xref: /linux/arch/x86/kvm/vmx/vmx.c (revision 5bb6ba448fe3598a7668838942db1f008beb581b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/objtool.h>
26 #include <linux/sched.h>
27 #include <linux/sched/smt.h>
28 #include <linux/slab.h>
29 #include <linux/tboot.h>
30 #include <linux/trace_events.h>
31 #include <linux/entry-kvm.h>
32 
33 #include <asm/apic.h>
34 #include <asm/asm.h>
35 #include <asm/cpu.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/debugreg.h>
38 #include <asm/desc.h>
39 #include <asm/fpu/api.h>
40 #include <asm/fpu/xstate.h>
41 #include <asm/fred.h>
42 #include <asm/idtentry.h>
43 #include <asm/io.h>
44 #include <asm/irq_remapping.h>
45 #include <asm/reboot.h>
46 #include <asm/perf_event.h>
47 #include <asm/mmu_context.h>
48 #include <asm/mshyperv.h>
49 #include <asm/mwait.h>
50 #include <asm/spec-ctrl.h>
51 #include <asm/vmx.h>
52 
53 #include <trace/events/ipi.h>
54 
55 #include "capabilities.h"
56 #include "cpuid.h"
57 #include "hyperv.h"
58 #include "kvm_onhyperv.h"
59 #include "irq.h"
60 #include "kvm_cache_regs.h"
61 #include "lapic.h"
62 #include "mmu.h"
63 #include "nested.h"
64 #include "pmu.h"
65 #include "sgx.h"
66 #include "trace.h"
67 #include "vmcs.h"
68 #include "vmcs12.h"
69 #include "vmx.h"
70 #include "x86.h"
71 #include "x86_ops.h"
72 #include "smm.h"
73 #include "vmx_onhyperv.h"
74 #include "posted_intr.h"
75 
76 MODULE_AUTHOR("Qumranet");
77 MODULE_DESCRIPTION("KVM support for VMX (Intel VT-x) extensions");
78 MODULE_LICENSE("GPL");
79 
80 #ifdef MODULE
81 static const struct x86_cpu_id vmx_cpu_id[] = {
82 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
83 	{}
84 };
85 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
86 #endif
87 
88 bool __read_mostly enable_vpid = 1;
89 module_param_named(vpid, enable_vpid, bool, 0444);
90 
91 static bool __read_mostly enable_vnmi = 1;
92 module_param_named(vnmi, enable_vnmi, bool, 0444);
93 
94 bool __read_mostly flexpriority_enabled = 1;
95 module_param_named(flexpriority, flexpriority_enabled, bool, 0444);
96 
97 bool __read_mostly enable_ept = 1;
98 module_param_named(ept, enable_ept, bool, 0444);
99 
100 bool __read_mostly enable_unrestricted_guest = 1;
101 module_param_named(unrestricted_guest,
102 			enable_unrestricted_guest, bool, 0444);
103 
104 bool __read_mostly enable_ept_ad_bits = 1;
105 module_param_named(eptad, enable_ept_ad_bits, bool, 0444);
106 
107 static bool __read_mostly emulate_invalid_guest_state = true;
108 module_param(emulate_invalid_guest_state, bool, 0444);
109 
110 static bool __read_mostly fasteoi = 1;
111 module_param(fasteoi, bool, 0444);
112 
113 module_param(enable_apicv, bool, 0444);
114 
115 bool __read_mostly enable_ipiv = true;
116 module_param(enable_ipiv, bool, 0444);
117 
118 /*
119  * If nested=1, nested virtualization is supported, i.e., guests may use
120  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
121  * use VMX instructions.
122  */
123 static bool __read_mostly nested = 1;
124 module_param(nested, bool, 0444);
125 
126 bool __read_mostly enable_pml = 1;
127 module_param_named(pml, enable_pml, bool, 0444);
128 
129 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
130 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
131 
132 static bool __read_mostly dump_invalid_vmcs = 0;
133 module_param(dump_invalid_vmcs, bool, 0644);
134 
135 #define MSR_BITMAP_MODE_X2APIC		1
136 #define MSR_BITMAP_MODE_X2APIC_APICV	2
137 
138 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
139 
140 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
141 static int __read_mostly cpu_preemption_timer_multi;
142 static bool __read_mostly enable_preemption_timer = 1;
143 #ifdef CONFIG_X86_64
144 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
145 #endif
146 
147 extern bool __read_mostly allow_smaller_maxphyaddr;
148 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
149 
150 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
151 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
152 #define KVM_VM_CR0_ALWAYS_ON				\
153 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
154 
155 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
156 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
157 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
158 
159 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
160 
161 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
162 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
163 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
164 	RTIT_STATUS_BYTECNT))
165 
166 /*
167  * List of MSRs that can be directly passed to the guest.
168  * In addition to these x2apic, PT and LBR MSRs are handled specially.
169  */
170 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
171 	MSR_IA32_SPEC_CTRL,
172 	MSR_IA32_PRED_CMD,
173 	MSR_IA32_FLUSH_CMD,
174 	MSR_IA32_TSC,
175 #ifdef CONFIG_X86_64
176 	MSR_FS_BASE,
177 	MSR_GS_BASE,
178 	MSR_KERNEL_GS_BASE,
179 	MSR_IA32_XFD,
180 	MSR_IA32_XFD_ERR,
181 #endif
182 	MSR_IA32_SYSENTER_CS,
183 	MSR_IA32_SYSENTER_ESP,
184 	MSR_IA32_SYSENTER_EIP,
185 	MSR_CORE_C1_RES,
186 	MSR_CORE_C3_RESIDENCY,
187 	MSR_CORE_C6_RESIDENCY,
188 	MSR_CORE_C7_RESIDENCY,
189 };
190 
191 /*
192  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
193  * ple_gap:    upper bound on the amount of time between two successive
194  *             executions of PAUSE in a loop. Also indicate if ple enabled.
195  *             According to test, this time is usually smaller than 128 cycles.
196  * ple_window: upper bound on the amount of time a guest is allowed to execute
197  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
198  *             less than 2^12 cycles
199  * Time is measured based on a counter that runs at the same rate as the TSC,
200  * refer SDM volume 3b section 21.6.13 & 22.1.3.
201  */
202 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
203 module_param(ple_gap, uint, 0444);
204 
205 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
206 module_param(ple_window, uint, 0444);
207 
208 /* Default doubles per-vcpu window every exit. */
209 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
210 module_param(ple_window_grow, uint, 0444);
211 
212 /* Default resets per-vcpu window every exit to ple_window. */
213 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
214 module_param(ple_window_shrink, uint, 0444);
215 
216 /* Default is to compute the maximum so we can never overflow. */
217 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
218 module_param(ple_window_max, uint, 0444);
219 
220 /* Default is SYSTEM mode, 1 for host-guest mode (which is BROKEN) */
221 int __read_mostly pt_mode = PT_MODE_SYSTEM;
222 #ifdef CONFIG_BROKEN
223 module_param(pt_mode, int, S_IRUGO);
224 #endif
225 
226 struct x86_pmu_lbr __ro_after_init vmx_lbr_caps;
227 
228 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
229 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
230 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
231 
232 /* Storage for pre module init parameter parsing */
233 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
234 
235 static const struct {
236 	const char *option;
237 	bool for_parse;
238 } vmentry_l1d_param[] = {
239 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
240 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
241 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
242 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
243 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
244 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
245 };
246 
247 #define L1D_CACHE_ORDER 4
248 static void *vmx_l1d_flush_pages;
249 
250 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
251 {
252 	struct page *page;
253 	unsigned int i;
254 
255 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
256 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
257 		return 0;
258 	}
259 
260 	if (!enable_ept) {
261 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
262 		return 0;
263 	}
264 
265 	if (kvm_host.arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
266 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
267 		return 0;
268 	}
269 
270 	/* If set to auto use the default l1tf mitigation method */
271 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
272 		switch (l1tf_mitigation) {
273 		case L1TF_MITIGATION_OFF:
274 			l1tf = VMENTER_L1D_FLUSH_NEVER;
275 			break;
276 		case L1TF_MITIGATION_FLUSH_NOWARN:
277 		case L1TF_MITIGATION_FLUSH:
278 		case L1TF_MITIGATION_FLUSH_NOSMT:
279 			l1tf = VMENTER_L1D_FLUSH_COND;
280 			break;
281 		case L1TF_MITIGATION_FULL:
282 		case L1TF_MITIGATION_FULL_FORCE:
283 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
284 			break;
285 		}
286 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
287 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
288 	}
289 
290 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
291 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
292 		/*
293 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
294 		 * lifetime and so should not be charged to a memcg.
295 		 */
296 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
297 		if (!page)
298 			return -ENOMEM;
299 		vmx_l1d_flush_pages = page_address(page);
300 
301 		/*
302 		 * Initialize each page with a different pattern in
303 		 * order to protect against KSM in the nested
304 		 * virtualization case.
305 		 */
306 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
307 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
308 			       PAGE_SIZE);
309 		}
310 	}
311 
312 	l1tf_vmx_mitigation = l1tf;
313 
314 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
315 		static_branch_enable(&vmx_l1d_should_flush);
316 	else
317 		static_branch_disable(&vmx_l1d_should_flush);
318 
319 	if (l1tf == VMENTER_L1D_FLUSH_COND)
320 		static_branch_enable(&vmx_l1d_flush_cond);
321 	else
322 		static_branch_disable(&vmx_l1d_flush_cond);
323 	return 0;
324 }
325 
326 static int vmentry_l1d_flush_parse(const char *s)
327 {
328 	unsigned int i;
329 
330 	if (s) {
331 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
332 			if (vmentry_l1d_param[i].for_parse &&
333 			    sysfs_streq(s, vmentry_l1d_param[i].option))
334 				return i;
335 		}
336 	}
337 	return -EINVAL;
338 }
339 
340 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
341 {
342 	int l1tf, ret;
343 
344 	l1tf = vmentry_l1d_flush_parse(s);
345 	if (l1tf < 0)
346 		return l1tf;
347 
348 	if (!boot_cpu_has(X86_BUG_L1TF))
349 		return 0;
350 
351 	/*
352 	 * Has vmx_init() run already? If not then this is the pre init
353 	 * parameter parsing. In that case just store the value and let
354 	 * vmx_init() do the proper setup after enable_ept has been
355 	 * established.
356 	 */
357 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
358 		vmentry_l1d_flush_param = l1tf;
359 		return 0;
360 	}
361 
362 	mutex_lock(&vmx_l1d_flush_mutex);
363 	ret = vmx_setup_l1d_flush(l1tf);
364 	mutex_unlock(&vmx_l1d_flush_mutex);
365 	return ret;
366 }
367 
368 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
369 {
370 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
371 		return sysfs_emit(s, "???\n");
372 
373 	return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
374 }
375 
376 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
377 {
378 	u64 msr;
379 
380 	if (!vmx->disable_fb_clear)
381 		return;
382 
383 	msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
384 	msr |= FB_CLEAR_DIS;
385 	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
386 	/* Cache the MSR value to avoid reading it later */
387 	vmx->msr_ia32_mcu_opt_ctrl = msr;
388 }
389 
390 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
391 {
392 	if (!vmx->disable_fb_clear)
393 		return;
394 
395 	vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
396 	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
397 }
398 
399 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
400 {
401 	/*
402 	 * Disable VERW's behavior of clearing CPU buffers for the guest if the
403 	 * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled
404 	 * the mitigation. Disabling the clearing behavior provides a
405 	 * performance boost for guests that aren't aware that manually clearing
406 	 * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry
407 	 * and VM-Exit.
408 	 */
409 	vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) &&
410 				(kvm_host.arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) &&
411 				!boot_cpu_has_bug(X86_BUG_MDS) &&
412 				!boot_cpu_has_bug(X86_BUG_TAA);
413 
414 	/*
415 	 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
416 	 * at VMEntry. Skip the MSR read/write when a guest has no use case to
417 	 * execute VERW.
418 	 */
419 	if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
420 	   ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
421 	    (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
422 	    (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
423 	    (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
424 	    (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
425 		vmx->disable_fb_clear = false;
426 }
427 
428 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
429 	.set = vmentry_l1d_flush_set,
430 	.get = vmentry_l1d_flush_get,
431 };
432 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
433 
434 static u32 vmx_segment_access_rights(struct kvm_segment *var);
435 
436 void vmx_vmexit(void);
437 
438 #define vmx_insn_failed(fmt...)		\
439 do {					\
440 	WARN_ONCE(1, fmt);		\
441 	pr_warn_ratelimited(fmt);	\
442 } while (0)
443 
444 noinline void vmread_error(unsigned long field)
445 {
446 	vmx_insn_failed("vmread failed: field=%lx\n", field);
447 }
448 
449 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT
450 noinstr void vmread_error_trampoline2(unsigned long field, bool fault)
451 {
452 	if (fault) {
453 		kvm_spurious_fault();
454 	} else {
455 		instrumentation_begin();
456 		vmread_error(field);
457 		instrumentation_end();
458 	}
459 }
460 #endif
461 
462 noinline void vmwrite_error(unsigned long field, unsigned long value)
463 {
464 	vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
465 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
466 }
467 
468 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
469 {
470 	vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
471 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
472 }
473 
474 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
475 {
476 	vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
477 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
478 }
479 
480 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
481 {
482 	vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
483 			ext, vpid, gva);
484 }
485 
486 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
487 {
488 	vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
489 			ext, eptp, gpa);
490 }
491 
492 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
493 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
494 /*
495  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
496  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
497  */
498 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
499 
500 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
501 static DEFINE_SPINLOCK(vmx_vpid_lock);
502 
503 struct vmcs_config vmcs_config __ro_after_init;
504 struct vmx_capability vmx_capability __ro_after_init;
505 
506 #define VMX_SEGMENT_FIELD(seg)					\
507 	[VCPU_SREG_##seg] = {                                   \
508 		.selector = GUEST_##seg##_SELECTOR,		\
509 		.base = GUEST_##seg##_BASE,		   	\
510 		.limit = GUEST_##seg##_LIMIT,		   	\
511 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
512 	}
513 
514 static const struct kvm_vmx_segment_field {
515 	unsigned selector;
516 	unsigned base;
517 	unsigned limit;
518 	unsigned ar_bytes;
519 } kvm_vmx_segment_fields[] = {
520 	VMX_SEGMENT_FIELD(CS),
521 	VMX_SEGMENT_FIELD(DS),
522 	VMX_SEGMENT_FIELD(ES),
523 	VMX_SEGMENT_FIELD(FS),
524 	VMX_SEGMENT_FIELD(GS),
525 	VMX_SEGMENT_FIELD(SS),
526 	VMX_SEGMENT_FIELD(TR),
527 	VMX_SEGMENT_FIELD(LDTR),
528 };
529 
530 
531 static unsigned long host_idt_base;
532 
533 #if IS_ENABLED(CONFIG_HYPERV)
534 static bool __read_mostly enlightened_vmcs = true;
535 module_param(enlightened_vmcs, bool, 0444);
536 
537 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
538 {
539 	struct hv_enlightened_vmcs *evmcs;
540 	hpa_t partition_assist_page = hv_get_partition_assist_page(vcpu);
541 
542 	if (partition_assist_page == INVALID_PAGE)
543 		return -ENOMEM;
544 
545 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
546 
547 	evmcs->partition_assist_page = partition_assist_page;
548 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
549 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
550 
551 	return 0;
552 }
553 
554 static __init void hv_init_evmcs(void)
555 {
556 	int cpu;
557 
558 	if (!enlightened_vmcs)
559 		return;
560 
561 	/*
562 	 * Enlightened VMCS usage should be recommended and the host needs
563 	 * to support eVMCS v1 or above.
564 	 */
565 	if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
566 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
567 	     KVM_EVMCS_VERSION) {
568 
569 		/* Check that we have assist pages on all online CPUs */
570 		for_each_online_cpu(cpu) {
571 			if (!hv_get_vp_assist_page(cpu)) {
572 				enlightened_vmcs = false;
573 				break;
574 			}
575 		}
576 
577 		if (enlightened_vmcs) {
578 			pr_info("Using Hyper-V Enlightened VMCS\n");
579 			static_branch_enable(&__kvm_is_using_evmcs);
580 		}
581 
582 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
583 			vt_x86_ops.enable_l2_tlb_flush
584 				= hv_enable_l2_tlb_flush;
585 	} else {
586 		enlightened_vmcs = false;
587 	}
588 }
589 
590 static void hv_reset_evmcs(void)
591 {
592 	struct hv_vp_assist_page *vp_ap;
593 
594 	if (!kvm_is_using_evmcs())
595 		return;
596 
597 	/*
598 	 * KVM should enable eVMCS if and only if all CPUs have a VP assist
599 	 * page, and should reject CPU onlining if eVMCS is enabled the CPU
600 	 * doesn't have a VP assist page allocated.
601 	 */
602 	vp_ap = hv_get_vp_assist_page(smp_processor_id());
603 	if (WARN_ON_ONCE(!vp_ap))
604 		return;
605 
606 	/*
607 	 * Reset everything to support using non-enlightened VMCS access later
608 	 * (e.g. when we reload the module with enlightened_vmcs=0)
609 	 */
610 	vp_ap->nested_control.features.directhypercall = 0;
611 	vp_ap->current_nested_vmcs = 0;
612 	vp_ap->enlighten_vmentry = 0;
613 }
614 
615 #else /* IS_ENABLED(CONFIG_HYPERV) */
616 static void hv_init_evmcs(void) {}
617 static void hv_reset_evmcs(void) {}
618 #endif /* IS_ENABLED(CONFIG_HYPERV) */
619 
620 /*
621  * Comment's format: document - errata name - stepping - processor name.
622  * Refer from
623  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
624  */
625 static u32 vmx_preemption_cpu_tfms[] = {
626 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
627 0x000206E6,
628 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
629 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
630 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
631 0x00020652,
632 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
633 0x00020655,
634 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
635 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
636 /*
637  * 320767.pdf - AAP86  - B1 -
638  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
639  */
640 0x000106E5,
641 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
642 0x000106A0,
643 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
644 0x000106A1,
645 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
646 0x000106A4,
647  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
648  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
649  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
650 0x000106A5,
651  /* Xeon E3-1220 V2 */
652 0x000306A8,
653 };
654 
655 static inline bool cpu_has_broken_vmx_preemption_timer(void)
656 {
657 	u32 eax = cpuid_eax(0x00000001), i;
658 
659 	/* Clear the reserved bits */
660 	eax &= ~(0x3U << 14 | 0xfU << 28);
661 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
662 		if (eax == vmx_preemption_cpu_tfms[i])
663 			return true;
664 
665 	return false;
666 }
667 
668 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
669 {
670 	return flexpriority_enabled && lapic_in_kernel(vcpu);
671 }
672 
673 static int vmx_get_passthrough_msr_slot(u32 msr)
674 {
675 	int i;
676 
677 	switch (msr) {
678 	case 0x800 ... 0x8ff:
679 		/* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
680 		return -ENOENT;
681 	case MSR_IA32_RTIT_STATUS:
682 	case MSR_IA32_RTIT_OUTPUT_BASE:
683 	case MSR_IA32_RTIT_OUTPUT_MASK:
684 	case MSR_IA32_RTIT_CR3_MATCH:
685 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
686 		/* PT MSRs. These are handled in pt_update_intercept_for_msr() */
687 	case MSR_LBR_SELECT:
688 	case MSR_LBR_TOS:
689 	case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
690 	case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
691 	case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
692 	case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
693 	case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
694 		/* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
695 		return -ENOENT;
696 	}
697 
698 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
699 		if (vmx_possible_passthrough_msrs[i] == msr)
700 			return i;
701 	}
702 
703 	WARN(1, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
704 	return -ENOENT;
705 }
706 
707 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
708 {
709 	int i;
710 
711 	i = kvm_find_user_return_msr(msr);
712 	if (i >= 0)
713 		return &vmx->guest_uret_msrs[i];
714 	return NULL;
715 }
716 
717 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
718 				  struct vmx_uret_msr *msr, u64 data)
719 {
720 	unsigned int slot = msr - vmx->guest_uret_msrs;
721 	int ret = 0;
722 
723 	if (msr->load_into_hardware) {
724 		preempt_disable();
725 		ret = kvm_set_user_return_msr(slot, data, msr->mask);
726 		preempt_enable();
727 	}
728 	if (!ret)
729 		msr->data = data;
730 	return ret;
731 }
732 
733 /*
734  * Disable VMX and clear CR4.VMXE (even if VMXOFF faults)
735  *
736  * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to
737  * atomically track post-VMXON state, e.g. this may be called in NMI context.
738  * Eat all faults as all other faults on VMXOFF faults are mode related, i.e.
739  * faults are guaranteed to be due to the !post-VMXON check unless the CPU is
740  * magically in RM, VM86, compat mode, or at CPL>0.
741  */
742 static int kvm_cpu_vmxoff(void)
743 {
744 	asm goto("1: vmxoff\n\t"
745 			  _ASM_EXTABLE(1b, %l[fault])
746 			  ::: "cc", "memory" : fault);
747 
748 	cr4_clear_bits(X86_CR4_VMXE);
749 	return 0;
750 
751 fault:
752 	cr4_clear_bits(X86_CR4_VMXE);
753 	return -EIO;
754 }
755 
756 void vmx_emergency_disable_virtualization_cpu(void)
757 {
758 	int cpu = raw_smp_processor_id();
759 	struct loaded_vmcs *v;
760 
761 	kvm_rebooting = true;
762 
763 	/*
764 	 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be
765 	 * set in task context.  If this races with VMX is disabled by an NMI,
766 	 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to
767 	 * kvm_rebooting set.
768 	 */
769 	if (!(__read_cr4() & X86_CR4_VMXE))
770 		return;
771 
772 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
773 			    loaded_vmcss_on_cpu_link)
774 		vmcs_clear(v->vmcs);
775 
776 	kvm_cpu_vmxoff();
777 }
778 
779 static void __loaded_vmcs_clear(void *arg)
780 {
781 	struct loaded_vmcs *loaded_vmcs = arg;
782 	int cpu = raw_smp_processor_id();
783 
784 	if (loaded_vmcs->cpu != cpu)
785 		return; /* vcpu migration can race with cpu offline */
786 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
787 		per_cpu(current_vmcs, cpu) = NULL;
788 
789 	vmcs_clear(loaded_vmcs->vmcs);
790 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
791 		vmcs_clear(loaded_vmcs->shadow_vmcs);
792 
793 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
794 
795 	/*
796 	 * Ensure all writes to loaded_vmcs, including deleting it from its
797 	 * current percpu list, complete before setting loaded_vmcs->cpu to
798 	 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
799 	 * and add loaded_vmcs to its percpu list before it's deleted from this
800 	 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
801 	 */
802 	smp_wmb();
803 
804 	loaded_vmcs->cpu = -1;
805 	loaded_vmcs->launched = 0;
806 }
807 
808 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
809 {
810 	int cpu = loaded_vmcs->cpu;
811 
812 	if (cpu != -1)
813 		smp_call_function_single(cpu,
814 			 __loaded_vmcs_clear, loaded_vmcs, 1);
815 }
816 
817 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
818 				       unsigned field)
819 {
820 	bool ret;
821 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
822 
823 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
824 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
825 		vmx->segment_cache.bitmask = 0;
826 	}
827 	ret = vmx->segment_cache.bitmask & mask;
828 	vmx->segment_cache.bitmask |= mask;
829 	return ret;
830 }
831 
832 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
833 {
834 	u16 *p = &vmx->segment_cache.seg[seg].selector;
835 
836 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
837 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
838 	return *p;
839 }
840 
841 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
842 {
843 	ulong *p = &vmx->segment_cache.seg[seg].base;
844 
845 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
846 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
847 	return *p;
848 }
849 
850 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
851 {
852 	u32 *p = &vmx->segment_cache.seg[seg].limit;
853 
854 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
855 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
856 	return *p;
857 }
858 
859 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
860 {
861 	u32 *p = &vmx->segment_cache.seg[seg].ar;
862 
863 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
864 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
865 	return *p;
866 }
867 
868 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
869 {
870 	u32 eb;
871 
872 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
873 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
874 	/*
875 	 * #VE isn't used for VMX.  To test against unexpected changes
876 	 * related to #VE for VMX, intercept unexpected #VE and warn on it.
877 	 */
878 	if (IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
879 		eb |= 1u << VE_VECTOR;
880 	/*
881 	 * Guest access to VMware backdoor ports could legitimately
882 	 * trigger #GP because of TSS I/O permission bitmap.
883 	 * We intercept those #GP and allow access to them anyway
884 	 * as VMware does.
885 	 */
886 	if (enable_vmware_backdoor)
887 		eb |= (1u << GP_VECTOR);
888 	if ((vcpu->guest_debug &
889 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
890 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
891 		eb |= 1u << BP_VECTOR;
892 	if (to_vmx(vcpu)->rmode.vm86_active)
893 		eb = ~0;
894 	if (!vmx_need_pf_intercept(vcpu))
895 		eb &= ~(1u << PF_VECTOR);
896 
897 	/* When we are running a nested L2 guest and L1 specified for it a
898 	 * certain exception bitmap, we must trap the same exceptions and pass
899 	 * them to L1. When running L2, we will only handle the exceptions
900 	 * specified above if L1 did not want them.
901 	 */
902 	if (is_guest_mode(vcpu))
903 		eb |= get_vmcs12(vcpu)->exception_bitmap;
904 	else {
905 		int mask = 0, match = 0;
906 
907 		if (enable_ept && (eb & (1u << PF_VECTOR))) {
908 			/*
909 			 * If EPT is enabled, #PF is currently only intercepted
910 			 * if MAXPHYADDR is smaller on the guest than on the
911 			 * host.  In that case we only care about present,
912 			 * non-reserved faults.  For vmcs02, however, PFEC_MASK
913 			 * and PFEC_MATCH are set in prepare_vmcs02_rare.
914 			 */
915 			mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
916 			match = PFERR_PRESENT_MASK;
917 		}
918 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
919 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
920 	}
921 
922 	/*
923 	 * Disabling xfd interception indicates that dynamic xfeatures
924 	 * might be used in the guest. Always trap #NM in this case
925 	 * to save guest xfd_err timely.
926 	 */
927 	if (vcpu->arch.xfd_no_write_intercept)
928 		eb |= (1u << NM_VECTOR);
929 
930 	vmcs_write32(EXCEPTION_BITMAP, eb);
931 }
932 
933 /*
934  * Check if MSR is intercepted for currently loaded MSR bitmap.
935  */
936 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
937 {
938 	if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
939 		return true;
940 
941 	return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
942 }
943 
944 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
945 {
946 	unsigned int flags = 0;
947 
948 	if (vmx->loaded_vmcs->launched)
949 		flags |= VMX_RUN_VMRESUME;
950 
951 	/*
952 	 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
953 	 * to change it directly without causing a vmexit.  In that case read
954 	 * it after vmexit and store it in vmx->spec_ctrl.
955 	 */
956 	if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
957 		flags |= VMX_RUN_SAVE_SPEC_CTRL;
958 
959 	return flags;
960 }
961 
962 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
963 		unsigned long entry, unsigned long exit)
964 {
965 	vm_entry_controls_clearbit(vmx, entry);
966 	vm_exit_controls_clearbit(vmx, exit);
967 }
968 
969 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
970 {
971 	unsigned int i;
972 
973 	for (i = 0; i < m->nr; ++i) {
974 		if (m->val[i].index == msr)
975 			return i;
976 	}
977 	return -ENOENT;
978 }
979 
980 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
981 {
982 	int i;
983 	struct msr_autoload *m = &vmx->msr_autoload;
984 
985 	switch (msr) {
986 	case MSR_EFER:
987 		if (cpu_has_load_ia32_efer()) {
988 			clear_atomic_switch_msr_special(vmx,
989 					VM_ENTRY_LOAD_IA32_EFER,
990 					VM_EXIT_LOAD_IA32_EFER);
991 			return;
992 		}
993 		break;
994 	case MSR_CORE_PERF_GLOBAL_CTRL:
995 		if (cpu_has_load_perf_global_ctrl()) {
996 			clear_atomic_switch_msr_special(vmx,
997 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
998 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
999 			return;
1000 		}
1001 		break;
1002 	}
1003 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1004 	if (i < 0)
1005 		goto skip_guest;
1006 	--m->guest.nr;
1007 	m->guest.val[i] = m->guest.val[m->guest.nr];
1008 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1009 
1010 skip_guest:
1011 	i = vmx_find_loadstore_msr_slot(&m->host, msr);
1012 	if (i < 0)
1013 		return;
1014 
1015 	--m->host.nr;
1016 	m->host.val[i] = m->host.val[m->host.nr];
1017 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1018 }
1019 
1020 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1021 		unsigned long entry, unsigned long exit,
1022 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1023 		u64 guest_val, u64 host_val)
1024 {
1025 	vmcs_write64(guest_val_vmcs, guest_val);
1026 	if (host_val_vmcs != HOST_IA32_EFER)
1027 		vmcs_write64(host_val_vmcs, host_val);
1028 	vm_entry_controls_setbit(vmx, entry);
1029 	vm_exit_controls_setbit(vmx, exit);
1030 }
1031 
1032 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1033 				  u64 guest_val, u64 host_val, bool entry_only)
1034 {
1035 	int i, j = 0;
1036 	struct msr_autoload *m = &vmx->msr_autoload;
1037 
1038 	switch (msr) {
1039 	case MSR_EFER:
1040 		if (cpu_has_load_ia32_efer()) {
1041 			add_atomic_switch_msr_special(vmx,
1042 					VM_ENTRY_LOAD_IA32_EFER,
1043 					VM_EXIT_LOAD_IA32_EFER,
1044 					GUEST_IA32_EFER,
1045 					HOST_IA32_EFER,
1046 					guest_val, host_val);
1047 			return;
1048 		}
1049 		break;
1050 	case MSR_CORE_PERF_GLOBAL_CTRL:
1051 		if (cpu_has_load_perf_global_ctrl()) {
1052 			add_atomic_switch_msr_special(vmx,
1053 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1054 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1055 					GUEST_IA32_PERF_GLOBAL_CTRL,
1056 					HOST_IA32_PERF_GLOBAL_CTRL,
1057 					guest_val, host_val);
1058 			return;
1059 		}
1060 		break;
1061 	case MSR_IA32_PEBS_ENABLE:
1062 		/* PEBS needs a quiescent period after being disabled (to write
1063 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
1064 		 * provide that period, so a CPU could write host's record into
1065 		 * guest's memory.
1066 		 */
1067 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1068 	}
1069 
1070 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1071 	if (!entry_only)
1072 		j = vmx_find_loadstore_msr_slot(&m->host, msr);
1073 
1074 	if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1075 	    (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1076 		printk_once(KERN_WARNING "Not enough msr switch entries. "
1077 				"Can't add msr %x\n", msr);
1078 		return;
1079 	}
1080 	if (i < 0) {
1081 		i = m->guest.nr++;
1082 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1083 	}
1084 	m->guest.val[i].index = msr;
1085 	m->guest.val[i].value = guest_val;
1086 
1087 	if (entry_only)
1088 		return;
1089 
1090 	if (j < 0) {
1091 		j = m->host.nr++;
1092 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1093 	}
1094 	m->host.val[j].index = msr;
1095 	m->host.val[j].value = host_val;
1096 }
1097 
1098 static bool update_transition_efer(struct vcpu_vmx *vmx)
1099 {
1100 	u64 guest_efer = vmx->vcpu.arch.efer;
1101 	u64 ignore_bits = 0;
1102 	int i;
1103 
1104 	/* Shadow paging assumes NX to be available.  */
1105 	if (!enable_ept)
1106 		guest_efer |= EFER_NX;
1107 
1108 	/*
1109 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1110 	 */
1111 	ignore_bits |= EFER_SCE;
1112 #ifdef CONFIG_X86_64
1113 	ignore_bits |= EFER_LMA | EFER_LME;
1114 	/* SCE is meaningful only in long mode on Intel */
1115 	if (guest_efer & EFER_LMA)
1116 		ignore_bits &= ~(u64)EFER_SCE;
1117 #endif
1118 
1119 	/*
1120 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1121 	 * On CPUs that support "load IA32_EFER", always switch EFER
1122 	 * atomically, since it's faster than switching it manually.
