xref: /linux/arch/x86/kvm/vmx/vmx.c (revision 570d58b12fbf7bae0ba72d929ccf914a4df5ca7c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/objtool.h>
26 #include <linux/sched.h>
27 #include <linux/sched/smt.h>
28 #include <linux/slab.h>
29 #include <linux/tboot.h>
30 #include <linux/trace_events.h>
31 #include <linux/entry-kvm.h>
32 
33 #include <asm/apic.h>
34 #include <asm/asm.h>
35 #include <asm/cpu.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/debugreg.h>
38 #include <asm/desc.h>
39 #include <asm/fpu/api.h>
40 #include <asm/fpu/xstate.h>
41 #include <asm/fred.h>
42 #include <asm/idtentry.h>
43 #include <asm/io.h>
44 #include <asm/irq_remapping.h>
45 #include <asm/reboot.h>
46 #include <asm/perf_event.h>
47 #include <asm/mmu_context.h>
48 #include <asm/mshyperv.h>
49 #include <asm/msr.h>
50 #include <asm/mwait.h>
51 #include <asm/spec-ctrl.h>
52 #include <asm/vmx.h>
53 
54 #include <trace/events/ipi.h>
55 
56 #include "capabilities.h"
57 #include "cpuid.h"
58 #include "hyperv.h"
59 #include "kvm_onhyperv.h"
60 #include "irq.h"
61 #include "kvm_cache_regs.h"
62 #include "lapic.h"
63 #include "mmu.h"
64 #include "nested.h"
65 #include "pmu.h"
66 #include "sgx.h"
67 #include "trace.h"
68 #include "vmcs.h"
69 #include "vmcs12.h"
70 #include "vmx.h"
71 #include "x86.h"
72 #include "x86_ops.h"
73 #include "smm.h"
74 #include "vmx_onhyperv.h"
75 #include "posted_intr.h"
76 
77 MODULE_AUTHOR("Qumranet");
78 MODULE_DESCRIPTION("KVM support for VMX (Intel VT-x) extensions");
79 MODULE_LICENSE("GPL");
80 
81 #ifdef MODULE
82 static const struct x86_cpu_id vmx_cpu_id[] = {
83 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
84 	{}
85 };
86 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
87 #endif
88 
89 bool __read_mostly enable_vpid = 1;
90 module_param_named(vpid, enable_vpid, bool, 0444);
91 
92 static bool __read_mostly enable_vnmi = 1;
93 module_param_named(vnmi, enable_vnmi, bool, 0444);
94 
95 bool __read_mostly flexpriority_enabled = 1;
96 module_param_named(flexpriority, flexpriority_enabled, bool, 0444);
97 
98 bool __read_mostly enable_ept = 1;
99 module_param_named(ept, enable_ept, bool, 0444);
100 
101 bool __read_mostly enable_unrestricted_guest = 1;
102 module_param_named(unrestricted_guest,
103 			enable_unrestricted_guest, bool, 0444);
104 
105 bool __read_mostly enable_ept_ad_bits = 1;
106 module_param_named(eptad, enable_ept_ad_bits, bool, 0444);
107 
108 static bool __read_mostly emulate_invalid_guest_state = true;
109 module_param(emulate_invalid_guest_state, bool, 0444);
110 
111 static bool __read_mostly fasteoi = 1;
112 module_param(fasteoi, bool, 0444);
113 
114 module_param(enable_apicv, bool, 0444);
115 
116 bool __read_mostly enable_ipiv = true;
117 module_param(enable_ipiv, bool, 0444);
118 
119 /*
120  * If nested=1, nested virtualization is supported, i.e., guests may use
121  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
122  * use VMX instructions.
123  */
124 static bool __read_mostly nested = 1;
125 module_param(nested, bool, 0444);
126 
127 bool __read_mostly enable_pml = 1;
128 module_param_named(pml, enable_pml, bool, 0444);
129 
130 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
131 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
132 
133 static bool __read_mostly dump_invalid_vmcs = 0;
134 module_param(dump_invalid_vmcs, bool, 0644);
135 
136 #define MSR_BITMAP_MODE_X2APIC		1
137 #define MSR_BITMAP_MODE_X2APIC_APICV	2
138 
139 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
140 
141 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
142 static int __read_mostly cpu_preemption_timer_multi;
143 static bool __read_mostly enable_preemption_timer = 1;
144 #ifdef CONFIG_X86_64
145 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
146 #endif
147 
148 extern bool __read_mostly allow_smaller_maxphyaddr;
149 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
150 
151 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
152 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
153 #define KVM_VM_CR0_ALWAYS_ON				\
154 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
155 
156 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
157 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
158 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
159 
160 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
161 
162 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
163 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
164 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
165 	RTIT_STATUS_BYTECNT))
166 
167 /*
168  * List of MSRs that can be directly passed to the guest.
169  * In addition to these x2apic, PT and LBR MSRs are handled specially.
170  */
171 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
172 	MSR_IA32_SPEC_CTRL,
173 	MSR_IA32_PRED_CMD,
174 	MSR_IA32_FLUSH_CMD,
175 	MSR_IA32_TSC,
176 #ifdef CONFIG_X86_64
177 	MSR_FS_BASE,
178 	MSR_GS_BASE,
179 	MSR_KERNEL_GS_BASE,
180 	MSR_IA32_XFD,
181 	MSR_IA32_XFD_ERR,
182 #endif
183 	MSR_IA32_SYSENTER_CS,
184 	MSR_IA32_SYSENTER_ESP,
185 	MSR_IA32_SYSENTER_EIP,
186 	MSR_CORE_C1_RES,
187 	MSR_CORE_C3_RESIDENCY,
188 	MSR_CORE_C6_RESIDENCY,
189 	MSR_CORE_C7_RESIDENCY,
190 };
191 
192 /*
193  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
194  * ple_gap:    upper bound on the amount of time between two successive
195  *             executions of PAUSE in a loop. Also indicate if ple enabled.
196  *             According to test, this time is usually smaller than 128 cycles.
197  * ple_window: upper bound on the amount of time a guest is allowed to execute
198  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
199  *             less than 2^12 cycles
200  * Time is measured based on a counter that runs at the same rate as the TSC,
201  * refer SDM volume 3b section 21.6.13 & 22.1.3.
202  */
203 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
204 module_param(ple_gap, uint, 0444);
205 
206 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
207 module_param(ple_window, uint, 0444);
208 
209 /* Default doubles per-vcpu window every exit. */
210 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
211 module_param(ple_window_grow, uint, 0444);
212 
213 /* Default resets per-vcpu window every exit to ple_window. */
214 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
215 module_param(ple_window_shrink, uint, 0444);
216 
217 /* Default is to compute the maximum so we can never overflow. */
218 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
219 module_param(ple_window_max, uint, 0444);
220 
221 /* Default is SYSTEM mode, 1 for host-guest mode (which is BROKEN) */
222 int __read_mostly pt_mode = PT_MODE_SYSTEM;
223 #ifdef CONFIG_BROKEN
224 module_param(pt_mode, int, S_IRUGO);
225 #endif
226 
227 struct x86_pmu_lbr __ro_after_init vmx_lbr_caps;
228 
229 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
230 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
231 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
232 
233 /* Storage for pre module init parameter parsing */
234 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
235 
236 static const struct {
237 	const char *option;
238 	bool for_parse;
239 } vmentry_l1d_param[] = {
240 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
241 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
242 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
243 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
244 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
245 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
246 };
247 
248 #define L1D_CACHE_ORDER 4
249 static void *vmx_l1d_flush_pages;
250 
251 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
252 {
253 	struct page *page;
254 	unsigned int i;
255 
256 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
257 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
258 		return 0;
259 	}
260 
261 	if (!enable_ept) {
262 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
263 		return 0;
264 	}
265 
266 	if (kvm_host.arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
267 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
268 		return 0;
269 	}
270 
271 	/* If set to auto use the default l1tf mitigation method */
272 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
273 		switch (l1tf_mitigation) {
274 		case L1TF_MITIGATION_OFF:
275 			l1tf = VMENTER_L1D_FLUSH_NEVER;
276 			break;
277 		case L1TF_MITIGATION_FLUSH_NOWARN:
278 		case L1TF_MITIGATION_FLUSH:
279 		case L1TF_MITIGATION_FLUSH_NOSMT:
280 			l1tf = VMENTER_L1D_FLUSH_COND;
281 			break;
282 		case L1TF_MITIGATION_FULL:
283 		case L1TF_MITIGATION_FULL_FORCE:
284 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
285 			break;
286 		}
287 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
288 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
289 	}
290 
291 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
292 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
293 		/*
294 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
295 		 * lifetime and so should not be charged to a memcg.
296 		 */
297 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
298 		if (!page)
299 			return -ENOMEM;
300 		vmx_l1d_flush_pages = page_address(page);
301 
302 		/*
303 		 * Initialize each page with a different pattern in
304 		 * order to protect against KSM in the nested
305 		 * virtualization case.
306 		 */
307 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
308 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
309 			       PAGE_SIZE);
310 		}
311 	}
312 
313 	l1tf_vmx_mitigation = l1tf;
314 
315 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
316 		static_branch_enable(&vmx_l1d_should_flush);
317 	else
318 		static_branch_disable(&vmx_l1d_should_flush);
319 
320 	if (l1tf == VMENTER_L1D_FLUSH_COND)
321 		static_branch_enable(&vmx_l1d_flush_cond);
322 	else
323 		static_branch_disable(&vmx_l1d_flush_cond);
324 	return 0;
325 }
326 
327 static int vmentry_l1d_flush_parse(const char *s)
328 {
329 	unsigned int i;
330 
331 	if (s) {
332 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
333 			if (vmentry_l1d_param[i].for_parse &&
334 			    sysfs_streq(s, vmentry_l1d_param[i].option))
335 				return i;
336 		}
337 	}
338 	return -EINVAL;
339 }
340 
341 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
342 {
343 	int l1tf, ret;
344 
345 	l1tf = vmentry_l1d_flush_parse(s);
346 	if (l1tf < 0)
347 		return l1tf;
348 
349 	if (!boot_cpu_has(X86_BUG_L1TF))
350 		return 0;
351 
352 	/*
353 	 * Has vmx_init() run already? If not then this is the pre init
354 	 * parameter parsing. In that case just store the value and let
355 	 * vmx_init() do the proper setup after enable_ept has been
356 	 * established.
357 	 */
358 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
359 		vmentry_l1d_flush_param = l1tf;
360 		return 0;
361 	}
362 
363 	mutex_lock(&vmx_l1d_flush_mutex);
364 	ret = vmx_setup_l1d_flush(l1tf);
365 	mutex_unlock(&vmx_l1d_flush_mutex);
366 	return ret;
367 }
368 
369 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
370 {
371 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
372 		return sysfs_emit(s, "???\n");
373 
374 	return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
375 }
376 
377 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
378 {
379 	u64 msr;
380 
381 	if (!vmx->disable_fb_clear)
382 		return;
383 
384 	msr = native_rdmsrq(MSR_IA32_MCU_OPT_CTRL);
385 	msr |= FB_CLEAR_DIS;
386 	native_wrmsrq(MSR_IA32_MCU_OPT_CTRL, msr);
387 	/* Cache the MSR value to avoid reading it later */
388 	vmx->msr_ia32_mcu_opt_ctrl = msr;
389 }
390 
391 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
392 {
393 	if (!vmx->disable_fb_clear)
394 		return;
395 
396 	vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
397 	native_wrmsrq(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
398 }
399 
400 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
401 {
402 	/*
403 	 * Disable VERW's behavior of clearing CPU buffers for the guest if the
404 	 * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled
405 	 * the mitigation. Disabling the clearing behavior provides a
406 	 * performance boost for guests that aren't aware that manually clearing
407 	 * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry
408 	 * and VM-Exit.
409 	 */
410 	vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) &&
411 				(kvm_host.arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) &&
412 				!boot_cpu_has_bug(X86_BUG_MDS) &&
413 				!boot_cpu_has_bug(X86_BUG_TAA);
414 
415 	/*
416 	 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
417 	 * at VMEntry. Skip the MSR read/write when a guest has no use case to
418 	 * execute VERW.
419 	 */
420 	if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
421 	   ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
422 	    (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
423 	    (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
424 	    (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
425 	    (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
426 		vmx->disable_fb_clear = false;
427 }
428 
429 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
430 	.set = vmentry_l1d_flush_set,
431 	.get = vmentry_l1d_flush_get,
432 };
433 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
434 
435 static u32 vmx_segment_access_rights(struct kvm_segment *var);
436 
437 void vmx_vmexit(void);
438 
439 #define vmx_insn_failed(fmt...)		\
440 do {					\
441 	WARN_ONCE(1, fmt);		\
442 	pr_warn_ratelimited(fmt);	\
443 } while (0)
444 
445 noinline void vmread_error(unsigned long field)
446 {
447 	vmx_insn_failed("vmread failed: field=%lx\n", field);
448 }
449 
450 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT
451 noinstr void vmread_error_trampoline2(unsigned long field, bool fault)
452 {
453 	if (fault) {
454 		kvm_spurious_fault();
455 	} else {
456 		instrumentation_begin();
457 		vmread_error(field);
458 		instrumentation_end();
459 	}
460 }
461 #endif
462 
463 noinline void vmwrite_error(unsigned long field, unsigned long value)
464 {
465 	vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
466 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
467 }
468 
469 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
470 {
471 	vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
472 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
473 }
474 
475 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
476 {
477 	vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
478 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
479 }
480 
481 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
482 {
483 	vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
484 			ext, vpid, gva);
485 }
486 
487 noinline void invept_error(unsigned long ext, u64 eptp)
488 {
489 	vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx\n", ext, eptp);
490 }
491 
492 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
493 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
494 /*
495  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
496  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
497  */
498 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
499 
500 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
501 static DEFINE_SPINLOCK(vmx_vpid_lock);
502 
503 struct vmcs_config vmcs_config __ro_after_init;
504 struct vmx_capability vmx_capability __ro_after_init;
505 
506 #define VMX_SEGMENT_FIELD(seg)					\
507 	[VCPU_SREG_##seg] = {                                   \
508 		.selector = GUEST_##seg##_SELECTOR,		\
509 		.base = GUEST_##seg##_BASE,		   	\
510 		.limit = GUEST_##seg##_LIMIT,		   	\
511 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
512 	}
513 
514 static const struct kvm_vmx_segment_field {
515 	unsigned selector;
516 	unsigned base;
517 	unsigned limit;
518 	unsigned ar_bytes;
519 } kvm_vmx_segment_fields[] = {
520 	VMX_SEGMENT_FIELD(CS),
521 	VMX_SEGMENT_FIELD(DS),
522 	VMX_SEGMENT_FIELD(ES),
523 	VMX_SEGMENT_FIELD(FS),
524 	VMX_SEGMENT_FIELD(GS),
525 	VMX_SEGMENT_FIELD(SS),
526 	VMX_SEGMENT_FIELD(TR),
527 	VMX_SEGMENT_FIELD(LDTR),
528 };
529 
530 
531 static unsigned long host_idt_base;
532 
533 #if IS_ENABLED(CONFIG_HYPERV)
534 static bool __read_mostly enlightened_vmcs = true;
535 module_param(enlightened_vmcs, bool, 0444);
536 
537 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
538 {
539 	struct hv_enlightened_vmcs *evmcs;
540 	hpa_t partition_assist_page = hv_get_partition_assist_page(vcpu);
541 
542 	if (partition_assist_page == INVALID_PAGE)
543 		return -ENOMEM;
544 
545 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
546 
547 	evmcs->partition_assist_page = partition_assist_page;
548 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
549 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
550 
551 	return 0;
552 }
553 
554 static __init void hv_init_evmcs(void)
555 {
556 	int cpu;
557 
558 	if (!enlightened_vmcs)
559 		return;
560 
561 	/*
562 	 * Enlightened VMCS usage should be recommended and the host needs
563 	 * to support eVMCS v1 or above.
564 	 */
565 	if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
566 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
567 	     KVM_EVMCS_VERSION) {
568 
569 		/* Check that we have assist pages on all online CPUs */
570 		for_each_online_cpu(cpu) {
571 			if (!hv_get_vp_assist_page(cpu)) {
572 				enlightened_vmcs = false;
573 				break;
574 			}
575 		}
576 
577 		if (enlightened_vmcs) {
578 			pr_info("Using Hyper-V Enlightened VMCS\n");
579 			static_branch_enable(&__kvm_is_using_evmcs);
580 		}
581 
582 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
583 			vt_x86_ops.enable_l2_tlb_flush
584 				= hv_enable_l2_tlb_flush;
585 	} else {
586 		enlightened_vmcs = false;
587 	}
588 }
589 
590 static void hv_reset_evmcs(void)
591 {
592 	struct hv_vp_assist_page *vp_ap;
593 
594 	if (!kvm_is_using_evmcs())
595 		return;
596 
597 	/*
598 	 * KVM should enable eVMCS if and only if all CPUs have a VP assist
599 	 * page, and should reject CPU onlining if eVMCS is enabled the CPU
600 	 * doesn't have a VP assist page allocated.
601 	 */
602 	vp_ap = hv_get_vp_assist_page(smp_processor_id());
603 	if (WARN_ON_ONCE(!vp_ap))
604 		return;
605 
606 	/*
607 	 * Reset everything to support using non-enlightened VMCS access later
608 	 * (e.g. when we reload the module with enlightened_vmcs=0)
609 	 */
610 	vp_ap->nested_control.features.directhypercall = 0;
611 	vp_ap->current_nested_vmcs = 0;
612 	vp_ap->enlighten_vmentry = 0;
613 }
614 
615 #else /* IS_ENABLED(CONFIG_HYPERV) */
616 static void hv_init_evmcs(void) {}
617 static void hv_reset_evmcs(void) {}
618 #endif /* IS_ENABLED(CONFIG_HYPERV) */
619 
620 /*
621  * Comment's format: document - errata name - stepping - processor name.
622  * Refer from
623  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
624  */
625 static u32 vmx_preemption_cpu_tfms[] = {
626 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
627 0x000206E6,
628 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
629 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
630 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
631 0x00020652,
632 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
633 0x00020655,
634 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
635 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
636 /*
637  * 320767.pdf - AAP86  - B1 -
638  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
639  */
640 0x000106E5,
641 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
642 0x000106A0,
643 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
644 0x000106A1,
645 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
646 0x000106A4,
647  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
648  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
649  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
650 0x000106A5,
651  /* Xeon E3-1220 V2 */
652 0x000306A8,
653 };
654 
655 static inline bool cpu_has_broken_vmx_preemption_timer(void)
656 {
657 	u32 eax = cpuid_eax(0x00000001), i;
658 
659 	/* Clear the reserved bits */
660 	eax &= ~(0x3U << 14 | 0xfU << 28);
661 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
662 		if (eax == vmx_preemption_cpu_tfms[i])
663 			return true;
664 
665 	return false;
666 }
667 
668 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
669 {
670 	return flexpriority_enabled && lapic_in_kernel(vcpu);
671 }
672 
673 static int vmx_get_passthrough_msr_slot(u32 msr)
674 {
675 	int i;
676 
677 	switch (msr) {
678 	case 0x800 ... 0x8ff:
679 		/* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
680 		return -ENOENT;
681 	case MSR_IA32_RTIT_STATUS:
682 	case MSR_IA32_RTIT_OUTPUT_BASE:
683 	case MSR_IA32_RTIT_OUTPUT_MASK:
684 	case MSR_IA32_RTIT_CR3_MATCH:
685 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
686 		/* PT MSRs. These are handled in pt_update_intercept_for_msr() */
687 	case MSR_LBR_SELECT:
688 	case MSR_LBR_TOS:
689 	case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
690 	case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
691 	case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
692 	case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
693 	case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
694 		/* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
695 		return -ENOENT;
696 	}
697 
698 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
699 		if (vmx_possible_passthrough_msrs[i] == msr)
700 			return i;
701 	}
702 
703 	WARN(1, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
704 	return -ENOENT;
705 }
706 
707 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
708 {
709 	int i;
710 
711 	i = kvm_find_user_return_msr(msr);
712 	if (i >= 0)
713 		return &vmx->guest_uret_msrs[i];
714 	return NULL;
715 }
716 
717 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
718 				  struct vmx_uret_msr *msr, u64 data)
719 {
720 	unsigned int slot = msr - vmx->guest_uret_msrs;
721 	int ret = 0;
722 
723 	if (msr->load_into_hardware) {
724 		preempt_disable();
725 		ret = kvm_set_user_return_msr(slot, data, msr->mask);
726 		preempt_enable();
727 	}
728 	if (!ret)
729 		msr->data = data;
730 	return ret;
731 }
732 
733 /*
734  * Disable VMX and clear CR4.VMXE (even if VMXOFF faults)
735  *
736  * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to
737  * atomically track post-VMXON state, e.g. this may be called in NMI context.
738  * Eat all faults as all other faults on VMXOFF faults are mode related, i.e.
739  * faults are guaranteed to be due to the !post-VMXON check unless the CPU is
740  * magically in RM, VM86, compat mode, or at CPL>0.
741  */
742 static int kvm_cpu_vmxoff(void)
743 {
744 	asm goto("1: vmxoff\n\t"
745 			  _ASM_EXTABLE(1b, %l[fault])
746 			  ::: "cc", "memory" : fault);
747 
748 	cr4_clear_bits(X86_CR4_VMXE);
749 	return 0;
750 
751 fault:
752 	cr4_clear_bits(X86_CR4_VMXE);
753 	return -EIO;
754 }
755 
756 void vmx_emergency_disable_virtualization_cpu(void)
757 {
758 	int cpu = raw_smp_processor_id();
759 	struct loaded_vmcs *v;
760 
761 	kvm_rebooting = true;
762 
763 	/*
764 	 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be
765 	 * set in task context.  If this races with VMX is disabled by an NMI,
766 	 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to
767 	 * kvm_rebooting set.
768 	 */
769 	if (!(__read_cr4() & X86_CR4_VMXE))
770 		return;
771 
772 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
773 			    loaded_vmcss_on_cpu_link)
774 		vmcs_clear(v->vmcs);
775 
776 	kvm_cpu_vmxoff();
777 }
778 
779 static void __loaded_vmcs_clear(void *arg)
780 {
781 	struct loaded_vmcs *loaded_vmcs = arg;
782 	int cpu = raw_smp_processor_id();
783 
784 	if (loaded_vmcs->cpu != cpu)
785 		return; /* vcpu migration can race with cpu offline */
786 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
787 		per_cpu(current_vmcs, cpu) = NULL;
788 
789 	vmcs_clear(loaded_vmcs->vmcs);
790 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
791 		vmcs_clear(loaded_vmcs->shadow_vmcs);
792 
793 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
794 
795 	/*
796 	 * Ensure all writes to loaded_vmcs, including deleting it from its
797 	 * current percpu list, complete before setting loaded_vmcs->cpu to
798 	 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
799 	 * and add loaded_vmcs to its percpu list before it's deleted from this
800 	 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
801 	 */
802 	smp_wmb();
803 
804 	loaded_vmcs->cpu = -1;
805 	loaded_vmcs->launched = 0;
806 }
807 
808 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
809 {
810 	int cpu = loaded_vmcs->cpu;
811 
812 	if (cpu != -1)
813 		smp_call_function_single(cpu,
814 			 __loaded_vmcs_clear, loaded_vmcs, 1);
815 }
816 
817 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
818 				       unsigned field)
819 {
820 	bool ret;
821 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
822 
823 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
824 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
825 		vmx->segment_cache.bitmask = 0;
826 	}
827 	ret = vmx->segment_cache.bitmask & mask;
828 	vmx->segment_cache.bitmask |= mask;
829 	return ret;
830 }
831 
832 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
833 {
834 	u16 *p = &vmx->segment_cache.seg[seg].selector;
835 
836 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
837 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
838 	return *p;
839 }
840 
841 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
842 {
843 	ulong *p = &vmx->segment_cache.seg[seg].base;
844 
845 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
846 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
847 	return *p;
848 }
849 
850 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
851 {
852 	u32 *p = &vmx->segment_cache.seg[seg].limit;
853 
854 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
855 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
856 	return *p;
857 }
858 
859 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
860 {
861 	u32 *p = &vmx->segment_cache.seg[seg].ar;
862 
863 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
864 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
865 	return *p;
866 }
867 
868 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
869 {
870 	u32 eb;
871 
872 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
873 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
874 	/*
875 	 * #VE isn't used for VMX.  To test against unexpected changes
876 	 * related to #VE for VMX, intercept unexpected #VE and warn on it.
877 	 */
878 	if (IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
879 		eb |= 1u << VE_VECTOR;
880 	/*
881 	 * Guest access to VMware backdoor ports could legitimately
882 	 * trigger #GP because of TSS I/O permission bitmap.
883 	 * We intercept those #GP and allow access to them anyway
884 	 * as VMware does.
885 	 */
886 	if (enable_vmware_backdoor)
887 		eb |= (1u << GP_VECTOR);
888 	if ((vcpu->guest_debug &
889 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
890 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
891 		eb |= 1u << BP_VECTOR;
892 	if (to_vmx(vcpu)->rmode.vm86_active)
893 		eb = ~0;
894 	if (!vmx_need_pf_intercept(vcpu))
895 		eb &= ~(1u << PF_VECTOR);
896 
897 	/* When we are running a nested L2 guest and L1 specified for it a
898 	 * certain exception bitmap, we must trap the same exceptions and pass
899 	 * them to L1. When running L2, we will only handle the exceptions
900 	 * specified above if L1 did not want them.
901 	 */
902 	if (is_guest_mode(vcpu))
903 		eb |= get_vmcs12(vcpu)->exception_bitmap;
904 	else {
905 		int mask = 0, match = 0;
906 
907 		if (enable_ept && (eb & (1u << PF_VECTOR))) {
908 			/*
909 			 * If EPT is enabled, #PF is currently only intercepted
910 			 * if MAXPHYADDR is smaller on the guest than on the
911 			 * host.  In that case we only care about present,
912 			 * non-reserved faults.  For vmcs02, however, PFEC_MASK
913 			 * and PFEC_MATCH are set in prepare_vmcs02_rare.
914 			 */
915 			mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
916 			match = PFERR_PRESENT_MASK;
917 		}
918 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
919 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
920 	}
921 
922 	/*
923 	 * Disabling xfd interception indicates that dynamic xfeatures
924 	 * might be used in the guest. Always trap #NM in this case
925 	 * to save guest xfd_err timely.
926 	 */
927 	if (vcpu->arch.xfd_no_write_intercept)
928 		eb |= (1u << NM_VECTOR);
929 
930 	vmcs_write32(EXCEPTION_BITMAP, eb);
931 }
932 
933 /*
934  * Check if MSR is intercepted for currently loaded MSR bitmap.
935  */
936 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
937 {
938 	if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
939 		return true;
940 
941 	return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
942 }
943 
944 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
945 {
946 	unsigned int flags = 0;
947 
948 	if (vmx->loaded_vmcs->launched)
949 		flags |= VMX_RUN_VMRESUME;
950 
951 	/*
952 	 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
953 	 * to change it directly without causing a vmexit.  In that case read
954 	 * it after vmexit and store it in vmx->spec_ctrl.
955 	 */
956 	if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
957 		flags |= VMX_RUN_SAVE_SPEC_CTRL;
958 
959 	return flags;
960 }
961 
962 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
963 		unsigned long entry, unsigned long exit)
964 {
965 	vm_entry_controls_clearbit(vmx, entry);
966 	vm_exit_controls_clearbit(vmx, exit);
967 }
968 
969 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
970 {
971 	unsigned int i;
972 
973 	for (i = 0; i < m->nr; ++i) {
974 		if (m->val[i].index == msr)
975 			return i;
976 	}
977 	return -ENOENT;
978 }
979 
980 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
981 {
982 	int i;
983 	struct msr_autoload *m = &vmx->msr_autoload;
984 
985 	switch (msr) {
986 	case MSR_EFER:
987 		if (cpu_has_load_ia32_efer()) {
988 			clear_atomic_switch_msr_special(vmx,
989 					VM_ENTRY_LOAD_IA32_EFER,
990 					VM_EXIT_LOAD_IA32_EFER);
991 			return;
992 		}
993 		break;
994 	case MSR_CORE_PERF_GLOBAL_CTRL:
995 		if (cpu_has_load_perf_global_ctrl()) {
996 			clear_atomic_switch_msr_special(vmx,
997 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
998 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
999 			return;
1000 		}
1001 		break;
1002 	}
1003 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1004 	if (i < 0)
1005 		goto skip_guest;
1006 	--m->guest.nr;
1007 	m->guest.val[i] = m->guest.val[m->guest.nr];
1008 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1009 
1010 skip_guest:
1011 	i = vmx_find_loadstore_msr_slot(&m->host, msr);
1012 	if (i < 0)
1013 		return;
1014 
1015 	--m->host.nr;
1016 	m->host.val[i] = m->host.val[m->host.nr];
1017 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1018 }
1019 
1020 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1021 		unsigned long entry, unsigned long exit,
1022 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1023 		u64 guest_val, u64 host_val)
1024 {
1025 	vmcs_write64(guest_val_vmcs, guest_val);
1026 	if (host_val_vmcs != HOST_IA32_EFER)
1027 		vmcs_write64(host_val_vmcs, host_val);
1028 	vm_entry_controls_setbit(vmx, entry);
1029 	vm_exit_controls_setbit(vmx, exit);
1030 }
1031 
1032 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1033 				  u64 guest_val, u64 host_val, bool entry_only)
1034 {
1035 	int i, j = 0;
1036 	struct msr_autoload *m = &vmx->msr_autoload;
1037 
1038 	switch (msr) {
1039 	case MSR_EFER:
1040 		if (cpu_has_load_ia32_efer()) {
1041 			add_atomic_switch_msr_special(vmx,
1042 					VM_ENTRY_LOAD_IA32_EFER,
1043 					VM_EXIT_LOAD_IA32_EFER,
1044 					GUEST_IA32_EFER,
1045 					HOST_IA32_EFER,
1046 					guest_val, host_val);
1047 			return;
1048 		}
1049 		break;
1050 	case MSR_CORE_PERF_GLOBAL_CTRL:
1051 		if (cpu_has_load_perf_global_ctrl()) {
1052 			add_atomic_switch_msr_special(vmx,
1053 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1054 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1055 					GUEST_IA32_PERF_GLOBAL_CTRL,
1056 					HOST_IA32_PERF_GLOBAL_CTRL,
1057 					guest_val, host_val);
1058 			return;
1059 		}
1060 		break;
1061 	case MSR_IA32_PEBS_ENABLE:
1062 		/* PEBS needs a quiescent period after being disabled (to write
1063 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
1064 		 * provide that period, so a CPU could write host's record into
1065 		 * guest's memory.
1066 		 */
1067 		wrmsrq(MSR_IA32_PEBS_ENABLE, 0);
1068 	}
1069 
1070 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1071 	if (!entry_only)
1072 		j = vmx_find_loadstore_msr_slot(&m->host, msr);
1073 
1074 	if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1075 	    (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1076 		printk_once(KERN_WARNING "Not enough msr switch entries. "
1077 				"Can't add msr %x\n", msr);
1078 		return;
1079 	}
1080 	if (i < 0) {
1081 		i = m->guest.nr++;
1082 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1083 	}
1084 	m->guest.val[i].index = msr;
1085 	m->guest.val[i].value = guest_val;
1086 
1087 	if (entry_only)
1088 		return;
1089 
1090 	if (j < 0) {
1091 		j = m->host.nr++;
1092 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1093 	}
1094 	m->host.val[j].index = msr;
1095 	m->host.val[j].value = host_val;
1096 }
1097 
1098 static bool update_transition_efer(struct vcpu_vmx *vmx)
1099 {
1100 	u64 guest_efer = vmx->vcpu.arch.efer;
1101 	u64 ignore_bits = 0;
1102 	int i;
1103 
1104 	/* Shadow paging assumes NX to be available.  */
1105 	if (!enable_ept)
1106 		guest_efer |= EFER_NX;
1107 
1108 	/*
1109 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1110 	 */
1111 	ignore_bits |= EFER_SCE;
1112 #ifdef CONFIG_X86_64
1113 	ignore_bits |= EFER_LMA | EFER_LME;
1114 	/* SCE is meaningful only in long mode on Intel */
1115 	if (guest_efer & EFER_LMA)
1116 		ignore_bits &= ~(u64)EFER_SCE;
1117 #endif
1118 
1119 	/*
1120 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1121 	 * On CPUs that support "load IA32_EFER", always switch EFER
1122 	 * atomically, since it's faster than switching it manually.
