xref: /linux/arch/x86/kvm/vmx/vmx.c (revision 65aa371ea52a92dd10826a2ea74bd2c395ee90a8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <linux/highmem.h>
17 #include <linux/hrtimer.h>
18 #include <linux/kernel.h>
19 #include <linux/kvm_host.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mm.h>
24 #include <linux/objtool.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
31 
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/idtentry.h>
40 #include <asm/io.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/kexec.h>
43 #include <asm/perf_event.h>
44 #include <asm/mmu_context.h>
45 #include <asm/mshyperv.h>
46 #include <asm/mwait.h>
47 #include <asm/spec-ctrl.h>
48 #include <asm/virtext.h>
49 #include <asm/vmx.h>
50 
51 #include "capabilities.h"
52 #include "cpuid.h"
53 #include "evmcs.h"
54 #include "hyperv.h"
55 #include "kvm_onhyperv.h"
56 #include "irq.h"
57 #include "kvm_cache_regs.h"
58 #include "lapic.h"
59 #include "mmu.h"
60 #include "nested.h"
61 #include "pmu.h"
62 #include "sgx.h"
63 #include "trace.h"
64 #include "vmcs.h"
65 #include "vmcs12.h"
66 #include "vmx.h"
67 #include "x86.h"
68 
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71 
72 #ifdef MODULE
73 static const struct x86_cpu_id vmx_cpu_id[] = {
74 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
75 	{}
76 };
77 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
78 #endif
79 
80 bool __read_mostly enable_vpid = 1;
81 module_param_named(vpid, enable_vpid, bool, 0444);
82 
83 static bool __read_mostly enable_vnmi = 1;
84 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
85 
86 bool __read_mostly flexpriority_enabled = 1;
87 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
88 
89 bool __read_mostly enable_ept = 1;
90 module_param_named(ept, enable_ept, bool, S_IRUGO);
91 
92 bool __read_mostly enable_unrestricted_guest = 1;
93 module_param_named(unrestricted_guest,
94 			enable_unrestricted_guest, bool, S_IRUGO);
95 
96 bool __read_mostly enable_ept_ad_bits = 1;
97 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
98 
99 static bool __read_mostly emulate_invalid_guest_state = true;
100 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
101 
102 static bool __read_mostly fasteoi = 1;
103 module_param(fasteoi, bool, S_IRUGO);
104 
105 module_param(enable_apicv, bool, S_IRUGO);
106 
107 /*
108  * If nested=1, nested virtualization is supported, i.e., guests may use
109  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
110  * use VMX instructions.
111  */
112 static bool __read_mostly nested = 1;
113 module_param(nested, bool, S_IRUGO);
114 
115 bool __read_mostly enable_pml = 1;
116 module_param_named(pml, enable_pml, bool, S_IRUGO);
117 
118 static bool __read_mostly dump_invalid_vmcs = 0;
119 module_param(dump_invalid_vmcs, bool, 0644);
120 
121 #define MSR_BITMAP_MODE_X2APIC		1
122 #define MSR_BITMAP_MODE_X2APIC_APICV	2
123 
124 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
125 
126 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
127 static int __read_mostly cpu_preemption_timer_multi;
128 static bool __read_mostly enable_preemption_timer = 1;
129 #ifdef CONFIG_X86_64
130 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
131 #endif
132 
133 extern bool __read_mostly allow_smaller_maxphyaddr;
134 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
135 
136 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
137 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
138 #define KVM_VM_CR0_ALWAYS_ON				\
139 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
140 
141 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
142 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
143 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
144 
145 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
146 
147 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
148 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
149 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
150 	RTIT_STATUS_BYTECNT))
151 
152 /*
153  * List of MSRs that can be directly passed to the guest.
154  * In addition to these x2apic and PT MSRs are handled specially.
155  */
156 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
157 	MSR_IA32_SPEC_CTRL,
158 	MSR_IA32_PRED_CMD,
159 	MSR_IA32_TSC,
160 #ifdef CONFIG_X86_64
161 	MSR_FS_BASE,
162 	MSR_GS_BASE,
163 	MSR_KERNEL_GS_BASE,
164 #endif
165 	MSR_IA32_SYSENTER_CS,
166 	MSR_IA32_SYSENTER_ESP,
167 	MSR_IA32_SYSENTER_EIP,
168 	MSR_CORE_C1_RES,
169 	MSR_CORE_C3_RESIDENCY,
170 	MSR_CORE_C6_RESIDENCY,
171 	MSR_CORE_C7_RESIDENCY,
172 };
173 
174 /*
175  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
176  * ple_gap:    upper bound on the amount of time between two successive
177  *             executions of PAUSE in a loop. Also indicate if ple enabled.
178  *             According to test, this time is usually smaller than 128 cycles.
179  * ple_window: upper bound on the amount of time a guest is allowed to execute
180  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
181  *             less than 2^12 cycles
182  * Time is measured based on a counter that runs at the same rate as the TSC,
183  * refer SDM volume 3b section 21.6.13 & 22.1.3.
184  */
185 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
186 module_param(ple_gap, uint, 0444);
187 
188 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
189 module_param(ple_window, uint, 0444);
190 
191 /* Default doubles per-vcpu window every exit. */
192 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
193 module_param(ple_window_grow, uint, 0444);
194 
195 /* Default resets per-vcpu window every exit to ple_window. */
196 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
197 module_param(ple_window_shrink, uint, 0444);
198 
199 /* Default is to compute the maximum so we can never overflow. */
200 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
201 module_param(ple_window_max, uint, 0444);
202 
203 /* Default is SYSTEM mode, 1 for host-guest mode */
204 int __read_mostly pt_mode = PT_MODE_SYSTEM;
205 module_param(pt_mode, int, S_IRUGO);
206 
207 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
208 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
209 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
210 
211 /* Storage for pre module init parameter parsing */
212 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
213 
214 static const struct {
215 	const char *option;
216 	bool for_parse;
217 } vmentry_l1d_param[] = {
218 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
219 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
220 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
221 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
222 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
223 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
224 };
225 
226 #define L1D_CACHE_ORDER 4
227 static void *vmx_l1d_flush_pages;
228 
229 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
230 {
231 	struct page *page;
232 	unsigned int i;
233 
234 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
235 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
236 		return 0;
237 	}
238 
239 	if (!enable_ept) {
240 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
241 		return 0;
242 	}
243 
244 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
245 		u64 msr;
246 
247 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
248 		if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
249 			l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
250 			return 0;
251 		}
252 	}
253 
254 	/* If set to auto use the default l1tf mitigation method */
255 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
256 		switch (l1tf_mitigation) {
257 		case L1TF_MITIGATION_OFF:
258 			l1tf = VMENTER_L1D_FLUSH_NEVER;
259 			break;
260 		case L1TF_MITIGATION_FLUSH_NOWARN:
261 		case L1TF_MITIGATION_FLUSH:
262 		case L1TF_MITIGATION_FLUSH_NOSMT:
263 			l1tf = VMENTER_L1D_FLUSH_COND;
264 			break;
265 		case L1TF_MITIGATION_FULL:
266 		case L1TF_MITIGATION_FULL_FORCE:
267 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
268 			break;
269 		}
270 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
271 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
272 	}
273 
274 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
275 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
276 		/*
277 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
278 		 * lifetime and so should not be charged to a memcg.
279 		 */
280 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
281 		if (!page)
282 			return -ENOMEM;
283 		vmx_l1d_flush_pages = page_address(page);
284 
285 		/*
286 		 * Initialize each page with a different pattern in
287 		 * order to protect against KSM in the nested
288 		 * virtualization case.
289 		 */
290 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
291 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
292 			       PAGE_SIZE);
293 		}
294 	}
295 
296 	l1tf_vmx_mitigation = l1tf;
297 
298 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
299 		static_branch_enable(&vmx_l1d_should_flush);
300 	else
301 		static_branch_disable(&vmx_l1d_should_flush);
302 
303 	if (l1tf == VMENTER_L1D_FLUSH_COND)
304 		static_branch_enable(&vmx_l1d_flush_cond);
305 	else
306 		static_branch_disable(&vmx_l1d_flush_cond);
307 	return 0;
308 }
309 
310 static int vmentry_l1d_flush_parse(const char *s)
311 {
312 	unsigned int i;
313 
314 	if (s) {
315 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
316 			if (vmentry_l1d_param[i].for_parse &&
317 			    sysfs_streq(s, vmentry_l1d_param[i].option))
318 				return i;
319 		}
320 	}
321 	return -EINVAL;
322 }
323 
324 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
325 {
326 	int l1tf, ret;
327 
328 	l1tf = vmentry_l1d_flush_parse(s);
329 	if (l1tf < 0)
330 		return l1tf;
331 
332 	if (!boot_cpu_has(X86_BUG_L1TF))
333 		return 0;
334 
335 	/*
336 	 * Has vmx_init() run already? If not then this is the pre init
337 	 * parameter parsing. In that case just store the value and let
338 	 * vmx_init() do the proper setup after enable_ept has been
339 	 * established.
340 	 */
341 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
342 		vmentry_l1d_flush_param = l1tf;
343 		return 0;
344 	}
345 
346 	mutex_lock(&vmx_l1d_flush_mutex);
347 	ret = vmx_setup_l1d_flush(l1tf);
348 	mutex_unlock(&vmx_l1d_flush_mutex);
349 	return ret;
350 }
351 
352 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
353 {
354 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
355 		return sprintf(s, "???\n");
356 
357 	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
358 }
359 
360 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
361 	.set = vmentry_l1d_flush_set,
362 	.get = vmentry_l1d_flush_get,
363 };
364 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
365 
366 static u32 vmx_segment_access_rights(struct kvm_segment *var);
367 
368 void vmx_vmexit(void);
369 
370 #define vmx_insn_failed(fmt...)		\
371 do {					\
372 	WARN_ONCE(1, fmt);		\
373 	pr_warn_ratelimited(fmt);	\
374 } while (0)
375 
376 asmlinkage void vmread_error(unsigned long field, bool fault)
377 {
378 	if (fault)
379 		kvm_spurious_fault();
380 	else
381 		vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
382 }
383 
384 noinline void vmwrite_error(unsigned long field, unsigned long value)
385 {
386 	vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
387 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
388 }
389 
390 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
391 {
392 	vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
393 }
394 
395 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
396 {
397 	vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
398 }
399 
400 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
401 {
402 	vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
403 			ext, vpid, gva);
404 }
405 
406 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
407 {
408 	vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
409 			ext, eptp, gpa);
410 }
411 
412 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
413 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
414 /*
415  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
416  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
417  */
418 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
419 
420 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
421 static DEFINE_SPINLOCK(vmx_vpid_lock);
422 
423 struct vmcs_config vmcs_config;
424 struct vmx_capability vmx_capability;
425 
426 #define VMX_SEGMENT_FIELD(seg)					\
427 	[VCPU_SREG_##seg] = {                                   \
428 		.selector = GUEST_##seg##_SELECTOR,		\
429 		.base = GUEST_##seg##_BASE,		   	\
430 		.limit = GUEST_##seg##_LIMIT,		   	\
431 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
432 	}
433 
434 static const struct kvm_vmx_segment_field {
435 	unsigned selector;
436 	unsigned base;
437 	unsigned limit;
438 	unsigned ar_bytes;
439 } kvm_vmx_segment_fields[] = {
440 	VMX_SEGMENT_FIELD(CS),
441 	VMX_SEGMENT_FIELD(DS),
442 	VMX_SEGMENT_FIELD(ES),
443 	VMX_SEGMENT_FIELD(FS),
444 	VMX_SEGMENT_FIELD(GS),
445 	VMX_SEGMENT_FIELD(SS),
446 	VMX_SEGMENT_FIELD(TR),
447 	VMX_SEGMENT_FIELD(LDTR),
448 };
449 
450 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
451 {
452 	vmx->segment_cache.bitmask = 0;
453 }
454 
455 static unsigned long host_idt_base;
456 
457 #if IS_ENABLED(CONFIG_HYPERV)
458 static bool __read_mostly enlightened_vmcs = true;
459 module_param(enlightened_vmcs, bool, 0444);
460 
461 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
462 {
463 	struct hv_enlightened_vmcs *evmcs;
464 	struct hv_partition_assist_pg **p_hv_pa_pg =
465 			&to_kvm_hv(vcpu->kvm)->hv_pa_pg;
466 	/*
467 	 * Synthetic VM-Exit is not enabled in current code and so All
468 	 * evmcs in singe VM shares same assist page.
469 	 */
470 	if (!*p_hv_pa_pg)
471 		*p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
472 
473 	if (!*p_hv_pa_pg)
474 		return -ENOMEM;
475 
476 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
477 
478 	evmcs->partition_assist_page =
479 		__pa(*p_hv_pa_pg);
480 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
481 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
482 
483 	return 0;
484 }
485 
486 #endif /* IS_ENABLED(CONFIG_HYPERV) */
487 
488 /*
489  * Comment's format: document - errata name - stepping - processor name.
490  * Refer from
491  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
492  */
493 static u32 vmx_preemption_cpu_tfms[] = {
494 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
495 0x000206E6,
496 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
497 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
498 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
499 0x00020652,
500 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
501 0x00020655,
502 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
503 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
504 /*
505  * 320767.pdf - AAP86  - B1 -
506  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
507  */
508 0x000106E5,
509 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
510 0x000106A0,
511 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
512 0x000106A1,
513 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
514 0x000106A4,
515  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
516  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
517  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
518 0x000106A5,
519  /* Xeon E3-1220 V2 */
520 0x000306A8,
521 };
522 
523 static inline bool cpu_has_broken_vmx_preemption_timer(void)
524 {
525 	u32 eax = cpuid_eax(0x00000001), i;
526 
527 	/* Clear the reserved bits */
528 	eax &= ~(0x3U << 14 | 0xfU << 28);
529 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
530 		if (eax == vmx_preemption_cpu_tfms[i])
531 			return true;
532 
533 	return false;
534 }
535 
536 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
537 {
538 	return flexpriority_enabled && lapic_in_kernel(vcpu);
539 }
540 
541 static inline bool report_flexpriority(void)
542 {
543 	return flexpriority_enabled;
544 }
545 
546 static int possible_passthrough_msr_slot(u32 msr)
547 {
548 	u32 i;
549 
550 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
551 		if (vmx_possible_passthrough_msrs[i] == msr)
552 			return i;
553 
554 	return -ENOENT;
555 }
556 
557 static bool is_valid_passthrough_msr(u32 msr)
558 {
559 	bool r;
560 
561 	switch (msr) {
562 	case 0x800 ... 0x8ff:
563 		/* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
564 		return true;
565 	case MSR_IA32_RTIT_STATUS:
566 	case MSR_IA32_RTIT_OUTPUT_BASE:
567 	case MSR_IA32_RTIT_OUTPUT_MASK:
568 	case MSR_IA32_RTIT_CR3_MATCH:
569 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
570 		/* PT MSRs. These are handled in pt_update_intercept_for_msr() */
571 	case MSR_LBR_SELECT:
572 	case MSR_LBR_TOS:
573 	case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
574 	case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
575 	case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
576 	case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
577 	case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
578 		/* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
579 		return true;
580 	}
581 
582 	r = possible_passthrough_msr_slot(msr) != -ENOENT;
583 
584 	WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
585 
586 	return r;
587 }
588 
589 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
590 {
591 	int i;
592 
593 	i = kvm_find_user_return_msr(msr);
594 	if (i >= 0)
595 		return &vmx->guest_uret_msrs[i];
596 	return NULL;
597 }
598 
599 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
600 				  struct vmx_uret_msr *msr, u64 data)
601 {
602 	unsigned int slot = msr - vmx->guest_uret_msrs;
603 	int ret = 0;
604 
605 	u64 old_msr_data = msr->data;
606 	msr->data = data;
607 	if (msr->load_into_hardware) {
608 		preempt_disable();
609 		ret = kvm_set_user_return_msr(slot, msr->data, msr->mask);
610 		preempt_enable();
611 		if (ret)
612 			msr->data = old_msr_data;
613 	}
614 	return ret;
615 }
616 
617 #ifdef CONFIG_KEXEC_CORE
618 static void crash_vmclear_local_loaded_vmcss(void)
619 {
620 	int cpu = raw_smp_processor_id();
621 	struct loaded_vmcs *v;
622 
623 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
624 			    loaded_vmcss_on_cpu_link)
625 		vmcs_clear(v->vmcs);
626 }
627 #endif /* CONFIG_KEXEC_CORE */
628 
629 static void __loaded_vmcs_clear(void *arg)
630 {
631 	struct loaded_vmcs *loaded_vmcs = arg;
632 	int cpu = raw_smp_processor_id();
633 
634 	if (loaded_vmcs->cpu != cpu)
635 		return; /* vcpu migration can race with cpu offline */
636 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
637 		per_cpu(current_vmcs, cpu) = NULL;
638 
639 	vmcs_clear(loaded_vmcs->vmcs);
640 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
641 		vmcs_clear(loaded_vmcs->shadow_vmcs);
642 
643 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
644 
645 	/*
646 	 * Ensure all writes to loaded_vmcs, including deleting it from its
647 	 * current percpu list, complete before setting loaded_vmcs->vcpu to
648 	 * -1, otherwise a different cpu can see vcpu == -1 first and add
649 	 * loaded_vmcs to its percpu list before it's deleted from this cpu's
650 	 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
651 	 */
652 	smp_wmb();
653 
654 	loaded_vmcs->cpu = -1;
655 	loaded_vmcs->launched = 0;
656 }
657 
658 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
659 {
660 	int cpu = loaded_vmcs->cpu;
661 
662 	if (cpu != -1)
663 		smp_call_function_single(cpu,
664 			 __loaded_vmcs_clear, loaded_vmcs, 1);
665 }
666 
667 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
668 				       unsigned field)
669 {
670 	bool ret;
671 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
672 
673 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
674 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
675 		vmx->segment_cache.bitmask = 0;
676 	}
677 	ret = vmx->segment_cache.bitmask & mask;
678 	vmx->segment_cache.bitmask |= mask;
679 	return ret;
680 }
681 
682 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
683 {
684 	u16 *p = &vmx->segment_cache.seg[seg].selector;
685 
686 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
687 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
688 	return *p;
689 }
690 
691 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
692 {
693 	ulong *p = &vmx->segment_cache.seg[seg].base;
694 
695 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
696 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
697 	return *p;
698 }
699 
700 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
701 {
702 	u32 *p = &vmx->segment_cache.seg[seg].limit;
703 
704 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
705 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
706 	return *p;
707 }
708 
709 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
710 {
711 	u32 *p = &vmx->segment_cache.seg[seg].ar;
712 
713 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
714 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
715 	return *p;
716 }
717 
718 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
719 {
720 	u32 eb;
721 
722 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
723 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
724 	/*
725 	 * Guest access to VMware backdoor ports could legitimately
726 	 * trigger #GP because of TSS I/O permission bitmap.
727 	 * We intercept those #GP and allow access to them anyway
728 	 * as VMware does.
729 	 */
730 	if (enable_vmware_backdoor)
731 		eb |= (1u << GP_VECTOR);
732 	if ((vcpu->guest_debug &
733 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
734 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
735 		eb |= 1u << BP_VECTOR;
736 	if (to_vmx(vcpu)->rmode.vm86_active)
737 		eb = ~0;
738 	if (!vmx_need_pf_intercept(vcpu))
739 		eb &= ~(1u << PF_VECTOR);
740 
741 	/* When we are running a nested L2 guest and L1 specified for it a
742 	 * certain exception bitmap, we must trap the same exceptions and pass
743 	 * them to L1. When running L2, we will only handle the exceptions
744 	 * specified above if L1 did not want them.
745 	 */
746 	if (is_guest_mode(vcpu))
747 		eb |= get_vmcs12(vcpu)->exception_bitmap;
748         else {
749 		int mask = 0, match = 0;
750 
751 		if (enable_ept && (eb & (1u << PF_VECTOR))) {
752 			/*
753 			 * If EPT is enabled, #PF is currently only intercepted
754 			 * if MAXPHYADDR is smaller on the guest than on the
755 			 * host.  In that case we only care about present,
756 			 * non-reserved faults.  For vmcs02, however, PFEC_MASK
757 			 * and PFEC_MATCH are set in prepare_vmcs02_rare.
758 			 */
759 			mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
760 			match = PFERR_PRESENT_MASK;
761 		}
762 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
763 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
764 	}
765 
766 	vmcs_write32(EXCEPTION_BITMAP, eb);
767 }
768 
769 /*
770  * Check if MSR is intercepted for currently loaded MSR bitmap.
771  */
772 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
773 {
774 	unsigned long *msr_bitmap;
775 	int f = sizeof(unsigned long);
776 
777 	if (!cpu_has_vmx_msr_bitmap())
778 		return true;
779 
780 	msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
781 
782 	if (msr <= 0x1fff) {
783 		return !!test_bit(msr, msr_bitmap + 0x800 / f);
784 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
785 		msr &= 0x1fff;
786 		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
787 	}
788 
789 	return true;
790 }
791 
792 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
793 		unsigned long entry, unsigned long exit)
794 {
795 	vm_entry_controls_clearbit(vmx, entry);
796 	vm_exit_controls_clearbit(vmx, exit);
797 }
798 
799 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
800 {
801 	unsigned int i;
802 
803 	for (i = 0; i < m->nr; ++i) {
804 		if (m->val[i].index == msr)
805 			return i;
806 	}
807 	return -ENOENT;
808 }
809 
810 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
811 {
812 	int i;
813 	struct msr_autoload *m = &vmx->msr_autoload;
814 
815 	switch (msr) {
816 	case MSR_EFER:
817 		if (cpu_has_load_ia32_efer()) {
818 			clear_atomic_switch_msr_special(vmx,
819 					VM_ENTRY_LOAD_IA32_EFER,
820 					VM_EXIT_LOAD_IA32_EFER);
821 			return;
822 		}
823 		break;
824 	case MSR_CORE_PERF_GLOBAL_CTRL:
825 		if (cpu_has_load_perf_global_ctrl()) {
826 			clear_atomic_switch_msr_special(vmx,
827 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
828 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
829 			return;
830 		}
831 		break;
832 	}
833 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
834 	if (i < 0)
835 		goto skip_guest;
836 	--m->guest.nr;
837 	m->guest.val[i] = m->guest.val[m->guest.nr];
838 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
839 
840 skip_guest:
841 	i = vmx_find_loadstore_msr_slot(&m->host, msr);
842 	if (i < 0)
843 		return;
844 
845 	--m->host.nr;
846 	m->host.val[i] = m->host.val[m->host.nr];
847 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
848 }
849 
850 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
851 		unsigned long entry, unsigned long exit,
852 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
853 		u64 guest_val, u64 host_val)
854 {
855 	vmcs_write64(guest_val_vmcs, guest_val);
856 	if (host_val_vmcs != HOST_IA32_EFER)
857 		vmcs_write64(host_val_vmcs, host_val);
858 	vm_entry_controls_setbit(vmx, entry);
859 	vm_exit_controls_setbit(vmx, exit);
860 }
861 
862 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
863 				  u64 guest_val, u64 host_val, bool entry_only)
864 {
865 	int i, j = 0;
866 	struct msr_autoload *m = &vmx->msr_autoload;
867 
868 	switch (msr) {
869 	case MSR_EFER:
870 		if (cpu_has_load_ia32_efer()) {
871 			add_atomic_switch_msr_special(vmx,
872 					VM_ENTRY_LOAD_IA32_EFER,
873 					VM_EXIT_LOAD_IA32_EFER,
874 					GUEST_IA32_EFER,
875 					HOST_IA32_EFER,
876 					guest_val, host_val);
877 			return;
878 		}
879 		break;
880 	case MSR_CORE_PERF_GLOBAL_CTRL:
881 		if (cpu_has_load_perf_global_ctrl()) {
882 			add_atomic_switch_msr_special(vmx,
883 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
884 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
885 					GUEST_IA32_PERF_GLOBAL_CTRL,
886 					HOST_IA32_PERF_GLOBAL_CTRL,
887 					guest_val, host_val);
888 			return;
889 		}
890 		break;
891 	case MSR_IA32_PEBS_ENABLE:
892 		/* PEBS needs a quiescent period after being disabled (to write
893 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
894 		 * provide that period, so a CPU could write host's record into
895 		 * guest's memory.
896 		 */
897 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
898 	}
899 
900 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
901 	if (!entry_only)
902 		j = vmx_find_loadstore_msr_slot(&m->host, msr);
903 
904 	if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
905 	    (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
906 		printk_once(KERN_WARNING "Not enough msr switch entries. "
907 				"Can't add msr %x\n", msr);
908 		return;
909 	}
910 	if (i < 0) {
911 		i = m->guest.nr++;
912 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
913 	}
914 	m->guest.val[i].index = msr;
915 	m->guest.val[i].value = guest_val;
916 
917 	if (entry_only)
918 		return;
919 
920 	if (j < 0) {
921 		j = m->host.nr++;
922 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
923 	}
924 	m->host.val[j].index = msr;
925 	m->host.val[j].value = host_val;
926 }
927 
928 static bool update_transition_efer(struct vcpu_vmx *vmx)
929 {
930 	u64 guest_efer = vmx->vcpu.arch.efer;
931 	u64 ignore_bits = 0;
932 	int i;
933 
934 	/* Shadow paging assumes NX to be available.  */
935 	if (!enable_ept)
936 		guest_efer |= EFER_NX;
937 
938 	/*
939 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
940 	 */
941 	ignore_bits |= EFER_SCE;
942 #ifdef CONFIG_X86_64
943 	ignore_bits |= EFER_LMA | EFER_LME;
944 	/* SCE is meaningful only in long mode on Intel */
945 	if (guest_efer & EFER_LMA)
946 		ignore_bits &= ~(u64)EFER_SCE;
947 #endif
948 
949 	/*
950 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
951 	 * On CPUs that support "load IA32_EFER", always switch EFER
952 	 * atomically, since it's faster than switching it manually.
953 	 */
954 	if (cpu_has_load_ia32_efer() ||
955 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
956 		if (!(guest_efer & EFER_LMA))
957 			guest_efer &= ~EFER_LME;
958 		if (guest_efer != host_efer)
959 			add_atomic_switch_msr(vmx, MSR_EFER,
960 					      guest_efer, host_efer, false);
961 		else
962 			clear_atomic_switch_msr(vmx, MSR_EFER);
963 		return false;
964 	}
965 
966 	i = kvm_find_user_return_msr(MSR_EFER);
967 	if (i < 0)
968 		return false;
969 
970 	clear_atomic_switch_msr(vmx, MSR_EFER);
971 
972 	guest_efer &= ~ignore_bits;
973 	guest_efer |= host_efer & ignore_bits;
974 
975 	vmx->guest_uret_msrs[i].data = guest_efer;
976 	vmx->guest_uret_msrs[i].mask = ~ignore_bits;
977 
978 	return true;
979 }
980 
981 #ifdef CONFIG_X86_32
982 /*
983  * On 32-bit kernels, VM exits still load the FS and GS bases from the
984  * VMCS rather than the segment table.  KVM uses this helper to figure
985  * out the current bases to poke them into the VMCS before entry.
986  */
987 static unsigned long segment_base(u16 selector)
988 {
989 	struct desc_struct *table;
990 	unsigned long v;
991 
992 	if (!(selector & ~SEGMENT_RPL_MASK))
993 		return 0;
994 
995 	table = get_current_gdt_ro();
996 
997 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
998 		u16 ldt_selector = kvm_read_ldt();
999 
1000 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1001 			return 0;
1002 
1003 		table = (struct desc_struct *)segment_base(ldt_selector);
1004 	}
1005 	v = get_desc_base(&table[selector >> 3]);
1006 	return v;
1007 }
1008 #endif
1009 
1010 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1011 {
1012 	return vmx_pt_mode_is_host_guest() &&
1013 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1014 }
1015 
1016 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1017 {
1018 	/* The base must be 128-byte aligned and a legal physical address. */
1019 	return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1020 }
1021 
1022 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1023 {
1024 	u32 i;
1025 
1026 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1027 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1028 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1029 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1030 	for (i = 0; i < addr_range; i++) {
1031 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1032 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1033 	}
1034 }
1035 
1036 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1037 {
1038 	u32 i;
1039 
1040 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1041 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1042 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1043 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1044 	for (i = 0; i < addr_range; i++) {
1045 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1046 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1047 	}
1048 }
1049 
1050 static void pt_guest_enter(struct vcpu_vmx *vmx)
1051 {
1052 	if (vmx_pt_mode_is_system())
1053 		return;
1054 
1055 	/*
1056 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1057 	 * Save host state before VM entry.