1123 	 */
1124 	if (cpu_has_load_ia32_efer() ||
1125 	    (enable_ept && ((vmx->vcpu.arch.efer ^ kvm_host.efer) & EFER_NX))) {
1126 		if (!(guest_efer & EFER_LMA))
1127 			guest_efer &= ~EFER_LME;
1128 		if (guest_efer != kvm_host.efer)
1129 			add_atomic_switch_msr(vmx, MSR_EFER,
1130 					      guest_efer, kvm_host.efer, false);
1131 		else
1132 			clear_atomic_switch_msr(vmx, MSR_EFER);
1133 		return false;
1134 	}
1135 
1136 	i = kvm_find_user_return_msr(MSR_EFER);
1137 	if (i < 0)
1138 		return false;
1139 
1140 	clear_atomic_switch_msr(vmx, MSR_EFER);
1141 
1142 	guest_efer &= ~ignore_bits;
1143 	guest_efer |= kvm_host.efer & ignore_bits;
1144 
1145 	vmx->guest_uret_msrs[i].data = guest_efer;
1146 	vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1147 
1148 	return true;
1149 }
1150 
1151 #ifdef CONFIG_X86_32
1152 /*
1153  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1154  * VMCS rather than the segment table.  KVM uses this helper to figure
1155  * out the current bases to poke them into the VMCS before entry.
1156  */
1157 static unsigned long segment_base(u16 selector)
1158 {
1159 	struct desc_struct *table;
1160 	unsigned long v;
1161 
1162 	if (!(selector & ~SEGMENT_RPL_MASK))
1163 		return 0;
1164 
1165 	table = get_current_gdt_ro();
1166 
1167 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1168 		u16 ldt_selector = kvm_read_ldt();
1169 
1170 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1171 			return 0;
1172 
1173 		table = (struct desc_struct *)segment_base(ldt_selector);
1174 	}
1175 	v = get_desc_base(&table[selector >> 3]);
1176 	return v;
1177 }
1178 #endif
1179 
1180 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1181 {
1182 	return vmx_pt_mode_is_host_guest() &&
1183 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1184 }
1185 
1186 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1187 {
1188 	/* The base must be 128-byte aligned and a legal physical address. */
1189 	return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1190 }
1191 
1192 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1193 {
1194 	u32 i;
1195 
1196 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1197 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1198 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1199 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1200 	for (i = 0; i < addr_range; i++) {
1201 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1202 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1203 	}
1204 }
1205 
1206 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1207 {
1208 	u32 i;
1209 
1210 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1211 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1212 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1213 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1214 	for (i = 0; i < addr_range; i++) {
1215 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1216 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1217 	}
1218 }
1219 
1220 static void pt_guest_enter(struct vcpu_vmx *vmx)
1221 {
1222 	if (vmx_pt_mode_is_system())
1223 		return;
1224 
1225 	/*
1226 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1227 	 * Save host state before VM entry.
1228 	 */
1229 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1230 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1231 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1232 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1233 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1234 	}
1235 }
1236 
1237 static void pt_guest_exit(struct vcpu_vmx *vmx)
1238 {
1239 	if (vmx_pt_mode_is_system())
1240 		return;
1241 
1242 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1243 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1244 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1245 	}
1246 
1247 	/*
1248 	 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1249 	 * i.e. RTIT_CTL is always cleared on VM-Exit.  Restore it if necessary.
1250 	 */
1251 	if (vmx->pt_desc.host.ctl)
1252 		wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1253 }
1254 
1255 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1256 			unsigned long fs_base, unsigned long gs_base)
1257 {
1258 	if (unlikely(fs_sel != host->fs_sel)) {
1259 		if (!(fs_sel & 7))
1260 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1261 		else
1262 			vmcs_write16(HOST_FS_SELECTOR, 0);
1263 		host->fs_sel = fs_sel;
1264 	}
1265 	if (unlikely(gs_sel != host->gs_sel)) {
1266 		if (!(gs_sel & 7))
1267 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1268 		else
1269 			vmcs_write16(HOST_GS_SELECTOR, 0);
1270 		host->gs_sel = gs_sel;
1271 	}
1272 	if (unlikely(fs_base != host->fs_base)) {
1273 		vmcs_writel(HOST_FS_BASE, fs_base);
1274 		host->fs_base = fs_base;
1275 	}
1276 	if (unlikely(gs_base != host->gs_base)) {
1277 		vmcs_writel(HOST_GS_BASE, gs_base);
1278 		host->gs_base = gs_base;
1279 	}
1280 }
1281 
1282 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1283 {
1284 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1285 	struct vmcs_host_state *host_state;
1286 #ifdef CONFIG_X86_64
1287 	int cpu = raw_smp_processor_id();
1288 #endif
1289 	unsigned long fs_base, gs_base;
1290 	u16 fs_sel, gs_sel;
1291 	int i;
1292 
1293 	/*
1294 	 * Note that guest MSRs to be saved/restored can also be changed
1295 	 * when guest state is loaded. This happens when guest transitions
1296 	 * to/from long-mode by setting MSR_EFER.LMA.
1297 	 */
1298 	if (!vmx->guest_uret_msrs_loaded) {
1299 		vmx->guest_uret_msrs_loaded = true;
1300 		for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1301 			if (!vmx->guest_uret_msrs[i].load_into_hardware)
1302 				continue;
1303 
1304 			kvm_set_user_return_msr(i,
1305 						vmx->guest_uret_msrs[i].data,
1306 						vmx->guest_uret_msrs[i].mask);
1307 		}
1308 	}
1309 
1310 	if (vmx->nested.need_vmcs12_to_shadow_sync)
1311 		nested_sync_vmcs12_to_shadow(vcpu);
1312 
1313 	if (vmx->guest_state_loaded)
1314 		return;
1315 
1316 	host_state = &vmx->loaded_vmcs->host_state;
1317 
1318 	/*
1319 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1320 	 * allow segment selectors with cpl > 0 or ti == 1.
1321 	 */
1322 	host_state->ldt_sel = kvm_read_ldt();
1323 
1324 #ifdef CONFIG_X86_64
1325 	savesegment(ds, host_state->ds_sel);
1326 	savesegment(es, host_state->es_sel);
1327 
1328 	gs_base = cpu_kernelmode_gs_base(cpu);
1329 	if (likely(is_64bit_mm(current->mm))) {
1330 		current_save_fsgs();
1331 		fs_sel = current->thread.fsindex;
1332 		gs_sel = current->thread.gsindex;
1333 		fs_base = current->thread.fsbase;
1334 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1335 	} else {
1336 		savesegment(fs, fs_sel);
1337 		savesegment(gs, gs_sel);
1338 		fs_base = read_msr(MSR_FS_BASE);
1339 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1340 	}
1341 
1342 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1343 #else
1344 	savesegment(fs, fs_sel);
1345 	savesegment(gs, gs_sel);
1346 	fs_base = segment_base(fs_sel);
1347 	gs_base = segment_base(gs_sel);
1348 #endif
1349 
1350 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1351 	vmx->guest_state_loaded = true;
1352 }
1353 
1354 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1355 {
1356 	struct vmcs_host_state *host_state;
1357 
1358 	if (!vmx->guest_state_loaded)
1359 		return;
1360 
1361 	host_state = &vmx->loaded_vmcs->host_state;
1362 
1363 	++vmx->vcpu.stat.host_state_reload;
1364 
1365 #ifdef CONFIG_X86_64
1366 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1367 #endif
1368 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1369 		kvm_load_ldt(host_state->ldt_sel);
1370 #ifdef CONFIG_X86_64
1371 		load_gs_index(host_state->gs_sel);
1372 #else
1373 		loadsegment(gs, host_state->gs_sel);
1374 #endif
1375 	}
1376 	if (host_state->fs_sel & 7)
1377 		loadsegment(fs, host_state->fs_sel);
1378 #ifdef CONFIG_X86_64
1379 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1380 		loadsegment(ds, host_state->ds_sel);
1381 		loadsegment(es, host_state->es_sel);
1382 	}
1383 #endif
1384 	invalidate_tss_limit();
1385 #ifdef CONFIG_X86_64
1386 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1387 #endif
1388 	load_fixmap_gdt(raw_smp_processor_id());
1389 	vmx->guest_state_loaded = false;
1390 	vmx->guest_uret_msrs_loaded = false;
1391 }
1392 
1393 #ifdef CONFIG_X86_64
1394 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1395 {
1396 	preempt_disable();
1397 	if (vmx->guest_state_loaded)
1398 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1399 	preempt_enable();
1400 	return vmx->msr_guest_kernel_gs_base;
1401 }
1402 
1403 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1404 {
1405 	preempt_disable();
1406 	if (vmx->guest_state_loaded)
1407 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1408 	preempt_enable();
1409 	vmx->msr_guest_kernel_gs_base = data;
1410 }
1411 #endif
1412 
1413 static void grow_ple_window(struct kvm_vcpu *vcpu)
1414 {
1415 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1416 	unsigned int old = vmx->ple_window;
1417 
1418 	vmx->ple_window = __grow_ple_window(old, ple_window,
1419 					    ple_window_grow,
1420 					    ple_window_max);
1421 
1422 	if (vmx->ple_window != old) {
1423 		vmx->ple_window_dirty = true;
1424 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1425 					    vmx->ple_window, old);
1426 	}
1427 }
1428 
1429 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1430 {
1431 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1432 	unsigned int old = vmx->ple_window;
1433 
1434 	vmx->ple_window = __shrink_ple_window(old, ple_window,
1435 					      ple_window_shrink,
1436 					      ple_window);
1437 
1438 	if (vmx->ple_window != old) {
1439 		vmx->ple_window_dirty = true;
1440 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1441 					    vmx->ple_window, old);
1442 	}
1443 }
1444 
1445 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1446 			struct loaded_vmcs *buddy)
1447 {
1448 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1449 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1450 	struct vmcs *prev;
1451 
1452 	if (!already_loaded) {
1453 		loaded_vmcs_clear(vmx->loaded_vmcs);
1454 		local_irq_disable();
1455 
1456 		/*
1457 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1458 		 * this cpu's percpu list, otherwise it may not yet be deleted
1459 		 * from its previous cpu's percpu list.  Pairs with the
1460 		 * smb_wmb() in __loaded_vmcs_clear().
1461 		 */
1462 		smp_rmb();
1463 
1464 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1465 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1466 		local_irq_enable();
1467 	}
1468 
1469 	prev = per_cpu(current_vmcs, cpu);
1470 	if (prev != vmx->loaded_vmcs->vmcs) {
1471 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1472 		vmcs_load(vmx->loaded_vmcs->vmcs);
1473 
1474 		/*
1475 		 * No indirect branch prediction barrier needed when switching
1476 		 * the active VMCS within a vCPU, unless IBRS is advertised to
1477 		 * the vCPU.  To minimize the number of IBPBs executed, KVM
1478 		 * performs IBPB on nested VM-Exit (a single nested transition
1479 		 * may switch the active VMCS multiple times).
1480 		 */
1481 		if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1482 			indirect_branch_prediction_barrier();
1483 	}
1484 
1485 	if (!already_loaded) {
1486 		void *gdt = get_current_gdt_ro();
1487 
1488 		/*
1489 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1490 		 * TLB entries from its previous association with the vCPU.
1491 		 */
1492 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1493 
1494 		/*
1495 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1496 		 * processors.  See 22.2.4.
1497 		 */
1498 		vmcs_writel(HOST_TR_BASE,
1499 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1500 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1501 
1502 		if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1503 			/* 22.2.3 */
1504 			vmcs_writel(HOST_IA32_SYSENTER_ESP,
1505 				    (unsigned long)(cpu_entry_stack(cpu) + 1));
1506 		}
1507 
1508 		vmx->loaded_vmcs->cpu = cpu;
1509 	}
1510 }
1511 
1512 /*
1513  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1514  * vcpu mutex is already taken.
1515  */
1516 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1517 {
1518 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1519 
1520 	if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm))
1521 		shrink_ple_window(vcpu);
1522 
1523 	vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1524 
1525 	vmx_vcpu_pi_load(vcpu, cpu);
1526 
1527 	vmx->host_debugctlmsr = get_debugctlmsr();
1528 }
1529 
1530 void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1531 {
1532 	vmx_vcpu_pi_put(vcpu);
1533 
1534 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1535 }
1536 
1537 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1538 {
1539 	return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1540 }
1541 
1542 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1543 {
1544 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1545 	unsigned long rflags, save_rflags;
1546 
1547 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1548 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1549 		rflags = vmcs_readl(GUEST_RFLAGS);
1550 		if (vmx->rmode.vm86_active) {
1551 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1552 			save_rflags = vmx->rmode.save_rflags;
1553 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1554 		}
1555 		vmx->rflags = rflags;
1556 	}
1557 	return vmx->rflags;
1558 }
1559 
1560 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1561 {
1562 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1563 	unsigned long old_rflags;
1564 
1565 	/*
1566 	 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU
1567 	 * is an unrestricted guest in order to mark L2 as needing emulation
1568 	 * if L1 runs L2 as a restricted guest.
1569 	 */
1570 	if (is_unrestricted_guest(vcpu)) {
1571 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1572 		vmx->rflags = rflags;
1573 		vmcs_writel(GUEST_RFLAGS, rflags);
1574 		return;
1575 	}
1576 
1577 	old_rflags = vmx_get_rflags(vcpu);
1578 	vmx->rflags = rflags;
1579 	if (vmx->rmode.vm86_active) {
1580 		vmx->rmode.save_rflags = rflags;
1581 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1582 	}
1583 	vmcs_writel(GUEST_RFLAGS, rflags);
1584 
1585 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1586 		vmx->emulation_required = vmx_emulation_required(vcpu);
1587 }
1588 
1589 bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1590 {
1591 	return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1592 }
1593 
1594 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1595 {
1596 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1597 	int ret = 0;
1598 
1599 	if (interruptibility & GUEST_INTR_STATE_STI)
1600 		ret |= KVM_X86_SHADOW_INT_STI;
1601 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1602 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1603 
1604 	return ret;
1605 }
1606 
1607 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1608 {
1609 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1610 	u32 interruptibility = interruptibility_old;
1611 
1612 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1613 
1614 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1615 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1616 	else if (mask & KVM_X86_SHADOW_INT_STI)
1617 		interruptibility |= GUEST_INTR_STATE_STI;
1618 
1619 	if ((interruptibility != interruptibility_old))
1620 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1621 }
1622 
1623 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1624 {
1625 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1626 	unsigned long value;
1627 
1628 	/*
1629 	 * Any MSR write that attempts to change bits marked reserved will
1630 	 * case a #GP fault.
1631 	 */
1632 	if (data & vmx->pt_desc.ctl_bitmask)
1633 		return 1;
1634 
1635 	/*
1636 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1637 	 * result in a #GP unless the same write also clears TraceEn.
1638 	 */
1639 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1640 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1641 		return 1;
1642 
1643 	/*
1644 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1645 	 * and FabricEn would cause #GP, if
1646 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1647 	 */
1648 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1649 		!(data & RTIT_CTL_FABRIC_EN) &&
1650 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1651 					PT_CAP_single_range_output))
1652 		return 1;
1653 
1654 	/*
1655 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1656 	 * utilize encodings marked reserved will cause a #GP fault.
1657 	 */
1658 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1659 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1660 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1661 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1662 		return 1;
1663 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1664 						PT_CAP_cycle_thresholds);
1665 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1666 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1667 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1668 		return 1;
1669 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1670 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1671 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1672 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1673 		return 1;
1674 
1675 	/*
1676 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1677 	 * cause a #GP fault.
1678 	 */
1679 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1680 	if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1681 		return 1;
1682 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1683 	if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1684 		return 1;
1685 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1686 	if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1687 		return 1;
1688 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1689 	if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1690 		return 1;
1691 
1692 	return 0;
1693 }
1694 
1695 int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1696 				  void *insn, int insn_len)
1697 {
1698 	/*
1699 	 * Emulation of instructions in SGX enclaves is impossible as RIP does
1700 	 * not point at the failing instruction, and even if it did, the code
1701 	 * stream is inaccessible.  Inject #UD instead of exiting to userspace
1702 	 * so that guest userspace can't DoS the guest simply by triggering
1703 	 * emulation (enclaves are CPL3 only).
1704 	 */
1705 	if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1706 		kvm_queue_exception(vcpu, UD_VECTOR);
1707 		return X86EMUL_PROPAGATE_FAULT;
1708 	}
1709 	return X86EMUL_CONTINUE;
1710 }
1711 
1712 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1713 {
1714 	union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1715 	unsigned long rip, orig_rip;
1716 	u32 instr_len;
1717 
1718 	/*
1719 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1720 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1721 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1722 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1723 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1724 	 * i.e. we end up advancing IP with some random value.
1725 	 */
1726 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1727 	    exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1728 		instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1729 
1730 		/*
1731 		 * Emulating an enclave's instructions isn't supported as KVM
1732 		 * cannot access the enclave's memory or its true RIP, e.g. the
1733 		 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1734 		 * the RIP that actually triggered the VM-Exit.  But, because
1735 		 * most instructions that cause VM-Exit will #UD in an enclave,
1736 		 * most instruction-based VM-Exits simply do not occur.
1737 		 *
1738 		 * There are a few exceptions, notably the debug instructions
1739 		 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1740 		 * and generate #DB/#BP as expected, which KVM might intercept.
1741 		 * But again, the CPU does the dirty work and saves an instr
1742 		 * length of zero so VMMs don't shoot themselves in the foot.
1743 		 * WARN if KVM tries to skip a non-zero length instruction on
1744 		 * a VM-Exit from an enclave.
1745 		 */
1746 		if (!instr_len)
1747 			goto rip_updated;
1748 
1749 		WARN_ONCE(exit_reason.enclave_mode,
1750 			  "skipping instruction after SGX enclave VM-Exit");
1751 
1752 		orig_rip = kvm_rip_read(vcpu);
1753 		rip = orig_rip + instr_len;
1754 #ifdef CONFIG_X86_64
1755 		/*
1756 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1757 		 * mode, but just finding out that we are in 64-bit mode is
1758 		 * quite expensive.  Only do it if there was a carry.
1759 		 */
1760 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1761 			rip = (u32)rip;
1762 #endif
1763 		kvm_rip_write(vcpu, rip);
1764 	} else {
1765 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1766 			return 0;
1767 	}
1768 
1769 rip_updated:
1770 	/* skipping an emulated instruction also counts */
1771 	vmx_set_interrupt_shadow(vcpu, 0);
1772 
1773 	return 1;
1774 }
1775 
1776 /*
1777  * Recognizes a pending MTF VM-exit and records the nested state for later
1778  * delivery.
1779  */
1780 void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1781 {
1782 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1783 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1784 
1785 	if (!is_guest_mode(vcpu))
1786 		return;
1787 
1788 	/*
1789 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1790 	 * TSS T-bit traps and ICEBP (INT1).  KVM doesn't emulate T-bit traps
1791 	 * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1792 	 * intercepted #DB deliberately avoids single-step #DB and MTF updates
1793 	 * as ICEBP is higher priority than both.  As instruction emulation is
1794 	 * completed at this point (i.e. KVM is at the instruction boundary),
1795 	 * any #DB exception pending delivery must be a debug-trap of lower
1796 	 * priority than MTF.  Record the pending MTF state to be delivered in
1797 	 * vmx_check_nested_events().
1798 	 */
1799 	if (nested_cpu_has_mtf(vmcs12) &&
1800 	    (!vcpu->arch.exception.pending ||
1801 	     vcpu->arch.exception.vector == DB_VECTOR) &&
1802 	    (!vcpu->arch.exception_vmexit.pending ||
1803 	     vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1804 		vmx->nested.mtf_pending = true;
1805 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1806 	} else {
1807 		vmx->nested.mtf_pending = false;
1808 	}
1809 }
1810 
1811 int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1812 {
1813 	vmx_update_emulated_instruction(vcpu);
1814 	return skip_emulated_instruction(vcpu);
1815 }
1816 
1817 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1818 {
1819 	/*
1820 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1821 	 * explicitly skip the instruction because if the HLT state is set,
1822 	 * then the instruction is already executing and RIP has already been
1823 	 * advanced.
1824 	 */
1825 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1826 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1827 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1828 }
1829 
1830 void vmx_inject_exception(struct kvm_vcpu *vcpu)
1831 {
1832 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
1833 	u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1834 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1835 
1836 	kvm_deliver_exception_payload(vcpu, ex);
1837 
1838 	if (ex->has_error_code) {
1839 		/*
1840 		 * Despite the error code being architecturally defined as 32
1841 		 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1842 		 * VMX don't actually supporting setting bits 31:16.  Hardware
1843 		 * will (should) never provide a bogus error code, but AMD CPUs
1844 		 * do generate error codes with bits 31:16 set, and so KVM's
1845 		 * ABI lets userspace shove in arbitrary 32-bit values.  Drop
1846 		 * the upper bits to avoid VM-Fail, losing information that
1847 		 * doesn't really exist is preferable to killing the VM.
1848 		 */
1849 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1850 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1851 	}
1852 
1853 	if (vmx->rmode.vm86_active) {
1854 		int inc_eip = 0;
1855 		if (kvm_exception_is_soft(ex->vector))
1856 			inc_eip = vcpu->arch.event_exit_inst_len;
1857 		kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1858 		return;
1859 	}
1860 
1861 	WARN_ON_ONCE(vmx->emulation_required);
1862 
1863 	if (kvm_exception_is_soft(ex->vector)) {
1864 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1865 			     vmx->vcpu.arch.event_exit_inst_len);
1866 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1867 	} else
1868 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1869 
1870 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1871 
1872 	vmx_clear_hlt(vcpu);
1873 }
1874 
1875 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1876 			       bool load_into_hardware)
1877 {
1878 	struct vmx_uret_msr *uret_msr;
1879 
1880 	uret_msr = vmx_find_uret_msr(vmx, msr);
1881 	if (!uret_msr)
1882 		return;
1883 
1884 	uret_msr->load_into_hardware = load_into_hardware;
1885 }
1886 
1887 /*
1888  * Configuring user return MSRs to automatically save, load, and restore MSRs
1889  * that need to be shoved into hardware when running the guest.  Note, omitting
1890  * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1891  * loaded into hardware when running the guest.
1892  */
1893 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1894 {
1895 #ifdef CONFIG_X86_64
1896 	bool load_syscall_msrs;
1897 
1898 	/*
1899 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1900 	 * when EFER.SCE is set.
1901 	 */
1902 	load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1903 			    (vmx->vcpu.arch.efer & EFER_SCE);
1904 
1905 	vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1906 	vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1907 	vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1908 #endif
1909 	vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1910 
1911 	vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1912 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1913 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1914 
1915 	/*
1916 	 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1917 	 * kernel and old userspace.  If those guests run on a tsx=off host, do
1918 	 * allow guests to use TSX_CTRL, but don't change the value in hardware
1919 	 * so that TSX remains always disabled.
1920 	 */
1921 	vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1922 
1923 	/*
1924 	 * The set of MSRs to load may have changed, reload MSRs before the
1925 	 * next VM-Enter.
1926 	 */
1927 	vmx->guest_uret_msrs_loaded = false;
1928 }
1929 
1930 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1931 {
1932 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1933 
1934 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1935 		return vmcs12->tsc_offset;
1936 
1937 	return 0;
1938 }
1939 
1940 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1941 {
1942 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1943 
1944 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1945 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1946 		return vmcs12->tsc_multiplier;
1947 
1948 	return kvm_caps.default_tsc_scaling_ratio;
1949 }
1950 
1951 void vmx_write_tsc_offset(struct kvm_vcpu *vcpu)
1952 {
1953 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
1954 }
1955 
1956 void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1957 {
1958 	vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
1959 }
1960 
1961 /*
1962  * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
1963  * guest CPUID.  Note, KVM allows userspace to set "VMX in SMX" to maintain
1964  * backwards compatibility even though KVM doesn't support emulating SMX.  And
1965  * because userspace set "VMX in SMX", the guest must also be allowed to set it,
1966  * e.g. if the MSR is left unlocked and the guest does a RMW operation.
1967  */
1968 #define KVM_SUPPORTED_FEATURE_CONTROL  (FEAT_CTL_LOCKED			 | \
1969 					FEAT_CTL_VMX_ENABLED_INSIDE_SMX	 | \
1970 					FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
1971 					FEAT_CTL_SGX_LC_ENABLED		 | \
1972 					FEAT_CTL_SGX_ENABLED		 | \
1973 					FEAT_CTL_LMCE_ENABLED)
1974 
1975 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
1976 						    struct msr_data *msr)
1977 {
1978 	uint64_t valid_bits;
1979 
1980 	/*
1981 	 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
1982 	 * exposed to the guest.
1983 	 */
1984 	WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
1985 		     ~KVM_SUPPORTED_FEATURE_CONTROL);
1986 
1987 	if (!msr->host_initiated &&
1988 	    (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
1989 		return false;
1990 
1991 	if (msr->host_initiated)
1992 		valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
1993 	else
1994 		valid_bits = vmx->msr_ia32_feature_control_valid_bits;
1995 
1996 	return !(msr->data & ~valid_bits);
1997 }
1998 
1999 int vmx_get_feature_msr(u32 msr, u64 *data)
2000 {
2001 	switch (msr) {
2002 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2003 		if (!nested)
2004 			return 1;
2005 		return vmx_get_vmx_msr(&vmcs_config.nested, msr, data);
2006 	default:
2007 		return KVM_MSR_RET_UNSUPPORTED;
2008 	}
2009 }
2010 
2011 /*
2012  * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
2013  * Returns 0 on success, non-0 otherwise.
2014  * Assumes vcpu_load() was already called.
2015  */
2016 int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2017 {
2018 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2019 	struct vmx_uret_msr *msr;
2020 	u32 index;
2021 
2022 	switch (msr_info->index) {
2023 #ifdef CONFIG_X86_64
2024 	case MSR_FS_BASE:
2025 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
2026 		break;
2027 	case MSR_GS_BASE:
2028 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
2029 		break;
2030 	case MSR_KERNEL_GS_BASE:
2031 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
2032 		break;
2033 #endif
2034 	case MSR_EFER:
2035 		return kvm_get_msr_common(vcpu, msr_info);
2036 	case MSR_IA32_TSX_CTRL:
2037 		if (!msr_info->host_initiated &&
2038 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2039 			return 1;
2040 		goto find_uret_msr;
2041 	case MSR_IA32_UMWAIT_CONTROL:
2042 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2043 			return 1;
2044 
2045 		msr_info->data = vmx->msr_ia32_umwait_control;
2046 		break;
2047 	case MSR_IA32_SPEC_CTRL:
2048 		if (!msr_info->host_initiated &&
2049 		    !guest_has_spec_ctrl_msr(vcpu))
2050 			return 1;
2051 
2052 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
2053 		break;
2054 	case MSR_IA32_SYSENTER_CS:
2055 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2056 		break;
2057 	case MSR_IA32_SYSENTER_EIP:
2058 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2059 		break;
2060 	case MSR_IA32_SYSENTER_ESP:
2061 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2062 		break;
2063 	case MSR_IA32_BNDCFGS:
2064 		if (!kvm_mpx_supported() ||
2065 		    (!msr_info->host_initiated &&
2066 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2067 			return 1;
2068 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2069 		break;
2070 	case MSR_IA32_MCG_EXT_CTL:
2071 		if (!msr_info->host_initiated &&
2072 		    !(vmx->msr_ia32_feature_control &
2073 		      FEAT_CTL_LMCE_ENABLED))
2074 			return 1;
2075 		msr_info->data = vcpu->arch.mcg_ext_ctl;
2076 		break;
2077 	case MSR_IA32_FEAT_CTL:
2078 		msr_info->data = vmx->msr_ia32_feature_control;
2079 		break;
2080 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2081 		if (!msr_info->host_initiated &&
2082 		    !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
2083 			return 1;
2084 		msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
2085 			[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
2086 		break;
2087 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2088 		if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2089 			return 1;
2090 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
2091 				    &msr_info->data))
2092 			return 1;
2093 #ifdef CONFIG_KVM_HYPERV
2094 		/*
2095 		 * Enlightened VMCS v1 doesn't have certain VMCS fields but
2096 		 * instead of just ignoring the features, different Hyper-V
2097 		 * versions are either trying to use them and fail or do some
2098 		 * sanity checking and refuse to boot. Filter all unsupported
2099 		 * features out.
2100 		 */
2101 		if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu))
2102 			nested_evmcs_filter_control_msr(vcpu, msr_info->index,
2103 							&msr_info->data);
2104 #endif
2105 		break;
2106 	case MSR_IA32_RTIT_CTL:
2107 		if (!vmx_pt_mode_is_host_guest())
2108 			return 1;
2109 		msr_info->data = vmx->pt_desc.guest.ctl;
2110 		break;
2111 	case MSR_IA32_RTIT_STATUS:
2112 		if (!vmx_pt_mode_is_host_guest())
2113 			return 1;
2114 		msr_info->data = vmx->pt_desc.guest.status;
2115 		break;
2116 	case MSR_IA32_RTIT_CR3_MATCH:
2117 		if (!vmx_pt_mode_is_host_guest() ||
2118 			!intel_pt_validate_cap(vmx->pt_desc.caps,
2119 						PT_CAP_cr3_filtering))
2120 			return 1;
2121 		msr_info->data = vmx->pt_desc.guest.cr3_match;
2122 		break;
2123 	case MSR_IA32_RTIT_OUTPUT_BASE:
2124 		if (!vmx_pt_mode_is_host_guest() ||
2125 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2126 					PT_CAP_topa_output) &&
2127 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2128 					PT_CAP_single_range_output)))
2129 			return 1;
2130 		msr_info->data = vmx->pt_desc.guest.output_base;
2131 		break;
2132 	case MSR_IA32_RTIT_OUTPUT_MASK:
2133 		if (!vmx_pt_mode_is_host_guest() ||
2134 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2135 					PT_CAP_topa_output) &&
2136 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2137 					PT_CAP_single_range_output)))
2138 			return 1;
2139 		msr_info->data = vmx->pt_desc.guest.output_mask;
2140 		break;
2141 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2142 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2143 		if (!vmx_pt_mode_is_host_guest() ||
2144 		    (index >= 2 * vmx->pt_desc.num_address_ranges))
2145 			return 1;
2146 		if (index % 2)
2147 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2148 		else
2149 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2150 		break;
2151 	case MSR_IA32_DEBUGCTLMSR:
2152 		msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
2153 		break;
2154 	default:
2155 	find_uret_msr:
2156 		msr = vmx_find_uret_msr(vmx, msr_info->index);
2157 		if (msr) {
2158 			msr_info->data = msr->data;
2159 			break;
2160 		}
2161 		return kvm_get_msr_common(vcpu, msr_info);
2162 	}
2163 
2164 	return 0;
2165 }
2166 
2167 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2168 						    u64 data)
2169 {
2170 #ifdef CONFIG_X86_64
2171 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2172 		return (u32)data;
2173 #endif
2174 	return (unsigned long)data;
2175 }
2176 
2177 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2178 {
2179 	u64 debugctl = 0;
2180 
2181 	if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2182 	    (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2183 		debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2184 
2185 	if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) &&
2186 	    (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2187 		debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2188 
2189 	return debugctl;
2190 }
2191 
2192 /*
2193  * Writes msr value into the appropriate "register".