1123 	 */
1124 	if (cpu_has_load_ia32_efer() ||
1125 	    (enable_ept && ((vmx->vcpu.arch.efer ^ kvm_host.efer) & EFER_NX))) {
1126 		if (!(guest_efer & EFER_LMA))
1127 			guest_efer &= ~EFER_LME;
1128 		if (guest_efer != kvm_host.efer)
1129 			add_atomic_switch_msr(vmx, MSR_EFER,
1130 					      guest_efer, kvm_host.efer, false);
1131 		else
1132 			clear_atomic_switch_msr(vmx, MSR_EFER);
1133 		return false;
1134 	}
1135 
1136 	i = kvm_find_user_return_msr(MSR_EFER);
1137 	if (i < 0)
1138 		return false;
1139 
1140 	clear_atomic_switch_msr(vmx, MSR_EFER);
1141 
1142 	guest_efer &= ~ignore_bits;
1143 	guest_efer |= kvm_host.efer & ignore_bits;
1144 
1145 	vmx->guest_uret_msrs[i].data = guest_efer;
1146 	vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1147 
1148 	return true;
1149 }
1150 
1151 #ifdef CONFIG_X86_32
1152 /*
1153  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1154  * VMCS rather than the segment table.  KVM uses this helper to figure
1155  * out the current bases to poke them into the VMCS before entry.
1156  */
1157 static unsigned long segment_base(u16 selector)
1158 {
1159 	struct desc_struct *table;
1160 	unsigned long v;
1161 
1162 	if (!(selector & ~SEGMENT_RPL_MASK))
1163 		return 0;
1164 
1165 	table = get_current_gdt_ro();
1166 
1167 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1168 		u16 ldt_selector = kvm_read_ldt();
1169 
1170 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1171 			return 0;
1172 
1173 		table = (struct desc_struct *)segment_base(ldt_selector);
1174 	}
1175 	v = get_desc_base(&table[selector >> 3]);
1176 	return v;
1177 }
1178 #endif
1179 
1180 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1181 {
1182 	return vmx_pt_mode_is_host_guest() &&
1183 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1184 }
1185 
1186 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1187 {
1188 	/* The base must be 128-byte aligned and a legal physical address. */
1189 	return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1190 }
1191 
1192 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1193 {
1194 	u32 i;
1195 
1196 	wrmsrq(MSR_IA32_RTIT_STATUS, ctx->status);
1197 	wrmsrq(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1198 	wrmsrq(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1199 	wrmsrq(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1200 	for (i = 0; i < addr_range; i++) {
1201 		wrmsrq(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1202 		wrmsrq(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1203 	}
1204 }
1205 
1206 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1207 {
1208 	u32 i;
1209 
1210 	rdmsrq(MSR_IA32_RTIT_STATUS, ctx->status);
1211 	rdmsrq(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1212 	rdmsrq(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1213 	rdmsrq(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1214 	for (i = 0; i < addr_range; i++) {
1215 		rdmsrq(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1216 		rdmsrq(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1217 	}
1218 }
1219 
1220 static void pt_guest_enter(struct vcpu_vmx *vmx)
1221 {
1222 	if (vmx_pt_mode_is_system())
1223 		return;
1224 
1225 	/*
1226 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1227 	 * Save host state before VM entry.
1228 	 */
1229 	rdmsrq(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1230 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1231 		wrmsrq(MSR_IA32_RTIT_CTL, 0);
1232 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1233 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1234 	}
1235 }
1236 
1237 static void pt_guest_exit(struct vcpu_vmx *vmx)
1238 {
1239 	if (vmx_pt_mode_is_system())
1240 		return;
1241 
1242 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1243 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1244 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1245 	}
1246 
1247 	/*
1248 	 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1249 	 * i.e. RTIT_CTL is always cleared on VM-Exit.  Restore it if necessary.
1250 	 */
1251 	if (vmx->pt_desc.host.ctl)
1252 		wrmsrq(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1253 }
1254 
1255 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1256 			unsigned long fs_base, unsigned long gs_base)
1257 {
1258 	if (unlikely(fs_sel != host->fs_sel)) {
1259 		if (!(fs_sel & 7))
1260 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1261 		else
1262 			vmcs_write16(HOST_FS_SELECTOR, 0);
1263 		host->fs_sel = fs_sel;
1264 	}
1265 	if (unlikely(gs_sel != host->gs_sel)) {
1266 		if (!(gs_sel & 7))
1267 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1268 		else
1269 			vmcs_write16(HOST_GS_SELECTOR, 0);
1270 		host->gs_sel = gs_sel;
1271 	}
1272 	if (unlikely(fs_base != host->fs_base)) {
1273 		vmcs_writel(HOST_FS_BASE, fs_base);
1274 		host->fs_base = fs_base;
1275 	}
1276 	if (unlikely(gs_base != host->gs_base)) {
1277 		vmcs_writel(HOST_GS_BASE, gs_base);
1278 		host->gs_base = gs_base;
1279 	}
1280 }
1281 
1282 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1283 {
1284 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1285 	struct vmcs_host_state *host_state;
1286 #ifdef CONFIG_X86_64
1287 	int cpu = raw_smp_processor_id();
1288 #endif
1289 	unsigned long fs_base, gs_base;
1290 	u16 fs_sel, gs_sel;
1291 	int i;
1292 
1293 	/*
1294 	 * Note that guest MSRs to be saved/restored can also be changed
1295 	 * when guest state is loaded. This happens when guest transitions
1296 	 * to/from long-mode by setting MSR_EFER.LMA.
1297 	 */
1298 	if (!vmx->guest_uret_msrs_loaded) {
1299 		vmx->guest_uret_msrs_loaded = true;
1300 		for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1301 			if (!vmx->guest_uret_msrs[i].load_into_hardware)
1302 				continue;
1303 
1304 			kvm_set_user_return_msr(i,
1305 						vmx->guest_uret_msrs[i].data,
1306 						vmx->guest_uret_msrs[i].mask);
1307 		}
1308 	}
1309 
1310 	if (vmx->nested.need_vmcs12_to_shadow_sync)
1311 		nested_sync_vmcs12_to_shadow(vcpu);
1312 
1313 	if (vmx->guest_state_loaded)
1314 		return;
1315 
1316 	host_state = &vmx->loaded_vmcs->host_state;
1317 
1318 	/*
1319 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1320 	 * allow segment selectors with cpl > 0 or ti == 1.
1321 	 */
1322 	host_state->ldt_sel = kvm_read_ldt();
1323 
1324 #ifdef CONFIG_X86_64
1325 	savesegment(ds, host_state->ds_sel);
1326 	savesegment(es, host_state->es_sel);
1327 
1328 	gs_base = cpu_kernelmode_gs_base(cpu);
1329 	if (likely(is_64bit_mm(current->mm))) {
1330 		current_save_fsgs();
1331 		fs_sel = current->thread.fsindex;
1332 		gs_sel = current->thread.gsindex;
1333 		fs_base = current->thread.fsbase;
1334 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1335 	} else {
1336 		savesegment(fs, fs_sel);
1337 		savesegment(gs, gs_sel);
1338 		fs_base = read_msr(MSR_FS_BASE);
1339 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1340 	}
1341 
1342 	wrmsrq(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1343 #else
1344 	savesegment(fs, fs_sel);
1345 	savesegment(gs, gs_sel);
1346 	fs_base = segment_base(fs_sel);
1347 	gs_base = segment_base(gs_sel);
1348 #endif
1349 
1350 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1351 	vmx->guest_state_loaded = true;
1352 }
1353 
1354 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1355 {
1356 	struct vmcs_host_state *host_state;
1357 
1358 	if (!vmx->guest_state_loaded)
1359 		return;
1360 
1361 	host_state = &vmx->loaded_vmcs->host_state;
1362 
1363 	++vmx->vcpu.stat.host_state_reload;
1364 
1365 #ifdef CONFIG_X86_64
1366 	rdmsrq(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1367 #endif
1368 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1369 		kvm_load_ldt(host_state->ldt_sel);
1370 #ifdef CONFIG_X86_64
1371 		load_gs_index(host_state->gs_sel);
1372 #else
1373 		loadsegment(gs, host_state->gs_sel);
1374 #endif
1375 	}
1376 	if (host_state->fs_sel & 7)
1377 		loadsegment(fs, host_state->fs_sel);
1378 #ifdef CONFIG_X86_64
1379 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1380 		loadsegment(ds, host_state->ds_sel);
1381 		loadsegment(es, host_state->es_sel);
1382 	}
1383 #endif
1384 	invalidate_tss_limit();
1385 #ifdef CONFIG_X86_64
1386 	wrmsrq(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1387 #endif
1388 	load_fixmap_gdt(raw_smp_processor_id());
1389 	vmx->guest_state_loaded = false;
1390 	vmx->guest_uret_msrs_loaded = false;
1391 }
1392 
1393 #ifdef CONFIG_X86_64
1394 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1395 {
1396 	preempt_disable();
1397 	if (vmx->guest_state_loaded)
1398 		rdmsrq(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1399 	preempt_enable();
1400 	return vmx->msr_guest_kernel_gs_base;
1401 }
1402 
1403 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1404 {
1405 	preempt_disable();
1406 	if (vmx->guest_state_loaded)
1407 		wrmsrq(MSR_KERNEL_GS_BASE, data);
1408 	preempt_enable();
1409 	vmx->msr_guest_kernel_gs_base = data;
1410 }
1411 #endif
1412 
1413 static void grow_ple_window(struct kvm_vcpu *vcpu)
1414 {
1415 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1416 	unsigned int old = vmx->ple_window;
1417 
1418 	vmx->ple_window = __grow_ple_window(old, ple_window,
1419 					    ple_window_grow,
1420 					    ple_window_max);
1421 
1422 	if (vmx->ple_window != old) {
1423 		vmx->ple_window_dirty = true;
1424 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1425 					    vmx->ple_window, old);
1426 	}
1427 }
1428 
1429 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1430 {
1431 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1432 	unsigned int old = vmx->ple_window;
1433 
1434 	vmx->ple_window = __shrink_ple_window(old, ple_window,
1435 					      ple_window_shrink,
1436 					      ple_window);
1437 
1438 	if (vmx->ple_window != old) {
1439 		vmx->ple_window_dirty = true;
1440 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1441 					    vmx->ple_window, old);
1442 	}
1443 }
1444 
1445 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1446 			struct loaded_vmcs *buddy)
1447 {
1448 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1449 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1450 	struct vmcs *prev;
1451 
1452 	if (!already_loaded) {
1453 		loaded_vmcs_clear(vmx->loaded_vmcs);
1454 		local_irq_disable();
1455 
1456 		/*
1457 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1458 		 * this cpu's percpu list, otherwise it may not yet be deleted
1459 		 * from its previous cpu's percpu list.  Pairs with the
1460 		 * smb_wmb() in __loaded_vmcs_clear().
1461 		 */
1462 		smp_rmb();
1463 
1464 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1465 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1466 		local_irq_enable();
1467 	}
1468 
1469 	prev = per_cpu(current_vmcs, cpu);
1470 	if (prev != vmx->loaded_vmcs->vmcs) {
1471 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1472 		vmcs_load(vmx->loaded_vmcs->vmcs);
1473 
1474 		/*
1475 		 * No indirect branch prediction barrier needed when switching
1476 		 * the active VMCS within a vCPU, unless IBRS is advertised to
1477 		 * the vCPU.  To minimize the number of IBPBs executed, KVM
1478 		 * performs IBPB on nested VM-Exit (a single nested transition
1479 		 * may switch the active VMCS multiple times).
1480 		 */
1481 		if (static_branch_likely(&switch_vcpu_ibpb) &&
1482 		    (!buddy || WARN_ON_ONCE(buddy->vmcs != prev)))
1483 			indirect_branch_prediction_barrier();
1484 	}
1485 
1486 	if (!already_loaded) {
1487 		void *gdt = get_current_gdt_ro();
1488 
1489 		/*
1490 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1491 		 * TLB entries from its previous association with the vCPU.
1492 		 */
1493 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1494 
1495 		/*
1496 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1497 		 * processors.  See 22.2.4.
1498 		 */
1499 		vmcs_writel(HOST_TR_BASE,
1500 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1501 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1502 
1503 		if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1504 			/* 22.2.3 */
1505 			vmcs_writel(HOST_IA32_SYSENTER_ESP,
1506 				    (unsigned long)(cpu_entry_stack(cpu) + 1));
1507 		}
1508 
1509 		vmx->loaded_vmcs->cpu = cpu;
1510 	}
1511 }
1512 
1513 /*
1514  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1515  * vcpu mutex is already taken.
1516  */
1517 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1518 {
1519 	if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm))
1520 		shrink_ple_window(vcpu);
1521 
1522 	vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1523 
1524 	vmx_vcpu_pi_load(vcpu, cpu);
1525 }
1526 
1527 void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1528 {
1529 	vmx_vcpu_pi_put(vcpu);
1530 
1531 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1532 }
1533 
1534 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1535 {
1536 	return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1537 }
1538 
1539 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1540 {
1541 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1542 	unsigned long rflags, save_rflags;
1543 
1544 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1545 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1546 		rflags = vmcs_readl(GUEST_RFLAGS);
1547 		if (vmx->rmode.vm86_active) {
1548 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1549 			save_rflags = vmx->rmode.save_rflags;
1550 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1551 		}
1552 		vmx->rflags = rflags;
1553 	}
1554 	return vmx->rflags;
1555 }
1556 
1557 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1558 {
1559 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1560 	unsigned long old_rflags;
1561 
1562 	/*
1563 	 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU
1564 	 * is an unrestricted guest in order to mark L2 as needing emulation
1565 	 * if L1 runs L2 as a restricted guest.
1566 	 */
1567 	if (is_unrestricted_guest(vcpu)) {
1568 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1569 		vmx->rflags = rflags;
1570 		vmcs_writel(GUEST_RFLAGS, rflags);
1571 		return;
1572 	}
1573 
1574 	old_rflags = vmx_get_rflags(vcpu);
1575 	vmx->rflags = rflags;
1576 	if (vmx->rmode.vm86_active) {
1577 		vmx->rmode.save_rflags = rflags;
1578 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1579 	}
1580 	vmcs_writel(GUEST_RFLAGS, rflags);
1581 
1582 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1583 		vmx->emulation_required = vmx_emulation_required(vcpu);
1584 }
1585 
1586 bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1587 {
1588 	return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1589 }
1590 
1591 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1592 {
1593 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1594 	int ret = 0;
1595 
1596 	if (interruptibility & GUEST_INTR_STATE_STI)
1597 		ret |= KVM_X86_SHADOW_INT_STI;
1598 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1599 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1600 
1601 	return ret;
1602 }
1603 
1604 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1605 {
1606 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1607 	u32 interruptibility = interruptibility_old;
1608 
1609 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1610 
1611 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1612 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1613 	else if (mask & KVM_X86_SHADOW_INT_STI)
1614 		interruptibility |= GUEST_INTR_STATE_STI;
1615 
1616 	if ((interruptibility != interruptibility_old))
1617 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1618 }
1619 
1620 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1621 {
1622 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1623 	unsigned long value;
1624 
1625 	/*
1626 	 * Any MSR write that attempts to change bits marked reserved will
1627 	 * case a #GP fault.
1628 	 */
1629 	if (data & vmx->pt_desc.ctl_bitmask)
1630 		return 1;
1631 
1632 	/*
1633 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1634 	 * result in a #GP unless the same write also clears TraceEn.
1635 	 */
1636 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1637 	    (data & RTIT_CTL_TRACEEN) &&
1638 	    data != vmx->pt_desc.guest.ctl)
1639 		return 1;
1640 
1641 	/*
1642 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1643 	 * and FabricEn would cause #GP, if
1644 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1645 	 */
1646 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1647 		!(data & RTIT_CTL_FABRIC_EN) &&
1648 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1649 					PT_CAP_single_range_output))
1650 		return 1;
1651 
1652 	/*
1653 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1654 	 * utilize encodings marked reserved will cause a #GP fault.
1655 	 */
1656 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1657 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1658 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1659 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1660 		return 1;
1661 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1662 						PT_CAP_cycle_thresholds);
1663 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1664 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1665 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1666 		return 1;
1667 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1668 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1669 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1670 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1671 		return 1;
1672 
1673 	/*
1674 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1675 	 * cause a #GP fault.
1676 	 */
1677 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1678 	if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1679 		return 1;
1680 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1681 	if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1682 		return 1;
1683 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1684 	if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1685 		return 1;
1686 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1687 	if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1688 		return 1;
1689 
1690 	return 0;
1691 }
1692 
1693 int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1694 				  void *insn, int insn_len)
1695 {
1696 	/*
1697 	 * Emulation of instructions in SGX enclaves is impossible as RIP does
1698 	 * not point at the failing instruction, and even if it did, the code
1699 	 * stream is inaccessible.  Inject #UD instead of exiting to userspace
1700 	 * so that guest userspace can't DoS the guest simply by triggering
1701 	 * emulation (enclaves are CPL3 only).
1702 	 */
1703 	if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1704 		kvm_queue_exception(vcpu, UD_VECTOR);
1705 		return X86EMUL_PROPAGATE_FAULT;
1706 	}
1707 
1708 	/* Check that emulation is possible during event vectoring */
1709 	if ((to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
1710 	    !kvm_can_emulate_event_vectoring(emul_type))
1711 		return X86EMUL_UNHANDLEABLE_VECTORING;
1712 
1713 	return X86EMUL_CONTINUE;
1714 }
1715 
1716 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1717 {
1718 	union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1719 	unsigned long rip, orig_rip;
1720 	u32 instr_len;
1721 
1722 	/*
1723 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1724 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1725 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1726 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1727 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1728 	 * i.e. we end up advancing IP with some random value.
1729 	 */
1730 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1731 	    exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1732 		instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1733 
1734 		/*
1735 		 * Emulating an enclave's instructions isn't supported as KVM
1736 		 * cannot access the enclave's memory or its true RIP, e.g. the
1737 		 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1738 		 * the RIP that actually triggered the VM-Exit.  But, because
1739 		 * most instructions that cause VM-Exit will #UD in an enclave,
1740 		 * most instruction-based VM-Exits simply do not occur.
1741 		 *
1742 		 * There are a few exceptions, notably the debug instructions
1743 		 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1744 		 * and generate #DB/#BP as expected, which KVM might intercept.
1745 		 * But again, the CPU does the dirty work and saves an instr
1746 		 * length of zero so VMMs don't shoot themselves in the foot.
1747 		 * WARN if KVM tries to skip a non-zero length instruction on
1748 		 * a VM-Exit from an enclave.
1749 		 */
1750 		if (!instr_len)
1751 			goto rip_updated;
1752 
1753 		WARN_ONCE(exit_reason.enclave_mode,
1754 			  "skipping instruction after SGX enclave VM-Exit");
1755 
1756 		orig_rip = kvm_rip_read(vcpu);
1757 		rip = orig_rip + instr_len;
1758 #ifdef CONFIG_X86_64
1759 		/*
1760 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1761 		 * mode, but just finding out that we are in 64-bit mode is
1762 		 * quite expensive.  Only do it if there was a carry.
1763 		 */
1764 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1765 			rip = (u32)rip;
1766 #endif
1767 		kvm_rip_write(vcpu, rip);
1768 	} else {
1769 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1770 			return 0;
1771 	}
1772 
1773 rip_updated:
1774 	/* skipping an emulated instruction also counts */
1775 	vmx_set_interrupt_shadow(vcpu, 0);
1776 
1777 	return 1;
1778 }
1779 
1780 /*
1781  * Recognizes a pending MTF VM-exit and records the nested state for later
1782  * delivery.
1783  */
1784 void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1785 {
1786 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1787 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1788 
1789 	if (!is_guest_mode(vcpu))
1790 		return;
1791 
1792 	/*
1793 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1794 	 * TSS T-bit traps and ICEBP (INT1).  KVM doesn't emulate T-bit traps
1795 	 * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1796 	 * intercepted #DB deliberately avoids single-step #DB and MTF updates
1797 	 * as ICEBP is higher priority than both.  As instruction emulation is
1798 	 * completed at this point (i.e. KVM is at the instruction boundary),
1799 	 * any #DB exception pending delivery must be a debug-trap of lower
1800 	 * priority than MTF.  Record the pending MTF state to be delivered in
1801 	 * vmx_check_nested_events().
1802 	 */
1803 	if (nested_cpu_has_mtf(vmcs12) &&
1804 	    (!vcpu->arch.exception.pending ||
1805 	     vcpu->arch.exception.vector == DB_VECTOR) &&
1806 	    (!vcpu->arch.exception_vmexit.pending ||
1807 	     vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1808 		vmx->nested.mtf_pending = true;
1809 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1810 	} else {
1811 		vmx->nested.mtf_pending = false;
1812 	}
1813 }
1814 
1815 int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1816 {
1817 	vmx_update_emulated_instruction(vcpu);
1818 	return skip_emulated_instruction(vcpu);
1819 }
1820 
1821 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1822 {
1823 	/*
1824 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1825 	 * explicitly skip the instruction because if the HLT state is set,
1826 	 * then the instruction is already executing and RIP has already been
1827 	 * advanced.
1828 	 */
1829 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1830 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1831 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1832 }
1833 
1834 void vmx_inject_exception(struct kvm_vcpu *vcpu)
1835 {
1836 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
1837 	u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1838 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1839 
1840 	kvm_deliver_exception_payload(vcpu, ex);
1841 
1842 	if (ex->has_error_code) {
1843 		/*
1844 		 * Despite the error code being architecturally defined as 32
1845 		 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1846 		 * VMX don't actually supporting setting bits 31:16.  Hardware
1847 		 * will (should) never provide a bogus error code, but AMD CPUs
1848 		 * do generate error codes with bits 31:16 set, and so KVM's
1849 		 * ABI lets userspace shove in arbitrary 32-bit values.  Drop
1850 		 * the upper bits to avoid VM-Fail, losing information that
1851 		 * doesn't really exist is preferable to killing the VM.
1852 		 */
1853 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1854 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1855 	}
1856 
1857 	if (vmx->rmode.vm86_active) {
1858 		int inc_eip = 0;
1859 		if (kvm_exception_is_soft(ex->vector))
1860 			inc_eip = vcpu->arch.event_exit_inst_len;
1861 		kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1862 		return;
1863 	}
1864 
1865 	WARN_ON_ONCE(vmx->emulation_required);
1866 
1867 	if (kvm_exception_is_soft(ex->vector)) {
1868 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1869 			     vmx->vcpu.arch.event_exit_inst_len);
1870 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1871 	} else
1872 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1873 
1874 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1875 
1876 	vmx_clear_hlt(vcpu);
1877 }
1878 
1879 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1880 			       bool load_into_hardware)
1881 {
1882 	struct vmx_uret_msr *uret_msr;
1883 
1884 	uret_msr = vmx_find_uret_msr(vmx, msr);
1885 	if (!uret_msr)
1886 		return;
1887 
1888 	uret_msr->load_into_hardware = load_into_hardware;
1889 }
1890 
1891 /*
1892  * Configuring user return MSRs to automatically save, load, and restore MSRs
1893  * that need to be shoved into hardware when running the guest.  Note, omitting
1894  * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1895  * loaded into hardware when running the guest.
1896  */
1897 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1898 {
1899 #ifdef CONFIG_X86_64
1900 	bool load_syscall_msrs;
1901 
1902 	/*
1903 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1904 	 * when EFER.SCE is set.
1905 	 */
1906 	load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1907 			    (vmx->vcpu.arch.efer & EFER_SCE);
1908 
1909 	vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1910 	vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1911 	vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1912 #endif
1913 	vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1914 
1915 	vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1916 			   guest_cpu_cap_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1917 			   guest_cpu_cap_has(&vmx->vcpu, X86_FEATURE_RDPID));
1918 
1919 	/*
1920 	 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1921 	 * kernel and old userspace.  If those guests run on a tsx=off host, do
1922 	 * allow guests to use TSX_CTRL, but don't change the value in hardware
1923 	 * so that TSX remains always disabled.
1924 	 */
1925 	vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1926 
1927 	/*
1928 	 * The set of MSRs to load may have changed, reload MSRs before the
1929 	 * next VM-Enter.
1930 	 */
1931 	vmx->guest_uret_msrs_loaded = false;
1932 }
1933 
1934 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1935 {
1936 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1937 
1938 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1939 		return vmcs12->tsc_offset;
1940 
1941 	return 0;
1942 }
1943 
1944 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1945 {
1946 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1947 
1948 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1949 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1950 		return vmcs12->tsc_multiplier;
1951 
1952 	return kvm_caps.default_tsc_scaling_ratio;
1953 }
1954 
1955 void vmx_write_tsc_offset(struct kvm_vcpu *vcpu)
1956 {
1957 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
1958 }
1959 
1960 void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1961 {
1962 	vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
1963 }
1964 
1965 /*
1966  * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
1967  * guest CPUID.  Note, KVM allows userspace to set "VMX in SMX" to maintain
1968  * backwards compatibility even though KVM doesn't support emulating SMX.  And
1969  * because userspace set "VMX in SMX", the guest must also be allowed to set it,
1970  * e.g. if the MSR is left unlocked and the guest does a RMW operation.
1971  */
1972 #define KVM_SUPPORTED_FEATURE_CONTROL  (FEAT_CTL_LOCKED			 | \
1973 					FEAT_CTL_VMX_ENABLED_INSIDE_SMX	 | \
1974 					FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
1975 					FEAT_CTL_SGX_LC_ENABLED		 | \
1976 					FEAT_CTL_SGX_ENABLED		 | \
1977 					FEAT_CTL_LMCE_ENABLED)
1978 
1979 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
1980 						    struct msr_data *msr)
1981 {
1982 	uint64_t valid_bits;
1983 
1984 	/*
1985 	 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
1986 	 * exposed to the guest.
1987 	 */
1988 	WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
1989 		     ~KVM_SUPPORTED_FEATURE_CONTROL);
1990 
1991 	if (!msr->host_initiated &&
1992 	    (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
1993 		return false;
1994 
1995 	if (msr->host_initiated)
1996 		valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
1997 	else
1998 		valid_bits = vmx->msr_ia32_feature_control_valid_bits;
1999 
2000 	return !(msr->data & ~valid_bits);
2001 }
2002 
2003 int vmx_get_feature_msr(u32 msr, u64 *data)
2004 {
2005 	switch (msr) {
2006 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2007 		if (!nested)
2008 			return 1;
2009 		return vmx_get_vmx_msr(&vmcs_config.nested, msr, data);
2010 	default:
2011 		return KVM_MSR_RET_UNSUPPORTED;
2012 	}
2013 }
2014 
2015 /*
2016  * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
2017  * Returns 0 on success, non-0 otherwise.
2018  * Assumes vcpu_load() was already called.
2019  */
2020 int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2021 {
2022 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2023 	struct vmx_uret_msr *msr;
2024 	u32 index;
2025 
2026 	switch (msr_info->index) {
2027 #ifdef CONFIG_X86_64
2028 	case MSR_FS_BASE:
2029 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
2030 		break;
2031 	case MSR_GS_BASE:
2032 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
2033 		break;
2034 	case MSR_KERNEL_GS_BASE:
2035 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
2036 		break;
2037 #endif
2038 	case MSR_EFER:
2039 		return kvm_get_msr_common(vcpu, msr_info);
2040 	case MSR_IA32_TSX_CTRL:
2041 		if (!msr_info->host_initiated &&
2042 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2043 			return 1;
2044 		goto find_uret_msr;
2045 	case MSR_IA32_UMWAIT_CONTROL:
2046 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2047 			return 1;
2048 
2049 		msr_info->data = vmx->msr_ia32_umwait_control;
2050 		break;
2051 	case MSR_IA32_SPEC_CTRL:
2052 		if (!msr_info->host_initiated &&
2053 		    !guest_has_spec_ctrl_msr(vcpu))
2054 			return 1;
2055 
2056 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
2057 		break;
2058 	case MSR_IA32_SYSENTER_CS:
2059 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2060 		break;
2061 	case MSR_IA32_SYSENTER_EIP:
2062 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2063 		break;
2064 	case MSR_IA32_SYSENTER_ESP:
2065 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2066 		break;
2067 	case MSR_IA32_BNDCFGS:
2068 		if (!kvm_mpx_supported() ||
2069 		    (!msr_info->host_initiated &&
2070 		     !guest_cpu_cap_has(vcpu, X86_FEATURE_MPX)))
2071 			return 1;
2072 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2073 		break;
2074 	case MSR_IA32_MCG_EXT_CTL:
2075 		if (!msr_info->host_initiated &&
2076 		    !(vmx->msr_ia32_feature_control &
2077 		      FEAT_CTL_LMCE_ENABLED))
2078 			return 1;
2079 		msr_info->data = vcpu->arch.mcg_ext_ctl;
2080 		break;
2081 	case MSR_IA32_FEAT_CTL:
2082 		msr_info->data = vmx->msr_ia32_feature_control;
2083 		break;
2084 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2085 		if (!msr_info->host_initiated &&
2086 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC))
2087 			return 1;
2088 		msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
2089 			[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
2090 		break;
2091 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2092 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
2093 			return 1;
2094 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
2095 				    &msr_info->data))
2096 			return 1;
2097 #ifdef CONFIG_KVM_HYPERV
2098 		/*
2099 		 * Enlightened VMCS v1 doesn't have certain VMCS fields but
2100 		 * instead of just ignoring the features, different Hyper-V
2101 		 * versions are either trying to use them and fail or do some
2102 		 * sanity checking and refuse to boot. Filter all unsupported
2103 		 * features out.
2104 		 */
2105 		if (!msr_info->host_initiated && guest_cpu_cap_has_evmcs(vcpu))
2106 			nested_evmcs_filter_control_msr(vcpu, msr_info->index,
2107 							&msr_info->data);
2108 #endif
2109 		break;
2110 	case MSR_IA32_RTIT_CTL:
2111 		if (!vmx_pt_mode_is_host_guest())
2112 			return 1;
2113 		msr_info->data = vmx->pt_desc.guest.ctl;
2114 		break;
2115 	case MSR_IA32_RTIT_STATUS:
2116 		if (!vmx_pt_mode_is_host_guest())
2117 			return 1;
2118 		msr_info->data = vmx->pt_desc.guest.status;
2119 		break;
2120 	case MSR_IA32_RTIT_CR3_MATCH:
2121 		if (!vmx_pt_mode_is_host_guest() ||
2122 			!intel_pt_validate_cap(vmx->pt_desc.caps,
2123 						PT_CAP_cr3_filtering))
2124 			return 1;
2125 		msr_info->data = vmx->pt_desc.guest.cr3_match;
2126 		break;
2127 	case MSR_IA32_RTIT_OUTPUT_BASE:
2128 		if (!vmx_pt_mode_is_host_guest() ||
2129 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2130 					PT_CAP_topa_output) &&
2131 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2132 					PT_CAP_single_range_output)))
2133 			return 1;
2134 		msr_info->data = vmx->pt_desc.guest.output_base;
2135 		break;
2136 	case MSR_IA32_RTIT_OUTPUT_MASK:
2137 		if (!vmx_pt_mode_is_host_guest() ||
2138 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2139 					PT_CAP_topa_output) &&
2140 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2141 					PT_CAP_single_range_output)))
2142 			return 1;
2143 		msr_info->data = vmx->pt_desc.guest.output_mask;
2144 		break;
2145 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2146 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2147 		if (!vmx_pt_mode_is_host_guest() ||
2148 		    (index >= 2 * vmx->pt_desc.num_address_ranges))
2149 			return 1;
2150 		if (index % 2)
2151 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2152 		else
2153 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2154 		break;
2155 	case MSR_IA32_DEBUGCTLMSR:
2156 		msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
2157 		break;
2158 	default:
2159 	find_uret_msr:
2160 		msr = vmx_find_uret_msr(vmx, msr_info->index);
2161 		if (msr) {
2162 			msr_info->data = msr->data;
2163 			break;
2164 		}
2165 		return kvm_get_msr_common(vcpu, msr_info);
2166 	}
2167 
2168 	return 0;
2169 }
2170 
2171 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2172 						    u64 data)
2173 {
2174 #ifdef CONFIG_X86_64
2175 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
2176 		return (u32)data;
2177 #endif
2178 	return (unsigned long)data;
2179 }
2180 
2181 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2182 {
2183 	u64 debugctl = 0;
2184 
2185 	if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2186 	    (host_initiated || guest_cpu_cap_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2187 		debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2188 
2189 	if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) &&
2190 	    (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2191 		debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2192 
2193 	return debugctl;
2194 }
2195 
2196 /*
2197  * Writes msr value into the appropriate "register".
2198  * Returns 0 on success, non-0 otherwise.
2199  * Assumes vcpu_load() was already called.