1058 	 */
1059 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1060 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1061 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1062 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1063 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1064 	}
1065 }
1066 
1067 static void pt_guest_exit(struct vcpu_vmx *vmx)
1068 {
1069 	if (vmx_pt_mode_is_system())
1070 		return;
1071 
1072 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1073 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1074 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1075 	}
1076 
1077 	/* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1078 	wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1079 }
1080 
1081 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1082 			unsigned long fs_base, unsigned long gs_base)
1083 {
1084 	if (unlikely(fs_sel != host->fs_sel)) {
1085 		if (!(fs_sel & 7))
1086 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1087 		else
1088 			vmcs_write16(HOST_FS_SELECTOR, 0);
1089 		host->fs_sel = fs_sel;
1090 	}
1091 	if (unlikely(gs_sel != host->gs_sel)) {
1092 		if (!(gs_sel & 7))
1093 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1094 		else
1095 			vmcs_write16(HOST_GS_SELECTOR, 0);
1096 		host->gs_sel = gs_sel;
1097 	}
1098 	if (unlikely(fs_base != host->fs_base)) {
1099 		vmcs_writel(HOST_FS_BASE, fs_base);
1100 		host->fs_base = fs_base;
1101 	}
1102 	if (unlikely(gs_base != host->gs_base)) {
1103 		vmcs_writel(HOST_GS_BASE, gs_base);
1104 		host->gs_base = gs_base;
1105 	}
1106 }
1107 
1108 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1109 {
1110 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1111 	struct vmcs_host_state *host_state;
1112 #ifdef CONFIG_X86_64
1113 	int cpu = raw_smp_processor_id();
1114 #endif
1115 	unsigned long fs_base, gs_base;
1116 	u16 fs_sel, gs_sel;
1117 	int i;
1118 
1119 	vmx->req_immediate_exit = false;
1120 
1121 	/*
1122 	 * Note that guest MSRs to be saved/restored can also be changed
1123 	 * when guest state is loaded. This happens when guest transitions
1124 	 * to/from long-mode by setting MSR_EFER.LMA.
1125 	 */
1126 	if (!vmx->guest_uret_msrs_loaded) {
1127 		vmx->guest_uret_msrs_loaded = true;
1128 		for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1129 			if (!vmx->guest_uret_msrs[i].load_into_hardware)
1130 				continue;
1131 
1132 			kvm_set_user_return_msr(i,
1133 						vmx->guest_uret_msrs[i].data,
1134 						vmx->guest_uret_msrs[i].mask);
1135 		}
1136 	}
1137 
1138     	if (vmx->nested.need_vmcs12_to_shadow_sync)
1139 		nested_sync_vmcs12_to_shadow(vcpu);
1140 
1141 	if (vmx->guest_state_loaded)
1142 		return;
1143 
1144 	host_state = &vmx->loaded_vmcs->host_state;
1145 
1146 	/*
1147 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1148 	 * allow segment selectors with cpl > 0 or ti == 1.
1149 	 */
1150 	host_state->ldt_sel = kvm_read_ldt();
1151 
1152 #ifdef CONFIG_X86_64
1153 	savesegment(ds, host_state->ds_sel);
1154 	savesegment(es, host_state->es_sel);
1155 
1156 	gs_base = cpu_kernelmode_gs_base(cpu);
1157 	if (likely(is_64bit_mm(current->mm))) {
1158 		current_save_fsgs();
1159 		fs_sel = current->thread.fsindex;
1160 		gs_sel = current->thread.gsindex;
1161 		fs_base = current->thread.fsbase;
1162 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1163 	} else {
1164 		savesegment(fs, fs_sel);
1165 		savesegment(gs, gs_sel);
1166 		fs_base = read_msr(MSR_FS_BASE);
1167 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1168 	}
1169 
1170 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1171 #else
1172 	savesegment(fs, fs_sel);
1173 	savesegment(gs, gs_sel);
1174 	fs_base = segment_base(fs_sel);
1175 	gs_base = segment_base(gs_sel);
1176 #endif
1177 
1178 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1179 	vmx->guest_state_loaded = true;
1180 }
1181 
1182 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1183 {
1184 	struct vmcs_host_state *host_state;
1185 
1186 	if (!vmx->guest_state_loaded)
1187 		return;
1188 
1189 	host_state = &vmx->loaded_vmcs->host_state;
1190 
1191 	++vmx->vcpu.stat.host_state_reload;
1192 
1193 #ifdef CONFIG_X86_64
1194 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1195 #endif
1196 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1197 		kvm_load_ldt(host_state->ldt_sel);
1198 #ifdef CONFIG_X86_64
1199 		load_gs_index(host_state->gs_sel);
1200 #else
1201 		loadsegment(gs, host_state->gs_sel);
1202 #endif
1203 	}
1204 	if (host_state->fs_sel & 7)
1205 		loadsegment(fs, host_state->fs_sel);
1206 #ifdef CONFIG_X86_64
1207 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1208 		loadsegment(ds, host_state->ds_sel);
1209 		loadsegment(es, host_state->es_sel);
1210 	}
1211 #endif
1212 	invalidate_tss_limit();
1213 #ifdef CONFIG_X86_64
1214 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1215 #endif
1216 	load_fixmap_gdt(raw_smp_processor_id());
1217 	vmx->guest_state_loaded = false;
1218 	vmx->guest_uret_msrs_loaded = false;
1219 }
1220 
1221 #ifdef CONFIG_X86_64
1222 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1223 {
1224 	preempt_disable();
1225 	if (vmx->guest_state_loaded)
1226 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1227 	preempt_enable();
1228 	return vmx->msr_guest_kernel_gs_base;
1229 }
1230 
1231 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1232 {
1233 	preempt_disable();
1234 	if (vmx->guest_state_loaded)
1235 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1236 	preempt_enable();
1237 	vmx->msr_guest_kernel_gs_base = data;
1238 }
1239 #endif
1240 
1241 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1242 			struct loaded_vmcs *buddy)
1243 {
1244 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1245 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1246 	struct vmcs *prev;
1247 
1248 	if (!already_loaded) {
1249 		loaded_vmcs_clear(vmx->loaded_vmcs);
1250 		local_irq_disable();
1251 
1252 		/*
1253 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1254 		 * this cpu's percpu list, otherwise it may not yet be deleted
1255 		 * from its previous cpu's percpu list.  Pairs with the
1256 		 * smb_wmb() in __loaded_vmcs_clear().
1257 		 */
1258 		smp_rmb();
1259 
1260 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1261 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1262 		local_irq_enable();
1263 	}
1264 
1265 	prev = per_cpu(current_vmcs, cpu);
1266 	if (prev != vmx->loaded_vmcs->vmcs) {
1267 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1268 		vmcs_load(vmx->loaded_vmcs->vmcs);
1269 
1270 		/*
1271 		 * No indirect branch prediction barrier needed when switching
1272 		 * the active VMCS within a guest, e.g. on nested VM-Enter.
1273 		 * The L1 VMM can protect itself with retpolines, IBPB or IBRS.
1274 		 */
1275 		if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1276 			indirect_branch_prediction_barrier();
1277 	}
1278 
1279 	if (!already_loaded) {
1280 		void *gdt = get_current_gdt_ro();
1281 		unsigned long sysenter_esp;
1282 
1283 		/*
1284 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1285 		 * TLB entries from its previous association with the vCPU.
1286 		 */
1287 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1288 
1289 		/*
1290 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1291 		 * processors.  See 22.2.4.
1292 		 */
1293 		vmcs_writel(HOST_TR_BASE,
1294 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1295 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1296 
1297 		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1298 		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1299 
1300 		vmx->loaded_vmcs->cpu = cpu;
1301 	}
1302 }
1303 
1304 /*
1305  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1306  * vcpu mutex is already taken.
1307  */
1308 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1309 {
1310 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1311 
1312 	vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1313 
1314 	vmx_vcpu_pi_load(vcpu, cpu);
1315 
1316 	vmx->host_debugctlmsr = get_debugctlmsr();
1317 }
1318 
1319 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1320 {
1321 	vmx_vcpu_pi_put(vcpu);
1322 
1323 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1324 }
1325 
1326 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1327 {
1328 	return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1329 }
1330 
1331 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1332 {
1333 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1334 	unsigned long rflags, save_rflags;
1335 
1336 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1337 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1338 		rflags = vmcs_readl(GUEST_RFLAGS);
1339 		if (vmx->rmode.vm86_active) {
1340 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1341 			save_rflags = vmx->rmode.save_rflags;
1342 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1343 		}
1344 		vmx->rflags = rflags;
1345 	}
1346 	return vmx->rflags;
1347 }
1348 
1349 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1350 {
1351 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1352 	unsigned long old_rflags;
1353 
1354 	if (is_unrestricted_guest(vcpu)) {
1355 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1356 		vmx->rflags = rflags;
1357 		vmcs_writel(GUEST_RFLAGS, rflags);
1358 		return;
1359 	}
1360 
1361 	old_rflags = vmx_get_rflags(vcpu);
1362 	vmx->rflags = rflags;
1363 	if (vmx->rmode.vm86_active) {
1364 		vmx->rmode.save_rflags = rflags;
1365 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1366 	}
1367 	vmcs_writel(GUEST_RFLAGS, rflags);
1368 
1369 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1370 		vmx->emulation_required = vmx_emulation_required(vcpu);
1371 }
1372 
1373 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1374 {
1375 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1376 	int ret = 0;
1377 
1378 	if (interruptibility & GUEST_INTR_STATE_STI)
1379 		ret |= KVM_X86_SHADOW_INT_STI;
1380 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1381 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1382 
1383 	return ret;
1384 }
1385 
1386 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1387 {
1388 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1389 	u32 interruptibility = interruptibility_old;
1390 
1391 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1392 
1393 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1394 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1395 	else if (mask & KVM_X86_SHADOW_INT_STI)
1396 		interruptibility |= GUEST_INTR_STATE_STI;
1397 
1398 	if ((interruptibility != interruptibility_old))
1399 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1400 }
1401 
1402 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1403 {
1404 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1405 	unsigned long value;
1406 
1407 	/*
1408 	 * Any MSR write that attempts to change bits marked reserved will
1409 	 * case a #GP fault.
1410 	 */
1411 	if (data & vmx->pt_desc.ctl_bitmask)
1412 		return 1;
1413 
1414 	/*
1415 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1416 	 * result in a #GP unless the same write also clears TraceEn.
1417 	 */
1418 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1419 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1420 		return 1;
1421 
1422 	/*
1423 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1424 	 * and FabricEn would cause #GP, if
1425 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1426 	 */
1427 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1428 		!(data & RTIT_CTL_FABRIC_EN) &&
1429 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1430 					PT_CAP_single_range_output))
1431 		return 1;
1432 
1433 	/*
1434 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1435 	 * utilize encodings marked reserved will cause a #GP fault.
1436 	 */
1437 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1438 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1439 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1440 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1441 		return 1;
1442 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1443 						PT_CAP_cycle_thresholds);
1444 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1445 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1446 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1447 		return 1;
1448 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1449 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1450 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1451 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1452 		return 1;
1453 
1454 	/*
1455 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1456 	 * cause a #GP fault.
1457 	 */
1458 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1459 	if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1460 		return 1;
1461 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1462 	if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1463 		return 1;
1464 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1465 	if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1466 		return 1;
1467 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1468 	if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1469 		return 1;
1470 
1471 	return 0;
1472 }
1473 
1474 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
1475 {
1476 	/*
1477 	 * Emulation of instructions in SGX enclaves is impossible as RIP does
1478 	 * not point  tthe failing instruction, and even if it did, the code
1479 	 * stream is inaccessible.  Inject #UD instead of exiting to userspace
1480 	 * so that guest userspace can't DoS the guest simply by triggering
1481 	 * emulation (enclaves are CPL3 only).
1482 	 */
1483 	if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1484 		kvm_queue_exception(vcpu, UD_VECTOR);
1485 		return false;
1486 	}
1487 	return true;
1488 }
1489 
1490 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1491 {
1492 	union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1493 	unsigned long rip, orig_rip;
1494 	u32 instr_len;
1495 
1496 	/*
1497 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1498 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1499 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1500 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1501 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1502 	 * i.e. we end up advancing IP with some random value.
1503 	 */
1504 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1505 	    exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1506 		instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1507 
1508 		/*
1509 		 * Emulating an enclave's instructions isn't supported as KVM
1510 		 * cannot access the enclave's memory or its true RIP, e.g. the
1511 		 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1512 		 * the RIP that actually triggered the VM-Exit.  But, because
1513 		 * most instructions that cause VM-Exit will #UD in an enclave,
1514 		 * most instruction-based VM-Exits simply do not occur.
1515 		 *
1516 		 * There are a few exceptions, notably the debug instructions
1517 		 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1518 		 * and generate #DB/#BP as expected, which KVM might intercept.
1519 		 * But again, the CPU does the dirty work and saves an instr
1520 		 * length of zero so VMMs don't shoot themselves in the foot.
1521 		 * WARN if KVM tries to skip a non-zero length instruction on
1522 		 * a VM-Exit from an enclave.
1523 		 */
1524 		if (!instr_len)
1525 			goto rip_updated;
1526 
1527 		WARN(exit_reason.enclave_mode,
1528 		     "KVM: skipping instruction after SGX enclave VM-Exit");
1529 
1530 		orig_rip = kvm_rip_read(vcpu);
1531 		rip = orig_rip + instr_len;
1532 #ifdef CONFIG_X86_64
1533 		/*
1534 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1535 		 * mode, but just finding out that we are in 64-bit mode is
1536 		 * quite expensive.  Only do it if there was a carry.
1537 		 */
1538 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1539 			rip = (u32)rip;
1540 #endif
1541 		kvm_rip_write(vcpu, rip);
1542 	} else {
1543 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1544 			return 0;
1545 	}
1546 
1547 rip_updated:
1548 	/* skipping an emulated instruction also counts */
1549 	vmx_set_interrupt_shadow(vcpu, 0);
1550 
1551 	return 1;
1552 }
1553 
1554 /*
1555  * Recognizes a pending MTF VM-exit and records the nested state for later
1556  * delivery.
1557  */
1558 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1559 {
1560 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1561 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1562 
1563 	if (!is_guest_mode(vcpu))
1564 		return;
1565 
1566 	/*
1567 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1568 	 * T-bit traps. As instruction emulation is completed (i.e. at the
1569 	 * instruction boundary), any #DB exception pending delivery must be a
1570 	 * debug-trap. Record the pending MTF state to be delivered in
1571 	 * vmx_check_nested_events().
1572 	 */
1573 	if (nested_cpu_has_mtf(vmcs12) &&
1574 	    (!vcpu->arch.exception.pending ||
1575 	     vcpu->arch.exception.nr == DB_VECTOR))
1576 		vmx->nested.mtf_pending = true;
1577 	else
1578 		vmx->nested.mtf_pending = false;
1579 }
1580 
1581 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1582 {
1583 	vmx_update_emulated_instruction(vcpu);
1584 	return skip_emulated_instruction(vcpu);
1585 }
1586 
1587 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1588 {
1589 	/*
1590 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1591 	 * explicitly skip the instruction because if the HLT state is set,
1592 	 * then the instruction is already executing and RIP has already been
1593 	 * advanced.
1594 	 */
1595 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1596 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1597 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1598 }
1599 
1600 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1601 {
1602 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1603 	unsigned nr = vcpu->arch.exception.nr;
1604 	bool has_error_code = vcpu->arch.exception.has_error_code;
1605 	u32 error_code = vcpu->arch.exception.error_code;
1606 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
1607 
1608 	kvm_deliver_exception_payload(vcpu);
1609 
1610 	if (has_error_code) {
1611 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1612 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1613 	}
1614 
1615 	if (vmx->rmode.vm86_active) {
1616 		int inc_eip = 0;
1617 		if (kvm_exception_is_soft(nr))
1618 			inc_eip = vcpu->arch.event_exit_inst_len;
1619 		kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1620 		return;
1621 	}
1622 
1623 	WARN_ON_ONCE(vmx->emulation_required);
1624 
1625 	if (kvm_exception_is_soft(nr)) {
1626 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1627 			     vmx->vcpu.arch.event_exit_inst_len);
1628 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1629 	} else
1630 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1631 
1632 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1633 
1634 	vmx_clear_hlt(vcpu);
1635 }
1636 
1637 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1638 			       bool load_into_hardware)
1639 {
1640 	struct vmx_uret_msr *uret_msr;
1641 
1642 	uret_msr = vmx_find_uret_msr(vmx, msr);
1643 	if (!uret_msr)
1644 		return;
1645 
1646 	uret_msr->load_into_hardware = load_into_hardware;
1647 }
1648 
1649 /*
1650  * Configuring user return MSRs to automatically save, load, and restore MSRs
1651  * that need to be shoved into hardware when running the guest.  Note, omitting
1652  * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1653  * loaded into hardware when running the guest.
1654  */
1655 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1656 {
1657 #ifdef CONFIG_X86_64
1658 	bool load_syscall_msrs;
1659 
1660 	/*
1661 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1662 	 * when EFER.SCE is set.
1663 	 */
1664 	load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1665 			    (vmx->vcpu.arch.efer & EFER_SCE);
1666 
1667 	vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1668 	vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1669 	vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1670 #endif
1671 	vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1672 
1673 	vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1674 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1675 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1676 
1677 	/*
1678 	 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1679 	 * kernel and old userspace.  If those guests run on a tsx=off host, do
1680 	 * allow guests to use TSX_CTRL, but don't change the value in hardware
1681 	 * so that TSX remains always disabled.
1682 	 */
1683 	vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1684 
1685 	/*
1686 	 * The set of MSRs to load may have changed, reload MSRs before the
1687 	 * next VM-Enter.
1688 	 */
1689 	vmx->guest_uret_msrs_loaded = false;
1690 }
1691 
1692 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1693 {
1694 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1695 
1696 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1697 		return vmcs12->tsc_offset;
1698 
1699 	return 0;
1700 }
1701 
1702 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1703 {
1704 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1705 
1706 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1707 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1708 		return vmcs12->tsc_multiplier;
1709 
1710 	return kvm_default_tsc_scaling_ratio;
1711 }
1712 
1713 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1714 {
1715 	vmcs_write64(TSC_OFFSET, offset);
1716 }
1717 
1718 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1719 {
1720 	vmcs_write64(TSC_MULTIPLIER, multiplier);
1721 }
1722 
1723 /*
1724  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1725  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1726  * all guests if the "nested" module option is off, and can also be disabled
1727  * for a single guest by disabling its VMX cpuid bit.
1728  */
1729 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1730 {
1731 	return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1732 }
1733 
1734 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1735 						 uint64_t val)
1736 {
1737 	uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1738 
1739 	return !(val & ~valid_bits);
1740 }
1741 
1742 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1743 {
1744 	switch (msr->index) {
1745 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1746 		if (!nested)
1747 			return 1;
1748 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1749 	case MSR_IA32_PERF_CAPABILITIES:
1750 		msr->data = vmx_get_perf_capabilities();
1751 		return 0;
1752 	default:
1753 		return KVM_MSR_RET_INVALID;
1754 	}
1755 }
1756 
1757 /*
1758  * Reads an msr value (of 'msr_index') into 'pdata'.
1759  * Returns 0 on success, non-0 otherwise.
1760  * Assumes vcpu_load() was already called.
1761  */
1762 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1763 {
1764 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1765 	struct vmx_uret_msr *msr;
1766 	u32 index;
1767 
1768 	switch (msr_info->index) {
1769 #ifdef CONFIG_X86_64
1770 	case MSR_FS_BASE:
1771 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1772 		break;
1773 	case MSR_GS_BASE:
1774 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1775 		break;
1776 	case MSR_KERNEL_GS_BASE:
1777 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1778 		break;
1779 #endif
1780 	case MSR_EFER:
1781 		return kvm_get_msr_common(vcpu, msr_info);
1782 	case MSR_IA32_TSX_CTRL:
1783 		if (!msr_info->host_initiated &&
1784 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1785 			return 1;
1786 		goto find_uret_msr;
1787 	case MSR_IA32_UMWAIT_CONTROL:
1788 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1789 			return 1;
1790 
1791 		msr_info->data = vmx->msr_ia32_umwait_control;
1792 		break;
1793 	case MSR_IA32_SPEC_CTRL:
1794 		if (!msr_info->host_initiated &&
1795 		    !guest_has_spec_ctrl_msr(vcpu))
1796 			return 1;
1797 
1798 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
1799 		break;
1800 	case MSR_IA32_SYSENTER_CS:
1801 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1802 		break;
1803 	case MSR_IA32_SYSENTER_EIP:
1804 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1805 		break;
1806 	case MSR_IA32_SYSENTER_ESP:
1807 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1808 		break;
1809 	case MSR_IA32_BNDCFGS:
1810 		if (!kvm_mpx_supported() ||
1811 		    (!msr_info->host_initiated &&
1812 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1813 			return 1;
1814 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1815 		break;
1816 	case MSR_IA32_MCG_EXT_CTL:
1817 		if (!msr_info->host_initiated &&
1818 		    !(vmx->msr_ia32_feature_control &
1819 		      FEAT_CTL_LMCE_ENABLED))
1820 			return 1;
1821 		msr_info->data = vcpu->arch.mcg_ext_ctl;
1822 		break;
1823 	case MSR_IA32_FEAT_CTL:
1824 		msr_info->data = vmx->msr_ia32_feature_control;
1825 		break;
1826 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
1827 		if (!msr_info->host_initiated &&
1828 		    !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
1829 			return 1;
1830 		msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
1831 			[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
1832 		break;
1833 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1834 		if (!nested_vmx_allowed(vcpu))
1835 			return 1;
1836 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1837 				    &msr_info->data))
1838 			return 1;
1839 		/*
1840 		 * Enlightened VMCS v1 doesn't have certain VMCS fields but
1841 		 * instead of just ignoring the features, different Hyper-V
1842 		 * versions are either trying to use them and fail or do some
1843 		 * sanity checking and refuse to boot. Filter all unsupported
1844 		 * features out.
1845 		 */
1846 		if (!msr_info->host_initiated &&
1847 		    vmx->nested.enlightened_vmcs_enabled)
1848 			nested_evmcs_filter_control_msr(msr_info->index,
1849 							&msr_info->data);
1850 		break;
1851 	case MSR_IA32_RTIT_CTL:
1852 		if (!vmx_pt_mode_is_host_guest())
1853 			return 1;
1854 		msr_info->data = vmx->pt_desc.guest.ctl;
1855 		break;
1856 	case MSR_IA32_RTIT_STATUS:
1857 		if (!vmx_pt_mode_is_host_guest())
1858 			return 1;
1859 		msr_info->data = vmx->pt_desc.guest.status;
1860 		break;
1861 	case MSR_IA32_RTIT_CR3_MATCH:
1862 		if (!vmx_pt_mode_is_host_guest() ||
1863 			!intel_pt_validate_cap(vmx->pt_desc.caps,
1864 						PT_CAP_cr3_filtering))
1865 			return 1;
1866 		msr_info->data = vmx->pt_desc.guest.cr3_match;
1867 		break;
1868 	case MSR_IA32_RTIT_OUTPUT_BASE:
1869 		if (!vmx_pt_mode_is_host_guest() ||
1870 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1871 					PT_CAP_topa_output) &&
1872 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1873 					PT_CAP_single_range_output)))
1874 			return 1;
1875 		msr_info->data = vmx->pt_desc.guest.output_base;
1876 		break;
1877 	case MSR_IA32_RTIT_OUTPUT_MASK:
1878 		if (!vmx_pt_mode_is_host_guest() ||
1879 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1880 					PT_CAP_topa_output) &&
1881 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1882 					PT_CAP_single_range_output)))
1883 			return 1;
1884 		msr_info->data = vmx->pt_desc.guest.output_mask;
1885 		break;
1886 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1887 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1888 		if (!vmx_pt_mode_is_host_guest() ||
1889 			(index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1890 					PT_CAP_num_address_ranges)))
1891 			return 1;
1892 		if (index % 2)
1893 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1894 		else
1895 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1896 		break;
1897 	case MSR_IA32_DEBUGCTLMSR:
1898 		msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
1899 		break;
1900 	default:
1901 	find_uret_msr:
1902 		msr = vmx_find_uret_msr(vmx, msr_info->index);
1903 		if (msr) {
1904 			msr_info->data = msr->data;
1905 			break;
1906 		}
1907 		return kvm_get_msr_common(vcpu, msr_info);
1908 	}
1909 
1910 	return 0;
1911 }
1912 
1913 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
1914 						    u64 data)
1915 {
1916 #ifdef CONFIG_X86_64
1917 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
1918 		return (u32)data;
1919 #endif
1920 	return (unsigned long)data;
1921 }
1922 
1923 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu)
1924 {
1925 	u64 debugctl = vmx_supported_debugctl();
1926 
1927 	if (!intel_pmu_lbr_is_enabled(vcpu))
1928 		debugctl &= ~DEBUGCTLMSR_LBR_MASK;
1929 
1930 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1931 		debugctl &= ~DEBUGCTLMSR_BUS_LOCK_DETECT;
1932 
1933 	return debugctl;
1934 }
1935 
1936 /*
1937  * Writes msr value into the appropriate "register".
1938  * Returns 0 on success, non-0 otherwise.
1939  * Assumes vcpu_load() was already called.
1940  */
1941 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1942 {
1943 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1944 	struct vmx_uret_msr *msr;
1945 	int ret = 0;
1946 	u32 msr_index = msr_info->index;
1947 	u64 data = msr_info->data;
1948 	u32 index;
1949 
1950 	switch (msr_index) {
1951 	case MSR_EFER:
1952 		ret = kvm_set_msr_common(vcpu, msr_info);
1953 		break;
1954 #ifdef CONFIG_X86_64
1955 	case MSR_FS_BASE:
1956 		vmx_segment_cache_clear(vmx);
1957 		vmcs_writel(GUEST_FS_BASE, data);
1958 		break;
1959 	case MSR_GS_BASE:
1960 		vmx_segment_cache_clear(vmx);
1961 		vmcs_writel(GUEST_GS_BASE, data);
1962 		break;
1963 	case MSR_KERNEL_GS_BASE:
1964 		vmx_write_guest_kernel_gs_base(vmx, data);
1965 		break;
1966 #endif
1967 	case MSR_IA32_SYSENTER_CS:
1968 		if (is_guest_mode(vcpu))
1969 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
1970 		vmcs_write32(GUEST_SYSENTER_CS, data);
1971 		break;
1972 	case MSR_IA32_SYSENTER_EIP:
1973 		if (is_guest_mode(vcpu)) {
1974 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
1975 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
1976 		}
1977 		vmcs_writel(GUEST_SYSENTER_EIP, data);
1978 		break;
1979 	case MSR_IA32_SYSENTER_ESP:
1980 		if (is_guest_mode(vcpu)) {
1981 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
1982 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
1983 		}
1984 		vmcs_writel(GUEST_SYSENTER_ESP, data);
1985 		break;
1986 	case MSR_IA32_DEBUGCTLMSR: {
1987 		u64 invalid = data & ~vcpu_supported_debugctl(vcpu);
1988 		if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
1989 			if (report_ignored_msrs)
1990 				vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n",
1991 					    __func__, data);
1992 			data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
1993 			invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
1994 		}
1995 
1996 		if (invalid)
1997 			return 1;
1998 
1999 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2000 						VM_EXIT_SAVE_DEBUG_CONTROLS)
2001 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2002 
2003 		vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2004 		if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2005 		    (data & DEBUGCTLMSR_LBR))
2006 			intel_pmu_create_guest_lbr_event(vcpu);
2007 		return 0;
2008 	}
2009 	case MSR_IA32_BNDCFGS:
2010 		if (!kvm_mpx_supported() ||
2011 		    (!msr_info->host_initiated &&
2012 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2013 			return 1;
2014 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2015 		    (data & MSR_IA32_BNDCFGS_RSVD))
2016 			return 1;
2017 		vmcs_write64(GUEST_BNDCFGS, data);
2018 		break;
2019 	case MSR_IA32_UMWAIT_CONTROL:
2020 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2021 			return 1;
2022 
2023 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2024 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2025 			return 1;
2026 
2027 		vmx->msr_ia32_umwait_control = data;
2028 		break;
2029 	case MSR_IA32_SPEC_CTRL:
2030 		if (!msr_info->host_initiated &&
2031 		    !guest_has_spec_ctrl_msr(vcpu))
2032 			return 1;
2033 
2034 		if (kvm_spec_ctrl_test_value(data))
2035 			return 1;
2036 
2037 		vmx->spec_ctrl = data;
2038 		if (!data)
2039 			break;
2040 
2041 		/*
2042 		 * For non-nested:
2043 		 * When it's written (to non-zero) for the first time, pass
2044 		 * it through.
2045 		 *
2046 		 * For nested:
2047 		 * The handling of the MSR bitmap for L2 guests is done in
2048 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2049 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2050 		 * in the merging. We update the vmcs01 here for L1 as well
2051 		 * since it will end up touching the MSR anyway now.
