1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <linux/highmem.h> 17 #include <linux/hrtimer.h> 18 #include <linux/kernel.h> 19 #include <linux/kvm_host.h> 20 #include <linux/module.h> 21 #include <linux/moduleparam.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/mm.h> 24 #include <linux/objtool.h> 25 #include <linux/sched.h> 26 #include <linux/sched/smt.h> 27 #include <linux/slab.h> 28 #include <linux/tboot.h> 29 #include <linux/trace_events.h> 30 #include <linux/entry-kvm.h> 31 32 #include <asm/apic.h> 33 #include <asm/asm.h> 34 #include <asm/cpu.h> 35 #include <asm/cpu_device_id.h> 36 #include <asm/debugreg.h> 37 #include <asm/desc.h> 38 #include <asm/fpu/api.h> 39 #include <asm/idtentry.h> 40 #include <asm/io.h> 41 #include <asm/irq_remapping.h> 42 #include <asm/kexec.h> 43 #include <asm/perf_event.h> 44 #include <asm/mmu_context.h> 45 #include <asm/mshyperv.h> 46 #include <asm/mwait.h> 47 #include <asm/spec-ctrl.h> 48 #include <asm/virtext.h> 49 #include <asm/vmx.h> 50 51 #include "capabilities.h" 52 #include "cpuid.h" 53 #include "evmcs.h" 54 #include "hyperv.h" 55 #include "kvm_onhyperv.h" 56 #include "irq.h" 57 #include "kvm_cache_regs.h" 58 #include "lapic.h" 59 #include "mmu.h" 60 #include "nested.h" 61 #include "pmu.h" 62 #include "sgx.h" 63 #include "trace.h" 64 #include "vmcs.h" 65 #include "vmcs12.h" 66 #include "vmx.h" 67 #include "x86.h" 68 69 MODULE_AUTHOR("Qumranet"); 70 MODULE_LICENSE("GPL"); 71 72 #ifdef MODULE 73 static const struct x86_cpu_id vmx_cpu_id[] = { 74 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL), 75 {} 76 }; 77 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); 78 #endif 79 80 bool __read_mostly enable_vpid = 1; 81 module_param_named(vpid, enable_vpid, bool, 0444); 82 83 static bool __read_mostly enable_vnmi = 1; 84 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO); 85 86 bool __read_mostly flexpriority_enabled = 1; 87 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); 88 89 bool __read_mostly enable_ept = 1; 90 module_param_named(ept, enable_ept, bool, S_IRUGO); 91 92 bool __read_mostly enable_unrestricted_guest = 1; 93 module_param_named(unrestricted_guest, 94 enable_unrestricted_guest, bool, S_IRUGO); 95 96 bool __read_mostly enable_ept_ad_bits = 1; 97 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO); 98 99 static bool __read_mostly emulate_invalid_guest_state = true; 100 module_param(emulate_invalid_guest_state, bool, S_IRUGO); 101 102 static bool __read_mostly fasteoi = 1; 103 module_param(fasteoi, bool, S_IRUGO); 104 105 module_param(enable_apicv, bool, S_IRUGO); 106 107 /* 108 * If nested=1, nested virtualization is supported, i.e., guests may use 109 * VMX and be a hypervisor for its own guests. If nested=0, guests may not 110 * use VMX instructions. 111 */ 112 static bool __read_mostly nested = 1; 113 module_param(nested, bool, S_IRUGO); 114 115 bool __read_mostly enable_pml = 1; 116 module_param_named(pml, enable_pml, bool, S_IRUGO); 117 118 static bool __read_mostly dump_invalid_vmcs = 0; 119 module_param(dump_invalid_vmcs, bool, 0644); 120 121 #define MSR_BITMAP_MODE_X2APIC 1 122 #define MSR_BITMAP_MODE_X2APIC_APICV 2 123 124 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL 125 126 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ 127 static int __read_mostly cpu_preemption_timer_multi; 128 static bool __read_mostly enable_preemption_timer = 1; 129 #ifdef CONFIG_X86_64 130 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); 131 #endif 132 133 extern bool __read_mostly allow_smaller_maxphyaddr; 134 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO); 135 136 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) 137 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE 138 #define KVM_VM_CR0_ALWAYS_ON \ 139 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE) 140 141 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE 142 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) 143 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) 144 145 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) 146 147 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ 148 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ 149 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ 150 RTIT_STATUS_BYTECNT)) 151 152 /* 153 * List of MSRs that can be directly passed to the guest. 154 * In addition to these x2apic and PT MSRs are handled specially. 155 */ 156 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = { 157 MSR_IA32_SPEC_CTRL, 158 MSR_IA32_PRED_CMD, 159 MSR_IA32_TSC, 160 #ifdef CONFIG_X86_64 161 MSR_FS_BASE, 162 MSR_GS_BASE, 163 MSR_KERNEL_GS_BASE, 164 #endif 165 MSR_IA32_SYSENTER_CS, 166 MSR_IA32_SYSENTER_ESP, 167 MSR_IA32_SYSENTER_EIP, 168 MSR_CORE_C1_RES, 169 MSR_CORE_C3_RESIDENCY, 170 MSR_CORE_C6_RESIDENCY, 171 MSR_CORE_C7_RESIDENCY, 172 }; 173 174 /* 175 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 176 * ple_gap: upper bound on the amount of time between two successive 177 * executions of PAUSE in a loop. Also indicate if ple enabled. 178 * According to test, this time is usually smaller than 128 cycles. 179 * ple_window: upper bound on the amount of time a guest is allowed to execute 180 * in a PAUSE loop. Tests indicate that most spinlocks are held for 181 * less than 2^12 cycles 182 * Time is measured based on a counter that runs at the same rate as the TSC, 183 * refer SDM volume 3b section 21.6.13 & 22.1.3. 184 */ 185 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; 186 module_param(ple_gap, uint, 0444); 187 188 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; 189 module_param(ple_window, uint, 0444); 190 191 /* Default doubles per-vcpu window every exit. */ 192 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 193 module_param(ple_window_grow, uint, 0444); 194 195 /* Default resets per-vcpu window every exit to ple_window. */ 196 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 197 module_param(ple_window_shrink, uint, 0444); 198 199 /* Default is to compute the maximum so we can never overflow. */ 200 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; 201 module_param(ple_window_max, uint, 0444); 202 203 /* Default is SYSTEM mode, 1 for host-guest mode */ 204 int __read_mostly pt_mode = PT_MODE_SYSTEM; 205 module_param(pt_mode, int, S_IRUGO); 206 207 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); 208 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); 209 static DEFINE_MUTEX(vmx_l1d_flush_mutex); 210 211 /* Storage for pre module init parameter parsing */ 212 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; 213 214 static const struct { 215 const char *option; 216 bool for_parse; 217 } vmentry_l1d_param[] = { 218 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, 219 [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, 220 [VMENTER_L1D_FLUSH_COND] = {"cond", true}, 221 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, 222 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, 223 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, 224 }; 225 226 #define L1D_CACHE_ORDER 4 227 static void *vmx_l1d_flush_pages; 228 229 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) 230 { 231 struct page *page; 232 unsigned int i; 233 234 if (!boot_cpu_has_bug(X86_BUG_L1TF)) { 235 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 236 return 0; 237 } 238 239 if (!enable_ept) { 240 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; 241 return 0; 242 } 243 244 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 245 u64 msr; 246 247 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr); 248 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { 249 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 250 return 0; 251 } 252 } 253 254 /* If set to auto use the default l1tf mitigation method */ 255 if (l1tf == VMENTER_L1D_FLUSH_AUTO) { 256 switch (l1tf_mitigation) { 257 case L1TF_MITIGATION_OFF: 258 l1tf = VMENTER_L1D_FLUSH_NEVER; 259 break; 260 case L1TF_MITIGATION_FLUSH_NOWARN: 261 case L1TF_MITIGATION_FLUSH: 262 case L1TF_MITIGATION_FLUSH_NOSMT: 263 l1tf = VMENTER_L1D_FLUSH_COND; 264 break; 265 case L1TF_MITIGATION_FULL: 266 case L1TF_MITIGATION_FULL_FORCE: 267 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 268 break; 269 } 270 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { 271 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 272 } 273 274 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && 275 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { 276 /* 277 * This allocation for vmx_l1d_flush_pages is not tied to a VM 278 * lifetime and so should not be charged to a memcg. 279 */ 280 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); 281 if (!page) 282 return -ENOMEM; 283 vmx_l1d_flush_pages = page_address(page); 284 285 /* 286 * Initialize each page with a different pattern in 287 * order to protect against KSM in the nested 288 * virtualization case. 289 */ 290 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { 291 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, 292 PAGE_SIZE); 293 } 294 } 295 296 l1tf_vmx_mitigation = l1tf; 297 298 if (l1tf != VMENTER_L1D_FLUSH_NEVER) 299 static_branch_enable(&vmx_l1d_should_flush); 300 else 301 static_branch_disable(&vmx_l1d_should_flush); 302 303 if (l1tf == VMENTER_L1D_FLUSH_COND) 304 static_branch_enable(&vmx_l1d_flush_cond); 305 else 306 static_branch_disable(&vmx_l1d_flush_cond); 307 return 0; 308 } 309 310 static int vmentry_l1d_flush_parse(const char *s) 311 { 312 unsigned int i; 313 314 if (s) { 315 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { 316 if (vmentry_l1d_param[i].for_parse && 317 sysfs_streq(s, vmentry_l1d_param[i].option)) 318 return i; 319 } 320 } 321 return -EINVAL; 322 } 323 324 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) 325 { 326 int l1tf, ret; 327 328 l1tf = vmentry_l1d_flush_parse(s); 329 if (l1tf < 0) 330 return l1tf; 331 332 if (!boot_cpu_has(X86_BUG_L1TF)) 333 return 0; 334 335 /* 336 * Has vmx_init() run already? If not then this is the pre init 337 * parameter parsing. In that case just store the value and let 338 * vmx_init() do the proper setup after enable_ept has been 339 * established. 340 */ 341 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { 342 vmentry_l1d_flush_param = l1tf; 343 return 0; 344 } 345 346 mutex_lock(&vmx_l1d_flush_mutex); 347 ret = vmx_setup_l1d_flush(l1tf); 348 mutex_unlock(&vmx_l1d_flush_mutex); 349 return ret; 350 } 351 352 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) 353 { 354 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) 355 return sprintf(s, "???\n"); 356 357 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); 358 } 359 360 static const struct kernel_param_ops vmentry_l1d_flush_ops = { 361 .set = vmentry_l1d_flush_set, 362 .get = vmentry_l1d_flush_get, 363 }; 364 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); 365 366 static u32 vmx_segment_access_rights(struct kvm_segment *var); 367 368 void vmx_vmexit(void); 369 370 #define vmx_insn_failed(fmt...) \ 371 do { \ 372 WARN_ONCE(1, fmt); \ 373 pr_warn_ratelimited(fmt); \ 374 } while (0) 375 376 asmlinkage void vmread_error(unsigned long field, bool fault) 377 { 378 if (fault) 379 kvm_spurious_fault(); 380 else 381 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field); 382 } 383 384 noinline void vmwrite_error(unsigned long field, unsigned long value) 385 { 386 vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n", 387 field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); 388 } 389 390 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr) 391 { 392 vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr); 393 } 394 395 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr) 396 { 397 vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr); 398 } 399 400 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva) 401 { 402 vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n", 403 ext, vpid, gva); 404 } 405 406 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa) 407 { 408 vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n", 409 ext, eptp, gpa); 410 } 411 412 static DEFINE_PER_CPU(struct vmcs *, vmxarea); 413 DEFINE_PER_CPU(struct vmcs *, current_vmcs); 414 /* 415 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed 416 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. 417 */ 418 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); 419 420 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); 421 static DEFINE_SPINLOCK(vmx_vpid_lock); 422 423 struct vmcs_config vmcs_config; 424 struct vmx_capability vmx_capability; 425 426 #define VMX_SEGMENT_FIELD(seg) \ 427 [VCPU_SREG_##seg] = { \ 428 .selector = GUEST_##seg##_SELECTOR, \ 429 .base = GUEST_##seg##_BASE, \ 430 .limit = GUEST_##seg##_LIMIT, \ 431 .ar_bytes = GUEST_##seg##_AR_BYTES, \ 432 } 433 434 static const struct kvm_vmx_segment_field { 435 unsigned selector; 436 unsigned base; 437 unsigned limit; 438 unsigned ar_bytes; 439 } kvm_vmx_segment_fields[] = { 440 VMX_SEGMENT_FIELD(CS), 441 VMX_SEGMENT_FIELD(DS), 442 VMX_SEGMENT_FIELD(ES), 443 VMX_SEGMENT_FIELD(FS), 444 VMX_SEGMENT_FIELD(GS), 445 VMX_SEGMENT_FIELD(SS), 446 VMX_SEGMENT_FIELD(TR), 447 VMX_SEGMENT_FIELD(LDTR), 448 }; 449 450 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx) 451 { 452 vmx->segment_cache.bitmask = 0; 453 } 454 455 static unsigned long host_idt_base; 456 457 #if IS_ENABLED(CONFIG_HYPERV) 458 static bool __read_mostly enlightened_vmcs = true; 459 module_param(enlightened_vmcs, bool, 0444); 460 461 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu) 462 { 463 struct hv_enlightened_vmcs *evmcs; 464 struct hv_partition_assist_pg **p_hv_pa_pg = 465 &to_kvm_hv(vcpu->kvm)->hv_pa_pg; 466 /* 467 * Synthetic VM-Exit is not enabled in current code and so All 468 * evmcs in singe VM shares same assist page. 469 */ 470 if (!*p_hv_pa_pg) 471 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT); 472 473 if (!*p_hv_pa_pg) 474 return -ENOMEM; 475 476 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs; 477 478 evmcs->partition_assist_page = 479 __pa(*p_hv_pa_pg); 480 evmcs->hv_vm_id = (unsigned long)vcpu->kvm; 481 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1; 482 483 return 0; 484 } 485 486 #endif /* IS_ENABLED(CONFIG_HYPERV) */ 487 488 /* 489 * Comment's format: document - errata name - stepping - processor name. 490 * Refer from 491 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp 492 */ 493 static u32 vmx_preemption_cpu_tfms[] = { 494 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ 495 0x000206E6, 496 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ 497 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ 498 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ 499 0x00020652, 500 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ 501 0x00020655, 502 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ 503 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ 504 /* 505 * 320767.pdf - AAP86 - B1 - 506 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile 507 */ 508 0x000106E5, 509 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ 510 0x000106A0, 511 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ 512 0x000106A1, 513 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ 514 0x000106A4, 515 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ 516 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ 517 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ 518 0x000106A5, 519 /* Xeon E3-1220 V2 */ 520 0x000306A8, 521 }; 522 523 static inline bool cpu_has_broken_vmx_preemption_timer(void) 524 { 525 u32 eax = cpuid_eax(0x00000001), i; 526 527 /* Clear the reserved bits */ 528 eax &= ~(0x3U << 14 | 0xfU << 28); 529 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) 530 if (eax == vmx_preemption_cpu_tfms[i]) 531 return true; 532 533 return false; 534 } 535 536 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) 537 { 538 return flexpriority_enabled && lapic_in_kernel(vcpu); 539 } 540 541 static inline bool report_flexpriority(void) 542 { 543 return flexpriority_enabled; 544 } 545 546 static int possible_passthrough_msr_slot(u32 msr) 547 { 548 u32 i; 549 550 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) 551 if (vmx_possible_passthrough_msrs[i] == msr) 552 return i; 553 554 return -ENOENT; 555 } 556 557 static bool is_valid_passthrough_msr(u32 msr) 558 { 559 bool r; 560 561 switch (msr) { 562 case 0x800 ... 0x8ff: 563 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */ 564 return true; 565 case MSR_IA32_RTIT_STATUS: 566 case MSR_IA32_RTIT_OUTPUT_BASE: 567 case MSR_IA32_RTIT_OUTPUT_MASK: 568 case MSR_IA32_RTIT_CR3_MATCH: 569 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 570 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */ 571 case MSR_LBR_SELECT: 572 case MSR_LBR_TOS: 573 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31: 574 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31: 575 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31: 576 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8: 577 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8: 578 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */ 579 return true; 580 } 581 582 r = possible_passthrough_msr_slot(msr) != -ENOENT; 583 584 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr); 585 586 return r; 587 } 588 589 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr) 590 { 591 int i; 592 593 i = kvm_find_user_return_msr(msr); 594 if (i >= 0) 595 return &vmx->guest_uret_msrs[i]; 596 return NULL; 597 } 598 599 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx, 600 struct vmx_uret_msr *msr, u64 data) 601 { 602 unsigned int slot = msr - vmx->guest_uret_msrs; 603 int ret = 0; 604 605 u64 old_msr_data = msr->data; 606 msr->data = data; 607 if (msr->load_into_hardware) { 608 preempt_disable(); 609 ret = kvm_set_user_return_msr(slot, msr->data, msr->mask); 610 preempt_enable(); 611 if (ret) 612 msr->data = old_msr_data; 613 } 614 return ret; 615 } 616 617 #ifdef CONFIG_KEXEC_CORE 618 static void crash_vmclear_local_loaded_vmcss(void) 619 { 620 int cpu = raw_smp_processor_id(); 621 struct loaded_vmcs *v; 622 623 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), 624 loaded_vmcss_on_cpu_link) 625 vmcs_clear(v->vmcs); 626 } 627 #endif /* CONFIG_KEXEC_CORE */ 628 629 static void __loaded_vmcs_clear(void *arg) 630 { 631 struct loaded_vmcs *loaded_vmcs = arg; 632 int cpu = raw_smp_processor_id(); 633 634 if (loaded_vmcs->cpu != cpu) 635 return; /* vcpu migration can race with cpu offline */ 636 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) 637 per_cpu(current_vmcs, cpu) = NULL; 638 639 vmcs_clear(loaded_vmcs->vmcs); 640 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) 641 vmcs_clear(loaded_vmcs->shadow_vmcs); 642 643 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); 644 645 /* 646 * Ensure all writes to loaded_vmcs, including deleting it from its 647 * current percpu list, complete before setting loaded_vmcs->vcpu to 648 * -1, otherwise a different cpu can see vcpu == -1 first and add 649 * loaded_vmcs to its percpu list before it's deleted from this cpu's 650 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs(). 651 */ 652 smp_wmb(); 653 654 loaded_vmcs->cpu = -1; 655 loaded_vmcs->launched = 0; 656 } 657 658 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) 659 { 660 int cpu = loaded_vmcs->cpu; 661 662 if (cpu != -1) 663 smp_call_function_single(cpu, 664 __loaded_vmcs_clear, loaded_vmcs, 1); 665 } 666 667 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, 668 unsigned field) 669 { 670 bool ret; 671 u32 mask = 1 << (seg * SEG_FIELD_NR + field); 672 673 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) { 674 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS); 675 vmx->segment_cache.bitmask = 0; 676 } 677 ret = vmx->segment_cache.bitmask & mask; 678 vmx->segment_cache.bitmask |= mask; 679 return ret; 680 } 681 682 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) 683 { 684 u16 *p = &vmx->segment_cache.seg[seg].selector; 685 686 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) 687 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); 688 return *p; 689 } 690 691 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) 692 { 693 ulong *p = &vmx->segment_cache.seg[seg].base; 694 695 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) 696 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); 697 return *p; 698 } 699 700 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) 701 { 702 u32 *p = &vmx->segment_cache.seg[seg].limit; 703 704 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) 705 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); 706 return *p; 707 } 708 709 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) 710 { 711 u32 *p = &vmx->segment_cache.seg[seg].ar; 712 713 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) 714 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); 715 return *p; 716 } 717 718 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu) 719 { 720 u32 eb; 721 722 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | 723 (1u << DB_VECTOR) | (1u << AC_VECTOR); 724 /* 725 * Guest access to VMware backdoor ports could legitimately 726 * trigger #GP because of TSS I/O permission bitmap. 727 * We intercept those #GP and allow access to them anyway 728 * as VMware does. 729 */ 730 if (enable_vmware_backdoor) 731 eb |= (1u << GP_VECTOR); 732 if ((vcpu->guest_debug & 733 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == 734 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) 735 eb |= 1u << BP_VECTOR; 736 if (to_vmx(vcpu)->rmode.vm86_active) 737 eb = ~0; 738 if (!vmx_need_pf_intercept(vcpu)) 739 eb &= ~(1u << PF_VECTOR); 740 741 /* When we are running a nested L2 guest and L1 specified for it a 742 * certain exception bitmap, we must trap the same exceptions and pass 743 * them to L1. When running L2, we will only handle the exceptions 744 * specified above if L1 did not want them. 745 */ 746 if (is_guest_mode(vcpu)) 747 eb |= get_vmcs12(vcpu)->exception_bitmap; 748 else { 749 int mask = 0, match = 0; 750 751 if (enable_ept && (eb & (1u << PF_VECTOR))) { 752 /* 753 * If EPT is enabled, #PF is currently only intercepted 754 * if MAXPHYADDR is smaller on the guest than on the 755 * host. In that case we only care about present, 756 * non-reserved faults. For vmcs02, however, PFEC_MASK 757 * and PFEC_MATCH are set in prepare_vmcs02_rare. 758 */ 759 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK; 760 match = PFERR_PRESENT_MASK; 761 } 762 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask); 763 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match); 764 } 765 766 vmcs_write32(EXCEPTION_BITMAP, eb); 767 } 768 769 /* 770 * Check if MSR is intercepted for currently loaded MSR bitmap. 771 */ 772 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr) 773 { 774 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS)) 775 return true; 776 777 return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, 778 MSR_IA32_SPEC_CTRL); 779 } 780 781 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, 782 unsigned long entry, unsigned long exit) 783 { 784 vm_entry_controls_clearbit(vmx, entry); 785 vm_exit_controls_clearbit(vmx, exit); 786 } 787 788 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr) 789 { 790 unsigned int i; 791 792 for (i = 0; i < m->nr; ++i) { 793 if (m->val[i].index == msr) 794 return i; 795 } 796 return -ENOENT; 797 } 798 799 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) 800 { 801 int i; 802 struct msr_autoload *m = &vmx->msr_autoload; 803 804 switch (msr) { 805 case MSR_EFER: 806 if (cpu_has_load_ia32_efer()) { 807 clear_atomic_switch_msr_special(vmx, 808 VM_ENTRY_LOAD_IA32_EFER, 809 VM_EXIT_LOAD_IA32_EFER); 810 return; 811 } 812 break; 813 case MSR_CORE_PERF_GLOBAL_CTRL: 814 if (cpu_has_load_perf_global_ctrl()) { 815 clear_atomic_switch_msr_special(vmx, 816 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 817 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); 818 return; 819 } 820 break; 821 } 822 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 823 if (i < 0) 824 goto skip_guest; 825 --m->guest.nr; 826 m->guest.val[i] = m->guest.val[m->guest.nr]; 827 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 828 829 skip_guest: 830 i = vmx_find_loadstore_msr_slot(&m->host, msr); 831 if (i < 0) 832 return; 833 834 --m->host.nr; 835 m->host.val[i] = m->host.val[m->host.nr]; 836 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 837 } 838 839 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, 840 unsigned long entry, unsigned long exit, 841 unsigned long guest_val_vmcs, unsigned long host_val_vmcs, 842 u64 guest_val, u64 host_val) 843 { 844 vmcs_write64(guest_val_vmcs, guest_val); 845 if (host_val_vmcs != HOST_IA32_EFER) 846 vmcs_write64(host_val_vmcs, host_val); 847 vm_entry_controls_setbit(vmx, entry); 848 vm_exit_controls_setbit(vmx, exit); 849 } 850 851 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, 852 u64 guest_val, u64 host_val, bool entry_only) 853 { 854 int i, j = 0; 855 struct msr_autoload *m = &vmx->msr_autoload; 856 857 switch (msr) { 858 case MSR_EFER: 859 if (cpu_has_load_ia32_efer()) { 860 add_atomic_switch_msr_special(vmx, 861 VM_ENTRY_LOAD_IA32_EFER, 862 VM_EXIT_LOAD_IA32_EFER, 863 GUEST_IA32_EFER, 864 HOST_IA32_EFER, 865 guest_val, host_val); 866 return; 867 } 868 break; 869 case MSR_CORE_PERF_GLOBAL_CTRL: 870 if (cpu_has_load_perf_global_ctrl()) { 871 add_atomic_switch_msr_special(vmx, 872 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 873 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, 874 GUEST_IA32_PERF_GLOBAL_CTRL, 875 HOST_IA32_PERF_GLOBAL_CTRL, 876 guest_val, host_val); 877 return; 878 } 879 break; 880 case MSR_IA32_PEBS_ENABLE: 881 /* PEBS needs a quiescent period after being disabled (to write 882 * a record). Disabling PEBS through VMX MSR swapping doesn't 883 * provide that period, so a CPU could write host's record into 884 * guest's memory. 885 */ 886 wrmsrl(MSR_IA32_PEBS_ENABLE, 0); 887 } 888 889 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 890 if (!entry_only) 891 j = vmx_find_loadstore_msr_slot(&m->host, msr); 892 893 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) || 894 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) { 895 printk_once(KERN_WARNING "Not enough msr switch entries. " 896 "Can't add msr %x\n", msr); 897 return; 898 } 899 if (i < 0) { 900 i = m->guest.nr++; 901 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 902 } 903 m->guest.val[i].index = msr; 904 m->guest.val[i].value = guest_val; 905 906 if (entry_only) 907 return; 908 909 if (j < 0) { 910 j = m->host.nr++; 911 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 912 } 913 m->host.val[j].index = msr; 914 m->host.val[j].value = host_val; 915 } 916 917 static bool update_transition_efer(struct vcpu_vmx *vmx) 918 { 919 u64 guest_efer = vmx->vcpu.arch.efer; 920 u64 ignore_bits = 0; 921 int i; 922 923 /* Shadow paging assumes NX to be available. */ 924 if (!enable_ept) 925 guest_efer |= EFER_NX; 926 927 /* 928 * LMA and LME handled by hardware; SCE meaningless outside long mode. 929 */ 930 ignore_bits |= EFER_SCE; 931 #ifdef CONFIG_X86_64 932 ignore_bits |= EFER_LMA | EFER_LME; 933 /* SCE is meaningful only in long mode on Intel */ 934 if (guest_efer & EFER_LMA) 935 ignore_bits &= ~(u64)EFER_SCE; 936 #endif 937 938 /* 939 * On EPT, we can't emulate NX, so we must switch EFER atomically. 940 * On CPUs that support "load IA32_EFER", always switch EFER 941 * atomically, since it's faster than switching it manually. 942 */ 943 if (cpu_has_load_ia32_efer() || 944 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { 945 if (!(guest_efer & EFER_LMA)) 946 guest_efer &= ~EFER_LME; 947 if (guest_efer != host_efer) 948 add_atomic_switch_msr(vmx, MSR_EFER, 949 guest_efer, host_efer, false); 950 else 951 clear_atomic_switch_msr(vmx, MSR_EFER); 952 return false; 953 } 954 955 i = kvm_find_user_return_msr(MSR_EFER); 956 if (i < 0) 957 return false; 958 959 clear_atomic_switch_msr(vmx, MSR_EFER); 960 961 guest_efer &= ~ignore_bits; 962 guest_efer |= host_efer & ignore_bits; 963 964 vmx->guest_uret_msrs[i].data = guest_efer; 965 vmx->guest_uret_msrs[i].mask = ~ignore_bits; 966 967 return true; 968 } 969 970 #ifdef CONFIG_X86_32 971 /* 972 * On 32-bit kernels, VM exits still load the FS and GS bases from the 973 * VMCS rather than the segment table. KVM uses this helper to figure 974 * out the current bases to poke them into the VMCS before entry. 975 */ 976 static unsigned long segment_base(u16 selector) 977 { 978 struct desc_struct *table; 979 unsigned long v; 980 981 if (!(selector & ~SEGMENT_RPL_MASK)) 982 return 0; 983 984 table = get_current_gdt_ro(); 985 986 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { 987 u16 ldt_selector = kvm_read_ldt(); 988 989 if (!(ldt_selector & ~SEGMENT_RPL_MASK)) 990 return 0; 991 992 table = (struct desc_struct *)segment_base(ldt_selector); 993 } 994 v = get_desc_base(&table[selector >> 3]); 995 return v; 996 } 997 #endif 998 999 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx) 1000 { 1001 return vmx_pt_mode_is_host_guest() && 1002 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 1003 } 1004 1005 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base) 1006 { 1007 /* The base must be 128-byte aligned and a legal physical address. */ 1008 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128); 1009 } 1010 1011 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) 1012 { 1013 u32 i; 1014 1015 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1016 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1017 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1018 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1019 for (i = 0; i < addr_range; i++) { 1020 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1021 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1022 } 1023 } 1024 1025 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) 1026 { 1027 u32 i; 1028 1029 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1030 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1031 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1032 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1033 for (i = 0; i < addr_range; i++) { 1034 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1035 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1036 } 1037 } 1038 1039 static void pt_guest_enter(struct vcpu_vmx *vmx) 1040 { 1041 if (vmx_pt_mode_is_system()) 1042 return; 1043 1044 /* 1045 * GUEST_IA32_RTIT_CTL is already set in the VMCS. 1046 * Save host state before VM entry. 1047 */ 1048 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1049 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1050 wrmsrl(MSR_IA32_RTIT_CTL, 0); 1051 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1052 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1053 } 1054 } 1055 1056 static void pt_guest_exit(struct vcpu_vmx *vmx) 1057 { 1058 if (vmx_pt_mode_is_system()) 1059 return; 1060 1061 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1062 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1063 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1064 } 1065 1066 /* 1067 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest, 1068 * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary. 1069 */ 1070 if (vmx->pt_desc.host.ctl) 1071 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1072 } 1073 1074 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, 1075 unsigned long fs_base, unsigned long gs_base) 1076 { 1077 if (unlikely(fs_sel != host->fs_sel)) { 1078 if (!