - 0x83f.  Leave AMD's uber-extended
4099 	 * registers (0x840 and above) intercepted, KVM doesn't support them.
4100 	 * Intercept all writes by default and poke holes as needed.  Pass
4101 	 * through reads for all valid registers by default in x2APIC+APICv
4102 	 * mode, only the current timer count needs on-demand emulation by KVM.
4103 	 */
4104 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
4105 		msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
4106 	else
4107 		msr_bitmap[read_idx] = ~0ull;
4108 	msr_bitmap[write_idx] = ~0ull;
4109 
4110 	/*
4111 	 * TPR reads and writes can be virtualized even if virtual interrupt
4112 	 * delivery is not in use.
4113 	 */
4114 	vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4115 				  !(mode & MSR_BITMAP_MODE_X2APIC));
4116 
4117 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4118 		vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4119 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4120 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4121 		if (enable_ipiv)
4122 			vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4123 	}
4124 }
4125 
4126 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4127 {
4128 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4129 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4130 	u32 i;
4131 
4132 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4133 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4134 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4135 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4136 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4137 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4138 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4139 	}
4140 }
4141 
4142 void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
4143 {
4144 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4145 	u32 i;
4146 
4147 	if (!cpu_has_vmx_msr_bitmap())
4148 		return;
4149 
4150 	/*
4151 	 * Redo intercept permissions for MSRs that KVM is passing through to
4152 	 * the guest.  Disabling interception will check the new MSR filter and
4153 	 * ensure that KVM enables interception if usersepace wants to filter
4154 	 * the MSR.  MSRs that KVM is already intercepting don't need to be
4155 	 * refreshed since KVM is going to intercept them regardless of what
4156 	 * userspace wants.
4157 	 */
4158 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4159 		u32 msr = vmx_possible_passthrough_msrs[i];
4160 
4161 		if (!test_bit(i, vmx->shadow_msr_intercept.read))
4162 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R);
4163 
4164 		if (!test_bit(i, vmx->shadow_msr_intercept.write))
4165 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W);
4166 	}
4167 
4168 	/* PT MSRs can be passed through iff PT is exposed to the guest. */
4169 	if (vmx_pt_mode_is_host_guest())
4170 		pt_update_intercept_for_msr(vcpu);
4171 }
4172 
4173 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4174 						     int pi_vec)
4175 {
4176 #ifdef CONFIG_SMP
4177 	if (vcpu->mode == IN_GUEST_MODE) {
4178 		/*
4179 		 * The vector of the virtual has already been set in the PIR.
4180 		 * Send a notification event to deliver the virtual interrupt
4181 		 * unless the vCPU is the currently running vCPU, i.e. the
4182 		 * event is being sent from a fastpath VM-Exit handler, in
4183 		 * which case the PIR will be synced to the vIRR before
4184 		 * re-entering the guest.
4185 		 *
4186 		 * When the target is not the running vCPU, the following
4187 		 * possibilities emerge:
4188 		 *
4189 		 * Case 1: vCPU stays in non-root mode. Sending a notification
4190 		 * event posts the interrupt to the vCPU.
4191 		 *
4192 		 * Case 2: vCPU exits to root mode and is still runnable. The
4193 		 * PIR will be synced to the vIRR before re-entering the guest.
4194 		 * Sending a notification event is ok as the host IRQ handler
4195 		 * will ignore the spurious event.
4196 		 *
4197 		 * Case 3: vCPU exits to root mode and is blocked. vcpu_block()
4198 		 * has already synced PIR to vIRR and never blocks the vCPU if
4199 		 * the vIRR is not empty. Therefore, a blocked vCPU here does
4200 		 * not wait for any requested interrupts in PIR, and sending a
4201 		 * notification event also results in a benign, spurious event.
4202 		 */
4203 
4204 		if (vcpu != kvm_get_running_vcpu())
4205 			__apic_send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4206 		return;
4207 	}
4208 #endif
4209 	/*
4210 	 * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
4211 	 * otherwise do nothing as KVM will grab the highest priority pending
4212 	 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
4213 	 */
4214 	kvm_vcpu_wake_up(vcpu);
4215 }
4216 
4217 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4218 						int vector)
4219 {
4220 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4221 
4222 	if (is_guest_mode(vcpu) &&
4223 	    vector == vmx->nested.posted_intr_nv) {
4224 		/*
4225 		 * If a posted intr is not recognized by hardware,
4226 		 * we will accomplish it in the next vmentry.
4227 		 */
4228 		vmx->nested.pi_pending = true;
4229 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4230 
4231 		/*
4232 		 * This pairs with the smp_mb_*() after setting vcpu->mode in
4233 		 * vcpu_enter_guest() to guarantee the vCPU sees the event
4234 		 * request if triggering a posted interrupt "fails" because
4235 		 * vcpu->mode != IN_GUEST_MODE.  The extra barrier is needed as
4236 		 * the smb_wmb() in kvm_make_request() only ensures everything
4237 		 * done before making the request is visible when the request
4238 		 * is visible, it doesn't ensure ordering between the store to
4239 		 * vcpu->requests and the load from vcpu->mode.
4240 		 */
4241 		smp_mb__after_atomic();
4242 
4243 		/* the PIR and ON have been set by L1. */
4244 		kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4245 		return 0;
4246 	}
4247 	return -1;
4248 }
4249 /*
4250  * Send interrupt to vcpu via posted interrupt way.
4251  * 1. If target vcpu is running(non-root mode), send posted interrupt
4252  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4253  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4254  * interrupt from PIR in next vmentry.
4255  */
4256 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4257 {
4258 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4259 	int r;
4260 
4261 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4262 	if (!r)
4263 		return 0;
4264 
4265 	/* Note, this is called iff the local APIC is in-kernel. */
4266 	if (!vcpu->arch.apic->apicv_active)
4267 		return -1;
4268 
4269 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4270 		return 0;
4271 
4272 	/* If a previous notification has sent the IPI, nothing to do.  */
4273 	if (pi_test_and_set_on(&vmx->pi_desc))
4274 		return 0;
4275 
4276 	/*
4277 	 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4278 	 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4279 	 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4280 	 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4281 	 */
4282 	kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4283 	return 0;
4284 }
4285 
4286 void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4287 			   int trig_mode, int vector)
4288 {
4289 	struct kvm_vcpu *vcpu = apic->vcpu;
4290 
4291 	if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4292 		kvm_lapic_set_irr(vector, apic);
4293 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4294 		kvm_vcpu_kick(vcpu);
4295 	} else {
4296 		trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4297 					   trig_mode, vector);
4298 	}
4299 }
4300 
4301 /*
4302  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4303  * will not change in the lifetime of the guest.
4304  * Note that host-state that does change is set elsewhere. E.g., host-state
4305  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4306  */
4307 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4308 {
4309 	u32 low32, high32;
4310 	unsigned long tmpl;
4311 	unsigned long cr0, cr3, cr4;
4312 
4313 	cr0 = read_cr0();
4314 	WARN_ON(cr0 & X86_CR0_TS);
4315 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4316 
4317 	/*
4318 	 * Save the most likely value for this task's CR3 in the VMCS.
4319 	 * We can't use __get_current_cr3_fast() because we're not atomic.
4320 	 */
4321 	cr3 = __read_cr3();
4322 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
4323 	vmx->loaded_vmcs->host_state.cr3 = cr3;
4324 
4325 	/* Save the most likely value for this task's CR4 in the VMCS. */
4326 	cr4 = cr4_read_shadow();
4327 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4328 	vmx->loaded_vmcs->host_state.cr4 = cr4;
4329 
4330 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4331 #ifdef CONFIG_X86_64
4332 	/*
4333 	 * Load null selectors, so we can avoid reloading them in
4334 	 * vmx_prepare_switch_to_host(), in case userspace uses
4335 	 * the null selectors too (the expected case).
4336 	 */
4337 	vmcs_write16(HOST_DS_SELECTOR, 0);
4338 	vmcs_write16(HOST_ES_SELECTOR, 0);
4339 #else
4340 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4341 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4342 #endif
4343 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4344 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4345 
4346 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4347 
4348 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4349 
4350 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4351 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4352 
4353 	/*
4354 	 * SYSENTER is used for 32-bit system calls on either 32-bit or
4355 	 * 64-bit kernels.  It is always zero If neither is allowed, otherwise
4356 	 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4357 	 * have already done so!).
4358 	 */
4359 	if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4360 		vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4361 
4362 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4363 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4364 
4365 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4366 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4367 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4368 	}
4369 
4370 	if (cpu_has_load_ia32_efer())
4371 		vmcs_write64(HOST_IA32_EFER, kvm_host.efer);
4372 }
4373 
4374 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4375 {
4376 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4377 
4378 	vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4379 					  ~vcpu->arch.cr4_guest_rsvd_bits;
4380 	if (!enable_ept) {
4381 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4382 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4383 	}
4384 	if (is_guest_mode(&vmx->vcpu))
4385 		vcpu->arch.cr4_guest_owned_bits &=
4386 			~get_vmcs12(vcpu)->cr4_guest_host_mask;
4387 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4388 }
4389 
4390 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4391 {
4392 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4393 
4394 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4395 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4396 
4397 	if (!enable_vnmi)
4398 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4399 
4400 	if (!enable_preemption_timer)
4401 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4402 
4403 	return pin_based_exec_ctrl;
4404 }
4405 
4406 static u32 vmx_vmentry_ctrl(void)
4407 {
4408 	u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4409 
4410 	if (vmx_pt_mode_is_system())
4411 		vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4412 				  VM_ENTRY_LOAD_IA32_RTIT_CTL);
4413 	/*
4414 	 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4415 	 */
4416 	vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4417 			  VM_ENTRY_LOAD_IA32_EFER |
4418 			  VM_ENTRY_IA32E_MODE);
4419 
4420 	if (cpu_has_perf_global_ctrl_bug())
4421 		vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4422 
4423 	return vmentry_ctrl;
4424 }
4425 
4426 static u32 vmx_vmexit_ctrl(void)
4427 {
4428 	u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4429 
4430 	/*
4431 	 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4432 	 * nested virtualization and thus allowed to be set in vmcs12.
4433 	 */
4434 	vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4435 			 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4436 
4437 	if (vmx_pt_mode_is_system())
4438 		vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4439 				 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4440 
4441 	if (cpu_has_perf_global_ctrl_bug())
4442 		vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4443 
4444 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4445 	return vmexit_ctrl &
4446 		~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4447 }
4448 
4449 void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4450 {
4451 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4452 
4453 	if (is_guest_mode(vcpu)) {
4454 		vmx->nested.update_vmcs01_apicv_status = true;
4455 		return;
4456 	}
4457 
4458 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4459 
4460 	if (kvm_vcpu_apicv_active(vcpu)) {
4461 		secondary_exec_controls_setbit(vmx,
4462 					       SECONDARY_EXEC_APIC_REGISTER_VIRT |
4463 					       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4464 		if (enable_ipiv)
4465 			tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4466 	} else {
4467 		secondary_exec_controls_clearbit(vmx,
4468 						 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4469 						 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4470 		if (enable_ipiv)
4471 			tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4472 	}
4473 
4474 	vmx_update_msr_bitmap_x2apic(vcpu);
4475 }
4476 
4477 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4478 {
4479 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4480 
4481 	/*
4482 	 * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4483 	 * vmcs12 and propagated to vmcs02 when set in vmcs12.
4484 	 */
4485 	exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4486 			  CPU_BASED_USE_IO_BITMAPS |
4487 			  CPU_BASED_MONITOR_TRAP_FLAG |
4488 			  CPU_BASED_PAUSE_EXITING);
4489 
4490 	/* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4491 	exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4492 			  CPU_BASED_NMI_WINDOW_EXITING);
4493 
4494 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4495 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4496 
4497 	if (!cpu_need_tpr_shadow(&vmx->vcpu))
4498 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4499 
4500 #ifdef CONFIG_X86_64
4501 	if (exec_control & CPU_BASED_TPR_SHADOW)
4502 		exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4503 				  CPU_BASED_CR8_STORE_EXITING);
4504 	else
4505 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4506 				CPU_BASED_CR8_LOAD_EXITING;
4507 #endif
4508 	/* No need to intercept CR3 access or INVPLG when using EPT. */
4509 	if (enable_ept)
4510 		exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4511 				  CPU_BASED_CR3_STORE_EXITING |
4512 				  CPU_BASED_INVLPG_EXITING);
4513 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4514 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4515 				CPU_BASED_MONITOR_EXITING);
4516 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4517 		exec_control &= ~CPU_BASED_HLT_EXITING;
4518 	return exec_control;
4519 }
4520 
4521 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4522 {
4523 	u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4524 
4525 	/*
4526 	 * IPI virtualization relies on APICv. Disable IPI virtualization if
4527 	 * APICv is inhibited.
4528 	 */
4529 	if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4530 		exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4531 
4532 	return exec_control;
4533 }
4534 
4535 /*
4536  * Adjust a single secondary execution control bit to intercept/allow an
4537  * instruction in the guest.  This is usually done based on whether or not a
4538  * feature has been exposed to the guest in order to correctly emulate faults.
4539  */
4540 static inline void
4541 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4542 				  u32 control, bool enabled, bool exiting)
4543 {
4544 	/*
4545 	 * If the control is for an opt-in feature, clear the control if the
4546 	 * feature is not exposed to the guest, i.e. not enabled.  If the
4547 	 * control is opt-out, i.e. an exiting control, clear the control if
4548 	 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4549 	 * disabled for the associated instruction.  Note, the caller is
4550 	 * responsible presetting exec_control to set all supported bits.
4551 	 */
4552 	if (enabled == exiting)
4553 		*exec_control &= ~control;
4554 
4555 	/*
4556 	 * Update the nested MSR settings so that a nested VMM can/can't set
4557 	 * controls for features that are/aren't exposed to the guest.
4558 	 */
4559 	if (nested) {
4560 		/*
4561 		 * All features that can be added or removed to VMX MSRs must
4562 		 * be supported in the first place for nested virtualization.
4563 		 */
4564 		if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4565 			enabled = false;
4566 
4567 		if (enabled)
4568 			vmx->nested.msrs.secondary_ctls_high |= control;
4569 		else
4570 			vmx->nested.msrs.secondary_ctls_high &= ~control;
4571 	}
4572 }
4573 
4574 /*
4575  * Wrapper macro for the common case of adjusting a secondary execution control
4576  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4577  * verifies that the control is actually supported by KVM and hardware.
4578  */
4579 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting)	\
4580 ({												\
4581 	struct kvm_vcpu *__vcpu = &(vmx)->vcpu;							\
4582 	bool __enabled;										\
4583 												\
4584 	if (cpu_has_vmx_##name()) {								\
4585 		if (kvm_is_governed_feature(X86_FEATURE_##feat_name))				\
4586 			__enabled = guest_can_use(__vcpu, X86_FEATURE_##feat_name);		\
4587 		else										\
4588 			__enabled = guest_cpuid_has(__vcpu, X86_FEATURE_##feat_name);		\
4589 		vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\
4590 						  __enabled, exiting);				\
4591 	}											\
4592 })
4593 
4594 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4595 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4596 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4597 
4598 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4599 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4600 
4601 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4602 {
4603 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4604 
4605 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4606 
4607 	if (vmx_pt_mode_is_system())
4608 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4609 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4610 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4611 	if (vmx->vpid == 0)
4612 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4613 	if (!enable_ept) {
4614 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4615 		exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
4616 		enable_unrestricted_guest = 0;
4617 	}
4618 	if (!enable_unrestricted_guest)
4619 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4620 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4621 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4622 	if (!kvm_vcpu_apicv_active(vcpu))
4623 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4624 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4625 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4626 
4627 	/*
4628 	 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4629 	 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4630 	 */
4631 	exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
4632 
4633 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4634 	 * in vmx_set_cr4.  */
4635 	exec_control &= ~SECONDARY_EXEC_DESC;
4636 
4637 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4638 	   (handle_vmptrld).
4639 	   We can NOT enable shadow_vmcs here because we don't have yet
4640 	   a current VMCS12
4641 	*/
4642 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4643 
4644 	/*
4645 	 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4646 	 * it needs to be set here when dirty logging is already active, e.g.
4647 	 * if this vCPU was created after dirty logging was enabled.