2052 		 */
2053 		vmx_disable_intercept_for_msr(vcpu,
2054 					      MSR_IA32_SPEC_CTRL,
2055 					      MSR_TYPE_RW);
2056 		break;
2057 	case MSR_IA32_TSX_CTRL:
2058 		if (!msr_info->host_initiated &&
2059 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2060 			return 1;
2061 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2062 			return 1;
2063 		goto find_uret_msr;
2064 	case MSR_IA32_PRED_CMD:
2065 		if (!msr_info->host_initiated &&
2066 		    !guest_has_pred_cmd_msr(vcpu))
2067 			return 1;
2068 
2069 		if (data & ~PRED_CMD_IBPB)
2070 			return 1;
2071 		if (!boot_cpu_has(X86_FEATURE_IBPB))
2072 			return 1;
2073 		if (!data)
2074 			break;
2075 
2076 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2077 
2078 		/*
2079 		 * For non-nested:
2080 		 * When it's written (to non-zero) for the first time, pass
2081 		 * it through.
2082 		 *
2083 		 * For nested:
2084 		 * The handling of the MSR bitmap for L2 guests is done in
2085 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2086 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2087 		 * in the merging.
2088 		 */
2089 		vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2090 		break;
2091 	case MSR_IA32_CR_PAT:
2092 		if (!kvm_pat_valid(data))
2093 			return 1;
2094 
2095 		if (is_guest_mode(vcpu) &&
2096 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2097 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2098 
2099 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2100 			vmcs_write64(GUEST_IA32_PAT, data);
2101 			vcpu->arch.pat = data;
2102 			break;
2103 		}
2104 		ret = kvm_set_msr_common(vcpu, msr_info);
2105 		break;
2106 	case MSR_IA32_TSC_ADJUST:
2107 		ret = kvm_set_msr_common(vcpu, msr_info);
2108 		break;
2109 	case MSR_IA32_MCG_EXT_CTL:
2110 		if ((!msr_info->host_initiated &&
2111 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2112 		       FEAT_CTL_LMCE_ENABLED)) ||
2113 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2114 			return 1;
2115 		vcpu->arch.mcg_ext_ctl = data;
2116 		break;
2117 	case MSR_IA32_FEAT_CTL:
2118 		if (!vmx_feature_control_msr_valid(vcpu, data) ||
2119 		    (to_vmx(vcpu)->msr_ia32_feature_control &
2120 		     FEAT_CTL_LOCKED && !msr_info->host_initiated))
2121 			return 1;
2122 		vmx->msr_ia32_feature_control = data;
2123 		if (msr_info->host_initiated && data == 0)
2124 			vmx_leave_nested(vcpu);
2125 
2126 		/* SGX may be enabled/disabled by guest's firmware */
2127 		vmx_write_encls_bitmap(vcpu, NULL);
2128 		break;
2129 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2130 		/*
2131 		 * On real hardware, the LE hash MSRs are writable before
2132 		 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2133 		 * at which point SGX related bits in IA32_FEATURE_CONTROL
2134 		 * become writable.
2135 		 *
2136 		 * KVM does not emulate SGX activation for simplicity, so
2137 		 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2138 		 * is unlocked.  This is technically not architectural
2139 		 * behavior, but it's close enough.
2140 		 */
2141 		if (!msr_info->host_initiated &&
2142 		    (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2143 		    ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2144 		    !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2145 			return 1;
2146 		vmx->msr_ia32_sgxlepubkeyhash
2147 			[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2148 		break;
2149 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2150 		if (!msr_info->host_initiated)
2151 			return 1; /* they are read-only */
2152 		if (!nested_vmx_allowed(vcpu))
2153 			return 1;
2154 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2155 	case MSR_IA32_RTIT_CTL:
2156 		if (!vmx_pt_mode_is_host_guest() ||
2157 			vmx_rtit_ctl_check(vcpu, data) ||
2158 			vmx->nested.vmxon)
2159 			return 1;
2160 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2161 		vmx->pt_desc.guest.ctl = data;
2162 		pt_update_intercept_for_msr(vcpu);
2163 		break;
2164 	case MSR_IA32_RTIT_STATUS:
2165 		if (!pt_can_write_msr(vmx))
2166 			return 1;
2167 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2168 			return 1;
2169 		vmx->pt_desc.guest.status = data;
2170 		break;
2171 	case MSR_IA32_RTIT_CR3_MATCH:
2172 		if (!pt_can_write_msr(vmx))
2173 			return 1;
2174 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2175 					   PT_CAP_cr3_filtering))
2176 			return 1;
2177 		vmx->pt_desc.guest.cr3_match = data;
2178 		break;
2179 	case MSR_IA32_RTIT_OUTPUT_BASE:
2180 		if (!pt_can_write_msr(vmx))
2181 			return 1;
2182 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2183 					   PT_CAP_topa_output) &&
2184 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2185 					   PT_CAP_single_range_output))
2186 			return 1;
2187 		if (!pt_output_base_valid(vcpu, data))
2188 			return 1;
2189 		vmx->pt_desc.guest.output_base = data;
2190 		break;
2191 	case MSR_IA32_RTIT_OUTPUT_MASK:
2192 		if (!pt_can_write_msr(vmx))
2193 			return 1;
2194 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2195 					   PT_CAP_topa_output) &&
2196 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2197 					   PT_CAP_single_range_output))
2198 			return 1;
2199 		vmx->pt_desc.guest.output_mask = data;
2200 		break;
2201 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2202 		if (!pt_can_write_msr(vmx))
2203 			return 1;
2204 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2205 		if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2206 						       PT_CAP_num_address_ranges))
2207 			return 1;
2208 		if (is_noncanonical_address(data, vcpu))
2209 			return 1;
2210 		if (index % 2)
2211 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2212 		else
2213 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2214 		break;
2215 	case MSR_IA32_PERF_CAPABILITIES:
2216 		if (data && !vcpu_to_pmu(vcpu)->version)
2217 			return 1;
2218 		if (data & PMU_CAP_LBR_FMT) {
2219 			if ((data & PMU_CAP_LBR_FMT) !=
2220 			    (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT))
2221 				return 1;
2222 			if (!intel_pmu_lbr_is_compatible(vcpu))
2223 				return 1;
2224 		}
2225 		ret = kvm_set_msr_common(vcpu, msr_info);
2226 		break;
2227 
2228 	default:
2229 	find_uret_msr:
2230 		msr = vmx_find_uret_msr(vmx, msr_index);
2231 		if (msr)
2232 			ret = vmx_set_guest_uret_msr(vmx, msr, data);
2233 		else
2234 			ret = kvm_set_msr_common(vcpu, msr_info);
2235 	}
2236 
2237 	return ret;
2238 }
2239 
2240 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2241 {
2242 	unsigned long guest_owned_bits;
2243 
2244 	kvm_register_mark_available(vcpu, reg);
2245 
2246 	switch (reg) {
2247 	case VCPU_REGS_RSP:
2248 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2249 		break;
2250 	case VCPU_REGS_RIP:
2251 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2252 		break;
2253 	case VCPU_EXREG_PDPTR:
2254 		if (enable_ept)
2255 			ept_save_pdptrs(vcpu);
2256 		break;
2257 	case VCPU_EXREG_CR0:
2258 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2259 
2260 		vcpu->arch.cr0 &= ~guest_owned_bits;
2261 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2262 		break;
2263 	case VCPU_EXREG_CR3:
2264 		/*
2265 		 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2266 		 * CR3 is loaded into hardware, not the guest's CR3.
2267 		 */
2268 		if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2269 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2270 		break;
2271 	case VCPU_EXREG_CR4:
2272 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2273 
2274 		vcpu->arch.cr4 &= ~guest_owned_bits;
2275 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2276 		break;
2277 	default:
2278 		KVM_BUG_ON(1, vcpu->kvm);
2279 		break;
2280 	}
2281 }
2282 
2283 static __init int cpu_has_kvm_support(void)
2284 {
2285 	return cpu_has_vmx();
2286 }
2287 
2288 static __init int vmx_disabled_by_bios(void)
2289 {
2290 	return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2291 	       !boot_cpu_has(X86_FEATURE_VMX);
2292 }
2293 
2294 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2295 {
2296 	u64 msr;
2297 
2298 	cr4_set_bits(X86_CR4_VMXE);
2299 
2300 	asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2301 			  _ASM_EXTABLE(1b, %l[fault])
2302 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2303 			  : : fault);
2304 	return 0;
2305 
2306 fault:
2307 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2308 		  rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2309 	cr4_clear_bits(X86_CR4_VMXE);
2310 
2311 	return -EFAULT;
2312 }
2313 
2314 static int hardware_enable(void)
2315 {
2316 	int cpu = raw_smp_processor_id();
2317 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2318 	int r;
2319 
2320 	if (cr4_read_shadow() & X86_CR4_VMXE)
2321 		return -EBUSY;
2322 
2323 	/*
2324 	 * This can happen if we hot-added a CPU but failed to allocate
2325 	 * VP assist page for it.
2326 	 */
2327 	if (static_branch_unlikely(&enable_evmcs) &&
2328 	    !hv_get_vp_assist_page(cpu))
2329 		return -EFAULT;
2330 
2331 	intel_pt_handle_vmx(1);
2332 
2333 	r = kvm_cpu_vmxon(phys_addr);
2334 	if (r) {
2335 		intel_pt_handle_vmx(0);
2336 		return r;
2337 	}
2338 
2339 	if (enable_ept)
2340 		ept_sync_global();
2341 
2342 	return 0;
2343 }
2344 
2345 static void vmclear_local_loaded_vmcss(void)
2346 {
2347 	int cpu = raw_smp_processor_id();
2348 	struct loaded_vmcs *v, *n;
2349 
2350 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2351 				 loaded_vmcss_on_cpu_link)
2352 		__loaded_vmcs_clear(v);
2353 }
2354 
2355 static void hardware_disable(void)
2356 {
2357 	vmclear_local_loaded_vmcss();
2358 
2359 	if (cpu_vmxoff())
2360 		kvm_spurious_fault();
2361 
2362 	intel_pt_handle_vmx(0);
2363 }
2364 
2365 /*
2366  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2367  * directly instead of going through cpu_has(), to ensure KVM is trapping
2368  * ENCLS whenever it's supported in hardware.  It does not matter whether
2369  * the host OS supports or has enabled SGX.
2370  */
2371 static bool cpu_has_sgx(void)
2372 {
2373 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2374 }
2375 
2376 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2377 				      u32 msr, u32 *result)
2378 {
2379 	u32 vmx_msr_low, vmx_msr_high;
2380 	u32 ctl = ctl_min | ctl_opt;
2381 
2382 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2383 
2384 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2385 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2386 
2387 	/* Ensure minimum (required) set of control bits are supported. */
2388 	if (ctl_min & ~ctl)
2389 		return -EIO;
2390 
2391 	*result = ctl;
2392 	return 0;
2393 }
2394 
2395 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2396 				    struct vmx_capability *vmx_cap)
2397 {
2398 	u32 vmx_msr_low, vmx_msr_high;
2399 	u32 min, opt, min2, opt2;
2400 	u32 _pin_based_exec_control = 0;
2401 	u32 _cpu_based_exec_control = 0;
2402 	u32 _cpu_based_2nd_exec_control = 0;
2403 	u32 _vmexit_control = 0;
2404 	u32 _vmentry_control = 0;
2405 
2406 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2407 	min = CPU_BASED_HLT_EXITING |
2408 #ifdef CONFIG_X86_64
2409 	      CPU_BASED_CR8_LOAD_EXITING |
2410 	      CPU_BASED_CR8_STORE_EXITING |
2411 #endif
2412 	      CPU_BASED_CR3_LOAD_EXITING |
2413 	      CPU_BASED_CR3_STORE_EXITING |
2414 	      CPU_BASED_UNCOND_IO_EXITING |
2415 	      CPU_BASED_MOV_DR_EXITING |
2416 	      CPU_BASED_USE_TSC_OFFSETTING |
2417 	      CPU_BASED_MWAIT_EXITING |
2418 	      CPU_BASED_MONITOR_EXITING |
2419 	      CPU_BASED_INVLPG_EXITING |
2420 	      CPU_BASED_RDPMC_EXITING;
2421 
2422 	opt = CPU_BASED_TPR_SHADOW |
2423 	      CPU_BASED_USE_MSR_BITMAPS |
2424 	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2425 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2426 				&_cpu_based_exec_control) < 0)
2427 		return -EIO;
2428 #ifdef CONFIG_X86_64
2429 	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2430 		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2431 					   ~CPU_BASED_CR8_STORE_EXITING;
2432 #endif
2433 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2434 		min2 = 0;
2435 		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2436 			SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2437 			SECONDARY_EXEC_WBINVD_EXITING |
2438 			SECONDARY_EXEC_ENABLE_VPID |
2439 			SECONDARY_EXEC_ENABLE_EPT |
2440 			SECONDARY_EXEC_UNRESTRICTED_GUEST |
2441 			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2442 			SECONDARY_EXEC_DESC |
2443 			SECONDARY_EXEC_ENABLE_RDTSCP |
2444 			SECONDARY_EXEC_ENABLE_INVPCID |
2445 			SECONDARY_EXEC_APIC_REGISTER_VIRT |
2446 			SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2447 			SECONDARY_EXEC_SHADOW_VMCS |
2448 			SECONDARY_EXEC_XSAVES |
2449 			SECONDARY_EXEC_RDSEED_EXITING |
2450 			SECONDARY_EXEC_RDRAND_EXITING |
2451 			SECONDARY_EXEC_ENABLE_PML |
2452 			SECONDARY_EXEC_TSC_SCALING |
2453 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2454 			SECONDARY_EXEC_PT_USE_GPA |
2455 			SECONDARY_EXEC_PT_CONCEAL_VMX |
2456 			SECONDARY_EXEC_ENABLE_VMFUNC |
2457 			SECONDARY_EXEC_BUS_LOCK_DETECTION;
2458 		if (cpu_has_sgx())
2459 			opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2460 		if (adjust_vmx_controls(min2, opt2,
2461 					MSR_IA32_VMX_PROCBASED_CTLS2,
2462 					&_cpu_based_2nd_exec_control) < 0)
2463 			return -EIO;
2464 	}
2465 #ifndef CONFIG_X86_64
2466 	if (!(_cpu_based_2nd_exec_control &
2467 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2468 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2469 #endif
2470 
2471 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2472 		_cpu_based_2nd_exec_control &= ~(
2473 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2474 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2475 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2476 
2477 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2478 		&vmx_cap->ept, &vmx_cap->vpid);
2479 
2480 	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2481 		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2482 		   enabled */
2483 		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2484 					     CPU_BASED_CR3_STORE_EXITING |
2485 					     CPU_BASED_INVLPG_EXITING);
2486 	} else if (vmx_cap->ept) {
2487 		vmx_cap->ept = 0;
2488 		pr_warn_once("EPT CAP should not exist if not support "
2489 				"1-setting enable EPT VM-execution control\n");
2490 	}
2491 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2492 		vmx_cap->vpid) {
2493 		vmx_cap->vpid = 0;
2494 		pr_warn_once("VPID CAP should not exist if not support "
2495 				"1-setting enable VPID VM-execution control\n");
2496 	}
2497 
2498 	min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2499 #ifdef CONFIG_X86_64
2500 	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2501 #endif
2502 	opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2503 	      VM_EXIT_LOAD_IA32_PAT |
2504 	      VM_EXIT_LOAD_IA32_EFER |
2505 	      VM_EXIT_CLEAR_BNDCFGS |
2506 	      VM_EXIT_PT_CONCEAL_PIP |
2507 	      VM_EXIT_CLEAR_IA32_RTIT_CTL;
2508 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2509 				&_vmexit_control) < 0)
2510 		return -EIO;
2511 
2512 	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2513 	opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2514 		 PIN_BASED_VMX_PREEMPTION_TIMER;
2515 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2516 				&_pin_based_exec_control) < 0)
2517 		return -EIO;
2518 
2519 	if (cpu_has_broken_vmx_preemption_timer())
2520 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2521 	if (!(_cpu_based_2nd_exec_control &
2522 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2523 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2524 
2525 	min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2526 	opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2527 	      VM_ENTRY_LOAD_IA32_PAT |
2528 	      VM_ENTRY_LOAD_IA32_EFER |
2529 	      VM_ENTRY_LOAD_BNDCFGS |
2530 	      VM_ENTRY_PT_CONCEAL_PIP |
2531 	      VM_ENTRY_LOAD_IA32_RTIT_CTL;
2532 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2533 				&_vmentry_control) < 0)
2534 		return -EIO;
2535 
2536 	/*
2537 	 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2538 	 * can't be used due to an errata where VM Exit may incorrectly clear
2539 	 * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2540 	 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2541 	 */
2542 	if (boot_cpu_data.x86 == 0x6) {
2543 		switch (boot_cpu_data.x86_model) {
2544 		case 26: /* AAK155 */
2545 		case 30: /* AAP115 */
2546 		case 37: /* AAT100 */
2547 		case 44: /* BC86,AAY89,BD102 */
2548 		case 46: /* BA97 */
2549 			_vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2550 			_vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2551 			pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2552 					"does not work properly. Using workaround\n");
2553 			break;
2554 		default:
2555 			break;
2556 		}
2557 	}
2558 
2559 
2560 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2561 
2562 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2563 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2564 		return -EIO;
2565 
2566 #ifdef CONFIG_X86_64
2567 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2568 	if (vmx_msr_high & (1u<<16))
2569 		return -EIO;
2570 #endif
2571 
2572 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2573 	if (((vmx_msr_high >> 18) & 15) != 6)
2574 		return -EIO;
2575 
2576 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2577 	vmcs_conf->order = get_order(vmcs_conf->size);
2578 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2579 
2580 	vmcs_conf->revision_id = vmx_msr_low;
2581 
2582 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2583 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2584 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2585 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2586 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2587 
2588 #if IS_ENABLED(CONFIG_HYPERV)
2589 	if (enlightened_vmcs)
2590 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2591 #endif
2592 
2593 	return 0;
2594 }
2595 
2596 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2597 {
2598 	int node = cpu_to_node(cpu);
2599 	struct page *pages;
2600 	struct vmcs *vmcs;
2601 
2602 	pages = __alloc_pages_node(node, flags, vmcs_config.order);
2603 	if (!pages)
2604 		return NULL;
2605 	vmcs = page_address(pages);
2606 	memset(vmcs, 0, vmcs_config.size);
2607 
2608 	/* KVM supports Enlightened VMCS v1 only */
2609 	if (static_branch_unlikely(&enable_evmcs))
2610 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2611 	else
2612 		vmcs->hdr.revision_id = vmcs_config.revision_id;
2613 
2614 	if (shadow)
2615 		vmcs->hdr.shadow_vmcs = 1;
2616 	return vmcs;
2617 }
2618 
2619 void free_vmcs(struct vmcs *vmcs)
2620 {
2621 	free_pages((unsigned long)vmcs, vmcs_config.order);
2622 }
2623 
2624 /*
2625  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2626  */
2627 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2628 {
2629 	if (!loaded_vmcs->vmcs)
2630 		return;
2631 	loaded_vmcs_clear(loaded_vmcs);
2632 	free_vmcs(loaded_vmcs->vmcs);
2633 	loaded_vmcs->vmcs = NULL;
2634 	if (loaded_vmcs->msr_bitmap)
2635 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2636 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2637 }
2638 
2639 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2640 {
2641 	loaded_vmcs->vmcs = alloc_vmcs(false);
2642 	if (!loaded_vmcs->vmcs)
2643 		return -ENOMEM;
2644 
2645 	vmcs_clear(loaded_vmcs->vmcs);
2646 
2647 	loaded_vmcs->shadow_vmcs = NULL;
2648 	loaded_vmcs->hv_timer_soft_disabled = false;
2649 	loaded_vmcs->cpu = -1;
2650 	loaded_vmcs->launched = 0;
2651 
2652 	if (cpu_has_vmx_msr_bitmap()) {
2653 		loaded_vmcs->msr_bitmap = (unsigned long *)
2654 				__get_free_page(GFP_KERNEL_ACCOUNT);
2655 		if (!loaded_vmcs->msr_bitmap)
2656 			goto out_vmcs;
2657 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2658 
2659 		if (IS_ENABLED(CONFIG_HYPERV) &&
2660 		    static_branch_unlikely(&enable_evmcs) &&
2661 		    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2662 			struct hv_enlightened_vmcs *evmcs =
2663 				(struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2664 
2665 			evmcs->hv_enlightenments_control.msr_bitmap = 1;
2666 		}
2667 	}
2668 
2669 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2670 	memset(&loaded_vmcs->controls_shadow, 0,
2671 		sizeof(struct vmcs_controls_shadow));
2672 
2673 	return 0;
2674 
2675 out_vmcs:
2676 	free_loaded_vmcs(loaded_vmcs);
2677 	return -ENOMEM;
2678 }
2679 
2680 static void free_kvm_area(void)
2681 {
2682 	int cpu;
2683 
2684 	for_each_possible_cpu(cpu) {
2685 		free_vmcs(per_cpu(vmxarea, cpu));
2686 		per_cpu(vmxarea, cpu) = NULL;
2687 	}
2688 }
2689 
2690 static __init int alloc_kvm_area(void)
2691 {
2692 	int cpu;
2693 
2694 	for_each_possible_cpu(cpu) {
2695 		struct vmcs *vmcs;
2696 
2697 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2698 		if (!vmcs) {
2699 			free_kvm_area();
2700 			return -ENOMEM;
2701 		}
2702 
2703 		/*
2704 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2705 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2706 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2707 		 *
2708 		 * However, even though not explicitly documented by
2709 		 * TLFS, VMXArea passed as VMXON argument should
2710 		 * still be marked with revision_id reported by
2711 		 * physical CPU.
2712 		 */
2713 		if (static_branch_unlikely(&enable_evmcs))
2714 			vmcs->hdr.revision_id = vmcs_config.revision_id;
2715 
2716 		per_cpu(vmxarea, cpu) = vmcs;
2717 	}
2718 	return 0;
2719 }
2720 
2721 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2722 		struct kvm_segment *save)
2723 {
2724 	if (!emulate_invalid_guest_state) {
2725 		/*
2726 		 * CS and SS RPL should be equal during guest entry according
2727 		 * to VMX spec, but in reality it is not always so. Since vcpu
2728 		 * is in the middle of the transition from real mode to
2729 		 * protected mode it is safe to assume that RPL 0 is a good
2730 		 * default value.
2731 		 */
2732 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2733 			save->selector &= ~SEGMENT_RPL_MASK;
2734 		save->dpl = save->selector & SEGMENT_RPL_MASK;
2735 		save->s = 1;
2736 	}
2737 	__vmx_set_segment(vcpu, save, seg);
2738 }
2739 
2740 static void enter_pmode(struct kvm_vcpu *vcpu)
2741 {
2742 	unsigned long flags;
2743 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2744 
2745 	/*
2746 	 * Update real mode segment cache. It may be not up-to-date if segment
2747 	 * register was written while vcpu was in a guest mode.
2748 	 */
2749 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2750 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2751 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2752 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2753 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2754 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2755 
2756 	vmx->rmode.vm86_active = 0;
2757 
2758 	__vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2759 
2760 	flags = vmcs_readl(GUEST_RFLAGS);
2761 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2762 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2763 	vmcs_writel(GUEST_RFLAGS, flags);
2764 
2765 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2766 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2767 
2768 	vmx_update_exception_bitmap(vcpu);
2769 
2770 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2771 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2772 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2773 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2774 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2775 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2776 }
2777 
2778 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2779 {
2780 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2781 	struct kvm_segment var = *save;
2782 
2783 	var.dpl = 0x3;
2784 	if (seg == VCPU_SREG_CS)
2785 		var.type = 0x3;
2786 
2787 	if (!emulate_invalid_guest_state) {
2788 		var.selector = var.base >> 4;
2789 		var.base = var.base & 0xffff0;
2790 		var.limit = 0xffff;
2791 		var.g = 0;
2792 		var.db = 0;
2793 		var.present = 1;
2794 		var.s = 1;
2795 		var.l = 0;
2796 		var.unusable = 0;
2797 		var.type = 0x3;
2798 		var.avl = 0;
2799 		if (save->base & 0xf)
2800 			printk_once(KERN_WARNING "kvm: segment base is not "
2801 					"paragraph aligned when entering "
2802 					"protected mode (seg=%d)", seg);
2803 	}
2804 
2805 	vmcs_write16(sf->selector, var.selector);
2806 	vmcs_writel(sf->base, var.base);
2807 	vmcs_write32(sf->limit, var.limit);
2808 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2809 }
2810 
2811 static void enter_rmode(struct kvm_vcpu *vcpu)
2812 {
2813 	unsigned long flags;
2814 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2815 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2816 
2817 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2818 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2819 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2820 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2821 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2822 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2823 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2824 
2825 	vmx->rmode.vm86_active = 1;
2826 
2827 	/*
2828 	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2829 	 * vcpu. Warn the user that an update is overdue.
2830 	 */
2831 	if (!kvm_vmx->tss_addr)
2832 		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2833 			     "called before entering vcpu\n");
2834 
2835 	vmx_segment_cache_clear(vmx);
2836 
2837 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2838 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2839 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2840 
2841 	flags = vmcs_readl(GUEST_RFLAGS);
2842 	vmx->rmode.save_rflags = flags;
2843 
2844 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2845 
2846 	vmcs_writel(GUEST_RFLAGS, flags);
2847 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2848 	vmx_update_exception_bitmap(vcpu);
2849 
2850 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2851 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2852 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2853 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2854 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2855 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2856 }
2857 
2858 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2859 {
2860 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2861 	struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER);
2862 
2863 	/* Nothing to do if hardware doesn't support EFER. */
2864 	if (!msr)
2865 		return 0;
2866 
2867 	vcpu->arch.efer = efer;
2868 	if (efer & EFER_LMA) {
2869 		vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2870 		msr->data = efer;
2871 	} else {
2872 		vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2873 
2874 		msr->data = efer & ~EFER_LME;
2875 	}
2876 	vmx_setup_uret_msrs(vmx);
2877 	return 0;
2878 }
2879 
2880 #ifdef CONFIG_X86_64
2881 
2882 static void enter_lmode(struct kvm_vcpu *vcpu)
2883 {
2884 	u32 guest_tr_ar;
2885 
2886 	vmx_segment_cache_clear(to_vmx(vcpu));
2887 
2888 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2889 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2890 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2891 				     __func__);
2892 		vmcs_write32(GUEST_TR_AR_BYTES,
2893 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2894 			     | VMX_AR_TYPE_BUSY_64_TSS);
2895 	}
2896 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2897 }
2898 
2899 static void exit_lmode(struct kvm_vcpu *vcpu)
2900 {
2901 	vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2902 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2903 }
2904 
2905 #endif
2906 
2907 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
2908 {
2909 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2910 
2911 	/*
2912 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
2913 	 * the CPU is not required to invalidate guest-physical mappings on
2914 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
2915 	 * associated with the root EPT structure and not any particular VPID
2916 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
2917 	 */
2918 	if (enable_ept) {
2919 		ept_sync_global();
2920 	} else if (enable_vpid) {
2921 		if (cpu_has_vmx_invvpid_global()) {
2922 			vpid_sync_vcpu_global();
2923 		} else {
2924 			vpid_sync_vcpu_single(vmx->vpid);
2925 			vpid_sync_vcpu_single(vmx->nested.vpid02);
2926 		}
2927 	}
2928 }
2929 
2930 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
2931 {
2932 	struct kvm_mmu *mmu = vcpu->arch.mmu;
2933 	u64 root_hpa = mmu->root_hpa;
2934 
2935 	/* No flush required if the current context is invalid. */
2936 	if (!VALID_PAGE(root_hpa))
2937 		return;
2938 
2939 	if (enable_ept)
2940 		ept_sync_context(construct_eptp(vcpu, root_hpa,
2941 						mmu->shadow_root_level));
2942 	else if (!is_guest_mode(vcpu))
2943 		vpid_sync_context(to_vmx(vcpu)->vpid);
2944 	else
2945 		vpid_sync_context(nested_get_vpid02(vcpu));
2946 }
2947 
2948 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2949 {
2950 	/*
2951 	 * vpid_sync_vcpu_addr() is a nop if vmx->vpid==0, see the comment in
2952 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
2953 	 */
2954 	vpid_sync_vcpu_addr(to_vmx(vcpu)->vpid, addr);
2955 }
2956 
2957 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
2958 {
2959 	/*
2960 	 * vpid_sync_context() is a nop if vmx->vpid==0, e.g. if enable_vpid==0
2961 	 * or a vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit
2962 	 * are required to flush GVA->{G,H}PA mappings from the TLB if vpid is
2963 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
2964 	 * i.e. no explicit INVVPID is necessary.