(fs_sel & 7)) 1079 vmcs_write16(HOST_FS_SELECTOR, fs_sel); 1080 else 1081 vmcs_write16(HOST_FS_SELECTOR, 0); 1082 host->fs_sel = fs_sel; 1083 } 1084 if (unlikely(gs_sel != host->gs_sel)) { 1085 if (!(gs_sel & 7)) 1086 vmcs_write16(HOST_GS_SELECTOR, gs_sel); 1087 else 1088 vmcs_write16(HOST_GS_SELECTOR, 0); 1089 host->gs_sel = gs_sel; 1090 } 1091 if (unlikely(fs_base != host->fs_base)) { 1092 vmcs_writel(HOST_FS_BASE, fs_base); 1093 host->fs_base = fs_base; 1094 } 1095 if (unlikely(gs_base != host->gs_base)) { 1096 vmcs_writel(HOST_GS_BASE, gs_base); 1097 host->gs_base = gs_base; 1098 } 1099 } 1100 1101 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1102 { 1103 struct vcpu_vmx *vmx = to_vmx(vcpu); 1104 struct vmcs_host_state *host_state; 1105 #ifdef CONFIG_X86_64 1106 int cpu = raw_smp_processor_id(); 1107 #endif 1108 unsigned long fs_base, gs_base; 1109 u16 fs_sel, gs_sel; 1110 int i; 1111 1112 vmx->req_immediate_exit = false; 1113 1114 /* 1115 * Note that guest MSRs to be saved/restored can also be changed 1116 * when guest state is loaded. This happens when guest transitions 1117 * to/from long-mode by setting MSR_EFER.LMA. 1118 */ 1119 if (!vmx->guest_uret_msrs_loaded) { 1120 vmx->guest_uret_msrs_loaded = true; 1121 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 1122 if (!vmx->guest_uret_msrs[i].load_into_hardware) 1123 continue; 1124 1125 kvm_set_user_return_msr(i, 1126 vmx->guest_uret_msrs[i].data, 1127 vmx->guest_uret_msrs[i].mask); 1128 } 1129 } 1130 1131 if (vmx->nested.need_vmcs12_to_shadow_sync) 1132 nested_sync_vmcs12_to_shadow(vcpu); 1133 1134 if (vmx->guest_state_loaded) 1135 return; 1136 1137 host_state = &vmx->loaded_vmcs->host_state; 1138 1139 /* 1140 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not 1141 * allow segment selectors with cpl > 0 or ti == 1. 1142 */ 1143 host_state->ldt_sel = kvm_read_ldt(); 1144 1145 #ifdef CONFIG_X86_64 1146 savesegment(ds, host_state->ds_sel); 1147 savesegment(es, host_state->es_sel); 1148 1149 gs_base = cpu_kernelmode_gs_base(cpu); 1150 if (likely(is_64bit_mm(current->mm))) { 1151 current_save_fsgs(); 1152 fs_sel = current->thread.fsindex; 1153 gs_sel = current->thread.gsindex; 1154 fs_base = current->thread.fsbase; 1155 vmx->msr_host_kernel_gs_base = current->thread.gsbase; 1156 } else { 1157 savesegment(fs, fs_sel); 1158 savesegment(gs, gs_sel); 1159 fs_base = read_msr(MSR_FS_BASE); 1160 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); 1161 } 1162 1163 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1164 #else 1165 savesegment(fs, fs_sel); 1166 savesegment(gs, gs_sel); 1167 fs_base = segment_base(fs_sel); 1168 gs_base = segment_base(gs_sel); 1169 #endif 1170 1171 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base); 1172 vmx->guest_state_loaded = true; 1173 } 1174 1175 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) 1176 { 1177 struct vmcs_host_state *host_state; 1178 1179 if (!vmx->guest_state_loaded) 1180 return; 1181 1182 host_state = &vmx->loaded_vmcs->host_state; 1183 1184 ++vmx->vcpu.stat.host_state_reload; 1185 1186 #ifdef CONFIG_X86_64 1187 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1188 #endif 1189 if (host_state->ldt_sel || (host_state->gs_sel & 7)) { 1190 kvm_load_ldt(host_state->ldt_sel); 1191 #ifdef CONFIG_X86_64 1192 load_gs_index(host_state->gs_sel); 1193 #else 1194 loadsegment(gs, host_state->gs_sel); 1195 #endif 1196 } 1197 if (host_state->fs_sel & 7) 1198 loadsegment(fs, host_state->fs_sel); 1199 #ifdef CONFIG_X86_64 1200 if (unlikely(host_state->ds_sel | host_state->es_sel)) { 1201 loadsegment(ds, host_state->ds_sel); 1202 loadsegment(es, host_state->es_sel); 1203 } 1204 #endif 1205 invalidate_tss_limit(); 1206 #ifdef CONFIG_X86_64 1207 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); 1208 #endif 1209 load_fixmap_gdt(raw_smp_processor_id()); 1210 vmx->guest_state_loaded = false; 1211 vmx->guest_uret_msrs_loaded = false; 1212 } 1213 1214 #ifdef CONFIG_X86_64 1215 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) 1216 { 1217 preempt_disable(); 1218 if (vmx->guest_state_loaded) 1219 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1220 preempt_enable(); 1221 return vmx->msr_guest_kernel_gs_base; 1222 } 1223 1224 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) 1225 { 1226 preempt_disable(); 1227 if (vmx->guest_state_loaded) 1228 wrmsrl(MSR_KERNEL_GS_BASE, data); 1229 preempt_enable(); 1230 vmx->msr_guest_kernel_gs_base = data; 1231 } 1232 #endif 1233 1234 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu, 1235 struct loaded_vmcs *buddy) 1236 { 1237 struct vcpu_vmx *vmx = to_vmx(vcpu); 1238 bool already_loaded = vmx->loaded_vmcs->cpu == cpu; 1239 struct vmcs *prev; 1240 1241 if (!already_loaded) { 1242 loaded_vmcs_clear(vmx->loaded_vmcs); 1243 local_irq_disable(); 1244 1245 /* 1246 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to 1247 * this cpu's percpu list, otherwise it may not yet be deleted 1248 * from its previous cpu's percpu list. Pairs with the 1249 * smb_wmb() in __loaded_vmcs_clear(). 1250 */ 1251 smp_rmb(); 1252 1253 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, 1254 &per_cpu(loaded_vmcss_on_cpu, cpu)); 1255 local_irq_enable(); 1256 } 1257 1258 prev = per_cpu(current_vmcs, cpu); 1259 if (prev != vmx->loaded_vmcs->vmcs) { 1260 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; 1261 vmcs_load(vmx->loaded_vmcs->vmcs); 1262 1263 /* 1264 * No indirect branch prediction barrier needed when switching 1265 * the active VMCS within a guest, e.g. on nested VM-Enter. 1266 * The L1 VMM can protect itself with retpolines, IBPB or IBRS. 1267 */ 1268 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev)) 1269 indirect_branch_prediction_barrier(); 1270 } 1271 1272 if (!already_loaded) { 1273 void *gdt = get_current_gdt_ro(); 1274 unsigned long sysenter_esp; 1275 1276 /* 1277 * Flush all EPTP/VPID contexts, the new pCPU may have stale 1278 * TLB entries from its previous association with the vCPU. 1279 */ 1280 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 1281 1282 /* 1283 * Linux uses per-cpu TSS and GDT, so set these when switching 1284 * processors. See 22.2.4. 1285 */ 1286 vmcs_writel(HOST_TR_BASE, 1287 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); 1288 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ 1289 1290 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp); 1291 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */ 1292 1293 vmx->loaded_vmcs->cpu = cpu; 1294 } 1295 } 1296 1297 /* 1298 * Switches to specified vcpu, until a matching vcpu_put(), but assumes 1299 * vcpu mutex is already taken. 1300 */ 1301 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1302 { 1303 struct vcpu_vmx *vmx = to_vmx(vcpu); 1304 1305 vmx_vcpu_load_vmcs(vcpu, cpu, NULL); 1306 1307 vmx_vcpu_pi_load(vcpu, cpu); 1308 1309 vmx->host_debugctlmsr = get_debugctlmsr(); 1310 } 1311 1312 static void vmx_vcpu_put(struct kvm_vcpu *vcpu) 1313 { 1314 vmx_vcpu_pi_put(vcpu); 1315 1316 vmx_prepare_switch_to_host(to_vmx(vcpu)); 1317 } 1318 1319 bool vmx_emulation_required(struct kvm_vcpu *vcpu) 1320 { 1321 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu); 1322 } 1323 1324 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) 1325 { 1326 struct vcpu_vmx *vmx = to_vmx(vcpu); 1327 unsigned long rflags, save_rflags; 1328 1329 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) { 1330 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1331 rflags = vmcs_readl(GUEST_RFLAGS); 1332 if (vmx->rmode.vm86_active) { 1333 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 1334 save_rflags = vmx->rmode.save_rflags; 1335 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 1336 } 1337 vmx->rflags = rflags; 1338 } 1339 return vmx->rflags; 1340 } 1341 1342 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1343 { 1344 struct vcpu_vmx *vmx = to_vmx(vcpu); 1345 unsigned long old_rflags; 1346 1347 if (is_unrestricted_guest(vcpu)) { 1348 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1349 vmx->rflags = rflags; 1350 vmcs_writel(GUEST_RFLAGS, rflags); 1351 return; 1352 } 1353 1354 old_rflags = vmx_get_rflags(vcpu); 1355 vmx->rflags = rflags; 1356 if (vmx->rmode.vm86_active) { 1357 vmx->rmode.save_rflags = rflags; 1358 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 1359 } 1360 vmcs_writel(GUEST_RFLAGS, rflags); 1361 1362 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM) 1363 vmx->emulation_required = vmx_emulation_required(vcpu); 1364 } 1365 1366 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) 1367 { 1368 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1369 int ret = 0; 1370 1371 if (interruptibility & GUEST_INTR_STATE_STI) 1372 ret |= KVM_X86_SHADOW_INT_STI; 1373 if (interruptibility & GUEST_INTR_STATE_MOV_SS) 1374 ret |= KVM_X86_SHADOW_INT_MOV_SS; 1375 1376 return ret; 1377 } 1378 1379 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 1380 { 1381 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1382 u32 interruptibility = interruptibility_old; 1383 1384 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); 1385 1386 if (mask & KVM_X86_SHADOW_INT_MOV_SS) 1387 interruptibility |= GUEST_INTR_STATE_MOV_SS; 1388 else if (mask & KVM_X86_SHADOW_INT_STI) 1389 interruptibility |= GUEST_INTR_STATE_STI; 1390 1391 if ((interruptibility != interruptibility_old)) 1392 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); 1393 } 1394 1395 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) 1396 { 1397 struct vcpu_vmx *vmx = to_vmx(vcpu); 1398 unsigned long value; 1399 1400 /* 1401 * Any MSR write that attempts to change bits marked reserved will 1402 * case a #GP fault. 1403 */ 1404 if (data & vmx->pt_desc.ctl_bitmask) 1405 return 1; 1406 1407 /* 1408 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will 1409 * result in a #GP unless the same write also clears TraceEn. 1410 */ 1411 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && 1412 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN)) 1413 return 1; 1414 1415 /* 1416 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit 1417 * and FabricEn would cause #GP, if 1418 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 1419 */ 1420 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && 1421 !(data & RTIT_CTL_FABRIC_EN) && 1422 !intel_pt_validate_cap(vmx->pt_desc.caps, 1423 PT_CAP_single_range_output)) 1424 return 1; 1425 1426 /* 1427 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that 1428 * utilize encodings marked reserved will cause a #GP fault. 1429 */ 1430 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); 1431 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && 1432 !test_bit((data & RTIT_CTL_MTC_RANGE) >> 1433 RTIT_CTL_MTC_RANGE_OFFSET, &value)) 1434 return 1; 1435 value = intel_pt_validate_cap(vmx->pt_desc.caps, 1436 PT_CAP_cycle_thresholds); 1437 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1438 !test_bit((data & RTIT_CTL_CYC_THRESH) >> 1439 RTIT_CTL_CYC_THRESH_OFFSET, &value)) 1440 return 1; 1441 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); 1442 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1443 !test_bit((data & RTIT_CTL_PSB_FREQ) >> 1444 RTIT_CTL_PSB_FREQ_OFFSET, &value)) 1445 return 1; 1446 1447 /* 1448 * If ADDRx_CFG is reserved or the encodings is >2 will 1449 * cause a #GP fault. 1450 */ 1451 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; 1452 if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2)) 1453 return 1; 1454 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; 1455 if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2)) 1456 return 1; 1457 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; 1458 if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2)) 1459 return 1; 1460 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; 1461 if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2)) 1462 return 1; 1463 1464 return 0; 1465 } 1466 1467 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len) 1468 { 1469 /* 1470 * Emulation of instructions in SGX enclaves is impossible as RIP does 1471 * not point tthe failing instruction, and even if it did, the code 1472 * stream is inaccessible. Inject #UD instead of exiting to userspace 1473 * so that guest userspace can't DoS the guest simply by triggering 1474 * emulation (enclaves are CPL3 only). 1475 */ 1476 if (to_vmx(vcpu)->exit_reason.enclave_mode) { 1477 kvm_queue_exception(vcpu, UD_VECTOR); 1478 return false; 1479 } 1480 return true; 1481 } 1482 1483 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 1484 { 1485 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason; 1486 unsigned long rip, orig_rip; 1487 u32 instr_len; 1488 1489 /* 1490 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on 1491 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be 1492 * set when EPT misconfig occurs. In practice, real hardware updates 1493 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors 1494 * (namely Hyper-V) don't set it due to it being undefined behavior, 1495 * i.e. we end up advancing IP with some random value. 1496 */ 1497 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) || 1498 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) { 1499 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 1500 1501 /* 1502 * Emulating an enclave's instructions isn't supported as KVM 1503 * cannot access the enclave's memory or its true RIP, e.g. the 1504 * vmcs.GUEST_RIP points at the exit point of the enclave, not 1505 * the RIP that actually triggered the VM-Exit. But, because 1506 * most instructions that cause VM-Exit will #UD in an enclave, 1507 * most instruction-based VM-Exits simply do not occur. 1508 * 1509 * There are a few exceptions, notably the debug instructions 1510 * INT1ICEBRK and INT3, as they are allowed in debug enclaves 1511 * and generate #DB/#BP as expected, which KVM might intercept. 1512 * But again, the CPU does the dirty work and saves an instr 1513 * length of zero so VMMs don't shoot themselves in the foot. 1514 * WARN if KVM tries to skip a non-zero length instruction on 1515 * a VM-Exit from an enclave. 1516 */ 1517 if (!instr_len) 1518 goto rip_updated; 1519 1520 WARN(exit_reason.enclave_mode, 1521 "KVM: skipping instruction after SGX enclave VM-Exit"); 1522 1523 orig_rip = kvm_rip_read(vcpu); 1524 rip = orig_rip + instr_len; 1525 #ifdef CONFIG_X86_64 1526 /* 1527 * We need to mask out the high 32 bits of RIP if not in 64-bit 1528 * mode, but just finding out that we are in 64-bit mode is 1529 * quite expensive. Only do it if there was a carry. 1530 */ 1531 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu)) 1532 rip = (u32)rip; 1533 #endif 1534 kvm_rip_write(vcpu, rip); 1535 } else { 1536 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 1537 return 0; 1538 } 1539 1540 rip_updated: 1541 /* skipping an emulated instruction also counts */ 1542 vmx_set_interrupt_shadow(vcpu, 0); 1543 1544 return 1; 1545 } 1546 1547 /* 1548 * Recognizes a pending MTF VM-exit and records the nested state for later 1549 * delivery. 1550 */ 1551 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu) 1552 { 1553 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1554 struct vcpu_vmx *vmx = to_vmx(vcpu); 1555 1556 if (!is_guest_mode(vcpu)) 1557 return; 1558 1559 /* 1560 * Per the SDM, MTF takes priority over debug-trap exceptions besides 1561 * T-bit traps. As instruction emulation is completed (i.e. at the 1562 * instruction boundary), any #DB exception pending delivery must be a 1563 * debug-trap. Record the pending MTF state to be delivered in 1564 * vmx_check_nested_events(). 1565 */ 1566 if (nested_cpu_has_mtf(vmcs12) && 1567 (!vcpu->arch.exception.pending || 1568 vcpu->arch.exception.nr == DB_VECTOR)) 1569 vmx->nested.mtf_pending = true; 1570 else 1571 vmx->nested.mtf_pending = false; 1572 } 1573 1574 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu) 1575 { 1576 vmx_update_emulated_instruction(vcpu); 1577 return skip_emulated_instruction(vcpu); 1578 } 1579 1580 static void vmx_clear_hlt(struct kvm_vcpu *vcpu) 1581 { 1582 /* 1583 * Ensure that we clear the HLT state in the VMCS. We don't need to 1584 * explicitly skip the instruction because if the HLT state is set, 1585 * then the instruction is already executing and RIP has already been 1586 * advanced. 1587 */ 1588 if (kvm_hlt_in_guest(vcpu->kvm) && 1589 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) 1590 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 1591 } 1592 1593 static void vmx_queue_exception(struct kvm_vcpu *vcpu) 1594 { 1595 struct vcpu_vmx *vmx = to_vmx(vcpu); 1596 unsigned nr = vcpu->arch.exception.nr; 1597 bool has_error_code = vcpu->arch.exception.has_error_code; 1598 u32 error_code = vcpu->arch.exception.error_code; 1599 u32 intr_info = nr | INTR_INFO_VALID_MASK; 1600 1601 kvm_deliver_exception_payload(vcpu); 1602 1603 if (has_error_code) { 1604 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code); 1605 intr_info |= INTR_INFO_DELIVER_CODE_MASK; 1606 } 1607 1608 if (vmx->rmode.vm86_active) { 1609 int inc_eip = 0; 1610 if (kvm_exception_is_soft(nr)) 1611 inc_eip = vcpu->arch.event_exit_inst_len; 1612 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip); 1613 return; 1614 } 1615 1616 WARN_ON_ONCE(vmx->emulation_required); 1617 1618 if (kvm_exception_is_soft(nr)) { 1619 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1620 vmx->vcpu.arch.event_exit_inst_len); 1621 intr_info |= INTR_TYPE_SOFT_EXCEPTION; 1622 } else 1623 intr_info |= INTR_TYPE_HARD_EXCEPTION; 1624 1625 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); 1626 1627 vmx_clear_hlt(vcpu); 1628 } 1629 1630 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr, 1631 bool load_into_hardware) 1632 { 1633 struct vmx_uret_msr *uret_msr; 1634 1635 uret_msr = vmx_find_uret_msr(vmx, msr); 1636 if (!uret_msr) 1637 return; 1638 1639 uret_msr->load_into_hardware = load_into_hardware; 1640 } 1641 1642 /* 1643 * Configuring user return MSRs to automatically save, load, and restore MSRs 1644 * that need to be shoved into hardware when running the guest. Note, omitting 1645 * an MSR here does _NOT_ mean it's not emulated, only that it will not be 1646 * loaded into hardware when running the guest. 1647 */ 1648 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx) 1649 { 1650 #ifdef CONFIG_X86_64 1651 bool load_syscall_msrs; 1652 1653 /* 1654 * The SYSCALL MSRs are only needed on long mode guests, and only 1655 * when EFER.SCE is set. 1656 */ 1657 load_syscall_msrs = is_long_mode(&vmx->vcpu) && 1658 (vmx->vcpu.arch.efer & EFER_SCE); 1659 1660 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs); 1661 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs); 1662 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs); 1663 #endif 1664 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx)); 1665 1666 vmx_setup_uret_msr(vmx, MSR_TSC_AUX, 1667 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) || 1668 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID)); 1669 1670 /* 1671 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new 1672 * kernel and old userspace. If those guests run on a tsx=off host, do 1673 * allow guests to use TSX_CTRL, but don't change the value in hardware 1674 * so that TSX remains always disabled. 1675 */ 1676 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM)); 1677 1678 /* 1679 * The set of MSRs to load may have changed, reload MSRs before the 1680 * next VM-Enter. 1681 */ 1682 vmx->guest_uret_msrs_loaded = false; 1683 } 1684 1685 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1686 { 1687 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1688 1689 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) 1690 return vmcs12->tsc_offset; 1691 1692 return 0; 1693 } 1694 1695 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1696 { 1697 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1698 1699 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) && 1700 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING)) 1701 return vmcs12->tsc_multiplier; 1702 1703 return kvm_default_tsc_scaling_ratio; 1704 } 1705 1706 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1707 { 1708 vmcs_write64(TSC_OFFSET, offset); 1709 } 1710 1711 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier) 1712 { 1713 vmcs_write64(TSC_MULTIPLIER, multiplier); 1714 } 1715 1716 /* 1717 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX 1718 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for 1719 * all guests if the "nested" module option is off, and can also be disabled 1720 * for a single guest by disabling its VMX cpuid bit. 1721 */ 1722 bool nested_vmx_allowed(struct kvm_vcpu *vcpu) 1723 { 1724 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX); 1725 } 1726 1727 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu, 1728 uint64_t val) 1729 { 1730 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits; 1731 1732 return !(val & ~valid_bits); 1733 } 1734 1735 static int vmx_get_msr_feature(struct kvm_msr_entry *msr) 1736 { 1737 switch (msr->index) { 1738 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1739 if (!nested) 1740 return 1; 1741 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); 1742 case MSR_IA32_PERF_CAPABILITIES: 1743 msr->data = vmx_get_perf_capabilities(); 1744 return 0; 1745 default: 1746 return KVM_MSR_RET_INVALID; 1747 } 1748 } 1749 1750 /* 1751 * Reads an msr value (of 'msr_index') into 'pdata'. 1752 * Returns 0 on success, non-0 otherwise. 1753 * Assumes vcpu_load() was already called. 1754 */ 1755 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1756 { 1757 struct vcpu_vmx *vmx = to_vmx(vcpu); 1758 struct vmx_uret_msr *msr; 1759 u32 index; 1760 1761 switch (msr_info->index) { 1762 #ifdef CONFIG_X86_64 1763 case MSR_FS_BASE: 1764 msr_info->data = vmcs_readl(GUEST_FS_BASE); 1765 break; 1766 case MSR_GS_BASE: 1767 msr_info->data = vmcs_readl(GUEST_GS_BASE); 1768 break; 1769 case MSR_KERNEL_GS_BASE: 1770 msr_info->data = vmx_read_guest_kernel_gs_base(vmx); 1771 break; 1772 #endif 1773 case MSR_EFER: 1774 return kvm_get_msr_common(vcpu, msr_info); 1775 case MSR_IA32_TSX_CTRL: 1776 if (!msr_info->host_initiated && 1777 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 1778 return 1; 1779 goto find_uret_msr; 1780 case MSR_IA32_UMWAIT_CONTROL: 1781 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 1782 return 1; 1783 1784 msr_info->data = vmx->msr_ia32_umwait_control; 1785 break; 1786 case MSR_IA32_SPEC_CTRL: 1787 if (!msr_info->host_initiated && 1788 !guest_has_spec_ctrl_msr(vcpu)) 1789 return 1; 1790 1791 msr_info->data = to_vmx(vcpu)->spec_ctrl; 1792 break; 1793 case MSR_IA32_SYSENTER_CS: 1794 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); 1795 break; 1796 case MSR_IA32_SYSENTER_EIP: 1797 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); 1798 break; 1799 case MSR_IA32_SYSENTER_ESP: 1800 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); 1801 break; 1802 case MSR_IA32_BNDCFGS: 1803 if (!kvm_mpx_supported() || 1804 (!msr_info->host_initiated && 1805 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 1806 return 1; 1807 msr_info->data = vmcs_read64(GUEST_BNDCFGS); 1808 break; 1809 case MSR_IA32_MCG_EXT_CTL: 1810 if (!msr_info->host_initiated && 1811 !(vmx->msr_ia32_feature_control & 1812 FEAT_CTL_LMCE_ENABLED)) 1813 return 1; 1814 msr_info->data = vcpu->arch.mcg_ext_ctl; 1815 break; 1816 case MSR_IA32_FEAT_CTL: 1817 msr_info->data = vmx->msr_ia32_feature_control; 1818 break; 1819 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 1820 if (!msr_info->host_initiated && 1821 !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 1822 return 1; 1823 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash 1824 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0]; 1825 break; 1826 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1827 if (!nested_vmx_allowed(vcpu)) 1828 return 1; 1829 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, 1830 &msr_info->data)) 1831 return 1; 1832 /* 1833 * Enlightened VMCS v1 doesn't have certain VMCS fields but 1834 * instead of just ignoring the features, different Hyper-V 1835 * versions are either trying to use them and fail or do some 1836 * sanity checking and refuse to boot. Filter all unsupported 1837 * features out. 1838 */ 1839 if (!msr_info->host_initiated && 1840 vmx->nested.enlightened_vmcs_enabled) 1841 nested_evmcs_filter_control_msr(msr_info->index, 1842 &msr_info->data); 1843 break; 1844 case MSR_IA32_RTIT_CTL: 1845 if (!vmx_pt_mode_is_host_guest()) 1846 return 1; 1847 msr_info->data = vmx->pt_desc.guest.ctl; 1848 break; 1849 case MSR_IA32_RTIT_STATUS: 1850 if (!vmx_pt_mode_is_host_guest()) 1851 return 1; 1852 msr_info->data = vmx->pt_desc.guest.status; 1853 break; 1854 case MSR_IA32_RTIT_CR3_MATCH: 1855 if (!vmx_pt_mode_is_host_guest() || 1856 !intel_pt_validate_cap(vmx->pt_desc.caps, 1857 PT_CAP_cr3_filtering)) 1858 return 1; 1859 msr_info->data = vmx->pt_desc.guest.cr3_match; 1860 break; 1861 case MSR_IA32_RTIT_OUTPUT_BASE: 1862 if (!vmx_pt_mode_is_host_guest() || 1863 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1864 PT_CAP_topa_output) && 1865 !intel_pt_validate_cap(vmx->pt_desc.caps, 1866 PT_CAP_single_range_output))) 1867 return 1; 1868 msr_info->data = vmx->pt_desc.guest.output_base; 1869 break; 1870 case MSR_IA32_RTIT_OUTPUT_MASK: 1871 if (!vmx_pt_mode_is_host_guest() || 1872 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1873 PT_CAP_topa_output) && 1874 !intel_pt_validate_cap(vmx->pt_desc.caps, 1875 PT_CAP_single_range_output))) 1876 return 1; 1877 msr_info->data = vmx->pt_desc.guest.output_mask; 1878 break; 1879 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 1880 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 1881 if (!vmx_pt_mode_is_host_guest() || 1882 (index >= 2 * vmx->pt_desc.num_address_ranges)) 1883 return 1; 1884 if (index % 2) 1885 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; 1886 else 1887 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; 1888 break; 1889 case MSR_IA32_DEBUGCTLMSR: 1890 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL); 1891 break; 1892 default: 1893 find_uret_msr: 1894 msr = vmx_find_uret_msr(vmx, msr_info->index); 1895 if (msr) { 1896 msr_info->data = msr->data; 1897 break; 1898 } 1899 return kvm_get_msr_common(vcpu, msr_info); 1900 } 1901 1902 return 0; 1903 } 1904 1905 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu, 1906 u64 data) 1907 { 1908 #ifdef CONFIG_X86_64 1909 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1910 return (u32)data; 1911 #endif 1912 return (unsigned long)data; 1913 } 1914 1915 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu) 1916 { 1917 u64 debugctl = vmx_supported_debugctl(); 1918 1919 if (!intel_pmu_lbr_is_enabled(vcpu)) 1920 debugctl &= ~DEBUGCTLMSR_LBR_MASK; 1921 1922 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1923 debugctl &= ~DEBUGCTLMSR_BUS_LOCK_DETECT; 1924 1925 return debugctl; 1926 } 1927 1928 /* 1929 * Writes msr value into the appropriate "register". 1930 * Returns 0 on success, non-0 otherwise. 1931 * Assumes vcpu_load() was already called. 1932 */ 1933 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1934 { 1935 struct vcpu_vmx *vmx = to_vmx(vcpu); 1936 struct vmx_uret_msr *msr; 1937 int ret = 0; 1938 u32 msr_index = msr_info->index; 1939 u64 data = msr_info->data; 1940 u32 index; 1941 1942 switch (msr_index) { 1943 case MSR_EFER: 1944 ret = kvm_set_msr_common(vcpu, msr_info); 1945 break; 1946 #ifdef CONFIG_X86_64 1947 case MSR_FS_BASE: 1948 vmx_segment_cache_clear(vmx); 1949 vmcs_writel(GUEST_FS_BASE, data); 1950 break; 1951 case MSR_GS_BASE: 1952 vmx_segment_cache_clear(vmx); 1953 vmcs_writel(GUEST_GS_BASE, data); 1954 break; 1955 case MSR_KERNEL_GS_BASE: 1956 vmx_write_guest_kernel_gs_base(vmx, data); 1957 break; 1958 #endif 1959 case MSR_IA32_SYSENTER_CS: 1960 if (is_guest_mode(vcpu)) 1961 get_vmcs12(vcpu)->guest_sysenter_cs = data; 1962 vmcs_write32(GUEST_SYSENTER_CS, data); 1963 break; 1964 case MSR_IA32_SYSENTER_EIP: 1965 if (is_guest_mode(vcpu)) { 1966 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 1967 get_vmcs12(vcpu)->guest_sysenter_eip = data; 1968 } 1969 vmcs_writel(GUEST_SYSENTER_EIP, data); 1970 break; 1971 case MSR_IA32_SYSENTER_ESP: 1972 if (is_guest_mode(vcpu)) { 1973 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 1974 get_vmcs12(vcpu)->guest_sysenter_esp = data; 1975 } 1976 vmcs_writel(GUEST_SYSENTER_ESP, data); 1977 break; 1978 case MSR_IA32_DEBUGCTLMSR: { 1979 u64 invalid = data & ~vcpu_supported_debugctl(vcpu); 1980 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) { 1981 if (report_ignored_msrs) 1982 vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n", 1983 __func__, data); 1984 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 1985 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 1986 } 1987 1988 if (invalid) 1989 return 1; 1990 1991 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls & 1992 VM_EXIT_SAVE_DEBUG_CONTROLS) 1993 get_vmcs12(vcpu)->guest_ia32_debugctl = data; 1994 1995 vmcs_write64(GUEST_IA32_DEBUGCTL, data); 1996 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event && 1997 (data & DEBUGCTLMSR_LBR)) 1998 intel_pmu_create_guest_lbr_event(vcpu); 1999 return 0; 2000 } 2001 case MSR_IA32_BNDCFGS: 2002 if (!kvm_mpx_supported() || 2003 (!msr_info->host_initiated && 2004 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 2005 return 1; 2006 if (is_noncanonical_address(data & PAGE_MASK, vcpu) || 2007 (data & MSR_IA32_BNDCFGS_RSVD)) 2008 return 1; 2009 vmcs_write64(GUEST_BNDCFGS, data); 2010 break; 2011 case MSR_IA32_UMWAIT_CONTROL: 2012 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2013 return 1; 2014 2015 /* The reserved bit 1 and non-32 bit [63:32] should be zero */ 2016 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32))) 2017 return 1; 2018 2019 vmx->msr_ia32_umwait_control = data; 2020 break; 2021 case MSR_IA32_SPEC_CTRL: 2022 if (!msr_info->host_initiated && 2023 !guest_has_spec_ctrl_msr(vcpu)) 2024 return 1; 2025 2026 if (kvm_spec_ctrl_test_value(data)) 2027 return 1; 2028 2029 vmx->spec_ctrl = data; 2030 if (!data) 2031 break; 2032 2033 /* 2034 * For non-nested: 2035 * When it's written (to non-zero) for the first time, pass 2036 * it through. 2037 * 2038 * For nested: 2039 * The handling of the MSR bitmap for L2 guests is done in 2040 * nested_vmx_prepare_msr_bitmap. We should not touch the 2041 * vmcs02.msr_bitmap here since it gets completely overwritten 2042 * in the merging. We update the vmcs01 here for L1 as well 2043 * since it will end up touching the MSR anyway now. 2044 */ 2045 vmx_disable_intercept_for_msr(vcpu, 2046 MSR_IA32_SPEC_CTRL, 2047 MSR_TYPE_RW); 2048 break; 2049 case MSR_IA32_TSX_CTRL: 2050 if (!msr_info->host_initiated && 2051 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2052 return 1; 2053 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR)) 2054 return 1; 2055 goto find_uret_msr; 2056 case MSR_IA32_PRED_CMD: 2057 if (!msr_info->host_initiated && 2058 !guest_has_pred_cmd_msr(vcpu)) 2059 return 1; 2060 2061 if (data & ~PRED_CMD_IBPB) 2062 return 1; 2063 if (!boot_cpu_has(X86_FEATURE_IBPB)) 2064 return 1; 2065 if (!data) 2066 break; 2067 2068 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 2069 2070 /* 2071 * For non-nested: 2072 * When it's written (to non-zero) for the first time, pass 2073 * it through. 