2194  * Returns 0 on success, non-0 otherwise.
2195  * Assumes vcpu_load() was already called.
2196  */
2197 int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2198 {
2199 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2200 	struct vmx_uret_msr *msr;
2201 	int ret = 0;
2202 	u32 msr_index = msr_info->index;
2203 	u64 data = msr_info->data;
2204 	u32 index;
2205 
2206 	switch (msr_index) {
2207 	case MSR_EFER:
2208 		ret = kvm_set_msr_common(vcpu, msr_info);
2209 		break;
2210 #ifdef CONFIG_X86_64
2211 	case MSR_FS_BASE:
2212 		vmx_segment_cache_clear(vmx);
2213 		vmcs_writel(GUEST_FS_BASE, data);
2214 		break;
2215 	case MSR_GS_BASE:
2216 		vmx_segment_cache_clear(vmx);
2217 		vmcs_writel(GUEST_GS_BASE, data);
2218 		break;
2219 	case MSR_KERNEL_GS_BASE:
2220 		vmx_write_guest_kernel_gs_base(vmx, data);
2221 		break;
2222 	case MSR_IA32_XFD:
2223 		ret = kvm_set_msr_common(vcpu, msr_info);
2224 		/*
2225 		 * Always intercepting WRMSR could incur non-negligible
2226 		 * overhead given xfd might be changed frequently in
2227 		 * guest context switch. Disable write interception
2228 		 * upon the first write with a non-zero value (indicating
2229 		 * potential usage on dynamic xfeatures). Also update
2230 		 * exception bitmap to trap #NM for proper virtualization
2231 		 * of guest xfd_err.
2232 		 */
2233 		if (!ret && data) {
2234 			vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2235 						      MSR_TYPE_RW);
2236 			vcpu->arch.xfd_no_write_intercept = true;
2237 			vmx_update_exception_bitmap(vcpu);
2238 		}
2239 		break;
2240 #endif
2241 	case MSR_IA32_SYSENTER_CS:
2242 		if (is_guest_mode(vcpu))
2243 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
2244 		vmcs_write32(GUEST_SYSENTER_CS, data);
2245 		break;
2246 	case MSR_IA32_SYSENTER_EIP:
2247 		if (is_guest_mode(vcpu)) {
2248 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2249 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
2250 		}
2251 		vmcs_writel(GUEST_SYSENTER_EIP, data);
2252 		break;
2253 	case MSR_IA32_SYSENTER_ESP:
2254 		if (is_guest_mode(vcpu)) {
2255 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2256 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
2257 		}
2258 		vmcs_writel(GUEST_SYSENTER_ESP, data);
2259 		break;
2260 	case MSR_IA32_DEBUGCTLMSR: {
2261 		u64 invalid;
2262 
2263 		invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2264 		if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2265 			kvm_pr_unimpl_wrmsr(vcpu, msr_index, data);
2266 			data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2267 			invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2268 		}
2269 
2270 		if (invalid)
2271 			return 1;
2272 
2273 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2274 						VM_EXIT_SAVE_DEBUG_CONTROLS)
2275 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2276 
2277 		vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2278 		if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2279 		    (data & DEBUGCTLMSR_LBR))
2280 			intel_pmu_create_guest_lbr_event(vcpu);
2281 		return 0;
2282 	}
2283 	case MSR_IA32_BNDCFGS:
2284 		if (!kvm_mpx_supported() ||
2285 		    (!msr_info->host_initiated &&
2286 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2287 			return 1;
2288 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2289 		    (data & MSR_IA32_BNDCFGS_RSVD))
2290 			return 1;
2291 
2292 		if (is_guest_mode(vcpu) &&
2293 		    ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2294 		     (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2295 			get_vmcs12(vcpu)->guest_bndcfgs = data;
2296 
2297 		vmcs_write64(GUEST_BNDCFGS, data);
2298 		break;
2299 	case MSR_IA32_UMWAIT_CONTROL:
2300 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2301 			return 1;
2302 
2303 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2304 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2305 			return 1;
2306 
2307 		vmx->msr_ia32_umwait_control = data;
2308 		break;
2309 	case MSR_IA32_SPEC_CTRL:
2310 		if (!msr_info->host_initiated &&
2311 		    !guest_has_spec_ctrl_msr(vcpu))
2312 			return 1;
2313 
2314 		if (kvm_spec_ctrl_test_value(data))
2315 			return 1;
2316 
2317 		vmx->spec_ctrl = data;
2318 		if (!data)
2319 			break;
2320 
2321 		/*
2322 		 * For non-nested:
2323 		 * When it's written (to non-zero) for the first time, pass
2324 		 * it through.
2325 		 *
2326 		 * For nested:
2327 		 * The handling of the MSR bitmap for L2 guests is done in
2328 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2329 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2330 		 * in the merging. We update the vmcs01 here for L1 as well
2331 		 * since it will end up touching the MSR anyway now.
2332 		 */
2333 		vmx_disable_intercept_for_msr(vcpu,
2334 					      MSR_IA32_SPEC_CTRL,
2335 					      MSR_TYPE_RW);
2336 		break;
2337 	case MSR_IA32_TSX_CTRL:
2338 		if (!msr_info->host_initiated &&
2339 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2340 			return 1;
2341 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2342 			return 1;
2343 		goto find_uret_msr;
2344 	case MSR_IA32_CR_PAT:
2345 		ret = kvm_set_msr_common(vcpu, msr_info);
2346 		if (ret)
2347 			break;
2348 
2349 		if (is_guest_mode(vcpu) &&
2350 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2351 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2352 
2353 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
2354 			vmcs_write64(GUEST_IA32_PAT, data);
2355 		break;
2356 	case MSR_IA32_MCG_EXT_CTL:
2357 		if ((!msr_info->host_initiated &&
2358 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2359 		       FEAT_CTL_LMCE_ENABLED)) ||
2360 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2361 			return 1;
2362 		vcpu->arch.mcg_ext_ctl = data;
2363 		break;
2364 	case MSR_IA32_FEAT_CTL:
2365 		if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2366 			return 1;
2367 
2368 		vmx->msr_ia32_feature_control = data;
2369 		if (msr_info->host_initiated && data == 0)
2370 			vmx_leave_nested(vcpu);
2371 
2372 		/* SGX may be enabled/disabled by guest's firmware */
2373 		vmx_write_encls_bitmap(vcpu, NULL);
2374 		break;
2375 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2376 		/*
2377 		 * On real hardware, the LE hash MSRs are writable before
2378 		 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2379 		 * at which point SGX related bits in IA32_FEATURE_CONTROL
2380 		 * become writable.
2381 		 *
2382 		 * KVM does not emulate SGX activation for simplicity, so
2383 		 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2384 		 * is unlocked.  This is technically not architectural
2385 		 * behavior, but it's close enough.
2386 		 */
2387 		if (!msr_info->host_initiated &&
2388 		    (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2389 		    ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2390 		    !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2391 			return 1;
2392 		vmx->msr_ia32_sgxlepubkeyhash
2393 			[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2394 		break;
2395 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2396 		if (!msr_info->host_initiated)
2397 			return 1; /* they are read-only */
2398 		if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2399 			return 1;
2400 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2401 	case MSR_IA32_RTIT_CTL:
2402 		if (!vmx_pt_mode_is_host_guest() ||
2403 			vmx_rtit_ctl_check(vcpu, data) ||
2404 			vmx->nested.vmxon)
2405 			return 1;
2406 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2407 		vmx->pt_desc.guest.ctl = data;
2408 		pt_update_intercept_for_msr(vcpu);
2409 		break;
2410 	case MSR_IA32_RTIT_STATUS:
2411 		if (!pt_can_write_msr(vmx))
2412 			return 1;
2413 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2414 			return 1;
2415 		vmx->pt_desc.guest.status = data;
2416 		break;
2417 	case MSR_IA32_RTIT_CR3_MATCH:
2418 		if (!pt_can_write_msr(vmx))
2419 			return 1;
2420 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2421 					   PT_CAP_cr3_filtering))
2422 			return 1;
2423 		vmx->pt_desc.guest.cr3_match = data;
2424 		break;
2425 	case MSR_IA32_RTIT_OUTPUT_BASE:
2426 		if (!pt_can_write_msr(vmx))
2427 			return 1;
2428 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2429 					   PT_CAP_topa_output) &&
2430 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2431 					   PT_CAP_single_range_output))
2432 			return 1;
2433 		if (!pt_output_base_valid(vcpu, data))
2434 			return 1;
2435 		vmx->pt_desc.guest.output_base = data;
2436 		break;
2437 	case MSR_IA32_RTIT_OUTPUT_MASK:
2438 		if (!pt_can_write_msr(vmx))
2439 			return 1;
2440 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2441 					   PT_CAP_topa_output) &&
2442 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2443 					   PT_CAP_single_range_output))
2444 			return 1;
2445 		vmx->pt_desc.guest.output_mask = data;
2446 		break;
2447 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2448 		if (!pt_can_write_msr(vmx))
2449 			return 1;
2450 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2451 		if (index >= 2 * vmx->pt_desc.num_address_ranges)
2452 			return 1;
2453 		if (is_noncanonical_address(data, vcpu))
2454 			return 1;
2455 		if (index % 2)
2456 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2457 		else
2458 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2459 		break;
2460 	case MSR_IA32_PERF_CAPABILITIES:
2461 		if (data && !vcpu_to_pmu(vcpu)->version)
2462 			return 1;
2463 		if (data & PMU_CAP_LBR_FMT) {
2464 			if ((data & PMU_CAP_LBR_FMT) !=
2465 			    (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT))
2466 				return 1;
2467 			if (!cpuid_model_is_consistent(vcpu))
2468 				return 1;
2469 		}
2470 		if (data & PERF_CAP_PEBS_FORMAT) {
2471 			if ((data & PERF_CAP_PEBS_MASK) !=
2472 			    (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2473 				return 1;
2474 			if (!guest_cpuid_has(vcpu, X86_FEATURE_DS))
2475 				return 1;
2476 			if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64))
2477 				return 1;
2478 			if (!cpuid_model_is_consistent(vcpu))
2479 				return 1;
2480 		}
2481 		ret = kvm_set_msr_common(vcpu, msr_info);
2482 		break;
2483 
2484 	default:
2485 	find_uret_msr:
2486 		msr = vmx_find_uret_msr(vmx, msr_index);
2487 		if (msr)
2488 			ret = vmx_set_guest_uret_msr(vmx, msr, data);
2489 		else
2490 			ret = kvm_set_msr_common(vcpu, msr_info);
2491 	}
2492 
2493 	/* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2494 	if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2495 		vmx_update_fb_clear_dis(vcpu, vmx);
2496 
2497 	return ret;
2498 }
2499 
2500 void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2501 {
2502 	unsigned long guest_owned_bits;
2503 
2504 	kvm_register_mark_available(vcpu, reg);
2505 
2506 	switch (reg) {
2507 	case VCPU_REGS_RSP:
2508 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2509 		break;
2510 	case VCPU_REGS_RIP:
2511 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2512 		break;
2513 	case VCPU_EXREG_PDPTR:
2514 		if (enable_ept)
2515 			ept_save_pdptrs(vcpu);
2516 		break;
2517 	case VCPU_EXREG_CR0:
2518 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2519 
2520 		vcpu->arch.cr0 &= ~guest_owned_bits;
2521 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2522 		break;
2523 	case VCPU_EXREG_CR3:
2524 		/*
2525 		 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2526 		 * CR3 is loaded into hardware, not the guest's CR3.
2527 		 */
2528 		if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2529 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2530 		break;
2531 	case VCPU_EXREG_CR4:
2532 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2533 
2534 		vcpu->arch.cr4 &= ~guest_owned_bits;
2535 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2536 		break;
2537 	default:
2538 		KVM_BUG_ON(1, vcpu->kvm);
2539 		break;
2540 	}
2541 }
2542 
2543 /*
2544  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2545  * directly instead of going through cpu_has(), to ensure KVM is trapping
2546  * ENCLS whenever it's supported in hardware.  It does not matter whether
2547  * the host OS supports or has enabled SGX.
2548  */
2549 static bool cpu_has_sgx(void)
2550 {
2551 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2552 }
2553 
2554 /*
2555  * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2556  * can't be used due to errata where VM Exit may incorrectly clear
2557  * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the
2558  * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2559  */
2560 static bool cpu_has_perf_global_ctrl_bug(void)
2561 {
2562 	switch (boot_cpu_data.x86_vfm) {
2563 	case INTEL_NEHALEM_EP:	/* AAK155 */
2564 	case INTEL_NEHALEM:	/* AAP115 */
2565 	case INTEL_WESTMERE:	/* AAT100 */
2566 	case INTEL_WESTMERE_EP:	/* BC86,AAY89,BD102 */
2567 	case INTEL_NEHALEM_EX:	/* BA97 */
2568 		return true;
2569 	default:
2570 		break;
2571 	}
2572 
2573 	return false;
2574 }
2575 
2576 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
2577 {
2578 	u32 vmx_msr_low, vmx_msr_high;
2579 	u32 ctl = ctl_min | ctl_opt;
2580 
2581 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2582 
2583 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2584 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2585 
2586 	/* Ensure minimum (required) set of control bits are supported. */
2587 	if (ctl_min & ~ctl)
2588 		return -EIO;
2589 
2590 	*result = ctl;
2591 	return 0;
2592 }
2593 
2594 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2595 {
2596 	u64 allowed;
2597 
2598 	rdmsrl(msr, allowed);
2599 
2600 	return  ctl_opt & allowed;
2601 }
2602 
2603 static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2604 			     struct vmx_capability *vmx_cap)
2605 {
2606 	u32 _pin_based_exec_control = 0;
2607 	u32 _cpu_based_exec_control = 0;
2608 	u32 _cpu_based_2nd_exec_control = 0;
2609 	u64 _cpu_based_3rd_exec_control = 0;
2610 	u32 _vmexit_control = 0;
2611 	u32 _vmentry_control = 0;
2612 	u64 basic_msr;
2613 	u64 misc_msr;
2614 	int i;
2615 
2616 	/*
2617 	 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2618 	 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2619 	 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2620 	 */
2621 	struct {
2622 		u32 entry_control;
2623 		u32 exit_control;
2624 	} const vmcs_entry_exit_pairs[] = {
2625 		{ VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,	VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2626 		{ VM_ENTRY_LOAD_IA32_PAT,		VM_EXIT_LOAD_IA32_PAT },
2627 		{ VM_ENTRY_LOAD_IA32_EFER,		VM_EXIT_LOAD_IA32_EFER },
2628 		{ VM_ENTRY_LOAD_BNDCFGS,		VM_EXIT_CLEAR_BNDCFGS },
2629 		{ VM_ENTRY_LOAD_IA32_RTIT_CTL,		VM_EXIT_CLEAR_IA32_RTIT_CTL },
2630 	};
2631 
2632 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2633 
2634 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2635 				KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2636 				MSR_IA32_VMX_PROCBASED_CTLS,
2637 				&_cpu_based_exec_control))
2638 		return -EIO;
2639 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2640 		if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2641 					KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2642 					MSR_IA32_VMX_PROCBASED_CTLS2,
2643 					&_cpu_based_2nd_exec_control))
2644 			return -EIO;
2645 	}
2646 	if (!IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
2647 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2648 
2649 #ifndef CONFIG_X86_64
2650 	if (!(_cpu_based_2nd_exec_control &
2651 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2652 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2653 #endif
2654 
2655 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2656 		_cpu_based_2nd_exec_control &= ~(
2657 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2658 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2659 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2660 
2661 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2662 		&vmx_cap->ept, &vmx_cap->vpid);
2663 
2664 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2665 	    vmx_cap->ept) {
2666 		pr_warn_once("EPT CAP should not exist if not support "
2667 				"1-setting enable EPT VM-execution control\n");
2668 
2669 		if (error_on_inconsistent_vmcs_config)
2670 			return -EIO;
2671 
2672 		vmx_cap->ept = 0;
2673 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2674 	}
2675 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2676 	    vmx_cap->vpid) {
2677 		pr_warn_once("VPID CAP should not exist if not support "
2678 				"1-setting enable VPID VM-execution control\n");
2679 
2680 		if (error_on_inconsistent_vmcs_config)
2681 			return -EIO;
2682 
2683 		vmx_cap->vpid = 0;
2684 	}
2685 
2686 	if (!cpu_has_sgx())
2687 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2688 
2689 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2690 		_cpu_based_3rd_exec_control =
2691 			adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2692 					      MSR_IA32_VMX_PROCBASED_CTLS3);
2693 
2694 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2695 				KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2696 				MSR_IA32_VMX_EXIT_CTLS,
2697 				&_vmexit_control))
2698 		return -EIO;
2699 
2700 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2701 				KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2702 				MSR_IA32_VMX_PINBASED_CTLS,
2703 				&_pin_based_exec_control))
2704 		return -EIO;
2705 
2706 	if (cpu_has_broken_vmx_preemption_timer())
2707 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2708 	if (!(_cpu_based_2nd_exec_control &
2709 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2710 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2711 
2712 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2713 				KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2714 				MSR_IA32_VMX_ENTRY_CTLS,
2715 				&_vmentry_control))
2716 		return -EIO;
2717 
2718 	for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) {
2719 		u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control;
2720 		u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control;
2721 
2722 		if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl))
2723 			continue;
2724 
2725 		pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n",
2726 			     _vmentry_control & n_ctrl, _vmexit_control & x_ctrl);
2727 
2728 		if (error_on_inconsistent_vmcs_config)
2729 			return -EIO;
2730 
2731 		_vmentry_control &= ~n_ctrl;
2732 		_vmexit_control &= ~x_ctrl;
2733 	}
2734 
2735 	rdmsrl(MSR_IA32_VMX_BASIC, basic_msr);
2736 
2737 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2738 	if (vmx_basic_vmcs_size(basic_msr) > PAGE_SIZE)
2739 		return -EIO;
2740 
2741 #ifdef CONFIG_X86_64
2742 	/*
2743 	 * KVM expects to be able to shove all legal physical addresses into
2744 	 * VMCS fields for 64-bit kernels, and per the SDM, "This bit is always
2745 	 * 0 for processors that support Intel 64 architecture".
2746 	 */
2747 	if (basic_msr & VMX_BASIC_32BIT_PHYS_ADDR_ONLY)
2748 		return -EIO;
2749 #endif
2750 
2751 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2752 	if (vmx_basic_vmcs_mem_type(basic_msr) != X86_MEMTYPE_WB)
2753 		return -EIO;
2754 
2755 	rdmsrl(MSR_IA32_VMX_MISC, misc_msr);
2756 
2757 	vmcs_conf->basic = basic_msr;
2758 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2759 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2760 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2761 	vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2762 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2763 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2764 	vmcs_conf->misc	= misc_msr;
2765 
2766 #if IS_ENABLED(CONFIG_HYPERV)
2767 	if (enlightened_vmcs)
2768 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2769 #endif
2770 
2771 	return 0;
2772 }
2773 
2774 static bool __kvm_is_vmx_supported(void)
2775 {
2776 	int cpu = smp_processor_id();
2777 
2778 	if (!(cpuid_ecx(1) & feature_bit(VMX))) {
2779 		pr_err("VMX not supported by CPU %d\n", cpu);
2780 		return false;
2781 	}
2782 
2783 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2784 	    !this_cpu_has(X86_FEATURE_VMX)) {
2785 		pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
2786 		return false;
2787 	}
2788 
2789 	return true;
2790 }
2791 
2792 static bool kvm_is_vmx_supported(void)
2793 {
2794 	bool supported;
2795 
2796 	migrate_disable();
2797 	supported = __kvm_is_vmx_supported();
2798 	migrate_enable();
2799 
2800 	return supported;
2801 }
2802 
2803 int vmx_check_processor_compat(void)
2804 {
2805 	int cpu = raw_smp_processor_id();
2806 	struct vmcs_config vmcs_conf;
2807 	struct vmx_capability vmx_cap;
2808 
2809 	if (!__kvm_is_vmx_supported())
2810 		return -EIO;
2811 
2812 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
2813 		pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
2814 		return -EIO;
2815 	}
2816 	if (nested)
2817 		nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
2818 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
2819 		pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
2820 		return -EIO;
2821 	}
2822 	return 0;
2823 }
2824 
2825 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2826 {
2827 	u64 msr;
2828 
2829 	cr4_set_bits(X86_CR4_VMXE);
2830 
2831 	asm goto("1: vmxon %[vmxon_pointer]\n\t"
2832 			  _ASM_EXTABLE(1b, %l[fault])
2833 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2834 			  : : fault);
2835 	return 0;
2836 
2837 fault:
2838 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2839 		  rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2840 	cr4_clear_bits(X86_CR4_VMXE);
2841 
2842 	return -EFAULT;
2843 }
2844 
2845 int vmx_enable_virtualization_cpu(void)
2846 {
2847 	int cpu = raw_smp_processor_id();
2848 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2849 	int r;
2850 
2851 	if (cr4_read_shadow() & X86_CR4_VMXE)
2852 		return -EBUSY;
2853 
2854 	/*
2855 	 * This can happen if we hot-added a CPU but failed to allocate
2856 	 * VP assist page for it.
2857 	 */
2858 	if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
2859 		return -EFAULT;
2860 
2861 	intel_pt_handle_vmx(1);
2862 
2863 	r = kvm_cpu_vmxon(phys_addr);
2864 	if (r) {
2865 		intel_pt_handle_vmx(0);
2866 		return r;
2867 	}
2868 
2869 	return 0;
2870 }
2871 
2872 static void vmclear_local_loaded_vmcss(void)
2873 {
2874 	int cpu = raw_smp_processor_id();
2875 	struct loaded_vmcs *v, *n;
2876 
2877 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2878 				 loaded_vmcss_on_cpu_link)
2879 		__loaded_vmcs_clear(v);
2880 }
2881 
2882 void vmx_disable_virtualization_cpu(void)
2883 {
2884 	vmclear_local_loaded_vmcss();
2885 
2886 	if (kvm_cpu_vmxoff())
2887 		kvm_spurious_fault();
2888 
2889 	hv_reset_evmcs();
2890 
2891 	intel_pt_handle_vmx(0);
2892 }
2893 
2894 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2895 {
2896 	int node = cpu_to_node(cpu);
2897 	struct page *pages;
2898 	struct vmcs *vmcs;
2899 
2900 	pages = __alloc_pages_node(node, flags, 0);
2901 	if (!pages)
2902 		return NULL;
2903 	vmcs = page_address(pages);
2904 	memset(vmcs, 0, vmx_basic_vmcs_size(vmcs_config.basic));
2905 
2906 	/* KVM supports Enlightened VMCS v1 only */
2907 	if (kvm_is_using_evmcs())
2908 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2909 	else
2910 		vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic);
2911 
2912 	if (shadow)
2913 		vmcs->hdr.shadow_vmcs = 1;
2914 	return vmcs;
2915 }
2916 
2917 void free_vmcs(struct vmcs *vmcs)
2918 {
2919 	free_page((unsigned long)vmcs);
2920 }
2921 
2922 /*
2923  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2924  */
2925 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2926 {
2927 	if (!loaded_vmcs->vmcs)
2928 		return;
2929 	loaded_vmcs_clear(loaded_vmcs);
2930 	free_vmcs(loaded_vmcs->vmcs);
2931 	loaded_vmcs->vmcs = NULL;
2932 	if (loaded_vmcs->msr_bitmap)
2933 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2934 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2935 }
2936 
2937 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2938 {
2939 	loaded_vmcs->vmcs = alloc_vmcs(false);
2940 	if (!loaded_vmcs->vmcs)
2941 		return -ENOMEM;
2942 
2943 	vmcs_clear(loaded_vmcs->vmcs);
2944 
2945 	loaded_vmcs->shadow_vmcs = NULL;
2946 	loaded_vmcs->hv_timer_soft_disabled = false;
2947 	loaded_vmcs->cpu = -1;
2948 	loaded_vmcs->launched = 0;
2949 
2950 	if (cpu_has_vmx_msr_bitmap()) {
2951 		loaded_vmcs->msr_bitmap = (unsigned long *)
2952 				__get_free_page(GFP_KERNEL_ACCOUNT);
2953 		if (!loaded_vmcs->msr_bitmap)
2954 			goto out_vmcs;
2955 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2956 	}
2957 
2958 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2959 	memset(&loaded_vmcs->controls_shadow, 0,
2960 		sizeof(struct vmcs_controls_shadow));
2961 
2962 	return 0;
2963 
2964 out_vmcs:
2965 	free_loaded_vmcs(loaded_vmcs);
2966 	return -ENOMEM;
2967 }
2968 
2969 static void free_kvm_area(void)
2970 {
2971 	int cpu;
2972 
2973 	for_each_possible_cpu(cpu) {
2974 		free_vmcs(per_cpu(vmxarea, cpu));
2975 		per_cpu(vmxarea, cpu) = NULL;
2976 	}
2977 }
2978 
2979 static __init int alloc_kvm_area(void)
2980 {
2981 	int cpu;
2982 
2983 	for_each_possible_cpu(cpu) {
2984 		struct vmcs *vmcs;
2985 
2986 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2987 		if (!vmcs) {
2988 			free_kvm_area();
2989 			return -ENOMEM;
2990 		}
2991 
2992 		/*
2993 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2994 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2995 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2996 		 *
2997 		 * However, even though not explicitly documented by
2998 		 * TLFS, VMXArea passed as VMXON argument should
2999 		 * still be marked with revision_id reported by
3000 		 * physical CPU.
3001 		 */
3002 		if (kvm_is_using_evmcs())
3003 			vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic);
3004 
3005 		per_cpu(vmxarea, cpu) = vmcs;
3006 	}
3007 	return 0;
3008 }
3009 
3010 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3011 		struct kvm_segment *save)
3012 {
3013 	if (!emulate_invalid_guest_state) {
3014 		/*
3015 		 * CS and SS RPL should be equal during guest entry according
3016 		 * to VMX spec, but in reality it is not always so. Since vcpu
3017 		 * is in the middle of the transition from real mode to
3018 		 * protected mode it is safe to assume that RPL 0 is a good
3019 		 * default value.
3020 		 */
3021 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3022 			save->selector &= ~SEGMENT_RPL_MASK;
3023 		save->dpl = save->selector & SEGMENT_RPL_MASK;
3024 		save->s = 1;
3025 	}
3026 	__vmx_set_segment(vcpu, save, seg);
3027 }
3028 
3029 static void enter_pmode(struct kvm_vcpu *vcpu)
3030 {
3031 	unsigned long flags;
3032 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3033 
3034 	/*
3035 	 * Update real mode segment cache. It may be not up-to-date if segment
3036 	 * register was written while vcpu was in a guest mode.
3037 	 */
3038 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3039 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3040 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3041 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3042 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3043 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3044 
3045 	vmx->rmode.vm86_active = 0;
3046 
3047 	__vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3048 
3049 	flags = vmcs_readl(GUEST_RFLAGS);
3050 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3051 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3052 	vmcs_writel(GUEST_RFLAGS, flags);
3053 
3054 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3055 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3056 
3057 	vmx_update_exception_bitmap(vcpu);
3058 
3059 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3060 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3061 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3062 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3063 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3064 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3065 }
3066 
3067 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3068 {
3069 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3070 	struct kvm_segment var = *save;
3071 
3072 	var.dpl = 0x3;
3073 	if (seg == VCPU_SREG_CS)
3074 		var.type = 0x3;
3075 
3076 	if (!emulate_invalid_guest_state) {
3077 		var.selector = var.base >> 4;
3078 		var.base = var.base & 0xffff0;
3079 		var.limit = 0xffff;
3080 		var.g = 0;
3081 		var.db = 0;
3082 		var.present = 1;
3083 		var.s = 1;
3084 		var.l = 0;
3085 		var.unusable = 0;
3086 		var.type = 0x3;
3087 		var.avl = 0;
3088 		if (save->base & 0xf)
3089 			pr_warn_once("segment base is not paragraph aligned "
3090 				     "when entering protected mode (seg=%d)", seg);
3091 	}
3092 
3093 	vmcs_write16(sf->selector, var.selector);
3094 	vmcs_writel(sf->base, var.base);
3095 	vmcs_write32(sf->limit, var.limit);
3096 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3097 }
3098 
3099 static void enter_rmode(struct kvm_vcpu *vcpu)
3100 {
3101 	unsigned long flags;
3102 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3103 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
3104 
3105 	/*
3106 	 * KVM should never use VM86 to virtualize Real Mode when L2 is active,
3107 	 * as using VM86 is unnecessary if unrestricted guest is enabled, and
3108 	 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0
3109 	 * should VM-Fail and KVM should reject userspace attempts to stuff
3110 	 * CR0.PG=0 when L2 is active.
3111 	 */
3112 	WARN_ON_ONCE(is_guest_mode(vcpu));
3113 
3114 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3115 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3116 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3117 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3118 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3119 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3120 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3121 
3122 	vmx->rmode.vm86_active = 1;
3123 
3124 	vmx_segment_cache_clear(vmx);
3125 
3126 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3127 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3128 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3129 
3130 	flags = vmcs_readl(GUEST_RFLAGS);
3131 	vmx->rmode.save_rflags = flags;
3132 
3133 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3134 
3135 	vmcs_writel(GUEST_RFLAGS, flags);
3136 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3137 	vmx_update_exception_bitmap(vcpu);
3138 
3139 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3140 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3141 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3142 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3143 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3144 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3145 }
3146 
3147 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3148 {
3149 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3150 
3151 	/* Nothing to do if hardware doesn't support EFER. */
3152 	if (!vmx_find_uret_msr(vmx, MSR_EFER))
3153 		return 0;
3154 
3155 	vcpu->arch.efer = efer;
3156 #ifdef CONFIG_X86_64
3157 	if (efer & EFER_LMA)
3158 		vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3159 	else
3160 		vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3161 #else
3162 	if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3163 		return 1;
3164 #endif
3165 
3166 	vmx_setup_uret_msrs(vmx);
3167 	return 0;
3168 }
3169 
3170 #ifdef CONFIG_X86_64
3171 
3172 static void enter_lmode(struct kvm_vcpu *vcpu)
3173 {
3174 	u32 guest_tr_ar;
3175 
3176 	vmx_segment_cache_clear(to_vmx(vcpu));
3177 
3178 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3179 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3180 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3181 				     __func__);
3182 		vmcs_write32(GUEST_TR_AR_BYTES,
3183 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3184 			     | VMX_AR_TYPE_BUSY_64_TSS);
3185 	}
3186 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3187 }
3188 
3189 static void exit_lmode(struct kvm_vcpu *vcpu)
3190 {
3191 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3192 }
3193 
3194 #endif
3195 
3196 void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3197 {
3198 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3199 
3200 	/*
3201 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3202 	 * the CPU is not required to invalidate guest-physical mappings on
3203 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
3204 	 * associated with the root EPT structure and not any particular VPID
3205 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
3206 	 */
3207 	if (enable_ept) {
3208 		ept_sync_global();
3209 	} else if (enable_vpid) {
3210 		if (cpu_has_vmx_invvpid_global()) {
3211 			vpid_sync_vcpu_global();
3212 		} else {
3213 			vpid_sync_vcpu_single(vmx->vpid);
3214 			vpid_sync_vcpu_single(vmx->nested.vpid02);
3215 		}
3216 	}
3217 }
3218 
3219 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3220 {
3221 	if (is_guest_mode(vcpu) && nested_cpu_has_vpid(get_vmcs12(vcpu)))
3222 		return nested_get_vpid02(vcpu);
3223 	return to_vmx(vcpu)->vpid;
3224 }
3225 
3226 void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3227 {
3228 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3229 	u64 root_hpa = mmu->root.hpa;
3230 
3231 	/* No flush required if the current context is invalid. */
3232 	if (!VALID_PAGE(root_hpa))
3233 		return;
3234 
3235 	if (enable_ept)
3236 		ept_sync_context(construct_eptp(vcpu, root_hpa,
3237 						mmu->root_role.level));
3238 	else
3239 		vpid_sync_context(vmx_get_current_vpid(vcpu));
3240 }
3241 
3242 void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3243 {
3244 	/*
3245 	 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3246 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3247 	 */
3248 	vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3249 }
3250 
3251 void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3252 {
3253 	/*
3254 	 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3255 	 * vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit are
3256 	 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3257 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3258 	 * i.e. no explicit INVVPID is necessary.