2965 	 */
2966 	vpid_sync_context(to_vmx(vcpu)->vpid);
2967 }
2968 
2969 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
2970 {
2971 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2972 
2973 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
2974 		return;
2975 
2976 	if (is_pae_paging(vcpu)) {
2977 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2978 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2979 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2980 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2981 	}
2982 }
2983 
2984 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2985 {
2986 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2987 
2988 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
2989 		return;
2990 
2991 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2992 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2993 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2994 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2995 
2996 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
2997 }
2998 
2999 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3000 			  CPU_BASED_CR3_STORE_EXITING)
3001 
3002 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3003 {
3004 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3005 	unsigned long hw_cr0, old_cr0_pg;
3006 	u32 tmp;
3007 
3008 	old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3009 
3010 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3011 	if (is_unrestricted_guest(vcpu))
3012 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3013 	else {
3014 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3015 		if (!enable_ept)
3016 			hw_cr0 |= X86_CR0_WP;
3017 
3018 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3019 			enter_pmode(vcpu);
3020 
3021 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3022 			enter_rmode(vcpu);
3023 	}
3024 
3025 	vmcs_writel(CR0_READ_SHADOW, cr0);
3026 	vmcs_writel(GUEST_CR0, hw_cr0);
3027 	vcpu->arch.cr0 = cr0;
3028 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3029 
3030 #ifdef CONFIG_X86_64
3031 	if (vcpu->arch.efer & EFER_LME) {
3032 		if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3033 			enter_lmode(vcpu);
3034 		else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3035 			exit_lmode(vcpu);
3036 	}
3037 #endif
3038 
3039 	if (enable_ept && !is_unrestricted_guest(vcpu)) {
3040 		/*
3041 		 * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3042 		 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3043 		 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3044 		 * KVM's CR3 is installed.
3045 		 */
3046 		if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3047 			vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3048 
3049 		/*
3050 		 * When running with EPT but not unrestricted guest, KVM must
3051 		 * intercept CR3 accesses when paging is _disabled_.  This is
3052 		 * necessary because restricted guests can't actually run with
3053 		 * paging disabled, and so KVM stuffs its own CR3 in order to
3054 		 * run the guest when identity mapped page tables.
3055 		 *
3056 		 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3057 		 * update, it may be stale with respect to CR3 interception,
3058 		 * e.g. after nested VM-Enter.
3059 		 *
3060 		 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3061 		 * stores to forward them to L1, even if KVM does not need to
3062 		 * intercept them to preserve its identity mapped page tables.
3063 		 */
3064 		if (!(cr0 & X86_CR0_PG)) {
3065 			exec_controls_setbit(vmx, CR3_EXITING_BITS);
3066 		} else if (!is_guest_mode(vcpu)) {
3067 			exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3068 		} else {
3069 			tmp = exec_controls_get(vmx);
3070 			tmp &= ~CR3_EXITING_BITS;
3071 			tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3072 			exec_controls_set(vmx, tmp);
3073 		}
3074 
3075 		/* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3076 		if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3077 			vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3078 	}
3079 
3080 	/* depends on vcpu->arch.cr0 to be set to a new value */
3081 	vmx->emulation_required = vmx_emulation_required(vcpu);
3082 }
3083 
3084 static int vmx_get_max_tdp_level(void)
3085 {
3086 	if (cpu_has_vmx_ept_5levels())
3087 		return 5;
3088 	return 4;
3089 }
3090 
3091 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3092 {
3093 	u64 eptp = VMX_EPTP_MT_WB;
3094 
3095 	eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3096 
3097 	if (enable_ept_ad_bits &&
3098 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3099 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3100 	eptp |= root_hpa;
3101 
3102 	return eptp;
3103 }
3104 
3105 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3106 			     int root_level)
3107 {
3108 	struct kvm *kvm = vcpu->kvm;
3109 	bool update_guest_cr3 = true;
3110 	unsigned long guest_cr3;
3111 	u64 eptp;
3112 
3113 	if (enable_ept) {
3114 		eptp = construct_eptp(vcpu, root_hpa, root_level);
3115 		vmcs_write64(EPT_POINTER, eptp);
3116 
3117 		hv_track_root_tdp(vcpu, root_hpa);
3118 
3119 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3120 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3121 		else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3122 			guest_cr3 = vcpu->arch.cr3;
3123 		else /* vmcs01.GUEST_CR3 is already up-to-date. */
3124 			update_guest_cr3 = false;
3125 		vmx_ept_load_pdptrs(vcpu);
3126 	} else {
3127 		guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
3128 	}
3129 
3130 	if (update_guest_cr3)
3131 		vmcs_writel(GUEST_CR3, guest_cr3);
3132 }
3133 
3134 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3135 {
3136 	/*
3137 	 * We operate under the default treatment of SMM, so VMX cannot be
3138 	 * enabled under SMM.  Note, whether or not VMXE is allowed at all is
3139 	 * handled by kvm_is_valid_cr4().
3140 	 */
3141 	if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3142 		return false;
3143 
3144 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3145 		return false;
3146 
3147 	return true;
3148 }
3149 
3150 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3151 {
3152 	unsigned long old_cr4 = vcpu->arch.cr4;
3153 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3154 	/*
3155 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3156 	 * is in force while we are in guest mode.  Do not let guests control
3157 	 * this bit, even if host CR4.MCE == 0.
3158 	 */
3159 	unsigned long hw_cr4;
3160 
3161 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3162 	if (is_unrestricted_guest(vcpu))
3163 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3164 	else if (vmx->rmode.vm86_active)
3165 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3166 	else
3167 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3168 
3169 	if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3170 		if (cr4 & X86_CR4_UMIP) {
3171 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3172 			hw_cr4 &= ~X86_CR4_UMIP;
3173 		} else if (!is_guest_mode(vcpu) ||
3174 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3175 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3176 		}
3177 	}
3178 
3179 	vcpu->arch.cr4 = cr4;
3180 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3181 
3182 	if (!is_unrestricted_guest(vcpu)) {
3183 		if (enable_ept) {
3184 			if (!is_paging(vcpu)) {
3185 				hw_cr4 &= ~X86_CR4_PAE;
3186 				hw_cr4 |= X86_CR4_PSE;
3187 			} else if (!(cr4 & X86_CR4_PAE)) {
3188 				hw_cr4 &= ~X86_CR4_PAE;
3189 			}
3190 		}
3191 
3192 		/*
3193 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3194 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3195 		 * to be manually disabled when guest switches to non-paging
3196 		 * mode.
3197 		 *
3198 		 * If !enable_unrestricted_guest, the CPU is always running
3199 		 * with CR0.PG=1 and CR4 needs to be modified.
3200 		 * If enable_unrestricted_guest, the CPU automatically
3201 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3202 		 */
3203 		if (!is_paging(vcpu))
3204 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3205 	}
3206 
3207 	vmcs_writel(CR4_READ_SHADOW, cr4);
3208 	vmcs_writel(GUEST_CR4, hw_cr4);
3209 
3210 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3211 		kvm_update_cpuid_runtime(vcpu);
3212 }
3213 
3214 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3215 {
3216 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3217 	u32 ar;
3218 
3219 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3220 		*var = vmx->rmode.segs[seg];
3221 		if (seg == VCPU_SREG_TR
3222 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3223 			return;
3224 		var->base = vmx_read_guest_seg_base(vmx, seg);
3225 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3226 		return;
3227 	}
3228 	var->base = vmx_read_guest_seg_base(vmx, seg);
3229 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3230 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3231 	ar = vmx_read_guest_seg_ar(vmx, seg);
3232 	var->unusable = (ar >> 16) & 1;
3233 	var->type = ar & 15;
3234 	var->s = (ar >> 4) & 1;
3235 	var->dpl = (ar >> 5) & 3;
3236 	/*
3237 	 * Some userspaces do not preserve unusable property. Since usable
3238 	 * segment has to be present according to VMX spec we can use present
3239 	 * property to amend userspace bug by making unusable segment always
3240 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3241 	 * segment as unusable.
3242 	 */
3243 	var->present = !var->unusable;
3244 	var->avl = (ar >> 12) & 1;
3245 	var->l = (ar >> 13) & 1;
3246 	var->db = (ar >> 14) & 1;
3247 	var->g = (ar >> 15) & 1;
3248 }
3249 
3250 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3251 {
3252 	struct kvm_segment s;
3253 
3254 	if (to_vmx(vcpu)->rmode.vm86_active) {
3255 		vmx_get_segment(vcpu, &s, seg);
3256 		return s.base;
3257 	}
3258 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3259 }
3260 
3261 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3262 {
3263 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3264 
3265 	if (unlikely(vmx->rmode.vm86_active))
3266 		return 0;
3267 	else {
3268 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3269 		return VMX_AR_DPL(ar);
3270 	}
3271 }
3272 
3273 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3274 {
3275 	u32 ar;
3276 
3277 	if (var->unusable || !var->present)
3278 		ar = 1 << 16;
3279 	else {
3280 		ar = var->type & 15;
3281 		ar |= (var->s & 1) << 4;
3282 		ar |= (var->dpl & 3) << 5;
3283 		ar |= (var->present & 1) << 7;
3284 		ar |= (var->avl & 1) << 12;
3285 		ar |= (var->l & 1) << 13;
3286 		ar |= (var->db & 1) << 14;
3287 		ar |= (var->g & 1) << 15;
3288 	}
3289 
3290 	return ar;
3291 }
3292 
3293 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3294 {
3295 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3296 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3297 
3298 	vmx_segment_cache_clear(vmx);
3299 
3300 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3301 		vmx->rmode.segs[seg] = *var;
3302 		if (seg == VCPU_SREG_TR)
3303 			vmcs_write16(sf->selector, var->selector);
3304 		else if (var->s)
3305 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3306 		return;
3307 	}
3308 
3309 	vmcs_writel(sf->base, var->base);
3310 	vmcs_write32(sf->limit, var->limit);
3311 	vmcs_write16(sf->selector, var->selector);
3312 
3313 	/*
3314 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3315 	 * qemu binaries.
3316 	 *   IA32 arch specifies that at the time of processor reset the
3317 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3318 	 * is setting it to 0 in the userland code. This causes invalid guest
3319 	 * state vmexit when "unrestricted guest" mode is turned on.
3320 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3321 	 * tree. Newer qemu binaries with that qemu fix would not need this
3322 	 * kvm hack.
3323 	 */
3324 	if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3325 		var->type |= 0x1; /* Accessed */
3326 
3327 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3328 }
3329 
3330 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3331 {
3332 	__vmx_set_segment(vcpu, var, seg);
3333 
3334 	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3335 }
3336 
3337 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3338 {
3339 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3340 
3341 	*db = (ar >> 14) & 1;
3342 	*l = (ar >> 13) & 1;
3343 }
3344 
3345 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3346 {
3347 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3348 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3349 }
3350 
3351 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3352 {
3353 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3354 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3355 }
3356 
3357 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3358 {
3359 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3360 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3361 }
3362 
3363 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3364 {
3365 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3366 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3367 }
3368 
3369 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3370 {
3371 	struct kvm_segment var;
3372 	u32 ar;
3373 
3374 	vmx_get_segment(vcpu, &var, seg);
3375 	var.dpl = 0x3;
3376 	if (seg == VCPU_SREG_CS)
3377 		var.type = 0x3;
3378 	ar = vmx_segment_access_rights(&var);
3379 
3380 	if (var.base != (var.selector << 4))
3381 		return false;
3382 	if (var.limit != 0xffff)
3383 		return false;
3384 	if (ar != 0xf3)
3385 		return false;
3386 
3387 	return true;
3388 }
3389 
3390 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3391 {
3392 	struct kvm_segment cs;
3393 	unsigned int cs_rpl;
3394 
3395 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3396 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3397 
3398 	if (cs.unusable)
3399 		return false;
3400 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3401 		return false;
3402 	if (!cs.s)
3403 		return false;
3404 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3405 		if (cs.dpl > cs_rpl)
3406 			return false;
3407 	} else {
3408 		if (cs.dpl != cs_rpl)
3409 			return false;
3410 	}
3411 	if (!cs.present)
3412 		return false;
3413 
3414 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3415 	return true;
3416 }
3417 
3418 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3419 {
3420 	struct kvm_segment ss;
3421 	unsigned int ss_rpl;
3422 
3423 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3424 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3425 
3426 	if (ss.unusable)
3427 		return true;
3428 	if (ss.type != 3 && ss.type != 7)
3429 		return false;
3430 	if (!ss.s)
3431 		return false;
3432 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3433 		return false;
3434 	if (!ss.present)
3435 		return false;
3436 
3437 	return true;
3438 }
3439 
3440 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3441 {
3442 	struct kvm_segment var;
3443 	unsigned int rpl;
3444 
3445 	vmx_get_segment(vcpu, &var, seg);
3446 	rpl = var.selector & SEGMENT_RPL_MASK;
3447 
3448 	if (var.unusable)
3449 		return true;
3450 	if (!var.s)
3451 		return false;
3452 	if (!var.present)
3453 		return false;
3454 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3455 		if (var.dpl < rpl) /* DPL < RPL */
3456 			return false;
3457 	}
3458 
3459 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3460 	 * rights flags
3461 	 */
3462 	return true;
3463 }
3464 
3465 static bool tr_valid(struct kvm_vcpu *vcpu)
3466 {
3467 	struct kvm_segment tr;
3468 
3469 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3470 
3471 	if (tr.unusable)
3472 		return false;
3473 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3474 		return false;
3475 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3476 		return false;
3477 	if (!tr.present)
3478 		return false;
3479 
3480 	return true;
3481 }
3482 
3483 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3484 {
3485 	struct kvm_segment ldtr;
3486 
3487 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3488 
3489 	if (ldtr.unusable)
3490 		return true;
3491 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3492 		return false;
3493 	if (ldtr.type != 2)
3494 		return false;
3495 	if (!ldtr.present)
3496 		return false;
3497 
3498 	return true;
3499 }
3500 
3501 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3502 {
3503 	struct kvm_segment cs, ss;
3504 
3505 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3506 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3507 
3508 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3509 		 (ss.selector & SEGMENT_RPL_MASK));
3510 }
3511 
3512 /*
3513  * Check if guest state is valid. Returns true if valid, false if
3514  * not.
3515  * We assume that registers are always usable
3516  */
3517 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3518 {
3519 	/* real mode guest state checks */
3520 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3521 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3522 			return false;
3523 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3524 			return false;
3525 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3526 			return false;
3527 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3528 			return false;
3529 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3530 			return false;
3531 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3532 			return false;
3533 	} else {
3534 	/* protected mode guest state checks */
3535 		if (!cs_ss_rpl_check(vcpu))
3536 			return false;
3537 		if (!code_segment_valid(vcpu))
3538 			return false;
3539 		if (!stack_segment_valid(vcpu))
3540 			return false;
3541 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3542 			return false;
3543 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3544 			return false;
3545 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3546 			return false;
3547 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3548 			return false;
3549 		if (!tr_valid(vcpu))
3550 			return false;
3551 		if (!ldtr_valid(vcpu))
3552 			return false;
3553 	}
3554 	/* TODO:
3555 	 * - Add checks on RIP
3556 	 * - Add checks on RFLAGS
3557 	 */
3558 
3559 	return true;
3560 }
3561 
3562 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3563 {
3564 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3565 	u16 data;
3566 	int i;
3567 
3568 	for (i = 0; i < 3; i++) {
3569 		if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3570 			return -EFAULT;
3571 	}
3572 
3573 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3574 	if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3575 		return -EFAULT;
3576 
3577 	data = ~0;
3578 	if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3579 		return -EFAULT;
3580 
3581 	return 0;
3582 }
3583 
3584 static int init_rmode_identity_map(struct kvm *kvm)
3585 {
3586 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3587 	int i, r = 0;
3588 	void __user *uaddr;
3589 	u32 tmp;
3590 
3591 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3592 	mutex_lock(&kvm->slots_lock);
3593 
3594 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3595 		goto out;
3596 
3597 	if (!kvm_vmx->ept_identity_map_addr)
3598 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3599 
3600 	uaddr = __x86_set_memory_region(kvm,
3601 					IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3602 					kvm_vmx->ept_identity_map_addr,
3603 					PAGE_SIZE);
3604 	if (IS_ERR(uaddr)) {
3605 		r = PTR_ERR(uaddr);
3606 		goto out;
3607 	}
3608 
3609 	/* Set up identity-mapping pagetable for EPT in real mode */
3610 	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3611 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3612 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3613 		if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3614 			r = -EFAULT;
3615 			goto out;
3616 		}
3617 	}
3618 	kvm_vmx->ept_identity_pagetable_done = true;
3619 
3620 out:
3621 	mutex_unlock(&kvm->slots_lock);
3622 	return r;
3623 }
3624 
3625 static void seg_setup(int seg)
3626 {
3627 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3628 	unsigned int ar;
3629 
3630 	vmcs_write16(sf->selector, 0);
3631 	vmcs_writel(sf->base, 0);
3632 	vmcs_write32(sf->limit, 0xffff);
3633 	ar = 0x93;
3634 	if (seg == VCPU_SREG_CS)
3635 		ar |= 0x08; /* code segment */
3636 
3637 	vmcs_write32(sf->ar_bytes, ar);
3638 }
3639 
3640 static int alloc_apic_access_page(struct kvm *kvm)
3641 {
3642 	struct page *page;
3643 	void __user *hva;
3644 	int ret = 0;
3645 
3646 	mutex_lock(&kvm->slots_lock);
3647 	if (kvm->arch.apic_access_memslot_enabled)
3648 		goto out;
3649 	hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3650 				      APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3651 	if (IS_ERR(hva)) {
3652 		ret = PTR_ERR(hva);
3653 		goto out;
3654 	}
3655 
3656 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3657 	if (is_error_page(page)) {
3658 		ret = -EFAULT;
3659 		goto out;
3660 	}
3661 
3662 	/*
3663 	 * Do not pin the page in memory, so that memory hot-unplug
3664 	 * is able to migrate it.
3665 	 */
3666 	put_page(page);
3667 	kvm->arch.apic_access_memslot_enabled = true;
3668 out:
3669 	mutex_unlock(&kvm->slots_lock);
3670 	return ret;
3671 }
3672 
3673 int allocate_vpid(void)
3674 {
3675 	int vpid;
3676 
3677 	if (!enable_vpid)
3678 		return 0;
3679 	spin_lock(&vmx_vpid_lock);
3680 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3681 	if (vpid < VMX_NR_VPIDS)
3682 		__set_bit(vpid, vmx_vpid_bitmap);
3683 	else
3684 		vpid = 0;
3685 	spin_unlock(&vmx_vpid_lock);
3686 	return vpid;
3687 }
3688 
3689 void free_vpid(int vpid)
3690 {
3691 	if (!enable_vpid || vpid == 0)
3692 		return;
3693 	spin_lock(&vmx_vpid_lock);
3694 	__clear_bit(vpid, vmx_vpid_bitmap);
3695 	spin_unlock(&vmx_vpid_lock);
3696 }
3697 
3698 static void vmx_clear_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3699 {
3700 	int f = sizeof(unsigned long);
3701 
3702 	if (msr <= 0x1fff)
3703 		__clear_bit(msr, msr_bitmap + 0x000 / f);
3704 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3705 		__clear_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3706 }
3707 
3708 static void vmx_clear_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3709 {
3710 	int f = sizeof(unsigned long);
3711 
3712 	if (msr <= 0x1fff)
3713 		__clear_bit(msr, msr_bitmap + 0x800 / f);
3714 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3715 		__clear_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3716 }
3717 
3718 static void vmx_set_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3719 {
3720 	int f = sizeof(unsigned long);
3721 
3722 	if (msr <= 0x1fff)
3723 		__set_bit(msr, msr_bitmap + 0x000 / f);
3724 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3725 		__set_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3726 }
3727 
3728 static void vmx_set_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3729 {
3730 	int f = sizeof(unsigned long);
3731 
3732 	if (msr <= 0x1fff)
3733 		__set_bit(msr, msr_bitmap + 0x800 / f);
3734 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3735 		__set_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3736 }
3737 
3738 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3739 {
3740 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3741 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3742 
3743 	if (!cpu_has_vmx_msr_bitmap())
3744 		return;
3745 
3746 	if (static_branch_unlikely(&enable_evmcs))
3747 		evmcs_touch_msr_bitmap();
3748 
3749 	/*
3750 	 * Mark the desired intercept state in shadow bitmap, this is needed
3751 	 * for resync when the MSR filters change.
3752 	*/
3753 	if (is_valid_passthrough_msr(msr)) {
3754 		int idx = possible_passthrough_msr_slot(msr);
3755 
3756 		if (idx != -ENOENT) {
3757 			if (type & MSR_TYPE_R)
3758 				clear_bit(idx, vmx->shadow_msr_intercept.read);
3759 			if (type & MSR_TYPE_W)
3760 				clear_bit(idx, vmx->shadow_msr_intercept.write);
3761 		}
3762 	}
3763 
3764 	if ((type & MSR_TYPE_R) &&
3765 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3766 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3767 		type &= ~MSR_TYPE_R;
3768 	}
3769 
3770 	if ((type & MSR_TYPE_W) &&
3771 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3772 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3773 		type &= ~MSR_TYPE_W;
3774 	}
3775 
3776 	if (type & MSR_TYPE_R)
3777 		vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3778 
3779 	if (type & MSR_TYPE_W)
3780 		vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3781 }
3782 
3783 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3784 {
3785 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3786 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3787 
3788 	if (!cpu_has_vmx_msr_bitmap())
3789 		return;
3790 
3791 	if (static_branch_unlikely(&enable_evmcs))
3792 		evmcs_touch_msr_bitmap();
3793 
3794 	/*
3795 	 * Mark the desired intercept state in shadow bitmap, this is needed
3796 	 * for resync when the MSR filter changes.
3797 	*/
3798 	if (is_valid_passthrough_msr(msr)) {
3799 		int idx = possible_passthrough_msr_slot(msr);
3800 
3801 		if (idx != -ENOENT) {
3802 			if (type & MSR_TYPE_R)
3803 				set_bit(idx, vmx->shadow_msr_intercept.read);
3804 			if (type & MSR_TYPE_W)
3805 				set_bit(idx, vmx->shadow_msr_intercept.write);
3806 		}
3807 	}
3808 
3809 	if (type & MSR_TYPE_R)
3810 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3811 
3812 	if (type & MSR_TYPE_W)
3813 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3814 }
3815 
3816 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
3817 {
3818 	unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
3819 	unsigned long read_intercept;
3820 	int msr;
3821 
3822 	read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3823 
3824 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3825 		unsigned int read_idx = msr / BITS_PER_LONG;
3826 		unsigned int write_idx = read_idx + (0x800 / sizeof(long));
3827 
3828 		msr_bitmap[read_idx] = read_intercept;
3829 		msr_bitmap[write_idx] = ~0ul;
3830 	}
3831 }
3832 
3833 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
3834 {
3835 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3836 	u8 mode;
3837 
3838 	if (!cpu_has_vmx_msr_bitmap())
3839 		return;
3840 
3841 	if (cpu_has_secondary_exec_ctrls() &&
3842 	    (secondary_exec_controls_get(vmx) &
3843 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3844 		mode = MSR_BITMAP_MODE_X2APIC;
3845 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3846 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3847 	} else {
3848 		mode = 0;
3849 	}
3850 
3851 	if (mode == vmx->x2apic_msr_bitmap_mode)
3852 		return;
3853 
3854 	vmx->x2apic_msr_bitmap_mode = mode;
3855 
3856 	vmx_reset_x2apic_msrs(vcpu, mode);
3857 
3858 	/*
3859 	 * TPR reads and writes can be virtualized even if virtual interrupt
3860 	 * delivery is not in use.
3861 	 */
3862 	vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
3863 				  !(mode & MSR_BITMAP_MODE_X2APIC));
3864 
3865 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3866 		vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
3867 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3868 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3869 	}
3870 }
3871 
3872 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
3873 {
3874 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3875 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3876 	u32 i;
3877 
3878 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
3879 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
3880 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
3881 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
3882 	for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3883 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3884 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3885 	}
3886 }
3887 
3888 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3889 {
3890 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3891 	void *vapic_page;
3892 	u32 vppr;
3893 	int rvi;
3894 
3895 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3896 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3897 		WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3898 		return false;
3899 
3900 	rvi = vmx_get_rvi();
3901 
3902 	vapic_page = vmx->nested.virtual_apic_map.hva;
3903 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3904 
3905 	return ((rvi & 0xf0) > (vppr & 0xf0));
3906 }
3907 
3908 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
3909 {
3910 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3911 	u32 i;
3912 
3913 	/*
3914 	 * Set intercept permissions for all potentially passed through MSRs
3915 	 * again. They will automatically get filtered through the MSR filter,
3916 	 * so we are back in sync after this.
3917 	 */
3918 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
3919 		u32 msr = vmx_possible_passthrough_msrs[i];
3920 		bool read = test_bit(i, vmx->shadow_msr_intercept.read);
3921 		bool write = test_bit(i, vmx->shadow_msr_intercept.write);
3922 
3923 		vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read);
3924 		vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write);
3925 	}
3926 
3927 	pt_update_intercept_for_msr(vcpu);
3928 }
3929 
3930 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3931 						     bool nested)
3932 {
3933 #ifdef CONFIG_SMP
3934 	int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3935 
3936 	if (vcpu->mode == IN_GUEST_MODE) {
3937 		/*
3938 		 * The vector of interrupt to be delivered to vcpu had
3939 		 * been set in PIR before this function.
3940 		 *
3941 		 * Following cases will be reached in this block, and
3942 		 * we always send a notification event in all cases as
3943 		 * explained below.
3944 		 *
3945 		 * Case 1: vcpu keeps in non-root mode. Sending a
3946 		 * notification event posts the interrupt to vcpu.
3947 		 *
3948 		 * Case 2: vcpu exits to root mode and is still
3949 		 * runnable. PIR will be synced to vIRR before the
3950 		 * next vcpu entry. Sending a notification event in
3951 		 * this case has no effect, as vcpu is not in root
3952 		 * mode.
3953 		 *
3954 		 * Case 3: vcpu exits to root mode and is blocked.
3955 		 * vcpu_block() has already synced PIR to vIRR and
3956 		 * never blocks vcpu if vIRR is not cleared. Therefore,
3957 		 * a blocked vcpu here does not wait for any requested
3958 		 * interrupts in PIR, and sending a notification event
3959 		 * which has no effect is safe here.
3960 		 */
3961 
3962 		apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3963 		return true;
3964 	}
3965 #endif
3966 	return false;
3967 }
3968 
3969 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3970 						int vector)
3971 {
3972 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3973 
3974 	if (is_guest_mode(vcpu) &&
3975 	    vector == vmx->nested.posted_intr_nv) {
3976 		/*
3977 		 * If a posted intr is not recognized by hardware,
3978 		 * we will accomplish it in the next vmentry.
3979 		 */
3980 		vmx->nested.pi_pending = true;
3981 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3982 		/* the PIR and ON have been set by L1. */
3983 		if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3984 			kvm_vcpu_kick(vcpu);
3985 		return 0;
3986 	}
3987 	return -1;
3988 }
3989 /*
3990  * Send interrupt to vcpu via posted interrupt way.
3991  * 1. If target vcpu is running(non-root mode), send posted interrupt
3992  * notification to vcpu and hardware will sync PIR to vIRR atomically.
3993  * 2. If target vcpu isn't running(root mode), kick it to pick up the
3994  * interrupt from PIR in next vmentry.
3995  */
3996 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3997 {
3998 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3999 	int r;
4000 
4001 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4002 	if (!r)
4003 		return 0;
4004 
4005 	if (!vcpu->arch.apicv_active)
4006 		return -1;
4007 
4008 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4009 		return 0;
4010 
4011 	/* If a previous notification has sent the IPI, nothing to do.  */
4012 	if (pi_test_and_set_on(&vmx->pi_desc))
4013 		return 0;
4014 
4015 	if (vcpu != kvm_get_running_vcpu() &&
4016 	    !kvm_vcpu_trigger_posted_interrupt(vcpu, false))
4017 		kvm_vcpu_kick(vcpu);
4018 
4019 	return 0;
4020 }
4021 
4022 /*
4023  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4024  * will not change in the lifetime of the guest.
4025  * Note that host-state that does change is set elsewhere. E.g., host-state
4026  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4027  */
4028 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4029 {
4030 	u32 low32, high32;
4031 	unsigned long tmpl;
4032 	unsigned long cr0, cr3, cr4;
4033 
4034 	cr0 = read_cr0();
4035 	WARN_ON(cr0 & X86_CR0_TS);
4036 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4037 
4038 	/*
4039 	 * Save the most likely value for this task's CR3 in the VMCS.
4040 	 * We can't use __get_current_cr3_fast() because we're not atomic.