2074 * 2075 * For nested: 2076 * The handling of the MSR bitmap for L2 guests is done in 2077 * nested_vmx_prepare_msr_bitmap. We should not touch the 2078 * vmcs02.msr_bitmap here since it gets completely overwritten 2079 * in the merging. 2080 */ 2081 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W); 2082 break; 2083 case MSR_IA32_CR_PAT: 2084 if (!kvm_pat_valid(data)) 2085 return 1; 2086 2087 if (is_guest_mode(vcpu) && 2088 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) 2089 get_vmcs12(vcpu)->guest_ia32_pat = data; 2090 2091 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { 2092 vmcs_write64(GUEST_IA32_PAT, data); 2093 vcpu->arch.pat = data; 2094 break; 2095 } 2096 ret = kvm_set_msr_common(vcpu, msr_info); 2097 break; 2098 case MSR_IA32_TSC_ADJUST: 2099 ret = kvm_set_msr_common(vcpu, msr_info); 2100 break; 2101 case MSR_IA32_MCG_EXT_CTL: 2102 if ((!msr_info->host_initiated && 2103 !(to_vmx(vcpu)->msr_ia32_feature_control & 2104 FEAT_CTL_LMCE_ENABLED)) || 2105 (data & ~MCG_EXT_CTL_LMCE_EN)) 2106 return 1; 2107 vcpu->arch.mcg_ext_ctl = data; 2108 break; 2109 case MSR_IA32_FEAT_CTL: 2110 if (!vmx_feature_control_msr_valid(vcpu, data) || 2111 (to_vmx(vcpu)->msr_ia32_feature_control & 2112 FEAT_CTL_LOCKED && !msr_info->host_initiated)) 2113 return 1; 2114 vmx->msr_ia32_feature_control = data; 2115 if (msr_info->host_initiated && data == 0) 2116 vmx_leave_nested(vcpu); 2117 2118 /* SGX may be enabled/disabled by guest's firmware */ 2119 vmx_write_encls_bitmap(vcpu, NULL); 2120 break; 2121 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2122 /* 2123 * On real hardware, the LE hash MSRs are writable before 2124 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX), 2125 * at which point SGX related bits in IA32_FEATURE_CONTROL 2126 * become writable. 2127 * 2128 * KVM does not emulate SGX activation for simplicity, so 2129 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL 2130 * is unlocked. This is technically not architectural 2131 * behavior, but it's close enough. 2132 */ 2133 if (!msr_info->host_initiated && 2134 (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) || 2135 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) && 2136 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED)))) 2137 return 1; 2138 vmx->msr_ia32_sgxlepubkeyhash 2139 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data; 2140 break; 2141 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 2142 if (!msr_info->host_initiated) 2143 return 1; /* they are read-only */ 2144 if (!nested_vmx_allowed(vcpu)) 2145 return 1; 2146 return vmx_set_vmx_msr(vcpu, msr_index, data); 2147 case MSR_IA32_RTIT_CTL: 2148 if (!vmx_pt_mode_is_host_guest() || 2149 vmx_rtit_ctl_check(vcpu, data) || 2150 vmx->nested.vmxon) 2151 return 1; 2152 vmcs_write64(GUEST_IA32_RTIT_CTL, data); 2153 vmx->pt_desc.guest.ctl = data; 2154 pt_update_intercept_for_msr(vcpu); 2155 break; 2156 case MSR_IA32_RTIT_STATUS: 2157 if (!pt_can_write_msr(vmx)) 2158 return 1; 2159 if (data & MSR_IA32_RTIT_STATUS_MASK) 2160 return 1; 2161 vmx->pt_desc.guest.status = data; 2162 break; 2163 case MSR_IA32_RTIT_CR3_MATCH: 2164 if (!pt_can_write_msr(vmx)) 2165 return 1; 2166 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2167 PT_CAP_cr3_filtering)) 2168 return 1; 2169 vmx->pt_desc.guest.cr3_match = data; 2170 break; 2171 case MSR_IA32_RTIT_OUTPUT_BASE: 2172 if (!pt_can_write_msr(vmx)) 2173 return 1; 2174 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2175 PT_CAP_topa_output) && 2176 !intel_pt_validate_cap(vmx->pt_desc.caps, 2177 PT_CAP_single_range_output)) 2178 return 1; 2179 if (!pt_output_base_valid(vcpu, data)) 2180 return 1; 2181 vmx->pt_desc.guest.output_base = data; 2182 break; 2183 case MSR_IA32_RTIT_OUTPUT_MASK: 2184 if (!pt_can_write_msr(vmx)) 2185 return 1; 2186 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2187 PT_CAP_topa_output) && 2188 !intel_pt_validate_cap(vmx->pt_desc.caps, 2189 PT_CAP_single_range_output)) 2190 return 1; 2191 vmx->pt_desc.guest.output_mask = data; 2192 break; 2193 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2194 if (!pt_can_write_msr(vmx)) 2195 return 1; 2196 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2197 if (index >= 2 * vmx->pt_desc.num_address_ranges) 2198 return 1; 2199 if (is_noncanonical_address(data, vcpu)) 2200 return 1; 2201 if (index % 2) 2202 vmx->pt_desc.guest.addr_b[index / 2] = data; 2203 else 2204 vmx->pt_desc.guest.addr_a[index / 2] = data; 2205 break; 2206 case MSR_IA32_PERF_CAPABILITIES: 2207 if (data && !vcpu_to_pmu(vcpu)->version) 2208 return 1; 2209 if (data & PMU_CAP_LBR_FMT) { 2210 if ((data & PMU_CAP_LBR_FMT) != 2211 (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT)) 2212 return 1; 2213 if (!intel_pmu_lbr_is_compatible(vcpu)) 2214 return 1; 2215 } 2216 ret = kvm_set_msr_common(vcpu, msr_info); 2217 break; 2218 2219 default: 2220 find_uret_msr: 2221 msr = vmx_find_uret_msr(vmx, msr_index); 2222 if (msr) 2223 ret = vmx_set_guest_uret_msr(vmx, msr, data); 2224 else 2225 ret = kvm_set_msr_common(vcpu, msr_info); 2226 } 2227 2228 return ret; 2229 } 2230 2231 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 2232 { 2233 unsigned long guest_owned_bits; 2234 2235 kvm_register_mark_available(vcpu, reg); 2236 2237 switch (reg) { 2238 case VCPU_REGS_RSP: 2239 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); 2240 break; 2241 case VCPU_REGS_RIP: 2242 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); 2243 break; 2244 case VCPU_EXREG_PDPTR: 2245 if (enable_ept) 2246 ept_save_pdptrs(vcpu); 2247 break; 2248 case VCPU_EXREG_CR0: 2249 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; 2250 2251 vcpu->arch.cr0 &= ~guest_owned_bits; 2252 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits; 2253 break; 2254 case VCPU_EXREG_CR3: 2255 /* 2256 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's 2257 * CR3 is loaded into hardware, not the guest's CR3. 2258 */ 2259 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING)) 2260 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); 2261 break; 2262 case VCPU_EXREG_CR4: 2263 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; 2264 2265 vcpu->arch.cr4 &= ~guest_owned_bits; 2266 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits; 2267 break; 2268 default: 2269 KVM_BUG_ON(1, vcpu->kvm); 2270 break; 2271 } 2272 } 2273 2274 static __init int cpu_has_kvm_support(void) 2275 { 2276 return cpu_has_vmx(); 2277 } 2278 2279 static __init int vmx_disabled_by_bios(void) 2280 { 2281 return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 2282 !boot_cpu_has(X86_FEATURE_VMX); 2283 } 2284 2285 static int kvm_cpu_vmxon(u64 vmxon_pointer) 2286 { 2287 u64 msr; 2288 2289 cr4_set_bits(X86_CR4_VMXE); 2290 2291 asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t" 2292 _ASM_EXTABLE(1b, %l[fault]) 2293 : : [vmxon_pointer] "m"(vmxon_pointer) 2294 : : fault); 2295 return 0; 2296 2297 fault: 2298 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n", 2299 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr); 2300 cr4_clear_bits(X86_CR4_VMXE); 2301 2302 return -EFAULT; 2303 } 2304 2305 static int hardware_enable(void) 2306 { 2307 int cpu = raw_smp_processor_id(); 2308 u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); 2309 int r; 2310 2311 if (cr4_read_shadow() & X86_CR4_VMXE) 2312 return -EBUSY; 2313 2314 /* 2315 * This can happen if we hot-added a CPU but failed to allocate 2316 * VP assist page for it. 2317 */ 2318 if (static_branch_unlikely(&enable_evmcs) && 2319 !hv_get_vp_assist_page(cpu)) 2320 return -EFAULT; 2321 2322 intel_pt_handle_vmx(1); 2323 2324 r = kvm_cpu_vmxon(phys_addr); 2325 if (r) { 2326 intel_pt_handle_vmx(0); 2327 return r; 2328 } 2329 2330 if (enable_ept) 2331 ept_sync_global(); 2332 2333 return 0; 2334 } 2335 2336 static void vmclear_local_loaded_vmcss(void) 2337 { 2338 int cpu = raw_smp_processor_id(); 2339 struct loaded_vmcs *v, *n; 2340 2341 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), 2342 loaded_vmcss_on_cpu_link) 2343 __loaded_vmcs_clear(v); 2344 } 2345 2346 static void hardware_disable(void) 2347 { 2348 vmclear_local_loaded_vmcss(); 2349 2350 if (cpu_vmxoff()) 2351 kvm_spurious_fault(); 2352 2353 intel_pt_handle_vmx(0); 2354 } 2355 2356 /* 2357 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID 2358 * directly instead of going through cpu_has(), to ensure KVM is trapping 2359 * ENCLS whenever it's supported in hardware. It does not matter whether 2360 * the host OS supports or has enabled SGX. 2361 */ 2362 static bool cpu_has_sgx(void) 2363 { 2364 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0)); 2365 } 2366 2367 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, 2368 u32 msr, u32 *result) 2369 { 2370 u32 vmx_msr_low, vmx_msr_high; 2371 u32 ctl = ctl_min | ctl_opt; 2372 2373 rdmsr(msr, vmx_msr_low, vmx_msr_high); 2374 2375 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ 2376 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ 2377 2378 /* Ensure minimum (required) set of control bits are supported. */ 2379 if (ctl_min & ~ctl) 2380 return -EIO; 2381 2382 *result = ctl; 2383 return 0; 2384 } 2385 2386 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf, 2387 struct vmx_capability *vmx_cap) 2388 { 2389 u32 vmx_msr_low, vmx_msr_high; 2390 u32 min, opt, min2, opt2; 2391 u32 _pin_based_exec_control = 0; 2392 u32 _cpu_based_exec_control = 0; 2393 u32 _cpu_based_2nd_exec_control = 0; 2394 u32 _vmexit_control = 0; 2395 u32 _vmentry_control = 0; 2396 2397 memset(vmcs_conf, 0, sizeof(*vmcs_conf)); 2398 min = CPU_BASED_HLT_EXITING | 2399 #ifdef CONFIG_X86_64 2400 CPU_BASED_CR8_LOAD_EXITING | 2401 CPU_BASED_CR8_STORE_EXITING | 2402 #endif 2403 CPU_BASED_CR3_LOAD_EXITING | 2404 CPU_BASED_CR3_STORE_EXITING | 2405 CPU_BASED_UNCOND_IO_EXITING | 2406 CPU_BASED_MOV_DR_EXITING | 2407 CPU_BASED_USE_TSC_OFFSETTING | 2408 CPU_BASED_MWAIT_EXITING | 2409 CPU_BASED_MONITOR_EXITING | 2410 CPU_BASED_INVLPG_EXITING | 2411 CPU_BASED_RDPMC_EXITING; 2412 2413 opt = CPU_BASED_TPR_SHADOW | 2414 CPU_BASED_USE_MSR_BITMAPS | 2415 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; 2416 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS, 2417 &_cpu_based_exec_control) < 0) 2418 return -EIO; 2419 #ifdef CONFIG_X86_64 2420 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2421 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING & 2422 ~CPU_BASED_CR8_STORE_EXITING; 2423 #endif 2424 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { 2425 min2 = 0; 2426 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 2427 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2428 SECONDARY_EXEC_WBINVD_EXITING | 2429 SECONDARY_EXEC_ENABLE_VPID | 2430 SECONDARY_EXEC_ENABLE_EPT | 2431 SECONDARY_EXEC_UNRESTRICTED_GUEST | 2432 SECONDARY_EXEC_PAUSE_LOOP_EXITING | 2433 SECONDARY_EXEC_DESC | 2434 SECONDARY_EXEC_ENABLE_RDTSCP | 2435 SECONDARY_EXEC_ENABLE_INVPCID | 2436 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2437 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | 2438 SECONDARY_EXEC_SHADOW_VMCS | 2439 SECONDARY_EXEC_XSAVES | 2440 SECONDARY_EXEC_RDSEED_EXITING | 2441 SECONDARY_EXEC_RDRAND_EXITING | 2442 SECONDARY_EXEC_ENABLE_PML | 2443 SECONDARY_EXEC_TSC_SCALING | 2444 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE | 2445 SECONDARY_EXEC_PT_USE_GPA | 2446 SECONDARY_EXEC_PT_CONCEAL_VMX | 2447 SECONDARY_EXEC_ENABLE_VMFUNC | 2448 SECONDARY_EXEC_BUS_LOCK_DETECTION; 2449 if (cpu_has_sgx()) 2450 opt2 |= SECONDARY_EXEC_ENCLS_EXITING; 2451 if (adjust_vmx_controls(min2, opt2, 2452 MSR_IA32_VMX_PROCBASED_CTLS2, 2453 &_cpu_based_2nd_exec_control) < 0) 2454 return -EIO; 2455 } 2456 #ifndef CONFIG_X86_64 2457 if (!(_cpu_based_2nd_exec_control & 2458 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 2459 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; 2460 #endif 2461 2462 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2463 _cpu_based_2nd_exec_control &= ~( 2464 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2465 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2466 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 2467 2468 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, 2469 &vmx_cap->ept, &vmx_cap->vpid); 2470 2471 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) { 2472 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT 2473 enabled */ 2474 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | 2475 CPU_BASED_CR3_STORE_EXITING | 2476 CPU_BASED_INVLPG_EXITING); 2477 } else if (vmx_cap->ept) { 2478 vmx_cap->ept = 0; 2479 pr_warn_once("EPT CAP should not exist if not support " 2480 "1-setting enable EPT VM-execution control\n"); 2481 } 2482 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && 2483 vmx_cap->vpid) { 2484 vmx_cap->vpid = 0; 2485 pr_warn_once("VPID CAP should not exist if not support " 2486 "1-setting enable VPID VM-execution control\n"); 2487 } 2488 2489 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT; 2490 #ifdef CONFIG_X86_64 2491 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE; 2492 #endif 2493 opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | 2494 VM_EXIT_LOAD_IA32_PAT | 2495 VM_EXIT_LOAD_IA32_EFER | 2496 VM_EXIT_CLEAR_BNDCFGS | 2497 VM_EXIT_PT_CONCEAL_PIP | 2498 VM_EXIT_CLEAR_IA32_RTIT_CTL; 2499 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS, 2500 &_vmexit_control) < 0) 2501 return -EIO; 2502 2503 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING; 2504 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR | 2505 PIN_BASED_VMX_PREEMPTION_TIMER; 2506 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS, 2507 &_pin_based_exec_control) < 0) 2508 return -EIO; 2509 2510 if (cpu_has_broken_vmx_preemption_timer()) 2511 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 2512 if (!(_cpu_based_2nd_exec_control & 2513 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) 2514 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; 2515 2516 min = VM_ENTRY_LOAD_DEBUG_CONTROLS; 2517 opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | 2518 VM_ENTRY_LOAD_IA32_PAT | 2519 VM_ENTRY_LOAD_IA32_EFER | 2520 VM_ENTRY_LOAD_BNDCFGS | 2521 VM_ENTRY_PT_CONCEAL_PIP | 2522 VM_ENTRY_LOAD_IA32_RTIT_CTL; 2523 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS, 2524 &_vmentry_control) < 0) 2525 return -EIO; 2526 2527 /* 2528 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they 2529 * can't be used due to an errata where VM Exit may incorrectly clear 2530 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the 2531 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. 2532 */ 2533 if (boot_cpu_data.x86 == 0x6) { 2534 switch (boot_cpu_data.x86_model) { 2535 case 26: /* AAK155 */ 2536 case 30: /* AAP115 */ 2537 case 37: /* AAT100 */ 2538 case 44: /* BC86,AAY89,BD102 */ 2539 case 46: /* BA97 */ 2540 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; 2541 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; 2542 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " 2543 "does not work properly. Using workaround\n"); 2544 break; 2545 default: 2546 break; 2547 } 2548 } 2549 2550 2551 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); 2552 2553 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ 2554 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) 2555 return -EIO; 2556 2557 #ifdef CONFIG_X86_64 2558 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ 2559 if (vmx_msr_high & (1u<<16)) 2560 return -EIO; 2561 #endif 2562 2563 /* Require Write-Back (WB) memory type for VMCS accesses. */ 2564 if (((vmx_msr_high >> 18) & 15) != 6) 2565 return -EIO; 2566 2567 vmcs_conf->size = vmx_msr_high & 0x1fff; 2568 vmcs_conf->order = get_order(vmcs_conf->size); 2569 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; 2570 2571 vmcs_conf->revision_id = vmx_msr_low; 2572 2573 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; 2574 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; 2575 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; 2576 vmcs_conf->vmexit_ctrl = _vmexit_control; 2577 vmcs_conf->vmentry_ctrl = _vmentry_control; 2578 2579 #if IS_ENABLED(CONFIG_HYPERV) 2580 if (enlightened_vmcs) 2581 evmcs_sanitize_exec_ctrls(vmcs_conf); 2582 #endif 2583 2584 return 0; 2585 } 2586 2587 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags) 2588 { 2589 int node = cpu_to_node(cpu); 2590 struct page *pages; 2591 struct vmcs *vmcs; 2592 2593 pages = __alloc_pages_node(node, flags, vmcs_config.order); 2594 if (!pages) 2595 return NULL; 2596 vmcs = page_address(pages); 2597 memset(vmcs, 0, vmcs_config.size); 2598 2599 /* KVM supports Enlightened VMCS v1 only */ 2600 if (static_branch_unlikely(&enable_evmcs)) 2601 vmcs->hdr.revision_id = KVM_EVMCS_VERSION; 2602 else 2603 vmcs->hdr.revision_id = vmcs_config.revision_id; 2604 2605 if (shadow) 2606 vmcs->hdr.shadow_vmcs = 1; 2607 return vmcs; 2608 } 2609 2610 void free_vmcs(struct vmcs *vmcs) 2611 { 2612 free_pages((unsigned long)vmcs, vmcs_config.order); 2613 } 2614 2615 /* 2616 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded 2617 */ 2618 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2619 { 2620 if (!loaded_vmcs->vmcs) 2621 return; 2622 loaded_vmcs_clear(loaded_vmcs); 2623 free_vmcs(loaded_vmcs->vmcs); 2624 loaded_vmcs->vmcs = NULL; 2625 if (loaded_vmcs->msr_bitmap) 2626 free_page((unsigned long)loaded_vmcs->msr_bitmap); 2627 WARN_ON(loaded_vmcs->shadow_vmcs != NULL); 2628 } 2629 2630 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2631 { 2632 loaded_vmcs->vmcs = alloc_vmcs(false); 2633 if (!loaded_vmcs->vmcs) 2634 return -ENOMEM; 2635 2636 vmcs_clear(loaded_vmcs->vmcs); 2637 2638 loaded_vmcs->shadow_vmcs = NULL; 2639 loaded_vmcs->hv_timer_soft_disabled = false; 2640 loaded_vmcs->cpu = -1; 2641 loaded_vmcs->launched = 0; 2642 2643 if (cpu_has_vmx_msr_bitmap()) { 2644 loaded_vmcs->msr_bitmap = (unsigned long *) 2645 __get_free_page(GFP_KERNEL_ACCOUNT); 2646 if (!loaded_vmcs->msr_bitmap) 2647 goto out_vmcs; 2648 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); 2649 2650 if (IS_ENABLED(CONFIG_HYPERV) && 2651 static_branch_unlikely(&enable_evmcs) && 2652 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { 2653 struct hv_enlightened_vmcs *evmcs = 2654 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs; 2655 2656 evmcs->hv_enlightenments_control.msr_bitmap = 1; 2657 } 2658 } 2659 2660 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); 2661 memset(&loaded_vmcs->controls_shadow, 0, 2662 sizeof(struct vmcs_controls_shadow)); 2663 2664 return 0; 2665 2666 out_vmcs: 2667 free_loaded_vmcs(loaded_vmcs); 2668 return -ENOMEM; 2669 } 2670 2671 static void free_kvm_area(void) 2672 { 2673 int cpu; 2674 2675 for_each_possible_cpu(cpu) { 2676 free_vmcs(per_cpu(vmxarea, cpu)); 2677 per_cpu(vmxarea, cpu) = NULL; 2678 } 2679 } 2680 2681 static __init int alloc_kvm_area(void) 2682 { 2683 int cpu; 2684 2685 for_each_possible_cpu(cpu) { 2686 struct vmcs *vmcs; 2687 2688 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL); 2689 if (!vmcs) { 2690 free_kvm_area(); 2691 return -ENOMEM; 2692 } 2693 2694 /* 2695 * When eVMCS is enabled, alloc_vmcs_cpu() sets 2696 * vmcs->revision_id to KVM_EVMCS_VERSION instead of 2697 * revision_id reported by MSR_IA32_VMX_BASIC. 2698 * 2699 * However, even though not explicitly documented by 2700 * TLFS, VMXArea passed as VMXON argument should 2701 * still be marked with revision_id reported by 2702 * physical CPU. 2703 */ 2704 if (static_branch_unlikely(&enable_evmcs)) 2705 vmcs->hdr.revision_id = vmcs_config.revision_id; 2706 2707 per_cpu(vmxarea, cpu) = vmcs; 2708 } 2709 return 0; 2710 } 2711 2712 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, 2713 struct kvm_segment *save) 2714 { 2715 if (!emulate_invalid_guest_state) { 2716 /* 2717 * CS and SS RPL should be equal during guest entry according 2718 * to VMX spec, but in reality it is not always so. Since vcpu 2719 * is in the middle of the transition from real mode to 2720 * protected mode it is safe to assume that RPL 0 is a good 2721 * default value. 2722 */ 2723 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) 2724 save->selector &= ~SEGMENT_RPL_MASK; 2725 save->dpl = save->selector & SEGMENT_RPL_MASK; 2726 save->s = 1; 2727 } 2728 __vmx_set_segment(vcpu, save, seg); 2729 } 2730 2731 static void enter_pmode(struct kvm_vcpu *vcpu) 2732 { 2733 unsigned long flags; 2734 struct vcpu_vmx *vmx = to_vmx(vcpu); 2735 2736 /* 2737 * Update real mode segment cache. It may be not up-to-date if segment 2738 * register was written while vcpu was in a guest mode. 2739 */ 2740 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2741 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2742 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2743 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2744 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2745 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2746 2747 vmx->rmode.vm86_active = 0; 2748 2749 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2750 2751 flags = vmcs_readl(GUEST_RFLAGS); 2752 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 2753 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 2754 vmcs_writel(GUEST_RFLAGS, flags); 2755 2756 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | 2757 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); 2758 2759 vmx_update_exception_bitmap(vcpu); 2760 2761 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2762 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2763 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2764 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2765 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2766 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2767 } 2768 2769 static void fix_rmode_seg(int seg, struct kvm_segment *save) 2770 { 2771 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 2772 struct kvm_segment var = *save; 2773 2774 var.dpl = 0x3; 2775 if (seg == VCPU_SREG_CS) 2776 var.type = 0x3; 2777 2778 if (!emulate_invalid_guest_state) { 2779 var.selector = var.base >> 4; 2780 var.base = var.base & 0xffff0; 2781 var.limit = 0xffff; 2782 var.g = 0; 2783 var.db = 0; 2784 var.present = 1; 2785 var.s = 1; 2786 var.l = 0; 2787 var.unusable = 0; 2788 var.type = 0x3; 2789 var.avl = 0; 2790 if (save->base & 0xf) 2791 printk_once(KERN_WARNING "kvm: segment base is not " 2792 "paragraph aligned when entering " 2793 "protected mode (seg=%d)", seg); 2794 } 2795 2796 vmcs_write16(sf->selector, var.selector); 2797 vmcs_writel(sf->base, var.base); 2798 vmcs_write32(sf->limit, var.limit); 2799 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); 2800 } 2801 2802 static void enter_rmode(struct kvm_vcpu *vcpu) 2803 { 2804 unsigned long flags; 2805 struct vcpu_vmx *vmx = to_vmx(vcpu); 2806 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); 2807 2808 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2809 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2810 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2811 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2812 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2813 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2814 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2815 2816 vmx->rmode.vm86_active = 1; 2817 2818 /* 2819 * Very old userspace does not call KVM_SET_TSS_ADDR before entering 2820 * vcpu. Warn the user that an update is overdue. 2821 */ 2822 if (!kvm_vmx->tss_addr) 2823 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be " 2824 "called before entering vcpu\n"); 2825 2826 vmx_segment_cache_clear(vmx); 2827 2828 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); 2829 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); 2830 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 2831 2832 flags = vmcs_readl(GUEST_RFLAGS); 2833 vmx->rmode.save_rflags = flags; 2834 2835 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 2836 2837 vmcs_writel(GUEST_RFLAGS, flags); 2838 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); 2839 vmx_update_exception_bitmap(vcpu); 2840 2841 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2842 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2843 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2844 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2845 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2846 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2847 } 2848 2849 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) 2850 { 2851 struct vcpu_vmx *vmx = to_vmx(vcpu); 2852 struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER); 2853 2854 /* Nothing to do if hardware doesn't support EFER. */ 2855 if (!msr) 2856 return 0; 2857 2858 vcpu->arch.efer = efer; 2859 if (efer & EFER_LMA) { 2860 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2861 msr->data = efer; 2862 } else { 2863 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2864 2865 msr->data = efer & ~EFER_LME; 2866 } 2867 vmx_setup_uret_msrs(vmx); 2868 return 0; 2869 } 2870 2871 #ifdef CONFIG_X86_64 2872 2873 static void enter_lmode(struct kvm_vcpu *vcpu) 2874 { 2875 u32 guest_tr_ar; 2876 2877 vmx_segment_cache_clear(to_vmx(vcpu)); 2878 2879 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); 2880 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { 2881 pr_debug_ratelimited("%s: tss fixup for long mode. \n", 2882 __func__); 2883 vmcs_write32(GUEST_TR_AR_BYTES, 2884 (guest_tr_ar & ~VMX_AR_TYPE_MASK) 2885 | VMX_AR_TYPE_BUSY_64_TSS); 2886 } 2887 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); 2888 } 2889 2890 static void exit_lmode(struct kvm_vcpu *vcpu) 2891 { 2892 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2893 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); 2894 } 2895 2896 #endif 2897 2898 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu) 2899 { 2900 struct vcpu_vmx *vmx = to_vmx(vcpu); 2901 2902 /* 2903 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as 2904 * the CPU is not required to invalidate guest-physical mappings on 2905 * VM-Entry, even if VPID is disabled. Guest-physical mappings are 2906 * associated with the root EPT structure and not any particular VPID 2907 * (INVVPID also isn't required to invalidate guest-physical mappings). 2908 */ 2909 if (enable_ept) { 2910 ept_sync_global(); 2911 } else if (enable_vpid) { 2912 if (cpu_has_vmx_invvpid_global()) { 2913 vpid_sync_vcpu_global(); 2914 } else { 2915 vpid_sync_vcpu_single(vmx->vpid); 2916 vpid_sync_vcpu_single(vmx->nested.vpid02); 2917 } 2918 } 2919 } 2920 2921 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu) 2922 { 2923 if (is_guest_mode(vcpu)) 2924 return nested_get_vpid02(vcpu); 2925 return to_vmx(vcpu)->vpid; 2926 } 2927 2928 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu) 2929 { 2930 struct kvm_mmu *mmu = vcpu->arch.mmu; 2931 u64 root_hpa = mmu->root_hpa; 2932 2933 /* No flush required if the current context is invalid. */ 2934 if (!VALID_PAGE(root_hpa)) 2935 return; 2936 2937 if (enable_ept) 2938 ept_sync_context(construct_eptp(vcpu, root_hpa, 2939 mmu->shadow_root_level)); 2940 else 2941 vpid_sync_context(vmx_get_current_vpid(vcpu)); 2942 } 2943 2944 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) 2945 { 2946 /* 2947 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in 2948 * vmx_flush_tlb_guest() for an explanation of why this is ok. 2949 */ 2950 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr); 2951 } 2952 2953 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu) 2954 { 2955 /* 2956 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a 2957 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are 2958 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is 2959 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed), 2960 * i.e. no explicit INVVPID is necessary. 2961 */ 2962 vpid_sync_context(vmx_get_current_vpid(vcpu)); 2963 } 2964 2965 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu) 2966 { 2967 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 2968 2969 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR)) 2970 return; 2971 2972 if (is_pae_paging(vcpu)) { 2973 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); 2974 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); 2975 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); 2976 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); 2977 } 2978 } 2979 2980 void ept_save_pdptrs(struct kvm_vcpu *vcpu) 2981 { 2982 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 2983 2984 if (WARN_ON_ONCE(!is_pae_paging(vcpu))) 2985 return; 2986 2987 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); 2988 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); 2989 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); 2990 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); 2991 2992 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 2993 } 2994 2995 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \ 2996 CPU_BASED_CR3_STORE_EXITING) 2997 2998 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 2999 { 3000 struct vcpu_vmx *vmx = to_vmx(vcpu); 3001 unsigned long hw_cr0, old_cr0_pg; 3002 u32 tmp; 3003 3004 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG); 3005 3006 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); 3007 if (is_unrestricted_guest(vcpu)) 3008 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; 3009 else { 3010 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; 3011 if (!enable_ept) 3012 hw_cr0 |= X86_CR0_WP; 3013 3014 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) 3015 enter_pmode(vcpu); 3016 3017 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) 3018 enter_rmode(vcpu); 3019 } 3020 3021 vmcs_writel(CR0_READ_SHADOW, cr0); 3022 vmcs_writel(GUEST_CR0, hw_cr0); 3023 vcpu->arch.cr0 = cr0; 3024 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0); 3025 3026 #ifdef CONFIG_X86_64 3027 if (vcpu->arch.efer & EFER_LME) { 3028 if (!old_cr0_pg && (cr0 & X86_CR0_PG)) 3029 enter_lmode(vcpu); 3030 else if (old_cr0_pg && !(cr0 & X86_CR0_PG)) 3031 exit_lmode(vcpu); 3032 } 3033 #endif 3034 3035 if (enable_ept && !is_unrestricted_guest(vcpu)) { 3036 /* 3037 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If 3038 * the below code _enables_ CR3 exiting, vmx_cache_reg() will 3039 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks 3040 * KVM's CR3 is installed. 3041 */ 3042 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3)) 3043 vmx_cache_reg(vcpu, VCPU_EXREG_CR3); 3044 3045 /* 3046 * When running with EPT but not unrestricted guest, KVM must 3047 * intercept CR3 accesses when paging is _disabled_. This is 3048 * necessary because restricted guests can't actually run with 3049 * paging disabled, and so KVM stuffs its own CR3 in order to 3050 * run the guest when identity mapped page tables. 3051 * 3052 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the 3053 * update, it may be stale with respect to CR3 interception, 3054 * e.g. after nested VM-Enter. 3055 * 3056 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or 3057 * stores to forward them to L1, even if KVM does not need to 3058 * intercept them to preserve its identity mapped page tables. 3059 */ 3060 if (!