1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/highmem.h> 18 #include <linux/hrtimer.h> 19 #include <linux/kernel.h> 20 #include <linux/kvm_host.h> 21 #include <linux/module.h> 22 #include <linux/moduleparam.h> 23 #include <linux/mod_devicetable.h> 24 #include <linux/mm.h> 25 #include <linux/objtool.h> 26 #include <linux/sched.h> 27 #include <linux/sched/smt.h> 28 #include <linux/slab.h> 29 #include <linux/tboot.h> 30 #include <linux/trace_events.h> 31 #include <linux/entry-kvm.h> 32 33 #include <asm/apic.h> 34 #include <asm/asm.h> 35 #include <asm/cpu.h> 36 #include <asm/cpu_device_id.h> 37 #include <asm/debugreg.h> 38 #include <asm/desc.h> 39 #include <asm/fpu/api.h> 40 #include <asm/fpu/xstate.h> 41 #include <asm/idtentry.h> 42 #include <asm/io.h> 43 #include <asm/irq_remapping.h> 44 #include <asm/reboot.h> 45 #include <asm/perf_event.h> 46 #include <asm/mmu_context.h> 47 #include <asm/mshyperv.h> 48 #include <asm/mwait.h> 49 #include <asm/spec-ctrl.h> 50 #include <asm/vmx.h> 51 52 #include "capabilities.h" 53 #include "cpuid.h" 54 #include "hyperv.h" 55 #include "kvm_onhyperv.h" 56 #include "irq.h" 57 #include "kvm_cache_regs.h" 58 #include "lapic.h" 59 #include "mmu.h" 60 #include "nested.h" 61 #include "pmu.h" 62 #include "sgx.h" 63 #include "trace.h" 64 #include "vmcs.h" 65 #include "vmcs12.h" 66 #include "vmx.h" 67 #include "x86.h" 68 #include "smm.h" 69 #include "vmx_onhyperv.h" 70 71 MODULE_AUTHOR("Qumranet"); 72 MODULE_LICENSE("GPL"); 73 74 #ifdef MODULE 75 static const struct x86_cpu_id vmx_cpu_id[] = { 76 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL), 77 {} 78 }; 79 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); 80 #endif 81 82 bool __read_mostly enable_vpid = 1; 83 module_param_named(vpid, enable_vpid, bool, 0444); 84 85 static bool __read_mostly enable_vnmi = 1; 86 module_param_named(vnmi, enable_vnmi, bool, 0444); 87 88 bool __read_mostly flexpriority_enabled = 1; 89 module_param_named(flexpriority, flexpriority_enabled, bool, 0444); 90 91 bool __read_mostly enable_ept = 1; 92 module_param_named(ept, enable_ept, bool, 0444); 93 94 bool __read_mostly enable_unrestricted_guest = 1; 95 module_param_named(unrestricted_guest, 96 enable_unrestricted_guest, bool, 0444); 97 98 bool __read_mostly enable_ept_ad_bits = 1; 99 module_param_named(eptad, enable_ept_ad_bits, bool, 0444); 100 101 static bool __read_mostly emulate_invalid_guest_state = true; 102 module_param(emulate_invalid_guest_state, bool, 0444); 103 104 static bool __read_mostly fasteoi = 1; 105 module_param(fasteoi, bool, 0444); 106 107 module_param(enable_apicv, bool, 0444); 108 109 bool __read_mostly enable_ipiv = true; 110 module_param(enable_ipiv, bool, 0444); 111 112 /* 113 * If nested=1, nested virtualization is supported, i.e., guests may use 114 * VMX and be a hypervisor for its own guests. If nested=0, guests may not 115 * use VMX instructions. 116 */ 117 static bool __read_mostly nested = 1; 118 module_param(nested, bool, 0444); 119 120 bool __read_mostly enable_pml = 1; 121 module_param_named(pml, enable_pml, bool, 0444); 122 123 static bool __read_mostly error_on_inconsistent_vmcs_config = true; 124 module_param(error_on_inconsistent_vmcs_config, bool, 0444); 125 126 static bool __read_mostly dump_invalid_vmcs = 0; 127 module_param(dump_invalid_vmcs, bool, 0644); 128 129 #define MSR_BITMAP_MODE_X2APIC 1 130 #define MSR_BITMAP_MODE_X2APIC_APICV 2 131 132 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL 133 134 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ 135 static int __read_mostly cpu_preemption_timer_multi; 136 static bool __read_mostly enable_preemption_timer = 1; 137 #ifdef CONFIG_X86_64 138 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); 139 #endif 140 141 extern bool __read_mostly allow_smaller_maxphyaddr; 142 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO); 143 144 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) 145 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE 146 #define KVM_VM_CR0_ALWAYS_ON \ 147 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE) 148 149 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE 150 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) 151 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) 152 153 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) 154 155 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ 156 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ 157 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ 158 RTIT_STATUS_BYTECNT)) 159 160 /* 161 * List of MSRs that can be directly passed to the guest. 162 * In addition to these x2apic and PT MSRs are handled specially. 163 */ 164 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = { 165 MSR_IA32_SPEC_CTRL, 166 MSR_IA32_PRED_CMD, 167 MSR_IA32_FLUSH_CMD, 168 MSR_IA32_TSC, 169 #ifdef CONFIG_X86_64 170 MSR_FS_BASE, 171 MSR_GS_BASE, 172 MSR_KERNEL_GS_BASE, 173 MSR_IA32_XFD, 174 MSR_IA32_XFD_ERR, 175 #endif 176 MSR_IA32_SYSENTER_CS, 177 MSR_IA32_SYSENTER_ESP, 178 MSR_IA32_SYSENTER_EIP, 179 MSR_CORE_C1_RES, 180 MSR_CORE_C3_RESIDENCY, 181 MSR_CORE_C6_RESIDENCY, 182 MSR_CORE_C7_RESIDENCY, 183 }; 184 185 /* 186 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 187 * ple_gap: upper bound on the amount of time between two successive 188 * executions of PAUSE in a loop. Also indicate if ple enabled. 189 * According to test, this time is usually smaller than 128 cycles. 190 * ple_window: upper bound on the amount of time a guest is allowed to execute 191 * in a PAUSE loop. Tests indicate that most spinlocks are held for 192 * less than 2^12 cycles 193 * Time is measured based on a counter that runs at the same rate as the TSC, 194 * refer SDM volume 3b section 21.6.13 & 22.1.3. 195 */ 196 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; 197 module_param(ple_gap, uint, 0444); 198 199 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; 200 module_param(ple_window, uint, 0444); 201 202 /* Default doubles per-vcpu window every exit. */ 203 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 204 module_param(ple_window_grow, uint, 0444); 205 206 /* Default resets per-vcpu window every exit to ple_window. */ 207 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 208 module_param(ple_window_shrink, uint, 0444); 209 210 /* Default is to compute the maximum so we can never overflow. */ 211 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; 212 module_param(ple_window_max, uint, 0444); 213 214 /* Default is SYSTEM mode, 1 for host-guest mode */ 215 int __read_mostly pt_mode = PT_MODE_SYSTEM; 216 module_param(pt_mode, int, S_IRUGO); 217 218 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); 219 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); 220 static DEFINE_MUTEX(vmx_l1d_flush_mutex); 221 222 /* Storage for pre module init parameter parsing */ 223 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; 224 225 static const struct { 226 const char *option; 227 bool for_parse; 228 } vmentry_l1d_param[] = { 229 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, 230 [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, 231 [VMENTER_L1D_FLUSH_COND] = {"cond", true}, 232 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, 233 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, 234 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, 235 }; 236 237 #define L1D_CACHE_ORDER 4 238 static void *vmx_l1d_flush_pages; 239 240 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) 241 { 242 struct page *page; 243 unsigned int i; 244 245 if (!boot_cpu_has_bug(X86_BUG_L1TF)) { 246 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 247 return 0; 248 } 249 250 if (!enable_ept) { 251 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; 252 return 0; 253 } 254 255 if (host_arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { 256 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 257 return 0; 258 } 259 260 /* If set to auto use the default l1tf mitigation method */ 261 if (l1tf == VMENTER_L1D_FLUSH_AUTO) { 262 switch (l1tf_mitigation) { 263 case L1TF_MITIGATION_OFF: 264 l1tf = VMENTER_L1D_FLUSH_NEVER; 265 break; 266 case L1TF_MITIGATION_FLUSH_NOWARN: 267 case L1TF_MITIGATION_FLUSH: 268 case L1TF_MITIGATION_FLUSH_NOSMT: 269 l1tf = VMENTER_L1D_FLUSH_COND; 270 break; 271 case L1TF_MITIGATION_FULL: 272 case L1TF_MITIGATION_FULL_FORCE: 273 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 274 break; 275 } 276 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { 277 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 278 } 279 280 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && 281 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { 282 /* 283 * This allocation for vmx_l1d_flush_pages is not tied to a VM 284 * lifetime and so should not be charged to a memcg. 285 */ 286 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); 287 if (!page) 288 return -ENOMEM; 289 vmx_l1d_flush_pages = page_address(page); 290 291 /* 292 * Initialize each page with a different pattern in 293 * order to protect against KSM in the nested 294 * virtualization case. 295 */ 296 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { 297 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, 298 PAGE_SIZE); 299 } 300 } 301 302 l1tf_vmx_mitigation = l1tf; 303 304 if (l1tf != VMENTER_L1D_FLUSH_NEVER) 305 static_branch_enable(&vmx_l1d_should_flush); 306 else 307 static_branch_disable(&vmx_l1d_should_flush); 308 309 if (l1tf == VMENTER_L1D_FLUSH_COND) 310 static_branch_enable(&vmx_l1d_flush_cond); 311 else 312 static_branch_disable(&vmx_l1d_flush_cond); 313 return 0; 314 } 315 316 static int vmentry_l1d_flush_parse(const char *s) 317 { 318 unsigned int i; 319 320 if (s) { 321 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { 322 if (vmentry_l1d_param[i].for_parse && 323 sysfs_streq(s, vmentry_l1d_param[i].option)) 324 return i; 325 } 326 } 327 return -EINVAL; 328 } 329 330 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) 331 { 332 int l1tf, ret; 333 334 l1tf = vmentry_l1d_flush_parse(s); 335 if (l1tf < 0) 336 return l1tf; 337 338 if (!boot_cpu_has(X86_BUG_L1TF)) 339 return 0; 340 341 /* 342 * Has vmx_init() run already? If not then this is the pre init 343 * parameter parsing. In that case just store the value and let 344 * vmx_init() do the proper setup after enable_ept has been 345 * established. 346 */ 347 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { 348 vmentry_l1d_flush_param = l1tf; 349 return 0; 350 } 351 352 mutex_lock(&vmx_l1d_flush_mutex); 353 ret = vmx_setup_l1d_flush(l1tf); 354 mutex_unlock(&vmx_l1d_flush_mutex); 355 return ret; 356 } 357 358 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) 359 { 360 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) 361 return sysfs_emit(s, "???\n"); 362 363 return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); 364 } 365 366 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx) 367 { 368 u64 msr; 369 370 if (!vmx->disable_fb_clear) 371 return; 372 373 msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL); 374 msr |= FB_CLEAR_DIS; 375 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr); 376 /* Cache the MSR value to avoid reading it later */ 377 vmx->msr_ia32_mcu_opt_ctrl = msr; 378 } 379 380 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx) 381 { 382 if (!vmx->disable_fb_clear) 383 return; 384 385 vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS; 386 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl); 387 } 388 389 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx) 390 { 391 vmx->disable_fb_clear = (host_arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) && 392 !boot_cpu_has_bug(X86_BUG_MDS) && 393 !boot_cpu_has_bug(X86_BUG_TAA); 394 395 /* 396 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS 397 * at VMEntry. Skip the MSR read/write when a guest has no use case to 398 * execute VERW. 399 */ 400 if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) || 401 ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) && 402 (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) && 403 (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) && 404 (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) && 405 (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO))) 406 vmx->disable_fb_clear = false; 407 } 408 409 static const struct kernel_param_ops vmentry_l1d_flush_ops = { 410 .set = vmentry_l1d_flush_set, 411 .get = vmentry_l1d_flush_get, 412 }; 413 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); 414 415 static u32 vmx_segment_access_rights(struct kvm_segment *var); 416 417 void vmx_vmexit(void); 418 419 #define vmx_insn_failed(fmt...) \ 420 do { \ 421 WARN_ONCE(1, fmt); \ 422 pr_warn_ratelimited(fmt); \ 423 } while (0) 424 425 noinline void vmread_error(unsigned long field) 426 { 427 vmx_insn_failed("vmread failed: field=%lx\n", field); 428 } 429 430 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT 431 noinstr void vmread_error_trampoline2(unsigned long field, bool fault) 432 { 433 if (fault) { 434 kvm_spurious_fault(); 435 } else { 436 instrumentation_begin(); 437 vmread_error(field); 438 instrumentation_end(); 439 } 440 } 441 #endif 442 443 noinline void vmwrite_error(unsigned long field, unsigned long value) 444 { 445 vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n", 446 field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); 447 } 448 449 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr) 450 { 451 vmx_insn_failed("vmclear failed: %p/%llx err=%u\n", 452 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR)); 453 } 454 455 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr) 456 { 457 vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n", 458 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR)); 459 } 460 461 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva) 462 { 463 vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n", 464 ext, vpid, gva); 465 } 466 467 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa) 468 { 469 vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n", 470 ext, eptp, gpa); 471 } 472 473 static DEFINE_PER_CPU(struct vmcs *, vmxarea); 474 DEFINE_PER_CPU(struct vmcs *, current_vmcs); 475 /* 476 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed 477 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. 478 */ 479 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); 480 481 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); 482 static DEFINE_SPINLOCK(vmx_vpid_lock); 483 484 struct vmcs_config vmcs_config __ro_after_init; 485 struct vmx_capability vmx_capability __ro_after_init; 486 487 #define VMX_SEGMENT_FIELD(seg) \ 488 [VCPU_SREG_##seg] = { \ 489 .selector = GUEST_##seg##_SELECTOR, \ 490 .base = GUEST_##seg##_BASE, \ 491 .limit = GUEST_##seg##_LIMIT, \ 492 .ar_bytes = GUEST_##seg##_AR_BYTES, \ 493 } 494 495 static const struct kvm_vmx_segment_field { 496 unsigned selector; 497 unsigned base; 498 unsigned limit; 499 unsigned ar_bytes; 500 } kvm_vmx_segment_fields[] = { 501 VMX_SEGMENT_FIELD(CS), 502 VMX_SEGMENT_FIELD(DS), 503 VMX_SEGMENT_FIELD(ES), 504 VMX_SEGMENT_FIELD(FS), 505 VMX_SEGMENT_FIELD(GS), 506 VMX_SEGMENT_FIELD(SS), 507 VMX_SEGMENT_FIELD(TR), 508 VMX_SEGMENT_FIELD(LDTR), 509 }; 510 511 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx) 512 { 513 vmx->segment_cache.bitmask = 0; 514 } 515 516 static unsigned long host_idt_base; 517 518 #if IS_ENABLED(CONFIG_HYPERV) 519 static struct kvm_x86_ops vmx_x86_ops __initdata; 520 521 static bool __read_mostly enlightened_vmcs = true; 522 module_param(enlightened_vmcs, bool, 0444); 523 524 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu) 525 { 526 struct hv_enlightened_vmcs *evmcs; 527 hpa_t partition_assist_page = hv_get_partition_assist_page(vcpu); 528 529 if (partition_assist_page == INVALID_PAGE) 530 return -ENOMEM; 531 532 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs; 533 534 evmcs->partition_assist_page = partition_assist_page; 535 evmcs->hv_vm_id = (unsigned long)vcpu->kvm; 536 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1; 537 538 return 0; 539 } 540 541 static __init void hv_init_evmcs(void) 542 { 543 int cpu; 544 545 if (!enlightened_vmcs) 546 return; 547 548 /* 549 * Enlightened VMCS usage should be recommended and the host needs 550 * to support eVMCS v1 or above. 551 */ 552 if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && 553 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= 554 KVM_EVMCS_VERSION) { 555 556 /* Check that we have assist pages on all online CPUs */ 557 for_each_online_cpu(cpu) { 558 if (!hv_get_vp_assist_page(cpu)) { 559 enlightened_vmcs = false; 560 break; 561 } 562 } 563 564 if (enlightened_vmcs) { 565 pr_info("Using Hyper-V Enlightened VMCS\n"); 566 static_branch_enable(&__kvm_is_using_evmcs); 567 } 568 569 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH) 570 vmx_x86_ops.enable_l2_tlb_flush 571 = hv_enable_l2_tlb_flush; 572 573 } else { 574 enlightened_vmcs = false; 575 } 576 } 577 578 static void hv_reset_evmcs(void) 579 { 580 struct hv_vp_assist_page *vp_ap; 581 582 if (!kvm_is_using_evmcs()) 583 return; 584 585 /* 586 * KVM should enable eVMCS if and only if all CPUs have a VP assist 587 * page, and should reject CPU onlining if eVMCS is enabled the CPU 588 * doesn't have a VP assist page allocated. 589 */ 590 vp_ap = hv_get_vp_assist_page(smp_processor_id()); 591 if (WARN_ON_ONCE(!vp_ap)) 592 return; 593 594 /* 595 * Reset everything to support using non-enlightened VMCS access later 596 * (e.g. when we reload the module with enlightened_vmcs=0) 597 */ 598 vp_ap->nested_control.features.directhypercall = 0; 599 vp_ap->current_nested_vmcs = 0; 600 vp_ap->enlighten_vmentry = 0; 601 } 602 603 #else /* IS_ENABLED(CONFIG_HYPERV) */ 604 static void hv_init_evmcs(void) {} 605 static void hv_reset_evmcs(void) {} 606 #endif /* IS_ENABLED(CONFIG_HYPERV) */ 607 608 /* 609 * Comment's format: document - errata name - stepping - processor name. 610 * Refer from 611 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp 612 */ 613 static u32 vmx_preemption_cpu_tfms[] = { 614 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ 615 0x000206E6, 616 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ 617 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ 618 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ 619 0x00020652, 620 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ 621 0x00020655, 622 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ 623 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ 624 /* 625 * 320767.pdf - AAP86 - B1 - 626 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile 627 */ 628 0x000106E5, 629 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ 630 0x000106A0, 631 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ 632 0x000106A1, 633 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ 634 0x000106A4, 635 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ 636 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ 637 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ 638 0x000106A5, 639 /* Xeon E3-1220 V2 */ 640 0x000306A8, 641 }; 642 643 static inline bool cpu_has_broken_vmx_preemption_timer(void) 644 { 645 u32 eax = cpuid_eax(0x00000001), i; 646 647 /* Clear the reserved bits */ 648 eax &= ~(0x3U << 14 | 0xfU << 28); 649 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) 650 if (eax == vmx_preemption_cpu_tfms[i]) 651 return true; 652 653 return false; 654 } 655 656 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) 657 { 658 return flexpriority_enabled && lapic_in_kernel(vcpu); 659 } 660 661 static int possible_passthrough_msr_slot(u32 msr) 662 { 663 u32 i; 664 665 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) 666 if (vmx_possible_passthrough_msrs[i] == msr) 667 return i; 668 669 return -ENOENT; 670 } 671 672 static bool is_valid_passthrough_msr(u32 msr) 673 { 674 bool r; 675 676 switch (msr) { 677 case 0x800 ... 0x8ff: 678 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */ 679 return true; 680 case MSR_IA32_RTIT_STATUS: 681 case MSR_IA32_RTIT_OUTPUT_BASE: 682 case MSR_IA32_RTIT_OUTPUT_MASK: 683 case MSR_IA32_RTIT_CR3_MATCH: 684 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 685 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */ 686 case MSR_LBR_SELECT: 687 case MSR_LBR_TOS: 688 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31: 689 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31: 690 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31: 691 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8: 692 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8: 693 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */ 694 return true; 695 } 696 697 r = possible_passthrough_msr_slot(msr) != -ENOENT; 698 699 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr); 700 701 return r; 702 } 703 704 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr) 705 { 706 int i; 707 708 i = kvm_find_user_return_msr(msr); 709 if (i >= 0) 710 return &vmx->guest_uret_msrs[i]; 711 return NULL; 712 } 713 714 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx, 715 struct vmx_uret_msr *msr, u64 data) 716 { 717 unsigned int slot = msr - vmx->guest_uret_msrs; 718 int ret = 0; 719 720 if (msr->load_into_hardware) { 721 preempt_disable(); 722 ret = kvm_set_user_return_msr(slot, data, msr->mask); 723 preempt_enable(); 724 } 725 if (!ret) 726 msr->data = data; 727 return ret; 728 } 729 730 /* 731 * Disable VMX and clear CR4.VMXE (even if VMXOFF faults) 732 * 733 * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to 734 * atomically track post-VMXON state, e.g. this may be called in NMI context. 735 * Eat all faults as all other faults on VMXOFF faults are mode related, i.e. 736 * faults are guaranteed to be due to the !post-VMXON check unless the CPU is 737 * magically in RM, VM86, compat mode, or at CPL>0. 738 */ 739 static int kvm_cpu_vmxoff(void) 740 { 741 asm_volatile_goto("1: vmxoff\n\t" 742 _ASM_EXTABLE(1b, %l[fault]) 743 ::: "cc", "memory" : fault); 744 745 cr4_clear_bits(X86_CR4_VMXE); 746 return 0; 747 748 fault: 749 cr4_clear_bits(X86_CR4_VMXE); 750 return -EIO; 751 } 752 753 static void vmx_emergency_disable(void) 754 { 755 int cpu = raw_smp_processor_id(); 756 struct loaded_vmcs *v; 757 758 kvm_rebooting = true; 759 760 /* 761 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be 762 * set in task context. If this races with VMX is disabled by an NMI, 763 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to 764 * kvm_rebooting set. 765 */ 766 if (!(__read_cr4() & X86_CR4_VMXE)) 767 return; 768 769 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), 770 loaded_vmcss_on_cpu_link) 771 vmcs_clear(v->vmcs); 772 773 kvm_cpu_vmxoff(); 774 } 775 776 static void __loaded_vmcs_clear(void *arg) 777 { 778 struct loaded_vmcs *loaded_vmcs = arg; 779 int cpu = raw_smp_processor_id(); 780 781 if (loaded_vmcs->cpu != cpu) 782 return; /* vcpu migration can race with cpu offline */ 783 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) 784 per_cpu(current_vmcs, cpu) = NULL; 785 786 vmcs_clear(loaded_vmcs->vmcs); 787 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) 788 vmcs_clear(loaded_vmcs->shadow_vmcs); 789 790 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); 791 792 /* 793 * Ensure all writes to loaded_vmcs, including deleting it from its 794 * current percpu list, complete before setting loaded_vmcs->cpu to 795 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first 796 * and add loaded_vmcs to its percpu list before it's deleted from this 797 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs(). 798 */ 799 smp_wmb(); 800 801 loaded_vmcs->cpu = -1; 802 loaded_vmcs->launched = 0; 803 } 804 805 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) 806 { 807 int cpu = loaded_vmcs->cpu; 808 809 if (cpu != -1) 810 smp_call_function_single(cpu, 811 __loaded_vmcs_clear, loaded_vmcs, 1); 812 } 813 814 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, 815 unsigned field) 816 { 817 bool ret; 818 u32 mask = 1 << (seg * SEG_FIELD_NR + field); 819 820 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) { 821 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS); 822 vmx->segment_cache.bitmask = 0; 823 } 824 ret = vmx->segment_cache.bitmask & mask; 825 vmx->segment_cache.bitmask |= mask; 826 return ret; 827 } 828 829 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) 830 { 831 u16 *p = &vmx->segment_cache.seg[seg].selector; 832 833 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) 834 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); 835 return *p; 836 } 837 838 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) 839 { 840 ulong *p = &vmx->segment_cache.seg[seg].base; 841 842 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) 843 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); 844 return *p; 845 } 846 847 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) 848 { 849 u32 *p = &vmx->segment_cache.seg[seg].limit; 850 851 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) 852 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); 853 return *p; 854 } 855 856 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) 857 { 858 u32 *p = &vmx->segment_cache.seg[seg].ar; 859 860 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) 861 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); 862 return *p; 863 } 864 865 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu) 866 { 867 u32 eb; 868 869 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | 870 (1u << DB_VECTOR) | (1u << AC_VECTOR); 871 /* 872 * Guest access to VMware backdoor ports could legitimately 873 * trigger #GP because of TSS I/O permission bitmap. 874 * We intercept those #GP and allow access to them anyway 875 * as VMware does. 876 */ 877 if (enable_vmware_backdoor) 878 eb |= (1u << GP_VECTOR); 879 if ((vcpu->guest_debug & 880 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == 881 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) 882 eb |= 1u << BP_VECTOR; 883 if (to_vmx(vcpu)->rmode.vm86_active) 884 eb = ~0; 885 if (!vmx_need_pf_intercept(vcpu)) 886 eb &= ~(1u << PF_VECTOR); 887 888 /* When we are running a nested L2 guest and L1 specified for it a 889 * certain exception bitmap, we must trap the same exceptions and pass 890 * them to L1. When running L2, we will only handle the exceptions 891 * specified above if L1 did not want them. 892 */ 893 if (is_guest_mode(vcpu)) 894 eb |= get_vmcs12(vcpu)->exception_bitmap; 895 else { 896 int mask = 0, match = 0; 897 898 if (enable_ept && (eb & (1u << PF_VECTOR))) { 899 /* 900 * If EPT is enabled, #PF is currently only intercepted 901 * if MAXPHYADDR is smaller on the guest than on the 902 * host. In that case we only care about present, 903 * non-reserved faults. For vmcs02, however, PFEC_MASK 904 * and PFEC_MATCH are set in prepare_vmcs02_rare. 905 */ 906 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK; 907 match = PFERR_PRESENT_MASK; 908 } 909 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask); 910 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match); 911 } 912 913 /* 914 * Disabling xfd interception indicates that dynamic xfeatures 915 * might be used in the guest. Always trap #NM in this case 916 * to save guest xfd_err timely. 917 */ 918 if (vcpu->arch.xfd_no_write_intercept) 919 eb |= (1u << NM_VECTOR); 920 921 vmcs_write32(EXCEPTION_BITMAP, eb); 922 } 923 924 /* 925 * Check if MSR is intercepted for currently loaded MSR bitmap. 926 */ 927 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr) 928 { 929 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS)) 930 return true; 931 932 return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr); 933 } 934 935 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx) 936 { 937 unsigned int flags = 0; 938 939 if (vmx->loaded_vmcs->launched) 940 flags |= VMX_RUN_VMRESUME; 941 942 /* 943 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free 944 * to change it directly without causing a vmexit. In that case read 945 * it after vmexit and store it in vmx->spec_ctrl. 946 */ 947 if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL)) 948 flags |= VMX_RUN_SAVE_SPEC_CTRL; 949 950 return flags; 951 } 952 953 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, 954 unsigned long entry, unsigned long exit) 955 { 956 vm_entry_controls_clearbit(vmx, entry); 957 vm_exit_controls_clearbit(vmx, exit); 958 } 959 960 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr) 961 { 962 unsigned int i; 963 964 for (i = 0; i < m->nr; ++i) { 965 if (m->val[i].index == msr) 966 return i; 967 } 968 return -ENOENT; 969 } 970 971 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) 972 { 973 int i; 974 struct msr_autoload *m = &vmx->msr_autoload; 975 976 switch (msr) { 977 case MSR_EFER: 978 if (cpu_has_load_ia32_efer()) { 979 clear_atomic_switch_msr_special(vmx, 980 VM_ENTRY_LOAD_IA32_EFER, 981 VM_EXIT_LOAD_IA32_EFER); 982 return; 983 } 984 break; 985 case MSR_CORE_PERF_GLOBAL_CTRL: 986 if (cpu_has_load_perf_global_ctrl()) { 987 clear_atomic_switch_msr_special(vmx, 988 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 989 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); 990 return; 991 } 992 break; 993 } 994 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 995 if (i < 0) 996 goto skip_guest; 997 --m->guest.nr; 998 m->guest.val[i] = m->guest.val[m->guest.nr]; 999 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 1000 1001 skip_guest: 1002 i = vmx_find_loadstore_msr_slot(&m->host, msr); 1003 if (i < 0) 1004 return; 1005 1006 --m->host.nr; 1007 m->host.val[i] = m->host.val[m->host.nr]; 1008 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 1009 } 1010 1011 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, 1012 unsigned long entry, unsigned long exit, 1013 unsigned long guest_val_vmcs, unsigned long host_val_vmcs, 1014 u64 guest_val, u64 host_val) 1015 { 1016 vmcs_write64(guest_val_vmcs, guest_val); 1017 if (host_val_vmcs != HOST_IA32_EFER) 1018 vmcs_write64(host_val_vmcs, host_val); 1019 vm_entry_controls_setbit(vmx, entry); 1020 vm_exit_controls_setbit(vmx, exit); 1021 } 1022 1023 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, 1024 u64 guest_val, u64 host_val, bool entry_only) 1025 { 1026 int i, j = 0; 1027 struct msr_autoload *m = &vmx->msr_autoload; 1028 1029 switch (msr) { 1030 case MSR_EFER: 1031 if (cpu_has_load_ia32_efer()) { 1032 add_atomic_switch_msr_special(vmx, 1033 VM_ENTRY_LOAD_IA32_EFER, 1034 VM_EXIT_LOAD_IA32_EFER, 1035 GUEST_IA32_EFER, 1036 HOST_IA32_EFER, 1037 guest_val, host_val); 1038 return; 1039 } 1040 break; 1041 case MSR_CORE_PERF_GLOBAL_CTRL: 1042 if (cpu_has_load_perf_global_ctrl()) { 1043 add_atomic_switch_msr_special(vmx, 1044 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 1045 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, 1046 GUEST_IA32_PERF_GLOBAL_CTRL, 1047 HOST_IA32_PERF_GLOBAL_CTRL, 1048 guest_val, host_val); 1049 return; 1050 } 1051 break; 1052 case MSR_IA32_PEBS_ENABLE: 1053 /* PEBS needs a quiescent period after being disabled (to write 1054 * a record). Disabling PEBS through VMX MSR swapping doesn't 1055 * provide that period, so a CPU could write host's record into 1056 * guest's memory. 1057 */ 1058 wrmsrl(MSR_IA32_PEBS_ENABLE, 0); 1059 } 1060 1061 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 1062 if (!entry_only) 1063 j = vmx_find_loadstore_msr_slot(&m->host, msr); 1064 1065 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) || 1066 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) { 1067 printk_once(KERN_WARNING "Not enough msr switch entries. " 1068 "Can't add msr %x\n", msr); 1069 return; 1070 } 1071 if (i < 0) { 1072 i = m->guest.nr++; 1073 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 1074 } 1075 m->guest.val[i].index = msr; 1076 m->guest.val[i].value = guest_val; 1077 1078 if (entry_only) 1079 return; 1080 1081 if (j < 0) { 1082 j = m->host.nr++; 1083 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 1084 } 1085 m->host.val[j].index = msr; 1086 m->host.val[j].value = host_val; 1087 } 1088 1089 static bool update_transition_efer(struct vcpu_vmx *vmx) 1090 { 1091 u64 guest_efer = vmx->vcpu.arch.efer; 1092 u64 ignore_bits = 0; 1093 int i; 1094 1095 /* Shadow paging assumes NX to be available. */ 1096 if (!enable_ept) 1097 guest_efer |= EFER_NX; 1098 1099 /* 1100 * LMA and LME handled by hardware; SCE meaningless outside long mode. 1101 */ 1102 ignore_bits |= EFER_SCE; 1103 #ifdef CONFIG_X86_64 1104 ignore_bits |= EFER_LMA | EFER_LME; 1105 /* SCE is meaningful only in long mode on Intel */ 1106 if (guest_efer & EFER_LMA) 1107 ignore_bits &= ~(u64)EFER_SCE; 1108 #endif 1109 1110 /* 1111 * On EPT, we can't emulate NX, so we must switch EFER atomically. 1112 * On CPUs that support "load IA32_EFER", always switch EFER 1113 * atomically, since it's faster than switching it manually. 1114 */ 1115 if (cpu_has_load_ia32_efer() || 1116 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { 1117 if (!(guest_efer & EFER_LMA)) 1118 guest_efer &= ~EFER_LME; 1119 if (guest_efer != host_efer) 1120 add_atomic_switch_msr(vmx, MSR_EFER, 1121 guest_efer, host_efer, false); 1122 else 1123 clear_atomic_switch_msr(vmx, MSR_EFER); 1124 return false; 1125 } 1126 1127 i = kvm_find_user_return_msr(MSR_EFER); 1128 if (i < 0) 1129 return false; 1130 1131 clear_atomic_switch_msr(vmx, MSR_EFER); 1132 1133 guest_efer &= ~ignore_bits; 1134 guest_efer |= host_efer & ignore_bits; 1135 1136 vmx->guest_uret_msrs[i].data = guest_efer; 1137 vmx->guest_uret_msrs[i].mask = ~ignore_bits; 1138 1139 return true; 1140 } 1141 1142 #ifdef CONFIG_X86_32 1143 /* 1144 * On 32-bit kernels, VM exits still load the FS and GS bases from the 1145 * VMCS rather than the segment table. KVM uses this helper to figure 1146 * out the current bases to poke them into the VMCS before entry. 1147 */ 1148 static unsigned long segment_base(u16 selector) 1149 { 1150 struct desc_struct *table; 1151 unsigned long v; 1152 1153 if (!(selector & ~SEGMENT_RPL_MASK)) 1154 return 0; 1155 1156 table = get_current_gdt_ro(); 1157 1158 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { 1159 u16 ldt_selector = kvm_read_ldt(); 1160 1161 if (!