4648 	 */
4649 	if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
4650 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4651 
4652 	vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES);
4653 
4654 	/*
4655 	 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4656 	 * feature is exposed to the guest.  This creates a virtualization hole
4657 	 * if both are supported in hardware but only one is exposed to the
4658 	 * guest, but letting the guest execute RDTSCP or RDPID when either one
4659 	 * is advertised is preferable to emulating the advertised instruction
4660 	 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4661 	 */
4662 	if (cpu_has_vmx_rdtscp()) {
4663 		bool rdpid_or_rdtscp_enabled =
4664 			guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4665 			guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4666 
4667 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4668 						  SECONDARY_EXEC_ENABLE_RDTSCP,
4669 						  rdpid_or_rdtscp_enabled, false);
4670 	}
4671 
4672 	vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4673 
4674 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4675 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4676 
4677 	vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4678 				    ENABLE_USR_WAIT_PAUSE, false);
4679 
4680 	if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4681 		exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4682 
4683 	if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4684 		exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4685 
4686 	return exec_control;
4687 }
4688 
4689 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4690 {
4691 	return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4692 }
4693 
4694 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4695 {
4696 	struct page *pages;
4697 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4698 
4699 	if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4700 		return 0;
4701 
4702 	if (kvm_vmx->pid_table)
4703 		return 0;
4704 
4705 	pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO,
4706 			    vmx_get_pid_table_order(kvm));
4707 	if (!pages)
4708 		return -ENOMEM;
4709 
4710 	kvm_vmx->pid_table = (void *)page_address(pages);
4711 	return 0;
4712 }
4713 
4714 int vmx_vcpu_precreate(struct kvm *kvm)
4715 {
4716 	return vmx_alloc_ipiv_pid_table(kvm);
4717 }
4718 
4719 #define VMX_XSS_EXIT_BITMAP 0
4720 
4721 static void init_vmcs(struct vcpu_vmx *vmx)
4722 {
4723 	struct kvm *kvm = vmx->vcpu.kvm;
4724 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4725 
4726 	if (nested)
4727 		nested_vmx_set_vmcs_shadowing_bitmap();
4728 
4729 	if (cpu_has_vmx_msr_bitmap())
4730 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4731 
4732 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4733 
4734 	/* Control */
4735 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4736 
4737 	exec_controls_set(vmx, vmx_exec_control(vmx));
4738 
4739 	if (cpu_has_secondary_exec_ctrls()) {
4740 		secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4741 		if (vmx->ve_info)
4742 			vmcs_write64(VE_INFORMATION_ADDRESS,
4743 				     __pa(vmx->ve_info));
4744 	}
4745 
4746 	if (cpu_has_tertiary_exec_ctrls())
4747 		tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4748 
4749 	if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4750 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4751 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4752 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4753 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4754 
4755 		vmcs_write16(GUEST_INTR_STATUS, 0);
4756 
4757 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4758 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4759 	}
4760 
4761 	if (vmx_can_use_ipiv(&vmx->vcpu)) {
4762 		vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4763 		vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4764 	}
4765 
4766 	if (!kvm_pause_in_guest(kvm)) {
4767 		vmcs_write32(PLE_GAP, ple_gap);
4768 		vmx->ple_window = ple_window;
4769 		vmx->ple_window_dirty = true;
4770 	}
4771 
4772 	if (kvm_notify_vmexit_enabled(kvm))
4773 		vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4774 
4775 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4776 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4777 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4778 
4779 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4780 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4781 	vmx_set_constant_host_state(vmx);
4782 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4783 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4784 
4785 	if (cpu_has_vmx_vmfunc())
4786 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4787 
4788 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4789 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4790 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4791 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4792 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4793 
4794 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4795 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4796 
4797 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4798 
4799 	/* 22.2.1, 20.8.1 */
4800 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4801 
4802 	vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4803 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4804 
4805 	set_cr4_guest_host_mask(vmx);
4806 
4807 	if (vmx->vpid != 0)
4808 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4809 
4810 	if (cpu_has_vmx_xsaves())
4811 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4812 
4813 	if (enable_pml) {
4814 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4815 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4816 	}
4817 
4818 	vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4819 
4820 	if (vmx_pt_mode_is_host_guest()) {
4821 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4822 		/* Bit[6~0] are forced to 1, writes are ignored. */
4823 		vmx->pt_desc.guest.output_mask = 0x7F;
4824 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4825 	}
4826 
4827 	vmcs_write32(GUEST_SYSENTER_CS, 0);
4828 	vmcs_writel(GUEST_SYSENTER_ESP, 0);
4829 	vmcs_writel(GUEST_SYSENTER_EIP, 0);
4830 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4831 
4832 	if (cpu_has_vmx_tpr_shadow()) {
4833 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4834 		if (cpu_need_tpr_shadow(&vmx->vcpu))
4835 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4836 				     __pa(vmx->vcpu.arch.apic->regs));
4837 		vmcs_write32(TPR_THRESHOLD, 0);
4838 	}
4839 
4840 	vmx_setup_uret_msrs(vmx);
4841 }
4842 
4843 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4844 {
4845 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4846 
4847 	init_vmcs(vmx);
4848 
4849 	if (nested)
4850 		memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4851 
4852 	vcpu_setup_sgx_lepubkeyhash(vcpu);
4853 
4854 	vmx->nested.posted_intr_nv = -1;
4855 	vmx->nested.vmxon_ptr = INVALID_GPA;
4856 	vmx->nested.current_vmptr = INVALID_GPA;
4857 
4858 #ifdef CONFIG_KVM_HYPERV
4859 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4860 #endif
4861 
4862 	vcpu->arch.microcode_version = 0x100000000ULL;
4863 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4864 
4865 	/*
4866 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4867 	 * or POSTED_INTR_WAKEUP_VECTOR.
4868 	 */
4869 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4870 	__pi_set_sn(&vmx->pi_desc);
4871 }
4872 
4873 void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4874 {
4875 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4876 
4877 	if (!init_event)
4878 		__vmx_vcpu_reset(vcpu);
4879 
4880 	vmx->rmode.vm86_active = 0;
4881 	vmx->spec_ctrl = 0;
4882 
4883 	vmx->msr_ia32_umwait_control = 0;
4884 
4885 	vmx->hv_deadline_tsc = -1;
4886 	kvm_set_cr8(vcpu, 0);
4887 
4888 	vmx_segment_cache_clear(vmx);
4889 	kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4890 
4891 	seg_setup(VCPU_SREG_CS);
4892 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4893 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4894 
4895 	seg_setup(VCPU_SREG_DS);
4896 	seg_setup(VCPU_SREG_ES);
4897 	seg_setup(VCPU_SREG_FS);
4898 	seg_setup(VCPU_SREG_GS);
4899 	seg_setup(VCPU_SREG_SS);
4900 
4901 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4902 	vmcs_writel(GUEST_TR_BASE, 0);
4903 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4904 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4905 
4906 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4907 	vmcs_writel(GUEST_LDTR_BASE, 0);
4908 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4909 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4910 
4911 	vmcs_writel(GUEST_GDTR_BASE, 0);
4912 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4913 
4914 	vmcs_writel(GUEST_IDTR_BASE, 0);
4915 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4916 
4917 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4918 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4919 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4920 	if (kvm_mpx_supported())
4921 		vmcs_write64(GUEST_BNDCFGS, 0);
4922 
4923 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4924 
4925 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4926 
4927 	vpid_sync_context(vmx->vpid);
4928 
4929 	vmx_update_fb_clear_dis(vcpu, vmx);
4930 }
4931 
4932 void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4933 {
4934 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4935 }
4936 
4937 void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4938 {
4939 	if (!enable_vnmi ||
4940 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4941 		vmx_enable_irq_window(vcpu);
4942 		return;
4943 	}
4944 
4945 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4946 }
4947 
4948 void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4949 {
4950 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4951 	uint32_t intr;
4952 	int irq = vcpu->arch.interrupt.nr;
4953 
4954 	trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4955 
4956 	++vcpu->stat.irq_injections;
4957 	if (vmx->rmode.vm86_active) {
4958 		int inc_eip = 0;
4959 		if (vcpu->arch.interrupt.soft)
4960 			inc_eip = vcpu->arch.event_exit_inst_len;
4961 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4962 		return;
4963 	}
4964 	intr = irq | INTR_INFO_VALID_MASK;
4965 	if (vcpu->arch.interrupt.soft) {
4966 		intr |= INTR_TYPE_SOFT_INTR;
4967 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4968 			     vmx->vcpu.arch.event_exit_inst_len);
4969 	} else
4970 		intr |= INTR_TYPE_EXT_INTR;
4971 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4972 
4973 	vmx_clear_hlt(vcpu);
4974 }
4975 
4976 void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4977 {
4978 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4979 
4980 	if (!enable_vnmi) {
4981 		/*
4982 		 * Tracking the NMI-blocked state in software is built upon
4983 		 * finding the next open IRQ window. This, in turn, depends on
4984 		 * well-behaving guests: They have to keep IRQs disabled at
4985 		 * least as long as the NMI handler runs. Otherwise we may
4986 		 * cause NMI nesting, maybe breaking the guest. But as this is
4987 		 * highly unlikely, we can live with the residual risk.
4988 		 */
4989 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4990 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4991 	}
4992 
4993 	++vcpu->stat.nmi_injections;
4994 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4995 
4996 	if (vmx->rmode.vm86_active) {
4997 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4998 		return;
4999 	}
5000 
5001 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5002 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5003 
5004 	vmx_clear_hlt(vcpu);
5005 }
5006 
5007 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5008 {
5009 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5010 	bool masked;
5011 
5012 	if (!enable_vnmi)
5013 		return vmx->loaded_vmcs->soft_vnmi_blocked;
5014 	if (vmx->loaded_vmcs->nmi_known_unmasked)
5015 		return false;
5016 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5017 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5018 	return masked;
5019 }
5020 
5021 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5022 {
5023 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5024 
5025 	if (!enable_vnmi) {
5026 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
5027 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
5028 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
5029 		}
5030 	} else {
5031 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5032 		if (masked)
5033 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5034 				      GUEST_INTR_STATE_NMI);
5035 		else
5036 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5037 					GUEST_INTR_STATE_NMI);
5038 	}
5039 }
5040 
5041 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
5042 {
5043 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5044 		return false;
5045 
5046 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
5047 		return true;
5048 
5049 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5050 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
5051 		 GUEST_INTR_STATE_NMI));
5052 }
5053 
5054 int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5055 {
5056 	if (to_vmx(vcpu)->nested.nested_run_pending)
5057 		return -EBUSY;
5058 
5059 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
5060 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5061 		return -EBUSY;
5062 
5063 	return !vmx_nmi_blocked(vcpu);
5064 }
5065 
5066 bool __vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5067 {
5068 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
5069 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5070 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5071 }
5072 
5073 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5074 {
5075 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5076 		return false;
5077 
5078 	return __vmx_interrupt_blocked(vcpu);
5079 }
5080 
5081 int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5082 {
5083 	if (to_vmx(vcpu)->nested.nested_run_pending)
5084 		return -EBUSY;
5085 
5086 	/*
5087 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
5088 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
5089 	 */
5090 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5091 		return -EBUSY;
5092 
5093 	return !vmx_interrupt_blocked(vcpu);
5094 }
5095 
5096 int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5097 {
5098 	void __user *ret;
5099 
5100 	if (enable_unrestricted_guest)
5101 		return 0;
5102 
5103 	mutex_lock(&kvm->slots_lock);
5104 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5105 				      PAGE_SIZE * 3);
5106 	mutex_unlock(&kvm->slots_lock);
5107 
5108 	if (IS_ERR(ret))
5109 		return PTR_ERR(ret);
5110 
5111 	to_kvm_vmx(kvm)->tss_addr = addr;
5112 
5113 	return init_rmode_tss(kvm, ret);
5114 }
5115 
5116 int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5117 {
5118 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5119 	return 0;
5120 }
5121 
5122 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5123 {
5124 	switch (vec) {
5125 	case BP_VECTOR:
5126 		/*
5127 		 * Update instruction length as we may reinject the exception
5128 		 * from user space while in guest debugging mode.
5129 		 */
5130 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5131 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5132 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5133 			return false;
5134 		fallthrough;
5135 	case DB_VECTOR:
5136 		return !(vcpu->guest_debug &
5137 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5138 	case DE_VECTOR:
5139 	case OF_VECTOR:
5140 	case BR_VECTOR:
5141 	case UD_VECTOR:
5142 	case DF_VECTOR:
5143 	case SS_VECTOR:
5144 	case GP_VECTOR:
5145 	case MF_VECTOR:
5146 		return true;
5147 	}
5148 	return false;
5149 }
5150 
5151 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5152 				  int vec, u32 err_code)
5153 {
5154 	/*
5155 	 * Instruction with address size override prefix opcode 0x67
5156 	 * Cause the #SS fault with 0 error code in VM86 mode.
5157 	 */
5158 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5159 		if (kvm_emulate_instruction(vcpu, 0)) {
5160 			if (vcpu->arch.halt_request) {
5161 				vcpu->arch.halt_request = 0;
5162 				return kvm_emulate_halt_noskip(vcpu);
5163 			}
5164 			return 1;
5165 		}
5166 		return 0;
5167 	}
5168 
5169 	/*
5170 	 * Forward all other exceptions that are valid in real mode.
5171 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5172 	 *        the required debugging infrastructure rework.
5173 	 */
5174 	kvm_queue_exception(vcpu, vec);
5175 	return 1;
5176 }
5177 
5178 static int handle_machine_check(struct kvm_vcpu *vcpu)
5179 {
5180 	/* handled by vmx_vcpu_run() */
5181 	return 1;
5182 }
5183 
5184 /*
5185  * If the host has split lock detection disabled, then #AC is
5186  * unconditionally injected into the guest, which is the pre split lock
5187  * detection behaviour.
5188  *
5189  * If the host has split lock detection enabled then #AC is
5190  * only injected into the guest when:
5191  *  - Guest CPL == 3 (user mode)
5192  *  - Guest has #AC detection enabled in CR0
5193  *  - Guest EFLAGS has AC bit set
5194  */
5195 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5196 {
5197 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5198 		return true;
5199 
5200 	return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
5201 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5202 }
5203 
5204 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5205 {
5206 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5207 	struct kvm_run *kvm_run = vcpu->run;
5208 	u32 intr_info, ex_no, error_code;
5209 	unsigned long cr2, dr6;
5210 	u32 vect_info;
5211 
5212 	vect_info = vmx->idt_vectoring_info;
5213 	intr_info = vmx_get_intr_info(vcpu);
5214 
5215 	/*
5216 	 * Machine checks are handled by handle_exception_irqoff(), or by
5217 	 * vmx_vcpu_run() if a #MC occurs on VM-Entry.  NMIs are handled by
5218 	 * vmx_vcpu_enter_exit().
5219 	 */
5220 	if (is_machine_check(intr_info) || is_nmi(intr_info))
5221 		return 1;
5222 
5223 	/*
5224 	 * Queue the exception here instead of in handle_nm_fault_irqoff().
5225 	 * This ensures the nested_vmx check is not skipped so vmexit can
5226 	 * be reflected to L1 (when it intercepts #NM) before reaching this
5227 	 * point.
5228 	 */
5229 	if (is_nm_fault(intr_info)) {
5230 		kvm_queue_exception(vcpu, NM_VECTOR);
5231 		return 1;
5232 	}
5233 
5234 	if (is_invalid_opcode(intr_info))
5235 		return handle_ud(vcpu);
5236 
5237 	if (WARN_ON_ONCE(is_ve_fault(intr_info))) {
5238 		struct vmx_ve_information *ve_info = vmx->ve_info;
5239 
5240 		WARN_ONCE(ve_info->exit_reason != EXIT_REASON_EPT_VIOLATION,
5241 			  "Unexpected #VE on VM-Exit reason 0x%x", ve_info->exit_reason);
5242 		dump_vmcs(vcpu);
5243 		kvm_mmu_print_sptes(vcpu, ve_info->guest_physical_address, "#VE");
5244 		return 1;
5245 	}
5246 
5247 	error_code = 0;
5248 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5249 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5250 
5251 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5252 		WARN_ON_ONCE(!enable_vmware_backdoor);
5253 
5254 		/*
5255 		 * VMware backdoor emulation on #GP interception only handles
5256 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5257 		 * error code on #GP.
5258 		 */
5259 		if (error_code) {
5260 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5261 			return 1;
5262 		}
5263 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5264 	}
5265 
5266 	/*
5267 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5268 	 * MMIO, it is better to report an internal error.
5269 	 * See the comments in vmx_handle_exit.
5270 	 */
5271 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5272 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5273 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5274 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5275 		vcpu->run->internal.ndata = 4;
5276 		vcpu->run->internal.data[0] = vect_info;
5277 		vcpu->run->internal.data[1] = intr_info;
5278 		vcpu->run->internal.data[2] = error_code;
5279 		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5280 		return 0;
5281 	}
5282 
5283 	if (is_page_fault(intr_info)) {
5284 		cr2 = vmx_get_exit_qual(vcpu);
5285 		if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5286 			/*
5287 			 * EPT will cause page fault only if we need to
5288 			 * detect illegal GPAs.
5289 			 */
5290 			WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5291 			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5292 			return 1;
5293 		} else
5294 			return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5295 	}
5296 
5297 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5298 
5299 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5300 		return handle_rmode_exception(vcpu, ex_no, error_code);
5301 
5302 	switch (ex_no) {
5303 	case DB_VECTOR:
5304 		dr6 = vmx_get_exit_qual(vcpu);
5305 		if (!(vcpu->guest_debug &
5306 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5307 			/*
5308 			 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5309 			 * instruction.  ICEBP generates a trap-like #DB, but
5310 			 * despite its interception control being tied to #DB,
5311 			 * is an instruction intercept, i.e. the VM-Exit occurs
5312 			 * on the ICEBP itself.  Use the inner "skip" helper to
5313 			 * avoid single-step #DB and MTF updates, as ICEBP is
5314 			 * higher priority.  Note, skipping ICEBP still clears
5315 			 * STI and MOVSS blocking.