3259 	 */
3260 	vpid_sync_context(vmx_get_current_vpid(vcpu));
3261 }
3262 
3263 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3264 {
3265 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3266 
3267 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3268 		return;
3269 
3270 	if (is_pae_paging(vcpu)) {
3271 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3272 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3273 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3274 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3275 	}
3276 }
3277 
3278 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3279 {
3280 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3281 
3282 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3283 		return;
3284 
3285 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3286 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3287 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3288 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3289 
3290 	kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3291 }
3292 
3293 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3294 			  CPU_BASED_CR3_STORE_EXITING)
3295 
3296 bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3297 {
3298 	if (is_guest_mode(vcpu))
3299 		return nested_guest_cr0_valid(vcpu, cr0);
3300 
3301 	if (to_vmx(vcpu)->nested.vmxon)
3302 		return nested_host_cr0_valid(vcpu, cr0);
3303 
3304 	return true;
3305 }
3306 
3307 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3308 {
3309 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3310 	unsigned long hw_cr0, old_cr0_pg;
3311 	u32 tmp;
3312 
3313 	old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3314 
3315 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3316 	if (enable_unrestricted_guest)
3317 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3318 	else {
3319 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3320 		if (!enable_ept)
3321 			hw_cr0 |= X86_CR0_WP;
3322 
3323 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3324 			enter_pmode(vcpu);
3325 
3326 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3327 			enter_rmode(vcpu);
3328 	}
3329 
3330 	vmcs_writel(CR0_READ_SHADOW, cr0);
3331 	vmcs_writel(GUEST_CR0, hw_cr0);
3332 	vcpu->arch.cr0 = cr0;
3333 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3334 
3335 #ifdef CONFIG_X86_64
3336 	if (vcpu->arch.efer & EFER_LME) {
3337 		if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3338 			enter_lmode(vcpu);
3339 		else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3340 			exit_lmode(vcpu);
3341 	}
3342 #endif
3343 
3344 	if (enable_ept && !enable_unrestricted_guest) {
3345 		/*
3346 		 * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3347 		 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3348 		 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3349 		 * KVM's CR3 is installed.
3350 		 */
3351 		if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3352 			vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3353 
3354 		/*
3355 		 * When running with EPT but not unrestricted guest, KVM must
3356 		 * intercept CR3 accesses when paging is _disabled_.  This is
3357 		 * necessary because restricted guests can't actually run with
3358 		 * paging disabled, and so KVM stuffs its own CR3 in order to
3359 		 * run the guest when identity mapped page tables.
3360 		 *
3361 		 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3362 		 * update, it may be stale with respect to CR3 interception,
3363 		 * e.g. after nested VM-Enter.
3364 		 *
3365 		 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3366 		 * stores to forward them to L1, even if KVM does not need to
3367 		 * intercept them to preserve its identity mapped page tables.
3368 		 */
3369 		if (!(cr0 & X86_CR0_PG)) {
3370 			exec_controls_setbit(vmx, CR3_EXITING_BITS);
3371 		} else if (!is_guest_mode(vcpu)) {
3372 			exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3373 		} else {
3374 			tmp = exec_controls_get(vmx);
3375 			tmp &= ~CR3_EXITING_BITS;
3376 			tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3377 			exec_controls_set(vmx, tmp);
3378 		}
3379 
3380 		/* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3381 		if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3382 			vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3383 
3384 		/*
3385 		 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3386 		 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3387 		 */
3388 		if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3389 			kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3390 	}
3391 
3392 	/* depends on vcpu->arch.cr0 to be set to a new value */
3393 	vmx->emulation_required = vmx_emulation_required(vcpu);
3394 }
3395 
3396 static int vmx_get_max_ept_level(void)
3397 {
3398 	if (cpu_has_vmx_ept_5levels())
3399 		return 5;
3400 	return 4;
3401 }
3402 
3403 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3404 {
3405 	u64 eptp = VMX_EPTP_MT_WB;
3406 
3407 	eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3408 
3409 	if (enable_ept_ad_bits &&
3410 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3411 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3412 	eptp |= root_hpa;
3413 
3414 	return eptp;
3415 }
3416 
3417 void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3418 {
3419 	struct kvm *kvm = vcpu->kvm;
3420 	bool update_guest_cr3 = true;
3421 	unsigned long guest_cr3;
3422 	u64 eptp;
3423 
3424 	if (enable_ept) {
3425 		eptp = construct_eptp(vcpu, root_hpa, root_level);
3426 		vmcs_write64(EPT_POINTER, eptp);
3427 
3428 		hv_track_root_tdp(vcpu, root_hpa);
3429 
3430 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3431 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3432 		else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3433 			guest_cr3 = vcpu->arch.cr3;
3434 		else /* vmcs.GUEST_CR3 is already up-to-date. */
3435 			update_guest_cr3 = false;
3436 		vmx_ept_load_pdptrs(vcpu);
3437 	} else {
3438 		guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu) |
3439 			    kvm_get_active_cr3_lam_bits(vcpu);
3440 	}
3441 
3442 	if (update_guest_cr3)
3443 		vmcs_writel(GUEST_CR3, guest_cr3);
3444 }
3445 
3446 bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3447 {
3448 	/*
3449 	 * We operate under the default treatment of SMM, so VMX cannot be
3450 	 * enabled under SMM.  Note, whether or not VMXE is allowed at all,
3451 	 * i.e. is a reserved bit, is handled by common x86 code.
3452 	 */
3453 	if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3454 		return false;
3455 
3456 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3457 		return false;
3458 
3459 	return true;
3460 }
3461 
3462 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3463 {
3464 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
3465 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3466 	unsigned long hw_cr4;
3467 
3468 	/*
3469 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3470 	 * is in force while we are in guest mode.  Do not let guests control
3471 	 * this bit, even if host CR4.MCE == 0.
3472 	 */
3473 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3474 	if (enable_unrestricted_guest)
3475 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3476 	else if (vmx->rmode.vm86_active)
3477 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3478 	else
3479 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3480 
3481 	if (vmx_umip_emulated()) {
3482 		if (cr4 & X86_CR4_UMIP) {
3483 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3484 			hw_cr4 &= ~X86_CR4_UMIP;
3485 		} else if (!is_guest_mode(vcpu) ||
3486 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3487 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3488 		}
3489 	}
3490 
3491 	vcpu->arch.cr4 = cr4;
3492 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3493 
3494 	if (!enable_unrestricted_guest) {
3495 		if (enable_ept) {
3496 			if (!is_paging(vcpu)) {
3497 				hw_cr4 &= ~X86_CR4_PAE;
3498 				hw_cr4 |= X86_CR4_PSE;
3499 			} else if (!(cr4 & X86_CR4_PAE)) {
3500 				hw_cr4 &= ~X86_CR4_PAE;
3501 			}
3502 		}
3503 
3504 		/*
3505 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3506 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3507 		 * to be manually disabled when guest switches to non-paging
3508 		 * mode.
3509 		 *
3510 		 * If !enable_unrestricted_guest, the CPU is always running
3511 		 * with CR0.PG=1 and CR4 needs to be modified.
3512 		 * If enable_unrestricted_guest, the CPU automatically
3513 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3514 		 */
3515 		if (!is_paging(vcpu))
3516 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3517 	}
3518 
3519 	vmcs_writel(CR4_READ_SHADOW, cr4);
3520 	vmcs_writel(GUEST_CR4, hw_cr4);
3521 
3522 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3523 		kvm_update_cpuid_runtime(vcpu);
3524 }
3525 
3526 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3527 {
3528 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3529 	u32 ar;
3530 
3531 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3532 		*var = vmx->rmode.segs[seg];
3533 		if (seg == VCPU_SREG_TR
3534 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3535 			return;
3536 		var->base = vmx_read_guest_seg_base(vmx, seg);
3537 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3538 		return;
3539 	}
3540 	var->base = vmx_read_guest_seg_base(vmx, seg);
3541 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3542 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3543 	ar = vmx_read_guest_seg_ar(vmx, seg);
3544 	var->unusable = (ar >> 16) & 1;
3545 	var->type = ar & 15;
3546 	var->s = (ar >> 4) & 1;
3547 	var->dpl = (ar >> 5) & 3;
3548 	/*
3549 	 * Some userspaces do not preserve unusable property. Since usable
3550 	 * segment has to be present according to VMX spec we can use present
3551 	 * property to amend userspace bug by making unusable segment always
3552 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3553 	 * segment as unusable.
3554 	 */
3555 	var->present = !var->unusable;
3556 	var->avl = (ar >> 12) & 1;
3557 	var->l = (ar >> 13) & 1;
3558 	var->db = (ar >> 14) & 1;
3559 	var->g = (ar >> 15) & 1;
3560 }
3561 
3562 u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3563 {
3564 	struct kvm_segment s;
3565 
3566 	if (to_vmx(vcpu)->rmode.vm86_active) {
3567 		vmx_get_segment(vcpu, &s, seg);
3568 		return s.base;
3569 	}
3570 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3571 }
3572 
3573 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3574 {
3575 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3576 
3577 	if (unlikely(vmx->rmode.vm86_active))
3578 		return 0;
3579 	else {
3580 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3581 		return VMX_AR_DPL(ar);
3582 	}
3583 }
3584 
3585 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3586 {
3587 	u32 ar;
3588 
3589 	ar = var->type & 15;
3590 	ar |= (var->s & 1) << 4;
3591 	ar |= (var->dpl & 3) << 5;
3592 	ar |= (var->present & 1) << 7;
3593 	ar |= (var->avl & 1) << 12;
3594 	ar |= (var->l & 1) << 13;
3595 	ar |= (var->db & 1) << 14;
3596 	ar |= (var->g & 1) << 15;
3597 	ar |= (var->unusable || !var->present) << 16;
3598 
3599 	return ar;
3600 }
3601 
3602 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3603 {
3604 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3605 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3606 
3607 	vmx_segment_cache_clear(vmx);
3608 
3609 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3610 		vmx->rmode.segs[seg] = *var;
3611 		if (seg == VCPU_SREG_TR)
3612 			vmcs_write16(sf->selector, var->selector);
3613 		else if (var->s)
3614 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3615 		return;
3616 	}
3617 
3618 	vmcs_writel(sf->base, var->base);
3619 	vmcs_write32(sf->limit, var->limit);
3620 	vmcs_write16(sf->selector, var->selector);
3621 
3622 	/*
3623 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3624 	 * qemu binaries.
3625 	 *   IA32 arch specifies that at the time of processor reset the
3626 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3627 	 * is setting it to 0 in the userland code. This causes invalid guest
3628 	 * state vmexit when "unrestricted guest" mode is turned on.
3629 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3630 	 * tree. Newer qemu binaries with that qemu fix would not need this
3631 	 * kvm hack.
3632 	 */
3633 	if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3634 		var->type |= 0x1; /* Accessed */
3635 
3636 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3637 }
3638 
3639 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3640 {
3641 	__vmx_set_segment(vcpu, var, seg);
3642 
3643 	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3644 }
3645 
3646 void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3647 {
3648 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3649 
3650 	*db = (ar >> 14) & 1;
3651 	*l = (ar >> 13) & 1;
3652 }
3653 
3654 void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3655 {
3656 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3657 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3658 }
3659 
3660 void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3661 {
3662 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3663 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3664 }
3665 
3666 void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3667 {
3668 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3669 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3670 }
3671 
3672 void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3673 {
3674 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3675 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3676 }
3677 
3678 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3679 {
3680 	struct kvm_segment var;
3681 	u32 ar;
3682 
3683 	vmx_get_segment(vcpu, &var, seg);
3684 	var.dpl = 0x3;
3685 	if (seg == VCPU_SREG_CS)
3686 		var.type = 0x3;
3687 	ar = vmx_segment_access_rights(&var);
3688 
3689 	if (var.base != (var.selector << 4))
3690 		return false;
3691 	if (var.limit != 0xffff)
3692 		return false;
3693 	if (ar != 0xf3)
3694 		return false;
3695 
3696 	return true;
3697 }
3698 
3699 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3700 {
3701 	struct kvm_segment cs;
3702 	unsigned int cs_rpl;
3703 
3704 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3705 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3706 
3707 	if (cs.unusable)
3708 		return false;
3709 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3710 		return false;
3711 	if (!cs.s)
3712 		return false;
3713 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3714 		if (cs.dpl > cs_rpl)
3715 			return false;
3716 	} else {
3717 		if (cs.dpl != cs_rpl)
3718 			return false;
3719 	}
3720 	if (!cs.present)
3721 		return false;
3722 
3723 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3724 	return true;
3725 }
3726 
3727 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3728 {
3729 	struct kvm_segment ss;
3730 	unsigned int ss_rpl;
3731 
3732 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3733 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3734 
3735 	if (ss.unusable)
3736 		return true;
3737 	if (ss.type != 3 && ss.type != 7)
3738 		return false;
3739 	if (!ss.s)
3740 		return false;
3741 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3742 		return false;
3743 	if (!ss.present)
3744 		return false;
3745 
3746 	return true;
3747 }
3748 
3749 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3750 {
3751 	struct kvm_segment var;
3752 	unsigned int rpl;
3753 
3754 	vmx_get_segment(vcpu, &var, seg);
3755 	rpl = var.selector & SEGMENT_RPL_MASK;
3756 
3757 	if (var.unusable)
3758 		return true;
3759 	if (!var.s)
3760 		return false;
3761 	if (!var.present)
3762 		return false;
3763 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3764 		if (var.dpl < rpl) /* DPL < RPL */
3765 			return false;
3766 	}
3767 
3768 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3769 	 * rights flags
3770 	 */
3771 	return true;
3772 }
3773 
3774 static bool tr_valid(struct kvm_vcpu *vcpu)
3775 {
3776 	struct kvm_segment tr;
3777 
3778 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3779 
3780 	if (tr.unusable)
3781 		return false;
3782 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3783 		return false;
3784 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3785 		return false;
3786 	if (!tr.present)
3787 		return false;
3788 
3789 	return true;
3790 }
3791 
3792 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3793 {
3794 	struct kvm_segment ldtr;
3795 
3796 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3797 
3798 	if (ldtr.unusable)
3799 		return true;
3800 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3801 		return false;
3802 	if (ldtr.type != 2)
3803 		return false;
3804 	if (!ldtr.present)
3805 		return false;
3806 
3807 	return true;
3808 }
3809 
3810 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3811 {
3812 	struct kvm_segment cs, ss;
3813 
3814 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3815 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3816 
3817 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3818 		 (ss.selector & SEGMENT_RPL_MASK));
3819 }
3820 
3821 /*
3822  * Check if guest state is valid. Returns true if valid, false if
3823  * not.
3824  * We assume that registers are always usable
3825  */
3826 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3827 {
3828 	/* real mode guest state checks */
3829 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3830 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3831 			return false;
3832 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3833 			return false;
3834 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3835 			return false;
3836 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3837 			return false;
3838 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3839 			return false;
3840 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3841 			return false;
3842 	} else {
3843 	/* protected mode guest state checks */
3844 		if (!cs_ss_rpl_check(vcpu))
3845 			return false;
3846 		if (!code_segment_valid(vcpu))
3847 			return false;
3848 		if (!stack_segment_valid(vcpu))
3849 			return false;
3850 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3851 			return false;
3852 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3853 			return false;
3854 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3855 			return false;
3856 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3857 			return false;
3858 		if (!tr_valid(vcpu))
3859 			return false;
3860 		if (!ldtr_valid(vcpu))
3861 			return false;
3862 	}
3863 	/* TODO:
3864 	 * - Add checks on RIP
3865 	 * - Add checks on RFLAGS
3866 	 */
3867 
3868 	return true;
3869 }
3870 
3871 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3872 {
3873 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3874 	u16 data;
3875 	int i;
3876 
3877 	for (i = 0; i < 3; i++) {
3878 		if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3879 			return -EFAULT;
3880 	}
3881 
3882 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3883 	if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3884 		return -EFAULT;
3885 
3886 	data = ~0;
3887 	if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3888 		return -EFAULT;
3889 
3890 	return 0;
3891 }
3892 
3893 static int init_rmode_identity_map(struct kvm *kvm)
3894 {
3895 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3896 	int i, r = 0;
3897 	void __user *uaddr;
3898 	u32 tmp;
3899 
3900 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3901 	mutex_lock(&kvm->slots_lock);
3902 
3903 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3904 		goto out;
3905 
3906 	if (!kvm_vmx->ept_identity_map_addr)
3907 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3908 
3909 	uaddr = __x86_set_memory_region(kvm,
3910 					IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3911 					kvm_vmx->ept_identity_map_addr,
3912 					PAGE_SIZE);
3913 	if (IS_ERR(uaddr)) {
3914 		r = PTR_ERR(uaddr);
3915 		goto out;
3916 	}
3917 
3918 	/* Set up identity-mapping pagetable for EPT in real mode */
3919 	for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3920 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3921 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3922 		if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3923 			r = -EFAULT;
3924 			goto out;
3925 		}
3926 	}
3927 	kvm_vmx->ept_identity_pagetable_done = true;
3928 
3929 out:
3930 	mutex_unlock(&kvm->slots_lock);
3931 	return r;
3932 }
3933 
3934 static void seg_setup(int seg)
3935 {
3936 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3937 	unsigned int ar;
3938 
3939 	vmcs_write16(sf->selector, 0);
3940 	vmcs_writel(sf->base, 0);
3941 	vmcs_write32(sf->limit, 0xffff);
3942 	ar = 0x93;
3943 	if (seg == VCPU_SREG_CS)
3944 		ar |= 0x08; /* code segment */
3945 
3946 	vmcs_write32(sf->ar_bytes, ar);
3947 }
3948 
3949 int allocate_vpid(void)
3950 {
3951 	int vpid;
3952 
3953 	if (!enable_vpid)
3954 		return 0;
3955 	spin_lock(&vmx_vpid_lock);
3956 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3957 	if (vpid < VMX_NR_VPIDS)
3958 		__set_bit(vpid, vmx_vpid_bitmap);
3959 	else
3960 		vpid = 0;
3961 	spin_unlock(&vmx_vpid_lock);
3962 	return vpid;
3963 }
3964 
3965 void free_vpid(int vpid)
3966 {
3967 	if (!enable_vpid || vpid == 0)
3968 		return;
3969 	spin_lock(&vmx_vpid_lock);
3970 	__clear_bit(vpid, vmx_vpid_bitmap);
3971 	spin_unlock(&vmx_vpid_lock);
3972 }
3973 
3974 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3975 {
3976 	/*
3977 	 * When KVM is a nested hypervisor on top of Hyper-V and uses
3978 	 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3979 	 * bitmap has changed.
3980 	 */
3981 	if (kvm_is_using_evmcs()) {
3982 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
3983 
3984 		if (evmcs->hv_enlightenments_control.msr_bitmap)
3985 			evmcs->hv_clean_fields &=
3986 				~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
3987 	}
3988 
3989 	vmx->nested.force_msr_bitmap_recalc = true;
3990 }
3991 
3992 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3993 {
3994 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3995 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3996 	int idx;
3997 
3998 	if (!cpu_has_vmx_msr_bitmap())
3999 		return;
4000 
4001 	vmx_msr_bitmap_l01_changed(vmx);
4002 
4003 	/*
4004 	 * Mark the desired intercept state in shadow bitmap, this is needed
4005 	 * for resync when the MSR filters change.
4006 	 */
4007 	idx = vmx_get_passthrough_msr_slot(msr);
4008 	if (idx >= 0) {
4009 		if (type & MSR_TYPE_R)
4010 			clear_bit(idx, vmx->shadow_msr_intercept.read);
4011 		if (type & MSR_TYPE_W)
4012 			clear_bit(idx, vmx->shadow_msr_intercept.write);
4013 	}
4014 
4015 	if ((type & MSR_TYPE_R) &&
4016 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
4017 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
4018 		type &= ~MSR_TYPE_R;
4019 	}
4020 
4021 	if ((type & MSR_TYPE_W) &&
4022 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
4023 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
4024 		type &= ~MSR_TYPE_W;
4025 	}
4026 
4027 	if (type & MSR_TYPE_R)
4028 		vmx_clear_msr_bitmap_read(msr_bitmap, msr);
4029 
4030 	if (type & MSR_TYPE_W)
4031 		vmx_clear_msr_bitmap_write(msr_bitmap, msr);
4032 }
4033 
4034 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
4035 {
4036 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4037 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
4038 	int idx;
4039 
4040 	if (!cpu_has_vmx_msr_bitmap())
4041 		return;
4042 
4043 	vmx_msr_bitmap_l01_changed(vmx);
4044 
4045 	/*
4046 	 * Mark the desired intercept state in shadow bitmap, this is needed
4047 	 * for resync when the MSR filter changes.
4048 	 */
4049 	idx = vmx_get_passthrough_msr_slot(msr);
4050 	if (idx >= 0) {
4051 		if (type & MSR_TYPE_R)
4052 			set_bit(idx, vmx->shadow_msr_intercept.read);
4053 		if (type & MSR_TYPE_W)
4054 			set_bit(idx, vmx->shadow_msr_intercept.write);
4055 	}
4056 
4057 	if (type & MSR_TYPE_R)
4058 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
4059 
4060 	if (type & MSR_TYPE_W)
4061 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
4062 }
4063 
4064 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
4065 {
4066 	/*
4067 	 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
4068 	 * of the MSR bitmap.  KVM emulates APIC registers up through 0x3f0,
4069 	 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
4070 	 */
4071 	const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
4072 	const int write_idx = read_idx + (0x800 / sizeof(u64));
4073 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4074 	u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
4075 	u8 mode;
4076 
4077 	if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
4078 		return;
4079 
4080 	if (cpu_has_secondary_exec_ctrls() &&
4081 	    (secondary_exec_controls_get(vmx) &
4082 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4083 		mode = MSR_BITMAP_MODE_X2APIC;
4084 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4085 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4086 	} else {
4087 		mode = 0;
4088 	}
4089 
4090 	if (mode == vmx->x2apic_msr_bitmap_mode)
4091 		return;
4092 
4093 	vmx->x2apic_msr_bitmap_mode = mode;
4094 
4095 	/*
4096 	 * Reset the bitmap for MSRs 0x800 - 0x83f.  Leave AMD's uber-extended
4097 	 * registers (0x840 and above) intercepted, KVM doesn't support them.
4098 	 * Intercept all writes by default and poke holes as needed.  Pass
4099 	 * through reads for all valid registers by default in x2APIC+APICv
4100 	 * mode, only the current timer count needs on-demand emulation by KVM.
4101 	 */
4102 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
4103 		msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
4104 	else
4105 		msr_bitmap[read_idx] = ~0ull;
4106 	msr_bitmap[write_idx] = ~0ull;
4107 
4108 	/*
4109 	 * TPR reads and writes can be virtualized even if virtual interrupt
4110 	 * delivery is not in use.
4111 	 */
4112 	vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4113 				  !(mode & MSR_BITMAP_MODE_X2APIC));
4114 
4115 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4116 		vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4117 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4118 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4119 		if (enable_ipiv)
4120 			vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4121 	}
4122 }
4123 
4124 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4125 {
4126 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4127 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4128 	u32 i;
4129 
4130 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4131 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4132 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4133 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4134 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4135 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4136 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4137 	}
4138 }
4139 
4140 void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
4141 {
4142 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4143 	u32 i;
4144 
4145 	if (!cpu_has_vmx_msr_bitmap())
4146 		return;
4147 
4148 	/*
4149 	 * Redo intercept permissions for MSRs that KVM is passing through to
4150 	 * the guest.  Disabling interception will check the new MSR filter and
4151 	 * ensure that KVM enables interception if usersepace wants to filter
4152 	 * the MSR.  MSRs that KVM is already intercepting don't need to be
4153 	 * refreshed since KVM is going to intercept them regardless of what
4154 	 * userspace wants.
4155 	 */
4156 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4157 		u32 msr = vmx_possible_passthrough_msrs[i];
4158 
4159 		if (!test_bit(i, vmx->shadow_msr_intercept.read))
4160 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R);
4161 
4162 		if (!test_bit(i, vmx->shadow_msr_intercept.write))
4163 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W);
4164 	}
4165 
4166 	/* PT MSRs can be passed through iff PT is exposed to the guest. */
4167 	if (vmx_pt_mode_is_host_guest())
4168 		pt_update_intercept_for_msr(vcpu);
4169 }
4170 
4171 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4172 						     int pi_vec)
4173 {
4174 #ifdef CONFIG_SMP
4175 	if (vcpu->mode == IN_GUEST_MODE) {
4176 		/*
4177 		 * The vector of the virtual has already been set in the PIR.
4178 		 * Send a notification event to deliver the virtual interrupt
4179 		 * unless the vCPU is the currently running vCPU, i.e. the
4180 		 * event is being sent from a fastpath VM-Exit handler, in
4181 		 * which case the PIR will be synced to the vIRR before
4182 		 * re-entering the guest.
4183 		 *
4184 		 * When the target is not the running vCPU, the following
4185 		 * possibilities emerge:
4186 		 *
4187 		 * Case 1: vCPU stays in non-root mode. Sending a notification
4188 		 * event posts the interrupt to the vCPU.
4189 		 *
4190 		 * Case 2: vCPU exits to root mode and is still runnable. The
4191 		 * PIR will be synced to the vIRR before re-entering the guest.
4192 		 * Sending a notification event is ok as the host IRQ handler
4193 		 * will ignore the spurious event.
4194 		 *
4195 		 * Case 3: vCPU exits to root mode and is blocked. vcpu_block()
4196 		 * has already synced PIR to vIRR and never blocks the vCPU if
4197 		 * the vIRR is not empty. Therefore, a blocked vCPU here does
4198 		 * not wait for any requested interrupts in PIR, and sending a
4199 		 * notification event also results in a benign, spurious event.
4200 		 */
4201 
4202 		if (vcpu != kvm_get_running_vcpu())
4203 			__apic_send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4204 		return;
4205 	}
4206 #endif
4207 	/*
4208 	 * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
4209 	 * otherwise do nothing as KVM will grab the highest priority pending
4210 	 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
4211 	 */
4212 	kvm_vcpu_wake_up(vcpu);
4213 }
4214 
4215 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4216 						int vector)
4217 {
4218 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4219 
4220 	/*
4221 	 * DO NOT query the vCPU's vmcs12, as vmcs12 is dynamically allocated
4222 	 * and freed, and must not be accessed outside of vcpu->mutex.  The
4223 	 * vCPU's cached PI NV is valid if and only if posted interrupts
4224 	 * enabled in its vmcs12, i.e. checking the vector also checks that
4225 	 * L1 has enabled posted interrupts for L2.
4226 	 */
4227 	if (is_guest_mode(vcpu) &&
4228 	    vector == vmx->nested.posted_intr_nv) {
4229 		/*
4230 		 * If a posted intr is not recognized by hardware,
4231 		 * we will accomplish it in the next vmentry.
4232 		 */
4233 		vmx->nested.pi_pending = true;
4234 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4235 
4236 		/*
4237 		 * This pairs with the smp_mb_*() after setting vcpu->mode in
4238 		 * vcpu_enter_guest() to guarantee the vCPU sees the event
4239 		 * request if triggering a posted interrupt "fails" because
4240 		 * vcpu->mode != IN_GUEST_MODE.  The extra barrier is needed as
4241 		 * the smb_wmb() in kvm_make_request() only ensures everything
4242 		 * done before making the request is visible when the request
4243 		 * is visible, it doesn't ensure ordering between the store to
4244 		 * vcpu->requests and the load from vcpu->mode.
4245 		 */
4246 		smp_mb__after_atomic();
4247 
4248 		/* the PIR and ON have been set by L1. */
4249 		kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4250 		return 0;
4251 	}
4252 	return -1;
4253 }
4254 /*
4255  * Send interrupt to vcpu via posted interrupt way.
4256  * 1. If target vcpu is running(non-root mode), send posted interrupt
4257  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4258  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4259  * interrupt from PIR in next vmentry.
4260  */
4261 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4262 {
4263 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4264 	int r;
4265 
4266 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4267 	if (!r)
4268 		return 0;
4269 
4270 	/* Note, this is called iff the local APIC is in-kernel. */
4271 	if (!vcpu->arch.apic->apicv_active)
4272 		return -1;
4273 
4274 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4275 		return 0;
4276 
4277 	/* If a previous notification has sent the IPI, nothing to do.  */
4278 	if (pi_test_and_set_on(&vmx->pi_desc))
4279 		return 0;
4280 
4281 	/*
4282 	 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4283 	 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4284 	 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4285 	 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4286 	 */
4287 	kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4288 	return 0;
4289 }
4290 
4291 void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4292 			   int trig_mode, int vector)
4293 {
4294 	struct kvm_vcpu *vcpu = apic->vcpu;
4295 
4296 	if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4297 		kvm_lapic_set_irr(vector, apic);
4298 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4299 		kvm_vcpu_kick(vcpu);
4300 	} else {
4301 		trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4302 					   trig_mode, vector);
4303 	}
4304 }
4305 
4306 /*
4307  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4308  * will not change in the lifetime of the guest.
4309  * Note that host-state that does change is set elsewhere. E.g., host-state
4310  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4311  */
4312 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4313 {
4314 	u32 low32, high32;
4315 	unsigned long tmpl;
4316 	unsigned long cr0, cr3, cr4;
4317 
4318 	cr0 = read_cr0();
4319 	WARN_ON(cr0 & X86_CR0_TS);
4320 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4321 
4322 	/*
4323 	 * Save the most likely value for this task's CR3 in the VMCS.
4324 	 * We can't use __get_current_cr3_fast() because we're not atomic.
4325 	 */
4326 	cr3 = __read_cr3();
4327 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
4328 	vmx->loaded_vmcs->host_state.cr3 = cr3;
4329 
4330 	/* Save the most likely value for this task's CR4 in the VMCS. */
4331 	cr4 = cr4_read_shadow();
4332 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4333 	vmx->loaded_vmcs->host_state.cr4 = cr4;
4334 
4335 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4336 #ifdef CONFIG_X86_64
4337 	/*
4338 	 * Load null selectors, so we can avoid reloading them in
4339 	 * vmx_prepare_switch_to_host(), in case userspace uses
4340 	 * the null selectors too (the expected case).
4341 	 */
4342 	vmcs_write16(HOST_DS_SELECTOR, 0);
4343 	vmcs_write16(HOST_ES_SELECTOR, 0);
4344 #else
4345 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4346 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4347 #endif
4348 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4349 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4350 
4351 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4352 
4353 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4354 
4355 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4356 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4357 
4358 	/*
4359 	 * SYSENTER is used for 32-bit system calls on either 32-bit or
4360 	 * 64-bit kernels.  It is always zero If neither is allowed, otherwise
4361 	 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4362 	 * have already done so!).