(ldt_selector & ~SEGMENT_RPL_MASK)) 1162 return 0; 1163 1164 table = (struct desc_struct *)segment_base(ldt_selector); 1165 } 1166 v = get_desc_base(&table[selector >> 3]); 1167 return v; 1168 } 1169 #endif 1170 1171 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx) 1172 { 1173 return vmx_pt_mode_is_host_guest() && 1174 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 1175 } 1176 1177 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base) 1178 { 1179 /* The base must be 128-byte aligned and a legal physical address. */ 1180 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128); 1181 } 1182 1183 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) 1184 { 1185 u32 i; 1186 1187 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1188 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1189 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1190 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1191 for (i = 0; i < addr_range; i++) { 1192 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1193 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1194 } 1195 } 1196 1197 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) 1198 { 1199 u32 i; 1200 1201 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1202 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1203 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1204 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1205 for (i = 0; i < addr_range; i++) { 1206 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1207 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1208 } 1209 } 1210 1211 static void pt_guest_enter(struct vcpu_vmx *vmx) 1212 { 1213 if (vmx_pt_mode_is_system()) 1214 return; 1215 1216 /* 1217 * GUEST_IA32_RTIT_CTL is already set in the VMCS. 1218 * Save host state before VM entry. 1219 */ 1220 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1221 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1222 wrmsrl(MSR_IA32_RTIT_CTL, 0); 1223 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1224 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1225 } 1226 } 1227 1228 static void pt_guest_exit(struct vcpu_vmx *vmx) 1229 { 1230 if (vmx_pt_mode_is_system()) 1231 return; 1232 1233 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1234 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1235 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1236 } 1237 1238 /* 1239 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest, 1240 * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary. 1241 */ 1242 if (vmx->pt_desc.host.ctl) 1243 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1244 } 1245 1246 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, 1247 unsigned long fs_base, unsigned long gs_base) 1248 { 1249 if (unlikely(fs_sel != host->fs_sel)) { 1250 if (!(fs_sel & 7)) 1251 vmcs_write16(HOST_FS_SELECTOR, fs_sel); 1252 else 1253 vmcs_write16(HOST_FS_SELECTOR, 0); 1254 host->fs_sel = fs_sel; 1255 } 1256 if (unlikely(gs_sel != host->gs_sel)) { 1257 if (!(gs_sel & 7)) 1258 vmcs_write16(HOST_GS_SELECTOR, gs_sel); 1259 else 1260 vmcs_write16(HOST_GS_SELECTOR, 0); 1261 host->gs_sel = gs_sel; 1262 } 1263 if (unlikely(fs_base != host->fs_base)) { 1264 vmcs_writel(HOST_FS_BASE, fs_base); 1265 host->fs_base = fs_base; 1266 } 1267 if (unlikely(gs_base != host->gs_base)) { 1268 vmcs_writel(HOST_GS_BASE, gs_base); 1269 host->gs_base = gs_base; 1270 } 1271 } 1272 1273 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1274 { 1275 struct vcpu_vmx *vmx = to_vmx(vcpu); 1276 struct vmcs_host_state *host_state; 1277 #ifdef CONFIG_X86_64 1278 int cpu = raw_smp_processor_id(); 1279 #endif 1280 unsigned long fs_base, gs_base; 1281 u16 fs_sel, gs_sel; 1282 int i; 1283 1284 vmx->req_immediate_exit = false; 1285 1286 /* 1287 * Note that guest MSRs to be saved/restored can also be changed 1288 * when guest state is loaded. This happens when guest transitions 1289 * to/from long-mode by setting MSR_EFER.LMA. 1290 */ 1291 if (!vmx->guest_uret_msrs_loaded) { 1292 vmx->guest_uret_msrs_loaded = true; 1293 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 1294 if (!vmx->guest_uret_msrs[i].load_into_hardware) 1295 continue; 1296 1297 kvm_set_user_return_msr(i, 1298 vmx->guest_uret_msrs[i].data, 1299 vmx->guest_uret_msrs[i].mask); 1300 } 1301 } 1302 1303 if (vmx->nested.need_vmcs12_to_shadow_sync) 1304 nested_sync_vmcs12_to_shadow(vcpu); 1305 1306 if (vmx->guest_state_loaded) 1307 return; 1308 1309 host_state = &vmx->loaded_vmcs->host_state; 1310 1311 /* 1312 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not 1313 * allow segment selectors with cpl > 0 or ti == 1. 1314 */ 1315 host_state->ldt_sel = kvm_read_ldt(); 1316 1317 #ifdef CONFIG_X86_64 1318 savesegment(ds, host_state->ds_sel); 1319 savesegment(es, host_state->es_sel); 1320 1321 gs_base = cpu_kernelmode_gs_base(cpu); 1322 if (likely(is_64bit_mm(current->mm))) { 1323 current_save_fsgs(); 1324 fs_sel = current->thread.fsindex; 1325 gs_sel = current->thread.gsindex; 1326 fs_base = current->thread.fsbase; 1327 vmx->msr_host_kernel_gs_base = current->thread.gsbase; 1328 } else { 1329 savesegment(fs, fs_sel); 1330 savesegment(gs, gs_sel); 1331 fs_base = read_msr(MSR_FS_BASE); 1332 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); 1333 } 1334 1335 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1336 #else 1337 savesegment(fs, fs_sel); 1338 savesegment(gs, gs_sel); 1339 fs_base = segment_base(fs_sel); 1340 gs_base = segment_base(gs_sel); 1341 #endif 1342 1343 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base); 1344 vmx->guest_state_loaded = true; 1345 } 1346 1347 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) 1348 { 1349 struct vmcs_host_state *host_state; 1350 1351 if (!vmx->guest_state_loaded) 1352 return; 1353 1354 host_state = &vmx->loaded_vmcs->host_state; 1355 1356 ++vmx->vcpu.stat.host_state_reload; 1357 1358 #ifdef CONFIG_X86_64 1359 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1360 #endif 1361 if (host_state->ldt_sel || (host_state->gs_sel & 7)) { 1362 kvm_load_ldt(host_state->ldt_sel); 1363 #ifdef CONFIG_X86_64 1364 load_gs_index(host_state->gs_sel); 1365 #else 1366 loadsegment(gs, host_state->gs_sel); 1367 #endif 1368 } 1369 if (host_state->fs_sel & 7) 1370 loadsegment(fs, host_state->fs_sel); 1371 #ifdef CONFIG_X86_64 1372 if (unlikely(host_state->ds_sel | host_state->es_sel)) { 1373 loadsegment(ds, host_state->ds_sel); 1374 loadsegment(es, host_state->es_sel); 1375 } 1376 #endif 1377 invalidate_tss_limit(); 1378 #ifdef CONFIG_X86_64 1379 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); 1380 #endif 1381 load_fixmap_gdt(raw_smp_processor_id()); 1382 vmx->guest_state_loaded = false; 1383 vmx->guest_uret_msrs_loaded = false; 1384 } 1385 1386 #ifdef CONFIG_X86_64 1387 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) 1388 { 1389 preempt_disable(); 1390 if (vmx->guest_state_loaded) 1391 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1392 preempt_enable(); 1393 return vmx->msr_guest_kernel_gs_base; 1394 } 1395 1396 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) 1397 { 1398 preempt_disable(); 1399 if (vmx->guest_state_loaded) 1400 wrmsrl(MSR_KERNEL_GS_BASE, data); 1401 preempt_enable(); 1402 vmx->msr_guest_kernel_gs_base = data; 1403 } 1404 #endif 1405 1406 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu, 1407 struct loaded_vmcs *buddy) 1408 { 1409 struct vcpu_vmx *vmx = to_vmx(vcpu); 1410 bool already_loaded = vmx->loaded_vmcs->cpu == cpu; 1411 struct vmcs *prev; 1412 1413 if (!already_loaded) { 1414 loaded_vmcs_clear(vmx->loaded_vmcs); 1415 local_irq_disable(); 1416 1417 /* 1418 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to 1419 * this cpu's percpu list, otherwise it may not yet be deleted 1420 * from its previous cpu's percpu list. Pairs with the 1421 * smb_wmb() in __loaded_vmcs_clear(). 1422 */ 1423 smp_rmb(); 1424 1425 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, 1426 &per_cpu(loaded_vmcss_on_cpu, cpu)); 1427 local_irq_enable(); 1428 } 1429 1430 prev = per_cpu(current_vmcs, cpu); 1431 if (prev != vmx->loaded_vmcs->vmcs) { 1432 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; 1433 vmcs_load(vmx->loaded_vmcs->vmcs); 1434 1435 /* 1436 * No indirect branch prediction barrier needed when switching 1437 * the active VMCS within a vCPU, unless IBRS is advertised to 1438 * the vCPU. To minimize the number of IBPBs executed, KVM 1439 * performs IBPB on nested VM-Exit (a single nested transition 1440 * may switch the active VMCS multiple times). 1441 */ 1442 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev)) 1443 indirect_branch_prediction_barrier(); 1444 } 1445 1446 if (!already_loaded) { 1447 void *gdt = get_current_gdt_ro(); 1448 1449 /* 1450 * Flush all EPTP/VPID contexts, the new pCPU may have stale 1451 * TLB entries from its previous association with the vCPU. 1452 */ 1453 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 1454 1455 /* 1456 * Linux uses per-cpu TSS and GDT, so set these when switching 1457 * processors. See 22.2.4. 1458 */ 1459 vmcs_writel(HOST_TR_BASE, 1460 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); 1461 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ 1462 1463 if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) { 1464 /* 22.2.3 */ 1465 vmcs_writel(HOST_IA32_SYSENTER_ESP, 1466 (unsigned long)(cpu_entry_stack(cpu) + 1)); 1467 } 1468 1469 vmx->loaded_vmcs->cpu = cpu; 1470 } 1471 } 1472 1473 /* 1474 * Switches to specified vcpu, until a matching vcpu_put(), but assumes 1475 * vcpu mutex is already taken. 1476 */ 1477 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1478 { 1479 struct vcpu_vmx *vmx = to_vmx(vcpu); 1480 1481 vmx_vcpu_load_vmcs(vcpu, cpu, NULL); 1482 1483 vmx_vcpu_pi_load(vcpu, cpu); 1484 1485 vmx->host_debugctlmsr = get_debugctlmsr(); 1486 } 1487 1488 static void vmx_vcpu_put(struct kvm_vcpu *vcpu) 1489 { 1490 vmx_vcpu_pi_put(vcpu); 1491 1492 vmx_prepare_switch_to_host(to_vmx(vcpu)); 1493 } 1494 1495 bool vmx_emulation_required(struct kvm_vcpu *vcpu) 1496 { 1497 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu); 1498 } 1499 1500 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) 1501 { 1502 struct vcpu_vmx *vmx = to_vmx(vcpu); 1503 unsigned long rflags, save_rflags; 1504 1505 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) { 1506 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1507 rflags = vmcs_readl(GUEST_RFLAGS); 1508 if (vmx->rmode.vm86_active) { 1509 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 1510 save_rflags = vmx->rmode.save_rflags; 1511 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 1512 } 1513 vmx->rflags = rflags; 1514 } 1515 return vmx->rflags; 1516 } 1517 1518 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1519 { 1520 struct vcpu_vmx *vmx = to_vmx(vcpu); 1521 unsigned long old_rflags; 1522 1523 /* 1524 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU 1525 * is an unrestricted guest in order to mark L2 as needing emulation 1526 * if L1 runs L2 as a restricted guest. 1527 */ 1528 if (is_unrestricted_guest(vcpu)) { 1529 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1530 vmx->rflags = rflags; 1531 vmcs_writel(GUEST_RFLAGS, rflags); 1532 return; 1533 } 1534 1535 old_rflags = vmx_get_rflags(vcpu); 1536 vmx->rflags = rflags; 1537 if (vmx->rmode.vm86_active) { 1538 vmx->rmode.save_rflags = rflags; 1539 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 1540 } 1541 vmcs_writel(GUEST_RFLAGS, rflags); 1542 1543 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM) 1544 vmx->emulation_required = vmx_emulation_required(vcpu); 1545 } 1546 1547 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu) 1548 { 1549 return vmx_get_rflags(vcpu) & X86_EFLAGS_IF; 1550 } 1551 1552 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) 1553 { 1554 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1555 int ret = 0; 1556 1557 if (interruptibility & GUEST_INTR_STATE_STI) 1558 ret |= KVM_X86_SHADOW_INT_STI; 1559 if (interruptibility & GUEST_INTR_STATE_MOV_SS) 1560 ret |= KVM_X86_SHADOW_INT_MOV_SS; 1561 1562 return ret; 1563 } 1564 1565 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 1566 { 1567 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1568 u32 interruptibility = interruptibility_old; 1569 1570 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); 1571 1572 if (mask & KVM_X86_SHADOW_INT_MOV_SS) 1573 interruptibility |= GUEST_INTR_STATE_MOV_SS; 1574 else if (mask & KVM_X86_SHADOW_INT_STI) 1575 interruptibility |= GUEST_INTR_STATE_STI; 1576 1577 if ((interruptibility != interruptibility_old)) 1578 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); 1579 } 1580 1581 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) 1582 { 1583 struct vcpu_vmx *vmx = to_vmx(vcpu); 1584 unsigned long value; 1585 1586 /* 1587 * Any MSR write that attempts to change bits marked reserved will 1588 * case a #GP fault. 1589 */ 1590 if (data & vmx->pt_desc.ctl_bitmask) 1591 return 1; 1592 1593 /* 1594 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will 1595 * result in a #GP unless the same write also clears TraceEn. 1596 */ 1597 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && 1598 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN)) 1599 return 1; 1600 1601 /* 1602 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit 1603 * and FabricEn would cause #GP, if 1604 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 1605 */ 1606 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && 1607 !(data & RTIT_CTL_FABRIC_EN) && 1608 !intel_pt_validate_cap(vmx->pt_desc.caps, 1609 PT_CAP_single_range_output)) 1610 return 1; 1611 1612 /* 1613 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that 1614 * utilize encodings marked reserved will cause a #GP fault. 1615 */ 1616 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); 1617 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && 1618 !test_bit((data & RTIT_CTL_MTC_RANGE) >> 1619 RTIT_CTL_MTC_RANGE_OFFSET, &value)) 1620 return 1; 1621 value = intel_pt_validate_cap(vmx->pt_desc.caps, 1622 PT_CAP_cycle_thresholds); 1623 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1624 !test_bit((data & RTIT_CTL_CYC_THRESH) >> 1625 RTIT_CTL_CYC_THRESH_OFFSET, &value)) 1626 return 1; 1627 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); 1628 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1629 !test_bit((data & RTIT_CTL_PSB_FREQ) >> 1630 RTIT_CTL_PSB_FREQ_OFFSET, &value)) 1631 return 1; 1632 1633 /* 1634 * If ADDRx_CFG is reserved or the encodings is >2 will 1635 * cause a #GP fault. 1636 */ 1637 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; 1638 if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2)) 1639 return 1; 1640 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; 1641 if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2)) 1642 return 1; 1643 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; 1644 if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2)) 1645 return 1; 1646 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; 1647 if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2)) 1648 return 1; 1649 1650 return 0; 1651 } 1652 1653 static int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 1654 void *insn, int insn_len) 1655 { 1656 /* 1657 * Emulation of instructions in SGX enclaves is impossible as RIP does 1658 * not point at the failing instruction, and even if it did, the code 1659 * stream is inaccessible. Inject #UD instead of exiting to userspace 1660 * so that guest userspace can't DoS the guest simply by triggering 1661 * emulation (enclaves are CPL3 only). 1662 */ 1663 if (to_vmx(vcpu)->exit_reason.enclave_mode) { 1664 kvm_queue_exception(vcpu, UD_VECTOR); 1665 return X86EMUL_PROPAGATE_FAULT; 1666 } 1667 return X86EMUL_CONTINUE; 1668 } 1669 1670 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 1671 { 1672 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason; 1673 unsigned long rip, orig_rip; 1674 u32 instr_len; 1675 1676 /* 1677 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on 1678 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be 1679 * set when EPT misconfig occurs. In practice, real hardware updates 1680 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors 1681 * (namely Hyper-V) don't set it due to it being undefined behavior, 1682 * i.e. we end up advancing IP with some random value. 1683 */ 1684 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) || 1685 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) { 1686 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 1687 1688 /* 1689 * Emulating an enclave's instructions isn't supported as KVM 1690 * cannot access the enclave's memory or its true RIP, e.g. the 1691 * vmcs.GUEST_RIP points at the exit point of the enclave, not 1692 * the RIP that actually triggered the VM-Exit. But, because 1693 * most instructions that cause VM-Exit will #UD in an enclave, 1694 * most instruction-based VM-Exits simply do not occur. 1695 * 1696 * There are a few exceptions, notably the debug instructions 1697 * INT1ICEBRK and INT3, as they are allowed in debug enclaves 1698 * and generate #DB/#BP as expected, which KVM might intercept. 1699 * But again, the CPU does the dirty work and saves an instr 1700 * length of zero so VMMs don't shoot themselves in the foot. 1701 * WARN if KVM tries to skip a non-zero length instruction on 1702 * a VM-Exit from an enclave. 1703 */ 1704 if (!instr_len) 1705 goto rip_updated; 1706 1707 WARN_ONCE(exit_reason.enclave_mode, 1708 "skipping instruction after SGX enclave VM-Exit"); 1709 1710 orig_rip = kvm_rip_read(vcpu); 1711 rip = orig_rip + instr_len; 1712 #ifdef CONFIG_X86_64 1713 /* 1714 * We need to mask out the high 32 bits of RIP if not in 64-bit 1715 * mode, but just finding out that we are in 64-bit mode is 1716 * quite expensive. Only do it if there was a carry. 1717 */ 1718 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu)) 1719 rip = (u32)rip; 1720 #endif 1721 kvm_rip_write(vcpu, rip); 1722 } else { 1723 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 1724 return 0; 1725 } 1726 1727 rip_updated: 1728 /* skipping an emulated instruction also counts */ 1729 vmx_set_interrupt_shadow(vcpu, 0); 1730 1731 return 1; 1732 } 1733 1734 /* 1735 * Recognizes a pending MTF VM-exit and records the nested state for later 1736 * delivery. 1737 */ 1738 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu) 1739 { 1740 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1741 struct vcpu_vmx *vmx = to_vmx(vcpu); 1742 1743 if (!is_guest_mode(vcpu)) 1744 return; 1745 1746 /* 1747 * Per the SDM, MTF takes priority over debug-trap exceptions besides 1748 * TSS T-bit traps and ICEBP (INT1). KVM doesn't emulate T-bit traps 1749 * or ICEBP (in the emulator proper), and skipping of ICEBP after an 1750 * intercepted #DB deliberately avoids single-step #DB and MTF updates 1751 * as ICEBP is higher priority than both. As instruction emulation is 1752 * completed at this point (i.e. KVM is at the instruction boundary), 1753 * any #DB exception pending delivery must be a debug-trap of lower 1754 * priority than MTF. Record the pending MTF state to be delivered in 1755 * vmx_check_nested_events(). 1756 */ 1757 if (nested_cpu_has_mtf(vmcs12) && 1758 (!vcpu->arch.exception.pending || 1759 vcpu->arch.exception.vector == DB_VECTOR) && 1760 (!vcpu->arch.exception_vmexit.pending || 1761 vcpu->arch.exception_vmexit.vector == DB_VECTOR)) { 1762 vmx->nested.mtf_pending = true; 1763 kvm_make_request(KVM_REQ_EVENT, vcpu); 1764 } else { 1765 vmx->nested.mtf_pending = false; 1766 } 1767 } 1768 1769 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu) 1770 { 1771 vmx_update_emulated_instruction(vcpu); 1772 return skip_emulated_instruction(vcpu); 1773 } 1774 1775 static void vmx_clear_hlt(struct kvm_vcpu *vcpu) 1776 { 1777 /* 1778 * Ensure that we clear the HLT state in the VMCS. We don't need to 1779 * explicitly skip the instruction because if the HLT state is set, 1780 * then the instruction is already executing and RIP has already been 1781 * advanced. 1782 */ 1783 if (kvm_hlt_in_guest(vcpu->kvm) && 1784 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) 1785 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 1786 } 1787 1788 static void vmx_inject_exception(struct kvm_vcpu *vcpu) 1789 { 1790 struct kvm_queued_exception *ex = &vcpu->arch.exception; 1791 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK; 1792 struct vcpu_vmx *vmx = to_vmx(vcpu); 1793 1794 kvm_deliver_exception_payload(vcpu, ex); 1795 1796 if (ex->has_error_code) { 1797 /* 1798 * Despite the error code being architecturally defined as 32 1799 * bits, and the VMCS field being 32 bits, Intel CPUs and thus 1800 * VMX don't actually supporting setting bits 31:16. Hardware 1801 * will (should) never provide a bogus error code, but AMD CPUs 1802 * do generate error codes with bits 31:16 set, and so KVM's 1803 * ABI lets userspace shove in arbitrary 32-bit values. Drop 1804 * the upper bits to avoid VM-Fail, losing information that 1805 * doesn't really exist is preferable to killing the VM. 1806 */ 1807 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code); 1808 intr_info |= INTR_INFO_DELIVER_CODE_MASK; 1809 } 1810 1811 if (vmx->rmode.vm86_active) { 1812 int inc_eip = 0; 1813 if (kvm_exception_is_soft(ex->vector)) 1814 inc_eip = vcpu->arch.event_exit_inst_len; 1815 kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip); 1816 return; 1817 } 1818 1819 WARN_ON_ONCE(vmx->emulation_required); 1820 1821 if (kvm_exception_is_soft(ex->vector)) { 1822 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1823 vmx->vcpu.arch.event_exit_inst_len); 1824 intr_info |= INTR_TYPE_SOFT_EXCEPTION; 1825 } else 1826 intr_info |= INTR_TYPE_HARD_EXCEPTION; 1827 1828 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); 1829 1830 vmx_clear_hlt(vcpu); 1831 } 1832 1833 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr, 1834 bool load_into_hardware) 1835 { 1836 struct vmx_uret_msr *uret_msr; 1837 1838 uret_msr = vmx_find_uret_msr(vmx, msr); 1839 if (!uret_msr) 1840 return; 1841 1842 uret_msr->load_into_hardware = load_into_hardware; 1843 } 1844 1845 /* 1846 * Configuring user return MSRs to automatically save, load, and restore MSRs 1847 * that need to be shoved into hardware when running the guest. Note, omitting 1848 * an MSR here does _NOT_ mean it's not emulated, only that it will not be 1849 * loaded into hardware when running the guest. 1850 */ 1851 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx) 1852 { 1853 #ifdef CONFIG_X86_64 1854 bool load_syscall_msrs; 1855 1856 /* 1857 * The SYSCALL MSRs are only needed on long mode guests, and only 1858 * when EFER.SCE is set. 1859 */ 1860 load_syscall_msrs = is_long_mode(&vmx->vcpu) && 1861 (vmx->vcpu.arch.efer & EFER_SCE); 1862 1863 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs); 1864 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs); 1865 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs); 1866 #endif 1867 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx)); 1868 1869 vmx_setup_uret_msr(vmx, MSR_TSC_AUX, 1870 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) || 1871 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID)); 1872 1873 /* 1874 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new 1875 * kernel and old userspace. If those guests run on a tsx=off host, do 1876 * allow guests to use TSX_CTRL, but don't change the value in hardware 1877 * so that TSX remains always disabled. 1878 */ 1879 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM)); 1880 1881 /* 1882 * The set of MSRs to load may have changed, reload MSRs before the 1883 * next VM-Enter. 1884 */ 1885 vmx->guest_uret_msrs_loaded = false; 1886 } 1887 1888 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1889 { 1890 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1891 1892 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) 1893 return vmcs12->tsc_offset; 1894 1895 return 0; 1896 } 1897 1898 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1899 { 1900 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1901 1902 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) && 1903 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING)) 1904 return vmcs12->tsc_multiplier; 1905 1906 return kvm_caps.default_tsc_scaling_ratio; 1907 } 1908 1909 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu) 1910 { 1911 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset); 1912 } 1913 1914 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu) 1915 { 1916 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio); 1917 } 1918 1919 /* 1920 * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of 1921 * guest CPUID. Note, KVM allows userspace to set "VMX in SMX" to maintain 1922 * backwards compatibility even though KVM doesn't support emulating SMX. And 1923 * because userspace set "VMX in SMX", the guest must also be allowed to set it, 1924 * e.g. if the MSR is left unlocked and the guest does a RMW operation. 1925 */ 1926 #define KVM_SUPPORTED_FEATURE_CONTROL (FEAT_CTL_LOCKED | \ 1927 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | \ 1928 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \ 1929 FEAT_CTL_SGX_LC_ENABLED | \ 1930 FEAT_CTL_SGX_ENABLED | \ 1931 FEAT_CTL_LMCE_ENABLED) 1932 1933 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx, 1934 struct msr_data *msr) 1935 { 1936 uint64_t valid_bits; 1937 1938 /* 1939 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are 1940 * exposed to the guest. 1941 */ 1942 WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits & 1943 ~KVM_SUPPORTED_FEATURE_CONTROL); 1944 1945 if (!msr->host_initiated && 1946 (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED)) 1947 return false; 1948 1949 if (msr->host_initiated) 1950 valid_bits = KVM_SUPPORTED_FEATURE_CONTROL; 1951 else 1952 valid_bits = vmx->msr_ia32_feature_control_valid_bits; 1953 1954 return !(msr->data & ~valid_bits); 1955 } 1956 1957 static int vmx_get_msr_feature(struct kvm_msr_entry *msr) 1958 { 1959 switch (msr->index) { 1960 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 1961 if (!nested) 1962 return 1; 1963 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); 1964 default: 1965 return KVM_MSR_RET_INVALID; 1966 } 1967 } 1968 1969 /* 1970 * Reads an msr value (of 'msr_info->index') into 'msr_info->data'. 1971 * Returns 0 on success, non-0 otherwise. 1972 * Assumes vcpu_load() was already called. 1973 */ 1974 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1975 { 1976 struct vcpu_vmx *vmx = to_vmx(vcpu); 1977 struct vmx_uret_msr *msr; 1978 u32 index; 1979 1980 switch (msr_info->index) { 1981 #ifdef CONFIG_X86_64 1982 case MSR_FS_BASE: 1983 msr_info->data = vmcs_readl(GUEST_FS_BASE); 1984 break; 1985 case MSR_GS_BASE: 1986 msr_info->data = vmcs_readl(GUEST_GS_BASE); 1987 break; 1988 case MSR_KERNEL_GS_BASE: 1989 msr_info->data = vmx_read_guest_kernel_gs_base(vmx); 1990 break; 1991 #endif 1992 case MSR_EFER: 1993 return kvm_get_msr_common(vcpu, msr_info); 1994 case MSR_IA32_TSX_CTRL: 1995 if (!msr_info->host_initiated && 1996 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 1997 return 1; 1998 goto find_uret_msr; 1999 case MSR_IA32_UMWAIT_CONTROL: 2000 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2001 return 1; 2002 2003 msr_info->data = vmx->msr_ia32_umwait_control; 2004 break; 2005 case MSR_IA32_SPEC_CTRL: 2006 if (!msr_info->host_initiated && 2007 !guest_has_spec_ctrl_msr(vcpu)) 2008 return 1; 2009 2010 msr_info->data = to_vmx(vcpu)->spec_ctrl; 2011 break; 2012 case MSR_IA32_SYSENTER_CS: 2013 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); 2014 break; 2015 case MSR_IA32_SYSENTER_EIP: 2016 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); 2017 break; 2018 case MSR_IA32_SYSENTER_ESP: 2019 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); 2020 break; 2021 case MSR_IA32_BNDCFGS: 2022 if (!kvm_mpx_supported() || 2023 (!msr_info->host_initiated && 2024 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 2025 return 1; 2026 msr_info->data = vmcs_read64(GUEST_BNDCFGS); 2027 break; 2028 case MSR_IA32_MCG_EXT_CTL: 2029 if (!msr_info->host_initiated && 2030 !(vmx->msr_ia32_feature_control & 2031 FEAT_CTL_LMCE_ENABLED)) 2032 return 1; 2033 msr_info->data = vcpu->arch.mcg_ext_ctl; 2034 break; 2035 case MSR_IA32_FEAT_CTL: 2036 msr_info->data = vmx->msr_ia32_feature_control; 2037 break; 2038 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2039 if (!msr_info->host_initiated && 2040 !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 2041 return 1; 2042 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash 2043 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0]; 2044 break; 2045 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 2046 if (!guest_can_use(vcpu, X86_FEATURE_VMX)) 2047 return 1; 2048 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, 2049 &msr_info->data)) 2050 return 1; 2051 #ifdef CONFIG_KVM_HYPERV 2052 /* 2053 * Enlightened VMCS v1 doesn't have certain VMCS fields but 2054 * instead of just ignoring the features, different Hyper-V 2055 * versions are either trying to use them and fail or do some 2056 * sanity checking and refuse to boot. Filter all unsupported 2057 * features out. 2058 */ 2059 if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu)) 2060 nested_evmcs_filter_control_msr(vcpu, msr_info->index, 2061 &msr_info->data); 2062 #endif 2063 break; 2064 case MSR_IA32_RTIT_CTL: 2065 if (!vmx_pt_mode_is_host_guest()) 2066 return 1; 2067 msr_info->data = vmx->pt_desc.guest.ctl; 2068 break; 2069 case MSR_IA32_RTIT_STATUS: 2070 if (!vmx_pt_mode_is_host_guest()) 2071 return 1; 2072 msr_info->data = vmx->pt_desc.guest.status; 2073 break; 2074 case MSR_IA32_RTIT_CR3_MATCH: 2075 if (!vmx_pt_mode_is_host_guest() || 2076 !intel_pt_validate_cap(vmx->pt_desc.caps, 2077 PT_CAP_cr3_filtering)) 2078 return 1; 2079 msr_info->data = vmx->pt_desc.guest.cr3_match; 2080 break; 2081 case MSR_IA32_RTIT_OUTPUT_BASE: 2082 if (!vmx_pt_mode_is_host_guest() || 2083 (!intel_pt_validate_cap(vmx->pt_desc.caps, 2084 PT_CAP_topa_output) && 2085 !intel_pt_validate_cap(vmx->pt_desc.caps, 2086 PT_CAP_single_range_output))) 2087 return 1; 2088 msr_info->data = vmx->pt_desc.guest.output_base; 2089 break; 2090 case MSR_IA32_RTIT_OUTPUT_MASK: 2091 if (!vmx_pt_mode_is_host_guest() || 2092 (!intel_pt_validate_cap(vmx->pt_desc.caps, 2093 PT_CAP_topa_output) && 2094 !intel_pt_validate_cap(vmx->pt_desc.caps, 2095 PT_CAP_single_range_output))) 2096 return 1; 2097 msr_info->data = vmx->pt_desc.guest.output_mask; 2098 break; 2099 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2100 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2101 if (!vmx_pt_mode_is_host_guest() || 2102 (index >= 2 * vmx->pt_desc.num_address_ranges)) 2103 return 1; 2104 if (index % 2) 2105 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; 2106 else 2107 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; 2108 break; 2109 case MSR_IA32_DEBUGCTLMSR: 2110 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL); 2111 break; 2112 default: 2113 find_uret_msr: 2114 msr = vmx_find_uret_msr(vmx, msr_info->index); 2115 if (msr) { 2116 msr_info->data = msr->data; 2117 break; 2118 } 2119 return kvm_get_msr_common(vcpu, msr_info); 2120 } 2121 2122 return 0; 2123 } 2124 2125 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu, 2126 u64 data) 2127 { 2128 #ifdef CONFIG_X86_64 2129 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 2130 return (u32)data; 2131 #endif 2132 return (unsigned long)data; 2133 } 2134 2135 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated) 2136 { 2137 u64 debugctl = 0; 2138 2139 if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) && 2140 (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))) 2141 debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT; 2142 2143 if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) && 2144 (host_initiated || intel_pmu_lbr_is_enabled(vcpu))) 2145 debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI; 2146 2147 return debugctl; 2148 } 2149 2150 /* 2151 * Writes msr value into the appropriate "register". 2152 * Returns 0 on success, non-0 otherwise. 2153 * Assumes vcpu_load() was already called. 2154 */ 2155 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2156 { 2157 struct vcpu_vmx *vmx = to_vmx(vcpu); 2158 struct vmx_uret_msr *msr; 2159 int ret = 0; 2160 u32 msr_index = msr_info->index; 2161 u64 data = msr_info->data; 2162 u32 index; 2163 2164 switch (msr_index) { 2165 case MSR_EFER: 2166 ret = kvm_set_msr_common(vcpu, msr_info); 2167 break; 2168 #ifdef CONFIG_X86_64 2169 case MSR_FS_BASE: 2170 vmx_segment_cache_clear(vmx); 2171 vmcs_writel(GUEST_FS_BASE, data); 2172 break; 2173 case MSR_GS_BASE: 2174 vmx_segment_cache_clear(vmx); 2175 vmcs_writel(GUEST_GS_BASE, data); 2176 break; 2177 case MSR_KERNEL_GS_BASE: 2178 vmx_write_guest_kernel_gs_base(vmx, data); 2179 break; 2180 case MSR_IA32_XFD: 2181 ret = kvm_set_msr_common(vcpu, msr_info); 2182 /* 2183 * Always intercepting WRMSR could incur non-negligible 2184 * overhead given xfd might be changed frequently in 2185 * guest context switch. Disable write interception 2186 * upon the first write with a non-zero value (indicating 2187 * potential usage on dynamic xfeatures). Also update 2188 * exception bitmap to trap #NM for proper virtualization 2189 * of guest xfd_err. 2190 */ 2191 if (!ret && data) { 2192 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD, 2193 MSR_TYPE_RW); 2194 vcpu->arch.xfd_no_write_intercept = true; 2195 vmx_update_exception_bitmap(vcpu); 2196 } 2197 break; 2198 #endif 2199 case MSR_IA32_SYSENTER_CS: 2200 if (is_guest_mode(vcpu)) 2201 get_vmcs12(vcpu)->guest_sysenter_cs = data; 2202 vmcs_write32(GUEST_SYSENTER_CS, data); 2203 break; 2204 case MSR_IA32_SYSENTER_EIP: 2205 if (is_guest_mode(vcpu)) { 2206 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2207 get_vmcs12(vcpu)->guest_sysenter_eip = data; 2208 } 2209 vmcs_writel(GUEST_SYSENTER_EIP, data); 2210 break; 2211 case MSR_IA32_SYSENTER_ESP: 2212 if (is_guest_mode(vcpu)) { 2213 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2214 get_vmcs12(vcpu)->guest_sysenter_esp = data; 2215 } 2216 vmcs_writel(GUEST_SYSENTER_ESP, data); 2217 break; 2218 case MSR_IA32_DEBUGCTLMSR: { 2219 u64 invalid; 2220 2221 invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated); 2222 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) { 2223 kvm_pr_unimpl_wrmsr(vcpu, msr_index, data); 2224 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2225 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2226 } 2227 2228 if (invalid) 2229 return 1; 2230 2231 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls & 2232 VM_EXIT_SAVE_DEBUG_CONTROLS) 2233 get_vmcs12(vcpu)->guest_ia32_debugctl = data; 2234 2235 vmcs_write64(GUEST_IA32_DEBUGCTL, data); 2236 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event && 2237 (data & DEBUGCTLMSR_LBR)) 2238 intel_pmu_create_guest_lbr_event(vcpu); 2239 return 0; 2240 } 2241 case MSR_IA32_BNDCFGS: 2242 if (!kvm_mpx_supported() || 2243 (!msr_info->host_initiated && 2244 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 2245 return 1; 2246 if (is_noncanonical_address(data & PAGE_MASK, vcpu) || 2247 (data & MSR_IA32_BNDCFGS_RSVD)) 2248 return 1; 2249 2250 if (is_guest_mode(vcpu) && 2251 ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) || 2252 (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS))) 2253 get_vmcs12(vcpu)->guest_bndcfgs = data; 2254 2255 vmcs_write64(GUEST_BNDCFGS, data); 2256 break; 2257 case MSR_IA32_UMWAIT_CONTROL: 2258 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2259 return 1; 2260 2261 /* The reserved bit 1 and non-32 bit [63:32] should be zero */ 2262 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32))) 2263 return 1; 2264 2265 vmx->msr_ia32_umwait_control = data; 2266 break; 2267 case MSR_IA32_SPEC_CTRL: 2268 if (!msr_info->host_initiated && 2269 !guest_has_spec_ctrl_msr(vcpu)) 2270 return 1; 2271 2272 if (kvm_spec_ctrl_test_value(data)) 2273 return 1; 2274 2275 vmx->spec_ctrl = data; 2276 if (!data) 2277 break; 2278 2279 /* 2280 * For non-nested: 2281 * When it's written (to non-zero) for the first time, pass 2282 * it through. 