2200  */
2201 int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2202 {
2203 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2204 	struct vmx_uret_msr *msr;
2205 	int ret = 0;
2206 	u32 msr_index = msr_info->index;
2207 	u64 data = msr_info->data;
2208 	u32 index;
2209 
2210 	switch (msr_index) {
2211 	case MSR_EFER:
2212 		ret = kvm_set_msr_common(vcpu, msr_info);
2213 		break;
2214 #ifdef CONFIG_X86_64
2215 	case MSR_FS_BASE:
2216 		vmx_segment_cache_clear(vmx);
2217 		vmcs_writel(GUEST_FS_BASE, data);
2218 		break;
2219 	case MSR_GS_BASE:
2220 		vmx_segment_cache_clear(vmx);
2221 		vmcs_writel(GUEST_GS_BASE, data);
2222 		break;
2223 	case MSR_KERNEL_GS_BASE:
2224 		vmx_write_guest_kernel_gs_base(vmx, data);
2225 		break;
2226 	case MSR_IA32_XFD:
2227 		ret = kvm_set_msr_common(vcpu, msr_info);
2228 		/*
2229 		 * Always intercepting WRMSR could incur non-negligible
2230 		 * overhead given xfd might be changed frequently in
2231 		 * guest context switch. Disable write interception
2232 		 * upon the first write with a non-zero value (indicating
2233 		 * potential usage on dynamic xfeatures). Also update
2234 		 * exception bitmap to trap #NM for proper virtualization
2235 		 * of guest xfd_err.
2236 		 */
2237 		if (!ret && data) {
2238 			vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2239 						      MSR_TYPE_RW);
2240 			vcpu->arch.xfd_no_write_intercept = true;
2241 			vmx_update_exception_bitmap(vcpu);
2242 		}
2243 		break;
2244 #endif
2245 	case MSR_IA32_SYSENTER_CS:
2246 		if (is_guest_mode(vcpu))
2247 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
2248 		vmcs_write32(GUEST_SYSENTER_CS, data);
2249 		break;
2250 	case MSR_IA32_SYSENTER_EIP:
2251 		if (is_guest_mode(vcpu)) {
2252 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2253 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
2254 		}
2255 		vmcs_writel(GUEST_SYSENTER_EIP, data);
2256 		break;
2257 	case MSR_IA32_SYSENTER_ESP:
2258 		if (is_guest_mode(vcpu)) {
2259 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2260 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
2261 		}
2262 		vmcs_writel(GUEST_SYSENTER_ESP, data);
2263 		break;
2264 	case MSR_IA32_DEBUGCTLMSR: {
2265 		u64 invalid;
2266 
2267 		invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2268 		if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2269 			kvm_pr_unimpl_wrmsr(vcpu, msr_index, data);
2270 			data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2271 			invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2272 		}
2273 
2274 		if (invalid)
2275 			return 1;
2276 
2277 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2278 						VM_EXIT_SAVE_DEBUG_CONTROLS)
2279 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2280 
2281 		vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2282 		if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2283 		    (data & DEBUGCTLMSR_LBR))
2284 			intel_pmu_create_guest_lbr_event(vcpu);
2285 		return 0;
2286 	}
2287 	case MSR_IA32_BNDCFGS:
2288 		if (!kvm_mpx_supported() ||
2289 		    (!msr_info->host_initiated &&
2290 		     !guest_cpu_cap_has(vcpu, X86_FEATURE_MPX)))
2291 			return 1;
2292 		if (is_noncanonical_msr_address(data & PAGE_MASK, vcpu) ||
2293 		    (data & MSR_IA32_BNDCFGS_RSVD))
2294 			return 1;
2295 
2296 		if (is_guest_mode(vcpu) &&
2297 		    ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2298 		     (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2299 			get_vmcs12(vcpu)->guest_bndcfgs = data;
2300 
2301 		vmcs_write64(GUEST_BNDCFGS, data);
2302 		break;
2303 	case MSR_IA32_UMWAIT_CONTROL:
2304 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2305 			return 1;
2306 
2307 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2308 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2309 			return 1;
2310 
2311 		vmx->msr_ia32_umwait_control = data;
2312 		break;
2313 	case MSR_IA32_SPEC_CTRL:
2314 		if (!msr_info->host_initiated &&
2315 		    !guest_has_spec_ctrl_msr(vcpu))
2316 			return 1;
2317 
2318 		if (kvm_spec_ctrl_test_value(data))
2319 			return 1;
2320 
2321 		vmx->spec_ctrl = data;
2322 		if (!data)
2323 			break;
2324 
2325 		/*
2326 		 * For non-nested:
2327 		 * When it's written (to non-zero) for the first time, pass
2328 		 * it through.
2329 		 *
2330 		 * For nested:
2331 		 * The handling of the MSR bitmap for L2 guests is done in
2332 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2333 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2334 		 * in the merging. We update the vmcs01 here for L1 as well
2335 		 * since it will end up touching the MSR anyway now.
2336 		 */
2337 		vmx_disable_intercept_for_msr(vcpu,
2338 					      MSR_IA32_SPEC_CTRL,
2339 					      MSR_TYPE_RW);
2340 		break;
2341 	case MSR_IA32_TSX_CTRL:
2342 		if (!msr_info->host_initiated &&
2343 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2344 			return 1;
2345 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2346 			return 1;
2347 		goto find_uret_msr;
2348 	case MSR_IA32_CR_PAT:
2349 		ret = kvm_set_msr_common(vcpu, msr_info);
2350 		if (ret)
2351 			break;
2352 
2353 		if (is_guest_mode(vcpu) &&
2354 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2355 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2356 
2357 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
2358 			vmcs_write64(GUEST_IA32_PAT, data);
2359 		break;
2360 	case MSR_IA32_MCG_EXT_CTL:
2361 		if ((!msr_info->host_initiated &&
2362 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2363 		       FEAT_CTL_LMCE_ENABLED)) ||
2364 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2365 			return 1;
2366 		vcpu->arch.mcg_ext_ctl = data;
2367 		break;
2368 	case MSR_IA32_FEAT_CTL:
2369 		if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2370 			return 1;
2371 
2372 		vmx->msr_ia32_feature_control = data;
2373 		if (msr_info->host_initiated && data == 0)
2374 			vmx_leave_nested(vcpu);
2375 
2376 		/* SGX may be enabled/disabled by guest's firmware */
2377 		vmx_write_encls_bitmap(vcpu, NULL);
2378 		break;
2379 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2380 		/*
2381 		 * On real hardware, the LE hash MSRs are writable before
2382 		 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2383 		 * at which point SGX related bits in IA32_FEATURE_CONTROL
2384 		 * become writable.
2385 		 *
2386 		 * KVM does not emulate SGX activation for simplicity, so
2387 		 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2388 		 * is unlocked.  This is technically not architectural
2389 		 * behavior, but it's close enough.
2390 		 */
2391 		if (!msr_info->host_initiated &&
2392 		    (!guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC) ||
2393 		    ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2394 		    !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2395 			return 1;
2396 		vmx->msr_ia32_sgxlepubkeyhash
2397 			[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2398 		break;
2399 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2400 		if (!msr_info->host_initiated)
2401 			return 1; /* they are read-only */
2402 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
2403 			return 1;
2404 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2405 	case MSR_IA32_RTIT_CTL:
2406 		if (!vmx_pt_mode_is_host_guest() ||
2407 			vmx_rtit_ctl_check(vcpu, data) ||
2408 			vmx->nested.vmxon)
2409 			return 1;
2410 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2411 		vmx->pt_desc.guest.ctl = data;
2412 		pt_update_intercept_for_msr(vcpu);
2413 		break;
2414 	case MSR_IA32_RTIT_STATUS:
2415 		if (!pt_can_write_msr(vmx))
2416 			return 1;
2417 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2418 			return 1;
2419 		vmx->pt_desc.guest.status = data;
2420 		break;
2421 	case MSR_IA32_RTIT_CR3_MATCH:
2422 		if (!pt_can_write_msr(vmx))
2423 			return 1;
2424 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2425 					   PT_CAP_cr3_filtering))
2426 			return 1;
2427 		vmx->pt_desc.guest.cr3_match = data;
2428 		break;
2429 	case MSR_IA32_RTIT_OUTPUT_BASE:
2430 		if (!pt_can_write_msr(vmx))
2431 			return 1;
2432 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2433 					   PT_CAP_topa_output) &&
2434 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2435 					   PT_CAP_single_range_output))
2436 			return 1;
2437 		if (!pt_output_base_valid(vcpu, data))
2438 			return 1;
2439 		vmx->pt_desc.guest.output_base = data;
2440 		break;
2441 	case MSR_IA32_RTIT_OUTPUT_MASK:
2442 		if (!pt_can_write_msr(vmx))
2443 			return 1;
2444 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2445 					   PT_CAP_topa_output) &&
2446 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2447 					   PT_CAP_single_range_output))
2448 			return 1;
2449 		vmx->pt_desc.guest.output_mask = data;
2450 		break;
2451 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2452 		if (!pt_can_write_msr(vmx))
2453 			return 1;
2454 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2455 		if (index >= 2 * vmx->pt_desc.num_address_ranges)
2456 			return 1;
2457 		if (is_noncanonical_msr_address(data, vcpu))
2458 			return 1;
2459 		if (index % 2)
2460 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2461 		else
2462 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2463 		break;
2464 	case MSR_IA32_PERF_CAPABILITIES:
2465 		if (data & PMU_CAP_LBR_FMT) {
2466 			if ((data & PMU_CAP_LBR_FMT) !=
2467 			    (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT))
2468 				return 1;
2469 			if (!cpuid_model_is_consistent(vcpu))
2470 				return 1;
2471 		}
2472 		if (data & PERF_CAP_PEBS_FORMAT) {
2473 			if ((data & PERF_CAP_PEBS_MASK) !=
2474 			    (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2475 				return 1;
2476 			if (!guest_cpu_cap_has(vcpu, X86_FEATURE_DS))
2477 				return 1;
2478 			if (!guest_cpu_cap_has(vcpu, X86_FEATURE_DTES64))
2479 				return 1;
2480 			if (!cpuid_model_is_consistent(vcpu))
2481 				return 1;
2482 		}
2483 		ret = kvm_set_msr_common(vcpu, msr_info);
2484 		break;
2485 
2486 	default:
2487 	find_uret_msr:
2488 		msr = vmx_find_uret_msr(vmx, msr_index);
2489 		if (msr)
2490 			ret = vmx_set_guest_uret_msr(vmx, msr, data);
2491 		else
2492 			ret = kvm_set_msr_common(vcpu, msr_info);
2493 	}
2494 
2495 	/* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2496 	if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2497 		vmx_update_fb_clear_dis(vcpu, vmx);
2498 
2499 	return ret;
2500 }
2501 
2502 void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2503 {
2504 	unsigned long guest_owned_bits;
2505 
2506 	kvm_register_mark_available(vcpu, reg);
2507 
2508 	switch (reg) {
2509 	case VCPU_REGS_RSP:
2510 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2511 		break;
2512 	case VCPU_REGS_RIP:
2513 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2514 		break;
2515 	case VCPU_EXREG_PDPTR:
2516 		if (enable_ept)
2517 			ept_save_pdptrs(vcpu);
2518 		break;
2519 	case VCPU_EXREG_CR0:
2520 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2521 
2522 		vcpu->arch.cr0 &= ~guest_owned_bits;
2523 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2524 		break;
2525 	case VCPU_EXREG_CR3:
2526 		/*
2527 		 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2528 		 * CR3 is loaded into hardware, not the guest's CR3.
2529 		 */
2530 		if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2531 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2532 		break;
2533 	case VCPU_EXREG_CR4:
2534 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2535 
2536 		vcpu->arch.cr4 &= ~guest_owned_bits;
2537 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2538 		break;
2539 	default:
2540 		KVM_BUG_ON(1, vcpu->kvm);
2541 		break;
2542 	}
2543 }
2544 
2545 /*
2546  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2547  * directly instead of going through cpu_has(), to ensure KVM is trapping
2548  * ENCLS whenever it's supported in hardware.  It does not matter whether
2549  * the host OS supports or has enabled SGX.
2550  */
2551 static bool cpu_has_sgx(void)
2552 {
2553 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2554 }
2555 
2556 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
2557 {
2558 	u32 vmx_msr_low, vmx_msr_high;
2559 	u32 ctl = ctl_min | ctl_opt;
2560 
2561 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2562 
2563 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2564 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2565 
2566 	/* Ensure minimum (required) set of control bits are supported. */
2567 	if (ctl_min & ~ctl)
2568 		return -EIO;
2569 
2570 	*result = ctl;
2571 	return 0;
2572 }
2573 
2574 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2575 {
2576 	u64 allowed;
2577 
2578 	rdmsrq(msr, allowed);
2579 
2580 	return  ctl_opt & allowed;
2581 }
2582 
2583 #define vmx_check_entry_exit_pairs(pairs, entry_controls, exit_controls)	\
2584 ({										\
2585 	int i, r = 0;								\
2586 										\
2587 	BUILD_BUG_ON(sizeof(pairs[0].entry_control) != sizeof(entry_controls));	\
2588 	BUILD_BUG_ON(sizeof(pairs[0].exit_control)  != sizeof(exit_controls));	\
2589 										\
2590 	for (i = 0; i < ARRAY_SIZE(pairs); i++) {				\
2591 		typeof(entry_controls) n_ctrl = pairs[i].entry_control;		\
2592 		typeof(exit_controls) x_ctrl = pairs[i].exit_control;		\
2593 										\
2594 		if (!(entry_controls & n_ctrl) == !(exit_controls & x_ctrl))	\
2595 			continue;						\
2596 										\
2597 		pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, "		\
2598 			     "entry = %llx (%llx), exit = %llx (%llx)\n",	\
2599 			     (u64)(entry_controls & n_ctrl), (u64)n_ctrl,	\
2600 			     (u64)(exit_controls & x_ctrl), (u64)x_ctrl);	\
2601 										\
2602 		if (error_on_inconsistent_vmcs_config)				\
2603 			r = -EIO;						\
2604 										\
2605 		entry_controls &= ~n_ctrl;					\
2606 		exit_controls &= ~x_ctrl;					\
2607 	}									\
2608 	r;									\
2609 })
2610 
2611 static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2612 			     struct vmx_capability *vmx_cap)
2613 {
2614 	u32 _pin_based_exec_control = 0;
2615 	u32 _cpu_based_exec_control = 0;
2616 	u32 _cpu_based_2nd_exec_control = 0;
2617 	u64 _cpu_based_3rd_exec_control = 0;
2618 	u32 _vmexit_control = 0;
2619 	u32 _vmentry_control = 0;
2620 	u64 basic_msr;
2621 	u64 misc_msr;
2622 
2623 	/*
2624 	 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2625 	 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2626 	 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2627 	 */
2628 	struct {
2629 		u32 entry_control;
2630 		u32 exit_control;
2631 	} const vmcs_entry_exit_pairs[] = {
2632 		{ VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,	VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2633 		{ VM_ENTRY_LOAD_IA32_PAT,		VM_EXIT_LOAD_IA32_PAT },
2634 		{ VM_ENTRY_LOAD_IA32_EFER,		VM_EXIT_LOAD_IA32_EFER },
2635 		{ VM_ENTRY_LOAD_BNDCFGS,		VM_EXIT_CLEAR_BNDCFGS },
2636 		{ VM_ENTRY_LOAD_IA32_RTIT_CTL,		VM_EXIT_CLEAR_IA32_RTIT_CTL },
2637 	};
2638 
2639 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2640 
2641 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2642 				KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2643 				MSR_IA32_VMX_PROCBASED_CTLS,
2644 				&_cpu_based_exec_control))
2645 		return -EIO;
2646 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2647 		if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2648 					KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2649 					MSR_IA32_VMX_PROCBASED_CTLS2,
2650 					&_cpu_based_2nd_exec_control))
2651 			return -EIO;
2652 	}
2653 	if (!IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
2654 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2655 
2656 #ifndef CONFIG_X86_64
2657 	if (!(_cpu_based_2nd_exec_control &
2658 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2659 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2660 #endif
2661 
2662 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2663 		_cpu_based_2nd_exec_control &= ~(
2664 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2665 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2666 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2667 
2668 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2669 		&vmx_cap->ept, &vmx_cap->vpid);
2670 
2671 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2672 	    vmx_cap->ept) {
2673 		pr_warn_once("EPT CAP should not exist if not support "
2674 				"1-setting enable EPT VM-execution control\n");
2675 
2676 		if (error_on_inconsistent_vmcs_config)
2677 			return -EIO;
2678 
2679 		vmx_cap->ept = 0;
2680 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2681 	}
2682 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2683 	    vmx_cap->vpid) {
2684 		pr_warn_once("VPID CAP should not exist if not support "
2685 				"1-setting enable VPID VM-execution control\n");
2686 
2687 		if (error_on_inconsistent_vmcs_config)
2688 			return -EIO;
2689 
2690 		vmx_cap->vpid = 0;
2691 	}
2692 
2693 	if (!cpu_has_sgx())
2694 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2695 
2696 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2697 		_cpu_based_3rd_exec_control =
2698 			adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2699 					      MSR_IA32_VMX_PROCBASED_CTLS3);
2700 
2701 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2702 				KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2703 				MSR_IA32_VMX_EXIT_CTLS,
2704 				&_vmexit_control))
2705 		return -EIO;
2706 
2707 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2708 				KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2709 				MSR_IA32_VMX_PINBASED_CTLS,
2710 				&_pin_based_exec_control))
2711 		return -EIO;
2712 
2713 	if (cpu_has_broken_vmx_preemption_timer())
2714 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2715 	if (!(_cpu_based_2nd_exec_control &
2716 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2717 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2718 
2719 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2720 				KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2721 				MSR_IA32_VMX_ENTRY_CTLS,
2722 				&_vmentry_control))
2723 		return -EIO;
2724 
2725 	if (vmx_check_entry_exit_pairs(vmcs_entry_exit_pairs,
2726 				       _vmentry_control, _vmexit_control))
2727 		return -EIO;
2728 
2729 	/*
2730 	 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2731 	 * can't be used due to an errata where VM Exit may incorrectly clear
2732 	 * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2733 	 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2734 	 */
2735 	switch (boot_cpu_data.x86_vfm) {
2736 	case INTEL_NEHALEM_EP:	/* AAK155 */
2737 	case INTEL_NEHALEM:	/* AAP115 */
2738 	case INTEL_WESTMERE:	/* AAT100 */
2739 	case INTEL_WESTMERE_EP:	/* BC86,AAY89,BD102 */
2740 	case INTEL_NEHALEM_EX:	/* BA97 */
2741 		_vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2742 		_vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2743 		pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2744 			     "does not work properly. Using workaround\n");
2745 		break;
2746 	default:
2747 		break;
2748 	}
2749 
2750 	rdmsrq(MSR_IA32_VMX_BASIC, basic_msr);
2751 
2752 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2753 	if (vmx_basic_vmcs_size(basic_msr) > PAGE_SIZE)
2754 		return -EIO;
2755 
2756 #ifdef CONFIG_X86_64
2757 	/*
2758 	 * KVM expects to be able to shove all legal physical addresses into
2759 	 * VMCS fields for 64-bit kernels, and per the SDM, "This bit is always
2760 	 * 0 for processors that support Intel 64 architecture".
2761 	 */
2762 	if (basic_msr & VMX_BASIC_32BIT_PHYS_ADDR_ONLY)
2763 		return -EIO;
2764 #endif
2765 
2766 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2767 	if (vmx_basic_vmcs_mem_type(basic_msr) != X86_MEMTYPE_WB)
2768 		return -EIO;
2769 
2770 	rdmsrq(MSR_IA32_VMX_MISC, misc_msr);
2771 
2772 	vmcs_conf->basic = basic_msr;
2773 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2774 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2775 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2776 	vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2777 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2778 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2779 	vmcs_conf->misc	= misc_msr;
2780 
2781 #if IS_ENABLED(CONFIG_HYPERV)
2782 	if (enlightened_vmcs)
2783 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2784 #endif
2785 
2786 	return 0;
2787 }
2788 
2789 static bool __kvm_is_vmx_supported(void)
2790 {
2791 	int cpu = smp_processor_id();
2792 
2793 	if (!(cpuid_ecx(1) & feature_bit(VMX))) {
2794 		pr_err("VMX not supported by CPU %d\n", cpu);
2795 		return false;
2796 	}
2797 
2798 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2799 	    !this_cpu_has(X86_FEATURE_VMX)) {
2800 		pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
2801 		return false;
2802 	}
2803 
2804 	return true;
2805 }
2806 
2807 static bool kvm_is_vmx_supported(void)
2808 {
2809 	bool supported;
2810 
2811 	migrate_disable();
2812 	supported = __kvm_is_vmx_supported();
2813 	migrate_enable();
2814 
2815 	return supported;
2816 }
2817 
2818 int vmx_check_processor_compat(void)
2819 {
2820 	int cpu = raw_smp_processor_id();
2821 	struct vmcs_config vmcs_conf;
2822 	struct vmx_capability vmx_cap;
2823 
2824 	if (!__kvm_is_vmx_supported())
2825 		return -EIO;
2826 
2827 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
2828 		pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
2829 		return -EIO;
2830 	}
2831 	if (nested)
2832 		nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
2833 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
2834 		pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
2835 		return -EIO;
2836 	}
2837 	return 0;
2838 }
2839 
2840 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2841 {
2842 	u64 msr;
2843 
2844 	cr4_set_bits(X86_CR4_VMXE);
2845 
2846 	asm goto("1: vmxon %[vmxon_pointer]\n\t"
2847 			  _ASM_EXTABLE(1b, %l[fault])
2848 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2849 			  : : fault);
2850 	return 0;
2851 
2852 fault:
2853 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2854 		  rdmsrq_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2855 	cr4_clear_bits(X86_CR4_VMXE);
2856 
2857 	return -EFAULT;
2858 }
2859 
2860 int vmx_enable_virtualization_cpu(void)
2861 {
2862 	int cpu = raw_smp_processor_id();
2863 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2864 	int r;
2865 
2866 	if (cr4_read_shadow() & X86_CR4_VMXE)
2867 		return -EBUSY;
2868 
2869 	/*
2870 	 * This can happen if we hot-added a CPU but failed to allocate
2871 	 * VP assist page for it.
2872 	 */
2873 	if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
2874 		return -EFAULT;
2875 
2876 	intel_pt_handle_vmx(1);
2877 
2878 	r = kvm_cpu_vmxon(phys_addr);
2879 	if (r) {
2880 		intel_pt_handle_vmx(0);
2881 		return r;
2882 	}
2883 
2884 	return 0;
2885 }
2886 
2887 static void vmclear_local_loaded_vmcss(void)
2888 {
2889 	int cpu = raw_smp_processor_id();
2890 	struct loaded_vmcs *v, *n;
2891 
2892 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2893 				 loaded_vmcss_on_cpu_link)
2894 		__loaded_vmcs_clear(v);
2895 }
2896 
2897 void vmx_disable_virtualization_cpu(void)
2898 {
2899 	vmclear_local_loaded_vmcss();
2900 
2901 	if (kvm_cpu_vmxoff())
2902 		kvm_spurious_fault();
2903 
2904 	hv_reset_evmcs();
2905 
2906 	intel_pt_handle_vmx(0);
2907 }
2908 
2909 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2910 {
2911 	int node = cpu_to_node(cpu);
2912 	struct page *pages;
2913 	struct vmcs *vmcs;
2914 
2915 	pages = __alloc_pages_node(node, flags, 0);
2916 	if (!pages)
2917 		return NULL;
2918 	vmcs = page_address(pages);
2919 	memset(vmcs, 0, vmx_basic_vmcs_size(vmcs_config.basic));
2920 
2921 	/* KVM supports Enlightened VMCS v1 only */
2922 	if (kvm_is_using_evmcs())
2923 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2924 	else
2925 		vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic);
2926 
2927 	if (shadow)
2928 		vmcs->hdr.shadow_vmcs = 1;
2929 	return vmcs;
2930 }
2931 
2932 void free_vmcs(struct vmcs *vmcs)
2933 {
2934 	free_page((unsigned long)vmcs);
2935 }
2936 
2937 /*
2938  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2939  */
2940 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2941 {
2942 	if (!loaded_vmcs->vmcs)
2943 		return;
2944 	loaded_vmcs_clear(loaded_vmcs);
2945 	free_vmcs(loaded_vmcs->vmcs);
2946 	loaded_vmcs->vmcs = NULL;
2947 	if (loaded_vmcs->msr_bitmap)
2948 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2949 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2950 }
2951 
2952 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2953 {
2954 	loaded_vmcs->vmcs = alloc_vmcs(false);
2955 	if (!loaded_vmcs->vmcs)
2956 		return -ENOMEM;
2957 
2958 	vmcs_clear(loaded_vmcs->vmcs);
2959 
2960 	loaded_vmcs->shadow_vmcs = NULL;
2961 	loaded_vmcs->hv_timer_soft_disabled = false;
2962 	loaded_vmcs->cpu = -1;
2963 	loaded_vmcs->launched = 0;
2964 
2965 	if (cpu_has_vmx_msr_bitmap()) {
2966 		loaded_vmcs->msr_bitmap = (unsigned long *)
2967 				__get_free_page(GFP_KERNEL_ACCOUNT);
2968 		if (!loaded_vmcs->msr_bitmap)
2969 			goto out_vmcs;
2970 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2971 	}
2972 
2973 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2974 	memset(&loaded_vmcs->controls_shadow, 0,
2975 		sizeof(struct vmcs_controls_shadow));
2976 
2977 	return 0;
2978 
2979 out_vmcs:
2980 	free_loaded_vmcs(loaded_vmcs);
2981 	return -ENOMEM;
2982 }
2983 
2984 static void free_kvm_area(void)
2985 {
2986 	int cpu;
2987 
2988 	for_each_possible_cpu(cpu) {
2989 		free_vmcs(per_cpu(vmxarea, cpu));
2990 		per_cpu(vmxarea, cpu) = NULL;
2991 	}
2992 }
2993 
2994 static __init int alloc_kvm_area(void)
2995 {
2996 	int cpu;
2997 
2998 	for_each_possible_cpu(cpu) {
2999 		struct vmcs *vmcs;
3000 
3001 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
3002 		if (!vmcs) {
3003 			free_kvm_area();
3004 			return -ENOMEM;
3005 		}
3006 
3007 		/*
3008 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
3009 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
3010 		 * revision_id reported by MSR_IA32_VMX_BASIC.
3011 		 *
3012 		 * However, even though not explicitly documented by
3013 		 * TLFS, VMXArea passed as VMXON argument should
3014 		 * still be marked with revision_id reported by
3015 		 * physical CPU.
3016 		 */
3017 		if (kvm_is_using_evmcs())
3018 			vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic);
3019 
3020 		per_cpu(vmxarea, cpu) = vmcs;
3021 	}
3022 	return 0;
3023 }
3024 
3025 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3026 		struct kvm_segment *save)
3027 {
3028 	if (!emulate_invalid_guest_state) {
3029 		/*
3030 		 * CS and SS RPL should be equal during guest entry according
3031 		 * to VMX spec, but in reality it is not always so. Since vcpu
3032 		 * is in the middle of the transition from real mode to
3033 		 * protected mode it is safe to assume that RPL 0 is a good
3034 		 * default value.
3035 		 */
3036 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3037 			save->selector &= ~SEGMENT_RPL_MASK;
3038 		save->dpl = save->selector & SEGMENT_RPL_MASK;
3039 		save->s = 1;
3040 	}
3041 	__vmx_set_segment(vcpu, save, seg);
3042 }
3043 
3044 static void enter_pmode(struct kvm_vcpu *vcpu)
3045 {
3046 	unsigned long flags;
3047 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3048 
3049 	/*
3050 	 * Update real mode segment cache. It may be not up-to-date if segment
3051 	 * register was written while vcpu was in a guest mode.
3052 	 */
3053 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3054 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3055 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3056 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3057 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3058 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3059 
3060 	vmx->rmode.vm86_active = 0;
3061 
3062 	__vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3063 
3064 	flags = vmcs_readl(GUEST_RFLAGS);
3065 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3066 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3067 	vmcs_writel(GUEST_RFLAGS, flags);
3068 
3069 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3070 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3071 
3072 	vmx_update_exception_bitmap(vcpu);
3073 
3074 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3075 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3076 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3077 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3078 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3079 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3080 }
3081 
3082 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3083 {
3084 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3085 	struct kvm_segment var = *save;
3086 
3087 	var.dpl = 0x3;
3088 	if (seg == VCPU_SREG_CS)
3089 		var.type = 0x3;
3090 
3091 	if (!emulate_invalid_guest_state) {
3092 		var.selector = var.base >> 4;
3093 		var.base = var.base & 0xffff0;
3094 		var.limit = 0xffff;
3095 		var.g = 0;
3096 		var.db = 0;
3097 		var.present = 1;
3098 		var.s = 1;
3099 		var.l = 0;
3100 		var.unusable = 0;
3101 		var.type = 0x3;
3102 		var.avl = 0;
3103 		if (save->base & 0xf)
3104 			pr_warn_once("segment base is not paragraph aligned "
3105 				     "when entering protected mode (seg=%d)", seg);
3106 	}
3107 
3108 	vmcs_write16(sf->selector, var.selector);
3109 	vmcs_writel(sf->base, var.base);
3110 	vmcs_write32(sf->limit, var.limit);
3111 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3112 }
3113 
3114 static void enter_rmode(struct kvm_vcpu *vcpu)
3115 {
3116 	unsigned long flags;
3117 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3118 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
3119 
3120 	/*
3121 	 * KVM should never use VM86 to virtualize Real Mode when L2 is active,
3122 	 * as using VM86 is unnecessary if unrestricted guest is enabled, and
3123 	 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0
3124 	 * should VM-Fail and KVM should reject userspace attempts to stuff
3125 	 * CR0.PG=0 when L2 is active.
3126 	 */
3127 	WARN_ON_ONCE(is_guest_mode(vcpu));
3128 
3129 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3130 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3131 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3132 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3133 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3134 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3135 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3136 
3137 	vmx->rmode.vm86_active = 1;
3138 
3139 	vmx_segment_cache_clear(vmx);
3140 
3141 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3142 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3143 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3144 
3145 	flags = vmcs_readl(GUEST_RFLAGS);
3146 	vmx->rmode.save_rflags = flags;
3147 
3148 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3149 
3150 	vmcs_writel(GUEST_RFLAGS, flags);
3151 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3152 	vmx_update_exception_bitmap(vcpu);
3153 
3154 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3155 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3156 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3157 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3158 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3159 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3160 }
3161 
3162 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3163 {
3164 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3165 
3166 	/* Nothing to do if hardware doesn't support EFER. */
3167 	if (!vmx_find_uret_msr(vmx, MSR_EFER))
3168 		return 0;
3169 
3170 	vcpu->arch.efer = efer;
3171 #ifdef CONFIG_X86_64
3172 	if (efer & EFER_LMA)
3173 		vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3174 	else
3175 		vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3176 #else
3177 	if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3178 		return 1;
3179 #endif
3180 
3181 	vmx_setup_uret_msrs(vmx);
3182 	return 0;
3183 }
3184 
3185 #ifdef CONFIG_X86_64
3186 
3187 static void enter_lmode(struct kvm_vcpu *vcpu)
3188 {
3189 	u32 guest_tr_ar;
3190 
3191 	vmx_segment_cache_clear(to_vmx(vcpu));
3192 
3193 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3194 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3195 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3196 				     __func__);
3197 		vmcs_write32(GUEST_TR_AR_BYTES,
3198 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3199 			     | VMX_AR_TYPE_BUSY_64_TSS);
3200 	}
3201 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3202 }
3203 
3204 static void exit_lmode(struct kvm_vcpu *vcpu)
3205 {
3206 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3207 }
3208 
3209 #endif
3210 
3211 void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3212 {
3213 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3214 
3215 	/*
3216 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3217 	 * the CPU is not required to invalidate guest-physical mappings on
3218 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
3219 	 * associated with the root EPT structure and not any particular VPID
3220 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
3221 	 */
3222 	if (enable_ept) {
3223 		ept_sync_global();
3224 	} else if (enable_vpid) {
3225 		if (cpu_has_vmx_invvpid_global()) {
3226 			vpid_sync_vcpu_global();
3227 		} else {
3228 			vpid_sync_vcpu_single(vmx->vpid);
3229 			vpid_sync_vcpu_single(vmx->nested.vpid02);
3230 		}
3231 	}
3232 }
3233 
3234 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3235 {
3236 	if (is_guest_mode(vcpu) && nested_cpu_has_vpid(get_vmcs12(vcpu)))
3237 		return nested_get_vpid02(vcpu);
3238 	return to_vmx(vcpu)->vpid;
3239 }
3240 
3241 void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3242 {
3243 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3244 	u64 root_hpa = mmu->root.hpa;
3245 
3246 	/* No flush required if the current context is invalid. */
3247 	if (!VALID_PAGE(root_hpa))
3248 		return;
3249 
3250 	if (enable_ept)
3251 		ept_sync_context(construct_eptp(vcpu, root_hpa,
3252 						mmu->root_role.level));
3253 	else
3254 		vpid_sync_context(vmx_get_current_vpid(vcpu));
3255 }
3256 
3257 void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3258 {
3259 	/*
3260 	 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3261 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3262 	 */
3263 	vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3264 }
3265 
3266 void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3267 {
3268 	/*
3269 	 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3270 	 * vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit are
3271 	 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3272 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3273 	 * i.e. no explicit INVVPID is necessary.