4363 	 */
4364 	if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4365 		vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4366 
4367 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4368 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4369 
4370 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4371 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4372 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4373 	}
4374 
4375 	if (cpu_has_load_ia32_efer())
4376 		vmcs_write64(HOST_IA32_EFER, kvm_host.efer);
4377 }
4378 
4379 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4380 {
4381 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4382 
4383 	vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4384 					  ~vcpu->arch.cr4_guest_rsvd_bits;
4385 	if (!enable_ept) {
4386 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4387 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4388 	}
4389 	if (is_guest_mode(&vmx->vcpu))
4390 		vcpu->arch.cr4_guest_owned_bits &=
4391 			~get_vmcs12(vcpu)->cr4_guest_host_mask;
4392 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4393 }
4394 
4395 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4396 {
4397 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4398 
4399 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4400 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4401 
4402 	if (!enable_vnmi)
4403 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4404 
4405 	if (!enable_preemption_timer)
4406 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4407 
4408 	return pin_based_exec_ctrl;
4409 }
4410 
4411 static u32 vmx_vmentry_ctrl(void)
4412 {
4413 	u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4414 
4415 	if (vmx_pt_mode_is_system())
4416 		vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4417 				  VM_ENTRY_LOAD_IA32_RTIT_CTL);
4418 	/*
4419 	 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4420 	 */
4421 	vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4422 			  VM_ENTRY_LOAD_IA32_EFER |
4423 			  VM_ENTRY_IA32E_MODE);
4424 
4425 	if (cpu_has_perf_global_ctrl_bug())
4426 		vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4427 
4428 	return vmentry_ctrl;
4429 }
4430 
4431 static u32 vmx_vmexit_ctrl(void)
4432 {
4433 	u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4434 
4435 	/*
4436 	 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4437 	 * nested virtualization and thus allowed to be set in vmcs12.
4438 	 */
4439 	vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4440 			 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4441 
4442 	if (vmx_pt_mode_is_system())
4443 		vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4444 				 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4445 
4446 	if (cpu_has_perf_global_ctrl_bug())
4447 		vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4448 
4449 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4450 	return vmexit_ctrl &
4451 		~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4452 }
4453 
4454 void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4455 {
4456 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4457 
4458 	if (is_guest_mode(vcpu)) {
4459 		vmx->nested.update_vmcs01_apicv_status = true;
4460 		return;
4461 	}
4462 
4463 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4464 
4465 	if (kvm_vcpu_apicv_active(vcpu)) {
4466 		secondary_exec_controls_setbit(vmx,
4467 					       SECONDARY_EXEC_APIC_REGISTER_VIRT |
4468 					       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4469 		if (enable_ipiv)
4470 			tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4471 	} else {
4472 		secondary_exec_controls_clearbit(vmx,
4473 						 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4474 						 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4475 		if (enable_ipiv)
4476 			tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4477 	}
4478 
4479 	vmx_update_msr_bitmap_x2apic(vcpu);
4480 }
4481 
4482 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4483 {
4484 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4485 
4486 	/*
4487 	 * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4488 	 * vmcs12 and propagated to vmcs02 when set in vmcs12.
4489 	 */
4490 	exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4491 			  CPU_BASED_USE_IO_BITMAPS |
4492 			  CPU_BASED_MONITOR_TRAP_FLAG |
4493 			  CPU_BASED_PAUSE_EXITING);
4494 
4495 	/* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4496 	exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4497 			  CPU_BASED_NMI_WINDOW_EXITING);
4498 
4499 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4500 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4501 
4502 	if (!cpu_need_tpr_shadow(&vmx->vcpu))
4503 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4504 
4505 #ifdef CONFIG_X86_64
4506 	if (exec_control & CPU_BASED_TPR_SHADOW)
4507 		exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4508 				  CPU_BASED_CR8_STORE_EXITING);
4509 	else
4510 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4511 				CPU_BASED_CR8_LOAD_EXITING;
4512 #endif
4513 	/* No need to intercept CR3 access or INVPLG when using EPT. */
4514 	if (enable_ept)
4515 		exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4516 				  CPU_BASED_CR3_STORE_EXITING |
4517 				  CPU_BASED_INVLPG_EXITING);
4518 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4519 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4520 				CPU_BASED_MONITOR_EXITING);
4521 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4522 		exec_control &= ~CPU_BASED_HLT_EXITING;
4523 	return exec_control;
4524 }
4525 
4526 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4527 {
4528 	u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4529 
4530 	/*
4531 	 * IPI virtualization relies on APICv. Disable IPI virtualization if
4532 	 * APICv is inhibited.
4533 	 */
4534 	if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4535 		exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4536 
4537 	return exec_control;
4538 }
4539 
4540 /*
4541  * Adjust a single secondary execution control bit to intercept/allow an
4542  * instruction in the guest.  This is usually done based on whether or not a
4543  * feature has been exposed to the guest in order to correctly emulate faults.
4544  */
4545 static inline void
4546 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4547 				  u32 control, bool enabled, bool exiting)
4548 {
4549 	/*
4550 	 * If the control is for an opt-in feature, clear the control if the
4551 	 * feature is not exposed to the guest, i.e. not enabled.  If the
4552 	 * control is opt-out, i.e. an exiting control, clear the control if
4553 	 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4554 	 * disabled for the associated instruction.  Note, the caller is
4555 	 * responsible presetting exec_control to set all supported bits.
4556 	 */
4557 	if (enabled == exiting)
4558 		*exec_control &= ~control;
4559 
4560 	/*
4561 	 * Update the nested MSR settings so that a nested VMM can/can't set
4562 	 * controls for features that are/aren't exposed to the guest.
4563 	 */
4564 	if (nested) {
4565 		/*
4566 		 * All features that can be added or removed to VMX MSRs must
4567 		 * be supported in the first place for nested virtualization.
4568 		 */
4569 		if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4570 			enabled = false;
4571 
4572 		if (enabled)
4573 			vmx->nested.msrs.secondary_ctls_high |= control;
4574 		else
4575 			vmx->nested.msrs.secondary_ctls_high &= ~control;
4576 	}
4577 }
4578 
4579 /*
4580  * Wrapper macro for the common case of adjusting a secondary execution control
4581  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4582  * verifies that the control is actually supported by KVM and hardware.
4583  */
4584 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting)	\
4585 ({												\
4586 	struct kvm_vcpu *__vcpu = &(vmx)->vcpu;							\
4587 	bool __enabled;										\
4588 												\
4589 	if (cpu_has_vmx_##name()) {								\
4590 		if (kvm_is_governed_feature(X86_FEATURE_##feat_name))				\
4591 			__enabled = guest_can_use(__vcpu, X86_FEATURE_##feat_name);		\
4592 		else										\
4593 			__enabled = guest_cpuid_has(__vcpu, X86_FEATURE_##feat_name);		\
4594 		vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\
4595 						  __enabled, exiting);				\
4596 	}											\
4597 })
4598 
4599 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4600 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4601 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4602 
4603 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4604 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4605 
4606 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4607 {
4608 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4609 
4610 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4611 
4612 	if (vmx_pt_mode_is_system())
4613 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4614 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4615 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4616 	if (vmx->vpid == 0)
4617 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4618 	if (!enable_ept) {
4619 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4620 		exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
4621 		enable_unrestricted_guest = 0;
4622 	}
4623 	if (!enable_unrestricted_guest)
4624 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4625 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4626 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4627 	if (!kvm_vcpu_apicv_active(vcpu))
4628 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4629 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4630 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4631 
4632 	/*
4633 	 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4634 	 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4635 	 */
4636 	exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
4637 
4638 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4639 	 * in vmx_set_cr4.  */
4640 	exec_control &= ~SECONDARY_EXEC_DESC;
4641 
4642 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4643 	   (handle_vmptrld).
4644 	   We can NOT enable shadow_vmcs here because we don't have yet
4645 	   a current VMCS12
4646 	*/
4647 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4648 
4649 	/*
4650 	 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4651 	 * it needs to be set here when dirty logging is already active, e.g.
4652 	 * if this vCPU was created after dirty logging was enabled.
4653 	 */
4654 	if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
4655 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4656 
4657 	vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES);
4658 
4659 	/*
4660 	 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4661 	 * feature is exposed to the guest.  This creates a virtualization hole
4662 	 * if both are supported in hardware but only one is exposed to the
4663 	 * guest, but letting the guest execute RDTSCP or RDPID when either one
4664 	 * is advertised is preferable to emulating the advertised instruction
4665 	 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4666 	 */
4667 	if (cpu_has_vmx_rdtscp()) {
4668 		bool rdpid_or_rdtscp_enabled =
4669 			guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4670 			guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4671 
4672 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4673 						  SECONDARY_EXEC_ENABLE_RDTSCP,
4674 						  rdpid_or_rdtscp_enabled, false);
4675 	}
4676 
4677 	vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4678 
4679 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4680 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4681 
4682 	vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4683 				    ENABLE_USR_WAIT_PAUSE, false);
4684 
4685 	if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4686 		exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4687 
4688 	if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4689 		exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4690 
4691 	return exec_control;
4692 }
4693 
4694 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4695 {
4696 	return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4697 }
4698 
4699 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4700 {
4701 	struct page *pages;
4702 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4703 
4704 	if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4705 		return 0;
4706 
4707 	if (kvm_vmx->pid_table)
4708 		return 0;
4709 
4710 	pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO,
4711 			    vmx_get_pid_table_order(kvm));
4712 	if (!pages)
4713 		return -ENOMEM;
4714 
4715 	kvm_vmx->pid_table = (void *)page_address(pages);
4716 	return 0;
4717 }
4718 
4719 int vmx_vcpu_precreate(struct kvm *kvm)
4720 {
4721 	return vmx_alloc_ipiv_pid_table(kvm);
4722 }
4723 
4724 #define VMX_XSS_EXIT_BITMAP 0
4725 
4726 static void init_vmcs(struct vcpu_vmx *vmx)
4727 {
4728 	struct kvm *kvm = vmx->vcpu.kvm;
4729 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4730 
4731 	if (nested)
4732 		nested_vmx_set_vmcs_shadowing_bitmap();
4733 
4734 	if (cpu_has_vmx_msr_bitmap())
4735 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4736 
4737 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4738 
4739 	/* Control */
4740 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4741 
4742 	exec_controls_set(vmx, vmx_exec_control(vmx));
4743 
4744 	if (cpu_has_secondary_exec_ctrls()) {
4745 		secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4746 		if (vmx->ve_info)
4747 			vmcs_write64(VE_INFORMATION_ADDRESS,
4748 				     __pa(vmx->ve_info));
4749 	}
4750 
4751 	if (cpu_has_tertiary_exec_ctrls())
4752 		tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4753 
4754 	if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4755 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4756 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4757 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4758 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4759 
4760 		vmcs_write16(GUEST_INTR_STATUS, 0);
4761 
4762 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4763 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4764 	}
4765 
4766 	if (vmx_can_use_ipiv(&vmx->vcpu)) {
4767 		vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4768 		vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4769 	}
4770 
4771 	if (!kvm_pause_in_guest(kvm)) {
4772 		vmcs_write32(PLE_GAP, ple_gap);
4773 		vmx->ple_window = ple_window;
4774 		vmx->ple_window_dirty = true;
4775 	}
4776 
4777 	if (kvm_notify_vmexit_enabled(kvm))
4778 		vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4779 
4780 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4781 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4782 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4783 
4784 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4785 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4786 	vmx_set_constant_host_state(vmx);
4787 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4788 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4789 
4790 	if (cpu_has_vmx_vmfunc())
4791 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4792 
4793 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4794 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4795 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4796 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4797 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4798 
4799 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4800 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4801 
4802 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4803 
4804 	/* 22.2.1, 20.8.1 */
4805 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4806 
4807 	vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4808 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4809 
4810 	set_cr4_guest_host_mask(vmx);
4811 
4812 	if (vmx->vpid != 0)
4813 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4814 
4815 	if (cpu_has_vmx_xsaves())
4816 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4817 
4818 	if (enable_pml) {
4819 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4820 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4821 	}
4822 
4823 	vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4824 
4825 	if (vmx_pt_mode_is_host_guest()) {
4826 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4827 		/* Bit[6~0] are forced to 1, writes are ignored. */
4828 		vmx->pt_desc.guest.output_mask = 0x7F;
4829 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4830 	}
4831 
4832 	vmcs_write32(GUEST_SYSENTER_CS, 0);
4833 	vmcs_writel(GUEST_SYSENTER_ESP, 0);
4834 	vmcs_writel(GUEST_SYSENTER_EIP, 0);
4835 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4836 
4837 	if (cpu_has_vmx_tpr_shadow()) {
4838 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4839 		if (cpu_need_tpr_shadow(&vmx->vcpu))
4840 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4841 				     __pa(vmx->vcpu.arch.apic->regs));
4842 		vmcs_write32(TPR_THRESHOLD, 0);
4843 	}
4844 
4845 	vmx_setup_uret_msrs(vmx);
4846 }
4847 
4848 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4849 {
4850 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4851 
4852 	init_vmcs(vmx);
4853 
4854 	if (nested)
4855 		memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4856 
4857 	vcpu_setup_sgx_lepubkeyhash(vcpu);
4858 
4859 	vmx->nested.posted_intr_nv = -1;
4860 	vmx->nested.vmxon_ptr = INVALID_GPA;
4861 	vmx->nested.current_vmptr = INVALID_GPA;
4862 
4863 #ifdef CONFIG_KVM_HYPERV
4864 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4865 #endif
4866 
4867 	vcpu->arch.microcode_version = 0x100000000ULL;
4868 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4869 
4870 	/*
4871 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4872 	 * or POSTED_INTR_WAKEUP_VECTOR.
4873 	 */
4874 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4875 	__pi_set_sn(&vmx->pi_desc);
4876 }
4877 
4878 void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4879 {
4880 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4881 
4882 	if (!init_event)
4883 		__vmx_vcpu_reset(vcpu);
4884 
4885 	vmx->rmode.vm86_active = 0;
4886 	vmx->spec_ctrl = 0;
4887 
4888 	vmx->msr_ia32_umwait_control = 0;
4889 
4890 	vmx->hv_deadline_tsc = -1;
4891 	kvm_set_cr8(vcpu, 0);
4892 
4893 	seg_setup(VCPU_SREG_CS);
4894 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4895 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4896 
4897 	seg_setup(VCPU_SREG_DS);
4898 	seg_setup(VCPU_SREG_ES);
4899 	seg_setup(VCPU_SREG_FS);
4900 	seg_setup(VCPU_SREG_GS);
4901 	seg_setup(VCPU_SREG_SS);
4902 
4903 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4904 	vmcs_writel(GUEST_TR_BASE, 0);
4905 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4906 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4907 
4908 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4909 	vmcs_writel(GUEST_LDTR_BASE, 0);
4910 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4911 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4912 
4913 	vmcs_writel(GUEST_GDTR_BASE, 0);
4914 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4915 
4916 	vmcs_writel(GUEST_IDTR_BASE, 0);
4917 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4918 
4919 	vmx_segment_cache_clear(vmx);
4920 	kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4921 
4922 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4923 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4924 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4925 	if (kvm_mpx_supported())
4926 		vmcs_write64(GUEST_BNDCFGS, 0);
4927 
4928 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4929 
4930 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4931 
4932 	vpid_sync_context(vmx->vpid);
4933 
4934 	vmx_update_fb_clear_dis(vcpu, vmx);
4935 }
4936 
4937 void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4938 {
4939 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4940 }
4941 
4942 void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4943 {
4944 	if (!enable_vnmi ||
4945 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4946 		vmx_enable_irq_window(vcpu);
4947 		return;
4948 	}
4949 
4950 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4951 }
4952 
4953 void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4954 {
4955 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4956 	uint32_t intr;
4957 	int irq = vcpu->arch.interrupt.nr;
4958 
4959 	trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4960 
4961 	++vcpu->stat.irq_injections;
4962 	if (vmx->rmode.vm86_active) {
4963 		int inc_eip = 0;
4964 		if (vcpu->arch.interrupt.soft)
4965 			inc_eip = vcpu->arch.event_exit_inst_len;
4966 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4967 		return;
4968 	}
4969 	intr = irq | INTR_INFO_VALID_MASK;
4970 	if (vcpu->arch.interrupt.soft) {
4971 		intr |= INTR_TYPE_SOFT_INTR;
4972 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4973 			     vmx->vcpu.arch.event_exit_inst_len);
4974 	} else
4975 		intr |= INTR_TYPE_EXT_INTR;
4976 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4977 
4978 	vmx_clear_hlt(vcpu);
4979 }
4980 
4981 void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4982 {
4983 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4984 
4985 	if (!enable_vnmi) {
4986 		/*
4987 		 * Tracking the NMI-blocked state in software is built upon
4988 		 * finding the next open IRQ window. This, in turn, depends on
4989 		 * well-behaving guests: They have to keep IRQs disabled at
4990 		 * least as long as the NMI handler runs. Otherwise we may
4991 		 * cause NMI nesting, maybe breaking the guest. But as this is
4992 		 * highly unlikely, we can live with the residual risk.
4993 		 */
4994 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4995 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4996 	}
4997 
4998 	++vcpu->stat.nmi_injections;
4999 	vmx->loaded_vmcs->nmi_known_unmasked = false;
5000 
5001 	if (vmx->rmode.vm86_active) {
5002 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
5003 		return;
5004 	}
5005 
5006 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5007 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5008 
5009 	vmx_clear_hlt(vcpu);
5010 }
5011 
5012 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5013 {
5014 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5015 	bool masked;
5016 
5017 	if (!enable_vnmi)
5018 		return vmx->loaded_vmcs->soft_vnmi_blocked;
5019 	if (vmx->loaded_vmcs->nmi_known_unmasked)
5020 		return false;
5021 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5022 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5023 	return masked;
5024 }
5025 
5026 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5027 {
5028 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5029 
5030 	if (!enable_vnmi) {
5031 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
5032 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
5033 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
5034 		}
5035 	} else {
5036 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5037 		if (masked)
5038 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5039 				      GUEST_INTR_STATE_NMI);
5040 		else
5041 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5042 					GUEST_INTR_STATE_NMI);
5043 	}
5044 }
5045 
5046 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
5047 {
5048 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5049 		return false;
5050 
5051 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
5052 		return true;
5053 
5054 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5055 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
5056 		 GUEST_INTR_STATE_NMI));
5057 }
5058 
5059 int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5060 {
5061 	if (to_vmx(vcpu)->nested.nested_run_pending)
5062 		return -EBUSY;
5063 
5064 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
5065 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5066 		return -EBUSY;
5067 
5068 	return !vmx_nmi_blocked(vcpu);
5069 }
5070 
5071 bool __vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5072 {
5073 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
5074 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5075 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5076 }
5077 
5078 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5079 {
5080 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5081 		return false;
5082 
5083 	return __vmx_interrupt_blocked(vcpu);
5084 }
5085 
5086 int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5087 {
5088 	if (to_vmx(vcpu)->nested.nested_run_pending)
5089 		return -EBUSY;
5090 
5091 	/*
5092 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
5093 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
5094 	 */
5095 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5096 		return -EBUSY;
5097 
5098 	return !vmx_interrupt_blocked(vcpu);
5099 }
5100 
5101 int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5102 {
5103 	void __user *ret;
5104 
5105 	if (enable_unrestricted_guest)
5106 		return 0;
5107 
5108 	mutex_lock(&kvm->slots_lock);
5109 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5110 				      PAGE_SIZE * 3);
5111 	mutex_unlock(&kvm->slots_lock);
5112 
5113 	if (IS_ERR(ret))
5114 		return PTR_ERR(ret);
5115 
5116 	to_kvm_vmx(kvm)->tss_addr = addr;
5117 
5118 	return init_rmode_tss(kvm, ret);
5119 }
5120 
5121 int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5122 {
5123 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5124 	return 0;
5125 }
5126 
5127 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5128 {
5129 	switch (vec) {
5130 	case BP_VECTOR:
5131 		/*
5132 		 * Update instruction length as we may reinject the exception
5133 		 * from user space while in guest debugging mode.
5134 		 */
5135 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5136 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5137 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5138 			return false;
5139 		fallthrough;
5140 	case DB_VECTOR:
5141 		return !(vcpu->guest_debug &
5142 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5143 	case DE_VECTOR:
5144 	case OF_VECTOR:
5145 	case BR_VECTOR:
5146 	case UD_VECTOR:
5147 	case DF_VECTOR:
5148 	case SS_VECTOR:
5149 	case GP_VECTOR:
5150 	case MF_VECTOR:
5151 		return true;
5152 	}
5153 	return false;
5154 }
5155 
5156 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5157 				  int vec, u32 err_code)
5158 {
5159 	/*
5160 	 * Instruction with address size override prefix opcode 0x67
5161 	 * Cause the #SS fault with 0 error code in VM86 mode.
5162 	 */
5163 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5164 		if (kvm_emulate_instruction(vcpu, 0)) {
5165 			if (vcpu->arch.halt_request) {
5166 				vcpu->arch.halt_request = 0;
5167 				return kvm_emulate_halt_noskip(vcpu);
5168 			}
5169 			return 1;
5170 		}
5171 		return 0;
5172 	}
5173 
5174 	/*
5175 	 * Forward all other exceptions that are valid in real mode.
5176 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5177 	 *        the required debugging infrastructure rework.
5178 	 */
5179 	kvm_queue_exception(vcpu, vec);
5180 	return 1;
5181 }
5182 
5183 static int handle_machine_check(struct kvm_vcpu *vcpu)
5184 {
5185 	/* handled by vmx_vcpu_run() */
5186 	return 1;
5187 }
5188 
5189 /*
5190  * If the host has split lock detection disabled, then #AC is
5191  * unconditionally injected into the guest, which is the pre split lock
5192  * detection behaviour.
5193  *
5194  * If the host has split lock detection enabled then #AC is
5195  * only injected into the guest when:
5196  *  - Guest CPL == 3 (user mode)
5197  *  - Guest has #AC detection enabled in CR0
5198  *  - Guest EFLAGS has AC bit set
5199  */
5200 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5201 {
5202 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5203 		return true;
5204 
5205 	return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
5206 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5207 }
5208 
5209 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5210 {
5211 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5212 	struct kvm_run *kvm_run = vcpu->run;
5213 	u32 intr_info, ex_no, error_code;
5214 	unsigned long cr2, dr6;
5215 	u32 vect_info;
5216 
5217 	vect_info = vmx->idt_vectoring_info;
5218 	intr_info = vmx_get_intr_info(vcpu);
5219 
5220 	/*
5221 	 * Machine checks are handled by handle_exception_irqoff(), or by
5222 	 * vmx_vcpu_run() if a #MC occurs on VM-Entry.  NMIs are handled by
5223 	 * vmx_vcpu_enter_exit().
5224 	 */
5225 	if (is_machine_check(intr_info) || is_nmi(intr_info))
5226 		return 1;
5227 
5228 	/*
5229 	 * Queue the exception here instead of in handle_nm_fault_irqoff().
5230 	 * This ensures the nested_vmx check is not skipped so vmexit can
5231 	 * be reflected to L1 (when it intercepts #NM) before reaching this
5232 	 * point.
5233 	 */
5234 	if (is_nm_fault(intr_info)) {
5235 		kvm_queue_exception(vcpu, NM_VECTOR);
5236 		return 1;
5237 	}
5238 
5239 	if (is_invalid_opcode(intr_info))
5240 		return handle_ud(vcpu);
5241 
5242 	if (WARN_ON_ONCE(is_ve_fault(intr_info))) {
5243 		struct vmx_ve_information *ve_info = vmx->ve_info;
5244 
5245 		WARN_ONCE(ve_info->exit_reason != EXIT_REASON_EPT_VIOLATION,
5246 			  "Unexpected #VE on VM-Exit reason 0x%x", ve_info->exit_reason);
5247 		dump_vmcs(vcpu);
5248 		kvm_mmu_print_sptes(vcpu, ve_info->guest_physical_address, "#VE");
5249 		return 1;
5250 	}
5251 
5252 	error_code = 0;
5253 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5254 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5255 
5256 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5257 		WARN_ON_ONCE(!enable_vmware_backdoor);
5258 
5259 		/*
5260 		 * VMware backdoor emulation on #GP interception only handles
5261 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5262 		 * error code on #GP.
5263 		 */
5264 		if (error_code) {
5265 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5266 			return 1;
5267 		}
5268 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5269 	}
5270 
5271 	/*
5272 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5273 	 * MMIO, it is better to report an internal error.
5274 	 * See the comments in vmx_handle_exit.
5275 	 */
5276 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5277 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5278 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5279 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5280 		vcpu->run->internal.ndata = 4;
5281 		vcpu->run->internal.data[0] = vect_info;
5282 		vcpu->run->internal.data[1] = intr_info;
5283 		vcpu->run->internal.data[2] = error_code;
5284 		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5285 		return 0;
5286 	}
5287 
5288 	if (is_page_fault(intr_info)) {
5289 		cr2 = vmx_get_exit_qual(vcpu);
5290 		if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5291 			/*
5292 			 * EPT will cause page fault only if we need to
5293 			 * detect illegal GPAs.
5294 			 */
5295 			WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5296 			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5297 			return 1;
5298 		} else
5299 			return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5300 	}
5301 
5302 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5303 
5304 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5305 		return handle_rmode_exception(vcpu, ex_no, error_code);
5306 
5307 	switch (ex_no) {
5308 	case DB_VECTOR:
5309 		dr6 = vmx_get_exit_qual(vcpu);
5310 		if (!(vcpu->guest_debug &
5311 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5312 			/*
5313 			 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5314 			 * instruction.  ICEBP generates a trap-like #DB, but
5315 			 * despite its interception control being tied to #DB,
5316 			 * is an instruction intercept, i.e. the VM-Exit occurs
5317 			 * on the ICEBP itself.  Use the inner "skip" helper to
5318 			 * avoid single-step #DB and MTF updates, as ICEBP is
5319 			 * higher priority.  Note, skipping ICEBP still clears
5320 			 * STI and MOVSS blocking.
5321 			 *
5322 			 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5323 			 * if single-step is enabled in RFLAGS and STI or MOVSS
5324 			 * blocking is active, as the CPU doesn't set the bit
5325 			 * on VM-Exit due to #DB interception.  VM-Entry has a
5326 			 * consistency check that a single-step #DB is pending
5327 			 * in this scenario as the previous instruction cannot
5328 			 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5329 			 * don't modify RFLAGS), therefore the one instruction
5330 			 * delay when activating single-step breakpoints must
5331 			 * have already expired.  Note, the CPU sets/clears BS
5332 			 * as appropriate for all other VM-Exits types.
5333 			 */
5334 			if (is_icebp(intr_info))
5335 				WARN_ON(!skip_emulated_instruction(vcpu));
5336 			else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5337 				 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5338 				  (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5339 				vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5340 					    vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5341 
5342 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5343 			return 1;
5344 		}
5345 		kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5346 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5347 		fallthrough;
5348 	case BP_VECTOR:
5349 		/*
5350 		 * Update instruction length as we may reinject #BP from
5351 		 * user space while in guest debugging mode. Reading it for
5352 		 * #DB as well causes no harm, it is not used in that case.
5353 		 */
5354 		vmx->vcpu.arch.event_exit_inst_len =
5355 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5356 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5357 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5358 		kvm_run->debug.arch.exception = ex_no;
5359 		break;
5360 	case AC_VECTOR:
5361 		if (vmx_guest_inject_ac(vcpu)) {
5362 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5363 			return 1;
5364 		}
5365 
5366 		/*
5367 		 * Handle split lock. Depending on detection mode this will
5368 		 * either warn and disable split lock detection for this
5369 		 * task or force SIGBUS on it.
5370 		 */
5371 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5372 			return 1;
5373 		fallthrough;
5374 	default:
5375 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5376 		kvm_run->ex.exception = ex_no;
5377 		kvm_run->ex.error_code = error_code;
5378 		break;
5379 	}
5380 	return 0;
5381 }
5382 
5383 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5384 {
5385 	++vcpu->stat.irq_exits;
5386 	return 1;
5387 }
5388 
5389 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5390 {
5391 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5392 	vcpu->mmio_needed = 0;
5393 	return 0;
5394 }
5395 
5396 static int handle_io(struct kvm_vcpu *vcpu)
5397 {
5398 	unsigned long exit_qualification;
5399 	int size, in, string;
5400 	unsigned port;
5401 
5402 	exit_qualification = vmx_get_exit_qual(vcpu);
5403 	string = (exit_qualification & 16) != 0;
5404 
5405 	++vcpu->stat.io_exits;
5406 
5407 	if (string)
5408 		return kvm_emulate_instruction(vcpu, 0);
5409 
5410 	port = exit_qualification >> 16;
5411 	size = (exit_qualification & 7) + 1;
5412 	in = (exit_qualification & 8) != 0;
5413 
5414 	return kvm_fast_pio(vcpu, size, port, in);
5415 }
5416 
5417 void vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5418 {
5419 	/*
5420 	 * Patch in the VMCALL instruction:
5421 	 */
5422 	hypercall[0] = 0x0f;
5423 	hypercall[1] = 0x01;
5424 	hypercall[2] = 0xc1;
5425 }
5426 
5427 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5428 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5429 {
5430 	if (is_guest_mode(vcpu)) {
5431 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5432 		unsigned long orig_val = val;
5433 
5434 		/*
5435 		 * We get here when L2 changed cr0 in a way that did not change
5436 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5437 		 * but did change L0 shadowed bits. So we first calculate the
5438 		 * effective cr0 value that L1 would like to write into the
5439 		 * hardware. It consists of the L2-owned bits from the new
5440 		 * value combined with the L1-owned bits from L1's guest_cr0.
5441 		 */
5442 		val = (val & ~vmcs12->cr0_guest_host_mask) |
5443 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5444 
5445 		if (kvm_set_cr0(vcpu, val))
5446 			return 1;
5447 		vmcs_writel(CR0_READ_SHADOW, orig_val);
5448 		return 0;
5449 	} else {
5450 		return kvm_set_cr0(vcpu, val);
5451 	}
5452 }
5453 
5454 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5455 {
5456 	if (is_guest_mode(vcpu)) {
5457 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5458 		unsigned long orig_val = val;
5459 
5460 		/* analogously to handle_set_cr0 */
5461 		val = (val & ~vmcs12->cr4_guest_host_mask) |
5462 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5463 		if (kvm_set_cr4(vcpu, val))
5464 			return 1;
5465 		vmcs_writel(CR4_READ_SHADOW, orig_val);
5466 		return 0;
5467 	} else
5468 		return kvm_set_cr4(vcpu, val);
5469 }
5470 
5471 static int handle_desc(struct kvm_vcpu *vcpu)
5472 {
5473 	/*
5474 	 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this
5475 	 * and other code needs to be updated if UMIP can be guest owned.
5476 	 */
5477 	BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP);
5478 
5479 	WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP));
5480 	return kvm_emulate_instruction(vcpu, 0);
5481 }
5482 
5483 static int handle_cr(struct kvm_vcpu *vcpu)
5484 {
5485 	unsigned long exit_qualification, val;
5486 	int cr;
5487 	int reg;
5488 	int err;
5489 	int ret;
5490 
5491 	exit_qualification = vmx_get_exit_qual(vcpu);
5492 	cr = exit_qualification & 15;
5493 	reg = (exit_qualification >> 8) & 15;
5494 	switch ((exit_qualification >> 4) & 3) {
5495 	case 0: /* mov to cr */
5496 		val = kvm_register_read(vcpu, reg);
5497 		trace_kvm_cr_write(cr, val);
5498 		switch (cr) {
5499 		case 0:
5500 			err = handle_set_cr0(vcpu, val);
5501 			return kvm_complete_insn_gp(vcpu, err);
5502 		case 3:
5503 			WARN_ON_ONCE(enable_unrestricted_guest);
5504 
5505 			err = kvm_set_cr3(vcpu, val);
5506 			return kvm_complete_insn_gp(vcpu, err);
5507 		case 4:
5508 			err = handle_set_cr4(vcpu, val);
5509 			return kvm_complete_insn_gp(vcpu, err);
5510 		case 8: {
5511 				u8 cr8_prev = kvm_get_cr8(vcpu);
5512 				u8 cr8 = (u8)val;
5513 				err = kvm_set_cr8(vcpu, cr8);
5514 				ret = kvm_complete_insn_gp(vcpu, err);
5515 				if (lapic_in_kernel(vcpu))
5516 					return ret;
5517 				if (cr8_prev <= cr8)
5518 					return ret;
5519 				/*
5520 				 * TODO: we might be squashing a
5521 				 * KVM_GUESTDBG_SINGLESTEP-triggered
5522 				 * KVM_EXIT_DEBUG here.