2283 * 2284 * For nested: 2285 * The handling of the MSR bitmap for L2 guests is done in 2286 * nested_vmx_prepare_msr_bitmap. We should not touch the 2287 * vmcs02.msr_bitmap here since it gets completely overwritten 2288 * in the merging. We update the vmcs01 here for L1 as well 2289 * since it will end up touching the MSR anyway now. 2290 */ 2291 vmx_disable_intercept_for_msr(vcpu, 2292 MSR_IA32_SPEC_CTRL, 2293 MSR_TYPE_RW); 2294 break; 2295 case MSR_IA32_TSX_CTRL: 2296 if (!msr_info->host_initiated && 2297 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2298 return 1; 2299 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR)) 2300 return 1; 2301 goto find_uret_msr; 2302 case MSR_IA32_CR_PAT: 2303 ret = kvm_set_msr_common(vcpu, msr_info); 2304 if (ret) 2305 break; 2306 2307 if (is_guest_mode(vcpu) && 2308 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) 2309 get_vmcs12(vcpu)->guest_ia32_pat = data; 2310 2311 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 2312 vmcs_write64(GUEST_IA32_PAT, data); 2313 break; 2314 case MSR_IA32_MCG_EXT_CTL: 2315 if ((!msr_info->host_initiated && 2316 !(to_vmx(vcpu)->msr_ia32_feature_control & 2317 FEAT_CTL_LMCE_ENABLED)) || 2318 (data & ~MCG_EXT_CTL_LMCE_EN)) 2319 return 1; 2320 vcpu->arch.mcg_ext_ctl = data; 2321 break; 2322 case MSR_IA32_FEAT_CTL: 2323 if (!is_vmx_feature_control_msr_valid(vmx, msr_info)) 2324 return 1; 2325 2326 vmx->msr_ia32_feature_control = data; 2327 if (msr_info->host_initiated && data == 0) 2328 vmx_leave_nested(vcpu); 2329 2330 /* SGX may be enabled/disabled by guest's firmware */ 2331 vmx_write_encls_bitmap(vcpu, NULL); 2332 break; 2333 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2334 /* 2335 * On real hardware, the LE hash MSRs are writable before 2336 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX), 2337 * at which point SGX related bits in IA32_FEATURE_CONTROL 2338 * become writable. 2339 * 2340 * KVM does not emulate SGX activation for simplicity, so 2341 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL 2342 * is unlocked. This is technically not architectural 2343 * behavior, but it's close enough. 2344 */ 2345 if (!msr_info->host_initiated && 2346 (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) || 2347 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) && 2348 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED)))) 2349 return 1; 2350 vmx->msr_ia32_sgxlepubkeyhash 2351 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data; 2352 break; 2353 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 2354 if (!msr_info->host_initiated) 2355 return 1; /* they are read-only */ 2356 if (!guest_can_use(vcpu, X86_FEATURE_VMX)) 2357 return 1; 2358 return vmx_set_vmx_msr(vcpu, msr_index, data); 2359 case MSR_IA32_RTIT_CTL: 2360 if (!vmx_pt_mode_is_host_guest() || 2361 vmx_rtit_ctl_check(vcpu, data) || 2362 vmx->nested.vmxon) 2363 return 1; 2364 vmcs_write64(GUEST_IA32_RTIT_CTL, data); 2365 vmx->pt_desc.guest.ctl = data; 2366 pt_update_intercept_for_msr(vcpu); 2367 break; 2368 case MSR_IA32_RTIT_STATUS: 2369 if (!pt_can_write_msr(vmx)) 2370 return 1; 2371 if (data & MSR_IA32_RTIT_STATUS_MASK) 2372 return 1; 2373 vmx->pt_desc.guest.status = data; 2374 break; 2375 case MSR_IA32_RTIT_CR3_MATCH: 2376 if (!pt_can_write_msr(vmx)) 2377 return 1; 2378 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2379 PT_CAP_cr3_filtering)) 2380 return 1; 2381 vmx->pt_desc.guest.cr3_match = data; 2382 break; 2383 case MSR_IA32_RTIT_OUTPUT_BASE: 2384 if (!pt_can_write_msr(vmx)) 2385 return 1; 2386 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2387 PT_CAP_topa_output) && 2388 !intel_pt_validate_cap(vmx->pt_desc.caps, 2389 PT_CAP_single_range_output)) 2390 return 1; 2391 if (!pt_output_base_valid(vcpu, data)) 2392 return 1; 2393 vmx->pt_desc.guest.output_base = data; 2394 break; 2395 case MSR_IA32_RTIT_OUTPUT_MASK: 2396 if (!pt_can_write_msr(vmx)) 2397 return 1; 2398 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2399 PT_CAP_topa_output) && 2400 !intel_pt_validate_cap(vmx->pt_desc.caps, 2401 PT_CAP_single_range_output)) 2402 return 1; 2403 vmx->pt_desc.guest.output_mask = data; 2404 break; 2405 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2406 if (!pt_can_write_msr(vmx)) 2407 return 1; 2408 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2409 if (index >= 2 * vmx->pt_desc.num_address_ranges) 2410 return 1; 2411 if (is_noncanonical_address(data, vcpu)) 2412 return 1; 2413 if (index % 2) 2414 vmx->pt_desc.guest.addr_b[index / 2] = data; 2415 else 2416 vmx->pt_desc.guest.addr_a[index / 2] = data; 2417 break; 2418 case MSR_IA32_PERF_CAPABILITIES: 2419 if (data && !vcpu_to_pmu(vcpu)->version) 2420 return 1; 2421 if (data & PMU_CAP_LBR_FMT) { 2422 if ((data & PMU_CAP_LBR_FMT) != 2423 (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT)) 2424 return 1; 2425 if (!cpuid_model_is_consistent(vcpu)) 2426 return 1; 2427 } 2428 if (data & PERF_CAP_PEBS_FORMAT) { 2429 if ((data & PERF_CAP_PEBS_MASK) != 2430 (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK)) 2431 return 1; 2432 if (!guest_cpuid_has(vcpu, X86_FEATURE_DS)) 2433 return 1; 2434 if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64)) 2435 return 1; 2436 if (!cpuid_model_is_consistent(vcpu)) 2437 return 1; 2438 } 2439 ret = kvm_set_msr_common(vcpu, msr_info); 2440 break; 2441 2442 default: 2443 find_uret_msr: 2444 msr = vmx_find_uret_msr(vmx, msr_index); 2445 if (msr) 2446 ret = vmx_set_guest_uret_msr(vmx, msr, data); 2447 else 2448 ret = kvm_set_msr_common(vcpu, msr_info); 2449 } 2450 2451 /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */ 2452 if (msr_index == MSR_IA32_ARCH_CAPABILITIES) 2453 vmx_update_fb_clear_dis(vcpu, vmx); 2454 2455 return ret; 2456 } 2457 2458 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 2459 { 2460 unsigned long guest_owned_bits; 2461 2462 kvm_register_mark_available(vcpu, reg); 2463 2464 switch (reg) { 2465 case VCPU_REGS_RSP: 2466 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); 2467 break; 2468 case VCPU_REGS_RIP: 2469 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); 2470 break; 2471 case VCPU_EXREG_PDPTR: 2472 if (enable_ept) 2473 ept_save_pdptrs(vcpu); 2474 break; 2475 case VCPU_EXREG_CR0: 2476 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; 2477 2478 vcpu->arch.cr0 &= ~guest_owned_bits; 2479 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits; 2480 break; 2481 case VCPU_EXREG_CR3: 2482 /* 2483 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's 2484 * CR3 is loaded into hardware, not the guest's CR3. 2485 */ 2486 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING)) 2487 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); 2488 break; 2489 case VCPU_EXREG_CR4: 2490 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; 2491 2492 vcpu->arch.cr4 &= ~guest_owned_bits; 2493 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits; 2494 break; 2495 default: 2496 KVM_BUG_ON(1, vcpu->kvm); 2497 break; 2498 } 2499 } 2500 2501 /* 2502 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID 2503 * directly instead of going through cpu_has(), to ensure KVM is trapping 2504 * ENCLS whenever it's supported in hardware. It does not matter whether 2505 * the host OS supports or has enabled SGX. 2506 */ 2507 static bool cpu_has_sgx(void) 2508 { 2509 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0)); 2510 } 2511 2512 /* 2513 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they 2514 * can't be used due to errata where VM Exit may incorrectly clear 2515 * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the 2516 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. 2517 */ 2518 static bool cpu_has_perf_global_ctrl_bug(void) 2519 { 2520 if (boot_cpu_data.x86 == 0x6) { 2521 switch (boot_cpu_data.x86_model) { 2522 case INTEL_FAM6_NEHALEM_EP: /* AAK155 */ 2523 case INTEL_FAM6_NEHALEM: /* AAP115 */ 2524 case INTEL_FAM6_WESTMERE: /* AAT100 */ 2525 case INTEL_FAM6_WESTMERE_EP: /* BC86,AAY89,BD102 */ 2526 case INTEL_FAM6_NEHALEM_EX: /* BA97 */ 2527 return true; 2528 default: 2529 break; 2530 } 2531 } 2532 2533 return false; 2534 } 2535 2536 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result) 2537 { 2538 u32 vmx_msr_low, vmx_msr_high; 2539 u32 ctl = ctl_min | ctl_opt; 2540 2541 rdmsr(msr, vmx_msr_low, vmx_msr_high); 2542 2543 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ 2544 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ 2545 2546 /* Ensure minimum (required) set of control bits are supported. */ 2547 if (ctl_min & ~ctl) 2548 return -EIO; 2549 2550 *result = ctl; 2551 return 0; 2552 } 2553 2554 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr) 2555 { 2556 u64 allowed; 2557 2558 rdmsrl(msr, allowed); 2559 2560 return ctl_opt & allowed; 2561 } 2562 2563 static int setup_vmcs_config(struct vmcs_config *vmcs_conf, 2564 struct vmx_capability *vmx_cap) 2565 { 2566 u32 vmx_msr_low, vmx_msr_high; 2567 u32 _pin_based_exec_control = 0; 2568 u32 _cpu_based_exec_control = 0; 2569 u32 _cpu_based_2nd_exec_control = 0; 2570 u64 _cpu_based_3rd_exec_control = 0; 2571 u32 _vmexit_control = 0; 2572 u32 _vmentry_control = 0; 2573 u64 misc_msr; 2574 int i; 2575 2576 /* 2577 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory. 2578 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always 2579 * intercepts writes to PAT and EFER, i.e. never enables those controls. 2580 */ 2581 struct { 2582 u32 entry_control; 2583 u32 exit_control; 2584 } const vmcs_entry_exit_pairs[] = { 2585 { VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL }, 2586 { VM_ENTRY_LOAD_IA32_PAT, VM_EXIT_LOAD_IA32_PAT }, 2587 { VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER }, 2588 { VM_ENTRY_LOAD_BNDCFGS, VM_EXIT_CLEAR_BNDCFGS }, 2589 { VM_ENTRY_LOAD_IA32_RTIT_CTL, VM_EXIT_CLEAR_IA32_RTIT_CTL }, 2590 }; 2591 2592 memset(vmcs_conf, 0, sizeof(*vmcs_conf)); 2593 2594 if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL, 2595 KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL, 2596 MSR_IA32_VMX_PROCBASED_CTLS, 2597 &_cpu_based_exec_control)) 2598 return -EIO; 2599 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { 2600 if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL, 2601 KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL, 2602 MSR_IA32_VMX_PROCBASED_CTLS2, 2603 &_cpu_based_2nd_exec_control)) 2604 return -EIO; 2605 } 2606 #ifndef CONFIG_X86_64 2607 if (!(_cpu_based_2nd_exec_control & 2608 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 2609 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; 2610 #endif 2611 2612 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2613 _cpu_based_2nd_exec_control &= ~( 2614 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2615 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2616 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 2617 2618 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, 2619 &vmx_cap->ept, &vmx_cap->vpid); 2620 2621 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) && 2622 vmx_cap->ept) { 2623 pr_warn_once("EPT CAP should not exist if not support " 2624 "1-setting enable EPT VM-execution control\n"); 2625 2626 if (error_on_inconsistent_vmcs_config) 2627 return -EIO; 2628 2629 vmx_cap->ept = 0; 2630 } 2631 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && 2632 vmx_cap->vpid) { 2633 pr_warn_once("VPID CAP should not exist if not support " 2634 "1-setting enable VPID VM-execution control\n"); 2635 2636 if (error_on_inconsistent_vmcs_config) 2637 return -EIO; 2638 2639 vmx_cap->vpid = 0; 2640 } 2641 2642 if (!cpu_has_sgx()) 2643 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING; 2644 2645 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS) 2646 _cpu_based_3rd_exec_control = 2647 adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL, 2648 MSR_IA32_VMX_PROCBASED_CTLS3); 2649 2650 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS, 2651 KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS, 2652 MSR_IA32_VMX_EXIT_CTLS, 2653 &_vmexit_control)) 2654 return -EIO; 2655 2656 if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL, 2657 KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL, 2658 MSR_IA32_VMX_PINBASED_CTLS, 2659 &_pin_based_exec_control)) 2660 return -EIO; 2661 2662 if (cpu_has_broken_vmx_preemption_timer()) 2663 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 2664 if (!(_cpu_based_2nd_exec_control & 2665 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) 2666 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; 2667 2668 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS, 2669 KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS, 2670 MSR_IA32_VMX_ENTRY_CTLS, 2671 &_vmentry_control)) 2672 return -EIO; 2673 2674 for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) { 2675 u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control; 2676 u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control; 2677 2678 if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl)) 2679 continue; 2680 2681 pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n", 2682 _vmentry_control & n_ctrl, _vmexit_control & x_ctrl); 2683 2684 if (error_on_inconsistent_vmcs_config) 2685 return -EIO; 2686 2687 _vmentry_control &= ~n_ctrl; 2688 _vmexit_control &= ~x_ctrl; 2689 } 2690 2691 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); 2692 2693 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ 2694 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) 2695 return -EIO; 2696 2697 #ifdef CONFIG_X86_64 2698 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ 2699 if (vmx_msr_high & (1u<<16)) 2700 return -EIO; 2701 #endif 2702 2703 /* Require Write-Back (WB) memory type for VMCS accesses. */ 2704 if (((vmx_msr_high >> 18) & 15) != 6) 2705 return -EIO; 2706 2707 rdmsrl(MSR_IA32_VMX_MISC, misc_msr); 2708 2709 vmcs_conf->size = vmx_msr_high & 0x1fff; 2710 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; 2711 2712 vmcs_conf->revision_id = vmx_msr_low; 2713 2714 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; 2715 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; 2716 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; 2717 vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control; 2718 vmcs_conf->vmexit_ctrl = _vmexit_control; 2719 vmcs_conf->vmentry_ctrl = _vmentry_control; 2720 vmcs_conf->misc = misc_msr; 2721 2722 #if IS_ENABLED(CONFIG_HYPERV) 2723 if (enlightened_vmcs) 2724 evmcs_sanitize_exec_ctrls(vmcs_conf); 2725 #endif 2726 2727 return 0; 2728 } 2729 2730 static bool __kvm_is_vmx_supported(void) 2731 { 2732 int cpu = smp_processor_id(); 2733 2734 if (!(cpuid_ecx(1) & feature_bit(VMX))) { 2735 pr_err("VMX not supported by CPU %d\n", cpu); 2736 return false; 2737 } 2738 2739 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 2740 !this_cpu_has(X86_FEATURE_VMX)) { 2741 pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu); 2742 return false; 2743 } 2744 2745 return true; 2746 } 2747 2748 static bool kvm_is_vmx_supported(void) 2749 { 2750 bool supported; 2751 2752 migrate_disable(); 2753 supported = __kvm_is_vmx_supported(); 2754 migrate_enable(); 2755 2756 return supported; 2757 } 2758 2759 static int vmx_check_processor_compat(void) 2760 { 2761 int cpu = raw_smp_processor_id(); 2762 struct vmcs_config vmcs_conf; 2763 struct vmx_capability vmx_cap; 2764 2765 if (!__kvm_is_vmx_supported()) 2766 return -EIO; 2767 2768 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) { 2769 pr_err("Failed to setup VMCS config on CPU %d\n", cpu); 2770 return -EIO; 2771 } 2772 if (nested) 2773 nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept); 2774 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) { 2775 pr_err("Inconsistent VMCS config on CPU %d\n", cpu); 2776 return -EIO; 2777 } 2778 return 0; 2779 } 2780 2781 static int kvm_cpu_vmxon(u64 vmxon_pointer) 2782 { 2783 u64 msr; 2784 2785 cr4_set_bits(X86_CR4_VMXE); 2786 2787 asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t" 2788 _ASM_EXTABLE(1b, %l[fault]) 2789 : : [vmxon_pointer] "m"(vmxon_pointer) 2790 : : fault); 2791 return 0; 2792 2793 fault: 2794 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n", 2795 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr); 2796 cr4_clear_bits(X86_CR4_VMXE); 2797 2798 return -EFAULT; 2799 } 2800 2801 static int vmx_hardware_enable(void) 2802 { 2803 int cpu = raw_smp_processor_id(); 2804 u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); 2805 int r; 2806 2807 if (cr4_read_shadow() & X86_CR4_VMXE) 2808 return -EBUSY; 2809 2810 /* 2811 * This can happen if we hot-added a CPU but failed to allocate 2812 * VP assist page for it. 2813 */ 2814 if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu)) 2815 return -EFAULT; 2816 2817 intel_pt_handle_vmx(1); 2818 2819 r = kvm_cpu_vmxon(phys_addr); 2820 if (r) { 2821 intel_pt_handle_vmx(0); 2822 return r; 2823 } 2824 2825 if (enable_ept) 2826 ept_sync_global(); 2827 2828 return 0; 2829 } 2830 2831 static void vmclear_local_loaded_vmcss(void) 2832 { 2833 int cpu = raw_smp_processor_id(); 2834 struct loaded_vmcs *v, *n; 2835 2836 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), 2837 loaded_vmcss_on_cpu_link) 2838 __loaded_vmcs_clear(v); 2839 } 2840 2841 static void vmx_hardware_disable(void) 2842 { 2843 vmclear_local_loaded_vmcss(); 2844 2845 if (kvm_cpu_vmxoff()) 2846 kvm_spurious_fault(); 2847 2848 hv_reset_evmcs(); 2849 2850 intel_pt_handle_vmx(0); 2851 } 2852 2853 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags) 2854 { 2855 int node = cpu_to_node(cpu); 2856 struct page *pages; 2857 struct vmcs *vmcs; 2858 2859 pages = __alloc_pages_node(node, flags, 0); 2860 if (!pages) 2861 return NULL; 2862 vmcs = page_address(pages); 2863 memset(vmcs, 0, vmcs_config.size); 2864 2865 /* KVM supports Enlightened VMCS v1 only */ 2866 if (kvm_is_using_evmcs()) 2867 vmcs->hdr.revision_id = KVM_EVMCS_VERSION; 2868 else 2869 vmcs->hdr.revision_id = vmcs_config.revision_id; 2870 2871 if (shadow) 2872 vmcs->hdr.shadow_vmcs = 1; 2873 return vmcs; 2874 } 2875 2876 void free_vmcs(struct vmcs *vmcs) 2877 { 2878 free_page((unsigned long)vmcs); 2879 } 2880 2881 /* 2882 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded 2883 */ 2884 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2885 { 2886 if (!loaded_vmcs->vmcs) 2887 return; 2888 loaded_vmcs_clear(loaded_vmcs); 2889 free_vmcs(loaded_vmcs->vmcs); 2890 loaded_vmcs->vmcs = NULL; 2891 if (loaded_vmcs->msr_bitmap) 2892 free_page((unsigned long)loaded_vmcs->msr_bitmap); 2893 WARN_ON(loaded_vmcs->shadow_vmcs != NULL); 2894 } 2895 2896 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2897 { 2898 loaded_vmcs->vmcs = alloc_vmcs(false); 2899 if (!loaded_vmcs->vmcs) 2900 return -ENOMEM; 2901 2902 vmcs_clear(loaded_vmcs->vmcs); 2903 2904 loaded_vmcs->shadow_vmcs = NULL; 2905 loaded_vmcs->hv_timer_soft_disabled = false; 2906 loaded_vmcs->cpu = -1; 2907 loaded_vmcs->launched = 0; 2908 2909 if (cpu_has_vmx_msr_bitmap()) { 2910 loaded_vmcs->msr_bitmap = (unsigned long *) 2911 __get_free_page(GFP_KERNEL_ACCOUNT); 2912 if (!loaded_vmcs->msr_bitmap) 2913 goto out_vmcs; 2914 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); 2915 } 2916 2917 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); 2918 memset(&loaded_vmcs->controls_shadow, 0, 2919 sizeof(struct vmcs_controls_shadow)); 2920 2921 return 0; 2922 2923 out_vmcs: 2924 free_loaded_vmcs(loaded_vmcs); 2925 return -ENOMEM; 2926 } 2927 2928 static void free_kvm_area(void) 2929 { 2930 int cpu; 2931 2932 for_each_possible_cpu(cpu) { 2933 free_vmcs(per_cpu(vmxarea, cpu)); 2934 per_cpu(vmxarea, cpu) = NULL; 2935 } 2936 } 2937 2938 static __init int alloc_kvm_area(void) 2939 { 2940 int cpu; 2941 2942 for_each_possible_cpu(cpu) { 2943 struct vmcs *vmcs; 2944 2945 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL); 2946 if (!vmcs) { 2947 free_kvm_area(); 2948 return -ENOMEM; 2949 } 2950 2951 /* 2952 * When eVMCS is enabled, alloc_vmcs_cpu() sets 2953 * vmcs->revision_id to KVM_EVMCS_VERSION instead of 2954 * revision_id reported by MSR_IA32_VMX_BASIC. 2955 * 2956 * However, even though not explicitly documented by 2957 * TLFS, VMXArea passed as VMXON argument should 2958 * still be marked with revision_id reported by 2959 * physical CPU. 2960 */ 2961 if (kvm_is_using_evmcs()) 2962 vmcs->hdr.revision_id = vmcs_config.revision_id; 2963 2964 per_cpu(vmxarea, cpu) = vmcs; 2965 } 2966 return 0; 2967 } 2968 2969 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, 2970 struct kvm_segment *save) 2971 { 2972 if (!emulate_invalid_guest_state) { 2973 /* 2974 * CS and SS RPL should be equal during guest entry according 2975 * to VMX spec, but in reality it is not always so. Since vcpu 2976 * is in the middle of the transition from real mode to 2977 * protected mode it is safe to assume that RPL 0 is a good 2978 * default value. 2979 */ 2980 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) 2981 save->selector &= ~SEGMENT_RPL_MASK; 2982 save->dpl = save->selector & SEGMENT_RPL_MASK; 2983 save->s = 1; 2984 } 2985 __vmx_set_segment(vcpu, save, seg); 2986 } 2987 2988 static void enter_pmode(struct kvm_vcpu *vcpu) 2989 { 2990 unsigned long flags; 2991 struct vcpu_vmx *vmx = to_vmx(vcpu); 2992 2993 /* 2994 * Update real mode segment cache. It may be not up-to-date if segment 2995 * register was written while vcpu was in a guest mode. 2996 */ 2997 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2998 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2999 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 3000 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 3001 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 3002 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 3003 3004 vmx->rmode.vm86_active = 0; 3005 3006 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 3007 3008 flags = vmcs_readl(GUEST_RFLAGS); 3009 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 3010 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 3011 vmcs_writel(GUEST_RFLAGS, flags); 3012 3013 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | 3014 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); 3015 3016 vmx_update_exception_bitmap(vcpu); 3017 3018 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 3019 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 3020 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 3021 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 3022 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 3023 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 3024 } 3025 3026 static void fix_rmode_seg(int seg, struct kvm_segment *save) 3027 { 3028 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3029 struct kvm_segment var = *save; 3030 3031 var.dpl = 0x3; 3032 if (seg == VCPU_SREG_CS) 3033 var.type = 0x3; 3034 3035 if (!emulate_invalid_guest_state) { 3036 var.selector = var.base >> 4; 3037 var.base = var.base & 0xffff0; 3038 var.limit = 0xffff; 3039 var.g = 0; 3040 var.db = 0; 3041 var.present = 1; 3042 var.s = 1; 3043 var.l = 0; 3044 var.unusable = 0; 3045 var.type = 0x3; 3046 var.avl = 0; 3047 if (save->base & 0xf) 3048 pr_warn_once("segment base is not paragraph aligned " 3049 "when entering protected mode (seg=%d)", seg); 3050 } 3051 3052 vmcs_write16(sf->selector, var.selector); 3053 vmcs_writel(sf->base, var.base); 3054 vmcs_write32(sf->limit, var.limit); 3055 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); 3056 } 3057 3058 static void enter_rmode(struct kvm_vcpu *vcpu) 3059 { 3060 unsigned long flags; 3061 struct vcpu_vmx *vmx = to_vmx(vcpu); 3062 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); 3063 3064 /* 3065 * KVM should never use VM86 to virtualize Real Mode when L2 is active, 3066 * as using VM86 is unnecessary if unrestricted guest is enabled, and 3067 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0 3068 * should VM-Fail and KVM should reject userspace attempts to stuff 3069 * CR0.PG=0 when L2 is active. 3070 */ 3071 WARN_ON_ONCE(is_guest_mode(vcpu)); 3072 3073 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 3074 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 3075 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 3076 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 3077 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 3078 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 3079 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 3080 3081 vmx->rmode.vm86_active = 1; 3082 3083 vmx_segment_cache_clear(vmx); 3084 3085 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); 3086 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); 3087 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 3088 3089 flags = vmcs_readl(GUEST_RFLAGS); 3090 vmx->rmode.save_rflags = flags; 3091 3092 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 3093 3094 vmcs_writel(GUEST_RFLAGS, flags); 3095 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); 3096 vmx_update_exception_bitmap(vcpu); 3097 3098 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 3099 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 3100 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 3101 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 3102 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 3103 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 3104 } 3105 3106 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) 3107 { 3108 struct vcpu_vmx *vmx = to_vmx(vcpu); 3109 3110 /* Nothing to do if hardware doesn't support EFER. */ 3111 if (!vmx_find_uret_msr(vmx, MSR_EFER)) 3112 return 0; 3113 3114 vcpu->arch.efer = efer; 3115 #ifdef CONFIG_X86_64 3116 if (efer & EFER_LMA) 3117 vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE); 3118 else 3119 vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE); 3120 #else 3121 if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm)) 3122 return 1; 3123 #endif 3124 3125 vmx_setup_uret_msrs(vmx); 3126 return 0; 3127 } 3128 3129 #ifdef CONFIG_X86_64 3130 3131 static void enter_lmode(struct kvm_vcpu *vcpu) 3132 { 3133 u32 guest_tr_ar; 3134 3135 vmx_segment_cache_clear(to_vmx(vcpu)); 3136 3137 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); 3138 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { 3139 pr_debug_ratelimited("%s: tss fixup for long mode. \n", 3140 __func__); 3141 vmcs_write32(GUEST_TR_AR_BYTES, 3142 (guest_tr_ar & ~VMX_AR_TYPE_MASK) 3143 | VMX_AR_TYPE_BUSY_64_TSS); 3144 } 3145 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); 3146 } 3147 3148 static void exit_lmode(struct kvm_vcpu *vcpu) 3149 { 3150 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); 3151 } 3152 3153 #endif 3154 3155 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu) 3156 { 3157 struct vcpu_vmx *vmx = to_vmx(vcpu); 3158 3159 /* 3160 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as 3161 * the CPU is not required to invalidate guest-physical mappings on 3162 * VM-Entry, even if VPID is disabled. Guest-physical mappings are 3163 * associated with the root EPT structure and not any particular VPID 3164 * (INVVPID also isn't required to invalidate guest-physical mappings). 3165 */ 3166 if (enable_ept) { 3167 ept_sync_global(); 3168 } else if (enable_vpid) { 3169 if (cpu_has_vmx_invvpid_global()) { 3170 vpid_sync_vcpu_global(); 3171 } else { 3172 vpid_sync_vcpu_single(vmx->vpid); 3173 vpid_sync_vcpu_single(vmx->nested.vpid02); 3174 } 3175 } 3176 } 3177 3178 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu) 3179 { 3180 if (is_guest_mode(vcpu)) 3181 return nested_get_vpid02(vcpu); 3182 return to_vmx(vcpu)->vpid; 3183 } 3184 3185 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu) 3186 { 3187 struct kvm_mmu *mmu = vcpu->arch.mmu; 3188 u64 root_hpa = mmu->root.hpa; 3189 3190 /* No flush required if the current context is invalid. */ 3191 if (!VALID_PAGE(root_hpa)) 3192 return; 3193 3194 if (enable_ept) 3195 ept_sync_context(construct_eptp(vcpu, root_hpa, 3196 mmu->root_role.level)); 3197 else 3198 vpid_sync_context(vmx_get_current_vpid(vcpu)); 3199 } 3200 3201 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) 3202 { 3203 /* 3204 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in 3205 * vmx_flush_tlb_guest() for an explanation of why this is ok. 3206 */ 3207 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr); 3208 } 3209 3210 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu) 3211 { 3212 /* 3213 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a 3214 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are 3215 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is 3216 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed), 3217 * i.e. no explicit INVVPID is necessary. 3218 */ 3219 vpid_sync_context(vmx_get_current_vpid(vcpu)); 3220 } 3221 3222 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu) 3223 { 3224 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 3225 3226 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR)) 3227 return; 3228 3229 if (is_pae_paging(vcpu)) { 3230 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); 3231 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); 3232 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); 3233 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); 3234 } 3235 } 3236 3237 void ept_save_pdptrs(struct kvm_vcpu *vcpu) 3238 { 3239 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 3240 3241 if (WARN_ON_ONCE(!is_pae_paging(vcpu))) 3242 return; 3243 3244 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); 3245 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); 3246 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); 3247 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); 3248 3249 kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR); 3250 } 3251 3252 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \ 3253 CPU_BASED_CR3_STORE_EXITING) 3254 3255 static bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 3256 { 3257 if (is_guest_mode(vcpu)) 3258 return nested_guest_cr0_valid(vcpu, cr0); 3259 3260 if (to_vmx(vcpu)->nested.vmxon) 3261 return nested_host_cr0_valid(vcpu, cr0); 3262 3263 return true; 3264 } 3265 3266 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 3267 { 3268 struct vcpu_vmx *vmx = to_vmx(vcpu); 3269 unsigned long hw_cr0, old_cr0_pg; 3270 u32 tmp; 3271 3272 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG); 3273 3274 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); 3275 if (enable_unrestricted_guest) 3276 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; 3277 else { 3278 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; 3279 if (!enable_ept) 3280 hw_cr0 |= X86_CR0_WP; 3281 3282 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) 3283 enter_pmode(vcpu); 3284 3285 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) 3286 enter_rmode(vcpu); 3287 } 3288 3289 vmcs_writel(CR0_READ_SHADOW, cr0); 3290 vmcs_writel(GUEST_CR0, hw_cr0); 3291 vcpu->arch.cr0 = cr0; 3292 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0); 3293 3294 #ifdef CONFIG_X86_64 3295 if (vcpu->arch.efer & EFER_LME) { 3296 if (!old_cr0_pg && (cr0 & X86_CR0_PG)) 3297 enter_lmode(vcpu); 3298 else if (old_cr0_pg && !(cr0 & X86_CR0_PG)) 3299 exit_lmode(vcpu); 3300 } 3301 #endif 3302 3303 if (enable_ept && !enable_unrestricted_guest) { 3304 /* 3305 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If 3306 * the below code _enables_ CR3 exiting, vmx_cache_reg() will 3307 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks 3308 * KVM's CR3 is installed. 3309 */ 3310 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3)) 3311 vmx_cache_reg(vcpu, VCPU_EXREG_CR3); 3312 3313 /* 3314 * When running with EPT but not unrestricted guest, KVM must 3315 * intercept CR3 accesses when paging is _disabled_. This is 3316 * necessary because restricted guests can't actually run with 3317 * paging disabled, and so KVM stuffs its own CR3 in order to 3318 * run the guest when identity mapped page tables. 3319 * 3320 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the 3321 * update, it may be stale with respect to CR3 interception, 3322 * e.g. after nested VM-Enter. 3323 * 3324 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or 3325 * stores to forward them to L1, even if KVM does not need to 3326 * intercept them to preserve its identity mapped page tables. 3327 */ 3328 if (!(cr0 & X86_CR0_PG)) { 3329 exec_controls_setbit(vmx, CR3_EXITING_BITS); 3330 } else if (!is_guest_mode(vcpu)) { 3331 exec_controls_clearbit(vmx, CR3_EXITING_BITS); 3332 } else { 3333 tmp = exec_controls_get(vmx); 3334 tmp &= ~CR3_EXITING_BITS; 3335 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS; 3336 exec_controls_set(vmx, tmp); 3337 } 3338 3339 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */ 3340 if ((old_cr0_pg ^ cr0) & X86_CR0_PG) 3341 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 3342 3343 /* 3344 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but 3345 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG. 3346 */ 3347 if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG)) 3348 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 3349 } 3350 3351 /* depends on vcpu->arch.cr0 to be set to a new value */ 3352 vmx->emulation_required = vmx_emulation_required(vcpu); 3353 } 3354 3355 static int vmx_get_max_ept_level(void) 3356 { 3357 if (cpu_has_vmx_ept_5levels()) 3358 return 5; 3359 return 4; 3360 } 3361 3362 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level) 3363 { 3364 u64 eptp = VMX_EPTP_MT_WB; 3365 3366 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; 3367 3368 if (enable_ept_ad_bits && 3369 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) 3370 eptp |= VMX_EPTP_AD_ENABLE_BIT; 3371 eptp |= root_hpa; 3372 3373 return eptp; 3374 } 3375 3376 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 3377 int root_level) 3378 { 3379 struct kvm *kvm = vcpu->kvm; 3380 bool update_guest_cr3 = true; 3381 unsigned long guest_cr3; 3382 u64 eptp; 3383 3384 if (enable_ept) { 3385 eptp = construct_eptp(vcpu, root_hpa, root_level); 3386 vmcs_write64(EPT_POINTER, eptp); 3387 3388 hv_track_root_tdp(vcpu, root_hpa); 3389 3390 if (!enable_unrestricted_guest && !is_paging(vcpu)) 3391 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; 3392 else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3)) 3393 guest_cr3 = vcpu->arch.cr3; 3394 else /* vmcs.GUEST_CR3 is already up-to-date. */ 3395 update_guest_cr3 = false; 3396 vmx_ept_load_pdptrs(vcpu); 3397 } else { 3398 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu) | 3399 kvm_get_active_cr3_lam_bits(vcpu); 3400 } 3401 3402 if (update_guest_cr3) 3403 vmcs_writel(GUEST_CR3, guest_cr3); 3404 } 3405 3406 3407 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3408 { 3409 /* 3410 * We operate under the default treatment of SMM, so VMX cannot be 3411 * enabled under SMM. Note, whether or not VMXE is allowed at all, 3412 * i.e. is a reserved bit, is handled by common x86 code. 3413 */ 3414 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu)) 3415 return false; 3416 3417 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) 3418 return false; 3419 3420 return true; 3421 } 3422 3423 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3424 { 3425 unsigned long old_cr4 = kvm_read_cr4(vcpu); 3426 struct vcpu_vmx *vmx = to_vmx(vcpu); 3427 unsigned long hw_cr4; 3428 3429 /* 3430 * Pass through host's Machine Check Enable value to hw_cr4, which 3431 * is in force while we are in guest mode. Do not let guests control 3432 * this bit, even if host CR4.MCE == 0. 