5316 			 *
5317 			 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5318 			 * if single-step is enabled in RFLAGS and STI or MOVSS
5319 			 * blocking is active, as the CPU doesn't set the bit
5320 			 * on VM-Exit due to #DB interception.  VM-Entry has a
5321 			 * consistency check that a single-step #DB is pending
5322 			 * in this scenario as the previous instruction cannot
5323 			 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5324 			 * don't modify RFLAGS), therefore the one instruction
5325 			 * delay when activating single-step breakpoints must
5326 			 * have already expired.  Note, the CPU sets/clears BS
5327 			 * as appropriate for all other VM-Exits types.
5328 			 */
5329 			if (is_icebp(intr_info))
5330 				WARN_ON(!skip_emulated_instruction(vcpu));
5331 			else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5332 				 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5333 				  (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5334 				vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5335 					    vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5336 
5337 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5338 			return 1;
5339 		}
5340 		kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5341 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5342 		fallthrough;
5343 	case BP_VECTOR:
5344 		/*
5345 		 * Update instruction length as we may reinject #BP from
5346 		 * user space while in guest debugging mode. Reading it for
5347 		 * #DB as well causes no harm, it is not used in that case.
5348 		 */
5349 		vmx->vcpu.arch.event_exit_inst_len =
5350 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5351 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5352 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5353 		kvm_run->debug.arch.exception = ex_no;
5354 		break;
5355 	case AC_VECTOR:
5356 		if (vmx_guest_inject_ac(vcpu)) {
5357 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5358 			return 1;
5359 		}
5360 
5361 		/*
5362 		 * Handle split lock. Depending on detection mode this will
5363 		 * either warn and disable split lock detection for this
5364 		 * task or force SIGBUS on it.
5365 		 */
5366 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5367 			return 1;
5368 		fallthrough;
5369 	default:
5370 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5371 		kvm_run->ex.exception = ex_no;
5372 		kvm_run->ex.error_code = error_code;
5373 		break;
5374 	}
5375 	return 0;
5376 }
5377 
5378 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5379 {
5380 	++vcpu->stat.irq_exits;
5381 	return 1;
5382 }
5383 
5384 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5385 {
5386 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5387 	vcpu->mmio_needed = 0;
5388 	return 0;
5389 }
5390 
5391 static int handle_io(struct kvm_vcpu *vcpu)
5392 {
5393 	unsigned long exit_qualification;
5394 	int size, in, string;
5395 	unsigned port;
5396 
5397 	exit_qualification = vmx_get_exit_qual(vcpu);
5398 	string = (exit_qualification & 16) != 0;
5399 
5400 	++vcpu->stat.io_exits;
5401 
5402 	if (string)
5403 		return kvm_emulate_instruction(vcpu, 0);
5404 
5405 	port = exit_qualification >> 16;
5406 	size = (exit_qualification & 7) + 1;
5407 	in = (exit_qualification & 8) != 0;
5408 
5409 	return kvm_fast_pio(vcpu, size, port, in);
5410 }
5411 
5412 void vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5413 {
5414 	/*
5415 	 * Patch in the VMCALL instruction:
5416 	 */
5417 	hypercall[0] = 0x0f;
5418 	hypercall[1] = 0x01;
5419 	hypercall[2] = 0xc1;
5420 }
5421 
5422 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5423 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5424 {
5425 	if (is_guest_mode(vcpu)) {
5426 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5427 		unsigned long orig_val = val;
5428 
5429 		/*
5430 		 * We get here when L2 changed cr0 in a way that did not change
5431 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5432 		 * but did change L0 shadowed bits. So we first calculate the
5433 		 * effective cr0 value that L1 would like to write into the
5434 		 * hardware. It consists of the L2-owned bits from the new
5435 		 * value combined with the L1-owned bits from L1's guest_cr0.
5436 		 */
5437 		val = (val & ~vmcs12->cr0_guest_host_mask) |
5438 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5439 
5440 		if (kvm_set_cr0(vcpu, val))
5441 			return 1;
5442 		vmcs_writel(CR0_READ_SHADOW, orig_val);
5443 		return 0;
5444 	} else {
5445 		return kvm_set_cr0(vcpu, val);
5446 	}
5447 }
5448 
5449 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5450 {
5451 	if (is_guest_mode(vcpu)) {
5452 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5453 		unsigned long orig_val = val;
5454 
5455 		/* analogously to handle_set_cr0 */
5456 		val = (val & ~vmcs12->cr4_guest_host_mask) |
5457 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5458 		if (kvm_set_cr4(vcpu, val))
5459 			return 1;
5460 		vmcs_writel(CR4_READ_SHADOW, orig_val);
5461 		return 0;
5462 	} else
5463 		return kvm_set_cr4(vcpu, val);
5464 }
5465 
5466 static int handle_desc(struct kvm_vcpu *vcpu)
5467 {
5468 	/*
5469 	 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this
5470 	 * and other code needs to be updated if UMIP can be guest owned.
5471 	 */
5472 	BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP);
5473 
5474 	WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP));
5475 	return kvm_emulate_instruction(vcpu, 0);
5476 }
5477 
5478 static int handle_cr(struct kvm_vcpu *vcpu)
5479 {
5480 	unsigned long exit_qualification, val;
5481 	int cr;
5482 	int reg;
5483 	int err;
5484 	int ret;
5485 
5486 	exit_qualification = vmx_get_exit_qual(vcpu);
5487 	cr = exit_qualification & 15;
5488 	reg = (exit_qualification >> 8) & 15;
5489 	switch ((exit_qualification >> 4) & 3) {
5490 	case 0: /* mov to cr */
5491 		val = kvm_register_read(vcpu, reg);
5492 		trace_kvm_cr_write(cr, val);
5493 		switch (cr) {
5494 		case 0:
5495 			err = handle_set_cr0(vcpu, val);
5496 			return kvm_complete_insn_gp(vcpu, err);
5497 		case 3:
5498 			WARN_ON_ONCE(enable_unrestricted_guest);
5499 
5500 			err = kvm_set_cr3(vcpu, val);
5501 			return kvm_complete_insn_gp(vcpu, err);
5502 		case 4:
5503 			err = handle_set_cr4(vcpu, val);
5504 			return kvm_complete_insn_gp(vcpu, err);
5505 		case 8: {
5506 				u8 cr8_prev = kvm_get_cr8(vcpu);
5507 				u8 cr8 = (u8)val;
5508 				err = kvm_set_cr8(vcpu, cr8);
5509 				ret = kvm_complete_insn_gp(vcpu, err);
5510 				if (lapic_in_kernel(vcpu))
5511 					return ret;
5512 				if (cr8_prev <= cr8)
5513 					return ret;
5514 				/*
5515 				 * TODO: we might be squashing a
5516 				 * KVM_GUESTDBG_SINGLESTEP-triggered
5517 				 * KVM_EXIT_DEBUG here.
5518 				 */
5519 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5520 				return 0;
5521 			}
5522 		}
5523 		break;
5524 	case 2: /* clts */
5525 		KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5526 		return -EIO;
5527 	case 1: /*mov from cr*/
5528 		switch (cr) {
5529 		case 3:
5530 			WARN_ON_ONCE(enable_unrestricted_guest);
5531 
5532 			val = kvm_read_cr3(vcpu);
5533 			kvm_register_write(vcpu, reg, val);
5534 			trace_kvm_cr_read(cr, val);
5535 			return kvm_skip_emulated_instruction(vcpu);
5536 		case 8:
5537 			val = kvm_get_cr8(vcpu);
5538 			kvm_register_write(vcpu, reg, val);
5539 			trace_kvm_cr_read(cr, val);
5540 			return kvm_skip_emulated_instruction(vcpu);
5541 		}
5542 		break;
5543 	case 3: /* lmsw */
5544 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5545 		trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
5546 		kvm_lmsw(vcpu, val);
5547 
5548 		return kvm_skip_emulated_instruction(vcpu);
5549 	default:
5550 		break;
5551 	}
5552 	vcpu->run->exit_reason = 0;
5553 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5554 	       (int)(exit_qualification >> 4) & 3, cr);
5555 	return 0;
5556 }
5557 
5558 static int handle_dr(struct kvm_vcpu *vcpu)
5559 {
5560 	unsigned long exit_qualification;
5561 	int dr, dr7, reg;
5562 	int err = 1;
5563 
5564 	exit_qualification = vmx_get_exit_qual(vcpu);
5565 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5566 
5567 	/* First, if DR does not exist, trigger UD */
5568 	if (!kvm_require_dr(vcpu, dr))
5569 		return 1;
5570 
5571 	if (vmx_get_cpl(vcpu) > 0)
5572 		goto out;
5573 
5574 	dr7 = vmcs_readl(GUEST_DR7);
5575 	if (dr7 & DR7_GD) {
5576 		/*
5577 		 * As the vm-exit takes precedence over the debug trap, we
5578 		 * need to emulate the latter, either for the host or the
5579 		 * guest debugging itself.
5580 		 */
5581 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5582 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5583 			vcpu->run->debug.arch.dr7 = dr7;
5584 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5585 			vcpu->run->debug.arch.exception = DB_VECTOR;
5586 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5587 			return 0;
5588 		} else {
5589 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5590 			return 1;
5591 		}
5592 	}
5593 
5594 	if (vcpu->guest_debug == 0) {
5595 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5596 
5597 		/*
5598 		 * No more DR vmexits; force a reload of the debug registers
5599 		 * and reenter on this instruction.  The next vmexit will
5600 		 * retrieve the full state of the debug registers.
5601 		 */
5602 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5603 		return 1;
5604 	}
5605 
5606 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5607 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5608 		kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
5609 		err = 0;
5610 	} else {
5611 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5612 	}
5613 
5614 out:
5615 	return kvm_complete_insn_gp(vcpu, err);
5616 }
5617 
5618 void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5619 {
5620 	get_debugreg(vcpu->arch.db[0], 0);
5621 	get_debugreg(vcpu->arch.db[1], 1);
5622 	get_debugreg(vcpu->arch.db[2], 2);
5623 	get_debugreg(vcpu->arch.db[3], 3);
5624 	get_debugreg(vcpu->arch.dr6, 6);
5625 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5626 
5627 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5628 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5629 
5630 	/*
5631 	 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5632 	 * a stale dr6 from the guest.
5633 	 */
5634 	set_debugreg(DR6_RESERVED, 6);
5635 }
5636 
5637 void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5638 {
5639 	vmcs_writel(GUEST_DR7, val);
5640 }
5641 
5642 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5643 {
5644 	kvm_apic_update_ppr(vcpu);
5645 	return 1;
5646 }
5647 
5648 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5649 {
5650 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5651 
5652 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5653 
5654 	++vcpu->stat.irq_window_exits;
5655 	return 1;
5656 }
5657 
5658 static int handle_invlpg(struct kvm_vcpu *vcpu)
5659 {
5660 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5661 
5662 	kvm_mmu_invlpg(vcpu, exit_qualification);
5663 	return kvm_skip_emulated_instruction(vcpu);
5664 }
5665 
5666 static int handle_apic_access(struct kvm_vcpu *vcpu)
5667 {
5668 	if (likely(fasteoi)) {
5669 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5670 		int access_type, offset;
5671 
5672 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5673 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5674 		/*
5675 		 * Sane guest uses MOV to write EOI, with written value
5676 		 * not cared. So make a short-circuit here by avoiding
5677 		 * heavy instruction emulation.
5678 		 */
5679 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5680 		    (offset == APIC_EOI)) {
5681 			kvm_lapic_set_eoi(vcpu);
5682 			return kvm_skip_emulated_instruction(vcpu);
5683 		}
5684 	}
5685 	return kvm_emulate_instruction(vcpu, 0);
5686 }
5687 
5688 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5689 {
5690 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5691 	int vector = exit_qualification & 0xff;
5692 
5693 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5694 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5695 	return 1;
5696 }
5697 
5698 static int handle_apic_write(struct kvm_vcpu *vcpu)
5699 {
5700 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5701 
5702 	/*
5703 	 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5704 	 * hardware has done any necessary aliasing, offset adjustments, etc...
5705 	 * for the access.  I.e. the correct value has already been  written to
5706 	 * the vAPIC page for the correct 16-byte chunk.  KVM needs only to
5707 	 * retrieve the register value and emulate the access.
5708 	 */
5709 	u32 offset = exit_qualification & 0xff0;
5710 
5711 	kvm_apic_write_nodecode(vcpu, offset);
5712 	return 1;
5713 }
5714 
5715 static int handle_task_switch(struct kvm_vcpu *vcpu)
5716 {
5717 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5718 	unsigned long exit_qualification;
5719 	bool has_error_code = false;
5720 	u32 error_code = 0;
5721 	u16 tss_selector;
5722 	int reason, type, idt_v, idt_index;
5723 
5724 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5725 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5726 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5727 
5728 	exit_qualification = vmx_get_exit_qual(vcpu);
5729 
5730 	reason = (u32)exit_qualification >> 30;
5731 	if (reason == TASK_SWITCH_GATE && idt_v) {
5732 		switch (type) {
5733 		case INTR_TYPE_NMI_INTR:
5734 			vcpu->arch.nmi_injected = false;
5735 			vmx_set_nmi_mask(vcpu, true);
5736 			break;
5737 		case INTR_TYPE_EXT_INTR:
5738 		case INTR_TYPE_SOFT_INTR:
5739 			kvm_clear_interrupt_queue(vcpu);
5740 			break;
5741 		case INTR_TYPE_HARD_EXCEPTION:
5742 			if (vmx->idt_vectoring_info &
5743 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5744 				has_error_code = true;
5745 				error_code =
5746 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5747 			}
5748 			fallthrough;
5749 		case INTR_TYPE_SOFT_EXCEPTION:
5750 			kvm_clear_exception_queue(vcpu);
5751 			break;
5752 		default:
5753 			break;
5754 		}
5755 	}
5756 	tss_selector = exit_qualification;
5757 
5758 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5759 		       type != INTR_TYPE_EXT_INTR &&
5760 		       type != INTR_TYPE_NMI_INTR))
5761 		WARN_ON(!skip_emulated_instruction(vcpu));
5762 
5763 	/*
5764 	 * TODO: What about debug traps on tss switch?
5765 	 *       Are we supposed to inject them and update dr6?
5766 	 */
5767 	return kvm_task_switch(vcpu, tss_selector,
5768 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5769 			       reason, has_error_code, error_code);
5770 }
5771 
5772 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5773 {
5774 	unsigned long exit_qualification;
5775 	gpa_t gpa;
5776 	u64 error_code;
5777 
5778 	exit_qualification = vmx_get_exit_qual(vcpu);
5779 
5780 	/*
5781 	 * EPT violation happened while executing iret from NMI,
5782 	 * "blocked by NMI" bit has to be set before next VM entry.
5783 	 * There are errata that may cause this bit to not be set:
5784 	 * AAK134, BY25.
5785 	 */
5786 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5787 			enable_vnmi &&
5788 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5789 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5790 
5791 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5792 	trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5793 
5794 	/* Is it a read fault? */
5795 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5796 		     ? PFERR_USER_MASK : 0;
5797 	/* Is it a write fault? */
5798 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5799 		      ? PFERR_WRITE_MASK : 0;
5800 	/* Is it a fetch fault? */
5801 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5802 		      ? PFERR_FETCH_MASK : 0;
5803 	/* ept page table entry is present? */
5804 	error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK)
5805 		      ? PFERR_PRESENT_MASK : 0;
5806 
5807 	error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5808 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5809 
5810 	/*
5811 	 * Check that the GPA doesn't exceed physical memory limits, as that is
5812 	 * a guest page fault.  We have to emulate the instruction here, because
5813 	 * if the illegal address is that of a paging structure, then
5814 	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5815 	 * would also use advanced VM-exit information for EPT violations to
5816 	 * reconstruct the page fault error code.
5817 	 */
5818 	if (unlikely(allow_smaller_maxphyaddr && !kvm_vcpu_is_legal_gpa(vcpu, gpa)))
5819 		return kvm_emulate_instruction(vcpu, 0);
5820 
5821 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5822 }
5823 
5824 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5825 {
5826 	gpa_t gpa;
5827 
5828 	if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5829 		return 1;
5830 
5831 	/*
5832 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5833 	 * nGPA here instead of the required GPA.