4041 	 */
4042 	cr3 = __read_cr3();
4043 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
4044 	vmx->loaded_vmcs->host_state.cr3 = cr3;
4045 
4046 	/* Save the most likely value for this task's CR4 in the VMCS. */
4047 	cr4 = cr4_read_shadow();
4048 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4049 	vmx->loaded_vmcs->host_state.cr4 = cr4;
4050 
4051 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4052 #ifdef CONFIG_X86_64
4053 	/*
4054 	 * Load null selectors, so we can avoid reloading them in
4055 	 * vmx_prepare_switch_to_host(), in case userspace uses
4056 	 * the null selectors too (the expected case).
4057 	 */
4058 	vmcs_write16(HOST_DS_SELECTOR, 0);
4059 	vmcs_write16(HOST_ES_SELECTOR, 0);
4060 #else
4061 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4062 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4063 #endif
4064 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4065 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4066 
4067 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4068 
4069 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4070 
4071 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4072 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4073 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4074 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4075 
4076 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4077 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4078 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4079 	}
4080 
4081 	if (cpu_has_load_ia32_efer())
4082 		vmcs_write64(HOST_IA32_EFER, host_efer);
4083 }
4084 
4085 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4086 {
4087 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4088 
4089 	vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4090 					  ~vcpu->arch.cr4_guest_rsvd_bits;
4091 	if (!enable_ept)
4092 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE;
4093 	if (is_guest_mode(&vmx->vcpu))
4094 		vcpu->arch.cr4_guest_owned_bits &=
4095 			~get_vmcs12(vcpu)->cr4_guest_host_mask;
4096 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4097 }
4098 
4099 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4100 {
4101 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4102 
4103 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4104 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4105 
4106 	if (!enable_vnmi)
4107 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4108 
4109 	if (!enable_preemption_timer)
4110 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4111 
4112 	return pin_based_exec_ctrl;
4113 }
4114 
4115 static u32 vmx_vmentry_ctrl(void)
4116 {
4117 	u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4118 
4119 	if (vmx_pt_mode_is_system())
4120 		vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4121 				  VM_ENTRY_LOAD_IA32_RTIT_CTL);
4122 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4123 	return vmentry_ctrl &
4124 		~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER);
4125 }
4126 
4127 static u32 vmx_vmexit_ctrl(void)
4128 {
4129 	u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4130 
4131 	if (vmx_pt_mode_is_system())
4132 		vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4133 				 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4134 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4135 	return vmexit_ctrl &
4136 		~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4137 }
4138 
4139 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4140 {
4141 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4142 
4143 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4144 	if (cpu_has_secondary_exec_ctrls()) {
4145 		if (kvm_vcpu_apicv_active(vcpu))
4146 			secondary_exec_controls_setbit(vmx,
4147 				      SECONDARY_EXEC_APIC_REGISTER_VIRT |
4148 				      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4149 		else
4150 			secondary_exec_controls_clearbit(vmx,
4151 					SECONDARY_EXEC_APIC_REGISTER_VIRT |
4152 					SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4153 	}
4154 
4155 	vmx_update_msr_bitmap_x2apic(vcpu);
4156 }
4157 
4158 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4159 {
4160 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4161 
4162 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4163 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4164 
4165 	if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4166 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4167 #ifdef CONFIG_X86_64
4168 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4169 				CPU_BASED_CR8_LOAD_EXITING;
4170 #endif
4171 	}
4172 	if (!enable_ept)
4173 		exec_control |= CPU_BASED_CR3_STORE_EXITING |
4174 				CPU_BASED_CR3_LOAD_EXITING  |
4175 				CPU_BASED_INVLPG_EXITING;
4176 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4177 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4178 				CPU_BASED_MONITOR_EXITING);
4179 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4180 		exec_control &= ~CPU_BASED_HLT_EXITING;
4181 	return exec_control;
4182 }
4183 
4184 /*
4185  * Adjust a single secondary execution control bit to intercept/allow an
4186  * instruction in the guest.  This is usually done based on whether or not a
4187  * feature has been exposed to the guest in order to correctly emulate faults.
4188  */
4189 static inline void
4190 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4191 				  u32 control, bool enabled, bool exiting)
4192 {
4193 	/*
4194 	 * If the control is for an opt-in feature, clear the control if the
4195 	 * feature is not exposed to the guest, i.e. not enabled.  If the
4196 	 * control is opt-out, i.e. an exiting control, clear the control if
4197 	 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4198 	 * disabled for the associated instruction.  Note, the caller is
4199 	 * responsible presetting exec_control to set all supported bits.
4200 	 */
4201 	if (enabled == exiting)
4202 		*exec_control &= ~control;
4203 
4204 	/*
4205 	 * Update the nested MSR settings so that a nested VMM can/can't set
4206 	 * controls for features that are/aren't exposed to the guest.
4207 	 */
4208 	if (nested) {
4209 		if (enabled)
4210 			vmx->nested.msrs.secondary_ctls_high |= control;
4211 		else
4212 			vmx->nested.msrs.secondary_ctls_high &= ~control;
4213 	}
4214 }
4215 
4216 /*
4217  * Wrapper macro for the common case of adjusting a secondary execution control
4218  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4219  * verifies that the control is actually supported by KVM and hardware.
4220  */
4221 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4222 ({									 \
4223 	bool __enabled;							 \
4224 									 \
4225 	if (cpu_has_vmx_##name()) {					 \
4226 		__enabled = guest_cpuid_has(&(vmx)->vcpu,		 \
4227 					    X86_FEATURE_##feat_name);	 \
4228 		vmx_adjust_secondary_exec_control(vmx, exec_control,	 \
4229 			SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4230 	}								 \
4231 })
4232 
4233 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4234 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4235 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4236 
4237 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4238 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4239 
4240 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4241 {
4242 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4243 
4244 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4245 
4246 	if (vmx_pt_mode_is_system())
4247 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4248 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4249 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4250 	if (vmx->vpid == 0)
4251 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4252 	if (!enable_ept) {
4253 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4254 		enable_unrestricted_guest = 0;
4255 	}
4256 	if (!enable_unrestricted_guest)
4257 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4258 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4259 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4260 	if (!kvm_vcpu_apicv_active(vcpu))
4261 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4262 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4263 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4264 
4265 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4266 	 * in vmx_set_cr4.  */
4267 	exec_control &= ~SECONDARY_EXEC_DESC;
4268 
4269 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4270 	   (handle_vmptrld).
4271 	   We can NOT enable shadow_vmcs here because we don't have yet
4272 	   a current VMCS12
4273 	*/
4274 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4275 
4276 	/*
4277 	 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4278 	 * it needs to be set here when dirty logging is already active, e.g.
4279 	 * if this vCPU was created after dirty logging was enabled.
4280 	 */
4281 	if (!vcpu->kvm->arch.cpu_dirty_logging_count)
4282 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4283 
4284 	if (cpu_has_vmx_xsaves()) {
4285 		/* Exposing XSAVES only when XSAVE is exposed */
4286 		bool xsaves_enabled =
4287 			boot_cpu_has(X86_FEATURE_XSAVE) &&
4288 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4289 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4290 
4291 		vcpu->arch.xsaves_enabled = xsaves_enabled;
4292 
4293 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4294 						  SECONDARY_EXEC_XSAVES,
4295 						  xsaves_enabled, false);
4296 	}
4297 
4298 	/*
4299 	 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4300 	 * feature is exposed to the guest.  This creates a virtualization hole
4301 	 * if both are supported in hardware but only one is exposed to the
4302 	 * guest, but letting the guest execute RDTSCP or RDPID when either one
4303 	 * is advertised is preferable to emulating the advertised instruction
4304 	 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4305 	 */
4306 	if (cpu_has_vmx_rdtscp()) {
4307 		bool rdpid_or_rdtscp_enabled =
4308 			guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4309 			guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4310 
4311 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4312 						  SECONDARY_EXEC_ENABLE_RDTSCP,
4313 						  rdpid_or_rdtscp_enabled, false);
4314 	}
4315 	vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4316 
4317 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4318 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4319 
4320 	vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4321 				    ENABLE_USR_WAIT_PAUSE, false);
4322 
4323 	if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4324 		exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4325 
4326 	return exec_control;
4327 }
4328 
4329 #define VMX_XSS_EXIT_BITMAP 0
4330 
4331 /*
4332  * Noting that the initialization of Guest-state Area of VMCS is in
4333  * vmx_vcpu_reset().
4334  */
4335 static void init_vmcs(struct vcpu_vmx *vmx)
4336 {
4337 	if (nested)
4338 		nested_vmx_set_vmcs_shadowing_bitmap();
4339 
4340 	if (cpu_has_vmx_msr_bitmap())
4341 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4342 
4343 	vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4344 
4345 	/* Control */
4346 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4347 
4348 	exec_controls_set(vmx, vmx_exec_control(vmx));
4349 
4350 	if (cpu_has_secondary_exec_ctrls())
4351 		secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4352 
4353 	if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4354 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4355 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4356 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4357 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4358 
4359 		vmcs_write16(GUEST_INTR_STATUS, 0);
4360 
4361 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4362 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4363 	}
4364 
4365 	if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4366 		vmcs_write32(PLE_GAP, ple_gap);
4367 		vmx->ple_window = ple_window;
4368 		vmx->ple_window_dirty = true;
4369 	}
4370 
4371 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4372 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4373 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4374 
4375 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4376 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4377 	vmx_set_constant_host_state(vmx);
4378 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4379 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4380 
4381 	if (cpu_has_vmx_vmfunc())
4382 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4383 
4384 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4385 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4386 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4387 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4388 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4389 
4390 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4391 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4392 
4393 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4394 
4395 	/* 22.2.1, 20.8.1 */
4396 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4397 
4398 	vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4399 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4400 
4401 	set_cr4_guest_host_mask(vmx);
4402 
4403 	if (vmx->vpid != 0)
4404 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4405 
4406 	if (cpu_has_vmx_xsaves())
4407 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4408 
4409 	if (enable_pml) {
4410 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4411 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4412 	}
4413 
4414 	vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4415 
4416 	if (vmx_pt_mode_is_host_guest()) {
4417 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4418 		/* Bit[6~0] are forced to 1, writes are ignored. */
4419 		vmx->pt_desc.guest.output_mask = 0x7F;
4420 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4421 	}
4422 
4423 	vmcs_write32(GUEST_SYSENTER_CS, 0);
4424 	vmcs_writel(GUEST_SYSENTER_ESP, 0);
4425 	vmcs_writel(GUEST_SYSENTER_EIP, 0);
4426 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4427 
4428 	if (cpu_has_vmx_tpr_shadow()) {
4429 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4430 		if (cpu_need_tpr_shadow(&vmx->vcpu))
4431 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4432 				     __pa(vmx->vcpu.arch.apic->regs));
4433 		vmcs_write32(TPR_THRESHOLD, 0);
4434 	}
4435 
4436 	vmx_setup_uret_msrs(vmx);
4437 }
4438 
4439 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4440 {
4441 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4442 
4443 	vmx->rmode.vm86_active = 0;
4444 	vmx->spec_ctrl = 0;
4445 
4446 	vmx->msr_ia32_umwait_control = 0;
4447 
4448 	vmx->hv_deadline_tsc = -1;
4449 	kvm_set_cr8(vcpu, 0);
4450 
4451 	vmx_segment_cache_clear(vmx);
4452 
4453 	seg_setup(VCPU_SREG_CS);
4454 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4455 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4456 
4457 	seg_setup(VCPU_SREG_DS);
4458 	seg_setup(VCPU_SREG_ES);
4459 	seg_setup(VCPU_SREG_FS);
4460 	seg_setup(VCPU_SREG_GS);
4461 	seg_setup(VCPU_SREG_SS);
4462 
4463 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4464 	vmcs_writel(GUEST_TR_BASE, 0);
4465 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4466 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4467 
4468 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4469 	vmcs_writel(GUEST_LDTR_BASE, 0);
4470 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4471 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4472 
4473 	vmcs_writel(GUEST_GDTR_BASE, 0);
4474 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4475 
4476 	vmcs_writel(GUEST_IDTR_BASE, 0);
4477 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4478 
4479 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4480 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4481 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4482 	if (kvm_mpx_supported())
4483 		vmcs_write64(GUEST_BNDCFGS, 0);
4484 
4485 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4486 
4487 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4488 
4489 	vpid_sync_context(vmx->vpid);
4490 }
4491 
4492 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4493 {
4494 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4495 }
4496 
4497 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4498 {
4499 	if (!enable_vnmi ||
4500 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4501 		vmx_enable_irq_window(vcpu);
4502 		return;
4503 	}
4504 
4505 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4506 }
4507 
4508 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4509 {
4510 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4511 	uint32_t intr;
4512 	int irq = vcpu->arch.interrupt.nr;
4513 
4514 	trace_kvm_inj_virq(irq);
4515 
4516 	++vcpu->stat.irq_injections;
4517 	if (vmx->rmode.vm86_active) {
4518 		int inc_eip = 0;
4519 		if (vcpu->arch.interrupt.soft)
4520 			inc_eip = vcpu->arch.event_exit_inst_len;
4521 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4522 		return;
4523 	}
4524 	intr = irq | INTR_INFO_VALID_MASK;
4525 	if (vcpu->arch.interrupt.soft) {
4526 		intr |= INTR_TYPE_SOFT_INTR;
4527 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4528 			     vmx->vcpu.arch.event_exit_inst_len);
4529 	} else
4530 		intr |= INTR_TYPE_EXT_INTR;
4531 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4532 
4533 	vmx_clear_hlt(vcpu);
4534 }
4535 
4536 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4537 {
4538 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4539 
4540 	if (!enable_vnmi) {
4541 		/*
4542 		 * Tracking the NMI-blocked state in software is built upon
4543 		 * finding the next open IRQ window. This, in turn, depends on
4544 		 * well-behaving guests: They have to keep IRQs disabled at
4545 		 * least as long as the NMI handler runs. Otherwise we may
4546 		 * cause NMI nesting, maybe breaking the guest. But as this is
4547 		 * highly unlikely, we can live with the residual risk.
4548 		 */
4549 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4550 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4551 	}
4552 
4553 	++vcpu->stat.nmi_injections;
4554 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4555 
4556 	if (vmx->rmode.vm86_active) {
4557 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4558 		return;
4559 	}
4560 
4561 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4562 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4563 
4564 	vmx_clear_hlt(vcpu);
4565 }
4566 
4567 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4568 {
4569 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4570 	bool masked;
4571 
4572 	if (!enable_vnmi)
4573 		return vmx->loaded_vmcs->soft_vnmi_blocked;
4574 	if (vmx->loaded_vmcs->nmi_known_unmasked)
4575 		return false;
4576 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4577 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4578 	return masked;
4579 }
4580 
4581 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4582 {
4583 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4584 
4585 	if (!enable_vnmi) {
4586 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4587 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4588 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
4589 		}
4590 	} else {
4591 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4592 		if (masked)
4593 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4594 				      GUEST_INTR_STATE_NMI);
4595 		else
4596 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4597 					GUEST_INTR_STATE_NMI);
4598 	}
4599 }
4600 
4601 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4602 {
4603 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4604 		return false;
4605 
4606 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4607 		return true;
4608 
4609 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4610 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4611 		 GUEST_INTR_STATE_NMI));
4612 }
4613 
4614 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4615 {
4616 	if (to_vmx(vcpu)->nested.nested_run_pending)
4617 		return -EBUSY;
4618 
4619 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
4620 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4621 		return -EBUSY;
4622 
4623 	return !vmx_nmi_blocked(vcpu);
4624 }
4625 
4626 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4627 {
4628 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4629 		return false;
4630 
4631 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4632 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4633 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4634 }
4635 
4636 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4637 {
4638 	if (to_vmx(vcpu)->nested.nested_run_pending)
4639 		return -EBUSY;
4640 
4641        /*
4642         * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4643         * e.g. if the IRQ arrived asynchronously after checking nested events.
4644         */
4645 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4646 		return -EBUSY;
4647 
4648 	return !vmx_interrupt_blocked(vcpu);
4649 }
4650 
4651 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4652 {
4653 	void __user *ret;
4654 
4655 	if (enable_unrestricted_guest)
4656 		return 0;
4657 
4658 	mutex_lock(&kvm->slots_lock);
4659 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4660 				      PAGE_SIZE * 3);
4661 	mutex_unlock(&kvm->slots_lock);
4662 
4663 	if (IS_ERR(ret))
4664 		return PTR_ERR(ret);
4665 
4666 	to_kvm_vmx(kvm)->tss_addr = addr;
4667 
4668 	return init_rmode_tss(kvm, ret);
4669 }
4670 
4671 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4672 {
4673 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4674 	return 0;
4675 }
4676 
4677 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4678 {
4679 	switch (vec) {
4680 	case BP_VECTOR:
4681 		/*
4682 		 * Update instruction length as we may reinject the exception
4683 		 * from user space while in guest debugging mode.
4684 		 */
4685 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4686 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4687 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4688 			return false;
4689 		fallthrough;
4690 	case DB_VECTOR:
4691 		return !(vcpu->guest_debug &
4692 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4693 	case DE_VECTOR:
4694 	case OF_VECTOR:
4695 	case BR_VECTOR:
4696 	case UD_VECTOR:
4697 	case DF_VECTOR:
4698 	case SS_VECTOR:
4699 	case GP_VECTOR:
4700 	case MF_VECTOR:
4701 		return true;
4702 	}
4703 	return false;
4704 }
4705 
4706 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4707 				  int vec, u32 err_code)
4708 {
4709 	/*
4710 	 * Instruction with address size override prefix opcode 0x67
4711 	 * Cause the #SS fault with 0 error code in VM86 mode.
4712 	 */
4713 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4714 		if (kvm_emulate_instruction(vcpu, 0)) {
4715 			if (vcpu->arch.halt_request) {
4716 				vcpu->arch.halt_request = 0;
4717 				return kvm_vcpu_halt(vcpu);
4718 			}
4719 			return 1;
4720 		}
4721 		return 0;
4722 	}
4723 
4724 	/*
4725 	 * Forward all other exceptions that are valid in real mode.
4726 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4727 	 *        the required debugging infrastructure rework.
4728 	 */
4729 	kvm_queue_exception(vcpu, vec);
4730 	return 1;
4731 }
4732 
4733 static int handle_machine_check(struct kvm_vcpu *vcpu)
4734 {
4735 	/* handled by vmx_vcpu_run() */
4736 	return 1;
4737 }
4738 
4739 /*
4740  * If the host has split lock detection disabled, then #AC is
4741  * unconditionally injected into the guest, which is the pre split lock
4742  * detection behaviour.
4743  *
4744  * If the host has split lock detection enabled then #AC is
4745  * only injected into the guest when:
4746  *  - Guest CPL == 3 (user mode)
4747  *  - Guest has #AC detection enabled in CR0
4748  *  - Guest EFLAGS has AC bit set
4749  */
4750 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
4751 {
4752 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4753 		return true;
4754 
4755 	return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4756 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4757 }
4758 
4759 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4760 {
4761 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4762 	struct kvm_run *kvm_run = vcpu->run;
4763 	u32 intr_info, ex_no, error_code;
4764 	unsigned long cr2, dr6;
4765 	u32 vect_info;
4766 
4767 	vect_info = vmx->idt_vectoring_info;
4768 	intr_info = vmx_get_intr_info(vcpu);
4769 
4770 	if (is_machine_check(intr_info) || is_nmi(intr_info))
4771 		return 1; /* handled by handle_exception_nmi_irqoff() */
4772 
4773 	if (is_invalid_opcode(intr_info))
4774 		return handle_ud(vcpu);
4775 
4776 	error_code = 0;
4777 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4778 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4779 
4780 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4781 		WARN_ON_ONCE(!enable_vmware_backdoor);
4782 
4783 		/*
4784 		 * VMware backdoor emulation on #GP interception only handles
4785 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4786 		 * error code on #GP.
4787 		 */
4788 		if (error_code) {
4789 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4790 			return 1;
4791 		}
4792 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4793 	}
4794 
4795 	/*
4796 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4797 	 * MMIO, it is better to report an internal error.
4798 	 * See the comments in vmx_handle_exit.
4799 	 */
4800 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4801 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4802 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4803 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4804 		vcpu->run->internal.ndata = 4;
4805 		vcpu->run->internal.data[0] = vect_info;
4806 		vcpu->run->internal.data[1] = intr_info;
4807 		vcpu->run->internal.data[2] = error_code;
4808 		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
4809 		return 0;
4810 	}
4811 
4812 	if (is_page_fault(intr_info)) {
4813 		cr2 = vmx_get_exit_qual(vcpu);
4814 		if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
4815 			/*
4816 			 * EPT will cause page fault only if we need to
4817 			 * detect illegal GPAs.
4818 			 */
4819 			WARN_ON_ONCE(!allow_smaller_maxphyaddr);
4820 			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
4821 			return 1;
4822 		} else
4823 			return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4824 	}
4825 
4826 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4827 
4828 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4829 		return handle_rmode_exception(vcpu, ex_no, error_code);
4830 
4831 	switch (ex_no) {
4832 	case DB_VECTOR:
4833 		dr6 = vmx_get_exit_qual(vcpu);
4834 		if (!(vcpu->guest_debug &
4835 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4836 			if (is_icebp(intr_info))
4837 				WARN_ON(!skip_emulated_instruction(vcpu));
4838 
4839 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4840 			return 1;
4841 		}
4842 		kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
4843 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4844 		fallthrough;
4845 	case BP_VECTOR:
4846 		/*
4847 		 * Update instruction length as we may reinject #BP from
4848 		 * user space while in guest debugging mode. Reading it for
4849 		 * #DB as well causes no harm, it is not used in that case.
4850 		 */
4851 		vmx->vcpu.arch.event_exit_inst_len =
4852 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4853 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
4854 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4855 		kvm_run->debug.arch.exception = ex_no;
4856 		break;
4857 	case AC_VECTOR:
4858 		if (vmx_guest_inject_ac(vcpu)) {
4859 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4860 			return 1;
4861 		}
4862 
4863 		/*
4864 		 * Handle split lock. Depending on detection mode this will
4865 		 * either warn and disable split lock detection for this
4866 		 * task or force SIGBUS on it.
4867 		 */
4868 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
4869 			return 1;
4870 		fallthrough;
4871 	default:
4872 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4873 		kvm_run->ex.exception = ex_no;
4874 		kvm_run->ex.error_code = error_code;
4875 		break;
4876 	}
4877 	return 0;
4878 }
4879 
4880 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4881 {
4882 	++vcpu->stat.irq_exits;
4883 	return 1;
4884 }
4885 
4886 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4887 {
4888 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4889 	vcpu->mmio_needed = 0;
4890 	return 0;
4891 }
4892 
4893 static int handle_io(struct kvm_vcpu *vcpu)
4894 {
4895 	unsigned long exit_qualification;
4896 	int size, in, string;
4897 	unsigned port;
4898 
4899 	exit_qualification = vmx_get_exit_qual(vcpu);
4900 	string = (exit_qualification & 16) != 0;
4901 
4902 	++vcpu->stat.io_exits;
4903 
4904 	if (string)
4905 		return kvm_emulate_instruction(vcpu, 0);
4906 
4907 	port = exit_qualification >> 16;
4908 	size = (exit_qualification & 7) + 1;
4909 	in = (exit_qualification & 8) != 0;
4910 
4911 	return kvm_fast_pio(vcpu, size, port, in);
4912 }
4913 
4914 static void
4915 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4916 {
4917 	/*
4918 	 * Patch in the VMCALL instruction:
4919 	 */
4920 	hypercall[0] = 0x0f;
4921 	hypercall[1] = 0x01;
4922 	hypercall[2] = 0xc1;
4923 }
4924 
4925 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4926 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4927 {
4928 	if (is_guest_mode(vcpu)) {
4929 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4930 		unsigned long orig_val = val;
4931 
4932 		/*
4933 		 * We get here when L2 changed cr0 in a way that did not change
4934 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4935 		 * but did change L0 shadowed bits. So we first calculate the
4936 		 * effective cr0 value that L1 would like to write into the
4937 		 * hardware. It consists of the L2-owned bits from the new
4938 		 * value combined with the L1-owned bits from L1's guest_cr0.
4939 		 */
4940 		val = (val & ~vmcs12->cr0_guest_host_mask) |
4941 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4942 
4943 		if (!nested_guest_cr0_valid(vcpu, val))
4944 			return 1;
4945 
4946 		if (kvm_set_cr0(vcpu, val))
4947 			return 1;
4948 		vmcs_writel(CR0_READ_SHADOW, orig_val);
4949 		return 0;
4950 	} else {
4951 		if (to_vmx(vcpu)->nested.vmxon &&
4952 		    !nested_host_cr0_valid(vcpu, val))
4953 			return 1;
4954 
4955 		return kvm_set_cr0(vcpu, val);
4956 	}
4957 }
4958 
4959 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4960 {
4961 	if (is_guest_mode(vcpu)) {
4962 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4963 		unsigned long orig_val = val;
4964 
4965 		/* analogously to handle_set_cr0 */
4966 		val = (val & ~vmcs12->cr4_guest_host_mask) |
4967 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4968 		if (kvm_set_cr4(vcpu, val))
4969 			return 1;
4970 		vmcs_writel(CR4_READ_SHADOW, orig_val);
4971 		return 0;
4972 	} else
4973 		return kvm_set_cr4(vcpu, val);
4974 }
4975 
4976 static int handle_desc(struct kvm_vcpu *vcpu)
4977 {
4978 	WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4979 	return kvm_emulate_instruction(vcpu, 0);
4980 }
4981 
4982 static int handle_cr(struct kvm_vcpu *vcpu)
4983 {
4984 	unsigned long exit_qualification, val;
4985 	int cr;
4986 	int reg;
4987 	int err;
4988 	int ret;
4989 
4990 	exit_qualification = vmx_get_exit_qual(vcpu);
4991 	cr = exit_qualification & 15;
4992 	reg = (exit_qualification >> 8) & 15;
4993 	switch ((exit_qualification >> 4) & 3) {
4994 	case 0: /* mov to cr */
4995 		val = kvm_register_read(vcpu, reg);
4996 		trace_kvm_cr_write(cr, val);
4997 		switch (cr) {
4998 		case 0:
4999 			err = handle_set_cr0(vcpu, val);
5000 			return kvm_complete_insn_gp(vcpu, err);
5001 		case 3:
5002 			WARN_ON_ONCE(enable_unrestricted_guest);
5003 
5004 			err = kvm_set_cr3(vcpu, val);
5005 			return kvm_complete_insn_gp(vcpu, err);
5006 		case 4:
5007 			err = handle_set_cr4(vcpu, val);
5008 			return kvm_complete_insn_gp(vcpu, err);
5009 		case 8: {
5010 				u8 cr8_prev = kvm_get_cr8(vcpu);
5011 				u8 cr8 = (u8)val;
5012 				err = kvm_set_cr8(vcpu, cr8);
5013 				ret = kvm_complete_insn_gp(vcpu, err);
5014 				if (lapic_in_kernel(vcpu))
5015 					return ret;
5016 				if (cr8_prev <= cr8)
5017 					return ret;
5018 				/*
5019 				 * TODO: we might be squashing a
5020 				 * KVM_GUESTDBG_SINGLESTEP-triggered
5021 				 * KVM_EXIT_DEBUG here.
5022 				 */
5023 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5024 				return 0;
5025 			}
5026 		}
5027 		break;
5028 	case 2: /* clts */
5029 		KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5030 		return -EIO;
5031 	case 1: /*mov from cr*/
5032 		switch (cr) {
5033 		case 3:
5034 			WARN_ON_ONCE(enable_unrestricted_guest);
5035 
5036 			val = kvm_read_cr3(vcpu);
5037 			kvm_register_write(vcpu, reg, val);
5038 			trace_kvm_cr_read(cr, val);
5039 			return kvm_skip_emulated_instruction(vcpu);
5040 		case 8:
5041 			val = kvm_get_cr8(vcpu);
5042 			kvm_register_write(vcpu, reg, val);
5043 			trace_kvm_cr_read(cr, val);
5044 			return kvm_skip_emulated_instruction(vcpu);
5045 		}
5046 		break;
5047 	case 3: /* lmsw */
5048 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5049 		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5050 		kvm_lmsw(vcpu, val);
5051 
5052 		return kvm_skip_emulated_instruction(vcpu);
5053 	default:
5054 		break;
5055 	}
5056 	vcpu->run->exit_reason = 0;
5057 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5058 	       (int)(exit_qualification >> 4) & 3, cr);
5059 	return 0;
5060 }
5061 
5062 static int handle_dr(struct kvm_vcpu *vcpu)
5063 {
5064 	unsigned long exit_qualification;
5065 	int dr, dr7, reg;
5066 	int err = 1;
5067 
5068 	exit_qualification = vmx_get_exit_qual(vcpu);
5069 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5070 
5071 	/* First, if DR does not exist, trigger UD */
5072 	if (!kvm_require_dr(vcpu, dr))
5073 		return 1;
5074 
5075 	if (kvm_x86_ops.get_cpl(vcpu) > 0)
5076 		goto out;
5077 
5078 	dr7 = vmcs_readl(GUEST_DR7);
5079 	if (dr7 & DR7_GD) {
5080 		/*
5081 		 * As the vm-exit takes precedence over the debug trap, we
5082 		 * need to emulate the latter, either for the host or the
5083 		 * guest debugging itself.