3274 	 */
3275 	vpid_sync_context(vmx_get_current_vpid(vcpu));
3276 }
3277 
3278 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3279 {
3280 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3281 
3282 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3283 		return;
3284 
3285 	if (is_pae_paging(vcpu)) {
3286 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3287 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3288 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3289 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3290 	}
3291 }
3292 
3293 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3294 {
3295 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3296 
3297 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3298 		return;
3299 
3300 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3301 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3302 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3303 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3304 
3305 	kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3306 }
3307 
3308 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3309 			  CPU_BASED_CR3_STORE_EXITING)
3310 
3311 bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3312 {
3313 	if (is_guest_mode(vcpu))
3314 		return nested_guest_cr0_valid(vcpu, cr0);
3315 
3316 	if (to_vmx(vcpu)->nested.vmxon)
3317 		return nested_host_cr0_valid(vcpu, cr0);
3318 
3319 	return true;
3320 }
3321 
3322 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3323 {
3324 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3325 	unsigned long hw_cr0, old_cr0_pg;
3326 	u32 tmp;
3327 
3328 	old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3329 
3330 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3331 	if (enable_unrestricted_guest)
3332 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3333 	else {
3334 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3335 		if (!enable_ept)
3336 			hw_cr0 |= X86_CR0_WP;
3337 
3338 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3339 			enter_pmode(vcpu);
3340 
3341 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3342 			enter_rmode(vcpu);
3343 	}
3344 
3345 	vmcs_writel(CR0_READ_SHADOW, cr0);
3346 	vmcs_writel(GUEST_CR0, hw_cr0);
3347 	vcpu->arch.cr0 = cr0;
3348 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3349 
3350 #ifdef CONFIG_X86_64
3351 	if (vcpu->arch.efer & EFER_LME) {
3352 		if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3353 			enter_lmode(vcpu);
3354 		else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3355 			exit_lmode(vcpu);
3356 	}
3357 #endif
3358 
3359 	if (enable_ept && !enable_unrestricted_guest) {
3360 		/*
3361 		 * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3362 		 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3363 		 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3364 		 * KVM's CR3 is installed.
3365 		 */
3366 		if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3367 			vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3368 
3369 		/*
3370 		 * When running with EPT but not unrestricted guest, KVM must
3371 		 * intercept CR3 accesses when paging is _disabled_.  This is
3372 		 * necessary because restricted guests can't actually run with
3373 		 * paging disabled, and so KVM stuffs its own CR3 in order to
3374 		 * run the guest when identity mapped page tables.
3375 		 *
3376 		 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3377 		 * update, it may be stale with respect to CR3 interception,
3378 		 * e.g. after nested VM-Enter.
3379 		 *
3380 		 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3381 		 * stores to forward them to L1, even if KVM does not need to
3382 		 * intercept them to preserve its identity mapped page tables.
3383 		 */
3384 		if (!(cr0 & X86_CR0_PG)) {
3385 			exec_controls_setbit(vmx, CR3_EXITING_BITS);
3386 		} else if (!is_guest_mode(vcpu)) {
3387 			exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3388 		} else {
3389 			tmp = exec_controls_get(vmx);
3390 			tmp &= ~CR3_EXITING_BITS;
3391 			tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3392 			exec_controls_set(vmx, tmp);
3393 		}
3394 
3395 		/* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3396 		if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3397 			vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3398 
3399 		/*
3400 		 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3401 		 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3402 		 */
3403 		if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3404 			kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3405 	}
3406 
3407 	/* depends on vcpu->arch.cr0 to be set to a new value */
3408 	vmx->emulation_required = vmx_emulation_required(vcpu);
3409 }
3410 
3411 static int vmx_get_max_ept_level(void)
3412 {
3413 	if (cpu_has_vmx_ept_5levels())
3414 		return 5;
3415 	return 4;
3416 }
3417 
3418 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3419 {
3420 	u64 eptp = VMX_EPTP_MT_WB;
3421 
3422 	eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3423 
3424 	if (enable_ept_ad_bits &&
3425 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3426 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3427 	eptp |= root_hpa;
3428 
3429 	return eptp;
3430 }
3431 
3432 void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3433 {
3434 	struct kvm *kvm = vcpu->kvm;
3435 	bool update_guest_cr3 = true;
3436 	unsigned long guest_cr3;
3437 	u64 eptp;
3438 
3439 	if (enable_ept) {
3440 		eptp = construct_eptp(vcpu, root_hpa, root_level);
3441 		vmcs_write64(EPT_POINTER, eptp);
3442 
3443 		hv_track_root_tdp(vcpu, root_hpa);
3444 
3445 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3446 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3447 		else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3448 			guest_cr3 = vcpu->arch.cr3;
3449 		else /* vmcs.GUEST_CR3 is already up-to-date. */
3450 			update_guest_cr3 = false;
3451 		vmx_ept_load_pdptrs(vcpu);
3452 	} else {
3453 		guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu) |
3454 			    kvm_get_active_cr3_lam_bits(vcpu);
3455 	}
3456 
3457 	if (update_guest_cr3)
3458 		vmcs_writel(GUEST_CR3, guest_cr3);
3459 }
3460 
3461 bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3462 {
3463 	/*
3464 	 * We operate under the default treatment of SMM, so VMX cannot be
3465 	 * enabled under SMM.  Note, whether or not VMXE is allowed at all,
3466 	 * i.e. is a reserved bit, is handled by common x86 code.
3467 	 */
3468 	if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3469 		return false;
3470 
3471 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3472 		return false;
3473 
3474 	return true;
3475 }
3476 
3477 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3478 {
3479 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
3480 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3481 	unsigned long hw_cr4;
3482 
3483 	/*
3484 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3485 	 * is in force while we are in guest mode.  Do not let guests control
3486 	 * this bit, even if host CR4.MCE == 0.
3487 	 */
3488 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3489 	if (enable_unrestricted_guest)
3490 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3491 	else if (vmx->rmode.vm86_active)
3492 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3493 	else
3494 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3495 
3496 	if (vmx_umip_emulated()) {
3497 		if (cr4 & X86_CR4_UMIP) {
3498 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3499 			hw_cr4 &= ~X86_CR4_UMIP;
3500 		} else if (!is_guest_mode(vcpu) ||
3501 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3502 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3503 		}
3504 	}
3505 
3506 	vcpu->arch.cr4 = cr4;
3507 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3508 
3509 	if (!enable_unrestricted_guest) {
3510 		if (enable_ept) {
3511 			if (!is_paging(vcpu)) {
3512 				hw_cr4 &= ~X86_CR4_PAE;
3513 				hw_cr4 |= X86_CR4_PSE;
3514 			} else if (!(cr4 & X86_CR4_PAE)) {
3515 				hw_cr4 &= ~X86_CR4_PAE;
3516 			}
3517 		}
3518 
3519 		/*
3520 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3521 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3522 		 * to be manually disabled when guest switches to non-paging
3523 		 * mode.
3524 		 *
3525 		 * If !enable_unrestricted_guest, the CPU is always running
3526 		 * with CR0.PG=1 and CR4 needs to be modified.
3527 		 * If enable_unrestricted_guest, the CPU automatically
3528 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3529 		 */
3530 		if (!is_paging(vcpu))
3531 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3532 	}
3533 
3534 	vmcs_writel(CR4_READ_SHADOW, cr4);
3535 	vmcs_writel(GUEST_CR4, hw_cr4);
3536 
3537 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3538 		vcpu->arch.cpuid_dynamic_bits_dirty = true;
3539 }
3540 
3541 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3542 {
3543 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3544 	u32 ar;
3545 
3546 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3547 		*var = vmx->rmode.segs[seg];
3548 		if (seg == VCPU_SREG_TR
3549 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3550 			return;
3551 		var->base = vmx_read_guest_seg_base(vmx, seg);
3552 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3553 		return;
3554 	}
3555 	var->base = vmx_read_guest_seg_base(vmx, seg);
3556 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3557 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3558 	ar = vmx_read_guest_seg_ar(vmx, seg);
3559 	var->unusable = (ar >> 16) & 1;
3560 	var->type = ar & 15;
3561 	var->s = (ar >> 4) & 1;
3562 	var->dpl = (ar >> 5) & 3;
3563 	/*
3564 	 * Some userspaces do not preserve unusable property. Since usable
3565 	 * segment has to be present according to VMX spec we can use present
3566 	 * property to amend userspace bug by making unusable segment always
3567 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3568 	 * segment as unusable.
3569 	 */
3570 	var->present = !var->unusable;
3571 	var->avl = (ar >> 12) & 1;
3572 	var->l = (ar >> 13) & 1;
3573 	var->db = (ar >> 14) & 1;
3574 	var->g = (ar >> 15) & 1;
3575 }
3576 
3577 u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3578 {
3579 	struct kvm_segment s;
3580 
3581 	if (to_vmx(vcpu)->rmode.vm86_active) {
3582 		vmx_get_segment(vcpu, &s, seg);
3583 		return s.base;
3584 	}
3585 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3586 }
3587 
3588 static int __vmx_get_cpl(struct kvm_vcpu *vcpu, bool no_cache)
3589 {
3590 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3591 	int ar;
3592 
3593 	if (unlikely(vmx->rmode.vm86_active))
3594 		return 0;
3595 
3596 	if (no_cache)
3597 		ar = vmcs_read32(GUEST_SS_AR_BYTES);
3598 	else
3599 		ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3600 	return VMX_AR_DPL(ar);
3601 }
3602 
3603 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3604 {
3605 	return __vmx_get_cpl(vcpu, false);
3606 }
3607 
3608 int vmx_get_cpl_no_cache(struct kvm_vcpu *vcpu)
3609 {
3610 	return __vmx_get_cpl(vcpu, true);
3611 }
3612 
3613 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3614 {
3615 	u32 ar;
3616 
3617 	ar = var->type & 15;
3618 	ar |= (var->s & 1) << 4;
3619 	ar |= (var->dpl & 3) << 5;
3620 	ar |= (var->present & 1) << 7;
3621 	ar |= (var->avl & 1) << 12;
3622 	ar |= (var->l & 1) << 13;
3623 	ar |= (var->db & 1) << 14;
3624 	ar |= (var->g & 1) << 15;
3625 	ar |= (var->unusable || !var->present) << 16;
3626 
3627 	return ar;
3628 }
3629 
3630 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3631 {
3632 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3633 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3634 
3635 	vmx_segment_cache_clear(vmx);
3636 
3637 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3638 		vmx->rmode.segs[seg] = *var;
3639 		if (seg == VCPU_SREG_TR)
3640 			vmcs_write16(sf->selector, var->selector);
3641 		else if (var->s)
3642 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3643 		return;
3644 	}
3645 
3646 	vmcs_writel(sf->base, var->base);
3647 	vmcs_write32(sf->limit, var->limit);
3648 	vmcs_write16(sf->selector, var->selector);
3649 
3650 	/*
3651 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3652 	 * qemu binaries.
3653 	 *   IA32 arch specifies that at the time of processor reset the
3654 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3655 	 * is setting it to 0 in the userland code. This causes invalid guest
3656 	 * state vmexit when "unrestricted guest" mode is turned on.
3657 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3658 	 * tree. Newer qemu binaries with that qemu fix would not need this
3659 	 * kvm hack.
3660 	 */
3661 	if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3662 		var->type |= 0x1; /* Accessed */
3663 
3664 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3665 }
3666 
3667 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3668 {
3669 	__vmx_set_segment(vcpu, var, seg);
3670 
3671 	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3672 }
3673 
3674 void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3675 {
3676 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3677 
3678 	*db = (ar >> 14) & 1;
3679 	*l = (ar >> 13) & 1;
3680 }
3681 
3682 void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3683 {
3684 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3685 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3686 }
3687 
3688 void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3689 {
3690 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3691 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3692 }
3693 
3694 void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3695 {
3696 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3697 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3698 }
3699 
3700 void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3701 {
3702 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3703 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3704 }
3705 
3706 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3707 {
3708 	struct kvm_segment var;
3709 	u32 ar;
3710 
3711 	vmx_get_segment(vcpu, &var, seg);
3712 	var.dpl = 0x3;
3713 	if (seg == VCPU_SREG_CS)
3714 		var.type = 0x3;
3715 	ar = vmx_segment_access_rights(&var);
3716 
3717 	if (var.base != (var.selector << 4))
3718 		return false;
3719 	if (var.limit != 0xffff)
3720 		return false;
3721 	if (ar != 0xf3)
3722 		return false;
3723 
3724 	return true;
3725 }
3726 
3727 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3728 {
3729 	struct kvm_segment cs;
3730 	unsigned int cs_rpl;
3731 
3732 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3733 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3734 
3735 	if (cs.unusable)
3736 		return false;
3737 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3738 		return false;
3739 	if (!cs.s)
3740 		return false;
3741 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3742 		if (cs.dpl > cs_rpl)
3743 			return false;
3744 	} else {
3745 		if (cs.dpl != cs_rpl)
3746 			return false;
3747 	}
3748 	if (!cs.present)
3749 		return false;
3750 
3751 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3752 	return true;
3753 }
3754 
3755 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3756 {
3757 	struct kvm_segment ss;
3758 	unsigned int ss_rpl;
3759 
3760 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3761 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3762 
3763 	if (ss.unusable)
3764 		return true;
3765 	if (ss.type != 3 && ss.type != 7)
3766 		return false;
3767 	if (!ss.s)
3768 		return false;
3769 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3770 		return false;
3771 	if (!ss.present)
3772 		return false;
3773 
3774 	return true;
3775 }
3776 
3777 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3778 {
3779 	struct kvm_segment var;
3780 	unsigned int rpl;
3781 
3782 	vmx_get_segment(vcpu, &var, seg);
3783 	rpl = var.selector & SEGMENT_RPL_MASK;
3784 
3785 	if (var.unusable)
3786 		return true;
3787 	if (!var.s)
3788 		return false;
3789 	if (!var.present)
3790 		return false;
3791 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3792 		if (var.dpl < rpl) /* DPL < RPL */
3793 			return false;
3794 	}
3795 
3796 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3797 	 * rights flags
3798 	 */
3799 	return true;
3800 }
3801 
3802 static bool tr_valid(struct kvm_vcpu *vcpu)
3803 {
3804 	struct kvm_segment tr;
3805 
3806 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3807 
3808 	if (tr.unusable)
3809 		return false;
3810 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3811 		return false;
3812 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3813 		return false;
3814 	if (!tr.present)
3815 		return false;
3816 
3817 	return true;
3818 }
3819 
3820 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3821 {
3822 	struct kvm_segment ldtr;
3823 
3824 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3825 
3826 	if (ldtr.unusable)
3827 		return true;
3828 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3829 		return false;
3830 	if (ldtr.type != 2)
3831 		return false;
3832 	if (!ldtr.present)
3833 		return false;
3834 
3835 	return true;
3836 }
3837 
3838 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3839 {
3840 	struct kvm_segment cs, ss;
3841 
3842 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3843 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3844 
3845 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3846 		 (ss.selector & SEGMENT_RPL_MASK));
3847 }
3848 
3849 /*
3850  * Check if guest state is valid. Returns true if valid, false if
3851  * not.
3852  * We assume that registers are always usable
3853  */
3854 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3855 {
3856 	/* real mode guest state checks */
3857 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3858 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3859 			return false;
3860 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3861 			return false;
3862 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3863 			return false;
3864 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3865 			return false;
3866 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3867 			return false;
3868 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3869 			return false;
3870 	} else {
3871 	/* protected mode guest state checks */
3872 		if (!cs_ss_rpl_check(vcpu))
3873 			return false;
3874 		if (!code_segment_valid(vcpu))
3875 			return false;
3876 		if (!stack_segment_valid(vcpu))
3877 			return false;
3878 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3879 			return false;
3880 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3881 			return false;
3882 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3883 			return false;
3884 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3885 			return false;
3886 		if (!tr_valid(vcpu))
3887 			return false;
3888 		if (!ldtr_valid(vcpu))
3889 			return false;
3890 	}
3891 	/* TODO:
3892 	 * - Add checks on RIP
3893 	 * - Add checks on RFLAGS
3894 	 */
3895 
3896 	return true;
3897 }
3898 
3899 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3900 {
3901 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3902 	u16 data;
3903 	int i;
3904 
3905 	for (i = 0; i < 3; i++) {
3906 		if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3907 			return -EFAULT;
3908 	}
3909 
3910 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3911 	if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3912 		return -EFAULT;
3913 
3914 	data = ~0;
3915 	if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3916 		return -EFAULT;
3917 
3918 	return 0;
3919 }
3920 
3921 static int init_rmode_identity_map(struct kvm *kvm)
3922 {
3923 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3924 	int i, r = 0;
3925 	void __user *uaddr;
3926 	u32 tmp;
3927 
3928 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3929 	mutex_lock(&kvm->slots_lock);
3930 
3931 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3932 		goto out;
3933 
3934 	if (!kvm_vmx->ept_identity_map_addr)
3935 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3936 
3937 	uaddr = __x86_set_memory_region(kvm,
3938 					IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3939 					kvm_vmx->ept_identity_map_addr,
3940 					PAGE_SIZE);
3941 	if (IS_ERR(uaddr)) {
3942 		r = PTR_ERR(uaddr);
3943 		goto out;
3944 	}
3945 
3946 	/* Set up identity-mapping pagetable for EPT in real mode */
3947 	for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3948 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3949 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3950 		if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3951 			r = -EFAULT;
3952 			goto out;
3953 		}
3954 	}
3955 	kvm_vmx->ept_identity_pagetable_done = true;
3956 
3957 out:
3958 	mutex_unlock(&kvm->slots_lock);
3959 	return r;
3960 }
3961 
3962 static void seg_setup(int seg)
3963 {
3964 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3965 	unsigned int ar;
3966 
3967 	vmcs_write16(sf->selector, 0);
3968 	vmcs_writel(sf->base, 0);
3969 	vmcs_write32(sf->limit, 0xffff);
3970 	ar = 0x93;
3971 	if (seg == VCPU_SREG_CS)
3972 		ar |= 0x08; /* code segment */
3973 
3974 	vmcs_write32(sf->ar_bytes, ar);
3975 }
3976 
3977 int allocate_vpid(void)
3978 {
3979 	int vpid;
3980 
3981 	if (!enable_vpid)
3982 		return 0;
3983 	spin_lock(&vmx_vpid_lock);
3984 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3985 	if (vpid < VMX_NR_VPIDS)
3986 		__set_bit(vpid, vmx_vpid_bitmap);
3987 	else
3988 		vpid = 0;
3989 	spin_unlock(&vmx_vpid_lock);
3990 	return vpid;
3991 }
3992 
3993 void free_vpid(int vpid)
3994 {
3995 	if (!enable_vpid || vpid == 0)
3996 		return;
3997 	spin_lock(&vmx_vpid_lock);
3998 	__clear_bit(vpid, vmx_vpid_bitmap);
3999 	spin_unlock(&vmx_vpid_lock);
4000 }
4001 
4002 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
4003 {
4004 	/*
4005 	 * When KVM is a nested hypervisor on top of Hyper-V and uses
4006 	 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
4007 	 * bitmap has changed.
4008 	 */
4009 	if (kvm_is_using_evmcs()) {
4010 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
4011 
4012 		if (evmcs->hv_enlightenments_control.msr_bitmap)
4013 			evmcs->hv_clean_fields &=
4014 				~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
4015 	}
4016 
4017 	vmx->nested.force_msr_bitmap_recalc = true;
4018 }
4019 
4020 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
4021 {
4022 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4023 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
4024 	int idx;
4025 
4026 	if (!cpu_has_vmx_msr_bitmap())
4027 		return;
4028 
4029 	vmx_msr_bitmap_l01_changed(vmx);
4030 
4031 	/*
4032 	 * Mark the desired intercept state in shadow bitmap, this is needed
4033 	 * for resync when the MSR filters change.
4034 	 */
4035 	idx = vmx_get_passthrough_msr_slot(msr);
4036 	if (idx >= 0) {
4037 		if (type & MSR_TYPE_R)
4038 			clear_bit(idx, vmx->shadow_msr_intercept.read);
4039 		if (type & MSR_TYPE_W)
4040 			clear_bit(idx, vmx->shadow_msr_intercept.write);
4041 	}
4042 
4043 	if ((type & MSR_TYPE_R) &&
4044 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
4045 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
4046 		type &= ~MSR_TYPE_R;
4047 	}
4048 
4049 	if ((type & MSR_TYPE_W) &&
4050 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
4051 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
4052 		type &= ~MSR_TYPE_W;
4053 	}
4054 
4055 	if (type & MSR_TYPE_R)
4056 		vmx_clear_msr_bitmap_read(msr_bitmap, msr);
4057 
4058 	if (type & MSR_TYPE_W)
4059 		vmx_clear_msr_bitmap_write(msr_bitmap, msr);
4060 }
4061 
4062 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
4063 {
4064 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4065 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
4066 	int idx;
4067 
4068 	if (!cpu_has_vmx_msr_bitmap())
4069 		return;
4070 
4071 	vmx_msr_bitmap_l01_changed(vmx);
4072 
4073 	/*
4074 	 * Mark the desired intercept state in shadow bitmap, this is needed
4075 	 * for resync when the MSR filter changes.
4076 	 */
4077 	idx = vmx_get_passthrough_msr_slot(msr);
4078 	if (idx >= 0) {
4079 		if (type & MSR_TYPE_R)
4080 			set_bit(idx, vmx->shadow_msr_intercept.read);
4081 		if (type & MSR_TYPE_W)
4082 			set_bit(idx, vmx->shadow_msr_intercept.write);
4083 	}
4084 
4085 	if (type & MSR_TYPE_R)
4086 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
4087 
4088 	if (type & MSR_TYPE_W)
4089 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
4090 }
4091 
4092 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
4093 {
4094 	/*
4095 	 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
4096 	 * of the MSR bitmap.  KVM emulates APIC registers up through 0x3f0,
4097 	 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
4098 	 */
4099 	const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
4100 	const int write_idx = read_idx + (0x800 / sizeof(u64));
4101 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4102 	u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
4103 	u8 mode;
4104 
4105 	if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
4106 		return;
4107 
4108 	if (cpu_has_secondary_exec_ctrls() &&
4109 	    (secondary_exec_controls_get(vmx) &
4110 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4111 		mode = MSR_BITMAP_MODE_X2APIC;
4112 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4113 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4114 	} else {
4115 		mode = 0;
4116 	}
4117 
4118 	if (mode == vmx->x2apic_msr_bitmap_mode)
4119 		return;
4120 
4121 	vmx->x2apic_msr_bitmap_mode = mode;
4122 
4123 	/*
4124 	 * Reset the bitmap for MSRs 0x800 - 0x83f.  Leave AMD's uber-extended
4125 	 * registers (0x840 and above) intercepted, KVM doesn't support them.
4126 	 * Intercept all writes by default and poke holes as needed.  Pass
4127 	 * through reads for all valid registers by default in x2APIC+APICv
4128 	 * mode, only the current timer count needs on-demand emulation by KVM.
4129 	 */
4130 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
4131 		msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
4132 	else
4133 		msr_bitmap[read_idx] = ~0ull;
4134 	msr_bitmap[write_idx] = ~0ull;
4135 
4136 	/*
4137 	 * TPR reads and writes can be virtualized even if virtual interrupt
4138 	 * delivery is not in use.
4139 	 */
4140 	vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4141 				  !(mode & MSR_BITMAP_MODE_X2APIC));
4142 
4143 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4144 		vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4145 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4146 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4147 		if (enable_ipiv)
4148 			vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4149 	}
4150 }
4151 
4152 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4153 {
4154 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4155 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4156 	u32 i;
4157 
4158 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4159 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4160 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4161 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4162 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4163 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4164 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4165 	}
4166 }
4167 
4168 void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
4169 {
4170 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4171 	u32 i;
4172 
4173 	if (!cpu_has_vmx_msr_bitmap())
4174 		return;
4175 
4176 	/*
4177 	 * Redo intercept permissions for MSRs that KVM is passing through to
4178 	 * the guest.  Disabling interception will check the new MSR filter and
4179 	 * ensure that KVM enables interception if usersepace wants to filter
4180 	 * the MSR.  MSRs that KVM is already intercepting don't need to be
4181 	 * refreshed since KVM is going to intercept them regardless of what
4182 	 * userspace wants.
4183 	 */
4184 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4185 		u32 msr = vmx_possible_passthrough_msrs[i];
4186 
4187 		if (!test_bit(i, vmx->shadow_msr_intercept.read))
4188 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R);
4189 
4190 		if (!test_bit(i, vmx->shadow_msr_intercept.write))
4191 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W);
4192 	}
4193 
4194 	/* PT MSRs can be passed through iff PT is exposed to the guest. */
4195 	if (vmx_pt_mode_is_host_guest())
4196 		pt_update_intercept_for_msr(vcpu);
4197 }
4198 
4199 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4200 						     int pi_vec)
4201 {
4202 #ifdef CONFIG_SMP
4203 	if (vcpu->mode == IN_GUEST_MODE) {
4204 		/*
4205 		 * The vector of the virtual has already been set in the PIR.
4206 		 * Send a notification event to deliver the virtual interrupt
4207 		 * unless the vCPU is the currently running vCPU, i.e. the
4208 		 * event is being sent from a fastpath VM-Exit handler, in
4209 		 * which case the PIR will be synced to the vIRR before
4210 		 * re-entering the guest.
4211 		 *
4212 		 * When the target is not the running vCPU, the following
4213 		 * possibilities emerge:
4214 		 *
4215 		 * Case 1: vCPU stays in non-root mode. Sending a notification
4216 		 * event posts the interrupt to the vCPU.
4217 		 *
4218 		 * Case 2: vCPU exits to root mode and is still runnable. The
4219 		 * PIR will be synced to the vIRR before re-entering the guest.
4220 		 * Sending a notification event is ok as the host IRQ handler
4221 		 * will ignore the spurious event.
4222 		 *
4223 		 * Case 3: vCPU exits to root mode and is blocked. vcpu_block()
4224 		 * has already synced PIR to vIRR and never blocks the vCPU if
4225 		 * the vIRR is not empty. Therefore, a blocked vCPU here does
4226 		 * not wait for any requested interrupts in PIR, and sending a
4227 		 * notification event also results in a benign, spurious event.
4228 		 */
4229 
4230 		if (vcpu != kvm_get_running_vcpu())
4231 			__apic_send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4232 		return;
4233 	}
4234 #endif
4235 	/*
4236 	 * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
4237 	 * otherwise do nothing as KVM will grab the highest priority pending
4238 	 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
4239 	 */
4240 	kvm_vcpu_wake_up(vcpu);
4241 }
4242 
4243 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4244 						int vector)
4245 {
4246 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4247 
4248 	/*
4249 	 * DO NOT query the vCPU's vmcs12, as vmcs12 is dynamically allocated
4250 	 * and freed, and must not be accessed outside of vcpu->mutex.  The
4251 	 * vCPU's cached PI NV is valid if and only if posted interrupts
4252 	 * enabled in its vmcs12, i.e. checking the vector also checks that
4253 	 * L1 has enabled posted interrupts for L2.
4254 	 */
4255 	if (is_guest_mode(vcpu) &&
4256 	    vector == vmx->nested.posted_intr_nv) {
4257 		/*
4258 		 * If a posted intr is not recognized by hardware,
4259 		 * we will accomplish it in the next vmentry.
4260 		 */
4261 		vmx->nested.pi_pending = true;
4262 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4263 
4264 		/*
4265 		 * This pairs with the smp_mb_*() after setting vcpu->mode in
4266 		 * vcpu_enter_guest() to guarantee the vCPU sees the event
4267 		 * request if triggering a posted interrupt "fails" because
4268 		 * vcpu->mode != IN_GUEST_MODE.  The extra barrier is needed as
4269 		 * the smb_wmb() in kvm_make_request() only ensures everything
4270 		 * done before making the request is visible when the request
4271 		 * is visible, it doesn't ensure ordering between the store to
4272 		 * vcpu->requests and the load from vcpu->mode.
4273 		 */
4274 		smp_mb__after_atomic();
4275 
4276 		/* the PIR and ON have been set by L1. */
4277 		kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4278 		return 0;
4279 	}
4280 	return -1;
4281 }
4282 /*
4283  * Send interrupt to vcpu via posted interrupt way.
4284  * 1. If target vcpu is running(non-root mode), send posted interrupt
4285  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4286  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4287  * interrupt from PIR in next vmentry.
4288  */
4289 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4290 {
4291 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4292 	int r;
4293 
4294 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4295 	if (!r)
4296 		return 0;
4297 
4298 	/* Note, this is called iff the local APIC is in-kernel. */
4299 	if (!vcpu->arch.apic->apicv_active)
4300 		return -1;
4301 
4302 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4303 		return 0;
4304 
4305 	/* If a previous notification has sent the IPI, nothing to do.  */
4306 	if (pi_test_and_set_on(&vmx->pi_desc))
4307 		return 0;
4308 
4309 	/*
4310 	 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4311 	 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4312 	 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4313 	 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4314 	 */
4315 	kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4316 	return 0;
4317 }
4318 
4319 void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4320 			   int trig_mode, int vector)
4321 {
4322 	struct kvm_vcpu *vcpu = apic->vcpu;
4323 
4324 	if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4325 		kvm_lapic_set_irr(vector, apic);
4326 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4327 		kvm_vcpu_kick(vcpu);
4328 	} else {
4329 		trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4330 					   trig_mode, vector);
4331 	}
4332 }
4333 
4334 /*
4335  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4336  * will not change in the lifetime of the guest.
4337  * Note that host-state that does change is set elsewhere. E.g., host-state
4338  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4339  */
4340 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4341 {
4342 	u32 low32, high32;
4343 	unsigned long tmpl;
4344 	unsigned long cr0, cr3, cr4;
4345 
4346 	cr0 = read_cr0();
4347 	WARN_ON(cr0 & X86_CR0_TS);
4348 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4349 
4350 	/*
4351 	 * Save the most likely value for this task's CR3 in the VMCS.
4352 	 * We can't use __get_current_cr3_fast() because we're not atomic.
4353 	 */
4354 	cr3 = __read_cr3();
4355 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
4356 	vmx->loaded_vmcs->host_state.cr3 = cr3;
4357 
4358 	/* Save the most likely value for this task's CR4 in the VMCS. */
4359 	cr4 = cr4_read_shadow();
4360 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4361 	vmx->loaded_vmcs->host_state.cr4 = cr4;
4362 
4363 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4364 #ifdef CONFIG_X86_64
4365 	/*
4366 	 * Load null selectors, so we can avoid reloading them in
4367 	 * vmx_prepare_switch_to_host(), in case userspace uses
4368 	 * the null selectors too (the expected case).
4369 	 */
4370 	vmcs_write16(HOST_DS_SELECTOR, 0);
4371 	vmcs_write16(HOST_ES_SELECTOR, 0);
4372 #else
4373 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4374 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4375 #endif
4376 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4377 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4378 
4379 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4380 
4381 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4382 
4383 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4384 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4385 
4386 	/*
4387 	 * SYSENTER is used for 32-bit system calls on either 32-bit or
4388 	 * 64-bit kernels.  It is always zero If neither is allowed, otherwise
4389 	 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4390 	 * have already done so!).
4391 	 */
4392 	if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4393 		vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4394 
4395 	rdmsrq(MSR_IA32_SYSENTER_EIP, tmpl);
4396 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4397 
4398 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4399 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4400 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4401 	}
4402 
4403 	if (cpu_has_load_ia32_efer())
4404 		vmcs_write64(HOST_IA32_EFER, kvm_host.efer);
4405 }
4406 
4407 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4408 {
4409 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4410 
4411 	vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4412 					  ~vcpu->arch.cr4_guest_rsvd_bits;
4413 	if (!enable_ept) {
4414 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4415 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4416 	}
4417 	if (is_guest_mode(&vmx->vcpu))
4418 		vcpu->arch.cr4_guest_owned_bits &=
4419 			~get_vmcs12(vcpu)->cr4_guest_host_mask;
4420 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4421 }
4422 
4423 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4424 {
4425 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4426 
4427 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4428 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4429 
4430 	if (!enable_vnmi)
4431 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4432 
4433 	if (!enable_preemption_timer)
4434 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4435 
4436 	return pin_based_exec_ctrl;
4437 }
4438 
4439 static u32 vmx_vmentry_ctrl(void)
4440 {
4441 	u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4442 
4443 	if (vmx_pt_mode_is_system())
4444 		vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4445 				  VM_ENTRY_LOAD_IA32_RTIT_CTL);
4446 	/*
4447 	 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4448 	 */
4449 	vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4450 			  VM_ENTRY_LOAD_IA32_EFER |
4451 			  VM_ENTRY_IA32E_MODE);
4452 
4453 	return vmentry_ctrl;
4454 }
4455 
4456 static u32 vmx_vmexit_ctrl(void)
4457 {
4458 	u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4459 
4460 	/*
4461 	 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4462 	 * nested virtualization and thus allowed to be set in vmcs12.