3433 */ 3434 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); 3435 if (enable_unrestricted_guest) 3436 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; 3437 else if (vmx->rmode.vm86_active) 3438 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; 3439 else 3440 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; 3441 3442 if (vmx_umip_emulated()) { 3443 if (cr4 & X86_CR4_UMIP) { 3444 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC); 3445 hw_cr4 &= ~X86_CR4_UMIP; 3446 } else if (!is_guest_mode(vcpu) || 3447 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) { 3448 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC); 3449 } 3450 } 3451 3452 vcpu->arch.cr4 = cr4; 3453 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4); 3454 3455 if (!enable_unrestricted_guest) { 3456 if (enable_ept) { 3457 if (!is_paging(vcpu)) { 3458 hw_cr4 &= ~X86_CR4_PAE; 3459 hw_cr4 |= X86_CR4_PSE; 3460 } else if (!(cr4 & X86_CR4_PAE)) { 3461 hw_cr4 &= ~X86_CR4_PAE; 3462 } 3463 } 3464 3465 /* 3466 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in 3467 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs 3468 * to be manually disabled when guest switches to non-paging 3469 * mode. 3470 * 3471 * If !enable_unrestricted_guest, the CPU is always running 3472 * with CR0.PG=1 and CR4 needs to be modified. 3473 * If enable_unrestricted_guest, the CPU automatically 3474 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. 3475 */ 3476 if (!is_paging(vcpu)) 3477 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 3478 } 3479 3480 vmcs_writel(CR4_READ_SHADOW, cr4); 3481 vmcs_writel(GUEST_CR4, hw_cr4); 3482 3483 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 3484 kvm_update_cpuid_runtime(vcpu); 3485 } 3486 3487 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3488 { 3489 struct vcpu_vmx *vmx = to_vmx(vcpu); 3490 u32 ar; 3491 3492 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3493 *var = vmx->rmode.segs[seg]; 3494 if (seg == VCPU_SREG_TR 3495 || var->selector == vmx_read_guest_seg_selector(vmx, seg)) 3496 return; 3497 var->base = vmx_read_guest_seg_base(vmx, seg); 3498 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3499 return; 3500 } 3501 var->base = vmx_read_guest_seg_base(vmx, seg); 3502 var->limit = vmx_read_guest_seg_limit(vmx, seg); 3503 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3504 ar = vmx_read_guest_seg_ar(vmx, seg); 3505 var->unusable = (ar >> 16) & 1; 3506 var->type = ar & 15; 3507 var->s = (ar >> 4) & 1; 3508 var->dpl = (ar >> 5) & 3; 3509 /* 3510 * Some userspaces do not preserve unusable property. Since usable 3511 * segment has to be present according to VMX spec we can use present 3512 * property to amend userspace bug by making unusable segment always 3513 * nonpresent. vmx_segment_access_rights() already marks nonpresent 3514 * segment as unusable. 3515 */ 3516 var->present = !var->unusable; 3517 var->avl = (ar >> 12) & 1; 3518 var->l = (ar >> 13) & 1; 3519 var->db = (ar >> 14) & 1; 3520 var->g = (ar >> 15) & 1; 3521 } 3522 3523 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) 3524 { 3525 struct kvm_segment s; 3526 3527 if (to_vmx(vcpu)->rmode.vm86_active) { 3528 vmx_get_segment(vcpu, &s, seg); 3529 return s.base; 3530 } 3531 return vmx_read_guest_seg_base(to_vmx(vcpu), seg); 3532 } 3533 3534 int vmx_get_cpl(struct kvm_vcpu *vcpu) 3535 { 3536 struct vcpu_vmx *vmx = to_vmx(vcpu); 3537 3538 if (unlikely(vmx->rmode.vm86_active)) 3539 return 0; 3540 else { 3541 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); 3542 return VMX_AR_DPL(ar); 3543 } 3544 } 3545 3546 static u32 vmx_segment_access_rights(struct kvm_segment *var) 3547 { 3548 u32 ar; 3549 3550 ar = var->type & 15; 3551 ar |= (var->s & 1) << 4; 3552 ar |= (var->dpl & 3) << 5; 3553 ar |= (var->present & 1) << 7; 3554 ar |= (var->avl & 1) << 12; 3555 ar |= (var->l & 1) << 13; 3556 ar |= (var->db & 1) << 14; 3557 ar |= (var->g & 1) << 15; 3558 ar |= (var->unusable || !var->present) << 16; 3559 3560 return ar; 3561 } 3562 3563 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3564 { 3565 struct vcpu_vmx *vmx = to_vmx(vcpu); 3566 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3567 3568 vmx_segment_cache_clear(vmx); 3569 3570 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3571 vmx->rmode.segs[seg] = *var; 3572 if (seg == VCPU_SREG_TR) 3573 vmcs_write16(sf->selector, var->selector); 3574 else if (var->s) 3575 fix_rmode_seg(seg, &vmx->rmode.segs[seg]); 3576 return; 3577 } 3578 3579 vmcs_writel(sf->base, var->base); 3580 vmcs_write32(sf->limit, var->limit); 3581 vmcs_write16(sf->selector, var->selector); 3582 3583 /* 3584 * Fix the "Accessed" bit in AR field of segment registers for older 3585 * qemu binaries. 3586 * IA32 arch specifies that at the time of processor reset the 3587 * "Accessed" bit in the AR field of segment registers is 1. And qemu 3588 * is setting it to 0 in the userland code. This causes invalid guest 3589 * state vmexit when "unrestricted guest" mode is turned on. 3590 * Fix for this setup issue in cpu_reset is being pushed in the qemu 3591 * tree. Newer qemu binaries with that qemu fix would not need this 3592 * kvm hack. 3593 */ 3594 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR)) 3595 var->type |= 0x1; /* Accessed */ 3596 3597 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); 3598 } 3599 3600 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3601 { 3602 __vmx_set_segment(vcpu, var, seg); 3603 3604 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu); 3605 } 3606 3607 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 3608 { 3609 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); 3610 3611 *db = (ar >> 14) & 1; 3612 *l = (ar >> 13) & 1; 3613 } 3614 3615 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3616 { 3617 dt->size = vmcs_read32(GUEST_IDTR_LIMIT); 3618 dt->address = vmcs_readl(GUEST_IDTR_BASE); 3619 } 3620 3621 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3622 { 3623 vmcs_write32(GUEST_IDTR_LIMIT, dt->size); 3624 vmcs_writel(GUEST_IDTR_BASE, dt->address); 3625 } 3626 3627 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3628 { 3629 dt->size = vmcs_read32(GUEST_GDTR_LIMIT); 3630 dt->address = vmcs_readl(GUEST_GDTR_BASE); 3631 } 3632 3633 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3634 { 3635 vmcs_write32(GUEST_GDTR_LIMIT, dt->size); 3636 vmcs_writel(GUEST_GDTR_BASE, dt->address); 3637 } 3638 3639 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) 3640 { 3641 struct kvm_segment var; 3642 u32 ar; 3643 3644 vmx_get_segment(vcpu, &var, seg); 3645 var.dpl = 0x3; 3646 if (seg == VCPU_SREG_CS) 3647 var.type = 0x3; 3648 ar = vmx_segment_access_rights(&var); 3649 3650 if (var.base != (var.selector << 4)) 3651 return false; 3652 if (var.limit != 0xffff) 3653 return false; 3654 if (ar != 0xf3) 3655 return false; 3656 3657 return true; 3658 } 3659 3660 static bool code_segment_valid(struct kvm_vcpu *vcpu) 3661 { 3662 struct kvm_segment cs; 3663 unsigned int cs_rpl; 3664 3665 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3666 cs_rpl = cs.selector & SEGMENT_RPL_MASK; 3667 3668 if (cs.unusable) 3669 return false; 3670 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) 3671 return false; 3672 if (!cs.s) 3673 return false; 3674 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { 3675 if (cs.dpl > cs_rpl) 3676 return false; 3677 } else { 3678 if (cs.dpl != cs_rpl) 3679 return false; 3680 } 3681 if (!cs.present) 3682 return false; 3683 3684 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ 3685 return true; 3686 } 3687 3688 static bool stack_segment_valid(struct kvm_vcpu *vcpu) 3689 { 3690 struct kvm_segment ss; 3691 unsigned int ss_rpl; 3692 3693 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3694 ss_rpl = ss.selector & SEGMENT_RPL_MASK; 3695 3696 if (ss.unusable) 3697 return true; 3698 if (ss.type != 3 && ss.type != 7) 3699 return false; 3700 if (!ss.s) 3701 return false; 3702 if (ss.dpl != ss_rpl) /* DPL != RPL */ 3703 return false; 3704 if (!ss.present) 3705 return false; 3706 3707 return true; 3708 } 3709 3710 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) 3711 { 3712 struct kvm_segment var; 3713 unsigned int rpl; 3714 3715 vmx_get_segment(vcpu, &var, seg); 3716 rpl = var.selector & SEGMENT_RPL_MASK; 3717 3718 if (var.unusable) 3719 return true; 3720 if (!var.s) 3721 return false; 3722 if (!var.present) 3723 return false; 3724 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { 3725 if (var.dpl < rpl) /* DPL < RPL */ 3726 return false; 3727 } 3728 3729 /* TODO: Add other members to kvm_segment_field to allow checking for other access 3730 * rights flags 3731 */ 3732 return true; 3733 } 3734 3735 static bool tr_valid(struct kvm_vcpu *vcpu) 3736 { 3737 struct kvm_segment tr; 3738 3739 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); 3740 3741 if (tr.unusable) 3742 return false; 3743 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3744 return false; 3745 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ 3746 return false; 3747 if (!tr.present) 3748 return false; 3749 3750 return true; 3751 } 3752 3753 static bool ldtr_valid(struct kvm_vcpu *vcpu) 3754 { 3755 struct kvm_segment ldtr; 3756 3757 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); 3758 3759 if (ldtr.unusable) 3760 return true; 3761 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3762 return false; 3763 if (ldtr.type != 2) 3764 return false; 3765 if (!ldtr.present) 3766 return false; 3767 3768 return true; 3769 } 3770 3771 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) 3772 { 3773 struct kvm_segment cs, ss; 3774 3775 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3776 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3777 3778 return ((cs.selector & SEGMENT_RPL_MASK) == 3779 (ss.selector & SEGMENT_RPL_MASK)); 3780 } 3781 3782 /* 3783 * Check if guest state is valid. Returns true if valid, false if 3784 * not. 3785 * We assume that registers are always usable 3786 */ 3787 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu) 3788 { 3789 /* real mode guest state checks */ 3790 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { 3791 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) 3792 return false; 3793 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) 3794 return false; 3795 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) 3796 return false; 3797 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) 3798 return false; 3799 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) 3800 return false; 3801 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) 3802 return false; 3803 } else { 3804 /* protected mode guest state checks */ 3805 if (!cs_ss_rpl_check(vcpu)) 3806 return false; 3807 if (!code_segment_valid(vcpu)) 3808 return false; 3809 if (!stack_segment_valid(vcpu)) 3810 return false; 3811 if (!data_segment_valid(vcpu, VCPU_SREG_DS)) 3812 return false; 3813 if (!data_segment_valid(vcpu, VCPU_SREG_ES)) 3814 return false; 3815 if (!data_segment_valid(vcpu, VCPU_SREG_FS)) 3816 return false; 3817 if (!data_segment_valid(vcpu, VCPU_SREG_GS)) 3818 return false; 3819 if (!tr_valid(vcpu)) 3820 return false; 3821 if (!ldtr_valid(vcpu)) 3822 return false; 3823 } 3824 /* TODO: 3825 * - Add checks on RIP 3826 * - Add checks on RFLAGS 3827 */ 3828 3829 return true; 3830 } 3831 3832 static int init_rmode_tss(struct kvm *kvm, void __user *ua) 3833 { 3834 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3835 u16 data; 3836 int i; 3837 3838 for (i = 0; i < 3; i++) { 3839 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE)) 3840 return -EFAULT; 3841 } 3842 3843 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; 3844 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16))) 3845 return -EFAULT; 3846 3847 data = ~0; 3848 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8))) 3849 return -EFAULT; 3850 3851 return 0; 3852 } 3853 3854 static int init_rmode_identity_map(struct kvm *kvm) 3855 { 3856 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 3857 int i, r = 0; 3858 void __user *uaddr; 3859 u32 tmp; 3860 3861 /* Protect kvm_vmx->ept_identity_pagetable_done. */ 3862 mutex_lock(&kvm->slots_lock); 3863 3864 if (likely(kvm_vmx->ept_identity_pagetable_done)) 3865 goto out; 3866 3867 if (!kvm_vmx->ept_identity_map_addr) 3868 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; 3869 3870 uaddr = __x86_set_memory_region(kvm, 3871 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 3872 kvm_vmx->ept_identity_map_addr, 3873 PAGE_SIZE); 3874 if (IS_ERR(uaddr)) { 3875 r = PTR_ERR(uaddr); 3876 goto out; 3877 } 3878 3879 /* Set up identity-mapping pagetable for EPT in real mode */ 3880 for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) { 3881 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | 3882 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); 3883 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) { 3884 r = -EFAULT; 3885 goto out; 3886 } 3887 } 3888 kvm_vmx->ept_identity_pagetable_done = true; 3889 3890 out: 3891 mutex_unlock(&kvm->slots_lock); 3892 return r; 3893 } 3894 3895 static void seg_setup(int seg) 3896 { 3897 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3898 unsigned int ar; 3899 3900 vmcs_write16(sf->selector, 0); 3901 vmcs_writel(sf->base, 0); 3902 vmcs_write32(sf->limit, 0xffff); 3903 ar = 0x93; 3904 if (seg == VCPU_SREG_CS) 3905 ar |= 0x08; /* code segment */ 3906 3907 vmcs_write32(sf->ar_bytes, ar); 3908 } 3909 3910 int allocate_vpid(void) 3911 { 3912 int vpid; 3913 3914 if (!enable_vpid) 3915 return 0; 3916 spin_lock(&vmx_vpid_lock); 3917 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); 3918 if (vpid < VMX_NR_VPIDS) 3919 __set_bit(vpid, vmx_vpid_bitmap); 3920 else 3921 vpid = 0; 3922 spin_unlock(&vmx_vpid_lock); 3923 return vpid; 3924 } 3925 3926 void free_vpid(int vpid) 3927 { 3928 if (!enable_vpid || vpid == 0) 3929 return; 3930 spin_lock(&vmx_vpid_lock); 3931 __clear_bit(vpid, vmx_vpid_bitmap); 3932 spin_unlock(&vmx_vpid_lock); 3933 } 3934 3935 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx) 3936 { 3937 /* 3938 * When KVM is a nested hypervisor on top of Hyper-V and uses 3939 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR 3940 * bitmap has changed. 3941 */ 3942 if (kvm_is_using_evmcs()) { 3943 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; 3944 3945 if (evmcs->hv_enlightenments_control.msr_bitmap) 3946 evmcs->hv_clean_fields &= 3947 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP; 3948 } 3949 3950 vmx->nested.force_msr_bitmap_recalc = true; 3951 } 3952 3953 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3954 { 3955 struct vcpu_vmx *vmx = to_vmx(vcpu); 3956 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3957 3958 if (!cpu_has_vmx_msr_bitmap()) 3959 return; 3960 3961 vmx_msr_bitmap_l01_changed(vmx); 3962 3963 /* 3964 * Mark the desired intercept state in shadow bitmap, this is needed 3965 * for resync when the MSR filters change. 3966 */ 3967 if (is_valid_passthrough_msr(msr)) { 3968 int idx = possible_passthrough_msr_slot(msr); 3969 3970 if (idx != -ENOENT) { 3971 if (type & MSR_TYPE_R) 3972 clear_bit(idx, vmx->shadow_msr_intercept.read); 3973 if (type & MSR_TYPE_W) 3974 clear_bit(idx, vmx->shadow_msr_intercept.write); 3975 } 3976 } 3977 3978 if ((type & MSR_TYPE_R) && 3979 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) { 3980 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3981 type &= ~MSR_TYPE_R; 3982 } 3983 3984 if ((type & MSR_TYPE_W) && 3985 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) { 3986 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3987 type &= ~MSR_TYPE_W; 3988 } 3989 3990 if (type & MSR_TYPE_R) 3991 vmx_clear_msr_bitmap_read(msr_bitmap, msr); 3992 3993 if (type & MSR_TYPE_W) 3994 vmx_clear_msr_bitmap_write(msr_bitmap, msr); 3995 } 3996 3997 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3998 { 3999 struct vcpu_vmx *vmx = to_vmx(vcpu); 4000 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 4001 4002 if (!cpu_has_vmx_msr_bitmap()) 4003 return; 4004 4005 vmx_msr_bitmap_l01_changed(vmx); 4006 4007 /* 4008 * Mark the desired intercept state in shadow bitmap, this is needed 4009 * for resync when the MSR filter changes. 4010 */ 4011 if (is_valid_passthrough_msr(msr)) { 4012 int idx = possible_passthrough_msr_slot(msr); 4013 4014 if (idx != -ENOENT) { 4015 if (type & MSR_TYPE_R) 4016 set_bit(idx, vmx->shadow_msr_intercept.read); 4017 if (type & MSR_TYPE_W) 4018 set_bit(idx, vmx->shadow_msr_intercept.write); 4019 } 4020 } 4021 4022 if (type & MSR_TYPE_R) 4023 vmx_set_msr_bitmap_read(msr_bitmap, msr); 4024 4025 if (type & MSR_TYPE_W) 4026 vmx_set_msr_bitmap_write(msr_bitmap, msr); 4027 } 4028 4029 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu) 4030 { 4031 /* 4032 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves 4033 * of the MSR bitmap. KVM emulates APIC registers up through 0x3f0, 4034 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits. 4035 */ 4036 const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG; 4037 const int write_idx = read_idx + (0x800 / sizeof(u64)); 4038 struct vcpu_vmx *vmx = to_vmx(vcpu); 4039 u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap; 4040 u8 mode; 4041 4042 if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu))) 4043 return; 4044 4045 if (cpu_has_secondary_exec_ctrls() && 4046 (secondary_exec_controls_get(vmx) & 4047 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { 4048 mode = MSR_BITMAP_MODE_X2APIC; 4049 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) 4050 mode |= MSR_BITMAP_MODE_X2APIC_APICV; 4051 } else { 4052 mode = 0; 4053 } 4054 4055 if (mode == vmx->x2apic_msr_bitmap_mode) 4056 return; 4057 4058 vmx->x2apic_msr_bitmap_mode = mode; 4059 4060 /* 4061 * Reset the bitmap for MSRs 0x800 - 0x83f. Leave AMD's uber-extended 4062 * registers (0x840 and above) intercepted, KVM doesn't support them. 4063 * Intercept all writes by default and poke holes as needed. Pass 4064 * through reads for all valid registers by default in x2APIC+APICv 4065 * mode, only the current timer count needs on-demand emulation by KVM. 4066 */ 4067 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) 4068 msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic); 4069 else 4070 msr_bitmap[read_idx] = ~0ull; 4071 msr_bitmap[write_idx] = ~0ull; 4072 4073 /* 4074 * TPR reads and writes can be virtualized even if virtual interrupt 4075 * delivery is not in use. 4076 */ 4077 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW, 4078 !(mode & MSR_BITMAP_MODE_X2APIC)); 4079 4080 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { 4081 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW); 4082 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); 4083 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); 4084 if (enable_ipiv) 4085 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW); 4086 } 4087 } 4088 4089 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu) 4090 { 4091 struct vcpu_vmx *vmx = to_vmx(vcpu); 4092 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 4093 u32 i; 4094 4095 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag); 4096 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag); 4097 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag); 4098 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag); 4099 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) { 4100 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); 4101 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); 4102 } 4103 } 4104 4105 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 4106 { 4107 struct vcpu_vmx *vmx = to_vmx(vcpu); 4108 void *vapic_page; 4109 u32 vppr; 4110 int rvi; 4111 4112 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) || 4113 !nested_cpu_has_vid(get_vmcs12(vcpu)) || 4114 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn)) 4115 return false; 4116 4117 rvi = vmx_get_rvi(); 4118 4119 vapic_page = vmx->nested.virtual_apic_map.hva; 4120 vppr = *((u32 *)(vapic_page + APIC_PROCPRI)); 4121 4122 return ((rvi & 0xf0) > (vppr & 0xf0)); 4123 } 4124 4125 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu) 4126 { 4127 struct vcpu_vmx *vmx = to_vmx(vcpu); 4128 u32 i; 4129 4130 /* 4131 * Redo intercept permissions for MSRs that KVM is passing through to 4132 * the guest. Disabling interception will check the new MSR filter and 4133 * ensure that KVM enables interception if usersepace wants to filter 4134 * the MSR. MSRs that KVM is already intercepting don't need to be 4135 * refreshed since KVM is going to intercept them regardless of what 4136 * userspace wants. 4137 */ 4138 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) { 4139 u32 msr = vmx_possible_passthrough_msrs[i]; 4140 4141 if (!test_bit(i, vmx->shadow_msr_intercept.read)) 4142 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R); 4143 4144 if (!test_bit(i, vmx->shadow_msr_intercept.write)) 4145 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W); 4146 } 4147 4148 /* PT MSRs can be passed through iff PT is exposed to the guest. */ 4149 if (vmx_pt_mode_is_host_guest()) 4150 pt_update_intercept_for_msr(vcpu); 4151 } 4152 4153 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, 4154 int pi_vec) 4155 { 4156 #ifdef CONFIG_SMP 4157 if (vcpu->mode == IN_GUEST_MODE) { 4158 /* 4159 * The vector of the virtual has already been set in the PIR. 4160 * Send a notification event to deliver the virtual interrupt 4161 * unless the vCPU is the currently running vCPU, i.e. the 4162 * event is being sent from a fastpath VM-Exit handler, in 4163 * which case the PIR will be synced to the vIRR before 4164 * re-entering the guest. 4165 * 4166 * When the target is not the running vCPU, the following 4167 * possibilities emerge: 4168 * 4169 * Case 1: vCPU stays in non-root mode. Sending a notification 4170 * event posts the interrupt to the vCPU. 4171 * 4172 * Case 2: vCPU exits to root mode and is still runnable. The 4173 * PIR will be synced to the vIRR before re-entering the guest. 4174 * Sending a notification event is ok as the host IRQ handler 4175 * will ignore the spurious event. 4176 * 4177 * Case 3: vCPU exits to root mode and is blocked. vcpu_block() 4178 * has already synced PIR to vIRR and never blocks the vCPU if 4179 * the vIRR is not empty. Therefore, a blocked vCPU here does 4180 * not wait for any requested interrupts in PIR, and sending a 4181 * notification event also results in a benign, spurious event. 4182 */ 4183 4184 if (vcpu != kvm_get_running_vcpu()) 4185 __apic_send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); 4186 return; 4187 } 4188 #endif 4189 /* 4190 * The vCPU isn't in the guest; wake the vCPU in case it is blocking, 4191 * otherwise do nothing as KVM will grab the highest priority pending 4192 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest(). 4193 */ 4194 kvm_vcpu_wake_up(vcpu); 4195 } 4196 4197 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, 4198 int vector) 4199 { 4200 struct vcpu_vmx *vmx = to_vmx(vcpu); 4201 4202 if (is_guest_mode(vcpu) && 4203 vector == vmx->nested.posted_intr_nv) { 4204 /* 4205 * If a posted intr is not recognized by hardware, 4206 * we will accomplish it in the next vmentry. 4207 */ 4208 vmx->nested.pi_pending = true; 4209 kvm_make_request(KVM_REQ_EVENT, vcpu); 4210 4211 /* 4212 * This pairs with the smp_mb_*() after setting vcpu->mode in 4213 * vcpu_enter_guest() to guarantee the vCPU sees the event 4214 * request if triggering a posted interrupt "fails" because 4215 * vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as 4216 * the smb_wmb() in kvm_make_request() only ensures everything 4217 * done before making the request is visible when the request 4218 * is visible, it doesn't ensure ordering between the store to 4219 * vcpu->requests and the load from vcpu->mode. 4220 */ 4221 smp_mb__after_atomic(); 4222 4223 /* the PIR and ON have been set by L1. */ 4224 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR); 4225 return 0; 4226 } 4227 return -1; 4228 } 4229 /* 4230 * Send interrupt to vcpu via posted interrupt way. 4231 * 1. If target vcpu is running(non-root mode), send posted interrupt 4232 * notification to vcpu and hardware will sync PIR to vIRR atomically. 4233 * 2. If target vcpu isn't running(root mode), kick it to pick up the 4234 * interrupt from PIR in next vmentry. 4235 */ 4236 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) 4237 { 4238 struct vcpu_vmx *vmx = to_vmx(vcpu); 4239 int r; 4240 4241 r = vmx_deliver_nested_posted_interrupt(vcpu, vector); 4242 if (!r) 4243 return 0; 4244 4245 /* Note, this is called iff the local APIC is in-kernel. */ 4246 if (!vcpu->arch.apic->apicv_active) 4247 return -1; 4248 4249 if (pi_test_and_set_pir(vector, &vmx->pi_desc)) 4250 return 0; 4251 4252 /* If a previous notification has sent the IPI, nothing to do. */ 4253 if (pi_test_and_set_on(&vmx->pi_desc)) 4254 return 0; 4255 4256 /* 4257 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*() 4258 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is 4259 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a 4260 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE. 4261 */ 4262 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR); 4263 return 0; 4264 } 4265 4266 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 4267 int trig_mode, int vector) 4268 { 4269 struct kvm_vcpu *vcpu = apic->vcpu; 4270 4271 if (vmx_deliver_posted_interrupt(vcpu, vector)) { 4272 kvm_lapic_set_irr(vector, apic); 4273 kvm_make_request(KVM_REQ_EVENT, vcpu); 4274 kvm_vcpu_kick(vcpu); 4275 } else { 4276 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, 4277 trig_mode, vector); 4278 } 4279 } 4280 4281 /* 4282 * Set up the vmcs's constant host-state fields, i.e., host-state fields that 4283 * will not change in the lifetime of the guest. 4284 * Note that host-state that does change is set elsewhere. E.g., host-state 4285 * that is set differently for each CPU is set in vmx_vcpu_load(), not here. 4286 */ 4287 void vmx_set_constant_host_state(struct vcpu_vmx *vmx) 4288 { 4289 u32 low32, high32; 4290 unsigned long tmpl; 4291 unsigned long cr0, cr3, cr4; 4292 4293 cr0 = read_cr0(); 4294 WARN_ON(cr0 & X86_CR0_TS); 4295 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ 4296 4297 /* 4298 * Save the most likely value for this task's CR3 in the VMCS. 4299 * We can't use __get_current_cr3_fast() because we're not atomic. 4300 */ 4301 cr3 = __read_cr3(); 4302 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ 4303 vmx->loaded_vmcs->host_state.cr3 = cr3; 4304 4305 /* Save the most likely value for this task's CR4 in the VMCS. */ 4306 cr4 = cr4_read_shadow(); 4307 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ 4308 vmx->loaded_vmcs->host_state.cr4 = cr4; 4309 4310 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ 4311 #ifdef CONFIG_X86_64 4312 /* 4313 * Load null selectors, so we can avoid reloading them in 4314 * vmx_prepare_switch_to_host(), in case userspace uses 4315 * the null selectors too (the expected case). 4316 */ 4317 vmcs_write16(HOST_DS_SELECTOR, 0); 4318 vmcs_write16(HOST_ES_SELECTOR, 0); 4319 #else 4320 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4321 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4322 #endif 4323 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4324 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ 4325 4326 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */ 4327 4328 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ 4329 4330 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); 4331 vmcs_write32(HOST_IA32_SYSENTER_CS, low32); 4332 4333 /* 4334 * SYSENTER is used for 32-bit system calls on either 32-bit or 4335 * 64-bit kernels. It is always zero If neither is allowed, otherwise 4336 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may 4337 * have already done so!). 4338 */ 4339 if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32)) 4340 vmcs_writel(HOST_IA32_SYSENTER_ESP, 0); 4341 4342 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); 4343 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ 4344 4345 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { 4346 rdmsr(MSR_IA32_CR_PAT, low32, high32); 4347 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); 4348 } 4349 4350 if (cpu_has_load_ia32_efer()) 4351 vmcs_write64(HOST_IA32_EFER, host_efer); 4352 } 4353 4354 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) 4355 { 4356 struct kvm_vcpu *vcpu = &vmx->vcpu; 4357 4358 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS & 4359 ~vcpu->arch.cr4_guest_rsvd_bits; 4360 if (!enable_ept) { 4361 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS; 4362 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS; 4363 } 4364 if (is_guest_mode(&vmx->vcpu)) 4365 vcpu->arch.cr4_guest_owned_bits &= 4366 ~get_vmcs12(vcpu)->cr4_guest_host_mask; 4367 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits); 4368 } 4369 4370 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) 4371 { 4372 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; 4373 4374 if (!kvm_vcpu_apicv_active(&vmx->vcpu)) 4375 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; 4376 4377 if (!enable_vnmi) 4378 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; 4379 4380 if (!enable_preemption_timer) 4381 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 4382 4383 return pin_based_exec_ctrl; 4384 } 4385 4386 static u32 vmx_vmentry_ctrl(void) 4387 { 4388 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl; 4389 4390 if (vmx_pt_mode_is_system()) 4391 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP | 4392 VM_ENTRY_LOAD_IA32_RTIT_CTL); 4393 /* 4394 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically. 4395 */ 4396 vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | 4397 VM_ENTRY_LOAD_IA32_EFER | 4398 VM_ENTRY_IA32E_MODE); 4399 4400 if (cpu_has_perf_global_ctrl_bug()) 4401 vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; 4402 4403 return vmentry_ctrl; 4404 } 4405 4406 static u32 vmx_vmexit_ctrl(void) 4407 { 4408 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl; 4409 4410 /* 4411 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for 4412 * nested virtualization and thus allowed to be set in vmcs12. 4413 */ 4414 vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER | 4415 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER); 4416 4417 if (vmx_pt_mode_is_system()) 4418 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP | 4419 VM_EXIT_CLEAR_IA32_RTIT_CTL); 4420 4421 if (cpu_has_perf_global_ctrl_bug()) 4422 vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; 4423 4424 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ 4425 return vmexit_ctrl & 4426 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER); 4427 } 4428 4429 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) 4430 { 4431 struct vcpu_vmx *vmx = to_vmx(vcpu); 4432 4433 if (is_guest_mode(vcpu)) { 4434 vmx->nested.update_vmcs01_apicv_status = true; 4435 return; 4436 } 4437 4438 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4439 4440 if (kvm_vcpu_apicv_active(vcpu)) { 4441 secondary_exec_controls_setbit(vmx, 4442 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4443 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4444 if (enable_ipiv) 4445 tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT); 4446 } else { 4447 secondary_exec_controls_clearbit(vmx, 4448 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4449 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4450 if (enable_ipiv) 4451 tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT); 4452 } 4453 4454 vmx_update_msr_bitmap_x2apic(vcpu); 4455 } 4456 4457 static u32 vmx_exec_control(struct vcpu_vmx *vmx) 4458 { 4459 u32 exec_control = vmcs_config.cpu_based_exec_ctrl; 4460 4461 /* 4462 * Not used by KVM, but fully supported for nesting, i.e. are allowed in 4463 * vmcs12 and propagated to vmcs02 when set in vmcs12. 4464 */ 4465 exec_control &= ~(CPU_BASED_RDTSC_EXITING | 4466 CPU_BASED_USE_IO_BITMAPS | 4467 CPU_BASED_MONITOR_TRAP_FLAG | 4468 CPU_BASED_PAUSE_EXITING); 4469 4470 /* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */ 4471 exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING | 4472 CPU_BASED_NMI_WINDOW_EXITING); 4473 4474 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) 4475 exec_control &= ~CPU_BASED_MOV_DR_EXITING; 4476 4477 if (!cpu_need_tpr_shadow(&vmx->vcpu)) 4478 exec_control &= ~CPU_BASED_TPR_SHADOW; 4479 4480 #ifdef CONFIG_X86_64 4481 if (exec_control & CPU_BASED_TPR_SHADOW) 4482 exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING | 4483 CPU_BASED_CR8_STORE_EXITING); 4484 else 4485 exec_control |= CPU_BASED_CR8_STORE_EXITING | 4486 CPU_BASED_CR8_LOAD_EXITING; 4487 #endif 4488 /* No need to intercept CR3 access or INVPLG when using EPT. */ 4489 if (enable_ept) 4490 exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | 4491 CPU_BASED_CR3_STORE_EXITING | 4492 CPU_BASED_INVLPG_EXITING); 4493 if (kvm_mwait_in_guest(vmx->vcpu.kvm)) 4494 exec_control &= ~(CPU_BASED_MWAIT_EXITING | 4495 CPU_BASED_MONITOR_EXITING); 4496 if (kvm_hlt_in_guest(vmx->vcpu.kvm)) 4497 exec_control &= ~CPU_BASED_HLT_EXITING; 4498 return exec_control; 4499 } 4500 4501 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx) 4502 { 4503 u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl; 4504 4505 /* 4506 * IPI virtualization relies on APICv. Disable IPI virtualization if 4507 * APICv is inhibited. 4508 */ 4509 if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu)) 4510 exec_control &= ~TERTIARY_EXEC_IPI_VIRT; 4511 4512 return exec_control; 4513 } 4514 4515 /* 4516 * Adjust a single secondary execution control bit to intercept/allow an 4517 * instruction in the guest. This is usually done based on whether or not a 4518 * feature has been exposed to the guest in order to correctly emulate faults. 