5084 		 */
5085 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5086 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5087 			vcpu->run->debug.arch.dr7 = dr7;
5088 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5089 			vcpu->run->debug.arch.exception = DB_VECTOR;
5090 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5091 			return 0;
5092 		} else {
5093 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5094 			return 1;
5095 		}
5096 	}
5097 
5098 	if (vcpu->guest_debug == 0) {
5099 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5100 
5101 		/*
5102 		 * No more DR vmexits; force a reload of the debug registers
5103 		 * and reenter on this instruction.  The next vmexit will
5104 		 * retrieve the full state of the debug registers.
5105 		 */
5106 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5107 		return 1;
5108 	}
5109 
5110 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5111 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5112 		unsigned long val;
5113 
5114 		kvm_get_dr(vcpu, dr, &val);
5115 		kvm_register_write(vcpu, reg, val);
5116 		err = 0;
5117 	} else {
5118 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5119 	}
5120 
5121 out:
5122 	return kvm_complete_insn_gp(vcpu, err);
5123 }
5124 
5125 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5126 {
5127 	get_debugreg(vcpu->arch.db[0], 0);
5128 	get_debugreg(vcpu->arch.db[1], 1);
5129 	get_debugreg(vcpu->arch.db[2], 2);
5130 	get_debugreg(vcpu->arch.db[3], 3);
5131 	get_debugreg(vcpu->arch.dr6, 6);
5132 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5133 
5134 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5135 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5136 
5137 	/*
5138 	 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5139 	 * a stale dr6 from the guest.
5140 	 */
5141 	set_debugreg(DR6_RESERVED, 6);
5142 }
5143 
5144 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5145 {
5146 	vmcs_writel(GUEST_DR7, val);
5147 }
5148 
5149 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5150 {
5151 	kvm_apic_update_ppr(vcpu);
5152 	return 1;
5153 }
5154 
5155 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5156 {
5157 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5158 
5159 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5160 
5161 	++vcpu->stat.irq_window_exits;
5162 	return 1;
5163 }
5164 
5165 static int handle_invlpg(struct kvm_vcpu *vcpu)
5166 {
5167 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5168 
5169 	kvm_mmu_invlpg(vcpu, exit_qualification);
5170 	return kvm_skip_emulated_instruction(vcpu);
5171 }
5172 
5173 static int handle_apic_access(struct kvm_vcpu *vcpu)
5174 {
5175 	if (likely(fasteoi)) {
5176 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5177 		int access_type, offset;
5178 
5179 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5180 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5181 		/*
5182 		 * Sane guest uses MOV to write EOI, with written value
5183 		 * not cared. So make a short-circuit here by avoiding
5184 		 * heavy instruction emulation.
5185 		 */
5186 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5187 		    (offset == APIC_EOI)) {
5188 			kvm_lapic_set_eoi(vcpu);
5189 			return kvm_skip_emulated_instruction(vcpu);
5190 		}
5191 	}
5192 	return kvm_emulate_instruction(vcpu, 0);
5193 }
5194 
5195 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5196 {
5197 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5198 	int vector = exit_qualification & 0xff;
5199 
5200 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5201 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5202 	return 1;
5203 }
5204 
5205 static int handle_apic_write(struct kvm_vcpu *vcpu)
5206 {
5207 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5208 	u32 offset = exit_qualification & 0xfff;
5209 
5210 	/* APIC-write VM exit is trap-like and thus no need to adjust IP */
5211 	kvm_apic_write_nodecode(vcpu, offset);
5212 	return 1;
5213 }
5214 
5215 static int handle_task_switch(struct kvm_vcpu *vcpu)
5216 {
5217 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5218 	unsigned long exit_qualification;
5219 	bool has_error_code = false;
5220 	u32 error_code = 0;
5221 	u16 tss_selector;
5222 	int reason, type, idt_v, idt_index;
5223 
5224 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5225 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5226 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5227 
5228 	exit_qualification = vmx_get_exit_qual(vcpu);
5229 
5230 	reason = (u32)exit_qualification >> 30;
5231 	if (reason == TASK_SWITCH_GATE && idt_v) {
5232 		switch (type) {
5233 		case INTR_TYPE_NMI_INTR:
5234 			vcpu->arch.nmi_injected = false;
5235 			vmx_set_nmi_mask(vcpu, true);
5236 			break;
5237 		case INTR_TYPE_EXT_INTR:
5238 		case INTR_TYPE_SOFT_INTR:
5239 			kvm_clear_interrupt_queue(vcpu);
5240 			break;
5241 		case INTR_TYPE_HARD_EXCEPTION:
5242 			if (vmx->idt_vectoring_info &
5243 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5244 				has_error_code = true;
5245 				error_code =
5246 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5247 			}
5248 			fallthrough;
5249 		case INTR_TYPE_SOFT_EXCEPTION:
5250 			kvm_clear_exception_queue(vcpu);
5251 			break;
5252 		default:
5253 			break;
5254 		}
5255 	}
5256 	tss_selector = exit_qualification;
5257 
5258 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5259 		       type != INTR_TYPE_EXT_INTR &&
5260 		       type != INTR_TYPE_NMI_INTR))
5261 		WARN_ON(!skip_emulated_instruction(vcpu));
5262 
5263 	/*
5264 	 * TODO: What about debug traps on tss switch?
5265 	 *       Are we supposed to inject them and update dr6?
5266 	 */
5267 	return kvm_task_switch(vcpu, tss_selector,
5268 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5269 			       reason, has_error_code, error_code);
5270 }
5271 
5272 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5273 {
5274 	unsigned long exit_qualification;
5275 	gpa_t gpa;
5276 	u64 error_code;
5277 
5278 	exit_qualification = vmx_get_exit_qual(vcpu);
5279 
5280 	/*
5281 	 * EPT violation happened while executing iret from NMI,
5282 	 * "blocked by NMI" bit has to be set before next VM entry.
5283 	 * There are errata that may cause this bit to not be set:
5284 	 * AAK134, BY25.
5285 	 */
5286 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5287 			enable_vnmi &&
5288 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5289 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5290 
5291 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5292 	trace_kvm_page_fault(gpa, exit_qualification);
5293 
5294 	/* Is it a read fault? */
5295 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5296 		     ? PFERR_USER_MASK : 0;
5297 	/* Is it a write fault? */
5298 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5299 		      ? PFERR_WRITE_MASK : 0;
5300 	/* Is it a fetch fault? */
5301 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5302 		      ? PFERR_FETCH_MASK : 0;
5303 	/* ept page table entry is present? */
5304 	error_code |= (exit_qualification &
5305 		       (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5306 			EPT_VIOLATION_EXECUTABLE))
5307 		      ? PFERR_PRESENT_MASK : 0;
5308 
5309 	error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5310 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5311 
5312 	vcpu->arch.exit_qualification = exit_qualification;
5313 
5314 	/*
5315 	 * Check that the GPA doesn't exceed physical memory limits, as that is
5316 	 * a guest page fault.  We have to emulate the instruction here, because
5317 	 * if the illegal address is that of a paging structure, then
5318 	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5319 	 * would also use advanced VM-exit information for EPT violations to
5320 	 * reconstruct the page fault error code.
5321 	 */
5322 	if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5323 		return kvm_emulate_instruction(vcpu, 0);
5324 
5325 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5326 }
5327 
5328 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5329 {
5330 	gpa_t gpa;
5331 
5332 	if (!vmx_can_emulate_instruction(vcpu, NULL, 0))
5333 		return 1;
5334 
5335 	/*
5336 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5337 	 * nGPA here instead of the required GPA.
5338 	 */
5339 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5340 	if (!is_guest_mode(vcpu) &&
5341 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5342 		trace_kvm_fast_mmio(gpa);
5343 		return kvm_skip_emulated_instruction(vcpu);
5344 	}
5345 
5346 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5347 }
5348 
5349 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5350 {
5351 	if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5352 		return -EIO;
5353 
5354 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5355 	++vcpu->stat.nmi_window_exits;
5356 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5357 
5358 	return 1;
5359 }
5360 
5361 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5362 {
5363 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5364 	bool intr_window_requested;
5365 	unsigned count = 130;
5366 
5367 	intr_window_requested = exec_controls_get(vmx) &
5368 				CPU_BASED_INTR_WINDOW_EXITING;
5369 
5370 	while (vmx->emulation_required && count-- != 0) {
5371 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5372 			return handle_interrupt_window(&vmx->vcpu);
5373 
5374 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5375 			return 1;
5376 
5377 		if (!kvm_emulate_instruction(vcpu, 0))
5378 			return 0;
5379 
5380 		if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5381 		    vcpu->arch.exception.pending) {
5382 			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5383 			vcpu->run->internal.suberror =
5384 						KVM_INTERNAL_ERROR_EMULATION;
5385 			vcpu->run->internal.ndata = 0;
5386 			return 0;
5387 		}
5388 
5389 		if (vcpu->arch.halt_request) {
5390 			vcpu->arch.halt_request = 0;
5391 			return kvm_vcpu_halt(vcpu);
5392 		}
5393 
5394 		/*
5395 		 * Note, return 1 and not 0, vcpu_run() will invoke
5396 		 * xfer_to_guest_mode() which will create a proper return
5397 		 * code.
5398 		 */
5399 		if (__xfer_to_guest_mode_work_pending())
5400 			return 1;
5401 	}
5402 
5403 	return 1;
5404 }
5405 
5406 static void grow_ple_window(struct kvm_vcpu *vcpu)
5407 {
5408 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5409 	unsigned int old = vmx->ple_window;
5410 
5411 	vmx->ple_window = __grow_ple_window(old, ple_window,
5412 					    ple_window_grow,
5413 					    ple_window_max);
5414 
5415 	if (vmx->ple_window != old) {
5416 		vmx->ple_window_dirty = true;
5417 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5418 					    vmx->ple_window, old);
5419 	}
5420 }
5421 
5422 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5423 {
5424 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5425 	unsigned int old = vmx->ple_window;
5426 
5427 	vmx->ple_window = __shrink_ple_window(old, ple_window,
5428 					      ple_window_shrink,
5429 					      ple_window);
5430 
5431 	if (vmx->ple_window != old) {
5432 		vmx->ple_window_dirty = true;
5433 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5434 					    vmx->ple_window, old);
5435 	}
5436 }
5437 
5438 /*
5439  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5440  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5441  */
5442 static int handle_pause(struct kvm_vcpu *vcpu)
5443 {
5444 	if (!kvm_pause_in_guest(vcpu->kvm))
5445 		grow_ple_window(vcpu);
5446 
5447 	/*
5448 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5449 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5450 	 * never set PAUSE_EXITING and just set PLE if supported,
5451 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5452 	 */
5453 	kvm_vcpu_on_spin(vcpu, true);
5454 	return kvm_skip_emulated_instruction(vcpu);
5455 }
5456 
5457 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5458 {
5459 	return 1;
5460 }
5461 
5462 static int handle_invpcid(struct kvm_vcpu *vcpu)
5463 {
5464 	u32 vmx_instruction_info;
5465 	unsigned long type;
5466 	gva_t gva;
5467 	struct {
5468 		u64 pcid;
5469 		u64 gla;
5470 	} operand;
5471 
5472 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5473 		kvm_queue_exception(vcpu, UD_VECTOR);
5474 		return 1;
5475 	}
5476 
5477 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5478 	type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
5479 
5480 	if (type > 3) {
5481 		kvm_inject_gp(vcpu, 0);
5482 		return 1;
5483 	}
5484 
5485 	/* According to the Intel instruction reference, the memory operand
5486 	 * is read even if it isn't needed (e.g., for type==all)
5487 	 */
5488 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5489 				vmx_instruction_info, false,
5490 				sizeof(operand), &gva))
5491 		return 1;
5492 
5493 	return kvm_handle_invpcid(vcpu, type, gva);
5494 }
5495 
5496 static int handle_pml_full(struct kvm_vcpu *vcpu)
5497 {
5498 	unsigned long exit_qualification;
5499 
5500 	trace_kvm_pml_full(vcpu->vcpu_id);
5501 
5502 	exit_qualification = vmx_get_exit_qual(vcpu);
5503 
5504 	/*
5505 	 * PML buffer FULL happened while executing iret from NMI,
5506 	 * "blocked by NMI" bit has to be set before next VM entry.
5507 	 */
5508 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5509 			enable_vnmi &&
5510 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5511 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5512 				GUEST_INTR_STATE_NMI);
5513 
5514 	/*
5515 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5516 	 * here.., and there's no userspace involvement needed for PML.
5517 	 */
5518 	return 1;
5519 }
5520 
5521 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5522 {
5523 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5524 
5525 	if (!vmx->req_immediate_exit &&
5526 	    !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5527 		kvm_lapic_expired_hv_timer(vcpu);
5528 		return EXIT_FASTPATH_REENTER_GUEST;
5529 	}
5530 
5531 	return EXIT_FASTPATH_NONE;
5532 }
5533 
5534 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5535 {
5536 	handle_fastpath_preemption_timer(vcpu);
5537 	return 1;
5538 }
5539 
5540 /*
5541  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5542  * are overwritten by nested_vmx_setup() when nested=1.
5543  */
5544 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5545 {
5546 	kvm_queue_exception(vcpu, UD_VECTOR);
5547 	return 1;
5548 }
5549 
5550 #ifndef CONFIG_X86_SGX_KVM
5551 static int handle_encls(struct kvm_vcpu *vcpu)
5552 {
5553 	/*
5554 	 * SGX virtualization is disabled.  There is no software enable bit for
5555 	 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
5556 	 * the guest from executing ENCLS (when SGX is supported by hardware).
5557 	 */
5558 	kvm_queue_exception(vcpu, UD_VECTOR);
5559 	return 1;
5560 }
5561 #endif /* CONFIG_X86_SGX_KVM */
5562 
5563 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
5564 {
5565 	/*
5566 	 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
5567 	 * VM-Exits. Unconditionally set the flag here and leave the handling to
5568 	 * vmx_handle_exit().
5569 	 */
5570 	to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
5571 	return 1;
5572 }
5573 
5574 /*
5575  * The exit handlers return 1 if the exit was handled fully and guest execution
5576  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5577  * to be done to userspace and return 0.
5578  */
5579 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5580 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5581 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5582 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5583 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
5584 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5585 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
5586 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
5587 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5588 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5589 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5590 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
5591 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
5592 	[EXIT_REASON_INVD]		      = kvm_emulate_invd,
5593 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
5594 	[EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
5595 	[EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
5596 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
5597 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
5598 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
5599 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
5600 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
5601 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
5602 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
5603 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
5604 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
5605 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5606 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5607 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5608 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5609 	[EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
5610 	[EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
5611 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5612 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5613 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
5614 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
5615 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
5616 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5617 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5618 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = kvm_emulate_mwait,
5619 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5620 	[EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
5621 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5622 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5623 	[EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
5624 	[EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
5625 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
5626 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
5627 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
5628 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
5629 	[EXIT_REASON_ENCLS]		      = handle_encls,
5630 	[EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
5631 };
5632 
5633 static const int kvm_vmx_max_exit_handlers =
5634 	ARRAY_SIZE(kvm_vmx_exit_handlers);
5635 
5636 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
5637 			      u32 *intr_info, u32 *error_code)
5638 {
5639 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5640 
5641 	*info1 = vmx_get_exit_qual(vcpu);
5642 	if (!(vmx->exit_reason.failed_vmentry)) {
5643 		*info2 = vmx->idt_vectoring_info;
5644 		*intr_info = vmx_get_intr_info(vcpu);
5645 		if (is_exception_with_error_code(*intr_info))
5646 			*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5647 		else
5648 			*error_code = 0;
5649 	} else {
5650 		*info2 = 0;
5651 		*intr_info = 0;
5652 		*error_code = 0;
5653 	}
5654 }
5655 
5656 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5657 {
5658 	if (vmx->pml_pg) {
5659 		__free_page(vmx->pml_pg);
5660 		vmx->pml_pg = NULL;
5661 	}
5662 }
5663 
5664 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5665 {
5666 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5667 	u64 *pml_buf;
5668 	u16 pml_idx;
5669 
5670 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
5671 
5672 	/* Do nothing if PML buffer is empty */
5673 	if (pml_idx == (PML_ENTITY_NUM - 1))
5674 		return;
5675 
5676 	/* PML index always points to next available PML buffer entity */
5677 	if (pml_idx >= PML_ENTITY_NUM)
5678 		pml_idx = 0;
5679 	else
5680 		pml_idx++;
5681 
5682 	pml_buf = page_address(vmx->pml_pg);
5683 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5684 		u64 gpa;
5685 
5686 		gpa = pml_buf[pml_idx];
5687 		WARN_ON(gpa & (PAGE_SIZE - 1));
5688 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5689 	}
5690 
5691 	/* reset PML index */
5692 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5693 }
5694 
5695 static void vmx_dump_sel(char *name, uint32_t sel)
5696 {
5697 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5698 	       name, vmcs_read16(sel),
5699 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5700 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5701 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5702 }
5703 
5704 static void vmx_dump_dtsel(char *name, uint32_t limit)
5705 {
5706 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5707 	       name, vmcs_read32(limit),
5708 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5709 }
5710 
5711 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
5712 {
5713 	unsigned int i;
5714 	struct vmx_msr_entry *e;
5715 
5716 	pr_err("MSR %s:\n", name);
5717 	for (i = 0, e = m->val; i < m->nr; ++i, ++e)
5718 		pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
5719 }
5720 
5721 void dump_vmcs(struct kvm_vcpu *vcpu)
5722 {
5723 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5724 	u32 vmentry_ctl, vmexit_ctl;
5725 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5726 	unsigned long cr4;
5727 	int efer_slot;
5728 
5729 	if (!dump_invalid_vmcs) {
5730 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5731 		return;
5732 	}
5733 
5734 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5735 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5736 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5737 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5738 	cr4 = vmcs_readl(GUEST_CR4);
5739 	secondary_exec_control = 0;
5740 	if (cpu_has_secondary_exec_ctrls())
5741 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5742 
5743 	pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
5744 	       vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
5745 	pr_err("*** Guest State ***\n");
5746 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5747 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5748 	       vmcs_readl(CR0_GUEST_HOST_MASK));
5749 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5750 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5751 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5752 	if (cpu_has_vmx_ept()) {
5753 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5754 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5755 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5756 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5757 	}
5758 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5759 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5760 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5761 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5762 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5763 	       vmcs_readl(GUEST_SYSENTER_ESP),
5764 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5765 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5766 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5767 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5768 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5769 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5770 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5771 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5772 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5773 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5774 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5775 	efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
5776 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
5777 		pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
5778 	else if (efer_slot >= 0)
5779 		pr_err("EFER= 0x%016llx (autoload)\n",
5780 		       vmx->msr_autoload.guest.val[efer_slot].value);
5781 	else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
5782 		pr_err("EFER= 0x%016llx (effective)\n",
5783 		       vcpu->arch.efer | (EFER_LMA | EFER_LME));
5784 	else
5785 		pr_err("EFER= 0x%016llx (effective)\n",
5786 		       vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
5787 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
5788 		pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
5789 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5790 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
5791 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5792 	if (cpu_has_load_perf_global_ctrl() &&
5793 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5794 		pr_err("PerfGlobCtl = 0x%016llx\n",
5795 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5796 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5797 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5798 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5799 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5800 	       vmcs_read32(GUEST_ACTIVITY_STATE));
5801 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5802 		pr_err("InterruptStatus = %04x\n",
5803 		       vmcs_read16(GUEST_INTR_STATUS));
5804 	if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
5805 		vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
5806 	if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
5807 		vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
5808 
5809 	pr_err("*** Host State ***\n");
5810 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5811 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5812 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5813 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5814 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5815 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5816 	       vmcs_read16(HOST_TR_SELECTOR));
5817 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5818 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5819 	       vmcs_readl(HOST_TR_BASE));
5820 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5821 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5822 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5823 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5824 	       vmcs_readl(HOST_CR4));
5825 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5826 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
5827 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
5828 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
5829 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
5830 		pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
5831 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
5832 		pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
5833 	if (cpu_has_load_perf_global_ctrl() &&
5834 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5835 		pr_err("PerfGlobCtl = 0x%016llx\n",
5836 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5837 	if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
5838 		vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
5839 
5840 	pr_err("*** Control State ***\n");
5841 	pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5842 	       pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5843 	pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5844 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5845 	       vmcs_read32(EXCEPTION_BITMAP),
5846 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5847 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5848 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5849 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5850 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5851 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5852 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5853 	       vmcs_read32(VM_EXIT_INTR_INFO),
5854 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5855 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5856 	pr_err("        reason=%08x qualification=%016lx\n",
5857 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5858 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5859 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
5860 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
5861 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5862 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5863 		pr_err("TSC Multiplier = 0x%016llx\n",
5864 		       vmcs_read64(TSC_MULTIPLIER));
5865 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5866 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5867 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
5868 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5869 		}
5870 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5871 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5872 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5873 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5874 	}
5875 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5876 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5877 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5878 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5879 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5880 		pr_err("PLE Gap=%08x Window=%08x\n",
5881 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5882 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5883 		pr_err("Virtual processor ID = 0x%04x\n",
5884 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
5885 }
5886 
5887 /*
5888  * The guest has exited.  See if we can fix it or if we need userspace
5889  * assistance.
5890  */
5891 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
5892 {
5893 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5894 	union vmx_exit_reason exit_reason = vmx->exit_reason;
5895 	u32 vectoring_info = vmx->idt_vectoring_info;
5896 	u16 exit_handler_index;
5897 
5898 	/*
5899 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5900 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5901 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
5902 	 * mode as if vcpus is in root mode, the PML buffer must has been
5903 	 * flushed already.  Note, PML is never enabled in hardware while
5904 	 * running L2.
5905 	 */
5906 	if (enable_pml && !is_guest_mode(vcpu))
5907 		vmx_flush_pml_buffer(vcpu);
5908 
5909 	/*
5910 	 * We should never reach this point with a pending nested VM-Enter, and
5911 	 * more specifically emulation of L2 due to invalid guest state (see
5912 	 * below) should never happen as that means we incorrectly allowed a
5913 	 * nested VM-Enter with an invalid vmcs12.
5914 	 */
5915 	if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
5916 		return -EIO;
5917 
5918 	/* If guest state is invalid, start emulating */
5919 	if (vmx->emulation_required)
5920 		return handle_invalid_guest_state(vcpu);
5921 
5922 	if (is_guest_mode(vcpu)) {
5923 		/*
5924 		 * PML is never enabled when running L2, bail immediately if a
5925 		 * PML full exit occurs as something is horribly wrong.
5926 		 */
5927 		if (exit_reason.basic == EXIT_REASON_PML_FULL)
5928 			goto unexpected_vmexit;
5929 
5930 		/*
5931 		 * The host physical addresses of some pages of guest memory
5932 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5933 		 * Page). The CPU may write to these pages via their host
5934 		 * physical address while L2 is running, bypassing any
5935 		 * address-translation-based dirty tracking (e.g. EPT write
5936 		 * protection).
5937 		 *
5938 		 * Mark them dirty on every exit from L2 to prevent them from
5939 		 * getting out of sync with dirty tracking.
5940 		 */
5941 		nested_mark_vmcs12_pages_dirty(vcpu);
5942 
5943 		if (nested_vmx_reflect_vmexit(vcpu))
5944 			return 1;
5945 	}
5946 
5947 	if (exit_reason.failed_vmentry) {
5948 		dump_vmcs(vcpu);
5949 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5950 		vcpu->run->fail_entry.hardware_entry_failure_reason
5951 			= exit_reason.full;
5952 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
5953 		return 0;
5954 	}
5955 
5956 	if (unlikely(vmx->fail)) {
5957 		dump_vmcs(vcpu);
5958 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5959 		vcpu->run->fail_entry.hardware_entry_failure_reason
5960 			= vmcs_read32(VM_INSTRUCTION_ERROR);
5961 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
5962 		return 0;
5963 	}
5964 
5965 	/*
5966 	 * Note:
5967 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5968 	 * delivery event since it indicates guest is accessing MMIO.
5969 	 * The vm-exit can be triggered again after return to guest that
5970 	 * will cause infinite loop.
5971 	 */
5972 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5973 	    (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
5974 	     exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
5975 	     exit_reason.basic != EXIT_REASON_PML_FULL &&
5976 	     exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
5977 	     exit_reason.basic != EXIT_REASON_TASK_SWITCH)) {
5978 		int ndata = 3;
5979 
5980 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5981 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5982 		vcpu->run->internal.data[0] = vectoring_info;
5983 		vcpu->run->internal.data[1] = exit_reason.full;
5984 		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5985 		if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
5986 			vcpu->run->internal.data[ndata++] =
5987 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5988 		}
5989 		vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
5990 		vcpu->run->internal.ndata = ndata;
5991 		return 0;
5992 	}
5993 
5994 	if (unlikely(!enable_vnmi &&
5995 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
5996 		if (!vmx_interrupt_blocked(vcpu)) {
5997 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5998 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5999 			   vcpu->arch.nmi_pending) {
6000 			/*
6001 			 * This CPU don't support us in finding the end of an
6002 			 * NMI-blocked window if the guest runs with IRQs
6003 			 * disabled. So we pull the trigger after 1 s of
6004 			 * futile waiting, but inform the user about this.
6005 			 */
6006 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6007 			       "state on VCPU %d after 1 s timeout\n",
6008 			       __func__, vcpu->vcpu_id);
6009 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6010 		}
6011 	}
6012 
6013 	if (exit_fastpath != EXIT_FASTPATH_NONE)
6014 		return 1;
6015 
6016 	if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6017 		goto unexpected_vmexit;
6018 #ifdef CONFIG_RETPOLINE
6019 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6020 		return kvm_emulate_wrmsr(vcpu);
6021 	else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6022 		return handle_preemption_timer(vcpu);
6023 	else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6024 		return handle_interrupt_window(vcpu);
6025 	else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6026 		return handle_external_interrupt(vcpu);
6027 	else if (exit_reason.basic == EXIT_REASON_HLT)
6028 		return kvm_emulate_halt(vcpu);
6029 	else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6030 		return handle_ept_misconfig(vcpu);
6031 #endif
6032 
6033 	exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6034 						kvm_vmx_max_exit_handlers);
6035 	if (!kvm_vmx_exit_handlers[exit_handler_index])
6036 		goto unexpected_vmexit;
6037 
6038 	return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6039 
6040 unexpected_vmexit:
6041 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6042 		    exit_reason.full);
6043 	dump_vmcs(vcpu);
6044 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6045 	vcpu->run->internal.suberror =
6046 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6047 	vcpu->run->internal.ndata = 2;
6048 	vcpu->run->internal.data[0] = exit_reason.full;
6049 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6050 	return 0;
6051 }
6052 
6053 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6054 {
6055 	int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6056 
6057 	/*
6058 	 * Exit to user space when bus lock detected to inform that there is
6059 	 * a bus lock in guest.
6060 	 */
6061 	if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6062 		if (ret > 0)
6063 			vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6064 
6065 		vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6066 		return 0;
6067 	}
6068 	return ret;
6069 }
6070 
6071 /*
6072  * Software based L1D cache flush which is used when microcode providing
6073  * the cache control MSR is not loaded.
6074  *
6075  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6076  * flush it is required to read in 64 KiB because the replacement algorithm
6077  * is not exactly LRU. This could be sized at runtime via topology
6078  * information but as all relevant affected CPUs have 32KiB L1D cache size
6079  * there is no point in doing so.
6080  */
6081 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6082 {
6083 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6084 
6085 	/*
6086 	 * This code is only executed when the the flush mode is 'cond' or
6087 	 * 'always'
6088 	 */
6089 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6090 		bool flush_l1d;
6091 
6092 		/*
6093 		 * Clear the per-vcpu flush bit, it gets set again
6094 		 * either from vcpu_run() or from one of the unsafe
6095 		 * VMEXIT handlers.
6096 		 */
6097 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6098 		vcpu->arch.l1tf_flush_l1d = false;
6099 
6100 		/*
6101 		 * Clear the per-cpu flush bit, it gets set again from
6102 		 * the interrupt handlers.