5523 				 */
5524 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5525 				return 0;
5526 			}
5527 		}
5528 		break;
5529 	case 2: /* clts */
5530 		KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5531 		return -EIO;
5532 	case 1: /*mov from cr*/
5533 		switch (cr) {
5534 		case 3:
5535 			WARN_ON_ONCE(enable_unrestricted_guest);
5536 
5537 			val = kvm_read_cr3(vcpu);
5538 			kvm_register_write(vcpu, reg, val);
5539 			trace_kvm_cr_read(cr, val);
5540 			return kvm_skip_emulated_instruction(vcpu);
5541 		case 8:
5542 			val = kvm_get_cr8(vcpu);
5543 			kvm_register_write(vcpu, reg, val);
5544 			trace_kvm_cr_read(cr, val);
5545 			return kvm_skip_emulated_instruction(vcpu);
5546 		}
5547 		break;
5548 	case 3: /* lmsw */
5549 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5550 		trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
5551 		kvm_lmsw(vcpu, val);
5552 
5553 		return kvm_skip_emulated_instruction(vcpu);
5554 	default:
5555 		break;
5556 	}
5557 	vcpu->run->exit_reason = 0;
5558 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5559 	       (int)(exit_qualification >> 4) & 3, cr);
5560 	return 0;
5561 }
5562 
5563 static int handle_dr(struct kvm_vcpu *vcpu)
5564 {
5565 	unsigned long exit_qualification;
5566 	int dr, dr7, reg;
5567 	int err = 1;
5568 
5569 	exit_qualification = vmx_get_exit_qual(vcpu);
5570 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5571 
5572 	/* First, if DR does not exist, trigger UD */
5573 	if (!kvm_require_dr(vcpu, dr))
5574 		return 1;
5575 
5576 	if (vmx_get_cpl(vcpu) > 0)
5577 		goto out;
5578 
5579 	dr7 = vmcs_readl(GUEST_DR7);
5580 	if (dr7 & DR7_GD) {
5581 		/*
5582 		 * As the vm-exit takes precedence over the debug trap, we
5583 		 * need to emulate the latter, either for the host or the
5584 		 * guest debugging itself.
5585 		 */
5586 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5587 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5588 			vcpu->run->debug.arch.dr7 = dr7;
5589 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5590 			vcpu->run->debug.arch.exception = DB_VECTOR;
5591 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5592 			return 0;
5593 		} else {
5594 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5595 			return 1;
5596 		}
5597 	}
5598 
5599 	if (vcpu->guest_debug == 0) {
5600 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5601 
5602 		/*
5603 		 * No more DR vmexits; force a reload of the debug registers
5604 		 * and reenter on this instruction.  The next vmexit will
5605 		 * retrieve the full state of the debug registers.
5606 		 */
5607 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5608 		return 1;
5609 	}
5610 
5611 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5612 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5613 		kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
5614 		err = 0;
5615 	} else {
5616 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5617 	}
5618 
5619 out:
5620 	return kvm_complete_insn_gp(vcpu, err);
5621 }
5622 
5623 void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5624 {
5625 	get_debugreg(vcpu->arch.db[0], 0);
5626 	get_debugreg(vcpu->arch.db[1], 1);
5627 	get_debugreg(vcpu->arch.db[2], 2);
5628 	get_debugreg(vcpu->arch.db[3], 3);
5629 	get_debugreg(vcpu->arch.dr6, 6);
5630 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5631 
5632 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5633 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5634 
5635 	/*
5636 	 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5637 	 * a stale dr6 from the guest.
5638 	 */
5639 	set_debugreg(DR6_RESERVED, 6);
5640 }
5641 
5642 void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5643 {
5644 	vmcs_writel(GUEST_DR7, val);
5645 }
5646 
5647 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5648 {
5649 	kvm_apic_update_ppr(vcpu);
5650 	return 1;
5651 }
5652 
5653 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5654 {
5655 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5656 
5657 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5658 
5659 	++vcpu->stat.irq_window_exits;
5660 	return 1;
5661 }
5662 
5663 static int handle_invlpg(struct kvm_vcpu *vcpu)
5664 {
5665 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5666 
5667 	kvm_mmu_invlpg(vcpu, exit_qualification);
5668 	return kvm_skip_emulated_instruction(vcpu);
5669 }
5670 
5671 static int handle_apic_access(struct kvm_vcpu *vcpu)
5672 {
5673 	if (likely(fasteoi)) {
5674 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5675 		int access_type, offset;
5676 
5677 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5678 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5679 		/*
5680 		 * Sane guest uses MOV to write EOI, with written value
5681 		 * not cared. So make a short-circuit here by avoiding
5682 		 * heavy instruction emulation.
5683 		 */
5684 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5685 		    (offset == APIC_EOI)) {
5686 			kvm_lapic_set_eoi(vcpu);
5687 			return kvm_skip_emulated_instruction(vcpu);
5688 		}
5689 	}
5690 	return kvm_emulate_instruction(vcpu, 0);
5691 }
5692 
5693 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5694 {
5695 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5696 	int vector = exit_qualification & 0xff;
5697 
5698 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5699 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5700 	return 1;
5701 }
5702 
5703 static int handle_apic_write(struct kvm_vcpu *vcpu)
5704 {
5705 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5706 
5707 	/*
5708 	 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5709 	 * hardware has done any necessary aliasing, offset adjustments, etc...
5710 	 * for the access.  I.e. the correct value has already been  written to
5711 	 * the vAPIC page for the correct 16-byte chunk.  KVM needs only to
5712 	 * retrieve the register value and emulate the access.
5713 	 */
5714 	u32 offset = exit_qualification & 0xff0;
5715 
5716 	kvm_apic_write_nodecode(vcpu, offset);
5717 	return 1;
5718 }
5719 
5720 static int handle_task_switch(struct kvm_vcpu *vcpu)
5721 {
5722 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5723 	unsigned long exit_qualification;
5724 	bool has_error_code = false;
5725 	u32 error_code = 0;
5726 	u16 tss_selector;
5727 	int reason, type, idt_v, idt_index;
5728 
5729 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5730 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5731 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5732 
5733 	exit_qualification = vmx_get_exit_qual(vcpu);
5734 
5735 	reason = (u32)exit_qualification >> 30;
5736 	if (reason == TASK_SWITCH_GATE && idt_v) {
5737 		switch (type) {
5738 		case INTR_TYPE_NMI_INTR:
5739 			vcpu->arch.nmi_injected = false;
5740 			vmx_set_nmi_mask(vcpu, true);
5741 			break;
5742 		case INTR_TYPE_EXT_INTR:
5743 		case INTR_TYPE_SOFT_INTR:
5744 			kvm_clear_interrupt_queue(vcpu);
5745 			break;
5746 		case INTR_TYPE_HARD_EXCEPTION:
5747 			if (vmx->idt_vectoring_info &
5748 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5749 				has_error_code = true;
5750 				error_code =
5751 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5752 			}
5753 			fallthrough;
5754 		case INTR_TYPE_SOFT_EXCEPTION:
5755 			kvm_clear_exception_queue(vcpu);
5756 			break;
5757 		default:
5758 			break;
5759 		}
5760 	}
5761 	tss_selector = exit_qualification;
5762 
5763 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5764 		       type != INTR_TYPE_EXT_INTR &&
5765 		       type != INTR_TYPE_NMI_INTR))
5766 		WARN_ON(!skip_emulated_instruction(vcpu));
5767 
5768 	/*
5769 	 * TODO: What about debug traps on tss switch?
5770 	 *       Are we supposed to inject them and update dr6?
5771 	 */
5772 	return kvm_task_switch(vcpu, tss_selector,
5773 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5774 			       reason, has_error_code, error_code);
5775 }
5776 
5777 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5778 {
5779 	unsigned long exit_qualification;
5780 	gpa_t gpa;
5781 	u64 error_code;
5782 
5783 	exit_qualification = vmx_get_exit_qual(vcpu);
5784 
5785 	/*
5786 	 * EPT violation happened while executing iret from NMI,
5787 	 * "blocked by NMI" bit has to be set before next VM entry.
5788 	 * There are errata that may cause this bit to not be set:
5789 	 * AAK134, BY25.
5790 	 */
5791 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5792 			enable_vnmi &&
5793 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5794 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5795 
5796 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5797 	trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5798 
5799 	/* Is it a read fault? */
5800 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5801 		     ? PFERR_USER_MASK : 0;
5802 	/* Is it a write fault? */
5803 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5804 		      ? PFERR_WRITE_MASK : 0;
5805 	/* Is it a fetch fault? */
5806 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5807 		      ? PFERR_FETCH_MASK : 0;
5808 	/* ept page table entry is present? */
5809 	error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK)
5810 		      ? PFERR_PRESENT_MASK : 0;
5811 
5812 	if (error_code & EPT_VIOLATION_GVA_IS_VALID)
5813 		error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) ?
5814 			      PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5815 
5816 	/*
5817 	 * Check that the GPA doesn't exceed physical memory limits, as that is
5818 	 * a guest page fault.  We have to emulate the instruction here, because
5819 	 * if the illegal address is that of a paging structure, then
5820 	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5821 	 * would also use advanced VM-exit information for EPT violations to
5822 	 * reconstruct the page fault error code.
5823 	 */
5824 	if (unlikely(allow_smaller_maxphyaddr && !kvm_vcpu_is_legal_gpa(vcpu, gpa)))
5825 		return kvm_emulate_instruction(vcpu, 0);
5826 
5827 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5828 }
5829 
5830 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5831 {
5832 	gpa_t gpa;
5833 
5834 	if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5835 		return 1;
5836 
5837 	/*
5838 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5839 	 * nGPA here instead of the required GPA.
5840 	 */
5841 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5842 	if (!is_guest_mode(vcpu) &&
5843 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5844 		trace_kvm_fast_mmio(gpa);
5845 		return kvm_skip_emulated_instruction(vcpu);
5846 	}
5847 
5848 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5849 }
5850 
5851 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5852 {
5853 	if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5854 		return -EIO;
5855 
5856 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5857 	++vcpu->stat.nmi_window_exits;
5858 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5859 
5860 	return 1;
5861 }
5862 
5863 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
5864 {
5865 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5866 
5867 	return vmx->emulation_required && !vmx->rmode.vm86_active &&
5868 	       (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5869 }
5870 
5871 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5872 {
5873 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5874 	bool intr_window_requested;
5875 	unsigned count = 130;
5876 
5877 	intr_window_requested = exec_controls_get(vmx) &
5878 				CPU_BASED_INTR_WINDOW_EXITING;
5879 
5880 	while (vmx->emulation_required && count-- != 0) {
5881 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5882 			return handle_interrupt_window(&vmx->vcpu);
5883 
5884 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5885 			return 1;
5886 
5887 		if (!kvm_emulate_instruction(vcpu, 0))
5888 			return 0;
5889 
5890 		if (vmx_emulation_required_with_pending_exception(vcpu)) {
5891 			kvm_prepare_emulation_failure_exit(vcpu);
5892 			return 0;
5893 		}
5894 
5895 		if (vcpu->arch.halt_request) {
5896 			vcpu->arch.halt_request = 0;
5897 			return kvm_emulate_halt_noskip(vcpu);
5898 		}
5899 
5900 		/*
5901 		 * Note, return 1 and not 0, vcpu_run() will invoke
5902 		 * xfer_to_guest_mode() which will create a proper return
5903 		 * code.
5904 		 */
5905 		if (__xfer_to_guest_mode_work_pending())
5906 			return 1;
5907 	}
5908 
5909 	return 1;
5910 }
5911 
5912 int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5913 {
5914 	if (vmx_emulation_required_with_pending_exception(vcpu)) {
5915 		kvm_prepare_emulation_failure_exit(vcpu);
5916 		return 0;
5917 	}
5918 
5919 	return 1;
5920 }
5921 
5922 /*
5923  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5924  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5925  */
5926 static int handle_pause(struct kvm_vcpu *vcpu)
5927 {
5928 	if (!kvm_pause_in_guest(vcpu->kvm))
5929 		grow_ple_window(vcpu);
5930 
5931 	/*
5932 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5933 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5934 	 * never set PAUSE_EXITING and just set PLE if supported,
5935 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5936 	 */
5937 	kvm_vcpu_on_spin(vcpu, true);
5938 	return kvm_skip_emulated_instruction(vcpu);
5939 }
5940 
5941 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5942 {
5943 	return 1;
5944 }
5945 
5946 static int handle_invpcid(struct kvm_vcpu *vcpu)
5947 {
5948 	u32 vmx_instruction_info;
5949 	unsigned long type;
5950 	gva_t gva;
5951 	struct {
5952 		u64 pcid;
5953 		u64 gla;
5954 	} operand;
5955 	int gpr_index;
5956 
5957 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5958 		kvm_queue_exception(vcpu, UD_VECTOR);
5959 		return 1;
5960 	}
5961 
5962 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5963 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5964 	type = kvm_register_read(vcpu, gpr_index);
5965 
5966 	/* According to the Intel instruction reference, the memory operand
5967 	 * is read even if it isn't needed (e.g., for type==all)
5968 	 */
5969 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5970 				vmx_instruction_info, false,
5971 				sizeof(operand), &gva))
5972 		return 1;
5973 
5974 	return kvm_handle_invpcid(vcpu, type, gva);
5975 }
5976 
5977 static int handle_pml_full(struct kvm_vcpu *vcpu)
5978 {
5979 	unsigned long exit_qualification;
5980 
5981 	trace_kvm_pml_full(vcpu->vcpu_id);
5982 
5983 	exit_qualification = vmx_get_exit_qual(vcpu);
5984 
5985 	/*
5986 	 * PML buffer FULL happened while executing iret from NMI,
5987 	 * "blocked by NMI" bit has to be set before next VM entry.
5988 	 */
5989 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5990 			enable_vnmi &&
5991 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5992 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5993 				GUEST_INTR_STATE_NMI);
5994 
5995 	/*
5996 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5997 	 * here.., and there's no userspace involvement needed for PML.
5998 	 */
5999 	return 1;
6000 }
6001 
6002 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu,
6003 						   bool force_immediate_exit)
6004 {
6005 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6006 
6007 	/*
6008 	 * In the *extremely* unlikely scenario that this is a spurious VM-Exit
6009 	 * due to the timer expiring while it was "soft" disabled, just eat the
6010 	 * exit and re-enter the guest.
6011 	 */
6012 	if (unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
6013 		return EXIT_FASTPATH_REENTER_GUEST;
6014 
6015 	/*
6016 	 * If the timer expired because KVM used it to force an immediate exit,
6017 	 * then mission accomplished.
6018 	 */
6019 	if (force_immediate_exit)
6020 		return EXIT_FASTPATH_EXIT_HANDLED;
6021 
6022 	/*
6023 	 * If L2 is active, go down the slow path as emulating the guest timer
6024 	 * expiration likely requires synthesizing a nested VM-Exit.
6025 	 */
6026 	if (is_guest_mode(vcpu))
6027 		return EXIT_FASTPATH_NONE;
6028 
6029 	kvm_lapic_expired_hv_timer(vcpu);
6030 	return EXIT_FASTPATH_REENTER_GUEST;
6031 }
6032 
6033 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
6034 {
6035 	/*
6036 	 * This non-fastpath handler is reached if and only if the preemption
6037 	 * timer was being used to emulate a guest timer while L2 is active.
6038 	 * All other scenarios are supposed to be handled in the fastpath.
6039 	 */
6040 	WARN_ON_ONCE(!is_guest_mode(vcpu));
6041 	kvm_lapic_expired_hv_timer(vcpu);
6042 	return 1;
6043 }
6044 
6045 /*
6046  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
6047  * are overwritten by nested_vmx_setup() when nested=1.
6048  */
6049 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
6050 {
6051 	kvm_queue_exception(vcpu, UD_VECTOR);
6052 	return 1;
6053 }
6054 
6055 #ifndef CONFIG_X86_SGX_KVM
6056 static int handle_encls(struct kvm_vcpu *vcpu)
6057 {
6058 	/*
6059 	 * SGX virtualization is disabled.  There is no software enable bit for
6060 	 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
6061 	 * the guest from executing ENCLS (when SGX is supported by hardware).
6062 	 */
6063 	kvm_queue_exception(vcpu, UD_VECTOR);
6064 	return 1;
6065 }
6066 #endif /* CONFIG_X86_SGX_KVM */
6067 
6068 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
6069 {
6070 	/*
6071 	 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
6072 	 * VM-Exits. Unconditionally set the flag here and leave the handling to
6073 	 * vmx_handle_exit().
6074 	 */
6075 	to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
6076 	return 1;
6077 }
6078 
6079 static int handle_notify(struct kvm_vcpu *vcpu)
6080 {
6081 	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
6082 	bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
6083 
6084 	++vcpu->stat.notify_window_exits;
6085 
6086 	/*
6087 	 * Notify VM exit happened while executing iret from NMI,
6088 	 * "blocked by NMI" bit has to be set before next VM entry.
6089 	 */
6090 	if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
6091 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6092 			      GUEST_INTR_STATE_NMI);
6093 
6094 	if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
6095 	    context_invalid) {
6096 		vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
6097 		vcpu->run->notify.flags = context_invalid ?
6098 					  KVM_NOTIFY_CONTEXT_INVALID : 0;
6099 		return 0;
6100 	}
6101 
6102 	return 1;
6103 }
6104 
6105 /*
6106  * The exit handlers return 1 if the exit was handled fully and guest execution
6107  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6108  * to be done to userspace and return 0.
6109  */
6110 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6111 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
6112 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6113 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6114 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
6115 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6116 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
6117 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
6118 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
6119 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
6120 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
6121 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
6122 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
6123 	[EXIT_REASON_INVD]		      = kvm_emulate_invd,
6124 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
6125 	[EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
6126 	[EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
6127 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
6128 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
6129 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
6130 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
6131 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
6132 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
6133 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
6134 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
6135 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
6136 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6137 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6138 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6139 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6140 	[EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
6141 	[EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
6142 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6143 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6144 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
6145 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
6146 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
6147 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6148 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6149 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = kvm_emulate_mwait,
6150 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
6151 	[EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
6152 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
6153 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
6154 	[EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
6155 	[EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
6156 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
6157 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
6158 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
6159 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
6160 	[EXIT_REASON_ENCLS]		      = handle_encls,
6161 	[EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
6162 	[EXIT_REASON_NOTIFY]		      = handle_notify,
6163 };
6164 
6165 static const int kvm_vmx_max_exit_handlers =
6166 	ARRAY_SIZE(kvm_vmx_exit_handlers);
6167 
6168 void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6169 		       u64 *info1, u64 *info2, u32 *intr_info, u32 *error_code)
6170 {
6171 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6172 
6173 	*reason = vmx->exit_reason.full;
6174 	*info1 = vmx_get_exit_qual(vcpu);
6175 	if (!(vmx->exit_reason.failed_vmentry)) {
6176 		*info2 = vmx->idt_vectoring_info;
6177 		*intr_info = vmx_get_intr_info(vcpu);
6178 		if (is_exception_with_error_code(*intr_info))
6179 			*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6180 		else
6181 			*error_code = 0;
6182 	} else {
6183 		*info2 = 0;
6184 		*intr_info = 0;
6185 		*error_code = 0;
6186 	}
6187 }
6188 
6189 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6190 {
6191 	if (vmx->pml_pg) {
6192 		__free_page(vmx->pml_pg);
6193 		vmx->pml_pg = NULL;
6194 	}
6195 }
6196 
6197 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6198 {
6199 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6200 	u64 *pml_buf;
6201 	u16 pml_idx;
6202 
6203 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
6204 
6205 	/* Do nothing if PML buffer is empty */
6206 	if (pml_idx == (PML_ENTITY_NUM - 1))
6207 		return;
6208 
6209 	/* PML index always points to next available PML buffer entity */
6210 	if (pml_idx >= PML_ENTITY_NUM)
6211 		pml_idx = 0;
6212 	else
6213 		pml_idx++;
6214 
6215 	pml_buf = page_address(vmx->pml_pg);
6216 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
6217 		u64 gpa;
6218 
6219 		gpa = pml_buf[pml_idx];
6220 		WARN_ON(gpa & (PAGE_SIZE - 1));
6221 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6222 	}
6223 
6224 	/* reset PML index */
6225 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
6226 }
6227 
6228 static void vmx_dump_sel(char *name, uint32_t sel)
6229 {
6230 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6231 	       name, vmcs_read16(sel),
6232 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6233 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6234 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6235 }
6236 
6237 static void vmx_dump_dtsel(char *name, uint32_t limit)
6238 {
6239 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
6240 	       name, vmcs_read32(limit),
6241 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6242 }
6243 
6244 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6245 {
6246 	unsigned int i;
6247 	struct vmx_msr_entry *e;
6248 
6249 	pr_err("MSR %s:\n", name);
6250 	for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6251 		pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6252 }
6253 
6254 void dump_vmcs(struct kvm_vcpu *vcpu)
6255 {
6256 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6257 	u32 vmentry_ctl, vmexit_ctl;
6258 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6259 	u64 tertiary_exec_control;
6260 	unsigned long cr4;
6261 	int efer_slot;
6262 
6263 	if (!dump_invalid_vmcs) {
6264 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6265 		return;
6266 	}
6267 
6268 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6269 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6270 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6271 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6272 	cr4 = vmcs_readl(GUEST_CR4);
6273 
6274 	if (cpu_has_secondary_exec_ctrls())
6275 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6276 	else
6277 		secondary_exec_control = 0;
6278 
6279 	if (cpu_has_tertiary_exec_ctrls())
6280 		tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6281 	else
6282 		tertiary_exec_control = 0;
6283 
6284 	pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6285 	       vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6286 	pr_err("*** Guest State ***\n");
6287 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6288 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6289 	       vmcs_readl(CR0_GUEST_HOST_MASK));
6290 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6291 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6292 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6293 	if (cpu_has_vmx_ept()) {
6294 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
6295 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6296 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
6297 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6298 	}
6299 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
6300 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6301 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
6302 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6303 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6304 	       vmcs_readl(GUEST_SYSENTER_ESP),
6305 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6306 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
6307 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
6308 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
6309 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
6310 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
6311 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
6312 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6313 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6314 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6315 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
6316 	efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6317 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6318 		pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6319 	else if (efer_slot >= 0)
6320 		pr_err("EFER= 0x%016llx (autoload)\n",
6321 		       vmx->msr_autoload.guest.val[efer_slot].value);
6322 	else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6323 		pr_err("EFER= 0x%016llx (effective)\n",
6324 		       vcpu->arch.efer | (EFER_LMA | EFER_LME));
6325 	else
6326 		pr_err("EFER= 0x%016llx (effective)\n",
6327 		       vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6328 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6329 		pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6330 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
6331 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
6332 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6333 	if (cpu_has_load_perf_global_ctrl() &&
6334 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6335 		pr_err("PerfGlobCtl = 0x%016llx\n",
6336 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6337 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6338 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6339 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
6340 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6341 	       vmcs_read32(GUEST_ACTIVITY_STATE));
6342 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6343 		pr_err("InterruptStatus = %04x\n",
6344 		       vmcs_read16(GUEST_INTR_STATUS));
6345 	if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6346 		vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6347 	if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6348 		vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6349 
6350 	pr_err("*** Host State ***\n");
6351 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
6352 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6353 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6354 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6355 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6356 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6357 	       vmcs_read16(HOST_TR_SELECTOR));
6358 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6359 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6360 	       vmcs_readl(HOST_TR_BASE));
6361 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6362 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6363 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6364 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6365 	       vmcs_readl(HOST_CR4));
6366 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6367 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
6368 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
6369 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
6370 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6371 		pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6372 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6373 		pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6374 	if (cpu_has_load_perf_global_ctrl() &&
6375 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6376 		pr_err("PerfGlobCtl = 0x%016llx\n",
6377 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6378 	if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6379 		vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6380 
6381 	pr_err("*** Control State ***\n");
6382 	pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6383 	       cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6384 	pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6385 	       pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6386 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6387 	       vmcs_read32(EXCEPTION_BITMAP),
6388 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6389 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6390 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6391 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6392 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6393 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6394 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6395 	       vmcs_read32(VM_EXIT_INTR_INFO),
6396 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6397 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6398 	pr_err("        reason=%08x qualification=%016lx\n",
6399 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6400 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6401 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
6402 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
6403 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6404 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6405 		pr_err("TSC Multiplier = 0x%016llx\n",
6406 		       vmcs_read64(TSC_MULTIPLIER));
6407 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6408 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6409 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
6410 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6411 		}
6412 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6413 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6414 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6415 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6416 	}
6417 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6418 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6419 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6420 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6421 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6422 		pr_err("PLE Gap=%08x Window=%08x\n",
6423 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6424 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6425 		pr_err("Virtual processor ID = 0x%04x\n",
6426 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
6427 	if (secondary_exec_control & SECONDARY_EXEC_EPT_VIOLATION_VE) {
6428 		struct vmx_ve_information *ve_info = vmx->ve_info;
6429 		u64 ve_info_pa = vmcs_read64(VE_INFORMATION_ADDRESS);
6430 
6431 		/*
6432 		 * If KVM is dumping the VMCS, then something has gone wrong
6433 		 * already.  Derefencing an address from the VMCS, which could
6434 		 * very well be corrupted, is a terrible idea.  The virtual
6435 		 * address is known so use it.
6436 		 */
6437 		pr_err("VE info address = 0x%016llx%s\n", ve_info_pa,
6438 		       ve_info_pa == __pa(ve_info) ? "" : "(corrupted!)");
6439 		pr_err("ve_info: 0x%08x 0x%08x 0x%016llx 0x%016llx 0x%016llx 0x%04x\n",
6440 		       ve_info->exit_reason, ve_info->delivery,
6441 		       ve_info->exit_qualification,
6442 		       ve_info->guest_linear_address,
6443 		       ve_info->guest_physical_address, ve_info->eptp_index);
6444 	}
6445 }
6446 
6447 /*
6448  * The guest has exited.  See if we can fix it or if we need userspace
6449  * assistance.
6450  */
6451 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6452 {
6453 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6454 	union vmx_exit_reason exit_reason = vmx->exit_reason;
6455 	u32 vectoring_info = vmx->idt_vectoring_info;
6456 	u16 exit_handler_index;
6457 
6458 	/*
6459 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6460 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6461 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6462 	 * mode as if vcpus is in root mode, the PML buffer must has been
6463 	 * flushed already.  Note, PML is never enabled in hardware while
6464 	 * running L2.
6465 	 */
6466 	if (enable_pml && !is_guest_mode(vcpu))
6467 		vmx_flush_pml_buffer(vcpu);
6468 
6469 	/*
6470 	 * KVM should never reach this point with a pending nested VM-Enter.
6471 	 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6472 	 * invalid guest state should never happen as that means KVM knowingly
6473 	 * allowed a nested VM-Enter with an invalid vmcs12.  More below.
6474 	 */
6475 	if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6476 		return -EIO;
6477 
6478 	if (is_guest_mode(vcpu)) {
6479 		/*
6480 		 * PML is never enabled when running L2, bail immediately if a
6481 		 * PML full exit occurs as something is horribly wrong.
6482 		 */
6483 		if (exit_reason.basic == EXIT_REASON_PML_FULL)
6484 			goto unexpected_vmexit;
6485 
6486 		/*
6487 		 * The host physical addresses of some pages of guest memory
6488 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6489 		 * Page). The CPU may write to these pages via their host
6490 		 * physical address while L2 is running, bypassing any
6491 		 * address-translation-based dirty tracking (e.g. EPT write
6492 		 * protection).
6493 		 *
6494 		 * Mark them dirty on every exit from L2 to prevent them from
6495 		 * getting out of sync with dirty tracking.
6496 		 */
6497 		nested_mark_vmcs12_pages_dirty(vcpu);
6498 
6499 		/*
6500 		 * Synthesize a triple fault if L2 state is invalid.  In normal
6501 		 * operation, nested VM-Enter rejects any attempt to enter L2
6502 		 * with invalid state.  However, those checks are skipped if
6503 		 * state is being stuffed via RSM or KVM_SET_NESTED_STATE.  If
6504 		 * L2 state is invalid, it means either L1 modified SMRAM state
6505 		 * or userspace provided bad state.  Synthesize TRIPLE_FAULT as
6506 		 * doing so is architecturally allowed in the RSM case, and is
6507 		 * the least awful solution for the userspace case without
6508 		 * risking false positives.
6509 		 */
6510 		if (vmx->emulation_required) {
6511 			nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6512 			return 1;
6513 		}
6514 
6515 		if (nested_vmx_reflect_vmexit(vcpu))
6516 			return 1;
6517 	}
6518 
6519 	/* If guest state is invalid, start emulating.  L2 is handled above. */
6520 	if (vmx->emulation_required)
6521 		return handle_invalid_guest_state(vcpu);
6522 
6523 	if (exit_reason.failed_vmentry) {
6524 		dump_vmcs(vcpu);
6525 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6526 		vcpu->run->fail_entry.hardware_entry_failure_reason
6527 			= exit_reason.full;
6528 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6529 		return 0;
6530 	}
6531 
6532 	if (unlikely(vmx->fail)) {
6533 		dump_vmcs(vcpu);
6534 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6535 		vcpu->run->fail_entry.hardware_entry_failure_reason
6536 			= vmcs_read32(VM_INSTRUCTION_ERROR);
6537 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6538 		return 0;
6539 	}
6540 
6541 	/*
6542 	 * Note:
6543 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6544 	 * delivery event since it indicates guest is accessing MMIO.
6545 	 * The vm-exit can be triggered again after return to guest that
6546 	 * will cause infinite loop.
6547 	 */
6548 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6549 	    (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6550 	     exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6551 	     exit_reason.basic != EXIT_REASON_PML_FULL &&
6552 	     exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6553 	     exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6554 	     exit_reason.basic != EXIT_REASON_NOTIFY)) {
6555 		int ndata = 3;
6556 
6557 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6558 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6559 		vcpu->run->internal.data[0] = vectoring_info;
6560 		vcpu->run->internal.data[1] = exit_reason.full;
6561 		vcpu->run->internal.data[2] = vmx_get_exit_qual(vcpu);
6562 		if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6563 			vcpu->run->internal.data[ndata++] =
6564 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6565 		}
6566 		vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6567 		vcpu->run->internal.ndata = ndata;
6568 		return 0;
6569 	}
6570 
6571 	if (unlikely(!enable_vnmi &&
6572 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
6573 		if (!vmx_interrupt_blocked(vcpu)) {
6574 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6575 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6576 			   vcpu->arch.nmi_pending) {
6577 			/*
6578 			 * This CPU don't support us in finding the end of an
6579 			 * NMI-blocked window if the guest runs with IRQs
6580 			 * disabled. So we pull the trigger after 1 s of
6581 			 * futile waiting, but inform the user about this.