5834 	 */
5835 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5836 	if (!is_guest_mode(vcpu) &&
5837 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5838 		trace_kvm_fast_mmio(gpa);
5839 		return kvm_skip_emulated_instruction(vcpu);
5840 	}
5841 
5842 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5843 }
5844 
5845 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5846 {
5847 	if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5848 		return -EIO;
5849 
5850 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5851 	++vcpu->stat.nmi_window_exits;
5852 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5853 
5854 	return 1;
5855 }
5856 
5857 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
5858 {
5859 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5860 
5861 	return vmx->emulation_required && !vmx->rmode.vm86_active &&
5862 	       (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5863 }
5864 
5865 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5866 {
5867 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5868 	bool intr_window_requested;
5869 	unsigned count = 130;
5870 
5871 	intr_window_requested = exec_controls_get(vmx) &
5872 				CPU_BASED_INTR_WINDOW_EXITING;
5873 
5874 	while (vmx->emulation_required && count-- != 0) {
5875 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5876 			return handle_interrupt_window(&vmx->vcpu);
5877 
5878 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5879 			return 1;
5880 
5881 		if (!kvm_emulate_instruction(vcpu, 0))
5882 			return 0;
5883 
5884 		if (vmx_emulation_required_with_pending_exception(vcpu)) {
5885 			kvm_prepare_emulation_failure_exit(vcpu);
5886 			return 0;
5887 		}
5888 
5889 		if (vcpu->arch.halt_request) {
5890 			vcpu->arch.halt_request = 0;
5891 			return kvm_emulate_halt_noskip(vcpu);
5892 		}
5893 
5894 		/*
5895 		 * Note, return 1 and not 0, vcpu_run() will invoke
5896 		 * xfer_to_guest_mode() which will create a proper return
5897 		 * code.
5898 		 */
5899 		if (__xfer_to_guest_mode_work_pending())
5900 			return 1;
5901 	}
5902 
5903 	return 1;
5904 }
5905 
5906 int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5907 {
5908 	if (vmx_emulation_required_with_pending_exception(vcpu)) {
5909 		kvm_prepare_emulation_failure_exit(vcpu);
5910 		return 0;
5911 	}
5912 
5913 	return 1;
5914 }
5915 
5916 /*
5917  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5918  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5919  */
5920 static int handle_pause(struct kvm_vcpu *vcpu)
5921 {
5922 	if (!kvm_pause_in_guest(vcpu->kvm))
5923 		grow_ple_window(vcpu);
5924 
5925 	/*
5926 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5927 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5928 	 * never set PAUSE_EXITING and just set PLE if supported,
5929 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5930 	 */
5931 	kvm_vcpu_on_spin(vcpu, true);
5932 	return kvm_skip_emulated_instruction(vcpu);
5933 }
5934 
5935 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5936 {
5937 	return 1;
5938 }
5939 
5940 static int handle_invpcid(struct kvm_vcpu *vcpu)
5941 {
5942 	u32 vmx_instruction_info;
5943 	unsigned long type;
5944 	gva_t gva;
5945 	struct {
5946 		u64 pcid;
5947 		u64 gla;
5948 	} operand;
5949 	int gpr_index;
5950 
5951 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5952 		kvm_queue_exception(vcpu, UD_VECTOR);
5953 		return 1;
5954 	}
5955 
5956 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5957 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5958 	type = kvm_register_read(vcpu, gpr_index);
5959 
5960 	/* According to the Intel instruction reference, the memory operand
5961 	 * is read even if it isn't needed (e.g., for type==all)
5962 	 */
5963 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5964 				vmx_instruction_info, false,
5965 				sizeof(operand), &gva))
5966 		return 1;
5967 
5968 	return kvm_handle_invpcid(vcpu, type, gva);
5969 }
5970 
5971 static int handle_pml_full(struct kvm_vcpu *vcpu)
5972 {
5973 	unsigned long exit_qualification;
5974 
5975 	trace_kvm_pml_full(vcpu->vcpu_id);
5976 
5977 	exit_qualification = vmx_get_exit_qual(vcpu);
5978 
5979 	/*
5980 	 * PML buffer FULL happened while executing iret from NMI,
5981 	 * "blocked by NMI" bit has to be set before next VM entry.
5982 	 */
5983 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5984 			enable_vnmi &&
5985 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5986 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5987 				GUEST_INTR_STATE_NMI);
5988 
5989 	/*
5990 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5991 	 * here.., and there's no userspace involvement needed for PML.
5992 	 */
5993 	return 1;
5994 }
5995 
5996 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu,
5997 						   bool force_immediate_exit)
5998 {
5999 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6000 
6001 	/*
6002 	 * In the *extremely* unlikely scenario that this is a spurious VM-Exit
6003 	 * due to the timer expiring while it was "soft" disabled, just eat the
6004 	 * exit and re-enter the guest.
6005 	 */
6006 	if (unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
6007 		return EXIT_FASTPATH_REENTER_GUEST;
6008 
6009 	/*
6010 	 * If the timer expired because KVM used it to force an immediate exit,
6011 	 * then mission accomplished.
6012 	 */
6013 	if (force_immediate_exit)
6014 		return EXIT_FASTPATH_EXIT_HANDLED;
6015 
6016 	/*
6017 	 * If L2 is active, go down the slow path as emulating the guest timer
6018 	 * expiration likely requires synthesizing a nested VM-Exit.
6019 	 */
6020 	if (is_guest_mode(vcpu))
6021 		return EXIT_FASTPATH_NONE;
6022 
6023 	kvm_lapic_expired_hv_timer(vcpu);
6024 	return EXIT_FASTPATH_REENTER_GUEST;
6025 }
6026 
6027 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
6028 {
6029 	/*
6030 	 * This non-fastpath handler is reached if and only if the preemption
6031 	 * timer was being used to emulate a guest timer while L2 is active.
6032 	 * All other scenarios are supposed to be handled in the fastpath.
6033 	 */
6034 	WARN_ON_ONCE(!is_guest_mode(vcpu));
6035 	kvm_lapic_expired_hv_timer(vcpu);
6036 	return 1;
6037 }
6038 
6039 /*
6040  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
6041  * are overwritten by nested_vmx_setup() when nested=1.
6042  */
6043 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
6044 {
6045 	kvm_queue_exception(vcpu, UD_VECTOR);
6046 	return 1;
6047 }
6048 
6049 #ifndef CONFIG_X86_SGX_KVM
6050 static int handle_encls(struct kvm_vcpu *vcpu)
6051 {
6052 	/*
6053 	 * SGX virtualization is disabled.  There is no software enable bit for
6054 	 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
6055 	 * the guest from executing ENCLS (when SGX is supported by hardware).
6056 	 */
6057 	kvm_queue_exception(vcpu, UD_VECTOR);
6058 	return 1;
6059 }
6060 #endif /* CONFIG_X86_SGX_KVM */
6061 
6062 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
6063 {
6064 	/*
6065 	 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
6066 	 * VM-Exits. Unconditionally set the flag here and leave the handling to
6067 	 * vmx_handle_exit().
6068 	 */
6069 	to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
6070 	return 1;
6071 }
6072 
6073 static int handle_notify(struct kvm_vcpu *vcpu)
6074 {
6075 	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
6076 	bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
6077 
6078 	++vcpu->stat.notify_window_exits;
6079 
6080 	/*
6081 	 * Notify VM exit happened while executing iret from NMI,
6082 	 * "blocked by NMI" bit has to be set before next VM entry.
6083 	 */
6084 	if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
6085 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6086 			      GUEST_INTR_STATE_NMI);
6087 
6088 	if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
6089 	    context_invalid) {
6090 		vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
6091 		vcpu->run->notify.flags = context_invalid ?
6092 					  KVM_NOTIFY_CONTEXT_INVALID : 0;
6093 		return 0;
6094 	}
6095 
6096 	return 1;
6097 }
6098 
6099 /*
6100  * The exit handlers return 1 if the exit was handled fully and guest execution
6101  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6102  * to be done to userspace and return 0.
6103  */
6104 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6105 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
6106 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6107 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6108 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
6109 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6110 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
6111 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
6112 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
6113 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
6114 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
6115 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
6116 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
6117 	[EXIT_REASON_INVD]		      = kvm_emulate_invd,
6118 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
6119 	[EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
6120 	[EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
6121 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
6122 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
6123 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
6124 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
6125 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
6126 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
6127 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
6128 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
6129 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
6130 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6131 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6132 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6133 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6134 	[EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
6135 	[EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
6136 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6137 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6138 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
6139 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
6140 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
6141 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6142 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6143 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = kvm_emulate_mwait,
6144 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
6145 	[EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
6146 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
6147 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
6148 	[EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
6149 	[EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
6150 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
6151 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
6152 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
6153 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
6154 	[EXIT_REASON_ENCLS]		      = handle_encls,
6155 	[EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
6156 	[EXIT_REASON_NOTIFY]		      = handle_notify,
6157 };
6158 
6159 static const int kvm_vmx_max_exit_handlers =
6160 	ARRAY_SIZE(kvm_vmx_exit_handlers);
6161 
6162 void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6163 		       u64 *info1, u64 *info2, u32 *intr_info, u32 *error_code)
6164 {
6165 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6166 
6167 	*reason = vmx->exit_reason.full;
6168 	*info1 = vmx_get_exit_qual(vcpu);
6169 	if (!(vmx->exit_reason.failed_vmentry)) {
6170 		*info2 = vmx->idt_vectoring_info;
6171 		*intr_info = vmx_get_intr_info(vcpu);
6172 		if (is_exception_with_error_code(*intr_info))
6173 			*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6174 		else
6175 			*error_code = 0;
6176 	} else {
6177 		*info2 = 0;
6178 		*intr_info = 0;
6179 		*error_code = 0;
6180 	}
6181 }
6182 
6183 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6184 {
6185 	if (vmx->pml_pg) {
6186 		__free_page(vmx->pml_pg);
6187 		vmx->pml_pg = NULL;
6188 	}
6189 }
6190 
6191 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6192 {
6193 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6194 	u64 *pml_buf;
6195 	u16 pml_idx;
6196 
6197 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
6198 
6199 	/* Do nothing if PML buffer is empty */
6200 	if (pml_idx == (PML_ENTITY_NUM - 1))
6201 		return;
6202 
6203 	/* PML index always points to next available PML buffer entity */
6204 	if (pml_idx >= PML_ENTITY_NUM)
6205 		pml_idx = 0;
6206 	else
6207 		pml_idx++;
6208 
6209 	pml_buf = page_address(vmx->pml_pg);
6210 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
6211 		u64 gpa;
6212 
6213 		gpa = pml_buf[pml_idx];
6214 		WARN_ON(gpa & (PAGE_SIZE - 1));
6215 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6216 	}
6217 
6218 	/* reset PML index */
6219 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
6220 }
6221 
6222 static void vmx_dump_sel(char *name, uint32_t sel)
6223 {
6224 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6225 	       name, vmcs_read16(sel),
6226 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6227 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6228 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6229 }
6230 
6231 static void vmx_dump_dtsel(char *name, uint32_t limit)
6232 {
6233 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
6234 	       name, vmcs_read32(limit),
6235 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6236 }
6237 
6238 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6239 {
6240 	unsigned int i;
6241 	struct vmx_msr_entry *e;
6242 
6243 	pr_err("MSR %s:\n", name);
6244 	for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6245 		pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6246 }
6247 
6248 void dump_vmcs(struct kvm_vcpu *vcpu)
6249 {
6250 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6251 	u32 vmentry_ctl, vmexit_ctl;
6252 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6253 	u64 tertiary_exec_control;
6254 	unsigned long cr4;
6255 	int efer_slot;
6256 
6257 	if (!dump_invalid_vmcs) {
6258 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6259 		return;
6260 	}
6261 
6262 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6263 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6264 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6265 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6266 	cr4 = vmcs_readl(GUEST_CR4);
6267 
6268 	if (cpu_has_secondary_exec_ctrls())
6269 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6270 	else
6271 		secondary_exec_control = 0;
6272 
6273 	if (cpu_has_tertiary_exec_ctrls())
6274 		tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6275 	else
6276 		tertiary_exec_control = 0;
6277 
6278 	pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6279 	       vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6280 	pr_err("*** Guest State ***\n");
6281 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6282 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6283 	       vmcs_readl(CR0_GUEST_HOST_MASK));
6284 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6285 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6286 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6287 	if (cpu_has_vmx_ept()) {
6288 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
6289 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6290 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
6291 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6292 	}
6293 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
6294 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6295 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
6296 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6297 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6298 	       vmcs_readl(GUEST_SYSENTER_ESP),
6299 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6300 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
6301 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
6302 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
6303 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
6304 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
6305 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
6306 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6307 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6308 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6309 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
6310 	efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6311 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6312 		pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6313 	else if (efer_slot >= 0)
6314 		pr_err("EFER= 0x%016llx (autoload)\n",
6315 		       vmx->msr_autoload.guest.val[efer_slot].value);
6316 	else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6317 		pr_err("EFER= 0x%016llx (effective)\n",
6318 		       vcpu->arch.efer | (EFER_LMA | EFER_LME));
6319 	else
6320 		pr_err("EFER= 0x%016llx (effective)\n",
6321 		       vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6322 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6323 		pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6324 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
6325 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
6326 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6327 	if (cpu_has_load_perf_global_ctrl() &&
6328 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6329 		pr_err("PerfGlobCtl = 0x%016llx\n",
6330 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6331 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6332 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6333 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
6334 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6335 	       vmcs_read32(GUEST_ACTIVITY_STATE));
6336 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6337 		pr_err("InterruptStatus = %04x\n",
6338 		       vmcs_read16(GUEST_INTR_STATUS));
6339 	if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6340 		vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6341 	if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6342 		vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6343 
6344 	pr_err("*** Host State ***\n");
6345 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
6346 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6347 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6348 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6349 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6350 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6351 	       vmcs_read16(HOST_TR_SELECTOR));
6352 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6353 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6354 	       vmcs_readl(HOST_TR_BASE));
6355 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6356 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6357 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6358 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6359 	       vmcs_readl(HOST_CR4));
6360 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6361 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
6362 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
6363 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
6364 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6365 		pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6366 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6367 		pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6368 	if (cpu_has_load_perf_global_ctrl() &&
6369 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6370 		pr_err("PerfGlobCtl = 0x%016llx\n",
6371 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6372 	if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6373 		vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6374 
6375 	pr_err("*** Control State ***\n");
6376 	pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6377 	       cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6378 	pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6379 	       pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6380 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6381 	       vmcs_read32(EXCEPTION_BITMAP),
6382 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6383 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6384 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6385 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6386 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6387 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6388 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6389 	       vmcs_read32(VM_EXIT_INTR_INFO),
6390 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6391 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6392 	pr_err("        reason=%08x qualification=%016lx\n",
6393 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6394 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6395 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
6396 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
6397 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6398 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6399 		pr_err("TSC Multiplier = 0x%016llx\n",
6400 		       vmcs_read64(TSC_MULTIPLIER));
6401 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6402 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6403 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
6404 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6405 		}
6406 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6407 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6408 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6409 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6410 	}
6411 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6412 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6413 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6414 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6415 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6416 		pr_err("PLE Gap=%08x Window=%08x\n",
6417 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6418 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6419 		pr_err("Virtual processor ID = 0x%04x\n",
6420 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
6421 	if (secondary_exec_control & SECONDARY_EXEC_EPT_VIOLATION_VE) {
6422 		struct vmx_ve_information *ve_info = vmx->ve_info;
6423 		u64 ve_info_pa = vmcs_read64(VE_INFORMATION_ADDRESS);
6424 
6425 		/*
6426 		 * If KVM is dumping the VMCS, then something has gone wrong
6427 		 * already.  Derefencing an address from the VMCS, which could
6428 		 * very well be corrupted, is a terrible idea.  The virtual
6429 		 * address is known so use it.
6430 		 */
6431 		pr_err("VE info address = 0x%016llx%s\n", ve_info_pa,
6432 		       ve_info_pa == __pa(ve_info) ? "" : "(corrupted!)");
6433 		pr_err("ve_info: 0x%08x 0x%08x 0x%016llx 0x%016llx 0x%016llx 0x%04x\n",
6434 		       ve_info->exit_reason, ve_info->delivery,
6435 		       ve_info->exit_qualification,
6436 		       ve_info->guest_linear_address,
6437 		       ve_info->guest_physical_address, ve_info->eptp_index);
6438 	}
6439 }
6440 
6441 /*
6442  * The guest has exited.  See if we can fix it or if we need userspace
6443  * assistance.
6444  */
6445 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6446 {
6447 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6448 	union vmx_exit_reason exit_reason = vmx->exit_reason;
6449 	u32 vectoring_info = vmx->idt_vectoring_info;
6450 	u16 exit_handler_index;
6451 
6452 	/*
6453 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6454 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6455 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6456 	 * mode as if vcpus is in root mode, the PML buffer must has been
6457 	 * flushed already.  Note, PML is never enabled in hardware while
6458 	 * running L2.
6459 	 */
6460 	if (enable_pml && !is_guest_mode(vcpu))
6461 		vmx_flush_pml_buffer(vcpu);
6462 
6463 	/*
6464 	 * KVM should never reach this point with a pending nested VM-Enter.
6465 	 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6466 	 * invalid guest state should never happen as that means KVM knowingly
6467 	 * allowed a nested VM-Enter with an invalid vmcs12.  More below.
6468 	 */
6469 	if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6470 		return -EIO;
6471 
6472 	if (is_guest_mode(vcpu)) {
6473 		/*
6474 		 * PML is never enabled when running L2, bail immediately if a
6475 		 * PML full exit occurs as something is horribly wrong.