(cr0 & X86_CR0_PG)) { 3061 exec_controls_setbit(vmx, CR3_EXITING_BITS); 3062 } else if (!is_guest_mode(vcpu)) { 3063 exec_controls_clearbit(vmx, CR3_EXITING_BITS); 3064 } else { 3065 tmp = exec_controls_get(vmx); 3066 tmp &= ~CR3_EXITING_BITS; 3067 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS; 3068 exec_controls_set(vmx, tmp); 3069 } 3070 3071 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */ 3072 if ((old_cr0_pg ^ cr0) & X86_CR0_PG) 3073 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 3074 } 3075 3076 /* depends on vcpu->arch.cr0 to be set to a new value */ 3077 vmx->emulation_required = vmx_emulation_required(vcpu); 3078 } 3079 3080 static int vmx_get_max_tdp_level(void) 3081 { 3082 if (cpu_has_vmx_ept_5levels()) 3083 return 5; 3084 return 4; 3085 } 3086 3087 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level) 3088 { 3089 u64 eptp = VMX_EPTP_MT_WB; 3090 3091 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; 3092 3093 if (enable_ept_ad_bits && 3094 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) 3095 eptp |= VMX_EPTP_AD_ENABLE_BIT; 3096 eptp |= root_hpa; 3097 3098 return eptp; 3099 } 3100 3101 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 3102 int root_level) 3103 { 3104 struct kvm *kvm = vcpu->kvm; 3105 bool update_guest_cr3 = true; 3106 unsigned long guest_cr3; 3107 u64 eptp; 3108 3109 if (enable_ept) { 3110 eptp = construct_eptp(vcpu, root_hpa, root_level); 3111 vmcs_write64(EPT_POINTER, eptp); 3112 3113 hv_track_root_tdp(vcpu, root_hpa); 3114 3115 if (!enable_unrestricted_guest && !is_paging(vcpu)) 3116 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; 3117 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) 3118 guest_cr3 = vcpu->arch.cr3; 3119 else /* vmcs01.GUEST_CR3 is already up-to-date. */ 3120 update_guest_cr3 = false; 3121 vmx_ept_load_pdptrs(vcpu); 3122 } else { 3123 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu); 3124 } 3125 3126 if (update_guest_cr3) 3127 vmcs_writel(GUEST_CR3, guest_cr3); 3128 } 3129 3130 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3131 { 3132 /* 3133 * We operate under the default treatment of SMM, so VMX cannot be 3134 * enabled under SMM. Note, whether or not VMXE is allowed at all is 3135 * handled by kvm_is_valid_cr4(). 3136 */ 3137 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu)) 3138 return false; 3139 3140 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) 3141 return false; 3142 3143 return true; 3144 } 3145 3146 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3147 { 3148 unsigned long old_cr4 = vcpu->arch.cr4; 3149 struct vcpu_vmx *vmx = to_vmx(vcpu); 3150 /* 3151 * Pass through host's Machine Check Enable value to hw_cr4, which 3152 * is in force while we are in guest mode. Do not let guests control 3153 * this bit, even if host CR4.MCE == 0. 3154 */ 3155 unsigned long hw_cr4; 3156 3157 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); 3158 if (is_unrestricted_guest(vcpu)) 3159 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; 3160 else if (vmx->rmode.vm86_active) 3161 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; 3162 else 3163 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; 3164 3165 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) { 3166 if (cr4 & X86_CR4_UMIP) { 3167 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC); 3168 hw_cr4 &= ~X86_CR4_UMIP; 3169 } else if (!is_guest_mode(vcpu) || 3170 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) { 3171 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC); 3172 } 3173 } 3174 3175 vcpu->arch.cr4 = cr4; 3176 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4); 3177 3178 if (!is_unrestricted_guest(vcpu)) { 3179 if (enable_ept) { 3180 if (!is_paging(vcpu)) { 3181 hw_cr4 &= ~X86_CR4_PAE; 3182 hw_cr4 |= X86_CR4_PSE; 3183 } else if (!(cr4 & X86_CR4_PAE)) { 3184 hw_cr4 &= ~X86_CR4_PAE; 3185 } 3186 } 3187 3188 /* 3189 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in 3190 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs 3191 * to be manually disabled when guest switches to non-paging 3192 * mode. 3193 * 3194 * If !enable_unrestricted_guest, the CPU is always running 3195 * with CR0.PG=1 and CR4 needs to be modified. 3196 * If enable_unrestricted_guest, the CPU automatically 3197 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. 3198 */ 3199 if (!is_paging(vcpu)) 3200 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 3201 } 3202 3203 vmcs_writel(CR4_READ_SHADOW, cr4); 3204 vmcs_writel(GUEST_CR4, hw_cr4); 3205 3206 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 3207 kvm_update_cpuid_runtime(vcpu); 3208 } 3209 3210 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3211 { 3212 struct vcpu_vmx *vmx = to_vmx(vcpu); 3213 u32 ar; 3214 3215 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3216 *var = vmx->rmode.segs[seg]; 3217 if (seg == VCPU_SREG_TR 3218 || var->selector == vmx_read_guest_seg_selector(vmx, seg)) 3219 return; 3220 var->base = vmx_read_guest_seg_base(vmx, seg); 3221 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3222 return; 3223 } 3224 var->base = vmx_read_guest_seg_base(vmx, seg); 3225 var->limit = vmx_read_guest_seg_limit(vmx, seg); 3226 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3227 ar = vmx_read_guest_seg_ar(vmx, seg); 3228 var->unusable = (ar >> 16) & 1; 3229 var->type = ar & 15; 3230 var->s = (ar >> 4) & 1; 3231 var->dpl = (ar >> 5) & 3; 3232 /* 3233 * Some userspaces do not preserve unusable property. Since usable 3234 * segment has to be present according to VMX spec we can use present 3235 * property to amend userspace bug by making unusable segment always 3236 * nonpresent. vmx_segment_access_rights() already marks nonpresent 3237 * segment as unusable. 3238 */ 3239 var->present = !var->unusable; 3240 var->avl = (ar >> 12) & 1; 3241 var->l = (ar >> 13) & 1; 3242 var->db = (ar >> 14) & 1; 3243 var->g = (ar >> 15) & 1; 3244 } 3245 3246 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) 3247 { 3248 struct kvm_segment s; 3249 3250 if (to_vmx(vcpu)->rmode.vm86_active) { 3251 vmx_get_segment(vcpu, &s, seg); 3252 return s.base; 3253 } 3254 return vmx_read_guest_seg_base(to_vmx(vcpu), seg); 3255 } 3256 3257 int vmx_get_cpl(struct kvm_vcpu *vcpu) 3258 { 3259 struct vcpu_vmx *vmx = to_vmx(vcpu); 3260 3261 if (unlikely(vmx->rmode.vm86_active)) 3262 return 0; 3263 else { 3264 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); 3265 return VMX_AR_DPL(ar); 3266 } 3267 } 3268 3269 static u32 vmx_segment_access_rights(struct kvm_segment *var) 3270 { 3271 u32 ar; 3272 3273 if (var->unusable || !var->present) 3274 ar = 1 << 16; 3275 else { 3276 ar = var->type & 15; 3277 ar |= (var->s & 1) << 4; 3278 ar |= (var->dpl & 3) << 5; 3279 ar |= (var->present & 1) << 7; 3280 ar |= (var->avl & 1) << 12; 3281 ar |= (var->l & 1) << 13; 3282 ar |= (var->db & 1) << 14; 3283 ar |= (var->g & 1) << 15; 3284 } 3285 3286 return ar; 3287 } 3288 3289 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3290 { 3291 struct vcpu_vmx *vmx = to_vmx(vcpu); 3292 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3293 3294 vmx_segment_cache_clear(vmx); 3295 3296 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3297 vmx->rmode.segs[seg] = *var; 3298 if (seg == VCPU_SREG_TR) 3299 vmcs_write16(sf->selector, var->selector); 3300 else if (var->s) 3301 fix_rmode_seg(seg, &vmx->rmode.segs[seg]); 3302 return; 3303 } 3304 3305 vmcs_writel(sf->base, var->base); 3306 vmcs_write32(sf->limit, var->limit); 3307 vmcs_write16(sf->selector, var->selector); 3308 3309 /* 3310 * Fix the "Accessed" bit in AR field of segment registers for older 3311 * qemu binaries. 3312 * IA32 arch specifies that at the time of processor reset the 3313 * "Accessed" bit in the AR field of segment registers is 1. And qemu 3314 * is setting it to 0 in the userland code. This causes invalid guest 3315 * state vmexit when "unrestricted guest" mode is turned on. 3316 * Fix for this setup issue in cpu_reset is being pushed in the qemu 3317 * tree. Newer qemu binaries with that qemu fix would not need this 3318 * kvm hack. 3319 */ 3320 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR)) 3321 var->type |= 0x1; /* Accessed */ 3322 3323 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); 3324 } 3325 3326 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3327 { 3328 __vmx_set_segment(vcpu, var, seg); 3329 3330 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu); 3331 } 3332 3333 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 3334 { 3335 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); 3336 3337 *db = (ar >> 14) & 1; 3338 *l = (ar >> 13) & 1; 3339 } 3340 3341 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3342 { 3343 dt->size = vmcs_read32(GUEST_IDTR_LIMIT); 3344 dt->address = vmcs_readl(GUEST_IDTR_BASE); 3345 } 3346 3347 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3348 { 3349 vmcs_write32(GUEST_IDTR_LIMIT, dt->size); 3350 vmcs_writel(GUEST_IDTR_BASE, dt->address); 3351 } 3352 3353 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3354 { 3355 dt->size = vmcs_read32(GUEST_GDTR_LIMIT); 3356 dt->address = vmcs_readl(GUEST_GDTR_BASE); 3357 } 3358 3359 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3360 { 3361 vmcs_write32(GUEST_GDTR_LIMIT, dt->size); 3362 vmcs_writel(GUEST_GDTR_BASE, dt->address); 3363 } 3364 3365 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) 3366 { 3367 struct kvm_segment var; 3368 u32 ar; 3369 3370 vmx_get_segment(vcpu, &var, seg); 3371 var.dpl = 0x3; 3372 if (seg == VCPU_SREG_CS) 3373 var.type = 0x3; 3374 ar = vmx_segment_access_rights(&var); 3375 3376 if (var.base != (var.selector << 4)) 3377 return false; 3378 if (var.limit != 0xffff) 3379 return false; 3380 if (ar != 0xf3) 3381 return false; 3382 3383 return true; 3384 } 3385 3386 static bool code_segment_valid(struct kvm_vcpu *vcpu) 3387 { 3388 struct kvm_segment cs; 3389 unsigned int cs_rpl; 3390 3391 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3392 cs_rpl = cs.selector & SEGMENT_RPL_MASK; 3393 3394 if (cs.unusable) 3395 return false; 3396 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) 3397 return false; 3398 if (!cs.s) 3399 return false; 3400 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { 3401 if (cs.dpl > cs_rpl) 3402 return false; 3403 } else { 3404 if (cs.dpl != cs_rpl) 3405 return false; 3406 } 3407 if (!cs.present) 3408 return false; 3409 3410 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ 3411 return true; 3412 } 3413 3414 static bool stack_segment_valid(struct kvm_vcpu *vcpu) 3415 { 3416 struct kvm_segment ss; 3417 unsigned int ss_rpl; 3418 3419 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3420 ss_rpl = ss.selector & SEGMENT_RPL_MASK; 3421 3422 if (ss.unusable) 3423 return true; 3424 if (ss.type != 3 && ss.type != 7) 3425 return false; 3426 if (!ss.s) 3427 return false; 3428 if (ss.dpl != ss_rpl) /* DPL != RPL */ 3429 return false; 3430 if (!ss.present) 3431 return false; 3432 3433 return true; 3434 } 3435 3436 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) 3437 { 3438 struct kvm_segment var; 3439 unsigned int rpl; 3440 3441 vmx_get_segment(vcpu, &var, seg); 3442 rpl = var.selector & SEGMENT_RPL_MASK; 3443 3444 if (var.unusable) 3445 return true; 3446 if (!var.s) 3447 return false; 3448 if (!var.present) 3449 return false; 3450 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { 3451 if (var.dpl < rpl) /* DPL < RPL */ 3452 return false; 3453 } 3454 3455 /* TODO: Add other members to kvm_segment_field to allow checking for other access 3456 * rights flags 3457 */ 3458 return true; 3459 } 3460 3461 static bool tr_valid(struct kvm_vcpu *vcpu) 3462 { 3463 struct kvm_segment tr; 3464 3465 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); 3466 3467 if (tr.unusable) 3468 return false; 3469 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3470 return false; 3471 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ 3472 return false; 3473 if (!tr.present) 3474 return false; 3475 3476 return true; 3477 } 3478 3479 static bool ldtr_valid(struct kvm_vcpu *vcpu) 3480 { 3481 struct kvm_segment ldtr; 3482 3483 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); 3484 3485 if (ldtr.unusable) 3486 return true; 3487 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3488 return false; 3489 if (ldtr.type != 2) 3490 return false; 3491 if (!ldtr.present) 3492 return false; 3493 3494 return true; 3495 } 3496 3497 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) 3498 { 3499 struct kvm_segment cs, ss; 3500 3501 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3502 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3503 3504 return ((cs.selector & SEGMENT_RPL_MASK) == 3505 (ss.selector & SEGMENT_RPL_MASK)); 3506 } 3507 3508 /* 3509 * Check if guest state is valid. Returns true if valid, false if 3510 * not. 3511 * We assume that registers are always usable 3512 */ 3513 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu) 3514 { 3515 /* real mode guest state checks */ 3516 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { 3517 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) 3518 return false; 3519 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) 3520 return false; 3521 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) 3522 return false; 3523 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) 3524 return false; 3525 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) 3526 return false; 3527 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) 3528 return false; 3529 } else { 3530 /* protected mode guest state checks */ 3531 if (!cs_ss_rpl_check(vcpu)) 3532 return false; 3533 if (!code_segment_valid(vcpu)) 3534 return false; 3535 if (!stack_segment_valid(vcpu)) 3536 return false; 3537 if (!data_segment_valid(vcpu, VCPU_SREG_DS)) 3538 return false; 3539 if (!data_segment_valid(vcpu, VCPU_SREG_ES)) 3540 return false; 3541 if (!data_segment_valid(vcpu, VCPU_SREG_FS)) 3542 return false; 3543 if (!data_segment_valid(vcpu, VCPU_SREG_GS)) 3544 return false; 3545 if (!tr_valid(vcpu)) 3546 return false; 3547 if (!ldtr_valid(vcpu)) 3548 return false; 3549 } 3550 /* TODO: 3551 * - Add checks on RIP 3552 * - Add checks on RFLAGS 3553 */ 3554 3555 return true; 3556 } 3557 3558 static int init_rmode_tss(struct kvm *kvm, void __user *ua) 3559 { 3560 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3561 u16 data; 3562 int i; 3563 3564 for (i = 0; i < 3; i++) { 3565 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE)) 3566 return -EFAULT; 3567 } 3568 3569 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; 3570 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16))) 3571 return -EFAULT; 3572 3573 data = ~0; 3574 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8))) 3575 return -EFAULT; 3576 3577 return 0; 3578 } 3579 3580 static int init_rmode_identity_map(struct kvm *kvm) 3581 { 3582 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 3583 int i, r = 0; 3584 void __user *uaddr; 3585 u32 tmp; 3586 3587 /* Protect kvm_vmx->ept_identity_pagetable_done. */ 3588 mutex_lock(&kvm->slots_lock); 3589 3590 if (likely(kvm_vmx->ept_identity_pagetable_done)) 3591 goto out; 3592 3593 if (!kvm_vmx->ept_identity_map_addr) 3594 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; 3595 3596 uaddr = __x86_set_memory_region(kvm, 3597 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 3598 kvm_vmx->ept_identity_map_addr, 3599 PAGE_SIZE); 3600 if (IS_ERR(uaddr)) { 3601 r = PTR_ERR(uaddr); 3602 goto out; 3603 } 3604 3605 /* Set up identity-mapping pagetable for EPT in real mode */ 3606 for (i = 0; i < PT32_ENT_PER_PAGE; i++) { 3607 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | 3608 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); 3609 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) { 3610 r = -EFAULT; 3611 goto out; 3612 } 3613 } 3614 kvm_vmx->ept_identity_pagetable_done = true; 3615 3616 out: 3617 mutex_unlock(&kvm->slots_lock); 3618 return r; 3619 } 3620 3621 static void seg_setup(int seg) 3622 { 3623 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3624 unsigned int ar; 3625 3626 vmcs_write16(sf->selector, 0); 3627 vmcs_writel(sf->base, 0); 3628 vmcs_write32(sf->limit, 0xffff); 3629 ar = 0x93; 3630 if (seg == VCPU_SREG_CS) 3631 ar |= 0x08; /* code segment */ 3632 3633 vmcs_write32(sf->ar_bytes, ar); 3634 } 3635 3636 static int alloc_apic_access_page(struct kvm *kvm) 3637 { 3638 struct page *page; 3639 void __user *hva; 3640 int ret = 0; 3641 3642 mutex_lock(&kvm->slots_lock); 3643 if (kvm->arch.apic_access_memslot_enabled) 3644 goto out; 3645 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 3646 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); 3647 if (IS_ERR(hva)) { 3648 ret = PTR_ERR(hva); 3649 goto out; 3650 } 3651 3652 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 3653 if (is_error_page(page)) { 3654 ret = -EFAULT; 3655 goto out; 3656 } 3657 3658 /* 3659 * Do not pin the page in memory, so that memory hot-unplug 3660 * is able to migrate it. 3661 */ 3662 put_page(page); 3663 kvm->arch.apic_access_memslot_enabled = true; 3664 out: 3665 mutex_unlock(&kvm->slots_lock); 3666 return ret; 3667 } 3668 3669 int allocate_vpid(void) 3670 { 3671 int vpid; 3672 3673 if (!enable_vpid) 3674 return 0; 3675 spin_lock(&vmx_vpid_lock); 3676 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); 3677 if (vpid < VMX_NR_VPIDS) 3678 __set_bit(vpid, vmx_vpid_bitmap); 3679 else 3680 vpid = 0; 3681 spin_unlock(&vmx_vpid_lock); 3682 return vpid; 3683 } 3684 3685 void free_vpid(int vpid) 3686 { 3687 if (!enable_vpid || vpid == 0) 3688 return; 3689 spin_lock(&vmx_vpid_lock); 3690 __clear_bit(vpid, vmx_vpid_bitmap); 3691 spin_unlock(&vmx_vpid_lock); 3692 } 3693 3694 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3695 { 3696 struct vcpu_vmx *vmx = to_vmx(vcpu); 3697 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3698 3699 if (!cpu_has_vmx_msr_bitmap()) 3700 return; 3701 3702 if (static_branch_unlikely(&enable_evmcs)) 3703 evmcs_touch_msr_bitmap(); 3704 3705 /* 3706 * Mark the desired intercept state in shadow bitmap, this is needed 3707 * for resync when the MSR filters change. 3708 */ 3709 if (is_valid_passthrough_msr(msr)) { 3710 int idx = possible_passthrough_msr_slot(msr); 3711 3712 if (idx != -ENOENT) { 3713 if (type & MSR_TYPE_R) 3714 clear_bit(idx, vmx->shadow_msr_intercept.read); 3715 if (type & MSR_TYPE_W) 3716 clear_bit(idx, vmx->shadow_msr_intercept.write); 3717 } 3718 } 3719 3720 if ((type & MSR_TYPE_R) && 3721 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) { 3722 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3723 type &= ~MSR_TYPE_R; 3724 } 3725 3726 if ((type & MSR_TYPE_W) && 3727 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) { 3728 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3729 type &= ~MSR_TYPE_W; 3730 } 3731 3732 if (type & MSR_TYPE_R) 3733 vmx_clear_msr_bitmap_read(msr_bitmap, msr); 3734 3735 if (type & MSR_TYPE_W) 3736 vmx_clear_msr_bitmap_write(msr_bitmap, msr); 3737 } 3738 3739 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3740 { 3741 struct vcpu_vmx *vmx = to_vmx(vcpu); 3742 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3743 3744 if (!cpu_has_vmx_msr_bitmap()) 3745 return; 3746 3747 if (static_branch_unlikely(&enable_evmcs)) 3748 evmcs_touch_msr_bitmap(); 3749 3750 /* 3751 * Mark the desired intercept state in shadow bitmap, this is needed 3752 * for resync when the MSR filter changes. 3753 */ 3754 if (is_valid_passthrough_msr(msr)) { 3755 int idx = possible_passthrough_msr_slot(msr); 3756 3757 if (idx != -ENOENT) { 3758 if (type & MSR_TYPE_R) 3759 set_bit(idx, vmx->shadow_msr_intercept.read); 3760 if (type & MSR_TYPE_W) 3761 set_bit(idx, vmx->shadow_msr_intercept.write); 3762 } 3763 } 3764 3765 if (type & MSR_TYPE_R) 3766 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3767 3768 if (type & MSR_TYPE_W) 3769 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3770 } 3771 3772 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode) 3773 { 3774 unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap; 3775 unsigned long read_intercept; 3776 int msr; 3777 3778 read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0; 3779 3780 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { 3781 unsigned int read_idx = msr / BITS_PER_LONG; 3782 unsigned int write_idx = read_idx + (0x800 / sizeof(long)); 3783 3784 msr_bitmap[read_idx] = read_intercept; 3785 msr_bitmap[write_idx] = ~0ul; 3786 } 3787 } 3788 3789 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu) 3790 { 3791 struct vcpu_vmx *vmx = to_vmx(vcpu); 3792 u8 mode; 3793 3794 if (!cpu_has_vmx_msr_bitmap()) 3795 return; 3796 3797 if (cpu_has_secondary_exec_ctrls() && 3798 (secondary_exec_controls_get(vmx) & 3799 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { 3800 mode = MSR_BITMAP_MODE_X2APIC; 3801 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) 3802 mode |= MSR_BITMAP_MODE_X2APIC_APICV; 3803 } else { 3804 mode = 0; 3805 } 3806 3807 if (mode == vmx->x2apic_msr_bitmap_mode) 3808 return; 3809 3810 vmx->x2apic_msr_bitmap_mode = mode; 3811 3812 vmx_reset_x2apic_msrs(vcpu, mode); 3813 3814 /* 3815 * TPR reads and writes can be virtualized even if virtual interrupt 3816 * delivery is not in use. 3817 */ 3818 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW, 3819 !(mode & MSR_BITMAP_MODE_X2APIC)); 3820 3821 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { 3822 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW); 3823 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); 3824 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); 3825 } 3826 } 3827 3828 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu) 3829 { 3830 struct vcpu_vmx *vmx = to_vmx(vcpu); 3831 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 3832 u32 i; 3833 3834 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag); 3835 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag); 3836 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag); 3837 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag); 3838 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) { 3839 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); 3840 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); 3841 } 3842 } 3843 3844 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 3845 { 3846 struct vcpu_vmx *vmx = to_vmx(vcpu); 3847 void *vapic_page; 3848 u32 vppr; 3849 int rvi; 3850 3851 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) || 3852 !nested_cpu_has_vid(get_vmcs12(vcpu)) || 3853 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn)) 3854 return false; 3855 3856 rvi = vmx_get_rvi(); 3857 3858 vapic_page = vmx->nested.virtual_apic_map.hva; 3859 vppr = *((u32 *)(vapic_page + APIC_PROCPRI)); 3860 3861 return ((rvi & 0xf0) > (vppr & 0xf0)); 3862 } 3863 3864 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu) 3865 { 3866 struct vcpu_vmx *vmx = to_vmx(vcpu); 3867 u32 i; 3868 3869 /* 3870 * Set intercept permissions for all potentially passed through MSRs 3871 * again. They will automatically get filtered through the MSR filter, 3872 * so we are back in sync after this. 3873 */ 3874 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) { 3875 u32 msr = vmx_possible_passthrough_msrs[i]; 3876 bool read = test_bit(i, vmx->shadow_msr_intercept.read); 3877 bool write = test_bit(i, vmx->shadow_msr_intercept.write); 3878 3879 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read); 3880 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write); 3881 } 3882 3883 pt_update_intercept_for_msr(vcpu); 3884 } 3885 3886 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, 3887 bool nested) 3888 { 3889 #ifdef CONFIG_SMP 3890 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR; 3891 3892 if (vcpu->mode == IN_GUEST_MODE) { 3893 /* 3894 * The vector of interrupt to be delivered to vcpu had 3895 * been set in PIR before this function. 3896 * 3897 * Following cases will be reached in this block, and 3898 * we always send a notification event in all cases as 3899 * explained below. 3900 * 3901 * Case 1: vcpu keeps in non-root mode. Sending a 3902 * notification event posts the interrupt to vcpu. 3903 * 3904 * Case 2: vcpu exits to root mode and is still 3905 * runnable. PIR will be synced to vIRR before the 3906 * next vcpu entry. Sending a notification event in 3907 * this case has no effect, as vcpu is not in root 3908 * mode. 3909 * 3910 * Case 3: vcpu exits to root mode and is blocked. 3911 * vcpu_block() has already synced PIR to vIRR and 3912 * never blocks vcpu if vIRR is not cleared. Therefore, 3913 * a blocked vcpu here does not wait for any requested 3914 * interrupts in PIR, and sending a notification event 3915 * which has no effect is safe here. 3916 */ 3917 3918 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); 3919 return true; 3920 } 3921 #endif 3922 return false; 3923 } 3924 3925 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, 3926 int vector) 3927 { 3928 struct vcpu_vmx *vmx = to_vmx(vcpu); 3929 3930 if (is_guest_mode(vcpu) && 3931 vector == vmx->nested.posted_intr_nv) { 3932 /* 3933 * If a posted intr is not recognized by hardware, 3934 * we will accomplish it in the next vmentry. 3935 */ 3936 vmx->nested.pi_pending = true; 3937 kvm_make_request(KVM_REQ_EVENT, vcpu); 3938 /* the PIR and ON have been set by L1. */ 3939 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true)) 3940 kvm_vcpu_kick(vcpu); 3941 return 0; 3942 } 3943 return -1; 3944 } 3945 /* 3946 * Send interrupt to vcpu via posted interrupt way. 3947 * 1. If target vcpu is running(non-root mode), send posted interrupt 3948 * notification to vcpu and hardware will sync PIR to vIRR atomically. 3949 * 2. If target vcpu isn't running(root mode), kick it to pick up the 3950 * interrupt from PIR in next vmentry. 3951 */ 3952 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) 3953 { 3954 struct vcpu_vmx *vmx = to_vmx(vcpu); 3955 int r; 3956 3957 r = vmx_deliver_nested_posted_interrupt(vcpu, vector); 3958 if (!r) 3959 return 0; 3960 3961 if (!vcpu->arch.apicv_active) 3962 return -1; 3963 3964 if (pi_test_and_set_pir(vector, &vmx->pi_desc)) 3965 return 0; 3966 3967 /* If a previous notification has sent the IPI, nothing to do. */ 3968 if (pi_test_and_set_on(&vmx->pi_desc)) 3969 return 0; 3970 3971 if (vcpu != kvm_get_running_vcpu() && 3972 !kvm_vcpu_trigger_posted_interrupt(vcpu, false)) 3973 kvm_vcpu_kick(vcpu); 3974 3975 return 0; 3976 } 3977 3978 /* 3979 * Set up the vmcs's constant host-state fields, i.e., host-state fields that 3980 * will not change in the lifetime of the guest. 3981 * Note that host-state that does change is set elsewhere. E.g., host-state 3982 * that is set differently for each CPU is set in vmx_vcpu_load(), not here. 3983 */ 3984 void vmx_set_constant_host_state(struct vcpu_vmx *vmx) 3985 { 3986 u32 low32, high32; 3987 unsigned long tmpl; 3988 unsigned long cr0, cr3, cr4; 3989 3990 cr0 = read_cr0(); 3991 WARN_ON(cr0 & X86_CR0_TS); 3992 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ 3993 3994 /* 3995 * Save the most likely value for this task's CR3 in the VMCS. 3996 * We can't use __get_current_cr3_fast() because we're not atomic. 3997 */ 3998 cr3 = __read_cr3(); 3999 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ 4000 vmx->loaded_vmcs->host_state.cr3 = cr3; 4001 4002 /* Save the most likely value for this task's CR4 in the VMCS. */ 4003 cr4 = cr4_read_shadow(); 4004 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ 4005 vmx->loaded_vmcs->host_state.cr4 = cr4; 4006 4007 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ 4008 #ifdef CONFIG_X86_64 4009 /* 4010 * Load null selectors, so we can avoid reloading them in 4011 * vmx_prepare_switch_to_host(), in case userspace uses 4012 * the null selectors too (the expected case). 4013 */ 4014 vmcs_write16(HOST_DS_SELECTOR, 0); 4015 vmcs_write16(HOST_ES_SELECTOR, 0); 4016 #else 4017 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4018 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4019 #endif 4020 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4021 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ 4022 4023 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */ 4024 4025 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ 4026 4027 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); 4028 vmcs_write32(HOST_IA32_SYSENTER_CS, low32); 4029 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); 4030 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ 4031 4032 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { 4033 rdmsr(MSR_IA32_CR_PAT, low32, high32); 4034 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); 4035 } 4036 4037 if (cpu_has_load_ia32_efer()) 4038 vmcs_write64(HOST_IA32_EFER, host_efer); 4039 } 4040 4041 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) 4042 { 4043 struct kvm_vcpu *vcpu = &vmx->vcpu; 4044 4045 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS & 4046 ~vcpu->arch.cr4_guest_rsvd_bits; 4047 if (!enable_ept) 4048 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE; 4049 if (is_guest_mode(&vmx->vcpu)) 4050 vcpu->arch.cr4_guest_owned_bits &= 4051 ~get_vmcs12(vcpu)->cr4_guest_host_mask; 4052 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits); 4053 } 4054 4055 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) 4056 { 4057 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; 4058 4059 if (!kvm_vcpu_apicv_active(&vmx->vcpu)) 4060 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; 4061 4062 if (!enable_vnmi) 4063 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; 4064 4065 if (!enable_preemption_timer) 4066 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 4067 4068 return pin_based_exec_ctrl; 4069 } 4070 4071 static u32 vmx_vmentry_ctrl(void) 4072 { 4073 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl; 4074 4075 if (vmx_pt_mode_is_system()) 4076 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP | 4077 VM_ENTRY_LOAD_IA32_RTIT_CTL); 4078 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ 4079 return vmentry_ctrl & 4080 ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER); 4081 } 4082 4083 static u32 vmx_vmexit_ctrl(void) 4084 { 4085 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl; 4086 4087 if (vmx_pt_mode_is_system()) 4088 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP | 4089 VM_EXIT_CLEAR_IA32_RTIT_CTL); 4090 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ 4091 return vmexit_ctrl & 4092 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER); 4093 } 4094 4095 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) 4096 { 4097 struct vcpu_vmx *vmx = to_vmx(vcpu); 4098 4099 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4100 if (cpu_has_secondary_exec_ctrls()) { 4101 if (kvm_vcpu_apicv_active(vcpu)) 4102 secondary_exec_controls_setbit(vmx, 4103 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4104 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4105 else 4106 secondary_exec_controls_clearbit(vmx, 4107 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4108 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4109 } 4110 4111 vmx_update_msr_bitmap_x2apic(vcpu); 4112 } 4113 4114 static u32 vmx_exec_control(struct vcpu_vmx *vmx) 4115 { 4116 u32 exec_control = vmcs_config.cpu_based_exec_ctrl; 4117 4118 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) 4119 exec_control &= ~CPU_BASED_MOV_DR_EXITING; 4120 4121 if (!cpu_need_tpr_shadow(&vmx->vcpu)) { 4122 exec_control &= ~CPU_BASED_TPR_SHADOW; 4123 #ifdef CONFIG_X86_64 4124 exec_control |= CPU_BASED_CR8_STORE_EXITING | 4125 CPU_BASED_CR8_LOAD_EXITING; 4126 #endif 4127 } 4128 if (!enable_ept) 4129 exec_control |= CPU_BASED_CR3_STORE_EXITING | 4130 CPU_BASED_CR3_LOAD_EXITING | 4131 CPU_BASED_INVLPG_EXITING; 4132 if (kvm_mwait_in_guest(vmx->vcpu.kvm)) 4133 exec_control &= ~(CPU_BASED_MWAIT_EXITING | 4134 CPU_BASED_MONITOR_EXITING); 4135 if (kvm_hlt_in_guest(vmx->vcpu.kvm)) 4136 exec_control &= ~CPU_BASED_HLT_EXITING; 4137 return exec_control; 4138 } 4139 4140 /* 4141 * Adjust a single secondary execution control bit to intercept/allow an 4142 * instruction in the guest. This is usually done based on whether or not a 4143 * feature has been exposed to the guest in order to correctly emulate faults. 