4463 	 */
4464 	vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4465 			 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4466 
4467 	if (vmx_pt_mode_is_system())
4468 		vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4469 				 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4470 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4471 	return vmexit_ctrl &
4472 		~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4473 }
4474 
4475 void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4476 {
4477 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4478 
4479 	if (is_guest_mode(vcpu)) {
4480 		vmx->nested.update_vmcs01_apicv_status = true;
4481 		return;
4482 	}
4483 
4484 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4485 
4486 	if (kvm_vcpu_apicv_active(vcpu)) {
4487 		secondary_exec_controls_setbit(vmx,
4488 					       SECONDARY_EXEC_APIC_REGISTER_VIRT |
4489 					       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4490 		if (enable_ipiv)
4491 			tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4492 	} else {
4493 		secondary_exec_controls_clearbit(vmx,
4494 						 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4495 						 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4496 		if (enable_ipiv)
4497 			tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4498 	}
4499 
4500 	vmx_update_msr_bitmap_x2apic(vcpu);
4501 }
4502 
4503 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4504 {
4505 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4506 
4507 	/*
4508 	 * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4509 	 * vmcs12 and propagated to vmcs02 when set in vmcs12.
4510 	 */
4511 	exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4512 			  CPU_BASED_USE_IO_BITMAPS |
4513 			  CPU_BASED_MONITOR_TRAP_FLAG |
4514 			  CPU_BASED_PAUSE_EXITING);
4515 
4516 	/* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4517 	exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4518 			  CPU_BASED_NMI_WINDOW_EXITING);
4519 
4520 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4521 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4522 
4523 	if (!cpu_need_tpr_shadow(&vmx->vcpu))
4524 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4525 
4526 #ifdef CONFIG_X86_64
4527 	if (exec_control & CPU_BASED_TPR_SHADOW)
4528 		exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4529 				  CPU_BASED_CR8_STORE_EXITING);
4530 	else
4531 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4532 				CPU_BASED_CR8_LOAD_EXITING;
4533 #endif
4534 	/* No need to intercept CR3 access or INVPLG when using EPT. */
4535 	if (enable_ept)
4536 		exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4537 				  CPU_BASED_CR3_STORE_EXITING |
4538 				  CPU_BASED_INVLPG_EXITING);
4539 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4540 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4541 				CPU_BASED_MONITOR_EXITING);
4542 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4543 		exec_control &= ~CPU_BASED_HLT_EXITING;
4544 	return exec_control;
4545 }
4546 
4547 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4548 {
4549 	u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4550 
4551 	/*
4552 	 * IPI virtualization relies on APICv. Disable IPI virtualization if
4553 	 * APICv is inhibited.
4554 	 */
4555 	if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4556 		exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4557 
4558 	return exec_control;
4559 }
4560 
4561 /*
4562  * Adjust a single secondary execution control bit to intercept/allow an
4563  * instruction in the guest.  This is usually done based on whether or not a
4564  * feature has been exposed to the guest in order to correctly emulate faults.
4565  */
4566 static inline void
4567 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4568 				  u32 control, bool enabled, bool exiting)
4569 {
4570 	/*
4571 	 * If the control is for an opt-in feature, clear the control if the
4572 	 * feature is not exposed to the guest, i.e. not enabled.  If the
4573 	 * control is opt-out, i.e. an exiting control, clear the control if
4574 	 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4575 	 * disabled for the associated instruction.  Note, the caller is
4576 	 * responsible presetting exec_control to set all supported bits.
4577 	 */
4578 	if (enabled == exiting)
4579 		*exec_control &= ~control;
4580 
4581 	/*
4582 	 * Update the nested MSR settings so that a nested VMM can/can't set
4583 	 * controls for features that are/aren't exposed to the guest.
4584 	 */
4585 	if (nested &&
4586 	    kvm_check_has_quirk(vmx->vcpu.kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) {
4587 		/*
4588 		 * All features that can be added or removed to VMX MSRs must
4589 		 * be supported in the first place for nested virtualization.
4590 		 */
4591 		if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4592 			enabled = false;
4593 
4594 		if (enabled)
4595 			vmx->nested.msrs.secondary_ctls_high |= control;
4596 		else
4597 			vmx->nested.msrs.secondary_ctls_high &= ~control;
4598 	}
4599 }
4600 
4601 /*
4602  * Wrapper macro for the common case of adjusting a secondary execution control
4603  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4604  * verifies that the control is actually supported by KVM and hardware.
4605  */
4606 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting)	\
4607 ({												\
4608 	struct kvm_vcpu *__vcpu = &(vmx)->vcpu;							\
4609 	bool __enabled;										\
4610 												\
4611 	if (cpu_has_vmx_##name()) {								\
4612 		__enabled = guest_cpu_cap_has(__vcpu, X86_FEATURE_##feat_name);			\
4613 		vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\
4614 						  __enabled, exiting);				\
4615 	}											\
4616 })
4617 
4618 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4619 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4620 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4621 
4622 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4623 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4624 
4625 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4626 {
4627 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4628 
4629 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4630 
4631 	if (vmx_pt_mode_is_system())
4632 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4633 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4634 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4635 	if (vmx->vpid == 0)
4636 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4637 	if (!enable_ept) {
4638 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4639 		exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
4640 		enable_unrestricted_guest = 0;
4641 	}
4642 	if (!enable_unrestricted_guest)
4643 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4644 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4645 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4646 	if (!kvm_vcpu_apicv_active(vcpu))
4647 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4648 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4649 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4650 
4651 	/*
4652 	 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4653 	 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4654 	 */
4655 	exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
4656 
4657 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4658 	 * in vmx_set_cr4.  */
4659 	exec_control &= ~SECONDARY_EXEC_DESC;
4660 
4661 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4662 	   (handle_vmptrld).
4663 	   We can NOT enable shadow_vmcs here because we don't have yet
4664 	   a current VMCS12
4665 	*/
4666 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4667 
4668 	/*
4669 	 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4670 	 * it needs to be set here when dirty logging is already active, e.g.
4671 	 * if this vCPU was created after dirty logging was enabled.
4672 	 */
4673 	if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
4674 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4675 
4676 	vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES);
4677 
4678 	/*
4679 	 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4680 	 * feature is exposed to the guest.  This creates a virtualization hole
4681 	 * if both are supported in hardware but only one is exposed to the
4682 	 * guest, but letting the guest execute RDTSCP or RDPID when either one
4683 	 * is advertised is preferable to emulating the advertised instruction
4684 	 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4685 	 */
4686 	if (cpu_has_vmx_rdtscp()) {
4687 		bool rdpid_or_rdtscp_enabled =
4688 			guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) ||
4689 			guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID);
4690 
4691 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4692 						  SECONDARY_EXEC_ENABLE_RDTSCP,
4693 						  rdpid_or_rdtscp_enabled, false);
4694 	}
4695 
4696 	vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4697 
4698 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4699 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4700 
4701 	vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4702 				    ENABLE_USR_WAIT_PAUSE, false);
4703 
4704 	if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4705 		exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4706 
4707 	if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4708 		exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4709 
4710 	return exec_control;
4711 }
4712 
4713 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4714 {
4715 	return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4716 }
4717 
4718 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4719 {
4720 	struct page *pages;
4721 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4722 
4723 	if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4724 		return 0;
4725 
4726 	if (kvm_vmx->pid_table)
4727 		return 0;
4728 
4729 	pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO,
4730 			    vmx_get_pid_table_order(kvm));
4731 	if (!pages)
4732 		return -ENOMEM;
4733 
4734 	kvm_vmx->pid_table = (void *)page_address(pages);
4735 	return 0;
4736 }
4737 
4738 int vmx_vcpu_precreate(struct kvm *kvm)
4739 {
4740 	return vmx_alloc_ipiv_pid_table(kvm);
4741 }
4742 
4743 #define VMX_XSS_EXIT_BITMAP 0
4744 
4745 static void init_vmcs(struct vcpu_vmx *vmx)
4746 {
4747 	struct kvm *kvm = vmx->vcpu.kvm;
4748 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4749 
4750 	if (nested)
4751 		nested_vmx_set_vmcs_shadowing_bitmap();
4752 
4753 	if (cpu_has_vmx_msr_bitmap())
4754 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4755 
4756 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4757 
4758 	/* Control */
4759 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4760 
4761 	exec_controls_set(vmx, vmx_exec_control(vmx));
4762 
4763 	if (cpu_has_secondary_exec_ctrls()) {
4764 		secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4765 		if (vmx->ve_info)
4766 			vmcs_write64(VE_INFORMATION_ADDRESS,
4767 				     __pa(vmx->ve_info));
4768 	}
4769 
4770 	if (cpu_has_tertiary_exec_ctrls())
4771 		tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4772 
4773 	if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4774 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4775 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4776 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4777 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4778 
4779 		vmcs_write16(GUEST_INTR_STATUS, 0);
4780 
4781 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4782 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4783 	}
4784 
4785 	if (vmx_can_use_ipiv(&vmx->vcpu)) {
4786 		vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4787 		vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4788 	}
4789 
4790 	if (!kvm_pause_in_guest(kvm)) {
4791 		vmcs_write32(PLE_GAP, ple_gap);
4792 		vmx->ple_window = ple_window;
4793 		vmx->ple_window_dirty = true;
4794 	}
4795 
4796 	if (kvm_notify_vmexit_enabled(kvm))
4797 		vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4798 
4799 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4800 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4801 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4802 
4803 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4804 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4805 	vmx_set_constant_host_state(vmx);
4806 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4807 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4808 
4809 	if (cpu_has_vmx_vmfunc())
4810 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4811 
4812 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4813 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4814 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4815 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4816 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4817 
4818 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4819 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4820 
4821 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4822 
4823 	/* 22.2.1, 20.8.1 */
4824 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4825 
4826 	vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4827 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4828 
4829 	set_cr4_guest_host_mask(vmx);
4830 
4831 	if (vmx->vpid != 0)
4832 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4833 
4834 	if (cpu_has_vmx_xsaves())
4835 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4836 
4837 	if (enable_pml) {
4838 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4839 		vmcs_write16(GUEST_PML_INDEX, PML_HEAD_INDEX);
4840 	}
4841 
4842 	vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4843 
4844 	if (vmx_pt_mode_is_host_guest()) {
4845 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4846 		/* Bit[6~0] are forced to 1, writes are ignored. */
4847 		vmx->pt_desc.guest.output_mask = 0x7F;
4848 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4849 	}
4850 
4851 	vmcs_write32(GUEST_SYSENTER_CS, 0);
4852 	vmcs_writel(GUEST_SYSENTER_ESP, 0);
4853 	vmcs_writel(GUEST_SYSENTER_EIP, 0);
4854 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4855 
4856 	if (cpu_has_vmx_tpr_shadow()) {
4857 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4858 		if (cpu_need_tpr_shadow(&vmx->vcpu))
4859 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4860 				     __pa(vmx->vcpu.arch.apic->regs));
4861 		vmcs_write32(TPR_THRESHOLD, 0);
4862 	}
4863 
4864 	vmx_setup_uret_msrs(vmx);
4865 }
4866 
4867 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4868 {
4869 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4870 
4871 	init_vmcs(vmx);
4872 
4873 	if (nested &&
4874 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
4875 		memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4876 
4877 	vcpu_setup_sgx_lepubkeyhash(vcpu);
4878 
4879 	vmx->nested.posted_intr_nv = -1;
4880 	vmx->nested.vmxon_ptr = INVALID_GPA;
4881 	vmx->nested.current_vmptr = INVALID_GPA;
4882 
4883 #ifdef CONFIG_KVM_HYPERV
4884 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4885 #endif
4886 
4887 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
4888 		vcpu->arch.microcode_version = 0x100000000ULL;
4889 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4890 
4891 	/*
4892 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4893 	 * or POSTED_INTR_WAKEUP_VECTOR.
4894 	 */
4895 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4896 	__pi_set_sn(&vmx->pi_desc);
4897 }
4898 
4899 void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4900 {
4901 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4902 
4903 	if (!init_event)
4904 		__vmx_vcpu_reset(vcpu);
4905 
4906 	vmx->rmode.vm86_active = 0;
4907 	vmx->spec_ctrl = 0;
4908 
4909 	vmx->msr_ia32_umwait_control = 0;
4910 
4911 	vmx->hv_deadline_tsc = -1;
4912 	kvm_set_cr8(vcpu, 0);
4913 
4914 	seg_setup(VCPU_SREG_CS);
4915 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4916 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4917 
4918 	seg_setup(VCPU_SREG_DS);
4919 	seg_setup(VCPU_SREG_ES);
4920 	seg_setup(VCPU_SREG_FS);
4921 	seg_setup(VCPU_SREG_GS);
4922 	seg_setup(VCPU_SREG_SS);
4923 
4924 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4925 	vmcs_writel(GUEST_TR_BASE, 0);
4926 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4927 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4928 
4929 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4930 	vmcs_writel(GUEST_LDTR_BASE, 0);
4931 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4932 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4933 
4934 	vmcs_writel(GUEST_GDTR_BASE, 0);
4935 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4936 
4937 	vmcs_writel(GUEST_IDTR_BASE, 0);
4938 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4939 
4940 	vmx_segment_cache_clear(vmx);
4941 	kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4942 
4943 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4944 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4945 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4946 	if (kvm_mpx_supported())
4947 		vmcs_write64(GUEST_BNDCFGS, 0);
4948 
4949 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4950 
4951 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4952 
4953 	vpid_sync_context(vmx->vpid);
4954 
4955 	vmx_update_fb_clear_dis(vcpu, vmx);
4956 }
4957 
4958 void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4959 {
4960 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4961 }
4962 
4963 void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4964 {
4965 	if (!enable_vnmi ||
4966 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4967 		vmx_enable_irq_window(vcpu);
4968 		return;
4969 	}
4970 
4971 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4972 }
4973 
4974 void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4975 {
4976 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4977 	uint32_t intr;
4978 	int irq = vcpu->arch.interrupt.nr;
4979 
4980 	trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4981 
4982 	++vcpu->stat.irq_injections;
4983 	if (vmx->rmode.vm86_active) {
4984 		int inc_eip = 0;
4985 		if (vcpu->arch.interrupt.soft)
4986 			inc_eip = vcpu->arch.event_exit_inst_len;
4987 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4988 		return;
4989 	}
4990 	intr = irq | INTR_INFO_VALID_MASK;
4991 	if (vcpu->arch.interrupt.soft) {
4992 		intr |= INTR_TYPE_SOFT_INTR;
4993 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4994 			     vmx->vcpu.arch.event_exit_inst_len);
4995 	} else
4996 		intr |= INTR_TYPE_EXT_INTR;
4997 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4998 
4999 	vmx_clear_hlt(vcpu);
5000 }
5001 
5002 void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5003 {
5004 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5005 
5006 	if (!enable_vnmi) {
5007 		/*
5008 		 * Tracking the NMI-blocked state in software is built upon
5009 		 * finding the next open IRQ window. This, in turn, depends on
5010 		 * well-behaving guests: They have to keep IRQs disabled at
5011 		 * least as long as the NMI handler runs. Otherwise we may
5012 		 * cause NMI nesting, maybe breaking the guest. But as this is
5013 		 * highly unlikely, we can live with the residual risk.
5014 		 */
5015 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
5016 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
5017 	}
5018 
5019 	++vcpu->stat.nmi_injections;
5020 	vmx->loaded_vmcs->nmi_known_unmasked = false;
5021 
5022 	if (vmx->rmode.vm86_active) {
5023 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
5024 		return;
5025 	}
5026 
5027 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5028 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5029 
5030 	vmx_clear_hlt(vcpu);
5031 }
5032 
5033 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5034 {
5035 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5036 	bool masked;
5037 
5038 	if (!enable_vnmi)
5039 		return vmx->loaded_vmcs->soft_vnmi_blocked;
5040 	if (vmx->loaded_vmcs->nmi_known_unmasked)
5041 		return false;
5042 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5043 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5044 	return masked;
5045 }
5046 
5047 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5048 {
5049 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5050 
5051 	if (!enable_vnmi) {
5052 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
5053 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
5054 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
5055 		}
5056 	} else {
5057 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5058 		if (masked)
5059 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5060 				      GUEST_INTR_STATE_NMI);
5061 		else
5062 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5063 					GUEST_INTR_STATE_NMI);
5064 	}
5065 }
5066 
5067 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
5068 {
5069 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5070 		return false;
5071 
5072 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
5073 		return true;
5074 
5075 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5076 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
5077 		 GUEST_INTR_STATE_NMI));
5078 }
5079 
5080 int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5081 {
5082 	if (to_vmx(vcpu)->nested.nested_run_pending)
5083 		return -EBUSY;
5084 
5085 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
5086 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5087 		return -EBUSY;
5088 
5089 	return !vmx_nmi_blocked(vcpu);
5090 }
5091 
5092 bool __vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5093 {
5094 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
5095 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5096 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5097 }
5098 
5099 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5100 {
5101 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5102 		return false;
5103 
5104 	return __vmx_interrupt_blocked(vcpu);
5105 }
5106 
5107 int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5108 {
5109 	if (to_vmx(vcpu)->nested.nested_run_pending)
5110 		return -EBUSY;
5111 
5112 	/*
5113 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
5114 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
5115 	 */
5116 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5117 		return -EBUSY;
5118 
5119 	return !vmx_interrupt_blocked(vcpu);
5120 }
5121 
5122 int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5123 {
5124 	void __user *ret;
5125 
5126 	if (enable_unrestricted_guest)
5127 		return 0;
5128 
5129 	mutex_lock(&kvm->slots_lock);
5130 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5131 				      PAGE_SIZE * 3);
5132 	mutex_unlock(&kvm->slots_lock);
5133 
5134 	if (IS_ERR(ret))
5135 		return PTR_ERR(ret);
5136 
5137 	to_kvm_vmx(kvm)->tss_addr = addr;
5138 
5139 	return init_rmode_tss(kvm, ret);
5140 }
5141 
5142 int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5143 {
5144 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5145 	return 0;
5146 }
5147 
5148 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5149 {
5150 	switch (vec) {
5151 	case BP_VECTOR:
5152 		/*
5153 		 * Update instruction length as we may reinject the exception
5154 		 * from user space while in guest debugging mode.
5155 		 */
5156 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5157 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5158 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5159 			return false;
5160 		fallthrough;
5161 	case DB_VECTOR:
5162 		return !(vcpu->guest_debug &
5163 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5164 	case DE_VECTOR:
5165 	case OF_VECTOR:
5166 	case BR_VECTOR:
5167 	case UD_VECTOR:
5168 	case DF_VECTOR:
5169 	case SS_VECTOR:
5170 	case GP_VECTOR:
5171 	case MF_VECTOR:
5172 		return true;
5173 	}
5174 	return false;
5175 }
5176 
5177 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5178 				  int vec, u32 err_code)
5179 {
5180 	/*
5181 	 * Instruction with address size override prefix opcode 0x67
5182 	 * Cause the #SS fault with 0 error code in VM86 mode.
5183 	 */
5184 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5185 		if (kvm_emulate_instruction(vcpu, 0)) {
5186 			if (vcpu->arch.halt_request) {
5187 				vcpu->arch.halt_request = 0;
5188 				return kvm_emulate_halt_noskip(vcpu);
5189 			}
5190 			return 1;
5191 		}
5192 		return 0;
5193 	}
5194 
5195 	/*
5196 	 * Forward all other exceptions that are valid in real mode.
5197 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5198 	 *        the required debugging infrastructure rework.
5199 	 */
5200 	kvm_queue_exception(vcpu, vec);
5201 	return 1;
5202 }
5203 
5204 static int handle_machine_check(struct kvm_vcpu *vcpu)
5205 {
5206 	/* handled by vmx_vcpu_run() */
5207 	return 1;
5208 }
5209 
5210 /*
5211  * If the host has split lock detection disabled, then #AC is
5212  * unconditionally injected into the guest, which is the pre split lock
5213  * detection behaviour.
5214  *
5215  * If the host has split lock detection enabled then #AC is
5216  * only injected into the guest when:
5217  *  - Guest CPL == 3 (user mode)
5218  *  - Guest has #AC detection enabled in CR0
5219  *  - Guest EFLAGS has AC bit set
5220  */
5221 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5222 {
5223 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5224 		return true;
5225 
5226 	return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
5227 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5228 }
5229 
5230 static bool is_xfd_nm_fault(struct kvm_vcpu *vcpu)
5231 {
5232 	return vcpu->arch.guest_fpu.fpstate->xfd &&
5233 	       !kvm_is_cr0_bit_set(vcpu, X86_CR0_TS);
5234 }
5235 
5236 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5237 {
5238 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5239 	struct kvm_run *kvm_run = vcpu->run;
5240 	u32 intr_info, ex_no, error_code;
5241 	unsigned long cr2, dr6;
5242 	u32 vect_info;
5243 
5244 	vect_info = vmx->idt_vectoring_info;
5245 	intr_info = vmx_get_intr_info(vcpu);
5246 
5247 	/*
5248 	 * Machine checks are handled by handle_exception_irqoff(), or by
5249 	 * vmx_vcpu_run() if a #MC occurs on VM-Entry.  NMIs are handled by
5250 	 * vmx_vcpu_enter_exit().
5251 	 */
5252 	if (is_machine_check(intr_info) || is_nmi(intr_info))
5253 		return 1;
5254 
5255 	/*
5256 	 * Queue the exception here instead of in handle_nm_fault_irqoff().
5257 	 * This ensures the nested_vmx check is not skipped so vmexit can
5258 	 * be reflected to L1 (when it intercepts #NM) before reaching this
5259 	 * point.
5260 	 */
5261 	if (is_nm_fault(intr_info)) {
5262 		kvm_queue_exception_p(vcpu, NM_VECTOR,
5263 				      is_xfd_nm_fault(vcpu) ? vcpu->arch.guest_fpu.xfd_err : 0);
5264 		return 1;
5265 	}
5266 
5267 	if (is_invalid_opcode(intr_info))
5268 		return handle_ud(vcpu);
5269 
5270 	if (WARN_ON_ONCE(is_ve_fault(intr_info))) {
5271 		struct vmx_ve_information *ve_info = vmx->ve_info;
5272 
5273 		WARN_ONCE(ve_info->exit_reason != EXIT_REASON_EPT_VIOLATION,
5274 			  "Unexpected #VE on VM-Exit reason 0x%x", ve_info->exit_reason);
5275 		dump_vmcs(vcpu);
5276 		kvm_mmu_print_sptes(vcpu, ve_info->guest_physical_address, "#VE");
5277 		return 1;
5278 	}
5279 
5280 	error_code = 0;
5281 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5282 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5283 
5284 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5285 		WARN_ON_ONCE(!enable_vmware_backdoor);
5286 
5287 		/*
5288 		 * VMware backdoor emulation on #GP interception only handles
5289 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5290 		 * error code on #GP.
5291 		 */
5292 		if (error_code) {
5293 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5294 			return 1;
5295 		}
5296 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5297 	}
5298 
5299 	/*
5300 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5301 	 * MMIO, it is better to report an internal error.
5302 	 * See the comments in vmx_handle_exit.
5303 	 */
5304 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5305 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5306 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5307 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5308 		vcpu->run->internal.ndata = 4;
5309 		vcpu->run->internal.data[0] = vect_info;
5310 		vcpu->run->internal.data[1] = intr_info;
5311 		vcpu->run->internal.data[2] = error_code;
5312 		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5313 		return 0;
5314 	}
5315 
5316 	if (is_page_fault(intr_info)) {
5317 		cr2 = vmx_get_exit_qual(vcpu);
5318 		if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5319 			/*
5320 			 * EPT will cause page fault only if we need to
5321 			 * detect illegal GPAs.
5322 			 */
5323 			WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5324 			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5325 			return 1;
5326 		} else
5327 			return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5328 	}
5329 
5330 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5331 
5332 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5333 		return handle_rmode_exception(vcpu, ex_no, error_code);
5334 
5335 	switch (ex_no) {
5336 	case DB_VECTOR:
5337 		dr6 = vmx_get_exit_qual(vcpu);
5338 		if (!(vcpu->guest_debug &
5339 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5340 			/*
5341 			 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5342 			 * instruction.  ICEBP generates a trap-like #DB, but
5343 			 * despite its interception control being tied to #DB,
5344 			 * is an instruction intercept, i.e. the VM-Exit occurs
5345 			 * on the ICEBP itself.  Use the inner "skip" helper to
5346 			 * avoid single-step #DB and MTF updates, as ICEBP is
5347 			 * higher priority.  Note, skipping ICEBP still clears
5348 			 * STI and MOVSS blocking.
5349 			 *
5350 			 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5351 			 * if single-step is enabled in RFLAGS and STI or MOVSS
5352 			 * blocking is active, as the CPU doesn't set the bit
5353 			 * on VM-Exit due to #DB interception.  VM-Entry has a
5354 			 * consistency check that a single-step #DB is pending
5355 			 * in this scenario as the previous instruction cannot
5356 			 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5357 			 * don't modify RFLAGS), therefore the one instruction
5358 			 * delay when activating single-step breakpoints must
5359 			 * have already expired.  Note, the CPU sets/clears BS
5360 			 * as appropriate for all other VM-Exits types.
5361 			 */
5362 			if (is_icebp(intr_info))
5363 				WARN_ON(!skip_emulated_instruction(vcpu));
5364 			else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5365 				 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5366 				  (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5367 				vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5368 					    vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5369 
5370 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5371 			return 1;
5372 		}
5373 		kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5374 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5375 		fallthrough;
5376 	case BP_VECTOR:
5377 		/*
5378 		 * Update instruction length as we may reinject #BP from
5379 		 * user space while in guest debugging mode. Reading it for
5380 		 * #DB as well causes no harm, it is not used in that case.
5381 		 */
5382 		vmx->vcpu.arch.event_exit_inst_len =
5383 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5384 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5385 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5386 		kvm_run->debug.arch.exception = ex_no;
5387 		break;
5388 	case AC_VECTOR:
5389 		if (vmx_guest_inject_ac(vcpu)) {
5390 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5391 			return 1;
5392 		}
5393 
5394 		/*
5395 		 * Handle split lock. Depending on detection mode this will
5396 		 * either warn and disable split lock detection for this
5397 		 * task or force SIGBUS on it.
5398 		 */
5399 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5400 			return 1;
5401 		fallthrough;
5402 	default:
5403 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5404 		kvm_run->ex.exception = ex_no;
5405 		kvm_run->ex.error_code = error_code;
5406 		break;
5407 	}
5408 	return 0;
5409 }
5410 
5411 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5412 {
5413 	++vcpu->stat.irq_exits;
5414 	return 1;
5415 }
5416 
5417 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5418 {
5419 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5420 	vcpu->mmio_needed = 0;
5421 	return 0;
5422 }
5423 
5424 static int handle_io(struct kvm_vcpu *vcpu)
5425 {
5426 	unsigned long exit_qualification;
5427 	int size, in, string;
5428 	unsigned port;
5429 
5430 	exit_qualification = vmx_get_exit_qual(vcpu);
5431 	string = (exit_qualification & 16) != 0;
5432 
5433 	++vcpu->stat.io_exits;
5434 
5435 	if (string)
5436 		return kvm_emulate_instruction(vcpu, 0);
5437 
5438 	port = exit_qualification >> 16;
5439 	size = (exit_qualification & 7) + 1;
5440 	in = (exit_qualification & 8) != 0;
5441 
5442 	return kvm_fast_pio(vcpu, size, port, in);
5443 }
5444 
5445 void vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5446 {
5447 	/*
5448 	 * Patch in the VMCALL instruction:
5449 	 */
5450 	hypercall[0] = 0x0f;
5451 	hypercall[1] = 0x01;
5452 	hypercall[2] = 0xc1;
5453 }
5454 
5455 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5456 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5457 {
5458 	if (is_guest_mode(vcpu)) {
5459 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5460 		unsigned long orig_val = val;
5461 
5462 		/*
5463 		 * We get here when L2 changed cr0 in a way that did not change
5464 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5465 		 * but did change L0 shadowed bits. So we first calculate the
5466 		 * effective cr0 value that L1 would like to write into the
5467 		 * hardware. It consists of the L2-owned bits from the new
5468 		 * value combined with the L1-owned bits from L1's guest_cr0.
5469 		 */
5470 		val = (val & ~vmcs12->cr0_guest_host_mask) |
5471 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5472 
5473 		if (kvm_set_cr0(vcpu, val))
5474 			return 1;
5475 		vmcs_writel(CR0_READ_SHADOW, orig_val);
5476 		return 0;
5477 	} else {
5478 		return kvm_set_cr0(vcpu, val);
5479 	}
5480 }
5481 
5482 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5483 {
5484 	if (is_guest_mode(vcpu)) {
5485 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5486 		unsigned long orig_val = val;
5487 
5488 		/* analogously to handle_set_cr0 */
5489 		val = (val & ~vmcs12->cr4_guest_host_mask) |
5490 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5491 		if (kvm_set_cr4(vcpu, val))
5492 			return 1;
5493 		vmcs_writel(CR4_READ_SHADOW, orig_val);
5494 		return 0;
5495 	} else
5496 		return kvm_set_cr4(vcpu, val);
5497 }
5498 
5499 static int handle_desc(struct kvm_vcpu *vcpu)
5500 {
5501 	/*
5502 	 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this
5503 	 * and other code needs to be updated if UMIP can be guest owned.
5504 	 */
5505 	BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP);
5506 
5507 	WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP));
5508 	return kvm_emulate_instruction(vcpu, 0);
5509 }
5510 
5511 static int handle_cr(struct kvm_vcpu *vcpu)
5512 {
5513 	unsigned long exit_qualification, val;
5514 	int cr;
5515 	int reg;
5516 	int err;
5517 	int ret;
5518 
5519 	exit_qualification = vmx_get_exit_qual(vcpu);
5520 	cr = exit_qualification & 15;
5521 	reg = (exit_qualification >> 8) & 15;
5522 	switch ((exit_qualification >> 4) & 3) {
5523 	case 0: /* mov to cr */
5524 		val = kvm_register_read(vcpu, reg);
5525 		trace_kvm_cr_write(cr, val);
5526 		switch (cr) {
5527 		case 0:
5528 			err = handle_set_cr0(vcpu, val);
5529 			return kvm_complete_insn_gp(vcpu, err);
5530 		case 3:
5531 			WARN_ON_ONCE(enable_unrestricted_guest);
5532 
5533 			err = kvm_set_cr3(vcpu, val);
5534 			return kvm_complete_insn_gp(vcpu, err);
5535 		case 4:
5536 			err = handle_set_cr4(vcpu, val);
5537 			return kvm_complete_insn_gp(vcpu, err);
5538 		case 8: {
5539 				u8 cr8_prev = kvm_get_cr8(vcpu);
5540 				u8 cr8 = (u8)val;
5541 				err = kvm_set_cr8(vcpu, cr8);
5542 				ret = kvm_complete_insn_gp(vcpu, err);
5543 				if (lapic_in_kernel(vcpu))
5544 					return ret;
5545 				if (cr8_prev <= cr8)
5546 					return ret;
5547 				/*
5548 				 * TODO: we might be squashing a
5549 				 * KVM_GUESTDBG_SINGLESTEP-triggered
5550 				 * KVM_EXIT_DEBUG here.
5551 				 */
5552 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5553 				return 0;
5554 			}
5555 		}
5556 		break;
5557 	case 2: /* clts */
5558 		KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5559 		return -EIO;
5560 	case 1: /*mov from cr*/
5561 		switch (cr) {
5562 		case 3:
5563 			WARN_ON_ONCE(enable_unrestricted_guest);
5564 
5565 			val = kvm_read_cr3(vcpu);
5566 			kvm_register_write(vcpu, reg, val);
5567 			trace_kvm_cr_read(cr, val);
5568 			return kvm_skip_emulated_instruction(vcpu);
5569 		case 8:
5570 			val = kvm_get_cr8(vcpu);
5571 			kvm_register_write(vcpu, reg, val);
5572 			trace_kvm_cr_read(cr, val);
5573 			return kvm_skip_emulated_instruction(vcpu);
5574 		}
5575 		break;
5576 	case 3: /* lmsw */
5577 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5578 		trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
5579 		kvm_lmsw(vcpu, val);
5580 
5581 		return kvm_skip_emulated_instruction(vcpu);
5582 	default:
5583 		break;
5584 	}
5585 	vcpu->run->exit_reason = 0;
5586 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5587 	       (int)(exit_qualification >> 4) & 3, cr);
5588 	return 0;
5589 }
5590 
5591 static int handle_dr(struct kvm_vcpu *vcpu)
5592 {
5593 	unsigned long exit_qualification;
5594 	int dr, dr7, reg;
5595 	int err = 1;
5596 
5597 	exit_qualification = vmx_get_exit_qual(vcpu);
5598 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5599 
5600 	/* First, if DR does not exist, trigger UD */
5601 	if (!kvm_require_dr(vcpu, dr))
5602 		return 1;
5603 
5604 	if (vmx_get_cpl(vcpu) > 0)
5605 		goto out;
5606 
5607 	dr7 = vmcs_readl(GUEST_DR7);
5608 	if (dr7 & DR7_GD) {
5609 		/*
5610 		 * As the vm-exit takes precedence over the debug trap, we
5611 		 * need to emulate the latter, either for the host or the
5612 		 * guest debugging itself.