4519 */ 4520 static inline void 4521 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control, 4522 u32 control, bool enabled, bool exiting) 4523 { 4524 /* 4525 * If the control is for an opt-in feature, clear the control if the 4526 * feature is not exposed to the guest, i.e. not enabled. If the 4527 * control is opt-out, i.e. an exiting control, clear the control if 4528 * the feature _is_ exposed to the guest, i.e. exiting/interception is 4529 * disabled for the associated instruction. Note, the caller is 4530 * responsible presetting exec_control to set all supported bits. 4531 */ 4532 if (enabled == exiting) 4533 *exec_control &= ~control; 4534 4535 /* 4536 * Update the nested MSR settings so that a nested VMM can/can't set 4537 * controls for features that are/aren't exposed to the guest. 4538 */ 4539 if (nested) { 4540 /* 4541 * All features that can be added or removed to VMX MSRs must 4542 * be supported in the first place for nested virtualization. 4543 */ 4544 if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control))) 4545 enabled = false; 4546 4547 if (enabled) 4548 vmx->nested.msrs.secondary_ctls_high |= control; 4549 else 4550 vmx->nested.msrs.secondary_ctls_high &= ~control; 4551 } 4552 } 4553 4554 /* 4555 * Wrapper macro for the common case of adjusting a secondary execution control 4556 * based on a single guest CPUID bit, with a dedicated feature bit. This also 4557 * verifies that the control is actually supported by KVM and hardware. 4558 */ 4559 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \ 4560 ({ \ 4561 struct kvm_vcpu *__vcpu = &(vmx)->vcpu; \ 4562 bool __enabled; \ 4563 \ 4564 if (cpu_has_vmx_##name()) { \ 4565 if (kvm_is_governed_feature(X86_FEATURE_##feat_name)) \ 4566 __enabled = guest_can_use(__vcpu, X86_FEATURE_##feat_name); \ 4567 else \ 4568 __enabled = guest_cpuid_has(__vcpu, X86_FEATURE_##feat_name); \ 4569 vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\ 4570 __enabled, exiting); \ 4571 } \ 4572 }) 4573 4574 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */ 4575 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \ 4576 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false) 4577 4578 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \ 4579 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true) 4580 4581 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx) 4582 { 4583 struct kvm_vcpu *vcpu = &vmx->vcpu; 4584 4585 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; 4586 4587 if (vmx_pt_mode_is_system()) 4588 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); 4589 if (!cpu_need_virtualize_apic_accesses(vcpu)) 4590 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 4591 if (vmx->vpid == 0) 4592 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; 4593 if (!enable_ept) { 4594 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; 4595 enable_unrestricted_guest = 0; 4596 } 4597 if (!enable_unrestricted_guest) 4598 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; 4599 if (kvm_pause_in_guest(vmx->vcpu.kvm)) 4600 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; 4601 if (!kvm_vcpu_apicv_active(vcpu)) 4602 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | 4603 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4604 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 4605 4606 /* 4607 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's 4608 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2. 4609 */ 4610 exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC; 4611 4612 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, 4613 * in vmx_set_cr4. */ 4614 exec_control &= ~SECONDARY_EXEC_DESC; 4615 4616 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD 4617 (handle_vmptrld). 4618 We can NOT enable shadow_vmcs here because we don't have yet 4619 a current VMCS12 4620 */ 4621 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; 4622 4623 /* 4624 * PML is enabled/disabled when dirty logging of memsmlots changes, but 4625 * it needs to be set here when dirty logging is already active, e.g. 4626 * if this vCPU was created after dirty logging was enabled. 4627 */ 4628 if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging)) 4629 exec_control &= ~SECONDARY_EXEC_ENABLE_PML; 4630 4631 vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES); 4632 4633 /* 4634 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either 4635 * feature is exposed to the guest. This creates a virtualization hole 4636 * if both are supported in hardware but only one is exposed to the 4637 * guest, but letting the guest execute RDTSCP or RDPID when either one 4638 * is advertised is preferable to emulating the advertised instruction 4639 * in KVM on #UD, and obviously better than incorrectly injecting #UD. 4640 */ 4641 if (cpu_has_vmx_rdtscp()) { 4642 bool rdpid_or_rdtscp_enabled = 4643 guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) || 4644 guest_cpuid_has(vcpu, X86_FEATURE_RDPID); 4645 4646 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4647 SECONDARY_EXEC_ENABLE_RDTSCP, 4648 rdpid_or_rdtscp_enabled, false); 4649 } 4650 4651 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID); 4652 4653 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND); 4654 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED); 4655 4656 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG, 4657 ENABLE_USR_WAIT_PAUSE, false); 4658 4659 if (!vcpu->kvm->arch.bus_lock_detection_enabled) 4660 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION; 4661 4662 if (!kvm_notify_vmexit_enabled(vcpu->kvm)) 4663 exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING; 4664 4665 return exec_control; 4666 } 4667 4668 static inline int vmx_get_pid_table_order(struct kvm *kvm) 4669 { 4670 return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table)); 4671 } 4672 4673 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm) 4674 { 4675 struct page *pages; 4676 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 4677 4678 if (!irqchip_in_kernel(kvm) || !enable_ipiv) 4679 return 0; 4680 4681 if (kvm_vmx->pid_table) 4682 return 0; 4683 4684 pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO, 4685 vmx_get_pid_table_order(kvm)); 4686 if (!pages) 4687 return -ENOMEM; 4688 4689 kvm_vmx->pid_table = (void *)page_address(pages); 4690 return 0; 4691 } 4692 4693 static int vmx_vcpu_precreate(struct kvm *kvm) 4694 { 4695 return vmx_alloc_ipiv_pid_table(kvm); 4696 } 4697 4698 #define VMX_XSS_EXIT_BITMAP 0 4699 4700 static void init_vmcs(struct vcpu_vmx *vmx) 4701 { 4702 struct kvm *kvm = vmx->vcpu.kvm; 4703 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 4704 4705 if (nested) 4706 nested_vmx_set_vmcs_shadowing_bitmap(); 4707 4708 if (cpu_has_vmx_msr_bitmap()) 4709 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); 4710 4711 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */ 4712 4713 /* Control */ 4714 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4715 4716 exec_controls_set(vmx, vmx_exec_control(vmx)); 4717 4718 if (cpu_has_secondary_exec_ctrls()) 4719 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx)); 4720 4721 if (cpu_has_tertiary_exec_ctrls()) 4722 tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx)); 4723 4724 if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) { 4725 vmcs_write64(EOI_EXIT_BITMAP0, 0); 4726 vmcs_write64(EOI_EXIT_BITMAP1, 0); 4727 vmcs_write64(EOI_EXIT_BITMAP2, 0); 4728 vmcs_write64(EOI_EXIT_BITMAP3, 0); 4729 4730 vmcs_write16(GUEST_INTR_STATUS, 0); 4731 4732 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); 4733 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); 4734 } 4735 4736 if (vmx_can_use_ipiv(&vmx->vcpu)) { 4737 vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table)); 4738 vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1); 4739 } 4740 4741 if (!kvm_pause_in_guest(kvm)) { 4742 vmcs_write32(PLE_GAP, ple_gap); 4743 vmx->ple_window = ple_window; 4744 vmx->ple_window_dirty = true; 4745 } 4746 4747 if (kvm_notify_vmexit_enabled(kvm)) 4748 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window); 4749 4750 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); 4751 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); 4752 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ 4753 4754 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ 4755 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ 4756 vmx_set_constant_host_state(vmx); 4757 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ 4758 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ 4759 4760 if (cpu_has_vmx_vmfunc()) 4761 vmcs_write64(VM_FUNCTION_CONTROL, 0); 4762 4763 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); 4764 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); 4765 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); 4766 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); 4767 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); 4768 4769 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 4770 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); 4771 4772 vm_exit_controls_set(vmx, vmx_vmexit_ctrl()); 4773 4774 /* 22.2.1, 20.8.1 */ 4775 vm_entry_controls_set(vmx, vmx_vmentry_ctrl()); 4776 4777 vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits(); 4778 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits); 4779 4780 set_cr4_guest_host_mask(vmx); 4781 4782 if (vmx->vpid != 0) 4783 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); 4784 4785 if (cpu_has_vmx_xsaves()) 4786 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); 4787 4788 if (enable_pml) { 4789 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); 4790 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 4791 } 4792 4793 vmx_write_encls_bitmap(&vmx->vcpu, NULL); 4794 4795 if (vmx_pt_mode_is_host_guest()) { 4796 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); 4797 /* Bit[6~0] are forced to 1, writes are ignored. */ 4798 vmx->pt_desc.guest.output_mask = 0x7F; 4799 vmcs_write64(GUEST_IA32_RTIT_CTL, 0); 4800 } 4801 4802 vmcs_write32(GUEST_SYSENTER_CS, 0); 4803 vmcs_writel(GUEST_SYSENTER_ESP, 0); 4804 vmcs_writel(GUEST_SYSENTER_EIP, 0); 4805 vmcs_write64(GUEST_IA32_DEBUGCTL, 0); 4806 4807 if (cpu_has_vmx_tpr_shadow()) { 4808 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); 4809 if (cpu_need_tpr_shadow(&vmx->vcpu)) 4810 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 4811 __pa(vmx->vcpu.arch.apic->regs)); 4812 vmcs_write32(TPR_THRESHOLD, 0); 4813 } 4814 4815 vmx_setup_uret_msrs(vmx); 4816 } 4817 4818 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu) 4819 { 4820 struct vcpu_vmx *vmx = to_vmx(vcpu); 4821 4822 init_vmcs(vmx); 4823 4824 if (nested) 4825 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs)); 4826 4827 vcpu_setup_sgx_lepubkeyhash(vcpu); 4828 4829 vmx->nested.posted_intr_nv = -1; 4830 vmx->nested.vmxon_ptr = INVALID_GPA; 4831 vmx->nested.current_vmptr = INVALID_GPA; 4832 4833 #ifdef CONFIG_KVM_HYPERV 4834 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID; 4835 #endif 4836 4837 vcpu->arch.microcode_version = 0x100000000ULL; 4838 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED; 4839 4840 /* 4841 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR 4842 * or POSTED_INTR_WAKEUP_VECTOR. 4843 */ 4844 vmx->pi_desc.nv = POSTED_INTR_VECTOR; 4845 vmx->pi_desc.sn = 1; 4846 } 4847 4848 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 4849 { 4850 struct vcpu_vmx *vmx = to_vmx(vcpu); 4851 4852 if (!init_event) 4853 __vmx_vcpu_reset(vcpu); 4854 4855 vmx->rmode.vm86_active = 0; 4856 vmx->spec_ctrl = 0; 4857 4858 vmx->msr_ia32_umwait_control = 0; 4859 4860 vmx->hv_deadline_tsc = -1; 4861 kvm_set_cr8(vcpu, 0); 4862 4863 vmx_segment_cache_clear(vmx); 4864 kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS); 4865 4866 seg_setup(VCPU_SREG_CS); 4867 vmcs_write16(GUEST_CS_SELECTOR, 0xf000); 4868 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); 4869 4870 seg_setup(VCPU_SREG_DS); 4871 seg_setup(VCPU_SREG_ES); 4872 seg_setup(VCPU_SREG_FS); 4873 seg_setup(VCPU_SREG_GS); 4874 seg_setup(VCPU_SREG_SS); 4875 4876 vmcs_write16(GUEST_TR_SELECTOR, 0); 4877 vmcs_writel(GUEST_TR_BASE, 0); 4878 vmcs_write32(GUEST_TR_LIMIT, 0xffff); 4879 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 4880 4881 vmcs_write16(GUEST_LDTR_SELECTOR, 0); 4882 vmcs_writel(GUEST_LDTR_BASE, 0); 4883 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); 4884 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); 4885 4886 vmcs_writel(GUEST_GDTR_BASE, 0); 4887 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); 4888 4889 vmcs_writel(GUEST_IDTR_BASE, 0); 4890 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); 4891 4892 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 4893 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); 4894 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); 4895 if (kvm_mpx_supported()) 4896 vmcs_write64(GUEST_BNDCFGS, 0); 4897 4898 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ 4899 4900 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 4901 4902 vpid_sync_context(vmx->vpid); 4903 4904 vmx_update_fb_clear_dis(vcpu, vmx); 4905 } 4906 4907 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu) 4908 { 4909 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 4910 } 4911 4912 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu) 4913 { 4914 if (!enable_vnmi || 4915 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { 4916 vmx_enable_irq_window(vcpu); 4917 return; 4918 } 4919 4920 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 4921 } 4922 4923 static void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) 4924 { 4925 struct vcpu_vmx *vmx = to_vmx(vcpu); 4926 uint32_t intr; 4927 int irq = vcpu->arch.interrupt.nr; 4928 4929 trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected); 4930 4931 ++vcpu->stat.irq_injections; 4932 if (vmx->rmode.vm86_active) { 4933 int inc_eip = 0; 4934 if (vcpu->arch.interrupt.soft) 4935 inc_eip = vcpu->arch.event_exit_inst_len; 4936 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip); 4937 return; 4938 } 4939 intr = irq | INTR_INFO_VALID_MASK; 4940 if (vcpu->arch.interrupt.soft) { 4941 intr |= INTR_TYPE_SOFT_INTR; 4942 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 4943 vmx->vcpu.arch.event_exit_inst_len); 4944 } else 4945 intr |= INTR_TYPE_EXT_INTR; 4946 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); 4947 4948 vmx_clear_hlt(vcpu); 4949 } 4950 4951 static void vmx_inject_nmi(struct kvm_vcpu *vcpu) 4952 { 4953 struct vcpu_vmx *vmx = to_vmx(vcpu); 4954 4955 if (!enable_vnmi) { 4956 /* 4957 * Tracking the NMI-blocked state in software is built upon 4958 * finding the next open IRQ window. This, in turn, depends on 4959 * well-behaving guests: They have to keep IRQs disabled at 4960 * least as long as the NMI handler runs. Otherwise we may 4961 * cause NMI nesting, maybe breaking the guest. But as this is 4962 * highly unlikely, we can live with the residual risk. 4963 */ 4964 vmx->loaded_vmcs->soft_vnmi_blocked = 1; 4965 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4966 } 4967 4968 ++vcpu->stat.nmi_injections; 4969 vmx->loaded_vmcs->nmi_known_unmasked = false; 4970 4971 if (vmx->rmode.vm86_active) { 4972 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0); 4973 return; 4974 } 4975 4976 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 4977 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); 4978 4979 vmx_clear_hlt(vcpu); 4980 } 4981 4982 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) 4983 { 4984 struct vcpu_vmx *vmx = to_vmx(vcpu); 4985 bool masked; 4986 4987 if (!enable_vnmi) 4988 return vmx->loaded_vmcs->soft_vnmi_blocked; 4989 if (vmx->loaded_vmcs->nmi_known_unmasked) 4990 return false; 4991 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; 4992 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4993 return masked; 4994 } 4995 4996 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 4997 { 4998 struct vcpu_vmx *vmx = to_vmx(vcpu); 4999 5000 if (!enable_vnmi) { 5001 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { 5002 vmx->loaded_vmcs->soft_vnmi_blocked = masked; 5003 vmx->loaded_vmcs->vnmi_blocked_time = 0; 5004 } 5005 } else { 5006 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 5007 if (masked) 5008 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5009 GUEST_INTR_STATE_NMI); 5010 else 5011 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, 5012 GUEST_INTR_STATE_NMI); 5013 } 5014 } 5015 5016 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu) 5017 { 5018 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 5019 return false; 5020 5021 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) 5022 return true; 5023 5024 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5025 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI | 5026 GUEST_INTR_STATE_NMI)); 5027 } 5028 5029 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 5030 { 5031 if (to_vmx(vcpu)->nested.nested_run_pending) 5032 return -EBUSY; 5033 5034 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 5035 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 5036 return -EBUSY; 5037 5038 return !vmx_nmi_blocked(vcpu); 5039 } 5040 5041 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu) 5042 { 5043 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 5044 return false; 5045 5046 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) || 5047 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5048 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); 5049 } 5050 5051 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 5052 { 5053 if (to_vmx(vcpu)->nested.nested_run_pending) 5054 return -EBUSY; 5055 5056 /* 5057 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 5058 * e.g. if the IRQ arrived asynchronously after checking nested events. 5059 */ 5060 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 5061 return -EBUSY; 5062 5063 return !vmx_interrupt_blocked(vcpu); 5064 } 5065 5066 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) 5067 { 5068 void __user *ret; 5069 5070 if (enable_unrestricted_guest) 5071 return 0; 5072 5073 mutex_lock(&kvm->slots_lock); 5074 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, 5075 PAGE_SIZE * 3); 5076 mutex_unlock(&kvm->slots_lock); 5077 5078 if (IS_ERR(ret)) 5079 return PTR_ERR(ret); 5080 5081 to_kvm_vmx(kvm)->tss_addr = addr; 5082 5083 return init_rmode_tss(kvm, ret); 5084 } 5085 5086 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 5087 { 5088 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; 5089 return 0; 5090 } 5091 5092 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) 5093 { 5094 switch (vec) { 5095 case BP_VECTOR: 5096 /* 5097 * Update instruction length as we may reinject the exception 5098 * from user space while in guest debugging mode. 5099 */ 5100 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = 5101 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 5102 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 5103 return false; 5104 fallthrough; 5105 case DB_VECTOR: 5106 return !(vcpu->guest_debug & 5107 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)); 5108 case DE_VECTOR: 5109 case OF_VECTOR: 5110 case BR_VECTOR: 5111 case UD_VECTOR: 5112 case DF_VECTOR: 5113 case SS_VECTOR: 5114 case GP_VECTOR: 5115 case MF_VECTOR: 5116 return true; 5117 } 5118 return false; 5119 } 5120 5121 static int handle_rmode_exception(struct kvm_vcpu *vcpu, 5122 int vec, u32 err_code) 5123 { 5124 /* 5125 * Instruction with address size override prefix opcode 0x67 5126 * Cause the #SS fault with 0 error code in VM86 mode. 5127 */ 5128 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { 5129 if (kvm_emulate_instruction(vcpu, 0)) { 5130 if (vcpu->arch.halt_request) { 5131 vcpu->arch.halt_request = 0; 5132 return kvm_emulate_halt_noskip(vcpu); 5133 } 5134 return 1; 5135 } 5136 return 0; 5137 } 5138 5139 /* 5140 * Forward all other exceptions that are valid in real mode. 5141 * FIXME: Breaks guest debugging in real mode, needs to be fixed with 5142 * the required debugging infrastructure rework. 5143 */ 5144 kvm_queue_exception(vcpu, vec); 5145 return 1; 5146 } 5147 5148 static int handle_machine_check(struct kvm_vcpu *vcpu) 5149 { 5150 /* handled by vmx_vcpu_run() */ 5151 return 1; 5152 } 5153 5154 /* 5155 * If the host has split lock detection disabled, then #AC is 5156 * unconditionally injected into the guest, which is the pre split lock 5157 * detection behaviour. 5158 * 5159 * If the host has split lock detection enabled then #AC is 5160 * only injected into the guest when: 5161 * - Guest CPL == 3 (user mode) 5162 * - Guest has #AC detection enabled in CR0 5163 * - Guest EFLAGS has AC bit set 5164 */ 5165 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu) 5166 { 5167 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 5168 return true; 5169 5170 return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) && 5171 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC); 5172 } 5173 5174 static int handle_exception_nmi(struct kvm_vcpu *vcpu) 5175 { 5176 struct vcpu_vmx *vmx = to_vmx(vcpu); 5177 struct kvm_run *kvm_run = vcpu->run; 5178 u32 intr_info, ex_no, error_code; 5179 unsigned long cr2, dr6; 5180 u32 vect_info; 5181 5182 vect_info = vmx->idt_vectoring_info; 5183 intr_info = vmx_get_intr_info(vcpu); 5184 5185 /* 5186 * Machine checks are handled by handle_exception_irqoff(), or by 5187 * vmx_vcpu_run() if a #MC occurs on VM-Entry. NMIs are handled by 5188 * vmx_vcpu_enter_exit(). 5189 */ 5190 if (is_machine_check(intr_info) || is_nmi(intr_info)) 5191 return 1; 5192 5193 /* 5194 * Queue the exception here instead of in handle_nm_fault_irqoff(). 5195 * This ensures the nested_vmx check is not skipped so vmexit can 5196 * be reflected to L1 (when it intercepts #NM) before reaching this 5197 * point. 5198 */ 5199 if (is_nm_fault(intr_info)) { 5200 kvm_queue_exception(vcpu, NM_VECTOR); 5201 return 1; 5202 } 5203 5204 if (is_invalid_opcode(intr_info)) 5205 return handle_ud(vcpu); 5206 5207 error_code = 0; 5208 if (intr_info & INTR_INFO_DELIVER_CODE_MASK) 5209 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 5210 5211 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { 5212 WARN_ON_ONCE(!enable_vmware_backdoor); 5213 5214 /* 5215 * VMware backdoor emulation on #GP interception only handles 5216 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero 5217 * error code on #GP. 5218 */ 5219 if (error_code) { 5220 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 5221 return 1; 5222 } 5223 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); 5224 } 5225 5226 /* 5227 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing 5228 * MMIO, it is better to report an internal error. 5229 * See the comments in vmx_handle_exit. 5230 */ 5231 if ((vect_info & VECTORING_INFO_VALID_MASK) && 5232 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { 5233 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5234 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; 5235 vcpu->run->internal.ndata = 4; 5236 vcpu->run->internal.data[0] = vect_info; 5237 vcpu->run->internal.data[1] = intr_info; 5238 vcpu->run->internal.data[2] = error_code; 5239 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu; 5240 return 0; 5241 } 5242 5243 if (is_page_fault(intr_info)) { 5244 cr2 = vmx_get_exit_qual(vcpu); 5245 if (enable_ept && !vcpu->arch.apf.host_apf_flags) { 5246 /* 5247 * EPT will cause page fault only if we need to 5248 * detect illegal GPAs. 5249 */ 5250 WARN_ON_ONCE(!allow_smaller_maxphyaddr); 5251 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code); 5252 return 1; 5253 } else 5254 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); 5255 } 5256 5257 ex_no = intr_info & INTR_INFO_VECTOR_MASK; 5258 5259 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) 5260 return handle_rmode_exception(vcpu, ex_no, error_code); 5261 5262 switch (ex_no) { 5263 case DB_VECTOR: 5264 dr6 = vmx_get_exit_qual(vcpu); 5265 if (!(vcpu->guest_debug & 5266 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { 5267 /* 5268 * If the #DB was due to ICEBP, a.k.a. INT1, skip the 5269 * instruction. ICEBP generates a trap-like #DB, but 5270 * despite its interception control being tied to #DB, 5271 * is an instruction intercept, i.e. the VM-Exit occurs 5272 * on the ICEBP itself. Use the inner "skip" helper to 5273 * avoid single-step #DB and MTF updates, as ICEBP is 5274 * higher priority. Note, skipping ICEBP still clears 5275 * STI and MOVSS blocking. 5276 * 5277 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS 5278 * if single-step is enabled in RFLAGS and STI or MOVSS 5279 * blocking is active, as the CPU doesn't set the bit 5280 * on VM-Exit due to #DB interception. VM-Entry has a 5281 * consistency check that a single-step #DB is pending 5282 * in this scenario as the previous instruction cannot 5283 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV 5284 * don't modify RFLAGS), therefore the one instruction 5285 * delay when activating single-step breakpoints must 5286 * have already expired. Note, the CPU sets/clears BS 5287 * as appropriate for all other VM-Exits types. 5288 */ 5289 if (is_icebp(intr_info)) 5290 WARN_ON(!skip_emulated_instruction(vcpu)); 5291 else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) && 5292 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5293 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS))) 5294 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 5295 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS); 5296 5297 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 5298 return 1; 5299 } 5300 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 5301 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); 5302 fallthrough; 5303 case BP_VECTOR: 5304 /* 5305 * Update instruction length as we may reinject #BP from 5306 * user space while in guest debugging mode. Reading it for 5307 * #DB as well causes no harm, it is not used in that case. 5308 */ 5309 vmx->vcpu.arch.event_exit_inst_len = 5310 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 5311 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5312 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5313 kvm_run->debug.arch.exception = ex_no; 5314 break; 5315 case AC_VECTOR: 5316 if (vmx_guest_inject_ac(vcpu)) { 5317 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); 5318 return 1; 5319 } 5320 5321 /* 5322 * Handle split lock. Depending on detection mode this will 5323 * either warn and disable split lock detection for this 5324 * task or force SIGBUS on it. 5325 */ 5326 if (handle_guest_split_lock(kvm_rip_read(vcpu))) 5327 return 1; 5328 fallthrough; 5329 default: 5330 kvm_run->exit_reason = KVM_EXIT_EXCEPTION; 5331 kvm_run->ex.exception = ex_no; 5332 kvm_run->ex.error_code = error_code; 5333 break; 5334 } 5335 return 0; 5336 } 5337 5338 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu) 5339 { 5340 ++vcpu->stat.irq_exits; 5341 return 1; 5342 } 5343 5344 static int handle_triple_fault(struct kvm_vcpu *vcpu) 5345 { 5346 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 5347 vcpu->mmio_needed = 0; 5348 return 0; 5349 } 5350 5351 static int handle_io(struct kvm_vcpu *vcpu) 5352 { 5353 unsigned long exit_qualification; 5354 int size, in, string; 5355 unsigned port; 5356 5357 exit_qualification = vmx_get_exit_qual(vcpu); 5358 string = (exit_qualification & 16) != 0; 5359 5360 ++vcpu->stat.io_exits; 5361 5362 if (string) 5363 return kvm_emulate_instruction(vcpu, 0); 5364 5365 port = exit_qualification >> 16; 5366 size = (exit_qualification & 7) + 1; 5367 in = (exit_qualification & 8) != 0; 5368 5369 return kvm_fast_pio(vcpu, size, port, in); 5370 } 5371 5372 static void 5373 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 5374 { 5375 /* 5376 * Patch in the VMCALL instruction: 5377 */ 5378 hypercall[0] = 0x0f; 5379 hypercall[1] = 0x01; 5380 hypercall[2] = 0xc1; 5381 } 5382 5383 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ 5384 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) 5385 { 5386 if (is_guest_mode(vcpu)) { 5387 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5388 unsigned long orig_val = val; 5389 5390 /* 5391 * We get here when L2 changed cr0 in a way that did not change 5392 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), 5393 * but did change L0 shadowed bits. So we first calculate the 5394 * effective cr0 value that L1 would like to write into the 5395 * hardware. It consists of the L2-owned bits from the new 5396 * value combined with the L1-owned bits from L1's guest_cr0. 5397 */ 5398 val = (val & ~vmcs12->cr0_guest_host_mask) | 5399 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); 5400 5401 if (kvm_set_cr0(vcpu, val)) 5402 return 1; 5403 vmcs_writel(CR0_READ_SHADOW, orig_val); 5404 return 0; 5405 } else { 5406 return kvm_set_cr0(vcpu, val); 5407 } 5408 } 5409 5410 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) 5411 { 5412 if (is_guest_mode(vcpu)) { 5413 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5414 unsigned long orig_val = val; 5415 5416 /* analogously to handle_set_cr0 */ 5417 val = (val & ~vmcs12->cr4_guest_host_mask) | 5418 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); 5419 if (kvm_set_cr4(vcpu, val)) 5420 return 1; 5421 vmcs_writel(CR4_READ_SHADOW, orig_val); 5422 return 0; 5423 } else 5424 return kvm_set_cr4(vcpu, val); 5425 } 5426 5427 static int handle_desc(struct kvm_vcpu *vcpu) 5428 { 5429 /* 5430 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this 5431 * and other code needs to be updated if UMIP can be guest owned. 5432 */ 5433 BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP); 5434 5435 WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP)); 5436 return kvm_emulate_instruction(vcpu, 0); 5437 } 5438 5439 static int handle_cr(struct kvm_vcpu *vcpu) 5440 { 5441 unsigned long exit_qualification, val; 5442 int cr; 5443 int reg; 5444 int err; 5445 int ret; 5446 5447 exit_qualification = vmx_get_exit_qual(vcpu); 5448 cr = exit_qualification & 15; 5449 reg = (exit_qualification >> 8) & 15; 5450 switch ((exit_qualification >> 4) & 3) { 5451 case 0: /* mov to cr */ 5452 val = kvm_register_read(vcpu, reg); 5453 trace_kvm_cr_write(cr, val); 5454 switch (cr) { 5455 case 0: 5456 err = handle_set_cr0(vcpu, val); 5457 return kvm_complete_insn_gp(vcpu, err); 5458 case 3: 5459 WARN_ON_ONCE(enable_unrestricted_guest); 5460 5461 err = kvm_set_cr3(vcpu, val); 5462 return kvm_complete_insn_gp(vcpu, err); 5463 case 4: 5464 err = handle_set_cr4(vcpu, val); 5465 return kvm_complete_insn_gp(vcpu, err); 5466 case 8: { 5467 u8 cr8_prev = kvm_get_cr8(vcpu); 5468 u8 cr8 = (u8)val; 5469 err = kvm_set_cr8(vcpu, cr8); 5470 ret = kvm_complete_insn_gp(vcpu, err); 5471 if (lapic_in_kernel(vcpu)) 5472 return ret; 5473 if (cr8_prev <= cr8) 5474 return ret; 5475 /* 5476 * TODO: we might be squashing a 5477 * KVM_GUESTDBG_SINGLESTEP-triggered 5478 * KVM_EXIT_DEBUG here. 5479 */ 5480 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 5481 return 0; 5482 } 5483 } 5484 break; 5485 case 2: /* clts */ 5486 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS"); 5487 return -EIO; 5488 case 1: /*mov from cr*/ 5489 switch (cr) { 5490 case 3: 5491 WARN_ON_ONCE(enable_unrestricted_guest); 5492 5493 val = kvm_read_cr3(vcpu); 5494 kvm_register_write(vcpu, reg, val); 5495 trace_kvm_cr_read(cr, val); 5496 return kvm_skip_emulated_instruction(vcpu); 5497 case 8: 5498 val = kvm_get_cr8(vcpu); 5499 kvm_register_write(vcpu, reg, val); 5500 trace_kvm_cr_read(cr, val); 5501 return kvm_skip_emulated_instruction(vcpu); 5502 } 5503 break; 5504 case 3: /* lmsw */ 5505 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; 5506 trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val)); 5507 kvm_lmsw(vcpu, val); 5508 5509 return kvm_skip_emulated_instruction(vcpu); 5510 default: 5511 break; 5512 } 5513 vcpu->run->exit_reason = 0; 5514 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", 5515 (int)(exit_qualification >> 4) & 3, cr); 5516 return 0; 5517 } 5518 5519 static int handle_dr(struct kvm_vcpu *vcpu) 5520 { 5521 unsigned long exit_qualification; 5522 int dr, dr7, reg; 5523 int err = 1; 5524 5525 exit_qualification = vmx_get_exit_qual(vcpu); 5526 dr = exit_qualification & DEBUG_REG_ACCESS_NUM; 5527 5528 /* First, if DR does not exist, trigger UD */ 5529 if (!kvm_require_dr(vcpu, dr)) 5530 return 1; 5531 5532 if (vmx_get_cpl(vcpu) > 0) 5533 goto out; 5534 5535 dr7 = vmcs_readl(GUEST_DR7); 5536 if (dr7 & DR7_GD) { 5537 /* 5538 * As the vm-exit takes precedence over the debug trap, we 5539 * need to emulate the latter, either for the host or the 5540 * guest debugging itself. 5541 */ 5542 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 5543 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW; 5544 vcpu->run->debug.arch.dr7 = dr7; 5545 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5546 vcpu->run->debug.arch.exception = DB_VECTOR; 5547 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 5548 return 0; 5549 } else { 5550 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD); 5551 return 1; 5552 } 5553 } 5554 5555 if (vcpu->guest_debug == 0) { 5556 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5557 5558 /* 5559 * No more DR vmexits; force a reload of the debug registers 5560 * and reenter on this instruction. The next vmexit will 5561 * retrieve the full state of the debug registers. 5562 */ 5563 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 5564 return 1; 5565 } 5566 5567 reg = DEBUG_REG_ACCESS_REG(exit_qualification); 5568 if (exit_qualification & TYPE_MOV_FROM_DR) { 5569 unsigned long val; 5570 5571 kvm_get_dr(vcpu, dr, &val); 5572 kvm_register_write(vcpu, reg, val); 5573 err = 0; 5574 } else { 5575 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); 5576 } 5577 5578 out: 5579 return kvm_complete_insn_gp(vcpu, err); 5580 } 5581 5582 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 5583 { 5584 get_debugreg(vcpu->arch.db[0], 0); 5585 get_debugreg(vcpu->arch.db[1], 1); 5586 get_debugreg(vcpu->arch.db[2], 2); 5587 get_debugreg(vcpu->arch.db[3], 3); 5588 get_debugreg(vcpu->arch.dr6, 6); 5589 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); 5590 5591 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 5592 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5593 5594 /* 5595 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees 5596 * a stale dr6 from the guest. 