4144 */ 4145 static inline void 4146 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control, 4147 u32 control, bool enabled, bool exiting) 4148 { 4149 /* 4150 * If the control is for an opt-in feature, clear the control if the 4151 * feature is not exposed to the guest, i.e. not enabled. If the 4152 * control is opt-out, i.e. an exiting control, clear the control if 4153 * the feature _is_ exposed to the guest, i.e. exiting/interception is 4154 * disabled for the associated instruction. Note, the caller is 4155 * responsible presetting exec_control to set all supported bits. 4156 */ 4157 if (enabled == exiting) 4158 *exec_control &= ~control; 4159 4160 /* 4161 * Update the nested MSR settings so that a nested VMM can/can't set 4162 * controls for features that are/aren't exposed to the guest. 4163 */ 4164 if (nested) { 4165 if (enabled) 4166 vmx->nested.msrs.secondary_ctls_high |= control; 4167 else 4168 vmx->nested.msrs.secondary_ctls_high &= ~control; 4169 } 4170 } 4171 4172 /* 4173 * Wrapper macro for the common case of adjusting a secondary execution control 4174 * based on a single guest CPUID bit, with a dedicated feature bit. This also 4175 * verifies that the control is actually supported by KVM and hardware. 4176 */ 4177 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \ 4178 ({ \ 4179 bool __enabled; \ 4180 \ 4181 if (cpu_has_vmx_##name()) { \ 4182 __enabled = guest_cpuid_has(&(vmx)->vcpu, \ 4183 X86_FEATURE_##feat_name); \ 4184 vmx_adjust_secondary_exec_control(vmx, exec_control, \ 4185 SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \ 4186 } \ 4187 }) 4188 4189 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */ 4190 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \ 4191 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false) 4192 4193 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \ 4194 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true) 4195 4196 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx) 4197 { 4198 struct kvm_vcpu *vcpu = &vmx->vcpu; 4199 4200 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; 4201 4202 if (vmx_pt_mode_is_system()) 4203 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); 4204 if (!cpu_need_virtualize_apic_accesses(vcpu)) 4205 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 4206 if (vmx->vpid == 0) 4207 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; 4208 if (!enable_ept) { 4209 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; 4210 enable_unrestricted_guest = 0; 4211 } 4212 if (!enable_unrestricted_guest) 4213 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; 4214 if (kvm_pause_in_guest(vmx->vcpu.kvm)) 4215 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; 4216 if (!kvm_vcpu_apicv_active(vcpu)) 4217 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | 4218 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4219 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 4220 4221 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, 4222 * in vmx_set_cr4. */ 4223 exec_control &= ~SECONDARY_EXEC_DESC; 4224 4225 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD 4226 (handle_vmptrld). 4227 We can NOT enable shadow_vmcs here because we don't have yet 4228 a current VMCS12 4229 */ 4230 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; 4231 4232 /* 4233 * PML is enabled/disabled when dirty logging of memsmlots changes, but 4234 * it needs to be set here when dirty logging is already active, e.g. 4235 * if this vCPU was created after dirty logging was enabled. 4236 */ 4237 if (!vcpu->kvm->arch.cpu_dirty_logging_count) 4238 exec_control &= ~SECONDARY_EXEC_ENABLE_PML; 4239 4240 if (cpu_has_vmx_xsaves()) { 4241 /* Exposing XSAVES only when XSAVE is exposed */ 4242 bool xsaves_enabled = 4243 boot_cpu_has(X86_FEATURE_XSAVE) && 4244 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 4245 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES); 4246 4247 vcpu->arch.xsaves_enabled = xsaves_enabled; 4248 4249 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4250 SECONDARY_EXEC_XSAVES, 4251 xsaves_enabled, false); 4252 } 4253 4254 /* 4255 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either 4256 * feature is exposed to the guest. This creates a virtualization hole 4257 * if both are supported in hardware but only one is exposed to the 4258 * guest, but letting the guest execute RDTSCP or RDPID when either one 4259 * is advertised is preferable to emulating the advertised instruction 4260 * in KVM on #UD, and obviously better than incorrectly injecting #UD. 4261 */ 4262 if (cpu_has_vmx_rdtscp()) { 4263 bool rdpid_or_rdtscp_enabled = 4264 guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) || 4265 guest_cpuid_has(vcpu, X86_FEATURE_RDPID); 4266 4267 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4268 SECONDARY_EXEC_ENABLE_RDTSCP, 4269 rdpid_or_rdtscp_enabled, false); 4270 } 4271 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID); 4272 4273 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND); 4274 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED); 4275 4276 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG, 4277 ENABLE_USR_WAIT_PAUSE, false); 4278 4279 if (!vcpu->kvm->arch.bus_lock_detection_enabled) 4280 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION; 4281 4282 return exec_control; 4283 } 4284 4285 #define VMX_XSS_EXIT_BITMAP 0 4286 4287 static void init_vmcs(struct vcpu_vmx *vmx) 4288 { 4289 if (nested) 4290 nested_vmx_set_vmcs_shadowing_bitmap(); 4291 4292 if (cpu_has_vmx_msr_bitmap()) 4293 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); 4294 4295 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */ 4296 4297 /* Control */ 4298 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4299 4300 exec_controls_set(vmx, vmx_exec_control(vmx)); 4301 4302 if (cpu_has_secondary_exec_ctrls()) 4303 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx)); 4304 4305 if (kvm_vcpu_apicv_active(&vmx->vcpu)) { 4306 vmcs_write64(EOI_EXIT_BITMAP0, 0); 4307 vmcs_write64(EOI_EXIT_BITMAP1, 0); 4308 vmcs_write64(EOI_EXIT_BITMAP2, 0); 4309 vmcs_write64(EOI_EXIT_BITMAP3, 0); 4310 4311 vmcs_write16(GUEST_INTR_STATUS, 0); 4312 4313 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); 4314 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); 4315 } 4316 4317 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) { 4318 vmcs_write32(PLE_GAP, ple_gap); 4319 vmx->ple_window = ple_window; 4320 vmx->ple_window_dirty = true; 4321 } 4322 4323 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); 4324 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); 4325 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ 4326 4327 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ 4328 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ 4329 vmx_set_constant_host_state(vmx); 4330 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ 4331 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ 4332 4333 if (cpu_has_vmx_vmfunc()) 4334 vmcs_write64(VM_FUNCTION_CONTROL, 0); 4335 4336 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); 4337 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); 4338 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); 4339 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); 4340 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); 4341 4342 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 4343 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); 4344 4345 vm_exit_controls_set(vmx, vmx_vmexit_ctrl()); 4346 4347 /* 22.2.1, 20.8.1 */ 4348 vm_entry_controls_set(vmx, vmx_vmentry_ctrl()); 4349 4350 vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS; 4351 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits); 4352 4353 set_cr4_guest_host_mask(vmx); 4354 4355 if (vmx->vpid != 0) 4356 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); 4357 4358 if (cpu_has_vmx_xsaves()) 4359 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); 4360 4361 if (enable_pml) { 4362 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); 4363 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 4364 } 4365 4366 vmx_write_encls_bitmap(&vmx->vcpu, NULL); 4367 4368 if (vmx_pt_mode_is_host_guest()) { 4369 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); 4370 /* Bit[6~0] are forced to 1, writes are ignored. */ 4371 vmx->pt_desc.guest.output_mask = 0x7F; 4372 vmcs_write64(GUEST_IA32_RTIT_CTL, 0); 4373 } 4374 4375 vmcs_write32(GUEST_SYSENTER_CS, 0); 4376 vmcs_writel(GUEST_SYSENTER_ESP, 0); 4377 vmcs_writel(GUEST_SYSENTER_EIP, 0); 4378 vmcs_write64(GUEST_IA32_DEBUGCTL, 0); 4379 4380 if (cpu_has_vmx_tpr_shadow()) { 4381 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); 4382 if (cpu_need_tpr_shadow(&vmx->vcpu)) 4383 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 4384 __pa(vmx->vcpu.arch.apic->regs)); 4385 vmcs_write32(TPR_THRESHOLD, 0); 4386 } 4387 4388 vmx_setup_uret_msrs(vmx); 4389 } 4390 4391 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu) 4392 { 4393 struct vcpu_vmx *vmx = to_vmx(vcpu); 4394 4395 init_vmcs(vmx); 4396 4397 if (nested) 4398 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs)); 4399 4400 vcpu_setup_sgx_lepubkeyhash(vcpu); 4401 4402 vmx->nested.posted_intr_nv = -1; 4403 vmx->nested.vmxon_ptr = INVALID_GPA; 4404 vmx->nested.current_vmptr = INVALID_GPA; 4405 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID; 4406 4407 vcpu->arch.microcode_version = 0x100000000ULL; 4408 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED; 4409 4410 /* 4411 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR 4412 * or POSTED_INTR_WAKEUP_VECTOR. 4413 */ 4414 vmx->pi_desc.nv = POSTED_INTR_VECTOR; 4415 vmx->pi_desc.sn = 1; 4416 } 4417 4418 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 4419 { 4420 struct vcpu_vmx *vmx = to_vmx(vcpu); 4421 4422 if (!init_event) 4423 __vmx_vcpu_reset(vcpu); 4424 4425 vmx->rmode.vm86_active = 0; 4426 vmx->spec_ctrl = 0; 4427 4428 vmx->msr_ia32_umwait_control = 0; 4429 4430 vmx->hv_deadline_tsc = -1; 4431 kvm_set_cr8(vcpu, 0); 4432 4433 vmx_segment_cache_clear(vmx); 4434 kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS); 4435 4436 seg_setup(VCPU_SREG_CS); 4437 vmcs_write16(GUEST_CS_SELECTOR, 0xf000); 4438 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); 4439 4440 seg_setup(VCPU_SREG_DS); 4441 seg_setup(VCPU_SREG_ES); 4442 seg_setup(VCPU_SREG_FS); 4443 seg_setup(VCPU_SREG_GS); 4444 seg_setup(VCPU_SREG_SS); 4445 4446 vmcs_write16(GUEST_TR_SELECTOR, 0); 4447 vmcs_writel(GUEST_TR_BASE, 0); 4448 vmcs_write32(GUEST_TR_LIMIT, 0xffff); 4449 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 4450 4451 vmcs_write16(GUEST_LDTR_SELECTOR, 0); 4452 vmcs_writel(GUEST_LDTR_BASE, 0); 4453 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); 4454 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); 4455 4456 vmcs_writel(GUEST_GDTR_BASE, 0); 4457 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); 4458 4459 vmcs_writel(GUEST_IDTR_BASE, 0); 4460 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); 4461 4462 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 4463 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); 4464 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); 4465 if (kvm_mpx_supported()) 4466 vmcs_write64(GUEST_BNDCFGS, 0); 4467 4468 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ 4469 4470 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 4471 4472 vpid_sync_context(vmx->vpid); 4473 } 4474 4475 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu) 4476 { 4477 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 4478 } 4479 4480 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu) 4481 { 4482 if (!enable_vnmi || 4483 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { 4484 vmx_enable_irq_window(vcpu); 4485 return; 4486 } 4487 4488 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 4489 } 4490 4491 static void vmx_inject_irq(struct kvm_vcpu *vcpu) 4492 { 4493 struct vcpu_vmx *vmx = to_vmx(vcpu); 4494 uint32_t intr; 4495 int irq = vcpu->arch.interrupt.nr; 4496 4497 trace_kvm_inj_virq(irq); 4498 4499 ++vcpu->stat.irq_injections; 4500 if (vmx->rmode.vm86_active) { 4501 int inc_eip = 0; 4502 if (vcpu->arch.interrupt.soft) 4503 inc_eip = vcpu->arch.event_exit_inst_len; 4504 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip); 4505 return; 4506 } 4507 intr = irq | INTR_INFO_VALID_MASK; 4508 if (vcpu->arch.interrupt.soft) { 4509 intr |= INTR_TYPE_SOFT_INTR; 4510 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 4511 vmx->vcpu.arch.event_exit_inst_len); 4512 } else 4513 intr |= INTR_TYPE_EXT_INTR; 4514 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); 4515 4516 vmx_clear_hlt(vcpu); 4517 } 4518 4519 static void vmx_inject_nmi(struct kvm_vcpu *vcpu) 4520 { 4521 struct vcpu_vmx *vmx = to_vmx(vcpu); 4522 4523 if (!enable_vnmi) { 4524 /* 4525 * Tracking the NMI-blocked state in software is built upon 4526 * finding the next open IRQ window. This, in turn, depends on 4527 * well-behaving guests: They have to keep IRQs disabled at 4528 * least as long as the NMI handler runs. Otherwise we may 4529 * cause NMI nesting, maybe breaking the guest. But as this is 4530 * highly unlikely, we can live with the residual risk. 4531 */ 4532 vmx->loaded_vmcs->soft_vnmi_blocked = 1; 4533 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4534 } 4535 4536 ++vcpu->stat.nmi_injections; 4537 vmx->loaded_vmcs->nmi_known_unmasked = false; 4538 4539 if (vmx->rmode.vm86_active) { 4540 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0); 4541 return; 4542 } 4543 4544 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 4545 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); 4546 4547 vmx_clear_hlt(vcpu); 4548 } 4549 4550 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) 4551 { 4552 struct vcpu_vmx *vmx = to_vmx(vcpu); 4553 bool masked; 4554 4555 if (!enable_vnmi) 4556 return vmx->loaded_vmcs->soft_vnmi_blocked; 4557 if (vmx->loaded_vmcs->nmi_known_unmasked) 4558 return false; 4559 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; 4560 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4561 return masked; 4562 } 4563 4564 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 4565 { 4566 struct vcpu_vmx *vmx = to_vmx(vcpu); 4567 4568 if (!enable_vnmi) { 4569 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { 4570 vmx->loaded_vmcs->soft_vnmi_blocked = masked; 4571 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4572 } 4573 } else { 4574 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4575 if (masked) 4576 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 4577 GUEST_INTR_STATE_NMI); 4578 else 4579 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, 4580 GUEST_INTR_STATE_NMI); 4581 } 4582 } 4583 4584 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu) 4585 { 4586 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 4587 return false; 4588 4589 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) 4590 return true; 4591 4592 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4593 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI | 4594 GUEST_INTR_STATE_NMI)); 4595 } 4596 4597 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4598 { 4599 if (to_vmx(vcpu)->nested.nested_run_pending) 4600 return -EBUSY; 4601 4602 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 4603 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 4604 return -EBUSY; 4605 4606 return !vmx_nmi_blocked(vcpu); 4607 } 4608 4609 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu) 4610 { 4611 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 4612 return false; 4613 4614 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) || 4615 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4616 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); 4617 } 4618 4619 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4620 { 4621 if (to_vmx(vcpu)->nested.nested_run_pending) 4622 return -EBUSY; 4623 4624 /* 4625 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 4626 * e.g. if the IRQ arrived asynchronously after checking nested events. 4627 */ 4628 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 4629 return -EBUSY; 4630 4631 return !vmx_interrupt_blocked(vcpu); 4632 } 4633 4634 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) 4635 { 4636 void __user *ret; 4637 4638 if (enable_unrestricted_guest) 4639 return 0; 4640 4641 mutex_lock(&kvm->slots_lock); 4642 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, 4643 PAGE_SIZE * 3); 4644 mutex_unlock(&kvm->slots_lock); 4645 4646 if (IS_ERR(ret)) 4647 return PTR_ERR(ret); 4648 4649 to_kvm_vmx(kvm)->tss_addr = addr; 4650 4651 return init_rmode_tss(kvm, ret); 4652 } 4653 4654 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 4655 { 4656 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; 4657 return 0; 4658 } 4659 4660 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) 4661 { 4662 switch (vec) { 4663 case BP_VECTOR: 4664 /* 4665 * Update instruction length as we may reinject the exception 4666 * from user space while in guest debugging mode. 4667 */ 4668 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = 4669 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4670 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 4671 return false; 4672 fallthrough; 4673 case DB_VECTOR: 4674 return !(vcpu->guest_debug & 4675 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)); 4676 case DE_VECTOR: 4677 case OF_VECTOR: 4678 case BR_VECTOR: 4679 case UD_VECTOR: 4680 case DF_VECTOR: 4681 case SS_VECTOR: 4682 case GP_VECTOR: 4683 case MF_VECTOR: 4684 return true; 4685 } 4686 return false; 4687 } 4688 4689 static int handle_rmode_exception(struct kvm_vcpu *vcpu, 4690 int vec, u32 err_code) 4691 { 4692 /* 4693 * Instruction with address size override prefix opcode 0x67 4694 * Cause the #SS fault with 0 error code in VM86 mode. 4695 */ 4696 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { 4697 if (kvm_emulate_instruction(vcpu, 0)) { 4698 if (vcpu->arch.halt_request) { 4699 vcpu->arch.halt_request = 0; 4700 return kvm_vcpu_halt(vcpu); 4701 } 4702 return 1; 4703 } 4704 return 0; 4705 } 4706 4707 /* 4708 * Forward all other exceptions that are valid in real mode. 4709 * FIXME: Breaks guest debugging in real mode, needs to be fixed with 4710 * the required debugging infrastructure rework. 4711 */ 4712 kvm_queue_exception(vcpu, vec); 4713 return 1; 4714 } 4715 4716 static int handle_machine_check(struct kvm_vcpu *vcpu) 4717 { 4718 /* handled by vmx_vcpu_run() */ 4719 return 1; 4720 } 4721 4722 /* 4723 * If the host has split lock detection disabled, then #AC is 4724 * unconditionally injected into the guest, which is the pre split lock 4725 * detection behaviour. 4726 * 4727 * If the host has split lock detection enabled then #AC is 4728 * only injected into the guest when: 4729 * - Guest CPL == 3 (user mode) 4730 * - Guest has #AC detection enabled in CR0 4731 * - Guest EFLAGS has AC bit set 4732 */ 4733 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu) 4734 { 4735 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 4736 return true; 4737 4738 return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) && 4739 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC); 4740 } 4741 4742 static int handle_exception_nmi(struct kvm_vcpu *vcpu) 4743 { 4744 struct vcpu_vmx *vmx = to_vmx(vcpu); 4745 struct kvm_run *kvm_run = vcpu->run; 4746 u32 intr_info, ex_no, error_code; 4747 unsigned long cr2, dr6; 4748 u32 vect_info; 4749 4750 vect_info = vmx->idt_vectoring_info; 4751 intr_info = vmx_get_intr_info(vcpu); 4752 4753 if (is_machine_check(intr_info) || is_nmi(intr_info)) 4754 return 1; /* handled by handle_exception_nmi_irqoff() */ 4755 4756 if (is_invalid_opcode(intr_info)) 4757 return handle_ud(vcpu); 4758 4759 error_code = 0; 4760 if (intr_info & INTR_INFO_DELIVER_CODE_MASK) 4761 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 4762 4763 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { 4764 WARN_ON_ONCE(!enable_vmware_backdoor); 4765 4766 /* 4767 * VMware backdoor emulation on #GP interception only handles 4768 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero 4769 * error code on #GP. 4770 */ 4771 if (error_code) { 4772 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 4773 return 1; 4774 } 4775 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); 4776 } 4777 4778 /* 4779 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing 4780 * MMIO, it is better to report an internal error. 4781 * See the comments in vmx_handle_exit. 4782 */ 4783 if ((vect_info & VECTORING_INFO_VALID_MASK) && 4784 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { 4785 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4786 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; 4787 vcpu->run->internal.ndata = 4; 4788 vcpu->run->internal.data[0] = vect_info; 4789 vcpu->run->internal.data[1] = intr_info; 4790 vcpu->run->internal.data[2] = error_code; 4791 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu; 4792 return 0; 4793 } 4794 4795 if (is_page_fault(intr_info)) { 4796 cr2 = vmx_get_exit_qual(vcpu); 4797 if (enable_ept && !vcpu->arch.apf.host_apf_flags) { 4798 /* 4799 * EPT will cause page fault only if we need to 4800 * detect illegal GPAs. 4801 */ 4802 WARN_ON_ONCE(!allow_smaller_maxphyaddr); 4803 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code); 4804 return 1; 4805 } else 4806 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); 4807 } 4808 4809 ex_no = intr_info & INTR_INFO_VECTOR_MASK; 4810 4811 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) 4812 return handle_rmode_exception(vcpu, ex_no, error_code); 4813 4814 switch (ex_no) { 4815 case DB_VECTOR: 4816 dr6 = vmx_get_exit_qual(vcpu); 4817 if (!(vcpu->guest_debug & 4818 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { 4819 if (is_icebp(intr_info)) 4820 WARN_ON(!skip_emulated_instruction(vcpu)); 4821 4822 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 4823 return 1; 4824 } 4825 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 4826 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); 4827 fallthrough; 4828 case BP_VECTOR: 4829 /* 4830 * Update instruction length as we may reinject #BP from 4831 * user space while in guest debugging mode. Reading it for 4832 * #DB as well causes no harm, it is not used in that case. 4833 */ 4834 vmx->vcpu.arch.event_exit_inst_len = 4835 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4836 kvm_run->exit_reason = KVM_EXIT_DEBUG; 4837 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 4838 kvm_run->debug.arch.exception = ex_no; 4839 break; 4840 case AC_VECTOR: 4841 if (vmx_guest_inject_ac(vcpu)) { 4842 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); 4843 return 1; 4844 } 4845 4846 /* 4847 * Handle split lock. Depending on detection mode this will 4848 * either warn and disable split lock detection for this 4849 * task or force SIGBUS on it. 4850 */ 4851 if (handle_guest_split_lock(kvm_rip_read(vcpu))) 4852 return 1; 4853 fallthrough; 4854 default: 4855 kvm_run->exit_reason = KVM_EXIT_EXCEPTION; 4856 kvm_run->ex.exception = ex_no; 4857 kvm_run->ex.error_code = error_code; 4858 break; 4859 } 4860 return 0; 4861 } 4862 4863 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu) 4864 { 4865 ++vcpu->stat.irq_exits; 4866 return 1; 4867 } 4868 4869 static int handle_triple_fault(struct kvm_vcpu *vcpu) 4870 { 4871 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 4872 vcpu->mmio_needed = 0; 4873 return 0; 4874 } 4875 4876 static int handle_io(struct kvm_vcpu *vcpu) 4877 { 4878 unsigned long exit_qualification; 4879 int size, in, string; 4880 unsigned port; 4881 4882 exit_qualification = vmx_get_exit_qual(vcpu); 4883 string = (exit_qualification & 16) != 0; 4884 4885 ++vcpu->stat.io_exits; 4886 4887 if (string) 4888 return kvm_emulate_instruction(vcpu, 0); 4889 4890 port = exit_qualification >> 16; 4891 size = (exit_qualification & 7) + 1; 4892 in = (exit_qualification & 8) != 0; 4893 4894 return kvm_fast_pio(vcpu, size, port, in); 4895 } 4896 4897 static void 4898 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 4899 { 4900 /* 4901 * Patch in the VMCALL instruction: 4902 */ 4903 hypercall[0] = 0x0f; 4904 hypercall[1] = 0x01; 4905 hypercall[2] = 0xc1; 4906 } 4907 4908 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ 4909 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) 4910 { 4911 if (is_guest_mode(vcpu)) { 4912 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 4913 unsigned long orig_val = val; 4914 4915 /* 4916 * We get here when L2 changed cr0 in a way that did not change 4917 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), 4918 * but did change L0 shadowed bits. So we first calculate the 4919 * effective cr0 value that L1 would like to write into the 4920 * hardware. It consists of the L2-owned bits from the new 4921 * value combined with the L1-owned bits from L1's guest_cr0. 4922 */ 4923 val = (val & ~vmcs12->cr0_guest_host_mask) | 4924 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); 4925 4926 if (!nested_guest_cr0_valid(vcpu, val)) 4927 return 1; 4928 4929 if (kvm_set_cr0(vcpu, val)) 4930 return 1; 4931 vmcs_writel(CR0_READ_SHADOW, orig_val); 4932 return 0; 4933 } else { 4934 if (to_vmx(vcpu)->nested.vmxon && 4935 !nested_host_cr0_valid(vcpu, val)) 4936 return 1; 4937 4938 return kvm_set_cr0(vcpu, val); 4939 } 4940 } 4941 4942 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) 4943 { 4944 if (is_guest_mode(vcpu)) { 4945 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 4946 unsigned long orig_val = val; 4947 4948 /* analogously to handle_set_cr0 */ 4949 val = (val & ~vmcs12->cr4_guest_host_mask) | 4950 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); 4951 if (kvm_set_cr4(vcpu, val)) 4952 return 1; 4953 vmcs_writel(CR4_READ_SHADOW, orig_val); 4954 return 0; 4955 } else 4956 return kvm_set_cr4(vcpu, val); 4957 } 4958 4959 static int handle_desc(struct kvm_vcpu *vcpu) 4960 { 4961 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP)); 4962 return kvm_emulate_instruction(vcpu, 0); 4963 } 4964 4965 static int handle_cr(struct kvm_vcpu *vcpu) 4966 { 4967 unsigned long exit_qualification, val; 4968 int cr; 4969 int reg; 4970 int err; 4971 int ret; 4972 4973 exit_qualification = vmx_get_exit_qual(vcpu); 4974 cr = exit_qualification & 15; 4975 reg = (exit_qualification >> 8) & 15; 4976 switch ((exit_qualification >> 4) & 3) { 4977 case 0: /* mov to cr */ 4978 val = kvm_register_read(vcpu, reg); 4979 trace_kvm_cr_write(cr, val); 4980 switch (cr) { 4981 case 0: 4982 err = handle_set_cr0(vcpu, val); 4983 return kvm_complete_insn_gp(vcpu, err); 4984 case 3: 4985 WARN_ON_ONCE(enable_unrestricted_guest); 4986 4987 err = kvm_set_cr3(vcpu, val); 4988 return kvm_complete_insn_gp(vcpu, err); 4989 case 4: 4990 err = handle_set_cr4(vcpu, val); 4991 return kvm_complete_insn_gp(vcpu, err); 4992 case 8: { 4993 u8 cr8_prev = kvm_get_cr8(vcpu); 4994 u8 cr8 = (u8)val; 4995 err = kvm_set_cr8(vcpu, cr8); 4996 ret = kvm_complete_insn_gp(vcpu, err); 4997 if (lapic_in_kernel(vcpu)) 4998 return ret; 4999 if (cr8_prev <= cr8) 5000 return ret; 5001 /* 5002 * TODO: we might be squashing a 5003 * KVM_GUESTDBG_SINGLESTEP-triggered 5004 * KVM_EXIT_DEBUG here. 5005 */ 5006 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 5007 return 0; 5008 } 5009 } 5010 break; 5011 case 2: /* clts */ 5012 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS"); 5013 return -EIO; 5014 case 1: /*mov from cr*/ 5015 switch (cr) { 5016 case 3: 5017 WARN_ON_ONCE(enable_unrestricted_guest); 5018 5019 val = kvm_read_cr3(vcpu); 5020 kvm_register_write(vcpu, reg, val); 5021 trace_kvm_cr_read(cr, val); 5022 return kvm_skip_emulated_instruction(vcpu); 5023 case 8: 5024 val = kvm_get_cr8(vcpu); 5025 kvm_register_write(vcpu, reg, val); 5026 trace_kvm_cr_read(cr, val); 5027 return kvm_skip_emulated_instruction(vcpu); 5028 } 5029 break; 5030 case 3: /* lmsw */ 5031 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; 5032 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val); 5033 kvm_lmsw(vcpu, val); 5034 5035 return kvm_skip_emulated_instruction(vcpu); 5036 default: 5037 break; 5038 } 5039 vcpu->run->exit_reason = 0; 5040 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", 5041 (int)(exit_qualification >> 4) & 3, cr); 5042 return 0; 5043 } 5044 5045 static int handle_dr(struct kvm_vcpu *vcpu) 5046 { 5047 unsigned long exit_qualification; 5048 int dr, dr7, reg; 5049 int err = 1; 5050 5051 exit_qualification = vmx_get_exit_qual(vcpu); 5052 dr = exit_qualification & DEBUG_REG_ACCESS_NUM; 5053 5054 /* First, if DR does not exist, trigger UD */ 5055 if (!kvm_require_dr(vcpu, dr)) 5056 return 1; 5057 5058 if (kvm_x86_ops.get_cpl(vcpu) > 0) 5059 goto out; 5060 5061 dr7 = vmcs_readl(GUEST_DR7); 5062 if (dr7 & DR7_GD) { 5063 /* 5064 * As the vm-exit takes precedence over the debug trap, we 5065 * need to emulate the latter, either for the host or the 5066 * guest debugging itself. 5067 */ 5068 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 5069 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW; 5070 vcpu->run->debug.arch.dr7 = dr7; 5071 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5072 vcpu->run->debug.arch.exception = DB_VECTOR; 5073 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 5074 return 0; 5075 } else { 5076 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD); 5077 return 1; 5078 } 5079 } 5080 5081 if (vcpu->guest_debug == 0) { 5082 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5083 5084 /* 5085 * No more DR vmexits; force a reload of the debug registers 5086 * and reenter on this instruction. The next vmexit will 5087 * retrieve the full state of the debug registers. 5088 */ 5089 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 5090 return 1; 5091 } 5092 5093 reg = DEBUG_REG_ACCESS_REG(exit_qualification); 5094 if (exit_qualification & TYPE_MOV_FROM_DR) { 5095 unsigned long val; 5096 5097 kvm_get_dr(vcpu, dr, &val); 5098 kvm_register_write(vcpu, reg, val); 5099 err = 0; 5100 } else { 5101 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); 5102 } 5103 5104 out: 5105 return kvm_complete_insn_gp(vcpu, err); 5106 } 5107 5108 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 5109 { 5110 get_debugreg(vcpu->arch.db[0], 0); 5111 get_debugreg(vcpu->arch.db[1], 1); 5112 get_debugreg(vcpu->arch.db[2], 2); 5113 get_debugreg(vcpu->arch.db[3], 3); 5114 get_debugreg(vcpu->arch.dr6, 6); 5115 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); 5116 5117 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 5118 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5119 5120 /* 5121 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees 5122 * a stale dr6 from the guest. 