6103 		 */
6104 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6105 		kvm_clear_cpu_l1tf_flush_l1d();
6106 
6107 		if (!flush_l1d)
6108 			return;
6109 	}
6110 
6111 	vcpu->stat.l1d_flush++;
6112 
6113 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6114 		native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6115 		return;
6116 	}
6117 
6118 	asm volatile(
6119 		/* First ensure the pages are in the TLB */
6120 		"xorl	%%eax, %%eax\n"
6121 		".Lpopulate_tlb:\n\t"
6122 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6123 		"addl	$4096, %%eax\n\t"
6124 		"cmpl	%%eax, %[size]\n\t"
6125 		"jne	.Lpopulate_tlb\n\t"
6126 		"xorl	%%eax, %%eax\n\t"
6127 		"cpuid\n\t"
6128 		/* Now fill the cache */
6129 		"xorl	%%eax, %%eax\n"
6130 		".Lfill_cache:\n"
6131 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6132 		"addl	$64, %%eax\n\t"
6133 		"cmpl	%%eax, %[size]\n\t"
6134 		"jne	.Lfill_cache\n\t"
6135 		"lfence\n"
6136 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6137 		    [size] "r" (size)
6138 		: "eax", "ebx", "ecx", "edx");
6139 }
6140 
6141 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6142 {
6143 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6144 	int tpr_threshold;
6145 
6146 	if (is_guest_mode(vcpu) &&
6147 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6148 		return;
6149 
6150 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6151 	if (is_guest_mode(vcpu))
6152 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6153 	else
6154 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6155 }
6156 
6157 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6158 {
6159 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6160 	u32 sec_exec_control;
6161 
6162 	if (!lapic_in_kernel(vcpu))
6163 		return;
6164 
6165 	if (!flexpriority_enabled &&
6166 	    !cpu_has_vmx_virtualize_x2apic_mode())
6167 		return;
6168 
6169 	/* Postpone execution until vmcs01 is the current VMCS. */
6170 	if (is_guest_mode(vcpu)) {
6171 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6172 		return;
6173 	}
6174 
6175 	sec_exec_control = secondary_exec_controls_get(vmx);
6176 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6177 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6178 
6179 	switch (kvm_get_apic_mode(vcpu)) {
6180 	case LAPIC_MODE_INVALID:
6181 		WARN_ONCE(true, "Invalid local APIC state");
6182 		break;
6183 	case LAPIC_MODE_DISABLED:
6184 		break;
6185 	case LAPIC_MODE_XAPIC:
6186 		if (flexpriority_enabled) {
6187 			sec_exec_control |=
6188 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6189 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6190 
6191 			/*
6192 			 * Flush the TLB, reloading the APIC access page will
6193 			 * only do so if its physical address has changed, but
6194 			 * the guest may have inserted a non-APIC mapping into
6195 			 * the TLB while the APIC access page was disabled.
6196 			 */
6197 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6198 		}
6199 		break;
6200 	case LAPIC_MODE_X2APIC:
6201 		if (cpu_has_vmx_virtualize_x2apic_mode())
6202 			sec_exec_control |=
6203 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6204 		break;
6205 	}
6206 	secondary_exec_controls_set(vmx, sec_exec_control);
6207 
6208 	vmx_update_msr_bitmap_x2apic(vcpu);
6209 }
6210 
6211 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6212 {
6213 	struct page *page;
6214 
6215 	/* Defer reload until vmcs01 is the current VMCS. */
6216 	if (is_guest_mode(vcpu)) {
6217 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6218 		return;
6219 	}
6220 
6221 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6222 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6223 		return;
6224 
6225 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6226 	if (is_error_page(page))
6227 		return;
6228 
6229 	vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6230 	vmx_flush_tlb_current(vcpu);
6231 
6232 	/*
6233 	 * Do not pin apic access page in memory, the MMU notifier
6234 	 * will call us again if it is migrated or swapped out.
6235 	 */
6236 	put_page(page);
6237 }
6238 
6239 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6240 {
6241 	u16 status;
6242 	u8 old;
6243 
6244 	if (max_isr == -1)
6245 		max_isr = 0;
6246 
6247 	status = vmcs_read16(GUEST_INTR_STATUS);
6248 	old = status >> 8;
6249 	if (max_isr != old) {
6250 		status &= 0xff;
6251 		status |= max_isr << 8;
6252 		vmcs_write16(GUEST_INTR_STATUS, status);
6253 	}
6254 }
6255 
6256 static void vmx_set_rvi(int vector)
6257 {
6258 	u16 status;
6259 	u8 old;
6260 
6261 	if (vector == -1)
6262 		vector = 0;
6263 
6264 	status = vmcs_read16(GUEST_INTR_STATUS);
6265 	old = (u8)status & 0xff;
6266 	if ((u8)vector != old) {
6267 		status &= ~0xff;
6268 		status |= (u8)vector;
6269 		vmcs_write16(GUEST_INTR_STATUS, status);
6270 	}
6271 }
6272 
6273 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6274 {
6275 	/*
6276 	 * When running L2, updating RVI is only relevant when
6277 	 * vmcs12 virtual-interrupt-delivery enabled.
6278 	 * However, it can be enabled only when L1 also
6279 	 * intercepts external-interrupts and in that case
6280 	 * we should not update vmcs02 RVI but instead intercept
6281 	 * interrupt. Therefore, do nothing when running L2.
6282 	 */
6283 	if (!is_guest_mode(vcpu))
6284 		vmx_set_rvi(max_irr);
6285 }
6286 
6287 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6288 {
6289 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6290 	int max_irr;
6291 	bool max_irr_updated;
6292 
6293 	if (KVM_BUG_ON(!vcpu->arch.apicv_active, vcpu->kvm))
6294 		return -EIO;
6295 
6296 	if (pi_test_on(&vmx->pi_desc)) {
6297 		pi_clear_on(&vmx->pi_desc);
6298 		/*
6299 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6300 		 * But on x86 this is just a compiler barrier anyway.
6301 		 */
6302 		smp_mb__after_atomic();
6303 		max_irr_updated =
6304 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6305 
6306 		/*
6307 		 * If we are running L2 and L1 has a new pending interrupt
6308 		 * which can be injected, we should re-evaluate
6309 		 * what should be done with this new L1 interrupt.
6310 		 * If L1 intercepts external-interrupts, we should
6311 		 * exit from L2 to L1. Otherwise, interrupt should be
6312 		 * delivered directly to L2.
6313 		 */
6314 		if (is_guest_mode(vcpu) && max_irr_updated) {
6315 			if (nested_exit_on_intr(vcpu))
6316 				kvm_vcpu_exiting_guest_mode(vcpu);
6317 			else
6318 				kvm_make_request(KVM_REQ_EVENT, vcpu);
6319 		}
6320 	} else {
6321 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6322 	}
6323 	vmx_hwapic_irr_update(vcpu, max_irr);
6324 	return max_irr;
6325 }
6326 
6327 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6328 {
6329 	if (!kvm_vcpu_apicv_active(vcpu))
6330 		return;
6331 
6332 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6333 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6334 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6335 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6336 }
6337 
6338 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6339 {
6340 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6341 
6342 	pi_clear_on(&vmx->pi_desc);
6343 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6344 }
6345 
6346 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
6347 
6348 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu,
6349 					unsigned long entry)
6350 {
6351 	kvm_before_interrupt(vcpu);
6352 	vmx_do_interrupt_nmi_irqoff(entry);
6353 	kvm_after_interrupt(vcpu);
6354 }
6355 
6356 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6357 {
6358 	const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist;
6359 	u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6360 
6361 	/* if exit due to PF check for async PF */
6362 	if (is_page_fault(intr_info))
6363 		vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6364 	/* Handle machine checks before interrupts are enabled */
6365 	else if (is_machine_check(intr_info))
6366 		kvm_machine_check();
6367 	/* We need to handle NMIs before interrupts are enabled */
6368 	else if (is_nmi(intr_info))
6369 		handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry);
6370 }
6371 
6372 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6373 {
6374 	u32 intr_info = vmx_get_intr_info(vcpu);
6375 	unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6376 	gate_desc *desc = (gate_desc *)host_idt_base + vector;
6377 
6378 	if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6379 	    "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6380 		return;
6381 
6382 	handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc));
6383 }
6384 
6385 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6386 {
6387 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6388 
6389 	if (vmx->emulation_required)
6390 		return;
6391 
6392 	if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6393 		handle_external_interrupt_irqoff(vcpu);
6394 	else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6395 		handle_exception_nmi_irqoff(vmx);
6396 }
6397 
6398 /*
6399  * The kvm parameter can be NULL (module initialization, or invocation before
6400  * VM creation). Be sure to check the kvm parameter before using it.
6401  */
6402 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6403 {
6404 	switch (index) {
6405 	case MSR_IA32_SMBASE:
6406 		/*
6407 		 * We cannot do SMM unless we can run the guest in big
6408 		 * real mode.
6409 		 */
6410 		return enable_unrestricted_guest || emulate_invalid_guest_state;
6411 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6412 		return nested;
6413 	case MSR_AMD64_VIRT_SPEC_CTRL:
6414 		/* This is AMD only.  */
6415 		return false;
6416 	default:
6417 		return true;
6418 	}
6419 }
6420 
6421 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6422 {
6423 	u32 exit_intr_info;
6424 	bool unblock_nmi;
6425 	u8 vector;
6426 	bool idtv_info_valid;
6427 
6428 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6429 
6430 	if (enable_vnmi) {
6431 		if (vmx->loaded_vmcs->nmi_known_unmasked)
6432 			return;
6433 
6434 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6435 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6436 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6437 		/*
6438 		 * SDM 3: 27.7.1.2 (September 2008)
6439 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6440 		 * a guest IRET fault.
6441 		 * SDM 3: 23.2.2 (September 2008)
6442 		 * Bit 12 is undefined in any of the following cases:
6443 		 *  If the VM exit sets the valid bit in the IDT-vectoring
6444 		 *   information field.
6445 		 *  If the VM exit is due to a double fault.
6446 		 */
6447 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6448 		    vector != DF_VECTOR && !idtv_info_valid)
6449 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6450 				      GUEST_INTR_STATE_NMI);
6451 		else
6452 			vmx->loaded_vmcs->nmi_known_unmasked =
6453 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6454 				  & GUEST_INTR_STATE_NMI);
6455 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6456 		vmx->loaded_vmcs->vnmi_blocked_time +=
6457 			ktime_to_ns(ktime_sub(ktime_get(),
6458 					      vmx->loaded_vmcs->entry_time));
6459 }
6460 
6461 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6462 				      u32 idt_vectoring_info,
6463 				      int instr_len_field,
6464 				      int error_code_field)
6465 {
6466 	u8 vector;
6467 	int type;
6468 	bool idtv_info_valid;
6469 
6470 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6471 
6472 	vcpu->arch.nmi_injected = false;
6473 	kvm_clear_exception_queue(vcpu);
6474 	kvm_clear_interrupt_queue(vcpu);
6475 
6476 	if (!idtv_info_valid)
6477 		return;
6478 
6479 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6480 
6481 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6482 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6483 
6484 	switch (type) {
6485 	case INTR_TYPE_NMI_INTR:
6486 		vcpu->arch.nmi_injected = true;
6487 		/*
6488 		 * SDM 3: 27.7.1.2 (September 2008)
6489 		 * Clear bit "block by NMI" before VM entry if a NMI
6490 		 * delivery faulted.
6491 		 */
6492 		vmx_set_nmi_mask(vcpu, false);
6493 		break;
6494 	case INTR_TYPE_SOFT_EXCEPTION:
6495 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6496 		fallthrough;
6497 	case INTR_TYPE_HARD_EXCEPTION:
6498 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6499 			u32 err = vmcs_read32(error_code_field);
6500 			kvm_requeue_exception_e(vcpu, vector, err);
6501 		} else
6502 			kvm_requeue_exception(vcpu, vector);
6503 		break;
6504 	case INTR_TYPE_SOFT_INTR:
6505 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6506 		fallthrough;
6507 	case INTR_TYPE_EXT_INTR:
6508 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6509 		break;
6510 	default:
6511 		break;
6512 	}
6513 }
6514 
6515 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6516 {
6517 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6518 				  VM_EXIT_INSTRUCTION_LEN,
6519 				  IDT_VECTORING_ERROR_CODE);
6520 }
6521 
6522 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6523 {
6524 	__vmx_complete_interrupts(vcpu,
6525 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6526 				  VM_ENTRY_INSTRUCTION_LEN,
6527 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
6528 
6529 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6530 }
6531 
6532 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6533 {
6534 	int i, nr_msrs;
6535 	struct perf_guest_switch_msr *msrs;
6536 
6537 	/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
6538 	msrs = perf_guest_get_msrs(&nr_msrs);
6539 	if (!msrs)
6540 		return;
6541 
6542 	for (i = 0; i < nr_msrs; i++)
6543 		if (msrs[i].host == msrs[i].guest)
6544 			clear_atomic_switch_msr(vmx, msrs[i].msr);
6545 		else
6546 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6547 					msrs[i].host, false);
6548 }
6549 
6550 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6551 {
6552 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6553 	u64 tscl;
6554 	u32 delta_tsc;
6555 
6556 	if (vmx->req_immediate_exit) {
6557 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6558 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6559 	} else if (vmx->hv_deadline_tsc != -1) {
6560 		tscl = rdtsc();
6561 		if (vmx->hv_deadline_tsc > tscl)
6562 			/* set_hv_timer ensures the delta fits in 32-bits */
6563 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6564 				cpu_preemption_timer_multi);
6565 		else
6566 			delta_tsc = 0;
6567 
6568 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6569 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6570 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6571 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6572 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6573 	}
6574 }
6575 
6576 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6577 {
6578 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6579 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
6580 		vmcs_writel(HOST_RSP, host_rsp);
6581 	}
6582 }
6583 
6584 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
6585 {
6586 	switch (to_vmx(vcpu)->exit_reason.basic) {
6587 	case EXIT_REASON_MSR_WRITE:
6588 		return handle_fastpath_set_msr_irqoff(vcpu);
6589 	case EXIT_REASON_PREEMPTION_TIMER:
6590 		return handle_fastpath_preemption_timer(vcpu);
6591 	default:
6592 		return EXIT_FASTPATH_NONE;
6593 	}
6594 }
6595 
6596 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
6597 					struct vcpu_vmx *vmx)
6598 {
6599 	kvm_guest_enter_irqoff();
6600 
6601 	/* L1D Flush includes CPU buffer clear to mitigate MDS */
6602 	if (static_branch_unlikely(&vmx_l1d_should_flush))
6603 		vmx_l1d_flush(vcpu);
6604 	else if (static_branch_unlikely(&mds_user_clear))
6605 		mds_clear_cpu_buffers();
6606 
6607 	if (vcpu->arch.cr2 != native_read_cr2())
6608 		native_write_cr2(vcpu->arch.cr2);
6609 
6610 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6611 				   vmx->loaded_vmcs->launched);
6612 
6613 	vcpu->arch.cr2 = native_read_cr2();
6614 
6615 	kvm_guest_exit_irqoff();
6616 }
6617 
6618 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
6619 {
6620 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6621 	unsigned long cr3, cr4;
6622 
6623 	/* Record the guest's net vcpu time for enforced NMI injections. */
6624 	if (unlikely(!enable_vnmi &&
6625 		     vmx->loaded_vmcs->soft_vnmi_blocked))
6626 		vmx->loaded_vmcs->entry_time = ktime_get();
6627 
6628 	/*
6629 	 * Don't enter VMX if guest state is invalid, let the exit handler
6630 	 * start emulation until we arrive back to a valid state.  Synthesize a
6631 	 * consistency check VM-Exit due to invalid guest state and bail.
6632 	 */
6633 	if (unlikely(vmx->emulation_required)) {
6634 
6635 		/* We don't emulate invalid state of a nested guest */
6636 		vmx->fail = is_guest_mode(vcpu);
6637 
6638 		vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
6639 		vmx->exit_reason.failed_vmentry = 1;
6640 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
6641 		vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
6642 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
6643 		vmx->exit_intr_info = 0;
6644 		return EXIT_FASTPATH_NONE;
6645 	}
6646 
6647 	trace_kvm_entry(vcpu);
6648 
6649 	if (vmx->ple_window_dirty) {
6650 		vmx->ple_window_dirty = false;
6651 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
6652 	}
6653 
6654 	/*
6655 	 * We did this in prepare_switch_to_guest, because it needs to
6656 	 * be within srcu_read_lock.
6657 	 */
6658 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6659 
6660 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6661 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6662 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6663 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6664 
6665 	cr3 = __get_current_cr3_fast();
6666 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6667 		vmcs_writel(HOST_CR3, cr3);
6668 		vmx->loaded_vmcs->host_state.cr3 = cr3;
6669 	}
6670 
6671 	cr4 = cr4_read_shadow();
6672 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6673 		vmcs_writel(HOST_CR4, cr4);
6674 		vmx->loaded_vmcs->host_state.cr4 = cr4;
6675 	}
6676 
6677 	/* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
6678 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
6679 		set_debugreg(vcpu->arch.dr6, 6);
6680 
6681 	/* When single-stepping over STI and MOV SS, we must clear the
6682 	 * corresponding interruptibility bits in the guest state. Otherwise
6683 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
6684 	 * exceptions being set, but that's not correct for the guest debugging
6685 	 * case. */
6686 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6687 		vmx_set_interrupt_shadow(vcpu, 0);
6688 
6689 	kvm_load_guest_xsave_state(vcpu);
6690 
6691 	pt_guest_enter(vmx);
6692 
6693 	atomic_switch_perf_msrs(vmx);
6694 	if (intel_pmu_lbr_is_enabled(vcpu))
6695 		vmx_passthrough_lbr_msrs(vcpu);
6696 
6697 	if (enable_preemption_timer)
6698 		vmx_update_hv_timer(vcpu);
6699 
6700 	kvm_wait_lapic_expire(vcpu);
6701 
6702 	/*
6703 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6704 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6705 	 * is no need to worry about the conditional branch over the wrmsr
6706 	 * being speculatively taken.
6707 	 */
6708 	x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6709 
6710 	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
6711 	vmx_vcpu_enter_exit(vcpu, vmx);
6712 
6713 	/*
6714 	 * We do not use IBRS in the kernel. If this vCPU has used the
6715 	 * SPEC_CTRL MSR it may have left it on; save the value and
6716 	 * turn it off. This is much more efficient than blindly adding
6717 	 * it to the atomic save/restore list. Especially as the former
6718 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6719 	 *
6720 	 * For non-nested case:
6721 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
6722 	 * save it.
6723 	 *
6724 	 * For nested case:
6725 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
6726 	 * save it.
6727 	 */
6728 	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6729 		vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6730 
6731 	x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6732 
6733 	/* All fields are clean at this point */
6734 	if (static_branch_unlikely(&enable_evmcs)) {
6735 		current_evmcs->hv_clean_fields |=
6736 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6737 
6738 		current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
6739 	}
6740 
6741 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6742 	if (vmx->host_debugctlmsr)
6743 		update_debugctlmsr(vmx->host_debugctlmsr);
6744 
6745 #ifndef CONFIG_X86_64
6746 	/*
6747 	 * The sysexit path does not restore ds/es, so we must set them to
6748 	 * a reasonable value ourselves.
6749 	 *
6750 	 * We can't defer this to vmx_prepare_switch_to_host() since that
6751 	 * function may be executed in interrupt context, which saves and
6752 	 * restore segments around it, nullifying its effect.
6753 	 */
6754 	loadsegment(ds, __USER_DS);
6755 	loadsegment(es, __USER_DS);
6756 #endif
6757 
6758 	vmx_register_cache_reset(vcpu);
6759 
6760 	pt_guest_exit(vmx);
6761 
6762 	kvm_load_host_xsave_state(vcpu);
6763 
6764 	if (is_guest_mode(vcpu)) {
6765 		/*
6766 		 * Track VMLAUNCH/VMRESUME that have made past guest state
6767 		 * checking.
6768 		 */
6769 		if (vmx->nested.nested_run_pending &&
6770 		    !vmx->exit_reason.failed_vmentry)
6771 			++vcpu->stat.nested_run;
6772 
6773 		vmx->nested.nested_run_pending = 0;
6774 	}
6775 
6776 	vmx->idt_vectoring_info = 0;
6777 
6778 	if (unlikely(vmx->fail)) {
6779 		vmx->exit_reason.full = 0xdead;
6780 		return EXIT_FASTPATH_NONE;
6781 	}
6782 
6783 	vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
6784 	if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
6785 		kvm_machine_check();
6786 
6787 	if (likely(!vmx->exit_reason.failed_vmentry))
6788 		vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6789 
6790 	trace_kvm_exit(vmx->exit_reason.full, vcpu, KVM_ISA_VMX);
6791 
6792 	if (unlikely(vmx->exit_reason.failed_vmentry))
6793 		return EXIT_FASTPATH_NONE;
6794 
6795 	vmx->loaded_vmcs->launched = 1;
6796 
6797 	vmx_recover_nmi_blocking(vmx);
6798 	vmx_complete_interrupts(vmx);
6799 
6800 	if (is_guest_mode(vcpu))
6801 		return EXIT_FASTPATH_NONE;
6802 
6803 	return vmx_exit_handlers_fastpath(vcpu);
6804 }
6805 
6806 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6807 {
6808 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6809 
6810 	if (enable_pml)
6811 		vmx_destroy_pml_buffer(vmx);
6812 	free_vpid(vmx->vpid);
6813 	nested_vmx_free_vcpu(vcpu);
6814 	free_loaded_vmcs(vmx->loaded_vmcs);
6815 }
6816 
6817 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6818 {
6819 	struct vmx_uret_msr *tsx_ctrl;
6820 	struct vcpu_vmx *vmx;
6821 	int i, cpu, err;
6822 
6823 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6824 	vmx = to_vmx(vcpu);
6825 
6826 	err = -ENOMEM;
6827 
6828 	vmx->vpid = allocate_vpid();
6829 
6830 	/*
6831 	 * If PML is turned on, failure on enabling PML just results in failure
6832 	 * of creating the vcpu, therefore we can simplify PML logic (by
6833 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
6834 	 * for the guest), etc.
6835 	 */
6836 	if (enable_pml) {
6837 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6838 		if (!vmx->pml_pg)
6839 			goto free_vpid;
6840 	}
6841 
6842 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
6843 		vmx->guest_uret_msrs[i].data = 0;
6844 		vmx->guest_uret_msrs[i].mask = -1ull;
6845 	}
6846 	if (boot_cpu_has(X86_FEATURE_RTM)) {
6847 		/*
6848 		 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
6849 		 * Keep the host value unchanged to avoid changing CPUID bits
6850 		 * under the host kernel's feet.
6851 		 */
6852 		tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
6853 		if (tsx_ctrl)
6854 			tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
6855 	}
6856 
6857 	err = alloc_loaded_vmcs(&vmx->vmcs01);
6858 	if (err < 0)
6859 		goto free_pml;
6860 
6861 	/* The MSR bitmap starts with all ones */
6862 	bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6863 	bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6864 
6865 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
6866 #ifdef CONFIG_X86_64
6867 	vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
6868 	vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
6869 	vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6870 #endif
6871 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6872 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6873 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6874 	if (kvm_cstate_in_guest(vcpu->kvm)) {
6875 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
6876 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6877 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6878 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6879 	}
6880 
6881 	vmx->loaded_vmcs = &vmx->vmcs01;
6882 	cpu = get_cpu();
6883 	vmx_vcpu_load(vcpu, cpu);
6884 	vcpu->cpu = cpu;
6885 	init_vmcs(vmx);
6886 	vmx_vcpu_put(vcpu);
6887 	put_cpu();
6888 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
6889 		err = alloc_apic_access_page(vcpu->kvm);
6890 		if (err)
6891 			goto free_vmcs;
6892 	}
6893 
6894 	if (enable_ept && !enable_unrestricted_guest) {
6895 		err = init_rmode_identity_map(vcpu->kvm);
6896 		if (err)
6897 			goto free_vmcs;
6898 	}
6899 
6900 	if (nested)
6901 		memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
6902 	else
6903 		memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6904 
6905 	vcpu_setup_sgx_lepubkeyhash(vcpu);
6906 
6907 	vmx->nested.posted_intr_nv = -1;
6908 	vmx->nested.current_vmptr = -1ull;
6909 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
6910 
6911 	vcpu->arch.microcode_version = 0x100000000ULL;
6912 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
6913 
6914 	/*
6915 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6916 	 * or POSTED_INTR_WAKEUP_VECTOR.
6917 	 */
6918 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6919 	vmx->pi_desc.sn = 1;
6920 
6921 	return 0;
6922 
6923 free_vmcs:
6924 	free_loaded_vmcs(vmx->loaded_vmcs);
6925 free_pml:
6926 	vmx_destroy_pml_buffer(vmx);
6927 free_vpid:
6928 	free_vpid(vmx->vpid);
6929 	return err;
6930 }
6931 
6932 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6933 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6934 
6935 static int vmx_vm_init(struct kvm *kvm)
6936 {
6937 	if (!ple_gap)
6938 		kvm->arch.pause_in_guest = true;
6939 
6940 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6941 		switch (l1tf_mitigation) {
6942 		case L1TF_MITIGATION_OFF:
6943 		case L1TF_MITIGATION_FLUSH_NOWARN:
6944 			/* 'I explicitly don't care' is set */
6945 			break;
6946 		case L1TF_MITIGATION_FLUSH:
6947 		case L1TF_MITIGATION_FLUSH_NOSMT:
6948 		case L1TF_MITIGATION_FULL:
6949 			/*
6950 			 * Warn upon starting the first VM in a potentially
6951 			 * insecure environment.
6952 			 */
6953 			if (sched_smt_active())
6954 				pr_warn_once(L1TF_MSG_SMT);
6955 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6956 				pr_warn_once(L1TF_MSG_L1D);
6957 			break;
6958 		case L1TF_MITIGATION_FULL_FORCE:
6959 			/* Flush is enforced */
6960 			break;
6961 		}
6962 	}
6963 	return 0;
6964 }
6965 
6966 static int __init vmx_check_processor_compat(void)
6967 {
6968 	struct vmcs_config vmcs_conf;
6969 	struct vmx_capability vmx_cap;
6970 
6971 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
6972 	    !this_cpu_has(X86_FEATURE_VMX)) {
6973 		pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
6974 		return -EIO;
6975 	}
6976 
6977 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6978 		return -EIO;
6979 	if (nested)
6980 		nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
6981 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6982 		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6983 				smp_processor_id());
6984 		return -EIO;
6985 	}
6986 	return 0;
6987 }
6988 
6989 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6990 {
6991 	u8 cache;
6992 	u64 ipat = 0;
6993 
6994 	/* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
6995 	 * memory aliases with conflicting memory types and sometimes MCEs.
6996 	 * We have to be careful as to what are honored and when.
6997 	 *
6998 	 * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
6999 	 * UC.  The effective memory type is UC or WC depending on guest PAT.
7000 	 * This was historically the source of MCEs and we want to be
7001 	 * conservative.
7002 	 *
7003 	 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7004 	 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
7005 	 * EPT memory type is set to WB.  The effective memory type is forced
7006 	 * WB.
7007 	 *
7008 	 * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
7009 	 * EPT memory type is used to emulate guest CD/MTRR.
7010 	 */
7011 
7012 	if (is_mmio) {
7013 		cache = MTRR_TYPE_UNCACHABLE;
7014 		goto exit;
7015 	}
7016 
7017 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
7018 		ipat = VMX_EPT_IPAT_BIT;
7019 		cache = MTRR_TYPE_WRBACK;
7020 		goto exit;
7021 	}
7022 
7023 	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7024 		ipat = VMX_EPT_IPAT_BIT;
7025 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7026 			cache = MTRR_TYPE_WRBACK;
7027 		else
7028 			cache = MTRR_TYPE_UNCACHABLE;
7029 		goto exit;
7030 	}
7031 
7032 	cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
7033 
7034 exit:
7035 	return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
7036 }
7037 
7038 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7039 {
7040 	/*
7041 	 * These bits in the secondary execution controls field
7042 	 * are dynamic, the others are mostly based on the hypervisor
7043 	 * architecture and the guest's CPUID.  Do not touch the
7044 	 * dynamic bits.