5597 */ 5598 set_debugreg(DR6_RESERVED, 6); 5599 } 5600 5601 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) 5602 { 5603 vmcs_writel(GUEST_DR7, val); 5604 } 5605 5606 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) 5607 { 5608 kvm_apic_update_ppr(vcpu); 5609 return 1; 5610 } 5611 5612 static int handle_interrupt_window(struct kvm_vcpu *vcpu) 5613 { 5614 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 5615 5616 kvm_make_request(KVM_REQ_EVENT, vcpu); 5617 5618 ++vcpu->stat.irq_window_exits; 5619 return 1; 5620 } 5621 5622 static int handle_invlpg(struct kvm_vcpu *vcpu) 5623 { 5624 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5625 5626 kvm_mmu_invlpg(vcpu, exit_qualification); 5627 return kvm_skip_emulated_instruction(vcpu); 5628 } 5629 5630 static int handle_apic_access(struct kvm_vcpu *vcpu) 5631 { 5632 if (likely(fasteoi)) { 5633 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5634 int access_type, offset; 5635 5636 access_type = exit_qualification & APIC_ACCESS_TYPE; 5637 offset = exit_qualification & APIC_ACCESS_OFFSET; 5638 /* 5639 * Sane guest uses MOV to write EOI, with written value 5640 * not cared. So make a short-circuit here by avoiding 5641 * heavy instruction emulation. 5642 */ 5643 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && 5644 (offset == APIC_EOI)) { 5645 kvm_lapic_set_eoi(vcpu); 5646 return kvm_skip_emulated_instruction(vcpu); 5647 } 5648 } 5649 return kvm_emulate_instruction(vcpu, 0); 5650 } 5651 5652 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) 5653 { 5654 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5655 int vector = exit_qualification & 0xff; 5656 5657 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ 5658 kvm_apic_set_eoi_accelerated(vcpu, vector); 5659 return 1; 5660 } 5661 5662 static int handle_apic_write(struct kvm_vcpu *vcpu) 5663 { 5664 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5665 5666 /* 5667 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and 5668 * hardware has done any necessary aliasing, offset adjustments, etc... 5669 * for the access. I.e. the correct value has already been written to 5670 * the vAPIC page for the correct 16-byte chunk. KVM needs only to 5671 * retrieve the register value and emulate the access. 5672 */ 5673 u32 offset = exit_qualification & 0xff0; 5674 5675 kvm_apic_write_nodecode(vcpu, offset); 5676 return 1; 5677 } 5678 5679 static int handle_task_switch(struct kvm_vcpu *vcpu) 5680 { 5681 struct vcpu_vmx *vmx = to_vmx(vcpu); 5682 unsigned long exit_qualification; 5683 bool has_error_code = false; 5684 u32 error_code = 0; 5685 u16 tss_selector; 5686 int reason, type, idt_v, idt_index; 5687 5688 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); 5689 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); 5690 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); 5691 5692 exit_qualification = vmx_get_exit_qual(vcpu); 5693 5694 reason = (u32)exit_qualification >> 30; 5695 if (reason == TASK_SWITCH_GATE && idt_v) { 5696 switch (type) { 5697 case INTR_TYPE_NMI_INTR: 5698 vcpu->arch.nmi_injected = false; 5699 vmx_set_nmi_mask(vcpu, true); 5700 break; 5701 case INTR_TYPE_EXT_INTR: 5702 case INTR_TYPE_SOFT_INTR: 5703 kvm_clear_interrupt_queue(vcpu); 5704 break; 5705 case INTR_TYPE_HARD_EXCEPTION: 5706 if (vmx->idt_vectoring_info & 5707 VECTORING_INFO_DELIVER_CODE_MASK) { 5708 has_error_code = true; 5709 error_code = 5710 vmcs_read32(IDT_VECTORING_ERROR_CODE); 5711 } 5712 fallthrough; 5713 case INTR_TYPE_SOFT_EXCEPTION: 5714 kvm_clear_exception_queue(vcpu); 5715 break; 5716 default: 5717 break; 5718 } 5719 } 5720 tss_selector = exit_qualification; 5721 5722 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && 5723 type != INTR_TYPE_EXT_INTR && 5724 type != INTR_TYPE_NMI_INTR)) 5725 WARN_ON(!skip_emulated_instruction(vcpu)); 5726 5727 /* 5728 * TODO: What about debug traps on tss switch? 5729 * Are we supposed to inject them and update dr6? 5730 */ 5731 return kvm_task_switch(vcpu, tss_selector, 5732 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, 5733 reason, has_error_code, error_code); 5734 } 5735 5736 static int handle_ept_violation(struct kvm_vcpu *vcpu) 5737 { 5738 unsigned long exit_qualification; 5739 gpa_t gpa; 5740 u64 error_code; 5741 5742 exit_qualification = vmx_get_exit_qual(vcpu); 5743 5744 /* 5745 * EPT violation happened while executing iret from NMI, 5746 * "blocked by NMI" bit has to be set before next VM entry. 5747 * There are errata that may cause this bit to not be set: 5748 * AAK134, BY25. 5749 */ 5750 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5751 enable_vnmi && 5752 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5753 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); 5754 5755 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5756 trace_kvm_page_fault(vcpu, gpa, exit_qualification); 5757 5758 /* Is it a read fault? */ 5759 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) 5760 ? PFERR_USER_MASK : 0; 5761 /* Is it a write fault? */ 5762 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) 5763 ? PFERR_WRITE_MASK : 0; 5764 /* Is it a fetch fault? */ 5765 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) 5766 ? PFERR_FETCH_MASK : 0; 5767 /* ept page table entry is present? */ 5768 error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK) 5769 ? PFERR_PRESENT_MASK : 0; 5770 5771 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ? 5772 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; 5773 5774 vcpu->arch.exit_qualification = exit_qualification; 5775 5776 /* 5777 * Check that the GPA doesn't exceed physical memory limits, as that is 5778 * a guest page fault. We have to emulate the instruction here, because 5779 * if the illegal address is that of a paging structure, then 5780 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we 5781 * would also use advanced VM-exit information for EPT violations to 5782 * reconstruct the page fault error code. 5783 */ 5784 if (unlikely(allow_smaller_maxphyaddr && !kvm_vcpu_is_legal_gpa(vcpu, gpa))) 5785 return kvm_emulate_instruction(vcpu, 0); 5786 5787 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); 5788 } 5789 5790 static int handle_ept_misconfig(struct kvm_vcpu *vcpu) 5791 { 5792 gpa_t gpa; 5793 5794 if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0)) 5795 return 1; 5796 5797 /* 5798 * A nested guest cannot optimize MMIO vmexits, because we have an 5799 * nGPA here instead of the required GPA. 5800 */ 5801 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5802 if (!is_guest_mode(vcpu) && 5803 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { 5804 trace_kvm_fast_mmio(gpa); 5805 return kvm_skip_emulated_instruction(vcpu); 5806 } 5807 5808 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); 5809 } 5810 5811 static int handle_nmi_window(struct kvm_vcpu *vcpu) 5812 { 5813 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm)) 5814 return -EIO; 5815 5816 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 5817 ++vcpu->stat.nmi_window_exits; 5818 kvm_make_request(KVM_REQ_EVENT, vcpu); 5819 5820 return 1; 5821 } 5822 5823 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu) 5824 { 5825 struct vcpu_vmx *vmx = to_vmx(vcpu); 5826 5827 return vmx->emulation_required && !vmx->rmode.vm86_active && 5828 (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected); 5829 } 5830 5831 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) 5832 { 5833 struct vcpu_vmx *vmx = to_vmx(vcpu); 5834 bool intr_window_requested; 5835 unsigned count = 130; 5836 5837 intr_window_requested = exec_controls_get(vmx) & 5838 CPU_BASED_INTR_WINDOW_EXITING; 5839 5840 while (vmx->emulation_required && count-- != 0) { 5841 if (intr_window_requested && !vmx_interrupt_blocked(vcpu)) 5842 return handle_interrupt_window(&vmx->vcpu); 5843 5844 if (kvm_test_request(KVM_REQ_EVENT, vcpu)) 5845 return 1; 5846 5847 if (!kvm_emulate_instruction(vcpu, 0)) 5848 return 0; 5849 5850 if (vmx_emulation_required_with_pending_exception(vcpu)) { 5851 kvm_prepare_emulation_failure_exit(vcpu); 5852 return 0; 5853 } 5854 5855 if (vcpu->arch.halt_request) { 5856 vcpu->arch.halt_request = 0; 5857 return kvm_emulate_halt_noskip(vcpu); 5858 } 5859 5860 /* 5861 * Note, return 1 and not 0, vcpu_run() will invoke 5862 * xfer_to_guest_mode() which will create a proper return 5863 * code. 5864 */ 5865 if (__xfer_to_guest_mode_work_pending()) 5866 return 1; 5867 } 5868 5869 return 1; 5870 } 5871 5872 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu) 5873 { 5874 if (vmx_emulation_required_with_pending_exception(vcpu)) { 5875 kvm_prepare_emulation_failure_exit(vcpu); 5876 return 0; 5877 } 5878 5879 return 1; 5880 } 5881 5882 static void grow_ple_window(struct kvm_vcpu *vcpu) 5883 { 5884 struct vcpu_vmx *vmx = to_vmx(vcpu); 5885 unsigned int old = vmx->ple_window; 5886 5887 vmx->ple_window = __grow_ple_window(old, ple_window, 5888 ple_window_grow, 5889 ple_window_max); 5890 5891 if (vmx->ple_window != old) { 5892 vmx->ple_window_dirty = true; 5893 trace_kvm_ple_window_update(vcpu->vcpu_id, 5894 vmx->ple_window, old); 5895 } 5896 } 5897 5898 static void shrink_ple_window(struct kvm_vcpu *vcpu) 5899 { 5900 struct vcpu_vmx *vmx = to_vmx(vcpu); 5901 unsigned int old = vmx->ple_window; 5902 5903 vmx->ple_window = __shrink_ple_window(old, ple_window, 5904 ple_window_shrink, 5905 ple_window); 5906 5907 if (vmx->ple_window != old) { 5908 vmx->ple_window_dirty = true; 5909 trace_kvm_ple_window_update(vcpu->vcpu_id, 5910 vmx->ple_window, old); 5911 } 5912 } 5913 5914 /* 5915 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE 5916 * exiting, so only get here on cpu with PAUSE-Loop-Exiting. 5917 */ 5918 static int handle_pause(struct kvm_vcpu *vcpu) 5919 { 5920 if (!kvm_pause_in_guest(vcpu->kvm)) 5921 grow_ple_window(vcpu); 5922 5923 /* 5924 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" 5925 * VM-execution control is ignored if CPL > 0. OTOH, KVM 5926 * never set PAUSE_EXITING and just set PLE if supported, 5927 * so the vcpu must be CPL=0 if it gets a PAUSE exit. 5928 */ 5929 kvm_vcpu_on_spin(vcpu, true); 5930 return kvm_skip_emulated_instruction(vcpu); 5931 } 5932 5933 static int handle_monitor_trap(struct kvm_vcpu *vcpu) 5934 { 5935 return 1; 5936 } 5937 5938 static int handle_invpcid(struct kvm_vcpu *vcpu) 5939 { 5940 u32 vmx_instruction_info; 5941 unsigned long type; 5942 gva_t gva; 5943 struct { 5944 u64 pcid; 5945 u64 gla; 5946 } operand; 5947 int gpr_index; 5948 5949 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 5950 kvm_queue_exception(vcpu, UD_VECTOR); 5951 return 1; 5952 } 5953 5954 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5955 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info); 5956 type = kvm_register_read(vcpu, gpr_index); 5957 5958 /* According to the Intel instruction reference, the memory operand 5959 * is read even if it isn't needed (e.g., for type==all) 5960 */ 5961 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), 5962 vmx_instruction_info, false, 5963 sizeof(operand), &gva)) 5964 return 1; 5965 5966 return kvm_handle_invpcid(vcpu, type, gva); 5967 } 5968 5969 static int handle_pml_full(struct kvm_vcpu *vcpu) 5970 { 5971 unsigned long exit_qualification; 5972 5973 trace_kvm_pml_full(vcpu->vcpu_id); 5974 5975 exit_qualification = vmx_get_exit_qual(vcpu); 5976 5977 /* 5978 * PML buffer FULL happened while executing iret from NMI, 5979 * "blocked by NMI" bit has to be set before next VM entry. 5980 */ 5981 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5982 enable_vnmi && 5983 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5984 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5985 GUEST_INTR_STATE_NMI); 5986 5987 /* 5988 * PML buffer already flushed at beginning of VMEXIT. Nothing to do 5989 * here.., and there's no userspace involvement needed for PML. 5990 */ 5991 return 1; 5992 } 5993 5994 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu) 5995 { 5996 struct vcpu_vmx *vmx = to_vmx(vcpu); 5997 5998 if (!vmx->req_immediate_exit && 5999 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) { 6000 kvm_lapic_expired_hv_timer(vcpu); 6001 return EXIT_FASTPATH_REENTER_GUEST; 6002 } 6003 6004 return EXIT_FASTPATH_NONE; 6005 } 6006 6007 static int handle_preemption_timer(struct kvm_vcpu *vcpu) 6008 { 6009 handle_fastpath_preemption_timer(vcpu); 6010 return 1; 6011 } 6012 6013 /* 6014 * When nested=0, all VMX instruction VM Exits filter here. The handlers 6015 * are overwritten by nested_vmx_setup() when nested=1. 6016 */ 6017 static int handle_vmx_instruction(struct kvm_vcpu *vcpu) 6018 { 6019 kvm_queue_exception(vcpu, UD_VECTOR); 6020 return 1; 6021 } 6022 6023 #ifndef CONFIG_X86_SGX_KVM 6024 static int handle_encls(struct kvm_vcpu *vcpu) 6025 { 6026 /* 6027 * SGX virtualization is disabled. There is no software enable bit for 6028 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent 6029 * the guest from executing ENCLS (when SGX is supported by hardware). 6030 */ 6031 kvm_queue_exception(vcpu, UD_VECTOR); 6032 return 1; 6033 } 6034 #endif /* CONFIG_X86_SGX_KVM */ 6035 6036 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu) 6037 { 6038 /* 6039 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK 6040 * VM-Exits. Unconditionally set the flag here and leave the handling to 6041 * vmx_handle_exit(). 6042 */ 6043 to_vmx(vcpu)->exit_reason.bus_lock_detected = true; 6044 return 1; 6045 } 6046 6047 static int handle_notify(struct kvm_vcpu *vcpu) 6048 { 6049 unsigned long exit_qual = vmx_get_exit_qual(vcpu); 6050 bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID; 6051 6052 ++vcpu->stat.notify_window_exits; 6053 6054 /* 6055 * Notify VM exit happened while executing iret from NMI, 6056 * "blocked by NMI" bit has to be set before next VM entry. 6057 */ 6058 if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI)) 6059 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 6060 GUEST_INTR_STATE_NMI); 6061 6062 if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER || 6063 context_invalid) { 6064 vcpu->run->exit_reason = KVM_EXIT_NOTIFY; 6065 vcpu->run->notify.flags = context_invalid ? 6066 KVM_NOTIFY_CONTEXT_INVALID : 0; 6067 return 0; 6068 } 6069 6070 return 1; 6071 } 6072 6073 /* 6074 * The exit handlers return 1 if the exit was handled fully and guest execution 6075 * may resume. Otherwise they set the kvm_run parameter to indicate what needs 6076 * to be done to userspace and return 0. 6077 */ 6078 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { 6079 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi, 6080 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, 6081 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, 6082 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, 6083 [EXIT_REASON_IO_INSTRUCTION] = handle_io, 6084 [EXIT_REASON_CR_ACCESS] = handle_cr, 6085 [EXIT_REASON_DR_ACCESS] = handle_dr, 6086 [EXIT_REASON_CPUID] = kvm_emulate_cpuid, 6087 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr, 6088 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr, 6089 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window, 6090 [EXIT_REASON_HLT] = kvm_emulate_halt, 6091 [EXIT_REASON_INVD] = kvm_emulate_invd, 6092 [EXIT_REASON_INVLPG] = handle_invlpg, 6093 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc, 6094 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall, 6095 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, 6096 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, 6097 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, 6098 [EXIT_REASON_VMPTRST] = handle_vmx_instruction, 6099 [EXIT_REASON_VMREAD] = handle_vmx_instruction, 6100 [EXIT_REASON_VMRESUME] = handle_vmx_instruction, 6101 [EXIT_REASON_VMWRITE] = handle_vmx_instruction, 6102 [EXIT_REASON_VMOFF] = handle_vmx_instruction, 6103 [EXIT_REASON_VMON] = handle_vmx_instruction, 6104 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, 6105 [EXIT_REASON_APIC_ACCESS] = handle_apic_access, 6106 [EXIT_REASON_APIC_WRITE] = handle_apic_write, 6107 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, 6108 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd, 6109 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv, 6110 [EXIT_REASON_TASK_SWITCH] = handle_task_switch, 6111 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, 6112 [EXIT_REASON_GDTR_IDTR] = handle_desc, 6113 [EXIT_REASON_LDTR_TR] = handle_desc, 6114 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, 6115 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, 6116 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, 6117 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait, 6118 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, 6119 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor, 6120 [EXIT_REASON_INVEPT] = handle_vmx_instruction, 6121 [EXIT_REASON_INVVPID] = handle_vmx_instruction, 6122 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op, 6123 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op, 6124 [EXIT_REASON_PML_FULL] = handle_pml_full, 6125 [EXIT_REASON_INVPCID] = handle_invpcid, 6126 [EXIT_REASON_VMFUNC] = handle_vmx_instruction, 6127 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, 6128 [EXIT_REASON_ENCLS] = handle_encls, 6129 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit, 6130 [EXIT_REASON_NOTIFY] = handle_notify, 6131 }; 6132 6133 static const int kvm_vmx_max_exit_handlers = 6134 ARRAY_SIZE(kvm_vmx_exit_handlers); 6135 6136 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 6137 u64 *info1, u64 *info2, 6138 u32 *intr_info, u32 *error_code) 6139 { 6140 struct vcpu_vmx *vmx = to_vmx(vcpu); 6141 6142 *reason = vmx->exit_reason.full; 6143 *info1 = vmx_get_exit_qual(vcpu); 6144 if (!(vmx->exit_reason.failed_vmentry)) { 6145 *info2 = vmx->idt_vectoring_info; 6146 *intr_info = vmx_get_intr_info(vcpu); 6147 if (is_exception_with_error_code(*intr_info)) 6148 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 6149 else 6150 *error_code = 0; 6151 } else { 6152 *info2 = 0; 6153 *intr_info = 0; 6154 *error_code = 0; 6155 } 6156 } 6157 6158 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) 6159 { 6160 if (vmx->pml_pg) { 6161 __free_page(vmx->pml_pg); 6162 vmx->pml_pg = NULL; 6163 } 6164 } 6165 6166 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) 6167 { 6168 struct vcpu_vmx *vmx = to_vmx(vcpu); 6169 u64 *pml_buf; 6170 u16 pml_idx; 6171 6172 pml_idx = vmcs_read16(GUEST_PML_INDEX); 6173 6174 /* Do nothing if PML buffer is empty */ 6175 if (pml_idx == (PML_ENTITY_NUM - 1)) 6176 return; 6177 6178 /* PML index always points to next available PML buffer entity */ 6179 if (pml_idx >= PML_ENTITY_NUM) 6180 pml_idx = 0; 6181 else 6182 pml_idx++; 6183 6184 pml_buf = page_address(vmx->pml_pg); 6185 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { 6186 u64 gpa; 6187 6188 gpa = pml_buf[pml_idx]; 6189 WARN_ON(gpa & (PAGE_SIZE - 1)); 6190 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 6191 } 6192 6193 /* reset PML index */ 6194 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 6195 } 6196 6197 static void vmx_dump_sel(char *name, uint32_t sel) 6198 { 6199 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", 6200 name, vmcs_read16(sel), 6201 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), 6202 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), 6203 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); 6204 } 6205 6206 static void vmx_dump_dtsel(char *name, uint32_t limit) 6207 { 6208 pr_err("%s limit=0x%08x, base=0x%016lx\n", 6209 name, vmcs_read32(limit), 6210 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); 6211 } 6212 6213 static void vmx_dump_msrs(char *name, struct vmx_msrs *m) 6214 { 6215 unsigned int i; 6216 struct vmx_msr_entry *e; 6217 6218 pr_err("MSR %s:\n", name); 6219 for (i = 0, e = m->val; i < m->nr; ++i, ++e) 6220 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value); 6221 } 6222 6223 void dump_vmcs(struct kvm_vcpu *vcpu) 6224 { 6225 struct vcpu_vmx *vmx = to_vmx(vcpu); 6226 u32 vmentry_ctl, vmexit_ctl; 6227 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control; 6228 u64 tertiary_exec_control; 6229 unsigned long cr4; 6230 int efer_slot; 6231 6232 if (!dump_invalid_vmcs) { 6233 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n"); 6234 return; 6235 } 6236 6237 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); 6238 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); 6239 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); 6240 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); 6241 cr4 = vmcs_readl(GUEST_CR4); 6242 6243 if (cpu_has_secondary_exec_ctrls()) 6244 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); 6245 else 6246 secondary_exec_control = 0; 6247 6248 if (cpu_has_tertiary_exec_ctrls()) 6249 tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL); 6250 else 6251 tertiary_exec_control = 0; 6252 6253 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n", 6254 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu); 6255 pr_err("*** Guest State ***\n"); 6256 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 6257 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), 6258 vmcs_readl(CR0_GUEST_HOST_MASK)); 6259 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 6260 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); 6261 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); 6262 if (cpu_has_vmx_ept()) { 6263 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", 6264 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); 6265 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", 6266 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); 6267 } 6268 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", 6269 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); 6270 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", 6271 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); 6272 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 6273 vmcs_readl(GUEST_SYSENTER_ESP), 6274 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); 6275 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); 6276 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); 6277 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); 6278 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); 6279 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); 6280 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); 6281 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); 6282 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); 6283 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); 6284 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); 6285 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER); 6286 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER) 6287 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER)); 6288 else if (efer_slot >= 0) 6289 pr_err("EFER= 0x%016llx (autoload)\n", 6290 vmx->msr_autoload.guest.val[efer_slot].value); 6291 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE) 6292 pr_err("EFER= 0x%016llx (effective)\n", 6293 vcpu->arch.efer | (EFER_LMA | EFER_LME)); 6294 else 6295 pr_err("EFER= 0x%016llx (effective)\n", 6296 vcpu->arch.efer & ~(EFER_LMA | EFER_LME)); 6297 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT) 6298 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT)); 6299 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", 6300 vmcs_read64(GUEST_IA32_DEBUGCTL), 6301 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); 6302 if (cpu_has_load_perf_global_ctrl() && 6303 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) 6304 pr_err("PerfGlobCtl = 0x%016llx\n", 6305 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); 6306 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) 6307 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); 6308 pr_err("Interruptibility = %08x ActivityState = %08x\n", 6309 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), 6310 vmcs_read32(GUEST_ACTIVITY_STATE)); 6311 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) 6312 pr_err("InterruptStatus = %04x\n", 6313 vmcs_read16(GUEST_INTR_STATUS)); 6314 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0) 6315 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest); 6316 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0) 6317 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest); 6318 6319 pr_err("*** Host State ***\n"); 6320 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", 6321 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); 6322 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", 6323 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), 6324 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), 6325 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), 6326 vmcs_read16(HOST_TR_SELECTOR)); 6327 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", 6328 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), 6329 vmcs_readl(HOST_TR_BASE)); 6330 pr_err("GDTBase=%016lx IDTBase=%016lx\n", 6331 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); 6332 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", 6333 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), 6334 vmcs_readl(HOST_CR4)); 6335 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 6336 vmcs_readl(HOST_IA32_SYSENTER_ESP), 6337 vmcs_read32(HOST_IA32_SYSENTER_CS), 6338 vmcs_readl(HOST_IA32_SYSENTER_EIP)); 6339 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER) 6340 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER)); 6341 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT) 6342 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT)); 6343 if (cpu_has_load_perf_global_ctrl() && 6344 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) 6345 pr_err("PerfGlobCtl = 0x%016llx\n", 6346 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); 6347 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0) 6348 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host); 6349 6350 pr_err("*** Control State ***\n"); 6351 pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n", 6352 cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control); 6353 pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n", 6354 pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl); 6355 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", 6356 vmcs_read32(EXCEPTION_BITMAP), 6357 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), 6358 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); 6359 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", 6360 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 6361 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), 6362 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); 6363 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", 6364 vmcs_read32(VM_EXIT_INTR_INFO), 6365 vmcs_read32(VM_EXIT_INTR_ERROR_CODE), 6366 vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); 6367 pr_err(" reason=%08x qualification=%016lx\n", 6368 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); 6369 pr_err("IDTVectoring: info=%08x errcode=%08x\n", 6370 vmcs_read32(IDT_VECTORING_INFO_FIELD), 6371 vmcs_read32(IDT_VECTORING_ERROR_CODE)); 6372 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); 6373 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) 6374 pr_err("TSC Multiplier = 0x%016llx\n", 6375 vmcs_read64(TSC_MULTIPLIER)); 6376 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) { 6377 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { 6378 u16 status = vmcs_read16(GUEST_INTR_STATUS); 6379 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff); 6380 } 6381 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); 6382 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) 6383 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR)); 6384 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR)); 6385 } 6386 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) 6387 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); 6388 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) 6389 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); 6390 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) 6391 pr_err("PLE Gap=%08x Window=%08x\n", 6392 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); 6393 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) 6394 pr_err("Virtual processor ID = 0x%04x\n", 6395 vmcs_read16(VIRTUAL_PROCESSOR_ID)); 6396 } 6397 6398 /* 6399 * The guest has exited. See if we can fix it or if we need userspace 6400 * assistance. 6401 */ 6402 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6403 { 6404 struct vcpu_vmx *vmx = to_vmx(vcpu); 6405 union vmx_exit_reason exit_reason = vmx->exit_reason; 6406 u32 vectoring_info = vmx->idt_vectoring_info; 6407 u16 exit_handler_index; 6408 6409 /* 6410 * Flush logged GPAs PML buffer, this will make dirty_bitmap more 6411 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before 6412 * querying dirty_bitmap, we only need to kick all vcpus out of guest 6413 * mode as if vcpus is in root mode, the PML buffer must has been 6414 * flushed already. Note, PML is never enabled in hardware while 6415 * running L2. 6416 */ 6417 if (enable_pml && !is_guest_mode(vcpu)) 6418 vmx_flush_pml_buffer(vcpu); 6419 6420 /* 6421 * KVM should never reach this point with a pending nested VM-Enter. 6422 * More specifically, short-circuiting VM-Entry to emulate L2 due to 6423 * invalid guest state should never happen as that means KVM knowingly 6424 * allowed a nested VM-Enter with an invalid vmcs12. More below. 6425 */ 6426 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm)) 6427 return -EIO; 6428 6429 if (is_guest_mode(vcpu)) { 6430 /* 6431 * PML is never enabled when running L2, bail immediately if a 6432 * PML full exit occurs as something is horribly wrong. 6433 */ 6434 if (exit_reason.basic == EXIT_REASON_PML_FULL) 6435 goto unexpected_vmexit; 6436 6437 /* 6438 * The host physical addresses of some pages of guest memory 6439 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC 6440 * Page). The CPU may write to these pages via their host 6441 * physical address while L2 is running, bypassing any 6442 * address-translation-based dirty tracking (e.g. EPT write 6443 * protection). 6444 * 6445 * Mark them dirty on every exit from L2 to prevent them from 6446 * getting out of sync with dirty tracking. 6447 */ 6448 nested_mark_vmcs12_pages_dirty(vcpu); 6449 6450 /* 6451 * Synthesize a triple fault if L2 state is invalid. In normal 6452 * operation, nested VM-Enter rejects any attempt to enter L2 6453 * with invalid state. However, those checks are skipped if 6454 * state is being stuffed via RSM or KVM_SET_NESTED_STATE. If 6455 * L2 state is invalid, it means either L1 modified SMRAM state 6456 * or userspace provided bad state. Synthesize TRIPLE_FAULT as 6457 * doing so is architecturally allowed in the RSM case, and is 6458 * the least awful solution for the userspace case without 6459 * risking false positives. 6460 */ 6461 if (vmx->emulation_required) { 6462 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0); 6463 return 1; 6464 } 6465 6466 if (nested_vmx_reflect_vmexit(vcpu)) 6467 return 1; 6468 } 6469 6470 /* If guest state is invalid, start emulating. L2 is handled above. */ 6471 if (vmx->emulation_required) 6472 return handle_invalid_guest_state(vcpu); 6473 6474 if (exit_reason.failed_vmentry) { 6475 dump_vmcs(vcpu); 6476 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6477 vcpu->run->fail_entry.hardware_entry_failure_reason 6478 = exit_reason.full; 6479 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6480 return 0; 6481 } 6482 6483 if (unlikely(vmx->fail)) { 6484 dump_vmcs(vcpu); 6485 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6486 vcpu->run->fail_entry.hardware_entry_failure_reason 6487 = vmcs_read32(VM_INSTRUCTION_ERROR); 6488 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6489 return 0; 6490 } 6491 6492 /* 6493 * Note: 6494 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by 6495 * delivery event since it indicates guest is accessing MMIO. 6496 * The vm-exit can be triggered again after return to guest that 6497 * will cause infinite loop. 6498 */ 6499 if ((vectoring_info & VECTORING_INFO_VALID_MASK) && 6500 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI && 6501 exit_reason.basic != EXIT_REASON_EPT_VIOLATION && 6502 exit_reason.basic != EXIT_REASON_PML_FULL && 6503 exit_reason.basic != EXIT_REASON_APIC_ACCESS && 6504 exit_reason.basic != EXIT_REASON_TASK_SWITCH && 6505 exit_reason.basic != EXIT_REASON_NOTIFY)) { 6506 int ndata = 3; 6507 6508 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6509 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; 6510 vcpu->run->internal.data[0] = vectoring_info; 6511 vcpu->run->internal.data[1] = exit_reason.full; 6512 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification; 6513 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) { 6514 vcpu->run->internal.data[ndata++] = 6515 vmcs_read64(GUEST_PHYSICAL_ADDRESS); 6516 } 6517 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu; 6518 vcpu->run->internal.ndata = ndata; 6519 return 0; 6520 } 6521 6522 if (unlikely(!enable_vnmi && 6523 vmx->loaded_vmcs->soft_vnmi_blocked)) { 6524 if (!vmx_interrupt_blocked(vcpu)) { 6525 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6526 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && 6527 vcpu->arch.nmi_pending) { 6528 /* 6529 * This CPU don't support us in finding the end of an 6530 * NMI-blocked window if the guest runs with IRQs 6531 * disabled. So we pull the trigger after 1 s of 6532 * futile waiting, but inform the user about this. 6533 */ 6534 printk(KERN_WARNING "%s: Breaking out of NMI-blocked " 6535 "state on VCPU %d after 1 s timeout\n", 6536 __func__, vcpu->vcpu_id); 6537 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6538 } 6539 } 6540 6541 if (exit_fastpath != EXIT_FASTPATH_NONE) 6542 return 1; 6543 6544 if (exit_reason.basic >= kvm_vmx_max_exit_handlers) 6545 goto unexpected_vmexit; 6546 #ifdef CONFIG_RETPOLINE 6547 if (exit_reason.basic == EXIT_REASON_MSR_WRITE) 6548 return kvm_emulate_wrmsr(vcpu); 6549 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER) 6550 return handle_preemption_timer(vcpu); 6551 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW) 6552 return handle_interrupt_window(vcpu); 6553 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6554 return handle_external_interrupt(vcpu); 6555 else if (exit_reason.basic == EXIT_REASON_HLT) 6556 return kvm_emulate_halt(vcpu); 6557 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) 6558 return handle_ept_misconfig(vcpu); 6559 #endif 6560 6561 exit_handler_index = array_index_nospec((u16)exit_reason.basic, 6562 kvm_vmx_max_exit_handlers); 6563 if (!kvm_vmx_exit_handlers[exit_handler_index]) 6564 goto unexpected_vmexit; 6565 6566 return kvm_vmx_exit_handlers[exit_handler_index](vcpu); 6567 6568 unexpected_vmexit: 6569 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", 6570 exit_reason.full); 6571 dump_vmcs(vcpu); 6572 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6573 vcpu->run->internal.suberror = 6574 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 6575 vcpu->run->internal.ndata = 2; 6576 vcpu->run->internal.data[0] = exit_reason.full; 6577 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 6578 return 0; 6579 } 6580 6581 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6582 { 6583 int ret = __vmx_handle_exit(vcpu, exit_fastpath); 6584 6585 /* 6586 * Exit to user space when bus lock detected to inform that there is 6587 * a bus lock in guest. 