5123 */ 5124 set_debugreg(DR6_RESERVED, 6); 5125 } 5126 5127 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) 5128 { 5129 vmcs_writel(GUEST_DR7, val); 5130 } 5131 5132 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) 5133 { 5134 kvm_apic_update_ppr(vcpu); 5135 return 1; 5136 } 5137 5138 static int handle_interrupt_window(struct kvm_vcpu *vcpu) 5139 { 5140 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 5141 5142 kvm_make_request(KVM_REQ_EVENT, vcpu); 5143 5144 ++vcpu->stat.irq_window_exits; 5145 return 1; 5146 } 5147 5148 static int handle_invlpg(struct kvm_vcpu *vcpu) 5149 { 5150 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5151 5152 kvm_mmu_invlpg(vcpu, exit_qualification); 5153 return kvm_skip_emulated_instruction(vcpu); 5154 } 5155 5156 static int handle_apic_access(struct kvm_vcpu *vcpu) 5157 { 5158 if (likely(fasteoi)) { 5159 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5160 int access_type, offset; 5161 5162 access_type = exit_qualification & APIC_ACCESS_TYPE; 5163 offset = exit_qualification & APIC_ACCESS_OFFSET; 5164 /* 5165 * Sane guest uses MOV to write EOI, with written value 5166 * not cared. So make a short-circuit here by avoiding 5167 * heavy instruction emulation. 5168 */ 5169 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && 5170 (offset == APIC_EOI)) { 5171 kvm_lapic_set_eoi(vcpu); 5172 return kvm_skip_emulated_instruction(vcpu); 5173 } 5174 } 5175 return kvm_emulate_instruction(vcpu, 0); 5176 } 5177 5178 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) 5179 { 5180 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5181 int vector = exit_qualification & 0xff; 5182 5183 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ 5184 kvm_apic_set_eoi_accelerated(vcpu, vector); 5185 return 1; 5186 } 5187 5188 static int handle_apic_write(struct kvm_vcpu *vcpu) 5189 { 5190 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5191 u32 offset = exit_qualification & 0xfff; 5192 5193 /* APIC-write VM exit is trap-like and thus no need to adjust IP */ 5194 kvm_apic_write_nodecode(vcpu, offset); 5195 return 1; 5196 } 5197 5198 static int handle_task_switch(struct kvm_vcpu *vcpu) 5199 { 5200 struct vcpu_vmx *vmx = to_vmx(vcpu); 5201 unsigned long exit_qualification; 5202 bool has_error_code = false; 5203 u32 error_code = 0; 5204 u16 tss_selector; 5205 int reason, type, idt_v, idt_index; 5206 5207 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); 5208 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); 5209 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); 5210 5211 exit_qualification = vmx_get_exit_qual(vcpu); 5212 5213 reason = (u32)exit_qualification >> 30; 5214 if (reason == TASK_SWITCH_GATE && idt_v) { 5215 switch (type) { 5216 case INTR_TYPE_NMI_INTR: 5217 vcpu->arch.nmi_injected = false; 5218 vmx_set_nmi_mask(vcpu, true); 5219 break; 5220 case INTR_TYPE_EXT_INTR: 5221 case INTR_TYPE_SOFT_INTR: 5222 kvm_clear_interrupt_queue(vcpu); 5223 break; 5224 case INTR_TYPE_HARD_EXCEPTION: 5225 if (vmx->idt_vectoring_info & 5226 VECTORING_INFO_DELIVER_CODE_MASK) { 5227 has_error_code = true; 5228 error_code = 5229 vmcs_read32(IDT_VECTORING_ERROR_CODE); 5230 } 5231 fallthrough; 5232 case INTR_TYPE_SOFT_EXCEPTION: 5233 kvm_clear_exception_queue(vcpu); 5234 break; 5235 default: 5236 break; 5237 } 5238 } 5239 tss_selector = exit_qualification; 5240 5241 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && 5242 type != INTR_TYPE_EXT_INTR && 5243 type != INTR_TYPE_NMI_INTR)) 5244 WARN_ON(!skip_emulated_instruction(vcpu)); 5245 5246 /* 5247 * TODO: What about debug traps on tss switch? 5248 * Are we supposed to inject them and update dr6? 5249 */ 5250 return kvm_task_switch(vcpu, tss_selector, 5251 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, 5252 reason, has_error_code, error_code); 5253 } 5254 5255 static int handle_ept_violation(struct kvm_vcpu *vcpu) 5256 { 5257 unsigned long exit_qualification; 5258 gpa_t gpa; 5259 u64 error_code; 5260 5261 exit_qualification = vmx_get_exit_qual(vcpu); 5262 5263 /* 5264 * EPT violation happened while executing iret from NMI, 5265 * "blocked by NMI" bit has to be set before next VM entry. 5266 * There are errata that may cause this bit to not be set: 5267 * AAK134, BY25. 5268 */ 5269 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5270 enable_vnmi && 5271 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5272 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); 5273 5274 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5275 trace_kvm_page_fault(gpa, exit_qualification); 5276 5277 /* Is it a read fault? */ 5278 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) 5279 ? PFERR_USER_MASK : 0; 5280 /* Is it a write fault? */ 5281 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) 5282 ? PFERR_WRITE_MASK : 0; 5283 /* Is it a fetch fault? */ 5284 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) 5285 ? PFERR_FETCH_MASK : 0; 5286 /* ept page table entry is present? */ 5287 error_code |= (exit_qualification & 5288 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE | 5289 EPT_VIOLATION_EXECUTABLE)) 5290 ? PFERR_PRESENT_MASK : 0; 5291 5292 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ? 5293 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; 5294 5295 vcpu->arch.exit_qualification = exit_qualification; 5296 5297 /* 5298 * Check that the GPA doesn't exceed physical memory limits, as that is 5299 * a guest page fault. We have to emulate the instruction here, because 5300 * if the illegal address is that of a paging structure, then 5301 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we 5302 * would also use advanced VM-exit information for EPT violations to 5303 * reconstruct the page fault error code. 5304 */ 5305 if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa))) 5306 return kvm_emulate_instruction(vcpu, 0); 5307 5308 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); 5309 } 5310 5311 static int handle_ept_misconfig(struct kvm_vcpu *vcpu) 5312 { 5313 gpa_t gpa; 5314 5315 if (!vmx_can_emulate_instruction(vcpu, NULL, 0)) 5316 return 1; 5317 5318 /* 5319 * A nested guest cannot optimize MMIO vmexits, because we have an 5320 * nGPA here instead of the required GPA. 5321 */ 5322 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5323 if (!is_guest_mode(vcpu) && 5324 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { 5325 trace_kvm_fast_mmio(gpa); 5326 return kvm_skip_emulated_instruction(vcpu); 5327 } 5328 5329 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); 5330 } 5331 5332 static int handle_nmi_window(struct kvm_vcpu *vcpu) 5333 { 5334 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm)) 5335 return -EIO; 5336 5337 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 5338 ++vcpu->stat.nmi_window_exits; 5339 kvm_make_request(KVM_REQ_EVENT, vcpu); 5340 5341 return 1; 5342 } 5343 5344 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) 5345 { 5346 struct vcpu_vmx *vmx = to_vmx(vcpu); 5347 bool intr_window_requested; 5348 unsigned count = 130; 5349 5350 intr_window_requested = exec_controls_get(vmx) & 5351 CPU_BASED_INTR_WINDOW_EXITING; 5352 5353 while (vmx->emulation_required && count-- != 0) { 5354 if (intr_window_requested && !vmx_interrupt_blocked(vcpu)) 5355 return handle_interrupt_window(&vmx->vcpu); 5356 5357 if (kvm_test_request(KVM_REQ_EVENT, vcpu)) 5358 return 1; 5359 5360 if (!kvm_emulate_instruction(vcpu, 0)) 5361 return 0; 5362 5363 if (vmx->emulation_required && !vmx->rmode.vm86_active && 5364 vcpu->arch.exception.pending) { 5365 kvm_prepare_emulation_failure_exit(vcpu); 5366 return 0; 5367 } 5368 5369 if (vcpu->arch.halt_request) { 5370 vcpu->arch.halt_request = 0; 5371 return kvm_vcpu_halt(vcpu); 5372 } 5373 5374 /* 5375 * Note, return 1 and not 0, vcpu_run() will invoke 5376 * xfer_to_guest_mode() which will create a proper return 5377 * code. 5378 */ 5379 if (__xfer_to_guest_mode_work_pending()) 5380 return 1; 5381 } 5382 5383 return 1; 5384 } 5385 5386 static void grow_ple_window(struct kvm_vcpu *vcpu) 5387 { 5388 struct vcpu_vmx *vmx = to_vmx(vcpu); 5389 unsigned int old = vmx->ple_window; 5390 5391 vmx->ple_window = __grow_ple_window(old, ple_window, 5392 ple_window_grow, 5393 ple_window_max); 5394 5395 if (vmx->ple_window != old) { 5396 vmx->ple_window_dirty = true; 5397 trace_kvm_ple_window_update(vcpu->vcpu_id, 5398 vmx->ple_window, old); 5399 } 5400 } 5401 5402 static void shrink_ple_window(struct kvm_vcpu *vcpu) 5403 { 5404 struct vcpu_vmx *vmx = to_vmx(vcpu); 5405 unsigned int old = vmx->ple_window; 5406 5407 vmx->ple_window = __shrink_ple_window(old, ple_window, 5408 ple_window_shrink, 5409 ple_window); 5410 5411 if (vmx->ple_window != old) { 5412 vmx->ple_window_dirty = true; 5413 trace_kvm_ple_window_update(vcpu->vcpu_id, 5414 vmx->ple_window, old); 5415 } 5416 } 5417 5418 /* 5419 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE 5420 * exiting, so only get here on cpu with PAUSE-Loop-Exiting. 5421 */ 5422 static int handle_pause(struct kvm_vcpu *vcpu) 5423 { 5424 if (!kvm_pause_in_guest(vcpu->kvm)) 5425 grow_ple_window(vcpu); 5426 5427 /* 5428 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" 5429 * VM-execution control is ignored if CPL > 0. OTOH, KVM 5430 * never set PAUSE_EXITING and just set PLE if supported, 5431 * so the vcpu must be CPL=0 if it gets a PAUSE exit. 5432 */ 5433 kvm_vcpu_on_spin(vcpu, true); 5434 return kvm_skip_emulated_instruction(vcpu); 5435 } 5436 5437 static int handle_monitor_trap(struct kvm_vcpu *vcpu) 5438 { 5439 return 1; 5440 } 5441 5442 static int handle_invpcid(struct kvm_vcpu *vcpu) 5443 { 5444 u32 vmx_instruction_info; 5445 unsigned long type; 5446 gva_t gva; 5447 struct { 5448 u64 pcid; 5449 u64 gla; 5450 } operand; 5451 int gpr_index; 5452 5453 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 5454 kvm_queue_exception(vcpu, UD_VECTOR); 5455 return 1; 5456 } 5457 5458 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5459 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info); 5460 type = kvm_register_read(vcpu, gpr_index); 5461 5462 /* According to the Intel instruction reference, the memory operand 5463 * is read even if it isn't needed (e.g., for type==all) 5464 */ 5465 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), 5466 vmx_instruction_info, false, 5467 sizeof(operand), &gva)) 5468 return 1; 5469 5470 return kvm_handle_invpcid(vcpu, type, gva); 5471 } 5472 5473 static int handle_pml_full(struct kvm_vcpu *vcpu) 5474 { 5475 unsigned long exit_qualification; 5476 5477 trace_kvm_pml_full(vcpu->vcpu_id); 5478 5479 exit_qualification = vmx_get_exit_qual(vcpu); 5480 5481 /* 5482 * PML buffer FULL happened while executing iret from NMI, 5483 * "blocked by NMI" bit has to be set before next VM entry. 5484 */ 5485 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5486 enable_vnmi && 5487 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5488 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5489 GUEST_INTR_STATE_NMI); 5490 5491 /* 5492 * PML buffer already flushed at beginning of VMEXIT. Nothing to do 5493 * here.., and there's no userspace involvement needed for PML. 5494 */ 5495 return 1; 5496 } 5497 5498 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu) 5499 { 5500 struct vcpu_vmx *vmx = to_vmx(vcpu); 5501 5502 if (!vmx->req_immediate_exit && 5503 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) { 5504 kvm_lapic_expired_hv_timer(vcpu); 5505 return EXIT_FASTPATH_REENTER_GUEST; 5506 } 5507 5508 return EXIT_FASTPATH_NONE; 5509 } 5510 5511 static int handle_preemption_timer(struct kvm_vcpu *vcpu) 5512 { 5513 handle_fastpath_preemption_timer(vcpu); 5514 return 1; 5515 } 5516 5517 /* 5518 * When nested=0, all VMX instruction VM Exits filter here. The handlers 5519 * are overwritten by nested_vmx_setup() when nested=1. 5520 */ 5521 static int handle_vmx_instruction(struct kvm_vcpu *vcpu) 5522 { 5523 kvm_queue_exception(vcpu, UD_VECTOR); 5524 return 1; 5525 } 5526 5527 #ifndef CONFIG_X86_SGX_KVM 5528 static int handle_encls(struct kvm_vcpu *vcpu) 5529 { 5530 /* 5531 * SGX virtualization is disabled. There is no software enable bit for 5532 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent 5533 * the guest from executing ENCLS (when SGX is supported by hardware). 5534 */ 5535 kvm_queue_exception(vcpu, UD_VECTOR); 5536 return 1; 5537 } 5538 #endif /* CONFIG_X86_SGX_KVM */ 5539 5540 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu) 5541 { 5542 /* 5543 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK 5544 * VM-Exits. Unconditionally set the flag here and leave the handling to 5545 * vmx_handle_exit(). 5546 */ 5547 to_vmx(vcpu)->exit_reason.bus_lock_detected = true; 5548 return 1; 5549 } 5550 5551 /* 5552 * The exit handlers return 1 if the exit was handled fully and guest execution 5553 * may resume. Otherwise they set the kvm_run parameter to indicate what needs 5554 * to be done to userspace and return 0. 5555 */ 5556 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { 5557 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi, 5558 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, 5559 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, 5560 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, 5561 [EXIT_REASON_IO_INSTRUCTION] = handle_io, 5562 [EXIT_REASON_CR_ACCESS] = handle_cr, 5563 [EXIT_REASON_DR_ACCESS] = handle_dr, 5564 [EXIT_REASON_CPUID] = kvm_emulate_cpuid, 5565 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr, 5566 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr, 5567 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window, 5568 [EXIT_REASON_HLT] = kvm_emulate_halt, 5569 [EXIT_REASON_INVD] = kvm_emulate_invd, 5570 [EXIT_REASON_INVLPG] = handle_invlpg, 5571 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc, 5572 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall, 5573 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, 5574 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, 5575 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, 5576 [EXIT_REASON_VMPTRST] = handle_vmx_instruction, 5577 [EXIT_REASON_VMREAD] = handle_vmx_instruction, 5578 [EXIT_REASON_VMRESUME] = handle_vmx_instruction, 5579 [EXIT_REASON_VMWRITE] = handle_vmx_instruction, 5580 [EXIT_REASON_VMOFF] = handle_vmx_instruction, 5581 [EXIT_REASON_VMON] = handle_vmx_instruction, 5582 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, 5583 [EXIT_REASON_APIC_ACCESS] = handle_apic_access, 5584 [EXIT_REASON_APIC_WRITE] = handle_apic_write, 5585 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, 5586 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd, 5587 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv, 5588 [EXIT_REASON_TASK_SWITCH] = handle_task_switch, 5589 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, 5590 [EXIT_REASON_GDTR_IDTR] = handle_desc, 5591 [EXIT_REASON_LDTR_TR] = handle_desc, 5592 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, 5593 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, 5594 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, 5595 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait, 5596 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, 5597 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor, 5598 [EXIT_REASON_INVEPT] = handle_vmx_instruction, 5599 [EXIT_REASON_INVVPID] = handle_vmx_instruction, 5600 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op, 5601 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op, 5602 [EXIT_REASON_PML_FULL] = handle_pml_full, 5603 [EXIT_REASON_INVPCID] = handle_invpcid, 5604 [EXIT_REASON_VMFUNC] = handle_vmx_instruction, 5605 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, 5606 [EXIT_REASON_ENCLS] = handle_encls, 5607 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit, 5608 }; 5609 5610 static const int kvm_vmx_max_exit_handlers = 5611 ARRAY_SIZE(kvm_vmx_exit_handlers); 5612 5613 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 5614 u64 *info1, u64 *info2, 5615 u32 *intr_info, u32 *error_code) 5616 { 5617 struct vcpu_vmx *vmx = to_vmx(vcpu); 5618 5619 *reason = vmx->exit_reason.full; 5620 *info1 = vmx_get_exit_qual(vcpu); 5621 if (!(vmx->exit_reason.failed_vmentry)) { 5622 *info2 = vmx->idt_vectoring_info; 5623 *intr_info = vmx_get_intr_info(vcpu); 5624 if (is_exception_with_error_code(*intr_info)) 5625 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 5626 else 5627 *error_code = 0; 5628 } else { 5629 *info2 = 0; 5630 *intr_info = 0; 5631 *error_code = 0; 5632 } 5633 } 5634 5635 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) 5636 { 5637 if (vmx->pml_pg) { 5638 __free_page(vmx->pml_pg); 5639 vmx->pml_pg = NULL; 5640 } 5641 } 5642 5643 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) 5644 { 5645 struct vcpu_vmx *vmx = to_vmx(vcpu); 5646 u64 *pml_buf; 5647 u16 pml_idx; 5648 5649 pml_idx = vmcs_read16(GUEST_PML_INDEX); 5650 5651 /* Do nothing if PML buffer is empty */ 5652 if (pml_idx == (PML_ENTITY_NUM - 1)) 5653 return; 5654 5655 /* PML index always points to next available PML buffer entity */ 5656 if (pml_idx >= PML_ENTITY_NUM) 5657 pml_idx = 0; 5658 else 5659 pml_idx++; 5660 5661 pml_buf = page_address(vmx->pml_pg); 5662 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { 5663 u64 gpa; 5664 5665 gpa = pml_buf[pml_idx]; 5666 WARN_ON(gpa & (PAGE_SIZE - 1)); 5667 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 5668 } 5669 5670 /* reset PML index */ 5671 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 5672 } 5673 5674 static void vmx_dump_sel(char *name, uint32_t sel) 5675 { 5676 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", 5677 name, vmcs_read16(sel), 5678 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), 5679 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), 5680 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); 5681 } 5682 5683 static void vmx_dump_dtsel(char *name, uint32_t limit) 5684 { 5685 pr_err("%s limit=0x%08x, base=0x%016lx\n", 5686 name, vmcs_read32(limit), 5687 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); 5688 } 5689 5690 static void vmx_dump_msrs(char *name, struct vmx_msrs *m) 5691 { 5692 unsigned int i; 5693 struct vmx_msr_entry *e; 5694 5695 pr_err("MSR %s:\n", name); 5696 for (i = 0, e = m->val; i < m->nr; ++i, ++e) 5697 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value); 5698 } 5699 5700 void dump_vmcs(struct kvm_vcpu *vcpu) 5701 { 5702 struct vcpu_vmx *vmx = to_vmx(vcpu); 5703 u32 vmentry_ctl, vmexit_ctl; 5704 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control; 5705 unsigned long cr4; 5706 int efer_slot; 5707 5708 if (!dump_invalid_vmcs) { 5709 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n"); 5710 return; 5711 } 5712 5713 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); 5714 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); 5715 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); 5716 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); 5717 cr4 = vmcs_readl(GUEST_CR4); 5718 secondary_exec_control = 0; 5719 if (cpu_has_secondary_exec_ctrls()) 5720 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); 5721 5722 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n", 5723 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu); 5724 pr_err("*** Guest State ***\n"); 5725 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 5726 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), 5727 vmcs_readl(CR0_GUEST_HOST_MASK)); 5728 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 5729 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); 5730 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); 5731 if (cpu_has_vmx_ept()) { 5732 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", 5733 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); 5734 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", 5735 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); 5736 } 5737 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", 5738 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); 5739 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", 5740 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); 5741 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 5742 vmcs_readl(GUEST_SYSENTER_ESP), 5743 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); 5744 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); 5745 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); 5746 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); 5747 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); 5748 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); 5749 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); 5750 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); 5751 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); 5752 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); 5753 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); 5754 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER); 5755 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER) 5756 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER)); 5757 else if (efer_slot >= 0) 5758 pr_err("EFER= 0x%016llx (autoload)\n", 5759 vmx->msr_autoload.guest.val[efer_slot].value); 5760 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE) 5761 pr_err("EFER= 0x%016llx (effective)\n", 5762 vcpu->arch.efer | (EFER_LMA | EFER_LME)); 5763 else 5764 pr_err("EFER= 0x%016llx (effective)\n", 5765 vcpu->arch.efer & ~(EFER_LMA | EFER_LME)); 5766 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT) 5767 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT)); 5768 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", 5769 vmcs_read64(GUEST_IA32_DEBUGCTL), 5770 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); 5771 if (cpu_has_load_perf_global_ctrl() && 5772 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) 5773 pr_err("PerfGlobCtl = 0x%016llx\n", 5774 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); 5775 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) 5776 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); 5777 pr_err("Interruptibility = %08x ActivityState = %08x\n", 5778 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), 5779 vmcs_read32(GUEST_ACTIVITY_STATE)); 5780 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) 5781 pr_err("InterruptStatus = %04x\n", 5782 vmcs_read16(GUEST_INTR_STATUS)); 5783 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0) 5784 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest); 5785 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0) 5786 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest); 5787 5788 pr_err("*** Host State ***\n"); 5789 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", 5790 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); 5791 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", 5792 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), 5793 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), 5794 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), 5795 vmcs_read16(HOST_TR_SELECTOR)); 5796 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", 5797 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), 5798 vmcs_readl(HOST_TR_BASE)); 5799 pr_err("GDTBase=%016lx IDTBase=%016lx\n", 5800 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); 5801 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", 5802 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), 5803 vmcs_readl(HOST_CR4)); 5804 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 5805 vmcs_readl(HOST_IA32_SYSENTER_ESP), 5806 vmcs_read32(HOST_IA32_SYSENTER_CS), 5807 vmcs_readl(HOST_IA32_SYSENTER_EIP)); 5808 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER) 5809 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER)); 5810 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT) 5811 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT)); 5812 if (cpu_has_load_perf_global_ctrl() && 5813 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) 5814 pr_err("PerfGlobCtl = 0x%016llx\n", 5815 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); 5816 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0) 5817 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host); 5818 5819 pr_err("*** Control State ***\n"); 5820 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n", 5821 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control); 5822 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl); 5823 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", 5824 vmcs_read32(EXCEPTION_BITMAP), 5825 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), 5826 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); 5827 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", 5828 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 5829 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), 5830 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); 5831 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", 5832 vmcs_read32(VM_EXIT_INTR_INFO), 5833 vmcs_read32(VM_EXIT_INTR_ERROR_CODE), 5834 vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); 5835 pr_err(" reason=%08x qualification=%016lx\n", 5836 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); 5837 pr_err("IDTVectoring: info=%08x errcode=%08x\n", 5838 vmcs_read32(IDT_VECTORING_INFO_FIELD), 5839 vmcs_read32(IDT_VECTORING_ERROR_CODE)); 5840 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); 5841 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) 5842 pr_err("TSC Multiplier = 0x%016llx\n", 5843 vmcs_read64(TSC_MULTIPLIER)); 5844 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) { 5845 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { 5846 u16 status = vmcs_read16(GUEST_INTR_STATUS); 5847 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff); 5848 } 5849 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); 5850 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) 5851 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR)); 5852 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR)); 5853 } 5854 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) 5855 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); 5856 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) 5857 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); 5858 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) 5859 pr_err("PLE Gap=%08x Window=%08x\n", 5860 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); 5861 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) 5862 pr_err("Virtual processor ID = 0x%04x\n", 5863 vmcs_read16(VIRTUAL_PROCESSOR_ID)); 5864 } 5865 5866 /* 5867 * The guest has exited. See if we can fix it or if we need userspace 5868 * assistance. 5869 */ 5870 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 5871 { 5872 struct vcpu_vmx *vmx = to_vmx(vcpu); 5873 union vmx_exit_reason exit_reason = vmx->exit_reason; 5874 u32 vectoring_info = vmx->idt_vectoring_info; 5875 u16 exit_handler_index; 5876 5877 /* 5878 * Flush logged GPAs PML buffer, this will make dirty_bitmap more 5879 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before 5880 * querying dirty_bitmap, we only need to kick all vcpus out of guest 5881 * mode as if vcpus is in root mode, the PML buffer must has been 5882 * flushed already. Note, PML is never enabled in hardware while 5883 * running L2. 5884 */ 5885 if (enable_pml && !is_guest_mode(vcpu)) 5886 vmx_flush_pml_buffer(vcpu); 5887 5888 /* 5889 * We should never reach this point with a pending nested VM-Enter, and 5890 * more specifically emulation of L2 due to invalid guest state (see 5891 * below) should never happen as that means we incorrectly allowed a 5892 * nested VM-Enter with an invalid vmcs12. 5893 */ 5894 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm)) 5895 return -EIO; 5896 5897 /* If guest state is invalid, start emulating */ 5898 if (vmx->emulation_required) 5899 return handle_invalid_guest_state(vcpu); 5900 5901 if (is_guest_mode(vcpu)) { 5902 /* 5903 * PML is never enabled when running L2, bail immediately if a 5904 * PML full exit occurs as something is horribly wrong. 5905 */ 5906 if (exit_reason.basic == EXIT_REASON_PML_FULL) 5907 goto unexpected_vmexit; 5908 5909 /* 5910 * The host physical addresses of some pages of guest memory 5911 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC 5912 * Page). The CPU may write to these pages via their host 5913 * physical address while L2 is running, bypassing any 5914 * address-translation-based dirty tracking (e.g. EPT write 5915 * protection). 5916 * 5917 * Mark them dirty on every exit from L2 to prevent them from 5918 * getting out of sync with dirty tracking. 5919 */ 5920 nested_mark_vmcs12_pages_dirty(vcpu); 5921 5922 if (nested_vmx_reflect_vmexit(vcpu)) 5923 return 1; 5924 } 5925 5926 if (exit_reason.failed_vmentry) { 5927 dump_vmcs(vcpu); 5928 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 5929 vcpu->run->fail_entry.hardware_entry_failure_reason 5930 = exit_reason.full; 5931 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 5932 return 0; 5933 } 5934 5935 if (unlikely(vmx->fail)) { 5936 dump_vmcs(vcpu); 5937 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 5938 vcpu->run->fail_entry.hardware_entry_failure_reason 5939 = vmcs_read32(VM_INSTRUCTION_ERROR); 5940 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 5941 return 0; 5942 } 5943 5944 /* 5945 * Note: 5946 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by 5947 * delivery event since it indicates guest is accessing MMIO. 5948 * The vm-exit can be triggered again after return to guest that 5949 * will cause infinite loop. 5950 */ 5951 if ((vectoring_info & VECTORING_INFO_VALID_MASK) && 5952 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI && 5953 exit_reason.basic != EXIT_REASON_EPT_VIOLATION && 5954 exit_reason.basic != EXIT_REASON_PML_FULL && 5955 exit_reason.basic != EXIT_REASON_APIC_ACCESS && 5956 exit_reason.basic != EXIT_REASON_TASK_SWITCH)) { 5957 int ndata = 3; 5958 5959 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5960 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; 5961 vcpu->run->internal.data[0] = vectoring_info; 5962 vcpu->run->internal.data[1] = exit_reason.full; 5963 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification; 5964 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) { 5965 vcpu->run->internal.data[ndata++] = 5966 vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5967 } 5968 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu; 5969 vcpu->run->internal.ndata = ndata; 5970 return 0; 5971 } 5972 5973 if (unlikely(!enable_vnmi && 5974 vmx->loaded_vmcs->soft_vnmi_blocked)) { 5975 if (!vmx_interrupt_blocked(vcpu)) { 5976 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 5977 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && 5978 vcpu->arch.nmi_pending) { 5979 /* 5980 * This CPU don't support us in finding the end of an 5981 * NMI-blocked window if the guest runs with IRQs 5982 * disabled. So we pull the trigger after 1 s of 5983 * futile waiting, but inform the user about this. 5984 */ 5985 printk(KERN_WARNING "%s: Breaking out of NMI-blocked " 5986 "state on VCPU %d after 1 s timeout\n", 5987 __func__, vcpu->vcpu_id); 5988 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 5989 } 5990 } 5991 5992 if (exit_fastpath != EXIT_FASTPATH_NONE) 5993 return 1; 5994 5995 if (exit_reason.basic >= kvm_vmx_max_exit_handlers) 5996 goto unexpected_vmexit; 5997 #ifdef CONFIG_RETPOLINE 5998 if (exit_reason.basic == EXIT_REASON_MSR_WRITE) 5999 return kvm_emulate_wrmsr(vcpu); 6000 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER) 6001 return handle_preemption_timer(vcpu); 6002 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW) 6003 return handle_interrupt_window(vcpu); 6004 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6005 return handle_external_interrupt(vcpu); 6006 else if (exit_reason.basic == EXIT_REASON_HLT) 6007 return kvm_emulate_halt(vcpu); 6008 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) 6009 return handle_ept_misconfig(vcpu); 6010 #endif 6011 6012 exit_handler_index = array_index_nospec((u16)exit_reason.basic, 6013 kvm_vmx_max_exit_handlers); 6014 if (!kvm_vmx_exit_handlers[exit_handler_index]) 6015 goto unexpected_vmexit; 6016 6017 return kvm_vmx_exit_handlers[exit_handler_index](vcpu); 6018 6019 unexpected_vmexit: 6020 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", 6021 exit_reason.full); 6022 dump_vmcs(vcpu); 6023 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6024 vcpu->run->internal.suberror = 6025 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 6026 vcpu->run->internal.ndata = 2; 6027 vcpu->run->internal.data[0] = exit_reason.full; 6028 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 6029 return 0; 6030 } 6031 6032 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6033 { 6034 int ret = __vmx_handle_exit(vcpu, exit_fastpath); 6035 6036 /* 6037 * Exit to user space when bus lock detected to inform that there is 6038 * a bus lock in guest. 