6476 		 */
6477 		if (exit_reason.basic == EXIT_REASON_PML_FULL)
6478 			goto unexpected_vmexit;
6479 
6480 		/*
6481 		 * The host physical addresses of some pages of guest memory
6482 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6483 		 * Page). The CPU may write to these pages via their host
6484 		 * physical address while L2 is running, bypassing any
6485 		 * address-translation-based dirty tracking (e.g. EPT write
6486 		 * protection).
6487 		 *
6488 		 * Mark them dirty on every exit from L2 to prevent them from
6489 		 * getting out of sync with dirty tracking.
6490 		 */
6491 		nested_mark_vmcs12_pages_dirty(vcpu);
6492 
6493 		/*
6494 		 * Synthesize a triple fault if L2 state is invalid.  In normal
6495 		 * operation, nested VM-Enter rejects any attempt to enter L2
6496 		 * with invalid state.  However, those checks are skipped if
6497 		 * state is being stuffed via RSM or KVM_SET_NESTED_STATE.  If
6498 		 * L2 state is invalid, it means either L1 modified SMRAM state
6499 		 * or userspace provided bad state.  Synthesize TRIPLE_FAULT as
6500 		 * doing so is architecturally allowed in the RSM case, and is
6501 		 * the least awful solution for the userspace case without
6502 		 * risking false positives.
6503 		 */
6504 		if (vmx->emulation_required) {
6505 			nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6506 			return 1;
6507 		}
6508 
6509 		if (nested_vmx_reflect_vmexit(vcpu))
6510 			return 1;
6511 	}
6512 
6513 	/* If guest state is invalid, start emulating.  L2 is handled above. */
6514 	if (vmx->emulation_required)
6515 		return handle_invalid_guest_state(vcpu);
6516 
6517 	if (exit_reason.failed_vmentry) {
6518 		dump_vmcs(vcpu);
6519 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6520 		vcpu->run->fail_entry.hardware_entry_failure_reason
6521 			= exit_reason.full;
6522 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6523 		return 0;
6524 	}
6525 
6526 	if (unlikely(vmx->fail)) {
6527 		dump_vmcs(vcpu);
6528 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6529 		vcpu->run->fail_entry.hardware_entry_failure_reason
6530 			= vmcs_read32(VM_INSTRUCTION_ERROR);
6531 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6532 		return 0;
6533 	}
6534 
6535 	/*
6536 	 * Note:
6537 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6538 	 * delivery event since it indicates guest is accessing MMIO.
6539 	 * The vm-exit can be triggered again after return to guest that
6540 	 * will cause infinite loop.
6541 	 */
6542 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6543 	    (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6544 	     exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6545 	     exit_reason.basic != EXIT_REASON_PML_FULL &&
6546 	     exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6547 	     exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6548 	     exit_reason.basic != EXIT_REASON_NOTIFY)) {
6549 		int ndata = 3;
6550 
6551 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6552 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6553 		vcpu->run->internal.data[0] = vectoring_info;
6554 		vcpu->run->internal.data[1] = exit_reason.full;
6555 		vcpu->run->internal.data[2] = vmx_get_exit_qual(vcpu);
6556 		if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6557 			vcpu->run->internal.data[ndata++] =
6558 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6559 		}
6560 		vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6561 		vcpu->run->internal.ndata = ndata;
6562 		return 0;
6563 	}
6564 
6565 	if (unlikely(!enable_vnmi &&
6566 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
6567 		if (!vmx_interrupt_blocked(vcpu)) {
6568 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6569 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6570 			   vcpu->arch.nmi_pending) {
6571 			/*
6572 			 * This CPU don't support us in finding the end of an
6573 			 * NMI-blocked window if the guest runs with IRQs
6574 			 * disabled. So we pull the trigger after 1 s of
6575 			 * futile waiting, but inform the user about this.
6576 			 */
6577 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6578 			       "state on VCPU %d after 1 s timeout\n",
6579 			       __func__, vcpu->vcpu_id);
6580 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6581 		}
6582 	}
6583 
6584 	if (exit_fastpath != EXIT_FASTPATH_NONE)
6585 		return 1;
6586 
6587 	if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6588 		goto unexpected_vmexit;
6589 #ifdef CONFIG_MITIGATION_RETPOLINE
6590 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6591 		return kvm_emulate_wrmsr(vcpu);
6592 	else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6593 		return handle_preemption_timer(vcpu);
6594 	else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6595 		return handle_interrupt_window(vcpu);
6596 	else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6597 		return handle_external_interrupt(vcpu);
6598 	else if (exit_reason.basic == EXIT_REASON_HLT)
6599 		return kvm_emulate_halt(vcpu);
6600 	else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6601 		return handle_ept_misconfig(vcpu);
6602 #endif
6603 
6604 	exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6605 						kvm_vmx_max_exit_handlers);
6606 	if (!kvm_vmx_exit_handlers[exit_handler_index])
6607 		goto unexpected_vmexit;
6608 
6609 	return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6610 
6611 unexpected_vmexit:
6612 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6613 		    exit_reason.full);
6614 	dump_vmcs(vcpu);
6615 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6616 	vcpu->run->internal.suberror =
6617 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6618 	vcpu->run->internal.ndata = 2;
6619 	vcpu->run->internal.data[0] = exit_reason.full;
6620 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6621 	return 0;
6622 }
6623 
6624 int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6625 {
6626 	int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6627 
6628 	/*
6629 	 * Exit to user space when bus lock detected to inform that there is
6630 	 * a bus lock in guest.
6631 	 */
6632 	if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6633 		if (ret > 0)
6634 			vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6635 
6636 		vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6637 		return 0;
6638 	}
6639 	return ret;
6640 }
6641 
6642 /*
6643  * Software based L1D cache flush which is used when microcode providing
6644  * the cache control MSR is not loaded.
6645  *
6646  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6647  * flush it is required to read in 64 KiB because the replacement algorithm
6648  * is not exactly LRU. This could be sized at runtime via topology
6649  * information but as all relevant affected CPUs have 32KiB L1D cache size
6650  * there is no point in doing so.
6651  */
6652 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6653 {
6654 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6655 
6656 	/*
6657 	 * This code is only executed when the flush mode is 'cond' or
6658 	 * 'always'
6659 	 */
6660 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6661 		bool flush_l1d;
6662 
6663 		/*
6664 		 * Clear the per-vcpu flush bit, it gets set again if the vCPU
6665 		 * is reloaded, i.e. if the vCPU is scheduled out or if KVM
6666 		 * exits to userspace, or if KVM reaches one of the unsafe
6667 		 * VMEXIT handlers, e.g. if KVM calls into the emulator.
6668 		 */
6669 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6670 		vcpu->arch.l1tf_flush_l1d = false;
6671 
6672 		/*
6673 		 * Clear the per-cpu flush bit, it gets set again from
6674 		 * the interrupt handlers.
6675 		 */
6676 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6677 		kvm_clear_cpu_l1tf_flush_l1d();
6678 
6679 		if (!flush_l1d)
6680 			return;
6681 	}
6682 
6683 	vcpu->stat.l1d_flush++;
6684 
6685 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6686 		native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6687 		return;
6688 	}
6689 
6690 	asm volatile(
6691 		/* First ensure the pages are in the TLB */
6692 		"xorl	%%eax, %%eax\n"
6693 		".Lpopulate_tlb:\n\t"
6694 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6695 		"addl	$4096, %%eax\n\t"
6696 		"cmpl	%%eax, %[size]\n\t"
6697 		"jne	.Lpopulate_tlb\n\t"
6698 		"xorl	%%eax, %%eax\n\t"
6699 		"cpuid\n\t"
6700 		/* Now fill the cache */
6701 		"xorl	%%eax, %%eax\n"
6702 		".Lfill_cache:\n"
6703 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6704 		"addl	$64, %%eax\n\t"
6705 		"cmpl	%%eax, %[size]\n\t"
6706 		"jne	.Lfill_cache\n\t"
6707 		"lfence\n"
6708 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6709 		    [size] "r" (size)
6710 		: "eax", "ebx", "ecx", "edx");
6711 }
6712 
6713 void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6714 {
6715 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6716 	int tpr_threshold;
6717 
6718 	if (is_guest_mode(vcpu) &&
6719 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6720 		return;
6721 
6722 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6723 	if (is_guest_mode(vcpu))
6724 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6725 	else
6726 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6727 }
6728 
6729 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6730 {
6731 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6732 	u32 sec_exec_control;
6733 
6734 	if (!lapic_in_kernel(vcpu))
6735 		return;
6736 
6737 	if (!flexpriority_enabled &&
6738 	    !cpu_has_vmx_virtualize_x2apic_mode())
6739 		return;
6740 
6741 	/* Postpone execution until vmcs01 is the current VMCS. */
6742 	if (is_guest_mode(vcpu)) {
6743 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6744 		return;
6745 	}
6746 
6747 	sec_exec_control = secondary_exec_controls_get(vmx);
6748 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6749 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6750 
6751 	switch (kvm_get_apic_mode(vcpu)) {
6752 	case LAPIC_MODE_INVALID:
6753 		WARN_ONCE(true, "Invalid local APIC state");
6754 		break;
6755 	case LAPIC_MODE_DISABLED:
6756 		break;
6757 	case LAPIC_MODE_XAPIC:
6758 		if (flexpriority_enabled) {
6759 			sec_exec_control |=
6760 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6761 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6762 
6763 			/*
6764 			 * Flush the TLB, reloading the APIC access page will
6765 			 * only do so if its physical address has changed, but
6766 			 * the guest may have inserted a non-APIC mapping into
6767 			 * the TLB while the APIC access page was disabled.
6768 			 */
6769 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6770 		}
6771 		break;
6772 	case LAPIC_MODE_X2APIC:
6773 		if (cpu_has_vmx_virtualize_x2apic_mode())
6774 			sec_exec_control |=
6775 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6776 		break;
6777 	}
6778 	secondary_exec_controls_set(vmx, sec_exec_control);
6779 
6780 	vmx_update_msr_bitmap_x2apic(vcpu);
6781 }
6782 
6783 void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6784 {
6785 	const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT;
6786 	struct kvm *kvm = vcpu->kvm;
6787 	struct kvm_memslots *slots = kvm_memslots(kvm);
6788 	struct kvm_memory_slot *slot;
6789 	unsigned long mmu_seq;
6790 	kvm_pfn_t pfn;
6791 
6792 	/* Defer reload until vmcs01 is the current VMCS. */
6793 	if (is_guest_mode(vcpu)) {
6794 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6795 		return;
6796 	}
6797 
6798 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6799 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6800 		return;
6801 
6802 	/*
6803 	 * Explicitly grab the memslot using KVM's internal slot ID to ensure
6804 	 * KVM doesn't unintentionally grab a userspace memslot.  It _should_
6805 	 * be impossible for userspace to create a memslot for the APIC when
6806 	 * APICv is enabled, but paranoia won't hurt in this case.
6807 	 */
6808 	slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT);
6809 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
6810 		return;
6811 
6812 	/*
6813 	 * Ensure that the mmu_notifier sequence count is read before KVM
6814 	 * retrieves the pfn from the primary MMU.  Note, the memslot is
6815 	 * protected by SRCU, not the mmu_notifier.  Pairs with the smp_wmb()
6816 	 * in kvm_mmu_invalidate_end().
6817 	 */
6818 	mmu_seq = kvm->mmu_invalidate_seq;
6819 	smp_rmb();
6820 
6821 	/*
6822 	 * No need to retry if the memslot does not exist or is invalid.  KVM
6823 	 * controls the APIC-access page memslot, and only deletes the memslot
6824 	 * if APICv is permanently inhibited, i.e. the memslot won't reappear.
6825 	 */
6826 	pfn = gfn_to_pfn_memslot(slot, gfn);
6827 	if (is_error_noslot_pfn(pfn))
6828 		return;
6829 
6830 	read_lock(&vcpu->kvm->mmu_lock);
6831 	if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn)) {
6832 		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6833 		read_unlock(&vcpu->kvm->mmu_lock);
6834 		goto out;
6835 	}
6836 
6837 	vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn));
6838 	read_unlock(&vcpu->kvm->mmu_lock);
6839 
6840 	/*
6841 	 * No need for a manual TLB flush at this point, KVM has already done a
6842 	 * flush if there were SPTEs pointing at the previous page.
6843 	 */
6844 out:
6845 	/*
6846 	 * Do not pin apic access page in memory, the MMU notifier
6847 	 * will call us again if it is migrated or swapped out.
6848 	 */
6849 	kvm_release_pfn_clean(pfn);
6850 }
6851 
6852 void vmx_hwapic_isr_update(int max_isr)
6853 {
6854 	u16 status;
6855 	u8 old;
6856 
6857 	if (max_isr == -1)
6858 		max_isr = 0;
6859 
6860 	status = vmcs_read16(GUEST_INTR_STATUS);
6861 	old = status >> 8;
6862 	if (max_isr != old) {
6863 		status &= 0xff;
6864 		status |= max_isr << 8;
6865 		vmcs_write16(GUEST_INTR_STATUS, status);
6866 	}
6867 }
6868 
6869 static void vmx_set_rvi(int vector)
6870 {
6871 	u16 status;
6872 	u8 old;
6873 
6874 	if (vector == -1)
6875 		vector = 0;
6876 
6877 	status = vmcs_read16(GUEST_INTR_STATUS);
6878 	old = (u8)status & 0xff;
6879 	if ((u8)vector != old) {
6880 		status &= ~0xff;
6881 		status |= (u8)vector;
6882 		vmcs_write16(GUEST_INTR_STATUS, status);
6883 	}
6884 }
6885 
6886 void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6887 {
6888 	/*
6889 	 * When running L2, updating RVI is only relevant when
6890 	 * vmcs12 virtual-interrupt-delivery enabled.
6891 	 * However, it can be enabled only when L1 also
6892 	 * intercepts external-interrupts and in that case
6893 	 * we should not update vmcs02 RVI but instead intercept
6894 	 * interrupt. Therefore, do nothing when running L2.
6895 	 */
6896 	if (!is_guest_mode(vcpu))
6897 		vmx_set_rvi(max_irr);
6898 }
6899 
6900 int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6901 {
6902 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6903 	int max_irr;
6904 	bool got_posted_interrupt;
6905 
6906 	if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6907 		return -EIO;
6908 
6909 	if (pi_test_on(&vmx->pi_desc)) {
6910 		pi_clear_on(&vmx->pi_desc);
6911 		/*
6912 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6913 		 * But on x86 this is just a compiler barrier anyway.
6914 		 */
6915 		smp_mb__after_atomic();
6916 		got_posted_interrupt =
6917 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6918 	} else {
6919 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6920 		got_posted_interrupt = false;
6921 	}
6922 
6923 	/*
6924 	 * Newly recognized interrupts are injected via either virtual interrupt
6925 	 * delivery (RVI) or KVM_REQ_EVENT.  Virtual interrupt delivery is
6926 	 * disabled in two cases:
6927 	 *
6928 	 * 1) If L2 is running and the vCPU has a new pending interrupt.  If L1
6929 	 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6930 	 * VM-Exit to L1.  If L1 doesn't want to exit, the interrupt is injected
6931 	 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6932 	 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6933 	 *
6934 	 * 2) If APICv is disabled for this vCPU, assigned devices may still
6935 	 * attempt to post interrupts.  The posted interrupt vector will cause
6936 	 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6937 	 */
6938 	if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6939 		vmx_set_rvi(max_irr);
6940 	else if (got_posted_interrupt)
6941 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6942 
6943 	return max_irr;
6944 }
6945 
6946 void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6947 {
6948 	if (!kvm_vcpu_apicv_active(vcpu))
6949 		return;
6950 
6951 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6952 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6953 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6954 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6955 }
6956 
6957 void vmx_apicv_pre_state_restore(struct kvm_vcpu *vcpu)
6958 {
6959 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6960 
6961 	pi_clear_on(&vmx->pi_desc);
6962 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6963 }
6964 
6965 void vmx_do_interrupt_irqoff(unsigned long entry);
6966 void vmx_do_nmi_irqoff(void);
6967 
6968 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6969 {
6970 	/*
6971 	 * Save xfd_err to guest_fpu before interrupt is enabled, so the
6972 	 * MSR value is not clobbered by the host activity before the guest
6973 	 * has chance to consume it.
6974 	 *
6975 	 * Do not blindly read xfd_err here, since this exception might
6976 	 * be caused by L1 interception on a platform which doesn't
6977 	 * support xfd at all.
6978 	 *
6979 	 * Do it conditionally upon guest_fpu::xfd. xfd_err matters
6980 	 * only when xfd contains a non-zero value.
6981 	 *
6982 	 * Queuing exception is done in vmx_handle_exit. See comment there.