6588 */ 6589 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) { 6590 if (ret > 0) 6591 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; 6592 6593 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; 6594 return 0; 6595 } 6596 return ret; 6597 } 6598 6599 /* 6600 * Software based L1D cache flush which is used when microcode providing 6601 * the cache control MSR is not loaded. 6602 * 6603 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to 6604 * flush it is required to read in 64 KiB because the replacement algorithm 6605 * is not exactly LRU. This could be sized at runtime via topology 6606 * information but as all relevant affected CPUs have 32KiB L1D cache size 6607 * there is no point in doing so. 6608 */ 6609 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu) 6610 { 6611 int size = PAGE_SIZE << L1D_CACHE_ORDER; 6612 6613 /* 6614 * This code is only executed when the flush mode is 'cond' or 6615 * 'always' 6616 */ 6617 if (static_branch_likely(&vmx_l1d_flush_cond)) { 6618 bool flush_l1d; 6619 6620 /* 6621 * Clear the per-vcpu flush bit, it gets set again 6622 * either from vcpu_run() or from one of the unsafe 6623 * VMEXIT handlers. 6624 */ 6625 flush_l1d = vcpu->arch.l1tf_flush_l1d; 6626 vcpu->arch.l1tf_flush_l1d = false; 6627 6628 /* 6629 * Clear the per-cpu flush bit, it gets set again from 6630 * the interrupt handlers. 6631 */ 6632 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); 6633 kvm_clear_cpu_l1tf_flush_l1d(); 6634 6635 if (!flush_l1d) 6636 return; 6637 } 6638 6639 vcpu->stat.l1d_flush++; 6640 6641 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { 6642 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 6643 return; 6644 } 6645 6646 asm volatile( 6647 /* First ensure the pages are in the TLB */ 6648 "xorl %%eax, %%eax\n" 6649 ".Lpopulate_tlb:\n\t" 6650 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6651 "addl $4096, %%eax\n\t" 6652 "cmpl %%eax, %[size]\n\t" 6653 "jne .Lpopulate_tlb\n\t" 6654 "xorl %%eax, %%eax\n\t" 6655 "cpuid\n\t" 6656 /* Now fill the cache */ 6657 "xorl %%eax, %%eax\n" 6658 ".Lfill_cache:\n" 6659 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6660 "addl $64, %%eax\n\t" 6661 "cmpl %%eax, %[size]\n\t" 6662 "jne .Lfill_cache\n\t" 6663 "lfence\n" 6664 :: [flush_pages] "r" (vmx_l1d_flush_pages), 6665 [size] "r" (size) 6666 : "eax", "ebx", "ecx", "edx"); 6667 } 6668 6669 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 6670 { 6671 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 6672 int tpr_threshold; 6673 6674 if (is_guest_mode(vcpu) && 6675 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) 6676 return; 6677 6678 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr; 6679 if (is_guest_mode(vcpu)) 6680 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold; 6681 else 6682 vmcs_write32(TPR_THRESHOLD, tpr_threshold); 6683 } 6684 6685 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) 6686 { 6687 struct vcpu_vmx *vmx = to_vmx(vcpu); 6688 u32 sec_exec_control; 6689 6690 if (!lapic_in_kernel(vcpu)) 6691 return; 6692 6693 if (!flexpriority_enabled && 6694 !cpu_has_vmx_virtualize_x2apic_mode()) 6695 return; 6696 6697 /* Postpone execution until vmcs01 is the current VMCS. */ 6698 if (is_guest_mode(vcpu)) { 6699 vmx->nested.change_vmcs01_virtual_apic_mode = true; 6700 return; 6701 } 6702 6703 sec_exec_control = secondary_exec_controls_get(vmx); 6704 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 6705 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); 6706 6707 switch (kvm_get_apic_mode(vcpu)) { 6708 case LAPIC_MODE_INVALID: 6709 WARN_ONCE(true, "Invalid local APIC state"); 6710 break; 6711 case LAPIC_MODE_DISABLED: 6712 break; 6713 case LAPIC_MODE_XAPIC: 6714 if (flexpriority_enabled) { 6715 sec_exec_control |= 6716 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 6717 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6718 6719 /* 6720 * Flush the TLB, reloading the APIC access page will 6721 * only do so if its physical address has changed, but 6722 * the guest may have inserted a non-APIC mapping into 6723 * the TLB while the APIC access page was disabled. 6724 */ 6725 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 6726 } 6727 break; 6728 case LAPIC_MODE_X2APIC: 6729 if (cpu_has_vmx_virtualize_x2apic_mode()) 6730 sec_exec_control |= 6731 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 6732 break; 6733 } 6734 secondary_exec_controls_set(vmx, sec_exec_control); 6735 6736 vmx_update_msr_bitmap_x2apic(vcpu); 6737 } 6738 6739 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu) 6740 { 6741 const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT; 6742 struct kvm *kvm = vcpu->kvm; 6743 struct kvm_memslots *slots = kvm_memslots(kvm); 6744 struct kvm_memory_slot *slot; 6745 unsigned long mmu_seq; 6746 kvm_pfn_t pfn; 6747 6748 /* Defer reload until vmcs01 is the current VMCS. */ 6749 if (is_guest_mode(vcpu)) { 6750 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true; 6751 return; 6752 } 6753 6754 if (!(secondary_exec_controls_get(to_vmx(vcpu)) & 6755 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 6756 return; 6757 6758 /* 6759 * Explicitly grab the memslot using KVM's internal slot ID to ensure 6760 * KVM doesn't unintentionally grab a userspace memslot. It _should_ 6761 * be impossible for userspace to create a memslot for the APIC when 6762 * APICv is enabled, but paranoia won't hurt in this case. 6763 */ 6764 slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT); 6765 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 6766 return; 6767 6768 /* 6769 * Ensure that the mmu_notifier sequence count is read before KVM 6770 * retrieves the pfn from the primary MMU. Note, the memslot is 6771 * protected by SRCU, not the mmu_notifier. Pairs with the smp_wmb() 6772 * in kvm_mmu_invalidate_end(). 6773 */ 6774 mmu_seq = kvm->mmu_invalidate_seq; 6775 smp_rmb(); 6776 6777 /* 6778 * No need to retry if the memslot does not exist or is invalid. KVM 6779 * controls the APIC-access page memslot, and only deletes the memslot 6780 * if APICv is permanently inhibited, i.e. the memslot won't reappear. 6781 */ 6782 pfn = gfn_to_pfn_memslot(slot, gfn); 6783 if (is_error_noslot_pfn(pfn)) 6784 return; 6785 6786 read_lock(&vcpu->kvm->mmu_lock); 6787 if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn)) { 6788 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6789 read_unlock(&vcpu->kvm->mmu_lock); 6790 goto out; 6791 } 6792 6793 vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn)); 6794 read_unlock(&vcpu->kvm->mmu_lock); 6795 6796 /* 6797 * No need for a manual TLB flush at this point, KVM has already done a 6798 * flush if there were SPTEs pointing at the previous page. 6799 */ 6800 out: 6801 /* 6802 * Do not pin apic access page in memory, the MMU notifier 6803 * will call us again if it is migrated or swapped out. 6804 */ 6805 kvm_release_pfn_clean(pfn); 6806 } 6807 6808 static void vmx_hwapic_isr_update(int max_isr) 6809 { 6810 u16 status; 6811 u8 old; 6812 6813 if (max_isr == -1) 6814 max_isr = 0; 6815 6816 status = vmcs_read16(GUEST_INTR_STATUS); 6817 old = status >> 8; 6818 if (max_isr != old) { 6819 status &= 0xff; 6820 status |= max_isr << 8; 6821 vmcs_write16(GUEST_INTR_STATUS, status); 6822 } 6823 } 6824 6825 static void vmx_set_rvi(int vector) 6826 { 6827 u16 status; 6828 u8 old; 6829 6830 if (vector == -1) 6831 vector = 0; 6832 6833 status = vmcs_read16(GUEST_INTR_STATUS); 6834 old = (u8)status & 0xff; 6835 if ((u8)vector != old) { 6836 status &= ~0xff; 6837 status |= (u8)vector; 6838 vmcs_write16(GUEST_INTR_STATUS, status); 6839 } 6840 } 6841 6842 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) 6843 { 6844 /* 6845 * When running L2, updating RVI is only relevant when 6846 * vmcs12 virtual-interrupt-delivery enabled. 6847 * However, it can be enabled only when L1 also 6848 * intercepts external-interrupts and in that case 6849 * we should not update vmcs02 RVI but instead intercept 6850 * interrupt. Therefore, do nothing when running L2. 6851 */ 6852 if (!is_guest_mode(vcpu)) 6853 vmx_set_rvi(max_irr); 6854 } 6855 6856 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) 6857 { 6858 struct vcpu_vmx *vmx = to_vmx(vcpu); 6859 int max_irr; 6860 bool got_posted_interrupt; 6861 6862 if (KVM_BUG_ON(!enable_apicv, vcpu->kvm)) 6863 return -EIO; 6864 6865 if (pi_test_on(&vmx->pi_desc)) { 6866 pi_clear_on(&vmx->pi_desc); 6867 /* 6868 * IOMMU can write to PID.ON, so the barrier matters even on UP. 6869 * But on x86 this is just a compiler barrier anyway. 6870 */ 6871 smp_mb__after_atomic(); 6872 got_posted_interrupt = 6873 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); 6874 } else { 6875 max_irr = kvm_lapic_find_highest_irr(vcpu); 6876 got_posted_interrupt = false; 6877 } 6878 6879 /* 6880 * Newly recognized interrupts are injected via either virtual interrupt 6881 * delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is 6882 * disabled in two cases: 6883 * 6884 * 1) If L2 is running and the vCPU has a new pending interrupt. If L1 6885 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a 6886 * VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected 6887 * into L2, but KVM doesn't use virtual interrupt delivery to inject 6888 * interrupts into L2, and so KVM_REQ_EVENT is again needed. 6889 * 6890 * 2) If APICv is disabled for this vCPU, assigned devices may still 6891 * attempt to post interrupts. The posted interrupt vector will cause 6892 * a VM-Exit and the subsequent entry will call sync_pir_to_irr. 6893 */ 6894 if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu)) 6895 vmx_set_rvi(max_irr); 6896 else if (got_posted_interrupt) 6897 kvm_make_request(KVM_REQ_EVENT, vcpu); 6898 6899 return max_irr; 6900 } 6901 6902 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) 6903 { 6904 if (!kvm_vcpu_apicv_active(vcpu)) 6905 return; 6906 6907 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); 6908 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); 6909 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); 6910 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); 6911 } 6912 6913 static void vmx_apicv_pre_state_restore(struct kvm_vcpu *vcpu) 6914 { 6915 struct vcpu_vmx *vmx = to_vmx(vcpu); 6916 6917 pi_clear_on(&vmx->pi_desc); 6918 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); 6919 } 6920 6921 void vmx_do_interrupt_irqoff(unsigned long entry); 6922 void vmx_do_nmi_irqoff(void); 6923 6924 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu) 6925 { 6926 /* 6927 * Save xfd_err to guest_fpu before interrupt is enabled, so the 6928 * MSR value is not clobbered by the host activity before the guest 6929 * has chance to consume it. 6930 * 6931 * Do not blindly read xfd_err here, since this exception might 6932 * be caused by L1 interception on a platform which doesn't 6933 * support xfd at all. 6934 * 6935 * Do it conditionally upon guest_fpu::xfd. xfd_err matters 6936 * only when xfd contains a non-zero value. 6937 * 6938 * Queuing exception is done in vmx_handle_exit. See comment there. 6939 */ 6940 if (vcpu->arch.guest_fpu.fpstate->xfd) 6941 rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 6942 } 6943 6944 static void handle_exception_irqoff(struct vcpu_vmx *vmx) 6945 { 6946 u32 intr_info = vmx_get_intr_info(&vmx->vcpu); 6947 6948 /* if exit due to PF check for async PF */ 6949 if (is_page_fault(intr_info)) 6950 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags(); 6951 /* if exit due to NM, handle before interrupts are enabled */ 6952 else if (is_nm_fault(intr_info)) 6953 handle_nm_fault_irqoff(&vmx->vcpu); 6954 /* Handle machine checks before interrupts are enabled */ 6955 else if (is_machine_check(intr_info)) 6956 kvm_machine_check(); 6957 } 6958 6959 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu) 6960 { 6961 u32 intr_info = vmx_get_intr_info(vcpu); 6962 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK; 6963 gate_desc *desc = (gate_desc *)host_idt_base + vector; 6964 6965 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm, 6966 "unexpected VM-Exit interrupt info: 0x%x", intr_info)) 6967 return; 6968 6969 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 6970 vmx_do_interrupt_irqoff(gate_offset(desc)); 6971 kvm_after_interrupt(vcpu); 6972 6973 vcpu->arch.at_instruction_boundary = true; 6974 } 6975 6976 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu) 6977 { 6978 struct vcpu_vmx *vmx = to_vmx(vcpu); 6979 6980 if (vmx->emulation_required) 6981 return; 6982 6983 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6984 handle_external_interrupt_irqoff(vcpu); 6985 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI) 6986 handle_exception_irqoff(vmx); 6987 } 6988 6989 /* 6990 * The kvm parameter can be NULL (module initialization, or invocation before 6991 * VM creation). Be sure to check the kvm parameter before using it. 6992 */ 6993 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index) 6994 { 6995 switch (index) { 6996 case MSR_IA32_SMBASE: 6997 if (!IS_ENABLED(CONFIG_KVM_SMM)) 6998 return false; 6999 /* 7000 * We cannot do SMM unless we can run the guest in big 7001 * real mode. 7002 */ 7003 return enable_unrestricted_guest || emulate_invalid_guest_state; 7004 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 7005 return nested; 7006 case MSR_AMD64_VIRT_SPEC_CTRL: 7007 case MSR_AMD64_TSC_RATIO: 7008 /* This is AMD only. */ 7009 return false; 7010 default: 7011 return true; 7012 } 7013 } 7014 7015 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) 7016 { 7017 u32 exit_intr_info; 7018 bool unblock_nmi; 7019 u8 vector; 7020 bool idtv_info_valid; 7021 7022 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; 7023 7024 if (enable_vnmi) { 7025 if (vmx->loaded_vmcs->nmi_known_unmasked) 7026 return; 7027 7028 exit_intr_info = vmx_get_intr_info(&vmx->vcpu); 7029 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; 7030 vector = exit_intr_info & INTR_INFO_VECTOR_MASK; 7031 /* 7032 * SDM 3: 27.7.1.2 (September 2008) 7033 * Re-set bit "block by NMI" before VM entry if vmexit caused by 7034 * a guest IRET fault. 7035 * SDM 3: 23.2.2 (September 2008) 7036 * Bit 12 is undefined in any of the following cases: 7037 * If the VM exit sets the valid bit in the IDT-vectoring 7038 * information field. 7039 * If the VM exit is due to a double fault. 7040 */ 7041 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && 7042 vector != DF_VECTOR && !idtv_info_valid) 7043 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 7044 GUEST_INTR_STATE_NMI); 7045 else 7046 vmx->loaded_vmcs->nmi_known_unmasked = 7047 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) 7048 & GUEST_INTR_STATE_NMI); 7049 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) 7050 vmx->loaded_vmcs->vnmi_blocked_time += 7051 ktime_to_ns(ktime_sub(ktime_get(), 7052 vmx->loaded_vmcs->entry_time)); 7053 } 7054 7055 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, 7056 u32 idt_vectoring_info, 7057 int instr_len_field, 7058 int error_code_field) 7059 { 7060 u8 vector; 7061 int type; 7062 bool idtv_info_valid; 7063 7064 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; 7065 7066 vcpu->arch.nmi_injected = false; 7067 kvm_clear_exception_queue(vcpu); 7068 kvm_clear_interrupt_queue(vcpu); 7069 7070 if (!idtv_info_valid) 7071 return; 7072 7073 kvm_make_request(KVM_REQ_EVENT, vcpu); 7074 7075 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; 7076 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; 7077 7078 switch (type) { 7079 case INTR_TYPE_NMI_INTR: 7080 vcpu->arch.nmi_injected = true; 7081 /* 7082 * SDM 3: 27.7.1.2 (September 2008) 7083 * Clear bit "block by NMI" before VM entry if a NMI 7084 * delivery faulted. 7085 */ 7086 vmx_set_nmi_mask(vcpu, false); 7087 break; 7088 case INTR_TYPE_SOFT_EXCEPTION: 7089 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 7090 fallthrough; 7091 case INTR_TYPE_HARD_EXCEPTION: 7092 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { 7093 u32 err = vmcs_read32(error_code_field); 7094 kvm_requeue_exception_e(vcpu, vector, err); 7095 } else 7096 kvm_requeue_exception(vcpu, vector); 7097 break; 7098 case INTR_TYPE_SOFT_INTR: 7099 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 7100 fallthrough; 7101 case INTR_TYPE_EXT_INTR: 7102 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); 7103 break; 7104 default: 7105 break; 7106 } 7107 } 7108 7109 static void vmx_complete_interrupts(struct vcpu_vmx *vmx) 7110 { 7111 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, 7112 VM_EXIT_INSTRUCTION_LEN, 7113 IDT_VECTORING_ERROR_CODE); 7114 } 7115 7116 static void vmx_cancel_injection(struct kvm_vcpu *vcpu) 7117 { 7118 __vmx_complete_interrupts(vcpu, 7119 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 7120 VM_ENTRY_INSTRUCTION_LEN, 7121 VM_ENTRY_EXCEPTION_ERROR_CODE); 7122 7123 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); 7124 } 7125 7126 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) 7127 { 7128 int i, nr_msrs; 7129 struct perf_guest_switch_msr *msrs; 7130 struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu); 7131 7132 pmu->host_cross_mapped_mask = 0; 7133 if (pmu->pebs_enable & pmu->global_ctrl) 7134 intel_pmu_cross_mapped_check(pmu); 7135 7136 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */ 7137 msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu); 7138 if (!msrs) 7139 return; 7140 7141 for (i = 0; i < nr_msrs; i++) 7142 if (msrs[i].host == msrs[i].guest) 7143 clear_atomic_switch_msr(vmx, msrs[i].msr); 7144 else 7145 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, 7146 msrs[i].host, false); 7147 } 7148 7149 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu) 7150 { 7151 struct vcpu_vmx *vmx = to_vmx(vcpu); 7152 u64 tscl; 7153 u32 delta_tsc; 7154 7155 if (vmx->req_immediate_exit) { 7156 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0); 7157 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 7158 } else if (vmx->hv_deadline_tsc != -1) { 7159 tscl = rdtsc(); 7160 if (vmx->hv_deadline_tsc > tscl) 7161 /* set_hv_timer ensures the delta fits in 32-bits */ 7162 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> 7163 cpu_preemption_timer_multi); 7164 else 7165 delta_tsc = 0; 7166 7167 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc); 7168 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 7169 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) { 7170 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1); 7171 vmx->loaded_vmcs->hv_timer_soft_disabled = true; 7172 } 7173 } 7174 7175 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp) 7176 { 7177 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) { 7178 vmx->loaded_vmcs->host_state.rsp = host_rsp; 7179 vmcs_writel(HOST_RSP, host_rsp); 7180 } 7181 } 7182 7183 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, 7184 unsigned int flags) 7185 { 7186 u64 hostval = this_cpu_read(x86_spec_ctrl_current); 7187 7188 if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) 7189 return; 7190 7191 if (flags & VMX_RUN_SAVE_SPEC_CTRL) 7192 vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL); 7193 7194 /* 7195 * If the guest/host SPEC_CTRL values differ, restore the host value. 7196 * 7197 * For legacy IBRS, the IBRS bit always needs to be written after 7198 * transitioning from a less privileged predictor mode, regardless of 7199 * whether the guest/host values differ. 7200 */ 7201 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) || 7202 vmx->spec_ctrl != hostval) 7203 native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval); 7204 7205 barrier_nospec(); 7206 } 7207 7208 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 7209 { 7210 switch (to_vmx(vcpu)->exit_reason.basic) { 7211 case EXIT_REASON_MSR_WRITE: 7212 return handle_fastpath_set_msr_irqoff(vcpu); 7213 case EXIT_REASON_PREEMPTION_TIMER: 7214 return handle_fastpath_preemption_timer(vcpu); 7215 default: 7216 return EXIT_FASTPATH_NONE; 7217 } 7218 } 7219 7220 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu, 7221 unsigned int flags) 7222 { 7223 struct vcpu_vmx *vmx = to_vmx(vcpu); 7224 7225 guest_state_enter_irqoff(); 7226 7227 /* L1D Flush includes CPU buffer clear to mitigate MDS */ 7228 if (static_branch_unlikely(&vmx_l1d_should_flush)) 7229 vmx_l1d_flush(vcpu); 7230 else if (static_branch_unlikely(&mds_user_clear)) 7231 mds_clear_cpu_buffers(); 7232 else if (static_branch_unlikely(&mmio_stale_data_clear) && 7233 kvm_arch_has_assigned_device(vcpu->kvm)) 7234 mds_clear_cpu_buffers(); 7235 7236 vmx_disable_fb_clear(vmx); 7237 7238 if (vcpu->arch.cr2 != native_read_cr2()) 7239 native_write_cr2(vcpu->arch.cr2); 7240 7241 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, 7242 flags); 7243 7244 vcpu->arch.cr2 = native_read_cr2(); 7245 vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET; 7246 7247 vmx->idt_vectoring_info = 0; 7248 7249 vmx_enable_fb_clear(vmx); 7250 7251 if (unlikely(vmx->fail)) { 7252 vmx->exit_reason.full = 0xdead; 7253 goto out; 7254 } 7255 7256 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON); 7257 if (likely(!vmx->exit_reason.failed_vmentry)) 7258 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); 7259 7260 if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI && 7261 is_nmi(vmx_get_intr_info(vcpu))) { 7262 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); 7263 vmx_do_nmi_irqoff(); 7264 kvm_after_interrupt(vcpu); 7265 } 7266 7267 out: 7268 guest_state_exit_irqoff(); 7269 } 7270 7271 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu) 7272 { 7273 struct vcpu_vmx *vmx = to_vmx(vcpu); 7274 unsigned long cr3, cr4; 7275 7276 /* Record the guest's net vcpu time for enforced NMI injections. */ 7277 if (unlikely(!enable_vnmi && 7278 vmx->loaded_vmcs->soft_vnmi_blocked)) 7279 vmx->loaded_vmcs->entry_time = ktime_get(); 7280 7281 /* 7282 * Don't enter VMX if guest state is invalid, let the exit handler 7283 * start emulation until we arrive back to a valid state. Synthesize a 7284 * consistency check VM-Exit due to invalid guest state and bail. 7285 */ 7286 if (unlikely(vmx->emulation_required)) { 7287 vmx->fail = 0; 7288 7289 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE; 7290 vmx->exit_reason.failed_vmentry = 1; 7291 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1); 7292 vmx->exit_qualification = ENTRY_FAIL_DEFAULT; 7293 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2); 7294 vmx->exit_intr_info = 0; 7295 return EXIT_FASTPATH_NONE; 7296 } 7297 7298 trace_kvm_entry(vcpu); 7299 7300 if (vmx->ple_window_dirty) { 7301 vmx->ple_window_dirty = false; 7302 vmcs_write32(PLE_WINDOW, vmx->ple_window); 7303 } 7304 7305 /* 7306 * We did this in prepare_switch_to_guest, because it needs to 7307 * be within srcu_read_lock. 7308 */ 7309 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync); 7310 7311 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP)) 7312 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); 7313 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP)) 7314 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); 7315 vcpu->arch.regs_dirty = 0; 7316 7317 /* 7318 * Refresh vmcs.HOST_CR3 if necessary. This must be done immediately 7319 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time 7320 * it switches back to the current->mm, which can occur in KVM context 7321 * when switching to a temporary mm to patch kernel code, e.g. if KVM 7322 * toggles a static key while handling a VM-Exit. 7323 */ 7324 cr3 = __get_current_cr3_fast(); 7325 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { 7326 vmcs_writel(HOST_CR3, cr3); 7327 vmx->loaded_vmcs->host_state.cr3 = cr3; 7328 } 7329 7330 cr4 = cr4_read_shadow(); 7331 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { 7332 vmcs_writel(HOST_CR4, cr4); 7333 vmx->loaded_vmcs->host_state.cr4 = cr4; 7334 } 7335 7336 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */ 7337 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 7338 set_debugreg(vcpu->arch.dr6, 6); 7339 7340 /* When single-stepping over STI and MOV SS, we must clear the 7341 * corresponding interruptibility bits in the guest state. Otherwise 7342 * vmentry fails as it then expects bit 14 (BS) in pending debug 7343 * exceptions being set, but that's not correct for the guest debugging 7344 * case. */ 7345 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 7346 vmx_set_interrupt_shadow(vcpu, 0); 7347 7348 kvm_load_guest_xsave_state(vcpu); 7349 7350 pt_guest_enter(vmx); 7351 7352 atomic_switch_perf_msrs(vmx); 7353 if (intel_pmu_lbr_is_enabled(vcpu)) 7354 vmx_passthrough_lbr_msrs(vcpu); 7355 7356 if (enable_preemption_timer) 7357 vmx_update_hv_timer(vcpu); 7358 7359 kvm_wait_lapic_expire(vcpu); 7360 7361 /* The actual VMENTER/EXIT is in the .noinstr.text section. */ 7362 vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx)); 7363 7364 /* All fields are clean at this point */ 7365 if (kvm_is_using_evmcs()) { 7366 current_evmcs->hv_clean_fields |= 7367 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; 7368 7369 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu); 7370 } 7371 7372 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ 7373 if (vmx->host_debugctlmsr) 7374 update_debugctlmsr(vmx->host_debugctlmsr); 7375 7376 #ifndef CONFIG_X86_64 7377 /* 7378 * The sysexit path does not restore ds/es, so we must set them to 7379 * a reasonable value ourselves. 7380 * 7381 * We can't defer this to vmx_prepare_switch_to_host() since that 7382 * function may be executed in interrupt context, which saves and 7383 * restore segments around it, nullifying its effect. 7384 */ 7385 loadsegment(ds, __USER_DS); 7386 loadsegment(es, __USER_DS); 7387 #endif 7388 7389 pt_guest_exit(vmx); 7390 7391 kvm_load_host_xsave_state(vcpu); 7392 7393 if (is_guest_mode(vcpu)) { 7394 /* 7395 * Track VMLAUNCH/VMRESUME that have made past guest state 7396 * checking. 7397 */ 7398 if (vmx->nested.nested_run_pending && 7399 !vmx->exit_reason.failed_vmentry) 7400 ++vcpu->stat.nested_run; 7401 7402 vmx->nested.nested_run_pending = 0; 7403 } 7404 7405 if (unlikely(vmx->fail)) 7406 return EXIT_FASTPATH_NONE; 7407 7408 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY)) 7409 kvm_machine_check(); 7410 7411 trace_kvm_exit(vcpu, KVM_ISA_VMX); 7412 7413 if (unlikely(vmx->exit_reason.failed_vmentry)) 7414 return EXIT_FASTPATH_NONE; 7415 7416 vmx->loaded_vmcs->launched = 1; 7417 7418 vmx_recover_nmi_blocking(vmx); 7419 vmx_complete_interrupts(vmx); 7420 7421 if (is_guest_mode(vcpu)) 7422 return EXIT_FASTPATH_NONE; 7423 7424 return vmx_exit_handlers_fastpath(vcpu); 7425 } 7426 7427 static void vmx_vcpu_free(struct kvm_vcpu *vcpu) 7428 { 7429 struct vcpu_vmx *vmx = to_vmx(vcpu); 7430 7431 if (enable_pml) 7432 vmx_destroy_pml_buffer(vmx); 7433 free_vpid(vmx->vpid); 7434 nested_vmx_free_vcpu(vcpu); 7435 free_loaded_vmcs(vmx->loaded_vmcs); 7436 } 7437 7438 static int vmx_vcpu_create(struct kvm_vcpu *vcpu) 7439 { 7440 struct vmx_uret_msr *tsx_ctrl; 7441 struct vcpu_vmx *vmx; 7442 int i, err; 7443 7444 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0); 7445 vmx = to_vmx(vcpu); 7446 7447 INIT_LIST_HEAD(&vmx->pi_wakeup_list); 7448 7449 err = -ENOMEM; 7450 7451 vmx->vpid = allocate_vpid(); 7452 7453 /* 7454 * If PML is turned on, failure on enabling PML just results in failure 7455 * of creating the vcpu, therefore we can simplify PML logic (by 7456 * avoiding dealing with cases, such as enabling PML partially on vcpus 7457 * for the guest), etc. 7458 */ 7459 if (enable_pml) { 7460 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 7461 if (!vmx->pml_pg) 7462 goto free_vpid; 7463 } 7464 7465 for (i = 0; i < kvm_nr_uret_msrs; ++i) 7466 vmx->guest_uret_msrs[i].mask = -1ull; 7467 if (boot_cpu_has(X86_FEATURE_RTM)) { 7468 /* 7469 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception. 7470 * Keep the host value unchanged to avoid changing CPUID bits 7471 * under the host kernel's feet. 7472 */ 7473 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7474 if (tsx_ctrl) 7475 tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR; 7476 } 7477 7478 err = alloc_loaded_vmcs(&vmx->vmcs01); 7479 if (err < 0) 7480 goto free_pml; 7481 7482 /* 7483 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a 7484 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the 7485 * feature only for vmcs01, KVM currently isn't equipped to realize any 7486 * performance benefits from enabling it for vmcs02. 7487 */ 7488 if (kvm_is_using_evmcs() && 7489 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { 7490 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; 7491 7492 evmcs->hv_enlightenments_control.msr_bitmap = 1; 7493 } 7494 7495 /* The MSR bitmap starts with all ones */ 7496 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS); 7497 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS); 7498 7499 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R); 7500 #ifdef CONFIG_X86_64 7501 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW); 7502 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW); 7503 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); 7504 #endif 7505 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); 7506 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); 7507 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); 7508 if (kvm_cstate_in_guest(vcpu->kvm)) { 7509 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R); 7510 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R); 7511 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R); 7512 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R); 7513 } 7514 7515 vmx->loaded_vmcs = &vmx->vmcs01; 7516 7517 if (cpu_need_virtualize_apic_accesses(vcpu)) { 7518 err = kvm_alloc_apic_access_page(vcpu->kvm); 7519 if (err) 7520 goto free_vmcs; 7521 } 7522 7523 if (enable_ept && !enable_unrestricted_guest) { 7524 err = init_rmode_identity_map(vcpu->kvm); 7525 if (err) 7526 goto free_vmcs; 7527 } 7528 7529 if (vmx_can_use_ipiv(vcpu)) 7530 WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id], 7531 __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID); 7532 7533 return 0; 7534 7535 free_vmcs: 7536 free_loaded_vmcs(vmx->loaded_vmcs); 7537 free_pml: 7538 vmx_destroy_pml_buffer(vmx); 7539 free_vpid: 7540 free_vpid(vmx->vpid); 7541 return err; 7542 } 7543 7544 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7545 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7546 7547 static int vmx_vm_init(struct kvm *kvm) 7548 { 7549 if (!ple_gap) 7550 kvm->arch.pause_in_guest = true; 7551 7552 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { 7553 switch (l1tf_mitigation) { 7554 case L1TF_MITIGATION_OFF: 7555 case L1TF_MITIGATION_FLUSH_NOWARN: 7556 /* 'I explicitly don't care' is set */ 7557 break; 7558 case L1TF_MITIGATION_FLUSH: 7559 case L1TF_MITIGATION_FLUSH_NOSMT: 7560 case L1TF_MITIGATION_FULL: 7561 /* 7562 * Warn upon starting the first VM in a potentially 7563 * insecure environment. 7564 */ 7565 if (sched_smt_active()) 7566 pr_warn_once(L1TF_MSG_SMT); 7567 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) 7568 pr_warn_once(L1TF_MSG_L1D); 7569 break; 7570 case L1TF_MITIGATION_FULL_FORCE: 7571 /* Flush is enforced */ 7572 break; 7573 } 7574 } 7575 return 0; 7576 } 7577 7578 static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 7579 { 7580 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in 7581 * memory aliases with conflicting memory types and sometimes MCEs. 7582 * We have to be careful as to what are honored and when. 7583 * 7584 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to 7585 * UC. The effective memory type is UC or WC depending on guest PAT. 7586 * This was historically the source of MCEs and we want to be 7587 * conservative. 7588 * 7589 * When there is no need to deal with noncoherent DMA (e.g., no VT-d 7590 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The 7591 * EPT memory type is set to WB. The effective memory type is forced 7592 * WB. 7593 * 7594 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The 7595 * EPT memory type is used to emulate guest CD/MTRR. 7596 */ 7597 7598 if (is_mmio) 7599 return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT; 7600 7601 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) 7602 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT; 7603 7604 if (kvm_read_cr0_bits(vcpu, X86_CR0_CD)) { 7605 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 7606 return MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT; 7607 else 7608 return (MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT) | 7609 VMX_EPT_IPAT_BIT; 7610 } 7611 7612 return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT; 7613 } 7614 7615 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl) 7616 { 7617 /* 7618 * These bits in the secondary execution controls field 7619 * are dynamic, the others are mostly based on the hypervisor 7620 * architecture and the guest's CPUID. Do not touch the 7621 * dynamic bits. 7622 */ 7623 u32 mask = 7624 SECONDARY_EXEC_SHADOW_VMCS | 7625 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 7626 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 7627 SECONDARY_EXEC_DESC; 7628 7629 u32 cur_ctl = secondary_exec_controls_get(vmx); 7630 7631 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask)); 7632 } 7633 7634 /* 7635 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits 7636 * (indicating "allowed-1") if they are supported in the guest's CPUID. 