6039 */ 6040 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) { 6041 if (ret > 0) 6042 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; 6043 6044 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; 6045 return 0; 6046 } 6047 return ret; 6048 } 6049 6050 /* 6051 * Software based L1D cache flush which is used when microcode providing 6052 * the cache control MSR is not loaded. 6053 * 6054 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to 6055 * flush it is required to read in 64 KiB because the replacement algorithm 6056 * is not exactly LRU. This could be sized at runtime via topology 6057 * information but as all relevant affected CPUs have 32KiB L1D cache size 6058 * there is no point in doing so. 6059 */ 6060 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu) 6061 { 6062 int size = PAGE_SIZE << L1D_CACHE_ORDER; 6063 6064 /* 6065 * This code is only executed when the the flush mode is 'cond' or 6066 * 'always' 6067 */ 6068 if (static_branch_likely(&vmx_l1d_flush_cond)) { 6069 bool flush_l1d; 6070 6071 /* 6072 * Clear the per-vcpu flush bit, it gets set again 6073 * either from vcpu_run() or from one of the unsafe 6074 * VMEXIT handlers. 6075 */ 6076 flush_l1d = vcpu->arch.l1tf_flush_l1d; 6077 vcpu->arch.l1tf_flush_l1d = false; 6078 6079 /* 6080 * Clear the per-cpu flush bit, it gets set again from 6081 * the interrupt handlers. 6082 */ 6083 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); 6084 kvm_clear_cpu_l1tf_flush_l1d(); 6085 6086 if (!flush_l1d) 6087 return; 6088 } 6089 6090 vcpu->stat.l1d_flush++; 6091 6092 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { 6093 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 6094 return; 6095 } 6096 6097 asm volatile( 6098 /* First ensure the pages are in the TLB */ 6099 "xorl %%eax, %%eax\n" 6100 ".Lpopulate_tlb:\n\t" 6101 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6102 "addl $4096, %%eax\n\t" 6103 "cmpl %%eax, %[size]\n\t" 6104 "jne .Lpopulate_tlb\n\t" 6105 "xorl %%eax, %%eax\n\t" 6106 "cpuid\n\t" 6107 /* Now fill the cache */ 6108 "xorl %%eax, %%eax\n" 6109 ".Lfill_cache:\n" 6110 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6111 "addl $64, %%eax\n\t" 6112 "cmpl %%eax, %[size]\n\t" 6113 "jne .Lfill_cache\n\t" 6114 "lfence\n" 6115 :: [flush_pages] "r" (vmx_l1d_flush_pages), 6116 [size] "r" (size) 6117 : "eax", "ebx", "ecx", "edx"); 6118 } 6119 6120 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 6121 { 6122 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 6123 int tpr_threshold; 6124 6125 if (is_guest_mode(vcpu) && 6126 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) 6127 return; 6128 6129 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr; 6130 if (is_guest_mode(vcpu)) 6131 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold; 6132 else 6133 vmcs_write32(TPR_THRESHOLD, tpr_threshold); 6134 } 6135 6136 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) 6137 { 6138 struct vcpu_vmx *vmx = to_vmx(vcpu); 6139 u32 sec_exec_control; 6140 6141 if (!lapic_in_kernel(vcpu)) 6142 return; 6143 6144 if (!flexpriority_enabled && 6145 !cpu_has_vmx_virtualize_x2apic_mode()) 6146 return; 6147 6148 /* Postpone execution until vmcs01 is the current VMCS. */ 6149 if (is_guest_mode(vcpu)) { 6150 vmx->nested.change_vmcs01_virtual_apic_mode = true; 6151 return; 6152 } 6153 6154 sec_exec_control = secondary_exec_controls_get(vmx); 6155 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 6156 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); 6157 6158 switch (kvm_get_apic_mode(vcpu)) { 6159 case LAPIC_MODE_INVALID: 6160 WARN_ONCE(true, "Invalid local APIC state"); 6161 break; 6162 case LAPIC_MODE_DISABLED: 6163 break; 6164 case LAPIC_MODE_XAPIC: 6165 if (flexpriority_enabled) { 6166 sec_exec_control |= 6167 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 6168 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6169 6170 /* 6171 * Flush the TLB, reloading the APIC access page will 6172 * only do so if its physical address has changed, but 6173 * the guest may have inserted a non-APIC mapping into 6174 * the TLB while the APIC access page was disabled. 6175 */ 6176 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 6177 } 6178 break; 6179 case LAPIC_MODE_X2APIC: 6180 if (cpu_has_vmx_virtualize_x2apic_mode()) 6181 sec_exec_control |= 6182 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 6183 break; 6184 } 6185 secondary_exec_controls_set(vmx, sec_exec_control); 6186 6187 vmx_update_msr_bitmap_x2apic(vcpu); 6188 } 6189 6190 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu) 6191 { 6192 struct page *page; 6193 6194 /* Defer reload until vmcs01 is the current VMCS. */ 6195 if (is_guest_mode(vcpu)) { 6196 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true; 6197 return; 6198 } 6199 6200 if (!(secondary_exec_controls_get(to_vmx(vcpu)) & 6201 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 6202 return; 6203 6204 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 6205 if (is_error_page(page)) 6206 return; 6207 6208 vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page)); 6209 vmx_flush_tlb_current(vcpu); 6210 6211 /* 6212 * Do not pin apic access page in memory, the MMU notifier 6213 * will call us again if it is migrated or swapped out. 6214 */ 6215 put_page(page); 6216 } 6217 6218 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr) 6219 { 6220 u16 status; 6221 u8 old; 6222 6223 if (max_isr == -1) 6224 max_isr = 0; 6225 6226 status = vmcs_read16(GUEST_INTR_STATUS); 6227 old = status >> 8; 6228 if (max_isr != old) { 6229 status &= 0xff; 6230 status |= max_isr << 8; 6231 vmcs_write16(GUEST_INTR_STATUS, status); 6232 } 6233 } 6234 6235 static void vmx_set_rvi(int vector) 6236 { 6237 u16 status; 6238 u8 old; 6239 6240 if (vector == -1) 6241 vector = 0; 6242 6243 status = vmcs_read16(GUEST_INTR_STATUS); 6244 old = (u8)status & 0xff; 6245 if ((u8)vector != old) { 6246 status &= ~0xff; 6247 status |= (u8)vector; 6248 vmcs_write16(GUEST_INTR_STATUS, status); 6249 } 6250 } 6251 6252 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) 6253 { 6254 /* 6255 * When running L2, updating RVI is only relevant when 6256 * vmcs12 virtual-interrupt-delivery enabled. 6257 * However, it can be enabled only when L1 also 6258 * intercepts external-interrupts and in that case 6259 * we should not update vmcs02 RVI but instead intercept 6260 * interrupt. Therefore, do nothing when running L2. 6261 */ 6262 if (!is_guest_mode(vcpu)) 6263 vmx_set_rvi(max_irr); 6264 } 6265 6266 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) 6267 { 6268 struct vcpu_vmx *vmx = to_vmx(vcpu); 6269 int max_irr; 6270 bool got_posted_interrupt; 6271 6272 if (KVM_BUG_ON(!enable_apicv, vcpu->kvm)) 6273 return -EIO; 6274 6275 if (pi_test_on(&vmx->pi_desc)) { 6276 pi_clear_on(&vmx->pi_desc); 6277 /* 6278 * IOMMU can write to PID.ON, so the barrier matters even on UP. 6279 * But on x86 this is just a compiler barrier anyway. 6280 */ 6281 smp_mb__after_atomic(); 6282 got_posted_interrupt = 6283 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); 6284 } else { 6285 max_irr = kvm_lapic_find_highest_irr(vcpu); 6286 got_posted_interrupt = false; 6287 } 6288 6289 /* 6290 * Newly recognized interrupts are injected via either virtual interrupt 6291 * delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is 6292 * disabled in two cases: 6293 * 6294 * 1) If L2 is running and the vCPU has a new pending interrupt. If L1 6295 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a 6296 * VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected 6297 * into L2, but KVM doesn't use virtual interrupt delivery to inject 6298 * interrupts into L2, and so KVM_REQ_EVENT is again needed. 6299 * 6300 * 2) If APICv is disabled for this vCPU, assigned devices may still 6301 * attempt to post interrupts. The posted interrupt vector will cause 6302 * a VM-Exit and the subsequent entry will call sync_pir_to_irr. 6303 */ 6304 if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu)) 6305 vmx_set_rvi(max_irr); 6306 else if (got_posted_interrupt) 6307 kvm_make_request(KVM_REQ_EVENT, vcpu); 6308 6309 return max_irr; 6310 } 6311 6312 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) 6313 { 6314 if (!kvm_vcpu_apicv_active(vcpu)) 6315 return; 6316 6317 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); 6318 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); 6319 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); 6320 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); 6321 } 6322 6323 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu) 6324 { 6325 struct vcpu_vmx *vmx = to_vmx(vcpu); 6326 6327 pi_clear_on(&vmx->pi_desc); 6328 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); 6329 } 6330 6331 void vmx_do_interrupt_nmi_irqoff(unsigned long entry); 6332 6333 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu, 6334 unsigned long entry) 6335 { 6336 kvm_before_interrupt(vcpu); 6337 vmx_do_interrupt_nmi_irqoff(entry); 6338 kvm_after_interrupt(vcpu); 6339 } 6340 6341 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx) 6342 { 6343 const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist; 6344 u32 intr_info = vmx_get_intr_info(&vmx->vcpu); 6345 6346 /* if exit due to PF check for async PF */ 6347 if (is_page_fault(intr_info)) 6348 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags(); 6349 /* Handle machine checks before interrupts are enabled */ 6350 else if (is_machine_check(intr_info)) 6351 kvm_machine_check(); 6352 /* We need to handle NMIs before interrupts are enabled */ 6353 else if (is_nmi(intr_info)) 6354 handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry); 6355 } 6356 6357 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu) 6358 { 6359 u32 intr_info = vmx_get_intr_info(vcpu); 6360 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK; 6361 gate_desc *desc = (gate_desc *)host_idt_base + vector; 6362 6363 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm, 6364 "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info)) 6365 return; 6366 6367 handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc)); 6368 } 6369 6370 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu) 6371 { 6372 struct vcpu_vmx *vmx = to_vmx(vcpu); 6373 6374 if (vmx->emulation_required) 6375 return; 6376 6377 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6378 handle_external_interrupt_irqoff(vcpu); 6379 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI) 6380 handle_exception_nmi_irqoff(vmx); 6381 } 6382 6383 /* 6384 * The kvm parameter can be NULL (module initialization, or invocation before 6385 * VM creation). Be sure to check the kvm parameter before using it. 6386 */ 6387 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index) 6388 { 6389 switch (index) { 6390 case MSR_IA32_SMBASE: 6391 /* 6392 * We cannot do SMM unless we can run the guest in big 6393 * real mode. 6394 */ 6395 return enable_unrestricted_guest || emulate_invalid_guest_state; 6396 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 6397 return nested; 6398 case MSR_AMD64_VIRT_SPEC_CTRL: 6399 case MSR_AMD64_TSC_RATIO: 6400 /* This is AMD only. */ 6401 return false; 6402 default: 6403 return true; 6404 } 6405 } 6406 6407 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) 6408 { 6409 u32 exit_intr_info; 6410 bool unblock_nmi; 6411 u8 vector; 6412 bool idtv_info_valid; 6413 6414 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6415 6416 if (enable_vnmi) { 6417 if (vmx->loaded_vmcs->nmi_known_unmasked) 6418 return; 6419 6420 exit_intr_info = vmx_get_intr_info(&vmx->vcpu); 6421 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; 6422 vector = exit_intr_info & INTR_INFO_VECTOR_MASK; 6423 /* 6424 * SDM 3: 27.7.1.2 (September 2008) 6425 * Re-set bit "block by NMI" before VM entry if vmexit caused by 6426 * a guest IRET fault. 6427 * SDM 3: 23.2.2 (September 2008) 6428 * Bit 12 is undefined in any of the following cases: 6429 * If the VM exit sets the valid bit in the IDT-vectoring 6430 * information field. 6431 * If the VM exit is due to a double fault. 6432 */ 6433 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && 6434 vector != DF_VECTOR && !idtv_info_valid) 6435 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 6436 GUEST_INTR_STATE_NMI); 6437 else 6438 vmx->loaded_vmcs->nmi_known_unmasked = 6439 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) 6440 & GUEST_INTR_STATE_NMI); 6441 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) 6442 vmx->loaded_vmcs->vnmi_blocked_time += 6443 ktime_to_ns(ktime_sub(ktime_get(), 6444 vmx->loaded_vmcs->entry_time)); 6445 } 6446 6447 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, 6448 u32 idt_vectoring_info, 6449 int instr_len_field, 6450 int error_code_field) 6451 { 6452 u8 vector; 6453 int type; 6454 bool idtv_info_valid; 6455 6456 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6457 6458 vcpu->arch.nmi_injected = false; 6459 kvm_clear_exception_queue(vcpu); 6460 kvm_clear_interrupt_queue(vcpu); 6461 6462 if (!idtv_info_valid) 6463 return; 6464 6465 kvm_make_request(KVM_REQ_EVENT, vcpu); 6466 6467 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; 6468 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; 6469 6470 switch (type) { 6471 case INTR_TYPE_NMI_INTR: 6472 vcpu->arch.nmi_injected = true; 6473 /* 6474 * SDM 3: 27.7.1.2 (September 2008) 6475 * Clear bit "block by NMI" before VM entry if a NMI 6476 * delivery faulted. 6477 */ 6478 vmx_set_nmi_mask(vcpu, false); 6479 break; 6480 case INTR_TYPE_SOFT_EXCEPTION: 6481 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6482 fallthrough; 6483 case INTR_TYPE_HARD_EXCEPTION: 6484 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { 6485 u32 err = vmcs_read32(error_code_field); 6486 kvm_requeue_exception_e(vcpu, vector, err); 6487 } else 6488 kvm_requeue_exception(vcpu, vector); 6489 break; 6490 case INTR_TYPE_SOFT_INTR: 6491 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6492 fallthrough; 6493 case INTR_TYPE_EXT_INTR: 6494 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); 6495 break; 6496 default: 6497 break; 6498 } 6499 } 6500 6501 static void vmx_complete_interrupts(struct vcpu_vmx *vmx) 6502 { 6503 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, 6504 VM_EXIT_INSTRUCTION_LEN, 6505 IDT_VECTORING_ERROR_CODE); 6506 } 6507 6508 static void vmx_cancel_injection(struct kvm_vcpu *vcpu) 6509 { 6510 __vmx_complete_interrupts(vcpu, 6511 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 6512 VM_ENTRY_INSTRUCTION_LEN, 6513 VM_ENTRY_EXCEPTION_ERROR_CODE); 6514 6515 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); 6516 } 6517 6518 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) 6519 { 6520 int i, nr_msrs; 6521 struct perf_guest_switch_msr *msrs; 6522 6523 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */ 6524 msrs = perf_guest_get_msrs(&nr_msrs); 6525 if (!msrs) 6526 return; 6527 6528 for (i = 0; i < nr_msrs; i++) 6529 if (msrs[i].host == msrs[i].guest) 6530 clear_atomic_switch_msr(vmx, msrs[i].msr); 6531 else 6532 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, 6533 msrs[i].host, false); 6534 } 6535 6536 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu) 6537 { 6538 struct vcpu_vmx *vmx = to_vmx(vcpu); 6539 u64 tscl; 6540 u32 delta_tsc; 6541 6542 if (vmx->req_immediate_exit) { 6543 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0); 6544 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 6545 } else if (vmx->hv_deadline_tsc != -1) { 6546 tscl = rdtsc(); 6547 if (vmx->hv_deadline_tsc > tscl) 6548 /* set_hv_timer ensures the delta fits in 32-bits */ 6549 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> 6550 cpu_preemption_timer_multi); 6551 else 6552 delta_tsc = 0; 6553 6554 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc); 6555 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 6556 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) { 6557 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1); 6558 vmx->loaded_vmcs->hv_timer_soft_disabled = true; 6559 } 6560 } 6561 6562 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp) 6563 { 6564 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) { 6565 vmx->loaded_vmcs->host_state.rsp = host_rsp; 6566 vmcs_writel(HOST_RSP, host_rsp); 6567 } 6568 } 6569 6570 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 6571 { 6572 switch (to_vmx(vcpu)->exit_reason.basic) { 6573 case EXIT_REASON_MSR_WRITE: 6574 return handle_fastpath_set_msr_irqoff(vcpu); 6575 case EXIT_REASON_PREEMPTION_TIMER: 6576 return handle_fastpath_preemption_timer(vcpu); 6577 default: 6578 return EXIT_FASTPATH_NONE; 6579 } 6580 } 6581 6582 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu, 6583 struct vcpu_vmx *vmx) 6584 { 6585 kvm_guest_enter_irqoff(); 6586 6587 /* L1D Flush includes CPU buffer clear to mitigate MDS */ 6588 if (static_branch_unlikely(&vmx_l1d_should_flush)) 6589 vmx_l1d_flush(vcpu); 6590 else if (static_branch_unlikely(&mds_user_clear)) 6591 mds_clear_cpu_buffers(); 6592 6593 if (vcpu->arch.cr2 != native_read_cr2()) 6594 native_write_cr2(vcpu->arch.cr2); 6595 6596 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, 6597 vmx->loaded_vmcs->launched); 6598 6599 vcpu->arch.cr2 = native_read_cr2(); 6600 6601 kvm_guest_exit_irqoff(); 6602 } 6603 6604 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu) 6605 { 6606 struct vcpu_vmx *vmx = to_vmx(vcpu); 6607 unsigned long cr3, cr4; 6608 6609 /* Record the guest's net vcpu time for enforced NMI injections. */ 6610 if (unlikely(!enable_vnmi && 6611 vmx->loaded_vmcs->soft_vnmi_blocked)) 6612 vmx->loaded_vmcs->entry_time = ktime_get(); 6613 6614 /* 6615 * Don't enter VMX if guest state is invalid, let the exit handler 6616 * start emulation until we arrive back to a valid state. Synthesize a 6617 * consistency check VM-Exit due to invalid guest state and bail. 6618 */ 6619 if (unlikely(vmx->emulation_required)) { 6620 6621 /* We don't emulate invalid state of a nested guest */ 6622 vmx->fail = is_guest_mode(vcpu); 6623 6624 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE; 6625 vmx->exit_reason.failed_vmentry = 1; 6626 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1); 6627 vmx->exit_qualification = ENTRY_FAIL_DEFAULT; 6628 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2); 6629 vmx->exit_intr_info = 0; 6630 return EXIT_FASTPATH_NONE; 6631 } 6632 6633 trace_kvm_entry(vcpu); 6634 6635 if (vmx->ple_window_dirty) { 6636 vmx->ple_window_dirty = false; 6637 vmcs_write32(PLE_WINDOW, vmx->ple_window); 6638 } 6639 6640 /* 6641 * We did this in prepare_switch_to_guest, because it needs to 6642 * be within srcu_read_lock. 6643 */ 6644 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync); 6645 6646 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP)) 6647 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); 6648 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP)) 6649 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); 6650 6651 cr3 = __get_current_cr3_fast(); 6652 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { 6653 vmcs_writel(HOST_CR3, cr3); 6654 vmx->loaded_vmcs->host_state.cr3 = cr3; 6655 } 6656 6657 cr4 = cr4_read_shadow(); 6658 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { 6659 vmcs_writel(HOST_CR4, cr4); 6660 vmx->loaded_vmcs->host_state.cr4 = cr4; 6661 } 6662 6663 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */ 6664 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 6665 set_debugreg(vcpu->arch.dr6, 6); 6666 6667 /* When single-stepping over STI and MOV SS, we must clear the 6668 * corresponding interruptibility bits in the guest state. Otherwise 6669 * vmentry fails as it then expects bit 14 (BS) in pending debug 6670 * exceptions being set, but that's not correct for the guest debugging 6671 * case. */ 6672 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 6673 vmx_set_interrupt_shadow(vcpu, 0); 6674 6675 kvm_load_guest_xsave_state(vcpu); 6676 6677 pt_guest_enter(vmx); 6678 6679 atomic_switch_perf_msrs(vmx); 6680 if (intel_pmu_lbr_is_enabled(vcpu)) 6681 vmx_passthrough_lbr_msrs(vcpu); 6682 6683 if (enable_preemption_timer) 6684 vmx_update_hv_timer(vcpu); 6685 6686 kvm_wait_lapic_expire(vcpu); 6687 6688 /* 6689 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 6690 * it's non-zero. Since vmentry is serialising on affected CPUs, there 6691 * is no need to worry about the conditional branch over the wrmsr 6692 * being speculatively taken. 6693 */ 6694 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0); 6695 6696 /* The actual VMENTER/EXIT is in the .noinstr.text section. */ 6697 vmx_vcpu_enter_exit(vcpu, vmx); 6698 6699 /* 6700 * We do not use IBRS in the kernel. If this vCPU has used the 6701 * SPEC_CTRL MSR it may have left it on; save the value and 6702 * turn it off. This is much more efficient than blindly adding 6703 * it to the atomic save/restore list. Especially as the former 6704 * (Saving guest MSRs on vmexit) doesn't even exist in KVM. 6705 * 6706 * For non-nested case: 6707 * If the L01 MSR bitmap does not intercept the MSR, then we need to 6708 * save it. 6709 * 6710 * For nested case: 6711 * If the L02 MSR bitmap does not intercept the MSR, then we need to 6712 * save it. 6713 */ 6714 if (unlikely(!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))) 6715 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); 6716 6717 x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0); 6718 6719 /* All fields are clean at this point */ 6720 if (static_branch_unlikely(&enable_evmcs)) { 6721 current_evmcs->hv_clean_fields |= 6722 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; 6723 6724 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu); 6725 } 6726 6727 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ 6728 if (vmx->host_debugctlmsr) 6729 update_debugctlmsr(vmx->host_debugctlmsr); 6730 6731 #ifndef CONFIG_X86_64 6732 /* 6733 * The sysexit path does not restore ds/es, so we must set them to 6734 * a reasonable value ourselves. 6735 * 6736 * We can't defer this to vmx_prepare_switch_to_host() since that 6737 * function may be executed in interrupt context, which saves and 6738 * restore segments around it, nullifying its effect. 6739 */ 6740 loadsegment(ds, __USER_DS); 6741 loadsegment(es, __USER_DS); 6742 #endif 6743 6744 vmx_register_cache_reset(vcpu); 6745 6746 pt_guest_exit(vmx); 6747 6748 kvm_load_host_xsave_state(vcpu); 6749 6750 if (is_guest_mode(vcpu)) { 6751 /* 6752 * Track VMLAUNCH/VMRESUME that have made past guest state 6753 * checking. 6754 */ 6755 if (vmx->nested.nested_run_pending && 6756 !vmx->exit_reason.failed_vmentry) 6757 ++vcpu->stat.nested_run; 6758 6759 vmx->nested.nested_run_pending = 0; 6760 } 6761 6762 vmx->idt_vectoring_info = 0; 6763 6764 if (unlikely(vmx->fail)) { 6765 vmx->exit_reason.full = 0xdead; 6766 return EXIT_FASTPATH_NONE; 6767 } 6768 6769 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON); 6770 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY)) 6771 kvm_machine_check(); 6772 6773 if (likely(!vmx->exit_reason.failed_vmentry)) 6774 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); 6775 6776 trace_kvm_exit(vcpu, KVM_ISA_VMX); 6777 6778 if (unlikely(vmx->exit_reason.failed_vmentry)) 6779 return EXIT_FASTPATH_NONE; 6780 6781 vmx->loaded_vmcs->launched = 1; 6782 6783 vmx_recover_nmi_blocking(vmx); 6784 vmx_complete_interrupts(vmx); 6785 6786 if (is_guest_mode(vcpu)) 6787 return EXIT_FASTPATH_NONE; 6788 6789 return vmx_exit_handlers_fastpath(vcpu); 6790 } 6791 6792 static void vmx_free_vcpu(struct kvm_vcpu *vcpu) 6793 { 6794 struct vcpu_vmx *vmx = to_vmx(vcpu); 6795 6796 if (enable_pml) 6797 vmx_destroy_pml_buffer(vmx); 6798 free_vpid(vmx->vpid); 6799 nested_vmx_free_vcpu(vcpu); 6800 free_loaded_vmcs(vmx->loaded_vmcs); 6801 } 6802 6803 static int vmx_create_vcpu(struct kvm_vcpu *vcpu) 6804 { 6805 struct vmx_uret_msr *tsx_ctrl; 6806 struct vcpu_vmx *vmx; 6807 int i, err; 6808 6809 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0); 6810 vmx = to_vmx(vcpu); 6811 6812 err = -ENOMEM; 6813 6814 vmx->vpid = allocate_vpid(); 6815 6816 /* 6817 * If PML is turned on, failure on enabling PML just results in failure 6818 * of creating the vcpu, therefore we can simplify PML logic (by 6819 * avoiding dealing with cases, such as enabling PML partially on vcpus 6820 * for the guest), etc. 6821 */ 6822 if (enable_pml) { 6823 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 6824 if (!vmx->pml_pg) 6825 goto free_vpid; 6826 } 6827 6828 for (i = 0; i < kvm_nr_uret_msrs; ++i) 6829 vmx->guest_uret_msrs[i].mask = -1ull; 6830 if (boot_cpu_has(X86_FEATURE_RTM)) { 6831 /* 6832 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception. 6833 * Keep the host value unchanged to avoid changing CPUID bits 6834 * under the host kernel's feet. 6835 */ 6836 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 6837 if (tsx_ctrl) 6838 tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR; 6839 } 6840 6841 err = alloc_loaded_vmcs(&vmx->vmcs01); 6842 if (err < 0) 6843 goto free_pml; 6844 6845 /* The MSR bitmap starts with all ones */ 6846 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS); 6847 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS); 6848 6849 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R); 6850 #ifdef CONFIG_X86_64 6851 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW); 6852 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW); 6853 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); 6854 #endif 6855 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); 6856 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); 6857 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); 6858 if (kvm_cstate_in_guest(vcpu->kvm)) { 6859 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R); 6860 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R); 6861 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R); 6862 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R); 6863 } 6864 6865 vmx->loaded_vmcs = &vmx->vmcs01; 6866 6867 if (cpu_need_virtualize_apic_accesses(vcpu)) { 6868 err = alloc_apic_access_page(vcpu->kvm); 6869 if (err) 6870 goto free_vmcs; 6871 } 6872 6873 if (enable_ept && !enable_unrestricted_guest) { 6874 err = init_rmode_identity_map(vcpu->kvm); 6875 if (err) 6876 goto free_vmcs; 6877 } 6878 6879 return 0; 6880 6881 free_vmcs: 6882 free_loaded_vmcs(vmx->loaded_vmcs); 6883 free_pml: 6884 vmx_destroy_pml_buffer(vmx); 6885 free_vpid: 6886 free_vpid(vmx->vpid); 6887 return err; 6888 } 6889 6890 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 6891 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 6892 6893 static int vmx_vm_init(struct kvm *kvm) 6894 { 6895 if (!ple_gap) 6896 kvm->arch.pause_in_guest = true; 6897 6898 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { 6899 switch (l1tf_mitigation) { 6900 case L1TF_MITIGATION_OFF: 6901 case L1TF_MITIGATION_FLUSH_NOWARN: 6902 /* 'I explicitly don't care' is set */ 6903 break; 6904 case L1TF_MITIGATION_FLUSH: 6905 case L1TF_MITIGATION_FLUSH_NOSMT: 6906 case L1TF_MITIGATION_FULL: 6907 /* 6908 * Warn upon starting the first VM in a potentially 6909 * insecure environment. 6910 */ 6911 if (sched_smt_active()) 6912 pr_warn_once(L1TF_MSG_SMT); 6913 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) 6914 pr_warn_once(L1TF_MSG_L1D); 6915 break; 6916 case L1TF_MITIGATION_FULL_FORCE: 6917 /* Flush is enforced */ 6918 break; 6919 } 6920 } 6921 return 0; 6922 } 6923 6924 static int __init vmx_check_processor_compat(void) 6925 { 6926 struct vmcs_config vmcs_conf; 6927 struct vmx_capability vmx_cap; 6928 6929 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 6930 !this_cpu_has(X86_FEATURE_VMX)) { 6931 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id()); 6932 return -EIO; 6933 } 6934 6935 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) 6936 return -EIO; 6937 if (nested) 6938 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept); 6939 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) { 6940 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n", 6941 smp_processor_id()); 6942 return -EIO; 6943 } 6944 return 0; 6945 } 6946 6947 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 6948 { 6949 u8 cache; 6950 u64 ipat = 0; 6951 6952 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in 6953 * memory aliases with conflicting memory types and sometimes MCEs. 6954 * We have to be careful as to what are honored and when. 6955 * 6956 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to 6957 * UC. The effective memory type is UC or WC depending on guest PAT. 6958 * This was historically the source of MCEs and we want to be 6959 * conservative. 6960 * 6961 * When there is no need to deal with noncoherent DMA (e.g., no VT-d 6962 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The 6963 * EPT memory type is set to WB. The effective memory type is forced 6964 * WB. 6965 * 6966 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The 6967 * EPT memory type is used to emulate guest CD/MTRR. 6968 */ 6969 6970 if (is_mmio) { 6971 cache = MTRR_TYPE_UNCACHABLE; 6972 goto exit; 6973 } 6974 6975 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) { 6976 ipat = VMX_EPT_IPAT_BIT; 6977 cache = MTRR_TYPE_WRBACK; 6978 goto exit; 6979 } 6980 6981 if (kvm_read_cr0(vcpu) & X86_CR0_CD) { 6982 ipat = VMX_EPT_IPAT_BIT; 6983 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 6984 cache = MTRR_TYPE_WRBACK; 6985 else 6986 cache = MTRR_TYPE_UNCACHABLE; 6987 goto exit; 6988 } 6989 6990 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn); 6991 6992 exit: 6993 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat; 6994 } 6995 6996 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl) 6997 { 6998 /* 6999 * These bits in the secondary execution controls field 7000 * are dynamic, the others are mostly based on the hypervisor 7001 * architecture and the guest's CPUID. Do not touch the 7002 * dynamic bits. 7003 */ 7004 u32 mask = 7005 SECONDARY_EXEC_SHADOW_VMCS | 7006 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 7007 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 7008 SECONDARY_EXEC_DESC; 7009 7010 u32 cur_ctl = secondary_exec_controls_get(vmx); 7011 7012 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask)); 7013 } 7014 7015 /* 7016 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits 7017 * (indicating "allowed-1") if they are supported in the guest's CPUID. 