5613 		 */
5614 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5615 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5616 			vcpu->run->debug.arch.dr7 = dr7;
5617 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5618 			vcpu->run->debug.arch.exception = DB_VECTOR;
5619 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5620 			return 0;
5621 		} else {
5622 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5623 			return 1;
5624 		}
5625 	}
5626 
5627 	if (vcpu->guest_debug == 0) {
5628 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5629 
5630 		/*
5631 		 * No more DR vmexits; force a reload of the debug registers
5632 		 * and reenter on this instruction.  The next vmexit will
5633 		 * retrieve the full state of the debug registers.
5634 		 */
5635 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5636 		return 1;
5637 	}
5638 
5639 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5640 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5641 		kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
5642 		err = 0;
5643 	} else {
5644 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5645 	}
5646 
5647 out:
5648 	return kvm_complete_insn_gp(vcpu, err);
5649 }
5650 
5651 void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5652 {
5653 	get_debugreg(vcpu->arch.db[0], 0);
5654 	get_debugreg(vcpu->arch.db[1], 1);
5655 	get_debugreg(vcpu->arch.db[2], 2);
5656 	get_debugreg(vcpu->arch.db[3], 3);
5657 	get_debugreg(vcpu->arch.dr6, 6);
5658 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5659 
5660 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5661 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5662 
5663 	/*
5664 	 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5665 	 * a stale dr6 from the guest.
5666 	 */
5667 	set_debugreg(DR6_RESERVED, 6);
5668 }
5669 
5670 void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5671 {
5672 	lockdep_assert_irqs_disabled();
5673 	set_debugreg(vcpu->arch.dr6, 6);
5674 }
5675 
5676 void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5677 {
5678 	vmcs_writel(GUEST_DR7, val);
5679 }
5680 
5681 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5682 {
5683 	kvm_apic_update_ppr(vcpu);
5684 	return 1;
5685 }
5686 
5687 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5688 {
5689 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5690 
5691 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5692 
5693 	++vcpu->stat.irq_window_exits;
5694 	return 1;
5695 }
5696 
5697 static int handle_invlpg(struct kvm_vcpu *vcpu)
5698 {
5699 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5700 
5701 	kvm_mmu_invlpg(vcpu, exit_qualification);
5702 	return kvm_skip_emulated_instruction(vcpu);
5703 }
5704 
5705 static int handle_apic_access(struct kvm_vcpu *vcpu)
5706 {
5707 	if (likely(fasteoi)) {
5708 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5709 		int access_type, offset;
5710 
5711 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5712 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5713 		/*
5714 		 * Sane guest uses MOV to write EOI, with written value
5715 		 * not cared. So make a short-circuit here by avoiding
5716 		 * heavy instruction emulation.
5717 		 */
5718 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5719 		    (offset == APIC_EOI)) {
5720 			kvm_lapic_set_eoi(vcpu);
5721 			return kvm_skip_emulated_instruction(vcpu);
5722 		}
5723 	}
5724 	return kvm_emulate_instruction(vcpu, 0);
5725 }
5726 
5727 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5728 {
5729 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5730 	int vector = exit_qualification & 0xff;
5731 
5732 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5733 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5734 	return 1;
5735 }
5736 
5737 static int handle_apic_write(struct kvm_vcpu *vcpu)
5738 {
5739 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5740 
5741 	/*
5742 	 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5743 	 * hardware has done any necessary aliasing, offset adjustments, etc...
5744 	 * for the access.  I.e. the correct value has already been  written to
5745 	 * the vAPIC page for the correct 16-byte chunk.  KVM needs only to
5746 	 * retrieve the register value and emulate the access.
5747 	 */
5748 	u32 offset = exit_qualification & 0xff0;
5749 
5750 	kvm_apic_write_nodecode(vcpu, offset);
5751 	return 1;
5752 }
5753 
5754 static int handle_task_switch(struct kvm_vcpu *vcpu)
5755 {
5756 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5757 	unsigned long exit_qualification;
5758 	bool has_error_code = false;
5759 	u32 error_code = 0;
5760 	u16 tss_selector;
5761 	int reason, type, idt_v, idt_index;
5762 
5763 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5764 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5765 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5766 
5767 	exit_qualification = vmx_get_exit_qual(vcpu);
5768 
5769 	reason = (u32)exit_qualification >> 30;
5770 	if (reason == TASK_SWITCH_GATE && idt_v) {
5771 		switch (type) {
5772 		case INTR_TYPE_NMI_INTR:
5773 			vcpu->arch.nmi_injected = false;
5774 			vmx_set_nmi_mask(vcpu, true);
5775 			break;
5776 		case INTR_TYPE_EXT_INTR:
5777 		case INTR_TYPE_SOFT_INTR:
5778 			kvm_clear_interrupt_queue(vcpu);
5779 			break;
5780 		case INTR_TYPE_HARD_EXCEPTION:
5781 			if (vmx->idt_vectoring_info &
5782 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5783 				has_error_code = true;
5784 				error_code =
5785 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5786 			}
5787 			fallthrough;
5788 		case INTR_TYPE_SOFT_EXCEPTION:
5789 			kvm_clear_exception_queue(vcpu);
5790 			break;
5791 		default:
5792 			break;
5793 		}
5794 	}
5795 	tss_selector = exit_qualification;
5796 
5797 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5798 		       type != INTR_TYPE_EXT_INTR &&
5799 		       type != INTR_TYPE_NMI_INTR))
5800 		WARN_ON(!skip_emulated_instruction(vcpu));
5801 
5802 	/*
5803 	 * TODO: What about debug traps on tss switch?
5804 	 *       Are we supposed to inject them and update dr6?
5805 	 */
5806 	return kvm_task_switch(vcpu, tss_selector,
5807 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5808 			       reason, has_error_code, error_code);
5809 }
5810 
5811 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5812 {
5813 	unsigned long exit_qualification;
5814 	gpa_t gpa;
5815 	u64 error_code;
5816 
5817 	exit_qualification = vmx_get_exit_qual(vcpu);
5818 
5819 	/*
5820 	 * EPT violation happened while executing iret from NMI,
5821 	 * "blocked by NMI" bit has to be set before next VM entry.
5822 	 * There are errata that may cause this bit to not be set:
5823 	 * AAK134, BY25.
5824 	 */
5825 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5826 			enable_vnmi &&
5827 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5828 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5829 
5830 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5831 	trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5832 
5833 	/* Is it a read fault? */
5834 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5835 		     ? PFERR_USER_MASK : 0;
5836 	/* Is it a write fault? */
5837 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5838 		      ? PFERR_WRITE_MASK : 0;
5839 	/* Is it a fetch fault? */
5840 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5841 		      ? PFERR_FETCH_MASK : 0;
5842 	/* ept page table entry is present? */
5843 	error_code |= (exit_qualification & EPT_VIOLATION_PROT_MASK)
5844 		      ? PFERR_PRESENT_MASK : 0;
5845 
5846 	if (error_code & EPT_VIOLATION_GVA_IS_VALID)
5847 		error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) ?
5848 			      PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5849 
5850 	/*
5851 	 * Check that the GPA doesn't exceed physical memory limits, as that is
5852 	 * a guest page fault.  We have to emulate the instruction here, because
5853 	 * if the illegal address is that of a paging structure, then
5854 	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5855 	 * would also use advanced VM-exit information for EPT violations to
5856 	 * reconstruct the page fault error code.
5857 	 */
5858 	if (unlikely(allow_smaller_maxphyaddr && !kvm_vcpu_is_legal_gpa(vcpu, gpa)))
5859 		return kvm_emulate_instruction(vcpu, 0);
5860 
5861 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5862 }
5863 
5864 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5865 {
5866 	gpa_t gpa;
5867 
5868 	if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5869 		return 1;
5870 
5871 	/*
5872 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5873 	 * nGPA here instead of the required GPA.
5874 	 */
5875 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5876 	if (!is_guest_mode(vcpu) &&
5877 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5878 		trace_kvm_fast_mmio(gpa);
5879 		return kvm_skip_emulated_instruction(vcpu);
5880 	}
5881 
5882 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5883 }
5884 
5885 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5886 {
5887 	if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5888 		return -EIO;
5889 
5890 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5891 	++vcpu->stat.nmi_window_exits;
5892 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5893 
5894 	return 1;
5895 }
5896 
5897 /*
5898  * Returns true if emulation is required (due to the vCPU having invalid state
5899  * with unsrestricted guest mode disabled) and KVM can't faithfully emulate the
5900  * current vCPU state.
5901  */
5902 static bool vmx_unhandleable_emulation_required(struct kvm_vcpu *vcpu)
5903 {
5904 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5905 
5906 	if (!vmx->emulation_required)
5907 		return false;
5908 
5909 	/*
5910 	 * It is architecturally impossible for emulation to be required when a
5911 	 * nested VM-Enter is pending completion, as VM-Enter will VM-Fail if
5912 	 * guest state is invalid and unrestricted guest is disabled, i.e. KVM
5913 	 * should synthesize VM-Fail instead emulation L2 code.  This path is
5914 	 * only reachable if userspace modifies L2 guest state after KVM has
5915 	 * performed the nested VM-Enter consistency checks.
5916 	 */
5917 	if (vmx->nested.nested_run_pending)
5918 		return true;
5919 
5920 	/*
5921 	 * KVM only supports emulating exceptions if the vCPU is in Real Mode.
5922 	 * If emulation is required, KVM can't perform a successful VM-Enter to
5923 	 * inject the exception.
5924 	 */
5925 	return !vmx->rmode.vm86_active &&
5926 	       (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5927 }
5928 
5929 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5930 {
5931 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5932 	bool intr_window_requested;
5933 	unsigned count = 130;
5934 
5935 	intr_window_requested = exec_controls_get(vmx) &
5936 				CPU_BASED_INTR_WINDOW_EXITING;
5937 
5938 	while (vmx->emulation_required && count-- != 0) {
5939 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5940 			return handle_interrupt_window(&vmx->vcpu);
5941 
5942 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5943 			return 1;
5944 
5945 		if (!kvm_emulate_instruction(vcpu, 0))
5946 			return 0;
5947 
5948 		if (vmx_unhandleable_emulation_required(vcpu)) {
5949 			kvm_prepare_emulation_failure_exit(vcpu);
5950 			return 0;
5951 		}
5952 
5953 		if (vcpu->arch.halt_request) {
5954 			vcpu->arch.halt_request = 0;
5955 			return kvm_emulate_halt_noskip(vcpu);
5956 		}
5957 
5958 		/*
5959 		 * Note, return 1 and not 0, vcpu_run() will invoke
5960 		 * xfer_to_guest_mode() which will create a proper return
5961 		 * code.
5962 		 */
5963 		if (__xfer_to_guest_mode_work_pending())
5964 			return 1;
5965 	}
5966 
5967 	return 1;
5968 }
5969 
5970 int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5971 {
5972 	if (vmx_unhandleable_emulation_required(vcpu)) {
5973 		kvm_prepare_emulation_failure_exit(vcpu);
5974 		return 0;
5975 	}
5976 
5977 	return 1;
5978 }
5979 
5980 /*
5981  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5982  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5983  */
5984 static int handle_pause(struct kvm_vcpu *vcpu)
5985 {
5986 	if (!kvm_pause_in_guest(vcpu->kvm))
5987 		grow_ple_window(vcpu);
5988 
5989 	/*
5990 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5991 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5992 	 * never set PAUSE_EXITING and just set PLE if supported,
5993 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5994 	 */
5995 	kvm_vcpu_on_spin(vcpu, true);
5996 	return kvm_skip_emulated_instruction(vcpu);
5997 }
5998 
5999 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6000 {
6001 	return 1;
6002 }
6003 
6004 static int handle_invpcid(struct kvm_vcpu *vcpu)
6005 {
6006 	u32 vmx_instruction_info;
6007 	unsigned long type;
6008 	gva_t gva;
6009 	struct {
6010 		u64 pcid;
6011 		u64 gla;
6012 	} operand;
6013 	int gpr_index;
6014 
6015 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_INVPCID)) {
6016 		kvm_queue_exception(vcpu, UD_VECTOR);
6017 		return 1;
6018 	}
6019 
6020 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6021 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
6022 	type = kvm_register_read(vcpu, gpr_index);
6023 
6024 	/* According to the Intel instruction reference, the memory operand
6025 	 * is read even if it isn't needed (e.g., for type==all)
6026 	 */
6027 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
6028 				vmx_instruction_info, false,
6029 				sizeof(operand), &gva))
6030 		return 1;
6031 
6032 	return kvm_handle_invpcid(vcpu, type, gva);
6033 }
6034 
6035 static int handle_pml_full(struct kvm_vcpu *vcpu)
6036 {
6037 	unsigned long exit_qualification;
6038 
6039 	trace_kvm_pml_full(vcpu->vcpu_id);
6040 
6041 	exit_qualification = vmx_get_exit_qual(vcpu);
6042 
6043 	/*
6044 	 * PML buffer FULL happened while executing iret from NMI,
6045 	 * "blocked by NMI" bit has to be set before next VM entry.
6046 	 */
6047 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
6048 			enable_vnmi &&
6049 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
6050 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6051 				GUEST_INTR_STATE_NMI);
6052 
6053 	/*
6054 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
6055 	 * here.., and there's no userspace involvement needed for PML.
6056 	 */
6057 	return 1;
6058 }
6059 
6060 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu,
6061 						   bool force_immediate_exit)
6062 {
6063 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6064 
6065 	/*
6066 	 * In the *extremely* unlikely scenario that this is a spurious VM-Exit
6067 	 * due to the timer expiring while it was "soft" disabled, just eat the
6068 	 * exit and re-enter the guest.
6069 	 */
6070 	if (unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
6071 		return EXIT_FASTPATH_REENTER_GUEST;
6072 
6073 	/*
6074 	 * If the timer expired because KVM used it to force an immediate exit,
6075 	 * then mission accomplished.
6076 	 */
6077 	if (force_immediate_exit)
6078 		return EXIT_FASTPATH_EXIT_HANDLED;
6079 
6080 	/*
6081 	 * If L2 is active, go down the slow path as emulating the guest timer
6082 	 * expiration likely requires synthesizing a nested VM-Exit.
6083 	 */
6084 	if (is_guest_mode(vcpu))
6085 		return EXIT_FASTPATH_NONE;
6086 
6087 	kvm_lapic_expired_hv_timer(vcpu);
6088 	return EXIT_FASTPATH_REENTER_GUEST;
6089 }
6090 
6091 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
6092 {
6093 	/*
6094 	 * This non-fastpath handler is reached if and only if the preemption
6095 	 * timer was being used to emulate a guest timer while L2 is active.
6096 	 * All other scenarios are supposed to be handled in the fastpath.
6097 	 */
6098 	WARN_ON_ONCE(!is_guest_mode(vcpu));
6099 	kvm_lapic_expired_hv_timer(vcpu);
6100 	return 1;
6101 }
6102 
6103 /*
6104  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
6105  * are overwritten by nested_vmx_hardware_setup() when nested=1.
6106  */
6107 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
6108 {
6109 	kvm_queue_exception(vcpu, UD_VECTOR);
6110 	return 1;
6111 }
6112 
6113 #ifndef CONFIG_X86_SGX_KVM
6114 static int handle_encls(struct kvm_vcpu *vcpu)
6115 {
6116 	/*
6117 	 * SGX virtualization is disabled.  There is no software enable bit for
6118 	 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
6119 	 * the guest from executing ENCLS (when SGX is supported by hardware).
6120 	 */
6121 	kvm_queue_exception(vcpu, UD_VECTOR);
6122 	return 1;
6123 }
6124 #endif /* CONFIG_X86_SGX_KVM */
6125 
6126 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
6127 {
6128 	/*
6129 	 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
6130 	 * VM-Exits. Unconditionally set the flag here and leave the handling to
6131 	 * vmx_handle_exit().
6132 	 */
6133 	to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
6134 	return 1;
6135 }
6136 
6137 static int handle_notify(struct kvm_vcpu *vcpu)
6138 {
6139 	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
6140 	bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
6141 
6142 	++vcpu->stat.notify_window_exits;
6143 
6144 	/*
6145 	 * Notify VM exit happened while executing iret from NMI,
6146 	 * "blocked by NMI" bit has to be set before next VM entry.
6147 	 */
6148 	if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
6149 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6150 			      GUEST_INTR_STATE_NMI);
6151 
6152 	if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
6153 	    context_invalid) {
6154 		vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
6155 		vcpu->run->notify.flags = context_invalid ?
6156 					  KVM_NOTIFY_CONTEXT_INVALID : 0;
6157 		return 0;
6158 	}
6159 
6160 	return 1;
6161 }
6162 
6163 /*
6164  * The exit handlers return 1 if the exit was handled fully and guest execution
6165  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6166  * to be done to userspace and return 0.
6167  */
6168 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6169 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
6170 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6171 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6172 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
6173 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6174 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
6175 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
6176 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
6177 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
6178 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
6179 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
6180 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
6181 	[EXIT_REASON_INVD]		      = kvm_emulate_invd,
6182 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
6183 	[EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
6184 	[EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
6185 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
6186 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
6187 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
6188 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
6189 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
6190 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
6191 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
6192 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
6193 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
6194 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6195 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6196 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6197 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6198 	[EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
6199 	[EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
6200 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6201 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6202 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
6203 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
6204 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
6205 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6206 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6207 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = kvm_emulate_mwait,
6208 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
6209 	[EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
6210 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
6211 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
6212 	[EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
6213 	[EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
6214 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
6215 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
6216 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
6217 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
6218 	[EXIT_REASON_ENCLS]		      = handle_encls,
6219 	[EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
6220 	[EXIT_REASON_NOTIFY]		      = handle_notify,
6221 };
6222 
6223 static const int kvm_vmx_max_exit_handlers =
6224 	ARRAY_SIZE(kvm_vmx_exit_handlers);
6225 
6226 void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6227 		       u64 *info1, u64 *info2, u32 *intr_info, u32 *error_code)
6228 {
6229 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6230 
6231 	*reason = vmx->exit_reason.full;
6232 	*info1 = vmx_get_exit_qual(vcpu);
6233 	if (!(vmx->exit_reason.failed_vmentry)) {
6234 		*info2 = vmx->idt_vectoring_info;
6235 		*intr_info = vmx_get_intr_info(vcpu);
6236 		if (is_exception_with_error_code(*intr_info))
6237 			*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6238 		else
6239 			*error_code = 0;
6240 	} else {
6241 		*info2 = 0;
6242 		*intr_info = 0;
6243 		*error_code = 0;
6244 	}
6245 }
6246 
6247 void vmx_get_entry_info(struct kvm_vcpu *vcpu, u32 *intr_info, u32 *error_code)
6248 {
6249 	*intr_info = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
6250 	if (is_exception_with_error_code(*intr_info))
6251 		*error_code = vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE);
6252 	else
6253 		*error_code = 0;
6254 }
6255 
6256 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6257 {
6258 	if (vmx->pml_pg) {
6259 		__free_page(vmx->pml_pg);
6260 		vmx->pml_pg = NULL;
6261 	}
6262 }
6263 
6264 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6265 {
6266 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6267 	u16 pml_idx, pml_tail_index;
6268 	u64 *pml_buf;
6269 	int i;
6270 
6271 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
6272 
6273 	/* Do nothing if PML buffer is empty */
6274 	if (pml_idx == PML_HEAD_INDEX)
6275 		return;
6276 	/*
6277 	 * PML index always points to the next available PML buffer entity
6278 	 * unless PML log has just overflowed.
6279 	 */
6280 	pml_tail_index = (pml_idx >= PML_LOG_NR_ENTRIES) ? 0 : pml_idx + 1;
6281 
6282 	/*
6283 	 * PML log is written backwards: the CPU first writes the entry 511
6284 	 * then the entry 510, and so on.
6285 	 *
6286 	 * Read the entries in the same order they were written, to ensure that
6287 	 * the dirty ring is filled in the same order the CPU wrote them.
6288 	 */
6289 	pml_buf = page_address(vmx->pml_pg);
6290 
6291 	for (i = PML_HEAD_INDEX; i >= pml_tail_index; i--) {
6292 		u64 gpa;
6293 
6294 		gpa = pml_buf[i];
6295 		WARN_ON(gpa & (PAGE_SIZE - 1));
6296 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6297 	}
6298 
6299 	/* reset PML index */
6300 	vmcs_write16(GUEST_PML_INDEX, PML_HEAD_INDEX);
6301 }
6302 
6303 static void vmx_dump_sel(char *name, uint32_t sel)
6304 {
6305 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6306 	       name, vmcs_read16(sel),
6307 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6308 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6309 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6310 }
6311 
6312 static void vmx_dump_dtsel(char *name, uint32_t limit)
6313 {
6314 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
6315 	       name, vmcs_read32(limit),
6316 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6317 }
6318 
6319 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6320 {
6321 	unsigned int i;
6322 	struct vmx_msr_entry *e;
6323 
6324 	pr_err("MSR %s:\n", name);
6325 	for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6326 		pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6327 }
6328 
6329 void dump_vmcs(struct kvm_vcpu *vcpu)
6330 {
6331 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6332 	u32 vmentry_ctl, vmexit_ctl;
6333 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6334 	u64 tertiary_exec_control;
6335 	unsigned long cr4;
6336 	int efer_slot;
6337 
6338 	if (!dump_invalid_vmcs) {
6339 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6340 		return;
6341 	}
6342 
6343 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6344 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6345 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6346 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6347 	cr4 = vmcs_readl(GUEST_CR4);
6348 
6349 	if (cpu_has_secondary_exec_ctrls())
6350 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6351 	else
6352 		secondary_exec_control = 0;
6353 
6354 	if (cpu_has_tertiary_exec_ctrls())
6355 		tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6356 	else
6357 		tertiary_exec_control = 0;
6358 
6359 	pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6360 	       vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6361 	pr_err("*** Guest State ***\n");
6362 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6363 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6364 	       vmcs_readl(CR0_GUEST_HOST_MASK));
6365 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6366 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6367 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6368 	if (cpu_has_vmx_ept()) {
6369 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
6370 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6371 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
6372 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6373 	}
6374 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
6375 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6376 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
6377 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6378 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6379 	       vmcs_readl(GUEST_SYSENTER_ESP),
6380 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6381 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
6382 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
6383 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
6384 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
6385 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
6386 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
6387 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6388 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6389 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6390 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
6391 	efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6392 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6393 		pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6394 	else if (efer_slot >= 0)
6395 		pr_err("EFER= 0x%016llx (autoload)\n",
6396 		       vmx->msr_autoload.guest.val[efer_slot].value);
6397 	else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6398 		pr_err("EFER= 0x%016llx (effective)\n",
6399 		       vcpu->arch.efer | (EFER_LMA | EFER_LME));
6400 	else
6401 		pr_err("EFER= 0x%016llx (effective)\n",
6402 		       vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6403 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6404 		pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6405 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
6406 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
6407 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6408 	if (cpu_has_load_perf_global_ctrl() &&
6409 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6410 		pr_err("PerfGlobCtl = 0x%016llx\n",
6411 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6412 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6413 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6414 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
6415 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6416 	       vmcs_read32(GUEST_ACTIVITY_STATE));
6417 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6418 		pr_err("InterruptStatus = %04x\n",
6419 		       vmcs_read16(GUEST_INTR_STATUS));
6420 	if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6421 		vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6422 	if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6423 		vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6424 
6425 	pr_err("*** Host State ***\n");
6426 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
6427 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6428 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6429 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6430 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6431 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6432 	       vmcs_read16(HOST_TR_SELECTOR));
6433 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6434 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6435 	       vmcs_readl(HOST_TR_BASE));
6436 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6437 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6438 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6439 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6440 	       vmcs_readl(HOST_CR4));
6441 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6442 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
6443 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
6444 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
6445 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6446 		pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6447 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6448 		pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6449 	if (cpu_has_load_perf_global_ctrl() &&
6450 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6451 		pr_err("PerfGlobCtl = 0x%016llx\n",
6452 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6453 	if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6454 		vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6455 
6456 	pr_err("*** Control State ***\n");
6457 	pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6458 	       cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6459 	pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6460 	       pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6461 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6462 	       vmcs_read32(EXCEPTION_BITMAP),
6463 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6464 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6465 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6466 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6467 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6468 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6469 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6470 	       vmcs_read32(VM_EXIT_INTR_INFO),
6471 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6472 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6473 	pr_err("        reason=%08x qualification=%016lx\n",
6474 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6475 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6476 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
6477 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
6478 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6479 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6480 		pr_err("TSC Multiplier = 0x%016llx\n",
6481 		       vmcs_read64(TSC_MULTIPLIER));
6482 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6483 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6484 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
6485 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6486 		}
6487 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6488 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6489 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6490 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6491 	}
6492 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6493 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6494 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6495 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6496 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6497 		pr_err("PLE Gap=%08x Window=%08x\n",
6498 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6499 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6500 		pr_err("Virtual processor ID = 0x%04x\n",
6501 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
6502 	if (secondary_exec_control & SECONDARY_EXEC_EPT_VIOLATION_VE) {
6503 		struct vmx_ve_information *ve_info = vmx->ve_info;
6504 		u64 ve_info_pa = vmcs_read64(VE_INFORMATION_ADDRESS);
6505 
6506 		/*
6507 		 * If KVM is dumping the VMCS, then something has gone wrong
6508 		 * already.  Derefencing an address from the VMCS, which could
6509 		 * very well be corrupted, is a terrible idea.  The virtual
6510 		 * address is known so use it.
6511 		 */
6512 		pr_err("VE info address = 0x%016llx%s\n", ve_info_pa,
6513 		       ve_info_pa == __pa(ve_info) ? "" : "(corrupted!)");
6514 		pr_err("ve_info: 0x%08x 0x%08x 0x%016llx 0x%016llx 0x%016llx 0x%04x\n",
6515 		       ve_info->exit_reason, ve_info->delivery,
6516 		       ve_info->exit_qualification,
6517 		       ve_info->guest_linear_address,
6518 		       ve_info->guest_physical_address, ve_info->eptp_index);
6519 	}
6520 }
6521 
6522 /*
6523  * The guest has exited.  See if we can fix it or if we need userspace
6524  * assistance.
6525  */
6526 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6527 {
6528 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6529 	union vmx_exit_reason exit_reason = vmx->exit_reason;
6530 	u32 vectoring_info = vmx->idt_vectoring_info;
6531 	u16 exit_handler_index;
6532 
6533 	/*
6534 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6535 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6536 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6537 	 * mode as if vcpus is in root mode, the PML buffer must has been
6538 	 * flushed already.  Note, PML is never enabled in hardware while
6539 	 * running L2.
6540 	 */
6541 	if (enable_pml && !is_guest_mode(vcpu))
6542 		vmx_flush_pml_buffer(vcpu);
6543 
6544 	/*
6545 	 * KVM should never reach this point with a pending nested VM-Enter.
6546 	 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6547 	 * invalid guest state should never happen as that means KVM knowingly
6548 	 * allowed a nested VM-Enter with an invalid vmcs12.  More below.
6549 	 */
6550 	if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6551 		return -EIO;
6552 
6553 	if (is_guest_mode(vcpu)) {
6554 		/*
6555 		 * PML is never enabled when running L2, bail immediately if a
6556 		 * PML full exit occurs as something is horribly wrong.
6557 		 */
6558 		if (exit_reason.basic == EXIT_REASON_PML_FULL)
6559 			goto unexpected_vmexit;
6560 
6561 		/*
6562 		 * The host physical addresses of some pages of guest memory
6563 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6564 		 * Page). The CPU may write to these pages via their host
6565 		 * physical address while L2 is running, bypassing any
6566 		 * address-translation-based dirty tracking (e.g. EPT write
6567 		 * protection).
6568 		 *
6569 		 * Mark them dirty on every exit from L2 to prevent them from
6570 		 * getting out of sync with dirty tracking.
6571 		 */
6572 		nested_mark_vmcs12_pages_dirty(vcpu);
6573 
6574 		/*
6575 		 * Synthesize a triple fault if L2 state is invalid.  In normal
6576 		 * operation, nested VM-Enter rejects any attempt to enter L2
6577 		 * with invalid state.  However, those checks are skipped if
6578 		 * state is being stuffed via RSM or KVM_SET_NESTED_STATE.  If
6579 		 * L2 state is invalid, it means either L1 modified SMRAM state
6580 		 * or userspace provided bad state.  Synthesize TRIPLE_FAULT as
6581 		 * doing so is architecturally allowed in the RSM case, and is
6582 		 * the least awful solution for the userspace case without
6583 		 * risking false positives.
6584 		 */
6585 		if (vmx->emulation_required) {
6586 			nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6587 			return 1;
6588 		}
6589 
6590 		if (nested_vmx_reflect_vmexit(vcpu))
6591 			return 1;
6592 	}
6593 
6594 	/* If guest state is invalid, start emulating.  L2 is handled above. */
6595 	if (vmx->emulation_required)
6596 		return handle_invalid_guest_state(vcpu);
6597 
6598 	if (exit_reason.failed_vmentry) {
6599 		dump_vmcs(vcpu);
6600 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6601 		vcpu->run->fail_entry.hardware_entry_failure_reason
6602 			= exit_reason.full;
6603 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6604 		return 0;
6605 	}
6606 
6607 	if (unlikely(vmx->fail)) {
6608 		dump_vmcs(vcpu);
6609 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6610 		vcpu->run->fail_entry.hardware_entry_failure_reason
6611 			= vmcs_read32(VM_INSTRUCTION_ERROR);
6612 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6613 		return 0;
6614 	}
6615 
6616 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6617 	    (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6618 	     exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6619 	     exit_reason.basic != EXIT_REASON_PML_FULL &&
6620 	     exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6621 	     exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6622 	     exit_reason.basic != EXIT_REASON_NOTIFY &&
6623 	     exit_reason.basic != EXIT_REASON_EPT_MISCONFIG)) {
6624 		kvm_prepare_event_vectoring_exit(vcpu, INVALID_GPA);
6625 		return 0;
6626 	}
6627 
6628 	if (unlikely(!enable_vnmi &&
6629 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
6630 		if (!vmx_interrupt_blocked(vcpu)) {
6631 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6632 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6633 			   vcpu->arch.nmi_pending) {
6634 			/*
6635 			 * This CPU don't support us in finding the end of an
6636 			 * NMI-blocked window if the guest runs with IRQs
6637 			 * disabled. So we pull the trigger after 1 s of
6638 			 * futile waiting, but inform the user about this.
6639 			 */
6640 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6641 			       "state on VCPU %d after 1 s timeout\n",
6642 			       __func__, vcpu->vcpu_id);
6643 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6644 		}
6645 	}
6646 
6647 	if (exit_fastpath != EXIT_FASTPATH_NONE)
6648 		return 1;
6649 
6650 	if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6651 		goto unexpected_vmexit;
6652 #ifdef CONFIG_MITIGATION_RETPOLINE
6653 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6654 		return kvm_emulate_wrmsr(vcpu);
6655 	else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6656 		return handle_preemption_timer(vcpu);
6657 	else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6658 		return handle_interrupt_window(vcpu);
6659 	else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6660 		return handle_external_interrupt(vcpu);
6661 	else if (exit_reason.basic == EXIT_REASON_HLT)
6662 		return kvm_emulate_halt(vcpu);
6663 	else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6664 		return handle_ept_misconfig(vcpu);
6665 #endif
6666 
6667 	exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6668 						kvm_vmx_max_exit_handlers);
6669 	if (!kvm_vmx_exit_handlers[exit_handler_index])
6670 		goto unexpected_vmexit;
6671 
6672 	return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6673 
6674 unexpected_vmexit:
6675 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6676 		    exit_reason.full);
6677 	dump_vmcs(vcpu);
6678 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6679 	vcpu->run->internal.suberror =
6680 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6681 	vcpu->run->internal.ndata = 2;
6682 	vcpu->run->internal.data[0] = exit_reason.full;
6683 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6684 	return 0;
6685 }
6686 
6687 int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6688 {
6689 	int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6690 
6691 	/*
6692 	 * Exit to user space when bus lock detected to inform that there is
6693 	 * a bus lock in guest.