6582 			 */
6583 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6584 			       "state on VCPU %d after 1 s timeout\n",
6585 			       __func__, vcpu->vcpu_id);
6586 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6587 		}
6588 	}
6589 
6590 	if (exit_fastpath != EXIT_FASTPATH_NONE)
6591 		return 1;
6592 
6593 	if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6594 		goto unexpected_vmexit;
6595 #ifdef CONFIG_MITIGATION_RETPOLINE
6596 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6597 		return kvm_emulate_wrmsr(vcpu);
6598 	else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6599 		return handle_preemption_timer(vcpu);
6600 	else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6601 		return handle_interrupt_window(vcpu);
6602 	else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6603 		return handle_external_interrupt(vcpu);
6604 	else if (exit_reason.basic == EXIT_REASON_HLT)
6605 		return kvm_emulate_halt(vcpu);
6606 	else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6607 		return handle_ept_misconfig(vcpu);
6608 #endif
6609 
6610 	exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6611 						kvm_vmx_max_exit_handlers);
6612 	if (!kvm_vmx_exit_handlers[exit_handler_index])
6613 		goto unexpected_vmexit;
6614 
6615 	return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6616 
6617 unexpected_vmexit:
6618 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6619 		    exit_reason.full);
6620 	dump_vmcs(vcpu);
6621 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6622 	vcpu->run->internal.suberror =
6623 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6624 	vcpu->run->internal.ndata = 2;
6625 	vcpu->run->internal.data[0] = exit_reason.full;
6626 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6627 	return 0;
6628 }
6629 
6630 int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6631 {
6632 	int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6633 
6634 	/*
6635 	 * Exit to user space when bus lock detected to inform that there is
6636 	 * a bus lock in guest.
6637 	 */
6638 	if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6639 		if (ret > 0)
6640 			vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6641 
6642 		vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6643 		return 0;
6644 	}
6645 	return ret;
6646 }
6647 
6648 /*
6649  * Software based L1D cache flush which is used when microcode providing
6650  * the cache control MSR is not loaded.
6651  *
6652  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6653  * flush it is required to read in 64 KiB because the replacement algorithm
6654  * is not exactly LRU. This could be sized at runtime via topology
6655  * information but as all relevant affected CPUs have 32KiB L1D cache size
6656  * there is no point in doing so.
6657  */
6658 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6659 {
6660 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6661 
6662 	/*
6663 	 * This code is only executed when the flush mode is 'cond' or
6664 	 * 'always'
6665 	 */
6666 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6667 		bool flush_l1d;
6668 
6669 		/*
6670 		 * Clear the per-vcpu flush bit, it gets set again if the vCPU
6671 		 * is reloaded, i.e. if the vCPU is scheduled out or if KVM
6672 		 * exits to userspace, or if KVM reaches one of the unsafe
6673 		 * VMEXIT handlers, e.g. if KVM calls into the emulator.
6674 		 */
6675 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6676 		vcpu->arch.l1tf_flush_l1d = false;
6677 
6678 		/*
6679 		 * Clear the per-cpu flush bit, it gets set again from
6680 		 * the interrupt handlers.
6681 		 */
6682 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6683 		kvm_clear_cpu_l1tf_flush_l1d();
6684 
6685 		if (!flush_l1d)
6686 			return;
6687 	}
6688 
6689 	vcpu->stat.l1d_flush++;
6690 
6691 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6692 		native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6693 		return;
6694 	}
6695 
6696 	asm volatile(
6697 		/* First ensure the pages are in the TLB */
6698 		"xorl	%%eax, %%eax\n"
6699 		".Lpopulate_tlb:\n\t"
6700 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6701 		"addl	$4096, %%eax\n\t"
6702 		"cmpl	%%eax, %[size]\n\t"
6703 		"jne	.Lpopulate_tlb\n\t"
6704 		"xorl	%%eax, %%eax\n\t"
6705 		"cpuid\n\t"
6706 		/* Now fill the cache */
6707 		"xorl	%%eax, %%eax\n"
6708 		".Lfill_cache:\n"
6709 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6710 		"addl	$64, %%eax\n\t"
6711 		"cmpl	%%eax, %[size]\n\t"
6712 		"jne	.Lfill_cache\n\t"
6713 		"lfence\n"
6714 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6715 		    [size] "r" (size)
6716 		: "eax", "ebx", "ecx", "edx");
6717 }
6718 
6719 void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6720 {
6721 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6722 	int tpr_threshold;
6723 
6724 	if (is_guest_mode(vcpu) &&
6725 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6726 		return;
6727 
6728 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6729 	if (is_guest_mode(vcpu))
6730 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6731 	else
6732 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6733 }
6734 
6735 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6736 {
6737 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6738 	u32 sec_exec_control;
6739 
6740 	if (!lapic_in_kernel(vcpu))
6741 		return;
6742 
6743 	if (!flexpriority_enabled &&
6744 	    !cpu_has_vmx_virtualize_x2apic_mode())
6745 		return;
6746 
6747 	/* Postpone execution until vmcs01 is the current VMCS. */
6748 	if (is_guest_mode(vcpu)) {
6749 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6750 		return;
6751 	}
6752 
6753 	sec_exec_control = secondary_exec_controls_get(vmx);
6754 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6755 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6756 
6757 	switch (kvm_get_apic_mode(vcpu)) {
6758 	case LAPIC_MODE_INVALID:
6759 		WARN_ONCE(true, "Invalid local APIC state");
6760 		break;
6761 	case LAPIC_MODE_DISABLED:
6762 		break;
6763 	case LAPIC_MODE_XAPIC:
6764 		if (flexpriority_enabled) {
6765 			sec_exec_control |=
6766 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6767 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6768 
6769 			/*
6770 			 * Flush the TLB, reloading the APIC access page will
6771 			 * only do so if its physical address has changed, but
6772 			 * the guest may have inserted a non-APIC mapping into
6773 			 * the TLB while the APIC access page was disabled.
6774 			 */
6775 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6776 		}
6777 		break;
6778 	case LAPIC_MODE_X2APIC:
6779 		if (cpu_has_vmx_virtualize_x2apic_mode())
6780 			sec_exec_control |=
6781 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6782 		break;
6783 	}
6784 	secondary_exec_controls_set(vmx, sec_exec_control);
6785 
6786 	vmx_update_msr_bitmap_x2apic(vcpu);
6787 }
6788 
6789 void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6790 {
6791 	const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT;
6792 	struct kvm *kvm = vcpu->kvm;
6793 	struct kvm_memslots *slots = kvm_memslots(kvm);
6794 	struct kvm_memory_slot *slot;
6795 	unsigned long mmu_seq;
6796 	kvm_pfn_t pfn;
6797 
6798 	/* Defer reload until vmcs01 is the current VMCS. */
6799 	if (is_guest_mode(vcpu)) {
6800 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6801 		return;
6802 	}
6803 
6804 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6805 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6806 		return;
6807 
6808 	/*
6809 	 * Explicitly grab the memslot using KVM's internal slot ID to ensure
6810 	 * KVM doesn't unintentionally grab a userspace memslot.  It _should_
6811 	 * be impossible for userspace to create a memslot for the APIC when
6812 	 * APICv is enabled, but paranoia won't hurt in this case.
6813 	 */
6814 	slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT);
6815 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
6816 		return;
6817 
6818 	/*
6819 	 * Ensure that the mmu_notifier sequence count is read before KVM
6820 	 * retrieves the pfn from the primary MMU.  Note, the memslot is
6821 	 * protected by SRCU, not the mmu_notifier.  Pairs with the smp_wmb()
6822 	 * in kvm_mmu_invalidate_end().
6823 	 */
6824 	mmu_seq = kvm->mmu_invalidate_seq;
6825 	smp_rmb();
6826 
6827 	/*
6828 	 * No need to retry if the memslot does not exist or is invalid.  KVM
6829 	 * controls the APIC-access page memslot, and only deletes the memslot
6830 	 * if APICv is permanently inhibited, i.e. the memslot won't reappear.
6831 	 */
6832 	pfn = gfn_to_pfn_memslot(slot, gfn);
6833 	if (is_error_noslot_pfn(pfn))
6834 		return;
6835 
6836 	read_lock(&vcpu->kvm->mmu_lock);
6837 	if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn)) {
6838 		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6839 		read_unlock(&vcpu->kvm->mmu_lock);
6840 		goto out;
6841 	}
6842 
6843 	vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn));
6844 	read_unlock(&vcpu->kvm->mmu_lock);
6845 
6846 	/*
6847 	 * No need for a manual TLB flush at this point, KVM has already done a
6848 	 * flush if there were SPTEs pointing at the previous page.
6849 	 */
6850 out:
6851 	/*
6852 	 * Do not pin apic access page in memory, the MMU notifier
6853 	 * will call us again if it is migrated or swapped out.
6854 	 */
6855 	kvm_release_pfn_clean(pfn);
6856 }
6857 
6858 void vmx_hwapic_isr_update(int max_isr)
6859 {
6860 	u16 status;
6861 	u8 old;
6862 
6863 	if (max_isr == -1)
6864 		max_isr = 0;
6865 
6866 	status = vmcs_read16(GUEST_INTR_STATUS);
6867 	old = status >> 8;
6868 	if (max_isr != old) {
6869 		status &= 0xff;
6870 		status |= max_isr << 8;
6871 		vmcs_write16(GUEST_INTR_STATUS, status);
6872 	}
6873 }
6874 
6875 static void vmx_set_rvi(int vector)
6876 {
6877 	u16 status;
6878 	u8 old;
6879 
6880 	if (vector == -1)
6881 		vector = 0;
6882 
6883 	status = vmcs_read16(GUEST_INTR_STATUS);
6884 	old = (u8)status & 0xff;
6885 	if ((u8)vector != old) {
6886 		status &= ~0xff;
6887 		status |= (u8)vector;
6888 		vmcs_write16(GUEST_INTR_STATUS, status);
6889 	}
6890 }
6891 
6892 void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6893 {
6894 	/*
6895 	 * When running L2, updating RVI is only relevant when
6896 	 * vmcs12 virtual-interrupt-delivery enabled.
6897 	 * However, it can be enabled only when L1 also
6898 	 * intercepts external-interrupts and in that case
6899 	 * we should not update vmcs02 RVI but instead intercept
6900 	 * interrupt. Therefore, do nothing when running L2.
6901 	 */
6902 	if (!is_guest_mode(vcpu))
6903 		vmx_set_rvi(max_irr);
6904 }
6905 
6906 int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6907 {
6908 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6909 	int max_irr;
6910 	bool got_posted_interrupt;
6911 
6912 	if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6913 		return -EIO;
6914 
6915 	if (pi_test_on(&vmx->pi_desc)) {
6916 		pi_clear_on(&vmx->pi_desc);
6917 		/*
6918 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6919 		 * But on x86 this is just a compiler barrier anyway.
6920 		 */
6921 		smp_mb__after_atomic();
6922 		got_posted_interrupt =
6923 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6924 	} else {
6925 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6926 		got_posted_interrupt = false;
6927 	}
6928 
6929 	/*
6930 	 * Newly recognized interrupts are injected via either virtual interrupt
6931 	 * delivery (RVI) or KVM_REQ_EVENT.  Virtual interrupt delivery is
6932 	 * disabled in two cases:
6933 	 *
6934 	 * 1) If L2 is running and the vCPU has a new pending interrupt.  If L1
6935 	 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6936 	 * VM-Exit to L1.  If L1 doesn't want to exit, the interrupt is injected
6937 	 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6938 	 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6939 	 *
6940 	 * 2) If APICv is disabled for this vCPU, assigned devices may still
6941 	 * attempt to post interrupts.  The posted interrupt vector will cause
6942 	 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6943 	 */
6944 	if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6945 		vmx_set_rvi(max_irr);
6946 	else if (got_posted_interrupt)
6947 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6948 
6949 	return max_irr;
6950 }
6951 
6952 void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6953 {
6954 	if (!kvm_vcpu_apicv_active(vcpu))
6955 		return;
6956 
6957 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6958 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6959 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6960 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6961 }
6962 
6963 void vmx_apicv_pre_state_restore(struct kvm_vcpu *vcpu)
6964 {
6965 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6966 
6967 	pi_clear_on(&vmx->pi_desc);
6968 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6969 }
6970 
6971 void vmx_do_interrupt_irqoff(unsigned long entry);
6972 void vmx_do_nmi_irqoff(void);
6973 
6974 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6975 {
6976 	/*
6977 	 * Save xfd_err to guest_fpu before interrupt is enabled, so the
6978 	 * MSR value is not clobbered by the host activity before the guest
6979 	 * has chance to consume it.
6980 	 *
6981 	 * Do not blindly read xfd_err here, since this exception might
6982 	 * be caused by L1 interception on a platform which doesn't
6983 	 * support xfd at all.
6984 	 *
6985 	 * Do it conditionally upon guest_fpu::xfd. xfd_err matters
6986 	 * only when xfd contains a non-zero value.
6987 	 *
6988 	 * Queuing exception is done in vmx_handle_exit. See comment there.
6989 	 */
6990 	if (vcpu->arch.guest_fpu.fpstate->xfd)
6991 		rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6992 }
6993 
6994 static void handle_exception_irqoff(struct kvm_vcpu *vcpu, u32 intr_info)
6995 {
6996 	/* if exit due to PF check for async PF */
6997 	if (is_page_fault(intr_info))
6998 		vcpu->arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6999 	/* if exit due to NM, handle before interrupts are enabled */
7000 	else if (is_nm_fault(intr_info))
7001 		handle_nm_fault_irqoff(vcpu);
7002 	/* Handle machine checks before interrupts are enabled */
7003 	else if (is_machine_check(intr_info))
7004 		kvm_machine_check();
7005 }
7006 
7007 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu,
7008 					     u32 intr_info)
7009 {
7010 	unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
7011 
7012 	if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
7013 	    "unexpected VM-Exit interrupt info: 0x%x", intr_info))
7014 		return;
7015 
7016 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
7017 	if (cpu_feature_enabled(X86_FEATURE_FRED))
7018 		fred_entry_from_kvm(EVENT_TYPE_EXTINT, vector);
7019 	else
7020 		vmx_do_interrupt_irqoff(gate_offset((gate_desc *)host_idt_base + vector));
7021 	kvm_after_interrupt(vcpu);
7022 
7023 	vcpu->arch.at_instruction_boundary = true;
7024 }
7025 
7026 void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
7027 {
7028 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7029 
7030 	if (vmx->emulation_required)
7031 		return;
7032 
7033 	if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
7034 		handle_external_interrupt_irqoff(vcpu, vmx_get_intr_info(vcpu));
7035 	else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
7036 		handle_exception_irqoff(vcpu, vmx_get_intr_info(vcpu));
7037 }
7038 
7039 /*
7040  * The kvm parameter can be NULL (module initialization, or invocation before
7041  * VM creation). Be sure to check the kvm parameter before using it.
7042  */
7043 bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
7044 {
7045 	switch (index) {
7046 	case MSR_IA32_SMBASE:
7047 		if (!IS_ENABLED(CONFIG_KVM_SMM))
7048 			return false;
7049 		/*
7050 		 * We cannot do SMM unless we can run the guest in big
7051 		 * real mode.
7052 		 */
7053 		return enable_unrestricted_guest || emulate_invalid_guest_state;
7054 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
7055 		return nested;
7056 	case MSR_AMD64_VIRT_SPEC_CTRL:
7057 	case MSR_AMD64_TSC_RATIO:
7058 		/* This is AMD only.  */
7059 		return false;
7060 	default:
7061 		return true;
7062 	}
7063 }
7064 
7065 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7066 {
7067 	u32 exit_intr_info;
7068 	bool unblock_nmi;
7069 	u8 vector;
7070 	bool idtv_info_valid;
7071 
7072 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7073 
7074 	if (enable_vnmi) {
7075 		if (vmx->loaded_vmcs->nmi_known_unmasked)
7076 			return;
7077 
7078 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
7079 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7080 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7081 		/*
7082 		 * SDM 3: 27.7.1.2 (September 2008)
7083 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7084 		 * a guest IRET fault.
7085 		 * SDM 3: 23.2.2 (September 2008)
7086 		 * Bit 12 is undefined in any of the following cases:
7087 		 *  If the VM exit sets the valid bit in the IDT-vectoring
7088 		 *   information field.
7089 		 *  If the VM exit is due to a double fault.
7090 		 */
7091 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7092 		    vector != DF_VECTOR && !idtv_info_valid)
7093 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7094 				      GUEST_INTR_STATE_NMI);
7095 		else
7096 			vmx->loaded_vmcs->nmi_known_unmasked =
7097 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7098 				  & GUEST_INTR_STATE_NMI);
7099 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
7100 		vmx->loaded_vmcs->vnmi_blocked_time +=
7101 			ktime_to_ns(ktime_sub(ktime_get(),
7102 					      vmx->loaded_vmcs->entry_time));
7103 }
7104 
7105 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7106 				      u32 idt_vectoring_info,
7107 				      int instr_len_field,
7108 				      int error_code_field)
7109 {
7110 	u8 vector;
7111 	int type;
7112 	bool idtv_info_valid;
7113 
7114 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7115 
7116 	vcpu->arch.nmi_injected = false;
7117 	kvm_clear_exception_queue(vcpu);
7118 	kvm_clear_interrupt_queue(vcpu);
7119 
7120 	if (!idtv_info_valid)
7121 		return;
7122 
7123 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7124 
7125 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7126 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7127 
7128 	switch (type) {
7129 	case INTR_TYPE_NMI_INTR:
7130 		vcpu->arch.nmi_injected = true;
7131 		/*
7132 		 * SDM 3: 27.7.1.2 (September 2008)
7133 		 * Clear bit "block by NMI" before VM entry if a NMI
7134 		 * delivery faulted.
7135 		 */
7136 		vmx_set_nmi_mask(vcpu, false);
7137 		break;
7138 	case INTR_TYPE_SOFT_EXCEPTION:
7139 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7140 		fallthrough;
7141 	case INTR_TYPE_HARD_EXCEPTION:
7142 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7143 			u32 err = vmcs_read32(error_code_field);
7144 			kvm_requeue_exception_e(vcpu, vector, err);
7145 		} else
7146 			kvm_requeue_exception(vcpu, vector);
7147 		break;
7148 	case INTR_TYPE_SOFT_INTR:
7149 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7150 		fallthrough;
7151 	case INTR_TYPE_EXT_INTR:
7152 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7153 		break;
7154 	default:
7155 		break;
7156 	}
7157 }
7158 
7159 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7160 {
7161 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7162 				  VM_EXIT_INSTRUCTION_LEN,
7163 				  IDT_VECTORING_ERROR_CODE);
7164 }
7165 
7166 void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7167 {
7168 	__vmx_complete_interrupts(vcpu,
7169 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7170 				  VM_ENTRY_INSTRUCTION_LEN,
7171 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
7172 
7173 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7174 }
7175 
7176 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7177 {
7178 	int i, nr_msrs;
7179 	struct perf_guest_switch_msr *msrs;
7180 	struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7181 
7182 	pmu->host_cross_mapped_mask = 0;
7183 	if (pmu->pebs_enable & pmu->global_ctrl)
7184 		intel_pmu_cross_mapped_check(pmu);
7185 
7186 	/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7187 	msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7188 	if (!msrs)
7189 		return;
7190 
7191 	for (i = 0; i < nr_msrs; i++)
7192 		if (msrs[i].host == msrs[i].guest)
7193 			clear_atomic_switch_msr(vmx, msrs[i].msr);
7194 		else
7195 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7196 					msrs[i].host, false);
7197 }
7198 
7199 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu, bool force_immediate_exit)
7200 {
7201 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7202 	u64 tscl;
7203 	u32 delta_tsc;
7204 
7205 	if (force_immediate_exit) {
7206 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7207 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7208 	} else if (vmx->hv_deadline_tsc != -1) {
7209 		tscl = rdtsc();
7210 		if (vmx->hv_deadline_tsc > tscl)
7211 			/* set_hv_timer ensures the delta fits in 32-bits */
7212 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7213 				cpu_preemption_timer_multi);
7214 		else
7215 			delta_tsc = 0;
7216 
7217 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7218 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7219 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7220 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7221 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7222 	}
7223 }
7224 
7225 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7226 {
7227 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7228 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
7229 		vmcs_writel(HOST_RSP, host_rsp);
7230 	}
7231 }
7232 
7233 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7234 					unsigned int flags)
7235 {
7236 	u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7237 
7238 	if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7239 		return;
7240 
7241 	if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7242 		vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
7243 
7244 	/*
7245 	 * If the guest/host SPEC_CTRL values differ, restore the host value.
7246 	 *
7247 	 * For legacy IBRS, the IBRS bit always needs to be written after
7248 	 * transitioning from a less privileged predictor mode, regardless of
7249 	 * whether the guest/host values differ.
7250 	 */
7251 	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7252 	    vmx->spec_ctrl != hostval)
7253 		native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
7254 
7255 	barrier_nospec();
7256 }
7257 
7258 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu,
7259 					     bool force_immediate_exit)
7260 {
7261 	/*
7262 	 * If L2 is active, some VMX preemption timer exits can be handled in
7263 	 * the fastpath even, all other exits must use the slow path.
7264 	 */
7265 	if (is_guest_mode(vcpu) &&
7266 	    to_vmx(vcpu)->exit_reason.basic != EXIT_REASON_PREEMPTION_TIMER)
7267 		return EXIT_FASTPATH_NONE;
7268 
7269 	switch (to_vmx(vcpu)->exit_reason.basic) {
7270 	case EXIT_REASON_MSR_WRITE:
7271 		return handle_fastpath_set_msr_irqoff(vcpu);
7272 	case EXIT_REASON_PREEMPTION_TIMER:
7273 		return handle_fastpath_preemption_timer(vcpu, force_immediate_exit);
7274 	case EXIT_REASON_HLT:
7275 		return handle_fastpath_hlt(vcpu);
7276 	default:
7277 		return EXIT_FASTPATH_NONE;
7278 	}
7279 }
7280 
7281 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7282 					unsigned int flags)
7283 {
7284 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7285 
7286 	guest_state_enter_irqoff();
7287 
7288 	/*
7289 	 * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW
7290 	 * mitigation for MDS is done late in VMentry and is still
7291 	 * executed in spite of L1D Flush. This is because an extra VERW
7292 	 * should not matter much after the big hammer L1D Flush.
7293 	 */
7294 	if (static_branch_unlikely(&vmx_l1d_should_flush))
7295 		vmx_l1d_flush(vcpu);
7296 	else if (static_branch_unlikely(&mmio_stale_data_clear) &&
7297 		 kvm_arch_has_assigned_device(vcpu->kvm))
7298 		mds_clear_cpu_buffers();
7299 
7300 	vmx_disable_fb_clear(vmx);
7301 
7302 	if (vcpu->arch.cr2 != native_read_cr2())
7303 		native_write_cr2(vcpu->arch.cr2);
7304 
7305 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7306 				   flags);
7307 
7308 	vcpu->arch.cr2 = native_read_cr2();
7309 	vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7310 
7311 	vmx->idt_vectoring_info = 0;
7312 
7313 	vmx_enable_fb_clear(vmx);
7314 
7315 	if (unlikely(vmx->fail)) {
7316 		vmx->exit_reason.full = 0xdead;
7317 		goto out;
7318 	}
7319 
7320 	vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7321 	if (likely(!vmx->exit_reason.failed_vmentry))
7322 		vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7323 
7324 	if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI &&
7325 	    is_nmi(vmx_get_intr_info(vcpu))) {
7326 		kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
7327 		if (cpu_feature_enabled(X86_FEATURE_FRED))
7328 			fred_entry_from_kvm(EVENT_TYPE_NMI, NMI_VECTOR);
7329 		else
7330 			vmx_do_nmi_irqoff();
7331 		kvm_after_interrupt(vcpu);
7332 	}
7333 
7334 out:
7335 	guest_state_exit_irqoff();
7336 }
7337 
7338 fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu, bool force_immediate_exit)
7339 {
7340 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7341 	unsigned long cr3, cr4;
7342 
7343 	/* Record the guest's net vcpu time for enforced NMI injections. */
7344 	if (unlikely(!enable_vnmi &&
7345 		     vmx->loaded_vmcs->soft_vnmi_blocked))
7346 		vmx->loaded_vmcs->entry_time = ktime_get();
7347 
7348 	/*
7349 	 * Don't enter VMX if guest state is invalid, let the exit handler
7350 	 * start emulation until we arrive back to a valid state.  Synthesize a
7351 	 * consistency check VM-Exit due to invalid guest state and bail.
7352 	 */
7353 	if (unlikely(vmx->emulation_required)) {
7354 		vmx->fail = 0;
7355 
7356 		vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
7357 		vmx->exit_reason.failed_vmentry = 1;
7358 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7359 		vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
7360 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7361 		vmx->exit_intr_info = 0;
7362 		return EXIT_FASTPATH_NONE;
7363 	}
7364 
7365 	trace_kvm_entry(vcpu, force_immediate_exit);
7366 
7367 	if (vmx->ple_window_dirty) {
7368 		vmx->ple_window_dirty = false;
7369 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
7370 	}
7371 
7372 	/*
7373 	 * We did this in prepare_switch_to_guest, because it needs to
7374 	 * be within srcu_read_lock.
7375 	 */
7376 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7377 
7378 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7379 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7380 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7381 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7382 	vcpu->arch.regs_dirty = 0;
7383 
7384 	/*
7385 	 * Refresh vmcs.HOST_CR3 if necessary.  This must be done immediately
7386 	 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7387 	 * it switches back to the current->mm, which can occur in KVM context
7388 	 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7389 	 * toggles a static key while handling a VM-Exit.
7390 	 */
7391 	cr3 = __get_current_cr3_fast();
7392 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7393 		vmcs_writel(HOST_CR3, cr3);
7394 		vmx->loaded_vmcs->host_state.cr3 = cr3;
7395 	}
7396 
7397 	cr4 = cr4_read_shadow();
7398 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7399 		vmcs_writel(HOST_CR4, cr4);
7400 		vmx->loaded_vmcs->host_state.cr4 = cr4;
7401 	}
7402 
7403 	/* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
7404 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
7405 		set_debugreg(vcpu->arch.dr6, 6);
7406 
7407 	/* When single-stepping over STI and MOV SS, we must clear the
7408 	 * corresponding interruptibility bits in the guest state. Otherwise
7409 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
7410 	 * exceptions being set, but that's not correct for the guest debugging
7411 	 * case. */
7412 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7413 		vmx_set_interrupt_shadow(vcpu, 0);
7414 
7415 	kvm_load_guest_xsave_state(vcpu);
7416 
7417 	pt_guest_enter(vmx);
7418 
7419 	atomic_switch_perf_msrs(vmx);
7420 	if (intel_pmu_lbr_is_enabled(vcpu))
7421 		vmx_passthrough_lbr_msrs(vcpu);
7422 
7423 	if (enable_preemption_timer)
7424 		vmx_update_hv_timer(vcpu, force_immediate_exit);
7425 	else if (force_immediate_exit)
7426 		smp_send_reschedule(vcpu->cpu);
7427 
7428 	kvm_wait_lapic_expire(vcpu);
7429 
7430 	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
7431 	vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
7432 
7433 	/* All fields are clean at this point */
7434 	if (kvm_is_using_evmcs()) {
7435 		current_evmcs->hv_clean_fields |=
7436 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7437 
7438 		current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7439 	}
7440 
7441 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7442 	if (vmx->host_debugctlmsr)
7443 		update_debugctlmsr(vmx->host_debugctlmsr);
7444 
7445 #ifndef CONFIG_X86_64
7446 	/*
7447 	 * The sysexit path does not restore ds/es, so we must set them to
7448 	 * a reasonable value ourselves.
7449 	 *
7450 	 * We can't defer this to vmx_prepare_switch_to_host() since that
7451 	 * function may be executed in interrupt context, which saves and
7452 	 * restore segments around it, nullifying its effect.
7453 	 */
7454 	loadsegment(ds, __USER_DS);
7455 	loadsegment(es, __USER_DS);
7456 #endif
7457 
7458 	pt_guest_exit(vmx);
7459 
7460 	kvm_load_host_xsave_state(vcpu);
7461 
7462 	if (is_guest_mode(vcpu)) {
7463 		/*
7464 		 * Track VMLAUNCH/VMRESUME that have made past guest state
7465 		 * checking.
7466 		 */
7467 		if (vmx->nested.nested_run_pending &&
7468 		    !vmx->exit_reason.failed_vmentry)
7469 			++vcpu->stat.nested_run;
7470 
7471 		vmx->nested.nested_run_pending = 0;
7472 	}
7473 
7474 	if (unlikely(vmx->fail))
7475 		return EXIT_FASTPATH_NONE;
7476 
7477 	if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
7478 		kvm_machine_check();
7479 
7480 	trace_kvm_exit(vcpu, KVM_ISA_VMX);
7481 
7482 	if (unlikely(vmx->exit_reason.failed_vmentry))
7483 		return EXIT_FASTPATH_NONE;
7484 
7485 	vmx->loaded_vmcs->launched = 1;
7486 
7487 	vmx_recover_nmi_blocking(vmx);
7488 	vmx_complete_interrupts(vmx);
7489 
7490 	return vmx_exit_handlers_fastpath(vcpu, force_immediate_exit);
7491 }
7492 
7493 void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7494 {
7495 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7496 
7497 	if (enable_pml)
7498 		vmx_destroy_pml_buffer(vmx);
7499 	free_vpid(vmx->vpid);
7500 	nested_vmx_free_vcpu(vcpu);
7501 	free_loaded_vmcs(vmx->loaded_vmcs);
7502 	free_page((unsigned long)vmx->ve_info);
7503 }
7504 
7505 int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7506 {
7507 	struct vmx_uret_msr *tsx_ctrl;
7508 	struct vcpu_vmx *vmx;
7509 	int i, err;
7510 
7511 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7512 	vmx = to_vmx(vcpu);
7513 
7514 	INIT_LIST_HEAD(&vmx->pi_wakeup_list);
7515 
7516 	err = -ENOMEM;
7517 
7518 	vmx->vpid = allocate_vpid();
7519 
7520 	/*
7521 	 * If PML is turned on, failure on enabling PML just results in failure
7522 	 * of creating the vcpu, therefore we can simplify PML logic (by
7523 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
7524 	 * for the guest), etc.
7525 	 */
7526 	if (enable_pml) {
7527 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7528 		if (!vmx->pml_pg)
7529 			goto free_vpid;
7530 	}
7531 
7532 	for (i = 0; i < kvm_nr_uret_msrs; ++i)
7533 		vmx->guest_uret_msrs[i].mask = -1ull;
7534 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7535 		/*
7536 		 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7537 		 * Keep the host value unchanged to avoid changing CPUID bits
7538 		 * under the host kernel's feet.
7539 		 */
7540 		tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7541 		if (tsx_ctrl)
7542 			tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7543 	}
7544 
7545 	err = alloc_loaded_vmcs(&vmx->vmcs01);
7546 	if (err < 0)
7547 		goto free_pml;
7548 
7549 	/*
7550 	 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7551 	 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7552 	 * feature only for vmcs01, KVM currently isn't equipped to realize any
7553 	 * performance benefits from enabling it for vmcs02.