6983 	 */
6984 	if (vcpu->arch.guest_fpu.fpstate->xfd)
6985 		rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6986 }
6987 
6988 static void handle_exception_irqoff(struct kvm_vcpu *vcpu, u32 intr_info)
6989 {
6990 	/* if exit due to PF check for async PF */
6991 	if (is_page_fault(intr_info))
6992 		vcpu->arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6993 	/* if exit due to NM, handle before interrupts are enabled */
6994 	else if (is_nm_fault(intr_info))
6995 		handle_nm_fault_irqoff(vcpu);
6996 	/* Handle machine checks before interrupts are enabled */
6997 	else if (is_machine_check(intr_info))
6998 		kvm_machine_check();
6999 }
7000 
7001 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu,
7002 					     u32 intr_info)
7003 {
7004 	unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
7005 
7006 	if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
7007 	    "unexpected VM-Exit interrupt info: 0x%x", intr_info))
7008 		return;
7009 
7010 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
7011 	if (cpu_feature_enabled(X86_FEATURE_FRED))
7012 		fred_entry_from_kvm(EVENT_TYPE_EXTINT, vector);
7013 	else
7014 		vmx_do_interrupt_irqoff(gate_offset((gate_desc *)host_idt_base + vector));
7015 	kvm_after_interrupt(vcpu);
7016 
7017 	vcpu->arch.at_instruction_boundary = true;
7018 }
7019 
7020 void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
7021 {
7022 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7023 
7024 	if (vmx->emulation_required)
7025 		return;
7026 
7027 	if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
7028 		handle_external_interrupt_irqoff(vcpu, vmx_get_intr_info(vcpu));
7029 	else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
7030 		handle_exception_irqoff(vcpu, vmx_get_intr_info(vcpu));
7031 }
7032 
7033 /*
7034  * The kvm parameter can be NULL (module initialization, or invocation before
7035  * VM creation). Be sure to check the kvm parameter before using it.
7036  */
7037 bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
7038 {
7039 	switch (index) {
7040 	case MSR_IA32_SMBASE:
7041 		if (!IS_ENABLED(CONFIG_KVM_SMM))
7042 			return false;
7043 		/*
7044 		 * We cannot do SMM unless we can run the guest in big
7045 		 * real mode.
7046 		 */
7047 		return enable_unrestricted_guest || emulate_invalid_guest_state;
7048 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
7049 		return nested;
7050 	case MSR_AMD64_VIRT_SPEC_CTRL:
7051 	case MSR_AMD64_TSC_RATIO:
7052 		/* This is AMD only.  */
7053 		return false;
7054 	default:
7055 		return true;
7056 	}
7057 }
7058 
7059 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7060 {
7061 	u32 exit_intr_info;
7062 	bool unblock_nmi;
7063 	u8 vector;
7064 	bool idtv_info_valid;
7065 
7066 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7067 
7068 	if (enable_vnmi) {
7069 		if (vmx->loaded_vmcs->nmi_known_unmasked)
7070 			return;
7071 
7072 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
7073 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7074 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7075 		/*
7076 		 * SDM 3: 27.7.1.2 (September 2008)
7077 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7078 		 * a guest IRET fault.
7079 		 * SDM 3: 23.2.2 (September 2008)
7080 		 * Bit 12 is undefined in any of the following cases:
7081 		 *  If the VM exit sets the valid bit in the IDT-vectoring
7082 		 *   information field.
7083 		 *  If the VM exit is due to a double fault.
7084 		 */
7085 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7086 		    vector != DF_VECTOR && !idtv_info_valid)
7087 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7088 				      GUEST_INTR_STATE_NMI);
7089 		else
7090 			vmx->loaded_vmcs->nmi_known_unmasked =
7091 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7092 				  & GUEST_INTR_STATE_NMI);
7093 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
7094 		vmx->loaded_vmcs->vnmi_blocked_time +=
7095 			ktime_to_ns(ktime_sub(ktime_get(),
7096 					      vmx->loaded_vmcs->entry_time));
7097 }
7098 
7099 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7100 				      u32 idt_vectoring_info,
7101 				      int instr_len_field,
7102 				      int error_code_field)
7103 {
7104 	u8 vector;
7105 	int type;
7106 	bool idtv_info_valid;
7107 
7108 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7109 
7110 	vcpu->arch.nmi_injected = false;
7111 	kvm_clear_exception_queue(vcpu);
7112 	kvm_clear_interrupt_queue(vcpu);
7113 
7114 	if (!idtv_info_valid)
7115 		return;
7116 
7117 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7118 
7119 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7120 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7121 
7122 	switch (type) {
7123 	case INTR_TYPE_NMI_INTR:
7124 		vcpu->arch.nmi_injected = true;
7125 		/*
7126 		 * SDM 3: 27.7.1.2 (September 2008)
7127 		 * Clear bit "block by NMI" before VM entry if a NMI
7128 		 * delivery faulted.
7129 		 */
7130 		vmx_set_nmi_mask(vcpu, false);
7131 		break;
7132 	case INTR_TYPE_SOFT_EXCEPTION:
7133 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7134 		fallthrough;
7135 	case INTR_TYPE_HARD_EXCEPTION:
7136 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7137 			u32 err = vmcs_read32(error_code_field);
7138 			kvm_requeue_exception_e(vcpu, vector, err);
7139 		} else
7140 			kvm_requeue_exception(vcpu, vector);
7141 		break;
7142 	case INTR_TYPE_SOFT_INTR:
7143 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7144 		fallthrough;
7145 	case INTR_TYPE_EXT_INTR:
7146 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7147 		break;
7148 	default:
7149 		break;
7150 	}
7151 }
7152 
7153 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7154 {
7155 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7156 				  VM_EXIT_INSTRUCTION_LEN,
7157 				  IDT_VECTORING_ERROR_CODE);
7158 }
7159 
7160 void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7161 {
7162 	__vmx_complete_interrupts(vcpu,
7163 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7164 				  VM_ENTRY_INSTRUCTION_LEN,
7165 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
7166 
7167 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7168 }
7169 
7170 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7171 {
7172 	int i, nr_msrs;
7173 	struct perf_guest_switch_msr *msrs;
7174 	struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7175 
7176 	pmu->host_cross_mapped_mask = 0;
7177 	if (pmu->pebs_enable & pmu->global_ctrl)
7178 		intel_pmu_cross_mapped_check(pmu);
7179 
7180 	/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7181 	msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7182 	if (!msrs)
7183 		return;
7184 
7185 	for (i = 0; i < nr_msrs; i++)
7186 		if (msrs[i].host == msrs[i].guest)
7187 			clear_atomic_switch_msr(vmx, msrs[i].msr);
7188 		else
7189 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7190 					msrs[i].host, false);
7191 }
7192 
7193 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu, bool force_immediate_exit)
7194 {
7195 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7196 	u64 tscl;
7197 	u32 delta_tsc;
7198 
7199 	if (force_immediate_exit) {
7200 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7201 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7202 	} else if (vmx->hv_deadline_tsc != -1) {
7203 		tscl = rdtsc();
7204 		if (vmx->hv_deadline_tsc > tscl)
7205 			/* set_hv_timer ensures the delta fits in 32-bits */
7206 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7207 				cpu_preemption_timer_multi);
7208 		else
7209 			delta_tsc = 0;
7210 
7211 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7212 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7213 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7214 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7215 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7216 	}
7217 }
7218 
7219 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7220 {
7221 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7222 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
7223 		vmcs_writel(HOST_RSP, host_rsp);
7224 	}
7225 }
7226 
7227 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7228 					unsigned int flags)
7229 {
7230 	u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7231 
7232 	if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7233 		return;
7234 
7235 	if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7236 		vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
7237 
7238 	/*
7239 	 * If the guest/host SPEC_CTRL values differ, restore the host value.
7240 	 *
7241 	 * For legacy IBRS, the IBRS bit always needs to be written after
7242 	 * transitioning from a less privileged predictor mode, regardless of
7243 	 * whether the guest/host values differ.
7244 	 */
7245 	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7246 	    vmx->spec_ctrl != hostval)
7247 		native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
7248 
7249 	barrier_nospec();
7250 }
7251 
7252 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu,
7253 					     bool force_immediate_exit)
7254 {
7255 	/*
7256 	 * If L2 is active, some VMX preemption timer exits can be handled in
7257 	 * the fastpath even, all other exits must use the slow path.
7258 	 */
7259 	if (is_guest_mode(vcpu) &&
7260 	    to_vmx(vcpu)->exit_reason.basic != EXIT_REASON_PREEMPTION_TIMER)
7261 		return EXIT_FASTPATH_NONE;
7262 
7263 	switch (to_vmx(vcpu)->exit_reason.basic) {
7264 	case EXIT_REASON_MSR_WRITE:
7265 		return handle_fastpath_set_msr_irqoff(vcpu);
7266 	case EXIT_REASON_PREEMPTION_TIMER:
7267 		return handle_fastpath_preemption_timer(vcpu, force_immediate_exit);
7268 	default:
7269 		return EXIT_FASTPATH_NONE;
7270 	}
7271 }
7272 
7273 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7274 					unsigned int flags)
7275 {
7276 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7277 
7278 	guest_state_enter_irqoff();
7279 
7280 	/*
7281 	 * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW
7282 	 * mitigation for MDS is done late in VMentry and is still
7283 	 * executed in spite of L1D Flush. This is because an extra VERW
7284 	 * should not matter much after the big hammer L1D Flush.
7285 	 */
7286 	if (static_branch_unlikely(&vmx_l1d_should_flush))
7287 		vmx_l1d_flush(vcpu);
7288 	else if (static_branch_unlikely(&mmio_stale_data_clear) &&
7289 		 kvm_arch_has_assigned_device(vcpu->kvm))
7290 		mds_clear_cpu_buffers();
7291 
7292 	vmx_disable_fb_clear(vmx);
7293 
7294 	if (vcpu->arch.cr2 != native_read_cr2())
7295 		native_write_cr2(vcpu->arch.cr2);
7296 
7297 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7298 				   flags);
7299 
7300 	vcpu->arch.cr2 = native_read_cr2();
7301 	vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7302 
7303 	vmx->idt_vectoring_info = 0;
7304 
7305 	vmx_enable_fb_clear(vmx);
7306 
7307 	if (unlikely(vmx->fail)) {
7308 		vmx->exit_reason.full = 0xdead;
7309 		goto out;
7310 	}
7311 
7312 	vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7313 	if (likely(!vmx->exit_reason.failed_vmentry))
7314 		vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7315 
7316 	if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI &&
7317 	    is_nmi(vmx_get_intr_info(vcpu))) {
7318 		kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
7319 		if (cpu_feature_enabled(X86_FEATURE_FRED))
7320 			fred_entry_from_kvm(EVENT_TYPE_NMI, NMI_VECTOR);
7321 		else
7322 			vmx_do_nmi_irqoff();
7323 		kvm_after_interrupt(vcpu);
7324 	}
7325 
7326 out:
7327 	guest_state_exit_irqoff();
7328 }
7329 
7330 fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu, bool force_immediate_exit)
7331 {
7332 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7333 	unsigned long cr3, cr4;
7334 
7335 	/* Record the guest's net vcpu time for enforced NMI injections. */
7336 	if (unlikely(!enable_vnmi &&
7337 		     vmx->loaded_vmcs->soft_vnmi_blocked))
7338 		vmx->loaded_vmcs->entry_time = ktime_get();
7339 
7340 	/*
7341 	 * Don't enter VMX if guest state is invalid, let the exit handler
7342 	 * start emulation until we arrive back to a valid state.  Synthesize a
7343 	 * consistency check VM-Exit due to invalid guest state and bail.
7344 	 */
7345 	if (unlikely(vmx->emulation_required)) {
7346 		vmx->fail = 0;
7347 
7348 		vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
7349 		vmx->exit_reason.failed_vmentry = 1;
7350 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7351 		vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
7352 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7353 		vmx->exit_intr_info = 0;
7354 		return EXIT_FASTPATH_NONE;
7355 	}
7356 
7357 	trace_kvm_entry(vcpu, force_immediate_exit);
7358 
7359 	if (vmx->ple_window_dirty) {
7360 		vmx->ple_window_dirty = false;
7361 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
7362 	}
7363 
7364 	/*
7365 	 * We did this in prepare_switch_to_guest, because it needs to
7366 	 * be within srcu_read_lock.
7367 	 */
7368 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7369 
7370 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7371 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7372 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7373 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7374 	vcpu->arch.regs_dirty = 0;
7375 
7376 	/*
7377 	 * Refresh vmcs.HOST_CR3 if necessary.  This must be done immediately
7378 	 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7379 	 * it switches back to the current->mm, which can occur in KVM context
7380 	 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7381 	 * toggles a static key while handling a VM-Exit.
7382 	 */
7383 	cr3 = __get_current_cr3_fast();
7384 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7385 		vmcs_writel(HOST_CR3, cr3);
7386 		vmx->loaded_vmcs->host_state.cr3 = cr3;
7387 	}
7388 
7389 	cr4 = cr4_read_shadow();
7390 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7391 		vmcs_writel(HOST_CR4, cr4);
7392 		vmx->loaded_vmcs->host_state.cr4 = cr4;
7393 	}
7394 
7395 	/* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
7396 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
7397 		set_debugreg(vcpu->arch.dr6, 6);
7398 
7399 	/* When single-stepping over STI and MOV SS, we must clear the
7400 	 * corresponding interruptibility bits in the guest state. Otherwise
7401 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
7402 	 * exceptions being set, but that's not correct for the guest debugging
7403 	 * case. */
7404 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7405 		vmx_set_interrupt_shadow(vcpu, 0);
7406 
7407 	kvm_load_guest_xsave_state(vcpu);
7408 
7409 	pt_guest_enter(vmx);
7410 
7411 	atomic_switch_perf_msrs(vmx);
7412 	if (intel_pmu_lbr_is_enabled(vcpu))
7413 		vmx_passthrough_lbr_msrs(vcpu);
7414 
7415 	if (enable_preemption_timer)
7416 		vmx_update_hv_timer(vcpu, force_immediate_exit);
7417 	else if (force_immediate_exit)
7418 		smp_send_reschedule(vcpu->cpu);
7419 
7420 	kvm_wait_lapic_expire(vcpu);
7421 
7422 	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
7423 	vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
7424 
7425 	/* All fields are clean at this point */
7426 	if (kvm_is_using_evmcs()) {
7427 		current_evmcs->hv_clean_fields |=
7428 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7429 
7430 		current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7431 	}
7432 
7433 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7434 	if (vmx->host_debugctlmsr)
7435 		update_debugctlmsr(vmx->host_debugctlmsr);
7436 
7437 #ifndef CONFIG_X86_64
7438 	/*
7439 	 * The sysexit path does not restore ds/es, so we must set them to
7440 	 * a reasonable value ourselves.
7441 	 *
7442 	 * We can't defer this to vmx_prepare_switch_to_host() since that
7443 	 * function may be executed in interrupt context, which saves and
7444 	 * restore segments around it, nullifying its effect.
7445 	 */
7446 	loadsegment(ds, __USER_DS);
7447 	loadsegment(es, __USER_DS);
7448 #endif
7449 
7450 	pt_guest_exit(vmx);
7451 
7452 	kvm_load_host_xsave_state(vcpu);
7453 
7454 	if (is_guest_mode(vcpu)) {
7455 		/*
7456 		 * Track VMLAUNCH/VMRESUME that have made past guest state
7457 		 * checking.
7458 		 */
7459 		if (vmx->nested.nested_run_pending &&
7460 		    !vmx->exit_reason.failed_vmentry)
7461 			++vcpu->stat.nested_run;
7462 
7463 		vmx->nested.nested_run_pending = 0;
7464 	}
7465 
7466 	if (unlikely(vmx->fail))
7467 		return EXIT_FASTPATH_NONE;
7468 
7469 	if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
7470 		kvm_machine_check();
7471 
7472 	trace_kvm_exit(vcpu, KVM_ISA_VMX);
7473 
7474 	if (unlikely(vmx->exit_reason.failed_vmentry))
7475 		return EXIT_FASTPATH_NONE;
7476 
7477 	vmx->loaded_vmcs->launched = 1;
7478 
7479 	vmx_recover_nmi_blocking(vmx);
7480 	vmx_complete_interrupts(vmx);
7481 
7482 	return vmx_exit_handlers_fastpath(vcpu, force_immediate_exit);
7483 }
7484 
7485 void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7486 {
7487 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7488 
7489 	if (enable_pml)
7490 		vmx_destroy_pml_buffer(vmx);
7491 	free_vpid(vmx->vpid);
7492 	nested_vmx_free_vcpu(vcpu);
7493 	free_loaded_vmcs(vmx->loaded_vmcs);
7494 	free_page((unsigned long)vmx->ve_info);
7495 }
7496 
7497 int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7498 {
7499 	struct vmx_uret_msr *tsx_ctrl;
7500 	struct vcpu_vmx *vmx;
7501 	int i, err;
7502 
7503 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7504 	vmx = to_vmx(vcpu);
7505 
7506 	INIT_LIST_HEAD(&vmx->pi_wakeup_list);
7507 
7508 	err = -ENOMEM;
7509 
7510 	vmx->vpid = allocate_vpid();
7511 
7512 	/*
7513 	 * If PML is turned on, failure on enabling PML just results in failure
7514 	 * of creating the vcpu, therefore we can simplify PML logic (by
7515 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
7516 	 * for the guest), etc.