6694 	 */
6695 	if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6696 		if (ret > 0)
6697 			vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6698 
6699 		vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6700 		return 0;
6701 	}
6702 	return ret;
6703 }
6704 
6705 /*
6706  * Software based L1D cache flush which is used when microcode providing
6707  * the cache control MSR is not loaded.
6708  *
6709  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6710  * flush it is required to read in 64 KiB because the replacement algorithm
6711  * is not exactly LRU. This could be sized at runtime via topology
6712  * information but as all relevant affected CPUs have 32KiB L1D cache size
6713  * there is no point in doing so.
6714  */
6715 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6716 {
6717 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6718 
6719 	/*
6720 	 * This code is only executed when the flush mode is 'cond' or
6721 	 * 'always'
6722 	 */
6723 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6724 		bool flush_l1d;
6725 
6726 		/*
6727 		 * Clear the per-vcpu flush bit, it gets set again if the vCPU
6728 		 * is reloaded, i.e. if the vCPU is scheduled out or if KVM
6729 		 * exits to userspace, or if KVM reaches one of the unsafe
6730 		 * VMEXIT handlers, e.g. if KVM calls into the emulator.
6731 		 */
6732 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6733 		vcpu->arch.l1tf_flush_l1d = false;
6734 
6735 		/*
6736 		 * Clear the per-cpu flush bit, it gets set again from
6737 		 * the interrupt handlers.
6738 		 */
6739 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6740 		kvm_clear_cpu_l1tf_flush_l1d();
6741 
6742 		if (!flush_l1d)
6743 			return;
6744 	}
6745 
6746 	vcpu->stat.l1d_flush++;
6747 
6748 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6749 		native_wrmsrq(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6750 		return;
6751 	}
6752 
6753 	asm volatile(
6754 		/* First ensure the pages are in the TLB */
6755 		"xorl	%%eax, %%eax\n"
6756 		".Lpopulate_tlb:\n\t"
6757 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6758 		"addl	$4096, %%eax\n\t"
6759 		"cmpl	%%eax, %[size]\n\t"
6760 		"jne	.Lpopulate_tlb\n\t"
6761 		"xorl	%%eax, %%eax\n\t"
6762 		"cpuid\n\t"
6763 		/* Now fill the cache */
6764 		"xorl	%%eax, %%eax\n"
6765 		".Lfill_cache:\n"
6766 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6767 		"addl	$64, %%eax\n\t"
6768 		"cmpl	%%eax, %[size]\n\t"
6769 		"jne	.Lfill_cache\n\t"
6770 		"lfence\n"
6771 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6772 		    [size] "r" (size)
6773 		: "eax", "ebx", "ecx", "edx");
6774 }
6775 
6776 void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6777 {
6778 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6779 	int tpr_threshold;
6780 
6781 	if (is_guest_mode(vcpu) &&
6782 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6783 		return;
6784 
6785 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6786 	if (is_guest_mode(vcpu))
6787 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6788 	else
6789 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6790 }
6791 
6792 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6793 {
6794 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6795 	u32 sec_exec_control;
6796 
6797 	if (!lapic_in_kernel(vcpu))
6798 		return;
6799 
6800 	if (!flexpriority_enabled &&
6801 	    !cpu_has_vmx_virtualize_x2apic_mode())
6802 		return;
6803 
6804 	/* Postpone execution until vmcs01 is the current VMCS. */
6805 	if (is_guest_mode(vcpu)) {
6806 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6807 		return;
6808 	}
6809 
6810 	sec_exec_control = secondary_exec_controls_get(vmx);
6811 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6812 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6813 
6814 	switch (kvm_get_apic_mode(vcpu)) {
6815 	case LAPIC_MODE_INVALID:
6816 		WARN_ONCE(true, "Invalid local APIC state");
6817 		break;
6818 	case LAPIC_MODE_DISABLED:
6819 		break;
6820 	case LAPIC_MODE_XAPIC:
6821 		if (flexpriority_enabled) {
6822 			sec_exec_control |=
6823 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6824 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6825 
6826 			/*
6827 			 * Flush the TLB, reloading the APIC access page will
6828 			 * only do so if its physical address has changed, but
6829 			 * the guest may have inserted a non-APIC mapping into
6830 			 * the TLB while the APIC access page was disabled.
6831 			 */
6832 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6833 		}
6834 		break;
6835 	case LAPIC_MODE_X2APIC:
6836 		if (cpu_has_vmx_virtualize_x2apic_mode())
6837 			sec_exec_control |=
6838 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6839 		break;
6840 	}
6841 	secondary_exec_controls_set(vmx, sec_exec_control);
6842 
6843 	vmx_update_msr_bitmap_x2apic(vcpu);
6844 }
6845 
6846 void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6847 {
6848 	const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT;
6849 	struct kvm *kvm = vcpu->kvm;
6850 	struct kvm_memslots *slots = kvm_memslots(kvm);
6851 	struct kvm_memory_slot *slot;
6852 	struct page *refcounted_page;
6853 	unsigned long mmu_seq;
6854 	kvm_pfn_t pfn;
6855 	bool writable;
6856 
6857 	/* Defer reload until vmcs01 is the current VMCS. */
6858 	if (is_guest_mode(vcpu)) {
6859 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6860 		return;
6861 	}
6862 
6863 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6864 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6865 		return;
6866 
6867 	/*
6868 	 * Explicitly grab the memslot using KVM's internal slot ID to ensure
6869 	 * KVM doesn't unintentionally grab a userspace memslot.  It _should_
6870 	 * be impossible for userspace to create a memslot for the APIC when
6871 	 * APICv is enabled, but paranoia won't hurt in this case.
6872 	 */
6873 	slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT);
6874 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
6875 		return;
6876 
6877 	/*
6878 	 * Ensure that the mmu_notifier sequence count is read before KVM
6879 	 * retrieves the pfn from the primary MMU.  Note, the memslot is
6880 	 * protected by SRCU, not the mmu_notifier.  Pairs with the smp_wmb()
6881 	 * in kvm_mmu_invalidate_end().
6882 	 */
6883 	mmu_seq = kvm->mmu_invalidate_seq;
6884 	smp_rmb();
6885 
6886 	/*
6887 	 * No need to retry if the memslot does not exist or is invalid.  KVM
6888 	 * controls the APIC-access page memslot, and only deletes the memslot
6889 	 * if APICv is permanently inhibited, i.e. the memslot won't reappear.
6890 	 */
6891 	pfn = __kvm_faultin_pfn(slot, gfn, FOLL_WRITE, &writable, &refcounted_page);
6892 	if (is_error_noslot_pfn(pfn))
6893 		return;
6894 
6895 	read_lock(&vcpu->kvm->mmu_lock);
6896 	if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn))
6897 		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6898 	else
6899 		vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn));
6900 
6901 	/*
6902 	 * Do not pin the APIC access page in memory so that it can be freely
6903 	 * migrated, the MMU notifier will call us again if it is migrated or
6904 	 * swapped out.  KVM backs the memslot with anonymous memory, the pfn
6905 	 * should always point at a refcounted page (if the pfn is valid).
6906 	 */
6907 	if (!WARN_ON_ONCE(!refcounted_page))
6908 		kvm_release_page_clean(refcounted_page);
6909 
6910 	/*
6911 	 * No need for a manual TLB flush at this point, KVM has already done a
6912 	 * flush if there were SPTEs pointing at the previous page.
6913 	 */
6914 	read_unlock(&vcpu->kvm->mmu_lock);
6915 }
6916 
6917 void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6918 {
6919 	u16 status;
6920 	u8 old;
6921 
6922 	/*
6923 	 * If L2 is active, defer the SVI update until vmcs01 is loaded, as SVI
6924 	 * is only relevant for if and only if Virtual Interrupt Delivery is
6925 	 * enabled in vmcs12, and if VID is enabled then L2 EOIs affect L2's
6926 	 * vAPIC, not L1's vAPIC.  KVM must update vmcs01 on the next nested
6927 	 * VM-Exit, otherwise L1 with run with a stale SVI.
6928 	 */
6929 	if (is_guest_mode(vcpu)) {
6930 		/*
6931 		 * KVM is supposed to forward intercepted L2 EOIs to L1 if VID
6932 		 * is enabled in vmcs12; as above, the EOIs affect L2's vAPIC.
6933 		 * Note, userspace can stuff state while L2 is active; assert
6934 		 * that VID is disabled if and only if the vCPU is in KVM_RUN
6935 		 * to avoid false positives if userspace is setting APIC state.
6936 		 */
6937 		WARN_ON_ONCE(vcpu->wants_to_run &&
6938 			     nested_cpu_has_vid(get_vmcs12(vcpu)));
6939 		to_vmx(vcpu)->nested.update_vmcs01_hwapic_isr = true;
6940 		return;
6941 	}
6942 
6943 	if (max_isr == -1)
6944 		max_isr = 0;
6945 
6946 	status = vmcs_read16(GUEST_INTR_STATUS);
6947 	old = status >> 8;
6948 	if (max_isr != old) {
6949 		status &= 0xff;
6950 		status |= max_isr << 8;
6951 		vmcs_write16(GUEST_INTR_STATUS, status);
6952 	}
6953 }
6954 
6955 static void vmx_set_rvi(int vector)
6956 {
6957 	u16 status;
6958 	u8 old;
6959 
6960 	if (vector == -1)
6961 		vector = 0;
6962 
6963 	status = vmcs_read16(GUEST_INTR_STATUS);
6964 	old = (u8)status & 0xff;
6965 	if ((u8)vector != old) {
6966 		status &= ~0xff;
6967 		status |= (u8)vector;
6968 		vmcs_write16(GUEST_INTR_STATUS, status);
6969 	}
6970 }
6971 
6972 int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6973 {
6974 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6975 	int max_irr;
6976 	bool got_posted_interrupt;
6977 
6978 	if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6979 		return -EIO;
6980 
6981 	if (pi_test_on(&vmx->pi_desc)) {
6982 		pi_clear_on(&vmx->pi_desc);
6983 		/*
6984 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6985 		 * But on x86 this is just a compiler barrier anyway.
6986 		 */
6987 		smp_mb__after_atomic();
6988 		got_posted_interrupt =
6989 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6990 	} else {
6991 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6992 		got_posted_interrupt = false;
6993 	}
6994 
6995 	/*
6996 	 * Newly recognized interrupts are injected via either virtual interrupt
6997 	 * delivery (RVI) or KVM_REQ_EVENT.  Virtual interrupt delivery is
6998 	 * disabled in two cases:
6999 	 *
7000 	 * 1) If L2 is running and the vCPU has a new pending interrupt.  If L1
7001 	 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
7002 	 * VM-Exit to L1.  If L1 doesn't want to exit, the interrupt is injected
7003 	 * into L2, but KVM doesn't use virtual interrupt delivery to inject
7004 	 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
7005 	 *
7006 	 * 2) If APICv is disabled for this vCPU, assigned devices may still
7007 	 * attempt to post interrupts.  The posted interrupt vector will cause
7008 	 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
7009 	 */
7010 	if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
7011 		vmx_set_rvi(max_irr);
7012 	else if (got_posted_interrupt)
7013 		kvm_make_request(KVM_REQ_EVENT, vcpu);
7014 
7015 	return max_irr;
7016 }
7017 
7018 void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
7019 {
7020 	if (!kvm_vcpu_apicv_active(vcpu))
7021 		return;
7022 
7023 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
7024 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
7025 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
7026 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
7027 }
7028 
7029 void vmx_apicv_pre_state_restore(struct kvm_vcpu *vcpu)
7030 {
7031 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7032 
7033 	pi_clear_on(&vmx->pi_desc);
7034 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
7035 }
7036 
7037 void vmx_do_interrupt_irqoff(unsigned long entry);
7038 void vmx_do_nmi_irqoff(void);
7039 
7040 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
7041 {
7042 	/*
7043 	 * Save xfd_err to guest_fpu before interrupt is enabled, so the
7044 	 * MSR value is not clobbered by the host activity before the guest
7045 	 * has chance to consume it.
7046 	 *
7047 	 * Update the guest's XFD_ERR if and only if XFD is enabled, as the #NM
7048 	 * interception may have been caused by L1 interception.  Per the SDM,
7049 	 * XFD_ERR is not modified for non-XFD #NM, i.e. if CR0.TS=1.
7050 	 *
7051 	 * Note, XFD_ERR is updated _before_ the #NM interception check, i.e.
7052 	 * unlike CR2 and DR6, the value is not a payload that is attached to
7053 	 * the #NM exception.
7054 	 */
7055 	if (is_xfd_nm_fault(vcpu))
7056 		rdmsrq(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
7057 }
7058 
7059 static void handle_exception_irqoff(struct kvm_vcpu *vcpu, u32 intr_info)
7060 {
7061 	/* if exit due to PF check for async PF */
7062 	if (is_page_fault(intr_info))
7063 		vcpu->arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
7064 	/* if exit due to NM, handle before interrupts are enabled */
7065 	else if (is_nm_fault(intr_info))
7066 		handle_nm_fault_irqoff(vcpu);
7067 	/* Handle machine checks before interrupts are enabled */
7068 	else if (is_machine_check(intr_info))
7069 		kvm_machine_check();
7070 }
7071 
7072 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu,
7073 					     u32 intr_info)
7074 {
7075 	unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
7076 
7077 	if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
7078 	    "unexpected VM-Exit interrupt info: 0x%x", intr_info))
7079 		return;
7080 
7081 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
7082 	if (cpu_feature_enabled(X86_FEATURE_FRED))
7083 		fred_entry_from_kvm(EVENT_TYPE_EXTINT, vector);
7084 	else
7085 		vmx_do_interrupt_irqoff(gate_offset((gate_desc *)host_idt_base + vector));
7086 	kvm_after_interrupt(vcpu);
7087 
7088 	vcpu->arch.at_instruction_boundary = true;
7089 }
7090 
7091 void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
7092 {
7093 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7094 
7095 	if (vmx->emulation_required)
7096 		return;
7097 
7098 	if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
7099 		handle_external_interrupt_irqoff(vcpu, vmx_get_intr_info(vcpu));
7100 	else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
7101 		handle_exception_irqoff(vcpu, vmx_get_intr_info(vcpu));
7102 }
7103 
7104 /*
7105  * The kvm parameter can be NULL (module initialization, or invocation before
7106  * VM creation). Be sure to check the kvm parameter before using it.
7107  */
7108 bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
7109 {
7110 	switch (index) {
7111 	case MSR_IA32_SMBASE:
7112 		if (!IS_ENABLED(CONFIG_KVM_SMM))
7113 			return false;
7114 		/*
7115 		 * We cannot do SMM unless we can run the guest in big
7116 		 * real mode.
7117 		 */
7118 		return enable_unrestricted_guest || emulate_invalid_guest_state;
7119 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
7120 		return nested;
7121 	case MSR_AMD64_VIRT_SPEC_CTRL:
7122 	case MSR_AMD64_TSC_RATIO:
7123 		/* This is AMD only.  */
7124 		return false;
7125 	default:
7126 		return true;
7127 	}
7128 }
7129 
7130 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7131 {
7132 	u32 exit_intr_info;
7133 	bool unblock_nmi;
7134 	u8 vector;
7135 	bool idtv_info_valid;
7136 
7137 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7138 
7139 	if (enable_vnmi) {
7140 		if (vmx->loaded_vmcs->nmi_known_unmasked)
7141 			return;
7142 
7143 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
7144 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7145 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7146 		/*
7147 		 * SDM 3: 27.7.1.2 (September 2008)
7148 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7149 		 * a guest IRET fault.
7150 		 * SDM 3: 23.2.2 (September 2008)
7151 		 * Bit 12 is undefined in any of the following cases:
7152 		 *  If the VM exit sets the valid bit in the IDT-vectoring
7153 		 *   information field.
7154 		 *  If the VM exit is due to a double fault.
7155 		 */
7156 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7157 		    vector != DF_VECTOR && !idtv_info_valid)
7158 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7159 				      GUEST_INTR_STATE_NMI);
7160 		else
7161 			vmx->loaded_vmcs->nmi_known_unmasked =
7162 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7163 				  & GUEST_INTR_STATE_NMI);
7164 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
7165 		vmx->loaded_vmcs->vnmi_blocked_time +=
7166 			ktime_to_ns(ktime_sub(ktime_get(),
7167 					      vmx->loaded_vmcs->entry_time));
7168 }
7169 
7170 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7171 				      u32 idt_vectoring_info,
7172 				      int instr_len_field,
7173 				      int error_code_field)
7174 {
7175 	u8 vector;
7176 	int type;
7177 	bool idtv_info_valid;
7178 
7179 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7180 
7181 	vcpu->arch.nmi_injected = false;
7182 	kvm_clear_exception_queue(vcpu);
7183 	kvm_clear_interrupt_queue(vcpu);
7184 
7185 	if (!idtv_info_valid)
7186 		return;
7187 
7188 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7189 
7190 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7191 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7192 
7193 	switch (type) {
7194 	case INTR_TYPE_NMI_INTR:
7195 		vcpu->arch.nmi_injected = true;
7196 		/*
7197 		 * SDM 3: 27.7.1.2 (September 2008)
7198 		 * Clear bit "block by NMI" before VM entry if a NMI
7199 		 * delivery faulted.
7200 		 */
7201 		vmx_set_nmi_mask(vcpu, false);
7202 		break;
7203 	case INTR_TYPE_SOFT_EXCEPTION:
7204 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7205 		fallthrough;
7206 	case INTR_TYPE_HARD_EXCEPTION: {
7207 		u32 error_code = 0;
7208 
7209 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK)
7210 			error_code = vmcs_read32(error_code_field);
7211 
7212 		kvm_requeue_exception(vcpu, vector,
7213 				      idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK,
7214 				      error_code);
7215 		break;
7216 	}
7217 	case INTR_TYPE_SOFT_INTR:
7218 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7219 		fallthrough;
7220 	case INTR_TYPE_EXT_INTR:
7221 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7222 		break;
7223 	default:
7224 		break;
7225 	}
7226 }
7227 
7228 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7229 {
7230 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7231 				  VM_EXIT_INSTRUCTION_LEN,
7232 				  IDT_VECTORING_ERROR_CODE);
7233 }
7234 
7235 void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7236 {
7237 	__vmx_complete_interrupts(vcpu,
7238 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7239 				  VM_ENTRY_INSTRUCTION_LEN,
7240 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
7241 
7242 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7243 }
7244 
7245 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7246 {
7247 	int i, nr_msrs;
7248 	struct perf_guest_switch_msr *msrs;
7249 	struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7250 
7251 	pmu->host_cross_mapped_mask = 0;
7252 	if (pmu->pebs_enable & pmu->global_ctrl)
7253 		intel_pmu_cross_mapped_check(pmu);
7254 
7255 	/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7256 	msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7257 	if (!msrs)
7258 		return;
7259 
7260 	for (i = 0; i < nr_msrs; i++)
7261 		if (msrs[i].host == msrs[i].guest)
7262 			clear_atomic_switch_msr(vmx, msrs[i].msr);
7263 		else
7264 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7265 					msrs[i].host, false);
7266 }
7267 
7268 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu, bool force_immediate_exit)
7269 {
7270 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7271 	u64 tscl;
7272 	u32 delta_tsc;
7273 
7274 	if (force_immediate_exit) {
7275 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7276 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7277 	} else if (vmx->hv_deadline_tsc != -1) {
7278 		tscl = rdtsc();
7279 		if (vmx->hv_deadline_tsc > tscl)
7280 			/* set_hv_timer ensures the delta fits in 32-bits */
7281 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7282 				cpu_preemption_timer_multi);
7283 		else
7284 			delta_tsc = 0;
7285 
7286 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7287 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7288 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7289 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7290 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7291 	}
7292 }
7293 
7294 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7295 {
7296 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7297 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
7298 		vmcs_writel(HOST_RSP, host_rsp);
7299 	}
7300 }
7301 
7302 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7303 					unsigned int flags)
7304 {
7305 	u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7306 
7307 	if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7308 		return;
7309 
7310 	if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7311 		vmx->spec_ctrl = native_rdmsrq(MSR_IA32_SPEC_CTRL);
7312 
7313 	/*
7314 	 * If the guest/host SPEC_CTRL values differ, restore the host value.
7315 	 *
7316 	 * For legacy IBRS, the IBRS bit always needs to be written after
7317 	 * transitioning from a less privileged predictor mode, regardless of
7318 	 * whether the guest/host values differ.
7319 	 */
7320 	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7321 	    vmx->spec_ctrl != hostval)
7322 		native_wrmsrq(MSR_IA32_SPEC_CTRL, hostval);
7323 
7324 	barrier_nospec();
7325 }
7326 
7327 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu,
7328 					     bool force_immediate_exit)
7329 {
7330 	/*
7331 	 * If L2 is active, some VMX preemption timer exits can be handled in
7332 	 * the fastpath even, all other exits must use the slow path.
7333 	 */
7334 	if (is_guest_mode(vcpu) &&
7335 	    to_vmx(vcpu)->exit_reason.basic != EXIT_REASON_PREEMPTION_TIMER)
7336 		return EXIT_FASTPATH_NONE;
7337 
7338 	switch (to_vmx(vcpu)->exit_reason.basic) {
7339 	case EXIT_REASON_MSR_WRITE:
7340 		return handle_fastpath_set_msr_irqoff(vcpu);
7341 	case EXIT_REASON_PREEMPTION_TIMER:
7342 		return handle_fastpath_preemption_timer(vcpu, force_immediate_exit);
7343 	case EXIT_REASON_HLT:
7344 		return handle_fastpath_hlt(vcpu);
7345 	default:
7346 		return EXIT_FASTPATH_NONE;
7347 	}
7348 }
7349 
7350 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7351 					unsigned int flags)
7352 {
7353 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7354 
7355 	guest_state_enter_irqoff();
7356 
7357 	/*
7358 	 * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW
7359 	 * mitigation for MDS is done late in VMentry and is still
7360 	 * executed in spite of L1D Flush. This is because an extra VERW
7361 	 * should not matter much after the big hammer L1D Flush.
7362 	 */
7363 	if (static_branch_unlikely(&vmx_l1d_should_flush))
7364 		vmx_l1d_flush(vcpu);
7365 	else if (static_branch_unlikely(&mmio_stale_data_clear) &&
7366 		 kvm_arch_has_assigned_device(vcpu->kvm))
7367 		mds_clear_cpu_buffers();
7368 
7369 	vmx_disable_fb_clear(vmx);
7370 
7371 	if (vcpu->arch.cr2 != native_read_cr2())
7372 		native_write_cr2(vcpu->arch.cr2);
7373 
7374 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7375 				   flags);
7376 
7377 	vcpu->arch.cr2 = native_read_cr2();
7378 	vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7379 
7380 	vmx->idt_vectoring_info = 0;
7381 
7382 	vmx_enable_fb_clear(vmx);
7383 
7384 	if (unlikely(vmx->fail)) {
7385 		vmx->exit_reason.full = 0xdead;
7386 		goto out;
7387 	}
7388 
7389 	vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7390 	if (likely(!vmx->exit_reason.failed_vmentry))
7391 		vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7392 
7393 	if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI &&
7394 	    is_nmi(vmx_get_intr_info(vcpu))) {
7395 		kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
7396 		if (cpu_feature_enabled(X86_FEATURE_FRED))
7397 			fred_entry_from_kvm(EVENT_TYPE_NMI, NMI_VECTOR);
7398 		else
7399 			vmx_do_nmi_irqoff();
7400 		kvm_after_interrupt(vcpu);
7401 	}
7402 
7403 out:
7404 	guest_state_exit_irqoff();
7405 }
7406 
7407 fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu, bool force_immediate_exit)
7408 {
7409 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7410 	unsigned long cr3, cr4;
7411 
7412 	/* Record the guest's net vcpu time for enforced NMI injections. */
7413 	if (unlikely(!enable_vnmi &&
7414 		     vmx->loaded_vmcs->soft_vnmi_blocked))
7415 		vmx->loaded_vmcs->entry_time = ktime_get();
7416 
7417 	/*
7418 	 * Don't enter VMX if guest state is invalid, let the exit handler
7419 	 * start emulation until we arrive back to a valid state.  Synthesize a
7420 	 * consistency check VM-Exit due to invalid guest state and bail.
7421 	 */
7422 	if (unlikely(vmx->emulation_required)) {
7423 		vmx->fail = 0;
7424 
7425 		vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
7426 		vmx->exit_reason.failed_vmentry = 1;
7427 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7428 		vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
7429 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7430 		vmx->exit_intr_info = 0;
7431 		return EXIT_FASTPATH_NONE;
7432 	}
7433 
7434 	trace_kvm_entry(vcpu, force_immediate_exit);
7435 
7436 	if (vmx->ple_window_dirty) {
7437 		vmx->ple_window_dirty = false;
7438 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
7439 	}
7440 
7441 	/*
7442 	 * We did this in prepare_switch_to_guest, because it needs to
7443 	 * be within srcu_read_lock.
7444 	 */
7445 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7446 
7447 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7448 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7449 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7450 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7451 	vcpu->arch.regs_dirty = 0;
7452 
7453 	/*
7454 	 * Refresh vmcs.HOST_CR3 if necessary.  This must be done immediately
7455 	 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7456 	 * it switches back to the current->mm, which can occur in KVM context
7457 	 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7458 	 * toggles a static key while handling a VM-Exit.
7459 	 */
7460 	cr3 = __get_current_cr3_fast();
7461 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7462 		vmcs_writel(HOST_CR3, cr3);
7463 		vmx->loaded_vmcs->host_state.cr3 = cr3;
7464 	}
7465 
7466 	cr4 = cr4_read_shadow();
7467 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7468 		vmcs_writel(HOST_CR4, cr4);
7469 		vmx->loaded_vmcs->host_state.cr4 = cr4;
7470 	}
7471 
7472 	/* When single-stepping over STI and MOV SS, we must clear the
7473 	 * corresponding interruptibility bits in the guest state. Otherwise
7474 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
7475 	 * exceptions being set, but that's not correct for the guest debugging
7476 	 * case. */
7477 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7478 		vmx_set_interrupt_shadow(vcpu, 0);
7479 
7480 	kvm_load_guest_xsave_state(vcpu);
7481 
7482 	pt_guest_enter(vmx);
7483 
7484 	atomic_switch_perf_msrs(vmx);
7485 	if (intel_pmu_lbr_is_enabled(vcpu))
7486 		vmx_passthrough_lbr_msrs(vcpu);
7487 
7488 	if (enable_preemption_timer)
7489 		vmx_update_hv_timer(vcpu, force_immediate_exit);
7490 	else if (force_immediate_exit)
7491 		smp_send_reschedule(vcpu->cpu);
7492 
7493 	kvm_wait_lapic_expire(vcpu);
7494 
7495 	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
7496 	vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
7497 
7498 	/* All fields are clean at this point */
7499 	if (kvm_is_using_evmcs()) {
7500 		current_evmcs->hv_clean_fields |=
7501 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7502 
7503 		current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7504 	}
7505 
7506 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7507 	if (vcpu->arch.host_debugctl)
7508 		update_debugctlmsr(vcpu->arch.host_debugctl);
7509 
7510 #ifndef CONFIG_X86_64
7511 	/*
7512 	 * The sysexit path does not restore ds/es, so we must set them to
7513 	 * a reasonable value ourselves.
7514 	 *
7515 	 * We can't defer this to vmx_prepare_switch_to_host() since that
7516 	 * function may be executed in interrupt context, which saves and
7517 	 * restore segments around it, nullifying its effect.
7518 	 */
7519 	loadsegment(ds, __USER_DS);
7520 	loadsegment(es, __USER_DS);
7521 #endif
7522 
7523 	pt_guest_exit(vmx);
7524 
7525 	kvm_load_host_xsave_state(vcpu);
7526 
7527 	if (is_guest_mode(vcpu)) {
7528 		/*
7529 		 * Track VMLAUNCH/VMRESUME that have made past guest state
7530 		 * checking.
7531 		 */
7532 		if (vmx->nested.nested_run_pending &&
7533 		    !vmx->exit_reason.failed_vmentry)
7534 			++vcpu->stat.nested_run;
7535 
7536 		vmx->nested.nested_run_pending = 0;
7537 	}
7538 
7539 	if (unlikely(vmx->fail))
7540 		return EXIT_FASTPATH_NONE;
7541 
7542 	if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
7543 		kvm_machine_check();
7544 
7545 	trace_kvm_exit(vcpu, KVM_ISA_VMX);
7546 
7547 	if (unlikely(vmx->exit_reason.failed_vmentry))
7548 		return EXIT_FASTPATH_NONE;
7549 
7550 	vmx->loaded_vmcs->launched = 1;
7551 
7552 	vmx_recover_nmi_blocking(vmx);
7553 	vmx_complete_interrupts(vmx);
7554 
7555 	return vmx_exit_handlers_fastpath(vcpu, force_immediate_exit);
7556 }
7557 
7558 void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7559 {
7560 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7561 
7562 	if (enable_pml)
7563 		vmx_destroy_pml_buffer(vmx);
7564 	free_vpid(vmx->vpid);
7565 	nested_vmx_free_vcpu(vcpu);
7566 	free_loaded_vmcs(vmx->loaded_vmcs);
7567 	free_page((unsigned long)vmx->ve_info);
7568 }
7569 
7570 int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7571 {
7572 	struct vmx_uret_msr *tsx_ctrl;
7573 	struct vcpu_vmx *vmx;
7574 	int i, err;
7575 
7576 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7577 	vmx = to_vmx(vcpu);
7578 
7579 	INIT_LIST_HEAD(&vmx->pi_wakeup_list);
7580 
7581 	err = -ENOMEM;
7582 
7583 	vmx->vpid = allocate_vpid();
7584 
7585 	/*
7586 	 * If PML is turned on, failure on enabling PML just results in failure
7587 	 * of creating the vcpu, therefore we can simplify PML logic (by
7588 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
7589 	 * for the guest), etc.
7590 	 */
7591 	if (enable_pml) {
7592 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7593 		if (!vmx->pml_pg)
7594 			goto free_vpid;
7595 	}
7596 
7597 	for (i = 0; i < kvm_nr_uret_msrs; ++i)
7598 		vmx->guest_uret_msrs[i].mask = -1ull;
7599 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7600 		/*
7601 		 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7602 		 * Keep the host value unchanged to avoid changing CPUID bits
7603 		 * under the host kernel's feet.
7604 		 */
7605 		tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7606 		if (tsx_ctrl)
7607 			tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7608 	}
7609 
7610 	err = alloc_loaded_vmcs(&vmx->vmcs01);
7611 	if (err < 0)
7612 		goto free_pml;
7613 
7614 	/*
7615 	 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7616 	 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7617 	 * feature only for vmcs01, KVM currently isn't equipped to realize any
7618 	 * performance benefits from enabling it for vmcs02.
7619 	 */
7620 	if (kvm_is_using_evmcs() &&
7621 	    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7622 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7623 
7624 		evmcs->hv_enlightenments_control.msr_bitmap = 1;
7625 	}
7626 
7627 	/* The MSR bitmap starts with all ones */
7628 	bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7629 	bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7630 
7631 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7632 #ifdef CONFIG_X86_64
7633 	vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7634 	vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7635 	vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7636 #endif
7637 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7638 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7639 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7640 	if (kvm_cstate_in_guest(vcpu->kvm)) {
7641 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7642 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7643 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7644 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7645 	}
7646 
7647 	vmx->loaded_vmcs = &vmx->vmcs01;
7648 
7649 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
7650 		err = kvm_alloc_apic_access_page(vcpu->kvm);
7651 		if (err)
7652 			goto free_vmcs;
7653 	}
7654 
7655 	if (enable_ept && !enable_unrestricted_guest) {
7656 		err = init_rmode_identity_map(vcpu->kvm);
7657 		if (err)
7658 			goto free_vmcs;
7659 	}
7660 
7661 	err = -ENOMEM;
7662 	if (vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_EPT_VIOLATION_VE) {
7663 		struct page *page;
7664 
7665 		BUILD_BUG_ON(sizeof(*vmx->ve_info) > PAGE_SIZE);
7666 
7667 		/* ve_info must be page aligned. */
7668 		page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7669 		if (!page)
7670 			goto free_vmcs;
7671 
7672 		vmx->ve_info = page_to_virt(page);
7673 	}
7674 
7675 	if (vmx_can_use_ipiv(vcpu))
7676 		WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7677 			   __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID);
7678 
7679 	return 0;
7680 
7681 free_vmcs:
7682 	free_loaded_vmcs(vmx->loaded_vmcs);
7683 free_pml:
7684 	vmx_destroy_pml_buffer(vmx);
7685 free_vpid:
7686 	free_vpid(vmx->vpid);
7687 	return err;
7688 }
7689 
7690 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7691 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7692 
7693 int vmx_vm_init(struct kvm *kvm)
7694 {
7695 	if (!ple_gap)
7696 		kvm->arch.pause_in_guest = true;
7697 
7698 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7699 		switch (l1tf_mitigation) {
7700 		case L1TF_MITIGATION_OFF:
7701 		case L1TF_MITIGATION_FLUSH_NOWARN:
7702 			/* 'I explicitly don't care' is set */
7703 			break;
7704 		case L1TF_MITIGATION_FLUSH:
7705 		case L1TF_MITIGATION_FLUSH_NOSMT:
7706 		case L1TF_MITIGATION_FULL:
7707 			/*
7708 			 * Warn upon starting the first VM in a potentially
7709 			 * insecure environment.