7018 */ 7019 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) 7020 { 7021 struct vcpu_vmx *vmx = to_vmx(vcpu); 7022 struct kvm_cpuid_entry2 *entry; 7023 7024 vmx->nested.msrs.cr0_fixed1 = 0xffffffff; 7025 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; 7026 7027 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ 7028 if (entry && (entry->_reg & (_cpuid_mask))) \ 7029 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ 7030 } while (0) 7031 7032 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0); 7033 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME)); 7034 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME)); 7035 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC)); 7036 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE)); 7037 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE)); 7038 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE)); 7039 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE)); 7040 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE)); 7041 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR)); 7042 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM)); 7043 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX)); 7044 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX)); 7045 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID)); 7046 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE)); 7047 7048 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0); 7049 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE)); 7050 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP)); 7051 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP)); 7052 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU)); 7053 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP)); 7054 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57)); 7055 7056 #undef cr4_fixed1_update 7057 } 7058 7059 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu) 7060 { 7061 struct vcpu_vmx *vmx = to_vmx(vcpu); 7062 7063 if (kvm_mpx_supported()) { 7064 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX); 7065 7066 if (mpx_enabled) { 7067 vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS; 7068 vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS; 7069 } else { 7070 vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS; 7071 vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS; 7072 } 7073 } 7074 } 7075 7076 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) 7077 { 7078 struct vcpu_vmx *vmx = to_vmx(vcpu); 7079 struct kvm_cpuid_entry2 *best = NULL; 7080 int i; 7081 7082 for (i = 0; i < PT_CPUID_LEAVES; i++) { 7083 best = kvm_find_cpuid_entry(vcpu, 0x14, i); 7084 if (!best) 7085 return; 7086 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; 7087 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; 7088 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; 7089 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; 7090 } 7091 7092 /* Get the number of configurable Address Ranges for filtering */ 7093 vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps, 7094 PT_CAP_num_address_ranges); 7095 7096 /* Initialize and clear the no dependency bits */ 7097 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | 7098 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC | 7099 RTIT_CTL_BRANCH_EN); 7100 7101 /* 7102 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise 7103 * will inject an #GP 7104 */ 7105 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) 7106 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; 7107 7108 /* 7109 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and 7110 * PSBFreq can be set 7111 */ 7112 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) 7113 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | 7114 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); 7115 7116 /* 7117 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set 7118 */ 7119 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) 7120 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | 7121 RTIT_CTL_MTC_RANGE); 7122 7123 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ 7124 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) 7125 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | 7126 RTIT_CTL_PTW_EN); 7127 7128 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ 7129 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) 7130 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; 7131 7132 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ 7133 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) 7134 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; 7135 7136 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */ 7137 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) 7138 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; 7139 7140 /* unmask address range configure area */ 7141 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) 7142 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4)); 7143 } 7144 7145 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 7146 { 7147 struct vcpu_vmx *vmx = to_vmx(vcpu); 7148 7149 /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */ 7150 vcpu->arch.xsaves_enabled = false; 7151 7152 vmx_setup_uret_msrs(vmx); 7153 7154 if (cpu_has_secondary_exec_ctrls()) 7155 vmcs_set_secondary_exec_control(vmx, 7156 vmx_secondary_exec_control(vmx)); 7157 7158 if (nested_vmx_allowed(vcpu)) 7159 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 7160 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7161 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; 7162 else 7163 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 7164 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7165 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX); 7166 7167 if (nested_vmx_allowed(vcpu)) { 7168 nested_vmx_cr_fixed1_bits_update(vcpu); 7169 nested_vmx_entry_exit_ctls_update(vcpu); 7170 } 7171 7172 if (boot_cpu_has(X86_FEATURE_INTEL_PT) && 7173 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT)) 7174 update_intel_pt_cfg(vcpu); 7175 7176 if (boot_cpu_has(X86_FEATURE_RTM)) { 7177 struct vmx_uret_msr *msr; 7178 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7179 if (msr) { 7180 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM); 7181 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE); 7182 } 7183 } 7184 7185 set_cr4_guest_host_mask(vmx); 7186 7187 vmx_write_encls_bitmap(vcpu, NULL); 7188 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX)) 7189 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED; 7190 else 7191 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED; 7192 7193 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 7194 vmx->msr_ia32_feature_control_valid_bits |= 7195 FEAT_CTL_SGX_LC_ENABLED; 7196 else 7197 vmx->msr_ia32_feature_control_valid_bits &= 7198 ~FEAT_CTL_SGX_LC_ENABLED; 7199 7200 /* Refresh #PF interception to account for MAXPHYADDR changes. */ 7201 vmx_update_exception_bitmap(vcpu); 7202 } 7203 7204 static __init void vmx_set_cpu_caps(void) 7205 { 7206 kvm_set_cpu_caps(); 7207 7208 /* CPUID 0x1 */ 7209 if (nested) 7210 kvm_cpu_cap_set(X86_FEATURE_VMX); 7211 7212 /* CPUID 0x7 */ 7213 if (kvm_mpx_supported()) 7214 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX); 7215 if (!cpu_has_vmx_invpcid()) 7216 kvm_cpu_cap_clear(X86_FEATURE_INVPCID); 7217 if (vmx_pt_mode_is_host_guest()) 7218 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT); 7219 7220 if (!enable_sgx) { 7221 kvm_cpu_cap_clear(X86_FEATURE_SGX); 7222 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC); 7223 kvm_cpu_cap_clear(X86_FEATURE_SGX1); 7224 kvm_cpu_cap_clear(X86_FEATURE_SGX2); 7225 } 7226 7227 if (vmx_umip_emulated()) 7228 kvm_cpu_cap_set(X86_FEATURE_UMIP); 7229 7230 /* CPUID 0xD.1 */ 7231 supported_xss = 0; 7232 if (!cpu_has_vmx_xsaves()) 7233 kvm_cpu_cap_clear(X86_FEATURE_XSAVES); 7234 7235 /* CPUID 0x80000001 and 0x7 (RDPID) */ 7236 if (!cpu_has_vmx_rdtscp()) { 7237 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP); 7238 kvm_cpu_cap_clear(X86_FEATURE_RDPID); 7239 } 7240 7241 if (cpu_has_vmx_waitpkg()) 7242 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG); 7243 } 7244 7245 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu) 7246 { 7247 to_vmx(vcpu)->req_immediate_exit = true; 7248 } 7249 7250 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu, 7251 struct x86_instruction_info *info) 7252 { 7253 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7254 unsigned short port; 7255 bool intercept; 7256 int size; 7257 7258 if (info->intercept == x86_intercept_in || 7259 info->intercept == x86_intercept_ins) { 7260 port = info->src_val; 7261 size = info->dst_bytes; 7262 } else { 7263 port = info->dst_val; 7264 size = info->src_bytes; 7265 } 7266 7267 /* 7268 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction 7269 * VM-exits depend on the 'unconditional IO exiting' VM-execution 7270 * control. 7271 * 7272 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps. 7273 */ 7274 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) 7275 intercept = nested_cpu_has(vmcs12, 7276 CPU_BASED_UNCOND_IO_EXITING); 7277 else 7278 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size); 7279 7280 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7281 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; 7282 } 7283 7284 static int vmx_check_intercept(struct kvm_vcpu *vcpu, 7285 struct x86_instruction_info *info, 7286 enum x86_intercept_stage stage, 7287 struct x86_exception *exception) 7288 { 7289 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7290 7291 switch (info->intercept) { 7292 /* 7293 * RDPID causes #UD if disabled through secondary execution controls. 7294 * Because it is marked as EmulateOnUD, we need to intercept it here. 7295 * Note, RDPID is hidden behind ENABLE_RDTSCP. 7296 */ 7297 case x86_intercept_rdpid: 7298 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) { 7299 exception->vector = UD_VECTOR; 7300 exception->error_code_valid = false; 7301 return X86EMUL_PROPAGATE_FAULT; 7302 } 7303 break; 7304 7305 case x86_intercept_in: 7306 case x86_intercept_ins: 7307 case x86_intercept_out: 7308 case x86_intercept_outs: 7309 return vmx_check_intercept_io(vcpu, info); 7310 7311 case x86_intercept_lgdt: 7312 case x86_intercept_lidt: 7313 case x86_intercept_lldt: 7314 case x86_intercept_ltr: 7315 case x86_intercept_sgdt: 7316 case x86_intercept_sidt: 7317 case x86_intercept_sldt: 7318 case x86_intercept_str: 7319 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC)) 7320 return X86EMUL_CONTINUE; 7321 7322 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7323 break; 7324 7325 /* TODO: check more intercepts... */ 7326 default: 7327 break; 7328 } 7329 7330 return X86EMUL_UNHANDLEABLE; 7331 } 7332 7333 #ifdef CONFIG_X86_64 7334 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ 7335 static inline int u64_shl_div_u64(u64 a, unsigned int shift, 7336 u64 divisor, u64 *result) 7337 { 7338 u64 low = a << shift, high = a >> (64 - shift); 7339 7340 /* To avoid the overflow on divq */ 7341 if (high >= divisor) 7342 return 1; 7343 7344 /* Low hold the result, high hold rem which is discarded */ 7345 asm("divq %2\n\t" : "=a" (low), "=d" (high) : 7346 "rm" (divisor), "0" (low), "1" (high)); 7347 *result = low; 7348 7349 return 0; 7350 } 7351 7352 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 7353 bool *expired) 7354 { 7355 struct vcpu_vmx *vmx; 7356 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; 7357 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer; 7358 7359 vmx = to_vmx(vcpu); 7360 tscl = rdtsc(); 7361 guest_tscl = kvm_read_l1_tsc(vcpu, tscl); 7362 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; 7363 lapic_timer_advance_cycles = nsec_to_cycles(vcpu, 7364 ktimer->timer_advance_ns); 7365 7366 if (delta_tsc > lapic_timer_advance_cycles) 7367 delta_tsc -= lapic_timer_advance_cycles; 7368 else 7369 delta_tsc = 0; 7370 7371 /* Convert to host delta tsc if tsc scaling is enabled */ 7372 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio && 7373 delta_tsc && u64_shl_div_u64(delta_tsc, 7374 kvm_tsc_scaling_ratio_frac_bits, 7375 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc)) 7376 return -ERANGE; 7377 7378 /* 7379 * If the delta tsc can't fit in the 32 bit after the multi shift, 7380 * we can't use the preemption timer. 7381 * It's possible that it fits on later vmentries, but checking 7382 * on every vmentry is costly so we just use an hrtimer. 7383 */ 7384 if (delta_tsc >> (cpu_preemption_timer_multi + 32)) 7385 return -ERANGE; 7386 7387 vmx->hv_deadline_tsc = tscl + delta_tsc; 7388 *expired = !delta_tsc; 7389 return 0; 7390 } 7391 7392 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) 7393 { 7394 to_vmx(vcpu)->hv_deadline_tsc = -1; 7395 } 7396 #endif 7397 7398 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) 7399 { 7400 if (!kvm_pause_in_guest(vcpu->kvm)) 7401 shrink_ple_window(vcpu); 7402 } 7403 7404 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu) 7405 { 7406 struct vcpu_vmx *vmx = to_vmx(vcpu); 7407 7408 if (is_guest_mode(vcpu)) { 7409 vmx->nested.update_vmcs01_cpu_dirty_logging = true; 7410 return; 7411 } 7412 7413 /* 7414 * Note, cpu_dirty_logging_count can be changed concurrent with this 7415 * code, but in that case another update request will be made and so 7416 * the guest will never run with a stale PML value. 7417 */ 7418 if (vcpu->kvm->arch.cpu_dirty_logging_count) 7419 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML); 7420 else 7421 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML); 7422 } 7423 7424 static int vmx_pre_block(struct kvm_vcpu *vcpu) 7425 { 7426 if (pi_pre_block(vcpu)) 7427 return 1; 7428 7429 if (kvm_lapic_hv_timer_in_use(vcpu)) 7430 kvm_lapic_switch_to_sw_timer(vcpu); 7431 7432 return 0; 7433 } 7434 7435 static void vmx_post_block(struct kvm_vcpu *vcpu) 7436 { 7437 if (kvm_x86_ops.set_hv_timer) 7438 kvm_lapic_switch_to_hv_timer(vcpu); 7439 7440 pi_post_block(vcpu); 7441 } 7442 7443 static void vmx_setup_mce(struct kvm_vcpu *vcpu) 7444 { 7445 if (vcpu->arch.mcg_cap & MCG_LMCE_P) 7446 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 7447 FEAT_CTL_LMCE_ENABLED; 7448 else 7449 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 7450 ~FEAT_CTL_LMCE_ENABLED; 7451 } 7452 7453 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 7454 { 7455 /* we need a nested vmexit to enter SMM, postpone if run is pending */ 7456 if (to_vmx(vcpu)->nested.nested_run_pending) 7457 return -EBUSY; 7458 return !is_smm(vcpu); 7459 } 7460 7461 static int vmx_enter_smm(struct kvm_vcpu *vcpu, char *smstate) 7462 { 7463 struct vcpu_vmx *vmx = to_vmx(vcpu); 7464 7465 vmx->nested.smm.guest_mode = is_guest_mode(vcpu); 7466 if (vmx->nested.smm.guest_mode) 7467 nested_vmx_vmexit(vcpu, -1, 0, 0); 7468 7469 vmx->nested.smm.vmxon = vmx->nested.vmxon; 7470 vmx->nested.vmxon = false; 7471 vmx_clear_hlt(vcpu); 7472 return 0; 7473 } 7474 7475 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) 7476 { 7477 struct vcpu_vmx *vmx = to_vmx(vcpu); 7478 int ret; 7479 7480 if (vmx->nested.smm.vmxon) { 7481 vmx->nested.vmxon = true; 7482 vmx->nested.smm.vmxon = false; 7483 } 7484 7485 if (vmx->nested.smm.guest_mode) { 7486 ret = nested_vmx_enter_non_root_mode(vcpu, false); 7487 if (ret) 7488 return ret; 7489 7490 vmx->nested.smm.guest_mode = false; 7491 } 7492 return 0; 7493 } 7494 7495 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu) 7496 { 7497 /* RSM will cause a vmexit anyway. */ 7498 } 7499 7500 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 7501 { 7502 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu); 7503 } 7504 7505 static void vmx_migrate_timers(struct kvm_vcpu *vcpu) 7506 { 7507 if (is_guest_mode(vcpu)) { 7508 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer; 7509 7510 if (hrtimer_try_to_cancel(timer) == 1) 7511 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 7512 } 7513 } 7514 7515 static void hardware_unsetup(void) 7516 { 7517 kvm_set_posted_intr_wakeup_handler(NULL); 7518 7519 if (nested) 7520 nested_vmx_hardware_unsetup(); 7521 7522 free_kvm_area(); 7523 } 7524 7525 static bool vmx_check_apicv_inhibit_reasons(ulong bit) 7526 { 7527 ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) | 7528 BIT(APICV_INHIBIT_REASON_HYPERV) | 7529 BIT(APICV_INHIBIT_REASON_BLOCKIRQ); 7530 7531 return supported & BIT(bit); 7532 } 7533 7534 static struct kvm_x86_ops vmx_x86_ops __initdata = { 7535 .name = "kvm_intel", 7536 7537 .hardware_unsetup = hardware_unsetup, 7538 7539 .hardware_enable = hardware_enable, 7540 .hardware_disable = hardware_disable, 7541 .cpu_has_accelerated_tpr = report_flexpriority, 7542 .has_emulated_msr = vmx_has_emulated_msr, 7543 7544 .vm_size = sizeof(struct kvm_vmx), 7545 .vm_init = vmx_vm_init, 7546 7547 .vcpu_create = vmx_create_vcpu, 7548 .vcpu_free = vmx_free_vcpu, 7549 .vcpu_reset = vmx_vcpu_reset, 7550 7551 .prepare_guest_switch = vmx_prepare_switch_to_guest, 7552 .vcpu_load = vmx_vcpu_load, 7553 .vcpu_put = vmx_vcpu_put, 7554 7555 .update_exception_bitmap = vmx_update_exception_bitmap, 7556 .get_msr_feature = vmx_get_msr_feature, 7557 .get_msr = vmx_get_msr, 7558 .set_msr = vmx_set_msr, 7559 .get_segment_base = vmx_get_segment_base, 7560 .get_segment = vmx_get_segment, 7561 .set_segment = vmx_set_segment, 7562 .get_cpl = vmx_get_cpl, 7563 .get_cs_db_l_bits = vmx_get_cs_db_l_bits, 7564 .set_cr0 = vmx_set_cr0, 7565 .is_valid_cr4 = vmx_is_valid_cr4, 7566 .set_cr4 = vmx_set_cr4, 7567 .set_efer = vmx_set_efer, 7568 .get_idt = vmx_get_idt, 7569 .set_idt = vmx_set_idt, 7570 .get_gdt = vmx_get_gdt, 7571 .set_gdt = vmx_set_gdt, 7572 .set_dr7 = vmx_set_dr7, 7573 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, 7574 .cache_reg = vmx_cache_reg, 7575 .get_rflags = vmx_get_rflags, 7576 .set_rflags = vmx_set_rflags, 7577 7578 .tlb_flush_all = vmx_flush_tlb_all, 7579 .tlb_flush_current = vmx_flush_tlb_current, 7580 .tlb_flush_gva = vmx_flush_tlb_gva, 7581 .tlb_flush_guest = vmx_flush_tlb_guest, 7582 7583 .run = vmx_vcpu_run, 7584 .handle_exit = vmx_handle_exit, 7585 .skip_emulated_instruction = vmx_skip_emulated_instruction, 7586 .update_emulated_instruction = vmx_update_emulated_instruction, 7587 .set_interrupt_shadow = vmx_set_interrupt_shadow, 7588 .get_interrupt_shadow = vmx_get_interrupt_shadow, 7589 .patch_hypercall = vmx_patch_hypercall, 7590 .set_irq = vmx_inject_irq, 7591 .set_nmi = vmx_inject_nmi, 7592 .queue_exception = vmx_queue_exception, 7593 .cancel_injection = vmx_cancel_injection, 7594 .interrupt_allowed = vmx_interrupt_allowed, 7595 .nmi_allowed = vmx_nmi_allowed, 7596 .get_nmi_mask = vmx_get_nmi_mask, 7597 .set_nmi_mask = vmx_set_nmi_mask, 7598 .enable_nmi_window = vmx_enable_nmi_window, 7599 .enable_irq_window = vmx_enable_irq_window, 7600 .update_cr8_intercept = vmx_update_cr8_intercept, 7601 .set_virtual_apic_mode = vmx_set_virtual_apic_mode, 7602 .set_apic_access_page_addr = vmx_set_apic_access_page_addr, 7603 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, 7604 .load_eoi_exitmap = vmx_load_eoi_exitmap, 7605 .apicv_post_state_restore = vmx_apicv_post_state_restore, 7606 .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons, 7607 .hwapic_irr_update = vmx_hwapic_irr_update, 7608 .hwapic_isr_update = vmx_hwapic_isr_update, 7609 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt, 7610 .sync_pir_to_irr = vmx_sync_pir_to_irr, 7611 .deliver_posted_interrupt = vmx_deliver_posted_interrupt, 7612 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt, 7613 7614 .set_tss_addr = vmx_set_tss_addr, 7615 .set_identity_map_addr = vmx_set_identity_map_addr, 7616 .get_mt_mask = vmx_get_mt_mask, 7617 7618 .get_exit_info = vmx_get_exit_info, 7619 7620 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid, 7621 7622 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, 7623 7624 .get_l2_tsc_offset = vmx_get_l2_tsc_offset, 7625 .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier, 7626 .write_tsc_offset = vmx_write_tsc_offset, 7627 .write_tsc_multiplier = vmx_write_tsc_multiplier, 7628 7629 .load_mmu_pgd = vmx_load_mmu_pgd, 7630 7631 .check_intercept = vmx_check_intercept, 7632 .handle_exit_irqoff = vmx_handle_exit_irqoff, 7633 7634 .request_immediate_exit = vmx_request_immediate_exit, 7635 7636 .sched_in = vmx_sched_in, 7637 7638 .cpu_dirty_log_size = PML_ENTITY_NUM, 7639 .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging, 7640 7641 .pre_block = vmx_pre_block, 7642 .post_block = vmx_post_block, 7643 7644 .pmu_ops = &intel_pmu_ops, 7645 .nested_ops = &vmx_nested_ops, 7646 7647 .update_pi_irte = pi_update_irte, 7648 .start_assignment = vmx_pi_start_assignment, 7649 7650 #ifdef CONFIG_X86_64 7651 .set_hv_timer = vmx_set_hv_timer, 7652 .cancel_hv_timer = vmx_cancel_hv_timer, 7653 #endif 7654 7655 .setup_mce = vmx_setup_mce, 7656 7657 .smi_allowed = vmx_smi_allowed, 7658 .enter_smm = vmx_enter_smm, 7659 .leave_smm = vmx_leave_smm, 7660 .enable_smi_window = vmx_enable_smi_window, 7661 7662 .can_emulate_instruction = vmx_can_emulate_instruction, 7663 .apic_init_signal_blocked = vmx_apic_init_signal_blocked, 7664 .migrate_timers = vmx_migrate_timers, 7665 7666 .msr_filter_changed = vmx_msr_filter_changed, 7667 .complete_emulated_msr = kvm_complete_insn_gp, 7668 7669 .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector, 7670 }; 7671 7672 static __init void vmx_setup_user_return_msrs(void) 7673 { 7674 7675 /* 7676 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm 7677 * will emulate SYSCALL in legacy mode if the vendor string in guest 7678 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To 7679 * support this emulation, MSR_STAR is included in the list for i386, 7680 * but is never loaded into hardware. MSR_CSTAR is also never loaded 7681 * into hardware and is here purely for emulation purposes. 7682 */ 7683 const u32 vmx_uret_msrs_list[] = { 7684 #ifdef CONFIG_X86_64 7685 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, 7686 #endif 7687 MSR_EFER, MSR_TSC_AUX, MSR_STAR, 7688 MSR_IA32_TSX_CTRL, 7689 }; 7690 int i; 7691 7692 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS); 7693 7694 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) 7695 kvm_add_user_return_msr(vmx_uret_msrs_list[i]); 7696 } 7697 7698 static __init int hardware_setup(void) 7699 { 7700 unsigned long host_bndcfgs; 7701 struct desc_ptr dt; 7702 int r, ept_lpage_level; 7703 7704 store_idt(&dt); 7705 host_idt_base = dt.address; 7706 7707 vmx_setup_user_return_msrs(); 7708 7709 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) 7710 return -EIO; 7711 7712 if (boot_cpu_has(X86_FEATURE_NX)) 7713 kvm_enable_efer_bits(EFER_NX); 7714 7715 if (boot_cpu_has(X86_FEATURE_MPX)) { 7716 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); 7717 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost"); 7718 } 7719 7720 if (!cpu_has_vmx_mpx()) 7721 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 7722 XFEATURE_MASK_BNDCSR); 7723 7724 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || 7725 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) 7726 enable_vpid = 0; 7727 7728 if (!cpu_has_vmx_ept() || 7729 !cpu_has_vmx_ept_4levels() || 7730 !cpu_has_vmx_ept_mt_wb() || 7731 !cpu_has_vmx_invept_global()) 7732 enable_ept = 0; 7733 7734 /* NX support is required for shadow paging. */ 7735 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) { 7736 pr_err_ratelimited("kvm: NX (Execute Disable) not supported\n"); 7737 return -EOPNOTSUPP; 7738 } 7739 7740 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) 7741 enable_ept_ad_bits = 0; 7742 7743 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) 7744 enable_unrestricted_guest = 0; 7745 7746 if (!cpu_has_vmx_flexpriority()) 7747 flexpriority_enabled = 0; 7748 7749 if (!cpu_has_virtual_nmis()) 7750 enable_vnmi = 0; 7751 7752 /* 7753 * set_apic_access_page_addr() is used to reload apic access 7754 * page upon invalidation. No need to do anything if not 7755 * using the APIC_ACCESS_ADDR VMCS field. 7756 */ 7757 if (!flexpriority_enabled) 7758 vmx_x86_ops.set_apic_access_page_addr = NULL; 7759 7760 if (!cpu_has_vmx_tpr_shadow()) 7761 vmx_x86_ops.update_cr8_intercept = NULL; 7762 7763 #if IS_ENABLED(CONFIG_HYPERV) 7764 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH 7765 && enable_ept) { 7766 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb; 7767 vmx_x86_ops.tlb_remote_flush_with_range = 7768 hv_remote_flush_tlb_with_range; 7769 } 7770 #endif 7771 7772 if (!cpu_has_vmx_ple()) { 7773 ple_gap = 0; 7774 ple_window = 0; 7775 ple_window_grow = 0; 7776 ple_window_max = 0; 7777 ple_window_shrink = 0; 7778 } 7779 7780 if (!cpu_has_vmx_apicv()) 7781 enable_apicv = 0; 7782 if (!enable_apicv) 7783 vmx_x86_ops.sync_pir_to_irr = NULL; 7784 7785 if (cpu_has_vmx_tsc_scaling()) { 7786 kvm_has_tsc_control = true; 7787 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; 7788 kvm_tsc_scaling_ratio_frac_bits = 48; 7789 } 7790 7791 kvm_has_bus_lock_exit = cpu_has_vmx_bus_lock_detection(); 7792 7793 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ 7794 7795 if (enable_ept) 7796 kvm_mmu_set_ept_masks(enable_ept_ad_bits, 7797 cpu_has_vmx_ept_execute_only()); 7798 7799 if (!enable_ept) 7800 ept_lpage_level = 0; 7801 else if (cpu_has_vmx_ept_1g_page()) 7802 ept_lpage_level = PG_LEVEL_1G; 7803 else if (cpu_has_vmx_ept_2m_page()) 7804 ept_lpage_level = PG_LEVEL_2M; 7805 else 7806 ept_lpage_level = PG_LEVEL_4K; 7807 kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(), 7808 ept_lpage_level); 7809 7810 /* 7811 * Only enable PML when hardware supports PML feature, and both EPT 7812 * and EPT A/D bit features are enabled -- PML depends on them to work. 7813 */ 7814 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) 7815 enable_pml = 0; 7816 7817 if (!enable_pml) 7818 vmx_x86_ops.cpu_dirty_log_size = 0; 7819 7820 if (!cpu_has_vmx_preemption_timer()) 7821 enable_preemption_timer = false; 7822 7823 if (enable_preemption_timer) { 7824 u64 use_timer_freq = 5000ULL * 1000 * 1000; 7825 u64 vmx_msr; 7826 7827 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr); 7828 cpu_preemption_timer_multi = 7829 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; 7830 7831 if (tsc_khz) 7832 use_timer_freq = (u64)tsc_khz * 1000; 7833 use_timer_freq >>= cpu_preemption_timer_multi; 7834 7835 /* 7836 * KVM "disables" the preemption timer by setting it to its max 7837 * value. Don't use the timer if it might cause spurious exits 7838 * at a rate faster than 0.1 Hz (of uninterrupted guest time). 7839 */ 7840 if (use_timer_freq > 0xffffffffu / 10) 7841 enable_preemption_timer = false; 7842 } 7843 7844 if (!enable_preemption_timer) { 7845 vmx_x86_ops.set_hv_timer = NULL; 7846 vmx_x86_ops.cancel_hv_timer = NULL; 7847 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit; 7848 } 7849 7850 kvm_mce_cap_supported |= MCG_LMCE_P; 7851 7852 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) 7853 return -EINVAL; 7854 if (!enable_ept || !cpu_has_vmx_intel_pt()) 7855 pt_mode = PT_MODE_SYSTEM; 7856 7857 setup_default_sgx_lepubkeyhash(); 7858 7859 if (nested) { 7860 nested_vmx_setup_ctls_msrs(&vmcs_config.nested, 7861 vmx_capability.ept); 7862 7863 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); 7864 if (r) 7865 return r; 7866 } 7867 7868 vmx_set_cpu_caps(); 7869 7870 r = alloc_kvm_area(); 7871 if (r) 7872 nested_vmx_hardware_unsetup(); 7873 7874 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler); 7875 7876 return r; 7877 } 7878 7879 static struct kvm_x86_init_ops vmx_init_ops __initdata = { 7880 .cpu_has_kvm_support = cpu_has_kvm_support, 7881 .disabled_by_bios = vmx_disabled_by_bios, 7882 .check_processor_compatibility = vmx_check_processor_compat, 7883 .hardware_setup = hardware_setup, 7884 7885 .runtime_ops = &vmx_x86_ops, 7886 }; 7887 7888 static void vmx_cleanup_l1d_flush(void) 7889 { 7890 if (vmx_l1d_flush_pages) { 7891 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); 7892 vmx_l1d_flush_pages = NULL; 7893 } 7894 /* Restore state so sysfs ignores VMX */ 7895 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 7896 } 7897 7898 static void vmx_exit(void) 7899 { 7900 #ifdef CONFIG_KEXEC_CORE 7901 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL); 7902 synchronize_rcu(); 7903 #endif 7904 7905 kvm_exit(); 7906 7907 #if IS_ENABLED(CONFIG_HYPERV) 7908 if (static_branch_unlikely(&enable_evmcs)) { 7909 int cpu; 7910 struct hv_vp_assist_page *vp_ap; 7911 /* 7912 * Reset everything to support using non-enlightened VMCS 7913 * access later (e.g. when we reload the module with 7914 * enlightened_vmcs=0) 7915 */ 7916 for_each_online_cpu(cpu) { 7917 vp_ap = hv_get_vp_assist_page(cpu); 7918 7919 if (!vp_ap) 7920 continue; 7921 7922 vp_ap->nested_control.features.directhypercall = 0; 7923 vp_ap->current_nested_vmcs = 0; 7924 vp_ap->enlighten_vmentry = 0; 7925 } 7926 7927 static_branch_disable(&enable_evmcs); 7928 } 7929 #endif 7930 vmx_cleanup_l1d_flush(); 7931 7932 allow_smaller_maxphyaddr = false; 7933 } 7934 module_exit(vmx_exit); 7935 7936 static int __init vmx_init(void) 7937 { 7938 int r, cpu; 7939 7940 #if IS_ENABLED(CONFIG_HYPERV) 7941 /* 7942 * Enlightened VMCS usage should be recommended and the host needs 7943 * to support eVMCS v1 or above. We can also disable eVMCS support 7944 * with module parameter. 7945 */ 7946 if (enlightened_vmcs && 7947 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && 7948 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= 7949 KVM_EVMCS_VERSION) { 7950 int cpu; 7951 7952 /* Check that we have assist pages on all online CPUs */ 7953 for_each_online_cpu(cpu) { 7954 if (!hv_get_vp_assist_page(cpu)) { 7955 enlightened_vmcs = false; 7956 break; 7957 } 7958 } 7959 7960 if (enlightened_vmcs) { 7961 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n"); 7962 static_branch_enable(&enable_evmcs); 7963 } 7964 7965 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH) 7966 vmx_x86_ops.enable_direct_tlbflush 7967 = hv_enable_direct_tlbflush; 7968 7969 } else { 7970 enlightened_vmcs = false; 7971 } 7972 #endif 7973 7974 r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx), 7975 __alignof__(struct vcpu_vmx), THIS_MODULE); 7976 if (r) 7977 return r; 7978 7979 /* 7980 * Must be called after kvm_init() so enable_ept is properly set 7981 * up. Hand the parameter mitigation value in which was stored in 7982 * the pre module init parser. If no parameter was given, it will 7983 * contain 'auto' which will be turned into the default 'cond' 7984 * mitigation mode. 7985 */ 7986 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); 7987 if (r) { 7988 vmx_exit(); 7989 return r; 7990 } 7991 7992 for_each_possible_cpu(cpu) { 7993 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); 7994 7995 pi_init_cpu(cpu); 7996 } 7997 7998 #ifdef CONFIG_KEXEC_CORE 7999 rcu_assign_pointer(crash_vmclear_loaded_vmcss, 8000 crash_vmclear_local_loaded_vmcss); 8001 #endif 8002 vmx_check_vmcs12_offsets(); 8003 8004 /* 8005 * Shadow paging doesn't have a (further) performance penalty 8006 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it 8007 * by default 8008 */ 8009 if (!enable_ept) 8010 allow_smaller_maxphyaddr = true; 8011 8012 return 0; 8013 } 8014 module_init(vmx_init); 8015