7517 	 */
7518 	if (enable_pml) {
7519 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7520 		if (!vmx->pml_pg)
7521 			goto free_vpid;
7522 	}
7523 
7524 	for (i = 0; i < kvm_nr_uret_msrs; ++i)
7525 		vmx->guest_uret_msrs[i].mask = -1ull;
7526 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7527 		/*
7528 		 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7529 		 * Keep the host value unchanged to avoid changing CPUID bits
7530 		 * under the host kernel's feet.
7531 		 */
7532 		tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7533 		if (tsx_ctrl)
7534 			tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7535 	}
7536 
7537 	err = alloc_loaded_vmcs(&vmx->vmcs01);
7538 	if (err < 0)
7539 		goto free_pml;
7540 
7541 	/*
7542 	 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7543 	 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7544 	 * feature only for vmcs01, KVM currently isn't equipped to realize any
7545 	 * performance benefits from enabling it for vmcs02.
7546 	 */
7547 	if (kvm_is_using_evmcs() &&
7548 	    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7549 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7550 
7551 		evmcs->hv_enlightenments_control.msr_bitmap = 1;
7552 	}
7553 
7554 	/* The MSR bitmap starts with all ones */
7555 	bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7556 	bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7557 
7558 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7559 #ifdef CONFIG_X86_64
7560 	vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7561 	vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7562 	vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7563 #endif
7564 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7565 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7566 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7567 	if (kvm_cstate_in_guest(vcpu->kvm)) {
7568 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7569 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7570 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7571 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7572 	}
7573 
7574 	vmx->loaded_vmcs = &vmx->vmcs01;
7575 
7576 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
7577 		err = kvm_alloc_apic_access_page(vcpu->kvm);
7578 		if (err)
7579 			goto free_vmcs;
7580 	}
7581 
7582 	if (enable_ept && !enable_unrestricted_guest) {
7583 		err = init_rmode_identity_map(vcpu->kvm);
7584 		if (err)
7585 			goto free_vmcs;
7586 	}
7587 
7588 	err = -ENOMEM;
7589 	if (vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_EPT_VIOLATION_VE) {
7590 		struct page *page;
7591 
7592 		BUILD_BUG_ON(sizeof(*vmx->ve_info) > PAGE_SIZE);
7593 
7594 		/* ve_info must be page aligned. */
7595 		page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7596 		if (!page)
7597 			goto free_vmcs;
7598 
7599 		vmx->ve_info = page_to_virt(page);
7600 	}
7601 
7602 	if (vmx_can_use_ipiv(vcpu))
7603 		WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7604 			   __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID);
7605 
7606 	return 0;
7607 
7608 free_vmcs:
7609 	free_loaded_vmcs(vmx->loaded_vmcs);
7610 free_pml:
7611 	vmx_destroy_pml_buffer(vmx);
7612 free_vpid:
7613 	free_vpid(vmx->vpid);
7614 	return err;
7615 }
7616 
7617 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7618 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7619 
7620 int vmx_vm_init(struct kvm *kvm)
7621 {
7622 	if (!ple_gap)
7623 		kvm->arch.pause_in_guest = true;
7624 
7625 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7626 		switch (l1tf_mitigation) {
7627 		case L1TF_MITIGATION_OFF:
7628 		case L1TF_MITIGATION_FLUSH_NOWARN:
7629 			/* 'I explicitly don't care' is set */
7630 			break;
7631 		case L1TF_MITIGATION_FLUSH:
7632 		case L1TF_MITIGATION_FLUSH_NOSMT:
7633 		case L1TF_MITIGATION_FULL:
7634 			/*
7635 			 * Warn upon starting the first VM in a potentially
7636 			 * insecure environment.
7637 			 */
7638 			if (sched_smt_active())
7639 				pr_warn_once(L1TF_MSG_SMT);
7640 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7641 				pr_warn_once(L1TF_MSG_L1D);
7642 			break;
7643 		case L1TF_MITIGATION_FULL_FORCE:
7644 			/* Flush is enforced */
7645 			break;
7646 		}
7647 	}
7648 	return 0;
7649 }
7650 
7651 u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7652 {
7653 	/*
7654 	 * Force UC for host MMIO regions, as allowing the guest to access MMIO
7655 	 * with cacheable accesses will result in Machine Checks.
7656 	 */
7657 	if (is_mmio)
7658 		return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7659 
7660 	/*
7661 	 * Force WB and ignore guest PAT if the VM does NOT have a non-coherent
7662 	 * device attached and the CPU doesn't support self-snoop.  Letting the
7663 	 * guest control memory types on Intel CPUs without self-snoop may
7664 	 * result in unexpected behavior, and so KVM's (historical) ABI is to
7665 	 * trust the guest to behave only as a last resort.
7666 	 */
7667 	if (!static_cpu_has(X86_FEATURE_SELFSNOOP) &&
7668 	    !kvm_arch_has_noncoherent_dma(vcpu->kvm))
7669 		return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7670 
7671 	return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT);
7672 }
7673 
7674 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7675 {
7676 	/*
7677 	 * These bits in the secondary execution controls field
7678 	 * are dynamic, the others are mostly based on the hypervisor
7679 	 * architecture and the guest's CPUID.  Do not touch the
7680 	 * dynamic bits.
7681 	 */
7682 	u32 mask =
7683 		SECONDARY_EXEC_SHADOW_VMCS |
7684 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7685 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7686 		SECONDARY_EXEC_DESC;
7687 
7688 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7689 
7690 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7691 }
7692 
7693 /*
7694  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7695  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7696  */
7697 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7698 {
7699 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7700 	struct kvm_cpuid_entry2 *entry;
7701 
7702 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7703 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7704 
7705 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7706 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7707 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7708 } while (0)
7709 
7710 	entry = kvm_find_cpuid_entry(vcpu, 0x1);
7711 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7712 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7713 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7714 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7715 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7716 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7717 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7718 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7719 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7720 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7721 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7722 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7723 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7724 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7725 
7726 	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7727 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7728 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7729 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7730 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7731 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7732 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7733 
7734 	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 1);
7735 	cr4_fixed1_update(X86_CR4_LAM_SUP,    eax, feature_bit(LAM));
7736 
7737 #undef cr4_fixed1_update
7738 }
7739 
7740 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7741 {
7742 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7743 	struct kvm_cpuid_entry2 *best = NULL;
7744 	int i;
7745 
7746 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7747 		best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7748 		if (!best)
7749 			return;
7750 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7751 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7752 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7753 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7754 	}
7755 
7756 	/* Get the number of configurable Address Ranges for filtering */
7757 	vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7758 						PT_CAP_num_address_ranges);
7759 
7760 	/* Initialize and clear the no dependency bits */
7761 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7762 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7763 			RTIT_CTL_BRANCH_EN);
7764 
7765 	/*
7766 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7767 	 * will inject an #GP
7768 	 */
7769 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7770 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7771 
7772 	/*
7773 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7774 	 * PSBFreq can be set
7775 	 */
7776 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7777 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7778 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7779 
7780 	/*
7781 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7782 	 */
7783 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7784 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7785 					      RTIT_CTL_MTC_RANGE);
7786 
7787 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7788 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7789 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7790 							RTIT_CTL_PTW_EN);
7791 
7792 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7793 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7794 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7795 
7796 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7797 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7798 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7799 
7800 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7801 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7802 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7803 
7804 	/* unmask address range configure area */
7805 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7806 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7807 }
7808 
7809 void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7810 {
7811 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7812 
7813 	/*
7814 	 * XSAVES is effectively enabled if and only if XSAVE is also exposed
7815 	 * to the guest.  XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be
7816 	 * set if and only if XSAVE is supported.
7817 	 */
7818 	if (boot_cpu_has(X86_FEATURE_XSAVE) &&
7819 	    guest_cpuid_has(vcpu, X86_FEATURE_XSAVE))
7820 		kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_XSAVES);
7821 
7822 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VMX);
7823 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LAM);
7824 
7825 	vmx_setup_uret_msrs(vmx);
7826 
7827 	if (cpu_has_secondary_exec_ctrls())
7828 		vmcs_set_secondary_exec_control(vmx,
7829 						vmx_secondary_exec_control(vmx));
7830 
7831 	if (guest_can_use(vcpu, X86_FEATURE_VMX))
7832 		vmx->msr_ia32_feature_control_valid_bits |=
7833 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7834 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7835 	else
7836 		vmx->msr_ia32_feature_control_valid_bits &=
7837 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7838 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7839 
7840 	if (guest_can_use(vcpu, X86_FEATURE_VMX))
7841 		nested_vmx_cr_fixed1_bits_update(vcpu);
7842 
7843 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7844 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7845 		update_intel_pt_cfg(vcpu);
7846 
7847 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7848 		struct vmx_uret_msr *msr;
7849 		msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7850 		if (msr) {
7851 			bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7852 			vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7853 		}
7854 	}
7855 
7856 	if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7857 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7858 					  !guest_cpuid_has(vcpu, X86_FEATURE_XFD));
7859 
7860 	if (boot_cpu_has(X86_FEATURE_IBPB))
7861 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
7862 					  !guest_has_pred_cmd_msr(vcpu));
7863 
7864 	if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
7865 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
7866 					  !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
7867 
7868 	set_cr4_guest_host_mask(vmx);
7869 
7870 	vmx_write_encls_bitmap(vcpu, NULL);
7871 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7872 		vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7873 	else
7874 		vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7875 
7876 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7877 		vmx->msr_ia32_feature_control_valid_bits |=
7878 			FEAT_CTL_SGX_LC_ENABLED;
7879 	else
7880 		vmx->msr_ia32_feature_control_valid_bits &=
7881 			~FEAT_CTL_SGX_LC_ENABLED;
7882 
7883 	/* Refresh #PF interception to account for MAXPHYADDR changes. */
7884 	vmx_update_exception_bitmap(vcpu);
7885 }
7886 
7887 static __init u64 vmx_get_perf_capabilities(void)
7888 {
7889 	u64 perf_cap = PMU_CAP_FW_WRITES;
7890 	u64 host_perf_cap = 0;
7891 
7892 	if (!enable_pmu)
7893 		return 0;
7894 
7895 	if (boot_cpu_has(X86_FEATURE_PDCM))
7896 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
7897 
7898 	if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) {
7899 		x86_perf_get_lbr(&vmx_lbr_caps);
7900 
7901 		/*
7902 		 * KVM requires LBR callstack support, as the overhead due to
7903 		 * context switching LBRs without said support is too high.
7904 		 * See intel_pmu_create_guest_lbr_event() for more info.
7905 		 */
7906 		if (!vmx_lbr_caps.has_callstack)
7907 			memset(&vmx_lbr_caps, 0, sizeof(vmx_lbr_caps));
7908 		else if (vmx_lbr_caps.nr)
7909 			perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT;
7910 	}
7911 
7912 	if (vmx_pebs_supported()) {
7913 		perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
7914 
7915 		/*
7916 		 * Disallow adaptive PEBS as it is functionally broken, can be
7917 		 * used by the guest to read *host* LBRs, and can be used to
7918 		 * bypass userspace event filters.  To correctly and safely
7919 		 * support adaptive PEBS, KVM needs to:
7920 		 *
7921 		 * 1. Account for the ADAPTIVE flag when (re)programming fixed
7922 		 *    counters.
7923 		 *
7924 		 * 2. Gain support from perf (or take direct control of counter
7925 		 *    programming) to support events without adaptive PEBS
7926 		 *    enabled for the hardware counter.
7927 		 *
7928 		 * 3. Ensure LBR MSRs cannot hold host data on VM-Entry with
7929 		 *    adaptive PEBS enabled and MSR_PEBS_DATA_CFG.LBRS=1.
7930 		 *
7931 		 * 4. Document which PMU events are effectively exposed to the
7932 		 *    guest via adaptive PEBS, and make adaptive PEBS mutually
7933 		 *    exclusive with KVM_SET_PMU_EVENT_FILTER if necessary.
7934 		 */
7935 		perf_cap &= ~PERF_CAP_PEBS_BASELINE;
7936 	}
7937 
7938 	return perf_cap;
7939 }
7940 
7941 static __init void vmx_set_cpu_caps(void)
7942 {
7943 	kvm_set_cpu_caps();
7944 
7945 	/* CPUID 0x1 */
7946 	if (nested)
7947 		kvm_cpu_cap_set(X86_FEATURE_VMX);
7948 
7949 	/* CPUID 0x7 */
7950 	if (kvm_mpx_supported())
7951 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7952 	if (!cpu_has_vmx_invpcid())
7953 		kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7954 	if (vmx_pt_mode_is_host_guest())
7955 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7956 	if (vmx_pebs_supported()) {
7957 		kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7958 		kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7959 	}
7960 
7961 	if (!enable_pmu)
7962 		kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7963 	kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
7964 
7965 	if (!enable_sgx) {
7966 		kvm_cpu_cap_clear(X86_FEATURE_SGX);
7967 		kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7968 		kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7969 		kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7970 	}
7971 
7972 	if (vmx_umip_emulated())
7973 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7974 
7975 	/* CPUID 0xD.1 */
7976 	kvm_caps.supported_xss = 0;
7977 	if (!cpu_has_vmx_xsaves())
7978 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7979 
7980 	/* CPUID 0x80000001 and 0x7 (RDPID) */
7981 	if (!cpu_has_vmx_rdtscp()) {
7982 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7983 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7984 	}
7985 
7986 	if (cpu_has_vmx_waitpkg())
7987 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7988 }
7989 
7990 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7991 				  struct x86_instruction_info *info)
7992 {
7993 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7994 	unsigned short port;
7995 	bool intercept;
7996 	int size;
7997 
7998 	if (info->intercept == x86_intercept_in ||
7999 	    info->intercept == x86_intercept_ins) {
8000 		port = info->src_val;
8001 		size = info->dst_bytes;
8002 	} else {
8003 		port = info->dst_val;
8004 		size = info->src_bytes;
8005 	}
8006 
8007 	/*
8008 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
8009 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
8010 	 * control.
8011 	 *
8012 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
8013 	 */
8014 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
8015 		intercept = nested_cpu_has(vmcs12,
8016 					   CPU_BASED_UNCOND_IO_EXITING);
8017 	else
8018 		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
8019 
8020 	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
8021 	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
8022 }
8023 
8024 int vmx_check_intercept(struct kvm_vcpu *vcpu,
8025 			struct x86_instruction_info *info,
8026 			enum x86_intercept_stage stage,
8027 			struct x86_exception *exception)
8028 {
8029 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8030 
8031 	switch (info->intercept) {
8032 	/*
8033 	 * RDPID causes #UD if disabled through secondary execution controls.
8034 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
8035 	 * Note, RDPID is hidden behind ENABLE_RDTSCP.
8036 	 */
8037 	case x86_intercept_rdpid:
8038 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
8039 			exception->vector = UD_VECTOR;
8040 			exception->error_code_valid = false;
8041 			return X86EMUL_PROPAGATE_FAULT;
8042 		}
8043 		break;
8044 
8045 	case x86_intercept_in:
8046 	case x86_intercept_ins:
8047 	case x86_intercept_out:
8048 	case x86_intercept_outs:
8049 		return vmx_check_intercept_io(vcpu, info);
8050 
8051 	case x86_intercept_lgdt:
8052 	case x86_intercept_lidt:
8053 	case x86_intercept_lldt:
8054 	case x86_intercept_ltr:
8055 	case x86_intercept_sgdt:
8056 	case x86_intercept_sidt:
8057 	case x86_intercept_sldt:
8058 	case x86_intercept_str:
8059 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
8060 			return X86EMUL_CONTINUE;
8061 
8062 		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
8063 		break;
8064 
8065 	case x86_intercept_pause:
8066 		/*
8067 		 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
8068 		 * with vanilla NOPs in the emulator.  Apply the interception
8069 		 * check only to actual PAUSE instructions.  Don't check
8070 		 * PAUSE-loop-exiting, software can't expect a given PAUSE to
8071 		 * exit, i.e. KVM is within its rights to allow L2 to execute
8072 		 * the PAUSE.
8073 		 */
8074 		if ((info->rep_prefix != REPE_PREFIX) ||
8075 		    !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING))
8076 			return X86EMUL_CONTINUE;
8077 
8078 		break;
8079 
8080 	/* TODO: check more intercepts... */
8081 	default:
8082 		break;
8083 	}
8084 
8085 	return X86EMUL_UNHANDLEABLE;
8086 }
8087 
8088 #ifdef CONFIG_X86_64
8089 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
8090 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
8091 				  u64 divisor, u64 *result)
8092 {
8093 	u64 low = a << shift, high = a >> (64 - shift);
8094 
8095 	/* To avoid the overflow on divq */
8096 	if (high >= divisor)
8097 		return 1;
8098 
8099 	/* Low hold the result, high hold rem which is discarded */
8100 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
8101 	    "rm" (divisor), "0" (low), "1" (high));
8102 	*result = low;
8103 
8104 	return 0;
8105 }
8106 
8107 int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
8108 		     bool *expired)
8109 {
8110 	struct vcpu_vmx *vmx;
8111 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
8112 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
8113 
8114 	vmx = to_vmx(vcpu);
8115 	tscl = rdtsc();
8116 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
8117 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
8118 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
8119 						    ktimer->timer_advance_ns);
8120 
8121 	if (delta_tsc > lapic_timer_advance_cycles)
8122 		delta_tsc -= lapic_timer_advance_cycles;
8123 	else
8124 		delta_tsc = 0;
8125 
8126 	/* Convert to host delta tsc if tsc scaling is enabled */
8127 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
8128 	    delta_tsc && u64_shl_div_u64(delta_tsc,
8129 				kvm_caps.tsc_scaling_ratio_frac_bits,
8130 				vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
8131 		return -ERANGE;
8132 
8133 	/*
8134 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
8135 	 * we can't use the preemption timer.