7710 			 */
7711 			if (sched_smt_active())
7712 				pr_warn_once(L1TF_MSG_SMT);
7713 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7714 				pr_warn_once(L1TF_MSG_L1D);
7715 			break;
7716 		case L1TF_MITIGATION_FULL_FORCE:
7717 			/* Flush is enforced */
7718 			break;
7719 		}
7720 	}
7721 	return 0;
7722 }
7723 
7724 u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7725 {
7726 	/*
7727 	 * Force UC for host MMIO regions, as allowing the guest to access MMIO
7728 	 * with cacheable accesses will result in Machine Checks.
7729 	 */
7730 	if (is_mmio)
7731 		return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7732 
7733 	/*
7734 	 * Force WB and ignore guest PAT if the VM does NOT have a non-coherent
7735 	 * device attached.  Letting the guest control memory types on Intel
7736 	 * CPUs may result in unexpected behavior, and so KVM's ABI is to trust
7737 	 * the guest to behave only as a last resort.
7738 	 */
7739 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
7740 		return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7741 
7742 	return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT);
7743 }
7744 
7745 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7746 {
7747 	/*
7748 	 * These bits in the secondary execution controls field
7749 	 * are dynamic, the others are mostly based on the hypervisor
7750 	 * architecture and the guest's CPUID.  Do not touch the
7751 	 * dynamic bits.
7752 	 */
7753 	u32 mask =
7754 		SECONDARY_EXEC_SHADOW_VMCS |
7755 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7756 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7757 		SECONDARY_EXEC_DESC;
7758 
7759 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7760 
7761 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7762 }
7763 
7764 /*
7765  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7766  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7767  */
7768 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7769 {
7770 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7771 	struct kvm_cpuid_entry2 *entry;
7772 
7773 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7774 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7775 
7776 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7777 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7778 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7779 } while (0)
7780 
7781 	entry = kvm_find_cpuid_entry(vcpu, 0x1);
7782 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7783 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7784 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7785 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7786 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7787 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7788 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7789 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7790 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7791 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7792 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7793 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7794 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7795 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7796 
7797 	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7798 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7799 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7800 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7801 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7802 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7803 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7804 
7805 	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 1);
7806 	cr4_fixed1_update(X86_CR4_LAM_SUP,    eax, feature_bit(LAM));
7807 
7808 #undef cr4_fixed1_update
7809 }
7810 
7811 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7812 {
7813 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7814 	struct kvm_cpuid_entry2 *best = NULL;
7815 	int i;
7816 
7817 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7818 		best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7819 		if (!best)
7820 			return;
7821 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7822 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7823 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7824 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7825 	}
7826 
7827 	/* Get the number of configurable Address Ranges for filtering */
7828 	vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7829 						PT_CAP_num_address_ranges);
7830 
7831 	/* Initialize and clear the no dependency bits */
7832 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7833 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7834 			RTIT_CTL_BRANCH_EN);
7835 
7836 	/*
7837 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7838 	 * will inject an #GP
7839 	 */
7840 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7841 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7842 
7843 	/*
7844 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7845 	 * PSBFreq can be set
7846 	 */
7847 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7848 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7849 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7850 
7851 	/*
7852 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7853 	 */
7854 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7855 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7856 					      RTIT_CTL_MTC_RANGE);
7857 
7858 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7859 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7860 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7861 							RTIT_CTL_PTW_EN);
7862 
7863 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7864 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7865 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7866 
7867 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7868 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7869 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7870 
7871 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7872 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7873 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7874 
7875 	/* unmask address range configure area */
7876 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7877 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7878 }
7879 
7880 void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7881 {
7882 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7883 
7884 	/*
7885 	 * XSAVES is effectively enabled if and only if XSAVE is also exposed
7886 	 * to the guest.  XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be
7887 	 * set if and only if XSAVE is supported.
7888 	 */
7889 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVE))
7890 		guest_cpu_cap_clear(vcpu, X86_FEATURE_XSAVES);
7891 
7892 	vmx_setup_uret_msrs(vmx);
7893 
7894 	if (cpu_has_secondary_exec_ctrls())
7895 		vmcs_set_secondary_exec_control(vmx,
7896 						vmx_secondary_exec_control(vmx));
7897 
7898 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
7899 		vmx->msr_ia32_feature_control_valid_bits |=
7900 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7901 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7902 	else
7903 		vmx->msr_ia32_feature_control_valid_bits &=
7904 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7905 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7906 
7907 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
7908 		nested_vmx_cr_fixed1_bits_update(vcpu);
7909 
7910 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7911 			guest_cpu_cap_has(vcpu, X86_FEATURE_INTEL_PT))
7912 		update_intel_pt_cfg(vcpu);
7913 
7914 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7915 		struct vmx_uret_msr *msr;
7916 		msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7917 		if (msr) {
7918 			bool enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_RTM);
7919 			vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7920 		}
7921 	}
7922 
7923 	if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7924 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7925 					  !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD));
7926 
7927 	if (boot_cpu_has(X86_FEATURE_IBPB))
7928 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
7929 					  !guest_has_pred_cmd_msr(vcpu));
7930 
7931 	if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
7932 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
7933 					  !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D));
7934 
7935 	set_cr4_guest_host_mask(vmx);
7936 
7937 	vmx_write_encls_bitmap(vcpu, NULL);
7938 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_SGX))
7939 		vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7940 	else
7941 		vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7942 
7943 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC))
7944 		vmx->msr_ia32_feature_control_valid_bits |=
7945 			FEAT_CTL_SGX_LC_ENABLED;
7946 	else
7947 		vmx->msr_ia32_feature_control_valid_bits &=
7948 			~FEAT_CTL_SGX_LC_ENABLED;
7949 
7950 	/* Refresh #PF interception to account for MAXPHYADDR changes. */
7951 	vmx_update_exception_bitmap(vcpu);
7952 }
7953 
7954 static __init u64 vmx_get_perf_capabilities(void)
7955 {
7956 	u64 perf_cap = PMU_CAP_FW_WRITES;
7957 	u64 host_perf_cap = 0;
7958 
7959 	if (!enable_pmu)
7960 		return 0;
7961 
7962 	if (boot_cpu_has(X86_FEATURE_PDCM))
7963 		rdmsrq(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
7964 
7965 	if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) {
7966 		x86_perf_get_lbr(&vmx_lbr_caps);
7967 
7968 		/*
7969 		 * KVM requires LBR callstack support, as the overhead due to
7970 		 * context switching LBRs without said support is too high.
7971 		 * See intel_pmu_create_guest_lbr_event() for more info.
7972 		 */
7973 		if (!vmx_lbr_caps.has_callstack)
7974 			memset(&vmx_lbr_caps, 0, sizeof(vmx_lbr_caps));
7975 		else if (vmx_lbr_caps.nr)
7976 			perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT;
7977 	}
7978 
7979 	if (vmx_pebs_supported()) {
7980 		perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
7981 
7982 		/*
7983 		 * Disallow adaptive PEBS as it is functionally broken, can be
7984 		 * used by the guest to read *host* LBRs, and can be used to
7985 		 * bypass userspace event filters.  To correctly and safely
7986 		 * support adaptive PEBS, KVM needs to:
7987 		 *
7988 		 * 1. Account for the ADAPTIVE flag when (re)programming fixed
7989 		 *    counters.
7990 		 *
7991 		 * 2. Gain support from perf (or take direct control of counter
7992 		 *    programming) to support events without adaptive PEBS
7993 		 *    enabled for the hardware counter.
7994 		 *
7995 		 * 3. Ensure LBR MSRs cannot hold host data on VM-Entry with
7996 		 *    adaptive PEBS enabled and MSR_PEBS_DATA_CFG.LBRS=1.
7997 		 *
7998 		 * 4. Document which PMU events are effectively exposed to the
7999 		 *    guest via adaptive PEBS, and make adaptive PEBS mutually
8000 		 *    exclusive with KVM_SET_PMU_EVENT_FILTER if necessary.
8001 		 */
8002 		perf_cap &= ~PERF_CAP_PEBS_BASELINE;
8003 	}
8004 
8005 	return perf_cap;
8006 }
8007 
8008 static __init void vmx_set_cpu_caps(void)
8009 {
8010 	kvm_set_cpu_caps();
8011 
8012 	/* CPUID 0x1 */
8013 	if (nested)
8014 		kvm_cpu_cap_set(X86_FEATURE_VMX);
8015 
8016 	/* CPUID 0x7 */
8017 	if (kvm_mpx_supported())
8018 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
8019 	if (!cpu_has_vmx_invpcid())
8020 		kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
8021 	if (vmx_pt_mode_is_host_guest())
8022 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
8023 	if (vmx_pebs_supported()) {
8024 		kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
8025 		kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
8026 	}
8027 
8028 	if (!enable_pmu)
8029 		kvm_cpu_cap_clear(X86_FEATURE_PDCM);
8030 	kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
8031 
8032 	if (!enable_sgx) {
8033 		kvm_cpu_cap_clear(X86_FEATURE_SGX);
8034 		kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
8035 		kvm_cpu_cap_clear(X86_FEATURE_SGX1);
8036 		kvm_cpu_cap_clear(X86_FEATURE_SGX2);
8037 		kvm_cpu_cap_clear(X86_FEATURE_SGX_EDECCSSA);
8038 	}
8039 
8040 	if (vmx_umip_emulated())
8041 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
8042 
8043 	/* CPUID 0xD.1 */
8044 	kvm_caps.supported_xss = 0;
8045 	if (!cpu_has_vmx_xsaves())
8046 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
8047 
8048 	/* CPUID 0x80000001 and 0x7 (RDPID) */
8049 	if (!cpu_has_vmx_rdtscp()) {
8050 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
8051 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
8052 	}
8053 
8054 	if (cpu_has_vmx_waitpkg())
8055 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
8056 }
8057 
8058 static bool vmx_is_io_intercepted(struct kvm_vcpu *vcpu,
8059 				  struct x86_instruction_info *info,
8060 				  unsigned long *exit_qualification)
8061 {
8062 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8063 	unsigned short port;
8064 	int size;
8065 	bool imm;
8066 
8067 	/*
8068 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
8069 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
8070 	 * control.
8071 	 *
8072 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
8073 	 */
8074 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
8075 		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
8076 
8077 	if (info->intercept == x86_intercept_in ||
8078 	    info->intercept == x86_intercept_ins) {
8079 		port = info->src_val;
8080 		size = info->dst_bytes;
8081 		imm  = info->src_type == OP_IMM;
8082 	} else {
8083 		port = info->dst_val;
8084 		size = info->src_bytes;
8085 		imm  = info->dst_type == OP_IMM;
8086 	}
8087 
8088 
8089 	*exit_qualification = ((unsigned long)port << 16) | (size - 1);
8090 
8091 	if (info->intercept == x86_intercept_ins ||
8092 	    info->intercept == x86_intercept_outs)
8093 		*exit_qualification |= BIT(4);
8094 
8095 	if (info->rep_prefix)
8096 		*exit_qualification |= BIT(5);
8097 
8098 	if (imm)
8099 		*exit_qualification |= BIT(6);
8100 
8101 	return nested_vmx_check_io_bitmaps(vcpu, port, size);
8102 }
8103 
8104 int vmx_check_intercept(struct kvm_vcpu *vcpu,
8105 			struct x86_instruction_info *info,
8106 			enum x86_intercept_stage stage,
8107 			struct x86_exception *exception)
8108 {
8109 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8110 	unsigned long exit_qualification = 0;
8111 	u32 vm_exit_reason;
8112 	u64 exit_insn_len;
8113 
8114 	switch (info->intercept) {
8115 	case x86_intercept_rdpid:
8116 		/*
8117 		 * RDPID causes #UD if not enabled through secondary execution
8118 		 * controls (ENABLE_RDTSCP).  Note, the implicit MSR access to
8119 		 * TSC_AUX is NOT subject to interception, i.e. checking only
8120 		 * the dedicated execution control is architecturally correct.
8121 		 */
8122 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
8123 			exception->vector = UD_VECTOR;
8124 			exception->error_code_valid = false;
8125 			return X86EMUL_PROPAGATE_FAULT;
8126 		}
8127 		return X86EMUL_CONTINUE;
8128 
8129 	case x86_intercept_in:
8130 	case x86_intercept_ins:
8131 	case x86_intercept_out:
8132 	case x86_intercept_outs:
8133 		if (!vmx_is_io_intercepted(vcpu, info, &exit_qualification))
8134 			return X86EMUL_CONTINUE;
8135 
8136 		vm_exit_reason = EXIT_REASON_IO_INSTRUCTION;
8137 		break;
8138 
8139 	case x86_intercept_lgdt:
8140 	case x86_intercept_lidt:
8141 	case x86_intercept_lldt:
8142 	case x86_intercept_ltr:
8143 	case x86_intercept_sgdt:
8144 	case x86_intercept_sidt:
8145 	case x86_intercept_sldt:
8146 	case x86_intercept_str:
8147 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
8148 			return X86EMUL_CONTINUE;
8149 
8150 		if (info->intercept == x86_intercept_lldt ||
8151 		    info->intercept == x86_intercept_ltr ||
8152 		    info->intercept == x86_intercept_sldt ||
8153 		    info->intercept == x86_intercept_str)
8154 			vm_exit_reason = EXIT_REASON_LDTR_TR;
8155 		else
8156 			vm_exit_reason = EXIT_REASON_GDTR_IDTR;
8157 		/*
8158 		 * FIXME: Decode the ModR/M to generate the correct exit
8159 		 *        qualification for memory operands.
8160 		 */
8161 		break;
8162 
8163 	case x86_intercept_hlt:
8164 		if (!nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING))
8165 			return X86EMUL_CONTINUE;
8166 
8167 		vm_exit_reason = EXIT_REASON_HLT;
8168 		break;
8169 
8170 	case x86_intercept_pause:
8171 		/*
8172 		 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
8173 		 * with vanilla NOPs in the emulator.  Apply the interception
8174 		 * check only to actual PAUSE instructions.  Don't check
8175 		 * PAUSE-loop-exiting, software can't expect a given PAUSE to
8176 		 * exit, i.e. KVM is within its rights to allow L2 to execute
8177 		 * the PAUSE.
8178 		 */
8179 		if ((info->rep_prefix != REPE_PREFIX) ||
8180 		    !nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING))
8181 			return X86EMUL_CONTINUE;
8182 
8183 		vm_exit_reason = EXIT_REASON_PAUSE_INSTRUCTION;
8184 		break;
8185 
8186 	/* TODO: check more intercepts... */
8187 	default:
8188 		return X86EMUL_UNHANDLEABLE;
8189 	}
8190 
8191 	exit_insn_len = abs_diff((s64)info->next_rip, (s64)info->rip);
8192 	if (!exit_insn_len || exit_insn_len > X86_MAX_INSTRUCTION_LENGTH)
8193 		return X86EMUL_UNHANDLEABLE;
8194 
8195 	__nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification,
8196 			    exit_insn_len);
8197 	return X86EMUL_INTERCEPTED;
8198 }
8199 
8200 #ifdef CONFIG_X86_64
8201 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
8202 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
8203 				  u64 divisor, u64 *result)
8204 {
8205 	u64 low = a << shift, high = a >> (64 - shift);
8206 
8207 	/* To avoid the overflow on divq */
8208 	if (high >= divisor)
8209 		return 1;
8210 
8211 	/* Low hold the result, high hold rem which is discarded */
8212 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
8213 	    "rm" (divisor), "0" (low), "1" (high));
8214 	*result = low;
8215 
8216 	return 0;
8217 }
8218 
8219 int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
8220 		     bool *expired)
8221 {
8222 	struct vcpu_vmx *vmx;
8223 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
8224 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
8225 
8226 	vmx = to_vmx(vcpu);
8227 	tscl = rdtsc();
8228 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
8229 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
8230 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
8231 						    ktimer->timer_advance_ns);
8232 
8233 	if (delta_tsc > lapic_timer_advance_cycles)
8234 		delta_tsc -= lapic_timer_advance_cycles;
8235 	else
8236 		delta_tsc = 0;
8237 
8238 	/* Convert to host delta tsc if tsc scaling is enabled */
8239 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
8240 	    delta_tsc && u64_shl_div_u64(delta_tsc,
8241 				kvm_caps.tsc_scaling_ratio_frac_bits,
8242 				vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
8243 		return -ERANGE;
8244 
8245 	/*
8246 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
8247 	 * we can't use the preemption timer.
8248 	 * It's possible that it fits on later vmentries, but checking
8249 	 * on every vmentry is costly so we just use an hrtimer.
8250 	 */
8251 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
8252 		return -ERANGE;
8253 
8254 	vmx->hv_deadline_tsc = tscl + delta_tsc;
8255 	*expired = !delta_tsc;
8256 	return 0;
8257 }
8258 
8259 void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
8260 {
8261 	to_vmx(vcpu)->hv_deadline_tsc = -1;
8262 }
8263 #endif
8264 
8265 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
8266 {
8267 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8268 
8269 	if (WARN_ON_ONCE(!enable_pml))
8270 		return;
8271 
8272 	if (is_guest_mode(vcpu)) {
8273 		vmx->nested.update_vmcs01_cpu_dirty_logging = true;
8274 		return;
8275 	}
8276 
8277 	/*
8278 	 * Note, nr_memslots_dirty_logging can be changed concurrent with this
8279 	 * code, but in that case another update request will be made and so
8280 	 * the guest will never run with a stale PML value.
8281 	 */
8282 	if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
8283 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8284 	else
8285 		secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8286 }
8287 
8288 void vmx_setup_mce(struct kvm_vcpu *vcpu)
8289 {
8290 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
8291 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
8292 			FEAT_CTL_LMCE_ENABLED;
8293 	else
8294 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
8295 			~FEAT_CTL_LMCE_ENABLED;
8296 }
8297 
8298 #ifdef CONFIG_KVM_SMM
8299 int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
8300 {
8301 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
8302 	if (to_vmx(vcpu)->nested.nested_run_pending)
8303 		return -EBUSY;
8304 	return !is_smm(vcpu);
8305 }
8306 
8307 int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
8308 {
8309 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8310 
8311 	/*
8312 	 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8313 	 * SMI and RSM.  Using the common VM-Exit + VM-Enter routines is wrong
8314 	 * SMI and RSM only modify state that is saved and restored via SMRAM.
8315 	 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
8316 	 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8317 	 */
8318 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
8319 	if (vmx->nested.smm.guest_mode)
8320 		nested_vmx_vmexit(vcpu, -1, 0, 0);
8321 
8322 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
8323 	vmx->nested.vmxon = false;
8324 	vmx_clear_hlt(vcpu);
8325 	return 0;
8326 }
8327 
8328 int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8329 {
8330 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8331 	int ret;
8332 
8333 	if (vmx->nested.smm.vmxon) {
8334 		vmx->nested.vmxon = true;
8335 		vmx->nested.smm.vmxon = false;
8336 	}
8337 
8338 	if (vmx->nested.smm.guest_mode) {
8339 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
8340 		if (ret)
8341 			return ret;
8342 
8343 		vmx->nested.nested_run_pending = 1;
8344 		vmx->nested.smm.guest_mode = false;
8345 	}
8346 	return 0;
8347 }
8348 
8349 void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8350 {
8351 	/* RSM will cause a vmexit anyway.  */
8352 }
8353 #endif
8354 
8355 bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8356 {
8357 	return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8358 }
8359 
8360 void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8361 {
8362 	if (is_guest_mode(vcpu)) {
8363 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8364 
8365 		if (hrtimer_try_to_cancel(timer) == 1)
8366 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8367 	}
8368 }
8369 
8370 void vmx_hardware_unsetup(void)
8371 {
8372 	kvm_set_posted_intr_wakeup_handler(NULL);
8373 
8374 	if (nested)
8375 		nested_vmx_hardware_unsetup();
8376 
8377 	free_kvm_area();
8378 }
8379 
8380 void vmx_vm_destroy(struct kvm *kvm)
8381 {
8382 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8383 
8384 	free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8385 }
8386 
8387 /*
8388  * Note, the SDM states that the linear address is masked *after* the modified
8389  * canonicality check, whereas KVM masks (untags) the address and then performs
8390  * a "normal" canonicality check.  Functionally, the two methods are identical,
8391  * and when the masking occurs relative to the canonicality check isn't visible
8392  * to software, i.e. KVM's behavior doesn't violate the SDM.
8393  */
8394 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags)
8395 {
8396 	int lam_bit;
8397 	unsigned long cr3_bits;
8398 
8399 	if (flags & (X86EMUL_F_FETCH | X86EMUL_F_IMPLICIT | X86EMUL_F_INVLPG))
8400 		return gva;
8401 
8402 	if (!is_64_bit_mode(vcpu))
8403 		return gva;
8404 
8405 	/*
8406 	 * Bit 63 determines if the address should be treated as user address
8407 	 * or a supervisor address.
8408 	 */
8409 	if (!(gva & BIT_ULL(63))) {
8410 		cr3_bits = kvm_get_active_cr3_lam_bits(vcpu);
8411 		if (!(cr3_bits & (X86_CR3_LAM_U57 | X86_CR3_LAM_U48)))
8412 			return gva;
8413 
8414 		/* LAM_U48 is ignored if LAM_U57 is set. */
8415 		lam_bit = cr3_bits & X86_CR3_LAM_U57 ? 56 : 47;
8416 	} else {
8417 		if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_LAM_SUP))
8418 			return gva;
8419 
8420 		lam_bit = kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 56 : 47;
8421 	}
8422 
8423 	/*
8424 	 * Untag the address by sign-extending the lam_bit, but NOT to bit 63.
8425 	 * Bit 63 is retained from the raw virtual address so that untagging
8426 	 * doesn't change a user access to a supervisor access, and vice versa.
8427 	 */
8428 	return (sign_extend64(gva, lam_bit) & ~BIT_ULL(63)) | (gva & BIT_ULL(63));
8429 }
8430 
8431 static unsigned int vmx_handle_intel_pt_intr(void)
8432 {
8433 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8434 
8435 	/* '0' on failure so that the !PT case can use a RET0 static call. */
8436 	if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8437 		return 0;
8438 
8439 	kvm_make_request(KVM_REQ_PMI, vcpu);
8440 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8441 		  (unsigned long *)&vcpu->arch.pmu.global_status);
8442 	return 1;
8443 }
8444 
8445 static __init void vmx_setup_user_return_msrs(void)
8446 {
8447 
8448 	/*
8449 	 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8450 	 * will emulate SYSCALL in legacy mode if the vendor string in guest
8451 	 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8452 	 * support this emulation, MSR_STAR is included in the list for i386,
8453 	 * but is never loaded into hardware.  MSR_CSTAR is also never loaded
8454 	 * into hardware and is here purely for emulation purposes.
8455 	 */
8456 	const u32 vmx_uret_msrs_list[] = {
8457 	#ifdef CONFIG_X86_64
8458 		MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8459 	#endif
8460 		MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8461 		MSR_IA32_TSX_CTRL,
8462 	};
8463 	int i;
8464 
8465 	BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8466 
8467 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8468 		kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8469 }
8470 
8471 static void __init vmx_setup_me_spte_mask(void)
8472 {
8473 	u64 me_mask = 0;
8474 
8475 	/*
8476 	 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8477 	 * kvm_host.maxphyaddr.  On MKTME and/or TDX capable systems,
8478 	 * boot_cpu_data.x86_phys_bits holds the actual physical address
8479 	 * w/o the KeyID bits, and kvm_host.maxphyaddr equals to
8480 	 * MAXPHYADDR reported by CPUID.  Those bits between are KeyID bits.
8481 	 */
8482 	if (boot_cpu_data.x86_phys_bits != kvm_host.maxphyaddr)
8483 		me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8484 				    kvm_host.maxphyaddr - 1);
8485 
8486 	/*
8487 	 * Unlike SME, host kernel doesn't support setting up any
8488 	 * MKTME KeyID on Intel platforms.  No memory encryption
8489 	 * bits should be included into the SPTE.
8490 	 */
8491 	kvm_mmu_set_me_spte_mask(0, me_mask);
8492 }
8493 
8494 __init int vmx_hardware_setup(void)
8495 {
8496 	unsigned long host_bndcfgs;
8497 	struct desc_ptr dt;
8498 	int r;
8499 
8500 	store_idt(&dt);
8501 	host_idt_base = dt.address;
8502 
8503 	vmx_setup_user_return_msrs();
8504 
8505 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8506 		return -EIO;
8507 
8508 	if (boot_cpu_has(X86_FEATURE_NX))
8509 		kvm_enable_efer_bits(EFER_NX);
8510 
8511 	if (boot_cpu_has(X86_FEATURE_MPX)) {
8512 		rdmsrq(MSR_IA32_BNDCFGS, host_bndcfgs);
8513 		WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
8514 	}
8515 
8516 	if (!cpu_has_vmx_mpx())
8517 		kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8518 					     XFEATURE_MASK_BNDCSR);
8519 
8520 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8521 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8522 		enable_vpid = 0;
8523 
8524 	if (!cpu_has_vmx_ept() ||
8525 	    !cpu_has_vmx_ept_4levels() ||
8526 	    !cpu_has_vmx_ept_mt_wb() ||
8527 	    !cpu_has_vmx_invept_global())
8528 		enable_ept = 0;
8529 
8530 	/* NX support is required for shadow paging. */
8531 	if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8532 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
8533 		return -EOPNOTSUPP;
8534 	}
8535 
8536 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8537 		enable_ept_ad_bits = 0;
8538 
8539 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8540 		enable_unrestricted_guest = 0;
8541 
8542 	if (!cpu_has_vmx_flexpriority())
8543 		flexpriority_enabled = 0;
8544 
8545 	if (!cpu_has_virtual_nmis())
8546 		enable_vnmi = 0;
8547 
8548 #ifdef CONFIG_X86_SGX_KVM
8549 	if (!cpu_has_vmx_encls_vmexit())
8550 		enable_sgx = false;
8551 #endif
8552 
8553 	/*
8554 	 * set_apic_access_page_addr() is used to reload apic access
8555 	 * page upon invalidation.  No need to do anything if not
8556 	 * using the APIC_ACCESS_ADDR VMCS field.
8557 	 */
8558 	if (!flexpriority_enabled)
8559 		vt_x86_ops.set_apic_access_page_addr = NULL;
8560 
8561 	if (!cpu_has_vmx_tpr_shadow())
8562 		vt_x86_ops.update_cr8_intercept = NULL;
8563 
8564 #if IS_ENABLED(CONFIG_HYPERV)
8565 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8566 	    && enable_ept) {
8567 		vt_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
8568 		vt_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
8569 	}
8570 #endif
8571 
8572 	if (!cpu_has_vmx_ple()) {
8573 		ple_gap = 0;
8574 		ple_window = 0;
8575 		ple_window_grow = 0;
8576 		ple_window_max = 0;
8577 		ple_window_shrink = 0;
8578 	}
8579 
8580 	if (!cpu_has_vmx_apicv())
8581 		enable_apicv = 0;
8582 	if (!enable_apicv)
8583 		vt_x86_ops.sync_pir_to_irr = NULL;
8584 
8585 	if (!enable_apicv || !cpu_has_vmx_ipiv())
8586 		enable_ipiv = false;
8587 
8588 	if (cpu_has_vmx_tsc_scaling())
8589 		kvm_caps.has_tsc_control = true;
8590 
8591 	kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8592 	kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8593 	kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8594 	kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8595 
8596 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8597 
8598 	if (enable_ept)
8599 		kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8600 				      cpu_has_vmx_ept_execute_only());
8601 
8602 	/*
8603 	 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8604 	 * bits to shadow_zero_check.
8605 	 */
8606 	vmx_setup_me_spte_mask();
8607 
8608 	kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(),
8609 			  ept_caps_to_lpage_level(vmx_capability.ept));
8610 
8611 	/*
8612 	 * Only enable PML when hardware supports PML feature, and both EPT
8613 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
8614 	 */
8615 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8616 		enable_pml = 0;
8617 
8618 	if (!enable_pml)
8619 		vt_x86_ops.cpu_dirty_log_size = 0;
8620 
8621 	if (!cpu_has_vmx_preemption_timer())
8622 		enable_preemption_timer = false;
8623 
8624 	if (enable_preemption_timer) {
8625 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
8626 
8627 		cpu_preemption_timer_multi =
8628 			vmx_misc_preemption_timer_rate(vmcs_config.misc);
8629 
8630 		if (tsc_khz)
8631 			use_timer_freq = (u64)tsc_khz * 1000;
8632 		use_timer_freq >>= cpu_preemption_timer_multi;
8633 
8634 		/*
8635 		 * KVM "disables" the preemption timer by setting it to its max
8636 		 * value.  Don't use the timer if it might cause spurious exits
8637 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8638 		 */
8639 		if (use_timer_freq > 0xffffffffu / 10)
8640 			enable_preemption_timer = false;
8641 	}
8642 
8643 	if (!enable_preemption_timer) {
8644 		vt_x86_ops.set_hv_timer = NULL;
8645 		vt_x86_ops.cancel_hv_timer = NULL;
8646 	}
8647 
8648 	kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8649 	kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8650 
8651 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8652 		return -EINVAL;
8653 	if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8654 		pt_mode = PT_MODE_SYSTEM;
8655 	if (pt_mode == PT_MODE_HOST_GUEST)
8656 		vt_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8657 	else
8658 		vt_init_ops.handle_intel_pt_intr = NULL;
8659 
8660 	setup_default_sgx_lepubkeyhash();
8661 
8662 	if (nested) {
8663 		nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8664 
8665 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8666 		if (r)
8667 			return r;
8668 	}
8669 
8670 	vmx_set_cpu_caps();
8671 
8672 	r = alloc_kvm_area();
8673 	if (r && nested)
8674 		nested_vmx_hardware_unsetup();
8675 
8676 	kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8677 
8678 	return r;
8679 }
8680 
8681 static void vmx_cleanup_l1d_flush(void)
8682 {
8683 	if (vmx_l1d_flush_pages) {
8684 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8685 		vmx_l1d_flush_pages = NULL;
8686 	}
8687 	/* Restore state so sysfs ignores VMX */
8688 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8689 }
8690 
8691 static void __vmx_exit(void)
8692 {
8693 	allow_smaller_maxphyaddr = false;
8694 
8695 	vmx_cleanup_l1d_flush();
8696 }
8697 
8698 static void __exit vmx_exit(void)
8699 {
8700 	kvm_exit();
8701 	__vmx_exit();
8702 	kvm_x86_vendor_exit();
8703 
8704 }
8705 module_exit(vmx_exit);
8706 
8707 static int __init vmx_init(void)
8708 {
8709 	int r, cpu;
8710 
8711 	if (!kvm_is_vmx_supported())
8712 		return -EOPNOTSUPP;
8713 
8714 	/*
8715 	 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing
8716 	 * to unwind if a later step fails.
8717 	 */
8718 	hv_init_evmcs();
8719 
8720 	r = kvm_x86_vendor_init(&vt_init_ops);
8721 	if (r)
8722 		return r;
8723 
8724 	/*
8725 	 * Must be called after common x86 init so enable_ept is properly set
8726 	 * up. Hand the parameter mitigation value in which was stored in
8727 	 * the pre module init parser. If no parameter was given, it will
8728 	 * contain 'auto' which will be turned into the default 'cond'
8729 	 * mitigation mode.
8730 	 */
8731 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8732 	if (r)
8733 		goto err_l1d_flush;
8734 
8735 	for_each_possible_cpu(cpu) {
8736 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8737 
8738 		pi_init_cpu(cpu);
8739 	}
8740 
8741 	vmx_check_vmcs12_offsets();
8742 
8743 	/*
8744 	 * Shadow paging doesn't have a (further) performance penalty
8745 	 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8746 	 * by default
8747 	 */
8748 	if (!enable_ept)
8749 		allow_smaller_maxphyaddr = true;
8750 
8751 	/*
8752 	 * Common KVM initialization _must_ come last, after this, /dev/kvm is
8753 	 * exposed to userspace!
8754 	 */
8755 	r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx),
8756 		     THIS_MODULE);
8757 	if (r)
8758 		goto err_kvm_init;
8759 
8760 	return 0;
8761 
8762 err_kvm_init:
8763 	__vmx_exit();
8764 err_l1d_flush:
8765 	kvm_x86_vendor_exit();
8766 	return r;
8767 }
8768 module_init(vmx_init);
8769