7554 	 */
7555 	if (kvm_is_using_evmcs() &&
7556 	    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7557 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7558 
7559 		evmcs->hv_enlightenments_control.msr_bitmap = 1;
7560 	}
7561 
7562 	/* The MSR bitmap starts with all ones */
7563 	bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7564 	bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7565 
7566 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7567 #ifdef CONFIG_X86_64
7568 	vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7569 	vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7570 	vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7571 #endif
7572 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7573 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7574 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7575 	if (kvm_cstate_in_guest(vcpu->kvm)) {
7576 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7577 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7578 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7579 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7580 	}
7581 
7582 	vmx->loaded_vmcs = &vmx->vmcs01;
7583 
7584 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
7585 		err = kvm_alloc_apic_access_page(vcpu->kvm);
7586 		if (err)
7587 			goto free_vmcs;
7588 	}
7589 
7590 	if (enable_ept && !enable_unrestricted_guest) {
7591 		err = init_rmode_identity_map(vcpu->kvm);
7592 		if (err)
7593 			goto free_vmcs;
7594 	}
7595 
7596 	err = -ENOMEM;
7597 	if (vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_EPT_VIOLATION_VE) {
7598 		struct page *page;
7599 
7600 		BUILD_BUG_ON(sizeof(*vmx->ve_info) > PAGE_SIZE);
7601 
7602 		/* ve_info must be page aligned. */
7603 		page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7604 		if (!page)
7605 			goto free_vmcs;
7606 
7607 		vmx->ve_info = page_to_virt(page);
7608 	}
7609 
7610 	if (vmx_can_use_ipiv(vcpu))
7611 		WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7612 			   __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID);
7613 
7614 	return 0;
7615 
7616 free_vmcs:
7617 	free_loaded_vmcs(vmx->loaded_vmcs);
7618 free_pml:
7619 	vmx_destroy_pml_buffer(vmx);
7620 free_vpid:
7621 	free_vpid(vmx->vpid);
7622 	return err;
7623 }
7624 
7625 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7626 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7627 
7628 int vmx_vm_init(struct kvm *kvm)
7629 {
7630 	if (!ple_gap)
7631 		kvm->arch.pause_in_guest = true;
7632 
7633 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7634 		switch (l1tf_mitigation) {
7635 		case L1TF_MITIGATION_OFF:
7636 		case L1TF_MITIGATION_FLUSH_NOWARN:
7637 			/* 'I explicitly don't care' is set */
7638 			break;
7639 		case L1TF_MITIGATION_FLUSH:
7640 		case L1TF_MITIGATION_FLUSH_NOSMT:
7641 		case L1TF_MITIGATION_FULL:
7642 			/*
7643 			 * Warn upon starting the first VM in a potentially
7644 			 * insecure environment.
7645 			 */
7646 			if (sched_smt_active())
7647 				pr_warn_once(L1TF_MSG_SMT);
7648 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7649 				pr_warn_once(L1TF_MSG_L1D);
7650 			break;
7651 		case L1TF_MITIGATION_FULL_FORCE:
7652 			/* Flush is enforced */
7653 			break;
7654 		}
7655 	}
7656 	return 0;
7657 }
7658 
7659 u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7660 {
7661 	/*
7662 	 * Force UC for host MMIO regions, as allowing the guest to access MMIO
7663 	 * with cacheable accesses will result in Machine Checks.
7664 	 */
7665 	if (is_mmio)
7666 		return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7667 
7668 	/*
7669 	 * Force WB and ignore guest PAT if the VM does NOT have a non-coherent
7670 	 * device attached.  Letting the guest control memory types on Intel
7671 	 * CPUs may result in unexpected behavior, and so KVM's ABI is to trust
7672 	 * the guest to behave only as a last resort.
7673 	 */
7674 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
7675 		return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7676 
7677 	return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT);
7678 }
7679 
7680 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7681 {
7682 	/*
7683 	 * These bits in the secondary execution controls field
7684 	 * are dynamic, the others are mostly based on the hypervisor
7685 	 * architecture and the guest's CPUID.  Do not touch the
7686 	 * dynamic bits.
7687 	 */
7688 	u32 mask =
7689 		SECONDARY_EXEC_SHADOW_VMCS |
7690 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7691 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7692 		SECONDARY_EXEC_DESC;
7693 
7694 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7695 
7696 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7697 }
7698 
7699 /*
7700  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7701  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7702  */
7703 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7704 {
7705 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7706 	struct kvm_cpuid_entry2 *entry;
7707 
7708 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7709 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7710 
7711 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7712 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7713 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7714 } while (0)
7715 
7716 	entry = kvm_find_cpuid_entry(vcpu, 0x1);
7717 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7718 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7719 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7720 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7721 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7722 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7723 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7724 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7725 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7726 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7727 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7728 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7729 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7730 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7731 
7732 	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7733 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7734 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7735 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7736 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7737 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7738 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7739 
7740 	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 1);
7741 	cr4_fixed1_update(X86_CR4_LAM_SUP,    eax, feature_bit(LAM));
7742 
7743 #undef cr4_fixed1_update
7744 }
7745 
7746 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7747 {
7748 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7749 	struct kvm_cpuid_entry2 *best = NULL;
7750 	int i;
7751 
7752 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7753 		best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7754 		if (!best)
7755 			return;
7756 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7757 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7758 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7759 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7760 	}
7761 
7762 	/* Get the number of configurable Address Ranges for filtering */
7763 	vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7764 						PT_CAP_num_address_ranges);
7765 
7766 	/* Initialize and clear the no dependency bits */
7767 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7768 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7769 			RTIT_CTL_BRANCH_EN);
7770 
7771 	/*
7772 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7773 	 * will inject an #GP
7774 	 */
7775 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7776 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7777 
7778 	/*
7779 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7780 	 * PSBFreq can be set
7781 	 */
7782 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7783 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7784 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7785 
7786 	/*
7787 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7788 	 */
7789 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7790 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7791 					      RTIT_CTL_MTC_RANGE);
7792 
7793 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7794 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7795 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7796 							RTIT_CTL_PTW_EN);
7797 
7798 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7799 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7800 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7801 
7802 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7803 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7804 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7805 
7806 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7807 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7808 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7809 
7810 	/* unmask address range configure area */
7811 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7812 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7813 }
7814 
7815 void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7816 {
7817 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7818 
7819 	/*
7820 	 * XSAVES is effectively enabled if and only if XSAVE is also exposed
7821 	 * to the guest.  XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be
7822 	 * set if and only if XSAVE is supported.
7823 	 */
7824 	if (boot_cpu_has(X86_FEATURE_XSAVE) &&
7825 	    guest_cpuid_has(vcpu, X86_FEATURE_XSAVE))
7826 		kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_XSAVES);
7827 
7828 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VMX);
7829 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LAM);
7830 
7831 	vmx_setup_uret_msrs(vmx);
7832 
7833 	if (cpu_has_secondary_exec_ctrls())
7834 		vmcs_set_secondary_exec_control(vmx,
7835 						vmx_secondary_exec_control(vmx));
7836 
7837 	if (guest_can_use(vcpu, X86_FEATURE_VMX))
7838 		vmx->msr_ia32_feature_control_valid_bits |=
7839 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7840 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7841 	else
7842 		vmx->msr_ia32_feature_control_valid_bits &=
7843 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7844 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7845 
7846 	if (guest_can_use(vcpu, X86_FEATURE_VMX))
7847 		nested_vmx_cr_fixed1_bits_update(vcpu);
7848 
7849 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7850 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7851 		update_intel_pt_cfg(vcpu);
7852 
7853 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7854 		struct vmx_uret_msr *msr;
7855 		msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7856 		if (msr) {
7857 			bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7858 			vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7859 		}
7860 	}
7861 
7862 	if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7863 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7864 					  !guest_cpuid_has(vcpu, X86_FEATURE_XFD));
7865 
7866 	if (boot_cpu_has(X86_FEATURE_IBPB))
7867 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
7868 					  !guest_has_pred_cmd_msr(vcpu));
7869 
7870 	if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
7871 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
7872 					  !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
7873 
7874 	set_cr4_guest_host_mask(vmx);
7875 
7876 	vmx_write_encls_bitmap(vcpu, NULL);
7877 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7878 		vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7879 	else
7880 		vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7881 
7882 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7883 		vmx->msr_ia32_feature_control_valid_bits |=
7884 			FEAT_CTL_SGX_LC_ENABLED;
7885 	else
7886 		vmx->msr_ia32_feature_control_valid_bits &=
7887 			~FEAT_CTL_SGX_LC_ENABLED;
7888 
7889 	/* Refresh #PF interception to account for MAXPHYADDR changes. */
7890 	vmx_update_exception_bitmap(vcpu);
7891 }
7892 
7893 static __init u64 vmx_get_perf_capabilities(void)
7894 {
7895 	u64 perf_cap = PMU_CAP_FW_WRITES;
7896 	u64 host_perf_cap = 0;
7897 
7898 	if (!enable_pmu)
7899 		return 0;
7900 
7901 	if (boot_cpu_has(X86_FEATURE_PDCM))
7902 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
7903 
7904 	if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) {
7905 		x86_perf_get_lbr(&vmx_lbr_caps);
7906 
7907 		/*
7908 		 * KVM requires LBR callstack support, as the overhead due to
7909 		 * context switching LBRs without said support is too high.
7910 		 * See intel_pmu_create_guest_lbr_event() for more info.
7911 		 */
7912 		if (!vmx_lbr_caps.has_callstack)
7913 			memset(&vmx_lbr_caps, 0, sizeof(vmx_lbr_caps));
7914 		else if (vmx_lbr_caps.nr)
7915 			perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT;
7916 	}
7917 
7918 	if (vmx_pebs_supported()) {
7919 		perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
7920 
7921 		/*
7922 		 * Disallow adaptive PEBS as it is functionally broken, can be
7923 		 * used by the guest to read *host* LBRs, and can be used to
7924 		 * bypass userspace event filters.  To correctly and safely
7925 		 * support adaptive PEBS, KVM needs to:
7926 		 *
7927 		 * 1. Account for the ADAPTIVE flag when (re)programming fixed
7928 		 *    counters.
7929 		 *
7930 		 * 2. Gain support from perf (or take direct control of counter
7931 		 *    programming) to support events without adaptive PEBS
7932 		 *    enabled for the hardware counter.
7933 		 *
7934 		 * 3. Ensure LBR MSRs cannot hold host data on VM-Entry with
7935 		 *    adaptive PEBS enabled and MSR_PEBS_DATA_CFG.LBRS=1.
7936 		 *
7937 		 * 4. Document which PMU events are effectively exposed to the
7938 		 *    guest via adaptive PEBS, and make adaptive PEBS mutually
7939 		 *    exclusive with KVM_SET_PMU_EVENT_FILTER if necessary.
7940 		 */
7941 		perf_cap &= ~PERF_CAP_PEBS_BASELINE;
7942 	}
7943 
7944 	return perf_cap;
7945 }
7946 
7947 static __init void vmx_set_cpu_caps(void)
7948 {
7949 	kvm_set_cpu_caps();
7950 
7951 	/* CPUID 0x1 */
7952 	if (nested)
7953 		kvm_cpu_cap_set(X86_FEATURE_VMX);
7954 
7955 	/* CPUID 0x7 */
7956 	if (kvm_mpx_supported())
7957 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7958 	if (!cpu_has_vmx_invpcid())
7959 		kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7960 	if (vmx_pt_mode_is_host_guest())
7961 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7962 	if (vmx_pebs_supported()) {
7963 		kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7964 		kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7965 	}
7966 
7967 	if (!enable_pmu)
7968 		kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7969 	kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
7970 
7971 	if (!enable_sgx) {
7972 		kvm_cpu_cap_clear(X86_FEATURE_SGX);
7973 		kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7974 		kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7975 		kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7976 		kvm_cpu_cap_clear(X86_FEATURE_SGX_EDECCSSA);
7977 	}
7978 
7979 	if (vmx_umip_emulated())
7980 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7981 
7982 	/* CPUID 0xD.1 */
7983 	kvm_caps.supported_xss = 0;
7984 	if (!cpu_has_vmx_xsaves())
7985 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7986 
7987 	/* CPUID 0x80000001 and 0x7 (RDPID) */
7988 	if (!cpu_has_vmx_rdtscp()) {
7989 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7990 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7991 	}
7992 
7993 	if (cpu_has_vmx_waitpkg())
7994 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7995 }
7996 
7997 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7998 				  struct x86_instruction_info *info)
7999 {
8000 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8001 	unsigned short port;
8002 	bool intercept;
8003 	int size;
8004 
8005 	if (info->intercept == x86_intercept_in ||
8006 	    info->intercept == x86_intercept_ins) {
8007 		port = info->src_val;
8008 		size = info->dst_bytes;
8009 	} else {
8010 		port = info->dst_val;
8011 		size = info->src_bytes;
8012 	}
8013 
8014 	/*
8015 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
8016 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
8017 	 * control.
8018 	 *
8019 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
8020 	 */
8021 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
8022 		intercept = nested_cpu_has(vmcs12,
8023 					   CPU_BASED_UNCOND_IO_EXITING);
8024 	else
8025 		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
8026 
8027 	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
8028 	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
8029 }
8030 
8031 int vmx_check_intercept(struct kvm_vcpu *vcpu,
8032 			struct x86_instruction_info *info,
8033 			enum x86_intercept_stage stage,
8034 			struct x86_exception *exception)
8035 {
8036 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8037 
8038 	switch (info->intercept) {
8039 	/*
8040 	 * RDPID causes #UD if disabled through secondary execution controls.
8041 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
8042 	 * Note, RDPID is hidden behind ENABLE_RDTSCP.
8043 	 */
8044 	case x86_intercept_rdpid:
8045 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
8046 			exception->vector = UD_VECTOR;
8047 			exception->error_code_valid = false;
8048 			return X86EMUL_PROPAGATE_FAULT;
8049 		}
8050 		break;
8051 
8052 	case x86_intercept_in:
8053 	case x86_intercept_ins:
8054 	case x86_intercept_out:
8055 	case x86_intercept_outs:
8056 		return vmx_check_intercept_io(vcpu, info);
8057 
8058 	case x86_intercept_lgdt:
8059 	case x86_intercept_lidt:
8060 	case x86_intercept_lldt:
8061 	case x86_intercept_ltr:
8062 	case x86_intercept_sgdt:
8063 	case x86_intercept_sidt:
8064 	case x86_intercept_sldt:
8065 	case x86_intercept_str:
8066 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
8067 			return X86EMUL_CONTINUE;
8068 
8069 		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
8070 		break;
8071 
8072 	case x86_intercept_pause:
8073 		/*
8074 		 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
8075 		 * with vanilla NOPs in the emulator.  Apply the interception
8076 		 * check only to actual PAUSE instructions.  Don't check
8077 		 * PAUSE-loop-exiting, software can't expect a given PAUSE to
8078 		 * exit, i.e. KVM is within its rights to allow L2 to execute
8079 		 * the PAUSE.
8080 		 */
8081 		if ((info->rep_prefix != REPE_PREFIX) ||
8082 		    !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING))
8083 			return X86EMUL_CONTINUE;
8084 
8085 		break;
8086 
8087 	/* TODO: check more intercepts... */
8088 	default:
8089 		break;
8090 	}
8091 
8092 	return X86EMUL_UNHANDLEABLE;
8093 }
8094 
8095 #ifdef CONFIG_X86_64
8096 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
8097 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
8098 				  u64 divisor, u64 *result)
8099 {
8100 	u64 low = a << shift, high = a >> (64 - shift);
8101 
8102 	/* To avoid the overflow on divq */
8103 	if (high >= divisor)
8104 		return 1;
8105 
8106 	/* Low hold the result, high hold rem which is discarded */
8107 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
8108 	    "rm" (divisor), "0" (low), "1" (high));
8109 	*result = low;
8110 
8111 	return 0;
8112 }
8113 
8114 int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
8115 		     bool *expired)
8116 {
8117 	struct vcpu_vmx *vmx;
8118 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
8119 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
8120 
8121 	vmx = to_vmx(vcpu);
8122 	tscl = rdtsc();
8123 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
8124 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
8125 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
8126 						    ktimer->timer_advance_ns);
8127 
8128 	if (delta_tsc > lapic_timer_advance_cycles)
8129 		delta_tsc -= lapic_timer_advance_cycles;
8130 	else
8131 		delta_tsc = 0;
8132 
8133 	/* Convert to host delta tsc if tsc scaling is enabled */
8134 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
8135 	    delta_tsc && u64_shl_div_u64(delta_tsc,
8136 				kvm_caps.tsc_scaling_ratio_frac_bits,
8137 				vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
8138 		return -ERANGE;
8139 
8140 	/*
8141 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
8142 	 * we can't use the preemption timer.
8143 	 * It's possible that it fits on later vmentries, but checking
8144 	 * on every vmentry is costly so we just use an hrtimer.
8145 	 */
8146 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
8147 		return -ERANGE;
8148 
8149 	vmx->hv_deadline_tsc = tscl + delta_tsc;
8150 	*expired = !delta_tsc;
8151 	return 0;
8152 }
8153 
8154 void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
8155 {
8156 	to_vmx(vcpu)->hv_deadline_tsc = -1;
8157 }
8158 #endif
8159 
8160 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
8161 {
8162 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8163 
8164 	if (WARN_ON_ONCE(!enable_pml))
8165 		return;
8166 
8167 	if (is_guest_mode(vcpu)) {
8168 		vmx->nested.update_vmcs01_cpu_dirty_logging = true;
8169 		return;
8170 	}
8171 
8172 	/*
8173 	 * Note, nr_memslots_dirty_logging can be changed concurrent with this
8174 	 * code, but in that case another update request will be made and so
8175 	 * the guest will never run with a stale PML value.
8176 	 */
8177 	if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
8178 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8179 	else
8180 		secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8181 }
8182 
8183 void vmx_setup_mce(struct kvm_vcpu *vcpu)
8184 {
8185 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
8186 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
8187 			FEAT_CTL_LMCE_ENABLED;
8188 	else
8189 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
8190 			~FEAT_CTL_LMCE_ENABLED;
8191 }
8192 
8193 #ifdef CONFIG_KVM_SMM
8194 int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
8195 {
8196 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
8197 	if (to_vmx(vcpu)->nested.nested_run_pending)
8198 		return -EBUSY;
8199 	return !is_smm(vcpu);
8200 }
8201 
8202 int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
8203 {
8204 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8205 
8206 	/*
8207 	 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8208 	 * SMI and RSM.  Using the common VM-Exit + VM-Enter routines is wrong
8209 	 * SMI and RSM only modify state that is saved and restored via SMRAM.
8210 	 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
8211 	 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8212 	 */
8213 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
8214 	if (vmx->nested.smm.guest_mode)
8215 		nested_vmx_vmexit(vcpu, -1, 0, 0);
8216 
8217 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
8218 	vmx->nested.vmxon = false;
8219 	vmx_clear_hlt(vcpu);
8220 	return 0;
8221 }
8222 
8223 int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8224 {
8225 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8226 	int ret;
8227 
8228 	if (vmx->nested.smm.vmxon) {
8229 		vmx->nested.vmxon = true;
8230 		vmx->nested.smm.vmxon = false;
8231 	}
8232 
8233 	if (vmx->nested.smm.guest_mode) {
8234 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
8235 		if (ret)
8236 			return ret;
8237 
8238 		vmx->nested.nested_run_pending = 1;
8239 		vmx->nested.smm.guest_mode = false;
8240 	}
8241 	return 0;
8242 }
8243 
8244 void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8245 {
8246 	/* RSM will cause a vmexit anyway.  */
8247 }
8248 #endif
8249 
8250 bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8251 {
8252 	return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8253 }
8254 
8255 void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8256 {
8257 	if (is_guest_mode(vcpu)) {
8258 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8259 
8260 		if (hrtimer_try_to_cancel(timer) == 1)
8261 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8262 	}
8263 }
8264 
8265 void vmx_hardware_unsetup(void)
8266 {
8267 	kvm_set_posted_intr_wakeup_handler(NULL);
8268 
8269 	if (nested)
8270 		nested_vmx_hardware_unsetup();
8271 
8272 	free_kvm_area();
8273 }
8274 
8275 void vmx_vm_destroy(struct kvm *kvm)
8276 {
8277 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8278 
8279 	free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8280 }
8281 
8282 /*
8283  * Note, the SDM states that the linear address is masked *after* the modified
8284  * canonicality check, whereas KVM masks (untags) the address and then performs
8285  * a "normal" canonicality check.  Functionally, the two methods are identical,
8286  * and when the masking occurs relative to the canonicality check isn't visible
8287  * to software, i.e. KVM's behavior doesn't violate the SDM.
8288  */
8289 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags)
8290 {
8291 	int lam_bit;
8292 	unsigned long cr3_bits;
8293 
8294 	if (flags & (X86EMUL_F_FETCH | X86EMUL_F_IMPLICIT | X86EMUL_F_INVLPG))
8295 		return gva;
8296 
8297 	if (!is_64_bit_mode(vcpu))
8298 		return gva;
8299 
8300 	/*
8301 	 * Bit 63 determines if the address should be treated as user address
8302 	 * or a supervisor address.
8303 	 */
8304 	if (!(gva & BIT_ULL(63))) {
8305 		cr3_bits = kvm_get_active_cr3_lam_bits(vcpu);
8306 		if (!(cr3_bits & (X86_CR3_LAM_U57 | X86_CR3_LAM_U48)))
8307 			return gva;
8308 
8309 		/* LAM_U48 is ignored if LAM_U57 is set. */
8310 		lam_bit = cr3_bits & X86_CR3_LAM_U57 ? 56 : 47;
8311 	} else {
8312 		if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_LAM_SUP))
8313 			return gva;
8314 
8315 		lam_bit = kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 56 : 47;
8316 	}
8317 
8318 	/*
8319 	 * Untag the address by sign-extending the lam_bit, but NOT to bit 63.
8320 	 * Bit 63 is retained from the raw virtual address so that untagging
8321 	 * doesn't change a user access to a supervisor access, and vice versa.
8322 	 */
8323 	return (sign_extend64(gva, lam_bit) & ~BIT_ULL(63)) | (gva & BIT_ULL(63));
8324 }
8325 
8326 static unsigned int vmx_handle_intel_pt_intr(void)
8327 {
8328 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8329 
8330 	/* '0' on failure so that the !PT case can use a RET0 static call. */
8331 	if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8332 		return 0;
8333 
8334 	kvm_make_request(KVM_REQ_PMI, vcpu);
8335 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8336 		  (unsigned long *)&vcpu->arch.pmu.global_status);
8337 	return 1;
8338 }
8339 
8340 static __init void vmx_setup_user_return_msrs(void)
8341 {
8342 
8343 	/*
8344 	 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8345 	 * will emulate SYSCALL in legacy mode if the vendor string in guest
8346 	 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8347 	 * support this emulation, MSR_STAR is included in the list for i386,
8348 	 * but is never loaded into hardware.  MSR_CSTAR is also never loaded
8349 	 * into hardware and is here purely for emulation purposes.
8350 	 */
8351 	const u32 vmx_uret_msrs_list[] = {
8352 	#ifdef CONFIG_X86_64
8353 		MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8354 	#endif
8355 		MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8356 		MSR_IA32_TSX_CTRL,
8357 	};
8358 	int i;
8359 
8360 	BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8361 
8362 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8363 		kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8364 }
8365 
8366 static void __init vmx_setup_me_spte_mask(void)
8367 {
8368 	u64 me_mask = 0;
8369 
8370 	/*
8371 	 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8372 	 * kvm_host.maxphyaddr.  On MKTME and/or TDX capable systems,
8373 	 * boot_cpu_data.x86_phys_bits holds the actual physical address
8374 	 * w/o the KeyID bits, and kvm_host.maxphyaddr equals to
8375 	 * MAXPHYADDR reported by CPUID.  Those bits between are KeyID bits.
8376 	 */
8377 	if (boot_cpu_data.x86_phys_bits != kvm_host.maxphyaddr)
8378 		me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8379 				    kvm_host.maxphyaddr - 1);
8380 
8381 	/*
8382 	 * Unlike SME, host kernel doesn't support setting up any
8383 	 * MKTME KeyID on Intel platforms.  No memory encryption
8384 	 * bits should be included into the SPTE.
8385 	 */
8386 	kvm_mmu_set_me_spte_mask(0, me_mask);
8387 }
8388 
8389 __init int vmx_hardware_setup(void)
8390 {
8391 	unsigned long host_bndcfgs;
8392 	struct desc_ptr dt;
8393 	int r;
8394 
8395 	store_idt(&dt);
8396 	host_idt_base = dt.address;
8397 
8398 	vmx_setup_user_return_msrs();
8399 
8400 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8401 		return -EIO;
8402 
8403 	if (cpu_has_perf_global_ctrl_bug())
8404 		pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
8405 			     "does not work properly. Using workaround\n");
8406 
8407 	if (boot_cpu_has(X86_FEATURE_NX))
8408 		kvm_enable_efer_bits(EFER_NX);
8409 
8410 	if (boot_cpu_has(X86_FEATURE_MPX)) {
8411 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
8412 		WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
8413 	}
8414 
8415 	if (!cpu_has_vmx_mpx())
8416 		kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8417 					     XFEATURE_MASK_BNDCSR);
8418 
8419 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8420 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8421 		enable_vpid = 0;
8422 
8423 	if (!cpu_has_vmx_ept() ||
8424 	    !cpu_has_vmx_ept_4levels() ||
8425 	    !cpu_has_vmx_ept_mt_wb() ||
8426 	    !cpu_has_vmx_invept_global())
8427 		enable_ept = 0;
8428 
8429 	/* NX support is required for shadow paging. */
8430 	if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8431 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
8432 		return -EOPNOTSUPP;
8433 	}
8434 
8435 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8436 		enable_ept_ad_bits = 0;
8437 
8438 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8439 		enable_unrestricted_guest = 0;
8440 
8441 	if (!cpu_has_vmx_flexpriority())
8442 		flexpriority_enabled = 0;
8443 
8444 	if (!cpu_has_virtual_nmis())
8445 		enable_vnmi = 0;
8446 
8447 #ifdef CONFIG_X86_SGX_KVM
8448 	if (!cpu_has_vmx_encls_vmexit())
8449 		enable_sgx = false;
8450 #endif
8451 
8452 	/*
8453 	 * set_apic_access_page_addr() is used to reload apic access
8454 	 * page upon invalidation.  No need to do anything if not
8455 	 * using the APIC_ACCESS_ADDR VMCS field.
8456 	 */
8457 	if (!flexpriority_enabled)
8458 		vt_x86_ops.set_apic_access_page_addr = NULL;
8459 
8460 	if (!cpu_has_vmx_tpr_shadow())
8461 		vt_x86_ops.update_cr8_intercept = NULL;
8462 
8463 #if IS_ENABLED(CONFIG_HYPERV)
8464 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8465 	    && enable_ept) {
8466 		vt_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
8467 		vt_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
8468 	}
8469 #endif
8470 
8471 	if (!cpu_has_vmx_ple()) {
8472 		ple_gap = 0;
8473 		ple_window = 0;
8474 		ple_window_grow = 0;
8475 		ple_window_max = 0;
8476 		ple_window_shrink = 0;
8477 	}
8478 
8479 	if (!cpu_has_vmx_apicv())
8480 		enable_apicv = 0;
8481 	if (!enable_apicv)
8482 		vt_x86_ops.sync_pir_to_irr = NULL;
8483 
8484 	if (!enable_apicv || !cpu_has_vmx_ipiv())
8485 		enable_ipiv = false;
8486 
8487 	if (cpu_has_vmx_tsc_scaling())
8488 		kvm_caps.has_tsc_control = true;
8489 
8490 	kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8491 	kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8492 	kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8493 	kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8494 
8495 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8496 
8497 	if (enable_ept)
8498 		kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8499 				      cpu_has_vmx_ept_execute_only());
8500 
8501 	/*
8502 	 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8503 	 * bits to shadow_zero_check.
8504 	 */
8505 	vmx_setup_me_spte_mask();
8506 
8507 	kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(),
8508 			  ept_caps_to_lpage_level(vmx_capability.ept));
8509 
8510 	/*
8511 	 * Only enable PML when hardware supports PML feature, and both EPT
8512 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
8513 	 */
8514 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8515 		enable_pml = 0;
8516 
8517 	if (!enable_pml)
8518 		vt_x86_ops.cpu_dirty_log_size = 0;
8519 
8520 	if (!cpu_has_vmx_preemption_timer())
8521 		enable_preemption_timer = false;
8522 
8523 	if (enable_preemption_timer) {
8524 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
8525 
8526 		cpu_preemption_timer_multi =
8527 			vmx_misc_preemption_timer_rate(vmcs_config.misc);
8528 
8529 		if (tsc_khz)
8530 			use_timer_freq = (u64)tsc_khz * 1000;
8531 		use_timer_freq >>= cpu_preemption_timer_multi;
8532 
8533 		/*
8534 		 * KVM "disables" the preemption timer by setting it to its max
8535 		 * value.  Don't use the timer if it might cause spurious exits
8536 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8537 		 */
8538 		if (use_timer_freq > 0xffffffffu / 10)
8539 			enable_preemption_timer = false;
8540 	}
8541 
8542 	if (!enable_preemption_timer) {
8543 		vt_x86_ops.set_hv_timer = NULL;
8544 		vt_x86_ops.cancel_hv_timer = NULL;
8545 	}
8546 
8547 	kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8548 	kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8549 
8550 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8551 		return -EINVAL;
8552 	if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8553 		pt_mode = PT_MODE_SYSTEM;
8554 	if (pt_mode == PT_MODE_HOST_GUEST)
8555 		vt_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8556 	else
8557 		vt_init_ops.handle_intel_pt_intr = NULL;
8558 
8559 	setup_default_sgx_lepubkeyhash();
8560 
8561 	if (nested) {
8562 		nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8563 
8564 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8565 		if (r)
8566 			return r;
8567 	}
8568 
8569 	vmx_set_cpu_caps();
8570 
8571 	r = alloc_kvm_area();
8572 	if (r && nested)
8573 		nested_vmx_hardware_unsetup();
8574 
8575 	kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8576 
8577 	return r;
8578 }
8579 
8580 static void vmx_cleanup_l1d_flush(void)
8581 {
8582 	if (vmx_l1d_flush_pages) {
8583 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8584 		vmx_l1d_flush_pages = NULL;
8585 	}
8586 	/* Restore state so sysfs ignores VMX */
8587 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8588 }
8589 
8590 static void __vmx_exit(void)
8591 {
8592 	allow_smaller_maxphyaddr = false;
8593 
8594 	vmx_cleanup_l1d_flush();
8595 }
8596 
8597 static void vmx_exit(void)
8598 {
8599 	kvm_exit();
8600 	__vmx_exit();
8601 	kvm_x86_vendor_exit();
8602 
8603 }
8604 module_exit(vmx_exit);
8605 
8606 static int __init vmx_init(void)
8607 {
8608 	int r, cpu;
8609 
8610 	if (!kvm_is_vmx_supported())
8611 		return -EOPNOTSUPP;
8612 
8613 	/*
8614 	 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing
8615 	 * to unwind if a later step fails.
8616 	 */
8617 	hv_init_evmcs();
8618 
8619 	r = kvm_x86_vendor_init(&vt_init_ops);
8620 	if (r)
8621 		return r;
8622 
8623 	/*
8624 	 * Must be called after common x86 init so enable_ept is properly set
8625 	 * up. Hand the parameter mitigation value in which was stored in
8626 	 * the pre module init parser. If no parameter was given, it will
8627 	 * contain 'auto' which will be turned into the default 'cond'
8628 	 * mitigation mode.
8629 	 */
8630 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8631 	if (r)
8632 		goto err_l1d_flush;
8633 
8634 	for_each_possible_cpu(cpu) {
8635 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8636 
8637 		pi_init_cpu(cpu);
8638 	}
8639 
8640 	vmx_check_vmcs12_offsets();
8641 
8642 	/*
8643 	 * Shadow paging doesn't have a (further) performance penalty
8644 	 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8645 	 * by default
8646 	 */
8647 	if (!enable_ept)
8648 		allow_smaller_maxphyaddr = true;
8649 
8650 	/*
8651 	 * Common KVM initialization _must_ come last, after this, /dev/kvm is
8652 	 * exposed to userspace!
8653 	 */
8654 	r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx),
8655 		     THIS_MODULE);
8656 	if (r)
8657 		goto err_kvm_init;
8658 
8659 	return 0;
8660 
8661 err_kvm_init:
8662 	__vmx_exit();
8663 err_l1d_flush:
8664 	kvm_x86_vendor_exit();
8665 	return r;
8666 }
8667 module_init(vmx_init);
8668