8136 	 * It's possible that it fits on later vmentries, but checking
8137 	 * on every vmentry is costly so we just use an hrtimer.
8138 	 */
8139 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
8140 		return -ERANGE;
8141 
8142 	vmx->hv_deadline_tsc = tscl + delta_tsc;
8143 	*expired = !delta_tsc;
8144 	return 0;
8145 }
8146 
8147 void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
8148 {
8149 	to_vmx(vcpu)->hv_deadline_tsc = -1;
8150 }
8151 #endif
8152 
8153 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
8154 {
8155 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8156 
8157 	if (WARN_ON_ONCE(!enable_pml))
8158 		return;
8159 
8160 	if (is_guest_mode(vcpu)) {
8161 		vmx->nested.update_vmcs01_cpu_dirty_logging = true;
8162 		return;
8163 	}
8164 
8165 	/*
8166 	 * Note, nr_memslots_dirty_logging can be changed concurrent with this
8167 	 * code, but in that case another update request will be made and so
8168 	 * the guest will never run with a stale PML value.
8169 	 */
8170 	if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
8171 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8172 	else
8173 		secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8174 }
8175 
8176 void vmx_setup_mce(struct kvm_vcpu *vcpu)
8177 {
8178 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
8179 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
8180 			FEAT_CTL_LMCE_ENABLED;
8181 	else
8182 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
8183 			~FEAT_CTL_LMCE_ENABLED;
8184 }
8185 
8186 #ifdef CONFIG_KVM_SMM
8187 int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
8188 {
8189 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
8190 	if (to_vmx(vcpu)->nested.nested_run_pending)
8191 		return -EBUSY;
8192 	return !is_smm(vcpu);
8193 }
8194 
8195 int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
8196 {
8197 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8198 
8199 	/*
8200 	 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8201 	 * SMI and RSM.  Using the common VM-Exit + VM-Enter routines is wrong
8202 	 * SMI and RSM only modify state that is saved and restored via SMRAM.
8203 	 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
8204 	 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8205 	 */
8206 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
8207 	if (vmx->nested.smm.guest_mode)
8208 		nested_vmx_vmexit(vcpu, -1, 0, 0);
8209 
8210 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
8211 	vmx->nested.vmxon = false;
8212 	vmx_clear_hlt(vcpu);
8213 	return 0;
8214 }
8215 
8216 int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8217 {
8218 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8219 	int ret;
8220 
8221 	if (vmx->nested.smm.vmxon) {
8222 		vmx->nested.vmxon = true;
8223 		vmx->nested.smm.vmxon = false;
8224 	}
8225 
8226 	if (vmx->nested.smm.guest_mode) {
8227 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
8228 		if (ret)
8229 			return ret;
8230 
8231 		vmx->nested.nested_run_pending = 1;
8232 		vmx->nested.smm.guest_mode = false;
8233 	}
8234 	return 0;
8235 }
8236 
8237 void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8238 {
8239 	/* RSM will cause a vmexit anyway.  */
8240 }
8241 #endif
8242 
8243 bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8244 {
8245 	return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8246 }
8247 
8248 void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8249 {
8250 	if (is_guest_mode(vcpu)) {
8251 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8252 
8253 		if (hrtimer_try_to_cancel(timer) == 1)
8254 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8255 	}
8256 }
8257 
8258 void vmx_hardware_unsetup(void)
8259 {
8260 	kvm_set_posted_intr_wakeup_handler(NULL);
8261 
8262 	if (nested)
8263 		nested_vmx_hardware_unsetup();
8264 
8265 	free_kvm_area();
8266 }
8267 
8268 void vmx_vm_destroy(struct kvm *kvm)
8269 {
8270 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8271 
8272 	free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8273 }
8274 
8275 /*
8276  * Note, the SDM states that the linear address is masked *after* the modified
8277  * canonicality check, whereas KVM masks (untags) the address and then performs
8278  * a "normal" canonicality check.  Functionally, the two methods are identical,
8279  * and when the masking occurs relative to the canonicality check isn't visible
8280  * to software, i.e. KVM's behavior doesn't violate the SDM.
8281  */
8282 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags)
8283 {
8284 	int lam_bit;
8285 	unsigned long cr3_bits;
8286 
8287 	if (flags & (X86EMUL_F_FETCH | X86EMUL_F_IMPLICIT | X86EMUL_F_INVLPG))
8288 		return gva;
8289 
8290 	if (!is_64_bit_mode(vcpu))
8291 		return gva;
8292 
8293 	/*
8294 	 * Bit 63 determines if the address should be treated as user address
8295 	 * or a supervisor address.
8296 	 */
8297 	if (!(gva & BIT_ULL(63))) {
8298 		cr3_bits = kvm_get_active_cr3_lam_bits(vcpu);
8299 		if (!(cr3_bits & (X86_CR3_LAM_U57 | X86_CR3_LAM_U48)))
8300 			return gva;
8301 
8302 		/* LAM_U48 is ignored if LAM_U57 is set. */
8303 		lam_bit = cr3_bits & X86_CR3_LAM_U57 ? 56 : 47;
8304 	} else {
8305 		if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_LAM_SUP))
8306 			return gva;
8307 
8308 		lam_bit = kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 56 : 47;
8309 	}
8310 
8311 	/*
8312 	 * Untag the address by sign-extending the lam_bit, but NOT to bit 63.
8313 	 * Bit 63 is retained from the raw virtual address so that untagging
8314 	 * doesn't change a user access to a supervisor access, and vice versa.
8315 	 */
8316 	return (sign_extend64(gva, lam_bit) & ~BIT_ULL(63)) | (gva & BIT_ULL(63));
8317 }
8318 
8319 static unsigned int vmx_handle_intel_pt_intr(void)
8320 {
8321 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8322 
8323 	/* '0' on failure so that the !PT case can use a RET0 static call. */
8324 	if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8325 		return 0;
8326 
8327 	kvm_make_request(KVM_REQ_PMI, vcpu);
8328 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8329 		  (unsigned long *)&vcpu->arch.pmu.global_status);
8330 	return 1;
8331 }
8332 
8333 static __init void vmx_setup_user_return_msrs(void)
8334 {
8335 
8336 	/*
8337 	 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8338 	 * will emulate SYSCALL in legacy mode if the vendor string in guest
8339 	 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8340 	 * support this emulation, MSR_STAR is included in the list for i386,
8341 	 * but is never loaded into hardware.  MSR_CSTAR is also never loaded
8342 	 * into hardware and is here purely for emulation purposes.
8343 	 */
8344 	const u32 vmx_uret_msrs_list[] = {
8345 	#ifdef CONFIG_X86_64
8346 		MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8347 	#endif
8348 		MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8349 		MSR_IA32_TSX_CTRL,
8350 	};
8351 	int i;
8352 
8353 	BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8354 
8355 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8356 		kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8357 }
8358 
8359 static void __init vmx_setup_me_spte_mask(void)
8360 {
8361 	u64 me_mask = 0;
8362 
8363 	/*
8364 	 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8365 	 * kvm_host.maxphyaddr.  On MKTME and/or TDX capable systems,
8366 	 * boot_cpu_data.x86_phys_bits holds the actual physical address
8367 	 * w/o the KeyID bits, and kvm_host.maxphyaddr equals to
8368 	 * MAXPHYADDR reported by CPUID.  Those bits between are KeyID bits.
8369 	 */
8370 	if (boot_cpu_data.x86_phys_bits != kvm_host.maxphyaddr)
8371 		me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8372 				    kvm_host.maxphyaddr - 1);
8373 
8374 	/*
8375 	 * Unlike SME, host kernel doesn't support setting up any
8376 	 * MKTME KeyID on Intel platforms.  No memory encryption
8377 	 * bits should be included into the SPTE.
8378 	 */
8379 	kvm_mmu_set_me_spte_mask(0, me_mask);
8380 }
8381 
8382 __init int vmx_hardware_setup(void)
8383 {
8384 	unsigned long host_bndcfgs;
8385 	struct desc_ptr dt;
8386 	int r;
8387 
8388 	store_idt(&dt);
8389 	host_idt_base = dt.address;
8390 
8391 	vmx_setup_user_return_msrs();
8392 
8393 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8394 		return -EIO;
8395 
8396 	if (cpu_has_perf_global_ctrl_bug())
8397 		pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
8398 			     "does not work properly. Using workaround\n");
8399 
8400 	if (boot_cpu_has(X86_FEATURE_NX))
8401 		kvm_enable_efer_bits(EFER_NX);
8402 
8403 	if (boot_cpu_has(X86_FEATURE_MPX)) {
8404 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
8405 		WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
8406 	}
8407 
8408 	if (!cpu_has_vmx_mpx())
8409 		kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8410 					     XFEATURE_MASK_BNDCSR);
8411 
8412 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8413 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8414 		enable_vpid = 0;
8415 
8416 	if (!cpu_has_vmx_ept() ||
8417 	    !cpu_has_vmx_ept_4levels() ||
8418 	    !cpu_has_vmx_ept_mt_wb() ||
8419 	    !cpu_has_vmx_invept_global())
8420 		enable_ept = 0;
8421 
8422 	/* NX support is required for shadow paging. */
8423 	if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8424 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
8425 		return -EOPNOTSUPP;
8426 	}
8427 
8428 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8429 		enable_ept_ad_bits = 0;
8430 
8431 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8432 		enable_unrestricted_guest = 0;
8433 
8434 	if (!cpu_has_vmx_flexpriority())
8435 		flexpriority_enabled = 0;
8436 
8437 	if (!cpu_has_virtual_nmis())
8438 		enable_vnmi = 0;
8439 
8440 #ifdef CONFIG_X86_SGX_KVM
8441 	if (!cpu_has_vmx_encls_vmexit())
8442 		enable_sgx = false;
8443 #endif
8444 
8445 	/*
8446 	 * set_apic_access_page_addr() is used to reload apic access
8447 	 * page upon invalidation.  No need to do anything if not
8448 	 * using the APIC_ACCESS_ADDR VMCS field.
8449 	 */
8450 	if (!flexpriority_enabled)
8451 		vt_x86_ops.set_apic_access_page_addr = NULL;
8452 
8453 	if (!cpu_has_vmx_tpr_shadow())
8454 		vt_x86_ops.update_cr8_intercept = NULL;
8455 
8456 #if IS_ENABLED(CONFIG_HYPERV)
8457 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8458 	    && enable_ept) {
8459 		vt_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
8460 		vt_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
8461 	}
8462 #endif
8463 
8464 	if (!cpu_has_vmx_ple()) {
8465 		ple_gap = 0;
8466 		ple_window = 0;
8467 		ple_window_grow = 0;
8468 		ple_window_max = 0;
8469 		ple_window_shrink = 0;
8470 	}
8471 
8472 	if (!cpu_has_vmx_apicv())
8473 		enable_apicv = 0;
8474 	if (!enable_apicv)
8475 		vt_x86_ops.sync_pir_to_irr = NULL;
8476 
8477 	if (!enable_apicv || !cpu_has_vmx_ipiv())
8478 		enable_ipiv = false;
8479 
8480 	if (cpu_has_vmx_tsc_scaling())
8481 		kvm_caps.has_tsc_control = true;
8482 
8483 	kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8484 	kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8485 	kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8486 	kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8487 
8488 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8489 
8490 	if (enable_ept)
8491 		kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8492 				      cpu_has_vmx_ept_execute_only());
8493 
8494 	/*
8495 	 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8496 	 * bits to shadow_zero_check.
8497 	 */
8498 	vmx_setup_me_spte_mask();
8499 
8500 	kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(),
8501 			  ept_caps_to_lpage_level(vmx_capability.ept));
8502 
8503 	/*
8504 	 * Only enable PML when hardware supports PML feature, and both EPT
8505 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
8506 	 */
8507 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8508 		enable_pml = 0;
8509 
8510 	if (!enable_pml)
8511 		vt_x86_ops.cpu_dirty_log_size = 0;
8512 
8513 	if (!cpu_has_vmx_preemption_timer())
8514 		enable_preemption_timer = false;
8515 
8516 	if (enable_preemption_timer) {
8517 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
8518 
8519 		cpu_preemption_timer_multi =
8520 			vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8521 
8522 		if (tsc_khz)
8523 			use_timer_freq = (u64)tsc_khz * 1000;
8524 		use_timer_freq >>= cpu_preemption_timer_multi;
8525 
8526 		/*
8527 		 * KVM "disables" the preemption timer by setting it to its max
8528 		 * value.  Don't use the timer if it might cause spurious exits
8529 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8530 		 */
8531 		if (use_timer_freq > 0xffffffffu / 10)
8532 			enable_preemption_timer = false;
8533 	}
8534 
8535 	if (!enable_preemption_timer) {
8536 		vt_x86_ops.set_hv_timer = NULL;
8537 		vt_x86_ops.cancel_hv_timer = NULL;
8538 	}
8539 
8540 	kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8541 	kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8542 
8543 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8544 		return -EINVAL;
8545 	if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8546 		pt_mode = PT_MODE_SYSTEM;
8547 	if (pt_mode == PT_MODE_HOST_GUEST)
8548 		vt_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8549 	else
8550 		vt_init_ops.handle_intel_pt_intr = NULL;
8551 
8552 	setup_default_sgx_lepubkeyhash();
8553 
8554 	if (nested) {
8555 		nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8556 
8557 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8558 		if (r)
8559 			return r;
8560 	}
8561 
8562 	vmx_set_cpu_caps();
8563 
8564 	r = alloc_kvm_area();
8565 	if (r && nested)
8566 		nested_vmx_hardware_unsetup();
8567 
8568 	kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8569 
8570 	return r;
8571 }
8572 
8573 static void vmx_cleanup_l1d_flush(void)
8574 {
8575 	if (vmx_l1d_flush_pages) {
8576 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8577 		vmx_l1d_flush_pages = NULL;
8578 	}
8579 	/* Restore state so sysfs ignores VMX */
8580 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8581 }
8582 
8583 static void __vmx_exit(void)
8584 {
8585 	allow_smaller_maxphyaddr = false;
8586 
8587 	cpu_emergency_unregister_virt_callback(vmx_emergency_disable);
8588 
8589 	vmx_cleanup_l1d_flush();
8590 }
8591 
8592 static void vmx_exit(void)
8593 {
8594 	kvm_exit();
8595 	__vmx_exit();
8596 	kvm_x86_vendor_exit();
8597 
8598 }
8599 module_exit(vmx_exit);
8600 
8601 static int __init vmx_init(void)
8602 {
8603 	int r, cpu;
8604 
8605 	if (!kvm_is_vmx_supported())
8606 		return -EOPNOTSUPP;
8607 
8608 	/*
8609 	 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing
8610 	 * to unwind if a later step fails.
8611 	 */
8612 	hv_init_evmcs();
8613 
8614 	r = kvm_x86_vendor_init(&vt_init_ops);
8615 	if (r)
8616 		return r;
8617 
8618 	/*
8619 	 * Must be called after common x86 init so enable_ept is properly set
8620 	 * up. Hand the parameter mitigation value in which was stored in
8621 	 * the pre module init parser. If no parameter was given, it will
8622 	 * contain 'auto' which will be turned into the default 'cond'
8623 	 * mitigation mode.
8624 	 */
8625 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8626 	if (r)
8627 		goto err_l1d_flush;
8628 
8629 	for_each_possible_cpu(cpu) {
8630 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8631 
8632 		pi_init_cpu(cpu);
8633 	}
8634 
8635 	cpu_emergency_register_virt_callback(vmx_emergency_disable);
8636 
8637 	vmx_check_vmcs12_offsets();
8638 
8639 	/*
8640 	 * Shadow paging doesn't have a (further) performance penalty
8641 	 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8642 	 * by default
8643 	 */
8644 	if (!enable_ept)
8645 		allow_smaller_maxphyaddr = true;
8646 
8647 	/*
8648 	 * Common KVM initialization _must_ come last, after this, /dev/kvm is
8649 	 * exposed to userspace!
8650 	 */
8651 	r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx),
8652 		     THIS_MODULE);
8653 	if (r)
8654 		goto err_kvm_init;
8655 
8656 	return 0;
8657 
8658 err_kvm_init:
8659 	__vmx_exit();
8660 err_l1d_flush:
8661 	kvm_x86_vendor_exit();
8662 	return r;
8663 }
8664 module_init(vmx_init);
8665