7637 */ 7638 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) 7639 { 7640 struct vcpu_vmx *vmx = to_vmx(vcpu); 7641 struct kvm_cpuid_entry2 *entry; 7642 7643 vmx->nested.msrs.cr0_fixed1 = 0xffffffff; 7644 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; 7645 7646 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ 7647 if (entry && (entry->_reg & (_cpuid_mask))) \ 7648 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ 7649 } while (0) 7650 7651 entry = kvm_find_cpuid_entry(vcpu, 0x1); 7652 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME)); 7653 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME)); 7654 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC)); 7655 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE)); 7656 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE)); 7657 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE)); 7658 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE)); 7659 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE)); 7660 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR)); 7661 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM)); 7662 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX)); 7663 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX)); 7664 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID)); 7665 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE)); 7666 7667 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0); 7668 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE)); 7669 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP)); 7670 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP)); 7671 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU)); 7672 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP)); 7673 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57)); 7674 7675 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 1); 7676 cr4_fixed1_update(X86_CR4_LAM_SUP, eax, feature_bit(LAM)); 7677 7678 #undef cr4_fixed1_update 7679 } 7680 7681 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) 7682 { 7683 struct vcpu_vmx *vmx = to_vmx(vcpu); 7684 struct kvm_cpuid_entry2 *best = NULL; 7685 int i; 7686 7687 for (i = 0; i < PT_CPUID_LEAVES; i++) { 7688 best = kvm_find_cpuid_entry_index(vcpu, 0x14, i); 7689 if (!best) 7690 return; 7691 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; 7692 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; 7693 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; 7694 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; 7695 } 7696 7697 /* Get the number of configurable Address Ranges for filtering */ 7698 vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps, 7699 PT_CAP_num_address_ranges); 7700 7701 /* Initialize and clear the no dependency bits */ 7702 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | 7703 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC | 7704 RTIT_CTL_BRANCH_EN); 7705 7706 /* 7707 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise 7708 * will inject an #GP 7709 */ 7710 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) 7711 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; 7712 7713 /* 7714 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and 7715 * PSBFreq can be set 7716 */ 7717 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) 7718 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | 7719 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); 7720 7721 /* 7722 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set 7723 */ 7724 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) 7725 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | 7726 RTIT_CTL_MTC_RANGE); 7727 7728 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ 7729 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) 7730 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | 7731 RTIT_CTL_PTW_EN); 7732 7733 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ 7734 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) 7735 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; 7736 7737 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ 7738 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) 7739 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; 7740 7741 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */ 7742 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) 7743 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; 7744 7745 /* unmask address range configure area */ 7746 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) 7747 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4)); 7748 } 7749 7750 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 7751 { 7752 struct vcpu_vmx *vmx = to_vmx(vcpu); 7753 7754 /* 7755 * XSAVES is effectively enabled if and only if XSAVE is also exposed 7756 * to the guest. XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be 7757 * set if and only if XSAVE is supported. 7758 */ 7759 if (boot_cpu_has(X86_FEATURE_XSAVE) && 7760 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE)) 7761 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_XSAVES); 7762 7763 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VMX); 7764 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LAM); 7765 7766 vmx_setup_uret_msrs(vmx); 7767 7768 if (cpu_has_secondary_exec_ctrls()) 7769 vmcs_set_secondary_exec_control(vmx, 7770 vmx_secondary_exec_control(vmx)); 7771 7772 if (guest_can_use(vcpu, X86_FEATURE_VMX)) 7773 vmx->msr_ia32_feature_control_valid_bits |= 7774 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7775 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; 7776 else 7777 vmx->msr_ia32_feature_control_valid_bits &= 7778 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7779 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX); 7780 7781 if (guest_can_use(vcpu, X86_FEATURE_VMX)) 7782 nested_vmx_cr_fixed1_bits_update(vcpu); 7783 7784 if (boot_cpu_has(X86_FEATURE_INTEL_PT) && 7785 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT)) 7786 update_intel_pt_cfg(vcpu); 7787 7788 if (boot_cpu_has(X86_FEATURE_RTM)) { 7789 struct vmx_uret_msr *msr; 7790 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7791 if (msr) { 7792 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM); 7793 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE); 7794 } 7795 } 7796 7797 if (kvm_cpu_cap_has(X86_FEATURE_XFD)) 7798 vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R, 7799 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)); 7800 7801 if (boot_cpu_has(X86_FEATURE_IBPB)) 7802 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W, 7803 !guest_has_pred_cmd_msr(vcpu)); 7804 7805 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D)) 7806 vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W, 7807 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)); 7808 7809 set_cr4_guest_host_mask(vmx); 7810 7811 vmx_write_encls_bitmap(vcpu, NULL); 7812 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX)) 7813 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED; 7814 else 7815 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED; 7816 7817 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 7818 vmx->msr_ia32_feature_control_valid_bits |= 7819 FEAT_CTL_SGX_LC_ENABLED; 7820 else 7821 vmx->msr_ia32_feature_control_valid_bits &= 7822 ~FEAT_CTL_SGX_LC_ENABLED; 7823 7824 /* Refresh #PF interception to account for MAXPHYADDR changes. */ 7825 vmx_update_exception_bitmap(vcpu); 7826 } 7827 7828 static u64 vmx_get_perf_capabilities(void) 7829 { 7830 u64 perf_cap = PMU_CAP_FW_WRITES; 7831 struct x86_pmu_lbr lbr; 7832 u64 host_perf_cap = 0; 7833 7834 if (!enable_pmu) 7835 return 0; 7836 7837 if (boot_cpu_has(X86_FEATURE_PDCM)) 7838 rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap); 7839 7840 if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) { 7841 x86_perf_get_lbr(&lbr); 7842 if (lbr.nr) 7843 perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT; 7844 } 7845 7846 if (vmx_pebs_supported()) { 7847 perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK; 7848 if ((perf_cap & PERF_CAP_PEBS_FORMAT) < 4) 7849 perf_cap &= ~PERF_CAP_PEBS_BASELINE; 7850 } 7851 7852 return perf_cap; 7853 } 7854 7855 static __init void vmx_set_cpu_caps(void) 7856 { 7857 kvm_set_cpu_caps(); 7858 7859 /* CPUID 0x1 */ 7860 if (nested) 7861 kvm_cpu_cap_set(X86_FEATURE_VMX); 7862 7863 /* CPUID 0x7 */ 7864 if (kvm_mpx_supported()) 7865 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX); 7866 if (!cpu_has_vmx_invpcid()) 7867 kvm_cpu_cap_clear(X86_FEATURE_INVPCID); 7868 if (vmx_pt_mode_is_host_guest()) 7869 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT); 7870 if (vmx_pebs_supported()) { 7871 kvm_cpu_cap_check_and_set(X86_FEATURE_DS); 7872 kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64); 7873 } 7874 7875 if (!enable_pmu) 7876 kvm_cpu_cap_clear(X86_FEATURE_PDCM); 7877 kvm_caps.supported_perf_cap = vmx_get_perf_capabilities(); 7878 7879 if (!enable_sgx) { 7880 kvm_cpu_cap_clear(X86_FEATURE_SGX); 7881 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC); 7882 kvm_cpu_cap_clear(X86_FEATURE_SGX1); 7883 kvm_cpu_cap_clear(X86_FEATURE_SGX2); 7884 } 7885 7886 if (vmx_umip_emulated()) 7887 kvm_cpu_cap_set(X86_FEATURE_UMIP); 7888 7889 /* CPUID 0xD.1 */ 7890 kvm_caps.supported_xss = 0; 7891 if (!cpu_has_vmx_xsaves()) 7892 kvm_cpu_cap_clear(X86_FEATURE_XSAVES); 7893 7894 /* CPUID 0x80000001 and 0x7 (RDPID) */ 7895 if (!cpu_has_vmx_rdtscp()) { 7896 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP); 7897 kvm_cpu_cap_clear(X86_FEATURE_RDPID); 7898 } 7899 7900 if (cpu_has_vmx_waitpkg()) 7901 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG); 7902 } 7903 7904 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu) 7905 { 7906 to_vmx(vcpu)->req_immediate_exit = true; 7907 } 7908 7909 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu, 7910 struct x86_instruction_info *info) 7911 { 7912 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7913 unsigned short port; 7914 bool intercept; 7915 int size; 7916 7917 if (info->intercept == x86_intercept_in || 7918 info->intercept == x86_intercept_ins) { 7919 port = info->src_val; 7920 size = info->dst_bytes; 7921 } else { 7922 port = info->dst_val; 7923 size = info->src_bytes; 7924 } 7925 7926 /* 7927 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction 7928 * VM-exits depend on the 'unconditional IO exiting' VM-execution 7929 * control. 7930 * 7931 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps. 7932 */ 7933 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) 7934 intercept = nested_cpu_has(vmcs12, 7935 CPU_BASED_UNCOND_IO_EXITING); 7936 else 7937 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size); 7938 7939 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7940 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; 7941 } 7942 7943 static int vmx_check_intercept(struct kvm_vcpu *vcpu, 7944 struct x86_instruction_info *info, 7945 enum x86_intercept_stage stage, 7946 struct x86_exception *exception) 7947 { 7948 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7949 7950 switch (info->intercept) { 7951 /* 7952 * RDPID causes #UD if disabled through secondary execution controls. 7953 * Because it is marked as EmulateOnUD, we need to intercept it here. 7954 * Note, RDPID is hidden behind ENABLE_RDTSCP. 7955 */ 7956 case x86_intercept_rdpid: 7957 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) { 7958 exception->vector = UD_VECTOR; 7959 exception->error_code_valid = false; 7960 return X86EMUL_PROPAGATE_FAULT; 7961 } 7962 break; 7963 7964 case x86_intercept_in: 7965 case x86_intercept_ins: 7966 case x86_intercept_out: 7967 case x86_intercept_outs: 7968 return vmx_check_intercept_io(vcpu, info); 7969 7970 case x86_intercept_lgdt: 7971 case x86_intercept_lidt: 7972 case x86_intercept_lldt: 7973 case x86_intercept_ltr: 7974 case x86_intercept_sgdt: 7975 case x86_intercept_sidt: 7976 case x86_intercept_sldt: 7977 case x86_intercept_str: 7978 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC)) 7979 return X86EMUL_CONTINUE; 7980 7981 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7982 break; 7983 7984 case x86_intercept_pause: 7985 /* 7986 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides 7987 * with vanilla NOPs in the emulator. Apply the interception 7988 * check only to actual PAUSE instructions. Don't check 7989 * PAUSE-loop-exiting, software can't expect a given PAUSE to 7990 * exit, i.e. KVM is within its rights to allow L2 to execute 7991 * the PAUSE. 7992 */ 7993 if ((info->rep_prefix != REPE_PREFIX) || 7994 !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING)) 7995 return X86EMUL_CONTINUE; 7996 7997 break; 7998 7999 /* TODO: check more intercepts... */ 8000 default: 8001 break; 8002 } 8003 8004 return X86EMUL_UNHANDLEABLE; 8005 } 8006 8007 #ifdef CONFIG_X86_64 8008 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ 8009 static inline int u64_shl_div_u64(u64 a, unsigned int shift, 8010 u64 divisor, u64 *result) 8011 { 8012 u64 low = a << shift, high = a >> (64 - shift); 8013 8014 /* To avoid the overflow on divq */ 8015 if (high >= divisor) 8016 return 1; 8017 8018 /* Low hold the result, high hold rem which is discarded */ 8019 asm("divq %2\n\t" : "=a" (low), "=d" (high) : 8020 "rm" (divisor), "0" (low), "1" (high)); 8021 *result = low; 8022 8023 return 0; 8024 } 8025 8026 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 8027 bool *expired) 8028 { 8029 struct vcpu_vmx *vmx; 8030 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; 8031 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer; 8032 8033 vmx = to_vmx(vcpu); 8034 tscl = rdtsc(); 8035 guest_tscl = kvm_read_l1_tsc(vcpu, tscl); 8036 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; 8037 lapic_timer_advance_cycles = nsec_to_cycles(vcpu, 8038 ktimer->timer_advance_ns); 8039 8040 if (delta_tsc > lapic_timer_advance_cycles) 8041 delta_tsc -= lapic_timer_advance_cycles; 8042 else 8043 delta_tsc = 0; 8044 8045 /* Convert to host delta tsc if tsc scaling is enabled */ 8046 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio && 8047 delta_tsc && u64_shl_div_u64(delta_tsc, 8048 kvm_caps.tsc_scaling_ratio_frac_bits, 8049 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc)) 8050 return -ERANGE; 8051 8052 /* 8053 * If the delta tsc can't fit in the 32 bit after the multi shift, 8054 * we can't use the preemption timer. 8055 * It's possible that it fits on later vmentries, but checking 8056 * on every vmentry is costly so we just use an hrtimer. 8057 */ 8058 if (delta_tsc >> (cpu_preemption_timer_multi + 32)) 8059 return -ERANGE; 8060 8061 vmx->hv_deadline_tsc = tscl + delta_tsc; 8062 *expired = !delta_tsc; 8063 return 0; 8064 } 8065 8066 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) 8067 { 8068 to_vmx(vcpu)->hv_deadline_tsc = -1; 8069 } 8070 #endif 8071 8072 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) 8073 { 8074 if (!kvm_pause_in_guest(vcpu->kvm)) 8075 shrink_ple_window(vcpu); 8076 } 8077 8078 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu) 8079 { 8080 struct vcpu_vmx *vmx = to_vmx(vcpu); 8081 8082 if (WARN_ON_ONCE(!enable_pml)) 8083 return; 8084 8085 if (is_guest_mode(vcpu)) { 8086 vmx->nested.update_vmcs01_cpu_dirty_logging = true; 8087 return; 8088 } 8089 8090 /* 8091 * Note, nr_memslots_dirty_logging can be changed concurrent with this 8092 * code, but in that case another update request will be made and so 8093 * the guest will never run with a stale PML value. 8094 */ 8095 if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging)) 8096 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML); 8097 else 8098 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML); 8099 } 8100 8101 static void vmx_setup_mce(struct kvm_vcpu *vcpu) 8102 { 8103 if (vcpu->arch.mcg_cap & MCG_LMCE_P) 8104 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 8105 FEAT_CTL_LMCE_ENABLED; 8106 else 8107 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 8108 ~FEAT_CTL_LMCE_ENABLED; 8109 } 8110 8111 #ifdef CONFIG_KVM_SMM 8112 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 8113 { 8114 /* we need a nested vmexit to enter SMM, postpone if run is pending */ 8115 if (to_vmx(vcpu)->nested.nested_run_pending) 8116 return -EBUSY; 8117 return !is_smm(vcpu); 8118 } 8119 8120 static int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) 8121 { 8122 struct vcpu_vmx *vmx = to_vmx(vcpu); 8123 8124 /* 8125 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on 8126 * SMI and RSM. Using the common VM-Exit + VM-Enter routines is wrong 8127 * SMI and RSM only modify state that is saved and restored via SMRAM. 8128 * E.g. most MSRs are left untouched, but many are modified by VM-Exit 8129 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM. 8130 */ 8131 vmx->nested.smm.guest_mode = is_guest_mode(vcpu); 8132 if (vmx->nested.smm.guest_mode) 8133 nested_vmx_vmexit(vcpu, -1, 0, 0); 8134 8135 vmx->nested.smm.vmxon = vmx->nested.vmxon; 8136 vmx->nested.vmxon = false; 8137 vmx_clear_hlt(vcpu); 8138 return 0; 8139 } 8140 8141 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) 8142 { 8143 struct vcpu_vmx *vmx = to_vmx(vcpu); 8144 int ret; 8145 8146 if (vmx->nested.smm.vmxon) { 8147 vmx->nested.vmxon = true; 8148 vmx->nested.smm.vmxon = false; 8149 } 8150 8151 if (vmx->nested.smm.guest_mode) { 8152 ret = nested_vmx_enter_non_root_mode(vcpu, false); 8153 if (ret) 8154 return ret; 8155 8156 vmx->nested.nested_run_pending = 1; 8157 vmx->nested.smm.guest_mode = false; 8158 } 8159 return 0; 8160 } 8161 8162 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu) 8163 { 8164 /* RSM will cause a vmexit anyway. */ 8165 } 8166 #endif 8167 8168 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 8169 { 8170 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu); 8171 } 8172 8173 static void vmx_migrate_timers(struct kvm_vcpu *vcpu) 8174 { 8175 if (is_guest_mode(vcpu)) { 8176 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer; 8177 8178 if (hrtimer_try_to_cancel(timer) == 1) 8179 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 8180 } 8181 } 8182 8183 static void vmx_hardware_unsetup(void) 8184 { 8185 kvm_set_posted_intr_wakeup_handler(NULL); 8186 8187 if (nested) 8188 nested_vmx_hardware_unsetup(); 8189 8190 free_kvm_area(); 8191 } 8192 8193 #define VMX_REQUIRED_APICV_INHIBITS \ 8194 ( \ 8195 BIT(APICV_INHIBIT_REASON_DISABLE)| \ 8196 BIT(APICV_INHIBIT_REASON_ABSENT) | \ 8197 BIT(APICV_INHIBIT_REASON_HYPERV) | \ 8198 BIT(APICV_INHIBIT_REASON_BLOCKIRQ) | \ 8199 BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) | \ 8200 BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) | \ 8201 BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED) \ 8202 ) 8203 8204 static void vmx_vm_destroy(struct kvm *kvm) 8205 { 8206 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 8207 8208 free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm)); 8209 } 8210 8211 /* 8212 * Note, the SDM states that the linear address is masked *after* the modified 8213 * canonicality check, whereas KVM masks (untags) the address and then performs 8214 * a "normal" canonicality check. Functionally, the two methods are identical, 8215 * and when the masking occurs relative to the canonicality check isn't visible 8216 * to software, i.e. KVM's behavior doesn't violate the SDM. 8217 */ 8218 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags) 8219 { 8220 int lam_bit; 8221 unsigned long cr3_bits; 8222 8223 if (flags & (X86EMUL_F_FETCH | X86EMUL_F_IMPLICIT | X86EMUL_F_INVLPG)) 8224 return gva; 8225 8226 if (!is_64_bit_mode(vcpu)) 8227 return gva; 8228 8229 /* 8230 * Bit 63 determines if the address should be treated as user address 8231 * or a supervisor address. 8232 */ 8233 if (!(gva & BIT_ULL(63))) { 8234 cr3_bits = kvm_get_active_cr3_lam_bits(vcpu); 8235 if (!(cr3_bits & (X86_CR3_LAM_U57 | X86_CR3_LAM_U48))) 8236 return gva; 8237 8238 /* LAM_U48 is ignored if LAM_U57 is set. */ 8239 lam_bit = cr3_bits & X86_CR3_LAM_U57 ? 56 : 47; 8240 } else { 8241 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_LAM_SUP)) 8242 return gva; 8243 8244 lam_bit = kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 56 : 47; 8245 } 8246 8247 /* 8248 * Untag the address by sign-extending the lam_bit, but NOT to bit 63. 8249 * Bit 63 is retained from the raw virtual address so that untagging 8250 * doesn't change a user access to a supervisor access, and vice versa. 8251 */ 8252 return (sign_extend64(gva, lam_bit) & ~BIT_ULL(63)) | (gva & BIT_ULL(63)); 8253 } 8254 8255 static struct kvm_x86_ops vmx_x86_ops __initdata = { 8256 .name = KBUILD_MODNAME, 8257 8258 .check_processor_compatibility = vmx_check_processor_compat, 8259 8260 .hardware_unsetup = vmx_hardware_unsetup, 8261 8262 .hardware_enable = vmx_hardware_enable, 8263 .hardware_disable = vmx_hardware_disable, 8264 .has_emulated_msr = vmx_has_emulated_msr, 8265 8266 .vm_size = sizeof(struct kvm_vmx), 8267 .vm_init = vmx_vm_init, 8268 .vm_destroy = vmx_vm_destroy, 8269 8270 .vcpu_precreate = vmx_vcpu_precreate, 8271 .vcpu_create = vmx_vcpu_create, 8272 .vcpu_free = vmx_vcpu_free, 8273 .vcpu_reset = vmx_vcpu_reset, 8274 8275 .prepare_switch_to_guest = vmx_prepare_switch_to_guest, 8276 .vcpu_load = vmx_vcpu_load, 8277 .vcpu_put = vmx_vcpu_put, 8278 8279 .update_exception_bitmap = vmx_update_exception_bitmap, 8280 .get_msr_feature = vmx_get_msr_feature, 8281 .get_msr = vmx_get_msr, 8282 .set_msr = vmx_set_msr, 8283 .get_segment_base = vmx_get_segment_base, 8284 .get_segment = vmx_get_segment, 8285 .set_segment = vmx_set_segment, 8286 .get_cpl = vmx_get_cpl, 8287 .get_cs_db_l_bits = vmx_get_cs_db_l_bits, 8288 .is_valid_cr0 = vmx_is_valid_cr0, 8289 .set_cr0 = vmx_set_cr0, 8290 .is_valid_cr4 = vmx_is_valid_cr4, 8291 .set_cr4 = vmx_set_cr4, 8292 .set_efer = vmx_set_efer, 8293 .get_idt = vmx_get_idt, 8294 .set_idt = vmx_set_idt, 8295 .get_gdt = vmx_get_gdt, 8296 .set_gdt = vmx_set_gdt, 8297 .set_dr7 = vmx_set_dr7, 8298 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, 8299 .cache_reg = vmx_cache_reg, 8300 .get_rflags = vmx_get_rflags, 8301 .set_rflags = vmx_set_rflags, 8302 .get_if_flag = vmx_get_if_flag, 8303 8304 .flush_tlb_all = vmx_flush_tlb_all, 8305 .flush_tlb_current = vmx_flush_tlb_current, 8306 .flush_tlb_gva = vmx_flush_tlb_gva, 8307 .flush_tlb_guest = vmx_flush_tlb_guest, 8308 8309 .vcpu_pre_run = vmx_vcpu_pre_run, 8310 .vcpu_run = vmx_vcpu_run, 8311 .handle_exit = vmx_handle_exit, 8312 .skip_emulated_instruction = vmx_skip_emulated_instruction, 8313 .update_emulated_instruction = vmx_update_emulated_instruction, 8314 .set_interrupt_shadow = vmx_set_interrupt_shadow, 8315 .get_interrupt_shadow = vmx_get_interrupt_shadow, 8316 .patch_hypercall = vmx_patch_hypercall, 8317 .inject_irq = vmx_inject_irq, 8318 .inject_nmi = vmx_inject_nmi, 8319 .inject_exception = vmx_inject_exception, 8320 .cancel_injection = vmx_cancel_injection, 8321 .interrupt_allowed = vmx_interrupt_allowed, 8322 .nmi_allowed = vmx_nmi_allowed, 8323 .get_nmi_mask = vmx_get_nmi_mask, 8324 .set_nmi_mask = vmx_set_nmi_mask, 8325 .enable_nmi_window = vmx_enable_nmi_window, 8326 .enable_irq_window = vmx_enable_irq_window, 8327 .update_cr8_intercept = vmx_update_cr8_intercept, 8328 .set_virtual_apic_mode = vmx_set_virtual_apic_mode, 8329 .set_apic_access_page_addr = vmx_set_apic_access_page_addr, 8330 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, 8331 .load_eoi_exitmap = vmx_load_eoi_exitmap, 8332 .apicv_pre_state_restore = vmx_apicv_pre_state_restore, 8333 .required_apicv_inhibits = VMX_REQUIRED_APICV_INHIBITS, 8334 .hwapic_irr_update = vmx_hwapic_irr_update, 8335 .hwapic_isr_update = vmx_hwapic_isr_update, 8336 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt, 8337 .sync_pir_to_irr = vmx_sync_pir_to_irr, 8338 .deliver_interrupt = vmx_deliver_interrupt, 8339 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt, 8340 8341 .set_tss_addr = vmx_set_tss_addr, 8342 .set_identity_map_addr = vmx_set_identity_map_addr, 8343 .get_mt_mask = vmx_get_mt_mask, 8344 8345 .get_exit_info = vmx_get_exit_info, 8346 8347 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid, 8348 8349 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, 8350 8351 .get_l2_tsc_offset = vmx_get_l2_tsc_offset, 8352 .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier, 8353 .write_tsc_offset = vmx_write_tsc_offset, 8354 .write_tsc_multiplier = vmx_write_tsc_multiplier, 8355 8356 .load_mmu_pgd = vmx_load_mmu_pgd, 8357 8358 .check_intercept = vmx_check_intercept, 8359 .handle_exit_irqoff = vmx_handle_exit_irqoff, 8360 8361 .request_immediate_exit = vmx_request_immediate_exit, 8362 8363 .sched_in = vmx_sched_in, 8364 8365 .cpu_dirty_log_size = PML_ENTITY_NUM, 8366 .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging, 8367 8368 .nested_ops = &vmx_nested_ops, 8369 8370 .pi_update_irte = vmx_pi_update_irte, 8371 .pi_start_assignment = vmx_pi_start_assignment, 8372 8373 #ifdef CONFIG_X86_64 8374 .set_hv_timer = vmx_set_hv_timer, 8375 .cancel_hv_timer = vmx_cancel_hv_timer, 8376 #endif 8377 8378 .setup_mce = vmx_setup_mce, 8379 8380 #ifdef CONFIG_KVM_SMM 8381 .smi_allowed = vmx_smi_allowed, 8382 .enter_smm = vmx_enter_smm, 8383 .leave_smm = vmx_leave_smm, 8384 .enable_smi_window = vmx_enable_smi_window, 8385 #endif 8386 8387 .check_emulate_instruction = vmx_check_emulate_instruction, 8388 .apic_init_signal_blocked = vmx_apic_init_signal_blocked, 8389 .migrate_timers = vmx_migrate_timers, 8390 8391 .msr_filter_changed = vmx_msr_filter_changed, 8392 .complete_emulated_msr = kvm_complete_insn_gp, 8393 8394 .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector, 8395 8396 .get_untagged_addr = vmx_get_untagged_addr, 8397 }; 8398 8399 static unsigned int vmx_handle_intel_pt_intr(void) 8400 { 8401 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 8402 8403 /* '0' on failure so that the !PT case can use a RET0 static call. */ 8404 if (!vcpu || !kvm_handling_nmi_from_guest(vcpu)) 8405 return 0; 8406 8407 kvm_make_request(KVM_REQ_PMI, vcpu); 8408 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT, 8409 (unsigned long *)&vcpu->arch.pmu.global_status); 8410 return 1; 8411 } 8412 8413 static __init void vmx_setup_user_return_msrs(void) 8414 { 8415 8416 /* 8417 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm 8418 * will emulate SYSCALL in legacy mode if the vendor string in guest 8419 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To 8420 * support this emulation, MSR_STAR is included in the list for i386, 8421 * but is never loaded into hardware. MSR_CSTAR is also never loaded 8422 * into hardware and is here purely for emulation purposes. 8423 */ 8424 const u32 vmx_uret_msrs_list[] = { 8425 #ifdef CONFIG_X86_64 8426 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, 8427 #endif 8428 MSR_EFER, MSR_TSC_AUX, MSR_STAR, 8429 MSR_IA32_TSX_CTRL, 8430 }; 8431 int i; 8432 8433 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS); 8434 8435 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) 8436 kvm_add_user_return_msr(vmx_uret_msrs_list[i]); 8437 } 8438 8439 static void __init vmx_setup_me_spte_mask(void) 8440 { 8441 u64 me_mask = 0; 8442 8443 /* 8444 * kvm_get_shadow_phys_bits() returns shadow_phys_bits. Use 8445 * the former to avoid exposing shadow_phys_bits. 8446 * 8447 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to 8448 * shadow_phys_bits. On MKTME and/or TDX capable systems, 8449 * boot_cpu_data.x86_phys_bits holds the actual physical address 8450 * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR 8451 * reported by CPUID. Those bits between are KeyID bits. 8452 */ 8453 if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits()) 8454 me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits, 8455 kvm_get_shadow_phys_bits() - 1); 8456 /* 8457 * Unlike SME, host kernel doesn't support setting up any 8458 * MKTME KeyID on Intel platforms. No memory encryption 8459 * bits should be included into the SPTE. 8460 */ 8461 kvm_mmu_set_me_spte_mask(0, me_mask); 8462 } 8463 8464 static struct kvm_x86_init_ops vmx_init_ops __initdata; 8465 8466 static __init int hardware_setup(void) 8467 { 8468 unsigned long host_bndcfgs; 8469 struct desc_ptr dt; 8470 int r; 8471 8472 store_idt(&dt); 8473 host_idt_base = dt.address; 8474 8475 vmx_setup_user_return_msrs(); 8476 8477 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) 8478 return -EIO; 8479 8480 if (cpu_has_perf_global_ctrl_bug()) 8481 pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " 8482 "does not work properly. Using workaround\n"); 8483 8484 if (boot_cpu_has(X86_FEATURE_NX)) 8485 kvm_enable_efer_bits(EFER_NX); 8486 8487 if (boot_cpu_has(X86_FEATURE_MPX)) { 8488 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); 8489 WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost"); 8490 } 8491 8492 if (!cpu_has_vmx_mpx()) 8493 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 8494 XFEATURE_MASK_BNDCSR); 8495 8496 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || 8497 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) 8498 enable_vpid = 0; 8499 8500 if (!cpu_has_vmx_ept() || 8501 !cpu_has_vmx_ept_4levels() || 8502 !cpu_has_vmx_ept_mt_wb() || 8503 !cpu_has_vmx_invept_global()) 8504 enable_ept = 0; 8505 8506 /* NX support is required for shadow paging. */ 8507 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) { 8508 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 8509 return -EOPNOTSUPP; 8510 } 8511 8512 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) 8513 enable_ept_ad_bits = 0; 8514 8515 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) 8516 enable_unrestricted_guest = 0; 8517 8518 if (!cpu_has_vmx_flexpriority()) 8519 flexpriority_enabled = 0; 8520 8521 if (!cpu_has_virtual_nmis()) 8522 enable_vnmi = 0; 8523 8524 #ifdef CONFIG_X86_SGX_KVM 8525 if (!cpu_has_vmx_encls_vmexit()) 8526 enable_sgx = false; 8527 #endif 8528 8529 /* 8530 * set_apic_access_page_addr() is used to reload apic access 8531 * page upon invalidation. No need to do anything if not 8532 * using the APIC_ACCESS_ADDR VMCS field. 8533 */ 8534 if (!flexpriority_enabled) 8535 vmx_x86_ops.set_apic_access_page_addr = NULL; 8536 8537 if (!cpu_has_vmx_tpr_shadow()) 8538 vmx_x86_ops.update_cr8_intercept = NULL; 8539 8540 #if IS_ENABLED(CONFIG_HYPERV) 8541 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH 8542 && enable_ept) { 8543 vmx_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs; 8544 vmx_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range; 8545 } 8546 #endif 8547 8548 if (!cpu_has_vmx_ple()) { 8549 ple_gap = 0; 8550 ple_window = 0; 8551 ple_window_grow = 0; 8552 ple_window_max = 0; 8553 ple_window_shrink = 0; 8554 } 8555 8556 if (!cpu_has_vmx_apicv()) 8557 enable_apicv = 0; 8558 if (!enable_apicv) 8559 vmx_x86_ops.sync_pir_to_irr = NULL; 8560 8561 if (!enable_apicv || !cpu_has_vmx_ipiv()) 8562 enable_ipiv = false; 8563 8564 if (cpu_has_vmx_tsc_scaling()) 8565 kvm_caps.has_tsc_control = true; 8566 8567 kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; 8568 kvm_caps.tsc_scaling_ratio_frac_bits = 48; 8569 kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection(); 8570 kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit(); 8571 8572 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ 8573 8574 if (enable_ept) 8575 kvm_mmu_set_ept_masks(enable_ept_ad_bits, 8576 cpu_has_vmx_ept_execute_only()); 8577 8578 /* 8579 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID 8580 * bits to shadow_zero_check. 8581 */ 8582 vmx_setup_me_spte_mask(); 8583 8584 kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(), 8585 ept_caps_to_lpage_level(vmx_capability.ept)); 8586 8587 /* 8588 * Only enable PML when hardware supports PML feature, and both EPT 8589 * and EPT A/D bit features are enabled -- PML depends on them to work. 8590 */ 8591 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) 8592 enable_pml = 0; 8593 8594 if (!enable_pml) 8595 vmx_x86_ops.cpu_dirty_log_size = 0; 8596 8597 if (!cpu_has_vmx_preemption_timer()) 8598 enable_preemption_timer = false; 8599 8600 if (enable_preemption_timer) { 8601 u64 use_timer_freq = 5000ULL * 1000 * 1000; 8602 8603 cpu_preemption_timer_multi = 8604 vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; 8605 8606 if (tsc_khz) 8607 use_timer_freq = (u64)tsc_khz * 1000; 8608 use_timer_freq >>= cpu_preemption_timer_multi; 8609 8610 /* 8611 * KVM "disables" the preemption timer by setting it to its max 8612 * value. Don't use the timer if it might cause spurious exits 8613 * at a rate faster than 0.1 Hz (of uninterrupted guest time). 8614 */ 8615 if (use_timer_freq > 0xffffffffu / 10) 8616 enable_preemption_timer = false; 8617 } 8618 8619 if (!enable_preemption_timer) { 8620 vmx_x86_ops.set_hv_timer = NULL; 8621 vmx_x86_ops.cancel_hv_timer = NULL; 8622 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit; 8623 } 8624 8625 kvm_caps.supported_mce_cap |= MCG_LMCE_P; 8626 kvm_caps.supported_mce_cap |= MCG_CMCI_P; 8627 8628 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) 8629 return -EINVAL; 8630 if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt()) 8631 pt_mode = PT_MODE_SYSTEM; 8632 if (pt_mode == PT_MODE_HOST_GUEST) 8633 vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr; 8634 else 8635 vmx_init_ops.handle_intel_pt_intr = NULL; 8636 8637 setup_default_sgx_lepubkeyhash(); 8638 8639 if (nested) { 8640 nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept); 8641 8642 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); 8643 if (r) 8644 return r; 8645 } 8646 8647 vmx_set_cpu_caps(); 8648 8649 r = alloc_kvm_area(); 8650 if (r && nested) 8651 nested_vmx_hardware_unsetup(); 8652 8653 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler); 8654 8655 return r; 8656 } 8657 8658 static struct kvm_x86_init_ops vmx_init_ops __initdata = { 8659 .hardware_setup = hardware_setup, 8660 .handle_intel_pt_intr = NULL, 8661 8662 .runtime_ops = &vmx_x86_ops, 8663 .pmu_ops = &intel_pmu_ops, 8664 }; 8665 8666 static void vmx_cleanup_l1d_flush(void) 8667 { 8668 if (vmx_l1d_flush_pages) { 8669 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); 8670 vmx_l1d_flush_pages = NULL; 8671 } 8672 /* Restore state so sysfs ignores VMX */ 8673 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 8674 } 8675 8676 static void __vmx_exit(void) 8677 { 8678 allow_smaller_maxphyaddr = false; 8679 8680 cpu_emergency_unregister_virt_callback(vmx_emergency_disable); 8681 8682 vmx_cleanup_l1d_flush(); 8683 } 8684 8685 static void vmx_exit(void) 8686 { 8687 kvm_exit(); 8688 kvm_x86_vendor_exit(); 8689 8690 __vmx_exit(); 8691 } 8692 module_exit(vmx_exit); 8693 8694 static int __init vmx_init(void) 8695 { 8696 int r, cpu; 8697 8698 if (!kvm_is_vmx_supported()) 8699 return -EOPNOTSUPP; 8700 8701 /* 8702 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing 8703 * to unwind if a later step fails. 8704 */ 8705 hv_init_evmcs(); 8706 8707 r = kvm_x86_vendor_init(&vmx_init_ops); 8708 if (r) 8709 return r; 8710 8711 /* 8712 * Must be called after common x86 init so enable_ept is properly set 8713 * up. Hand the parameter mitigation value in which was stored in 8714 * the pre module init parser. If no parameter was given, it will 8715 * contain 'auto' which will be turned into the default 'cond' 8716 * mitigation mode. 8717 */ 8718 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); 8719 if (r) 8720 goto err_l1d_flush; 8721 8722 for_each_possible_cpu(cpu) { 8723 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); 8724 8725 pi_init_cpu(cpu); 8726 } 8727 8728 cpu_emergency_register_virt_callback(vmx_emergency_disable); 8729 8730 vmx_check_vmcs12_offsets(); 8731 8732 /* 8733 * Shadow paging doesn't have a (further) performance penalty 8734 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it 8735 * by default 8736 */ 8737 if (!enable_ept) 8738 allow_smaller_maxphyaddr = true; 8739 8740 /* 8741 * Common KVM initialization _must_ come last, after this, /dev/kvm is 8742 * exposed to userspace! 8743 */ 8744 r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx), 8745 THIS_MODULE); 8746 if (r) 8747 goto err_kvm_init; 8748 8749 return 0; 8750 8751 err_kvm_init: 8752 __vmx_exit(); 8753 err_l1d_flush: 8754 kvm_x86_vendor_exit(); 8755 return r; 8756 } 8757 module_init(vmx_init); 8758