7045 	 */
7046 	u32 mask =
7047 		SECONDARY_EXEC_SHADOW_VMCS |
7048 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7049 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7050 		SECONDARY_EXEC_DESC;
7051 
7052 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7053 
7054 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7055 }
7056 
7057 /*
7058  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7059  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7060  */
7061 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7062 {
7063 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7064 	struct kvm_cpuid_entry2 *entry;
7065 
7066 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7067 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7068 
7069 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7070 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7071 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7072 } while (0)
7073 
7074 	entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7075 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7076 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7077 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7078 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7079 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7080 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7081 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7082 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7083 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7084 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7085 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7086 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7087 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7088 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7089 
7090 	entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7091 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7092 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7093 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7094 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7095 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7096 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7097 
7098 #undef cr4_fixed1_update
7099 }
7100 
7101 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7102 {
7103 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7104 
7105 	if (kvm_mpx_supported()) {
7106 		bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7107 
7108 		if (mpx_enabled) {
7109 			vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7110 			vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7111 		} else {
7112 			vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7113 			vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7114 		}
7115 	}
7116 }
7117 
7118 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7119 {
7120 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7121 	struct kvm_cpuid_entry2 *best = NULL;
7122 	int i;
7123 
7124 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7125 		best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7126 		if (!best)
7127 			return;
7128 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7129 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7130 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7131 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7132 	}
7133 
7134 	/* Get the number of configurable Address Ranges for filtering */
7135 	vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7136 						PT_CAP_num_address_ranges);
7137 
7138 	/* Initialize and clear the no dependency bits */
7139 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7140 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7141 
7142 	/*
7143 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7144 	 * will inject an #GP
7145 	 */
7146 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7147 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7148 
7149 	/*
7150 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7151 	 * PSBFreq can be set
7152 	 */
7153 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7154 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7155 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7156 
7157 	/*
7158 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7159 	 * MTCFreq can be set
7160 	 */
7161 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7162 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7163 				RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7164 
7165 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7166 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7167 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7168 							RTIT_CTL_PTW_EN);
7169 
7170 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7171 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7172 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7173 
7174 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7175 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7176 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7177 
7178 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7179 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7180 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7181 
7182 	/* unmask address range configure area */
7183 	for (i = 0; i < vmx->pt_desc.addr_range; i++)
7184 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7185 }
7186 
7187 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7188 {
7189 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7190 
7191 	/* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7192 	vcpu->arch.xsaves_enabled = false;
7193 
7194 	vmx_setup_uret_msrs(vmx);
7195 
7196 	if (cpu_has_secondary_exec_ctrls())
7197 		vmcs_set_secondary_exec_control(vmx,
7198 						vmx_secondary_exec_control(vmx));
7199 
7200 	if (nested_vmx_allowed(vcpu))
7201 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7202 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7203 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7204 	else
7205 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7206 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7207 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7208 
7209 	if (nested_vmx_allowed(vcpu)) {
7210 		nested_vmx_cr_fixed1_bits_update(vcpu);
7211 		nested_vmx_entry_exit_ctls_update(vcpu);
7212 	}
7213 
7214 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7215 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7216 		update_intel_pt_cfg(vcpu);
7217 
7218 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7219 		struct vmx_uret_msr *msr;
7220 		msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7221 		if (msr) {
7222 			bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7223 			vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7224 		}
7225 	}
7226 
7227 	set_cr4_guest_host_mask(vmx);
7228 
7229 	vmx_write_encls_bitmap(vcpu, NULL);
7230 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7231 		vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7232 	else
7233 		vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7234 
7235 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7236 		vmx->msr_ia32_feature_control_valid_bits |=
7237 			FEAT_CTL_SGX_LC_ENABLED;
7238 	else
7239 		vmx->msr_ia32_feature_control_valid_bits &=
7240 			~FEAT_CTL_SGX_LC_ENABLED;
7241 
7242 	/* Refresh #PF interception to account for MAXPHYADDR changes. */
7243 	vmx_update_exception_bitmap(vcpu);
7244 }
7245 
7246 static __init void vmx_set_cpu_caps(void)
7247 {
7248 	kvm_set_cpu_caps();
7249 
7250 	/* CPUID 0x1 */
7251 	if (nested)
7252 		kvm_cpu_cap_set(X86_FEATURE_VMX);
7253 
7254 	/* CPUID 0x7 */
7255 	if (kvm_mpx_supported())
7256 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7257 	if (!cpu_has_vmx_invpcid())
7258 		kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7259 	if (vmx_pt_mode_is_host_guest())
7260 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7261 
7262 	if (!enable_sgx) {
7263 		kvm_cpu_cap_clear(X86_FEATURE_SGX);
7264 		kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7265 		kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7266 		kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7267 	}
7268 
7269 	if (vmx_umip_emulated())
7270 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7271 
7272 	/* CPUID 0xD.1 */
7273 	supported_xss = 0;
7274 	if (!cpu_has_vmx_xsaves())
7275 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7276 
7277 	/* CPUID 0x80000001 and 0x7 (RDPID) */
7278 	if (!cpu_has_vmx_rdtscp()) {
7279 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7280 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7281 	}
7282 
7283 	if (cpu_has_vmx_waitpkg())
7284 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7285 }
7286 
7287 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7288 {
7289 	to_vmx(vcpu)->req_immediate_exit = true;
7290 }
7291 
7292 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7293 				  struct x86_instruction_info *info)
7294 {
7295 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7296 	unsigned short port;
7297 	bool intercept;
7298 	int size;
7299 
7300 	if (info->intercept == x86_intercept_in ||
7301 	    info->intercept == x86_intercept_ins) {
7302 		port = info->src_val;
7303 		size = info->dst_bytes;
7304 	} else {
7305 		port = info->dst_val;
7306 		size = info->src_bytes;
7307 	}
7308 
7309 	/*
7310 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7311 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7312 	 * control.
7313 	 *
7314 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7315 	 */
7316 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7317 		intercept = nested_cpu_has(vmcs12,
7318 					   CPU_BASED_UNCOND_IO_EXITING);
7319 	else
7320 		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7321 
7322 	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7323 	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7324 }
7325 
7326 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7327 			       struct x86_instruction_info *info,
7328 			       enum x86_intercept_stage stage,
7329 			       struct x86_exception *exception)
7330 {
7331 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7332 
7333 	switch (info->intercept) {
7334 	/*
7335 	 * RDPID causes #UD if disabled through secondary execution controls.
7336 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
7337 	 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7338 	 */
7339 	case x86_intercept_rdpid:
7340 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7341 			exception->vector = UD_VECTOR;
7342 			exception->error_code_valid = false;
7343 			return X86EMUL_PROPAGATE_FAULT;
7344 		}
7345 		break;
7346 
7347 	case x86_intercept_in:
7348 	case x86_intercept_ins:
7349 	case x86_intercept_out:
7350 	case x86_intercept_outs:
7351 		return vmx_check_intercept_io(vcpu, info);
7352 
7353 	case x86_intercept_lgdt:
7354 	case x86_intercept_lidt:
7355 	case x86_intercept_lldt:
7356 	case x86_intercept_ltr:
7357 	case x86_intercept_sgdt:
7358 	case x86_intercept_sidt:
7359 	case x86_intercept_sldt:
7360 	case x86_intercept_str:
7361 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7362 			return X86EMUL_CONTINUE;
7363 
7364 		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7365 		break;
7366 
7367 	/* TODO: check more intercepts... */
7368 	default:
7369 		break;
7370 	}
7371 
7372 	return X86EMUL_UNHANDLEABLE;
7373 }
7374 
7375 #ifdef CONFIG_X86_64
7376 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7377 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7378 				  u64 divisor, u64 *result)
7379 {
7380 	u64 low = a << shift, high = a >> (64 - shift);
7381 
7382 	/* To avoid the overflow on divq */
7383 	if (high >= divisor)
7384 		return 1;
7385 
7386 	/* Low hold the result, high hold rem which is discarded */
7387 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7388 	    "rm" (divisor), "0" (low), "1" (high));
7389 	*result = low;
7390 
7391 	return 0;
7392 }
7393 
7394 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7395 			    bool *expired)
7396 {
7397 	struct vcpu_vmx *vmx;
7398 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7399 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7400 
7401 	vmx = to_vmx(vcpu);
7402 	tscl = rdtsc();
7403 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7404 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7405 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7406 						    ktimer->timer_advance_ns);
7407 
7408 	if (delta_tsc > lapic_timer_advance_cycles)
7409 		delta_tsc -= lapic_timer_advance_cycles;
7410 	else
7411 		delta_tsc = 0;
7412 
7413 	/* Convert to host delta tsc if tsc scaling is enabled */
7414 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7415 	    delta_tsc && u64_shl_div_u64(delta_tsc,
7416 				kvm_tsc_scaling_ratio_frac_bits,
7417 				vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
7418 		return -ERANGE;
7419 
7420 	/*
7421 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
7422 	 * we can't use the preemption timer.
7423 	 * It's possible that it fits on later vmentries, but checking
7424 	 * on every vmentry is costly so we just use an hrtimer.
7425 	 */
7426 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7427 		return -ERANGE;
7428 
7429 	vmx->hv_deadline_tsc = tscl + delta_tsc;
7430 	*expired = !delta_tsc;
7431 	return 0;
7432 }
7433 
7434 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7435 {
7436 	to_vmx(vcpu)->hv_deadline_tsc = -1;
7437 }
7438 #endif
7439 
7440 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7441 {
7442 	if (!kvm_pause_in_guest(vcpu->kvm))
7443 		shrink_ple_window(vcpu);
7444 }
7445 
7446 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
7447 {
7448 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7449 
7450 	if (is_guest_mode(vcpu)) {
7451 		vmx->nested.update_vmcs01_cpu_dirty_logging = true;
7452 		return;
7453 	}
7454 
7455 	/*
7456 	 * Note, cpu_dirty_logging_count can be changed concurrent with this
7457 	 * code, but in that case another update request will be made and so
7458 	 * the guest will never run with a stale PML value.
7459 	 */
7460 	if (vcpu->kvm->arch.cpu_dirty_logging_count)
7461 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7462 	else
7463 		secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7464 }
7465 
7466 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7467 {
7468 	if (pi_pre_block(vcpu))
7469 		return 1;
7470 
7471 	if (kvm_lapic_hv_timer_in_use(vcpu))
7472 		kvm_lapic_switch_to_sw_timer(vcpu);
7473 
7474 	return 0;
7475 }
7476 
7477 static void vmx_post_block(struct kvm_vcpu *vcpu)
7478 {
7479 	if (kvm_x86_ops.set_hv_timer)
7480 		kvm_lapic_switch_to_hv_timer(vcpu);
7481 
7482 	pi_post_block(vcpu);
7483 }
7484 
7485 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7486 {
7487 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7488 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7489 			FEAT_CTL_LMCE_ENABLED;
7490 	else
7491 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7492 			~FEAT_CTL_LMCE_ENABLED;
7493 }
7494 
7495 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7496 {
7497 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
7498 	if (to_vmx(vcpu)->nested.nested_run_pending)
7499 		return -EBUSY;
7500 	return !is_smm(vcpu);
7501 }
7502 
7503 static int vmx_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7504 {
7505 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7506 
7507 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7508 	if (vmx->nested.smm.guest_mode)
7509 		nested_vmx_vmexit(vcpu, -1, 0, 0);
7510 
7511 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
7512 	vmx->nested.vmxon = false;
7513 	vmx_clear_hlt(vcpu);
7514 	return 0;
7515 }
7516 
7517 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7518 {
7519 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7520 	int ret;
7521 
7522 	if (vmx->nested.smm.vmxon) {
7523 		vmx->nested.vmxon = true;
7524 		vmx->nested.smm.vmxon = false;
7525 	}
7526 
7527 	if (vmx->nested.smm.guest_mode) {
7528 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
7529 		if (ret)
7530 			return ret;
7531 
7532 		vmx->nested.smm.guest_mode = false;
7533 	}
7534 	return 0;
7535 }
7536 
7537 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
7538 {
7539 	/* RSM will cause a vmexit anyway.  */
7540 }
7541 
7542 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7543 {
7544 	return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
7545 }
7546 
7547 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7548 {
7549 	if (is_guest_mode(vcpu)) {
7550 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7551 
7552 		if (hrtimer_try_to_cancel(timer) == 1)
7553 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7554 	}
7555 }
7556 
7557 static void hardware_unsetup(void)
7558 {
7559 	if (nested)
7560 		nested_vmx_hardware_unsetup();
7561 
7562 	free_kvm_area();
7563 }
7564 
7565 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7566 {
7567 	ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7568 			  BIT(APICV_INHIBIT_REASON_HYPERV);
7569 
7570 	return supported & BIT(bit);
7571 }
7572 
7573 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7574 	.hardware_unsetup = hardware_unsetup,
7575 
7576 	.hardware_enable = hardware_enable,
7577 	.hardware_disable = hardware_disable,
7578 	.cpu_has_accelerated_tpr = report_flexpriority,
7579 	.has_emulated_msr = vmx_has_emulated_msr,
7580 
7581 	.vm_size = sizeof(struct kvm_vmx),
7582 	.vm_init = vmx_vm_init,
7583 
7584 	.vcpu_create = vmx_create_vcpu,
7585 	.vcpu_free = vmx_free_vcpu,
7586 	.vcpu_reset = vmx_vcpu_reset,
7587 
7588 	.prepare_guest_switch = vmx_prepare_switch_to_guest,
7589 	.vcpu_load = vmx_vcpu_load,
7590 	.vcpu_put = vmx_vcpu_put,
7591 
7592 	.update_exception_bitmap = vmx_update_exception_bitmap,
7593 	.get_msr_feature = vmx_get_msr_feature,
7594 	.get_msr = vmx_get_msr,
7595 	.set_msr = vmx_set_msr,
7596 	.get_segment_base = vmx_get_segment_base,
7597 	.get_segment = vmx_get_segment,
7598 	.set_segment = vmx_set_segment,
7599 	.get_cpl = vmx_get_cpl,
7600 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7601 	.set_cr0 = vmx_set_cr0,
7602 	.is_valid_cr4 = vmx_is_valid_cr4,
7603 	.set_cr4 = vmx_set_cr4,
7604 	.set_efer = vmx_set_efer,
7605 	.get_idt = vmx_get_idt,
7606 	.set_idt = vmx_set_idt,
7607 	.get_gdt = vmx_get_gdt,
7608 	.set_gdt = vmx_set_gdt,
7609 	.set_dr7 = vmx_set_dr7,
7610 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7611 	.cache_reg = vmx_cache_reg,
7612 	.get_rflags = vmx_get_rflags,
7613 	.set_rflags = vmx_set_rflags,
7614 
7615 	.tlb_flush_all = vmx_flush_tlb_all,
7616 	.tlb_flush_current = vmx_flush_tlb_current,
7617 	.tlb_flush_gva = vmx_flush_tlb_gva,
7618 	.tlb_flush_guest = vmx_flush_tlb_guest,
7619 
7620 	.run = vmx_vcpu_run,
7621 	.handle_exit = vmx_handle_exit,
7622 	.skip_emulated_instruction = vmx_skip_emulated_instruction,
7623 	.update_emulated_instruction = vmx_update_emulated_instruction,
7624 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
7625 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
7626 	.patch_hypercall = vmx_patch_hypercall,
7627 	.set_irq = vmx_inject_irq,
7628 	.set_nmi = vmx_inject_nmi,
7629 	.queue_exception = vmx_queue_exception,
7630 	.cancel_injection = vmx_cancel_injection,
7631 	.interrupt_allowed = vmx_interrupt_allowed,
7632 	.nmi_allowed = vmx_nmi_allowed,
7633 	.get_nmi_mask = vmx_get_nmi_mask,
7634 	.set_nmi_mask = vmx_set_nmi_mask,
7635 	.enable_nmi_window = vmx_enable_nmi_window,
7636 	.enable_irq_window = vmx_enable_irq_window,
7637 	.update_cr8_intercept = vmx_update_cr8_intercept,
7638 	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7639 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7640 	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7641 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
7642 	.apicv_post_state_restore = vmx_apicv_post_state_restore,
7643 	.check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7644 	.hwapic_irr_update = vmx_hwapic_irr_update,
7645 	.hwapic_isr_update = vmx_hwapic_isr_update,
7646 	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7647 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
7648 	.deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7649 	.dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
7650 
7651 	.set_tss_addr = vmx_set_tss_addr,
7652 	.set_identity_map_addr = vmx_set_identity_map_addr,
7653 	.get_mt_mask = vmx_get_mt_mask,
7654 
7655 	.get_exit_info = vmx_get_exit_info,
7656 
7657 	.vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
7658 
7659 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7660 
7661 	.get_l2_tsc_offset = vmx_get_l2_tsc_offset,
7662 	.get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
7663 	.write_tsc_offset = vmx_write_tsc_offset,
7664 	.write_tsc_multiplier = vmx_write_tsc_multiplier,
7665 
7666 	.load_mmu_pgd = vmx_load_mmu_pgd,
7667 
7668 	.check_intercept = vmx_check_intercept,
7669 	.handle_exit_irqoff = vmx_handle_exit_irqoff,
7670 
7671 	.request_immediate_exit = vmx_request_immediate_exit,
7672 
7673 	.sched_in = vmx_sched_in,
7674 
7675 	.cpu_dirty_log_size = PML_ENTITY_NUM,
7676 	.update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
7677 
7678 	.pre_block = vmx_pre_block,
7679 	.post_block = vmx_post_block,
7680 
7681 	.pmu_ops = &intel_pmu_ops,
7682 	.nested_ops = &vmx_nested_ops,
7683 
7684 	.update_pi_irte = pi_update_irte,
7685 	.start_assignment = vmx_pi_start_assignment,
7686 
7687 #ifdef CONFIG_X86_64
7688 	.set_hv_timer = vmx_set_hv_timer,
7689 	.cancel_hv_timer = vmx_cancel_hv_timer,
7690 #endif
7691 
7692 	.setup_mce = vmx_setup_mce,
7693 
7694 	.smi_allowed = vmx_smi_allowed,
7695 	.enter_smm = vmx_enter_smm,
7696 	.leave_smm = vmx_leave_smm,
7697 	.enable_smi_window = vmx_enable_smi_window,
7698 
7699 	.can_emulate_instruction = vmx_can_emulate_instruction,
7700 	.apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7701 	.migrate_timers = vmx_migrate_timers,
7702 
7703 	.msr_filter_changed = vmx_msr_filter_changed,
7704 	.complete_emulated_msr = kvm_complete_insn_gp,
7705 
7706 	.vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
7707 };
7708 
7709 static __init void vmx_setup_user_return_msrs(void)
7710 {
7711 
7712 	/*
7713 	 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
7714 	 * will emulate SYSCALL in legacy mode if the vendor string in guest
7715 	 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
7716 	 * support this emulation, MSR_STAR is included in the list for i386,
7717 	 * but is never loaded into hardware.  MSR_CSTAR is also never loaded
7718 	 * into hardware and is here purely for emulation purposes.
7719 	 */
7720 	const u32 vmx_uret_msrs_list[] = {
7721 	#ifdef CONFIG_X86_64
7722 		MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
7723 	#endif
7724 		MSR_EFER, MSR_TSC_AUX, MSR_STAR,
7725 		MSR_IA32_TSX_CTRL,
7726 	};
7727 	int i;
7728 
7729 	BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
7730 
7731 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
7732 		kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
7733 }
7734 
7735 static __init int hardware_setup(void)
7736 {
7737 	unsigned long host_bndcfgs;
7738 	struct desc_ptr dt;
7739 	int r, ept_lpage_level;
7740 
7741 	store_idt(&dt);
7742 	host_idt_base = dt.address;
7743 
7744 	vmx_setup_user_return_msrs();
7745 
7746 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7747 		return -EIO;
7748 
7749 	if (boot_cpu_has(X86_FEATURE_NX))
7750 		kvm_enable_efer_bits(EFER_NX);
7751 
7752 	if (boot_cpu_has(X86_FEATURE_MPX)) {
7753 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7754 		WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7755 	}
7756 
7757 	if (!cpu_has_vmx_mpx())
7758 		supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7759 				    XFEATURE_MASK_BNDCSR);
7760 
7761 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7762 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7763 		enable_vpid = 0;
7764 
7765 	if (!cpu_has_vmx_ept() ||
7766 	    !cpu_has_vmx_ept_4levels() ||
7767 	    !cpu_has_vmx_ept_mt_wb() ||
7768 	    !cpu_has_vmx_invept_global())
7769 		enable_ept = 0;
7770 
7771 	/* NX support is required for shadow paging. */
7772 	if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
7773 		pr_err_ratelimited("kvm: NX (Execute Disable) not supported\n");
7774 		return -EOPNOTSUPP;
7775 	}
7776 
7777 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7778 		enable_ept_ad_bits = 0;
7779 
7780 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7781 		enable_unrestricted_guest = 0;
7782 
7783 	if (!cpu_has_vmx_flexpriority())
7784 		flexpriority_enabled = 0;
7785 
7786 	if (!cpu_has_virtual_nmis())
7787 		enable_vnmi = 0;
7788 
7789 	/*
7790 	 * set_apic_access_page_addr() is used to reload apic access
7791 	 * page upon invalidation.  No need to do anything if not
7792 	 * using the APIC_ACCESS_ADDR VMCS field.
7793 	 */
7794 	if (!flexpriority_enabled)
7795 		vmx_x86_ops.set_apic_access_page_addr = NULL;
7796 
7797 	if (!cpu_has_vmx_tpr_shadow())
7798 		vmx_x86_ops.update_cr8_intercept = NULL;
7799 
7800 #if IS_ENABLED(CONFIG_HYPERV)
7801 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7802 	    && enable_ept) {
7803 		vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
7804 		vmx_x86_ops.tlb_remote_flush_with_range =
7805 				hv_remote_flush_tlb_with_range;
7806 	}
7807 #endif
7808 
7809 	if (!cpu_has_vmx_ple()) {
7810 		ple_gap = 0;
7811 		ple_window = 0;
7812 		ple_window_grow = 0;
7813 		ple_window_max = 0;
7814 		ple_window_shrink = 0;
7815 	}
7816 
7817 	if (!cpu_has_vmx_apicv()) {
7818 		enable_apicv = 0;
7819 		vmx_x86_ops.sync_pir_to_irr = NULL;
7820 	}
7821 
7822 	if (cpu_has_vmx_tsc_scaling()) {
7823 		kvm_has_tsc_control = true;
7824 		kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7825 		kvm_tsc_scaling_ratio_frac_bits = 48;
7826 	}
7827 
7828 	kvm_has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
7829 
7830 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7831 
7832 	if (enable_ept)
7833 		kvm_mmu_set_ept_masks(enable_ept_ad_bits,
7834 				      cpu_has_vmx_ept_execute_only());
7835 
7836 	if (!enable_ept)
7837 		ept_lpage_level = 0;
7838 	else if (cpu_has_vmx_ept_1g_page())
7839 		ept_lpage_level = PG_LEVEL_1G;
7840 	else if (cpu_has_vmx_ept_2m_page())
7841 		ept_lpage_level = PG_LEVEL_2M;
7842 	else
7843 		ept_lpage_level = PG_LEVEL_4K;
7844 	kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(),
7845 			  ept_lpage_level);
7846 
7847 	/*
7848 	 * Only enable PML when hardware supports PML feature, and both EPT
7849 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
7850 	 */
7851 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7852 		enable_pml = 0;
7853 
7854 	if (!enable_pml)
7855 		vmx_x86_ops.cpu_dirty_log_size = 0;
7856 
7857 	if (!cpu_has_vmx_preemption_timer())
7858 		enable_preemption_timer = false;
7859 
7860 	if (enable_preemption_timer) {
7861 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
7862 		u64 vmx_msr;
7863 
7864 		rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7865 		cpu_preemption_timer_multi =
7866 			vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7867 
7868 		if (tsc_khz)
7869 			use_timer_freq = (u64)tsc_khz * 1000;
7870 		use_timer_freq >>= cpu_preemption_timer_multi;
7871 
7872 		/*
7873 		 * KVM "disables" the preemption timer by setting it to its max
7874 		 * value.  Don't use the timer if it might cause spurious exits
7875 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7876 		 */
7877 		if (use_timer_freq > 0xffffffffu / 10)
7878 			enable_preemption_timer = false;
7879 	}
7880 
7881 	if (!enable_preemption_timer) {
7882 		vmx_x86_ops.set_hv_timer = NULL;
7883 		vmx_x86_ops.cancel_hv_timer = NULL;
7884 		vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
7885 	}
7886 
7887 	kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
7888 
7889 	kvm_mce_cap_supported |= MCG_LMCE_P;
7890 
7891 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7892 		return -EINVAL;
7893 	if (!enable_ept || !cpu_has_vmx_intel_pt())
7894 		pt_mode = PT_MODE_SYSTEM;
7895 
7896 	setup_default_sgx_lepubkeyhash();
7897 
7898 	if (nested) {
7899 		nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7900 					   vmx_capability.ept);
7901 
7902 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7903 		if (r)
7904 			return r;
7905 	}
7906 
7907 	vmx_set_cpu_caps();
7908 
7909 	r = alloc_kvm_area();
7910 	if (r)
7911 		nested_vmx_hardware_unsetup();
7912 	return r;
7913 }
7914 
7915 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
7916 	.cpu_has_kvm_support = cpu_has_kvm_support,
7917 	.disabled_by_bios = vmx_disabled_by_bios,
7918 	.check_processor_compatibility = vmx_check_processor_compat,
7919 	.hardware_setup = hardware_setup,
7920 
7921 	.runtime_ops = &vmx_x86_ops,
7922 };
7923 
7924 static void vmx_cleanup_l1d_flush(void)
7925 {
7926 	if (vmx_l1d_flush_pages) {
7927 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7928 		vmx_l1d_flush_pages = NULL;
7929 	}
7930 	/* Restore state so sysfs ignores VMX */
7931 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7932 }
7933 
7934 static void vmx_exit(void)
7935 {
7936 #ifdef CONFIG_KEXEC_CORE
7937 	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7938 	synchronize_rcu();
7939 #endif
7940 
7941 	kvm_exit();
7942 
7943 #if IS_ENABLED(CONFIG_HYPERV)
7944 	if (static_branch_unlikely(&enable_evmcs)) {
7945 		int cpu;
7946 		struct hv_vp_assist_page *vp_ap;
7947 		/*
7948 		 * Reset everything to support using non-enlightened VMCS
7949 		 * access later (e.g. when we reload the module with
7950 		 * enlightened_vmcs=0)
7951 		 */
7952 		for_each_online_cpu(cpu) {
7953 			vp_ap =	hv_get_vp_assist_page(cpu);
7954 
7955 			if (!vp_ap)
7956 				continue;
7957 
7958 			vp_ap->nested_control.features.directhypercall = 0;
7959 			vp_ap->current_nested_vmcs = 0;
7960 			vp_ap->enlighten_vmentry = 0;
7961 		}
7962 
7963 		static_branch_disable(&enable_evmcs);
7964 	}
7965 #endif
7966 	vmx_cleanup_l1d_flush();
7967 
7968 	allow_smaller_maxphyaddr = false;
7969 }
7970 module_exit(vmx_exit);
7971 
7972 static int __init vmx_init(void)
7973 {
7974 	int r, cpu;
7975 
7976 #if IS_ENABLED(CONFIG_HYPERV)
7977 	/*
7978 	 * Enlightened VMCS usage should be recommended and the host needs
7979 	 * to support eVMCS v1 or above. We can also disable eVMCS support
7980 	 * with module parameter.
7981 	 */
7982 	if (enlightened_vmcs &&
7983 	    ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7984 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7985 	    KVM_EVMCS_VERSION) {
7986 		int cpu;
7987 
7988 		/* Check that we have assist pages on all online CPUs */
7989 		for_each_online_cpu(cpu) {
7990 			if (!hv_get_vp_assist_page(cpu)) {
7991 				enlightened_vmcs = false;
7992 				break;
7993 			}
7994 		}
7995 
7996 		if (enlightened_vmcs) {
7997 			pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
7998 			static_branch_enable(&enable_evmcs);
7999 		}
8000 
8001 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
8002 			vmx_x86_ops.enable_direct_tlbflush
8003 				= hv_enable_direct_tlbflush;
8004 
8005 	} else {
8006 		enlightened_vmcs = false;
8007 	}
8008 #endif
8009 
8010 	r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
8011 		     __alignof__(struct vcpu_vmx), THIS_MODULE);
8012 	if (r)
8013 		return r;
8014 
8015 	/*
8016 	 * Must be called after kvm_init() so enable_ept is properly set
8017 	 * up. Hand the parameter mitigation value in which was stored in
8018 	 * the pre module init parser. If no parameter was given, it will
8019 	 * contain 'auto' which will be turned into the default 'cond'
8020 	 * mitigation mode.
8021 	 */
8022 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8023 	if (r) {
8024 		vmx_exit();
8025 		return r;
8026 	}
8027 
8028 	for_each_possible_cpu(cpu) {
8029 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8030 
8031 		pi_init_cpu(cpu);
8032 	}
8033 
8034 #ifdef CONFIG_KEXEC_CORE
8035 	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8036 			   crash_vmclear_local_loaded_vmcss);
8037 #endif
8038 	vmx_check_vmcs12_offsets();
8039 
8040 	/*
8041 	 * Shadow paging doesn't have a (further) performance penalty
8042 	 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8043 	 * by default
8044 	 */
8045 	if (!enable_ept)
8046 		allow_smaller_maxphyaddr = true;
8047 
8048 	return 0;
8049 }
8050 module_init(vmx_init);
8051